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Preface

This book is a collection of 350 exercises and problems in Mathematical Methods
of Physics: its peculiarity is that exercises and problems are proposed not in a
“random” order, but having in mind a precise didactic scope. Each section and
subsection starts with exercises based on first definitions, elementary notions and
properties, followed by a group of problems devoted to some intermediate situa-
tions, and finally by problems which propose gradually more elaborate develop-
ments and require some more refined reasoning.

Part of the problems is unavoidably “routine”, but several problems point out
interesting nontrivial properties, which are often omitted or only marginally men-
tioned in the textbooks. There are also some problems in which the reader is guided
to obtain some important results which are usually stated in textbooks without
complete proofs: for instance, the classical “uncertainty principle” Dt Dx� 1=2, an
introduction to Kramers–Kronig dispersion rules and their relation with causality
principles, the symmetry properties of the hydrogen atom, and the harmonic
oscillator in Quantum Mechanics.

In this sense, this book may be used as (or perhaps, to some extent, better than) a
textbook. Avoiding unnecessary difficulties and excessive formalism, it offers
indeed an alternative way to understand the mathematical notions on which Physics
is based, proceeding in a carefully structured sequence of exercises and problems.

I believe that there is no need to emphasize that the best (or perhaps the unique)
way to understand correctly Mathematics is that of facing and solving exercises and
problems. This holds a fortiori for the present case, where mathematical notions and
procedures become a fundamental tool for Physics. An example can illustrate
perfectly the point. The definition of eigenvectors and eigenvalues of a linear
operator needs just two or three lines in a textbook, and the notion is relatively
simple and intuitive. But only when one tries to find explicitly eigenvectors and
eigenvalues in concrete cases, then one realizes that a lot of different procedures are
required and extremely various situations occur. This book offers a fairly exhaustive
description of possible cases.
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This book covers a wide range of topics useful to Physics: Chap. 1 deals with
Hilbert spaces and linear operators. Starting from the crucial concept of complete
system of vectors, many exercises are devoted to the fundamental tool provided by
Fourier expansions, with several examples and applications, including some typical
Dirichlet and Neumann Problems. The second part of the chapter is devoted to
studying the different properties of linear operators between Hilbert spaces: their
domains, ranges, norms, boundedness, and closedness, and to examining special
classes of operators: adjoint and self-adjoint operators, projections, isometric and
unitary operators, functionals, and time-evolution operators. Great attention is paid
to the notion of eigenvalues and eigenvectors, with the various procedures and
results encountered in their determination. Another frequently raised question
concerns the different notions of convergence of given sequences of operators.

Chapter 2 starts with a survey of the basic properties of analytic functions of a
complex variable, of their power series expansions (Taylor–Laurent series), and
of their singularities, including branch points and cut lines. The evaluation of many
types of integrals by complex variable methods is proposed. Some examples of
conformal mappings are finally studied, in order to solve Dirichlet Problems; the
results are compared with those obtained in other chapters with different methods,
with a discussion about the uniqueness of the solutions.

The problems in Chap. 3 concern Fourier and Laplace transforms with their
different applications. The physical meaning of the Fourier transform as “frequency
analysis” is carefully presented. The Fourier transform is extended to the space of
tempered distributions S0, which include the Dirac delta, the Cauchy principal part,
and other related distributions. Applications concern ordinary and partial differen-
tial equations (in particular the heat, d’Alembert, and Laplace equations, including a
discussion about the uniqueness of solutions), and general linear systems. The
important notion of Green function is considered in many details, together with the
notion of causality. Various examples and applications of Laplace transform are
proposed, also in comparison with Fourier transform.

The first problems in Chap. 4 deal with basic properties of groups and of group
representations. Fundamental results following from Schur lemma are introduced
since the beginning in the case offinite groups, with a simple application of character
theory, in the study of vibrational levels of symmetric systems. Other problems
concern the notion and the properties of Lie groups and Lie algebras, mainly oriented
to physical examples: rotation groups SO2; SO3; SU2, translations, Euclidean group,
Lorentz transformations, dilations, Heisenberg group, and SU3, with their physically
relevant representations. The last section starts with some examples and applications
of symmetry properties of differential equations, and then provides a group-
theoretical description of some problems in quantum mechanics: the Zeeman and
Stark effects, the Schrödinger equation of the hydrogen atom (the group SO4), and
the three-dimensional harmonic oscillator (the group U3).
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At the end of the book, there are the solutions to almost all problems. In par-
ticular, there is a complete solution of the more significant or difficult problems.

This book is the result of my lectures during several decades at the Department
of Physics of the University of Pisa. I would like to acknowledge all my colleagues
who helped me in the organization of the didactic activity, in the preparation of the
problems and for their assistance in the examinations of my students. Special thanks
are due to Prof. Giovanni Morchio, for his constant invaluable support: many of the
problems, specially in Sect. 2 of Chap. 1, have been written with his precious
collaboration. I am also grateful to Prof. Giuseppe Gaeta for his encouragement to
write this book, which follows my previous lecture notes (in Italian) Metodi
Matematici della Fisica, published by Springer-Verlag Italia in 2008 (second edi-
tion in 2015).

Finally, I would thank in advance the readers for their comments, and in particular
those readers who will suggest improvements and amendments to all possible
misprints, inaccuracies, and inadvertent mistakes (hopefully, not too serious) in this
book, including also errors and imperfections in my English.

Pisa, Italy Giampaolo Cicogna
January 2018
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Chapter 1
Hilbert Spaces

1.1 Complete Sets, Fourier Expansions

The argument of this section is the study of basic properties of Hilbert spaces,
without involving the presence of linear operators.
Among other facts, the first problems in Sect. 1.1.1 emphasize the notion of
dense subspaces, and the difference between linear subspaces and closed (i.e.,
Hilbert) subspaces. The fundamental concept of complete system (or complete
set) of vectors is then pointed out, clearly distinguishing between complete sets
and orthonormal (or orthogonal) complete sets (to avoid confusion, the term
“basis” is never used).
The next subsection is devoted to the Fourier expansion, which is, as well
known, a fundamental tool in calculations and applications.Many exercises are
proposed in the context of “abstract” Hilbert spaces, in the space of sequences
�2, and in the “concrete” space of square-integrable functions L2 as well.
A special application of Fourier expansion concerns some examples of Dirich-
let and Neumann Problems (Sect. 1.1.3).

1.1.1 Preliminary Notions, Subspaces, and Complete Sets

(1.1)
(1) Consider the sequence of functions defined in [0, π ]

fn(x) =
{
n sin nx for 0 ≤ x ≤ π/n

0 for π/n ≤ x ≤ π
, n = 1, 2, . . .

© Springer International Publishing AG 2018
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2 1 Hilbert Spaces

Show that fn(x) → 0 pointwise for all x ∈ [0, π ] as n → ∞, but
∫ π

0 fn(x) dx does
not tend to zero.

(2) Consider a sequence of functions of the form, with x ∈ R,

fn(x) =
{
cn for 0 < x < n

0 elsewhere
, n = 1, 2, . . .

where cn are constants. Choose cn in such a way that fn(x) → 0 uniformly ∀x ∈ R,
but

∫ +∞
−∞ fn(x) dx does not tend to zero.1

(3) Consider sequences of functions of the same form as in (2). Choose (if possible)
the constants cn in such a way that

(a) fn(x) → 0 in the norm L2(R) but not in the norm L1(R);

(b) fn(x) → 0 in the norm L1(R) but not in the norm L2(R).

(4) Now consider a sequence of functions of the form, with x ∈ R,

fn(x) =
{
cn for 0 < x < 1/n

0 elsewhere
, n = 1, 2, . . .

where cn are constants:

(a) verify that fn(x) → 0 pointwise almost everywhere;

(b) the same questions (a), (b) as in (3).

(1.2)

(1) Show that if a function f (x) ∈ L2(I ), where I is an interval
(
of finite length

μ(I )
)
, then also f (x) ∈ L1(I ). Is the converse true?What is the relationship between

the norms ‖ f ‖L1(I ) and ‖ f ‖L2(I )?

(2) What changes if I = R?

(3) Is it possible to find a function f (x) ∈ L2(I ), where e.g., I = (−1, 1), such that
supx∈I | f (x)| = ε (where ε � 1) but ‖ f ‖L2(I ) = 1? Or such that ‖ f ‖L2(I ) = ε but
supx∈I | f (x)| = 1?

(4) The same questions as in (3) if I = R.

(1.3)

(1) Let f (x) ∈ L2(R) and let fn(x) be the “truncated” functions

fn(x) =
{
f (x) for |x | < n

0 for |x | > n
, n = 1, 2, . . .

1See the Introduction to Sect. 1.2 for the statement of the fundamental Lebesgue theorem about the
convergence of the integrals of sequences of functions.



1.1 Complete Sets, Fourier Expansions 3

Show that fn ∈ L1(R) ∩ L2(R) and ‖ f − fn‖ → 0 as n → ∞. Conclude: is the
subspace of the functions f ∈ L1(R) ∩ L2(R) dense in L2(R)? The same question
for the subspace of functions f ∈ L2(R) having compact support. Are they Hilbert
subspaces in L2(R)?

(2) Is the subspace S of test functions for the tempered distributions (i.e., the sub-
space of theC∞ functions rapidly going to zero with their derivatives as |x | → +∞)
dense in L2(R)?

(1.4)

(1) Let g(x) ∈ L1(R) ∩ L2(R) be such that

∫ +∞

−∞
g(x) dx = M 
= 0

introduce then the functions

wn(x) =
{
M/n for 0 < x < n

0 elsewhere
, n = 1, 2, . . .

and let zn(x) = g(x) − wn(x). Show that
∫ +∞
−∞ zn(x) dx = 0 and ‖g − zn‖ → 0 as

n → ∞.

(2) Conclude: is the set of functions f (x) ∈ L1(R) ∩ L2(R) with zero mean value a
dense subspace in L2(R)? (for an alternative proof, see Problem 3.8).

(1.5)

(1) In L2(−a, a) (a 
= ∞), consider the subset of the functions such that

∫ a

−a
f (x) dx = 0

Is this a Hilbert subspace? What is its orthogonal complement, and what are their
respective dimensions? Choose an orthonormal complete system in each one of these
subspaces.

(2) What changes if a = ∞? (see previous problem).

(3) The same questions as in (1) and (2) for the subset of the even functions such that∫ a
−a f (x) dx = 0.

(1.6)

(1) Consider in the space L2(−1, 1) the function u = u(x) = 1 and consider the
sequence of functions

gn(x) =
{
n|x | for |x | ≤ 1/n

1 for 1/n ≤ |x | ≤ 1
, n = 1, 2, . . .
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Show that ‖gn − u‖L2 → 0.

(2) Show that the subspace of the functions g(x) ∈ L2(I ) which are continuous in a
neighborhood of a point x0 ∈ I and satisfy g(x0) = 0 is dense in H . Show that the
same is also true for the subspace of the functions which are C∞ in a neighborhood
of x0 ∈ I and satisfy g(n)(x0) = 0 for all n ≥ 0.

(1.7)
(1) Consider the limit

lim
N→∞

1

2N

∫ N

−N
f (x) dx

Does it exist (and is the same) for all f (x) ∈ L2(R)?

(2) Consider now the limit

lim
N→∞

1

2N

∫ N

−N
x f (x) dx

Is there a dense set of functions ∈ L2(R) such that this limit is zero? Find a function
∈ L2(R) such that this limit is equal to 1, a function ∈ L2(R) such that is+∞; show
finally that if f (x) = sin(x1/3)/x2/3 this limit does not exist.

(1.8)
(1) Construct a function f (x) ∈ L1(R) which does not vanish as |x | → ∞. Hint: a
simple construction is the following: consider a function which is equal to 1 on all
intervals (n, n + δn), n ∈ Z, 0 < δn < 1, and equal to zero elsewhere; it is enough
to choose suitably δn ….With a different choice of δn , it is also possible to construct
a function ∈ L1(R) which is unbounded as |x | → ∞.

(2) The same questions for functions f (x) ∈ L2(R). It should be clear that the above
constructions can be modified in order to have continuous (or even C∞) functions.

(3) Show that if both f (x) and its derivative f ′(x) belong to L1(R), then lim|x |→∞
f (x) = 0. Hint: it is clearly enough to show that f (x) admits limit at |x | → ∞; to
this aim, apply Cauchy criterion: the limit exists if for any ε > 0 one has | f (x2) −
f (x1)| < ε for any x1, x2 large enough. But

f (x2) − f (x1) =
∫ x2

x1

f ′(y) dy

then, …

(4) Show that if both f (x) and its derivative f ′(x) belong to L2(R), then lim|x |→∞
f (x) = 0. Hint: use the same criterion

(
assume for simplicity f (x) real

)
:

f 2(x2) − f 2(x1)| =
∫ x2

x1

d

dy
f 2(y) dy = . . .
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(1.9)
(1) Show that any sequence of orthonormal elements {xn, n = 1, 2, . . .}, in a Hilbert
space, is not norm-convergent (check the Cauchy property) as n → ∞, but weakly
convergent (to what vector?).

(2) Let {xn, n = 1, 2, . . .} be any sequence of vectors:

(a) show that if there is some x ∈ H such that ‖xn‖ → ‖x‖ and xn weakly converges
to x , then xn is norm-convergent to x , i.e., ‖xn − x‖ → 0;

(b) show that if xn is norm-convergent to x , then the sequence xn is bounded, i.e.,
there is a positive constant M such that ‖xn‖ < M, ∀n.
(1.10)
Consider the following linear subspaces of the Hilbert space L2(−1, 1):

V1 = {the even polynomials, i.e., the polynomials of the form
N∑

n=0

anx
2n} ;

V2 = {the even C∞ functions} ;

V3 = {the functions g(x) such that
∫ 1

0
g(x) dx = 0} ;

V4 = {the functions g(x) ∈ C0 such that g(0) = 0} .

What of these subspaces is a Hilbert subspace? and what are their orthogonal com-
plementary subspaces?

(1.11)
Recalling that {xn, n = 0, 1, 2, . . .} is a complete set in L2(−1, 1):

(1) Deduce: is the set of polynomials a dense subspace in L2(−1, 1)? Is a Hilbert
subspace?

(2) Show that {x2n} is a complete set in L2(0, 1). And {x2n+1} ?
(3) Show that also {xN , xN+1, xN+2, . . .}, where N is any fixed integer > 0, is a
complete set in L2(−1, 1).

(1.12)
Let {en, n = 1, 2, . . .} be an orthonormal complete system in a Hilbert space H .

(1) Is the set vn = en − e1, n = 2, 3, . . . a complete set in H?

(2) Fixed any w ∈ H , is the set vn = en − w a complete set in H?

(3) Let w be any nonzero vector: for what sequences of complex numbers αn is the
set vn = en − αnw not a complete set in H?

(4) Under what condition on α, β ∈ C is the set vn = αen − βen+1 a complete set
in H?
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(1.13)
Let {en, n ∈ Z} be an orthonormal complete system in a Hilbert space H .

(1) Is the set vn = en − en+1 a complete set in H? And the set wn = αen − βen+1

where α, β ∈ C?

(2) Let now H = L2(0, 2π) and en = exp(inx)/
√
2π : the sets vn, wn acquire a

“concrete” form. Confirm the results obtained above.

(1.14)

(1) Specify what among the following sets, with n = 1, 2, . . ., are complete in
L2(−π, π):

(a) {x, x cos nx, x sin nx} ; (b) {P(x), P(x) cos nx, P(x) sin nx}

where P(x) is a polynomial
(
does the answer depend on the form of P(x)?

)
;

(c) {1, x cos nx, sin nx} ; (d) {x, cos nx, sin nx} ; (e) {x2, cos nx, sin nx} ;

(f ) {x, x cos nx, sin n|x |} ; (g) {x cos nx, x sin nx} ; (h) {x1/3 cos nx, x1/3 sin nx}

(2) If {en(x)} is a complete set in H = L2(I ), under what conditions for the function
h(x) is the set {h(x)en(x)} complete in H?

(1.15)
(1) Let {an, n = 1, 2, . . .} be a sequence of complex numbers ∈ �1, i.e., such that∑∞

n=1 |an| < ∞. Show that also {an} ∈ �2, i.e.,
∑∞

n=1 |an|2 < ∞. Is the converse
true?

(2) Show that the space �1 is a dense subspace in the Hilbert space �2.

(1.16)
In the space �2 consider the set, with n = 1, 2, . . . ,

w1 = (1,−1, 0, 0, . . .)/
√
2 , w2 = (1, 1,−2, 0, 0, . . .)/

√
6 , . . . ,

wn = (1, 1, . . . , 1︸ ︷︷ ︸
n

,−n, 0, 0, . . .)/
√
n(n + 1 , . . .

(1) Show that this is an orthonormal complete system in �2.

(2) Deduce that the subspace �(0) ⊂ �2 of the sequences such that
∑∞

n=1 an = 0 is
dense in �2.

(3) Show that
zn = (1,−1/n, . . . ,−1/n︸ ︷︷ ︸

n

, 0, 0, . . .) ∈ �(0)

and that zn → e1 as n → ∞.



1.1 Complete Sets, Fourier Expansions 7

(1.17)
(1) In the space H = L2(0,+∞) consider the set of orthonormal functions

un(x) =
{
1 for n − 1 < x < n

0 elsewhere
, n = 1, 2, . . .

Here are three possible answers to the question: Is this set a complete set in H?What
is the correct answer?

(α) the condition (un, f ) = 0, ∀n is
∫ n
n−1 f dx = 0, ∀n, and this happens only if

f = 0, then the set is complete.

(β) the function f (x) = sin 2πx if x ≥ 0 satisfies (un, f ) = 0, ∀n, then the set is
not complete.

(γ ) the function (e.g.,) f (x) =
{
sin 2πx for 0 < x < 1

0 for x > 1
satisfies (un, f ) = 0,

∀n, then the set is not complete.

(2) In the same space, consider the set of orthogonal functions

vn(x) =
{
sin x for (n − 1)π ≤ x ≤ nπ

0 elsewhere
, n = 1, 2, . . .

Is this set complete in H ?

(3) In the same space consider the set of functions

wn(x) =
{
sin nx for 0 ≤ x ≤ nπ

0 for x ≥ nπ
, n = 1, 2, . . .

(a) Are the functions wn(x) orthogonal?

(b) Is the set {wn(x)} a complete set ?

(1.18)
(1) Is the set {x sin nx, n = 1, 2, . . .} a complete set in L2(0, π)? And the subset
{x sin nx} with n = 2, 3, . . .?

(2) The same questions for the set {x2 sin nx, n = 1, 2, . . .} and respectively for the
subset {x2 sin nx} with n = 2, 3, . . .

(1.19)
(a) Is the set {exp(−nx) , n = 1, 2, . . .} a complete set in L2(0,+∞)? Hint: put
y = exp(−x).

(b) The same for the set {exp(inx), n ∈ Z} in L2(−2π, 2π).

(c) The same for the set {exp(inx), n ∈ Z} in L2(0, π).

(d) The same for the set {sin nx sin ny}, n = 1, 2, . . . in L2(Q), where Q is the
square 0 ≤ x ≤ π, 0 ≤ y ≤ π .



8 1 Hilbert Spaces

(e) The same for the set {exp(−nx) sin ny}, n = 1, 2, . . . in L2(Ω), where Ω is the
semi-infinite strip 0 ≤ x ≤ π , y ≥ 0.

(f) The same for the set {exp(−x2) exp(inx), n ∈ Z} in L2(R).(
Another example of a complete set in L2(0,+∞)will be proposed inProblem3.131:
the proof is based on properties of Laplace transform.

)

1.1.2 Fourier Expansions

(1.20)

(1) Evaluate the Fourier expansion in terms of the orthonormal complete system in
L2(−π, π)

1√
2π

,
1√
π

sin nx,
1√
π

cos nx , n = 1, 2, . . .

of the following functions:

f1(x) =
{

−1 for − π < x < 0

1 for 0 < x < π
; f2(x) = |x |

and discuss the convergence of the series.

(2) The same questions for the function in L2(0, π)

f (x) = 1

in terms of the orthonormal complete system

√
2

π
sin nx , n = 1, 2, . . .

Notice that the series is automatically defined ∀x ∈ R, also out of the interval 0, π :
to what function does this series converge? Does it converge at the point x = π? to
what value? and at the point x = 3π/2? to what value?

(1.21)
(1) Find the Fourier expansion in terms of the complete set {1, cos nx, sin nx , n =
1, 2, . . .} in L2(−π, π) of the function f1(x) = x (with −π < x < π ) and discuss
the convergence of the series.

(2) The same for the function

f2(x) =
{
x + π for − π < x < 0

x − π for 0 < x < π
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Recognize that the two functions f1(x) and f2(x) (or better, their periodic prolon-
gations with period 2π ) are actually the same function apart from a translation;
accordingly, verify that their Fourier coefficients are related by a simple rule.

(1.22)
In the space L2(0, a) the following three sets are, as well known, orthogonal complete
sets:

(i) 1, cos
(2nπ

a
x
)
, sin

(2nπ

a
x
)

, n = 1, 2, . . . ;

(i i) 1, cos
(nπ

a
x
)

; (i i i) sin
(nπ

a
x
)

, n = 1, 2, . . .

The series obtained as Fourier expansion of a function f (x) ∈ L2(0, a) with respect
to the set i) is automatically extended to all x ∈ R and converges to a function f̃1(x)
with period a, whereas the series obtained as Fourier expansion with respect to the
sets i i) and i i i) converge to functions f̃2(x) and f̃3(x) with period . . .. Consider,
for instance, the function f (x) = x ∈ L2(0, a): without evaluating the Fourier
expansions, specify what are the functions f̃1(x), f̃2(x), f̃3(x).

(1.23)
Consider the space L2(Q), where Q is the square 0 ≤ x ≤ π, 0 ≤ y ≤ π .

(1) Evaluate the double Fourier expansion of the function

f (x, y) = 1

in terms of the orthonormal complete system

en,m = 2

π
sin nx sinmy , n,m = 1, 2, . . .

The series is automatically defined ∀x, y ∈ R2: to what function f̃ (x, y) does this
series converge?

(2) The same questions for the function

f (x, y) = sin x

(1.24)
(1) Show that if the coefficients an of a Fourier series in L2(0, 2π) of the form

f (x) =
+∞∑

n=−∞
an exp(inx)

satisfy
∑

n |an| < ∞, i.e., {an} ∈ �1, then f (x) is continuous.



10 1 Hilbert Spaces

(2) Generalize: assume that for some integer h one has

+∞∑
n=−∞

|nhan| < ∞

How many times (at least) is the function f (x) continuously differentiable ?

(3) Assume that for some real α one has

|an| ≤ c

|n|α with α > k + 1

2

at least for |n| > n0 where n0 and k are given integers and c a constant. Show that
f (x) ∈ Ck−1, i.e., f (x) is k − 1 times continuously differentiable, and that f (k)(x)
is possibly not continuous but ∈ L2(0, 2π).

(4) Assume that the coefficients an satisfy a condition of the form, if |n| > n0,

|an| ≤ c

2|n|

what property of differentiability can be expected for the function f (x)? (Clearly,
all the above results also hold for similar Fourier expansions where exp(inx) are
replaced, e.g., by cos nx and/or sin nx).

(1.25)
(1) Specify what properties can be deduced for the function f (x) ∈ L2(−π, π) if
its Fourier series is

f (x) =
∞∑
n=1

1

n2(n3 + 1)1/4
cos nx

(2) Show that any function f (x) admitting a Fourier series of the following form

f (x) =
∞∑
n=1

an
n

sin nx

where an ∈ �2, is a continuous function (extensions to series of similar form are
obvious).

(1.26)
In all the questions of this problem, do not try to evaluate the Fourier coefficients of
the proposed functions. No calculations needed!

(1) In H = L2(−π, π), consider the function

f (x) =
{
0 for − π ≤ x ≤ 0

x
√
x for 0 ≤ x ≤ π
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(a) Is theFourier expansionof f (x)with respect to the complete set {exp(inx), n ∈Z}
convergent at the point x = π? To what value? and at the point x = 4 ?

(b) Is it true that the Fourier coefficients cn of the above expansion satisfy cn ∈ �1?

(2) In the same space H , let f (x) = √|x |. Is it true that the Fourier coefficients an
of the expansion f (x) = ∑

n an cos nx satisfy nan ∈ �2 ?

(3) In the same space H , let f (x) = exp(x2). Is it true that the Fourier coefficients
an of the expansion f (x) = ∑

n an cos nx satisfy nan ∈ �2? and nan ∈ �1?

(1.27)
Let vn be the orthonormal complete system in L2(0, π)

vn(x) = √
2/π sin nx , n = 1, 2, . . .

(1) Consider the Fourier expansion of the function

f1(x) =
∣∣∣x − (π/2)

∣∣∣
with respect to the subset v1, v3, . . . , v2m+1, . . .: is this expansion convergent (with
respect to the L2 norm, of course)? to what function? (No calculation needed!)

(2) The same questions for the function f2(x) = x − (π/2).

(3) The same questions for the function f3(x) = x .

(4) Is the subset v1, v3, . . . , v2m+1, . . . a complete system in the space L2(0, π/2)?

(1.28)
Consider in the space L2(−π, π) the orthonormal not complete set

1√
2π

,
1√
π
sin nx , n = 1, 2, . . .

Find the functions which are obtained performing the Fourier expansion (no calcu-
lation needed !) of the following functions with respect to this set:

f1(x) = 2 + exp(2i x) , f2(x) = x log |x | , f3(x) =
{
1 for |x | < π/2

0 for π/2 < |x | < π

(1.29)
Consider in the space L2(0, 4π) the orthogonal not complete set {exp(inx), n ∈ Z}.
Find the functions which are obtained performing the Fourier expansion (no calcu-
lation needed !) of the following functions with respect to this set:

f1(x) =
{
1 for 0 < x < 2π

0 for 2π < x < 4π
; f2(x) = | sin(x/2)|
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(1.30)
Consider in L2(0,∞) the set

vn(x) =
{
sin nx for 0 ≤ x ≤ nπ

0 for x ≥ nπ
, n = 1, 2, . . .

See Problem 1.17, q.(3) for the orthogonality and the non-completeness of this set.
Find the functions which are obtained performing the Fourier expansion of the fol-
lowing functions with respect to this set:

f1(x) =
{
1 for 0 < x < π

0 for x > π
; f2(x) =

{
1 for 0 < x < 2π

0 for x > 2π

(1.31)
In the space H = L2(0,+∞), consider the set of orthonormal functions un(x)

un(x) =
{
1 for n − 1 < x < n

0 elsewhere
, n = 1, 2, . . .

given in Problem 1.17, q.(1).

(1)What function is obtained performing the Fourier expansion of a function f (x) ∈
L2(0,∞) with respect to the set un(x)?

(2) Is the sequence of the functions un(x) pointwise convergent as n → ∞? Is
the convergence uniform? Is this sequence a Cauchy sequence (with respect to the
L2(0,∞) norm)? Is it weakly L2-convergent

(
i.e., does the numerical sequence

(un, g) admit limit ∀g ∈ L2(0,∞)
)
?

In the three following problems, we will introduce as independent variable
the time t —just to help the physical interpretation—instead of the “position”
variable x . Accordingly, we will write, e.g., u = u(t), u̇ = du/dt , etc.

(1.32)
(1) Consider the equation of the periodically forced harmonic oscillator

ü + u = g(t) , u = u(t)
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where g(t) is a 2π -periodic given function ∈ L2(0, 2π), and look for 2π -periodic
solutions u(t). Write g(t) as Fourier series with respect to the orthogonal complete
system {exp(int), n ∈ Z} in L2(0, 2π): g(t) = ∑

n gn exp(int), and obtain the
solution in the formof aFourier series: u(t) = ∑

n un exp(int). Underwhat condition
on g(t) (or on its Fourier coefficients gn) does this equation admit solution? and,when
the solution exists, is it unique?

(2) The same questions for the equation

ü + 2u = g(t)

(1.33)
(1) The same questions as in q. (1) of the above problem for the equation

u̇ + u = g(t) , u = u(t)

(
this is, e.g., the equation of an electric series circuit of a resistance R and an induc-
tance L (with R = L = 1), submitted to a periodic potential g(t) where u(t) is
the electric current

)
. As before, assume that g(t) is a 2π -periodic given function

∈ L2(0, 2π) and look for 2π -periodic solutions u(t). Introducing the orthogonal
complete system {exp(int), n ∈ Z} in L2(0, 2π), write in the form of a Fourier
series the solution of this equation.

(2) Show that the solution u(t) is a continuous function.

(1.34)
Adoubt concerning the existence and uniqueness of solutions of the equations given in
the two above problems. In Problem 1.32, q.(1) the conclusion was that the equation
ü + u = g has no solution if the Fourier coefficients g±1 of g(t) with respect the
orthogonal complete set {exp(int), n ∈ Z} are not zero. However, it is well known
from elementary analysis that, e.g., the equation ü + u = sin t admits the solution
u(t) = −(t/2) cos t (this is the case of “resonance”). Explain why this solution does
not appear in the present context of Fourier expansions. A related difficulty appears
in Problems 1.32, q.(2) and 1.33, q.(1): the conclusion was that the solution is unique,
but it is well known that the differential equations considered in these problems admit
respectively ∞2 and ∞1 solutions: explain why these solutions do not appear in the
above calculations. Similar apparent difficulties appear in many other cases: see e.g.,
Problems 1.84–1.90.
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1.1.3 Harmonic Functions: Dirichlet and Neumann
Problems

In this subsection, simple examples of Dirichlet and Neumann Problems will
be proposed. The Dirichlet Problem amounts of finding a harmonic function
U = U (x, y) in some region Ω ⊂ R2 satisfying a given condition on the
boundary of Ω , i.e.,

Δ2U ≡ ∂2U

∂x2
+ ∂2U

∂y2
= 0 in Ω, with U

∣∣∣
∂Ω

= F(x, y)

Neumann Problem amounts of finding a harmonic function in Ω when a con-

dition is given on its normal derivative on the boundary, i.e., ∂U/∂n
∣∣∣
∂Ω

=
G(x, y).
The Dirichlet Problem will be also reconsidered, with different methods, in
Chap. 2, Sect. 2.3, and in Chap. 3, Problems 3.110, 3.111, 3.112, 3.115.
In the four following exercises, recall that the most general form of a harmonic
functionU = U (r, ϕ) in the interior of the circle centered at the origin of radius
R, in polar coordinates r, ϕ, is given by

U (r, ϕ) = a0 +
∞∑
n=1

rn(an cos nϕ + bn sin nϕ)

(1.35)
(1) Assume for simplicity R = 1. Solve the Dirichlet Problem for the circle, i.e., find
U (r, ϕ) for r < 1 if the boundary value U (1, ϕ) = F(ϕ) ∈ L2(0, 2π) is given:

(a) if F(ϕ) = 1 (trivial !);

(b) if F(ϕ) = cos2 ϕ (nearly trivial !);

(c) obtain as a Fourier series U (r, ϕ) if F(r, ϕ) =
{
1 for 0 < ϕ < π

−1 for π < ϕ < 2π
.

(2) Show that U (r, ϕ) is a C∞ function if r < 1.

(1.36)
Consider the case of a semicircle 0 ≤ ϕ ≤ π (radius R = 1) with the boundary
conditions

U (r, 0) = U (r, π) = 0, U (1, ϕ) = F(ϕ) ∈ L2(0, π)

(1) Show that in this case the Dirichlet Problem can be solved with a0 = an = 0 for
all n.
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(2) Let F(ϕ) = 1: the solution U (r, ϕ) (written as a Fourier series) can be also
extended to the semicircle with π < ϕ < 2π . What is the value of U (1, 3π/2)?

(3) Solve the Dirichlet Problem with the boundary conditions

U (r, 0) = U (r, π) = a 
= 0, U (1, ϕ) = F(ϕ) ∈ L2(0, π)

where a = const. Hint: solve first the problem with U (1, ϕ) = F(ϕ) − a and
U (r, 0) = U (r, π) = 0, then ….

(1.37)
Consider the case of a quarter-circle 0 ≤ ϕ ≤ π/2 (radius R = 1) with the boundary
conditions

U (r, 0) = U (r, π/2) = 0, U (1, ϕ) = F(ϕ) ∈ L2(0, π/2)

(1) Show that in this case the Dirichlet Problem can be solved with a0 = an = 0 for
all n, and bn = 0 if n is odd.

(2) Let F(ϕ) = 1: the solution U (r, ϕ) (written as a Fourier series) can be also
extended to the whole circle. What is the value ofU (1, 3π/4)? andU (1, 5π/4)? and
U (1, 7π/4)?

(1.38)
(1) Show that the Neumann Problem for the circle, i.e., the problem of findingU (r, ϕ)

in the interior of the circle if the normal derivative at the boundary ∂U/∂r |r=R =
G(ϕ) ∈ L2(0, 2π) is given, can be solved if (and only if) G(ϕ) satisfies

g0 = 1

2π

∫ 2π

0
G(ϕ) dϕ = 0

Show also that the solution (when existing) is not unique.

(2) IfU (r, ϕ) is a two-dimensional electric potential, explainwhy the results obtained
in (1) admit a clear physical interpretation.

(1.39)
(1) Consider the case of a rectangle in the (x, y) plane, say 0 ≤ x ≤ π , 0 ≤ y ≤ h,
with boundary conditions

U (0, y) = U (π, y) = 0, U (x, 0) = F1(x), U (x, h) = F2(x)

Using the separation of variables U (x, y) = X (x)Y (y), show that the solution of
the Dirichlet Problem can be written in the form

U (x, y) =
∞∑
n=1

sin nx
(
an exp(ny) + bn exp(−ny)

)
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where the coefficients an, bn are uniquely determined by F1(x), F2(x).

(2) Find U (x, y) in the case F1(x) = sin x, F2(x) = sin 2x .

(3) What changes if h = ∞ (imposing that the solution belongs to L2)?

(1.40)
Consider the Dirichlet Problem in a rectangle with nonzero boundary conditions
on all the four sides of the rectangle. Show how the problem can be solved by a
superposition of two problems similar to the previous one, q. (1).

(1.41)
(1) Consider the Dirichlet Problem in the annular region between the two circles
centered at the origin with radius R1 < R2. Recalling that the most general form of
the harmonic function in the region R1 < r < R2 can be written in polar coordinates
r, ϕ as

U (r, ϕ) = a0 + b0 log r +
∑

n=±1,±2,...

exp(inϕ)(anr
n + bnr

−n)

show that the Dirichlet Problem admits unique solution if the two boundary condi-
tions

U (R1, ϕ) = F1(ϕ), U (R2, ϕ) = F2(ϕ)

are given.

(2) Solve the problem in the (rather simple) cases

(a) F1(ϕ) = c1, F2(ϕ) = c2 
= c1, where c1, c2 are constants;

(b) F1(ϕ) = cosϕ with R1 = 1/2 and F2(ϕ) = cosϕ with R2 = 2;

(c) F1(ϕ) = cosϕ with R1 = 1 and F2(ϕ) = cos 2ϕ with R2 = 2.

1.2 Linear Operators in Hilbert Spaces

This section is devoted to studying the different properties of linear operators
between Hilbert spaces: their domains, ranges, norms, boundedness, closed-
ness, and to examining special classes of operators: adjoint and self-adjoint
operators, projections, isometric and unitary operators, functionals, and time-
evolution operators.
Great attention is paid to the notion of eigenvalues and eigenvectors, due to
its relevance in physical problems. Many exercises propose the different pro-
cedures needed for finding eigenvectors and the extremely various situations
which can occur.According to the physicists use, the term“eigenvector” is used
instead of the more correct “eigenspace”, and “degeneracy” instead of “geo-
metrical multiplicity” of the eigenvalue (i.e., the dimension of the eigenspace).
The term “not degenerate” is also used instead of “degeneracy equal to 1”. The
notion of spectrum is only occasionally mentioned.
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Another frequent question concerns the convergence of given sequences of
operators in a Hilbert space H . Let us recall that the convergence of a sequence
Tn to T as n → ∞ is said to be
(i) “in norm” if ‖Tn − T ‖ → 0
(ii)“strong” if ‖(Tn − T )x‖ → 0 ,∀x ∈ H

(iii)“weak” if
(
y, (Tn − T )x

)
→ 0 ,∀x, y ∈ H

Clearly, norm convergence implies strong and strong implies weak conver-
gence, but the converse is not true. Many of the exercises proposed provide
several examples of this. Similar definitions hold for families of operators Ta
depending on some continuous parameter a.
Questions as “Study the convergence” or “Find the limit” of the given sequence
Tn (or family Ta) of operators are actually “cumulative” questions, which
indeed include and summarize several aspects. A first aspect is to emphasize
the fact that “convergence” (and the related notions of “approximation” and
“neighborhood”) is a “relative” notion, being strictly dependent on the defini-
tion of convergence which has been chosen. The next “operative” aspects are
that, given the sequence of operators, one has to
(a) conjecture the possible limit T (this is usually rather easy)
(b) evaluate some norms of operators ‖Tn −T ‖ and/or of vectors ‖(Tn −T )x‖
and so on, to decide what type of convergence is involved.

Frequent use will be done in this section, and also in Chap. 3, of the Lebesgue-
dominated convergence theorem (briefly: Lebesgue theorem) concerning the
convergence of integrals of sequences of functions. The statement of the the-
orem in a form convenient for our purposes is the following:
Assume that a sequence of real functions { fn(x)} ∈ L1(R) satisfies the fol-
lowing hypotheses:
(i) fn(x) converges pointwise almost everywhere to a function f (x),
(ii)there is a function g(x) ∈ L1(R) such that

| fn(x)| ≤ g(x)

then
(a) f (x) ∈ L1(R)

(b) lim
n→∞

∫ +∞

−∞
fn(x) dx =

∫ +∞

−∞
f (x) dx

The theorem is clearly also true if, instead of a sequence of functions depending
on a integer index n, one deals with family of functions { fa(x)} depending on
a continuous parameter a, and–typically–one considers the limit as a → 0.
See Problem 1.1 for simple examples of sequences of functions not satisfying
the assumptions of this theorem.

Other examples of linear operators will be proposed in Sects. 3.1.2 and 3.2.2
in the context of Fourier transforms.
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1.2.1 Linear Operators Defined Giving T en = vn,
and Related Problems

A common and convenient way to define a linear operator is that of assigning
its values when applied to an orthonormal complete system {en} in a Hilbert
space, i.e., of giving vn = T en . Some significant cases are proposed in this
subsection; other examples can also be found in the following subsections.

The first problem is to check if the domain of these linear operators can be
extended to thewholeHilbert space in such away to obtain (whenever possible)
a continuous operator. Let us start with the simplest cases in the two following
problems, where the {en} are eigenvectors of T .

(1.42)
Let {en , n = 1, 2, . . .} be an orthonormal complete system in a Hilbert space H , and

T en = cnen , cn ∈ C; no sum over n

In each one of the following cases

cn = n ; cn = 1/n , n = 1, 2, . . . ;

cn = exp(inπ/7) ; cn = exp(in) ; cn = n − i

n + i
; cn = n2

n2 + 1
, n ∈ Z

(a) find the degeneracy of the eigenvalues, find ‖T ‖ (and specify if there is some
x0 ∈ H such that ‖T x0‖ = ‖T ‖‖x0‖), or show that T is unbounded;

(b) find domain and range of T (check in particular if they coincide with the whole

space H or—at least—if they are dense in it).

(1.43)
Let {en , n ∈ Z} and let TN (where N is a fixed integer) be defined by

TN en = en for |n| ≤ N and TN en = 0 for |n| > N

(1) Show that TN is a projection.2 Is it compact?

(2) Study the convergence as N → ∞ of the sequence of operators TN to the operator
T∞= the identity.

(1.44)
Let {en , n ∈ Z} and let SN (where N is a fixed integer) be defined by

2In this book, only orthogonal projections P will be considered, i.e., operators satisfying the prop-
erties P2 = P (idempotency) and P+ = P (Hermiticity).
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SN en = e−n for 1 ≤ |n| ≤ N , SN e0 = e0 and SN en = 0 for |n| > N

(1) Find the eigenvectors and eigenvalues (with their degeneracy) of SN . Is it com-
pact?

(2) Consider the operator S∞ defined by S∞ en = e−n for all nonzero n ∈ Z and with
S∞e0 = e0. Study the convergence as N → ∞ of the sequence of operators TN to
the operator S∞.

(3) If en = exp(inx)/
√
2π in H = L2(−π, π), show that the operator S∞ takes a

very simple form!

(1.45)
In a Hilbert space H with orthonormal complete system {en , n = 1, 2, . . .} consider
the set of vectors

v1 = e1 + e2√
2

, v2 = e3 + e4√
2

, . . . , vn = e2n−1 + e2n√
2

, . . ., n = 1, 2, . . .

