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Preface

This monograph deals with Erdélyi-Kober fractional integrals and fractional deriva-
tives from a statistical perspective, inspired by solar neutrino physics. The applica-
tion of diffusion entropy analysis to Super-Kamiokande data led to ideas to consider
generalizations of entropy (entropic pathway) and diffusion (anomalous diffusion).
Examplified by Erdélyi-Kober fractional calculus it is shown that the statistical
density of a product of two statistically independently distributed real scalar
positive random variables or real positive definite matrix-variate random variables
or complex Hermitian positive definite matrix-variate random variables is a constant
multiple of the Erdélyi-Kober fractional integral of the second kind of order α and
parameter γ , when the density of one of the random variables is arbitrary and the
density of the other random variable is a type-1 beta density with the parameters
(γ +1, α) in the real scalar case, (γ + p+1

2 , α) in the real p×p matrix-variate case,
and (γ + p, α) in the complex p × p matrix-variate case. If x1 > 0, x2 > 0 are the
real scalar random variables, X1 > O,X2 > O are real p×p matrix-variate random
variables, X̃1 > O, X̃2 > O are the complex p×p matrix-variate random variables,

then the product is u2 = x1x2 (real scalar case), U2 = X
1
2
2 X1X

1
2
2 (real matrix-variate

case), and Ũ2 = X̃
1
2
2 X̃1X̃

1
2
2 (complex matrix-variate case). Then the density of

u2, U2, andŨ2, denoted by g2(u2), g2(U2), andg̃2(Ũ2), respectively, is a constant
multiple of the Erdélyi-Kober fractional integral of the second kind. It is shown

that the density of the ratio u1 = x2
x1

, U1 = X
1
2
2 X−1

1 X
1
2
2 , andŨ1 = X̃

1
2
2 X̃−1

1 X̃
1
2
2 ,

in the real scalar case, in the real p × p matrix-variate case, and in the complex
p × p matrix-variate case, respectively, is a constant multiple of the Erdélyi-Kober
fractional integral of the first kind of order α and parameter γ when one density
is arbitrary and the other density is a type-1 beta density with parameters (γ, α) in
all the cases. When the functions are not densities, then it is shown that the second
kind and first kind Erdélyi-Kober fractional integrals are the Mellin convolution of
a product and ratio, respectively, in the scalar case and M-convolution of a product
and ratio in the matrix-variate case. General definitions of first kind and second
kind Erdélyi-Kober fractional integral operators are established, from where all the

v



vi Preface

various fractional integrals introduced in the literature are available as special cases.
These ideas are extended to the real and complex matrix-variate cases. From these
fractional integral operators, fractional differential operators are derived, both in the
Riemann-Liouville and Caputo senses.

Chapter 1 provides a brief overview on solar neutrino detection and its back-
ground in terms of statistical mechanics and neutrino physics. Results of the
diffusion entropy analysis of solar neutrino data collected by Super-Kamiokande
are provided and discussed in terms of a prospective fractional diffusion model that
leads to a diffusion equation in terms of Erdélyi-Kober operators. This result is
the basis for the development of Erdélyi-Kober fractional calculus in the following
chapters from a statistical perspective.

Chapter 2 covers Erdélyi-Kober fractional integrals in the real scalar variable
case. A general notation is introduced to cover all fractional integrals and fractional
derivatives. It is shown that all the fractional integrals available in the literature
can be obtained as special cases from the general definition given here in terms of
statistical densities of product and ratios, Mellin convolutions of products and ratios,
or M-convolutions of products and ratios.

Chapter 3 deals with Erdélyi-Kober fractional integrals in the real matrix-variate
case. Connections to statistical densities of product and ratio of matrix-variate
random variables are also established here.

Chapter 4 introduces Erdélyi-Kober fractional integrals for the real multivariate
case. Multivariate means a collection of real scalar variables and real-valued
functions of these variables.

Chapter 5 generalizes these scalar variable results to real matrix-variate cases.
Chapter 6 starts with the discussion of Erdélyi-Kober fractional integrals in the

complex domain. The necessary tools for handling real-valued scalar functions
of matrix argument, when the argument matrix is Hermitian positive definite,
are developed in this chapter. Connections to complex matrix-variate statistical
distributions are also established. The basic idea in all these developments is
statistical densities of products and ratios and their connection to Erdélyi-Kober
fractional integrals.

In Chap. 7, differential operators, operating on real and complex matrices, are
developed. With the help of these differential operators, fractional derivatives in the
real and complex matrix-variate cases are derived from the corresponding fractional
integrals in Chaps. 3 and 6. Here, the operators introduced can work only on certain
types of functions of real and complex matrix argument and hence not universal.
This area is open to come up with universal differential operators operating on real-
valued functions of real and complex matrix argument.

Montreal, Canada A. M. Mathai
Vienna, Austria H. J. Haubold
20 February 2018
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Chapter 1
Solar Neutrinos, Diffusion, Entropy,
Fractional Calculus

The laws of nature are fundamentally random. This Springer Briefs in Mathematical
Physics is an attempt to illustrate elements of a research programme in mathematics
and statistics applied to selected problems in physics, particularly the relations
between solar neutrinos, diffusion, entropy, and fractional calculus as they appear
in neutrino astrophysics since the 1970s. The original research programme was
published in three monographs [18–20]. An update of this research programme and
selected results achieved since the 1970s is contained in Mathai and Haubold [21]
and Mathai, Saxena, and Haubold [22]. The research programme connects
mathematics and statistics to theoretical physics with the following historical
background in mind.

History has seen a great relation between mathematics and statistics and their
impact on physics: Mathematical structures entered the development of theoretical
physics or, vice versa, problems aising in physics influenced strongly developments
in mathematics and statistics. Famous nineteenth-century and twentieth-century
examples are Boltzmann’s statistical mechanics and the mathematical concept of
entropy, the role of Riemannian geometry in general relativity, and the influence of
quantum mechanics in the development of functional analysis. Einstein finalized
general relativity in 1915 and quantum field theory has been an open problem
since its foundation in 1927 by Dirac. Today there are three fundamental theo-
ries in twenty-first century physics: statistical mechanics, general relativity, and
quantum field theory. These theories describe the same natural world on very
different scales. General relativity describes gravitation on an astronomical scale,
quantum field theory describes the interaction of elementary particles through
electromagnetic, strong, and weak forces, and statistical mechanics starts from
appropriate microscopic laws (classical, relativistic, quantum) and by adequately
using probability theory, to ultimately arrive to the thermodynamical relations and
laws extended deeper into quantum field theory. The unification of such theories
is pursued by mathematicians and physicists so far with some success. Einstein
invented general reativity to resolve an inconsistency between special relativity
and Newtonian gravity. Quantum field theory was invented to reconcile Maxwell’s
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electromagnetism and special relativity with nonrelativistic quantum mechanics.
Einstein’s thought experiments guided the discovery of general relativity based on
the mathematics of Riemannian geometry. For quantum field theory experimental
results played the important role with no a priori mathematical model available.
Boltzmann-Gibbs entropy works perfectly but only within certain limits and if the
physical system is out of equilibrium or its component states depend strongly on one
another a generalized entropy should be used. Witten [34] summarized this situation
by saying that

Experiment is not likely to provide detailed guidance about reconciliation of general relativ-
ity with quantum field theory. One might, therefore, believe that the only hope is to emulate
the history of general relativity, inventing by sheer thought a new mathematical framework
which will generalize Riemannian geometry and will be capable of encompassing quantum
field theory. Many ambitious theoretical physicists have aspired to do such a thing, but little
has come of such efforts.

Boltzmann’s derivation of the second law of thermodynamics was based on
mechanics arguments. In his paper of 1872, Boltzmann considered the dynamics of
binary collisions and stated that “One has therefore rigorously proved that, whatever
the distribution of the kinetic energy at the initial time might have been, it will,
after a very long time, always necessarily approach that found by Maxwell” [1].
Boltzmann’s Stosszahlansatz, i.e. the assumption of molecular chaos used in his
equation, was a statistical assumption which had no dynamical basis. His equally
famous relation between entropy and probability, S ∼ logW , in his paper “On the
relation between the second law of the mechanical theory of heat and probability
theory with respect to the laws of thermal equilibrium” [2] was not based on
dynamics either. At that time Boltzmanns Stosszahlansatz was heavily criticized
by Loschmidts reversibility paradox [3] and Zermelos recurrence paradox [4–6].

In the remarkable year 1900 for physics, Planck elaborated on the connection
between entropy and probability based on the universality of the second law of
thermodynamics and the established laws of probability and put in writing the final
form of the relation between entropy S and permutability P ∼ W in its definitive
form S = klogW . He called k Boltzmann’s constant and came to the conclusion
that in every finite region of phase space the thermodynamic probability has a
finite magnitude limited by h, representing Planck’s constant. At this point Planck
introduced his quantum hypothesis [31]. Concerning Planck’s hypothesis of light
quanta he strictly preserved Maxwell’s theory in vacuum and applied the quantum
hypothesis only to matter that interacts with radiation [28].

Following the above reasoning of Boltzmann, Planck, and Einstein, the research
programme referred to above turned to solar neutrino radiation and utilized the sta-
tistical methodology developed by Scafetta [30] by evaluating the scaling exponent
of the probability density function, through Boltzmann’s entropy, of the diffusion
process generated by complex fluctuations in the measurements of the solar neutrino
flux in the Super-Kamiokande experiment [9, 14, 29, 35]. This turn was justified by
earlier explorations of possible solutions to the so-called solar neutrino problem,
established in Davis’ Homestake experiment [12, 13, 32]. Neutrinos produced in
cycles of thermonuclear reactions (proton-proton chain and CNO cycle) in the Sun
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Fig. 1.1 Spectra of neutrinos emitted by fusion reactions in the Sun. Solid lines represent neutrinos
from the pp chain and dashed lines are neutrinos from the CNO cycle. Original image taken from
Orebi Gann [25] and modified by the author to include the sensitivity of various experimental
approaches

can be distinguished by their energy spectra. Figure 1.1 [25] shows the spectrum of
neutrinos emitted in each individual reaction: solid lines represent neutrinos from
the pp chain, and dashed lines are neutrinos from the CNO cycle. Also shown
are the energy regimes in which these neutrinos have been detected [29]. The
first experiment to detect neutrinos from the Sun was the Chlorine experiment
of Ray Davis et al. at the Homestake mine in South Dakota. These observations
were supported by later measurements from gallium-based experiments: GALLEX;
SAGE; and GNO. These radio-chemical experiments achieve very low energy
thresholds, but perform an integral measurement of all neutrinos above threshold,
producing a single integrated flux measurement. Water Cherenkov experiments
such as Super-Kamiokande and the Sudbury Neutrino Observatory have higher
thresholds but can perform real-time detection thus allowing extraction of both
directional and spectral information. This capability allowed Kamiokande I and II to
first demonstrate that the observed neutrinos were in fact coming from the Sun. For
several decades there was a large discrepancy between the flux of solar neutrinos
predicted by the Standard Solar Model and that measured in the above experiments.
This became known as the Solar Neutrino Problem. The combination of SNOs
measurements with Super-Kamiokandes measurements demonstrated eventually
that neutrinos produced in the Sun were oscillating among flavors prior to detection.
Scafetta’s method does focus on the scaling properties of the Super-Kamiokande
time series (see Fig. 1.2) generated by a supposedly unknown complex dynamical
phenomenon. By summing the terms of such a time series one gets a trajectory and
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Fig. 1.2 Super-Kamiokande
I and II solar neutrino data
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Fig. 1.3 Diffusion Entropy Analysis and Standard Deviation Analysis of the Super-Kamiokande
I and II solar neutrino data [14]

this trajectory can be used to generate a diffusion process. The method is thus based
upon the evaluation of the Boltzmann entropy of the probability density function of
a diffusion process. The numerical result of diffusion entropy analysis of the solar
neutrino data from Super-Kamiokande is shown in Fig. 1.3.

Todays perception of the quantum mechanics of neutrino flavour oscillations can
be analyzed in a variety of ways in physics. There are treatments of this oscillation
phenomenon based on plane waves, on wave packets, and on quantum field
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theory. These treatments have yielded the standard expression for the probability
of oscillations. Neutrinos have been detected in three distinct flavours which
interact in particular ways with electrons, muons, and tau leptons, respectively.
Flavour oscillations occur because the flavour states are distinct from the neutrino
mass states. In particular, a given flavour state may be represented as a coherent
superposition of different mass states. In the recent MINOS experiment it was
discovered that the phenomenon of neutrino oscillations violates the Leggett-Garg
inequality, an analogue of Bell’s inequality, involving correlations of measurements
on neutrino oscillations at different times [11]. The MINOS experiment analysis did
show a violation of the classical limits imposed by the Leggett-Garg inequality. This
provided evidence for the existence of the quantum effect of entanglement between
the mass eigenstates which make up a flavour state. The entropy of entanglement
[16, 27] is an entanglement measure for a many-body quantum state and the question
arises if the results shown in Fig. 1.3 may find an interpretation in terms of the
evolution of an entanglement entropy over time.

In principle, one can perceive the graphical result in Fig. 1.3 of the diffusion
entropy analysis (and standard deviation analysis for comparison) of solar neutrino
radiation similar to Planck’s analysis of black body radiation. What physical
meaning this carries remains to be seen. Assuming that the solar neutrino signal
is governed by a probability density function (pdf) with scaling given by the
asymptotic time evolution of a pdf, obeying the property:

p(x, t) = 1

tδ
F (

x

tδ
),

where δ denotes the scaling exponent of the pdf.
Back to Fig. 1.3, it shows a phenomenon that follows certain scaling laws. This

Diffusion Entropy Analysis (DEA) measures the correlated variations in the Super-
Kamiokande solar neutrino time series. The analysis is based on the diffusion
process generated by the time series and measures the time evolution of the
Boltzmann entropy of the probability density function of this diffusion process,
possibly a quantum diffusion phenomenon. Similar to Brownian motion trajectories,
the value of a time series is interpreted as the steps of a diffusion process. The
trajectories of this process are defined by the cumulative sum of these steps and
obtain a different trajectory for each value of the time series over the full period
of time of measurements. Subsequently the probability density function p(x, t) is
evaluated that describes the probability that a given trajectory has a displacement
of x after t steps. For every particular t the temporal Boltzmann entropy of the
probability density function p(x, t) at time t is evaluated by S(t) = δ log t , where δ

is the diffusion exponent. For a random uncorrelated diffusion process with finite
variance, the p(x, t) will converge according to the central limit theorem to a
Gaussian pdf which exhibits δ = 1/2. Figure 1.3 shows clearly that all δ’s are
different from the value δ = 1/2. These diffusion exponents are non-Gaussian and
exhibit diffusive fluctuations that cannot be modeled by random Gaussian diffusion
processes.
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To evaluate the Boltzmann entropy of the diffusion process at time t , [30] defined
S(t) as:

S(t) = −
∫ +∞

−∞
dx p(x, t) ln p(x, t)

and with the previous p(x, t), one has:

S(t) = A + δ ln(t), A = −
∫ +∞

−∞
dyF(y) ln F(y)

The scaling exponent, δ, is the slope of the entropy against the logarithmic
time scale. The slope is visible in Fig. 1.3 for the Super-Kamiokande data I and
II measured for the solar neutrino fluxes generated in 8B and hep nuclear reactions
in the gravitationally stabilized solar fusion reactor. The Hurst exponents of the
Standadrd Deviation Analysis (SDA) of the same time series are H = 0.66 and
H = 0.36 for 8B and hep, respectively, shown in Fig. 1.3. The pdf scaling exponents
for DEA are δ = 0.88 and δ = 0.80 for 8B and hep, respectively. The values
for both SDA and DEA indicate a deviation from Gaussian behavior, which would
require that H = δ = 1/2.

In 1911 at the first Solvay Conference, Einstein literally put it as an requirement
that one needs a fundamental theory of dynamics to make sense of Boltzmann’s
connection between entropy and probability, even in the case of Planck’s use of
Boltzmann’s formula in the process of discovery of the quantum of action. Einstein’s
immediate reaction to Planck’s extensive report at the Solvay Congress was Eucken
[10]:

What I find strange about the way Mr. Planck applies Boltzmann’s equation is that he
introduces a state probability W without giving this quantity a physical definition. If one
proceeds in such a way, then, to begin with, Boltzmann’s equation does not have a physical
meaning. The circumstance that W is equated to the number of complexions belonging to
a state does not change anything here; for there is no indication of what is supposed to be
meant by the statement that two complexions are equally probable. Even if it were possible
to define the complexions in such a manner that the S obtained from Boltzmann’s equation
agrees with experience, it seems to me that with this conception of Boltzmann’s principle it
is not possible to draw any conclusions about the admissibility of any fundamental theory
whatsoever on the basis of the empirically known thermodynamic properties of a system.

Recently, Brush and Segal [8] commented on the above Boltzmann-Planck-
Einstein dispute from a historical point of view on how the interaction of theory
and experiment in physics with available applicable mathematics and statistics
lead to established theories and subsequently to predictions and explanations of
natural phenomena. He perceives Planck’s derivation of an equation for black-body
radiation that this equation, when mated with Boltzmann’s formula for entropy,
implied that radiation is composed of particles. Planck, as a strong supporter of the
wave theory of electromagnetic radiation, could not believe what the mathematics
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was telling him. Similarly, Kuhn [15] pointed out that Planck did not propose a
physical quantum theory but he used quantization only as a convenient method of
approximation.

The Boltzmann-Gibbs statistical mechanics exhibits highly relevant connections
at the microscopic, mesoscopic, and macroscopic physical levels as well as with
the theory of probabilities (Central Limit Theorem). In general, the effects of the
Central Limit Theorem with its Gaussian attractors (in the space of the distributions
of probabilities) dominate. However, when basic assumptions (molecuar chaos
hypothesis, ergodicity) for the applicability of the Boltzmann-Gibbs theory are
violated, the concept of entropy needs to be extended. Such extensions were put
forward by Mathai’s additive [18] and Tsallis non-additive [33] generalizations of
Boltzmann-Gibbs entropy.

One of the well known random walk models is the Continuous Time Random
Walk (CTRW) introduced by Montroll and Weiss [24]. It describes a large class
of random walks, both normal and anomalous, and can be described as follows.
Suppose a particle performs a random walk in such a way that the individual jump
x in space is governed by a probability density function and that all jumps are
independent and identically distributed. The characteristic function of the position
of the particle relative to the origin after n jumps is f n(k), where f ∗(k) is the
Fourier transform of f (x). Unlike discrete time random walks, the CTRW describes
a situation where the waiting time t between jumps is not a constant. Rather, the
waiting time is governed by the PDF ψ(t) and all waiting times are mutually
independent and identically distributed. Thus, number of jumps n is a random
variable. Let p(x, t) be the Green function of the CTRW, the Montroll–Weiss
equation yields this function in Fourier–Laplace (k, u) space:

p (k, u) = 1 − ψ(u)

u

1

1 − f ∗ (k) ψ (u)
.

All along the above we used the convention that the arguments in the parenthesis
define the space we are working in, thus ψ(u) is the Laplace transform of ψ(t).
Properties of p(x, t) based on the Fourier–Laplace inversion of the previous
equation are well investigated, see Mainardi et al. [17]. In particular, it is well known
that the asymptotic behavior of p (x, t) depends on the long time behavior of ψ(t).
An important assumption made in the derivation of the previous equation is that the
random walk begun at time t = 0. More precisely, it is assumed that the pdf of the
first waiting time, i.e., the time elapsing between start of the process at t = 0 and
the first jump event is ψ(t). Thus the Montroll-Weiss CTRW approach describes a
particular choice of initial conditions, called non-equilibrium initial conditions.

The following diffusion models (Fig. 1.4) utilize fractional-order spatial and
fractional-order temporal derivatives [23]

0D
β
t p(x, t) = η xD

α
θ p(x, t),
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with the initial conditions 0D
β−1
t p(x, 0) = σ(x), 0 ≤ β ≤ 1, limx→±∞ p(x, t) =

0, where η is a diffusion constant; η, t > 0, x ∈ R;α, θ, β are real parameters
with the constraints 0 < α ≤ 2, |θ | ≤ min(α, 2 − α), and δ(x) is the Dirac-delta
function. Then for the fundamental solution of the previous fractional differential
equation with initial conditions, there holds the formula

p(x, t) = tβ−1

α|x| H
2,1
3,3

[ |x|
(ηtβ)1/α

∣
∣
∣
(1,1/α),(β,β/α),(1,ρ)

(1,1/α),(1,1),(1,ρ)

]

, α > 0

where ρ = α−θ
2α

, in terms of Fox’s H-function. The following special cases of
the previous fractional differential equation are of special interest for fractional
diffusion models:

(i) For α = β, the corresponding solution of the fractional differential equation,
denoted by pθ

α , can be expressed in terms of the H-function and can be defined
for x > 0:

Non-diffusion: 0 < α = β < 2; θ ≤ min {α, 2 − α} ,

pθ
α(x) = tα−1

α|x| H
2,1
3,3

[ |x|
tη1/α

∣
∣
∣
(1,1/α),(α,1),(1,ρ)

(1,1/α),(1,1),(1,ρ)

]
, ρ = α − θ

2α
.
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(ii) When β = 1, 0 < α ≤ 2; θ ≤ min {α, 2 − α}, then the previous fractional
differential equation reduces to the space-fractional diffusion equation, which
is the fundamental solution of the following space-time fractional diffusion
model:

∂p(x, t)

∂t
= η xD

α
θ p(x, t), η > 0, x ∈ R,

with the initial conditions p(x, t = 0) = σ(x), lim
x→±∞p(x, t) = 0, where

η is a diffusion constant and σ(x) is the Dirac-delta function. Hence for the
solution of the previous fractional differential equation there holds the formula

pθ
α(x) = 1

α(ηt)1/α
H

1,1
2,2

[
(ηt)1/α

|x|
∣
∣
∣
∣
(1,1),(ρ,ρ)

( 1
α
, 1
α
),(ρ,ρ)

]

, 0 < α < 1, |θ | ≤ α,

where ρ = α−θ
2α

. The density represented by the above expression is known as
α-stable Lévy density. Another form of this density is given by

pθ
α(x) = 1

α(ηt)1/α
H

1,1
2,2

[ |x|
(ηt)1/α

∣
∣
∣
∣
(1− 1

α
, 1
α
),(1−ρ,ρ)

(0,1),(1−ρ,ρ)

]

, 1 < α < 2, |θ | ≤ 2 − α.

(iii) If one takes α = 2, 0 < β < 2; θ = 0, then one obtains the time-fractional
diffusion, which is governed by the following time-fractional diffusion model:

∂βp(x, t)

∂tβ
= η

∂2

∂x2
p(x, t), η > 0, x ∈ R, 0 < β ≤ 2,

with the initial conditions 0D
β−1
t p(x, 0) = σ(x),0 D

β−2
t p(x, 0) = 0, for x ∈

r, limx→±∞ p(x, t) = 0, where η is a diffusion constant and σ(x) is the Dirac-
delta function, whose fundamental solution is given by the equation

p(x, t) = tβ−1

2|x| H
1,0
1,1

[ |x|
(ηtβ)1/2

∣
∣
∣
(β,β/2)

(1,1)

]

.

(iv) If one sets α = 2, β = 1 and θ → 0, then for the fundamental solution of the
standard diffusion equation

∂

∂t
p(x, t) = η

∂2

∂x2 p(x, t),

with initial condition p(x, t = 0) = σ(x), limx→±∞ p(x, t) = 0, there holds
the formula
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p(x, t) = 1

2|x|H
1,0
1,1

[ |x|
η1/2t1/2

∣
∣
∣
(1,1/2)

(1,1)

]

= (4πηt)−1/2 exp[−|x|2
4ηt

],

which is the classical Gaussian density.

In a different way the previous fractional differential equation for p(x, t) can
also be written [26]

∂p(x, t)

∂t
= 2H

β
t2H−1 D

β−1,1−β
2H/β

∂2p(x, t)

∂x2
,

where Dξ,μ
η is the Erdélyi–Kober fractional derivative with respect to t and then the

process was also referred to as Erdélyi–Kober fractional diffusion . Special cases of
the previous equation are: the classical diffusion (β = 2H = 1), the fractional
Brownian motion master equation (β = 1), and the time-fractional diffusion
equation (β = 2H ). A similar approach can be developed in the framework of
the space-time fractional diffusion equation, which includes all its special cases.
Propagation of neutrino radiation may put forward a new class of phenomena that
nonequiilibrium quantum systems may exhibit as shown in Fig. 1.3. This could be an
Erdélyi-Kober fractional diffusion operator, a mathematical operator that describes
the evolution of the probability density function of the quantum system, and the
partition function which describes the statitiscal properties of the system in thermal
nonequilibrium with the environment. This will be worked out in future research.
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Chapter 2
Erdélyi-Kober Fractional Integrals
in the Real Scalar Variable Case

2.1 Introduction

This monograph will examine a new definition for fractional integrals in terms
of the distributions of products and ratios of statistically independently distributed
positive scalar random variables or in terms of Mellin convolutions of products and
ratios in the case of real scalar variables. The idea will be generalized to cover real
multivariate cases as well as to real matrix-variate cases. In the matrix-variate case,
M-convolutions of products and ratios will be used to extend the ideas. Then we will
give a definition for the case of real-valued scalar functions of several real matrices.
Then we examine fractional calculus in the complex domain. Here p ×p Hermitian
positive definite matrices and real-valued scalar functions of these matrices are
examined to define and evaluate fractional integrals. It is shown that one can define
all types of fractional integrals and fractional derivatives through Erdélyi-Kober
fractional integral operators and statistical distribution theory. Then differential
operators will be defined by using the following argument. If D−α denotes fractional
integral of order α then Dα will be called fractional derivative of order α. For
n = 1, 2, . . ., Dn denotes the integer order derivatives. For �(n − α) > 0 we
can define Dα = DnD−(n−α) or Dα = D−(n−α)Dn. The first will be fractional
derivative of order α in the Riemann-Liouville sense and the latter in the Caputo
sense. In the present chapter we concentrate on fractional integrals in the real scalar
cases.

We start with the examination of statistical densities of products and ratios
involving statistically independently distributed real scalar random variables
because the theory to be developed is intertwined with statistical distributions,
Mellin convolutions and Erdélyi-Kober fractional integrals. Let x1 and x2 be
statistically independently distributed real scalar positive random variables and
let u1 = x2

x1
and u2 = x1x2. Consider the densities of u1 and u2. We will show

that Erdélyi-Kober fractional integral operator of the second kind or right-sided,

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
A. M. Mathai, H. J. Haubold, Erdélyi–Kober Fractional Calculus, SpringerBriefs
in Mathematical Physics 31, https://doi.org/10.1007/978-981-13-1159-8_2
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operating on an arbitrary density, is available as the density of u2 and Erdélyi-Kober
fractional integral operator of the first kind or left-sided, operating on an arbitrary
density, is available as the density of u1 when x1 has a type-1 beta density and x2 has
an arbitrary density. Arbitrary density here means any chosen density, not specified
beforehand or any real-valued scalar function f (x) of the real scalar variable x

such that f (x) ≥ 0 for all x and
∫
x
f (x)dx = 1. We also give interpretations for

Erdélyi-Kober fractional integrals of the first kind as Mellin convolutions of ratios
and Erdédyi-Kober fractional integrals of the second kind as Mellin convolutions
for products. Then various types of generalizations will be given thereby obtaining
a large collection of operators and fractional integrals which can all be called
generalized Erdélyi-Kober fractional integral operators and fractional integrals. One
generalization considered is through the pathway idea [14, 16] where one can move
from one family of fractional integrals to another family and yet another family
and in the limiting case end up with an exponential form. Common generalizations
in terms of a Gauss’ hypergeometric series are also given statistical interpretations
and put on a more general structure so that the standard generalizations given by
various authors, including Saigo operators, are given statistical interpretations and
are derivable as special cases of the general structure considered in this chapter.

The literature on fractional calculus in the real scalar variable case is vast. There
are various definitions of fractional integrals and fractional derivatives. An insight
into the area of fractional calculus of real scalar variables is available from Gorenflo
and Mainardi [2], Hilfer [4], Kilbas and Trujillo [5], Kiryakova [6], Mainardi et
al. [13], Metzler et al. [22], Miller and Ross [23], Nishimoto [24], Oldham and
Spanier [25], Podlubny [27] and Saigo and Kilbas [29]. An attempt is made by the
present authors to combine definitions of fractional integrals with the help of Mellin
convolutions of product and ratio and statistical densities of product and ratio of
statistically independently distributed positive scalar random variables. It is found
that this approach enables one to extend the theory of fractional calculus to the
complex domain as well as to real and complex matrix-variate cases.

Fractional differential equations have emerged as a new branch of applied
mathematics and have been utilized for modeling purposes, particularly in physics.
Fractional differential equations are considered as an alternative model to nonlinear
differential equations. For that purpose, several different fractional derivatives
and integrals were introduced: Riemann-Liouville, Caputo, Hadamard, Gruenwald-
Letnikov, Weyl-Riesz, and Erdélyi-Kober [30, 31]. For special values of parameters,
such operators can reduce to well-known differential, integro-differential, or integral
operators like the differential operators of hyper-Bessel type, the Riemann-Liouville
fractional derivative, the Caputo fractional derivative, and the Erdélyi-Kober frac-
tional derivatives and integrals [7, 11, 12]. Particularly appealing cases in physics
are methods of approximating equations with Erdélyi-Kober operators which arise
in mathematical and statistical descriptions of anomalous diffusion [1, 26, 28].
Generalized fractional Erdélyi-Kober integrals can be interpreted geometrically
[3, 17] for applications in particle physics [19].



2.2 Some Notations 15

2.2 Some Notations

We will use the following standard notations. If X = (xij ) is a real m × n matrix
of functionally independent or distinct real variables xij ’s, then dX will stand for
the wedge product of the differentials. That is, dX = ∧m

i=1 ∧n
j=1 dxij . Thus,

for example, if U is a row or column vector with real elements u1, . . . , um then
dU = dU ′ = du1 ∧ du2 ∧ . . . ∧ dum where a prime denotes the transpose. Matrices
in the complex domain will be denoted by a tilde such as X̃, Ỹ , Z̃ etc. If X̃ = X+iY

where X and Y are real m × n matrices, i = √
(−1), then dX̃ will be defined as

dX̃ = dX ∧ dY . For fractional integrals in the complex domain see Mathai (2013)
[17]. In the real matrix-variate case, all the matrices arising are p × p real positive
definite unless stated otherwise. In the real matrix-variate case, the notations X >

O,X ≥ O,X < O,X ≤ O will be used to denote positive definite, positive semi-
definite, negative definite, negative semi-definite matrices respectively. Matrices
which do not belong to the above four categories are called indefinite matrices.

Similar notations will be used for Hermitian positive definite matrices. X
1
2 will

denote the real positive definite square root of the real positive definite matrix X.

Then U2 = X
1
2
2 X1X

1
2
2 is called a symmetric product of the matrices X1 and X2 and

U1 = X
1
2
2 X−1

1 X
1
2
2 is called a symmetric ratio of X2 over X1.

∫
X>O

f (X)dX will
denote the integral over the real-valued scalar function of the real matrix argument
X, over all positive definite matrices X. O < A < X < B will imply that
A > O,B > O,X − A > O,B − X > O, all real positive definite. det(X)

will denote the determinant of X, tr(X) the trace of X, |det(X̃)| the absolute value
of the determinant of X̃ respectively. That is, for a matrix in the complex domain, if
det(X̃) = a + ib, i = √

(−1), a, b real scalars then the absolute value |det(X̃)| =
[(a + ib)(a − ib)] 1

2 = +[a2 + b2] 1
2 . Other notations will be described as and when

necessary.

