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Preface

The thermodynamics of flowing fluids is an active and very challenging topic in 
modern non-equilibrium thermodynamics and statistical mechanics. After ten years 
of publication of the first edition of this book, we felt that a fully renewed, updated 
and enlarged edition was necessary to cover some of the progress made in these 
fields. A book on the thermodynamics of flowing fluids was published in 1994 
by A. N. Beris and S. J. Edwards, Thermodynamics of Flowing Fluids with Inter-
nal Microstructure, Oxford University Press, New York, 1994: it was based on the 
Poisson bracket formalism and focused on fluids with internal microstructure. The 
books by D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium 
Liquids (Australian National University E Press, 2007), A. Onuki, Phase Transition 
Dynamics (Cambridge University Press, 2002) and V. Garzó and A. Santos, Kinetic 
theory of gases in shear flow (Kluwer, Dordrecht, 2003) have also been useful and 
important contributions to a global vision of this field, the first with more empha-
sis on molecular dynamical simulations, the second one with special attention on 
critical phenomena, and the third one from the perspective of the kinetic theory of 
gases. The central perspective of the present book is, instead, on non-equilibrium 
thermodynamics beyond local equilibrium. The more macroscopic and phenom-
enological character of this approach allows to deal with a wider range of systems, 
going from ideal gases and phonon hydrodynamics to polymer solutions and melts, 
and to laminar and turbulent superfluids.

The interest of the thermodynamics of flowing fluids is both theoretical and 
practical. From the theoretical point of view, the influence of the flow on the ther-
modynamic potentials requires the formulation of thermodynamic theories beyond 
the local-equilibrium hypothesis; this is a field with many open challenges, which 
fosters an active dialogue between macroscopic and microscopic theories, the latter 
based either on the kinetic theory of gases, or on molecular dynamical simulations 
of fluids. Furthermore, it also requires an open discussion between thermodynamics 
and hydrodynamics, because some of the observed phenomena may have a purely 
thermodynamic origin (due to the modification of some equations of state) or a pure-
ly hydrodynamic origin, but in general there will be an interplay of both thermody-
namics beyond the local-equilibrium regime, and its relationship with microscopic 
theories and with hydrodynamic theories currently represents an important frontier 
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of research. In our book by G. Lebon, D. Jou and J. Casas-Vázquez, Understanding 
Non-equilibrium Thermodynamics. Foundations, Applications, Frontiers (Springer, 
Berlin, 2008) we have discussed and examined in detail several different avenues 
towards the formulation of such thermodynamics beyond local equilibrium.

From the practical point of view, many situations of technological interest are 
present in flowing systems. Indeed, the modification of the thermodynamic equa-
tions of state for the chemical potential imply modifications in the phase diagram 
of substances in non-equilibrium steady states, or on the conditions of chemical 
equilibrium and stability. The ability to control the thermodynamic state of the sys-
tem is essential in technology and also in fundamental science. For instance, much 
study has been devoted to flow-induced changes in the phase diagram of polymer 
solutions or in shear-induced flow of macromolecules. The practical importance 
of the problems arising under flow is easily understood. Most industrial processes 
take place in flowing fluids (pumping, extruding, injecting, molding, mixing…), 
in which the polymer macromolecules undergo different shear and elongational 
stresses, depending on the position. Thus, a flow-induced change of phase could 
take place in some positions and not in others, affecting both rheological and struc-
tural properties of the flow. The materials formed in these processes may be very 
sensitive to the extent of the phase transitions occurring in the fluids previous to 
solidification.

Other related fields of interest are the thermodynamically induced polymer deg-
radation under flow, which may be important in viscous drag reduction, or in flows 
of polymer solutions through packed porous beds, as in membrane permeation or 
flow of oil through soil and rocks. Also, in biological experiments shear-induced 
precipitation and degradation of proteins has been observed, and new separation 
techniques have been devised on the effects of the interaction between viscous pres-
sure and diffusion. Microfluidics and nanofluidics have experienced a strong devel-
opment in the last ten years, opening new and surprising applications of flowing 
fluids at a minuscule scale. In particular, phonon hydrodynamics provides a useful 
phenomenological basis to analyze heat transport from the diffusive to the ballistic 
regimes, with application to nanosystems and nanowires, thin layers, tubular layers, 
porous superlattices and so on.

From a more fundamental point of view, some of the main experiments in nu-
clear and particle physics refer to the transition from nuclear hadronic to a quark-
gluon plasma. This is pursued through very energetic ultrarelativistic collisions 
of heavy nuclei. The total duration of such collisions is of the order of five to ten 
times the mean time between successive collisions amongst nucleons in the nuclei. 
Therefore, the nuclei are rather far from local equilibrium during the collision and 
it is problematic to what extent an analysis based on the local-equilibrium equa-
tions of state for nuclear matter and for quark-gluon plasma and normal hydrody-
namics may be sufficient to provide a reliable description of the transition. Efforts 
towards using more general non-equilibrium thermodynamic and hydrodynamic 
theories are a challenge in this field. Another topic where the flow has a deep influ-
ence on the fluids is in turbulent superfluids, where a tangle of quantized vortex 
filaments appears for sufficiently high values of the heat flow or of the relative 
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velocity between normal and superfluid components. This vortex tangle contrib-
utes to the internal friction of the fluid, and it is by itself an interesting phase of 
matter, constituted of vortex loops and filaments. Finally, at a more abstract level, 
understanding the meaning and the mutual relationships between several defini-
tions of temperature and entropy finds in flowing fluids an interesting benchmark 
where explicit illustrations are possible.