(1) Is {vn} a orthonormal set? a complete set?

(2) Let T be the linear operator defined by

T en = vn

(a) Does T preserve scalar products? is it unitary?

(b) Show thatRanT is aHilbert subspace of H ;what is its orthogonal complementary
subspace and the dimension of this subspace?

(c) Does T admit eigenvectors ? What is its kernel?

(1.46)
In a Hilbert space H with orthonormal complete system {en, n = 1, 2, . . .}, consider
the linear operators defined by

T en = en+1 and

{
S e1 = 0

S en = en−1 for n > 1

(1) Writing a generic vector x ∈ H in the form x = ∑
n an en ≡ (a1, a2, . . .), obtain

T x and Sx (equivalently: choose H = �2). Show that the domain of these operators
is the whole Hilbert space.

(2) Is T injective? surjective? the same questions for S.

(3) Calculate ‖T ‖ and ‖S‖.
(4) Show that S = T+.
(5) Show that T is “isometric”, i.e., preserves scalar products: (x, y) = (T x, T y),
∀x, y ∈ H but is not unitary. Study the operators T T+ and T+T . Show that T T+ is
a projection: on what subspace?
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(6) Show that T has no eigenvectors, but S = T+ has many (!) eigenvectors.

(7) Are T and S compact operators?

(1.47)
(1) What changes in the above problem if T en = en+1 is defined on an orthonormal
complete system where now n ∈ Z?

(2) A “concrete” version of this operator is the following: let H = L2(0, 2π) with
en = exp(inx)/

√
2π . Then T becomes simply T f (x) = exp(i x) f (x) for any

f ∈ L2(0, 2π). Find again (and confirm) the results obtained before.

(1.48)

Although the operators proposed in this problem are not of the form T en = vn
which is that considered in this subsection, they share similar properties with those
of Problems 1.46 and 1.47; in particular they are respectively an isometric and an
unitary operator.

(1) In H = L2(0,∞) consider T f (x) = f (x − 1). To avoid difficulties with the
restriction x > 0, it would be more convenient to write for clarity

T f (x) = f (x − 1)θ(x − 1) and S f (x) = f (x + 1)θ(x)

where

θ(x) =
{
0 for x < 0

1 for x > 0

The same questions (2)–(7) as in Problem 1.46. For what concerns the eigenvectors
of S, consider only the functions f (x) = exp(−αx), α > 0.

(2) What changes if T f (x) = f (x − 1) is defined in L2(R)? (compare with
Problem 1.47, q.(1)).

(1.49)

Another operator with similar properties as T in Problem 1.46:
In a Hilbert space H with orthonormal complete system {en, n = 1, 2, . . .}, consider
the operators

T en = e2n and

{
S en = en/2 for n even

S en = 0 for n odd

Exactly all the same questions (1)–(7) as in Problem 1.46. Show that S has many
and many eigenvectors.
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(1.50)
The same remark as for Problem 1.48. Another case:

Consider the operators T and S of L2(0, 1) in itself defined respectively by

T f (x) = g(x) where g(x) = f (2x)

(
warning: f (x) is given only in 0 < x < 1, so it defines g(x) only if 0 < x < 1/2;
it is understood that g(x) is put equal to zero if 1/2 < x < 1

)
; and let S be defined

by
S f (x) = h(x) where h(x) = (1/2) f (x/2)

The same questions (2)–(7) as in Problem 1.46. Forwhat concerns the eigenvectors of
S, consider only the functions f (x) = xα . Verify that the corresponding eigenvalues
λα satisfy the condition ‖S‖ ≥ sup |λα|.
(1.51)

Study the convergence as N → ∞ of the sequences of operators T N , SN where T
and S are some of the isometric and unitary operators considered in the previous
Problems 1.46, 1.47, 1.48. Precisely:

(1) if T and S are given in Problem 1.48, q.(1), i.e., T N f (x) = f (x − N )θ(x − N )

in L2(0,∞), etc.

(2) if T and S are given in Problem 1.48, q.(2), i.e., the same as in (1) but in L2(R)

(use Fourier transform; see also Problem 3.20).

(3) if T and S are given in Problem 1.46, i.e., T Nen = en+N etc. with n = 1, 2, . . ..

(4) if T and S are given in Problem 1.47, q.(2), i.e., T N f (x) = exp(i N x) f (x) in
L2(0, 2π).
(5) if T and S are given in Problem 1.47, q.(1), i.e., the same as in (3), i.e., T Nen =
en+N but with n ∈ Z.

(1.52)
(1) Let vn = en − en−1, where {en, n ∈ Z} is an orthonormal complete system in a
Hilbert space H and let T be the operator

T en = vn

(a) Find KerT .

(b) Show that ‖T ‖ ≤ 2.

(c) Find T (e0+e1+· · ·+ek):what information can be deduced about the boundedness
of T−1?

(2) More in general, let wn = αen − βen−1 with nonzero α, β ∈ C, and let

T en = wn
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(a) Is the set wn a complete set in H? deduce: is RanT a dense subspace in H?

(b) Look for eigenvectors of T .

(3) If now H = L2(0, 2π) and en = exp(inx)/
√
2π , the above operator acquires a

concrete (possibly simpler) form: T f (x) = ϕ(x) f (x) where f (x) ∈ L2(0, 2π) and
ϕ(x) = . . ..

(a) Find ‖T ‖.
(b) Confirm the results seen in (2).

(c) Under what conditions about α, β does the operator T given in (2) admit bounded
inverse? and does RanT coincide with H = L2(0, 2π)?

(d) In the case α = β = 1, does the function f (x) = 1 belong to Ran T ? and the
function f (x) = sin x?

(1.53)
Consider the operator defined in aHilbert space H with orthonormal complete system
{en, n = 1, 2, . . .}

T en = cnx0 + en , n = 1, 2, . . .

where cn ∈ �2 and x0 ∈ H are given.

(1) Show that T is bounded.

(2) Find eigenvalues and eigenvectors of T . What condition on cn and x0 ensures
that the eigenvectors provide a complete set for H?

(3) In the case x0 = ∑
m cmem , find ‖T ‖ and check if the eigenvectors provide a

complete set for H .

(1.54)
Let {en, n ∈ Z} be an orthonormal complete system in a Hilbert space H and let T
be the operator defined by

T en = αnen+1 , αn ∈ C

(1) For what choice of αn:

(a) is T unitary?

(b) is T bounded?

(c) is T a projection?

(2) Find T+.
(3) Let αn = exp(inπ/2) + i :

(a) find ‖T ‖;
(b) find Ker T ; are there vectors ∈ Ker T which also belong to RanT ?
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(1.55)
Let {en, n = 1, 2, . . .} be an orthonormal complete system in a Hilbert space H and
let T the operator defined by

T en = x0

where x0 is a fixed nonzero vector.

(1) (a) is the domain of T the whole Hilbert space?

(b) is T a bounded operator?

(2) What is the kernel of T ? (see Problem 1.16)

(3) Construct two sequences of vectors zn and wn both tending as n → ∞ to e1
(e.g.,), but such that T (zn) = 0 and T (wn) → e1.

(4) Conclude: is T a closed operator?

(1.56)
Consider the operator defined in aHilbert space H with orthonormal complete system
{en, n = 1, 2, . . .}

T en = αen + βe1 , α, β ∈ C; α, β 
= 0

(1) The same questions as in (1) of the previous problem.

(2) For what values of α, β does T admit a nontrivial kernel? of what dimension?

(3) Show that T coincides with a multiple of the identity operator in a dense subspace
of H .

(4) Is T a closed operator?

(1.57)
Let {en, n ∈ Z} be an orthonormal complete system in a Hilbert space H and let T
be the operator defined by

T e0 = c0e0 , T en = cne−n , n 
= 0, cn ∈ C

(1) Give the conditions on the coefficients cn in order to have

(a) T bounded, (b) T normal, (c) T Hermitian, (d) T 2 = I

(2) Show that the problem of looking for the eigenvectors of T reduces to simple
problems in two-dimensional subspaces (or to the trivial one-dimensional case T e0 =
c0e0). Is the set of the eigenvectors a complete set in H?

(3) Consider the particular cases:

(a) cn = −c−n 
= 0: find the eigenvectors and eigenvalues (with their degeneracy):
can one expect that the eigenvectors are orthogonal? and the eigenvalues real?
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(b) cn =
{
n for n ≥ 0

1/n2 for n < 0
: find the eigenvectors and eigenvalues (with their

degeneracy); the sequence of the eigenvalues is bounded and converges to 0 as
n → ∞; however, T is not compact (actually, it is unbounded), is this surprising?

(c) cn = αn, α ∈ C: how can one choose α in order to have

(i) T bounded? (ii) T unitary? (iii) the image of T coinciding the whole space H?

(1.58)
Let en = exp(inx)(2π)−1/2, n ∈ Z in the space L2(−π, π), and let T be defined by

T e0 = 0 , T en = n2e−n

(1) Find eigenvectors and eigenvalues of T with their degeneracy.Do the eigenvectors
provide a complete set for the space?

(2) Is the operator T + I invertible?

(3) For what values of c ∈ C is the operator T + cI invertible?

(4) Find ‖(T + 20I )−1‖, ‖(T + i I )−1‖, ‖
(
T + (2 + i)

)−1‖
(1.59)
Let en = exp(inx)(2π)−1/2, n ∈ Z in the space L2(−π, π), and let T be defined by

T e0 = 0 , T en = 1

n2
e−n for n 
= 0

(1) Find eigenvectors and eigenvalues of T with their degeneracy.

(2) What is RanT ? Specify if it is a Hilbert subspace of L2(−π, π), or—
alternatively—what is its closure.

Consider now the equation
T f = g

where g = g(x) ∈ L2(−π, π) is given and f = f (x) ∈ L2(−π, π) unknown.

(3) (a) Let g(x) = cos2(x)−(1/2): does this equation admit solution? is the solution
unique?

(b) Same questions if g(x) = cos4(x) (no calculation needed !).

(c) Same questions if g(x) = |x | − π/2 (no calculation needed !).

(4) Show that the sequence of operators T N is norm-convergent as N → ∞: to what
operator?

(1.60)
Let {en, n = 1, 2, . . .} be an orthonormal complete system in a Hilbert space H and
let T be the operator defined by

T en = αne1 + βne2
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where n = 1, 2, . . . and αn and βn are given sequences of complex numbers.

(1) Let αn = βn = 1/2n . Hint: put z = ∑
n en/2

n , then …:

(a) find ‖T ‖;
(b) find eigenvectors and eigenvalues of T ;

(c) find T+

(2) For what αn and βn is T bounded?

(3) (a) For what αn and βn is the range of T one-dimensional?

(b) For what αn and βn are the range and the kernel of T orthogonal?

(4) Letαn = βn =
{
0 for n ≤ N

1/2(n−N ) for n > N
and let TN be the corresponding operator.

Study the convergence as N → ∞ of the sequences of operators TN and T+
N . Hint:

put zN = ∑∞
n>N en/2(n−N ), then TN x = . . .

(1.61)
Let {en , n ∈ Z} be an orthonormal complete system in aHilbert space H and consider
the operators defined by

S en = n2

1 + n4
en , TN en =

{
en for |n| ≤ N

e−n for |n| > N
(N = 1, 2, . . .)

(1) Fixed any integer N , find eigenvectors and eigenvalues (with their degeneracy) of
S and of TN . Is there an orthogonal complete set for H of simultaneous eigenvectors?

(2) Is the operator TN S compact? and TN S?

(3) Study the convergence of the sequence of operators TN , TN S , STN as N → ∞.

1.2.2 Operators of the Form T x = v(w, x) and
T x = ∑

n Vn(wn, x)

It can be noted that the operators of the previous subsection can be viewed
as a special case of the operators considered here. Indeed, choosing wn = en ,
where {en} is a orthonormal complete system in the Hilbert space, one obtains
just T en = vn .
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(1.62)
Consider in L2(−a, a) (a > 0, 
= ∞) the operator

T f (x) = h(x)
∫ a

−a
f (x) dx

where h(x) ∈ L2(−a, a) is a given function.

(1) Find the domain, the kernel, and the range of T , with their dimensions.

(2) Find the eigenvectors and eigenvalues of T with their degeneracy.

(3) Find ‖T ‖.
(4) Find the adjoint operator T+, its eigenvectors , and eigenvalues with their degen-
eracy.

(5) Study the operator T 2.

(1.63)
The same as the above problem but with a = ∞, i.e.,

T f (x) = h(x)
∫ +∞

−∞
f (x) dx

(1) Find eigenvectors and eigenvalues of T with their degeneracy
(
distinguish the

cases h(x) ∈ L1(R) ∩ L2(R) and h(x) /∈ L2(R) or h(x) /∈ L1(R)
)
.

(2) Specify the domain and the kernel of T (see also Problem 1.4).

(3) Show that T is not closed (see also Problem 1.4).

(4) Show that if the kernel of an operator is dense in the Hilbert space, then the
operator is not closed (cf., for a different example, Problem 1.55).

(1.64)

(1) Let I be an interval I ⊆ R and consider the operator

T f (x) = h(x)
∫
I
g(x) f (x) dx = h(g∗, f )

where h and g are given functions in L2(I ). The same questions (1)–(5) as in Prob-
lem 1.62.

(2) The operator in (1) can be generalized in abstract setting in the form

T x = v(w, x)

where v,w are given vectors in a Hilbert space.
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(a) The same questions (1)–(5) as in Problem 1.62.

(b) Is it possible to choose v,w in such a way that T is a projection?

(c) Show that it is possible to choose v,w in such a way that T 2 = 0 (but T 
= 0).

(1.65)
(1) For each fixed integer N , consider the operators in L2(0, 2π)

TN f (x) = 1

2π

N∑
n=−N

exp(inx)
∫ 2π

0
exp(−iny) f (y) dy

Recognize that these operators admit elementary properties…; study the convergence
as N → ∞ of the sequence of the operators TN ; see the following (2)(a).

(2) Consider now the operator

C f (x) = 1

2π

∑
n∈Z

cn

∫ 2π

0
exp

(
in(x − y)

)
f (y) dy

(a) let cn = 1: then C becomes a trivial operator . . .;

(b) and if cn = in?

(c) let instead cn = 1/2|n|: show that the functions g(x) = C f (x) in RanC have
special continuity properties.

(1.66)
Consider the following (apparently similar) operators defined in L2(0, 2π):

A(±)
n f (x) = 1

2π

∫ 2π

0
exp

(
in(x ± y)

)
f (y) dy , n ∈ Z

B(±)
n f (x) = 1

π

∫ 2π

0
sin

(
n(x ± y)

)
f (y) dy , n = 1, 2, . . .

C (±)
n f (x) = 1

π

∫ 2π

0
cos

(
n(x ± y)

)
f (y) dy , n = 1, 2, . . .

(1) What of these operators are projections? on what subspace?

(2) Find eigenvectors and eigenvalues with their degeneracy of all the above opera-
tors.

(3) Study the convergence of the sequences of these operators as n → ∞.

(1.67)
In the space L2(−π, π), consider the operators
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TN f (x) = 1

π
sin x

∫ π

−π

sin y f (y) dy + 1

π
sin(2x)

∫ π

−π

sin(2y) f (y) dy + . . .

+ 1

π
sin(Nx)

∫ π

−π

sin(Ny) f (y) dy

where N ≥ 1 is an integer.

(1) Show that TN is a projection, find its eigenvectors and eigenvalues with their
degeneracy.

(2) Study the convergence as N → ∞ of the sequence of the operators TN and show
that also the limit operator T∞ is a projection.

(3) Are the operators TN compact operators? and the operator T∞?

(4) A “variation” (and an abstract version) of this problem: in a Hilbert space H with
orthonormal complete system {en, n ∈ Z}, consider the operators

TN x =
N∑

n=−N

en(en, x) , x ∈ H

The same questions (1), (2), (3). What is in this case the operator T∞? Compare this
problem with Problem 1.43.

(1.68)
This problem looks at first sight quite similar to the previous one. This is not the case
(what is the main difference?): let H = L2(−1, 1) and let TN be defined by (with
N ≥ 1)

TN f (x) =
∫ 1

−1
f (y) dy + x

∫ 1

−1
y f (y) dy + · · · + xN

∫ 1

−1
yN f (y) dy

(1) Find RanTN and KerTN with their dimensions.

(2) Fix N = 2: are the functions f0(x) = 1, f1(x) = x, f2(x) = x2, f3(x) = x3

eigenfunctions of T2?

(3) Is T2 (and in general TN ) a projection?

(4) Find the eigenvectors and eigenvalues of T2.

(1.69)
For each integer N , let χN (x) be the characteristic function of the interval (−N , N )

i.e., χN (x) =
{
1 for |x | < N

0 for |x | > N
and let TN be the operators in L2(R)

TN f (x) = χN (x)
∫ N

−N
f (x) dx , N = 1, 2, . . .
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(1) Find T 2
N . Show that TN is a projection apart from a factor cN .

(2) Show that TMTN 
= TNTM (if N 
= M , of course).

(3) Find eigenvectors and eigenvalues (with their degeneracy) of T1TN and of TNT1.

(4) Are there even functions f (x) ∈ L2(R) such that TN ( f ) = 0 for all N?

(1.70)
In the space L2(0,∞), let χn(x) be the characteristic function of the interval (n −
1, n), n = 1, 2, . . .

(1) Show that, for any f (x) ∈ L2(0,∞), the sequence cn = (χn, f ) ∈ �2.

(2) Consider the operators, for each integer N ,

TN f (x) =
N∑

n=1

χn(x)
∫ +∞

0
χn(y) f (y) dy

Fixed N ≥ 1, find eigenvectors and eigenvalues of TN , with their degeneracy.

(3) Consider the operator

T∞ f (x) =
∞∑
n=1

χn(x)
∫ +∞

0
χn(y) f (y) dy

(a) is T∞ defined in the whole space?

(b) find its norm;

(c) is it compact?

(4) Study the convergence as N → ∞ of the sequence of operators TN to T∞.

(5) Consider now

SN f =
N∑

n=1

1

n
χn(x)

∫ +∞

0
χn(y) f (y) dy

(a) study the convergence as N → ∞ of the sequence of operators SN to S∞;

(b) is S∞ compact?

(1.71)
Let T be the operator in L2(−π, π)

T f (x) =
∞∑
n=1

an
n

sin nx where an = 1

π

∫ π

−π

f (x) sin nx dx

(1) Find T ( f ) if f (x) = exp(2i x).

(2) Find eigenvectors and eigenvalues of T with their degeneracy. Is T compact?
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(3) Is it possible to write T in the form T = ∑
n λn Pn , i.e., as a “discrete” spectral

decomposition?

(4) Study Ran T ; clearly, it is contained in the Hilbert subspace of odd functions:
does it coincide with this subspace or—at least—is dense in it? Is it true that if g(x) ∈
Ran T then g(x) is a continuous function? Is the converse true?

(1.72)
In the space L2(−π, π), consider the operator

T f (x) =
∞∑
n=1

1

nπ
cos nx(sin nx, f )

(1) Find ‖T ‖ and specify if there is some f0(x) such that ‖T f0‖ = ‖T ‖‖ f0‖.
(2) Find eigenvalues and eigenvectors with their degeneracy.

(3) For each f (x) ∈ L2(−π, π), is the function g(x) = T f (x) a continuous func-
tion? Is its derivative a continuous function? a function in L2? Is the operator d

dx T a
bounded operator?

(4) Does the equation
(
the unknown is f (x)

)
T f (x) = α + βx3 + |x |

admit solution
(
it is not requested to obtain f (x)

)
for some values of the constants

α, β?

(1.73)
In the space L2(0, π) consider, for each fixed n = 1, 2, . . ., the operator

Tn f (x) = cos nx
∫ π

0

(
cos ny − 1√

2

)
f (y) dy

(1) Find ‖Tn‖. Hint: introducing the orthonormal complete system e0 = 1/
√

π, en =√
2/π cos nx , write the operator in a more convenient form …

(2) Find Ker Tn and Ran Tn: are they orthogonal?

(3) Find eigenvectors and eigenvalues of Tn . Is it true in this example that ‖Tn‖ =
sup | eigenvalues | ?
(4) Are there functions f (x) ∈ L2(0, π) such that Tn( f ) = 0 for all n?

(5) Study the convergence as n → ∞ of the sequence of operators Tn .
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1.2.3 Operators of the Form T f (x) = ϕ(x) f (x)

(1.74)

(1) In the space H = L2(0, a) (a 
= ∞) consider the operator

T f (x) = x f (x)

(a) Find ‖T ‖. Show that there is no function f0(x) ∈ H such that ‖T f0‖ = ‖T ‖‖ f0‖.
(b) Construct a family of functions fε(x) ∈ H such that sup

ε→0
‖T fε‖/‖ fε‖ = ‖T ‖.

(2) Does T admit eigenvectors? Is its kernel trivial?

(3) Find the spectrum of T (Recall: the spectrum of an operator T is the set of
the numbers σ ∈ C such that T − σ I does not admit bounded inverse, or—more
explicitly—such that T − σ I is either not invertible or admits unbounded inverse).

(1.75)
Consider the same operator as before in the space H = L2(R):

(1) Is its domain the whole space H , or—at least—dense in it?

(2) Show that this operator is unbounded: construct a sequence of functions fn(x) ∈
H such that sup

n
‖T fn‖/‖ fn‖ = ∞.

(3) Is its range the whole space H , or—at least—dense in it?

(4) The same questions for the operators T f (x) = xa f (x) with a > 0.

(1.76)
Consider the operator in L2(R) with ϕ = 1/x (which is the inverse of the operator
of the previous problem), i.e.,

T f (x) = 1

x
f (x) , x ∈ R

(1) Show that this operator is unbounded: construct a sequence of functions
fn(x) ∈ H such that sup

n
‖T fn‖/‖ fn‖ = ∞.

(2) Study the domain and the range of this operator (cf. the previous problem).

(1.77)
Find kernel, domain and range, specifying if domain and range coincide with H =
L2(R), or at least are dense in it (cf. also Problems 1.75 and 1.6) of the operators
T f = ϕ f in each one of the following cases:

(a) ϕ = 1

1 + x2
; (b) ϕ = x + i

x − i
; (c) ϕ = x + |x | ;

(d) ϕ = sin x ; (e) ϕ = sin x4 ; ( f ) ϕ = exp(−x2) ; (g) ϕ = exp(−1/x2)
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(1.78)
In the space H = L2(R), consider the operator in the general form

T f (x) = ϕ(x) f (x)

where ϕ(x) is a given (real or complex) function. Under what conditions on ϕ(x):

(a) is the operator T bounded? Then find its norm;

(b) is a projection?

(c) does admit bounded inverse? Then find ‖T−1‖;
(d) is unitary?

(1.79)
Consider the operator in H = L2(R) with ϕ = x2/(1 + x2), i.e.,

T f (x) = x2

1 + x2
f (x)

(1) Find ‖T ‖. Is there some function f0(x) ∈ H such that ‖T f0‖ = ‖T ‖‖ f0‖?
(2) Does T admit eigenvectors? Is it compact?

(3) Is Ran T coinciding with H or at least dense in it ? And its domain?

(4) Study the convergence as N → ∞ of the sequence of operators T N , i.e., of the
operators T N f = ϕN f .

(1.80)
The same questions as before for the operator T f = ϕ f in L2(R) with

ϕ(x) =

⎧⎪⎨
⎪⎩
0 for x < 0

1 for 0 < x < 1

1/x for x > 1

In particular, is the image Ran T of T a Hilbert subspace of L2(R)? is Ran T
orthogonal to Ker T ? is it correct to say that L2(R) = Ker T ⊕ Ran T ?

(1.81)
(1) Consider in the space H = L2(0, π) the operator with ϕ = exp(i x), i.e.,

T f (x) = exp(i x) f (x)

(a) For what values of ρ ∈ C does the operator T − ρ I admit bounded inverse?

(b) Find the norm of (T + 2i I )−1

(c) Study the convergence of the sequence of operators T N as N → ∞.

(2) The same questions if H = L2(0, 2π).

(3) The same questions if H = L2(R).
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(1.82)
In the space L2(0, 2π), consider the operator

T f (x) =
(
1 − α exp (i x)

)
f (x) , α ∈ C

(1) Find the adjoint T+ and specify if T is normal.

(2) Find ‖T ‖. For what values of α ∈ C does T admit bounded inverse?

(3) For what values of α ∈ C is the series of functions

∞∑
n=0

αn exp (inx)

convergent in L2(0, 2π)? What is its limit? Is the convergence uniform?

(4) Consider now the operator S = I−T , i.e., the operator S f (x) = α exp(i x) f (x):
show that for |α| < 1 the sequence

AN = T
N∑

n=0

Sn = (I − S)

N∑
n=0

Sn

is norm-convergent to the identity
(
then one can write

∞∑
n=0

Sn = (I − S)−1

and T (I − S)−1 = I , in agreement with the definition T = I − S
)
.

1.2.4 Problems Involving Differential Operators

(1.83)
Consider in L2(0, 1) the operator

T = i
d

dx
with the boundary condition f (1) = α f (0) (α ∈ C, α 
= 0)

(1) For what values of α is T Hermitian (in a suitable domain)?

(2) Find eigenvectors and eigenvalues of T (for generic α). Are the eigenvectors
orthogonal? Are the eigenvectors a complete set in L2(0, 1)?

(3) Is the domain of T dense in L2(0, 1)?
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(4)Check the correctness of the answer given to (1) by comparisonwith the properties
obtained in (2) (the eigenvectors are orthogonal and the eigenvalues real if . . .).

Compare with Problems 1.32, 1.33 and in particular 1.34 for a discussion about
existence and uniqueness of the solutions of Problems 1.84–1.90. Clearly, the
independent variable x can be replaced by the time variable t (as done in
Problems 1.32–1.34), but to avoid too frequent changes in the notations, we
continue to use here x as independent variable.

(1.84)
Consider in H = L2(−π, π) the operator

T = d

dx
+ α I with periodic boundary conditions : u(−π) = u(π)

with α ∈ C, α 
= 0.

(1) Find eigenvalues and eigenvectors of T .

(2) Consider the equation T f = g, i.e.,

f ′ + α f = g

where g(x) ∈ H is given and f (x) ∈ H the unknown. Expand f (x) and g(x) in
Fourier series with respect to the eigenvectors found in (1). Under what condition on
the constant α does this equation admit solution? In this case, is the solution unique?

(3) Let α = 2i : under what condition on the Fourier coefficients gn of g(x) does the
equation admit solution? In this case, show that the solution is not unique and write
as a Fourier series the most general solution.

(4) Show that T is invertible and find ‖T−1‖ in each one of the cases

α = 1, α = 2 + i, α = 1 + 2i, α = 3i/2

(1.85)
Consider in the space H = L2(0, π) the operator

T = d2

dx2
with vanishing boundary conditions : f (0) = f (π) = 0

(1) Show that this operator is Hermitian, i.e., (g, T f ) = (Tg, f ) in the dense domain
of doubly differentiable functions in L2, satisfying the above boundary conditions.

(2) Find the adjoint operator T+ and verify that its domain is larger than the one of
T (the boundary conditions are different).

(3) Solve the equation
(
where g(x) ∈ H is given and f (x) ∈ H the unknown

)
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d2

dx2
f = g

expanding both g(x) and f (x) in Fourier series with respect to the complete set
{sin nx, n = 1, 2, . . .}, and verify that the equation admits a unique solution.

(4) Compare with the next problem.

(1.86)
Consider in the space H = L2(−π, π) the operator

T = d2

dx2
with periodic boundary conditions, i.e.,

f (−π) = f (π), f ′(−π) = f ′(π)

(1) The same question (1) as in the above problem, now with periodic boundary
conditions.

(2) What about T+ and its domain?

(3) Solve the equation
(
g(x) ∈ H is given, f (x) ∈ H the unknown

)
d2

dx2
f = g

now expanding both g(x) and f (x) in Fourier series with respect to the complete
set {en = exp(inx), n ∈ Z}, which is a complete set consistent with the periodic
boundary conditions.What about the existence and uniqueness of the solution?What
condition must be imposed to the function g(x) in order that some solution exists?

(1.87)
In the space H = L2(0, π) consider the operator T = −d2/dx2+ I and the equation
T f = g, i.e.,

(
g(x) ∈ H is given and f (x) ∈ H the unknown

)
− f ′′ + f = g

with vanishing boundary conditions f (0) = f (π) = 0. Expand g(x) and f (x) in
Fourier series with respect to the orthogonal complete set {sin nx, n = 1, 2, . . .}.
(1) Show that the equation admits a unique solution for any g(x) ∈ H .

(2) Find ‖S‖, where S is the operator defined by (S is the inverse of the above
operator T )

S g = f

(3) Let g(x) ∈ H and let gN be a sequence of functions “approximating” g(x)
in the norm L2 (i.e., ‖g − gN‖L2 → 0 as N → ∞). Let f (x) and fN (x) be the
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corresponding solutions of the differential equation given before, i.e., f (x) = Sg(x),
fN (x) = SgN (x). Is it true that also fN (x) approximate f (x) in the L2 norm?

(4) If, in particular, gN are obtained “truncating” the Fourier expansion of g (i.e., gN
is the N th partial sum of the Fourier series), show that fN converges “rapidly” to the
solution f , meaning that there are constants CN → 0 as N → ∞ such that

‖ f − fN‖ ≤ CN‖g − gN‖

(1.88)
In the space L2(−π, π) consider the operator

T f = d2 f

dx2
+ f with periodic boundary conditions

as in Problem 1.86

(1) Find eigenvalues and eigenvectors of T with their degeneracy.

(2) Determine KerT .

(3) Consider the equation
(
f (x) is the unknown and g(x) ∈ L2(−π, π) is given

)
T f = g

Use expansions in Fourier series in terms of the eigenvectors found in (1). What
conditionmust be imposed to the function g(x) in order that some solution exists? For
instance, does this equation admit solution if g(x) = cos4 x? and if g(x) = cos3 x?
When the solution exists, is it unique? Write in the form of a Fourier series the most
general solution.

(4) Considering more in general the operator

Tα f = d2 f

dx2
+ α f

for what α ∈ C does Tα admit bounded inverse?

(5) Find ‖T−1
α ‖ if α = 1 + ia, a ∈ R.
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(1.89)
In the space H = L2(0, 2π), consider the operator

T = d2

dx2
with the boundary conditions f ′(0) = f ′(2π) = 0

(1) Is T Hermitian (in a suitable domain)? Find eigenfunctions and eigenvalues of T .
Show that the eigenfunctions provide an orthogonal complete system in H . Specify
Ker T and Ran T .

(2) Using the Fourier expansion in terms of the eigenfunctions of T , specify for what
g(x) ∈ H the equation

T f = g

admits solution f (x) ∈ H . Is the solution unique? Given a g(x) such that this
equation admits solution, write in the form of a Fourier series the most general
solution f (x).

(3) Is the solution obtained in (2) a continuous function? Is it possible to find a
constant K such that, for any x ∈ (0, 2π),

∣∣∣d f
dx

∣∣∣ ≤ K‖g‖L2 ?

(1.90)

In the space H = L2(0, π), consider the equation, where f (x) is the unknown
function and ϕ(x) is given,

d2 f

dx2
= ϕ(x) with vanishing boundary conditions

(1) Write, using Fourier expansion in terms of the set {sin nx , n = 1, 2, . . .}, the
(unique) solution f (x). Find a constant C such that ‖ f ‖ ≤ C‖ϕ‖.
(2) Show that

sup
0≤x≤π

| f (x)| ≤
∣∣∣(G, Φ)

∣∣∣
where G = G(x) ∈ H does not depend on ϕ, and Φ = ∑

n≥1 |ϕn| sin nx where ϕn

are defined by the Fourier expansion ϕ = ∑
n ϕn sin nx .

(3) Let ϕα(x) be a family of functions ∈ H and let fα(x) be the corresponding
solutions; assume that ϕα(x) → ψ(x) in the norm L2, i.e., ‖ϕα − ψ‖L2 → 0 as
α → 0, and let h(x) be the solution corresponding to ψ(x), i.e., d2h/dx2 = ψ(x).
It is true that fα(x) → h(x), and in what sense?

(1.91)
Consider the operator in L2(0, π)
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T = − d2

dx2
+ c

d

dx
(c ∈ R) with the boundary conditions u(0) = u(π) = 0

(1) Find the eigenvalues and eigenvectors of T . Are the eigenvectors a complete set
in L2(0, π)?

(2) Does T admit a bounded inverse? If yes, calculate ‖T−1‖.
(3) Show that the eigenvectors are orthogonal with respect to the weight function
ρ = exp(−cx), i.e., with respect to the scalar product defined by

(u, v)ρ =
∫ π

0
ρ(x)u∗(x)v(x)dx .

(4) Verify that the problem is actually a classical Sturm–Liouville Problem

− 1

ρ

[ d

dx

(
p(x)

d

dx

)
+ q(x)

]
= λ u

with p = q = . . .: this confirms the orthogonality property seen before.

(1.92)
In the Hilbert space L2(1,

√
3), consider the operator

T = x
d

dx
with the boundary condition u(1) = u(

√
3)

(1) Find the eigenvalues λn and eigenvectors un(x) of T .

(2) Show that the eigenvectors un(x) of T are not orthogonal, but that they turn out
to be orthogonal with respect to the modified scalar product obtained introducing the
weight function ρ(x) = x :

( f, g)ρ =
∫ √

3

1
x f ∗(x)g(x) dx

Are the eigenvectors a complete set in H?

(3) Considering the expansion

f (x) =
∑
n

cnun(x)

give the formula for obtaining the coefficients cn
(
use the results seen in (2)

)
.

(4) Calculate
∑

n |cn|2 if in the above expansion f (x) = x .

(5) Does the expansion given in (3) provide a periodic function out of the interval
(1,

√
3)? If this expansion at the point, e.g., x = 3/2, converges to some value, at

what points, out of the interval, does it take the same value?
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(1.93)
(1) (a) In the space L2(0,+∞) find, using integration by parts, the adjoint of the
operator

A = x
d

dx

(in a suitable dense domain of smooth functions chosen in such a way that the “finite

part”
[
. . .

]
of the integral is zero).

(b) Show that the operator

Ã = x
d

dx
+ 1

2
I

is anti-Hermitian (i.e., Ã+ = − Ã).

(2) Consider now the operator

Tα f (x) = f
(
(expα)x

)
, α ∈ R

(a) Find ‖Tα‖.
(b) Show that one can find a real coefficient c(α) in such a way that the operator
T̃α = c(α)Tα is unitary.

(3) Find the operators B and B̃ defined by

d

dα
Tα f

∣∣∣
α=0

= B f and
d

dα
T̃α f

∣∣∣
α=0

= B̃ f

compare with the operators A and Ã defined in (1) and interpret the results in terms
of Lie groups and algebras of transformations (see also Problem 4.19).

(1.94)
Consider in the space L2(Q), where Q = {0 ≤ x ≤ π, 0 ≤ y ≤ π} is the square of
side π , the Laplace operator

T = ∂2

∂x2
+ ∂2

∂y2

with vanishing boundary conditions on the four sides of the square.

(1) Find eigenvalues and eigenvectors of T with their degeneracy.

(2) Show that the operator is invertible and find ‖T−1‖.
(3) Does the equation

(
where g(x, y) is given and f (x, y) the unknown

)
T f = g

admit solution for any g(x, y) ∈ L2(Q)? Is the solution unique? (Use the Fourier
expansion in terms of the eigenvectors of T ).
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(4) If g(x, y) = g(y, x), is the same property shared by the solution f (x, y)?

(5) Let S be the operator S f (x, y) = f (y, x). Find the common eigenvectors of T
and S. Do they provide an orthogonal complete system in the space L2(Q)?

(1.95)
Let Q be the square {0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π} and let T be the operator defined
in L2(Q)

T =
( ∂

∂x
− α

)( ∂

∂y
− β

)
, α, β ∈ C

with periodic boundary conditions:

u(x, 0) = u(x, 2π) ; u(0, y) = u(2π, y)

(1) For what values of α, β is T Hermitian (in a suitable dense domain)?

(2) Using separation of the variables, find eigenvectors and eigenvalues of T (with
arbitrary α, β); do the eigenvectors provide an orthogonal complete system for
L2(Q)?

(3) For what values of α, β does KerT 
= {0}?
(4) Fix now α = β = 0. Using the results obtained in (2), specify for what g(x, y) ∈
L2(Q) the equation

T f − f = g

admits solution f (x, y) ∈ L2(Q). Is the solution unique? Find the most general
solution (if existing) with g(x, y) = sin 2(x + y).

(1.96)
Let Q be the square {0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π} and let T be the operator defined
in L2(Q)

T = ∂

∂x
+ α

∂

∂y
, α ∈ R, α 
= 0

with periodic boundary conditions (as in the previous problem).

(1) Using separation of the variables, find eigenvectors and eigenvalues of T ; do the
eigenvectors provide an orthogonal complete system for L2(Q)?

(2) (a) Let α = 1: find KerT , its dimension and find an orthogonal complete system
for it.

(b) The same question if α = √
2.

(3) Using the results obtained in (2)(a), write, as a Fourier expansion, the solution
of the equation

∂u

∂x
+ ∂u

∂y
= 0
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satisfying the condition

u(x, 0) =
{
1 for 0 < x < π

0 for π < x < 2π

Find in particular u(x, π).

(4) Observing that the most general solution of the equation ux +uy = 0 is u(x, y) =
F(x − y) where F is arbitrary, it is easy to write the solution of the above equation
satisfying the generic condition

u(x, 0) = ϕ(x) ∈ L2(0, 2π).

1.2.5 Functionals

(1.97)
Study each one of the following functionals Φ: specify if the functional is bounded
or not. In the case of bounded functionals, find their norm, the representative vector
according to Riesz theorem, and the kernel. In the case of unbounded functionals,
study their domain and kernel, which provide examples of dense subspaces in the
Hilbert space. Therefore, these functionals are examples of not closed operators, see
Problem 1.63, q. (4).

(1) In a Hilbert space with orthonormal complete system {en , n = 1, 2, . . .}, and
with x =

∞∑
n=1

anen consider

(a)

Φ(x) =
N∑

n=1

an (N ≥ 1) and Φ(x) =
∞∑
n=1

an

Recall Problems 1.16 and 1.55 to verify explicitly that the second functional is not
a closed operator.

(b) For what sequences of complex numbers cn , is the functional

Φ(x) =
∞∑
n=1

cnan

a bounded functional?
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(2) In L2(a, b) with −∞ < a < b < ∞ consider

Φ( f ) =
∫ b

a
f (x) dx and Φ( f ) =

∫ b

a
exp(x) f (x) dx

(3) In L2(R) consider

(a)

Φ( f ) =
∫ +∞

−∞
exp(−|x |) f (x) dx

(b)

Φ( f ) =
∫ +∞

−∞
f (x) dx and Φ( f ) =

∫ +∞

−∞
sin x f (x) dx

(recall Problems 1.4 and 3.8 for what concerns the kernels)

(4) In L2(−1, 1) consider, for different values of α, β, γ ∈ R,

Φ( f ) =
∫ 1

−1
|x |α f (x) dx ;

∫ +∞

0
xβ f (x) dx ;

∫ +∞

−∞
|x |γ f (x) dx

For what values of α, β, γ are these functionals bounded? (cf. Problem 1.75).

(5) In L2(I ), where I is any interval, consider

Φ( f ) = f (x0)

which is defined in the subspaces of the functions continuous in a neighborhood of
x0 ∈ I , see also Problem 1.6.

(1.98)
In a Hilbert space with orthonormal complete system {en} , n = 1, 2, . . ., consider

Φn(x) = an = (en, x)

Study the convergence as n → ∞ of the sequence of functionals Φn .

(1.99)
Let Φa( f ) be the functional defined in L2(0, 1)

Φa( f ) = 1√
a

∫ a

0
f (x) dx , 0 < a < 1

(1) Find ‖Φa‖.
(2) Show that Φa → 0 strongly (but not in norm) as a → 0. Hint: restrict first to the
dense subspace of continuous functions, then ….
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(1.100)
Let Φa( f ) be the functional defined in L2(0,+∞)

Φa( f ) = 1√
a

∫ a

0
f (x) dx , a > 0

(1) Find ‖Φa‖.
(2) Show that Φa → 0 strongly (but not in norm) as a → +∞. Hint: restrict first to
the dense subspace of functions with compact support, then ….

1.2.6 Time-Evolution Problems: Heat Equation

(1.101)
Consider the heat equation, also called diffusion equation, in L2(0, π)

∂u

∂t
= ∂2u

∂x2
, u = u(x, t)

with vanishing boundary conditions

u(0, t) = u(π, t) = 0

and the (generic) initial datum

u(x, 0) = f (x) ∈ L2(0, π)

(1) Find the time-evolution u = u(x, t) for t > 0. Hint: write f (x) and u(x, t)
as Fourier expansions in terms of the orthogonal complete system {sin nx, n =
1, 2, . . .}.
(2) Show that the solution u(x, t) tends to zero

(
in the L2(0, π) norm

)
as t → +∞.

