Computer
Architecture
Design and performance
Barry]y/ViIkinson

Department of Computer Science
University of North Carolina, Charlotte

Prentice Hall
New York London Toronto Sydney Tokyo Singapore

TETT A MLFIESIIWT IR

P pemichibl arh b,

2 3. JUNI1992

First published 1991 by

Prentice Hall International (UK) Ltd
66 Woed Lane End, Hemel Hempstead
Hertfordshire HP2 4RG

A division of

Simon & Schuster International Group

© Prentice Hall International (UK} Ltd, 1991

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior
permission, in writing, from the publisher,

For permission within the United States of America
contact Prentice Hall Inc., Englewood Cliffs, NJ 07632.

Typeset in 10/12pt Times with Courier

Printed in Great Britain at
the Universily Press, Cambridge

Library of Congress Cataloging-in-Publishing Data

Wilkinson, Barry.
Computer architecture: design and performance/by Barry
Wilkinson
p. cm.
Includes bibliographical references and index.
ISBN 0-13-173899-2. — ISBN 0-13-173907-7 {pbk.)

1. Computer architecture. L. Title.
QAT6.9.A73W54 1991
004.2'2—dc20 90-7953

CIpP

British Library Cataloguing in Publication Data

Wilkinson, Barry /947-
Computer architecture: design and performance.
1. High performance computer systems. Design
I. Title
004.22

ISBN 0-13-173869-2
ISBN 0-13-173907-7 pbk

12345 9493 92 91 90

089L ¥122.¢8

To my wife, Wendy
and my daughter, Johanna

Contents

Preface xiii
Part | Computer design techniques 1
1 Computer systems 3
1.1 The stored program computer 3
1.1.1 Concept 3

1.1.2 Improvements in performance 10

1.2 Microprocessor systems 12
1.2.1 Development 12

1.2.2 Microprocessor architecture 14

1.3 Architectural developments 16
1.3.1 General 16

1.3.2 Processor functions 16

1.3.3 Memory hierarchy 18

1.3.4 Processor—-memory interface 19

1.3.5 Multiple processor systems 22

1.3.6 Performance and cost 24

2 Memory management 25
2.1 Memory management schemes 25
2.2 Paging 27
2.2.1 General 27

2.2.2 Address translation 32

2.2.3 Translation look-aside buffers 36

2.2.4 Page size 38

2.2.5 Multilevel page mapping 39

2.3 Replacement algorithms 41
2.3.1 General 41

vii

viii Contents

2.4

2.3.2 Random replacement algorithm

2.3.3 First-in first-out replacement algorithm
2.3.4 Clock replacement algorithm

2.3.5 Least recently used replacement algorithm
2.3.6 Working set replacement algorithm

2.3.7 Performance and cost

Segmentation

2.4.1 General

2.4.2 Paged segmentation

2.4.3 8086/286/386 segmentation

Problems

3 Cache memory systems

31

3.2

33

3.4

3.5
3.6

3.7
3.8

Cache memory

3.1.1 Operation

3.1.2 Hit ratio

Cache memory organizations

3.2.1 Direct mapping

3.2.2 Fully associative mapping

3.2.3 Set-associative mapping

3.2.4 Sector mapping

Fetch and write mechanisms

3.3.1 Feich policy

3.3.2 Write operations

3.3.3 Write-through mechanism

3.3.4 Write-back mechanism

Replacement policy

3.4.1 Objectives and constraints

3.4.2 Random replacement algorithm

3.4.3 First-in first-out replacement algorithm
3.4.4 Least recently used algorithm for a cache
Cache performance

Virtual memory systems with cache memaory
3.6.1 Addressing cache with real addresses

3.6.2 Addressing cache with virtual addresses
3.6.3 Access time

Disk caches
Caches in multiprocessor systems

Problems

43
44
45
45
47
49
51
51
55
57
61

64

64
64
67
68
68
71
73
74
75
75
76
77
80
81
81
82
82
82
86

90
90
91
93

94
95
99

4 Pipelined systems

4.1

4.2

4.3

4.4

4.5

Overlap and pipelining

4.1.1 Technique

4.1.2 Pipeline data transfer

4.1.3 Performance and cost
Instruction overlap and pipelines
4.2.1 Instruction fetch/execute overlap
4.2.2 Branch instructions

4.2.3 Data dependencies

4.2.4 Internal forwarding

4.2.5 Multistreaming

Arithmetic processing pipelines
4.3.1 General

4.3.2 Fixed point arithmetic pipelines
4.3.3 Floating point arithmetic pipelines
Logical design of pipelines

4.4.1 Reservation tables

4.4.2 Pipeline scheduling and control
Pipelining in vector computers

Problems

5 Reduced instruction set computers

5.1

5.2

5.3

5.4

Complex instruction set computers (CISCs)
5.1.1 Characteristics

5.1.2 Instruction usage and encoding

Reduced instruction set computers (RISCs)
5.2.1 Design philosophy

5.2.2 RISC characteristics

RISC examples

5.3.1 IBM 801

5.3.2 Early university research prototypes — RISC I/II and MIPS
5.3.3 A commercial RISC - MC88100
5.3.4 The Inmos transputer

Concluding comments on RISCs

Problems

Contents ix
102

102
102
103
105
107
107
111
117
121
122
123
123
124
127
130
130
133
138

140
144

144
144
146
148
148
150
153
153
156
160
165
166

167

x Contents

Part I Shared memory multiprocessor systems

6 Multiprocessor systems and programming

6.1
6.2

6.3

6.4

6.5

6.6

General

Multiprocessor classification

6.2.1 Flynn’s classification

6.2.2 Other classifications

Array compulers

6.3.1 General architecture

6.3.2 Features of some array computers

6.3.3 Bit-organized array computers

General purpose (MIMD) multiprocessor systems
6.4.1 Architectures

6.4.2 Potential for increased speed

Programming multiprocessor systems

6.5.1 Concurrent processes

6.5.2 Explicit parallelism

6.5.3 Implicit parallelism

Mechanisms for handling concurrent processes

6.6.1 Critical sections
6.6.2 Locks
6.6.3 Semaphores

Problems

7 Single bus multiprocessor systems

7.1

7.2

7.3

7.4
7.5

Sharing a bus

7.1.1 General

7.1.2 Bus request and grant signals

7.1.3 Multiple bus requests

Priority schemes

7.2.1 Parallel priority schemes

7.2.2 Serial priority schemes

7.2.3 Additional mechanisms in serial and parallel priority schemes
7.2.4 Polling schemes

Performance analysis

7.3.1 Bandwidth and execution time
7.3.2 Access time

System and local buses

Coprocessors

7.5.1 Arithmetic coprocessors

7.5.2 lnput/output and other coprocessors

Problems

169
171

171
173
173
175
175
175
177
180
182
182
188
193
193
194
199
203
203
203
207
210

213

213
213
215
216
218
218
227
234
235
237
237
240
241

243
243
247

248

8 Interconnection networks

8.1
8.2

8.3

8.4

8.5

8.6

Multiple bus multiprocessor systems

Cross-bar switch multiprocessor.systems
8.2.1 Architecture

8.2.2 Modes of operation and examples
Bandwidth analysis

8.3.1 Methods and assumptions

8.3.2 Bandwidth of cross-bar switch
8.3.3 Bandwidth of multiple bus systems
Dynamic interconnection networks
8.4.1 General

8.4.2 Single stage networks

8.4.3 Multistage networks

8.4.4 Bandwidth of multistage networks
8.4.5 Hot spots

Overlapping connectivity networks
8.5.1 Overlapping cross-bar switch networks
8.5.2 Overlapping multiple bus networks
Static interconnection networks

8.6.1 General

8.6.2 Exhaustive static interconnections
8.6.3 Limited static interconnections
8.6.4 Evaluation of static networks

Problems

Part [Il Multiprocessor systems without

9 Message-passing multiprocessor systems

9.1

9.2

93

9.4

9.5

shared memory

General

9.1.1 Architecture

9.1.2 Communication paths

Programming

9.2.1 Message-passing constructs and routines
9.2.2 Synchronization and process structure
Message-passing system examples

9.3.1 Cosmic Cube

9.3.2 Intel iPSC system

Transputer

9.4.1 Philosophy

9.4.2 Processor architecture

Occam

9.5.1 Structure

Contents xi

250

250

252
252
253
256
256
257
260
262
262
263
263
270
273
275
276
279
282
282
282
282
287
290

293
295

295
295
298
301
301
304
308
308
309
n
311
312

314
314

=,

10

Contents

9.5.2 Data types 315
9.5.3 Data transfer statements 3jl6
9.5.4 Sequential, parallel and alternative processes 317
9.5.5 Repetitive processes 320
9.5.6 Conditional processes 321
9.5.7 Replicators 323
9.5.8 Other features 324
Problems 325
Multiprocessor systems using the dataflow mechanism 329
10.1 General 329
10.2 Dataflow computational model 330
10.3 Dataflow systems 334
10.3.1 Static dataflow 334
10.3.2 Dynamic dataflow 337
10.3.3 VLSI dataflow structures 342
10.3.4 Dataflow languages 344
10.4 Macrodatafiow 349
10.4.1 General 349
10.4.2 Macrodataflow architectures 350
10.5 Summary and other directions 353
Problems 354
References and further reading 357

Index 366

Preface

Although computer systems employ a range of performance-improving techniques,
intense effort to improve present performance and to develop completely new types
of computer systems with this improved performance continues. Many design
techniques involve the use of parallelism, in which more than one operation is
performed simultaneously. Parallelism can be achieved by using multiple functional
units at various levels within the computer system. This book is concerned with
design techniques to improve the performance of computer systems, and mostly with
those techniques involving the use of parallelism.

The book is divided into three parts. In Part 1, the fundamental methods to
improve the performance of computer systems are discusséd; in Part 11, multi-
processor systems using shared memory are examined in detail and in Part III,
computer systems not using shared memory are examined; these are often suitable
for VLSI fabrication. Dividing the book into parts consisting of closely related
groups of chapters helps delineate the subject matter.

Chapter 1 begins with an introduction to computer systems, microprocessor
systems and the scope for improved performance. The chapter introduces the topics
dealt with in detail in the subsequent chapters, in particular, parallelism within the
processor, parallelism in the memory system, management of the memory for
improved performance and multiprocessor systems. Chapters 2 and 3 concentrate
upon memory management — Chapter 2 on main memory/secondary memory manage-
ment and Chapter 3 on processor/high speed buffer (cache) memory management.
The importance of cache memory has resulted in a full chapter on the subject, rather
than a small section combined with main memory/secondary memory as almost
always found elsewhere. Similarly, Chapter 4 deals exclusively with pipelining as
applied within a processor, this being the basic technique for parallelism within a
processor. Scope for overall improved performance exists when choosing the actual
instructions to implement in the instruction set. In Chapter 5, the concept of the so-
called reduced instruction set computer (RISC), which has a very limited number of
instructions and is used predominantly for register-to-register operations, is discussed.

Chapter 6, the first chapter in Part II, introduces the design of shared memory

xiii

xiv Preface

multiprocessor systems, including a section on programming shared memory multi-
processor systems, Chapter 7 concentrates upon the design of a single bus multi-
processor system and its variant (system/local bus systems); the bus arbitration logic
is given substantial treatment. Chapter 8 considers single stage and multistage
interconnection networks for linking together processors and memory in a shared
memory multiprocessor system. This chapter presents bandwidth analysis of cross-bar
switch, multiple bus and multistage networks, including overtapping connectivity
networks.

Chapter 9, the first chapter in Part III, presents multiprocessor systems having
local memory only. Message-passing concepts and architectures are described and
the transputer is outlined, together with its language, Occam. Chapter 10 is devoted
to the dataflow technique, used in a variety of applications. Dataflow languages
are presented and a short summary is given at the end of the chapter.

The text can serve as a course text for senior level/graduate computer science,
computer engineering or electrical engineering courses in computer architecture and
multiprocessor system design. The text should also appeal to design engineers
working on 16-/32-bit microprocessor and multiprocessor applications. The material
presented is a natural extension to material in introductory computer organization/
computer architecture courses, and the book can be used in a variety of ways.
Material from Chapters 1 to 6 could be used for a senior computer architecture
course, whereas for a course on multiprocessor systems, Chapters 6 to 10 could be
studied in detail. Alternatively, for a computer architecture course with greater
scope, material could be selected from all or most chapters, though generally from
the first parts of sections. It is assumed that the reader has a basic knowledge of
logic design, computer organization and computer architecture. Exposute to computer
programming languages, both high level programming languages and low level
microprocessor assembly languages, is also assumed.

I would like to record my appreciation to Andrew Binnie of Prentice Hall, who
helped me start the project, and to Helen Martin, also of Prentice Hall, for her support
throughout the preparation of the manuscript. Special thanks are extended to my
students in the graduate courses CPGR 6182, CSCI 5041 and CSCI 5080, at the
University of North Carolina, Charlotte, who, between 1988 and 1990, helped me
“classroom-test” the material; this process substantially improved the manuscript. I
should also like to thank two anonymous reviewers who made constructive and
helpful comments.

Barry Wilkinson
University of North Carolina
Charlotte

PART

| | Computer
design
techniques

CHAPTER
Computer systems

In this chapter, the basic operation of the traditional stored program digital computer
and microprocessor implementation are reviewed. The limitations of the single
processor computer system are outlined and methods to improve the performance
are suggested. A general introduction to one of the fundamental techniques of
increasing performance — the introduction of separate functional units operating
concurrently within the system — is also given.

1.1 The stored program computer

1.1.1 Concept

The computer system in which operations are encoded in binary, stored in a memory
and performed in a defined sequence is known as a stored program computer. Most
computer systems presently available are stored program computers. The concept of
a computer which executes a sequence of steps to perform a particular computation
can be traced back over 100 years to the mechanical decimal computing machines
proposed and partially constructed by Charles Babbage. Babbage’s Analytical Engine
of 1834 contained program and data input (punched cards), memory (mechanical),
a central processing unit (mechanical with decimal arithmetic) and output devices
(printed output or punched cards) — all the key features of a modern computer
system. However, a complete, large scale working machine could not be finished
with the available mechanical technology and Babbage’s work seems to have been
largely ignored for 100 years, until electronic circuits, which were developed in
the mid-1940s, made the concept viable.

The true binary programmable electronic computers began to be developed by
several groups in the mid-1940s, notably von Neumann and his colleagues in the
United States; stored program computers are often called von Neumann computers,
after his work. (Some pioneering work was done by Zuse in Germany during the
1930s and 1940s, but this work was not widely known at the time.) During the

3

4 Computer design techniques

1940s, immense development of the stored program computer took place and the
basis of complex modern computing systems was created. However, there are
alternative computing structures with stored instructions which are not executed in a
sequence related to the stored sequence (e.g. dataflow computers, which are described
in Chapter 10} or which may not even have instructions stored in memory at all
(e.g. neural computers).

The basic von Neumann stored program computer has:

l. A memory used for holding both instructions and the data required by those
instructions.

2. A control unit for fetching the instructions from memory.

An arithmetic processor for performing the specified operations.

4. Input/output mechanisms and peripheral devices for transferring data to and
from the system.

(8]

The control unit and the arithmetic processor of a stored program computer are
normally combined into a central processing unit (CPU), which results in the general
arrangement shown in Figure 1.1. Binary representation is used throughout for the
number representation and arithmetic, and corresponding Boolean values are used
for logical operations and devices. Thus, only two voltages or states are needed to
represent each digit {0 or 1). Multiple valued representation and logic have been,
and are still being, investigated.

The instructions being executed (or about to be executed) and their associated
data are held in the main memory. This is organized such that each binary word is
stored in a location identified by a number called an address. Memory addresses are
allocated in strict sequence, with consecutive memory locations given consecutive

f ————

Secondary

Input device(s) memory

Output device(s)

Main
memaory
{primary memory)

A 3

\
Central

»{ processing
unit {CPUY

Input
interface{s)

Output
interfaces(s)

Figure 1.1 Stored program digital computer

Computer systems 5

addresses. Main memory must access individual storage locations in any order and
at very high speed; such memory is known as random access memory (RAM) and is
essential for the main memory of the system.

There is usually additional memory, known as secondary memory or backing
store, provided to extend the capacity of the memory system more economically
than when main memory alone is used. Main memory usually consists of semi-
conductor memory and is more expensive per bit than secondary memory, which
usually consists of magnetic memory. However, magnetic secondary memory is not
capable of providing the required high speed of data transfer, nor can it locate
individual storage locations in a random order at high speed (i.e. it is not truely
random access memory).

Using the same memory for data and instructions is a key feature of the von
Neumann stored program computer. However, having data memory and program
memoery separated, with separate transfer paths between the memory and the processor,
is possible. This scheme is occasionally called the Harvard architecture. The
Harvard architecture may simplify memory read/write mechanisms (see Chapter 3),
particularly as programs are normally only read during execution, while data might
be read or altered. Also, data and unrelated instructions can be brought into the
processor simultaneously with separate memories. However, using one memory to
hold both the program and the associated data gives more efficient use of memory,
and it is usual for the bulk of the main memory in a computer system to hold both.
The early idea that stored instructions could be altered during execution was quickly
abandoned with the introduction of other methods of modifying instruction execution.

The (central) processor has a number of internal registers for holding specific
operands used in the computation, other numbers, addresses and control information.
The exact allocation of registers is dependent upon the design of the processor.
However, certain registers are always present. The program counter (PC), also called
the instruction pointer (IP), is an internal register holding the address of the next
instruction to be executed. The contents of the PC are usually incremented each time
an instruction word has been read from memory in preparation for the next instruction
word, which is often in the next location. A stack pointer register holds the address of
the “top™ location of the stack. The stack is a set of locations, reserved in memory,
which holds return addresses and other parameters of subroutines.

A set of general purpose registers or sets of data registers and address registers
are usually provided (registers holding data operands and addresses pointing to
memory locations). In many instances these registers can be accessed more quickly
than main memory locations and hence can achieve a higher computational speed.

The binary encoded instructions are known as machine instructions, The operations
specified in the machine instructions are normally reduced to simple operations,
such as arithmetic operations, to provide the greatest flexibility. Arithmetic and
other simple operations operate on one or two operands, and produce a numeric
result. More complex operations are created from a sequence of simple instructions
by the user. From a fixed set of machine instructions available in the computer (the
instruction set) the user selects instructions to perform a particular computation.

6 Computer design techniques

The list of instructions selected is called a computer program. The selection is done
by a programmer. The program is stored in the memory and, when the system is
ready, each machine instruction is read from (main) memory and executed.

Each machine instruction needs to specify the operation to be performed, e.g.
addition, subtraction, etc. The operands also need to be specified, either explicitly in
the instruction or implicitly by the operation. Often, cach operand is specified in the
instruction by giving the address of the location holding it. This results in a general
instruction format having three addresses:

1. Address of the first operand.
2. Address of the second operand.
3. Storage address for the result of the operation.

A further address could be included, that of the next instruction to be executed. This
is the four-address instruction format. The EDVAC computer, which was developed
in the 1940s, used a four-address instruction format (Hayes, 1988) and this format
has been retained in some microprogrammed control units, but the fourth address is
always eliminated for machine instructions. This results in a three-address instruction
format by arranging that the next instruction to be executed is immediately following
the current instruction in memory. It is then necessary to provide an alternative
method of specifying non-sequential instructions, normally by including instructions
in the instruction set which alter the subsequent execution sequence, sometimes
under specific conditions.

The third address can be eliminated to obtain the two-address instruction format
by always placing the result of arithmetic or logic operations in the location where
the first operand was held; this overwrites the first operand. The second address can
be eliminated to obtain the one-address instruction format by having only one place
for the first operand and result. This location, which would be within the processor
itself rather than in the memory, is known as an accumulator, because it accumulates
results. However, having only one location for one of the operands and for the
subsequent result is rather limiting, and a small group of registers within the
processor can be provided, as selected by a small field in the instruction; the
corresponding instruction format is the one-and-a-half-address instruction format or
register type. All the addresses can be eliminated to obtain the zero-address
instruction format, by using two known locations for the operands. These locations
are specified as the first and second locations of a group of locations known as a
stack. The various formats are shown in Figure 1.2, The one-and-a-half- or two-
address formats are mostly used, though there are examples of three-address
processors, e.g. the AT&T WE3210 processor.

Various methods (addressing modes) can be used to identify the locations of the

operands. Five different methods are commonly incorporated into the instruction
set:

Computer systems 7

Operation | 1st operand | 2nd operand Result Next address

(@) Four-address format

Operation | 1stoperand ! 2nd operand Result

{b) Three-address format

Operati 1stoperand
peration and result 2nd operand

(c) Two-address format

Operation Register | 2nd operand

(d) One-and-a-half address format

Operation ! 2nd operand

(e} One-address format

Operation

() Zero-address format

Figure 1.2 Instruction formats (a) Four-address format (b) Three-address format
(c) Two-address format (d) One-and-a-half-address format (e) One-address
format (f) Zero-address format

Immediate addressing — when the operand is part of the instruction.

Absolute addressing — when the address of an operand is held in the instruction.
Register direct addressing — when the operand is held in an addressed register.
Register indirect addressing — when the address of the operand location is
held in a register.

5. Various forms of relative addressing — when the address of the operand is
computed by adding an offset held in the instruction to the contents of specific
registers.

-bwt\.):—‘

The operation of the processor can be divided into two distinct steps, as shown in
Figure 1.3. First, an instruction is obtained from the memory and the program
counter is incremented — this step is known as the fetch cycle. Then the operation is
performed — this step is known as the execute cycle and includes fetching any
operands and storing the result. Sometimes, more than one memory location is
necessary to hold an instruction (depending upon the design of the instructions).

8 Computer design techniques

When this occurs the program counter is incremented by one as each location is
accessed to extract a part of the instruction. The contents of the program counter can
be purposely altered by the execution of “jump” instructions, used to change the
execution sequence. This facility is essential to create significant computations and
different computations which depend upon previous computations.

Memory
> | control Memory Address
signals Data

Instruction

| IR | ‘_ ALU J
) Select next
Registers instruction
Control | . Control
unit signals SP
Processor PG
(representative) l
| .
(a) Fetchcycle
Memory
control Memory Address
signals Data
Operands | Result
T —)] Select operands
L \\ J Select result
ALU . location
Registers
Control [Control
unit signals SP
Processor [~ e
(representative) !
|

(b) Execute cycle

Figure 1.3 CPU mode of operation (a) Fetch cycie (b) Execute cycle
(SP, stack pointer; PC, program counter; IR, instruction register;
ALU, arithmetic and logic unit)

Computer systems 9

The operations required to execute.(and fetch) an instruction can be divided into a
number of sequential steps performed by the control unit of the processor. The
control unit can be designed using interconnected logic gates and counters to
generate the required signals (a random logic approach). Alternatively, each step
could be binary-encoded into a microinstruction. A sequence of these micro-
instructions is formed for each machine instruction and is then stored in a control
memory within the internal control unit of the processor. The sequence of micro-
instructions is known as a microprogram (or microcode) and one sequence must be
executed for each machine instruction read from the main memory. This technique
was first suggested by Wilkes in the early 1950s (Wilkes, 1951) but was not put into
practice in the design of computers until the 1960s, mainly because the performance
was limited by the control memory, which needs to operate much faster than the
main memory. Given a control memory with alterable contents, it is possible to
alter the machine instruction set by rewriting the microprograms; this leads to the
concept of emulation. In emulation, a computer is microprogrammed to have exactly
the same instruction set as another computer, and to behave in exactly the same
manner, so that machine instruction programs written for the emulated computer
will run on the microprogrammed computer.

The general arrangement of a microprogrammed control unit is shown in Figure
1.4. An instruction is fetched into an instruction register by a standard instruction
fetch microprogram. The machine instruction “points” to the first microinstruction
of the microprogram for that machine instruction. This microinstruction is executed,
together with subsequent microinstructions for the machine instruction. The sequence
can be altered by conditions occurring within or outside the processor. In particular,
microprogram sequences of conditional jump instructions may be altered by conditions
indicated in a processor condition code register. Also, subroutine microinstructions
can be provided to reduce the size of the microprogram. Just as a stack is used to
hold the return address of machine instruction subroutines, a control memory stack

l Instruction register I

Machine
instruction
Control memory
Condition Next
inputs address Microinstruction
logic
Control
Next address signals
Control Condition code
unit register
|

Figure 1.4 Microprogrammed control unit

10 Computer design techniques

can be provided to hold the return address of a microinstruction subroutine return.
The microinstructions can have one bit for each signal to be generated, binary-
encoded fields, or a combination. A two-level approach is also possible, in which a
short microinstruction points to a set of much longer nanoinstructions held in
another control memory.

To summarize, we can identify the main operating characteristics of the stored
program computer as follows:

1. Only elementary operations are performed (e.g. arithmetic addition, logical
operations).

2. The user (programmer) selects operations to perform the required computation.

3. Encoded operations are stored in a memory.

4. Strict sequential execution of stored instructions occurs (unless otherwise
directed).

5. Data may also be stored in the same memory.

The reader will find a full treatment of basic computer architecture and organization
in Stallings (1987) and Mano (1982).

1.1.2 Improvements in performance

Since the 1940s the development of stored program computer systems has con-
centrated upon three general areas:

1. Improvements in technology.
2. Software development.
3. Architectural enhancements.

Improvements in technology, i.e. in the type of components used and in fabrication
techniques, have led to dramatic increases in speed. Component speeds have typically
doubled every few years during the period. Such improvements are unlikely to
continue for electronic components because switching times now approach the limit
set by the velocity of electrical signals (about 2/3 speed of light 0.2 m ns~!) and
the delay through interconnecting paths will begin to dominate. In fact, this limit
has been recognized for some time and has led some researchers to look at
alternative technologies, such as optical technology (optical computers).

After the overall design specification has been laid down and cost constraints are
made, one of the first decisions made at the design stage of a computer is in the
choice of technology. This is normally between TTL/CMOS (transistor—transistor
logic/complementary metal oxide semiconductor) and ECL (emitter-coupled logic)
for high performance systems. Factors to be taken into account include the availability

Computer systems 11

of very large scale integration (VLSI) components and the consequences of the
much higher power consumption of ECL. ECL has a very low level of integration
compared to CMOS but has still been chosen for the highest performance systems
because, historically, it is much faster than MOS (metal oxide semiconductor).
Predictions need to be made as to the expected developments in technology,
especially those developments that can be incorporated during the design phase of
the system. For example, it might be possible to manufacture a chip with improved
performance, if certain design tolerances are met (see Maytal et al., 1989).

A computer system can be characterized by its instruction execution speed, the
internal processor cycle time or clock period, the capacity and cycle time of its
memory, the number of bits in each stored word and by features provided within its
instruction set among other characteristics. The performance of a high performance
computer system is often characterized by the basic speed of machine operations,
e.g. millions of operations per second, MOPS (or sometimes millions of instruc-
tions per second, MIPS). These operations are further specified as millions of
floating point operations per second, MFLOPS, or even thousands of MFLOPS,
called gigaflops, GFLOPS, especially for large, high performance computer systems.
A computer is considered to be a supercomputer if it can perform hundreds of
millions of floating point operations per second (100 MFLOPS) with a word length
of approximately 64 bits and a main memory capacity of millions of words (Hwang,
1985). However, as technology improves, these figures need to be revised upwards.
A Cray X-MP computer system, one of the fastest computer systems developed in
the early 1980s, has a peak speed of about 2 GFLOPS. This great speed has only
been achieved through the use of the fastest electronic components available, the
most careful physical design (with the smallest possible distances between com-
ponents), very high speed pipelined units with vector processing capability (see
discussion, page 138 and Chapter 4), a very high speed memory system and, finally,
multiple processors, which were introduced in the Cray X-MP and the Cray 2 after
the single processor Cray 1.

The internal cycle time (clock period) specifies the period allotted to each basic
internal operation of the processor. In some systems, notably microprocessor systems
(see page 12), the clock frequency is a fundamental figure of merit, especially for
otherwise similar processors. A clock frequency of 10 MHz would correspond to a
clock period of 100 ns. If one instruction is completed after every 100 ns clock
period, the instruction rate would be 10 MOPs. This would be the peak rate. One or
more periods may be necessary to fetch an instruction and execute it, but very high
speed systems can generate results at the end of each period by using pipelining and
multiple unit techniques. The Cray X-MP computer had a 9.5 ns clock period in
1980 and finally achieved its original design objective of an 8.5 ns clock period in
1986, by using faster components (August er al., 1989). Each subsequent design has
called for a shorter clock period, e.g. 4 ns and 1 ns for the Cray 2 and Cray 3,
respectively. Other large “mainframe” computer systems have had cycle times/clock
periods in the range 10-30 ns. For example, the IBM 308X, first delivered in 1981,
had a cycle time of 26 ns (later reduced to 24 ns) using TTL circuits mounted on

12 Computer design techniques

ceramic thermal conduction modules. The IBM 3090, a development of the 3080
with faster components, first introduced in 1985, had a cycle time of 18.5 ns
(Tucker, 1986).

Software development, i.e. the development of programming techniques and the
support environment, have included various high level languages such as PASCAL
and FORTRAN and complex multitasking operating systems for controlling more
than one user on the system. Some developments in software have led to variations
in the internal design of the computer. For example, computers have been designed
for the efficient handling of common features of high level languages by providing
special registers or operating system operations in hardware. Most computer systems
now have some hardware support for system software.

In this text we are concerned with architectural developments, i.e. developments
in the internal structure of the computer system to achieve improved performance.
Such developments will be considered further in the next section. First though, let
us examine the most striking technological development in recent years — the
development of the microprocessor — as this device is central to the future develop-
ment of multiprocessor systems, particularly those systems with large numbers of _
processors.

1.2 Microprocessor systems

1.2.1 Development

Since the late 1960s, logic components in computer systems have been fabricated on
integrated circuits (chips) to achieve high component densities. Technological develop-
ments in integrated circuits have produced more logic components in a given area,
allowing more complex systems to be fabricated on the integrated circuit, first in
small scale integration (SSI, 1 to 12 gates) then medium scale integration (MSI, 12
to 100 gates), large scale integration (LSI, 100 to 1000 gates), through to very large
scale integration (VLSI, usually much greater than 1000 gates). This process led
directly to the microprocessor, a complete processor on an integrated circuit. The
early microprocessors required the equivalent of large scale integration.

Later integration methods are often characterized by the applied integrated circuit
design rules specifying the minimum features, e.g. 1.25 pm and then 0.8 pum line
widths. Smaller line widths increase the maximum number of transistors fabricated
on one integrated circuit and reduce the gate propagation delay time. The number of
transistors that can be reasonably fabricated on one chip with acceptable yield and
1.25 pm design rules is in excess of one million, but this number is dependent upon
the circuit complexity. Repetitive cells, as in memory devices, can be fabricated at
higher density than irregular designs.

Microprocessors are often manufactured with different guaranteed clock fre-
quencies, e.g. 10 MHz, 15 MHz or 20 MHz. There is a continual improvement in the

Computer systems 13

clock frequencies due to an improved level of component density and the attendant
reduced gate propagation delay times. By increasing the clock frequency the processor
immediately operates more quickly, and in direct proportion to the increase in clock
frequency, assuming that the main memory can also operate at the higher speed. The
choice of clock frequency is often closely related to the speed of available memory.

Microprocessors are designated 4-bit, 8-bit, 16-bit, 32-bit or 64-bit depending
upon the basic unit of data processed internally. For example, a 32-bit micro-
processor will usually be able to add, subtract, multiply or divide two 32-bit integer
numbers directly. A processor can usually operate upon smaller integer sizes in
addition to their basic integer size. A 32-bit microprocessor can perform arithmetic
operations upon 8-bit and 16-bit integers directly. Specific machine instructions
operate upon specific word sizes. An interesting computer architecture not taken up
in microprocessors (or in most other computer systems), called a tagged architecture,
uses the same instruction to specify an operation upon all allowable sizes of
integers. The size is specified by bits (a tag) attached to each stored number.

The first microprocessor, the Intel 4004, introduced in 1971, was extremely
primitive by present standards, operating upon 4-bit numbers and with limited
external memory, but it was a milestone in integrated circuits. Four-bit micro-
processors are now limited to small system applications involving decimal arithmetic,
such as pocket calculators, where 4 bits (a nibble) can conveniently represent one
decimal digit. The 4004 was designed for such applications and in the ensuing
period, more complex 8-bit, 16-bit and 32-bit microprocessors have been developed,
in that order, mostly using MOS integrated circuit technology. Binary-coded decimal
(BCD) arithmetic is incorporated into these more advanced processors as it is not
subject to rounding, and is convenient for financial applications.

Eight-bit microprocessors became the standard type of microprocessor in the mid-
1970s, typified by the Intel 8080, Motorola MC6800 and Zilog Z-80. At about this
time, the microprocessor operating system CP/M, used in the 8080 and the Z-80,
became widely accepted and marked the beginning of the modern microprocessor
system as a computer system capable of being used in complex applications.

Sixteen-bit microprocessors started to emerge as a natural development of the
increasing capabilities of integrated circuit fabrication techniques towards the end
of the 1970s, e.g. the Intel 8086 and Motorola MC68000, both introduced in 1978.
Subsequent versions of these processors were enhanced to include further instruc-
tions, circuits and, in particular, memory management capabilities and on-chip cache
. memory (see pages 18-20 and Chapters 2 and 3). In the Intel 8086 family, the
80186 included additional on-chip circuits and instructions and the 80286 included
memory management. In the Motorola family, the MC68010 included memory
management. Thirty-two bit versions also appeared in the 1980s (e.g. the Intel
80386 with paged memory management, the Motorola MC68020 with cache memory
and the MC68030 with instruction/data cache memories and paged memory
management). In 1989 the 64-bit Intel 80486 microprocessor was introduced.

Floating point numbers can be processed in more advanced microprocessors by
additional special processors intricately attached to the basic microprocessor,

14 Computer design techniques

though a floating point unit can also be integrated into the processor chip. Floating
point numbers correspond to real numbers in high level languages and are numbers
represented by two parts, a mantissa and an exponent, such that the number =
mantissa X base®*perent where the base is normally two for binary representation. For
further details see Mano (1982).

1.2.2 Microprocessor architecture

The basic architecture of a microprocessor system is shown in Figure 1.5, and
consists of a microprocessor, a semiconductor memory and input/output interface
components all connected through a common set of lines called the bus. The
memory holds the program currently being executed, those to be executed and the
associated data. There would normally be additional secondary memory, usually
disk memory and input/output interfaces are provided for external communication.
The bus-based architecture is employed in all microprocessor systems, but micro-
processor systems were not the first or only computer systems to use buses; the PDP
8E minicomputer, introduced in 1971, used a bus called the Omnibus and the PDP
11, first introduced in 1970, used a bus called Unibus. The expansibility of a bus
structure has kept the technique common to most small and medium size computer
systems.

The bus is the communication channel between the various parts of the system,
and can be divided into three parts:

1. Data lines.
2. Address lines.
3. Control lines.

. . Display/
Disk unit keyboard
A
Microprocessor Memory
Disk
Program/ Program/ controller Input/
output
data data and ;
. interface
interface

Bus

Figure 1.5 Fundamental parts of a microprocessor system

Computer systems 15

The data lines carry (1) the instructions from the memory to the processor during
each instruction fetch cycle, and (2) data between the processor and memory or
input/output interfaces during instruction execute cycles, dependent upon the instruc-
tion being executed. Eight-bit microprocessors have eight data lines, 16-bit micro-
processors have sixteen data lines (unless eight lines are used twice for each 16-bit
data transfer, as in some 16-bit microprocessors). Similarly, 32-bit microprocessors
have thirty-two data lines, unless reduced by the same technique. Notice that the
microprocessor bit size — 8-bit, 16-bit, 32-bit or whatever — does not specify the
number of data lines. It specifies the basic size of the data being processed internally
and the size of the internal arithmetic and logic unit (ALU).

The instructions fetched from memory to the processor comprise one or more 8-bit
words (bytes), or one or more 16-bit words, depending upon the design of the
microprocessor. The instructions of all 8-bit microprocessors have one or more bytes,
typically up to five bytes. One byte is provided for the operation including information
on the number of subsequent bytes, and two bytes each for each operand address when
required. Sixteen/32-bit microprocessors can have their instructions in mul-
tiples of bytes or in multiples of 16-bit words, generally up to 6 bytes or three words.

When the data bus cannot carry the whole instruction in one bus cycle, additional
cycles are performed to fetch the remaining parts of the instruction. Hence, the basic
instruction fetch cycle can consist of several data bus transfers, and the timing of
microprocessors is usually given in terms of bus cycles. Similarly, the operands (if
any) transferred during the basic execute cycle may require several bus cycles. In
all, the operation of the microprocessor is given in read and write bus transfer
cycles, whether these fetch instructions or transfer operands/results.

During a bus cycle, the bus transfer might be 7o the processor, when an instruction
or data operand is fetched from memory or a data operand is read from an input/
output interface, or from the processor, to a location in the memory or an output
interface to transfer a result. Hence, the data lines are bidirectional, though simul-
taneous transfers in both directions are impossible and the direction of transfer
must be controlled by signals within the control section of the bus.

The address lines carry addresses of memory locations and input/output locations
to be accessed. A sufficient number of lines must be available to address a large
number of memory locations. Typically, 8-bit microprocessors in the 1970s provided
for sixteen address lines, enabling 2! (65 536) locations to be specified uniquely.
More recent microprocessors have more address lines, e.g. the 16-bit 8086 has
twenty address lines (capable of addressing 1 048 576 bytes, i.e. 1 megabyte), the
16-bit 80286 and MC68000 have twenty-four (capable of addressing 16 megabytes)
and the 32-bit MC68020, MC68030 and 80386 have thirty-two (capable of addressing
4294 megabytes, i.e. 4 gigabytes).

The control lines carry signals to activate the data/instruction transfers and other
events within the system; there are usually twelve or more control lines. The control
signals, as a group, indicate the time and type of a transfer. The types of transfer
include transfers to or from the processor (i.e. read or write) and involve memory
and input/output interfaces which may be differentiated.

16 Computer design techniques

1.3 Architectural developments

1.3.1 General

There have been many developments in the basic architecture of the stored program
computer to increase its speed of operation. Most of these developments can be
reduced to applying parallelism, i.e. causing more than one operation to be performed
simultaneously, but significant architectural developments have also come about to
satisfy requirements of the software or to assist the application areas. A range of
architectural developments has been incorporated into the basic stored program
computer without altering the overall stored program concept. In general, important
architectural developments can be identified in the following areas:

Those concerned with the processor functions.
Those concerned with the memory system hierarchy.
Those around the processor—-memory interface.
Those involving use of multiple processor systems.

AN

Let us briefly review some of these developments, which will be presented in detail
in the subsequent chapters.

1.3.2 Processor functions

As we have noted, the operation of the processor is centered on two composite
operations:

1. Fetching an instruction.
2. Executing the fetched instruction.

First, an instruction is read from memory using the program counter as a pointer to
the memory location. Next, the instruction is decoded, that is, the specified operations
are recognized. In the fetch/execute partition, the instruction decode occurs during
the latter part of the fetch cycle and once the operation has been recognized, the
instruction can be executed. The operands need to be obtained from registers or
memory at the beginning of the execute cycle and the specified operation is then
performed on the operands. The results are usually placed in a register or memory
location at the end of the execute cycle.

The execution of an instruction and the fetching of the next instruction can be
performed simultaneously in certain circumstances; this is known as instruction ferch/
execute overlap. The principal condition for success of the instruction fetch/execute
overlap is that the particular instruction fetched can be identified before the previous
instruction has been executed. (This is the case in sequentially executed instruc-

Computer systems 17

tions. However, some instructions will not be executed sequentially, or may only be
executed sequentially after certain results have been obtained.)

The two basic cycles, fetch and execute, can be broken down further into the
following three steps which, in some cases, can be overlapped.

1. Fetch instruction.
2. Decode instruction and fetch operands.
3. Execute operation.

The execute operation can be broken into individual steps dependent upon the
instruction being executed. Simple arithmetic operations operating upon integers
may only need one step while more complex operations, such as floating point
multiplication or division, may require several steps.

In high speed processors the sequence of operations to fetch and decode, and the
steps to execute an instruction, are performed in a pipeline. In general, a pipeline
consists of a number of stages, as shown in Figure 1.6, with each stage performing
one sequential step of the overall task. Where necessary, the output of one stage is
passed to the input of the next stage. Information required to start the sequence
enters the first stage and results are produced by the final (and sometimes inter-
mediate) stage.

The time taken to process one complete task in the pipeline will be at least as
long as the time taken when one complex homogeneous functional unit, designed to
achieve the same result as the multistage pipeline, is used. However, if a sequence
of identical operations is required, the pipeline approach will generate results at the
rate at which the inputs enter the pipeline, though each result is delayed by the
processing time within the pipeline. For sequential identical operations, the pipeline
could be substantially faster than one homogeneous unit.

Clearly, instruction operations are not necessarily identical, nor always sequential
and predictable, and pipelines need to be designed to cope with non-sequential,
dissimilar operations. Also, it is not always possible to divide a complex operation
into a series of sequential steps, especially into steps which all take the same length
of time. Each stage need not take the same time, but if the times are different, the
pipeline must wait for the slowest stage to complete before processing the next set
of inputs. However, substantial speed-up can be achieved using the pipeline tech-
nique and virtually all computer systems, even modern microprocessors, have a

Decode/ .
Fetch operand Execmﬁe unit
unit fetchunit 7 p
Instruction — > >

Figure 1.6 Processor pipeline

18 Computer design techniques

pipeline structure (Chapter 4 deals with pipelining and pipelined processors in
detail).

The design of the processor involves the implementation of a defined instruction
set which, over the years, has become more and more complex as additional
instructions have been added to match the requirements of the software more
closely. It is assumed that complex operations can be performed more quickly in
hardware than in software, which is certainly true. However, the introduction of
complex instructions often impacts on simpler ones, and could slow down the
operation of these simpler instructions. Hence, the choice of instructions is a major
design decision and one school of thought believes that having a limited number of
instructions available in the instruction set leads to increased overall system per-
formance, as the processor can then be designed to operate faster. It is found that
better use of the instructions can be made by an optimizing compiler. Systems with
a limited number of instructions, perhaps less than 128 instructions, are known as
reduced instruction set computers or RISCs (Chapter 5 is devoted to such computers).
One of the aspects of reduced instruction set computers, particularly the early
prototype RISCs, is their use of a simple pipeline. Other features include the use,
where possible, of registers, for greatest speed, and a very limited number of
memory addressing modes. Those systems which attempt to provide as many
operations as possible in the hardware often have 100-300 instructions and are
called complex instruction set computers (CISCs).

1.3.3 Memory hierarchy

The external memory system so far described consists of the main, random access,
memory supported by non-random access secondary memory, the latter usually
being based upon magnetic technology. Various types of magnetic memory may be
present, including exchangeable magnetic floppy disk memory, Winchester magnetic
disk memory and magnetic tape memory. Optical disk technology offers vast
capacity for large amounts of data in one unit, and becomes another level in the
memory hierarchy. A substantial part of architectural enhancements is concerned
with making this memory hierarchy easy and efficient to use, and assisting multi-
programming.

Multiprogramming is the term used to describe system programming when more
than one user program is executed, in effect concurrently, by executing parts of each
program in sequence. In the presence of a memory hierarchy it is necessary to
transfer programs from the secondary memory into the main memory before the
program code can be executed. Similarly, data must be transferred into the main
memory before being read or altered. Since only a limited amount of space is
available in the main memory, programs or data not immediately required may need
to be transferred out of the main memory and stored in the secondary memory until
required. Moving programs or data into and out of the main memory requires a
memory management scheme, preferably one which is hidden from the user and

Computer systems 19

activated automatically.

The principal memory management method is known as a virtual memory
scheme. This creates an automatic mechanism for arranging that data or program
code is in the main memory, ready for execution, without the programmer having to
program the main memory/secondary memory transfers. The stored information is
divided into fixed (or variable) sized blocks which are moved between the main and
secondary memories. The operand addresses used within the programs are not
altered, but a hardware translation mechanism is in place to translate the addresses
as they are generated by the processor so that they refer to the actual memory
locations. The scheme is a significant and widely used architectural development
(Chapter 2 deals with memory management in detail).

1.3.4 Processor-memory interface
The processor-memory interface is concerned with:

1. Carrying instructions from the memory to the processor during instruction
fetch.
2. Carrying data between the processor and memory during instruction execution.

Naturally, it is important that the transfer of instructions/data takes place at least as
fast as the information can be digested by the destination (processor or memory). It
is not necessary to exceed this requirement and, when systems are being designed,
attempts are made to match the processor and memory data rates. If the maximum
processor and memory information transfer rates are different, the system speed
may be constrained by the slower device. In general, a first-in first-out buffer can be
used to link two units operating with transfer rates that can vary.

The processor can normally be designed to accept and produce information faster
‘than the main memory system can produce or accept information. A technique for
matching the speeds of the two parts is to introduce a small, very high speed memory,
called a cache, between the processor and main memory, as shown in Figure 1.7.
Program instructions and data are first loaded into the cache and then accessed by the
processor. Assuming that the information is required more than once, which is
usually true of program instructions, substantial improvements in overall speed can
be achieved (Chapter 3 considers the design of cache memory systems).

) Secondary/
Processor Cache Main {____ auxiliary
memory memory memory

Figure 1.7 Cache memory

20 Computer design techniques

A general technique for increasing the effective rate of a slow unit is to duplicate
the unit and make more than one transfer simultaneously. For example, if there is a
factor of eight in access time between the source and destination speeds, such that
the destination can accept information at eight times the rate that the source can
generate information, then the source could be replicated so that there are eight
units, and eight transfers could be made to the destination simultaneously. Generally
an eight-stage buffer would be used to hold the information before it could be
accessed in sequence (or out of sequence) by the destination.

Typically, this technique would be used to match the speed of memory to the
speed of the processor in those systems in- which the memory operates at a
substantially slower speed than the processor. For example, suppose instructions are
fetched from memory one at a time. If two memory modules are provided, with
separate data paths to the processor, two instructions could be fetched from the
memory simultaneously, increasing the transfer rate by a factor of two. The same
double word address is sent to both memory modules. If a factor of » increase in
transfer rate is required, then » memory modules could be provided. There can be
any number of memory modules, each with a separate data path, though in most
applications a number which is a power of two would be used. Linear memory
addressing can be maintained with part of the full address specifying the n-word
address. However, this particular scheme constrains transfers to be blocks of
sequential locations and only works effectively if all (or most) items transferred are
actually required; in essence, we are increasing the memory word length. The
technique can be applied in cache systems to reduce the main memory/cache
memory transfer times by matching the speed of the cache and main memory.

It is possible to send different addresses to each memory module so that n
unrelated locations in different memory modules can be accessed simultaneously.
This scheme is known as memory interleaving. Memory interleaving is a funda-
mental architectural technique applicable to various systems described in Chapters
2, 3 and 4. It is important to differentiate between wide word length memory
transfers and true memory interleaving. In the former, a block of consecutive
locations can be accessed simultaneously and in the latter, locations not in order can
be accessed simultaneously, if these locations are in different memory modules.

In memory interleaving, we divide the memory address field into two parts, one to
select the memory module and the other to select the location within the memory
module. The memory module can be selected by either the least or the most
significant bits; the latter is known as low order interleaving and the former as high
order interleaving. These two alternative address formats are shown in Figure 1.8.
Low order interleaving is suitable for single processor interleaved memory, so that
consecutive memory locations are in different memory modules and can be accessed
simultaneously. With, for instance, four modules and low order interleaving, the

first module addresses would be 0, 4, 8, 12, 16, -, the addresses in the second
module would be 1, 5,9, 13, 17, -, those in the third module, 2, 6, 10, 14, 18, -, and
in the fourth module, 3, 7, 11, 15, 19, . In general, with n-way low order

interleaving, the first module addresses would be 0, n, 2n, 3n, -, and the same stride

Computer systems 21

Most Least
significant significant
bit bit
Address within module Module

address

(a) Low order interleaving

Module

Address within module
address

(b) High order interleaving

Figure 1.8 Address formats for interleaving (a) Low order interleaving
(b) High order interleaving

in the other modules. (Normal memory systems divided into memory modules use
the high order format, but only one module is addressed at a time and there is no
overlap between memory operations.)

Figure 1.9 shows an interleaved memory organization for a single processor
system using a separate data bus for each memory module to the processor. The
memory module addresses select the modules and the module word addresses
generated are loaded into address buffers in succession. As each address is loaded,
the module can proceed to identify the location and provide read or write access.
For read, data appear on each of the data buses in succession after the memory
access time has elapsed. For write, the data is produced by the processor on the data

Microprocessor Memory modules
]
Address i ! |
register > ™ ™~ | B
: ' 1
Module —] —1] 1 I_'l___l
address —T] f
decode
Address
Data
Data bus

Extra-wide data bus

Figure 1.9 Memory interleaving with wide data bus

22 Computer design techniques

Microprocessor Memory modules

Module
select

\ A
e 5 '

‘ Addressj T

l \ !

] \ Data
Address Data
buffer buffer

Figure 1.10 Memory interleaving with single bus

bus and taken in succession by the memory modules. This organization might be
suitable for a cache system which is also divided into modules.

A single data bus can be used, as shown in Figure 1.10. It is necessary to provide
each memory module with a data buffer register to hold the data to be written into
the module or read out. The timing of this system is shown in Figure 1.11(a). It is
possible to supply the same address to all modules simultaneously so that consecutive
words can be accessed (for the low order interleaved address format). The timing of
this is shown in Figure 1.11(b).

Memory interleaving can be used in a pipelined system, as described in Chapter 4, to
fetch more than one instruction simultaneously. After these instructions are fetched,
each one is executed in sequence. The interleaving releases the processor-memory
interface for subsequent operand accesses.

1.3.5 Multiple processor systems

The application of more than one processor working in a coherent manner on a
single task within a single computer system has been studied since at least 1960
(Conway, 1963) and is an obvious method of increasing the speed of the system.
One would expect that if n processors worked continuously and simultaneously on a
single problem, the results would be obtained n times faster than if one processor
was applied to the problem. However, it is not always easy to partition a problem so
that n processors can operate simultaneously, and even if this were possible, an
interprocessor communication overhead generally exists in the multiprocessor version.
But multiprocessor solutions are necessary to achieve substantial increases in speed
over existing high speed single processor systems, and a large part of this text is
devoted to the design of multiprocessor systems, particularly the possible archi-
tectural arrangements that could be employed for coupling the processors.

Computer systems

B Access time |
f |
I
|
|
Memory
modules
_____ [¥ ————
Load Access data Time
address
registers
(a) Different addresses to each memory module
Cyclet | Cycle 2 i
Memory A N\
modules N\
Apply Apply Access Time
address next data
addresses

(b) Same address to each memory module

Figure 1.11 Interleaved memory timing (a) Different addresses to each
memory module (b) Same address to each memory module

Microprocessors with caches Memory

Bus

Figure 1.12 Single bus multiple microprocessor system

23

Multiprocessor systems can be developed from a single processor system by
simply adding one or more processors, all of which share the same memory,
resulting in the so-called shared memory multiprocessor system. Each processor
might have local memory, but would use the shared memory to pass information

24 Computer design techniques

between processors and to obtain shared programs/information — Part II of this text
is largely devoted to such multiprocessor systems. In a bus-based system, additional
processors can be added to the bus, as shown in Figure 1.12 — this approach has
been taken by microprocessor system designers and will be discussed in Chapter 7.
Generally, the approach is only suitable for small numbers of processors because of
bus and memory contention, though multiple buses and a hierarchy of buses can be
used to extend the system.

Alternatively, multiprocessor systems can use direct connections between pro-
cessing elements. This approach leads to multiple processors which operate indepen-
dently, passing information to other processing elements perhaps through a message-
passing protocol, rather than through a shared memory system. Message-passing
multiprocessor systems are easier to expand to large numbers of processors and are
more suitable for VLSI fabrication with large numbers of processors. They do not
suffer from the problems of maintaining consistency between the shared and local
memories or from the problems of controlling access to shared information. Such
multiprocessor systems are considered in Part III, together with dataflow computer
systems.

1.3.6 Performance and cost

Cost is a major factor in design decisions and there are trade-offs between
increased architectural (and technological) complexities and increased cost. There
are often diminishing returns for added complexity and a point is reached when the
added costs cannot be justified. For example, a cache memory inserted between the
processor and main memory can substantially improve the performance and the
larger the cache, the greater the improvement. However, a point is reached when the
increased cost of further cache memory does not materially improve the per-
formance, or if there is a significant improvement, the cost is not justified. There are
various ways of organizing a cache (see Chapter 3) and each has different cost and
performance implications. Unfortunately, it may not be immediately clear which
organization should be chosen, as performance is highly dependent upon the pro-
grams being executed, and the choice has to be made after considering likely
applications of the system and general program characteristics. In a multiprocessor
design (Part II and Part III), the use of more than one processor has to be justified in
terms of performance and cost when compared to high speed single processor
systems. In a multiprocessor system, a significant factor ts the method of inter-
connecting the processors. It is theoretically possible to connect all the processors
together and allow them to communicate simultaneously, but such exhaustive
interconnections incur heavy cost penalties and limited interconnection networks
(see Chapter 8) need to be evaluated in terms of effect on performance and the cost.

CHAPTER
Memory management

This chapter studies the methods of managing the main and secondary (auxiliary)
memory hierarchy in a computer system. These “memory management schemes”
‘relieve the programmer of the problems of ensuring that the required programs are
in the main memory for execution. A memory management scheme has been present
in virtually all larger computers since the early 1970s. We will consider the two
principal memory management schemes — paging and segmentation (and their
combination) — together with the hardware requirements for these schemes.

2.1 Memory management schemes

The total memory in a computer system is composed of various memory types, in
particular a main random access memory and a secondary, usually non-random
access memory (disk memory being called direct access memory).

The main memory must have high speed, random access quality and programs and
data must reside here for the processor to access the information (whether instructions
or data). Another level of memory — cache memory — may be inserted between the main
memory and the processor. (Cache memory is considered separately in Chapter 3.)

The secondary memory usually consists of magnetic disk memory, including
exchangeable and non-exchangeable disk systems; other types of secondary memory
include magnetic tape systems (sometimes called mass memory). Optical disk
systems might be present to hold vast amounts of possibly read-only information.

With several types of memory present, information will reside in the slowest
memory when it is not in use, and be brought to the faster secondary memories as its
use becomes more imminent. Exchangeable media such as floppy disks would be
used as appropriate, for example when programs must be moved from one computer
system to another, unattached, computer system.

The memory hierarchy needs a scheme to arrange that the required information is
in the main memory when it is to be read or altered by the processor; such schemes
are called memory management schemes. We will concentrate upon the main

25

26 Computer design techniques

memory—secondary memory interface rather than any strategy for transferring
information between different secondary/mass memory devices. When necessary,
we will assume that the secondary memory is disk memory.

The simplest memory management scheme is overlaying — when programs or
sections of programs are transferred into main memory, as required, under program
control (by explicit program routines) and overwrite existing programs. This method
places a heavy burden on the programmer but early computers in the 1950s and
1960s used it, as do many single-user microprocessor systems, including the operating
system MS-DOS (see Duncan, 1986). Overlaying has been automated to some
extent in more recent versions of microprocessor operating systems and utilities. For
example, the MS-DOS operating system program linker utility, LINK (Microsoft,
1987), provides for semiautomated overlays. LINK can create overlaid programs,
specified by the user, in which parts of the program, which are specified as needed,
will be loaded during run time and will occupy the same memory space as
previously executed programs. Such techniques conserve memory space at the
expense of much slower execution.

We note that the magnetic disk memory (usually the first level of secondary
memory) operates much more slowly than the semiconductor main memory — at
least three orders of magnitude slower than main memory. Data can be accessed in a
semiconductor main memory in the range 100-300 ns, while the latency before the
required data is even reached on a disk might be in the range 10-30 ms. The gap
widens as integrated circuit technology improves and, given that disk memory
latency time (time to locate one sector on the disk) and associated data rate are
limited by mechanical factors, the transfer rate between the main memory and the
disk memory is dictated by the slower device. The processor often cannot continue
with the current program while transfers are in progress between the main memory
and the disk memory. The processor in a single-user system will be idle and waiting
for the transfer to be completed, even though this may be done by a separate direct
memory access (DMA) device. Hence, reducing the number of transfers to a minimum
is very important to achieve the highest performance.

One apparent solution recognized and suggested at a very early stage in the
development of computers (for example by a group at MIT during the period 1957—
61) was to provide a very large amount of main memory, sufficient to hold all the
programs currently being executed or about to be executed. Though a brute force
method, and not really a good technological solution at a time when main memory
was a very expensive and valuable resource, the provision of a large amount of main
memory has recently become routine and inexpensive and extremely large amounts
of main memory may be common in the future. Certain applications, for example
some graphics applications, find that a large amount of main memory is better than a
smaller amount plus a memory management scheme to transfer information between
the main and secondary memories. However, in any application, large main memory
usually requires even larger secondary memory and the memory management
problem reappears on a larger scale. (The complete programs are more likely to be
held in their entirety in the main memory and the memory management mechanism

Memory management 27

is active mainly during program load time.)

Given that we have main memory and secondary memory for economic reasons
(and also to give media enchangeability), a truly automatic method of transferring
blocks of words into and out of the main memory is highly desirable to relieve the
burden of programming transfers. The method should take into account the blocks
likely to be required in the near future, to reduce disk transfers. Computer systems,
particularly in a multiprogramming environment in which many programs, or parts
of many programs, reside in the main memory, require an efficient mechanism for
handling the storage of various information and also require memory protection
mechanisms. These involve preventing specified memory operations on specified
parts of the memory, notably the memory holding the operating system and other
user programs. Memory management schemes normally incorporate features for
memory protection. Hence, we can identify two separate issues for a memory
management scheme:

1. Handling the main and secondary memory hierarchy.
2. Providing memory protection.

Memory protection will be considered later in the chapter. First, we will consider

the original memory management method — paging — which was introduced to
handle the memory hierarchy.

2.2 Paging

2.2.1 General

At about the same time as the MIT group was proposing very large main memory, a
group at Manchester University (Kilburn et al., 1962) developed a method, originally
called a one-level scheme and now called paging, which has become the standard
method of managing the memory hierarchy. The objective of the original one-level
scheme was to make the main core memory and secondary drum memories seem as
though all the memory was main random access memory, hence the term one-level.
The term virtual memory is now normally used, as the user is given the impression
of a very large main memory space (a virtual memory space) which hides the actual
memory space (the real memory space). Separate addresses are used for the virtual
memory space and the real memory space. The actual memory addresses are called
real addresses and the program generated addresses are called virtual addresses.
The real and virtual memory spaces are both divided into blocks of words called
pages. All pages are the same size, which might be between 64 bytes to 4 Kbytes,
depending upon the design. The virtual and real memory addresses are each divided
into a page field and a word within the page field called a line field. The processor
generates program dependent virtual addresses which assume that all the memory

28 Computer design techniques

Processor
Virtual address Data path
Virtual addressto Page | Line
real address -
translation F’j

Translation tables

slll

Page | Line

Real address

y {

Secondary Main
memory [memory “’T

Memory hierarchy

Figure 2.1 Virtual memory system

can be addressed directly. At any instant, each virtual address has a corresponding
real address in the physical memory — either in the main memory or in the secondary
memory — and page tables are maintained to record the correspondence between the
virtual and real pages. Each virtual address generated by the processor is translated
into the actual address in main memory by reference to a hardware page table which
holds all the addresses of the pages currently in the main memory. If the page is not
currently in the main memory, a software routine is activated to bring it in
automatically, updating the page tables accordingly. Figure 2.1 shows an overall
view of a virtual memory system.

Figure 2.2 shows a snap-shot of a system with 32 pages in the main memory and
192 pages in secondary memory (as implemented in the original Atlas computer;
nowadays there would be many more pages, but the concept is the same). Nine-bits
are allocated to specify the line and 11-bits are used to specify the page in main or
secondary memory. Secondary memory page addresses are shown starting at 32. The
page table is shown, with a possible distribution of pages in the system.

In the assignment of virtual pages to real pages shown in Figure 2.2, some virtual
pages are unassigned (not used). Real page 31, the last page in the main memory, is
currently free. Suppose virtual page 3 is requested by the processor. First hardware
is activated to check whether the page is in the memory. The hardware finds that the

Memory management 29

Page table
Virtual Real
age age)
ag dgess agdrgess Main memory (32 pages)
9 0 1A man Y P20 [30 R4l IsTdel 7]
3 1 memory
107 2 access 18] (o] o [of [l i3] 4] g
89 3
N W W w w E E
| |
|
| | S
191 30
Free 31 4
Secondary memory (192 pages)
4 32 32] (53] [34] 3] 36| a7 [38] [39]
5 33
7 34 Secondary [4o] 1] 42 [a3] [aa] 45| a6] |47]
131 35 memory
access
! ! IR
; ! O O IO O B
1 l | | | | | | | |
| | | | | i ! |
Free 199
Free 220
0 221 208] [209] [210] [211] [212] [213] [214] [215
67 222
68 223 216] {217] [218] |219] [220] [221] | 222] | 223

Figure 2.2 Page addresses in a very small virtual memory system

page is currently residing in real page 1 and the page can be referenced. However,
suppose virtual page 7 is now requested by the processor. The check shows that the
page is not currently residing in the main memory and a software routine is
activated to search for its location in the secondary memory. In this case, the page is
found in real page 34 in the secondary memory. The page could be transferred into
the free (real) page 31 in the main memory, and is subsequently referenced by the
processor; now the main memory is full. If a reference is made to another page in
the secondary memory, an existing page in the main memory must be returned to the
secondary memory before the new page is transferred into the main memory, unless
a valid copy is held in the secondary memory. Then the main memory copy can be
simply overwritten. Kilburn suggests keeping a vacant page in main memory to
allow the transfer to the main memory to take place first, and any writing back to the

secondary memory can be done while the processor continues with normal pro-
cessing.

30 Computer design techniques

There are various possible ways of translating the virtual page number into the
corresponding real page number which we will discuss later, but they must operate
on every memory reference. We hope that the page will usually be found in the main
memory and that the high speed hardware translation can be used successfully on
main memory pages. We will look at the situation when there are too many pages in
the main memory for hardware translation to be used for all main memory pages.
Software address translation is used for pages currently in the secondary memory. In
addition, if necessary, a page replacement algorithm selects a page to be removed
from the main memory to make room for the incoming page from secondary
memory prior to use.

Though introduced simply to make all the memory look as one, it was also known
at the time (Kilburn et al., 1962) that paging allowed an operating system to relocate
programs and parts of programs between the main and the secondary memories
without altering any of the program addresses. Such relocation is essential and
forms the basis of all operating system activities of moving user programs.

Main memory sizes have increased since 1962 and are now often greater than a
million bytes. A main memory of 1048 576 (22) bytes, with a page size of 512
bytes, would give 2048 pages in the main memory. The secondary memory is
normally several orders of magnitude greater than the main memory, and con-
sequently will have a very large number of pages. Page addresses are numbered
from zero onwards in the main memory and could continue through to the pages on
the secondary memory as shown in Figure 2.2, which was done in the original one-
level store. However, in practice, secondary memory normally has its own addressing
scheme. For example, a disk memory stores its information arranged on concentric
tracks; each track is divided into a number of sectors. One page might be stored on
one sector, or on more than one sector, depending upon the size of the page and
sector. The disk is usually organized so that one page can be located on the disk
surface as one unit addressed in terms of track and sector.

The number of bits in the virtual address is normally specified by the addressing
capability of the processor, i.e. by the number of address bits generated by the
processor. The number of bits in the virtual and real addresses need not be related
except that the number of bits provided to address the words within a page must be
the same. The virtual address space is usually much larger than the real address
space, in keeping with the original motive of giving the programmer the illusion of
a very large main memory. However, it is possible for the two to be the same size,
or to have a smaller virtual than real address space. This has been used to expand
the addressing capability on computers with a limited addressing capability. For
example, a processor with only 16-bit byte addressing (as was the case with early
microprocessors) would be limited to using 64 Kbytes of main memory without a
virtual memory system or another address translation mechanism. With a virtual
address translation with a larger real address, the addressing space could be expanded.
The same virtual address might then translate to different real addresses, depending
upon the context and program. Whether this mechanism could actually be called
virtual memory is debatable. Having the same size for both the virtual and real main

Memory management 31

memory address spaces would be quite natural for processors which can generate
large virtual addresses.

Instrumental to the success of paging are certain characteristics of programs. If
programs were executed purely in sequence, from one memory address onwards, the
same instructions never re-executed and the sequence fixed and known, then
semiautomatic overlaying might be just as good as paging, especially as some
overlays could be brought into main memory before they were needed. However,
though code is generally executed sequentially, virtually all programs repeat sections
of code and repeatedly access the same or nearby data. This characteristic is
embodied in the principle of locality, which has been found empirically to be
obeyed by most programs and which tends to apply to both instruction references
and data references, though it is more likely in instruction references. It has two
main aspects:

1. Temporal locality (locality in time) — individual locations, once referenced, are
likely to be referenced again in the near future.

2. Spatial locality (locality in space) — references, including the next location,
are likely to be near the last reference. (This last characteristic is sometimes
separated into a third aspect, known as sequential locality.)

Temporal locality is found in instruction loops, data stacks and variable accesses.
Spatial locality describes the characteristic that programs access a number of
distinct regions. Sequential locality describes sequential locations being referenced
and is a main attribute of program construction. It can also be seen in data accesses,
as data items are often stored in sequential locations.

Figure 2.3 shows a histogram of typical page references. References are grouped
into particular regions and many, if not all, locations are referenced several times.
One region will commonly be for the stack holding procedure return addresses and

References

-

. —_— ’ ———— Addresses
Stack Main program Procedures Data

Figure 2.3 Program page references

32 Computer design techniques

procedure parameters. Another memory area will be for local variables, which are
often stored together. A major area will be for the main program and called
procedures might be in other, separate, areas, especially if shared with other programs.

Let us now consider methods of performing the virtual-real address translation.
The chosen method must be implemented in hardware as a translation has to be
performed on every memory reference, and the translation time directly adds to the
overall instruction execution time.

2.2.2 Address translation

There are three basic hardware techniques to translate the virtual page address into a
real page address:

1. Direct mapping.
2. Associative mapping.
3. Set-associative mapping.

In all cases, after translation the real page address is concatenated with the line
number to form the complete virtual address.

Direct mapping

The direct mapping approach is shown in Figure 2.4. All real page addresses are
stored in a high speed random access memory page table, in locations whose
addresses are the virtual page addresses of the stored real page addresses. Con-
sequently, a real page address can be found directly from the memory by using the
virtual page address to address the page table. For example, the virtual page address
34 selects location 34 in the page table, and location 34 holds the corresponding real
page address for virtual page address 34. Unfortunately, the direct mapping tech-
nique can only be used if the number of pages is relatively small, as there has to be
one entry in the page table for each virtual page, even if the page is not in the main
memory (in which case the entry must indicate that the page is not present).

The hardware page table need only hold the main memory address if it is present
in main memory, with an additional bit to indicate whether the page is in main
memory. (In fact, several additional bits are included in the page table, as we shall
see later.) If a page is not in the main memory, the page entry in the page table is
invalid. The number of bits provided for the page entry need only be sufficient for
the number of main memory pages, though the number of entries is still very large.
It is, of course, possible to have a page table which holds both the primary and
secondary memory page addresses in different fields. The page table for the secondary
memory pages is kept in main memory or paged in from the secondary memory. The
secondary memory page table is only referenced when the required page is not
found in the main memory table.

Though it is possible, the main memory is not usually used to hold the main

Memory management 33

Virtual address
from processor

| Pagen | Line |

High speed memory
holding real page
addresses

n Real page
address

I

L l]

Real address
to main memory

Figure 2.4 Direct mapping address translation

memory page table, as this would double the number of main memory references,
i.e. one to access the real page address from the page table and another to reference
the actual required location. Instead, as described, dedicated very high speed
memory is necessary.

Unfortunately, with a large number of pages, the direct mapped table would be
very large, and is generally too expensive. The direct method is also wasteful of
high speed memory, as there needs to be one location for each possible virtual
address, whether or not the virtual address refers to a page in the main memory.
Typically, most of the possible virtual addresses will refer to real addresses in the
secondary memory, and hence the entries in the memory table will often show a
main memory miss condition using, say, an extra bit associated with each entry.

Associative mapping
The associative mapping approach is shown in Figure 2.5. Here both the real page
address and the corresponding virtual page address are stored together in a high
speed memory. The incoming virtual page is compared with all the stored virtual
pages simultaneously and, if a match is found, the real page is read out. Each virtual
page entry requires a comparator. The original Kilburn one-level store employed
associative mapping with 32 page registers and 32 comparators.

A special type of memory — an associative (or content addressable (CAM)
memory) — which incorporates comparators, can be used to store the virtual page

34 Computer design techniques

Virtual address

from processor
| Page | Lire |
Associative memory
Virtual Real
page page
Compare with I
all stored
virtual
addresses }
simultaneously
)

L)]
Real address
to main memory

Figure 2.5 Associative mapping address translation

addresses. In such a memory a location is identified by its contents, rather than by an
assigned address. CAMs are random access memories with a comparator associated
with each stored location. They can be designed to operate at high speed —
approaching the speed of high speed random access memory — but they are relatively
expensive. When used for associative mapping, the content addressable memory is
coupled to normal random access memory, giving two parts to the memory. The
CAM section holds the virtual page addresses and the RAM section the real page
addresses. When a virtual address is generated by the processor, the virtual page
address is compared with all virtual page addresses stored in the CAM simultaneously,
using comparison logic within the associative memory. If a match is found, the
corresponding real page address held in the RAM part is read out.

In associative mapping, the page table look-up is a two-stage process. First, a
comparison is done between the submitted page address and each of the stored page
addresses. This process is indivisible; all the comparisons are performed simul-
taneously in hardware — sequential comparisons would be too slow. The next step
depends upon whether a match is found. If a match was found, the real address is
obtained and a main memory access occurs. If a match is not found, a page fault
occurs and a page replacement routine is activated.

Memory management 35

Set-associative mapping

Set-associative mapping is a combination of direct and associative mapping. In the
set-associative method, the virtual addresses and real addresses are divided into a
most significant tag field, an index (row) field and a least significant word (offset)
field. The corresponding page field often consists of the tag and index fields
together. High speed random access memory is organized in blocks, each of which
contains 2 locations, where there are i index bits, as shown in Figure 2.6. Each
location holds a virtual tag/real page address pair and the blocks are arranged such
that one pair from each block is accessed via the index simultaneously. The virtual
tags read are compared with the virtual tag presented by the processor and if a
match is found, the corresponding real page is taken and concatenated with the word
(offset).

With only one tag/real address at each location, as shown in Figure 2.6, all the
virtual page addresses to be translated must have different indices, but there is a fair
probability that more than one virtual address will have the same index. A set-
associative table can be designed so that there is more than one tag/real page entry
at each index, and all the tags can be compared simultaneously. Figure 2.7 shows a
set-associative table with two tag/real address entries for each index. The number of
entries that can be compared simultaneously is called the set size or associativity.
The associativity is sometimes given as s-way for a set size of s.

Virtual address
from processor

Tag Index Line

L1/ |]

High speed
random access memory

Tag| Real page

Compare tags

Comparator [4

L [

Real address
to main memory

Figure 2.6 Set-associative mapping address translation (one-way)

36 Computer design techniques

Virtual address
from processor

Tag Index Line

L1]lJ

High speed
random access memory

Tag| Realpage |Tag| Realpage

Compare tags
P

Comparator

((

L]

Real address
to main memory

Figure 2.7 Set-associative mapping address translation (two-way)

2.2.3 Translation look-aside buffers

In practice, the number of pages in a modern computer system is too large to
employ either the direct or an associative method totally in hardware. Given the
program characteristics embodied in the principle of locality, we expect that one
particular set of pages (the so-called working set) will be referenced until a change
of context occurs. Hence, to reduce the hardware requirements without unduly
reducing performance, only those page addresses predicted as most likely to be used
could be translated in hardware. The rest of the page references are initially handled
by reading a main memory page look-up table, and subsequently the high speed
hardware page look-up table is updated. The high speed page address translation
memory holding the most likely referenced page entries is sometimes known as a
translation look-aside buffer (TLB) (also called a translation buffer (TB), a directory
look-aside table (DLT) or an address translation cache). The predicted most likely
pages can be translated in the TLB using either the associative or the set-associative
method. The TLB acts very much like a data cache by holding those items most

likely to be referenced — hence the term address translation cache. Figure 2.8 shows
a system with a TLB.

Memory management 37

Virtual address

Page Line
I
Miss Access main memory
> TLB page tables
Load |
TLB : Hit
l Main memory
| page tables
i
i
! | Real page address
>(OR
Real page address =~ Y ,

Real address

Figure 2.8 Translation look-aside buffer

An example of a set-associative TLB is the translation buffer in the VAX-11/780
which has a two-way 128 word buffer; the VAX-8600 uses a one-way 512 word
buffer. The fully associative method is used in some TLBs within microprocessor
integrated circuits and specialized integrated circuit TLBs, an example being the
MC88200 Cache/Memory Management Unit for the MC88100 reduced instruction
set processor (Motorola, 1988b). The MC88200 has two fully associative TLBs. One,
the Block Address Translation Cache, provides for translating addresses of ten 512
Kbyte blocks used principally for the operating system and other “high-use soft-
ware”. The other, the Page Address Translation Cache, provides for translating
addresses of fifty-six 4 Kbyte pages used principally by the user. The virtual address
space is divided into equal system and user spaces.

Because the TLBs do not translate all addresses into real addresses, even though
the location may be in the main memory, a high speed translation and TLB entry
replacement algorithm are necessary for those virtual addresses not translated immedi-
ately by the TLB. These actions can be performed in microcode (as in the VAX-11/
780) but integrated circuit TLBs have special logic to perform these actions auto-
matically.

The set-associative TLB with an index directly addressing the TLB has the major
disadvantage that only n pages with virtual addresses having the same lower page
bits (index bits) can be translated with a set size of n. The set size is often only one
or two. The chance of virtual addresses having the same lower page bits is quite

38 Computer design techniques

high, and the low order TLB entries would be heavily used, especially as virtual
pages are likely to be assigned from zero onwards. To counteract this, higher page
bits could be used instead of the lower page bits or, alternatively, a mixture of some
lower and some higher bits could be used. In a system with user and supervisor
address spaces separated by the most significant address bit, it may be advantageous
to use the most significant bit in the index, so that the TLB is evenly divided
between system and user addresses. This technique is used in the VAX-11/780
translation buffer. In this buffer, the system pages remain when user pages are
purged on a task switch.

On some large computer systems (for example IBM 3033 and Amdahl 470), a
hardware hashing technique is used to “randomize” the virtual page address before
accessing the TLB. Hashing is a general computer technique for converting one
number into another (usuzally one with fewer bits) such that any expected sequence
of input numbers will generate different and unique hashed numbers. Various
hashing functions are known and some can reasonably be implemented in hardware.
These hashing functions are mostly based upon logically exclusive ORing bits in the
input number. Figure 2.9 shows the simple hashing function used on the IBM 3033.
In this hashing function, two pages with the same initial index only hash into pages
with the same index when the upper five page bits used in the hashing are the same
as the lower five index bits, and generally, in any page, sequential indices are made
non-sequential. (It is left as an exercise to determine when the sequential nature
continues through the hashing.)

2.2.4 Page size

Various page sizes are used in paging schemes, from small pages of 64 bytes
through to very large pages of 512 Kbytes. Some systems provide for different page

Page Line
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| L

@ @ @ @ @ Exclusive-OR operations

Hashed page number

Figure 2.9 IBM 3033 page hashing function

Memory management 39

sizes for flexibility, selected by context or by setting bits in registers, and separate
page tables might be provided for each page size. For example, there could be
different page sizes for data and for code. A small page of 64 bytes might be
suitable for code while a larger page of 512 bytes might be suitable for data.
Different page sizes might be appropriate for system and user pages. A larger page
size might be better for system software, which resides in the main memory. For
example, the Motorola MC88200 has 4 Kbyte pages for the users and 512 Kbyte
pages for the system software.

If a small page size is chosen, the time taken in transferring a page between the
main memory and the secondary memory is short, and a large selection of pages from
various programs can reside in the main memory. A small page also reduces the
storing of superfluous code which is never referenced (e.g. an error routine which is
never selected). However, a small page size necessitates a large page table, and table
fragmentation increases. This is the term used to describe the effect of memory being
occupied by mapping tables and hence being unavailable for code/ data.

Conversely, a large page size requires a small page table but the transfer time is
generally longer. Unused space at the end of each page is likely to increase — an
effect known as internal fragmentation; on average, the last page of a program is
likely to be 50 per cent full. The magnetic disk secondary memory also constrains
the page size to that of a disk sector, or to a multiple of a sector, unless additional
sector buffer storage is provided to enable one page from several in a sector to be
selected. Making the sector small increases the proportion of recorded information
given over to sector identification on the disk. Overall, the number of words in each
page has to be chosen as a compromise between the various factors.

2.2.5 Muiltilevel page mapping

The full page table giving all the virtual/real page associations for the main memory
requires considerable memory when the main memory address has, say, 32 bits (a
standard for 32-bit microprocessors). In two-level page mapping the virtual address
is divided into three fields; a page directory field, a page within a page directory
field and a line (or offset) within a page. The page directory field points to an entry
in a directory table which gives the start address of the page table for that directory.
The page field then selects the start address of the real page which, concatenated to
the line, gives the complete real address. Two-level mapping requires more table
entries in total than when the directory and page fields are combined into one page
field and it has the disadvantage that two table references are required to extract the
page address. However, it has the distinct advantages that the individual tables are
much smaller and that only some of these tables need reside in the main translation
memory simultaneously. It would be reasonable to place the most recently used
tables in high speed translation look-aside buffers.

The system can be extended to more than two levels. A tree structure can be
formed by a hierarchy of pointers, as shown in Figure 2.10, though two levels of

40 Computer design techniques

Virtual address
Page Line

C T T — T 1]
Table descriptor L———-
register

— 1

Page tables

L | 1

Real address

Figure 2.10 Page table organization

tables are often sufficient. Such structures enable easy manipulation of the tables
and reduction of the full table by eliminating the page tables of those pages which
are not used. The first table in the memory is usually located by a dedicated register,
sometimes called a table descriptor register.

Paging, as described, does not allow pages to be shared between processes, and
yet sharing system software between processes is a common requirement. A paging
solution is to divide the virtual address space into two or more distinct spaces, one
or more for user programs and one or more for the system software. The most
significant bit(s) of the virtual address can be used to select the region, and the rest
can be divided into a directory, page and line fields. The system space can use a
one-level translation, using both the directory and page fields combined into a large
page field, to select an entry in a single page table which holds the real page
addresses and which is available to all users. The user space could use two-level
translations using different page tables selected by different directory pointers and
only available to the associated process.

The VAX-11/780 computer system designers chose this solution partly because it
represented an evolution of the earlier PDP-11/70 (the two alternatives considered
were true segmentation and capabilities (see Strecker, 1978). In the VAX-11/780,
the virtual address consists of thirty-two bits. A page size of 512 bytes is used and
the least significant nine bits of the virtual address select the location within the
page. The two most significant bits of the virtual address are allocated to select one
of four regions: the program region (P0), the control region (P1), or one of two
system space regions (SO, and one region originally reserved for future use). PO
contains the user program and data. P1 is used to hold user and system stacks and to

Memory management 41

process specific code and data. SO contains procedures common to all processes and
page tables. A 128 entry TLB is used, half for the system and half for the user, for
high speed translation of active page addresses. When the context changes, i.e. a
new process is started, the user TLB has to be flushed of information and reloaded
with new real addresses corresponding to the new process, so that virtual addresses
of the new process are properly translated and are not translated according to the old
process.