From a thermodynamic perspective, the already mentioned book by Beris and 
Edwards was based on Hamiltonian formalisms, as Poisson brackets, which has 
achieved a more general and elegant formulation in the so-called GENERICS, 
which has been presented in detail by H. C. Öttinger in the book Beyond Equilib-
rium Thermodynamics (Wiley, New York, 2005). Here, instead, we adopt extended 
irreversible thermodynamics as our general framework, and we try to emphasise 
both the general thermodynamic structure underlying fluids without internal struc-
ture (namely, ideal gases, phonons, real gases, simple fluids) as well as fluids with 
internal structure (namely, polymer solutions and blends, and turbulent superfluids). 
In this way, this volume may be seen as a complement of our monograph D. Jou, 
G. Lebon and J. Casas-Vázquez, Extended Irreversible Thermodynamics (fourth 
edition, Springer, Berlin, 2010), dealing with a variety of problems that were not 
included in that volume for the lack of space.

A decisive step in the thermodynamic understanding of flowing fluids is to for-
mulate a free energy depending explicitly on the characteristics of the flow. This im-
portant problem in non-equilibrium thermodynamics has not yet received as much 
attention as it deserves. It must be noted that several authors have preferred to fol-
low another method, to analyse the phase separation or phase homogenization under 
shear from a dynamical point of view, i.e. by writing dynamical equations for the 
behaviour of concentration and velocity fluctuations and analysing the stability of 
the corresponding set of equations. Of course, the dynamical procedure has a wider 
range of potentialities than the pure thermodynamic analysis: the latter may be able 
to set the spinodal line limiting the regions of stability, but it certainly cannot give 
a detailed view of the processes of segregation of both phases, or about the changes 
in viscosity observed during the segregation. However, the existence of both meth-
ods is not contradictory, e.g., the dynamical method may describe the instability 
through the change of sign of an effective diffusion coefficient, but this change of 
sign is produced at the spinodal line, and this fact is related, in many situations, to 
the vanishing of the first derivative of an effective chemical potential with respect 
to the composition. Furthermore, the dynamical analysis cannot avoid the use of 
equations of state of the flowing fluid; therefore, to find and analyse equations of 
state in non-equilibrium conditions is always of interest. Thus, although there is a 
common ground for thermodynamical and dynamical analyses, both methods have 
their own advantages and disadvantages, so that it would be unwise to dismiss a 
priori either of them.

Here, we give a brief description of the contents of the book, and point to the 
changes made with respect to the first edition. In Chap. 1, we provide the general 
basis from a macroscopic point of view, or more precisely from the perspective of 
extended irreversible thermodynamics, and we compare it with other macroscopic 
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theories, as rational thermodynamics, theories with internal variables, and Hamil-
tonian theories. Chapters 2 and 3—the much enlarged outcomes of the Chap. 2 of 
the first edition—deal with ideal gases: in Chap. 2 we use information theory to 
describe the steady state of flowing ideal gases under Couette flow, and we explore 
in depth how several definitions of temperature behave in the presence of a non-
vanishing viscous pressure, and how they relate to each other. Of course, in the 
absence of the viscous pressure all of them tend to the same value, identical to the 
local-equilibrium temperature. In Chap. 3 we remind the basic concepts of the ki-
netic theory description of flowing ideal gases, and we discuss with some detail the 
application of thermodynamic ideas to the flow of phonons in the so-called phonon 
hydrodynamics, with special emphasis on the application of this formalism to heat 
transfer in nanosystems. This requires taking into detailed consideration the bound-
ary conditions for the slip heat flow along the walls of the system. This topic was 
not considered in the second edition.

Chapter 4 is devoted to non-ideal gases, with a comparison with some results 
of molecular dynamical simulations, and with an application to some thermody-
namic and hydrodynamic aspects of relativistic ion collisions. Chapter 5 discusses 
the microscopic description of polymer solutions, as kinetic theory of dilute solu-
tions, reptation model for concentrated solutions, and double-reptation model for 
polymer blends, to which much attention is devoted in further chapters. Chapter 6 
analyzes the influence of a shear flow on the phase diagram of polymer solutions, 
and shear-induced phase transitions; the first edition was limited to dilute solu-
tions whereas the present one incorporates also concentrated solutions and poly-
mers blends. Chapter 7 considers dynamical effects, the role of hydrodynamically 
enhanced fluctuations, and provides an understanding of the range of application 
of the thermodynamic formalism. Chapters 8 and 9 enlarge the contents of Chap. 7 
of the first edition. Chapter 8 deals with the couplings of viscous pressure and dif-
fusion; in particular, much attention is devoted to shear-induced diffusion and its 
applications to macromolecular separation in cone-and-plate and in tube configura-
tions. Chapter 9 is also devoted to diffusion in the presence of a velocity gradient, 
with special attention to Taylor dispersion and its applications, and to anomalous 
diffusion, both in a system at rest as in a fluid with a velocity gradient. Chapter 10 
deals with chemical reactions under flow, both for ideal gases and polymer solu-
tions; the latter case is applied to the analysis of polymer degradation due to the 
flow. Chapter 11 discusses the thermodynamics of flowing superfluids, not only 
in the well-known laminar regime, but also in the more intriguing and challenging 
turbulent regime, with quantized vortices. Appendix A is devoted to a survey of 
experimental information on the relevant material functions used for the evaluation 
of the non-equilibrium chemical potential in the examples considered in the book, 
and Appendix B briefly describes the results on the influence of a shear flow on the 
isotropic-nematic transition in liquid crystals. Appendices C–E contain other useful 
information related to mathematical results.

