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Almost two decades ago we jointly edited a book (Computational Approaches 
to Biochemical Reactivity) with Arieh Warshel. The volume summarized results 
in the rapidly developing computational aspects of biochemical reactivity, which 
were new at that time. Since then interested specialists faced a really spectacu-
lar development in the field, which was honoured by awarding the 2013 Nobel 
Prize in Chemistry to three scientists, among them Arieh. Hundreds of first-class 
publications and dozens of successes in computer-aided drug design provide evi-
dence for the high-level application of models and methods to practical problems 
related to the structure and function of proteins. Maybe the most important les-
son we could learn from the history of Protein Modelling is that there is no sin-
gle and omnipotent method available for the treatment of various problems, rather 
different levels of approximations should be applied. More than in case of quan-
tum mechanical modelling of small and medium-sized molecules, the concept 
of the chemical bond provides a sound basis for computational methods, which 
can be extended and refined by the use of quantum mechanics. Therefore, Protein 
Modelling is now well established and used to facilitate the thorough understand-
ing and rational design of biochemical processes.

Budapest, Hungary, July 2014 Gábor Náray-Szabó

Preface
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Chapter 1
Introduction

Gábor Náray-Szabó

© Springer International Publishing Switzerland 2014 
G. Náray-Szabó (ed.), Protein Modelling, DOI 10.1007/978-3-319-09976-7_1

1.1  Introduction

After formulating the basic equation of quantum mechanics, the British physicist 
Paul Dirac predicted that “The fundamental laws necessary for the mathematical 
treatment of a large part of physics and the whole chemistry are thus completely 
known, and the difficulty lies only in the fact that application of these laws leads 
to equations that are too complex to be solved” [1]. The mathematical difficulty 
proved to be formidable, since for molecules the numerical work, necessary for the 
brute-force solution of the highly complex, non-linear coupled set of differential 
equations increases in a breath-taking pace with the number of its electrons. It is 
therefore not surprising that for a long time quantum chemistry could provide reli-
able computational results only for the simplest molecules with a few electrons. 
Rapid development of computer hardware and software allowed the treatment of 
larger and larger molecules, thus, beginning in the sixties of the last century theo-
retical organic chemistry could rely more and more on computational results.

The achievements of quantum chemistry were acknowledged by the Nobel Prize 
donated in 1998 to John A. Pople and Walter Kohn for the development of com-
putational methods in quantum chemistry. Quantum mechanical computations for 
medium-size molecular systems became an everyday practice since then serving as a 
basis for the interpretation of empirical results, in some cases even replacing experi-
ments. Examples for the successful application are given in Tables 1.1 and 1.2.

As it is seen, calculated excitation energies for the psoralen molecule consist-
ing of twenty atoms and ninety six electrons are close to measured ones, in some 

G. Náray-Szabó (*) 
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University, Pázmány Péter St. 1A, Budapest 1117, Hungary
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cases even complement experiment by providing reliable substitutes for data not 
available by now. A further example for the successful use of quantum mechanics 
is given for carbonyl complexes of nickel and chromium, for which theory predicts 
bond lengths lying very close to the experimental values (Table 1.2).

The spectacular success of small-molecule quantum chemistry was not enough 
to sceptic experimentalists, who demanded appropriate modelling of real systems 
and events, like chemical reactions in solution or on solid-state surfaces, enzyme 
reactions or protein folding. Since models of molecular entities involved in these 
processes consist of several thousands of non-hydrogen atoms, exact quantum 
chemical treatment, similar to that in case of small molecules mentioned above, is 
out of question at present. Therefore theoretical chemists, interested in the solution 
of this formidable problem, dismissed Dirac and went back to classical chemical 
models considering a molecule as an ensemble of atoms and bonds. More or less 
independently from quantum chemistry effective force fields have been  developed,  
first for small molecules [4–6], later for proteins [7, 8]. Application of the force 
fields as a set of parameters in a simple energy expression, involving atoms and 
bonds, lead to the development of molecular mechanics, another tool for the 
description of molecular events depending on energy changes of the system. This 
approach initiated a breakthrough in the modelling of proteins, since problems 
related to conformation, folding, ligand binding and the like could be handled 
at the atomic level. The basic issue of enzyme reactions could be treated by the 
ingenious combination of quantum mechanical and molecular mechanical models, 
first for the 1,6-diphenyl-1,3,5-hexatriene molecule [9] and somewhat later for a 
full enzyme, lysozyme [10]. Now this approach is referred to as the application 
of multiscale models for complex chemical systems, for which the 2013 Nobel 
Prize in chemistry has been donated to Martin Karplus, Michael Levitt and Arieh 
Warshel, apparently the most successful group of scientists in this field. Presently, 
full and appropriate computer modelling of proteins in the biophase became 

Table 1.1  Calculated and experimental (in parentheses) excitation energies (eV) for psoralen [2]

EVA vertical absorption, Te adiabatic electronic band origin, EVE vertical emission, Absmax exper-
imental absorption, T0 experimental band origin, and Emax emission maximum

State EVA (Absmax) Te (T0) EVE (Emax)
1A′ 3.98 (3.7 – 4.3) 3.59 (3.54) 3.45 (3.03)

11A″ 5.01 (–) 3.1 (–) 2.78 (–)

13A′ 3.27 (–) 2.76 (2.7) 2.29 (2.7)

Table 1.2  Calculated (density functional theory with the B3LYP functional) and experimental 
(exp) bond distances (Å) in some metal carbonyl complexes [3]

Ni(CO)4
Ni–C

Ni(CO)4
C–O

Cr(CO)6
Cr–C

Cr(CO)6
C–O

B3LYP 1.845 1.137 1.918 1.141

Exp 1.838 1.141 1.926 1.141
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possible. Similarly as quantum mechanics in small-molecule organic chemistry, 
multiscale protein modelling became an everyday practice in structural biology.

This book can be considered as some kind of a continuation of a former one 
published almost 20 years ago [11]. At that time models were less precise, com-
putational results were less reliable, but it already could be seen that the approach 
is continuously developing, larger and larger systems can be treated, higher and 
higher accuracy can be attained. In the first chapter by Imre Csizmadia and co-
workers the potential of quantum chemical methods applied to small molecular 
models describing protein conformation and folding will be discussed. Then, in 
a survey written by Carme Rovira we can learn, how subtle motions at the active 
site, often coupled to electronic rearrangements, can be followed by quantum 
chemical calculations. Combined quantum mechanical/molecular mechanical 
(QM/MM) methods are getting more and more popular, therefore several recent 
reviews are available [12–18]. In this book a special approach will be discussed 
by Ferenczy and Náray-Szabó. Molecular mechanical force fields become more 
and more sophisticated, polarisation can also be treated as discussed by Khoruzhii 
et al. Ullmann gives a survey on protein electrostatics, a simple and illustrative 
alternative for the discussion of energetic aspects. Further simplifications in pro-
tein force fields are possible, if certain atoms of the protein are grouped in order to 
be considered as single centres, as discussed by Giorgetti and Carloni, who wrote 
a chapter on coarse grained models. A very interesting approach can be elaborated 
if we abandon the demand for atomic resolution. Harris and co-workers report on 
mesoscale methods that access larger systems, from about ten to some hundreds 
of a nanometer. Tusnády uses another approach, bioinformatics, for the structure 
prediction of transmembrane proteins. Modelling structures of these proteins is 
crucial, as in many cases it is almost the only available computational technique 
to get structural information about them. Proteins are by far not rigid, therefore 
dynamic aspects of their function is very important, in some cases crucial (see the 
chapter by Perczel et al.). Molecular docking, which has become an increasingly 
important tool for the study of protein-ligand complexes playing an important 
role in structural biochemistry and drug discovery is discussed by Ramos. Finally, 
Tarcsay and Keserű provides an example for the extensive application of the mul-
tiscale computational methods. They treat an important point in drug design, 
ADMET (absorption, distribution, metabolism, excretion and toxicity) prediction 
based on protein structures.

References
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Chapter 2
Quantum Chemical Calculations on Small 
Protein Models

Imre Jákli, András Perczel, Béla Viskolcz and Imre G. Csizmadia

© Springer International Publishing Switzerland 2014 
G. Náray-Szabó (ed.), Protein Modelling, DOI 10.1007/978-3-319-09976-7_2

2.1  Ab Initio Quantum Chemistry of Peptides

During the past 50 years (1963–2013) many thousands ab initio computations 
were published on small peptides. Many molecules contain the acid amide or 
peptide bond (–CO–NH–) but the smallest molecule is formamide (HCO–NH2).  
It might be expected that the first ab initio computations were to be carried out on 
formamide. However, in 1963, when digital computers, such as IBM 709, were 
not transistorized, therefore, only the iso-electronic formyl fluoride (HCOF) was 
possible to be subjected to ab initio Molecular Orbital (MO) computations. The 
results of this first computation were reported in 1963 in the Quarterly Progress 
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Report of MIT [1]. The full research was published [2] in 1966, after the IBM 
Research Centre generously offered some time on their, transistorized, IBM 7090 
computer to finish the largest basis set computation of that time. The original MIT 
report was kindly reproduced by an ACS journal in the Supplementary Material of the 
paper published, on the 50th anniversary, in the Journal of Physical Chemistry B [3]. 
Eventually, the original aim, the formamide molecule (HCO–NH2) was computed 
afterward when the University Toronto acquired an IBM 7094 transistorized com-
puter and a paper was published [4] in 1968.

Soon after the gate has opened, an unbelievable volume of computation 
appeared in the literature which created the feeling of a Molecular Revolution. 
From that point onward force-field softwares are continuously redesigned on the 
basis of ab initio computational data. Without the aspiration for completeness, a 
brief historic summary is given, in this chapter, about the historic development 
of Quantum Chemical Calculations on small peptides which may be treated as a 
prototype model of the protein folding problem. However, more emphasis will be 
given to the current trends that will effectively influence future directions.

2.2  Relative Stability of Peptide Bonds Formed

The thermodynamic stability of an acid amide or peptide bond may be measured 
by the reaction heat (ΔrH) or free energy change (ΔrG of its format) with respect 
to the sum of the appropriate measure(s) of acid and amine residues involved.

Figure 2.1 shows that the ΔrH formation of amide from α-amino acid (n = 1) 
is the most exothermic process and thus, the most special of the whole series. 

(2.1)R1

O

OH

+ H2N R2
R1

O

N R2

H

+ H2O

Fig. 2.1  Variation of ΔrH 
for the formation of acid 
amide linkage, according 
to Eq. (2.1), with the chain 
length (n), for fatty acids: 
H-(CH2)n–COOH and 
for N-acetyl amino acids: 
AcNH–(CH2)n–COOH. 
The length of the chain is 
also indicated in a symbolic 
fashion by a sequence of 
letters of the Greek alphabet
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This figure also indicates that the convergence of the two curves at n = 5 is less 
than 4 kJ mol−1. The convergence limits in Figs. 2.1 and 2.2 are shown on their 
right hand side. The convergence implies that beyond a certain length the chain 
makes no noticeable influence on the energetics.

Variation of ΔrH for cyclic peptide formation is quite different as shown in 
Fig. 2.2.

Interestingly enough, both γ- and δ-cyclic peptides show extensive stabilization 
with respect to their linear form as a 5 or a 6 member ring is formed, respectively.

The peptide bond is a 4π electron containing functional group, as an allyl 
molecular system would do, the nitrogen lone pair forms a partial double bond 
with the carbonyl carbon:

R1

O

N R2
H

R1

O

N R2
H

The fact that the acid amide (–CONH2) is close to planarity is frequently rational-
ized by the above pair of resonance structures. The extent of this conjugation may 
be characterized numerically by a conjugativity value which is frequently referred 
to as amidicity. As shown below, the removal of the conjugation, by the hydrogen-
ation of the C=O double bond, may be used to define the amidicity (AM) through 
the calculation of the enthalpy change (ΔHH2). A relative value of ΔHH2 may be 
used as a percentage value of amidicity defined in terms of the following com-
pounds shown in Fig. 2.3. Calculations of the amidicity scale [5] is given by the 
following equations:

Figure 2.4 shows the variation of amidicity both for acyclic (open chain) and 
cyclic peptides.

(2.2)�HH2[I] = HB−HA

(2.3)
[

Amidity%
]

= m�HH2[I]+
[

Amidity%
]

0

Fig. 2.2  Variation of ΔrH 
for the formation of acyclic 
and cyclic peptides as 
function of the chain  
length (n), for amino acids: 
H2N–(CH2)n–COOH
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Both the 5- and 6-membered ring, formed by γ- or δ-amino acids respectively 
show extra stability even though the difference is within 0.5 %. In view of this, it 
is understandable that glutamic acid can preferably form cyclic amide. In addition, 
asparagine residue via deamination process can form succinimide (Fig. 2.5).

∆HH2[II] = 34.88 kJ mol-1

H2

O

NMe

OH

NMe
Me

C

N NO HO

H2Me

0.0 %100.0 %

EMe Me

H2

O

NR1

R2

R3
B

∆HH2[I]
N

O

R1
R2

R3
A

H

H+

+
+

D F
∆HH2[III] = -44.62 kJ mol-1

Fig. 2.3  The definition of amidicity

Fig. 2.4  Variation of 
amidicity (%) both for acyclic 
(squares points) and cyclic 
(circular points) peptides
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The asparagine deamidation (Asn → Asp) is one of the most important protein 
degradation pathways and residues of Asp serve as “molecular timers” that can 
have effects on protein turnover and aging [6–10]. Recently, Trout et al. [11] and 
subsequently Catak et al. [12] studied, theoretically, the deamidation process of 
the Asn. The racemization was subsequently explained by enolization of the H–C–
C=O moiety [13], as shown in some details in Fig. 2.5.

Fig. 2.5  Closed electronic shell mechanism of D-Asp formation from Asn through deamidation 
and enolization
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2.3  Topology of Peptide Conformations

2.3.1  The Concept of the Ramachandran Map

The question of protein folding is a century old problem. About a half a century 
ago, Ramachandran [14] in India tried to establish what conformations of a single 
residue diamide were disallowed for steric reason. In the absence of digital com-
puters at that time only ball and stick molecular models were available. The con-
formational change is measure by two dihedral angles (ϕ, ψ) associated with the 
rotation about two bonds connected to the α-carbon as shown below:

I

NC

HR

C
C

N α ω

O

HO

H

φ ψ

The potential energy turns out to be a 2D potential energy surface (PES) [15] 
that is a mathematical function of two independent variables.

The shape of the 2D PES can be investigated from its 1D-crossections (Fig. 2.6).
The idealized topology of minimum energy points is illustrated by Fig. 2.7.

(2.4)E = f (ϕ,ψ)

Fig. 2.6  Schematic illustration of how a chiral (PES) may be related to two component chiral 
potential energy curves
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2.3.2  Conformational Potential Energy Surfaces (PES)

It may important to amplify that every point on the above surface (Fig. 2.8) is a 
particular conformation, but as a distinction only the minima are called conform-
ers. The ab initio conformation potential energy surface as any similar surfaces 
calculated at different levels of theory or by using different methods (e.g. MM, 
QM/MM, coarse grain), looks like a landscape (Fig. 2.8).

Just like in cartography the landscape may also be shown as a contour diagram. 
The above surface (Fig. 2.8) represents one of the four equivalent quadrants in 
Fig. 2.9.

These conformers (Table 2.1 and Fig. 2.10) could be regarded as typical build-
ing blocks of folded proteins as the analysis of PDB data [18] have shown it. Most 

300 g+g- ag- g-g-

g-a

60

180 g+a

ag+

60 180

ψ

300

aa

g+g+ g-g+

300
φ

δDγD

180ε Lβ L

α L

εD

60γ Lδ LαD

30018060
φ

ψ

(a) (b)

Fig. 2.7  Conformational assignments (a) and names (b) of peptide conformers on the conforma-
tional (PES) of a peptide (P–CONH–CHR–CONH–Q) [16]

Fig. 2.8  Pseudo-three-dimensional Ramachandran potential energy surface of HCONH–
CHCH3–CONH2, presented in the 0° ≤ φ ≤ 360° and 0° ≤ ψ ≤ 360° range of two independent 
variables (2D)
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Fig. 2.9  Contour diagram of the 2D Ramachandran potential energy surface of HCONH–
CHCH3–CONH2, presented in the −360° ≤ φ ≤ 360° and −360° ≤ ψ ≤ 360° range of inde-
pendent variables. The central square (broken lines) is the IUPAC conventional cut, while the 
four quadrants are the traditional cuts

Table 2.1  Optimized φ, ψ torsional angle pairs for alanine diamide (HCONH–(L)–CHMe–CONH2)

The idealized torsional angle pairs, together with their conformational classification, are also 
shown for the sake of comparison

Conformer Optimized values Idealized values [16] Conformational

φ ψ φ ψ Classification

αL −66.6 −17.5 −60 −60 g−g−

αD +61.8 +31.9 +60 +60 g+g+

βL −167.6 +169.9 −180 +180 aa

γL −84.5 +68.7 −60 +60 g−g+

γD +74.3 −59.5 +60 −60 g+g−

δL −126.2 +26.5 −180 +60 ag+

δD −179.6 −43.7 +180 −60 ag−

εL −74.7 +167.8 −60 +180 g−a

εD +64.7 −178.6 +60 −180 g+a
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frequently βL and its neighboring conformers (e.g. εL, γL) is a component of the 
extended β- pleated sheets while αL is a typical building unit of both 310- and/or 
α-helix.

2.3.3  Mathematical Representation of Conformational PES

Peptide folding, just like protein folding, has a conformational aspect. The mathe-
matical representation of the conformational potential energy surface is a tool that 
may be used to decipher problems related to peptide folding. Consequently, fitting 
mathematical functions for computed grid points will lead to a mathematical rep-
resentation of such a conformational problem.

One dimensional trigonometric fit to simple internal rotation energies has been 
fitted by Pople et al. [19, 20]. For potential energy surfaces (2D) and hypersurfaces 
(3D or nD) functions of two, three or n independent variable are necessary. These 
were achieved for relatively simple surfaces [21–23]. More recently the problem 

Fig. 2.10  a Schematic illustration of the PES of an amino acid diamide. The idealized posi-
tions of the main conformers are marked by shaded squares, while the computationally deter-
mined positions (actual location depending on methods, type of approach, level of theory etc.) 
are shown as open circles. Shifts but even elimination of some points was observed. The names 
of the conformers are given as subscripted Greek letters [16, 17]
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has been reinvestigated to see how does the mathematical complexity of Fourier 
expansion function groups with the complexity of the appearance of the PEC or 
PES [24]. The three different torsional modes of C–C, N–N and O–O exhibit three 
different scenarios. The N–N rotation is the most complex because the central 
anti conformer at 180° becomes a higher energy minimum with respect to the two 
gauche minima (at around 90° and 270°). In contrast to N–N, rotation about the 
O–O bond in H2O2 the anti conformer becomes a TS and two equivalent conform-
ers were assigned at about 120° and 240°, respectively. Thus, this PEC exhibited 
intermediate complexity. Ethane has 3 identical minima hydrogen peroxide has 2 
identical minima. In contrast to these hydrazine has 3 minima of which 2 are iden-
tical lower minima and the 3rd minimum is a higher minimum. All of these appar-
ent complexities are summarized in Table 2.2, in which it is indicated that C–C 
can be fitted by a single (m = 1) cosine term, while peroxide requires already two 
cosine terms (m = 2) and hydrazine must have at least three terms (m = 3) in the 
Fourier expansion (2.5).

The three conformational PECs are shown in Fig. 2.11.

(2.5)E(ϕ) = a0 +

n
∑

m=1

(

aj cos
m2πkϕ

360

)

Table 2.2  Accuracy (R2) 
of fitted functions with 
increasing number of terms 
(m) for a C–C, N–N and  
O–O bonds

Molecule R2

m = 1 m = 2 m = 3

Ethane 0.9936 1.0000 1.000

Peroxide 0.9427 0.9994 1.000

Hydrazine 0.7739 0.9802 0.9977

Fig. 2.11  Potential energy curves for rotation about the C–C, N–N and O–O bonds [24]
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Thus, with increasing complexity (increasing topological differences of criti-
cal points) of the PEC the complexity of the fitted explicit mathematical function 
must also increase. For a conformation PES, pentane is a classical example since it 
may be treated as 1,3-dimethyl propane and therefore it could act as a 2D example 
(Fig. 2.12).

The surface is quite symmetric so a cosine and sine compilation of trigonomet-
ric functions (6) with m, n = 3 yielded on R2 = 0.9347. With the increase m, n 
the R2 value improved slightly. The R2 value improved with m, n > 3 as shown in 
Table 2.3.

(2.6)

E(ϕ,ψ) = a0 +

∞
∑

m=1

∞
∑

n=1

(a1 cosmkϕϕ cos nkψψ

+ a2 cosmkϕϕ sin nkψψ + a3 sinmkϕϕ cos nkψψ

+ a4 sinmkϕϕ sin nkψψ)

Fig. 2.12  Conformational PES of pentane treated as 1,3 dimethyl-propane

Table 2.3  Slight variation of accuracy (R2) of fitted functions with increasing number of terms 
(m, n) for pentane (1,3 dimethyl propane)

Molecule R2

m, n = 3 m, n = 4 m, n = 5 m, n = 6

Pentane 0.9347 0.9367 0.9371 0.9383



16 I. Jákli et al.

A similar type of fitting for the conformational PES of glycine diamide is already 
a more complex task: surface shown in Fig. 2.13.

Even though the fitted analytical Eq. (2.7) is far more complicated than that used 
for pentane (Eq. 2.6) the R2 value is about the same: R2

Gly = 0.9287 as was in the 
former case. However, the main problem of such an approach is not that the ana-
lytical function gets more and more complicated as the polypeptide growth in 
size and complexity, but that the PES varies a lot as the level of theory is changed 
[25, 26]. Thus, as both shape and topology of the appropriate PEHS changes for 

(2.7)

E(ϕ,ψ) = a0 +

∞
∑

m=1

∞
∑

n=1

Am,ne

(

−

(

(bmϕ−ϕ0)
2

2σ2ϕ
+
(bnψ−ψ0)

2

2σ2
ψ

))

+ a1 cosmkϕϕ cos nkψψ + a2 cosmkϕϕ sin nkψψ

+ a3 sinmkϕϕ cos nkψψ + a4 sinmkϕϕ sin nkψψ

+

∞
∑

j=1

∞
∑

l=1

d1 cos(jkϕϕ − lkψψ)d2 cos(jkϕϕ − lkψψ)

+

∞
∑

j=1

∞
∑

l=1

d3 cos(jkϕϕ − lkψψ)d4 sin(jkϕϕ − lkψψ)

+

∞
∑

j=1

∞
∑

l=1

d5 sin(jkϕϕ − lkψψ)d6 cos(jkϕϕ − lkψψ)

+

∞
∑

j=1

∞
∑

l=1

d7 sin(jkϕϕ − lkψψ)d8 sin(jkϕϕ − lkψψ)

Fig. 2.13  Ramachandram type conformational PES of N-acetyl glycine-N-methylamide
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the very same chemical entity by varying QM method and/or the level of theory 
applied, the concept of using these PEHS as markers of protein building blocks 
seems to miss the point. Although very informative, these PEHS can hardly be 
used as generalized descriptors of folding properties of polypeptides.

2.3.4  Toroidal Representation of Conformational PES

The two independent periodic variables (ϕ, ψ), which characterize the Ramachandran 
map, denote circular motions as illustrated by Fig. 2.14. Therefore, to make any 
arbiter cut off introduces artificial edges and thus, separates otherwise neighboring 
 conformer types from each other.

To obtain the Ramachandran surface in a toroidal coordinate system we 
may first roll up the 2D PES along one variable, (e.g., ψ) and obtain a cylinder 
(Fig. 2.15, top). Subsequently the same can be done along the second variable φ, 

ψ

φ

φ
ψ

(a) (b)

Fig. 2.14  Traditional Cartesian-coordinate system (a) and a topologically equivalent circular or 
toroidal coordinate system (b)

Fig. 2.15  Folding of the Ramachandran-surface coordinates first along φ (top) and second along 
ψ (bottom), with minima (αL, βL, etc.) highlighted
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to obtain a doughnut-shaped object, such as an O-ring called a 2D-torus (Fig. 2.15, 
bottom). Location of the nine basic conformers [17], which is visible from the 
given perspective (Fig. 2.8) are indicated by their subscripted Greek-letter codes 
occur now on the surface of the torus.

If we wish to illustrate the energy depths or heights, shown in Fig. 2.8, on these 
topographically equivalent geometrical objects, then we may use an appropriate 
color code. Also, it is easy to squeeze these geometrical objects at their energy 
minima and blow them up at points related to energy maxima [27] (Fig. 2.16).

The situation is analogous to view the Earth as a 3D-globe rather than on a 2D 
map. It can be seen that points that are located on two sides of a 2D-PES map may 
in fact adjacent on the 3D-toroid. In other words the periodicity of dihedral rota-
tion are explicitly observable.

To summarize both the traditional as well as any more recent representation of 
the backbone PES of any amino acid diamide, called as Ramachandran surface, 
are adequate toll for depicting the different conformational building blocks, lego 
elements, of peptides and proteins. Moreover, conformational interconversions 
(paths) via TSs as well as avoided regions (mountains) are easy to visualize, using 
any sensible cuts and representations. On the other hand, these PESs are very sen-
sitive and changes qualitatively to the method, level of theory, concept etc. used to 
determine them. Thus, just because these PESs are very method dependent, they 
can hardly be used as numerical and/or analytical representation of the actual pep-
tide model. In other words for the very same peptide model, multiple PESs can be 
calculated. In conclusion, these PESs are often useful tool to qualitatively interpret 
conformational properties but are inadequate to stand on their own for a polypep-
tide model.

Fig. 2.16  Toroidal representation of the Ramachandran PES for alanine residue in embedded in 
the AcNH–(L)–CHMe–CONHMe diamide model
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2.4  Backbone Conformations of Small Peptides

2.4.1  Single Amino Acid Diamides

There are 21 DNA coded natural amino acids occurring in proteins. A total of 20 
of these amino acids have DNA codons and the 21st of them, Selenocystein (Sec), 
has only RNA codon. For the description of backbone conformations all of these 
amino acids need the appropriate 2D-Ramachandran potential energy surfaces 
(PES). Two of these 21 amino acids have exceptional structures: (i) Glycine (Gly) 
which has no side chain and thus achiral and (ii) Proline (Pro) in which the side 
chain is connected back to the amino nitrogen atom fixing the φ torsional angle 
at around 70°. For the remaining 19 proteogenic resides side chains are of var-
ying length and therefore have different degree of conformational freedom. The 
1, 2, 3 and 4 dihedral angles add 1, 2, 3 and 4 extra dimensions to the basic 2D 
Ramachanran PES of the residue. In this way we may end up as 2 + 1 = 3D, 
2 + 2 = 4D, 2 + 3 = 5D and 2 + 4 = 6D PEHS per residue. Side chains are 
classified as being, apolar, polar or explicitly charged as function of the pH. 
Characteristics of the various amino acids are summarized in Table 2.4. Hetero 
atom(s) of selected side chains are of importance as they can “self” interact and 
form intramolecular side chain-backbone interaction(s). The nature of these inter-
actions can be observed even in smaller peptides. However, in proteins there are 
many more type of interactions (e.g. side/chain-side/chain). These inter-residue 
interactions require larger peptides to be used as model systems as shown below.

The classification of amino acid residues is also possible via their side-chain 
topologies. In 19 out of the 20 proteinogenic amino acids the first substituting 
atom are always carbon. In 16 of the 19 cases the C atom is a methylene (CH2) 
group, with one substituent on it, while in 3 cases it is a methine (CH) group, 
equipped with two substituents. These structural features are shown below.

Table 2.4 list of 21 amino acid residues showing their side chains and 
their dihedral angles of rotation as well as the dimensionality (D) of the full 
Ramachandran PES.

N

C

Z

H

H
H

H O

N

OH

H C H

Z2Z1

II III
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These amino acids can be coupled to each other by forming polypeptides via 
condensation reaction (Eq. 2.1).

Initially, glycine (Gly) and alanine (Ala) diamide backbone conformers were 
studied in details [17, 28, 29]. Basis set study for the assessment of the reliability 

Table 2.4  List of the 21 proteinogenic α-amino acids, of variable side-chains lengths
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of the used methods of computation were carried out [30]. For selected number of 
amino acids certain conformers have been identified by matrix isolation infrared 
spectroscopy [25, 26]. Valine diamide was also studied quite early [31]. Since the 
α-helical (g−g−) conformer was not a minimum on the initial PES, therefore vari-
ous hydrogen bonded structures were generated via the direct solvation method 
with the inclusion of a single H2O molecule [32]. This set up was satisfactory to 
obtain the α-helix minimum on the PES. Serine (Ser) became very popular [33–
38] during the years. Cystein (Cys), the sulfur analogue of Ser was investigated 
considerably later. Actually Cys was computed on its own [39] as well in connec-
tion with disulfide bridge formation providing cysteine [40, 41]. The selenium 
analogue, selenocystein (Sec) was also in focus on its own merit [42] as well 
for its antioxidant role [43]. Two more sulfur containing amino acids were also 
investigated, one of them was methionine (Met) [44, 45] and the other one was it 
demethylated form: homocystein [46]. In addition in their side-chain oxygen con-
taining aminio acid diamides were also studied by various QM methods, for exam-
ple those included threonine (Thr) [47, 48] and hydroxy-proline [49]. In terms of 
other polar side chains, asparagine (Asn) [50, 51] and glutamine (Gln) [52] as well 
as their corresponding acids, Aspartic acid (Asp) [53–56] and glutamic acid (Glu) 
[52] were also studied.

Conformational properties of aromatic side chain containing amino acids, like 
phenylalanine (Phe) [57–60] and tyrosine (Tyr) [61] and special apolar amino acid 
residue like proline (Pro) [62] were also elaborated. As a special case of apolar 
side chain dehyro-alanine [63] in which a C=C double bond exist between the α 
and β carbon atoms has also been investigated. Also special attention was given to 
the question of trans → cis isomerization of the peptide bond [64, 65].

To discuss all the conclusions of the above individual publication goes beyond 
the limit of this chapter. The readers are asked to explore them in individual pub-
lications. However at least one common conclusion can be drawn from all these 
conformational stability studies completed on these different side-chain equipped 
backbone units of peptides and proteins, namely that neither the side chain chemi-
cal composition, nor their conformational properties will fundamentally distort the 
backbone topology of a –CONH–(L)–Xxx–NH– molecular building unit. Thus, 
the fact that all these proteinogenic residues are α- and L-amino acid residues pro-
vides for them a common backbone conformational characteristic.

2.4.2  Dipeptide Diamides

In the early 1990th amino acid dimers concentrated on the simplest dialanine 
diamide models [66–68], such as -Ala-Ala- and were used to study the first folded 
systems (e.g. β-turns) by ab initio methods [69]. QM approaches combined with 
the conformational preferences of the constituent building blocks, known β-turn 
structures were approved and new forms of turns were revealed. Although found 
less frequently in proteins, these new β-turns (e.g. εDδL, εDαL , δLβL) do exists and 
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were successfully assigned in polypeptides and proteins. Thus, multidimensional 
conformational analysis driven ab initio calculations concluded, that 1 → 4-type 
intramolecular H-bond of β-turns is more related to the preferred αL-type sub-
structure of the first residue within a β-turn, than to the true nature of the turn-like 
folded backbone structure. These early QM calculations resulted in already total at 
least 18 different turn-like foldamers for the For-L-Ala-L-Ala-NH2 model system. 
Additional β-turn structure analysis revealed [70] the conformational preferences 
of more complex turn models, such as Pro-Thr [71] and Pro-Pro [72]. These stud-
ies revealed how fixing the first torsional angle of the backbone of a dipeptide ini-
tiates β-turn formation.

2.4.3  Oligo- and Polypeptide Diamides

Oligopeptides containing 1–5 amino acids were also investigated during the past 
couple of decades. These studies included either solely alanine residues [73, 74] 
or Ala in combination with other proteinogenic residues [75]. Antifungal Phe-Arg-
Trp [76] was perhaps considered and its conformational preference was estab-
lished. In addition, the question of beta sheet [77] and α-helix [78–81] stability 
has also been addressed. Point mutations at the central position of the Pro-Pro-
Pro [72] sequence was in focus as the hinge region of immunoglobulin has such 
sequential properties (e.g. Pro-Xxx-Pro) (Fig. 2.17).

These tripeptide units are already nano-structures in terms of size and they may 
assume a number of conformations as illustrated by the next figures (Figs. 2.18 
and 2.19).

If in the figure below the substituent R is either H or Ph the tripeptide could 
adopt a relatively long and rather extended backbone structure. However if the 
central amino acid is Thr, then the internal hydrogen bonds could fold the mol-
ecule resulting in a more compact backbone arrangement (Fig. 2.20).

Special attention was given to gluthation [82–85] (Fig. 2.21), as it can form 
both α- and γ-peptide bond.

Fig. 2.17  Hinge region location and PXP peptide sequence of immunoglobulin
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Fig. 2.18  A schematic representation of conformational variations of a PXP tripeptid

Fig. 2.19  Structural representations of a PXP tripeptide

Fig. 2.20  Side chain/
backbone hydrogen-bonding 
networks available in the 
different conformers of  
HCO-Pro-Thr-Pro-NH2
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Fig. 2.21  A γ-peptide bond 
in Glutathione



24 I. Jákli et al.

The γ-glutamyl-cystein present in glutathione (γ-Glu-Cys-Gly) is an ancient 
sequence bit, which has a special role in virtually all living organism as an impor-
tant antioxidant [86]. It prevents damage to important cellular particles caused by 
reactive oxygen such as free radicals. In some cases this dipeptide (γ-Glu-Cys) 
occurs alone in halobacteria [87, 88]. In plants certain mutants occur where the 
C-terminal glycine is replaced by β-alanine [89], serine [90] or glutamate [91]. All 
of these suggest that the γ-Gly-Cys moiety was first formed in the ancient period 
of molecular evolution during which the more stable γ-peptide bond was formed 
under thermodynamic control.

Collagen build up from -Pro-Gly-HyPro- or POG “triplets” in a repetitive man-
ner has a well characterized triple helical secondary structure, where the chains 
are stabilized by interchain H-bonds, using the HN of Glys. The relative stability 
of fully optimized collagen triple helices was determined with respect to a three 
stranded β-pleated sheet structure by using DFT calculations. In addition the sec-
ondary structure preference of Pro, Gly, Ala and HyPro residues was established 
[92]. De novo calculated collagen structures show a great resemblance to those 
determined by X-ray crystallography. Interestingly enough the calculated triple 
helix formation affinities correlate well with the experimentally determined sta-
bilities retrieved from melting point data. The very abundant collagen is not only 
special by presenting a triple helical structure, but also it is specifically and inten-
sively hydrated [93]. Bella and Berman reported experimentally the structure of 
the first hydration layer and found that H2Os form bridges of different length and 
type around the POG repeats of collagen. Stability and helicity of these hydration 
layers were computationally determined via 8–12 explicit placed water molecules. 
Although the stability order of these waters varies from binding places, but they 
do it in line with the X-ray data. In conclusion, these water binding places on the 
surface of the triple helix can provide explanation on how an almost liquid-like 
hydration environment exists between the closely packed tropocollagens [94]. 
Using the ab initio data it was speculated that these water molecules could serve 
as reservoirs or buffers providing space for ‘‘hole conduction’’ of water molecules 
and thus, contribute to the elasticity of collagen known macroscopically for quite 
some time [95].

Amyloid-like aggregates made of extended like backbone folds of simple poly-
pepetides were also studied by ab initio methods [96]. Accumulated evidences on 
conformational diseases (e.g. Alzheimer’s disease) show the presence of amyloid 
aggregates, found independent of the primary sequence of the polypeptide chain 
[97]. Thus the driving force of the conversion from the original to amyloid type 
foldamer of a primary sequence unit is most probably driven by favorable back-
bone backbone interactions [98, 99]. In this way most polypeptides and proteins 
gravitate to an unexpected and highly irreversible thermodynamic minima. They 
assemble in form of supramolecularnano-systems, within the component macro-
molecules adopt a common form called as “dead-end” structure(s). Using MDC 
driven QM calculations on large enough, but still computable polypeptides, it was 
found that β-pleated sheet structure(s) dominate the “dead-end” molecular fol-
damer. Several very different building block forms were probed and found both 
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in vacuum and in aqueous environments that their di-, oligo- and polymers make 
amyloid like fibers. Even in a crystalline state (periodical, tight peptide attach-
ment), the β-pleated sheet assembly remains the most stable superstructure. This 
theoretical study provides a quantum-level explanation for why proteins can take 
the amyloid state when local structural preferences jeopardize the functional 
native and often global folds. The ribbon form of such a nano-assembly is show in 
Fig. 2.22.

While the β-pleated sheet structure (Fig. 2.22) made of β-layer is typical of an 
oligopeptide made up of α-amino acid residues, for oligo and polymers of β-amino 
acids, a self-rapping and thus a spontaneous (energetically favored) nanotubes 
formation was observed [100]. Octapeptide structure segments of the longer oli-
gopeptide, Penetratin, have been studied computationally as well as by NMR 
spectroscopy. The computed and the NMR observed structural results agreed well 
[101].

Certain oligopeptides that have two cysteine residues may be cyclized via 
disulfide bond formation. In nature, oxytocin is an important example for such 
cyclic structures (Fig. 2.23a). The relative stability of disulfide bridges that may 
lead to cyclization or to dimerization (Fig. 2.23b) has been also studied recently 
[41]. Oligopeptides such as the mammalian neurohypophysial hormone, oxytocin 

Fig. 2.22  A schematic “side” view of an amyloid aggregate formed from dozens of polypeptide 
chains

Fig. 2.23  a The structure of oxytocin. b Inter-chain disulfide linkage
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and vasopressin (Fig. 2.23b) contain two cysteines and by forming an intramolecu-
lar cystine they result in a peptidic macrocycle; composed of six residues of 20 
atoms in total within the ring. This poses some conformational limitations to them 
found ideal for binding to their receptors. The relative stability of disulfide bridges 
that may lead to cyclization or dimerization (Fig. 2.23b) has been also studied 
recently and found that [41].

2.4.4  Information Accumulation During Polypeptide Folding

The information content change associated with peptide folding has been studied 
by computing the associated entropy change (ΔS) [80, 102–105] (Figs. 2.24 and 
2.25).

The variations of ΔS with extent of polymerization is shown in Fig. 2.26 and 
the variations of thermodynamic functions in Fig. 2.27. Both figures indicate that 
the entropy change of poly glycine is faster with increasing degree of polymeriza-
tion that of poly alanine.

All these entropy focused studies suggest that in folded conformers there is net 
information accumulation with respect to the unfolded structure.

Fig. 2.24  Variation of 
relative information content 
(I/I0) with ΔS
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Fig. 2.25  A schematic illustration how ΔS and ln(I/I0) varies with peptide folding

Fig. 2.26  Variation of 
thermodynamic functions, 
ΔH°β→α-TΔS°β→α G°β→α of 
βL → αL folding with degree 
of polymerization
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2.5  Side Chain Conformations of Small Peptides

Any conformational interconversion of For-L-Ser-NH2 takes place on its 4D 
hypersurface: E(ϕ,ψ ,χ1,χ2). Both visualizing and making any graphical repre-
sentation of a 4D-hyperspace are complex. Thus, appropriate 2D-crosssections 
of the parent 4D hyperspace were calculated and pasted “together” to decipher 
the topology associated with -Ser- conformers and conformational changes. The 
analysis of these ab initio conformation energy maps made the tracing of some 
relaxation paths possible, revealing characteristic side-chain-induced backbone 
conformational shifts [81]. Interestingly, the partly relaxed conformational hyper-
surfaces revealed alternative relaxation paths.

2.5.1  A Case Study for Apolar Side Chain (Val)

Beside Alanine the simplest apolar amino acid is Valine which residue requires a 
3D PEHS as it has single side-chain dihedral angle beside the backbone ϕ and 
ψ variables. Figure 2.27 shows how the energetically more stable g+and g− side 
chain rotamers are frequent in proteins, with respect to the less stable and thus less 
frequent a side chain form.

Fig. 2.27  PDB statistics of the distance between the oxygen and the hydrogen in the C–H···O 
sidechain-backbone hydrogen bond in valine residues of proteins. On the left hand side the 
approximate potential energy curve is shown indicating the heavier population of the gauche 
conformers
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For-L-Val-NH2 could have in total 27 legitimate minima on its 3D 
Ramachandran map, E = E (ϕ,ψ ,χ1). By QM calculations as many as 20 con-
formers were optimized [31]. A new method was developed for energy partition-
ing in order to quantify the magnitude of the side chain/backbone interaction 
probed for the present L-Val model system. Such a side chain/backbone interac-
tion  was established by calculating the iPr group for the various backbone con-
formers of For-L-Val-NH2 relative to that of hydrogen in the corresponding 
backbone folds of For-Gly-NH2. The comprehensive analysis showed that even an 
apolar side chain is able to interact with the peptide backbone so “strongly” that it 
could annihilate otherwise legitimate backbone minima.

Both L-Val and L-Phe residues, prototypes of hydrophobic aliphatic and hydro-
phobic aromatic amino acid residues, were studied at several basis sets by using 
different methods (e.g. B3LYP/6-311 ++G∗∗), resulting in a larger dataset com-
piling results of different levels of theory [106]. Both conformational and ener-
getic properties of these “libraries” were analyzed as a function of the method 
applied. In addition comparisons of calculated populations of peptide foldamers 
of these hydrophobic residues were matched with their natural abundance derived 
from proteins. Analysis concluded that at least for the hydrophobic core of pro-
teins, the conformations of Val (Ile, Leu) and Phe (Tyr, Trp) are controlled by the 
local energetic preferences of the respective amino acid residues.

2.5.2  A Case Study for Polar Side Chain (Asn and Asp)

Both in the case of Asn as well as Asp residues there are hydrogen bonds between 
side chains and backbone (Fig. 2.28). Since the H atom of the –COOH group is 
more protic than that of the –CONH2 moiety, the hydrogen bond is shorter in the 
case of Asp than in the case Asn. For assessing all H-bonded structures a full 4D 
potential energy hypersurface would need to be analysed.

Fig. 2.28  Sidechain-backbone N–H···O hydrogen bond in Asn and OH···O hydrogen bond in 
Asp residues
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2.5.3  A Case Study for Protonated Side Chain (His)

Proton affinity and pKa values of N-formyl-L-His-NH2 are found to vary as a func-
tion of its backbone and/or side-chain orientation [107]. Examples were presented 
and confirmed by ab initio calculations, where proteins were crystallized under 
various pH conditions, resulting in the same histidine residue to adopt different 
conformers. Furthermore, a hypothesis is given for a protonation-induced confor-
mational modification of the histidine residue in the catalytic triad of chymotrypsin 
during catalysis, which lowers the pKa value of the catalytic histidine by 1.2 units. 
Both the experimental and theoretical results support that proton affinity as well as 
that pKa values of histidine residues are strongly conformationally dependent.

2.6  Peptide Radicals

Accumulated evidence indicates that oxidative stress plays a significant role in a 
number of diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD), 
Diabetes II and atherosclerosis, just to list a few of the more than 50 examples 
[108–110]. The mechanisms leading to cellular oxidative stress has been shown 
to be the result of the excessive production of reactive oxygen species (ROS), that 
includes non radicals (i.e. H2O2) and free radicals (i.e. OH, O2

−, and NO) as well. 
Consequently, ROS can interact with different bioactive molecules, to initiate a 
cascade of events that can lead to cell death [111]. In this way, protein oxidation is 
a result of hydrogen abstraction by hydroxyl radicals [111]. Under normal condi-
tions, ROS are generated are eliminated by the cell’s antioxidant capacity [112]. 
When the antioxidant capacity is no longer reduce capable to the reduce ROS 
excess they can accumulate in the cell. This can cause the oxidation of the amino 
acid residues within the protein backbone, which can result in (a) protein frag-
mentation (b) a change from the L-configuration to the D-configuration (c) pro-
tein aggregation and (d) protein misfolding [113]. Altered protein structure have 
been observed in a neurodegenerative disease such as Alzheimer’s disease, which 
is generally found in the elderly [114].

It was once thought that all living organisms are composed of only L-amino 
acids [115]. The discovery of D-aspartic acids (D-Asp) in various human tissues 
of the elderly people indicates that oxidative stress related to ageing is a main fac-
tor in the production of D amino acids. Such a configurational change can result in 
the accumulation of the D-amino acid and decrease the “original” enantionerically 
pure protein concentration [116–119]. In addition, the accumulation of D-amino 
acids in the brain is affiliated with Alzheimer’s disease [116].
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2.6.1  Radical Structures and Reactivity

One of the damages that oxidative stress causes at a molecular level is the hydro-
gen abstraction of the α-hydrogen atom of an amino acid either by hydroxy radi-
cals (IV) or by other reactive oxygen species (ROS).

C-H···· •OH

IV

It has been shown [120] that the hydrogen atom attached to the α-carbon 
is the most vulnerable part of proteinogenic residues for such a damaging 
attack. It has also been suspected that the radical center of a polypeptide chain 
would react differently as function of the main chain folding. Thus thermo-
dynamic measures of the very same reaction would be different for a folded, 
unfolded and aggregated nano-system. Penta-glycine [121] and penta-alanine 
were studied in this respect. The hydrogen radical, (H•), recapturing by the 
Cα-radical, has been investigated [109]. The following Eq. (2.8) summarizes 

Fig. 2.29  H atoms are less likely to form α-radical followed radical unfolding and ended with 
H-atom capture of glycine–diamide. Potential Energy variation of the process is which the 
α-radical of glycine was formed by OH radical and the H-atom was donated the α-radical by 
H2O2. The roman numerals on the top indicating the initial, intermediate and final states
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the H-abstraction followed by H-recapture and Fig. 2.29 illustrates the details of 
this process.

(2.8)
C H O + H2O2C H + OH + H2O2 C H OH + H2O2+ OH + O

Fig. 2.30  a Change of polypeptide conformation from water to TFE solution. b Change of poly-
peptide radical conformation from water to TFE
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Fig. 2.31  Potential energy curves along the disrotatory (φ = −ψ) cross section of the 2D 
Ramachandran potential energy surface, E = f(φ, ψ), for N- and C-protected Ala enantiomeric 
pairs (in color) and their “common” achiral α-radical (in black)
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Unlike Gly, all the other amino acid residues are chiral and thus, the possibility of 
racemization when H. is recaptured is significant even for folded macromolecules, 
where the attack of the H. could have spatial preference.

The fact that an α-helix is not very stable as a foldamer is known from the lit-
erature. In fact if a helical subset of a protein is cut off and separated from the par-
ent protein, it will almost always unfold in H2O. The affinity of such a sequence 
to present nascent helices can be enhanced by adding TFE of other fluorinated 
cosolvents to water as shown for instance for penetratine (see below) [101, 122]. 

Fig. 2.32  Cross section of the full PES of Ac-Asn•-NHCH3 and the schematic stereoisomers of 
Asn βD and •Asn βL, detailed path is show in Fig. 2.34
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However, as the helical backbone gets more and more structured beside the equi-
librium state of a folded and of an unfolded set of molecules the helix can also 
turn and/or bend (Fig. 2.30). The conformational change of a helix in water as well 
as in apolar environment, like it is in the case of trans-membrane proteins [109] is 
illustrated in Fig. 2.30.

Clearly, at the radical center (Fig. 2.30b) the folding of the helix is more pro-
nounced in water than in a less polar environment (like in a membrane).

2.6.2  Atropisomerism of Radicals

The potential energy surface (PES) associated with Ac-Ala-NHMe clearly shows 
that regardless of whether the Cα-radical was generated from the L- or D-alanine, 
it has a single, fully extended β-like conformation, with (φ = ψ = 180°). (Center 
of the black line in Fig. 2.31.)

However, if the side-chain is larger than that of a CH3 as it is in Ala, then the 
PES gets more complex. For Asn which has a longer side-chain, the Cα-radical 
itself will present a pair of degenerate β-conformers, labeled as βL and βD as 
shown in Fig. 2.32. This type of potential energy curve is typical of axis chirality 
which leads to atropisomerisation. Atropisomerism occurs even in simple com-
pounds, the rotation about C2–C3 of n-butane is a typical example; the g+ and g− 
conformers are atropisomers.

One of the simplest examples for axis chirality is hydrogen peroxide.
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The above 1D representation of Asn radical (Fig. 2.32) is an over simplification 
of the molecular topomerization phenomenon [3] shown in Fig. 2.33. However, it 
is clear that the system may proceed along two directions. One of the two direc-
tions is along the path toward the low energy maximum point (TS1), and the other 
one toward the high energy maximum point (TS2). Clearly, when we are moving in 
a 2D PES we have two orthogonal paths that may be labeled as path A and path B. 
This situation will lead us to four transition states (TSA1, TSA2, TSB1 and TSB2). 
Figure 2.34 illustrates this phenomenon in terms of a pair of 2D cross-sections. 
Noting that Asn conformations are describable by a 4D-Ramachandran Potential 
Energy Surface, such a 4D problem may be represented by a pair of 2D energy 

Fig. 2.33  Schematic 
illustration of enantiomeric 
topomerization paths A and B 
on the 2D-PES cross sections 
associated with backbone 
(top) and side-chain (bottom) 
conformational change
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surfaces, one in the backbone subspace, E = f (φ,ψ), and the other one in the side-
chain subspace, E = f (χ1,χ2) as shown in Fig. 2.33 (Table 2.5).

Clearly, the enantiotopic TS A1 and TS B1 represent the lower barrier 
(38.47 kJ/mol) while the enantiotopic TS A2 and TS B2 correspond to the higher 
barrier (70.87 kJ/mol).

Table 2.5  Free energy changes, ΔG0 (kJ/mol) of radical formation and enantiomeric topomeri-
zation computed at several levels of theory

aGeometry optimized at B3LYP/6-311 ++G(d,p) level of theory (calculated vibrational wave-
numbers are scaled by 0.97)
bValues are obtained by MP2/cc-pVTZ//B3LYp/6-311 ++G(d,p) level of theory
cValues are obtained by CCSD(T)/cc-pVTZ//B3LYp/6-311 ++G(d,p) level of theory
dCorrection for ΔE to ΔG0

eFor dissociation free energy the ΔG0 must be reduced by the hydrogen energy which may takes 
as 0.5 hartree (1312.75 kJ/mol)

Species DFTa MP2b

ΔE1 Corrd ΔG1
0 E(CCc) ΔE2 Corrd ΔG2

0 E(CCc)

TS A1 38.47 −5.9 32.57 43.29 42.71 −7.34 35.37 42.29

TS B1 38.47 −5.88 32.58 43.28 42.71 −7.34 35.38 42.29

TS A2 70.88 −5.46 65.42 67.5 72.8 −5.11 67.69 63.72

TS B2 70.87 −5.46 65.41 67.49 72.8 −5.11 67.69 63.72

Asn βL
e −1676.3 31.03 −1645.2 −1604.9 −1694.6 32.22 −1662.4 −1602.4

Asn βD
e −1676.3 31.03 −1645.2 −1604.9 −1694.6 32.22 −1662.4 −1602.4

•Asn βL 0 0 0 0 0 0 0 0

•Asn βD 0 0 0 0 0 0 0 0

Fig. 2.34  A schematic illustration of the relationship between the quantum system to be inves-
tigated and the quantum simulation actually studied. Note that instead of the exact initial state 
ψ(0) actually the approximate φ(0) is used as initial state
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2.7  Future Perspectives

According to a classical and old cliché “the future is no longer what it used to be”. 
This poetic statement implies that we cannot predict the future by direct extrapola-
tion from the events of the past. Nevertheless the final section of this chapter was 
constructed to envisage certain visions to highlight certain principles, knowing 
that they might not be true and thus may not turn into reality.

2.7.1  Time Dependent Quantum Simulations

To become an exact science for chemistry is an eschatological hope. In order to 
avoid any misunderstanding, we first need to give a careful definition of the term 
“exact”. We mean by it not only something which is accurately computable, but 
rather a rigorous theory behind what is computed. The rigorous theory is quantum 
mechanics in principle and the equation to be solved is the time-dependent form of 
the Schrödinger equation:

For the sake of simplicity, Ĥ is the time independent Hamiltonian. Time dependent 
Schrödinger equations are needed to describe processes, and time will occure in 
the form of an evolutionary operator U shown below in Eq. (2.11). The time inde-
pendent Schrödinger equation (at t = 0)

where ψ(0) is the initial state. The solution of the time dependent state is

where the unitary transformation is achieved by the following operator

With the advent of quantum computers it was hoped that such time dependent 
solution will be possible. Since all processes, including chemical changes are time 
dependent, the solution of the time dependent Schrödinger equation is the ultimate 
goal [123–129].

It turned out that most of the efforts today in chemistry and particularly in pro-
tein folding studies is to overcome the computational struggle on the time depend-
ent aspect of the latter problem, by brushing aside the determination of the initial 
state ψ(0). Furthermore, since the problem is not solvable rigorously, at this time, 
therefore a simple problem is solved instead and that is actually regarded as a sim-
ulation of the actual process. This simulation process is illustrated by Fig. 2.34.

(2.9)ih
d

dt
[�(t)] = Ĥ[�(t)]

(2.10)Ĥ[�(0)] = E[�(0)]

(2.11)�(t) = Û�(0) = e−�Ĥt�(0)

(2.12)Û = exp(−i�Ĥt)
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2.7.2  Time Independent Quantum Simulations

In order to be ever successful in the time dependent quantum simulation we have to 
make a serious effort to generate a reliable initial state wave function: ψ(0). Since 
the time of Schrödinger’s publication in 1927, which is getting closer and closer 
to a century, we made a considerable scientific effort to generate an accurate wave 
function for the initial state, ψ(0), of a stable molecular system which undergoes 
the time dependent process. Figure 2.35 shows the hierarchy of the various attempts 
during the 20th century to state wave functions Φ(0) from orbitals (χ or ϕ).

We are today in the second box from the top: The transition to the top box is 
occurring in the 21st century.

2.7.3  The Protein Folding Problem

This is an old problem. It is a fact that the molecular conformation problem cou-
pled with intramolecular interactions such as hydrogen bondings.

The ultimate rationale behind all purposeful structures and behavior of living things is 
embodied in the sequence of residues of nascent polypeptide chains – the precursors of 

Fig. 2.35  A schematic 
illustration for the 
computation of the initial 
state φ(0) from the one 
electron functions AO, χ(0), 
and MO, ϕ(0). In between 
the top and the bottom, the 
various methods developed 
during the 20th century are 
shown
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the folded proteins which in biology play the role of Maxwell’s demons. In a very real 
sense it is at this level of organization that the secret of life (if there is one) is to be found. 
If we could only determine these sequences but also pronounce the law by wich they fold, 
then the secret of life would be found – the ultimate rationale discovered!

(Jaques Monod (1970))
The social impact of the discovery how proteins fold exceeds the combined social impact 
of

the discovery of fire
the discovery of writing
the discovery of wheel

(Unknown authors)

For a while, it was assumed that the biologically active conformer or folded struc-
ture is thermodynamically the most stable one. Protein misfolding or even dena-
turation studies suggest that the biologically active structure is thermodynamically 
not the most stable one. At that time, the existence of chaperones were postulated 
in which case the protein-chaperone complex would find the appropriate folded 
structure. Since the folding itself, like all chemical process, is time dependent 
therefore the process of folding could be studied by Quantum Simulation (per-
haps on a quantum computer), if the initial conditions are defined [130–143]. 
Figure 2.36 illustrates a four-amino acid peptide either without or with chaperone 
assistance. This figure also shows how such computations are treating the initial 
and find final quantum states for such a tetrapeptide.

Thus the Quantum Simulation that is jumping from the initial state to the final 
state is currently reducing protein folding to a lattice folding problem.

However, even if we ignore all complexity arising from the method applied we 
have to face the problem rising from molecular structure flexibility. For example if 
we start with a tetra-glycine to make the problem easy and simple (e.g. Ac-Gly4-
NHMe), the folding has to be represented on a Ramachandran conformational 
hypersurface of eight independent variables (if counting only the most important 
backbone torsional angles):

(2.13)E = f (φ1,ψ1,φ2,ψ2,φ3,ψ3,φ4,ψ4)

Fig. 2.36  Lattice folding 
simulation of a tetrapeptide 
folding, a alone b with 
chaperone assistance
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Therefore such a potential energy hypersurface (PEHS) is expected to have up to the 
following number of minima (N0) and the following number of transition states (N1).

So the initial and final states need to be selected from something like 6,516 stable 
conformers and the paths interconnecting these minima must pass through a num-
ber of transition states (TS) to be picked from the 52,488 TS structures. Keeping 
track of such simple folding events seems already complicated enough, not talking 
about how to visualize such a phenomena.

To view the situation from a more general point of view we may consider the 
followings: (i) Backbone of an amino acid residue has two rotors (φ,ψ) and (ii) 
on average (see Table 2.6) side chain also has two rotors (χ1,χ2). Thus, both back-
bone (BB) 2D- and side chain (SC)—on average 2D—makes for each amino acid 
residues at least a 4D-problem.

For a 2D amino acid problem, where n is the number of amino acid residues 
and 2n is the number of rotors we have the following relationships.

The reason we expect to have 2n times N0 transitional states, N1, is illustrated on 
Fig. 2.37, where it can be seen that each minimum, N0, has two nearest transitional 
states along each variable.

One possible way to estimate all N0 initial minimal energy structures is to code 
algorithmically our knowledge of conformational analysis. These predicted fol-
damer structures can then be optimized. However, the coded algorithm will be quite 
complicated, meaning that in certain cases, perhaps several times we may need to 
attempt a given optimization to find the rotamer or foldamer. Then the algorithm can 
be modified to look for transitional states. Another alternative would be to generate 
grid points and subject the fitted functions to the process of mathematical analysis.

(2.14)N0 = 38 = 6561

(2.15)N1 = 8 · 38 = 52488

(2.16)N0 = 32n

(2.17)N1 = 2n · N0 = 2n · 32n

Table 2.6  N0 (number of minima), N1 (number of transitional states or TS) and N grid points (in 
case of 30° grid spacing) to be calculated for a 2D and a 4D amino acid PEHS

n 2nD-PEHS 4nD-PEHS

N0 (min)  
backbone or  
side chain

N1 (TS)  
backbone or  
side chain

N grid  
points

N0 (min)  
backbone +  
side chain

N1 (TS)  
backbone +  
side chain

N grid 
points

1 9 18 144 81 324 20,736

2 81 324 20,736 6,561 52,488 4.30 × 108

4 6,561 52,488 4.30 × 108 4.30 × 107 6.89 × 108 1.85 × 1017

10 3.49 × 109 6.97 × 1010 3.83 × 1021 1.21 × 1019 4.86 × 1020 1.47 × 1043

20 1.21 × 1019 4.86 × 1020 1.47 × 1043 1.47 × 1038 1.18 × 1040 2.16 × 1086
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If we generate a grid with 30° intervals i.e. 12 points in the range 0–360° then 
we need N grid points

for a 4D problem where n is again the numbers of the amino acid residues we have

Figure 2.38 shows the variation of N0 and N as a function of n on a logarithmic scale.
At this time of human history, we can handle 20,736 grid points, what is a 4D 

representation, either a single amino acid diamide with a 2D side chain, like Asn, 
or diglycine–diamide or dialanine–diamide backbone conformations. However, for 
a peptide of 20 amino acids, a 1082 times increase in the computing capabilities 
would be demanded.

(2.18)N = 122n

(2.19)N0 = 34n

(2.20)N1 = 4n · N0 = 4n · 34n

(2.21)N = 124n

Fig. 2.37  Location of the transitional states (1) around a minima (0), in a one, two and three 
dimensional space. Critical points labelled by their index (λ) meaning the number of imaginary 
frequencies. Minima have 0, first order TS have 1 etc

Fig. 2.38  Logarithmic scale of N0 (number of minima) for a 2D and a 4D case (broken lines) 
and N (number of grid points) for a 2D and a 4D case (solid lines). Data is summarized in 
Table 2.6



42 I. Jákli et al.

All in all we need to find the folding pathways and there are several ways to 
go from foldamer A to foldamer B. The following simple example shows 5 paths 
(Fig. 2.39).

Thus, we have some homework to do before a full-fledged time dependent 
Quantum Simulation could be performed on a future quantum computer that may 
have sufficient speed and accuracy needed for chemical and biological considerations.

2.7.4  The Future of Protein Folding

The protein folding problem is more than a century old. The real solution is 
expected to come after the chemical problem is converted to a mathematical prob-
lem. From the Born-Oppenheimer approximation emerged the concept of PEHS 
which represents the chemical problem. Thus, the chemical problem becomes a 
travel path from one minimum to another minimum. In the case of protein folding, 
the PEHS is a conformational PEHS that represents structure changes that involve 
neither making nor breaking any covalent bond. That conformation PEHS would 
need to be computed, with such a rigorous theory at hand, that the design of a 
meaningful experimental method would lead to realistic possibility.

As with all evolutionary process, such development takes time, but the 
development has already started. Force field methods emerged in the 1970s mostly 
due to the initial work of Norman Allinger [144]. This was a molecular mechanical 
(MM) simulation of the quantum mechanically (QM) computable potential energy 
hypersurface (PEHS). Since such an ab initio surface is not available, yet it would 
represent the ultimate solution, therefore the use of the currently available force field 
softwares make a remarkable service to chemistry and biology. Needless to say, the 
currently available force field softwares are far more sophisticated than their early 
versions. Clearly, many improvements were implemented during the past 40 years.

Fig. 2.39  Schematic folding 
pathways between foldamer 
A and foldamer B
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Further development represents the combination of QM and MM methods in 
which the chemically more important regions, like active sites of a proteins are 
computed quantum mechanically, and the less important regions are represented 
by molecular mechanics. This QM/MM method is a ‘hybrid offspring’, like a mule 
is, of the QM and MM methods, yet remarkable achievements can be made by this 
more recent development.

Nevertheless, force field potential energy hyper-surfaces are simulations of the 
ab initio PEHS. However, the time has arrived to aim for such a gigantic effort that 
could produce the ab initio surfaces. It has taken 50 years for about 20 researchers 
to a develop Gaussian and Schrödinger from the initial POLYATOM software. That 
is a 1,000 man–years. However, it could take considerably less to develop a rigorous 
mathematical equation that encompasses all possible structures of a given protein. 
Certainly this is doable in the 21st Century if we are really dedicated to achieve that.
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3.1  Introduction

It is nowadays accepted that proteins should not be pictured as static objects, but 
rather as dynamic systems [1, 2]. It is also recognized that there must be a detailed 
balance, encoded in the amino acids sequence, between stability and flexibility 
since protein function generally requires some degree of conformational motion 
[1]. These requirements are unified under the concept of the free energy landscape 
(FEL), i.e., the free energy as a function of the atomic coordinates of the system 
[3, 4]. Its knowledge would tell us about the stable states of the system (wells on 
the FEL), their population (Boltzmann probabilities) and the paths by which they 
are interconnected (likely overcoming energy barriers), guiding us towards an 
understanding of protein folding [5–7], signal transmission [8], ligand binding [9], 
transportation [10] and chemical catalysis [11]. It is thus not surprising that much 
effort has been and is dedicated to the development of experimental and compu-
tational techniques for its characterization. Yet, even for the most studied system, 
large parts of the surface are still unknown. Much of today’s understanding of the 
topology of a protein FEL has been modelled on extensive studies of the heme 
protein myoglobin [3, 12]. X-ray crystallography, spectroscopy and molecular 
dynamics simulations contributed to picture the FEL as a rugged surface organized 
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in a hierarchy of tiers depending on the magnitude of the barriers that separate 
the wells. Higher tiers comprise few functional states separated one another by 
large barriers, such that transitions from one to another are rare events, with each 
one comprising a large number of conformational substates separated by smaller 
energy barriers [3, 13]. This classifications turns out also to be an operational one, 
as the magnitude of the barriers determine the time scale by which (sub)states 
interconvert and thus dictate the choice of the technique to be used to investigate 
transitions [1].

In the context of enzymatic catalysis, the mechanisms by which protein fluc-
tuations are coupled to the reactive events are still under debate [14–16], but it is 
becoming increasingly evident that characteristic motions of the protein, present 
in the native state, preferentially follow the pathways that create the configuration 
optimum for catalysis [11]. Some of these pathways can be analysed by classical 
molecular dynamics (MD) simulations [13], whereas subtle motions of active site 
residues, often coupled to electronic rearrangements, can be captured by quantum 
chemical and ab initio MD approaches [17] such as the Car-Parrinello (CP) method.

Following a brief description of the CP method, I summarize the results of 
almost two decades of CP simulations of electronic processes in proteins [18], 
with particular emphasis on enzymatic reactions. The current status of the applica-
tions of the CPMD methodology is illustrated by a recent study on heme enzyme 
reactivity. Further examples can be found on recent reviews to which this work is 
complementary (see e.g. [17–21]).

3.2  Ab Initio Molecular Dynamics. The Car-Parrinello 
Approach

Ab initio molecular dynamics (AIMD) is a powerful technique for the study of 
biological processes at an atomic-electronic level [22, 23]. It can be viewed as a 
series of density functional theory (DFT) calculations for a different set of atomic 
positions 

{

�RN

}

 at successive instants of time. These atomic positions are related 

by the Newton’s equations of motion (e.o.m.),

which can be derived from the Lagrangian:

where Ekin
N =

∑

N

1
2
MN

�̇R2
N

 is the kinetic energy of the nuclei, MN and �RN are 

nuclear masses and positions, respectively, and the electronic energy Eel is their 
potential energy, i.e., EDFT (we are assuming throughout this section that the 
Born-Oppenheimer approximation holds, i.e., the electrons are moving in the field 
of fixed nuclei).

(3.1)MN
�̈RN = −

∂Eel

∂ �RN

(3.2)L = Ekin
N − Eel
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The basic AIMD procedure consists in repeating two main steps: (i) For a given 
set of atomic co-ordinates 

{

�RN

}

, find the total energy EDFT. (ii) Solve Newton’s 

equations of motion, Eq. (3.1). This procedure is illustrated in Fig. 3.1.
The basic difference between AIMD and classical MD lies in the way the intera-

tomic energy is obtained. In classical MD, the potential energy (Eel) is computed 
from a parameterized energy expression that depends on the structural properties of 
our system (atomic positions, bond distances, angles,…) as variables [24]. Instead, 
in AIMD the interatomic energy (i.e., EDFT) is obtained from quantum mechan-
ics and depends on the atomic positions and the electron density. Nevertheless, the 
integration of Newton equations of motion to update the atomic positions at each 
time instant is performed using similar techniques [25] as in standard MD.

A very elegant and efficient approach to perform AIMD was introduced by Car 
and Parrinello in 1985 [26]. Rather than minimizing the density functional and 
integrating Newton’s equations separately, the authors introduced a generalized 
fully classical Lagrangian for both electrons and nuclei,

where Ekin
el =

∑

i

µ
∫

d�r
∣

∣ψ̇i(�r)
∣

∣

2 is a “fictitious” classical kinetic energy term asso-

ciated with the electronic subsystem {ψi(�r)}, μ is a parameter that controls the 
timescale of the electronic motion, Λij are Lagrangian multipliers that impose the 
orthonormality constraints between the orbitals and Epot

el  is the electronic energy 
(i.e., the Kohn-Sham energy, EKS [27]). The total energy of the CP Lagrangian is 

given by ECP
tot = Ekin

el + Ekin
N + EKS and it is a constant of motion. The correspond-

ing equations of motion are,

(3.3)L = Ekin
N + Ekin

el − E
pot
el +

∑

ij

Λij

(
∫

d�r ψ∗
i (�r)ψj(�r)− δij

)

(3.4a)µψ̈i = −
δEKS

δψ∗
i

+
∑

j

Λijψj(�r)

Fig. 3.1  Schematic diagram 
of an ab initio molecular 
dynamics simulation (AIMD)
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The integration of the coupled Eqs. (3.4a) and (3.4b) provides the time evolution 
of not only the atomic positions 

{

�RN (t)
}

 but also the KS orbitals {ψi(�r, t)}. In 

practice, the orbitals are expanded in a basis set (for efficiency reasons, a plane-
wave basis set is commonly used) and what is obtained from the integration is the 
value of the expansion coefficients at each time instant.

Therefore, in a CP simulation both electrons and nuclei are evolved simultane-
ously. It can be demonstrated that, provided that the electrons are initially in the 
ground state, they will follow adiabatically the nuclear motion, remaining very close 
to the instantaneous ground state [22]. From this point of view, the Car-Parrinello 
method is a procedure to describe computationally what occurs in reality which is 
that electrons follow the nuclear motion [28, 29]. In a Car-Parrinello simulation, the 
electronic energy only needs to be calculated at the beginning of the simulation, and 
the KS orbitals evolve, following the nuclear motion, as the simulation proceeds.

The electronic energy obtained at a given instantaneous structure 
{

�RN

}

 gener-

ally differs slightly from the exact DFT energy. However, if the energy exchange 
between the electronic and nuclear subsystems is small, the trajectory generated 
will be identical to the one obtained in a standard AIMD simulation [23]. This 
decoupling of the two subsystems can be achieved by a suitable choice of the ficti-
tious electronic mass μ. As discussed in several reviews, the choice of μ affects 
the efficiency of the calculation: the higher the electronic mass, the lower the inte-
gration time step [22, 30]. As the time needed for energy equipartition between 
electrons and nuclei is larger than physical nuclear relaxation times, meaningful 
statistical averages can be obtained from the trajectories (see Refs. [23, 28, 29] for 
reviews of the Car-Parrinello method).