An example of multilevel page mapping is the MC68030, which has the ability to
specify between 0 and 4 levels by software. The 80386 also has a two-level page
mapping mode, which is described in Section 2.4.3. The term linear addressing is
used to describe page addressing, especially with multilevel mapping. Two-level
and multilevel page mapping (also called linear segmentation) should not be
confused with true (symbolic or named) segmentation, which will be described in
Section 2.4.

2.3 Replacement algorithms

2.3.1 General

A page fault occurs whenever the page referenced is not already in the main
memory, i.e. when a valid page entry cannot be found in the address translator
(which includes the main memory page tables in the TLB method). When this
occurs the required page must be located in the secondary memory using the
secondary memory page tables, and a page in the main memory must be identified
for removal if there is no free space in the main memory. Secondary memory/main
memory transfers are relatively slow and are performed by a separate direct memory
access (DMA) controller or input/output processor; thus, in a multiprogramming
environment the processor can select another process for execution while these
transfers are being done. The DMA controller needs to be started by the processor
but then proceeds without further intervention, leaving the processor free for other
activities.

There are various replacement algorithms that can be used to select the page to be
removed from the main memory to make room for the incoming page. Algorithms
can be classified as:

1. Usage-based algorithms.
2. Non-usage-based algorithms.

In a usage-based algorithm the choice of page to replace is dependent upon how
many times each page in the main memory has been referenced. Non-usage-based
algorithms use some other criteria for replacement. To implement usage-based
algorithms, hardware is necessary to record when pages are referenced.

42 Computer design techniques

The simplest and most common hardware is to incorporate a use (or accessed) bit
with each page entry in the page tables. The use bits are set if the corresponding
page is referenced and are automatically reset when read. They are examined under
program control to determine whether the pages have been used. To catch every
increase in usage, use bits need to be scanned after each reference. Clearly this
produces an unacceptable overhead, and the use bits are usually scanned at a much
reduced rate to obtain an approximation of the usage, perhaps after 1 ms of process
time. (Easton and Franaszek (1979) made a study of the use bit scanning technique
in usage-based replacement algorithms.) To obtain a true value for usage, hardware
counters could be introduced to record each reference, but this is not normally done.

Apart from a use bit, each entry in a page table has other bits to assist or improve
the replacement algorithm, including a modified (or written, changed or dirty) bit.
The modified bit is set if a write operation is performed on any location within the
page. It is not necessary to write an unaltered page back to the secondary memory if
a copy has been maintained there, and this increases the speed of operation. Very
occasionally, there is an unused bit associated with each page, which is set to 1
when the page is loaded into main memory and reset to 0 when subsequently
referenced. This bit may be helpful to make sure that a page demanded is not
removed before being used. Protection bits concerned with controlling access to
pages are also present; these will be discussed later.

Paging replacement (usage-based or non-usage-based) algorithms can be classified
as suitable as:

1. A global algorithm.
2. A local algorithm.

They may be classified as both. Global replacement algorithms make their selection
of main memory page among all those existing in the main memory, irrespective of
the programs associated with the pages. Local replacement algorithms make a
selection only from those pages related to the working set of the “paged-faulted”
program, and do not consider those pages in the main memory associated with other
programs. In general, local algorithms should be better than global algorithms in a
multiprogramming environment because, for one reason, global policies do not take
into account the fact that different programs may have different working set sizes and
may take a page out of the working set of a program which is executed next, which
would lead to thrashing. Denning (1970) used the term thrashing to describe the
phenomenon of excessive page transfers that can occur in a multiprogramming
environment when the memory is overcommitted; he attributed the term to Saltzer
(Denning, 1980).

A process or program has a group of pages. In a multiprogramming environment
all groups of pages might be the same size (known as a fixed partition) or different
sizes (known as a variable partition). Early algorithms naturally have a fixed
partition but can be extended to variable partitions. Some later algorithms naturally
have a variable partition. A fixed partition is easier to implement than a variable

Memory management 43

partition, but the latter is more fiexible and reduces the memory requirements,
typically by 30 per cent.

There are three policies to consider when handling page faults in a virtual
memory system:

1. Replacement policy — to determine which page in the main memory to remove
or overwrite. :

2. Fetch policy — to determine when pages are loaded into the main memory.

3. Placement policy — to determine where the pages are to be placed in the main
memory.

The normal fetch policy is called demand paging, which is the term used to describe
the fetch policy of waiting until a page fault occurs and then loading the required
page from the secondary memory. There has been a debate on the possibility of
fetching pages before they are required in some prescribed prefetch policy. However,
most paging systems employ demand paging. It appears that demand paging will
result in the same or fewer page faults than are incurred by a prefetch paging policy
(see Denning, 1970). A general metric for evaluating replacement algorithms is
the number of page faults created.

With regard to the placement policy, we have assumed that when a page fault
occurs, a page is removed from the main memory to make room for the incoming
page and that the required page is brought into the same main memory location.
Apart from using the same locations for the outgoing and incoming pages, alter-
native placement policies are possible if free space is maintained in the main
memory. A placement policy might be created to maintain a certain amount of free
main memory in the presence of variable memory usage.

Let us now consider the main page replacement policies and their implementation.

2.3.2 Random replacement algorithm

In the random replacement algorithm, a page is chosen randomly at page fault time;
there is no relationship between the pages or their use. This algorithm does not take
the principle of locality of programs into account and hence would not be expected
to work very well. (It is generally believed that replacement algorithms which take
account of the characteristics of programs expounded in the principle of locality will
work better.) The generation of page numbers for random replacement can be done
using a numerical pseudorandom number generator, or by counting the occurrences
of some event. The random replacement algorithm is simple to implement but is not
widely used; although the VAX 11/780 translation buffer (TLB) uses random
replacement policy.

44 Computer design techniques
2.3.3 First-in first-out replacement algorithm

In the first-in first-out replacement algorithm, the page existing in the main memory
for the longest time is chosen at page fault time. This algorithm is naturally a fixed
global policy but could be modified to operate locally. The algorithm can be
described by a first-in first-out queue, which holds the list of all pages currently in the
main memory. As a new entry is inserted, all the entries move down one place and the
last entry is taken out and specifies the page to be removed. Each page in the queue
may be referenced many times before the next page is referenced, and the number of
references to one page between page changes does not affect the algorithm. Initially,
when the main memory is empty, page faults occur when pages are first referenced.
Each time a new page is referenced the page entries are moved one place to the right
(conceptually, not the actual page entries). When the memory partition is full and a
page fault occurs, the page deleted (and if necessary returned to the secondary
memory) is given by the entry at the rightmost end of the queue.

The algorithm requires no extra hardware to record memory references (as some
other algorithms do) because the queue is maintained and updated only at page fault
time with page fault information, and can be maintained in software. It does not
matter how many times a page is referenced between page faults, though it is
expected that it will be referenced many times (and of course at least once).

The algorithm can be implemented using a circular list holding the page entries,
as shown in Figure 2.11. A pointer indicates the current rightmost end of the queue
and the leftmost entry of the queue is immediately before the pointed entry. Upon a
page fault, the page deleted and replaced is that indicated by the pointer. The
pointer is then incremented to point to the next entry.

Circular list of pages in primary memory

Page entry
Pointer

At page fault time, page replaced
and pointer incremented

Pointer points to
page to be replaced
at next page fault
time

Figure 2.11 First-in first-out replacement algorithm using a circular list

Memory management 45

The first-in first-out algorithm anticipates that the program will move from one
page to the next in a linear, sequential fashion, but it is not at all certain that such
characteristics are found in practice. More often, programs reference a group of
pages repeatedly, but in various patterns, as different procedures are called. The
first-in first-out algorithm performs particularly badly when the partition consists
only of a loop of pages, sequentially and repeatedly executed, because every time
execution moves from the last page back to the first page, a page fault will occur.
For example, for the sequence of changes in page references:

1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,

and four pages in the main memory partition, the first-in first-out algorithm will
generate a fault on every page change. In fact, virtually all fixed partition algorithms
give bad results on this sequence and the best strategy here would be a last-in first-
out replacement algorithm (a rarely used algorithm) which replaces the page just
left, giving a page fault on every fourth page change on the above sequence.

Loop characteristics are, of course, a common characteristic of programs.
However, large loops do not often occur; small loops with one or two pages are
more likely, and all pages can be kept in memory simultaneously.

2.3.4 Clock replacement algorithm

The first-in first-out algorithm can be modified to avoid frequent transfers by
moving over pages in the queue which have been referenced (and hence are likely to
be accessed again). This algorithm is known as the clock algorithm because a
pointing movement is used like that of the hand of a clock. The algorithm is also
known as the first-in-not-used first-out algorithm. It requires the addition of a use bit
set by the hardware when the page is referenced. The algorithm can be described as
a circular list of page entries, corresponding to the pages in main memory, and a
pointer which identifies the next page to be replaced, as shown in Figure 2.12. When
a page replacement is necessary, the use bit of the page entry identified by the
pointer is examined. If the use bit is set to 1, the bit is reset to 0 and the
pointer advanced to the next page entry. This process is repeated until a use bit is
already reset to 0. Then, the corresponding page is replaced and the pointer
advanced to the next page entry. Whenever a page is referenced subsequently, the
associated use bit is set to 1. Various modifications can be made to the clock
algorithm (see Easton and Franaszek (1979) for further details).

2.3.5 Least recently used replacement algorithm

In the least recently used (LRU) replacement algorithm, the page which has not
been referenced for the longest time is transferred out at page fault time. The least

46 Computer design techniques

Page entry

Pointer

—

If use bit = 0, replace page, and
increment pointer

If use bit = 1, reset bit
increment pointer and
repeat

Use bit set if page
referenced after
initial loading

Figure 2.12 First-in-not-used first-out replacement algorithm

recently used algorithm can be described as a “stack” holding the list of pages in the
main memory in the order in which they have been referenced. Whenever a
reference is made, the order of the list has to be updated. This means that the page
entry is placed at the top of the list and all other page entries are moved down one
place. As with the first-in first-out algorithm, the LRU algorithm fails badly on a
single loop of pages. It produces identical results to the first-in first-out algorithm on
a sequence of pages in which pages in memory are not re-entered, because the page
which has been longest in the memory is also the page referenced the longest time
ago. However, the LRU algorithm would seem to match program characteristics.
The LRU algorithm poses some practical problems for a true implementation if
there are a lot of pages in the main memory, as would be the case in a virtual
memory system, because a record has to be made of references to each page
(whether or not a page fault has occurred) during the execution of the programs.
An obvious implementation of the LRU algorithm is the use of counters recording
the number of references to each page. For example, a counter could be associated
with each page and incremented at regular intervals. Every time a page is referenced,
the associated counter is reset. Hence the counter holding the largest number
identifies the least recently used page. (A counter solution is also possible for the
first-in first-out algorithm, with counters associated with all existing pages incre-
mented and the counter of the new page reset to 0 when a page fault occurs, see
Tanenbaum, 1984). Counter solutions are not practical for a true virtual memory
LRU algorithm because of the number of hardware counters and the substantial
logic which would be required. In any event, counter methods give more information
than is required; the only information required to identify the least recently used
page after a page fault is the actual ordering, not how many times each page has

Memory management 47

been referenced. A true alternative LRU implementation suitable for a small virtual
memory system is the reference matrix method (see Section 3.4.4, page 83).

A true LRU algorithm can be implemented on the pages of a small TLB, but
otherwise, in a virtual memory system, an approximation is made. A common
approximation to the LRU algorithm is to employ the use bits. At intervals, say after
every 1 ms as recorded by the system interrupt timer, all of the use bits are
examined by the operating system and automatically reset when read. A record of
the number of times the bits are found set to 1 would give an approximation of the
usage in units of the interval selected. The approximation becomes closer to a true
LRU algorithm as the interval is decreased. This method can also be implemented
by having separate queues for different activity pages, a high activity queue, a
medium activity queue and a low activity queue. Page entries are moved from one
queue to the lower queue if the page was not referenced during the last time
interval, and moved to the higher activity queue if it was referenced. Pages in the
lowest activity queue move to a replacement queué for those pages which can be
replaced.

2.3.6 Working set replacement algorithm

The working set, w(t,T), at time ¢ is defined as the collection of pages referenced by
the process during the process time interval (1—T,f). The working set function,
w(t,T), as a function of T and fixed ¢, increases monotonically, because the working
set with an increased interval, w(z,T+d), must include those pages of the original
interval, w(z,T), for a specified ¢. The working set must include sufficient pages for
the program to run. The working set as a function of time, 7, is not expected to
change radically when only one process is being executed. Abrupt changes would
occur when a new process is started, as in a multiprogramming environment.

The working set algorithm, which follows directly from the concept of programs
having working sets (Denning, 1968), replaces the page which has not been referenced
during the immediately preceding interval, T, given in terms of process time (or
number of page references). The set of pages maintained are those which have been
referenced during this interval. As time passes, a “window” moves along, capturing
the working set of pages, as shown in Figure 2.13. It is possible for the memory
allocation not to be full. For example, given a memory allocation of four pages, if
the last five references were pages 5, 2, 6, 8 and 2, the pages in the set would be the
three pages 2, 6 and 8.

Pages are added to the working set when a page fault occurs. Theoretically, pages
are removed from the working set as soon as they have not been referenced during
the preceding interval, though in practice such removal is only done at page fault
time. The number of pages could grow very large, limited only by the number of
references possible to different pages in the time interval, though the possibility of
every single reference being to a different page is very remote. If the window is
measured in terms of page references, then the maximum number of pages is given

48 Computer design techniques

Pagesin
working set

Pages

t—4 t Virtual processing time

Figure 2.13 Working set reference patterns

by the window size. In a pure working set policy, pages could be released at times
other than at page fault time, though most implementations wait until a page fault. If
pages are only taken from the working set at the time of a page fault, there may be
more than one page which was not referenced during the preceding interval. The
least recently used algorithm can be employed to choose and remove only one or
two pages.

The partition for this algorithm is naturally variable and uses a local policy,
whereas the previous algorithms are naturally fixed and global. (The previous
algorithms can be modified to operate locally using process stacks/queues.) An
interval needs to be chosen for the window; this interval is normally kept constant.
The strength of the working set algorithm is that it only keeps those pages likely to
be required in memory, and does not use unnecessary memory.

A pure implementation would record the window interval in process time. The
interval is never measured in actual seconds as there may be times when the process
is suspended or delayed (such as during interrupt processing). One “counter”
implementation would be to assign a hardware counter to each page, together with
an identifier register, to indicate whether the page is part of the current window.
When a page is referenced in the current window, the associated counter is reset to
0. All of the counters of the current window are incremented at regular intervals.
If a counter overflows, the associated page is taken from the current window and is a
candidate for removal at page fault time. If each counter has b bits and clock pulses
are generated every p process seconds, then T = p2b. The value of T is chosen by the
system to give the best performance (i.e. the system is “tuned”).

A major disadvantage of the working set algorithm is the necessity to record
references between page faults and the need for hardware counters for a pure
implementation. An approximate implementation could use the use bit scanning
technique, as in approximate LRU algorithm implementations, by reading use bits in

Memory management 49

the page table at intervals using the system interrupt timer and record the pages
referenced since the last scan. Baer (1980) describes a working set implementation
using the scanning routine.

A replacement algorithm called the page fauit frequency algorithm (Chu and
Opderbeck, 1976) resembles the working set algorithm but has a dynamically
variable window. This algorithm maintains a set of most recently used pages. The
set varies in size, depending upon the frequency of page faults, given threshold
values. With more page faults, the set grows to attempt to reduce the frequency of
the page faults. However, it is known that the algorithm can exhibit erratic behavior.

2.3.7 Performance and cost

The question of the selection of the replacement algorithm now arises — there are
several possible algorithms to choose from and the choice rests upon performance and
cost. The optimal replacement algorithm could be defined as one which creates the
minimum number of page faults. We would expect that the minimum number of page
faults is generated when the pages discarded from the memory are those which are not
wanted again for the longest time in the future, which is known as the principle of
optimality. This algorithm was described by Belady (1966) and is known as MIN
(minimum page fault algorithm) or the optimal replacement policy (OPT). It operates
like the least recently used algorithm, but on page references in the future. Stone
presents an argument that MIN/OPT should be the optimum replacement algorithm
(Stone, 1987) and some mathematical proofs exist for specific assumptions. However,
the principle of optimality does not always hold (see Denning, 1970).

The MIN/OPT algorithm extended to variable partitioning is called the variable
space page replacement algorithm, VMIN (Prieve and Fabry, 1976), or an optimal
variable replacement algorithm, and it operates in a similar way to the working set
algorithm on page references in the future. In VMIN, the window is an interval from
the present to a point in the future, i.e. an interval (¢,/+0). At each page reference
(time,), the page is kept if the next reference to the page is in the interval (z,t+0),
otherwise the page is removed. VMIN generates the same sequence of page faults
as the working set (Denning and Slutz, 1978) and has the interesting effect of
anticipating transitions between disjointed working sets. Of course MIN and VMIN
cannot be implemented in practice, but serve as benchmarks for comparison with
practical algorithms.

In any selected replacement algorithm we would hope that, if the memory
allocation is increased, the number of page faults decreases or at least stays the
same. This would always be true if an allocation of m pages includes the pages in an
allocation of m—1 pages. Algorithms with this characteristic are known as stack
algorithms. The stack characteristic is useful for studying different replacement
algorithms using a known reference string and different memory partitions.

Particular practical algorithms will perform well under certain conditions. For
example, the FIFO algorithm (not a stack algorithm) works well for programs in

50 Computer design techniques

which pages are referenced in a long sequence, but otherwise can perform poorly.
LRU works well for programs which repeatedly reference a set of pages. Global
algorithms seem to perform worse than local algorithms in a multiprogramming
environment and the working set algorithm appears to produce close to optimal
results. Denning makes a strong case for his working set algorithm, arguing that the
cost/complexity of implementation (its major disadvantage) should not be a deterrent.

The memory hierarchy in a system has mainly come about due to cost considera-
tions. The cost of a memory system is normally characterized by the cost per bit of
the memory. At each level of memory hierarchy, the cost per bit reduces, sometimes
substantially, and the memory capacity (the number of locations in the memory
system) increases. The access time also increases significantly, and there is a trade-
off between cost and speed. The average cost of a memory system per bit having
main and secondary memories in the hierarchy is given by:

C = Cmain™main T Csecsec

av

mam + m

where c_ .. and ¢ are the costs per bit of the main and secondary memories and

m_ ... and m_ are the capacities of the memories. The average access time will
depend upon how often the required information is in the highest speed memory
(connected to the processor). The goal of any memory management scheme is to
ensure that when it is required, information is in the highest level of memory as
often as possible. The probability that an item is found immediately in the highest
level of memory considered is known as the hit ratio (h) for this memory. The
access time is the time required between a memory request being made and the
location being read or written. Read and write access times often have the same
value. The average access time is given by:

t..=ht_ . +(1-h)

av main sec

or, if all requests must first be made to the main memory, then:

tay = lmain T (1- h)tsec

where ¢, is the total access time of accessing the main memory, including the
address translation, and ¢, is the additional access time for accessing the secondary
memory. :

A criterion which embodies the memory allocation and overall speed of execution
is the space—time product (ST). This is the product of the memory used by a
program and the amount of time that it is used. Since these are directly related to
cost, the space—time product is regarded as an indication of the cost of executing the
program. As memory requirements change over time, the space—time product becomes
the integral of the set of resident memory pages over time while the program is
being executed including times for waiting for a missing page, i.e.:

Memory management 51

L
ST(,. 1) = | M(nydr
tl

over the time interval ¢, t, and M(¢) pages at time ¢. For a fixed memory allocation,
M, the space—time product reduces to:

ST=M(+D.)

where n = number of references; D = average time to transfer page from secondary
memory to main memory and f = number of page faults.

For a variable memory allocation, we take into account that the memory allocation
can be different with different memory references (in particular after a page fault) to
obtain:

T f

ST = Z M@) + D 2 M(t,)

=1 =1

f
=M,T+D Y M)
i=1

where T = total program execution period; ¢; = time of the ith page fault; M = the
average memory allocation over the execution period. The space—time product
should normally be minimized to reduce costs, although no optimal policy always
does this.

Though outside the scope of this book, theoretical studies have been performed
using mathematical models for program behavior to predict memory references, but
most models cannot easily incorporate the transitions that occur between processes
in a multiprogramming environment.

2.4 Segmentation

2.4.1 General

In a segmented system, the memory space is not divided into equal sized pages but
into blocks of contiguous locations called segments; these may be of different sizes.
This approach suits programs and data which are naturally generated in various
sizes. Each address is composed of a segment number and a displacement within the
segment. The displacement is also called an offset and the segment number is some-
times called the base. Rather than concatenate the segment and offset numbers, in a
segmented system the segment number and the offset are added together to form the

52 Computer design techniques

real address, because segments do not necessarily start at fixed boundaries. Segments
are usually restricted to start at, say, 16 word boundaries so that the least
significant bits of the segment address can be assumed to be 0. (Least significant
4 bits are 0 for 16 word boundaries.) The term logical address is used to describe
the virtual address and physical address describes the real address. Segments can be
shared between programs or may partially overlap if required.

An important aspect of the (symbolic) segmentation described here is that the
segment number and offset are separate entities and any alteration to the offset by
the program cannot affect the segment number. Once the maximum offset is reached
(assuming that the segment grows with increasing addresses) adding one to the
offset should create an error condition. A simple impure implementation of segmenta-
tion might cause the real address to wrap around to the beginning of the same
segment. It would be unforgiveable to implement a segmentation system that
entered another segment when one was added to the maximum offset, though this
effect is known in linear segmentation. It should not be possible to enter segments
from other segments unless the access has been specifically allowed (as with shared
system segments). In particular, data segments and code segments are separated, so
that trying to execute data in data segments as code should generate an error
condition. Similarly, trying to alter information in code segment should generate an
error condition because code is normally assumed to be read-only and accessed only
during a fetch cycle.

Segmentation, as a method of separating sections of program and data, dates from
about the same time as the paging concept and was a main aspect of early Burroughs
computers; it was first used in the B5000 and subsequently in other Burroughs
systems. Since the early 1970s, segmentation has been combined with paging as a
main memory management technique on most larger computer systems and more
recently developed microprocessors.

Figure 2.14 shows the usual method of translating logical addresses into physical
addresses. The logical address has two parts, a segment number and an offset. The
segment number specifies the logical segment and the offset specifies the number of
locations from the beginning of the segment. The segment and offset fields are
physically separate and are not obtained by simply dividing the address from the
processor into two fields. The processor has to be designed to generate the segment
and offset separately.

The translation mechanism usually employs direct mapping, as shown. The starting
addresses of the physical segments are held in segment tables, and there is a
different segment table for each active process. The starting address of the appro-
priate segment table is contained in a segment table pointer register and this is
added to the segment number to locate the physical segment base address in the
table. The base address read from the segment table is added to the offset to form
the required physical address.

Memory management 53

Logical address

Segment table Segment Offset
pointer | l I —I
I
Segment
table
~(+

Physical address

Figure 2.14 Segmentation address translation

The segment table incorporates additional information, usually including:

1. Segment length.
2. Memory protection bits.
3. Bits for the replacement algorithm.

Segment length

Different segments can have different lengths. The length of each segment is stored
in the length fields of the segment table entry to prevent programs referencing a
location beyond the end of a particular segment. If the offset in the virtual address is
greater than the stored length (limit) field, i.e. an attempt is being made to reference
beyond the end of the segment, an error signal is generated, usually in the form of a
system interrupt. A system is assigned a maximum segment length which will
specify the number of bits in the length field. Maximum segment lengfhs range from
64 Kbytes for systems with small address spaces through to 4 gigabytes for 32-bit
address spaces.

As an added facility for segments used to hold stacks that grow downwards
(which is how most stacks grow), it is useful to know when one of the first 256
words (say) is being accessed, so that a warning that the end of the stack space is
being reached can be given. A separate flag, which is set when such accesses are
made, can be provided.

54 Computer design techniques

Memory protection
Memory protection involves preventing specified types of access to the addressed
location and discarding or stopping the address translation occurring. The protection
applies to all of the locations in the segment and not to particular locations. Note
that segments should be produced for unified purposes, i.e. for data, for a procedure,
etc. and the protection applied to the whole segment.

Typically, by setting bits in the segment tables, any segment can be assigned as:

1. Read-only.
2. Execute only.
3. System only.

Assigning a segment as read-only allows data to be protected from alteration.
Assigning a segment as execute-only means that the segment can only be referenced
during a fetch cycle, which prevents unauthorized copying of programs since
execute-only code cannot be read as data. Segments that are shared by different
processes could have different access rights for each process.

It is necessary for the processor to have two operating modes for the system-only
assignment, a normal mode, which is for ordinary users, and a system mode
dedicated to the operating system. Generally, when in the normal mode, there will be
certain instructions (including input/output instructions) which cannot be executed.
The only way to enter the system mode is through a system call to the operating
system, either intentionally or due to an error condition. Hence, functions such as
input/output can be totally controlled by the operating system without interference
from the user programs. Though some memory management schemes do not have
the full selection of protection bits, a system-only bit is regarded as the minimum
protection that must be present.

Rather than having an “only” assignment, it is possible to have an “excluded”
assignment, especially in a microprocessor-based multiprocessor system with a
separate memory management unit (MMU), for example:

1. CPU excluded.
2. DMA excluded.

In CPU excluded, the segment cannot be accessed by the central processor,
however, this leaves all other possible “bus masters”, such as DMA input/output
controllers. In DMA excluded, the DMA controllers are excluded, leaving the
central processor and other bus masters, i.e. the other processors in a multiprocessor
system. Any attempted violation of the assignments would cause the MMU to set
appropriate error flags in an MMU error condition register, and to signal the
processor with a special segment trap interrupt signal. The current instruction and
status information will be saved. Multiple violations must be handled.

Memory management 55

Replacement algorithm

The replacement algorithm in a segmented system can be similar to the replacement
algorithm in a paged system, except that it needs to take the varying size of the
segments into account when allocating space for new segments. Typically, as in a
paged system, replacement algorithm flags are associated with each logical/physical
address entry in the segment table, in particular with the use (accessed) and
modified (written) flags. As we have seen, the use flag is usually sufficient to
implement a replacement algorithm or approximations to a replacement algorithm.

Placement algorithm

The variable size of segments causes some additional problems in main memory
allocation. During operation, with segments returned to the secondary memory, the
main memory will become a “checkerboard”, as shown in Figure 2.15, with holes
between segments. Clearly, an incoming segment must be smaller than the main
memory space available (hole) for the segment to be overwritten. However, leaving
small spaces which cannot be used subsequently should be avoided, and is known as
external fragmentation. Several placement algorithms for finding a suitable place in
the main memory to hold an incoming segment have been proposed, including first
fit, best fit and worst fit. In first fit, a table of memory allocation, in particular the
available holes, is scanned from the beginning until a space which is big enough is
found, and the segment is entered there. This algorithm can be modified to skip over
spaces which would leave a very small, unusable space had the segment been placed
there. The best fit scans the complete list of hole sizes to select the memory space
which would leave the smallest hole and the worst fit selects the space which would
leave the biggest hole, in the hope that this hole will be big enough for another
segment.

To help fitting in segments, it is usually necessary to compact the memory by
moving segments together and eliminating the holes between them, which is a very
time consuming process. These problems have led to the incorporation of paging in
most large systems that use segmentation.

2.4.2 Paged segmentation

Segmentation and paging can be combined, and usually are combined, to gain the
advantages of both systems, i.e. the logical structure of segmentation and the

Segment Unused Segment Unused Segment

Figure 2.15 Checkerboard effect

56 Computer design techniques

hardware mapping between main and secondary memory of paging. The paging
aspect simplifies the memory allocation problem of a pure segmented system. When
segmentation and paging are combined, but the concept of segments as logical units
is kept, the segmentation is regarded as symbolic segmentation or segmented name
space. Each segment is divided into a number of equal sized pages and the basic
unit of transfer between main and secondary memory is the page. It is not necessary
to transfer the complete segment into the main memory as in the pure segmentation
method; only those pages required need be transferred. Hence, the main memory
might consist of pages from various segments, as shown in Figure 2.16, and pages
of a new segment can be easily fitted into the memory.

Process 1 Process 2

[TITTT T il 1]

/K v Main memory

HEEEEEEENEEEEREEN

HEEER

Process 3 Process 4

Figure 2.16 Paged segments in memory

Segment Page Offset

Logical address

Segment
table

pointer Segment

table

Page
table

Physical address

Figure 2.17 Paged segmentation address translation

Memory management 57

The virtual address is divided into a segment number, a page number and
displacement identifying the word within a page. The translation mechanism is
shown in Figure 2.17. A segment table pointer selects a set of segment tables and
the segment number selects a page table entry to select a page table. The page
selects a real address which is concatenated with the displacement to obtain the full
real address. In symbolic segmentation, length limit and other protection is naturally
applied at the segment table level and replacement bits applied at the page table
level.

The segment can be specified in the instruction in several different ways other
than as a single number as shown. For example, as in the Multics system (Baer,
1980), one bit in the instruction can select either the current process segment, whose
address can be held in a dedicated processor register which eliminates any segment
table memory accesses, or one of a set of external segments whose addresses are
held in other processor registers (if the segment is in memory). The external
segment entries need to be loaded, and this could be done by static binding or by
dynamic binding. In static binding, the segment entries are loaded before the
program is executed by examining the program requirements during a linking/
loading process. In dynamic binding (as in Multics), the segment entries are loaded
on demand during the program execution by the operating system.

2.4.3 8086/286/386 segmentation

The 16-bit 8086 microprocessor, introduced in 1978, is perhaps the first example of
a microprocessor to incorporate a very restricted form of segmentation within the
device (Intel, 1985a), though this nevertheless enables code and three forms of data
to be separated in one program. However, it does not allow the facilities of true
segmentation such as sharing and complete protection. The microprocessor contains
four segment registers called the code segment register (CS), the data segment
register (DS), the stack segment register (SS) and the extra segment register (ES)
respectively. The address generated by the program is a 16-bit offset, without a
segment number. A 16-bit offset allows segments up to 64 Kbytes. The particular
segment is selected by context. Instruction fetch cycles always use the code segment
with the offset provided by the program counter (called the instruction pointer, IP,
in the 8086). Most data operations normally assume the use of the data segment
register, though any segment register can be selected using an additional prefix
instruction. Stack instructions always use the stack segment register. The extra
segment is used for results of string operations. The segment registers have 16-bits.
Four least significant Os are added, giving a 20-bit base address and a 20-bit
physical address.

The Intel 16-bit 80286 microprocessor in the “protected virtual address” mode
(Intel, 1987a) extended the memory management scheme of the 8086 to give up to
213 (8192) separately addressed segments, though only four, designated as CS, DS,
SS and ES, can be used at a time and these are then used as in the 8086. Physical

58 Computer design techniques

memory addressing has been extended to 24 bits (16 Mbytes). The original segment
registers within the device are now called segment selectors by Intel and are used as
pointers to within main memory segment (descriptor) tables holding the segment
information, in the form of a descriptor. A descriptor consists of a 24-bit segment
base address, protection bits (access rights) and a length field.

In effect, four separate internal 24-bit segment registers are provided as part of
what are called descriptor cache registers, which hold the descriptors of four actual
segments being used, including 24-bit segment base addresses. The descriptor cache
registers cannot be accessed directly by the programmer. The formats of the descriptor
cache registers and segment selector registers are shown in Figure 2.18. The trans-

Segment Descriptor cache registers
selectors
Access Segmentbase Segment
rights address size
Index
30 47 39 16 15 0
Cs
DS
SS
ES
Lillill
2 /) 7 0
Access rights
Ll Ll
I'WJ — %f—ll
Global/local Accessed
tables
Privilege Readable
level < Conforming Forcode
{ Executable segment
Writable Fordata
Expansion direction
Executable segment
Segment descriptor
Descriptor privilege level
Present

Figure 2.18 80286 Segment selectors and descriptors

Memory management 59

lation mechanism is shown in Figure 2.19. To change to another segment not
currently being used, a 13-bit number is loaded into the segment selector to identify
the entry in the descriptor table, together with 3 bits giving privilege level and
whether global or local tables are to be used. The processor then automatically loads
the descriptor cache register from the main memory table, and addressing now uses
the new base address. Segment selectors are loaded using normal move instructions
for data selectors or branch instructions (CALL, JMP, RET, IRET) for a code
selector, under certain privilege rules, and with a protection mechanism to ensure
that proper information is selected.

Two descriptor tables can be accessed by a task (process) at a time — a global
table for shared segments and a local segment table for the currently active task
(which is only accessible by this process). (A further type of descriptor table exists,
called an interrupt descriptor table, for interrupts.) In our discussion on memory
management, two types of access are identified, namely, system and user. In the
80286, this concept is taken further by introducing four levels of privilege, the
highest (PLO) for the operating system kernel through to PL3 for applications.
Further information on the protection mechanisms provided by the 80286 can be
found in Intel literature (see, for example, Intel, 1987a).

In a system with very large segments, segments can be paged using a two-level
translation, as described in Section 2.2.5, to reduce the number of page tables
necessary for one task. There are potentially three levels of translation, one for the

Descriptor
table
register Selector Offset

L I 11 1

\Aiess Descriptor | jrmjt
i base i

Y
Memory _—,G)

Physical address

| 1

Figure 2.19 80286 segment address formation (protected virtual address mode)

60 Computer design techniques

segment and two for the page, This type of scheme is used on the Intel 80386 32-bit
microprocessor (Intel, 1985b), a 32-bit development of the 80286 which includes
demand paging. The processor generates, as instruction pointer or data addressing, a
32-bit offset of a segment. The segment is specified and identified separately in a
similar fashion to the 80286 using a selector to select a descriptor, and produces a
32-bit “linear address”. Paging can be enabled or disabled by setting or resetting a
flag in a control register (CRO). If paging is disabled, the linear address formed is
used to access memory. If paging is enabled, the linear address passes through a
two-level page translation mechanism, as shown in Figure 2.20, to produce a 32-bit
physical address used to access memory.

Linear address

Segment Directory Page Offset

| | | l | | Virtual address
Segment table Segment

pointer table
Pagetable
directory
Page table

(General - 80386 uses 80286 method) +

Physical address

Figure 2.20 Two-level segmentation with paging

Memory management

PROBLEMS

2.1 In a paged system, suppose the following pages are requested in the
order shown:

12, 14, 2, 34, 56, 23, 14, 56, 12, 12

and the main memory partition can only hold four pages at any instant
(in practice usually many more pages can be held). List the pages in the
main memory after each page is transferred using each of the following
replacement algorithms:

1. First-in first-out replacement algorithm.
2. Least recently used replacement algorithm.
3. Clock replacement algorithm.

Indicate when page faults occur.

2.2 Identify which of the following replacement algorithms are stack
algorithms:

Random replacement algorithm.

First-in first-out replacement algorithm.
Clock replacement algorithm.

Least recently used replacement algorithm.
Working set replacement algorithm.

Page fault frequency replacement algorithm.

A e

2.3 Suggest how the optimal replacement policy could be implemented
given that the memory reference string is known.

2.4 Deduce a sequence of page references for a paging system with
eight main memory pages, using the least recently used replacement
algorithm, which produces each of the following characteristics:

1. The largest number of page faults.
2. The smallest number of page faults.

2.5 Using one use bit with each page entry, list the pages recorded in
the following sequence and hence determine the pages removed using the
one use bit approximation to the least recently used algorithm:

13, 47, 13,99, 47, 35, 13, 67, 47, 13, 34, 35, 99

given that there are four pages in the memory partition. The use bits are
only read at page fault time.

61

62

Computer design techniques

Suppose two use bits are provided. The first use bit is set when the
page is first referenced. The second use bit is set when the page is
referenced again. Deduce an algorithm to remove pages from the partition,
and list the pages.

2.6 If the cost of a semiconductor main memory is four times the cost
of disk memory per bit, and the total amount of memory required is 25
Mbytes, determine the amount of each type of memory to achieve a total
cost per bit of twice that of the semiconductor memory.

2.7 A microprocessor generates a 20-bit byte address A19, A18, Al7,
Al6, AlS5, Al4, Al13, A12, All, Al0, A9, A8, A7, A6, A5, A4, A3, A2,
Al, A0 (AO being the least significant bit). Design a translation look-
aside buffer for the system giving details of the address translation and
numbers of bits in address fields, if the following applies. The page size
is to be 512 bytes. 256 page addresses are to be handled by the TLB. The
groups of virtual addresses below are likely to appear frequently:

Five addresses with A19 the same.

Two addresses with A18 through A0 the same.
Three addresses with A16 through AO the same.
Four addresses with A15 through A0 the same.
Two addresses with A13 through AO the same.
Two addresses with A10 through A0 the same.
Two addresses with A9 the same.

Clearly indicate your reasoning. Design for minimum cost.

2.8 In a paging system, the page size is p and a program requires P
pages. The last page in the program is 50 per cent full. Each page
requires ¢ locations in the main memory page table. Obtain an equation
for the total amount of main memory required for the program and page
table entry combined. Find the page size to give minimum memory
requirements by differentiating the total memory requirement equation
with respect to p, and equating the result to zero. Determine a suitable
page size for a program of 128 Kbytes given four bytes per page entry.

2.9 Determine the number of locations required in the page tables for a
three-level page mapping given that the virtual address has 32 bits
divided into a 12-bit directory field, a 10-bit page field and a 10-bit line
(offset) field. How many bits are there in the table entries for addresses?

2.10 Apply the first fit, best fit and worst fit placement algorithm to
insert a 290 byte segment in a 10 Kbyte memory partition which contains

segments at locations given in Table 2.1. Show the location of the
incoming segment. Repeat, taking into account that no incoming segment

will be less than 11 bytes.

Table 2.1 Segment locations and sizes for Problem 2.10

Memory management 63

Address Segment size
(bytes)

0 3400
3800 230
4500 630
5590 100
7000 200
7500 550
10000 120

2.11 As a designer of a new paged segmentation memory management
system, you are to develop the formats of information stored in the page
table and segment tables given that the page size is 512 words, the
maximum segment size is 65 536 words and the processor generates a
32-bit address. Making appropriate design decisions, choose and list the
sizes of each field in the segment and page table. Memory can be made
read-only or execute-only, and four other levels of privileged access are
provided (one for the user and three for routines within the operating

system).

CHAPTER
Cache memory systems

This chapter studies the use of a relatively small capacity but high speed memory
called a cache, which is inserted between the processor and main memory. The
cache is introduced into the system to decrease the effective memory access time
and hence increase the operational speed of the system.

3.1 Cache memory

3.1.1 Operation

The speed at which locations can be accessed in a memory is a critical factor in the
system design. Semiconductor memory speeds are characterized by the memory
access time and memory cycle time. We have already mentioned in Chapter 2 that
the memory access time is the time between the submission of a memory request and
the completion of transfer of information into or from the addressed location.
Normally, the access time for a read and for a write operation is the same, and we
will assume read and write access times to be the same in one memory. The memory
cycle time is the minimum time that must elapse between two successive operations
to access locations in the memory (read or write). Sometimes the access time and
cycle time are almost the same, i.e. immediately a location has been accessed,
another memory operation can be initiated, but often a short period must elapse after
the access for the internal circuits to settle and be ready for the next read/write
operation (i.e. a precharge period in some semiconductor designs). In high speed
memory systems the cycle time is almost double the access time.

Secondary memory is usually several orders of magnitude slower than the main
memory. There is also a mismatch between the speeds of operation of the processor
and the main memory; processors (except early microprocessors) are generally able
to perform operations on operands faster (perhaps one order of magnitude faster)
than the access time of large capacity main memory. Though semiconductor
memory which can operate at speeds comparable with the operation of the processor

64

Cache memory systems 65

exists, it is not economical to provide all the main memory with very high speed
semiconductor memory.

The problem can be alleviated by introducing a small block of high speed
memory called a cache between the main memory and the processor. A cache
consists of very high speed random access memory operating at the speed required
by the processor. Programs and data are transferred to the cache, which is then
accessed by the processor. Any data items to be changed are first written to the
cache and either written to the main memory at the same time, or subsequently,
when the locations are replaced with new information from the main memory. A
cache was first used in a commercial computer system by IBM in the IBM System/
360 Model 85. The IBM 360 Model 85 cache was described and the term cache
memory used by Conti in 1968 (Conti et al., 1968).

A cache is generally successful because of the principle of locality of reference
exhibited by programs and data (see Chapter 2). For example, a purely sequential
list of instructions which is executed only once is rare; instructions are more often
formed into loops, which are executed many times. The length of a loop is usually
quite small. Therefore once a cache is loaded with loops of instructions from the
main memory, the instructions are used more than once before new instructions are
required from the main memory. The same situation applies to data.

The principle of locality allows a cache system to improve system speed, just as it
allows virtual memory systems to operate efficiently. If every memory reference to a
cache required a transfer of one word between the main memory and the cache, no
increase in speed would be achieved; in fact the speed would drop because apart
from the main memory access, an additional access to the cache would be required.
However, suppose the reference is repeated n times in all during a program loop,
and, after the first reference, the location is always found in the cache, then the
average access time would be:

. nt, +t t, t
Average access time = (—C—n——!&) =°+ —nm

where ¢, = cache access time; ¢ = main memory access time and n = number of
references. If ¢, = 25 ns, ¢, = 200 ns and n = 10, the average access time would be
45 ns, as opposed to 200 ns without the cache, i.e. a substantial increase in speed
using a cache operating at eight times the speed of the main memory. It is assumed
that there are no additional timing factors with the introduction of the cache and the
processor must be able to handle the increased speed (ten 25 ns accesses and one
200 ns access). We note that as n increases, the average time approaches the access
time of the cache. The increase in speed will, of course, depend upon the program.
Some programs might have a large amount of temporal locality, while others have
less. Also, the average access time gives only an indication of the system improve-
ment. The actual improvement will be different because instruction execution
speeds have components other than instruction fetch and operand fetch times.

In large computer systems the main memory is often interleaved or interfaced to

66 Computer design techniques

wide word length main memories (see Section 1.3.4) to match the speed of transfer
of the main memory with the cache. The number of modules, m, is chosen to
produce a suitable match in the speed of operation of the main and cache memories.
For a perfect match, m would be chosen such that mt, =t . The cache words could
subsequently be accessed by the processor in sequential order in another mt,
seconds. Hence the average access time of these words when first referenced would
be 2mt /m = 2t_. Should the words be referenced n times in all, the average access
time would be:

Average access time =

2t + (n=1t, _(n+ 1),
n T n

For example, if a cache has an access time of 25 ns and the main memory has an
access time of 200 ns, eight main memory modules would allow eight words to be
transferred to the cache in 200 ns. With ten references in all, we have:

(50 + 9%25)

o =27.5ns

Average access time =

The average access time is approximately ¢, for large n, making the same rather
broad assumptions as before. However, it does indicate that substantial speed
improvements can be achieved by using the cache.

Notice that if the locality in programs was only instruction sequential locality,
and if we could always rely on instructions being sequential, wide word length
memories would be sufficient to keep the processor content with instructions, with
perhaps a single wide word length buffer. However, this is not the case and
variations in sequential instruction fetches and data references need to be taken into
account.

We have assumed that it is necessary to reference the cache before a reference is
made to the main memory to fetch a word, and it is usual to look into the cache first
to see if the information is held there. The advantage of the cache comes from
information it holds and, although it may be necessary to make a second reference
to the cache after the word has been fetched from it for a read operation, it is likely
that the word can be sent to the cache and the processor simultaneously. However,
for write operations through the cache, the cache location will be altered. Write
operations require an additional scheme to deal with the main memory; this is
described on page 76. Any word altered in the cache must be transferred back to
the main memory eventually, and this transfer will reduce the average time. We will
develop formulae to compute the average access time including the main memory
write mechanism, but first let us assume read-only operations. In general, all
formulae are applicable to both access time and cycle time.

Though most high performance computers use cache memory, there is a notable

exception; the Cray vector computers use files of register buffer storage instead of
cache memory.

Cache memory systems 67

3.1.2 Hit ratio

The probability that the required word is already in the cache depends upon the
program and on the size and organization of the cache; typically 80-90 per cent of
references will find their words in the cache. A hit occurs when a location in the
cache is found immediately, otherwise a miss occurs and a reference to the main
memory is necessary. The cache hit ratio, h, is mentioned in Chapter 2 for main
memory—secondary memory systems and is also applicable to cache—main memory
systems. For a cache system, it is defined as:

b= Number of times required word found in cache
- Total number of references

The cache hit ratio is also the probability that a word will be found in the cache. The
miss ratio is given by 1-h. In cache studies, the miss ratio is quoted rather than the
hit ratio. The average access time, t,, is given by:

t,=t.+(1-h)

assuming again that the first access must be to cache before an access is made to the
main memory. Accesses made to the main memory add the time (1 — h)_ to the
access time. For example, if the hit ratio is 0.85, the main memory access time is
200 ns and the cache access time is 25 ns, then the average access time is 25 + 0.15
%X 200 = 55 ns.

The average access time can be computed for virtual memory systems in the same
manner. In these systems there is a much greater gap between the access time of two
memories and the miss ratio has a much greater effect on the overall access time.
The average access time in either system ignoring additional time involved in write
operations can be given as:

t, =t

a mem|

+ (1 - h)tmemZ
where . | = access time of the higher speed memory (cache in a cache system,
main memory in a virtual memory system); ¢ .~ = access time of the lower speed
memory (main memory in a cache system, secondary memory in a virtual memory
system) and (1-h) = miss ratio.

Therefore:

ta = tmemZ(I/k + (1 - h))

where k =t . o/t ... (i.e. the ratio of lower speed memory access time to higher
speed memory access time). We can see that the average access time will be
dominated by the miss ratio if the ratio of the memory access times (k) is large, as in
the case of a virtual memory system. For example, with a 20 ms access time disk

68 Computer design techniques

and a 200 ns access time high capacity semiconductor random access memory,
k = 100 000. A miss ratio of 1 per cent creates an average access time of 200.2 s,
which is much larger than the main memory access time. Clearly, for a virtual
memory system the miss ratio ought to be very low indeed to approach the access time
of the main memory. (Of course, in practice, a disk will not be accessed directly.)

Conversely, the average access time will be dominated by the ratio of the access
times of the memories when this difference is small, rather than by the miss ratio.
For a cache system, the ratio of main memory access time to cache access time (k) is
in the region of 3—-10. For example, with a 200 ns access time main memory and a 25
ns access time cache, k£ = 8. A miss ratio of 1 per cent creates an average access time
of 27 ns, which is close to the cache access time. The miss ratio for a cache system
need not be as low as for a virtual memory system for the average access time to
approach the access time of the cache.

3.2 Cache memory organizations

The problem of mapping the information held in the main memory into the cache is
similar to virtual memory systems, though any cache mapping scheme must be
totally implemented in hardware to achieve improvements in the system operation.
Various strategies are possible:

3.2.1 Direct mapping

In cache direct mapping, the least significant bits of the memory address in the main
memory and the cache are the same. The most significant bits of the address are
stored in the cache and read after the least significant bits have been used to access
the cache word.

First, consider the example shown in Figure 3.1. The address from the processor
is divided into two fields, a tag and an index. The tag identifies a page in the main
memory and the index identifies the word within the page. When the memory is
referenced the index is first used to access a word in the cache. Then the tag stored
in the accessed word is read and compared with the tag in the address. If the two
tags are the same, indicating that the word is the one required, access is made to
the addressed cache word. However, if the tags are not the same, indicating that the
required word is not in the cache, reference is made to the main memory to find it.
For a memory read operation, the word is then transferred into the cache where it is
accessed. It is possible to pass the information to the cache and the processor
simultaneously, i.e. to read-through the cache. The cache location is altered for a
write operation. The main memory may be altered at the same time (write-through)
or later. Write operations will be discussed in Section 3.3.2.

Cache memory systems 69

Memory address from
processor
Tag Index Tag and index
Main
Cache memory
Main
memory
Index accessed
if tags do
Tag| Data not match

\

Cacheaccessed
if tags same

Access
location

Figure 3.1 Cache with direct mapping

In the direct mapping scheme described, one word is transferred to the cache at a
time. In Figure 3.2, several words are transferred together by interleaving or using
wide word length main memories. (In fact, the latter is sufficient in this application
because the words are sequential.) We shall call the words transferred a block
(sometimes a block is called a line). The main memory address is composed of a
tag, a block and a word within a block. All the words within a block in the cache
have the same stored tag. The block/word part of the address is used to access the
cache and the stored tag is compared with the required tag address. For a read
operation, if the tags are the same, the word within the block is selected for transfer
to the processor. If the tags are not the same, the block containing the required word
is first transferred to the cache.

In direct mapping, the corresponding blocks with the same index in the main
memory will map into the same block in the cache, and hence only blocks with
different indexes can be in the cache at the same time. A replacement algorithm is
unnecessary, since there is only one allowable location for each incoming block.
Efficient replacement relies on the low probability of blocks with the same index
being required. However, there are such occurrences, for example, when two data
vectors are stored starting at the same index and pairs of elements need to be
processed together. To gain the greatest performance, data arrays and vectors need

70 Computer design techniques

Memory address from
processor

Tag | Block |Wordin
9 ° block

Word in block

Block Cache

Tag |Data| Data | Data | Data | ——
T

Compare

Y
Access word in block

Figure 3.2 Direct mapped cache with block organization

to be stored in a manner which minimizes the conflicts in processing pairs of
elements. Figure 3.1 shows the lower bits of the processor address used to address
the cache location directly. It is possible to introduce a mapping function between
the address index and the cache index so that they are not the same.

The direct mapping cache has been used on the PDP-11/60 with a one word block
and in the IBM System/370 Model 158. The VAX-8800 uses a 64 Kbyte direct
mapped cache. The following advantages can be identified for the direct mapped
cache:

1. No replacement algorithm necessary.
2. Simple hardware and low cost.
3. High speed of operation.

Disadvantages include:

1. Hit ratio lower than associative mapping methods (Sections 3.2.2 and 3.2.3).

2. Direct mapping is unsuitable for parallel virtual address translation (Section
3.6.1).

3. Performance drops significantly if accesses are made to locations with the
same index.

Cache memory systems 71

However, as the size of cache increases, the difference in the hit ratios of the direct
and associative caches reduces and becomes insignificant. The trend is for larger
direct caches, which suit direct mapped caches. Hill (1988) presents a detailed case
for the direct mapped cache.

3.2.2 Fully associative mapping

Fully associative mapping requires the cache to be composed of associative memory
(content addressable memory, CAM) as used in the main—secondary memory
associative mapping scheme (Chapter 2). The incoming memory address is simul-
taneously compared with all stored addresses using the internal logic of the associative
memory, as shown in Figure 3.3. If a match is found, the corresponding data is read
out. Single words from anywhere within the main memory could be held in the
cache, if the associative part of the cache is capable of holding a full address.

As with the other schemes, the data can be more than one word, i.e. a block of
consecutive locations. The whole block can be transferred to and from the cache in
one transaction if there are sufficient data paths between the main memory and
cache. With only one data word path, the words of the block have to be transferred in
separate transactions, and then an additional bit must be stored with each byte/word

Memory address from
processor

1

Main memory accessed if address not in cache

Cache Main
(associative memory) memory

Address Data
Compare with]
all stored =
addresses |
simultaneously T :

|

Address not
found in cache

Address found

Access location

Figure 3.3 Cache with fully associative mapping

72 Computer design techniques

in each block to indicate whether valid data is present in the cache.

The fully associative mapping cache gives the greatest flexibility of holding
combinations of blocks in the cache and minimum conflict for a given sized cache,
but is also the most expensive, due to the cost of the associative memory. It requires
a replacement algorithm to select a block to discard upon a miss (as do the
following cache organizations) and the algorithm must be implemented in hardware
to maintain a high speed of operation.

The fully associative cache can only be formed economically with a moderate
size capacity. Microprocessors with small caches often employ the fully associative
mechanism, incorporating valid bits within the cache, as shown in Figure 3.4. The
single bus of the microprocessor constrains main memory transfers to one byte/word
at a time and the cache is loaded one byte/word at a time (which for instructions may
be in a burst mode). Each byte in the cache has a valid bit which is set when the
byte forms part of a block having the same address as the stored address. When a
byte is loaded, the corresponding valid bit is set. Each address tag in the cache
identifies a block, though not all the bytes within the block may be part of the
current block; they may be parts of previous blocks. When the processor accesses
the cache, the address tag from the processor is compared with all the address tags
stored in the cache. If a match is found, the valid bit associated with the required
byte is checked to see whether the stored byte is a valid part of the block. If it is
valid, the byte is accessed, otherwise the main memory is accessed and the cache
loaded with the byte. A suitable location is found in the cache, using, say, the least
recently used algorithm implemented in hardware. The address tag is updated and
the valid bit is set. All valid bits in the block, except those associated with the
newly loaded byte, are reset. Subsequent bytes of the block are loaded when they
are requested and associated valid bits set then.

Examples include the Z-280 (Zilog, 1986) which has a fully associative cache
consisting of 16 blocks. Each block has 16 bytes and there is a 20-bit stored
address (called a tag) with each block. Sixteen valid bits are also stored with each
block. The full physical address used to locate the byte in the cache has 24 bits. The
780000 (Zilog, 1984) has a similar fully associative cache of 16 blocks, each of 16
bytes.

Address Valid Cache
tag bits (n) words (n)

I | [
| 1 l
l | |

Figure 3.4 Cache with valid bits

Cache memory systems 73

3.2.3 Set-associative mapping

In the direct scheme described, all words stored in the cache must have different
indices. The tags may be the same or different. In the fully associative scheme,
blocks can displace any other block and can be placed anywhere, but the cost of the
fully associative scheme becomes prohibitive for large caches and large associative
memories operate relatively slowly.

Set-associative mapping allows a limited number of words or blocks, with the
same index and different tags, in the cache and can therefore be considered as a
compromise between a fully associative cache and a direct mapped cache. The
organization is shown in Figure 3.5. The cache is divided into “sets” of blocks. Each
set has one or more blocks depending upon the design of the cache. A four-way set-
associative cache would have four blocks in each set. The number of blocks in a set
is known as the associativity or set size. Each block in each set has a stored tag
which, together with the index (set number), completes the identification of the block.
First, the index of the address from the processor is used to access the set. Then,
comparators are used to compare all tags of the selected set with the incoming tag.

Memory address
from processor

Tag Index

Cache (Tags content-addressable)

Index

>{Tag] Data [Tag] Data [Tag| Data |Tag| Data
A

R N

Compare all tags

in.cache with
required tag
simultaneously
One same !
Access
word

Figure 3.5 Cache with set-associative mapping

74 Computer design techniques

If a match is found, the corresponding location is accessed, otherwise, as before, an
access to the main memory is made.

The tag address bits are always chosen to be the most significant bits of the full
address, the block address bits are the next significant bits and the word within the
block is the least significant bits as this spreads out consecutive main memory
blocks throughout consecutive sets in the cache. This addressing format is known as
bit selection and is used by all known systems. (The direct mapped system in
Section 3.2.1 also uses bit selection.) In a set-associative cache it would be possible
to have the set address bits as the most significant bits of the address and the block
address bits as the next significant, with the word within the block as the least
significant bits, or with the block address bits as the least significant bits and the
word within the block as the middle bits. We will see later (Section 3.6) that the
number of bits in each field for a system with both cache and virtual memory is
often arranged so that both cache and virtual memory address translations can be
done at least partially concurrently.

Notice that the association between the stored tags and the incoming tag is done
using comparators and can be shared for each associative search, and all the
information, tags and data, can be stored in ordinary random access memory. The
number of comparators required in the set-associative cache is given by the number
of blocks in a set, not the number of blocks in all, as in a fully associative memory.
In a fully associative cache, each tag requires its own comparator within the content
addressable memory element. In the set-associative cache, the set can be selected
quickly and all the blocks of the set can be read out simultaneously with the tags
before waiting for the tag comparisons to be made. After a tag has been identified
(assuming that a hit has occurred), the corresponding block can be selected. (Writing
cannot be done before the tag has been identified, and it generally requires additional
mechanisms, see page 76.)

The replacement algorithm for set-associative mapping need only consider the
blocks in one set, as the choice of sets is predetermined by the index (set number) in
the address. Hence, with two blocks in each set, for example, only one additional bit
is necessary in each set to identify the block to replace. Typically, the set size is 2,
4, 8 or 16. A set size of one block reduces the organization to that of direct mapping
and an organization with one set becomes fully associative mapping. For a given
number of blocks, there is a design choice between increasing the number of sets or
increasing the number of blocks in each set, as the cache size = (number of
sets) x (number of blocks in each set).

3.2.4 Sector mapping

In sector mapping, the main memory and the cache are both divided into sectors,
each sector composed of a number of blocks. Any sector in the main memory can
map into any sector in the cache and a tag is stored with each sector in the cache to
identify the main memory sector address. However, a complete sector is not

Cache memory systems 75

transferred to the cache or back to the main memory as one unit. Instead, individual
blocks are transferred as required. On cache sector miss, the required block of the
sector is transferred into a specific location within one sector. The sector location in
the cache is selected by the replacement algorithm and all the other existing blocks
in the sector in the cache are from a previous sector. To differentiate between blocks
of the sector given by the stored tag and old blocks, a valid bit is associated with
each block in each sector. When a new block of a new sector is read into the cache,
the valid bit of the block is set, and all the other blocks are marked as invalid.
Subsequent accesses to the same sector but to invalid blocks cause the required
blocks to be read in and the corresponding valid bits set.

We notice that though sectors can be placed anywhere, once the position of the
sector is selected the block must be placed at the appropriate location within the
sector, i.e. block i is placed in the ith location from the beginning of the sector, and
the block bits act as an index. Hence the replacement algorithm need only consider
sector addresses in its replacement algorithm.

Sector mapping was used on the first commercial cache system, IBM System/360
Model 85. In this computer system, there were sixteen sectors, each sector with
sixteen blocks. Each block consisted of 64 bytes, giving a total of 1024 bytes in
each sector and 16 Kbytes in all. On a miss, 4 bytes were sent to the cache and also
to the processor, using four-way interleaved memory; the remaining 60 bytes of the
block being transferred subsequently. A true least recently used replacement algorithm
was implemented in hardware.

Sector mapping might be regarded as a fully associative mapping scheme with
valid bits, as in some microprocessor caches. Each block in the fully associative
mapped cache corresponds to a sector, and each byte corresponds to a “sector
block”. Hence, though the sector mapping generally lost favor after the System/360
Model 85 (around 1968), perhaps because the hit ratio of the sector mapping was
said to have been less than comparable to set-associative mapping, a form of it has
reappeared in microprocessor systems. We note that the limited bus width (8, 16 or
32 bits) of microprocessor systems prevents large numbers of bytes/words being
transferred simultaneously.

3.3 Fetch and write mechanisms

3.3.1 Fetch policy

We can identify three strategies for fetching bytes or blocks (lines) from the main
memory to the cache, namely:

1. Demand fetch.
2. Prefetch.
3. Selective fetch.

76 Computer design techniques

The first two strategies have already been encountered in paging systems (Chapter
2). Demand fetch is the name given to fetching a block when it is needed and is not
already in the cache, i.e. to fetch the required block on a miss. This strategy is the
simplest and requires no additional hardware or tags in the cache recording the
references, except to identify the block in the cache to be replaced.

Prefetch is the name given to the strategy of fetching blocks before they are
requested. A simple prefetch strategy is to prefetch the (i + 1)th block when the ith
block is initially referenced (assuming that the (i + 1)th block is not already in the
cache) on the expectation that it is likely to be needed if the ith block is needed.
Sequential prefetch can reduce the miss ratio by 50 per cent if the cache is large.
Unfortunately, fetching the (i + 1)th block means that some other block must be
displaced, and this block might be more likely to be referenced than (i+1)th block.
On the simple prefetch strategy, not all first references will induce a miss, as some
will be to prefetched blocks. Prefetching could be limited to when there has been a
miss to the ith block (prefetching on a miss).

Selective fetch describes the policy of not always fetching blocks, dependent upon
some defined criterion, and in these cases using the main memory rather than the
cache to hold the information. For example, shared writable data might be easier to
maintain if it is always kept in the main memory and not passed to a cache for
access, especially in multiprocessor systems. Cache systems need to be designed so
that the processor can access the main memory directly and bypass the cache.
Individual locations could be tagged as non-cacheable. Because instructions should
never be altered, caches could be split into two parts, an instruction cache and a
data cache, and the write mechanism need only be applied to the data cache. It is
necessary to enforce the policy that instructions are not modified during execution.
This enforcement policy can be done only on a completely new system and when
software need not be brought from a previous system without this policy.

Examples of separate instruction and data cache systems include the National
Semiconductor NS32532 32-bit microprocessor (Maytal et al., 1989) which has a
512-byte instruction cache and a 1024-byte data cache on chip, both with a 16-byte
block size. The instruction cache is directly mapped. The data cache uses a two-way
set-associative cache with a least recently used replacement algorithm and write-
through policy (see page 77). Most other microprocessor caches are, or can be,
divided into separate instruction and data caches.

3.3.2 Write operations

As reading the required word in the cache does not affect the cache contents, there
can be no discrepancy between the cache word and the copy held in the main
memory after a memory read instruction. However, in general, writing can occur to
cache words and it is possible that the cache word and copy held in the main
memory may be different. It is necessary to keep the cache and the main memory
copy identical if input/output transfers operate on the main memory contents, or if

Cache memory systems 77

multiple processors operate on the main memory, as in a shared memory multiple
processor system.

If we ignore the overhead of maintaining consistency and the time for writing
data back to the main memory, then the average access time is given by the previous
equation, i.e. £, = t, + (1 — h)¢_, -assuming that all accesses are first made to the
cache. The cache access time, ¢, is the time taken to interrogate the cache and
discover whether the data is present, and to produce it if it is. If the data item is not
present, then it takes ¢ seconds to fetch the data item to the processor, including
any additional time to load the cache. We can separate the cache access time into a
cache interrogate time, ¢, and a subsequent cache read time, ¢_. Then the average
access time is given by:

t,=t;+he +(1-hy

The average access time including write operations will depend upon the mechanism
used to maintain data consistency. If it is not necessary to keep both main memory
and cache memory contents consistent, for example in a system in which all
processors and input/output devices access data through the one cache, then the
average access time is given as before.

Though the average access time of the cache is a major factor in the performance
of the system and will be computed for various read/write strategies in the next
sections, the overall speed of computation is influenced by various factors. In
particular, the instruction execution speed is determined by various internal operations
in addition to instruction fetches and operand accesses. Also, differences in machine
architecture can have a profound influence on the overall performance. An increase
in the block size without any increase in the cache memory/main memory data paths
might even result in a decrease in the overall performance as multiple transfers
appear on the data path.

There are two principal alternative mechanisms to update the main memory,
namely the write-through mechanism and the write-back mechanism,

3.3.3 Write-through mechanism

In the write-through mechanism, every write operation to the cache is repeated to
the main memory, normally at the same time. The additional write operation to the
main memory will, of course, take much longer than to the cache and will dominate
the access time for write operations. Fortunately, there are usually several read
operations between write operations (typically between three and ten). Smith (1982),
for example, reports that in one of his studies, 16 per cent of references were write
references, though for different programs the percentage varied from 5 per cent to
34 per cent. The average access time of write-through with transfers from main
memory to the cache on all misses (read and write) is given by:

78 Computer design techniques

t,=t.+(=hy, +wi, —1t)
=1 -w) + (1 —h), +wt,

=1 -w) + (1 - h+w)r ife, =1t

where ¢, = time to transfer block to cache and w = fraction of write references.

The term (¢, — t.) is the additional time to write the word to main memory
whether a hit or a miss has occurred, given that both cache and main memory write
operations occur simultaneously but the main memory write operation must complete
before any subsequent cache read/write operations can proceed. For medium and
large computer systems, the time to transfer a block is the same as the time to
transfer a word/byte, as the memory data path is designed to match the cache, i.e.
t, = t,. For smaller microprocessor systems, separate data transfers are needed for
each byte/word transfer of a block. Then ¢, = bt when there are b bytes in the
block.

Suppose ¢, = 25 ns, ¢, = 200 ns, h = 99 per cent, w = 20 per cent, and the memory
data path fully matches the cache block size. The average access time would be
62 ns, with misses accounting for 2 ns and write policy accounting for 35 ns. When
the data path does not match the block size and more than one transfer is required,
the misses become more significant. For example, if the block size is sixteen (b =
16) the average access time is 92 ns, with misses accounting for 32 ns and the write
policy accounting for 35 ns.

On a cache miss, a block could be transferred from the main memory to the cache
whether the miss was caused by a write or by a read operation. The term fetch on
write is used to describe a policy of bringing a word/block from the main memory
into the cache for a write operation. In write-through, fetch on write transfers are
often not done on a miss. The information will be written back to the main memory
but not kept in the cache. Then the average access time is given by:

b=t +{A-w)(1-h) +w(—t)

= (1 =w)(t, + (1 = h)g) +we

The hit ratio will generally be slightly lower than for the fetch on write policy
because altered blocks will not be brought into the cache and might be required
during some read operations, depending upon the program. Suppose the hit ratio and
other parameters were the same as before, then the average access time is 61.6 ns or,
with b = 16, 85.6 ns.

The write-through scheme can be enhanced by incorporating buffers, as shown in
Figure 3.6, to hold information to be written back to the main memory, freeing the
cache for subsequent accesses. (Buffers are also found in write-back schemes, see
page 80). For write-through, each item to be written back to the main memory is
held in a buffer together with the corresponding main memory address if the transfer
cannot be made immediately. The capacity to store more than one data/address pair

Cache memory systems 79

Data Address
Main
Processor Cache Buffer memory
Write)

Read

Figure 3.6 Cache with write buffer

is preferable. A capacity of four data/address items is typically sufficient and is used,
for example on the IBM 3033, with write-through cache. If the write-through is
totally transparent to the cache operation, the average cycle time reduces to that
given in Section 3.3.2. Buffers require considerable additional logic to ensure that
any request to main memory (by the processor/cache mechanism or another device)
checks the buffers. All memory reference addresses have to be compared to the
addresses stored in the buffers.

Immediate writing to main memory when new values are generated ensures that
the most recent values are held in the main memory and hence that any device or
processor accessing the main memory should obtain the most recent values immedi-
ately, thus avoiding the need for complicated consistency mechanisms. There will
be a latency before the main memory has been updated, and the cache and main
memory values are not consistent during this period. If the processor fails, the
system can be restored relatively easily. The main memory often has error detection/
correction circuitry based upon parity and Hamming codes, but the cache memory
may not have this circuitry.

Write-through caches can be found in, for example, the IBM 3033 and VAX-11/
780 and earlier computers. They can also be found in many microprocessor cache
systems, being easy to implement and to maintain consistently on a single bus
system. The Intel 82385 cache controller (Intel, 1987) for the Intel 80386 32-bit
microprocessor uses a posted write-through policy. Data words are written to the
main memory and if copies are maintained in the cache, the cache is updated,
otherwise it is unaffected (i.e. no fetch on a write miss). Operands written to the
main memory are buffered. The processor continues with the next operation while
the cache controller updates the main memory, i.e. the location is identified for
write-through, but the processor does not wait for the operation to be completed.

80 Computer design techniques
3.3.4 Write-back mechanism

In the write-back mechanism, the write operation to the main memory is only done
at block replacement time. At this time, the block displaced by the incoming block
might be written back to the main memory irrespective of whether the block has
been altered. The policy is known as simple write-back, and leads to an average
access time of:

ty=t,+ (1 =hy, + (1 —hyr, =t_+2(1 - h)t,

where one (1 - h)z, term is due to fetching a block from memory and the other
(1 — h)t, term is due to writing back a block. Write-back normally handles write
misses as fetch on write, as opposed to write-through, which often handles write
misses as no fetch on write.

The write-back mechanism usually only writes back blocks that have been
altered. To implement this policy, a 1-bit tag is associated with each cache block
and is set whenever the block is altered. At replacement time, the tags are examined
to determine whether it is necessary to write the block back to the main memory.
The average access time now becomes:

t,=t.+ (1 =hyy + w1 -h)t,=¢+ 1 -h)(1+wp)t,

where wy is the probability that a block has been altered (fraction of blocks altered).
The probability that a block has been altered could be as high as the probability of
write references, w, but is likely to be much less, as more than one write reference
to the same block is likely and some references to the same byte/word within the
block are likely. The hit ratio will be the same as the simple write-back and the same
as the write-through with fetch on write. For relatively little extra hardware, the
average access time has been reduced by (1 — h + wy)z, which is quite significant.
However, under this policy the complete block is written back, even if only one word
in the block has been altered, and thus the policy results in more traffic than is
necessary, especially for memory data paths narrower than a block, but still there is
usually less memory traffic than write-through, which causes every alteration to be
recorded in the main memory.

The write-back scheme can also be enhanced by incorporating buffers to hold
information to be written back to the main memory, just as is possible and normally
done with write-through. Apart from the two main types of write policies, write-
back and write-through, there is a variation called write-once, which is particularly
applicable to multiple processor systems (see Section 3.8, page 9).

Cache memory systems 81

3.4 Replacement policy

3.4.1 Objectives and constraints

When the required word of a block is not held in the cache, we have seen that it is
necessary to transfer the block from the main memory into the cache, displacing an
existing block if the cache is full. Except for direct mapping, which does not allow a
replacement algorithm, the existing block in the cache can be chosen by one of the
algorithms described in Chapter 2 for virtual memory systems. For cache systems,
the least recently used algorithm is most commonly used. We shall discuss these
algorithms in the context of cache memory systems in the following sections. The
replacement mechanism must be implemented totally in hardware, preferably such
that the selection can be made completely during the main memory cycle for
fetching the new block. Ideally, the block replaced will not be needed again in the
future. However, such future events cannot be known and a decision has to made
based upon facts that are known at the time.

In Chapter 2, algorithms were classified as fixed partition algorithms or variable
partition algorithms. In fixed partition algorithms, a fixed amount of memory is
allocated. In variable partition algorithms the memory allocation may be altered by
the algorithm as in the working set algorithm. Cache memory replacemént algorithms
always use fixed partition algorithms, given the relatively small size of caches.
Replacement algorithms are also classified in Chapter 2 as usage-based or non-
usage-based. For a cache, usage and non-usage algorithms are both candidates for
the replacement algorithm; a critical factor is often the amount of hardware neces-
sary to implement the algorithm, as the differences in performance might be less
important than the differences in cost.

A usage-based replacement algorithm for the fully associative cache needs to take
the usage (references) to all stored blocks into account. A usage-based replacement
algorithm for a set-associative cache needs to take only the blocks in one set into
account at replacement time, though a record needs to be kept of relative usage of
the blocks in each set.

Whatever type of algorithm (usage-based or non-usage-based), there are generally
fewer blocks to consider in a set-associative cache than in a similar sized fully
associative cache, and the logic is simpler. For a two-way set-associative cache, only
one bit per set is needed to indicate which item should be replaced. The associativity
of caches is often small (two or four) but some large systems have set sizes up to
sixteen (e.g. IBM 3033) and then the required logic and its speed to implement the
replacement algorithm must be carefully considered.

82 Computer design techniques
3.4.2 Random replacement algorithm

Perhaps the easiest replacement algorithm to implement is a pseudorandom replace-
ment algorithm. A true random replacement algorithm would select a block to
replace in a totally random order, with no regard to memory references or previous
selections; practical random replacement algorithms can approximate this algorithm
in one or several ways. For example, one counter for the whole cache could be
incremented at intervals (for example after each clock cycle, or after each reference,
irrespective of whether it is a hit or a miss). The value held in the counter identifies
the block in the cache (if fully associative) or the block in the set if it is a set-
associative cache. The counter should have sufficient bits to identify any block. For
a fully associative cache, an n-bit counter is necessary if there are 2" words in the
cache. For a four-way set-associative cache, one 2-bit counter would be sufficient,
together with logic to increment the counter.

3.4.3 First-in first-out replacement algorithm

The first-in first-out replacement algorithm removes the block which has been in the
cache for the longest time. The first-in first-out algorithm would naturally be
implemented with a first-in first-out queue of block addresses, but can be more
easily implemented with counters, only one counter for a fully associative cache or
one counter for each set in a set-associative cache, each with a sufficient number of
bits to identify the block.

3.4.4 Least recently used algorithm for a cache

The least recently used algorithm (LRU) is popular for cache systems and can be
implemented fully when the number of blocks involved is small. There are several
ways the algorithm can be implemented in hardware for a cache, these include:

1. Counters.

2. Register stack.

3. Reference matrix.

4. Approximate methods.

In the counter implementation, a counter is associated with each block. A simple
implementation would be to increment each counter at regular intervals and to reset
a counter when the associated block had been referenced. Hence the value in each
counter would indicate the age of a block since last referenced. The block with the
largest age would be replaced at replacement time.

The algorithm for these aging registers can be modified to take into account the
fact that the counters have a fixed number of bits and that only a relative age is

Cache memory systems 83

required, as follows. When a hit occurs, the counter associated with the hit block is
reset to 0, indicating that it is the most recently used, and all counters having a
smaller value than the “hit block” counter originally are incremented by 1. All
counters having a larger value are unaffected. On a miss when the cache is not full,
the counter associated with the incoming block is reset to 0 and all other counters
are incremented by 1. On a miss when the cache is full, the block with a counter set
at the maximum value (three for a 2-bit counter and four sets) is chosen for
replacement and then the counter is reset to 0, and all other counters incremented by
1. The counter with the largest value identifies the least recently used block. For
example, suppose there are four blocks in the set of a set-associative cache. A 2-bit
counter is sufficient for each block. Let the counters in one set be C, C,, C, and C,.
Initially, all the counters are set to 0. As an example, we obtain the sequence in
Table 3.1 for the conditions specified.

In the register stack implementation, a set of n-bit registers is formed, one for
each block in the set to be considered. The most recently used block is recorded at
the “top” of the stack and the least recently used block at the bottom. Actually, the
set of registers does not form a conventional stack, as both ends and internal values
are accessable. The value held in one register is passed to the next register under
certain conditions. When a block is referenced, starting at the top of the stack, the
values held in the registers are shifted one place towards the bottom of the stack
until a register is found to hold the same value as the incoming block identification.
Subsequent registers are not shifted. The top register is loaded with the incoming
block identification. This has the effect of moving the contents of the register
holding the incoming block number to the top of the stack. It is left as a logic design
exercise to devise the required logic. It will be found that the logic is fairly
substantial and slow, and not really a practical solution, given the alternative
reference matrix method.

The reference matrix method centers around a matrix of status bits. There is more
than one version of the method. In one version (Smith, 1982), the upper triangular
matrix of a B X B matrix is formed without the diagonal, if there are B blocks to

Table 3.1 Least recently used algorithm using counters — set size of four blocks

Block referenced (O C, C, C, Subsequent actions
Initialization 0 0 0 0

Miss 0 1 1 1 Block 0O filled

Miss 1 0 2 2 Block 1 filled
Block 0 0 1 2 2 Block 0 accessed
Miss 1 2 0 3 Block 2 filled
Miss 2 3 1 0 Block 3 filled
Block 1 3 0 2 1 Block 1 accessed
Miss 0 1 3 2 Block 0 replaced
Miss 1 2 0 3 Block 2 replaced

Computer design techniques

84

poylaw Xiijew adualsey (q) poylaw xoeis 1915139y (e)
uoneuswa|dwi wyogd|e Juswade|dal pasn AjJuadal jsea £°g aandiy

poylew Xuyew souaseey (q)

wyyobe woyy abed
_. ¢ € € + v 4 pasn Ajjuaoal jsea
yPeait vect rpecit et vect re€cl rect
L L L ! L L L
L2 0|2 0|2 0 (e L e Le ¢ xulpew
0} (€ [00]¢ 00]j¢ 01 (e 01 |€ L L |€ 8ousispey
001 (P 0L Ly LE LY [S 4 LLb |y 00 14 0 14
2 € v L by 2 € $30U8.9)01 8bey
pouiaw yoejs Jeysibay (e)
wyuobie woyy obed
L ¢ € € pasn AjjuadaJ 1sea
i [€ € ¥d
¥ L [[4 € €4 Yoels
€ b L v Z € 2d Jejsibay
4 [¥ 1 14 [£ td
2 [v 1 % b4 € $90Ud1991 9bey

Cache memory systems 85

consider. The triangular matrix has (B x (B — 1))/2 bits. When the ith block is
referenced, all the bits in the ith row of the matrix are set to one and then all the bits
in the ith column are set to zero. The least recently used block is one which has all
zeros in its row and all ones in its column, which can be detected easily by logic.
The method is demonstrated in Figure 3.7 for B = 4 and the reference sequence 3, 2,
4, 1, 4, 3, 3, together with the values that would be obtained using a register stack.
Maruyama (1975) extends the reference matrix method to select m least recently
used pages where m can be greater than one.

When the number of blocks to consider increases above about four to eight,
approximate methods are necessary for the LRU algorithm. Figure 3.8 shows a two-
stage approximation method with eight blocks, which is applicable to any replacement
algorithm and has been used with the least recently used algorithm (IBM 370/168-3).
The eight blocks are divided into four pairs, and each pair has one status bit to
indicate the most/least recently used block in the pair (simply set or reset by
reference to each block). The least recently used replacement algorithm now only
considers the four pairs. Six status bits are necessary (using the reference matrix) to
identify the least recently used pair which, together with the status bit of the pair,
identifies the least recently used block of a pair. The method can be extended to
further levels. For example, sixteen blocks can be divided into four groups, each
group having two pairs. One status bit can be associated with each pair, identifying
the block in the pair, and another with each group, identifying the group in a pair of
groups. A true least recently used algorithm is applied to the groups. In fact, the
scheme could be taken to its logical conclusion of extending to a full binary tree. It
is left as an exercise to determine whether this would make a reasonable design
choice.

Blocks

Flag indicating
least recently used
block of pair

LRU replacement
algorithm

|

Select pair then word

Figure 3.8 Two-stage replacement algorithm

86 Computer design techniques

3.5 Cache performance

For any given cache, if the size of the cache is increased, the miss ratio decreases
and generally the performance of the system increases. The actual miss ratio
depends very heavily on the programs being executed and the overall workload,
such that an exact fixed value of miss ratio cannot be found for any particular
computer system. The miss ratio also depends upon the cache organization chosen,
the size of the internal divisions of the cache, the write policy and the replacement
algorithm.

In the design phase of a computer system incorporating a cache, there are three
basic methods of obtaining an estimate of the miss ratio:

1. Trace-driven simulation.
2. Direct measurement.
3. Mathematical modelling.

The trace-driven method is perhaps the most popular, giving miss ratios in actual
situations which can be varied. In this method, programs are selected for execution
on a computer system not necessarily having a cache. (It does not matter whether
the system has a cache of any kind but the system should have a processor of the
type in the system under investigation.) A record of the instruction and data
references is kept. The processor trace facility (assuming there is one) is generally
used. After each test program instruction has been executed, a trace interrupt causes
a special routine to be executed; this records the instruction and data references. The
routine usually has to recognize the effective addresses of the test program instruc-
tions, but this is relatively straightforward to accomplish. For example, the Intel
8086 microprocessor (and many other processors) has an instruction which returns
the effective address rather than the addressed operand (LEA instruction — load
effective address) which can be used in many cases.