2.2.1 Some of the Fractional Integrals and the Notations in the
Literature

The fractional calculus literature is filled up with all types of notations for various
factional integrals and fractional derivatives, introduced by various authors from
time to time. Some of the most popular fractional integrals, and the various notations
used to denote them, will be listed here for ready reference. The most popular
fractional integrals and fractional derivatives are the Riemann-Liouville fractional
integrals and the corresponding derivatives.
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The left-sided or first kind Riemann-Liouville fractional integral of order α,
left limit a

aIx
αf = Iα

a+f = aDx
−αf = D−α

1,(a,x)f = 1

Γ (α)

∫ x

a

(x − t)α−1f (t)dt (i)

for �(α) > 0. Here α could be real integer, real fraction, complex number.
The last notation is ours. We will use −α as superscript when it is a fractional

integral and α or +α as superscript when it is a fractional derivative of order α.
First kind will be indicated by the number 1 as a subscript and the second kind by
the number 2. We reserve the letters W for Weyl fractional integral or derivative,
K for Erdélyi-Kober case, C for Caputo case, S for Saigo case and D is reserved
for Riemann-Liouville case since it is the most popular one. Thus, in our notation
(i) will be D−α

1,x f if the left limit for the Riemann-Liouville fractional integral of
order α is either zero or not specified. If the left limit is to be written then we use
D−α

1,(a,x)f . Here the character in f is unimportant and the parameter x appearing as
subscript parameter will be the final variable.

Riemann-Liouville second kind or right-sided fractional integral of order α

with the right limit b

xIb
αf = Iα

b−f = xDb
−αf = D−α

2,(x,b)f = 1

Γ (α)

∫ b

t=x

(t − x)α−1f (t)dt,�(α)>0.

(ii)

If the right limit is not to be specified then our notation will be D−α
2,x f .

The first kind or left-sided Weyl fractional integral of order α

−∞Ix
αf = −∞Wx

−αf = W−α
1,x f = 1

Γ (α)

∫ x

−∞
(x − t)α−1f (t)dt,�(α) > 0.

(iii)

The last one W−α
1,x f is our notation.

The right-sided or second kind Weyl fractional integral of order α

xI∞αf = Iα−f = xW∞−αf = W−α
2,x f = 1

Γ (α)

∫ ∞

x

(t − x)α−1f (t)dt,�(α) > 0.

(iv)

The last one is our notation. For the Riemann-Liouville and Weyl fractional
integral operators denoted above, replace −α by α and vice versa to denote the
corresponding fractional derivatives.
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The Erdélyi-Kober fractional integral of the first kind or left-sided of order α

and parameter ζ

I [f (x)] = I [α, ζ ; f (x)] = E
α,ζ
0,x f = I ζ,α

x f = (I+
ζ,αf )(x) = K−α

1,x,ζ f

K−α
1,x,ζ f = x−α−ζ

Γ (α)

∫ x

0
tζ (x − t)α−1f (t)dt,�(α) > 0. (v)

The last one in the first line and the left-side on the second line are our notations.

The Erdélyi-Kober fractional integral of the second kind of order α and
parameter ζ

R[f (x)] = R[α, ζ ; f (x)] = K
α,ζ
x,∞f = (K−

ζ,αf )(x) = (K(α, ζ ; f )(x) = K−α
2,x,ζ f

K−α
2,x,ζ f = xζ

Γ (α)

∫ ∞

x

t−ζ−α(t − x)α−1f (t)dt,�(α) > 0. (vi)

The last one in the first line and the left side of the second line are our notations. For
Erdélyi-Kober fractional integral operators there are several types of generalizations
in single scalar variable case and there are several more notations. The whole thing
is a notational jungle. The corresponding fractional derivatives are not in general
denoted by replacing −α by +α and vice versa in the above notations. There are
additional notations for fractional derivatives.

Saigo left-sided fractional integral of order α and parameters β, γ

(I
α,β,γ

0+ f )(x) = S−α
1,x,β,γ f =

S−α
1,x,β,γ f = x−α−β

Γ (α)

∫ x

0
(x − t)α−1

2F1(α+β,−γ ;α; 1 − t

x
)f (t)dt,�(α)>0

= dn

dxn
(I

α+n,β−n,γ−n

0+ f )(x),�(α) ≤ 0, [�(−α)] + 1 = n. (vii)

The last one on the first line and the left side of the second line are our notations. In
the above representation [(·)] indicates the integer part of (·).
Saigo right-sided or second kind fractional integral of order α and parameters
β, γ

(I
α,β,γ
− f )(x)=S−α

2,x,β,γ f =

S−α
2,x,β,γ f = 1

Γ (α)

∫ ∞

x

(t−x)α−1t−α−β
2F1(α+β,−γ ;α; 1− x

t
)f (t)dt,�(α)>0

=(−1)n
dn

dxn
(I

α+n,β−n,γ
− f )(x),�(α) ≤ 0, [�(−α)] + 1 = n,

(viii)
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In the Saigo case the corresponding fractional derivatives are denoted by the same
symbols as the fractional integrals where I is replaced by D. More notations, more
definitions and more generalizations of each of the above, see Mathai et al. [21].

2.3 Fractional Integrals of the First Kind in the Real Scalar
Variable Case

Let x1 and x2 be statistically independently distributed real positive scalar random
variables. Let u1 = x2

x1
. Let x1 have a type-1 beta density with parameters (β, α),

that is, the density of x1, denoted by f1(x1), is given by

f1(x1) = Γ (β + α)

Γ (β)Γ (α)
x

β−1
1 (1 − x1)

α−1, 0 < x1 < 1,�(α) > 0,�(β) > 0.

(2.1)
Let x2 have an arbitrary density f2(x2) = f (x2) for some density f (x2) such that
f (x2) ≥ 0 for all x2 and

∫
x2

f (x2)dx2 = 1. Then the density of u1 = x2
x1

is available
by considering the transformation u1 = x2

x1
, v = x2. Then dx1∧dx2 = − v

u2
1
du1∧dv.

The joint density of u1 and v and from there the marginal density of u1, denoted as
g1(u1), is available as

g1(u1) =
∫

v

f1(
v

u1
)f (v)(− v

u2
1

)dv. (2.2)

Limits of u1 will be from ∞ to v and 0 < v < u1. Then the marginal density is the
following:

g1(u1)=
∫ u1

v=0
f1(

v

u1
)f (v)

v

u2
1

dv= Γ (β + α)

Γ (β)Γ (α)

∫ u1

v=0
(

v

u1
)β−1(1− v

u1
)α−1 v

u2
1

f (v)dv.

Therefore

Γ (β)

Γ (β + α)
g1(u1) = u

−β−α
1

Γ (α)

∫ u1

v=0
(u1 − v)α−1vβf (v)dv = K−α

1,u1,β
f, (2.3)

where K−α
1,u1,β

f denotes the left-sided or first kind Kober fractional integral operator
of order α and parameter β, operating on f . The general notation that we will use
is the following: For the Erdélyi-Kober operator, letter K is used. For the order, α is
used. If it is a fractional integral then −α is written as the superscript to K and if it
is derivative then α or +α is written as a superscript. For the first kind or left-sided
fractional integral, number 1 is used. The kind 1, variable u1 and the additional
parameter β are written as subscript to K . Thus, Erdélyi-Kober operator of the first
kind of order α and parameter β is K−α

1,u1,β
and this operating on f giving rise to
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fractional integral of order α, of the first kind and parameter β, as K−α
1,u1,β

f . Note
that our variable u1 is a parameter appearing as a subscript to K and the character
in f is unimportant here. We can have the following theorem:

Theorem 2.1 The Erdélyi-Kober fractional integral operator of the first kind,
operating on f ,

K−α
1,u1,β

f = u
−β−α
1

Γ (α)

∫ u1

v=0
(u1 − v)α−1vβf (v)dv (2.4)

for �(β) > 0,�(α) > 0, is available as Γ (β)
Γ (β+α)

g1(u1) where g1(u1) is the density

of u1 = x2
x1

where x1 has a type-1 beta density with parameters (β, α) and x2 has
an arbitrary density, and x1 and x2 are statistically independently distributed.

When u1 = x2
x1

where x1 and x2 are independently distributed, we have, denoting
the expected value of (·) by E(·),

E(us−1
1 ) = E(xs−1

2 )E(
1

x1
)s−1 = E(xs−1

2 )E(x−s+1
1 )

= f ∗(s)Γ (β + α)

Γ (β)

Γ (β + 1 − s)

Γ (α + β + 1 − s)
(2.5)

for �(α) > 0,�(β+1−s) > 0 where f ∗(s) is the Mellin transform of the arbitrary
function f (x2). Then the Mellin transform of g1(u1), with Mellin parameter s,
denoted as g∗

1(s) and that of f1(x1) as f ∗
1 (s), we have

g∗
1(s) = f ∗(s)f ∗

1 (2 − s). (2.6)

This means that the Erdélyi-Kober fractional integral operator of the first kind,
operating on f , K−α

1,u1,β
f , can be considered as the Mellin convolution of a ratio

u1 = x2
x1

. Erdélyi-Kober fractional integral operator of the second kind operating on
f can be considered as a Mellin convolution of a product u2 = x1x2.

Hereafter the notation u1 will be used for the ratio u1 = x2
x1

and u2 for the product
u2 = x1x2. If additional sets of x1 and x2 are considered then for the j -th set we will
use the notation u1j for the ratio and u2j for the product. If x1 and x2 independently
distributed positive real scalar random variables then the densities of u1 and u2 will
be denoted by g1(u1) and g2(u2) respectively. If the densities of the j -th set of
variables are involved then we will use the notation g1j (u1) for the density of the
ratio and g2j (u2) for the density of the product.

Note from (2.3) that

Γ (α)u
β+α
1 K−α

1,u1,β
f =

∫ u1

v=0
vβ(u1 − v)α−1f (v)dv. (2.7)
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This is Euler transform of f (v), see for example Mathai et al. [21]. Note that all
transforms where the basic function is a type-1 beta form or either of the form
xα(1 − x)β, 0 < x < 1 or of the form (x − a)α(b − x)β, a < x < b can be
connected to Erdélyi-Kober fractional integral operators.

2.4 A Pathway Generalization of Erdélyi-Kober Fractional
Integral Operator of the First Kind

Here the steps are parallel to those of the pathway extension of Erdélyi-Kober
fractional integral operator of the second kind. Let the density of x1 be of the form

f11(x1) = c1x
γ−1
1 [1 − a(1 − q)xδ

1] η
1−q , (2.8)

for 1 − a(1 − q)xδ > 0, η > 0, q < 1, δ > 0, a > 0, where

c1 = δ[a(1 − q)] γ
δ Γ (

η
1−q

+ 1 + γ
δ
)

Γ (
γ
δ
)Γ (

η
1−q

+ 1)
.

Then let u1 = x2
x1

where x1 has the pathway density f11(x1) and x2 has the density
f21(x2) = f (x2) where x1 and x2 are statistically independently distributed and f

is an arbitrary density. Then the density of u1, denoted by g11(u1), is the following:

g11(u1) =
∫

v

f11(
v

u1
)f21(v)

v

u2
1

dv

= c1

∫

v

(
v

u1
)γ−1[1 − a(1 − q)(

v

u1
)δ] η

1−q f21(v)
v

u2
1

dv

= c1u
−γ−(

δη
1−q

+1)

1

∫

v

vγ [uδ
1 − a(1 − q)vδ] η

1−q f (v)dv. (2.9)

Through q one has a collection of operators from (2.9), which can be treated as a
generalization of Erdélyi-Kober fractional integral operator of the first kind.

2.5 Some Special Cases

Case (1): For a = 1, q = 0, δ = 1,
η

1−q
= α − 1 we have the following:

g11(u1) = Γ (γ + α)

Γ (γ )Γ (α)
u

−γ−α

1

∫ u1

v=0
vγ (u1 − v)α−1f (v)dv (2.10)
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for �(α) > 0,�(γ ) > 0. Therefore for �(α) > 0,�(γ ) > 0

Γ (γ )

Γ (α + γ )
g11(u1) = u

−γ−α

1

Γ (α)

∫ u1

v=0
vγ (u1 − v)α−1f (v)dv = K−α

1,u1,γ
f.

(2.11)
Note that (2.9) gives a generalization of Erdélyi-Kober fractional integral
operator of the first kind operating on f . This generalization also gives a path
through q. For various values of q one has a collection of functions which can all
be considered as generalizations of Erdélyi-Kober fractional integral operators of
the first kind operating on f . Also, (2.9) can be looked upon as a generalization of
the pathway integral transform introduced in Mathai et al. [20]. Observe that (2.9)
can also be looked upon as a generalized pathway transform of f (x). Finally,
when q → 1− we have the following form:

Case (2):

lim
q→1−

g11(u1) = δ
(aη)

γ
δ

Γ (
γ
δ
)
u

−γ−1
1

∫ ∞

v=0
vγ e

−aη( v
u1

)δ
f (v)dv. (2.12)

This integral part when δ = 1 is the Laplace transform of vγ f (v) with Laplace
parameter aη

u1
.

All the functions described from (2.9), (2.10) and (2.11) can be taken as
generalizations of Erdélyi-Kober fractional integral operators of the first kind
operating on f . Observe that in the limiting case the fractional nature of the
integral is lost.

Case (3): For a = 1, q = 0, δ = m,
η

1−q
= α − 1 we have a special case:

Γ (γ )
Γ (γ+α)

g11(u1) is (2.6.8) of Mathai and Haubold [18].

2.6 Erdélyi-Kober Fractional Integrals of the First Kind and
Hypergeometric Series

Let us append a hypergeometric series to our basic function x
β−1
1 (1 − x1)

α−1.
Consider the hypergeometric series, for q ≥ p or p = q + 1 and |ax| < 1,

pFq(a1, . . . , ap; b1, . . . , bq; ax1)x
β−1
1 (1 − x1)

α−1

=
∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

akxk
1

k! x
β−1
1 (1 − x1)

α−1

for 0 < x1 < 1 and zero elsewhere. The integral part is the following:

∫ 1

0
x

β+k−1
1 (1 − x1)

α−1dx1 = Γ (β + k)Γ (α)

Γ (α + β + k)
= Γ (α)Γ (β)

Γ (α + β)

(β)k

(α + β)k
, (2.13)
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for �(α) > 0,�(β) > 0. Then the integral over the appended hypergeometric series
gives c(1) where

c(1) = p+1Fq+1(a1, . . . , ap, β; b1, . . . , bq, α + β; a)
Γ (α)Γ (β)

Γ (α + β)
. (2.14)

We can assume all parameters aj ’s, bj ’s and a to be positive and α > 0, β > 0 in
order to assure positivity. Then the density of u1 = x2

x1
, denoted by g12(u1), is given

by

g12(u1) = 1

c(1)

∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

ak

k!
∫

v

(
v

u1
)β+k−1(1 − v

u1
)α−1 v

u2
1

f (v)dv.

The integral part is the following:

u
−β−α
1

∫ u1

v=0
vβ(u1 − v)α−1(

v

u1
)kf (v)dv.

g12(u1)= 1

c(1)
u

−β−α
1

∫ u1

v=0
vβ(u1−v)α−1

pFq(a1, . . . , ap; b1, . . . , bq; a
v

u1
)f (v)dv.

(2.15)

A particular case of (2.15) in terms of a 2F1 is (2.7.1) of Mathai and Haubold [18].
This particular case was given by others earlier as generalization of Erdélyi-Kober
fractional integral operator of the first kind operating on f , not as a statistical density
or as a Mellin convolution of a ratio. We may replace the argument ax1 by aδ1x

δ2
1

in the hypergeometric function, for δ1 > 0, δ2 > 0, to get more general forms
of (2.15).

Instead of a pFq with argument ax1 let us append x
β−1
1 (1 − x1)

α−1 with a
hypergeometric function pFq with argument a(1 − x1). Then, proceeding as before
we get the normalizing constant as

c(2) = p+1Fq+1(a1, . . . , ap, α; b1, . . . , bq, α + β; a)
Γ (β)Γ (α)

Γ (α + β)
, (2.16)

for �(α) > 0,�(β) > 0. Then the density of u1 = x2
x1

, denoted by g13(u1), is given
by the following:

g13(u1) = 1

c(2)

∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

ak

k!
∫

v

(
v

u1
)β−1(1 − v

u1
)α+k−1(− v

u2
1

)f (v)dv.

Then

g13(u1)= u
−β−α
1

c(2)

∫ u1

v=0
vβ(u1−v)α−1

pFq(a1, . . . , ap; b1, . . . , bq; a(1− v

u1
))f (v)dv.

(2.17)
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A particular case of (2.17) in terms of a 2F1 is (2.7.3) of Mathai and Haubold [18].
This particular case was given by others earlier as a generalization of Erdélyi-Kober
fractional integral of the first kind. The argument in the hypergeometric function
could have been aδ1(1 − x1)

δ2 for δ1 > 0, δ2 > 0 to produce a more general case.
Also, one could have taken the argument as aδ1x

δ2
1 (1 − x1)

δ3 . In all such cases,
g13(u1) as a density makes sense and at the same time keeping the basic structure of
Erdélyi-Kober fractional integral of the first kind intact. A particular case of (2.17)
is the Saigo operator of the first kind when the pFq is replaced by a 2F1. The main
advantage of (2.17) is that it is a direct generalization of Erdélyi-Kober fractional
integral of the first kind and at the same time it is a statistical density of a ratio of
two statistically independently distributed real positive random variables.

2.7 Mellin Transform of the Generalized Erdélyi-Kober
Fractional Integral of the First Kind

Let us consider the Mellin transform in (2.15) and (2.17). The basic integral is the
following and will be evaluated through interchange of integrals:

∫ ∞

0
us−1

1 [u−β−α
1

∫ u1

v=0
vβ(u1 − v)α−1 vk

uk
1

du1]dv

=
∫ ∞

v=0
f (v)vβ+k[

∫ ∞

u1=v

u
s−1−β−α−k
1 (u1 − v)α−1du1]dv

=
∫ ∞

v=0
f (v)vβ+k[

∫ ∞

y=0
yα−1(y + v)s−1−β−α−kdy]dv

=
∫ ∞

v=0
vs−1f (v)dv

∫ ∞

z=0
zα−1(1 + z)−(α+β+k+1−s)dz

= f ∗(s)Γ (α)Γ (β + 1 − s)

Γ (α + β + 1 − s)

(β + 1 − s)k

(α + β + 1 − s)k
,

for �(α) > 0,�(β + 1 − s) > 0. Therefore

M{g12(u1) of (2.15); s} = Γ (α)

c(2)

Γ (β + 1 − s)

Γ (α + β + 1 − s)

× p+1Fq+1(a1, . . . , ap, β + 1 − s; b1, . . . , bq, α + β + 1 − s; a)f ∗(s)
(2.18)

for �(α) > 0,�(s) < �(β + 1), a > 0. The basic integral to be evaluated in
corresponding Mellin transform of g13(u1) in (2.17) is the following:
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∫ ∞

u1=0
u

s−1−β−α
1 [

∫ u1

v=0
vβ(u1 − v)α−1(1 − v

u1
)kf (v)du1]dv

=
∫ ∞

v=0
f (v)vβ [

∫ ∞

u1=v

u
s−1−β−α
1 (u1 − v)α−1(1 − v

u1
)kdu1]dv

=
∫ ∞

v=0
vs−1f (v)dv

∫ ∞

z=0
zα+k−1(1 + z)−(α+β+1−s+k)dz

= f ∗(s)Γ (α)Γ (β + 1 − s)

Γ (α + β + 1 − s)

(α)k

(α + β + 1 − s)k

for �(α) > 0,�(β + 1 − s) > 0. Therefore

M{g13(u1) of (2.17); s}= Γ (α)Γ (β+1−s)

Γ (α+β+1−s)
×p+1Fq+1(a1, . . . , ap, α; b1, . . . , bq , α+β+1−s; a)

(2.19)

for �(α) > 0,�(β + 1 − s) > 0, a > 0.

2.8 Riemann-Liouville Operators as Mellin Convolution

Consider the Mellin convolution of a ratio where f3(x1) = x−α−1
1 (1−x1)

α−1

Γ (α)
and

f4(x2) = xα
2 f (x2). Let u1 = x2

x1
, v = x2, x1 = v

u1
. Then the Mellin convolution of

a ratio, denoted by g14(u1), is the following:

g14(u1)=
∫

v

f7(
v

u1
)f8(v)

v

u2
1

dv= 1

Γ (α)

∫ u1

v=0
(u1−v)α−1f (v)dv=0D

−α
x f =D−α

1,x f

(2.20)

is the left-sided Riemann-Liouville fractional integral operator of order α operating
on f . Thus, the left-sided Riemann-Liouville fractional integral operator can be
considered to be the Mellin convolution of a ratio. Consider the Mellin transform of
g14(u1) of (2.20). That is, evaluating through interchange of integrals,

M{g14; s} =
∫ ∞

0
us−1

1 g14(u1)du1

=
∫ ∞

u1=0
us−1

1 [f3(
v

u1
)f4(v)(− v

u2
1

)dv]du1

=
∫ ∞

v=0
f4(v)[

∫ ∞

u1=v

us−1
1 f3(

v

u1
)(− v

u2
1

)du1]dv.
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Put x1 = v
u1

,− v

u2
1
du1 = dx1. Then

∫ ∞

u1=v

us−1
1 f1(

v

u1
)(− v

u2
1

)du1 = vs−1
∫ 1

0

1

xs−1
1

f3(x1)dx1 = M{f3; 2 − s}vs−1

for f3(x1) = 0 outside the interval [0, 1].
∫ ∞

v=0
vs−1f4(v)dv = M{f4; s}.

Then

M{g14; s} = M{f3; 2 − s}M{f4; s} (2.21)

or the right side is of the form

∫

x1

∫

x2

(
x2

x1
)s−1f3(x1)f4(x2)dx1 ∧ dx2 =

∫

x1

1

xs−1
1

f3(x1)dx1

∫

x2

xs−1
2 f4(x2)dx2

(2.22)
or in the form of a Mellin convolution for a ratio.

Theorem 2.2 The left-sided Riemann-Liouville fractional integral is the Mellin
convolution of a ratio u1 = x2

x1
when the joint function of x1 and x2 is of the form

f3(x1)f4(x2) where

f3(x1) = x−α−1
1

Γ (α)
(1 − x1)

α−1, 0 < x1 < 1

and zero elsewhere, and f4(x2) = xα
2 f (x2) where f (x2) is an arbitrary function,

such that the Mellin transforms of f3(x1) and f4(x2) exist. That is,

g14(u1) =
∫

v

f3(
v

u1
)f4(v)(− v

u2
1

)dv = 0D
−α
x f = D−α

1,(0,x)f = D−α
1,x f. (2.23)

Note 2.1 Note that in this case f3(x1) is not a constant multiple of a statistical
density because the exponent of x1 is −α − 1 where �(−α) < 0. Without loss
of generality, f4(x2) can be taken as a statistical density. The Mellin transform
of 0D

−α
x f = D−α

1,(0,x)f is available in the literature, see for example Mathai and
Haubold [18].

M{0D
−α
x f ; s} = M{D−α

1,(0,x)f ; s} = Γ (1 − α − s)

Γ (1 − s)
f ∗(α + s), (2.24)
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for �(s) < 1,�(α + s) < 1 where f ∗(s) is the Mellin transform of f (x). Thus, if
f is replaced by x−αf then we have

M{(0D
−α
x x−αf )(x); s} = Γ (1 − α − s)

Γ (1 − s)
f ∗(s),�(s) < 1,�(α + s) < 1.

(2.25)

2.9 Distribution of a Product and Erdélyi-Kober Operators
of the Second Kind

Let x1 and x2 be real positive scalar random variables which are independently
distributed with density functions f5(x1) and f6(x2) respectively. Then the densities
of the product u2 = x1x2 and ratio u1 = x2

x1
, will be denoted by g2(u2) and g1(u1)

respectively, where

g2(u2) =
∫

v

1

v
f5(

u

v
)f6(v)dv =

∫

y

1

y
f5(y)f6(

u

y
)dy. (2.26)

Let f5 be a type-1 beta density and f6 be an arbitrary density, denoted by f (x2),
arbitrary density in the sense any function f (x) such that f (x) ≥ 0 for all x and∫
x
f (x)dx = 1. Then g2(u2) will take an interesting form. Let

f5(x1) = Γ (β + 1 + α)

Γ (β + 1)Γ (α)
x

β
1 (1 − x1)

α−1, 0 < x1 < 1,�(α) > 0,�(β) > −1

and f5(x1) = 0 elsewhere. In statistical problems, usually the parameters are real
but the results will hold for complex parameters and hence we list the conditions for
complex parameters. Then from (2.26) we have

g2(u2) = Γ (α + β + 1)

Γ (β + 1)Γ (α)

∫ ∞

t=u2

1

t
(
u2

t
)β(1 − u2

t
)α−1f (t)dt

= Γ (α + β + 1)

Γ (β + 1)

u
β
2

Γ (α)

∫ ∞

u2

(t − u2)
α−1t−β−αf (t)dt

= Γ (α + β + 1)

Γ (β + 1)
K−α

2,u2,β
f,

where K−α
2,u2,β

f denotes the usual Kober fractional integral operator of order α

and parameter β and of the second kind operating on f , available in the literature.
Hereafter, Erdélyi-Kober operators will be denoted by K , order will be denoted by
α; if it a fractional integral then the order will be written as −α and as a superscript
and if it is a fractional derivative then the order will be written as superscript α

or +α; if the fractional integral is of the second kind or right-sided then 2 will be
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written as a subscript; if it is of the first kind or left-sided then 1 will be written as
a subscript; the additional parameter β in Erdélyi-Kober operator and the variable
u2 will be written as subscripts; thus the operator, operating on f , is written as
K−α

2,u2,β
f . This means that in terms of a statistical density

K−α
2,u2,β

f = Γ (β + 1)

Γ (α + β + 1)
g2(u2),�(α) > 0,�(β) > 0, (2.27)

where u2 = u = x1x2, the product, with density g2(u). Then, we have the following
result:

Theorem 2.3 Erdélyi-Kober fractional integral operator of the second kind, oper-
ating on a real-valued scalar function f , is a constant multiple of the density of a
product of two real scalar statistically independently distributed positive random
variables x1 and x2 where x1 has a type-1 beta density with the parameters
(β + 1, α), and x2 has an arbitrary density f (x2).

Then looking at u2 = x1x2 from the point of view of Mellin transforms, we
have the following in terms of expected values or statistical expectations, denoted
by E(·). Since x1 and x2 are independently distributed, we have

E(us−1) = E(xs−1
1 )E(xs−1

2 ). (2.28)

This Eq. (2.28), if interpreted in terms of Mellin transform with Mellin parameter s

then we have

Mg2(s) = Mf1(s)Mf2(s) (2.29)

where

Mg2(s) =
∫ ∞

0
us−1

2 g2(u2)du2,Mfj
(s) =

∫ ∞

0
xs−1
j fj (xj )dxj , j = 1, 2

whenever the integrals are convergent. But

E(xs−1
1 ) = Γ (β + 1 + α)

Γ (β + 1)Γ (α)

∫ 1

0
xs−1

1 x
β
1 (1 − x1)

α−1dx1

= Γ (α + β + 1)

Γ (β + 1)

Γ (β + s)

Γ (α + β + s)

for �(β) > 0,�(β + s) > 0,�(α) > 0 and let E(xs−1
2 ) = f ∗(s) = the Mellin

transform of f (x). If the Mellin transform of g2(u2), with Mellin parameter s, is
denoted by M{g2(u2); s} = Mg2(s), then

M{ Γ (β + 1)

Γ (α + β + 1)
g2(u2); s} = Γ (β + s)

Γ (α + β + s)
f ∗(s) = M{K−α

2,u2,β
f ; s}.

(2.30)



28 2 Erdélyi-Kober Fractional Integrals in the Real Scalar Variable Case

This is Mellin convolution of a product. Thus, Erdélyi-Kober fractional integral
operator of the second kind operating on f can be considered as a Mellin
convolution for a product. The inverse Mellin transform of (2.30) provides explicit
expression for Erdélyi-Kober fractional integral operator of the second kind operat-
ing on f , namely,

K−α
2,u2,β

f = 1

2πi

∫ c+i∞

c−i∞
Γ (β + s)

Γ (α + β + s)
f ∗(s)u−sds (2.31)

where the form is available through the convolution integral coming from the Mellin
convolution of a product, that is, a type-1 beta form with parameters (β + 1, α)

convoluted with the arbitrary function f (x).
If f5(x1) is a more general density than a type-1 beta density then we can get

some generalizations of Theorem 2.3. We will consider a pathway extension of type-
1 beta density first.

2.10 A Pathway Extension of Erdélyi-Kober Operator of the
Second Kind

Let f11(x1) be the pathway density

f11(x1) = c11 x
γ

1 [1 − a(1 − q)xδ
1] η

1−q (2.32)

for q < 1, η > 0, a > 0, δ > 0 where

c11 = δ[a(1 − q)] γ+1
δ Γ (

γ+1
δ

+ η
1−q

+ 1)

Γ (
γ+1

δ
)Γ (

η
1−q

+ 1)
.

Then the density of u2 = x1x2, when x1 has the above density f11(x1) and x2 has
arbitrary density f (x2), is denoted by g21(u2), and it is given by

g21(u2) = c11

∫

v

1

v
f1(

u2

v
)f2(v)dv

= c11

∫

v

1

v
(
u2

v
)γ [1 − a(1 − q)(

u2

v
)δ] η

1−q f (v)dv

= c11u
γ

2

∫ ∞

v=u2[a(1−q)] 1
δ

{[vδ − a(1 − q)uδ
2]

η
1−q v

−γ−(
ηδ

1−q
+1)}f (v)dv

(2.33)

Some particular cases here will be interesting.
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2.11 Special Cases

Case (1): When δ = m, q = 0,
η

1−q
= α − 1 then (2.33) is the result (2.6.9) of

Mathai and Haubold [18].
Case (2): When δ = 1, a = 1, q = 0, η = α − 1 then

Γ (γ + 1)

Γ (γ + 1 + α)
g21(u2)= 1

Γ (α)
uγ

∫ ∞

v=u2

(v−u2)
α−1v−γ−αf (v)dv == K−α

2,u2,γ
f

(2.34)
is Erdélyi-Kober fractional integral of the second kind.

Case (3): When δ = 1, a = 1, q = 0, η = α − 1, γ = 0 then

1

Γ (α + 1)
g21(u2) = 1

Γ (α)

∫ ∞

t=u2

(t − u2)
α−1t−αf (t)dt

= K−α
2,u2,0

f = xW
−α∞ t−αf (t) = W−α

2,x t−αf (t) (2.35)

where xW
−α∞ f = W−α

2,x f is the Weyl right-sided fractional integral of order α,
which can also be called the right-sided Riemann-Liouville fractional integral of
order α when the right limit is at ∞, for the function t−αf (t).

Let us look at (2.33) when q varies from −∞ to 1. Here (2.33) is a collection
of generalized Erdélyi-Kober operators of the second kind operating on f . It can
also be considered as a Mellin convolution of a product where one function f (x2)

is arbitrary and the other function f11(x1) is of the form in (2.32). Here q describes
a path of movement of the Erdélyi-Kober fractional integral of the second kind. In
the limit when q → 1− then (2.33) will be

lim
q→1−

g21(u2)=c13

∫ ∞

v=0

1

v
(
u

v
)γ e−aη(

u2
v

)δf (v)dv=c13u
γ

2

∫ ∞

v=0
v−γ−1e−aη(

u2
v

)δf (v)dv

(2.36)

where

c13 = δ
(aη)

γ+1
δ

Γ (
γ+1

δ
)
.

This (2.36) is also connected to Krätzel transform if f (v) can be written as
e−bvψ(v). Then (2.36) will correspond to generalized Krätzel transform of ψ(v).
Krätzel transform is widely applied in various disciplines. This Krätzel transform
is also connected to inverse Gaussian density in stochastic processes, to Bayesian
analysis, to reaction rate probability integral in reaction rate theory, to P-transforms,
to fractional integral transforms and many other topics, the details may be seen from
Kumar, Kumar and Haubold, Kumar and Kilbas, Mathai, and Mathai, Provost and
Hayakawa [8–10, 15, 20].
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We can also consider the case when q > 1. Writing 1 − q = −(q − 1) with
q > 1, f11(x1) of (2.32) changes to the following form.

f12(x1) = c12x
γ

1 [1 + a(q − 1)xδ
1]− η

q−1 , a > 0, δ > 0, η > 0, q > 1 (2.37)

where

c12 = δ
[a(q − 1)] γ+1

δ Γ (
η

q−1 )

Γ (
γ+1

δ
)Γ (

η
q−1 − γ+1

δ
)
,

η

q − 1
− γ + 1

δ
> 0

and

c12 → δ
(aη)

γ+1
δ

Γ (
γ+1

δ
)

= c13 when q → 1+.