How “rapidly” does it tend to zero?

(3) Show that for any t > 0 the solution u(x, t) is infinitely differentiablewith respect
to x and to t .

(1.102)

Considering the time-evolution problem proposed above, let Et be the “time-
evolution operator” defined by

Et : u(x, 0) → u(x, t) , t > 0

(1) Find eigenvalues and eigenvectors of Et .

(2) Calculate ‖Et‖ and verify that ‖Et‖ → 0 as t → +∞.



44 1 Hilbert Spaces

(3) Show that Et → I in the strong sense, not in norm, as t → 0+.

(1.103)
Consider the heat equation in L2(−π, π), now with periodic boundary conditions

u(−π, t) = u(π, t), ux (−π, t) = ux (−π, t)

and initial condition
u(x, 0) = f (x) ∈ L2(−π, π)

(1) Find the time-evolution u(x, t): use now Fourier expansions with respect to the
orthogonal complete system {exp(inx), n ∈ Z}.
(2) What happens as t → +∞?

(3) If
∫ π

−π
u(x, 0)dx = 0, is this property preserved for all t > 0, i.e.,

∫ π

−π
u(x, t)dx

= 0, ∀t > 0?

(4) Study the convergence as t → +∞ and as t → 0+ of the operator Et defined in
the previous problem.

(1.104)
Consider the case of a nonhomogeneous equation in L2(−π, π) of the form

∂u

∂t
= ∂2u

∂x2
+ F(x)

with periodic boundary conditions as in previous problem, and initial datum

u(x, 0) = f (x)

where F(x) and f (x) ∈ L2(−π, π). Find (in the form of a Fourier expansion) the
time-evolution u(x, t). Hint: write F(x) and f (x) in the form of a Fourier expan-
sion: F = ∑

n Fn exp(nix), f = ∑
n fn exp(nix) and look for the solution writing

u(x, t) = ∑
n an(t) exp(nix), then deduce a differential equation for an(t).

(1.105)
(1) Consider an orthonormal complete system {en, n = 1, 2, . . .} in a Hilbert space
H and let T be the linear operator defined by

T en = −n2en

Find the time evolution of the problem for v = v(t) ∈ H

d

dt
v = T v

with the generic initial condition v(0) = v0 ∈ H .
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(2) The same problem with n ∈ Z.

(3) Study the properties of the time-evolution operator Et defined by Et : v0 → v(t).
(This is just the “abstract” version of Problems 1.101 and 1.103).

(1.106)
Consider the time-evolution problem, in a Hilbert space H where {en, n ∈ Z} is an
orthonormal complete system

d

dt
v = T v , v = v(t) ∈ H

with the linear operator T defined by

T e0 = e0 ; T en = e−n

(1) Find the time evolution if the initial condition is given by v(0) = e0.

(2) The same if v(0) = e1.

(3) Extend to the case where v(0) is a generic vector v ∈ H .

(1.107)
The same problem as before with

T en = n e−n

(1) Find the time evolution if the initial condition is given by v(0) = e0.

(2) The same if v(0) = en (with fixed n 
= 0).

(3) Extend to the case where v(0) is a generic vector v ∈ H .

(1.108)
In the space L2(0, 2π), consider the operator

T = d

dx
with the boundary condition f (2π) = − f (0)

(1) Find the eigenvectors un(x) and the eigenvalues of T . Are the eigenvectors
orthogonal? Show that the eigenvectors are a complete set in L2(0, 2π).

(2) Using the series expansion
∑

n an(t)un(x), write in the form of series the solution
of the equation

d

dt
f = T f with the generic initial condition f (x, 0) = f0(x) ∈ L2(0, 2π)

(3) Show that this solution is periodic in time: what is the period?

(4) Let Et be the “time-evolution” operator

Et : f (x, 0) → f (x, t)
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verify that the eigenvectors of T are also eigenvectors of Et . Is Et unitary?

(5) Study the convergence of the operators Et to the identity operator I as t → 0.

(1.109)
(1) Let A be the 2 × 2 matrix

A =
(
1 0
1 1

)

Evaluate exp(At) and solve the time-evolution problem

u̇ = Au , u = u(t) ∈ R2

with the generic initial condition u(0) = a ∈ R2.

(2) Generalize: consider a Hilbert space H with orthonormal complete system
{en, n = 1, 2, . . .} and the linear operator B defined by

B en =
{
en + en+1 for n = 1, 3, 5, . . .

en for n = 2, 4, . . .

(a) evaluate exp(Bt). Hint: it can be useful to write B = I + B̃, then B̃2 = . . .;

(b) find explicitly the solution of the time-evolution problem, where u = u(t) ∈ H ,

u̇ = Bu

if u(0) = u0 = e1; if u0 = e1;

(c) write the solution with a generic initial condition u(0) = u0 ∈ H .

(1.110)
Consider the heat equation in L2(0, π) with “wrong” sign:

∂2u

∂x2
= −∂u

∂t

(or, equivalently, the heat equation after time inversion) with vanishing boundary
conditions u(0, t) = u(π, t) = 0. Let f (x) ∈ L2(0, π) denote the initial condition:
f (x) = u(x, 0).

(1) For what initial condition f (x) does the L2-norm of the solution u(x, t) remain
bounded for all t > 0? (i.e., does a constant C exist such that ‖u(x, t)‖ < C, ∀t >

0?)

(2) Show that there is a dense set of initial conditions f (x) such that for each finite
t > 0 the solution exists

(
i.e., u(x, t) ∈ L2(0, π) for each fixed t > 0

)
.

(3) Give an example of a continuous f (x) such that the solution does not exist
(
i.e.,

/∈ L2(0, π)
)
for any t > 0.
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(4) Let fN (x) be a sequence of functions converging to zero in the L2-norm, i.e.,
‖ fN (x)‖L2(0,π) → 0 as N → ∞. Does this imply that the same is true for the
corresponding solutions uN (x, t) for each fixed t > 0?

(1.111)
Consider the d’Alembert equation, also called wave equation,

∂2u

∂x2
= ∂2u

∂t2
, u = u(x, t), 0 ≤ x ≤ π, t ∈ R

describing, e.g., the displacements of a vibrating string. Assume vanishing boundary
conditions

u(0, t) = u(π, t) = 0

and initial data of the form

u(x, 0) = f (x) ∈ L2(0, π) and ut (x, 0) = 0

(1) Show that the solution can be written in the form

u(x, t) =
∞∑
n=1

an sin nx cos nt

where an = . . ..

(2) Let now

u(x, 0) = f (x) =
{
sin 2x for 0 ≤ x ≤ π/2

0 for π/2 ≤ x ≤ π

Expanding f (x) in Fourier series in terms of the orthogonal complete system
{sin nx, n = 1, 2, . . .}, show that the Fourier expansion of the solution has the
form

u(x, t) = (1/2) sin 2x cos 2t + u1(x, t)

where u1(x, t) = . . .. Comparing with the graph of u(x, 0), it is easy to deduce the
graph of u1(x, 0). Show that u1(x, π) = −u1(x, 0) and deduce u(x, π). Comparing
then the graphs of u(x, 0) and of u(x, π) confirm a well-known property of waves
propagating in an elastic string with vanishing boundary conditions.
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1.2.7 Miscellaneous Problems

(1.112)
Let V ⊂ H be an invariant subspace under a (bounded) operator T in a Hilbert space,
i.e., T : V → V .

(1) Show that T+ : V⊥ → V⊥, where V⊥ is the orthogonal complementary subspace
to V .

(2) Show that if T admits an eigenvector v, it is not true in general that v is also
eigenvector of T+ (a counterexample where T is a 2 × 2 matrix is enough).

(3) Show that if T is normal, i.e., if T T+ = T+T , then
(a) if T admits an eigenvector v, then v is also eigenvector of T+ (with eigenvalue…).
Hint: start from ‖(T − λI )v‖ = 0;

(b) if T admits two eigenvectors with different eigenvalues, then these eigenvectors
are orthogonal.

(4) Assume that T admits a complete set of orthonormal eigenvectors: show that

(a) T is Hermitian if and only if the eigenvalues are real numbers;

(b) T is unitary if and only if the eigenvalues λ satisfy |λ| = 1.

(1.113)
(1) It is well known that unitary operators in any Hilbert space H map orthonormal
complete systems into orthonormal complete systems. Conversely, show that an
operator T : H → H is unitary if it maps an orthonormal complete system {en} into
an orthonormal complete system {vn}

(
show first that the domain and the range of T

coincide with H , and then that (T x, T y) = (x, y), ∀x, y ∈ H , or—more simply, as
well known—that ‖T x‖ = ‖x‖).
(2) Let x ∈ H : is the series ∑

n

(en, x) vn

convergent in H? to what vector?

(3) Let T be the operator which maps the canonical orthonormal complete system3

{en, n = 1, 2, . . .} in �2 into the orthonormal complete system wn defined in Prob-
lem 1.16. Find T−1en = T+en .

(1.114)
Let H1, H2 be two Hilbert subspaces of a Hilbert space and let P1, P2 be the
corresponding projections.

(1) Under what condition on P1, P2 is T = P1 + P2 a projection? on what subspace?

(2) Under what condition on P1, P2 is T = P1P2 a projection? on what subspace?

3I.e., e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), etc.



1.2 Linear Operators in Hilbert Spaces 49

(1.115)
(1) What condition ensures that a projection is a compact operator?

(2) Is it true that an operator having finite-dimensional range is compact? is bounded?

(3) Show that any bounded operator B maps any weakly convergent sequence of
vectors into a weakly convergent sequence. If B is bounded and C is compact, is it
true that BC and CB are compact operators?

(1.116)
Let T be a bounded operator in a Hilbert space admitting a “discrete” spectral
decomposition

T =
∞∑
n=1

λn Pn

with standard notations. Show that the series
∑∞

n=1 λn Pn (more correctly: the partial
sum TN = ∑N

n=1 λn Pn) is norm-convergent if the eigenvalues satisfy |λn| → 0, and
strongly convergent if λn are bounded: |λn| < M .

(1.117)
(1) Let A be an operator in a Hilbert space H and consider the bilinear form defined
by

< u, v >= (u, Av) , u, v ∈ H

Under what conditions on the operator A does this linear form define a scalar product
in H?

(2) Assume that A, in addition to the conditions established in (1), is a bounded
operator: show that if a sequence of vectors un is a Cauchy sequence with respect to
the norm induced by the usual scalar product ( , ), then it is also a Cauchy sequence
with respect to the norm induced by the scalar product defined by the bilinear form
< , > given in (1). Is the converse true? What changes if A is unbounded?

(1.118)
In the Hilbert space L2(R), consider the operator

Ta f (x) =
{

− f (x) for x < a

f (x) for x > a
, a ∈ R

(1) Find the eigenvalues and eigenvectors of T .

(2) Study the convergence of the family of operators Ta as a → ∞.

(3) Let a, b ∈ Rwith a 
= b. Is it possible to write the operator TaTb as a combination
of projections?

(4) Is it possible to have an orthogonal complete system of simultaneous eigenvectors
of Ta and Tb?
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(1.119)
In the space H = L2(0, 2π) let vn = exp(inx) , n ∈ Z, and let T be the operator

T f (x) = 1

π

∫ π

0
f (x + y) dy

where the functions f (x) are periodically prolonged with period 2π .

(1) Find T (vn), and then the eigenvectors and eigenvalues (with their degeneracy) of
T (do not forget the case n = 0 !)

(2) Show that T ( f ) is a continuous function (see Problem 1.25).

(3) Is T compact?

(4) Find ‖T N‖ where N is any integer.

(5) Study the convergence of the sequence of operators T N as N → ∞.

(1.120)
Let T be the operator in L2(R)

T f (x) = α f (x) + β f (−x) , α, β ∈ C ; α, β 
= 0

(1) Find ‖T ‖
(2) Find eigenvalues and eigenvectors of T . Is there an orthogonal complete system
of eigenvectors of T ?

(3) Under what conditions on α, β is T unitary? Let, e.g., α = 1/
√
2: find β in order

to have T unitary.

(4) Let α = 2/3, β = 1/3: study the convergence as n → ∞ of the sequence of
operators T n .

(1.121)
In the Hilbert space H = L2(0,+∞), consider the two operators

Tn = x

1 + x2
Pn and Sn = sin πx Pn , n = 1, 2, . . .

where Pn is the projection on the Hilbert subspace L2(0, n).

(1) Specify if Tn and Sn are Hermitian. Find ‖Tn‖ and ‖Sn‖.
(2) (a) Fixed n, for what g(x) ∈ H does the equation

(
with f (x) ∈ H the unknown

)
Tn f = g

admit solution? Is the solution (when existing) unique?

(b) Is Ran Tn , the image of Tn , a Hilbert subspace of H? Is it true that H = Ker Tn ⊕
Ran Tn?
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(3) The same question as in (2)(a) for the equation

Tn f = Sn g

(4) Study the convergence as n → ∞ of the two sequences of operators Tn and Sn .

(1.122)
In the space H = L2(0, 2π), with the functions periodically prolonged with period
2π out of this interval, let T be the operator

T f (x) = f (x − π/2)

(1) Find T 4. What information can be deduced about the eigenvalues of T ?

(2) Find eigenvalues and eigenvectors of T with their degeneracy. Is | sin 2x | an
eigenfunction of T ?

(3) Let S = T + T 2. Show that S = I + T−1. Find Ker S and Ran S
(
expand in

terms of the eigenvectors obtained in (2)
)
. Is it true that Ran S is a Hilbert subspace

of H and that H =Ran S⊕ Ker S?

(1.123)
Let T be the operator defined in the space L2(−π, π)

(
the functions must be peri-

odically prolonged with period 2π out of the interval (−π, π)
)

T f (x) = 1

2i

(
f
(
x + π

2

)
− f

(
x − π

2

))

(1) Show that T is a combination of two unitary operators.

(2) Find eigenvectors and eigenvalues (with their degeneracy) of T (use the complete
system {en = exp(inx), n ∈ Z}).
(3) Show that T is a combination of two projections (on what subspaces?)

(4) Find ‖T ‖, ‖T + (1 + 2i)I‖, and ‖
(
T + (1 + 2i)I

)−1‖
(5) Find the eigenvalues and the norm of Tm + Tm+1 for each m ≥ 1.

(1.124)
In the space H = L2(−1, 1), let T be the operator

T f (x) =
∫ 1

−1
K (x, y) f (y) dy where K (x, y) = 1 + xy

(1) Find RanT , specify its dimension, and find an orthonormal complete system for
it.
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(2)Replace now (in this question) K with KAB = A+B xywhere A, B are constants.
With B = 0, find A in such away that the corresponding operator TAB is a projection;
with A = 0, find B in such a way that TAB is a projection. Is it possible to choose
A, B both nonzero in such a way that TAB is a projection?

(3) Find eigenvalues and eigenvectors of T , with their degeneracy.

(4) Find ‖T ‖.
(5) The same questions (1) and (2) with K = 1+ x2y2 and with KAB = A+ Bx2y2.

(1.125)
Consider the operator defined in L2(−π, π)

T f (x) = α f (x) + β

∫ π

−π

f (y) dy , α, β ∈ C; α, β 
= 0

(1) (a) Find eigenvalues and eigenvectors of T , with their degeneracy, and specify if
the eigenvectors provide an orthogonal complete system for L2(−π, π).

(b) Find ‖T ‖.
(2) Let now α = 1: is it possible choose β in such a way that T becomes a projection?

(3) Study the convergence as n → ∞ of the sequence of operators Tn defined by

Tn f (x) = α f (x) + β exp(inx)
∫ π

−π

f (y) dy

(1.126)
Consider in the space L2(−π, π) the operator

T f (x) = 1

2a

∫ x+a

x−a
f (y) dy , 0 < a < π

where the function f must be periodically prolonged with period 2π .

(1) Let D be the operator

D = d

dx
with the periodic boundary condition f (−π) = f (π)

(a) Find the eigenvalues and eigenvectors of D, with their degeneracy.

(b) Show that T D = DT (in a dense domain).

(2) Using the results obtained in (1), find the eigenvalues and eigenvectors of T , with
their degeneracy.

(3) Using the results obtained in (2), specify if T is Hermitian and find its norm.

(4) Is T compact?
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(1.127)
Consider in H = L2(−π, π) the operator (which is the same as in the above problem)

Ta f (x) = 1

2a

∫ a

−a
f (x + y) dy , 0 < a < π

with the function f (x) periodically prolonged with period 2π .

(1) Writing f (x) in the form f (x) = ∑
n cn exp(inx), i.e., as Fourier series with

respect to the complete set {exp(inx) , n ∈ Z}, show that Ta f (x) can be written in
the form

Ta f (x) =
∑
n

cnλn exp(inx)

where λn = . . . are the eigenvalues of Ta .

(2) Let a = π : determine Ran Ta and find Ta f for a generic f (x) ∈ H .

(3) Let a = π/2: for what (integer) values ofm does the function g(x) = 1+ sinmx
belong to Ran Ta?

(4) Let a = 1: is Ran Ta a dense subspace in H? does it coincide with H? is Ta
invertible?

(5) Study the convergence as a → 0 of the family of operators Ta .

(1.128)
Consider the operator Ta defined in L2(0, 2π), with the functions periodically pro-
longed with period 2π out of this interval,

Ta f (x) = f (x + a) − f (x) , 0 < a < 2π

and the operator

D = d

dx
with the periodic boundary condition f (0) = f (2π)

(1) Find eigenvectors and eigenvalues (with their degeneracy) of the operator D.

(2)Observing that DTa = TaD (in a dense domain) find eigenvectors and eigenvalues
of Ta . What is the degeneracy of the eigenvalues if a = π/2? and if a = 1?

(3) Show that Ta is a normal operator for any a. Find ‖Ta‖.
(4) For what choice of a does the operator Ta − i I admit bounded inverse? Find
‖(Ta − i I )−1‖ if a = π/2 and if a = 1.

(1.129)
Consider the operator defined in H = L2(0,+∞)

T f (x) = 1

x
f
(1
x

)
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(1) Find ‖T ‖ and T−1.

(2) Is T unitary?

(3) Observing that T 2 = . . . , it is easy to find the eigenvalues and construct the
eigenvectors of T …. Compare with the next problem.

(1.130)
Let now T be the operator defined in H = L2(0,+∞)

T f (x) = f
( 1
x

)

(1) Is T bounded?

(2) Specify what among the following functions ∈ H belong to the domain of T :

f1(x) =
{
1 for 0 < x < 1

0 for x > 1
; f2(x) =

{
x for 0 < x < 1

0 for x > 1
;

f3(x) = exp(−x) ; f4(x) =
{
x for 0 < x < 1

1/(1 + x) for x > 1

(3) As in the case of the operator considered in the problem above, one has T 2 = I .
But in the present case it is not easy to find its eigenvectors, indeed only when
f (x) belongs to the domain of T , one can apply the usual argument, namely: if
g ≡ (T − I ) f 
= 0 then g is eigenvector, etc. Find explicitly at least some eigenvector
of T .

(1.131)
(1) Let T be the operator defined in L2(0, 1)

T f (x) =
∫ x

0
f (t) dt , 0 < x < 1

(a) Find the matrix elements Tnm = (en, T em) of T with respect to the orthonormal

complete system {en(x) = exp(inx)/
√
2π, n ∈ Z}.

(b) Is T bounded?

(c) Look for the eigenvalues of T (start differentiating both members of the equation
T f = λ f ).

(2) The same questions (b), (c) for the operator defined in L2(−∞, 1)

T f (x) =
∫ x

−∞
f (t) dt , −∞ < x < 1

(3) The same questions (b), (c) for the operator given in (2) but defined in
L2(−∞,+∞).
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(1.132)
Let Tn be the operators defined in L2(0,+∞)

Tn f (x) = √
n f (nx) , n = 1, 2, . . .

(1) Find ‖Tn‖.
(2) Fix here, for instance and for simplicity, n = 2. Show that the functions with
compact support cannot be eigenfunctions of T2. Show that T2 has no eigenfunctions(
start with an empirical argument: assume that f (x) is an eigenfunction and that at
some point x the function f (x) has a value a 
= 0, i.e., f (x) = a, then f (x) is
determined in all points 2x, 4x, . . . , x/2, etc., then …

)
.

(3) Show that the sequence Tn tends weakly to zero (but not strongly). Hint: restrict
first to the dense subspace of bounded functions with compact support, then …. If
f (x) has compact support K , what is the support of f (nx)?



Chapter 2
Functions of a Complex Variable

2.1 Basic Properties of Analytic Functions

(2.1)
(1) Evaluate

(1 + i)100 ; 3
√
1 − i ;

( 1

1 + i
√
3

)21/2

(2) Solve the equations, with z ∈ C,

sin z = 4i ; cos z = 30 ; exp z = ±1/e ; cosh z := exp z + exp(−z)

2
= −1

(2.2)
The following functions of the complex variable z ∈ C

z2 sin(1/z) ; exp(−1/z4) ; z exp(−1/z2) ; z exp(i/z)

have, as well known, an essential singularity at z = 0, therefore their limit as z → 0
does not exist. Verify explicitly that this limit does not exist showing that these
functions assume different values approaching arbitrarily near z = 0 along different
paths, or sequences of points.

(2.3)
(1) Write the most general function f (z) which has a pole of order 2 at z = i with
residue −3i and is analytic in all other points, including the point z = ∞. What
changes without the assumption of analyticity at z = ∞?

(2) A function f (z) is analytic ∀z ∈ C apart from the point z = ∞ and the point
z = 1, where the residue is 1 and where
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lim
z→1

(z − 1)3 f (z) = 2

(i) Consider the second derivative f ′′(z): determine what is its singularity and its
residue at z = 1. Are there any other singularities (apart from z = ∞)? And can
f ′′(z) be analytic at z = ∞?

(ii)What about the singularities of the primitive function F(z) of f (z)
(
i.e. :F ′(z) =

f (z)
)
?

(2.4)
Let f (z) be an analytic function for all complex z (apart from z = ∞).

(1) It is known that its real part u(x, y) = Re f has the form

u(x, y) = a(x) + b(y)

What is the most general f (z) satisfying this condition?

(2) The same question if
u(x, y) = a(x) b(y)

(2.5)
Expand the function

f (z) = 1

1 − z

in Taylor–Laurent power series

(a) in a neighborhood of z0 = 0

(b) in a neighborhood of z0 = 2i

(c) in a neighborhood of z0 = ∞
(d) in a neighborhood of z0 = 1

and specify the region of convergence.

(2.6)
(1) What is the radius R of convergence of the series

∞∑
n=1

npzn

where p is any fixed real number?

(2) Find the sum of the series
∞∑
n=1

nzn

(3) Determine the annulus of convergence of the series
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∞∑
n=0

( z
3

)n +
∞∑
n=0

(2
z

)n

(2.7)
For what z ∈ C is the series ∞∑

n=0

exp(−nz)

convergent? Find its sum S(z) and determine the singularities (including the point
z = ∞) of the function S(z) extended to all the complex plane C.

(2.8)
Determine the singularity at point z = ∞ of the function

f (z) = z sin z

a4z4 + a2z2 + a0
, a0, a2, a4 �= 0

and find its residue at point z = ∞. Hint: f (z) is an even function of z, then it
contains only powers of z2, ….

(2.9)
Verify the validity of the l’Hôpital theorem in its simplest form in the following case:

lim
z→z0

f (z)

g(z)

where f (z) and g(z) are analytic in a neighborhood of z0 and f (z0) = g(z0) = 0.

(2.10)

Determine the singularities of the function

f (z) = z2 + π2

1 + exp z

and specify the radius R of convergence of the Taylor expansion of f (z) around the
origin z0 = 0.

(2.11)
Determine the singularities in the complex plane (included the point z = ∞) of the
functions

f (z) = 1

sin z
; f (z) = 1

sin(1/z)

(2.12)
(1) Find the coefficients a−1, a0, a1 and a2 of the Taylor–Laurent expansion

∑
n anz

n

of the function
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f (z) = 1

sin z

in the neighborhood of the origin z0 = 0. Hint: find first a−1, then the function
f (z) − (a−1/z) is analytic around z0 = 0.

(2) Show that the function

f (z) = 1

1 − cos z
− 2

z2

is analytic in a neighborhood of z0 = 0 and find the coefficients a0 and a1 of its
Taylor expansion.

(2.13)
Determine the singularities in the complex plane z (included the point z = ∞) of
the functions

f (z) = sin2 z

z4(z − π)(z + 2π)2
; f (z) = sin z

z2
− cos z

z

(2.14)
Determine the singularities in the complex plane z (included the point z = ∞) and
the region of convergence of the Taylor–Laurent expansion around z0 = 1 of the
function

f (z) = exp(z2) + exp(−z2) − 2 − z4

zn(z − 1)

depending on the values of the integer number n.

(2.15)
Determine the singularities in the complex plane (including the point z = ∞) of the
following functions

f (z) = sin
√
z ; f (z) = sin2

√
z ; f (z) = cos

√
z ;

f (z) = sin
√
z

z
; f (z) = sin

√
z√

z
; f (z) = cos

√
z√

z
;

sin
√
z

z2
− cos

√
z

z
; f (z) = z sin

1√
z

; f (z) = √
z sin

1√
z

(2.16)
Find the branch points of the functions

f (z) = log z − log(z − 1) ; f (z) = log z + log(z − 1) ;
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f (z) = √
z(z − 1) ; f (z) = 3

√
z(z − 1) ; f (z) = 3

√
z2(z − 1)

(2.17)
(1) For what positive integer n does the function

f1(z) = sin z − z + sin(z3/6)

zn(1 − z2)2

admit Taylor expansion (with positive powers of z) in the neighborhood of z = 0?
What is the behavior of the function at z = ∞?

(2) What changes for the function

f2(z) = sin z − z + sin(z3/6)

zn
√
1 − z2

?

(2.18)
(1) For what values of α ∈ C (if any, α �= 0) is the function

f (z) = exp(αz) − exp(−αz)

1 − z2

analytic for all z ∈ C (apart from z = ∞)? What happens at z = ∞?

(2) The same question for the function

f (z) = exp(αz) − exp(−αz)√
1 − z2

(2.19)
Fix the cut line of the functions log z and

√
z along the positive real axis.

(1) Check if the following identity is true

log(z3) = 3 log z

(2) Determine the singularities (apart from the cut line) of the functions

f (z) = iπ + log z

z + 1
; f (z) = iπ − log z

z + 1

(3) The same question for the functions

f (z) = 1√
z − i

; f (z) = 1√
z + i

(2.20)
Despite the presence of branch points of the following functions, show that it is
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possible to choose conveniently the cut lines in such a way to have functions analytic
at z = 0. Evaluate the first terms of their Taylor expansions:

f (z) =
√
1 ± z2 ; f (z) = log

1 + z

1 − z
; f (z) = log(1 ± z2)

2.2 Evaluation of Integrals by Complex Variable Methods

(2.21)
(1) Show that if a function f (z) is analytic at the point z = ∞ where it has a zero of
order ≥ 2 then its residue R (∞) is zero.

(2) As well known, the integral of a rational function

∫ +∞

−∞
P(x)

Q(x)
dx,

where P(x), Q(x) are polynomials of the real variable x , exists if (i) Q(x) has
no (real) zeroes and (ii) the degrees nP , nQ of P(x), Q(x) satisfy the condition
nQ ≥ nP + 2. Show that this second condition implies that the residue R(∞) at the
point z = ∞ of the complex function f (z) = P(z)/Q(z) is zero.

(3) To evaluate the above integral with the method of residues, one can consider
a closed contour consisting of a segment −R ≤ x ≤ R along the real axis and a
semicircle of radius R, either in the upper or in the lower complex planeC (and then
let R → ∞). Show that the property R(∞) = 0 ensures that—as expected!—the
result of the integration does not depend on the choice about the closing contour.

(2.22)
Evaluate the integrals

∫ +∞

−∞
x2

(x2 + 1)2
dx ;

∫ +∞

−∞
x

(x + i)(x − 2i)2(x − 3i)
dx

(2.23)
Evaluate the integrals

∮

|z|=2

sin z

(z − 1)5
dz ;

∮

|z−2|=3

z

sin2 z
dz ;

∮

|z|=5

1 − exp z

1 + exp z
dz

(2.24)
Evaluate the integrals

∮

|z|=1

z2

(2z − 1)(z2 + 2)
dz ;

∮

|z|=1

exp z

z
dz
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Fig. 2.1 See
Problems 2.28–2.31 z

γ

Γ

+R−R +r−r

×

Integrals of this type, which can be very easily evaluated in the complex plane,
produce nontrivial results when z is replaced by exp(iθ): verify!

(2.25)
Evaluate the integrals

(
put exp(iθ) = z and transform the integrals into integrals

along the circle |z| = 1 in the complex plane
)
:

∫ 2π

0

1

1 + cos2 θ
dθ ;

∫ 2π

0

cos θ

2 + cos θ
dθ ;

∫ 2π

0

sin θ

(2 + sin θ)2
dθ

(2.26)
Evaluate the integrals, using Jordan lemma,

∫ +∞

−∞
exp(±iax)

(x − i)2
dx (a > 0) ;

∫ +∞

−∞
exp(i x)

(x2 + 1)2
dx

(2.27)
Evaluate the following integrals; here, the functions sin x, cos x must be replaced by
exp(±i x), in order that the semicircular closing contour of integration in the complex
plane gives a vanishing contribution, according to Jordan lemma:

∫ +∞

−∞
cos x

1 + x2
dx ;

∫ +∞

−∞
sin x

1 + x + x2
dx

(2.28)
Evaluate the following integrals; in these cases, the use of Jordan lemma produces
the appearance of singularities (simple poles) along the real axis, and therefore the
necessity of introducing one or more “indentations” along the real axis: see Fig. 2.1,
which refers to the first one of the following integrals

∫ +∞

−∞
sin x

x(1 + x2)
dx ;

∫ +∞

−∞
sin x

x
dx ;

∫ +∞

−∞
cos(πx/2)

(1 − x)(x2 + 1)
dx ;

∫ +∞

−∞
sin(πx)

x(1 − x2)
dx
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Fig. 2.2 See Problems 2.32,
2.39 and 2.40

R−R

z

iπ

iπ/2×
x

(2.29)
Evaluate the integrals

∫ +∞

−∞
sin x

x(x − i)
dx ;

∫ +∞

−∞
exp(i x) − exp(−2i x)

x(x − i)
dx

(2.30)
Evaluate the integral ∫ +∞

−∞
sin2 x

x2
dx

Hint: Put (sin2 x)/x2 = Re
(
1−exp(2i x)/(2x2)

)
in order to have a simple pole on the

real axis. This integral can also be evaluated in a differentway: see Problem3.9, q. (1).

(2.31)
Evaluate the following integrals (containing a Cauchy principal part due to the pres-
ence of singular points on the real axis)

P

∫ +∞

−∞
exp(i xπ)

(x + 1)(x + i)
dx ; P

∫ +∞

−∞
exp(i x)

x(x − i)(x + 2i)
dx

(2.32)
Evaluate the integral (use the closed contour in Fig. 2.2). Hint: cosh(x + π i) = . . .

∫ +∞

−∞
cos(ax)

cosh x
dx (a ∈ R)

(2.33)
Evaluate the integral (use the contour in Fig. 2.3)

∫ +∞

0
exp(i x2) dx

and deduce the integrals
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Fig. 2.3 See Problem 2.33

π/4

∫ +∞

0
sin(x2) dx =

∫ +∞

0
cos(x2) dx

(2.34)
The integrals proposed in the following exercises of this subsection involve functions,
as log z and zα , which present branch points and cut lines. The following questions
are in preparation of the evaluation of these integrals:

(1) Find the following residues, assuming that the cut line is placed along the positive
real axis:

(a) residue at z = ±i of f (z) =
√
z

z ∓ i

(b) residue at z = ±i of f (z) = log z

z ∓ i

(c) residue at z = −1 of f (z) =
√
z

z + 1

(d) residue at z = −i of f (z) = z4/3

(z + i)2

(e) residue at z = −i of f (z) = sin(π
√
2z)

z + i

(f) residue at z = −i of f (z) = exp(π
√
2z)

z + i

(2) Find the following residues:

(a) residue at z = i of f (z) = log(z2 − 1)

z − i
assuming that the cut is from −∞ to

−1 and from 1 to +∞ in the real axis
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(b) residue at z = i of f (z) =
√
z2 − 1

z − i
assuming that the cut is along the segment

[−1, 1] of the real axis
(c) residues at the (isolated) singular points of the function

f (z) =
√
z − 1

(z2 − 1)(z2 + 1)

with the cut along the line x ≥ 1 in the real axis

(3) Find the discontinuity presented by the following functions along the indicated
branch cut (here, the discontinuity is defined as the value of the function at the upper
margin of the cut minus the value at the lower margin):
(a) f (z) = √

z2 − 1 with the cut along the segment [−1, 1] of the real axis
(b) f (z) = (z − 1)α with α ∈ R (α �= 0,±1,±2, . . .) with the cut from 1 to +∞
in the real axis
(c) f (z) = log(z2 − 1) with the cut from −∞ to −1 and from 1 to +∞ in the real
axis

(d) f (z) = log
z + 1

z − 1
with the same cut as in (c).

(e) f (z) = log
z + 1

z − 1
with the cut along the segment [−1, 1] of the real axis

(2.35)
Evaluate the integrals (use the closed contour in Fig. 2.4, where the cut is indicated
by a dashed line)

∫ ∞

0

x±1/2

1 + x2
dx ;

∫ ∞

0

x±1/3

1 + x2
dx ;

∫ ∞

0

√
x

(x + i)2
dx

(2.36)
Evaluate the integrals (use the closed contour as in the problem above)

∫ +∞

0

xa

(1 + x)2
dx (−1 < a < 1) ;

∫ +∞

0

xb

1 + x3
dx (−1 < b < 2)

(with a �= 0; b �= 0 and �= 1, otherwise there would be no cut line!)

(2.37)
(1) Integrating the functions

f (z) = log z

1 + z + z2
; f (z) = log z

1 + z3

along a closed contour as in Fig. 2.4, obtain the integrals

∫ +∞

0

1

1 + x + x2
dx ;

∫ +∞

0

1

1 + x3
dx
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Fig. 2.4 See
Problems 2.35–2.37

(2) Integrating the function

f (z) = (log z)2

1 + z2

along the same closed contour, obtain the integrals (which can also be obtained by
different methods, see next problem for the first integral)

∫ +∞

0

log x

1 + x2
dx ;

∫ +∞

0

1

1 + x2
dx

(2.38)
Evaluate the integrals

∫ +∞

0

log x

1 + x2
dx ;

∫ +∞

0

log x

1 + x4
dx

using for the first integral the closed contour shown in Fig. 2.5a. As suggested by the
figure, the line along the positive real axis is chosen on the “upper margin” of the
cut. Hint: if x < 0, then log x = . . .. For the second integral use the contour shown
in Fig. 2.5b. Hint: if y > 0, then log(iy) = . . .

(2.39)
Evaluate the integrals

∫ +∞

−∞
exp(ax)

1 + exp x
dx (0 < a < 1) ;

∫ +∞

0

1

xb(1 + x)
dx (0 < b < 1)
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(a) (b)

Fig. 2.5 See Problem 2.38

Fig. 2.6 See Problem 2.41

Putting x ′ = exp x the first integral is transformed into the second one,withb = 1−a.
The first integral can be evaluated using a contour similar to that in Fig. 2.2, but with
height 2π i ; the second one ….

(2.40)
Evaluate the integral ∫ +∞

0

log2 x

1 + x2
dx

Put x ′ = log x and use the same contour as in Fig. 2.2.

(2.41)
Evaluate the integrals (use closed contour as in Fig. 2.6. Hint: do not forget the residue
at z = ∞)

∫ 1

−1

√
1 + x

1 − x
dx ;

∫ 1

−1

√
1 − x2

2 − x
dx ;

∫ 1

0

1 + x2√
x(1 − x)

dx

(2.42)
Evaluate the integral (use the closed contour in Fig. 2.7)

∫ +∞

−∞
log(a2 + x2)

1 + x2
dx, (a > 1)
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Fig. 2.7 See Problem 2.42

2.3 Harmonic Functions and Conformal Mappings

(2.43)
A harmonic function u = u(x, y) can be interpreted, for instance—as well known—
as a two-dimensional electric potential. Let v = v(x, y) be its harmonic conjugate
(unique apart from an additive constant), and let f = u + iv be the corresponding
analytic function. Then, the lines u(x, y) = const. and v(x, y) = const. represent
the equipotential lines and respectively the lines of force of the electric field. Draw
the lines u(x, y) = const. and v(x, y) = const. of the elementary analytic function
f (z) = z (trivial!), and of the functions

f (z) = z2 ; f (z) = √
z ; f (z) = log z

(2.44)
(1) Let D be the region in the complex plane z included between the positive real
axis and the positive imaginary axis. Consider the Dirichlet Problem of finding a
harmonic function u(x, y) in D with the condition u(x, y) = 0 on the boundaries.
Observing that the conformal map

z → z′ = Φ(z) = z2

maps D into…,where the problem admits an elementary (linear: see Problem (2.43),
but also (2.48)) solution, obtain a solution of the given Dirichlet Problem, and con-
struct the lines u(x, y) = const. and v(x, y) = const.

(2) Consider now the region D in the complex plane z included between the positive
real axis and the half straight line � starting from the origin and forming an angle α

with the real axis, see Fig. 2.8a. Consider the Dirichlet Problem of finding a harmonic
function u(x, y) in D with the boundary conditions u = 0 on the real axis and
u = u0 = const �= 0 on the line �. Using the conformal map

z → z′ = Φ(z) = log z
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Fig. 2.8 See Problems 2.44
and 2.47

α
0

�

D

D

(a) (b)

which maps D into …, where the problem admits an elementary solution, solve the
given Dirichlet Problem, and construct the lines u(x, y) = const. and v(x, y) =
const.

(2.45)
(1) Show that the conformal mapping

z → z′ = Φ(z) = i − z

i + z

transforms the half-plane y = Im z ≥ 0 into the circle |z′| ≤ 1. Hint: |z′| = 1 means
|z − i | = |z + i |, etc.
(2) Consider the Dirichlet Problem for the half-plane y ≥ 0: i.e., find the harmonic
function u(x, y) satisfying a given boundary condition on the x axis

u(x, 0) = F(x)

Using the conformal map given in (1), with z′ = r ′ exp(iϕ′), show that the problem
becomes a Dirichlet Problem for the circle of radius r ′ = 1 centered at the origin of
the plane z′, where the boundary condition becomes

ũ(r ′, ϕ′) = F̃(ϕ′) = F̃
(
tan(ϕ′/2)

)
, −π < ϕ′ < π

(3) Using the result seen in (2) and recalling Sect. 1.1.3, solve the Dirichlet Problem
for the half-plane y ≥ 0 if

F(x) = 1

1 + x2

Hint: ũ(r ′, ϕ′) = (1 + r ′ cosϕ′)/2 = Re (1 + z′)/2, then …
(4) The same as in (3) if

F(x) = x2

(1 + x2)2

(2.46)
Show that the conformal map given in Problem 2.45, q. (1) transforms the line z =
x + i into the circumference |z′ + 1/2| = 1/2, and the half-plane y = Im z ≥ 1 into
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the interior of this circle. What is the image in the plane z′ of the strip 0 ≤ y ≤ 1 in
the plane z under the transformation given above?

(2.47)
Solve the Dirichlet Problem in the region D obtained excluding the circle |z +
1/2| ≤1/2 from the circle |z| ≤ 1, see Fig. 2.8b, with the boundary conditions u = 0
on the circumference |z| = 1 and u = 1 on the circumference |z + 1/2| = 1/2. To
solve this problem, use the conformal map

z → z′ = Φ(z) = i
1 − z

1 + z

which is just the inverse of the map considered in Problems 2.45 and 2.46, and which
transforms D into …(see Problem 2.46), where the problem becomes elementary.
Verify explicitly that the solution satisfies the boundary conditions given for the
region D.

(2.48)
(1) Show that the Dirichlet Problem for the half-plane Im z = y ≥ 0 does not admit
unique solution, but actually admits infinitely many solutions: verify for instance
that the real parts of the analytic functions i z, i z2, etc., satisfy both Δ2u = 0 and
the vanishing boundary condition u(x, 0) = 0. What is the most general solution of
this problem?