In recent times, the Car-Parrinello method has been used in conjunction to 
methods to enhance the sampling of the free energy landscape, such as thermody-
namic integration (the blue moon approach), umbrella sampling and metadynam-
ics, as well as methods that enable the description of large systems, such as the 
combined quantum mechanical molecular mechanical (QM/MM) approach [31].

3.3  Car-Parrinello Simulations in Biology

Ab initio (Car-Parrinello) MD simulations have been used in the last two dec-
ades to study electronic processes in proteins. Of course, the description of a full 
protein with complete sampling of the configuration space is unaffordable for 
ab initio methods. Some electronic processes, however, take place in a relatively 
small region of the protein (e.g. the active site in the case of enzymatic reactions) 
and involve a small group of atoms. These atoms, whose electronic structure is 
expected to change during the reactive process, are the only ones for which one 
needs first-principles accuracy, whereas a more approximate method (force-field) 

(3.4b)MN
�̈RN = −

∂EKS

∂ �RN
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can be used for the rest of the system. This is the rationale behind the QM/MM 
approach [31], which can also be used in conjunction with molecular dynam-
ics, either in the context of Car-Parrinello or standard AIMD (also named Born-
Oppenheimer MD) (Fig. 3.2).

In a QM/MM calculation, the computational load is dictated by the number of 
atoms included in the “QM region” (and, in the case of using plane-waves as basis 
set functions, by its distribution in space). The use of QM/MM (or any QM/MM 
method in general) can efficiently solve the so-called size issue to a great extent 
whenever the importance of the quantum description is confined in space at least 
on the time scale of the simulations. To overcome (or minimize) the second issue 
(protein flexibility or dynamics, requiring proper sampling of the phase space) we 
should rely on a starting structure that corresponds to the portion of the protein 
landscape we are interested in and perform an extensive classical MD prior to the 
QM/MM simulation. The accuracy and predictive power of QM/MM MD simu-
lations for enzymatic reactions is very dependent of the initial structure taken as 
starting point (because one is limited in the sampling of the phase space, it is nec-
essary to make sure we start in the appropriate local minimum of the complex pro-
tein landscape, or at least close to it). A high resolution crystal structure is a good 
starting point. However, subtle motions of active site residues, essential for cataly-
sis, may not, or only partially, be evidenced by analysis of the crystal structures, 
especially when not all reactive species are present [33], underscoring the need 
to complement structural studies with classical and AIMD simulations to obtain a 
more complete picture of the biological process [34].

The way we handle the above issues (system size and adequate sampling of the 
relevant phase space) [35] as well as the reliability of the QM method to describe 

Fig. 3.2  Setup for an 
enzymatic QM/MM 
molecular dynamics 
calculation. The particular 
example corresponds 
to the complex of the 
glycoside hydrolase 
1,3–1,4-β-glucanase 
with a polysaccharide 
substrate (1,3–1,4-β-glucan 
tetrasaccharide). The QM 
region involves part of the 
polysaccharide and three 
protein residues (see further 
details in Ref. [32])

MM region 
(classical MD)

QM region 
(ab initio MD) 
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the process of interest (DFT in CP simulations) will determine the overall accu-
racy and predictive capability of our computational model to study electronic pro-
cesses in proteins. The first attempt to implement a QM/MM approach based on 
the CP method was the coupling the Car-Parrinello CPMD [36] with a classical 
MD code based on the CHARMM/FAMUSAMM force field [37, 38]. The QM-
MM interface was modelled with the scaled position link atom method, [38] an 
approach that was later successfully adapted to other AIMD QM-MM codes [39]. 
The sensitivity of the vibrations of the CO ligand in myoglobin with respect to 
the active site environment (in particular, with the protonation state of the distal 
histidine) was investigated with this methodology. It was shown [40] that the distal 
histidine is protonated at N$$, confirming the proposals of spectroscopic measure-
ments [41, 42]. Later on, Laio, Vandevondele and Röthlisberger developed a much 
more efficient CP QM/MM code by coupling CPMD with the GROMOS code 
[43]. The corresponding interface was adapted to both GROMOS96 and AMBER 
force-fields [44]. In this CP QM/MM code, electrostatic interactions are taken into 
account within an efficient multilayer approach within a fully Hamiltonian elec-
trostatic coupling (i.e., electrostatic interactions among QM and MM atoms take 
explicitly into account the electronic density of the quantum system):

where ri is the position of the MM atom i, with charge qi, r is the total (electronic 
plus ionic) charge of the quantum system, and υvdw(rij) is the van der Waals inter-
action between atom i and atom j. The QM-MM interface is handled via monova-
lent pseudopotentials [45] or link-atoms [46].

There have been numerous applications of CP QM/MM dynamics to study 
electronic processes in proteins, such as the description of the electronic structure 
of protein active sites, charge transfer in ion channels, ligand-target interactions 
and enzymatic reaction pathways. The method has been particularly successful in 
describing fast dynamic processes such as concerted proton transfer processes in 
proteins and enzymes, as they normally take place in a short (i.e., picoseconds) 
time scale. For instance, de Vivo et al. found that proton shuttles are concomitant 
with the enzymatic phosphoryl transfer reaction catalyzed by soluble epoxide 
hydrolase [47, 48]. Derat et al. elucidated the key role of a water solvent molecule 
in the mechanism of formation of the principal reaction intermediate of the peroxi-
dase reaction in horseradish peroxidase [49]. Brunk et al. [50] showed the involve-
ment of water molecules via concerted proton transfer during the main catalytic 
step (cleavage of the adenine N-glycosidic bond) in the DNA repair enzyme MutY, 
potentially enabling the enzyme to lower the energetic barrier of a proton transfer. 
But the clearest examples of a concerted proton transfer is probably the migra-
tion of protons in water wires via the Grottus mechanism in ion channels [51, 52] 
(see also the exclusion of protons in aquaporins [53]) or the proton delocaliza-
tion upon formation of wire-like water structures [H+·(H2O)3 and H+·(H2O)4] in 
barteriorhodopsin [54, 55]. These processes, with a high entropic component, in 
which fast concerted atomic motions takes place at room temperature, are often 

Hnonbonded =
∑

i∈MM

qi

∫

dr
ρ(r)

r− ri
+

∑

i∈MM
j∈QM

υvdw(rij)
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very difficult capture using structural searches, underscoring the usefulness of the 
dynamical treatment to obtain full insight.

3.4  Car-Parrinello Studies of Enzymatic Reactions

Among biological processes with a high electronic component, enzymatic reac-
tions have always fascinated scientists, because the understanding of enzymatic 
mechanisms can help in the design of molecules that can affect the protein func-
tion (i.e., inhibitors), as well as guide the design of point mutations to make 
desired changes in the enzyme (rational design). Theoretical analysis of enzymatic 
reactions is routinely used in combination with kinetic, structural or spectroscopic 
experiments to disentangle the mechanisms of enzymes. Computer simulations 
have also the advantage that can be performed in situations that experimentally 
would be unreachable (e.g. the native enzyme in complex with its natural sub-
strates [56]) or occur on very short time scales and very small space scales.

In general, an enzymatic reaction starts from a local minimum (reactants state) 
and goes into another minimum (product state). Both states are separated by a free 
energy barrier of ~15–25 kcal/mol, which is much higher than the thermal energy 
available for the system. Because the typical time scale to cross an energy barrier 
grows exponentially with the barrier, the probability to overcome it and reach the 
products state during the timescale of a “standard” CP QM/MM simulation (tens 
of picoseconds) is practically zero. Therefore, the mechanism of enzymatic reac-
tions cannot be modelled with “standard” CP QM/MM simulations. This problem 
can be overcame with the use of techniques aimed to enhance the sampling of the 
energy landscape (thus accelerating rare events), such as the Blue Moon method 
and metadynamics [20]. The latter has proved to be a flexible tool that can be used 
not only for efficiently computing the free energy, but also for finding reaction 
pathways in chemical transformations (see also Refs. [57, 58]). Metadynamics is 
particularly suited for cases in which there is little information a priori about the 
reaction coordinate (i.e., search for reaction pathways) [59] whereas the use of 
the Blue Moon approach is limited to one-dimensional energy profiles in which 
the reaction coordinate is already known to a great extent (extensions to multi-
dimensional problems have been developed [60] but remain of difficult applica-
tion) [50, 61]. As an example, Boero [61] recently studied the possible roles of the 
3′-OH group of the ribose of tRNA in LeuRS, a RNA-binding protein responsible 
for the translation of genetic code. Both the Blue Moon ensemble and the metady-
namics approach were used, although only metadynamics captured the two path-
ways operative in the enzyme. Another popular approach to compute free energy 
profiles is the umbrella sampling (US) method. Here, a biasing potential is added 
to the system during the MD simulation, which enhances sampling of regions 
with low statistical weights. One dimensional US simulations are comparable 
to the Blue Moon approach. Ensing showed [62], for a simple SN2 reaction in a 
small system, that metadynamics can be efficiently combined with the umbrella 
sampling method [63] (US simulations were performed by using the lowest free 



58 C. Rovira

energy path obtained by metadynamics as reaction coordinate) to improve the 
accuracy of calculated free-energy profiles. However, the US/MTD simulations are 
generally recognized as being rather costly to perform and this is probably the rea-
son that this combination is not yet routinely used for complex biological systems.

The CP QM/MM approach has also been applied to non-reactive processes, 
such as electron transfer (ET), ion transport and ligand conformational changes. 
Many essential biological functions, such as photosynthesis and respiration, 
depend on electron transfer processes. Recent works have been successful in com-
puting reorganization free energies and redox potentials in an efficient way [64, 
65]. The free energy of ET is not only determined by the redox active cofactors 
but to a large extent by the protein and surrounding solvent. Therefore, sufficient 
sampling of the energy for the time and length scales of the ET process becomes a 
critical aspect (see discussion in Ref. [65]).

The study of conformational changes of protein ligands in general do not 
require the use of a first-principles approach, as electrostatic and vdW interactions 
are well described by classical force-fields. An exception is provided by the prob-
lem of substrate conformational changes in the enzymes that catalyze the cleavage 
of the glycosidic bond in carbohydrates (glycoside hydrolases, GHs). A fascinat-
ing thread of the research on GHs, and one with major impact on the design of 
enzyme inhibitors, is the conformational analysis of reaction pathways within the 
diverse enzyme families [66, 67]. Over the preceding decade, research has high-
lighted the harnessing of non-covalent interactions to aid this distortion of the 
sugar substrates from their lowest energy chair conformation to a variety of dif-
ferent boat, skew boat, and half-chair forms, each of which is adopted for a given 
enzyme and substrate. Using CP/MM MD, Biarnés et al. showed that distortion of 
the substrate (Fig. 3.3) is required to bind to Bacillus 1,3-1,4-β-glucanase and that 

skew-boat conformation

Fig. 3.3  Computed complex of the 1,3–1,4-β-glucanase enzyme with a 1,3–1,4-β-glucan tetra-
saccharide. The saccharide ring located at the active site was predicted to be distorted in a skew-
boat conformation [56]
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this distortion, not captured by current force-fields, results in electronic changes in 
the substrate that favour cleavage of the glycosidic linkage (substrate preactiva-
tion) [56]. In recent years, CP/MM metadynamics simulations have thrown light 
upon the catalytic mechanisms of several GHs [32, 68–71]. Protein residues impli-
cated in catalysis have been identified and the conformation of the carbohydrate 
during the complete reaction obtained, providing a probe for structural biology 
predictions.

3.4.1  Example: The Catalase Reaction

Heme catalases are one of the most efficient enzymes known: they are able to 
decompose up to one million molecules of hydrogen peroxide per second [72]. 
Structurally, they are tetrameric proteins with each subunit containing a heme 
group [73, 74] (Fig. 3.4). The active site contains two residues that are essential 
for catalysis: the proximal Tyr and the distal His (Tyr339 and His56, respectively, 
in Helicobacter pylori catalase, HPC, Fig. 3.4). The former is coordinated to the 
heme iron and is negatively charged, contributing to the +3 formal oxidation state 
of the iron atom. The latter is essential for the formation of the main reaction inter-
mediate, compound I (Cpd I). A proximal arginine (hydrogen-bonded to tyrosine), 
together with a distal asparagine and serine complete the list of conserved residues 
in the active site [73].

The active species responsible for the decomposition of H2O2 is a high-valent 
iron intermediate, known as Compound I (Cpd I) [75], obtained by reaction of cat-
alase with hydrogen peroxide.

Cpd I is characterized to be an oxoferryl porphyrin cation radical (Por•+–
FeIV=O), [75] and it is formed not only in catalases but also by other heme pro-
teins, such as peroxidases or cytochrome P450. The subsequent Cpd I reactivity is 
determined by the protein frame in which the heme is buried and research aimed 
to grasp the origin of this functional diversity is an extremely active field [76–78].

Kinetics studies [79] have shown that once catalase Cpd I forms (reaction 1, 
R1) [80], it rapidly reacts with another molecule of H2O2 to generate a water mol-
ecule and O2 (R2, Fig. 3.5). Isotope labeling studies demonstrated that both oxy-
gen atoms of the O2 molecule originate from the same H2O2 molecule [81, 82].

Reaction 2 (R2), extremely efficient in catalases, occurs at a much slower pace 
in a few other heme enzymes (e.g. chloroperoxidase (CPO), catalase-peroxidase 
(KatG) and myoglobin (Mb)) [83]. The origin of this disparity has long been 
sought and, even though the catalase reaction has been known since 1940s [84, 85], 

(R1)Enz
(

Por−FeIII
)

+ H2O2 → Cpd I
(

Por•+−FeIV=O
)

+ H2O

(R2)Cpd I
(

Por•+−FeIV=O
)

+ H2O2 → Enz
(

Por−FeIII
)

+ H2O+ O2
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Fig. 3.4  Structure of native Helicobacter pylori catalase (HPC, PDB entry 2IQF). Top Cartoon 
picture of the protein, with the four subunits colored in blue, red, yellow and green, respectively. 
Bottom Heme binding pocket of one of the subunits (blue) and molecular structure of heme b

Fig. 3.5  Schematic 
representation of Cpd I 
reduction by H2O2 in catalase
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the detailed mechanism of Cpd I reduction by H2O2 remained a challenge until 
recently [59, 86].

Although there had been preliminary suggestions from kinetic data [87], Cpd I 
reduction was first considered at a molecular level in 1985 by Fita and Rossmann 
[88]. On the basis of the crystal structure of beef liver catalase, Fita and Rossmann 
proposed that the two hydrogens of H2O2 are sequentially transferred to the 
oxoferryl unit of Cpd I, with the distal His playing an active role in the reaction 
(Fig. 3.6a). Nevertheless, the precise mechanism how the two protons and two 
electrons of H2O2 are transferred to Cpd I was not discussed. Recently, the group 
of Watanabe, by means of a detailed kinetic study, was able to disentangle the rate 
constants of Cpd I formation and reduction for Micrococcus lysodeikticus catalase 
(MLC) and a series of Mb mutants [89, 90]. Two different kinetic behaviours were 
observed in H2O and D2O for reaction 2, which were interpreted as two differ-
ent mechanisms. Namely, it was proposed that the reduction of Cpd I by H2O2 in 
native catalase, as well as in the F43H/H64L Mb mutant, involves the transfer of a 
hydride ion from H2O2 to Cpd I and the transfer of a proton mediated by the dis-
tal His (Fig. 3.6a, hereafter named as the His-mediated mechanism). This mecha-
nism thus follows the Fita-Rossmann model [88], with the distal His acting as an 
acid-base catalyst. Besides, for certain Mb mutants lacking a distal residue that 
could act as acid-base catalyst, an alternative mechanism was proposed [89, 90], in 
which two hydrogen atoms of H2O2 are directly transferred to the oxoferryl group 
(Fig. 3.6b, from now on referred to as the direct mechanism).

Car-Parrinello QM/MM studies of catalases [91] showed that the H2O2 spon-
taneously transfers one hydrogen atom to the oxoferryl of Cpd I, forming a Cpd 
II-like species (Fig. 3.7).

Fig. 3.6  a The His-mediated mechanism of Cpd I reduction (Fita–Rossmann) of Cpd I reduction 
in catalase. b The direct mechanism (Watanabe)
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To complete the reaction, two mechanisms may be operative: a His-mediated or 
a direct mechanism. These two pathways were clearly differentiated by combin-
ing CP QM/M dynamics with metadynamics [92], using two collective variables. 
The first collective variable (CV1) was taken as the coordination number between 
the two oxygen atoms of the H2O2 molecule and their two hydrogens (see defini-
tion of the coordination number in the supporting information of reference [59]). 
Therefore, this CV gives an idea of the degree of detachment of the two hydrogens 
from the two hydrogen peroxide oxygens. An interesting feature of CV1 is that it 
does not dictate which hydrogen is bonded to which oxygen during the simula-
tion. Any hydrogen is allowed to coordinate to any oxygen (i.e., the two hydrogen 
atoms and the two oxygen atoms of H2O2 are treated in an equivalent way). The 
second collective variable (CV2) was taken as the coordination number between 
the oxoferryl oxygen and the two peroxide hydrogens. Therefore this CV indi-
cates the degree of formation of the product water molecule. The values of the 
two collective variables at the initial (CV1, CV2 ≈ 0.5, 1.0) and final states (CV1, 
CV2 ≈ 0.0, 2.0) of the process are different enough to ensure that the two states 
will appear in different regions of the free energy surface, a necessary condition 
for a suitable characterization of the reaction path in a metadynamics simulation. 
It is important to note that this choice of the collective variables does not force nor 
restrict that any of the two peroxide hydrogens bind to the distal His during the 
reaction.

The free energy surface (FES) reconstructed from the metadynamics simulation 
of HPC is shown as a contour plot in the central panel of Fig. 3.8. Two compet-
ing pathways (A and B) joining the Cpd II-like-HOO· complex and products val-
leys appear clearly differentiated. Each pathway contains several local minima of 
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Fig. 3.7  a Optimized structure of the Cpd I···H2O2 complex of Helicobacter pylori catalase 
using CP QM/MM. The BP functional and a plane-wave basis set, with a kinetic cut-off of 70 
Ry, was used [59]. The intramolecular distances of the H2O2 molecule are Ha–Oa = 1.04 Å, Hb–
Ob = 1.05 Å, Oa–Ob = 1.47 Å. b Average structure of the Cpd II-like species obtained after the 
CP QM/MM simulation: Ha–Oa = 0.99 Å, Oa–Ob = 1.31 Å, O–Hb = 1.08 Å
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Fig. 3.8  Electronic/structural rearrangement during the conversion of Cpd II···OOH· (reactants 
state, bottom-right picture) to the resting state in HPC (products state, top-left picture). Contour 
lines of the free energy surface (center of the picture) are spaced by 1 kcal/mol. The energy of 
the different points along the pathway, relative to the reactants, is given below each structure 
label
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different well depth, separated by transition states. The atomic and spin reorgani-
zation along each pathways are also shown in Fig. 3.8.

Pathway A Following proton transfer (PT) to the distal His, the HisH+-O−
2  com-

plex is formed (basin A1 in Fig. 3.8). Afterward, the distal His rotates such that it 
breaks the H-bond with the superoxide anion (A2). At the same time, the hydrox-
oferryl group rotates with respect to the Fe–O bond, breaking the hydrogen bond 
with O−

2 , and positioning one oxygen lone pair in a suitable orientation to interact 
with the histidine proton (A3). A4 differs from A3 in the degree of rotation of the 
distal His around the Cβ–Cγ bond and the absence of hydrogen bond between the 
hydroxoferryl hydrogen and O−

2 . In the products state, Hb has been transferred to 
the hydroxoferryl oxygen, the Fe–O distance has increased (from 1.83 ± 0.06 Å 
in A4 to 2.08 ± 0.07 Å in the products), and a water molecule has been formed. 
The decrease of the O–O distance (from 1.33 ± 0.02 Å in A1 to 1.25 ± 0.02 Å 
in the products, see Table 3.1), together with the change of the spin density dis-
tribution (Fig. 3.5 and Table 3.1), signals the change from O−

2  to O2. Altogether, 
pathway A consists of an electron transfer from O2 to reduce Fe(IV) to Fe(III) 
early in the path, followed by a proton transfer from the distal His to Fe–OH. 
Interestingly, the distal Asn changes conformation gradually (from the Cpd II-like 
configuration to the products), allowing the release of the product oxygen toward 
the main channel. Structures A2, A3, and A4 are at similar energies, 8 kcal/mol 
over A1 (Fig. 3.8). Thus, the transition state along this pathway would correspond 
to all the process through A2, A3, and A4, that is, rupture of the H-bond between 
the superoxide and the distal HisH+, rotation of the latter to form an H-bond 

Table 3.1  Distances and number of unpaired electrons of relevant fragments for stationary 
points along pathways A and B of Helicobacter Pylori catalase

Distances are given as averages along the metadynamics simulation, except for values in paren-
theses that refer to optimized structures. Spin densities correspond to representative snap-shots 
along the path
aThe spin density was integrated using Bader’s Atoms-In-Molecules theory [93]

Structure Distance (Å) Number of unpaired electronsa

O–Hb Oa–Ob Fe=O Oa–Ob Porph Tyr

Cpd I: H2O2 (3.19) (1.47) 2.15 0.23 0.52 0.06

Cpd II-like (3.68) 3.45 ± 0.23 (1.34) 1.35 ± 0.03 1.87 0.99 0.10 0.02

A1 3.51 ± 0.13 1.33 ± 0.02 1.83 1.05 0.03 0.07

A2 2.41 ± 0.10 1.29 ± 0.02 1.65 1.45 0.01 0.07

A3 2.01 ± 0.06 1.28 ± 0.01 1.56 1.54 0.02 0.06

A4 1.73 ± 0.02 1.27 ± 0.02 1.52 1.65 0.01 0.10

B1 2.08 ± 0.08 1.34 ± 0.02 1.83 0.98 0.08 0.09

B2 1.79 ± 0.04 1.32 ± 0.00 1.72 1.00 0.22 0.03

B3 1.53 ± 0.05 1.33 ± 0.03 1.79 1.01 0.12 0.04

B4 1.29 ± 0.05 1.33 ± 0.03 1.66 1.07 0.22 0.01

Products (1.02) 1.01 ± 0.04 (1.25) 1.26 ± 0.02 1.12 1.77 0.02 0.06
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with the hydroxoferryl and transfer of Hb toward it. The highest states along this 
sequence of events are 9 kcal/mol over A1 and 12 kcal/mol over the initial Cpd II-
like state.

Pathway B The hydroxoferryl unit first rotates around the Fe–O bond, breaking 
the hydrogen bond with Oa (B1). Afterward, the peroxyl radical flips orientation 
with Hb changing hydrogen bond partner from the distal His to the hydroxofer-
ryl oxygen (B2). The distal His, not involved in any hydrogen bond interaction, 
moves upward (B1 f B2) to facilitate the rotation of the peroxyl radical. Structures 
B2, B3, and B4 mainly differ for the O···Hb distance and the degree of rotation of 
the hydroxoferryl unit. Finally, transfer of Hb to the hydroxoferryl oxygen leads to 
the product water and oxygen molecules. The change in O–O distances (Table 3.1) 
from B4 (1.33 ± 0.03 Å) to the products (1.25 ± 0.02 Å), together with the 
changes in spin density distribution (Fig. 3.8), evidences that Hb transfers as a 
hydrogen atom. Once the oxygen molecule forms, the distal Asn rotates to facili-
tate its escape toward the main channel, as it was also observed for pathway A. 
This illustrates the interplay of the His and Asn active site residues in the catalytic 
mechanism and highlights the importance of taking into account their dynamics on 
the modelling of the reaction. Along pathway B, the highest barrier that the system 
needs to overcome is in going from the Cpd II-like intermediate to the B1 basin 
(12 kcal/mol), corresponding to the rupture of the H-bond between the hydroxo-
ferryl and the peroxyl radical. From B1 onward, the energetic profile is downhill, 
with each intermediate lower in energy than the preceding one.

In summary, two alternative pathways were identified for reduction of Cpd I 
in catalase. One pathway (A in Fig. 3.8) involves the distal His as an acid-base 
catalyst, mediating the transfer of a proton associated with an electron transfer. 
Another pathway (B in Fig. 3.8) requires two hydrogen atom transfers and does 
not involve the distal His. Independently of the pathway, the reaction proceeds by 
two one-electron transfers, rather than one two-electron transfer, as has long been 
assumed. It is also worth noting that the steps with the highest energy barrier along 
each pathway do not correspond to hydrogen atom transfer processes, but rather to 
changes of the hydrogen bond pattern. This is consistent with the small kinetic iso-
tope effect (KIE) determined for catalase [89]. Interestingly, the distal Asn changes 
conformation gradually (from the Cpd II-like configuration to the products), allow-
ing the release of the product oxygen toward the main channel. Finally, the results 
confirmed that the oxygen molecule released by catalase is in the triplet state [59].

Additional calculations on an in silico mutant of the distal histidine (H56G) 
showed that the hydrogen-bond network at the distal site plays a key role in 
positioning the peroxide such that the reaction can proceed with a low barrier. 
For the H56G HPC mutant, the first hydrogen atom transfer becomes rate-limit-
ing, explaining the large KIE observed for the Mb mutants lacking the distal His 
[89, 90]. Therefore, in line with previous investigations [83, 94], Cpd I reactiv-
ity depends on the shape and the nature of the distal pocket (i.e., the interactions 
between H2O2 and the distal residues).
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3.5  Final Remarks

The study electronic processes in proteins such as enzymatic reactions, charge-
transfer and substrate preactivation processes in enzymes, has benefited in the last 
years from the development of very efficient QM/MM interfaces and enhanced 
sampling techniques that can be coupled to Car-Parrinello MD. Here we have 
overviewed the “evolution” of CPMD computations, from the description of the 
complex electronic structures of protein active centres to the modelling of reac-
tion cycles in which the dynamics of all active species is described in detail using 
full models of the enzyme. Enhanced sampling techniques such as metadynamics 
allows for the treatment of chemical reactions, even including competing reaction 
channels with separate saddle points. This approach of exploring the multidimen-
sional free energy surface is a powerful method to treat intrinsically concerted pro-
cesses that require inclusion of the entropy contribution. The use of CP dynamics 
for the study of such processes gives, within the limits of DFT, a higher insight 
with respect to more traditional quasi-static approaches based on structure opti-
mization along predefined reaction coordinates. As a result, CPMD simulations 
(and AIMD in general) are pushing the frontiers of first-principles based com-
puter simulation of biological systems. The continuous development of ab initio 
MD techniques, in close interplay with classical approaches [20, 22, 95], will most 
likely lead to the cracking of more complex biological processes the next years. 
The modelling of processes involving several time and length scales (e.g. large 
conformational protein motions are coupled with electron and proton transfers), 
requiring a multi-scale type of modelling approach, is one of the areas in which 
significant progress will probably be made.
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4.1  Introduction

Combined quantum mechanical-molecular mechanical methods can be applied 
to the treatment of large molecular systems, where a local change (e.g., bond 
breaking or fission, electronic excitation) should be considered, which is under 
the influence of the effect of far-lying atoms. While the quantum region should 
be treated on the basis of high-level methods, consideration of the environment 
is possible using some method of lower sophistication. A typical example is the 
study of enzyme reactions, where the size of the whole system does not allow a 
high-level quantum mechanical description, while the chemical reaction cannot 
be treated by conventional force fields. In the combined QM/MM approach the 
total system is divided into two interacting parts, the central one (QM) described 
by quantum mechanics and its environment described by molecular mechan-
ics (MM). The central part may contain the ligand and the amino acid residues 
directly involved in the reaction, while other regions of the protein, as well as the 
solvent, may belong to the MM region. A critical question is the separation of the 
subsystem, since it is bound to the environment by covalent bonds. Borderline 
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atoms and bonds need a special treatment in the calculations. Beside QM/MM 
methods QM/QM methods are also available, where both the central part and 
the environment are described by quantum mechanical methods, but of different 
sophistication. For the reactive region a higher, while for the environment a lower 
level method can be applied. In the following we focus on QM/MM methods, 
though in some cases the QM/QM approach will be also mentioned. For exten-
sive, recent reviews see Refs. [1, 2].

Some approaches, like the fragment molecular orbital [3, 4], the “divide and 
conquer” [5, 6] and the frozen density functional methods [7, 8] inherently con-
sist the mode of division of the subsystem from its environment. In other cases the 
link atom method is often applied. This means that the bond connecting the two 
systems will be cut and the dangling bonds of the subsystem will be saturated by 
hydrogen or dummy atoms. Though this is a straightforward solution, the presence 
of dummy atoms in the close vicinity of others may lead to artefacts in the calcula-
tions. However, careful application of this model may still lead to valuable results 
[9]. Another possibility for the fragmentation of the subsystems is the boundary 
atom approach, which does not introduce any new atom but handles the boundary 
atom by using a specially parameterised potential that interacts with the QM region 
and considers the atom as a regular MM atom within the MM region [10, 11].

4.2  Strictly Localised Molecular Orbitals

Another way for a partition is using strictly localised molecular orbitals (SLMO) for 
the bonds connecting the boundary atom to the quantum region, while other bonds, 
belonging to the MM region will be modelled by simple strings (see Fig. 4.1).

We will call atom A at the boundary a frontier atom. SLMOs were first applied 
by Warshel and Levitt in their semi-empirical method for the treatment of the 
enzyme reaction in lysozyme [12]. Their early applications can be related to 
QM/QM methods [13, 14]. These apply SLMOs for the description of the environ-
ment, while the central quantum mechanical subsystem is described by delocal-
ised wave functions within the frame of the given approach. Extension of these 

Fig. 4.1  Division of QM 
and MM subsystems by 
using strictly localised 
molecular orbitals (taken with 
permission from Ref. [42])
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for QM/MM systems involves connection of the subsystem and its environment by 
rigid SLMOs with pre-calculated, fixed parameters. The local self-consistent field 
(LSCF) method, originally developed for semiempirical parameterisations, was 
extended to ab initio wave functions, too [15, 16].

Fixed orbitals are used also in similar QM/MM methods. Friesner and co-work-
ers introduced parameterised interaction terms and obtained accurate energies as 
well as structural parameters for test systems of medium size [17, 18]. Use of the 
so-called general hybrid orbitals (GHO) places also appropriate hybrid orbitals on 
the frontier atoms. Hybrids pointing towards the QM subsystem, are optimised, 
while those oriented towards the MM environment, are kept rigid [19–21]. This 
model has been extended to post-Hartree-Fock methods [18, 22, 23].

A basic problem if using SLMOs in quantum chemical calculations is that 
their overlap is nonzero, therefore the conventional Hartree-Fock-Roothaan equa-
tions [24] cannot be used. A potential solution is to use the Adams-Gilbert equa-
tion [25–28]. An approximate form and the corresponding energy expression has 
been also proposed to obtain the orbitals [29, 30]. This latter is based on the series 
expansion of the inverse overlap matrix and neglect of higher order terms. This 
expression may replace that based on orthogonal orbitals. The method was used to 
optimize valence orbitals in the field of core electrons, as well as to calculate the 
energy, but the method can be applied quite generally [31–33].

4.3  Semiempirical Methods

An early combined QM/QM method has been proposed by Náray-Szabó and 
Surján [13]. The wave function of the total system is described in terms of 
SLMOs, which are typically centred at two neighbouring atoms, but they can 
be also lone pairs and delocalised π-orbitals. The corresponding Hartree-Fock 
 equation within the complete neglect of differential overlap (CNDO) model [34] 
leads to low-dimension coupled equations, which can be solved by the conven-
tional matrix diagonalisation technique. The Fockian breaks down to coupled 
blocks, which makes further iteration necessary. The wave function obtained 
by this procedure is modified in the central region, where e.g., a bond breaking 
reaction takes place. A conventional optimisation of the wave function has to be 
performed in the field of the environment represented by a set of SLMOs. An 
essential feature of the method is that two-centre SLMOs are obtained as linear 
combinations of hybrid orbitals oriented towards each other. Since hybrid orbitals 
are orthogonal within the frame of the CNDO approximation, simple secular equa-
tions are obtained, which can be solved easily.

This method was applied in an early work [14] within the frame of the neglect 
of diatomic differential overlap approximation [34]. In contrast to the CNDO 
approximation this does not neglect integrals computed from products of orbit-
als located on the same atom, thus new terms appear in the Fockian and hybrid 
orbitals centred on the same atom become non-orthogonal. Orthogonality can be 
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secured by application of Löwdin’s method [35]. Thus, we arrive to the Fragment 
Self-Consistent Field (FSCF) method, which is appropriate for the treatment of 
extended systems by describing the subsystem by delocalised, while the environ-
ment by strictly localised MOs. The method can be combined with various param-
eterisations [14, 36, 37] and it has been applied, among others, to the treatment of 
an enzyme mechanism [38].

Separation of subsystems using the above QM/QM scheme can be adapted to 
the QM/MM method, as well [39]. An SLMO appears at the boundary of the two 
subsystems, as depicted in Fig. 4.1. Other hybrid orbitals belonging to atom B are 
part of the basis set used for the expansion of the quantum mechanical wave func-
tion. There are no further orbitals located on atom A. Orientation of the hybrids, 
i.e., the relative weights of p-orbitals constructing the SLMOs is determined by 
atomic positions. Coefficients of SLMO hybrids and polarities are taken from cal-
culations on model systems and kept fixed when calculating the quantum mechan-
ical wave function. An essential feature of this separation scheme is that fixed 
SLMOs at the boundary are orthogonal to all other orbitals. This is secured partly 
by explicit orthogonalisation, partly by the neglect of diatomic differential over-
lap, as done within the NDDO scheme. This means that the approach cannot be 
extended directly to ab initio wave functions.

4.4  Orthogonal Molecular Orbitals

The conventional Hartree-Fock Roothaan equations [24] optimise all molecu-
lar orbitals on a common basis and provides orthogonal orbitals. However, 
the QM/MM wave function discussed above contains localised orbitals at the 
boundary. Orthogonality can be secured at the semiempirical level, but it is not 
straightforward in ab initio calculations. A potential solution of the problem is 
that we orthogonalise the basis functions to the fixed molecular orbitals [15, 40]. 
Orthogonal orbitals can be also obtained by solving a modified equation with a 
non-hermitic Fockian [17] or by neglecting the overlap [40].

Another way to obtain orthogonal molecular orbitals is to solve Huzinaga’s 
equation (4.1) [41] and use an appropriate basis set [42]. The purpose of this is to 
determine orbitals interacting with fixed ones and making the energy stationary.

here ̂F is the Fockian, ρ̂f  projects it to the set of fixed orbitals, φa
i  is the ith active  

orbital with eigenvalue εai . A typical application of the Huzinaga equation is the 
determination of valence electronic orbitals within the field of fixed core orbitals. 
Besides, it may serve as a starting point for further approximations, like repre-
sentation of core electrons by a model potential [43]. In the following we give an 
overview on some important properties of Eq. (4.1), related to its application.

(4.1)
(

̂F − ρ̂f
̂F − ̂Fρ̂f

)

φa
i = εai φ

a
i
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Equation (4.1) can be obtained if we suppose the orthogonality of active 
and fixed orbitals. This is automatically fulfilled if the same basis functions are 
assigned to both groups. If group-specific basis functions are used, they have to 
be orthogonal. Since fixed localised orbitals use only basis functions at the link 
atoms, these also have to be included in the basis set on which the active orbitals 
are expanded.

Fixed orbitals do not have to be eigenfunctions of the Fockian if orthogonality 
to active ones has to be secured. Idempotency of the operator ρ̂f  constructed from 
fixed orbitals allows that it can be commuted with the ̂F − ρ̂f

̂F − ̂Fρ̂f  Huzinaga 
operator of Eq. (4.1). Thus, these operators can be diagonalised on a common 
basis set, which means that appropriate linear combinations of fixed orbitals will 
be eigenfunctions of the Huzinaga operator. Since this is Hermitic, fixed and active 
orbitals are orthogonal if they are non-degenerated. Degeneracy can be avoided 
if non-zero eigenvalues of ρ̂f

̂Fρ̂f  are negative. Then, eigenvalues of Eq. (4.1) 
belonging to fixed orbitals are positive and those, belonging to occupied active 
orbitals, are negative. Non-zero eigenvalues of ρ̂f

̂Fρ̂f  are negative if the fixed 
orbitals are appropriate (i.e., occupied) eigenfunctions of F. Most probably they 
are negative also, if the fixed orbitals are good approximations to the eigenfunc-
tions. On the other hand, if fixed orbitals are eigenfunctions of ρ̂f

̂Fρ̂f  with posi-
tive eigenvalues, then these appear among the solutions of Eq. (4.1) with negative 
eigenvalues. In this case the usual self-consistent iteration procedure, selecting 
orbitals with the lowest eigenvalues to construct the operator of the next step, does 
not provide active orbitals, which are orthogonal to the fixed ones.

Introducing the basis functions of the Huzinaga equation  (4.1) will have the 
following form

where F is the Fockian, S is the overlap matrix of the basis functions, Ca consists 
the coefficients of the active orbitals, Ea is the diagonal matrix of the correspond-
ing eigenvalues and Rf  projects to the space of the fixed orbitals. In case of our 
QM/MM wave function more fixed groups are allowed, thus for a single group of 
active functions Eq. (4.2) becomes

where Ra projects to all orbitals not in the active group. If the QM and MM sub-
systems are linked by more than one chemical bonds, more fixed orbitals appear 
expanded on different basis sets. These are typically non-orthogonal, which, how-
ever, does not appear in Eq. (4.3) explicitly. However, if building up the matrix Ra 
then overlap has to be considered: Ra = Ca

(

σ a
)−1(

Ca
)+, where σ a is the overlap 

matrix of all molecular orbitals, not belonging to the active group. Effective opti-
misation of the molecular structure requires calculation of forces acting at nuclei. 
The corresponding expression is similar to that referring to canonical orbitals that 
can be adapted easily to our case.

(4.2)
[

F − SRf F − FRf S
]

Ca
= SCaEa

(4.3)
[

F − SRaF − FRaS
]

Ca
= SCaEa
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Fixed orbitals can be derived from calculations on model molecules. Thus, 
e.g., a C–C bond orbital within an apolar environment can be obtained from a 
calculation on the ethane molecule as follows. We perform a standard Hartree-
Fock calculation with the actual basis set, then localise the orbitals obtained with 
e.g., the Pipek-Mezey procedure [44]. Cutting the tails of the localised orbitals 
and normalising the coefficients we obtain the SLMO belonging to the C–C bond, 
which has to be kept rigid when solving Eq. (4.3). Other electrons of atom B on 
Fig. 4.1 are part of the QM system. In case of the core orbitals of atom A more 
options are available. They can be optimised, can be kept rigid, or can be replaced 
by a point charge located at nuclei.

Model calculations have been performed, where the environment was modelled 
by point charges. This is appropriate for the correct reproduction of electrostatic 
(and potentially polarisation) interactions. Point charges were calculated according 
to Ferenczy et al. [45, 46]. These point charges reproduce the electrostatic potential 
well and can be easily calculated. Accordingly, our approximation can be consid-
ered as a model of QM/QM systems and harmonise with a QM/MM model using 
an AMBER force field, since the latter uses potential derived point charges [47]. In 
all calculations atom A of Fig. 4.1 was chosen to be a sp3 hybridised carbon atom 
bound by a single, localised bond to the QM system (atom B of Fig. 4.1) and its 
further bonds point towards the MM system. Thus, explicit electrons on atom A 
are the core electron pair and the valence electron contributing to the fixed orbital. 
It was found advantageous to increase the core charge of atom A and to introduce 
compensating negative bond charges placed at the midpoints of the bonds connect-
ing atom A to MM atoms. The use of increased core charges on atom A facilitates 
the convergence of the self-consistent determination of the QM wave-function. The 
magnitude of the charges are calculated by requiring that the sum of bond charges 
and the core charge of atom A is equal to the effective charge obtained for atom 
A according to Refs. [45, 46] (see Fig. 4.2). The introduction of extra charges 
has been proposed by others, too. Philipp and Friesner put point charges on the 
centroid of the bonds and compensate them by charges at close MM atoms [48]. 
Ferré and co-workers increase charges at boundary C-atoms and reduce those at 

Fig. 4.2  Bond charges 
at the QM/MM boundary 
(taken with permission from 
Ref. [42])
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connecting H atoms [49], while Lin and Truhlar put charges on the bonds connect-
ing QM and MM subsystems [50].

In the following we present results of some pilot calculations as obtained by 
the standard Hartree-Fock-Roothaan method with a 6-31G* basis set [51] and with 
the QM/MM scheme modelling the MM region by simple point charges. We used 
a modified version of the GAMESS-US software [52]. In order to obtain effective 
charges we made first a distributed multipole analysis [53], then used the MULFIT 
software [54]. For the C5H11COOH molecule we obtained the following results 
with various choices of the boundary between the QM and MM regions as show 
on Fig. 4.3.

4.5  Deprotonation Energies

As it was discussed above, though the number of explicit electrons on atom 
A is 3, to solve Eq. (4.3) self-consistently, larger positive charge on atom A and 
compensating negative bond charges are necessary (cf. Fig. 4.2). The core charge 
was chosen to allow a good reproduction of the reference deprotonation energy 
by the QM/MM calculation in case of the largest QM system (see Fig. 4.3). This 
determines bond charges in such a way, that the sum of core and bond charges, 
as well as those of the three explicit electrons (−3) equals to the effective atomic 
charge. Choosing the core charge to be +5.6, deprotonation energy calculated 
for boundary 1 on Fig. 4.3 reproduces the QM/MM value within a 0.2 kcal/
mol difference from the reference HFR value. We used this core charge in all 
subsequent calculations, while bond charges were calculated from effective charges 
obtained for the given system. Calculated deprotonation energies are displayed 
in Table 4.1. All structural parameters, referring to all QM atoms including atom 
B, were optimised both for the protonated and unprotonated species. All atoms 
belonging to subsystem MM and atom A were kept fixed (see Fig. 4.1).

Deprotonation energy is smallest for the largest QM system (boundary 1 
in Fig. 4.3). Absolute values of the deviation increase with shrinking the size of 
the QM system. Accuracy of the structural parameters is high indicating that our 

Fig. 4.3  Fragmentation schemes for the C5H11COOH molecule. The QM subsystem is situated 
left to the dashed line (taken with permission from Ref. [42])
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approximations do not have practically any influence on the reproduction of these. 
It has to be stressed that errors of the computed deprotonation energies are sensitive 
indicators of the performance of the method, since these consist of the energy 
differences of differently charged systems, therefore they depend considerably on 
electrostatic interactions diminishing slowly with increasing distance.

4.6  Conformational Energies

Conformational energies of the C5H11COOH molecule were calculated as a func-
tion of the torsional angle O2–C3–C5–C8 (see Fig. 4.4). Boundaries were selected 
identically as for deprotonation. Results are depicted in Fig. 4.4. As it is seen 
for boundaries 1 and 2 the reference curve is perfectly reproduced, the energy 

Table 4.1  Errors for QM/MM deprotonation energies and structural parameters for the 
C5H11COOH molecule in case of various selections of the boundary (see Fig. 4.3)

aDistance between the O2 atom and the centroid of the fixed SLMO
bNumber of bonds between the O2 atom and the centroid of the fixed SLMO
cRMS error of the interatomic distance
dRMS error of the bond angle
eRMS error of the torsion angle

System da (Å) nb ΔE (kcal/mol) Δdc (Å) Δαd (°) Δτe (°)

Boundary 1 6.8 5 −0.17 0.000 0.5 0.1

Boundary 2 5.6 4 −1.43 0.001 0.4 0.3

Boundary 3 4.3 3 −1.58 0.003 0.4 0.7

Boundary 4 3.0 2 −3.78 0.003 0.6 0.2

Fig. 4.4  Energy of the C5H11COOH molecule as a function of the rotation of the –COOH 
group. Dihedral angle of rotation is indicated by lines parallel to bonds. System separations are 
shown by dashed lines (taken with permission from Ref. [42])
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difference is less than 0.1 kcal/mol for all values of the torsional angle. Even for 
boundary 3, i.e., the smallest QM subsystem, the shape of the curve is close to 
the reference one. The largest error is near 0.5 kcal/mol. The above results indi-
cate that a precise description of the conformation energy change is obtained if 
we select a small QM subsystem. At least two bonds should separate the fixed 
bond at the QM/MM boundary from the one around which rotation takes place.

In another example the torsional energy of the Gly-His-Gly tripeptide is 
calculated as a function of the rotation of the imidazole group. The QM subsystem 
includes the central imidazole group, as well as the amide groups (cf. Fig. 4.5). It 
is reasonable to select the core charge of the atom at the boundary to be identical 
to that used for the C5H11COOH molecule.

4.7  Proton Transfer

We calculated the energy curve of the proton transfer from the –COOH group 
of an Asp side chain to the neighbouring His side chain (for the molecular 
arrangement see Fig. 4.6). The boundary of the subsystems was chosen to 
have a fixed bond between atoms Cα and Cβ. These are the farthest possible 
boundaries from the site of proton transfer, which ensure to have a single SLMO 
at the boundary. The energy curve is shown on Fig. 4.6. Both the reference and 
the QM/MM curves have their minima at 1.0 Å this is the location where both 
curves are shifted. The overlap between the two curves is very good, the difference 
between the energy at the second minimum is only 1 kcal/mol, less than 4 %. The 
size of the QM subsystem is small, which allows considerable reduction of the 
computational work. Such a selection of the boundary may be appropriate for 
calculations on proteins, too.

Fig. 4.5  Energy of the Gly-His-Gly tripeptide as a function of the rotation of the imidazole 
group. The QM/MM boundary is indicated by a dashed line. Curves are shifted to have the same 
minima near −30° (taken with permission from Ref. [42])
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4.8  Non-orthogonal Molecular Orbitals

In the previous section we discussed application of the Huzinaga equation for 
the calculation of wave functions of QM/MM systems with fixed SLMO-s. The 
Huzinaga equation allows determination of molecular orbitals, which are orthogo-
nal to the SLMO-s. As an alternative, we describe the calculation of orbitals, too, 
which are non-orthogonal to the SLMO-s [55, 56]. First, we introduce the local 
basis equation for the determination of orbitals in cases, when group functions are 
expanded on different basis sets, thus orthogonality cannot be generally fulfilled. 
Then, we will show, how the local basis equation can be used for the calculation of 
QM/MM wave functions with fixed SLMOs. Molecular orbitals obtained this way 
are, in general, not orthogonal to SLMOs.

We construct the wave function as a Slater determinant of non-orthogonal orbit-
als, combined in groups, orbitals in different groups can be expanded on different 
basis sets. The electronic energy can be written as follows

where Pαβ, hβα and Fβα are elements of the density matrix, the Hamiltonian and 
the Fockian, respectively. Since orthogonality of orbitals belonging to different 
groups is not required, P = 2R, where R = Cσ−1C+ [35]. Matrix C consists the 
orbital coefficients, thus according to the specific assignment of the basis set, it is 
block diagonal. σ is the overlap matrix, which is, in general, non-diagonal, since 
group orbitals overlap.

Putting the first derivatives of the energy as function of the coefficients of the 
active orbitals we obtain the following equation [55] 

(4.4)E =
1

2

∑

αβ

Pαβ(hβα + Fβα)

(4.5)(Ia. − Sa.R)FC
(

σ−1

)

.A
= 0aA

Fig. 4.6  Energy of the 
Asp-His dyad as a function 
of the distance between the 
O atom of the Asp side chain 
and the transferring proton. 
The subsystem boundary is 
indicated by a dashed line 
(taken with permission from 
Ref. [42])
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where I, 0 and S are the unit, zero and basis overlap matrices, respectively. Index a 
refers to basis functions of active orbitals, while index A refers to occupied active 
orbitals. The missing lower index or a dot as a lower index refers to the full dimen-
sion of the matrix. Thus, Sa. denotes a block of the overlap matrix of the basis 
set, where the number of rows equals to the number of basis orbitals of the active 
orbitals, while the number of columns is equal to the total number of basis func-
tions. Equation (4.5) is equivalent to that derived by Stoll et al. [57]. Derivatives 
appearing on the left side of the equation allow, in principle, localisation of a sta-
tionary point of the energy, however, this is not practicable because of the high 
computational demand. It can be shown [55], that solutions of the following eigen-
value equation satisfy Eq. (4.5)

Matrix Ra projects on the subspace of the fixed orbitals: Ra = Ca
(

σ a
)−1(

Ca
)+.  

Equation (4.6) allows to determine the active orbitals with the usual iteration pro-
cess, while keeping others fixed. The method is appropriate for the determina-
tion of valence orbitals with fixed core electron orbitals. A further possibility for 
application is the determination of a priori localised orbitals [55, 56]. In this case 
assignment of the proper basis function reduces the extension of the orbitals and 
allows the use of non-orthogonal localised orbitals. The calculated energy is in, 
general, higher than that obtained by the full basis set, but this still acceptable if 
reasonable basis functions are assigned.

In order to get solutions of Eq. (4.5) Stoll et al. proposed an eigenvalue equa-
tion, which is different from Eq. (4.6) [57]

where ˜Ra
.a = Cσ−1

.A C+
Aa. Matrices C and E of the latter equation are not equivalent 

to those of Eq. (4.6). On the other hand, solutions of both Eqs. (4.6) and (4.7) span 
the same space and both make the energy stationary. The convergence of Eq. (4.7) 
is unfortunately very slow [56], thus it is not appropriate for the determination of 
the orbitals. The reason for the slow convergence may be that the equation con-
sists of the sixth power of the coefficients to be optimised. In contrast, Eq. (4.6) 
includes coefficients to be optimised only in the Fockian, their highest power is 
thus two, similarly as in standard HFR equations. If solving Eq. (4.6) we did not 
have convergence problems. 

An equation, similar to Eq. (4.6) was proposed for the elimination of the basis 
set superposition error for such groups, which are expanded on basis sets not con-
sisting common functions [58]. Later, the equation was generalised for groups, 
where a common basis set is also allowed [59, 60]. This is similar to Eq. (4.7), i.e., 
it contains the sixth power of the coefficients to be optimised, and convergence was 
found to be slow. The equation was applied to determine SLMOs [60, 61], which 
were used later in the Local Self-Consistent Field (LSCF) method [15, 16, 39].  
In QM/MM calculations gradient optimisation was used for the determination of 

(4.6)
(

Ia. − Sa.R
a
)

F
(

I.a − RaS.a
)

CaA =
(

Ia. − Sa.R
a
)

S.aCaAEAA

(4.7)

(

Ia. − Sa.R+ Saa

(

˜Ra
a.

)+
)

F
(

I.a − RS.a + ˜Ra
.aSaa

)

CaA = SaaCaAEAA



82 G.G. Ferenczy and G. Náray-Szabó

orbitals [60], which is much less effective than the iterative self-consistent solution. 
Optimisation using the first, in some cases the second, derivatives of the energy with 
respect to coefficients was proposed by other authors, too, in order to avoid slow 
convergence of the self-consistent iteration [57, 62, 63]. To our knowledge, Eq. (4.6) 
is the only one by now, which is appropriate for the determination of non-orthogonal 
orbitals by an iterative, self-consistent procedure.

Solutions of the local basis equation (4.6) are, in general, non-orthogonal molecular 
orbitals. However, the full wave function may be the same as that from the Huzinaga 
equation (4.3). If assignment of the basis functions to groups allows orthogonality, 
then solutions of Eq. (4.3) are simultaneously solutions of Eq. (4.6), too. In spite of 
this, if solving Eq. (4.6) iteratively, we do not necessarily obtain orthogonal orbitals.

As discussed above, if fixed orbitals are poor approximations of the occupied 
ones, solutions of Eq. (4.3) with negative eigenvalues will appear in the space of 
the fixed orbitals and this hinders determination of the active orbitals by the usual 
iterative self-consistent manner. Equation (4.6) is less sensitive to the shape of the 
fixed orbitals, since for solutions within the space of the fixed orbitals the eigen-
values are zero and not negative. In the following we will present some examples 
for cases, where iterative self-consistent solution of Eq. (4.3) is unsuccessful, how-
ever, Eq. (4.6) can be solved on the usual way.

4.9  QM/MM Calculations with the Local  
Basis Equation [56] 

QM/MM-type calculations were done by solving Eq. (4.6), similarly, as with 
Eq. (4.3) providing orthogonal molecular orbitals as shown above. The full sys-
tem was divided into QM and MM parts, connected by fixed SLMOs. Solution 
of Eq. (4.6) was built in the GAMESS-US program [52], the 6-31G* basis set 
was used [50]. For the determination of MM charges we performed a distributed 
multipole analysis [53, 64, 65] of the wave function by the GDMA program [53] 
then the MULFIT program [54] was used to calculate effective charges [45, 46].

As discussed above, the wave function from the local basis equation (4.6) is 
equivalent to the solution of the Huzinaga equation (4.3), if assignment of basis 
functions allows determination of orthogonal orbitals. All calculations, performed 
by solving Eq. (4.3), were repeated by solving Eq. (4.6), too. While calculations 
precisely reproduced results obtained from Eq. (4.3), no convergence problem 
arose. Number of iterations was about the same as in the standard HFR method. 
Deprotonation energy is well reproduced if the fixed orbital is separated from the 
deprotonation site by two or three bonds. Structural parameters, obtained while 
optimising the structure, are very close to reference values. Conformational energy 
curves and proton transfer energy values are also fine.

In the above calculations we retained the core charge and compensating bond 
charges. These latter are necessary for the iterative self-consistent solution of 
Eq. (4.3) (see above). Iterative solution of the local basis equation (4.6) converges 
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well even if small atomic core charges are used. Therefore deprotonation energy of 
the C5H11COOH molecule was repeated by smaller atomic core charges and without 
bond charges, separating the subsystem by boundary 1 of Fig. 4.3. The charge on 
the boundary atom C17 was chosen to be +3 (the number of explicit electrons) add-
ing the effective charge of this atom. Effective charges were assigned to MM atoms, 
too, which were calculated for the neutral molecule, but used for the deprotonated 
molecule, as well. Calculated deprotonation energy differs by 6.1 kcal/mol from ref-
erence. (Note that with appropriately selected bond charges this reduces to 0.2 kcal/
mol.) Analysing the charge distribution we found that near the boundary of the 
subsystems Mulliken charges considerably differ from those obtained in reference 
HFR calculations. The charge on C14 increases (−0.075 vs. −0.304), and decreases 
on atoms linked to it (C11 −0.326 vs. −0.307, H-atoms bound to C14 +0.074 vs. 
+0.158, for atom numbering see Fig. 4.3). On the other hand, Mulliken charges 
obtained by bond charges are close to reference HFR ones. This indicates that the 
fixed orbital itself cannot hinder distortion of the wave function at the boundary. 
This is why the error in deprotonation energy is quite large.

We further investigated the possibility for neglecting the bond charges with 
alteration of the basis functions of the fixed molecular orbitals. While in case 
of Eq. (4.3) orthogonality requires inclusion of the basis functions of the fixed 
orbitals in the basis set of the active group, this is not necessary in case of 
Eq. (4.6) allowing a more flexible assignment of the basis. If dropping the basis 
functions located on the boundary atom (A on Fig. 4.1) deprotonation energy 
practically does not change. Calculations were repeated by the application of 
more extended fixed orbitals. The basis set of the fixed localised orbital linking 
the subsystems contains the terminal C11–C14–C17 unit and hydrogen atoms 
bound to C14 (see Fig. 4.7). The basis set of the active orbitals does not contain 
basis functions of the C14–C17 moiety in order to reduce the perturbation of the 
QM system due to the QM/MM boundary. Though the error of the deprotonation 
energy became smaller, still it remained near 5 kcal/mol.

Analysis of Mulliken charges has shown that the charge of the methylene group 
consisting of the C14 atom is closer to the reference (C14 −0.389 vs. −0.304, 

Fig. 4.7  Subsystems defined for the C5H11COOH molecule and localised orbitals linking them 
(taken with permission from Ref. [56])
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linked H-atoms 0.163 vs. 0.158), in agreement with the fact that coefficients of 
orbitals containing C14 basis functions are fixed. On the other hand, the charge on 
the neighbouring atom, C11 (−0.078), lying closer to the deprotonation site, shows 
a more pronounced difference from the reference (−0.307 vs. −0.326).

It is anticipated that the deformation of the wave function on the boundary 
of the subsystems has different effect on calculated properties. Though, as seen 
above, calculated deprotonation energies are considerably biased, energy differ-
ences between systems of the same charge are less influenced. In order to inves-
tigate this supposition we repeated calculation of conformational energy changes 
and proton transfer energies without bond charges. Charge of the atom at the 
boundary was chosen to be +3 (number of explicit electrons) added to the effec-
tive charge of the atom. Energy of the C5H11COOH molecule as function of the 
torsional angle of the –COOH group (C5–C3 bond, see Fig. 4.3) was calculated. 
Two subsystem separations were considered, one with boundary 1, another with 
boundary 2 (cf. Fig. 4.3). Former calculations with bond charges provided good 
results. Calculated energy curves without consideration of bond charges closely 
coincide with the reference curve (cf. Fig. 4.8). Deviation of energies as obtained 
without bond charges is larger than in case if using bond charges, however, still 
less than 0.5 kcal/mol.

Torsional energy curves for rotation of the imidazole group of the Gly-His-Gly 
tripeptide with and without bond charges are shown in Fig. 4.9. The shape of the 
reference curve is well reproduced by the calculations. Similarly as above, curves 
without bond charges differ more from the reference than those with them. The 
largest deviation is within 1 kcal/mol with and 2 kcal/mol without bond charges.

Energy curve for the proton transfer between Asp and His molecules was also 
calculated with and without bond charges (see Fig. 4.10). The shape of both curves 
follows well the reference. The other minimum, belonging to the protonated His is 
higher than the reference in both QM/MM calculations. The deviation is 1.3 kcal/
mol with and 3.5 kcal/mol without bond charges.

Fig. 4.8  Energy of the 
C5H11COOH molecule as 
a function of the torsional 
angle of the –COOH group 
for two subsystem boundaries 
(taken with permission from 
Ref. [56])
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The above results show that application of increased core and bond charges 
allows better reproduction of reference results. It has to be noticed that atomic 
core charges were selected by a trial-and-error method to allow a good reproduc-
tion of the deprotonation of the C5H11COOH molecule within a given QM/MM 
separation. Bond charges are determined by the core charge and the effective 
charge of the atom. Charges are well transferable among various subsystem sepa-
rations and different system, since in all calculations the same core charge was 
used in spite of the fact that the chemical environment of the boundary atom was 
different. The advantage of calculations without bond charges is that they use less 
parameters, but this pays with the lower accuracy. This can be probably increased 
by increasing the size of the QM subsystem in a way that the site of the chemical 
or physical change gets further from the perturbed electron density at the bound-
ary. However, using a QM subsystem of larger size involves larger computation 
times.

Fig. 4.9  Energy of the Gly-His-Gly molecule as a function of the rotation of the histidine group 
calculated with and without bond charges (taken with permission from Ref. [56])

Fig. 4.10  Energy of the 
Asp-His system as a function 
of the Asp(O) atom and the 
attached hydrogen atom, with 
and without bond charges 
(taken with permission from 
Ref. [56])
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4.10  Localised Non-orthogonal Orbitals in QM/QM 
Systems [56] 

As it was mentioned above, Eq. (4.6) is appropriate for the calculation of a priori 
localised orbitals. In contrast to the more generally applied a posteriori localisation, 
when the canonical orbitals of the HFR wave function are subjected to a transfor-
mation, which results in localised orbitals, Eq. (4.6) makes it is possible to calculate 
localised orbitals directly. The Adams-Gilbert equation, allowing a priori localisa-
tion [25–28], exploits the invariance of the HF wave function to a non-singular linear 
transformation of the occupied orbitals, similarly to a posteriori localisation [66]. On 
the other hand, Eq. (4.6) is appropriate for the calculation of group functions on a 
local basis set, where localisation is secured by the assignment of basis functions to 
molecular orbitals. This equation can be used for the determination of the wave func-
tion of QM/QM systems, where the central, delocalised QM subsystem is surrounded 
by a QM subsystem of localised orbitals. This latter may be composed of more than 
one groups. Molecular orbitals of both systems can be optimised by solving Eq. (4.6) 
for the central QM subsystem, then for all groups of the localised subsystems. These 
equations are coupled through Ra matrix (see Eq. 4.6), projecting to the space of 
other orbitals not containing those to be optimised. Consequently, the equations can 
be solved iteratively. As an alternative, we may assign appropriately selected orbit-
als to the subsystem containing localised orbitals, which are kept fixed and only the 
orbitals of the central QM system will be optimised. Similar solutions were proposed 
for density functional methods [66–68].

A QM/QM system, composed of systems with delocalised and localised orbit-
als mentioned above, can be expanded by an MM subsystem, too. Such a three-
layer QM/QM/MM system is shown for the C5H11COOH molecule in Fig. 4.11. 
Calculated deprotonation energy reproduced the HFR results within 1 kcal/mol. 

Fig. 4.11  Subsystems for the C5H11COOH molecule in the QM/QM/MM model. The central 
delocalised QM subsystem contains the C–COOH moiety with 12 doubly occupied molecular 
orbitals. The localised QM subsystem contains 17 localised orbitals including 4 core orbitals. 
Fixed orbitals are a C–C bond and the core orbital at the QM/MM boundary. H atoms of the ter-
minal CH3 group are modelled by point charges (taken with permission from Ref. [56])
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Another three-layer system is shown on Fig. 4.12. Selection of this partition scheme 
is motivated by the fact that a similar subsystem definition with a delocalised QM 
system provided very good results for the rotation of the –COOH group (see Fig. 4.8).

Figure 4.13 displays results obtained for the two-layer QM/MM and the three-
layer QM/QM/MM partitions. The energy curve for the three-layer model overlaps 
almost perfectly with that of the two-layer curve. This indicates that the introduc-
tion of localised orbitals does not lead to the decrease of accuracy. This is espe-
cially interesting if we note that the extension of localised orbitals is small, and 
they are close to the rotation axis.

Fig. 4.12  Subsystems defined for the C5H11COOH molecule in the QM/QM/MM model. The 
central delocalised QM subsystem contains the C–COOH moiety with 12 doubly occupied 
molecular orbitals. The localised QM subsystem contains 13 localised orbitals, among them 3 
core orbitals. Fixed orbitals are a C–C bond and 2 core orbitals at the boundary. H atoms of the 
terminal CH3 group and the connected CH2 group are modelled by point charges (taken with per-
mission from Ref. [56])

Fig. 4.13  Energy of the 
C5H11COOH molecule as 
the function of the torsion 
of the –COOH group. The 
two-layer curve belongs to 
the respective separation 
scheme on Fig. 4.4, while the 
three-layer curve corresponds 
to the subsystem separation 
of Fig. 4.12 (taken with 
permission from Ref. [56])



88 G.G. Ferenczy and G. Náray-Szabó

References

 1. Lin H, Truhlar DG (2007) Theor Chem Acc 117:185–199
 2. Senn HM, Thiel W (2009) Angew Chem Int Ed 48:1198–1229
 3. Fedorov DG, Kitaura K (2007) J Phys Chem A 111:6904–6914
 4. Yang W (1991) Phys Rev Lett 66:1438–1441
 5. Yang W, Lee T-S (1995) J Chem Phys 103:5674–5678
 6. He X, Merz KM (2010) J Chem Theory Comput 6:405–411
 7. Wesołowski TA, Warshel A (1993) J Phys Chem 97:8050–8053
 8. Wesołowski TA (2008) Phys Rev A77:012504
 9. Reuter N, Dejaegere A, Maigret B, Karplus M (2000) J Phys Chem A 104:1720–1735
 10. Antes I, Thiel W (1999) J Phys Chem A 103:9290–9295
 11. Zhang Y, Lee T-S, Yang W (1999) J Chem Phys 110:46–54
 12. Warshel A, Levitt M (1976) J Mol Biol 103:227–249
 13. Náray-Szabó G, Surján P (1983) Chem Phys Lett 96:499–501
 14. Ferenczy GG, Rivail J-L, Surján PR, Náray-Szabó G (1992) J Comput Chem 13:830–837
 15. Assfeld X, Rivail JL (1996) Chem Phys Lett 263:100–106
 16. Ferré N, Assfeld X, Rivail J-L (2002) J Comput Chem 23:610–624
 17. Philipp DM, Friesner RA (1999) J Comput Chem 20:1468–1494
 18. Murphy RB, Philipp DM, Friesner RA (2000) J Comput Chem 21:1442–1457
 19. Gao J, Amara P, Alhambra C, Field MJ (1998) J Phys Chem 102:4714–4721
 20. Pu J, Gao J, Truhlar DG (2004) J Phys Chem A 108:632–650
 21. Jung J, Choi CH, Sugita Y, Ten-no S (2007) J Chem Phys 127:204102
 22. Jung J, Sugita Y, Ten-no S (2010) J Chem Phys 132:084106
 23. Kitagawa Y, Akinaga Y, Kawashime Y, Jung J, Ten-no S (2012) Chem Phys 401:95–102
 24. Roothaan CCJ (1951) Rev Mod Phys 23:69–89
 25. Adams WH (1961) J Chem Phys 34:89–102
 26. Adams WH (1962) J Chem Phys 37:2009–2018
 27. Adams WH (1965) J Chem Phys 42:4030–4038
 28. Gilbert TL (1964) In: Löwdin P-O, Pullman B (eds) Molecular orbitals in chemistry, physics 

and biology. Academic Press, New York, p 409
 29. Ferenczy GG (1995) Int J Quant Chem 53:485
 30. Ferenczy GG (1996) Int J Quant Chem: Quant Chem. Symp 57: 361
 31. Tchougréeff AL (1999) Phys Chem Chem Phys 1:1051–1060
 32. Ángyán JG (2000) Theor Chem Acc 103:238–241
 33. Tokmachev AM, Dronskowski R (2006) J Comput Chem 27:296–308
 34. Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw-Hill, New York
 35. Löwdin PO (1950) J Chem Phys 18:365–375
 36. Náray-Szabó G, Ferenczy GG (1992) J Mol Struct (Theochem) 261:55
 37. Náray-Szabó G, Tóth G, Ferenczy GG, Csonka G, (1994) Int J Quant Chem: Quant Biol. 

Symp 21: 227
 38. Ferenczy GG, Náray-Szabó G, Várnai P (1999) Int J Quant Chem 75:215
 39. Théry V, Rinaldi D, Rivail J-L, Maigret B, Ferenczy GG (1994) J Comput Chem 15:269
 40. Pu J, Gao J, Truhlar DG (2004) J Phys Chem A 108:632–650
 41. Huzinaga A, Cantu AA (1971) J Chem Phys 55:5543
 42. Ferenczy GG (2013) J Comput Chem 34:854–861
 43. Sakai Y, Miyoshi E, Klobukowski M, Huzinaga S (1987) J Comput Chem 8:256–264
 44. Pipek J, Mezey PG (1989) J Chem Phys 90:4916–4926
 45. Ferenczy GG (1991) J Comput Chem 12:913
 46. Ferenczy GG, Winn PJ, Reynolds CA (1997) J Phys Chem A 101:5446
 47. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, 

Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 111:5179–5197
 48. Philipp DM, Friesner RA (1999) J Comput Chem 20:1468–1494



894 Strictly Localised Molecular Orbitals in QM/MM Methods

 49. Ferré N, Assfeld X, Rivail J-L (2002) J Comput Chem 23:610–624
 50. Lin H, Truhlar DG (2005) J Phys Chem A 109:3991–4004
 51. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261
 52. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, 

Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput 
Chem 14:1347–1363

 53. Stone AJ (2005) J Chem Theory Comput 1:1128–1132
 54. Ferenczy GG, Reynolds CA, Winn PJ, Stone AJ Mulfit: http://www-stone.ch.cam.ac.uk/

programs/gdma.html
 55. Ferenczy GG, Adams WH (2009) J Chem Phys 130:134108
 56. Ferenczy GG (2013) J Comput Chem 34:862–869
 57. Stoll H, Wagenblast G, Preuss H (1980)  Theor Chim Acta 57:169–178
 58. Gianinetti E, Raimondi M, Tornaghi E (1996) Int J Quant Chem 60:157–166
 59. Sironi M, Famulari A (2000) Theor Chem Acc 103:417–422
 60. Fornili A, Sironi M, Raimondi M (2003) J Mol Struct (Theochem) 632:157–172
 61. Fornili A, Moreau Y, Sironi M, Assfeld X (2006) J Comput Chem 27:515–523
 62. Smits GF, Altona C (1985) Theor Chem Acc 67:461–475
 63. Couty M, Bayse CA, Hall MB (1997) Theor Chem Acc 97:96–109
 64. Stone AJ (1981) Chem Phys Lett 83:233–239
 65. Stone AJ, Price SL (1988) J Phys Chem 92:3325–3335
 66. Lee T-S, Yang W (1998) Int J Quantum Chem 69:397–404
 67. Hong G, Strajbl M, Wesolowski TA, Warshel A (2000) J Comput Chem 21:1554–1561
 68. Wesołowski TA, Warshel A (1993) J Phys Chem 97:8050–8053

http://www-stone.ch.cam.ac.uk/programs/gdma.html
http://www-stone.ch.cam.ac.uk/programs/gdma.html


91

Chapter 5
Polarizable Force Fields for Proteins

Oleg Khoruzhii, Oleg Butin, Alexey Illarionov, Igor Leontyev,  
Mikhail Olevanov, Vladimir Ozrin, Leonid Pereyaslavets and Boris Fain

© Springer International Publishing Switzerland 2014 
G. Náray-Szabó (ed.), Protein Modelling, DOI 10.1007/978-3-319-09976-7_5

5.1  Introduction

Computer simulations of molecular systems have become an integral part of sci-
entific investigations across a wide range of biophysical and biochemical prob-
lems [1]. Today computational methods offer detailed atomic-level information 
about physiological processes that is frequently unobtainable by experimental 
approaches [2, 3]. Computer modeling complements bench science by providing 
interpretation of experimental results, guiding further experiments and, perhaps in 
the near future, itself becoming the experiment [4, 5].