We acknowledge fruitful discussions on a variety of these topics with Profs. 
G. Lebon (Université de Liège, Belgium), M. S. Mongiovì (Università di Palermo, 
Italy), R. Luzzi (Universidade de Campinas, Brazil), M. Grmela (École Polytechnique 
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Local-equilibrium thermodynamics assumes that the equations of state retain the 
same form out of equilibrium as in equilibrium, but with a local meaning (Prigogine 
1961; De Groot and Mazur 1962; Gyarmati 1970). According to this point of view, 
there is not strictly any especial thermodynamic features characteristic of flowing 
fluids, since the flow does not change the equations of state, though it may modify 
the transport equations. This approach is insufficient to deal with systems with in-
ternal degrees of freedom, in which case the flow may influence the thermodynamic 
equations of state through its action on such internal variables. In such occasions 
(Meixner 1949, 1954; Verhas 1997; Lhuillier and Ouibrahim 1980; Maugin and 
Drouot 1983; Maugin and Muschik 1994a, b, Maugin 1999) one includes in the set 
of thermodynamic variables some internal variables describing the relevant details of 
the microstructure of the system, such as, for instance, the polymeric configuration.

In the 1960s was proposed the so-called rational thermodynamics (Truesdell 
1971, 1984), which assumes that the entropy and the (absolute) temperature are 
primitive quantities, not restricted to situations near local-equilibrium. Instead of a 
local-equilibrium assumption, it was assumed that the entropy, or the free energy, 
could depend on the history of the strain, or of the rate of strain, or of the tempera-
ture gradient, thus allowing for an explicit influence of the flow on the thermody-
namic analysis through the history of these non-equilibrium variables. The theory 
developed a powerful and elegant formalism to obtain thermodynamic restrictions 
on the memory functions relating viscous stress to the history of the strain. Howev-
er, the analysis was centred on the constitutive equations, but it paid little attention 
to the consequences of the generalised entropy on the non-equilibrium equations 
of state.

At the end of the 1960s, a new approach, called extended irreversible thermody-
namics (EIT) (Jou et al. 1988, 1992, 1996, 1998, 1999, 2010; Müller and Ruggeri 
1998; Sieniutycz and Salamon 1992; Eu 1992, 1998, 2002; Wilmanski 1998; Net-
tleton and Sobolev 1995a, b, 1996), was proposed and it was much developed dur-
ing the 1980s and 1990s. (For a wide bibliography on this topic see http://telemaco.
uab.es or Nettleton and Sobolev 1995a, b, 1996; Jou et al. 1988, 1992, 1998, 1999, 
2010). This theory assumes that the entropy depends, besides the classical variables, 
on the dissipative fluxes, such as the viscous pressure tensor, the heat flux or the 
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diffusion flux. Its motivation is to make the relaxational transport equations for 
the heat flux (Maxwell–Cattaneo equation) or the viscous pressure tensor (Max-
well viscoelastic fluids) compatible with the positiveness of the entropy production, 
which is not satisfied, in general, when such generalised transport equations are 
combined with the local-equilibrium entropy. The direct influence of the viscous 
pressure tensor and other fluxes on the thermodynamic potentials clearly opens a 
way towards a thermodynamics under flow.

Once the expression of the entropy is known, there is no difficulty in deriv-
ing the corresponding equations of state, which are directly obtained as the first 
derivatives of the entropy with respect to the basic variables. Thus, EIT links the 
generalised transport equations with generalised equations of state which contain 
non-equilibrium contributions. A natural question concerns the physical meaning of 
these equations of state which, of course, depend on the fluxes and therefore differ 
from their analogous local-equilibrium expressions. Recall that in classical thermo-
dynamics, the first derivatives of the entropy with respect to the internal energy, the 
volume and the number of moles are related to the absolute temperature, the pres-
sure, and the chemical potential, respectively. At this point, it may be asked whether 
the derivatives of the generalised entropy introduced in EIT still enable one to de-
fine an absolute non-equilibrium temperature as well as a non-equilibrium pressure 
and a non-equilibrium chemical potential. This is a very subtle question which has, 
however, received partial answers in recent years, after that some specific thought 
experiments were proposed (Casas-Vázquez and Jou 1994) a real experiment was 
interpreted (Luzzi et al. 1997) and non-equilibrium molecular dynamics simulations 
were carried out (Baranyai 2000a, b; Daivis 2008). Here, we will mainly concen-
trate our attention on the equation of state for the chemical potential at a given 
temperature and pressure; this will play a central role in Chaps. 6–10.

In this chapter, we provide a short introduction to the basic rheological concepts. 
Furthermore, we present EIT, both as an extension of the classical theory and of the 
rational thermodynamics, and we compare it with two alternative thermodynamic 
theories: the internal variable approach and the Hamiltonian formalisms. We have 
not aimed to be exhaustive, but only to provide the necessary basis to work out the 
consequences of the non-equilibrium equations of state; therefore, we have omitted 
a comparison with other valuable theories, such as the matrix model of irreversible 
processes (Jongschaap 1990), or variational approaches (Sieniutycz 1994). Sec-
tions 1.3 and 1.5 correspond to a slightly more advanced and specialised level: they 
may be skipped in a first reading, but will be stimulating to the researcher interested 
in going beyond the linear approximation presented in Sects. 1.2 and 1.4.