In this case 0 < x1 < ∞. Then the density of the product u2 = x1x2, denoted as
g22(u2), is the following:

g22(u) = c12

∫ ∞

t=0

1

t
(
u2

t
)γ [1 + a(q − 1)(

u2

t
)δ]− η

q−1 f (t)dt

= c12u
γ

2

∫ ∞

0
t
−γ+(

δη
q−1 −1)[tδ + a(q − 1)uδ

2]−
η

q−1 f (t)dt. (2.38)

This can also be taken as a generalization of the Erdélyi-Kober fractional integral of
the second kind. When q → 1+, (2.38) goes into the following form.

lim
q→1+

g23(u2) = c13

∫ ∞

0
t−γ−1e−aη( u

t
)δ f (t)dt (2.39)

It is easy to note that

lim
q→1−

c11 = lim
q→1+

c12 = c13.

2.12 Another Form of Generalization of Erdélyi-Kober
Operators of the Second Kind

One can take any specific density for f5(x1) and an arbitrary density for f6(x2).
Then take the Mellin convolution of a product. Then this will give a class of
generalized Erdélyi-Kober operators from a statistical point of view. For a fractional
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integral, which is found in the literature, one needs a type-1 beta form for f5(x1).
We can also relocate x1 at x1 = b so that x1 ≥ b for some b. Then also we can obtain
a fractional integral. From a mathematical point of view such a generalization may
not have much of a significance.

Another generalization is available in terms of hypergeometric functions. We
can append a convergent series to any given density, for example, append a
hypergeometric series to f5(x1), to get a general form. In model building situations
such appended forms may produce thicker or thinner tails and hence useful in model
building. Let us consider appending a hypergeometric series to the basic density
f5(x1) of x1. Let the appended density be denoted by f7.

f7(x1) = 1

c7
pFq(a1, . . . , ap; b1, . . . , bq; ax1)x

β
1 (1 − x1)

α−1, 0 < x1 < 1

(2.40)
and f7(x1) = 0 elsewhere, where c−1

7 is the normalizing constant. We can create a
statistical density out of this form as follows: In order to assure nonnegativity of the
function let us assume that the parameters a1, . . . , ap, b1, . . . , bq, a are all positive.
Then, for q ≥ p or p = q + 1 and |ax| < 1,

pFq(a1, . . . , ap; b1, . . . , bq : ax1)x
β
1 (1 − x1)

α−1

=
∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

akxk
1

k! x
β
1 (1 − x1)

α−1,

where, for example, (a)k = a(a + 1) . . . (a + k − 1), a 
= 0, (a)0 = 1 is the
Pochhammer symbol . Total integral is available from the basic type-1 beta integral

∫ 1

0
x

β+k
1 (1 − x1)

α−1dx1 = Γ (β + 1 + k)Γ (α)

Γ (α + β + 1 + k)
= Γ (α)Γ (β + 1)

Γ (α + β + 1)

(β + 1)k

(α + β + 1)k
.

The normalizing constant is 1
c7

where

c7 = Γ (α)Γ (β + 1)

Γ (α + β + 1)
p+1Fq+1(a1, . . . , ap, β + 1; b1, . . . ., bq, α + β + 1; a),

for �(α) > 0,�(β) > 0. Then

f7(x1) = 1

c7
pFq(a1, . . . , ap; b1, . . . , bq; ax1)x

β
1 (1 − x1)

α−1, 0 < x1 < 1

and zero elsewhere is a density. Take this form of f7(x1) and f8(x2) = f (x2) an
arbitrary density, and proceed to find the density of u2 = x1x2 as before. Denoting
the density by g24(u2), we have
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g24(u2) = 1

c7

∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

ak

k!
∫

v

u
β
2 (v − u2)

α−1v−β−α(
u2

v
)kf (v)dv

= 1

c7
u

β
2

∫

v>u2>0
(v−u2)

α−1v−β−α
pFq(a1, . . . , ap; b1, . . . , bq;au2

v
)f (v)dv.

(2.41)

A particular case of this for a 2F1 is equation (2.7.2) of Mathai and Haubold [18].
This particular case was given by others earlier. There is a serious drawback in
taking a 2F1 because there may be problems in taking Laplace, Mellin and other
transforms for the convergence of the series forms. It is safer to take q ≥ p in
the case of appending a hypergeometric series to the type-1 beta form for f7(x1).
Note that (2.41) is a generalization of Erdélyi-Kober operator of the second kind
operating on f as well as one has an interpretation in terms of a statistical density.

Another form of appending a hypergeometric series is to consider a hypergeo-
metric series with argument a(1 − x1) instead ax1. Going through the same process
as before, one can create a statistical density of the form, denoted by f9(x1),

f9(x1) = 1

c9

∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

ak

k! x
β
1 (1 − x1)

α−1+k (2.42)

for 0 < x1 < 1 and zero elsewhere, where

c9 = Γ (β + 1)Γ (α)

Γ (α + β + 1)
p+1Fq+1(a1, . . . , ap, α; b1, . . . , bq, β + 1 + α; a),

fpr �(α) > 0,�(β) > 0. In order to guarantee nonnegativity we may assume all
parameters aj ’s, bj ’s, be positive, a > 0, α > 0, q ≥ p. If p = q + 1 then
take |a(1 − x1)| < 1. Proceeding exactly as before, taking x1 having this appended
density f9(x1) and x2 having an arbitrary density f10(x2) = f (x2), then the density
of u2 = x1x2, denoted by g25(u2), is available as

g25(u2) = 1

c9

∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

ak

k!
∫

v

1

v
(
u2

v
)β(1 − u2

v
)α+k−1f (v)dv.

This can be simplified to the form

g25(u2)= u
β
2

c9

∫

v>u2>0
(v−u2)

α−1v−β−α
pFq(a1, . . . , ap; b1, . . . , bq; a(1−u2

v
))f (v)dv,

(2.43)

for |a| < 1, v > u2 > 0. This is a generalization of Erdélyi-Kober fractional
integral of the second kind. Here also, one could have taken the argument of pFq as
aδ1(1−x1)

δ2 . These will provide more generalized forms. A particular case of (2.43)
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is (2.7.4) of Mathai and Haubold [18]. This particular case, in terms of a 2F1, was
given by others earlier. As remarked above, there is a disadvantage in taking a 2F1.
This special case in terms of a 2F1 is Saigo operator, see (2.7.8) of Mathai and
Haubold [18].

Remark 2.1 It may be noted from (2.41) and (2.43) that one can consider f9(x1)

in terms of a hypergeometric function with argument ax1 or aδ1x
δ2
1 or a(1 − x1)

or aδ1(1 − x1)
δ2 or aδ1(1 − x1)

δ2x
δ3
1 with δj > 0, j = 1, 2, 3. The procedure will

be the same. If statistical densities are not needed then one can take multiplicative
factors for f9(x1) as well as for f10(x2). Instead of a hypergeometric series, one
can consider f9(x1) in terms of a Meijer’s G-function or H-function with arguments
any one of the forms mentioned above. If g2(u2) to remain as a statistical density
then, apart from convergence of the series and integrals, the parameters are to be
restricted so that the functions remain positive in the range 0 < x1 < 1 and zero
outside this range. Since these generalizations are routine mathematical exercises,
we will not give the explicit expressions for each generalization of Erdélyi-Kober
fractional integral of the second kind here.

2.13 Mellin Transform of the Generalized Erdélyi-Kober
Operator of the Second Kind

For the generalized form in (2.41) the Mellin transform is available by evaluating
the integral, through interchange of integrals,

∫ ∞

0
us−1

2 u
β+k
2 [

∫

v>u2>0
(v − u2)

α−1v−β−α−kf (v)dv]

=
∫ ∞

v=0
v−β−α−kf (v)[

∫ v

u2=0
u

s−1+β+k
2 (v − u2)

α−1du2]dv

=
∫ ∞

v=0
vs−1f (v)dv

∫ 1

0
ys+β+k−1(1 − y)α−1dy

= Γ (α)Γ (β + s)

Γ (α + β + s)

(β + s)k

(α + β + s)k
f ∗(s),

for �(α) > 0,�(β + s) > 0. Therefore the Mellin transform of (2.41) is the
following:

M{g24(u2) of (2.41); s}

= Γ (α)

c9

Γ (β + s)

Γ (α + β + s)
p+1Fq+1(a1, . . . , ap, β + s; b1, . . . , bq, α + β + s; a).

(2.44)
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In a similar manner one can compute the Mellin transform of g25(u) of (2.43). The
basic integral to be evaluated is the following, through interchange of integrals:

∫ ∞

u2=0
u

s−1+β
2 [

∫ ∞

v=u2>0
(v − u2)

α−1v−β−α(1 − u2

v
)kdu2]f (v)dv

=
∫ ∞

v=0
v−β−α+α−1f (v)[

∫ v

u2=0
(1 − u2

v
)α+k−1u

β+s−1
2 du2]dv

=
∫ ∞

v=0
vs−1f (v)dv[

∫ 1

0
yβ+s−1(1 − y)α+k−1dy]

= f ∗(s)Γ (β + s)Γ (α)

Γ (α + β + s)

(α)k

(α + β + s)k
,�(α) > 0,�(β + s) > 0.

Hence

M{g25(u2) of (2.43); s} = Γ (α)

c9

Γ (β + s)

Γ (α+β+s)
p+1Fq+1(a1, . . . , ap, α; b1, . . . , bq , α + β + s; a).

(2.45)

The right-sided Weyl fractional integral of order α is given by

xW
−α∞ f = W−α

2,x f = 1

Γ (α)

∫ ∞

x

(t − x)α−1f (t)dt,�(α) > 0. (2.46)

The Mellin transform is Γ (s)
Γ (α+s)

f ∗(α + s). Such a form can be generated from the
Mellin convolution of a product as well as from a statistical density. Consider

f15(x1) = 1

Γ (α)
(1 − x1)

α−1,�(α) > 0.

Note that f15(x1) here is a constant multiple of a statistical density. In fact, Γ (α +
1)f15(x1) is a type-1 beta density. Let f16(x2) = f (x2) be an arbitrary function. Let
u2 = x1x2, v = x1, x2 = v

u2
. Then the Mellin convolution of a product for f (x2)

and x−α
1 f15(x1) is given by the following:

∫

v

v−α

Γ (α)
(1 − v)α−1f (

u2

v
)

1

v
dv, (t = u2

v
, dv = −u2

t2
dt)

= 1

Γ (α)

∫

t

1

t
(
u2

t
)−α(1 − u2

t
)α−1f (t)dt

= u−α
2

Γ (α)

∫ ∞

t=u2

(t − u2)
α−1f (t)dt = u−α

2 [xW−α∞ f ] = u−α
2 W−α

2,x f. (2.47)
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Theorem 2.4 The right-sided Weyl fractional integral operator of order α,
xW

−α∞ = W−α
2,x , operating on f , can be taken as a Mellin convolution of a product

of f15(x1) and f16(x2) = f (x2) where f15(x1) is a constant multiple of a type-1
beta density.

2.14 A Geometrical and Some Physical Interpretations
of Fractional Integrals

The name “fractional integral” suggests any type of incomplete integral. In this
respect an incomplete gamma function or incomplete beta function or any integral of
the form

∫ a

−∞ f (x)dx or of the form
∫ ∞
a

f (x)dx or
∫ a

0 f (x)dx or
∫ b

a
f (x)dx could

be taken as fractions of total integrals. But in the literature of fractional integrals,
any such fraction of the total integral is not taken as “fractional integrals”. It may be
noted that a certain fraction of the total integral is taken but the structure is that it
is a fraction of the total integral in a product of two functions where one is a type-1
beta type. Consider the product of two real-valued scalar functions of the real scalar
variables x1 and x2, in the form f1(x1)f2(x2). If one function is a power function of
the form f1(x1) = xα−1

1 and if we take the Laplace convolution for a sum, denoted
by D−α

f2
, then

D−α
f2

=
∫ x

t=a

(x − t)α−1f2(t)dt (2.48)

for some a, including a = −∞. If both x1 and x2 are restricted to be positive
variables then a = 0. In the Laplace convolution of a sum we are making the
transformation x = x1 + x2, x2 = t . This integral in (2.48), divided by a constant
Γ (α),�(α) > 0, is the left-sided or first kind Riemann-Liouville fractional integral
in the literature. Hence one interpretation is that Riemann-Liouville left-sided
fractional integral is the Laplace convolution for a sum where one function is a
power function.

2.14.1 An Interpretation in Terms of Densities of Sum and
Difference

Let us consider two real scalar positive random variables x1 > 0, x2 > 0. Let
the densities be f1(x1) and f2(x2) respectively. Let the variables be independently
distributed or enjoy the product probability property (ppp). Then the joint density
is f1(x1)f2(x2). Let z1 = x1 + x2 and z2 = x2 − x1, x2 = t , with z2 ≥ 0. Then
the density of z1, denoted by h1(z1), is the following, when f1(x1) = c1x

α−1
1 ,
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0 ≤ x1 ≤ 1, f1(x1) = 0 elsewhere, a power function density, where c1 is the
normalizing constant:

h1(z1) = c1

∫ z1

0
(z1 − t)α−1f2(t)dt. (2.49)

A constant multiple in (2.49) or if c1 is replaced by 1
Γ (α)

,�(α) > 0 then (2.49) is
Riemann-Liouville first kind or left-sided fractional integral of order α. Hence this
fractional integral can be interpreted as a constant multiple of a density of a sum.
Now, let us look into the density of the difference z2 when f1(x1) is again a power
function density as above. Then the density of z2, denoted by h2(z2), is given by the
following:

h2(z2) = c1

∫ ∞

z2

(t − z2)
α−1f2(t)dt. (2.50)

If c1 is replaced by 1
Γ (α)

,�(α) > 0 then we obtain Riemann-Liouville right-sided
or second kind fractional integral of order α. Therefore, a constant multiple of (2.50)
is Riemann-Liouville right-sided fractional integral of order α.

2.14.2 Fractional Integrals as Fractions of Total Probabilities

Consider the total integral coming from a type-1 beta density with parameters
(β, α), that is, observing that the total integral in a statistical density is 1,

1 = Γ (α + β)

Γ (α)Γ (β)

∫ 1

0
yβ−1(1 − y)α−1dy

= Γ (α + β)

Γ (α)Γ (β)

∫ x

0
(
t

x
)β−1(1 − t

x
)α−1dt

xα+β−1(1) = Γ (α + β)

Γ (α)Γ (β)

∫ x

0
(x − t)α−1tβ−1dt. (2.51)

The left-side in the last line of (2.51) is a fraction of the total probability 1, namely
xα+β−1 times (1) observing that 0 < x < 1. Hence (2.51), which is a Riemann-
Liouville left-sided fractional integral of order α where the arbitrary function is
tβ−1, is a fraction of the total probability in a statistical density.

Consider the total probability coming from a gamma density with parameter α.
Then we have

1 = 1

Γ (α)

∫ ∞

0
yα−1e−ydy,�(α) > 0.
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Fig. 2.1 Integration over
simplices

Consider a fraction of this total probability, namely e−x(1). Then

e−x(1) = e−x

Γ (α)

∫ ∞

0
yα−1e−ydy

= 1

Γ (α)

∫ ∞

0
yα−1e−(x+y)dy, (t = x + y)

= 1

Γ (α)

∫ ∞

x

(t − x)α−1e−tdt. (2.52)

The right side in the last line of (2.52) is right-sided Riemann-Liouville fractional
integral of order α where the arbitrary function is e−t and the left side is a fraction
of a total probability.

2.14.3 A Geometrical Interpretation

Here we consider a geometrical interpretation of the left-sided as well as the right-
sided Riemann-Liouville fractional integral of order α. The following geometrical
interpretation is given by Mathai [17]. Consider the following square of length b−a,
the line x1 = x2 and the left-sided and right-sided triangles as shown in Fig. 2.1.

Consider the area of the triangle on the left of the line x1 = x2 in a plane or
2-space. We will use physicist’s notation of writing the differential elements soon
after the integral sign, for convenience. The area

∫ x

x1=a

dx1

∫ x

x2=x1

dx2 =
∫ x

x1=a

(x − x1)dx1.

But for the corresponding simplex in 3-space the volume is given by the following:

∫ x

x1=a

dx1

∫ x

x2=x1

dx2

∫ x

x3=x2

dx3=
∫ x

x1=a

x1

∫ x

x2=x1

dx2(x−x2)=
∫ x

x1=a

(x − x1)
2

2! dx1.
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Then the volume of the left-sided simplex in the n-space is = ∫ x

x1=a
(x−x1)

n−1

(n−1)! dx1..
Note that if we had integrated out a function of x1 alone, say f (x1) the result would
have been

∫ x

x1=a

(x − x1)
n−1

(n − 1)! f (x1)dx1 =
∫ x

t=a

(x − t)n−1

Γ (n)
f (t)dt.

We may denote this left-sided integral as aD
−n
x f (t) = D−n

1,(a,x)f the integral over
the left simplex in n-space. If n is replaced by a general α then we have the left-sided
or first kind Riemann-Liouville fractional integral of order α, denoted by

aD
−α
x f (t) = D−α

1,(a,x)f = 1

Γ (α)

∫ x

t=a

(x − t)α−1f (t)dt,�(α) > 0,

and hence the corresponding fractional derivative of order α will be denoted by
aD

α
x f (t) = Dα

1,(a,x)f . Here −α indicates integral and +α indicates derivative.
Now, consider the right-sided triangle in Fig. 2.1.Its area is given by

∫ b

x1=x

dx1

∫ x1

x2=x

dx2 =
∫ b

x1=x

(x1 − x)dx1.

The volume of a corresponding simplex in 3-space is

∫ b

x1=x

dx1

∫ x1

x2=x

dx2

∫ x2

x3=x

dx3 =
∫ b

x1=x

(x1 − x)2

2! dx1.

The volume of the right-sided simplex in n-space is then

∫ b

x1=x

(x1 − x)n−1

(n − 1)! dx1 =
∫ b

x1=x

(x1 − x)n−1

Γ (n)
dx1.

Now, if an arbitrary function of x1 alone is integrated over this simplex then the
volume over the simplex, which is a fraction of the volume over the cube, is given
by

xD
−n
b f (t) = D−n

2,(x,b)f =
∫ b

x1=x

(x1 − x)n−1

Γ (n)
f (x1)dx1 =

∫ b

x

(t − x)n−1

Γ (n)
f (t)dt.

If n is replaced by an arbitrary α then the right-sided integral of order α, denoted by
xD

−α
b f (t) = D−α

2,(x,b)f is given by

xD
−α
b f (t) = D−α

2,(x,b)f = 1

Γ (α)

∫ b

t=x

(t − x)α−1f (t)dt,�(α) > 0.
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This is the Riemann-Liouville right-sided or second kind fractional integral of order
α. The corresponding derivative of order α will be denoted by xD

α
b = Dα

2,(x,b)f ,
taking derivative as anti-integral.

2.15 A General Definition of Fractional Integrals

From all the discussions and results so far, we have seen the following: Fractional
integrals considered in the literature are not arbitrary type of incomplete integrals.
They are incomplete integrals coming from a product structure where one function
has a part which is of the form of a type-1 beta function and the other function
has a part which is an arbitrary function. This is the common feature in all the
fractional integrals in the literature, originally coming from a consideration of the
geometry given in Fig. 2.1. Hence one can have a general definition based on Mellin
convolutions of products and ratios or densities of products and ratios. Let our
original f1(x1) and f2(x2) be of the following forms:

f1(x1) = 1

Γ (α)
φ1(x1)(1 − x1)

α−1 and f2(x2) = φ2(x2)f (x2) (2.53)

where �(α) > 0, φ1 and φ2 are specified functions, f is an arbitrary function. From
the structure in (2.53), where f1 has one part a specified function and the other part
a type-1 beta function, f2 has one part a specified function and the other part an
arbitrary function. By specifying φ1 and φ2 and then taking Mellin convolutions
of ratios and products we can derive all the left-sided and right-sided fractional
integrals in the literature.

2.15.1 Mellin Convolution of Product and Second Kind
Integrals

Let us consider the Mellin convolution of a product, denoted by g2(u2), where u2 =
x1x2, v = x2 or x1 = u2

v
, x2 = v, then

g2(u2) = 1

Γ (α)

∫

v

1

v
φ1(

u2

v
)(1 − u2

v
)α−1φ2(v)f (v)dv,�(α) > 0. (2.54)

In (2.54) let φ1 = 1 and φ2(v) = vα . Then (2.54) becomes

g2(u2) = 1

Γ (α)

∫ b

v=u2

(v − u2)
α−1f (v)dv,�(α) > 0. (2.55)
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This is Riemann-Liouville second kind or right-sided fractional integral of order
α, namely D−α

2,(u2,b)f if there is an upper bound for v. If the upper bound is +∞
then (2.55) is second kind or right-sided Weyl fractional integral of order α.

Let φ1(x1) = x
γ

1 , φ2 = 1 in (2.54) and let the upper bound for v be +∞.
Then (2.54) becomes the following, again denoted by g2(u2):

g2(u2) = u
γ

2

Γ (α)

∫ ∞

v=u2

v−γ−α(v − u2)
α−1f (v)dv,�(α) > 0. (2.56)

This (2.56) is nothing but Erdélyi-Kober fractional integral of the second kind of
order α and parameter γ , namely, K−α

2,u2,γ
f .

2.15.2 Mellin Convolution of a Ratio and First Kind Fractional
Integrals

Let u1 = x2
x1

, x2 = v or x1 = v
u1

and the Jacobian is − v

u2
1
. Again, let f1(x1) and

f2(x2) be as in (2.53). Then the Mellin convolution of a ratio or the density of a
ratio when f1 and f2 are statistical densities, denoted by g1(u1), is the following:

g1(u1) = 1

Γ (α)

∫

v

v

u2
1

φ1(
v

u1
)(1 − v

u1
)α−1φ2(v)f (v)dv. (2.57)

Now, by specializing φ1 and φ2 one should get all the left-sided or first kind
fractional integrals in the literature from (2.57).

Let φ1(x1) = x
γ−1
1 , φ2 = 1 in (2.57). Then (2.57) becomes the following, again

denoted by g1(u1):

g1(u1) = u
−γ−α

1

Γ (α)

∫ u1

v=0
vγ (u1 − v)α−1f (v)dv. (2.58)

This is Erdélyi-Kober fractional integral of the first kind of order α and parameter
γ , namely K−α

1,u1,γ
f . Let φ1(x1) = x−α−1

1 , φ2(v) = vα . Then (2.57) becomes the
following, again denoted by g1(u1):

g1(u1) = 1

Γ (α)

∫ u1

v=0
(u1 − v)α−1f (v)dv,�(α) > 0. (2.59)

This (2.59) is Riemann-Liouville left-sided or first kind fractional integral of order
α where the left limit is zero, namely, D−α

1,u1
f or 0Du1

−αf .
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Chapter 3
Erdélyi-Kober Fractional Integrals in the
Real Matrix-Variante Case

General notations on matrices, determinants, traces etc. are given in the introduction
to Chap. 2 and hence they will not be repeated here. Before starting the discussion,
we will need some Jacobians of matrix transformations here. For results on
Jacobians, see Mathai [3]. For the real matrix-variate case, the determinant of X

will be denoted by either det(X) or by |X|. When complex matrices are involved
we will use the notation det(X) for determinant because we would like to reserve
the notation |(·)| for the absolute value of (·). In this case the absolute value of the
determinant of X̃ will be written as |det(X̃)|, denoting a matrix X in the complex
domain as X̃. All matrices appearing in this chapter are p × p real positive definite
unless stated otherwise. Some Jacobians of matrix transformations will be stated
here as lemmas without proofs. For proofs and other details, see Mathai [3].

Lemma 3.1 Let A be m × m and B be n × n nonsingular constant matrices. Let
X = (xij ) and Y = (yij ) be m×n matrices of mn distinct real variables as elements.
Then

Y = AXB, |A| 
= 0, |B| 
= 0,⇒ dY = |A|n|B|mdX. (3.1)

Lemma 3.2 Let X = X′ and Y = Y ′ be real symmetric p × p matrices with
p(p + 1)/2 distinct elements as real scalar variables, where a prime denotes the
transpose. Let A be a p × p nonsingular constant matrix. Then

Y = AXA′, |A| 
= 0 ⇒ dY = |A|p+1dX. (3.2)

Lemma 3.3 Let X be p × p and nonsingular. Then

Y = X−1 ⇒ dY =
{

|X|−2pdX for a general X

|X|−(p+1)dX for X = X′.
(3.3)

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
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We will denote the unique positive definite square root of a real positive definite

matrix A by A
1
2 . The following standard property will be used very often in this

paper. For p × p nonsingular matrices A and B

|I ± AB| = |I ± BA| = |A| |A−1 ± B| = |B| |B−1 ± A| (when nonsingular)

|I ± AB| = |I ± A
1
2 BA

1
2 | = |I ± B

1
2 AB

1
2 | (when positive definite). (3.4)

Lemma 3.4 Let the p × p matrix X be real positive definite. Let T = (tij ) be a
lower triangular matrix with tij ’s , i > j be distinct real variables, tij = 0, i < j

and the diagonal elements be positive, tjj > 0, j = 1, . . . , p. Then we can show
that the transformation X = T T ′ is unique. Then

X = T T ′ ⇒ dX = 2p{
p∏

j=1

t
p+1−j
jj }dT . (3.4)

By using Lemma 3.4 we can evaluate a real matrix-variate gamma integral,
denoted by Γp(α) where

Γp(α) =
∫

X>O

|X|α− p+1
2 e−tr(X)dX. (3.5)

Apply Lemma 3.4 to the right side of (3.5). Then the integral splits into p integrals
on tjj ’s and p(p − 1)/2 integrals on tij ’s, i > j . The tjj -integral gives Γ (α −
j−1

2 ),�(α) >
j−1

2 , j = 1, . . . , p which gives the final condition as �(α) >
p−1

2 .
Each of the tij -integral for i > j gives

√
π and there are p(p − 1)/2 of them, thus

giving the final factor π
p(p−1)

4 . Hence

Γp(α) =
∫

X>O

|X|α− p+1
2 e−tr(X)dX

= π
p(p−1)

4 Γ (α)Γ (α − 1

2
) . . . Γ (α − p − 1

2
),�(α) >

p − 1

2
. (3.6)

Lemma 3.5 Let Y be p × n, n ≥ p and be of rank p or let Y be a full rank
matrix of np distinct real scalar variables as elements. Let S = YY ′. Then S > O

(positive definite). Then writing Y = T U where T is a p×p lower triangular matrix
with positive diagonal elements and U is p × n semi-orthonormal matrix so that
S = YY ′ = T UU ′T ′ = T T ′. Then integrating out the differential elements coming
from the semi-orthonormal matrix U or integrating out over the Stiefel manifold and
then substituting for dT , we can connect the differential elements dS and dY . The
result is the following:

dY = π
np
2

Γp(n
2 )

|S| n
2 − p+1

2 dS

where Γp(n
2 ) is defined in (3.6).
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This Lemma 3.5 is very important in the theory of functions of matrix argument.
This lemma enables us to extend the results from positive definite matrices to
rectangular matrices of full rank. There are many applications of this result in
different disciplines, some of which may be seen from Mathai [4, 5], Mathai and
Princy [13, 14].

We need real matrix-variate type-1 and type-2 beta functions, beta integrals and
beta densities in our discussion later on. Hence these will be given here. The real
matrix-variate type-1 beta density for the p × p real positive definite matrix X1,
with parameters α and β and denoted by f1(X1), is defined as follows:

f1(X1) = Γp(α + β)

Γp(α)Γp(β)
|X1|α− p+1

2 |I − X1|β− p+1
2 , O < X1 < I (type-1) (3.7)

f2(Y1) = Γp(α + β)

Γp(α)Γp(β)
|Y1|β− p+1

2 |I − Y1|α− p+1
2 dY1,O < Y1 < I (type-1)

for �(α) >
p−1

2 , �(β) >
p−1

2 , and f (X1) = 0, f2(Y1) = 0 elsewhere. Type-1
and Type-2 beta integrals and beta functions are defined and denoted as follows for
�(α) >

p−1
2 ,�(β) >

p−1
2 , where Bp(α, β) is the real matrix-variate beta function

which is defined in terms of gamma functions as given below:

Bp(α, β) = Γp(α)Γp(β)

Γp(α + β)

=
∫

O<X<I

|X|α− p+1
2 |I − X|β− p+1

2 dX (type-1)

=
∫

O<Y<I

|Y |β− p+1
2 |I − Y |α− p+1

2 dY (type-1)

=
∫

U>O

|U |α− p+1
2 |I + U |−(α+β)dU (type-2)

=
∫

V >O

|V |β− p+1
2 |I + V |−(α+β)dV (type-2) (3.8)

3.1 Explicit Evaluations of Matrix-Variate Gamma and Beta
Integrals

The integrals in (3.6) and (3.8) look complicated as multivariate integrals. Is it
possible to evaluate these integrals by integrating out over the elements of the
matrices or as multiple integrals or as multivariate real scalar variable integrals?
If evaluated over the individual real scalar variables, is it going to give the same
results in terms of gamma products such as the ones in (3.6)? We will examine this
aspect in this section.
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Matrix transformations in terms of triangular matrices is the easiest way of
evaluating matrix-variate gamma and beta integrals in the real cases. Here we give
several procedures of explicit evaluation of gamma and beta integrals in the general
real situations. The procedure also reveals the structure of these matrix-variate
integrals. Apart from the evaluation of matrix-variate gamma and beta integrals,
the procedure can also be applied to evaluate such integrals explicitly in similar
situations. Various methods described here will be useful to those who are working
on integrals involving real-valued scalar functions of matrix argument in general
and gamma and beta integrals in particular.

First we consider matrix-variate gamma integrals in the real case, then we look
at matrix-variate type-1 beta integrals in the real case. The procedure is parallel in
the matrix-variate type-2 beta integrals.

3.1.1 Explicit Evaluation of Real Matrix-Variate Gamma
Integral

Matrix-variate gamma integral is a very popular integral in many areas. A particular
case is the most popular Wishart density in multivariate statistical analysis. Let X

be a p × p real symmetric and positive definite matrix of mathematical or random
variables. Consider the real-valued function of matrix argument

f (X) = C |X|α− p+1
2 e−tr(BX) (a)

where C is a constant. When X is real and positive definite, X > O, then f (X)

in (a) represents a real matrix-variate gamma density when C = |B|α
Γp(α)

where

B > O is a constant matrix. When B is of the form B = 1
2V −1, V = V ′ > O,

where a prime denotes the transpose, then f (X) in (a) is the Wishart density in
multivariate statistical analysis, which is the central density in the area, see for
example, Anderson [1], Kshirsagar [2], Srivastava and Khatri [17]. The real matrix-
variate gamma integral is given in (3.6). The integral in (3.6) is evaluated there by
using the standard technique of writing X = T T ′ where T is a lower or upper
triangular matrix with positive diagonal elements and evaluating the integrals over
tij ’s as discussed after (3.6).

When Wishart density is derived, starting from samples from a Gaussian
population, the basic technique is the triangularization process. Can we evaluate
the integral on the right of (a) or (3.6) by using conventional methods, or by direct
evaluation? We will look into this problem by using the technique of partitioned
matrices, see also Mathai [8, 9]. Let us partition

X =
[
X11 X12

X21 X22

]
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where let X22 = xpp so that X21 = (xp1, . . . , xpp−1),X12 = X′
21. Then

|X|α− p+1
2 = |X11|α− p+1

2 [xpp − X21X
−1
11 X12]α− p+1

2

by using partitioned matrix and determinant. Note that when X is positive definite,
that is, X > O, then X11 > O, xpp > 0 and the quadratic form X21X

−1
11 X12 > 0.