(2) The existence of infinitely many solutions of the Dirichlet Problem in the half-
plane may appear surprising if compared with the Dirichlet Problem for the circle,
recalling also that the two problems are connected by a conformal map (see Prob-
lem2.45). To explain this fact, choose, e.g., the simplest solution u(x, y) = y =
Re (−i z) to the Dirichlet Problem in the half-plane Im z ≥ 0 with the boundary
condition u(x, 0) = 0, and find the corresponding solution ũ(r ′, ϕ′) for the circle
using the conformal map

z′ → z = Ψ (z′) = i
1 − z′

1 + z′

What is the singularity presented by this solution ũ(r ′, ϕ′)? Repeat calculations, for
instance, for the solution in the half-plane u = xy = Re (−i z2/2), and verify that the
same situation occurs. Conclude: how can one recover the uniqueness of the solution
of the Dirichlet Problem? See also the discussion in Problem3.112.



Chapter 3
Fourier and Laplace Transforms.
Distributions

3.1 Fourier Transform in L1(R) and L2(R)

There is some arbitrariness in the notation and definition of the Fourier trans-
form. First of all, the independent variable of the functions to be transformed is
often chosen to be the time t ∈ R, and accordingly the independent variable of
the transformed functions is the “frequency” ω ∈ R. This choice is due to the
peculiar and characterizing physical interpretation of the Fourier transform,
namely that of being the “frequency analysis”. The notations frequently used
in the following for the Fourier transform will then be

F
(
f (t)

) = g(ω) = f̂ (ω)

In the case that the function f depends instead on the space position x ∈ R,
then its Fourier transformwill depend on the “associate” physical variable k =
2π/λ, with usual notations; then we will writeF

(
f (x)

) = g(k) = f̂ (k).
However, when no specific physical interpretation is involved and only the
mathematical properties are concerned, the independent variable of the Fourier
transform of a function f (x)will be denoted either by k or by ω, or sometimes
by a “generic” variable y ∈ R.
The definition of the Fourier transform (using the variables t and ω) for func-
tions f (t) ∈ L1(R), which will be adopted is

F
(
f (t)

) =
∫ +∞

−∞
f (t) exp(iωt) dt = g(ω) = f̂ (ω)

and then for the inverse transformation

F−1
(
g(ω)

) = 1

2π

∫ +∞

−∞
g(ω) exp(−iωt) dω = f (t)
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Other definitions are possible: the factor exp(iωt) in the first integral may
be changed into exp(−iωt) and correspondingly the factor exp(−iωt) in the
second one must be changed into exp(iωt).
The factor 1

2π in the second integral may be “distributed” into two factors 1√
2π

in front to both integrals. As well known, the Fourier transform and inverse
Fourier transform defined in this way (using here the independent variables x
and y)

F̃ = 1√
2π

F , i.e., F̃
(
f (x)

) = 1√
2π

∫ +∞

−∞
f (x) exp(i xy) dx = g(y)

and

F̃−1 = √
2πF−1 , i.e., F̃−1(g(y)

) = 1√
2π

∫ +∞
−∞

g(y) exp(−i xy) dy = f (x)

are unitary operators in the Hilbert space L2(R).

Notice that if f (t) ∈ L2(R) but /∈ L1(R) the correct notation for the Fourier
transform would be

f̂ (ω) = P

∫ +∞

−∞
f (t) exp(iωt) dt = lim

T→+∞

∫ T

−T
. . .

where the symbol P denotes the Cauchy principal part of the integral (here,
with respect to the infinity). For the sake of simplicity, the symbol P will be
usually omitted. The same remark holds for the inverse Fourier transformation
formula.

Several examples of linear systemswill be proposed: these are characterized by
an applied “input” which produces an answer, or “output”, depending linearly
on the input. The connection is often expressed bymeans of a linear differential
equation, or— more in general—by specifying a Green function. In the latter
case, assuming that the independent variable is the time t , denoting by a = a(t)
the input and by b = b(t) the corresponding output, one can write

b(t) =
∫ +∞

−∞
G(t, t ′) a(t ′) dt ′

whereG = G(t, t ′) is theGreen function. Inmany cases one hasG = G(t−t ′)
(thus the system has “time-invariant” properties), and b(t) is expressed by a
convolution product b(t) = (

G ∗ a
)
(t):

b(t) =
∫ +∞

−∞
G(t − t ′) a(t ′) dt ′ =

∫ +∞

−∞
G(τ ) a(t − τ) dτ
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or equivalently b̂(ω) = Ĝ(ω)̂a(ω), where Ĝ(ω) is sometimes called transfer
function. Then recall that the Green function is the answer to the Dirac delta
input a(t) = δ(t), whereas b(t) = a(t) for any a(t) if G(t) = δ(t) (see
Sect. 3.2). Aswell known, the Green function is said to be “causal” ifG(t) = 0
for t < 0. This indeed guarantees that the answer b(t) at any instant t depends
only on the values of the input a(t ′) at the “past” instants t ′ < t . Equivalently,
assuming that there is some time t0 such that the input a(t) is equal to zero for
any t < t0, then also the corresponding solution, or answer, b(t) is equal to
zero for any t < t0. In other words, the answer does not “precede” the input.
For the case that the independent variable is not the time but a space variable
x , see some comment before Problem 3.87.

It is certainly useful to prepare a list of “basic” Fourier transforms and in-
verse transforms. Remark that many transforms can be obtained by means of
elementary integration: e.g., if

f (t) = θ(±t) exp(∓t), where θ(t) =
{
0 for t < 0

1 for t > 0
, then f̂ (ω) = 1

1 ∓ iω

or if

f̂ (ω) =
{
1 for |ω| < 1

0 for |ω| > 1
, then f (t) = sin t

π t

Other transforms require either the use of Jordan lemma, or— in some cases,
more simply—the Fourier inversion theorem; e.g., using the above transforms,
it is immediate to deduce

F−1
( 1

ω + i

)
= . . . and F

( sin t
t

)
= . . .

Elementary properties of transforms, as F
(
tn f (t)

) = . . ., the translation
theorems, etc., can also be useful. To transform rational functions, one can
either use Jordan lemma or the well-known decomposition of the function as
a combination of simple fractions.

3.1.1 Basic Properties and Applications

(3.1)
Find the Fourier transform f̂ (ω) of the “quasi-monochromatic” wave with fixed
frequency ω0 in the time interval: −t0 < t < t0:
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f (t) =
{
exp(−iω0t) for |t | < t0
0 for |t | > t0

Draw | f̂ (ω)| assuming “large” t0; show that the principal contribution to f̂ (ω) is cen-
tered aroundω0, withmaximumvalue proportional to t0, according to the physical in-
terpretation of the Fourier transform as “frequency analysis”. See also Problem3.15.
For the limit case t0 → ∞, see Problem3.25, q. (1).

(3.2)
Repeat the same calculations and considerations as in the above problem for these
other types of “quasi-monochromatic” waves:

f (t) = exp(−iω0t)
a2

a2 + t2
; f (t) = exp(−iω0t) exp(−t2/a2)

with “large” a. See also Problem3.15. For the limit case a → ∞, see Problem 3.25,
q. (2).

(3.3)
Find the following Fourier and inverse Fourier transforms

F
( 1

t2 + t + 1

)
; F

( t

(t2 + 1)2

)
; F

( cos t

1 + t2

)
;

F−1
(ω sinω

1 + ω2

)
; F−1

( 1

(ω ± i)3

)
; F−1

( sinω

(ω ± i)4

)

(3.4)
(1) Consider the first-order linear nonhomogeneous ordinary differential equation
(ODE) for the unknown x = x(t)

(
where f (t) ∈ L2(R) is given

)

ẋ + x = f (t) , x = x(t)

Introducing the Fourier transforms f̂ (ω) and x̂(ω), obtain the solution x(t) in the
form of convolution product with a Green function G(t), where f (t) is the input and
x(t) the output: x(t) = (

G ∗ f
)
(t). Find and draw the function G(t). Explain why

one obtains only one solution, and not ∞1 solutions, as expected from general the
theory of first-order ODEs.

(2) The same questions for the equation

ẋ − x = f (t) , x = x(t)
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(3) The equation of an electric series circuit of a resistance R and an inductance L

L
d I

dt
+ RI = V (t)

where I = I (t) is the current and V = V (t) the applied voltage, has the same form
as the equation in (1). The Fourier transform Ĝ(ω) has here an obvious physical
interpretation …, but there is, apparently, a “wrong” sign compared with the usual
impedance formula Z(ω) = R + iωL: why?

(3.5)
Using Fourier transform, find explicitly the solution x(t) of the equations given in
questions (1) and (2) of the above problem in the cases1

f (t) = θ(t) exp(−ct) and f (t) = exp(−c|t |) , c > 0

with c 	= 1 and with c = 1.

(3.6)
(1) Using Fourier transform, find and draw the Green function G(t) of the ODE

aẍ + bẋ + cx = f (t) , x = x(t)

for different values of the real constants a, b, c. Notice that the equation of themotion
of a particle, subjected to an elastic force, to a viscous damping and to an external
time-dependent force is exactly of this form, with all coefficients a, b, c > 0.

(2) In the case a, b, c > 0, show that all the singularities in the complex plane ω lie
in the inferior half-plane Imω < 0, with 3 possibilities: 2 complex conjugate single
poles, 2 single poles in the imaginary axis, and a double pole. Find and draw G(t)
in each one of these cases. Verify also that in all cases the Green function is causal:
G(t) = 0 when t < 0. (For the case b = 0, see Problem 3.78; for the case c = 0,
see Problem3.80; for the case b = c = 0, see Problem3.79).

(3.7)
Find and draw the Green function G(t) by calculating the inverse Fourier transform
in each one of the following four cases. What of these are causal, i.e., G(t) = 0 for
t < 0?

Ĝ(ω) = exp(±iω)

1 ± iω

(3.8)
(1) Let f (x) ∈ L1(R) ∩ L2(R). Using Fourier transform, give another proof (see
Problem 1.4) that the subspace of the functions satisfying

1Direct calculation of the convolution product
(
G ∗ a

)
(t) is often not easy; it may be preferable

to obtain first F
(
f (t)

) = f̂ (ω) and then calculate x(t) by inverse Fourier transform: x(t) =
F−1

(
Ĝ(ω) f̂ (ω)

)
.
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∫ +∞

−∞
f (x) dx = 0

is dense in L2(R). The same for the functions such that

∫ +∞

−∞
f (x) sin qx dx = 0 for any q ∈ R

Hint: Observe that
∫ +∞
−∞ f (x) dx = f̂ (0), etc.

(2) Let f (x) be such that xn f (x) ∈ L1(R) ∩ L2(R) for all integer n ≥ 0: using
Fourier transform show that the subspace of the these functions is dense in L2(R)

(cf. Problem 1.3).

(3) Let f (x) be such that xn f (x) ∈ L1(R) ∩ L2(R) for all integer n ≥ 0 and

∫ +∞

−∞
xn f (x) dx = 0 , ∀ n ≥ 0

using Fourier transform show that the set of the these functions is dense in L2(R).

(3.9)
To solve the following questions, recall that F

(
(sin x)/x

) = . . . and use Parseval
identity for Fourier transform.

(1) Calculate (for a different procedure, based on integration in the complex plane,
see Problem 2.30) ∫ +∞

−∞
sin2 x

x2
dx

(2) Calculate the norm ‖ fn(x)‖L2 , where

fn(x) = dn

dxn
sin x

x
, n = 0, 1, 2, . . . , x ∈ R

(3) Show that the sequence of functions

fn(x) = sin x

x − nπ
, n ∈ Z, x ∈ R

is an orthogonal but not a complete set in L2(R). Characterize the functions h(x) ∈
L2(R) such that (h, fn) = 0, ∀n ∈ Z.

(3.10)
(1) Consider the following integral I (a) as a scalar product in L2(R), as indicated

I (a) =
∫ +∞

−∞
exp(iωa) − 1

iω(1 + iω)
dω =

( 1

1 − iω
,
exp(iωa) − 1

iω

)
, a > 0
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recalling the inverse Fourier transforms of the functions appearing in the scalar prod-
uct and applying Parseval identity, evaluate I (a). Evaluate then the limit lim

a→+∞ I (a).

(2) Using Parseval identity as before, evaluate

lim
a→+∞

∫ +∞

−∞
exp(iωa) − 1

iω
exp(−ω2) dω

(3.11)
(1) Calculate the two inverse Fourier transforms

F−1
(exp(iω)

1 − iω

)
and F−1

(exp(−iω)

1 + iω

)

(2) Show that the second inverse Fourier transform in the above question can be
immediately obtained from the first one observing that f̂ (−ω) = . . ..

(3) By integration in the complex plane, evaluate the integral

I =
∫ ∞

−∞
exp(2iω)

(1 − iω)2
dω

(4) Check the result obtained above observing that I = ( f̂2, f̂1) where
f̂1 = exp(iω)/(1 − iω) and f̂2 = . . ., using Parseval identity and the results in
(1).

(3.12)
A particle of mass m = 1 is subjected to an external force f (t) and to a viscous
damping; denoting by v = v(t) its velocity, the equation of motion is then

v̇ + βv = f (t) , t ∈ R, β > 0

(1) Let f (t) = θ(t) exp(−t) and β 	= 1. Using Fourier transform, find v̂(ω) =
F

(
v(t)

)
and v = v(t).

(2) One has from (1) that lim
t→+∞ v(t) = 0, then the final kinetic energy v2(+∞)/2 of

the particle is zero. This implies that the work W f done by the force, i.e.,

W f =
∫

L
f dx =

∫ +∞

−∞
f (t)v(t) dt

(where L is the space covered by the particle) is entirely absorbed by the work Wβ

done by friction, which is

Wβ =
∫

L
βv dx = β

∫ +∞

−∞
v2(t) dt
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EvaluateW f andWβ using the given f (t) and the expression of v(t) obtained in (1),
and verify that indeed W f = Wβ .

(3) Repeat the above check using Fourier transform: precisely, thanks to the Parseval
identity, write W f = (

f, v
)
and Wβ = β

(
v, v

)
as integrals in the variable ω in terms

of the expressions of f̂ (ω) and v̂(ω) obtained above, evaluate these integrals by
integration in the complex plane ω and verify again that W f = Wβ .

(4) The same questions in the case β = 1.

The following problem extends this result to the case of general forces f (t) ∈
L1(R) ∩ L2(R). Problems 3.75 and 3.76 deal with the case of vanishing damping
β → 0+.

(3.13)
This is the same problem as the previous one, now with a general force f (t) ∈
L1(R) ∩ L2(R)

(
and f (t) real, of course

)
:

(1) Find the Fourier transform Ĝ(ω) of the Green function of the equation. Show
that v̂(ω) = F

(
v(t)

) ∈ L1(R), which implies that lim
t→+∞ v(t) = 0 and then that the

final kinetic energy v2(+∞)/2 of the particle is zero.

(2) (a) Using Parseval identity, write the work done by the force

W f =
∫

L
f dx =

∫ +∞

−∞
f (t)v(t) dt = (

f, v
)

(where L is the space covered by the particle) as an integral in the variable ω in terms
of v̂(ω) and Ĝ(ω).

(b) Proceeding as in (a), write the work Wβ done by friction

Wβ =
∫

L
βv dx = β

∫ +∞

−∞
v2(t) dt = β

(
v, v

)

as an integral containing v̂(ω); show then that W f = Wβ , as expected
(
it is clearly

understood that v(−∞) = 0
)
. Hint: recall that f (t) is real, and the same is for v(t),

therefore v̂∗(ω) = . . .; use also the obvious fact that an expression as F(x)F(−x)
is an even function of the real variable x .

(3.14)
Consider a linear system described by a Green function G(t), with input a(t) and
output b(t) related by the usual rule b(t) = (

G ∗ a
)
(t). Let a(t) ∈ L2(R).

(1) Assume G(t) ∈ L1(R). Show that b(t) ∈ L2(R) and find a constant C such that
‖b(t)‖L2(R) ≤ C ‖a(t)‖L2(R).

(2) Assume G(t) ∈ L2(R). Show that b(t) is a continuous function vanishing as
|t | → ∞.



3.1 Fourier Transform in L1(R) and L2(R) 81

(3) Assume that the Fourier transform Ĝ(ω) = F
(
G(t)

) ∈ L2(R) and has a compact
support. Show that b(t) is continuous and differentiable (howmany times?). Can one
expect that also b(t) has compact support?

(3.15)
The “classical uncertainty principle” states that, given any function f (t)

(
under some

obvious regularity assumptions, see (1) below
)
, one has

Δt Δω ≥ 1/2

where the quantities Δt and Δω are defined by

Δt2 = 1

‖ f (t)‖2
∫ +∞

−∞

(
t − t

)2| f (t)|2 dt , t = 1

‖ f (t)‖2
∫ +∞

−∞
t | f (t)|2 dt

Δω2 = 1

‖ f̂ (ω)‖2
∫ +∞

−∞

(
ω − ω

)2| f̂ (ω)|2 dω , ω = 1

‖ f̂ (ω)‖2
∫ +∞

−∞
ω | f̂ (ω)|2 dω

(1) To show this result, assume for simplicity t = ω = 0 (this is not restrictive),
assume f (t) ∈ L2(R), t f (t) ∈ L2(R), ω f̂ (ω) ∈ L2(R) and finally that ω f̂ (ω)

vanishes as |ω| → ∞; then verify and complete the steps of the following calculation:

0 ≤
∥∥∥

ω

2Δω2
f̂ (ω) + d f̂ (ω)

dω

∥∥∥
2 = . . .

= ‖ f̂ (ω)‖2
4Δω2

+ ‖F (
i t f (t)

)‖2 + 1

2Δω2

∫ +∞

−∞
ω

d

dω

(
f̂ (ω) f̂ ∗(ω)

)
dω = . . .

= 2π‖ f (t)‖2
(
Δt2 − 1

4Δω2

)

(2) Observing that the “minimum uncertainty”, i.e., Δt Δω = 1/2, occurs when
the quantity appearing at the beginning of the first line above is zero, show that the
minimum is verified when f̂ (ω) = . . . and then (now with generic t and ω, not
necessarily zero)

f (t) = c exp
(− α2(t − t)2/2

)
exp(−iωt) , α = √

2Δω = 1√
2Δt

(3) Give an estimation of the spatial length Δx = cΔt of the wave packet of a red
light with λ � 7000 Å (e.g., an atomic emission) and Δω/ω = Δλ/λ � 10−6, and
of a red laser wave with Δω/ω � 10−12.

(4) Changing the variables t and ω into x and k = 2π/λ and using de Broglie
principle λ = h/p, deduce the well-known Heisenberg uncertainty principle in
quantum mechanics Δx Δp ≥ �/2.
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3.1.2 Fourier Transform and Linear Operators in L2(R)

This subsection is devoted to considering first examples of linear operators
T : L2(R) → L2(R) which can be conveniently examined introducing their
“Fourier transform” T̂ defined in this way: if

T f (x) = g(x) , f (x), g(x) ∈ L2(R)

then T̂ is the operator such that

T̂ f̂ (ω) = ĝ(ω) , i.e., T̂ = FTF−1.

Other more general examples of operators in the context of Fourier transforms
and distributions will be considered in Sect. 3.2.2

(3.16)
(1) Show that ‖T̂ ‖ = ‖T ‖.
(2) Assume that T̂ is a projection

(
on some subspace H1 ⊂ L2(R)

)
; is the same true

for T ? on what subspace?

(3) Assume that T̂ admits an eigenvector ϕ = ϕ(ω) with eigenvalue λ; what infor-
mation can be deduced for T ?

(4) Assume that T̂ admits a orthonormal complete system of eigenvectors; does the
same hold for T ?

(3.17)
Find the operator T̂ in each one of the following cases:

T f (x) = f (x − a) with a ∈ R ; T f (x) = d f

dx
;

T f (x) =
∫ +∞

−∞
f (x − y) g(y) dy ≡ (

f ∗ g
)
(x) with g(x) ∈ L1(R) ∩ L2(R)

(3.18)
Consider the operator defined in L2(R)

T f (t) =
∫ +∞

−∞
f (τ )

sin(t − τ)

π(t − τ)
dτ

Introducing Fourier transform,

(1) Show that T is a projection: on what subspace?
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(2) T has a clear physical interpretation in terms of the variable ω: explain!

(3) What differentiability properties can be deduced for the function g(t) = T f (t)?
and about its behavior as |t | → ∞?

(4) Study the convergence as n → ∞ of the sequence of operators

Tn f (t) =
∫ +∞

−∞
f (τ )

sin
(
n(t − τ)

)

π(t − τ)
dτ

(3.19)
Consider the operator defined in L2(R)

T f (x) =
∫ +∞

−∞
f (y)

1

1 + (x − y)2
dy

Introducing Fourier transform,

(1) Find ‖T ‖
(2) Find RanT , specifying if RanT = L2(R) or at least is dense in it.

(3) For what ρ ∈ R does the operator T − ρ I admit bounded inverse?

(4)What differentiability properties for the functions g(x) = T f (x) canbe expected?

(5) If { fn(x)} is a complete set in L2(R), is the same true for the set gn = T fn?

(6) Study the convergence as a → 0 of the family of operators

Ta f (x) =
∫ +∞

−∞
f (y)

a

a2 + (x − y)2
dy , a > 0

(3.20)
(1) Using Fourier transform, show that the family of operators Ta

Ta f (x) = f (x − a) , a ∈ R

converges weakly to zero as a → ∞.

(2) Show that Ta converges strongly to the identity operator I as a → 0.

(3.21)
Consider the following, slightly different definition (in the factors 1/

√
2π ) of the

Fourier transform (and inverse Fourier transform):

F̃ = 1√
2π

F , i.e., F̃
(
f (x)

) = 1√
2π

∫ +∞

−∞
f (x) exp(i xy) dx = g(y)

and

F̃−1 = √
2πF−1 , i.e., F̃−1(g(y)

) = 1√
2π

∫ +∞
−∞

g(y) exp(−i xy) dy = f (x)
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(1) Show that F̃ (and F̃−1 of course) are unitary operators in the Hilbert space
L2(R).

(2) Show that

F̃ 2 = S where S is the parity operator : S f (x) = f (−x)

and then F̃ 4 = I

(3) Let T be the Hermite operator:

T = − d2

dx2
+ x2

Show that T̂ = T and then F̃T = T F̃ .

(4) Recall that the eigenfunctions of T are the Hermite functions un = exp(−x2/2)
Hn(x) (where Hn(x) are polynomials, n = 0, 1, 2, . . .), and that the corresponding
eigenvalues λn = 2n + 1 are non-degenerate: using then the result seen in (2) and
(3), find the eigenfunctions and the eigenvalues of the operator F̃ .

(5) Conclude showing that the Fourier operator F̃ is a linear combination of 4
projections; on what subspaces?

3.2 Tempered Distributions and Fourier Transforms

We will be almost exclusively concerned with the space of “tempered” dis-
tributions S ′, which can be considered as the “largest” space where Fourier
transforms are introduced in a completely natural and well-defined way.
As in the introduction to Sect. 1.2, where sequences of linear operators were
concerned, also in this Section questions as “Study the convergence” or “Find
the limit” of sequences (or families) of functions/distributions are “cumulative”
questions, which require first, as obvious, to conjecture the possible limit, but
also to specify in what sense the limit exists. There is in S ′ the notion of
convergence “in the sense of distributions”: given a sequence Tn ∈ S ′ (or
a family Ta ∈ S ′), one says that Tn → T in S ′ if for any test function
ϕ(x) ∈ S one has < Tn, ϕ >→< T, ϕ >. There are distributions which
are associated to ordinary functions u = u(x); in this case distributions and
functions can be “identified”, writing, e.g., < u, ϕ >, with ϕ ∈ S , instead
of the more correct notation < Tu, ϕ >. Accordingly, one can consider the
convergence inS ′ of a sequence of functions un(x), meaning the convergence
of the distributions Tun . This is a new notion of convergence for sequences (or
families) of functions, in addition (and to be compared) to the “old” notions, as,
e.g., pointwise or uniform convergence, or—in the case un(x) ∈ L2(R) —the
convergence in the L2 norm or in the weak L2 sense. Recall that un(x) → u(x)
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in the sense of weak L2 convergence if ∀g ∈ L2, one has (g, un) → (g, u).
By the way, also in this section, Lebesgue theorem will be a useful tool for
examining convergence properties: see the introductory remarks to Sect. 1.2.
The notion of limit in S ′ is particularly relevant because it involves, for in-
stance, the “approximation” of the Dirac delta δ(x) by means of “regular”
(possibly C∞) functions. The same holds for other distributions, as the deriva-
tives of the delta, and, e.g., the important notion of Cauchy “Principal Part”
P(1/x), defined by

< P
1

x
, ϕ >= lim

ε→0+

( ∫ −ε

−∞
+

∫ +∞

ε

ϕ(x)

x
dx

)
, ε > 0

A function (or distribution) which will be used in the following is the “sign of
x”, i.e.,

sgn x =
{

−1 for x < 0

1 for x > 0
= θ(x) − θ(−x)

E.g., one has F (sgn x) = 2i P
(
1/ω

)
and F

(
P(1/x)

) = π i sgn(ω).

3.2.1 General Properties

(3.22)
Find the pointwise limit as n → ∞ of the sequence of functions

fn(x) =
{
n sin nx for 0 ≤ x ≤ π/n

0 elsewhere
, n = 1, 2, . . . ; x ∈ R

and then their limit in S ′. Hint: consider fn(x) as distributions, apply them to a
generic test function ϕ(x) ∈ S , i.e., < fn, ϕ >= ∫ +∞

−∞ . . ., perform a change of
variable ….

(3.23)
(1) (a) Find the limits in S ′ as n → ∞ of the sequences of functions, with x ∈ R,

fn(x) = θ(x) exp(−nx) , n = 1, 2, . . .

or, which is the same,

fε(x) = 1

ε
θ(x) exp(−x/ε) , ε > 0
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(as in previous problem, consider the functions as distributions, apply them to a
generic test function, etc.).

(b) Obtain again the limit using Fourier transform. Hint: the pointwise limit of the
Fourier transforms can be easily obtained, and coincides with the S ′-limit (why?),
then ….

(2) The same questions (a) and (b) for the sequence of functions

fn(x) = n exp(−n|x |)

(3) and for the sequence of functions

fn(x) = n exp(−x2n2)

(4) and for the sequence of functions

fn(x) = n

1 + n2x2

(5) Find lim
n→∞ gn(x) inS ′ where

gn(x) = n3x exp(−x2n2)

both using the limit obtained in (3)
(
notice that gn(x) ∝ f ′

n(x), where fn(x) is the
sequence given in (3)

)
, and using Fourier transform.

(3.24)
To calculate the limit in S ′ as n → ∞ of the sequence of functions

fn(x) = sin nx

x
, x ∈ R

recall thatF
(
(sin nx)/x

) = . . ., then find the limit (pointwise andS ′) of the Fourier
transforms; therefore ….

(3.25)
(1) Find the limit as t0 → ∞ of the “quasi-monochromatic” wave seen in Problem 3.1

f (t) =
{
exp(−iω0t) for |t | < t0
0 for |t | > t0

and of its Fourier transform f̂ (ω)
(
put ω − ω0 = x in f̂ (ω), cf. also Problem 3.24

)
.

The physical interpretation is clear!

(2) The same questions for the limit as a → +∞ of the “quasi-monochromatic”
waves seen in Problem 3.2

(
cf. also Problem 3.23, q. (2) and q. (3)

)
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(3.26)
(1) Let

u(t) =
{
1 for 0 < t < 1

0 elsewhere

The Fourier transform û(ω) = F
(
u(t)

)
can be trivially obtained by elementary

integration. Observing that one can write u(t) = θ(t) − θ(t − 1), one could also
calculate û(ω) using the formula forF

(
θ(t)

)
: verify that the two results (seemingly

different at first sight), after some simplifications, actually coincide, as expected!

(2) Find the Fourier transform of

v(t) =
{
0 for 0 < t < 1

1 elsewhere
= 1 − u(t) = θ(−t) + θ(t − 1)

(3.27)
Starting from the (well-known) Fourier transform of 1/(1+x2), calculate the Fourier
transform of x2/(1 + x2) in these two different ways:

(a) writing

x2

1 + x2
= 1 − 1

1 + x2

(b) using the rule F
(
x2 f (x)

) = −d2 f̂ (k)/dk2.

(3.28)
Find the following Fourier and inverse Fourier transforms:

F
(|t |) ; F−1

(|ω|) ; F
(
t θ(t)

) ; F
(
θ(t) cos t

) ; F
(
P
( 1
x

) 1

1 + x2

)
;

F−1
(
D P

( 1

ω

))
; F−1

(
P

ω

ω − 1

)
; F−1

(exp(−iω)

ω + i
P
( 1

ω

))
;

F
(
exp(i |t |)) = F

(
θ(t) exp(i t)+ . . .

) ; F−1
(
ω2 sin |ω|) ; F−1

((
P
1

ω

) 1

ω ± i

)
;

F−1
(
P

1

ω(ω − 1)

)
= F−1

(
P
( 1

ω − 1

)
− P

( 1
ω

))
; F−1

(
P
(exp(iω) − 1

ω2

))

(3.29)
(1) The Fourier transform f̂ (k) of the function

f (x) = 1 − cos x

x
, x ∈ R
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can be evaluated by integration in the complex plane using (with some care) Jordan
lemma. Here, two alternative ways are proposed:

(a) put g(x) = 1 − cos x and evaluate first F
(
g(x)

) = ĝ(k); notice on the other

hand that ĝ(k) = F
(
x f (x)

) = −i d f̂ (k)/dk, which gives f̂ (k)
(
one constant must

then be fixed …, recall that f̂ (k) must belong to L2(R)
)
;

(b) write

F
(
f (x)

) = F
(
P
(1
x

)
− 1

2
exp(i x)P

( 1
x

)
− 1

2
exp(−i x)P

( 1
x

))

and useF
(
P(1/x)

) = . . ..

(2) The same for the function

F(x) = 1 − cos x

x2
, x ∈ R

(a) with g(x) = 1 − cos x as before, now ĝ(k) = F
(
x2F(x)

) = −d2 F̂(k)/dk2
(
two constants must be fixed to determine F̂(k) …, recall that as before F̂(k) must
belong to L2(R)

)
;

(b) write

F
(
f (x)

) = F
(

− D P
( 1
x

)
+ 1

2
exp(i x)D P

( 1
x

)
+ 1

2
exp(−i x)D P

( 1
x

))

and useF
(
D P(1/x)

) = . . . (clearly, D = d/dx is the derivative of distributions).

(3) Observing that f (x) = x F(x), verify that d F̂(k)/dk = . . ..

(3.30)
Find the Fourier transform of the following distribution

P
( sin x

x − a

)
, a ∈ R

For what values of a ∈ R can the symbol P be omitted? for these values of a, what
is the support of the Fourier transform?

(3.31)
(1) Using Fourier transform, find the “fundamental limits”

lim
ε→0+

1

x ± iε
, ε > 0

and deduce
lim

ε→0+

x

x2 + ε2
, lim

ε→0+

ε

x2 + ε2
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(2) Find then

lim
ε→0+

∫ ∞

−∞
exp(−x4)

x ± iε
dx

(3.32)
Let

ua(ω) = exp(iaω) − 1

iω
, a > 0

(1) Find the inverse Fourier transformF−1
(
ua(ω)

)
and lim

a→∞ ua(ω).

(2) Using the above result, find

lim
a→∞

∫ +∞

−∞
ua(ω) cosω exp(−ω2) dω

(3) Considering ϕ(ω) = ω/(1+ ω2) as a test function, use again the result obtained
in (1) to find

lim
a→∞

∫ +∞

−∞
ua(ω)

ω

1 + ω2
dω

(4) Check the above result: evaluate the integral (either by integration in the complex
plane or using inverse Fourier transform)

Ia =
∫ +∞

−∞
exp(iaω) − 1

1 + ω2
dω , a > 0

then find lim
a→∞ Ia and compare with the result in (3).

(3.33)
Let

ua(x) =
{

−1 for x < a

1 for x > a
, x ∈ R, a ∈ R

(1) Find lim
a→+∞ ua(x).

(2) Find the Fourier transform ûa(y) = F
(
ua(x)

)
and lim

a→+∞ ûa(y).

(3) Using the result in (2), find

lim
a→+∞P

∫ +∞

−∞
exp(iay)

y
exp(−y2) dy

(4) Considering ϕ(y) = 1/(y − 2i) as a test function, use again the result obtained
in (2) to find
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lim
a→+∞P

∫ +∞

−∞
exp(iay)

y(y − 2i)
dy

(5) To check the above result evaluate now the integral by integration in the complex
plane

Ia = P

∫ +∞

−∞
exp(iay)

y(y − 2i)
dy

then find lim
a→+∞ Ia and compare with the result in (4).

(3.34)
(1) Observing that

uε(x) = 1

(x − iε)2
= − d

dx

1

x − iε
, ε > 0

find the Fourier transform ûε(ω) = F
(
uε(x)

)
and lim

ε→0+
ûε(ω).

(2) Find lim
ε→0+

uε(x) either from (1) via inverse Fourier transform, or applying the

result in Problem 3.31, q. (1).

(3) Using the result obtained in (2), evaluate the limits

lim
ε→0+

∫ +∞

−∞
exp(−x2)

(x − iε)2
and lim

ε→0+

∫ +∞

−∞
x exp(−x2)

(x − iε)2

(3.35)
Let Ta be the distribution

Ta = 1

a

(
P

1

x − a
− P

1

x

)
, a > 0

(1) Find the Fourier transform T̂a of Ta .

(2) Find the limit T̂ = lim
a→0

T̂a and find T = F−1T̂ .

(3) Evaluate < T, exp(−x2) > and < T, sin x exp(−x4) >.

(3.36)
Using Fourier transform:

(1) Evaluate the convolution product

C(x) = δ′(x) ∗ (
xθ(x)

)

(2) Show that for any n = 1, 2, . . . one has

δ(n)(x) ∗ T = D(n)T
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(3.37)
Let C( f ) be the convolution product

C( f ) =
∫ +∞

−∞
exp(−|x − y|)sgn(x − y) f (y) dy

Using Fourier transform, find the most general solution f (x) of the following equa-
tions

(a) C( f ) = δ(x)

(b) C( f ) = x exp(−x2)

(c) C( f ) = (i/2) f

(d) C( f ) = 2i f

(3.38)
Let ha(x) = sin ax/(πx), a > 0, x ∈ R, and consider the convolution product

ga(x) = (
ha ∗ f

)
(x) =

∫ +∞

−∞
f (x − y)ha(y) dy

Use Fourier transform.

(1) Let f (x) ∈ L2(R): show that ga(x) is infinitely differentiable and ∈ L2(R); find
lim
a→∞ ga(x)

(2) Let f (x) = P(1/x): find F
(
ga(x)

)
and lim

a→∞ ga(x).

(3) Let f (x) = δ′(x): find F
(
ga(x)

)
and lim

a→∞ ga(x).

(3.39)
(1) By integration in the complex plane evaluate

Ia = P

∫ +∞

−∞
exp(iat)

t (t − x)
dt , x ∈ R, a > 0

(2) Find the Fourier transform F̂a(ω) of the convolution product

Fa(x) = P
1

x
∗ sin ax

πx
, a > 0

What properties of Fa(x) can be deduced from its transform: is Fa(x) a bounded
function? continuous and differentiable (how many times?), is Fa(x) ∈ L1(R) ∩
L2(R)?

(3) (a) check the answers given in (2) observing that Fa(x) = −(1/π)Im(Ia);

(b) it is also easy to obtain Fa(x) directly, evaluating the inverse Fourier transform
of the function F̂a(ω) obtained in (2).
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(4) Find lim
a→+∞ Fa(x) and conclude observing that the above results provide another

approximation of the distribution P(1/x) with a C∞ function
(
for a simpler approx-

imation see Problem 3.31, q. (1)
)
.

(3.40)
(1) Find the inverse Fourier transform fε(t) of

f̂ε(ω) = 1

ω + iε

1

ω − i
, ε > 0

and then evaluate the limit (in S ′) lim
ε→0+

fε(t).

(2) Exchange the operations: first evaluate lim
ε→0+

f̂ε(ω) and then find the inverse

Fourier transform. The results should coincide! (why?)

(3.41)
(1) (a) Find the inverse Fourier transform f (+)

ε (t) of

g(+)
ε (ω) = 1

1 − (ω + iε)2
, ε > 0

and then the limit (in S ′, of course) F (+)(t) = lim
ε→0+

f (+)
ε (t);

(b) the same for the inverse Fourier transform f (−)
ε (t) of

g(−)
ε (ω) = 1

1 − (ω − iε)2
, ε > 0

and for F (−)(t) = lim
ε→0+

f (−)
ε (t).

(2) Check the results in (1) evaluating now G(±)(ω) = lim
ε→0+

g(±)
ε (ω) and then the

inverse Fourier transforms F (±)(t) of G(±)(ω). Hint: find first the 4 limits
(
see Prob-

lem3.31, q. (1)
)

lim
ε→0+

1

1 ± ω ± iε

(3) Do the functions F (+)(t) and F (−)(t) coincide?

(3.42)
(1) The same questions as in the above problem for the functions (apparently similar
to those in the problem above)

g(±)
ε (ω) = 1

(1 ± iε)2 − ω2
, ε > 0

(2) Do the functions F±(t) coincide with those obtained in the problem above?
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(3.43)
(1) Consider the sequence of functions

fn(x) = n θ(x) exp(−xn) and Fn(x) = θ(x)
(
1 − exp(−xn)

)
, n = 1, 2, . . .

Find f̂n(ω) = F
(
fn(x)

)
and F̂n(ω) = F

(
Fn(x)

)
.

(2) Show that F ′
n(x) = fn(x) and, using the formula F

(
F ′(x)

) = . . ., obtain again
f̂n(ω) from F̂n(ω).

(3) Find lim
n→∞ fn(x) and lim

n→∞ Fn(x); verify that lim
n→∞ fn(x) = d

dx

(
lim
n→∞ Fn(x)

)
.

(3.44)
Consider the family of functions

f̂a(ω) = i
exp(iaω) + exp(−iaω) − 2

a2ω
, a > 0

(1) Find the pointwise limit lim
a→0

f̂a(ω). Does the limit exist in L2(R), inS ′?

(2) Recalling thatF−1
(
P(1/ω)

) = . . ., find and draw the inverse Fourier transform

fa(x) = F−1( f̂a(ω)
)

Why can the symbol P be omitted in the above f̂a(ω)?

(3) Using (1), find lim
a→0

fa(x).

(4) Considering fa(x) as distributions, choose ϕ(x) = x exp(−x2) as test function:
calculate < fa, ϕ > and lim

a→0
< fa, ϕ >. Then check the answer given in (3).

(3.45)
Let FL(x) be the function

FL(x) =

⎧
⎪⎨

⎪⎩

−L for x ≤ −L

x for |x | ≤ L

L for x ≥ L

, L > 0

(1) Find F̂L(ω) = F
(
FL(x)

)
.

(2) Find fL(x) = F ′
L(x) and f̂L(ω) = F

(
fL(x)

)
; check the results obtained here

and in (1) using the property f̂L(ω) = F
(
F ′
L(x)

) = −iωF
(
FL(x)

)
.

(3) Find lim
L→∞ F̂L(ω).
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(3.46)
(1) Let g(ω) be the (given) Fourier transform of a function f (x) and let F(x) be such
that F ′(x) = f (x). Show that, expectedly, the Fourier transform G(ω) = F

(
F(x)

)

of F(x) is determined by g(ω) apart from an additional term.

(2) Let

F(x) =
{
x for 0 < x < 1

0 elsewhere

Find f (x) = F ′(x)
(
notice that F(x) is not continuous, then F ′(x) = . . .

)
and find

g(ω) = F
(
f (x)

)
; then deduceG(ω) = F

(
F(x)

)
observing that the additional term

can now be fixed thanks to the property that G(ω) must be a C∞ function (why?).

(3) Confirm the above result observing that F(x) can be written as F(x) = x u(x)
where

u(x) =
{
1 for 0 < x < 1

0 elsewhere

and applying the rule F
(
x f (x)

) = . . ..

(4) Let now

F1(x) =

⎧
⎪⎨

⎪⎩

0 for x < 0

x for 0 < x < 1

1 for x > 1

Observing that F ′
1(x) = u(x)

(
not F ′(x) = u(x), cf. question (1)

)
, deduce

F
(
F1(x)

)
: now, the additional termcan befixed, e.g., using F1(x) = F(x)+θ(x−1).

(3.47)

(1) Observing that
d

dx
arctan x = 1

1 + x2
and that F

(
1/(1 + x2)

) = . . ., use ques-

tion (1) of the above problem to deduceF (arctan x); the additional term can be fixed
observing that the function arctan x is an odd function and δ(x) is even, therefore….
For a different way to obtain this result, see next problem.

(2) Find lim
n→∞ arctan nx and lim

n→∞F (arctan nx)

(3.48)
Let the output b(t) produced by a linear system, when a(t) is the applied input, be
given by

b(t) =
∫ t

−∞
a(t ′) dt ′

(1) Verify that the Green function of this system is G(t) = θ(t).