1.1  �A Short Review of Rheological Concepts

Since we are dealing with flowing fluids, it is not surprising that in our analysis 
we will often find rheological quantities, rheology being the science of flow. Here, 
we provide a short review of some basic rheological concepts and of the most 
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widely used rheological models. The knowledge of these is necessary since we will 
often relate rheology and thermodynamics. It must be emphasized that we have 
attempted to focus our attention on the concepts necessary for the purposes of the 
present monograph, rather than to provide an extensive account of the wide topic 
of rheology.

1.1.1  �Basic Rheological Quantities

A central quantity in fluid mechanics and rheology is the viscous pressure tensor 
Pv, which describes the forces between neighbouring fluid elements moving at dif-
ferent speeds. The knowledge of these forces is necessary to describe the evolu-
tion of the flow. The relation between the viscous pressure tensor and the velocity 
gradient, the tensor describing the local features of the flow, plays an essential role 
in rheology. The coefficients relating these tensors depend on the fluid being con-
sidered and are the basic quantities of interest in rheology. The main coefficients 
are defined by considering the simplest flow exhibiting a velocity gradient, namely, 
the plane Couette flow, i.e. the flow between two plane parallel layers moving at 
different speeds.

The main rheological quantities of interest in steady flows are the shear viscosity 
and the first and second normal stress coefficients η(γ̇ ), �1(γ̇ )  and �2(γ̇ ), respec-
tively, which are defined as

� (1.1a)

� (1.1b)

� (1.1c)

where P v
ij , with i, j = 1, 2, 3 indicate components of the viscous pressure tensor Pv 

and γ̇  the shear rate in a planar Couette flow, i.e. γ̇ = ∂vx/∂vy. We will often take 
as component x or 1 the component along the velocity, y or 2 the component along 
the velocity gradient, and z or 3 the component orthogonal to the two previous ones. 
In the so-called Newtonian fluids, the normal stress coefficients vanish. Recall that 
Pv is related to the total pressure tensor P as P = pU + Pv, with p the equilibrium 
pressure and U the unit tensor.

In non-steady situations some memory effects, such as those described in visco-
elastic models, appear. The rheological properties thus depend on the frequency of 
the perturbation: for instance, viscoelastic liquids are materials which behave as 
Newtonian liquids under low frequency perturbations (low in comparison with the 
inverse of a characteristic relaxation time), and as elastic solids at high frequencies. 
The shear linear viscoelastic effects are usually summarized in terms of a com-
plex viscosity *( ), or, alternatively, in terms of two other complex functions: a 

Pv
12 = −η(γ̇ )γ̇ ,

P v
11 − P v

22 = −�1(γ̇ )γ̇ 2,

P v
22 − P v

33 = −�2(γ̇ )γ̇ 2,

1.1 A Short Review of Rheological Concepts
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complex stress–strain modulus G*( ); or a complex compliance J*( ). Assuming 
the simplest oscillatory behaviour for the shear strain  and the shear stress P v

12

� (1.2)

with 0 and P v0
12  the amplitudes of the respective oscillations, the coefficients *( ), 

G*( ) and J*( ) are defined as (Ferry 1980; Coleman et al. 1966; Tanner 1988; Bird 
et al. 1987a)

� (1.3a)

�
(1.3b)

� (1.3c)

where 0 and γ̇ 0 are the amplitudes of the oscillatory shear strain and shear rate, 
respectively. These three functions are closely related to each other, stemming from 
their definition, by means of

� (1.4)

where i is the imaginary unit.
The three mentioned quantities are often split in their real and imaginary parts as

� (1.5)

Complex quantities are used here to account both for the response in phase with the 
perturbation (real part) as the response 90° out of phase (imaginary part). Note that 
J ′( ) is the strain in phase with stress divided by the stress, so that it is a measure of 
the energy stored and recovered per cycle, while J ″( ) is the strain 90° out of phase 
with the stress divided by the stress, and it is a measure of the energy lost into heat 
per cycle. It is not then surprising that the compliance will play an important role in 
the connection between thermodynamics and rheology.

1.1.2  �Basic Rheological Models

In the study of polymeric systems it is assumed that the viscous pressure tensor 
depends not only on the velocity gradient but also on its own time rate of change 
by means of a relaxational term, which will account for the different behaviours 
observed at low and high frequency. Such a relaxational contribution is usually 
written in terms of a frame-indifferent time derivative (Ferry 1980; Coleman et al. 

γ = γ 0 cos ωt , P v
12 = P v0

12 cos ωt ,

P v0
12 = −η∗(ω)γ̇ 0,

P v0
12 = −G∗(ω)γ 0,

γ 0 = −J ∗(ω)P v0
12 ,

η∗(ω) = (iω)−1G∗(ω), J ∗(ω) = 1/G∗(ω),

J ∗(ω) = J ′ − iJ ′′, G∗(ω) = G′ + iG′′, η∗(ω) = η′ − iη′′.
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1966; Tanner 1988; Bird et al. 1987a), as the co-rotational derivative or the up-
per convected derivative, rather than in terms of the material time derivative. We 
will discuss here these different time derivatives, leading to different rheological 
models.