Note that

[xpp − X21X
−1
11 X12]α− p+1

2 = x
α− p+1

2
pp [1 − x

− 1
2

pp X21X
− 1

2
11 X

− 1
2

11 X12x
− 1

2
pp ]α− p+1

2 .

Let Y = x
− 1

2
pp X21X

− 1
2

11 then dY = x
− p−1

2
pp |X11|− 1

2 dX21 for fixed X11, xpp, see
Mathai (1997, Theorem 1.18.) [3] or Lemma 3.1. The integral over xpp gives

∫ ∞

0
x

α+ p−1
2 − p+1

2
pp e−xpp dxpp = Γ (α), �(α) > 0.

Let u = YY ′. Then from Lemma 3.5 or from Theorem 2.16 and Remark 2.13 of
Mathai [3] and after integrating out over the Stiefel manifold we have

dY = π
p−1

2

Γ (
p−1

2 )
u

p−1
2 −1du.

(Note that n in Theorem 2.16 of Mathai [3] corresponds to p − 1 and p corresponds
to 1). Then the integral over u gives

∫ 1

0
u

p−1
2 −1(1 − u)α− p+1

2 du = Γ (
p−1

2 )Γ (α − p−1
2 )

Γ (α)
, �(α) >

p − 1

2
,

from a real scalar variable type-1 beta integral. Now, collecting all the factors, we
have

|X11|α+ 1
2 − p+1

2 Γ (α)
π

p−1
2

Γ (
p−1

2 )

Γ (
p−1

2 )Γ (α−p−1
2 )

Γ (α)
=|X(1)

11 |α+ 1
2 − p+1

2 π
p−1

2 Γ (α−p−1

2
)

for �(α) >
p−1

2 . Note that |X(1)
11 | is (p−1)×(p−1) and |X11| after the completion

of the first part of the operations is denoted by |X(1)
11 |, and the exponent is changed

to α + 1
2 − p+1

2 . Now repeat the process by separating xp−1,p−1, that is by writing

X
(1)
11 =

[
X

(2)
11 X

(2)
12

X
(2)
21 xp−1,p−1

]

.
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Here X
(2)
11 is of order (p − 2) × (p − 2) and X

(2)
21 is of order 1 × (p − 2). As before,

let u = YY ′, Y = x
− 1

2
p−1,p−1X

(2)
21 [X(2)

11 ]− 1
2 . Then dY = x

− p−2
2

p−1,p−1|X(2)
11 |− 1

2 dX
(2)
21 .

Integral over the Stiefel manifold gives π
p−2

2

Γ (
p−2

2 )
u

p−2
2 −1du and the factor containing

(1 − u) is (1 − u)α+ 1
2 − p+1

2 and the integral over u gives

∫ 1

0
u

p−2
2 −1(1 − u)α+ 1

2 − p+1
2 du = Γ (

p−2
2 )Γ (α − p−2

2 )

Γ (α)
.

Intgral over v = xp−1,p−1 gives

∫ 1

0
vα+ 1

2 + p−2
2 − p+1

2 e−vdv = Γ (α), �(α) > 0.

Taking all product we have

|X(2)
11 |α+1− p+1

2 π
p−2

2 Γ (α − p − 2

2
), �(α) >

p − 2

2
.

Successive evaluations by using the same procedure gives the exponent of π as
p−1

2 + p−2
2 + . . . + 1

2 = p(p−1)
4 and the gamma product is Γ (α − p−1

2 )Γ (α −
p−2

2 ) . . . Γ (α) and the final result is Γp(α). Hence the result is verified.

3.1.2 Evaluation of Matrix-Variate Type-1 Beta Integral in the
Real Case

The real matrix-variate type-1 beta density is available from (3.7) and type-1 beta
integrals from (3.8). For evaluating real matrix-variate gamma integral an easy
method is to make the transformation X = T T ′ where T is a lower triangular matrix
with positive diagonal elements. Even if this transformation is applied here in the
case of beta integrals, the integral does not simplify due to the presence of the factor

|I − X|β− p+1
2 . Hence we will try to evaluate the integral by using a partitioning of

the matrices and then integrating step by step. Let X = (xij ) be a p × p matrix. Let
us separate xpp. This can be done by partitioning |X| and |I − X|. That is, let

X =
[
X11 X12

X21 X22

]

where X11 is the (p−1)×(p−1) leading sub-matrix, X21 is 1×(p−1), X22 = xpp

and X12 = X′
21. Then |X| = |X11|[xpp − X21X

−1
11 X12] and
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|X|α− p+1
2 = |X11|α− p+1

2 [xpp − X21X
−1
11 X12]α− p+1

2 (i)

|I − X|β− p+1
2 = |I − X11|β− p+1

2 [(1 − xpp) − X21(I − X11)
−1X12]β− p+1

2 (ii)

From (i) we have xpp > X21X
−1
11 X12 and from (ii) we have xpp < 1 − X21(I −

X11)
−1X12. That is, X21X

−1
11 X12 < xpp < 1 − X21(I − X11)

−1X12. Let y =
xpp − X21X

−1
11 X12 ⇒ dy = dxpp for fixed X21, X11. Also, 0 < y < b where

b = 1 − X21X
−1
11 X12 − X21(I − X11)

−1X12

= 1 − X21X
− 1

2
11 (I − X11)

− 1
2 (I − X11)

− 1
2 X

− 1
2

11 X12

= 1 − WW ′, W = X21X
− 1

2
11 (I − X11)

− 1
2 .

The second factor on the right in (ii) becomes

[b − y]β− p+1
2 = bβ− p+1

2 [1 − y

b
]β− p+1

2 .

Put u = y
b

for fixed b. Then the factors containing u and b become

bα+β−(p+1)+1uα− p+1
2 (1 − u)β− p+1

2 . Integral over u gives

∫ 1

0
uα− p+1

2 (1 − u)β− p+1
2 du = Γ (α − p−1

2 )Γ (β − p−1
2 )

Γ (α + β − (p − 1))
,

for �(α) >
p−1

2 , �(β) >
p−1

2 . Let W = X21X
− 1

2
11 (I −X11)

− 1
2 for fixed X11. Then

dX21 = |X11| 1
2 |I − X11| 1

2 dW from Lemma 2.1 or from Theorem 1.18 of Mathai
[3], where X11 is (p −1)× (p −1). Put v = WW ′ and integrate out over the Stiefel
manifold by using Lemma 2.5 or Theorem 2.16 and Remark 2.13 of Mathai [3].
Then we have

dW = π
p−1

2

Γ (
p−1

2 )
v

p−1
2 −1dv.

Now the integral over b becomes

∫
bα+β−pdX21 =

∫ 1

0
v

p−1
2 −1(1−v)α+β−pdv= Γ (

p−1
2 )Γ (α + β − (p − 1))

Γ (α + β − p−1
2 )

,�(α + β)>p−1.

Now, multiplying all the factors together we have

|X(1)
11 |α+ 1

2 − p+1
2 |I − X

(1)
11 |β+ 1

2 − p+1
2 π

p−1
2

Γ (α − p−1
2 )Γ (β − p−1

2 )

Γ (α + β − p−1
2 )
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for �(α) >
p−1

2 , �(β) >
p−1

2 . Here X
(1)
11 indicates the (p − 1) × (p − 1) leading

sub-matrix at the end of the first set of operations. At the end of the second set of
operations we will denote the (p − 2) × (p − 2) leading sub-matrix by X

(2)
11 , and so

on. The second step of operations starts by separating xp−1,p−1 and writing

|X(1)
11 | = |X(2)

11 |[xp−1,p−1 − X
(2)
21 [X(2)

11 ]−1X
(2)
12 ]

where X
(2)
21 is 1 × (p − 2). Now, proceed as in the first sequence of steps to obtain

the final factors of the following form:

|X(2)
11 |α+1− p+1

2 |I − X
(2)
11 |β+1− p+1

2 π
p−2

2
Γ (α − p−2

2 )Γ (β − p−2
2 )

Γ (α + β − p−2
2 )

for �(α) >
p−2

2 , �(β) >
p−2

2 . Proceeding like this the exponent of π at the end
will be of the form

p − 1

2
+ p − 2

2
+ . . . + 1

2
= p(p − 1)

4
.

The gamma product will be of the form

Γ (α − p−1
2 )Γ (α − p−2

2 ) . . . Γ (α)Γ (β − p−1
2 ) . . . Γ (β)

Γ (α + β − p−1
2 ) . . . Γ (α + β)

.

These gamma products, together with π
p(p−1)

4 can be written as Γp(α)Γp(β)

Γp(α+β)
=

Bp(α, β) and hence the result. Thus, it is possible to evaluate the type-1 real matrix-
variate beta integral directly to obtain the beta function in the real matrix-variate
case.

A similar procedure can yield the real matrix-variate beta function from the type-
2 real matrix-variate beta integral of the form

∫

X>O

|X|α− p+1
2 |I + X|−(α+β)dX

for X = X′ > O and p × p, �(α) >
p−1

2 , �(β) >
p−1

2 . The procedure for the
evaluation will be parallel.

3.1.3 General Partitions

In Sects. 3.1.1 and 3.1.2, we have considered integrating one variable at a time
by suitably partitioning the matrices. Is it possible to have a general partitioning
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and integrate a block of variables at a time, rather than integrating out individual
variables? Let us consider the real matrix-variate gamma integral first. Let

X =
[
X11 X12

X21 X22

]

, X11 is p1 × p1 and X22 is p2 × p2

so that X12 is p1 × p2 and X21 = X′
12 and p1 + p2 = p. Without loss of generality,

let us assume that p1 ≥ p2. Then the determinant can be partitioned as follows:

|X|α− p+1
2 = |X11|α− p+1

2 |X22 − X21X
−1
11 X12|α− p+1

2

= |X11|α− p+1
2 |X22|α− p+1

2 |I − X
− 1

2
22 X21X

−1
11 X12X

− 1
2

22 |α− p+1
2 .

Put

Y = X
− 1

2
22 X21X

− 1
2

11 ⇒ dY = |X22|−
p1
2 |X11|−

p2
2 dX21

for fixed X11 and X22.

|X|α− p+1
2 = |X11|α+ p2

2 − p+1
2 |X22|α+ p1

2 − p+1
2 |I − YY ′|α− p+1

2 .

The Jacobian above is available from Lemma 3.1 or from Theorem 1.18 of Mahai
[3]. Let S = YY ′. Then integrating out over the Stiefel manifold we have

dY = π
p1p2

2

Γp2(
p1
2 )

|S| p1
2 − p2+1

2 dS,

see Lemma 3.5 or Theorem 2.16 and Remark 2.13 of Mathai [3]. Now, integral over
S gives

∫

O<S<I

|S| p1
2 − P2+1

2 |I − S|α− p1
2 − p2+1

2 dS = Γp2(
p1
2 )Γp2(α − p1

2 )

Γp2(α)
,

for �(α) >
p1−1

2 . Collecting all the factors, we have

|X11|α− p1+1
2 |X22|α− p2+1

2 π
p1p2

2
Γp2(α − p1

2 )

Γp2(α)
.

From here, one can also observe that the original determinant splits into functions
of X11 and X22. This also shows that if we are considering a real matrix-variate
gamma density then the diagonal blocks X11 and X22 are statistically independently
distributed, where X11 will have a p1-variate gamma distribution and X22 has a p2-
variate gamma distribution. Observe that tr(X) = tr(X11) + tr(X22) and hence the
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integral over X22 gives Γp2(α) and the integral over X11 gives Γp1(α). Hence the
total integral is available as

Γp1(α)Γp2(α)π
p1p2

2
Γp2(α − p1

2 )

Γp2(α)
= Γp(α)

since π
p1p2

2 Γp1(α)Γp2(α − p1
2 ) = Γp(α).

Hence it is seen that instead of integrating out variables one at a time we could
have also integrated out blocks of variables at a time and could have verified the
result. Similar procedure works for real matrix-variate type-1 and type-2 beta also.

3.1.4 A Method of Avoiding Integration Over the Stiefel
Manifold

The general method of partitioning described above involves the integration over the
Stiefel manifold as an intermediate step of substituting for the differential element of
a lower triangular matrix. Another method will be considered here, which will avoid
integration over Stiefel manifold. Let us consider the real matrix-variate gamma case
first. Again, we start with the decomposition

|X|α− p+1
2 = |X11|α− p+1

2 |X22 − X21X
−1
11 X12|α− p+1

2 . (iii)

Instead of integrating out X21 or X12 let us integrate out X22. Let X11 be p1 × p1
and X22 be p2 × p2 with p1 + p2 = p. In the above partitioning we require that
X11 be nonsingular. But when X is positive definite, both X11 and X22 will be
positive definite, thereby nonsingular also. From the second factor in (iii), X22 >

X21X
−1
11 X12 from X22−X21X

−1
11 X12 being positive definite. We will try to integrate

out X22 first. Let U = X22 − X21X
−1
11 X12 so that dU = dX22 for fixed X11 and

X12. Since tr(X) = tr(X11) + tr(X22) we have

e−tr(X22) = e−tr(U)−tr(X21X
−1
11 X12).

Integrating out U we have

∫

U>O

|U |α− p+1
2 e−tr(U)dU = Γp2(α − p1

2
), �(α) >

p − 1

2

since α − p+1
2 = α − p1

2 − p2+1
2 . Let

Y = X21X
− 1

2
11 ⇒ dY = |X11|−

p2
2 dX21
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for fixed X11. Then

∫

X21

e−tr(X21X
−1
11 X12)dX21 = |X11|

p2
2

∫

Y

e−tr(YY ′)dY.

But tr(YY ′) is the sum of squares of the p1p2 elements in Y and each integral is of
the form

∫ ∞
−∞ e−z2

dz = √
π . Hence

∫

Y

e−tr(YY ′)dY = π
p1p2

2 .

Now we can integrate out X11.

∫

X11>O

|X11|α+ p2
2 − p+1

2 e−tr(X11)dX11 =
∫

X11>O

|X11|α− p1+1
2 e−tr(X11)dX11 =Γp1(α).

Hence we have the following factors:

π
p1p2

2 Γp2(α − p1

2
)Γp1(α) = Γp(α)

since

p1(p1 − 1)

4
+ p2(p2 − 1)

4
+ p1p2

2
= p(p − 1)

4
, p = p1 + p2

and

Γp1(α)Γp2(α − p1

2
) = Γ (α)Γ (α − 1

2
) . . . Γ (α − p1 − 1

2
)Γp2(α − p1

2
)

= Γ (α) . . . Γ (α − p1 + p2 − 1

2
).

Hence the result. In this procedure we did not have to go through integration over
the Stiefel manifold and we did not have to assume that p1 ≥ p2. We could have
integrated out X11 first if needed. In this case, expand

|X|α− p+1
2 = |X22|α− p+1

2 |X11 − X12X
−1
22 X21|α− p+1

2 .

Then proceed as before by integrating out X11 first. Then we end up with

π
p1p2

2 Γp1(α − p2

2
)Γp2(α) = Γp(α), p = p1 + p2.

Note 3.1 If we are considering a real matrix-variate gamma density, such as the
Wishart density, then from the above procedure observe that after integrating
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out X22 the only factor containing X21 is the exponential function, which has
the structure of a matrix-variate Gaussian density. Hence for given X11, X21 is
matrix-variate Gaussian distributed. Similarly, for given X22, X12 is matrix-variate
Gaussian distributed. Further, the diagonal blocks X11 and X22 are independently
distributed.

As seen from the above considerations, one can integrate elements one at a time
and finally evaluate a matrix-variate gamma or beta integrals or one can integrate
blocks of variables at a time and evaluate the matrix-variate gamma and beta
integrals. But we will see that the matrix methods adopted in our procedures is the
simplest when it comes to real-valued scalar functions with matrix arguments and
integrals over them. Some applications of the real matrix-variate integrals are given
in Mathai [5–8], Mathai and Haubold [11, 12], Mathai and Princy [13, 14], Thomas
and Mathai [16].

3.2 Erdélyi-Kober Fractional Integral Operator of the
Second Kind for the Real Matrix-Variate Case

In the real matrix-variate case, it is easier to introduce the second kind fractional
integrals compared to the first kind fractional integrals. Hence we will start with the
second kind fractional integrals first.

As in the real scalar variable case, we will use the following notation: For
Erdélyi-Kober fractional integral or differential operators we will use the letter K .
For the first kind or left-sided we use the number 1 and for the second kind or right-
sided we use the number 2. The order is denoted by α. When it is a fractional integral
the order α will be written as a superscript to K as −α and for fractional derivative
the superscript will be written as α or +α. The kind number, variable and the
additional parameter will be written as subscripts to K . Thus, for example, K−α

1,U,βf

will denote Erdélyi-Kober fractional integral operator of order α and parameter β

and of the first kind operating on the arbitrary function f . K−α
2,U,βf will be Erdélyi-

Kober fractional integral of order α, parameter β and of the second kind.

Definition 3.1 We will define and denote Erdélyi-Kober fractional integral operator
of the second kind, operating on a real-valued scalar function f of real matrix
argument as follows:

K−α
2,X,ζ f = |X|ζ

Γp(α)

∫

T >X>O

|T − X|α− p+1
2 |T |−ζ−αf (T )dT ,�(α) >

p − 1

2
.

(3.9)

Here T > X > O means that T > O,X > O, T − X > O. The definition in (3.9)
for p = 1 corresponds to Erdélyi-Kober fractional integral of order α and of the
second kind and hence we will call (3.9) as the corresponding fractional integral
in the real matrix-variate case. Consider two p × p real positive definite matrix-
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variate random variables X1 and X2, independently distributed, where X1 has a real
matrix-variate type-1 beta density f3(X1) with parameters (ζ + p+1

2 , α), that is,

f3(X1) = Γp(ζ + α + p+1
2 )

Γp(ζ + p+1
2 )Γp(α)

|X1|ζ |I − X1|α− p+1
2 ,O < X1 < I

for �(ζ ) > −1,�(α) >
p−1

2 and f3(X1) = 0 elsewhere. Let X2 have the density
f4(X2) = f (X2) where f is arbitrary, in the sense f (X2) ≥ 0 for all X2 and∫
X2

f (X2)dX2 = 1. Then the joint density of X1 and X2 is f3(X1)f (X2). Let us

consider the transformation U2 = X
1
2
2 X1X

1
2
2 , X2 = V so that X2 = V,X1 =

V − 1
2 U2V

− 1
2 and the Jacobian is given by dX1 ∧ dX2 = |V |− p+1

2 dU2 ∧ dV . If the
joint density is denoted by f (U2, V ) then

f (U2, V )dU2 ∧ dV = Γp(ζ + α + p+1
2 )

Γp(α)Γ (ζ + p+1
2 )

|V − 1
2 U2V

− 1
2 |ζ

× |I − V − 1
2 U2V

− 1
2 |α− p+1

2 f (V )|V |− p+1
2 dU2 ∧ dV.

Here U2 will be called a symmetric product of the matrices X1 and X2. Therefore
the marginal density of U2, denoted by g2(U2), is available by integrating out V

from f (U2, V ). That is,

g2(U2) =
∫

V

f3(V
− 1

2 U2V
− 1

2 )f (V )|V |− p+1
2 dV

= Γp(ζ + α + p+1
2 )

Γp(ζ + p+1
2 )

∫

V >U2>O

1

Γp(α)
|V |− p+1

2 |U2|ζ |V |−ζ |V |−α+ p+1
2 |V − U2|α− p+1

2 f (V )dV

g2(U2) = Γp(α + ζ + p+1
2 )

Γp(ζ + p+1
2 )

|U2|ζ
Γp(α)

∫

V >U2>O

|V |−ζ−α |V − U2|α− p+1
2 f (V )dV

= Γp(α + ζ + p+1
2 )

Γp(ζ + p+1
2 )

K−α
2,U2,ζ f,

where, �(α) >
p−1

2 ,�(ζ ) >
p−1

2 , K−α
2,U2,ζ

will denote the Erdélyi-Kober fractional
integral operator of the second kind of order α and parameter ζ for the real matrix-
variate case. Hence we have the following theorem:

Theorem 3.1 When X1 and X2 are independently distributed p×p positive definite

real matrix-variate random variables and when X2 = V and U2 = X
1
2
2 X1X

1
2
2 or

X1 = V − 1
2 U2V

− 1
2 , X2 = V and when X1 has a real matrix-variate type-1 beta

distribution with the parameters (ζ + p+1
2 , α) and if g2(U2) denotes the density of

U2 then
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Γp(ζ + p+1
2 )

Γp(α + ζ + p+1
2 )

g2(U2) = K−α
2,U2,ζ

f (3.10)

is Erdélyi-Kober fractional integral operator of the second kind of order α and
parameter ζ for the real matrix-variate case, operating on f .

As a special case of (3.10), or independently, we can derive a result for the
right-sided Weyl operator for the real matrix-variate case. Let the right-sided Weyl
fractional integral operator of order α, parameter ζ and of the second kind or right-
sided be denoted by W−α

2,X.

Theorem 3.2 Let X1, X2, U2, V be as defined in Theorem 3.1. Let X1 have a type-
1 beta density with the parameters (

p+1
2 , α). Let the density of X2 be denoted by

f4(X2) = |X2|αf (X2) where f (X2) is arbitrary. Let the density of U2 be denoted
by g21(U2). Then

W−α
2,U2

f = 1

Γp(α)

∫

V >U2>O

|V − U2|α− p+1
2 f (V )dV = Γp(

p+1
2 )

Γp(α + p+1
2 )

g21(U2), �(α) >
p − 1

2
.

(3.11)

The following notations will be used hereafter. We will denote a symmetric matrix

product as X
1
2
2 X1X

1
2
2 = U2 and U1 as a symmetric matrix ratio where U1 =

X
1
2
2 X−1

1 X
1
2
2 . The density of U2 will be denoted by g2(U2) in general. Then for the

j -th set of X1 and X2 the density of U2 will be denoted as g2j (U2). Similarly for
the j -th set of X1 and X2 the density of U1 will be denoted as g1j (U1). For Erdélyi-
Kober operators, letter K will be used, for Weyl operators letter W will be used
and for Saigo and Caputo operators the letters S and C will be used respectively.
For the first kind integral we will use the number 1 and for the second kind the
number 2. Dα denotes the fractional differential operator of order α and D−α the
corresponding integral operator.

3.3 A Pathway Generalization of Erdélyi-Kober Fractional
Integral Operator of the Second Kind in the Real
Matrix-Variate Case

A pathway generalization, parallel to the results in the scalar case can be considered.
For the general pathway models in real matrix-variate case, see Mathai [4]. In the
pathway case when generalization to matrices is considered we take δ = 1. For a
general δ, there will be problems with Jacobians of transformations for Xδ even if
X > O and δ > 0, see for example Mathai [3] for the case δ = 2 and when X = X′
to see the type of complications. Hence we take the case δ = 1 only. Let X1 have a
pathway density
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f5(X1) = C5|X1|γ |I − a(1 − q)X| η
1−q (3.12)

for I − a(1 − q)X > O, q < 1, η > 0, a > 0 where C5 can be seen to be the
following:

C5 = [a(1 − q)]pγ+ p(p+1)
2 Γp(γ + η

1−q
+ (p + 1))

Γp(γ + p+1
2 )Γp(

η
1−q

+ p+1
2 )

. (3.13)

When q > 1 we may write 1 − q = −(q − 1), q > 1. Then the pathway density f5
for X1 changes to the form

f7(X1) = C7|X1|γ |I + a(q − 1)X|− η
q−1 , X1 > O (3.14)

for a > 0, q > 1, η > 0,�(γ ) > −1 and

C7 = [a(q − 1)]pγ+ p(p+1)
2 Γp(

η
q−1 )

Γp(γ + p+1
2 )Γp(

η
q−1 − γ − p+1

2 )
(3.15)

for �(γ ) > −1,�(
η

q−1 − γ − p+1
2 ) >

p−1
2 . The corresponding density for X2 will

be denoted by f8(X2). When q → 1− in (3.12) and q → 1+ in (3.14) the densities
for X1 will go to

f9(X1) = C9|X1|γ e−tr(aηX1), X1 > O (3.16)

where a > 0, η > 0 and

C9 = (aη)pγ+ p(p+1)
2

Γp(γ + p+1
2 )

(3.17)

for a > 0, η > 0,�(γ ) > −1. The corresponding density for X2 will be denoted
by f10(X2).

In (3.12) let X2 have the density f8(X2) = f (X2) where f is arbitrary. Let X1

and X2 be statistically independently distributed. Let U2 = X
1
2
2 X1X

1
2
2 , X2 = V or

X1 = V − 1
2 U2V

− 1
2 . Let the density of U2 be denoted as g22(U2), corresponding to

f5 and f6. Then, going through the earlier steps we have the following:

g22(U2) = c5|U2|γ
∫

V >a(1−q)U2>O

|V |−γ−(
η

1−q
+ p+1

2 )|V −a(1−q)U2|
η

1−q f (V )dV.

(3.18)
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Then

Γp(γ + p + 1

2
)g22(U2) = [a(1 − q)]pγ+ p(p+1)

2 Γp(γ + η
1−q

+ (p+1)
2 )

Γp(
η

1−q
+ p+1

2 )
|U2|γ

×
∫

V >a(1−q)U2>O

|V − a(1 − q)U2|
η

1−q |V |−γ−(
η

1−q
+ p+1

2 )
f (V )dV

= K
−(

η
1−q

+ p+1
2 )

2,U2,γ,a,q f (3.19)

where K
−(

η
1−q

+ p+1
2 )

2,U2,γ,a,q f can be called the generalized pathway Erdélyi-Kober frac-
tional integral operator of the second kind in the real matrix-variate case, operating
on f . When the pathway parameter q varies from −∞ to 1 it provides a pathway or
a class of fractional integrals and all these fractional integrals in this pathway class
will eventually go to the exponential form. For a = 1, q = 0,

η
1−q

= α − p+1
2 and

γ = ζ we have

K
−(

η
1−q

+ p+1
2 )

2,U2,γ,a,q f = K−α
2,U2,ζ

f (3.20)

the Erdélyi-Kober fractional integral of the second kind as a constant multiple of the
density of the symmetric product of two matrix-variate independently distributed
random variables. Note that when q → 1− we can evaluate the limit of g2(U2) by
using the following lemmas:

Lemma 3.6

lim
q→1−

c5 = lim
q→1+

c7 = (aη)pγ+ p(p+1)
2

Γp(γ + p+1
2 )

= c9 (i)

Proof Open up each Γp(·) in c5 of (3.13) in terms of ordinary gamma functions.
Then use the following asymptotic approximation for gamma functions. For |z| →
∞ and γ a bounded quantity

Γ (z + γ ) ≈ √
2πzz+γ− 1

2 e−z. (ii)

This is the first term in an asymptotic series for gamma functions. This term is also
known as Stirling’s approximation. When q → 1− we have 1

1−q
→ ∞ and hence

take |z| as η
1−q

and expand all gammas by using Stirling’s approximation to see that
c5 reduces to (i) above.

Lemma 3.7

lim
q→1−

|I − a(1 − q)X| η
1−q = e−aη tr(X). (iii)
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Proof Writing the determinant in terms of eigenvalues we have

|I − a(1 − q)X| η
1−q =

p∏

j=1

(1 − a(1 − q)λj )
η

1−q (iv)

where λ1, . . . , λp are the eigenvalues of X. Now

lim
q→1−

(1 − a(1 − q)λj )
η

1−q = e−aη λj . (v)

Hence

lim
q→1−

|I − a(1 − q)X| η
1−q =

p∏

j=1

e−aη λj = e−aη tr(X)

which establishes (iii).

Now by using Lemmas 3.6 and 3.7 we have

lim
q→1−

g22(U2) = (aη)pγ+ p(p+1)
2

Γp(γ + p+1
2 )

|U2|γ
∫

V >O

|V |−γ− p+1
2 e−aη tr(V − 1

2 U1V
− 1

2 )dV.

(3.21)

This is the limiting form of the pathway Erdélyi-Kober fractional integral of the
second kind in this class of pathway fractional integrals of the second kind in the
real matrix-variate case. Note that in the limiting situation, the fractional nature of
the integral is lost.

In the pathway generalization, one can also replace the parameter a with a
constant positive definite matrix A. In this case the model will be written as

f11(X1) = C11(A)|X1|γ |I − (1 − q)A
1
2 X1A

1
2 | η

1−q (3.22)

for q < 1, A > O,X1 > O, I − (1 − q)A
1
2 X1A

1
2 > O. The pathway parameter is

still q. In this case

C11(A) = (1 − q)pγ+ p(p+1)
2 |A|γ+ p+1

2 Γp(γ + η
1−q

+ (p + 1))

Γp(γ + p+1
2 )Γp(

η
1−q

+ p+1
2 )

. (3.23)

Then g22(U2) of (3.18) goes to the following form, denoted by gA(U2)

gA(U2) = C11(A)|A| η
1−q |U2|γ
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×
∫

V ∗>O

|V 1
2 A−1V

1
2 − (1 − q)U2|

η
1−q |V |−γ−(

η
1−q

+ p+1
2 )

f (V )dV

(3.24)

where

V ∗ = V
1
2 A−1V

1
2 − (1 − q)U2.

Then one can define a pathway generalized Erdélyi-Kober fractional integral
of the second kind in the real matrix-variate case as the following, taking the
corresponding density as f12(X2) = f (X2) where f is arbitrary:

K
−(

η
1−q

+ p+1
2 )

2,U2,γ,A,q f = Γp(γ + p + 1

2
)gA(U2)

= (1 − q)pγ+ p(p+1)
2 |A|γ+ η

1−q
+ p+1

2 Γp(γ + η
1−q

+ (p + 1))

Γp(
η

1−q
+ p+1

2 )
|U2|γ

×
∫

V ∗>O

|V 1
2 A−1V

1
2 − (1 − q)U2|

η
1−q |V |−γ−(

η
1−q

+ p+1
2 )

f (V )dV

(3.25)

In this case, as q → 1− we have

lim
q→1−

gA(U2) = |A|γ+ p+1
2 ηpγ+ p(p+1)

2

Γp(γ + p+1
2 )

|U2|γ

×
∫

V >A

|V |−γ− p+1
2 e−η tr(A

1
2 V

− 1
2 U2V

− 1
2 A

1
2 )f (V )dV. (3.26)

3.4 M-Transforms of Erdélyi-Kober Fractional Integral of
the Second Kind in the Real Matrix-Variate Case

The generalized matrix transform or M-transform is defined and illustrated in
Mathai [3]. The M-transform of Erdélyi-Kober fractional integral of the second kind
in the real matrix-variate case is the following:

Theorem 3.3 For the Erdélyi-Kober fractional integral of the second kind in the
real matrix-variate case defined in (3.9) the M-transform with parameter s is given
by
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M{K−α
2,X,ζ f ; s}=

∫

X>O

|X|s− p+1
2 [

∫

T >X>O

|X|ζ
Γp(α)

|T −X|α− p+1
2 |T |−ζ−αf (T )dT ]dX

= Γp(ζ + s)

Γ (α + ζ + s)
f ∗(s), �(ζ + s) >

p − 1

2
,�(α) >

p − 1

2
(3.27)

where f ∗(s) is the M-transform of f (X).

Proof Interchanging the integral we have

M{K−α
2,X,ζ f ; s} =

∫

T >O

|T |−ζ−αf (T )[ 1

Γp(α)

∫

O<X<T

|X|ζ+s− p+1
2 |T − X|α− p+1

2 dX]dT .

Note that

|T − X| = |T | |I − T − 1
2 XT − 1

2 |, Y = T − 1
2 XT − 1

2 ⇒ dY = |T |− p+1
2 dX.