High-level ab initio calculations are the most reliable and consistent computa-
tional tool capable of reproducing many molecular properties [6]. For intermolecu-
lar interactions quantum mechanics (QM) can provide not only the absolute value 
of the interaction energy, but it also allows the partitioning of the energy into sev-
eral physically meaningful components, thus helping to analyze and to understand 
the mechanism of the interaction [7–11]. Despite continuous progress in first-prin-
ciples methods, calculations of sufficient accuracy are still very computationally 
demanding and rapidly become intractable as the system size increases.

Phenomenological classical potentials known as force fields (FFs) are much 
more useful in practical applications that involve large molecular systems con-
sisting of thousands of atoms. In this approach, known as molecular mechan-
ics (MM) simulation, atoms or groups of atoms are represented as particles that 
interact through relatively simple potential functions based on physical models.  
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FF potentials are constructed as functions of the nuclear coordinates only, while 
the electronic subsystem in the Born-Oppenheimer approximation is assumed 
relaxed in some sense and is buried within the electrostatic part of the model.

A specific FF is characterized by a potential functional form as well as by a set 
of associated parameters obtained by matching of FF predictions to experimen-
tal data and/or ab initio calculated properties. This representation is then used to 
sample the conformational phase space of the molecules via simulation techniques 
such as Monte Carlo (MC) and molecular dynamics (MD). This sampling, in turn, 
permits the characterization of the time evolution of the molecular system, its fluc-
tuations and interactions, and therefore, the investigation of the system’s struc-
tural, kinetic and thermodynamic properties.

A FF can be considered as a classical approximation of the quantum interac-
tion and should ideally include all the energy components revealed by quantum 
mechanics. This, however, encounters two basic difficulties. First, interactions of 
chemically bonded atoms are inherently quantum and cannot be described classi-
cally without crude simplifications. For this reason most FFs describe the interac-
tion of bonded atoms by phenomenological two-body, three-body, and four-body 
terms that depend on bond distances, angles and dihedral angles and provide rea-
sonable molecular geometry along with conformational energetics. The second 
difficulty is the intrinsically many-body character of some quantum effects, of 
which the most prominent representative is the electronic polarization (induction). 
The inclusion of such terms in a FF makes it much less computationally efficient.

The significance of the polarization effect was recognized long ago [12–14] and 
polarizable FFs have been developed since the very early stage of the simulation 
era [15–18], primarily for water modeling [19, 20]. Later, the pressing demand of 
large scale simulations of biological interest resulted in domination of simplified 
non-polarizable FFs (although, about a half of specialized water potentials was 
still polarizable [21]). In non-polarizable potentials, which are also called pair-
wise or additive, polarization is included in some averaged way by empirically 
tuning model parameters so that simulations reproduce the target properties of a 
given molecule in an environment of particular polarity.

Empirical parameterization is an unavoidable element of additive FFs, and it 
allows one to achieve sufficient accuracy provided by partial compensation of 
errors in standard solvation conditions. Several decades of testing and refinement 
have resulted in impressive progress in additive FFs such as AMBER [22–24], 
MMFF [24, 25], OPLS [25–27], GROMOS [28, 29], CHARMM [30–32], etc. 
Today these FFs have become very popular and valuable tools for biomolecular 
MM simulations.

Though based on several drastic simplifications, existing pairwise FFs have 
been remarkably successful in modeling many complex molecular systems. They 
have produced a great number of useful insights concerning biological function, as 
well as a demonstrated ability of obtaining quantitative results for structures and 
energetics [33, 34].

Despite some success and the wide usage of additive FFs, implicit description 
of the polarization is frequently considered as their main deficiency [35]. As the 
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state of a molecule in these models is insensitive to its environment, problems 
arise when the environment changes. Simulations of gas-liquid interfaces and 
phase transitions, polar solutes in nonpolar solvents, properties of polar liquids at 
high temperature and low density, solvation and affinity energies by non-polariza-
ble FFs are often unreliable. The special issue of Journal of Chemical Theory and 
Computations on polarization has illuminated a number of such cases [35].

The implicit treatment of polarization, however, is just one of many other defi-
ciencies and oversimplifications of modern additive FFs.

The much less recognized problem is that parameterization of empirical poten-
tials is typically limited by insufficient experimental data available for the target 
solvation condition. Moreover, due to integral character of experimentally observ-
able properties, the empirical fitting generally provides little insight into how the 
model’s inadequacies can be removed. For example, though the inability of addi-
tive FFs in reproducing ion absorption [36] and conductivity of ionic liquids [37, 
38] being well recognized, only recently has it been resolved with implementation 
of a new theory [39].

Clearly high level QM calculations are superior in this regard because they can 
provide much more accurate, diverse, focused and representative data sets for the 
FF parameterization, training and testing. QM based parameterization strategy 
benefits not only from existing extensive and physically well-grounded theoretical 
methods, but it also reaps the rewards of continuous advances in ab initio tech-
niques where rapid increase in computer power will eventually deliver results of 
any required precision. Transferable polarizable force fields derive the most ben-
efit from QM parameterization.

Thus, aided by recent and ongoing great progress in computer technologies as 
well as by a fundamental increase in accuracy and speed of QM techniques, the 
development of explicitly polarizable FFs is finally starting to fully blossom.

The polarization “Renaissance” began at the very end of the last century. In 
the past 15 years a great deal of effort has been put into developing accurate and 
efficient ways to introduce polarization into classical FF paradigm, elaborating 
specific parameterization techniques, and producing a new generation of general 
purpose FFs. The amount of work and the interest in the subject can be charac-
terized by the statistics of the relevant reviews: starting with the first review of 
Halgren and Damm  in 2001[40] new reviews have appeared every year (more 
than 3 per year after 2006, with the most recent in 2014 [41]) referring to over 
a thousand pages and reviewing development of polarizable FFs in almost every 
possible detail.

A very clear description of the different methods to make the FF polarizable 
can be found in Rick and Stuart [42]. Specific features of protein FFs have been 
described by Ponder and Case [43]. Warshel [44, 45] has discussed a broad range 
of problems related to proteins that require accounting for polarization, along 
with a historical perspective. Patel and Brooks [46, 47] reviewed many aspects 
concerning construction and parameterization of polarizable FF using the fluc-
tuating charges approach, while Yu and van Gunsteren [48] had concentrated on 
Drude oscillator approach with most recent related results in Lopes et al. [49]. 
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Cisneros et al. [50] outlined a more sophisticated approach to the description of 
the electronic component, which they implemented in SIBFA and GEM models. 
Various polarizable models in the CHARMM framework have been reviewed by 
MacKerell and coworkers [51]. Stone and Misquitta [9] and Wang with colleagues 
[52] have discussed quantum mechanical counterparts of energy components of 
classical FFs including polarization, and possibilities for their parameterization 
from the first principles. Simplified QM approaches to model interactions in large 
molecular systems as well as QM/MM approaches were reviewed by Gordon et al. 
[53, 54]. Gong [55] thoroughly described development and applications of the 
sophisticated ABEEM fluctuating charge molecular force field. Cisneros and coau-
thors [56] have given an exhaustive picture of all electrostatic aspects of MM sim-
ulations. Marshall [57] provided arguments to decide whether accurate molecular 
polarizability is the most limiting aspect in MM electrostatic models.

With such extensive and detailed bibliographic support we shall not attempt to 
cover in our review all aspects of a very broad and actively developing subject of 
polarizable force fields. Instead we shall take a more educational approach and try 
to discuss in more detail several specific and previously poorly elucidated points, 
and to conclude with our perspective as to where we are in the subject and what 
we can expect in the nearest future.

The latter is not a trivial question. In their prominent review in 2001 Halgren 
and Damm stated a hope that: “Given the accelerated progress made in the past 
five years, the next few years bode well to establish the limitations of standard, 
non-polarizable fixed-charge force fields and to make the case for routinely includ-
ing polarizability in bio-molecular calculations” [40]. Unfortunately their hope has 
not been realized yet. Despite clear physical arguments for the necessity of explicit 
inclusion of molecular polarizability into MM models, success of current polariz-
able FFs is not widely accepted, and their superiority over simpler additive models 
is debatable. Thus to move forward one first needs to find a reason why more than 
15 years of active development have not achieved the clear superiority and preva-
lence of a physically more accurate model.

5.2  Polarization: Basic Notions and Mechanisms

In classical electrodynamics [58] polarization density (or electric polarization, or 
simply polarization) is the vector field that expresses the density of induced elec-
tric dipole moments in a dielectric sample V:

In moderate electric fields polarization is proportional to the field

where χ is electrical susceptibility and is a tensor in a general case.

(5.1)�P =

〈

�dV

〉/

V .

(5.2)�P = χ �E,
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Polarization can be induced by different mechanisms that include shift of ionic 
species, orientation of dipolar elements, change in electronic distribution, etc. As 
MM models characterize a system on an atomic level, the majority of polarization 
factors are automatically included except for electronic polarization. For this rea-
son when one says that a FF is polarizable one means that the FF includes special 
additional terms to describe electronic polarization explicitly.

The response of each polarization mechanism to the applied field may be char-
acterized by a specific time scale that results in χ frequency dependency. In the 
simplest case of the unimodal polarization mechanism this dependency can be 
approximated by

Here χ∞ and χs are high frequency and low frequency (stationary) asymptotic val-
ues, τ is the relaxation time.

For water in this approximation, the high frequency response is determined by 
electronic polarization and the low frequency response is mainly provided by ori-
entational polarization of water molecules. For liquid water at 25 °C τ is 8.27 ps 
and for hexagonal ice at 0 °C τ ~ 20 µs both characterizing the time required for 
the reorientation of a water molecule in the electric field [59].

Additionally, we should mention two specific polarization mechanisms: geo-
metric [60, 61] and mechanical [42] (steric) polarization. Actually they could be 
considered as special cases of electronic polarization.

Geometric polarization arises as a result of change in the molecular geometry. 
In addition to the trivial contribution due to nuclear displacement it includes a 
much more complex effect of electron density redistribution. The naive description 
of this effect uses an idea of an “effective” atom in a molecule: the assumption that 
the change in nuclear positions results in similar displacement of related electron 
clouds without change of their partitioning between nucleolus (atoms).

The physical invalidity of such an idea can be easily understood by consider-
ing the result of increase of bond length in a simple ionic diatomic molecule like 
NaCl. In equilibrium state it consists approximately of two bonded ions Na+ and 
Cl− but at the dissociation limit it will be a pair of neutral atoms—Na and Cl, with 
some continuous change of the electronic state in the intermediate.

Both experiment [62] and ab initio calculations [63] demonstrate that a 
change in molecular geometry results in complex and nonlocal changes in the 
electron density. For example, in water molecule, the angle between the vectors 
∂ �µH2O/∂lOH describing change in the molecular dipole with change in either bond 
length is about 150° (Fig. 5.1) [64] while under the effective atom hypothesis it 
should be equal to the molecular bending angle (≈104° for gas phase geometry).

Mechanical polarization arises from the exchange-repulsion of electrons 
at close contacts between molecules. Basic features of this phenomenon can be 
understood by considering the interaction of a pair of noble gas atoms placed at 
a small distance from each other (the scales in this case are unrealistic but help 
to understand the effects qualitatively). In the simplest but qualitatively correct 

(5.3)χ(ω) = χ∞ +
χs − χ∞

1+ ω2τ 2
.
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model (like QMPFF2 [65]), the electronic structure of both atoms can be approxi-
mated by spherically symmetric clouds which feel exchange and electrostatic 
repulsion from the interacting cloud and electrostatic attraction with the nucleus 
of the interacting atom. As a result of the interactions the cloud can shift from 
the nuclear position at the expense of induction energy quadratically dependent 
on the shift. Figure 5.2 shows qualitatively the radial dependence for electrostatic, 
exchange-repulsion and total interaction energy in the QMPFF model. The pen-
alty caused by induction and unfavorable dipole-dipole electrostatic interaction is 
lower than the gain from exchange-repulsion attenuation due to the clouds drifting 
apart, overall resulting in the slower rise of the repulsion barrier at small distances 
than that without the polarization and the negative quadrupole moment of the atom 
pair (Fig. 5.2). Thus, as expected the electronic relaxation provides negative con-
tribution to the total energy, while the induced electrostatic interaction in this case 
is unfavorable which is rather counterintuitive.

Fig. 5.1  Geometrical polarization of water molecule. Change in molecular dipole with change 
in bond length can not be described in the effective atom paradigm, α≈104°, β≈150°

Fig. 5.2  Interaction energies of two rare gas atoms obtained with the QMPFF2 force field [65]. 
The dependencies of the total energy Etot, its exchange-repulsion Eex and electrostatic Ees com-
ponent on the interatomic distance R are shown in blue, red and green color, respectively. In 
QMPFF2 model the atoms are described as nuclei with attached by spring spherical exponential 
electronic clouds. Solid lines represent the system with polarized electronic clouds (i.e. with opti-
mal cloud shift t = topt) while dashed lines stand for the system without polarization (clouds are 
fixed at nuclei positions, t = 0). Inset shows the polarization shifts of cloud positions
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In a similar way the mechanical polarization (i.e. exchange-repulsion between 
electrons of different molecules) can weaken the strength of ordinary electronic 
polarization in response to an external electric field. It is believed to be the main 
factor that causes a decrease of molecular polarizability in dense systems as com-
pared to the gas phase [66, 67].

Figure 5.2 also illustrates another electrostatic effect—penetration, which 
to some degree imitates polarization. Like polarization, penetration acts even 
between neutral interaction centers and provides a gain in the interaction energy. It 
arises because of shielding of the electrostatic interaction of overlapped electronic 
clouds with a more steep weakening electrostatic repulsion between clouds than 
opposite twofold electrostatic attraction of clouds to nuclei. Penetration, for exam-
ple, makes a significant contribution to the energetics of hydrogen bonding [68]. 
The question of what is the principal stabilization factor for H-bonding network 
in water—attractive electrostatic interaction, polarization or penetration effect—is 
debated to this day.

Different polarization mechanisms are not independent. E.g. interaction of a 
water molecule with surrounding molecules will change its dipole moment via 
electronic polarization thus changing also the orientational response. As a result, 
the averaging in Eq. (5.1) includes not only the simple orientational one, but also 
an effective averaging over configurations of the environment around a molecule, 
and these two statistics are not independent. This simple consideration shows why 
it is more difficult to build a polarizable model than a non-polarizable one.

In the latter case the two averages are believed to be independent and the 
molecular dipole moment in the condensed phase is taken as an “effective” model 
parameter. In parallel, parameters of the intermolecular potentials are chosen to 
reproduce some “effective” structure of the medium, which, after averaging with 
a chosen “effective” dipole moment, provides accurate macroscopic properties. 
To be successful the model should not necessarily reproduce the real structure as 
well as the true average dipole moment. “Observables” can be matched by tuning 
an arbitrary molecular dipole moment to reach an agreement. It is also significant 
that the model is additive. Thus, though parameterized on properties of small mol-
ecules, it reasonably reproduces the properties of more complex systems as well.

In contrast, the task of constructing a polarizable model is much more ambi-
tious. Ideally, a model parameterized just on the basis of ab initio data for mono-
mer properties and intermolecular interactions in dimers and small clusters should 
be able to reproduce real statistics of molecular structure configurations in the 
condensed phase, accurate response of each molecule to a particular environment, 
and accurate response of such obtained molecular ensemble to the external elec-
tric field (which is equivalent to accurate macroscopic fluctuations of the ensemble 
dipole moment and implies accurate thermodynamic behavior).

Moreover, a polarizable FF is non-additive. Thus having been parameterized on 
small systems it is not guaranteed to work well on larger ones. To achieve such 
transferability the model should not depend on effective parameters and should 
represent all of the underlying physics. We shall see below that available experi-
ence in development of polarizable FFs clearly supports this idea.
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The aforementioned coupling of different polarization mechanisms also pro-
duces difficulties for polarizable FFs with the well-established empirical param-
eterization approaches. These approaches either cause the polarizable model to be 
over-parameterized and parameterization becomes unstable or the resulting param-
eters are appropriate just for the narrow range of conditions close to those used for 
the parameterization.

5.3  Basic Approaches to Include Electronic Polarization in 
Classical FFs

In a practical realization of the model one needs to make several choices, and the first 
one is of the relative weight between levels of physical correctness and computational 
efficiency. Up to now, in most cases, computational efficiency has been considered as 
the only critical issue, as conventional wisdom states that low numerical efficiency is 
the main obstacle for use of polarizable models. However, in our opinion, this posi-
tion is currently unwarranted. First of all, as was shown above, polarizable models 
are much more sensitive to the overall physical accuracy of the model. Second, com-
putational power of modern computers is growing so fast and is currently at a high 
enough level that it is no longer a predominant bottleneck for many of the MM simu-
lations. Rather the accuracy of the model has become of principal importance. Third, 
the computational cost incurred by more physically reasonable models is small in 
comparison to the inclusion of the polarization itself. Fourth, there are many ways to 
improve numerical efficiency without a loss of the physical soundness of the model.

In conclusion, while the choices pointed out below are well known [48], the 
prevailing ongoing emphasis on speed, in our opinion, is becoming misguided. 
Repeated preference for numerical efficiency has prevented some physically sound 
avenues from being explored. As a result, improvements in the physical correct-
ness of the models still await further investigation.

There are three basic approaches to incorporate electronic polarization in clas-
sical FF paradigm—point inducible dipoles, Drude (or shell, or charge-on-spring) 
model, and fluctuating charges. For all these approaches, the technical aspects and 
the history of their development and applications have been perfectly reviewed by 
Rick and Stuart [42]. Here we shall focus on just a few details that, in our opinion, 
require more caution.

5.3.1  Inducible Dipoles

Inducible dipoles are the most popular and most developed method of introduc-
ing molecular polarizability into the FF. This approach is the method of choice 
in polarizable versions of AMBER [69, 70] and OPLS [67], as well in PIPF-
CHARMM [71], NEMO [72], SIBFA [73], EFP [54], AMOEBA [74], and 
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QMPFF3 [75]. Thus by this example we can follow all the characteristic details 
and difficulties that arise in polarizable models. In this approach the polarizable 
centers (which are most frequently atoms) are represented as inducible dipoles 
with some center-specific polarizability:

For such a system the potential energy becomes:

where the first term is the potential energy without polarization, the second and 
third terms describe interaction of induced dipoles with permanent electric 
moments (producing permanent electric field �Eper

a ) and with each other, and the 
last term is a penalty for perturbing the basic electronic state of the molecule 
(induction energy in the narrow sense) and is always positive. The dipole field ten-
sor Tab is a function of inter-center vector �Rab and is defined so that in the center a 
the electric field from induced dipoles in all other centers is

For point dipoles

In accord with the Born-Oppenheimer approximation the electronic system is 
assumed to be totally relaxed in any nuclear configuration and its state corresponds 
to a minimum of potential energy. This is provided by values of induced dipoles

Under this condition the potential energy can be simplified

5.3.1.1  Choice of Polarization Centers

When introducing molecular polarizability into the MM model one should decide 
whether to use a one-center (unimolecular) or a multi-center (distributed) descrip-
tion of polarizability. From a physical point of view it is clear that since some 
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changes occur in all points of molecular electronic cloud in response to an exter-
nal electric field, the distributed description is more natural [76]. However, the 
observable values, e.g. change in dipole moment, characterize the whole molecule 
only and just like there is no unique physically based way to distribute the electric 
charge between the atoms in a molecule, there is no unique way to distribute polar-
izability [77]. All possible ways of redistributing the polarizable response to the 
field over different centers will have some errors close to the molecule and will be 
approximately equivalent in the far region. The distributed models are more capa-
ble of providing a larger region of convergence and smaller corresponding errors.

Description of polarization by induced dipoles introduces additional compu-
tational expenditures compared to those with a point charge electrostatic model. 
Consequently, since it has long been accepted that the electrostatic potential (ESP) 
of small molecules can be reproduced reasonably well by one-center multipoles, 
computationally effective models use a restricted set of polarizable centers, plac-
ing the centers on heavy atoms only or on group centers of small quasi-neutral 
groups [78, 79].

This choice has obvious disadvantages in the description of polarization for 
close atom contacts, particularly for H-bonding. In many respects the situation 
resembles the treatment of hydrogen atoms in classical FFs [43]. For numeri-
cal efficiency the first generation of FFs did not include hydrogen atoms at all, 
parameterizing all heavy atoms as effective “united” atoms. Subsequently it was 
recognized that at least polar hydrogen atoms should be treated explicitly. Finally, 
current FFs describe all hydrogen atoms explicitly and sometimes add additional 
centers for lone pairs or bonds.

The use of an all-atom model of induced dipole polarization not only provides 
a more accurate polarization field, but also permits the improvement of permanent 
electrostatics. In this model a permanent dipole can be added at each atom without 
any additional computational expense [67]. Nevertheless, for some unknown rea-
son, this possibility for complimentary permanent dipoles is not widely used.

5.3.1.2  How to Determine Values of Induced Dipoles

The exact calculation of induced dipoles from Eq. (5.9) requires an N × N matrix 
inversion where N is the number of polarizable centers. For large N this becomes 
intolerably inefficient (scales as N3). Consequently the values of induced dipoles 
are typically determined by either iterative methods or by an extended Lagrangian 
formalism [42, 80]. In the latter approach the induced dipoles are considered as 
additional degrees of freedom whose dynamics are described by Newton-like 
equations with forces proportional to the difference between left and right hand 
sides of Eq. (5.9). Effective inertia (“mass”) is chosen to provide the dynamics, 
which should be faster than any nuclear dynamics but not so fast as to interfere 
with a reasonable time step for integration [80].

Another group of methods is the so-called non-iterative methods. They were 
the first approaches used when induced dipoles were employed to describe 
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polarization [16, 81, 82]. Considering polarization formally as a small param-
eter one can construct a solution of Eq. (5.9) as a formal expansion in degrees of 
polarization:

and so on. Substitution of relations (5.11) and (5.12) in Eqs. (5.5) or (5.10) pro-
vides the corresponding series for the interaction energy. These series will differ in 
the largest order terms as Eqs. (5.5) and (5.10) are equivalent only with the exact 
solution (5.9) for induced multipoles. It is interesting that substitution of the low-
est approximation (5.11) into Eq. (5.5) gives the same expression for the energy as 
a substitution of the next approximation (5.12) into Eq. (5.10). This had resulted in 
some confusion with the terminology. The same expression for the energy is called 
zero-approximation in Ref. [83] and the second order interaction model in Refs. 
[84–87].

Recent works show that such non-iterative models can efficiently account for 
the polarization effects and simultaneously be rather accurate if parameterized 
appropriately [41, 84–88]. Consequently they can be considered as a method 
of choice for modern large-scale simulations that treat molecular polarization 
explicitly.

5.3.1.3  Overpolarization Problem

A long known unpleasant feature of the point induced dipole model is the exist-
ence of a polarization catastrophe for close polarization centers [89, 90]. If two 
centers are near each other and lie along the direction of an external electric field 
their mutual interaction will act to increase the induced dipoles with overall axial 
polarizability

and solution of Eq. (5.9) is going to infinity for

For inter-center distances larger than the critical value in Eq. (5.14) the solution 
of Eq. (5.9) is finite, but still, the obtained values of dipoles may be artificially 
amplified and therefore be unphysical. Such unphysical behavior is a consequence 
of several simplifications in the model: the neglect of diffuse character of the elec-
tronic clouds, nonlinear polarization, etc.

Thus, to be more reliable and stable, a polarization model based on induced 
dipoles should be complemented by some mechanism to dampen interaction for 
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short inter-center distances. The most popular model used currently in the majority 
of polarizable FFs [49, 52, 91–98] is one proposed by Thole [90].

Thole begins the development of his model with a clear physical argument that 
the interaction of diffuse electronic clouds at small distances is weaker than that of 
point dipoles. As a result the tensor Tab in Eq. (5.6) is modified by a damping fac-
tor in comparison with that of point dipoles in Eq. (5.7). Despite this initial argu-
ment, the Thole model is purely mathematical. First, he substitutes the interaction 
of two diffuse dipole clouds with the interaction of one diffuse cloud with a point 
dipole. Then, more significantly, Thole does not use a physically reasonable cloud 
width. Instead, he solves the inverse problem and determines widths that exclude 
the possibility of the catastrophe for any inter-center distance. Such an approach 
results in characteristic widths of electronic clouds exceeding 1 Å that are much 
larger than the typical size of molecular orbitals (about 0.25 Å).

Elking has tried to develop a more physically reasonable model by representing 
induced dipoles as Gaussian dipole clouds [99]. However he also parameterizes 
the cloud widths by requiring the suspension of the catastrophe for all distances 
and obtains unphysically large widths greater than 1 Å.

Figure 5.3 compares the dependence of the axial polarization and its denomi-
nator [see Eq. (5.13) for example] on the interatomic distance in several models 
of diffuse clouds. As an example of a physically realistic model we present the 
QMPFF3 [75] model where induced dipoles are represented as exponential dipole 
clouds with widths parameterized on the base of real electronic density distribu-
tion (through reproduction of spatial dependence of dimer electrostatic interaction 
energies including small intermolecular distances). The realistically distributed 
dipole clouds dampen the dipole interaction very similarly to Thole’s and Elking’s 
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Fig. 5.3  a Dependence of the axial polarizability, αab
|| , on the interatomic distance of two nearby 

rare-gas atoms a and b in point dipoles Thole, Elking, and QMPFF3 (including linear, 1/tmax = 0

, and nonlinear polarization, tmax = 0.1 Å) models. To be able to compare different screening 
models, polarizabilities of these atoms are arbitrarily chosen to be equal to C and N polarizabili-
ties in the correspondent model. Parameters for the first three are from Ref. [99] for the last two 
from Ref. [75]. b The same dependence of the denominator from the formula for polarizability 
indicating the possibility of a polarization catastrophe
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models, thus preventing the polarization catastrophe for all physically meaningful 
intermolecular distances. Yet the avoidance of the catastrophe does not automati-
cally guarantee a solution of the overpolarization problem (see Sect. 5.4).

Unrealistic cloud width is not the only physical deficiency of Thole’s model. As 
was pointed out in the previous section, the diffuse character of electronic clouds 
changes the atom interaction at small distances not only quantitatively but also 
qualitatively resulting, additionally, in mechanical polarization and penetration 
effects. As a result, the polarization state of close atoms can differ significantly 
from that predicted if one accounts for the external electric field only (Fig. 5.4).

In conclusion we point out that Thole’s model should be considered as one 
of many possible mathematical approaches to restricting overpolarization. Other 
examples are application of soft-core potentials [48] or the truncated non-iterative 
description of polarization [83, 84], which is close to the exact solution for small 
values of induced dipoles and systematically underestimates the self-consistent 
solution of Eq. (5.9) in the high polarization limit. A more physically rigorous 
treatment of diffuse character of electronic clouds goes much further than Thole’s 
model, requiring inclusion of clouds with realistic scales, and of all types of inter-
actions caused by nonzero values of these scales [75].

Treating the electronic clouds as diffuse entities cannot by itself solve the over-
polarization problem. This conclusion is supported by the consideration of the 
non-additive energy in water clusters [100] and by problems with description of 
the polarization state in large structurally organized molecules such as proteins 
[49]. One of the popular methods of solving this problem is to bring in nonlinear 
polarization, so that a linear relationship like in Eq. (5.4) is just the first term valid 
for only small values of the induced dipole and/or applied electric field [49].

Typically nonlinear polarization is obtained rather formally by introduc-
ing additional nonlinear terms that saturate Eq. (5.4) at large field amplitudes or 
by additional terms that lead to faster growth of the penalty induction term in 
Eq. (5.5) for larger induced dipoles [49, 101].

Fig. 5.4  Dependence of the 
angle between the dipole 
moment of one of the closely 
situated rare-gas atoms and 
interatomic radius vector on 
the interatomic distance in 
an external field of 0.01 a.u. 
perpendicular to this vector 
with and without account for 
diffuse cloud interactions
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A more natural way to introduce the nonlinearity was used in the QMPFF force 
field [65, 75, 100, 102], which uses simply the properties of the wave function 
with a dipole component.

The simplest normalized anisotropic wave function with nonlinear dipole 
moment can be written as:

Here �r is radius vector in the frame with the origin in the cloud center, �n = �r/r, wa 
is characteristic width of the cloud and �pa is the weight of the p-state component 
providing the nonzero dipole moment.

The energy of the cloud depends on the weight of the p-state:

where Es and Ep are respectively s- and p-state energies whereas E* = Ep − Es > 0 
is the excitation energy.

The dipole moment of the cloud with respect to the center (induced dipole) is

where Qa is the total charge of the cloud and �ta its “shift” related with the weight 
of p-state by:

From this equation it is evident that absolute value of the shift of the cloud (and 
induced dipole as well) is always smaller than

The induction (penalty) term UIN is associated with the increase of intra-atomic 
energy given by Eq. (5.16):

where the polarizability parameter αa is

(5.15)�a =

√

1

π
(
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)

w3
a

[
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]
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.
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For small induced dipoles (shifts) the induction energy coincides with 
that in Eq. (5.5) and describes the linear polarization, while for ta → tmax 
∂UIN

a /∂ta → ∞ corresponding thus to zero polarizability.
Modification of the denominator in the expression for axial polarization like 

Eq. (5.13) with account for finite tmax with a value from Ref. [75] is also shown in 
Fig. 5.3. It is seen that the problem of polarization catastrophe is totally avoided.

5.3.2  Drude Models

An alternative approach to introduce electronic polarization into a FF is based 
on the classical Drude oscillator model. This approach is the method of choice in 
polarizable versions of GROMOS FF [103], as well in CHARMM Drude-2013 
[49], and QMPFF2 [65] FFs.

The origin of the Drude model can be traced back to the work of Paul Drude 
who introduced the method in 1902 to describe the dispersive properties of materi-
als [14]. In this model (called also shell or charge-on-spring model) polarizability 
of a given atom with a partial point charge qa is represented by introducing an 
“auxiliary” mobile Drude particle with a point charge qaD attached to the atomic 
particle by a harmonic spring with a force constant kaD. While rationally the Drude 
particle represents an electronic cloud which can move off-center in an external 
electric field, its charge is usually considered to be a model parameter and can be 
even positive in some models. To preserve the net charge of the atom–Drude pair 
the charge of the atom is replaced by q̃a = qa − qaD.

The electrostatic interaction of two atoms in a non-polarizable FF is substi-
tuted by the four site Coulomb interaction with addition of induction energy of the 
spring:

Relative positions �daD = �raD − �ra of all Drude particles are then adjusted self-con-
sistently to minimize energy for any given atomic configuration of the system.

An important practical aspect in favor of the Drude model is that this method 
deals only with point charges and as such its implementation does not require sig-
nificant modification of computer codes developed for standard non-polarizable 
models. In an external electric field E the Drude particle is shifted, producing the 
induced dipole

(5.22)
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This results in the expression for the isotropic atomic polarizability as follows

Anisotropic polarizability can be introduced by requiring the anisotropy of the 
spring.

For a given αa, the force constant kaD can be chosen so that the displacement 
of the Drude particle remains much smaller than any interatomic distance, and 
that the resulting induced dipole �µaD is almost equivalent to a point dipole. Under 
these conditions the Drude model is very close in all properties to the induced 
point dipole model with the same atomic polarizability.

For the sake of computational efficiency the Drude particle positions can be 
treated via the extended Lagrangian technique as additional dynamical degrees of 
freedom [48, 49]. In this realization a small mass, maD taken from the mass of the 
parent atom ma, is attributed to all Drude particles. The value of maD is chosen to 
provide a balance between the maximum reachable time step for converged MD 
integration and sufficient decoupling of the Drude particle motions from atomic 
motions [104].

In an analogy with the induced dipole model, the permanent shift of the cloud 
can also be used to include permanent dipoles in the electrostatic model [65, 102].

The point charge Drude model also suffers from the polarization catastrophe and 
the overpolarization problem for close atom contacts. Purely mathematical solution 
of this problem can be achieved by damping the nearby interactions in the spirit of 
the Thole model or using alternative forms of damping functions. Realistic account 
for the diffuse character of the electronic cloud is already sufficient to avoid the 
polarization catastrophe [65, 102] (Fig. 5.5). Additional stabilization appears with 
account for nonlinear induction in accord with a relation like Eq. (5.20).

Several water potentials with diffuse Drude particles are presented in the litera-
ture [105, 106]. However, typically the charge of the Drude cloud is erroneously 
chosen to be simply equal the excessive charge of the atom. With such a choice 

(5.24)αa = q2aD/kaD.

Fig. 5.5  Cloud shift of the 
electron clouds described as 
a diffusive Drude particle 
in QMPFF2 model for 
different values of tmax (see 
Eq. 5.20) in the neon dimer 
with different interatomic 
distances
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of parameters for the spring force constant and the cloud characteristic width it is 
possible to obtain the target polarizability and also to avoid the polarization catas-
trophe. However, the interaction of such an atom with others at small distances 
will be unrealistic and, specifically, the description of the penetration effect will be 
inaccurate. To obtain a realistic model the cloud charge should be of the order of 
the total charge of the valence electronic shell with a realistically shaped distribu-
tion. The promise of such an approach was clearly demonstrated by the QMPFF2 
model [65], which is currently the only FF model of water able to reproduce fluid 
properties in wide temperature range having been parameterized only on the quan-
tum data on the dimer and small clusters properties without any use of macro-
scopic properties of water.

5.3.3  Fluctuating Charge Models

The third popular category of methods that simulate molecular electronic polariz-
ability are the fluctuating charge approaches (FQ). They are the method of choice 
in CHARMM-FQ [47, 107, 108] and ABEEM [55] FFs. In these models the 
charges on the chosen molecular centers are not permanent but are allowed to vary 
in response to variations in the environment. Depending on the model the variable 
charges obey charge conservation for the atom pair, for some molecular subgroup 
(e.g. protein residue), for each molecule, or for the whole system.

Because of the relatively small cost of describing polarizability the FQ 
approach is attractive from a computational point of view—the polarizable model 
has the same number and the same type (point charges) of interaction centers as 
a non-polarizable prototype. If the charge variation degrees of freedom are simu-
lated by the extended Lagrangian method, corresponding FQ models were only 
approximately 10 % slower than “classical” FFs in case of water [109], and 
slightly more than that in the case of proteins and condensed systems due to the 
necessity of using a smaller time step [107, 108].

In some cases, intra-molecular charge transfer is a rather natural way of repre-
senting electronic polarization, particularly along the plane of conjugated systems 
[110, 111]. On the other hand charge transfer can provide polarization just along 
bonds. This restricts the polarization of planar molecules to the plane of the mol-
ecule, and this, in turn, contradicts to experimental data—for example molecular 
polarizability of water is approximately isotropic. The problem can be resolved by 
the introduction of additional off-atom centers, e.g. in lone pair and pi-orbital loca-
tions [55].

A variety of methods to describe the charge fluctuations have been developed 
so far (see [112] and references therein), the most popular of which is based on the 
expansion of the self-energy of a charged center to the second order in charge [113]:

(5.25)Uself
a (qa) = Ea0 + χaqa +

1

2
Jaaq

2
a.
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Parameters of this expansion—electronegativity χa and hardness Jaa, can be 
related to the ionization potential and electron affinity of the atom [114], but more 
frequently they are considered as parameters of the particular atom type and are 
chosen in the course of the model parameterization [115].

At this approximation the whole electrostatic energy of the system is

The second-order coefficient, Jab depends on the distance rab between the centers 
a and b, and at large distances it should be equal to r−1

ab . At shorter distances, there 
may occur a screening of the interactions, as discussed for the dipole–dipole and 
Drude particle-charge interactions in the earlier sections. Some authors (e.g. for 
general force fields [113] or for water models [109]) introduce the screening in 
accord with the interaction of Slater-orbitals yet with partial charges of the inter-
acting atoms, other authors introduce more simple formulas with r−1

ab  asymptotics 
at large distances and a constant limited value at zero distance (see e.g. the works 
of Patel et al. [107, 108]).

For any particular geometry of the system, charge values are assumed to min-
imize the energy subject to a constraint that the total charge is conserved. That 
yields a set of conditions

Here χ is a Lagrangian multiplier accounting for a conditional extreme value and 
simultaneously it is equal to the constant electronegativity (negative of chemical 
potential [114]) of the system of charges. For this reason the method is also called 
electronegativity or chemical potential equalization method.

The electronegativity equalization approach suffers from two problems related 
with incorrect behavior at large and small distances. The large-scale problem can 
be easily demonstrated for a system of two distant atoms. If the charge conserva-
tion is applied to the whole atom pair the solution for the atoms charges is

Thus the model predicts a finite charge transfer for infinitely distant atoms with 
different electronegativities. The same difficulty will appear for a long molecule if 
the charge conservation is applied to the whole molecule. Specifically the problem 
was demonstrated for long alkanes [116] and proteins [108], where superlinear 
polarizability scaling was observed with the chain elongation. To solve this prob-
lem formulations allowing just atom-bonded atom charge transfer (or bond incre-
ment) have been proposed [115, 117]. Another solution is a restriction of charge 
conservation to some small chemically related group of atoms (e.g. a residue in the 
case of proteins) [116, 118].
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More seriously overpolarization occurs in condensed phases and is sometimes 
explained by the lower molecular polarizability in a dense environment. To avoid 
this effect some authors of FQ models increase hardness by a factor of 1.15 [108] 
or introduce a special function which makes the hardness “cross-dependent” on 
charge values (which is e.g. lower in the “gas” phase) [47].

A more physically relevant approach is an introduction in Eq. (5.26) of a dis-
tance dependent functions penalizing long-range charge transfer [119–121]. 
Unfortunately, available variants of such an approach give only qualitatively and 
not quantitatively accurate results [119].

At small distances interpenetration of diffuse electronic clouds changes the 
interaction of the nearby atoms. One aspect of this effect, as mentioned above, is 
the damping of the interaction coefficients Jab. But the penetration effect renor-
malizes the electronegativity coefficient as well. As was shown by Itskowitz 
and Berkowitz in the frame of the derivation the electronegativity equilibration 
formalism from density functional theory the electronegativity coefficient has a 
form [122]:

where �r1 = �r − �ra and �r2 = �r − �rb are radius vectors in frames with the center 
on atoms a and b respectively, vb(�r1) is the electrical potential produced by the 
nucleus of atom b and the normalized function fa(�r1) determines the structure of 
the electron cloud of atom a. For a neutral atom b at large interatomic distances 
the expression in brackets converges exponentially to zero. Yet, due to the pen-
etration effect, for close contacts the second term in Eq. (5.29) can be comparable 
with the first one.

The authors of Ref. [122] demonstrated that simply accounting for the contri-
bution of the second term allows them to obtain partial charges correct in sign and 
value in methane. Note that this contribution may be significant also for close non-
bonded atom–atom contacts.

5.3.4  Alternative Approaches to Describe Polarization

Conformationally Dependent Charges. One of the clearest manifestations of 
polarization is the change in the electrostatic state of a molecule induced by a 
change of its conformation. The change contains contribution of two effects. First, 
for large enough molecules, the change of the conformation changes the mutual 
positions of distant atoms resulting in ordinary electronic polarization. This part 
can be described by one of the approaches considered above. The second contribu-
tion is related with geometric polarization and emerges when the relative positions 
of bonded atoms change. This effect has a complex many-body character and is 

(5.29)χa = χ∞
a +

∑

b �=a

∫
[

vb(�r1)+

∫
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r12
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]
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omitted by the approaches described earlier. Nevertheless it could be rather impor-
tant, especially if simulated molecules are not taken to be rigid.
Without an accurate classical physical model of an intrinsically quantum effect, 
the only way to include this is to construct a model where the parameters depend 
directly on the molecule geometry. Several such models have been published by 
Dinur and Hagler [61] and by Krimm’s group [123, 124]. Universally, the atomic 
charges are allowed to vary linearly with deformations of internal coordinates. 
Charge transfer between any pair of bonded atoms depends on the length of the 
bond as well as on the magnitude of the valence coordinates that surround that 
bond:

where b is the bond under discussion, θ is a valence angle that contain the bond, b′ 
is any bond connected to b, and τ is a torsion angle that contains b. b0 and θ0 are 
reference values, and the sign in front of the cosine term depends on the periodic-
ity n. dq0b, jb, jθ and jτ are parameters that characterize the pair of atoms [61].

It was demonstrated [61] that for a wide set of alkanes, aldehydes, ketones, and 
amides all terms besides the torsion term are significant for correct description 
of the conformational change in the molecular dipole moment both in absolute 
value and in direction. The torsion term was found to be sizable for amides only. 
Accounting for dipole changes induced by the intra-molecular dynamics is princi-
pal for an accurate reproduction of infrared spectra of the molecules [123].

A model that can describe geometric polarization is also able to correctly 
describe atomic intermolecular forces for non-rigid molecules. If the charge on 
an atom depends on geometry, the atomic force should include an additional term 
depending on the derivatives of the charge on the coordinates. It was shown [61] 
that for this reason the quantum mechanically calculated atomic forces can be sev-
eral times (up to six) bigger in amplitude in comparison with the forces predicted 
by a model with constant charges, while the model that accounts for the geometric 
polarization provides an accurate evaluation of the forces [61].

Available investigations with models accounting for the geometric polarization 
imply that it can help to resolve at least two longstanding contradictions between 
observations and predictions of FFs. Particularly a well known problem is that 
all standard water models either with or without electronic polarization predict a 
decrease of the water bending angle in water clusters and liquid phase, in direct 
disagreement with experimental data [125] and the results of quantum calculations 
[64, 126, 127]. It is notable that models that account for geometric polarization all 
uniformly predict an increase of the bending angle and its temperature dependency 
in perfect agreement with experiment [64, 124].

Proper parameterization of the ϕ (CNCαC) and ψ (NCαCN) torsion potentials 
is critical to representing the correct conformations and flexibility of the proteins 
properly. However standard FFs are not able to describe these torsions correctly 
without ad hoc map-like corrections [128]. It was found [124] that inclusion of 

(5.30)
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conformationally dependent charges resolves this problem with a single 3-fold tor-
sion term with a barrier about a few tenth of kcal per mole.

An interesting alternative to the explicit description of the geometric polariza-
tion, such as that given by Eq. (5.30), was proposed recently in Ref. [129]. It was 
shown that geometry dependent charges, dipoles and quadrupoles as well as the 
related part of the intramolecular electrostatic energy can be successfully predicted 
by appropriately chosen and trained neural networks.

More complex interplay of geometrical and usual electronic polarization 
occurs if the molecule can occupy different resonant structures [130, 131]. Such 
structures possess both different geometry and charge distribution while the con-
tribution of each structure to the averaged state of the molecule depends on their 
relative energies. The latter in turn will depend on the surroundings of the mol-
ecule. Particularly, in water solution a more polarized structure would be more 
preferable while in the gas phase the more neutral structure would be favoured. As 
a result, the geometry and charge distribution of the molecule, e.g. an amide con-
taining molecule, turn out to be dependent on the environment [130]. In this case 
the effects of the usual electronic polarization induced by an external electric field 
and of the geometric one, induced by conformational changes, should be consid-
ered self-consistently.

Mean-Field Polarizable Model. The success of modern non-polarizable FFs in 
many biophysical applications indicates that the effective mean-field description 
of the polarization effect could be rather accurate if the parameters of the electro-
static model are chosen properly. Yet, these fixed parameters are unable to reflect 
changes in a polar environment. This is important in non-uniform systems, e.g. 
proteins. A new mean-field paradigm developed recently [132] allowed to extend 
the approach to describe these changes.

The new model is based on a very basic physical observation that despite the 
inherent non-additivity of polarizable interactions, in the condensed phase, the 
effect, in fact, includes a significant additive component related to the electronic 
dielectric screening of pairwise Coulomb’s interactions. The dielectric constant ε∞ 
corresponding to the screening effect is experimentally measurable as the high-fre-
quency or optic dielectric constant ε∞ = n2 (n is the refractive index) of a matter 
with a typical value of about 2 across different materials. Thus, in this model all 
charges are considered not to be in vacuum as in standard non-polarizable models 
but in a polarizable dielectric of ε∞.

In this framework the effects of polarization are naturally partitioned [132, 133] 
into two components: those related to the generic electronic dielectric screening of 
electrostatic interactions and those related to additional adjustment of the molecu-
lar charge distribution to local polar environment. In the developed approach [132] 
the first component is treated implicitly by using effective, i.e. scaled by the elec-
tronic dielectric factor atomic charges [39, 133] qeffi = qi

/√
ε∞. The remaining 

part of the polarization is modeled explicitly by adjusting the molecule effective 
dipole (or equivalent point charges qeffi ) not to the instantaneous field, as it is usu-
ally done in standard polarizable models, but to the effective mean-field acting on 
the molecule.
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The adaptive approach was exemplified in the Mean-Field Polarizable (MFP) 
water model [132]. The parameters were optimized using non-polarizable TIP3P 
potential as a reference for liquid water environment. It was shown that MFP 
water model is identical to its non-polarizable prototype in a polar environment, 
such as water, while it is able to readjust the effective parameters to match envi-
ronments with different polarity: those inside a protein, at interfaces, or in any 
other environment different from the bulk water conditions [132]. The main 
advantage of the MFP model is that it is essentially as computationally efficient as 
the standard non-polarizable models. This makes it attractive for large scale bio-
logical simulations.

5.3.5  Physical (Mathematical) Truncation: Higher Rank 
Polarizabilities, Higher Order Polarizabilities, Isotropic 
Versus Anisotropic Polarizabilities, Point or Distributed 
Dipoles, Concerted Mechanisms of Polarization

Up to now we have discussed only dipole polarization and small range charge 
transfer that are very similar to dipoles in the far field. Both of these effects are 
just the first terms of the general decomposition of the molecular response to 
the external small amplitude electric field [7, 76, 134]. All discussed models and 
thus practically all modern FFs use some truncation of this decomposition. Is this 
choice physically grounded or just convinient mathematical approximation?

There are two very similar multipole decompositions of the structure of the 
molecular charge density. One is the decomposition of the unperturbed density and 
this is the usual multipole decomposition. The second one is the decomposition of 
the density perturbation induced by some external impact. In both cases each com-
ponent of the decompositions has a specific structure (symmetry) type characterized 
by a specific angular dependency and a specific radial behavior at large distances 
from the center of the charge distribution. The higher is the rank of the multipole 
the faster potential produced by the corresponding component decreases with dis-
tance. The only overhead of induced density decomposition is a necessity to carry 
two sets of indices—the first one characterizing the structure of the perturbation 
moment and the second one characterizing the structure of the potential moment, 
which induce the decomposing density perturbation (or vise versa) [76, 135].

Change in the uniform potential does not cause change of the molecular struc-
ture. Thus the first nonzero term in the perturbation decomposition is the response 
to the first derivative of the potential (electric field). The total charge of an iso-
lated molecule is constant, so the first term in the decomposition of the perturba-
tion of the molecular charge density is of dipole character—this is the so called 
dipole-dipole polarizability. If a distributed (multi-center) polarizability is applied, 
the first non-vanishing terms will be dipole-charge and dipole–dipole ones, which 
describe the change in partial charges and dipoles of the centers in response to 
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the external electric field. As they are the leading terms in the decomposition, they 
dominate in the far region. However this does not guarantee that other terms of the 
decomposition are negligible at distances characteristic for condensed phase appli-
cations of the FFs [76, 77, 135],

Unfortunately the question of significance of higher rank polarizabilities under 
conditions of realistic molecular environment has no definite answer up to now. 
It was shown that molecular polarizabilities up to rank 3 (octupole-octupole) are 
necessary to estimate electrostatic interaction energies with an accuracy higher 
than several tenths of kilocalories per mole even in the far region (the exchange-
repulsion energy is less than 0.01 kcal/mol, at 3.5–5.0 Å closest atom-atom sepa-
ration) [135]. However this does not prohibit a possibility of restricting the model 
to leading terms only when the multi-center polarizability is applied.

Several models which include higher rank multi-center polarizabilities have been 
presented, but they are not numerous and restrict the applications mainly to small mol-
ecule potentials [77, 136–138]. On the other hand, available general purpose polariz-
able FFs demonstrate reasonable accuracy in reproduction of a perturbed electrostatic 
potential when a potential was used for their parameterization [85, 87, 139, 140].

The question of the role of higher rank distributed multipoles of an unperturbed 
molecular charge density has been investigated much more thoroughly. It has been 
demonstrated over and over that including higher rank multipoles is crucial for the 
accurate reproduction of the molecular electrostatic potential and the correspond-
ing component of the intermolecular interactions [9, 56, 57, 141–143]. In some 
respects, this inclusion has not only a simply quantitative but even a qualitative 
effect. Because of the difference in the angular behavior of different multipole 
components the models using only low rank multipoles (e.g. partial charges) are, 
in principle, unable to reproduce the geometry of some molecular clusters cor-
rectly. For example, only models with a partial quadrupole placed on the oxygen 
can correctly reproduce the structure of the optimal water dimer [40].

In analogy to restriction to dipole polarization only, the restriction of the model 
to linear polarization is just an arbitrary truncation of the corresponding series 
expansion of the molecular energy in an external electric field [7, 144]. Higher 
order polarizabilities (hyper-polarizabilities) are experimentally measurable values 
[145] and have been used in some water models to restrict molecular polarizability 
in the condensed phase [101]. However, such values are introduced through the 
formal (purely mathematical) decomposition (like the multipole decomposition 
discussed above) and lack any clear physical sense. This makes them difficult to 
parameterize and thus limits their transferability.

Dipole molecular polarizabilities are generally significantly anisotropic. 
However, it was shown in pioneering works of Applequist and Thole that ani-
sotropy, for the most part, is a consequence of the molecular geometry and can 
be well reproduced by a model with isotropic partial atomic polarizabilities  
[89, 90]. Subsequent works addressed the cases, which are intrinsically aniso-
tropic, particularly aromatic [110, 111], halide [99] and hydrogen [146] mole-
cules. To describe molecular polarizabilities in these cases one needs to take into 
account other mechanisms: charge transfer in the plane of aromatic molecules 
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[110, 111], anisotropic atomic polarizabilities [75, 100] or additional polarizable 
centers [49, 139].

Currently some FFs use one of the above mechanisms to account for the anisot-
ropy of polarizability [49, 75, 100] but this is still not a well-established element 
of the FFs. Again, the main obstacle for modeling this effect well is the absence of 
clear physical models, inspired by the electronic state or electronic structure of an 
atom, that dictate when and how anisotropy should be included.

A sister topic is the anisotropy of exchange-repulsion [147]. This effect is 
related to the anisotropic shape of the atomic electronic cloud in a molecule and 
thus will vary with the variation of the electronic structure caused by polarization. 
An inclusion of coupling of exchange-repulsion and polarization is possible by a 
model directly that directly relates the repulsive force with the state of the elec-
tronic degrees of freedom [65, 75, 100, 102, 136, 147].

We have already mentioned several effects crucially affecting intermolecular 
interactions at small scales. Most significant among them are exchange-repulsion, 
penetration effect and screening of electronic interactions. The significance of 
these effects for adequate modeling of the condensed phase is well established and 
adopted by developers of modern FFs. However, for the most part, these effects 
are not accounted for in a self-consistent manner but rather by an introduction of 
different corrections or independent terms in the potential. For example, penetra-
tion is accounted for by re-parameterization of the exchange-repulsion [9], while 
screening is incorporated by damping functions, which are generally different and 
not consistent for different types of interactions [9, 48, 148]. More direct and con-
sistent way to account for all these effects is explicit incorporation of diffuse elec-
tronic clouds into the FF.

While this idea is not new [149], up to now it has not became an intrinsic fea-
ture of modern FFs. For the most part, available experience with explicit account-
ing for the diffuse nature of electronic clouds jumps between oversimplifications, 
e.g. Gaussian clouds with charge about the partial charge of the atom [68, 106] 
and over-complications,  e.g., description of the electrons based on density fitting 
using basis sets with many thousands of basis function a la their quantum mechan-
ical (density functional theory) representation [143, 150]. According to published 
results exponential Slater orbitals of different rank representing symmetric S-core, 
dipole and quadrupole components of the electronic cloud seem a promising com-
promise between computational efficiency and physical reliability [65, 75, 143].

The different approaches to incorporate explicit electronic polarizability into 
a FF formalism discussed in the beginning of this section are not just different 
mathematical procedures; they also reflect different physical mechanisms of the 
polarization. It is reasonable to ask whether there are any physical arguments in 
favor of one of them or whether they are all equivalent. From a purely theoreti-
cal point of view, these mechanisms are not mutually exclusive but rather com-
plimentary to each other [76, 77, 151]. Which specific polarization mechanisms 
exist and dominate depends on the particular system under consideration. In cer-
tain cases, like aromatic molecules, according to phenomenological arguments 
and results of the correspondent parameterization different mechanisms can act in 
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concert [110, 111]. Promising results have been obtained for water by combining 
geometric polarization and induced dipole polarization, which are clearly com-
plimentary [64]. On the other hand, attempts at inclusion of several polarization 
mechanisms in general purpose FFs did not result in clear arguments in favor of 
such an approach [152, 153].

Intermolecular charge transfer gives another example of a long debatable mech-
anism which complements an ordinary electronic polarization [7]. While some 
FFs include this effect as a component from the very beginning [54, 73] there are 
no clear arguments for its universal importance, nor is there a widely accepted 
method for its description. One of the possible reasons is that it is computationally 
difficult to estimate this effect accurately outside the quantum consideration of the 
system [54]. As a result, calculation of the corresponding FF terms becomes the 
most expensive part of calculation while the accuracy of the obtained estimate is 
questionable [54].

5.3.6  Parameterization Aspects

Because any FF, even one based on physically grounded energy component 
terms, is an approximation, adequate parameterization of the FF is of principle 
importance. Several recently developed thorough and systematic approaches to 
the parameterization have demonstrated that parameterization is at least as sig-
nificant for the resultant FF quality as the functional form [88, 98, 154–159].

Formally speaking explicit inclusion of the polarization in a FF adds an addi-
tional problem to the usual task—that of choosing the parameters of the polariza-
tion model. Earliest developments of the polarizable FFs put the parameterization 
methodology exactly in this paradigm [107, 115, 160]. Most of the parameters 
were simply transferred from the non-polarizable prototype FF while the electro-
static part of the model was reparameterized with simultaneous parameterization 
of the polarization.

Subsequently it was recognized that the electrostatic part of a non-polarizable 
FF is not independent because of the inevitable partial compensation of errors 
between different energy components. Thus introduction of polarizability requires 
the reparameterization of the whole FF [67, 92, 159, 161, 162].

However, up to now it is not well recognized that the addition of the explicit 
electronic polarization opens promising novel possibilities for FF parameteriza-
tion. Ideally the inclusion of explicit polarizability makes the FF transferable to 
any environment—for example to both gas and condensed phase conditions. This 
potential transferability makes it possible to parameterize such an FF exclusively 
on the basis of the results of high-level quantum mechanics calculations [9]. That 
provides not only an extensive and physically well-grounded foundation for design 
of the FF, but also an effective avenue for further FF improvement with advances 
in QM methodologies and increase of computer speed [75].
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Moreover, available procedures of molecular interaction energy decomposition 
[10, 11, 102, 163–166] open a possibility to parameterize different FF components 
independently providing an additional base for the FF transferability. Up to now, 
the only general purpose FF following this concept of parameterization is the ab 
initio QM polarizable FF QMPFF [65, 75, 100, 102, 167], which was fitted exclu-
sively to high-quality QM data and, in contrast to other modern general purpose 
polarizable FFs, neither uses experimental data nor applies artificial tuning of the 
parameters (as in Ref. [107]) or modification of the functional form (as in Ref. 
[80]) when transferring from the gas to the condensed phase.

As for the parameterization of the polarization model, the basic difficulty, as 
has been mentioned earlier, is the absence of a unique a priori valid way to dis-
tribute molecular polarizability between different centers [76, 77]. As a result, 
corresponding parameters are derived on the basis of some observable properties: 
molecular polarizability, change in the molecular dipole, change in the molecu-
lar electrostatic potential, induction component of the interaction energy, etc., as a 
result of solution of the corresponding inverse problem. Like the determination of 
partial atomic charges from the molecular electrostatic potential such inverse prob-
lems can be ill-conditioned without a unique well-defined solution. Particularly, it 
was shown that partial polarizabilities derived from molecular polarizability data 
and data on the perturbed electrostatic potential for the same set of molecules are 
different, while both describe molecular polarizabilities equally well [99].

Another similarity between atomic polarizabilities and atomic partial charges 
is the possible dependency on the molecular conformation. It has been shown that 
parameterization choices are critical in this respect. Like partial charges derived 
from the electric potential data in far zone, atomic polarizabilities derived from the 
data on molecular polarizabilities turn out to be dependent on conformation [99]. 
More comprehensive approaches are able to provide parameters valid for any con-
formation [67, 85, 87, 91, 99, 140].

Ideally, a polarizable FF should predict the energetics of molecular interactions 
both in gas and condensed phases as well as basic molecular properties like dipole 
and higher moments, polarizability etc. The majority of current polarizable FFs 
do not meet this requirement. It was found that the parameterization of a polariza-
ble model to gas phase polarizability is able to reproduce related properties in that 
phase, but also results in over-polarization in the condensed one [47, 49, 67, 108]. 
To solve this problem, the polarizability in the condensed phase is typically scaled 
by an empirical factor ranging down to 0.6. The physical nature of such a scaling 
is yet to be justified.

For example, the value of the polarizability parameter in the SWM4-NDP water 
model [168] is about 30 % lower than the experimental gas phase value [169] 
(αexp  = 1.47 Å3), while most of the recent QM studies of bulk water polarizability 
[145, 170, 171] do not support such significant damping. Moreover, the experi-
mentally known value of the high-frequency dielectric constant of liquid water, 
ε∞ = 1.78, accurately reproduces the gas phase value via the Clausius-Massotti 
relation. The use of the SWM4-NDP polarizability results in a reduction of ε∞ by 
about 20 % as compared to experiment.
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Moreover, it was shown that the scaling does not solve overpolarization prob-
lems satisfactorily in some cases [172–174].

On the other hand, use of arbitrary scaling makes purely QM parameterization 
insufficient and requires FF parameterization using some condensed phase proper-
ties [47, 49, 67, 108]. An important drawback of this approach is that the force 
field is no longer transferable and incorporates the error compensation (Fig. 5.6). 
This strongly contradicts the idea that the inclusion of polarization is required to 
obtain transferable force fields.

5.4  Examples of Polarizable Protein Force Fields

In this section, we give several examples of polarizable FFs, which were used or 
can be used for protein simulations. Again, we are not trying to describe all cur-
rently available FFs as most of them are well described in the literature includ-
ing several reviews. Instead by these examples we would like to demonstrate 
weak and strong facets of modern polarizable FFs and their specific choices of 
functional form and parameterization methodology. The field is in permanent 
development and new FFs appear constantly. Some of them provide interest-
ing ideas with respect to functional form and/or parameterization but are only 

Fig. 5.6  Induction (polarization, left) and total interaction (right) energy in the water dimer at 
different distances in several polarizable water models: SWM4-NDP [168]—Drude oscillator, 
TIP4P-FQ [109]—Fluctuating charges, AMOEBA [141]—Induced Dipole with Thole damping, 
QMPFF3 [75]—Diffuse induced dipoles. On the legend the average water polarizabilities for each 
of the model are presented (MP2/a5Z value is 1.445 A3). There is a clear correlation between the 
induction component of the energy and the corresponding polarizabilities and the use of damping. 
For reference we also present a pure SAPT calculation of induction (IND + INDEX components) 
at the HF/a5Z level and part of the HF/a5z energy which is responsible for induction and charge-
transfer effects (obtained by full HF energy minus electrostatic and exchange-repulsion compo-
nents). Despite a huge difference in representation of induction energies components all of these 
water models describe the condensed phase of water relatively well. This is due to a compensa-
tion of errors in different energy components, as can be seen from general agreement of all total 
energy dependencies. Total MP2/a5z energy is presented to get a proper scale
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parameterized for a small set of molecules [98, 156, 158]. It should be revealed 
by future investigations if such approaches result in a new generation of general 
purpose FFs.

5.4.1  OPLS/PFF

Since the late 1990s Friesner, Berne and co-workers have worked on creating 
a comprehensive force field for proteins [109, 175, 176]. The basic idea was to 
construct a FF primarily based on parameterization on results obtained by ab ini-
tio quantum chemistry. The first version used the fluctuating charge approach to 
incorporate electronic polarizability [115], and after trying fluctuating charges, 
induced dipoles and combined schemes, the authors concentrated exclusively on 
the induced dipole model [67, 80, 152, 153, 177].

The electrostatics of a system of molecules is represented by a collection of 
interacting bond-charge increments qab and dipoles �µa:

Here Jab,cd, ⇀Sab,c, and Tab are correspondent coupling factors. The bond-charge 
increments are FF parameters while dipoles are determined by minimizing the 
electrostatic energy in Eq. (5.31). Introduction of the linear term with the param-
eter �χa is a way to introduce a “permanent” nonzero dipole moment in an isolated 
molecule [67, 177].

One specific feature of the model is the introduction of massless virtual sites 
representing lone pairs on oxygen atoms with account to atom hybridization. 
Bond-charge increments are placed on all sites, but permanent dipoles are only 
induced on polarizable atoms.

Polarizability parameterization is based on a set of changes in the molecular 
electrostatic potential induced by a dipole probe with a dipole moment of 2.17 
D placed at various locations and computed using the density-functional theory 
(DFT) with the B3LYP functional parameterization. The polarizabilities αa are 
assumed to be isotropic and are chosen to minimize the mean-square deviation 
between the change in the ESP as given by the model and by the DFT calcula-
tions. This approach provides stable results insensitive to the exact form of the 
perturbations, i.e. the magnitude or position of the probe charges [67].

As in the most modern polarizable FFs authors of OPLS/PFF decreased the 
gas phase polarizability to avoid overpolarization in the condensed phase. Yet the 
method is unique and nontrivial. The authors assumed that the electronic den-
sity described by diffuse functions does not contribute to the molecular polariza-
tion in condensed phase because Pauli repulsion from neighboring molecules 
raises the energies of diffuse functions and so diminishes their contribution to the 

(5.31)

Uel =
∑

a

(

�χa �µa +
µ2
a

2αa

)

+
1

2

∑

ab �=cd

qabJab,cdqcd +
∑

ab,c

qab
⇀

Sab,c �µa +
1

2

∑

a �=b

�µaTab �µb.



1195 Polarizable Force Fields for Proteins

polarization. To account for this effect the polarization parameterization is per-
formed on DFT results obtained with the cc-pVTZ (-f) basis set [67, 177].

Parameters of the permanent electrostatic model, �χa and qab, are fitted to best 
reproduce results of DFT calculations of the electrostatic potential of the charge 
distribution of the unperturbed target molecule. The vectors �χa are expressed as a 
sum of vector parameters pointing along bonds connecting adjacent atoms, and as 
such, will change during the course of a simulation as a flexible molecule changes 
conformation.

To avoid instabilities in solution of the inverse problems related to parameteri-
zation special techniques have been developed [115].

Short-range van der Waals parameters are determined by fitting the binding 
energies of gas phase molecular dimers, enabling the development of these param-
eters for a wide range of atom types. To enable independent variation of attrac-
tive dispersion and repulsive exchange terms an exponential term was added to the 
standard 6–12 function:

Here the first term provides positive values for the interaction energy for small 
distances, while the exponential term is parameterized using quantum mechanical 
interaction energies and for the most part it is responsible for the repulsive part at 
optimal interatomic distances [177].

The dispersion term is parameterized to reproduce by MD simulation the ther-
modynamic properties of liquids and is considered as an atomic rather than FF 
atom type characteristic. Finally, stretching and bending terms are retained from 
the OPLS-AA fixed charge force field [25–27], whereas torsional parameters are 
fitted to reproduce high-level quantum chemical data for conformational energy 
differences [27]. To avoid problems with short-range interactions 1–2 and 1–3 
interactions are dismissed and 1–4 interactions are scaled.

Thorough parameterization procedure and an elaborate functional form resulted 
in promising results of the FF assessment and testing. OPLS/PFF was successfully 
applied to calculations of dimer energies in vacuum [178], peptide minimization 
[177], MD simulation of protein (bovine pancreatic trypsin inhibitor) dynamics in 
water [179], calculation of pKa values of a number of solutes [180] and residues in 
turkey ovomucoid third domain protein [181], calculation of hydration free ener-
gies for a set of small molecules. Polarizable FF has demonstrated significantly 
better ability in pKa and hydration energy predictions. For example while the non-
polarizable FF yields errors of about 5 units in the absolute pKa values for phenols 
and methanol, the polarizable FF produces the acidity constant values within a 0.8 
unit accuracy [180]. The polarizable FF average error in absolute free energies of 
hydration calculations was only about 0.13 kcal/mol [85]. Crucial role for explicit 
account for the polarization has been demonstrated with OPLS/PFF in simulations 
of monovalent Cu(I) interaction energies and hydration [182, 183]. It was shown 
that while the fixed-charge model leads to a relatively small error in the gas-phase 

(5.32)Unb,a =
∑

b �=a

[

Aab/r
12
ab − Bab/r

6
ab + Cabexp(rab/αab)

]

.



120 O. Khoruzhii et al.

interaction between Cu(I) and water, the solvation free energy in bulk water is 
underestimated by about 22 %. At the same time, the performance of the polariz-
able model was uniformly adequate [182]. The same polarizable model without 
any additional fitting was found to be successful in reproduction of the Cu(I) bind-
ing energy to copper chaperone from Bacillus subtilis [183].

The recent development of the FF is devoted to improvement of numerical effi-
ciency by employing a non-iterative approach of calculating induced dipoles. This 
resulted in the development of POSSIM FF [84–87]. It was found that simulations 
of gas-phase dimers, quantum mechanical electrostatic three-body energies, pure 
liquids, solutions and peptides have given no indication that the used second-order 
approximation leads to any deficient physical results, and authors have always 
been able to produce fitting to quantum mechanical and experimental data which 
was as good as for the full-scale polarization [86]. Recently POSSIM FF has been 
extended to include parameters for alanine peptides and protein backbones [182] 
and a set of small molecules serving as models for peptide and protein side-chains 
[85]. One notable accomplishment is the confirmed transferability of the electro-
statics between the POSSIM NMA model and the protein backbone, with accurate 
reproduction of the interaction energy and geometry of the alanine dipeptide com-
plex with a water molecule, as well as the alanine di- and tetra-peptide conforma-
tional energies [182].

5.4.2  CHARMM Drude-2013

All three aforementioned approaches to electronic polarizability have been 
implemented as extensions of the FF CHARMM and reviewed in Ref. [51]. An 
implementation of the induced dipole method in CHARMM based on the polariz-
able intermolecular potential functions (PIPF) model of Gao et al. [184] has been 
reported in Ref. [71]. The polarizable fluctuating charge model in CHARMM 
results from the work of Patel, Brooks and co-workers [108, 185]. The water 
model is based on the TIP4PFQ model of Rick, Stuart and Berne [109]. The polar-
izable Drude model in CHARMM results from the work of MacKerell, Roux and 
co-workers [168, 186] and it was geared at developing polarizable force fields for 
biological macromolecules [51]. We shall describe this version of the polarizable 
CHARMM FF in more detail.

Development of the Drude polarizable force field in CHARMM has been ongo-
ing since the early 2000s [162, 187, 188]. Current available parameters include 
series of alkanes [189], alcohols [190], ethers [191, 192], aromatics [193, 194], 
amides [195], sulfur-containing compounds [196] and ions [197, 198]. The col-
lection of model compounds covers functional groups in proteins, nucleic acids 
[199], lipids [200, 201], and carbohydrates [202]. A significant effort is now being 
made in extending the polarizable force field from small molecules to biologically 
relevant macromolecular systems. Most recently, a refined version of the force 
field for peptides and proteins, called Drude-2013, has been completed [188]. 
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Optimized parameter sets for DPPC lipids [203] and acyclic polyalcohols [202] 
have also been released.

In general the polarizable FF uses the functional form of the prototype 
CHARMM FF with addition of Drude particles on non-hydrogen atoms to allow 
explicit polarizability. Standard exclusion of 1–2 and 1–3 interactions is applied 
while nearby induced dipole-dipole interactions are allowed with Thole-like 
screening with atomically based screening parameters.

It was found that the introduction of explicit polarization into an empirical 
force field requires a complete re-optimization of all parameters of both bonded 
and non-bonded interactions to attain a fully consistent polarizable force field in 
which the different energy components are properly balanced [162, 187, 188]. In 
the parameterization procedure, parameters from previously developed CHARMM 
FF versions were used as initial trials and modified when necessary. The param-
eterization strategy, however, essentially was kept the same as previously used for 
the non-polarizable FF. In this respect the approach to deal with the conforma-
tional dependency of the electrostatic model should be pointed out. In CHARMM 
different conformations are fitted independently and the resulted model is obtained 
by averaging the charges obtained for each conformation.