1.1.2.1  �Linear Viscoelastic Models

In the simplest Maxwell model, the viscous pressure tensor is described by the 
constitutive equation

� (1.6)

with V the symmetric part of the velocity gradient, whose components are given 
by Vij = (1/2)[(∂vj/∂xi) + (∂vi/∂xj)], and where  is the shear viscosity and  the re-
laxation time. Maxwell’s model captures the essential idea of viscoelastic models: 
the response to slow perturbations is that characteristic of a viscous fluid, namely 
Pv = −2V, whereas for fast perturbations, with characteristic time t of the order 
of  or less, it behaves as an elastic solid with Pv standing for the elastic pressure, 
Pv = −2G(∇X)s, X being the deformation vector field, and G = / being related to 
the elastic Young modulus of the material.

However, the material time derivative used in (1.6) is not very satisfactory, nei-
ther from a theoretical viewpoint, since it is not invariant under rigid rotations, nor 
on the practical predictions, and it must be substituted by some frame-indifferent 
derivatives which are invariant under rigid motions of the system. The simplest 
example of such derivatives is the co-rotational time derivative

� (1.7)

where W is the antisymmetric part of the velocity gradient, whose components 
are given by Wij = (1/2)[(∂vj/∂xi) − (∂vi/∂xj)]. This derivative describes the rate of 
change of Pv as seen in a local reference system which rotates with the fluid. Other 
widely used frame-indifferent time derivatives are the upper or contravariant con-
vected time derivative, namely

� (1.8a)

or the lower or covariant convected time derivative

� (1.8b)

where superscript T indicates transposition.

dPv

dt
= −

1

τ
Pv − 2

η

τ
V,

DPv

Dt
=

dPv

dt
+ W · Pv − Pv · W,

D↑Pv =
dPv

dt
−

[
(∇v)T · Pv + Pv · (∇v)

]
,

D↓Pv =
dPv

dt
+ (∇v) · Pv + Pv · (∇v)T ,

1.1 A Short Review of Rheological Concepts
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If one uses (1.8a) instead of the material time derivative, one has the upper-
convected Maxwell model (Ferry 1980; Coleman et al. 1966; Tanner 1988; Bird 
et al. 1987a) for which the evolution equation for the viscous pressure tensor Pv has 
the form

� (1.9)

If, instead of (1.8a), the time derivative (1.8b) is used, one has the so-called lower-
convected Maxwell model.

The fluid will be considered as incompressible from here on. This implies that 
∇ · v = 0 and since ∇ · v is the trace of the ∇v tensor one could think that this will 
mean that the trace of the viscous pressure tensor will also vanish, i.e. TrPv = 0. 
However, though it is true that the linear contribution to TrPv, which is proportional 
to ∇ · v, will be zero, second-order non-linear contributions may appear, giving a 
non-vanishing trace of Pv.

For further discussions it will be convenient to have explicit expressions for Pv 
in some steady flows. In a purely shear flow corresponding to v = ( vx( y), 0, 0), the 
velocity gradient tensor, is

� (1.10)

where γ̇  is the shear rate. Introduction of (1.10) into (1.7) yields, in the steady situ-
ation, for the co-rotational Maxwell model

�
(1.11)

and therefore the steady-state viscometric functions are

� (1.12a)

� (1.12b)

� (1.12c)

For the upper-convected Maxwell model (1.9), one has

� (1.13)

dPv

dt
− (∇v)T · Pv − Pv · (∇v) = −

1

τ
Pv − 2

η

τ
V.

∇v =






0 0 0

γ̇ 0 0

0 0 0




,

Pv =






−τηγ̇ 2(1 + τ 2γ̇ 2)−1 −ηγ̇ (1 + τ 2γ̇ 2)−1 0

−ηγ̇ (1 + τ 2γ̇ 2)−1
τηγ̇ 2(1 + τ 2γ̇ 2)−1 0

0 0 0




 ,

P v
12 = −ηγ̇ (1 + τ 2γ̇ 2)−1,

P v
11 − P v

22 = −2τηγ̇ 2(1 + τ 2γ̇ 2)−1,

P v
22 − P v

33 = τηγ̇ 2(1 + τ 2γ̇ 2)−1.

Pv =






−2τηγ̇ 2 −ηγ̇ 0

−ηγ̇ 0 0

0 0 0




 .
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The corresponding steady-state viscometric functions are thus

� (1.14)

so that the second normal stress is zero and the first normal stress coefficient Ψ1 is

� (1.15)

For the lower-convected Maxwell model, the viscous pressure tensor in the steady 
state is given by

� (1.16)

and therefore, the viscometric coefficients are given by

� (1.17)

It turns out that the upper-convected model agrees rather satisfactorily with a wide 
range of experimental results, while the predictions (1.17) of the lower-convected 
model or (1.12) of the co-rotational model are at variance with experiments.

Another flow of much viscometric and practical interest is the planar extensional 
flow, in which the velocity field has two components v = ( vx( x), vy( y), 0), such that 
its gradient takes the form

� (1.18)

with ε̇(= ∂vx/∂x = −∂vy/∂y) the extensional rate. In the steady state, (1.6) yields

� (1.19)

The expressions of Pv for the other viscoelastic models may easily be obtained.
In the previous Maxwell models we have considered only one relaxation time. In 

many cases, one must consider that Pv is the sum of several (or many) independent 
contributions, i.e. Pv =

∑
j Pv

j  with each Pv
j  obeying a linear evolution equation 

such as (1.6) or (1.9), characterized by its own viscosity i and relaxation time i. 
These independent contributions arise from the different internal degrees of free-
dom of the macromolecule, as will be explained in detail in Chap. 5. These models 
are known as generalised Maxwell models.