Hence
∫

O<X<T

|X|ζ− p+1
2 |T −X|α− p+1

2 dX=|T |α+ζ+s− p+1
2

∫

Y

|Y |ζ+s− p+1
2 |I−Y |α− p+1

2 dY.

We can evaluate the Y -integral by using real matrix-variate type-1 beta integral.

∫

O<Y<I

|Y |ζ+s− p+1
2 |I − Y |α− p+1

2 dY = Γp(ζ + s)Γp(α)

Γp(α + ζ + s)

for �(α) >
p−1

2 ,�(ζ + s) >
p−1

2 . Now the T -integral gives

∫

T >O

|T |s− p+1
2 f (T )dT = f ∗(s)

where f ∗(s) is the M-transform of f (X). Hence (3.27) follows. Note that for p = 1
the result agrees with that in the scalar case, which is available in the literature, see
for example Mathai and Haubold [10].

From (3.27) for ζ = 0 and �(α) >
p−1

2 we have the special case of the Erdélyi-
Kober fractional integral of the second kind in the real matrix-variate case

K−α
2,X,0f = 1

Γ (α)

∫

T >X>O

|T − X|α− p+1
2 |T |−αf (T )dT . (3.28)

But the right side of (3.28) is Weyl fractional integral of the second kind of order
α in the matrix-variate case, XW−α∞ f = W−α

2,Xf , except for the factor |T |−α . The
Weyl integral of the second kind in the real matrix case is
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XW−α∞ f (X) = W−α
2,Xf = 1

Γp(α)

∫

T >X>O

|T − X|α− p+1
2 f (T )dT ,�(α) >

p − 1

2
.

(3.29)
The ∞ sitting in XW−α∞ is to be interpreted as that X is not bounded above by a
positive definite constant matrix. Hence we have the following corollary.

Corollary 3.1 The M-transform of the right-sided or second kind Weyl fractional
integral in the real matrix-variate case is given by

M{XW−α∞ |X|−αf (X); s} = M{W−α
2,X|X|−αf } = Γp(s)

Γp(α + s)
f ∗(s) (3.30)

for �(s) >
p−1

2 ,�(α) >
p−1

2 where f ∗(s) is the M-transform of f (X).

The proof is parallel to that in Theorem 3.3. Let us see whether a Mellin convolution
type formula holds for Erdélyi-Kober fractional integral of the second kind in the
matrix-variate case. Let

g23(U2) =
∫

V

|V |− p+1
2 f13(V

− 1
2 U2V

− 1
2 )f14(V )dV (3.31)

where f13(X1) is a type-1 matrix-variate beta density with parameters (ζ + p+1
2 , α).

That is,

f13(X1) = Γp(α + ζ + p+1
2 )

Γp(α)Γp(ζ + p+1
2 )

|X1|ζ |I − X1|α− p+1
2 ,O < X1 < I (3.32)

for �(α) >
p−1

2 ,�(ζ ) > −1 and f13(X1) = 0 elsewhere. Let f14(X2) = f (X2) be
the corresponding density for X2 where f is arbitrary. Substituting (3.32) in (3.31)
we have

Γp(ζ + p+1
2 )

Γp(α + ζ + p+1
2 )

g23(U2) = 1

Γp(α)

∫

V

|V |− p+1
2 |U2|ζ |V |−ζ |I − V − 1

2 U2V
− 1

2 |α− p+1
2 f (V )dV

= |U2|ζ
Γp(α)

∫

V

|V |−ζ−α |V − U2|α− p+1
2 f (V )dV

= |U2|ζ
Γp(α)

∫

V >U2>O

|V − U2|α− p+1
2 |V |−ζ−αf (V )dV

= K−α
2,U2,ζ f (3.33)

which is the Erdélyi-Kober fractional integral of the second kind of order α in the
real matrix-variate case. Hence we have the following theorem:
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Theorem 3.4 A constant multiple of the Erdélyi-Kober fractional integral of the
second kind of order α in the real matrix-variate case can also be represented as a
Mellin convolution type formula

K−α
2,X,ζ f =

∫

V

|V |− p+1
2 f13(V

− 1
2 XV − 1

2 )f14(V )dV

where f13(X1) is a type-1 beta density with parameters (ζ + p+1
2 , α) and f2(V ) =

f (V ) is an arbitrary function or arbitrary density if the Erdélyi-Kober fractional
integral is to be taken as a constant multiple of a statistical density.

3.5 Generalization in Terms of Hypergeometric Series for
Erdélyi-Kober Fractional Integral of the Second Kind in
the Real Matrix-Variate Case

For introducing hypergeometric series of matrix argument we will need the def-
initions, notation and lemmas. Hypergeometric functions of matrix argument are
defined in terms of matrix-variate Laplace transforms, M-transforms and zonal
polynomials. Explicit series form for all cases is available through the definition in
terms of zonal polynomials and hence we will define in terms of zonal polynomials.
Some derivations and properties of zonal polynomials may be seen from Mathai,
Provost and Hayakawa [15].

rFs(Z) = rFs(a1, . . . , ar ; b1, . . . , bs;Z) =
∞∑

k=0

∑

K

(a)K . . . (ar )K

(b1)K . . . (bs)K

CK(Z)

k!
(3.34)

where K = (k1, . . . , kp), k1 + . . . + kp = k is a partition of k = 0, 1, 2, . . .

(a)K =
p∏

j=1

(a − j − 1

2
)kj

, (b)kj
= b(b + 1) . . . (b + kj − 1), (b)0 = 1, b 
= 0

(3.35)
and CK(Z) is a zonal polynomial of order k and Z is a p × p matrix. The series is
defined for the real and complex matrices. Zonal polynomials are certain symmetric
functions of the eigenvalues of Z. In our discussions, Z will be real and positive
definite. For more details about zonal polynomials see Mathai et al. [15]. The
following basic results are needed in our discussions. A standard notation in this
area is

Γp(α,K) = Γp(α)(α)K. (3.36)

The following basic results are needed in our discussion.
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Lemma 3.8

∫ I

O

|X|α− p+1
2 |I − X|β− p+1

2 CK(T X)dX = Γp(α,K)Γp(β)

Γp(α + β,K)
CK(T ) (3.37)

for �(α) >
p−1

2 ,�(β) >
p−1

2 .

Lemma 3.9 For �(α) >
p−1

2 , A > O, S > O

∫

O<S<A

|S|α− p+1
2 CK(ZS)dS = Γp(α,K)Γp(

p+1
2 )

Γp(α + p+1
2 ,K)

|A|αCK(ZA). (3.38)

Let us assume that all the parameters a1, . . . , ar , b1, . . . , bs are real and positive
and let the argument matrices be p × p and positive definite. For A > O, let the
density of X1 be

f15(X1) = 1

cf
rFs(a1, . . . , ar ; b1, . . . , bs;AX1)|X1|ζ |I − X1|α− p+1

2

= 1

cf

∞∑

k=0

∑

K

(a1)K . . . (ar )K

(b1)K . . . (bs)K

1

k!CK(AX1)|X1|ζ |I − X1|α− p+1
2

(3.39)

where the normalizing constant 1
cf

is available by integrating out term by term
with the help of Lemma 3.8. It will be available in terms of a r+1Fs+1. Let the
corresponding density for X2, f16(X2) = f (X2) be an arbitrary density. As before,

let U2 = X
1
2
2 X1X

1
2
2 , X2 = V , or X1 = V − 1

2 U2V
− 1

2 , then denoting the density of
U2, denoted by g24(U2), we have

g24(U2) =
∫

V

f15(V
− 1

2 U2V
− 1

2 )f (V )|V |− p+1
2 dV

= 1

cf

Γp(α + ζ + p+1
2 )

Γp(ζ + p+1
2 )Γp(α)

∞∑

k=0

∑

K

(a1)K . . . (ar )K

(b1)K . . . (bs)K

1

k!

×
∫

V

|V − 1
2 U2V

− 1
2 |ζ |I − V − 1

2 U2V
− 1

2 |α− p+1
2 |V |− p+1

2

× CK(AV − 1
2 U2V

− 1
2 )f (V )dV (3.40)

This is the generalization of a constant times the Erdélyi-Kober fractional integral
of order α and parameter ζ of the second kind in the real matrix-variate case. For
rFs = 2F1 one has the matrix-variate generalization of a constant times the Saigo
operator of the second kind in the real matrix-variate case.
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3.6 Erdélyi-Kober Fractional Integral of the First Kind in
the Real Matrix-Variate Case

Definition 3.2 We will give the following definition and notation for Erdélyi-Kober
fractional integral of the first kind in the real matrix-variate case:

K−α
1,X,ζ f = |X|−ζ−α

Γp(α)

∫

O<V <X

|X − V |α− p+1
2 |V |ζ f (V )dV (3.41)

for �(ζ ) > −1,�(α) >
p−1

2 . This definition is used because, for p = 1 in the
real scalar variable case the corresponding item is called Erdélyi-Kober fractional
integral of the first kind.

Theorem 3.5 For �(α) >
p−1

2 ,�(ζ ) > −1 the M-transform, with parameter s, of
Erdélyi-Kober fractional integral of the first kind of order α and parameter ζ in the
real matrix-variate case, is given by

M{K−α
1,X,ζ f ; s}=

∫

X>O

|X|s− p+1
2 [ |X|−ζ−α

Γp(α)

∫

O<V <X

|X−V |α− p+1
2 |V |ζ f (V )dV ]dX

= Γp(ζ + p+1
2 − s)

Γp(α + ζ + p+1
2 − s)

f ∗(s),

�(s) < �(ζ + 1),�(α) >
p − 1

2
(3.42)

where f ∗(s) is the M-transform of f (X).

Proof Integrating out X first we have the X-integral

∫

X>V >O

|X|s−ζ−α− p+1
2 |X − V |α− p+1

2 dX

=
∫

Y>O

|Y + V |s−ζ−α− p+1
2 |Y |α− p+1

2 dY, (Y = X − V )

= |V |s−ζ−α− p+1
2

∫

Y>O

|I + V − 1
2 YV − 1

2 |s−ζ−α− p+1
2 |Y |α− p+1

2 dY.

Put Z = V − 1
2 YV − 1

2 ⇒ dZ = |V |− p+1
2 dY . Then the X-integral is

|V |s−ζ− p+1
2

∫

Z>O

|Z|α− p+1
2 |I + Z|−(

p+1
2 +α+ζ−s)dZ = |V |s−ζ− p+1

2
Γp(α)Γp(

p+1
2 + ζ − s)

Γp(
p+1

2 + α + ζ − s)
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for �(α) >
p−1

2 ,�(ζ − s) > −1 by evaluating the integral by using a type-2
matrix-variate beta integral in the real case. Now, the V -integral becomes

∫

V >O

|V |s− p+1
2 f (V )dV = f ∗(s).

Hence

M{K−α
1,X,ζ f ; s} = Γp(

p+1
2 + ζ − s)

Γp(
p+1

2 + α + ζ − s)
f ∗(s) (3.43)

for �(α) >
p−1

2 ,�(ζ − s) > −1. Note that for ζ = 0,

K−α
1,X,0f = |X|−α

0D
−α
X f = |X|−αD−α

1,Xf (3.44)

where 0D
−α
X is the left-sided Riemann-Liouville fractional integral of order α for

the real matrix-variate case. Note that for the scalar case, for p = 1,

M{K−α
1,x,ζ f ; s} = Γ (1 + ζ − s)

Γ (1 + α + ζ − s)
(3.45)

for �(α) > 0,�(ζ − s) > −1 agreeing with the corresponding Mellin transform in
the scalar case.

Corollary 3.2 The M-transform of |X|−α
0D

−α
X f = |X|−αD−α

1,Xf is given by

M{|X|−α
0D

−α
X f ; s} = M{|X|−αD−α

1,Xf ; s} = Γp(
p+1

2 − s)

Γp(
p+1

2 + α − s)
f ∗(s) (3.46)

for �(α) >
p−1

2 ,�(s) < 1.

The proof is parallel to that in Theorem 3.5.
Let us treat a Erdélyi-Kober fractional integral operator of the first kind operating

on f as a statistical density. Let X2 have a real matrix-variate density f18(X2) =
f (X2), where f is arbitrary, and let X1 have a real matrix-variate type-1 beta density
f17(X1) with parameters (ζ, α). That is,

f17(X1) = Γp(ζ + α)

Γp(ζ )Γp(α)
|X1|ζ− p+1

2 |I − X1|α− p+1
2 ,O < X1 < I (3.47)

for �(ζ ) >
p−1

2 ,�(α) >
p−1

2 and f17(X1) = 0 elsewhere. Let X1 and X2 be

statistically independently distributed. Let U1 = X
1
2
2 X−1

1 X
1
2
2 be the symmetric ratio

of X2 to X1. Consider the transformation X2 = V,X1 = V
1
2 U−1

1 V
1
2 . The Jacobian
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is given by

dX1 ∧ dX2 = |V | p+1
2 |U1|−(p+1)dU1 ∧ dV.

The marginal density of U1, denoted by g11(U1), is given by

g11(U1) = Γp(ζ + α)

Γp(ζ )Γp(α)

∫

V

|V 1
2 U−1

1 V
1
2 |ζ− p+1

2

× |I − V
1
2 U−1

1 V
1
2 |α− p+1

2 f (V )|V | p+1
2 |U1|−(p+1)dV

= Γp(ζ + α)

Γp(ζ )Γp(α)
|U1|−ζ−α

∫

O<V <U1

|U1 − V |α− p+1
2 |V |ζ f (V )dV

= Γp(ζ + α)

Γp(ζ )
K−α

1,U1,ζ
f,

where K−α
1,U1,ζ

will denote the Erd’elyi-Kober fractional integral operator of the first
kind and of order α and parameter ζ . Therefore

Γp(ζ )

Γp(ζ + α)
g11(U1) = |U1|−ζ−α

Γp(α)

∫

O<V <U

|V |ζ f (V )dV = K−α
1,U1,ζ

f. (3.48)

This is Erdélyi-Kober fractional integral of the first kind of order α and parameter
ζ in the real matrix-variate case and it can be considered as a constant multiple of
a real matrix-variate statistical density. For p = 1 the integral in (3.48) is Erdélyi-
Kober fractional integral of the first kind of order α and parameter ζ in the real
scalar variable case and hence we will call the fractional integral in (3.48) as the
corresponding fractional integral in the real matrix-variate case.

One can also consider a pathway extension for the real matrix-variate Erdélyi-
Kober fractional integral operator of the first kind in the real matrix-variate case.

3.7 Pathway Extension of Erdélyi-Kober Fractional Integral
of the First Kind in the Real Matrix-Variate Case

Consider the following pathway modified form of the density for X1. That is,

f19(X1) = C19|X1|γ− p+1
2 |I − a(1 − q)X1|

η
1−q , I − a(1 − q)X1 > O (3.49)

for q < 1, a > 0, η > 0 where

C19 = [a(1 − q)]pγ Γp(γ + η
1−q

+ p+1
2 )

Γp(
η

1−q
+ p+1

2 )Γp(γ )
, (3.50)
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and the corresponding density X2, f20(X2) = f (X2) where f is arbitrary. Consider

the same type of transformation as before: X2 = V,X1 = V
1
2 U−1

1 V
1
2 . The

marginal density of U1, denoted by g12(U1), is given by

g12(U1) = C19

∫

V

|V 1
2 U−1

1 V
1
2 |γ− p+1

2 |I − a(1 − q)V
1
2 U−1

1 V
1
2 | η

1−q

× f (V )|V | p+1
2 |U1|−(p+1)dV (3.51)

= C19|U1|−γ−(
η

1−q
+ p+1

2 )

∫

U1>a(1−q)V >O

|U1−a(1−q)V | η
1−q |V |γ f (V )dV.

Then

Γp(γ )g12(U1) = [a(1 − q)]pγ Γp(γ + η
1−q

+ p+1
2 )

Γp(
η

1−q
+ p+1

2 )
|U1|−γ−(

η
1−q

+ p+1
2 )

×
∫

U1>a(1−q)V >O

|U1 − a(1 − q)V | η
1−q |V |γ f (V )dV. (3.52)

The right side of (3.52) is the pathway extension of Erdélyi-Kober fractional integral
of the first kind in the real matrix-variate case. The right side divided by Γp(γ ) is
also a statistical density of a type of ratio of independently distributed matrix-variate
random variables.

Note that for a = 1, q = 0,
η

1−q
+ p+1

2 = α, (3.52) reduces to the special
case (3.47) for γ = ζ . Thus, (3.52) describes a vast family of fractional integrals
which can all be considered as generalizations of the Erdélyi-Kober fractional
integral of the first kind in the real matrix-variate case. The limiting form when
q → 1− is available from the structure in (3.51). Note that

lim
q→1−

|I − a(1 − q)V
1
2 U−1

1 V
1
2 | η

1−q = e−aη tr(V
1
2 U−1

1 V
1
2 ) (3.53)

Hence

lim
q→1−

g12(U1) = ( lim
q→1−

C19)

∫

V >O

|U1|−γ− p+1
2 |V |γ

× e−aη tr(V
1
2 U−1

1 V
1
2 )f (V )dV (3.54)

where

lim
q→1−

C19 = (aη)pγ

Γp(γ )
.
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That is,

lim
q→1−

g12(U1)= (aη)pγ

Γp(γ )
|U1|−γ− p+1

2

∫

V >O

|V |γ e−aη tr(V
1
2 U−1

1 V
1
2 )f (V )dV =g13(U1).

(3.55)

In this case also one can replace the parameter a in f19(X1) by a constant positive
definite matrix A > O. Then f19(X1) denoted by f21(X1) can be written as

f21(X1) = C21(A)|X1|γ− p+1
2 |I − (1 − q)A

1
2 X1A

1
2 | η

1−q

where

C21(A) = (1 − q)pγ |A|γ Γp(γ + η
1−q

+ p+1
2 )

Γp(γ )Γp(
η

1−q
+ p+1

2 )
.

Then the density of U1, where X1 = V
1
2 U−1

1 V
1
2 , X2 = V , denoted by g14(U1), is

given by

g14(U1) = C21(A)|U1|−γ−(
η

1−q
+ p+1

2 )

∫

U1>(1−q)V
1
2 AV

1
2 >O

|V |γ |U1−(1−q)V
1
2 AV

1
2 | η

1−q f (V )dV.

(3.56)

3.8 A General Definition

From the various types of fractional integrals of order α,�(α) >
p−1

2 , defined
so far for the real p × p matrix-variate case a few observations can be made.
They are all M-convolutions of products and ratios where one function f1(X1) is

of the form f1(X1) = φ1(X1)
1

Γp(α)
|I − X1|α− p+1

2 and the other function is of
the form f2(X2) = φ2(X2)f (X2) where f is an arbitrary function and φ1(X1)

and φ2(X2) are some specified functions. We can make use of this observation and
define fractional integrals of the first kind and second kind as follows: Let

f1(X1) = φ1(X1)
1

Γp(α)
|I − X1|α− p+1

2 and f2(X2) = φ2(X2)f (X2) (3.57)

Let U2 = X
1
2
2 X1X

1
2
2 with X2 = V or X1 = V − 1

2 U2V
− 1

2 be the symmetric product

and U1 = X
1
2
2 X−1

1 X
1
2
2 with X2 = V or X1 = V

1
2 U−1

1 V
1
2 be the symmetric ratio of

X2 to X1. Then the Jacobians are already evaluated. They are

dX1 ∧ dX2 = |V |− p+1
2 dU2 ∧ dV = |V | p+1

2 |U1|−(p+1)dU1 ∧ dV.
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Let the density of U2, if f1 and f2 are statistical densities and if not let the M-
convolution of the product be denoted by g2(U2), and the density of U1 or the M-
convolution of a ratio be denoted by g1(U1).

Definition 3.3 (Fractional integral of the second kind of order α in the real
matrix-variate case) Fractional integrals of the second kind of order α in the real
positive definite p × p matrix-variate case is defined as g2(U2) where,

g2(U2)= 1

Γp(α)

∫

V

|V |− p+1
2 φ1(V

− 1
2 U2V

− 1
2 )|I−V − 1

2 U2V
− 1

2 |α− p+1
2 φ2(V )f (V )dV.

(3.58)

3.8.1 Special Cases

Case (1): Let φ1(X1) = |X1|γ = |V − 1
2 U2V

− 1
2 |γ , φ2 = 1, �(α) >

p−1
2 .

Then (3.58) becomes

|U2|γ
Γp(α)

∫

V >U2>O

|V |−γ−α|V − U2|α− p+1
2 f (V )dV = K−α

2,U2,γ
f (3.59)

which is Erdélyi-Kober fractional integral of order α, parameter γ and of the
second kind in the real p × p matrix-variate case.

Case (2): Let φ1 = 1, φ2(V ) = |V |α,�(α) >
p−1

2 . Then (3.58) becomes

1

Γp(α)

∫

V >U2>O

|V − U2|α− p+1
2 f (V )dV = W−α

2,U2
f (3.60)

which is Weyl fractional integral of order α and of the second kind in the real
p × p matrix-variate case. If there is an upper bound B for V , where B > O

is a constant positive definite matrix, then (3.60) is Riemann-Liouville fractional
integral of the second kind of order α in the real p × p matrix-variate case. By
specializing φ1 and φ2 one can derive all the fractional integrals of the second
kind in the literature for p = 1 and hence the corresponding g2(U2) of (3.58) can
be taken as the corresponding real matrix-variate cases.

Definition 3.4 (Fractional integral of the first kind of order α in the real matrix-
variate case) Fractional integrals of the first kind of order α in the real positive
definite p×p matrix-variate case is defined as g1(U1), the density of the symmetric
ratio of matrices X2 to X1 or M-convolution of a ratio as given above, where

g1(U1) = 1

Γp(α)

×
∫

V

|V | p+1
2 |U1|−(p+1)φ1(V

1
2 U−1

1 V
1
2 )|I − V

1
2 U−1

1 V
1
2 |α− p+1

2 φ2(V )f (V )dV,

(3.61)
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for �(α) >
p−1

2 . One should be able to get all fractional integrals of order α and of
the first kind from (3.61) by specializing φ1 and φ2.

3.8.2 Special Cases of First Kind Fractional Integrals

Case (1): Let φ1(X1) = |X1|γ− p+1
2 , φ2 = 1 in (3.61) for �(α) >

p−1
2 . Then

g1(U1) of (3.61) becomes the following:

|U1|−α−γ

Γp(α)

∫

O<V <U1

|V |γ |U1 − V |α− p+1
2 f (V )dV = K−α

1,U1,γ
f (3.62)

which is Erdélyi-Kober fractional integral of the first kind of order α and
parameter γ in the real matrix-variate case for �(α) >

p−1
2 .

Case (2): Let φ1(X1) = |X1|−α− p+1
2 , φ2(X2) = Xα

2 . Then g1(U1) of (3.61)
becomes the following:

1

Γp(α)

∫

O<V <U1

|U1 − V |α− p+1
2 f (V )dV = W−α

1,U1
f (3.63)

which is Weyl fractional integral of order α and of the first kind in the real matrix-
variate case. If V is bounded below by a positive definite constant matrix A > O

then it is the Riemann-Liouville fractional integral of the first kind and of order
α in the real matrix-variate case for �(α) >

p−1
2 . By specializing φ1 and φ2

for p = 1 one can derive all first kind fractional integrals of order α in the
real scalar case and hence the special cases of (3.61) will give the real matrix-
variate versions of all those special cases. In the real scalar case one can also take
xδ

1,�(δ) > 0 in the type-1 beta function part in f1(x1), instead of x1, but in the
real matrix-variate case for δ 
= 1 there is problem with the Jacobian and hence
δ = 1 is to be taken.
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Chapter 4
Erdélyi-Kober Fractional Integrals in the
Many Real Scalar Variables Case

When going from a one-variable function to many-variable function there is no
unique one to one correspondence. Many types of multivariate functions can be
considered when one has the preselected one-variable function. Hence there is
nothing called the multivariate analogue of a univariate operator or univariate
integral. Hence we construct one multivariate operator here which is analogous to
a one variable Erdélyi-Kober fractional integral operator of the second kind or first
kind. Other such analogues can be defined. The second kind fractional integrals will
be considered first. In this chapter, multivariate case means the case of many real
scalar variables.

Definition 4.1 (Erdélyi-Kober fractional integral of the second kind in the
multivariate case) This will be defined as the following fractional integral and
denoted as follows:

K
−αj ,j=1,...,k

2,uj ,ζj ,j=1,...,kf ={
k∏

j=1

u
ζj

j

Γ (αj )
}{

k∏

j=1

∫ ∞

vj =uj

(vj−uj )
αj −1v

−ζj −αj

j }f (v1, . . . , vk)dv1∧ . . . ∧ dvk.

(4.1)

This definition is parallel to the one in the one variable case. We will now look
at various connections to different problems. First we will establish a number of
results in connection with statistical distribution theory. We will show that (4.1) can
be treated as a constant multiple of a joint density of a number of random variables
u1, . . . , uk appearing in different contexts. This type of interpretations for fractional
integrals are easier to comprehend.
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4.1 Erdélyi-Kober Fractional Integrals of the Second Kind in
Multivariate Case as Statistical Densities

Let x1, x2, . . . , xk be independently distributed type-1 beta random variables with
parameters (ζj + 1, αj ), j = 1, . . . , k, ζj > −1, αj > 0, j = 1, . . . , k. Usually
the parameters in a statistical density are real but the following integrals also exist
for complex parameters and in that case the conditions will be �(ζ ) > −1 and
�(αj ) > 0, j = 1, . . . , k. That is, the density of xj is of the form

fj (xj ) = Γ (αj + ζj + 1)

Γ (αj )Γ (ζj + 1)
x

ζj

j (1 − xj )
αj −1, 0 < xj < 1 (4.2)

for αj > 0, ζj > −1 and fj (xj ) = 0 elsewhere, j = 1, . . . , k so that the joint
density of x1, . . . , xk is the product f1(x1) . . . fk(xk). Let v1, . . . , vk be another
sequence of real scalar positive random variables having an arbitrary joint density
f (v1, . . . , vk), arbitrary in the sense, any real-valued function f such that f ≥ 0
for all v1, . . . , vk and

∫
v1

. . .
∫
vk

f (v1, . . . , vk)dv1 ∧ . . . ∧ dvk = 1. Let the two sets
(x1, . . . , xk) and (v1, . . . , vk) be independently distributed in the sense that the joint
density of the sets {x1, . . . , xk} and {v1, . . . , vk} is the product of the joint density
of {x1, . . . , xk} and the joint density of {v1, . . . , vk}. Note that the joint density
of the set {x1, . . . , xk} is f1(x1) . . . fk(xk) and the joint density of {v1, . . . , vk} is
f (v1, . . . , vk). Thus the joint density of both the sets is f (v1, . . . , vk)

∏k
j=1 fj (xj ).

Consider the transformation uj = xjvj or xj = uj

vj
, vj = vj and the Jacobian of

the transformation is

{
k∏

j=1

∧dxj } ∧ {
k∏

j=1

∧dvj } = {
k∏

j=1

(vj )
−1}{

k∏

j=1

∧duj } ∧ {
k∏

j=1

∧dvj } (4.3)

Then the joint density of u1, . . . , uk , denoted by g2(u1, . . . , uk), is given by

g2(u1, . . . , uk) = {
k∏

j=1

Γ (αj + ζj + 1)

Γ (ζj + 1)Γ (αj )
}{

k∏

j=1

∫

vj

(
uj

vj

)ζj (1 − uj

vj

)αj −1}

× f (v1, . . . , vk)dv1 ∧ . . . ∧ dvk

= {
k∏

j=1

Γ (αj + ζj + 1)

Γ (ζj + 1)Γ (αj )
}{

k∏

j=1

u
ζj

j

∫ ∞

vj =uj

(vj − uj )
αj −1v

−ζj −αj

j }

× f (v1, . . . , vk)dv1 ∧ . . . ∧ dvk. (4.4)

We will use g2 to denote second kind fractional integrals and g1 to denote first kind
fractional integrals. Therefore one can write
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Theorem 4.1 Let xj , uj , vj , j = 1, . . . , k be as defined above where x1, . . . , xk

are independently type-1 beta distributed with parameters (ζj + 1, αj ), j =
1, . . . , k, v1, . . . , vk having a joint arbitrary density f (v1, . . . , vk) with (x1, . . . , xk)

and (v1, . . . , vk) being independently distributed. If the joint density of u1, . . . , uk

is denoted as g2(u1, . . . , uk) then

{
k∏

j=1

Γ (ζ + 1)

Γ (αj + ζj + 1)
}g2(u1, . . . , uk) = K

−αj ,j=1,...,k

2,uj ,ζj ,j=1,...,kf (4.5)

for �(ζj ) > −1,�(αj ) > 0, j = 1, . . . , k, where K
−αj ,j=1,...,k

2,uj ,ζj ,j=1,...,k will be called
Erdélyi-Kober fractional integral operator of the second kind for the multivariate
or for the many real scalar variables case.

In this case we have x1, . . . , xk mutually independently distributed and thus
there are a total of k + 1 densities involved, the k of x1, . . . , xk and the one
of (v1, . . . , vk). Let us see what happens if x1, . . . , xk are not independently
distributed but they have a joint density f1(x1, . . . , xk) and (v1, . . . , vk) having
a joint density f2(v1, . . . , vk). Then we can show that if f1 can be eventually
reduced to independent type-1 beta form, still we can consider Erdélyi-Kober
fractional integrals of the second kind in the multivariate case as constant multiples
of statistical densities.

Let (x1, . . . , xk) have a joint type-1 Dirichlet density with parameters (α1 +
1, . . . , αk + 1;αk+1),�(αj ) > −1, j = 1, . . . , k,�(αk+1) > 0, that is,

f1(x1, . . . , xk)= Γ (α1 + . . . + αk+1 + k)

{∏k
j=1 Γ (αj + 1)}Γ (αk+1)

x
α1
1 . . . x

αk

k (1−x1− . . . −xk)
αk+1−1,

0 < xj < 1, j = 1, . . . , k, 0 < x1 + . . . + xk < 1 (4.6)

and f1(x1, . . . , xk) = 0 elsewhere. Let us consider the transformations x1 =
y1, x2 = y2(1 − y1), . . . xk = (1 − y1) . . . (1 − yk−1) or

xj = yj (1 − y1)(1 − y2) . . . (1 − yj−1), j = 1, . . . , k or

yj = xj

1 − x1 − . . . − xj−1
, j = 1, . . . , k. (4.7)

Under this transformation the Jacobian is (1 − y1)
k−1 . . . (1 − yk−1). It is easy to

show that under this transformation y1, . . . , yk will be independently distributed as
type-1 beta variables with the parameters (αj + 1, βj ) with βj = αj+1 + αj+2 +
. . . + αk + (k − j) + αk+1 or yj has the density

fj (yj ) = Γ (αj + 1 + βj )

Γ (αj + 1)Γ (βj )
y

αj

j (1 − yj )
βj −1, 0 < yj < 1
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and fj (yj ) = 0 elsewhere, αj > −1, βj > 0, j = 1, . . . , k. In the light of these
observations, let us consider two sets of positive random variables (x1, . . . , xk) and
(v1, . . . , vk) where the two sets are independently distributed with (x1, . . . , xk)

having a type-1 Dirichlet distribution. Let uj = yjvj = vj (
xj

1−x1−...−xj−1
), j =

1, . . . , k. Then following through the same procedure as above we have the
following theorem.

Theorem 4.2 Let (x1, . . . , xk) and (v1, . . . , vk) be two sets of real scalar positive
random variables where the two sets are independently distributed. Let (v1, . . . , vk)

have a joint density f2(v1, . . . , vk) = f (v1, . . . , vk) where f is arbitrary, and let
(x1, . . . , xk) have a type-1 Dirichlet density with the parameters (α1 + 1, . . . , αk +
1;αk+1) or with the density

f1(x1, . . . , xk) = C1 x
α1
1 . . . x

αk

k (1 − x1 − . . . − xk)
αk+1−1 (4.8)

for 0 < xj < 1, 0 < x1 + . . . + xk < 1, j = 1, . . . , k and f1(x1, . . . , xk) = 0
elsewhere, where C1 is the normalizing constant. Let uj = vj (

xj

1−x1−...−xj−1
), j =

1, . . . , k. If the joint density of u1, . . . , uk is denoted by g21(u1, . . . , uk) then

{
k∏

j=1

Γ (αj + 1)

Γ (αj + βj + 1)
}g21(u1, . . . , uk) = K

−βj ,j=1,...,k

2,uj ,αj ,j=1,...,kf (4.9)

where βj = αj+1 + αj+2 + . . . + αk + (k − j) + αk+1, j = 1, . . . , k, �(αj ) >

−1, j = 1, . . . , k,�(αk+1) > 0,�(βj ) > 0, j = 1, . . . , k.