Specific cache operations are then simulated, using the instruction/data references
that have been gathered, to determine the miss ratio. Generally, a very large number
of references needs to be gathered to obtain accurate figures, usually at least several
hundred thousand references. When the cache simulation is begun, a relatively large
number of initial misses will be due to the cache containing no information. This of
course occurs in practice; such cold starts produce a disproportionate number of
misses. Also occurring in practice are context switch misses, which occur frequently
in a multiprogramming environment. In such an environment, the computer system
will execute part of one program and will then return to the operating system to
select another program. It will then execute part of this program and the procedure
will be repeated with all user programs. Even in a single-user system, there will be
operating system calls causing a change in context. However, many trace/simulation
experiments will assume that warm start results are required. For warm start results
(when the effects of the start-up and context changes are not considered) traces of

Cache memory systems 87

perhaps 300 000-1 000 000 references, or thereabouts, are required. Since trace
programs will operate substantially more slowly than the test program alone,
experiments need to be performed for many hours. There are techniques for
substantially reducing the number of references but still obtaining accurate values
and the reader is directed to Stone (1987) for further details. Other trace experiments
have been directed towards transient behavior of cold start and context switch
environments (Strecker, 1983).

Figure 3.9 shows representative warm start results obtained by the trace method
for three programs, A, B and C, and is based on the results of Smith (1987a). There
can be significant differences between individual programs; in fact there can be
enormous differences. As expected, as the overall size of the cache is increased, the
hit ratio initially decreases significantly but this change reduces as the cache size is
increased further and after a certain cache size, the change in miss ratio becomes
unnoticeable.

When computed as a function of block size, as shown in Figure 3.10, for a given
cache size, the miss ratio decreases with increasing cache size but often a minimum
is reached whereafter the miss ratio increases. Hence there is an optimum value for
the block size for a particular cache size. For example, a good block size for a
256 byte cache, according to Figure 3.9, would be perhaps 64 bytes. As the cache
size is increased, the optimum block size increases. The overall effect is caused
partly by program locality, when programs reference more than one contiguous area
and fewer of these areas can reside in the cache simultaneously as the block size
increases. For example, when the number of blocks is half the cache size, only two
different contiguous areas could be stored in the cache simultaneously. More
significantly, as the block size increases, there is more contiguous information in the
cache and more likelihood that some of this information will not be wanted. This

0.5 Program A

Program B
0.1

0.05

Miss ratio

Program C
0.01p-

i] |
2K4K 8K 16K 32K

Cache size

Figure 3.9 Miss ratio against cache size

88 Computer design techniques

Instruction/data cache
= 32 Instruction cache
0.50[\/N‘/
o
@ 0.10 ;
8 - Cache size
£ oost
01+
00 32768

|
4 8 16 32 64 128
Block size (bytes)

Figure 3.10 Miss ratio against block size

unwanted information displaces information that might be wanted in the future (an
effect called memory pollution). We note also that as the block size increases, more
information must be transferred into the cache on a miss (assuming that the whole
block is transferred at one time), which decreases the operational speed if some of
the information is not wanted.

The miss ratio for a particular cache organization differs for instruction references
and data references. For data references, we might get a more pronounced “knee” in
the miss ratio curve as plotted against block size, particularly for small cache sizes,
whereas for instruction fetches (shown by the dotted lines in Figure 3.10) there is a
general decrease in miss ratio for increasing block size. This effect is because
instructions are more likely to be referenced sequentially and more of the information
in larger blocks is likely to be needed. (However, data items are also often stored in
contiguous locations.)

The memory reference sequence could be obtained by direct measurement by
attaching special monitoring hardware to the computer system to record the memory
references. (In fact, for the study reported by Smith (1987a) simulation trace
references and hardware monitored references were both used.) Monitoring hardware
is feasible for relatively slow and medium speed systems, including microprocessor
systems, but might be difficult, if not impossible, to implement for the fastest
computer system operating at full speed. It might be possible to decrease the speed
of operation of these fast computer systems by decreasing the clock rate so that the
memory references could be captured. Once the sequence has been obtained, it can
be processed by a cache simulation program, as before.

One advantage of direct measurement is that all memory references can be
obtained. Some instructions might not be easily traced in software, notably operating

Cache memory systems 89

system reserved instructions. Also, hardware monitors operate at a much greater
speed than software monitors and may be left on a system during a normal operation
without appreciably affecting the operation. In contrast, software trace monitors
slow the system down drastically. To simulate context switches, several programs
can be traced and each program executed during the cache simulation for, say,
20 000 references in sequence. For example, in the study by Smith (1987a), twenty-
seven program traces were selected from five different types of computer system as
a representative sample.

An alternative method of gathering cache results is to construct the cache
physically in a system and make direct measurements. As a design tool before
finally deciding on the cache size and organization, the method has the disadvantage
that cache parameters cannot be easily altered. However, it can be performed after a
cache design has been selected to confirm that the choice was appropriate.

Mathematical models of caches can be developed based upon differential equations,
statistical and probabilistic techniques. After a mathematical model has been obtained,
it is generally compared to experimental simulation results. Mathematical curve
fitting expressions can also be derived based upon trace-driven results, and
extrapolated for designs not covered in the trace-driven simulation.

The contents of a cache in a multiprogrammed system will exhibit constant
changes from one program to another. During the transition between programs, a
much higher miss ratio will occur as the new program displaces the old program in
the cache. The miss ratio will reduce until a steady state is reached with the cache
holding the new program. This important aspect is called the transient behavior of
caches and has been studied mathematically by Strecker (1983), and by Thiebaut
and Stone (1987). Strecker has developed a formula the rate of change of the
number of locations filled in the cache as:

)

where m(n) is the miss ratio with n locations filled in the cache and p(n) is the
probability that a miss results in a new location being filled. (p(n) is zero if the
cache is filled, one if the cache is not filled and any free location can be used, i.e. in
a fully associative cache, and less than one with direct and set-associative caches,
which place restraints upon the availability of locations for incoming blocks.)
Strecker assumes that the probability is numerically equal to the fraction of free
cache locations, 1.e.:

s—n

p(n) =

where s is the size of the cache. The reasonably good approximation to the miss

S~

90 Computer design techniques

ratio is given as:
a+bn

mn = 57

where a and b are constants to be found from trace results. Hence we obtain:

dn_(a+bn)(s-n)

dt ~ (a+ n)s

It is left as an exercise to solve this equation (see Strecker, 1983).

Thiebaut and Stone (1987) introduced the term footprint to describe the active
portion of a process that is present in the cache. Footprints of two processes reside
in the cache during a transition from one program to another. Probabilistic equations
are derived (see Stone, 1987).

Mathematical modelling is useful in helping to see the effect of changing para-
meters, but mathematical models cannot capture the vast differences in programs.

3.6 Virtual memory systems with cache memory

In a computer system with virtual memory, we can insert the cache after the virtual—-
real address translation, so that the cache holds real address tags and the comparison of
addresses is done with real addresses. Alternatively, we can insert the cache before the
virtual-real translation so that the cache holds virtual address tags and the comparison
of addresses is done using virtual addresses. Let us first consider the former case, which
is much less complicated and has fewer repercussions on the rest of the system design.

3.6.1 Addressing cache with real addresses

Though it is not necessary for correct operation, it is common to perform the virtual—
real translation at the same time as some independent part of the cache selection
operation to gain an improvement in speed. The overlap is done in the following way.
As we have seen in Chapter 2, the address from the processor in a paged virtual
memory system is divided into two fields, the most significant field identifying the
page and the least significant field identifying the word (line) within the page. The
division into page and line is fixed for a particular system and made so that a suitable
sized block of information is transferred between the main and the secondary
memories. In a cache system, the address is also divided into fields — a most significant
field (the tag field corresponding to the tags stored in the cache) and a less significant
field (to select the set (in set-associative cache) and to select the block and word within
the block). If the tag field corresponds directly to the page field in the real address,
then the set selection can be done with the next significant bits of the address before
the virtual address translation is done, and the virtual address translation can be

Cache memory systems 91

performed while the set selection is being done. When the address translation has been
done, and a real page address produced, this address can be compared with the tags
selected from the cache, as shown in Figure 3.11. On a cache miss, the real address is
immediately available for selecting the block in main memory, assuming a page fault
has not occurred and the block can be transferred into the cache directly.

Clearly, as described, the overlap mechanism relies on the page size being the
same as the overall cache size (irrespective of the organization), although some
variations in the lengths of the fields are possible while still keeping some concurrent
operations. In particular, the page size can be larger, so that there are more bits for
the line than needed for the set/block/word selection in the cache. The extra bits are
then concatenated with the real page address before being compared with the tags.

3.6.2 Addressing cache with virtual addresses

If the cache is addressed with virtual addresses these are immediately available for
selecting a word within the cache and there is a potential increase in speed over a
real addressed cache. Only on a cache miss would it be necessary to translate a
virtual address into a real address, and there is more time then. Clearly, if the tag
field of the virtual address is larger than the real address, the tag fields in the cache
would be larger and there would be more associated comparators. Similarly, if the

Virtuai address
Page/Tag Word/Index Byte

-
| | | .
!
] I
Translation
look-aside .
buffer (TLB) Cache
Virtual Real
address address Tag Word
[
-1 I
\
Compare
Select byte
Access word

Figure 3.11 Cache with translation look-aside buffer

92 Computer design techniques

virtual address is smaller than the real address, the tag fields in the cache would be
smaller and there would be fewer comparators. Often though, the virtual and real
address tags have the same number of bits. A particular advantage of a virtual
addressed cache is that there is no need for overlap between the virtual/real address
translation and the cache operation, as there is no translation mechanism for cache
hits. So the division of addresses into fields in the virtual/real addresses and the
division of fields in the cache selection mechanism can be designed separately and
need not have any interrelationship.

However, though the virtual addressed cache is an apparently attractive solution,
it has a complication concerned with the relationship between virtual addresses in
different processes which may be in the cache together. It is possible for different
virtual addresses in different processes to map into the same real address. Such
virtual addresses are known as synonyms — from the word denoting the same
thing(s) as another but suitable for different contexts. Synonyms are especially likely
if the addressed location is shared between processes, but can also occur if programs
request the operating system to use different virtual addresses for the same real
address. Synonyms can occur when an input/output device uses real addresses to
access main memory accessable by the programs. They can also occur in multi-
processor systems when processors share memory using different virtual addresses.
It is also possible for the same virtual address generated in different processes to
map into different real addresses.

Process or other tags could be attached to the addresses to differentiate between
virtual addresses of processes, but this adds a complication to the cache design, and
would still allow multiple copies of the same real block in the cache simultaneously.
Of course, synonyms could be disallowed by placing restrictions on virtual addresses.
For example, each location in shared code could be forced to have only one virtual
address. This approach is only acceptable for shared operating system code and is
done in the IBM MVS operating system.

Otherwise, synonyms are handled in virtual addressed caches by the use of a
reverse translation buffer (RTB), also called an inverse translation buffer (ITB). On
a cache miss, the virtual address is translated into a real address using the virtual—
real translation look-aside buffer (TLB) to access the main memory. When the real
address has been formed, a reverse translation occurs to identify all virtual addresses
given under the same real address. This reverse translation can be performed at the
same time as the main memory cycle. If the real address is given by another virtual
address already existing in the cache, the virtual address is renamed to eliminate
multiple copies of the same block. The information from the main memory is not
needed and is discarded. If a synonym does not exist, the main memory information
is accepted and loaded into the cache.

When there are direct accesses to the main memory by devices such as a direct
memory access (DMA) input/output device, the associated block in the cache, if
present, must be recognized and invalidated (see Section 3.2.2). To identify the
block, a real—virtual address translation also needs to be performed using a reverse
translation buffer.

Cache memory systems 93

3.6.3 Access time

The average access time of a system with both a cache and a paged virtual memory
has several components, depending on one of several situations arising — whether
the real address (assuming a real addressed cache) is in the translation look-aside
buffer, the cache or the main memory and whether the data is in the cache or the
main memory. The translation look-aside buffer is used to perform the address
translation when the virtual page is in the translation look-aside buffer. If there is a
miss in the translation look-aside buffer, the translation is performed by accessing a
page table which may be in the cache or in the main memory. There are six
combinations of accesses, namely:

Address in the translation look-aside buffer, data in the cache.
Address in the translation look-aside buffer, data in the main memory.
Address in the cache, data in the cache.

Address in the cache, data in the main memory.

Address in the main memory, data in the cache.

Address in the main memory, data in the main memory.

SRl

(Part of the page table could be in the secondary memory, but we will not consider
this possibility.) Suppose there is no overlap between translation look-aside buffer
translation and cache access and the following times apply:

Translation look-aside buffer address translation time = 25ns
(or to generate a TLB miss)

Cache time to determine whether address in cache = 25ns

Cache data fetch if address in cache = 25ns

Main memory read access time = 200 ns

Translation look-aside buffer hit ratio = 09

Cache hit ratio = 095

the access times and probabilities of the various access combinations are given in
Table 3.2.

Table 3.2 Access times and probabilities of the various access combinations

Access times Probabilities

25+25+25 = 75ns 0.9 x 0.95 =0.855
25+ 25 + 200 =250 ns 0.9 x 0.05 =0.045
25+25+25+25+25 =125ns 0.1 x 0.95 x 0.95 =0.09025
25 +25+25+25+200 =300 ns 0.1 x0.95 x 0.05 =0.00475
25+25+200+25+25+25 =325 ns 0.1 x 0.05x0.95 =0.00475
25+ 25+ 200+ 25+ 25 + 200 = 500 ns 0.1 x 0.05 x 0.05 = 0.00025

94 Computer design techniques
The average access time is given by:

(75 x 0.855) + (250 x 0.045) + (125 x 0.09025) + (300 x 0.00475) +
(325 x 0.00475) + (500 x 0.00025) = 89.75 ns (64.125 ns on a cache hit)

If the virtual memory system also incorporates two-level paging or segments,

further combinations exist. The calculation can easily be modified to take into
account partial overlap between the TLB access and cache access.

3.7 Disk caches

The concept of a cache can be applied to the main memory/secondary memory
interface. A disk cache is a random access memory introduced between the disk and
the normal main memory of the system. It can be placed within the disk unit, as
shown in Figure 3.12, or within the computer system proper. The disk cache has
considerable capacity, perhaps greater than 8 Mbytes, and holds blocks from the
disk which are likely to be used in the near future. The blocks are selected from
previous accesses in much the same way as blocks are placed in a main memory
cache. A disk cache controller activates the disk transfers. The principle of locality,
which makes main memory caches effective, also makes disk caches effective and
reduces the effective input/output data page transfer time, perhaps from 20-30 ms to
2-5 ms, depending upon the size of page transfer to the main memory. The disk
cache is implemented using semiconductor memory of the same type as normal
main memory, and clearly such memory could have been added to the main memory
as a design alternative. It is interesting to note that some operating systems, such as
UNIX, employ a software cache technique of maintaining an input/output buffer in
the main memory.

The unit of transfer between the disk and the disk cache could be a sector,
multiple sectors or one or more tracks. A minimum unit of one track is one

Central processor])
unit Disk unit

Disk cache

Figure 3.12 Disk cache in disk unit

Cache memory systems 95

candidate (Grossman, 1985), as is transferring the information from the selected
sector to the end of the track. A write-through policy has the advantage of simplifying
error recovery. Not all the information from/to the disk need pass through the disk
cache and some data/code might be better not using the cache. One possibility is to
have a dynamic cache on/off mechanism which causes the cache to be bypassed
under selected circumstances.

Perhaps one of the main attractions of placing the additional cache memory in the
disk unit is that existing software and hardware may not need to be changed and
substantial improvements in speed can be obtained in an existing system. Most
commercial disk caches are integrated into the disk units. Examples include the IBM
3880 Model 23 Cache Storage Controls with an 8-64 Mbyte cache. Disk caches
have also been introduced into personal computer systems. It is preferable to be able
to access the disk cache from the processor and to allow disk cache transfers
between the disk cache and disk simultaneously, as disk transfers might be one or
more tracks and such transfers can take a considerable time. Some early commercial
disk caches did not have this feature (for example the IBM 3880 Model 13).

Disk caches normally incorporate error detection and correction. For example the
disk cache incorporated into the IBM 3880 Model 23 has error detection/correction to
detect all triple-bit errors, and correct all double-bit errors and most triple-bit errors.
The earlier IBM 3880 Model 13, having a 4-8 Mbyte cache, could detect double
errors and correct single-bit errors (Smith, 1985). Both these disk drives maintain
copies of data in the cache using a least recently used replacement algorithm.

3.8 Caches in multiprocessor systems

In this section we will briefly review the methods suggested to cope with multiple
processors each having caches, or having access to caches. Multiprocessor systems
will be discussed in detail in subsequent chapters. In a situation of more than one
cache, it is possible that copies of the same code/data are held in more than one
cache, and are accessed by different processors. Reading different copies of the
same code/data does not generally cause a problem. A complication only exists if
individual processors alter their copies of data, because shared data copies should
generally be kept identical for correct operation. We note that write-through is not
sufficient, or even necessary, for maintaining cache coherence, as more than one
processor writing-through the cache does not keep all the values the same and up to
date. Several possibilities exist to maintain cache coherence, in particular:

Shared caches.
Non-cacheable items.

Sloop bus mechanism.
Broadcast write mechanisms.
Directory methods.

NP9 -

96 Computer design techniques

Clearly, a single cache shared by all processors with the appropriate controls would
maintain cache coherence. Also, a shared cache might be feasible for DMA devices
accessing the cache directly rather than relying on a write policy. However, with
several processors the performance of the system would seriously degrade, due to
contention. In a multiprocessor system with more than one memory module access-
ible by all the processors, an appropriate place for each cache is attached to the
processor, as shown in Figure 3.13. It would also be possible to place the caches in
front of each memory module, but this arrangement would not decrease the inter-
connection traffic and contention.

Cache coherence problems only occur on data that can be altered, and such
writable data could be maintained only in the shared main memory and not placed
in the cache at all. Additional software mechanisms are needed to keep strict control
on the shared writable data, normally through the use of critical sections and
semaphores (see Chapter 6).

The sloop bus mechanism or bus watcher is particularly suitable for single bus
systems, as found in many microprocessor systems. In the sloop bus mechanism, a
bus watcher unit for each processor/cache observes the transactions on the bus and
in particular monitors all memory write operations. If a location in main memory is
altered and a copy exists in the cache, the bus watcher unit invalidates the cache
copy by resetting the corresponding valid bit in the cache. This action requires the
unit to have access not only to the valid bits in the cache, but also to the tags in the
cache, or copies of the cache tags, in order to compare the main memory address tag
with the cache tag. Alternatively, the cache word/block with the same index as the
main memory location can be invalidated, whether or not the tags correspond. The
unit then does not need to access the tags, though access to the valid bits is still

Memory modules

/Alternative position for cache

Interconnection network

Figure 3.13 Multiprocessor with local caches

Cache memory systems 97

Control signals

Cache Cache
Processor controlier (RAM)
M Other processors each with
Y cache and controller
Localtbus =Z0——————
: Main memory attached
) to system bus
Bus interface Sloop bus
\ System bus

Figure 3.14 Cache with sloop bus controller

necessary. However, the unit might mark as invalid a cache block which does not
correspond to an altered main memory word, because the cache location with the
same index as the main memory location would be invalidated, irrespective of the
values of the tags.

Figure 3.14 shows a representative microprocessor implementation based upon an
80386 processor and an 82385 sloop bus cache controller (Intel, 1987b). The processor
accesses the cache through a local bus, all accesses being controlled by the cache
controller. For a cache miss that requires access to the main memory on the system
bus, the cache controller sends the request through the system bus to the main
memory and loads the returning data into the cache. Write accesses with a sloop bus
are conveniently handled by write-through.

In write-once, the first time a processor makes write reference to a location in the
cache, the main memory is also updated in a write-through manner. The fact is
recorded in such a way that other processors can recognize that the location has
been updated and now cannot be accessed by them. If the stored information was
also stored in any other cache, these copies are invalidated by resetting valid bits in
the caches. Subsequently, if the first processor again performs a write operation to
the location, only the cache is altered, and the main memory is updated only when
the block is replaced as in write-back.

In broadcast writes, every cache write request is also sent to all other caches in
the system. Such broadcast writes interrogate the caches to discover whether each
cache holds the information being altered. The copy is then either updated (update
write) or an invalidated bit associated with the cache line is set to show that the
copy is now incorrect. The use of invalidating words is generally preferable to update
writes as multiple update writes by different processors to the same location might
cause inconsistencies between caches. In any event, significant additional memory
transactions occur with the broadcast method, though it has been implemented on
large computer systems (for example IBM 3033).

In one directory method (Smith, 1982), if a block has not been modified it may

98 Computer design techniques

exist in several caches simultaneously, but once the block is altered by one
processor, all other copies are invalidated, and a valid block then exists only in one
cache, initially the cache associated with the processor that made the alteration. A
subsequent read operation to that block by another processor causes the block to be
transferred to the requesting cache so that multiple copies exist again, until a write
operation occurs, which invalidates the copies not immediately updated.

The mechanism is achieved through the use of a directory of bits created in the
main memory. One set of bits is created for each block that can be transferred into
the caches. One bit in each of these sets is for each cache, as shown in Figure 3.15.
Each set of bits has one further bit — a block modified bit to indicate that the block
has been altered. When this occurs only one cache may hold the block and only one
of the other bits can be set. If the block has not been altered, the modified bit is
reset. Then, it is possible for more than one cache to hold the block and corres-
pondingly more than one bit set in the directory to indicate this fact.

Each block in each cache has a bit which is set if the block is the only valid copy.
This bit is set upon a write operation and the block has been transferred into the
cache from another cache. There are various situations that can arise in the multiple
cache system (i.e. combinations of read/write, hit/miss, present in another cache/not
present in another cache, altered/not altered) and the directory method must cope
with these situations. On a cache read operation when the block is already in the
cache, no directory and private bit operations are necessary. On a read operation
when the block is not in the cache, the modified bit of the block in the main
directory must be checked to see whether it has been altered in some other cache. If
the block is altered, it must be transferred into the cache and other copies invalidated.
The main directory is also updated, including resetting the modified bit. If the
missing block has not been altered, the copy is sent to the cache and the directory is
updated.

On a cache write operation when the block is in the cache, first the private bit is
checked to see whether it owns the only copy of the block. If it does own the only

Main memory

directory

Cache

[[
%,—/

Processor

bits
Private bit
(set to indicate has Block modified

only valid copy)

Figure 3.15 A directory method to maintain cache coherence

Cache memory systems 99

copy, the block is simply updated. If it does not own the only copy, the main
directory is examined to find the other copies. These copies are invalidated if the
directory allows a change in ownership. On a write operation when the block is not
in the cache, the main directory is updated and the block is transferred to the cache.

There are several variations on basic cache coherence techniques. Mathematical
performance analysis of seven different multiprocessor cache coherence techniques
for single bus systems is given in Yang, Bhuyan and Liu (1989).

PROBLEMS

3.1 Choose suitable memory interleaving to obtain an average access
time of less than 50 ns given that the main memory has an access time of
150 ns and a cache has an access time of 35 ns. If ten locations hold a
loop of instructions and the loop is repeated sixty times, what is the
average access time?

3.2 What is the average access time of a system having three levels of
memory — a cache memory, a semiconductor main memory and magnetic
disk secondary memory — if the access times of the memories are 20 ns,
200 ns and 2 ms, respectively? The cache hit ratio is 80 per cent and the
main memory hit ratio is 99 per cent.

3.3 A computer employs a 1 Mbyte 32-bit word main memory and a
cache of 512 words. Determine the number of bits in each field of the
address in the following organizations:

1. Direct mapping with a block size of one word.
2. Direct mapping with a block size of eight words.
3. Set-associative mapping with a set size of four words.

3.4 Derive an expression for the hit ratio of a direct mapped cache
assuming there is an equal likelihood of any location in the main
memory being accessed (in practice this assumption is not true). Repeat
for a two-way set-associative mapped cache. Determine the size of
memory at which the direct mapped cache has a hit ratio within 10 per
cent of the set-associative cache.

3.5 Design the logic to implement the least recently used replacement
algorithm for four blocks using a register stack.

3.6 Design the logic to implement the least recently used replacement
algorithm for four blocks using the reference matrix method.

100 Computer design techniques
3.7 Solve the equation given in Section 3.5:

dn_(a+bn)(s—n)

dt = (a+ns

for n where n locations are filled in the cache, s is the size of the cache,
and a and b are constants.

3.8 Determine the conditions in which a write-through policy creates
more misses than simple write-back policy, given that the hit ratio is the
same in both cases.

3.9 Determine the conditions in which a write-through policy with no
fetch on write creates more misses than a write-through policy with fetch
on write, given that fetch on write creates 10 per cent higher hit ratio.

3.10 Determine the average access time in a computer system employing
a cache, given that the main memory access time is 125 ns, the cache
access time is 30 ns and the hit ratio is 85 per cent. The write-through
policy is used and 20 per cent of memory requests are write requests.

3.11 Repeat Problem 3.10 assuming a write-back policy is used, and
the block size is sixteen words fully interleaved.

3.12 Usingaging counters to implement the least recently used algorithm,
as described in Section 3.4.4, derive the numbers held in the counters
after each of the following pages has been referenced:

2,6,9,7,2,3,2,9,6,2,7,4
given that the cache holds four pages.

3.13 Show how a reference matrix as described in Section 3.4.4, can be
used to implement the least recently used algorithm with the sequence:

2,6,9,7,2,3,2,9,6,2,7,4
given that the cache holds four pages.

3.14 A cache in a system with virtual memory is addressed with a real
address. Both the real addresses and virtual addresses have thirty-two
bits and the page size is 512 words. The set size is two. Determine the
division of fields in the address to achieve full overlap between the page
translation and set selection. Suppose the cache must have only two

Cache memory systems 101
pages, give a design showing the components and address formats.

3.15 A disk cache is introduced into a system and the access time
reduces from 20 ms to 3 ms. What is the access time of the disk cache,
given that the hit ratio is 70 per cent?

3.16 Work through all combinations of actions that can occur in the
directory method described in Section 3.8, drawing a flow diagram and
the values of the bits in the directories.

3.17 Choose a real computer system or processor with both a cache and
virtual memory and identify those methods described in Chapters 2 and 3
which have been employed. Describe how the methods have been imple-
mented (block diagram, etc.) and comment on the design choices made.

CHAPTER
Pipelined systems

Overlap and the associated concept, pipelining, are methods which can be used to
increase the speed of operation of the central processor. They are often applied to
the internal design of high speed computers, including advanced microprocessors, as
a type of multiprocessing. In this chapter, we will describe how pipelining is applied
to instruction processing and include some of the methods of designing pipelines.

4.1 Overlap and pipelining

4.1.1 Technique

Overlap and pipelining really refer to the same technique, in which a task or operation
is divided into a number of subtasks that need to be performed in sequence. Each
subtask is performed by its own logical unit, rather than by a single unit which
performs all the subtasks. The units are connected together in a serial fashion with
the output of one connecting to the input of the next, and all the units operate
simultaneously. While one unit is performing a subtask on the ith task, the preceding
unit in the chain is performing a different subtask on the (i+1)th task, as shown in
Figure 4.1.

The mechanism can be compared to a conveyor belt assembly line in a factory, in
which products are in various stages of completion. Each product is assembled in
stages as it passes along the assembly line. Similarly, in overlap/pipelining, a task is
presented to the first unit. Once the first subtask of this task is completed, the results
are presented to the second unit and another task can be presented to the first unit.
Results from one subtask are passed to the next unit as required and a task is
completed when the subtasks have been processed by all the units.

Suppose each unit in the pipeline has the same operating time to complete a
subtask and that the first task is completed and a series of tasks is presented. The
time to perform one complete task is the same as the time for one unit to perform
one subtask of the task, rather than the summation of all the unit times. Ideally, each

102

Pipelined systems 103

Unit 1 Unit 2 Unit 3 Unit 4 Unit5 Unit 6 Unit 7

Input — — — — — Output
Processing first task
Unit 7 A R A A A A
Unit 6 R AR R R R R
Unit 5 R L R R R R R G
Unit 4 vl R A R B R R R R S
Unit 3 IR R R R B R R R A R A
Unit 2 R R R R R R R R R R N s
Unit1 T i n |l mn]me

—_—>
Time

Figure 4.1 Pipeline processing (T| = jth subtask in the ith task)

subtask should take the same time, but if this is not the case, the overall processing
time will be that of the slowest unit, with the faster units being delayed. It may be
advantageous to equalize stage operating times with the insertion of extra delays.
We will pursue this technique later.

The term pipelining is often used to describe a system design for achieving a
specific computation by splitting the computation into a series of steps, whereas the
term overlap is often used to describe a system design with two or more clearly
distinct functions performed simultaneously. For example, a floating point arithmetic
operation can be divided into a number of distinct pipelined suboperations, which
must be performed in sequence to obtain the final floating point result. Conversely, a
computer system might perform central processor functions and input/output func-
tions with separate processors — a central processor and an input/output processor —
operating at the same time. The central processor and input/output processor opera-
tions are overlapped.

4.1.2 Pipeline data transfer
Two methods of implementing the data transfer in a pipeline can be identified:

1. Asynchronous method.
2. Synchronous method.

104 Computer design techniques

1st 2nd 3rd nth | Final
unit >{ unit unit unit > result

—>1
Task
—>

Ready signal Acknowledge signal
(@ Asynchronous method

Partial results
and parameters

Task] 1st 2nd 3rd ———»1 nth |—- Final
unit >1 unit > unit unit > result

S s i B

(b) Synchronous method

Figure 4.2 Transfer of information between units in a pipeline (a) Asynchronous
method (b) Synchronous method

These are shown in Figure 4.2. In the asynchronous method, a pair of “handshaking”
signals are used between each unit and the next unit — a ready signal and an
acknowledge signal. The ready signal informs the next unit that it has finished the
present operation and is ready to pass the task and any results onwards. The
acknowledge signal is returned when the receiving unit has accepted the task and
results. In the synchronous method, one timing signal causes all outputs of units to
be transferred to the succeeding units. The timing signal occurs at fixed intervals,
taking into account the slowest unit.

The asynchronous method provides the greatest flexibility in stage operating
times and naturally should make the pipeline operate at its fastest, limited as always
by the slowest unit. Though unlikely in most pipeline designs, the asynchronous
method would allow stages to alter the operating times with different input operands.
The asynchronous method also lends itself to the use of variable length first-in first-
out buffers between stages, to smooth the flow of results from one stage to the next.
However, most constructed instruction and arithmetic pipelines use the synchronous
method. An example of a pipeline that might use asynchronous handshaking is in
dataflow systems when nodal instructions are only generated when all their operands
are received (see Chapter 10). Other examples include the pipeline structures
formed with transputers, as described in Chapter 9.

Instruction and arithmetic pipelines almost always use the synchronous method to
reduce logic timing and implementation problems. There is a staging latch between
each unit and the clock signal activates all the staging latches simultaneously, as
shown in Figure 4.3.

Pipelined systems 105

Latch Stage Latch Stage Latch Stage Latch

Data

Clock
Figure 4.3 Pipeline with staging latches

Pipelines could have been designed without staging latches between pipeline
stages and without a synchronizing clock signal — pipeline stages could produce
their outputs after natural logic delays, results could percolate through the pipeline
from one stage to the next and the final output could be sampled at the same regular
frequency as that at which new pipeline inputs are applied. This type of pipeline is
called a maximum-rate pipeline, as it should result in the maximum speed of
operation. Such pipelines are difficult to design because logic delays are not known
exactly — the delays vary between devices and depend upon the device inter-
connections. Testing such pipelines would be a distinct challenge. However, Cray
computers do not use staging latches in their pipelines, instead, path delays are
equalized.

4.1.3 Performance and cost

Pipelining is present in virtually all computer systems, including microprocessors. It
is a form of parallel computation; at any instant more than one task is being
performed in parallel (simultaneously). Pipelining is therefore done to increase the
speed of operation of the system, although as well as potentially increased speed, it
has the advantage of requiring little more logic than a non-pipelined solution in
many applications, and sometimes less logic than a high speed non-pipelined
solution. An alternative parallel implementation using n replicated units is shown in
Figure 4.4. Each unit performs the complete task. The system achieves an equivalent
increased speed of operation by applying »n tasks simultaneously, one to each of the
n units, and producing n results n cycles later. However, complete replication
requires much more logic. As circuit densities increase and logic gate costs reduce,
complete replication becomes attractive. Replicated parallel systems will be described
in later chapters. We can make a general comment that pipelining is much more
economical than replication of complete units.

We see from Figure 4.1 that there is a staircase characteristic at the beginning of
pipelining; there is also a staircase characteristic at the end of a defined number of
tasks. If s tasks are presented to an n-stage pipeline, it takes n clock periods before
the first task has been completed, and then another s — 1 clock periods before all
the tasks have been completed. Hence, the number of clock periods necessary is
given by n + (s — 1). Suppose a single, homogeneous non-pipelined unit with
equivalent function can perform s tasks in sn clock periods. Then the speed-up

106 Computer design techniques

Units Each unit performs
ataskinncycles

—] 0 —»

ntasks applied 5 nresults collected
simultaneously ncycles later

Figure 4.4 Replicated units

available in a pipeline can be given by:

T sn

Speed-up = T—; TYCES)
The potential maximum speed-up is n, though this would only be achieved for an
infinite stream of tasks and no hold-ups in the pipeline. The assumption that a single
homogeneous unit would take as long as the pipelined system to process one task is
also not true. Sometimes, a homogeneous system could be designed to operate faster
than the pipelined version.

There is a certain amount of inefficiency in that only in the steady state of a
continuous submission of tasks are all the units operating. Some units are not busy
during start-up and ending periods. We can describe the efficiency as:

n
Zti
i=1

Efficiency = n X (overall operating time)

_ s
Tn+(s-1)

_ Speed-up
T oon

Pipelined systems 107

where ¢, is time unit / operates. Speed-up and efficiency can be used to characterize
pipelines.

Pipelining can be applied to various subunits in a traditional uniprocessor com-
puter and to the overall operation. First, we will consider pipelining applied to
overall instruction processing, and then we shall consider how the arithmetic
operations within the execution phase of an instruction can be pipelined. Staging
latches are assumed to be present in the following.

4.2 Instruction overlap and pipelines

4.2.1 Instruction fetch/execute overlap

The fetch and execute cycles of a processor are often overlapped. Instruction
processing requires each instruction to be fetched from memory, decoded, and then
executed, in this sequence. In the first instance, we shall assume one fetch cycle
fetching a complete instruction and requiring one execute cycle, and no further
decomposition.

This technique requires two separate units, a fetch unit, and an execute unit,
which are connected together as shown in Figure 4.5(a). Both units have access to
the main memory, the fetch unit to access instructions and the execute unit to fetch
operands and to store the result if either or both of these actions are necessary.
Processor registers, including the program counter, are accessible by the units if
necessary. Some dedicated processor registers might be contained within either unit,
depending upon the design.

The fetch unit proceeds to fetch the first instruction. Once this operation has been
completed, the instruction is passed to the execute unit which decodes the instruction
and proceeds to execute it. While this is taking place, the fetch unit fetches the next
instruction. The process is continued with the fetch unit fetching the ith instruction
while the execute unit is executing the (i—1)th instruction, as shown in Figure
4.5(b).

The execute time is often variable and depends upon the instruction. With fixed
length instructions, the fetch time would generally be a constant. With variable
length multibyte/word instructions, the fetch time would be variable if the complete
instruction needed to be formed before the instruction was executed. Figure 4.5(c)
shows a variable instruction fetch and execution times. In this figure, the ith fetch
and the (i—1)th execute operations always begin operating together, irrespective of
the longer operating time of the previous execute and fetch operations. The overall
processing time is given by:

n+1
Processing time = Z Max (T(F), T(E,_,))
i=1

108 Computer design techniques

Fetch Execute
unit unit

Instructions ——

(a) Fetch/execute stages

Execute
Fetch
Time
(b) Timing with equal stage times
Free
Execute ‘
Fetch
Time

(c) Timing with unequal stage times

Figure 4.5 Fetch/executeoverlap (a) Fetch/executestages (b) Timingwith equal
stage times (c) Timing with unequal stage times

where T(F,) = time of ith fetch operation and T(E,) = time of ith execute operation.

Clearly the execute unit may operate at a different time to the fetch unit. In
particular, it is likely to require more time for complicated instructions, and will
dominate the processing time. To reduce this effect, the execute unit could be split
into further separate units. A separate instruction decode unit could be provided
after the fetch unit, followed by an execute unit, as shown in Figure 4.6(a). This
scheme is known as three-level overlap. The decode unit is responsible for identifying
the instruction, including fetching any values from memory in order to compute the
effective operand address. However, it is not usually possible for the fetch unit to
fetch an instruction and a decode unit to fetch any operands required for the
previously fetched instruction at the same time, if the program and data are held in
the same memory, as only one unit can access the memory at any instant.

Pipelined systems 109

Fetch Decode Execute
unit unit unit
Two o
instructions
(a) Fetch/decode/execute stages
B Execute 1st | Execute2nd
Execute N instruction | instruction Free
Decode Decode 1st | Decode 2nd Free Decode 3rd
instruction instruction instruction
Fetch 1st/2nd Fetch 3rd/4th
Fetch instructions Free Free instructions Free
Time
(b) Fetching two instructions simultaneously
Execute B Execute 1st | Execute2nd |-Execute 3rd
| instruction instruction instruction
Decode Decode 1st | Decode2nd | Decode3rd | Decode 4th
instruction instruction instruction | instruction
Fetch Fetch 1st Fetch 2nd Fetch3rd Fetch4th Fetch 5th
instruction instruction instruction instruction instruction

Time

(c) Ideal overlap with interleaved memory

Figure 4.6 Fetch/decode/execute overlap (a) Fetch/decode/execute stages
(b) Fetching two instructions simultaneously (c) Ideal overlap with
interleaved memory

One method of overcoming this problem is to fetch more than one instruction at a
time using multiple memory modules or using true memory interleaving (Section
1.3.4, page 20). In Figure 4.6(b), the fetch unit fetches two instructions
simultaneously and then becomes free while the decode unit can access the memory.
However, none of the units is operating all of the time, and only two instructions
are processed in every three cycles. Figure 4.6(c) shows the ideal utilization using
two-way interleaved memory. The usage might be different for particular instruc-
tions. The fetch unit fetches an instruction and the decode unit fetches an operand
from memory if necessary in the same cycle. Instructions are processed at the
maximum rate of one per cycle. Clearly, memory contention will arise if both the
fetch unit and decode unit request the same memory module. Contention can be
reduced with a greater degree of interleaving. In one scheme, the fetch unit fetches

110 Computer design techniques

two instructions simultaneously and becomes free on every alternate cycle, but still
allows the system to process one instruction per cycle.

Further instruction processing decomposition can be made. For example, we
could have five stages:

" Fetch instruction.
Decode instruction.
Fetch operand(s).
Execute operation (ADD, etc.).
Store result.

Ul e

This is shown in Figure 4.7. As we divide the processing into more stages, we hope
to reduce and equalize the stage processing times. Of the five stages given, stage 1
always requires access to the memory. Stages 3 and 5 require access to the memory
if the operands and results (respectively) are held in memory. However, the instruc-
tions of many computer systems, particularly microprocessor systems (the 68000
being one exception), do not allow direct memory to memory operations, and
provide only memory to processor register, register to register and register to
memory operations, which forces the use of processor registers as temporary
holding locations. In such situations, stages 3 and 5 do not occur in the same
instruction, and only one, at most, needs access to memory.

Unfortunately, at any given time during the processing, stage 3 will be processing
instruction n and stage 5 will be processing instruction n—2 and both might require

Fetch Decode Fetch Execute Store
instruction instruction operands instruction

—] |1 > - ——

(@) Units

Store Store 1st
results

Execute T Execute. 1st Execute 2nd
| instruction instruction
Fetch operands Fetch 1st Fetch2nd Fetch 3rd
| operands operands operands
Decode Decode 1st | Decode2nd | Decode3drd | Decode4th

instruction instruction instruction instruction

Fetch Fetch 1st Fetch2nd Fetch 3rd Fetch4th Fetch 5th
instruction | instruction | instruction | instruction | instruction

Time
(b) Timing

Figure 4.7 Five-stage instruction pipeline (a) Units (b) Timing

Pipelined systems 111

access to memory. When it is not possible to guarantee only one stage requesting
use of individual memory modules, or any other shared resource, additional logic
must be incorporated to arbitrate between requests.

In fact, there are several different hardware and software conditions that might
lead to hesitation in the instruction pipeline. Overlap and pipelining assume that
there is a sequence of tasks to be performed in one order, with no interaction
between tasks other than passing the results of one unit on to the next unit.
However, although programs are written as a linear sequence, the execution of one
instruction will often depend upon the results of a previous instruction, and the
order of execution may be changed by branch instructions.

We can identify three major causes for breakdown or hesitation of an instruction
pipeline:

1. Branch instructions.
2. Data dependencies between instructions.
3. Conflict in hardware resources (memory, etc.).

We will consider these factors separately in the following sections. The term
“branch” instructions will be used to include “jump” instructions.

4.2.2 Branch instructions

Given no other mechanism, each branch instruction (and the other instructions that
follow) could be processed normally in an instruction pipeline. When the branch
instruction is completely executed, or at least when the condition can be tested, it
would be known which instruction to process next. If this instruction is not the next
instruction in the pipeline, all instructions in the pipeline are abandoned and the
pipeline cleared. The required instruction is fetched and must be processed through
all units in the same way as when the pipeline is first started, and we obtain a space—
time diagram such as that shown in Figure 4.8.

Typically, 10-20 per cent of instructions in a program are branch instructions and
these instructions could reduce the speed of operation significantly. For example, if
a five-stage pipeline operated at 100 ns steps, and an instruction which subsequently
cleared the pipeline at the end of its execution occurred every ten instructions, the
average instruction processing of the ten instructions would be:

9 x 100 ns + 1 x 500 ns

10 = 140 ns

The longer the pipeline, the greater the loss in speed due to conditional branch
instructions. Very few instruction pipelines have more than twenty stages. We have
ignored the step-up time of the pipeline, that is, the time to fill the pipeline initially
when the system starts executing instructions.

112 Computer design techniques

Instructions fully processed
B X
g | X
g X
@ X
X
\—_W—'_—} __Y__
Start-up = f Abandon
Conditional jq4ri,ctions
branch
instruction

Figure 4.8 Effect of conditional branch instruction in a pipeline

Unconditional branch instructions always cause a change in the sequence and the
change is predictable and fixed, but can also affect the pipeline. The fetch unit
responsible for fetching instructions takes the value held in the program counter as
the address of the next instruction and the program counter is then incremented.
Therefore for normal sequential processing, the address of the next instruction is
available for the fetch unit immediately the program counter has been incremented,
and the fetch unit can keep fetching instructions irrespective of the execution of the
instructions. The address of the next instruction for unconditional branch instruc-.
tions is held in the instruction, or in a memory or register location, or is computed
from the contents of addressed locations. If the address is held in the instruction, it
would be available after the decode operation, otherwise it would be available after
the operand fetch operation if the more complex effective address computations are
done then. In any event, the fetch unit does not have the information immediately
available and, given no other mechanism, would fetch the next instruction in
sequence.

The fetch and decode units could be combined. Then, the fetch/decode unit might
have obtained the next address during decoding. In a two-stage pipeline having an
instruction fetch/decode unit and an instruction execution unit, the address of the
next instruction after an unconditional instruction would be available after the fetch/
decode unit has acted upon the unconditional branch instruction. It is often assumed
that unconditional branch instructions do not cause a serious problem in pipelines.
This is not justified with complex effective addresses computed in stages.

Conditional branch instructions do not always cause a change in the sequence, or
even necessarily cause a change in the majority of instances, but this is dependent
upon the use of the branch instruction. Conditional branch instruction might typically
cause a change 40-60 per cent of the time, on average over a wide range of
applications, though in some circumstances the percentage could be much greater or
much less. Conditional branch instructions are often used in programs for:

Pipelined systems 113

1. Creating repetitive loops of instructions, terminating the loop when a specific
condition occurs (loop counter = 0 or arithmetic computational result occurs).
2. To exit a loop if an error condition or other exceptional condition occurs.

The branch usually occurs in 1, but in 2 it does not usually occur. The same
instruction might be used for both applications, say branch if positive. Alternatively,
different instructions or different conditions might be used, say branch if not zero
for a loop, and branch if zero for an error condition, dependent upon the program.
The use is not generally known by the system. The programmer could be guided in
the choice, given a particular pipeline design which makes a fixed selection after a
conditional branch. As with an unconditional branch instruction, even a fixed
selection is not possible in hardware if the effective address has not yet been
computed.

Strategies exist to reduce the number of times the pipeline breaks down due to
conditional branch instructions, using additional hardware, including:

1. Instruction buffers to fetch both possible instructions.
Prediction logic to fetch the most likely next instruction after a branch
instruction.

3. Delayed branch instructions.

Instruction buffers

A first-in first-out instruction buffer is often used to hold instructions fetched from
the memory before passing them to the next stage of instruction pipeline. The buffer
becomes part of the pipeline as additional delay stages, and extends the length of the
pipeline. The advantage of a first-in first-out buffer is that it smoothes the flow of
instructions into the instruction pipeline, especially when the memory is also
accessed by the operand fetch unit. It also enables multiple word instructions to be
formed. However, increasing the pipeline with the addition of buffers increases the
amount of information in the pipeline that must be discarded if the incorrect
instructions are fetched after a branch instruction. Most 16-/32-bit microprocessors
have a pipelined structure with buffers between stages. For example, the Intel 80286
and 80386 have a prefetch queue in the instruction fetch unit for instruction words
fetched from memory, and a decoded instruction queue in the subsequent decode
unit leading to the execute unit.

Figure 4.9 shows two separate first-in first-out instruction buffers to fetch both
possible instruction sequences after a conditional branch instruction. It is assumed
that both addresses are available immediately after fetching the branch instruction.
Conditional branch instructions cause both buffers to fill with instructions, assumed
from an interleaved memory. When the next address has been discovered, instruc-
tions are taken from the appropriate buffer and the contents of the other buffer are
discarded. The scheme is sometimes called multiple prefetching or branch bypassing.

A major disadvantage of multiple prefetching is the problem encountered when

114 Computer design techniques

Instruction
Buffer for
Memory sequential
instructions Remainder of
emainder o
Fetch . s
unit instruction pipeline
Buffer for target
(non-sequential)
instructions

Figure 4.9 Instruction buffers

more than one conditional branch instruction appears in the instruction stream. With
two sequential conditional branch instructions, there are four alternative paths, with
three instructions, eight alternative paths and, in general, there are 2" alternative
paths when there are n conditional branch instructions. The number of possible
conditional branch instructions to be considered will be given by the number of
stages in the pipeline. Of course it is unreasonable to provide a buffer for all
alternative paths except for small n.

A technique known as branch folding (Lilja, 1988) can be used with a two-stage
instruction pipeline having an instruction fetch/decode unit (an I unit) and an
instruction execute unit (an E unit). An instruction cache-type buffer is inserted
between the I and the E units. Instructions are fetched by the I unit, recognized, and
the decoded instructions placed in the instruction buffer, together with the address
of the next instruction in an associated field for non-branch instructions. If an
unconditional branch instruction is decoded, the next address field of the previous
(non-branch) instruction fetched is altered to correspond to the new target location,
i.e. the unconditional branch instruction folds into the previous instruction. Condi-
tional branch instructions have two next address fields in the buffer, one for each of
the next addresses. The execution unit selects one of the next address paths and the
other address is carried through the pipeline with the instruction until the instruction
has been fully executed and the branch can be resolved. At that time, either the
fetched path is used and the next address carried with the instruction is discarded, or
the path of the next address carried with the instruction is used and the pipeline is
cleared.

Prediction logic and branch history
There are various methods of predicting the next address, mainly based upon
expected repetitive usage of the branch instruction, though some methods are based
upon expected non-repetitive usage.

To make a prediction based upon repetitive historical usage, an initial prediction

Pipelined systems 115

is made when the branch instruction is first encountered. When the true branch
instruction target address has been discovered, it is stored in a high speed memory
look-up table, and used if the same instruction at the same address is encountered
again. Subsequently, the stored target address will always be the address used on the
last occasion. A stored bit might be included with each table entry to indicate that a
previous prediction has been made.

There are variations in the prediction strategy; for example, rather than update
the predicted address when it was found to be wrong, allow it to remain until the
next occasion and change it then if it is still found to be wrong. This algorithm
requires an additional bit stored with each entry to indicate that the previous
prediction was correct, but might produce better results.

One form of prediction table is a branch history table, which is implemented in a
similar fashion to a cache. A direct mapping scheme could be used, in which target
addresses are stored in locations whose addresses are the same as the least significant
bits of the addresses of the instructions, together with most significant bit address
bits. We note that, as in the directly mapped data/instruction cache, all branch
instructions stored in the cache must have addresses with different least significant
bits. Alternatively, a fully associative or a set-associative cache-type table could be
employed, as shown in Figure 4.10, when a replacement algorithm, as used in
caches, is required. In any event, only a limited number of instruction addresses can
be stored.

The branch history table can be designed to be accessed after the decode
operation, rather than immediately the instruction is fetched. Then the target address
will often be known and hence it is only necessary to store a bit to indicate whether
the target address should be taken, rather than the full target address, and the table

Fully associative look-up table

Instruction Target Valid
address address Dbit
Load target
Search table address
Program counter Target address
—— ™
Address —— “~Fetch | Decode
Instruction unit unit

Instruction pipeline

Figure 4.10 Instruction pipeline with branch history table (prediction logic not
shown — sequential instructions taken until correct target address loaded)

116 Computer design techniques

requires fewer bits. This type of table is called a decode history table (Stone, 1987),
but it has the disadvantage that the next instruction will have been fetched before
the table has been interrogated and so this instruction may have to be discarded.

Delayed branch instructions

In the delayed branch instruction scheme, branch instructions operate such that the
sequence of execution is not altered immediately after the branch instruction is
executed (if at all) but after one or more subsequent non-branch instructions,
depending upon the design. The subsequent instructions are executed irrespective of
the branch outcome. For example, in a two-stage pipeline, a branch instruction
might be designed to have an effect after the next instruction, so that this instruction
need not be discarded in the pipeline. For an n-stage pipeline, the branch instruction
could be designed to have an effect after » — 1 subsequent instructions, as shown in
Figure 4.11. Clearly, the instructions after the branch do not affect the branch
outcome, and must be such that the computation is still correct by placing the
instructions after the branch instruction. It becomes more difficult for the programmer
or compiler to find an increasing number of suitable independent instructions to
place after a branch instruction. Typically, one instruction can be rearranged to be

Execute Exequte
nextinst.
Fetch Branch Next Branchiif
instruction | instruction| selected
Time ———>—
(a) Two-stage pipeline
Other T
stages T
Branch . . Branchif
Fetch instruction Next instructions selected
Timg ————»

Figure 4.11 Delayed branch technique (a) Two-stage pipeline

(b) n—stage pipeline

(b) n-stage pipeline

Pipelined systems 117

after the branch instruction in about 70 per cent of occasions, but additional
instructions are harder to find.

A one-instruction delayed branch technique has been used extensively in micro-
programmed systems at the microinstruction level because microinstructions can
often be executed in one cycle and hence can use a two-stage microinstruction fetch/
execute pipeline. The one-stage delayed branch instruction has also found application
in RISCs (reduced instruction set computers) which have simple instructions execut-
able in one cycle (see Chapter 5).

A number of refinements have been suggested and implemented to improve the
performance of delayed branch instructions. For example, in the nullification method
for loops, the instruction following a conditional branch instruction at the end of the
loop is made to be the instruction at the top of the loop. When the loop is
terminated, this instruction is converted into a no-op, an instruction with no operation
and achieving nothing except an instruction delay.

4.2.3 Data dependencies

Suppose we wish to compute the value of C =2 x (A + contents of memory location
100) with the program sequence given in 8086 code as:

ADD AX,[100] ;Add memory location 100 contents
;to AX register

SAL AX,1 ;Shift AX one place left

MOV CX,AX ;Copy AX into CX register

and these instructions are in a five-stage pipeline, as shown in Figure 4.12. (The
8086 does not have the pipeline shown.) It would be incorrect to begin shifting AX
before the add instruction and, similarly, it would be incorrect to load CX before the
shift operation. Hence, in this program each instruction must produce its result
before the next instruction can begin. '

Should the programmer know that a pipeline organization exists in the computer
used, and also the operation of this pipeline, it may be possible to rewrite some
programs to separate data dependencies. Otherwise, when a data dependency does
occur, there are two possible strategies:

1. Detect the data dependencies at the input of the pipeline and then hold up the
pipeline completely until the dependencies have been resolved (by instructions
already in the pipeline being fully executed).

2. Allow all instructions to be fetched into the pipeline but only allow independent
instructions to proceed to their completion, and delay instructions which are
dependent upon other, not yet executed, instructions until these instructions
are executed.

118 Computer design techniques

Data dependencies
Indicates instruction (1st, 2nd or 3rd)
Store U] 2 3
operands AX AX CcX
B (] [2]
Execute ADD SHIFT
Fetch B AX,|—1- 2] 3]
operands [100] AX AX
Decode 1] 2] {3]
instruction Decode|Decode] Decode|
Fetch 1] 2] 3]
instruction | ADD { SAL + MOV

| Time
Memory contention
Fetch of MOV instruction cannot take place at this
time because instruction 1 needs to fetch [100]

Figure 4.12 Five-stage pipeline with data dependencies and memory contention

Data dependencies can be detected by considering read and write operations on
specific locations accessible by the instructions (including all operations such as
arithmetic operations which alter the contents of the locations).

In terms of two operations — read and write — operating upon a single location, a
write-after-write hazard exists if there are two write operations upon a location such
that the second write operation in the pipeline completes before the first. Hence the
written value will be altered by the first write operation when it completes. A read-
after-write hazard exists if a read operation occurs before a previous write operation
has been completed, and hence the read operation would obtain an incorrect value (a
value not yet updated). A write-after-read hazard exists when a write operation
occurs before a previous read operation has had time to complete, and again the read
operation would obtain an incorrect value (a prematurely updated value). Read-
after-read hazards, in which read operations occur out of order, do not normally
cause incorrect results. Figure 4.13 illustrates some of these hazards in terms of an
instruction pipeline in which read and write operations are done at various stages.

An instruction can usually only alter one location, but might read two locations.
For a two-address instruction format, one of the locations read will be the same as
the location altered. Condition code flags must also be included in the hazard
detection mechanism. The number of hazard conditions to be checked becomes quite
large for a long pipeline having many partially complete instructions.

We can identify a potential hazard between instruction i and instruction j when
one of the following conditions occurs:

Pipelined systems 119

1st instruction [l l 1 | :Writg.

2nd instruction I | l :Write: lj

(a) Write-after-write

T H
1st instruction l I l | Write]
1 L

2nd instruction l ! ;Read: ! | I

i

(b) Read-after-write

1st instruction] | :Read: l1

2nd instruction I :Write: | | [j

(c) Write-after-read

Figure 4.13 Read/write hazards (a) Write-after-write (b) Read-after-write
(c) Write-after-read

For write-after-write W@ NAW(G)#0
For read-after-write W(@) nR() #0
For write-after-read R@@) mW(@)#0

W(i) indicates the set of locations altered by instruction i; R(i) indicates the set of
locations read by instruction i, and 0 indicates an empty set. For no hazard, neither
of the sets on the left hand side of each condition includes any of the same elements.
Clearly these conditions can cover all possible read/write arrangements in the
pipeline. It would be better to limit the detection only to the situations that are
possible.

Detecting the hazard at the beginning of the pipeline and stopping the pipeline
completely until the hazard has passed is obviously much simpler than only stopping
the specific instruction creating the hazard from entering the pipeline, because a
satisfactory sequence of operations must be maintained to obtain the desired result
(though not necessarily the same order as in the program). Hazard detection must also
include any instructions held up at the entrance to the pipeline.

A relatively simple method of maintaining a proper sequence of read/write
operations is to associate a 1-bit tag with each operand register. This tag indicates

120 Computer design techniques

whether a valid result exists in the register, say O for not valid and 1 for valid. A
fetched instruction which will write to the register examines the tag and if the tag is
1, it sets the tag to O to show that the value will be changed. When the instruction
has produced the value, it loads the register and sets the tag bit to 1, letting other
instructions have access to the register. Any instruction fetched before the operand
tags have been set has to wait. A form of this scoreboard technique is used on the
Motorola MC88100 RISC microprocessor (Motorola, 1988a). The MC88100 also
has delayed branch instructions.

Figure 4.14 shows the mechanism in a five-stage pipeline having registers read
only in stage 3 and altered only in stage 5. In this case, it is sufficient to reset the
valid bit of the register to be altered during stage 3 of a write instruction in
preparation for setting it in stage 5. Figure 4.14 shows a write instruction followed
by two read instructions. Both read instructions must examine the valid bit of their
source registers prior to reading the contents of the registers, and will hesitate if
they cannot proceed.

Notice that the five-stage pipeline described only has read-after-write hazards;
write-after-read and write-after-write hazards do not occur if instruction sequencing
is maintained, i.e. if instructions are executed in the order in the program, and if the
pipeline is “stalled” by hazards, as in Figure 4.12. A somewhat more complicated
scoreboard technique was used in the CDC 6600. The CDC 6600 scoreboard kept a

General purpose

register file
" Valid bits
Reset Write operand
valid set valid bit
bit
Read valid bitand the
operand if bit set
1stinstruction
(write instruction) IF ID RD EX WR
2ndinstruction
(read instruction) IF 1D RD EX WR
3rdinstruction IF D RD EX WR
(read instruction)

Figure 4.14 Register read/write hazard detection using valid bits
(IF, instruction fetch; ID, instruction decode; RD, read operand;
EX, execute phase; WR write operand)

Pipelined systems 121

record of the availability of operands and functional units for instructions as they
were being processed to allow instructions to proceed as soon as possible and out of
sequence if necessary. The interested reader should consult Thornton (1970).

4.2.4 Internal forwarding

The term forwarding refers to the technique of passing the result of one instruction
to another instruction via a processor register without storing the result in a memory
location. Forwarding would generally increase the speed of operation, as access to
processor operand registers is normally faster than access to memory locations.
Three types of forwarding can be identified:

1. Store-fetch forwarding.
2. Fetch-fetch forwarding.
3. Store-store overwriting.

Store and fetch refer to writing operands into memory and reading operands from
memory respectively. In each case, unnecessary memory references can be eliminated.

In store-fetch forwarding, fetching an operand which has been stored and hence is
also held in a processor operand register is eliminated by taking the operand directly
from the processor operand register. For example, the code:

MOV [200],AX ;Copy contents of AX register
;into memory location 200
ADD BX, [200] ;Add memory contents 200 to register BX

could be reduced to:

MOV [200],AX
ADD BX,AX

which eliminates one memory reference (in the final ADD instruction).

In fetch-fetch forwarding, multiple accesses to the same memory location are
eliminated by making all accesses to the operand in a processor operand register
once it has been read into the register. For example:

MOV AX, [200]
MOV BX, [200]

could be reduced to:

MOV AX, [200]
MOV BX,AX

122 Computer design techniques

In store-store overwriting, one or more write operations without intermediate
operations on the stored information can be eliminated. For example:

MOV [200],AX
MOV [200],BX

could be reduced to:
MOV [200],BX

though the last simplification is unlikely in most programs. Rearrangements could
be done directly by the programmer when necessary, or done automatically by the
system hardware after it detects the forwarding option, using internal forwarding.
Internal forwarding is hardware forwarding implemented by processor registers
not visible to the programmer. The most commonly quoted example of this type of
internal forwarding is in the IBM 360 Model 91, as reported by Tomasulo (1967).
The IBM 360 Model 91 is now only of historical interest and was rapidly super-
seded by other models with caches (the Model 85 and the Model 195). In internal
forwarding, the results generated by an arithmetic unit are passed directly to the
input of an arithmetic unit, by matching the destination address carried with the
result with the addresses of the units available. Operand pairs are held in buffers at
the input of the units. Operations are only executed when a unit receives a full
complement of operands, and then new results, which may become new source
operands, are generated. It may be that instructions are not executed in the sequence
in which they are held in memory, though the final result will be the same. The IBM
360 Model 91 internal forwarding mechanism is similar to dataflow computing
described in Chapter 10 and predates the implementation of the latter. A cache could
be regarded as a forwarding scheme which short-circuits the main memory. The
complicated forwarding scheme of the Model 91 may not be justified if a cache is
present. RISCs often use relatively simple internal forwarding (see Chapter 5).

4.2.5 Multistreaming

We have assumed that the instructions being processed are from one program and
that they depend upon the immediately preceding instructions. However, many large
computer systems operate in a multiuser environment, switching from one user to
another at intervals. Such activities often have a deleterious effect on cache-based
systems, as instructions/data for a new program need to be brought into the cache to
replace the instructions/data of a previous program. Eventually, the instructions/data
of a replaced program will need to be reinstated in the cache.

In contrast, this process could be used to advantage in a pipeline, by interleaving
instructions of different programs in the pipeline and by executing one instruction
from each program in sequence. For example, if there are ten programs to be

Pipelined systems 123

executed, every tenth instruction would be from the same program. In a ten-stage
pipeline, each instruction would be completely independent of the other instructions
in the pipeline and no hazard detection for conditional jump instructions or data
dependencies would be necessary. The instructions of the ten programs would
execute at the maximum pipeline rate of one instruction per cycle. This technique
necessitates a complete set of processor registers for each program, i.e. for ten
programs, ten sets of operand registers, ten program counters, ten memory buffers,
if used, and tags are also needed in the instruction to identify the program. In the
past, such duplication of registers might have been difficult to justify, but now it
may be a reasonable choice, given that the maximum rate is obtained under the
special conditions of several time-shared programs and no complicated hazard
detection logic is necessary. The scheme may be difficult to expand to more time-
shared programs than the number of stages in the pipeline.

4.3 Arithmetic processing pipelines

4.3.1 General

In the previous sections we considered the arithmetic units as single entities. In fact,
arithmetic operations of the execute phase could be decomposed further into several
separate operations. Floating point arithmetic, in particular, can be naturally decom-
posed into several sequential operations. It is also possible to pipeline fixed point
operations to advantage, especially if several operations are expected in sequence.
We will briefly consider how arithmetic operations might be pipelined in the
following sections.

Note that an arithmetic pipeline designed to perform a particular arithmetic
operation, say floating point addition, could only be supplied with continuous tasks
in an instruction pipeline if a series of floating point instructions were to be
executed. Such situations arise in the processing of the elements of vectors, and
hence pipelined arithmetic units find particular application in computers which can
operate upon vectors and which have machine instructions specifying vector opera-
tions. Such computers are called vector computers, and the processors within them
are vector processors. For general purpose (scalar) processors only capable of
operating upon individual data elements, pipelined arithmetic units may not be kept
fully occupied. Pipelined arithmetic units in scalar processors should be used for the
following reasons:

1. Increased performance should a series of similar computations be encountered.
2. Reduced logic compared to non-pipelined designs in some cases.
3. Multifunction units might be possible.

Multifunction arithmetic pipelines can be designed with internal paths that can be

124 Computer design techniques

reconfigured statically to produce different overall arithmetic functions, or can be
reconfigured dynamically to produce different arithmetic functions on successive
input operands. In a dynamic pipeline, different functions are associated with sets of
operands as they are applied to the entrance of the pipeline. The pipeline does not
need to be cleared of existing partial results when a different function is selected
and the execution of previous functions can continue unaffected. Multifunction
pipelines have not been used much in practice because of the complicated logic
required, but they should increase the performance of a single pipeline in scalar
processors. Multifunction pipelines do not seem to have an advantage in vector
computers, as these computers often perform the same operation on a series of
elements fed into the pipeline.

4.3.2 Fixed-point arithmetic pipelines

The conventional method of adding two integers (fixed point numbers) is to use a
parallel adder consisting of cascaded full adder circuits. Suppose the two numbers to
be added together have digits A,_, - Ajand B, _; - By, There are n full adders in the
parallel adder. Each full adder adds two binary digits, A; and B;, together with a
“carry-in” from the previous addition, C,_;, to produce a sum digit, S;, and a “carry-
out” digit, C,, as shown in Figure 4.15(a). A pipelined version of the parallel adder
is shown in Figure 4.15(b). Here, the n full adders have been separated into different
pipeline stages.

A multifunction version of the parallel adder pipeline giving both addition and
subtraction can be achieved easily. Subtraction, A — B, can be performed in a parallel
adder by complementing the B digits and setting the carry-in digit to the first stage
to 1 (rather than to O for addition). Hence, one of each pair of digits passed on to the
adjacent stage needs to be complemented and this operation can be incorporated into
the pipeline stage. The adder/subtractor pipeline could be static. In this case, the
complementing operation occurs on the appropriate bits of each pair of operands
applied to the pipeline as they pass through the pipeline. Alternatively, the adder/
subtractor pipeline could be dynamic, and the complementing operation performed
upon specific operands. These operands could be identified by attaching a tag to
them; the tag is passed from one stage to the next with the operands. Additional
functions could be incorporated, for example, single operand increment and decre-
ment. Multiplication and division might be better performed in a separate unit,
though it is possible to design a multifunction pipeline incorporating all of the basic
arithmetic operations.

The previous addition pipeline is based upon a parallel adder in which the carry
signal “ripples” from one pipeline stage to another. In a non-pipelined version, the
speed of operation is limited by the time it takes for the carry to ripple through all
the full adders. (This is also true in the pipelined version, but other additions can be
started while the process takes place.) A well-known method of reducing ripple time
is to predict the carry signals at each full adder by using carry-look-ahead logic

Pipelined systems 125

A and B inputs

Aq_1 By AB, ABi AB
Ir I e
—_—— Full adder
' Carry
Sn Sn—1 SZ S1 SO
(d) Parallel adder
A and B inputs
A,_1B,4 AB, ABy AgB,Cp,
C] [m | — Staging latches
Carry
[) | | eo— |
Pipeline stages = =3 =3
A cC] [
L J L J L . |

Sy Sit S, S So
Final outputs

(b) Pipelined version

Figure 4.15 Pipelined parallel adder (a) Parallel adder (b) Pipelined version

rather than waiting for each to be generated by adjacent full adders. Such prediction
logic can also be pipelined. The full details of carry-look-ahead adders can be found
in Baer (1980).

There are also various ways to perform multiplication. Most of these are suitable
for arrangement as a pipeline as they involve a series of additions, each of which can
be done in a pipeline stage. The conventional method to implement multiplication is a
shift-and-add process using a parallel adder to successively add A to an accumulating
sum when the appropriate bit of B is 1. Hence, one pipeline solution would be to
unfold the iterative process and have n stages, each consisting of a parallel adder.

126

Computer design techniques

One technique applicable to multiplication is the carry-save technique. As an
example, consider the multiplication of two 6-bit numbers:

A
B

110101
101011

110101

110101
000000
110101
000000
110101

10001110011

1

The partial products are divided into groups, with three partial products in each
group. Therefore we have two groups in this example. The numbers in each group
are added simultaneously, using one full adder for each triplet of bits in each group,
without carry being passed from one stage to the next. All three inputs of the full
adders are used. This process results in two numbers being generated for each
group, namely a sum word, and a carry word:

Group 1

Sum 1
Carry 1

Each carry word is

110101 110101
110101 Group 2 000000
000000 110101
01011111 Sum 2 11100001
01000000 Carry 2 00101000

moved one place left to give it the correct significance. The true

sum of the three numbers in each case could be obtained by adding together the sum

and carry words. T
Carry 2. Taking t
produce Sum 3 and

Sum 1
Carry 1
Sum 2

Sum 3
Carry 3

he final product is the summation of Sum 1, Carry 1, Sum 2 and
hree of these numbers, the carry-save process is repeated to
Carry 3, i.e.

01011111
01000000
11100001

11100010111
00010010000

Pipelined systems 127

The process is repeated taking Sum 3, Carry 3 and Carry 2 to produce Sum 4 and
Carry 4:

Sum 3 11100010111
Carry 3 00010010000
Carry 2 00101000

Sum 4 11011000111

Carry 4 01000100000

Finally, Sum 4 and Carry 4 are added together using a parallel adder:

Sum 4 11011000111
Carry 4 01000100000
Final sum 100011100111

Each step can be implemented in one stage of a pipeline, as shown in Figure 4.16.
The partial product bits can be generated directly from the logical AND of the
corresponding A and B bits. The first partial product has the bits A,_|B, - A B,
Ay B,. The second partial product has the bits A,_,B, - A;B, A,B,, etc.

The multiplier using carry-save adders lends itself to become a feedback pipeline
to save on components, as shown in Figure 4.17. Here, the carry-save adders are
reused one or more times, depending upon the number of bits in the multiplier, and
on the organization. Note that the advantage of being able to submit new operands
for multiplication on every cycle is now lost.

Another multiplication technique involves having a two-dimensional array of
cells. Each cell performs a 3-bit full adder addition. There are several versions of
the array multiplier, each of which passes on signals in different ways. The shift-and-
add multiplier is in fact a form of an array multiplier when reconfigured for a
pipeline. The reader is referred to Jump et al. (1978) for a study of array multipliers
arranged for pipelining. Array multipliers are suitable for VLSI implementation.

4.3.3 Floating point arithmetic pipelines

Floating point arithmetic is particularly suitable for pipeline implementation as a
sequence of steps can be readily identified. It is perhaps the commonly quoted
example for pipeline implementation. Even in a non-pipelined computer system,
floating point arithmetic would normally be computed as a series of steps (whereas
fixed point arithmetic might be computed in one step.)

128 Computer design techniques

As Bs Ay By
36 AND gates _ _
producing digits
AsBs AiBo
J
GROUP 2 DIGITS GROUP 1 DIGITS
SEENERTRCRE
Full/half adders Full/half adders SUM 1
CARRY2 SUM?2 CARRY1 —*—— Staging
I I | I I I I I latches
| . 1
| I
T)
Full/half adders SUM 3
CARRY 3
1] |]]
| 1 k|
—_— — I
Ful/half adders SUM 4
CARRY 4
| | | |
| =
Carry-look-ahead adders
| | 1 I | | |]

BN ERE

Py Po Py Ps P, P P P Py P, P PR
PRODUCT

Figure 4.16 6-bit x 6-bit carry-save multiplier

Each floating point number is represented by a mantissa and exponent, given by:
number = mantissa X 2¢expenent

where the base of the number system is 2. (The base could also be power of 2, for
example, it is occasionally 16). The mantissa and exponent are stored as two
numbers. The sign of the number is shown by a separate sign bit and the remaining
mantissa is a positive number (i.e. the full mantissa is represented in the sign plus
magnitude representation). A biased exponent representation is often used for the

Pipelined systems 129

Inputs

/ i
Multiplexer Multiplexer

Carry-save adder Feedback

)

Demultiplexer Demultiplexer

Outputs

Figure 4.17 Carry-save adder with feedback

exponent such that the stored exponent is always positive, even when representing a
negative exponent. In the biased exponent system, the stored exponent = actual
exponent + bias. The bias is usually either 27! or 27-1 — 1, where there are n bits in
the number. The biased exponent representation does not affect the basic floating
point arithmetic algorithms but makes it easier to implement the comparison of
exponents which is necessary in floating point addition (not in floating point
multiplication).

Numbers are also usually represented in a normalized form in which the most
significant digit of the (positive) mantissa is made to be non-zero (i.e. 1, with a base
of 2) and the exponent adjusted accordingly, to obtain the greatest possible precision
of the number (the greatest number of significant digits in the mantissa). In fact, the
most significant bit need not be stored in base two system if it is always 1. The
stored mantissa is normally a fraction, i.e. the binary point is to the immediate left
of the stored mantissa, and the exponents are integers. The position of the binary
point is immaterial to the algorithm.

The addition of two normalized floating point numbers, represented by the

mantissa/exponent pairs, me, and m,e,, requires a number of sequential steps, for
example:

1. Subtract exponents e, €,, and generate the difference €, — e,
2. Interchange mantissa m, and m,, if e, — e, is negative and make the difference
positive. Otherwise no action is performed in this step.

130 Computer design techniques

w

Shift mantissa m, by €, — €, places right.

Add mantissas to produce result mantissa replacing m,.

5. Normalize result as follows. If mantissa greater than 1, shift one place right
and add 1 to exponent. If mantissa less than 0.5, shift mantissa left until
leftmost digit = 1 and subtract number of shifts from exponent. If mantissa =
0, load special zero pattern into exponent. Otherwise do nothing. Check for
underflow (number too small to be represented) or overflow (number too large
to be represented) and in such cases generate the appropriate actions.

>

Some steps might be divided further, and any group of sequential steps in a pipeline
can be formed into one step.
Floating point multiplication is conceptually easier, having the steps:

Add exponents €, and e,.

Multiply mantissa m; and m,.

Normalize if necessary.

Round mantissa to a single length result.

Renormalization if necessary (rounding may increase mantissa one digit which
necessitates renormalization).

s W -

However, the mantissa multiplication operation would typically be divided into two
or more stages (perhaps iterative stages with feedback) which would make floating
point multiplication a longer process than floating point addition. It is possible to
combine floating point multiplication with addition, as the exponent addition of the
floating point multiplication and the exponent subtraction of floating point addition
could both be performed with a parallel adder. Also, both operations require
normalization.

A floating point multiply/divide unit can be designed as a feedback pipeline by
internally feeding back partial product results until the final result is obtained. The
general motive for designing feedback pipelines is reduction in hardware, compared
to a non-feedback pipeline. New inputs cannot be applied to a feedback pipeline (at
least not when the feedback is to the input) until previous results have been
generated and consumed, and hence this type of pipeline does not necessarily
increase throughput, and externally the unit may not be regarded as a pipeline. We
will use the term linear pipeline to describe a pipeline without feedback paths.

4.4 Logical design of pipelines

4.4.1 Reservation tables

The reservation table is central to pipeline designs. A reservation table is a two-
dimensional diagram showing pipeline stages and their usage over time, i.e. a

Pipelined systems 131

space—time diagram for the pipeline. Time is divided into equal time periods,
normally equivalent to the clock periods in a synchronous pipeline. If a pipeline
stage is used during a particular time period, an X is placed in the reservation table
time slot. The reservation table is used to illustrate the operation of a pipeline and
also used in the design of pipeline control algorithms.

A reservation table of a five-stage linear pipeline is shown in Figure 4.18. In this
particular case, each of the five stages operate for one time period, and in sequence.
It is possible to have stages operate for more than one time period, which would be
shown with Xs in adjacent columns of one row. More than one X in one row, not
necessarily adjacent columns, could also indicate that a stage is used more than once
in a feedback configuration. A reservation table with more than one X in a column
would indicate that more than one stage is operating simultaneously on the same or
different tasks. Operating on the same task would indicate parallel processing, while
operating on different tasks would generally indicate some form of feedback in the
pipeline.

A reservation table describes the actions performed by the pipeline during each
time period. A single function pipeline has only one set of actions and hence would
have one reservation table; a multifunction pipeline would have one reservation
table for each function of the pipeline. In a static multifunction pipeline, only one
function can be selected for all entering tasks until the whole pipeline is reconfigured
for a new function, and only one of the reservation tables is of interest at any instant
corresponding to overall function selected. In a dynamic multifunction pipeline,
different overall functions can be performed on entering data, and all of the
reservation tables of functions selected need to be considered as a set.

Pipelines generally operate in synchronism with a common clock signal and each
time slot would be related to this clock period, the boundary between two adjacent
slots normally corresponding to clocking the data from one pipeline stage to the
next stage. Note though, that the reservation table does not show the specific paths
taken by information from one stage to another, and it is possible for two different
pipelines to have the same reservation table.

The reservation table does help determine whether a new task can be applied after

Time

Clockperiods— 0 1 2 3 4

X
Stages X

Figure 4.18 Reservation table of a five-stage linear pipeline

132 Computer design techniques

the last task has been processed by the first stage. Each time the pipeline is called
upon to process a new task is an initiation. Pipelines may not be able to accept
initiations at the start of every period. A collision occurs when two or more
initiations attempt to use the same stage in the pipeline at the same time.

Consider, for example, the reservation table of a static pipeline shown in Figure
4.19. This table has adjacent Xs in rows. Two consecutive initiations would cause a
collision at slots 1-2. Here, the stage is still busy with the first initiation when the
second reaches the input of the stage. Such collisions need to be avoided by
delaying the progress of the second initiation through this particular pipeline until
one cycle later. A potential collision can be identified by noting the distance in time
slots between Xs in each row of the reservation table. Two adjacent Xs have a
“distance” of 1 and indicate that two initiations cannot be applied in successive
cycles. A distance of 2 would indicate that two initiations could be separated by an
extra cycle.

Time
01t 2 3 4 5 6 7
X XX
XX
St
ages X
XX

Figure 4.19 Reservation table with collision

A collision vector is used to describe the potential collisions and is defined for a
given reservation table in the following way:

Collision vector C=C,_,C, _, -~ C,C,C,

where there are n stages in the pipeline. C, = 1 if a collision would occur with an
initiation i cycles after an initiation (taking into account all existing tasks in the
pipeline), otherwise C, = 0. We note that C,, will always be 1, as two simultaneous
initiations would always collide. Hence, sometimes C; is omitted from the collision
vector. C, and subsequent bits are always 0, as initiations so separated would never
collide. All previous initiations would have passed through the pipeline completely.

The initial collision vector is the collision vector after the first initiation is
presented to the pipeline. To compute this it is only necessary to consider the
distance between all pairs of Xs in each row of the reservation table. The distances
between all pairs in the reservation table shown in Figure 4.19 are (5,4,1,0) and the
initial collision vector is 110011 (including C).

Pipelined systems 133

4.4.2 Pipeline scheduling and control

Now let us consider the situations when a pipeline should not accept new initiations
on every cycle because a collision would occur sometime during the processing of
the task. The pipeline needs a control or scheduling mechanism to determine when
new initiations can be accepted without a collision occurring.

Latency is the term used to describe the number of clock periods between two
initiations. The average latency is the average number of clock periods between
initiations generally over a specific repeating cycle of initiations. The forbidden
latency set contains those latencies which cause collisions, e.g. (5, 4, 1, 0) previously.
This set is also represented in the collision vector. The smallest average latency
considering all the possible sequences of tasks (initiation cycles) is called the
minimum average latency (MAL). Depending upon the design criteria, the optimum
scheduling strategy might be one which produces the minimum average latency.

The following scheduling strategy is due to Davidson (1971). A pipeline can be
considered in a particular state; it changes from one state to another as a result of
accepted initiations. A diagram of linked states becomes a state diagram. Each state
in the state diagram is identified by the collision vector (sometimes called a status
vector in the state diagram) which indicates whether a new initiation may be made
to the pipeline. The initial state vector of an empty pipeline before any initiations
have been made is 00 - 00, since no collision can occur with the first initiation. After
the first initiation has been taken, the collision vector becomes the initial collision
vector and C, in the collision vector will define whether another initiation is allowed
in the next cycle.

First the collison vector is shifted one place right and O is entered into the left
side. If C, = 1, indicating that an initiation is not allowed, the pipeline is now in
another state defined by the shifted collision vector. If C;, = 0, indicating that an
initiation is allowed, there are two possible new states — one when the initiation is
not taken, which is the same as when C; = 1, and one when the initiation is taken.
If the initiation is taken, the initial collision vector is bit-wise logically ORed
with the shifted collision vector to produce a new collision vector. This logical
ORing of the shifted collision vector with the initial collision vector incorporates
into the collision vector the effect of the new initiation and its effect on potential
collisions.

Figure 4.20 illustrates the algorithm for computing the collision vector for a
pipeline when initiations may or may not be taken. It immediately leads to a
possible scheduling algorithm, i.e. after shifting the collision vector, if C, = 0, an
initiation is taken and a new collision vector is computed by logically ORing
operations. The strategy of always taking the opportunity of submitting an initiation
to the pipeline when it is known that a collision will not occur, i.e. choosing the
minimum latency on every suitable occasion, is called a greedy strategy. Unfor-
tunately, a greedy strategy will not necessarily result in the minimum average
latency (an optimum strategy), though it normally comes fairly close to the optimum
strategy, and is particularly easy to implement.

134 Computer design techniques

Load initial
collision vector

R

Status vector

Shift vector

Take
initiation?