Generalization of the FF from small molecules to macromolecules encoun-
tered transferability problems. While parameters obtained for heterocycles were 
well transferable to nucleic acid bases [199], parameters for N-methylacetamide 
(NMA) were found not to be transferable to the protein backbone [49]. NMA 
parameters resulted in the overpolarization of the backbone, overestimation of 
the peptide dipole moments and incorrect relative population of different protein 
conformations. Hence, an additional parameter optimization using larger model 
compounds and a large body of target data was necessary. The development of the 
refined force field focused on the parameter optimization for the polypeptide back-
bone and the connectivity between the backbone and side chains.

Five conformations of the alanine dipeptide were selected covering different 
relative orientations of the peptide bonds (C7eq, C5, PPII, αR, and αL) and sub-
jected to RESP fitting yielding five electrostatic models, which were then aver-
aged. For each conformation, the partial atomic charges, atomic polarizabilities, 
and atom-based Thole factors were fitted to QM ESP potential. To achieve correct 
conformational energies in aqueous solution and balance different electrostatic 
contributions the parameters were also optimized for reproduction of gas phase 
conformational energies of acetyl-(Ala)5-amide and its interactions with water. 
The QM polarizabilities were scaled by 0.85 in accord with the scaling used pre-
viously in the development of the CHARMM Drude parameters for small com-
pounds [194, 204]. Then, a parameter adjustment was made to reproduce in MD 
simulations the experimental NMR J-coupling data for the (Ala)5 polypeptide in 
solution. The final model tuning involved an additional adjustment to the relative 
potential energies of different regions of the ϕ , ψ diagram for crambin, lysozyme, 
and the GB1 hairpin peptide.

Besides the empirical re-parameterization, rescaling of polarizabilities and 
Drude screening, additional means to restrict polarization of the protein backbone 
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were introduced in the model. The first involves a “hyperpolarization” term where 
higher order anharmonic terms are added to the bond between the atomic core and 
the Drude particle [49].

where R is the distance between the nucleus and the Drude particle, n is the order 
of the term, typically 4 or 6, Khyp is the force constant, and R0 defines the distance 
at which the term starts to impact the Drude particle, typically 0.2 Å, such that 
the normal trajectory of the Drude is not impacted by the higher order term. More 
recently, a Drude reflective “hard wall” term has been added to more rigorously 
avoid a polarization catastrophe [49].

The Drude-2013 force field has been used in simulations of several peptides 
and full proteins, and shown to maintain the stable folded state of the studied sys-
tems on the 100 ns time scale in explicit solvent MD simulations. However, the FF 
results in larger deviation of the predicted protein structures [188] in comparison 
with the non-polarizable CHARMM36 model [32]. Thus the authors concluded on 
the necessity of further improvements in the model.

5.4.3  QMPFF

Several versions of general purpose polarizable FF have been developed in 
Algodign, LLC. The principle basic idea of the FF development was to make a 
physically based highly transferable FF, which will be able to reproduce proper-
ties of all phases and all environments while being parameterized exclusively on 
high quality quantum mechanical data. This fact was reflected in the FF name—
QMPFF—ab initio quantum mechanics polarizable FF.

The first version, QMPFF1 was a proof of the concept and described prop-
erties and interactions of small molecules considered as rigid [102]. The basic 
FF structure consisted of four non-bonded interaction components: electro-
static (ES), exchange-repulsion (EX), induction (IN), and dispersion (DS). 
The functional form of the components imitates that of their QM counterparts. 
Specifically, electrostatics represents the classical Coulomb interaction of point 
charges and exponential “electronic clouds” by allowing the latter to shift off-
center to represent permanent and induced dipoles. Exchange-repulsion is a 
result of cloud–cloud interactions that decay almost exponentially with distance. 
Induction is simulated by a ‘‘spring’’ attaching each mobile electron cloud to a 
reference position. The restraint potential provided by the spring is close to 
harmonic at small distances, but the stiffness becomes infinite as the distance 
approaches a limiting value, thus preventing the ‘‘polarization catastrophe’’ 
(Eqs. 5.15–5.21). Dispersion is represented by a term decaying as r−6 at large 
distances with Tang-Toennies damping at small distances [102]. (See the original 
papers for details of the functional form.)

(5.33)Ehyp =
∑

Khyp(R− R0)
n,
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The training set for the FF parameterization includes molecular properties 
(components of the polarizability tensor, dipole, and quadrupole moments) for all 
representative molecules as well as components of intermolecular energy of rep-
resentative dimers with proper energy decomposition (allowing to parameterize 
different components of the potential independently and thus to avoid the error 
compensation).

Parameterization of QMPFF1 achieved for the separate components in the 
energy decomposition scheme the rms errors 0.21, 0.17, and 0.27 kcal/mol for ES, 
EX, and DS, respectively. The correlation coefficients between the QMPFF and 
QMdata were 0.97, 0.98, and 0.87 for ES, EX, and DS, respectively. Good trans-
ferability of the model was demonstrated on large test set of dimer energies not 
included in the training set, particularly on the reproduction of the variation of the 
dimer energy with distance between the monomers. Additionally, the model pro-
vided a perfect estimate of non-additive effects in different multimers, dimeriza-
tion Gibbs energies and radial distribution functions of some liquids [102].

In the second version—QMPFF2—the bonded interactions are conventionally 
subdivided into stretching, bending, and torsion terms. The first two terms use 
a quadratic function, whereas the torsion term uses a threefold cosine function. 
Also, more atom types are used in QMPFF2 to allow better resolution of related, 
but electronically distinct, atom types, and to cover other biologically important 
elements not treated by QMPFF1. The functional form of non-bonded terms was 
slightly modified from QMPFF1 by including the precise form of exchange-repul-
sion between electronic clouds; more accurate description of the dispersion term 
by addition of a r−8 component; and allowing the induction to be anisotropic [65].

QMPFF2 parameters were fitted to QM data on properties of 144 molecules 
and 79 molecular dimers, the total number of dimer conformations being 2,916. 
The relative rms deviations (RMSD) for absolute values of dipole moments 
and quadrupole and polarizability tensors were 6.2, 23 and 3.7 %, respectively. 
QMPFF2 fits the QM energies of all of the dimers in the training set well with 
a RMSD of 0.38 kcal/mol. For the 165 training dimers that have been optimized 
to have minimum energy, the RMSD of the energy and geometry calculated by 
QMPFF2 relative to ab initio QM were 0.50 kcal/mol and 0.09 Å. QMPFF2 also 
reasonably predicts dimerization Gibbs energies: rms deviation between calculated 
and experimental values was 0.35 kcal/mol for 27 different homodimers and heter-
odimers, consistent with the overall QMPFF2 accuracy [65].

A high transferability of QMPFF provided by its physically grounded func-
tional form and parameterization technique was demonstrated by reproduction of 
non-additive energies of water multimers and thermodynamic properties of bulk 
water. Agreement of QM and QMPFF2 energies of water multimers including 
even correct ranking of the hexamer energies, which is a challenging test because 
of the role of many-body effects, was excellent considering that no systems larger 
than the dimer were used in the parameterization of QMPFF2.

QMPFF2 with classical molecular dynamics reproduced the density of 
water over the entire investigated range −25–100 °C to within 0.6 % (better 
than provided by the TIP5P model specifically parameterized to reproduce this 
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dependency) including reproduction of the maximum at the temperature curve 
(8 °C) close to the experimental value (4 °C). Liquid binding energy, diffusion 
coefficient and radial distribution functions were also well reproduced especially 
after accounting for quantum effects by means of path integral molecular dynam-
ics [65].

The quality of QMPFF2 predictions of water properties is overall at least as 
good as the best specially designed water models. The most exciting feature of this 
result is that the model is based strictly on ab initio-calculated QM data, unlike 
empirical water potentials, which are fitted to experimental data and therefore 
cannot be said to be predicting the properties of water. This conclusion indicates 
that careful, physically based simulation of intermolecular interaction in vacuum, 
which takes into account its main features while avoiding oversimplification, does 
accurately reproduce the properties of the condensed phase, and even subtle prop-
erties of water such as the anomalous density-temperature dependence.

In the final version of the QMPFF3 torsional parameterization was incorporated 
into the overall scheme of non-bonded parameterization providing much better 
accuracy for the torsion potential. That allowed this version of the FF to perform 
successful simulations of proteins including calculations of relative binding affin-
ity directed to pro-drug optimization [100].

Specific features of QMPFF3 also include change in the description of per-
manent electrostatics and polarization—permanent and induced dipoles now are 
described by the direct inclusion of a p-type component in the electronic density. 
This modification introduces the one-center atom model instead of the earlier two-
center model, resulting in a more economical numerical scheme in multi-particle 
applications (e.g. molecular dynamics). Additionally atom based permanent dif-
fuse quadrupole components were introduced for better representation of molecu-
lar quadrupole moments and the electrostatic potential [75]. Bonded potentials in 
QMPFF3 have been modified to account for anharmonicity of internal degrees of 
freedom similarly to the MMFF94 force field [205].

Refinement in the parameterization procedure of QMPFF3 included the use of 
QM data on representative multimers in their stationary conformations. The corre-
spondent training set contains the total intermolecular energy and its non-additive 
component calculated as a difference between the total oligomer energy and the sum 
of energies of all the dimers taken in the same geometry as in the oligomer. Mainly, 
these data increase the reliability of the parametrization of the IN component, espe-
cially its anharmonicity. Also the decomposition scheme was modified slightly to 
account better the difference between MP2 and HF monomer densities [100].

Finally, MP2 results traditionally used in QMPFF parameterization cannot be 
considered as reliable data for the dispersion component of intermolecular inter-
actions of aromatic compounds. For this reason, QMPFF3 parameterization uti-
lized a two-step procedure in this special case. At the first (preliminary) step, the 
standard QMPFF parametrization is performed using the MP2-based training set 
to find a preliminary parameter set. Then, in the second step, the parameters of 
the dispersion component are refined to fit the most accurate, CCSD(T), QM data 
found in the current literature on the total energy of benzene dimer in stationary 
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conformations. It was found that a reasonable agreement with CCSD(T) calcula-
tions can be attained by varying only one force constant of the r−6 term for carbon 
atom type, whereas all other parameters were kept fixed [100]. According to the 
general QMPFF philosophy, all parameterization was based exclusively on high 
level QM data without any empirical fitting.

The total number of QM values used for parameterization of non-covalent 
interactions for the atom/bond types was more than 20,000 and for valence poten-
tials about 80,000. These numbers demonstrate the abilities of modern QM meth-
ods in the construction of accurate, diverse and representative training sets.

QMPFF3 deviations for molecular polarizability, dipole and quadrupole 
moments from the experimental data are mainly due to the imperfection of QM 
data used for the parameterization [75]. QMPFF3 provides a rather accurate fit of 
QM data for dimers, generally within a few percent. This agreement corresponds 
to absolute RMSD values of 0.1 Å for the optimal distance, 0.39 and 2.8 kcal/
mol for dimerization energies of neutral and charged dimers. The latter value is 
considered as a good accuracy considering that the charged dimers are bonded 
by an order of magnitude more strongly than the neutral ones. As for multimers, 
the absolute RMSD turned out to be about 1.2 kcal/mol for the total energy and 
0.52 kcal/mol for the non-additive energy. As for the quality of parameterization 
of bonded interactions, it is characterized by RMSD values of 0.006 Å for bond 
lengths, 1.28° for bond angles, and 0.35 kcal/mol for torsion angles [75].

To validate the modifications made to the DS component for aromatics, benzene 
second virial coefficient, benzene and naphthalene thermodynamic properties of 
the liquid phase, and cohesion energies and specific volumes for 15 PAH crystals 
have been successfully evaluated [100]. The overall QMPFF concept was also con-
firmed by successful simulations of graphite and fullerene crystals and their interac-
tions with PAH compounds and graphite [206]. QMPFF3 also provided an accurate 
description of bulk graphite and solid C60 properties. In all the studied systems the 
electrostatics due to the penetration effect was found to be important and compa-
rable in magnitude with the total interaction energy [206]. QMPFF3 predicted the 
graphite exfoliation energy of 55 meV/atom in agreement with the relatively large 
experimental value of 52 ± 5 meV/atom recently suggested by Zacharia et al. [207].

The general QMPFF3 model was thoroughly validated in gas, liquid, and solid 
phases [75]. QMPFF3 transferability in the gas phase was illustrated by an accu-
rate reproduction of the dimerization Gibbs energies (actually second virial coef-
ficients) for pure vapors and simple gas-phase optimization of protein geometry. 
For liquid phase validation MD simulations have been performed for almost 60 
test liquids, in which the densities and enthalpies of vaporization were evaluated. 
Validation in the solid-phase was performed by comparing QMPFF3 predictions 
with experimental cohesion energies and geometry characteristics of the unit cell 
such as volume and lengths and orientations of the lattice vectors. Characteristics 
of 78 molecular crystals have been calculated.

In all cases very good transferability was demonstrated. In particular, this was 
manifested by the fact that QMPFF3 provided an accuracy in liquid and solid 
phases comparable with that for the FF explicitly fitted to data on these phases. 
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Thus, for the first time, it was demonstrated that a physically well-based general 
purpose FF fitted exclusively to a comprehensive set of high level vacuum quantum 
mechanical data, when applied without any tunning to simulation of condensed 
phase, provided high transferability for a wide range of chemical compounds [75].

Finally transferability and quality of QMPFF3 was exemplified by the appli-
cation to calculations of relative binding affinities of ligands to proteins. Five 
ligands, differing by replacement of an atom or functional group, in complexes 
with three serine proteases—trypsin, thrombin, and urokinase-type plasminogen 
activator—with available experimental binding data were used as test systems. 
The calculated results were found in excellent quantitative (rmsd = 1.0 kcal/mol) 
and qualitative (R2 = 0.90) agreement with experimental data (15 experimental 
relative affinities). The potential of the methodology to explain the observed dif-
ferences in the ligand affinities was also demonstrated [167].

5.4.4  AMOEBA 2013

The development of AMOEBA (Atomic Multipole Optimized Energetics for 
Biomolecular Applications) FF commenced in the beginning of this century (by 
Ren and Ponder [91, 141]) with the goal of substantially improving the electro-
static model. First, AMOEBA uses multipoles up to quadrupole, rather than point 
charges only, to provide accurate description of permanent electrostatics. Second, 
an induced dipole polarization scheme was incorporated with a balanced descrip-
tion of both intra- and intermolecular polarizability, damped by Thole scaling to 
avoid the polarization catastrophe. These two features allowed AMOEBA’s elec-
trostatic model to accurately reproduce the conformational dependence of the 
molecular electrostatic potential in different environments [91, 140].

Other specific features of the AMOEBA potential are: nonzero van der Waals 
parameters and reduction factors on hydrogen atoms which produce an improved 
molecular “shape”, buffered 14–7 potential to model pairwise additive vdW inter-
actions, anharmonic functional forms for bond stretching and angle bending from 
the MM3 force field, Wilson-Decius-Cross function for restraining the out-of-
plane bending, and Bell torsion for dihedral angles involving two joined trigonal 
centers. All induced dipoles interact with each other, while permanent multipoles 
only polarize atoms outside their polarization group [74, 140].

A parameterization methodology that has been evolving throughout the whole 
period of the AMOEBA development finally includes the following critical 
aspects. First, a trial set of partial charges, dipoles and quadrupoles is obtained 
from distributed multipole analysis (DMA) by Stone in its initial form using ab 
initio calculations at the MP2/6-311G** level. Then partial charges are fixed, 
while dipoles and quadrupoles are optimized against MP2/aug-cc-pVTZ electro-
static potential values computed on a grid of points around each model compound 
at different conformations. The ESP for all conformations is fitted simultaneously 
with the aim of deriving a parameter set conformationally independent as much as 
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possible. Some additional conformations not used in the training set are applied as 
test cases to check the applicability of fitted parameters [91, 140].

The AMOEBA uses atomic polarizabilities derived by Thole for all atoms 
except for aromatic carbon and hydrogen atoms, which have been systemati-
cally refined using a series of aromatic systems, including a small carbon nano-
tube [140]. Reducing the damping factor from Thole’s original value of 0.572 to 
AMOEBA’s 0.39 was found to be critical for correctly reproducing water cluster 
energetics [91, 92]. On the other hand, AMOEBA’s stronger damping leads to a 
slight systematic underestimation of molecular polarizabilities [93].

The vdW parameters are optimized to gas phase cluster structures and ener-
getics as well as to condensed phase properties. A critical strategy in deriving the 
vdW parameters, due to their empirical nature, is to ensure chemical consistency 
among different elements. This is achieved by simultaneously parametrizing mul-
tiple compounds sharing the same vdW “classes” to improve transferability [93].

The valence parameters (bond stretching, angle bending, bond angle cross terms, 
out of plane bending) are transferred from organic small molecules, where they 
were derived by matching the QM geometries and vibrational frequencies [140].

In the course of torsion parameterization the scaling factors for the intramo-
lecular electrostatic and vdW interactions are chosen to minimize the contribution 
of the explicit torsional terms and ensure maximal transferability of parameters 
between dipeptides and tetrapeptides. The alanine dipeptide is used to parametrize 
backbone torsional terms for all amino acids, with the exception of glycine and 
proline. The difference between AMOEBA and MP2/CBS energy is taken as the 
fitting target for the torsional parameters, using a standard three-term Fourier 
expansion. The backbone torsion parameters are further improved by comparing 
the AMOEBA PMF in solution to a statistically derived alanine backbone poten-
tial of mean force derived from the PDB database. For the side-chain torsions for 
all other residues, the parameters are obtained by fitting to the MP2/CBS confor-
mational energy of the corresponding dipeptides [140].

Earlier versions of the AMOEBA protein force field, like many other protein 
FFs, included a torsion-torsion coupling term implemented via a cMAP style two 
dimensional bicubic spline [74]. This term is essentially a grid-based correction to 
match the force field φ − ψ conformational energies to those of a target QM based 
potential surface. In the last AMOEBA 2013 version, due to more thoroughly 
parameterized electrostatic model, the “traditional” three term Fourier expansion 
function is used for all torsion angles, except for the backbone of glycine [140].

The AMOEBA FF has been successfully applied to modeling water [208], 
mono- and divalent ion solvation [209, 210], organic molecules [93] and peptides 
[92, 140, 211, 212], small-molecule hydration free energies [213], trypsin–ligand 
binding prediction [214], and computational X-ray crystallography [215] with 
promising results. The results obtained suggest the AMOEBA force field performs 
well across different environments and phases.

As a validation of predicted properties of small organic molecules, the hydro-
gen bonding energies and structures of gas phase heterodimers with water have 
been evaluated. For 32 homo- and heterodimers, the association energy agrees 
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with ab initio results to within 0.4 kcal/mol. The RMS deviation of hydrogen bond 
distance from QM optimized geometry was less than 0.06 Å. In addition, liquid 
self-diffusion and static dielectric constants computed from molecular dynam-
ics simulation were consistent with experimental values. The FF was also used to 
compute the solvation free energy of 27 compounds not included in the param-
eterization process, with a RMS error of 0.69 kcal/mol [92].

Molecular dynamics simulations with AMOEBA FF were performed with dou-
ble decoupling of benzamidine from both water and the trypsin binding site with 
free energy perturbation. The computed absolute binding free energy was well 
within experimental accuracy. It was found critical to treat polarization explicitly 
to achieve chemical accuracy in predicting the binding affinity of charged systems. 
On mutation from benzamidine to diazamidine, the binding weakens by 1.21 kcal/
mol, consistent with 1.59 kcal/mol obtained by experiment [214].

The protein version of AMOEBA FF was validated in reproduction of dipole 
moment components and the electrostatic potential of dipeptide model compound for 
each amino acid. The dipole moment components of all the dipeptides are accurately 
reproduced, regardless of the conformation and the residue type, resulting in a corre-
lation coefficient of 0.998. The average RMSE between the ab initio and AMOEBA 
electrostatic potential is 0.45 kcal/mol per unit charge on a grid surrounding the 
neutral amino acids, and only slightly higher (0.64) for charged dipeptides, with the 
absolute value of the potential for the latter being orders of magnitude higher. Thus, 
thanks to the intramolecular polarization model, the transferability of backbone and 
side chain electrostatic multipoles of AMOEBA is quite satisfactory [140].

The solvation of the unblocked and protonated (Ala)5 peptide has been exam-
ined. The chi square (χ2) difference between simulation and experiment spin–spin 
coupling (J coupling) constants, computed using the experimental uncertainties, 
was about 0.994, while the overall RMS difference is 0.33 [140].

Ten well studied proteins were chosen as the validation set to evaluate the 
AMOEBA 2013 parameters. The stability of each protein was characterized by 
its backbone RMSD value relative to the PDB structure over 10 ns MD simula-
tion. The overall average RMSD of the ten simulated protein structures is 1.33 Å, 
and seven of them are close to 1.0 Å [140]. Impressive results for AMOEBA FF 
have been obtained in reproduction of experimentally observed structures of four 
β-hairpin peptides depending on degree of methylation of structure stabilizing 
lysine group [57, 216].

5.5  Conclusions

There are several compelling reasons for inclusion of polarization into molecular 
models. Clearly, a more detailed model can potentially be more precise in predict-
ing the desired results and behaviors: liquid properties, free energy of binding, 
and many others. More importantly, polarization is the main physical mechanism 
describing the difference in atomic and molecular behavior in transition between 
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the gas and condensed phase. Therefore a proper polarizable FF may be param-
eterized in the gas phase—namely by ab initio QM methods—and successfully 
transferred into use in the condensed phase, where it is most useful.

Though this sentiment is widely accepted in the field, more than 10 years of 
active development have not produced a polarizable FF that is clearly superior to 
non-polarizable ones. In our opinion future progress depends on three major points.

First, when parameterizing a polarizable FF, one needs to consider the specifics 
of the model and tailor the fitted data, conformations and properties accordingly. 
Second, one needs to use QM data for parametrization, and to trust it to a greater 
extent than is currently done. When a desired prediction is incorrect, adjusting an 
ensemble of parameters to get a better value will more often than not ruin transfer-
ability and cause a multitude of other answers to be qualitatively wrong. Finally, 
and most importantly, the model itself should represent the underlying physics as 
much as is computationally feasible. This last point will bring about good transfer-
ability, good precision, and wide coverage of phase and chemical space. The exact 
description of ‘physically correct’ will be the main undertaking of molecular mod-
eling in the next decade.
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6.1  Introduction

Electrostatic interactions play an important role in many biochemical systems 
especially because of their long range. Electrostatic interactions often guide the 
association of binding partners, but they also tune catalytic properties of the active 
site of enzymes. For instance, the protonation and redox behavior of residues and 
prostetic groups in protein is heavily influenced by the electrostatics of the sur-
rounding. Moreover, regulation of biochemical processes is often mediated by 
electrostatic modifications of proteins such as for instance by phosphorylation 
of serine, threonine or tyrosine residues or by acetylations of lysine residues. 
However, the electrostatics of a protein is not only influenced by the distribution 
of charged and polar aminoacid residues in the protein but also by the surround-
ing solvent and the ions that are dissolved therein. The solvent may screen charge-
charge interactions and stabilizes the structure of protein by solvating charged 
aminoacids. Another example of such effect are membrane potentials, that can 
influence the conformation of proteins.

There are different ways to describe solvent effects theoretically [1]. In molecu-
lar dynamics simulations, the solvent is described explicitly in form of individual 
solvent molecules, normally water molecules [2]. In such simulations, ions are 
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represented explicitly as well. These simulations require a considerable amount 
of computing time mainly to simulate the water and the ions solvating the pro-
tein. For this reason, molecular mechanics cannot be applied when informa-
tion about longer time scales (more than micro-seconds) or many different states 
of a molecule are required. In such cases, continuum electrostatics, which relies 
on Maxwell’s equations, is the approach of choice [3]. In continuum electrostat-
ics, the protein and the surrounding solvent are described as dielectric continua. 
Since electrostatic interactions play a major role in biomolecular systems, con-
tinuum electrostatics has a broad range of applications in biomolecular modeling. 
Moreover in combination with a master equation approach, continuum electrostat-
ics can even be used to describe the reaction kinetics of complex systems.

In this article, we describe some methods that are based on continuum electro-
static calculations. In the beginning, we will introduce the electrostatic model based 
on the Poisson-Boltzmann equation. In this part, we try to make the underlying the-
ory understandable in order to give a feeling for its strength but also for its limita-
tions. Moreover, we explain how the linearized Poisson-Boltzmann equation can be 
solved numerically. Afterwards, we discuss how the continuum electrostatic model 
was used to analyze the association of biomolecules and the thermodynamics of bio-
chemical reactions. The major purpose of this review is to give a general overview of 
methods that rely on continuum electrostatics and discuss their physical basis.

6.2  The Continuum Electrostatic Model Based  
on the Poisson-Boltzmann Equation

6.2.1  The Physical Basis of the Poisson-Boltzmann Equation

The conceptual idea of modeling proteins using continuum electrostatics is rela-
tively simple (Fig. 6.1). The protein is assumed to have a fixed structure defining a 
region of low polarizability which is embedded in a region with high polarizability 
representing the solvent. The polarizability is related to the relativedielectric con-
stant of the medium, also called relative permittivity, the higher the dielectric con-
stant the higher the polarizability. This model is mathematically represented by the 
Poisson equation with a spatially varying dielectric constant or actually better said 
dielectric permittivity (Eq. 6.1).

where ε(r) is the permittivity of the medium which varies spatially (inside and out-
side of the protein), ∇ is the differential operator, φ(r) is the electrostatic potential, 
ρ(r) is the charge distribution within the protein and the solvent. The low dielec-
tric region of the protein is delimited by assigning atomic radii to each atom and 
determining the solvent excluded volume by rolling a sphere over the protein [4]. 
Physically, the polarizability of a medium depends mainly on the mobility and 
the polarity of the molecules or molecular groups of the medium. Thus, solvents 

(6.1)∇[ε(r)∇φ(r)] = −4πρ(r)
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with freely movable molecules and large dipoles have a high dielectric constant. 
A charged solute in a solvent induces a so-called reaction field (see Fig. 6.2). This 
reaction field is caused by the orientation of solvent molecules towards the charge, 
the so-called orientational polarization, and by the electronic polarization of the 
solvent molecules, i.e. by the deformation of the electron clouds. Apolar solvents 
such as octane have a relative dielectric constant of about 2, since the shielding 
due to orientational polarization is negligible while polar solvents such as water 
possess a large molecular dipole and have consequently a high dielectric constant.

There are two types of charges in this model, spatially fixed charges represent-
ing the charge distribution within the protein and mobile charges representing the 
ions in the solvent. The ions dissolved in the solvent are excluded from the volume 
of the protein. The charges of the protein are usually represented by point charges 
at the position of the nucleus of the atoms. These point charges allow to represent 
charged aminoacids in the protein such as for instance aspartate and glutamate 
residues but also dipoles like for instance in the protein backbone or in the side 
chains of uncharged aminoacids. Mathematically, the charge distribution is repre-
sented as

where ρf  represents the charge distribution due to the point charges in the solute, 
i.e. the protein, and ρion represents the charge distribution of the ions dissolved 

(6.2)ρ(r) = ρf (r)+ ρion(r)

εp

εw

Fig. 6.1  Conceptual model of the continuum electrostatic approach. The protein is modeled as a 
dielectric continuum of low permittivity εp with fixed point charges. The protein is embedded in 
an environment with a high permittivity εw representing the solvent. In the continuum with a high 
permittivity, a charge density represents the ions dissolved in the aqueous solution. The dotted 
line marks the so-called Stern layer or ion-exclusion layer. Mobile ions are not allowed inside the 
protein volume and the Stern layer
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in the solvent. These ions are represented by a charge density that adopts a 
Boltzmann distribution. This distribution can be approximated by

assuming that there is no correlation between the ions in the solution. In Eq. 6.3, 
Zi is the charge number of the ion of type i, K is the number of the different ion 
types in the solution, eo is the elementary charge, i.e. the charge of a proton, and 
cbulki  is the bulk concentration of the ion, i.e., the concentration where the protein 
electrostatic potential vanishes. Substituting Eqs. 6.2 and 6.3 in 6.1, the Poisson-
Boltzmann equation for a medium with a spatially varying permittivity assumes 
the following form

This equation is a non-linear partial differential equation since the potential φ(r) 
occurs not only on the left side of the equation but also in a non-linear term, 
namely in the exponential, on the right side of the equation, which describes 
the ion distribution around the protein. Generally, non-linear partial differential 

(6.3)ρion(r) =

K
∑

i=1

cbulki Zieo exp

(

−Zieoφ(r)

RT

)

(6.4)∇[ε(r)∇φ(r)] = −4π

(

ρf (r)+

K
∑
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Fig. 6.2  Electrostatic potential of an anion in solution. a The solvent (blue) generates a solva-
tion shell around the solvated anion (red). This solvation shell gives rise to the reaction field 
which counter-acts the electrostatic potential of the anion. b Electrostatic potentials of an anion 
with a radius of 2 Å in solution calculated with software APBS [5]. The black line shows the 
electrostatic potential for an inhomogeneous dielectric medium with a dielectric constant of 4 
inside the ion and a dielectric constant of 80 in the solvent. The green line describes the elec-
trostatic potential in a homogeneous medium with a dielectric constant of 4. The reaction field 
potential (blue line) is obtained as the difference between the green line and the black line. The 
red dashed line describes the electrostatic potential in a homogeneous medium with a dielectric 
constant of 80
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equations are difficult to solve even numerically. However, by approximating the 
exponential as

and realizing that the first term on the right side is zero because of charge balance, 
one obtains the linearized Poisson-Boltzmann equation, i.e. the potential occurs on 
the right side of the equation only in a linear term.

With the common definitions of the ionic strength I = 1
2

∑K
i=1 c

bulk
i Z2

i  and a modi-
fied inverse Debye length κ̄ =

√

8πNAe
2
oI

kBT
 the linearized Poisson-Boltzmann equa-

tion assumes the form that is found in some biophysics text books (Eq. 6.7).

As can be seen from Eq. 6.4, the Poisson-Boltzmann equation depends explicitly 
on temperature. However, this temperature dependence describes only the temper-
ature dependence of the ion distribution. The temperature dependence of the die-
lectric constant is not explicitly included. Therefore, varying only the temperature 
in the Poisson-Boltzmann equation is not physically meaningful. Normally, room 
temperature is assumed in these kind of calculations and when another tempera-
ture is chosen, the dielectric constants should be adapted.

The linearity of Eq. 6.7 implies that the potentials of two charge dis-
tributions ρ1(r) and ρ2(r) are additive as long as the spatial distribution of 
the dielectric permittivity does not change, i.e., for the charge distribution 
ρ(r) = ρ1(r)+ ρ2(r) one can obtain the total potential as sum of the partial poten-
tials φ(r) = φ1(r)+ φ2(r) as long as the spatial distribution of the dielectric per-
mittivity ε(r) stays the same. This property has important consequences for the 
various applications. For instance the calculation of relative binding constants, 
which is a typical application of continuum electrostatic calculations, relies on this 
property. Namely, the calculation of pH titration curves is only possible because of 
this linearity as will be explained in a later section.

6.2.2  Solving the Linearized Poisson-Boltzmann  
Equation Numerically

For a few simple geometries analytical solutions of the linearized Poisson-Boltzmann 
equation exist [6, 7]. For irregular geometries, this equation can be solved by numeri-
cal methods. The most popular methods to solve Poisson-Boltzmann equation rely 

(6.5)
K
∑

i=1

cbulki Zieoexp

(

−Zieoφ(r)

RT

)

≈

K
∑

i=1

cbulki Zieo −

K
∑

i=1

cbulki Z2
i e

2
o

φ(r)

RT

(6.6)∇[ε(r)∇φ(r)] = −4π

(

ρprot(r)−

K
∑

i=1

cbulki Z2
i e

2
o

φ(r)

RT

)

(6.7)∇[ε(r)∇φ(r)] = −4πρprot(r)+ κ̄2(r)φ(r)
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on regular finite difference methods [3, 5, 8–10], but also adaptive-grid methods [11], 
multi-grid-level based methods [12–15], boundary element methods [16], or finite 
element methods [17] can be used.

The principle idea of finite difference methods is to replace the differential 
∇f (x) by a quotient of finite differences f (x+h)−f (x)

h
, where h is a discretization 

coarse graining. The approximation approaches the exact result, when h goes to 
zero. In finite differences methods, every linear differential equation becomes a 
system of linear equations, which can be solved by numeric algorithms. The space 
in which the potential should be determined is discretized and the potential is cal-
culated for each volume element. In order to obtain a numerical approach to solve 
the linearized Poisson-Boltzmann equation, we rearrange it

and integrate it over the descritezed volume elements

One the basis of Gauss’s theorem, the first integral can be transformed into a sur-
face integral that can be approximated with a finite difference expression.

The volume integrals on Eq. 6.9 can be written as

where κ̄2o is the modified inverse Debye length (related to the ionic strength) that is 
associated with this grid point. Rearranging this equation gives

Equation 6.13 is the numeric solution of the linearized Poisson-Boltzmann equa-
tion. It says that the potential φo in the grid cell depends on the electrostatic 

(6.8)∇[ε(r)∇φ(r)]− κ̄2(r)φ(r)+ 4πρprot(r) = 0

(6.9)

∫

∇[ε(r)∇φ(r)] dr−

∫

κ2(r)φ(r)dr + 4π

∫

ρprot(r) dr = 0

(6.10)

∫

∇[ε(r)∇φ(r)]dr=

∫

[ε(r)∇φ(r)]dA

(6.11)=

6
∑

i=1

h2εi(φi − φo)

h

(6.12)=

6
∑

i=1

hεi(φi − φo)

6
∑

i=1

hεi(φi − φo)− h3κ̄2oφo + 4πqo = 0

(6.13)φo =

(

∑6
i=1 hεiφi

)

+ 4πqo
(

∑6
i=1 hεi

)

+ h3κ̄2o
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potential φi of the six surrounding grid cells, the dielectric constant εi between the 
present and neighboring grid cells, the charge qo and the ionic strength parameter 
κ̄2o assigned to the grid cell. Such an equation exists for almost all grid cells in the 
lattice, except for those at the boundary of the box. For the grid points at the bound-
ary of the box, a good initial value needs to be determined for instance from an ana-
lytical approximation or a from numerical solution that was obtained with a coarser 
grid resolution. The set of equations like Eq. 6.13 form a system of linear equa-
tions, which can be solved. A common way is to obtain the potential iteratively. 
First a value of the potential is assigned to each grid cell, for instance from an ana-
lytical approximation. Then the potential is iteratively calculated, i.e., the potential 
of the present iteration is calculated from the potential of the previous iteration. The 
iteration is continued until the potential is sufficiently accurate. In practice, the iter-
ation is stopped when the difference between the electrostatic potentials that were 
determined in two subsequent iteration steps is sufficiently small.

To solve the Poisson-Boltzmann equation for molecular systems practically, a 
flowchart of the type represented in Fig. 6.3 is followed. Different implementa-
tions of Poisson-Boltzmann solvers may vary in details. Here, the description 
focuses on the standard finite difference methods.

As a first step, the parameters of the molecule are read in. In particular, the 
parameters are the coordinates, the radii and the partial charges of the atoms. Also 
the dielectric constant of the solvent and of the solute needs to be defined as well 
as the ionic strength and the probe sphere radii for defining the solvent accessible 
surface and the ion exclusion layer. The temperature, which influences only the 
ionic distribution in the solution (see the discussion above), can also be defined. 
Moreover, the parameters for the numeric solvers needs to be read such as the 
number of grid points, the position of the grid, and the grid spacing.

In the next step, the boundaries of the dielectric regions are calculated. On the 
basis of the coordinates and radii of atoms, molecular surfaces are calculated for 
each dielectric regions. Usually surface is defined by rolling balls over the atoms of 
the molecule, which are represented as spheres of a defined coordinates and radii 
[18] (Fig. 6.4). The rolling ball represents a solvent molecule. For water, a radius 
of 1.4 Å is generally assumed as radius of the molecule. The step of defining the 
boundaries between the high and low dielectric regions is crucial, since it defines 
at which positions the reaction field is formed. A too small solvent radius may lead 
to unrealistically small cavities inside the protein that are filled with high dielectric 
continuum. A too large solvent radius may cause that internal cavities and surface 
clefts of the protein, that are actually filled with water, are not filled with a high 
dielectric continuum and thus no reaction field can arise from these cavities.

To solve the Poisson-Boltzmann equation numerically, all physical properties 
of the system (charge, electrostatic potential, electrical permittivity and ion acces-
sibility) have to be mapped onto a grid. An easy way to map charges to the grid is 
a linear interpolation scheme. In this approach, a charge qp at a given position rp 
is fractioned to the eight surrounding grid points at the positions ra(a = 1 · · · 8) 
as follows: qp = qa

(

1−
rax−rpx

h

)(

1−
ray−rpy

h

)(

1−
raz−rpz

h

)

, where rax is the x
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-component of the vector a and h the grid spacing (mesh size). Analogously, the 
other neighboring grid points get the remaining fraction of the charge assigned 
according to their distance. The spatial dependent dielectric permittivity is defined 
on a grid, which is shifted by half a grid unit compared to the charge grid (ε1 to ε6 
in Fig. 6.5). The surface of the molecule is used to assign the dielectric constant 
of the region, if the point is inside the surface. In a similar way, also the ionic 

 

Calculate Surface

Map Molecule 
to Grid

Assign Boundary

Potential

Converged?

Calculate Potential

no

no

yes

yes

Save Potential

Read Data

Focusing?

Fig. 6.3  Solving the Poisson-Boltzmann equation by a finite difference methods. First, all 
parameters for the calculation are read (coordinates, charges, radii, dielectric constants and grid 
definitions). Then the surface of the molecule is calculated as dielectric boundary. According to 
the boundaries, dielectric constants are mapped to the grid. The atomic charges are distributed 
over the surrounding grid points. Electrostatic potentials are assigned to the grid points based 
on an initial guess. It is important, that the initial potentials at the boundaries of the grid are 
very good approximations, because they remain constant during the calculation. The finite dif-
ference formulation of the Poisson-Boltzmann equation is solved by an iterative scheme, until 
the electrostatic potential does not change significantly anymore between two subsequent itera-
tions. The computations require on one hand a large initial grid to minimize the error due to the 
approximated boundary potential and on the other hand a fine final grid to minimize the error due 
to the finite difference approximation. Both requirements can usually not be fulfilled directly due 
to a limited amount of memory. Therefore, consecutively smaller and finer grids are calculated 
using the previous grid to define the potentials at the boundaries. This method is called focusing. 
Finally, electrostatic energies are calculated as product of charge and electrostatic potential
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accessibility is defined on a grid with the only difference that a larger probe sphere 
radius (usually of 2 Å) is used to define the surface.

In order to actually calculate the potential numerically, the electrostatic potential 
grid needs to be initialized with an initial guess. A reasonable starting point is the 
Debye-Hückel expression. It is important that the initial guess of the potential at 
the outer boundaries of the grid is given accurately enough, since these potential 
values will not change during the calculation. For this reason, it is important that the 
distance between the protein and the outer boundary of the grid is large enough (at 
least 10 Å). In order to obtain a sufficient precision and numerical stability of the 
calculated potentials, the grids used in the calculation should have a resolution of at 
least 0.25 Å. Even for relatively small proteins, the number of grid points needed at 
this resolution to cover the protein and an adequate part of the solvent would require 
a huge amount of memory. Therefore, the grid is refined in several steps. One starts 
with a grid that is large enough to hold the whole protein and has a distance of at 

Fig. 6.4  Calculation of the solvent accessible surface. The solvent accessible surface (red line) 
of the two atoms (white circle) is calculated by a ‘rolling ball’ (blue circle). The surface of the 
Stern layer is shown by the green line

Fig. 6.5  Representation of 
one grid cell for solving the 
linearized Poisson-Boltzmann 
equation by a finite difference 
method. To the point in 
the center of the box, the 
electrostatic potential φo, the 
inverse Debye length κ, and 
the charge qo are assigned. 
The filled points represent the 
centers of the neighboring 
grid cells to which the 
potentials φi are assigned. 
The dielectric constants εi 
are assigned to the lines 
connecting two neighboring 
grid points
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least 10 Å between the protein and the outer boundary of the grid. The center of the 
grid is usually chosen as the geometric center of the protein. This grid will be rather 
coarse (for instance 2.0 Å). Once the potential of this grid is converged, it can be 
used to initialize a finer grid (for instance 1.0 Å), which is embedded in the coarser 
grid. This procedure, called focusing [19], is repeated until a sufficiently fine grid 
can be used (Fig. 6.6). The finer grids are centered on the center of interest, for 
instance the set of atoms that form the site. Once the calculation is converged, the 
potential is stored and can be used for subsequent visual analysis using molecular 
visualization software or for calculations of electrostatic energies.

6.2.3  Electrostatic Potentials and Electrostatic Energies

The solution of the Poisson-Boltzmann equation is the electrostatic potential φ(r) 
which can be expressed as a potential that is composed of two parts.

(6.14)φ(r) =

M
∑

i=1

qi

4πεp|r − r
′
i|
+ φrf(r)

εp

εw

spacing: 2 A

spacing: 1 A

spacing: 0.25 A

Fig. 6.6  Focusing of the grid for the calculation of the electrostatic potential using the Poisson-
Boltzmann Equation. In order to calculate the electrostatic potential numerically, the protein needs 
to be mapped on a grid. To get a reasonable solution, the grid needs to be large enough to initialize 
the outer boundary of the grid with a reasonable analytic approximation. However, to get the good 
electrostatic potential, the grid needs to have a fine resolution. This fine resolution is obtained by 
first solving the Poisson-Boltzmann equation on a coarse grid. This solution is then used to initialize 
a smaller grid with a better resolution and so on until the desired resolution is reached. The outer 
grid is usually centered on the geometric center of the protein. Instead, the finest grid is usually cen-
tered on the geometric center of the group at which the exact electrostatic potential is desired
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The first term describes the Coulomb electrostatic potential at the position r 
caused by M point charges qi at positions r′i in a medium with a permittivity εp,  
the term φrf(r) describes the reaction fieldpotential originating from the charge 
distribution and the dielectric boundary between the protein and the solvent as 
well as from the distribution of ions in the solution. The reaction field is always 
oriented opposite to the field of the solute and therefore shields the field of the 
solute. This reaction field is of great importance for understanding structural 
and functional properties of proteins. For instance, in aqueous solution the 
dipole of a peptide α-helixis counteracted by the reaction field, which drasti-
cally reduces the strength of the helix dipole compared to its value in vacuum 
[20]. Moreover, reaction field effects can explain the orientation of helices in 
membrane proteins [21].

The electrostatic potential that is obtained by solving the Poisson-Boltzmann 
equation has already a great value by itself. Visualization of this potential can 
give first insights into the interaction between molecules as shown for instance 
in Fig. 6.7 where different representations of the electrostatic potential of 
Cytochrome c Peroxidase are shown. By convention, red shows negative electro-
static potentials and blue shows positive electrostatic potentials.

Probably more important than visualizing the electrostatic potential is using it 
to calculate electrostatic energies. Such calculations can give quantitative insights 
into biochemical mechanisms. Two different kind of electrostatic energies can be 
distinguished: interaction energies and reaction field energies.

The interaction energy Ginter energy is obtained by charging charge set ρ2 in 
the presence of the electrostatic potential caused by charge ρ1. Assuming that the 
charge set ρ2 consists of a single charge qf , the interaction energy becomes

Since the potential φ(ρ1, rq) at the position rq of the charge qf  is totally independ-
ent of the charge qf  itself, the integration in Eq. 6.15 reduces to a simple multipli-
cation. Equation 6.15 can be generalized to the interaction between two disjunct 
sets of charges {q} and {p}, which is given by

where Nq and Np are the number of charges in the charge sets {q} and {p}, respec-
tively, φ

(

{p}, rqi
)

 is the potential caused by the charge set {p} at the position of 
the charge qi and φ

(

{p}, rqi
)

 is the potential caused by the charge set {q} at the 
position of the charge pi. As can be seen from Eq. 6.16, this interaction energy is 
symmetric.

The reaction field energy in continuum electrostatics, which is also sometimes 
called self-energy, is the interaction energy of the charge set {q} with its own 
reaction field potential φrf. To obtain this energy, one imagines the charging of a 

(6.15)Ginter =

qf
∫

0

φ(ρ1, rq)dq = φ(ρ1, rq)qf

(6.16)Ginter =

Nq
∑

i=1

qiφ
(

{p}, rqi
)

=

Np
∑

i=1

piφ
(

{q}, rpi
)
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Fig. 6.7  Different visualizations of the electrostatic potential of cytochrome c peroxidase (CcP). 
The protein is shown in the same orientation in all pictures. a Cartoon representation of CcP 
showing the orientation of the protein. The heme is shown in a stick representation. b Isosurfaces 
of the electrostatic potential. Blue represent positive potentials, red negative potentials. The red 
and blue surfaces show where the potential has the value of −1 kBT/e◦ and 1 kBT/e◦, respec-
tively. c Electrostatic potential mapped to the molecular surface of the protein. The potential on 
the surface shows values between −3 kBT/e◦ (red) and 3 kBT/e◦ (blue). d Slice thought the elec-
trostatic potential. The potential on the slice is scaled between −1 kBT/e◦ (red) and 1 kBT/e◦ 
(blue). e A combination of the representation shown in c and d gives an impression how the elec-
trostatic potential fill the space but also allows to see more details on the molecular surface. f A 
combination of the representation shown in c and b gives a better impression how the electro-
static potential fill the space but lacks details on the molecular surface. The potentials were calcu-
lated using APBS [5] and visualized with VMD [22]
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particle in a dielectric medium, and asks what is the energy of this charging pro-
cess. Analogous to Eq. 6.15, we can write

in contrast to before, the reaction field potential φrf  depends on the charge of the 
particle. For simplicity, one assumes a linear response, i.e. φrf = Cqf . Thus, from 
Eq. 6.17, we obtain

The last term 1
2
φrf

(

qf , rq
)

qf  is obtained by using φrf = Cqf . Equation 6.18 can be 
generalized to obtain the reaction field energy of a charge set {q}

As shown above, the factor 1
2
 in this equation is a consequence of the linear 

response ansatz.
Although simple at a first sight, the continuum electrostatic model is surpris-

ingly successful in describing the properties and processes that are connected to 
the electrostatics of biomolecules. Such properties are for instance the associa-
tion of proteins or redox and pH titration behavior. Its success relies probably on 
the fact that solvent degrees of freedom, which are normally difficult to sample 
in molecular dynamics simulations, are averaged from the beginning by assuming 
that the medium can be described by a dielectric continuum. To use the full power 
of continuum electrostatics, it needs to be combined with other techniques from 
statistical thermodynamics such as free energy calculations and Monte Carlo tech-
niques as will be detailed below.

6.3  Electrostatic Association of Proteins

Since electrostatic force is long range, it plays a particular important role in the 
interaction of proteins. Especially in the case of electron transfer proteins, elec-
trostatics plays a major role in the association process. In order to ensure a fast 

(6.17)Grf =

qf
∫

0

φrf
(

q, rq
)

dq

(6.18)Grf =

qf
∫

0

Cqdq =
1

2
Cq2f =

1

2
φrf (qf , rq)qf

(6.19)Grf =
1

2

Nq
∑

i=1

qiφrf
(

{q}, rqi
)
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turnover, electron transfer proteins often associate transiently. This feature implies 
that electron transfer complexes are often relatively loose and dynamic [23]. In 
these complexes, electrostatics helps to get the right balance between specificity 
and flexibility. The structural flexibility has been observed for electron transfer com-
plexes and studied extensively especially for the complex of cytochrome c peroxi-
dase and cytochrome c or the complex of plastocyanin and cytochrome f [24–28].

6.3.1  Electrostatic Docking of Proteins

The docking of proteins can be simulated by Metropolis Monte Carlo [24]. For 
this purpose, the electrostatic potential of one protein, usually the larger protein, 
is mapped to a three dimensional grid surrounding the protein. The second mole-
cule is placed in a random orientation at a certain distance from molecule one, i.e., 
randomly on the surface of a sphere which surrounds molecule one. The sphere 
should be large enough that the electrostatic potential of protein one on the surface 
of this sphere is zero or at least equipotential, i.e., everywhere the same on the 
surface. Then the second protein is randomly rotated and translated in the electro-
static potential of the first protein. The new configurations are accepted according 
to the Metropolis criterion [29]. That means that configurations with energies that 
are lower than that of the previous configuration are always accepted and configu-
rations with a higher energy are accepted with a probability that is proportional to 
exp(−�E/RT), where �E is the interaction energy difference between the new 
and the old configuration, R is the gas constant and T is the absolute temperature. 
The interaction energy is calculated by multiplying the charge distribution of the 
second molecule with the potential of the first molecule according to Eq. 6.16. If 
the second molecule moves too far away from the first molecule, the simulation is 
restarted on the sphere mentioned above. The Metropolis Monte Carlo procedure 
generates a Boltzmann ensemble which describes the equilibrium distribution of 
molecule two around molecule one. Such an ensemble is experimentally accessi-
ble by paramagnetic relaxation enhancement (PRE) NMR spectroscopy using spin 
labels attached at defined positions of the protein [23].

We recently applied this Monte Carlo docking procedure to the complex of 
Cytochrome c and Cytochrome c Peroxidase [30, 31]. As can be seen in Fig. 6.8a, 
b, the electrostatics of the docking surface of the two proteins is complementary. 
While Cytochrome c Peroxidase shows a clear negative potential (Fig. 6.8a), 
Cytochrome c shows a negative potential (Fig. 6.8b). Figure 6.8c, d shows the den-
sity of the center of mass of Cytochrome c generated in the Monte Carlo simula-
tion. The large extension of this density shows that the complex of Cytochrome c 
and Cytochrome c Peroxidase allows a larger flexibility. This flexibility is often 
observed in the case of electron transfer proteins, since it allows a fast turnover 
because of a larger dissociation rate [32].
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Brownian dynamics simulations are in some respect similar to the Monte Carlo 
approach [33–37]. In Brownian dynamics simulations, the association of two pro-
teins is simulated using Newton’s equations of motion combined with additional 
random and friction terms and the interaction is calculated based on electrostatic 
potentials obtained from the Poisson-Boltzmann equation. Brownian dynam-
ics simulations enable to determine relative association rate constants and thus 

Fig. 6.8  Complex of cytochrome c (Cc) and Cytochrome c Peroxidase (CcP). The interaction 
of these two proteins is governed by electrostatic interactions. a Complex of Cc and CcP. Cc 
is shown as a cartoon. CcP is shown in a representation in which the electrostatic potential is 
mapped to its surface. b Cc with its electrostatic potential mapped to its surface. Cc is rotated by 
180° around the y-axis (axis from left to right within the plain) compared to a. It can be seen that 
the electrostatic potential of Cc is positive and thus complementary to the electrostatic potential 
of CcP. c Simulated docking of Cc and CcP. The green density shows the region in which Cc can 
be found with a high probability. The density represents the frequency with which the center of 
mass of Cc is found in this certain volume area. The extension of the green volume indicates that 
the complex is not well defined but shows a high flexibility. This behavior was also found for 
other electron transfer complexes and is in agreement with experimental findings. d Simulated 
docking of Cc and CcP as in c but rotated by 90° around the x-axis
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to study for instance the influence of mutations or of ionic strength on associa-
tion rates. These simulations have been also applied to a variety of electron trans-
fer complexes and allowed to interpret experimental findings on the association 
between electron transfer partners [38–41].

6.3.2  Similarity of Electrostatic Potentials of Proteins

Proteins with similar function show often similar structures. A special case, which 
at the first sight seems to be an exception to this rule, can be found for the elec-
tron transfer between cytochrome b6f  and photosystem I in photosynthesis. This 
transfer is usually mediated by the blue copper protein plastocyanin. Under copper 
deficiency however, plastocyanin is replaced by the heme protein cytochrome c6. 
Although plastocyanin and cytochrome c6 differ considerably in composition and 
structure, they perform the same function in the photosynthetic electron-transport 
chain.

The functional equivalence of the two proteins can be understood on the basis 
of similarity of their electrostatic potentials [42, 43]. The similarity of the electro-
static potentials is defined on the basis of the integral-based Hodgkin index Helec

ab  
[44].

The potentials φ of the structurally different molecules a and b are integrated 
over the whole volume V. The numerator quantifies the spatial overlap of the 
electrostatic potentials φ, while the denominator normalizes this value such that 
the resulting similarity index Helec

ab  falls in the interval between −1 and +1. The 
value +1 corresponds to molecules with identical potentials, whereas −1 corre-
sponds to electrostatic complementarity, i.e., potentials of the same magnitude 
but opposite sign. In order to optimize the superposition of the two molecules, 
the Coulomb potentials are approximated by Gaussian potentials and Eq. 6.20 is 
minimized with respect to the relative orientation of the two molecules [43]. The 
structural superposition, which was obtained by minimizing Eq. 6.20, was used to 
identify functionally equivalent residues in plastocyanin and cytochrome c6 [42]. 
Interestingly, it can be seen that functional analogous aminoacids enable the spe-
cific recognition for the two isofunctional proteins. Figure 6.9 shows the electro-
static potential and the cartoon representations of plastocyanin and cytochrome c6 
of Chlamydomonas rheinhardii in the orientation that corresponds to the superpo-
sition of the two proteins.

(6.20)Helec
ab =

2
∫

φaφb dV
∫

φ2
a dV +

∫

φ2
b dV
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6.4  Titration Behavior of Proteins

The electrostatics of a protein is determined by the charge states of its protonata-
ble and redox-active groups. However, often the description of proton binding and 
redox equilibria in proteins is considerably more complicated than that of small 
molecules because of the mutual interaction of the many protonatable and redox-
active groups in one protein. Here we outline the methods how to describe such 
equilibria.

Fig. 6.9  Comparison of the electrostatic potentials of the isofunctional proteins plastocyanin 
and cytochrome c6. a Electrostatic potential of plastocyanin mapped to its surface. b Electrostatic 
potential of cytochrome c6 mapped to its surface. c Cartoon representation of plastocyanin. The 
copper ion is shown in a space-filled model. d Cartoon representation of cytochrome c6. The 
heme is shown in a stick model
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6.4.1  Shifted Titration Curves in Proteins

The titration curve of aminoacids in proteins can be shifted compared to the titra-
tion curve in aqueous solution. This shift has two main causes. First, the charges 
and dipoles of the protein may stabilize or destabilize a charge state in the protein. 
Second, the desolvation when a charged group is brought from the highly polar 
aqueous solution into the usually apolar interior of the protein destabilizes charged 
states. The actual direction of the shift depends on the balance of the different 
effects. Generally, it can be said that buried charges in the protein are unfavorable 
and thus the aminoacids tend to be uncharged under such circumstances. However, 
this rule of thumb may not apply if ion pairs are buried.

One way to obtain the protonation energy of a site within a protein is to calculate 
the difference between the pKa value of an appropriate model compound in aqueous 
solution and the pKa value of the protonatable group in the protein. The pKa value 
associated with this protonation energy is called intrinsic pKa value. In proteins 
with many interacting titratable residues, the intrinsic pKa value is the pKa value 
the titratable group would have if all other titratable groups in the protein are in a 
defined reference protonation state. To compute intrinsic pKa values, pKa values of a 
model compounds are required, such as for instance an aminoacid with blocked ter-
minal amino- and carboxyl group. These values can be obtained either from experi-
ment or from quantum chemical calculations. Sometimes only quantum chemical 
calculations are able to obtain the pKa values for model compounds of prosthetic 
groups in proteins, because appropriate model compounds cannot be synthesized.

If only electrostatic contributions cause the difference between the protonation 
energies of a titratable group in a protein and in aqueous solution, the Poisson-
Boltzmann equation provides a reasonable approximation of this energy differ-
ence. Transferring the protonatable group i with a given pKa value pKmodel

a,i  from 
aqueous solution into a protein causes an energy shift. This energy shift can be 
separated into two contributions. The first energy contribution ��GBorn is a Born-
energy-like term (Eq. 6.21), which arises from the interaction of the charges of the 
protonatable group with its reaction field.

lThe second energy contribution ��Gback arises from the interaction of the charges 
of the protonatable group with non-titrating background charges (Eq. 6.22).

(6.21)
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The summations in Eq. 6.21 run over the NQ,i atoms of group µ that have differ-
ent charges in the protonated (h) (Qh

a,i) and in the deprotonated (d) (Qd
a,i) form. The 

first summation in Eq. 6.22 runs over the Np charges of the protein that belong 
to atoms in non-titratable groups or to atoms of titratable groups (not i) in their 
uncharged protonation form. The second summation in Eq. 6.22 runs over the Nm 
charges of atoms of the model compound that do not have different charges in the 
different protonation forms. The terms φm

(

ra,Q
h
i

)

, φm
(

ra,Q
d
i

)

, φp
(

ra,Q
h
i

)

, and 
φp

(

ra,Q
d
i

)

 denote the values of the electrostatic potential at the position r of the 
atom a. The electrostatic potential was obtained by solving the Poisson-Boltzmann 
equation numerically using the shape of either the protein (subscript p) or the 
model compound (subscript m) as dielectric boundary and assigning the charges of 
the titratable group µ in either the protonated (Qh

i ) or the deprotonated (Qd
i ) form 

to the respective atoms. These two energy contributions and the pKa value of the 
model compound pKmodel

a,µ  are combined to obtain the so-called intrinsic pKa value 
pK intr

µ  (Eq. 6.23) of the residue.

The intrinsic pKa value is the pKa value that this group would have, if all other 
protonatable groups are in their reference protonation form.

6.4.2  Microstate Model

An additional complication in proteins is that proteins usually contain more than 
one titratable group. Also the interaction Wij between the two groups i and j in 
their charged form can be calculated using the electrostatic potential obtained 
from the PBE (Eq. 6.24).

The interaction between the titratable groups can lead to titration curves that 
do not show a standard sigmoidal shape that can be fitted with the Henderson-
Hasselbalch equation [45]. The difficulties can be resolved if the problem is for-
mulated in terms of well-defined microstates of the protein which have a certain 
probability, instead of considering the protein as a system of groups with a certain 
protonation probability, as will be outlined now. Since the formalism can be easily 
extended to treat not only protonation equilibria but also redox equilibria [43], we 
explain it here in a more generalized form.

Let us consider a system that possesses N protonatable sites and K redox-active 
sites. Such a system can adopt M = 2N+K states assuming that each sites can exist 
in two forms. The interaction between them can be modeled purely electrostati-
cally, i.e. the electronic coupling is negligible. Each state of the system can be 
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written as an N + M-dimensional vector �x = (x1, . . . , xN+K ), where xi is 0 or 1 if 
site i is deprotonated (reduced) or protonated (oxidized), respectively. Each state 
of the system has a well-defined energy which depends on the energetics of the 
individual sites and the interaction between sites. The energy of a state �xν is given 
by [46–50]:

where R is the gas constant; T is the absolute temperature; F is the Faraday con-
stant; xv, i denotes the protonation or redox form of the site i in state �xv, xoi  is the 
reference form of site i; pK intr

a, i  and Eintr
i  are the pKa value and redox potential, 

respectively, that site i would have if all other sites are in their reference form 
(intrinsic pKa value and intrinsic redox potential); E is the reduction potential of 
the solution; pH is the pH value of the solution; Wij represents the interaction of 
site i with site j.

Equilibrium properties of a physical system are completely determined by the 
energies of its states. To keep the notation concise, states will be numbered by 
Greek indices, i.e., for state energies we write Gv instead of G(�xv). For site indices, 
the roman letters i and j will be used. The equilibrium probability of a single state 
�xv is given by

with β = 1/RT  and Z being the partition function of the system.

The sum runs over all M possible states. Properties of single sites can be obtained 
from Eq. 6.26 by summing up the individual contributions of all states. For exam-
ple, the probability of site i being oxidized is given by

where xν,i denotes the protonation or redox form of site i in the charge state �xν. For 
small systems, this sum can be evaluated explicitly. For larger systems, Monte-
Carlo techniques can be used to determine these probabilities [51, 52].
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For a system of interacting sites, the protonation or reduction probabilities 〈xi〉 
can show a complex shape, thus rendering the assignment of pKa values or mid-
point potentials to individual sites difficult or even meaningless [45, 53–55]. The 
energy differences between microstates, however, remain well defined and thus 
form a convenient basis to describe the system. For individual sites in such a com-
plex system, one can however define pH-dependent pKa values and solution redox 
potential dependent midpoint potentials [56].

These values define properties that are directly related to a free energy difference 
[56] and are relevant for understanding enzymatic mechanisms.

6.4.3  An Illustrative Example

Titration curves with a non-standard sigmoidal shape can be seen in many protein 
titration studies, but their interpretation is often very complicated. Sometimes also 
small molecules show a complex titration behavior. One example is diethylene-
triamine-pentaacetate [57–59]. Here, we discuss a fictitious molecule with three 
groups and each of them can bind a proton. The intrinsic pKa values and the inter-
action energies are given in Fig. 6.10a. The resulting microscopic equilibria are 
given in Fig. 6.10b. The individual titration are given in Fig. 6.10c. Given all the 
different energy terms, the population of the microscopic and macroscopic states 
in dependence of pH can be calculated (Fig. 6.10d). Figure 6.10e shows how the 
individual titration curves and the population of the different microstates contrib-
ute to the titration curves of the individual sites.

The titration curve of the central group is unusual because of its non-monotonic 
shape. In particular between pH 5 and pH 9, the protonation probability increases 
with increasing pH (i.e. with decreasing proton concentration). The population of 
the microstates give a physical rational for the unusual, irregular titration behav-
ior of the central group. At high pH (low proton concentration), the protons bind 
preferable to the central group. Binding the second proton to one of the terminal 
groups while the central group stays protonated is unfavorable, because these two 
proton binding sites repel each other. Therefore, when the second proton binds, it 
is more favorable to deprotonate the central group and to protonate both terminal 
groups. When the two terminal amines are protonated, the two protons are at a 
greater distance from each other, and thus they repel each other less as compared 
to protonating one terminal and the central amine. Finally at very low pH (high 
proton concentration), all three sites will bind a proton.
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Fig. 6.10  Titration behavior of a fictitious molecule with three titratable groups. a Schematic 
drawing of a fictitious molecule with three titratable groups. The numbers in the circles are the 
intrinsic pKa values, the numbers at the arrows are the respective interaction energies. All num-
bers are given in pKa units. b Microscopic protonation equilibria. The numbers at the arrows 
indicate the microscopic pKa values. c Individual titration curve of the three sites. d Populations 
of the macroscopic (solid lines) and microscopic (lines with circles) states of the system. The 
dotted lines mark the macroscopic pKa values. e Contributions of the different microstates to the 
titration curves of the three individual sites. f Effective (solid lines) and microscopic (dashed 
lines) pKa values of the three sites
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Obviously, it is not easily possible to assign pKa values to the individual sites. 
All groups are associated with four microscopic pKa values (see Fig. 6.10f). 
However, using Eq. 6.29, it is possible to assign an effective pKa value to each 
site (see Fig. 6.10e). It can be seen that the effective pKa value assumes values that 
vary within the limits of the microscopic pKa value.

Even more interesting than the pH-dependence of the pKa values is the pH-
dependence of the protonation energy. The protonation free energy �Gprot is given by

This equation leads to a linear dependence of the protonation energy for pH-
independent pKa values that are found in the case of isolated titratable groups. 
However, if the pKa value is pH-dependent, the pH-dependence of the protonation 
free energy becomes non-linear.

Even if this example seems to be an extreme example, similarly complicated 
protonation equilibria caused by charge-charge interactions occur frequently in 
proteins. A sign of such complications are irregular titration curves. Moreover, 
even if the titration curves in proteins show apparently a standard sigmoidal shape, 
the interactions between titratable groups may lead to pH-dependent pKa values 
[56]. Such pH-dependent pKa values may lead to nearly pH-independent proto-
nation energies in a certain pH range and thus may explain why some particular 
residue can function as proton donor or acceptor over a large pH range allowing 
catalysis under different pH conditions. Probably for this reason, there are often 
more protonatable residues in the active site of enzymes than the specific function 
would require.

6.5  Other Applications of Continuum Electrostatic 
Calculations

The continuum electrostatic calculations have a great potential for studying the 
mechanism of enzymes. A step forward in the analysis of enzymatic mechanisms 
is the combination of continuum electrostatics with quantum chemical calculations 
as inCOSMO [60] orCPCM [61]. However, it is relatively difficult to model the 
protein environment appropriately with such methods. An attractive alternative is 
the self-consistent reaction field method (SCRF) which was developed by Tomasi 
and coworkers [62] and applied to protein systems by Bashford, Noodlemann 
and coworkers [63–67]. This method combines quantum chemical calculations 
with Poisson-Boltzmann calculations and allows to account for the charge dis-
tribution within the protein and solvent polarization effects in quantum chemical 
calculations.

To explore possible mechanisms, it is often required to examine many dif-
ferent possibilities. Sometimes, even many mechanism may be possible at the 
same time and a single answer may not exist. Such complex reaction schemes 
can be explored with the help of the microstate model introduced in Sect. 6.4.2.  

(6.31)�Gprot = RT ln10(pH− pKa)
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The kinetics of such reactions can be simulated by a master equation approach. 
The rate constants which are required for such simulations can be calculated 
using electrostatic methods [68–71]. Thus, combined with a master equation 
approach, continuum electrostatics offers also a possibility to access the non-equi-
librium behavior of biomolecular systems. In the microstate formalism given by 
Eqs. 6.25–6.28, charge transfer events are described as transitions between well-
defined microstates of a system. The time dependence of the population of each 
microstate can be simulated using a master equation

where Pν(t) denotes the probability that the system is in charge state v at time t, 
kνµ denotes the probability per unit time that the system will change its state from 
µ to v. In Eq. 6.32, the first sum includes all the reactions that generate state v, 
the second sum includes all the reactions that destroy state v. The summations run 
over all possible states µ. In order to restrict the number of states and only con-
sider states that are accessible in a certain energy range, methods like extended 
Dead End Elimination [72] can be used. Simulating charge transfer by Eq. 6.32 
assumes that these processes can be described as a Markovian stochastic pro-
cess. This assumption implies that the probability of a given charge transfer only 
depends on the current state of the system and not on the way in which the system 
has reached this state. The system given by Eq. 6.32 is a system of coupled lin-
ear differential equations with constant coefficients, for which an analytical solu-
tion exists [69, 70]. Equation 6.32 describes the time evolution of the probability 
distribution of microstates of the system. For these microstates, energies Gν and 
transition probabilities kνµ can be assigned unambiguously. The time-dependent 
probability of finding a single site in a particular form can be obtained by sum-
ming up individual contributions from the time-dependent probabilities Pν(t).

The application of the method outlined about to electron transfer reactions is par-
ticularly attractive, since their rates can be estimated using the rate law developed 
by Moser and Dutton [73, 74] which relies on the Marcus theory [75] and agrees 
well with experimental data. Mainly three factors govern the rate constants of bio-
logical electron transfer reactions: the energy difference between the donor state 
and the acceptor state, the environmental polarization (reorganization energy), and 
the electronic coupling between the redox sites. The energy barrier for the transfer 
process is given in the framework of Marcus theory as

(6.32)
d

dt
Pν(t) =

M
∑

µ=1

kνµPµ(t)−

M
∑

µ=1

kµνPν(t)

(6.33)�xi�(t) =

M
∑

ν

xν,iPν(t)

(6.34)�G�=
=

(�G◦ + �)2

4�
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where �G◦ is the energy difference between donor and acceptor state and � 
is the reorganization energy. The electronic coupling between the redox sites is 
accounted for by a distance-dependent exponential function A exp(−β(R− R◦)), 
where R is the edge-to-edge distance between the electron transfer centers, R◦ rep-
resents a van der Waals contact distance and A represents an optimal rate.

The free energy �G◦ for a transition between two states v and µ can be cal-
culated within the electrostatic model using Eq. 6.25. The reorganization energy 
� contains two contributions, � = �o + �i, where �o is the solvent reorganization 
energy and �i is the inner sphere reorganization energy. �o was shown to be acces-
sible to calculations using electrostatic potentials obtained from the solution of the 
Poisson-Boltzmann equation [75, 76]. The inner sphere reorganization energy �i 
can be estimated by quantum chemical calculations and it is often found to be sig-
nificantly smaller than the solvent reorganization energy [77–80].

For analyzing a complex charge transfer system, it is of particular interest to 
follow the flow of charges through the system, i.e., the charge flux. The flux from 
state v to state µ is determined by the population of state v times the probability 
per unit time that state v will change into state µ, i.e., by kµνPν(t). The net flux 
between states µ and ν is thus given by

The net flux (Eq. 6.35) is positive if there is a net flux from state µ to state v. This 
flux analysis allows to deduct the reaction mechanism from even very complex 
reaction schemes [70].