(2) Using the resultF (θ ∗ f ) = . . ., and choosing a(t) = exp(−t2), findF
(
erf(t)

)
,

where erf(t) = ∫ t
−∞ exp(−x2)dx .
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(3) The same as in (2) choosing a(t) = 1/(1 + t2): find again F (arctan t) (cf.
previous problem).

(3.49)
Let

f0(t) =
{
1 for 0 < t < 1

0 elsewhere
, t ∈ R

and let f̂0(ω) be its Fourier transform. Consider the series

F̂ε(ω) = f̂0(ω)
(
1 + exp(−ε) exp(iω) + exp(−2ε) exp(2iω) + . . .

)

= f̂0(ω)

∞∑

n=0

exp
( − n(ε − iω)

)
, ε > 0

(1) Find and draw the inverse Fourier transform Fε(t) = F−1
(
F̂ε(ω)

)
. Hint: use a

translation theorem.
(2) Find the sum F̂ε(ω) of the series.

(3) Is Fε(t) ∈ L2(R)?

(4) Find lim
ε→0

F̂ε(ω).

(3.50)
(1) It is well known that in general the product of distributions cannot be defined. For
example, one could try to define δ2(x) starting from the product of some sequences
of “regular” functions un(x) which approximate δ(x). Several examples of such
functions are proposed in the first problems of this subsection, another well- known
family of functions approximating δ(x) is

uε(x) =
{
1/(2ε) for |x | < ε

0 for |x | > ε
, x ∈ R , ε > 0

Show that all the sequences u2n(x)
(
or u2ε(x)

)
have no limit.

(2) Verify that no result is obtained also considering sequences as un(x) δ(x)
(
the

limit depends on the approximating sequence un(x) which has been chosen
)
.

(3.51)
As the product of distributions, the convolution product is in general not defined.
Consider

sin x ∗ sin ax

x
=

∫ +∞

−∞
sin(x − y)

sin ay

y
dy , a > 0

and use Fourier transform. Is this convolution product defined for all a?
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(3.52)
(1) Let

uε(x) = exp(−ε|x |) , ε > 0

Calculate the convolution product

vε(x) = uε(x) ∗ sgn x

(
find first the Fourier transform v̂ε(ω) = . . . and then calculate its inverse Fourier
transform

)
.

(2) Find the limits in S ′ as ε → 0+ of uε(x) and of vε(x).

(3) One could conjecture to give a definition of the convolution 1 ∗sgn x
(
or equiv-

alently, apart from some factor, of the product δ(ω)P(1/ω)
)
approximating in S ′

the constant function 1 with uε(x) and then passing to the limit as ε → 0+ using the
above results. Explain why this is not correct: repeat calculations in (1) and (2) now
approximating 1 with

uε1,ε2(x) =
{
exp(ε1x) for x < 0

exp(−ε2x) for x > 0
, ε1, ε2 > 0, ε1 	= ε2

(the definition cannot depend on the approximation chosen …!)

(3.53)
(1) As well known, x δ′(x) = −δ(x). Show that

x2δ(x) = x2δ′(x) = 0 , x2δ′′(x) = 2δ(x)

and verify that the Fourier transforms of these identities produce obvious results.

(2) Generalize: find

x2δ′′′(x) = . . . , . . . , xmδ(n)(x) = . . .

(3) (a) Verify that
h(x) δ(x − x0) = h(x0) δ(x − x0)

where h(x) is any function continuous in a neighborhood of x0.

(b) Extend to

h(x) δ′(x − x0) = . . .

(c) The Fourier transform F (x − 1) can be evaluated in two ways:

F (x − 1) = F (x) − F (1) and F (x − 1) = exp(iω)F (x)
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as an application of (b), verify that the two results coincide.

From Problems 3.54–3.57, the independent variable is denoted by y, to avoid
confusion with the notations used in other problems where the results obtained
here are applied.

(3.54)
(1) Without using Fourier transform, find the most general distributions T ∈ S ′
which satisfy each one of the following equations:

(a) y T = 0 ; (b) y T = 1 ; (c) y2T = 0 ; (d) y2T = 1 ;
(e) y3T = 0 ; (f ) y3T = 1 ; (g) y T = sin y; (h) y T = cos y

(2) Specify if there is some solution, among those found in (1), which belongs to
L2(R)

(
clearly and more precisely: specify if there is some distribution T = Tu

which is associated to a function u(y) ∈ L2(R)
)
.

(3.55)
The same questions as in the above problem for the equations:

(a) (y−1) T = 0 ; (b) (y−1) T = 1 ; (c) (y±i)T = 0 ; (d) (y±i)T = 1;
(e) (y − α) T = 0 ; (f ) (y − α) T = 1 with α = a + ib, a, b real 	= 0

(3.56)
The same questions as in Problem3.54 for the equations:

(a) y(y−1) T = 0 ; (b) y(y−1) T = 1 ; (c) (y2−1) T = 0 ; (d) (y2−1) T = 1;
(e) y(y±i) T = 0 ; (f ) y(y±i) T = 1 ; (g) (y2+1) T = 0 ; (h) (y2+1) T = 1

(3.57)
The same questions as in Problem3.54 for the equations:

(a) (sin y) T = 0 ; (b)
(
1 + exp(iy)

)
T = 0 ;

(c) (1 − cos y) T = 0 ; (d) (y − sin y) T = 0 ; (e) exp(−1/y2) T = 0
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(3.58)
Using Fourier transform, solve the following equations for the unknown function
u(x):

(a) u′(x) + u(x − π/2) = 0 ; (b) u′′(x) + u(x) = u(x − π) + u(x + π) ;
(c) u(x − a) + 2u(x + 2a) = 3u(x) , a > 0 ;

(d) 2u′(x) + u(x − 1) − u(x + 1) = 0

(3.59)
Using Fourier transform, find the distributions T which solve the following equations:

(a) x T = δ(x) ; (b) (x − 1) T = δ(x) ; (c) x2 T = δ(x)

(3.60)
Using Fourier transform, find the distributions T which solve the equation:

x DT + T = 0

(clearly DT is the derivative of T ).

(3.61)
Let fε(x) be the function in L2(−π, π) defined by

fε(x) =
{
1/(2ε) for |x | < ε

0 for |x | > ε
, 0 < ε < π

and evaluate its Fourier expansion in terms of the complete set {exp(inx) , n ∈ Z}.
Consider then the periodic prolongation f̃ε(x) to all x ∈ R of fε(x) with period
2π . Evaluate the limit as ε → 0+ of fε(x) and of its Fourier expansion (notice
that this expansion is automatically periodic; explain why these limits can be safely
performed) to obtain the Fourier expansion of the “Dirac comb”

∑

m∈Z
δ(x − 2mπ) = 1

2π

∑

n∈Z
exp(inx)

(3.62)
(1) Write the Fourier expansion in L2(−π, π) of the function

(
see Problem 1.20,

q. (1)
)

f (x) =
{

−1 for − π < x < 0

1 for 0 < x < π
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in terms of the orthogonal complete set {1, cos nx, sin nx , n = 1, 2, . . .} (
actually,

the subset {sin nx n = 1, 2, . . .} is enough). Consider then the periodic prolongation
f̃ (x) to all x ∈ R of f (x)with period 2π : evaluate the first derivative of f̃ (x) and of
its Fourier expansion (the expansion is automatically periodic) to obtain the identity

2

π

∑

n∈Z
cos

(
(2n + 1)x

) =
∑

m∈Z
δ
(
x − 2mπ

) −
∑

m∈Z
δ
(
x − (2m + 1)π

)

(2) Proceed as in (1) for the function (cf. Problem 1.21)

f (x) =
{
x + π for − π < x < 0

x − π for 0 < x < π

to obtain again the Fourier expansion of the “Dirac comb” as in the problem above(
what is the derivative of f (x)?

)
.

3.2.2 Fourier Transform, Distributions, and Linear Operators

In this subsection, we will consider some examples of linear operators whose
action is extended from the Hilbert space L2(R) to the linear space of distri-
butionsS ′. Also many of the problems proposed in the following subsections
can be stated in terms of operators of this type; indeed, whenever there is a
linear relationship between an “input” a(t) and the corresponding “output”
b(t), one can define a linear operator T simply putting T

(
a(t)

) = b(t).

(3.63)
(1) (a) Using Fourier transform, study the convergence as n → ∞ of the sequence
of operators Tn : L2(R) → L2(R)

(
already considered in Problem 3.18, q. (4)

)

Tn f (x) =
∫ +∞

−∞
f (x)

sin
(
n(x − y)

)

π(x − y)
dy

Recognize that this type of convergence can be viewed as the statement, in the
language of the operators inHilbert space, of the property of the sequence of functions
gn(x) = sin nx/(πx) of converging to δ(x) (inS ′, of course).
(b) Changing the variable x into the time variable t , the operators Tn can be interpreted

as ideal filters of “low frequencies” |ω| ≤ n (see Problem 3.18). Construct the
operators Sn of the filters for “high frequencies” |ω| ≥ n. What is lim

n→∞ Sn?
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(2) Consider now the family of operators studied in Problem 3.19, q. (6)

Ta f (x) =
∫ +∞

−∞
f (y)

a

a2 + (x − y)2
dy

and study their convergence as a → 0+. Verify that the same remark holds as for the
sequence of operators seen in (1) (a). Construct similar examples of sequences (or
families) of operators replacing gn(x)with other sequences (or families) of functions
tending to δ(x).

(3.64)
It is well known that the operator T f (x) = x f (x) in L2(R) has no eigenvectors.
However, looking for “eigenvectors” in the vector spaceS ′, one easily sees that for
each “eigenvalue” λ ∈ R, there is the “eigenvector” δ(x − λ). Using this fact:

(1) Look for “eigenvalues” and “eigenvectors” of the operator

T f (x) = sin x f (x) , x ∈ R

(2) (a) Using Fourier transform, look for “eigenvalues” and “eigenvectors” of the
operator

T f (x) = f (x − 1) , x ∈ R

Look in particular for the “eigenvectors” corresponding to the “eigenvalue” λ = 1.

(b) Essentially the samequestion as in (a):what is themost general formof theFourier

transform f̂ (ω)of a periodic function f (x)of period 1
(
or period τ : f (x) = f (x−τ),

∀x ∈ R
)
?

(3.65)
Consider the operator defined in L2(R)

T f (x) = f (x) − f (x − 1)

Using Fourier transform:

(1) Find ‖T ‖. Is there any f0(x) ∈ L2(R) such that ‖T f0‖ = ‖T ‖‖ f0‖?
(2) Are there eigenvectors of T in L2(R)? and inS ′?
(3) Find KerT and RanT , specifying if RanT = L2(R) or at least is dense in it.

(4) More in general, the same questions for the operator

T f = α f (x) + β f (x − 1) , α, β ∈ C

(3.66)
(1) In a given linear system, if the input is a(t) = θ(t) exp(−t) then the corresponding
output is b(t) = exp(−|t |). Using Fourier transform, show that this uniquely defines
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the Green function G(t) ∈ L2(R) of the system
(
with the usual notations b(t) =(

G ∗ a
)
(t)

)
.

(2) Consider the linear operator T : L2(R) → L2(R) defined by

T
(
a(t)

) = b(t) = (
G ∗ a

)
(t)

where a(t) and b(t) are given in (1). Find ‖T ‖ and check if there is some input
a(t) ∈ L2(R) such that b(t) = λ a(t).

(3) It may appear surprising that the operator T can be completely defined in L2(R)

giving only one information, namely the result obtained when T is applied to the
single function a(t), according to (1). Give an explanation of this fact (see, however,
also next problem).

(3.67)
(1) Differently from the case considered above, it can happen that giving a single
input a(t) with the corresponding output b(t) = (

G ∗ a
)
(t) is not enough to define

the Green function of the system. Discuss the following cases:

(a) a(t) = exp(−|t |), b(t) = θ(t) exp(−t)

(b) a(t) = sin t

t
, b(t) = 0

(c) a(t) = sin 2t

t
, b(t) = sin t

t

(d) a(t) = sin t

t
, b(t) = sin 2t

t

(e) a(t) =
{

− exp(t) for t < 0

exp(−t) for t > 0
, b(t) = exp(−|t − 1|) − exp(−|t + 1|)

(f) a(t) =
{

− exp(t) for t < 0

exp(−t) for t > 0
, b(t) = exp(−|t − 1|) + exp(−|t + 1|)

(g) a(t) =
{
1 for |t | < 1

0 elsewhere
, b(t) = exp(−|t − 1|) − exp(−|t + 1|)

(h) a(t) =
{
1 for |t | < 1

0 elsewhere
, b(t) = 0

(2) For completeness and comparison, consider also the following cases, where both
a(t) and b(t) /∈ L2(R):

a(t) = δ′(t), b(t) = δ(t + 1) ± δ(t − 1)

(3.68)
Consider a linear system described by a Green function G(t) as usual, and introduce
the linear operator T : L2(R) → L2(R) defined by T

(
a(t)

) = b(t) = (
G ∗ a)

(t).
Assume that G(t) ∈ L1(R) ∩ L2(R).
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(1) Using Fourier transform, show that if the input a(t) ∈ L2(R) then also the output
b(t) ∈ L2(R).

(2) Find ‖T ‖.
(3) Assume that some input a(t) is “a good approximation”, in the sense of the
norm L2(R), of another input ã(t)

(
i.e., ‖a(t) − ã(t)‖L2(R) < ε for some “small”

ε > 0
)
. Show that also the corresponding output b(t) approximates b̃(t) and find

some constant C such that ‖b(t) − b̃(t)‖L2(R) < Cε.

(4) Show that the properties in (1), (2), and (3) are still true under the only hypothesis
that the Fourier transform Ĝ(ω) is a bounded function.

(5) What changes if Ĝ(ω) is unbounded?

3.2.3 Applications to ODEs and Related Green Functions

(3.69)
(1) Consider the differential equation

ẋ + ax = f (t) , x = x(t) , a > 0

Find the Fourier transform Ĝ(ω) of the Green function of this equation and then
the function G(t) (see also Problem 3.4). Find also the most general Green function
G(t).

(2) Obtain again the most general Green function G(t) directly “by hand”: start from
the solution G−(t) obtained integrating the equation Ġ− + aG− = 0 for t < 0, and
the solution G+(t) obtained integrating the equation Ġ+ + aG+ = 0 for t > 0;
deduce then the “global” solution of the equation Ġ + aG = δ(t) imposing the
suitable discontinuity condition at the point t = 0

(
to G−(t) as t → 0− and toG+(t)

as t → 0+)
.

(3) The same questions (1) and (2) for the equation

ẋ − ax = f (t) , x = x(t) , a > 0

(4) Among the Green functions obtained for the equation in (1), does a Green func-
tion exist which is causal and belongs to L2(R) (or to S ′)? And among the Green
functions obtained for the equation in (3)?

(3.70)
Consider again the two equations

ẋ ± ax = f (t) , x = x(t) , a > 0

(1)Consider theGreen functions obtainedusingFourier transformof these equations:
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(a) find their limits as a → 0+ specifying in what sense these limits exist;

(b) do these limits coincide?

(c) do these limits solve the equation ẋ = δ(t)?

(2) Find the most general solution of the equation

ẋ = δ(t)

Is there any relationship between these solutions and the limits obtained in (1) (a) ?

(3.71)
Consider the equation

ẋ + x = f (t) , x = x(t)

(1) Let f (t) = θ(t) exp(−αt), α 	= 1.

(a) Solve the equation by means of Fourier transform. Only one solution is obtained;
considering the solutions of the homogeneous equation ẋ0 + x0 = 0, write then
the most general solution of the equation, and find the solution which satisfies the
condition x(1) = 1.

(b) The same with α = 1.

(2) The same as in (1) with f (t) = sgn t .

(3.72)
Consider the equation

ẋ + i x = f (t) , x = x(t)

(1) Using Fourier transform find the most general Green function of this equation.

(2) Find the most general solution of the equation if f (t) = θ(t) exp(−t), and then
the solution which satisfies the condition x(1) = 1.

(3) The same as in (2) if f (t) = sgn t .

(4) Discuss the main difference between this and the previous problem: how many
Green function are obtained in each case using Fourier transform?

(3.73)
Consider the equation (use Fourier transform in all questions)

ẋ + ax = f (t) , x = x(t) , a > 0

(1) Find the solution x(t) if f (t) = sin t .

(2) (a) Let f (t) = h(t − 1) − h(t + 1), where h(t) ∈ L2(R). Show that the
corresponding solution x = xa(t) ∈ L2(R) and find some constant C such that
‖x(t)‖L2(R) ≤ C‖h(t)‖L2(R).

(b) Let x̃(t) = lim
a→0+

xa(t): show that also x̃(t) ∈ L2(R) and find a constant C such
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that ‖x̃(t)‖L2(R) ≤ C‖h(t)‖L2(R).

(3) The same as in (2) (a) and (b) if f (t) = h(t − 1) + h(t + 1).

(3.74)
Consider the following ODE for the unknown function x = x(t), where f = f (t)
is given; use Fourier transform:

a ẋ + b x = ḟ , a, b > 0

(1) Show that if f (t) ∈ L2(R) then also x(t) ∈ L2(R) and find a constant C such
that ‖x‖L2 ≤ C ‖ f ‖L2 .

(2) Put a = b = 1. Show that the solution x(t) can be written as x(t) = f (t)+ x1(t)
where x1(t) satisfies the ODE …

(3) Put a = b = 1 and find x(t) in the cases:

f (t) = δ(t) and f (t) = θ(t)

(3.75)
The equation of the motion of a particle of massm = 1 subjected to an external force
f (t) and to a viscous damping

(
cf. Problem 3.12

)
is

v̇ + βv = f (t) , t ∈ R, β > 0

having denoted by v = v(t) its velocity.

(1) Let f (t) = θ(t) exp(−t) and β 	= 1. Find the Fourier transform v̂(ω) = F
(
v(t)

)
,

and then v(t). Find v(0)(t) = lim
β→0+

v(t). Does this limit exist in L2(R)?

(2) When β = 0, the solution v(t) of the equation v̇ = θ(t) exp(−t) can be obtained
by direct integration (with no use of Fourier transform): find v(0)(t)

(
under the con-

dition v(0)(t) = 0 if t ≤ 0
)
and compare with the result obtained in (1). Find then

v(0)(+∞) and the final kinetic energy
(
v(0)(+∞)

)2
/2 of the particle.

(3) (a) Evaluate explicitly the work W f done by the force (with generic β > 0)

W f =
∫

L
f dx =

∫ +∞

−∞
f (t)v(t) dt

(where L is the space covered by the particle) using the given f (t) and the expression
of v(t) obtained in (1); find then the limit

W (0)
f = lim

β→0+
W f
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Is this limit equal to
∫ +∞

−∞
f (t)v(0)(t) dt? (why?). Show thatW (0)

f is equal to the final

kinetic energy of the particle when β = 0.

(b) Find again W f now using Parseval identity: write W f = (
f, v

)
as an integral

in the variable ω in terms of the expressions of f̂ (ω) and Ĝ(ω) obtained above,
evaluate explicitly this integral by integration in the complex plane ω, and then find
W (0)

f = lim
β→0+

W f . Check the result with (a) before.

(c) A third possibility for finding the limitW (0)
f = lim

β→0+
W f : writeW f as an integral

in the variable ω as in (b) and, before evaluating this integral, perform first the lim
β→0+(

recall that lim
ε→0+

1/(x + iε) → . . .
)
, etc. The result should coincidewith the previous

one! (These three ways for obtaining the same result propose some different relevant
aspects and provide useful exercises!)

(3.76)
Consider now the same problem as the above one but extending to the case of a
general force f (t) ∈ L1(R) ∩ L2(R)

(
and f (t) real, of course

)
.

(1) Let β > 0; write the Fourier transform v̂(ω) = F
(
v(t)

)
in terms of the Fourier

transformof theGreen function Ĝ(ω) of the equation and of the applied force f̂ (ω) =
F

(
f (t)

)
.

(2) Write the work W f done by the force
(
cf. Problems 3.12, 3.13

)

W f =
∫

L
f dx =

∫ +∞

−∞
f (t)v(t) dt = (

f, v
)

(where L is the space covered by the particle) using Parseval relation as an integral in
the variable ω in terms of f̂ (ω) and Ĝ(ω). Evaluate then the limit W (0)

f = lim
β→0+

W f .

Hint: recall that f (t) is real, therefore f̂ ∗(ω) = . . ..

(3) When β = 0, the equation v̇ = f (t) can be integrated directly (with no use of
Fourier transform): show that v(0)(+∞) = f̂ (0)

(
under the condition v(−∞) = 0

)
,

and that, as expected, W (0)
f is equal to the final kinetic energy of the particle.

(4)When β = 0, under what condition on the applied force f (t), does the workW (0)
f

done by f (t) vanish?

(3.77)
Consider the following equation

ẋ + iax = δ(t) − δ(t − 1) , x = x(t) , a ∈ R

Use Fourier transform.

(1) For what values of a ∈ R are there solutions x(t) ∈ L2(R)?
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(2) Find the most general solution of this equation in the cases a = 0, a = π,

a = 2π .

(3) The same questions (1) and (2) for the equation

ẋ + iax = δ(t) + δ(t − 1)

(3.78)
(1) Using Fourier transform, find the Green function(s) of the ODE

ẍ + x = f (t) , x = x(t)

How many Green functions are obtained using Fourier transform? and does one
obtain in this case the most general Green function ? Write in particular the causal
Green function: does it belong to L2(R)? toS ′?

(
see also Problem 3.56 (d)

)
.

(2) Repeat calculations proceeding “by hand”, as in Problem3.69: here, one has
to impose the continuity condition at t = 0 to G±(t), and a suitable discontinuity
condition to Ġ±(t) ….

(3.79)
The same questions (1) and (2) as in the above problem for the equation

ẍ = f (t) , x = x(t)

(
see also Problem 3.54 (d)

)
.

(3.80)
Using Fourier transform, find the Green function of each one of the following equa-
tions

ẍ − x = f (t) ; ẍ ± ẋ = f (t) , x = x(t)

How many Green functions are obtained proceeding through Fourier transform?
Explain why one does not obtain the expected ∞2 solutions. Find then the most
general Green function

(
see also Problem 3.56 (h), (f)

)

(3.81)
(1) By means of Fourier transform, find the most general solution of the following
equation and find, in particular, the solution which “respects causality”2

ẍ = θ(t) exp(−t) , x = x(t), t ∈ R

Hint: cf. Problem3.54 (d) anduse adecomposition as
1

y2(y − c)
= a1

y
+ a2

y2
+ b

y − c
.

2Assuming that the “input” f (t) = 0 for t < t0, the solution respecting causality is requested to be
zero for t < t0

(
in the present case x(t) = 0 for t < 0

)
.
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(2) Obtain again the general solution by direct repeated integration
(
without using

Fourier transform; impose continuity at x = 0 of x(t) and ẋ(t)
)
.

(3.82)
Solve by means of Fourier transform the equation

ẍ − x = θ(t) exp(−2t) , x = x(t), t ∈ R

How many solutions are obtained in this way (cf. Problem 3.56 (h))? Write then
the most general solution. Find, in particular, the solution respecting causality (see
previous problem). Is this solution in L2(R)? inS ′? Is there a solution in L2(R)?

(3.83)
The same questions as in the above problem for the equation

(
cf. Problem3.56 (f)

)

ẍ + ẋ = θ(t) exp(−t) , x = x(t), t ∈ R

(3.84)
Solve by means of Fourier transform the equation

(
cf. Problem3.56 (d)

)

ẍ + x = θ(t) exp(−t) , x = x(t), t ∈ R

Does one obtain in this way the most general solution? Find in particular the solution
respecting causality. Is this solution in L2(R)? inS ′?

(3.85)
(1) (a) Find the most general solution x(t) of the equation

ẋ + i x = exp(−iαt) , t ∈ R, α 	= 1

both by means of direct elementary integration, and by means of Fourier transform.

(b) The same questions in the “resonant case” α = 1, i.e.,:

ẋ + i x = exp(−i t)

Hint: recall that
(y − 1)δ′(y − 1) = . . .

(2) The same as in (1) for the equation

ẍ + x = sin αt

with α 	= 1 and α = 1. Hint: in the resonant case α = 1, show first that

(y2 − 1)
(
δ′(y − 1) ± δ′(y + 1)

) = A
(
δ(y − 1) ∓ δ(y + 1)

)
where A = . . .
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(3.86)
Let fn(t) be the functions

fn(t) =
{
sin t for |t | ≤ 2nπ

0 for |t | ≥ 2nπ
, n = 1, 2, . . . , t ∈ R

(1) (a) Calculate the second derivative f̈n(t).

(b) Without using Fourier transform but using the result in (a), find the most general

solution of the equation

ẍ + x = δ(t + 2nπ) − δ(t − 2nπ)

(2) Let

ĝn(ω) = exp(−2inπω) − exp(+2inπω)

1 − ω2

Find gn(t) = F−1
(
ĝn(ω)

)
. Hint: notice that (−ω2 + 1)ĝn(ω) = . . ., therefore gn(t)

satisfies the differential equation ….

(3) Find the limits (in S ′, of course)

lim
n→+∞

(
exp(−2inπω)−exp(+2inπω)

)
and lim

n→+∞
exp(−2inπω) − exp(+2inπω)

1 − ω2

In all the above problems of this subsection, the independent variable has been
the time t , and in most cases the notion of causality has been introduced. In
the following problems of this subsection, we will introduce as independent
variable the “position” x ∈ R, and the unknown variable will be denoted by
u = u(x). The procedure for solving differential equations is clearly exactly
the same as before, but the physical interpretation changes. For instance, there
is no reason to impose a condition similar to the causality: indeed, assuming
that there is some point x0 such that the applied term f (x) is zero for all x < x0,
one expects that the effect propagates also to the points “at the left” of x0, i.e.,
also to the points x < x0. Similarly, there is no reason to impose to the Green
function to be zero for x < 0. So, instead of causality conditions, one can
have to impose different conditions depending on the physical situations (e.g.,
vanishing of the solution at x → +∞, some boundary conditions, suitable
continuity or discontinuity properties, etc.).

(3.87)
Consider the equation
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−u′′(x) = δ(x − x1) , 0 ≤ x ≤ 1

where x1 is any fixed point with 0 < x1 < 1, and with boundary conditions

u(0) = u(1) = 0

Notice that this problem amounts, e.g., to looking for stationary (i.e., time-
independent) solutions u = u(x) of the d’Alembert equation describing an elas-
tic string with fixed end points in x = 0 and x = 1, in the presence of an applied
force f (x)

utt − uxx = f (x)

when the force is “concentrated” at the point x1. Equivalently, this amounts to finding
the Green function of this problem. Use three different procedures:

(1) Apply Fourier transform to the equation−u′′ = δ(x−x1), assuming here x ∈ R,
find û(k) = F

(
u(x)

) (
see Problem 3.54 (d)

)
and evaluate the inverse Fourier trans-

form u(x); impose then to this u(x) the boundary conditions u(0) = u(1) = 0.

(2) Solve the equation −u′′ = δ(x − x1) “by hand”: find the solution u−(x) of the
equation u′′− = 0 for 0 < x < x1, and the solution u+(x) of the equation u′′+ = 0
for x1 < x < 1; impose the boundary conditions u−(0) = 0 and u+(1) = 0, impose
finally the continuity condition at x = x1 to u±(x) and the suitable discontinuity
condition at x = x1 to u′±(x).

(3) Solve the equation −u′′ = δ(x − x1) by direct integration
(
without using Fourier

transform, recall that d
dx θ(x − x1) = . . .

)
, etc.

(3.88)
By means of Fourier transform, find the most general solution of the equation (cf.
Problem 3.81)

uxx = θ(x) exp(−x) , u = u(x), x ∈ R

Find, in particular, the solution vanishingwhen x → +∞, and the solution satisfying
the boundary conditions u(−1) = u(1) = 0.

(3.89)
Solve by means of Fourier transform the equation (cf. Problem 3.84)

uxx + u = θ(x) exp(−x) , u = u(x), x ∈ R

Find, in particular, the solution satisfying the boundary conditions u(0) =
u(π/2) = 0. Show that it is impossible to have a solution satisfying the bound-
ary conditions u(0) = u(π) = 0: why?
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3.2.4 Applications to General Linear Systems and Green
Functions

(3.90)
(1) Consider any linear system defined by a Green function G(t), where input
a(t) and output b(t) are related by b(t) = (

G ∗ a
)
(t) as usual. Let the input be a

monochromatic wave a(t) = exp(−iω0t) ,∀t ∈ R. Using Fourier transform, show
that also the output (if not zero) is a monochromatic wave differing from the input
in presenting an “amplification” and a “phase shift”.

(2) Find the output b(t) if the input is the superposition of twomonochromatic waves
as a(t) = exp(−iω1t) + exp(−iω2t) ,∀t ∈ R, with ω1 	= ω2.

(3.91)
(1) By integration in the complex plane, evaluate the inverse Fourier transform

F−1
(
P
( 1

ω − 1

) 1

(ω − i)2

)

(2) The Fourier transform of the Green function G = Gn(t) of a linear system is
given by

Ĝn(ω) = 1

(ω − i)n
, n = 1, 2, . . .

Without calculating Gn(t), specify for what n the Green function Gn(t) is a real
function.

(3) Let now n = 2 in the above Green function and let a(t) = sin t be the input
applied to the system. Find â(ω) and the corresponding output b(t). Is the output a
real function?

(
cf. (2)

)
.

(4) The same as in (3) if a(t) = sin |t | = sgn t sin t
(
see (1)

)
.

(3.92)
Consider a linear system described by aGreen functionG(t)with the usual notations.

(1) Let the Fourier transform Ĝ = Ĝ0(ω) of the Green function be given by

Ĝ0(ω) = −iω

What is the relationship between the input a(t) and the output b(t)? Find b(t) if
a(t) = θ(t).

(2) Consider now the following “approximation” Ĝε(ω) ∈ L2(R) of Ĝ0(ω) given
by

Ĝε(ω) = −iω

(1 − iεω)2
, ε > 0
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(verify that indeed Ĝε(ω) → Ĝ0(ω) inS ′). Let a(t) = θ(t). Find the corresponding
output bε(t) if the Green function is given by Ĝε(ω) and show that indeed bε(t) is
an approximation of ….

(3.93)
A linear system is defined by a Green function , whose Fourier transform is

Ĝτ (ω) = ω4

(1 + ω2)2
exp(iωτ) , τ ∈ R

(1) If the input is

a(t) =
{
1 for t < 0

2 for t > 0

is it possible to say if the corresponding output b = bτ (t) belongs to L2(R) (without
calculating it)?

(2) What properties (continuity, differentiability, behavior as |t | → ∞) can be ex-
pected for bτ (t)?

(3) Study the convergence as τ → ∞ of bτ (t).

(3.94)
Consider a linear system defined by the Green function

G = GT (t) =
{
1 for 0 < t < T

0 elsewhere
, T > 0

with input a(t) and output b = bT (t) related by the usual rule b = G ∗ a.

(1) Using Fourier transform find b = bT (t) if a(t) = t exp(−t2)

(2) Find lim
T→∞ bT (t). Does this limit exist in the norm L2(R)? in the sense of S ′?

Confirm the conclusion examining lim
T→∞ b̂T (ω).

(3) Let now G(t) = θ(t): using Fourier transform find b(t) if a(t) = t exp(−t2);
does this b(t) coincide with the limit obtained in (2)?

(3.95)
Consider a linear system defined by the Green function (use Fourier transform)

G = Gc(t) = sin ct

π t
, c > 0

with input a(t) and output b = bc(t) related by the usual rule bc = Gc ∗ a.

(1) Is there some input a(t) 	= 0 such that bc(t) = 0 for all t ∈ R?
(2) Let a(t) ∈ L2(R): what properties of the output bc(t) can be expected?

(
specify

if bc(t) ∈ L1(R) ∩ L2(R), discuss its continuity and differentiability, boundedness,
behavior at |t | → ∞)

.
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(3) Find lim
c→∞ Gc(t). If a(t) ∈ L2(R), find lim

c→∞ bc(t); does this limit exist also in the

sense of the norm L2(R)?

(3.96)
Consider a linear system defined by the Green function

G = GT (t) =
{
1 for |t | < T

0 elsewhere
, T > 0

with input a = a(t) and output b = bT (t) related by the usual rule bT = GT ∗ a.

(1) Is there some nonzero input a(t) ∈ L2(R) such that bT (t) = 0 for all t ∈ R? and
if a(t) ∈ S ′?
(2) Let a(t) ∈ L2(R): what properties of the output bT (t) can be expected? (specify
if bT (t) ∈ L1(R) ∩ L2(R), discuss its continuity and differentiability, boundedness,
behavior at |t | → ∞).

(3) Find lim
T→+∞ GT (t) and lim

T→+∞ ĜT (ω).

(4) Let a(t) ∈ L1(R) ∩ L2(R): find lim
T→+∞ b̂T (ω) and lim

T→+∞ bT (t).

(3.97)
Assume that the input a(t) and the corresponding output b(t) of a system are related
by the rule

a(t) = b(t) + α

∫ t

−∞
exp

(− (t − t ′)
)
b(t ′) dt ′

(1) Using Fourier transform, find the Green functions in the following cases:

α = 1 ; α = −1 ; α = −2

(2) Verify (not using in this question Fourier transform) that the given equation with
a(t) = 0 and α = −2 admits a solution of the form b0(t) ∝ exp(βt), with β ∈ R to
be determined.

(3) Assuming that the only solutions of the equation with α = −2 in the “homoge-
neous” case a(t) = 0 are those found in (2), write the most general Green function
of the equation in the case α = −2 and specify if there is a causal Green function.

(3.98)
The input a(t) and the output b(t) of a linear system are related by the rule

ḃ(t) = a(t) − a(t − 1)

(1) Using Fourier transform, find the most general Green function G(t) of this prob-
lem.
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(2) Both by direct integration (without using Fourier transform), and using Fourier
transform, find b(t) in the cases

a(t) = t exp(−t2) and a(t) = θ(t)

(3) The same questions (1) and (2) if the equation is

ḃ(t) = a(t) + a(t − 1)

(3.99)
The input a(t) and the output b(t) of a linear system are related by the rule

b̈(t) = 2a(t) − a(t − 1) − a(t + 1)

(1)UsingFourier transform, find themost generalGreen functionG(t)of the problem(
see Problem3.29, q. (2)

)
, and specify if there is aGreen function belonging to L2(R).

(2) Find the most general solution b(t) in the cases

a(t) = δ̇(t) ; a(t) = t ; a(t) = θ(t) exp(−t)

(3.100)
(1) Assume that in a linear system the output b(t) is related to the input a(t) by the
rule

b(t) =
∫ +∞

−∞
G(t + t ′) a(t ′) dt ′

where G(t) is given.

(a) Find b(t) in the special case G = δ(t + t ′).

(b) Clearly, the above relation between a(t) and b(t) cannot be expressed in the

form b = G ∗ a and, as a consequence, also b̂(ω) = Ĝ(ω) â(ω) is no longer true.
However, introducing the change of variable t ′′ = −t ′, the above relation can be
written as b = G ∗ a(−) where a(−) = . . . . Using this trick, evaluate b(t) using
Fourier transform in the case

G(t) = θ(t) exp(−t) and a(t) = θ(t) exp(−αt) , α > 0

(2) As another example of a linear system where the Green function is not of the
form G(t − t ′), consider the “multiplicative” case, where the output b(t) is simply
given by b(t) = M(t) a(t). Show that also this case can be written in the general

form b(t) =
∫ +∞

−∞
G(t, t ′)a(t ′) dt ′, putting G(t, t ′) = . . ..

(3.101)
(1) Let g(ω) ∈ L2(R) be a function which satisfies the following property
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P

∫ +∞

−∞
g(y)

y − ω
dy ≡ −P

1

ω
∗ g = π i g(ω) , ω ∈ R

What information can be deduced about the support of the inverse Fourier transform
f (t) = F−1

(
g(ω)

)
?

(
in our notations, F−1(g1 ∗ g2) = 2π F−1(g1)F−1(g2)

)
.

(2) By integration in the complex plane, calculate the four integrals

P

∫ +∞

−∞
exp(±iy)

(y ± i)(y − ω)
dy , ω ∈ R

(3) What among the four functions g(y) = exp(±iy)/(y ± i) satisfies the property
given in (1)? Confirm the result: find the inverse Fourier transforms of the four
functions g(y); what of these has support in t ≥ 0? This is a special case of the
Kramers–Kronig relations, or —more in general—of the dispersion rules, which
connect causality with analyticity and “good behavior” of the Fourier transform in
the complex plane ω.

(4) As a simple application, assume that Fourier transform g = Ĝ(ω) of a Green
function G(t) ∈ L2 satisfies the property stated by the equation in (1), and therefore
is causal. Separating real and imaginary parts Ĝ(ω) = Ĝ1(ω) + i Ĝ2(ω), the real
part of this equation gives

P

∫ +∞

−∞
Ĝ1(y)

y − ω
dy = −π Ĝ2(ω)

and a similar equation taking the imaginary part. Let for instance

Ĝ1(ω) = 1

1 + ω2

using the above equation, deduce Ĝ2(ω) and G(t). This shows that real and imag-
inary parts of Ĝ(ω) are not independent, but that the imaginary part is completely
determined by the real part, and conversely. As another consequence, writing
Ĝ(ω) = A(ω) exp

(
iΦ(ω)

)
, one concludes that the modulus A(ω) and the phase

Φ(ω) (which clearly admit quite different physical meaning resp. as “amplification”
and “phase distortion”) are reciprocally connected.

3.2.5 Applications to PDE’s

(3.102)
Introduce and use the Fourier transform û = û(k, t) with respect to the variable x of
the function u = u(x, t), defined as
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û(k, t) =
∫ +∞

−∞
u(x, t) exp(ikx) dx

(1) Show that the heat equation (also called diffusion equation)

∂2u

∂x2
= ∂u

∂t
, u = u(x, t) ; x ∈ R, t ≥ 0

is transformed into an ODE for û(k, t) and find its most general solution.

(2) Show that the solution u(x, t) of the heat equation with the initial condition

u(x, 0) = f (x)

may be written in the form

u(x, t) = f (x) ∗ G(x, t)

and find the “Green function” G(x, t).

(3) Find lim
t→0+

G(x, t). Explain why this is the result to be expected.

(4) Is there any u(x, 0) = f (x) ∈ L2(R) (or ∈ S ′) such that u(x, t = 1) =
e−1u(x, 0)?

(3.103)
Consider the heat equation and use the Fourier transform and the same notations as
in the previous problem. Assume that the initial condition u(x, 0) ∈ L2(R), and let
Tt be the time-evolution operator (t > 0)

Tt : u(x, 0) → u(x, t)

(1) Find ‖Tt‖
(2) Study the limit as t → +∞ of the operator Tt .

(3) Study the limit as t → 0+ of the operator Tt .

(3.104)
Use the same notations for the heat equation as before.

(1) Let

u(x, 0) = f (x) = sin x

x
, x ∈ R

(
then f̂ (k) = . . .

)
. For fixed t > 0, is it possible to establish, without calculating

the corresponding solution u(x, t), if

(a) u(x, t) ∈ L2(R)?

(b) lim
x→±∞ u(x, t) = 0, and u(x, t) is rapidly vanishing as x → ±∞?
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(c) u(x, t) ∈ L1(R)?

(2) Show that if the initial condition u(x, 0) = f (x) ∈ L2(R), then for any t > 0 the
solution u(x, t) ∈ L2(R) and is infinitely differentiable with respect to x and to t .
Show that the same is also true if f (x) is a combination of delta functions δ(x − a)

(for any a ∈ R) and derivatives thereof.

(3) Find the solution u(x, t) in these cases

f (x) = 1 ; f (x) = x ; f (x) = x2

(Calculations by means of Fourier transform need some care with the coefficients
2π,± i , etc., but the results are disappointingly obvious …)

(3.105)
Consider the equation

∂u

∂t
= ∂2u

∂x2
− a

∂u

∂x
, u = u(x, t), a > 0

which can be viewed as a “perturbation” (for “small” a) of the heat equation. Let

f (x) = u(x, 0)

be the given initial condition.

(1) Show that the solution u(x, t) can be written in the form u(x, t) = f (x)∗G(x, t)
and find G(x, t).

(2) Denote by ua(x, t) the solution of the given equation and resp. by u0(x, t) the
solution of the heat equationwith the same initial condition f (x). Let f (x) ∈ L2(R):
show that, for fixed t (put t = 1, for simplicity), ua(x, 1) and u0(x, 1) remain “near”
in the L2(R) norm, i.e., that ‖ua(x, 1) − u0(x, 1)‖L2(R) → 0 as a → 0. Hint: use
Lebesgue theorem or the elementary property (especially useful for “small” y)

| exp(iy) − 1| = |y|
∣∣∣
exp(iy) − 1

y

∣∣∣ ≤ |y| , ∀y ∈ R

(3) Is the same true as in (2) if f (x) = δ′′(x)?
(4) Show that if f (x) = sgn x then neither ua(x, 1) nor u0(x, 1) belong to L2(R),
however verify that ua(x, 1) − u0(x, 1) ∈ L2(R) and the property seen in (2) still
holds.