Logically OR state
vector with initial
collision vector

Figure 4.20 Davidson’s pipeline control algorithm

The state diagram for the collision vector 110011 (the reservation table in Figure
4.19) is shown in Figure 4.21. All possible states are included, whether or not an
initiation is taken. Clearly such state diagrams could become very large.

The state diagram can be reduced to only showing changes in state when an
initiation is taken. The various possible cycles of initiations can be easily located
from this modified (or reduced) state diagram. The modified state diagram is shown
in Figure 4.22. The number beside each arc indicates the number of cycles necessary
to reach a state. We can identify possible closed simple cycles (cycles in which a
state is only visited once during the cycle), as given by 3,3,3,3,~, 2,6,2,6,~,
3,6,3,6,, and 6,6,6,6,~. These simple cycles would be written as (3), (2,6), (3,6),
and (6).

Pipelined systems 135

110011

111111
N
000110 (@1111{)
000011 (}1101{) (Po111£)
000001 601101) (000111)

000000
-y N

Figure 4.21 State diagram for collision vector 110011

6+ 6+

110111 111111

Figure 4.22 Modified state diagram
(6+ = 6 or more cycles to reach state)

136 Computer design techniques

There is usually more than one greedy cycle if the starting point for a cycle can
be other than the initial state. In Figure 4.22, the greedy cycles are (2,6) starting at
the initial state 110011 and (3) starting at 110111. The average latency of any
greedy (simple) cycle is less than or equal to the number of 1s in the initial collision
vector (see Kogge, 1981). More complex cycles exist, in which states are visited
more than once. However it has been shown (see Kogge (1981) for proof) that for
any complex cycle with a given average latency, there is at least one simple cycle
with an average latency no greater than this latency. In searching for an optimum
strategy there is no need to consider complex cycles, as a simple cycle exists with
the same or better latency, assuming the criterion is minimum latency.

The minimum average latency is always equal to or greater than the maximum
number of Xs in the rows of the reservation table. This condition gives us the lower
bound on latency and can be deduced as follows: let the maximum number of Xs in
a reservation table row be n_ ., which equals the number of times the most used
stage is used by one initiation. Given ¢ time slots in the reservation station, the
maximum possible number of initiations is limited by the most used stage which, of
course, can be used by one initiation at a time. Hence the maximum number of
initiations = t/n The minimum latency = #/(maximum number of initiation) =
n

max*

max*
We now have the conditions: maximum number of Xs in row < minimum average

latency (MAL) < greedy cycle average latency < number of initial collision vector
Is, giving upper and lower bounds on the MAL.

A given pipeline design may not provide the required latency. A method of
reducing the latency is to insert delays into the pipeline to expand the reservation
table and reduce the chances of a collision. In general, any fixed latency equal to or
greater than the lower bound can be achieved with the addition of delays, though it
may never be possible to achieve a particular cycle of unequal latencies. Mathematical
methods exist to determine whether a particular cycle could be achieved (see
Kogge (1981). '

Given a simple cycle of equal latencies, and that all stages (Xs) in the reservation
table depend upon previously marked stages, we have the following algorithm to
identify where to place delays for a latency of n cycles:

1. Starting with the first X in the original reservation table, enter the X in a
revised table and mark every n cycles from this position to indicate that these
positions have been reserved for the initiations every n cycles. Mark with, say,
an F (for forbidden).

2. Repeat for subsequent Xs in the original reservation table until an X falls on an
entered forbidden F mark. Then delay the X one or more positions until a free
position is found for it. Re-mark delayed positions with a D. Delay all
subsequent Xs by the same amount.

All Ds in the reservation table indicate where delays must be generated in the pipeline.

Pipelined systems 137

Figure 4.23(a) shows a reservation table with a collision vector 11011. There is one
simple cycle (2,5) giving an MAL of 3.5. However, the lower bound (number of Xs in
any row) is 2. The previous algorithm is performed for a cycle of (2) in Figure 4.23(b).

Only one delay is necessary in Figure 4.23. This delay consists of a stage in the
pipeline which simply holds the information for one cycle as it passes from one
stage to the next. It can be implemented using only one extra stage latch. Multiple
delays between processing stages, had they been required, might be best implemented
using a dual port memory in which different locations can be read and written
simultaneously, as shown in Figure 4.24. Locations read are those which were
written n cycles previously, when an n-cycle delay was required.

Time
0 t 2.3 4 5
X X
Stages X X
XX
X

(a) Original reservation table

Time
01 2 3 4 5 6
D| X
Stages X X
X | X
X

(b) Reservation table with delay added

Figure 4.23 Adding delays to reduce latency (a) Original reservation table
(b) Reservation table with delay added

Pipeline

Dual port
memory

Write Read
— Stage >1 Delay(s) »] Stage ——

Figure 4.24 Using dual port memory for delay

138 Computer design techniques

The algorithm described assumes that Xs must be maintained in the same order as
in the original reservation table. It may be that certain stages could be executed
before others, though the relationship between the stages is not shown in the
reservation table. In that case, it would not be necessary to delay all subsequent Xs,
only those which depended upon the delayed stage.

Apart from having a strategy for accepting initiations, pipeline control logic is
necessary to control the flow of data between stages. A flexible method of control is
by microprogramming, in which the specific actions are encoded in a control
memory. This method can be extended so that the specific actions are encoded in
words which pass from one stage to the next with the data.

4.5 Pipelining in vector computers

We conclude this chapter with some remarks on the design of large, very high speed
vector computers, these being a very successful application of pipelining. Apart
from normal *“scalar” instructions operating upon one or two single element operands,
vector computers have instructions which can operate on strings of numbers formed
as one-dimensional arrays (vectors). Vectors can contain either all integers or all
floating point numbers. A vector computer might handle sixty-four element vectors.
One operation can be specified on all the elements of vectors in a single instruction.
Various vector instructions are possible, notably arithmetical/logical operation
requiring one or two vectors, or one scalar and one vector producing a vector result,
and an arithmetical/logical operation on all the elements of one vector to produce a
scalar result. Vector processors can also be designed to attach to scalar computers to
increase their performance on vector computations. Supercomputers normally have
vector capability.

Vector computers can be register-to-register type, which use a large number of
processor registers to hold the vectors (e.g. Cray 1, 2, X-MP, Y-MP computers) or
memory-to-memory type, which use main memory locations to hold the vectors (e.g.
Cyber 205). Most systems use vector registers. In either case, the general architecture
is broadly as shown in Figure 4.25, where the data elements are held in main
memory Or processor registers. As in all stored program computers described,
instructions are read from a program memory by a processor. The vector processor
accepts elements from one or two vectors and produces a stream of result elements.

Most large, high speed computer systems have more than one functional unit to
perform arithmetical and logical operations. For example, in a vector computer,
separate scalar and vector arithmetical functional units can be provided, as can
different functional units for addition/subtraction and multiplication/division. Func-
tional units can be pipelined and fed with operands before previous results have
been generated if there are no hazard conditions. Figure 4.26 shows multiple
functional units using vector registers to hold vector operands, as in Cray computers;
scalar register would also exist. The units take operands from vector registers and

Program
memory

B

Data

Pipelined systems 139

memory

Vectors

Vector instructions

Pipelined vector

arithmetic processor

Result
vector

Figure 4.25 Pipelined vector processing

Vector registers

Functional units

Main memory

Results

Figure 4.26 Muitiple functional units

return results to the vector registers. Each vector register holds the elements of one
vector, and individual elements are fed to the appropriate functional unit in succes-

sion.

Typically, a series of vector instructions will be received by the processor. To
increase the speed of operation, the results of one functional unit pipeline can be fed
into the input of another pipeline, as shown in Figure 4.27. This technique is known
as chaining and overlaps pipeline operations to eliminate the “drain” time of the

140 Computer design techniques

Add pipeline

Vectors
AandB —

Multiply pipeline Result vector

(A+B)C

Vector C

Figure 4.27 Chaining

first pipeline. More than two pipelines can be chained when available. Details of
vector pipelining and chaining in large vector processor systems can be found in
Cheng (1989).

PROBLEMS

4.1 Derive an expression for the minimum clock period in a ten-stage
synchronous pipeline in terms of the stage operating time, Liager STAZE
latch set-up time, !er.up» and the clock propagation time from one stage to
the next, ¢ assuming that the clock passes from one stage to the next
stage.

cprop?

4.2 A microprocessor has two internal units, an instruction fetch unit
and an instruction execute unit, with fetch/execute overlap. Compute the
overall processing time of eight sequential instructions, in each of the
following cases.

1. T(F)=T(E,)=100ns fori=11to8
. T(F)=50ns, T(E)=100ns fori=1to 8
3. T(F) =100 ns, T(E) = 50, 75, 125, 100, 75
and 50 ns fori=1,2,3,4,5, 6,7 and 8 respectively.

where T(F)) is the time to fetch the ith instruction and T(E,) is the time to
execute the jth instruction.

4.3 A computer system has a three-stage pipeline consisting of an
instruction fetch unit, an instruction decode unit and an instruction
execute unit, as shown in Figure 4.6. Determine the time to execute
twenty sequential instructions using two-way interleaved memory if the
fetch unit fetches two instructions simultaneously. Draw the timing
diagram for maximum concurrency given four-way interleaved memory.

Pipelined systems 141

4.4 A microprocessor has five pipelined internal units, an instruction
fetch unit (IF), an instruction decode unit (ID), an operand fetch unit
(OF), an operation execute unit (OE) and a result operand store unit
(OS). Different instructions require particular units to operate for the
periods shown in Table 4.1 (in cycles, one cycle = 100 ns).

Table 4.1 Pipeline unit operating times for instructions in Problem 4.4

Instruction TdF) T{D) T(OF) T(OE) T(OS)
Load memory to register 1 1 1 0 0
Load register to register 1 1 0 1 0
Store register to memory 1 1 0 0 1
Add memory to register 1 1 1 1 0

Compute the overall processing time of sequential instructions, in each
of the following cases.

1. MOV AX,[100] ;Copy contents of location 100
;into AX register
MOV BX, [200]
MOV CX, [300]
MOV DX, [400]

2. MOV AX, [100] ;Copy contents of location 100
;into AX register
MOV BX, [200] ;Copy contents of location 200
;into BX register
ADD AX,BX ;Add contents of BX to AX

MOV [200],AX ;Copy contents of AX
;into location 200

4.5 Given that an instruction pipeline has five units, as described in
Problem 4.4, deduce the times required for each unit to process the

following instructions:

ADD AX, [102]

SUB BX,AX
INC BX
MOV AX, [DX] ;Copy the contents of the

;location whose address is in
;register DX into register AX.

Identify three types of instructions in which T(OF) = T(OE) = T(OS)
=0ns.

142 Computer design technigues

4.6 What is the average instruction processing time of a five-stage
instruction pipeline if conditional branch instructions occur as follows:
third instruction, ninth instruction, tenth instruction, twenty-fourth instruc-
tion, twenty-seventh instruction, given that there are thirty-six instruc-
tions to process? Assume that the pipeline must be cleared after a branch
instruction has been decoded.

4.7 Identify potential data dependency hazards in the following code:

MOV AX, [100]

ADD AX,BX

MOV CX,1 ;load the literal 1 into CX register
MOV [100],AX

MOV [200],BX

ADD CX,[200]

given a five-stage instruction pipeline. Suppose that hazards are recog-
nized at the input to the pipeline, but that subsequent instructions are
allowed to pass through the pipeline. Determine the sequence in which
the instructions are processed.

4.8 Design a dynamic arithmetic pipeline which performs fixed point
(integer) addition or subtraction.

4.9 Design an arithmetic pipeline which performs shift-and-add unsigned
integer multiplication.

4.10 Design a static multifunction pipeline which will perform floating
point addition or floating point multiplication.

4.11 Draw the reservation table for the pipeline shown in Figure 4.28,
and draw an alternative pipeline which has the same reservation table.

:
—_— h-

= r “]

Figure 4.28 Pipeline for Problem 4.11

4.12 Determine the initial collision vector for the reservation table
shown in Figure 4.29. Derive the state diagram and simplify the diagram
into a reduced state diagram. List the simple cycles, and give the
minimum average latency (MAL).

Pipelined systems

Time
01 2 3 4 5 ¢
X
X | XX X
St
ages <X
XX

Figure 4.29 Reservation table for Problem 4.12

4.13 For the reservation table shown in Figure 4.30, introduce delays to
obtain the cycle (3), i.e. an initiation every third cycle.

Time
0 1t 2 3 4 5 6
X X
Stages X X
X X
X X

Figure 4.30 Reservation table for Problem 4.13

143

CHAPTER
Reduced instruction set

computers

In this chapter the concept of providing a limited number of instructions within the
processor (reduced instruction set computers, RISCs) as an alternative to the more
usual large number of instructions (complex instruction set computers, CISCs) will
be discussed. This is a major departure from the previous trend of increasingly
complex instructions, and is concerned with improving the performance of the
processor.

5.1 Complex instruction set computers (CISCs)

5.1.1 Characteristics

The choice of instructions in the instruction set of the processor is a major design
factor. Chapter 1 stated that operations in instructions are reduced to a simple form.
However, throughout the development of computers until the 1980s, the instructions
provided in the instruction set became more complex as more features were added to
aid the software development and close the so-called semantic gap between the
hardware and software. Mostly, a simple instruction format was retained with one
operation, one or two operands and one result, but specialized operations and
addressing modes were added. The general argument for providing additional
operations and addressing modes is that they can be performed at greater speed in
hardware than as a sequence of primitive machine instructions.

Let us look first at the possibilities for more complex instructions provided in
tomplex instruction set computers (CISCs). Complex instructions can be identified
in the following areas:

To replace sequences of primitive arithmetic operations.

For alternative indirect methods of accessing memory locations.
For repetitive arithmetic operations.

In support of procedure calls and parameter passing.

=

144

Reduced instruction set computers 145

5. In support of the operation system.
6. In support of multiprocessor systems.

Less common composite operations include checking for error conditions. For
example, the Motorola MC68000 has a “check register against bounds” (CHK)
instruction to compare the value held in a register with an upper bound. If the upper
bound is exceeded, or the register value is below zero, an exception (internal
interrupt) occurs. The upper bound is held in another register or in memory.

More than one arithmetic/logic operation could be specified in one instruction, for
example, to add two operands and shift the result one or more places left or right, as
in the Nova minicomputer of the early 1970s. Clearly the number of instances in a
program that such operations are required in sequence is limited. Arithmetic
operations followed by shift operations can be found in microprogrammed devices,
for example in the 4-bit Am2901 microprogram device introduced in 1975. One
application at the microprogram level is to implement multiplication and division
algorithms.

Apart from adding more complex operations to increase the speed of the system,
complex addressing modes have also been introduced into systems. Addressing
modes can be combined, for example index register addressing and base register
addressing (i.e. base plus index register addressing). Indirect addressing could be
multilevel. In multilevel indirect memory addressing, the address specifies a memory
location which holds either the address of the operand location or, if the most
significant bit is set to 1, the remaining bits are interpreted as an address of another
memory location. The contents of this location are examined in the same manner.
The indirection mechanism will continue until the most significant bit is 0 and the
required operand address is obtained. Such multilevel indirection was provided in
the NOV computer of the 1970s. Multilevel indirection is an example of a mechanism
which is relatively simple to implement but which is of limited application and is
now rarely found.

Support for common repetitive operations is appealing because one instruction
could initiate a long sequence of similar operations without further instruction
fetches. Examples include instructions to access strings and queues, and many
CISCs have support for strings and queues. The Intel 8086 microprocessor family
has several instructions which access a consecutive sequence of memory locations.
The Motorola MC68000 microprocessor family has postincrement and predecrement
addressing modes, in which the memory address is automatically incremented after a
memory access and decremented prior to a memory access respectively. (Similar
addressing can also be found in the VAX family.)

Multiple operations are needed during procedure calls and returns. In addition to
saving and restoring the return address, more complex call and return instructions
can save all the main processor registers (or a subset) automatically. Mechanisms
for passing procedure parameters are helpful, as procedure calls and returns occur
frequently and can represent a significant overhead.

It is helpful for the operating system if some instructions (e.g. input/output

146 Computer design techniques

instructions) simply cannot be executed by the user and are only available to the
operation system. In addition, access to areas of memory are restricted. We have
seen in Chapter 2 that memory protection can be incorporated into the memory
management system. Finally, multiprocessor systems (as we shall discuss in sub-
sequent chapters) require hardware support in the form of special instructions to
maintain proper access to shared locations.

CISCs often have between 100 and 300 instructions and 8—20 addressing modes.
An often quoted extreme example of a CISC is the VAX-11/780, introduced in
1978, having 303 instructions and 16 addressing modes with complex instruction
encoding. Microprocessor examples include the Intel 80386, with 111 instructions
and 8 addressing modes, and the Motorola MC68020, with 109 instructions and 18
addressing modes. In many cases, the development came about by extending
previous system designs and because of the view that the greatest speed can be
achieved by providing operations in hardware rather than using software routines.

Large numbers of operations and addressing modes require long instructions for
their specification. They also require more than one instruction format because
different operations require different information to be specified. In a CISC, a
general technique to reduce the instruction lengths and the program storage require-
ments, though increasing the complexity even further, is to encode those instruc-
tions which are most likely to be used into a short length.

5.1.2 Instruction usage and encoding

To discover which instructions are more likely to be used, extensive analyses for
application programs are needed. It has been found that though high level languages
allow very complex constructs, many programs use simple constructs. Tanenbaum
(1990) identifies, on average, 47 per cent of program statements to be assignment
statements in various languages and programs, and of these assignment statements,
80 per cent are simply assigning a value to a constant. Other studies have shown
that the complex addressing modes are rarely used. For example, DEC found during
the development of the VAX architecture that 20 per cent of the instructions
required 60 per cent of the microcode but were only used 0.2 per cent of the time
(Patterson and Hennessy, 1985). This observation led to the micro VAX-32 having
a slightly reduced set of the full VAX instruction set (96 per cent) but a very
significant reduction in control memory (five-fold).

Hennessy and Patterson (1990) present instruction frequency results for the VAX,
IBM 360, Intel 8086 and their paper design, DLX processor. Table 5.1 is based upon
the 8086 results. Three programs are listed, all running under MS-DOS 3.3 on an
8086-processor IBM PC. The first is the Microsoft assembler, MASM, assembling a
500-line assembly language program. The second is the Turbo C compiler compiling
the Dhrystone benchmark and the third is a Lotus 1-2-3 program calculating a 128
cell worksheet four times. The Dhrystone benchmark has been proposed as a
benchmark program embodying operations of a “typical” program. This benchmark,

Reduced instruction set computers 147

and the other widely quoted benchmark program — the Whetstone benchmark — have
been criticized as not being able to predict performance (see for example Hennessy
and Patterson (1990), pp. 73 and 183). The test done here refers to the compiler, not
to the execution of the Dhrystone benchmark.

Of course, each instruction frequency study will give different results depending
upon benchmark programs, the processor and other conditions. However, register
accesses generally account for a large percentage of accesses, and a significant
percentage are move operations (for example 51 per cent register addressing, 29
per cent MOV and 12 per cent PUSH/POP in Table 5.1). Conditional jump instruc-
tions also account for a significant percentage of instructions (10 per cent in Table
5.1) and, though not shown in Table 5.1, instructions using small literals are very
commonly used for counters and indexing lists.

Table 5.1 8086 Instruction usage

MASM Turbo C Lotus Average
assembler (%) compiler (%) 1-2-3 (%) (%)
Operand access
Memory 37 43 43 41
Immediate 7 11 5 8
Register 55 46 52 51
Memory access addressing
Indirect 12 9 15 12
Absolute 36 18 34 30
Displacement 52 73 51 59
Instruction type
Data transfer
MOV 30 30 21 29
PUSH/POP 12 18 8 12
LEA 3 6 0 3
Arithmetic/logical
CMP 9 3 3 7
SAL/SHR/RCR 0 3 12 5
INC/DEC 3 3 3 5
ADD 3 3 3 3
OR/XOR 1.5 4.5 3 3
Other each 3
Control/call
IMP 3 1.5 1.5 2
LOOP 0 0 12 4
CALL/RET 3 6 3 4
Cond. jump 12 12 6 10

148 Computer design techniques

CISC processors take account of this characteristic by using variable length instruc-
tions in units of bytes or 16-bit words. Totally variable length instructions, using
Huffman coding, can be used and, in one study, led to a 43 per cent saving in code
size (Katevenis, 1985). The Intel 432 microprocessor uses bit-encoded instructions,
having from 6 to 321 bits. Instructions can be limited to be multiples of bytes or
words, which leads to 35 and 30 per cent savings, respectively. Limiting instructions
in this way is often done because it matches the memory byte/word fetch mechanism.
For example, an MC68000 instruction can be between one and five 16-bit words. An
8086 instruction can be between 1 and 6 bytes. The VAX-11/780 takes this
technique to the extreme with between 2 and 57 bytes in an instruction.

The following frequently used operations are candidates for compact encoding:

1. Loading a constant to a register.

2. Loading a small constant (say O to 15) to a register.
3. Loading a register or memory with 0.

4. Arithmetic operations with small literals.

The MC68000 has “quick” instructions (move/add/subtract quick) in compact en-
coding with small constants. Similarly, the 8086 family has compact encoding for
some register operations.

A significant consequence of complex instructions with irregular encoding is the
need for complex decode logic and complex logic to implement the operations
specified. Most CISCs use microcode (Chapter 1) to sequence through the execution
steps, an ideal method of complex instructions. This can lead to a very large control
store holding the microcode. Again, an extreme example is the 456 Kbyte
microcode control store of the VAX-11/780. A consequence of bit-, byte- and word-
encoded instructions is that the decoding becomes a sequential operation. Decoding
continues as further parts of the instruction are received.

5.2 Reduced instruction set computers (RISCs)

5.2.1 Design philosophy

The policy of complex machine instructions with complex operations and long
microprograms has been questioned. An alternative design surfaced in the early
1980s, that of having very simple instructions with few operations and few addressing
modes, leading to short, fast instructions, not necessarily microprogrammed. Such
computers are known as reduced instruction set computers (RISCs) and have been
established as an alternative to complex instruction set computers. The general
philosophy is to transfer the complexity into software when this results in improved
overall performance. The most frequent primitive operations are provided in hard-
ware. Less frequent operations are provided only if their inclusion does not adversely

Reduced instruction set computers 149

affect the speed of operation of the existing operations. The prime objective is to
obtain the greatest speed of operation through the use of relatively simple hardware.
The following issues lead to the concept of RISCs:

The effect of the inclusion of complex instructions.
The best use of transistors in VLSI implementation.
The overhead of microcode.

The use of compilers.

halh

Inclusion of complex instructions

The inclusion of complex instructions is a key issue. As we have mentioned, it was
already recognized prior to the introduction of RISCs that some instructions are
more frequently used than others. The CISC solution was to have shorter instruction
lengths for commonly used instructions; the RISC solution is not to have the
infrequently used instructions at all. To paraphase Radin (1983), even if adding
complex instructions only added one extra level of gates to a ten-level basic
machine cycle, the whole CPU has been slowed down by 10 per cent. The frequency
and performance improvement of the complex functions must first overcome this 10
per cent degradation and then justify the additional cost.

VLSI implementation

One of the arguments put forward for the RISC concept concerns VLSI implementa-
tion. In the opening paragraph of his award-winning thesis, Katevenis (1985) makes the
point that “it was found that hardware support for complex instructions is not the most
effective way of utilizing the transistors in a VLSI processor”. There is a trade-off
between size/complexity and speed. Greater VLSI complexity leads directly to
decreased component speeds due to circuit capacitances and signal delays. With
increasing circuit densities, a decision has to be made on the best way to utilize the
circuit area. Is it to add complex instructions at the risk of decreasing the speed of other
operations, or should the extra space on the chip be used for other purposes, such as a
larger number of processor registers, caches or additional execution units, which can be
performed simultaneously with the main processor functions? The RISC proponents
argue for the latter. Many RISCs employ silicon MOS technology; however, the RISC
concept is also applicable to the emerging, lower density gallium arsenide (GaAs)
technology and several examples of GaAs RISC processors have been constructed.

Microcode

A factor leading to the original RISC concept was changing memory technology.
CISCs often rely heavily on microprogramming, which was first used at a time when
the main memory was based upon magnetic core stores and faster read-only control
memory could be provided. With the move to semiconductor memory, the gap
between the achievable speed of operation of main memory and control memory
narrows; the cache memory concept has also been developed. Now, a considerable

150 Computer design techniques

overhead can appear in a microprogrammed control unit, especially when a simple
operation might correspond to one microinstruction. Microprogramming, in which
the programmer uses the microinstructions directly, was tried in the 1970s, by
providing writable control stores, but is now not popular.

Compilers

There is an increased prospect for designing optimizing compilers with fewer
instructions. Some of the more exotic instructions are rarely used, particularly in
compilers which have to select an appropriate instruction automatically, as it is
difficult for the compiler to identify the situations where the instructions can be used
effectively. A key part of the RISC development is the provision for an optimizing
compiler which can take over some of the complexities from the hardware and make
best use of the registers. Many of the techniques that can be used in an optimizing
RISC compiler are known and can be used in CISC compilers.

Further advantages of the RISC concept include simplified interrupt service logic.
In a RISC, the processor can easily be interrupted at the end of simple instructions.
Long, complex instructions would cause a delay in interrupt servicing or necessitate
complex logic to enable an interrupt to be servicing before the instruction had
completed. A classic example of a complex instruction which could delay an
interrupt service is a string instruction.

The growth of RISC systems can be evidenced by the list of twenty-one RISC
processors given by Gimarc and Milutinovi¢ (1987), all developed in the 1980s; a
list which does not include the MC88100 introduced by Motorola just afterwards
and early prototype systems. The MC88100 is considered in Section 5.3.3 as
representative of commercial RISCs.

There are claims against the RISC concept. Disadvantages include the fact that
if the machine instructions are simple, it is reasonable to expect the programs to be
longer. There is some dispute over this point, as it is argued that compilers can
produce better optimized code from RISC instruction sets, and in any event, more
complex instructions are longer than RISC instructions. Certain features identified
with a RISC might also improve a CISC. For example, RISCs usually call for a
large number of general purpose registers. A large register file, with a suitable
addressing mechanism, could improve the performance of a CISC. Similarly,
optimizing compilers using information on the internal structure of the processor
can improve the performance of a CISC.

5.2.2 RISC characteristics

Though the RISC philosophy can be achieved after various architectural choices,
there are common characteristics. The number of different instructions is limited to
128, or fewer, carefully selected instructions which are likely to be most used.
These instructions are preferably encoded in one fixed-size word and execute in one
cycle without microcoding. Perhaps only four addressing modes are provided.

Reduced instruction set computers 151

Indexed and PC-relative addressing modes are probably a minimum requirement;
others can be obtained from using these two addressing modes. All instructions
conform to one of a few instruction formats. Memory operations are limited to load
and store and all arithmetic/logical operations operate upon operands in processor
registers. Hence it is necessary to have a fairly large number of general purpose
processor registers, perhaps between thirty-two and sixty-four.

A memory stack is not often used for passing procedure parameters — internal
processor registers are used instead, because procedure calls and returns have been
identified as very common operations which could incur a heavy time penalty if they
require memory accesses.

A three-register address instruction format is commonly chosen for arithmetic
instructions, i.e. the operation takes operands from two registers and places the
result in a third register. This reduces the number of instructions in many applications
and differs from many CISC microprocessors, which often have two register, or one
register/one memory, address instructions.

In keeping all instructions to a fixed size, some do not use all the bits in the
instruction for their specification, and unused bits would normally be set to zero.
Such wastage is accepted for simplicity of decoding. At least with fixed instruction
length we do not have the problem of instructions crossing over page boundaries
during a page fault. An implication of fixed instruction word length, say 32 bits, is
that it is not possible to specify a 32-bit literal in one instruction — at least two
instructions are needed if a 32-bit literal is necessary. It may be necessary to shift
one literal before adding to another literal. Similarly, it is not possible to specify a
full 32-bit address in one instruction.

Those instructions which are likely to be used need to be identified; this usually
involves tracing program references of typical applications and identifying instruction
usage. In CISCs, a wide range of applications is supported. One possible approach
for RISCs is to limit the application area and provide instructions suitable for that
area, such as embedded computers for signal processing, artificial intelligence or
multiprocessing systems.

Like all processors, RISCs rely on pipeline processing. A two-stage pipeline
would seem appropriate for a RISC, one stage to fetch the instruction and one to
execute it. Branch instructions provided usually include the option of single cycle
delayed branch instructions (described in Chapter 4) which match a two-stage
pipeline well. Some RISCs do not conform to a two-stage pipeline, though all have
short pipelines. For register-to-register processing, an instruction could be divided
into four steps:

Instruction fetch/decode.
Register read.

Operate.

Register write.

PO

Two-, three- and four-stage pipelines assuming register-to-register operations are

152 Computer design techniques

shown in Figure 5.1. In all pipelines, each register reads calls for two accesses to the
internal register file to obtain both operands. Both accesses should preferably be
performed simultaneously, and then a two-port register file is necessary. The actual
implementation may put furthei requirements and constraints upon register/memory
accesses, for example, because of the need to precharge buses in a VLSI implementa-
tion.

Instruction 1 [Fetch instruction 1[Read Operate Write]

Instruction 2 | Fetch instruction " Read Operate Write |

Instruction 3 | Fetchinstruction]l

(@) Two-stage pipeline

Instruction 1 [Fetch instructiEILRead OperatelL Wirite]

Instruction 2 |Fetch instruction]lﬁead OpemElL Write |

Instruction 3 |Fetch instruc%]ﬁ?ead OperateIDVrite
(b) Three-stage pipeline

Instruction 1 | Fetch]Bead ILOperate IL Write |

Instruction 2 [FetchjLRead J[Operate]Mrm

Instruction 3 WWWW

(c) Four-stage pipeline

Figure 5.1 Pipelines for register-to-register operations (a) Two-stage pipeline
(b) Three-stage pipeline (c) Four-stage pipeline

The two-stage pipeline assumes that an instruction fetch operation requires the
same time as the read-operate-write execution phase, a reasonable assumption for
register read-write operations and a main memory without a cache. A cache would
bring the instruction fetch time closer to register access times. With three stages, an
instruction fetch time equates with a read-operate and write times; with four stages
the four steps (fetch, read, operate and write) should all take the same time,
including any circuit precharging.

With three or more stages in the pipeline, there may be register read-write hazards
(Chapter 4). For example, an instruction may attempt to read the contents of a
register whose value has not yet been updated by a previous instruction in the
pipeline. Logic can be introduced to detect the hazards (e.g. scoreboard bits) or,
keeping with the RISC philosophy, such hazards could be recognized by the
compiler and the instruction sequence modified accordingly.

There may also be scope for internal forwarding; when a value is written into a
register it could also be transferred directly as one of the sources of a subsequent
instruction, saving a register read operation. A three-stage pipeline calls for the

Reduced instruction set computers 153

execution of the read/operate part of one instruction at the same time as the register
write of another instruction. This would suggest a three-port register file with three
buses. This can be reduced to a two-port register file by arranging for the write
operation to occur during the operate part of the next instruction. The four-stage
pipeline would need a three-port register file with three buses, two read and one write.

RISCs have to access the main memory for data, though with a large number
of registers such access can be reduced. Accessing memory typically requires more
time than register read/write. During a memory access in some designs the pipeline
is stalled for one cycle, rather than having complex pipeline logic incorporated to
keep it busy with other operations. There is also a potential memory conflict
between an instruction fetch and a data access. Separate instruction and data
memory modules with separate buses can eliminate the memory bottleneck. Some
RISCs employ separate memory for data and instructions (Harvard architecture).

RISCs can employ pipelining much more extensively than the simple 2- to 4-stage
pipelining described, especially if they have multiple pipelined arithmetic units
which can be arranged to operate simultaneously. Memory accesses for both data
and instructions may be pipelined internally.

5.3 RISC examples

5.3.1 IBM 801

The first computer system designed on RISC principles was the IBM 801 machine,
designed over the period 1975-79 and publicly reported in 1982 (see Radin,
1983). The work marks the time when increasing computer instruction set complexity
was first questioned. The 801 establishes many of the features for subsequent RISC
designs. It has a three-register instruction format, with register-to-register arith-
metic/logical operations. The only memory operations are to load a register from
memory and to store the contents of a register in memory. All instructions have
32 bits with regular instruction formats. Immediate operands can appear as 16-bit
arithmetic/logical immediate operands, 11-bit mask constants, 16-bit constant displace-
ment for PC relative branch instructions and 26-bit offset for PC relative addressing
or absolute addressing. The system was constructed using SSI/MSI ECL components
with a cycle time of 66 ns.
Programming features include:

» 32 general purpose registers.
120 32-bit instructions.
¢ Two addressing modes:
base plus index;
base plus immediate.
* Optimizing compiler.

154 Computer design techniques
Architectural features include:

 Separate instruction cache and data cache.
» Four-stage pipeline:
Instruction fetch;
Register read or address calculation;
ALU operation;
Register write.
Internal forwarding paths in pipeline.
¢ Interrupt facility implemented in a separate controller.

Register fields in the instruction are 5-bits (to specify one of thirty-two registers).
The three-register format is carried out “pervasively” throughout. For example, it
allows shift operations to specify a source register, a destination register and the
number of shifts in a third register. Instruction memory contents cannot be altered
except to load the instructions. Instructions are provided for cache management to
reduce unnecessary cache load and store operations. Procedure parameters are
passed through registers when possible. A memory stack is not used. Data is stored
aligned to boundaries; words on word boundaries, half word (bytes) on half word
boundaries, instructions on word boundaries.

Branch instructions come in two versions, “delayed branch with execute” and
“delayed branch”. The delayed branch with execute delays execution of the branch
until after the next instruction, but executes the next instruction regardless of the
outcome of the branch instruction. The compiler will attempt to use the delayed
branch with execute version if possible, placing a suitable instruction immediately
after the branch, otherwise the non-delayed version is used.

Memory load instructions are also delayed instructions. When an instruction
which will load a register is fetched, the register is locked so that subsequent
instructions in the pipeline do not access it until it has been loaded properly. The
compiler attempts to place instructions which do not require access to the register
immediately after the “delayed load” instruction. Notice how the compiler must
know the operation of the pipeline intimately to gain the greatest possible speed in
the RISC. It is reported that 30 per cent of 801 instructions are load/store (Radin,
1983).

The 801 design team wanted all user programming to be done in a high level
language, which means that the only assembly language programming necessary
will be that for system programs. In conventional systems, hardware is provided to
protect the system against the “user”. For example, in memory management, protec-
tion mechanisms exist to stop users accessing operating system memory and operating
system instructions. The 801 team argument is that complex protection would slow
down the system. All users should use compilers supplied with the system, and the
complex protection is undesirable and unnecessary. Without hardware complexity it
becomes easier to accommodate changes in technology. The 801 programming
source language is called PL.8, which is based upon PL/1, but is without certain

Reduced instruction set computers 155

features, such as those which would call for absolute pointers to Automatic or Static
storage (Radin, 1983).

A key aspect of the project was the design of an optimizing compiler. The project
depended upon being able to transfer complexity from the architecture into an
optimizing compiler. From a source code program, intermediate language code is
first produced and then optimized by the compiler. Conventional optimizing tech-
niques applicable to any system are used. For example, constants are evaluated at
compile time, loops are shortened by moving constant expressions to outside the
loop, intermediate values are reused when possible and some procedures are expanded
in-line to reduce register saving.

Allocation of variables to registers is done by considering all of the variables,
rather than local variables only. Register allocation is illustrated in Figure 5.2. First,
an arbitrary large number of registers is assumed to be present and the compiler uses
one register for each variable in the program. The “lifetime” of each variable is
identified, i.e. the time between the first and last use of the variables. Then the
variables are mapped onto the available set of registers in such a manner as to
minimize memory accesses. In the example of Figure 5.2, four registers are available

G —_
Fl »
E I ——
Registers D e
C I——————
B -
A [r——
it 1 1 1 1 2 1 1 4 1 % 1 11 1 £ i 1 & 4 4 ¢ 3 313
Instructions Time
(@) Assuming unlimited number of registers
F
Green
D E
Four Blue
registers o B
A C
Red
B NN N T N N N NN Y IS O N AN TS TN T N TN SO T YN S 1O W S A B |
Instructions Time

(b) With four registers

Figure 5.2 Register allocation with limited number of registers (a) Assuming
unlimited number of registers (b) With four registers

156 Computer design techniques

(called red, black, blue and green) and seven variables, initially calling for seven
registers (A, B, C, D, E, F and G). Those variables which cannot be allocated
registers are held in memory, for example G in Figure 5.2. The algorithm used in the
IBM project is fully described by Chaitin et al. (1981) and is based upon the notion
that the register allocation problem can be seen as a graph coloring problem. There
are other register allocation algorithms. Notice that the “lifetime” of a variable may
not always represent its usage. A register with a short lifetime might be referenced
many times, and hence should be held in register, while another variable might have
long lifetime but is not referenced very often and would have a lower overhead if
held in memory. Figure 5.2 does not show this aspect.

5.3.2 Early university research prototypes — RISC I/l and MIPS

The first university-based RISC project was probably at the University of California
at Berkeley (Patterson, 1985 and Katevenis, 1985), very closely followed by the
MIPS (Microprocessor without Interlocked Pipeline Stages) project at Stanford
University. Both projects resulted in the first VLSI implementations of RISCs, the
Berkeley RISC I in 1982, and the Stanford MIPS and the Berkeley RISC II, both in
1983. These early VLSI RISCs did not have floating point arithmetic, though it was
anticipated that floating point units could be added to operate independently of other
units in the processor. Floating point operations are regarded as candidates for
inclusion in the instruction set, especially for numeric applications.

Features of these early VLSI RISCs are shown in Table 5.2. All processors are
32-bit, register-to-register processors and do not use microcode. Regular instruction
formats are used.

Figure 5.3 shows the two instruction formats of the RISC II, where R, and R,
refer to the two source registers and R, refers to the destination register. These
registers are specified by a 5-bit number, i.e. one from a group of 32 registers which
can be identified from the 138 registers at any instant. (A register window pointer
register is preloaded to specify which group of 32 registers is being referenced, see
page 159 for more details.) The flag SCC (Set Condition Codes) specifies whether

Table 5.2 Features of early VLSI RISCs

Features VLSI RISC

RISC1 RISC II MIPS
Registers 78 138 16
Instructions 31 39 55
Addressing modes 2 2 2
Instruction formats 2 2 4

Pipeline stages 2 3 5

Reduced instruction set computers 157

SCC

Ryq 0 Rs,
Condition 13-bit immediate constant

1 L1) Ll JJ 1 1 Ll 11) I N | 1 L1l 1 L1 1

K 24 18 13 0

Op-code

—_

(a) Short-immediate format (Register-to-register, register-indexed memory load,
memory store, control transfer instructions)

SCC

Op-code R _ 19-bit immediate constant
]Condmon
1 1 | I I 1 - I 1 1 1 L 1 - 1l 1 1 1 1 1 1 L | L

31 24 18 0

(b) Long-immediate format (PC-refative instructions)

Figure 5.3 RISC /Il instruction formats (register-to-register, register-indexed memory
load, memory store, control transfer instructions) (a) Short-immediate format
(b) Long-immediate format (PC-relative instructions)

the condition code flags are to be set according to the result of the operation. The
short-immediate format shown in Figure 5.3(a) is used for register-to-register,
register-indexed memory load, memory store and control transfer instructions. Two
fields in this format each have alternative interpretations, as shown. For non-
conditional instructions, a destination register, R, is specified. For conditional
instructions, a 4-bit condition is specified instead. One source operand can be held
in a register, R_,, or given as a 13-bit immediate constant in the instruction. The
long-immediate format, shown in Figure 5.3(b), is used for PC-relative instruc-
tions. As indicated earlier, two instructions are necessary to load a 32-bit constant
into a register.

Figure 5.4 shows the internal arrangement of the RISC II processor (slightly
simplified). The 138 word register file is addressed from busEXT and has two buses,
busA and busB. SHFTR is a 32-bit shifter using the left and right shift buses, busL
and busR. BusR is also used to load the BI input of the 32-bit arithmetic/logic unit
(ALU) and busL can be used to load data/constants into the data path. A full
description of the operation of the RISC II can be found in Katevenis (1985).
Notice the use of multiple program counters to specify the instructions in the
pipeline. This characteristic can be found in subsequent RISCs.

The three-stage pipeline of the RISC II is shown in Figure 5.5. In Figure 5.5(a) all
instructions are register-to-register. In Figure 5.5(b), the effect of a memory instruc-
tion is shown. Subsequent instructions are suspended while the memory access is in
progress. Internal forwarding is implemented. Dataflow of operands internally
forwarded to two subsequent instructions is shown by arrows. For example, while a

158 Computer design techniques

To memory
busEXT ,._AL‘ESEXT busOUT
I —
- DIMM
138 x 32 Al
Register o«
file % P k£ ALU
a n %
BI 1
" busR busD
7 busL
; busA
busB

Figure 5.4 RISC Il processor (DST, destination latch (a temporary pipeline latch);
SRC, source latch for the shifter; DIMM, combined data in/immediate latch
(holding data from memory or an immediate constant from the instruction); PC,
program counter (holding the address of the instruction being executed during the
current cycle); NXTPC, next-program counter (holding the address of the
instruction being fetched during the current cycle); LSTPC, last-PC-register (holding
the address of the instruction last executed or attempted to be executed); INC,
incrementer which generates NXTPC + 4.)

Instruction 1 I Instructlonfetc Reglsterl Operate]L Reglfter I—I
“ write

Instruction 2 [Instruction fetch "R:glster] Operate ‘l Fleglsterl 1
1 L write

Instruction 3 I instruction fetch RegisterL Operate —"
e read L

(a) Register-to-register

Compute address

Instruction 1 Instruction fetch [Register l Operate Memory read Register]
L 4 L read L L 1 L L A A write

internal forwarding

Instruction 2 Instruction fetch M__).IRGQ'SIQ’I Operate IL
read

Instruction 3 __ Suspend I Instruction fetch IL
1 I Fl

(b) Memory load (instruction 1)

Figure 5.5 RISC Il pipeline (a) Register-to-register
(b) Memory load (instruction 1)

Reduced instruction set computers 159

register has been loaded with a value, this value becomes immediately available
without the subsequent instructions having to read the contents of the register.

The Berkeley RISC project introduced the concept of a register window to
simplify and increase the speed of passing parameters between nested procedures.
The internal register file holds parameters passed between procedures, as shown in
Figure 5.6. Each procedure has registers in the file allocated for its use. The central
registers are used only within the procedure. The upper portion is used by the
procedure and by the procedure that called it. The lower portion is used by the
procedure and the procedure it calls, i.e. both the upper and lower portions of the
registers allocated to one procedure overlap with the allocation of registers of other
procedures. In this way, it is not necessary to save parameters in memory during
procedure calls, assuming a sufficient number of registers is provided for the
procedures, otherwise main memory must be used to store some of the register
contents. Another potential disadvantage occurs when multiple tasks are performed
which would necessitate allocating some of the registers for particular tasks or
saving registers when tasks are swapped.

Registers available Processregister
to all procedures file

Registers for
procedure 1

Registers for B,
procedure 2

Registers for
procedure 3

Registers for J
procedure 4

Figure 5.6 RISC register window

160 Computer design techniques

The seventy-eight registers of the RISC I are configured as six windows, each of
fourteen registers with two groups of four overlapping registers and eighteen global
registers accessible by all procedures. Each window had six local registers available
to the procedure alone. The next version, the RISC II, has 138 registers configured
as eight windows, each of twenty-two registers with two groups of 6 overlapping
registers and 10 global registers. It was found that procedures are not usually nested
to a depth of greater than eight and very rarely greater than ten or eleven, especially
over any reasonably short period of the computation.

The register windows can be viewed arranged in a circular fashion, as shown in
Figure 5.7 (for the RISC II). The current window pointer, CWP, points to the
window that can be accessed. The specific register within the window is specified as
a register number in the instruction. The register address is made up of a 3-bit
window address concatenated to a 5-bit register number. Note how a register in an
overlapping group has two addresses. For example, register 1:26 in window 1 is also
register 2:10 in window 2. Register numbers between 0 and 9 always refer to the
global registers irrespective of the current window. We would expect that during a
period in the computation, the procedures would nest to a limited extent, and the
circular nature of the windows accommodates this characteristic well.

5.3.3 A commercial RISC - MC88100

The Motorola MC88100 RISC 32-bit microprocessor, introduced in 1988 (Motorola,
1988a), is one of the first RISCs to be produced by a major CISC microprocessor
manufacturer. The main characteristics of the MC88100 are:

Register-to-register (3-address) instructions, except load/store.
Thirty-two general purpose registers.

Fifty-one instructions.

All instructions fixed 32-bit length.

No microcode.

Four pipelined execution units that can operate simultaneously.
Separate data and address paths (Harvard architecture).

NoUnAREWPD -

The instruction format is regular in that the destination and source specifications are
in the same places in the instruction, though there are several instruction formats.
The fifty-one instructions are given in Table 5.3, and include the common integer
and floating point arithmetic and logical operations. Unusual instructions include a
number of instructions for manipulating bit fields within registers. “Extract Unsigned
Bit Field”, extu, copies a group of bits in a source register into the least significant
end of the destination register. “Extract Signed Bit Field”, ext, is similar but sign
extends the result. The position of the field in the source register is specified in
terms of an offset from the least significant end and a width giving the number of
bits in the field. Offset and width are held either in the instruction or in a second

Reduced instruction set computers 161

Global
registers

Register x.0
address

Current window pointer, CWP

1]

Window 0

x.10 Register windows

0.10
| 0154 46
\\\\ { // //
W\7.16 i1
\ z,

7.25 7
796 7.31 /, // P 0.31

7.107'15 1.10 ////
7 Window? 135%~

1.16
Window 1 1.05
1.26 2.10
1.31 ~_
///
////)
/
774
2

Figure 5.7 Register window addresses

source register. The reverse operation of copying a number of the least significant
bits of a source register into a destination register in a specified field position is also
available (“Make Bit Field”, mak). Fields can be set to 1s with “Set Bit Field”, set,
or cleared to Os with “Clear Bit Field”, clr. The instruction ext can be used for
shift operations, the only specific shift instruction provided being rot, which rotates
the contents of a source register right by a specified number of places. Another
unusual instruction is “Find First Bit Clear”, ££0, which scans the source register
from the most significant bits towards the least significant bit and loads the
destination register with the bit number of the first bit found to be clear (0). “Find
First Bit Set”, £f1, loads the bit number of the most significant bit set.

162 Computer design techniques

Table 5.3 MC88100 Instruction Set
courtesy of Motorola Inc.

Integer arithmetic: Loadlstorelexchange:

add Add 1d Load register from memory
addu Add unsigned lda Load address

cmp Compare ldcr Load from control register

div Divide st Store register to memory

divu Divide unsigned stcr Store to control register

mul Multiply xcr Exchange control register

sub Subtract xmem Exchange register with memory

subu Subtract unsigned

Floating point arithmetic: Flow-control:

fadd Floating point add bb0 Branch on bit clear
fcmp Floating point compare bbl Branch on bit set
fdiv Floating point divide bend Conditional branch
fldcr Load from floating point control register br Unconditional branch
flt Convert integer to floating point bsr Branch to subroutine
fmul Floating point multiply jmp Unconditional jump
fstcr Store to floating point control register jsr Jump to subroutine
fsub Floating point subtract rte Return from exception
fxcr Exchange floating point control register tb0 Trap on bit clear

int Round floating point to integer tbl Trap on bit set

nint Round floating point to nearest integer tbnd Trap on bounds check
trnc Truncate floating point to integer tend Conditional trap
Logical: Bit-field:

and AND clr Clear bit field

mask Logical mask immediate ext Extract signed bit field
or OR extu Extract unsigned bit field
xor Exclusive OR ff0 Find first bit clear

ffl Find first bit set
mak Make bit field
rot Rotate register
set Set bit field

Reduced instruction set computers 163

MC88100
i o o Floating point unit _‘:
1 1
] 1
1 5-stage 6-stage !
i lntt:'a"gi;ter add multiply i
i pipeline pipeline :
I
! !
I]
i A i Source 1 bus
H | Source 2 bus
i ! Destination bus
| A } !
' Data unit Instruction l
] with Registerfile unit i
i| 3-stagedata andsequencer {*™] withinstr. |
i | access pipeline fetch pipeline !
| \ \ !
N SR RS - A
! Data bus , | Instruction bus
Instruction
MCag2oo | Datacache cache | MC88200
with MMU
Main
memory

Figure 5.8 MC88100 system

There are seven addressing modes, three for accessing data and four for generating
instruction addresses, namely:

Data addressing

1. Register indirect with unsigned immediate index.

2. Register indirect with register index.

3. Register indirect with scaled register index.

Instruction addressing

1. Register with 9-bit vector number.

2. Register with 16-bit signed displacement.

3. Instruction pointer relative (26-bit signed displacement).

4. Register direct.
The internal architecture of the MC88100 is shown in Figure 5.8. We would expect
a RISC system to execute instructions in a single cycle and to produce a result after
each cycle, and the MC88100 can achieve this. Integer arithmetic/logical instruc-

164 Computer design techniques

tions execute in a single cycle. However, because of the multiple pipelined units, it
is possible for units to complete their operations in a different order to the one in
which they were started. An internal scoreboard technique is used to keep a record
of registers being updated.

Figure 5.9 shows the thirty-two general purpose registers and their usage. Exceptr 0
and rl, the uses are software conventions suggested by Motorola to aid software
compatibility. Register r 0 holds the constant zero which can be read but cannot be
altered. (This idea was present in the Berkeley RISC processors.) Register rl is loaded
with a return pointer by bsr and jsr. Other registers exist in the system for floating
point numbers, the supervisor state, three program counters, execute instruction
pointer (XIP), next instruction pointer (NIP) and fetch instruction pointer (FIP).

0 Zero
rn Subroutine return pointer

RN Called procedure
1) parameter registers

r Called procedure
r2 temporary registers

19 Calling procedure
120 reserved registers

r2é Linker
r27 Linker
r28 Linker
r29 Linker
r30 Frame pointer
r31 Stack pointer

Figure 5.9 MC88100 general purpose registers

Reduced instruction set computers 165
5.3.4 The Inmos transputer

The Inmos transputer was certainly one of the first processors to embody the
principles of the RISC; in fact the early work on the transputer took place at the
same time as the IBM 801, but independently and without knowledge of the latter,
though the actual implementation of the transputer was not made available for
some time afterwards. The transputer is a VLSI processor with external commun-
ication links to other transputers in a multiprocessor system. The multiprocessor
aspect of the device, and its high level programming language occam, are considered
in detail in Chapter 9. Occam is normally used in preference to assembly language.
Here we are interested in the RISC aspect of the device and hence will mention
some details of the machine language.

Basic machine instructions have one byte with the format shown in Figure 5.10.
The first 4 bits specify a data operand (from O to 15) and the second 4 bits
specify a function. The sixteen functions are allocated as follows:

« Thirteen frequently occurring functions.
» Two prefix/negative prefix functions.
* One operate function.

The thirteen frequently occurring functions include the load/store functions:

* Load constant.

» Load/store local.

* Load local pointer.

» Load/store non-local.

and also:

¢ Add constant.

¢ Jump.

» Conditional jump.
e Call.

“Local” locations are relative to a workspace pointer, an internal processor registers
and sixteen local locations can be specified in single byte instructions. “Non-local”
locations are relative to the processor A register. Inmos claims that the instructions

Function Data

Figure 5.10 Transputer instruction format

166 Computer design techniques

chosen for single byte encoding lead to 80 per cent of .executed instructions
encoded in one byte.

The two prefix functions allow the operand to be extended in length in further
bytes. Operands specified in all instructions are stored in an internal operand
register and, apart from the prefix instructions, the operand registers are cleared of
their contents after the instruction has been executed. The prefix instruction loads
the 4-bit operand of the instruction in the operand register and then shifts the
contents four places to the left. Thus, by including one prefix instruction before
another instruction, the operand can be increased up to eight bits. The operand
register in 32-bit transputers has thirty-two bits and can be completely filled using
three prefix instructions and a non-prefix instruction. The “negative prefix” instruction
loads the operand register but complements the contents before it shifts the contents
four places left.

The “operate” function interprets the operand stored in the operand register as an
operation on operands held in an internal stack. Hence, without prefix, the operate
function extends the number of instructions to twenty-nine (i.e. thirteen frequently
occurring functions plus sixteen operate functions). Arithmetic instructions are
encoded as operate functions. With prefix, the number of instructions can be
extended further, and less frequently used instructions are encoded with a single
prefix.

Transputer instructions have either one address or zero address formats, the
operate instructions being zero address. Three processor registers, A, B and C, are
provided as an evaluation stack for zero address stack instructions (among other
purposes). For example, “load local/non-local” (load onto the evaluation
stack) moves the contents of B into C and the contents of A into B before loading A.
“Store local/non-local” moves B into A, copies the contents of C into B and
stores A. The add instruction adds the contents of A and B, putting the
result in the A register. One address instruction uses the A register (top of the stack)
inherently and the specified location is usually relative to the workspace pointer. A
literal can be used.

5.4 Concluding comments on RISCs

The RISC concept has been established as a design philosophy leading away from
complex instructions. This is not to say that CISCs will not be designed, especially
those processors which must be compatible with existing CISC processors. For
example, the Motorola 68000 family, a true CISC processor family, has been
enhanced with various products since the introduction of the 68000 in 1979,
including the 16-bit 68010 and 68020, and the 32-bit 68030 and 68040. The more
recent trend, as in the 68040, is to have multiple pipelined units so that instructions
can be executed in close to one cycle, on average (as in RISCs). Without the
constraint of hardware compatibility with CISCs, RISC designs such as the

Reduced instruction set computers 167

Motorola 88100 are concerned fully with performance. It seems likely that to obtain
the greatest performance, processors will need to take on board RISC concepts.

PROBLEMS

5.1 A certain processor has 100 instructions in its instruction set and six
addressing modes. It has four instruction formats, one 16-bit and three
32-bits. What additional information, if any, would be needed to be able
to categorize the processor as a RISC or CISC?

5.2 Show how the addressing modes indexed plus literal and PC-relative
can be used to implement all other common addressing modes (as given
in Chapter 1, Section 1.1).

5.3 A processor has four general purpose registers (an artificially low
number for this problem). By trial and error, allocate four registers to
hold variables so as to minimize the number of variables held in memory,
given the following lifetimes:

Variable Lifetime
1to 10
1to 8
4t012
6to 8

10 to 13
6to 8
l1to5s
1to13

00 h0o a6 o e

The lifetime is given in execution periods of the program. Identify the
variables held in memory. When would the assignment result in non-
optimum processor speed (i.e. what additional information might be
needed for an optimum assignment)?

5.4 Design the logic required to decode the register addresses in the
register window given in Figure 5.7.

PART

|| | Shared memory
multiprocessor
systems

169

CHAPTER
Multiprocessor systems

and programming

This chapter identifies various types of multiprocessor systems and outlines their
operation. Software techniques applicable to general purpose multiprocessors are
presented, in preparation for further study of general purpose multiprocessor archi-
tectures in subsequent chapters.

6.1 General

In previous chapters, we considered methods of improving the performance of
single processor computer systems. Now we will consider the extension of the
stored program computer concept to systems having more than one processor. Such
systems are called multiprocessor systems. Each processor executes the same or
different instructions simultaneously, depending upon the type of system. The principal
motive behind developing multiprocessors is to increase the speed of operation.
(There are sometimes other motives, such as fault tolerance and matching the
application.) It seems apparent that increased speed should result when more than
one processor operates simultaneously. The best possible increase in speed would be
proportional to the number of processors, and would occur when all the processors
are operating simultaneously all the time on the application and there is no additional
computation or data transfer involved in the multiprocessor implementation. Such
an increase in speed is rarely achieved in practice because it is rarely possible to get
all the processors doing useful work on a single problem at the same time and there
is normally a substantial overhead in the communication between processors. How-
ever, considerable speed-up can be achieved.

The terms parallelism and concurrency are used to describe the simultaneous
operation of multiple processors (and hence parallel programming, parallel com-
puters, concurrent programming); the term parallelism is occasionally restricted to
processors all executing the same code, though we will not make that distinction
here.

There is a continual demand for greater computational speed than is possible with

171

172 Shared memory multiprocessor systems

available computer systems. General areas which require great computational speed
include modeling, simulation and prediction, which often need repetitive calculations
on large amounts of data to give valid results. Commonly quoted application
examples include weather forecasting, economic forecasting and aerodynamic simula-
tion for aircraft and space vehicles. Computer design also requires modeling and
extensive calculations to simulate the systems and VLSI integrated circuits prior to
manufacture. As the VLSI circuits become more complex, it takes increasingly more
time to simulate them; a simulation which takes two weeks to reach a solution is
usually unacceptable in a manufacturing environment. The time needs to be short
enough for the designer to work effectively. Certain applications have specific target
times. For example, two days for forecasting the weather the next day would make
the prediction useless.

There has been a debate on whether one fast processor would be faster and more
cost-effective than a system with more than one slower but less expensive processor.
Most manufacturers of large computer systems in the 1970s chose to develop
pipelined single processor systems with the fastest technology available if the
highest speeds were required. Sometimes these processors were designed or extended
to operate upon vectors as well as scalars, to improve the performance with vectors.
These systems often used emitter-coupled logic (ECL) gates and interconnection
delays significantly affected the overall speed operation. Prototype research machines
designed and constructed during the 1970s were based upon much slower micro-
processor devices although these systems generally did not demonstrate that multiple
slower devices could be harnessed together to be faster and more cost-effective than
ECL-based high speed single processor systems. However, in the 1980s, even
manufacturers of the fastest computer systems had to develop multiprocessor versions
of their single processor systems, e.g. the four-processor Cray 2 system. It is now
apparent that multiprocessors must be used to obtain improvements in speed even
though the difficulties of using more than one processor on a single problem have
not been resolved.

Research into multiprocessor architectures continues, with each plan calling for
more processors — sometimes for thousands of processors — and in the research
community there have been conferences which will only accept papers describing
results concerned with no less than a thousand processors. The main software aspect
is how to use the processors together on a single problem. Competitions have even
been organized to find the greatest possible speed-up over a single processor solution.
The main architectural problem for large scale multiprocessors is how to interconnect
the processors in a feasible manner. This topic is examined in Chapter 8.

Multiprocessor systems are also designed to gain fault tolerance, i.e. to be able to
continue operating in the presence of hardware (and possibly software) faults.
Hardware fault tolerance is achieved by the addition of circuits that are not
necessary for normal operation but that enable the system to continue if faults occur.
The number of faults that can be present is limited and dependent upon the system
design. Specific applications exist in which computer systems must continue
operating for as long as possible or over an initial time period. For example, the

Multiprocessor systems and programming 173

computer system in an aircraft must continue working while operating the aircraft,
and a faulty system could lead to loss of life. In the commercial field, computer
breakdown could lead to financial loss. Manufacturing plants controlled by computers
need to exhibit fault tolerance if possible, sometimes for safety, sometimes to avoid
financial loss. Fault tolerance is also extremely important in the military areas
(missile control, etc.).

6.2 Multiprocessor classification

6.2.1 Flynn’s classification

A normal single processor stored program computer (von Neumann computer)
generates a single stream of instructions which acts upon single data items. Flynn
(1966) called this type of computer a single instruction stream—single data stream
(SISD) computer. In a general purpose multiprocessor system, one instruction
stream is generated for each processor. Each instruction acts upon different data.
Flynn called this type of computer a multiple instruction stream—multiple data
stream (MIMD) computer. Apart from these two extremes, it is possible (and there
are some advantages in doing so) to design a computer in which a single instruction
stream is generated by a single control unit, and the instructions are broadcast to
more than one processor. Each processor executes the same instruction, but using
different data. The data items form a vector and the instructions act upon the
complete vector in one instruction cycle. Flynn called this type of computer a single
instruction stream—multiple data stream (SIMD) computer. The fourth combination,
multiple instruction stream—single data stream (MISD) computer does not exist,
unless one specifically classifies pipelined architectures in this group, or possibly
some fault tolerant systems. Flynn’s classifications are shown in Figure 6.1. The
SIMD computer has an array of processing elements, one for each element in the
vectors being processed, and hence is also called an array computer.

The original stored program computer has the SISD form, with instructions
operating sequentially upon integers, and later upon floating point numbers. The use
of pipelining in the stored program computer does not really alter the general
classification as a single instruction stream still exists and operates upon a single
data stream. The SISD classification does not define the type of data items to be
processed. Some large scale vector computers operate upon vectors as well as
scalars (integers or floating point numbers) where a vector is a one-dimensional
array of scalar elements, using the pipelining principle to process the series of
elements (see Chapter 4, Section 4.5). We shall classify such pipelined vector
computers as SISD. The SIMD computer also processes vectors. Hence, there are

two types of vector computer, one using the pipeline technique and one using an
SIMD array of processing elements

It is possible to have combined systems; for example a MSIMD system (multiple

174 Shared memory multiprocessor systems

Processors
Control (ALUand
units registers)
(a) SISD |-<——Data
Instruction
Instruction Data
(b) SIMD
< Data
(c) MISD Instructions Data
Data
(d) MIMD Instructions
> Data

Figure 6.1 Flynn’s classification (1966) (a) SISD (b) SIMD
(c) MISD (d) MIMD

Multiprocessor systems and programming 175

single instruction stream—multiple data stream computer) consists of more than one
SIMD system each controlled separately.

6.2.2 Other classifications

Flynn’s classifications are now very old and several other attempts have been made
to classify computer systems. Feng (1972) classified systems in terms of number of
bits and number of words that can be processed simultaneously, given as a tuple
(bits, words). Classifications have been also proposed by Reddi and Feurstel (1976),
Handler (1977), Skillicorn (1988) and Dasgupta (1990). However, as none of these
classifications have been as widely used as Flynn’s classifications, we shall use the
latter. Classifications play a part in the study of computer architectures by cataloging
existing systems and exposing architectures perhaps not yet developed.

6.3 Array computers

6.3.1 General architecture

In an array (SIMD) computer, a program memory holds the sequence of instructions
to be executed and a centralized control unit extracts each instruction from the
program memory in the same way as a normal von Neumann stored program. (SISD)
computer — by using a program counter. As in a simple SISD computer, one
instruction is generally executed in its entirety, followed by the next instruction, etc.
The instructions in the instruction set comprise a set of normal single processor
instructions, such as integer arithmetical/logical instruction control instructions and
jump/branch instructions, which are executed directly by the control unit, i.e. the
control unit has the ability to perform arithmetical and control processor functions.
There is also a group of instructions, especially vector instructions, which are not
executed by the control unit but by the array of processing elements. These
instructions are recognized by the control unit which broadcast the instructions to
the processing elements for execution. Each processing element performs the opera-
tion defined upon data stored in data memory connected directly or indirectly to the
processing elements. The data memory may be local to each processing element or it
may be global memory connected to the processing elements through an inter-
connection network. The two possible schemes are shown in Figure 6.2. Suitable
interconnection networks are presented in Chapter 7.

A key feature of the systems is that all processing elements operate in lock step
fashion, all starting and finishing together. Each processing element has local
addressable registers and the ability to perform arithmetical and logical operations
.upon a different data element which would be part of a vector or an array. A typical
vector instruction might be A := A + D, where A is an array of accumulators and

176 Shared memory multiprocessor systems

Input/output — host computer

Control unit
with memory
Data Broadcast instructions
Y
Processing
B elements
| ——— 1
Memories
J f Memory bus
\
interconnection
Control network
(a) System with local memory
Input/output — host computer
Control unit
with memory
Data Broadcast instructions
Y
____________ Processing
elements
{ Memory bus
Interconnection
Control | ~ network
¢ Memory bus
“““““““““ Memories
A T

(b) System with global memory -

Figure 6.2 SIMD architectures (a) System with local memory
(b) System with global memory

Multiprocessor systems and programming 177

D is adata array. The ith processing element performs A, := A, + D, where A, is the
ith accumulator of A, which is in the ith processing element, and D, identifies the ith
data item in the array D. In the architecture shown in Figure 6.2(a), it is necessary
for the ith data item to be in the local memory of the ith processing element before
the instruction can be executed correctly.

Branch instructions (conditional and unconditional) are executed by the control
unit. In a single processor system, the conditions for the jump instructions are
related to the result after an arithmetic/logical operation. The condition might be
zero result, positive or negative result, etc. Individual flags in a condition code
register indicate specific conditions and others may be inferred by combining
conditions (i.e. positive or zero). In an array computer with #n processing elements,
there can be n identical arithmetical/logical operations taking place simultaneously
with n different accumulator registers (one in each processing element).

Typically, in an array computer we might like to perform a computation for those
results that exhibit a particular condition, and perhaps a different computation for
those results that exhibit the converse condition. This situation and other situations
are handled by providing a vector of condition flags for each condition, with one bit
for each processing element. This vector of condition code flags might be transferable
to a control unit register under program control and then recognized by jump
instructions. Masking operations on this register will identify the processing elements
in which the condition is present and subsequent actions can be selected as appro-
priate. Specific control unit instructions can be provided for recognizing, for
example, the most significant 1 in the register. A specific broadcast instruction is
provided to load the register with the conditions prevailing in the processing
elements. Conditional jump instructions might jump on the condition that all, any,
or none of the bits are 1.

A masking mechanism is also introduced to inhibit selected processing elements
from responding to the broadcast instructions. A mask is generated by specific
instructions. Processing elements are given individual address index registers to
modify the address of the data element to be accessed. Hence, it is possible to
access rows, columns or every alternative element by each processing element
modifying its index register. Each processing element can have more than one index
register, additional data registers, a status/condition code register and other registers.

6.3.2 Features of some array computers

In this section we will highlight particular features of some array computers.

lliac IV

The Illiac IV has historical importance, being the first major attempt at constructing
an array computer. The Illiac IV computer system (Bouknight et al., 1972) was
developed in the late 1960s by the University of Illinois (hence ILLInois Array
Computer) and constructed by the Burroughs Corporation in 1972. The general

178 Shared memory multiprocessor systems

architecture corresponds to the type shown in Figure 6.2(a), though the inter-
connection network paths are limited. The original design called for four quadrants
of sixty-four processing elements (256 processing elements in all) but only one
quadrant of sixty-four processing elements was finally constructed because of
economic reasons and schedule delays. Each element can communicate directly with
four neighboring processing elements using direct links between processing elements
in an 8 x 8 matrix pattern as shown in Figure 6.3. The processing elements are
numbered 0 to 63, so that the ith processing element can communicate directly with
the i—1th, i+1th, i—8th and the i+8th processing elements. This restricted inter-
connection scheme can achieve any processing element connection, if not to neigh-
boring processing elements then via intermediate processing elements.- A maximum
of six intermediate processing elements is necessary (seven communication steps),
but most applications require less than the worst case communication overhead.

A particular feature of the system is that the control unit does not have a separate
program memory described in the general scheme. Instead, the memory of the
processing elements is used in an interleaved fashion, i.e. the first addressed
location is in the local memory of the first processing element, the second addressed
location is in the local memory of the second processing element, and so on, with
every sixty-fourth location in one processing element memory. Eight 64-bit words

Control unit

v

Broadcast vector instructions Processing element

Outputs connect
to opposite side

Outputs connect to opposite side

Figure 6.3 Array SIMD computer using nearest neighbor connections

Multiprocessor systems and programming 179

can be transferred simultaneously from the processing element memories to the
control unit using a 512-bit bus between the processing elements and the control
unit. Each processing element has local memory consisting of 2048 x 64-bit words.
The control unit connects to all of the processing elements via a common data bus to
pass instructions to the processing elements, and to all of the local memories
through a common control bus to obtain program instructions.

The sixty-four processing elements operate in lock step fashion and receive
broadcast instructions for a control unit as described previously with scalar instruc-
tions executed by the control unit. Control unit operations can overlap processing
element operations. Each instruction has a fixed length of thirty-two bits and sixteen
instructions are taken into an instruction buffer within the control unit simul-
taneously. The instruction buffer can hold sixty-four 64-bit words (128 instructions)
and when execution has reached halfway through the block of instructions fetched,
the next block is prefetched, replacing the oldest block. The control unit also has a
64-word data buffer (data cache) which can be loaded from the processing element
memories, 512 bits at a time, and a 64-bit ALU, a program counter and four
accumulators. Instructions for the processing elements (the vector and associated
instructions) have their effective address calculated, using a 24-bit address adder,
before passing on to the processing elements. Each processing element can perform
64-bit floating point, 32-bit floating point, 64-bit unsigned integer or 8-bit unsigned
integer arithmetic.

Burroughs’ Scientific Processor

The Burroughs’ Scientific Processor (BSP) was developed in the mid-1970s as an
attempt to construct a commercial SIMD array computer after Burroughs’ involvement
in the Illiac IV, though this project was abandoned and no systems were marketed.
The BSP system employs architecture of the type shown in Figure 6.2(b).

A particular feature of the BSP is the use of seventeen memory modules with
sixteen arithmetic processing elements. Only sixteen of the seventeen memory
modules can connect to the processing elements at any instant. Two full cross-bar
switch interconnection networks (Chapter 8, page 252) are used to make the
connection between the arithmetic processing elements and memory modules. An
“output” interconnection network is used for transfers from the sixteen processing
elements to sixteen memories and an “input” interconnection network is used for
transfers from the memories to the processing elements. The use of seventeen
modules rather than a number which is a power of two is a unique feature of the
system. The technique allows contention-free communication between the arithmetic
processing elements and memory modules for most types of accesses to arrays
stored in the memory modules. Only when the accesses are to elements separated by
seventeen consecutively addressed locations, or a multiple of seventeen, is there
memory conflict, as then the elements are inserted in the same memory module.

Spreading array elements across memory modules to avoid contention is also
done in MIMD systems; a standard parallel programming technique is to spread an
n X n matrix across n + 1 memory modules (see Rettberg and Thomas, 1986).

180 Shared memory multiprocessor systems

GF-11

The GF-11 is an array computer system developed by IBM in the early 1980s as a
research vehicle primarily fer numerical calculations of some of the predictions in
quantum chromodynamics, a proposed theory of particles which participate in nuclear
interactions (Beetem, Denneau and Weingarten, 1987). The architecture is of the type
shown in Figure 6.2(a) with full interconnectivity provided between processing
elements (as opposed to the limited nearest neighbor connections of the Iliac IV).
There are 576 arithmetic processors, each capable of achieving 20 Mflops (million
floating point operations per second). Each processor has separate fixed point and
floating point units. The floating point unit has two multiply and two arithmetic units
capable of addition, subtraction, computing absolute values and fixed/floating point
conversion. There are three levels of local memory provided with each processor, a
12.5 ns cycle-time 256 word register file, a 50 ns cycle-time 16 Kword static memory
and a 512 Kword dynamic memory arranged in two banks and providing one access
every 200 ns (one word = 32 bits). The control unit broadcasts 180-bit microcode
words to the processors at a 50 ns rate. The controller microcode memory consists of
512 x 200-bit words. A host computer connects to the control unit.

A three-stage interconnection network, which allows all permutations of connec-
tions between the 576 processors, is used. The basic switching cell is a 9-bit wide
(including parity) 24 x 24 cross-bar switch, and each stage has twenty-four cells.
Three stages call for seventy-two cells. (See Chapter 8, page 263 for more details
of multistage interconnection networks.)

The GF-11 system has a definite goal; to reduce the time it takes to perform some
particularly time-consuming calculations which typically require 1 x 10!7 arithmetic
operations. At 20 Mflops the calculation would take 150 years; at 10 Gflops the
calculation takes four months.

Concluding comments

SIMD array vector computers have a long history, with the Illiac IV a landmark in
the development of the idea which can be traced back to the late 1950s. After the
Illiac IV, a few subsequent systems were constructed and refined the basic concept.
None of the systems were developed into commercial products and commercial
computer manufacturers have been less than enthusiastic about the idea, preferring
to keep to traditional SISD systems, enhanced by vector instructions using
pipelining. (Some people do refer to pipelined systems as a form of SIMD.)

6.3.3 Bit-organized array computers

The array computers so far described use processing elements which operate upon
binary words (word-organized or word-slice array computers); it is possible to
design an array computer in which the processing elements operate upon one bit, or
possibly a few bits, of a word each. Such bit-organized or bit-slice array computers
have particular applications in image processing. Picture elements (pixels) of the

Multiprocessor systems and programming 181

images are represented by an array of bits, and commonly the same Boolean
operation needs to be performed upon each picture element simultaneously at great
speed. Alternatively, bit-organized array computers might be designed such that
processing elements can be linked together to process a selected word size in much
the same way as bit-slice microprocessors are linked together to create processors
operating upon words.

Examples of bit-organized array computers include the CLIP computer, developed
in the mid-1970s at University College, London, for visual applications, the DAP
(Distributed Array Processor) also developed in the mid-1970s by ICL, for general
array computations, and the MPP (Massively Parallel Processor) (Batcher, 1980)
developed by Goodyear Aerospace in the early 1980s. The MPP is really a massively
parallel processor system having 16 384 bit-slice microprocessors arranged as a
128 x 128 array. The connection machine (Hillis, 1985) also comes under the bit-
organized array computer classification.

BLITZEN project

The BLITZEN project (Blevins et al., 1988) developed a system similar to the MPP
using VLSI technology. Each array chip in the BLITZEN system has 128 processors,
each with 1K-bit local static memory and with processors locally interconnected
using an X-grid interconnection network, as shown in Figure 6.4. (The MPP used the

Control unit

¢

Broadcast instructions

Processing
element

njuiuluiuiufuin
. b . & o
niuuguin@uiuin
XXX X XX
a{uiniui=gn@uin
C X X X X X X X
....... 5‘;‘;‘; Outputs connect
to opposite side
‘I‘I.I ujn@u@n
C X X X X 5
. ‘ jngugngn
a ab - -

Outputs connect to opposite side

Figure 6.4 Array SIMD computer using X-network

182 Shared memory multiprocessor systems

north—south—east—west nearest neighbor network). In the X-network, the cross-over
point of the diagonal paths are joined together. The network provides north, south,
east, west and diagonal transfers but only with all transfers in the same direction at
any instant. For example, suppose a north direction is required. Each processing
element can send information on the north—east diagonal path and accept information
on the south—east diagonal path. For SIMD operations, all transfers in one step are
in the same direction.

We will not investigate these systems further, and will leave array and vector
computers to concentrate on MIMD computer systems. The reader is directed to the
references quoted for further information on array computers.

6.4 General purpose (MIMD) multiprocessor systems

6.4.1 Architectures

In a general purpose MIMD computer system, a number of independent processors
operate upon separate data concurrently. Hence each processor has its own program
memory or has access to program memory. Similarly, each processor has its own
data memory or access to data memory. Clearly there needs to be a mechanism to
load the program and data memories and a mechanism for passing information
between processors as they work on some problem. There are several possible
architectures for general purpose MIMD multiprocessor systems. First, we can
divide the multiprocessor systems into two types:

1. Shared memory multiprocessor systems.
2. Message-passing multiprocessor systems (without shared memory).

Shared memory multiprocessors use the centralized memory for communication
purposes, while message-passing multiprocessors, without shared memory, use
direct links to pass data between processors/processing elements.

Shared memory multiprocessor systems
In a shared memory multiprocessor, given that each processor must connect to
program memory and data memory (which are usually the same memory), most
architectures consist of a set of processors, perhaps with local memory connecting
to one or more shared memory modules, as shown in Figure 6.5.

Different systems employ different interconnection methods. We can identify the
following interconnection methods:

Multiprocessor systems and programming 183

Processors

Interconnection
network

Memories

Figure 6.5 Shared memory multiprocessor system

Single bus.

System and local buses.
Multiple buses.
Cross-bar switch.
Multiport memory.
Multistage networks.

A RDD -

These interconnection methods are shown in Figure 6.6. The time-shared bus system
(Figure 6.6(a)) is particularly suitable as a multiprocessor extension to a' normal
single processor microprocessor system, or other computer systems. In a single bus
system with more than one processor attached to the bus, individual processors can
access any of the memory modules attached to the bus, though only one data or
instruction transfer can occur on the bus at any instant. The time-shared bus system
has been taken up by microprocessor manufacturers for multiple processor operation,
and there are several standard buses which can support more than one micro-
processor.

To reduce bus contention and increase performance, each processor can be given
local memory, which can act as a cache. The local memory can attach to the
associated processor using a local bus. The local buses then connect to a system bus.
Global memory is provided on the system bus as shown in Figure 6.6(b).

The multiple bus multiprocessor architecture shown in Figure 6.6(c) is a direct
extension of the single bus architecture but with more than one bus connecting to all
of the processors, memory modules and input/output interfaces. Processors can use
any free bus to make a connection to a memory, but only B such connections can be
made simultaneously, given B buses. Arbitration logic is necessary to resolve

184 Shared memory multiprocessor systems

Processors/memories Processors/memories

Global
' memory
(a) Single bus !

! !

(b) System and local buses

L e

Processors/memories

Memories

|

1

Processors |

() Multiple buses |
1

(d) Cross-bar switch

Multiport memory ¢ ¢ (Squts(:s';bar
- = wi
- > -
I:—_—:]“' ll'::l'" Switching
prpy — network

Processors "Jr;:] [:_:_j

________ ¢ Processors ¢

(e) Multiport memory

(f) Multistage networks

Figure 6.6 Shared memory architectures (a) Single bus
(b) System and local buses (c) Multiple buses (d) Cross-bar switch
(e) Multiport memory (f) Multistage networks

Multiprocessor systems and programming 185

simultaneous requests, first to select up to one request for each memory module and
then to select up to B of those requests to use the buses.

In the cross-bar switch system (Figure 6.6(d)), a direct path is made between each
processor and each memory module using one electronic bus switch to interconnect
the processor and memory module. Each bus switch connects the set of processor
bus signals, perhaps between forty and eighty signals, to a memory module. The
cross-bar architecture eliminates bus contention completely, though not memory
contention, and can allow processors and memory to operate at their maximum
speed.

The multiport memory architecture, as shown in Figure 6.6(e), uses one multiport
memory connecting to all the processors. Multiport memory is designed to enable
more than one memory location to be accessed simultaneously, in this case by
different processors. If there are, say, sixteen processors, sixteen ports would be
provided into the memory, one port for each processor. Though large multiport
memory could be designed, the design is too complex and expensive and con-
sequently “pseudomultiport” memory is used, which appears to access more than
one location simultaneously but in fact accesses the locations sequentially at high
speed. Pseudomultiport memory can be implemented using normal single-port high
speed random access memory with the addition of arbitration logic at the memory—
processor interface to allow processors to use the memory on a first-come first-
served basis. Using normal memory components, it is necessary for the memory to
operate substantially faster than the processors. To service N simultaneous requests,
the memory would need to operate at least N times faster than when servicing a
single request. The multiport architecture with pseudomultiport memory can be
considered as a variation of the cross-bar switch architecture, with each column of
cross-bar switches moved to be close to the associated memory module.

The cost and complexity of the cross-bar switch grows as 0(N?) where there are N
processors and memory modules. Hence, the cross-bar interconnection network
would be unsuitable for large numbers of processors and memory modules. In such
cases, a multistage network (Figure 6.6(f)) can be used to reduce the number of
switches. In such networks, a path is established through more than one switching
element in an array of switching elements. Most multistage networks have three or
more stages and each path requires one switch element at each stage.