In cases when the number of possible microstates get too large, the differen-
tial equation can not be solved analytically anymore. Thus, approximations and 
simulations need to be applied. One attractive simulation method is the dynami-
cal Monte Carlo Simulation scheme [81], which allows to simulate very complex 
reaction mechanism such as proton transfer through a protein matrix [82]. Again, 
the reaction parameter can be obtained from continuum electrostatic calculations. 
Each simulation trajectory describes one particular reaction path through the pos-
sible states of the system. A reaction mechanism can then be inferred from the 
analysis of many such trajectories. Up to now, this method was only applied to 
relatively simple systems [82]. However, future application to enzymes which 
involve chemical transformation, proton and electron transfer as well as conforma-
tional changes seem possible making dynamical Monte Carlo simulations a prom-
ising future road to analyze enzyme function.

6.6  Conclusion

Electrostatic interactions play a major role in biomolecular systems. In particular, 
the mechanism of enzyme cannot be understood without the correct evaluation of 
the effect of all charges involved in the enzyme or in the environment. The methods 
based on continuum electrostatics are extremely valuable in this task, since they allow 

(6.35)Jνµ(t) = kνµPµ(t)− kµνPν(t)
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the analysis of the electrostatic interactions involving the macromolecular partners 
in their environment at meaningful time scales. In this review, we have shown how 
continuum electrostatic methods provide essential information both on the thermo-
dynamics and the kinetics of biological mechanisms. These methods model essen-
tial biophysical aspects correctly and allow a computationally efficient calculation of 
biochemical reactions. We believe that continuum electrostatics has a broad range of 
applications in biomolecular modeling and the value of the method will become even 
more obvious when more and larger protein machines will be investigated.
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7.1  Molecular Mechanics/Coarse-Grained (MM/CG) 
Methods

Ligand-protein docking is currently an important tool in drug discovery efforts, 
indeed, in the last years, structure-based drug design protocols has been the subject 
of important developments [1–4]. These are well portrayed in the rising number 
of available protein-ligand docking software programs [5]. Molecular dynamics 
(MD) simulations are also instruments for determining poses and energetics in 
these cases. Still a very important challenge needs to be overcome: the predic-
tion of a ligand-protein complex when there is no structural data for the protein 
and templates of low sequence identity, lower than 30 %, are the only choice for 
building the model by using homology techniques. Indeed, in bioinformatics based 
homology models the orientation of the side chains, a key factor in the interaction 
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between the ligand and the protein, is not highly accurate, hampering conse-
quently the correct prediction of docking poses obtained by using standard docking 
algorithms [6]. A way of overcoming these difficulties is to combine homology 
models and docking procedures with hybrid Molecular Mechanics/Coarse-Grained 
(MM/CG) approaches [7–16], that is including together, in the same simulation, 
high- and low-resolution models [7, 9, 17–19] of the system that will be simulated. 
From one hand a portion of the protein (i.e. the ligand binding site) is described 
in full atomistic details, while the remaining regions of the protein are described 
using a coarse-grained representation [10, 11, 20] (Fig. 7.1a). Thus, the accuracy 
of multiscale models relies upon the methods used for constructing an accurate 
connection between the boundary of models with different resolutions [21].

We have recently adapted to membrane proteins an MM/CG approach origi-
nally developed by us to be used with enzymes. In our case a limited number of 
water molecules is included in the set up and is confined in a drop next to the 
binding cavity by introducing repulsive walls into the system [10, 11, 20] (see 
Fig. 7.1b and below for details).

Thus, the potential energy function in our MM/CG scheme reads:

where EMM, EI and ECG are the potential energy of the atomistic (MM) region, the 
interface (I) and the coarse grained (CG) regions, respectively. EI/MM and ECG/I 
describe the interaction energy between I and the MM region and that between 
the interface and the CG region, respectively. EMM, EI and EI/MM are described 

(7.1)V = EMM + EI + EI/MM + ECG + ECG/I

Fig. 7.1  Molecular mechanics/coarse-grained system set-up. a Schematic representation of the 
regions defined in the MM/CG model. The CG, I and MM regions are colored in an increas-
ing dark blue tonalities. b MM/CG representation of the hTAS2R38 receptor in complex with 
its agonist. Water molecules are represented as red points. The agonist is represented in yellow. 
The protein Cα atoms are represented as cyan points. The membrane wall is represented  
as a blue surface
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by the GROMOS96 force field [22], whereas ECG and ECG/I are characterized 
by a Go-like model (Eq. 7.2). ECG/I ensures the integrity and stability of the pro-
tein backbone, acting as a structural scaffold. Indeed, the latter term includes the 
bonded interactions between the CG atoms and the Cα atoms in the interface, as 
well as the non-bonded interactions between CG atoms and the Cα, Cβ atoms in 
the interface. The ECG term reads:

The first term describes the interaction between consecutive CG beads (the Cα 
atoms), where Kb is the force constant and bij is the equilibrium distance correspond-
ing to the original distances between CG atoms as calculated from the initial struc-
ture/model. Non-bonded interactions are taken into account by using a Morse-type 
potential (second term), here V0 = 5.3 kJ mol−1 is the well depth and its modulating 
coefficient is Bij = 6/bij nm−1. These two parameters have been already employed in 
investigating both soluble and membrane proteins [10, 11]. Here, Bij is set to 5 + 6/bij 
nm−1. This setup ensures the stability of the protein inside its transmembrane site.

The thermal and viscous solvent effects acting on the system are taken into 
account by using the Langevin approach with a potential of mean force, V(ri) [23]:

where γi is the friction coefficient and ηi is a stochastic noise satisfying the 
relations: �ηi(t)� = 0 and 

〈

ηi(t)ηj
(

t′
)〉

= δijδ
(

t − t′
)

2KBTγi; where KB is the 
Boltzmann constant and T is the temperature. If the I and MM regions are solvent 
exposed, the solvent is treated explicitly by using the SPC water model [24]. In 
the framework of the MM/CG approach: a droplet of water molecules is centered 
around the MM and I regions. Within this approach, water properties are very sim-
ilar to those of the bulk water in proximity of the all-atom region, but approaching 
the drop border located approximately at the interface region, the water density 
lowers, providing a rough approximation of the bulk behavior [10].

In our approach, the presence of implicit membrane is realized by introducing 
five repulsive walls (ϕi, i = 1, 2 . . . 5) into the system [20]. The five walls, around 
the protein are described by five corresponding functions using a level-set approach 
[25]. The region of points r where all the five ϕi(r) are positive characterizes the 
protein site. The wall i itself is formed by the set of points for which ϕi vanishes. 
Two planar walls (ϕi, i = 1, 2) coincide with the height of the heads of membrane 
lipids. Two hemispheric walls (‘outer walls’, ϕi, i = 3, 4) (Fig. 7.1b), capping the 
extracellular and cytoplasmic ends of the protein, are described by the functions 
ϕi(r) = ri − �r − chi� defined only outside the membrane region. The center chi of 
each hemisphere is located at the height of the heads of phospholipids, above/under 
the center of mass of the protein. The radius ri of each hemisphere is defined such 

(7.2)

ECG =
1

4

∑

i

Kb

(

|Ri − Ri+1|
2
− b2ii+1

)2

+
∑

i>j

V0

{

1− exp
[

−Bij

(∣

∣Ri − Rj

∣

∣− bij
)]}2

(7.3)mi

d2ri

dt2
= −miγi

dri

dt
+ V(ri)+ ηi(t)
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that the minimum distance between any protein atoms and the wall is 15 Å. This 
 creates a droplet of waters around the MM region similar to Refs. [10, 11]. The mem-
brane wall ϕ5 is defined by ϕ5(r) = rp −minj

∥

∥

r − cj
∥

∥, where the distance between 
the point r and the closest initial position of Cα atoms cj is computed, and rp is a dis-
tance parameter with a default value 2.0 Å. Additionally, a smoothing technique [20] 
is applied to avoid discontinuities in the wall.

Boundary potentials Vi(d)(i = 1, 2 . . . 5) are added to the MM/CG potential 
energy function. They are defined as functions of a distance d of an atom from the 
corresponding walls:

In particular, the potential applied to an atom is the one corresponding to the clos-
est wall ϕi from that atom, i.e. Vi

(

i : minr′(r − ϕi(r
′)
)

= d). Vi(i = 1, 2) is purely 
repulsive; Vi(i = 3, 4, 5) is a softened Lennard-Jones-type potential; ε is the depth 
of the potential well; and σ is the finite distance at which the potential Vi(i = 3, 4, 5) 
is zero. The minimum of the potential is at d = 2σ = rp. Waters, Cα atoms of both 
MM and CG regions, and atoms belonging to external aromatic residues Trp and Tyr 
are influenced by these potentials. The membrane wall potential V5 constrains the 
shape of the protein while providing a good degree of flexibility. This model neither 
includes electrostatics nor allows distinguishing between different types of bilayers.

The force due to the presence of the wall is derived from the following 
equations:

The cut-off distance of the force is set to 7 Å for the repelling walls Vi(i = 1, 2), 
and to 1.5rp for the outer walls and membrane wall Vi(i = 3, 4, 5). The first value 
is chosen such that a water molecule cannot pass through this distance during one 
time step, while the second value guarantees that the force does not affect the MM 
region. The force is shifted so that it is continuous at the cut-off distance, to avoid 
a sharp disruption. In addition, it is set to a finite value (1,000 kJ mol−1 nm−1) 
near the wall to prevent too large forces acting on the system.

7.2  Application: G Protein-Coupled Receptors (GPCRs)

GPCRs form the largest membrane-bound receptor family expressed by mammalians 
(encompassing ca. 4 % of the protein-coding human genome) [26] and are of para-
mount importance for pharmaceutical intervention (ca. 40 % of currently marketed 
drugs target GPCRs) [27]. GPCRs are located in the plasma membrane and initi-
ate signaling cascades that allow cells to react to changes within their environment 
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[28]. Indeed, they transduce signals from the extracellular environment through their 
interactions with agonists and intracellular heterotrimeric guanine nucleotide-binding 
proteins (G proteins). All GPCRs share a common three-dimensional (3D) fold that 
comprises an extracellular N-terminal loop (N-term), followed by seven trans-mem-
brane (TM) α-helices (TM1 to TM7) connected by intracellular, extracellular loops, 
and an intracellular C-terminal loop (C-term) [29]. The tertiary structure resembles 
a barrel, with the seven transmembrane helices forming a cavity within the plasma 
membrane that serves as ligand-binding domain, often covered by the extracellular 
loop 2 (EL-2). In several cases they can exist as homo- or hetero-dimers or higher-
order oligomers during their life cycle in vivo [30].

Recently, there was an explosion in the crystallography of GPCRs [29, 31–33]. 
On the other hand, while ca. 800 human GPCR’ sequences are public, there 
are actually only 24 unique experimental structures (as reported in the http://
blanco.biomol.uci.edu/mpstruc web site) [34]. Only recently one structure belong-
ing to the frizzled/taste2 family [35] and two structures from the secretin family 
[36, 37] were solved. No structure is still available for the ca. 400 receptors large 
olfactory receptors sub-branch, as well for the bitter taste receptors [or Taste2 
receptors (T2R), which constitute about a half of the frizzled/taste2 family] and 
for the glutamate, and adhesion families.

The lack of structural information for many of the members of the GPCR family, 
calls upon computational biology-based structural predictions. The average sequence 
identity between GPCRs is often below 20 % [38], making target selection and align-
ment required for homology modeling far from trivial [39–42]. Furthermore, research 
aimed at elucidating the underlying principles determining the molecular respon-
siveness range of GPCRs that mediate senses, such as T2R [43, 44] and olfactory 
[45] receptors, depends on the ability to build reliable models of the interaction sites. 
Experimental validation is thus crucial for accurate structural characterization (see 
Refs. [46–51] for some recent examples). A crucial step in understanding specific-
ity and promiscuity in molecular recognition and structure-based design is to iden-
tify residues that are important for ligand binding. Several groups have successfully 
applied homology-based of non-rhodopsin GPCRs structure modeling approaches 
to ligand-binding elucidation [47, 52–55]. Interestingly, the bigger amount of works 
based on homology modeling is dedicated to rhodopsin-like GPCRs [56–58] and 
T2R GPCRs [20, 44, 47, 55, 59]. In these articles, the combination of homology 
modeling and/or molecular docking with a rapid growing number of protein struc-
tures deposited in the PDB database, together with the availability of functional 
assays, allowed to represent the ligand-binding interactions at an unprecedented level 
of detail. On the other hand, standard docking procedures on homology modeling, 
such as those used in Refs. [60, 61], suffer from severe limitations which greatly 
limit the predictive power of these methods. The limitations in structural predictions 
include the difficulty in predicting correctly side chains orientations in the bind-
ing site [6] and neglecting the presence of explicit solvent [62]. This is particularly 
important for GPCRs, as water molecules are often found in the binding site of sev-
eral receptors and were shown to be crucial for the stabilization of the agonists [63, 
64]. Unfortunately, the current molecular docking approaches do not use the laws of 
statistical mechanics, which provide the only way to calculate free energy values.

http://blanco.biomol.uci.edu/mpstruc
http://blanco.biomol.uci.edu/mpstruc
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In our approach, the GPCR’s ligand, the binding site and the water molecules 
around it are treated using an atomistic force field, whilst the protein frame is 
described at CG level. This methods is not only much cheaper than full atoms MD 
[20], but it is likely also to be more accurate in the case of homology models with 
low sequence identity (SI) with the template, exactly like in the case of GPCR 
[38]. Indeed, if we do not know where side chains are located (which is the case 
with SI about 20 %), it might actually be better not to include them rather than 
including them in wrong orientations.

We have tested the predictive power of the MM/CG approach on the crystal 
structure of human β2 adrenergic receptor (β2AR) (PDB: 2RH1) [65] in com-
plex with its inverse agonist S-Carazolol (S-Car) and its agonist R-Isoprenaline 
(R-Iso) [20]. For the validation of our approach we have use an all-atom MD sim-
ulation performed on the same system by Vanni et al. [66]. The MM/CG simula-
tions were carried out for up to 800 ns. The MM region consisted of 476 and 486 
atoms, while the overall system was made of just 4597 and 4587 atoms for β2AR 
in complex with S-Car and R-Iso, respectively. This allowed us to obtain a 15-fold 
speedup compared to the all-atom MD simulations of the same system [66]. The 
structure of the complex between the β2AR and the agonist R-Iso was obtained 
following the procedure in Ref. [66]. The MM/CG simulations carried out on the 
β2AR/S-Car and on the β2AR/R-Iso systems allowed to capture the principal fea-
tures regarding ligand-receptor interactions, in agreement with the corresponding 
ones with all-atom MD. In a second step of the procedure, with the aim of elimi-
nating bias introduced in the calculations putatively caused by the initial position-
ing of the ligands and to gain insights into the predictive power of our method, 
we ran additional simulations in which we have deliberately docked the ligand 
in a wrong position, with all the main interactions with the residues found in the 
X-ray structure of hb2-AR/S-Car complex lacking. In these new simulations, the 
ligand migrates to the correct pose in about 200 ns, again capturing and forming 
the key interactions. We have then produced a homology model of the same com-
plex using a standard modeling approach that included the use of the MODELLER 
[67] program. The chosen template for building up the model of the β2AR was 
the structure of squid rhodopsin (PDB id 2Z73) [68], that share a sequence iden-
tity of 20 % with the target protein. After 0.8 µs of MM/CG simulation time, the 
β2AR structure in complex with S-Car is similar to the X-ray structure (root-
mean-square-deviation of the Cα atoms 2 Å). The interactions observed between 
the ligand and the protein present in the X-ray structure are reproduced also in the 
MM/CG simulation. Hence, MM/CG simulations on a homology-modeled struc-
ture reproduce the ligand pose as in the X-ray structure [65], indicating that this 
approach can be used in general for ligand/GPCRs complexes.

We have then applied the same procedure to the human TAS2R38 receptor [55] 
in complex with its agonists phenylthiocarbamide (PTC) (Fig. 7.1b) and propylthi-
ouracil (PROP). To study the interactions with PTC and PROP, the best homology 
model was then funneled through a standard docking protocol using the informa-
tion driven Haddock program [55]. We have then selected two representative dock-
ing poses. Although these models largely satisfied the existing experimental data 
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[47], in order to obtain a more accurate description of the binding poses and the 
specific receptor-ligand interactions, the two models underwent μs-long MM/CG 
simulations, each at room temperature. MM/CG identified the best binding pose of 
each agonist. New site-directed mutagenesis experiments were carried out, which 
confirmed the predicted models. These predictions are consistent with data sets 
based on more than 20 site-directed mutagenesis and functional calcium imag-
ing experiments of TAS2R38 [55]. The calculations pointed out key interactions 
between hTAS2R38 and its agonists, which would have been impossible to cap-
ture with standard bioinformatics/docking approaches [55]. Another very interest-
ing outcome regards the EL-2 loop, indeed, after MM/CG simulations validated 
with site-directed mutagenesis experiments, we concluded that the loop confor-
mation may resemble the non-rhodopsin models, because we have shown that the 
loop does not interact with the ligands.

7.3  Conclusions

In this chapter we have illustrated efforts aimed at characterizing the interactions 
on ligand-GPCR complexes for which there is a lack of structural information and 
bioinformatics based structural predictions is challenging. A protocol combin-
ing low-resolution homology modeling, docking and MM/CG simulations such 
as those developed by us shows considerable predictive power. The encouraging 
results reported here lead us to suggest that in the near future combined methodol-
ogies such as those described here may help in structure-based drug design studies.
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8.1  Length and Time Scales in Biomolecular Simulation

Many cellular processes are inherently multi-scale, and can span several compu-
tational regimes. For example, the action of the muscle protein myosin involves 
quantum mechanics at the shortest time and length-scales, as the coupling of 
ATP hydrolysis to the conformational changes driving the motor result from 
the enzyme catalysed breaking and reformation of covalent bonds. Motion at 
the  macroscopic level is then achieved through the co-ordinated action of many 
myosin molecules. The success of techniques such as X-ray crystallography and 
Nuclear Magnetic Resonance (NMR) in providing biomolecular structures (the 
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protein database contained 98,900 structures at the time of writing) has stimulated 
the simulation community to provide computational methods to comprehensively 
explore the dynamics of these molecules. For example, the MoDEL database, 
which captures the set of nonhomologous cytoplasmic proteins currently present 
in the PDB, contains 1,700 atomistic molecular dynamics (MD) simulations of 
proteins of at least 10 ns in duration [1]. Since these atomistic MD calculations 
rely on MD forcefields which are parameterised using quantum chemical calcu-
lations, quantum and molecular mechanical models have developed somewhat in 
tandem. Recent improvements in experimental techniques such as cryo-Electron 
tomography, ion mobility mass spectrometry and NMR have now made it possi-
ble to study “the molecular sociology of the cell” [2] in which complex biomo-
lecular assemblies and single molecules are located in crowded macromolecular 
environments that are far closer to those present in vivo. For these assemblies 
however, there is often insufficient experimental information to construct an atom-
istic model. The Electron Microscopy Database (EMDB) currently contains 2,267 
three-dimensional EM density maps and grew by a record 544 EMDB maps in 
2013 [3]. These density maps describe the overall shape of a biomolecule, bio-
molecular complex or super-macromolecular structure. The relevant time and 
length scales are often too large to be computationally accessible using atomistic 
MD, especially for these larger structures, and so coarse-grained simulation tech-
niques are being increasingly employed as more low resolution experimental data 
becomes available.

8.2  Mesoscale Simulation Methods

Since the computational expense of calculations at the quantum and atomistic lev-
els places strict limits on the system sizes and time-scales that can be explored, 
accessing the mesoscale is only possible with coarse-grained simulation. A com-
mon scheme for coarse-graining reduces the computational expense of the calcula-
tion by combining groups of atoms. For example the Martini forcefield combines 
four heavy atoms into a single bead [4]. Since these calculations are based on 
equivalent physical principles to atomistic MD simulation and have been reviewed 
recently [5], we focus on alternative techniques that are arguably less established 
for biomolecular simulation. Elastic network models are introduced in Sect. 8.2.1, 
Brownian dynamics in Sect. 8.2.2, dissipative particle dynamics (DPD) in 
Sect. 8.2.3 and lattice Boltzmann methods in Sect. 8.2.4. The application of DPD 
and lattice Boltzmann calculations to fluid flows in biology has been the subject of 
a comprehensive recent review [6]. Continuum mechanics methods are then intro-
duced in Sect. 8.2.5. In Sect. 8.3, we present a detailed account of fluctuating finite 
element analysis (FFEA), since this newer approach to mesoscale biomolecular 
modelling has not been reviewed elsewhere.
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8.2.1  Elastic Network Models

Elastic Network Models (ENM) treat a protein as a series of interconnected har-
monic springs. A matrix (known as the Hessian matrix) is constructed, containing 
the spring constants that define these bonded interactions. Normal mode analysis 
can then be performed, which involves diagonalising this spring constant matrix 
to obtain a set of eigenvectors, which define structural changes within the protein 
associated with the modes, and their corresponding eigenvalues, which give the 
amplitudes of these motions. While in principle all atoms can be included in a nor-
mal mode calculation, the difficulty of assigning appropriate spring constants and 
obtaining a sufficiently robust local minimum means that these calculations nor-
mally use coarse-grained protein models. Typically, the structure of the protein of 
interest is downloaded from the Protein Data Bank (PDB), and all of the atoms 
except the backbone carbon atoms are discounted. Then of the remaining atoms, 
all within a certain distance of one another are connected via springs [7]. The cutoff 
distance is selected by the user, but is typically around 10 Å, as shown in Fig. 8.1.

Elastic network models provide an efficient computational method for find-
ing the global motions of proteins since they do not require extensive simulation. 
Several online servers are now available to take PDB files and calculate the global 
motions such as AD-ENM [8], elNémo [9] and Hingeprot [10], and ENM have 
been the subject of several recent reviews [11] and perspectives [12]. Recent suc-
cesses using this technique for biomolecular modelling include the demonstration 

Fig. 8.1  An elastic network 
model of a Catabolite 
activator protein (CAP) 
dimer. The network obtained 
by connecting α carbon atoms 
is shown in grey, α carbons 
are shown as blue spheres. 
Image reproduced from 
McLeish et al. [7]
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that these simplified network models provide global motions of the bovine pancre-
atic trypsin inhibitor protein that broadly agree with the results of atomistic MD 
calculations performed over millisecond timescales using the Anton supercom-
puter [13]; the finding that low frequency motions in proteins can modulate allos-
teric interactions in the absence of conformational changes [14]; the demonstration 
that the binding of CO2 to the connexin hemichannel restricts its motion and might 
therefore explain its function as a CO2 sensor [15] and finally the observation that 
central pore dilation is a high frequency mode of the nuclear pore complex [16], 
leading to the conclusion that it is a non-favourable mechanical process unless the 
correct cargo is present, which is to be expected for selective transport processes.

8.2.2  Brownian Dynamics

Brownian dynamics captures the diffusion of an object immersed in a fluid using 
the Langevin equation [17, 18]:

where m is the particle mass, x is the particle position, � is the viscous drag coef-
ficient, E(t) is the interaction force (e.g. due to some external background potential) 
and f(t) is the thermal force. The Langevin equation can be viewed as a generalisation 
of Newton’s equation F = ma to include random thermal fluctuations. The thermal 
noise f(t) continuously injects energy to the simulation, whereas the viscous fric-
tion term due to the fluid viscosity dissipates this thermal excitation. At equilibrium, 
the thermal noise must be chosen so that the average energy provided by the thermal 
forces is balanced by viscous energy dissipation. This law is known as the fluctuation-
dissipation theorem. At equilibrium, since the thermal force has no net direction [19]:

where 〈. . .〉 denotes an ensemble average.
The fluctuation-dissipation theorem is obtained by considering the variance of 

the thermal noise (for a complete derivation see Kubo [19]):

where δ(t) is the Dirac delta function. The fluctuation-dissipation relation effec-
tively defines the strength of the thermal noise and sets the energy balance of the 
system. However, momentum conservation is not achieved in Brownian dynamics. 
Momentum is randomly imparted by the thermal noise term and is therefore not 
conserved. While Brownian dynamics does provide a representation of stochastic 
thermal noise at the local level, it represents solvent interactions through a local 
friction and so does not capture hydrodynamic interactions, which can introduce 
long range dynamical coupling through interactions with the solvent environment.

In spite of this approximation, Brownian dynamics simulations have proven 
particularly useful for investigating the behaviour of collections of interacting 

(8.1)m
d2x

dt2
= −�

dx

dt
+ E(t)+ f(t),

(8.2)�f (t)� = 0,

(8.3)�f (t)f (t′)� = 2�kBTδ(t − t′),
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biomolecules at the mesoscale. In a pioneering series of simulations, Elcock and 
McGuffee used Brownian dynamics to simulate the crowded cytoplasmic environ-
ment over microsecond timescales [20], as shown in Fig. 8.2. The proteins were 
approximated as rigid units and simple local Stokes drag was used to represent 
solvent interactions. Ongoing calculations aim to include long range hydrodynam-
ics, in spite of the increase in computational complexity [21]. Recent applications of 
Brownian dynamics to crowded environments have shown that the shape of the pro-
teins acting as crowding agents has a large effect on translation and rotational diffu-
sion coefficients [22]. Brownian dynamics simulations have also been used to study 
DNA compaction; a recent study of bacterial DNA interacting with the H-NS protein 
showed that the compacted DNA conformations obtained were very sensitive to the 
protein/DNA interaction energies, and that deposition on a mica surface, as is com-
mon for AFM experiments, can significantly perturb the behaviour of the biopolymer 
[23]. Moreover, Brownian dynamics simulations of chromatin applied in conjunction 
with high speed live cell fluorescent imaging have shown that chromatin dynamics 
can be described using the simple Rouse polymer model [24], in which the motion of 
the chromosome is dominated by the crowded environment of the nucleus [25].

8.2.3  Dissipative Particle Dynamics 

Dissipative particle dynamics (DPD) is a mesoscale simulation method that 
reproduces hydrodynamics as well as thermodynamics by ensuring both momen-
tum and energy conservation. The method includes three types of force: viscous 

Fig. 8.2  Brownian dynamics 
simulation by McGuffee and 
Elcock [20] of the bacterial 
cytoplasm using rigid protein 
structures downloaded from 
the PDB
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dissipation, thermal noise and particle repulsion [26]. Crucially for momentum 
conservation, all of these are applied as inter-particle forces. In DPD, the force on 
the ith particle is given by:

where FD
ij  is the viscous dissipation force, FC

ij  is the repulsive force and FT
ij is the 

thermal force of particle j on particle i. Momentum conservation is achieved by 
ensuring that the three force tensors FD

ij , F
C
ij  and FT

ij are anti-symmetric under per-
mutation of the indices [26]. Thus, momentum gained by one particle is lost by its 
counterpart. The viscous force takes the form,

where γ is related to the viscosity, ω is a weight function that depends only on the 
distance between particles, r̂ij is the unit vector corresponding to the displacement 
rij = rj − ri, and similarly vij = vj − vi is the velocity difference between parti-
cles j and i.

The fluctuation-dissipation relation couples the dissipative term FD
ij  with FT

ij 
[26] so that the average amount of energy drained by the viscous terms is equal 
to that added by the thermal term at thermal equilibrium, as described in detail by 
Español and Warren [27]. The resultant thermal noise term is:

where ω is the same weight function as in Eq. (8.5) and σ = (2kBTγ )
1
2, which 

relates the thermal noise to the viscosity via γ. To complete the coupling, θ ij(t) is a 
matrix of stochastic processes obeying the statistics:

The first average states that the average thermal force on a particle is zero while 
the second term effectively ensures that the matrix θij(t) is symmetric.

The final term in used in DPD, FC
ij , is a soft repulsive force. The strength of this 

interaction can be tuned for different particle types to set their relative affinities for 
one another, and provides the opportunity to describe chemical specificity for the 
different particle species in a simulation. A detailed recipe for how to select appro-
priate parameters to describe the strength of the interaction using Flory Huggins 
theory is presented by Groot and Warren [26]. Figure 8.3 shows that a suitable 
choice of different soft repulsive forces for the different chemical species within a 
DPD simulation can lead to phase separation of immiscible particles.

The main advantage of DPD is that the use of soft potentials allows large 
timesteps to be taken [26], while it is still possible to retain some chemical detail 
through an appropriate choice of repulsive inter-particle potentials. Boundary 

(8.4)
fi =

∑

j �=i

(FD
ij + F

C
ij + F

T
ij ),

(8.5)F
D
ij = −γω(r̂ij · vij)r̂ij,

(8.6)F
T
ij = σω

1
2 θ ij(t)r̂ij,

(8.7)�θij(t)� = 0

(8.8)�θij(t)θkl(t
′)� = (δikδjl + δilδjk)δ(t − t′)
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conditions that impose hard walls or even an external flow can also be used [28]. 
Moreover, DPD allows for an arbitrary level of coarse-graining through the choice 
of what each “particle” in the system represents; for example, a DPD particle may 
represent an atom, a group of atoms or a large colloid particle. DPD is therefore 
sufficiently versatile that it has been applied to multiple length and timescales. For 
example, DPD has been used to model the next generation of drug delivery vehicles 
and their transport across lipid membranes [6, 29]. Peng et al. constructed a DPD 
model of the lipid bilayer and cytoskeleton in an entire red blood cell. These calcula-
tions showed that the explicit inclusion of the elastic interaction between the bilayer 
and the cytoskeleton was necessary to obtain agreement with the thermal fluctua-
tions within red blood cells observed experimentally [30]. However, DPD is compu-
tationally inefficient compared to lattice Boltzmann calculations (described below), 
as the force calculations entail a double sum over all particles at each timestep.

8.2.4  Lattice Boltzmann Methods

While MD, DPD and Brownian dynamics all consider physical objects interact-
ing through Newtonian physics, lattice Boltzmann techniques are based on kinetic 
theory, evolving probability distributions of particle position and velocity, rather 
than the corresponding dynamical variables, using the Boltzmann equation [31]. 
The technical details underlying lattice Boltzmann methods applied to complex 
fluid flow are described in the review by Aidun and Clausen [32]. The probability 
distribution functions in the lattice Boltzmann method represent average occupan-
cies of discrete velocity states. To illustrate this, it is useful to firstly discuss lattice 
gas automata [31, 33].

Figure 8.4 shows a two dimensional lattice gas model for a hexagonal lattice. 
The lattice gas is populated by particles that move from one node to another along 
connected grid lines. The model is therefore discrete in both space and time; in a 
single timestep a particle can only move to a neighbouring node. For the hexago-
nal grid shown in Fig. 8.4, each node in the lattice gas model can be occupied by 
a maximum of six particles, since every node has six neighbours and can therefore 
support six particles with velocities that point in the direction of all neighbour-
ing nodes. Taking a timestep in the lattice gas method requires two consecutive 

Fig. 8.3  Phase separation of 
immiscible DPD particles in 
solution
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operations to be performed on all nodes: collision and streaming. The collision 
operation changes the velocities of particles if they occupy the same node and 
the streaming operation translates particles to neighbouring nodes following their 
direction of travel. As the collisions preserve both particle number and momen-
tum, fluid mechanics is recovered at length and time scales much larger than the 
discretisation. However, this can cause convergence to the correct distributions to 
be slow. The lattice Boltzmann method was developed to improve the computa-
tional efficiency of the calculations [31, 33].

The lattice Boltzmann model replaces discrete particle occupancies on each 
node with their average value [33]. While the streaming step remains the same, 
the procedure for collisions needs to be generalised to account for the fact that 
the occupancies are now averaged. This is achieved through the Bhatnagar-Gross-
Krook (BGK) relaxation term [31, 33], which can be derived directly from the 
Boltzmann equation [34]. The BGK relaxation term calculates the equilibrium dis-
tribution of average occupancies for a node while preserving particle number and 
momentum. The average occupancies then relax toward this equilibrium within a 

Fig. 8.4  1 The hexagonal grid of a lattice gas model, with the central node highlighted. 2. Two 
particles (1 and 2) are shown occupying the central node, with velocities indicated by the red 
arrows. 3. As two particles occupy the same node, a collision must occur. The original velocities 
of particles 1 and 2 on the central node are shown in blue; the new post collision velocities of 
particles 1 and 2 are shown in red. 4. Post collision, the particles are streamed onto new nodes so 
that particle 1 moves from node a onto node b and particle 2 moves onto node c whilst retaining 
the same post collision velocities
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given time scale. The equation of motion for the lattice Boltzmann method is then 
given by [34]:

where fi is an average occupancy number on a node, ei are the directions allowed 
on the grid, c is the discretised speed and τ is the relaxation time to equilibrium.

The lattice Boltzmann method is being increasingly used as an alternative to 
continuum methods for solving time-dependent macroscale fluid mechanics prob-
lems on complex domains. The lattice Boltzmann method is easier to implement 
on large numbers of processors because the collision step is entirely local, and the 
boundary conditions are also easy to specify [35]. The lattice Boltzmann method 
has been widely applied to model flows within biological systems, as described 
in the review by Mills et al. [6]. This is mainly due to the ease of boundary condi-
tion application, such that blood flow through vessels and even at junctions can be 
modelled [36]. For example, Zhang et al. [37, 38] used lattice Boltzmann to simu-
late the aggregation of red blood cells. In the absence of flow, the red blood cells 
formed cylindrical stacks in order to maximise surface area contact. However, per-
forming the calculations in the presence of a shear flow (flow can be applied in LB 
by simply adapting the lattice edge boundary conditions) resulted in disaggrega-
tion of the cellular stacks, as is observed experimentally.

The primary limitation of the lattice Boltzmann method arises from the fact that 
it is a discrete method and that the average occupancy numbers propagate at a single 
speed throughout the grid, which is the effective sound speed. Consequently it cannot 
represent a truly incompressible fluid. There is also no thermal noise, although a num-
ber of approaches to include stochastic behaviour have been implemented [39, 40].

8.2.5  Continuum Models

Continuum models are most commonly associated with macroscale simula-
tions in the athermal limit such as those found in civil, mechanical or aeronau-
tical engineering applications. A continuum model describes a physical system 
using locally averaged variables such as velocity, density, stress, strain, tempera-
ture, concentration, composition, or charge, which are considered to be (usually 
smooth) functions of position, with dynamics often governed by partial differential 
equations. To describe fluid flow or material transport the two relevant equations 
are the continuity equation and the momentum equation [41]. The continuity equa-
tion is as follows:

where ρ is the density of the continuum and v the fluid velocity. This equation 
enforces mass conservation; the change in density as a function of time is equal 

(8.9)fi(x + cei∆t, t +∆t)− fi(x, t) = −
fi(x, t)− f

eq
i (x, t)

τ
,

(8.10)
∂ρ

∂t
+∇ · (ρv) = 0,
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to the amount of material flowing into or out of an (infinitesimally) small unit vol-
ume around the point. Similarly the change in momentum is given by [41]:

where D
Dt

= ∂
∂t
+ v · ∇ is the material derivative (the time derivative in the frame 

moving with the fluid velocity), σ is the stress within the continuum and f an 
external force per unit volume.

The momentum equation expresses Newton’s second law for a continuum 
mechanics system. The material derivative gives the rate of change of velocity of 
a segment of the material as it moves under flow. This acceleration is produced 
by a combination of external forces, and material stress. The stress tensor σ (in 
three dimensions) is a symmetric 3 by 3 matrix [41] which describes the internal 
forces within the continuum material. The component σij is the force per unit area, 
in direction i, acting across a surface with normal direction j.

The stress in a continuum material is obtained from the constitutive equation, 
which includes parameters for material properties such as the viscosity or elastic-
ity. Many different constitutive models exist, the simplest being linear elasticity 
or Hooke’s law [42], σS = EεS, where E is the Young’s modulus and σS and εS 
are the stress and strain in the material respectively. If the material has viscous 
properties, then an internal stress is induced due to the rate of change of strain, 
σD = η ∂εD

∂t
, where η is the viscosity co-efficient. Other material models such as 

Maxwell or Kelvin-Voigt [43] are used for viscoelastic materials, in which both 
internal viscosity and elasticity need to be considered. The choice of the appropri-
ate constitutive model depends on the types of forces the material will experience, 
and whether the material will permanently deform under the action of the force.

The Maxwell model treats the continuum as an elastic spring and viscous 
damper connected in series [44], as shown in Fig. 8.5. The stress in the spring and 
damper are therefore equal, σ = σS = σD, and the strains sum to give the total 
strain, ε = εS + εD. By considering the time derivative of the strain we can see 
how it is related to the stress:

In the Kelvin-Voigt model the spring and damper components are connected 
in parallel rather than series [44], as shown in Fig. 8.6, which means that this 
time the strains are equal, ε = εS = εD, and the stresses sum to give the total, 
σ = σS + σD. Following similar analysis to the Maxwell model, we obtain:

(8.11)ρ
Dv

Dt
= ∇ · σ + f ,

(8.12)
dε

dt
=

σ

η
+

1

E

dσ

dt

(8.13)
dε

dt
=

σ

η
−

E

η
ε

Fig. 8.5  The Maxwell model for visco-elastic media consists of a viscous damper (on the left) in 
series with an elastic spring (on the right)
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When a constant stress σ0 is applied to a Kelvin-Voigt material at time t = 0, the 
solution of Eq. (8.13) is:

Equation 8.14 shows that as t → ∞, the viscous effect decays away exponentially 
and we are left with Hooke’s Law, which indicates that the material only expe-
riences the effects of elasticity. Therefore, a deformed Kelvin-Voigt material will 
always return to its starting configuration over a sufficiently long time scale. In 
contrast, when a constant strain is applied to a Maxwell material, an analogous 
solution but for Eq. (8.12) shows that the induced stress will exponentially decay 
to zero causing the continuum to relax into a new stable state. Therefore, perma-
nent deformation is possible with the Maxwell model.

Numerical methods are employed to solve the partial differential equations 
involved in continuum mechanics, of which there are three common methods; finite 
difference [45], finite volume [46] and finite element methods [47]. Finite difference 
methods store the values of the physical variables at discrete points on a grid with 
spatial derivatives approximated from differences in the values of quantities on neigh-
bouring nodes. The computational grid must be constructed using an orthogonal lat-
tice, which makes it difficult to represent complex boundary shapes. This problem is 
resolved by finite volume and finite element methods, which are geometrically more 
flexible. In the finite volume method the computational domain is divided into small 
volumes (typically cuboids) and the continuum equations are converted into integrals 
over the surface of these volumes involving fluxes between volumes. The finite ele-
ment method involves a similar subdivision of the domain into simple shapes typi-
cally hexahedra or tetrahedra, known as finite elements. The continuum equations are 
converted into volume integrals, which can be computed locally in each element.

Finite element analysis (FEA) is routinely used for biomedical applications 
at macroscopic length-scales, such as whole heart modelling [24]. Continuum 
mechanics has been applied to model the deposition of rigid nanoparticles under 
flow [48], cell motility [49] and blood flow in the aorta [50] over length scales 
from hundreds of nanometers and time scales of microseconds (for the nanopar-
ticles), up to micrometers and minutes (for the cell motility simulations). Bathe 
[51] has employed a continuum mechanics model to extract the normal modes 
of proteins, and has developed an online database of finite element structures 
constructed from EMDB maps [52]. However, until recently the application of 

(8.14)ε(t) =
σ0

E

(

1− e
− E

η
t
)

Fig. 8.6  The Kelvin-Voigt 
Model for visco-elastic media 
is comprised of a viscous 
damper (on the bottom) 
connected in parallel with an 
elastic spring (on the top)
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continuum methods to the nanoscale has been limited because of the difficulties of 
including thermal fluctuations in the calculations. This has led to the development 
of fluctuating finite element analysis (FFEA), which specifically includes thermal 
noise within a continuum mechanics framework.

8.3  Fluctuating Finite Element Analysis

Fluctuating finite element analysis (FFEA) is an alternative scheme for mesoscale 
biological simulations which models the dynamics of globular proteins using a 
continuum mechanics model that includes thermal fluctuations. In its current form, 
FFEA treats a protein as a viscoelastic material using a Kelvin-Voigt model, thus 
giving the protein a permanent equilibrium structure about which it fluctuates [53]. 
The continuum equations can then be solved numerically using finite element anal-
ysis. Since the finite element method can handle complex geometries with relative 
ease, this makes it particularly useful for the treatment of the dynamics of globular 
proteins. The thermal noise, which is implemented as a stochastic component of 
stress, is derived analytically by solving the fluctuation-dissipation relation within 
the finite element approximation [53], thus ensuring that the computed dynamical 
trajectories are consistent with the requirements of classical thermodynamics.

FFEA treats a globular macromolecule as a continuous medium of density ρ 
subject to thermal noise, viscous dissipation and elasticity. The equation of motion 
for the system (using index notation together with summation convention) is the 
momentum equation:

where 
(

∂ui
∂t

+ uj
∂ui
∂xj

)

 is the total time derivative of the velocity vector field in the

Lagrangian frame of the material. The stress σij can be sub-divided into three 
contributions:
σ v
ij, σ

e
ij and σ t

ij are the stresses due to viscosity, conservative elastic forces and ther-

mal fluctuations respectively. Since the viscous and elastic stresses are summed in 
this model, this corresponds to a Kelvin-Voigt material [54].
The viscous stress σ v

ij is assumed to be linear [55], and is written as:

where µ is the shear viscosity and � is the second coefficient of viscosity, giving 
a bulk viscosity µbulk = �+ 2

3
µ. Physically, Eq. (8.17) means that the material 

resists the build up of velocity gradients within it.
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The elasticity in the FFEA model has been derived from a strain energy func-
tional [56] such that the material is hyperelastic. This means that the stored elastic 
energy is fully recoverable, even if the elastic forces are non-linear in the material 
deformation. In general, the elastic forces in continuum mechanics are framed in 
terms of the deformation gradient tensor Fij. The deformation gradient tensor Fij 
measures the material deformation from its initial configuration to a new configu-
ration so that Fij =

∂xi
∂Xj

, where x(X, t) is the current position of material initially 
located at X. In our current FFEA treatment [53] the elastic stress in the material is 
written as:

where G is the shear modulus, K = B− G
3
 is the bulk modulus and α = 1+ G

B
. 

From the bulk and shear moduli, the Young’s Modulus of the material is given by 
E = 9KG

3K+G
, as described in detail by Oliver et al. [53].

In addition to the viscous and elastic stresses defined above, a fluctuating ther-
mal stress σ t

ij is added to ensure that the motion of the model is consistent with 
thermodynamic equilibrium. We detail our formulation of the thermal stress in 
Sect. 8.3.3, but before doing so it is convenient to discuss the finite element discre-
tisation of the continuum model.

8.3.1  Finite Element Formulation Within FFEA

Here we provide a short overview of the finite element method, with emphasis on 
how it has been implemented within FFEA. For more information on the formal-
ism and general method, we offer the following references for introductory [47] 
and advanced [57] topics.

In general, the finite element method works by dividing the material into 3D 
elements, called finite elements, that are geometrically simple [58]. Typically, in 
three dimensions, tetrahedral or hexahedral elements are chosen, as these can be 
used to cover domains with complicated geometries with a relatively small error in 
the total shape and volume at the surface. The idea is then to find an approximate 
solution of our equation of motion, Eq. (8.15), within each element using func-
tions constructed from linear combinations of basis functions φ1(x), . . . ,φn(x), so 
that the material velocity is approximated as:

where α is the node index. These nodes are the vertices of the finite elements. The 
basis functions φα are typically chosen as polynomials over each element with a 
value of 1 at a given element node (α) and a value of zero at all other nodes. The 
velocity vα can be interpreted as the material velocity at node α. The velocity at 

(8.18)σ e
ij =

G

det(F)
FikF

T
kj + B(det(F)− α)δij.

(8.19)u(x) =

n
∑

α=1

vαφα(x).
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all other points in space is a polynomial interpolation between these nodal values, 
dependant on the order of our basis function.

The key step in the finite element method is to construct a “weak-form” of 
Eq. (8.15), which is formed by integrating Eq. (8.15) together with a set of weight 
functions, wα:

This means that we are finding solutions where the error in Eq. (8.15) is “orthogo-
nal” to the weight functions. We then perform integration by parts on the stress 
term to move the derivative onto the weight function,

This is known as the “weak form” of Eq. (8.15). One of advantage of this repre-
sentation is that we no longer need to calculate the derivative of the stress, which 
allows us to use a stress that is discontinuous between elements. In the Galerkin 
formulation of the finite element method [47], the weight functions are chosen to 
be the same as the basis functions φα, this reduces the system to a set of linear 
algebraic equations (one equation for each weight function) which can then be 
solved numerically for the nodal velocity values. The final result is a set of equa-
tions which can be written in matrix-vector form as follows:

where Mpq is a mass matrix that describes the distribution of mass within the con-
tinuum, vp is a velocity vector, Np is the fluctuating thermal force vector, Kpq is a 
viscosity matrix and ∇pU(x) is the elastic force vector. Once we solve this equa-
tion, we obtain the nodal velocity values which can be interpolated throughout the 
system if required. We now discuss the properties of the fluctuating force.

8.3.2  Thermal Noise and the Fluctuation-Dissipation 
Relation

As in other models such as Brownian dynamics or DPD, the thermal noise in 
FFEA must be coupled to the viscosity through a fluctuation-dissipation relation, 
giving rise to a fluctuating stress tensor.

The fluctuation-dissipation relation concerns energy balance at thermal equilib-
rium. On average the amount of energy dissipated from the system by the viscosity 
must be balanced by the energy input from the thermal noise. As the elastic term 

(8.20)
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is conservative, it does not contribute to this energy balance. Thus, we expect the 
fluctuation-dissipation relation for the FFEA system to include terms from the vis-
cosity matrix and the noise vector. By considering the average change in kinetic 
energy over a discrete timestep ∆t, Oliver et al. [53] showed that the noise vector 
must have the following statistics:

These equations are analogous to the fluctuation-dissipation relations for both 
Brownian dynamics and DPD. Specifically, the second moment average of the ther-
mal noise is correlated to the temperature, system time step, and the viscous dissipa-
tion. The only difference is that in Brownian dynamics and DPD the dissipation is via 
a frictional force whilst in FFEA the dissipation is via a viscous stress; this results in 
a matrix for the correlations in thermal forces on the nodes of each element. For first-
order tetrahedral finite elements (first order basis functions), these correlated forces 
can be cast in terms of a thermal stress tensor within a single element, of the form:

where V  is the element volume. In applying Eq. (8.25), seven random numbers 
of unit variance must be chosen at each timestep, for each element in the model. 
These numbers are X0 and the 6 independent elements of the symmetric tensor Xij

. This result matches the mathematics of a much earlier description for the thermal 
fluctuations of continuum fluids by Landau and Lifshitz [59].

To validate that the fluctuation-dissipation relation is correct within the contin-
uum model, Oliver et al. [53] extracted the probability distribution of the nodal 
velocities for several nodes of a cylindrical mesh and showed that these distribu-
tions were in agreement with the expected Gaussian distribution of velocities at 
each node, with covariance �vpvq� = kbTM

−1
pq . Temporal convergence was estab-

lished by noting that the average kinetic and potential energies converged to the 
correct equipartition values with decreasing simulation timestep. Spatial conver-
gence is more subtle; with increasing spatial resolution, the number of degrees of 
freedom increases and so the kinetic and potential energies also increase accord-
ingly (kBT

2
 per quadratic degree of freedom). However, the large scale fluctua-

tions in the deformation of the model were quantitatively shown to converge with 
increasing mesh resolution. To show that the FFEA model explores conforma-
tional space in the correct manner, the thermal deformations of idealised beams 
[60] with various cross sections were simulated, and it was shown using Fourier 
analysis that the computed results matched the predictions for the amplitudes of 
fluctuations of the normal modes. This confirmed that the conformational space 
explored by the beams is consistent with Boltzmann statistics.
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8.3.3  Performing an FFEA Simulation

An FFEA calculation requires low resolution structural information about the 
overall shape of the biomolecule, such as an EMBD electron density map, or a 
SAXS envelope. If available, an FFEA simulation can also be performed using a 
conventional atomistic structure from the PDB, although only the global shape of 
the biomolecule would be used in the calculation. The following procedure is used 
to perform an FFEA calculation (see Fig. 8.7; software tools are given in bold).

1. Obtain information on the overall shape of the biomolecule (e.g. an electron 
density map from the EMDB).

2. Convert the structure to a finite element surface mesh:

Chimera—Visualise the density map at different density levels and export a .vrml 
surface map at the required level.

FFEA_ tools—Parse a .vrml file to remove overlapping and repeated elements.
FFEA_ tools—Convert from a density map to a .surf surface file at the required level.

3. Coarse grain the surface mesh:

FFEA_ tools—Coarse-grain the surface to remove small finite elements. (To be 
physically realistic each element must contain several atoms).

4. Create a volume mesh from the surface mesh:

Netgen/Tetgen—Import .surf/.vrml file and construct a volumetric mesh file, .vol, 
which is used to generate input files for the FFEA simulation.

Fig. 8.7  A flowchart of the meshing process. a Shows a negative stain image of axonemal 
dynein [61], converted into a volumetric mesh. b Shows superposed frames from an FFEA trajec-
tory of an individual dynein molecule, and a screenshot of a simulation of interacting myoglobin 
molecules. c Illustrates the meshing process starting from a PDB file, converting first to a den-
sity map and then creating the volume mesh. This mesh is for human fibrinogen [62], a protein 
involved in blood clotting
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5. Set the material parameters for the structure and the surroundings.
6. Set the characteristic energies of the relevant biomolecular interactions:

FFEA_ tools—Converts a .vol file, together with simulation parameters, into a set 
of input files required by FFEA.

7. Run the simulation for long enough to obtain sufficient statistics:

FFEA—Runs the simulation with the above as input files.

‘FFEA_ tools’ is a toolkit developed in house to streamline the production of the 
relevant input files for an FFEA simulation. It contains file conversion scripts and 
input file creation and manipulation tools, written in Python and C++.

From an EMDB density map an isosurface (surface of constant density) can be 
constructed using isolines, to define a volume. The Chimera visualisation tool [63] 
can be used to view a change in the density level of the isolines, which usually has 
a recommended value on the EMDB. VRML surface files exported by Chimera 
have been known to cause fatal errors with volumetric meshing software, such 
as Netgen [64], due to overlapping surface elements and repeated edges. FFEA_ 
tools contains scripts to parse VRML files and clean them of errors, or create alter-
native surface files straight from the density map. Once a clean surface mesh is 
established, further processing is required to ensure that the object does not con-
tain finite elements that are too small. The timestep required to maintain the sta-
bility of the numerical integration scheme depends on the length of the smallest 
element, so larger elements are computationally more efficient. Consequently, the 
mesh is repeatedly coarse-grained before being parsed to a finite element mesh 
generator like Netgen or Tetgen, which creates the final 3D volume mesh.

The 3D finite element mesh consists of tetrahedra that together make up the 
shape of the biomolecule. For each element, it is necessary to assign the density, 
bulk and shear viscous moduli for the protein and the solvent, as well as the bulk and 
shear elastic moduli for the protein. Typically, we have used values for the viscosity 
that are comparable with that of water and values for the elasticity similar to those of 
low density polyethylene. These values agree with experimentally determined val-
ues for the material properties of biomolecules by AFM [65]. While in principle the 
material parameters can be assigned to each element independently, giving a highly 
inhomogeneous biomolecule, in practice it has been sufficient to use at most two 
different values of Young’s modulus to describe a single macromolecule. The cur-
rent FFEA model includes a local friction term, with associated Brownian noise, to 
model the interaction with the surrounding solvent. However, long-range hydrody-
namic interactions mediated by the solvent are currently neglected.

FFEA simulations performed using viscosities representative of water require 
a long time to converge to thermodynamic equilibrium, because biomolecular 
dynamics are heavily overdamped. These strong viscous interactions with the 
solvent enormously decrease the rate of exploration of conformational space by 
biomolecules, and set the length of the relevant timescales in biomolecular sys-
tems. However, if only thermodynamic quantities are required, the exploration of 
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conformational space can be accelerated by reducing the value of the external vis-
cous drag to that which gives critical damping, although clearly this results in tra-
jectory timescales that are not physically meaningful.

The code has been parallelised for shared memory, and can therefore take 
advantage of parallel processing. The mathematical structure of FFEA, which 
keeps the calculation of the stress local to an element, reduces the communication 
costs meaning that FFEA simulations parallelise efficiently.

Figure 8.8 shows the setup of an FFEA simulation of the measles virus nucleo-
protein capsid. The nucleocapsid is made up of an ensemble of identical protein 
subunits arranged in a helical structure. By duplicating a section of a nucleocapsid 
extracted from an EM density map [66], and taking advantage of the periodicity 
of the helical structure, a longer mesh was produced. This mesh had dimensions 
20 nm by 138 nm, representing 330 protein subunits. The simulations contained 
45,322 finite elements, and required 1,000 h to obtain 250 ns of dynamics run-
ning in parallel on 8 processors. Figure 8.8 also shows the low frequency modes 
extracted from the FFEA simulation trajectory using Principal Components 
Analysis [67]. The low frequency dynamics of the cylindrical virus capsid consists 
of global bending (modes 1, 2, 3, 6 and 7), twisting (modes 4 and 8) and stretching 
(mode 5). These observed modes agree with those expected for a cylindrical elastic 
object suggest that 250 ns is a sufficiently long trajectory for the lowest frequency 
harmonics of the molecule to be captured under critically damped conditions.

A reduced representation of the nucleocapsid was created after the simulation 
by extracting the trajectories of one node at the centre of each subunit, resulting 
in a simplified helix. We assumed that nodes central to each subunit would accu-
rately represent their net motion allowing us to neglect motions local to each sub-
unit. This allowed fast analysis on the motion of the overall capsid and enabled 
the calculation of idealised motion vectors. Taking the dot product of the idealised 
motion vectors with the calculated eigenvectors allowed the modes to be analysed 
in a quantitative fashion, and for the results to be compared with those calculated 
analytically for a perfect elastic cylinder. The results from the long mesh showed a 
stronger correlation with the idealised beam bending modes than when the simula-
tion was run with the original smaller section of nucleocapsid, as the modes pro-
duced by the smaller section are more affected by end effects, which results in the 
modes appearing as combinations of the ideal twisting and bending modes.

For the case of systems with many interacting molecules, the current FFEA 
code has also been parallelised to enable each molecule to be placed onto indi-
vidual processors. Figure 8.9 shows an FFEA simulation of 128 interacting myo-
globin proteins (shown in blue) located between a pair of adhesive surfaces (in 
yellow), with parallel boundary conditions in the xy-plane. This simulation was 
performed to inform the design of protein biosensors for nanotechnological appli-
cations. We have used FFEA to determine how the binding and unbinding rates of 
myoglobin to the surface are affected by the material properties of the protein. For 
individual myoglobins, we have shown that halving the Young’s modulus increases 
the binding constant by a factor of around 4, due to the fact that softer molecules 
can deform to achieve a higher contact area with the surface.
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Fig. 8.8  FFEA simulations of the measles virus nucleocapsid. a Shows the EMBD map, b 
shows the corresponding finite element mesh created and c shows the first 8 dynamical modes of 
the capsid extracted from the FFEA trajectory with Principal Components Analysis
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8.3.4  Prospects for Biomolecular Modelling  
at the Mesoscale

Biomolecular simulation at mesoscopic time and length scales will become 
increasingly important in deepening our understanding of the role of dynam-
ics in biomolecular function due to the growth of lower resolution experimental 
structural databases, such as the EMDB. Most importantly, structural biophysics 
has now developed techniques to look at biomolecules not just in isolation, as is 
the case for those stored in the PDB, but in a biological environment that is more 
similar to the in vivo system [2]. Since these experiments describe biomolecular 
structures, environments and biological processes that occur over time and length 
scales inaccessible to quantum or atomistic simulation, coarse-grained approaches 
will need to be continuously developed and improved. However, given the multi-
scale nature of some of the most important cellular processes, such as the action 
of the ribosome or the muscle protein myosin, it is clear that no single simulation 
method will be capable of spanning such diverse computational regimes. This calls 
for a multi-scale approach capable of combining complementary simulation tech-
niques within a single calculation.
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9.1  Introduction

In this chapter we discuss the various structural aspects of transmembrane proteins 
(TMPs) and survey the tasks and methods needed for modeling their structure. 
The structure prediction of TMPs from the pure amino acid sequence translated 
from genome projects may go through the following steps: (i) remove annotated 
or predicted cleavable parts (transit sequences, signal peptides); (ii) determina-
tion of the protein type (TMP or not); (iii) localization of TM segments within the 
amino acid sequence (topography prediction, 2D prediction) and the soluble parts 
of the protein relative to the membrane (topology prediction, 2.5D prediction); (iv) 
modeling the tertiary structure (3D) of membrane embedded protein parts which, 
depending on the amino acid similarity to the available relatives whose structure 
are already solved, may be based on homology modeling; may use the advan-
tage of threading or may be de novo predictions including the contact prediction 
of amino acids of TM segments; (v) prediction of oligomerization propensity; (vi) 
finding the orientation in the membrane. In the following sections we guide the 
reader through these consecutive steps (Fig. 9.1) on how to derive the biologically 
active form of an unknown TMP purely computationally.
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9.2  Structural Aspects of Transmembrane Proteins

The lipid bilayer is an amphipathic slab with hydrophilic surfaces and a hydro-
phobic core region, from where the water molecules are excluded. Therefore the 
membrane segments of the polypeptide chains must adopt structures where all 
hydrogen donor and acceptor atoms are bound intramolecularly. This constraint 
leads to the formation of α-helical bundles and β-barrel secondary structures that 
are the most common secondary structures in the membrane spanning regions of 
TMPs. Therefore, based on the secondary structure of protein segments in the 
membrane regions, TMP can be classified into two main groups: α-helical and 
β-barrel. All plasma-membrane proteins are α-helical bundles with a large confor-
mational variation, which is partly due to the water molecules penetrated into the 
membrane regions of the TMPs [161] forming water-filled cavities which makes 
the hydropathy-based topology predictions more difficult as well.

Very rarely, coil regions can be found in the membrane-embedded struc-
ture parts, mostly in re-entrant regions (that enter and exit on the same side of 
the membrane) or at kinks, where the translational symmetry breaks. Secondary 

Fig. 9.1  Summary of the prediction pipeline of transmembrane proteins
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structures do not terminate necessarily at the membrane water interface; some-
times these penetrate to the hydrophilic water phase. Often, on the membrane—
water barrier interfacial helices (α-helices laying close and approximately parallel 
to the membrane surface) can be found, which have various (but not fully under-
stood) functional roles, e.g. gating regulation and co-factor shielding [104].

While α-helical TMPs exist in all super-kingdoms, β-barrel TMPs can be found 
only in bacterial porins and in the inner membrane of mitochondria of eukaryote 
cells. For a long time it was believed that β-barrel TMPs always have even number 
of strands and in the range between 8 and 22, but this is refuted by the recently 
solved structure of the voltage-dependent anion channel (VDAC) [9] and the trans-
location domain of bacterial usher proteins [113, 150] containing 19 and 24 trans-
membrane (TM) β-strands, respectively.

The number of TM segments in α-helical TMPs range from 1 up to 24 (sodium 
channel protein type 2, α-subunit), but regarding their number in autonomous pro-
tein domains the highest known number is 15. Genome-wide analyses showed that 
distribution of the number of TM segments in α-helical TMPs is not random, pro-
teins with 6 and 12 transmembrane helices (TMHs), such as small-molecule trans-
porters, sugar transporters and ABC transporters, are predominant in uni-cellular 
organisms [3, 28, 67, 73, 123, 157]. In contrast, proteins with 7 TMHs are frequent 
in worms and human due to the high abundance of G-protein coupled receptors 
(GPCRs) [100]. Partly due to this abundance, the seven-helix membrane protein 
family members are the most important current drug targets.

9.3  Estimated Size of the Structure Space  
of Transmembrane Proteins

For globular/soluble proteins the total number of distinct globular folds that exist 
in nature is predicted to be a rather limited number [23], probably no more than 
10,000 [70, 162], regardless of the astronomical number of the possible combina-
tion of structural elements. In TMPs, due to the physical constraints imposed by 
the lipid bilayer the number of possible folds is much smaller. Most of the TMPs 
adhere to one principal topology, involving one or more α-helices arranged paral-
lel to each other and oriented about perpendicular with respect to the membrane 
plane. For β-barrel TMPs, they have a smaller structural diversity than α-helical 
ones. The short loops between helices constrain the possible folds of TMHs, there-
fore conformation space can be sampled effectively for small numbers of helices, 
and there are only about 30 possible folds for a TMP with three transmembrane 
helices (TMHs) [15]. However, the number of combinatorially possible folds was 
shown to increase exponentially with the number of TMHs to 1.5 million folds for 
seven helices, studies have showed that increasing number of membrane regions 
does not mean the exponential expansion of the fold space. Moreover structures 
with 8 or more transmembrane helices have less different architectures which 
reuse elements of folds with 3 or 4 helices [100]. Therefore the size of the fold 
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space cannot be predicted based on combinatorial considerations. As an upper esti-
mate of the number of different structures, the number of protein families can be 
used that are identifiable based on sequence similarity alone. Obviously this is a 
rough approximation, but provides a definite and reliable upper limit.

Liu et al. [87] showed in a study of 26 proteomes that there are about 10 times 
more soluble protein families than membrane protein families. Oberai et al. [107] 
set up a numerical experiment to estimate the number of distinct TMP folds. They 
found that any given residue has an 80 % chance to fall into one of about 500 fam-
ilies and observed a significant decrease in the number of members between the 
first and the second 20 most populous families. These results indicate that there 
are only a few very large and many very small families of membrane proteins, 
similarly to soluble proteins. The largest families are populated by various signal-
ing proteins (e.g. GPCRs) and channels (e.g. potassium channels) [24, 48, 129], 
different transporters (secondary transporters and the ABC transporter family [32, 
128, 132]), and TMPs involved in energy production (cytochrome b and NADH 
ubiquinone oxidoreductases) [12, 39]. As a consequence of the rapid fall-of and 
the asymptotic tail of the family size distribution, Oberai et al. [107] concluded 
that 670 families will cover 80 % of the structured sequence space but 1,720 fami-
lies are needed to cover 90 % of the structured sequence space for all extant poly-
topic membrane proteins. These numbers are still an upper limit, as in SCOP [2] 
hierarchy a family is a subset of a fold. Assuming that the distribution of folds 
over families is similar to the one of soluble proteins and applying a stretched 
exponential model [44], Oberai et al. [107] estimated that only 550 folds cover 
90 % and 300 folds cover 80 % of membrane protein structured sequence space. 
Finally, taking into account the physical constraint that stem from the membrane 
bilayer environment, they expect this is still an overestimate. Currently about only 
a hundred distinct (good quality, X-ray) transmembrane folds are known from var-
ious organisms. Known TMP structures by now make possible to create model for 
26 % of the human α-helical transmembrane proteome using homology modeling 
(see Sect. 9.4.2.1), this ratio could be increased up to 56 % with 100 more new 
evenly selected and determined structures [115].

Another interesting paper discusses the number of different helix-helix contact 
architectures as a function of the number of transmembrane segments [100]. They 
developed a method for predicting helical interaction graphs and found that mem-
brane proteins with 8 and more helices have significantly fewer arrangements than 
proteins with up to 7 helices. The most striking cases are transporter proteins with 
either 8 or 11 transmembrane helices, which according to Neumann et al., all seem 
to share a common helix interaction pattern. It was observed that TMPs with 10, 
12, 14 membrane segments have significantly more distinct interaction graph than 
TMPs with 11, 13 or 15. This implies a hypothesis, TMPs with more than 8 TM 
segments may originated from TMPs with 5, 6 and 7 membrane regions that them-
selves are distributed over many different helix interaction clusters. While odd 
number of regions cannot stem from gene duplication, this could be an acceptable 
explanation for the phenomena described above [100].
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9.4  Predicting Different Levels of Structures

9.4.1  Topography and Topology Prediction

Starting structure modeling from the amino acid sequence the first task is to check 
the presence of signal peptides and to decide whether it codes a globular or trans-
membrane protein. Here we refer some recent reviews, where these problems are 
discussed [146].

As a second step, one has to locate membrane spanning segments within the 
sequence. The information refers the location of the membrane spanning regions 
within the sequence is called topography. While in the case of helical TMPs the 
transmembrane segments are formed by 15–20 hydrophobic amino acids, in case 
of the β-barrel TMPs the length of the TM segments are shorter and only every 
second amino acid has to be hydrophobic making their topography prediction 
harder. In this section we do not discuss topography prediction of β-barrel TMPs; 
instead we focus on helical transmembrane segment prediction.

Earlier topography prediction methods [35, 74] explored the fact that mem-
brane spanning segments are more hydrophobic than other parts of the protein 
chain. These segments can be identified by averaging the hydrophobicity of the 
amino acids within a sliding window over the sequence investigated. Other statis-
tical approaches, like the Dense Alignment Surface (DAS) algorithm [27] over-
comes the difficulties caused by the different hydrophobicity scales by a special 
alignment procedure [26], where the unrelated TMPs recognize each other with-
out applying any hydrophobicity scales. Later it was shown, that in the case of a 
properly chosen hydrophobicity scale, accuracy of topography prediction can be as 
high as of the best state-of-the-art prediction methods [11].

For topology prediction the next step is orienting the membrane spanning 
segments from outside to inside or vice versa. This is equivalent to localize the 
sequence segments between membrane spanning segments alternatively inside or 
outside. The difference between topography and topology is that topology refers 
the location of the non-membrane segments as well. However, there are only a few 
properties of TMPs that help this task. The first and most prevalent such feature of 
TMPs is that the positively charged amino acids are more abundant on the cyto-
solic part of polypeptide chain, than on the extra-cytosolic ones (positive-inside 
rule) [137, 151]. Most topology predictions apply this rule after the topography 
prediction to choose the more likely from the two possible models [126]. Some 
prediction methods, such as TOPPRED [137, 153], utilize this rule both for topog-
raphy and for topology prediction, by generating several models with certain and 
possible transmembrane segments, and choosing the model where the differences 
of the number of lysines and arginines were the highest between the even and odd 
loops. The MEMSAT method [60] incorporates the positive-inside rule indirectly 
by maximizing the sum of log-likelihoods of amino acid preferences taken from 
various structural parts of membrane proteins in a model recognition approach.

By increasing the number of TMPs whose topology were experimentally 
proven, machine learning algorithms like hidden Markov model (HMM) [119], 
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support vector machine (SVM) [25] and artificial neural network (ANN) [94] can 
provide high prediction accuracies due to the fact, that the amino acid composi-
tions of the various structural parts of TMPs are specific and machine learning 
algorithms are capable of learning these compositions during supervised learning 
[139]. Novel machine learning methods report higher and higher prediction accu-
racies due to the continuously growing and more reliable training sets and com-
bining various techniques (e.g. using SVM or ANN for residue prediction and 
HMM for segment identification [149]). However, as these methods usually oper-
ate with parameter sets that are hard or near-impossible to integrate biochemically 
we cannot learn from these methods about the topology forming rules of TMPs. 
Moreover, to predict the topology of novel TMPs were never seen earlier by the 
machine learning methods, these methods may need to be retrained.

Replacing supervised learning technique by unsupervised one for HMMs, the 
training phase can be eliminated and the dependence on the training set can be 
avoided as well. Methods, such as HMMTOP, therefore do not need to be retrained 
from time to time. The success of unsupervised learning is based on the fact that 
a polypeptide chain of a TMP goes through various spaces of a cell with different 
physico-chemical properties (hydrophobic, polar, negatively charged, water-lipid 
interface etc.), therefore, the amino acid compositions of the TMP segments will 
be different in each type of regions. We do not need to know and as a consequence 
the constructed method does not need to learn these characteristic amino acid 
compositions to successfully predict the topology of TMPs. According to the law 
of maximal probability, these structural parts can be identified by segmenting in a 
way, that the amino acid compositions of the various structural parts show maxi-
mal divergence. This partitioning can be found by hidden Markov models.

There are two additional possibilities to increase the prediction accuracy of 
topology predictions. The first one is the utilization of consensus prediction 
 methods. In addition to getting better predictions, using the results of several pre-
diction methods allows us to estimate the reliability of the predicted topology as 
well. The consensus approach was also applied to predict partial membrane topolo-
gies, i.e. the part of the sequence where the majority of the applied methods agree. 
The other technique to increase the prediction accuracy is the use of constrained 
prediction methods. These can be used if there is/are one or more experimental data 
about the topology and prediction method can handle these data as constraints and 
not only to filter results that agree with the given experimental data. Thus, given a 
constraint (e.g. the N-terminus is inside), a constrained prediction method gives a 
prediction that satisfies this criterion. In a HMM based method this is achieved by 
the modification of the Baum-Welch and Viterbi algorithms. The first such applica-
tion was HMMTOP2 [145]. Later the two other HMM based methods, TMHMM 
and Phobius were also modified to include this feature [62, 139]. The mathematical 
details of the necessary modification can be found in Ref. [6]. The optimal place-
ment of constraints was also investigated, and it was shown that the accuracy can 
be increased by 10 % if the N- or C-terminal of the polypeptide chain is constrained 
in the above mentioned way, and 20 % is the maximum obtainable increase if one 
of each loop or tail residue in turn is fixed to its experimentally annotated location 
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[120]. Constraints can be either experimental results or bioinformatical evidence. 
In the first molecular biology experiments transposons were used to create ran-
dom chimera proteins [52], later more specific molecular biology techniques were 
applied to investigate the topology of TMPs of interest (for review of these tech-
niques see [144, 148]). The continuous development of biotechnology allows sci-
entist to analyse the topology of all TMPs in an organism. In the topology analyses 
of E. coli and S. cerevisiae, the results of C-terminal fusion proteins were applied 
as constraints [28, 31, 67, 68, 120]. Recently high through-put techniques became 
available, where the surface of a living cell is labeled by chemical agents and the 
labeled peptides are investigated by coupled analytical technique after purifica-
tion and degradation [13, 46, 93, 101]. In TOPDB more than 4,500 experimental 
results were collected for ~1,500 TMPs, and these constraints were applied to make 
constrained topology predictions for the ~1,500 TMPs. Regarding bioinformati-
cal approaches, locations of compartment specific domains and sequence motifs 
can also be used as constraints. Such domains and motifs were collected into the 
TOPDOM database [144] from various databases such as SMART [45, 84], Pfam 
[36] and Prosite [136] for the purpose of constrained prediction.