P v
12 = −ηγ̇ , P v

11 − P v
22 = −2τηγ̇ 2 , P v

22 − P v
33 = 0,

�1(γ̇ ) = 2τη.

Pv =






2τηγ̇ 2 −ηγ̇ 0

−ηγ̇ 0 0

0 0 0




 .

P v
12 = −ηγ̇ , P v

11 − P v
22 = 2τηγ̇ 2, P v

22 − P v
33 = 0.

∇v =






ε̇ 0 0

0 −ε̇ 0

0 0 0




,

Pv =






−2ηε̇(1 − 2τ ε̇)−1 0 0

0 2ηε̇(1 + 2τ ε̇)−1 0

0 0 0




.

1.1 A Short Review of Rheological Concepts
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It is often useful, in linear models for viscoelasticity, to write the viscous pres-
sure tensor in terms of a memory function as

� (1.20)

where the memory function G( t − t′) is known as the relaxation modulus, and γ̇  as 
the rate-of-strain tensor, which is twice V. The Fourier transform of G( t − t′) is the 
complex strain–stress modulus G*( ) defined in (1.3). In a generalised Maxwell 
model, one has for G( t − t′)

� (1.21)

with i and i the different viscosities and relaxation times corresponding to the 
different degrees of freedom of the macromolecules (see Chap. 5). If one has only 
one relaxation time, this expression is the one corresponding to the simple Maxwell 
model (1.6). Note that for t = t′ one has G(0) = / and therefore, according to (1.4b) 
the compliance is J(0) = /. The value J(0) is usually called the steady-state com-
pliance, and it will appear in the generalised Gibbs Eq. (1.31).

In a small-amplitude oscillatory motion, integration of (1.20) and the use of the 
definitions (1.3–1.5) of * and G* yields

� (1.22)

or

�
(1.23)

where i and i now correspond to the ith degree of freedom.

1.1.2.2  �Non-linear Viscoelastic Models

In the models defined by (1.6) or (1.9), the viscometric coefficients do not depend 
on the shear rate. However, there are many phenomena which show that, in general, 
the viscometric functions depend in a complicated way on the shear rate and which 
require non-linear constitutive equations for their description. For instance, many 
fluids exhibit a decrease in viscosity with increasing shear rate, an effect known as 
“shear thinning” (or pseudoplasticity). A few fluids (usually concentrated suspen-
sions of very small particles) exhibit the opposite behaviour, namely, an increase 
of viscosity with shear rate, which is known as “shear thickening” (or dilatancy). 

Pv = −
∫ t

−∞
G(t − t′)γ̇ (t′)dt′

G(t − t ′) =
∑

j

(ηj/τj ) exp [−(t − t ′)/τj ],

η′(ω) =
∑

j

ηj

[
1 + (τjω)2

]−1
, η′′(ω) =

∑

j

ηj τjω
[
1 + (τjω)2

]−1
,

G′(ω) =
∑

j

ηj τjω
2
[
1 + (τjω)2

]−1
, G′′(ω) =

∑

j

ηjω
[
1 + (τjω)2

]−1
,

1 Non-equilibrium Thermodynamics and Rheology
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Still another non-linear effect is viscoplasticity, which is shown by fluids (such as 
paints and pastes) which do not flow unless they are acted on by a shear higher than 
a threshold value.

A well known and rather general non-linear model is the so-called eight- 
constants Oldroyd model (Ferry 1980; Coleman et al. 1966; Tanner 1988; Bird et al. 
1987a), defined by the following constitutive equation

�

(1.24)

where U is the unit tensor and V(1) is the convected time derivative of V, the sym-
metric part of the velocity gradient, and Pv

(1)  is the convected time derivative of Pv. 
For a steady shear flow, its explicit form is

� (1.25)

It follows from (1.24) and (1.25), after a cumbersome but straightforward calcula-
tion, that in steady-state shear flow the viscometric functions are

� (1.26)

with σi = λi(λ3 + λ5) + λi+2(λ1 − λ3 − λ5) + λi+5(λ1 − λ3 − 3
5λ5) , and

� (1.27)

�
(1.28)

The 8-constants Oldroyd model is very general, and we recover from it several 
especially interesting and widely used models. Indeed, the linear model (1.9) is ob-
tained from (1.24) when 2 = … = 7 = 0. Furthermore, other well known non-linear 
models which are special cases of (1.24) are:

•	 the second-order Rivlin–Ericksen fluid ( 1
 = 3 = 5 = 6 = 7 = 0), for which the 

viscometric functions are  = 0, Ψ1 = −202, Ψ2 = 04;
•	 the co-rotational Jeffreys model, for which 3

 = 1, 4
 = 2, 5

 = 6
 = 7

 = 0, for 
which the viscometric functions are η(γ̇ ), ψ1(γ̇ )  and �2 = − 1

2�1 ;
•	 the convected Jeffreys model ( 3

 = 4 = 5 = 6 = 7 = 0), and, therefore, the vis-
cometric functions are  = 0, Ψ1 = 20( 1 − 2) and Ψ2 = 0.

Pv + λ1Pv
(1) +

1

2
λ3(V · Pv + Pv · V) +

1

2
λ5(TrPv)V +

1

2
λ6(Pv : V)U

= −η0

[
V + λ2V(1) + λ4V · V +

1

2
λ7V : VU

]

V(1) =




0 1 0
1 0 0
0 0 0



 dγ̇

dt
− 2




1 0 0
0 0 0
0 0 0



 γ̇ 2.