Message-passing multiprocessor systems

There are various possible direct link (static) interconnection networks for message-
passing multiprocessor systems; some examples are shown in Figure 6.7. A very
restricted static interconnection network, but a particularly suitable scheme for
VLSI fabrication, is to connect processors directly to their nearest neighbors,
perhaps to other processors, in a two-dimensional array of processors. Four links are
needed to make contact with four other processors, as shown in Figure 6.7(a) and 3n
links in all for n processors. In general, n(m — 1) bidirectional links are needed in the
array to connect n processors to m other processors (each processor having m shared

186 Shared memory multiprocessor systems
links). In a system of many concurrent processes in individual processors, processes
are likely to communicate with the neighbors. Many multiprocessor algorithms are

structured to create this characteristic, to map on to static array connected multi-
processors. We will consider static networks in Chapter 8 and message-passing

systems in Chapter 9.

) Nodes with six links

o

(c) Nodes with eight links (d) Exhaustive
(e) Cubic H Tree

Figure 6.7 Some static interconnection networks (a) Nearest neighbor mesh
(b) Nodes with six links (c) Nodes with eight links (d) Exhaustive
(e) Cubic (f) Tree

Multiprocessor systems and programming 187

Fault tolerant systems

We mentioned in Section 6.1 that multiprocessor systems are sometimes designed to
obtain increased reliability. The reliability of a system can be increased by adding
redundant components. If the probability that a single component is working (the
reliability) is given by P, the probability that at least one component is working with
n duplicated components is given by 1 — (1 — P)", i.e. one minus the probability that
all of the components have failed. As n increases, the probability of failure
decreases. In this example, the fault tolerant system with duplicated components
must be designed so that only one of the components need work.

We can duplicate parts at the system level (extra systems), gate level (extra gates)
or component level (extra transistors, etc.). To be able to detect failures and
continue operating in the face of faults, the duplicate parts need to repeat actions
performed by other parts, and some type of combining operating is performed which
disregards the faulty actions. Alternatively, error detecting codes could be used; this
requires extra gates.

One arrangement for system redundancy is to use three systems together with a
voter circuit which examines the outputs of the systems, as shown in Figure 6.8.
Each system performs the same computations. If all three systems are working, the
corresponding outputs will be the same. If only two of the three systems are
working, the voter chooses the two identical outputs. If more than one system is not
working, the system fails. The probability that the system will operate is given by
P, = P3 + 3P%(1-P), i.e. the probability of all three systems operating or three
combinations of two systems working and one not working. The triplicated system
reliability is greater than for a single system during an initial operating period, but
becomes less reliable later if the reliability decreases with time (see Problem 6.4). It
is assumed that there is negligible probability of two faulty systems producing the
same output, and that the voter will not fail. The concept can be extended to handle
two faulty systems using five systems.

System 1

System 2 Voter

Output

System 3

Figure 6.8 Triplicated system with a voter

188 Shared memory multiprocessor systems

6.4.2 Potential for increased speed

To achieve an improvement in speed of operation through the use of parallelism, it
is necessary to be able to divide the computation into tasks or processes which can
be executed simultaneously. We might use a different computational algorithm with
a multiprocessor rather than with a uniprocessor system, as it may not always be the
best strategy simply to take an existing sequential computation and find the parts
which can be executed simultaneously. Hence, a direct comparison is somewhat
complicated by the algorithms chosen for each system. However, let us ignore this
point for now. Suppose that a computation can be divided, at least partially, into
concurrent tasks for execution on a multiprocessor system. A measure of relative
performance between a multiprocessor system and a single processor system is the
speed-up factor, S(n), defined as:

_ Execution time using one processor (uniprocessor system)
Execution time using a multiprocessor with n processors

S(n)

which gives the increase in speed in using a multiprocessor. The efficiency, E, is
defined as:

E=¥x100%

We note that the maximum efficiency of 100 per cent occurs when the speed-up
factor, S(n), = n.

There are various possible divisions of processes onto processors depending upon
the computation, and different divisions lead to different speed-up factors. Also, any
communication overhead between processors should be taken into account. Again,
there are various possible communication overheads, from exhaustive communica-
tion between all processors to very limited communication between processors. The
communication overhead is normally an increasing function of the number of
processors. Here we will investigate some idealized situations. We shall use the
term process to describe a contained computation performed by a processor; a
processor may be scheduled to execute more than one process.

Equal duration process

The computation might be such that it can be divided into equal duration processes,
with one process mapped onto one processor. This ideal situation would lead to the
maximum speed-up of n, given n processors, and can be compared to a full pipeline
system (Chapter 4). The speed-up factor becomes:

S(n)=—t7t;=n

Multiprocessor systems and programming 189

where ¢ is the time on a single processor. Suppose there is a communication
overhead such that each process communicates once with one other process, but
concurrently, as in a linear pipeline. The communications all occur simultaneously
and thus appear as only one communication, as shown in Figure 6.9. Then the
speed-up would be:

t n

S(n) = t/n + ct/n 1+ c

where ¢ is the fractional increase in the process time which is taken up by
communication between a pair of processes. If ¢ = 1 then the time taken to
communicate between processes is the same as the process time, S(n) = n/2, a
reduction to half the speed-up.

In more general situations, the communication time will be a function of the
number of processes and the communications cannot be fully overlapped.

Parallel computation with a serial section

It is reasonable to expect that some part of a computation cannot be divided at all
into concurrent processes and must be performed serially. For example the computa-
tion might be divided as shown in Figure 6.10. During some period, perhaps an
initialization period or period before concurrent processes are being set up, only one
processor is doing useful work and, for the rest of the computation, all of the
available processors (n processors) are operating on the problem, i.e. the remaining
part of the computation has been divided into n equal processes.

Processors

. Time
Communication
overhead

Figure 6.9 Equal duration tasks

190 Shared memory multiprocessor systems

One processor
active

All processors active
[}

i
|

Processors

Time

Figure 6.10 Parallel computation with serial section

If the fraction of the computation that cannot be divided into concurrent tasks is f,
and no overhead incurs when the computation is divided into concurrent parts, the
time to perform the computation with n processors is given by ft + (1-f)¢t/n and the
speed-up factor is given by:

t n
S = ard=pim " T+ -1

This equation is known as Amdahl’s law. Figure 6.11 shows S(n) plotted against
number of processors and plotted against f. We see that indeed a speed improvement
is indicated, but the fraction of the computation that is executed by concurrent
processes needs to be a substantial fraction of the overall computation if a significant
increase in speed is to be achieved. The point made in Amdahl’s law is that even
with an inlinite number of processors, the maximum speed-up is limited to 1/f. For
example, with only 5 per cent of the computation being serial, the maximum speed-
up is 20, irrespective of the number of processors.

In fact, the situation could be worse. There will certainly be an additional
computation to start the parallel section and general communication overhead
between processes. In the general case, when the communication overhead is some
function of n, say #f.(n), we have the speed-up given by:

S(n) =

n
1+ Q1 -f)n+nf(n)

Multiprocessor systems and programming 191

201 f=0%
161
<
&
5 121
8 f=5%
s
5 8
3 f=10%
<53
&
i f=20%
1] l |]
0 4 8 12 16 20

Number of processors, n
(a) Speed-up against number of processors

Speed-up factor S(n)

| | | 1
0 0.2 0.4 0.6 0.8 1.0

Serial fraction, f
(b) Speed-up against serial fraction, f

Figure 6.11 Speed-up factor (a) Speed-up factor against number of processors -
(b) Speed-up factor against serial fraction, f

In practice we would expect computations to use a variable number of processors, as
illustrated in Figure 6.12.

Optimum division of processes

We need to know whether utilizing all the available processors and dividing the
work equally among processors is the best strategy, or whether an alternative
strategy is better. Stone (1987) investigated this point and developed equations for
different communication overheads, finding that the overhead eventually dominates,
after which it is better not even to spread the processes among all the processors,

192 Shared memory multiprocessor systems

Periods when different numbers !
of processors active

Processors

Time

Figure 6.12 Parallel computation with variable processor usage

but to let only one processor do the work, i.e. a single processor system becomes
faster than a multiprocessor system. In our equations, this point is reached when the
denominator of the speed-up equations equals or exceeds n, making S(n) equal or
less than one. Stone confirms that if dividing the process is best, spreading the
processes equally among processors is best (assuming that the number of processes
will divide exactly into the number of processors).

Speed-up estimates

It was once speculated that the speed-up is given by log,n (Minsky’s conjecture).
Lea (1986) used the term applied parallelism for the parallelism achieved on a
particular system given the restricted parallelism processing capability of the system,
and suggested that the applied parallelism is typically log,n. He used the term
natural parallelism for the potential in a program for simultaneous execution of
independent processes and suggested that the natural parallelism is n/log,n.

Hwang and Briggs (1984) presented the following derivation for speed-up:
< n/ log.n. Suppose at some instant i processors are active and sharing the work
equally with a load 1/i (seconds). Let the probability that i processors are active
simultaneously be P, = 1/n where there are n processors. There is an equal chance of
each number of processors (i = 1, 2, 3 - n) being active. The (normalized) overall
processing time on the multiprocessor is given by:

n
1 1
Tn “n E ll_

i

The speed-up factor is given by:

¢}

Multiprocessor systems and programming 193

n n

S(m) = = log.n < log,n

1
1 - 1
4T

Figure 6.13 shows the speed-up estimates. If these values could not be improved
upon in practice they would lead to the conclusion that multiprocessors give poor
speed-up on large numbers of processors! The challenge is to disprove this statement
in practical situations and with specific multiprocessor designs. In fact, some studies
have achieved nearly perfect speed-up. For example, a 256-processor Butterfly
multiprocessor system has achieved a speed-up of 230 on a range_of numerical
calculations (Rettberg and Thomas, 1986), whereas n/log,n gives a value of 32.

6.5 Programming multiprocessor systems

6.5.1 Concurrent processes

A process or task is a computation performed by a processor with defined sets of
inputs and outputs (results). A process could be one machine instruction, but is
much more likely to be a group of machine instructions executed in sequence. The

65536 -

16384 —

4096 -

& 1024}
8
Q

8 256
Q
>3
O

3 64—
Q
73]

16—

4 Minsky’s conjecture
|

| | l ! ||
0 4 16 64 256 1024 4096 16384 65536
Processors, n

Figure 6.13 Speed-up factor estimates

194 Shared memory multiprocessor systems

size of a process and its input/output requirements have a profound effect on the
performance of the system. A graphical representation of concurrent processes may
be made, as shown in Figure 6.14.

Some computations might immediately suggest a solution involving concurrent
processes. Such computations also tend to suggest specialized system architectures,
for example, arrays of processors for visual applications. Here we will start with a
computation which has been specified in a sequential manner; a transformation is
then necessary to obtain a parallel computation. Transformations can be achieved in
one of two principal ways:

1. By the programmer recognizing and specifying the parts which are to be
executed in parallel, i.e. explicit parallelism.

2. By acompiler recognizing potential parallel parts and performing a restructuring
algorithm, i.e. implicit parallelism.

A third method is to have a hardware structure which finds the parallelism when it
exists. The dataflow technique, considered in Chapter 10, has this property.

6.5.2 Explicit parallelism

Most of the techniques under explicit parallelism or “programmer-defined parallelism”

are centered upon providing the programmer with structures within a programming
language which can be used to define the parallel processes.

Process

Nested

~o ‘/ process
~ -
I | 4
’
-

1 | \
] | b

Figure 6.14 Parallel and serial processes

Multiprocessor systems and programming 195

Constructs for FORTRAN-like languages

Perhaps the first example of programming language structures to specify parallelism
is the FORK-JOIN group of statements, introduced by Conway (1963). (Conway
refers to earlier work and it appears that the idea was known before 1960.) FORK-
JOIN constructs have been applied as extensions to FORTRAN and, much more
recently, to the UNIX operating system. In the original FORK-JOIN construct, a
FORK statement generates one new path for a concurrent process and the concurrent
processes use JOIN statements at their ends. When both JOIN statements have been
reached, processing continues in a sequential fashion. For more concurrent processes,
additional FORK statements are necessary either in sequence or at the head of the
spawned processes to create further concurrent processes. The FORK-JOIN constructs
are shown nested in Figure 6.15. Each spawned process requires a JOIN statement
at its end which brings together the concurrent processes to a single terminating
point. Only when all concurrent processes have completed can the subsequent
statements be executed, and typically a counter is used to keep a record of processes
not completed.

The FORK statement has the general form:

FORK A, J,N

where A is a label indicating the beginning of the spawned process and J identifies a
counter which is set to the value N. If N is omitted, the counter is incremented. If J

Main program
FORK
Spawned processes
FORK
FORK

JOIN

JOIN JOIN
JOIN

Figure 6.15 FORK-JOIN construct

196 Shared memory muitiprocessor systems

is also omitted, a counter is not involved in the operation. The counter is used to
indicate the number of concurrent processes which have not finished.
The JOIN statement has the general form:

JOIN J,B

where J identifies a counter which is decremented. If the counter contents then
become zero, the statement specified by the label B is executed. B can be omitted, in
which case the statement at the next location is executed. If the counter contents are
not zero, the processor executing the JOIN statement is released.

The JOIN statement has three sequential operations. First, a counter has to be
decremented. Next, the value held in the counter must be examined and finally,
associated processing is either terminated or continued, dependent upon the value of
the counter (not zero or zero). It is important that JOIN statements operate on the
counter separately; if more than one JOIN statement were to operate on a counter
simultaneously, there would be instances when incorrect program sequences would
subsequently be followed. Hence, the decrement and test operations of JOIN
statements must be made “indivisible” by, for example, the use of indivisible test
and set machine instructions or “locked” instruction sequences (see page 204).
There are also instances when FORK and JOIN statements must not operate upon the
same counter simultaneously.

There are variations to the FORK-JOIN syntax described. FORK statements can be
defined as spawning a number of processes, rather than only one additional process.
These processes are identified by a list of parameters, for example:

FORK L1,L2, L3 ... Ln

generates n separate processes. The first process has the label LI at its start, the
second L2 and so on. The CREATE construct creates a new instance of a subroutine
which is executed on a separate processor. A simple example of using CREATE is to
add together the elements of a 1000 element array by dividing the summation into
10 routines, each adding up 100 elements, as in the following:

DO 100 J =1, 9

CREATE (’SUM’,ACC(J),A(I),100)
I =1+ 100

CONTINUE

CALL SUM (ACC(10),A(10),100)
JOIN

CALL SUM (SUM,ACC,10)

END

Multiprocessor systems and programming 197

SUBROUTINE SUM (ACC,A,N)
DIMENSION A (100)
ACC = 0.0
po 10 I = 1,N
ACC = ACC + A(I)
10 CONTINUE
RETURN
END

Nine instances of the subroutine SUM are created, in addition to one instance in the
main program before the JOIN construct. Each instance uses a separate global
accumulator, ACC (1), ACC(2) ACC(10). After the JOIN, the main program
adds together the results held in the accumulators to produce the final result in SUM.
Further examples of the CREATE construct are given in Karp (1987).

Other constructs have been proposed to specify n identical processes or similar
processes, for example DOPAR-DOEND:

DOPAR L1,i = 1,10,1
statements
L1: PAREND

generates ten identical sequences. The parameters 1,10,1 are initial value, final
value and step value of a variable i. Successive values are used in a different
process. The construct can be compared to the FORTRAN DO-CONTINUE construct.

Constructs for block structured languages

The FORK-JOIN constructs have their origins at the time of the FORTRAN sequential
programming language, which employs labels to identify the start of new program
sequences selected by GOTO statements. Such methods have generally lost favor and
block structured languages are now preferred, at least in the academic community.
Parallel programming structures can be introduced into block structured languages
such as Pascal. For example, a PARBEGIN-PAREND construct (or COBEGIN~COEND
construct) can identify a group of statements which are to be executed simultan-
eously in Pascal-derived parallel languages, as shown below:

PARBEGIN
S1;
S2;

Sn;
PAREND

198 Shared memory multiprocessor systems

Here the statements S1, S2 - Sn\a;e specified as executed simultaneously. Each
statement could be a block of statements, i.e.:

PARBEGIN
BEGIN

END;
BEGIN

END;
BEGIN

END;

PAREND

and hence a set of multistatement processes can be specified as being executed
simultaneously. Single statement processes might incur an unacceptable communica-
tion overhead, though the construct allows this possibilify.

An earlier example of this approach can be found in ALGOL-68. The order of
execution of statements (or compound statements) separated by a comma instead of
a semicolon was not defined, i.e. the statements would be executed in any order in a
single processor system, and could be executed simultaneously in a multiprocessor
system.

The PARFOR construct, found in concurrent versions of Pascal, generates a
number of separate processes as specified in the construct of the form:

PARFOR i := 1 TO n DO
BEGIN
Sl;
S2;

Sm
END

which generates n processes each consisting of the statements S1, S2 -+ Sm. Each
process uses a different value of i. For example:

Multiprocessor systems and programming 199

PARFOR 1 := 1 TO 5 DO
BEGIN
A[i] =0
END

clears A[1], A[2]), A[3], A[4] and A[5] to zero concurrently. Examples of
the similar FORALL construct for the C language are given in Terrano, Dunn and
Peters (1989).

6.5.3 Implicit parallelism
In this section we will consider the detection of parallelism in programs.

Bernstein’s conditions

Bernstein (1966) established a set of conditions which are sufficient to determine
whether two processes can be executed in parallel. These conditions, which we will
reduce to a simple form here, relate to memory locations used by the processes
(usually statements). Generally, these memory locations would be used to hold
variables which are to be altered or read during the executing of the processes or
statements. Let us define two sets of memory locations, I (input) and O (output),
such that:

I; is the set of memory locations read by a process P,.
O; is the set of memory locations altered by a process P,.

For two processes P, and P, to be executed simultaneously, the input to process P,
must not be the output of P,, and the input of P, must not be the output of P, i.e.:

I,n0,=0
L0, =¢

where ¢ is an empty set. The output of each process must also be different, i.e.:
0,n0,=0¢

We will refer to the three conditions as Bernstein’s conditions. We should mention
in passing that Bernstein differentiated between read-only operations, write-only
operations, read then write operations and write then read-only operations. He also
included the set read by the process after the two processes considered for
parallelization, which led to the third condition being I; N O, N O, = ¢. As noted by

Baer (1980), the third condition reduces to O, N O, = ¢ for high level language
statements.

200 Shared memory multiprocessor systems

If the three conditions are all satisfied, the two statements can be executed
concurrently. The conditions can be applied to processes of any complexity. A
process can be a single statement, when it can be determined whether the two
statements can be executed simultaneously. I; corresponds to the variables on the
right hand side of the statements and O, corresponds to the variables on the left hand
side of the statements.

Example:
Suppose the two statements were (in Pascal):
A :=X +Y;
B :=X + Z;
we have:
I, =(X,Y)
12 = (X,2)
O] = (4)
02 = (B)

and the conditions:

I nO,=¢
Lm0, =0
0,n0,=0¢
are satisfied. Hence the statements A := X + Y, B := X + Z can be executed

simultaneously. Suppose the statements were:

A :=X+ Y
B :=A + B

the condition I, N O, # ¢. Hence the two statements cannot be executed
simultaneously.

The technique can be extended to processes involving more than two statements.
Then, the set of inputs and outputs to each process, rather than each statement, is
considered. The technique can also be used to determine whether several statements
can be executed in parallel. In this case, the conditions are:

I nO;=¢
I nO;=¢
0,n0;=¢

Multiprocessor systems and programming 201

for all i,j (excluding i =).

Example:
A =X+ Y
B :=X * 2
C :=Y - X

Here I, = (X,Y), I, = (X,2), 1, = (Y¥,X), O, = (A), O, = (B) and O; = (C).
All the conditions:

I, nO,=¢ I, NnO;=¢ I, nO,=0
I, nO,=¢ I, nO,=¢ I, nO,=¢
0,N0,=9¢ 0,Nn0;=9¢ 0,n0,=¢

are satisfied and hence the three statements can be executed simultaneously (or in
any order).

Parallelism in loops 7
Parallelism can be found in high level language loops. For example the Pascal loop:

FOR i := 1 TO 20 DO
A[i] := B[i]

could be expanded to:

All] := B[1];
A[2] := BI[2]:
A[3] := B[3];
A[19] := B[19];
A[20] := B[20]

and, given twenty processors, these could all be executed in parallel (Bernstein’s
conditions being satisfied). If the result of the statement(s) within the body of the
loop does depend upon previous loop iterations, it may still be possible to split the

sequential statements into partitions which are independent. For example the Pascal
loop:

FOR i
Afi]

3 TO 20 DO
A[i-2] + 4

il

202 Shared memory multiprocessor systems

computes:
A[3] := A[1l] + 4;
A[4] := A[2] + 4;
A[5] := A[3] + 4;
A[19] := A[1l7] + 4;
A[20] := A[18] + 4

Hence A[5] can only be computed after A[3], A[4] after A[2] and so on. The
computation can be split into two independent sequences (partitions):

A[3] := A[l] + 4; Al4] = A[2] + 4;
A[5] := A[3] + 4; A[6] = A[4] + 4;
A[17] := A[15] + 4; A[18] := A[l6] + 4;
A[19] := A[17] + 4

or written as two DO loops:

i = 3; i = 4;
FOR j := 1 TO 9 DO FOR j := 1 TO 8 DO
BEGIN BEGIN
i:=1+ 2; i =1+ 2;
A[i] := A[i-2] + 4 A(i] := A[i-2] + 4
END END

Each loop can be executed by a separate processor in a multiprocessor system. The
approach can be applied to generate a number of partitions, dependent upon the
references within the body of the loop.

A parallelizing compiler accepts a high level language source program and makes
translations and code restructuring to create independent code which can be executed
concurrently. There are various recognition algorithms and strategies that can be
applied and incorporated into a parallelizing compiler apart from the methods
outlined previously. Further information can be found in Padua, Kuck and Lawrie
(1980) and Padua and Wolfe (1986). Some parallelizing compilers are designed to
translate code into parallel form for vector computers. Padua and Wolfe use the term
concurrentizing for code translation to create multiprocessor computations.

Multiprocessor systems and programming 203

6.6 Mechanisms for handling concurrent processes

6.6.1 Critical sections

Suppose we have obtained, by either explicit or implicit parallelism, a set of
processes that are to be executed simultaneously. A number of questions arises. First,
we need a mechanism for processes to communicate and pass data, even if this only
occurs when a process terminates. Coupled with this, we need a mechanism to
ensure that communication takes place at the correct time, i.e. we need a syn-
chronization mechanism. A synchronization mechanism is also required to terminate
processes, as we have seen in the JOIN construct. If processes are to access
common variables (memory locations) or interact in some other way, we need to
ensure that incorrect data is not formed while two or more processes attempt to alter
variables.

A process typically accesses a shared resource from time to time. The- shared
resource might be physical, such as an input/output device or a database contained
within shared memory, and may accept data from, or provide data to, the process.
More than one process might wish to access the same resource from time to time.

A mechanism for ensuring that only one process accesses a particular resource at
a time is to establish sections of code involving the resource as so-called critical
sections and arrange that only one such critical section is executed at a time, i.e.
mutual exclusion exists. The first process to reach a critical section for a particular
resource executes the critical section (“enters the critical section”) and prevents all
other processes from executing a critical section for the same resource by some as
yet undefined mechanism. Once the process finishes the critical section, another
process is allowed to enter it for the same resource.

6.6.2 Locks

The simplest mechanism for ensuring mutual exclusion of critical sections is by the
use of a lock. A lock is a 1-bit variable which is set to | to indicate that a process has
entered the critical section and reset to 0 to indicate that no process is in the critical
section, the last process having left the critical section. The lock operates like a door
lock. A process coming to the “door” of a critical section and finding it open may
enter the critical section, locking the door to prevent other processes entering. Once
the process has finished the critical section, it unlocks the door and leaves.

Suppose that a process reaches a lock which is set, indicating that the process is
excluded from the critical section. It now has to wait until it is allowed to enter the
critical section. The process might need to examine the lock bit continually in a
tight loop, for example, equivalent to:

204 Shared memory multiprocessor systems

WHILE Lock = 1 DO SKIP; Skip means no operation
Lock := 1; enter critical section
Critical Section

Lock := 0; leave critical section

Such locks are called spin locks and the mechanism is called busy waiting. Busy
waiting is inefficient of processors as no useful work is being done while waiting for
the lock, though this is a common approach with locks.

Other computations could be done in place of SKIP. In some cases it may be
possible to deschedule the process from the processor and schedule another process
while waiting for a lock to open, though this in itself incurs an overhead in saving
and reading process information. If more than one process is busy waiting for a lock
to be reset, and the lock opens, a mechanism might be necessary to choose the best
or highest priority process to enter the critical section, rather than let this be
resolved by indeterminate busy waiting. Such a mechanism is incorporated into the
semaphore operation (see Section 6.6.3).

It is important that more than one process does not set the lock (open the door)
and enter the critical section simultaneously, or that one process finds the lock
reset (door open) but before it can set it (close the door) another process also finds
the door open and enters the critical section. Hence the actions of examining
whether a lock is set and of setting it must be done as one uninterruptable operation,
and one during which no other process can operate upon the lock. This exclusion
mechanism is generally implemented in hardware by having special indivisible
machine instructions which perform the complete operation sequence. Most recent
microprocessors have such indivisible machine instructions.

Intel 8086 lock prefix/signal
The Intel 8086 microprocessor implements a lock operation by providing a special
1-byte LOCK instruction which prevents the next instruction from being interrupted
by other bus transactions. The LOCK instruction causes a LOCK signal to be
generated for the duration of the LOCK instruction and the next instruction, whatever
type of instruction this may be. The LOCK signal is used with external logic to
inhibit bus transactions of other processors. If a bus request is received by the
processor, the request is recorded internally but not honored until after the LOCK
instruction and the next instruction. The exact timing is described by Intel (1979).
The lock operation preceding a critical section could be implemented in 8086
assembly language as follows:

L2: MOV CX,FFFFH ;Set up value to load into lock
LOCK ;Make next instruction indivisible
XCHG Lock,CX ;Set lock
JCXz L1 ;Start critical section if
; lock not originally set
JpP L2 ;Wait for lock to open

Ll: ;Critical section

E=

Multiprocessor systems and programming 205

In this sequence, XCHG Lock, CX exchanges the contents of memory location Lock
and register CX. The exchange instruction takes two bus cycles to complete.
Without the LOCK prefix, the exchange operation could be interrupted between bus
cycles in a multiprocessor system, and lead to an incorrect result.

Motorola MC68000 Test and Set instruction

The MC68000 microprocessor has one indivisible instruction, the TAS instruction
(test and set an operand), having the format:

TAS effective address

where effective address identifies a byte location using any of the 68000 “data
alterable addressing” modes (Motorola, 1984). There are two sequential operations,
“test” and ‘“set”. First, the value read from the addressed location is “tested” for
positive/negative and zero, i.e. the N (negative) and Z (zero) flags in the condition
code register are set according to the value in the location. The Z flag is set when
the bit is zero and the N flag is set when the whole number held is negative. Next,
the most significant bit of the addressed location is set, irrespective of the previous
test, i.e. whether or not the bit was 1, it is set to 1 during the TAS instruction. The
addressed location is read, modified as necessary and the result written in one
indivisible read-modify-write bus cycle. A lock operation before a critical section
could be encoded using a TAS instruction in 68000 assembly language as:

L1l: TAS Flag
BPL L1 ;iRepeat if lock already set (positive)

The 68000 also has a test a bit and set instruction (BSET) which is not indivisible and
could not be used alone as a lock operation. Most processors have some form of
indivisible instruction. The 32-bit MC68020 microprocessor has an indivisible
compare and swap (CAS) instruction which can be used to maintain linked lists in a
multiprocessor environment. This instruction can also be found on mainframe
computers such as the IBM 370/168 (see Hwang and Briggs (1984) for more details).

Though indivisible instructions simplify the locks, locks with mutual exclusion
can be implemented without indivisible TAS instructions. For example, one apparent
solution is given below using two variables A and B:

Process 1 Process 2

A := 0; B := 0;

Non-critical section Non-critical section

A :=1; B := 1;

WHILE B = 1 DO SKIP; WHILE A = 1 DO SKIP;
Critical section Critical section

A := 0; B := 0;

Non-critical section Non-critical section

206 Shared memory multiprocessor systems

However, this scheme can easily be deadlocked. In deadlock, the processes cannot
proceed as each process is waiting for others to proceed. The code will deadlock
when both A and B are set to 1 and tested simultaneously. SKIP could be replaced
with code to avoid this type of deadlock.

The solution is still susceptible to both Process 1 and Process 2 entering the
critical section together if the sequence of instructions is not executed as specified in
the program, which is possible in some systems. We have seen, in Chapter 4, for
example, that some pipelined systems might change the order of execution (Section
4.2.3). Memory contention and delays might also change the order of execution, if
queued requests for memory are not executed in the order presented to the memory.
The effect of such changes of execution was first highlighted by Lamport (1979)
who used code similar to that given for Process 1 and Process 2 to elucidate a
solution, namely that the following conditions must prevail:

1. Each processor issues memory requests in the order specified by its program.

2. Memory requests from all processors issued to an individual memory location
are serviced from a single first-in first-out queue (in the order in which they
are presented to the memory).

In fact, it is only necessary for memory requests to be serviced in the order that they
are made in the program, but in practice that always means that the two separate
Lamport conditions are satisfied.

To eliminate the busy waiting deadlock condition and maintain at most one
process in the critical section at a time, a third variable, P, can be introduced into
the code as below:

Process 1 Process 2
A := 0; B := 0;
Non-critical section Non-critical section
A = 1; B := 1;
P := 2; P :=1;
WHILE B =1 AND P = 2 DO SKIP;WHILE A =1 AND P = 1 DO SKIP;
Critical section Critical section
A := 0; B:= 0;
Non-critical section Non-critical section

Irrespective of whether any of the instructions of one process are separated by
instructions of the other process, P can only be set to Process 1 or Process 2 and
hence the conditional loop will resolve the conflict and one process will be chosen
to enter its critical section. It does not matter whether both conditional loops are
performed simultaneously or are interleaved, though it is assumed that only one
process can access a variable at a time (read or write), which is true for normal
computer memory. Also, assuming that each critical section executes in a finite

Multiprocessor systems and programming 207

time, both processes will eventually have the opportunity to enter their critical
sections (i.e. the algorithm is fair to both processes). It is left as an exercise to
determine whether Lamport’s conditions must still be satisfied.

6.6.3 Semaphores

Dijkstra (1968) devised the concept of a semaphore which is a positive integer
(including zero) operated upon by two operations named P and V. The P operation
on a semaphore, s, written as P (s), waits until s is greater than zero and then
decrements s by one and allows the process to continue. The V operation increments
s by one. The P and V operations are performed indivisibly. (The letter P is from the
Dutch word “passeren” meaning to pass, and the letter V is from the Dutch word
“vrijgeven” meaning to release.)

A mechanism for activating waiting processes is also implicit in the P and V
operations, though the exact algorithm is not specified; the algorithm is expected to
be fair. Delayed processes should be activated eventually, commonly in the order in
which they are delayed. Processes delayed by P (s) are kept in abeyance until
released by a V(s) on the same semaphore. Processes might be delayed using a spin
lock (busy waiting) or more likely by descheduling processes from processors and
allocating in its place a process which is ready.

Mutual exclusion of critical sections of more than one process accessing the same
resource can be achieved with one semaphore having the value O or 1 (a binary
semaphore) which acts as a lock variable, but the P and V operations include a
process scheduling mechanism. The semaphore is initialized to 1, indicating that no
process is in its critical section associated with the semaphore. Each mutually
exclusive critical section is preceded by a P (s) and terminated with a V(s) on the
same semaphore, i.e.:

Process 1 Process 2 Process 3
Non-critical section Non-critical section Non-critical section
P(s) P(5s) P (s)

Critical section Critical section Critical section
V(s) V(s) V(s)

Non-critical section Non-critical section Non-critical section

Any process might reach its P (s) operation first (or more than one process may
reach it simultaneously). The first process to reach its P (s) operation, or to be
accepted, will set the semaphore to 0, inhibiting the other processes from proceeding
past their P (s)s, but any process reaching its P (s) operation will be recorded
in a first-in first-out queue. The accepted process executes its critical section. When
the process reaches its V (s) operation, it sets the semaphore s to 1 and allows one
of the processes waiting to proceed into its critical section.

208 Shared memory multiprocessor systems

A general semaphore (or counting semaphore) can take on positive values other
than zero and one. Such semaphores provide, for example, a means of recording the
number of “resource units” available or used. Consider the action of a “producer” of
data linked to a “consumer” of data through a first-in first-out buffer. The buffer
would normally be implemented as a circular buffer in memory, using a pointer to
indicate the front of the queue and a different pointer to indicate the back of the
queue. The locations currently not holding valid data are those locations between
the front and back pointer, in the clockwise direction, not including the locations
pointed at by each pointer. The locations holding valid items to be taken by the
consumer are those locations between the front and back pointer in the counter-
clockwise direction, including the locations pointed at by each pointer.

Loading the queue and taking items from the queue must be indivisible and
separate operations. Two counting semaphores can be used, one called empty, to
indicate the number of empty locations in the complete circular queue, and one
called full, to indicate the number of data items in the queue ready for the consumer.
When the queue is full, full = n, the total number of locations in the queue, and
empty = 0. When the queue is empty, the initial condition, full = 0 and empty = n.
The two semaphores can be used as shown below:

Producer Consumer

Produce data message

P (empty) P (full)
Load buffer Take next message from queue
V(full) V(empty)

Notice that the P and V operations surrounding each critical section do not operate
on the same semaphore as in the previous example of a mutually exclusive critical
section.

When the producer has a message for the queue, it performs a P (empty)
operation. If empty = 0, indicating that there are no empty locations, the process is
delayed until empty # 0, indicating that there is at least one free location. Then the
empty semaphore is decremented, indicating that one of the free locations is to be
used and the producer enters its critical section to load the buffer using the back
pointer of the queue, updating the back pointer accordingly. On leaving the critical
section, a V(full) is performed, which increments the full semaphore to show that
one location has been filled.

When the consumer wants to take the next message from the queue, it performs a
P (full) operation which delays the process if full = O, i.e. if there are no
messages in the queue. When full # 0, i.e when there is at least one message in the
queue, full is decremented to indicate that one message is to be taken from the
queue. The consumer then enters its critical section to take the next message from
the queue, using the front pointer and updating this pointer accordingly. On leaving the
critical section, a V (empty) is performed which increments the empty semaphore
to show that one more location is free.

Multiprocessor systems and programming 209

@ e Resource
0 @ Process

(a) Two-process deadlock

(b) n-process deadlock

Figure 6.16 Deadlock (deadly embrace) (a) Two-process deadlock
(b) n-process deadlock

The previous example can be. extended to more than one buffer between a
producer and a consumer, and with more than two processes. An important factor is
to avoid deadlock (sometimes called a deadly embrace) which prevents processes
from ever proceeding. Deadlock can occur with two processes when one requires a
resource held by the other, and this process requires a resource held by the first
process, as shown in Figure 6.16(a). In this figure, each process has acquired one of
the resources. Both processes are delayed and unless one process releases a resource
wanted by the other process, neither process will ever proceed.

Deadlock can also occur in a circular fashion, as shown in Figure 6.16(b), with
several processes having a resource wanted by another. Process P1 requires resource
R2, which is held by P2, process P2 requires resource R3, which is held by process
P3, and so on, with process Pn requiring resource R1 held by P1, thus forming a
deadlock situation. Given a set of processes having various resource requests, a
circular path between any group indicates a potential deadlock situation. Deadlock
cannot occur if all processes hold at most only one resource and release this
resource in a finite time. Deadlock can be eliminated between two processes
accessing more than one resource if both processes make requests first for one
resource and then for the other.

It is widely recognised that semaphores, though capable of implementing most
critical section applications, are open to human errors in use. For example, for every
P operation on a particular semaphore, there must be a corresponding V operation on
the same semaphore. Omission of a P or V operation, or misnaming the semaphore,
would create havoc. The semaphore mechanism is a very low level mechanism

210 Shared memory multiprocessor systems

programmed into processes.

Semaphores combine two distinct purposes; first, they achieve mutual exclusion
of critical sections and second, they achieve synchronization of processes. Mutual
exclusion is concerned with making sure that only one process accesses a particular
resource. The separate action of making sure that processes are delayed until
another process has finished with the resource has been called condition synchroniza-
tion, which leads to a conditional critical section, proposed independently by Hoare
and by Brinch Hanson (see Andrews and Schneider (1983) for details). Another
technique is to use a monitor (Hoare, 1974), a suite of procedures which provides
the only method to access a shared resource. Reading and writing can only be done
by using a monitor procedure and only one process can use a monitor procedure at
any instant. If a process requests a monitor procedure while another process is using
one, the requesting process is suspended and placed on a queue. When the active
process has finished using the monitor, the first process in the queue (if any) is
allowed to use a monitor procedure (see Grimsdale (1984). A study of these
techniques is beyond the scope of this book.

PROBLEMS

6.1 Suggest two advantages of MIMD multiprocessors and two advan-
tages of SIMD multiprocessors.

6.2 Suggest two advantages of shared memory MIMD multiprocessor
systems and two advantages of message-passing MIMD multiprocessors.

6.3 How many systems are necessary to survive any four systems failing
in a fault tolerant system with a voter?

6.4 Determine when a triplicated system becomes less reliable than a
single system, given that the reliability of a single system is given by

e~M, A is the failure rate.

6.5 Identify unique features of each of the following array computers:

1. Illiac IV.
2. BSP.

3. GF-11.

4. Blitzen.

6.6 Determine the execution time to add together all elements of a 33 x 33
element array in each of the following multiprocessor systems:

Multiprocessor systems and programming 211

1. An MIMD computer system with sixty-four independent processors
accessing a shared memory through an interconnection network.

2. An SIMD computer system with sixty-four processors connected
through a north-south—east-west nearest neighbor connection
network. The processors only have local memory.

3. As 2. but with sixteen processors.

4. An SIMD system having sixty-four processors connected to
shared memory through an interconnection network.

One addition takes f, sec. Make and state any necessary assumptions.

6.7 Show a suitable path taken between two nodes which are the maxi-
mum distance apart in the Illiac IV system (with an 8 x 8 mesh nearest
neighbor network). Develop a routing algorithm to establish a path
between any two nodes. Repeat assuming that paths can only be left to
right or top to bottom (in Figure 6.3).

6.8 Develop the upper and lower bound for the speed-up factor of a
multiprocessor system given that each processor communicates with four
other processors but simultaneous communications are not allowed.

6.9 In a multiprocessor system, the time each processor executes a
critical section is given by .. Prove that the total execution time is given
by:

T,=fT, +(-HT\/p+t,
and hence prove that the best case time becomes:

T,=fT, + 1.+ max((1 - HT,/p,(p-1)t.)
where T is the total execution time with one processor, p is the number
of processors in the system and f is the fraction of the operations which
must be performed sequentially. Differentiate the first expression to

obtain the number of processors for the minimum execution time. Assume
that a sufficient number of processors is always available for any program.

6.10 Using Bernstein’s conditions, identify the statements that can be
executed simultaneously in the following:

212 Shared memory multiprocessor systems

A := D*E;
D := A*E;
E := A*D;
B := A*B;
E := E+1;

Are there any statements that can be executed simultaneously and are not
identified by Bernstein’s conditions? Is it possible for such statements to
be present?

6.11 Separate the following Pascal nested loop into independent loops
which can be executed on different processors simultaneously:

FOR i := 2 TO 12 DO
FOR j := 1 To 10 DO
X[1i] = X[i+31x[i]

6.12 Deduce what the following parallel code achieves (given in two
versions, one “C-like” and one “Pascal-like”):

C-like:

PARFOR (i =1, j = 1; 1 <= 10; i++, j++) {
pixel[i] [j] = (pixel[i] [j+1]+pixel[i+1] []]

+pixel[i][j 1l+pixel(i 11[731)/4;
}

Pascal-like:

J o= 1;

PARFOR 1 = 1 TO 10 DO

BEGIN

j o= 1i;

pixel(i, j] = (pixel([i,j+1]+pixel[i+1, 3]
+pixel[i, j ll+pixell[i 1,79])/4

END

In what aspect is the Pascal version inefficient?
6.13 Identify the conditions (if any) which lead to deadlock or incorrect

operation in the code for a lock using the three shared variables A, B and
P (Section 6.6.2).

CHAPTER

Single bus
multiprocessor systems

This chapter will consider the use of a bus to interconnect processors, notably
microprocessors. Substantial treatment of the arbitration function is given and the
extension of the single bus system to incorporate system and local buses is considered.
The operation of coprocessors on local buses is presented with microprocessor
examples.

7.1 Sharing a bus

7.1.1 General

Microprocessor systems with one processor normally use a bus to interconnect the
processor, memory modules and input/output units. This method serves well for
transferring instructions from the memory to the processor and for transferring data
operands to or from the memory. A single bus can be used in a multiprocessor
system for interconnecting all the processors with the memory modules and input/
output units, as shown in Figure 7.1. Clearly, only one transfer can take place on the

Bus masters

Bus request —1 \

Bus grant —__|

< > Bus

Figure 7.1 Time-shared bus system

213

214 Shared memory multiprocessor systems

bus at any instant; however, the scheme is practical and has been adopted by
microprocessor manufacturers.

In a single bus multiprocessor system, all memory modules connecting to the bus
become a single memory, available to all processors through the bus. Processors
make requests to bus arbitration circuitry for the bus, and one processor is allowed
to use the bus at a time. This processor can access any memory module and the
performance is unaffected by the selection of the memory module. Processors
compete for the use of the bus and a mechanism must be incorporated into the
system to select one processor-at a time to use the bus. When more than one
processor wishes to use the bus, bus contention occurs.

A single bus can only improve processing speed if each processor attached to it
has times when it does not use the bus. If each processor requires the bus con-
tinuously, no increase in speed will result, because only one processor will be active
and all the other processors will be waiting for the bus. Most processors have times
when they do not require the bus, though processors without local memory require
the bus perhaps 50-80 per cent of the time. If a processor requires the bus 50 per
cent of the time, two processors could use it alternately, giving a potential increase
of speed of 100 per cent over a single processor system.

A synchronous system could achieve this speed. For example, the Motorola 6800
8-bit microprocessor operates on a two phase clock system with equal times in each
phase. Memory references are only made during one phase. Hence, two processors
could be arranged to operate on memory in opposite phases, and no bus arbitration
circuitry would be required. If the processors each required the bus 1/n of the time,
then n processors could use the bus in an interleaved manner, resulting in an n-fold
increase in speed. If further similar processors were added, no further increase in
speed would result. Below maximum utilization of the bus there is a linear increase
in speed, while at the point the bus is fully utilized, no increase in speed results as
further processors are added.

Synchronizing memory references is rather unusual and not applicable to more
recent microprocessors; microprocessors have times when they use the bus, which
change depending upon the instructions. For an asynchronous multiprocessor system
where processors have to compete for the bus, processors will sometimes need to
wait for the bus to be given to them, and the speed-up becomes less than in a
synchronous system. A mathematical analysis is given in Section 7.3. It is rare for it
to be worthwhile to attach more than 4-5 processors to a single bus.

Processors can be provided with local cache-holding instructions and data which
will reduce the number of requests for memory attached to the bus and reduce bus
contention. First, though, let us discuss the various mechanisms for transferring
control of the bus from one processor to another. Processors, or any other device
that can control the bus, will be called bus masters. The processor controlling the
bus at any instant will be called the current bus master. Bus masters wishing to use
the bus and making a request for it will be called requesting bus masters.

Single bus multiprocessor systems 215
7.1.2 Bus request and grant signals

There are two principal signals used in the transfer of control of the bus from one bus
master to another, namely the bus request signal and the bus grant signal, though
other signals are usually also present and the signals are variously entitled depending
upon the system designer or microprocessor manufacturer. Transfer of the control of
the bus from one bus master to another uses a handshaking scheme. The bus master
wishing to use the bus makes a request to the current bus master by activating the bus
request signal. The current bus master releases the bus some time later, and passes
back a bus grant signal to the requesting bus master, as shown in Figure 7.2(a). The
exact timing is system dependent. Figure 7.2(b) shows one possible timing using the
two signals described. Bus request causes, in due course, bus grant to be returned.
When bus grant is received, bus request is deactivated, which causes bus grant to be
deactivated. Bus control signals are often active-low, meaning that the quiescent
state is 1 and that O indicates action. Such signals are shown with a bar over their
name. We shall use the word “activated” to indicate action.

Requesting Current
bus master bus master

Bus request

Bus grant

(a) Bus request and bus grant signals

State 1 State 2 State 3 - State 4
| -]
Busrequest = ‘
signal s
Bus grant IJ l—'
signal
(b) Timing

Bus grant

(c) State diagram

Figure 7.2 Bus request/grant mechanism (a) Bus request and bus grant signals
(b) Timing (c) State diagram

216 Shared memory multiprocessor systems

Buses can be classified as either synchronous or asynchronous. For all bus
transactions in the synchronous bus, the time for each transaction is known in
advance, and is taken into account by the source device in accepting information and
generating further signals. In the asynchronous bus, the source device does not know
how long it will take for the destination to respond. The destination replies with an
acknowledgement signal when ready. When applied to transferring control of the bus,
the asynchronous method involves not only a request signal from the requesting bus
master and a grant signal from the current bus master, but also a further grant
acknowledge signal from the current bus master acknowledging the grant signal.

In a synchronous bus, the two signal handshake system is often augmented with a
bus busy signal, which indicates whether the bus is being used. It may be that an
acknowledge signal, rather than a grant signal, is returned from the current bus master
to the requesting bus master after the request has been received. The current bus master
then releases the bus busy line when it eventually releases the bus, and this action
indicates that the requesting master can take over the bus, as shown in Figure 7.3.

Microprocessors designed for multiprocessor operation have request/acknow-
ledge/grant signals at the pin-outs although, when there are more than two processors
in the system, additional logic may be necessary to resolve multiple requests for
particular schemes.

7.1.3 Multiple bus requests

It is necessary for the current bus master to decide whether to accept a particular
request and to decide between multiple simultaneous requests, should these occur.
In both cases, the decision is normally made on the basis of the perceived priority of
the incoming requests, in much the same way as deciding whether to accept an
interrupt signal in a normal single processor microprocessor system. Individual bus
masters are assigned a priority level, with higher priority level masters being able to
take over the bus from lower priority bus masters. The priority level may be fixed by
making specific connections in a priority scheme (i.e. static priority/fixed priority)
or, less commonly, altered by hardware which alters the priority according to some
algorithm (dynamic priority).
Arbitration schemes can generally be:

1. Parallel arbitration schemes.
2. Serial arbitration schemes.

In parallel arbitration schemes, the bus request signals enter the arbitration logic
separately and separate bus grant signals are generated. In serial arbitration schemes,
a signal is passed from one bus master to another, to establish which requesting bus
master, if any, is of higher priority than the current bus master. The serial configuration
is often called a daisy chain scheme.

Single bus multiprocessor systems 217

Requesting Current
bus master bus master

Bus request
[Bus acknowledge
v —
Bus busy
(a) Bus request, acknowledge and grant signals
State 1 State 2 State 3 State 4
Bus request from |
requesting master {
Bus acknowledge
from current (Bus grant) M
master
Bus busy F
Driven by current master Driven by new master
(b) Timing
Acknowledge Bus busy Busbusy
released driven by
new master

(c) State diagram

Figure 7.3 Bus request/acknowledge/busy mechanism (a) Bus request, acknow-
ledge and busy signals (b) Timing (c) State diagram
Arbitration schemes can also be:

1. Centralized arbitration schemes.
2. Decentralized arbitration schemes.

In centralized schemes, the request signals, either directly or indirectly, reach one
central location for resolution and the appropriate grant signal is generated from this

218 Shared memory multiprocessor systems

point back to the bus masters. In decentralized schemes, the signals are not resolved
at one point — the decision to generate a grant/acknowledge signal may be made at
various places, normally at the processor sites. The decentralized schemes often (but
not always) have the potential for fault tolerance, whereas the centralized schemes
are always susceptible to point failures. Parallel and serial arbitration schemes can
either be centralized or decentralized, though the centralized forms are most common.

7.2 Priority schemes

7.2.1 Parallel priority schemes

The general centralized parallel priority scheme is shown in Figure 7.4. Each bus
master can generate a bus request signal which enters the centralized arbitration
logic (arbiter). One of the requests is accepted and a corresponding grant signal is
returned to the bus master. A bus busy signal is provided; this is activated by the
bus master using the bus. A bus master may use the bus when it receives a grant
signal and the bus is free, as indicated by the bus busy line being inactive. While a
bus master is using the bus, it must maintain its request and bus busy signals active.
Should a higher priority bus master make a request, the arbitration logic recognizes
the higher priority master and removes the grant from the current bus master. It also
provides a grant signal to the higher priority requesting bus master, but this bus
master cannot take over the bus until the current bus master has released it. The
current bus master recognizes that it has lost its grant signal from the arbitration
logic, but it will usually not be able to release the bus immediately if it is in the
process of making a bus transfer. When a suitable occasion has been reached, the

Grant signals
_________ Bus masters
Arbiter l
. <
1 1
! 1 Request
! | signals
E i
Bus busy

Figure 7.4 Centralized parallel arbitration

Single bus multiprocessor systems 219

current bus master releases the bus and the bus busy line, which signals to the
requesting master that it can take over the bus.

Notice that it is necessary to provide a bus busy signal because bus masters are
incapable of releasing the bus immediately when they loose their grant signal.
Hence we have a three signal system. There are various priority algorithms which
can be implemented by the arbitration logic to select a requesting bus master, all
implemented in hardware as opposed to software because of the required high speed
of operation. We have already identified static and dynamic priority. In the first
instance, let us consider static priority. Dynamic priority in parallel priority schemes
is considered on page 225.

In static (fixed) priority, requests always have the same priority. For example,
suppose that there were eight bus masters 0, 1, 2, 3, 4, 5, 6 and 7 with eight request
signals REQO; REQ1, REQ2, REQ3, REQ4, REQ5, REQ6 and REQ7, and
eight associated grant signals GRANT(O, GRANT1, GRANT2, GRANT3, GRANTA,
GRANTS, GRANT6 and GRANT7. Bus master 7 could be assigned the highest
priority, with the other bus masters assigned decreasing priority such that bus master
0 has the lowest priority. If the current master is bus master 3, any of the bus
masters 7, 6, 5 and 4 could take over the bus from the current master, but bus
masters 2, 1 and O could not. In fact, bus master O could only use the bus when it
was not being used and would be expected to release it to any other bus master
wishing to use it.

Static priority is relatively simple to implement. For eight request inputs and
eight “prioritized” grant signals, the Boolean equations to satisfy are:

GRANT7 = REQ7

GRANT6 = REQ7.REQ6

GRANTS5 = REQ7.REQ6.REQ5

GRANT4 = REQ7.REQ6.REQS5.REQ4

GRANT3 = REQ7.REQ6.REQ5.REQ4.REQ3

GRANT2 = REQ7.REQ6.REQ5.REQ4.REQ3.REQ2

GRANT1 = REQ7.REQ6.REQ5.REQ4.REQ3.REQ2.REQ1
GRANTO = REQ7.REQ6.REQ5.REQ4.REQ3.REQ2.REQI.REQO

which could be implemented as shown in Figure 7.5. This arrangement could be
extended for any number of bus masters and standard logic components are available
to provide static priority (for example the SN74278 4-bit cascadable priority com-
ponent (Texas Instruments, 1984) which also has flip-flops to store requests).

Static priority circuit devices can generally be cascaded to provide further inputs
and outputs, as shown in Figure 7.6. In this figure, each priority circuit has an
enable input, EI, which must be activated to generate any output, and an enable
output, EO, which is activated when any one of the priority request outputs is active.
The ETI of the highest priority circuit is permanently activated. When a request is
received by a priority circuit, the outputs of the lower priority circuits are disabled.

220 Shared memory multiprocessor systems

REQ7 I GRANT 7
REQ6
% _)— GRANT 6
REQ 5 '
T_D* GRANT 5
REQ 4
% GRANT 4
Bus request Bus grant
signals REQ3 signals
L_D_ GRANT 3
REQ2
| D)— GRANT 2
REQ1
I_D_)— GRANT 1
REQO
GRANTO

Figure 7.5 Parallel arbitration logic

Hence, after all requests have been applied and sufficient time has elapsed for all
logic levels to be established, only the highest priority grant signal will be generated.
The previous Boolean equations can easily be modified to incorporate enable
signals.

To prevent transient output changes due to simultaneous asynchronous input
changes, the request input information can be stored in flip-flops, as in the SN74278.
This necessitates a clock input and, as in any synchronizing circuit, there is a finite
probability that an asynchronous input change occurs at about the same time as the
clock activation and this might cause maloperation.

The speed of operation of cascaded priority arbiters is proportional to the number
of circuits cascaded. Clearly, the method is unsuitable for a large number of
requests. To improve the speed of operation of systems with more than one arbiter,
two-level, parallel bus arbitration can be used, as shown in Figure 7.7. Groups of
requests are resolved by a first level of arbiters and a second level arbiter selects the
highest priority first level arbiter. For larger systems, the arrangement can be
extended to further levels.

Single bus multiprocessor systems 221

Highest priority Parallel arbiters
— —
| —
_— —
—— ——
—— ——
—_— ——>
—_— —
— >
Enable output
Enable input
—] ———
— >
Request —» —> Grant
signals ~—> ——> signals
— EaE—
— ———
Enable output
Enable input
.
—— Smmm—
— —>
—— ———>
—— ———>
—_— ——
—_— ———
—_— >
Lowest priority

Figure 7.6 Cascaded arbiters

Bus request signals
Bus arbiter] _________
— Q=
-------- p. [
Bus
arbiter

Bus grant signals

Figure 7.7 Two-level parallel bus arbitration

222 Shared memory multiprocessor systems

Microprocessor example

The Motorola MC68452 Bus Arbitration Module (BAM) (Motorola, 1985a) is an
example of a microprocessor arbitration device designed to interface to the MC68000
microprocessor. The MC68452 BAM can accept up to eight device bus requests
DBRO, DBR1, DBR2, DBR3, DBR4, DBR5, DBR6 and DBR7 and has eight
corresponding device bus grant outputs DBGO, DBG1, DBG2, DBG3, DBG4,
DBGS5, DBG6 and DBG7 generated according to a static priority (DBR7 is the
highest priority, through to DBRO, the lowest priority). The BAM generates a bus
request signal, BR, indicating that it has received one or more requests according to
the Boolean AND function BR = DBGO.DBG1.DBG2.DBG3.DBG4.DBG5.DBG6
.DBG 7. The BG input enables the DBG outputs.

An asynchronous three signal handshake system is used for the transfer of bus
control. This consists of a bus request signal, DBRn, a bus grant signal, DBGn, and a
bus grant acknowledge signal, BGACK. This three signal handshaking system matches
the general bus operation of the MC68000. The timing of the signals is shown in
Figure 7.8. When one or more bus requests is received and the grant outputs are
enabled, the BAM generates a bus grant signal corresponding to the highest priority
bus request input. The bus request signal is returned to the requesting bus master,
which must then acknowledge receipt of the signal by activating the common bus
grant acknowledge signal. The requesting bus master can then take over the bus
immediately. While the bus master is using the bus, it must maintain the acknowledge-
ment, BGACK low, and return BGACK high when it has finished with the bus. The
request, DBRn, must be returned high before BGACK. The requesting bus masters
must maintain their requests low until an acknowledgement is received.

The MC68000 does not generate a bus request signal directly at its pin-out;
external processor bus request circuitry is necessary to produce this signal, which is
dependent upon the system configuration. A bus request signal needs to be

DBRn | R |

BAM
DBGn >~
Bus master
BGACK U
————
Bus master
using bus

Figure 7.8 MC68000 request/grant/acknowledge sequence

Single bus multiprocessor systems 223

generated for every bus transaction. If there is a local bus, the logic needs to
incorporate a bus address decoder. Specific interface parts are available to interface
to the VME bus (MC68172/3) and for arbitration (MC68174).

A bus master can use the bus as long as it wishes, which may be for one
transaction, or for several, upon condition that it maintains BGACK low throughout
the transaction(s). There is no mechanism built into the BAM for forcing masters off
the bus though a bus clear signal (BCLR) is generated whenever a higher priority
bus master makes a request for the bus, and this signal could be used with additional
circuitry. Also BGACK must be generated by circuitry in addition to the BAM.

The BAM can operate as an arbiter for a system with a central processor and
devices which can control the bus temporarily, such as DMA devices and display
controllers, or in a multiprocessor system where the control of the bus is not
returned to one particular processor. Figure 7.9 shows how the BAM can be used in
a single processor system containing other devices which can temporarily control
the bus. In this application, BR is not connected to BG. Whenever any device
connected to the BAM makes a request for the bus, the processor is informed via the
BR signal. Normally the MC68000 processor will relinquish the bus between 1.5 and
3.5 cycles after the request has reached it, and then return a bus grant signal to the
BAM. The BAM then passes a grant signal to the highest priority requesting device.

Data/address/control bus

MC68000 Disk Display |_______ Keyboard
processor controller controller controller
\) A
__ v P
BR — ——
»|DBR7 DBG7 DBR6 DBG6 DBRO DBGO
MC68452 arbiter
BG
Priority established
by DBR/DBG signals used
(DBR7/DBG7 highest priority

DBRO0/DBGO lowest priority)

Figure 7.9 Using an MC68452 arbiter in a single processor system

224 Shared memory multiprocessor systems

Decentralized parallel priority scheme

In the decentralized parallel priority scheme, one arbiter is used at each processor
site, as shown in Figure 7.10, to produce the grant signal for that processor, rather
than a single arbiter producing all grant signals. All the request signals need to pass
along the bus to all the arbiters, but individual processor grant signals do not need to
pass to other processors. Each processor will use a different arbiter request input
and corresponding arbiter grant output. An implementation might use wire links for
the output of a standard arbiter part, as shown in Figure 7.10. Alternatively, the
arbiter function could be implemented from the basic Boolean equations given
earlier for parallel priority logic (see page 219), as shown in Figure 7.11. In this
case, the total arbitration logic of the system would be the same as the centralized
parallel priority scheme.

The decentralized parallel priority scheme is potentially more reliable than the
centralized parallel priority scheme, as a failure of one arbiter should only affect the
associated processor. An additional mechanism would be necessary to identify
faulty arbiters (or processors), perhaps using a time-out signal. However, certain
arbiter and processor faults could affect the complete system. For example, if an
arbiter erroneously produced a grant signal which was not associated with the
highest priority request, the processor would attempt to control the bus, perhaps at
the same time as another processor. This particular fault could also occur on a
centralized system.

An advantage of the scheme is that it requires fewer signals on the bus. It does
not require grant signals on the bus. Also, in a multiboard system with individual
processors on separate boards, a special arbiter board is not necessary. All processor
boards can use the same design.

Bus masters
Gant | 7 Grant
Request / Request
_____ | -2
———————— Arbiter
1
i Bus request
! signals
Bus busy

Figure 7.10 Decentralized parallel arbitration

Single bus multiprocessor systems 225

Highest priority Lowest priority

Bus masters

Request Y 1

Grant \ \

|
T

Bus busy

Figure 7.11 Decentralized parallel arbitration using gates

Dynamic priority in parallel priority schemes

The implementation of the parallel priority schemes so far described assigns a fixed
priority to individual bus masters. More complex logic, which assigns different
priorities depending upon conditions present in the system, can be provided at the
arbitration sites. The general aim is to obtain more equitable use of the bus,
especially for systems in which no single processor should dominate the use of the
bus. Various algorithms can be identified, notably:

Simple rotating priority.
Acceptance-dependent rotating priority.
Random priority.

Equal priority.

Least recently used (LRU) algorithm.

U e

After each arbitration cycle in simple rotating priority, all priority levels are
reduced one place, with the lowest priority processor taking the highest priority. In
acceptance-dependent rotating priority (usually called rotating priority), the pro-
cessor whose request has just been accepted takes on the lowest priority and the
others take on linearly increasing priority. Both forms of rotating policies give all
processors a chance of having their request accepted, though the request-dependent
rotating policy is most common. In random priority, after each arbitration cycle, the
priority levels are distributed in a random order, say by a pseudorandom number
generator. In equal priority, when two or more requests are made to the arbiter,

226 Shared memory multiprocessor systems

there is an equal chance of any one request being ‘accepted. Equal priority is
applicable to asynchronous systems in which requests are processed by the arbiter as
soon as they are generated by processors operating independently. If two or more
requests occur simultaneously, the arbiter circuit resolves the conflict. In the least
recently used algorithm, the highest priority is given to the bus master which has
not used the bus for the longest time. This algorithm could also be implemented in
logic.

In the (acceptance-dependent) rotating priority algorithm, all possible requests
can be thought of as sequential entries in a circular list, as shown in Figure 7.12, for
a sixteen bus master system. A pointer indicates the last request accepted. The bus
master associated with this request becomes of the lowest priority after being
serviced. The next entry has the highest priority and subsequent requests in the list
are of decreasing priority. Hence, once a request has been accepted, all other
requests become of greater priority. When further requests are received, the highest
priority request is accepted, the pointer adjusted to this request and a further request

Pointertolast
request accepted

” 15‘0 1
$,\\ fi A

Lowest priority

IRtD 4
Highest
/10/ \5\ priority
9 / . 7\6

(a) After request 3 accepted

14\15 0/1
S
12> s
~X

%
o]\

Pointer

Lowest priority
Highest priority

(b) After request 6 accepted

Figure 7.12 Rotating priority algorithm (a) After request 3 accepted
(b) After request 6 accepted

Single bus multiprocessor systems 227

from this master becomes the lowest priority request. For example, the list shown in
Figure 7.12(a) shows the allocation of sixteen devices after request 3 has been
received and is serviced. In Figure 7.12(b) request number 6 has been received and
the pointer is moved accordingly.

Rotating priority has been used in interrupt controllers, for example the Advanced
Micro Devices Am9519, and in many ways the interrupt mechanism is similar to the
bus control mechanism but uses interrupt request and acknowledge/grant signals
rather than bus request and acknowledge/grant signals. Various features in the
Am9519 device can be preprogrammed, including a fixed priority or rotating
priority and particular responses to interrupts. Features such as mask registers to
lock out specific requests are not normally found in bus arbitration systems.
Rotating priority can also be performed in the serial priority scheme (see Section
7.2.2).

There are some schemes which assign priority according to some fixed strategy;
these schemes are not strictly dynamic, in so far as the assignment does not
necessarily change after each request is serviced. We can identify two such algorithms:

1. Queueing (first-come first-served) algorithm.
2. Fixed time slice algorithm.

The queueing (first-come first-served) algorithm is sometimes used in analytical
studies of bus contention and assumes a queue of requests at the beginning of an
arbitration cycle. The request accepted is the first request in the queue, i.e. the first
request received. This algorithm poses problems in implementation and is not
normally found in microprocessor systems. In the fixed time slice algorithm, each
bus master is allocated one period in a bus arbitration sequence. Each bus master
can only use the bus during its allocated period, and need not use the bus on every
occasion. This scheme is suitable for systems in which the bus transfers are
synchronized with a clock signal.

7.2.2 Serial priority schemes

The characteristic feature of serial priority schemes is the use of a signal which
passes from one bus master to another, in the form of a daisy chain, to establish
whether a request has the highest priority and hence can be accepted. There are
three general types, depending upon the signal which is daisy chained:

1. Daisy chained grant signal.
2. Daisy chained request signal.
3. Daisy chained enable signal.

The daisy chained grant scheme is the most common. In this scheme the bus
requests from bus masters pass along a common (wired-OR) request line, as shown

228 Shared memory multiprocessor systems

in Figure 7.13. A bus busy signal is also common and, when active, indicates that
the bus is being used by a bus master. When one or more bus masters make a
request, the requests are routed to the beginning of the daisy chain, sometimes
through a special bus controller and sometimes by direct connection to the highest
priority master. The signal is then passed from one bus master to the next until the
highest priority requesting bus master is found. This bus master prevents the signal
passing any further along the daisy chain and prepares to take over the bus.

In the daisy chained request scheme, as shown in Figure 7.14, the daisy chain
connection is again from the highest priority bus master through to the lowest
priority bus master, but with the request signal being routed along the daisy chain.
Each requesting bus master generates a bus request signal which is passed along the
daisy chain, eventually reaching the current bus master. This bus master is of lower
priority than any of the requesting bus masters to the left of it, and hence will honor
the request by generating a common (wired-OR) bus acknowledge/grant signal. All
requesting bus masters notice this signal but only the one which has a request
pending and does not have a request present at its daisy chain input responds, as it

Highest priority Lowest priority
Bus controller
(may not be necessary)
r———-- Bus masters
| | Bus grant
\ i > o ————— —> —
I
! l
! |
I ' —
i | Bus request
I i
! ! Bus busy
- |

Figure 7.13 Centralized serial priority arbitration with daisy-chained grant signal

Highest priority Lowest priority

Bus masters
Bus request

o —— — — — — —

Bus grant

Bus busy

Figure 7.14 Centralized serial priority arbitration with daisy-chained request signal

Single bus multiprocessor systems 229

must be the highest priority requesting bus master. Other requesting bus masters
have an opportunity to compete for the bus in future bus arbitration cycles. The
8086 microprocessor supports a form of daisy-chained request arbitration.

In the daisy chained enable scheme, both the bus request and bus acknowledge/
grant signals are common (wired-OR) signals and an additional enable signal is
daisy chained. When a bus master makes a request it disables the daisy chained
enable output, indicating to lower priority bus masters that a higher priority bus
master has presented a request. The common request signal is routed to a bus
controller, which generates a common (wired-OR) bus acknowledge signal to all bus
masters. The highest priority requesting bus master will have its enable input
activated and this condition will allow it to take over the bus. The daisy chained
enable system was used in single processor Z-80 systems for organizing interrupts
from input/output interfaces.

In all types of daisy chain schemes, a key point is that the mechanism must be
such that a requesting bus master cannot take over the bus until it has been freed. A
bus controller can be designed to issue an acknowledge/grant signal only when the
bus is free. If there is no bus controller, there are two possible mechanisms, namely:

1. Bus masters are not allowed to make a request until the bus is free.
2. Bus masters are allowed to make a request at any time but are not allowed to
take over the bus until the bus is free (and after receipt of a grant signal).

In 1, after the grant signal comes via the daisy chain, the bus master can take over
the bus immediately. In 2, the bus master must wait until the bus is free. When the
bus is taken over, the bus busy line is activated.

A strategy must be devised for terminating the control of the bus. One strategy
would be to allow a bus master only one bus cycle and to make it compete with
other bus masters for subsequent bus cycles. Alternatively, bus masters could be
forced off the bus by higher priority requests (and perhaps requested to terminate by
lower priority bus masters).

MC68000 microprocessor

The MC68000 microprocessor is particularly designed to use the daisy-chained
acknowledge scheme with its three processor signals bus request input (BR), bus
grant output (BG) and bus grant acknowledge input (BGACK). The bus grant
acknowledge signal is, in effect, a bus busy signal and is activated when a bus
master has control of the bus. External circuitry is necessary to generate this signal
for each bus master. Bus request indicates that at least one bus master is making a
request for the bus. Again, external circuitry is necessary to generate this signal for
each bus master. The bus grant signal, BG, is generated by the processor and
indicates that it will release the bus at the end of the current bus cycle in response to

receiving the BR signal. The requesting processor waits for all of the following
conditions to be satisfied (Motorola, 1985b):

230 Shared memory multiprocessor systems

The bus grant, BG, has been received.

The address strobe, AS, is inactive indicating that the processor is not using

the bus.

3. The data transfer acknowledge signal, DTACK, is inactive indicating that
neither memory or peripherals are using the bus.

4. The bus grant acknowledge signal, BGACK, is inactive indicating that no other

device still has control over the bus.

N -

The scheme described allows masters to make requests even if the bus is being used,
but the transfer of control is inhibited until the bus becomes free. Hence the
arbitration cycle can be overlapped with the current bus cycle. In contrast, bus
requests in a Z8000 multiprocessor are inhibited until the bus is free, when
arbitration takes place to find the highest priority requesting bus master.

Decentralized serial priority scheme
Though the daisy chain distributes the arbitration among the bus master sites, the
daisy chain signal originates at one point and subsequently passes along the daisy
chain. Hence the daisy chain methods so far described are categorized as centralized
priority schemes. The daisy chain grant method can be modified to be a decentralized
scheme by making the current bus master generate the daisy chain grant signal and
arranging a circular connection, as shown in Figure 7.15. The daisy chain signal
now originates at different points each time control is transferred from one bus
master to another, which leads to a rotating priority. The current bus master has the
lowest priority for next bus arbitration. The bus master immediately to the right of
the current bus master has the highest priority and bus masters further along the
daisy chain have decreasing priority.

When a bus master has control of the bus, it generates a grant signal which is
passed to the adjacent bus master. The signal is passed through bus masters that do
not have a request pending. Whenever a bus master makes a request, and has a grant

Bus masters
] Arbitrgtion
Request Grant logic
Daisy H]— _____ >
chain
grant

Figure 7.15 Rotating daisy chain

Single bus multiprocessor systems 231

input signal active, it inhibits the grant signal from continuing along the daisy chain.
However, it cannot take over the bus until the current bus master releases the bus
(assuming a bus master is using the bus). When the current bus master finds that it
has lost its daisy chained grant, it must release the bus at the earliest opportunity
and release a common bus busy line. Then the requesting master can take over the
bus. When more than one bus master makes a request for the bus, the requesting bus
master nearest the current bus master in the clockwise direction is first to inhibit the
daisy chain grant signal and claim the bus.

An implementation of the rotating daisy chain scheme typically requires one flip-
flop at each bus master to indicate that it was the last to use the bus or that it is
currently using the bus. One design is given by Nelson and Refai (1984). Flip-flops
are usually activated by a centralized clock signal, and request signals should not
change at about the time of the activating clock transition or the circuit might enter
a metastable state for a short period (with an output voltage not at a binary level).

Finally, note that though the scheme is decentralized, it still suffers from single point
failures. If one of the arbitration circuits fails to pass on the grant signal, the complete
system will eventually fail as the daisy chain signal propagates to the failed circuit.

Combined serial-parallel scheme

The serial priority scheme is physically easy to expand though the speed of
operation is reduced as the daisy chain length increases. The parallel priority
scheme is faster but requires extra bus lines. The parallel scheme cannot be
expanded easily in a parallel fashion beyond the original design since it is dependent
upon the number of lines available on the bus for request and acknowledge/grant
signals, and the arbitration logic. Typically eight or sixteen bus masters can be
handled with a parallel priority scheme.

The parallel priority scheme can be expanded by daisy chaining each request or
grant signal, thus combining the serial and parallel techniques. A scheme is shown
in Figure 7.16. Here the bus request signals pass to the parallel arbitration circuit as
before. However, these signals are wired-OR types and several bus masters may use
each line. The grant signals are daisy chained for each master using the same
request line, so that the requesting master can be selected. The operation is as
follows: the requesting master produces a bus request signal. If accepted by the
priority logic, the corresponding grant signal is generated. This signal passes down
the daisy chain until it reaches the requesting master. At the same time, an
additional common bus clear signal is generated by the priority logic and sent to all
the bus masters. On receiving this signal the current master will release the bus at
the earliest possible moment, indicating this by releasing the bus busy signal. The
new master will then take over the bus.

The parallel and serial schemes are in fact two extremes of implementing the
same Boolean equations for arbitration given in Section 7.2.1. From these equations,
we can obtain the equations implemented at each bus master site in a daisy chain
grant system. Defining INn as the nth daisy chain input and OUTn as the nth daisy
chain output, which are true if no higher priority request is present, then:

232 Shared memory multiprocessor systems

Bus busy

A Bus requests

—
- - -
Bus grants
Bus clear
- Y
Bus masters

Figure 7.16 Parallel arbiter with daisy chained grant signals

INn 1 = OUTn
OUTn = REQn.INn

GRANT7 = REQ7
OUT7 = IN6 = REQ7

GRANT6 = REQ7.REQ6 = IN6.REQ6
OUT6 = IN5 = REQ7.REQ6 = IN6.REQ6

GRANTS = REQ7.REQ6.REQ5 = IN5.REQ5
OUT5 = IN4 = REQ7.REQ6.REQ5 = IN5.REQ5

GRANT4 = REQ7.REQ6.REQ5.REQ4 = IN6.REQ4
OUT4 = IN3 = REQ7.REQ6.REQ5.REQ4 = IN6.REQ4

GRANT3 = REQ7.REQ6.REQ5.REQ4.REG3 = IN3.REQ3
OUT3 = IN2 = REQ7.REQ6.REQ5.REQ4.REQ3 = IN3.REQ3

GRANTZ = REQ7.REQ6.REQ5.REQ4.REQ3.REQ2 = IN2.REQ2
OUTZ2 = IN1 = REQ7.REQ6.REQ5.REQ4.REQ3.REQ2 = IN2.REQ2

GRANT1 = REQ7.REQ6.REQ5.REQ4.REQ3.REQ2.REQ1 = IN1.REQl

Single bus multiprocessor systems 233

OUT1 = INO = REQ7.REQ6.REQ5.REQ4.REQ3.REQ2.REQl

GRANTO = REQ7.REQ6.REQS5.REQ4.REQ3.REQ2.REQ1.REQO

Alternatively, we could have grouped two grant circuits together to get:

GRANT7 = REQ7
GRANT6 = REQ7.REQ6
OUT7/6 = IN5/4 = REQ7.REQ6

GRANTS5 = REQ7.REQ6.REQ5 = IN5/6.REQS
GRANT4 = REQ7.REQ6.REQ5.REQ4 = IN5/6.REQ5.REQ4

I

IN1.REQ1

INO.REQO

OUT5/4 = IN3/2 = REQ7.REQ6.REQ5.REQ4 = IN5/6.REQS5.REQ4

GRANT3 = REQ7.REQ6.REQ5.REQ4.REQ3 = IN3/2.REQ3

GRANT2 = REQ7.REQ6.REQ5.REQ4.REQ3.REQ2 = IN3/2.REQ3.REQ2

OUT3/2 = IN1/0 = REQ7.REQ6.REQ5.REQ4.REQ3.REQ2
= IN3/2.REQ3.REQ2

GRANT1 = REQ7.REQ6.REQ5.REQ4.REQ3.REQ2.REQ1 = IN1/0.REQ1

GRANTO = REQ7.REQ6.REQ5.REQ4.REQ3.REQ2.REQ1.REQO
= IN1/0.REQL.REQO

Similarly, groups of four arbitration circuits can be created with a daisy chain signal

between them, i.e.:

GRANT7 = REQ7

GRANT6 = REQ7.REQ6

GRANTS5 = REQ7.REQ6.REQ5

GRANT4 = REQ7.REQ6.REQ5.REQ4

OUT7-4 = IN3 0 = REQ7.REQ6.REQ5.REQ4

GRANT3 = REQ7.REQ6.REQ5.REQ4.REQ3 = IN3 0.REQ3

GRANT2 = REQ7.REQ6.REQ5.REQ4.REQ3.REQ2 = IN3 0.REQ3.REQ2

GRANT]1 = REQ7.REQ6.REQ5.REQ4.REQ3.REQ2.REQ1L
= IN3-0.REQ3.REQ2.REQ1

GRANTO = REQ7.REQ6.REQS5.REQ4.REQ3.REQ2.REQ1.REQO
= IN3 0.REQ3.REQ2.REQI1.REQO

Figure 7.17 shows implementations for a purely serial approach, arbiters with
groups of two request inputs and arbiters with groups of four request inputs.

234 Shared memory multiprocessor systems

REQ7| GRANT7 REQ6 D |GRANT6 REQO| D_@ANTO

REQ7 GRANT7 __| (GRANT5__| IGRANT3 __| |GRANT1
REQ5 REQ3 REQ1
REQS | D IGRANTE | IGRANT4 | GRANT2 | |GRANTO
REQ4 REQ2 REQO
] D ouT7/6 D 0UT5/4 ouT2/3
REQ7| GRANT7 __| IGRANT3
REQ3
REQ6| GRANTE __| GRANT2
REQ2
REQS | GRANT5 | |GRANTH
REQ1
REQ4| IGRANT4 __| |GRANTO
REQO
_ 1M\ _ourr4 |

Figure 7.17 Serial-parallel arbitration logic (a) Serial (b) Groups of two
requests (c) Groups of four requests

7.2.3 Additional mechanisms in serial and parallel priority schemes

Apart from the basic request, grant/acknowledge and bus busy signals, additional
bus signals may be present in arbitration schemes. For example, there may be two

Single bus multiprocessor systems 235

types of “bus request/clear” signals, one signal as a top priority clear, causing the
current bus master to release the bus at the earliest possible moment, and one signal
indicating a request which does not need to be honored so quickly. With the second
request, the current bus master may complete a sequence of tasks, for example
complete a DMA (direct memory access) block transfer. The top priority clear might
be used for power down routines.

As described, the serial and parallel priority schemes with static priority will
generally prevent lower priority bus masters obtaining control of the bus while
higher priority bus masters have control. Consequently, it may be that these lower
priority masters may never obtain control of the bus. This can be avoided by using a
common bus request signal which is always activated whenever a bus request is
made. If the requesting master has a higher priority than the current master, the
normal arbitration logic will resolve the conflict and generate a bus request signal to
the current bus master, causing the master to relinquish control of the bus at the end
of the current cycle. If, however, the requesting master is of lower priority than the
current bus master, a signal is not generated by the priority logic, but the bus master
recognizes and takes note of the fact that the common bus request signal is
activated. The current bus master continues but when it does not require the bus,
perhaps while executing an internal operation, it releases the bus busy signal, thus
allowing the requesting master access to the bus until the current bus master
requires the bus again.

This scheme is particularly suitable if the master has an internal instruction queue
with instruction prefetch, so that after the queue is full there may be long periods
during which the bus is not required. Note that while the common bus request signal
is not activated by a requesting bus master, the current bus master might not release
the bus signal between bus transfers. The Intel 16-bit Multibus I system bus (the
IEEE 796 bus) uses the common bus request mechanism with the signal CBRQ
(Intel, 1979), though the actual microprocessors (e.g. 8086, 80286) do not generate
the common bus signal.

7.2.4 Polling schemes

In polling schemes, rather than the bus masters issuing requests whenever they wish
to take over control of the bus and a bus controller deciding which request to accept,
a bus controller asks bus masters whether they have a request pending. Such polling
schemes can be centralized, with one bus controller issuing request inquiries, or
decentralized, with several bus controllers.

The mechanism generally uses special polling lines between the bus controller(s)
and the bus masters to effect the inquiry. Given 2” bus masters, 2” lines could be
provided, one for each bus master, and one activated at a time to inquire whether the
bus master has a request pending. Alternatively, to reduce the number of polling
lines, a binary encoded polling address could be issued on the polling lines and then
only n lines would be necessary. In addition, there are bus request and busy lines.

236 Shared memory multiprocessor systems

Centralized polling schemes

A centralized polling scheme is shown in Figure 7.18. The bus controller asks each
bus master in turn whether it has a bus request pending, by issuing each bus master
polling address on the n polling lines. If a bus master has a request pending when its
address is issued, it responds by activating the common request line. The controller
then allows the bus master to use the bus. The bus master addresses can be
sequenced in numerical order or according to a dynamic priority algorithm. The
former is easy to implement using a binary counter which is temporarily halted from
sequencing by the bus busy line.

Decentralized polling schemes ,
A decentralized polling scheme is shown in Figure 7.19. Each bus master has a bus
controller consisting of an address decoder and an address generator. First, at the
beginning of the polling sequence, an address is generated which is recognized by a
controller. If the associated processor has a request outstanding, it may now use the
bus. On completion, the bus controller generates the address of the next processor in
the sequence and the process is repeated. It is usually necessary to have a hand-
shaking system, as shown in Figure 7.19, consisting of a request signal generated by
the address generator and an acknowledge signal generated by the address decoder.
The decentralized polling scheme, as described, is not resilient to single point
failures, i.e. if a bus controller fails to provide the next polling address, the whole
system fails. However, a time-out mechanism could be incorporated such that if a
bus controller fails to respond in a given time period, the next bus controller takes
over.