9.4.2  Tertiary Structure Prediction of Transmembrane 
Proteins

Despite of the theoretical and computational difficulties, during the last two decades 
scientists have developed valuable methods to approximately model the tertiary 
structure of TMPs. Predicting TMP structures, at first, seems to be a relatively easy 
problem compared to understanding soluble protein structures. The fact that many 
TMPs share similar folds even with marginal sequence identities [43, 129] proves 
that TMPs are more structurally conserved than globular proteins. This is due to the 
strict conformational constraints that come from the membrane lipid bilayer, which 
dramatically decreases the size of the conformational space. However, the presence 
of an additional environment may cause previously unforeseen difficulties.

There are three main strategies to solve the tertiary structure of unknown TMP 
sequences. Homology modeling can be used when there is a sequential homologue 
with sequence identity greater than 20 %. In the case when no sequential homo-
logue is available but (ideally) all folds are known, one can use threading methods 
to select the best packing of the query sequence. When neither sequential relative 
nor all folds are captured solely, de novo methods are still usable. It is worth men-
tioning that the order of this enumeration reflects the reliability of the methods as 
well (Fig. 9.1). Therefore it’s not surprising that—due to the fundamentally unfea-
sible sampling of the whole structure space while looking for native structures—
de novo methods are at the end of this list.

In the following sections we go through these three main families of trans-
membrane tertiary structure prediction strategies, namely comparative modeling, 
threading and de novo methods.
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9.4.2.1  Comparative Modeling Techniques

Comparative modeling (also known as homology modeling) is a structure build-
ing strategy for unknown protein structures, which can be used when at least one 
sequential homologue with known structure is available for a given query TMP. The 
3D structure of the sequentially homologue protein are used as a template (or target). 
Once the template has been selected and an alignment is generated between the tem-
plate and target sequences, the non-conserved residues are replaced and insertions 
(regions with no template structure) are modeled as loop regions using de novo meth-
ods [117]. It is important to note that as for globular proteins, the accuracy of a homol-
ogy model is strongly dependent on the identity between the two sequences [38].

While this technique basically relies on sequence alignments, at first, we have 
to declare the sequence identity level from where two TMPs can be considered as 
structural homologue. It was shown for globular proteins [125] that proteins with 
30 % sequence identity the probability of sharing the same fold is ~90 % (below 
25 % identity this probability drops to 10 %), in alignments longer than 80 resi-
dues. Although the application of this well-known fact has become second nature 
for researchers in the case of globular proteins, shedding light on the twilight 
zone (where structural similarity starts to diverge rapidly as sequential identity 
decreases) of TMPs is only a recent improvement [38, 108]. This lagging is due to 
the difficulties in experimental structure determination methods [75] applied and 
its consequence, the relatively small number of known transmembrane structures.

In a recent study [108], sequence–structure relation was analyzed using TMP 
structures with resolution <4 Å. It was found for the membrane region of TMPs 
that at >35 % sequence identity the structure RMSDs (RMSD—Root Mean Square 
Deviation) were 0.89± 0.43 Å and 0.80± 0.32 Å for α-helical and β-barrel mem-
brane proteins, respectively. In addition, at 20–30 % sequence identity RMSDs 
increased—as expected—to 1.59± 0.55 Å and 1.30± 0.35 Å. According to expec-
tations, TMPs show lower RMSD values than globular proteins, as structure in 
the membrane region is more conserved or restricted than in the non-membrane 
regions. Consequently, in the case of membrane regions of TMPs it is possible to 
use structures even with low sequence identity (<20 %) for comparative modeling. 
Moreover, β-barrel architecture seems much more robust to sequence variations. 
They found that sequence–structure similarity is generally independent of the num-
ber of membrane regions. The authors [108] concluded that functional mechanisms 
are preserved by high structural conservation and their functional specificity is 
mainly determined by the variable solvent-exposed regions.

Although homology modeling of globular proteins is a tried-and-true technique 
to predict 3D structure of query sequences having a sequential homologue, but in the 
field of TMPs this approach is in its infancy. There are some examples for modeling 
GPCR receptors [4, 43], but there isn’t any fully automated, membrane protein spe-
cific method. Other, non-specific methods [122] are used as well, but the constraints 
imposed by the membrane are not utilized in the modeling, and the applied scoring 
functions designed for globular proteins might lead to distorted models.

Neglecting the scoring function and other technical details, a typical template-
based modeling protocol can be briefly described in the following steps. At first, 
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query protein searched against a related database containing TMP sequences with 
known structure and one or more homologue templates are selected based on their 
sequential identity. Next, query sequence is aligned to all template sequences. 
These steps are usually merged and performed together, while most methods for 
detecting templates rely on the production of sequence alignments. As known, 
the primary criteria of database search algorithms is speed, therefore alignments 
resulted in database searches may not be as accurate as alignment produced by 
non-searching techniques. However, these kinds of algorithms are widely used 
to detect, and to generate alignment for homologue templates from database, e.g. 
PSI-BLAST [1, 131] and HHsearch [138]. The alignment of the target to template 
sequence(s) is the most important step of the whole procedure. Aligning trans-
membrane sequences used to be a long-standing unsolved problem, but by now 
numerous TMP sequence aligner methods have been developed, e.g. AlignMe 
[140] and MP-T [53]. According to Forrest et al. [38], comparative modeling of 
TMPs has been estimated to obtain accuracy as high as that of soluble proteins if 
the alignment for TMPs achieves the accuracy of its soluble protein counterpart.

The last step is the coordinate generation based on the alignment. For predict-
ing the conformation of loop regions one can use Loopy [163], which is one of the 
fastest or PLOP [57], which is one of the most accurate techniques. FREAD [22] 
uses environment specific scoring parameters to improve the sampling for their loop 
structure prediction algorithm. RAPPER [29] and FALCm4 [81] rely on fine-grained 
residue-specific ϕ/ψ propensity tables for conformational sampling. Recently a 
coarse-grained method for loop prediction [90] was also developed of which compu-
tational time scales better than others, while the accuracy was preserved.

To highly increase the accuracy of the final structure, a genetic algorithm devel-
oped by John et al. [58] can be used to iteratively build better alignment for distant 
homologues. This method builds target-template alignments and structure models, 
and after assessing generated models, the alignments of the best models are used 
for generating further alignments.

Here we sketched the basic principles of the homology modeling techniques, 
in the following we review some recent methods based on comparative modeling.

A web server for homology modeling of TMPs named Memoir [34] is a pipe-
line utilizing iMembrane [65], a membrane protein annotator using CGDB [21] 
coarse-grained database; MP-T [53] target-template aligner; Medeller [66], a coor-
dinate generator and FREAD [22], a loop modeler. Memoir does not search for 
a homologue template, therefore it needs this as an input parameter and does not 
provide any information on the reliability of the resulting structures.

A novel method, GPCRM [79] is developed for GPCR membrane protein struc-
ture predictions with averaging of multiple template structures and profile-profile 
comparison. It also utilizes two distinct loop modeling techniques: Modeller [154] 
and Rosetta [124] and excluding models with lipid penetrated loops.

At the border of homology and de novo modeling, the SWISS-MODEL [4] 
7TM interface is developed for the modeling of TMPs with 7 transmembrane 
helices. SWISS-MODEL 7TM performs homology modeling on experimental 
and theoretical templates; to use this server user needs to provide the location of 
TMHs in the query sequence and also a template.
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9.4.2.2  Threading Algorithms

Threading becomes very useful in cases when a sequence does not have any 
sequential relative with a known structure. This is a common scenario in the 
case of TMPs, where only a highly restricted number of TMPs show significant 
sequence identity to any known structure. As a consequence, homology modeling 
techniques discussed above have serious limitations which can be bridged using 
threading. Nevertheless, for building an efficient and reliable pipeline first we need 
a representative structure set of the conformational space of TMPs.

As discussed in Sect. 9.3, only a very small ratio, about the one fifth of the 
TMP structure space is known. Therefore, an efficient threading algorithm must 
not only find the structure with the lowest energy, but it has to discriminate native 
and the ‘most-stable’ decoy structures as well. These structure assessing algo-
rithms are discussed in Sect. 9.4.2.4.

Due to the significant physico-chemical differences between soluble and mem-
brane proteins, threading methods developed for globular proteins cannot be used 
directly, however a few methods have been customized for TMPs.

TASSER [165] is a two-step method that threads the sequence onto parts of 
solved protein structures and then refines the resulting template. The method was 
validated on a set of 38 non-homologue TMP structures, a little fewer than half of 
which have the RMSDs less than 6.5 Å compared to the native structure, but in 
the other cases RMSDs are in excess of 10 Å. It was used systematically to pre-
dict human GPCRs and these seemed consistent with experimental data. However, 
when there was no significant sequential relative, it was uncertain if the results 
represent the native structure.

A recent method, TMFR [158] is a sequence based fold recognition algorithm 
and has the accuracy of 49.2 and 82.2 % for α-helical and β-barrel TMPs, respec-
tively. It utilizes topological features which improve the fold recognition [49] and 
can accurately align the target sequence to the template structure and generate reli-
able alignment raw scores to evaluate the structural similarity between the target 
and template. This provides practically only a sequence alignment. Therefore, 
algorithm traces back structure prediction problem to something akin to homology 
modeling.

However, this type of approximation widen the horizon of TMP structure pre-
diction significantly, unfortunately the lack of structural representatives limits the 
usability of threading henceforward. In the next subsection, de novo methods are 
discussed which try to get over these difficulties.

9.4.2.3  De Novo Methods

De novo modeling does not use homologue proteins of known structures to predict 
the structure of an unknown protein. For an effective de novo structure prediction 
method there are two crucial requirements: accurate energetic representation of a pro-
tein structure and an efficient sampling of conformational space [82]. While structural 
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space expands rapidly with the sequence length, these methods are mainly applica-
ble for small soluble proteins [16], not for TMPs, which are often large structures 
[158]. Although methods do not have restrictions on the number of known structures 
as homology modeling or threading do. However, as combinatorial approaches these 
require large amounts of computing time which often cannot be run on a single desk-
top computer, hence reducing their availability for structural biologists.

Contact Aided Structure Prediction

Contact prediction methods originates from the article, written by Göbel et al. [42], 
that describes how one could infer spatial information from multiple sequence 
alignments. This concept is based on the observation that the structure is more con-
served than the sequence. Therefore, if a residue fulfilling structurally important 
role in a protein mutates, than another spatially close residue has to change to pre-
serve both the structure and the function. Later it turned out that this assumption is 
a poor approximation of real proteins and their evolutionary processes.

Contact prediction methods can be classified into two main categories, namely 
local and global methods. The first one contains the ‘classical’ correlated muta-
tion algorithms (CMA), which could be subdivided into further subcategories. To 
extract spatially close residues from multiple sequence alignments simple covari-
ance analysis with various substitution matrices [42, 109]), χ2-test [64], infor-
mation theoretic approaches [33], machine-learning [20, 103, 118], alignment 
perturbation (SCA [88], ELSC [30]), probabilistic and empirical matrix methods 
or formal language [155, 156] were used. Further on, consensus methods are devel-
oped [41], which did not succeed to significantly overcome the performance of the 
previous methods (Acc. ~10 %, see Ref. [55]). CASP10 [95] confirmed the need 
for the development of contact prediction methods. On a test set of newly iden-
tified structures the best algorithm performed at an accuracy of ~30 %. Machine 
learning methods (PROFcon [118], CMAPpro [20], MEMPACK [106], PhyCMAP 
[159]) generally outperform others based on statistical considerations. Despite of 
the better predictor abilities, machine learning based approaches make their results 
difficult to interpret biophysically. In addition, the lack of a physical model makes 
the limits of their usability ill-defined. A recent study [47] showed that using three 
representatively selected contact prediction methods, there is no such linear com-
bination of selected local techniques which could reach a satisfiable performance 
level. In addition, when a consensus method was trained and tested on only two, 
ABC-B and ABC-C protein families, despite of a nearly over parameterized model, 
these techniques could not reach a satisfying performance limit.

The main problem is that the observable correlations among sites do not stem 
from spatial closure purely. Atchley et al. [5] formalized the sources of these cor-
relations, that—apart from structural constraints—could came from phylogenetic 
noise, function and higher-order statistical non-independence of positions. In addi-
tion, random noise or uneven sampling could bias measured correlations as well. 
The orders of magnitude of these factors are investigated by Noivirt et al. [102]; 
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they found that correlation from structural, functional and phylogenetic constraints 
are in the same order of magnitude. Therefore, using background co-evolution sig-
nal correction [33] proved to be a valuable tool to reduce phylogenetic noise and to 
increase precision of methods significantly albeit even these precisions remains low.

Even if we neglect the disturbingly high correlation from functional and phy-
logenetic sources, there still remains a significant problem, namely disentangling 
direct and indirect interactions [17]. Global methods can take it into account with 
estimating joint probabilities of multiple residues. For reliable statistics huge num-
ber of sequences is required, which is a limiting factor still could not be overcame 
yet. Burger and van Nimwegen [17] had developed a Bayesian-network based 
method, which can take into account that the probability for residues to be in con-
tact depends on their primary sequence separation and that highly conserved res-
idues tend to participate in a larger number of contacts [17]. With this or other 
methods using maximum-entropy model [77, 97], sparse inverse covariance esti-
mating [59] approaches could break through the barriers set by indirect contacts 
and multiple correlations. This network-based conceptional change of view and 
the increased size of sequence families result in significant performance gain.

Another possibility for calculating structural constraints is the prediction of heli-
cal interaction only, instead of predicting directly residue—residue contacts. It is 
an easier task than identifying all individual residue contacts in an α-helical TMP. 
However, this does not give any information on the orientation of helices and all the 
helices are treated as perpendicular to the membrane plane [40, 100]. Using pro-
pensity estimation techniques, e.g. lipid exposure predictors, the precision of helix-
helix interaction and orientation estimations can be improved [92, 103, 116]. It has 
been known for a while that the tilted orientation of transmembrane helices is a 
principal compensation mechanism for hydrophobic mismatch [111]. Nevertheless, 
spanning regions are not necessarily straight: kinked or bended helices exist as well 
[76, 152], which complicates helical contact prediction even further.

These methods are valuable tools in themselves, which help to get closer to the 
biological understanding of TMP structures, functions and their mutational pro-
cesses, but unfortunately they are still not as trustworthy as e.g. topology predic-
tion techniques.

It is worth to mention, contact predictions cannot be used to directly reconstruct 
the 3D structure of proteins [110] not even using perfect predictor, not even for 
TMPs. This is due to their contradictory results originates from the oligomeriza-
tion or conformational changes of the studied proteins. In the case of oligomers we 
would need to distinguish between intra- and interchain contacts. Another prob-
lem arises from multiple conformations of proteins, as in the case of the open and 
closed conformations of the E. coli GlpT or human OCTN1 [96]. When neither 
conformation change nor oligomerization has an influence on the inspected protein 
structure, theoretically an essential set of structure determining residue contacts is 
enough to replicate the 3D structure [130].

If we approximate the given problem from a reverse way, we could use pre-
dicted contacts as constraints in simulated annealing simulations [54, 91] or to aid 
the separation of native like TMP folds from decoys [92, 103, 127]. Obviously, 
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one could use experimental techniques, such as e.g. NMR, to earn useful structural 
constraints to build TMP model structures, but in this section we discussed this 
problem from the computational point of view only.

Forcefield-Based Approaches

There are many forcefield-based methods for determining the 3D structure of 
proteins; here we review some of those that were developed for TMPs. Given the 
structural simplicity observed in the β-barrel conformational space, structure pre-
diction methods focused on estimating structures of α-helical TMPs. This imbal-
ance will be observable in this paragraph as well.

In the early studies, such as Fleishman and Ben-Tal [37] residue environment 
preferences were used to predict the likely arrangement of transmembrane helices, 
and they were able to predict the native structure of TMP glycophorin A. Ledesma 
et al. [80] suggesting a model for the uncoupling protein 1 (UCP1), utilizing a com-
putational docking method. Chen and Chen [19] used a lattice model of membrane 
proteins with a composite energy function to study their folding dynamics and native 
structures in Monte Carlo simulations. This model successfully predicts the seven 
helix bundle structure of sensory rhodopsin I by employing a three-stage folding. 
FILM [112] was developed for predicting small TMP structures based on assembling 
super-secondary segments taken from a protein structure library. The native structure 
is searched by simulated annealing. The main limitation of FILM is that the potential 
function is not able to reproduce the compactness of transmembrane bundles.

RosettaMembrane [164] (a derivation of Rosetta [124]) uses an all-atom 
physical model to describe intra-protein and protein-solvent interactions in the 
membrane environment. The surrounding environment is divided into 5 layers: 
water-exposed, polar, interface, outer and inner hydrophobic in both directions 
of the membrane core. Here a log-likelihood pair and environment potential were 
used, which penalizes steric overlap but favours packing density like characteris-
tics of membrane proteins and strands. The method was tested on 12 membrane 
proteins with known structure, The length of the query sequences were between 
51 and 145, which was predicted with RMSD <4 Å. However, mainly due to the 
technically unfeasible sampling of the conformational space this method performs 
poorly for large and complex proteins, independent on being soluble or trans-
membrane. In a newer version [7] of RosettaMembrane, experimental and pre-
dicted constraints were used to aid structure prediction. A great advantage of this 
method is that it can take into account cofactors, which could significantly modify 
structures.

BCL::MP-Fold [160] uses a three layer (solution, transition, membrane) 
implicit membrane representation with transition regions and a knowledge-based 
potential derived using Bayes’ theorem and the inverse-Boltzmann relation. The 
final score resulted as the linear combination of many energy terms with optimized 
weights. The search for the native structure starts from randomly placed helices 
oriented perpendicular to the membrane plane. As a next step, folding is per-
formed with simulated annealing [63].
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As GPCRs are the most common drug targets, specific methods for predict-
ing GPCR structures, such as MembStruk [85, 147] and PREDICT [135] have 
been developed as well. Both methods provide full-atom models for GPCRs on 
the basis of physico-chemical principles. In the PREDICT algorithm a concept of 
structural decoys is employed to ensure that the algorithm identifies the correct 
structure and to avoid trapping in a local minimum.

3D-SPOT [99] is a template-free method utilizing a statistical mechanical 
model [98] and an empirical potential function; TMSIP [56] is to predict the 3D 
structure of a given β-barrel TMP. While this method is based on physical inter-
actions and does not require template structures, it can be applied for predicting 
structures of novel folds. The method performs well; in a blind test it was able 
to generate accurate structures of the transmembrane regions with a median main 
chain RMSD of 3.9 Å, on a set of 23 proteins.

9.4.2.4  Validating Predicted 3D Structures

Several methods have been developed for judging the reliability of predicted struc-
tures and identifying erroneous regions. Methods like PROCHECK [78] can be 
used for TMPs as well, because it takes into account only fundamental properties, 
namely the ψ/ϕ backbone torsion angles. There are various attempts to develop a 
measure, like the normalized QMEAN score [10] for soluble proteins, describing 
absolute quality of each structure for membrane proteins too. Phatak et al. [114] 
described a method filtering near-native structures from decoys using low-com-
plexity Support Vector Regression models for predicting relative lipid accessibil-
ity (RLA). The quality assessment is based on the consistency of the predicted and 
observed RLA profiles. ProQM [121] utilizes SVM and membrane protein spe-
cific features, tested on GPCR structures. As it turned out, this method is capable 
of disentangling correct models from incorrect ones and has the ability to identify 
poor quality regions. IQ (Interaction-based Quality assessment) [50] incorporates 
four types of inter-residue interactions and achieves high prediction power on the 
independently constructed dataset (GPCR Dock 2008 (206 models), GPCR Dock 
2010 (284 models), and HOMEP (92 models)). However, further validation of this 
method is needed. Recent results suggest that among conformations very dissimilar 
to native structures, this scoring function cannot correctly identify the best one. This 
is largely understandable since this scoring function relies primarily on the number 
of hydrophobic interactions. Lots of incorrectly formed hydrophobic interactions in 
decoy conformations could bias the IQ value (Li Zhijun personal communication).

9.4.3  Quaternary Structures of Membrane Proteins

As it was discussed earlier, genome-wide analysis of domain combinations of 
helical membrane proteins revealed that α-helical TMPs exist mostly as  single 
domains. Oligomerization within the membrane may could be the general 
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mechanism for membrane proteins to gain new biological functions [83, 86, 87]. 
Therefore, discovering principles of oligomer formation of TMPs is needed to 
understand theirs functions and to gain new therapeutic strategies.

For globular proteins there are various methods to predict oligomerization pro-
pensities. PQS [72] and PISA [51] can identify the biologically active oligomer 
from X-ray structures. However, these methods cannot be used for TMPs, there-
fore in the PDBTM [71, 142, 143] database a simple homology search was used 
for predicting oligomeric state of potentially existing novel transmembrane struc-
tures, independent on their type (α-helical or β-barrel).

Bowie [69] and coworkers predicted the structure of α-helical TMP oligomers 
(glycophorin A and M2 proton channel) using knowledge of the oligomer sym-
metry. They used a simple softened van der Waals potential and Monte Carlo mini-
mization to pack ideal α-helices. Bordner [14] have developed a method to predict 
biding sites of TMPs using a Random Forest classifier, trained on residue type dis-
tributions and evolutionary conservation for individual surface residues, followed 
by spatial averaging of the residue scores. Random Forest predictions were first 
made for individual surface residues and then the resulting scores of nearby resi-
dues were averaged in order to arrive at the final prediction score. Docking based 
approaches for predicting oligomerization has been developed as well [18]. In a 
recent review, the suitability of some widely-used docking algorithms for mode-
ling complexes of α-helical TMPs was studied and the dependence of the docking 
performance on the protein features discussed as well [61].

Although α-helical TMPs pose a greater challenge, the oligomerization state 
of β-barrel membrane proteins can be accurately predicted computationally [98]. 
Based on the TMSIP [56] empirical potential function and the reduced confor-
mational state model, extensive and contiguous weakly stable regions in many 
β-barrel membrane proteins seem to be an indicator of oligomerization propensi-
ties of β-barrel membrane proteins. Furthermore, as structural information is not 
essential for such predictions, the oligomerization state can also be predicted quite 
successful even when only sequence information is considered [98].

As it was discussed, there are various methods to model the quaternary struc-
ture of a TMP if it is a homomer or all the different subunits are known. Cases 
when the other subunits are unknown cannot be solved yet.

9.5  Orientation of Membrane Proteins in the Lipid Bilayer

Neither monomeric nor oligomeric TMPs do not exist alone without the amphi-
philic membrane bilayer. By removing the hydrophobic environment the native 
structure breaks down. For experimental structure determination special han-
dle with detergent is needed to extract TMP from the membrane and to preserve 
its native structure. Accordingly during experimental structure determination of 
TMPs, the information on the orientation disappears. While this information is 
essential for understanding the biological function and the mechanism of action 
of TMPs, experimental methods cannot recover it and thus has to be defined using 
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computational techniques. Orientation and burial of TMPs are very important e.g. 
for drug design to identify accessible parts of TMPs.

There are various attempts to predict orientation and burial of TMPs. One of the 
first methods was IMPALA [8], which uses amino acid propensities. TMDET [141] 
algorithm utilizes a geometrical algorithm to locate the most probable orientation 
of the given TMP in the membrane slab. OPM [89] applies a more sophisticated 
description of the problem, but does not outperform TMDET significantly. Senes 
et al. [134] have developed an empirical low-resolution potential called Ez, for  
protein insertion in the lipid membrane. A recent paper describes a method for pre-
dicting membrane protein orientation using a knowledge-based statistical potential 
[105, 133].
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10.1  Introduction

While the three-dimensional structure of biological macromolecules provides a 
wealth of information about their architecture, organization and reactive sites it is 
evident that just the knowledge of their static coordinates is not enough to pre-
cisely describe their mode of action. Thus protein dynamics (in other words inter-
nal mobility), the timescale of these motions and all the important states a protein 
explores during its folding process should also be scrutinized in order to under-
stand its kinetics and thermodynamics [1–3].

Proteins are not static entities but rather dynamic, flexible molecules where 
the internal mobility significantly affects their biological function. In solution 
proteins constantly fold and unfold occupying an astronomical large number of 
conformational states called micro states. In living cells they also get synthesized 
and degraded thus they exist in a well-balanced steady-state condition. Protein 
plasticity allows fluctuation around its average three-dimensional structure. This 
fluctuation occurs over a wide range of time-scales, from bond vibration on the 
picosecond timescale to the folding process, which may take minutes or even 
hours. Protein dynamics influences several functions, such as catalytic activity of 
enzymes [4], ligand recognition [5], signalling and regulation [6], as well as sta-
bility [7]. Furthermore, dynamics affects protein folding, aggregation, as well as 
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ligand binding [8]. Fluctuation enables some proteins to perform multiple distinct 
functions and it is important for the evolution of novel functions [9].

Protein plasticity can be assessed at the atomic level by two major techniques, 
computational molecular dynamics (MD) and nuclear magnetic resonance (NMR) 
spectroscopy. MD calculations provide protein properties on the basis of explicit 
structural models, while NMR spectroscopy can study experimentally a wide 
range of time-scales that a protein explores throughout its lifetime in a compre-
hensive, site-specific and non-invasive manner. These two techniques complement 
each other and therefore they are important tools in understanding the details of 
dynamic processes in proteins. In this chapter first we give an overview on their 
most important aspects, then we will discuss two case studies, the Trp cage mini-
protein and podocin.

10.2  Molecular Dynamics of Peptides and Proteins

A versatile computational tool for the study of protein movements is molecular 
dynamics, a method, which is based on a simple empirical energy expression for 
a molecular system. Since quantum mechanical calculations are not tractable for 
such large systems, the much simpler molecular mechanics (MM) or force field 
methods are applied. Molecules are treated as group of atoms, each represented by 
a point mass, which are connected by bonds, represented by strings. Forces acting 
along bonds are described by simple mathematical formulae, which are adapted 
from classical physics. The total energy of the system is then calculated as the sum 
of some simple terms:

where subscripts refer to stretching, bending, torsion, out-of-plane bending and 
nonbonded terms, respectively. The above expressions are defined as follows

where rij, r0ij, θijk and θ0ijk are the actual and equilibrium bond lengths and bond 
angles, respectively. ϕ is the dihedral angle, χijk;l is the angle between the bond jl 
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and the plane ijk, where j is the central atom. Kstretch, Kbend, Ktorsion and Kout of plane  
refer to respective force constants; n is an integer number. All these, as well as 
Anonbonded, C6 and C12 are adjustable parameters. qi is the net charge on atom i, D 
is the so-called dielectric parameter. For review and comparison of various force 
fields see [10–13].

In order to reduce computational efforts transferable groups of atoms (e.g. 
alkyl) may be considered as a single interacting unit. Empirical parameters in 
Eqs. (10.2)–(10.6) are fitted to experimental or calculated data. In order to allow 
flexibility and better transferability between various molecules, different param-
eters are used for atoms with different degree of hybridization, in carbonyl or 
peptide groups or in aromatic systems. Thus, the total number of adjustable 
parameters may considerably increase. As the number of atom pairs increases 
quadratically, in order to reduce computation time used for the Vnonbonded term 
most programs use a cutoff value. It has to be noticed that a given set of param-
eters works only for a given force field, and parameters cannot be transferred 
between different force fields.

Basically two philosophies of parameterisation can be followed. Class I force 
fields like AMBER [14] or GROMOS [15], applied to proteins, nucleic acids and 
carbohydrates are based on experimental data and work with a simpler energy 
expression. Class II force fields, like the Merck Molecular Force Field [16] 
include higher order and cross terms. These are calibrated to quantum mechani-
cally calculated energies and gradients, which increases their potential. Lots 
of freely or commercially available software packages make use of different 
force fields for biopolymers. Most popular are AMBER [14], GROMACS [17], 
INSIGHT II [18], SYBYL [19] and CHARMM [20]. These are licensed packages 
with various components.

Once we have a force field for the calculation of energies related to various 
structural arrangements of a protein molecule, MD simulation can be used for 
the analysis of motions that tracks the time-dependent positions of all atoms (for 
reviews see Refs. [21–23]). This requires the exploration of high-dimensional 
potential surfaces, where both location of the minima and paths connecting those 
are relevant to function. Time spans related to various types of motions in proteins 
are displayed in Table 10.1.

When doing MD simulations, Newton’s equations of motion are solved in small 
integration steps. The potential energy is derived from a chosen force-field and is 
used for assigning the instantaneous velocities to the atoms of the system in study. 

Table 10.1  Time spans and associated motions in proteins

Time span (s) Associated motions

10−15–10−12 Bond stretching, angle bending

10−12–10−9 Side-chain movements, local rearrangements, loop motions, collective motions

10−9–10−6 Domain movement, secondary structure conversion

10−6–1 Folding, unfolding
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For N interacting atoms, the local forces can be calculated by Newtonian mechan-
ics with

and

where V(r1, r2,…, rN) is the potential function of the force field. Calculated velocities 
are taken to be constant for the duration of the time-step (Δt) and the movement of the 
atoms during that time creates a new conformation. To stabilize the algorithm, veloci-
ties and new positions are calculated at times that are shifted by Δt/2 with respect to 
one another. A straightforward example is the so-called leap-frog algorithm, where

with

The time step Δt should be adjusted to the fastest motion to be taken into account, 
while the length of the simulation must refer to the timescale of the motions to be 
modelled.

Because the atoms are moving, kinetic energy, temperature and pressure can be 
assigned to the system, its entropy, free energy and average geometric descriptors 
can be calculated. This creates a direct connection between macroscopic observa-
bles and microscopic events. Realistic description of proteins requires inclusion 
of solvent effects, thus the molecules are immersed in a dielectric medium, most 
often and preferably, in a box containing explicit water molecules and salt ions. 
Periodic boundary conditions are applied, which means that we look at the simu-
lation box as if it were surrounded by an infinitely extended series of copies of 
itself, thus dissolving the boundary of the local system and the artefacts due to 
edge-effects. This arrangement allows for keeping the particle number constant 
(any atom leaving the local box will reappear at the opposing side) and for keep-
ing and summing the long-range component of the electrostatic interactions which 
does not diminish within the usually chosen box sizes.

The length of the simulation should be suited to the most time-consuming process 
under study; however, the issue of convergence should also be addressed. MD simu-
lations are considered converged, or equilibrated, when all properties of the system 
become independent of the chosen time of sampling, thus the length of the trajectory. 
This is especially difficult in case of thermodynamic properties relying on the deter-
mination of the entropy, since this quantity continues to increase with simulation time 
until all local minima are sufficiently sampled, with an estimated convergence time 
that might exceed 1 ms in case of most protein molecules. However, conformational 

(10.7)Fi = −
∂V

∂ri

(10.8)Fi = mi

∂2ri

∂t2

(10.9)vi

(

t +
�t

2

)

= vi

(

t −
�t

2

)

+
Fi(t)

m
�t

(10.10)ri(t +�t) = ri(t)+ vi

(

t +
�t

2

)

�t



22710 Dynamics of Small, Folded Proteins

descriptors and free energy differences are decidedly less sensitive to running time 
and thus can be estimated much better [24]. Besides lengthening the simulation, 
converged results can also be reached by increasing sampling efficiency. One such 
method is replica exchange molecular dynamics (REMD). During a REMD simula-
tion, a set of simulations are carried out in parallel, which describe the same system 
in very similar states at a well-chosen set of different temperatures. After short inter-
vals, exchange of conformations between the different simulations (the replicas) is 
attempted, the success of which will depend on whether the given structure is sam-
pled in the replica run sufficiently as compared with a scaled random probability. 
This algorithm provides a possibility of crossing high-energy barriers, by boosting the 
probability of arrangements that are only typical at high temperatures in the consid-
eration of lower temperature ensembles as well. The appearance of such high-energy 
conformers might lead to rearrangement into local minima already mapped at lower 
temperatures but might also lead to crossing into under-sampled territories [25, 26].

Beyond the description of stable, folded states of proteins, MD trajectories can 
be used to understand folding and unfolding processes and kinetic behaviour using 
the ideas of ensemble thermodynamics. For example, so-called Markov state models 
(MSM) can be derived by clustering the obtained conformers into microstates and 
estimating the “history-free” crossing probabilities between these states [27, 28].

Even without the application of MD simulation, topology-encoded dynamic 
nature of proteins can be uncovered by application of elastic network models, such 
as the anisotropic network model or the Gaussian network model. It has long been 
known that proteins of similar fold exhibit similar large-scale motions. Normal 
mode analysis of equilibrium structures allows for fast and effective investigation 
of both local movements, such as side-chain fluctuations, and of protein collective 
motions (resulting from the participation of entire domains or substructures) lead-
ing to functionally significant rearrangements [29, 30].

Theoretical considerations of protein dynamics have always relied on experi-
mental results for starting or reference structures. Protein crystallography is the 
overwhelming source of such information reporting stable conformations of these 
macromolecules with high accuracy. However, a new algorithm, CONTACT, allows 
for uncovering dynamically connected regions of these structures also, thereby boost-
ing the crystal-frozen states with mechanistic insight. High resolution X-ray struc-
tures can be used to identify possible alternative conformations of the amino acid 
resides at low levels of electron density, and among these contact-networks can be 
drawn. These networks encompass those sites of heterogeneity which are able to per-
turb one-another and thus outline the coordinated motions of catalytic function [31].

10.3  NMR Spectroscopy

While the three-dimensional structure of biological macromolecules provides a 
wealth of information about their architecture, organisation and reactive sites it is 
evident that just the knowledge of their static structure is not enough to precisely 
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describe their mode of action. Thus, the internal mobility and the different states 
of proteins, as well as the timescale of these motions during the folding process 
should also be scrutinised in order to understand the kinetics and thermodynamics 
of the functional proteins.

Among others, the pioneering work of Nobel laureates Richard R. Ernst and 
Kurt Wüthrich (Nobel Prize in Chemistry, 1991 and 2002) made NMR a suitable 
technique to study large macromolecules. Strategy used today for 3D-structure 
determination of biomolecules by NMR pursuits the following route: (i) prepa-
ration of samples by chemical synthesis and biotechnology including DNA and 
expression techniques, (ii) careful purification of the sample, (iii) spectra acquisi-
tion and data processing, (iv) NMR resonance assignment, (v) evaluation of spec-
tral information to decipher spatial restrains, (vi) MD based structure calculations, 
completed by (vii) iterative refinement and structure validation. As samples from 
natural sources contain only protons as NMR active nuclei, this method brings in 
rigorous limitations on size and complexity. However, biotechnology made iso-
tope labelling possible and affordable and thus today it is a routine technique. 
Selective, residue specific and non-selective 13C and/or 15N labelling schemes 
are in use as reviewed exhaustively in [32–34]. A handful of conceptually dif-
ferent NMR experiments are available for biomolecules targeting (i) resonance 
assignment, e.g. correlation spectroscopy (COSY), total correlation spectroscopy 
(TOCSY), (ii) restrain determination, e.g. nuclear Overhauser effect (NOE), indi-
rect dipole-dipole or J-coupling, residual dipolar coupling (RDC), etc., (iii) deter-
mination of aggregation properties, e.g. diffusion-ordered spectroscopy (DOSY), 
(iv) monitoring internal dynamics, e.g. spin-lattice relaxation rate constants (R1), 
spin-spin relaxation rate constants (R2), heteronuclear NOE, etc. Although, reso-
nance assignment requires prior knowledge of the primary sequence, amino acid 
composition and sequential order within the protein also reinsures sequential 
information. Based on the true nature of chemical shifts an assignment table of 
a folded protein contains not only 1H, 13C and 15N residue specific resonances, 
but also data on the secondary structure of the polypeptide chain. The two inti-
mately linked steps of homonuclear resonance assignment are (i) spin system 
identification, accompanied by (ii) their sequential vicinity determination. The lat-
ter information called “sequential assignment” is retrieved from NOE-type NMR 
experiments and determines the relative order of the spin systems, while the for-
mer one, “spin system identification” is the gathering of mutually J-coupled NMR 
resonances [35]. The latter step relies on experiments transferring coherences via 
scalar coupling(s), while the former one utilizes magnetization transfer between 
spatially close spins: 2D- and 3D-NOESY and rotating frame NOE spectroscopy 
(ROESY) experiments are in use. Sequential assignment of 13C, 15N labelled 
samples requires the application of more complex NMR pulse sequences; how-
ever more information is retrieved and thus this technique is more reliable and 
more straightforward for automation. Both simple and more sophisticated multi-
dimensional (three or even higher dimensional) heteronuclear experiments are 
routinely used to solve the latter task. Triple-resonance nD-experiments (n = 3, 
4, 5, 7) are more and more common, not necessarily lengthening the acquisition 
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time but making the assignment procedure quicker and more robust [36, 37]. It is 
possible to reduce measurement time, from 1 to 2 weeks to a few days by using 
NMR experiment schemes where signal-less spectral regions are not (extensively) 
sampled [38]. These and other “fast” NMR techniques completed by transverse 
relaxation optimized spectroscopy (TROSY) based pulse sequences make the 
application of NMR quicker and more efficient, providing a wealth of information 
on bimolecular structure, interaction and dynamics.

Although protein structure, mobility and its folding can be experimentally 
assessed by different biophysical techniques, the best choice to study all these 
properties is NMR spectroscopy. This is a versatile technique which can explore 
the wide range of time-scales that a protein explores throughout its lifetime in a 
comprehensive, site-specific and non-invasive manner. Moreover, the perception 
that NMR studies are limited to small proteins (<20 kDa) is increasingly obso-
lete. The use of high-field instrumentation combined with cryogenically cooled 
probe heads and special isotope labelling schemes expanded the size limita-
tions of NMR, reaching up to the 900 kDa [39]. For larger proteins (>12 kDa) it 
is often inevitable to measure heteronuclear NMR spectra to complete the reso-
nance assignment for structure calculations. But beside resonance assignment and 
structure determination heteronuclear spectra provide a handful of other useful 
information about the studied system, e.g. protein-ligand binding constants can be 
determined, thermal denaturation can be followed, fast and slow timescale protein 
motion can be studied both for backbone and for side-chain spins.

Solution-state NMR spin relaxation methods for characterizing conformational 
dynamics and kinetic processes have been extensively reviewed [40–45]. Dynamic 
processes can be studied using an array of NMR experiments: nuclear spin 
relaxation measurements are sensitive to ps-ns time-scales, relaxation dispersion 
measurements are sensitive to μs-ms time-scales, and magnetization exchange 
spectroscopy is sensitive to ms-sec time-scales. Below we briefly discuss these 
methods and then we present a case study as well as results from the literature, 
where MD simulations and NMR spectroscopy were applied to characterize the 
dynamics of the Trp-cage miniprotein.

10.3.1  Chemical Exchange at Different Time-Scales

In NMR spectroscopy chemical exchange refers to a dynamic process when a 
NMR sensitive nucleus interconverts between states with different chemical envi-
ronment in a time-dependent manner. As a first approximation usually a two-state 
model is assumed. This accounts for a wide variety of dynamic processes, such 
as the exchange between folded and unfolded states, free and ligand-bound states, 
monomer and dimer forms or cis and trans peptide bonds, etc. The exchange pro-
cess between A and B states can be described by their populations, exchange rate, 
kex and chemical shift difference in Hz, Δν = |νA − νB|. In the slow exchange 
regime (kex ≪ |Δν|) two peaks are observed at the chemical shifts of the individual 
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states; in the fast exchange regime (kex ≫ |Δν|) only one peak is observed reflect-
ing population-weighted average chemical shift and line width. In the intermediate 
exchange regime (kex ≈ |Δν|) only one peak is observed at the average chemical 
shift but its line width is substantially “exchange broadened” which can sometime 
render the signal undetectable.

10.3.2  Nuclear Spin Relaxation

Heteronuclear spin relaxation rate experiments provide a powerful tool for the 
sequence-specific description of ps-ns time-scale protein dynamics (kex ≫ |Δν|). 
Motions in this time window include bond vibration and libration, side chain rota-
mer interconversion, random coil and loop motions as well as backbone torsion 
angle rotation which processes can affect enzyme catalysis, ligand affinity, allos-
tery or conformational entropy [40].

Nuclear spin relaxation is the process by which non-equilibrium magnetization 
returns back to its equilibrium state. The rate at which it occurs is governed by 
conformational motions that cause the energies of nuclear interactions to fluctu-
ate on a ns-ps time-scale. Such oscillations are the consequence of motions of the 
protein relative to the permanent magnetic field (overall motion) or the motions of 
magnetic nuclei relative to each other (internal motion). Considering that there are 
many different types of non-equilibrium magnetizations, various relaxation meas-
urements can be performed. In practice, protein backbone relaxation experiments 
typically measure the 15N spin-lattice or longitudinal relaxation (R1), the in-phase 
15N spin-spin or transverse relaxation (R2), and the steady-state heteronuclear 
1HN–15N NOE.

The two dominant mechanisms that influence the nuclear spin relaxation are 
the dipole–dipole interaction (DD) and the chemical shift anisotropy (CSA). The 
dipole–dipole interaction emerges between a pair of magnetic spins which experi-
ence the local magnetic field of each other. The interaction depends on the dis-
tance and relative orientation of the spins; thus if their position relative to each 
other fluctuates with frequencies close to the transition frequency then relaxation 
occurs. In 1H–15N spin pairs the 15N relaxation is dominated by the DD interaction 
of the attached proton over the DD field of all other surrounding nuclei. Chemical 
shift arises due to the nuclear shielding of the molecule’s electron cloud. The ani-
sotropic distribution of the electronic charge in the molecule causes anisotropic 
nuclear shielding and thus chemical shift anisotropy. The local electronic field var-
ies as the molecule reorients due to molecular motion. Again, if the reorientation 
occurs on the ps-ns time-scale then CSA is a source of relaxation.

In order to quantitatively relate the relaxation rates to the ps-ns protein motion 
one should consider the time-dependent rotational correlation function, C(t) or 
equivalently its Fourier transformed form, the spectral density function, J(ω), 
of the oscillating bond vector [46]. The spectral density function quantifies the 
amplitude of motion at a ω frequency. The relaxation rates can be expressed as 
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the linear combination of J(ω), evaluated at five critical frequencies: J(0), J(ωN), 
J(ωH), J(ωH − ωN), and J(ωH + ωN), where ωH and ωN are the 1H and 15N Larmor 
frequencies, respectively. Note, that other frequencies do not contribute to the 
measured relaxation rates. The expressions describing the relaxation rates as a 
function of spectral densities have the following form:
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 permeability, h is the Planck’s constant, γN and γH are the giromagnetic ratio of 
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chemical shift anisotropy of 15N.

To extract information on dynamics from relaxation rates, we have several 
options. If the set of relaxation rates measured for each bond vector exceeds the 
number of unique spectral density samplings, we can directly determine the intrin-
sic dynamics quantities, and no assumptions are needed. This method is called the 
spectral density mapping approach [47–50]. If the relaxation rate is dominated by 
a single spectral density, complete mapping becomes possible via dispersion stud-
ies on the magnetic field [51]. In general, data sets are too sparse for direct map-
ping. In such cases we may follow the most common approach, which is to find 
an analytical model form for J(ω), which contains parameters fitted to reproduce 
experimental relaxation rates. The most popular approach to describe fast-time 
scale protein motion is the model-free (MF) formalism described by Giovanni 
Lipari and Attila Szabó in 1982 [52].

The MF approach uses only two simple assumptions: it assumes that (i) the 
local and global motions are independent and thus separable C(t) = Cglobal(t) 
Clocal(t), and (ii) the correlation functions can be approximated with a single expo-
nential decay which gives rise to Lorentzian spectral density functions:

where τ−1 = τc
−1 + τi

−1. The order parameter, S2 indicates the relative contribu-
tion to relaxation from the overall molecular motion and from the additional local 
motions and reports on the spatial restriction: for completely restricted motion S2 = 1 
and for a completely unrestricted motion S2 = 0. This parameter is the most valuable 
for solving biological problems because it is related to the intrinsic flexibility of the 
amide bond vectors and the change of spatial restriction (upon mutation, ligand bind-
ing, denaturation etc.) is associated with the change of the conformational entropy 
which influences both function (e.g. ligand binding affinity or catalysis) and stability.
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In the last decades the MF approach became a standard tool for evaluating pro-
tein backbone motion where the amide nitrogen and proton can be treated as an 
isolated two-spin system [40, 46, 53]. Although the method has some limitations, 
e.g. it cannot take into account the diversity of internal motions, it is now clear that 
it can serve as a good approximation for describing fast internal backbone amide 
motion.

10.3.3  Relaxation Dispersion Measurements

Exchange processes occurring on the μs-ms time-scale make the chemical shift a 
fluctuating quantity, with consequences on the line shape and relaxation parame-
ters. Dynamic processes in this time window include side-chain reorientation, loop 
motion, secondary structure rearrangement which are often coupled to enzyme 
catalysis, ligand-binding, folding or allostery. The two main techniques for quan-
tifying the kinetics and populations of the exchanging sites in the intermediate 
exchange regime are the Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG 
RD) [54, 55] and the rotating frame (R1ρ) relaxation dispersion measurements 
[56–58].

CPMG relaxation dispersion measurements are well-suited for the investigation 
of exchange processes in the intermediate regime (0.3–10 ms), where kex ≈ Δν. 
This type of exchange results in an apparent increase in R2 relaxation rate: 
R2obs = R2 + Rex. The principle of CPMG RD is to refocus exchange broadening 
by applying a series of pulse elements to transverse magnetization during a special 
relaxation delay. In general, the spin-echo can refocus a set of magnetization vec-
tors if each individual vector exhibits the same average chemical shift during the 
first and second τ period. However, if exchange causes a spin to experience a dif-
ferent chemical shift during one τ period and it does not return symmetrically in 
the other τ period, its magnetization will not be refocused. This results in incom-
plete refocusing among the ensemble of molecules and therefore leads to signal 
broadening. The degree of refocusing achieved by the spin-echo element depends 
on the difference between the average shifts in the first and second τ periods. 
Importantly, as the duration of the τ period is reduced compared to the exchange 
time, there will be less signal broadening because the probability of exchange dur-
ing τ is reduced. The CPMG RD experiment quantitatively explores the relation-
ship between signal broadening and the duration of the spin-echo delay τ.

R1ρ relaxation dispersion can be used to study exchange events in the inter-
mediate-fast regime (20–100 μs) which includes side chain reorientation, loop 
motion, secondary structure changes and hinged domain movements. Such 
motions may affect processes including ligand binding and release, as well as fold-
ing and unfolding events. By analogy to CPMG RD, where the R2 relaxation is 
reduced in the laboratory frame by a series of spin-echo pulses in the range of 
νCPMG ≈25–1,200 Hz, during the R1ρ RD measurement the R1ρ relaxation is 
attenuated in the rotating frame along an effective field using spin-lock pulses 
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with ωeff ≈ 1–50 kHz. Thus the two methods use the same principle with different 
experimental implementation to study ~ms (CPMG) or ~μs (R1ρ) exchange events.

In both experiments transverse relaxation rates are measured as a function of 
spin-lock frequency which yields the dispersion curve. During the fits, usually a 
two-site exchange is assumed with a high-population ground state (A) and a low 
population excited state (B). The shape and profile of the dispersion curves are 
governed by the population of the two states, the rate of exchange and the dif-
ference in chemical shifts between the states (Δν = νA − νB). Thus in optimal 
cases, fitting can provide both kinetic and thermodynamic information about the 
exchange process as well as structural information about the minor state. In prac-
tice, the structural evaluation is done by comparing the site-specific |Δν| values to 
those observed between the ground state structure and a candidate structure (e.g. 
ligand-bound, denaturated, covalently modified etc.).

10.3.4  Exchange Spectroscopy

Exchange spectroscopy (EXSY) is used to study conformational dynamics occurring 
on the ms to sec timescale, i.e. when the exchange process is much slower than the dif-
ference in the chemical shift of the states (kex ≪ |Δν|) [59]. In this case, separate peaks 
are observed and therefore direct information can be gathered about the structural dif-
ferences of the sites and about their populations (thermodynamics). Both homo- and 
heteronuclear EXSY variants exist; the former one is performed as a simple NOESY 
or ROESY experiment while the latter, often called as ZZ-exchange spectroscopy, is 
measured as a standard correlation experiment with a delay block (T) inserted between 
the blocks where the spin coherences become labelled with the chemical shifts of the 
correlated nuclei. The exchange between the A and B states during T delay will mani-
fest in cross-peaks at the νA − νB and νB − νA resonances. The peak intensities of the 
auto-peaks (AA and BB) and cross-peaks (AB and BA) are affected by the forward 
and reverse rate constants, as well as by the longitudinal relaxation rates.

10.4  The Case Study of the Trp-Cage Miniprotein, Tc5b

The Trp-cage miniproteins constitute a group of designed small proteins all related 
to the first member of this family, Tc5b [60, 61]. However, their physicochemical 
properties are closely related to that of the single-domain globular proteins than to 
that of the unstructured polypeptides. Globular proteins have secondary structural 
elements organized into a well-defined tertiary fold; they display a cooperative 
profile with a pronounced transition between folded and unfolded states. In the 
last decade several Trp-cage variants have been designed and analysed by NMR, 
electronic circular dichroism (ECD) and other spectroscopic methods in order 
to explore the source of their structural stability and to investigate the folding 
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process [62, 63]. The stable and well-defined structure of the Trp-cage is the 
consequence of a series of truncations and mutations carried out on the naturally 
occurring 39-residue peptide, Exendin-4 (Ex4). This molecule partially displays 
the Trp-cage moiety at its C-terminus in the presence of fluoroalcohol or added 
lipid micelles [64]. Ex4 is a peptide drug in use to treat type II diabetes. By using 
the optimised Trp-cage structure it is possible to improve the physico-chemical 
properties of the antidiabetic drug. For a representative structure see Fig. 10.1.

High resolution structural information of small but folded protein models (e.g. 
Trp-cage) could provide valuable insights into the folding mechanism of globular 
proteins of larger size. Investigation of the folded (F), unfolded (U) and on(off)-
pathway intermediate structures (I) of miniproteins as well as deciphering the fold 
stabilizing contacts associated with the driving force in between states (e.g. F ↔ I, 
I ↔ U) of folding in aqueous media is of high importance. H-bonds, hydrophobic 
contacts, π-π stacking, salt-bridges, etc. make tertiary structure of the polypep-
tide chain stable in water. The 20 amino acid long polypeptide chain of the Trp-
cage miniprotein consists of common secondary structural elements (α-, 310- and 
PPII helices) all grouped spontaneously around the indole ring of Trp6 (Fig. 10.1). 
Changing the molecular environment (temperature, pH, solvent, etc.), modifying 
the primary sequence, breaking the existing or forming new structure stabilizing 
interactions can perturb the 3D-structure of a Trp-cage.

10.4.1  Folding Pathways

In spite of its simplicity, the exact folding pathway and the driving force behind 
the folding process of Trp-cage is still under debate. To date, fluorescence correla-
tion spectroscopy [65], UV resonance Raman spectroscopy [66], photochemically 

Fig. 10.1  Representative 
structure of Tc5b determined 
in water. Only the side-
chain carbon atoms of the 
hydrophobic core forming 
residues are displayed: Tyr3 
(orange), Ile4 (cyan), Trp6 
(coral), Leu7 (orchid), Pro12 
(red), Arg16 (magenta), 
Pro18 (gold) and Pro19 
(blue); backbone main-chain 
is displayed for all other 
residues
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induced dynamic nuclear polarization spectroscopy [67] and IR T-jump spectros-
copy [68] have been used to experimentally characterize the molecular details of 
the folding mechanism. Most studies conclude that a molten globule-like inter-
mediate state evolves, which enhances the folding efficiency and accelerates the 
velocity of the spontaneous process in water [68, 69]. In the intermediate state the 
main tertiary contacts are already formed, while the secondary structures are still 
disjointedly hydrated. Neuweiler et al. reported that the hydrophobic collapse is 
assisted by non-native tertiary contacts between the N-terminal (residues N1-G11) 
and the proline-rich C-terminal (residues P12-S20) segments [65]. Such a molten-
globule like intermediate state is responsible for the efficient folding. Furthermore, 
they also pointed out the significance of I4 side-chain in stabilizing the intermedi-
ate fold. In another study, Mok et al. specified the residues that take part in the 
hydrophobic core formation. They found that in the intermediate state the side-
chains of the I4, L7, P12 and R16 residues are closer to the indole ring than they 
are in the native state and thus, the hydrophobic collapse in H2O must precede 
the α-helical secondary structure formation [67]. However, Ahmed et al. measured 
residual helical structure in the denaturated state suggesting the early formation of 
the helical segment which process is consistent with a diffusion-collision model 
[66]. This assumption was also confirmed by Culik et al. using IR T-jump experi-
ments [68]. An analysis of different Tc5b mutants implied that only the α-helix is 
formed when the folding reaches the transition state and neither the D9-R16 salt-
bridge nor the 310-helix are present in the folding intermediate.

The existence of a cornerstone intermediate state has also been demonstrated 
with computational simulations [70–77]. Chowdhury et al. gave a qualitative 
description of the folding events of Trp-cage and identified four possible interme-
diate states [75]. They found that already in the early stage of the simulation a 
native-like backbone topology is spontaneously formed and stabilized by the clus-
tering of key hydrophobic residues (I4, L7, P17, P18 and P19) around the Trp6 
side-chain. Thereafter the α-helix is formed, starting from its N-terminus and the 
event is completed with the formation of the salt-bridge between Asp9 and Arg16 
accompanied by the rearrangement of Trp6 within the preformed hydrophobic 
core. This very last event is the rate-limiting step of Trp-cage formation [72].

Juraszek and Bolhuis used a more sophisticated replica exchange molecular 
dynamic (REMD) method performed in explicit water to analyse the same process 
[73, 74]. They revealed that the Trp-cage could follow two major alternative routes 
between the native and the unfolded states. The dominant route occurs trough a 
single loop state, while the alternative path goes through two consecutive inter-
mediate states. The first, highly populated route is consistent with the NC model, 
as the tertiary contacts precede the formation of the secondary elements. An alter-
native route resembles the DC model that occurs in the opposite order, by first 
forming the helix and thereafter the tertiary contacts. These results are consistent 
with the simulations of Chowdhury et al. [75] and were later affirmed by similar 
REMD simulations by Zheng et al. [76]. The slow-folding rate of the secondary 
pathway is attributed to the loss of side-chain rotational freedom, due to the early 
core collapse, which impedes the helix formation [77, 78]. A low-temperature 



236 P. Rovó et al.

kinetic intermediate, stabilized by a salt bridge between residues Asp9 and Arg16, 
was located by the simulation.

Nikiforovich et al. [79] concluded on the basis of simulations based on a novel 
molecular dynamics method that the probable folding pathway starts with folding 
of the α-helical fragment 4–9, followed by the formation of the final three-dimen-
sional structure of fragments 4–12 and 4–18. The structures of Trp-cage obtained 
by this study by independent energy calculations are in excellent agreement with 
experimental data obtained by NMR spectroscopy. It is also possible to follow 
folding kinetics by molecular dynamics simulations [80].

Molecular dynamics simulations indicate that water plays a role in folding. 
Paschek et al. [81, 82]. identified states with buried internal water molecules, 
which interconnect parts of the molecule by hydrogen bonds. The loss of hydrogen 
bonds formed by these buried water molecules in the folded state is likely to desta-
bilize it at elevated temperatures. Dependence of folding on viscosity can also be 
studied by simulations [83].

Day et al. [84] have calculated the free energy function of Trp-cage with 
remarkably good agreement with the experimental folding transition temperature, 
free energy, and specific heat changes. However, changes in enthalpy and entropy 
are significantly different than the experimental values. The folding is very fast, 
as also found by simulations in excellent agreement with experiment [85]. It was 
concluded from simulation studies that substituting a key glycine in Tc5b with 
D-Gln dramatically stabilizes the fold without altering the protein backbone [86].

The comprehensive analysis of the above experimental and MD results implies 
that both the number and the explicit atomic resolution structure of the intermedi-
ate state(s) are still ambiguous. We have experimental evidence, obtained by NMR 
spectroscopy, indicating how the temperature induced unfolding of Tc5b occurs. 
Our NMR studies show that for such a small and fast-folding system like Tc5b 
conventional temperature dependent 1H–15N and 1H–13C Heteronuclear single 
quantum coherence (HSQC) spectra are appropriate to monitor the global rear-
rangements related to the unfolding process. We assert that the unfolding of these 
miniproteins is not a simple two-state process, rather different intermediate states 
evolve under different conditions, i.e. at neutral or acidic pH values.

We studied the temperature-induced unfolding of Tc5b by monitoring reso-
nance changes of the 1H–15N and 1H–13C HSQC spectra at various temperatures 
(cf. Fig. 10.2) [72]. Some of these changes are not linear, rather curved, indicating 
that unfolding is a complex process in which at least one fast-exchanging interme-
diate state is formed.

In order to characterise the thermodynamics of the unfolding process, we fit-
ted a three-state model (F ⇌ I ⇌ U) iteratively to the observed chemical shifts. 
In the first step the mole fractions of F, I and U were set by using initial param-
eters, like transition temperature, Tm

F−I and Tm
F−U, enthalpy of transition at Tm, 

ΔHF−I(Tm
F−I) and ΔHI−U(Tm

I−U), as well as heat capacity change upon transition, 
ΔCp

F−I and ΔCp
I−U. With these fractions the chemical shifts of the pure states were 

deconvoluted from the observed weighted sum of chemical shifts. In the second 
step, chemical shifts calculated for the first one were used and the thermodynamic 
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parameters were simultaneously fitted to the same system of equations. The proce-
dure was repeated until convergence was reached. Thus, we obtained the follow-
ing values: ΔHF−I(Tm

F−I) = 36 kJ/mol, ΔHI−U(Tm
I−U) = 44 kJ/mol, Tm

F−I = 24 °C, 
Tm

I−U = 35 °C, ΔCp
F−I = 0.0 kJ/mol, ΔCp

I−U = 0.3 kJ/mol. Chemical shifts of the 
pure states were also calculated by this procedure.

Secondary structures of the different states were assessed by analysing chemical 
shifts with the program TALOS+. This indicated that both the F and I states are 
well-folded. There is a difference between only at the G11–G15 segment, where 
the helix propensity is increased in I as related to F. This may be due to a 310- to ∝ 
-helix backbone rearrangement. It was found that U is not a true random-coil struc-
ture, since it retains some residual turns and helices at its N-terminal region.

In order to follow the 310 ⇌ ∝-helix rearrangement of the Trp-cage, MD sim-
ulations were carried out using the CHARMM27 (with CMAP correction) [87], 
AMBER ff99SB-ILDN [88] and the OPLS-AA [89] force fields as incorporated in 
the GROMACS [90] and Desmond MD packages, respectively. Energy minimized 
initial structures were equilibrated at the target temperatures in three 200 ps steps 
by subsequent removal of restraints on the protein atoms and a 200 ps NVT step 
to stabilize pressure, followed by a 200 ns NPT MD simulation at temperatures 
between 250 and 400 K.

Various force-fields were chosen due to their range of helix formation propen-
sities. The Tc5b system proved to be a sensitive test-case. At 300 K temperature, 
where all three conformations of the G10–G15 turn region should exist (310-helix 
(folded), α-helix (intermediate) and coil (unfolded)) with the domination of the 310 
helix, we found the following distributions: 2.2/83.2/14.6 % using CHARMM27, 

(a) (b)

Fig. 10.2  a 1H–15N HSQC chemical shift changes versus increase of temperature for 13C 15N 
Tc5b at neutral pH. The colour of resonances changes gradually from blue (4 °C) to purple 
(54 °C). Insets indicate expanded views of the Ile4NH, Gln5NH, Trp6Nε1, Lys8NH and Asp9NH 
resonances. b The same as in (a) for 1H–13C HSQC chemical shift changes upon temperature 
increase. Insets display expanded views of the aromatic region and the resonances of Pro12Cδ–
Hδ2; Pro12Cδ–H∝; Asp9Cβ–Hβ1, Hβ2; Ile4Cγ2–Hγ2# and Ile4Cδ1–Hδ1#
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98.7/0.8/0.5 % using AMBER ff99SB-ILDN and 24.0/0.0/76.0 % using OPLS-AA 
for the 310-helix/∝-helix/coil content of the equilibrium ensembles, respectively. It 
has been shown that both CHARMM27 and AMBER ff99SB-ILDN are more suc-
cessful for small proteins than OPLS-AA, but CHARMM27 overestimates, while 
AMBER ff99SB-ILDN underestimates the helical content [91]. Raising the tempera-
ture from 250 to 400 K did not reverse trends, the helical content of G10-G15 was 
reduced to 42.4 % with CHARMM27, and increased to only 3.2 % with AMBER 
ff99SB-ILDN. The unfolded state became the most populated at higher temperatures. 
We also tried to increase the ionic strength of the solvent by increasing the concentra-
tion of NaCl from 0.1 to 1 M, but this had only a minor effect on the helical content.

Thus we selected the mid-structure of the most populated cluster of the equi-
librium ensemble obtained using the AMBER ff99SB-ILDN force-field to be our 
final model of the folded state, and the intermediate conformer is represented by 
that of the trajectory obtained with CHARMM27 (see Fig. 10.3).

The 310 ⇌ ∝-helix transition is easy. The 310-helix conformation of the turn 
region is stabilized by two main-chain H-bonds, both of the i + 3 → i type: the 
Ser13NH → Gly10CO and Ser14NH → Gly11CO H-bonds. A small tilt of the 
Gly10 carbonyl oxygen results in reshuffling of the H-bond pattern, with the for-
mation of Ser14NH → Gly10CO and Gly15NH → Gly11CO hydrogen bonds 
instead of the previous, carrying the characteristic i + 4 → i H-bond motif of 
α-helices (Fig. 10.4).

Fig. 10.3  Side and top views of the MD derived structures of Tc5b as compared with the NMR 
derived structure. Orange NMR structure, cyan the mid-structure of the most populated cluster 
of the equilibrium ensembles of the 300 K MD simulations using AMBER ff99SB-ILDN, green 
CHARMM27, lilac OPLS-AA
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The transformation seems to be energetically feasible also. The Ramachandran 
map of both conformers indicates a stable arrangement, with all amino-acid main-
chain conformations falling into the preferred regions—while the greatest change 
between the two involves the shift of the Gly11 residue from one of the preferred 
regions to another (Fig. 10.5).

NMR spectroscopic studies indicate that the rearrangement results in an altered 
conformation of Pro12. The latter residue gets closer to Trp6, the distance between 
the ring centroids decreases by 0.8 Å, in agreement with the tighter core seen for 
I in the in vitro studies. The protein core remains intact in over 85 % of the heli-
cal structures, with either the Arg16 or the Pro17 carbonyl oxygen atoms within 
H-bonding distance to Trp6Nε1, similarly as in case of the Asp9-Arg16 salt bridge 
(Fig. 10.6).

The energy landscape of the Tc5b folding funnel was also investigated with 
the introduction of acidic conditions. Acidification reduces the stability of F by 
decreasing the electrostatic attraction between the Asp9 and Arg16 side chains and 
thus facilitates the formation of an alternative conformer. Using 13C, 15N double 
labelling and other 3D NMR techniques, many of the minor resonances could by 
assigned unambiguously, too. Several major resonances have one (Leu2, Tyr3, 
Ile4, Gln5, Trp6, Leu7, Lys8, Asp9 and Ser20), or two (Gly10, Gly11, (Pro12), 
Ser13, Ser14, Gly15 and Arg16) additional sets of resonances, which indicates the 
presence of two minor conformers. ZZ-exchange NMR-experiments confirmed 
that the F state is not only in a fast exchange with both I and U, but it is also in a 
slow exchange with the highly mobile minor forms U′ and U″. The low intensity 
of the minor signals did not allow to derive exact rate constants for the F ⇌ U′ and 
F ⇌ U″ transitions. However, we could identify the source of the slow exchange, 
which is a cis-trans isomerization of the Gly11-Pro12 amide bond.

The temperature dependent experiments were repeated under acidic con-
ditions. We have found that the fast and slow exchanging intermediate states (I 
and U′/U″) coexist. Some of the HSQC lines of the major signals remain curved 

Fig. 10.4  MD derived 
structures of the folded 
(Gly11–Gly15 segment in 
310 helix conformation) and 
intermediate states (Gly11–
Gly15 segment in α-helical 
conformation), shown in cyan 
and green, respectively
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while the corresponding minor sets of resonances show linear shifts. The curved 
nature of the HSQC lines indicates that the fast-exchanging I state is yet popu-
lated, although to a smaller extent than at a neutral pH. The minor (U′ and U″) and 
the major (F and the hidden I) forms are in a fast-exchange with the unfolded (U) 
state, since all of these resonances converge to the very same pure U state with 
increasing temperatures.

Fig. 10.5  Superimposition of the proposed folded and intermediate structures (cyan and green) 
and their corresponding Ramachandran maps. Blue squares and triangles (indicating glycine 
residues) show location of each residue of the two conformers and the black arrow indicates the 
effect of the 310 left right arrow α-helix transition: re-location of Gly11 (framed in black on the 
superimposed structures)

Fig. 10.6  Superimposed 
structures of the folded (blue) 
and intermediates (orange) 
states as obtained by NMR 
spectroscopy
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In summary, we were able to demonstrate that during the folding route of  
Trp-cage two intermediate states evolve under native or close to native conditions. 
(i) A fast-exchanging intermediate state I, with a native-like 3D-structure and  
(ii) two slow-exchanging intermediate states, U′ and U″ with a considerable ran-
dom coil feature. The population of I is higher at neutral pH, and lower under 
destabilising conditions, like acidic pH or salt-bridge deletion, which supports that 
the I state is on the transition pathway (F ⇌ I ⇌ U). In contrast, the population of 
the U′ and U″ states increases under fold destabilising conditions, like acidifica-
tion and increase of the temperature. This implies that both U′ and U″ are off-path-
way intermediates. Under acidic conditions the off-pathway slow-exchanging (U′ 
and U″) and the on-pathway fast-exchanging (I) intermediates coexist. This veri-
fies a folding scenario which is more complex than previously assumed for such a 
small protein. Our conclusions are summarised in Fig. 10.7.

According to the NMR and ECD analysis state I has the following character-
istics: (i) a well-formed α-helix at the N-terminus (Leu2-Asp9) and at the Gly11-
Gly15 region; (ii) a compact tertiary structure with a tight core which resembles 
to the native state; (iii) a trans Xaa-Pro peptide bonds for all four proline residues; 
(iv) highest population at 28 °C; and (v) fast-exchange with both F and U states. 
On the other hand, the slow-exchanging intermediates (U′ and U″) have signifi-
cantly different characteristics. (i) A transient secondary structure or tertiary interac-
tions are absent; (ii) chemical shifts are close to the random coil reference values; 
(iii) both cis and trans Gly11-Pro12 peptide bonds are of a comparable population; 
(iv) there is a slow-exchange with F and a fast-exchange with U states. In vitro 

Fig. 10.7  Schematic 
representation of the Trp-
cage folding funnel. At 
neutral pH the folded state 
is in a fast exchange with 
an intermediate state; these 
states interconvert by a 310 
α-helix rearrangement. At 
acidic pH the folded and 
intermediate states are in 
slow exchange with two 
alternative states. These two 
latter states interconvert by 
a Gly11-Pro12 peptide bond 
isomerization
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dynamic studies shed light on the first step of the thermal unfolding by providing 
information about the temperature induced changes of backbone mobility. With 
the increase of temperature the amplitude of backbone motion decreases, while 
the timescale of internal motion increases in the Gly11–Gly15 region implying a 
local structural rearrangement: 310- to α-helix transformation. MD trajectory anal-
ysis supports the basic assumptions for this transition: the Ser13NH → Gly10CO 
and Ser14NH → Gly11CO H-bonds break and new Ser14NH → Gly10CO and 
Gly15NH → Gly11CO H-bonds are formed. This finding regarding the structural 
reshuffling is in agreement with the recently published crystal structure of a stabi-
lized Trp-cage. Scian et al. found that in the crystal structure the Gly10-Arg16 loop, 
including the 310-helix, presents the greatest structural versatility [92].

Structural elements with such elevated mobility are prone to induce structural 
reshuffling within a molecule. Our results indicate that during the folding of Tc5b 
the α-helix formation precedes the hydrophobic collapse since the U state has a 
nascent tendency to form helices at the N-terminal segment (L2–K8). This obser-
vation is consistent with UV-Resonance Raman experiments which reported a 
broad α-helix melt for Tc5b [66]. The α-helix formation restricts the conforma-
tional space so that the folded state can be achieved by fewer structural transitions 
and it also accelerates the folding process. The hydrophobic collapse is fast and 
generates a compact intermediate structure with high similarity to the folded struc-
ture. This intermediate state differs from the folded state mainly in the structure of 
the G11–G15 region implying that the 310-helix is the most unstable part of Tc5b 
and it rearranges easily to other conformations. These findings are consistent with 
the observations of recent experimental [68] and computational studies [73, 74, 
93] stating that the unfolding of Tc5b begins at the 310-helix; although none of 
these studies observed the 310 to α-helix rearrangement of Gly11-Gly15 before the 
complete unfolding. Molecular dynamics simulations also failed to generate the 
slow-exchanging and completely unstructured alternative conformer of Tc5b with 
a cis Gly11–Pro12 peptide bond that appears under acidic pH [94].