(3.106)
Use the same Fourier transform û(k, t) as in the above problems but now for the
d’Alembert equation

∂2u

∂x2
= ∂2u

∂t2
, u = u(x, t) ; x, t ∈ R



3.2 Tempered Distributions and Fourier Transforms 117

(1) Show that the d’Alembert equation is transformed into an ODE for û(k, t) and
find its most general solution.

(2) Let the initial conditions be given by

u(x, 0) = f (x) , ut (x, 0) = 0

show that the solution u(x, t) is a superposition of two waves.

(3) Let u(x, 0) = f (x) ∈ L2(R) and ut (x, 0) = 0: study the limit as t → +∞ of
the above solution u(x, t).

(4) Let the initial conditions be as before: study the limit as t → 0+ of the above
solution u(x, t).

(3.107)
Proceeding bymeans of Fourier transform as in the above problem for the d’Alembert
equation, consider now the initial conditions

u(x, 0) = 0 , ut (x, 0) = g(x)

(1) Show that the solution u(x, t) can be written in the form

u(x, t) = g(x) ∗ G(x, t)

and find Ĝ(k, t) = F
(
G(x, t)

)
and G(x, t).

(2) Find Gt (x, t) = ∂G(x, t)/∂t ; verify that Gt (x, 0) = δ(x) and explain why this
result should be expected.

(3) Let g(x) = θ(−x) exp(x): write the Fourier transform û(k, t) of the correspond-
ing solution; without evaluating u(x, t), but only recalling the statement of Jordan
lemma, show that u(x, t) = 0 for x > t > 0 (this also should be expected: why?)

(3.108)
Consider the nonhomogeneous d’Alembert equation

∂2u

∂x2
− 1

c2
∂2u

∂t2
= δ(x − vt) , u = u(x, t), x, t ∈ R

describing (e.g.,) an infinite elastic string subjected to a “delta” force traveling with
velocity v.

(1) Introducing the Fourier transform û = û(k, t) find the most general solution in
the case v 	= c.

(2) The same in the case v = c.

(3.109)
Consider the PDE
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∂2u

∂x2
+ 2

∂2u

∂x∂t
+ ∂2u

∂t2
= 0 , u = u(x, t) ; x ∈ R, t ∈ R

with initial conditions

u(x, 0) = f (x) , ut (x, 0) = g(x)

(1) Introducing the Fourier transform û(k, t) as in previous problems, transform the
given PDE into an ODE for û(k, t) and find its solution in terms of the Fourier
transforms f̂ (k) and ĝ(k) of the given initial conditions.

(2) If f (x), g(x) ∈ L2(R), is the same true, in general, for the solution u(x, t) for
any fixed t ∈ R?

(3) Find the solution u(x, t) of the PDE in terms of the given initial conditions f (x)
and g(x).

(4) Find the solution u(x, t) of the given PDE in the case

f (x) = θ(x) exp(−x) , g(x) = 0

(3.110)
Consider the Laplace equation

Δ2u ≡ ∂2u

∂x2
+ ∂2u

∂y2
= 0 , u = u(x, y)

on the half-plane y ≥ 0, with the boundary condition

u(x, 0) = f (x) , x ∈ R

Introduce and use the Fourier transform û = û(k, y) with respect to the variable x
of the function u = u(x, y), defined as

û(k, y) =
∫ +∞

−∞
u(x, y) exp(ikx) dx

(1) Show that the Laplace equation is transformed into an ODE for û(k, y), whose
most general solution is

û(k, y) = A(k) exp(ky) + B(k) exp(−ky)

which can be more conveniently written

û(k, y) = A′(k) exp(−|k|y) + B ′(k) exp(|k|y)
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(2) Show that, imposing a boundedness condition
(
therefore B ′(k) = 0

)
and the

given boundary condition, the solution can be written as a convolution product

u(x, y) = f (x) ∗ G(x, y)

and give the expression of the Green function G(x, y).

(3) Either from the expression of Ĝ(k, y) or of G(x, y), find lim
y→0

G(x, y) (which is

just the expected result: why?)

(3.111)
(1) With the same notations and assumptions as in the problem above, show that if
u(x, 0) = f (x) ∈ L2(R), then for y > 0 the solution u(x, y) is infinitely differen-
tiable with respect to x and to y. This should be expected: way?

(2) Let f (x) = 1/(1 + x2). Find û(k, y) and then u(x, y). Compare with Prob-
lem2.45, where the same result is obtained by means of a completely different
procedure.

(3) The same as in (2) if f (x) = x2/(1 + x2)2.

(3.112)
The (non-)uniqueness of the solutions of the Laplace equation in the half-plane y ≥ 0
with given boundary condition (see previous problems) has been discussed in Prob-
lem2.48. Indeed, the nonuniqueness is due to the presence of nonzero solutions of
the equation Δ2u = 0 with vanishing boundary condition. This can be reconsidered
by means of Fourier transform.

(1)With the sameprocedure as in the above problems, show that the Fourier transform
of the most general solution of the Laplace equation on the half-plane y ≥ 0 with
vanishing boundary condition u(x, 0) = 0 has the form

û(k, y) = C(k)
(
exp(ky) − exp(−ky)

)

(2) Observing that the above û(k, y) can belong to S ′ only if C(k) has support in
the single point k = 0, find some solutions u(x, y): choose, e.g.,

C(k) = δ′(k), δ′′(k), etc.

(3.113)
(1) Find the three-dimensional Fourier transform f̂ (k1, k2, k3) of f (x, y, z) =
y exp(−|x |).
(2) Find the three-dimensional Fourier transform f̂ (k1, k2, k3) of the functions (in
spherical coordinates r, θ, ϕ)

f1 = 1/r2 and f2 = exp(−r)

Hint: Write exp(i k · x)d3x = exp(ikr cos θ) r2 sin θ dθ dϕ dr (with k = |k|, r =
|x|) and perform fist the (trivial) integration in dϕ, then in dθ , ….
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(3.114)
(1) Find the inverse Fourier transform in R3 of g(k) = 1/k2 (similar calculations as
in the previous problem) and deduce F (1/r).

(2) Using Fourier transform verify that the Green function for the Poisson equation

ΔV = −4πρ(x) , V = V (x), x ∈ R3

(whereΔ is the three-dimensional Laplacian) is justG = 1/r . Deduce the elementary
rule for finding the electric potential V (x) produced by a distribution of charges
ρ = ρ(x), i.e., V = (1/r) ∗ ρ = . . ..

(3.115)
Verify, using Fourier transform, that the harmonic function u(x, y) = x2−y2 satisfies
the equation

Δ2u = 0 , u = u(x, y)

whereΔ2 is clearly the two-dimensional Laplacian. The same question for u(x, y) =
x3 − 3xy2. Warning: in 2 dimensions, one has F

(
f (x)g(y)

) = f̂ (k1)ĝ(k2) with
clear notations, therefore, e.g., F

(
f (x)

) = f̂ (k1)2πδ(k2), see also Problem 3.113,
q. (1).

3.3 Laplace Transforms

The notations for the Laplace transform of a (locally summable) function
f = f (x) will be

L
(
f (x)

) =
∫ +∞

0
f (x) exp(−sx) dx = g(s) = f̃ (s)

where s ∈ C and with Re s > λ, the summability abscissa of the Laplace
transform. According to this definition, the functions f (x) to be transformed
are defined only for x ≥ 0 (or must be put equal to zero for x < 0); so that,
e.g., the transform L (sin x) = 1/(1 + s2) should be more correctly written
L

(
θ(x) sin x

) = 1/(1 + s2). The function θ(x) is usually understood and
omitted in this context; it will be explicitly introduced only when possible
misunderstanding can occur, especially when comparing Fourier and Laplace
transforms.

All problems in this subsection, apart from Problems 3.129 and 3.130, can
be solved using elementary Laplace transforms

(
as, e.g., L

(
exp(kx)

) =
1/(s − k) with λ = Re k

)
and standard properties of Laplace transform, i.e.,

no need of the general Laplace inversion formula (also known as Bromwich
or Riemann–Fourier formula)
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f (x) = L −1
(
f̃ (s)

) = 1

2π i

∫

�

f̃ (s) exp(sx) ds

where � is any “vertical” line in the complex plane s from a − i∞ to a + i∞
with a > λ.

(3.116)
(1) Without trying to evaluate the Laplace transform of the following functions,
specify their summability abscissas:

xα ; xα exp(−x2) ; xα exp(βx) , with α > −1 (why this limitation?) and β ∈ R

(2) The same question for the functions

1

x + c
; exp(γ x)

x + c
; sin(x2)

(x + c)2
,with c > 0 (why this limitation?) and γ ∈ C

(3.117)
(1) Study the singularities in the complex plane s of the following Laplace transform

g(s) = exp(−s) + s − 1

s2(s + 1)

(2) Find and draw the inverse Laplace transform f (x) = L −1
(
g(s)

)
.

(3) Deduce from (1) and/or (2) the summability abscissa λ of g(s).

(3.118)
The same questions as in the previous problem for the Laplace transform

g(s) = 1 + exp(−πs)

s2 + 1

(3.119)
(1) Show that, if the abscissa λ of a Laplace transform f̃ (s) = L

(
f (x)

)
satisfies

λ < 0, then the Fourier transform f̂ (ω) of f (x) can be obtained from f̃ (s) by a
simple substitution. Compare e.g., the Laplace and Fourier transforms of f (x) =
θ(x) exp(−x).

(2) Find and draw the inverse Laplace transform f (x) = L −1
(
f̃ (s)

)
of

f̃ (s) = 1 − exp(−s) − s exp(−s)

s2

and find its abscissa λ. Compare this Laplace transform with the Fourier transform
f̂ (ω) = F

(
f (x)

)
.
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(3) This and the following question deal with the “critical” case λ = 0 (see also next
problem). Obtain F

(
θ(x)

)
as lim

ε→0+
F

(
θ(x) exp(−εx)

)
, ε > 0, and compare with

L
(
θ(x)

)
.

(4) Find and draw the inverse Laplace transform f (x) = L −1
(
f̃ (s)

)
of

f̃ (s) = 1 − exp(−s)

s2

Find then the Fourier transform f̂ (ω) = F
(
f (x)

)
and compare with f̃ (s).

(3.120)
Without trying to evaluate their Laplace and Fourier transforms, show that the fol-
lowing functions admit L -transform with abscissa λ = 0; do these functions also
admit F -transform

(
in L1(R), L2(R) or S ′)?

(
see also the examples in questions

(3) and (4) of the problem above
)

θ(x)
1

1 + x2
; θ(x)

x

1 + x2
; θ(x)

x2

1 + x2
; θ(x) exp(±√

x)

(3.121)
Using the result obtained in q. (1) of Problem3.119:

(1) Show that if f (x) ∈ L2(I ) where I ⊂ R is a compact interval, then its Fourier
transform f̂ (ω) is an analytic function for all ω ∈ C.

(2) Deduce that, in the same assumption, f̂ (ω) can have at most isolated zeroes in
the complex plane; in particular cannot have compact support on the real axis.

(3) Show that properties (1) and (2) are also shared, e.g., by the functions θ(x)
exp(−x2), θ(x) exp(−x4) and also exp(−x4) (the argument can be easily extended
to x < 0).

(3.122)
Consider the Laplace transform

f̃ (s) = exp(−as) − exp(−bs)

s2 + 1
, a, b ∈ R

(1) How can one choose a, b ∈ R in order to have abscissa λ = −∞?

(2) Find and draw the inverse Laplace transform f (x) = L −1
(
f̃ (s)

)
if a = 0 and

in the cases b = π, 2π , 4π .

(3) Use the above results to obtain the inverse Fourier transform of the function

gn,m(ω) = exp
(
iω(1 + 2πm)

) − exp
(
iω(1 + 2πn)

)

1 − ω2
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where n,m ∈ Z with n > m. Show that gn,m(ω) is a C∞ function. What is the
support of this inverse Fourier transform?

(3.123)
The equation of an electric series circuit of a resistance R, an inductance L , and a
capacitor C is

1

C

∫ t

0
I (t ′) dt ′ + L

d

dt
I + RI = V (t) , I = I (t)

(differently from the previous problems, here the independent variable is the time t),
with usual notations. Transform this equation by means of Laplace transform and
show that, putting I (0) = 0, the Laplace transforms Ṽ (s) = L

(
V (t)

)
and Ĩ (s) =

L
(
I (t)

)
are related by the rule

Ṽ (s) = G̃(s) Ĩ (s)

where G̃(s) is the Laplace transform of a Green function G(t). Find and draw G(t)
for different values of R, L ,C (cf. Problem 3.6).

(3.124)
Consider the equation of a harmonic oscillator subjected to an external force f (t)

ÿ + y = f (t) , y = y(t)

(as in the problem above, the independent variable is the time t), with given initial
values y(0) = a, ẏ(0) = b.

(1) Put f (t) ≡ 0 and solve by means of Laplace transform the equation (the solution
is trivial and well known!)

(2) Put a = b = 0 and

f (t) = θ(t) − θ(t − c) , c > 0

Write the Laplace transform f̃ (s) = L
(
f (t)

)
. Find and draw the solution y(t) if

c = π and if c = 2π . For what values of c one has y(t) = 0 for any t larger than
some t0 > 0?

(3) The same questions as in (2) with

f (t) = δ(t) + δ(t − c)

where δ(t) is the Dirac delta.

(3.125)
UsingL

(
x f (x)

) = . . . and lim
Re s→+∞L

(
f (x)

) = 0, find
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L
(exp(ax) − exp(bx)

x

)
; L

( sin x
x

)

(3.126)
(1) The Bessel function of zero-order y = J0(x) satisfies the ODE

xy′′ + y′ + xy = 0

Applying Laplace transform to this equation, find the Laplace transform J̃0(s) =
L

(
J0(x)

)
. Hint: use the rules L

(
x f (x)

) = . . . and L
(
f ′(x)

) = . . . and obtain a
first-order ODE for J̃0(s) which can be directly solved; recall that J0(0) = 1 and the
“initial value theorem”:

f (0+) = lim
x→0+

f (x) = lim
Re s→+∞ sL

(
f (x)

)

(2) As an application, find the convolution product J0(x) ∗ J0(x).

(3.127)
Use a translation rule for Laplace transforms and the known formula

∞∑

n=0

exp(−nas) = 1

1 − exp(−as)
, a > 0, Re s > 0

to evaluate the following transforms:

(a)L
(
f (x)

)
where f (x) is the square wave function for x > 0:

f (x) =
{
1 for 0 < x < 1, 2 < x < 3, . . . , 2n < x < 2n + 1, . . .

−1 for 1 < x < 2, 3 < x < 4, . . .

(b)L −1
( 1

s(1 − exp(−s))

)

(c)L −1
(
g(s)

)
where (see Problem 3.118)

g(s) = 1

s2 + 1

1 + exp(−πs)

1 − exp(−πs)
= 1

s2 + 1
ctanh

(
πs/2)

)

(3.128)
Consider the d’Alembert equation

∂2u

∂x2
= ∂2u

∂t2
, u = u(x, t)
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with given initial conditions

u(x, 0) = f (x) , ut (x, 0) = g(x)

Introduce and use the Laplace transform ũ(x, s) with respect to t , i.e.,

ũ(x, s) =
∫ +∞

0
u(x, t) exp(−st) dt

(1) Show that the d’Alembert equation is transformed into an ODE for ũ(x, s).

(2) In the case of vanishing initial conditions f (x) = g(x) = 0, solve the ODE
obtained in (1) to obtain the Laplace transform ũ(x, s) of the most general solution
of the equation.

(3) In the same conditions as in (2), assume that the equation describes an elastic
semi-infinite string (in x ≥ 0), and that extremumat x = 0 of the string is subjected to
a given transversal displacement u(0, t) = ϕ(t). Find the solution u(x, t) imposing
the condition that u(x, t) is bounded for all x ≥ 0.

(3.129)
Using the general Laplace inversion formula (see the introduction to this subsection):

(1) Show that the result f (x) is independent of the choice of the abscissa a of the
line � of integration (provided that a > λ) and that f (x) = 0 if x < 0, as expected.

(2) Verify, bymeans of an integration in the complex plane s, thewell-known formula

L −1
( 1

s2 + 1

)
= θ(x) sin x

(3.130)
Use the general Laplace inversion formula (see the introduction of this subsection)
to calculate

f (x) = L −1
( 1√

s

)

Hint: An integration in the complex plane s is requested, in the presence of a cut
along the negative part of the real axis x .

(3.131)
Using Laplace transform, show that the set {un(x) = xn exp(−x), n = 0, 1, 2, . . .}
is a complete set in the Hilbert space L2(0,+∞). Hint: show first that the Laplace
transform of a function f (x) ∈ L2(0,+∞) has abscissa λ ≤ 0. Verify then that the
completeness condition (un, f ) = 0, ∀n = 0, 1, 2, . . . becomes a condition on the
derivatives of the Laplace transform f̃ (s) evaluated at s = . . ..



Chapter 4
Groups, Lie Algebras, Symmetries
in Physics

4.1 Basic Properties of Groups and of Group
Representations

(4.1)
Consider a group G of finite order N (the order is the number of the elements
contained in the group).

(1) Show that the order of all subgroups of G is a divisor of N . Hint: let H be a
subgroup; consider the “cosets” gH with g ∈ G, ….

(2) Deduce that if N is a prime number then G has no subgroups (apart from,
obviously, the identity and G itself), and therefore is simple.

(3) Show that if N is prime, then G is cyclic and Abelian.

(4.2)
Show that if R is an unitary representation of a group G acting on a basis space V
(V may be either finite-dimensional or a Hilbert space) and R admits an invari-
ant subspace V1 ⊂ V , then also the orthogonal complementary subspace V2

(i.e., V1 ⊕ V2 = V ) is invariant under R. Therefore, R is completely reducible:
R = R1 ⊕ R2 withRi : Vi → Vi .

(4.3)
Let R be any representation of a group G on a basis space V (V may be either
finite-dimensional or a Hilbert space) and let T be any operator defined in V and
commuting withR, i.e.,

T R(g) = R(g) T , ∀g ∈ G

Let λ be an eigenvalue of T and assume that the subspace Vλ of the eigenvectors of
T with eigenvalue λ has dimension >1. Show that Vλ is invariant underR, i.e., that
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if vλ ∈ Vλ then also v′ ≡ R(g) vλ ∈ Vλ, ∀g ∈ G, or T v′ = λv′. In particular, if R
is irreducible, deduce the Schur lemma (in its simplest version).

(4.4)
(1) Show that if a group G is Abelian then all its irreducible representations are
one-dimensional.

(2) Show that if a group G is simple then all its representations are faithful (apart,
obviously, the trivial representation R : g → 1, ∀g ∈ G).

(4.5)
Find the group describing the symmetry of the equilateral triangle and all its inequiva-
lent irreducible representations.What degeneracy can be expected for the vibrational
energy levels of a physical system which exhibits this symmetry (e.g., the molecule
of ammonia NH3)?

(4.6)
Consider a system consisting of three particles with the same mass m, placed at
the vertices of an equilateral triangle having side �, and subjected to elastic forces
produced by three equal springs situated along the sides of the triangle. The length
at rest of the springs is �. To describe the small displacements (in the plane) of the
particles from their equilibrium positions one clearly needs six-dimensional vectors
x ∈ R6. The action of the symmetry group of the triangle on this space produces a six-
dimensional representation. Write first the characters of the inequivalent irreducible
representations of the symmetry group of the equilateral triangle (see the previ-
ous problem), and show that this six-dimensional representation has the following
characters

(6; 0, 0, 0; 0, 0)

written in the order: identity; reflections; rotations. Decompose then this representa-
tion as a direct sum of irreducible representations. These irreducible representations
describe different displacements of the particles: recognize that two of these dis-
placements are trivial (correspond to rigid displacements), and other two, having
dimension 1 and 2, correspond to oscillations of the system.

(4.7)
Consider the group describing the symmetry of the square and determine in particular
the dimension of its inequivalent irreducible representations (the use of Burnside
theorem can help). Compare with the result obtained in Problem 1.94 concerning the
degeneracy of the eigenvalues of the Laplace operator T = ∂2/∂x2 + ∂2/∂y2 for the
square with vanishing boundary conditions. Show that “accidental degeneracies” are
present in this case.

(4.8)

(1) Find all the inequivalent irreducible representations of the additive group Z7 of
the integers mod 7. Hint: see Problems 4.1, q. (3), 4.4, q. (1) and recall Burnside
theorem.
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(2) The same for the group Z6. Are there not-faithful representations? Compare with
the case of Z7 and with that of Problem 4.5.

(4.9)
The symmetry group O of the cube contains a subgroup (denoted here by O1) of
24 transformations not involving reflections, and other 24 transformations including
reflections. Show that the group can be written as a direct product O = O1 × Z2,
where Z2 is (isomorphic to) {1,−1}.Knowing that there are 5 inequivalent irreducible
representations of O1 and using Burnside theorem, find the dimensions of these
representations (and of those of O , of course), and the degeneracy which can be
expected for the vibrational energy levels of a system which exhibits the symmetry
of the cube.

(4.10)
(1) Let Φ be the homomorphism Φ : GLn(C) → C of the general linear complex
group GLn(C) of the invertible n × n complex matrices M into the multiplicative
group of nonzero complex numbers C, defined by

Φ(M) = det M

Specify the kernel K = KerΦ and the quotient group Q = GLn(C)/K . It is true
that GLn(C) is the direct product GLn(C) = K × Q?

(2) The same questions for the group Un of the unitary matrices.

(3) The same questions for the group GLn(R) of the invertible real matrices, and for
the group On of the orthogonal matrices.

(4.11)
(1) The “basic” representation of the rotation group SO2 in the R2 plane is, as well
known,

R(ϕ) =
(
cosϕ − sin ϕ

sin ϕ cosϕ

)

There is no eigenvector of R(ϕ) in the real space R2 (apart from the case ϕ = π ),
but there must exist eigenvectors in C2 (SO2 is Abelian, then its irreducible repre-
sentations are one-dimensional): find the eigenvectors of R(ϕ) and then decompose
the representation. What can be a physical meaning of these eigenvectors?

(
for a

possible interpretation, see question (3)
)
.

(2)What are the other inequivalent irreducible representations of SO2?What of these
are faithful?

(3) The electric fieldE of a planar electromagnetic wave propagating along the z-axis
can be written, with usual and clear notations,

E(x, y, z, t) =
(
Ex

Ey

)
=
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=
(
E1 cos(kz − ωt + ϕ1)

E2 cos(kz − ωt + ϕ2)

)
= Re

{
exp

(
i(kz − ωt)

) (
E1 exp(iϕ1)

E2 exp(iϕ2)

)}

Then the vector p ∈ C2 defined by

p =
(
E1 exp(iϕ1)

E2 exp(iϕ2)

)

shows the state of polarization of the e.m. wave. For example, (1, 0) describes the
linear polarization along the x-axis, etc. What types of polarization are described by
(1, ±i)?

(4.12)
Verify that the Lorentz boost with velocity v involving one spatial variable x and the
time t can be written in the form

L(α) =
(

cosh α − sinh α

− sinh α cosh α

)

where α = arctan(v/c). This (not unitary!) representation of the “pure” (i.e., without
space and time inversions) one-dimensional Lorentz group is reducible (the group
is indeed Abelian): perform this reduction; what is the physical meaning of the
eigenvectors of L(α)?

4.2 Lie Groups and Lie Algebras

(4.13)
(1) Show that the matrices M ∈ SUn can be put in the form

M = exp A

where the matrices A are anti-Hermitian (i.e., A+ = −A) and traceless. Show that
the space A of these matrices is a vector space and that for any A1, A2 ∈ A then
also the commutator [A1, A2] ∈ A . Find the dimension of the space A , which is
the Lie algebra of SUn , as vector space on the reals (which is, by definition, the
dimension of SUn); find then the dimension of Un .

(2) Show that the matrices M ∈ SOn can be put in the form

M = exp A

where the matrices A are real antisymmetric. Notice that, in this case, imposing only
the orthogonality of M , one gets automatically Tr A = 0 and then det M = 1: why
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cannot this procedure be extended to the whole group On , i.e., to the matrices with
det = −1? Find the dimension of the groups SOn . In the case of SO3, find a basis
for the vector space A of the 3 × 3 real antisymmetric matrices.

(4.14)
Consider a group G of matrices M and the neighborhood of the identity1 where one
can write (see previous problem)

M = exp A

where the matrices A describe a vector spaceA , the Lie algebra of G, of dimension
r (over the reals).

(1) Choose a matrix A1 ∈ A and consider M1 = exp(a1A1) where a1 ∈ R. Show
that M1 is an Abelian one-parameter subgroup of G. Let M1 and M2 = exp(a2A2)

two of these subgroups: in general, do these subgroups commute?

(2) Let A1, . . . , Ar be a basis for the vector spaceA : any A ∈ A can then be written
as A = ∑r

i=1 ai Ai with a ∈ Rr ; show that

Ai = ∂M

∂ai

∣∣∣
a=0

(4.15)
(1) Find the expression of the generator A of the Lie algebra of the rotation group
SO2 in its “basic” representation given in Problem 4.11, q. (1).

(2) The same for the pure Lorentz group given in Problem4.12.

(3) Evaluate

exp(aA) =
∞∑
n=0

(aA)n

n!
in the cases

A =
(
0 −1
1 0

)
; A =

(
i 0
0 −i

)
; A =

(
0 −1

−1 0

)
; A =

(
1 0
0 −1

)

Hint: A2 = . . .. Notice that this is a partial converse of questions (1) and (2).

(4.16)
Describe (or give a geometrical or physical interpretation of ) the groups generated
by the following (one-dimensional) Lie algebras:

A = 1 ; A = i ; A =
(
1 0
0 2

)
; A =

(
i 0
0 2i

)
; A =

(
i 0
0 i

√
2

)
;

1It can be useful to recall that, according to Ado theorem, all finite-dimensional Lie algebras admit
a faithful representation by means of matrices.
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A =
(
1 −1
1 1

)
; A =

⎛
⎝0 −1 0
1 0 0
0 0 1

⎞
⎠ ; A = any n × n matrix

(4.17)
The elements of the Euclidean group E3 in R3 (or in general En in Rn) are the
transformationsx → x′ = Ox+b,whereO ∈ O3 andb ∈ R3.Write the composition
rule in E3 and show that the mapping

(O,b) →

⎛
⎜⎜⎝

b1
O b2

b3
0 0 0 1

⎞
⎟⎟⎠

is a faithful representation of E3 in the group of 4×4matrices. Find the expression of
the Lie generators A1, A2, A3 and B1, B2, B3 of E3 in this representation (choose
for simplicity as matrix O a rotation around the z-axis).

(4.18)
(1) Let T1 be the group of translations along R and let the parameter a ∈ R denote
the translation (clearly T1 is isomorphic to R, the additive group of reals). Consider
the representation of T1 acting on the functions f (x) ∈ L2(R) according to

a → Ua where (Ua f )(x) = f (x − a)

Show that, as suggested by the notation, this representation is unitary. Assume the
parameter a “infinitesimal” and f (x) regular enough (expandable); expand then

f (x − a) = f (x) − . . .

and obtain the differential expression A of the Lie generator of the translation group.2

Extend to the group of translations in R3, i.e., x → x′ = x + a, a ∈ R3.

(2) Consider the representation R = Rϕ of the rotation group SO2 on the plane
x ≡ (x, y) acting on the space of functions f (x) ∈ L2(R2) according to the usual
rule

f (x) → (
Rϕ f

)
(x) = f

(
R−1

ϕ x
) = f (x′)

where Rϕ is given in Problem4.11, q. (1). Consider an “infinitesimal” rotation
R−1

ϕ x = x′ ≡ (x + ϕy + . . . , y − ϕx + . . .) and assume f (x) regular; expand
then

f (x′) ≡ f (x ′, y′) = f (x, y) + . . .

2It is customary in physics to introduce a factor i in the definition of these generators, in order to
have Hermitian operators. For example, A = −i d/dx , which is proportional to the momentum
operator P = −i� d/dx in quantum mechanics, as well known.
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and obtain the differential expression A of the Lie generator of the rotation group.

(3) Repeat the calculations considering a function f (x, t) and an “infinitesimal”
Lorentz boost L(α) (see Problem4.12) in the plane x, t .

(4.19)
(1) Let x ∈ R and consider a dilation x → x ′ = (exp a)x , with a ∈ R; introduce the
representation of the group of dilations acting on functions f (x) ∈ L2(R) according
to the usual rule (cf. Problem 4.18)

a → Ta where
(
Ta f

)
(x) = f

(
exp(−a)x

) = f (x − ax + . . .) = f (x) − . . .

Assuming f (x) regular (expandable), find the Lie generator D of the dilation group
in this representation Ta . Show that this representation is not unitary and that D is
not anti-Hermitian (nor Hermitian).

(2) Consider the group of transformations a → Sa , depending on a parameter a ∈ R,
where

(
Sa f

)
(x) = exp(−a/2) f

(
exp(−a)x

) = (1−a/2+. . .) f (x−ax+. . .) = f (x)−. . .

and find the generator D̃ of this transformation. Show that Sa is unitary and that D̃
is anti-Hermitian (in agreement with Stone theorem). (This is a reformulation of the
Problem 1.93).

(4.20)
(1) Show that all two-dimensional algebras can be put in one of the two forms
[ A1, A2 ] = 0 or [ A1, A2 ] = A2.

(2) Study the two-dimensional algebra generated by D, where D is the generator of
dilations considered in the above problem, q. (1) and the generator P = −d/dx of
the translations along x , and verify that this algebra admits a faithful representation
by means of the two matrices (cfr. also Problem4.17).

D′ =
(
1 0
0 0

)
, P ′ =

(
0 1
0 0

)

(4.21)
Let D1, D2 be the Lie generators of the dilations along x and y in the R2 plane, and
let A be the generator of the rotations in this plane. Using either the 2 × 2 matrix
representation or the differential representation

(
see Problems 4.15, 4.18, 4.19, q. (1),

and 4.20
)
of these generators, construct the Lie algebra (i.e., obtain the commutation

rules) of these operators. Show that this algebra is semisimple (what is the invariant
subalgebra?). Compare this algebra with the following three-dimensional algebras:

(i) the algebra of SO3, (ii) that of the Euclidean group E2, (iii) that of the Poincaré
group consisting of the Lorentz boosts involving x and t and of the two translations
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along x and t . Is there any isomorphism between these algebras? and between the
groups?

(4.22)
(1) Using, e.g., the differential representation (see Problem4.18), construct the Lie
algebra (i.e., obtain the commutation rules) of the three-dimensional group consisting
of the Lorentz boosts involving t with two real variables x, y and of the rotations on
the plane x, y.

(2) The same question for the six-dimensional “pure” Lorentz group3 L of the
Lorentz transformations involving t with the space variables inR3 and of the rotations
in R3 (the latter is clearly the subgroup SO3 ⊂ L ).

(3) The same question for the 10-dimensional Poincaré group, consisting of the
Lorentz group and the four translations along x and t .

(4.23)
(1) Show that the operators

D0 = d

dx
, D1 = x

d

dx
, D2 = x2

d

dx

generate a three-dimensional Lie algebra. Verify also that no (finite-dimensional)
algebra can be generated by two or more operators of the form xn(d/dx) if at least
one of the (integer) exponents n is > 2.

(2) Put

A1 = 1√
2

( − D0 + D2/2
)
, A2 = D1 , A3

1√
2

(
D0 + D2/2

)

find the commutation rules [Ai , A j ] and compare with the commutation rules of the
three-dimensional algebras mentioned in the two previous problems.

(4.24)
The representations of the non-compact group T1 of the one-dimensional translations
along R cannot be simultaneously unitary, irreducible, and faithful. Specify what
among the above properties are (or are not) satisfied by each one of the four repre-
sentations of T1 listed below. Denote by a the translation specified by the parameter
a ∈ R (T1 is clearly isomorphic to the additive group of reals).

(a) Consider the representation by means of 2 × 2 matrices according to

a →
(
1 a
0 1

)

3L is the subgroup “connected to the identity” of the full Lorentz group, usually denoted by
O(3, 1), which includes also space inversions and time reversal. The same remark holds for the
group considered in q. (1), which is a subgroup of O(2, 1).
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(verify that this is indeed a representation of T1: see Problem 4.17).

(b) Consider the representation acting on the functions f (x) ∈ L2(R) according to(
see Problem 4.18, q. (1)

)

a → Ua where (Ua f )(x) = f (x − a)

In this case, introduce the Fourier transform F
(
f (x)

) = f̂ (k) and show that any
subspace of functions f (x) having Fourier transform f̂ (k) with support J ⊂ R,
properly contained in R, is a (∞-dimensional) invariant subspace for this repre-
sentation. Therefore, to have one-dimensional representations, one must enlarge the
choice of the basis space and consider “functions” having Fourier transform f̂ (k)
with support in a single point, i.e., f̂ (k) = δ(k − λ). This leads to the representation
for T1 proposed in c).

(c) Consider the representation

a → exp(iλa) , λ ∈ R

(d) Consider the representation

a → exp(μa) , μ ∈ R.

(4.25)
(1) Extend the representations considered in the previous problem to the group of
translations including reflections (i.e., S x = −x ; is this group Abelian?).

(2) The same for the group of translations inR3 without reflections and for the group
which includes reflections.

(4.26)
Consider the three-parameter group (called Heisenberg group) of the 3× 3 matrices
defined by

M(a) =
⎛
⎝1 a1 a3
0 1 a2
0 0 1

⎞
⎠

where a ≡ (a1, a2, a3) ∈ R3.

(1) Find the generators A1, A2, A3 of this group and verify that the commutation
rules are

[ A1, A2] = A3 , [ A1, A3] = [ A2, A3] = 0

(which are the same—apart from some factor i�—as those of the quantum mechan-
ical operators p, q and the identity I ), and construct the one-parameter subgroups
generated by A1, A2 and A3.
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(2) Show that the map

M(a) → exp(−ia3) exp(i xa2) f (x − a1)

where f (x) ∈ L2(R), is a unitary representation of the Heisenberg group. Find
the generators of the group in this representation and verify that (expectedly!) they
satisfy the same commutation rules as seen in (1).

(3) Show that the representation given in (2) is irreducible. Hint: introduce Fourier
transform and use an argument similar to that in Problem4.24.

4.3 The Groups SO3, SU2, SU3

(4.27)
(1) Let x ≡ (x, y, z) ∈ R3 and consider the vector space generated by the quadratic
monomials x2, y2, z2, xy, xz, yz. This space is clearly invariant under the rotations
x → x′ = R x with R ∈ SO3. Decompose this space in a direct sum of subspaces
which are the basis of irreducible representations of SO3. What is the relationship
between these subspaces and the spherical harmonics Y�,m(θ, ϕ)?

(2) The same for the space generated by the cubic monomials x3, x2y, . . .. What is
the dimension of this space?

(4.28)
(1) Given twoLie algebrasA andA ′ with the same dimension r , and their generators
A1, . . . , Ar and resp. A′

1, . . . , A
′
r , assume that these generators satisfy the same

commutation rules apart from a multiplicative nonzero constant in their structure
constants, i.e.,

[ Ai , A j ] = ci jk Ak , [ A′
i , A′

j ] = λ ci jk A
′
k , λ �= 0

Show that the generators A′
i can be redefined, simply introducing generators A′′

i
proportional to A′

i , in such a way that the structure constants of Ai and A′′
i are the

same.

(2) A commonly used choice for the generators of the algebras of SO3 and SU2 are

A1 =
⎛
⎝0 0 0
0 0 − 1
0 1 0

⎞
⎠ ; A2 =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ ; A3 =

⎛
⎝0 − 1 0
1 0 0
0 0 0

⎞
⎠
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and resp. (the well-known Pauli matrices σ j are given by σ j = i A j )

A′
1 =

(
0 −i
−i 0

)
; A′

2 =
(
0 −1
1 0

)
; A′

3 =
(−i 0
0 i

)

Show that this is an example of the situation seen in (1) with λ = . . .. Calculate the
quantities (Casimir operators) C = A2

1 + A2
2 + A2

3 and C ′ = A′2
1 + A′2

2 + A′2
3 : the

results should be expected from the quantum mechanical interpretation, ….

(3) Denote by A′′
1, A′′

2, A′′
3 the 2× 2 matrices having the same structure constants as

the 3×3 matrices A1, A2, A3, according to (1). Evaluate exp(aA3) and exp(a′′A′′
3):

for what values of a one has exp(aA3) = I and resp. for what values of a′′ one has
exp(a′′A′′

3) = I?

(4.29)
(1) Show that all groups SUn (n ≥ 2) admit a nontrivial center. Conclude: the SUn

are not simple groups.

(2) Consider the group SU2: show that its center is Z2 (the quotient SU2/Z2 is
isomorphic to SO3, as well known). The presence of not-faithful representations of
SU2 is then expected: what are the representations of SU2 which are not faithful?

(4.30)
(1) Start considering the vectors v ∈ R3 as basis space for the “basic” representation
R bymeans of 3×3 orthogonalmatrices of SO3, and then consider the tensor product
R3⊗R3 (isomorphic, of course, to the nine-dimensional vector space of the real 3×3
matricesM), together with the resulting direct product representationR⊗R of SO3

acting on this space according to:

Mi j → M ′
i j = Rir R jsMrs = (RMRt )i j

(where t means matrix transposition). Show that there are invariant subspaces for
this representation and obtain its decomposition into irreducible representations.
According to the quantum mechanical interpretation, the vectors v correspond to the
angular momentum � = 1; give then the interpretation of the above decomposition
as a result of the combination of two angular momenta � = 1, which is often written,
with evident and convenient notations, (� = 1) ⊗ (� = 1) or also 3 ⊗ 3.

(2) Generalize, e.g., to tensors with three indices:Mi jk , i.e., (� = 1)⊗(� = 1)⊗(� =
1) or 3 ⊗ 3 ⊗ 3.

(4.31)
(1) Start considering the “basic” representationR of SU3 by means of 3× 3 unitary
matricesU with determinant equal to 1, and the “contragredient” representationR∗
obtained by means of matrices U ∗ = (Ut )−1 where ∗ means complex conjugation
and t matrix transposition. Writing zi = (zi )∗ in such a way that upper indices are
transformed by R∗, introduce the convenient notation 3 and 3∗ to denote the basis
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spaces for the (inequivalent) representations4 R and R∗. Consider then the tensor
products 3 ⊗ 3 and 3 ⊗ 3∗ with the resulting direct products of the representations
R ⊗ R and R ⊗ R∗, i.e., respectively

Ti j → T ′
i j = UirU jsTrs = (UTUt )i j

and
T j
i → T ′ j

i = Uir (U
∗) jsT s

r = (UTU+)
j
i

Decompose these representations into irreducible representations of SU3. It can be
useful to introduce here the shorthand notation T(...) and T[...] to denote resp. sym-
metric and antisymmetric tensors, and recall that, using the totally antisymmetric
tensor εi jk , the three-dimensional representation on the antisymmetric tensors T[i j]
is equivalent to the representation on the vectors zk = εi jkT[i j].
(2) Decompose into irreducible representations the tensor products 3∗ ⊗ 3∗ and
3 ⊗ 3 ⊗ 3.

4.4 Other Relevant Applications of Symmetries to Physics

The following four problems give some simple examples of the application
of symmetry properties to the study of differential equations. Actually, this
technique can be greatly developed, introducing “less evident” symmetries
of the differential equations; denoting by u = u(x1, x2, . . .) the unknown
function, one can look, e.g., for transformations generated by infinitesimal
operators of the form

A = ξ1(x1, x2, . . . , u)
∂

∂x1
+ξ2(x1, x2, . . . , u)

∂

∂x2
+. . .+ϕ(x1, x2, . . . , u)

∂

∂u

where the functions ξi and ϕ can be arbitrary functions (with some obvious
regularity assumptions) and not only constants or linear functions of the inde-
pendent variables xi as in usual elementary cases, and in all the examples
considered in this book. In addition, also the dependent variable u is assumed
to be subjected to a transformation, as shown by the presence of the term ϕ in
the expression of the generator A. A presentation of these methods and of their
applications is given, e.g., in the book by P.J. Olver, see Bibliography.