The above structure indicates that we can consider any multivariate density
f1(x1, . . . , xk) for a set of real scalar positive random variables (x1, . . . , xk) and if
we can find a suitable transformation to bring the joint density of the new variables
as products of type-1 beta densities then the Erdélyi-Kober fractional integrals of
the second kind for the multivariate case can be written in terms of a statistical
density as shown above. There are many densities where a transformation can bring
f1(x1, . . . , xk) to product of type-1 beta densities. There are several generalizations
of type-1 and type-2 Dirichlet models where suitable transformations exist which
can bring a set of mutually independently distributed type-1 beta random variables.
We will list one more example of this type before quitting this section.

Let us consider a generalized type-1 Dirichlet model of the following type.
Several types of generalizations of the following category are available.

f3(x1, . . . , xk) = C3 x
α1
1 (1 − x1)

β1x
α2
2 (1 − x1 − x2)

β2 . . .

× x
αk

k (1 − x1 − . . . − xk)
βk+αk+1−1,

0 < x1 + . . . + xj < 1, j = 1, . . . , k (4.10)
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and f3(x1, . . . , xk) = 0 elsewhere, where C3 is a normalizing constant. Let the
corresponding density for (v1, . . . , vk) be f4(v1, . . . , vk) = f (v1, . . . , vk) where f

is arbitrary. Let us consider the same transformation as in (4.7). Then we can show
that y1, . . . , yk will be mutually independently distributed as type-1 beta random
variables with the parameters (αj + 1, γj ), j = 1, . . . , k where

γj = αj+1 + αj+2 + . . . + αk+1 + βj + βj+1 + . . . + βk + (k − j) (4.11)

for j = 1, . . . , k with �(αj ) > −1, j = 1, . . . , k,�(αk+1) > 0 and �(γj ) >

0, j = 1, . . . , k.

Theorem 4.3 Let x1, . . . , xk have a joint density of the form in (4.10). Let
v1, . . . , vk be another set of real scalar positive random variables having an
arbitrary density f (v1, . . . , vk). Between sets let (x1, . . . , xk) and (v1, . . . , vk) be
independently distributed. Consider the transformation as in (4.7) where

uj = vj (
xj

1 − x1 − . . . − xj−1
), j = 1, . . . , k.

Let the joint density of u1, . . . , uk be denoted by g22(u1, . . . , uk). Then

{
∏ Γ (αj + 1)

Γ (αj + γj + 1)
}g22(u1, . . . , uk) = K

−γj ,j=1,...,k

2,uj ,αj ,j=1,...kf (4.12)

where γj = αj+1 +αj+2 + . . .+αk+1 +βj +βj+1 + . . .+βk +(k−j), j = 1, . . . , k

for �(αj ) > −1,�(γj ) > 0, j = 1, . . . , k,�(αk+1) > 0.

4.2 A Pathway Generalization of Erdélyi-Kober Fractional
Integral Operator of the Second Kind in the Multivariate
Case

Let x1, . . . , xk be independently distributed with xj having a pathway density given
by

fjp(xj ) = cjp x
ζj

j [1 − aj (1 − qj )xj ]
ηj

1−qj (4.13)

for 1 − aj (1 − qj )xj > 0, aj > 0, qj < 1, ηj > 0, ζj > −1 and fjp(xj ) = 0
elsewhere, where

cjp =
[aj (1 − qj )]ζj +1Γ (ζj + 1 + ηj

1−qj
+ 1)

Γ (ζj + 1)Γ (
ηj

1−qj
+ 1)

. (4.14)
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Let v1, . . . , vk be real scalar positive random variables with a joint density
f (v1, . . . , vk). Let (x1, . . . , xk) and (v1, . . . , vk) be statistically independently
distributed. Let uj = xjvj , xj = uj

vj
, j = 1, . . . , k. Then the Jacobian of the

transformation is (v1 . . . vk)
−1. Let the joint density of u1, . . . , uk be denoted by

g23(u1, . . . , uk). Then from the standard technique of transformation of variables
the density g23 is given by

g23(u1, . . . , uk) = {
k∏

j=1

cjpu
ζj

j

∫ ∞

vj =aj (1−qj )uj

v
−ζj −(

ηj
1−qj

+1)

j

× [vj − a(1 − qj )uj ]
ηj

1−qj }f (v1, . . . , vk)dv1 ∧ . . . ∧ dvk. (4.15)

Hence we may define a pathway extension of Erdélyi-Kober fractional integral of
the second kind in the multivariate case.

Definition 4.2 (A Pathway Erdélyi-Kober Fractional Integral of the Second
Kind for the Multivariate Case) It will be defined and denoted as follows:

K
−(

ηj
1−qj

+1),j=1,...,k

2,uj ,ζj ,aj ,qj ,j=1,...,kf = {
k∏

j=1

[aj (1 − qj )]ζj +1u
ζj

j

Γ (
ηj

1−qj
+ 1)

∫

vj >aj (1−qj )uj >0
v

−ζj −(
ηj

1−qj
+1)

j

×(vj − aj (1 − qj )uj )

ηj
1−qj }f (v1, . . . , vk)dv1∧ . . . ∧ dvk.

(4.16)

for aj > 0, qj < 1, ηj > 0,�(ζj ) > −1.

Theorem 4.4 Let x1, . . . , xk , v1, . . . , vk , uj , j = 1, . . . , k and g23(u1, . . . , uk) be
as defined in (4.15). Let the pathway extended Erdélyi-Kober fractional integral of
the second kind be as defined in (4.16). Then

{
k∏

j=1

Γ (ζj + 1)

Γ (ζj + ηj

1−qj
+ 2)

}g23(u1, . . . , uk) = K
−(

ηj
1−qj

+1),j=1,...,k

2,uj ,ζj ,aj ,qj ,j=1,...,kf. (4.17)

When any particular qr → 1− then we can see the corresponding factor going to
the exponential form.

lim
qr→1−

(1 − qr)
ζr+1Γ (ζr + ηr

1−qr
+ 2)

Γ (
ηr

1−qr
+ 1)

(
ur

vr

)ζr
1

vr

[1 − ar(1 − qr)(
ur

vr

)] ηr
1−qr

= ηζr+1
r (

ur

vr

)ζr
1

vr

e−arηr ( ur
vr

)
, 0 < vr < ∞. (4.18)
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Thus, individual qj ’s can go to 1 and the corresponding factor will go to exponential
form or the correspondingly we get a gamma density structure for that factor.

4.3 Mellin Transform in the Multivariate Case for
Erdélyi-Kober Fractional Integral of the Second Kind

The Mellin transform in the multivariate case is defined as

M{f (x1, . . . , xk); s1, . . . , sk} =
∫ ∞

0
. . .

∫ ∞
0

x
s1−1
1 . . . x

sk−1
k

f (x1, . . . , xk)dx1 ∧ . . . ∧ dxk

(4.19)

whenever it exists, where s1, . . . , sk in general are complex parameters. Hence for
the Erdélyi-Kober fractional integral operator of the second kind we have

M{K−αj ,j=1,...,k

uj ,ζj ,j=1,...,kf (u1, . . . , uk); s1, . . . , sk} =
∫ ∞

0
. . .

∫ ∞

0
u

s1−1
1 . . . u

sk−1
k

× {
k∏

j=1

u
ζj

j

Γ (αj )

∫

vj >uj >0
(vj − uj )

αj −1v
−ζ−αj

j }

× f (v1, . . . , vk)dV ∧ dU (i)

where, for example, dU = du1 ∧ . . . ∧ duk, dV = dv1 ∧ . . . ∧ dvk. Then the right
side of (i) is

=
∫ ∞

0
. . .

∫ ∞

0
f (v1, . . . , vk){

k∏

j=1

v
−ζj −αj

j }[{
k∏

j=1

∫ vj

0
u

sj +ζj −1
j (vj−uj )

αj −1duj }]dV.

Take out vj , put yj = uj

vj
then the integral over uj will go to

v
ζj +αj +sj −1
j

Γ (αj )Γ (ζj + sj )

Γ (αj + ζj + sj )
.

Hence the required Mellin transform is

⎡

⎣
k∏

j=1

Γ (ζj + sj )

Γ (αj + ζj + sj )

⎤

⎦ f ∗(s1, . . . , sk)

where f ∗ is the Mellin transform of f . Then we have the following theorem.
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Theorem 4.5 For the Erdélyi-Kober fractional integral of the second kind in the
multivariate case as defined in (4.1) the Mellin transform, with Mellin parameters
s1, . . . , sk is given by

M{K−αj ,j=1,...,k

2,uj ,ζj ,j=1,...,kf ; s1, . . . , sk} =
⎡

⎣
k∏

j=1

Γ (ζj + sj )

Γ (αj + ζj + sj )

⎤

⎦ f ∗(s1, . . . , sk)

(4.20)
for �(αj ) > 0,�(ζj + sj ) > 0, j = 1, . . . , k, where f ∗ is the Mellin transform
of f .

4.4 Erdélyi-Kober Fractional Integral of the First Kind for
Multivariate Case

For the first kind integrals the orders α1, . . . , αk will be written as (−αj , j =
1, . . . , k) The letter K will stand for Erdélyi-Kober fractional integral. The first kind
integrals will be denoted by 1 and the second kind by 2. The orders are written as
superscript to K as −αj , j = 1, . . . , k and the additional parameters, variables and

the kind number will be written as subscripts to K . For example, K
−αj ,j=1,...,k

1,uj ,ζj ,j=1,...,kf

will represent Erdélyi-Kober fractional integral of the first kind in the multivariate
case of orders αj , j = 1, . . . , k and parameters ζj , j = 1, . . . , k.

In the multivariate case we will start with the following definition and notation.

Definition 4.3 (Erdélyi-Kober Fractional Integral of the First Kind in the
Multivariate Case)

K
−αj ,j=1,...,k

1,uj ,ζj ,j=1,...,k
f ={

k∏

j=1

u
−ζj −αj

j

Γ (αj )

∫ uj

vj =0
(uj − vj )αj −1v

ζj

j
}f (v1, . . . , vk)dv1∧ . . . ∧ dvk.

(4.21)

For k = 1, (4.21) corresponds to Erdélyi-Kober fractional integral of the first
kind in the real scalar variable case. First, we will derive the integral in (4.21) as a
constant multiple of a statistical density. To this end, let x1, . . . , xk be independently
distributed type-1 beta random variables with the parameters (ζj , αj ), j = 1, . . . , k

or with the density

f5j (xj ) = Γ (ζj + αj )

Γ (ζj )Γ (αj )
x

ζj −1
j (1 − xj )

αj −1, 0 < xj < 1, (4.22)

for αj > 0, ζj > 0 or �(αj ) > 0,�(ζj ) > 0 when the parameters are in the
complex domain, and f5j (xj ) = 0 otherwise. Let (v1, . . . , vk) be real scalar positive
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random variables having a joint density f6(v1, . . . , vk) = f (v1, . . . , vk) where f is
arbitrary. Let uj = vj

xj
, j = 1, . . . , k. The Jacobian is given by

dX ∧ dV = [
k∏

j=1

(− vj

u2
j

)]dU ∧ dV (4.23)

where the earlier simplified notation is used. The joint density of u1, . . . , uk ,
following through the earlier steps, denoted by g1(u1, . . . , uk), is given by

g1(u1, . . . , uk) = {
k∏

j=1

Γ (ζj + αj )

Γ (ζj )Γ (αj )
}{

k∏

j=1

u
−ζj −αj

j

∫ uj

v=0
(uj − vj )

αj −1v
ζj

j }f (v1, . . . , vk)dv1 ∧ . . . ∧ dvk.

(4.24)

Here the 1 in g1 stands for the first kind fractional integral. If the j -th set of
(x1, . . . , xk) and (v1, . . . , vk) are being considered then the corresponding g1 will
be denoted as g1j . We have the following theorem.

Theorem 4.6 Let x1, . . . , xk be independently distributed type-1 beta random
variables with the parameters (ζj , αj ), j = 1, . . . , k, and let v1, . . . , vk, u1, . . . , uk

be as defined in (4.22) and (4.23). Let the joint density of u1, . . . , uk be denoted by
g1(u1, . . . , uk). Then

{
k∏

j=1

Γ (ζj )

Γ (ζj + αj )
}g1(u1, . . . , uk) = K

−αj ,j=1,...,k

1,uj ,ζj ,j=1,...,kf. (4.25)

We can have pathway extension to Erdélyi-Kober fractional integral of the first
kind, parallel to the results for the case of second kind. Other properties follow
parallel to those for the case of the fractional integral of the second kind. We will
evaluate the multivariate Mellin transform following through steps parallel to those
in the case of the second kind and hence we give the result here as a theorem.

Theorem 4.7 The Mellin transform, with Mellin parameters s1, . . . , sk , for Erdélyi-
Kober fractional integral of the first kind in the multivariate case is given by the
following:

M{K−αj ,j=1,...,k

1,uj ,ζj ,j=1,...,kf ; s1, . . . , sk} = {
k∏

j=1

Γ (1 + ζj − s)

Γ (1 + αj + ζj − s)
}f ∗(s1, . . . , sk)

(4.26)
for �(αj ) > 0,�(ζj ) > 0,�(s) < 1 + �(ζj ), j = 1, . . . , k where f ∗ is the Mellin
transform of f .

We can obtain theorems parallel to the ones for the second kind integrals. Some
of these will be stated here without proofs. The derivations are parallel to those for
the second kind integrals and hence omitted.
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Theorem 4.8 Let x1, . . . , xk be independently distributed as the pathway model
in (4.13) with ζj replaced by ζj − 1, j = 1, . . . , k. Let (v1, . . . ., vk) have a joint
arbitrary density f (v1, . . . , vk). Let (x1, . . . , xk) and (v1, . . . , vk) be independently
distributed. Let uj = vj

xj
or xj = vj

uj
,j = 1, . . . , k. Let the joint density of u1, . . . , uk

be again denoted by g11(u1, . . . , uk). Then

K
−(

ηj
1−qj

+1),j=1,...,k

1,uj ,ζj ,aj ,qj ,j=1,...,k
f ={

k∏

j=1

u
−ζj −(

ηj
1−qj

+1)

j
[aj (1−qj )]ζj

Γ (
ηj

1−qj
+1)

∫ uj
1−aj (1−qj )

vj =0
[uj −aj (1−qj )vj ]

ηj
1−qj v

ζj
j

}

× f (v1, . . . , vk)dv1 ∧ . . . ∧ dvk

= {
k∏

j=1

Γ (ζj )

Γ (ζj + ηj

1−qj
+ 1)

}g11(u1, . . . , uk) (4.27)

for aj > 0, qj < 1, ηj > 0,�(ζj ) > 0, j = 1, . . . , k.

From here we can have a definition for a pathway extension of Erdélyi-Kober
fractional integral of the first kind in the multivariate case.

Definition 4.4 (Erdélyi-Kober fractional integral of the first kind in the mul-
tivariate case) Let the variables and parameters be as defined in Theorem 4.8.
Then the pathway extended Erdélyi-Kober fractional integral of the first kind in
the multivariate case is defined and denoted as follows:

K
−(

ηj
1−qj

+1),j=1,...,k

1,uj ,ζj ,aj ,qj ,j=1,...,kf = {
k∏

j=1

u
−ζj −(

ηj
1−qj

+1)

j [aj (1 − qj )]ζj

Γ (
ηj

1−qj
+ 1)

×
∫ uj

1−aj (1−qj )

vj =0
[uj − aj (1 − qj )vj ]

ηj
1−qj v

ζj

j }

× f (v1, . . . , vk)dv1 ∧ . . . ∧ dvk (4.28)

for aj > 0, qj < 1, ηj > 0,�(ζj ) > 0, j = 1, . . . , k.

We can list several theorems when x1, . . . , xk are not independently distributed.
Two such cases will be listed here without proofs. The proofs will be parallel to
those in the second kind cases and hence omitted.

Theorem 4.9 Let x1, . . . , xk have a type-1 Dirichlet density as in (4.6) with αj

replaced by αj − 1 for j = 1, . . . , k and let (v1, . . . , vk) have an arbitrary
joint density f (v1, . . . , vk) where (x1, . . . , xk) and (v1, . . . , vk) are independently
distributed. Let yj = xj

1−x1−...−xj−1
and let yj = vj

uj
, j = 1, . . . , k. Let the joint

density of u1, . . . , uk be denoted by g12(u1, . . . , uk). Let βj = αj+1 +αj+2 + . . .+
αk+1. Then
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K
−βj ,j=1,...,k

1,uj ,αj ,j=1,...,kf = [
k∏

j=1

Γ (αj )

Γ (αj + βj )
]g12(u1, . . . , uk). (4.29)

The next theorem is parallel to Theorem 4.3 for the fractional integral of the
second kind.

Theorem 4.10 Let x1, . . . , xk have a joint density as in (4.10) with αj replaced by
αj − 1, j = 1, . . . , k. Let yj = xj

1−x1−...−xj−1
as defined in (4.7). Let (v1, . . . , vk)

have an arbitrary joint density f (v1, . . . , vk). Let (x1, . . . , xk) and (v1, . . . , vk) be
independently distributed. Let uj = vj

yj
or yj = vj

uj
, j = 1, . . . , k. Let γj = αj+1 +

αj+2 + . . . + αk+1 + βj + βj+1 + . . . + βk . Then

K
−γj ,j=1,...,k

1,uj ,αj ,j=1,...,kf = {
k∏

j=1

Γ (αj )

Γ (αj + γj )
}g12(u1, . . . , uk) (4.30)

for �(αj ) > 0,�(γj ) > 0, j = 1, . . . , k.

4.5 A General Definition for First and Second Kind
Fractional Integrals in the Multivariate Case

We recall the general definition for the one matrix-variate case from Sect. 3.8 of
Chap. 3. By introducing prefixed functions φ1 and φ2 we can give some general
definitions for the multivariate case. Let {x1, . . . , xk} and {v1, . . . , vk} be the two
sets of real scalar positive variables. Let the joint functions associated with these sets
be denoted by f1(x1, . . . , xk) and f2(v1, . . . , vk) respectively. If xj ’s and vj ’s are
random variables then we may take f1 and f2 as the corresponding joint densities.
Let f1 and f2 be of the following forms:

f1(x1, . . . , xk) = φ1(x1, . . . , xk)

k∏

j=1

(1 − xj )
αj −1

Γ (αj )
and

f2(v1, . . . , vk) = φ2(v1, . . . , vk)f (v1, . . . , vk) (4.31)

where �(αj ) > 0, j = 1, . . . , k;φ1 and φ2 are pre-specified functions and
f (v1, . . . , vk) is an arbitrary function. Consider the case of second kind integrals
first for convenience. Let uj = xjvj , xj = uj

vj
, j = 1, . . . , k. Consider the trans-

formation (xj , vj ) → (uj , vj ), j = 1, . . . , k. Then the Jacobian is (v1 . . . vk)
−1.

Let the joint density of these products uj = xjvj be denoted by g2(u1, . . . , uk). If
the variables are random variables and if the corresponding functions are statistical
densities then g2(u1, . . . , uk) is the joint density of u1, . . . , uk , otherwise it is the
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Mellin convolution of the product. Then

g2(u1, . . . , uk) = {
k∏

j=1

1

Γ (αj )
}
∫

v1

. . .

∫

vk

(v1 . . . vk)
−1φ1(

u1

v1
, . . . ,

uk

vk

)

× φ2(v1, . . . , vk)f (v1, . . . , vk){
k∏

j=1

(1−uj

vj

)αj −1}dv1 ∧ . . . ∧ dvk.

(4.32)

Definition 4.5 (General definition for fractional integral of the second kind in
the multivariate case) The integral on the right side of (4.32) is called fractional
integral of the second kind of orders α1, . . . , αk in the multivariate or many real
scalar variable case, where φ1 and φ2 are prefixed functions and f is an arbitrary
function.

Before we give a general definition for fractional integral of the first kind, let us
examine one special case here for the sake of illustration.

4.5.1 A Special Case of (4.32)

Let φ1(x1, . . . , xk) = ∏k
j=1 x

ζj

j and φ2 = 1. Then (4.32) will reduce to the
following, denoted by g21(u1, . . . , uk):

g21(u1, . . . , uk) = {
k∏

j=1

u
ζj

j

Γ (αj )

∫

vj >uj >0
v

−ζj −αj

j (vj − uj )
αj −1}

× f (v1, . . . , vk)dv1 ∧ . . . ∧ dvk,�(αj ) > 0, j = 1, . . . , k.

(4.33)

Observe that (4.33) is the Erdélyi-Kober fractional integral of the second kind of
orders α1, . . . , αk and parameters ζ1, . . . , ζk .

Now, let us give a general definition for fractional integrals of the first kind.
In order to avoid too many symbols, we will use the same u1, . . . , uk to denote
ratios also. Let uj = vj

xj
, or xj = vj

uj
, vj = vj , j = 1, . . . , k. Then the

Jacobian is
∏k

j=1
vj

u2
j

. Let the joint density of these ratios u1, . . . , uk be denoted

by g1(u1, . . . , uk). Then
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g1(u1, . . . , uk) = {
k∏

j=1

1

Γ (αj )
}
∫

v1

. . .

∫

vk

φ1(
v1

u1
, . . . ,

vk

uk

){
k∏

j=1

(1 − vj

uj

)αj −1}

× φ2(v1, . . . , vk)f (v1, . . . , vk){
k∏

j=1

vj

u2
j

}dv1 ∧ . . . ∧ dvk

(4.34)

for �(αj ) > 0, j = 1, . . . , k.

Definition 4.6 (Fractional Integral of the First Kind in the Multivariate Case)
A general definition for fractional integral of the first kind of orders α1, . . . , αk is
the right side in (4.34), where φ1 and φ2 are prefixed functions and f is an arbitrary
function.

For the sake of illustration we will examine one special case here.

4.5.2 Special Case of (4.34)

Let φ1(x1, . . . , xk) = ∏k
j=1 x

ζj −1
j and φ2 = 1. Then (4.34) reduces to the

following, denoted by g11(u1, . . . , uk).

g11(u1, . . . , uk) = {
k∏

j=1

u
−ζj −αj

j

Γ (αj )
}{

k∏

j=1

∫

0<vj <uj

v
ζj

j (uj − vj )
αj −1}

× f (v1, . . . , vk)dv1 ∧ . . . ∧ dvk,�(αj ) > 0, j = 1, . . . , k.

(4.35)

Observe that (4.35) is Eerdélyi-Kober fractional integral of the first kind of orders
α1, . . . , αk and parameters ζ1, . . . , ζk . For more details, see [1].

Reference

1. A.M. Mathai, Fractional integral operators involving many matrix variables. Linear Algebra
Appl. 446, 196–215 (2014)



Chapter 5
Erdélyi-Kober Fractional Integrals
Involving Many Real Matrices

All the matrices appearing in this chapter are p × p real positive definite unless
stated otherwise. In order to avoid too many symbols we will use u1 = x2

x1
for the

ratio of x2 to x1 in the real scalar variable case, U1 = X
1
2
2 X−1

1 X
1
2
2 , symmetric ratio,

in the real p × p matrix-variate case. The corresponding density of u1 and U1 will
be indicated by g1; we will use u2 = x1x2 for the product in the real scalar variable

case and U2 = X
1
2
2 X1X

1
2
2 , the symmetric product, in the real p × p matrix-variate

case. The corresponding density of u2 or U2 will be indicated by g2. If x1 and x2 are
statistically independently distributed real scalar random variables, and X1 and X2
are statistically independently distributed real matrix-variate random variables, then
g2(u2) or g2(U2) and g1(u1) or g1(U1) will denote product and ratio distributions
or M-convolutions of product and ratio whatever be the set of variables. In all the
preceding chapters the basic claim is that fractional integrals are of two kinds, the
first kind or left-sided and the second kind or right-sided. The first kind of fractional
integrals belong to the class of Mellin convolution of a ratio and the second kind
of fractional integrals belong to the class of Mellin convolution of a product. In the
matrix-variate case these will be M-convolutions of ratio and product respectively. If
the variables are random variables then g1 and g2 correspond to the densities of ratio
and product respectively. We will give the following formal definition of fractional
integral operators of the first kind and second kind. For the sake of completeness we
will recall the general definitions from Chaps. 3 and 4.

Definition 5.1 (Fractional integral of the first kind in one scalar or matrix
variable case) A fractional integral of the first kind of order α and of one scalar or
matrix variable is a Mellin convolution of a ratio with the first function f1(x1) is of
the form

f1(x1) = φ1(x1)(1 − x1)
α−1

Γ (α)
,�(α) > 0 (5.1)

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
A. M. Mathai, H. J. Haubold, Erdélyi–Kober Fractional Calculus, SpringerBriefs
in Mathematical Physics 31, https://doi.org/10.1007/978-981-13-1159-8_5
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in the real scalar variable case,

f1(X1) = φ(X1)|I − X1|α− p+1
2

Γp(α)
,�(α) >

p − 1

2
(5.2)

in the single matrix variable case, where φ1(x1) and φ1(X1) are specified functions,
and f2(x2) = φ2(x2)f (x2) where φ2(x2) is a specified function and f (x2) is an
arbitrary function, in the real scalar case, and f2(X2) = φ2(X2)f (X2) in the real
matrix-variate case where X2 is a p × p real positive definite matrix, so that the
fractional integral of the first kind of order α is given by the Mellin convolution
formula for a ratio, namely

g1(u1) = 1

Γ (α)

∫

0<v<u1

φ1(
v

u1
)(1 − v

u1
)α−1φ2(v)

v

u2
1

f (v)dv (5.3)

in the scalar variable case, and for one matrix variable case

g1(U1) =
∫

O<V <U1

φ1(V
1
2 U−1

1 V
1
2 )

1

Γp(α)
|I − V

1
2 U−1

1 V
1
2 |α− p+1

2

× |V | p+1
2 |U1|−(p+1)φ2(V )f (V )dV,�(α) >

p − 1

2
(5.4)

where, for example, V
1
2 is the real positive definite square root of the real positive

definite matrix V .

Definition 5.2 (Fractional integral of the second kind of order α for the one
positive real scalar variable case or one p × p real positive definite matrix-
variate case) Let f1 and f2 be as given in Definition 5.1. Then the fractional
integral of the second kind of order α is defined as the Mellin convolution of a
product, denoted by g2, and given by

g2(u2) = 1

Γ (α)

∫

v>u2

1

v
φ1(

u2

v
)(1 − u2

v
)α−1φ2(v)f (v)dv,�(α) > 0 (5.5)

for the real scalar case, and for the real matrix-variate case

g2(U2) = 1

Γp(α)

∫

V >U2>O

|V |− p+1
2 φ1(V

− 1
2 U2V

− 1
2 )|I − V − 1

2 U2V
− 1

2 |α− p+1
2

× φ2(V )f (V )dV,�(α) >
p − 1

2
. (5.6)

Note that if f1(x1) and f2(x2) are statistical densities of real positive scalar
random variables x1 and x2 then g1(u1) will represent the density of the ratio

u1 = x2
x1

. In the matrix case g1(U1) will represent the density of U1 = X
1
2
2 X−1

1 X
1
2
2 ,



5 Erdélyi-Kober Fractional Integrals Involving Many Real Matrices 89

the symmetric ratio, where X1 = V
1
2 U−1V

1
2 and X2 = V . Similarly, g2(u2) and

g2(U2) will represent the density of the product u2 = x1x2 and U2 = X
1
2
2 X1X

1
2
2

respectively. This is the statistical connection and later we will see that Erdélyi-
Kober fractional integrals are constant multiples of statistical densities when f1 and
f2 are densities. Special cases of specified functions φ1 and φ2 will give various
fractional integrals available in the literature for p = 1 or for real scalar case. Then
the theory of real scalar case can be extended to that of real matrix-variate case.
Some of these are given in Chaps. 2 and 3 and hence these will not be repeated here.

Definition 5.3 (Fractional integral of the first kind of orders α1, . . . , αk in the
multivariate case) Let f1(x1, . . . , xk) and f2(v1, . . . , vk) be real-valued scalar
functions of the scalar variables x1, . . . , xk and v1, . . . , vk respectively, where f1
is of the form

f1 = φ1(x1, . . . , xk){
k∏

j=1

(1 − xj )
αj −1

Γ (αj )
},�(αj ) > 0, j = 1, . . . , k

and

f2(v1, . . . , vk) = φ2(v1, . . . , vk)f (v1, . . . , vk)

where f is an arbitrary function and φ1 and φ2 are prefixed functions. Then
the fractional integral of the first kind or left-sided of orders α1, . . . , αk in the
multivariate scalar case is given by

g1(u1, . . . , uk) = {
k∏

j=1

1

Γ (αj )

∫

vj <uj

(1 − vj

uj

)αj −1 vj

u2
j

}

× φ1(
v1

u1
, . . . ,

vk

uk

)φ2(v1, . . . , vk)f (v1, . . . , vk)dV,

dV = dv1 ∧ . . . ∧ dvk. (5.7)

In the corresponding many matrix-variate case g1(U1, . . . , Uk) is given by the
following:

g1(U1, . . . , Uk)={
k∏

j=1

1

Γp(αj )

∫

O<Vj <Uj

|I − V
1
2

j
U−1

j
V

1
2

j
|αj − p+1

2 |Vj | p+1
2 |Uj |−(p+1)}

× φ1(V
1
2

1 U−1
1 V

1
2

1 , . . . , V
1
2

k
U−1

k
V

1
2

k
)

× φ2(V1, . . . , Vk)f (V1, . . . , Vk)dV, dV = dV1 ∧ . . . ∧ dVk, (5.8)

for �(αj ) >
p−1

2 , j = 1, . . . , k.
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Definition 5.4 (Fractional integral of the second kind of orders α1, . . . , αk in
the multivariate case) Let f1(x1, . . . , xk) and f2(v1, . . . , vk) be real-valued scalar
functions of the scalar variables x1, . . . , xk and v1, . . . , vk respectively, where f1 is
of the form

f1 = φ1(x1, . . . , xk){
k∏

j=1

(1 − xj )
αj −1

Γ (αj )
},�(αj ) > 0, j = 1, . . . , k

and f2 = φ2(v1, . . . , vk)f (v1, . . . , vk) where f is an arbitrary function and φ1 and
φ2 are prefixed functions. Then the fractional integral of the second kind of orders
α1, . . . , αk in the multivariate scalar case is given by

g2(u1, . . . , uk) = {
k∏

j=1

1

Γ (αj )

∫

vj >uj >0
(1 − uj

vj

)αj −1 1

vj

}

× φ1(
u1

v1
, . . . ,

uk

vk

)φ2(v1, . . . , vk)f (v1, . . . , vk)dV,

dV = dv1 ∧ . . . ∧ dvk, (5.9)

for �(αj ) > 0, j = 1, . . . , k. In the corresponding many matrix-variate case, g2 is
given by

g2(U1, . . . , Uk) =
∫

V1>U1>O

. . .

∫

Vk>Uk>O

φ1(V
− 1

2
1 U1V

− 1
2

1 , . . . , V
− 1

2
k UkV

− 1
2

k )

× {
k∏

j=1

1

Γp(αj )
|I − V

− 1
2

j UjV
− 1

2
j |αj − p+1

2 |Vj |− p+1
2 }

× φ2(V1, . . . , Vk)f (V1, . . . , Vk)dV, dV = dV1 ∧ . . . ∧ dVk,

(5.10)

for �(αj ) >
p−1

2 , j = 1, . . . , k.