η

η0
=

1 + σ2γ̇
2

1 + σ1γ̇ 2
,

ψ1

2η0λ1
=

η(γ̇ )

η0
−

λ2

λ1
,

ψ2

η0λ1
= −

ψ1

2η0λ1
+

λ1 − λ3

λ1

η

η0
−

λ2 − λ4

λ1
.

1.1 A Short Review of Rheological Concepts
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In fact, the Oldroyd model is not truly universal, because the variation in viscosity 
predicted by (1.26) is too low to describe some real materials, in which the viscosity 
changes a hundred-fold in a finite range of shear rate. In (1.24), the coefficients i 
are assumed not to depend on the shear rate. In more general situations, they could 
be functions of the scalar invariants of the velocity gradient. In some situations 
described below we will mention some of these non-linear models, but, in general, 
our analysis will be restricted to linear situations.

1.2  �Extended Irreversible Thermodynamics

After having reviewed the most usual constitutive equations for viscoelastic fluids, 
we start the analysis of the thermodynamic aspects. First of all, we recall the basic 
ideas of the classical formulation of irreversible thermodynamics (Prigogine 1961; 
De Groot and Mazur 1962; Gyarmati 1970), which is based on the local equilibrium 
hypothesis. It states that, despite the inhomogeneous nature of the system, i.e. the 
values of its physical quantities differ from place to place, the fundamental thermo-
dynamic relations are still valid locally. In particular, the Gibbs equation express-
ing the differential form of the entropy in terms of its classical variables (internal 
energy, volume and number of moles of the chemical components of the system) is 
locally valid.

By combining the Gibbs equation and the evolution equations for mass, mo-
mentum and energy, one obtains an expression for the evolution equation for the 
entropy, with explicit forms for the entropy flux and the entropy production in terms 
of the fluxes (heat flux, diffusion flux, viscous pressure tensor, reaction rates) and 
of the conjugated thermodynamic forces, which are expressed as functions of the 
gradients of temperature, chemical potential, velocity, and of the chemical affinities 
of the reactions.

Finally, one relates the fluxes to the forces by means of constitutive equations 
which are required to obey the positive character of the entropy production. In 
the simplest but most usual versions, one assumes linear constitutive equations in 
which the fluxes are linear combinations of the thermodynamic forces. In this case 
it may be shown that the matrix of the transport coefficients relating the fluxes to 
the forces must obey the reciprocity relations established by Onsager and Casimir.

In this book, we want to focus our attention on the characteristic new aspects 
that the flow implies on the thermodynamics. As has been said, the classical theory 
retains the classical Gibbs equation, and therefore the thermodynamic relations are 
not changed by the presence of a flow. Therefore, instead of presenting all the de-
tails of the classical theories, we will directly write the main ideas and concepts of 
extended irreversible thermodynamics (EIT), which will be the basis of the analyses 
in this monograph, and we will explain how they reduce to the corresponding local-
equilibrium expressions.

EIT, which has been widely discussed in the companion volume (Jou et al. 2010), 
assumes that the entropy may depend, in addition to the classical variables, on the 

1 Non-equilibrium Thermodynamics and Rheology
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dissipative fluxes. In Sect. 1.2.1, we discuss a one-component fluid, in which we ne-
glect thermal conduction and consider that the only non-equilibrium quantity in the 
space of independent thermodynamic variables is the viscous pressure tensor (Jou 
et al. 2010; Lebon et al. 1986, 1988). In Sect. 1.2.2, we consider a two-component 
mixture and incorporate the effects of the diffusion flux, which will play an impor-
tant role in Chaps. 7–10.

1.2.1  �Viscous Pressure

According to EIT, the generalised Gibbs equation for a simple unicomponent fluid 
in the presence of a non-vanishing viscous pressure tensor is, up to the second order 
in Pv

� (1.29)

with u and v the specific internal energy and the specific volume, T and p the ab-
solute temperature and the thermodynamic pressure,  the shear viscosity and   
the relaxation time of Pv as defined in (1.6) or (1.9). To avoid unnecessary formal 
complications we use as a variable the whole tensor Pv, instead of splitting it into 
the trace and the corresponding traceless part. In Sect. 1.2.2, a derivation of (1.29) 
will be presented. The first two terms on the right-hand side on (1.29) correspond 
to the classical Gibbs equation, whereas the third term is characteristic of EIT. It 
is related to the non-vanishing character of the relaxation time . When  tends to 
zero, both the relaxational terms in the constitutive Eqs. (1.6) and (1.9) and the non-
equilibrium contribution to the entropy in (1.29) tend to zero, in such a way that the 
constitutive equations tend to the usual Newton–Stokes law for the viscous pressure 
tensor and (1.29) reduces to the classical Gibbs equation. Thus, we stress that the 
presence of relaxational terms in the constitutive Eqs. (1.6) or (1.9) implies the pres-
ence of a non-equilibrium contribution to the Gibbs Eq. (1.29).