2"bus masters

Polling
device r 1
! npoliing
! lines
Request
Busy

Figure 7.18 Centralized polling scheme

Single bus multiprocessor systems 237

Request Grant Finish
Y
Address
Decode h generation I ’{ I
A
\ \
Priority
address
Bus request
Acknowledge

Figure 7.19 Decentralized polling scheme

Software polling schemes

Although all the priority schemes presented are implemented in hardware to obtain
high speed of operation, the polling schemes lend themselves to a software approach.
The arbitration algorithms could be implemented in software, using processor-based
bus controllers if the speed of operation is sufficient. For example, the bus controller(s)
in the polling scheme could store the next polling addresses, and these could be
modified if a bus master is taken out of service. A degree of fault tolerance or the
ability to reconfigure the system could be built into a polling scheme. For example,
each bus master could be designed to respond on a common “I’m here” line when
polled. No response could be taken as a fault at the bus master, or a sign that the bus
master had been removed from service. However, such schemes are more appro-
priate for systems in which the shared bus is used to pass relatively long messages
between computers, or message-passing systems.

7.3 Performance analysis

In this section we will present an analysis of the single bus system and the
arbitration function. The methods will be continued in Chapter 8 for multiple bus
and other interconnection networks.

7.3.1 Bandwidth and execution time

Suppose requests for memory are generated randomly and the probability that a
processor makes a request for memory is r. The probability that the processor does

238 Shared memory multiprocessor systems

not make a request is given by 1 — r. The probability that no processors make a
request for memory is given by (1 — r)? where there are p processors. The probability
that one or more processors make a request is given by 1 — (1 — r) 7. Since only one
request can be accepted at a time in a single bus system, the average number of
requests accepted in each arbitration cycle (the bandwidth, BW) is given by:

BW=1-(1-rp

which is plotted in Figure 7.20. We see that at a high request rate, the bus soon
saturates.

If a request is not accepted, it would normally be resubmitted until satisfied, and
the request rate, r, would increase to an adjusted request rate, say a. Figure 7.21
shows the execution time, 7, of one processor with all requests accepted, and the
execution time, 7', with some requests blocked and resubmitted on subsequent

cycles (Yen et al., 1982). Since the number of cycles without requests is the same in
both cases, we have:

T'(1-a)=T -7r)

Let P, be the probability that a request will be accepted with the adjusted request
rate, a, and BW _ be the bandwidth. With a fair arbitration policy, each request will
have the same probability of being accepted and hence P, is given by:

_BW, 1-(1-a)p

Fa pa pa

0.8

0.6

0.4

Bandwidth

I]] |
0 4 8 12 16

Processors

Figure 7.20 Bandwidth of a single bus system (- — — using rate adjusted equations)

Single bus multiprocessor systems 239

Memory reference sequence

Cycle with no reference

/

Without contention
\ Y .
/ % With some references
% blocked due to
4 contention
/ >
Reference blocked Reference resubmitted Time

Figure 7.21 Memory references without contention and with contention

The number of requests before a request is accepted (including the accepted request)
= 1/P,. Hence, we have:

T =1 -=r)+r/P)T
and then:

a1

L+P,(1/r-1)

Here the request rate with the presence of resubmissions is given in terms of the
original request rate and the acceptance probability at the rate a. The equations for
P, and a can be solved by iteration.

On a single processor system, the execution time would be Tp. If all requests
were accepted, the time on the multiprocessor would be T and the speed-up factor
would be p. In the presence of bus contention and resubmitted requests, the
execution time is 7" and the speed-up factor is given by:

ﬂ

- = —p = _.—p_.—__
Speed-up factor T =P+ (-7
Figure 7.22 shows the speed-up factor using iteration to compute P,. We see that the
speed-up is almost linear until saturation sets in. The maximum speed-up is given by
1/r. For example, if r = 0.1 (10 per cent) the maximum speed-up is 10, irrespective
of the numiber of processors. With » = 0.1 and with ten processors, the speed-up is 9.

Note that the derivation uses random requests; in practice the sequence may not be
random.

240 Shared memory multiprocessor systems

Using rate adjusted equations

10~ r=0.1
8._
s
8 o
g r=02
)
g 4
Q
177}
2+ r=05
!]] 1
0 4 8 12 16
Processors

Figure 7.22 Speed-up factor of a single bus system

7.3.2 Access time

From the number of requests before a request is accepted being given by 1/P;, we
obtain the time before a rejected request from the ith processor is finally accepted
(the access time) as:

P)

-

T, = P,
where P, is the probability that processor i successfully accesses the bus, that is, the
probability that a submitted request is accepted. (An alternative derivation is given
in Hwang and Briggs, 1984.) If a request is immediately accepted in the first
arbitration cycle (i.e. P, = 1), the access time is zero. The access time is measured in
arbitration cycles. The probability that a processor successfully accesses the bus
will depend upon the arbitration policy, and the initial request rate, r.

Fair priority

The probability, P,, for a fair priority giving equal chance to all processors was given
by P, previously, i.e. P, = (1-(1-r)*)/pr or, if the adjusted rate is used, P, =
(1-(1-a)?)/pa. Figure 7.23 shows the access time against number of processors
using the adjusted rate equations with iteration.

Single bus multiprocessor systems 241

Using rate adjusted equations

10 r=05
8_
E r=20.1
s 6
(9]
£
P
[+
3
<
2
1 -
0 4 8 12 16

Processors

Figure 7.23 Access time of a single bus system

Fixed priority
Ignoring resubmitted requests, the probability, P,, for fixed priority (e.g. daisy chain
arbitration) would seem to be given by:

P,=(1-r)y-!

which is the probability that none of the processors with higher priority than
processor i makes a request. The lower processor number corresponds to the higher
priority. (Processor i has priority i and processor i—1 is the next higher priority
processor.) Resubmitted requests have a very significant effect on the computed
access time with fixed priority. Unfortunately it is very difficult to incorporate an
adjusted request rate into the equations as the probability of an individual processor
not making a request is dependent upon other processors. The previous equation is
invalid for @ = r. Computer simulation can be performed to obtain the most accurate
results.

7.4 System and local buses

We noted in Section 7.1 that a single bus cannot be used for all processor—-memory
transactions with more than a few processors and we can see the bus saturation in
the previous analysis. The addition of a cache or local memory to each processor
would reduce the bus traffic. This idea results in each processor having a local bus

242 Shared memory multiprocessor systems

Input/ Input/
Processor Memory output Processor Memory output
_ Local bus
Local/system Local/system
businterface interface
Shared
memory
System bus

Figure 7.24 Multiple microprocessor system with local buses and system bus

for local memory and input/output, and a system bus for communication between
local buses and to a shared memory, as shown in Figure 7.24. Now let us look at this
type of architecture in detail. Bus arbitration is still necessary at the system bus
level and possibly also at the local bus level.

A local/system bus interface circuitry connects the local and system buses together.
Memory addresses are divided into. system addresses referring to memory on the
system bus, and local memory addresses referring to memory on the local bus. No
local bus arbitration is required if there is only one processor on the local bus, but
generally system bus arbitration logic is necessary to resolve multiple system bus
requests to select one processor to use the system bus. When a processor issues a
memory address, decode logic identifies the bus. Input/output addresses could be in
local or system space, depending upon the design.

Since blocks of memory locations generally need to be transferred from the
system memory to the local memory before being used, it is advantageous to
provide a direct path between the system bus and the local memory using two-port
memory. Two-port memory can be accessed by one of two buses, sometimes
simultaneously. Small two-port memory with simultaneous access characteristics
are available, but in any event two-port memory can be created (though without
simultaneous access characteristics) using normal random access memory com-
ponents and memory arbitration logic to select one of potentially two requests for
the memory. In effect, the bus arbitration logic is replaced by similar memory
arbitration logic. Care needs to be taken to ensure data consistency in the two-port
memory using critical section locks (see Chapter 6). Most recent miCroprocessors
have facilities for local and system buses, either built into the processors or
contained in the bus controller interfaces.

Single bus multiprocessor systems 243

Example of microprocessor with local and system bus signals

The 8-bit Zilog Z-280 microprocessor (Zilog, 1986) (a substantial enhancement to the
Z-80 microprocessor) has the ability to distinguish between local bus addresses and
system bus addresses using internal logic. The processor can operate in a multi-
processor configuration or not, by setting a bit in the 8-bit internal processor register
called the Bus Timing and Initialization register. In the non-multiprocessor mode,
only a single bus, the local bus, is supported and the processor is the controlling bus
master for this bus. Other processor-like devices, such as DMA devices, must request
the use of the bus from the Z-280 using the bus request signal (BUSREQ) into the Z-
280. The Z-280 acknowledges the request with the bus acknowledge signal (BUSACK)
and releases the bus by the time the acknowledgement is issued.

In the multiprocessor configuration mode, both local and global buses can be
present and memory addresses are separated into those which refer to the local bus
and those which refer to the global bus using the four most significant bits of the
address. These four most significant bits can be selected as set to 1 or O for the local
bus using a processor register called the local address register. Four base bits in this
register are compared to the four address bits and if all four match, a local address
reference is made, otherwise a global memory reference is made. The other four bits
are mask enable bits to override global selection for each address bit when the
corresponding mask bit is set to 0. If all mask bits are set to 0, all memory
references are to the local memory. The Z-280 has four on-chip DMA channels,
which may use the global bus in the same way as the Z-280 — using the local address
register to ascertain whether addresses are local or global.

The local bus is controlled in the same way as in the non-multiprocessor mode,
using BUSREQ and BUSACK, but the processor must request the global bus. This
request is made by issuing a Global Request output (GREQ) from the processor,
which is acknowledged by the Global Acknowledge input (GACK) to the processor.
GREQ would normally enter a global bus arbiter, which resolves multiple requests
and priorities for the global bus, issuing GACK to the processor allowed to used the
global bus.

7.5 Coprocessors

7.5.1 Arithmetic coprocessors

The local bus could, of course, carry more than one processor if suitably designed.
More commonly, it carries coprocessors and DMA devices which are allowed to use
the local bus, though overall control is always returned to the processor. Coprocessors
are devices designed to enhance the capabilities of the central processor and operate
in cooperation with the central processor. For example, an arithmetic coprocessor
enhances the arithmetical ability of the central processor by providing additional
arithmetical operations, such as floating point and high precision fixed point addition,

244 Shared memory multiprocessor systems

subtraction, compare, multiplication and division operations. Arithmetic coprocessors
also include floating point trigonometric functions such as sine, cosine and tangent,
inverse functions, logarithms and square root. The coprocessor can perform designed
operations at the same time as the central processor is performing other duties.

Not all the binary patterns available for encoding machine instructions are used
internally by a microprocessor, and it is convenient to arrange an arithmetic
coprocessor to respond to some of the unused bit patterns as they are fetched from the
memory. The main processor would expect the arithmetic coprocessor to supply the
results of any such operations, and in this way the arithmetic coprocessor is seen
simply as an extension to the processor. The coprocessor would be designed for
particular processors.

8086 family coprocessors

The Intel 8087 (Intel, 1979) numeric coprocessor is designed to match the 16-bit
Intel 8086 processors. The 80287 numeric coprocessor matches the 80286 processor.
Figure 7.25 shows an 8087 coprocessor attached to an 8086 processor and a
common bus. The 8086 processor fetches instructions in the normal way and all
instructions are monitored by the 8087 coprocessor. Instructions which begin with
the binary pattern 11011 are assigned in the 8086 instruction set for external
coprocessor operation and are grouped as ESC (escape) instructions. If an ESC
instruction is fetched, the 8087 prepares to act upon it. The ESC instruction also
indicates whether an operand is to be fetched from memory. If an operand fetch is
indicated, the address of the operand is provided in the third and fourth bytes of a
multibyte instruction, and the 8086 fetches the address of the operand; othérwise,
the 8086 will continue with the next instruction. The 8087 recognizes the ESC
instruction and performs the encoded operation. If an operand address is fetched by
the 8086, the address is accepted by the 8087. The 8087 will subsequently fetch the
operand. It is possible for both processors to be operating simultaneously, with the
8086 executing the next instruction. The operations provided in the 8087 coprocessor
include long word length, fixed point and floating point operations. The 8087 has an
internal 8-word, 80 bit-word stack to hold operands. Some coprocessor instructions
operate upon two operands held in the top two locations of the stack. Results can be
stored in the stack or in memory locations.

The operations are performed about 100 times faster than if the 8086 had
performed them using software algorithms. However, once the 8087 has begun
executing an instruction, the two processors act asynchronously. When the 8087 is
executing an instruction, its BUSY output is brought high. BUSY is usually connected
to the TEST input of the 8086. The TEST input can be examined via the 8086 WAIT
instruction. If TEST = 1, the WAIT instruction causes the 8086 to enter wait states,
until TEST = 0. Then the next instruction is executed. Typically, the WAIT instruction
would be executed before an ESC instruction, to ensure that the coprocessor is ready
to respond to the ESC instruction. Hence the two processors can be brought back
into synchronism. Other signals connect between the two processors, including bus
request and grant signals to enable the two processors to share the bus. The 8086

Single bus multiprocessor systems 245

Processor
{‘"“"“‘"7
|
: CPU : Memory
|
8086 | | 4 I
ClEwel]
Lk B |
|)
: ‘ Instructions Bus
!]
: Co- {
: processor |
8087 | -
| I:l -
: |
' |
!_ —_——— _\\ ______ 1

Internal stack holding
operands/results

Figure 7.25 CPU with coprocessor

has an internal 6-byte queue used to hold instructions prior to their execution. The
state of the queue is indicated by queue status outputs which the 8087 uses to ensure
proper operation of ESC instructions. (The 8087 can also be connected to the 16-bit
8088 processor which has a 4-byte queue.)

MC68020 coprocessors

As with the 8086 family, the Motorola MC68000 family instruction set has some
instruction encoding patterns not used by the processor, and some patterns are
reserved for coprocessors (Beims, 1984). All instructions with the most significant
four bits 1010 (A hexadecimal) or 1111 (F hexadecimal) in the first word are
reserved for future expansion and external devices. Pattern 1111 (F) (called “line-F”
op-codes) are reserved for coprocessor instructions. The MC68020 32-bit processor
supports coprocessors, and-coprocessors are attached to the local bus. Communica-
tion between the 68020 and the coprocessor is through data transfers to and from
internal registers within the coprocessor.

The address space of the system is divided into eight spaces using a 3-bit function
code (processor status outputs FCO-FC2) generated by the processor. In the
MC68020, five are defined — user data (001), user program (010), supervisor data
(101), supervisor program (110) and special processor-related functions (111), for
example, breakpoint acknowledge, access level control, coprocessor communication
or interrupt acknowledge. In function code 111, address lines 31 through to 20 are
not used, and address bits 19, 18, 17 and 16 differentiate between the functions.
Coprocessors use A19-A16 =0010, and A15-A13 to identify the coprocessor,
leaving twelve address bits plus upper/lower byte select lines to identify internal

246 Shared memory multiprocessor systems

registers within a particular coprocessor, i.e. up to 8192 bytes can be addressed
within each coprocessor. Thirty-two bytes are defined as coprocessor registers used
for communication with the main processor.

Coprocessor instructions include a 3-bit code in the first word to identify the
coprocessor and the instructions may have extension words. In some cases, the first
word includes the same 6-bit encoding of the effective address as internal MC68000
instructions, and the same addressing modes are available. The instructions are
categorized in one of three groups — general, conditional and system control. In the
general group, the first extension word contains a coprocessor command (defined by
a particular coprocessor). In the conditional group, specific coprocessor tests are
given in a condition selector field. In the system group, operations for virtual
memory systems can be specified.

When the MC68020 fetches a coprocessor op-code (line-F op-code) the processor
communicates with the coprocessor by writing a value into the coprocessor register.
Coprocessors have eleven addressable registers used to hold commands and data
passed to or from the MC68020 processor. For the general coprocessor instruction,
the command in the fetched coprocessor instruction is transferred to the coprocessor
command register. For conditional instructions, the condition selector is transferred
to the coprocessor condition register.

The coprocessor should respond by issuing a 16-bit “primitive” command to the
main processor. The encoding of the primitive commands allows up to sixty-four
functions, though some are reserved. The functions are categorized into five groups
— processor synchronization, instruction manipulation, exception handling, general
operand transfer and register transfer. For example, in processor synchronization,
the MC68020 can be instructed to proceed with the next instruction. In the general
operand transfer group, the MC68020 can be instructed to evaluate the effective
address of the coprocessor instruction and pass the stored data or the address to the
coprocessor. If an addressed coprocessor does not exist in the system, hardware
should issue a bus error signal, and typically the processor will enter a software
routine to emulate the coprocessor operations. Bus error signals are normally
generated if the processor does receive an acknowledgement after a specific duration.

An example of a Motorola coprocessor is the MC68881 floating point coprocessor.
The overhead of issuing and receiving commands is generally insignificant in
typical coprocessor operations, which might take perhaps 50 microseconds to
complete a complex floating point arithmetic operation.

Attached arithmetic processors

Some early attached arithmetic processors, for example the Intel 8231A Arithmetic
Processing Unit (Intel, 1982), were simply memory mapped or input/output mapped
devices which responded to particular commands from the central processor. Results
were held in an internal stack, which could be examined by the processor under
program control or under an interrupt scheme. These arithmetic processors did not
require special coprocessor instructions in the central processor instruction set and
could be attached to most microprocessor buses.

Single bus multiprocessor systems 247

7.5.2 Input/output and other coprocessors

Apart from arithmetic coprocessors, coprocessors exist to perform other operations
independently, notably:

1. 1I/O (DMA) controllers/coprocessors.
2. Local area network coprocessors.
3. Graphics coprocessors.

In all cases, the main processor can continue with other operations while the
coprocessor is completing its task. Normally, these coprocessors are attached to the
local bus, though it is possible to provide a separate local bus, as shown in Figure
7.26. This eliminates memory conflicts if the transactions can be completed totally
on the coprocessor local bus. Coprocessors can be provided with their own instruction
set and execute their programs from local memory on a separate bus.

Memory
CPU _—
Main bus
I: Buffers
Input/output Bus arbitration
processor and control
Y

[_ Buffers

Local bus

Memory

Peripheral L
interface

R

Peripheral
device

Figure 7.26 Input/output processor with local bus

248 Shared memory multiprocessor systems
PROBLEMS

7.1 Prove that the maximum speed-up of a multiprocessor system having
n processors, in which each processor uses the bus for the fraction m of
every cycle, is given by m.

7.2 Identify the relative advantages of the synchronous bus and the
asynchronous bus.

7.3 Identify the relative advantages of parallel arbitration and serial
arbitration.

7.4 Identify the relative advantages of centralized arbitration and decen-
tralized arbitration.

7.5 Identify the relative advantages of the daisy chain grant arbitration
scheme and the daisy chain request arbitration scheme. Which would you
choose for a new microprocessor? Why?

7.6 A 3-to-8 line priority encoder is a logic component which accepts
eight request inputs and produces a 3-bit number identifying the highest
priority input request using fixed priority. A 3-to-8 line decoder accepts
a 3-bit number and activates one of its eight outputs, as identified by the
input number. Show how these components could be used to implement
parallel arbitration. Derive the Boolean expressions for each component
and show that these equations correspond to the parallel arbitration
expressions given in the text.

7.7 Design a parallel arbitration system using three levels of parallel
arbiter parts and determine the arbitration time of the system.

7.8 Suppose a rotating daisy chain priority circuit has the following

signals:
BR Bus request from bus master
BG Bus grant to bus master

BRIN Bus grant daisy chain input
BROUT Bus grant daisy chain output

and contains one J-K flip-flop whose output, BMAST (bus master),
indicates that the master is the current bus master. Draw a state table
showing the eight different states of the circuit. Derive the Boolean
expressions for the flip-flop inputs, and for BROUT. (See Nelson and
Refai (1984) for solution.)

Single bus multiprocessor systems 249

7.9 For any 16-/32-bit microprocessor that you know, develop the Boolean
expressions and logic required to generate bus request and grant signals
for both local and global (system) buses. The local bus addresses are 0 to
65535 and the global bus addresses are from 65536 onwards.

7.10 Derive Boolean expressions to implement a daisy chain scheme
having three processors at each arbitration site.

7.11 Derive an expression for the arbitration time of a combined serial
parallel arbitration scheme having m processors, using one n-input
parallel arbiter. (m is greater than n.)

7.12 What is the access time for the highest and next highest priority
processor in a system using daisy chain priority, given that the request
rate is 0.25?

7.13 Suppose a new arithmetic coprocessor can have eight arithmetic
operations. List those operations you would choose in the coprocessor.
Justify.

7.14 Compare and contrast the features and mechanisms of 8086 co-
processors and 68020 coprocessors.

CHAPTER
Interconnection

networks

Interconnection networks are of fundamental importance to the design and operation
of multiprocessor systems. They are required for processors to communicate either
between themselves or with memory modules. This chapter will consider the
interconnection network as applicable to a wide range of multiprocessor archi-
tectures, though with particular reference to general purpose MIMD computers.
Multiple bus systems will be considered as an interconnection network, extending
the single bus interconnection scheme of Chapter 7.

8.1 Multiple bus multiprocessor systems

In the last chapter, we considered single bus multiprocessor systems. We can extend
the bus system to one with b buses, p processors and m memory modules, as shown
in Figure 8.1(a), in which no more than one processor can use one bus simul-
taneously. Each bus is dedicated to a particular processor for the duration of a bus
transaction. Each processor and memory module connects to each of the buses using
electronic switches (normally three-state gates). A connection between two com-
ponents is made, with two connections to the same bus. We will refer to processors
and memory modules only. (Memory and I/O interfaces can be considered as similar
components for basic bus transactions.) Processor-memory module transfers can use
any free bus, and up to b requests for different memory modules can be serviced
simultaneously using b buses. A two-stage arbitration process is necessary, as
shown in Figure 8.1(b). In the first phase, processors make requests for individual
memory modules using one arbiter for each memory module, and up to one request
for each memory module is accepted (as only one request can be serviced for each
module). There might be up to m requests accepted during this phase, with m
memory modules. In the second phase, up to b of the requests accepted in the first
phase are finally accepted and allocated to the b buses using a bus arbiter. If m is
less than b, not all the buses are used. Blocked requests need to be honored later.

250

Interconnection networks 251

Processors Memory modules

1 Buses

(@) Interconnection

Requests

i + + 4 m arbiters
L 1 --- I] {one for each

memory module)

mrequests

Bus arbiter

b bus requests

(b) Arbitration

Figure 8.1 Multiple bus system (a) Interconnection (b) Arbitration

Clearly, bus contention will be less than in a single bus system, and will reduce as
the number of buses increases; the complexity of the system then increases. Though
extensive analytical studies have been done to determine the performance character-
istics of multiple bus systems, few systems have been constructed for increased
speed. Apart from such applications, multiple bus systems (especially those with
two or three buses) have been used in fault tolerant systems. A single bus system
collapses completely if the bus is made inoperative (perhaps through a bus driver
short-circuited to a supply line).

Variations of the multiple bus system have been suggested. For example, not all
the memory modules need to be connected to all the buses. Memory modules can be
grouped together, making connections to some of the buses, as shown in Figure 8.2.
Multilevel multiple bus systems can be created in which multiple bus systems
connect to other multiple bus systems, either in a tree configuration or other
hierarchical, symmetrical or non-symmetrical configurations.

Lang et al. (1983) showed that some switches in a multiple bus system can be
removed (up to 25 per cent) while still maintaining the same connectivity and
throughput (bandwidth). In particular, Lang showed that a single “rhombic” multiple

252 Shared memory multiprocessor systems

Processors Memory modules Memory modules

Buses

Buses

Figure 8.2 Partial multiple bus system

bus system can be designed with the same connectivity of a full multiple bus
scheme and no reduction in performance whatever when:

l. p=b+1<m<m
2. p+m+1-b-m<p<p

where m; memory modules and p; processors are connected to bus i. Lang also
showed that the minimum switch configuration can be achieved by keeping the
processor connections complete and minimizing the memory module connections.
We shall use Lang’s observations in overlapping multiple bus networks (Section
8.5.2).

8.2 Cross-bar switch multiprocessor systems

8.2.1 Architecture

In the cross-bar switch system, processors and memories are interconnected through
an array of switches with one electronic cross-bar switch for each processor—
memory connection. All permutations of processor-memory connections are poss-
ible simultaneously, though of course only one processor may use each memory at
any instant. The number of switches required is p x m where there are p processors
and m memory modules.

Each path between the processors and memories normally consists of a full bus
carrying data, address and control signals, and each cross-bar switch provides one
simultaneous switchable connection. Hence the switch may handle perhaps 60-100
lines if it is to be connected between each processor and each memory. The address
lines need only be sufficient to identify the location within the selected memory
module. For example, twenty address lines are sufficient with 1 Mbyte memory

Interconnection networks 253

modules. Additional addressing is necessary to select the memory module. The
memory module address is used to select the cross-bar switch. The cross-bar switch
connections may be made by:

Three-state gates.
Wired-OR gates.

Analog transmission gates.
Multiplexer components .

b

The cross-bar switch connections could be fabricated in VLSI, though the number of
input/output connections is significant. Analog transmission gates have the advantage
of being intrinsically bidirectional.

Each processor bus entering the cross-bar network contains all the necessary
signals to access the memory modules, and would include all the data lines,
sufficient address lines and memory transfer control signals. The switch network can
also be implemented using multiport memory. In effect, then, all of the switches in
one column of the cross-bar are moved to be within one memory module.

The number of switches in a cross-bar network becomes excessive and impractical
for large systems. However the cross-bar is suitable for small systems, perhaps with
up to twenty processors and memories.

8.2.2 Modes of operation and examples
There are two basic modes of operation for cross-bar switch architectures, namely:

1. Master—slave architecture.
2. Architecture without a central control processor.

Each has distinct hardware requirements.

In the master—slave approach, one processor is assigned as the master processor
and all the other processors are slave processors. All cross-bar switches are controlled
by the master processor, as shown in Figure 8.3. The operating system for this
architecture could also operate on a master—slave principle, possibly with the whole
operating system on the master processor. Alternatively, the central part of the
operating system could be on the master processor, with some dedicated routines
passed over to slave processors which must report back to the master processor. The
slave processors are available for independent user programs. In any event, only the
master processor can reconfigure the network connections, and slave processors
executing user programs must request a reconfiguration through the master processor.
The master—slave approach is certainly the simplest, both for hardware and software
design.

In the cross-bar switch system without central control, each processor controls the
switches on its processor bus and arbitration logic resolves conflicts. Processors

254 Shared memory multiprocessor systems

Memory modules

Master
processor
Bus switch
L
o #
Switch
! control
]
]
Slave
processors
1
|
|
1
I
| /

Figure 8.3 Cross-bar switch system with central control (master—slave)

make independent requests for memory modules. Each memory module/bus has its
own arbitration logic and requests for that memory module are directed to the
corresponding memory arbitration logic. Up to one request will be accepted for each
memory module, and other requests are held back for subsequent arbitration cycles.
Arbitration is effected by one arbiter for each memory module receiving requests for
that module, as shown in Figure 8.4.

Perhaps the first example of a cross-bar switch multiple processor system (certainly
the first commercial example) was the Burroughs D-825 four processor/sixteen
memory module cross-bar switch system introduced in 1962 for military applications.
Subsequently, commercial cross-bar switch systems have occasionally appeared,
usually with small numbers of processors. There is at least one commercial example
of a master—slave architecture, the IP-1 (International Parallel Machines Inc.). The
basic configuration of the' IP-1 has nine processors, one a master processor, with
eight cross-bar switch memory modules. The system can be expanded to thirty-three
processors. The cross-bar switch memory operates like multiport memory. There has
been at least one small master—slave architecture research project (Wilkinson and
Abachi, 1983).

A significant, influential and extensively quoted but now obsolete cross-bar
switch system without central control called the C.mmp (Computer.multi-
miniprocessor) was designed and constructed in the early 1970s at Carnegie-Mellon
University (Wulf and Harbison, 1978). C.mmp employed sixteen PDP-11 computer
systems, each with local memory, connected to a sixteen memory module. In 1978,

Interconnection networks 255

Memory modules
Memory Memory
: arbiter arbiter \Bus switch
|
I
Processors Requests Requests
1

|
—_

Figure 8.4 Cross-bar switch system without central control

at the end of the main investigation, the five original PDP-11s were PDP-11/20s and
the eleven introduced in 1974 to complete the system were the faster PDP-11/40s.
There were 3 Mbytes of memory in total (32 Mbytes possible). The total hardware
cost of $600 000 was divided into $300 000 for the processors, $200 000 for the
shared memory and $100 000 for the cross-bar switch. Apart from the cross-bar
switch communication paths between the processors and memory, a communication
path was established between the processors using an interprocessor (IP) bus. Input/
output devices and backing memory were connected to specific processors.

PDP-11 processor instructions can specify a 16-bit address. This address is
divided into eight 8 Kbyte pages (three most significant bits for the page and
thirteen bits for the location within the page). This address is extended to eighteen
bits on the local bus (Unibus) by concatenating two bits contained in the processor
status word with the 16-bit address. The two processor status word bits cannot be
changed by user programs and constrain user programs to operate within the 16-bit
address space, i.e. within 64 Kbytes (eight 8 Kbyte pages).

In the C.mmp, shared memory is accessed via the cross-bar switch with 25-bit
address, with the most significant four bits selecting the memory module, i.e. with
high order interleaving. The 18-bit local bus address is translated into a 25-bit shared
memory address by an address translation unit called Dmap, using a direct mapping
technique (Section 2.2.2, page 32). Dmap contains four sets of relocation registers,
with eight registers in each set. One set is selected by the two processor status bits and
the register within the set is selected by the three next significant bits of the address,
i.e. by the page bits. Each register contains a 12-bit frame address and three bits for
memory management. The frame address selected is concatenated with the thirteen
remaining address bits to obtain a 25-bit address. The frame bits are divided into a 4-
bit port number selecting the memory module and an 8-bit page within port.

256 Shared memory multiprocessor systems

As C.mmp employed the approach without central control, any processor could
execute any part of the operating system at any time. Shared data structures were
accessed by only one process at a time, using one of two general mechanisms —
either fast simple binary locks for small data structures, or semaphores with a
descheduling and queueing mechanism for larger data structures. A widely reported
disadvantage of the C.mmp, as constructed with PDP-11s, is the small user address
space allowed by the 16-bit addresses.

The cross-bar switch architecture without central control has been used more
recently, for example the S1 multiprocessor system developed for the United States
Navy. The S1 also has sixteen processors connected to sixteen memory modules
through a 16 x 16 cross-bar switch. However, the processors are specially designed
very high speed ECL (emitter-coupled logic) processors.

In a cross-bar system, input/output devices and backing memory can be associated
with particular processors, as in the C.mmp and S1. Alternatively, they can be made
accessible to all processors by interconnecting them to the processors via the same
cross-bar switch network as the memory modules; the cross-bar switch would then
need to be made larger. Input/output devices and backing memory could also be
connected to the processors via a separate cross-bar switch.

There are a number of possible variations in the arrangement of a cross-bar switch
network. For example, Hwang et al. (1989) proposed the orthogonal multiprocessor
using a network in which processors have switches to one of two orthogonal buses
in the cross-bar network. At any instant, the processors can all connect to the
vertical or horizontal buses. Each memory module needs to access only two buses.
Hwang develops several algorithms for this system. Various memory access patterns
are allowed. Overlapping connectivity networks includi‘ng cross-bar versions, are
considered in Section 8.5.

8.3 Bandwidth analysis

8.3.1 Methods and assumptions

One of the key factors in any interconnection network is the bandwidth, BW, which
is the average number of requests accepted in a bus cycle. Bandwidth gives the
performance of the system under bus contention conditions. Bandwidth and other
performance figures can be found via one of four basic techniques:

Using analytical probability techniques.
Using analytical Markov queueing techniques.
By simulation.

By measuring an actual system performance.

sl

Simplifying assumptions are often made for techniques 1 and 2 to develop a closed

Interconnection networks 257

form solution, which is then usually compared to simulations. Measurements on an
actual system can confirm or contradict analytical and simulation studies for one
particular configuration. We shall only consider probabilistic techniques. The principal
assumptions made for the probabilistic analysis are as follows:

1. The system is synchronous and processor requests are only generated at the
beginning of a bus cycle.

2. All processor requests are random and independent of each other.

3. Requests which are not accepted are rejected, and requests generated in the
next cycle are independent of rejected requests generated in previous cycles.

If bus requests are generated during a cycle, they are only considered at the
beginning of the next cycle. Arbitration actions are only taken at the beginning of
each bus cycle. Asynchronous operation, in which requests can occur and be acted
upon at any time, can be modelled by reducing the cycle time to that required to
arbitrate asynchronous requests. In practice, most bus-based multiprocessor systems
respond to bus requests only at the beginning of bus cycles, or sometimes only at
the beginning of instruction cycles. Instruction cycles would generally be of variable
time, but virtually all published probabilistic analyses assume a fixed bus cycle.

Assumption 2 ignores the characteristic that programs normally exhibit referential
locality for both data and instruction references. However, requests from different
processors are normally independent. A cross-bar switch system can be used to
implement an interleaved memory system and some bandwidth analysis is done in
the context of interleaved memory. Low order interleaving would generally ensure
that references are spread across all memory modules, and though not truly in a
random order, it would be closer to the random request assumption.

According to assumption 3, rejected requests are ignored and not queued for the
next cycle. This assumption is not generally true. Normally when a processor
request is rejected in one cycle, the same request will be resubmitted in the next
cycle. However, the assumption substantially simplifies the analysis and makes very
little difference to the results.

Though it is possible to incorporate memory read, write and arbitration times into
the probabilistic analysis, we will refrain from adding this complexity. Markov
queueing techniques take into account the fact that rejected requests are usually
resubmitted in subsequent cycles.

8.3.2 Bandwidth of cross-bar switch

In a cross-bar switch, contention appears for memory buses but not for processor
buses, because only one processor uses each processor bus but more than one
processor might compete for a memory module and its memory bus. In the multiple
bus system, to be considered later, both system bus contention and memory conten-
tion can limit the performance. In the cross-bar switch, we are concerned with the

258 Shared memory multiprocessor systems

probability that more than one request is made for a memory module as, in such
cases, only one of the multiple requests can be serviced, and the other requests must
be rejected.

First, let us assume that all processors make a request for some memory module
during each bus cycle. Taking a small numerical example, with two processors and
three memories, Table 8.1 lists the possible requests. Notice that there are nine
combinations of two requests taken from-three possible requests. The average
bandwidth is given by the average number of requests that can be accepted. Fifteen
requests can be accepted and the average bandwidth is given as 15/9 = 1.67.
Memory contention occurs when both processors request the same memory module.
For our two processor/three memory system, we see that processor 1 makes a
request for memory 1 three times, memory 2 three times and memory 3 three times,
and similarly for processor 2. Hence there is a 1/3 chance of requesting a particular
memory.

Table 8.1 Processor requests with two processors and three memories

Memory requests

Processors Number of Memory

P, P, requests accepted contention
1 1 1 YES.

1 2 2 NO

1 3 2 NO

2 1 2 NO

2 2 1 YES

2 3 2 NO

3 1 2 NO

3 2 2 NO

3 3 1 YES

Now let us develop a general expression for bandwidth, given p processors and m
memory modules. We have the following probabilities: The probability that a
processor P, makes a request for a particular memory module M; is 1/m for any i and
J (as there is equal probability that any memory module is requested by a processor).
The probability that a processor, P, does not make a request for that memory
module, M, is 1 — 1/m. The probability that no processor makes a request for the
memory module is given by (1 — 1/m)?. The probability that one or more processors
make a request for memory module M; (i.e. the memory module has at least one
request) is (1— (1 — 1/m)P). Hence the cross-bar switch bandwidth, i.e. the number of
memory modules with at least one request, is given by:

Interconnection networks 259
BW =m(1 - (1 - 1/my?)

The bandwidth function increases with p and m and is asymptotically linear for
either p or m, given a constant p/m ratio (Baer, 1980). Alternative explanations and
derivations of bandwidth exist, perhaps the first being in the context of interleaved
memory (Hellerman, 1966). An early derivation for the bandwidth can be found in
Ravi (1972), also in the context of interleaved memory.

The cross-bar switch bandwidth can be derived for the situation in which
processors do not always generate a request during each bus cycle, for example, in a
system having local memory attached to the processors. Let r be the probability that
a processor makes a request. Then the probability that a processor makes a request
for a memory module, M; = r/m. For a simple derivation, this term can be
substituted into the previous derivation to get the bandwidth as:

BW =m(1l - (1 — r/im)?)

Patel (1981) offers an alternative derivation for the bandwidth with requests not
necessarily always generated.

Figure 8.5 shows the bandwidth function. Simulation results (Lang et al., 1982;
Wilkinson, 1989) are also shown using a random number generator to specify the
requests and with blocked requests resubmitted on subsequent cycles. For a request
rate of 1, the bandwidth equation derived will give a value higher than that found in
simulation and in practice, because rejected requests which are resubmitted in the next
cycle will generally lead to more contention. At request rates of less than 1, the
simulation results can give a higher bandwidth than analysis because there is then an
opportunity for blocked requests to be satisfied later, when some other processors do
not make requests.

12F
r=1.0
8
L
o ~~-r=05
=
5
c
5]
@ 4|
r=0.1
I] |
0 4 8 12 16

Processors/memory modules

Figure 8.5 Bandwidth of cross-bar switch network (— analysis, ——— simulation)

260 Shared memory multiprocessor systems
The probability that an arbitrary request is accepted is given by:

P = % = (mfrp)(1 — (1 — r/m)P)

a

and the expected wait time for a request to be accepted is (1/P, - 1)t, where ¢_is the
bus cycle time.

8.3.3 Bandwidth of multiple bus systems

In the multiple bus system, processors and memory modules connect to a set of b
buses, and the bandwidth will depend upon both memory contention and bus
contention. Only a maximum of b requests can be serviced in one bus cycle, and
then only if the b requests are for different memory modules. We noted that
servicing a memory request can be regarded as a two stage process. First, up to m
memory requests must be selected from all the requests. This mechanism has
already been analyzed in the cross-bar switch system as it is the only selection
process. We found that the probability that a memory has at least one request is
1 — (1 — r/m)? = q (say). Second, of all the different memory requests received, only b
requests can be serviced, due to the limitation of b buses. The probability that
exactly i different memory modules are requested during one bus cycle is given in
Mudge et al. (1984) (see also Goyal and Agerwala, 1984):

p . .
f(i) = () g1 —-qy !

l

where (‘I;) is the binomial coefficient. The overall bandwidth is given by:

D b-1
BW=be(i)+Zif(i)
i=b =1

The first term relates to b or more different requests being made and all b buses
being in use, and the second term relates to fewer than b different requests being
made and fewer than b buses being used. Figure 8.6 shows the bandwidth function
and also simulation results (Lang et al., 1982). As with the cross-bar switch for a
request rate of 1, the simulation bandwidth is slightly less than the analytical value,

Interconnection networks 261

12
p=m=16
________ r=1.0
8 L.
=
B T T T T ——— r=05
g A
©
5
o L
1 | |]
0 4 8 12 16
Number of buses
Figure 8.6 Bandwidth of multiple bus system (- analysis, - - - simulation)

but for request rates of less than 1, the analytical values are less than the simulation
values, as then there is more opportunity for rejected requests to be accepted in later
cycles.

In the analysis for the cross-bar switch and for the multiple bus system, we
assume that rejected requests are discarded and do not influence the bandwidth. In
Chapter 7, Section 7.3.1, we presented a method of computing the effect of rejected
requests being resubmitted by adjusting the request rate. This method can be applied
to multiple bus and cross-bar switch networks to obtain a more accurate value for
the bandwidth. However, the method assumes that the rejected requests will be
resubmitted to a memory module selected at random rather than to the same memory
module as would normally happen. This does not matter in the case of the single bus
system with a single path to all memory modules, but has an effect in the case of
multiple buses and cross-bar switches. However, the method does bring the results
closer to actual values from simulation.

Some work has been done to incorporate priority into the arbitration function (see
Liu and Jou, 1987) and to have a “favorite” memory module for each processor
which is more likely to be selected (see Bhuyan, 1985) and to characterize the
reliability (see Das and Bhuyan, 1985). An early example of the use of Markov
chain model is given by Bhandarkar (1975). Markov models are used by Irani and
Onyiiksel (1984) and Holliday and Vernon (1987). Actual measurements and

simulation are used to compare analytical models, for example as in Baskett and
Smith (1976).

262 Shared memory multiprocessor systems

8.4 Dynamic interconnection networks

In this section, we will describe various schemes for interconnecting processing
elements (processors with memory) or interconnecting processors to memories, apart
from using buses. The schemes are applicable to both MIMD and SIMD computer
systems, though particular network characteristics might better suit one type of
computer system. Our emphasis is on general purpose MIMD computer systems.

8.4.1 General

In a dynamic interconnection network, the connection between two nodes (pro-
cessors, processor/memory) is made by electronic switches such that some (or all)
of the switch settings are changed to make different node to node connections. For
ease of discussion, we will refer to inputs and outputs, implying that the transfer is
unidirectional; in practice most networks can be made bidirectional. (Of course, the
whole network could be replicated, with input and outputs transposed.)

Networks sometimes allow simultaneous connections between all combinations of
input and outputs; such networks are called non-blocking networks. Non-blocking
networks are strictly non-blocking if a new interconnection between an arbitrary
unused input and an arbitrary unused output can always be made, irrespective of
existing connections, without disturbing the existing paths. Some non-blocking
networks may require paths to be routed according to a prescribed routing algorithm
to allow new input/output connections to be made without disturbing existing
interconnections; such non-blocking networks are called wide-sense non-blocking
networks. Many networks are formulated to reduce the number of switches and do
not allow all combinations of input/output connections simultaneously; such net-
works are called blocking networks. A network is rearrangeable if any blocked
input/output connection path can be re-established by altering the internal switches
to reroute paths and free the blockage.

In general, the switches are grouped into switching stages which may have one
(or more) input capable of connecting to one (or more) output. Dynamic networks
can be classified as:

1. Single stage.
2. Multistage.

In a single stage network, information being routed passes through one switching
stage from input to output. In a multistage network, information is routed through
more than one switching stage from input to output. Multistage networks generally
have fewer internal switches, but are often blocking. Some networks have non-
blocking characteristics for certain input/output combinations, which may be useful
in particular applications.

Interconnection networks 263

8.4.2 Single stage networks

A fundamental example of a dynamic single stage network is the cross-bar switch
network analyzed previously, in which the stage consists of n x m switches (n input
nodes, m output nodes) and each switch allows one node to node connection. This
network is non-blocking and has the minimum delay through the network compared
to other networks, as only one switch is involved in any path. The number of
switches increases as 0(nm) (or 0(n?) for a square network) and becomes impractical
for large systems. We shall see that the non-blocking nature of the cross-bar switch
network can be preserved in the multistage Clos network and with substantially
fewer switches for large systems. However, the single stage cross-bar switch
network is still a reasonable choice for a small system. The complete connectivity
and flexibility of the cross-bar is a distinct advantage over multistage blocking
networks for small systems. The term “cross-bar” stems from the historical use of
mechanical switches in old telephone exchanges.

8.4.3 Multistage networks

Multistage networks can be divided into two types:

1. Cross-bar switch-based networks.
2. Cell-based networks.

Cross-bar switch-based networks use switching elements consisting of cross-bar
switches, and hence multistage cross-bar switch networks employ more than one
cross-bar switch network within a larger network. Cell-based networks usually
employ switching elements with only two inputs and two outputs, and hence could
be regarded as a subset of the cross-bar switch network, though the 2 x 2 switching
elements in some cell-based networks are not full cross-bar switches. Instead they
have limited interconnections.

Multistage cross-bar switch-based networks — Clos networks
In 1953 Clos showed that a multistage cross-bar switch network using three or more
stages could give the full non-blocking characteristic of a single stage cross-bar
switch with fewer switches for larger networks. This work was done originally in
the context of telephone exchanges, but has direct application to computer networks,
especially when the non-blocking characteristic is particularly important.

A general three-stage Clos network is shown in Figure 8.7, having r, input stage
cross-bar switches, m middle stage cross-bar switches and r, output stage cross-bar
switches. Each cross-bar switch in the first stage has n, inputs and m outputs, with
one output to each middle stage cross-bar switch. The cross-bar switches in the
middle stage have r, inputs, matching the number of input stage cross-bar switches,
and r, outputs, with one output to each output stage cross-bar switch. The cross-bar
switches in the final stage have m inputs, matching the number of middle stage

264 Shared memory multiprocessor systems

Cross-bar switch elements

nxm nxXr mx ny
1 1 11 1 1
2 2 2 2 2 —2
] | i i
NN/
ny — m ! ron m — Ny
N4 1 1 1 1 241
2 2 2 2 —
2 | ': I }
21 2 mp n np Um 2.0
! 1
Inputs ! : | Outputs
: ! l
[} 1 :
i 1 i
—] ; 1 1 1 —
] 2 2 2 —
: n : :l : :
N=rm— m}l n n} Lm Iy = M

Figure 8.7 Three-stage Clos network

cross-bar switches, and n, outputs. Hence the numbers n, n,, r|, r, and m com-
pletely define the network. The number of inputs, N, is given by r,n, and the number
of outputs, M, is given by r,n,.

Clearly, any one network input has a path to any network output. Whether the
network is non-blocking will depend upon the number of middle stages. Clos
showed that the network is non-blocking if the number of cross-bar elements in the
middle stage, m, satisfies:

m2n,+n; -1
For a network with the same number of inputs as outputs, the number of input/
outputs = r,n; = ryn,. If n; = n,, the middle stages are square cross-bar switches and
the non-blocking criterion reduces to:

m22n-1

Clos derived the number of switches in a square three-stage Clos network with input
and output networks of the same size, as:

N2

Number of switches = (2rn — 1) 2N + —
n

Interconnection networks 265

2 x 2 switch elements

Inputs Outputs

Figure 8.8 Three-stage Benes network

resulting in fewer switches than a single stage cross-bar switch when N is greater
than about twenty-five for a square network (Broomell and Heath, 1983). It has been
shown that a Clos network is rearrangeable if m > n,, otherwise the network
becomes blocking.

Clos networks can be created with five stages by replacing each switching
element in the middle row with a three-stage Clos network. Similarly seven, nine,
eleven stages, etc. can be created by further replacement. The Benes network is a
special case of the Clos network with 2 x 2 cross-bar switch elements. A three-stage
Benes network is shown in Figure 8.8. Benes networks could also be classified as
cell-based networks.

Cell-based networks

The switching element (or cell) in cell-based networks typically has two inputs and
two outputs. A full cross-bar switch 2 x 2 network cell has twelve different useful
input/output connections (states). Three further 2 x 2 network patterns exist, one
connecting the inputs together, leaving the outputs free, one connecting the outputs
together, leaving the inputs free, and one connecting the inputs together and the
outputs together; there is no input/output connection. A final state has no inter-
connections. Four binary control signals would be necessary to specify the states of
a 2 x 2 network.

Some, if not most, cell-based networks employ 2 x 2 cells which do not have all
possible states. The two state (straight through or exchange) 2 x 2 network is the
most common. In practice, once a path is chosen for one of the inputs — either the
upper or the lower output — there is only one possible path allowed for the other
input (which will be the upper output if the lower output has been taken, or the
lower output if the upper output has been taken). Hence, the straight through/
exchange states are sufficient and only one binary signal need be present to select
which state should exist at any instant,

Most cell-based networks are highly blocking, which can be evidenced by the fact
that if there are s switching cells, each with two states, there are only 2" different states
in the complete network. However, with, say, p input/outputs, there are p! different
combinations of input/output connections and usually p! is much larger than 25.

266 Shared memory multiprocessor systems

Each stage of cells can be interconnected in various ways. The baseline network
(Feng, 1981) shown in Figure 8.9, is one example of a network with a very
convenient self-routing algorithm (destination tag algorithm) in which successive
bits of the destination address control successive stages of the network. Each stage
of the baseline network divides the routing range into two. The first stage splits the
route into two paths, one to the lower half of the network outputs and one to the
upper half. Hence, the most significant bit of the destination address can be used to
route the inputs to either the upper half of the second stage, when the bit is 0, or to
the lower half if the bit is 1. The second stage splits the route into the upper quarter
or second quarter if the upper half of the outputs has been selected, or to the third
quarter or lower quarter if the lower half has been selected. The second most
significant bit is used to select which quarter, once the most significant bit selection
has been made. This process is repeated for subsequent stages if present. For eight
inputs and outputs, there would be three stages, for sixteen inputs and outputs there
would be four stages, and so on. The least significant bit controls the last stage.
Such self-routing networks suggest packet switching data transmission.

Shuffle interconnection pattern

The perfect shuffle pattern finds wide application in multistage networks, and can
also lead to destination tag self-routing networks. Originally, the perfect shuffle was
developed by Pease, in 1968, for calculating the fast Fourier transform (Broomell
and Heath, 1983), and was later developed for other interconnection applications by
Stone and others. The input to output permutation of the (2-) perfect shuffle network
is based upon shuffling a pack of cards by dividing the pack into two equal parts
which are slid together with the cards from each half of the pack interleaved. The
perfect shuffle network takes the first half of the inputs and interleaves the second
half such that the first half of inputs pass to odd numbered outputs and the second

2 X 2 switch elements

000 — 000
001 — — 001
010 — >< —— 010
011 — 011
Inputs Outputs
100 — — 100
101 — —— 101
110 — — 110
111 — 11

Figure 8.9 8 x 8 baseline network

Interconnection networks 267

half to even numbered outputs. For example, with eight inputs, the first half of the
inputs consists of 0, 1, 2 and 3 and the second half of 4, 5, 6 and 7. Input 0 passes to
output 0, input 1 to output 2, input 2 to output 4, input 3 to output 6, input 4 to
output 1, input 5 to output 3, input 6 to output 5 and input 7 to output 7.

Given that the input/output addresses have the form a,_,a,_, - a,q,, the perfect
shuffle performs the following transformation:

Shuffle (a,_ja, , ~a,ay) =a,_, - a,aya,_,

i.e. the address bits are cyclically shifted one place left. The inverse perfect shuffle
cyclically shifts the address bits one place right.

To make all possible interconnections with the shuffle pattern, a recirculating
network can be created by recirculating the outputs back to the inputs until the
required connection is made. Exchange “boxes” are introduced; these selectively
swap pairs of inputs, as shown in Figure 8.10 (shuffle exchange network). Each
exchange box has two inputs and two outputs. There are two selectable transfer
patterns, one when both inputs pass to the two corresponding outputs, and one when
each input passes to the other output (i.e. the inputs are transposed). The exchange
boxes transform the address bits by complementing the least significant bit, i.e.:

Exchange box
1 1 switch positions

—

Outputs
__—(returned to inputs)

Inputs

S [52] [54] [R

4 4
—
5 5 ><
— —>
6 6
7 7 7
L |

Exchange box Shuffle

Figure 8.10 Shuffle exchange network

268 Shared memory multiprocessor systems

Exchange (a,_,4,_, .- a,4y) = 4, a4, 5 - 3|4,

For example, 6 (110) passes over to 7 (111) and 7 passes over to 6. The inter-
connection function is given by a number of shuffle exchange functions. Any input
can be transferred to any output by repeated passes through the network. For
example, to make a connection from 0 (000) to 6 (110) would require two passes,
one pass to exchange to 1 (001) and shuffle to 2 (010), and one pass to exchange to
3 (011) and shuffle to 6 (110). A maximum of n recirculations are necessary to
obtain all permutations.

Multistage perfect shuffle networks — Omega network
Rather than recirculate the paths, perfect shuffle exchange networks can be cascaded
to become the Omega network, as shown in Figure 8.11. The network (like the
baseline network) has the particular feature of the very simple destination tag self-
routing algorithm. Each switching cell requires one control signal to select either the
upper cell output or the lower cell output (0 specifying the upper output and 1
specifying the lower). The most significant bit of the address of the required
destination is used to control the first stage cell; if this is O the upper output is
selected, and if it is 1, the lower output is selected. The next most significant bit of
the destination address is used to select the cell output of the next stage, and so on
until the final output has been selected.

The cells used need to be able to select either the upper or the lower output and a
2 x 2 straight through/exchange cell is sufficient. The Omega network was proposed
for array processing applications with four-state cells (straight through/exchange/
broadcast upper/broadcast lower). The Omega network is highly blocking, though

2 x 2 switch elements
(straight-through or
cross-over connections)

000 7 000
001 ——o001
010 ——010
011 —011
Inputs Outputs
100 100
101 101
110 —— 110
111 — 111

Figure 8.11 Omega network

Interconnection networks 269

one path can always be made from any input to any output in a free network. The
indirect binary n-cube network, which is similar to the Omega network, was
proposed for processor to processor interconnections using only two-state cells.
(The direct binary n-cube has links between particular nodes and is also called a
hypercube, see page 286.) The indirect binary n-cube and Omega networks were
found to be functionally equivalent by a simple address translation. Switching
networks are deemed equivalent if they produce the same permutations of input/
output connections irrespective of their internal connections or actual input/output
address numbering system.

Generalized self-routing networks

The self-routing networks such as Omega, baseline and indirect binary n-cube
networks can be extended to use numbering system bases other than two and a
generalized g-shuffle. In terms of cards, the g-shuffle takes gr cards and divides the
cards into g piles of r cards. Then one card from each pile is taken in turn to create a
shuffled pile.

The Delta network (Patel, 1981) is a generalization using a numbering base which
can be other than 2 throughout. This network connects a” inputs to b" outputs
through n stages of a X b cross-bar switches. (Omega, baseline and indirect N-cube
networks use a = b = 2.) The destination address is specified in base ¥ numbers and
the destination tag self-routing algorithm applies. Each destination digit has a value
from O to b — 1 and selects one of b outputs of the a x b cross-bar element An
example of a Delta network is shown in Figure 8.12.

0 00

o o1

' 2 —— 02
— 3 —03
—J 0 10
; 1 11

1 2 —12
— 3 ——13
— o ——20
' 1 — 21

] 2 22
| 3 ——23
—f 0 30
; 1 31

1 2 ——32
- 3 33

Figure 8.12 Delta network (base-4)

270 Shared memory multiprocessor systems

The stage to stage link pattern is a four-shuffie in this example. The destination
tag self-routing networks have been further generalized into the generalized shuffle
network (GSN) (Bhuyan and Agrawal, 1983). The GSN uses a shuffie network
pattern constructed from arbitrary number system radices. An example is shown in
Figure 8.13. Different radices can be used at each stage.

Note that now the basic 2 x 2 cell is not necessarily employed. Some studies have
indicated that better performance/cost might be achieved by, for example, using 4 x 4
networks. In all destination tag routing networks (baseline, Omega, n-cube, and all
networks that come under generalized networks) there can be only one route from
each input to each output. Hence the networks are not resilient to cell failures. Extra
stages can be introduced, as shown in Figure 8.14 to provide more than one path from
input to output. This method has been studied by Raghavendra and Varma (1986).

8.4.4 Bandwidth of multistage networks
We derived the bandwidth of a single cross-bar switch as:
BW =m(1 - (1 — r/im)P)
It follows that for a multistage network composed of stages of a x b cross-bar
switches (Delta, GSN etc.) the number of requests that are accepted and passed on to

the next stage is given by:

b(1 - (1 = ry/b)?)

0 0 0 0
I]] 1 0 1
: : : :
— a-1 b—-1p—20 b-1
0 o—1 0
] 1]] 1 1
1] [} 1
1] ' 1
— a-1 b-1 1 b-1
]]
Inputs a E Outputs
] 1
]]
p—a1 0
) | | - a-1 1
' i i H
— a-1 a-1 b-1

Basea Baseb

Figure 8.13 Generalized shuffle network stage

Interconnection networks 271

0 0 0 00
— 1 1 1——01
— 2 2 202
— 3 3 3—03
— 0 0 OpF——10

1 1 1 11
—A 2 2 2——12
— 3 3 3p——13
— 0 0 oOF——20
— 1 1 1—21

2 2 2 22
— 3 3 3 23
— 0 0 0OF——30
— 1 1 1—31
E— 2 2 2H——32

3 3 3 33

Figure 8.14 Extra stage Delta network
where r is the request rate at the input of the first stage. The number of requests on
any one of the b output lines of the first stage is given by:
ry=1=(1=ry/b)

These requests become the input to the next stage, and hence the number of requests
at the output of the second stage is given by:

ry=1-(1-r/b)ye

Hence the number of requests passed on to the output of the final stage can be found
by recursively evaluating the function:

ri=1-(1-r_,/b)

for i = 1 to n, where n is the number of stages in the network, and r, = r. The
bandwidth is given by:

BW =b"r,

as there are b" outputs in all; there are a” inputs. The probability that a request will
be accepted is given by:

272 Shared memory multiprocessor systems

— n
P, =b"r
a'r

The derivation given is due to Patel (1981) in connection with Delta networks.
Figure 8.15 shows the bandwidth and probability of acceptance of Omega networks
(Delta network with @ = b = 2) compared to single stage N x N cross-bar switch
networks, where N = 2". Note that the number of stages in the 2" x 2~ multistage

network is log,N and this can be significant, i.e. for N = 4096, there are twelve
stages.

600

S
o
S

Bandwidth

200

|
0 200 400 600 800 1000

Processors
(a) Bandwidth
1.0
[
e
o]
Q
8
(&3
[
B
=
B
©
e
o r=05
0.2}
| | i | |
0 200 400 600 800 1000
Processors
(b) Probability of acceptance
Figure 8.15 Performance of multistage networks (— Omega, ——— full cross-bar

switch) (a) Bandwidth (b) Probability of acceptance

Interconnection networks 273

8.4.5 Hot spots

Though memory references in a shared memory multiprocessor might be spread
across a number of memory locations, some locations may experience a dis-
proportionate number of references, especially when used to store locks and synchron-
ization variables. These shared locations have been called hot spots by Pfister and
Norton (1985). When a multistage interconnection network is used between the
memory and processors, some paths between processors and memories are shared.
Accesses to shared information can cause widespread contention in the network, as
the contention at one stage of the network can affect previous stages. Consider a
multistage network with request queues at the input of each stage. A hot spot in
memory occurs and the last stage request queue fills up. Next, requests entering the
inputs of the stage become blocked and the queues at this stage fill up. Then
requests at the inputs of previous stages become blocked and the queues fill up, and
so on, if there are more stages. This effect is known as tree saturation and also
blocks requests not even aimed for the hot spot. The whole network can be affected.

Pfister and Norton (1985) present the following analysis to highlight the effect of
hot spots. Suppose there are N processors and N shared memory modules, and the
memory request rate is r. Let the fraction of these requests which are for hot spots
be h. Then the number of hot-spot requests directed to the hot-spot memory is Nrh.
The number of remaining non-hot-spot requests directed to the memory module is
Nr(1 = h)/N = r(1 - h) assuming that these requests are uniformly distributed among
all memory modules. The total number of requests for the memory module is Nrh +
r(1 — h) = r(h(N - 1) + 1). The asymptotically maximum number of requests that
can be accepted by one memory module is 1. Hence the asymptotically maximum
number of accepted requests is r/r(h(N — 1) + 1)) = 1/(h(N - 1) + 1). Hence the
maximum bandwidth is given by:

BW=N/(h(N-1)+1)

This equation is plotted in Figure 8.16. We see that even a small fraction of hot-spot
requests can have a profound effect on the bandwidth. For example, with 2 = 0.1 per
cent, the bandwidth is reduced to 500 with 1000 processors. The request rate, r, has
no effect on the bandwidth, and for large numbers of processors (P), the bandwidth
tends to 1/h. For example, when & = 1 per cent, the bandwidth is limited to 100
irrespective of the number of processors.

Two approaches have been suggested to alleviate the effects of hot spots, namely:

1. Software combining trees.
2. Hardware combining circuits.

In the software approach, operations on a single variable are broken down into
operations which are performed separately so as to distribute and reduce the hot
spots. The operations are arranged in a tree-like manner and results are passed along

274 Shared memory multiprocessor systems

1000 h=0%
800
=
3
=
E 600[
«n
8 h=01%
£
3 400}
3 h=02%
&
200 h=0.5%
h=1%
T T I] h=2%

|
0 200 400 600 800 1000
Processors (and memories)

Figure 8.16 Asymptotic bandwidth in presence of hot spots

the tree to the root. Further information on the software approach can be found in
Yew, Tzeng and Lawrie (1987).

In the hardware approach, circuits are incorporated into the network to recognize
requests for shared locations and to combine the data access. In one relatively
simple hardware combining network, read accesses to the same shared memory
location are recognized at the switching cells and the requests combined to produce
one read request to the memory module. The returning data is directed through the
network to all required destinations.

Since shared variables are often used as synchronization variables, synchronization
operations can be combined. The fetch-and-add operation suggested by Gottlieb ez
al. (1983) for combining networks returns the original value of a stored variable and
adds a constant to the variable as specified as an operand. The addition is performed
by a cell within the network. When more than one such operation is presented to the
network, the network recognizes the operations and performs additions, leaving the
memory to return the original value through the network and be presented with one
final store operation. The network will modify the value returned to give each
processor a value it would have received if the operations were performed serially.

An example of fetch-and-add operations in a multistage network is shown in
Figure 8.17. Three fetch-and-add operations are received from three processors to
operate upon memory location M:

Processor 1 f-&-a M, +x
Processor 2 f-&-a M, +y
Processor 3 f-&-a M, +z

Interconnection networks 275

\ Memory
0

A $

/ w *
Processor 3 wt+x+y 43 X+y+z

» x+y —
Processor 2 \.V& L y w
Processor 1 %
Stored value

Figure 8.17 Fetch-and-add operations in a multistage network

Suppose the original value stored in M is w. As requests are routed through the
network, individual cells perform additions and store one of the increments internally.
In Figure 8.17, the first two requests are routed through the same cell and x and y
are added together to be passed forward, to be added to the z from the third
operation. The result, x + y + z, is presented to the memory and added to the stored
value, giving w + x + y + z stored in the memory. The original value, w, is passed
back through the network. At the first cell encountered, x + y had been stored and
this is added to the w to give w + x + y, which is routed towards processor 3, and w is
routed towards processors 1 and 2. In this cell, x had been stored, and is added to
the w to give w + x, which is routed to processor 2, and w is routed to processor 1.
Hence the three processors receive w, w + x and w + x + y respectively, which are
the values they might have received had the operations been performed separately
(actually the values if the operations were in the order: first processor 1, then
processor 2 and then processor 3).

8.5 Overlapping connectivity networks

In this section we will introduce a class of networks called overlapping connectivity
networks (Wilkinson, 1989). These networks have the characteristic that each
processor can connect directly to a group of memory modules and processors, and to
other groups through intermediate processors. Adjacent interconnection groups include
some of the same memories and processors. The networks are attractive, especially for
a very large number of processors which cannot be provided with full connectivity but
need to operate with simultaneous requests to locally shared memory or by communica-
tion between processors. Applications for cascaded/overlapping connectivity networks
include image processing, neural computers and dataflow computers.

276 Shared memory multiprocessor systems
8.5.1 Overlapping cross-bar switch networks

Two forms of an overlapping connectivity “rhombic” cross-bar switch scheme are
shown in Figure 8.18. In Figure 8.18(a) each memory module has two ports, and
processors can access whichever side the processor buses connect. The buses form
rings by connecting one edge in the figure to the opposite edge, and the scheme
expands to any size. With four buses, as shown in the figure, processor P; can
connect to memory modules M, ;,.- M, ,, M, |, M;, M,,;, M, ,, M, ; and M, , using
one of the two ports on each memory, for all i where M, is the memory to the
immediate left of processor P,. Hence, each processor has an overlapping range of
eight memory modules. In the general case of b vertical and b horizontal buses in
each group, processor P, can connect to memory modules, M,_,,, ~ M, ,, M;, M,
M,,,, i.e. 2b memory modules. Connections from processor to memory modules are

Processors
Pi-4 Pi-3 Pi-2 Pi-1 Pi Pi+1 Pi+2 Pi+3 Pi+4 Pi+5 Pi+6

ODooDoOoO00Dooo
Mi-2 Mi+2 Mi+6
() D {0
Mi-1 Mi+3
m m
J J
Mi Mi+4 Buses
o m
I
Mi-3 Mi+1 Mi+5
____D m m
Memory modules

Mi-3 Mi-2 Mi-1 Mi Mi+1 Mi+2 Mi+3 Mi+4 Mi+5 Mi+6 Mi+7

D000 O000000

Pi-2 Pi+2 Pi+6
M -
LJ U
Pi—1 Pi+3
L | g |
u Ly
Pi Pi+4 Buses
—LJ Ll
Pi-3 Pi+1 Pi+5
- {1
1J 1

Figure 8.18 Cross-bar switch with overlapping connectivity (a) With two—port
memory (b) With two—port processors

Interconnection networks 277

made with one cross-bar switch. Since two memories are accessed via each bus,
there will be bus contention as well as memory contention. The bus contention
could be removed by providing separate buses for the memory modules to the right
and left of processors, but this would double the number of switches and buses. We
shall assume only one bus providing access to two memory modules and separate
memory addresses used to differentiate between the memory modules.

Let the total number of processors and memory modules in the system be P and M
respectively, and the number of processors and memory modules in each section be
p and m respectively. Then, Mb switches are needed in the cascaded networks
compared to MP in a cross-bar switch (M2 in a square switch).

In Figure 8.18(b), single port memory modules are used, together with processors
having access to two buses. With four buses, as shown in the figure, all processors
can connect to four memory modules on each side of the processor, or to 2 memory
modules when there are b buses. There are 2b—2 memory modules common to two
adjacent sets of reachable elements, as in Figure 8.18(a). Note that not all requests
can be honored because the corresponding bus may be used to honor another request
to a different memory module, i.e. the system has bus contention because two
processors share each bus. The bus arbitration might operate by memory module
arbiters independently choosing a request from those pending, and when two requests
which require the same bus are chosen, only one is accepted. Ideally, the arbitration
circuitry should consider all requests pending before making any selection of
requests, so that alternative selections can be made to avoid bus contention when
possible.

Bandwidth

The bandwidth of the networks in Figure 8.18 with one stage (i.e. a single stage
“rhombic” cross-bar switch network with circular bus connections), can be derived
in a similar fashion to a full cross-bar switch network and leads to:

BW = M(1 - (1 - r/m)m)

where M is the total number of memory modules, m is the number of memory
modules reached by each processor, and there are the same number of processors as
memories. Figure 8.19 shows the bandwidth function plotted against a range of
requests for a single stage network, and simulation results when rejected requests
are resubmitted until satisfied.

The bandwidth of the unidirectional cascaded rhombic cross-bar network can be
derived by deducing the probability that a request has been issued for a memory in
an immediate group, r,, say, and by substituting r,, for r in the previous equation.
Suppose that each processor generates an output request from either an internal
program queue or from an input buffer holding requests passed on from adjacent
processors, and that the program queue has priority over the input buffer. As a first
approximation, we can consider the program queue from the nearest processor, and
then if no program requests present, the program queue from the next processor in

278 Shared memory multiprocessor systems

64
p=m=64

48
= SN r=1.0
g 32
ES
2 TN - —r=05
o

161~

= == r=0.1
1 1 I J
0 16 32 48 64
Range

Figure 8.19 Bandwidth of single stage rhombic cross-bar network (-—- analysis, —
simulation)

the previous cycle is passed forward, then the next processor in the cycle before.
This leads to:

rp=rlg+ A —-nrrig+ 1 -r?rig-(1-r)rlg
=(1-(-r%lg

and hence:
BW =M1 - (1 - (1 -r)¥)/gm)™

where requests from each processor extend over g groups of memories. This
equation ignores queueirnig, but has been found to compare reasonably well with
simulation results of the network. Figures 8.20(a) and (b) show the bandwidth of the
cascaded network against range and against number of buses respectively. Simulation
results are also shown.

The overlapping connectivity cross-bar switch network can be expanded into two or
higher dimensional networks. A two-dimensional network is shown in Figure 8.21.
The processors (or processing elements) are identified by the tuple (i,j) along the
two diagonals. Each processor in Figure 8.21 can reach twelve other processors with
an overlapping connectivity. P, can reach P, , P;; \, Py, s Py s Py s Piy s
P,-HJ, Pi+2j’ Pi_u”, P,._IJ.“, PiJ+l’ Pi+1j+1’ via horizontal and vertical buses. The
scheme can be expanded to provide more processors within each group. In the
general case, if each bus has ¢ switching elements, 4c+4 processors can be reached

Interconnection networks 279

£
3
S
°
c
3]
m
g /// == ==r=05
- g
m /
18- 7
/7
/7
”, r=01
] |] J
0 16 32 48 64
Range

Figure 8.20 Bandwidth of cascaded rhombic cross-bar network (— simulation,
———analysis) (a) Bandwidth against range of requests
(b) Bandwidth against number of buses

by any processor (with edges wrapping round). The switch points could be three-
state switches providing left, right and cross-over paths. However, two-state switches
providing cross-over and either right or left turn are sufficient. By always crossing

over or making one a right turn (say), a path will be established between two
Processors.

8.5.2 Overlapping multiple bus networks

Figure 8.22 shows two overlapping bus configurations. In Figure 8.22(a) there are
four buses with four processors connecting to the buses. As in all multiple bus
systems, two connections need to be made for each path. Under these circumstances,
with four buses, processor P; can connect to a group of processing elements to the

280 Shared memory multiprocessor systems

Pﬂ+1[+1 |
L
o

0
&
|

Lo

h
L
M
¥ RS
J_L L
L= >
Y
{1
]___
mM
|.|.r

1

M
| Iy

1

T

i i

Coordinates:

Figure 8.21 Two-dimensional scheme with overlapping connectivity

immediate left, P,_;, P, , and P,_;, and to the immediate right, P,,,, P,., and P, ,, for
all i. P,_, can be reached through one bus, P;_, can be reached through two buses, P,_,
through three buses, P, , through three buses, P, , through two buses and P, ;
through one bus, for all i. As the processor to be reached is further away, there are
fewer buses available and consequently less likelihood of reaching the processor. In
the general case, processor P, can connect to processors P,_, ., P, |, P, , =P, , or
2(b-1) other processors. There are b — 1 buses available to connect processors P,_,
and P,, and a linearly decreasing number of buses for more distant processors,
which is an appropriate characteristic. The scheme as described is appropriate to
interconnect processors with local memory. Global memory could be incorporated
into the interconnection network by replacing some processors with memory modules.

An overlapping connectivity multiple bus scherne with fewer buses than elements in
each group and both processors and memory modules is presented in Figure 8.22(b).
The processors are fully connected to the buses and the memory is partially connected
to the buses. (Memory modules fully connected and processors partially connected is
also possible.) Since each group of memory modules connect to two adjacent sets of
buses, these modules can be shared between adjacent groups of processors. The

Interconnection networks 281

Processors
Pi-5 Pi—4 Pi-3 Pi-2 Pi-1 Pi Pi+1 Pi+2 Pi+3 Pi+4 Pi+5

mgmmgmmmmmm

——
Buses
———
(a) With processors
Memory modules Processors Memory modules
- -

N0 0000 0000 o0
g

Buses

H

Figure 8.22 Multiple bus scheme with overlapping connectivity
(@) With processors (b) With processors and memory modules

(b) With processors and memory modules

scheme can be considered as composed of a number of rhombic cross-bar switches,
cascaded together, similar to Lang’s simplification (Section 8.1). A suitable thombic
configuration would be eight processors completely connected to eight buses and
sixteen memory modules connecting to the buses in a rhombic pattern.

In Figure 8.22(b), the memory modules form the Lang rhombic pattern but are
divided by processors which are fully connected to the buses. Hence, the same
connectivity is possible between the processors and memory modules on both sides
of the processors (given suitable b and m to satisfy Lang’s conditions). If we ignore
contention arising when requests from adjacent rhombic groups are made to the
same shared memory module, the bandwidth can be derived from the bandwidth of a
fully connected multiple bus system.

282 Shared memory multiprocessor systems

8.6 Static interconnection networks

8.6.1 General

Static interconnection networks are those which allow only direct fixed paths
between two processing elements (nodes). Each path could be unidirectional or
bidirectional. In the following, we will generally assume links capable of bidirectional
transfers when counting the number of links. The number of links would, of course,
be double if separate links were needed for each direction of transfer. Static inter-
connection networks would be particularly suitable for regular processor—processor
interconnections, i.e. in which all the nodes are processors and processors could
process incoming data or pass the data on to other processors. We will find that static
networks are used in multiple processor VLSI structures described in Chapter 9.

In general, the number of links in a static interconnection network when each
element has the same number of links is given by (number of nodes)x(number of
links of a node)/2, the factor of 1/2 due to each path being used in two nodes.

8.6.2 Exhaustive static interconnections

In exhaustive or completely connected networks, all nodes have paths to every other
node. Hence n nodes could be exhaustively interconnected with n — 1 paths from each
node to the other n — 1 node. There are n(n — 1)/2 paths in all. If each direction of
transfer involves a separate path, there are n(n — 1) paths. Exhaustive interconnection
has application for small n. For example, a set of four microprocessors could
reasonably be exhaustively interconnected using three parallel or serial ports attached
to each microprocessor. All four processors could send information simultaneously
to other processors without contention. The absence of contention makes static
exhaustive interconnections particularly attractive, when compared to the non-
exhaustive shared path connection schemes to be described. However, as n increases,
the number of interconnections clearly becomes impractical for economic and
engineering reasons.

8.6.3 Limited static interconnections

Interconnections could be limited to, say, a group of the neighboring nodes; there
are numerous possibilities. Here we will give some common examples.

Linear array and ring structures

A one-dimensional linear array has connections limited to the nearest two neighbors
and can be formed into a ring structure by connecting the free ends as shown in
Figure 8.23. The interconnection might be unidirectional, in which case the former
creates a linear pipeline structure; alternatively the links might be bidirectional. In

Interconnection networks 283

either case, such arrays might be applicable to certain computations. Each node
requires two links, one to each neighboring node, and hence an n node array
requires n links. In the chordal ring network, shown in dotted lines, each node
connects to its neighbors as in the ring, but also to one node three nodes apart.
There are now three links on each node and 3n/2 paths.in all.

Two-dimensional arrays
A two-dimensional array or near-neighbor mesh can be created by having each node
in a two-dimensional array connect to all its four nearest neighbors, as shown in
Figure 8.24. The free ends might circulate back to the opposite sides. Now each
node has four links and there are 2n links in all. This particular network was used in
the Iliac IV computer with an 8 x 8 array, and is popular with VLSI structure
because of the ease of layout and expandability.

The two-dimensional array can be given extra diagonal links. For example, one,
two, three or all four diagonal links can be put in place, allowing connections to
diagonally adjacent nodes. Each node has eight links and the network has 4n links.

Ring

o0

Chordal ring

Figure 8.23 Linear array

Links Processing
| 1 | elements

Figure 8.24 Two-dimensional array

284 Shared memory multiprocessor systems

In Figure 8.25, each node has six links and there are 3r links in the network. This
network is also called a systolic array, as it can be used in systolic multiprocessors.

Star network

The star connection has one node into which all other nodes connect. There are n — 1
links in all, i.e. the number of links grows proportional to n, which is generally the
best one could hope for, and any two nodes can be reached in two paths. However, the
central node must pass on all transfers to required destinations and substantial
contention or bottleneck might occur in high traffic. Also, should the central node
fail, the whole system would fail. This might be the case in other networks if
additional mechanisms were not incorporated into the system to route around faulty
nodes but, given alternative routes, fault tolerance should be possible. Duplicated
star networks would give additional routes.

Tree networks

The binary tree network is shown in Figure 8.26. Apart from the root node, each
node has three links and the network fans out from the root node. At the first level
below the root node there are two nodes. At the next level there are four nodes, and
at the jth level below the root node there are 2/-! nodes (counting the root node as
level 0). The number of nodes in the system down to the jth level is:

n=N@{=1+2+2%+23-2"1

_ 2-1)
TRe-1
=2-1
Processing elements
Links
| L LY
I | |
™~ N |1
| YT T
| I~ | N -
I ™~ LT |
A N

Figure 8.25 Hexagonal configuration

Interconnection networks 285

Root

Links Processing elements

/
ARVAVARNA

Figure 8.26 Tree structure

and the number of levels j + 1 = log,(n + 1) + 1. This network requires n — 1 links.
(The easiest way to prove this expression is to note that every additional node
except the root node adds one link.)

The tree network need not be based upon the base two. In an m-ary tree, each
node connects to m nodes beneath it and one from above. The number of nodes in
this system down to the jth level is:

n=N@=1+m+m?2+m? - m!

_(m-1)
T (m-1)

and the number of levels j + 1 = log,(n+1) + 1. Again, the network requires n — 1
links, but fewer intermediate nodes are needed to connect nodes as the value of m is
increased.

The binary and general m-ary tree networks are somewhat similar to the star
network in terms of routing through combining nodes. The root node is needed to
route from one side of the tree to the other. Intermediate nodes are needed to route
between nodes which are not directly connected. This usually means travelling from
the source node up the tree until a common node in both paths from the route node
is reached and then down to the destination node.

The networks so far described are generally regular in that the structure is
symmetrical. In irregular networks, the symmetry is lost in either the horizontal or
vertical directions, or in both directions. An irregular network can be formed, for
example, by removing existing links from a regular network or inserting extra links.
The binary tree network is only regular if all nodal sites are occupied, i.e. the tree
has 1 node, 3 nodes, 7 nodes, 15 nodes, 31 nodes, etc.

286 Shared memory multiprocessor systems

Hypertree networks

In the hypertree network (Goodman and Séquin, 1981) specific additional links are
put in place directly between nodes to reduce the “average distance” between nodes.
(The average distance is the average number of links that must be used to connect
two nodes, see page 287.) Each node is given a binary address starting at the root
node as node 1, the two nodes below it as nodes 2 and 3, with nodes 4,5,6 and 7
immediately below nodes 2 and 3. Node 2 connects to nodes 4 and 5. Node 3
connects to nodes 6 and 7, and so on. The additional links of the hypertree connect
nodes whose binary addresses differ by only one bit (a Hamming distant of one).
Notice that the hypertree network is not regular.

Cube networks
In the 3-cube network, each node connects to its neighbors in three dimensions, as
shown in Figure 8.27. Each node can be assigned an address which differs from
adjacent nodes by one bit. This characteristic can be extended for higher dimension -
cubes, with each node connecting to all nodes whose addresses differ in one bit position
for each dimension. For example, in a 5-cube, node number 11101 connects to 11100,
11111, 11001, 10101 and 01101. The number of bits in the nodal address is the same as
the number of dimensions. N-cube structures, particularly higher dimensional n-cubes,
are commonly called hypercube networks. The generalized hypercube (Bhuyan and
Agrawal, 1984) can use nodal address radices other than 2, but still uses the
characteristic that addresses of interconnected nodes differ in each digit position. The
(binary) hypercube is an important interconnection network; it has been shown to be
suitable for a very wide range of applications. Meshes can be embedded into a
hypercube by numbering the edges of the mesh in Gray code. In Chapter 9, we will
describe message-passing multiprocessor systems using hypercube networks.
Numerous other networks have been proposed, though in most cases they have
not been used to a significant extent. In the cube connected cycles network, 2% nodes
divided into 25T x 2T nodes are connected such that 2* nodes form a group at the
vertices of a (2¥7)-cube network. Each group of 2T nodes is connected in a loop,

Figure 8.27 Three-dimensional hypercube

Interconnection networks 287

with one connected to each of the two neighboring nodes and also one link to a
corresponding node in another dimension.