Recently the denatured state of Tc5b was analysed by NMR relaxation studies. It 
was found that the molecule has structural features different from those obtained by 
thermal denaturation [95]. This alternative U state, called here as UU, presents both 
cis (20 %) and trans (80 %) isomers of P12, as well as native and non-native residue 
contact forming largely mobile and thus unfolded backbones. Both the temperature 
(U) and the urea induced unfolded states (UU) have a high degree of mobility and 
random-coil features. There are clear differences between these sates: (i) the tempera-
ture induced unfolded state has an inherent tendency to form turns and short helices 
in the Leu2–Lys8 segment while no trace of this is seen in the urea induced UU state; 
(ii) the non-native contact between residues 4 and 6 of the UU state is not detected in 
U; (iii) higher than average R2/R1 ratios of residues 4, 5, 7 and 11 are present in the 
UU state, while absent in the U state. These observed differences emphasize that there 
is no single unfolded state for any protein; the residual structure and behaviour of the 
unfolded states depend fundamentally on the way how the unfolding was induced.

Although Tc5b consists of only twenty residues and represents the smallest and 
simplest protein model ever investigated we found that nothing is simple either for 
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this model. Our analysis revealed that a dense, well-balanced non-covalent, weak 
interaction network stabilizes the structure, H-bonds, salt-bridges, dispersion forces 
act together to maintain the three-dimensional fold. A small perturbation to any of 
these interaction has a dramatic effect on the stability. Similarly, the folding pathway 
is rather complex with structured and unstructured intermediates which exchange 
with the major, folded state at different time-scales and possess substantially differ-
ent dynamic properties. All the states coexist in equilibrium at the same time thus 
their thermodynamic description involves multiple parameters. Therefore, the ques-
tion arises if the structure-stabilizing interactions, the folding process and the time-
scale of atomic motions of the simplest model system are so complicated then what 
shall we expect for a real protein consisting of hundreds of amino acid residues? 
Much should be learned about the factors that influence the interactions defining the 
structure and internal dynamics and govern the folding processes. Hence, Tc5b is an 
excellent test case both for future experimental and computational studies.

10.5  The Case Study of Podocin

In the following we present an example for the successful application of MD tech-
niques to a complex problem, where the impairing the flexibility of a small folded 
protein leads to severe consequences. A specific kidney disease, nephrotic syn-
drome type 2, is due to the pathogenicity of an allele encoding the R229Q mutant 
of podocin, a small protein that localizes in the podocytes of the kidney, anchoring 
members of its filtration system [96]. Malfunction of mutant podocin claims the life 
of patients during their young ages. It is caused by the Arg229Gln mutation of the 
protein, but only under peculiar circumstances. Both parents carrying the polymor-
phism associated with the illness (causing a single mutation) will not necessarily 
have an unhealthy child, only the polymorphism in association with any of a certain 
set of other mutations will be detrimental. Based on these observations it was pro-
posed that the Arg229Gln mutation must impair the ability of podocin to dimerize: in 
pair with a wild-type monomer the resultant dimer will be functional, while pairing 
the Arg229Gln variant with certain “difficult cases”, distorted dimers will emerge.

In order to study this problem, homology models of the wild-type and mutant 
podocin monomers were subjected to a 40 ns MD simulation in our laboratory. 
The last 10 ns of the trajectory was averaged and clustered. Podocin monomers 
contain a globular head domain and a long, helical tail. The mutated Arg229 
residue can be found in the head-domain, turning inside, stabilized by at least 
two H-bonds formed with negatively charged amino acids of the head-domain 
(Glu233, Glu237 and Asp244). In the Arg229Gln mutant monomer, where Gln229 
is too short to allow these contacts, Glu233 and Glu237 flip toward the tail domain 
and form H-bonds with positively charged amino acids of it (Fig. 10.8).

While the domains themselves are unperturbed by the Arg229Gln switch, these 
added interactions between the head and tail domains restrict their inter-domain hinge-
like movement, greatly affecting the dynamic nature of the monomer (Fig. 10.9).
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Fig. 10.8  a Structure of the native podocin monomer obtained as an average of the most populated 
clusters of the last 10 ns of our simulations. b Interactions of the Arg229 residue of the wild-type 
protein with negatively charged groups of the head domain. c Interactions of the Gln229 residue of 
the polymorph variant, a new link is formed between the head and tail domains

Fig. 10.9  Difference in 
the flexibility of the wild 
type protein (green) and the 
polymorph (cyan) monomers. 
All clusters of more than 
0.1 % population of the last 
10 ns of our simulations 
are shown, with their head 
domains superimposed
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All the associated mutations that lead to unhealthy dimer formation when 
paired with the Arg229Gln polymorph are found in the helical tail region of 
podocin, therefore it was suggested that this must be the primary site of dimeriza-
tion. A coiled-coil type dimer was created and the next set of calculations (100 ns 
MD simulations) involved dimer pairs, both non-pathogenic and pathogenic com-
binations (Fig. 10.10).

Interestingly, it was found that the loss of pliability, as a result of the 
Arg229Gln switch, leads to formation of distorted dimers in the case of the 
Arg229Gln polymorph pairing up with monomers carrying a mutation on the heli-
cal tail region of podocin. On the other hand, it seems that the flexibility of the 
wild-type monomer allows for correction of small misfits in the dimerization pro-
cess, thus, paired-up with the same tail-mutated variants, the resulting dimers will 
not differ greatly from the wild-type dimer structure (Fig. 10.11). It was, there-
fore shown that an inheritance pattern that defies the laws of Mendel, could be 
explained by the impaired dimer forming capacity of the Arg229Gln polymorph, 
which is the result of the change of its overall flexibility, caused by a single muta-
tion. MD simulation proved to be an ideal method to follow such changes.

Fig. 10.10  Wild-type podocin dimer formation. Residue 229 is shown in yellow, mutation sites 
that lead to pathogenic dimer formation when faced with the polymorph monomer are shown in 
magenta. WT wild type
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11.1  Introduction

In the past decades, the number of protein structures publicly available in the 
Research Collaboratory for Structural Bioinformatics (RCSB) database has grown 
from two structures in 1972 to approximately 99,000 protein structures in April 
2014, with thousands being added each year. The development in this field has 
been partially sponsored by the enormous advances in genomics, X-ray crystal-
lography and NMR spectroscopy, which have paved the way for a large number 
of new potential therapeutic targets. Simultaneously, a demand for powerful and 
reliable technologies that can identify high quality lead drug candidates for those 
potential targets is growing.

At the end of the XXth century, the main approaches to increase lead discov-
ery were experimentally based. These methods included sophisticated combinato-
rial chemistry and high-throughput assays that provided automated screening of 
hundreds of thousands or even millions of potential compounds. However, despite 
the impressive technological advances observed in this field, these methodologies 
failed to provide many new drugs. In addition, the process was very costly, time 
demanding and in the end there was no guarantee that new lead compounds would 
be obtained [1]. All these factors declined the interest in these methodologies for 
drug discovery and, at the same time, advanced the search for new methodologies.

This scenario led to the development of several computational methodologies 
and algorithms that could help researchers to understand and predict molecular 
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recognition from a structural and energetic point of view. Molecular docking is 
perhaps the most popular method in structure-based drug design that is employed 
to this purpose [2].

Molecular Docking can be defined as a computational method that allows pre-
dicting the preferred position, orientation and conformation (i.e. the pose) of one 
molecule (ligand) in relation to a second one (often much larger and called protein 
or receptor), when the binding between the two forms a stable complex. The pre-
ferred orientation of the molecule in relation to the protein can then be used to pre-
dict the strength of association or the binding affinity between both intervenients.

Currently, there is a relatively large and ever increasing number of molecular 
docking programs, such as DOCK [3], AutoDock [4, 5], FlexX [6, 7], FlexE [8], 
GEMDOCK [9], MEDock [10], MolDock [11], Tribe-PSO [12], SODOCK [13], 
Surflex [14], GOLD [15–17], ICM [18, 19], Glide [20], Cdocker [21], LigandFit 
[22], MCDock [23], RDock [24], ZDock [25], M-ZDOCK [26], and MSDOCK 
[27], among others. Generally speaking, these programs have similar implementa-
tions and only require the knowledge of the tridimensional structure of the protein 
(Fig. 11.1). The structure of most of the ligands can be created with any molecular 
modeling software or obtained from chemical databases.

Fig. 11.1  General protocol of molecular docking programs
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In the majority of these programs, the first step of a docking study involves the 
definition of a binding region, i.e. an area in the protein where the ligand may be 
bound. This can be done in two ways: if the location of the binding site is known, 
the programs generally allow the user to restrict the binding area to a small portion 
of the protein. Otherwise, if nothing is known about the location of the binding 
site, then a blind docking can be chosen instead. In this case, the entire surface 
of the target is scanned to explore putative binding pockets [28, 29]. The docking 
prediction is much less reliable in the latter case, and this strategy should be used 
only as a last resort.

The next step involves the search for the preferred position (and conformation) of 
the ligand in relation to the protein. To this end, two types of algorithms are used: the 
search algorithm and the scoring function. The search algorithm generates a number 
of possible poses (ligand, and eventually protein, conformations and mutual orienta-
tions) that fit the ligand into the binding pocket of the protein [30, 31]. The scoring 
function generates a score for each pose and then ranks the different poses that are 
generated by the search algorithm. This value should ideally represent the thermody-
namics of interaction of the protein-ligand system (the binding free energy) in order 
to correctly distinguish the true binding modes from all the others explored [32].

At the end of this process, the best-scored solution(s) should correspond to true 
binding poses and should be very close to the one that is observed experimentally, 
if such information exists.

The majority of molecular docking programs are developed to be fast, since 
they are supposed to be applied to large databases of millions of compounds when 
they are used for drug discovery. To this end, several assumptions and simplifica-
tions are included in the search algorithms and scoring functions. In order to mini-
mize their impact on the final results, several different strategies are adopted to 
maintain them fast and simultaneously accurate.

In this review, different types of search algorithms and scoring functions avail-
able in the most popular molecular docking programs are analysed and discussed. 
The current status in this research field is examined also and the current challenges 
and future directions discussed.

11.2  Search Algorithms

The goal of a search algorithm is to generate an ensemble of low-energy protein-
ligand poses, with the correct one among them. As both molecules are flexible, it 
is fundamental to explore enough degrees of freedom of the system.

Generating poses for a real biological protein-ligand system requires searching 
over a space of N*M + 6 dimensions (N and M are the protein and ligand confor-
mational degrees of freedom, respectively, and 6 corresponds to the rotation and 
translation components of the spatial arrangement of one unit onto the other). This 
high dimensional space is computationally untreatable [33]. A simple and small 
protein-ligand system with 50 rotatable bonds, having a minimum at every 60º in 
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each dihedral angle, will exhibit 650 conformations (≈1039 conformations), which 
is a number trillions of times larger than the number of stars in the observable uni-
verse, even excluding clashes. To overcome this issue, the docking algorithms inte-
grate different approximations to efficiently sample the pose space. The number of 
available search algorithms is continuously increasing, to optimize the speed, reli-
ability, coverage, and accuracy in sampling the relevant pose space. The speed is 
particularly crucial for drug discovery studies with virtual screening tools, in which 
millions of different ligands are docked. Currently, the docking algorithms can be 
categorized into rigid-body, flexible-ligand, and flexible-protein methods.

Rigid-body algorithms are the simplest and fastest ones because they only sam-
ple the rotational/translational space (6 degrees of freedom) and consider essen-
tially the geometrical complementarities between the protein and the ligand. This 
approach was widely applied in the earlier protein-ligand docking studies or in the 
initial stages of virtual screening studies. These tools frequently use a hierarchical 
sophistication docking protocol in a later stage, in which a less demanding and 
less precise rigid docking method is firstly performed, followed by more time- 
consuming and accurate procedures (flexible-ligand and flexible-protein docking) 
to refine and optimize the pose of the ligands.

Flexible-ligand docking algorithms emerged afterwards. These algorithms con-
sider the protein as a rigid body and implement partial or full flexibility on the 
ligand. Hence, they explore the 6 translational and rotational degrees of freedom 
of the complex and the conformational degrees of freedom of the ligand, which 
makes these approaches more computationally demanding.

Proteins are dynamic molecules and their binding regions can acquire many dif-
ferent conformations or have significant structural changes upon ligand binding. 
Hence, these small rearrangements may influence negatively the accuracy of the 
docking results and the flexibility of the protein should not be neglected. To over-
come this challenging problem, the flexible-protein search algorithms have emerged. 
These take into account the partial flexibility of the protein, in addition to the ligand 
flexibility and the 6 translational and rotational degrees of freedom of the complex. 
These powerful tools require, however, a much larger computational effort.

Table 11.1 summarizes the main docking algorithms widely used nowadays, 
examples of programs where they are implemented and some relevant and recent 
applications. However, it is important to note that the boundaries between differ-
ent categories are not rigid and, in fact, some approaches could easily fall in more 
than one category. A detailed description will be subsequently provided for each 
category.

11.2.1  Rigid-Body Search Algorithms

Rigid-body are the most basic and fastest algorithms to sample the conformational 
space because they do not take into account the conformational flexibility of nei-
ther ligand nor protein, thus sampling only the rotational/translational space (6 
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degrees of freedom) and considering essentially the geometrical  complementarities 
between both molecules. This simple approach was widely applied in the earlier 
protein-ligand docking studies [30] and, currently, in protein–protein docking pro-
tocols [68, 69] or in the initial stages of virtual screening studies.

The main rigid-body algorithms are based on the Fast Fourier Transform (FFT) 
[25, 70–72] and Shape Matching (SM) [73, 74] approaches. The FFT-based algo-
rithms systematically sample the relative position of protein and ligand with an 
orthogonal grid, using correlation-type scoring functions to calculate the degree of 
overlap between pairs of grids in different relative orientations [25, 71, 72, 75, 76]. 
The SM algorithms [30] consider the geometrical overlap between the protein and 
ligand by doing several alignments of both molecules. They identify possible bind-
ing sites of a protein, which are then compared, to generate a small number of 
trial poses for grid-scoring [77]. ZDOCK [25] and FTDOCK [70] docking pro-
grams combine both SM and FFT search algorithms. Furthermore, SM algorithms 
are also widely used in flexible docking algorithms as a part of their search strat-
egies, such as in SYSDOC [78], EUDOC [79], DOCK [3, 30], MSDOCK [27], 
LigandFit [22] and Glide [20].

Rigid-body docking has severe limitations. The 3D structures of biological 
systems (such as protein-ligand complexes) are very dynamic and can acquire 
many different conformations that influence the accuracy of the docking results 
[80]. Furthermore, due to their lack of sensibility, rigid-body docking methods 
are not adequate to find the pose of different ligands with a common substitu-
tion pattern or to discriminate new scaffolds with similar size. These limita-
tions come from an absence of sampling of the ligand conformational space. 
These reinforce the progressive replacement of rigid-body docking methods by 
methods with full or partial flexibility at the ligand and, sometimes, at the pro-
tein as well.

11.2.2  Flexible-Ligand Search Algorithms

The most common flexible-ligand docking algorithms consider the protein as a 
rigid body and full or partial flexibility of the ligand, analysing its conformational 
space [81]. Since these challenging docking approaches explore the 6 translational 
and rotational degrees of freedom of the complex and the conformational degrees 
of freedom of the ligand, they became more computationally demanding [82–84], 
implying several approximations to allow their application in a proficient way. 
These algorithms are divided in three main classes: systematic methods, random 
or stochastic methods and molecular simulations methods. In all cases the algo-
rithms need to explore the orientations, and translational and rotational degrees of 
freedom. The first two have been addressed in the rigid-body section above, and 
here we will emphasize the methods that confer flexibility to the ligand by explor-
ing its conformational space.
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11.2.2.1  Systematic Search Docking Algorithms

Systematic search algorithms try to explore most (ideally all) conformational 
degrees of freedom of the ligand, and they are divided into three categories: (i) 
conformational search methods, (ii) fragmentation methods, and (iii) database 
methods.

Conformational search methods systematically explore the conforma-
tional space of all rotatable bonds in the ligand by 360°, using a fixed increment 
to generate all possible conformations. The higher number of combinations due 
to a large number of rotatable bonds limits the application of these methods. In 
general, drug-like compounds have 10 (or lower) rotatable bonds, and if the con-
formational space of each rotatable bond uses a 15º increment, there are 2410 
possibilities to explore during the docking procedure, which is computationally 
impossible nowadays. To overcome this issue in general, several constraints and 
restraints on the ligand bonds are applied to reduce the dimensionality of the prob-
lem. This systematic conformational approach is implemented in the DOCK [3] 
program.

Fragmentation search methods act by a “place-and-join” approach, in which 
the ligand is split into several pieces and the various fragments are successively 
docked into the binding site, and covalently linked to recreate the global ligand. 
Alternatively, the ligand can be divided into a rigid core fragment that is firstly 
docked, and the remaining flexible parts are subsequently added in an “incremen-
tal construction” or “anchor and grow procedure” approaches. The fragment-based 
incremental method is one of the most applied, and is employed in various flexi-
ble-ligand docking programs, such as LUDI [85], FlexX [6], DOCK [3], ADAM 
[86], Hammerhead [87], Surflex [14, 88], eHiTS [89], and FLOG [90].

Database search methods use known libraries of pre-generated conformations 
(conformational ensembles) to account for the ligands’ flexibility. These search 
methods make use of intra- and intermolecular distances. The assembling of a 
small set of constrained distances enables the calculation of several structures or 
conformations [91]. The most popular docking software that applies this algorithm 
is FLOG [90].

11.2.2.2  Random or Stochastic Algorithms

Random search algorithms sample the ligand conformational space by doing 
 stochastic modifications in its conformation, which can be accepted or rejected 
based on a predefined probability function [4, 92]. There are six main types of 
docking methods that use random algorithms: (i) Monte Carlo [23], (ii) Genetic 
Algorithms [4, 15], (iii) Tabu Search [52], (iv) Particle Swarm Optimization, (v) 
Differential Evolutionary Algorithms and (vi) Evolutionary Gaussians Algorithms.

Monte Carlo (MC) methods take into account a Boltzmann probability func-
tion as the acceptance criterium for a newly generated ligand pose. MC algorithms 
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dock the ligand inside the protein binding site through many random translations, 
rotations and conformations, decreasing the probability of being trapped in local 
minima. These methods enhance the sampling in regions that are energetically 
favourable to create more reliable complexes. The simple energy minimization 
functions used in the MC methods do not require any sort of derivative informa-
tion [93], and are also very efficient in stepping energy barriers, which allows a 
good sampling of the conformational space. Prodock [55], ICM [18], MCDOCK 
[23], DockVision [94], and QXP [95] are some examples of docking programs that 
have an MC-based algorithm. The LigandFit [22] and Glide (grid-based ligand 
docking with energetics) [20] programs combine the MC sampling with shape 
matching methods to use grids to explore the poses of a ligand in the binding site 
of the target.

Genetic algorithms (GA), popularized by John Holland in the 1970s [96], are 
a global searching strategy that belongs to the evolutionary programming methods 
with the purpose of finding solutions for search problems and, in the molecular 
docking case, trying to find the pose closest to the global energy minimum for a 
given protein conformation. GA methods are heuristic algorithms that emerged 
from genetics and the theory of biological evolution. They start from an initial 
population of several different ligand poses (n chromosomes) generated randomly, 
and each ligand pose is characterized by a set of state variables (defined as genes) 
that describes its translation and orientation in relation to the protein, and its con-
formation. In GA methods, the full set of the ligand state variables is defined as 
the genotype, whereas the ligand atomic coordinates are the phenotype. Various 
genetic operators, such as mutations, crossovers, and migrations are applied to the 
population to sample the pose space, until a population that optimizes a predefined 
fitness function is obtained. Programs GOLD [15, 17], AutoDock [4], DIVALI 
[97], and DARWIN [98] use or include a GA, or a GA-like algorithm. In particu-
lar, AutoDock uses a hybrid Lamarckian-GA method (LGA) [99], for which the 
GA plays a global search and a subsequent energy minimization [100] refines and 
improves the searching efficiency [101]. Since the LGA development in 1990s, it 
has suffered several improvements to optimize virtual screening speed and accu-
racy [102, 103]. GA algorithm is also used by the DOCK [3] program that is able 
to dock either the whole ligand inside the binding site or dock the ligand using 
fragmentation search methods.

Differential Evolutionary (DE) algorithms are based in a heuristic and popu-
lation-based methodology derived from GA methods [104]. GEMDOCK [9], 
MolDock [11] and SADock [50] programs possess a DE algorithm.

Tabu Search (TS) algorithms [52] were developed by Glover and have been 
used to solve a large variety of hard optimization problems [105]. They correspond 
to a meta-heuristic method characterized by an iterative procedure that moves 
from one pose to another and imposes several restrictions to prevent revisiting pre-
viously considered poses. Earlier visited poses are stored in a “tabu list” and the 
root-mean-square deviation (RMSd) of a new conformation, in relation to the pre-
vious ones, is calculated and used as criterion to accept or reject the new confor-
mation relatively to the previous ones. PRO_LEADS [52, 106] is the most popular 
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docking program that uses a TS algorithm. The Tabu-Enhanced Genetic Algorithm 
is a search tool derived from the TS method that is implemented in the PSI-DOCK 
[51] program to explore in the first step the potential binding poses of a ligand, 
and the predicted binding poses are then optimized by a GA method.

Particle Swarm Optimization (PSO) is a heuristic and evolutionary optimiza-
tion algorithm [107] that was inspired by social behaviour of organisms, such as 
the flocking of birds or fish school. It is simpler and converges faster than standard 
GA methods. In PSO methods, the population of ligand poses is called a “swarm” 
and the individual poses are called “particles”, which are determined by three 
types of parameters: translation, orientation, and torsions. Each ligand pose moves 
within the search space and retains in its memory the best position (pose with 
the lowest energy) that has been encountered. Recently, a few PSO-based search 
algorithms, such as SODOCK [13] and PSO@AutoDock [108] have been imple-
mented within the framework of the docking package AutoDock to improve the 
docking performance. The Fully Informed Particle Swarm (FIPS) [109] is a search 
algorithm derived from a variant of PSO that exploits a population of individuals 
to detect promising regions in the search space.

11.2.2.3  Molecular Simulation Algorithms

These methods are also applied in protein-ligand docking studies and there are two 
main types: (i) Molecular Dynamics simulations and (ii) Energy minimization.

Molecular dynamics (MD) simulations of the ligand are based on the calcu-
lation of the solutions to Newton’s equations of motion. They are versatile and 
widely used in many computational studies [110], whereas the application of these 
approaches to search for ligand conformations show some limitations due to their 
difficulties in sampling the configurational space within a feasible simulation 
time, due to the lack of ergodicity. They can have problems in navigating a rug-
ged hypersurface of a biological ligand and crossing high-energy rotational bar-
riers. Strategies generally employed to overcome these limits are the use of high 
temperatures in some parts of the MD simulation, or starting from different ligand 
configurations [111]. The advantage that they have is that they can include explicit 
solvation, and explore essentially low-energy conformations (even though around 
the initial one).

Energy minimization methods are a complementary search tool to refine the 
ligand poses and not an actual search technique. They include gradient methods 
(e.g. steepest descend), conjugate-gradient methods (e.g. Fletcher-Reeves), sec-
ond derivative methods (e.g. Newton-Raphson), and least-squares methods (e.g. 
Marquardt). Some of the docking algorithms previously described also use energy 
minimization methods, which are present in the Prodock [55], ICM [18], QXP 
[95], DARWIN [98], DOCK 4.0 [3], ADAM [86], and Hammerhead [87] docking 
programs. By definition, energy minimization will look to the relative minimum 
closest from the initial configuration. Therefore, they do not “search poses”, they 
only refine poses obtained by other methods.
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11.2.3  Flexible Protein Search Algorithms

The flexibility of the protein is one of the major challenges in the search for the 
correct pose, and consequently the number of degrees of freedom that are consid-
ered greatly influence the searching success [81]. Several protein-ligand docking 
studies have shown that the application of the flexible-ligand docking algorithms 
only give successful results when the protein is rather rigid and its 3D structure 
is representative of the protein conformation in the docked complex [112, 113]. 
Basically, this corresponds to the cases where the lock-and-key model of molecular 
recognition applies. However, many proteins display significant structural changes 
upon ligand binding, such as the local rearrangement of side chains or loops at and 
near the binding site, without affecting most of the protein backbone conformation 
or the protein overall folding. Others proteins display much more extensive rear-
rangements, including backbone movements, but these are less common (although 
not rare). In terms of molecular recognition this corresponds to the induced-fit par-
adigm. This is particularly important for enzymes because they could acquire dif-
ferent conformations to recognize their substrates and also for the transition states’ 
stabilization along catalysis. Hence, these small movements could have an adverse 
effect on docking results and the flexibility of the protein cannot be neglected.

An example of this issue is shown in Fig. 11.2. In this case, the molecular 
docking software that treats the protein as a rigid body did not give the correct 

Protein Rigid Molecular Docking

Protein Flexible Molecular Docking

Protein Rigid Dockings and Protein Flexible Docking

Fig. 11.2  Illustrative example of the importance of including protein flexibility in a molecular 
docking protocol [114]
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binding pose of the ligand, as it is observed in the co-crystallized X-ray struc-
ture. The correct binding pose of the ligand was only obtained when flexibility 
was introduced in two residues of the binding site. It is has nothing to do with the 
performance of the ligand search algorithm or scoring function of the molecular 
docking software, but rather with the conformation of two residues in the protein 
binding site that preclude the correct binding of the ligand in the unbound X-ray 
structure. This illustrates how important the inclusion of protein flexibility in a 
protein-ligand docking program can be.

To solve this challenging docking problem, some specialized search algorithms 
and computational strategies were developed to accurately account for the partial 
flexibility of the protein, in addition to the ligand flexibility, and nowadays, several 
docking programs offer these treatments [56, 115–119]. Approaches addressing 
the protein flexibility can be classified as (i) MD and MC methods [4, 94, 120], 
(ii) simulated annealing, (iii) rotamer libraries [63, 121–125], (iv) protein ensem-
ble grids [65, 83, 126], (v) soft-receptor modeling [112, 127–129], and (vi) collec-
tive degrees of freedom.

11.2.3.1  MD Simulations and MC Methods

MD simulations and MC methods were successfully applied in a wide range of 
protein-ligand studies that consider the flexibility of the protein [130]. These 
methods generate different configurations for the system, and their main  advantage 
is that they are very accurate and can model explicitly all the degrees of  freedom 
of the protein-ligand system and may also include the solvent if necessary. 
However, the high-dimensionality of the search space involved in these simula-
tions tools, makes an ergodic exploration of the protein conformations unfeasible, 
due to the higher computational time required (several days of computation) [67]. 
With these methods, ergodicity cannot be attained even within the nanosecond 
time scale, which prevents the complete (possibly the relevant) sampling of the 
configurational space.

To reduce the computational cost and simplify the molecular description of the 
system, more realistic approaches that take into account only partial flexibility of 
the protein (e.g. binding site and surrounding residues) were developed [56].

11.2.3.2  Simulated Annealing

Simulated Annealing (SA) [60] methods carry every docking pose into a simula-
tion with high temperature, which allows for transitions over energy barriers sep-
arating energetic valleys. Subsequently, the temperature is gradually decreased 
along regular intervals of time in each simulation cycle. SA methods consider 
flexibility in different thermodynamic states during an interval of time. However, 
the annealing cycle must be repeated many times, transforming this approach in a 
very computationally expensive alternative. To prevent trapping in local minima, 
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SA-based methods combine this procedure with other search algorithms, such as 
MC, GA and LGA [4], to explore a wider range of possible conformations with 
high accuracy. The popular docking software AutoDock uses a Monte Carlo 
Simulated Annealing protocol that specifically combines both SA and MC algo-
rithms, in which random alterations in ligand pose were performed inside protein 
binding pocket during each SA temperature cycle.

11.2.3.3  Rotamer Library Based Methods

Rotamer library based methods are the ones most used and they represent the 
protein conformational space as a set of experimentally observed and preferred 
rotameric states for each residue side chain [55, 56, 58, 66]. The conformational 
changes in the protein binding site induced by ligand binding are considered by 
combinatorial rearrangement of side chains lining the binding site. Hence, the 
side-chains of the binding site residues containing H-bond donors or acceptors, 
and the side-chains whose original conformers may bump on the ligand pose, are 
rearranged to account for possible induced-fit in several steps. The main handi-
caps of this approach are: the requirement of previous knowledge in which side-
chains should be flexible; the reduced number of key residues possible to consider 
(typically less than 10) in a feasible docking process; and the absence of any real 
change in the backbone of the protein [131].

The algorithm implemented in the Dolina [64] software uses a pool of low-
energy ligand poses to obtain a valid pose, and then a combinatorial scan of ener-
getically favourable side-chain rotamers in the ligand vicinity is performed, to 
ensure optimal interaction with the ligand pose and with other side-chains. Several 
residue rearrangements are grouped in sterically independent families and clusters 
of side-chain conformers are employed to achieve a good accuracy in the gener-
ated poses. The induced fit docking algorithm included in the SCARE (SCan 
Alanines and REfine) [63] protocol only requires one initial protein pocket con-
formation and identifies most of the correct ligand positions as the lowest score. It 
systematically scans pairs of neighbouring side chains, replaces them by alanine 
residues, and then docks the ligand to each ‘gapped’ pocket site. Subsequently, all 
docked positions are scored, refined with original side chains and flexible back-
bone, and finally re-scored.

11.2.3.4  Ensemble of Protein Conformations

An ensemble of protein conformations, obtained from X-ray crystallography, 
NMR or MD/MC simulations, can be used as another strategy to include protein 
flexibility [127, 131]. However, these search methods have two disadvantages: 
how the initial protein conformations are generated and how they are com-
bined among themselves. One of the most popular ensemble docking methods is 
FlexE [8], an extension of the docking tool FlexX. The great difference between 
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this search method and MD and MC techniques is the fact that this algorithm 
superimposes the set of conformations available for a given protein and merges 
similar parts of the structures. Dissimilar substructures are treated as independent 
alternatives and, then, the algorithm selects the combination of substructures that 
best complement a given ligand with respect to the scoring function.

11.2.3.5  Soft-Receptor Modelling Approach

The soft-receptor modelling approach combines the information derived from sev-
eral different experimental and computational protein conformations to generate 
one energy weighted average grid, which is subsequently used to dock the ligands 
[112, 127]. This protein flexibility docking technique is the less computationally 
demanding approach, due to the use of a single energy-grid as a target for docking, 
which is almost equivalent to using a single structure, in terms of computational 
efficiency. However, it cannot manage large scale motion and another disadvan-
tage is the fact that mutual exclusive binding regions can be simultaneously con-
sidered, leading to an enlargement of the binding pocket of the protein, which may 
wrongly influence the docking results. The soft docking models are also used to 
improve convergence during energy minimization and to avoid becoming trapped 
in local minima during the search.

11.2.3.6  Collective Degrees of Freedom

Collective Degrees of Freedom are global protein motions that result from a simul-
taneous change of all or part of the native degrees of freedom of the protein. This 
tool allows for the introduction of large-scale protein flexibility, including the 
backbone, loops and domains. Collective degrees of freedom can be determined 
using different methods, such as normal mode analysis. This approach takes into 
account protein flexibility by exploring the low frequency normal modes. The 
main advantage of this method is that protein flexibility is not limited to a spe-
cific small region of the protein. However, as the degrees of freedom searched are 
collective modes of motion that try to account for most of the variance observed 
during protein motion, this may result in an increased difficulty to get the “true 
solution”. The soft modes approach has been applied for protein-ligand [132] 
and protein-protein docking problems [133], and examples of these approaches 
are IFREDA (ICM-flexible receptor docking algorithm implemented in the ICM 
program) [134], and elastic network normal modes [135]. The IFREDA algorithm 
considers both side-chain rearrangements and essential backbone movements and, 
even in some cases, large loop movements.

In general, the success for flexible protein-ligand searching passes through a 
combination of different algorithmic approaches, such as the computationally 
cheaper ensemble docking and the more demanding induced fit approach [136]. 
Furthermore, taken into account the fast evolution of searching algorithms, the 
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approaches currently used to simulate partial protein flexibility will probably be 
replaced gradually by new tactics that allow for full protein movements. However, 
in general, the choice of a search algorithm to apply in a molecular docking study 
greatly depends on:

(i) the problem one wants to address: e.g. for small ligands with a small number 
of rotatable bonds we could use a systematic search algorithm; however, to 
dock a larger ligand or a larger number of ligands, a random algorithm such 
as GA should be used.

(ii) the biological background: for instance, if we know the size and location of 
the binding region, and the number of flexible residues present in the binding 
pocket of a protein, this could justify the use of the rotamer-libraries flexible-
protein search algorithm, which is more systematic and covers better the con-
formational space of a set of residues at the expense of neglecting all the others.

(iii) the available computational power: e.g. rigid-body or flexible-ligand algo-
rithms should be used when we have reduced computational resources (or 
many lists of compounds to dock), whilst the opposite situation could allow 
for a more demanding algorithm, such as flexible-protein and flexible-ligand 
docking algorithms.

11.3  Scoring Functions

The main goal of a scoring function is to calculate an energy that estimates the 
binding affinity between the protein and the ligand.

The binding affinity of a complex can be expressed by the binding free energy 
(�GBind) and can be estimated by Eq. 11.1 (see also Fig. 11.3).

where GComplex  is the free energy of the complex formed by the protein and the 
ligand, GProtein is the free energy of the protein and GLigand is the free energy of 
the ligand. Generally, the binding affinity between a protein and a ligand is experi-
mentally determined, given by the dissociation constant for the complex, e.g. the 
inhibition constant  Ki, for most inhibitors. �GBind is related to the Ki by the fol-
lowing equation:

with R as the perfect gas constant.
There are a wide variety of different methods capable of predicting compu-

tationally the binding free energy of a protein-ligand complex (Fig. 11.3), and 
generally they differ significantly in accuracy and speed. Very accurate binding 
free energies can be obtained for instance with free energy perturbation (FEP) 
or Thermodynamic Integration (TI) methods. However, these methods are very 
time-consuming and laborious and not many complexes can be analysed in a short 
period of time. To analyse the binding free energy of hundreds or thousands of 

(11.1)�GBind = GComplex − GProtein − GLigand

(11.2)�GBind = +RT InKi
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protein-ligand complexes as generated by virtual screening campaigns, then 
 “scoring functions” are used instead.

A “scoring function” relies on several assumptions and simplifications to esti-
mate protein-ligand binding. These methods are very fast since the complexity and 
computational cost required for the calculation of protein ligand binding is dra-
matically reduced [137]. However, the accuracy of the final results can be compro-
mised, as a number of physical phenomena that determine molecular recognition 
are not included in the calculation or are modelled by predefined parameters that 
are obtained from experimental observations or quantum chemical calculations. 
The development of “scoring functions” is thus not an easy task, as it can have a 
major impact on the quality of molecular docking results [111].

Generally speaking, the accuracy of a scoring function can be evaluated taking 
into account its capability to follow the following criteria: (i) it must be capable 
of estimating the interaction between the receptor and the ligand and this value 
should be proportional to the free energy of binding; (ii) the poses of a given 
ligand must be ranked correctly, and the best-scored ones, if existent, should be 
close to what is observed experimentally; (iii) if multiple ligands are docked, it 
must be possible to discriminate between molecules that bind the target and mol-
ecules that do not, and the ones that bind should be ranked accurately; (iv) a scor-
ing function must be sufficiently fast to be applied in a docking algorithm [138].

Currently, the number of scoring functions available for predicting protein-
ligand interactions is large and increasing. Many algorithms share common meth-
odologies, some with novel extensions, and the diversity in both their complexity 
and computational speed provides a plethora of techniques to tackle modern struc-
ture-based drug design problems. Roughly speaking, the scoring functions can be 
grouped into four main categories: force field scoring functions, empirical scor-
ing functions, knowledge-based potentials, and consensus scoring. Each of these 
 categories will be briefly described in the following sections.

11.3.1  Force Field Based Scoring Function

Force-field-based scoring functions have been used for more than 2 decades and 
apply classical molecular mechanics energy functions to compute the binding affin-
ity between the protein and the ligand. These scoring functions are mainly based 

+
G Binding

Protein Ligand Complex

Fig. 11.3  Schematic representation of the free energy of binding �GBind
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on the non-bonded terms of the molecular mechanics force field. This means, 
 therefore, that they do not estimate the free energy of binding but rather the inter-
action energy between the protein and the ligand. In Eq. 11.3, it is represented a 
simple force-field scoring function (from the DOCK software [139]) with energy 
parameters taken from the AMBER force field. In this case, the binding energy is 
approximated to an interaction energy through a combination of non-bounded 
terms, i.e. the van der Waals and electrostatic energy terms. The van der Waals term 
is estimated using a Lennard-Jones dispersion/repulsion term, and the electrostatic 
term is computed by a Coulombic formulation with a distance-dependent dielectric 
function that reduces the contribution from charge–charge interactions [140, 141].

where rij stands for the distance between protein atom i and ligand atom j, Aij and 
Bij are the Lenard-Jones parameters, and qi and qj are the atomic charges. Here, 
the effect of solvent is implicitly considered by introducing a simple distance-
dependent dielectric constant ε

(

rij
)

 in the Coulombic term.
Nowadays, the available force-field scoring functions have additional terms in 

their formulations, since the forces that govern the protein-ligand binding do not 
have an exclusively non-bonded nature. Indeed the intermolecular forces, such as 
ionic bonds and hydrogen bonds play a major role. Furthermore, when the ligand 
binds to a protein it changes its chemical conformation (three-dimensional shape) 
and therefore this effect must also be taken into account while estimating protein 
ligand interaction (energy of the ligand).

Some examples of force field based scoring functions are displayed in 
Table 11.2. All the scoring functions are almost identical among them, and only 
differ in a few terms, in the force field that is used to calculate their parameters and 
on how the interaction energy is calculated. For instance, the D-Score scoring func-
tions is based on the TRIPOS force field [142], while DOCK [139] and AutoDock 
[143, 144] are both based on the Amber force field [145]. D-Score only calculates 
the interaction energy between the protein and the ligand, whereas AutoDock and 
GoldScore also take into account the energy of the ligand in order to approximate 
the calculation to the binding free energy. The terms used to calculate these ener-
gies are also different between the scoring functions. For example AutoDock has 
a hydrogen-bonding term (although with different functional forms) in an attempt 
to increase the potential of specific molecular recognition, while such term is not 
taken into account in the D-Score and Gold Score scoring function.

Despite the good results and the clear physical meaning of the force field scor-
ing functions, they have several drawbacks. The force fields that are used in their 
core structure were primarily formulated to model enthalpy gas-phase contribu-
tions to structure and energetics, and do not include implicit solvation and entropic 
terms that are important to assess the interaction energy between the protein and 
the ligand. This is commonly corrected in the scoring functions through the inclu-
sion of additional terms. For instance, the desolvation energies of the ligand and 

(11.3)Score =
∑

i

∑

j

(

Aij

r12ij
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Bij

r6ij
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qiqj

ε(rij)rij
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of the protein are sometimes taken into account using implicit solvation methods 
such as GBSA or PBSA. Entropic corrections are included through a torsional 
entropy term that estimates the conformational entropy lost upon binding.

Force-field based scoring is further complicated by the fact that it generally 
requires the introduction of cut-off distances for the treatment of non-bonded 
interactions, which are more or less arbitrarily chosen and complicate the accurate 
treatment of long-range effects involved in the binding process.

11.3.2  Empirical Based Scoring Function

The functional form of empirical scoring functions is often simpler than force-
field based scoring functions, although many of the individual contributing terms 
have counterparts in the force-field molecular mechanics terms. Generally, the 
empirical scoring functions decompose the overall binding free energy into several 
energetic terms as it is displayed in Eq. 11.4.

where �Gi represents different energy terms such as vdW energy, electrostatic, 
hydrogen bond, desolvation, entropy, etc., that are calculated by a somewhat intui-
tive algorithm. The corresponding coefficients Wi are derived from a regression 
analysis on a set of protein–ligand complexes with known binding affinities. For this 
reason, empirical scoring functions are also referred to as regression-based methods.

Currently, several empirical scoring functions are available in diverse molecu-
lar docking programs, such as FlexX [6], F-Score [148], the Piecewise Linear 
Potential (PLP) [149], ChemScore [150, 151], Glide SP/XP [152], SCORE [153], 
Fresno [154] and X-SCORE [155]. Some examples are displayed in Table 11.3.

Several of these programs contain a modified form of the scoring function that 
was initially developed for the molecular docking software called LUDI. The gen-
eral equation of the original implementation of this scoring function is displayed 
in Eq. 11.5 [156]:

where �G coefficients are unknown and are determined by multi-linear regression 
in order to fit the experimental measured binding affinities.

The first terms are a fixed ground term and a term taking into account the loss 
of translational and rotational entropy during ligand binding by hindrance of rotat-
able bonds (�Grot corresponds to the energy that is lost per rotatable bond and NR 

(11.4)Score =
∑

i

Wi ×�Gi

(11.5)

�G = �G0 +�GrotNR

+�Ghb

∑

h−bonds

f (�R)f (�α)

+�Gion

∑

ionic

f (�R)f (�α)+�GlipoAlipo
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Table 11.3  Formula of some empirical scoring functions

Name Scoring function formula

F-score  
[148]

�Gbind = �G0 +�GrotorNrotor

+�GH−bond

∑

H−bond
f (�R,�α)+�Gionic

∑

ionic
f (�R,�α)

+�Garomatic

∑

aromatic
f (�R,�α)+�Glipo

∑

lipo
f ∗(�R)

 

where the �G coefficients are unknown and will be obtained by multiple linear 
regression, f is a penalty function for deviations from ideal geometry for each 
kind of interaction, and f* is a function penalizing for lipophilic interactions 
deviating from an ideal separation distance. This scoring function is very similar 
to the initial implementation of the LUDI scoring function (Eq. 11.5), but has two 
additional terms: one that takes into account the interaction between aromatic 
groups, and a second one that calculates the lipophilic interactions through a sum 
of pairwise atom-atom contacts

ChemScore 
[150]

�Gbind = �G0 +�GH−bond

∑

il
g1(�R)g2(�α)+�Gmetal

∑

aM
f (raM )

+ �Glipo

∑

il
f (rIL)+�GrotHrot

 

where, the �G coefficients are unknown and will be obtained by multiple linear 
regression. The hydrogen bond term, 

∑

il g1(�R)g2(�α), is calculated for all 
complementary possibilities of hydrogen bonds between ligand atoms i, and 
protein atoms j. The metal term, 

∑

aM f (raM ), is calculated for all acceptor and 
acceptor/donor atoms, a, in the ligand and any metal atoms, M, in the protein. 
The lipophilic term, 

∑

il f (rIL), is calculated for all lipophilic ligand atoms i, and 
all lipophilic protein atoms l. The final term, Hrot, identifies frozen rotatable 
bonds

Glide XP 
[152]

GlideXPScore = Ecoul + EvdW + Ebind + Epenalty

Ebind = Ehyd_enclosure + Ehyd_n_motif + Ehb_cc_motif + EPI + Ehb_pair + Eprobic_pair

Epenalty = Edesolv + Eligand_strain

 

where Ehyd_enclosure assigns scores to lipophilic ligand atoms, Ehyd_n_motif  is an 
improved model of protein-ligand hydrogen bonding, Ehyd_n_motif  is a term that 
identifies neutral–neutral hydrogen-bond motifs that are found in many if not 
most pharmaceutical targets, Ehb_cc_motif  identifies special charged–charged 
hydrogen-bond motifs, EPI is a term that accounts for pi stacking and pi-cation 
interactions, Ehb_pair and Eprobic_pair are hydrogen bond and lipophilic pair terms, 
respectively. The Edesolv accounts for the desolvation effects and Eligand_strain is a 
function that is used to penalize poses with close internal contacts

Fresno  
[154]

�Gbind = K + αhbond + βlipo + γrot + δbp + εdesolv  

where constant K as well as regression coefficients α,β, γ , δ, ε are unknown and 
will be optimized for each protein-ligand series by multiple linear regression. The 
H-bond term (HB) estimates the favorable contribution from hydrogen bonds 
between the ligand and the protein. The lipophilic term (LIPO) estimates the 
favorable contribution to binding given by the contacts of lipophilic atoms of the 
ligand with lipophilic atoms of the protein. The rotational term (ROT) estimates 
the loss of entropy due to the freezing of rotatable bonds of the ligand upon 
binding. The buried-polar term (BP) is used to describe the unfavorable 
interactions arising from the contact of polar atoms with lipophilic atoms 
between the ligand and the protein. The desolvation term (DESOLV) accounts for 
the desolvation effects during binding and it is obtained by solving the linear 
form of the Poisson-Boltzmann equation using a finite-difference method
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represents the number of rotatable bonds that the ligand has). �Ghb and �Gion give 
the binding energy for each optimal hydrogen bond and salt bridge, respectively. 
f (�R,�α) is a scaling function penalizing deviations from the ideal interaction 
geometry in terms of distance (�R) and angle (�α). The �Glipo term represents the 
contribution from lipophilic interactions. The lipophilic contribution is assumed to 
be proportional to the lipophilic contact surface, Alipo, between the receptor and the 
fragment.

In spite of the similarities between the terms present in the empirical scoring 
functions, presented in Table 11.3, to that displayed in Eq. 11.5, we can notice that 
most of them have completely different implementations for the computation of 
each term. For example, in the early LUDI formulation, there are two independent 
terms that estimate the hydrogen-bond and ionic salt bridges interaction, whereas 
in ChemScore, the last term is absent. The LUDI function calculates hydropho-
bic contributions (�Glipo) on the basis of the representation of a molecular surface 
area, whereas ChemScore evaluates contacts between hydrophobic atom pairs. 
In the case of F-Score, an additional term was added to account for aromatic an 
interaction that for instance was not present in the original implementation of the 
LUDI scoring function. The empirical scoring functions also include non-enthal-
pic contributions, such as the so-called rotor term, which approximates entropy 
penalties on binding from a weighted sum of the number of rotatable bonds in 
ligands. ChemScore implements ligand rotational entropy in a more complicated 
form than LUDI, which describes the molecular environment surrounding each 
rotatable bond. Fresno also differs from the LUDI algorithm mainly by the explicit 
treatment of ligand desolvation and of unfavorable protein–ligand contacts [154].

Currently, the empirical scoring functions have been applied with great suc-
cess to predict the pose and scoring of several molecules. The main advantage of 
this method, when compared with the force-field based scoring functions, comes 
from the fast and easy computation of the terms that compose them. In addition, 
with the rapid increase in the number of protein-ligand complexes with known 3D 
structures and affinities, we are now closer of developing a relatively general scor-
ing function.

Based on the success of the empirical scoring functions, several force-field 
scoring functions were changed in order to include some empirical parameters 
into their formulations. This is for instance the case of AutoDock (after version 4 
[157]), in which various terms in the molecular mechanics energy function have 
been re-scaled by new coefficients (W), including the new term that estimates the 
desolvation free energy of the ligand (Eq 11.6).

The main drawback of the empirical scoring functions is their dependence on 
the experimental data set used in the parameterization process (not very versatile 
and transferable). This means that there is no guarantee whether these scoring 

(11.6)+Welec
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functions are able to predict the binding affinity of ligands that are structurally 
very different from those that are used in the training set. In addition, the terms of 
different fitted scoring functions cannot be easily recombined into a new scoring 
function, since they are a result of different weighting factors.

11.3.3  Knowledge-Based Scoring Functions

Knowledge-based scoring functions are purely statistical methods, designed to 
reproduce experimental structures rather than to reproduce binding affinities (such as 
force field and empirical based scoring functions). These scoring functions use sim-
ple statistical potentials that estimate the frequency of occurrence or non-occurrence 
(i.e. negative data) of different atom–atom pair contacts and other typical interactions 
that are obtained from the structural information embedded in experimentally deter-
mined atomic structures. In this process, it is assumed that if an interatomic distance 
occurs more often than some average value, it should represent a favourable contact, 
and vice versa. Additionally, the observed distribution of distances between pairs of 
different atom types must reflect their interaction energies [158].

The typical formula of a knowledge-based scoring function is displayed in 
Eq. 11.7.

where i and j stand for a protein atom type and a ligand atom type, respectively, 
r is the atom pair distance, N is the number of all possible atom pairs in the sys-
tem, and uij corresponds to the pairwise potentials between atom types i and j. 
This value is directly obtained from the occurrence frequency of atom pairs in a 
pre-defined database, using the inverse formulation of the Boltzmann law [159] 
according to Eq. 11.8.

where kB is the Boltzmann constant, and T is the absolute temperature of the system, 
ρ(r) is the number density of the protein–ligand atom pair at distance r, and ρ∗(r) is 
the atom pair density in a “reference” state where interatomic interactions are zero.

The various knowledge-based scoring functions differ between each other in 
the sets of protein-ligand complexes used to obtain these potentials, the form of 
the energy function, the definition of protein and ligand atom types, distance cut-
off, and several additional parameters. Muegges’s Potential of Mean Force (PMF) 
[160–162], DrugScore [163, 164] and SMall Molecule Growth (SMoG) [165] are 
the most popular examples of knowledge-based scoring functions, whose formu-
las can be found in Table 11.4. Other knowledge-based scoring functions are also 
available such as BLEEP [166, 167] and M-score [168].

(11.7)Score =

N
∑

i,j

uij(r)

(11.8)u(r) = −kBT ln

(

ρ(r)

ρ∗(r)

)
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Compared to force field and empirical scoring functions, the knowledge-based 
scoring functions offer a good balance between accuracy and speed. The major 
attraction of many knowledge-based scoring functions is their computational 
simplicity. The deduction of the potentials required for the scoring function only 
requires the knowledge of a set of protein–ligand complex structures, and such 
knowledge is relatively rich and still increasing due to the contributions from 
structural biologists [170]. Due to the pairwise characteristic, the knowledge-based 
scoring functions are also very fast, similarly to what happens with the empiri-
cal scoring functions. Other advantages of the knowledge-based methods are their 
ability to capture implicitly binding effects that are difficult to model explicitly, 
such as sulphur-aromatic or cation-π interactions, which are generally badly han-
dled explicitly. Furthermore, these scoring functions can be easily applied to sys-
tems that were not used for the setup of the scoring function, which turn them 
attractive to apply for very large compound databases.

Table 11.4  Selected knowledge-based scoring functions [158]

Name Scoring function formula

PMF [161]
PMF =

∑

kl Aij(r) = −kBT ln

[

f
j
Vol_corr(r)

ρ
ij
seg(r)

ρ
ij
bulk

]

 

where kB is the Boltzmann constant, f jVol_corr(r) is a ligand volume 

correction factor and ρ
ij
seg(r)

ρ
ij
bulk

 indicates a radial distribution function for a 

protein atom i and a ligand atom j

Drug Score [163] �W = γ
∑

i

∑

j
�Wij(r)+ (1− γ )

[

∑

i
�Wi(SAS, SAS0)

+
∑

j
�Wj(SAS, SAS0)

]

 
where SAS corresponds to the surface accessible area terms, Wij is a 
 distance dependent pairwise potential and γ is an adjustable weight factor

SMoG [165] F =
∑

p

∑

l − ln
( p(σp ,σl)

pref

)

�(p, l) 

where p denotes a protein atom of type σp,l, denotes a ligand atom of 
type σl, Δ(p,l) is the characteristic function of the contact (1 if atoms 
p and l are in contact and 0 otherwise), p(σp ,σl) denotes the measure of 
frequency of the contacts between atom types σp and σl in the training 
database and pref  is the probability of those contacts in the hypothetical 
reference state

AutoDock Vina [169] �Gbind = �Ggauss +�Grepulsion +�Ghbond +�Ghydrophobic +�Gtors 

where ΔGgauss is an attractive term for dispersion, ΔGrepulsion is a 
function that is used to penalize close internal contacts, ΔGhbond is a 
function that estimates favourable contribution from the hydrogen bonds 
between the ligand and the protein, ΔGhydrophobic is a Ramp function 
that treats hydrophobic contributions and ΔGtors is a term proportional 
to the number of rotable bonds
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The major disadvantage of these methods is that their parameterization is lim-
ited by the sets of protein–ligand complex structures that are known, which can 
lead to sub-optimal differentiation of atom types.

11.3.4  Consensus Scoring Functions

Consensus scoring functions combine the information obtained from different 
scores to improve the probability of finding the correct solution [171].

The main idea behind the consensus scoring is that the scoring functions per-
form very well for the purpose of pose prediction, but cannot predict the bind-
ing affinity of protein ligand complexes in statistically rigorous terms since the 
functional forms used to describe the chemistry and physics of ligand binding are 
incomplete. This is particularly important in virtual screening campaigns where 
these functions often fail in the comparison of the binding affinity of different 
ligands and thus fail to distinguish between inactive and active compounds. This 
often causes the presence of many false positives among the top scored solutions 
of a single ranking list, a factor that can compromise the efficiency of a virtual 
screening campaign.

Despite its short existence, the consensus scores have now become a com-
mon method. Several consensus-scoring functions are already available, such 
as X-score [155], GFscore [172], DS LigandScore by Accelrys, and Model-
Composer, MOE by Chemical Computing Group, among others. In the majority 
of cases, they are employed as a post-processing step after docking runs. Many 
studies have suggested that employing consensus-scoring approaches can improve 
the performance by compensating for the deficiencies of the scoring functions 
[173–175]. In addition they tend to reduce the number of false positives that are 
identified by individual scoring functions, leading to a significant enhancement in 
hit-rates [176, 177].

11.3.5  Typical Problems in Molecular Docking

Over the past decades docking has become increasingly widespread in drug 
design and development efforts. In spite of the progress that has accompanied 
this evolution, several features in docking still remain important challenges 
for the users, often limiting its range of applicability. Here we highlight four 
important challenges in docking: (1) validation of the docking protocol; (2) 
covalent docking; (3) presence of structural water molecules; (4) treatment of 
entropy.
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11.3.5.1  Validation of Molecular Docking Protocol

The validation of the docking protocol is an important requirement for successful 
docking. A variety of features are normally involved in a standard protein-ligand 
docking campaign. Many of these features are dependent on choices that are made 
by the user. Examples include the specific search algorithm and scoring function 
to be used, but also a variety of parameters, including the box size and position, 
grid size, number of structures, number of energy evaluations, specific protonation 
state of an active site residue, choice of flexible residues, etc. Such choices can 
vary significantly from target to target, and often with the specific type of ligands. 
Even the best combination of a scoring function and search algorithm can fail dra-
matically with a poor choice of docking conditions. While the user’s experience 
can ease significantly this process of selection, only a careful validation of the 
docking protocol can ensure a reasonable level of accuracy.

Strategies to validate the docking protocol can vary significantly, in terms of 
the level of detail and sophistication. Ideally, independent experimental validation 
would be the preferred choice. In practice, however, other alternatives have to be 
used. The most basic approach consists in starting from a crystallographic structure 
of a protein-ligand complex and trying to re-dock the ligand to its correct position 
in the original experimental PDB structure. The different parameters are tested and 
optimized, until a good pose prediction is achieved, measured in terms of RMSD.

Logically, as the amino acid residues along the binding pocket in the target pro-
tein are already prearranged for that specific ligand and for its pose, re-docking the 
ligand provides only a rough assessment of the quality of the docking protocol in 
reproducing the pose of that specific ligand in that specific structure target. It cor-
responds to a lock-and-key recognition in a protein that eventually may use the 
induced-fit recognition model.

A better and more general validation approach would involve the use of an 
independent PDB structure of the target to dock the ligand, typically from another 
complexed ligand or substrate, or even from a structure of the free target. The final 
pose is then compared with the real pose of the ligand in its native PDB structure. 
In this case, docking becomes much more challenging, but also approaches signifi-
cantly more the conditions of a real docking campaign. Logically, if this validation 
process can be applied to several different experimental ligands, the conclusions 
become more general and the ability in correctly docking novel ligands with suc-
cess improves significantly. In addition, this type of analysis provides a glimpse 
on how the different side chains at the binding pocket are oriented for different 
ligands in different structures, allowing an understanding of the model of protein 
recognition and flexibility for that specific protein target.

11.3.5.2  Covalent Docking

Most docking methods focus exclusively on non-covalent interactions, including 
van der Waals, electrostatic interactions and hydrogen bonding. The main stream 
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of rational drug design relies on non-covalent interactions as the mechanism of 
the functionality of the drugs [178, 179], which in itself justifies the emphasis pre-
cisely on non-covalent interactions. However, some specific drugs, called cova-
lent drugs, employ as part of their binding mechanism the formation of a covalent 
interaction with the target.

The existence of such bond(s) confers to the covalent drugs a higher affinity 
towards their targets [180, 181]. For this reason, covalent drugs are often able to 
exhibit a very strong potency allied with relatively small molecular size, features 
that make them very attractive pharmaceutically [182]. In fact, 3 of the 10 top-
selling drugs in U.S. in 2009 were reported to be covalent drugs [180].

In spite of the popularity of covalent drugs, their discovery so far has relied 
almost exclusively in serendipity [180]. Covalent docking could enable the large-
scale application of the huge potential that has been traditionally associated with 
conventional docking, also to this class of molecules. Most docking programs do 
not allow the treatment of covalent ligands. Some mainstream docking alterna-
tives, like Autodock, GOLD and FlexX, already offer a “covalent docking” option 
that can be used. However, they are in general of limited applicability [178]. The 
search for improved alternatives in this area continues.

Recently Oyuang et al. [178] have reported a new docking package specifically 
designed to allow reliable covalent docking. The program, termed CovalentDock 
includes an automatic procedure that recognizes and prepares all covalently bond-
able chemical groups, together with a specific energy term that integrates the 
energy contribution from the covalent interaction with the scoring function. The 
program is compatible with common scoring functions used in docking, and has 
been shown to significantly improve pose prediction of covalent ligands [178]. 
A web server for automated covalent docking using this approach was recently 
implemented [183].

However, it is important to take into account that covalent docking has still fun-
damental limitations that ideally would require an explicit treatment of the elec-
tronic structure for being properly addressed. Research into the development of 
new algorithms incorporating covalent docking (including new potentials for 
metal-ligand binding) continues.

11.3.5.3  Structural Waters

Currently, the importance of solvation in the binding ability of drugs is well 
known [184, 185]. Many scoring functions used in protein-ligand docking already 
include, at least partially, solvation. However, more than solvation, it is the pres-
ence of structural water molecules that remains a hard challenge in present day 
docking. In fact, when analysing ligand-binding pockets in protein crystallo-
graphic structures, a common feature is the presence of interacting water mole-
cules or in close vicinity of the ligand. An analysis of a representative set of 392 
high-resolution protein-ligand complexes from the Protein Data Bank revealed 
an average of 4.6 ligand-bound water molecules per structure, 76 % of which 
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interacting simultaneously with both the ligand and the protein [186]. These water 
molecules provide indirect interactions between the protein and the ligand through 
the formation of hydrogen bonds with both partners [187]. Their presence and pre-
cise number and positioning can affect significantly both the ligand binding affin-
ity and range of most favoured conformations, aspects that can be essential for 
accurate protein-ligand docking [188–193].

Such issues cannot be handled simply by a scoring function and require a 
more explicit inclusion of water molecules. The strategies to adopt from this point 
onwards differ, depending on whether there is or not some a priori knowledge of 
the presence of water molecules in the binding pocket [194].

For example, if the docking study targets a protein for which there are several 
good resolution X-ray structures complexed with different ligands showing the 
presence of a conserved water molecule at the binding pocket, then the atomistic 
inclusion of that specific water molecule in the docking process (as part of the tar-
get) would be a natural alternative to consider. One way to test the potential impor-
tance of that conserved water molecule on docking, would be to test its inclusion in 
the validation stage with the ligands for which structural information is available. If 
the tests without the presence of the water molecule fail to predict the correct pose, 
while the ones that include it provide an accurate prediction of the ligand position, 
than its presence is shown to be essential. Naturally, this strategy only works if the 
ligands to be docked are structurally similar or have a common scaffold with those 
for which a complexed X-ray structure is already available. Furthermore, the reader 
should be aware that most conserved water molecules, even the tightly bound ones, 
change at least slightly their position or orientation when varying the ligand, and 
that such difference might prevent the identification of the correct pose.

Often, however, this problem takes a much more complicated form: the mol-
ecule to be docked is a novel entity, very different from those complexed in avail-
able X-ray structures, or no target-ligand X-ray structure exists at all. The number 
of possible relevant water molecules for ligand binding and their position is not 
known and can vary from ligand to ligand.

If a reasonable guess on the preferred hydration sites can be performed from 
the available non-complexed structures of the target, it becomes necessary to be 
able to anticipate which water molecules are more likely to be displaced to allow 
ligand binding. Methods like WaterScore [195], HINT [196], or Consolv [197] 
can be used to distinguish between water molecules that should be included in the 
docking process and those that should be replaced to make room for the ligand, 
helping to prepare initial structures for docking. In addition, some docking pro-
grams have also included approaches that change the position of water molecules 
(enabling also its addition or removal) during the docking process, normally by 
employing an energy penalty [190].

In cases where no information is available, more sophisticated approaches need 
to be adopted. An example is the “Just Add Water Molecules” (JAWS) approach 
[198]. This method employs a double-decoupling scheme that compares the ener-
getic cost associated to the appearance and disappearance of water molecules on 
a binding-site grid. The JAWS methodology has been shown to work particularly 
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well for water molecules well-buried in cavities, in which the grid is isolated from 
the bulk water [198]. Other alternatives include AQUARIUS [199], CS-Map [200], 
MCSS [201], SuperStar [202] and GRID [203].

Giving the difficulty of the task, alternative techniques such as molecular 
dynamics simulations can often play an important role in identifying relevant 
water molecules at the binding pocket and in refining their specific positions 
and arrangement. Two strategies involving molecular dynamics are normally 
employed: (1) Pre-Docking MD, in which the molecular dynamics simulations 
are performed on X-ray structures of relevant protein-ligand complexes prop-
erly solvated (typically in a box of waters under periodic boundary conditions), 
and the residence times of individual water molecules, in the binding pocket, are 
analysed to identify persistent contacts that could be of importance for docking 
new ligands; (2) Post-Docking MD, in which the protein-ligand docking complex 
resulting from docking is subjected to MD simulations in water, and the reori-
entation of individual water molecules at the binding site, and the movement of 
new water molecules from the bulk solvent into the binding pocket is taken into 
account to refine the structure of the complex.

11.3.5.4  Entropy

Entropy can make an important difference on the evaluation of the protein-ligand 
affinity [204–207]. However, it is often neglected or the subject of drastic sim-
plifications in most computational methodologies that handle protein-ligand com-
plexes [205, 206, 208], including even accurate free energy calculations [209, 
210]. The reasons for this choice are not difficult to understand. In fact, the deter-
mination of the entropic contribution of the ligand and protein can be computa-
tionally very demanding, requiring particularly well minimized structures for a 
normal mode analysis, or large numbers of conformations for a quasi-harmonic 
analysis [211–213]. In problems such as protein-ligand docking, for which speed 
is often a critical issue, such approaches are not normally feasible.

The entropy contribution to the binding free energy emerges essentially from 
the reduction of the translational and rotational degrees of freedom in the ligand, 
and from changes in the normal modes of the protein and most of all of the ligand, 
during binding [205, 206, 214–217]. Incorporating such effects in an efficient 
scoring function is presently an important challenge in the field of protein ligand 
docking. While some attempts to incorporate entropy in scoring functions have 
been reported in the literature (particularly in knowledge-based scoring functions) 
[207], most approaches involve re-scoring schemes [218–220].

One way to estimate the translational, rotational and torsional entropy in dock-
ing, was developed by Ruvinsky and Kozintsev [220]. In their approach, multiple 
docking experiments are performed and the results are clustered by similarity. A 
measure of the size of each cluster is then used to estimate the entropic contribution, 
assuming that large clusters of conformations are indicative of favourable entropic 
contributions of the local energy landscapes. Naturally, the method assumes that the 
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search algorithm can provide a reasonable exploration of the conformational space 
associated. Tests with different scoring functions (Autodock, D-Score, LigScore, 
PLP, LUDI, F-Score, ChemScore, X-Score, PMF, DrugScore, etc.) have shown 
some small improvement in the docking accuracy [219, 220].

Another approach was suggested by Lee and Seok [218] that proposed the 
introduction of a probability function to analyse the populations of different bind-
ing modes in the context of statistical mechanics. Such approach allows an esti-
mate of the contribution of the state represented by a sampled conformation of the 
configurational integral, applying the notion of colony energy, proposed by Xiang 
et al. [221]. Its application in combination with several common scoring functions 
has resulted in improved accuracy [218]. Furthermore, its low computational cost 
enables its combination with other pre-existing scoring functions.

In spite of these developments, properly handling entropy in docking remains 
challenging. In addition to the entropic contributions of the ligand and protein, other 
key components still require our attention. For example, the entropic contribution of 
the solvent molecules, particularly those at the binding pocket is normally forgotten. 
The very limited movement of buried waters in the protein-ligand complex and the 
huge variation arising from dessolvation contribute to making this an important term.

11.3.6  Future Developments and Perspectives

A widely spread concept is that the major weakness of today’s docking programs 
lies not on the sampling methods but on the scoring functions, particularly in those 
cases in which the protein rearrangement has been shown to be limited to a small 
and predictable number of side-chains. As a matter of fact, considerable efforts 
continue to be devoted to the development of computational methods for describ-
ing protein–ligand interactions.

In spite of the large number of protein-ligand docking alternatives, we are still 
far from a perfect docking algorithm. In terms of search algorithms, efficiently 
accounting for protein flexibility remains a challenging task. In terms of scoring 
functions, consensus scoring is emerging as the best alternative, compensating for 
the particular deficiencies of the individual scoring functions.

Features such as the presence of structural water molecules and the treatment 
of entropy, still pose considerable problems for protein-ligand docking. Covalent 
docking remains a challenging issue.

New developments continue to be reported every year. This fact, together with 
the increasing number of programs available and the different way in how they 
deal with the diverse challenges posed by protein-ligand docking, demonstrate the 
richness of the field and show that the future of docking is promising.
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12.1  Introduction to ADMET

The most desired objectives of the medicinal chemistry programs are achieving 
high efficiency with desirable safety profile. In order to reach these goals, candi-
date molecules have to form optimal interactions with the primary target or targets 
and should avoid unwanted interactions with antitargets. Interactions with off tar-
gets results in undesirable toxicological events. Absorption, distribution, metabo-
lism and excretion (ADME) and pharmacokinetics have a significant impact 
on both efficacy and safety. The pharmacokinetic behaviour and the toxicology 
together are usually abbreviated as ADMET.

The majority of the drugs are administered orally, therefore first the drug dis-
solves in the gastro-intestinal tract, is absorbed through the gut wall and then 
passes the liver to get into the blood circulation. During distribution, the active 
pharmacological ingredient passes biological barriers and reaches various com-
partments, tissues and organs in the body. Central nervous system drugs reach the 
brain by passing the blood-brain barrier. The distribution enables the drug to bind 
its molecular target, for example enzymes, receptors or ion channels to exert its 
pharmacodynamic effect. The compounds are then recirculated into the liver and 
metabolized in order to increase its polarity. Finally, they are excreted by the renal 
tract via urine, or in some specific cases via faeces by enterohepatic circulation.
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Breakthroughs during the last decade in protein engineering and crystallog-
raphy resulted in atomic level structural information of the majority of proteins 
with distinguished relevance in ADMET processes such as plasma protein binding, 
active transport, cytochrome P450 (CYP) mediated metabolism, its inhibition and 
induction as well as some toxicity related targets such as the hERG (human Ether-
a-go-go Related Gene product) potassium channel. Proteins having the highest 
contribution to ADMET processes are listed in Table 12.1. Although the list is not 
comprehensive, it contains the antitargets with most attention and research to date.

Considering the protein modelling aspects of ADMET-related proteins, it is 
important to emphasize that these proteins are evolutionarily optimized to recognize 
and bind broad variety of compounds with multiple (HSA) and/or flexible (HSA, 
CYPs, PXR and P-gp) binding sites. The CYP enzyme family illustratively exempli-
fies the complexity of ligand binding event, since as few as six isoforms (1A2, 2C8, 
2C9, 2C19, 2D6 and 3A4) are responsible for the metabolism of ~75 % of the mar-
keted drugs [1]. The characteristic non-Michaelis-Menten kinetics of co-operativity 

Table 12.1  Proteins with distinguished importance to ADMET

Protein Type Adverse event ADMET impact Structure  
(example PDB IDs)

Serum albumin Transport 
protein

Plasma binding, 
low free drug 
level
Drug–drug 
interaction

Distribution 1GNI

P-glycoprotein Efflux 
transporter

Efflux transport Absorption, 
distribution

3G60

Cytochrome  
P450 1A2

Metabolic 
enzymes

Metabolism
Inhibition of 
metabolism
Food effect
Drug–drug 
interactions

Metabolism 3TBG, 3QM4, 3QM4, 
3TDA

Cytochrome  
P450 2C9

1OG2, 1OG5, 1R9O

Cytochrome  
P450 2D6

1TQN, 2J0D, 2V0 M, 
3NXU, 3TJS, 3UA1

Cytochrome  
P450 3A4

2HI4

Sulfotransferases 
(SULT)

Metabolic 
enzymes

Metabolism Metabolism 2D06

Pregnan X  
receptor (PXR)

Nuclear 
receptor

CYP, 
P-glycoprotein 
induction

Adsorption, 
distribution 
metabolism

1NRL

Constitutive 
androstane  
receptor (CAR)

Nuclear 
receptor

CYP, 
P-glycoprotein 
induction

Adsorption, 
distribution 
metabolism.