4It can be useful to point out that, differently from all the groups SUn with n > 2, the “basic”
irreducible representations R and R∗ of SU2 by means of 2 × 2 unitary matrices are equivalent.
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(4.32)
The Laplace equation in R2

uxx + uyy = 0 , u = u(x, y)

is clearly symmetric under the transformations of the group O2 in the plane x, y
(the equation remains unaltered under the transformations of O2). This implies that
if u = u(x, y) is a solution to this equation, then also ũ = u(x ′, y′), with x ′ =
x cosϕ − y sin ϕ, etc., is a solution for any ϕ. Observing that, for instance, u =
exp x cos y = Re (exp z), with z = x + iy, solves the Laplace equation, construct a
family of other solutions of the equation. Verify that this new family of solutions is
the same one can obtain by means of the transformation z → z′ = exp(iϕ)z. Using
the same procedure, construct other families of solutions starting from a known one.

(4.33)
The nonhomogeneous Laplace equation for u = u(x, y) and with r2 = x2 + y2

uxx + uyy = rn , n = 0, 1, . . .

is clearly symmetric under the transformations of the group O2 in the plane x, y.
One then can look for the existence of solutions which are invariant under O2, i.e.,
for solutions of the form u = f (r). Transform then the given equation (or recall the
well-known expression of the Laplace equation in terms of r, ϕ) into an ODE for the
unknown f (r) and solve this equation.

(4.34)
(1) The heat equation

ut = uxx , u = u(x, t)

is symmetric under independent translations of x and t , and therefore under any
combination of these translations. Look then for solutionswhich are functions only of
x−vt (“traveling wave solutions” with arbitrary velocity v). Transform the PDE into
an ODE for the unknown function u = f (s) of the independent variable s = x − vt
and obtain the most general solution of this form.

(2) Do the same for the d’Alembert equation

uxx = utt , u = u(x, t)

What traveling waves are obtained?

(4.35)
(1) The d’Alembert equation

uxx = utt , u = u(x, t)
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is symmetric under the Lorentz transformations. Starting, for instance, from the
solution u = x3 + 3xt2, construct a family of other solutions to the d’Alembert
equation.

(2) Consider the nonhomogeneous d’Alembert equation

uxx − utt = (x2 − t2)n , n = 0, 1, . . .

Observing that the equation is symmetric under Lorentz transformations, one can
look for the existence of solutions which are Lorentz-invariant, i.e., for solutions of
the form u = f (s) where s = x2 − t2. Transform then the given equation into an
ODE for the unknown f (s) and solve this equation.

(4.36)
Consider a quantum mechanical system exhibiting spherical symmetry, e.g., a par-
ticle placed in a spherically symmetric (radial) potential V (r). The eigenvalues of
its Hamiltonian (Schrödinger equation), i.e., the energy levels, are expected to have
a degeneracy …, as a consequence of the symmetry under the group SO3 and the
Schur lemma. If the system is placed into a (weak) uniform magnetic field, the SO3

symmetry is broken and the surviving symmetry is SO2 (not O2: way?). What con-
sequence can be expected about the degeneracy of the energy levels? What changes
if instead the system is placed into an uniform electric field, where the residual sym-
metry is O2? This is a qualitative description, based only on symmetry arguments
and in particular on Schur lemma, of the Zeeman and respectively the Stark effects.

The following problems will be concerned with groups SO3, SO4, SU3 and
their Lie algebras. In view of the applications to physical problems (the hydro-
gen atom and the harmonic oscillators in quantummechanics), it is convenient
to define the generators of the algebras as Hermitian operators, multiplying
by a factor i the definitions used in all previous problems (see, e.g., Prob-
lems 4.13 and 4.18). Accordingly, for instance, the generator A3 of SO3 (with
clear notation) will be, in matrix form,

A3 =
⎛
⎝0 −i 0
i 0 0
0 0 0

⎞
⎠

with real eigenvalues ±1 and 0, or, in differential form,

A3 = i
(
y

∂

∂x
− x

∂

∂y

)
= −i

∂

∂ϕ
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(4.37)
This problem is devoted to the study of the group SO4 and its algebra. Consider the
space R4 with Cartesian coordinates x1, x2, x3, x4.

(1) Show that SO4 has six parameters and then its algebra is six-dimensional. Denote
by A1, A2, A3 the Hermitian generators of the subgroup SO3 of the rotations in the
subspaceR3 with basis x1, x2, x3, and by B1, B2, B3 the generators of the rotations in
the subspaces (x1, x4), (x2, x4), (x3, x4). Either using a 4× 4 matrix representation
or the differential representation, show that the algebra of SO4 is described by the
following commutation rules, with i, j = 1, 2, 3,

[ Ai , A j ] = i εi jk Ak , [ Bi , Bj ] = i εi jk Ak , [ Ai , Bj ] = i εi jk Bk

(2) Put

Mi = 1

2
(Ai + Bi ) , Ni = 1

2
(Ai − Bi )

and show that the operators Mi , Ni satisfy

[ Mi , Mj ] = i εi jkMk , [ Ni , N j ] = i εi jk Nk , [ Mi , N j ] = 0

so that the Lie algebra of SO4 (not the group) is isomorphic to the algebra of the
direct product SU2 × SU2.

(3) Recalling that the irreducible representations of SU2 are specified by an integer or
half-integer number j = 0, 1/2, 1, . . ., and have dimension N = 2 j+1 = 1, 2, . . .,
describe the irreducible representations of SU2 × SU2 and find their dimensions.

(4) Show that SO4 has rank 2; verify then that the quantities (Casimir operators)

C1 = A2 + B2 = 2
(
M2 + N2) and C2 = A · B = M2 − N2

commute with the algebra of SO4 and find the values of C1 and C2 in the various
representations.

(4.38)
Consider the Schrödinger equation for the hydrogen atom, with usual notations,

H u ≡ − �
2

2m
Δ u − e2

r
u = E u

AsanyotherHamiltonian exhibiting spherical symmetry, thisHamiltonian commutes
with the three operators Ai , where e.g., A3 = i(y ∂/∂x − x ∂/∂y) = xpy − ypx ,
etc., proportional to the operators Li = �Ai , describing, as well known, the angular
momentum:

[H , Li ] = 0
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It is known from classical mechanics that the three components of the Runge–Lenz
vector

˜R = p × L − me2
r
r

are constants of motion for the Kepler Problem. This has a precise counterpart in
quantum mechanics: putting indeed, in a correct quantum mechanical form,

R = 1

2

(
p × L − L × p

) − me2
r
r

one can find
[H , Ri ] = 0

Introducing the dimensionless Hermitian operators

Bi = 1

�
√−2mH

Ri , i = 1, 2, 3

(only bound states will be considered, then the energy is negative) it can be shown,
after some tedious (not requested) calculus, that the six operators Ai , Bi satisfy
precisely the commutation rules of the algebra of SO4, isomorphic to the algebra
SU2 × SU2 (obtained in the previous problem).

(1)With the notations of the previous problem, i.e.,M = (A+B)/2 ,N = (A−B)/2,
show that

L · R = A · B = M2 − N2 = 0

Conclude from the last equality: what representations of SU2 × SU2 are involved in
the hydrogen atom? and what degeneracy can be expected for the eigenvalues of the
energy of the hydrogen atom?

(2) It can be also shown that

(A2 + B2 + 1) H = −me4

2�2

Observing that A2 + B2 = 4M2 and recalling that the eigenvalues of M2 are …,
deduce the eigenvalues of the energy of the hydrogen atom.

(3) Decompose the n2-dimensional irreducible representation corresponding to the
nth energy level as a sum of the irreducible representations of the rotation subgroup
SO3 (i.e., find the angular momenta � contained in the nth level); to this aim, observe
that L = �(M + N), therefore, the angular momentum � can be obtained as a
superposition of the two “spin” jM and jN = jM , and therefore � = 0, 1, . . . , 2 jM =
�Max = n − 1. Show that
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�Max∑
�=0

(2� + 1) = n2 , n = 1, 2, . . .

(4.39)
As in the case of the hydrogen atom, also the three-dimensional harmonic isotropic
oscillator admits, besides the SO3 rotational symmetry, an additional symmetry.

(1) Consider first the three-dimensional harmonic isotropic equation in classical
mechanics: its Hamiltonian is (with m = k = 1 and with standard notations)

H = 1

2
p2 + 1

2
r2

Put

ζ j = 1√
2

(
x j + i p j

)
, j = 1, 2, 3

and show that H can be written as H = (ζ , ζ ), i.e., as a scalar product in C3. Show
also that the 9 quantities ζ ∗

j ζk are constants of motion: (d/dt)ζ ∗
j ζk = 0.

(2) (a) Write the Schrödinger equation for the oscillator (with m = k = 1)

H u ≡ −�
2

2
Δ u + 1

2
r2 u = E u

Put now (with � = 1)

η j = 1√
2

(
x j + ∂

∂x j

)
, j = 1, 2, 3

and show that the nine operators

A j
k = η+

j ηk , j, k = 1, 2, 3

commute with the Hamiltonian operator H.

(b) Verify that the following Hermitian operators

i(A1
2 − A2

1) , i(A2
3 − A3

2) , i(A3
1 − A1

3)

A1
2 + A2

1 , A2
3 + A3

2 , A3
1 + A1

3 , A1
1 − A2

2 , A1
1 + A2

2 − 2A3
3 , A1

1 + A2
2 + A3

3

generate the Lie algebra of the group U3 = SU3 × U1. Verify that the first three
operators are just the generators of the rotation subgroup SO3, that the last operator,
i.e., TrA, generates U1 and satisfies H = TrA + (3/2).

(c) Show that the irreducible representations of U3 involved in the energy eigen-
states of the harmonic oscillator have the symmetric tensors T(i1,i2,...) as basis space
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(see Problem 4.31 for what concerns the irreducible representations of SU3 and the
notations). Hint: consider for instance the second excited state, which is given by
u = x j xk exp(−r2/2), with degeneracy 6,…, the third excited state with degeneracy
10, ….

(d) Decompose the six-dimensional representation considered in the previous ques-
tion c) as a sum of irreducible representations of SO3 (i.e., find the angular momenta
� contained in the second excited level). Generalize to the other levels.

(e) Generalize to the N -dimensional isotropic oscillators (with N > 1).
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Problems of Chap. 1

(1.2)
(1) E.g., f (x) = 1/

√
x ∈ L1(0, 1) but /∈ L2(0, 1).

‖ f ‖L1 =
∫
I
| f |dx = (χI , | f |) ≤ √

μ(I )‖ f ‖L2

where χI (x) is the characteristic function of the interval I
(2) E.g., f (x) = 1/

√
x if 0 < x < 1 (and = 0 elsewhere) ∈ L1(R) but /∈ L2(R).

E.g., f (x) = x/(1 + x2) ∈ L2(R) but /∈ L1(R)

(3) No. Yes
(4) Yes. Yes

(1.3)
(1) Yes. Yes. Their closure is the space L2(R); as a consequence, they are not Hilbert
subspaces
(2) Yes, as in (1): recall, e.g., that the Hermite functions un(x)=exp(−x2/2)Hn(x),
where Hn(x) are polynomials of degree n = 0, 1, 2, . . ., are a complete set in L2(R)

(1.4)
(2) Yes: if f ∈ L1(R) ∩ L2(R), the suggested procedure is enough; if f ∈ L2(R)

but /∈ L1(R), then first approximate f with a function g ∈ L1(R) ∩ L2(R), etc.

(1.5)
(1) This is a closed (and therefore a Hilbert) subspace. The orthogonal complement
is the one-dimensional subspace of the constant functions
(2) The subspace of zero mean-valued functions is dense in L2(R): see previous
problem

(1.6)
(2) This should be intuitively obvious, recalling that the approximation of a function
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f (x) ∈ L2 with a function g(x) belonging to these subspaces is to be intended
not pointwise, but in L2-norm, i.e., in mean-square. It is clear that the procedure
used for (1) can be easily extended to any f (x) ∈ L2(I ), etc. Another argument:
one can observe that, given any orthonormal complete system {en(x)} in L2 of C∞
functions, then (it is not restrictive to choose for simplicity x0 = 0) un(x) = xen(x)
is a complete system in L2, and that the same is true for vn(x) = xken(x) for any
integer k, and also for wn(x) = exp(−1/x2)en(x). Recall then that the finite linear
combinations of these complete systems provide dense subspaces with the required
properties

(1.7)
(1) Yes: lim . . . ≤ ‖ f ‖/√2N → 0, ∀ f (x)
(2) This limit is trivially zero for even functions, and is zero in the dense set of
functions with compact support; it is equal to 1 if, e.g., f (x) = x/(1 + x2), is +∞
if, e.g., f (x) = 1/x2/3 if x > 1 (and = 0 if x < 1); in the last case the integral∫ +N
−N . . . behaves for large N as N cos(N 1/3)

(1.11)
(1) Yes. No
(2) It is enough to refer to the even, respectively, odd, prolongation of the given
function to the full interval (−1, 1)
(3) Look for a function g(x) such that (xN+m, g) = 0, ∀m ≥ 0: one has 0 =
(xN+m, g) = (xm, xN g), ∀m ≥ 0, then xN g(x) = 0 . . .

(1.12)
(1) Yes: look for z ∈ H such that (vn, z) = 0, ∀n = 2, 3, . . .: this implies (en, z) =
(e1, z), ∀n, then necessarily z = 0, recalling that ‖z‖2 = ∑

n |(en, z)|2
(3) αn ∈ �2

(4) |α| ≥ |β|
(1.13)
(1) Yes. Yes. Use an argument as in the above problem, but now n ∈ Z and this
makes the difference from q. (4) of the above problem

(1.14)
(1) (a), (b), (e), (f), (g) are complete. For the cases (d), (e), (g), (h), recall that the only
functions ∈ L2(−π, π) orthogonal to {cos nx, sin nx} are the constants
(2) Apart from the obvious condition h(x)en(x) ∈ L2(I ), the condition concerns
only the zeroes of h(x): this function must have at most isolated zeroes

(1.16)
(1) (wn, z) = 0 ∀n with z ∈ �2 implies …

(1.17)
(1) Only (γ ) is correct; (β) is wrong because sin 2πx /∈ L2(0,∞)

(2) No
(3) (a) Yes. (b) The set is not complete: e.g., f (x) = sin x if π ≤ x ≤ 2π and = 0
out of this interval is orthogonal to all vn
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(1.18)
(1) Yes. No: the function (sin x)/x ∈ L2(0, π) is orthogonal to the subset {x sin nx}
if n = 2, 3, . . .
(2) Yes. Yes: there are no functions in L2(0, π) orthogonal to the subset {x2 sin nx}
with n = 2, 3, . . .

(1.19)
(a) Yes ; (b) No ; (c) Yes ; (d) No ; (e) No
(f) No: the function

h(x) =
{

− exp(x2) for − 2π < x < 0

exp(x2) for 0 < x < 2π

is orthogonal to all the functions in the set

(1.20)
(2) The series converges to the square wave

S(x) =
{
1 for 0 < x < π

−1 for − π < x < 0

with its periodic prolongation with period 2π to all x ∈ R.
At x = π the series converges to zero, at x = 3π/2 converges to −1

(1.22)
f̃1(x) = x for 0 < x < a, f̃1(x) = a/2 at x = 0 and x = a, and is periodic with
period a.
f̃2(x) = |x | for all x ∈ R; in this case, the series converges uniformly.
f̃3(x) = x for −a < x < a, f̃3(x) = 0 at x = ±a. f̃2 and f̃3 are periodic with
period 2a

(1.23)
(1) f̃ (x, y) = 0 along the lines x = nπ, y = mπ, n,m ∈ Z; f̃ (x, y) = 1 in
the interior of Q; f̃ (x, y) = −1 in the interior of the four squares adjacent to Q;
f̃ (x, y) = 1, etc.

(2) f̃ (x, y) =
{
sin x ∀x ∈ R, 0 < y < π

− sin x ∀x ∈ R, π < y < 2π
etc.

(1.24)
(1) The condition

∑
n |an| < ∞ ensures that a series of the form

∑
n an exp(inx) is

uniformly convergent, and then converges to a continuous function

(1.25)
(1) The function is even, continuously differentiable, its second derivative f ′′(x) ∈
L2(−π, π), but is expected to be not continuous
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(2) Recall that a series of the form
∑

n αn sin nx is certainly uniformly convergent
(and then converges to a continuous function) if

∑
n |αn| < ∞, see the above prob-

lem, q.(1). This condition is satisfied in this case; indeed, we have αn = an/n where
an ∈ �2, and

∑
n |an|/n can be viewed as the scalar product between two sequences

∈ �2

(1.26)
(1) (a) π

√
π/2 and, respectively, 0 (remember that the Fourier expansion produces

a periodic prolongation of the function …);
(b) No, the periodic prolongation of f (x) is discontinuous, see Problem 1.24, q.(1)
(2) No, f ′(x) /∈ L2(−π, π)

(3) Yes. No, the periodic prolongation of f (x) is not continuously differentiable, see
Problem 1.24, q.(2)

(1.27)
(1) The Fourier expansion converges just to the function f1(x); notice that the func-
tions v2m+1 are even with respect to the point x = π/2
(2) The Fourier expansion gives zero
(3) The Fourier expansion converges to the constant function π/2; notice that f3 =
π/2 + f2
(4) Yes

(1.29)
The expansion of f1 converges to the constant function = 1/2 in 0 < x < 4π .
The expansion of f2 converges just to f2

(1.30)
The expansion of f1 converges to f1. The expansion of f2 converges to the function

g(x) =
{

(4/π) sin x for 0 < x < π

0 for x > π

(1.31)
(1) The Fourier expansion gives a piecewise constant function; in each interval
(n − 1, n) this function takes the constant value cn given by the mean value of
the function f (x) in that interval: cn = ∫ n

n−1 f dx
(2) Pointwise, not uniform convergence to 0. No Cauchy property in the L2(0,∞)

norm.Weak L2-convergence to0: indeed, due to theBessel inequality
∑

n |(un, g)|2 ≤
‖g‖2, one has (un, g) → 0; an alternative argument: |(un, g)| ≤ ‖un‖‖gn‖ = ‖gn‖
where gn = gn(x) is the restriction of g(x) to the interval (n − 1, n), and ‖gn‖ → 0
because

∑
n ‖gn‖2 = ‖g‖2

(1.32)
(1) No solution if the coefficients g±1 �= 0. If g±1 = 0 the solution exists but is not
unique
(2) The solution exists and is unique for any g(t)

https://doi.org/10.1007/978-3-319-76165-7_1
https://doi.org/10.1007/978-3-319-76165-7_1
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(1.33)
(1) The solution exists and is unique for any g(t)
(2) Use the same argument as in Problem 1.25, q.(2)

(1.34)
The answer to this apparent contradiction is simply that in these problems, we are
using Fourier expansions in spaces as L2(0, 2π), and therefore, we are “forced” to
look for periodic solutions with fixed period 2π . Then, if one wants to have the
complete solution, one has to add “by hand” the “extraneous” solutions

(1.38)
(2) g0 = 0 is guaranteed by the Gauss law: the integral

∫ 2π
0 G(ϕ) dϕ is the flux across

the circumference of the electric (radial) field which is given just by ∂U/∂r ; this flux
is zero because ΔU = 0 means that there are no charges at the interior of the circle;
the nonuniqueness of the solution corresponds to the property that the potential is
defined apart from an additive constant

(1.39)
(3) Only three boundary conditions must be given; the solution is as in (1) but
an = 0, ∀n
(1.43)
(2) Strong convergence

(1.44)
(3) S∞ f (x) = f (−x)

(1.45)
(1) Yes. No
(2) (a) Yes. No ; (b) the dimension is ∞ ; (c) no eigenvectors

(1.46)
(2) T injective, not surjective; the opposite for S
(3) ‖T ‖ = ‖S‖ = 1
(6) There is an eigenvector of S with eigenvalue λ for any |λ| < 1 !
(7) No

(1.47)
(1) T (and T+, of course) is unitary. T and S do not possess eigenvectors; it can be
useful to recall that if an operator preserves norms then its possible eigenvalues λ (if
any) satisfy necessarily the condition |λ| = 1

(1.48)
(2) T and S are unitary operators and do not possess eigenvectors. See remark in the
solution of the above problem

(1.49)
For each λ such that |λ| < 1 there are infinitely many eigenvectors!

https://doi.org/10.1007/978-3-319-76165-7_1
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(1.50)
T has no eigenvectors.
‖T ‖ = ‖S‖ = 1/

√
2; recall that xα ∈ L2(0, 1) only if α > −1/2

(1.51)
(1) For any f , one has

‖SN f ‖2 =
∫ ∞

0
| f (x + N )|2dx =

∫ ∞

N
| f (x)|2dx → 0

being f ∈ L2; then SN → 0 strongly, not in norm because ‖SN‖ = 1. Instead, T N

converges weakly to 0:

|(g, T N f )| =
∣∣∣
∫ ∞

N
g∗(x) f (x − N )dx

∣∣∣ ≤ ‖ f ‖‖g(N )‖ → 0

where g(N ) = g(N )(x) is the “queue” of the function g(x), i.e., g(N )(x) =
g(x) for x > N and g(N )(x) = 0 for 0 < x < N . On the other hand, ‖T N f ‖ = ‖ f ‖,
then T N does not converge strongly
(2) T N converges weakly to 0:

(g, T N f ) =
∫ +∞

−∞
g∗(x) f (x−N ) dx = (2π)−1

∫ +∞

−∞
ĝ∗(y) f̂ (y) exp(i N y) dy → 0

where f̂ , ĝ are the Fourier transforms of f, g, thanks to the Riemann–Lebesgue
theorem, because ĝ∗(y) f̂ (y) ∈ L1(R). No strong convergence, indeed ‖T N f ‖ =
‖ f ‖. Obviously, the same results hold for SN

(3) SN → 0 strongly, indeed, for any x = ∑∞
n=1 anen one has

‖SN x‖2 =
∑
n>N

|an|2 → 0

being {an} ∈ �2; T N → 0 weakly: given x = ∑
anen, y = ∑

bnen , one has

|(y, T N x)| =
∣∣∣ ∑
n>N

b∗
n+Nan

∣∣∣ ≤ ‖x‖‖y(N )‖ → 0

where y(N ) is the “queue” of the vector y, i.e., y(N ) = ∑
n>N bnen; no strong con-

vergence
(4) T N → 0 weakly:

(g, T N f ) =
∫ 2π

0
g∗(x) f (x) exp(i N x)dx → 0
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indeed this can be viewed as the N th Fourier coefficient of the function g∗(x) f (x) ∈
L1(0, 2π). ARiemann–Lebesgue-type theorem ensures that these coefficients vanish
as N → ∞. Clearly, no strong convergence. The same for SN

(5) Exactly the same argument and result as in the previous case of q. (4): given
a ≡ (. . . , a−1, a0, a1, a2, . . .) and b ≡ (. . . , b−1, b0, b1, b2, . . .) and introducing
the functions f = ∑

n∈Z anen , g = ∑
n∈Z bnen where en = exp(inx)(2π)−1/2 the

scalar product (b, T Na) = ∑
n∈Z b

∗
n+Nan can be thought as the scalar product of two

functions ∈ L2(0, 2π), etc.

(1.52)
(1) (a) KerT = {0} ; (c) T−1 unbounded
(2) (a) Yes. Yes ; (b) no eigenvectors
(3) (a) ‖T ‖ = |α| + |β| ; (c) |α/β| �= 1 ; (d) No. Yes

(1.53)
(2) Only if (x0, c) = 0, where c = ∑

n cnen , the eigenvectors do not give a complete
set
(3) ‖T ‖ = 1 + ‖x0‖2
(1.54)
(1) (a) |αn| = 1 ; (b) supn |αn| < ∞ ; (c) T 2en ∝ en+2 then for no αn the operator T
can be a projection (apart from the case T = 0 !). Or: T �= T+, see (2)
(2) T+en = α∗

n−1en−1

(3) (a) ‖T ‖ = 2 ;
(b) Ker T is generated by ek with k = 4n − 1; e.g., e3 belongs to Ker T ∩ Ran T

(1.55)
(1) (b) If x = ∑N

n=1 anen then T x = (
∑N

n=1 an)x0 and T is unbounded

(2) KerT = �(0), dense in H !
(3) E.g., zn = e1 − (e2 + . . . en+1)/n ∈ Ker T and wn = e1 + en/n
(4) No

(1.56)
(2) α = −β, dimension = 1
(3) Put T ′ = T − α I and compare with Problem1.55

(1.57)
(1) (a) supn |cn| < ∞, (b) |cn|2 = |c−n|2, (c) cn = c∗−n , (d) cnc−n = 1
(2) The two-dimensional subspaces are generated by e±n . For any n �= 0 one finds
two independent eigenvectors, then the eigenvectors form a complete set in H , not
necessarily orthogonal
(3) (a) eigenvectors orthogonal, eigenvalues not necessarily real;
(b) eigenvalues ±1/

√
n for n �= 0; T not normal

(1.58)
(1) The eigenvectors are a complete set
(3) c �= ±n2

(4) 1/4, 1, 1/
√
2

https://doi.org/10.1007/978-3-319-76165-7_1
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(1.59)
(1) e0 with zero eigenvalue; en ± e−n with eigenvalues ±1/n2, not degenerate
(2) RanT is orthogonal to the subspace of constants, but is dense in (not coinciding
with) the complementary subspace, which is just the closure Ran T ; e.g., g(x) =∑

n �=0(1/n) exp(inx) /∈ Ran T , see also q. (3c) below
(3) T e0 = 0 implies that the equation does not admit solution if g0 = (e0, g) �=
0; the presence of the coefficients 1/n2 implies that g must be at least two times
differentiable with g′′ ∈ L2. Then: (a) (not unique) solution f = 2 cos(2x)+ const.
(b) cos4(x) ≥ 0, then g0 �= 0, no solution; (c) g0 = 0 but g is not two times

differentiable, then no solution
(4) T N converges to the exchange operator S1 defined by S1 e±1 = e∓1 and S1 = 0
on the other en . Indeed ‖T N − S1‖ = maxn �=0 |eigenvalues| = 1/22N → 0

(1.60)
(1) One has ‖z‖ = 1/

√
3 and T x = (e1 + e2)(z, x), then: (a) ‖T ‖ = √

2/3,

(b) (e1+e2)with eigenvalue 3/4 and any vector orthogonal to z with zero eigenvalue
(notice that

√
2/3 > 3/4),

(c) T+x = z
(
(e1, x) + (e2, x)

)
(2) If αn ∈ �2, βn ∈ �2, put α̂ = ∑

n α∗
nen and β̂ = ∑

n β∗
n en: then T x = (̂α, x)e1 +

(β̂, x)e2 is bounded (and conversely)
(3) (a) If α̂ and β̂ are linearly dependent, e.g., α̂ = cβ̂, then the range of T is

one-dimensional and is given by the multiples of e1 + ce2.

(b) If Ran T is one-dimensional, Ker T is given by the vectors orthogonal to α̂,
then …; if α̂ and β̂ are linearly independent, Ran T is generated by e1, e2, Ker T
is orthogonal to Ran T if both α̂ and β̂ are combinations of e1 and e2
(4) One has ‖TN x‖ = ‖e1 + e2‖|(zN , x)| = √

2|(zN , xN )| → 0 where xN is the
“queue” of the vector x , i.e., xN = ∑

n>N anen . But ‖TN‖ = √
2‖zN‖ = √

2/3, then
strong convergence to zero. Instead, only weak convergence to zero for T+

N : indeed
‖T+

N x‖ = ‖zN‖|a1 + a2|, on the other hand (y, T+
N x) = (a1 + a2)(y, zN ) → 0;

alternatively: (y, T+
N x) = (TN y, x) . . .

(1.61)
(3) TN → I , etc., in strong sense

(1.62)
(3)

√
2a‖h‖

(4) T+ f = (h, f )χa(x) where χa(x) is the characteristic function of the interval
(−a, a)

(1.65)
(1) Strong convergence to the identity operator
(2) (a) The identity ! (b) The derivative ; (c) g(x) = C f (x) ∈ C∞

(1.66)
(1) Only A(−)

n and C (−)
n are projections

(3) Strong convergence to 0
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(1.68)
(4) Apart from the eigenvalue zero, there is the eigenvalue 2/3 with eigenvector x ,
and the eigenvalues (18 ± 2

√
61)/15 with eigenvectors 5 + (−6 ± √

61)x2

(1.69)
(3) The eigenvalues are 0 and 4 for both operators, the eigenvectors are different
(4) Yes, clearly!

(1.70)
(1) |cn| = |(χn, f )| = |(χn, fn)| ≤ ‖ fn‖, where fn = fn(x) is the restriction of
f (x) to the interval (n − 1, n), then

∑
n ‖ fn‖2 = ‖ f ‖2, see Problem 1.31

(2) The N -dimensional subspace generated by χ1, . . . , χN with eigenvalue 1 and the
orthogonal space with zero eigenvalue; TN is a projection for each N
(3) (b) ‖T∞‖ = 1 ;
(c) Not compact because the eigenvalue 1 is infinitely degenerate; alternatively,
because the weakly convergent sequence χn is mapped into itself by T∞
(4) Strong convergence: ‖(T∞ − TN ) f ‖2 = ∑

n>N |cn|2 → 0, but ‖T∞ − TN‖ = 1
(5) (a) Norm-convergence ; (b) yes

(1.71)
(4) If g(x) ∈ Ran T then g(x) is a continuous function. Indeed, recall that a series
of the form

∑
n αn sin nx is certainly uniformly convergent (and then converges

to a continuous function) if
∑

n |αn| < ∞, see Problem 1.24. This condition is
satisfied in this case, see the argument used in Problem 1.25. Conversely, e.g., g(x) =∑

n n
−4/3 sin nx is continuous but /∈Ran T . The closure Ran T coincides with the

Hilbert subspace of the odd functions

(1.72)
(3) Yes. No. Yes. Yes (see previous problem)
(4) Ran T contains only even and zero mean-valued functions, then β = 0, α =
−π/2

(1.73)
(1) Tn f = (π/2)en(en − e0, f ); ‖Tn‖ = π/

√
2

(3) The eigenvalues are 0 and π/2
(4) No: Tn f = 0 implies (e0, f ) = (en, f ), ∀n, then only f = 0
(5) Tn → 0 only in weak sense

(1.74)

(1) (a) ‖T ‖ = a ; (b) fε(x) =
{
1 for a − ε < x < a

0 elsewhere
(2) No eigenvectors and Ker T = {0}, trivial
(3) The spectrum is the closed interval [0, a]
(1.75)
(1) E.g., f (x) = x/(1 + x2) /∈ D(T ). D(T ) is however dense in H , indeed D(T )

https://doi.org/10.1007/978-3-319-76165-7_1
https://doi.org/10.1007/978-3-319-76165-7_1
https://doi.org/10.1007/978-3-319-76165-7_1
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certainly contains functionswhich behave as 1/|x |α for anyα > 3/2when |x | → ∞;
but it is known that the set of functions rapidly going to zero at the infinity is dense
in H . This implies that also operators with ϕ = xa for any a > 0 possess dense
domain

(2) fn(x) =
{
1 for n < x < n + 1

0 elsewhere
(3) Any (continuous) function f (x) �= 0 in a neighborhood of x = 0 does not
belong to Ran T ; Ran T is however dense in H (the closure Ran T = H ). This can
be shown in several ways: Ran T contains functions which behave as |x |α for any
α > 1/2 when x → 0, and these functions can certainly approximate in norm L2

any function belonging to L2 (see also Problem 1.6). Recall also that if {en(x)} is an
orthonormal complete system in H , then un(x) = x en(x) is a complete system in
H , and un(x) ∈ Ran T , therefore . . .. As another useful argument, notice that any
function g(x) ∈ L2 can be approximated (in the norm L2, of course) by a “truncated”
function

gε(x) =
{
0 for |x | < ε

g(x) for |x | > ε

for ε “small” enough, and observing that functions as gε(x) clearly belong to Ran T .
All these arguments also hold for operators with ϕ(x) = xa for any a > 0: ques-
tion (4).

(1.76)

(1) fn(x) =
{
1 for 1/n < x < 1

0 elsewhere
(2) The role of domain and that of range of this operator are exchanged with respect
to the ones of the operator in the previous problem

(1.78)
(a) ‖T ‖ = supx∈R |ϕ(x)| ; (b) ϕ(x) = 1 for x in any subset J (even if not connected)
⊂ R, and = 0 in R \ J ; (c) let inf x∈R |ϕ(x)| = m > 0, then ‖T−1‖ = 1/m ;
(d) |ϕ(x)| = 1

(1.79)
(1) ‖T ‖ = 1, no function f0(x)
(2) No. No
(3) Ran T dense in H but �= H , or H = Ran T ; D(T ) = H
(4) T N → 0 in strong sense, thanks to Lebesgue theorem: x2N/(1 + x2)N → 0
pointwise, and | f (x)|2 ∈ L1; but ‖T N‖ = 1

(1.80)
T admits the eigenvalues 0 and 1 infinitely degenerate. E.g., θ(x)/(1+ x) /∈ Ran T ,
but Ran T dense in L2(R), see Problem 1.75. Ran T is orthogonal to Ker, but it is
not a Hilbert space; one has L2(R) = Ker T ⊕ Ran T . T N → P , where P is the
projection on the subspace L2(0, 1), in strong sense, see previous problem

https://doi.org/10.1007/978-3-319-76165-7_1
https://doi.org/10.1007/978-3-319-76165-7_1
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(1.81)
(3) ‖(T + 2i I )−1‖ = 1/

√
5 in case (1)(b), and = 1 in cases 2(b) and 3(b). Weak

convergence to 0 in all cases, see Problem 1.47

(1.82)
(1) T+ f = (

1 − α∗ exp (−i x)
)
f , yes

(2) ‖T ‖ = 1 + |α|. |α| �= 1

(1.83)
(1) |α| = 1
(2) In general not orthogonal, but complete system for all α
(3) Yes

(1.84)
(2) α �= ik, k ∈ Z, and under this condition the solution is unique
(3) g−2 ∝ (

exp(−2i x), g
) = 0

(4) ‖T−1‖ = 1, 1/2, 1, 2

(1.86)
(3) The condition is g0 = (e0, g) = 0

(
i.e., g(x) must be zero mean-valued

)

(1.87)
(3) Yes, S is a bounded operator
(4) CN = (

1 + (N + 1)
)−1/2

(1.88)
(3) The solution exists if the Fourier coefficients g±1 ∝ (

exp(±i x), g
) = 0.

Yes. No
(4) α �= n2

(5) ‖T−1
α ‖ = 1/|a|

(1.89)
(1) T is Hermitian (in a dense domain in H ). Its eigenfunctions cos(nx/2), n =
0, 1, 2, . . . are orthogonal complete system in H . Ker T is the one-dimensional
subspace of the constants and Ran T its orthogonal complementary subspace
(2) g(x) must be zero mean-valued; in this case, written g = ∑∞

n=1 gn cos(nx/2),
the most general solution f (x) is

f (x) = f0 − 4
∞∑
n=1

1

n2
gn cos

nx

2

where f0 is an arbitrary constant

(3)
∣∣∣d f
dx

∣∣∣ ≤ 2
∑
n �=0

(1/n)|gn| ≤ K‖g‖L2 with K = 2√
π

√∑
n �=0

(1/n2)

https://doi.org/10.1007/978-3-319-76165-7_1
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(1.90)
(1) C = 1
(2) G = (2/π)

∑
n≥1 sin nx/n

2

(3) fα(x) converges to h(x) in the norm L2 and also uniformly. Notice that fα and
h are continuous functions

(1.91)
(1) Yes
(2) ‖T−1‖ = 1/

(
1 + (c2/4)

)

(1.92)
(1) un(x) = exp(inπx2), n ∈ Z
(2) un(x) given in (1) are orthonormal with respect to the scalar product ( f, g)ρ , and
are a complete set
(3) cn = (un, f )ρ/(un, un)ρ = (un, f )ρ = . . .

(4)
∑

n |cn|2 = ( f, f )ρ = 2
(5) No periodic. At the points

√
9/4 + 2m, m ∈ Z

(1.93)
(2) (b) c(α) = exp(α/2)
(3) One has B = A and B̃ = Ã; these operators are the infinitesimals Lie generators
of the transformations defined in (2). According to Stone theorem, the generator of
a unitary transformation is anti-Hermitian

(1.94)
(1) Eigenvectors {enm = sin(nx) sin(my); n,m = 1, 2, . . .}, λ = −(n2 + m2),
degeneracy 1 or 2 (exceptionally 3, see Problem (4.7))
(2) ‖T−1‖ = 1/2
(3) Yes. Yes
(5) {enm ± emn} is an orthogonal complete system

(1.95)
(1) α, β purely imaginary
(2) λ = λk1,k2 = (ik1 − α)(ik2 − β), the eigenvectors

uk1,k2 = exp(ik1x) exp(ik2y) , k1, k2 ∈ Z

are an orthogonal complete system for L2(Q)

(3) KerT �= {0} if α = ik1 or β = ik2
(4) The solution exists (not unique) if the Fourier coefficients of g with respect to the
orthogonal complete system obtained in (2) satisfy g1,−1 = g−1,1 = 0. The proposed
equation is solved by f = −(1/5) sin 2(x + y) + c1 sin(x − y) + c2 cos(x − y),
where c1, c2 are arbitrary constants

(1.96)
(1) λ = λk1,k2 = i(k1+ak2), the eigenvectors uk1,k2 = exp(ik1x) exp(ik2y), k1, k2 ∈
Z, are an orthogonal complete system for L2(Q)

https://doi.org/10.1007/978-3-319-76165-7_4
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(2) (a) In KerT one has k1 = −k2; an orthogonal complete system for KerT is
vk = exp

(
ik(x − y)

)
, k ∈ Z ; (b) k1 = k2 = 0, dim of KerT = 1

(3) u(x, π) = 0 if 0 < x < π , and u(x, π) = 1 if π < x < 2π
(4) u(x, y) = ϕ(x − y) where now ϕ is periodically prolonged with period 2π

(1.97)
(1) (b) cn ∈ �2

(1.98)
Strong convergence to 0

(1.101)
(2)

‖u(x, t)‖2 = (π/2)
∑
n

| fn|2 exp(−2n2t) ≤ exp(−2n21t)‖ f (x)‖2

where fn are the coefficients of the Fourier expansion of f (x) and n1 the first nonzero
coefficient of this expansion

(1.102)
(3)

‖Et − I‖2 = sup
n

∑
n | fn|2

(
exp(−n2t) − 1

)2
∑ | fn|2 = 1

In strong sense:

∞∑
n=1

| fn|2
(
exp(−n2t) − 1

)2 ≤
N∑

n=1

| fn|2 +
∞∑

n=N+1

| fn|2 → 0

Indeed, given ε > 0, there is N such that

∑
n>N

| fn|2
(
exp(−n2t) − 1

)2 ≤
∑
n>N

| fn|2 < ε

on the other hand, being exp(−n2t) → 1 as t → 0+, there is t such that

N∑
n=1

| fn|2
(
exp(−n2t) − 1

)2
< ε

then …

(1.103)
(2) u(x, t) tends to a constant
(3) Yes
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(4) Et → P0 in norm as t → +∞, where P0 is the projection on the constants;
Et → I strongly as t → 0+, see previous problem

(1.104)
u(x, t) = ∑(

fn exp(−n2t) + (Fn/n2)(1 − exp(−n2t)
)
exp(inx)

(1.106)
(1) v(t) = e0 exp(t)
(2) v(t) = e1 cosh t + e−1 sinh t

(1.107)
(1) v(t) = e0
(2) v(t) = en cos nt + e−n sin nt

(1.108)
(1) un = exp(i x(n + 1/2)), n ∈ Z
(3) Period T = 4π ; notice that the solution is simply f0(x + t)
(5) No convergence in norm:

‖Et − I‖ = sup
n

∣∣ exp (
i t (n + 1/2)

) − 1
∣∣ = 2

this sup
n

turns out to be independent of t ; strong convergence follows, e.g., from

Lebesgue theorem

(1.109)
(2) (b) u(t) = (exp t)(e1 + t e2)

(1.110)
(1) Only if f (x) = 0
(2) If, e.g., f (x) = sin nx , and then for any finite linear combination thereof
(3) f (x) = ∑

n(1/n
2) sin nx

(4) No: e.g., fN (x) = (1/N ) sin Nx

(1.109)
(2) u1(x, 0) = (1/2)| sin 2x | ;
u(x, π) =

{
0 for 0 ≤ π/2 ≤ π

− sin 2x for π/2 ≤ x ≤ π

(1.113)
(2) The convergence is ensured by the property

∑ |(en, x)|2 < ∞; the series con-
verges to the vector T x

(1.115)
(1) The subspace on which the projection projects must be finite-dimensional
(2) No, no: consider, e.g., the case where T is an unbounded functional
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(1.117)
(1) If A is bounded, the conditions are A+ = A and A positive definite. If A is
unbounded, the obvious conditions about its domain must be included
(2) A Cauchy sequence un with respect to the norm induced by the scalar product
< , > may not be a Cauchy sequence with respect to the norm induced by the scalar
product ( , ): let, e.g., A be defined by A en = en/n where {en, n = 1, 2, . . .} is an
orthonormal complete set, and let un = en , …

(1.118)
(2) Strong convergence to −I
(4) Yes

(1.119)
(3) Yes
(4) ‖T N‖ = supn=1,3,5,...{1,

(
2/nπ

)N } = 1
(5) T N is norm-convergent to P0, i.e., the projection on the one-dimensional subspace
of constants: ‖T N − P0‖ = supn=1,3,5,...