Though we have described direct link static networks in terms of communicating
nodes, some networks could be used for shared memory systems. For example, the
nodes in the network could contain shared memory which can be reached by
processors in other nodes using the links that operate as buses. A possibility is to
have multiple buses which can extend through to other nodes. This can, for
example, lead to an overlapping connectivity mesh network. In a spanning bus
hypercube network, each node connects to one bus in each dimension of the
network. For a two-dimensional network, nodes connect to two buses or two sets of
buses that stretch in each of the two dimensions. For a three-dimensional network,
each node connects to three buses.

8.6.4 Evaluation of static networks

Clearly, there are numerous variations in limited interconnections, some of which
suit particular computations. With limited interconnections, some transfers will
require data to pass through intermediate nodes to reach the destination node.
Whatever the limited connection network devised, there must be a means of locating
the shortest route from the source to the destination. A routing algorithm which is
easy and fast to implement is preferable.

Request paths

A critical factor in evaluating any interconnection network is the number of links
between two nodes. The number of intermediate nodes/links is of interest because
this gives the overall delay and the collision potential. The average distance is
defined as (Agrawal et al., 1986):

Max
Average distance = 2 dN,
a=0
N-1

where N, is the number of nodes separated by d links. Max is the maximum distance
necessary to interconnect two nodes (not the maximum distance as this would be
infinity) and N is the number of nodes. For any particular network, interconnection
paths for all combinations of nodal connections would need to be computed, which
is not always an easy task. Notice that the average distance formulae may not be the
actual average distance in an application.

Number of links
Another factor of interest is the number of links emanating from each node, as this
gives the node complexity. The number of links is usually fairly obvious from the

288 Shared memory multiprocessor systems

network definition. With an increased number of links, the average distance is
shorter; the two are interrelated. A normalized average distance is defined as:

Normalized average distance = average distance x links/node

which gives an indication of network performance taking into account its complexity.
The message density has been defined as:

Average distance x number of nodes

Message density = Total number of links

In a limited static interconnection network, distant nodes can be reached by passing
requests from a source node (processor) through intermediate nodes (called
“levels”). Links to four neighbour reach 4(2i-1) nodes at the ith level from the
node. For hexagonal groups (Figure 8.25), there are 6i nodes at the ith level, i.e. the
number of nodes at each level increases proportionally, and the number of nodes
that can be reached, n, is given by:

L
n= 2 6i = 3L(L+1)
i=1

where L is the number of levels. In the hexagonal configuration, every node at each
level can be reached by one path from the previous level (this is not true for the
square configuration). The average number of levels to reach a node, and hence the
average number of requests in the system for each initial nodal request, is given by:

L
av = 2 (6i2)/n

i=1

To place an upper bound on the number of simultaneous requests in the system,
requests from one processor to another can be passed on through a fixed number of
nodes.

Bandwidth of static networks
We have seen that the performance of dynamic networks is often characterized by their
bandwidth and also probability of acceptance. The bandwidth and the probability of
acceptance metric can be carried over to static networks, though this is rarely done. One
example of a direct binary n-cube (hypercube) is given in (Abraham and Padmanabhan
(1989). We can make the following general analysis for any static network.

Suppose that each node has input requests and can generate output requests either
by passing input requests onwards or from some internal program (internal

Interconnection networks 289

requests). Let the probability that a node can generate an internal request for another
node be r. The requested node might be one directly connected to it or it might be
one which can be reached through intermediate nodes. In the latter case, the request
must be presented to the intermediate nodes as external requests, but these nodes
might also have internally generated requests and only one request can be generated
from a node, irrespective of how many requests are present. There could be at most
one internal request and as many external requests as there are links into the node.
Let r_,, be the probability that a node generates a request (either internally or passes
on an external request) and r;, be the probability that a node receives an external
request. Some external requests will be for the node and only a percentage, say A,
will be passed onwards to another node. Incorporating A, we get:

Fow =1 +Ar (1 -r)
and the bandwidth given by:
BW=(1-A)y, N

where there are N nodes. The value for A will depend upon the network.

The probability that an external request is received by node i from a node j will
depend upon the number of nodes that node j can request, i.e. the number of nodes
connected directly to node j, and the probability is given by r_,/n, where n nodes
connect directly to node j and all links are used. We shall assume that all nodes have
the same number of links to other nodes and, for now, all are used. The probability
that node j has not requested node i is given by (1 — r_ /n). The probability that no
node has requested node i is given by (1 — r_,/n)". The probability that node i has
one or more external requests at its inputs is given by:

rin =1- (1 - rout/n)n

The probability that a node generates a request in terms of the probability of an
internal request and the number of nodes directly connected (and communicating) to
the node is given by:

rou=r+AQ - -1 -r /MM

which is a recursive formula which converges by repeated application. A suitable
initial value for r_, is r, r_,, being some value in excess of r.

The derivation assumes that an external request from node j to node i could be
sent through node i and back to node j, which generally does not occur, i.e. an
external request passing through node i can only be sent to n—1 nodes at most, and
more likely only to nodes at the next level in the sphere of influence (up to two
nodes in the hexagonal configuration) whereas internal requests will generally have
an equal probability of requesting any of the nodes connected.

290 Shared memory multiprocessor systems
PROBLEMS

8.1 Suggest relative advantages of the cross-bar switch system with
central control and the cross-bar switch system without central control.

8.2 Design a 16 x 16 cross-bar switch multiprocessor system using
microprocessors (any type) for the master—slave mode of operation. Give
details at the block diagram level of the major components.

8.3 Repeat the design in Problem 8.2 for a system without central
control.

8.4 Derive an expression for the probability that i requests are made for
a particular memory, given that the probability that a request made by
one processor is and there are m memories. (Clue: look at the Bernouli
formula.) Using this expression, derive the general expression for the
bandwidth of a p X m cross-bar switch system.

8.5 Derive an expression for the bandwidth of a cross-bar switch system,
given that each processor has an equal probability of making a request
for any memory or of not making a request at all.

8.6 Design an 8-bus multiple bus multiprocessor system using micro-
processors (any type) for a system without a master processor. Give
details at the block diagram level of the major components.

8.7 Suggest how a multiple bus system could be designed for a master—
slave operation. Are there any advantages of such systems?

8.8 Derive an expression for a multiple bus system in which the bus
arbitration is performed before the memory arbitration. Show that this
arrangement leads to a lower bandwidth than the normal method of
having memory arbitration before the bus arbitration.

8.9 Figure 8.28 shows a combined cross-bar switch/shared bus system
without central control. There are P processors and M memory modules
in the system with p processors sharing each horizontal bus. Show that
the bandwidth of the system is given by:

BW=M(1 - [1 - ;lr)P P/P)

Interconnection networks 291

Memory modules
M, Mu
Processors D “““ = EJ

Figure 8.28 System for Problem 8.9

8.10 Design a non-blocking Clos network for sixty-four processors and
sixty-four memories.

8.11 Identify relative advantages of multistage networks and single
stage networks.

8.12 Ascertain all input/output combinations in an 8 x 8 single stage
recirculating shuffle exchange network which require the maximum
number of passes through the network.

8.13 How many stages of a multistage Omega network are necessary to
interconnect 900 processors and 800 memories? What is the bandwidth
when the request rate is 40 per cent? Make a comparison with a single
stage cross-bar switch network.

8.14 Design the logic necessary with each cell in an 8 x 8 Omega
network for self-routing.

8.15 Determine whether it is possible to connect input i to output i in an
8 x 8 Omega network for all i simultaneously.

8.16 Show that a three-stage indirect binary n-cube network and a three-
stage Omega network are functionally equivalent.

8.17 Illustrate the flow of information in a three-stage multistage network
with fetch-and-add operations, given that four processors execute the
following:

292 Shared memory multiprocessor systems

Processor 1 f-&-a 120,9
Processor 2 f-&-a 120,8
Processor 3 f-&-a 120,7
Processor 4 f-&-a 120,6

.8.18 Derive the average distance between two nodes in a three-
dimensional hypercube.

8.19 Demonstrate how each of the following structures can be imple-
mented on a hypercube network:

1. Binary tree structure.
2. Mesh network.

8.20 Derive an expression for the number of nodes that can be reached
in a north—south—east—west nearest neighbor mesh network at the Lth
level from the node.

PART

| 1] | Multiprocessor
systems without
shared memory

CHAPTER
Message-passing
multiprocessor
systems

This chapter concentrates upon the design of multiprocessor systems which do not
use global memory; instead each processor has local memory and will communicate
with other processors via messages, usually through direct links between processors.
Such systems are called message-passing multiprocessors and are particularly suit-
able when there is a large number of processors.

9.1 General

9.1.1 Architecture

The shared memory multiprocessors described in the previous chapters have some
distinct disadvantages, notably:

1. They do not easily expand to accommodate large numbers of processors.
2. Synchronization techniques are necessary to control access to shared variables.
3. Memory contention can significantly reduce the speed of the system.

Other difficulties can arise in shared memory systems. For example, data coherence
must be maintained between caches holding shared variables. Shared memory is,
however, a natural extension of a single processor system. Code and data can be
placed in the shared memory to be accessed by individual processors.

One alternative multiprocessor system to the shared memory system, which
totally eliminates the problems cited, is to have only local memory and remove all
shared memory from the system. Code for each processor is loaded into the local
memory and any required data is stored locally. Programs are still partitioned into
separate parts, as in a shared memory system, and these parts are executed concurrently
by individual processors. When processors need to access information from other
processors, or to send information to other processors, they communicate by sending
messages, usually along direct communication links. Data words are not stored

295

296 Multiprocessor systems without shared memory

globally in the system; if more than one processor requires the data, it must be
duplicated and sent to all requesting processors.

The basic architecture of the message-passing multiprocessor system is shown in
Figure 9.1. The message-passing multiprocessor consists of nodes, which are normally
connected by direct links to a few other nodes. Each node consists of an instruction
processor with local memory and input/output communication channels. The system
is usually controlled by a host computer, which loads the local memories and
accepts results from the nodes. For communication purposes, the host can be
considered simply as another node, though the communication between the instruction
processor nodes and the host will be slower if it uses a single globally shared
channel (for example an Ethernet channel). There are no global memory locations.
The local memory of each nodal processor can only be accessed by that processor
and the local memory addresses only refer to the specific local memory. Each local
memory may use the same addresses. Since each node is a self-contained computer,
message-passing multiprocessors are sometimes called message-passing multi-
computers.

The number of nodes could be as small as sixteen (or less), or as large as several
thousand (or more). However, the message-passing architecture gains its greatest
advantage over shared memory systems for large numbers of processors. For small
multiprocessor systems, the shared memory system probably has better performance
and greater flexibility. The number of physical links between nodes is usually
between four and eight. A principal advantage of the message-passing architecture
is that it is readily scalable and has low cost for large systems. It suits VLSI
construction, with one or more nodes fabricated on one chip, or a few chips,
depending upon the amount of local memory provided.

Each node executes one or more processes. A process often consists of sequential

Node Node
Local Local
Processor memory Processor memory

Input/output Input/output

Communication
links

Communication
links
F———

[——————-

Figure 9.1 Message-passing multiprocessor architecture

Message-passing multiprocessor systems 297

code, as would be found on a normal von Neumann computer. If there is more than
one process mapped onto one nodal processor, one process is executed at a time. A
process may be descheduled when it is waiting for messages to be sent or received,
and in the meantime another process started. Messages can be passed between
processes on one processor using internal channels. Messages between processes in
different processors are passed through external channels using physical com-
munication links between processors. We will use the term link to refer to a physical
communication path between a pair of processors. Channel refers to a named
communication path either between processes in one processor or between processes
on different processors.

Ideally, the process and the processor which will execute the process are regarded
as completely separate entities, even at this level. The application problem is
described as a set of communicating processes which is then mapped onto the
physical structure of processors. A knowledge of the physical structure and composi-
tion of the nodes is necessary to plan an efficient computation.

The size of a process is determined by the programmer and can be described by
its granularity:

1. Coarse granularity.
2. Medium granularity.
3. Fine granularity.

In coarse granularity, each process contains a large number of sequential instruc-
tions and takes a substantial time to execute. In fine granularity, a process might
consist of a few instructions, even one instruction; medium granularity describes the
middle ground. As the granularity is reduced, the process communication overhead
usually increases. It is particularly desirable to reduce the communication overhead
because of the significant time taken by a nodal communication. Message-passing
multiprocessors usually employ medium/coarse granularity; fine granularity is poss-
ible and is found in dataflow systems. (Dataflow is described in Chapter 10). A fine
grain message-passing system has been developed by Athas and Seitz (1988) after
pioneering work by Seitz on medium grain message-passing designs, which will be
described later. For fine grain computing, the overhead of message passing can be
reduced by mapping several processes onto one node and switching from one
process to another when a process is held up by message passing. The process
granularity is sometimes related to the amount of memory provided at each node.
Medium granularity may require megabytes of local memory whereas fine granularity
may require tens of kilobytes of local memory. Fine grain systems may have a much
larger number of nodes than medium grain systems.

Process scheduling is usually reactive — processes are allowed to proceed until
halted by message communication. Then the process is descheduled and another
process is executed, i.e. processes are message-driven in their execution. Processes
do not commonly migrate from one node to another at run time; they will be
assigned to particular nodes statically before the program is executed. The

298 Multiprocessor systems without shared memory

programmer makes the selection of nodes. A disadvantage of static assignment is
that the proper load sharing, in which work is fairly distributed among available
processors, may be unclear before the programs are executed. Consideration has to
be given to spreading code/data across available local memory given limited local
memory.

Each node in a message-passing system typically has a copy of an operating
system kernel held in read-only memory. This will schedule processes within a node
and perform the message-passing operations at run time. The message-passing
routing operations should have hardware support, and should preferably be done
completely in hardware. Hardware support for scheduling operations is also desirable.
The whole system would normally be controlled by a host computer system.

However, there are disadvantages to message-passing multiprocessors. Code and
data have to be physically transferred to the local memory of each node prior to
execution, and this action can constitute a significant overhead. Similarly, results
need to be transferred from nodes to the host system. Clearly the computation to be
performed needs to be reasonably long to lessen the loading overhead. Similarly, the
application program should be computational intensive, not input/output or message-
passing intensive. Code cannot be shared. If processes are to execute the same code,
which often happens, the code has to be replicated in each node and sufficient local
memory has to be provided for this purpose. Data words are difficult to share; the
data would need to be passed to all requesting nodes, which would give problems of
incoherence. Message-passing architectures are generally less flexible than shared
memory architectures. For example, shared memory multiprocessors could emulate
message passing by using shared locations to hold messages, whereas message-
passing multiprocessors are very inefficient in emulating shared memory multi-
processor operations. Both shared memory and message-passing architectures could
in theory perform single instruction stream-multiple data stream (SIMD) computing,
though the message-passing architecture would be least suitable and would normally
be limited to multiple instruction stream~multiple data stream (MIMD) computing.

9.1.2 Communication paths

Regular static direct link networks, which give local or nearest neighbor connections
(as described in Section 8.6, page 283), are generally used for large message-passing
systems, rather than indirect dynamic multistage networks. Some small dedicated or
embedded applications might use direct links to certain nodes chosen to suit the
message transfers of the application. Routing a message to a destination not directly
connected requires the message to be routed through intermediate nodes.

A network which has received particular attention for message-passing multi-
processors is the direct binary hypercube, described in Section 8.6.3 (page 286). The
direct binary hypercube network has good interconnection patterns suitable for a
wide range of applications, and expands reasonably well. The interconnection
pattern for binary hypercubes is defined by giving each node a binary address. Each

Message-passing multiprocessor systems 299

node connects to those nodes whose binary addresses differ by one bit only. Hence
each node in an n-dimensional hypercube requires n links to other nodes. A
six-dimensional hypercube is shown in Figure 9.2 laid out in one plane. Hyper-
cube connections could be made in one backplane, as shown in Figure 9.3 for a

Figure 9.2 Six-dimensional hypercube laid out in one plane

o[l o=l o=l ml

000} jo01] Jo10o jo11] [100f [1o1] J110] 111

Figure 9.3 Three-dimensional hypercube (a) Interconnection pattern
(b) Laid out in one plane (c) Connections along a backplane

300 Multiprocessor systems without shared memory

three-dimensional hypercube. Nearest neighbor two-dimensional mesh networks are
also candidates for message-passing systems, especially large systems.

The nodal links are bidirectional. The links could transfer the information one bit
at a time (bit-serial) or several bits at a time. Complete words could be transmitted
simultaneously. However, bit-serial lines are often used, especially in large systems,
to reduce the number of lines in each link. For coarse grain computations, message
passing should be infrequent and the bit-serial transmission may have sufficient
bandwidth. The network latency, the time to complete a message transfer, has two
components; first there is a path set-up time, which is proportional to the number of
nodes in the path; second is the actual transmission time, which is proportional to
the size of the message for a fixed link bandwidth. The link bandwidth should be
about the same as memory bandwidth; a greater bandwidth cannot be utilized by the
node. Since the message data can be more than one word, the links require DMA
(direct memory access) capabilities.

Each process is given an identification number (process ID) which is used in the
message-passing scheme. Message passing can use a similar format to computer
network message passing. For example, messages consist of a header and the data;
Figure 9.4 shows the format of a message. Because more than one process might be
mapped onto a node, the process ID has two parts, one part identifying the node and
one part the process within the node. The nodal part (physical address) of the ID is
used to route the message to the destination node. The message type enables
different messages along the same link to be identified.

Header > Data
Destination Sender
Process Process | Message | Message
Node "jp | Nede Tpp type | length | ===~ =""=

Figure 9.4 Message format

Messages may need to pass through intermediate nodes to reach their destination.
Queues inside the nodes are used to hold pending messages not yet accepted.
However, the messages may be blocked from proceeding by previous messages not
being accepted, and would then become queued, until the queues become full and
eventually the blockage would extend back to the source process. The order in
which messages are sent to a particular process should normally be maintained, even
when messages are allowed to take different routes to the destination. Of course,
constraining the route to be the same for all messages between two processes
simplifies maintaining message order.

Messages can be routed in hypercube networks according to the following
algorithm, which minimizes the path distance. Suppose the current nodal address is
P=p, ,pP,, PPyand the destination addressis D=d,_,d,_, - d,d,. The exclusive-OR
function R = P® D is performed operating on pairs of bits, to obtainR=r__;r _, 11,

Message-passing multiprocessor systems 301

Let 1; be the ith bit of R. The hypercube dimensions to use in the routing are
given by those values of i for which r; = 1. At each node in the path, the exclusive
function R = P® D is performed. One of the.bits in R which is 1, say r;, identifies the
kth dimension to select in passing the message forward until none of the bits are 1,
and then the destination node has been found. The bits of R are usually scanned
from most significant bit to least significant bit until a 1 is found. For example,
suppose routing from node 5 (000101) to node 34 (100010) is sought in a six-
dimensional hypercube. The route taken would be node 5 (000101) to node 21
(100101) to node 17 (100001) to node 19 (100011) to node 34 (100010). This
hypercube routing algorithm is sometimes called the e-cube routing algorithm, or
left-to-right routing.

Deadlock is a potential problem. Deadlock occurs when messages cannot be
forwarded to the next node because the message buffers are filled with messages
waiting to be forwarded and these messages are blocked by other messages waiting
to be forwarded. Dally and Seitz (1987) developed the following solution to
deadlock.

The interconnections of processing nodes can be shown by a directed graph,
called an interconnection graph, depicting the communication paths. A channel
dependency graph is a directed graph showing the route taken by a message for a
particular routing function. In the channel dependency graph, the channels are
depicted by the vertices of the graph and the connections of channels are depicted
by the edges. A network is deadlock-free if there are no cycles in the channel
dependency graph. Given a set of nodes ny, n, -~ n,_; n, and corresponding channels
Cp» €; ™ €,1 C, there are no cycles if messages are routed in decreasing order
(subscript) of channel. Dally and Seitz introduced the concept of virtual channels.
Each channel, c,, is split into two channels, a low channel, c(,, and a high channel,
¢, For example, with four channels, ¢, c,, ¢, and c;, we have the low virtual
channels, ¢y, Cg;, Cgp, and Cy3, and the high channels ¢y, ¢, ¢}, and c3. If a
message is routed on high channels from a node numbered less than the destination
node and to low channels from a node numbered greater than the destination node,
there are no cycles and hence no deadlock.

Routing messages according to a decreasing order of dimension in a hypercube
(left-to-right routing) is naturally deadlock-free as it satisfies the conditions without
virtual channels.

9.2 Programming

9.2.1 Message-passing constructs and routines

Message-passing multiprocessor systems can be programmed in conventional sequen-
tial programming languages such as FORTRAN, PASCAL, or C, augmented with
mechanisms for passing messages between processes. In this case, message-passing

302 Multiprocessor systems without shared memory

is usually implemented using external procedure calls or routines, though statement
extensions could be made to the language. Alternatively, special programming
languages can be developed which enable the message passing to be expressed.
Message-passing programming is not limited to message-passing architectures or
even multiprocessor systems; it is done on single processor systems, for example
between UNIX processes, and many high level languages for concurrent programming
have forms of message passing (see Gehani and McGettrick (1988) for examples).

Message-passing language constructs

Programming with specially developed languages with message-passing facilities is
usually at a much higher level than using standard sequential languages with
message-passing routines. The source and destination processes may only need to be
identified. For example, the construct:

SEND expression_list TO destination_identifier

causes a message containing the values in expression list to be sent to the
destination specified. The construct:

RECEIVE variable_list FROM source identifier

causes a message to be received from the specified source and the values of the
message assigned to the variables in variable list. Sources and destination can
be given direct names. We might, for example, have three processes — keyboard,
process1 and display — communicating via messages:

PROGRAM Comprocess
PROCESS keyboard
VAR key value,ret_code:INTEGER;
REPEAT
BEGIN
read keyboard information
SEND key value TO processl;
END
UNTIL key value = ret code
END
PROCESS processl
VAR key value,ret code,disp value:INTEGER;
REPEAT
BEGIN
RECEIVE key value FROM keyboard;
compute dis_value from key_value
SEND disp_value TO display:;
END

Message-passing multiprocessor systems 303

UNTIL key_ value = ret code
END
PROCESS display
VAR ret_code,disp value:INTEGER;
REPEAT
BEGIN
RECEIVE dis_value FROM processl;
display dis_value
END
UNTIL dis_value = ret code
END

It is also possible to have statements causing message-passing operations to occur
under specific conditions, for example the statement:

WHEN Boolean_expression RECEIVE variable list FROM
source identifier

or alternatively, the “guarded” command:

IF Boolean expression RECEIVE variable list FROM
source_identifier

which will accept a message only when/if the Boolean expression is TRUE.

Sequential programming languages with message-passing routines

To send and receive message-passing routines attached to standard sequential pro-
gramming languages may be more laborious in specification and would only
implement the basic message-passing operations. For example, message-passing
send and receive routines with the format:

send (channel ID,type,buffer,buffer length,node,process_ID)
recv (channel ID,type,buffer,buffer length,message byte
count, node, process_1ID)

might be provided for FORTRAN programming. Such routines are usually found on
prototype and early message-passing multiprocessor systems and need further routines
to handle the message memory.

304 Multiprocessor systems without shared memory
9.2.2 Synchronization and process structure
Message-passing send/receive routines can be divided into two types:

1. Synchronous or blocking.
2. Asynchronous or non-blocking.

Synchronous or blocking routines do not allow the process to proceed until the
operation has been completed. Asynchronous or non-blocking routines allow the
process to proceed even though the operation may not have been completed, i.e.
statements after a routine are executed even though the routine may need further
time to complete.

A blocking send routine will wait until the complete message has been transmitted
and accepted by the receiving process. A blocking receive routine will wait until the
message it is expecting is received. A pair of processes, one with a blocking send
operation and one with a matching blocking receive operation, will be synchronized
with neither the source process nor the destination process being able to proceed
until the message has been passed from the source process to the destination
process. Hencz, blocking routines intrinsically perform two actions; they transfer
data and they synchronize processes. The term rendezvous is used to describe the
meeting and synchronization of two processes through blocking send/receive opera-
tions.

A non-blocking message-passing send routine allows a process to continue
immediately after the message has been constructed without waiting for it to be
accepted or even received. A non-blocking receive routine will not wait for the
message and will allow the process to proceed. This is not a common requirement as
the process cannot usually do any more computation until the required message has
been received. It could be used to test for blocking and to schedule another process
while waiting for a message. The non-blocking routines generally decrease the
process execution time. Both blocking and non-blocking variants may be available
for programmer choice in systems that use routines to perform the message passing.

Non-blocking message passing implies that the routines have buffers to hold
messages. In practice, buffers can only be of finite length and a point could be
reached when a non-blocking routine is blocked because all the buffer space has
been exhausted. Memory space needs to be allocated and deallocated and the
messages and routines should be provided for this purpose; the send routine might
automatically deallocate memory space. For low level message passing, it is neces-
sary to provide an additional primitive routine to check whether a message buffer
space is reavailable.

Process structure

The basic programming technique for the system is to divide the problem into
concurrent communicating processes. We can identify two possible methods of
generating processes, namely:

Message-passing multiprocessor systems 305

1. Static process structure.
2. Dynamic process structure.

In the static process structure, the processes are specified before the program is
executed, and the system will execute a fixed number of processes. The programmer
usually explicitly identifies the processes. It might be possible for a compiler to
assist in the creation of concurrent message-passing processes, but this seems to be
an open research problem. In the dynamic process structure, processes can be
created during the execution of the program using process creation constructs;
processes can also be destroyed. Process creation and destruction might be done
conditionally. The number of processes may vary during execution.

Process structure is independent of the message-passing types, and hence we have
the following potential combinations in a language or system:

Synchronous communication with static process structure.
Synchronous communication with dynamic process structure.
Asynchronous communication with static process structure.
Asynchronous communication with dynamic process structure.

Language examples include Ada (having synchronous communication with static
process structure), CSP (having asynchronous communication with static process
structure) and MP (having synchronous communication with dynamic process struc-
ture) (Liskov, Herlihy and Gilbert, 1988). Asynchronous communication with
dynamic process structure is used in message-passing systems using procedure call
additions to standard sequential programming languages (e.g. Intel iPSC, see
Section 9.3.2). The combination is not known together in specially designed lan-
guages, though it would give all possible features. Liskov, Herlihy and Gilbert
suggest that either synchronous communication or static process structure should be
abandoned but suggest that it is reasonable to retain one of them in a language. The
particular advantage of asynchronous communication is that processes need not be
delayed by messages, and static process structure may then be sufficient. Dynamic
process structure can reduce the effects of delays incurred with synchronous com-
munication by giving the facility to create a new process while a communication
delay is in progress. The combination, synchronous communication with dynamic
process structure, seems a good choice.

Program example

Suppose the integral of a function f(x) is required. The integration can be performed
numerically by dividing the area under the curve f(x) into very small sections which
are approximated to rectangles (or trapeziums). Then the area of each section is
computed and added together to obtain the total area. One obvious parallel solution
is to use one process for each area or group of areas, as shown in Figure 9.5. A
single process is shown accepting the results generated by the other processes.

306 Multiprocessor systems without shared memory

// ﬁ\ﬁ _ﬂAKT\\

(x)

Compute
area

Accumulate
results

Processes

Result

Figure 9.5 Integration using message-passing processes

Let the basic blocking message-passing primitives in the system be send(message,
destination_process) and receive(message, source process). With the
integral processes numbered from O to n—1 and the accumulation process numbered
n, we have two basic programs, one for the processes performing the integrals and
one for the process performing the accumulation, i.e.:

Integral process j Accumulation process
PROGRAM Integral PROGRAM Accumulate
VAR area,n:INTEGER; VAR area,i,n,acc:INTEGER;
compute jth area FOR i = 0 TO n-1
send(area,n) BEGIN
END receive (area,i);
acc := acc + area
END

WRITE (’Integral is’,acc)
END

Variables are local and need to be declared in each process. The same names in
different processes refer to different objects. Note that processes are referenced
directly by number. The integral process requires information to compute the areas,
namely the function, the interval size and number of intervals to be computed in
each process. This information is passed to the integral processes perhaps via an

Message-passing multiprocessor systems 307

initiation process prior to the integral processes starting their computation.

The accumulation process could also perform one integration while waiting for
the results to be generated. A single program could be written for all processes
using conditional statements to select the actions a particular process should take,
and this program copied to all processes. This would be particularly advantageous if
there is a global host-node broadcast mode in which all nodes can receive the same
communication simultaneously. In this case, we have:

Composite process

PROGRAM Comprocess
VAR mynode,area,i,n,acc:INTEGER;
read input parameters
identify nodal address, mynode
IF mynode = n THEN
BEGIN
compute nth area
FOR i = 0 TO n-1

BEGIN
receive (area, i);
acc := acc + area
END
WRITE (’'Integral is’,acc)
END
ELSE
BEGIN

compute jth area
send (area,n)
END

END

Various enhancements can be made to improve the performance. For example, since
the last accumulation is in fact a series of steps, it could be divided into groups of
accumulations which are performed on separate processors. The number of areas
computed by each process defines the process granularity and would be chosen to
gain the greatest throughput taking into account the individual integration time and
the communication time. In some cases, reducing the number of nodes involved has
been found to decrease the computation time (see Pase and Larrabee, 1988).
Host—node communication is usually much slower than node—node communication.
If separate transactions need to be performed for each node loaded (i.e. there is no
broadcast mode) the time to load the nodal program could be decreased by arranging
the program to be sent to the first node, which then passes a copy on to the next node
and so on. The most effective method to reduce the communication time is to

308 Multiprocessor systems without shared memory

arrange for each node to transmit its information according to minimal spanning
tree. Results could be collected in a pipeline or tree fashion with the results passed
from one node to the next. Each node adds its contribution before passing the
accumulation onwards. Pipeline structures are useful, especially if the computation
is to be repeated several times, perhaps with different initial values.

9.3 Message-passing system examples

9.3.1 Cosmic Cube

The Cosmic Cube is a research vehicle designed and constructed at Caltech
(California Institute of Technology) under the direction of Seitz during the period
1981-5 (Seitz, 1985; Athas and Seitz, 1988) and is credited with being the first
working hypercube multiprocessor system (Hayes, 1988) though the potential of
hypercubes had been known for many years prior to its development. The Cosmic
Cube significantly influenced subsequent commercial hypercube systems, notably
the Intel iPSC hypercube system. Sixty-four-node and smaller Cosmic Cube systems
have been constructed. The Intel 8086 processor is used as the nodal instruction
processor with an Intel 8087 floating point coprocessor. Each node has 128 Kbytes
of dynamic RAM, chosen as a balance between increasing the memory or increasing
the number of nodes within given cost constraints. The memory has parity checking
but not error correction. (A parity error was reported on the system once every
several days!) Each node has 8 Kbytes of read-only memory to store the initialization
and bootstrap loader programs. The kernel in each node occupies 9 Kbytes of code
and 4 Kbytes of tables. The interconnection links operate in asynchronous full-
duplex mode at a relatively slow rate of 2 Mbits/sec. The basic packet size is sixty-
four bits with queues at each node. Transmission is started with send and receive
calls. These calls can be non-blocking, i.e. the calls return after the request is put in
place. The request becomes “pending” until it can be completed. Hence a program
can continue even though the message request may not have been completed.

The nodal kernel, called the Reactive Kernel, RK, has been divided into an inner
kernel (written in assembly language) and an outer kernel. The inner kernel performs
the send and receive message handling and queues messages. Local communication
between processes in one node and between non-local processes is treated in a
similar fashion, though of course local communication is through memory buffers
and is much faster. The inner kernel also schedules processes in a node using a
round robin selection. Each process executes for a fixed time period or until it is
delayed by a system call. The outer kernel contains a set of processes for com-
munication between user processes using messages. These outer kernel processes
include processes to create, copy and stop processes.

The host run-time system, called the Cosmic Environment, CE, has routines to
establish the set of processes for a computation and other routines for managing the

Message-passing multiprocessor systems 309

whole system. The processes of a computation are called the process group. The
system can be used by more than one user but is not time-shared; each user can
specify the size of a hypercube required using a CE routine and will be allocated a
part of the whole system not used by other users — this method has been called
space-shared. In a similar manner to a virtual memory system, users reference
logical nodal addresses, which have corresponding physical nodal addresses. The
logical nodal addresses for a requested n-cube could be numbered from 0 to n—1.

Dynamic process structure with reactive process scheduling is employed. Pro-
gramming is done in the C language, with support routines provided for both
message passing and for process creation/destruction. The dynamic process creation
function — spawn (parameters) — creates a process consisting of a compiled
program in a node and process, all specified as function parameters. Specifying the
node/process as function parameters rather than letting the operating system make
this choice, enables predefined structures to be built up and allows changes to be
made while the program is being executed. The send routine is xsend (parameters)
where the parameters specify the node/process and a pointer to a message block. The
xsend routine deallocates message space. Other functions available include block-
ing receive message, xrecvb, returning a pointer to the message block, allocating
message memory space, xmalloc, and freeing message space, xfree. Later develop-
ment of the system incorporated higher level message-passing mechanisms and fine
grain programming. Statements such as:

IF i = 10 THEN SEND(i+l1) TO self ELSE EXIT Fi

can be found in programs in the programming environment Cantor (see Athas and
Seitz (1988) for further details).

Seitz introduced wormhole routing (Dally and Seitz, 1987) as an alternative to
normal store-and-forward routing used in distributed computer systems. In store-
and-forward routing, a packet is stored in a node and transmitted as a whole to the
next node when a free path can be established. In wormhole routing, only the head
of the packet is initially transmitted from the input to the output channel of a node.
Subsequent parts of the packet are transmitted when the path is available. The term
flit (flow control bits) has been coined to describe the smallest unit that can be
accepted or blocked in the transmission path. It is necessary to ensure that the flits
are received in the same order that they are transmitted and hence channels need to
be reserved for the flits until the packet has been transmitted. Other packets cannot
be interleaved with the flits along the same channels.

9.3.2 Intel iPSC system

The Intel Personal Supercomputer (iPSC) is a commercial hypercube system
developed after the Cosmic Cube. The iPSC/1 system uses Intel 80286 processors
with 80287 floating point coprocessors. The architecture of each node is shown in

310 Multiprocessor systems without shared memory

Figure 9.6. Each node consists of a single board computer, having two buses, a
processor bus and an input/output bus. The PROM (programmable read-only memory)
has 64 Kbytes and the dual port memory has 512 Kbytes. The nodes are controlled
by a host computer system called a cube manager. The cube manager has 2—4
Mbytes of main memory, Winchester and floppy disk memory, and operates under
the XENIX operating system. As with the Cosmic Cube, each node has a small
operating system (called NX). Eight communication channels are provided at each
node, seven for links to other nodes in the hypercube and one used as a global
Ethernet channel for communication with the cube manager. Typical systems have
thirty-two nodes using five internode communication links. Internode communication
takes between 1 and 2.2 ms for messages between 0 and 1024 bytes. Cube manager
to node communication takes 18 ms for a 1 Kbyte message (Pase and Larrabee,
1988). The iPSC/2, an upgrade to the iPSC/1, uses Intel 80386 processors and
hardware wormhole routing. Additional vector features can be provided at each
node or selected nodes on one separate board per node.

FORTRAN message-passing routines are provided, including send and recv,
having the format given previously. Sendw and recvw are blocking versions of send
and recv. If non-blocking message passing is done, the routine status can be used to

80287 iLBX-11 port

Numeric
processing
unit
80286 iLBX-11
PROM CPU interface
1 I 1 I l I l Processor bus
1/0 Dual port interrupt
control memory processing
—r—T—lqr———T—J—-T——Tl—T——r 1/0 bus
Communication
coprocessors
Channel I . L 1 I . .
drivers

\J

¢1I¢II¢II¢II¢IIIII¢II |
Channel Channel Channel Channel Channel Channel Channel Ethernet
0 1 2 3 4 5 6 channel

Connections to
other nodes

Figure 9.6 Intel iPSC node

Message-passing multiprocessor systems 311
ascertain whether a message buffer area is reavailable for use. Messages sent and

received from the host use the commands sendmsg and recmsg and operate with
blocked messages without type selection.

9.4 Transputer

In this section, we will present the details of the transputer, the first single chip
computer designed for message-passing multiprocessor systems. A special high
level programming language called occam has been developed as an integral part of
the transputer development. Occam has a static process structure and synchronous
communication, and is presented in Section 9.5.

9.4.1 Philosophy

The transputer is a VLSI processor produced by Inmos (Inmos, 1986) in 16- and 32-
bit versions with high speed internal memory and serial interfaces. The device has
a RISC type of instruction set (Section 5.2, page 151) though programming in
machine instructions is not expected, as occam should be used.

Each transputer is provided with a processor, internal memory and originally four
high-speed DMA channels which enable it to connect to other transputers directly
using synchronous send/receive types of commands. A link consists of two serial
lines for bidirectional transfers. Data is transmitted as a single item or as a vector.
When one serial line is used for a data package, the other is used for an acknowledge-
ment package, which is generated as soon as a data package reaches the destination.

Various arrays of transputers can be constructed easily. Four links allow for a
two-dimensional array with each transputer connecting to its four nearest neighbors.
Other configurations are possible. For example, transputers can be formed into
groups and linked to other groups. Two transputers could be interconnected and
provide six free links, as shown in Figure 9.7(a). Similarly, a group of three
transputers could be fully interconnected and have six links free for connecting to
other groups, as shown in Figure 9.7(b). A group of four transputers could be fully
interconnected and have four links to other groups, as shown in Figure 9.7(c). A
group of five transputers, each having four links, could be fully interconnected but
with no free links to other systems.

A key feature of the transputer is the programming language, occam, which was
designed specifically for the transputer. The name occam comes from the fourteenth
century philosopher, William of Occam, who presented the concept of Occam’s Razor:
“Entia non sunt multiplicanda praeter necessitatem”, i.e. “Entities should not be
multiplied beyond necessity” (May and Taylor, 1984). The language has been
designed for simplicity and provides the necessary primitive operations for point-to-
point data transfers and to specify explicit parallelism. The central concept in an

312 Multiprocessor systems without shared memory

Free links

Free links

Free links

Free links

Free links

Free links

(@) Two transputers (b) Three Transputers (c) Four Transputers

Figure 9.7 Groups of transputers fully interconnected (a) Two transputers
(b) Three transputers (c) Four transputers

occam program is the process consisting of one or more program statements, which
can be executed in sequence or in parallel. Processes can be executed concurrently
and one or more processes are allocated to each transputer in the system. There is
hardware support for sharing one transputer among more than one process. The
statements of one process are executed until a termination statement is reached or a
point-to-point data transfer is held up by another process. Then, the process is
descheduled and another process started automatically.

9.4.2 Processor architecture

The internal architecture of the processor is shown in Figure 9.8 and has the
following subparts:

Processor.

Link interfaces.

Internal RAM.

Memory interface for external memory.
Event interface.

System services logic.

R

The first transputer product, the T212, announced in 1983, contained a 16-bit
integer arithmetic processor. Subsequent products included a 32-bit integer arith-
metic processor part (T414, announced in 1985) and a floating point version (the
T800, announced in 1988). The floating point version has an internal floating point
arithmetic processor attached to the integer processor and the data bus, such that
both processors can operate simultaneously. Though the processor itself is a RISC
type, it is microprogrammed internally and instructions take one or more processor

Message-passing multiprocessor systems 313

———e |
: System
Signals services <— >{Processor
—————ny
<:> Link |—————
interface ———
On-chi Link je———
TP k=t <= intertace |——
<:> Link fe———
interface }———
— Link fe——
Controf ——> interfface p———>
signals .1 Memory
External — interface <—> o
memory ven)

Internal data bus
(16 bits for 16-bit transputers
32 bits for 32-bit transputers)

Figure 9.8 Internal architecture of transputer (without floating point unit)

cycles. Simple operations such as add or subtract take one cycle but complex
operations can take several cycles. One cycle can be 50 ns (for 20 MHz, but this
depends upon the clock frequency). Instructions are one or more bytes. Thirty-two-
bit transputers have memory organized in 32-bit words and four bytes are fetched
together. There is a two word prefetch buffer. The first products have four serial
links, 10 Mbits/sec serial link transfer rate and 2 Kbytes internal static RAM.
Subsequent products have increased transfer rates and increased memory. External
memory can also be attached through the memory interface, though access to
external memory is generally slower than to internal memory. The memory interface
circuitry can be programmed to generate various signals to match external memory
chips.

The transmission is synchronous and a common clock signal, or a separate clock
at the same frequency, is applied to devices. Information is transmitted in the form
of packets. Every time a data packet is sent, the destination responds by returning an
acknowledge packet, as shown in Figure 9.9. Data packets consist of two 1s
followed by an 8-bit data and terminated with a 0 (i.e. eleven bits in all). Acknow-
ledge packets consist of a 1 followed by a 0 (i.e. two bits in all) and can be returned
as soon as the data package can be identified by the internal link interface. The links

314 Multiprocessor systems without shared memory

11 Data 0
y I T |
Source Destination
transputer transputer
Data
i Acknowledge

|

Figure 9.9 Transputer input/output handshaking technique

provide the hardware for the input and output statements in occam (see later) and
operate as DMA channels, i.e. data packets can be sent one after the other for
vectors. Input/output statements use internal channels rather than external links for
communication between processes within a transputer. '

The event interface enables an external device to signal attention and to receive
an acknowledgement. The event interface operates as an input channel and is
programmed in a similar way.

9.5 Occam

This section reviews the occam language, giving the main features, though not
minor variations provided in the syntax. The reader is referred to May (1987) for a
complete definition of the language.

9.5.1 Structure

Like all high level language programs, occam programs consist of statements,
though only a limited number of different statements are provided. The first version
of occam kept the facilities to a minimum on the principle that simple is best, but
further facilities were added (and slight changes made in the syntax) in the later
version called occam 2. We will describe the occam 2 syntax.

Message-passing multiprocessor systems 315

Occam is a block-structured language using indentation rather than brackets or
BEGIN-END to show a compound structure. Each level of indentation consists of
two spaces and each statement is normally placed on a separate line. Statements can
be specified as being executed sequentially, in parallel or dependent upon some
condition (including waiting for input or output). Explicit input and output statements
are provided for passing data between processes. Communication between processes
is dependent upon both the source and destination being ready, i.e. both the input
and output statements on the respective processes must be encountered before the
transfer of data commences. Occam uses prefix operators, i.e. operators are added to
the head of a process to specify some condition or action or to declare variables.
Comments can be included in the program by starting the comment with --. The
comment can occupy a single line at the same level of indentation as the next
statement or it can be added to the end of a statement. Termination symbols are not
used at the end of statements on separate lines (i.e. redundant features are removed
from the language).

9.5.2 Data types

The type of a variable is declared, as in other languages such as PASCAL or C, but
using a colon to show that it is prefixing a process. The original reserved word was
VAR which was subsequently changed to INT. The declaration:

INT x:

declares the variable x of a type appropriate for the transputer (16-bit 2's comple-
ment signed integer in the range —32768 to +32767 for the 16-bit T212, 32-bit 2's
complement signed integer for 32-bit transputers). More explicit types are provided.
INT16 x: declares x as a 16-bit integer; INT32 x: declares x as a 32-bit integer;
INT64 x: declares x as a 64-bit integer; REAL32 x: declares x as a 32-bit floating
point number using the 32-bit IEEE format; REAL64 x: declares x as a floating
point number using the 64-bit IEEE format. Other types include BYTE (a number
between 0 and +256) and BOOL (true or false).

Variables are always local variables; the concept of global variables has no
meaning in a system without global memory. Variables are declared prior to
processes or “subprocesses” and not only at the beginning of the complete program.
They then have the scope given by the level of indentation.

Arrays in occam 2 can be declared by prefixing the declaration with the number
of elements in the array (counting from zero). For example:

[10]INT x:

declares a one-dimensional array, x, having the elements x[0], x[1], - x[9].
Multidimensional arrays can be declared by having more than one [] prefix.

316 Multiprocessor systems without shared memory

Channels are also declared in the process before being used, originally using the
reserved word CHAN and subsequently using the construct CHAN OF protocol
where protocol can specify the data type of the data being sent across the channel.
For example:

CHAN OF INT output:

declares a channel called output which will carry integer values. A set of channels
can be formed into a vector of channels with the same name. We will omit the
channel declaration in some simple programs, assuming that the declaration has
been made in some higher level process.

9.5.3 Data transfer statements

Five primitive processes exist in occam for data transfer, three of which are actions
concerned with data transfer, assignment, input and output.

The assignment action is conventional and allows the value of an expression to be
assigned to a variable and has the general form:

variable := expression

where := means the usual “becomes equal to”. (The type of the expression and the
variable must be the same; type cohersion is not performed automatically in occam/
occam 2, though occam 2 does have cohersion operations.) Multiple sequential
assignments are possible in a single statement, by separating the variables and
expressions with commas.

Transfer of data between processes through internal or external channels is
achieved by having the output action:

channel ! expression

in the source process, where ! is the symbol for output (an output exclamation), and
the input action:

channel ? variable

in the destination process, where ? is the symbol for input (a query for input). When
both input and output have been encountered, the data transfer takes place. This
rendezvous technique is illustrated in Figure 9.10. Processes can be synchronized
using the rendezvous and, if the data value is unimportant, the variable and expression
can be replaced with the occam word ANY, i.e. c?ANY and c!ANY have the effect
of synchronizing processes. Multiple input/output can be specified by separating the
variables and expressions with semicolons, or using a vector of variables, i.e.

Message-passing multiprocessor systems 317

Process 1 Process 2
] I !
! ! lﬂme
1 |
1 1
1]
1 I
I 1
I I
I |
I I
i [l
1 1
1 [

cle c?v Waits for
rocess 1
e transferred tov Discheduled P
Continue with Continue with

process 1 process 2

Process 1 Process 2
|
: i Time
! 1
: |
; l
| |
| 1
| 1
| |
] |
1 1

Wait for cle c?v

process2 Descheduled etransferredtov

Continue with Continue with
process 1 process 2

Figure 9.10 Rendezvous technique (a) Input encountered before output
(b) Output encountered before input

vect [] describes a one-dimensional array of variables with the name vect.

The two remaining primitive processes are STOP which “starts but never proceeds,
and never terminates”, and SKIP which “starts, performs no action, and terminates”
(May, 1987). SKIP has a part to play in constructs which must have a terminating
process.

9.5.4 Sequential, parallel and alternative processes
In most programming languages, it is assumed that statements are executed one after

another in the sequence written unless control statements are used. In occam, the
sequential nature of processes is not assumed; in fact processes can be specified as

318 Multiprocessor systems without shared memory

executed concurrently or sequentially. Concurrent processes on separate transputers
can execute truly concurrently. Processes on one transputer simulate concurrent
operation.

Sequential operation is specified with the sequence (SEQ) process:

SEQ
processl
process?2

Each component process is executed after the previous process has finished. For
example, the following sequence process, as illustrated in Figure 9.11, takes data
from an input channel c1 and sends it to an output channel c2:

INT x:

SEQ
cl?x
c2!x

Notice that the declaration is at the same level of indentation as the SEQ process,
but the component processes are at an extra level of indentation. Also, the input and
output actions are performed in sequence.

cl 22—

Figure 9.11 Single stage buffer

Concurrent operation is specified with the parallel (PAR) process:

PAR
processl
process2

All component processes are executed simultaneously (conceptually if only one
transputer is available). For example, the following parallel process, as illustrated in
Figure 9.12, accepts two inputs and transfers the values from each input to a
different output channel:

Message-passing multiprocessor systems 319

PAR

INT x:

SEQ
cl?x
c3tx

INT y:

SEQ
c2ry
cdly

In both SEQ and PAR processes, the syntax does allow no processes to be specified
and, in this unlikely case, they behave as SKIPs.

)

cl x ¢3

c2 y c4

Figure 9.12 Parallel buffers

In the alternation process (ALT), a component process can be executed dependent
upon an input proceeding. The first input to proceed enables the associated process
to be executed; the others are discarded. The construction of the alternate process
with input is:

ALT
input
process
input
process

320 Multiprocessor systems without shared memory

Notice in particular the levels of indentation. The following alternate process, as
illustrated in Figure 9.13, has three input channels and a single output channel. The
first input to proceed passes the input value to the output:

INT x:
ALT
cl?x
cout !'x
c2?x
cout !'x
c3?x
cout !'x

The general ALT syntax describes a “guard” (an input statement in the previous
statement) where guard and process could be another alternate process. The guard is
an input, or Boolean expression & (and) input, or Boolean expression & SKIP
(effectively a Boolean expression alone).

9.5.5 Repetitive processes

One construct, the WHILE construct, is provided for program loops and has the
format:

WHILE Boolean expression
process

While the Boolean expression yields a true value, the process is repeated.

—>cl

—>{c2 coutp——>

—>»1c3

Figure 9.13 Alternate process

B

Message-passing multiprocessor systems 321

Example

The following sequence will repeatedly accept data from channel c1 and transfer the
value received to channel c2:

WHILE TRUE
INT x:
SEQ

cl?x
c2!x

Notice the two levels of indentation. To accept values between 0 and 9, we might
try:

INT x:
SEQ
x =0
WHILE (x >= 0) AND (x <= 9)
SEQ
cl?x
c2!x

However, the first transfer from input to output would take place whether or not the
input value is within the desired range. To remedy this fault, we could have:

INT x:
SEQ
cl?x
WHILE (x >= 0) AND (x <= 9)
SEQ
c2!x
cl?x

Now we also leave the process with one more input than output action. Whether this
is a problem depends upon the communicating processes.

9.5.6 Conditional processes

The conditional IF construct allows one of a series of component processes to be
executed dependent upon a Boolean expression. The IF construct has the format:

322 Multiprocessor systems without shared memory

IF
Boolean expression
process
Boolean expression
process

where the “Boolean expression — process” construct can be another IF construct.
Notice that the Boolean expression is indented by two spaces and the component
process is indented by a further two spaces. Each Boolean expression is evaluated in
turn and the first found to be TRUE causes the associated process to be executed and
the IF construct to terminate. If no Boolean expression is found to be true, the IF
construct behaves as a STOP statement. Hence, in these cases, one would need to
include a NOT Boolean expression SKIP construct within the IF statement
if the next statement is always to be executed or, more conveniently, simply TRUE
SKIP at the end.

Example:

The following program sequence causes x to be output on channel cl if an input is
equal to 1, or on channel c2 if an input is equal to 2. Nothing is to happen if it is not
equal to 1 or 2:

INT i,x:

SEQ
input?i
IF

c2'x
TRUE
SKIP

Occam 2 has a CASE statement which allows a process to be selected according to
an expression being evaluated to a particular value given in the statement.

The transputer has an internal real-time clock which enables variables to be
declared as being of type TIMER and to be accessed by parallel processes. Timers
are incremented at regular intervals dependent upon the external clock frequency
applied. In the T212, for example, there are two timers — a high priority timer
incrementing every 1 ps and a low priority timer incrementing every 64 ms if the
applied frequency is 5 MHz. Both timers cycle after 232 increments and are of type
INT. Timers are set to specific values by using input statements with literals. The
timer will be incremented automatically after loading. Processes can be delayed
until a specific value occurs.

9.5.7 Replicators

Message-passing multiprocessor systems 323

A replicator can be used in the SEQ construct, PAR construct, ALT construct or IF
construct to specify that the component process is duplicated a number of times. The

basic formats are:

SEQ name = base FOR count
PAR name = base FOR count
ALT name = base FOR count
IF name = base FOR count

where name is an integer variable and base and count are integer expressions. In
each case, the component process is repeated count times and the variable, name,
is incremented by one each time, starting at base.

Examples

Suppose that there are ten input channels and that each is examined in turn so that
each value received is transferred to one output channel. We could have:

[10]CHAN OF INT c:

CHAN OF INT cout:

SEQ i = 0 FOR n
INT x:
SEQ
cl(i]?x
cout!x

-- declares 10 channels c[0] to c[9]
-—- declares channel cout

In Figure 9.14, there are four processes, each continually accepting an input from
the previous process (except the first) and multiplying the value input by two. We

could have:

X
Input —>{c[0} c[1]
*2

5

cf1]

X

*2

c[2]

—>

X
c[2}
*2

c[3]

|

c[3]

X
cl4]
*2

— Output

Figure 9.14 Four-stage buffer accepting continual input

s

324 Multiprocessor systems without shared memory

[S]CHAN OF INT c: -- declares five channels c[0] to c[4]
PAR i = 0 FOR 4
WHILE TRUE
INT x:
SEQ
cli]?x
X 1= 2*x -- or use more efficient shift operator
cli+l1]!x

To implement an eight-to-one line multiplexer, as shown in Figure 9.15, we could
have:

[8]CHAN OF INT c:
CHAN OF INT cout, select:
INT x:
SEQ
select?x
IF i = 0 FOR 8
Xx =1
SEQ
cl[i]?x
cout !'x

The program does not handle the situation x < 0 or x > 7. It is left as an exercise to
incorporate this possibility.

9.5.8 Other features

Occam has the usual form of procedures using the construct PROC name (para-

meter list), and a number of other constructs (see Burns (1988) for a good
description).

Select input

0]
—[1]
—>1c[2]
—>]c[3]
—{c[4]
—{cl5]
—_——] C[G]
s]cl]

cout pb——>

Figure 9.15 Eight-input multiplexer

Message-passing multiprocessor systems 325

A feature of occam and the transputer is that the program can be written
irrespective of the number of transputers; the number of transputers and their actual
interconnections via channels can be specified later. The program could be tested on
a single transputer system before being put onto a multiprocessor system. Processes
are allocated to processors using the PLACED PAR - PROCESSOR construct. For
example:

PLACED PAR
PROCESSOR 1
Processl
PROCESSOR 2
Process2

allocates process1 to processor 1 and process2 to processor 2 and the processes are
executed in parallel. Constructs are available to signify that particular processes are
to be executed in preference to others, i.e. a priority is assigned to processes (PRI
PAR construct).

The semantics of the language have been studied by Roscoe and Hoare (1986)
leading to a set of algebraic laws. Also, it may be that complex programs can be
transformed into other versions using formal mathematical transformations which
can lead to improved programs. Occam transformations, though not necessarily
difficult, are beyond the scope of this book (see May and Taylor, 1984).

We should mention that occam is a simple language; hence we are able to give the
major details of the language in a section of a chapter. It lacks some features found
in conventional high level languages, maybe purposely. The data structures are
limited. Recursion is not allowed.

PROBLEMS

9.1 Design a multiprocessor architecture having both direct link message-
passing characteristics and shared memory characteristics and make an
evaluation of the design.

9.2 Deduce an equation for the network latency of a message-passing
system, given that the bandwidth is B, the message length is L and
the path set-up time per node is given by Lierup Plot the equation for
fixed message length and for fixed path length. Under what conditions
does the network latency approach a constant? Suggest an advantage of a
constant network latency.

9.3 Produce a logic design for hardware routing in a hypercube
according to the algorithm given in Section 9.1.2, page 300.

326

Multiprocessor systems without shared memory

9.4 Write a program to perform the numerical integration of an arbitrary
function f(x), as given in Section 9.2.2, (page 305), but using a tree
structure to accumulate the results.

9.5 Deduce the actions of the following occam terminal screen handler
program:

CHAN OF INT key.out,prog.out,screen:
INT ch,running,alarm.time, term.char:

SEQ
running := TRUE
term.char := 0
WHILE running
SEQ

TIME ? alarm.time
alarm.time := alarm.time + 5
ALT
key.out ? ch
Screen ! ch
prog.out ? ch

IF
ch = term.char
running := FALSE
ch <> term.char
Screen ! ch

The period within a name is regarded as a normal symbol without any
special meaning. It is used in the same way as the underscore in C
programs, to clarify the name.

9.6 The declarations in the following occam program are incomplete.
Add the required symbols and explain the operation of the program:

CHAN
PAR
INT
SEQ
y :=1
WHILE TRUE
ALT
datainput ? x
outputl ! x*y
scaleinput ? y
SKIP

Message-passing multiprocessor systems 327

INT
WHILE TRUE
SEQ
outputl ? x
IF
x =0 .
output2 ! x
x <> 0
output2 ! -x
INT
SEQ
y := 0
WHILE TRUE
ALT
output2 ? x
result ! x + y
offsetinput ? y
SKIP

9.7 Write a program in occam for each node in a three-dimensional
hypercube to route a message from a source node to a destination node
using the hypercube routing algorithm described in Section 9.1.2, page
300.

9.8 Design a message-passing routing algorithm for a mesh network
which broadcasts a host message to all nodes in the mesh at the greatest
speed. Further, design a message-passing routing algorithm which broad-
casts a message from a node in the mesh to all other nodes in the mesh.
Show how these algorithms can be implemented with message-passing
routines.

9.9 Write a program in occam to broadcast a message from the host
node to all other nodes in a hypercube.

9.10 Show how the statements:
IF Boolean expression RECEIVE variable list FROM
source identifier
WHEN Boolean_expression RECEIVE variable list FROM

source identifier

could be implemented in occam.

328 Multiprocessor systems without shared memory

9.11 Show how non-blocking send and receive routines could be
constructed in occam.

9.12 Incorporate the possibility that x < 0 or x > 7 into the last program
in Section 9.5.7, page 324.

CHAPTER

1 O Multiprocessor systems
using the dataflow
mechanism

This chapter will consider alternative computer designs to the (von Neumann) stored
program systems described in previous chapters, concentrating upon the dataflow
technique. The dataflow technique is a multiprocessor technique which enables
parallelism to be found without being explicitly declared. The chapter concludes
with a summary of the book.

10.1 General

The computer designs so far considered execute instructions, which are stored in a
memory, in a particular sequence; the multiprocessor designs presented have more
than one such sequence executed simultaneously to increase the execution speed,
but do not change the basic mode of operation. A program counter is necessary
within each processor to guide each sequence. The instruction execution within each
processor is serial and hence inherently slow. To gain an advantage, the programmer,
or a compiler, has to spot the independent instructions which can be passed to
separate processors; the communication overhead also has to be sufficiently low.

The traditional “program counter controlled” stored program (von Neumann)
computer system is sometimes called a control flow computer, especially when we
wish to differentiate this computer system from alternative types in which the
program execution sequence may not be controlled by a central control unit having a
program counter. In alternative designs, the sequence is defined by some other
mechanism. There are several alternative mechanisms that could be applied. If there
is a program of instructions held in a memory, the following possibilities for
execution can be identified:

1. An instruction is executed when the previous instruction in a defined sequence

has been executed.
2. An instruction is executed when the operands required become available.

329

330 Multiprocessor systems without shared memory

3. An instruction is executed when results of the instruction are required by other
instructions.
4. An instruction is executed when particular data patterns appear.

The first method is the traditional control flow computer mechanism; the second
method is known as data driven or dataflow; the third is demand driven and the
fourth is pattern driven.

Computers do not necessarily need to perform operations specified by stored
instructions at all. Neural networks, which attempt to model the human brain to
some extent, do not have a stored programme of instructions. Neural networks have
a long history; the idea of copying the brain can be traced back many years to
the 1940s, when Turing contemplated neural computers (Hodges, 1983). However,
putting the concept into practice has eluded research workers until recently. Practical
implementations of neural computers could arguably be classified as type four,
though perhaps a separate category should be made for neural computers.

We will concentrate upon dataflow computers in this final chapter. The dataflow
technique was originally developed in the 1960s by Karp and Miller (1966) as a
graphical means of representing computations. In the early 1970s, Dennis (1974)
and later others began to develop computer architectures based upon the dataflow
computational model. Let us first examine the basic dataflow computational model,
and then more recent dataflow architectures.

10.2 Dataflow computational model

The dataflow computational model uses a directed graph, sometimes called a data
dependence graph or dataflow graph, to describe a computation. This graph consists
of nodes, which indicate operations, and arcs from one node to another node, which
indicate the flow of data between them. Nodal operations are executed when all
required information has been received from the arcs into the node. Typically, a
nodal operation requires one or two operands and, for conditional operations, a
Boolean input value, and produces one or two results. Hence one, two or three arcs
enter a node and one or two arcs leave it. Once a node has been activated and the nodal
operation performed (i.e. the node has fired) results are passed along the arcs to
waiting nodes. This process is repeated until all of the nodes have fired and the final
result has been created. More than one node can fire simultaneously, and generally
any parallelism in the computational model will be found automatically.

Figure 10.1 shows a simple dataflow graph of the computation f = A/B + BXC. The
inputs to the computation are the variables A, B and C, shown entering at the top.
The paths between the nodes indicate the route taken by the results of the nodal
operations. The general flow of data is from top to bottom. There are three
computational operations (add, multiply and divide). We notice that B is required by
two nodes. An explicit COPY node is used to generate an additional copy of B.

Multiprocessor systems using the dataflow mechanism 331

B

Oéﬂ

Result

Figure 10.1 Dataflow graph of computation A/B + B x C

Data operands/results move along the arcs contained in tokens. Figure 10.2 shows
the movement of tokens between nodes. After the inputs are applied, the token
containing the A operand is applied to the division node, the token containing the B
operand is applied to the COPY node and the token containing the C operand is
applied to the multiply node. Only the COPY node can fire, as its single-input token
is present at the node. The other nodes require a result token of the COPY node.
Once the COPY tokens have become available, both the multiply and divide nodes
have all their tokens and can fire. The final node waits for both the multiplication
and division nodes to complete before it can commence. It may be that the
multiplication operation is completed before the division operation but in any event
both operations must produce a token before the final addition node can fire.

Clearly, one can build up in-line computations of this sort, but practical computa-
tions usually require additional features. For example, in control-flow computations,
conditional instructions provide decision-making power. Similarly, conditional
operations are provided in dataflow computations. Conditional operation nodes
generally take one or two operands and one conditional input. They pass forward
one or two results, which depend upon the value of the data input and the value of
the condition. Condition nodes can be regarded as switches, passing a data input
token to an output.

Two forms of switch or condition nodes are shown in Figure 10.3. In the MERGE
node, there are two data inputs and one output. If the condition is true, the left-hand
side input token is passed to the output; if the condition is false, the right-hand side
input token is passed to the output. In the BRANCH instruction, the single-input
token is passed to the left output path if the Boolean condition is true or to the right
output path if the condition is false. It is not necessary to use both outputs in the
BRANCH node. MERGE and BRANCH are not both strictly necessary, as MERGE can be

332 Multiprocessor systems without shared memory

A 5 C A C

\ ' | |

(@) (b) :
RO ()

(C) (d) A/B + BxC

Figure 10.2 Movement of data tokens in computation A/B+ Bx C (a) After
inputs applied (b) After copy instruction executed (c) After both divide and
multiply instructions executed (d) After addition instruction executed

achieved with two BRANCH nodes and BRANCH can be achieved with two MERGE
nodes (Problem 10.2).

Once the first set of inputs has been used, a second set could be applied and
processed behind the first in a pipeline fashion. However, it is important that partial
results (tokens) of the first computation are not processed with partial results of the
second or any other subsequent computation. The results are usually required in the
sequence that the inputs are applied.

There are numerous instances in which a particular computation must be repeated
with different data, notably with program loops. Program iteration loops of con-
ventional programming languages can be reproduced by feeding results back to
input nodes and tokens must be used only with those tokens of the same iteration.
Loops are often formed in conventional languages using loop variables which are
incremented each time the body of the computation is computed. The loop is

Multiprocessor systems using the dataflow mechanism 333

Boolean variable P Boolean variable P
TRUE or FALSE TRUE or FALSE
True False
output output
Aif P=TRUE AifP=TRUE AifP=FALSE
Bif P= FALSE
(@) (b)

Figure 10.3 Conditional dataflow instructions
(a) MERGE instruction (b) BRANCH instruction

Initial
values

— |

Computation

BRANCH J

True False

Result

Figure 10.4 Dataflow loops

334 Multiprocessor systems without shared memory

terminated when the loop variable reaches a defined value. This method can be
carried over to dataflow computations, as shown in Figure 10.4. It is important that a
mechanism is in place to keep the two loops in step. Mechanisms should also be
provided for function calls and handling data-structures such as arrays.

There are two general dataflow schemes:

1. Static dataflow.
2. Dynamic dataflow.

which result in two classes of dataflow system. In static dataflow, there can be only
one instance of a particular node firing at a time, whereas in dynamic dataflow it is
possible to have multiple instances of a node firing at run-time. This might occur in
code sharing, multiple function calls and recursion. Hence, such operations are not
possible in static dataflow. Let us first examine static dataflow.

10.3 Dataflow systems

10.3.1 Static dataflow

The static dataflow architecture has the firing rules:

1. Nodes fire when all input tokens appear and the previous output tokens have
been consumed.
2. Input tokens are then removed and new output tokens are generated.

These rules allow for pipeline computations and loops but not recursion or code
sharing. The machine generally requires a handshaking acknowledgement mechanism,
as shown in Figure 10.5, to indicate to a node that the output token has been
consumed. The acknowledgement mechanism can take the form of special control
tokens sent from processors once they respond to a fired node.

The static mechanism was the first dataflow mechanism to receive attention for
hardware realization at MIT (Dennis, 1974) though a system was not constructed
then. Dennis conceived a packet-driven ring architecture, shown in Figure 10.6,
consisting;of a ring of processor and memory elements interconnected via routing
networks. Processing elements would receive operation packets of the form:

op-code operands destinations

where the op-code (operand code) specifies the operation to be performed, the
operands specify the numbers to be used in the operation, and the destinations
specify where the result of the operation is to be sent.

Multiprocessor systems using the dataflow mechanism 335

Node
Output
token
Acknowledgement
when token consumed

Figure 10.5 Static dataflow token-passing

Result packets
Memory Processing
units elements
— e R
1]
I |
L nxm : mxn I
< routing : routing | -
network i network :
: i
B e

Operation packets

Figure 10.6 An early dataflow architecture

Notice that the numbers to be used are literals and are always carried within the
instruction. Numbers are never referred to by addresses in memory, as they are not
stored in a globally accessible memory; this has advantages and disadvantages. It is
an advantage that operands can only be affected by one selected node at a time. It is
a disadvantage in that complex data structures, or even simple vectors or arrays,
could not reasonably be carried in the instruction and hence cannot be handled in
the mechanism (unless the mechanism is modified).

The result packet takes the form:

value destination

336 Multiprocessor systems without shared memory

where value is the value obtained after the operation has been executed. The result
packets pass though a routing network to “instruction cells” in the memory unit, as
identified by the destination address in the result packet. An instruction cell generates
an operation packet when all of the input packets (tokens) have been received.
Typically, two such packets ate required in the instruction cell to generate an
operation packet. The operation packet is then routed to a processing element. If all
processing elements are identical (i.e. a homogeneous system) any free processing
elements could be chosen. In a non-homogeneous system with specialized pro-
cessing elements, each capable of performing particular functions, the op-code in the
operation packet is used to select the processing element.

Dennis noted that the scheme, as he proposed it, was impractical if each instruction
cell needed to be fabricated individually with a large number of instruction cells.
Therefore, he proposed that instruction cells should be formed into groups (instruction
blocks) each having a single input and a single output. The dataflow system can be
further simplified by associating the instruction cells with processing elements,
leading to the architecture shown in Figure 10.7. Here the processing elements (PEs)
generate and receive packets and only one routing network is necessary to forward
packets from PE outputs to PEs inputs. The destination PE is specified in the result
packet.

Dataflow architectures generally use some form of routing network to transmit
result packets on to a token matching mechanism. The packets usually consist of
several bytes and could be sent one byte at a time, to reduce the interconnections. In
the basic Dennis architecture, the matching mechanism is incorporated into the
instruction cells or processing elements. The routing network must be capable of
receiving byte-serial packets, with destinations encoded within the packets, and of
forwarding the packets on to the required cells or processing elements. There are a
number of possible candidates for the routing networks, as described in Chapter 8

Result packets

Processing
elements

R

t

I

nxn :
< routing | >

I

[

|

|

network

L —> ——>J

Figure 10.7 Simplified dataflow architecture

Multiprocessor systems using the dataflow mechanism 337

(see especially Section 8.4.3, page 263 on dynamic multistage networks). The
principal criterion is throughput of packets rather than the propagation time from the
input of the routing network to the output, as the system is pipelined. Self-routing
networks are particularly attractive for this application.

10.3.2 Dynamic dataflow

Dynamic dataflow describes a dataflow system in which the dataflow graph being
executed is not fixed, but can be altered (dependent upon the executing code)
through such actions as recursion and code sharing. Recursion and code sharing
cannot be done in the static architecture as described but can be accomplished by
simply copying the code every time a call is made. This is known as dynamic code
copying. Alternatively, tags could be attached to the packets to identify tokens with
particular computations (instances of shared code, recursive code, loops, functions,
etc.); this is known as dynamic token tagging, and is the method normally associated
with dynamic dataflow. Dynamic token tagging dataflow uses the firing rules:

1. A node fires when all input tokens with the same tag appear.
2. More than one token is allowed on each arc and previous output tokens -need
not be consumed before the node can fire again.

The dynamic token tagging datafiow system needs storage for unmatched tokens,
hardware for matching the tokens and a hardware mechanism for generating the
tags. Tokens may not be taken strictly in the order generated and a first-in first-out
token queue for storing the tokens is not suitable. However, no acknowledgement
mechanism is required. The term coloring has been used for the token labeling
operation, and tokens with the same color belong together (Dennis, 1974). Token
tagging can be extended to cover coloring elements of arrays so that the correct
elements are processed. It implies that all tokens must now have a coloring tag and
that machine operations must be provided to operate upon the tags.

Token tags
To cover the three situations identified — functions and recursion, loops and array

elements — each token tag could have three fields (Glauert, Gurd and Kirkham,
1985):

iteration level activation name index

Each field will hold a number, say, from zero onwards. Iteration level identifies the
particular activation of a loop body, activation name identifies the particular function
call and index identifies the particular element of an array. Iteration level and
activation name might be combined into one field, activation name, referring to a
loop body or function activation.

338 Multiprocessor systems without shared memory

Individual fields of the tag need to be treated as data values and passed from one
node to another. As a minimum requirement, each field requires operations to
extract the field value and to set the field to a value. For example, a “read token
field” operation accepts a single token and produces a token with the value of the
input token field. The “set token field” operation produces an output token cor-
responding to the input token except with its token field set to a value given as a
literal in the operation. Increment and decrement operations can also be provided,
particularly for iteration level. Often, after a particular routine has been completed
using the coloring facility, the result is delabeled by setting the token field(s) to 0.
We note that it is possible for function call, a loop, and array index to occur in
combination, for example, for a function call to occur with a different array index. It
is also possible for nested function calls, loops, etc. to occur. Figure 10.8 shows one
general arrangement for a loop with tagging of parameters before each activation of
the loop, and retagging of the results.

Different instances of a function call can be colored with unique activation level
numbers, but the mechanism needs to take into account that each call will be from a
different place in the program and that it is necessary to return from these different
places. In a normal von Neumann computer, a stack is used to hold the return
address. In a dynamic token tagging dataflow system, a return operation can be
provided to produce a token corresponding to one of the input tokens but having a
specific destination address as given by a second input token, as shown in Figure
10.9. Further operations are necessary to allow complete generality of the function
call in all situations (see Glauert, Gurd and Kirkham, 1985).

Input stream

Tag

Loop control Body

A

Retag to 0

Result

Figure 10.8 Token tagging in loops

Multiprocessor systems using the dataflow mechanism 339

:

Function call
Generate new
activation name

Parameters

|

Tag parameters

I

Y

Generatereturn Function bod
address andtag unction body

—

Retag results
Set destination

Figure 10.9 Function call using tags

A simple approach to using the index field to access elements of an array would
be to sequence through the elements until the specific element having the required
index value has been found. Suppose the index field operations include “read
index”, RIX, and “set index”, SIX. Read index, RIX, can be used on each element to
find its index value, which can then be compared to the required value using a
normal arithmetic compare operation. When the required value has been found, a set
index operation, SIX, could be used to set the index to 0 and extract the token.
However, this procedure is somewhat inefficient. Large data structures require
alternative approaches, normally returning to globally stored data referenced by
pointers in the tokens. Then, the pure form of dataflow with all data passed within
the tokens is abandoned for large data structures (arrays, records, etc.). Performing
arithmetic operations on elements from two arrays can be done efficiently using
coloring by simply passing the pairs of elements through a normal arithmetic

operation node. Only pairs of elements with the same index will be processed
together.

System examples

The dynamic dataflow machine designed at MIT by Arvind in the late 1970s (Arvind
and Nikhil, 1990) uses an array of processing elements interconnected the same way
as the static dataflow architecture shown in Figure 10.7. The processing elements
incorporate a program memory and instruction queue connected to an arithmetic and

340 Multiprocessor systems without shared memory

logic unit. A “waiting match” memory holds tokens as received at the input module
of the processing element. When a full complement of tokens has been received, the
appropriate instruction is fetched from the program memory and this instruction is
executed with operands within the matched tokens. The result token is output to the
routing network and directed to the destination processing element. Each processing
element in the MIT dynamic architecture incorporates a memory called an /-
structure memory, to hold array data structures which cannot reasonably be trans-
mitted within the tokens, thus alleviating the restriction on array data structures.
Additional tags are stored with the data structures to control access to the data
structures.

Figure 10.10 shows the architecture of the dynamic dataflow computer system
constructed at Manchester University by Gurd and Watson (1980). This system also
uses a pipelined ring architecture, but separates the computational functions from
the token/tag matching functions. Each processor executes 166-bit packages con-
sisting of two data operands, a tag, an op-code and one or two destinations (i.e. the
address of the next instruction or instructions). A system/computation flag is
associated with all packets to differentiate between a computational packet to be
executed by a processor and a packet carrying a system message (such as to load an
instruction into memory). Data operands can be 32-bit integers or floating point
numbers. ‘

Once an executable packet has been executed, a processor generates one or two
result token packets. A result token packet contains one data operand, a tag and the
destination address(es), 96 bits in all. Each result token packet enters a two-
way switch which enables data to be input from an external source or output to an
external destination (peripheral device). Assuming the result token packet is to pass
to another node, the packet is directed to a first-in first-out token queue and on to a
matching unit. Here, a search is made to identify another token to complete the
tokens necessary to fire a node (if the node requires two tokens). The search is done
in hardware by comparing the destination and tag of the incoming token with all the
stored tokens. If a match is found, a token-pair packet is formed, otherwise the
incoming token is stored in the matching unit awaiting its matching token. Token-
pairs and single operand tokens are passed on to the program store which holds the
nodal instructions, and the full executable packet is formed. Executable packets are
sent to free processors in an array of fifteen processors when possible.

On average, packets into the program node store and executable packets are
expected to be formed every 300 ns, and token packets produced by processors at an
average rate of one every 200 ns, but this will depend on the program. These figures
indicate that three tokens must enter the matching unit in the period that two token
packets are generated, or that one in every three tokens is for a single input node.
Similarly, as executable packets enter the processor array at a rate of one every
300 ns, every two executable tokens must generate three token packets if the
generation rate is one every 200 ns. In fact, the processors are microprogrammable
devices requiring 4.5 s per machine operation and a throughput of one executable
packet every 300 ns is achieved if all fifteen processors are active.

Multiprocessor systems using the dataflow mechanism 341

a1nmpaliydJe 12aIndwod Mmojjelep Jaisayduey gL oL 34nSi4

uofeindwod
1o waysAg
188Q | 1seq | spoo-dp| 6ey | ereq | eleq 189q | Bey | ereq| eeqg 189Q | Bel {eleq
(ng-991) (na-ect) (1g-96)
abexoed a|qejnoexy abeyoedsed usyo) abeyoed uaxoj
/
AHOWINW fem-z Aem-g
JAILVIO b ———
-0OSSY
0an3sd
SIG 96 X M9l
Sjusws|e 8I03s Hun ananb us40|
BuIssao0Id spou Buyorew
' weiboid ua)oj

ndino indu)

342 Multiprocessor systems without shared memory

Hardware matching of a large number of tokens is problematical and is solved in
the Manchester machine by employing a hardware hashing technique rather than by
using a true associative memory, because such memory would be uneconomic.

10.3.3 VLSI dataflow structures

The dataflow technique can be applied to VLSI (very large scale integration) arrays
of interconnected cells. Each cell performs primitive dataflow operations on data
received via direct links from neighboring cells, and consists of a processor, a small
stored program and input/output communication. The array is connected to a host
system which downloads the programs into the cells. A cell will fire when all the
operands for one of its stored instructions are received, and internal logic is
necessary to detect when such enabling conditions occur. Each cell will perform the
operations of one or more nodes in a dataflow graph. A typical operation might
require one or two input operands from neighboring cells and produce one output
operand to a neighboring cell. Figure 10.11 illustrates how a dataflow graph might
be mapped onto a hexagonal dataflow array. In this case, each cell in the array
executes one primitive operation of the graph.

A VLSI dataflow array has been demonstrated by Koren et al. (1988). Their
dataflow architecture uses a static hexagonal interconnection cell pattern. The array
is connected to a host system, and communication buses, which are connected to the
host, are provided within the array for loading the program memories and extracting
the results. Each processing element has all the main features of a normal stored
program computer, including familiar instructions within its instruction set, such as
arithmetic and logical operations and input/output. In addition, instructions are
provided for cell initialization. Instructions can operate upon six periphery registers,
R1 through to R6, which are provided for communicating to adjacent cells. Up to
six instructions can be stored in each cell at any instant in a small stored instruction
memory. There is one instruction that can produce an output for each periphery
register. The contents of these registers are automatically transferred to the neigh-
boring cell when this can accept the data in the corresponding periphery register.
Each cell operates on 8-bit numbers. Sixteen- and 32-bit numbers can be processed
using carry propagation techniques. Carry values are passed through the periphery
registers defined by initialization instructions.

Instructions have 16 bits and the format shown in Figure 10.12. A 9-bit op-
code is provided. Each of the input register bits, B, through to B, can be set to 1 to
indicate that the corresponding register holds one of the source operands. In fact,
only up to three input registers can be specified in one instruction, two registers
holding operands and one a carry-in value. Bit B,, labeled Frst, is used when the
order of the input operands is important, such as in subtraction and division, to
specify which of two input registers holds the first operand. For example, subtraction
could be (A — B) or reverse subtraction (B — A).

Multiprocessor systems using the dataflow mechanism 343

(a)

2

(b)

Figure 10.11 Dataflow graph mapped onto hexagonal array
(@) Dataflow graph (b) Mapped on to hexagonal array

Operation code Frst Input registers

B16 B15 B14 B13 B12 B11 B1D B9 BB B7 BS BS B4 BS BE B1

Figure 10.12 Hexagonal array processor instruction format

344 Multiprocessor systems without shared memory

As in all the dataflow systems described so far, instructions are not necessarily
executed in the program sequence but when the required operands become available.
As soon as a new operand is received via one of its periphery registers, internal
logic establishes whether any waiting instructions require the operand. This is
achieved using a set of six static flags in the instruction memory, one for each
instruction, and a two-dimensional array of dynamic flags with seven rows and six
columns. The static flags indicate that the contents of the corresponding register
have to be transferred to the corresponding register in the neighboring cell, i.e. that
the instruction is present.

Each column in the dynamic flag array is assigned to one of the six registers.
Each of the first six rows is assigned to one of the six instructions that might be
present in the instruction memory. The seventh row in the dynamic array is used by
the intercell register transfer logic. The flags in the jth column are set to 1 when a
new operand arrives in the jth register and the corresponding instruction requires the
operand. This is achieved by logically ANDing the operand arrival set signal with-the
static flags. Each time an instruction is executed, the flags in the corresponding row
of the flag array are reset to 0. Hence, when all bits in a column have been reset to 0,
the input operand has been used by all waiting instructions. The input register
becomes “empty” and ready for new data to be loaded from adjacent cells. The
conditions for an instruction to be executed (“fire”) are as follows:

1. Input register dynamic flags values in instruction row = static flags values
indicating that all input operands are present.
2. Required output register is empty.

The dataflow graph from the application problem needs to be mapped onto the array;
heuristics, as described by Koren ef al. (1988), may be necessary to perform this
mapping. In general, some cells are used simply to route operands towards their
final destination. The PE (processing element) cell utilization percentage describes
the percentage of cells that perform computations; Koren reports utilization per-
centages of between 7.4 and 75 per cent, depending on the method of mapping for a
range of problems.