1ILG, 1ILH, 1M13, 
1NRL, 1SKX, 2O9I, 
2QNV, 3R8D

hERG Potassium ion 
channel

Cardiovascular 
side-effects

Toxicity Homology model

5-HT2B receptor G protein-cou-
pled receptor

Valvular heart 
disease

Toxicity 4IB4

α1 adrenergic 
receptor

G protein-cou-
pled receptor

Vasoconstriction 
of arteries

Toxicity Homology model 
(GPCR templates)
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effects further underlines the intricacy of the ligand binding event. The crystal struc-
ture of CYP3A4 with ketokonazole contains two copies of the ligand providing 
atomic level argument for multiple binding and indicating the associated high level 
of binding site flexibility [2]. Similarly, crystal structure of the active transport pro-
tein (P-gp) contains two stereoisomers of a cyclic hexapeptid ligand [3]. The capac-
ity of binding diverse chemical series is achieved by multiple, non-specific contacts. 
Therefore the binding site of such proteins is generally lined by numerous hydropho-
bic residues. Calculating less oriented hydrophobic ligand-protein contacts and esti-
mating the associated hydration effects in a flexible protein environment contributes 
to the challenges of ADMET modeling at molecular level.

Drug discovery is a multidimensional task that requires an outstanding balance 
between desirable and undesirable properties to fulfil the efficiency and safety crite-
ria of the target product profile. Structure based rational design of chemical modifi-
cations using the atomic resolution structure of ADMET-related proteins is therefore 
highly demanded. Maintaining the optimal interactions with the primary target lim-
its the freedom for chemical modifications to optimize the pharmacokinetic profile. 
Therefore in silico ADMET predictions become integrated part of the drug discov-
ery programs such as site of metabolism prediction, modelling the induction of the 
metabolic and transport proteins (CAR, PXR) or estimating HSA binding.

12.2  Computational Methods for Structure-Based 
ADMET Prediction

The aim of this section is to give a brief introduction to the general theory and 
practice of protein modelling methodologies. Prior to the discussion of the com-
putational methods, a brief overview is presented here regarding the fundamental 
aspects of protein structures.

Atomic level information of the protein conformation is fundamentally  important 
for structure-based drug design. High-resolution protein structures are  available 
from X-ray crystallography, NMR methods or computational approaches. If the 
protein structure is not available but the structure of sequentially homologous 
 proteins are known homology modelling can be applied. The most important public 
 depository of experimental protein structures is the RCSB Protein Data Bank (PDB,  
http://www.pdb.org/pdb/home/home.do) that contains nearly 100k structures in 2014. 
Approximately 89 % of the deposited structures were determined by X-ray crystal-
lography, nearly 10 % of the cases were modelled based on NMR measurements 
and ~1 % of the structures were based on electron microscopy studies.

Simulations based on protein models derived from experimental observations car-
ries the errors of the original data. The errors in the data sets limit the accuracy of the 
subsequent modelling irrespectively to the techniques applied [4]. Therefore quality 
assessment of protein models has essential impact on the further results. In the case 
of the X-ray experiments the electron density is deduced with inverse Fourier trans-
formation. Accordingly, the electron density map contains the key information. The 
resolution of the structure is a widely used global descriptor defining the particular size 

http://www.pdb.org/pdb/home/home.do
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limits of atomic objects that can be resolved in a particular experiment; the accept-
able resolution is typically lower than 3.5 Å. The quality of the structural model can 
be assessed by the R-factor that quantifies the differences between measured data and 
data predicted from the model. Consequently lower R-value indicates a more consist-
ent model. Cross validation during the refinement to avoid over fitting to the data (gen-
erally ~5 % of the data is selected for this purpose) is measured as Rfree that should 
be lower than 0.45. Higher difference between R and Rfree than 0.05 is indicative for 
over fitting. These data (resolution, R and Rfree) are generally available in PDB data-
base. More sophisticated methods are available to assess the global quality, such as 
the coordinate error [4]. Local metrics carry information on the specific regions of the 
protein model. These metrics indicates the quality of fit to the electron density for indi-
vidual atoms or a small set of atoms. First, it is suggested to assess the electron density 
map in the vicinity of the active site and the ligand if present. Three further methods 
are commonly used for local analysis such as the occupancy-weighted B-factor (owB-
factor: atomic B-factor divided the corresponding occupancy), the real-space R-factor 
(RSR), and real-space correlation coefficient (RSCC) [5]. In general, B-factors meas-
ure relative vibrational motions, thus low B-factor indicates well-ordered motifs. 
Lower owB-factor, lower RSR and RSCC close to one characterize a good model.

12.2.1  Fundamental Methods for Energy Calculation 
(Quantum Mechanics, Molecular Mechanics,  
and Hybrid Methods)

Quantum mechanics (QM) explicitly represents both the nuclei and the electrons 
during the calculations, therefore solving the core, time dependent Schrödinger 
equation entirely describes the properties—such as the energy—of the investi-
gated molecular object. However, the exact analytical solution is problematic for 
larger, polyelectronic systems. Therefore approximations are required in order to 
make the QM methods applicable for larger systems. One of the most important 
steps is the Born-Oppenheimer approximation: since the electrons and the nuclei 
particles have 3 orders of magnitude difference in their masses, their movements 
can be decoupled. Accordingly, the total wave function can be separated into the 
product of the electronic and the nuclei wave functions. This approximation has 
huge impact on the applicability of the QM methods, and as a result, the energy 
can be calculated for continuous configurations of the nuclei. This means that a 
potential energy surface (PES) can be described that depends on the coordinates 
of the nuclei, instead of having distinct vibrational levels. Several other approxi-
mations exist, that are not described here, such as the one-electron approximation 
that finally results to the Slater determinant type electronic wave function and the 
Hartee-Fock (HF) model. The electron correlation energy can be corrected using 
computationally more intensive post-HF methods such as the Møller-Plesset per-
turbation method (MP), configuration interaction (CI), coupled cluster method 
(CC), to name only some of them. The other widely used approach for QM 
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calculations is based on the Hohenberg-Kohn theorem: the ground state properties 
of the polyelectronic system are defined by its electron density (DFT approach). 
Focusing on electron density is very straightforward, since it has only three spatial 
variables. Recently, QM methods become integrated parts of the drug design, but 
they are only suitable for a limited number of heavy atoms (some hundreds).

The Born-Oppenheimer approximation and the PES inspired the birth of a much 
simpler molecular mechanics approach to study as large systems as proteins (see also 
Chaps. 5, 7 and 10). The principle of the molecular mechanics (MM) model is that 
the energy of the system relies only on the conformation of the nuclei, and the role 
of electrons is modelled with simple functions, like the Hook’s law in case of bond 
stretching. The electrons are not explicitly incorporated into the MM model. The 
nuclei are connected with bonded functions (strings) and further interactions are rep-
resented by non-bonded functions. It is important to note here that MM methods are 
generally accurate in the minima of the PES but less convenient for conformational 
transition state calculations. Since the role of electrons are modelled with a set of sim-
ple mathematical functions studying reactions involving polarization, electron trans-
fer, opened shell atoms or radical formation is out of the scope of MM calculations.

The core bonded terms include stretching, bending, torsion and the non-bonded 
terms include van der Waals and Coulomb electrostatic potentials. The total energy 
of the system is calculated as a sum of all these terms (Fig. 12.1 and Eq. 12.1).

Fig. 12.1  Force field terms exemplified on alanine amino acid. Numbers with apostrophes repre-
sents the corresponding atom labels of alanine. Further details are described in the text

http://dx.doi.org/10.1007/978-3-319-09976-7_5
http://dx.doi.org/10.1007/978-3-319-09976-7_7
http://dx.doi.org/10.1007/978-3-319-09976-7_10
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The symbols r, Θ and δ designate bond length, angels, and torsions, respec-
tively; r0 and Θ0 are corresponding equilibrium values; n and ϕ are torsional mul-
tiplicity and phase, respectively. Kstrech, Kbend, and Ktorsion are bonded constants; 
Anonbonded, C6 and C12 are adjustable Lennard-Jones parameters; D is the dielectric 
parameter, while q is the net charge on the corresponding atom.

Due to the speed of molecular mechanics calculations, it is the key approach 
for simulating protein structures and bound ligands. The hydration effect can 
be incorporated into the model by implicit solvation or using explicit water 
molecules. In the case of implicit solvation, the work to transfer from vacuum 
to the medium is calculated using constant or distance dependent dielectric 
constants.

Hybrid QM/MM methods (see also Chap. 4) embrace the benefits of both 
approaches to simulate fundamental biological processes with essential con-
tribution of the exact modelling of electrons embedded in the protein structure 
or solvent environment; the case typical for e.g. enzyme catalysed reactions. 
During these calculations a subregion of interest in electronic detail is modelled 
with QM approach, while the rest of the system is calculated with the fast MM 
method.

Two major QM/MM methods are used for energy expression: subtractive 
and additive schemes. In case of the subtractive scheme the energy is calculated 
for the whole system with MM method and the selected subregion is calculated 
on both MM and QM level. The total energy is then calculated by adding the 
energy of the entire system at MM level to the subregion QM energy and sub-
tracting the subregion MM energy (ONIOM model) [6]. In case of the additive 
model, three energies are summarized: (i) the outer region calculated by MM 
method, (ii) the subregion calculated with QM approach and (iii) a special QM/
MM coupling energy term. The hybrid QM/MM interaction energy calculation 
is the most sensitive part of this approach, since its unique role in describing 
the boundaries between the systems. Two methods are used to solve the link 
between the two approaches: (i) link atom method uses artificial dummy atoms 
to cap the covalent bond at the edge of the quantum system, or (ii) frozen 
localized molecular orbitals can be used to connect the quantum and classical 
regions [7].

In the case of the CYP family, as an example, where the catalytic centre 
consists of a heme iron and the porphyrin structure that coordinates a molec-
ular oxygen to form the highly-reactive compound I state both electronic and 
steric factors have essential role. Therefore, the atomic level understanding of 
the catalysed reaction requires the application of hybrid QM/MM approach 
(Fig. 12.2).

(12.1)

EMM =
∑

bondsEstretch+
∑

anglesEbend+
∑

dihedralsEtorsion +
∑

ijEvdWECoulomb

http://dx.doi.org/10.1007/978-3-319-09976-7_4
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12.2.2  Molecular Dynamics

An essential synergism exists between the conformational dynamics and the func-
tion of proteins (see also Chap. 10). Molecular dynamics simulations links the 
structure and dynamics to explore the conformational energy landscape accessi-
ble to protein molecules to facilitate the atomic level understanding of the subtle 
atomic details of how proteins work [8]. Molecular dynamics simulation calculates 
consecutive configurations of the system by integrating Newton’s law of motion. 
The recorded trajectory specifies the positions and energies of the particles in the 
system as a function of the simulation time.

Numerical solution is based on the finite difference approach in which the inte-
gration is partitioned into small steps, separated in time by a specific Δt period 
[9]. The popular leapfrog algorithm, as an example, uses the positions at time t and 
velocities at time t – (Δt/2) for the update of both positions and velocities via the 
calculated forces acting on the atoms at time t (see Eqs. 12.2 and 12.3).

(12.2)x(t +�t) = x(t)+ v(t +
�t

2
)�t

(12.3)v(t +
�t

2
) = v(t −

�t

2
)+ a(t)�t

Fig. 12.2  Scheme for QM/MM method application. The protein structure, considered with MM 
method is represented as ribbons, while the QM subregion incorporating the catalytic centre is 
represented with balls and sticks. HOMO orbitals are also shown with blue/red surfaces

http://dx.doi.org/10.1007/978-3-319-09976-7_10
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Molecular dynamics simulations have fundamental role in ADMET-related protein 
modelling such as to explore protein conformations of the flexible proteins, or to 
calculate ΔΔGbind using free energy perturbation (FEP) method.

12.2.3  Homology Modelling

In spite of the rapid growth of the PDB, the number of known proteins still enor-
mously exceeds the number of corresponding structures [10]. On the other hand, 
the structure of the protein is exclusively determined by its primary sequence [11]. 
During the evolution sequential variations do not translate into significant, domain 
level structural changes directly. As a result, the known structures with high 
sequence similarity adopt approximately identical structures. Homology modelling 
is based on these fundamental observations (see also Chap. 9).

Homology modelling consists of four subsequent steps: (i) fold assignment, 
(ii) sequence alignment, (iii) model building and (iv) refinement [12]. The known 
sequence without available 3D structure is called ‘target’ and the sequentially 
homologous protein with available structure is called ‘template’. The goal of fold 
assignment is identifying the possible templates based on sequence similarities to 
that of the target sequence. This step can be aided by in silico secondary struc-
ture predictions (several tools are available at www.expasy.org) that are based 
on extracted correlations of the available structural information. The selection of 
correct template or templates has crucial impact on the quality of the predicted 
model. The choice of template structure has another aspect, since many proteins 
involved in ADMET modelling adopt different conformations. In the case of the 
CYP enzyme family, for example, the active site cavity offers huge variability 
among the crystal structures of the same isoform depending on the presence and 
type of the co-crystallized ligand [13]. Similarly, P-gp templates were crystal-
lized in inward-facing or outward-oriented structures co-crystallized with ATP [3]. 
Homology modelling is therefore a useful tool, if only the closed apo structure is 
available, but highly homologous templates exists with more relevant active site 
conformations.

During the sequence alignment step the manual fine-tuning of the target-tem-
plate sequences is typically done. The aim is to find the balance between sequence 
overlap, possible alignment of sequence length differences (location of gaps and 
insertions) along with the alignment of proposed secondary structural elements of 
the target with that of the corresponding elements in the template.

The usual procedure for model building includes the construction of the back-
bone and subsequently the side chains of the homology model. The conformations 
of the conserved regions in the template are restored, while the insertion and gap 
regions are being rebuilt. The aim of the refinement step is to increase the validity 
of the generated coarse model. It can include further loop re-modelling, energy 
minimization or molecular dynamics simulations. During the refinement step the 
quality of the model is constantly monitored by stereochemical parameters such 

http://dx.doi.org/10.1007/978-3-319-09976-7_9
http://www.expasy.org


29512 ADMET Prediction Based on Protein Structures

as the Ramachandran-plot, statistics-based potentials and physics-based energy 
functions. If further studies aim at calculating ligand-protein interactions special 
attention is to be paid for the active site. This can be carried out either during the 
homology modelling steps (ligand steered homology modelling) or subsequently, 
by simultaneous optimization of the ligand conformation and the surrounding pro-
tein environment (induced fit docking or MD refinement).

12.2.4  Docking

Docking is the prediction of the binding conformation (pose) of the ligand within 
the active site of the protein along with the estimation of the binding free energy 
(see also Chap. 11). In order to predict the binding mode, both the internal con-
formational and the six translational, and rotational degrees of freedom of the 
molecules are to be sampled. Prediction of the ligand-protein complex can have 
two different applications. First, either studying individual ligand-protein interac-
tions along with the prediction of accurate binding free energy, or preparing seed 
structures for molecular dynamics or QM/MM calculations require highly accurate 
models. In these cases the conformation of both binding partners are considered 
flexible and thus the docking study is computationally intensive. The second appli-
cation is virtual screening. Due to the high flexibility of the binding site and the 
related computational costs of sampling, in most of the high-throughput docking 
methods the protein is considered to be rigid. Thus docking in virtual screening 
is realized as a special conformational search of the ligand within the bounda-
ries of the rigid protein binding site. This is a very time-efficient method, a sin-
gle CPU can calculate approximately 3,000 ligand-protein complexes a day. The 
most important aim of virtual screening is to sort active molecules over inactives. 
Accordingly, docking a large (10 K–10 M) compound collection would result in 
a small set (10–1,000 entries) of top-ranked compounds with significantly higher 
propensity of actives compared to random selection, called enrichment. Docking 
typically consists of three steps: (i) posing or sampling, (ii) ranking of possible 
poses and (iii) binding energy estimation (scoring). First, all the possible ligand 
locations, orientations and conformations are enumerated. This process can 
involve systematic sampling or stochastic methods such as Monte Carlo, genetic 
algorithm or tabu search [14]. In case of the systematic sampling compounds are 
fragmented into core and side chain regions. After core placement, the remaining 
parts of the molecule are being rebuilt within the active site, to exploit the benefits 
of systematic sampling but avoid the costs of generating high number of irrelevant 
conformations. The possible poses are then ranked according to their complemen-
tarity to the binding site using fast-scoring to eliminate the inappropriate confor-
mations. A set of desirable poses are generally minimized using MM methods. 
The most favourable pose is scored using accurate scoring functions to predict the 
binding free energy. Scoring can be classified into (i) force-field based, (ii) empiri-
cal or (iii) knowledge-based methods [14].

http://dx.doi.org/10.1007/978-3-319-09976-7_11


296 Á. Tarcsay and G.M. Keserű

In general, fast docking algorithms results in plausible binding modes. As a recent 
example, Glide docking reproduced protein-ligand complexes with <1.5 Å RMSD 
relative to the X-ray structure in 80 % of the cases [15]. The other widespread applica-
tion of docking is virtual screening. High experimentally validated enrichments prove 
its utility in the drug design [16]. However, it is important to note that direct binding 
free energy estimation by fast-docking algorithms have generally limited performance.

12.3  Modelling of ADMET-Related Proteins

Modelling of ADMET proteins will be discussed in the following section grouped 
into adsorption and distribution, metabolism and toxicity related targets. Selection 
was based on the relevance to pharmaceutical research and the availability of 
structural information. After giving a short summary of the significance, structure 
and function of the targets, we are going to focus on ligand-protein interactions, in 
terms of the applicability and feasibility of the models in drug design.

12.3.1  Adsorption and Distribution

12.3.1.1  Human Serum Albumin

Human serum albumin (HSA) is the most abundant plasma protein found in 0.6 
milimolar concentration in the blood and accordingly serves as an important regu-
lator of osmolarity [17]. It is responsible for binding and transport of endogenous 
and exogenous substances including non-esterified fatty acids, porphyrins, drugs 
and other hydrophobic ligands. HSA has both desirable and undesirable effect on 
drug discovery. Moderate HSA binding can decrease the clearance or poor distri-
bution of hydrophobic drugs. On the other hand, high affinity to HSA might con-
tribute to low free plasma concentration of the drug resulting in suboptimal tissue 
distributions and the lack of in vivo efficacy.

More than 70 X-ray structures of the apo or ligand bound HSA complexes 
are available to date (Fig. 12.3). The 585 residue long protein folds into three 
domains (I-III) consisting of two (A and B) subdomains built form α-helices. It 
has heart-shaped overall tertiary structure incorporating seven fatty acid binding 
sites. The tertiary structure is stabilized by 17 disulfide bridges contributing to the 
observed high thermostability [18]. Both the protein dynamics and the role of the 
individual disulfide bonds were studied using molecular dynamics simulations 
recently [19]. The study shed light on the role of selected disulfide bridges such 
as Cys168−Cys177 and Cys278−Cys289 maintaining the secondary and tertiary 
dynamics of HSA.

HSA has two major sites for binding drugs. Site 1 is located at domain IIA, and 
also known as warfarin binding site, while site 2 is at domain IIIA, often identified 
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as the indole-diazepam site. A minor drug binding pocket, site 3, is also described 
at subdomain IB that transports hemin, bilirubin and fusidic acid. Site 1 prefers 
large, heterocyclic and negatively charged compounds (warfarin, azapropazone 
and dansylamide), while site 2 binds smaller carboxylic acids (diazepam, ibupro-
fen, and arylpropionic acids) [20]. HSA ligand-protein interactions are elusive, 
since the binding sites are large, open and diverse with high degree of flexibility. 
It is interesting to note that without a priori information on the binding site of a 
given ligand, all the possible binding pockets are to be sampled during docking 
calculations. Moreover, it can host multiple ligand copies simultaneously such as 
the case of idarubicin [PDB ID:4LB2]. In spite of the underlying complexity, there 
are documented successful optimizations (e.g. Bcl-2 and COX inhibitors), where 
HSA binding was decreased by structure based design [21, 22].

Fig. 12.3  Structure of the HSA. Available holo complexes were aligned to 1BJ5 crystal struc-
ture. Ligands within the site 1, 2, and 3 are coloured green, blue and yellow, respectively. The 
approximate binding site volumes were calculated for site 1, 2 and 3 using 1H9Z, 2BXF and 
1NU5 crystal structures, respectively
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Due to the intrinsic difficulties related to modelling HSA ligand-protein inter-
actions, the majority of the methodologies for drug discovery purposes employ 
combined ligand-based statistical models with structure-based docking. This 
straightforward strategy results in an acceptable estimation of HSA affinity and 
provides a plausible binding mode to aid the further design [18].

Aureli and co-workers used docking to categorize 37 compounds as site 1 or 
site 2 binders [23]. Based on the proposed classification, a site 2 PLS model was 
established to estimate the binding free energy of the compounds, including 10 
novel interleukin (IL)-8 inhibitors. Descriptors derived from the predicted bind-
ing conformations of antibiotic drugs were used by Li and co-workers to develop 
a QSAR model for plasma protein interactions [24]. An automated workflow was 
published by Zsila and co-workers for the classification of ligands as HSA sub-
strates or non-substrates and to predict the possible site along with the binding 
mode [25]. Support vector machine calculation was used for affinity prediction 
representing the molecules with 45 ligand-based descriptors. In the subsequent 
step chemical similarity is calculated between the query compound and the ligand 
binding on the predicted binding site to select the most appropriate protein con-
formation for docking. The X-ray structure with the most similar ligand is used 
to estimate the binding mode. This innovative workflow aims at minimizing the 
errors of docking calculations arising from site mismatch and protein flexibility. 
A very recent study by Hall and co-workers uses a similar workflow with special 
focus on docking [20]. As an initial step a multivariate linear regression model 
was built for HSA ligands. This model includes only four ligand-based descrip-
tors referring to the acidic nature, predicted solubility and lipophilicity of the 
compounds. Secondly, a Bayesian classification method was developed to predict 
the HSA binding site of the compounds using both ligand based physicochemical 
descriptors and fingerprints representing the structural patterns of the compounds 
with a bit string. In order to adequately describe the ligand-HSA interactions, Hall 
and co-workers combined ensemble docking and induced fit docking protocols. 
Binding site conformation based clustering was used to select five and three rep-
resentative experimental structures for site 1 and site 2, respectively. The selected 
X-ray structures were used for validation. Induced fit docking employs a three 
step consecutive optimization of the ligand-protein complex. First, the ligand is 
docked to the rigid binding site with downscaled van der Waals radii to mimic the 
effect of binding site perturbation. During the subsequent refinement, the protein 
side chains are optimized in the dihedral space and small backbone movements 
are allowed around the rigid ligand position. The last stage includes docking to 
the optimized binding environment with flexible ligand docking and fixed protein 
conformation. This methodology resulted in 1.8 Å average RMSD for site 1 and 2 
binders in a cross docking scenario. The obtained binding modes have acceptable 
accuracy to alleviate the undesirable HSA binding of the chemical series by struc-
ture based design.

Due to the abundant experimental information, HSA is an attractive target for 
modelling protein-ligand interactions. Although, the associated intrinsic com-
plexity requires the application of orthogonal techniques, such as ligand-based 
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modelling and the incorporation of protein flexibility during docking to meet the 
quality criteria required for drug design purposes. Recent workflows combining 
different approaches represent a viable strategy for the prediction of ligand-HSA 
interactions.

12.3.1.2  P-Glycoprotein

P-glycoprotein (P-gp) was originally discovered due to its preventive effect against 
cytotoxic drugs by hampering their membrane penetration, a phenomenon known 
as multidrug resistance (MDR). Further characterization revealed that P-gp is 
a membrane embedded active transporter that harness energy from adenosine 
triphosphate (ATP) hydrolysis, as a member of ATP binding cassette (ABC) super-
family, to extrude chemicals out of the cell. A hallmark feature of this transporter 
is its capability to bind an array of structurally diverse molecules ranging from 
100 to 4,000 Daltons (Da). P-gp impacts the pharmacokinetics, especially bio-
availability and distribution of xenobiotic drugs by mediating their transport in the 
liver, intestines, and across the blood brain barrier [26, 27]. On top of its profound 
importance as an antitarget, it serves as a primary target for projects delivering 
P-gp inhibitors to enhance the effect of the anti-cancer agents, due to the docu-
mented overexpression of P-gp in tumour cells.

P-glycoprotein, a product of the mdr1 gene in humans, is composed of 1,280 
residues organized into two homologous halves in a single polypeptide chain. The 
170-kDa protein contains six helical transmembrane (TM) domains and a globu-
lar nucleotide binding domain (NBD) located at the intracellular side at each half, 
giving a total of 12 helices and two NBDs per protein (Fig. 12.4). The ATP bind-
ing pocket has conserved sequences among ABC family including the Walker-A 
motif (P-loop), Q-loop, Leu–Ser–Gly–Gly–Gln signature sequence (C-loop), 
Walker-B motif, D-loop and H-loop that coordinates Mg2+ ion and ATP. Its hypo-
thetical transport cycle is initiated by ligand binding in the TM domain followed 
by ATP coordination at the NBDs. ATP binding and/or cleavage drives significant 
conformational rearrangements, the two NBDs forms a dimer (Fig. 12.4). Coupled 
conformational changes of the TM domains contribute to the release of the ligand 
at the opposite, outward facing side of the membrane. The release of Pi/ADP con-
tributes to resetting the transporter to the initial inward-facing conformation.

Three X-ray structures including the ligand-free mouse P-gp, and mouse P-gp 
bound to two stereoisomers of a novel cyclic hexapeptide inhibitor, all in the 
absence of ATP, presenting open-apo conformation were published in 2009 [3]. 
The crystal structures revealed a large separation between the NBDs spanning 
approximately 30 Å and a substantial, nearly 6,000 Å3 volume of internal cavity 
within the lipid bilayer. Due to possible misinterpretations in these structures, a 
refinement was published in 2014 including ab initio remodelling several parts of 
the structure. Significant differences were introduced in the drug binding pocket of 
the mouse structure including a >6 Å shift of the TM4 backbone atoms from the 
original positions [28]. Nanobody stabilized inward facing conformation of mouse 
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P-gp has been published recently [29]. The extent of conformational flexibility of 
P-gp is highlighted by the wider separation of the NBDs with distance of ~36 Å.

In order to explore the extent of conformational flexibility of P-gp molecular 
dynamics simulations were carried out for the apo, inhibitor and substrate bound 
protein conformations [30]. These calculations are extremely resource inten-
sive due to the large number of atoms consisting the explicit solvated, membrane 
embedded protein system that has approximately 140 K heavy atoms. Simulations 
at 100 ns time scale highlighted a more extensive separation between the NBDs 
compared to the crystal structure and depended on the investigated system namely, 
the ligand-free, substrate and inhibitor bound complexes. Targeted molecular 
dynamics simulation was carried out between the outward and inward oriented 
states of bacterial MsbA protein of the ABC family, to gain atomic detailed infor-
mation of the transition pathway [31]. During the simulation the disruption of the 
nucleotide binding sites at the NBD dimer interface were observed as the very first 
event that triggers the subsequent conformational changes, verifying the assump-
tion that the conformational change is driven by ATP hydrolysis.

Prior to the publication of the human P-gp structure homology modelling 
was applied based on mouse and bacterial templates [32–35]. The applicabil-
ity of docking based virtual screening using comparative models built on mouse 

Fig. 12.4  Structures of ABC transporters. Inward facing conformation of mouse P-gp (4KSB), 
and outward facing SAV1866 (2HYD) are colour red (left) and orange (right), respectively. Bound 
ADP is represented with balls; carbon and oxygen atoms are colour blue and red respectively. 
Position of the membrane is indicated with brown rectangles, top is the extracellular and bottom is 
the intracellular side. Nucleotide binding domains are highlighted with yellow background
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template was assessed in two studies [34, 35]. Both yielded similar, negative 
results in term of enrichment. The active compounds could not be significantly 
ranked over the inactives. Several reasons might contribute to the poor prediction 
power observed: (i) the coordinate errors of the template that were corrected later 
on, (ii) the large and hydrophobic binding site of P-gp, (iii) multiple binding sites 
along with the possibility of cooperative binding, and (iv) the observed flexibil-
ity of the protein that was validated both experimentally and computationally and 
underlines the need of incorporating protein flexibility during docking calcula-
tions. Sampling difficulties originates from the large binding pocket were studied 
for propafenone type inhibitors of P-gp [36]. The exhaustive sampling protocol 
involved the enumeration of 100 binding poses for each ligand within four dif-
ferent protein models. Clustering of the poses revealed that propafenone binding 
site is located between the TM helices 5, 6, 7 and 8. Analysis of the interacting 
residues highlighted the essential role of Tyr307 in coordinating the ligands by 
H-bond. In order to investigate the effect of protein flexibility induced fit dock-
ing of four ligands with extensive site directed mutagenesis data were carried out 
[34]. Considering the induced-fit binding conformations of rhodamine, verapamil, 
colchicine and vinblastine, the residues located in the binding pocket showed good 
correlation with the available mutation data.

In conclusion, the binding conformation of known ligands can be predicted 
at the level of interacting residues using enhanced sampling or incorporation of 
protein flexibility. Simulations are valuable tools to understand and interpret the 
experimental data from biochemical and biophysical studies. The experimental 
results and simulations can cross-validate and improve each other as it was exem-
plified for the refinement of the mouse P-gp structure. However, numerous dif-
ficulties arise for predicting P-gp-ligand interactions that prevent the large-scale 
application of simulations. To date structure based virtual screening is not suitable 
to distinguish P-gp substrates form non-substrates routinely.

12.3.2  Metabolism

12.3.2.1  Cytochrome P450 Family

Cytochrome P450 (CYP) enzymes have essential physiological importance and 
ubiquitous occurrence in almost all living organisms. The catalysed biotransfor-
mations have major contribution to phase I drug metabolism in man. The enzy-
matic activity of CYPs influences wide variety of pathophysiological processes 
including detoxification of xenobiotic compounds, bioactivation of nontoxic com-
pounds into toxic reactive intermediates and ultimate procarcinogens. Metabolic 
liability can limit drug exposure and might contribute to lack of in vivo efficacy, 
meanwhile the produced metabolites arise further safety concerns [1]. The prom-
iscuity of these enzymes and the fact that only some isoforms are responsible for 
the metabolism of the majority of marketed drugs can contribute to undesirable 



302 Á. Tarcsay and G.M. Keserű

Drug–drug interactions  (DDIs) upon co-administration [37]. DDI associated mod-
ulation of enzymatic activity, like inhibition or induction, results in serious alterna-
tions of drug plasma concentrations from the expected value.

The globular tertiary structure of CYP enzymes principally composed of heli-
ces labelled A to L commencing from the N terminus (Fig. 12.2). The B–C loop 
contributes to substrate specificity, the F and G helices form the roof of the active 
site, and the I and L helices embrace the heme prosthetic group, also known as 
protophorphyrin IX at the bottom of the pocket. The heme moiety and the resi-
dues forming its bassinet are highly conserved among the CYP family, along with 
the characteristic kink on the I helix above the active site. CYP enzymes are sug-
gested to be membrane anchored by the N-terminal region, particularly by the F-G 
loop and parts of the F and G helices. According to the binding site volumes the 
mammalian CYPs can be partitioned into three categories: CYP2C5, 2C8, 2C9, 
3A4 > 2B4, 2D6 > 2A6, in decreasing order [13]. The binding pocket of the 1A2 
crystal structure, appeared after the publication of the classification system, fits into 
the smallest category occupying 630 Å3 volume. In contrast, the binding site of 
CYP3A4 extends to 1,500 Å3, indicating the large variability of CYP binding sites.

Oxidative transformations catalysed by CYP enzymes proceed within a pre-
cisely coordinated cycle, in which the catalytic heme iron undergoes changes 
regarding its spin state, coordination and oxidation number. The schematic cata-
lytic cycle is shown in Fig. 12.5. In the initial resting state hexa-coordinated 
Fe(III) is in low spin doublet state with the axial position occupied by a water mol-
ecule. The displacement of the water molecule by the ligand results in a penta-
coordinated Fe(III) with a sextet state and the change of the redox potential. Due 
to the alternation of the redox potential, Fe(III) can accept an electron from the 
nicotinamide adenine dinucleotide phosphate (NADPH)-P450 reductase to form 
the high spin Fe(II). The next event is the coordination of the molecular oxygen, 
resulting in a singlet oxy-ferrous complex. After capturing the second electron 
from the reductase, the ferric-peroxo anion is formed. In the subsequent steps the 
anion is protonated by a proton shuffle mediated by the protein environment. The 
following step is the heterolytic cleavage of the O–O bond. Subsequently, a water 
molecule is liberated and the highly reactive ferryl-prophyrin-π radical cation is 
formed. The so called ‘Compound I’ intermedier has three unpaired electrons: two 
is located on the ferryl group and one is shared with the sulphur of the distally 
coordinated cystein residue. This species oxidize the substrate that is followed by 
the replacement of the product with a water molecule to restore the resting state.

Publication of the first human P450 structure in 2003, the CYP2C9 isoform, 
proved to be a milestone giving new impetus to protein modelling understanding 
specific mechanistic details and predicting the site of metabolism. Since then all 
of the pharmaceutically relevant human isoforms were crystallized including 2C9, 
2C8, 3A4, 2A6, 2D6, 1A2, 2A13, 2E1 and 2B6 (PDB). Considering simulation 
approaches relying on molecular mechanics force fields, it is important to note the 
CYP enzyme possess the unique prosthetic heme group requiring special parame-
ters for the various states of the catalytic cycle even in apo simulations [38]. These 
parameterizations are limited for a given force field, thus each force field demands 
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an own set of corresponding values. The parameters are typically derived from 
QM calculations and available for some of the most applied force fields includ-
ing CHARMM and AMBER [39–41]. As an example, Shahrokh and co-workers 
recently developed a set of AMBER parameters for a range of heme states found 
in the catalytic cycle [42].

Molecular dynamics simulations were carried out to understand the molecular 
basis for CYP substrate promiscuity. Simulation of the CYP3A4 isoform by Park 
and co-workers revealed that the high-amplitude flexibility of the loop at the sub-
strate entrance in the apo state might have responsibility for the observed broad 
specificity [43]. Lampe et al. calculated 200 ns long trajectories of the thermo-
philic P450 CYP119 enzyme. The results suggested that the correlated motions of 
the active site are relatively independent from the outer protein framework [44]. 
Further simulations on CYP3A4, 2C9 and 2A6 revealed that protein flexibility is 
directly related to substrate specificity [41]. CYP2A6 possessing narrow substrate 
specificity was found to be the less flexible. In contrast, CYP3A4 had more wide-
spread movements in line with its enormous promiscuity. Recent molecular dynam-
ics simulations of P450cam aimed at analysing the hydration of the active site 
[45]. According to the trajectory recorded over the 300 ns long dynamics 6.4 water 

Fig. 12.5  Catalytic cycle of the CYP
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molecules were observed in the camphor-binding site of the apo form, compared 
to zero water molecules in the substrate-bound binding site. Interestingly, up to 12 
waters can occupy the same cavity in apo-form, revealing a highly dynamic pro-
cess for hydration with water molecules exchanging rapidly with the bulk solvent. 
Camphor binding modifies the free-energy landscape of P450cam channels toward 
favouring the diffusion of water molecules out of the protein active site. However, 
the process of ligand binding has crucial impact on the kinetics of the enzyme 
reactions. Observation of the entry or exit of the ligand or the product during 
unbiased simulations is generally not possible considering the timescale of a typi-
cal MD simulation. To overcome this limitation, biased (steered) simulations are 
applied. An example of these simulations was published by Fishelovitch and co-
workers for CYP3A4. In order to identify the preferred substrate/product pathways 
and their gating mechanism, pulling the products temazepam and 6-β-hydroxy-
testosterone out of the enzyme was carried out [46]. In summary, molecular 
dynamics simulations nicely complement the static experimental picture observed 
in X-ray crystallography by giving novel and valuable viewpoints to rationalize 
the function and activity of the protein family at atomic level.

Both the reactivity and the orientation, driven by steric and energetic factors, 
influence the site of metabolism of a given ligand [47]. Due to the abundance of 
human CYP structures, docking methods can be applied as cost-effective approach 
to estimate the site of metabolism. A straightforward concept is to dock the ligand 
to the active site and evaluate the atomic positions in terms of the distance calcu-
lated form the catalytically active heme iron. In principle, the atom with the low-
est distance in the top ranked binding mode is the site of metabolism. Unwalla 
and colleagues assessed the performance of Glide [48] docking to predict the site 
of metabolism of 16 CYP2D6 substrates using a homology model structure [49]. 
According to their results, the observed metabolically liable position was within 
4.5 Å from the heme iron in 85 % of the cases considering the top five-ranked 
docking poses. The observation that the substrate has low flexibility during the 
catalytic cycle and therefore the position of the substrate and the product over-
laps inspired the reverse-docking approach, published by Tarcsay and co-workers 
[50]. According to this methodology, the possible products were enumerated by 
using a rule-based expert system and the metabolites were docked to the binding 
site. Interestingly, the reverse-docking approach corresponds to the Marcus theory, 
since the lowest energy product is suggested to have the lowest barrier height. The 
proposed methodology was evaluated on the human CYP2C9 isoform, resulting in 
84 % success rate for the docking step that combined with the 82 % success of the 
metabolite generation yield 69 % in overall, considering the top three ranked sites. 
Estimation of the ligand binding mode and the free energy of binding are sensitive 
to the water molecules present in the binding site. As it was previously discussed, 
in the case of the CYP family, solvation of the active site is of fundamental impor-
tance. Recently, Santos and co-workers investigated the role of water molecules 
in docking simulations for CYP2D6 [51]. The MD simulations identified water 
hydration sites with an occupation probability at least 30 times larger compared 
to the bulk water. However, these water molecules had an average residence time 
below 10 ps, thus possessing quite high mobility and having low probability of 
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forming hydrogen bonds with the protein or the ligand. According to the results 
of the published MD simulations and subsequent ligand docking the influence of 
water molecules appears to be highly dependent on the protein conformation and 
the substrate. Incorporation of hydration site waters into docking had an effect on 
the reliability of the site of metabolism prediction. The effect size was found to be 
dependent on the chemical similarity to the ligand by which the water positions 
were selected. Considering dissimilar compounds, net effect was not observed.

Estimation of the binding affinity is among the most desired objectives of the 
recent computational chemistry approaches. Docking and rapid scoring functions 
has serious limitations in this regard; therefore computationally more intensive 
methods are needed to achieve more accurate estimations. The most straightfor-
ward approach is to calculate relative free energies for different thermodynamic 
states by the definition of a suitable thermodynamic cycle. Free energy perturba-
tion and thermodynamic integration are the most well-known methods connect-
ing the thermodynamic states. A recent study by de Beer and co-workers utilized 
the computationally effective one-step perturbation (OSP) method to explore the 
C3 hydroxylation of α-ionone by two CYP BM3 mutants, A82W and L437N 
[52]. During the MD simulations an innovative reference state was constructed by 
optimizing the force field parameters describing the substrate to have sufficient 
transitions between the two enantiomers. This optimized reference state was suc-
cessfully applied to estimate the relative free energy of binding of the substrate 
enantiomers and predict the observed trends for A82W mutant. In the case of the 
L437N mutant the predicted free energies of the four possible hydroxylation prod-
ucts were found to be in line with experimentally observed trends.

Modelling the ligand co-operativity observed for CYP isoforms represents a 
challenging task with ultimate pharmacological importance. A sequential docking 
protocol was recently described to model the multiple ligand poses in complexes 
crystallized with clusters of 2-6 cooperative ligands [53]. The optimized protocol 
was able to reproduce the two-thirds of the structures for the cytochrome P450 
subset within 2 Å RMSD calculated for ligand heavy atoms. Molecular dynamics 
simulations and free energy calculations were carried out to calculate the binding 
free energy of ketokonazole based on the observed X-ray structure of CYP3A4 
with two copies of the ligand [54]. The apo, the single ligand, and the double 
ligand complexes were simulated. Binding of the first ligand increased the affinity 
for binding the subsequent ligand by 5 kJ/mol. The effect of shape complementa-
rity represented by van der Waals interactions explained and quantified the exper-
imental results in terms of the values predicted from simple two-ligand binding 
kinetic model and successfully reproduced the measured titration curve.

MD simulations and hybrid QM/MM approach were utilized for CYP2D6 
by Oláh and co-workers to understand the determinants of selectivity for dex-
tromethorphan oxidation [55]. The calculated reaction barrier of two possible 
competing routes including aromatic carbon oxidation and O-demethylation were 
compared. QM/MM calculations were able to demonstrate the crucial role of pro-
tein environment in determining reactivity of dextromethorphan and explained the 
lack of aromatic hydroxylation observed experimentally. This study revealed that 
in contrast to docking or estimating the product by using Compound I reactivity 
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models, QM/MM calculations could rationalize the very strong preference for 
O-demethylation over aromatic carbon oxidation. The main drive was appreci-
ated to be the strongly disfavoured nature of aromatic hydroxylation in the pro-
tein milieu due to interactions at the active site preventing the aromatic moiety 
from attaining the preferred transition state. This combined MD and QM/MM 
approach was introduced as a general protocol for accurate modelling the CYP 
mediated metabolic reactions of drug molecules [56] by simulating CYP2C9 bio-
transformation of three drugs, S-ibuprofen, diclofenac and S-warfarin. The intro-
duced protocol has three main components. First, application of QM/MM method 
for calculating the barrier is necessary. The QM treatment is indispensable due to 
the role of electrons, and the protein framework has crucial influence on the regi-
oselectivity. The binding site determines the conformation of the ligand around 
Compound I, thus modulate the transition state (TS) geometry and the correspond-
ing barriers. In case of the aliphatic hydroxylation of S-ibuprofen the QM barri-
ers for hydrogen abstraction from C2 and C3 computed in vacuum resulted in an 
opposite trend compared to the experimentally validated result of QM/MM calcu-
lations realized in the protein environment. In fact, the formation of low-energy 
TS geometry calculated in the case of the simple QM system consisting from the 
ligand and Compound I is prevented by the protein environment. TS conforma-
tion calculated in QM/MM calculations resulted in higher energy for C2 path 
and therefore changing the order of barrier heights leading to C3 site preference. 
Second, dispersion energy should be accounted to get barrier heights that are in 
reasonable agreement with experiment, for example by use of empirical correc-
tions. The third point raised by the authors is the essential importance of sam-
pling during the calculation of barriers in enzymes, since broad range of values 
can often be calculated due to the slight fluctuations in the orientation of the sub-
strate and the surrounding residues. To overcome this possible source of errors, 
MD simulation of the system is suggested to sample the conformational space and 
to generate different starting points for calculating several reaction profiles at QM/
MM level. The estimated activation energies by the proposed methodology agreed 
nicely with the experimental results for S-ibuprofen and S-warfarin, however for 
diclofenac the formation of 5-hydroxdiclofenac was preferred in silico compared 
to the 4′-hydroxydiclofenac produced in vitro. The reason for this discrepancy 
might be the low free energy of binding. Therefore the favourable energy of salt 
bridge formation between the carboxylate moiety of the ligand and the Arg108 
residue in the putative correct orientation was not incorporated.

12.3.3  CYP Induction

Pregnan X receptor (PXR) and constitutive androstane receptor (CAR) are two 
nuclear receptors implicated in the transcriptive regulation of CYP3A and CYP2B 
families along with the ABC transporter genes. Since CYP3A4 is one of the most 
important drug-metabolizing enzymes, its upregulation can lead to undesirable 
drug-drug interactions (DDIs) [57, 58].
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12.3.3.1  Pregnan X Receptor (PXR)

PXR consists of 434 residues that folds into DNA- and ligand-binding domains 
(DBD; LBD) and heterodimerize with RXR (9-cis retinoic acid receptor) to bind 
responsive DNA elements controlling CYP3A and CYP2B transcription. The 
first structure of the PXR LBD was elucidated in 2001 at 2.52 Å resolution. To 
date, 12 human crystal structures are available in the PDB, representing the struc-
tural details of several ligand-bound complexes including the macrolide antibiotic 
rifampicin (1SKX), the phytochemical hyperforin (1NRL) and the cholesterol-
lowering agent SR12813 (1ILH). The general fold is in alignment with that of 
the other nuclear receptors (Fig. 12.6). However, the binding pocket is larger 
(~1,350 Å3), with higher degrees of flexibility (Fig. 12.6). This phenomenon can 
be rationalized in terms of the structural elements by the beta-sheet insertion 
between helices 1 and 3 [59]. The substantial hydrophobic momentum is a hall-
mark feature of the binding site. Out of the possible 28 residues constructing the 
cavity 20 possess hydrophobic/aromatic character, 4 are polar (Ser208, Ser247, 
Cys284, and Gln285) and 4 are charged (Glu321, His327, His407, and Arg410). 
Analysis of the available PXR holo complexes revealed the role of Gln285, Ser247 
and His407 residues with high potential to intermolecular H-bonds with the ligand 
[57]. The multiple possible arrangements of the key residues (such as His407) 
located in the binding site might contribute to the wide substrate specificity of 
PXR and demands special attention during the simulation of protein-ligand inter-
actions (Fig. 12.6).

Fig. 12.6  Structure of PXR 
(2O9I). Conformational 
flexibility of four selected 
residues is highlighted

His407

Arg410

Leu209

Leu206
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In spite of the modelling difficulties arising from the unique features of the 
PXR binding site, a successful structure based design against PXR liability was 
published by Merck researches [60]. Docking the initial PXR activator ligands to 
the 1NRL crystal structure revealed two energetically equivalent binding modes. 
In both cases the Trp299 and Phe429 residues had apolar interactions with the 
aryl moiety of the investigated compounds. The straightforward idea of increas-
ing the polarity of the aryl moiety by the introduction of aryl-nitrogen atoms or 
a sulphonamide moiety to attenuate the PXR interactions had been proved by 
reduced PXR activation and accordingly diminished CYP3A4 induction. In con-
trast, Ekins benchmarked structure-based docking methodology against ligand-
based models, and achieved moderate performance for docking [61]. Evaluation 
of docking scores obtained for 30 activator and 89 non-activator ligands using 
six human PXR structures resulted in overall accuracies in range of 35–55 %. 
The hyperforine holo-complex (1M13) was found to yield the highest accuracy 
(55 %) associated with a modest Matthews coefficient (0.09). In a recent study, 
the binding mode of nineteen Chinese herbal compounds were predicted using 
docking approach extended with simulated annealing MD and energy minimiza-
tions of several initial binding orientations [62]. Although, the binding mode of the 
herbal compounds showed different orientations, distinguished interactions were 
observed with Ser247, Gln285, His407, and Arg401 residues. It was concluded 
that the binding modes and corresponding binding energies of herbal compounds 
were not directly related to PXR potency measured.

12.3.3.2  Constitutive Androstane Receptor (CAR)

The 352 residue long CAR protein has in vitro constitutive activity in apo state. 
However, under in vivo circumstances the ligand-free protein is inactive (silent) 
and located in the cytoplasm. Binding of activator ligands induces the translo-
cation of CAR into the nucleus where it activates the transcription of ADMET 
relates genes including CYP members and ABC transporters, therefore influencing 
the pharmacokinetics of drugs. CAR and PXR share a highly conserved DBD and 
a moderately conserved LBD, thus the available four crystal structures (resolutions 
in range 2.6–3 Å) of CAR adopt similar fold to that of the PXR structures [63, 
64]. The accessible volume of the CAR pocket is 525 Å3, which is less than half 
of the PXR pocket. Like other nuclear receptors, the CAR ligand binding pocket 
is predominantly hydrophobic with only two small hydrophilic patches for possi-
ble hydrogen bond interactions. The contribution of apolar contacts to ligand rec-
ognition is well exemplified by the holo-complex of TCPOBOP (1XLS), where 
no direct hydrogen bonds were observed. Meanwhile, the ligand forms an exten-
sive network of hydrophobic interactions. The two pyridine rings are sandwiched 
between Y234 and F227 residues and Y336 and F244 residues, respectively.

Nuclear receptors require different co-regulator proteins to be active. Ligand 
binding induces conformational changes to switch between active and inac-
tive states in terms of the conformation of the co-regulator binding domain. The 
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conformation and relative orientation of helix 12 (H12) has crucial role in co-acti-
vator protein binding. In order to understand the structural determinants of agonist 
and inverse agonist induced protein conformational changes, complexes of seven 
agonists and eight inverse agonists were simulated in the presence of the co-acti-
vator protein [65]. According to the analysis of the 10 ns long MD trajectories, the 
movement of H12 towards H10 seems to favour the binding of the partner protein. 
In the presence of agonists the H12 conformation was stabilized in the active con-
formation. In the case of the inverse agonist complexes, the H12 had higher flex-
ibility and shifted away from the active state. The short and rigid helix between 
H10 and H12, called HX, may retain in the active position and might contribute 
to the high constitutive activity of CAR. In accordance with the previous finding, 
the HX region was observed to be destabilized by the inverse agonists compared 
to apo or agonists bound complexes. Longer, 50 ns MD calculations were carried 
out to obtain dynamics information on two agonist bound and two corresponding 
ligand-depleted CAR systems [66]. These simulations resulted in univocal results 
regarding the contribution of HX stability to the active state. In the case of the 
ligand-free dynamics simulation, the HX alpha helical region was unfolded while 
during the simulation of the agonist bound complex it remained stable. In addition, 
Tyr326 and H12 interactions were ameliorated significantly for the agonist bound 
complexes versus the apo states. The considerable increase of the van der Waals 
contacts were mainly based on the interactions with the bound ligands, since both 
agonists had extensive interactions with the specific tyrosine side chain, thereby 
limiting its conformational flexibility. As a result of the stabilization effect of the 
agonist (also in line with the previous MD study) the H12 was found to be more 
flexible in the apo simulations compared to the agonist bound complex. In sum-
mary, these MD studies were able to elucidate the structural changes of human 
CAR LBD induced by the inverse agonists and agonists compared to the apo 
structure.

Identification of CAR agonists by 3D pharmacophore screening and subse-
quent docking was published by Külbeck and co-workers [67]. The initial com-
pound database consisted of ~85,000 entries that were reduced to ~9,700 by the 
pharmacophore filter. These remaining compounds were ranked according to 
their scores obtained by docking them to the CAR protein structure (1XVP). Top 
ranked poses were visually inspected and finally 30 compounds were purchased. 
This approach was able to identify 17 agonists, corresponding to an excellent hit 
rate of 56.6 %. Integration of ligand-based and structure-based virtual screening of 
753 FDA-approved drugs has been published recently [68]. Similarly to the study 
by Külbeck et al. ligands were first ranked according to their alignment with phar-
macophore models. The authors used four independent pharmacophore models, 
and the best score for each query ligand was used for ranking. Top 106 compounds 
were docked to the active site of human CAR, and 19 virtual hits were selected for 
in vitro testing. Five compounds were identified as moderate activators and two 
known activators (nicardipine and octicizer) were classified as strong activators, 
thus significant hit rate (36.8 %) was achieved. Both studies emphasized the ben-
efit of combining orthogonal, ligand and structure based modelling approaches.
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12.3.4  Sulfotransferase

The human cytosolic sulfotransferases (SULTs) comprise a 13-member family 
of enzymes catalysing the transfer of the sulfuryl-group (-SO3) from the donor 
3′-phosphoadenosie 5′-phosphosulfate (PAPS) to the hydroxyl or primary amine 
moieties of vast amount of endogenous and xenobiotic acceptors. Due to its 
involvement in conjugation type Phase II metabolism, understanding the molecu-
lar basis of the enzymatic reaction is highly valuable from ADMET aspects [69]. 
Recent biophysical studies have revealed that selectivity in binding and catalysis 
relies in large measure on the plasticity of a conserved active-site cap that medi-
ates substrate interactions by determining their affinities and kinetic behaviour. 
The SULT active site cap is a dynamic ~30 residue stretch of amino acids interact-
ing with the PAPS donor and the acceptor substrates (Fig. 12.7). Available crystal 
structures of nucleotide-bound enzymes show a largely ordered framework regard-
less of whether acceptor ligand in bound. In sharp contrast, the SULT structures 
without the donor nucleotide has highly disordered cap region (open state).

These observations highlight the importance of the cap region in substrate rec-
ognition. Molecular dynamics simulations of the nucleotide-bound and ligand-free 
structures of SULT1A1 and SULT2A1 gave fundamental information on the func-
tion of the cap region [70]. According to the experimental structures and the anal-
ysis of atomic root mean square fluctuations (RMSF) during MD simulations, the 

Fig. 12.7  Structure of SULT (2D06). Backbone atoms of the flexible cap region are coloured  
red. Carbon atoms of adenosine-3′-5′-diphosphate (PAP) cofactor and estradiol ligand are col-
oured green and orange, respectively
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nucleotide free system is in open and disordered state that isomerizes to closed 
state upon nucleotide binding. Small ligands can bind to the nucleotide free closed 
enzyme conformation, while large ligands require the opening of the cap prior to 
binding. This hypothesis was tested with estradiol (small) and fulvestrant (large) 
ligands. According to the findings of the MD simulations, the nucleotide induced 
conformational changes affect the large ligand binding, but does not impact small 
ligand binding, since it can form optimal complex also with the closed state. 
Binding experiments with or without the PAPS nucleotide were in line with the 
proposal. In the case of the SULT1A1 enzyme, binding of estradiol was equivalent 
in cases with PAPS and without, while the apparent on-rate constant for fulves-
trant binding decreases 26-fold at a saturating PAPS concentration, which is virtu-
ally identical to the 28-fold decrease in Kd obtained from the equilibrium binding 
measurements [70]. Similar trends were observed for SULT2A1 with corresponding 
dehydroepiandrosterone (small) and raloxifene (large) ligands [71]. Thorough inves-
tigation of the cap region revealed that it has nucleotide and acceptor ligand halves 
with distinguished protein dynamics. Nucleotide binding induces a conformational 
change to close the corresponding cap region, but the acceptor ligand binding site 
can oscillate between closed and open states. According to the proposed gating 
mechanism, PAPS nucleotide binding induces a preference for closed cap region and 
thus small ligands are prone to be metabolized by spatial accessibility selection from 
the pool of possible ligands. In order to test the outlined pore model, as a proof of 
concept, specific mutations were induced into SULT2A1 uncoupling the flexibility 
of nucleotide and ligand binding parts of the cap region [70]. The resulted mutant 
was not able to discriminate between small and large ligands any more, since the 
flexibility of the acceptor halve of the cap region was increased significantly result-
ing in the reduction of the closed, small substrate preferring conformation.

The usefulness of structural information was tested in prospective virtual screen-
ing scenarios using high-throughput docking method on SULT1A1 and SULT2A1 
isoforms [72]. Molecular dynamics simulations were carried out to model the effects 
of protein flexibility and to convert the closed cap region to open state by simulat-
ing nucleotide-free SULT structures. In total, four MD simulations were carried out 
including nucleotide-bound and nucleotide-free systems for both the SULT1A1 and 
SULT2A1 isoforms. Frames of the 10 ns trajectories were clustered by using 2 Å 
root mean square deviation cut-off and cluster centroids were used for docking. The 
experimental and calculated binding free energy was found to be highly linearly cor-
related, with correlation coefficients (r2) of 0.89 and 0.86 for 1A1 and 2A1, respec-
tively. Substrates were distinguished from inhibitors by using a 4 Å distance criterion 
between acceptor ligand nitrogen or oxygen atom and the catalytic His residue. 
Those high ranked compounds that could fulfil the criterion were classified as sub-
strates, while in the opposite case they were classified as inhibitors. A set of approved 
small molecular drugs (1455 entries) were assessed by docking. 76 compounds were 
predicted to be SULT1A1 substrates. Out of them 53 were known substrates for the 
enzyme while out of the 23 remaining compounds 21 could be purchased and tested. 
All of them were identified as true positives with Kd ≤ 100 μM acceptance crite-
rion. The docking predicted 22 compounds to be SULT2A1 substrates, including 8 
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novel compounds. Four compounds could be purchased, tested and proved to be sub-
strates. In summary, out of the 22 top-ranked compounds 18 could be investigated by 
literature or in vitro method, and all were confirmed. Consequently, both SULT1A1 
and SULT2A1 docking based substrate prediction resulted in 100 % hit rate. 
Considering the potential inhibitors, 136 and 35 ligands were identified as virtual hits 
for SULT1A1 and SULT2A1, respectively. In the case of SULT1A1 17 compounds 
(12.5 %) were confirmed and additional 34 (25 %) are likely to be positive, while for 
SULT2A1 19 compounds (53 %) are confirmed and further 8 (23 %) are likely posi-
tives. The remaining compounds were not tested. This study represents a remarkable 
accuracy that is not generally achieved in routine docking-based virtual screening 
campaigns. In contrast to this outstanding success, no significant enrichment could 
be observed in the case of the SULT1A1 retrospective enrichment study [58]. In this 
case, docking was performed into six representatives of the 4,500 structures collected 
from a 2 ns MD simulation of the ligand and nucleotide bound crystal structure. 60 
known, diverse substrates and two different decoy sets were utilized with 49,496 
and 13,088 molecules, respectively. According to the analysis, the docking protocol 
was not able to rank the ligands over the putative decoys. Several reasons might lie 
beyond this difference: (i) during the prospective study positional constraint was used 
for the ligands, that might impact the results seriously, (ii) the decoys might contain 
actives at Kd ≤ 100 μM acceptance criterion, (iii) in case of the prospective study, 
not all of the compounds were tested experimentally, therefore false negatives might 
left unrecognized. However, the prospective study calls the attention to the potential 
of using structure-based modelling tools exploiting novel ADMET-related antitargets 
that are not yet integrated parts of the structure-based modelling arsenal.

12.3.5  Adverse Drug Reactions

12.3.5.1  hERG

Ion channels are membrane embedded proteins responsible for the regulation of ion 
flux through the membrane. The controlled choreography of opening and closing 
events of the ion channels in cardiac myocytes results in electrical excitations and 
relaxations as the physiological function of the heart. One of the key components of 
the cardiac cycle is the native function of the hERG potassium channel. Abnormalities 
caused by the inhibition of the hERG channel may potentially lead to prolongation of 
the action potential (specific QT elongation) and considered to be pro-arrhythmic [73]. 
Accordingly QT elongation is one of the most crucial adverse drug reactions respon-
sible of torsades de point (TdP), a cardial event that can cause sudden death. Several 
drugs have been restricted or withdrawn from the market due to the hERG inhibition 
such as astemizole, cisapride, grepafloxacin, sertindole and terfenadine. Therefore, 
attenuation of hERG inhibition by in silico design has fundamental importance.

hERG is a tetrameric protein with putative C4 symmetry, built up from subu-
nits containing six transmembrane helices in each. The subunits consist of 1,160 
amino acids. Helices S1–S4 constitutes the voltage-sensing domain and S5–S6 
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form the pore domain. The potassium ion selective central pore domain represents 
well-preserved potassium channel features including selectivity filter to control 
the movements of the ions. The highly conserved signature S-V-G-F-G sequence 
is positioned at the C-terminal end of the selectivity filter [74]. Inhibitors bind in 
the cavity below the selectivity filter composed of the four S6 helices. Extensive 
Ala-scanning mutagenesis of the hERG channel revealed the impact of Tyr652, 
Phe656 and Ile647 in S6 helix, Ser620, Ser624, Ser631 and Val625 in the P-loop 
on inhibitor coordination [75]. Among these residues Tyr652 and Phe656 have 
the most crucial contribution to binding of high-affinity blockers (Fig. 12.8). The 
hERG channel, similarly to other voltage-gated channels, possesses three types 
of conformational states: closed, open and open inactivated. Activation results in 

Fig. 12.8  Proposed structure of the hERG ion channel S5-S6 tetramer region. Side view (top) 
and top view (bottom), atoms of Ser624 are represented with balls. Highly important residues 
discussed in the text are highlighted on a single protein chain at top right position
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the opening of the intracellular gate from closed state, while inactivation includes 
conformational change in the outer pore domain. Consequently, hERG channel 
represents high complexity from protein modelling aspect, since multiple confor-
mational states can contribute to drug binding.

To date only the structure of an extracellular loop and the cytoplasmic 
N-terminal domain, responsible for the regulation of channel opening, is known 
experimentally. Structure based simulations rely on homology models based on 
fairly low sequence identity (approximately <30 %) to the open or closed bacterial 
potassium channels KcsA (closed form), MthK (open) or KvAP (open), KirBac1.1 
and mammalian channel Kv1.2 [57]. Farid and coworkers published the homol-
ogy model of a homotetramer hERG structure including S5 and S6 subunits [76]. 
Backbone torsion angles of residues near the known hinge positions (Gly648 in 
S6 and Gly572 in S5 helices) of each monomer were manually modified in uni-
son to maintain C4 symmetry and in order to model the opening or closing of the 
pore. Subsequently, seven high affinity hERG ligands were docked to the open 
model using the induced fit methodology. Analysis of the interaction pattern of 
the residues was in line with the mutational data regarding multiple simultaneous 
aromatic stacking and hydrophobic interactions with Tyr652 and Phe656 residues. 
Polar groups and basic centres of the ligands were found to interact with Ser624 
and nearby polar backbone atoms, also in alignment with the mutational data. 
Rigid protein docking of five entries from the sertindole compound family resulted 
in remarkably good correlation (r2 = 0.95). However, correlation obtained on this 
very limited ligand set does not ensure similarly high accuracy for distinct chemo-
types. Thorough analysis of seven homology models based on various alignments 
of helix S5 was published by Stary and co-workers [77]. The model quality has 
been assessed from three independent aspects. First, a set of applications rely-
ing on knowledge-based statistical potentials were calculated to evaluate conven-
tional geometry, packing and normality descriptors. Second, the stability of the 
models was examined by using 20 ns MD simulations of the POPC lipid bilayer 
embedded hERG protein model. Root mean square deviations from the starting 
coordinates were monitored as a principal indicator of stability. Third, known 
ligands were docked into the binding site to analyse the protein-ligand interac-
tions. According to the first evaluation two models had severe problems, while one 
model passed all of the criteria. Although ranking the models was not equivocal. 
Model 1 and model 6 were found to be the most stable during MD. Interestingly, 
none of the three investigated ligands (cisapride, MK-499 and terfenadine) could 
be docked into model 1. Docking into model 6 yielded results that are in good 
agreement with alanine scan mutational experiments. In summary, none of the sin-
gle assessments could unambiguously identify a preferred model, but the combi-
nation of all three revealed that there is only one model (model 6) that fulfils all 
quality criteria. This study shed light on the intrinsic difficulties of hERG channel 
modelling, and arrived to the conclusion that further refinements might enhance 
the validity of the models, since only the S5 sequence alignments were investi-
gated. The role of incorporating experimental knowledge to aid docking based 
ranking has been highlighted with the comparison of the prediction power of the 
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native scoring function and number of interactions with experimentally confirmed 
interacting residues. The interaction count resulted in significantly better correla-
tion with the observed affinity [78] than that of the scoring function.

MD based refinement of the open and closed state homology models were used 
to predict the binding free energy of 12 inhibitors by De-Cuny and co-workers [79]. 
PLS analysis was performed on the energy terms to build a model for pIC50 values. 
The obtained model had high correlation coefficient (r2 = 0.81), and the interaction 
pattern of the top ranked binding modes were found to match the reported hERG 
mutagenesis data. Enrichment study had also been performed to rank 147 hERG 
inhibitors out of 498 compounds, but in this case ligand based QSAR models yielded 
higher hit rate than that of the ranking obtained with docking and scoring. The lim-
ited performance of scoring in case of the hERG ion channel underlines the impor-
tance of exploiting all the available experimental data to yield acceptable ranking.

The assessment of protein flexibility has been studied on multiple levels includ-
ing side-chain and domain level conformational changes. In order to incorporate 
protein flexibility, local conformation space of the cavity of the open state chan-
nel was extensively explored leading to 215 models [80]. The predictive power 
of these models was benchmarked by using a set of sertindole analogs. Both 
single structure and ensemble docking evaluations were carried out. Solvation 
effects were studied by using MM-PBSA refinement. Three ensemble calcula-
tion schemes were applied: best score, arithmetic mean and Boltzmann-weighted 
average. The comparison revealed that the best single model could not be outper-
formed by the multiple structure docking methodology. Furthermore, MM-PBSA 
refinement could not improve the results obtained. The best single structure model 
was challenged to show general applicability by docking 14 structurally diverse 
inhibitors. The correlation between the experimental activity and predicted dock-
ing score yielded acceptable correlation (r2 = 0.6). The major outlier was astemi-
zole, which was found to be difficult to place in the crowded binding site due to its 
relatively large size. Recently, different modelling techniques including homology 
modelling, de novo design with incorporated experimental constraints and all-atom 
membrane MD simulations were performed to simulate all the three states (open, 
closed and open-inactivated) of the hERG channel [81]. Several state-selective 
blockers were docked to the models of the open and inactivated states using the 
induced fit docking protocol, and good correlation was observed with experimental 
affinities for both high- and low affinity blockers. Capturing different states of the 
hERG conformational space may offer atomic level information to better under-
stand the molecular mechanism of the state-dependent hERG channel inhibition.

12.4  Concluding Remarks

Simulations of protein structures with or without bound ligand have fundamental 
importance to interpret the results of biochemical and biophysical investigations 
of protein functions. Since modelling should rely on experimental data, theory and 
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practice must cross-fertilize each other. Approximate models can be very useful 
tools to design novel experimental conditions to test various hypotheses. Later on 
the results obtained can be channelled back to fine-tune the calculated models. On 
top of the benefits of the synergism between in silico and in vitro techniques to 
understand the intricacy of many biological phenomena, protein modelling has 
direct impact on drug discovery. Computational approaches contributed to the dis-
covery of several drugs already reached the market [82, 83]. Due to the expanding 
knowledge on protein structures, ADMET related targets become attractive ele-
ments of recent computer aided drug design (CADD) workflows.

Experimental data including protein structural information, affinities of ligands 
and mutagenesis data have cardinal influence on the accuracy of the in silico 
approaches. The available knowledge certainly defines the scope of the protein 
modelling tasks. Without structural information, the first step is the prediction of 
atomic coordinates of the protein residues, while with accurate structural informa-
tion on the ligand-bound complex one can estimate the binding free energy of the 
ligand and its analogues with acceptable accuracy.

ADMET related proteins have unique properties regarding their flexibility, 
binding site character, and size thus rationally translating the structural informa-
tion into compounds with improved ADMET properties is very demanding. The 
collection of the available crystallographic data and the properties of the investi-
gated targets along with the expected scope of the ligand-protein simulations are 
presented in Table 12.2. With regard to the methodologies, it is evident from the 
collected cases that MD simulations are generally applied as a reliable tool with 
distinguished importance in all of the collected cases.

First, we would like to highlight the CYP family since it has the most impress-
ing coverage of high-quality X-ray structures including several isoforms with apo 
and ligand-bound complexes. Simulations of the CYP family accomplish almost 
all of the modelling approaches and technologies. Due to the nature of the active 
site heme QM-MM hybrid methods can be applied to model the reaction pathway. 
MD simulations and free energy calculations are available to estimate relative 
binding energies, in some cases within an error of 1 kcal/mol. This target can be 
considered to be the most feasible for simulations due to the single, closed active 
site. Accordingly, several successful studies and applications are available [38, 47]. 
In the case of HSA with similarly broad coverage of high-quality experimental 
structures the modelling complexity is multiplied due to the numerous and open 
sites capable to interact with the ligands. Therefore only the binding mode of the 
ligand might be predicted in order to design modifications to attenuate HSA liabil-
ity. SULT, the last entry with high-quality crystallographic data is a very recent 
target for structure-based ADMET optimization. According to the available knowl-
edge docking or enrichment studies on this target might be generally tractable.

PXR and CAR nuclear receptors have acceptable amount of structural infor-
mation. In these cases binding mode prediction is generally acceptable, or in 
some outstanding cases even enrichment might be observed. P-gp and hERG are 
membrane embedded proteins with significant domain level flexibility along with 
large and open binding sites. As a consequence, modelling of protein-ligands 
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interactions have the highest level of complexity. The uncertainty arising from the 
lack of human crystal structures enhances the difficulties further. The abundance 
of mutational data in both cases provides experimental viewpoints to evaluate the 
binding poses, and the constructed models serve as useful pivots to design further 
mutations. However, it is important to note, that some of the built protein models 
were capable to rank congeneric series of compounds or a limited ligand sets.

Parallel developments on the field of structural biology and computational 
approaches brought significant achievements to the atomic level understanding 
of ADMET proteins and processes. Moreover, this collaboration is now mature 
enough to be able to deliver innovative solutions at different levels of resolution to 
foster the design of novel drugs.
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