5.1 Second Kind Fractional Integrals in the Many
Matrix-variate Case and Statistical Densities

Let X1, . . . , Xk and V1, . . . , Vk be two sequences of positive definite p × p matrix
random variables where between the sets the two sets are statistically independently
distributed. Further, let X1, . . . , Xk be mutually independently distributed type-1
real matrix-variate beta random variables with the parameters (ζj + p+1

2 , αj ), j =
1, . . . , k. That is, Xj has the density



5.1 Second Kind Fractional Integrals in the Many Matrix-variate Case and. . . 91

fj (Xj ) = Γp(αj + ζj + p+1
2 )

Γp(αj )Γp(ζj + p+1
2 )

|Xj |ζj |I − Xj |αj − p+1
2 (5.11)

for O < Xj < I , �(αj ) >
p−1

2 ,�(ζj ) > −1 and fj (Xj ) = 0, j =
1, . . . , k elsewhere. Let the joint density of V1, . . . , Vk be f2(V1, . . . , Vk) =
f (V1, . . . ., Vk) where f is arbitrary. Let Uj = V

1
2

j XjV
1
2

j , j = 1, . . . , k. Consider

the transformation Xj = V
− 1

2
j UjV

− 1
2

j , Vj = Vj , j = 1, . . . , k then the Jacobian

is |V1|− p+1
2 . . . |Vk|− p+1

2 . Substituting in (5.11) the joint density of U1, . . . , Uk ,
denoted by g2(U1, . . . , Uk), is given by

g2(U1, . . . , Uk) = {
k∏

j=1

Γp(αj + ζj + p+1
2 )

Γp(αj )Γp(ζj + p+1
2 )

×
∫

Vj >Uj >O

|Vj |− p+1
2 |V − 1

2
j UjV

− 1
2

j |ζj |I−V − 1
2 UjV

− 1
2

j |αj − p+1
2 }

× f (V1, . . . , Vk)dV1 ∧ . . . ∧ dVk

= {
k∏

j=1

Γp(αj + ζj + p+1
2 )

Γp(αj )Γp(ζj + p+1
2 )

|Uj |ζj

Γp(αj )

×
∫

Vj >Uj >O

|Vj |−ζj −αj |Vj − Uj |αj − p+1
2 }f (V1, . . . , Vk)dV,

dV = dV1 ∧ . . . ∧ dVk (5.12)

for �(αj ) >
p−1

2 ,�(ζj ) > −1, j = 1, . . . , k. Hence we will define Erdélyi-
Kober fractional integral of the second kind and of orders (α1, . . . , αk) for the many
matrix-variate case , and denote as follows:

K
−αj ,j=1,...,k

2,Uj ,ζj ,j=1,...,kf = {
k∏

j=1

|Uj |ζj

Γp(αj )

∫

Vj >Uj >O

|Vj |−ζj −αj |Vj − Uj |αj − p+1
2 }

×f (V1, . . ., Vk)dV1∧ . . . ∧ dVk,�(αj )>
p−1

2
, j = 1, . . ., k.

(5.13)

Therefore this Erdélyi-Kober fractional integral is a constant times a statistical
density function, namely,

{
k∏

j=1

Γp(ζj + p+1
2 )

Γp(αj + ζj + p+1
2 )

}g2(U1, . . . , Uk) = K
−αj ,j=1,...,k

2,Uj ,ζj ,j=1,...,kf (5.14)
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for �(αj ) >
p−1

2 ,�(ζj ) > −1, j = 1, . . . , k. Now, let us consider f1 having a
joint density of the positive definite matrix variables X1, . . . , Xk and f2 is a joint
density of the positive definite matrix variables V1, . . . , Vk where the two sets are
independently distributed. Some such joint densities may be seen from Kurian et
al. [1], Mathai [2], Mathai and Provost [3]. Then we can have several interesting
results where the Erdélyi-Kober fractional integral of (5.14) will become constant
multiples of statistical densities coming from various considerations.

Theorem 5.1 Let the two sets X1, . . . , Xk and V1, . . . , Vk of real positive definite
matrix random variables be independently distributed. Further, let X1, . . . , Xk have
a joint type-1 Dirichlet density with the parameters (ζj + p+1

2 , j = 1, . . . , k; ζk+1),
j = 1, . . . , k. Consider the transformation

X1 = Y1

X2 = (I − Y1)
1
2 Y2(I − Y1)

1
2

Xj = (I − Y ′
1)

1
2 . . . (I − Yj−1)

1
2 Yj (I − Yj−1)

1
2 . . . (I − Y ′

1)
1
2 , j = 2, . . . , k.

(5.15)

= Bj−1YjB
′
j−1, Bj−1 = (I − Y1)

1
2 . . . (I − Yj−1)

1
2

Or if we write I − X1 − . . . − Xj−1 = CC′ then

Yj = C−1Xj(C
′)−1, j = 2, . . . , k, Y1 = X1. (5.16)

Since the matrices are symmetric the transposes are themselves except for the
change in the order of a product. What we need is a representation of the form
CC′. Consider the transformation

Uj = V
1
2

j YjV
1
2

j , Yj = V
− 1

2
j UjV

− 1
2

j , j = 1, . . . , k. (5.17)

Then the joint density of U1, . . . , Uk is constant times the generalized Erdélyi-Kober
fractional integral of the second kind defined in (5.14).

Proof Under the transformation in (5.15) or (5.16) the Jacobian is

J = |I − Y1|(k−1)(
p+1

2 )|I − Y2|(k−2)(
p+1

2 ) . . . |I − Yk| p+1
2 (5.18)

and that Y1, . . . , Yk are independently distributed as type-1 real matrix-variate beta
random variables with the parameters (ζj + p+1

2 , βj ), j = 1, . . . , k where

βj = ζj+1 + ζj+2 + . . . + ζk+1 + (k − j)(
p + 1

2
) (5.19)
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see, for example Mathai [2]. Now, it is equivalent to the situation in (5.13) and (5.14)
with Yj ’s standing in place of the independently distributed Xj ’s, that is, Uj =
V

1
2

j YjV
1
2

j , and hence from (5.14) we have the following result:

{
k∏

j=1

Γp(ζj + p+1
2 )

Γp(βj + ζj + p+1
2 )

}g2(U1, . . . , Uk) = K
−βj ,j=1,...,k

2,Uj ,ζj ,j=1,...,kf (5.20)

where βj is given in (5.19), �(βj ) >
p−1

2 ,�(ζj ) > −1, j = 1, . . . , k,�(ζk+1) >
p−1

2 . Hence the result.

We can consider several generalized models belonging to the family of general-
ized type-1 Dirichlet family in the many matrix-variate cases. In all such situations
we can derive the generalized Erdélyi-Kober fractional integral of the second kind
in many matrices. We will take one such generalization here and obtain a theorem.
Let f1(X1, . . . , Xk) be of the form

f1(X1, . . . , Xk) = C |X1|ζ1 |I − X1|γ1 |X2|ζ2 |I − X1 − X2|γ2 . . .

× |Xk|ζk |I − X1 − . . . − Xk|ζk+1+γk− p+1
2 (5.21)

where O < X1 + . . . + Xj < I, j = 1, . . . , k,�(ζj ) > −1, j =
1, . . . , k,�(ζk+1) >

p−1
2 , C is the normalizing constant. Other conditions on

the parameters will be given later. In this connection we can establish the following
theorem.

Theorem 5.2 Let X1, . . . , Xk have a joint density as in (5.21). Consider the
transformation as in (5.15) and (5.16) with the Uj ’s and Vj ’s defined as in (5.17).
Let the joint density of U1, . . . , Uk be again denoted as g2(U1, . . . , Uk). Let

δj = ζj+1 + . . . + ζk+1 + γj + γj+1 + . . . + γk + (k − j)(
p + 1

2
), j = 1, . . . , k.

(5.22)
Then

{
k∏

j=1

Γp(ζj + p+1
2 )

Γp(ζj + p+1
2 + δj )

}g2(U1, . . . , Uk) = K
−δj ,j=1,...,k

2,Uj ,ζj ,j=1,...,kf (5.23)

where δj is defined in (5.22) and the Erdélyi-Kober fractional integral of the second

kind in (5.14), �(ζj ) > −1,�(δj ) >
p−1

2 , j = 1, . . . , k,�(ζk+1) >
p−1

2 .

Proof We can show that under the transformation in (5.15) or (5.16) the Yj ’s are
independently distributed as real matrix-variate type-1 beta random variables with
the parameters (ζj + p+1

2 , δj ), j = 1, . . . , k. Now the result follows from the
procedure of the proof in Theorem 5.1.
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Note 5.1 Special cases connecting to Riemann-Liouville fractional integral, Weyl
fractional integral and Saigo fractional integral, corresponding to the ones in
Sect. 5.1 for Erdélyi-Kober fractional integral of the second kind, are already
mentioned in Chaps. 2 and 3, for one scalar variable or one matrix-variate case.
These results can be extended to many scalar variables or many matrix variables
case.

5.2 Fractional Integrals of the First Kind in the Case of
Many Real Matrix Variables

Let f1(X1, . . . , Xk) be a function of many p × p real positive definite matrices
and f2(V1, . . . , Vk) be another function of another sequence of p × p real positive
definite matrices V1, . . . , Vk . Let f1 be of the form

f1(X1, . . . , Xk) = {
k∏

j=1

Γp(ζj + αj )

Γp(αj )Γp(ζj )
|Xj |ζj − p+1

2 |I − Xj |αj − p+1
2 } (5.24)

for O < Xj < I,�(αj ) >
p−1

2 ,�(ζj ) >
p−1

2 , j = 1, . . . , k. These are the real
matrix-variate type-1 beta densities, with the parameters (ζj , αj ), j = 1, . . . , k,

on the right side. Let Uj = V
1
2

j X−1
j V

1
2

j , Xj = V
1
2 U−1

j V
1
2 , j = 1, . . . , k. Let

f2(V1, . . . , Vk) = f (V1, . . . , Vk) where f is arbitrary. Let the joint density of
U1, . . . , Uk be again denoted by g1(U1, . . . , Uk). Then

{
k∏

j=1

Γp(ζj )

Γp(ζj + αj )
}g1(U1, . . . , Uk) = {

k∏

j=1

1

Γp(αj )

∫

O<Vj <Uj

|V
1
2

j U−1
j V

1
2

j |ζj − p+1
2

×|I − V
1
2

j U−1
j V

1
2

j |αj − p+1
2 |Vj |

p+1
2 |Uj |−(p+1)}

×f (V1, . . ., Vk)dV1 ∧ . . . ∧ dVk (5.25)

= K
−αj ,j=1,...,k

1,Uj ,ζj ,j=1,...,kf (5.26)

for �(ζj ) >
p−1

2 ,�(αj ) >
p−1

2 , j = 1, . . . , k. Then (5.26) will be taken as the
definition of fractional integral of the first kind of orders α1, . . . , αk , variables
U1, . . . , Uk and parameters ζ1, . . . , ζk in the many matrix-variate case, where
g1(U1, . . . , Uk) is a statistical density when f (V1, . . . , Vk) is a statistical density.

Simplifying (5.25), we have a definition for generalized Erdélyi-Kober fractional
integral of the first kind in many matrix variables case. We note that
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K
−αj ,j=1,...,k

1,Uj ,ζj ,j=1,...,kf = {
k∏

j=1

|Uj |−ζj −αj

Γp(αj )

∫

O<Vj <Uj

|Vj |ζj |Uj − Vj |αj − p+1
2 }

× f (V1, . . . , Vk)dV∧ . . . ∧ dVk, (5.27)

for �(αj ) >
p−1

2 ,�(ζj ) >
p−1

2 , j = 1, . . . , k. Hence from (5.24) to (5.27) we can
have the following theorem.

Theorem 5.3 Let X1, . . . , Xk be independently distributed as real p × p

matrix-variate type-1 beta random variables with parameters (ζj , αj ), j =
1, . . . , k,�(αj ) >

p−1
2 ,�(ζj ) >

p−1
2 . Let V1, . . . , Vk be another sequence of

p × p real positive definite matrices having a joint density f (V1, . . . , Vk). Let
the two sets (X1, . . . , Xk) and (V1, . . . , Vk) be independently distributed. Let

Uj = V
1
2

j X−1
j V

1
2

j , Xj = V
1
2

j U−1
j V

1
2

j , j = 1, . . . , k. Let g1(U1, . . . , Uk) be the
joint density of U1, . . . , Uk . Then the Erdélyi-Kober fractional integral of the first
kind for many matrix variables case as defined in (5.26) is a constant multiple of
g1(U1, . . . , Uk) as in (5.25).

We can also have theorems parallel to the ones in Sect. 5.2 and the proofs are
parallel. Hence we list two such theorems here without proofs.

Theorem 5.4 Let X1, . . . , Xk have a joint real p×p matrix-variate type-1 Dirich-
let density with the parameters (ζ1, . . . , ζk; ζk+1). Consider the transformation
in (5.15), (5.16) and let Y1, . . . , Yk be as defined there. Let V1, . . . , Vk be another
sequence of p × p real positive definite matrix random variables having a joint
density f (V1, . . . , Vk) where let (X1, . . . , Xk) and (V1, . . . , Vk) be independently

distributed. Let Uj = V
1
2

j Y−1
j V

1
2

j , or Yj = V
1
2

j U−1
j V

1
2

j , j = 1, . . . , k. Let the joint
density of U1, . . . , Uk be again denoted by g1(U1, . . . , Uk). Let

γj = ζj+1 + . . . + ζk+1. (5.28)

Then

g1(U1, . . . , Uk) = {
k∏

j=1

Γp(ζj + γj )

Γp(ζj )
}K−γj ,j=1,...,k

1,Uj ,ζj ,j=1,...,kf (5.29)

Or

{
k∏

j=1

Γp(ζj )

Γp(ζj + γj )
}g1(U1, . . . , Uk) = K

−γj ,j=1,...,k

1,Uj ,ζj ,j=1,...,kf, (5.30)

for �(ζj ) >
p−1

2 , j = 1, . . . , k + 1,�(γj ) >
p−1

2 , j = 1, . . . , k.
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Theorem 5.5 Let X1, . . . Xk have a joint density as in (5.21) with ζj replaced

by ζj − p+1
2 and the remaining transformations and notations remain as in

Theorem 5.3. Let

δj = ζj+1 + . . . + ζk+1 + βj + . . . + βk. (5.31)

Let the joint density of U1, . . . , Uk be again denoted by g1(U1, . . . , Uk). Then
g1(U1, . . . , Uk) is a density and

{
k∏

j=1

Γp(ζj )

Γp(ζ + δj )
}g1(U1, . . . , Uk) = K

−δj ,j=1,...,k

1,Uj ,ζj ,j=1,...,kf. (5.32)

for �(ζj ) >
p−1

2 , j = 1, . . . , k + 1,�(δj ) >
p−1

2 , j = 1, . . . , k.

5.3 M-Transforms for the Fractional Integrals in the Many
Real Matrix-Variate Case

Here we look at the M-transforms for fractional integrals of the first and second
kind in the many real matrix-variate case. Consider the first kind fractional integral
in (5.27). The M-transform is given by

M{K−αj ,j=1,...k

1,Uj ,ζj ,j=1,...,kf ; s1, . . . , sk} =
∫

U1>O

. . .

∫

Uk>O

|U1|s1− p+1
2 . . . |Uk|sk− p+1

2

× K
−αj ,j=1,...,k

1,Uj ,ζj ,j=1,...,kf (U1, . . ., Uk)dU1 ∧ . . . ∧ dUk

The Uj -integral is given by

∫

Uj >Vj >O

|Uj |sj − p+1
2 |Uj |−ζj −αj |Uj − Vj |αj − p+1

2 dUj

= |Vj |−ζj +sj − p+1
2

∫

Yj >O

|Yj |αj − p+1
2 |I + Yj |−(ζj +αj −sj + p+1

2 )dYj , Tj = Uj − Vj , Yj = V
− 1

2
j Tj V

− 1
2

j

= |Vj |−ζj +sj − p+1
2

Γp(αj )Γp(
p+1

2 + ζj − sj )

Γp(
p+1

2 + ζj + αj − sj )

by evaluating the integral by using type-2 real matrix-variate beta integral, for
�(s) < �(ζj + p+1

2 ),�(αj ) >
p−1

2 , j = 1, . . . , k. Now the Vj -integrals give
the M-transform of f (V1, . . . , Vk). Hence we can have the following theorem.
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Theorem 5.6 For the Erdélyi-kober fractional integral of the first kind of orders
α1, . . . , αk defined in (5.30) the M-transform is given by

M{K−αj ,j=1,...,k

1,Uj ,ζj ,j=1,...,kf ; s1, . . . , sk} = f ∗(s1, . . . , sk)

k∏

j=1

Γp(
p+1

2 + ζj − sj )

Γp(
p+1

2 + ζj + αj − sj )

for �(sj ) < �(ζj ) + 1,�(αj ) >
p−1

2 , j = 1, . . . , k., where f ∗(s1, . . . , sk) is the
M-transform of f (V1, . . . , Vk).

In a similar manner we can work out the M-transform of fractional integral of the
second kind in the many real matrix-variate case. In this context we start with (5.13).
The M-transform is given by

M{K−αj ,j=1,...,k

2,Uj ,ζj ,j=1,...,kf ; s1, . . . , sk} = { 1

Γp(αj )

∫

Uj >O

|Uj |ζj +sj − p+1
2

∫

Vj >Uj >O

|Vj |−ζj −αj

× |Vj − Uj |αj − p+1
2 dUj }f (V1, . . . , Vk)dV1 ∧ . . . ∧ dVk

for �(αj ) >
p−1

2 ,�(ζj ) > −1, j = 1, . . . , k.
The Uj -integral is given by

∫

O<Uj <Vj

|Uj |sj − p+1
2 +ζj |Vj − Uj |αj − p+1

2 dUj

= |Vj |αj − p+1
2

∫

O<Uj <Vj

|Uj |sj +ζj − p+1
2 |I − V − 1

2 UjV
− 1

2
j |αj − p+1

2 dUj .

Put Yj = V − 1
2 UjV

− 1
2

j and integrate out by using a real matrix-variate type-1 beta
integral then the Uj integral is

= |Vj |αj − p+1
2 +sj +ζj

Γp(αj )Γp(ζj + sj )

Γp(αj + ζj + sj )

for �(αj ) >
p−1

2 ,�(ζj + sj ) >
p−1

2 . Now the Vj -integrals give the M-transform
of f . Hence we have the following theorem.

Theorem 5.7 For the Erdélyi-Kober fractional integral of the second kind defined
in (5.13) the M-transform is given by

M{K−αj ,j=1,...,k

2,Uj ,ζj ,j=1,...,kf ; s1, . . . , sk} = f ∗(s1, . . . , sk)

k∏

j=1

Γp(ζj + sj )

Γp(αj + ζj + sj )
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for �(αj ) >
p−1

2 ,�(ζj + sj ) >
p−1

2 , j = 1, . . . , k, where f ∗(s1, . . . , sk) is the
M-transform of f (V1, . . . , Vk).

Note that for k = 1 the corresponding M-transforms in the one real matrix
variable case, for the first and second kind fractional integrals are available from
Theorems 4.7 and 4.5. For p = 1 the corresponding Mellin transforms in the k real
scalar variables case and for p = 1, k = 1 the corresponding Mellin transforms in
the one real scalar variable case for the Erdélyi-Kober fractional integral of the first
and second kinds are obtained from Theorems 3.5 and 3.3 respectively.
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Chapter 6
Erdélyi-Kober Fractional Integrals in the
Complex Domain

6.1 Introduction

In Chaps. 2, 3, 4, and 5 we considered the real scalar variable case, real multivariate
case, real one matrix-variate case, real several matrix-variate case. In the present
chapter we will look into fractional calculus in the complex domain. Since we
will be dealing with p × p Hermitian positive definite matrices, for p = 1
Hermitian positive definite means a real scalar positive variable. Hence we start
with p ≥ 2. Fractional calculus of one real scalar variable case is the one most
frequently appearing in various theoretical and applied areas. Fractional calculus in
the complex domain was considered only recently, see Mathai [2]. The following
discussion is based on this work.

The following are the standard notations which will be used in the present and
succeeding chapters. All matrices appearing are p×p with elements in the complex
domain unless stated otherwise. det(·) will denote the determinant of (·). |det(·)|
will be the absolute value of the determinant of (·). A matrix X with scalar complex
variables as elements will be denoted by a tilde as X̃. Constant matrices will not be
written with a tilde whether in the real or complex domain. tr(X) is the trace of X,
(dX̃) = (dx̃ij ) is the matrix of differentials dx̃ij ’s. Let X̃ = X1 + iX2 where X1 and
X2 are real m × n matrices and i = √

(−1). Then dX̃ = dX1 ∧ dX2 where

dX1 =
m∏

i=1

n∏

j=1

∧dxij1 and dX2 =
m∏

i=1

n∏

j=1

∧dxij2

where xij1 and xij2 are the (i, j) − th elements in X1 and X2 respectively, and ∧
denotes the wedge product. For any p × p matrix A = A1 + iA2 in the complex
domain, the determinant will be a complex number of the form det(A) = a + ib

where a and b are real scalar quantities. Then the absolute value of the determinant

will be of the form |det(A)| = +[(a + ib)(a − ib)] 1
2 = +[a2 + b2] 1

2 . Note that the
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conjugate of A1 + iA2 is A1 − iA2. Then the square of the absolute value of the
determinant of A can also be written as the following determinant, where Ā denotes
the conjugate of A:

|det(A)|2 = det(A)det(Ā) = det(A1 + iA2)det(A1 − iA2)

= det

[
A1 + iA2 O

O A1 − iA2

]

. (6.1)

The block diagonal determinant on the right can be brought to the following forms:

det

[
A1 + iA2 O

O A1 − iA2

]

= det(B) = det(C),

B =
[

A1 A2

−A2 A1

]

, C =
[
A1 −A2

A2 A1

]

. (6.2)

Hence we have

|det(A)| = |det(B)| 1
2 = |det(C)| 1

2 . (6.3)

We need a few basic results on Jacobians of matrix transformations in the complex
domain. These and further properties may be seen from Mathai [1]. The results that
we need will be listed as lemmas here without proofs.

Lemma 6.1 Let X̃ and Ỹ be m×n matrices in the complex domain. Let A be m×m

and B be n×n nonsingular constant matrices in the sense of free of the elements in
X̃ and Ỹ . Let C be a constant m × n matrix. Then

Ỹ = AX̃B + C, det(A) 
= 0, det(B) 
= 0 ⇒ dỸ = |det(AA∗)|n|det(BB∗)|mdX̃,

(6.4)
where A∗ and B∗ denote the conjugate transposes of A and B respectively.

When A = A∗, that is, when a matrix A in the complex domain is equal to its
conjugate transpose then it is called a Hermitian matrix. The next result is about the
transformation of a Hermitian matrix to a Hermitian matrix.

Lemma 6.2 Let X̃ and Ỹ be p × p Hermitian matrices and let A be a nonsingular
constant matrix. Then

Ỹ = AX̃A∗ ⇒ dỸ =
{

|det(A)|2pdX̃

|det(AA∗)|pdX̃
(6.5)

The next result is on a decomposition of the Hermitian positive definite matrix
X̃ = X̃∗ > O.
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Lemma 6.3 Let X̃ be a p × p Hermitian positive definite matrix. Let T̃ be a
p × p lower triangular matrix with diagonal elements tjj ’s being real and positive.
Consider the unique representation X̃ = T̃ T̃ ∗. Then

X̃ = T̃ T̃ ∗ ⇒ dX̃ = 2p{
p∏

j=1

t
2(p−j)+1
jj }dT̃ . (6.6)

Next we define a complex matrix-variate gamma function, denoted by Γ̃p(α), as

Γ̃p(α) = π
p(p−1)

2 Γ (α)Γ (α − 1) . . . Γ (α − p + 1), �(α) > p − 1. (6.7)

This complex matrix-variate gamma has the following integral representation:

Γ̃p(α) =
∫

X̃>O

|det(X̃)|α−pe−tr(X̃)dX̃,�(α) > p − 1. (6.8)

This can be established by using Lemma 6.3. With the help of (6.8) and Lemma 6.2
we can define a matrix-variate gamma density in the complex domain as follows:

f (X̃) = |det(B)|α
Γ̃p(α)

|det(X̃)|α−pe−tr(BX̃), X̃ = X̃∗ > O, �(α) > p − 1 (6.9)

and f (X̃) = 0 elsewhere, where B = B∗ > O is a constant Hermitian positive
definite matrix.

Lemma 6.4 Let X̃ be a nonsingular matrix and let Ỹ = X̃−1. Then

Ỹ = X̃−1 ⇒ dỸ =
{

|det(X̃X̃∗)|−2pdX̃ for a general X̃

|det(X̃X̃∗)|−p for X̃ = X̃∗ or X̃ = −X̃∗.
(6.10)

Lemma 6.5 Let Ỹ be p × n, n ≥ p and of full rank p. Let Ỹ Ỹ ∗ = S̃. Then after
integrating over the Stiefel manifold

dỸ = πnp

Γ̃p(n)
|det(S̃)|n−pdS̃,

see Mathai ([1], Corollaries 4.5.2, 4.5.3).

We need complex matrix-variate beta function and its integral representations.
The complex matrix-variate beta function will be denoted and defined as follows:

B̃p(α, β) = Γ̃p(α)Γ̃p(β)

Γ̃p(α + β)
,�(α) > p − 1,�(β) > p − 1 (6.11)
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=
∫

O<X̃<I

|det(X̃)|α−p|det(I − X̃)|β−pdX̃, (type-1) (6.12)

=
∫

Ũ>0
|det(Ũ)|α−p|det(I + Ũ )|−(α+β)dŨ , (type-2) (6.13)

for �(α) > p−1,�(β) > p−1 where, in general,
∫
A<X̃<B

f (X̃)dX̃ will mean the
integral of a real-valued scalar function f (X̃) of complex matrix argument X̃ and
the integral is taken over all X̃ such that A = A∗ > O,B = B∗ > O, X̃ = X̃∗ >

O, X̃ − A > O,B − X̃ > O, where A and B are constant matrices.

6.2 Explicit Evaluations of Gamma and Beta Integrals in the
Complex Domain

We have seen from (6.8) that

Γ̃p(α) =
∫

X̃>O

|det(X̃)|α−pe−tr(X̃)dX̃. (6.14)

One standard procedure to evaluate the integral in (6.14) is to write the Hermitian
positive definite matrix as X̃ = T̃ T̃ ∗ where T̃ is a lower triangular matrix with
real and positive diagonal elements tjj > 0, j = 1, . . . , p, where * indicates the
conjugate transpose. Then the Jacobian is available from Lemma 6.3. Then

tr(X̃) = tr(T̃ T̃ ∗)

= t2
11 + . . . + t2

pp + | ˜t21|2 + . . . + | ˜tp1|2 + . . . + | ˜tpp−1|2

and

dX̃ = 2p{
p∏

j=1

t
2α−2j+1
jj }dT̃ .

Now, integrating out over ˜tjk for j > k

∫

˜tjk

e−| ˜tjk |2d ˜tjk =
∫ ∞

−∞

∫ ∞

−∞
e−(t2

jk1+t2
jk2)dtjk1 ∧ dtjk2 = π

and

∏

j>k

π = π
p(p−1)

2 .
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Now,

2
∫ ∞

0
t
2α−2j+1
jj e−t2

jj dtjj = Γ (α − j + 1), �(α) > j − 1,

for j = 1, . . . , p. Now the product of all these gives

π
p(p−1)

2 Γ (α)Γ (α − 1) . . . Γ (α − p + 1) = Γ̃p(α), �(α) > p − 1

and hence the result is verified.

6.2.1 An Alternate Method Based on Partitioned Matrix

Let us separate xpp. When X̃ is p×p Hermitian positive definite then all its diagonal
elements are real and positive. That is, xjj > 0, j = 1, . . . , p. Let

X̃ =
[
X̃11 X̃12

X̃21 xpp

]

where X̃11 is (p − 1) × (p − 1) and

|det(X̃)|α−p = |det(X̃11)|α−p|xpp − X̃21X̃11
−1

X̃12|α−p

and

tr(X̃) = tr(X̃11) + xpp.

Then

|xpp − X̃21X̃11
−1

X̃12|α−p = x
α−p
pp |1 − x

− 1
2

pp X̃21X̃11
− 1

2 X̃11
− 1

2 X̃12x
− 1

2
pp |α−p.

Put

Ỹ = x
− 1

2
pp X̃21X̃11

− 1
2 ⇒ dỸ = x

−(p−1)
pp |det(X̃11)|−1dX̃21

from Lemma 6.1. Now, the integral over xpp gives

∫ ∞

0
x

α−p+(p−1)
pp e−xpp dxpp = Γ (α), �(α) > 0.
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Let u = Ỹ Ỹ ∗. Then dỸ = up−2 πp−1

Γ (p−1)
du from Lemma 6.5

∫ ∞

0
u(p−1)−1(1 − u)α−(p−1)−1du = Γ (p − 1)Γ (α − (p − 1))

Γ (α)
,�(α) > p − 1.

Taking the product we have

|det(X̃(1)
11 )|α+1−pΓ (α)

πp−1

Γ (p − 1)

Γ (p − 1)Γ (α − (p − 1))

Γ (α)

= πp−1Γ (α − (p − 1))|det(X̃(1)
11 )|α+1−p

where X̃
(1)
11 indicates X̃11 after the first set of integrations. Now for the second stage,

separate xp−1,p−1 and the first (p−2)×(p−2) block may be denoted by X̃
(2)
11 . Now

proceed as before to get |det(X̃(2)
11 )|α+2−pπp−2Γ (α − (p−2)). Proceeding like this

we have the exponent of π as (p − 1) + (p − 2) + . . . + 1 = p(p − 1)/2 and the
gamma product will be Γ (α − (p − 1))Γ (α − (p − 2)) . . . Γ (α) for �(α) > p − 1.
That is,

π
p(p−1)

2 Γ (α)Γ (α − 1) . . . Γ (α − (p − 1)) = Γ̃p(α).

6.3 Evaluation of Matrix-Variate Beta Integrals in the
Complex Domain

Here we will consider a direct way of evaluating matrix-variate type-1 and type-2
beta integrals in the real and complex cases, see also Mathai [3].

One integral representation for B̃p(α, β) in the complex case is the following:

∫

O<X̃<I

|det(X̃)|α−p|det(I − X̃)|β−pdX̃ = B̃p(α, β)

for �(α) > p − 1, �(β) > p − 1 where det(·) denotes the determinant of (·) and
|det(·)| denotes the absolute value of the determinant of (·). Here X̃ = (x̃ij ) is a
p × p Hermitian positive definite matrix and hence all the diagonal elements are
real and positive. As in the real case, let us separate xpp by partitioning:

X̃ =
[
X̃11 X̃12

X̃21 X̃22

]

as well as I − X̃ =
[
I − X̃11 −X̃12

−X̃21 I − X̃22

]

.
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Then the absolute value of the determinants are of the form:

|det(X̃)|α−p = |det(X̃11)|α−p|xpp − X̃21X̃
−1
11 X̃∗

12|α−p (i)

where * indicates conjugate transpose, and

|det(I −X̃)|β−p = |det(I −X̃11)|β−p|(1−xpp)−X̃21(I −X̃11)
−1X̃∗

12|β−p. (ii)

Note that when X̃ and I − X̃ are Hermitian positive definite then X̃−1
11 and

(I − X̃11)
−1 are also Hermitian positive definite. Further, the Hermitian forms

X̃21X̃
−1
11 X̃∗

12 and X̃21(I − X̃11)
−1X̃∗

12 remain real and positive. From (i) and (ii)
it follows that

X̃21X̃
−1
11 X̃∗

12 < xpp < 1 − X̃21(I − X̃11)
−1X̃∗

12.