The array dataflow system is very similar to the message-passing systems described
in Chapter 9, in that programs are loaded into independent nodes prior to execution
and information passes from node to node. Indeed, a general purpose message-
passing system could be programmed to operate on dataflow principles, though
without operand matching facilities it would need to be at a reasonably coarse grain
level.

10.3.4 Dataflow languages

Traditional procedural high level languages such as Pascal and FORTRAN could be
pressed into service for dataflow computers, with some modifications or additions to

Multiprocessor systems using the dataflow mechanism 345

the language. However, procedural languages grew from the development of sequen-
tial computations/computers and are not ideal as dataflow languages, particularly for
the “fine grain” dataflow computing we have described so far.

Some key attributes of dataflow to be incorporated into dataflow languages are:

Parallelism constrained by data dependencies.

Locality of effect characteristic and freedom from side effects.
Lack of variables that can be altered.

Lack of stored values that can affect subsequent computations.

bl i e

Locality of effect refers to operations only affecting values within a defined area.
The phrase freedom from side effects has been coined to describe the general
situation when an action in a program does not have unfortunate far-reaching
consequences. These consequences might be unexpected and lead to errors. An
example of side effects is a procedure which alters global variables in the calling
program. The variables may be parameters passed to the procedure during the call,
or worse, global variables directly referenced in the body of the procedure. Clearly,
this effect could be avoided by not using global variables at all and by passing
parameters by reference (name). Side effects cause difficulties in establishing
program correctness and data dependencies for parallel computations. Problems can
occur, particularly with data structures such as arrays and records, in which a
change in one element of the structure at one part of a program might have
significant effects in another part of the program.

Prime candidates for dataflow programming languages are those within the class
of languages called functional languages. A program written in a functional language
consists only of functions where a function is called by name, supplied with
parameters and returns a value (or values), as in conventional high level languages.
However, a functional language program is written entirely of functions. The program
usually consists of a main function, which calls other functions, which may in turn
call other functions, and so on, until a bottom level is reached in which the functions
are composed of language primitives. There are no assignment statements, except
that a program variable can be given a value once. The values of variables never
change, i.e. variables are more like defined constants.

There is research interest in functional languages because they might help write
better structured programs, particularly parallel programs, and not necessarily for
dataflow computers as the machine architecture. The reader is directed to Peyton
Jones (1989) for details. We can make some general observations regarding functional
languages.

Functional languages have several potential advantages, notably that a function
cannot have any effect on the program except to return a value (or values, in the
case of some function languages). They are free from side effects. Apart from
eliminating a source of errors, freedom from side effects also helps parallel computa-
tions. As side effects are not present to alter expressions, the order of evaluation of
expressions does not matter, and variables and their value can be interchanged at

346 Multiprocessor systems without shared memory

any time. This is known as referential transparency. Clearly, programmers could
restrain themselves from using those features in a programming language which lead
to possible side effects. A program could be written in a normal programming
language as a series of functions. Hughes (1989) makes the point in his defence of
functional languages that simply omitting features in a language cannot make the
language more powerful; this is not sufficient. In addition to prohibiting programming
styles which lead to side effects, functional languages also provide special program
constructs to put together complex functions from simpler functions, and deal with
lists (as in LISP, the first major functional language).

Functional languages have at the most one assignment for each program variable.
Such languages are known as single assignment languages, and form the develop-
ment of most, if not all, dataflow languages. There is a direct relationship between
computations in dataflow graphs and single assignment. A program value is generated
only at a dataflow node and cannot be altered elsewhere, except as a generated new
data token. The single assignment convention carries over this concept that data
operands can only be altered once, creating a new value. That is, variable names can
only appear on the left hand side of an expression once. This implies that the
program sequence:

A :=1; A = 1;
A :=1A + 1; would be rewritten as A' := A+ 1;
A :=A + B+ C; A" := A' + B + C;

where A' and A" are new variables introduced to maintain the single assignment
rule. Fortunately, by using language constructs, such transformations can be avoided
in many instances when they occur in loops in single assignment languages.

Iterations in single assignment languages employ special notations so as not to
break the single assignment rule. In normal languages, one makes use of a loop
variable to count the number iterations of a loop and perhaps also within expressions
in the loop body. To take a very simple example, to generate factorial 10!, we might
write in Pascal:

fact := 1;
FOR i := 2 to 10 DO fact := fact*i;

However, this would be disallowed in a single assignment language because fact is
reassigned a new value on each iteration through the loop. One “solution” would be
to unfold the iteration into separate computations, i.e. fact := 1; fact :=
fact*2; fact := fact*3; etc., and rename fact for each successive statement.
We have seen that dynamic dataflow architectures can handle iterations by coloring
tokens with an iteration tag, and hence there is a simple graphical transformation for
the factorial loop. Some dataflow languages have reserved words such as NEW or
OLD to identify successive values, for example:

Multiprocessor systems using the dataflow mechanism 347

i = OLD i + 1;
fact := OLD fact*i;

Several dataflow languages have been developed, often in connection with dataflow
work on machine architectures. For example, the dataflow language VAL (Value-
oriented Algorithmic Language) was developed in the late 1970s and early 1980s at
MIT under the direction of Dennis, and also at Lawrence Livermore National
Laboratory. A detailed description and analysis of VAL is given by McGraw (1982).

Subsequently, SISAL (Streams and Iterations in a Single Assignment Language)
was developed, though still as a research language. Details of the SISAL language
are given by Allan and Oldehoeft (1985). SISAL was used in the development of the
Manchester dataflow computer (B6hm and Sargeant, 1989). Streams and iterations
are fundamental aspects of dataflow programming. A stream of tokens are used in
dataflow to describe a sequence of data items like an array, except that the elements
can be processed as they are generated rather than having to wait for the complete
set of elements to be generated, as would be necessary with an array. The possibility
of parallel computations on stream elements exists. We will briefly mention some of
the unusual features of SISAL, which are characteristics of dataflow languages and
are therefore representative. Of course, other dataflow languages may have different
reserved words and syntax.

Functions can return more than one value, which are assigned to successive
“variables”. For example:

a,b,c := functO (parl)

evaluates the function funct 0, using the value of the parameter parl, returning three
results which are assigned to a, b and c respectively. The function could return a stream.

Changing one element of an array implies that a completely new array is created
in a functional language. In SISAL:

B := A[i:v]

creates a new array, B, which is the same as array A except that the ith element is
changed to the value v. In a dataflow system which stores arrays, an alternative to
copying the array is to modify the stored array, a decision that could be made by the
compiler, dependent upon the use of the arrays.

Sequential expressions, which are similar to conventional programming languages
except that each must return a value, exist in dataflow languages. For example, in
SISAL, the IF THEN ELSE expression could be used in the statement:

a := IF b = ¢ THEN functl ELSE funct2 END IF

If the Boolean expression b = ¢ is TRUE, functl is evaluated and its result is
returned to be assigned to a, otherwise funct2 is evaluated and its result is

348 Multiprocessor systems without shared memory

returned and assigned to a. This construct is very similar to that allowed in ALGOL
68 and C.

Iterative sequential expressions, in which each evaluation within a loop has to be
executed in strict sequence because of data dependencies, can use the FOR-
INITIAL expression. The FOR-INITIAL expression consists of four parts, initializa-
tion with the reserved word INITIAL to specify the initial values, the body of the
loop specifying the repetitive computation, loop termination conditions with WHILE
or UNTIL placed before the loop body if tested before the loop begins, or after the
loop body if tested at the end of each loop executed, and finally RETURNS followed
by a return expression to specify the values returned. The return expression can be
VALUE OF, ARRAY OF or STREAMS OF. VALUE OF can also be extended to
include VALUE OF SUM and other “reduction” operators. VALUE OF SUM var
returns the value of the arithmetic summation of var. For example:

FOR INITIAL

i:=1;

j =1
WHILE i < 10
REPEAT

j := OLD j * iy

i :=0LD i+ 1
RETURNS STREAM OF j
END FOR

returns a stream of factorial values 1, 2, 6, 24 - .
Iterations that can be performed in parallel (i.e. without any data dependencies)
have a separate “for-all” FOR expression, for example:

FOR 1 IN 1,n

Sum := A[i]*i
RETURNS VALUE OF SUM sum
END FOR

returns the summation of the elements after each is multiplied by i. The construct
IN 1, n specifies that there will be n activations of the loop, each with a successive
value of i from 1 to n. Each activation can proceed in parallel. The construct VALUE
OF SUM sum specifies that each value of sum computed is added together.

For-all iteration expressions are available to access multidimensional arrays,
either with the inner (dot) product range of indices or the outer product range of
indices, using DOT and CROSS respectively. For example 1 IN 1,4 DOT Jj IN
8, 11 generates the indices [1,8], [2,9], [3,10] and [4,11]and i IN 1,5 CROSS j
IN 11,15 generates the indices [1,1], [2,1], [3,1], [4,1], [1,2], [2,2], [3,2], [4.2],
1,31, [2,31, [3,3], [4,3], [1,4], [2,4], [3,4] and [4,4]. There is more than one method
by which the system implements the VAL OF SUM summation (and other reduction

Multiprocessor systems using the dataflow mechanism 349

operators). The method used may result in different values producing overflow
conditions and the language definition fails to be sufficiently precise if the actual
method is not specified, as in VAL (McGraw, 1982). For example, the summation
could be done by adding successive values to an accumulating sum, the most likely
method for a single processor system. Alternatively, a tree could be formed with
pairs of values added at each node of the tree and partial results passed upwards
towards the root of the tree. This method would allow each node to be done on a
separate processor concurrently. It is possible that one method may produce an
overflow not occurring in the other method. In SISAL, the associativity order can be
specified using LEFT, RIGHT and TREE.

Internal error detection and recovery in a traditional computer often relies on
errors being detected by processor hardware during the execution of an instruction.
An interrupt mechanism is activated to make the processor execute an error routine.
This method may be hard to do in a dataflow computer with substantial concurrency.
In VAL and SISAL, error handling is performed in a novel way by introducing error
values within each data type. When an error is produced at a node, the appropriate
error value is generated in place of a valid numeric or Boolean data value. For
example, in VAL, positive and negative overflow are indicated with the error values
POS_OVER, and NEG_OVER respectively. Underflow is indicated by POS_UNDER
and NEG_UNDER. An error condition not identified specifically has the error value
UNDEF. Boolean values now become three-valued, TRUE, FALSE and UNDEF.
SISAL has the values UNDEF, to cover all arithmetic errors, and BROKEN, to indicate
some form of control flow error preventing the desired result being generated. Error
values are propagated through successive nodes. Both languages have methods of
testing for errors.

There are other languages for dataflow, for example the dataflow language Lucid
(Wadge and Ashcroft, 1985).

10.4 Macrodataflow

10.4.1 General

The dataflow mechanism as described operates at the instruction level, i.e. so-called
fine grain dataflow. However, there is a high communications overhead in passing
operands. A mechanism to reduce this communications overhead is to apply dataflow
at the procedural level, so-called coarse grain dataflow. It is also possible to have
variable grain dataflow in which nodes might represent simple operations through to
complete sequential procedures. A number of phrases have been invented in the
literature to describe the variations in dataflow. For example, coarse grain/variable
grain dataflow can be described as combined dataflow/control flow. We shall use the
term macrodataflow (a term also used by Gajski et al. (1983) and others) to cover
dataflow in which each node can represent a complex serial function. Macrodataflow

350 Multiprocessor systems without shared memory

graphs assume the same overall construction as fine grain dataflow graphs, in that
each node is interconnected to other nodes by arcs carrying tokens. The tokens can
carry single data items. Given that the nodes represent procedures/functions, the
input tokens carry procedure/function parameters, and the output tokens carry
procedure/function results.

Macrodataflow node firing rules can be:

1. Standard firing rule — node fires only when all of the operands are received.

2. Non-standard firing rule — node fires when certain specified operands are
received. Each nodal operation is completed when all necessary operands are
received. (The necessary operands may not be all of the operands.)

The second firing rule, a variation of the first, allows part of a procedure/function to
be executed while waiting for additional parameters to complete the procedure/
function. The firing rule would be inappropriate for a fine grain dataflow system
because the fired operations of fine grain dataflow are of a simple type and would
normally require all the inputs to perform any meaningful processing. The non-
standard firing rule includes the possibility that one or more of the input tokens need
not ever be received for the node to fire. These tokens become “don’t care”
conditions. The tokens that must arrive to start the node firing, those which must
arrive eventually and the “don’t care” conditions can be specified in the nodal
enabling conditions, for example, for each input arc, 1 = token must arrive to start, 0
= token can arrive later and X = “don’t care” condition.

10.4.2 Macrodataflow architectures

The original fine grain dataflow systems, operating either as static or dynamic
dataflow, employed ring structure architectures, the VLSI array dataflow systems
being an exception. Macrodataflow (coarse grain) computing tends to suggest more
conventional architectures containing a number of processing elements centrally
controlled with access to a common memory. An example of a suitable system is the
Cedar computer system (Gajski et al., 1983) shown in Figure 10.13. A number of
processor clusters connect to a global memory through a global routing network.
Each processor cluster consists of a number of processing elements connecting to a
number of local memory units through a local routing network and controlled by a
cluster control unit within the processor cluster. The processor clusters are controlled
by a global control unit. The program is a directed graph which is loaded into the
global control unit which controls the execution of the program.

A macrodataflow architecture presented by Ayyad and Wilkinson (1987) employs
a shared memory system but with the unusual characteristic that the memory
provides access to specific locations, rather than the processor using bus arbitration
to access the memory. Access to specific memory locations is offered and identified
to the processors by broadcasting the memory addresses in a repeating sequence.

Multiprocessor systems using the dataflow mechanism 351

Global memory

Global
Global network control
unit

1/0 cluster
—————— Processor clusters

A

(a) 1/0 devices

1
|
|
|
:
ccul |
:
|
|
I
|

(b)

Figure 10.13 Cedar computer system (a) Architecture (b) Processor cluster
(LM, local memory; LN, local network; P, processor; CCU, cluster control unit)

The sequence of locations offered can be found from knowledge of those nodes not
yet satisfied. Figure 10.14(a) shows an implementation using a common bus inter-
connection system. A number of processors, each with local memory, are connected
to a common memory through a single bus. Logic in each processor compares the
incoming address from the common memory module with the address required by
the processor. When a match is found, a data path is established between the
common memory and the processor. Though a common bus is used here, no bus
contention occurs and no arbitration logic is required. The cycling can operate at
very high speed and is only limited by the address generation logic and the
comparators; the address sequencing is only temporarily halted for memory accesses
when necessary. Simultaneous writing to the same location in the common memory
by more than one processor must be inhibited in the scheme. In macrodataflow,
simultaneous writing of parameters into a common memory location should never
occur.

An implementation for a cross-bar switch architecture is shown in Figure 10.14(b)
and requires each memory module to be provided with address generation logic but,
significantly, no additional traditional arbitration logic is required. Typically, the

352 Multiprocessor systems without shared memory

Bus

| Data buffer
|

Comparator

— 0

Processor Processor
with local with local
memory memory
A 1
Data Address Data Address
\ ¥
[:34— Comparator E Comparator
\] A
Buffer L Buffer
Data 1 Address
S inialaint it
! L1
Common | { Memory | Address !
memory | generator |
|
Lo J
(a) Common bus
Common memory modules
L IR §
| | ! |
| | *o° |
I | | :
| | |
Processors L J L E_J
withlocal i et T
memory Address
Address generator

Crossbar
switches

mE

u.’.l

&
L

(b) Cross-bar switch

Figure 10.14 Macrodata flow architecture (@) Common bus
(b) Cross-bar switch

Multiprocessor systems using the dataflow mechanism 353

upper address bits from the processing elements select the memory module. In the
cross-bar switch implementation it is possible for more than one processor to access
the same memory module during the same address generation cycle. In a normal
cross-bar switch system this is prevented by the arbitration logic.

In dataflow, and in macrodataflow computations in particular, we would expect a
processor to be waiting for more than one parameter on occasion. To accommodate
multiple requests, the system can be provided with additional comparator circuits.
As an alternative to using discrete comparators, particularly for multiple requests,
content addressable memories (CAMs) could be employed, which compare all
stored values with an applied value simultaneously. In this application, the addresses
of locations required by the processor are loaded into a CAM as they are generated.
Addresses generated by the cycling device are compared simultaneously with all
stored addresses by the internal logic of the CAM. If any match is found, the
processor is informed, perhaps by an interrupt signal. A signal is also passed to the
cycling device to prevent it continuing with the next address and a data path is
established.

10.5 Summary and other directions

Dataflow has had a fairly long development time, with a few research groups
studying the technique in earnest since the mid-1970s without it becoming wide-
spread in commercial use. Admittedly, the pressure of market forces to maintain
compatibility with existing systems greatly inhibit the introduction of a radically
different computer system requiring a different style of programming and different
programming languages. The dataflow idea of operations only being performed
when the operands are available was applied to a traditional stored program computer
in the IBM 360/91 in the form of internal forwarding (Section 4.2.4, page 122) in
the later 1960s and predates dataflow architectural developments. However, this
early form of dataflow was abandoned after the introduction of cache memories,
which achieved better performance with less complicated hardware. Subsequently,
commercial computer manufacturers studied the technique for a while, for example
Digital Equipment Corporation, with their initial involvement with the Manchester
dataflow project. It would seem that dataflow will become a general computer
technique just as pipelining is a general technique and will find some applications.
Hence it is included in this text.

We have developed the designs of computers, starting from enhancements to the
single processor stored program computer (Part I) through to the application of more
than one processor sharing a memory (Part II) and finally to systems which do not
share globally stored data (Part III). There are some other possible computer designs
not dealt with, such as neural computers, computers based upon optical technology
and architectures for implementing functional languages. There have been a few
experimental systems for implementing functional languages, especially in England,

354 Multiprocessor systems without shared memory

including the ALICE machine at Imperial College, London and the GRIP (Graph
Reduction in Parallel) machine at University College, London. For the most part,
these experimental projects have used architectures that do not look significantly
different to shared/local memory multiprocessor systems, except for the support
given to the computational model. The specialized ring architectures such as the
early dataflow computer architectures have not been used. The reader is referred to
Peyton Jones (1989) and the references contained in this paper for further information
on research directions on systems for functional programming.

PROBLEMS

10.1 Draw a dataflow graph to compute the function:
T = (x +)(x = /(2 = y?)
Show the movement of tokens through the graph.
10.2 Draw a dataflow graph to achieve a BRANCH operation using two
MERGE operations and a dataflow graph to achieve a MERGE operation

using two BRANCH operations.

10.3 Identify the situations in which both fields of a two-field tag,
activation name and index, would need to change.

10.4 Determine the computation performed by the SISAL code segment:
FOR x IN data
RETURNS
VALUE OF SUM x
END FOR
where data is a stream of integers.

10.5 The following is a code segment written in the VAL language:

FORALL i IN [1,n]

x := IF i = 2 THEN x
EVAL PLUS x*i
PLUS x

ENDALL

which is similar to SISAL. Deduce the computation performed.

Multiprocessor systems using the dataflow mechanism 355
10.6 Draw a dataflow graph for the SISAL program:

FOR i IN 1,n

x = IF (i/2)*2 = i THEN X
RETURNS SUM OF x
END FOR

10.7 Write a program in SISAL to perform matrix multiplication of two
n X n matrices.

10.8 Write a SISAL program to compute the numerical integration of a
function f(x) by dividing the integral into small areas and computing

each area using trapezoidal approximation (see Section 9.2.2, page 305).

10.9 Draw dataflow graphs for the C programs:

(@) if ((a == Db) && (c <d)) ¢ =c¢c - a;
else ¢ = ¢ + a;
() for (1 = 1; i < m; i++) {
cli] = 0;
for (3 = 1; j < n; j++) cl[i] = c[i] + a[i]l*b[i]:

}
Rewrite (a) in SISAL.

10.10 Design a VLSI array dataflow system using a north—south—east—
west mesh interconnection pattern. Give details of the instruction memory
and matching logic.

10.11 Make a study of the viability of a variable grain dataflow system
on a shared memory multiprocessor system. What types of hardware
support would you envisage being required?

10.12 Discuss how a message-passing multiprocessor system could
operate on dataflow principles.

References and further
reading

Abraham, S. and K. Padmanabhan (1989), “Performance of the direct binary n-cube network
for multiprocessors”, IEEE Trans. Comput., 38, no. 7, 1000-11.

Advanced Micro Devices (1988), 32-bit Microprogrammable Products Am29C300/29300
Data Book, Sunnyvale, California.

Agarwal, A., M. Horowitz and J. Hennessy (1989), “An analytical cache model”, ACM Trans.
Comp. Syst., T, no. 2, 184-215.

Agrawal, P. D., V. K. Janakiram and G. C. Pathak (1986), “Evaluating the performance of
multicomputer configurations”, IEEE Computer, 19, no. 5, 23-7.

Allan, S. J. and R. R. Oldehoeft (1985), “HEP SISAL: Parallel functional programming”, in
MIMD Computation: The HEP supercomputer and its applications, J. S. Kowalik (ed.),
MIT Press: Cambridge, Massachusetts, 123-50.

Andrews, G. R. and F. B. Schneider (1983), “Concepts and notations for concurrent
programming”, Computer Surveys, 5, no. 1, 3-43.

Arvind and R. S. Nikhil (1990), “Executing a program on the MIT tagged-token dataflow
architecture”, IEEE Trans. Comput., 39, no. 3, 300-18.

Athas, W. C. and C. L. Seitz (1988), “Multicomputers: Message-passing concurrent
computers”, IEEE Computer, 21, no. 8, 9-24.

August, M. C., G. M. Brost, C. C. Hsiung and A. J. Schiffleger (1989), “Cray X-MP: The
birth of a supercomputer”, IEEE Computer, 22, no. 1, 45-52.

Ayyad, A. and B. Wilkinson (1987), “Multiprocessor scheme with application to macro-
dataflow”, Microprocessors Microsyst., 11, no. 5, 255-63.

Babb II, R. G. (1984), “Parallel processing with large-grain data flow techniques”, IEEE
Computer, 17,no. 7,55-61.

Babb II, R. G. (1985), “Programming the HEP with large-grain data flow techniques”, in
MIMD Computation: The HEP supercomputer and its applications, J. S. Kowalik (ed.),
MIT Press: Cambridge, Massachusetts, 203-27.

Babb II, R. G. (ed.) (1988), Programming Parallel Processors, Addison-Wesley: Reading,
Massachusetts.

Baer, J.-L. (1980), Computer Systems Architecture, Computer Science Press: Rockville,
Maryland.

Banning, J. (1979), “Z-bus and peripheral support packages tie distributed computer systems
together”, Electronic Design, 27, no. 24.)

Barron, 1., P. Cavill and D. May (1983), “Transputer does 10 or more MIPS even when not
used in parallel”, Electronics, November, 109-15.

357

358 References and further reading

Baskett, F. and A. J. Smith (1976), “Interference in multiprocessor computer systems with
interleaved memory”, Comm. ACM, 19, 327-34.

Batcher, K. E. (1980), “Design of a massively parallel processor” IEEE Trans. Comput.,
C-29, 83640.

Beetem, J., M. Denneau and D. Weingarten (1987), “The GF11 parallel computer”, in
Experimental Parallel Computer Architectures,]. J. Dongarra (ed.), North-Holland:
Amsterdam, 255-98.

Beims, B. (1984), “Multiprocessing capabilities of the MC68020 32-bit microprocessor”,
Application Note AR220, Motorola Inc.

Belady, L. (1966), “A study of replacement algorithms for a virtual-store computer”, IBM
Systems Journal, §, no. 2, 78-101.

Bell, J., D. Casasent and C. G. Bell (1974), “An investigation of alternative cache
organizations”, IEEE Trans. Comput., C-23, no. 4, 346-51.

Benes, V. E. (1965), Mathematical Theory of Connecting Networks and Telephone Traffic,
Academic Press: New York.

Bernstein, A. J. (1966), “Analysis of programs for parallel processing”, IEEE Trans. Elec.
Comput., E-15, 746-57.

Bhandarkar, D. P. (1975), “Analysis of memory interference in multiprocessors”, IEEE
Trans. Comput., C-24, no. 9, 897-908.

Bhuyan, L. N. (1985), “An analysis of processor-memory interconnection networks”, IEEE
Trans. Comput., C-34, no. 3, 279-83.

Bhuyan, L. N. (1987), “Interconnection networks for parallel and distributed processing”,
IEEE Computer, 20, no. 5, 9-12.

Bhuyan, L. N. and D. P. Agrawal (1983), “Design and performance of generalized
interconnection networks”, IEEE Trans. Comput., C-32, no. 12, 1081-9.

Bhuyan, L. N. and D. P. Agrawal (1984), “Generalized hypercube and hyperbus structures for
a computer network”, IEEE Trans. Comput., C-33, no. 1, 323-33.

Blevins, D. W., E. W. Davis, R. A. Heaton and J. H. Reif (1988), “Blitzen: A highly
integrated massively parallel machine”, Proc. 2nd Sym. Frontiers of Massively Parallel
Computations, October, Fairfax, Virginia.

Béhm, A. P. W. and J. Sargeant (1989), “Code optimization for tagged-token dataflow
machines”, IEEE Trans. Comput., 38, no. 1, 4-14.

Bouknight, W. J., S. A. Denenberg, D. E. Mclntyre, J. M. Randall, A. H. Sameh and D. L.
Slotnick (1972), “The Illiac IV system”, Proc. IEEE, April, 369-88. Reprinted (1982), in
Computer Structures Principles and Examples, D. P. Siewiorek, C. G. Bell and A.
Newell, McGraw-Hill: New York.

Broomell, G. and J. R. Heath (1983), “Classification categories and historical development of
circuit switching topologies”, Computing Surveys, 15, no. 2, 95-133.

Buehrer, R. and K. Ekanadham (1987), “Incorporating data flow ideas into von Neumann
processors for parallel execution”, I[EEE Trans. Comput., C-36, no. 12, 1515-22.

Burns, A. (188), Programming in Occam 2, Addison-Wesley: Wokingham, England.

Buzbee, B. (1984), “Parallel processing makes tough demands”, Computer Design,
September, 137—40.

Chaitin, G. J., M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins and P. W. Markstein
(1981), “Register allocation via coloring”, Computer Languages, 6, 47-57.

Chang, D. Y., D. J. Kuck and D. H. Lawrie (1977), “On the effective bandwidth of parallel
memories”, IEEE Trans. Comput., C-26, no. 5, 480-90.

References and further reading 359

Chen, T. C. (1980), “Overlap and pipeline processing”, in Introduction to Computer
Architecture, H. S. Stone et al., 2nd ed., SRA: Chicago, 427-85.

Cheng, H. (1989), “Vector pipelining, chaining and speed on the IBM 3090 and Cray X-MP”,
IEEE Computer, 22, no. 9, 31-46.

Chu, W. W. and H. Opderbeck (1976), “Program behavior and the page-fault-frequency
replacement algorithm”, IEEE Computer, 9, no. 11, 29-38.

Clark, D. W. and J. S. Emer (1985), “Performance of the VAX-11/780 translation buffer:
Simulation and measurement”, ACM Trans. Comput. Syst., 3, no. 2, 31-62.

Conti, C. J., D. H. Gibson and S. H. Pikowsky (1968), “Structural aspects of the system 360/
85: General organization”, IBM Systems Journal, 2—14.

Conway, M. E. (1963), “A multiprocessor system design”, Proc. AFIPS Fall Joint Computer
Conf., 4, 139-46, Spartan Books: Baltimore, Maryland.

Dally, W. and C. L. Seitz (1987), “Deadlock-free message routing in multiprocessor
interconnection networks”, IEEE Trans. Comput., C-36, no. 5, 547-53.

Das, C. R. and L. N. Bhuyan (1985), “Bandwidth availability of multiple-bus
multiprocessors”, IEEE Trans. Comput., C-34, no. 10, 918-26.

Dasgupta, S. (1990), “A hierarchical taxonomic system for computer architectures”, IEEE
Computer, 23, no. 3, 64-74. ,

Davidson, E. S. (1971), “The design and control of pipelined function generators”, Proc.
1971 Int. Conf. on Systems, Networks and Computers, Oaxtepec, Mexico, 19-21.

Denning, P. J. (1968), “The working set model for program behavior”, Comm. ACM, 11,
no. 11, 323-33.

Denning, P. 1. (1970), “Virtual memory”, Computing Surveys, 2, no. 3, 153-89.

Denning, P. J. (1980), “Working sets past and present”, I[EEE Trans. Soft. Eng., SE-6, no. 1,
64-84.

Denning, P.J. and D.R. Slutz (1978), “Generalized working sets for segmented reference
strings”, Comm. ACM, 21, no. 9, 750-9.

Dennis, J. B. (1974), “First version of a data flow procedure language”, Lecture Notes in
Computer Science, 19, 362.

Dettmer, R. (1985), “Chip architecture for parallel processing”, Electronics and Power,
March, 227-31.

Dijkstra, E. W. (1968), “Cooperating sequential processes”, in Programming Languages,
F. Genuys (ed.), Academic Press: New York, 43-112.

Dubois, M., C. Scheurich and F. A. Briggs (1988), “Synchronization, coherence and event
ordering in multiprocessors”, IEEE Computer, 21, no. 2, 9-21.

Duncan, R. (1986), Advanced MSDOS, Microsoft Press: Redmond, Washington.

Easton, M. E. and P. A. Franaszek (1979), “Use bit scanning in replacement decisions”, IEEE
Trans. Comput., C-28, no. 2, 133-41.

Feng, T.-Y. (1972), “Some characteristics of associative/parallel processing”, Proc. 1972
Sagamore Computing Conf., 5-16.

Feng, T.-Y. (1981), “A survey of interconnection networks”, IEEE Computer, 14, no. 12,
12-27.

Fernbach, S. (ed.) (1986), Supercomputers Class VI Systems, Hardware and Software, North-
Holland: Amsterdam.

Fisher, J. A. (1984), “The VLIW machine: a multiprocessor for compiling scientific code”,
IEEE Computer, 17, no. 7, 45-54.

Flynn, M. J. (1966), “Very high speed computing systems”, Proc. IEEE, 12, 1901-9.

360 References and further reading

Gabriel, J., T. Lindholm, E. L. Lusk and R. A. Overbeek (1985), “Logic programming on the
HEP”, in MIMD Computation: The HEP supercomputer and its applications, J. S. Kowalik
(ed.), MIT Press: Cambridge, Massachusetts, 181-202.

Gajski, D., D. Kuck, D. Lawrie and A. Sameh (1983), {‘Cedar: A large scale multiprocessor”,
Proc. 1983 Int. Conf. on Parallel Processing, IEEE, 524-9.

Gajski, D. and J.-K. Peir (1985), “Essential issues in multiprocessor systems”, IEEE
Computer, 18, no. 6, 9-27.

Gehani, N. and A. D. McGettrick (eds.) (1988), Concurrent Programming, Addison-
Wesley: Wokingham, England.

Gimarc, C. E. and V. M. Milutinovi¢ (1987), “A survey of RISC processors and computers of
the mid 1980s”, IEEE Computer, 20, no. 9, 59-69.

Glauert, J. R. W., J. R. Gurd and C. C. Kirkham (1985), “Evolution of a dataflow
architecture”, in Concurrent Languages in Distributed Systems, G. L. Reijns and E. L.
Daglass (eds.), Elsevier Science Publishers B. V.: North-Holland, 1-15.

Goodman, J. R. and C. H. Séquin (1981), “Hypertree: A multiprocessor interconnection
topology”, IEEE Trans. Comput., C-30, no. 12, 923-33, ,

Gottlieb, A., R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph and M. Snir (1983),
“The NYU ultracomputer: designing an MIMD shared memory parallel computer”, IEEE
Trans. Comput., C-32, no. 2, 175-89.

Goyal, A. and T. Agerwala (1984), “Performance analysis of future shared storage systems”,
IBM J. Res. Develop., 28, no. 1, 95-107.

Grimsdale, R. L. (1984), “Programming languages”, in Distributed Computing, F. B.
Chambers, D. A. Duce and G. P. Jones (eds.), Academic Press: London.

Grossman, C. P. (1985), “Cache-DASD storage design for improving system performance”,
IBM Systems Journal, 24, no. 314, 316-34.

Gupta, A. (ed.) (1987), Multi-Microprocessors, IEEE Press: New York. :

Gupta, A. and H.-M. D. Toong (1985), “Increasing throughput of multiprocessor systems”,
IEEE Trans. Ind. Electronics, IE-32, no. 3, 260-7.

Gurd, J. R,, C. C. Kirkham and I. Watson (1985), “The Manchester prototype dataflow
computer”, Comm. ACM, 28, no. 1, 34-52.

Gurd, J. R. and I. Watson (1980), “Data driven system for high speed parallel computing:
Part 2-Hardware design”, Computer Design, July, 97-106.

Hallin, T. G. and M. J. Flynn (1972), “Pipelining of arithmetic functions”, IEEE Trans.
Comput., August, 880-6.

Hindler, W. (1977), “The impact of classification schemes on computer architecture”, Proc.
Int. Conf. Parallel Processing, August, 7-15.

Hayes, J. P. (1988), Computer Architecture and Organization, 2nd ed., McGraw-Hill: New
York.

Hellerman, H. (1966), “On the average speed of a multiple-module storage system”, IEEE
Trans. Electronic Comput., August, 670.

Hennessy, J. L. (1984), “VLSI processor architecture”, IEEE Trans. Comput., C-33, no.

12, 1221-46.

Hennessy, J. L. and D. A. Patterson (1990), Computer Architecture: A Quantitative
Approach, Morgan Kaufmann: San Mateo, California.

Hill, M. D. (1988), “A case for direct-mapped caches”, IEEE Computer, 21, no. 12, 25-40.

Hillis, W. D. (1985), The Connection Machine, MIT Press: Cambridge, Massachusetts.

Hoare, C. A. R. (1974), “Monitors: An operating system structuring concept”, Comm. ACM,
17, no. 10, 549-57.

References and further reading 361

Hoare, C. A. R. (1978), “Communicating sequential processes”, Comm. ACM, 21, no. 8,
666-77.

Hodges, A. (1983), Allan Turing the Enigma, Simon and Schuster: New York.

Holliday, M. A. and M. K. Vernon (1987), “Exact performance estimates for multiprocessor
memory and bus interference”, IEEE Trans. Comput., C-36, no. 1, 76-84.

Hoogendoorn, C. H. (1977), “A general model for memory interference in multiprocessors”,
IEEE Trans. Comput., C-26, no. 10, 998—1005.

Howe, C. D. and B. Moxon (1987), “How to program parallel processors”, IEEE Spectrum,
24, no. 9, 36-41.

Hughes, J. (1989), “Why functional programming matters”, The Computer Journal, 32,
no. 2, 98-107.

Hwang, K. (1979), “Global and modular two’s complement cellular array multipliers”, IEEE
Trans. Comput., C-28, no. 4, 300-6.

Hwang, K. (1985), “Multiprocessor supercomputers for scientific/engineering applications”,
IEEFE Computer, 18, no. 6, 57-73.

Hwang, K. and F. A. Briggs (1984), Computer architecture and parallel processing,
McGraw-Hill: New York.

Hwang, K., J. Ghosh and R. Chowkwanyun (1987), “Computer architectures for artificial
intelligence processing”, IEEE Computer, 20, no. 1, 19-27.

Hwang, K., P.-S. Tseng and D. Kim (1989), “An orthogonal multiprocessor for parallel
scientific computations”, IEEE Trans. Comput., 38, no. 1, 47-61.

Inmos Ltd. (1984a), “IMS T424 transputer preliminary data”, Bristol, England.

Inmos Ltd. (1984b), Occam Programming Manual, Prentice Hall: Englewood Cliffs, New
Jersey.

Inmos Ltd. (1986), Transputer Reference Manual, Bristol, England.

Inmos Ltd. (1987), IMS T800 Architecture, Technical Note 6, Bristol, England.

Intel Corp. (1979), The 8086 Family User’s Manual, Santa Clara, California.

Intel Corp. (1982), Component Data Catalog, Santa Clara, California.

Intel Corp. (1985a), iAPX 86/88, 186/188 User’s Manual Hardware Reference, Santa Clara,
California.

Intel Corp. (1985b), Introduction to the 80386, Santa Clara, California.

Intel Corp. (1987a), 80286 High Performance Microprocessor with Memory Management and
Protection, Santa Clara, California.

Intel Corp. (1987b), 82385 High-Performance 32-bit Cache Controller Architectural
Overview, Santa Clara, California.

Irani, K. B. and I. H. Onyiiksel (1984), “A closed-form solution for the performance analysis
of multiple-bus multiprocessor systems”, IEEE Trans. Comput., C-33, no. 11, 1004-12.

Jordan, H. F. (1985), “HEP architecture programming and performance”, in MIMD
Computation: The HEP supercomputer and its applications, J. S. Kowalik (ed.), MIT
Press: Cambridge, Massachusetts, 1-40.

Jump, J. R. and S. R. Ahuja (1978), “Effective pipelining of digital systems”, IEEE Trans.
Comput., C-27, no. 9, 855-65.

Karp, A. H. (1987), “Programming for parallelism”, IEEE Computer, 20, no. 5, 43-51.

Karp, R. M. and R. E. Miller (1966), “Properties of a model for parallel computations:
Determinacy, termination, queueing”, STAM Journal of Applied Mathematics, 14, no. 6,
1390.

Katevenis, M. G. H. (1985), Reduced Instruction Set Computer Architectures for VLSI, MIT
Press: Cambridge, Massachusetts.

362 References and further reading

Kilburn, T., D. B. G. Edwards, M. J. Lanigan and F. H. Sumner (1962), “One-level storage
system”, IRE Trans., EC-11, 223-35. Reprinted (1982), in Computer Structures Principles
and Examples, D. P. Siewiorek, C. G. Bell and A. Newell, McGraw-Hill: New York.

Kogge, P. M. (1981), The Architecture of Pipelined Computers, McGraw-Hill: New York.

Koren, I., B. Mpndelson, I. Peled and G. M. Silberman (1988), “A data-driven VLSI array for
arbitrary algorithms”, IEEE Computer, 21, no. 10, 30-43.

Kung, H. T. (1982), “Why systolic architectures”, IEEE Computer, 15, no. 1, 37-46.

Kung, S.-Y., K.S. Arun, R. J. Gal-Ezer and D. V. B. Rao (1982), “Wavefront array processor:
Language, architecture and applications”, IEEE Trans. Comput., C-31, no. 11, 1054-65.

Lamport, L. (1979), “How to make a multiprocessor computer that correctly executes
multiprocess programs”, IEEE Trans. Comput., C-28, no. 9, 690-1.

Lang, G. R., M. Dharssi, F. M. Longstaff, P. S. Longstaff, P. A. S. Metford and M. T.
Rimmer (1988), “An optimum parallel architecture for high-speed real-time digital signal
processing”, IEEE Computer, 21, no. 2, 47-57.

Lang, T., M. Valero and I. Alegre (1982), “Bandwidth of crossbar and multiple-bus
connections for multiprocessors”, IEEE Trans. Comput., C-31, no. 12, 1227-34,

Lang, T., M. Valero and M. A. Fiol (1983), “Reduction of connections for multibus
organizations”, I[EEE Trans. Comput., C-32, no. 8, 707-16.

Lea, R. M. (1986), “VLSI and WSI associative string processors for cost-effective parallel
processing”, The Computer Journal, 29, no. 6, 486-94.

Lilja, D. J. (1988), “Reducing the branch penalty in pipelined processors”, IEEE Computer,
21, no. 7, 47-55.

Lipovski, G. J. and M. Malek (1987), Parallel Computing Theory and Comparisons, Wiley:
New York.

Liskov, B., M. Herlihy and L. Gilbert (1988), “Limitations of synchronous communication
with static process structure in languages for distributed computing”, in Concurrent -
Programming, N. Gehani and A. D. McGettrick (eds.), Addison-Wesley: Wokingham,
England, 545-64.

Liu, Y.-C. and C.-J. Jou (1987), “Effective memory bandwidth and processor blocking
probability in multiple-bus systems”, IEEE Trans. Comput., C-36, no. 6, 761—4.

Mano, N. M. (1982), Computer System Architecture, Prentice Hall: Englewood Cliffs, New
Jersey.

Maruyama, K. (1975), “mLRU page replacement algorithm in terms of the reference matrix”,
IBM Tech. Disclosure Bulletin, 17, no. 10, 3101-3.

Matsen, F. A. and T. Tajima (eds.) (1986), Supercomputers, and Scientific Computations,
University of Texas Press: Austin, Texas.

Mattos, P. (1987a), “Applying the transputer”, Electronics and Power, June, 397-401.

Mattos, P. (1987b), “Program design for concurrent systems”, Inmos Ltd., Technical Note 5,
Bristol, England.

May, D. (1987), Occam 2 Language Definition, Inmos Ltd: Bristol, England.

May, D. and R. Taylor (1984), “OCCAM: an overview”, Microprocessors Microsyst., 8,
no. 2, 73-80.

Maytal, B., S. Iacobovici, D. B. Alpert, D. Biran, J. Levy and S. Y. Tov (1989), “Design
considerations for a general-purpose microprocessor”, IEEE Computer, 22, no. 1, 66-76.
McGraw, J. R. (1982), “The VAL language: description and analysis”, ACM Trans. Program.

Lang. Syst., 4, no. 1, 44-82.

Microsoft Inc. (1987), Microsoft Macro Assembler 5.1 Microsoft CodeView and Utilities,

Microsoft Press: Redmond, Washington.

References and further reading 363

Milutinovié, V. M. (1989), High Level Language Computer Architectures, Computer Science
Press, Freeman and Co: New York.

Mokhoff, N. (1984), “Parallelism makes strong bid for next generation computers”, Computer
Design, September, 104-31.

Motorola Inc. (1984), MC68000 16-32-bit Microprocessor Programmer’s Reference Manual,
4th ed.

Motorola Inc. (1985a), MC68452 Advance Information, Phoenix, Arizona.

Motorola Inc. (1985b), MC68000 16-/132-bit Microprocessor, East Kilbride, Scotland.

Motorola Inc. (1988a), MC88100 RISC Microprocessor User’s Manual, Phoenix, Arizona.

Motorola Inc. (1988b), MC88200 Cache/Memory Management Unit User’s Manual, Phoenix,
Arizona.

Mudge, T. N., J. P. Hayes, G. D. Buzzard and D. C. Winsor (1984), “Analysis of multiple bus
interconnection networks”, Proc. 1984 Int. Conf. on Parallel Processing, IEEE, 228-32.

National Semiconductor Inc. (1981), COP2440/COP2441/COP2442 and COP2340/
COP2341/COP2342 Single-Chip Dual CPU Microcontrollers.

Nelson, J. C. C. and M. K. Refai (1984), “Design of a hardware arbiter for multi-
microprocessor systems”, Microprocessors Microsyst., 8, no. 1, 21-4.

Ottenstein, K. J. (1985), “A brief survey of implicit parallelism detection”, in MIMD
Computation: The HEP supercomputer and its applications, J. S. Kowalik (ed.), MIT
Press: Cambridge, Massachusetts, 93-122.

Oxley, D. (1981), “Motivation for a combined data flow-control flow processor”, 25th
Annual Symposium of the Society of Photo-Optical Instrumentation Engineers — Sessions
on Real-Time Signal Processing IV, San Diego, California, 305-11.

Padua,D.A.,D.J. Kuck and D. H. Lawrie (1980), “High-speed multiprocessors and
compilation techniques” , IEEE Trans. Comput., C-29, no. 9, 763-76.

Padua, D. A. and M. J. Wolfe (1986), “Advanced compiler optimizations for
supercomputers”, Comm. ACM, 29, no. 12, 1184-1201.

Pase, D. M. and A. R. Larrabee (1988), “Intel iPSC Concurrent Computer”, in
Programming Parallel Processors, R. G. Babb II (ed.), Addison-Wesley: Reading,
Massachusetts, 105-23.

Patel, J. H. (1981), “Performance of processor-memory interconnections for
multiprocessors”, IEEE Trans. Comput., C-30, 771-80.

Patterson, D. A. (1985), “Reduced instruction set computers”, Comm. ACM, 28, no. 1, 8-

21.

Patterson, D. A. and J. L. Hennessy (1985), “Response to ‘computers, complexity and
controversy’”, IEEE Computer, 18, no. 11, 142-3.

Patton, P. C. (1985), “Multiprocessors: architecture and applications”, IEEE Computer, 18,
no. 5, 29-40.

Paul, G. and G. S. Almasi (eds.) (1988), Parallel Systems and Computations, North-Holland:
Amsterdam.

Pease III, M. C. (1977), “The indirect binary n-cube microprocessor array”, IEEE Trans.
Comput., C-26, no. 5, 458-73.

Perrott, R. H. and A. Zarea-Aliabadi (1986), “Supercomputer languages”, Computing Surveys,
18, no. 1, 5-22.

Peyton Jones, S. L. (1989), “Parallel implementation of functional programming languages”,
The Computer Journal, 32, no. 2, 175-86.

Pfister, G. F. and V. A. Norton (1985), Hot spot contention and combining in multistage
interconnection networks”, IEEE Trans. Comput., C-34, no. 10, 943-8.

364 References and further reading

Pohm, A. V. and O. P. Agrawal (1983), High-speed memory systems, Reston: Virginia.

Prieve, B. G. and R. S. Fabry (1976), “VMIN: an optimal variable-space page replacement
algorithm”, Comm. ACM, 19, no. 5, 295-7.

Radin, G. (1983), “The 801 minicomputer”, IBM J. Res. Develop., 27, no. 3, 237-46.

Raghavendra, C. S. and A. Varma (1986), “Fault-tolerant multiprocessors with redundant-
path interconnection networks”, IEEE Trans. Comput., C-35, no. 4, 307-16.

Ravi, C. V. (1972), “On the bandwidth and interference in interleaved memory systems”,
IEEE Trans. Comput., C-21, no. 4, 899-901.

Reddi, S. S. and E. A. Feurstel (1976), “A conceptual framework for computer architecture”,
Computing Surveys, 8, no. 2, 277-300.

Rettberg, R. and R. Thomas (1986), “Contention is no obstacle to shared-memory
multiprocessing”, Comm. ACM, 29, no. 12, 1202-12.

Roscoe, A. W. and C. A. R. Hoare (1986), The Laws of Occam Programmmg, Oxford
University Computing Laboratory, Technical Monograph PRG-53.

Seitz, C. L. (1984), “Concurrent VLSI architectures”, I[EEE Trans. Comput., C-33, no. 12,
1247-65.

Seitz, C. L. (1985), “The cosmic cube”, Comm. ACM, 28, no. 1, 22-33.

Skillicorn, D. B. (1988), “A taxonomy for computer architectures”, IEEE Computer, 21,
no. 11, 46-57.

Smith, A. J. (1982), “Cache memories”, Computing Surveys, 14, no. 3, 473-530.

Smith, A. J. (1985), “Disk cache: miss ratio analysis and design considerations”, ACM Trans.

Comput. Systems, 3, no. 3, 161-203.

Smith, A. J. (1987a), “Line (block) size selection in CPU cache memories”, IEEE Trans.
Comput., C-36, no. 9, 1063-75.

Smith, A. J. (1987b), “Cache memory design: An evolving art”, IEEE Spectrum, 24, no. 12,
40-4. :

Snyder, L. (1982), “Introduction to the configurable highly parallel computer”, IEEE
Computer, 15, no. 1, 47-56.

Srini, V. P. (1986), “An architectural comparison of dataflow systems”, IEEE Computer, 19,
no. 3, 68-87.

Stallings, W. (1987), Computer Organization and Architecture, Macmillan: New York.

Stone, H. S. et al (1980), Introduction to Computer Architecture, 2nd ed., SRA: Chicago.

Stone, H. S. (1987), High Performance Computer Architecture, Addison-Wesley: Reading,
Massachusetts.

Strecker, W. D. (1978), “VAX-11/780: A virtual address extension to the DEC PDP-11
family”, AFIPS Proc. NCC, 967-80. Reprinted (1982), in Computer Structures Principles
and Examples, by D. P. Siewiorek, C. G. Bell and A. Newell, McGraw-Hill: New York.

Strecker, W. D. (1983), “Transient behavior of cache memories”, ACM Trans. Comput.
Systems, 1, no. 4, 281-93.

Tabak, D. (1987), Reduced Instruction Set Computer RISC Architecture, Research Studies
Press Ltd.: Letchworth, England.

Tanenbaum, A. S. (1984), Structured Computer Organization (2nd ed.), Prentice Hall:
Englewood Cliffs, New Jersey.

Tanenbaum, A. S. (1990), Structured Computer Organization (3rd ed.), Prentice Hall:
Englewood Cliffs, New Jersey.

Terrano, A. E., S. M. Dunn and J. E. Peters (1989), “Using an architectural knowledge base
to generate code for parallel computers”, Comm. ACM, 32, no. 9, 1065-72.

Texas Instruments (1984), The TTL Data Book for Design Engineers, Dallas, Texas.

References and further reading 365

Thiebaut, D. and H. S. Stone (1987), “Footprints in the cache”, ACM Trans. Comput.
Systems, §, no. 4, 305-29,

Thornton, J. E. (1970), Design of a Computer: The Control Data 6600, Scott, Foresman and
Company: Glenview, Illinois.

Tomasulo, R. M. (1967), “An efficient algorithm for exploiting multiple arithmetic units”,
IBM Journal, 11, 25-33. Reprinted (1982), in Computer Structures Principles and
Examples, by D. P. Siewiorek, C. G. Bell and A. Newell, McGraw-Hill: New York.

Treleaven, P. C,, D. R. Brownbridge and R. P. Hopkins (1982), “Data driven and demand
driven computer architectures”, Computing Surveys, 14, no. 1, 93-143.

Tucker, S. G. (1986), “The IBM 3090 System: an overview”, IBM Systems Journal, 25,
no. 1, 4-18.

Vegdahl, S. (1984), “A survey of proposed architectures for the execution of functional
languages”, IEEE Trans. Comput., C-33, no. 12, 1050-71.

Wadge, W. W. and E. A. Ashcroft (1985), Lucid, the Dataflow Programming Language,
Academic Press: London.

Watson, 1. and J. R. Gurd (1979), “A prototype data flow computer with token labelling”,
AFIPS National Computer Conference, June 4-7, New York, 623-8.

Weiss, S. and J. E. Smith (1984), “Instruction issue logic in pipelined supercomputers”, IEEE
Trans. Comput., C-33, no. 11, 1013-22.

Wilkes, M. V. (1951), “The best way to design an automatic calculating machine”, Rept.
Manchester University Computer Inaugural Conf., 16—18. Reprinted (1976), in Computer
Design Development: Principal Papers, E. E. Schwartzenlander (ed.) Hayden: Rochelle
Park, New Jersey, 266-70.

Wilkinson, B. (1987), Digital System Design, Prentice Hall: London.

Wilkinson, B. (1989), “Simulation of rhombic cross-bar switch networks for
multiprocessors”, Proc. 20th Annual Pittsburgh Conf. on Modeling and Simulation, 1213~
18.

Wilkinson, B. and H. Abachi (1983), “Cross-bar switch multiprocessor system”,
Microprocessors Microsyst., 7, no. 2, 75-9.

Wittie, L. D. (1981), “Communication structures for large networks of microcomputers”,
IEEE Trans. Comput., C-30, no. 4, 264-73.

Wong, F. S. and M. R. Ito (1984), “Design and evaluation of the event-driven computer”,
Proc. IEE, 131, no. 6, 209-22.

Wulf, W. A. and S. P. Harbison (1978), “Refiections in a pool of processors: an experience
report on C.mmp/Hydra”, Carnegie-Mellon University Dept. of Computer Science Report
CMU-CS-78-103.

Yalamanchili, S. and J. K. Aggarwal (1985), “Reconfiguration strategies for parallel
architectures”, IEEE Computer, 18, no. 12, 44-61.

Yang, Q., L. N. Bhuyan and B.-C Liu (1989), “Analysis and comparison of cache coherence
protocols for a packet-switched multiprocessor”, IEEE Trans. Comput., 38, no. 8, 1143-53.

Yen, D. W. L., J. H. Patel and E. S. Davidson (1982), “Memory interference in synchronous
multiprocessor systems”, [EEE Trans. Comput., C-31, no. 11, 1116-21.

Yew, P.-C., N.-F. Tzeng and D. H. Lawrie (1987), “Distributing hot-spot addressing in large-
scale multiprocessors, IEEE Trans. Comput., C-36, no. 4, 388-95.

Zilog Inc. (1984), Z80000 CPU Preliminary Technical Manual, Cambell, California.

Zilog Inc. (1985), Z80000 CPU Preliminary Product Specification, Cambell, California.

Zilog Inc. (1986), Z280 MPU Microprocessor Unit, Advance Information, Cambell,
California.

Index

Absolute addressing, 7
Accessed bit, 42, 58
Access time:
average, 65-8, 934
cache, 67, 77, 78, 80, 934
memory, 50, 64
single bus system, 240-1
Accumulator, 6
Acknowledge signal, 216
Active low signal, 215
Ada, 305
Adder:
carry-look-ahead, 124
carry-save, 126-7
full, 124
ripple, 124
Addition:
fixed point, 124-7
floating point, 129-30
Address, 4:
lines, 14-15
local, 243
logical, 52
physical, 52
real, 27
virtual, 27
Addressing:
absolute, 7
immediate, 7
modes, 6
register direct, 7
register indirect, 7
RISC, 153
Address translation:
cache, 36-7
paging, 3241
Adjusted request rate, 238
Aging registers, 82-3
ALGOL-68, 198
ALICE computer system, 354
Alternation process, occam, 319-20

366

ALU (arithmetic and logic unit), 8, 15
Am2901, 145
Amdahl 470, 38
Amdahl’s law, 190
Applied parallelism, 192
Arbitration:
bus see Bus arbitration
cross-bar switch network, 253—4
multiple bus network, 250, 260
Arithmetic pipeline, 123-30
Array computer, 173, 175-82
bit-organized, 1801
word-organized, 175-80
Array multiplier, 127
Associative cache, 71-4
Associative mapping, 334
Associative memory, 33
Associativity, 35,73
Asynchronous message passing routines, 304
Asynchronous pipeline, 103-5
AT&T WE3210, 6
Atlas computer, 28
Auxiliary memory, 25, see also Secondary
memory
Average distance, in networks, 287
Average latency, 133

Babbage, 3
Backing store, 5
Bandwidth:
analysis assumptions, 256-7
cross-bar switch, 257-60
multiple bus, 260-61
overlapping connectivity cross-bar
switch, 277-9
single bus, 237-8
static networks, 288-9
Base, floating point number, 14, 128
Baseline network, 266
Benchmark, 1467
Benes network, 265

Bernstein’s conditions, 199
Best fit replacement algorithm, 55
Biased exponent, 129
Bit encoded instruction, 148
Bit selection, 74
BLITZEN computer, 181-2
Block, cache, 69
Block organization, direct mapped cache, 69-70
Blocking network, 262
Blocking, message passing routine, 304
Branch bypassing, 113
Branch folding, 114
Branch history table, 114-15
Branch instruction:
effect on pipelines, 111
frequency, 112
RISC, 153, see also Delayed branch instructions
usage, 112--23, 147
Broadcast, hypercube, 307-8
Broadcast instruction, 179
Broadcast writes, 97
BSP (Burroughs’ Scientific Processor), 179
Burroughs computers:
B5000, 52
D-825, 254
Bus, 14-15
asynchronous, 216
clear signal, 231
contention, 214
grant signal, 215
local, 241-3
master, 214
request signal, 215
requests, multiple, 21618
synchronous, 216
system, 241-3
watcher, 96
Bus arbitration:
centralized, 217
decentralized, 217, 224, 230-31
equations, 219, 232-3
Busy waiting, with locks, 204
Butterfly multiprocessor, 193
Byte, 15

Cache (memory), 19, 64-99
access time, 65, 67-8
address translation, 36—7
associativity, 73
block, direct mapped, 69-71
coherence, 95
controller, 79
data, 76
DEC computers:

PDP-11-60, 70

VAX-11/780, 79

VAX-8800, 70
descriptor registers, 58
direct mapping, 68-71

Index 367

disk, 94-5
fetch policy, 75-6
fully associative, 71-2
IBM computers:
360/85, 75
370/158, 70
3033, 79,97
instruction, 76
Intel 80386, 79, 97
miss ratio, 87-8
multiprocessor, 95-9
National Semiconductor NS32532, 76
performance, 86-90
sector organization, 74-5
set-associative, 73—4
Zilog Z-280, Z80000, 72
CAM, (content addressable memory), 33, 71, 353
Carry-in, 124
Carry-look-ahead adder, 124
Carry-out, 124
Carry-save adder, 126-7
Control Data computer:
CDC 6600, 120
Cedar computer system, 350-1
Cell-based network, 263
Chaining, pipeline,139—40
Changed bit, 42
Channel dependency graph, 301
Checkerboard effect, in segmentation, 55
Chordal ring, 283
CISC (complex instruction set computer), 18,
144-6
CLIP computer, 181
Clock period, 11
Clock replacement algorithm, 45
Clos network, 263-5
C.mmp, 254-5
CMOS, 10
COBEGIN-COEND construct, 197
Code segment register, 57
Code, superfluous, 39
COEND construct, 197
Cold start, in caches, 86
Collision vector, 132
Collision, in a pipeline, 132
Coloring, in dataflow, 337
Combining circuits, hardware, 2734
Common bus request signal, 235
Compiler:
optimizing for RISCs, 150, 155
parallelizing, 202
Completely connected network, 282
Computer:
control-flow, 329
dataflow, 330
neural, 330
parallel, 171
pattern driven, 330
program, 6

368 Index

Computer (continued)
stored program, 3
von Neumann, 3
Concurrency, 171
Concurrentizing, 202
Condition code register, 9
Conditional critical section, 210
Conditional process, occam, 321-2
Conditional synchronization, 210
Context switch, 86
Conti, C.J., 65
Control lines, 14-15
Control memory, 9
alterable, 9
Control unit, 4, 8-9, 178
Control-flow computer, 329
Conway, 22
Coprocessor, 243-7
arithmetic, 243-6
input.output, 247
Cosmic cube, 308-9
Cost:
memory system, 50
pipeline, 105
multiprocessor, 172
trade-offs, 24

Counters, to implement replacement algorithms,

46, 48, 82
CP/M, 13
CPU (central processing unit), 4, 54
Cray computers, 11, 66, 105
Cray 1,11, 138
Cray 2, 11, 138, 172
Cray 3, 11
Cray X-MP, 11, 138
Cray Y-MP, 138
CREATE construct, 196-7
Critical section, 203
conditional, 210
Cross-bar switch:
multiprocessor, 184-5, 252-6
network, 184-8, 2526, 263
overlapping, 276-9
CSP (programming language), 305
Cube connected cycles network, 286
Cube network, 286
Cyber 205, 138
Cycle time:
memory, 64
processor, 11, 153

Daisy chain, rotating, 231
Daisy chained signals, 227-9
DAP computer, 181

Data bus, 163

Data cache, 76

Data dependence graph, 330
Data dependencies, 117-21
Data driven computer, 330

Data lines, 14-15
Data segment register, 57
Dataflow, 329-55
architectures, 336, 33940, 3424, 350-3
branch node, 331-2
coarse grain, 349
computational model, 3304
computer, 330
dynamic, 334, 33742
error handling, 349
fine grain, 349
graph, 330-3, 343
instruction cell, 336
languages, 344-9
loops, 3324
macro-, 349-50
merge node, 331-2
node firing rules, 330, 334, 337, 350
packet, 334, 340
routing network, 336-7
static, 334-7
streams, 347
systems, 329-54
VLSI, 3424
Davidson’s pipeline control algorithm, 133
Deadlock, 206, 209
Deadly embrace, 209
DEC (digital equipment corporation) computers:
PDP 8E, 14
PDP 11, 14, 255-6
PDP 11/60, 70
PDP 11/70, 40
PDP 11/780, 40
Decode history table, 116
Delay, adding in a pipeline, 137-8
Delayed branch instruction, 116-17, 154
Delayed branch with execute, 154
Delayed memory load instruction, 154
Delta network, 269
with extra stage, 270-1
Demand driven computer, 330
Demand fetch, 76
Demand paging, 43
Denning, P. J., 42,43
Dennis, J. B., 334, 347
Descriptor cache registers, 58
Destination tag algorithm, 266
Dhrystone 1467
Dijkstra, E. W., 207
Direct mapped cache, 68-71
advantages, 70
Direct mapping, 32-33, 68-71
Directory method, for cache coherence, 97-8
Dirty bit, 42
Disk caches, 94-5
Disk controller, microprocessor, 14
Disk memory, 14, 18, 25, 30
access time, 67-8
Displacement, in segmentation, 51

DLT (directory look-aside buffer) see TLB

DMA (direct memory access), 26, 41, 54, 92, 96,
235, 243,311, 314

DOPAR-PAREND constructs, 197

Dual port memory, 137

Dynamic binding, 57

Dynamic code copying, dataflow, 337

Dynamic dataflow, 334, 33742

Dynamic interconnection networks, 262

Dynamic pipeline, 124

Dynamic process structure, 3045

Dynamic token tagging, dataflow, 337

E-cube routing algorithm, 301
ECL, 10, 153, 172, 256
EDVAC, 6
Efficiency, 106, 188
Emulation, 9
Ethernet, 310
Execute cycle, 7-8, 16
Exhaustive networks, 282
Exponent, 14, 128

biased, 129
External fragmentation, 55
Extra segment register, 57
Extra stage networks, 270

Failure rate, 210 see also Reliability
Fault tolerance, 172-73
Fault tolerant systems, 187
Feedback pipeline, 127
Fetch-and-add operation, 274-5
Fetch cycle, 7-8, 16
Fetch/execute overlap, 16, 140
First fit replacement algorithm, 55
First-in first-out replacement algorithm, 44, 82
First-in not-used first-out replacement algorithm,
45
Fixed partition replacement algorithm, 42, 81
Fixed-point numbers, 124
Fixed priority:
access time, 241
boolean equations, 219, 2314
parallel arbiter, 219-20
serial arbiter, 227-9
Flit, 309
Floating point numbers, 13-14, 127-30
Floating point unit, 163
Flynn’s classifications, 173—4
Footprint, 90
Forbidden latency, 133
FORK-JOIN construct, 195-6
Forwarding, 121
Freedom from side effects, 345
Fully associative cache, 71-2
Fully associative mapping, cache, 71-2
Functional languages, 345
Functional units, multiple, 139

Index

GaAs 149

Generalized shufle network, 270
GF-11, 180

Global algorithm, 42

Grant acknowledge signal, 216
Granularity, process, 297

Greedy strategy, in a pipeline, 133
GRIP computer system, 354

Handshaking, 104, 215
Harvard architecture, 5, 153, 160
Hashing, page, 38
Hexagonal array, 284
High order interleaving, 20
Hit ratio, 50, 67-8 see also miss ratio
Hot spots, 273
Hypercube:
iPSC, 308
network, 286, 299-300
routing, 300-1
spanning bus, 287
Hypertree, 286

IBM computers:

360 146-7

360/85, 65, 75, 122

360/91, 122, 353

360/195, 122

370/158, 70

370/168, 85, 205

801, 153-6, 165

3033, 38, 79, 81, 97

3080, 11, 12

3090, 12

3880, 95

MVS operating system, 92
IEEE 796 bus, 235
Illiac IV, 177-9, 283
Immediate addressing, 7
Index (cache), 68
Indirect addressing, multilevel, 145
Indirect binary n-cube network, 269
Indivisible instruction, 204
Initial collision vector, 132
Initiation, in a pipeline, 132
Inmos processors:

T414, 312

T800, 312

T212, 312, 322
Input/output coprocessor, 247
Input/output interface, microprocessor, 14
Instruction:

bit-encoded, 148

broadcast, 179

BSET (test a bit and set), 205

buffer, 113-14

bus, 163

cache, 76

CAS (compare and swap), 205

369

370 Index

Instruction (continued)
encoding, 6-7, 146
execution time, 65, 77
fetch/execute overlap, 16-17, 107-11
four-address, 6
indivisible, 204
lock prefix, 204-5
one-address, 6
one-and-a-half-address, 6
pointer, 5
register, 8
set, 5
TAS (test and set), 205
three-address, 6, 151, 160
transputer format, 165
two-address, 6
useage, 147
zero-address, 6
Intel:
432, 148
4004, 13
8080, 13
8086, 13, 57, 117, 145, 148, 204-5, 244, 308
8087, 244-5, 308
80186, 13
80286, 13, 57-9, 113, 309-10
80287, 244, 309
80386, 13, 41, 60, 79, 97, 113, 146, 310
80486, 13
82385, 79
82385, 97
iPSC, 308, 309-11
Interconnection graph, 301
Interleaved memory, 20, 65-6, 109, 259
Internal forwarding, 122, 152-3, 154, 159
Internal fragmentation, 39
Inverse translation buffer, 92
1P-1, 254
I-structure memory, in dataflow, 340

JOIN constructs, 195-6
Jump instruction see Branch instruction

Katevenis, M. G. H., 149, 156
Kilburn, T., 27-30, 33
Koren, 1., 3424

Lamport’s conditions, 206
Lang, T, 251, 259

Last-in first-out replacement algorithm, 45
Latency, 133
Left-to-right routing, 301
Line (cache), 69

Linear addressing, 41, 60
Linear array, 282-3
Linear pipeline, 130
Linear segmentation, 41
Local algorithm, 42

Local bus, 241-3

Locality of effect, 345

Lock, 203-7

Logical address, 52

Low order interleaving, 20

LRU (least recently used):
replacement algorithm, 45-7, 82-5
implementation, 46-7, 82-5
priority, 226

LSI, 12

Machine instructions, 5
Macrodataflow, 349-50
architectures, 350-3
firing rules, 350
Main memory, 4
MAL (minimum average latency), 133
Mantissa, 14, 128
MASM 146-7
Master—slave operation, cross-bar switch system,
253
Matrix, storage of elements, 179
Maximum rate pipeline, 105
Memory:
cache see cache memory
contention, cross-bar switch network, 257-9
hierarchy, 18
interleaving see Interleaved memory
management, 25-63
Atlas, 28, 33
8086 family, 57-60
MC88100, 37, 39
VAX-11/780, 37, 38, 40
VAX 8600, 37
multiport, 184-5
pollution, 88
protection, 27, 54
two-port, 276
Mesh network, 178, 283, 287
Message-passing:
communication paths, 298-301
message format, 300
multicomputers, 296
multiprocessor systems, 24, 295-325
programming, 301-8
routines, 304
MFLOPS, 11
Microcode, 9, 149
Microinstruction, 9
Microprocessor, 12-15
architecture, 14-15
32-bit, 13, 15
Microprogram, 9
MIMD (multiple instruction stream-multiple data
stream) computer, 1734, 182-7
MIN (minimum) replacement algorithm, 49
MIN (multistage interconnection network) see
Multistage network
Minsky’s conjecture, 192
MIPS (millions of instructions per second), 11

MIPS processor, 156
MISD (multiple instruction stream-single data
stream) computer, 1734 '
Miss ratio 67, 87-90
MIT, 26,-339, 347
MMU (memory management unit), 54
Modified bit, 42, 98
Modified state diagram, pipeline, 134
Monitor, 210
MOPS (millions of operations per second), 11
Motorola:
MC6800, 13,214
MC68000, 13, 110, 145, 148, 205, 222-3,
229-30
MC68020, 13, 146, 205, 245-6
MC68030, 13, 41
MC68452, 222-3
MCo68881, 246
MC88100, 120, 1604
MC88200, 39, 163
MP programming language, 305
MPP (massively parallel processor), 181-2
MS-DOS, 26, 14647
MSI, 12, 153
MSISD (multiple single instruction stream-single
data stream) computer, 1734
Multibus I, 235
Multics, 57
Multifunction pipelines see Pipeline,
Multifunction
Multiple bus:
multiprocessor, 183—4, 250-2
network, 1834, 250-2
overlapping connectivity, 279-81
partial, 251-2
Multiple prefetching, instruction, 113
Multiprocessor systems, 224, 171-87
classifications, 173-5
efficiency, 106
message-passing, 24, 185-6
programming, 193-203
shared memory, 23
speed-up factor, 188-93
Multiprogramming, 18, 47
Multistage (interconnection) network, 184-5, 262
bandwidth, 270
Baseline, 266
Benes, 265
Clos, 263
Delta, 269
fault tolerant, 270
generalized shuffle, 270
hot spots, 273-5
indirect binary n-cube, 269
Omega, 268
recirculating, 267
shuffle, 266
Multistreaming, 122-3
Mutual exclusion, 203

Index 371

MVS operating system, 92

National Semiconductor NS32532, 76
Natural parallelism, 192
Near(est) neighbor network, 178, 283
Network:
average distance, 287
cross-bar switch, 184-5, 252-6, 263, 276-9
latency, 300
blocking, 262
chordal ring, 283
completely connected, 282
cube, 28
cube connected cycles, 286
exhaustive, 282
hexagonal array, 284
hypercube, 286, 299-300
spanning bus, 287
hypertree, 286
linear array, 282-3
mesh, 283
multiple bus, 183-4, 250-2, 279-81
near(est) neighbor, 283
non-blocking, 262
number of links, 282, 287-8
overlapping connectivity mesh, 287
shuffle exchange, 267
single bus, 1834, 213-14
single stage, 262-3
star network, 284
static, 282-9
systolic array, 284
three-cube, 286
tree, 284-5
binary, 284-5
m-ary, 285
Neural computer, 330
Nibble, 13
Non-blocking message passing routine, 304
Non-blocking network, 262
Non-cacheable items, 76
Non-usage-based algorithms, 41
No-op, 117
Normal mode, 54
Normalized number, 129
Nova computer, 145
Nullification method, for branch instructions 117

Occam, 314-25
allocation of transputers/processes, 325
process:
alternation, 319-20
conditional, 321-2
parallel, 317-19
primitive, 316
repetitive, 320-1
replicator, 3234
Occam’s razor, 311
Offset, in segmentation, 51

372 Index

Omega network, 268

Omnibus, 14

One level store, 27, 33

Operating system, 12, 26, 30, 37, 54, 59,
cross-bar switch, 2534
message-passing, 310

Optimal replacement algorithm, 49

Orthogonal multiprocessor, 256

Overlap, 102

Overlapping connectivity networks, 275-81
cross-bar switch, 276-9
mesh network, 287
multiple bus, 279-81

Overlaying, 26

P (operation), 207
Page fault frequency algorithm, 49
Page fault, 34, 41
Page mapping, multilevel, 3941
Page replacement algorithm, 30
Page size, 38-9
Page table, 28
Paged segmentation, 55-7
address translation, 56
Paging, 2741
Parallel adder, 124-5
Parallel arbiter, 220-5, 2324
Parallel computer, 171
Parallel constructs:
ALGOL-68, 198
block structured languages, 197-9
COBEGIN-COEND, 197
FORK-JOIN, 195-6
FORTRAN-like languages, 195-7
occam, 317-19
PARBEGIN-PAREND, 197-9
Parallel priority arbitration schemes, 216, 218-27
Parallel process, occam, 317-19
Parallel programming, 171
Parallelism:
explicit, 194-9
implicit, 194, 199-202
in loops, 201-2
PARBEGIN-PAREND constructs, 197-9
PAREND construct, 197-9
Partitions, fixed, 42
Partitions, variable, 42
Pattern driven computer, 330
PDP computers see DEC computers
Pease, M. C., 266
Perfect shuffle, 266
Performance/cost:
general, 24
memory management, 49-51
pipelines, 105-7
trade-offs, 24
Physical address, 52
Pipeline, 17
data dependencies, 117-21

effects of branch instructions, 111-13
efficiency, 106
feedback, 127
five-stage, 110, 111, 141, 163
four-stage, 151-2, 154
hazard detection, 119-20
information transfer between stages, 103-5
linear, 130
multifunction, 1234, 131
scheduling, 133-8
six-stage, 163
speed-up factor, 105-6
stage, 105
three-stage, 17, 108, 159, 163
two-stage, 16, 107,116, 151-2 see also
fetch/ execute overlap)
Pipelining, 102
PL.8, 154
PL/1, 154
Placement algorithm, 55
Polling schemes, for bus arbitration, 235-7
Posted write-through, 79
Prefetch, in cache 76
Prefetching on a miss, 76
Primary memory see main memory
Primitive process, occam, 316
Principle of locality, 31
Principle of optimality, 49
Priority:
acceptance dependent, 225
dynamic, 216, 225-7
equal, 225-6
first-come first-served, 227
fixed, 216, 219
fixed time slice, 227
LRU, 226
processor, 216
random, 225
rotating, 225-7
Private bit, 98
Probability of acceptance, request, 238-9
Processes, 188
concurrent, 1934
equal duration, 188-9
granularity, 296
message-passing, 296, 311-12
occam, 317-22
optimum division, 191-2
parallel with serial section, 189-91
reactive, 297
sequential, 317-19
Process structure:
dynamic, 304-5
static, 304-5
Program:
computer, 6
counter, 5
page references, 31
Programmer, 6

e

Index 373

Protected virtual address mode (80286), 57 useage based, 41, 81

variable partition, 42

Queue: variable, 42, 81
dataflow, 337, 33941 VMIN, 49
in page relacement algorithms, 44, 47 working set, 47-9
Intel 80x86 instruction, 113, 245 worst fit, 55
monitor, 210 Replicated units, 20, 105-6

Queueing algorithm, 227 Replicators, occam, 323—4

Reservation table, 130-1

Radin, G., 149 Return address, procedure, 5, 145

RAM (random access memory), 5 Reverse translation buffer, 92

Random number generator, for simulation, 259 RISC (reduced instruction set computer), 18, 117,

Random replacement algorithm, 43, 82 120, 122, 144, 148-67

Reactive processes, 297 RISC I/1I, 156-60

Read-after-read hazard, 118-19 Rotating priority, 225-7

Read-after-write hazard, 118-19 Routing:

Read-through, 68 hypercube, 300-1

Real address, 27 store-and-forward, 309
number of bits, 30 wormbhole, 309

Real-time clock, in transputer, 322

Rearrangeable networks, 262 S1 computer, 256

Recirculating network, 267
Reduced state diagram, 134
Redundancy, system, 187

Scoreboard bits/technique, 120, 152
Secondary memory, 5, 64
Sector mapping, cache, 74-5

Reference matrix, 83-5 Segment:
Referential transparency, 346 length, 53
Register: number, 51
direct addressing, 7 protected, 54
file, three-port, 153 selector, 58
indirect addressing, 7 Segmentation, 51-5
lifetime, 155-56 Intel:
stack, 83 8086, 57
window, 156-60 80286, 57-9
pointer, 156 with paging, 55-60

Relative addressing, 7 replacement algorithms, 55
Reliability, 187 symbolic, 56

Relocation, program, 30 Segmented name space, 56
Rendezvous, 304, 316 Seitz, C. L., 297, 308
Repetitive process, occam, 320-1 Selective fetch, in cache, 76
Replacement algorithm: Self-routing network, 266

best fit, 55 Semantic gap, 144

cache, 81-5 Semaphores, 207-10

clock, 45 binary, 207

first fit, 55 counting, 208

first-in first-out, 44, 82 Sequential locality, 31

fixed, 42, 81 Sequential process. occam, 317-19
fixed partition, 42 Serial arbiter, 227-31

global, 42 Serial priority arbitration schemes, 216, 227-34
last-in first-out, 45 see also Daisy chain

local, 42 Set associative cache, 73-74

LRU, 45-17, 82-5 Set size:

MIN, 49 set-associative cache, 73

non-useage based, 41, 81
optimal, 49

page fault frequency, 49
paging, 41-51

random, 43, 82
segmentation, 55

stack, 49

set associative page mapping, 35

Shared caches, 95-96

Shared memory multiprocessors, 22, 182-5

disadvantages, 295-6
Shuffle exchange network, 267

SIMD (single instruction stream-multiple data

stream) computer, 1734

374 Index

Simple cycle, pipeline,134
Simulation:
cache, 86
cross-bar switch network, 259
multiple bus network, 261
overlapping connectivity networks, 278-9
random number generator, 259
trace-driven, 88
Single assignment languages, 346
Single bus network, 1834, 213-14
Single stage network, 262-3
SISAL programming language, 347-9
SISD (single instruction stream-single data
stream) computer, 1734
Sloop bus, 96
controller, 97
Smith, A J., 87-9, 95, 97-8
Software combining trees, 2734
Space-shared, 309
Space-time product, 50
Spanning bus hypercube network, 287
Spatial locality, 31
Speed-up factor:
estimates, multiprocessor, 192-3
multiprocessor, 188-92
pipeline, 105-6
single bus system, 23940
Spin locks, 204
SSI, 12, 153
Stack, 5,6, 31, 53
algorithm, 49
pointer, 5
segment register, 57
Staging latch, in pipelines, 104-5
Star network, 284
State diagram, for a pipeline, 133°
Static binding, 57
Static dataflow, 334-7
Static interconnection networks, 282-89
Static process structure, 3045
Status vector, 133
Stone, H. S., 49, 87, 89, 90
Store-and-forward routing, 309
Stored program computer, 3
Streams, dataflow, 347
Supercomputer, 11, 138
Symbolic segmentation, 56
Synchronous message passing routines, 304
Synchronous pipeline, 103-5, 131
Synonym, 92
System bus, 1834, 241-3
System mode, 54
Systolic array, 284

Table descriptor register, 40
Table fragmentation, 39

Tag, cache, 68

Tagged architecture, 13
Tagging, dataflow token, 337-9

TAS instruction, 205
Temporal locality, 31
Thrashing, 42
Three-cube network, 286
Three-level overlap, 108-9
Time-shared bus, 213-15 see also Single bus
network
TLB (translation look-aside buffer), 36-8, 41,
914
Token tagging, in dataflow, 337-9
Token, in dataflow, 331
Tomasulo, R. M., 122
Trace-driven simulation, 86
Transient behavior, in caches, 89
Translation buffer see TLB
Transputer, 165-66, 311-14
real-time clock, 322
Tree network:
binary, 284-5
hyper, 286
m-ary, 285
saturation, 273
TTL, 10

Unibus, 14
UNIX, 94, 195, 302
Unused bit, 42
Usage-based algorithm, 41, 81
Use bit, 42
scanning technique, 42, 47, 48

V (operation), 207
VAL, programming language, 347, 349
Valid bit:

cache, 72

pipeline, 120
Variable partition:

paging, 42

replacement algorithm, 42, 81
VAX-11/780, 38, 40, 43, 79, 145-6, 148
VAX-8800, 70
Vector computer, 123, 13840, 173
Vector instruction, 175-7
Vector processor, 123, 138
Virtual address, 27

number of bits, 30
Virtual memory, 19, 27

with cache memory, 90-2
VLSI, 12, 127, 149, 156, 165, 172, 185, 296, 311,

342

VMIN replacement algorithm, 49
Von Neumann computer, 3, 173, 329
Voter, 187

Warm start, in cache, 86
Whetstone, 147

Wide data bus, 21

Wide word length memory, 20, 66
Working set, 36, 47

Working set (continued)
replacement algorithm, 47-9

Workspace pointer, 166

Wormbhole routing, 309

Worst fit replacement algorithm, 55

Write-after-read hazard, 118-19

Write-after-write hazard, 118-19

Write back, 80

Write once, 97

Write-through, 68, 77-9

Written bit see Modified bit

X-network, 181-2

Index

X-MP see Cray computers
Y-MP see Cray computers

Zero address instruction format, 6
Zilog:

Z-80, 13, 229

7-280, 72,243

7.8000, 230

780000, 72
Zuse, 3

375