(
2/nπ

)N = (2/π)N → 0

(1.120)
(1) ‖T ‖ = max{|α + β|, |α − β|}
(3) |α + β| = |α − β| = 1 ; β = ±i/

√
2

(4) T n is norm-convergent to the projection on the even functions in L2(R)

(1.121)
(2) (b) Ran Tn is not a Hilbert subspace; one has H = Ker Tn ⊕ Ran Tn , where
Ran Tn is the closure of Ran Tn
(3) The solution exists, not unique, for any g ∈ H
(4) Tn is norm-convergent to the multiplication operator (x/1 + x2) I , and Sn con-
verges strongly, not in norm, to the multiplication operator sin πx I

(1.122)
(1) T 4 = I
(2) The eigenvectors are {exp(inx) , n ∈ Z} ; | sin 2x | has period π/2 and then is
eigenvector of T

(1.123)
(3) T = P+ − P− where P+ projects on the subspace generated by ek with k =
4m + 1,m ∈ Z, etc.
(4) 1, 2

√
2, 1/2

(5) eigenvalues 0 and 2; norm=2

(1.124)
(1) An orthonormal complete system for RanT is e0 = 1/

√
2, e1 = √

3/2 x
(2) A = 1/2, B = 0; A = 0, B = 2/3. With A = 1/2 , B = 2/3, then TAB =
P0 + P1, with clear notations, is a projection, see (1), cf. Problem 1.114, q.(1)
(3) Apart from the eigenvalue λ = 0, T admits the eigenvalues 2 and 2/3 with
eigenvectors, respectively, e0 and e1

https://doi.org/10.1007/978-3-319-76165-7_1
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(4) T f = 2e0(e0, f ) + (2/3)e1(e1, f ) then

‖T ‖2 = 4| f0|2 + (4/9)| f1|2 ≤ 4(| f0|2 + | f1|2) ≤ 4‖ f ‖2

and ‖T ‖ = 2. Notice that in T f = ∫ 1
−1 f dx + x(x, f ) the term

∫ 1
−1 f dx = (1, f )

is to be consistently intended as a constant function (not as a functional), then, e.g.,
‖1‖ = √

2 and

‖
∫ 1

−1
f dx‖ = ‖1(1, f )‖ = √

2|(1, f )| ≤ 2‖ f ‖

The result ‖T ‖ = 2 is confirmed by ‖T ‖ = max |eigenvalues| = 2, thanks to the
fact that the eigenvectors of T provide an orthogonal complete system
(5) An orthonormal complete system for RanT is e0 = 1/

√
2 and e′ =√

5/8(3x2 − 1). For no A, B both different from zero, the operator T can be a
projection

(1.125)
(1) (b) The eigenvalues are: α with eigenvectorsthe zero mean-valued functions, and
α + 2βπ with eigenvector the one-dimensional subspace of constant functions. The
eigenvectors provide an orthogonal complete system for L2(−π, π). Then, ‖T ‖ =
max {|α|, |α +2πβ|}. See previous problem for what concerns the term

∫ π

−π
f (y) dy

(2) β = −1/(2π), see (1)
(3) Tn converges weakly to the operator α I :

(
g, (Tn − α I ) f

) = 2πβ(g, en)(e0, f ) → 0

where en = exp(inx)/
√
2π ; no strong convergence:

‖Tn f − α f ‖ = 2π |β| ‖en‖ |(e0, f )| = 2π |β| | f0|

(1.126)
(2) eigenvalues of T : λk = sin ka/(ka), k ∈ Z with eigenvectors exp(ikx), doubly
degenerate (apart from the case k = 0) for “generic” a; if, e.g., a = π/2 then …
(3) T is Hermitian, because its eigenvalues are real and its eigenvectors are an or-
thogonal complete system; ‖T ‖ = supk |λk | = 1
(4) Yes

(1.127)
(2) Ran Ta is one-dimensional and Ta f (x) = c0, the mean value of f
(4) Yes, no, T−1

a exists unbounded
(5) Ta → I strongly, it is possible to use an argument similar to that seen in Prob-

lem 1.102; no norm-convergence: ‖Ta − I‖ = sup
n

∣∣∣ sin na
na

− 1
∣∣∣ = 1

https://doi.org/10.1007/978-3-319-76165-7_1
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(1.128)
(2) eigenvalues infinitely degenerate if a = π/2, not degenerate if a = 1
(3) ‖Ta‖ = sup |eigenvalues| = 2
(4) For any a ; ‖(Ta − i I )−1‖ = 1 if a = π/2 ; and, if a = 1:

‖(Ta − i I )−1‖ = sup
n

1

| exp(ian) − 1 − i |
= 1

distance of the point 1 + i from the circle of radius 1
= 1√

2 − 1

(1.129)
(2) Yes

(1.131)
(1) (c) No eigenvectors
(2) One eigenvector for any λ such that Re λ > 0
(3) No eigenvectors.

Problems of Chap. 2

(2.1)
(2) All these equations admit infinite solutions

(2.4)
(1) f (z) = c0 + c1z + c2z2, ci =const
(2) f (z) = c0 exp(c1z)

(2.5)
(a) Taylor series converging in |z| < 1; (b) Taylor series converging in |z−2i | <

√
5;

(c) f (z) = 1

z(1/z − 1)
= −1

z

∞∑
n=0

1

zn
= . . . this series converges in |z| > 1;

(d) no need of expansion in powers of (z−1)n: f (z) is itself a Taylor–Laurent series
containing the only term −1/(z − 1)

(2.6)
(1) R = 1
(2) z/(1 − z)2

(3) 2 < |z| < 3

(2.7)
The point z = ∞ is an accumulation point of simple poles

(2.8)
Essential singularity at z = ∞; R(∞) = 0

(2.10)
R = 3π

https://doi.org/10.1007/978-3-319-76165-7_2
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(2.14)
Pole at z = 0 of order n − 6 if n > 6, etc.

(2.15)
Branch points at z = 0 and z = ∞ ; analytic ∀ z and essential singularity at z = ∞ ;
analytic ∀ z and essential singularity at z = ∞ for the functions in the first line; etc.

(2.16)
z = 0 and z = 1 ; z = 0, 1,∞ ; z = 0 , 1 ; z = 0 , 1 ,∞ ; z = 0, 1

(2.17)
(1) n ≤ 5; essential singularity at z = ∞
(2) Nothing changes: the branch points at z = ±1 do not prevent the expansion near
z = 0, it is enough to place the cut line …

(2.18)
(1) α = nπ i , n ∈ Z; essential singularity at z = ∞ for any α

(2) For all α the points z = ±1 are branch points and z = ∞ an essential singularity

(2.19)
(1) Not true: choose, e.g., z = −i
(2) apart from the cut: simple pole at z = −1; no singularity for the second function
(3) apart from the cut: simple pole at z = −i ; no singularity for the second function

(2.22)
π/2 ; iπ/18

(2.23)
(π i/12) sin(1) ; 2π i(1 + π) ;−8π i

(2.24)
π i/9 ; 2π i
(2.25)
π

√
2 ;π

(
2 − (4/

√
3)

) ; −2π/(3
√
3)

(2.26)
−2πa exp(−a) with the sign +, and 0 with the sign − ; π/e

(2.27)
π/e ; −(2π/

√
3) exp(−√

3/2) sin(1/2)

(2.28)
(π/e)(e − 1) ; π ; (π/2)

(
1+ exp(−π/2)

) ; 2π . Using notations of Fig. 2.1, which
refers to the first one of the integrals, one has

∫ −r

−R
+

∫
−γ

+
∫ R

r
+

∫
Γ

= 2π i R(i)

https://doi.org/10.1007/978-3-319-76165-7_2
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then

lim
r→0

∫ +∞

−∞
= P0

∫ +∞

−∞
= 2π i R(i) + π i R(0) = etc.

whereP0 is the Cauchy principal part of the integral (with respect to the singular point
at x = 0). Taking then the imaginary part of the result, the symbol P0 is unnecessary

(2.29)
(π i/e)(e − 1) ; (2π/e)(1 − e)

(2.30)
π

(2.31)
π/(1 − i) ; π i

(
1
2 − 2

3e

)

(2.32)
π/ cosh(aπ/2)

(2.33)√
π(1 + i)/2

√
2;√

π/2
√
2

(2.34)
(1) (a) R(−i) = exp(3iπ/4) = (−1+ i)/

√
2; (b) R(−i) = 3iπ/2; (c) R (−1) = i ;

(d) R(−i) = 4i/3; (e) R(−i) = −i sinh π ; (f) R(−i) = − exp(−π)

(2) (a) log 2 + iπ ; (b) i
√
2 ;

(c) R (i) = (i/4) 4
√
2 exp(3iπ/8) = (i/8) 4

√
2
(√

2 − √
2 + i

√
2 + √

2
) ;

R (−i) = (i/4) 4
√
2 exp(5iπ/8) = (i/8) 4

√
2
( −

√
2 − √

2 + i
√
2 + √

2
) ;

R (−1) = −i/2
√
2

(3) (a) 2i
√
1 − x2, |x | ≤ 1; (b) (x − 1)α

(
1 − exp(2π iα)

)
, x ≥ 1; (c) −2π i ;

(d) −2π i ; (e) +2π i

(2.35)
π/

√
2 ;π/

√
3 ; (π/2

√
2)(1 − i)

(2.36)
aπ/ sin aπ ; (π/3)/ sin

(
π(b + 1)/3

)

(2.37)
(1) 2π/3

√
3 ; 2π/3

√
3

(2) 0 ; π/2

(2.38)
0 ; −π2/8

√
2

(2.39)
π/ sin aπ ; π/ sin bπ
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(2.40)
π3/8

(2.41)
π ; π(2 − √

3) ; 11π/8

(2.42)
2π log(a + 1)

(2.44)
(1) u′(x ′, y′) ∝ y′ where y′ = −i Re (z′) = −i Re (z2), then …
(2) u′(x ′, y′) = (u0/α)y′ = (u0/α)Re (−i z′), then …

(2.45)
(3) u(x, y) = (1 + y)/

(
x2 + (1 + y)2

)
(2.47)
The region D is transformed into the strip 0 ≤ y′ ≤ 1 where the solution is
ũ(x ′, y′) = y′ = Re (−i z′); then, u(x, y) = Re

(
(1 − z)/(1 + z)

) = . . .

(2.48)
(2) Notice that the map �(z′) diverges at z′ = −1, i.e., r ′ = 1, ϕ′ = ±π , which
corresponds to z = ∞. As expected, the solution ũ(r ′, ϕ′) is a harmonic function in
the interior of the circle r ′ < 1 and vanishes on the circumference r ′ = 1 (which
corresponds to the boundary y = 0) apart from the singularity at ϕ′ = ±π . So,
the uniqueness of solutions of the Dirichlet Problem can be recovered excluding
solutions as i z, i z2, etc., by the introduction of a boundedness condition at z = ∞
(the so-called “normal conditions” at the infinity).

Problems of Chap. 3

(3.4)
(1–2) The solutions x0(t) = A exp(∓t) of the homogeneous equations ẋ0 ± x0 = 0
do not admit Fourier transform if A �= 0, not even as distributions inS ′, see Problem
3.69.
(3) Ĝ(ω) = 1/(R − iωL); the difference in the sign depends on the initial choice
in the definition of the Fourier transform. Clearly, there are no consequences if one
uses consistently the rules for the Fourier transform and for its inverse.

(3.7)
Only one is causal

(3.9)
(1) π

(2)
√

π/(2n + 1)
(3) Any h(x) such that the support of its Fourier transform ĥ(ω) has no intersection
with the interval |ω| < 1 satisfies (h, fn) = 0

https://doi.org/10.1007/978-3-319-76165-7_3
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(3.10)
(1) lima→+∞ I (a) = 2π
(2) π

(3.11)
(4) I = 0

(3.12)

(1) v(t) = θ(t)
exp(−βt) − exp(−t)

1 − β
(3) W f = Wβ = 1/(2 + 2β)

(3.13)
(2)

( f, v) = (1/2π)

∫ +∞
−∞

(β + iω)̂v∗(ω)̂v(ω) dω = (β/2π)

∫ +∞
−∞

v̂(−ω)̂v(ω) dω = β(v, v)

(3.14)
(1) C = sup

ω∈R
Ĝ(ω)| ≤ ‖G(t)‖L1(R)

(2) The product of two functions ∈ L2(R) belongs to …

(3.18)
(1) The subspace of the functions f (t) such that the support of their Fourier transform
f̂ (ω) is contained in the interval |ω| ≤ 1
(2) T is the ideal “filter” for “low frequencies”, |ω| ≤ 1
(3) g(t) ∈ C∞, g(t) → 0 as |t | → ∞
(4) Strong convergence to the identity operator

(3.19)
(1) π

(2) RanT �= L2(R), but dense in it: Ran T = L2(R)

(3) ρ /∈ [0, π ]
(4) g(x) ∈ C∞
(5) Yes
(6) Strong convergence to π I . Use Lebesgue theorem

(3.20)
(1) (

g, Ta f
) ∝

∫ +∞

−∞
exp(iaω)ĝ∗(ω) f̂ (ω) dω → 0

thanks to Riemann–Lebesgue lemma for the Fourier transform in L1(R)
(
recall that

the product of two functions ∈ L2(R) belongs to …
)

(2) Use Lebesgue theorem
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(3.21)
(5) The coefficients of the combination are ±1 and ±i

(3.22)
The pointwise limit is zero, for all x ∈ R; theS ′-limit is 2δ(x)

(3.23)
(1) The S ′-limit of the Fourier transforms is the constant function = 1, then the
S ′-limit of the given sequences is δ(x)

(2) f̂n(y) → 2; fn(x) → 2 δ(x)

(3) f̂n(y) → √
π; fn(x) → √

π δ(x)

(4) f̂n(y) → π; fn(x) → π δ(x)

(5) gn(x) → −(
√

π/2) δ′(x)

(3.24)
f̂n(y) → π; fn(x) → π δ(x)

(3.25)

(1) f (t) → exp(−iω0t); f̂ (ω) = 2
sin(ω − ω0)t0

ω − ω0
→ 2πδ(ω − ω0) as t0 → ∞, i.e.,

the frequency contribution is “concentrated” in ω = ω0

(3.29)

(1) f̂ (k) =

⎧⎪⎨
⎪⎩

−π i for − 1 < k < 0

π i for 0 < k < 1

0 elsewhere

(3.30)
a = nπ, n ∈ Z, the support is |ω| ≤ 1

(3.31)
(1) The limits in the first line are P(1/x) ∓ π iδ(x), etc.
(2) ∓iπ

(3.32)
(1) lim

a→∞ ua(ω) = F
(
θ(t)

) = iP(1/ω) + πδ(ω)

(2) π . Notice that this limit cannot be obtained by means of usual Lebesgue theorem
or by integration in the complex plane
(3) iπ

(3.33)
(2) ûa(y) = 2i exp(iay)P(1/y) → −2πδ(y)
(3) iπ
(4) −π/2
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(3.34)
(3) −2

√
π and iπ

(3.35)
(2) T = −D P(1/x)
(3) −2

√
π and, respectively, 0

(3.37)
(a) f (x) = −(1/4)sgn x + (1/2)δ′(x) + const; (b)

(
3/4) − x2

)
exp(−x2) + const;

(c) f (x) = c1 cos(ω1x) + c2 sin(ω2x) where c1, c2 =const and ω1,2 = 2 ± √
3;

(d) f (x) = 0

(3.38)
(1) ga(x) → f (x) in the L2(R) norm
(2) ga(x) → P(1/x) inS ′
(3) ga(x) → δ′(x) inS ′

(3.39)
(1) π i

(
exp(iax) − 1

)
/x

(2) |Fa(x)| ≤ ‖F̂a(ω)‖L1(R) = a ; Fa(x) ∈ L2(R), /∈ L1(R)

(3) (b) Fa(x) = (cos ax − 1)/x
(4) (1 − cos ax)/x → P(1/x)

(3.41)
(1) F (+)(t) = θ(t) sin t
(3) No

(3.42)
(1) F (+)(t) = (

1/(2i)
)(

θ(−t) exp(−i t) + θ(t) exp(i t)
)

F (+)(t) and F (−)(t) do not coincide

(3.43)
(1–3) F̂n(ω) = πδ(ω) + iP(1/ω) − 1/(n − iω) → F

(
θ(x)

)
, etc.

(3.44)
(1) lim = −iω, inS ′

(2) fa(x) = (1/a2)

⎧⎪⎨
⎪⎩
1 for − a < x < 0

−1 for 0 < x < a

0 for |x | > a
(3) lim = δ′(x)

(3.45)
(3) −2π iδ′(ω)

(3.46)
(1) Ĝ(ω) = ig(ω)P(1/ω) + const × δ(ω)

(2)F
(
F(x)

) = exp(iω) − 1 − iω exp(iω)

ω2
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(3.47)
(1)F (arctan x) = iπ exp(−|ω|)P(1/ω)

(2) (π/2)sgn x , and …

(3.48)
(2)F

(
erf(t)

) = i
√

π exp(−ω2/4)P(1/ω) + π3/2δ(ω)

(3)

F
( ∫ t

−∞
. . .

)
= F (arctan t + π/2) = F (arctan t) + π2δ(ω)

= (
iP(1/ω) + πδ(ω)

)(
π exp(−|ω|))

etc.

(3.49)
(3) Yes
(4) iP(1/ω) + πδ(ω)

(3.51)
The convolution product is not defined for a = ±1

(3.52)

(1) vε(x) = 2

{( − 1 + exp(εx)
)
/ε for x < 0(

1 − exp(−εx)
)
/ε for x > 0

(2) uε(x) → 1, vε(x) → 2x

(3.53)
(1) d2(1)/dy2 = d2(y)/dy2 = 0; d2(y2)/dy2 = 2

(3.54)

(d) T = − d

dy
P(1/y) + c0δ(y) + c1δ

′(y) ; (g) T = sin y

y
+ cδ(y)

(2) only for the equation (g) there is a (nonzero) solution∈ L2(R), obtained choosing
the arbitrary constant c = 0

(3.55)
(b) T = P

(
1/(y − 1)

) + c δ(y − 1) ; (c) T = 0 ; (d) T = 1/(y ± i)

(3.56)

(b) T =
(
P 1

y−1 − P 1
y

)
+ c0δ(y) + c1δ(y − 1);

(d) T = 1
2

(
P 1

y−1 − P 1
y+1

)
+ c1δ(y − 1) + c2δ(y + 1) ; (h) T = 1/(1 + y2)

only for the last equation there is a (nonzero) solution ∈ L2(R)

(3.57)
(a) T = ∑

n∈Z cnδ(y − nπ), where cn can be “almost arbitrary”, not only ∈ �2 but
also, e.g., polynomially divergent;
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(c)
T =

∑
n∈Z

cnδ(y − 2nπ) +
∑
m∈Z

cmδ′(y − 2mπ)

(e) T = any finite combination of δ(n)(y), n = 0, 1, 2, . . .

(3.58)
(a) and (b) u(x) = c1 cos x + c2 sin x ; (c) any combination of exp(2π inx/a) ;

(d) u = c0 + c1x + c2x2

(3.59)
(a) T = −δ′(x) + c δ(x); (b) T = −δ(x) + c δ(x − 1);
(c) T = (1/2)δ′′(x) + c0δ(x) + c1δ′(x)

(3.60)
T = c δ(x) and T = iP(1/x) + c δ(x)

(3.64)
(2) T̂ f̂ (ω) = exp(iω) f̂ (ω) = λ f̂ (ω), etc. If λ = 1 then f̂ (ω) are combinations
of δ(ω − 2nπ), n ∈ Z, and the “eigenvectors” of T are (expectedly!) the periodic
functions with period 1, see also Problem 3.57, (a)

(3.65)
(2) No eigenvectors in L2(R), but there are “eigenvectors” inS ′ (see problem above)
for all |λ| ≤ 2
(3) KerT = {0}, RanT �= L2(R), but dense in it: Ran T = L2(R)

(3.66)
(1) G(t) = 2 θ(−t) exp(t), not causal
(2) ‖T ‖ = 2, no eigenfunctions ∈ L2(R)

(3) The expression b(t) = (
G ∗ a

)
(t) ensures “time invariance” of the system, i.e.,

knowing T
(
a(t)

) = b(t) one also knows T
(
a(t + τ)

) = b(t + τ) for any τ ∈ R,
then it is enough that the set of the functions a(t + τ) contains a complete set in
L2(R), …

(3.67)
(a) G(t) uniquely defined but ∈ S ′, /∈ L2(R).

(b) The only information is Ĝ(ω) = 0 for |ω| < 1.

(c) Ĝ(ω) = 1 for |ω| < 1 and Ĝ(ω) = 0 for 1 < |ω| < 2, undetermined for |ω| > 2.
(d) Impossible.
(e) G(t) is determined apart from an arbitrary additive constant; there is one G(t) ∈
L2(R).
(f) The same arbitrariness as in (e), but there are no G(t) ∈ L2(R).
(g) G(t) is uniquely defined in the hypothesis G(t) ∈ L2(R), otherwise Ĝ(ω) con-
tains arbitrary combinations of delta functions, then G(t) . . ., see Problem 3.57 (a).
(h) The same as in (g), now G(t) = 0 is the only Green function ∈ L2(R).

https://doi.org/10.1007/978-3-319-76165-7_3
https://doi.org/10.1007/978-3-319-76165-7_3
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(3.68)
(2) ‖T ‖ = sup

ω∈R
|Ĝ(ω)| ≤ ‖G(t)‖L1(R), see also Problem 3.14

(3) C = ‖T ‖
(5) The operator T is unbounded, then …

(3.69)
(1) G(t) = θ(t) exp(−at) + c exp(−at); exp(−at) /∈ S ′ but is a Schwartz distri-
bution D ′
(4) Yes for the equation in (1). The Green function belonging to L2(R) for the
equation in (3) is “anticausal”, i.e., G(t) = 0 if t > 0

(3.70)
(1) The limits are, respectively, θ(t) and −θ(−t) ∈ S ′ and solve the equation in
(1) (c) .

(2) The most general solution is x(t) = θ(t) + c; choosing suitably the arbitrary
constant c one obtains the solutions in (1) (a)

(3.73)
(2) (a) A possible constant is, e.g., C = 2/a ; (b) C = 2
(3) xa(t) ∈ L2(R), with, e.g., C = 2/a, but its limit as a → 0+ does not belong, in
general, to L2(R)

(3.74)
(1) C = 1/a
(3) x(t) = δ(t) − θ(t) exp(−t) ; x(t) = θ(t) exp(−t)

(3.75)
(1) v(0)(t) = θ(t)

(
1 − exp(−t)

)
. The limit /∈ L2(R), but ∈ S ′

(2) v(0)(+∞) = 1
(3) W (0)

f = 1/2

(3.76)

(2) ( f, v) = (1/2π)

∫ +∞

−∞
f̂ ∗(ω) f̂ (ω)

β − iω
dω → f̂ 2(0)/2 = W (0)

f

(3) v(0)(+∞) = ∫ +∞
−∞ f (t) dt = f̂ (0)

(4) f (t) must be zero mean-valued

(3.77)
(1) a = 2nπ, n ∈ Z
(3) a = (2n + 1)π, n ∈ Z

(3.78)
(1) The causal Green function is G(t) = θ(t) sin t ∈ S ′

(3.79)
G(t) = c + c1t + (1/2)|t |, Green function causal G(t) = t θ(t) ∈ S ′

https://doi.org/10.1007/978-3-319-76165-7_3
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(3.80)
Using Fourier transform one obtains one Green function for the first equation and
∞1 Green functions for the second one. The most general Green function is obtained
considering also the solutions of the homogeneous equation. For the first equation,
these are A exp(t) + B exp(−t), which belong to S ′ only if A = B = 0. For the
second equation, these solutions are A + B exp(∓t), which belong to S ′ only if
B = 0

(
indeed, exp(±t) ∈ D ′, the Schwartz distributions

)

(3.81)
(2) The solution respecting causality is

x(t) = θ(t)
( − 1 + t + exp(−t)

)

(3.82)
The solution respecting causality is

x(t) = θ(t)
( − (1/2) exp(−t) + (1/3) exp(−2t) + (1/6) exp(+t)

)
(
/∈L2(R) and /∈ S ′); there is a solution in L2(R) given by

x(t) = θ(−t)
( − (1/6) exp(t)

) + θ(t)
( − (1/2) exp(−t) + (1/3) exp(−2t)

)

(3.83)
The solution respecting causality is

x(t) = θ(t)
(
1 − exp(−t) − t exp(−t)

)
/∈ L2(R) ,∈ S ′

(3.84)
The solution respecting causality is

x(t) = (1/2)θ(t)
(
exp(−t) − cos t + sin t

)
/∈ L2(R), ∈ S ′

(3.85)
(1) (a) x(t) = c exp(−i t) + exp(−iαt)/(α − 1)
(2) In the case α = 1, x(t) = c1 cos t + c2 sin t − (t/2) cos t

(3.86)
(3) 0 and iπ

(
δ(ω − 1) − δ(ω + 1)

)

(3.87)

u(x) =
{
x(1 − x1) for 0 ≤ x ≤ x1
x1(1 − x) for x1 ≤ x ≤ 1

(3.88)
Themost general solution is u = (−1/2)sgn x+(1/2)|x |+θ(x) exp(−x)+c1+c2x ;
the solution vanishing at x → +∞ is u = θ(−x)(1 − x) + θ(x) exp(−x)
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(3.89)
The solution satisfying the given boundary conditions is

u = (1/2)θ(x)
(
exp(−x) − cos x + sin x

) − (1/2)(e−π/2 + 1) sin x

(3.90)
(1) WritingF

(
G(t)

) = Ĝ(ω) = A(ω) exp
(
iΦ(ω)

)
, one has

b̂(ω) = 2π Ĝ(ω) δ(ω − ω0) = 2π A(ω0) exp(iΦ(ω0)) δ(ω − ω0)

then …
(2) The output is the superposition of two waves with different amplitudes and a
“phase distortion” (in general):

b(t) = exp(iΦ1)
(
A1 exp(−iω1t) + A2 exp

( − iω2t + i(Φ2 − Φ1)
))

where Φ1 = Φ(ω1), A1 = A(ω1), etc.; in general, A1 �= A2, Φ1 �= Φ2

(3.91)
(2) n even

(3.92)
(1) b(t) = δ(t)
(2) bε(t) → δ(t)

(3.93)
(1) bτ (t) ∈ L2(R)

(2) bτ (t) is rapidly vanishing as |t | → ∞
(3) Considering bτ (t) as distributions, bτ (t) converges to 0 in S ′ and in the weak
L2(R) sense, not in norm L2(R)

(3.94)

bT (t) = (1/2)
(
exp

( − (t − T )2
) − exp(−t2)

) → −(1/2) exp(−t2)

and
b̂T (ω) = (1/2)

(
(exp(iωT ) − 1

)̂
a(ω) → (−1/2)F

(
a(t)

)

inS ′, not L2(R). Expectedly, the limit coincides with the result in (3)

(3.95)
(1) Yes: bc(t) = 0, ∀t , if the support of the F -transform â(ω) has no intersection
with the interval |ω| < c
(2) In general b̂c(ω) is not a continuous function, then in general bc(t) /∈ L1(R),
but ∈ L2(R), is bounded, (possibly not rapidly) vanishing at |t | → ∞, infinitely
differentiable
(3) bc(t) → a(t), also in the L2(R) norm
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(3.96)
(1) No. Yes, with â(ω) = ∑

0 �=n∈Z cnδ(ω − πn
T ), see Problem 3.57 (a)

(2) In general b̂T (ω) is not a continuous function, then in general bT (t) /∈ L1(R),
but ∈ L2(R), is bounded, (possibly not rapidly) vanishing at |t | → ∞, continuous
but in general not differentiable
(4) b̂T (ω) → 2πδ(ω)̂a(ω) = 2π â(0)δ(ω), bT (t) → â(0) = ∫ +∞

−∞ a(t) dt

(3.97)
(1) G(t) = δ(t) − θ(t) exp(−2t) ; G(t) = δ(t) + θ(t) + const;
G(t) = δ(t) − 2θ(−t) exp(+t)
(2) β = 1
(3) The causal Green function is G(t) = δ(t) + 2θ(t) exp(+t) /∈ S ′

(3.98)

(1) G(t) =
{
1 for 0 < t < 1

0 elsewhere
+ const

(3.99)

(1) The Green function belonging to L2(R) is G(t) =

⎧⎪⎨
⎪⎩

−t − 1 for − 1 < t < 0

t − 1 for 0 < t < 1

0 elsewhere

(3.100)
(2) G(t, t ′) = M(t ′)δ(t − t ′)

(3.101)
(1)F−1(−P(1/ω) ∗ g) = π i(sgn t) f (t) = π i f (t), then f (t) = 0 if t < 0
(3) Only one satisfies the property given in (1), see Problem 3.7

(4) Ĝ2(ω) = ω

1 + ω2
andG(t) = θ(t) exp(−t). It can be noted that, in this example,

the existence of a connection between Ĝ1(ω) and Ĝ2(ω) can be deduced in a different
way, observing that Ĝ(ω) = 1/(1 − iω) is analytic ∀ω �= −i (in particular along
the real axis), and the relationship between real and imaginary parts of an analytic
function is well known ….

(3.102)
(3) The limit is δ(x), indeed f (x) ∗ δ(x) = f (x)
(4) f (x) = c1 cos x + c2 sin x ∈ S ′

(3.103)
(2) Strong convergence (not norm-convergence) to zero
(3) Strong convergence (not norm-convergence) to the identity operator

(3.104)
(1) u(x, t) ∈ L2(R) vanishes as x → ±∞ but not rapidly, and /∈ L1(R), indeed
û(k, t) is not a continuous function
(3) u(x, t) = 1 ; u(x, t) = x ; u(x, t) = x2 + 2t

https://doi.org/10.1007/978-3-319-76165-7_3
https://doi.org/10.1007/978-3-319-76165-7_3
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(3.105)
(3) Yes

(3.106)
(3) The limit is zero in the sense of S ′ and in the weak L2(R) convergence
(4) The limit is u(x, 0) in the sense of the L2(R) norm:

‖ f̂ (k)(cos kt − 1)‖L2(R) → 0

thanks to Lebesgue theorem

(3.107)

(1) G(x, t) =
{
1/2 for |x | < t

0 for |x | > t

(2) Ĝt (k, t) = cos kt, Gt (x, t) = . . .; G(x, t) is indeed the solution if g(x) = δ(x)
(3) What is the velocity of the wave propagation?

(3.108)
(1) u(x, t) = |x − vt | plus arbitrary functions f (x − ct) + g(x + ct)
(2) u(x, t) = (1/2)sgn(x − t) +, etc., as in (1)

(3.109)
(1) û(k, t) = (

f̂ (k)(1 − ikt) + t ĝ(k)
)
exp(ikt)

(2) No
(4) u(x, t) = (1 − t)θ(x − t) exp(t − x) + t δ(x − t)

(3.110)
(2) G(x, y) = (y/π)/(x2 + y2)
(3) The limit is δ(x)

(3.112)
(2) The solutions are proportional to y, xy, etc.

(3.113)
(1) f̂ (k1, k2, k3) = −8iπ2

(
1/(1 + k21)

)
δ′(k2)δ(k3)

(2)F (1/r2) = 2π2/k

(3.114)
(1)F (1/r) = 4π/k2

(3.116)
(1) 0, −∞, β ; if α ≤ −1 the functions are not (locally) summable
(2) 0, Re γ, 0

(3.117)
(3) λ = −1
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(3.118)
f (x) = sin x for 0 ≤ x ≤ π and = 0 elsewhere; λ = −∞
(3.119)
(1) f̂ (ω) is the function of ω ∈ R obtained from f̃ (s) replacing s with −iω.
(2) f (x) = x if 0 ≤ x < 1 and = 0 elsewhere, with λ = −∞.
(4)

f (x) =
{
x for 0 ≤ x ≤ 1

1 for x ≥ 1

(
and f (x) = 0 if x ≤ 0, of course

)
; with λ = 0. The Fourier transform is

f̂ (ω) = P
(exp(iω) − 1

ω2

)
+ πδ(ω)

(3.122)
(1) a − b = 2nπ, n ∈ Z
(3) The support is 1 + 2πm ≤ x ≤ 1 + 2πn

(3.124)
(2) If c = 2nπ , n = 1, 2, . . ., then y(t) = 0 for any t ≥ c
(3) If c = (2n − 1)π , n = 1, 2, . . ., then y(t) = 0 for any t ≥ c

(3.125)
f̃ (s) = log

(
(s − b)/(s − a)

) ; f̃ (s) = (π/2) − arctan s

(3.126)
(1) J̃0(s) = 1/

√
1 + s2

(3.127)

(a)L
(
f (x)

) =
(
1 − exp(−s)

)2
s
(
1 − exp(−2s)

) = 1

s
tanh(s/2)

(b) f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < x < 1

2 for 1 < x < 2
...

n for n − 1 < x < n
...

and f (x) = 0 for x < 0, of course

(c) f (x) = θ(x)| sin x |
(3.128)
(3) ũ(x, s) = ϕ̃(s) exp(−sx) and then u(x, t) = θ(t − x)ϕ(t − x)
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(3.130)
f (x) = 1/

√
πx .

Problems of Chap. 4

(4.5)
The group contains six elements; there are three inequivalent irreducible represen-
tations, two of dimension 1, and one of dimension 2, in agreement with Burnside
theorem: 6 = 12 + 12 + 22, only one is faithful. The expected degeneracies are then
1 and 2

(4.7)
The degeneracies are 1 and 2. But, e.g., the eigenvalue λ = −50 has degeneracy
3, being obtained when n = 1, m = 7; n = 7, m = 1 and n = m = 5, with the
notations of Problem 1.94

(4.8)
(1) Finding the seven one-dimensional inequivalent irreducible representations of Z7

amounts essentially to finding the solutions of the equation α7 = 1, α ∈ C

(4.9)
There are two one-dimensional representations, one of dimension 2, and two of
dimension 3 ofO1, in agreement with Burnside theorem: 24 = 12+12+22+32+32

(respectively, four of dimension 1, two of dimension 2, and four of dimension 3 of
O). The expected degeneracies are 1, 2, and 3

(4.10)
(1) GLn(C) = SLn(C) × C, where SLn(C) is the “special” subgroup of matrices
M with det M = 1.
(2) Un = SUn ×U1.
(3) One hasGLn(R) = SLn(R)×R only if n is odd (indeed, if n is even, there are no
real matrices commuting with SLn(R), and then of the form λI , such that λn < 0).
Similarly, On = SOn × Z2, where Z2 is (isomorphic to) {1,−1}, only if n is odd

(4.11)
(2) exp(imϕ) ,m ∈ Z; only exp(±iϕ) are faithful
(3) The circular polarizations

(4.12)
The eigenvectors lie along the light “cones”, or better, in the space x, t , the light
“lines” x = ±ct

(4.13)
(1) The dimensions are, respectively, n2 − 1 and n2

https://doi.org/10.1007/978-3-319-76165-7_4
https://doi.org/10.1007/978-3-319-76165-7_1
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(2) In general, the correspondence between the group G and the Lie algebra A is
continuous and one-to-one in a neighborhood of the identity of the group and the
“zero” of the algebra (the origin of A viewed as linear space). The matrices in On

have determinant either +1 or −1; those with det = −1 cannot be continuously
connected with the matrices with det = +1; the former belong to a manifold not
connected to the manifold of the latter, which contains the identity. The dimension
of SOn is n(n − 1)/2

(4.14)
(1) No

(4.16)
The first group is a one-dimensional dilation; the second a rotation; the next generates
dilations in R2; the two last algebras of the first line can be viewed, for instance, as
the generators of a periodic motion (closed orbit) and, respectively, of a nonperiodic
motion (dense orbit) on a torus. The first two algebras of the second line, considered
as transformations on R2 (respectively, R3), describe a diverging spiral in the plane
and a spiral on a cylinder. The last case can be interpreted, e.g., as the group of time-
evolution u(t) = exp(At)u0 of the dynamical system u̇ = Au, where u = u(t) ∈ Rn ,
with a given initial condition u(0) = u0 ∈ Rn , and where the time t plays the role
of Lie parameter

(4.17)

A3 =

⎛
⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, etc. ; B1 =

⎛
⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, etc.

(4.18)
(1) A = −d/dx
(2) A = y(∂/∂x) − x(∂/∂y)
(3) A = t (∂/∂x) + x(∂/∂t)

(4.19)
(2) D = −x d/dx; D̃ = −(x d/dx + 1/2)

(4.24)
The representation (a) is not unitary, partially reducible, faithful.
(b) is unitary, reducible, faithful. (c) is unitary, irreducible, not faithful.
(d) is not unitary, irreducible, faithful

(4.27)
(1)There is a one-dimensional invariant subspace r2 = x2+y2+z2; the other invariant
subspace is the five-dimensional space generated by the five spherical harmonics
Y�,m(θ, ϕ) with � = 2: e.g., z2 ∝ Y2,0 ∝ cos2 θ; x2 − y2 ∝ Y2,2 + Y2,−2 ∝
sin2 θ cos 2ϕ
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(4.28)
(2) Apart from a factor i , in quantum mechanics the matrices Ai correspond to the
components of the angular momentum � = 1 and C = i2�(� + 1); similarly, apart
from a factor 2i , the matrices A′

i correspond to the components of the spin j = 1/2
and C ′ = (2i)2 j ( j + 1)
(3) a = 0,±2π, . . .; a′′ = 0,±4π, . . .

(4.29)
(1) The center of SUn contains n elements. The center is in particular an invariant
subgroup
(2) It is known that for any integer N there is an irreducible representation of SU2 of
dimension N which is related to an angular momentum or spin j = 0, 1/2, 1, . . .
with N = 2 j + 1, and that the odd-dimensional representations are also (faithful)
irreducible representations of SO3. Therefore, the odd-dimensional representations
of SU2 are not-faithful representations of SU2. Notice in particular that SO3 has no
center

(4.30)
(1) The invariant subspaces are given by the antisymmetric matrices (three-
dimensional), the traceless symmetric matrices (five-dimensional), and the “traces”,
i.e., the multiples of the identity (one-dimensional). In symbols: (� = 1) ⊗ (� = 1)
= (� = 0) ⊕ (� = 1) ⊕ (� = 2) = 1 ⊕ 3 ⊕ 5

(4.31)
(1) 3⊗3 decomposes into the six-dimensional representation acting on the symmetric
tensors T(i j) and the three-dimensional representation on the antisymmetric tensors
T[i j], equivalent to the vectors zk = εi jkT[i j], or: 3⊗ 3 = 6⊕ 3∗. The tensor product
3⊗3∗ decomposes into the eight-dimensional representation of the traceless tensors
T i
j and the one-dimensional “traces”: 3 ⊗ 3 = 8 ⊕ 1

(2) 3 ⊗ 3 ⊗ 3 = (3 ⊗ 3) ⊗ 3 = (3∗ ⊕ 6) ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10 where 10 is the
10-dimensional representation acting on the symmetric tensors T(i jk)

(4.33)
f (r) = c1 log r + rn+2/(n + 2)2 + c2, where ci are constants

(4.34)
(1) The ODE is fss + v fs = 0, with solution u(x, t) = c1 exp

(− v(x − vt)
) + c2,

for any v

(2) Apart from the trivial solution u = x − vt with arbitrary v, the only admitted
velocities are v = ±1, with the well-known solutions u = f1(x − t) + f2(x + t),
with arbitrary f1, f2

(4.35)
(2) The ODE is 4s fss + 4 fs = sn , with solution
u(x, t) = c1 log |x2 − t2| + (x2 − t2)n+1/

(
4(n + 1)2

) + c2
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(4.37)
(3) The irreducible representations are described by the couple jM , jN with dimen-
sion (2 jM + 1)(2 jN + 1)
(4) C1 = 2 jM( jM + 1) + 2 jM( jM + 1); C2 = . . .

(4.38)
(1) The representations involved are those with jM = jN . The degeneracies are then
(2 jM + 1)2 = n2, n = 1, 2, . . .
(2) En = −me4/2�

2n2, n = 1, 2, . . ., as well known

(4.39)
2 (d) The six-dimensional representation contains � = 0 (one-dimensional) and � = 2
(five-dimensional).
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