Since Hermitian forms are real, the lower and upper bounds of xpp are real. Let

W̃ = X̃21X̃
− 1

2
11 (I − X̃11)

− 1
2

for fixed X̃11. Then

dX̃21 = |det(X̃11)|−1|det(I − X̃11)|−1dW̃

and |det(X̃)|α−p, |det(I − X̃11)|β−p change to |det(X̃11)|α+1−p, |det(I −
X̃11)|β+1−p respectively. Then we can write: y = xpp − X̃21X̃

−1
11 X̃12, b =

1 − X̃21X̃
−1
11 X̃12 − X̃21(I − X̃11)

−1X̃12 so that

|(1 − xpp) − X̃21X̃
−1
11 X̃∗

12 − X̃21(I − X̃11)
−1X̃∗

12|β−p = (b − y)β−p = bβ−p[1 − y

b
]β−p.

Put u = y
b

. Then the factors containing u and b will be of the form uα−p(1 −
u)β−pbα+β−2p+1 and the integral over u gives

∫ 1

0
uα−p(1 − u)β−pdu = Γ (α − (p − 1))Γ (β − (p − 1))

Γ (α + β − 2(p − 1))
,

for �(α) > p − 1,�(β) > p − 1. Let v = W̃W̃ ∗. Then from Lemma 6.5

dW̃ = πp−1

Γ (p − 1)
v(p−1)−1dv.
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The integral over b gives

∫
bα+β−2p+1dX̃21 =

∫ 1

0
v(p−1)−1(1 − v)α+β−2p+1dv = Γ (p − 1)Γ (α + β − 2p + 2)

Γ (α + β − p + 1)
,

for �(α) > p − 1,�(β) > p − 1. Now, taking the product of all factors we have

|det(X̃11)|α+1−p|det(I − X̃11)|β+1−pπp−1 Γ (α − p + 1)Γ (β − p + 1)

Γ (α + β − p + 1)

for �(α) > p − 1,�(β) > p − 1. Separate xp−1,p−1 from X̃11 and I − X̃11 and
continue the process. Then at the end, the exponent of π will be (p−1)+ (p−2)+
. . . + 1 = p(p−1)

2 and the gamma product will be

Γ (α − (p − 1))Γ (α − (p − 2)) . . . Γ (α)Γ (β − (p − 1)) . . . Γ (β)

Γ (α + β − (p − 1)) . . . Γ (α + β)
.

These factors, together with π
p(p−1)

2 give

Γ̃p(α)Γ̃p(β)

Γ̃p(α + β)
= B̃p(α, β),�(α) > p − 1,�(β) > p − 1.

The procedure for evaluating a type-2 matrix-variate beta integral by the method of
partitioning is parallel and hence it will not be detailed here. We can also consider a
general partitioning as in the real case. Also, we can consider a method of avoiding
the integration over the Stiefel manifold and the steps are parallel to those in the real
case and hence deleted.

6.4 Fractional Integrals in the Matrix-Variate Case in the
Complex Domain

We will introduce a general definition of what is meant by fractional integrals in
the complex matrix-variate case. This definition will be introduced in terms of M-
convolutions of products and ratios or convolutions in terms of generalized matrix
transforms or M-transforms discussed in Mathai [1]. It is easy to introduce the
concepts in terms of statistical densities of products and ratios of matrices in the
complex domain. This will also give a physical interpretation of M-transforms. In
order to illustrate the concepts let us look at the problem of deriving the density
of a product of two matrix-variate random variables in the complex domain. Let

Ũ2 = X̃
1
2
2 X̃1X̃

1
2
2 where Ũ2, X̃1, X̃2 are p × p matrices in the complex domain.

This Ũ2 will be interpreted as the symmetric product of matrices. Here X̃
1
2
2 denotes
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the Hermitian positive definite square root of X̃2. When X̃2 is Hermitian positive
definite all its eigenvalues are real and positive and there exists a unitary matrix
Z̃, Z̃∗Z̃ = I, Z̃Z̃∗ = I such that X̃2 = Z̃∗DZ̃,D = diag(λ1, . . . , λp) where

λj > 0, j = 1, . . . , p are the eigenvalues of X̃2. Then X̃
1
2
2 = Z̃∗D 1

2 Z̃,D
1
2 =

diag(λ
1
2
1 , . . . , λ

1
2
p). Let X̃1 = X̃∗

1 > O and X̃2 = X̃∗
2 > O be Hermitian positive

definite with the densities f1(X̃1) and f2(X̃2) respectively. Here, a density means
a real-valued scalar function of matrix argument with the matrix in the complex
domain, f (X̃), such that f (X̃) ≥ 0 for all X̃ and the total integral

∫
X̃

f (X̃)dX̃ = 1.
Let X̃1 and X̃2 be independently distributed and let the density of Ũ2 be denoted
by g2(Ũ2). Then the joint density of X̃1 and X̃2, denoted by f (X̃1, X̃2), is the
product of marginal densities due to statistical independence. That is, f (X̃1, X̃2) =
f1(X̃1)f2(X̃2). Consider the transformation Ũ2 = X̃

1
2
2 X̃1X̃

1
2
2 , X̃2 = Ṽ so that

X̃2 = Ṽ and X̃1 = Ṽ − 1
2 Ũ2Ṽ

− 1
2 . Then from Lemma 6.2 the Jacobian of this

transformation is given by

dX̃1 ∧ dX̃2 = |det(Ṽ )|−pdŨ2 ∧ dṼ (6.15)

and then the density of Ũ2 is given by

g̃2(Ũ2) =
∫

Ṽ

|det(Ṽ )|−pf1(Ṽ
− 1

2 Ũ2Ṽ
− 1

2 )f2(Ṽ )dṼ . (6.16)

Note that when f1 and f2 are statistical densities then g̃2(Ũ2) is the statistical density

of the product Ũ2 = X̃
1
2
2 X̃1X̃

1
2
2 . If f1 and f2 are arbitrary functions, need not be

densities, then g̃2(Ũ2) of (6.16) will be called the M-convolution of a product and
when p = 1, (6.16) is nothing but the Mellin convolution of a product. It is trivial
to note that the M-transform of g̃2 in (6.16) is the product of the M-transforms of f1
and f2. This will be stated as Theorem 6.1. The M-transform of a real-valued scalar
function f (X̃) with parameter s, where X̃ = X̃∗ > O is a p ×p Hermitian positive
definite matrix in the complex domain, is defined as follows, when the integral is
convergent (see Mathai [1]):

M̃f (s) = M̃{f ; s} =
∫

X̃>O

|det(X̃)|s−pf (X̃)dX̃. (6.17)

Theorem 6.1 For the M-transform defined in (6.17), the M-transform of g̃2
of (6.16) is given by

M̃g2(s) = M̃f1(s)M̃f2(s). (6.18)

Proof Taking the M-transform on both sides, with parameter s, we have
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M̃g2(s) =
∫

Ũ2>O

|det(Ũ2)|s−p[
∫

Ṽ

|det(Ṽ )|−pf1(Ṽ
− 1

2 Ũ2Ṽ
− 1

2 )f2(Ṽ )dṼ ]dŨ2

=
∫

Ṽ

f2(Ṽ )[
∫

Ũ

|det(Ũ2)|s−p|det(Ṽ )|−pf1(Ṽ
− 1

2 Ũ2Ṽ
− 1

2 )dŨ2]dṼ (a)

Now, put W̃ = Ṽ − 1
2 Ũ2Ṽ

− 1
2 ⇒ dŨ2 = |det(Ṽ )|pdW̃ . Then the right side in (a)

becomes
∫

W̃

|det(W̃ )|s−pf1(W̃ )dW̃

∫

Ṽ

|det(Ṽ )|s−pf2(Ṽ )dṼ = M̃f1(s)M̃f2(s)

and hence the result.

Now, we can give a formal definition of fractional integrals in the complex
matrix-variate case.

Definition 6.1 (Fractional Integral of the Second Kind of Order α in the
Complex Matrix-variate Case) Fractional integral of the second kind of order α

in the complex matrix-variate case will be defined as the M-convolution of a product
as in (6.16) where

f1(X̃1) = φ1(X̃1)
|det(I − X̃1)|α−p

Γ̃p(α)

for �(α) > p − 1, where φ1(X̃1) is a specified function, and

f2(X̃2) = φ2(X̃2)f (X̃2)

where φ2(X̃2) is a specified function and f (X̃2) is an arbitrary function.

Note 6.1 In the real matrix-variate case this definition will become as follows:
f2(X2) = φ2(X2)f (X2) where φ2 is a specified function and f (X2) is an arbitrary
function, and

f1(X1) = φ1(X1)
1

Γp(α)
[det(I − X1)]α− p+1

2 , �(α) >
p − 1

2

where φ1(X1) is a specified function, Γp(α) is the real matrix-variate gamma
function defined as

Γp(α) = π
p(p−1)

4 Γ (α)Γ (α − 1

2
) . . . Γ (α − p − 1

2
)�(α) >

p − 1

2
. (6.19)
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6.4.1 Erdélyi-Kober Fractional Integral of the Second Kind of
Order α

Let φ2(X̃2) = 1 and

φ1(X̃1) = Γ̃p(α + β + p)

Γ̃p(β + p)
|det(X̃1)|β.

In this case, f1(X̃1) is a complex matrix-variate type-1 beta density with the
parameters (β + p, α). If the arbitrary function f (X̃2) is an arbitrary density then

g2(Ũ2) of (6.16) is a statistical density of Ũ2 = X̃
1
2
2 X̃1X̃

1
2
2 , where X̃1 and X̃2

are statistically independently distributed Hermitian positive definite p × p matrix
random variables in the complex domain. In this case, from (6.16),

Γ̃p(β + p)

Γ̃p(α + β + p)
g̃2(Ũ2) = |det(Ũ2)|β

Γ̃p(α)

∫

Ṽ >Ũ2>O

|det(Ṽ )|−β−α|det(Ṽ − Ũ2)|α−pf (Ṽ )dṼ

(6.20)

= K̃−α

2,Ũ2,β
f

where K̃−α

2,Ũ2,β
f is Erdélyi-Kober fractional integral of the second kind of order α

and parameter β for the complex matrix-variate case. In the real matrix-variate case
the right side of (6.20) will be of the following form:

K̃−α
2,U2,β

f = [det(U2)]β
Γp(α)

∫

V >U2>O

[det(V )]−α−β [det(V − U2)]α− p+1
2 f (V )dV.

These are called the Erdélyi-Kober fractional integrals because for p = 1 they agree
with Erdélyi-Kober fractional integral of the second kind. Note that for p = 1 a
Hermitian positive definite matrix is a real scalar positive variable.

Theorem 6.2 For the Erdélyi-Kober fractional integral of the second kind of order
α, as defined in (6.20), the M-transform is given by the following:

M̃{K̃−α

2,Ũ2,β
f ; s} = Γ̃p(β + s)

Γ̃p(α + β + s)
M̃f (s) (6.21)

for �(β + s) > p − 1,�(α) > p − 1.
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Proof

M̃{K̃−α

2, ˜U2,β
f ; s} =

∫

Ũ2>O

|det(Ũ2)|s−p[ |det(Ũ2)|β
Γ̃p(α)

×
∫

Ṽ >Ũ2>O

|det(Ṽ − Ũ2)|α−p|det(Ṽ )|−α−βf (Ṽ )dṼ ]dŨ2.

Integrating out Ũ2 we have

∫

O<Ũ2<Ṽ

|det(Ũ2)|β+s−p|det(Ṽ −Ũ2)|α−pdŨ2 =|det(Ṽ )|α+β+s−p Γ̃p(α)Γ̃p(β+s)

Γ̃p(α+β+s)

for �(β + s) > p − 1,�(α) > p − 1. Here the transformations are the following:

|det(Ṽ − Ũ2)|α−p = |det(Ṽ )|α−p|det(I − Ṽ − 1
2 Ũ2Ṽ

− 1
2 )|α−p

W̃ = Ṽ − 1
2 Ũ2Ṽ

− 1
2 ⇒ dW̃ = |det(Ṽ )|−pdŨ2.

Now by taking the integral over Ṽ we have M̃f (s) and hence the result.

6.4.2 The Right-Sided Riemann-Liouville and Weyl Fractional
Integrals in the Complex Matrix-Variate Case

Let φ1(X̃1) = 1 and φ2(X̃2) = |det(X̃2)|α . Then

f1(Ṽ
− 1

2 Ũ2Ṽ
− 1

2 )|det(Ṽ )|−p = 1

Γ̃p(α)
|det(Ṽ )|−p|det(I − Ṽ − 1

2 Ũ2Ṽ
− 1

2 )|α−p

= 1

Γ̃p(α)
|det(Ṽ )|−α|det(Ṽ − Ũ2)|α−p.

Now we have

g̃2(Ũ2) = 1

Γ̃p(α)

∫

Ṽ >Ũ2>O

|det(Ṽ − Ũ2)|α−pf (Ṽ )dṼ

which is the right-sided or second kind Riemann-Liouville fractional integral in the
complex matrix-variate case if Ṽ is bounded above by a constant matrix B = B∗ >

O, and if not, it is the right-sided or second kind Weyl fractional integral for the
complex matrix-variate case.



6.4 Fractional Integrals in the Matrix-Variate Case in the Complex Domain 111

6.4.3 Saigo and Related Fractional Integrals of the Second
Kind

Saigo fractional integrals in the real scalar case is defined in terms of a hyper-
geometric series of the type 2F1 or Gauss’ hypergeometric series. But 2F1 has
the defect that when it comes to Laplace transforms and Mellin transforms the
series forms will have convergence problems and hence we will consider a general
hypergeometric series in the complex matrix-variate case. For getting this special
case from Definition 6.1 we will specialize φ1(X̃1) by taking a hypergeometric
series for it. The definitions in the complex case will be slightly different from those
in the real case, whether scalar case or matrix case. We need some notations, which
will be introduced here. Let K = (k1, . . . , kp), k1 + . . .+kp = k, be the partitioning
of a non-negative integer k into p parts, k1, . . . , kp. Let

[α]K =
p∏

j=1

(α − j + 1)kj
= Γ̃p(α,K)

Γ̃p(α)
(6.22)

where (α)m = α(α + 1) . . . (α + m − 1), (α)0 = 1, α 
= 0 is the Pochhammer
symbol, and

Γ̃p(α,K) = π
p(p−1)

2

p∏

j=1

Γ (α + kj − j + 1)

= Γ̃p(α)

p∏

j=1

(α − j + 1)kj
= Γ̃p(α)[α]K. (6.23)

A general hypergeometric series with m upper and n lower parameters and argument
a complex matrix X̃ will be defined as the following series:

mF̃n(X̃) = mF̃n(a1, . . . , am; b1, . . . , bn; X̃)

=
∞∑

k=0

∑

K

[a1]K . . . [am]K
[b1]K . . . [bn]K

C̃K(X̃)

k! (6.24)

where C̃K(X̃) is the zonal polynomial of order k in the complex matrix-variate case.
For the definition and details see Mathai [1, 5]. The series in (6.24) is convergent for
all X̃ when n ≥ m and convergent for ‖X̃‖ < 1 when m = n+1 where ‖(·)‖ denotes
a norm of (·). Since f1(X̃1) has two factors φ1(X̃1) and |det(I − X̃1)|α−p we can
consider a hypergeometric series with argument AX̃1 or with argument A(I − X̃1)

where A is a real positive scalar constant or Hermitian positive definite constant
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matrix. For simplicity we may take A = I . Then the kernel of the integrals to be
considered are of two types, we may call them IA and IB respectively, That is,

IA =
∫

Ṽ

|det(Ṽ )|−pC̃K(X̃1)|det(I − X̃1)|α−pf2(Ṽ )dṼ (6.25)

and

IB =
∫

Ṽ

|det(Ṽ )|−pC̃K(I − X̃1)|det(I − X̃1)|α−pf2(Ṽ )dṼ . (6.26)

For evaluating such integrals the following known results will be useful, which will
be stated as lemmas.

Lemma 6.5 For Z̃, S̃ Hermitian positive definite, �(α) > p − 1, K =
(k1, . . . , kp), k1 + . . . + kp = k

∫

Z̃>O

e−tr(Z̃S̃)|det(Z̃)|α−pC̃K(Z̃T̃ )dZ̃ = Γ̃p(α,K)|det(S̃)|−αC̃K(T̃ S̃−1).

(6.27)

Lemma 6.6 For O < Z̃ < I,�(α) > p − 1,�(β) > p − 1

∫

O<Z̃<I

|det(Z̃)|α−p|det(I − Z̃)|β−pC̃K(Z̃S̃)dZ̃ = Γ̃p(α,K)Γ̃p(β)C̃K(S̃)

Γ̃p(α + β,K)
.

(6.28)

When

φ1(X̃1) = mF̃n(a1, . . . , am; b1, . . . , bn;AX̃1) (6.29)

then the M-convolution of a product is given by the following:

g̃2(Ũ2) = 1

Γ̃p(α)

∫

Ṽ

|det(Ṽ )|−p
mF̃n(a1, . . . , am; b1, . . . , bn;AṼ − 1

2 Ũ2Ṽ
− 1

2 )

× |det(I − Ṽ − 1
2 Ũ2Ṽ

− 1
2 )|α−pφ2(Ṽ )f (Ṽ )dṼ .

The M-transform of the M-convolution of a product when φ1(X̃1) is given by (6.29)
is given by the following theorem.

Theorem 6.3 The M-transform, with parameter s, of the g̃2(Ũ2) of the M-
convolution of a product when φ1(X̃1) is given by (6.29) is given by
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M̃{g̃2(Ũ2); s} = Γ̃p(s)

Γ̃p(s + α)
m+1F̃n+1(a1, . . . , ap, s; b1, . . . , bn, s + α;A)M̃f2(s)

(6.30)
for �(s) > p − 1,�(α) > p − 1.

Proof The M-transform of g̃2(Ũ2) is available as

M̃{f (Ũ2); s} =
∞∑

k=0

∑

K

[a1]K . . . [am]K
[b1]K . . . [bn]Kk!

∫

Ũ2>O

|det(Ũ2)|s−p[ 1

Γ̃p(α)
|det(Ṽ )|−p

×C̃K(AṼ − 1
2 Ũ2Ṽ

− 1
2 )|det(I−Ṽ − 1

2 Ũ Ṽ − 1
2 )|α−pφ2(Ṽ )f (Ṽ )dṼ ]dŨ2.

Put W̃ = Ṽ − 1
2 Ũ2Ṽ

− 1
2 . Then the W̃ -integral is given by

1

Γ̃p(α)

∫

W̃

|det(W̃ )|s−pC̃K(AW̃)|det(I − W̃ )|α−pdW̃ |det(Ṽ )|s−p

= 1

Γ̃p(α)

Γ̃p(s,K)Γ̃p(α)C̃K(A)

Γ̃p(s + α,K)
|det(Ṽ )|s−p,

from Lemma 6.6. Substituting these we have

M̃{g̃2(Ũ2); s} = Γ̃p(s)

Γ̃p(s + α)
m+1F̃n+1(a1, . . . , am, s; b1, . . . , bn, s + α;A)M̃f2(s)

for �(s) > p − 1,�(α) > p − 1.

A companion result can also be obtained by taking

φ1(X̃1) = mF̃n(a1, . . . , am; b1, . . . , bn;A(I − X̃1)). (6.31)

for O < X̃1 < I and φ1(X̃1) = 0 elsewhere. Then the fractional integral of the
second kind in the complex matrix-variate case will be of the following form:

g̃2(Ũ2)=
∞∑

k=0

∑

K

[a1]K . . . [am]K
[b1]K . . . [bn]K k!

1

Γ̃p(α)

∫

Ṽ

|det(Ṽ )|−pC̃K(A(I − Ṽ − 1
2 Ũ2Ṽ

− 1
2 ))

× |det(I − Ṽ − 1
2 Ũ Ṽ − 1

2 )|α−pφ2(Ṽ )f (Ṽ )dṼ . (6.32)

In this case the M-transform of g̃2(Ũ2) is given by the following theorem:

Theorem 6.4 For the φ1(X̃1) defined in (6.31) the M-transform of the M-
convolution of a product or M-transform of the fractional integral of the second
kind in the complex matrix-variate case is given by
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M̃{g̃2(Ũ2); s} = Γ̃p(s)

Γ̃p(α + s)
M̃f2(s)m+1F̃n+1(a1, . . . , am, α; b1, . . . , bn, α + s;A)

(6.33)

for �(α) > p − 1,�(s) > p − 1.

The proof is parallel to that in Theorem 6.3. Make the substitutions W̃ =
Ṽ − 1

2 Ũ2Ṽ
− 1

2 , T̃ = I − W̃ . Then proceed as in the proof of Theorem 6.3 to establish
the result.

Note 6.2 The Definition 6.1 covers all the known fractional integrals of the second
kind or right-sided fractional integrals in the real or complex scalar and matrix cases.
Hence Definition 6.1 can be taken as the definition for fractional integrals as Mellin
convolution of a product in the scalar case and M-convolution of a product in the
matrix-variate cases where the matrices are either real positive definite or Hermitian
positive definite and the functions f1 and f2 are such that f2(X̃2) = φ2(X̃2)f (X̃2)

where φ2 is a specified function and f is an arbitrary function, and

f1(X̃1) = φ1(X̃1)
1

Γ̃p(α)
|det(I − X̃1)|α−p (6.34)

for O < X̃1 < I and zero elsewhere, where φ1(X̃1) is a specified function, for
�(α) > p − 1. In the real case the binomial factor is of the form

1

Γp(α)
[det(I − X1)]α− p+1

2 for O < X1 < I, �(α) >
p − 1

2
and zero elsewhere.

For p = 1 one gets the corresponding scalar versions.

Now, we will give a pathway generalized definition of fractional integrals of the
second kind, which will encompass Definition 6.1 also.

6.4.4 A Pathway Generalized Definition of Fractional Integrals
of the Second Kind in the Complex Matrix-Variate Case

It will be defined as in Definition 6.1 except that f1(X̃1) will be of the following
form:

f1(X̃1) = φ1(X̃1)
1

Γ̃p(α)
|det(I − a(1 − q)X̃1)|α−p (6.35)

for I − a(1 − q)X̃1 > O, a > 0, q < 1,�(α) > p − 1 and zero elsewhere,
where φ1(X̃1) is a specified function. Note that when a = 1, q = 0 this pathway
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extension agrees with Definition 6.1. Pathway idea may be seen from Mathai and
Provost [4]. But for −∞ < q < 1, (6.35) describes a collection of functions or
a path leading to the limiting form when q → 1−. Note that when q < 1 the
functional form in (6.35) stays in the generalized type-1 beta family of functions.
This extended definition also enables us to go to two other functional forms, namely
for q > 1 (write 1 − q as −(q − 1) for q > 1) we get into a wide class of functions
belonging to type-2 beta family of functions and when q → 1 we end up with a
gamma family of functions. Thus, this pathway extended definition can be taken as
a very general definition for fractional integrals of the second kind or the right-sided
fractional integrals as the M-convolution of a product where one function f1 is of
the form in (6.35). Properties and M-transforms of the pathway extension can be
studied parallel to the study in the non-extended situation and hence further details
are omitted.

6.5 Fractional Integral of Order α and Parameter β of the
First Kind in the Complex Matrix-variate Case

Here we will introduce a formal definition of fractional integral of the first kind
in the complex matrix-variate case. In order to illustrate the process we will
start with the evaluation of the density of a ratio. Let X̃1 and X̃2 be p × p

Hermitian positive definite matrix-variate random variables in the complex domain
and statistically independently distributed with the density functions f1(X̃1) and
f2(X̃2) respectively, where f1 and f2 are real-valued scalar functions of the matrices

X̃1 and X̃2 respectively. Let us consider the following ratio Ũ1 = X̃
1
2
2 X̃−1

1 X̃
1
2
2 .

Consider the transformation X̃2 = Ṽ and X̃1 = Ṽ
1
2 Ũ1

−1
Ṽ

1
2 . The Jacobinan is

given by

dX̃1 ∧ dX̃2 = |det(V )|p|det(Ũ1Ũ1
∗
)|−pdŨ1 ∧ dṼ (6.36)

from Lemmas 6.2 and 6.4. Let the density of Ũ1 be denoted by g̃1(Ũ1). Then the
density of Ũ1 is given by

g̃1(Ũ1) =
∫

Ṽ

|det(Ṽ )|p|det(Ũ1Ũ1
∗
)|−pf1(Ṽ

1
2 Ũ1

−1
Ṽ

1
2 )f2(Ṽ )dṼ . (6.37)

If f1 and f2 are arbitrary real-valued scalar functions of p × p Hermitian positive
definite matrices in the complex domain, need not be densities, and if (6.37) is
convergent, then (6.37) is called the M-convolution of a ratio. Fractional integral
of the first kind of order α in the complex matrix-variate case will be defined in
terms of M-convolution of a ratio.
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Definition 6.2 (Fractional Integral of Order α of the First Kind in the Com-
plex Matrix-variate Case) It is defined as g̃1(Ũ1) of (6.37) where f2(X̃2) =
φ2(X̃2)f (X̃2) where φ2 is a specified function and f is an arbitrary function, and

f1(X̃1) = φ1(X̃1)
|det(I−X̃1)|α−p

Γ̃p(α)
,�(α) > p − 1 where φ1 is a specified function.

In this case, g̃1(Ũ1) of (6.37) becomes

g̃1(Ũ1) = 1

Γ̃p(α)

∫

Ṽ

|det(I − Ṽ
1
2 Ũ1

−1
Ṽ

1
2 )|α−pφ1(Ṽ

1
2 Ũ1

−1
Ṽ

1
2 )

× |det(Ṽ )|p|det(Ũ1Ũ1
∗
)|−pφ2(Ṽ )f (Ṽ )dṼ

= 1

Γ̃p(α)

∫

O<Ṽ <Ũ1

φ1(Ṽ
1
2 Ũ1

−1
Ṽ

1
2 )|det(Ṽ )|p|det(Ũ1)|−α−p

× |det(Ũ1 − Ṽ )|α−pφ2(Ṽ )f (Ṽ )dṼ . (6.38)

In the real case (6.38) will be the following:

g1(U1) = 1

Γp(α)

∫

O<V <U1

φ1(V
1
2 U−1

1 V
1
2 )[det(V )] p+1

2 [det(U1)]−α− p+1
2

× [det(U1 − V )]α− p+1
2 φ2(V )f (V )dV. (6.39)

Theorem 6.5 If f1(X̃1) is a type-1 beta density with parameters (β, α) and if
f2(X̃2) = f (X̃2) is an arbitrary density then φ1 of (6.37) is given by

φ1(X̃1) = Γ̃p(α + β)

Γ̃p(β)
|det(X̃1)|β−p (6.40)

and the density of the ratio, g̃1(Ũ1), is given by

g̃1(Ũ1)= Γ̃p(α + β)

Γ̃p(β)

|det(Ũ1)|−α−β

Γ̃p(α)

∫

O<Ṽ <Ũ1

|det(Ṽ )|β |det(Ũ1−Ṽ )|α−pf (Ṽ )dṼ .

(6.41)

Note that the result is available from (6.39) by substituting for φ1 from (6.40).
By rewriting (6.41) we can define Erdélyi-Kober fractional integral of the first

kind of order α in the complex matrix-variate case.
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6.5.1 Erdélyi-Kober Fractional Integral of Order α of the First
Kind for Complex Matrix-Variate Case

It will be denoted by K̃−α

1,Ũ1,β
f , and it is given by the following:

Γ̃p(β)

Γ̃p(α + β)
g̃1(Ũ1) = K̃−α

1,Ũ1,β
f

where

K̃−α

1,Ũ1,β
f = |det(Ũ1)|−α−β

Γ̃p(α)

∫

O<Ṽ <Ũ1

|det(Ṽ )|β |det(Ũ1 − Ṽ )|α−pf (Ṽ )dṼ .

(6.42)
Note that g̃1(Ũ1) in (6.41) and (6.42) is the statistical density of a ratio of the

form Ũ1 = X̃
1
2
2 X̃−1

1 X̃
1
2
2 , where X̃1 = X̃∗

1 > O and X̃2 = X̃∗
2 > O are p × p

statistically independently distributed Hermitian positive definite matrix random
variables where X̃1 has a type-1 beta density with parameters (β, α) and X̃2 has
an arbitrary density f (X̃2).

Theorem 6.6 The M-transform of the Erdélyi-Kober fractional integral of the first
kind as defined in (6.42) is given by

M̃{K̃−α

1,Ũ1,β
f ; s} = Γ̃p(β + p − s)

Γ̃p(α + β + p − s)
M̃f (s)

for �(α) > p − 1,�(β + p − s) > p − 1.

Proof

M̃{K̃−α

1,Ũ1,β
f ; s} = 1

Γ̃p(α)

∫

Ũ1‘>O

|det(Ũ1)|s−p−α−β

× [
∫

O<Ṽ <Ũ1

|det(Ṽ )|β |det(Ũ1 − Ṽ )|α−pf (Ṽ )dṼ ]dŨ1.

Put W̃ = Ũ1 − Ṽ . Then the Ũ1-integral is given by

∫

Ũ1>Ṽ >O

|det(Ũ1)|−α−β+s−p|det(Ũ1 − Ṽ )|α−pdŨ1

=
∫

W̃>O

|det(Ṽ + W̃ )|−α−β+s−p|det(W̃ )|α−pdW̃
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= |det(Ṽ )|−α−β+s−p

∫

W̃>O

|det(I + Ṽ − 1
2 W̃ Ṽ − 1

2 )|−α−β+s−p|det(W̃ )|α−pdW̃

= |det(Ṽ )|−β+s−p

∫

T̃ >O

|det(T̃ )|α−p|det(I + T̃ )|−α−β+s−pdT̃ , T̃ = Ṽ − 1
2 W̃ Ṽ − 1

2

= |det(Ṽ )|−β+s−pΓ̃p(α)
Γ̃p(β + p − s)

Γ̃p(α + β + p − s)

for �(α) > p − 1,�(β + p − s) > p − 1. The integral above is evaluated by
using a complex matrix-variate type-2 beta integral and the substitution is T̃ =
Ṽ − 1

2 W̃ Ṽ − 1
2 . Now, evaluating the Ṽ -integral we have the M-transform of f and

hence the result.

6.5.2 Riemann-Liouvile and Weyl Fractional Integrals of the
First Kind of Order α for the Complex Matrix-Variate
Case

In Definition 6.2, put

φ1(X̃1) = |det(X̃1)|−α−p and φ2(X̃2) = |det(X̃2)|α.

Then g̃1(Ũ1) of (6.38) will reduce to the Riemmann-Liouville left-sided fractional
integral of order α for the complex matrix variate case, denoted by D̃−α

1,Ũ1
f , and

given by

D̃−α

1,Ũ1
f = 1

Γ̃p(α)

∫

Ṽ <Ũ1

|det(Ũ1 − Ṽ )|α−pf (Ṽ )dṼ . (6.43)

If Ṽ is bounded below by a constant matrix A then it is the Riemann-Liouville left-
sided fractional integral and otherwise it is the left-sided Weyl fractional integral.

In Definition 6.2, we can replace φ1(X̃1) by any specified function of X̃1 and
then consider the M-convolution of a ratio. Then we get a corresponding fractional
integral operator of the first kind in the complex matrix-variate case. For example,
if φ1 is a general hypergeometric series with argument either AX̃1 or A(I − X̃1)

for O < X̃1 < I and zero elsewhere then we can obtain the extension to complex
matrix-variate case of Saigo and related fractional integral operators. The procedure
is parallel to that in Sect. 6.4.3. One can consider a pathway extension of f1(X̃1)

as in Eq. (6.35) and then consider the M-convolution of a ratio. Then we have a
pathway extension of fractional integrals of the first kind. Since the steps will be
parallel we will not elaborate these items here.
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Fractional integrals involving many matrix variables, in the real and complex
cases, can be dealt with without much difficulty. The real case is discussed in
Chap. 5. Results parallel to those in many real scalar variables in Chap. 4 and the
real many matrices case in Chap. 5 can be obtained for the many complex matrix-
variates case. In order to limit the size of this monograph, those materials will not
be included here.
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