In general one could take, instead of a single relaxation time, several relaxation 
times and one could assume that Pv is the sum of several different contributions Pv

i
, 

each of them with its own relaxation time i and its own viscosity i, as in the gen-
eralised Maxwell models introduced in (1.21). In this case, one would have instead 
of (1.29)

� (1.30)

The total viscosity  is η =
∑

i

ηi. Consequently,  in (1.29) may be considered 
as an averaged relaxation time, defined as τ =

(∑
i τiηi

)(∑
i ηi

)−1 . Note that in 
terms of the steady-state compliance introduced after (1.21) ( J   =  /), one may 
write the generalised Gibbs Eq. (1.29) as

� (1.31)

ds = T −1du + T −1pdv −
τv

2ηT
Pv : dPv,

ds = T −1du + T −1pdv −
∑

i

(τiv/2ηiT ) Pv
i : dPv

i .

ds = T −1du + T −1pdv −
vJ

2T
Pv : dPv,

1.2 Extended Irreversible Thermodynamics
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which, after integration, becomes

� (1.32)

where subscript eq stands for the equilibrium value.
For shear flow, the generalised entropy (1.32) reduces to

� (1.33)

if one takes into account that for the model described by (1.13) P v
11 = −2J (P v

12)2. 
Notice that P v

12 is of the order of γ̇ , and for low values of γ̇  we may neglect the 
contribution of P v

12 of order higher than two and write

� (1.34)

Instead of the internal energy it is usual to take as an independent variable the tem-
perature, because it is more accessible to direct measurement. The thermodynamic 
potential which has as variables temperature and volume is the Helmholtz free en-
ergy f, defined as

� (1.35a)

where we are using values per unit mass. In view of its interest we comment also 
on the corresponding non-equilibrium contributions of a viscous pressure tensor. 
We are interested in the contribution ∆f of the flow to the free energy, for which we 
write, at constant T,

� (1.35b)

with

� (1.35c)

Note that for fixed temperature, the internal energy under flow u is in general not 
equal to the internal energy at equilibrium, because the flow may stretch or deform 
the molecules thus storing internal energy in them.

In order to evaluate the entropic contribution to the free energy, as given in 
(1.36), we expand seq( u, v) around the equilibrium value seq( ueq, v) as

� (1.36a)

which when inserted in (1.35b) leads to

�

(1.36b)
when use of (1.34) and (1.36a) is made.

s(u, v, Pv) = seq(u, v) −
vJ

4T
Pv : Pv,

s
(
u, v, Pv

12

)
= seq(u, v) −

vJ

4T

[
2
(
Pv

12

)2 + 2
(
Pv

12

)4
]

,

s
(
u, v, Pv

12

)
= seq(u, v) −

vJ

2T

(
Pv

12

)2
.

f = u − T s,

�f = �u − T �s,

�f = f − feq, �u = u − ueq, �s = s(u, v, Pv) − seq(ueq, v).

seq(u, v) = seq(ueq, v) +
(

∂seq

∂u

)

u=ueq

(u − ueq) + · · ·

�f = u − ueq − T
[
seq(u, v) − (vJ/2T )

(
Pv

12

)2 − seq(ueq, v)
]

=
1

2
vJ

(
Pv

12

)2
,
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In a more general situation, when one is not restricted to second order in shear 
rate, one assumes that the energy contribution, proportional to (P v

12)2, is much high-
er than the entropic one. We will comment on this point later from a microscopic 
point of view. One should thus have

� (1.37)

This is consistent with the meaning of J (P v
12)2 as stored energy. An expression 

slightly more general than (1.29) has been derived by Daivis (2008) using the shear 
rate γ̇  instead of the viscous pressure as independent variable. His derivation is 
based on the analysis of the work stored in a viscoelastic fluid when it is brought 
from the equilibrium state to a shearing steady state. This author writes the general-
ized Helmholtz free energy as

� (1.38)

with  the corresponding conjugate parameter to γ̇ , from which it is obtained the 
Maxwell relation

� (1.39)

He carried out non-equilibrium molecular dynamics simulations of a simple shear-
ing fluid, but these Maxwell relations were not verified. Daivis saw as a possible 
source of disagreement the sensibility of these quantities with temperature, and the 
fact that out of equilibrium one may define several different temperatures. Indeed, 
he used for T the kinetic temperature instead of the thermodynamic non-equilibrium 
temperature depending on γ̇ , which should be used for the sake of internal consis-
tence. Analyses of Maxwell relations stemming from non-equilibrium potentials 
seem worth to be pursued.

In our formalism, and in the steady state, (1.29) could be rewritten as

� (1.40a)

where we have written Pv = −2V and the symbol of entropy, energy and volume as 
capital letters in order to stress that (1.29) is not restricted to values per unit mass 
s, u and v, but for total volume V, entropy S and internal energy U. Thus, T−1V 
may be considered as the intensive variable conjugate to the extensive quantity 
VPv whose preferable use as variable rather than Pv will be commented in Chaps. 2 
and 6. Consequently, we may go from the extensive variable VPv to the intensive 
variable V through a Legendre transform. In particular, we may rewrite (1.40a) in 
terms of U as

� (1.40b)

�f = �u = vJ (P v
12)2.

df = −sdT − pdv + ζdγ̇ ,

(
∂ζ

∂v

)

T ,γ̇

= −
(

∂p

∂γ̇

)

T ,v

=
∂2f

∂v∂γ̇
.

dS = T −1dU + T −1pdV + T −1τV : d(V Pv),

dU = T dS − pdV − τV : d(V Pv),

1.2 Extended Irreversible Thermodynamics
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and write the corresponding Legendre transforms for F1( T, V, VPv) or F2( T, V, V)
as

� (1.41a)

and

� (1.41b)

The latter expression would be the generalization of Daivis expression (1.38). These 
Legendre transforms show that it is possible to go from the viscous pressure tensor 
to the velocity gradient as independent variables. Analogously, in Chap. 5 it will 
be considered another Legendre transform going from the viscous pressure tensor 
to the macromolecular configuration tensor, which will be introduced in Chap. 4. 
However, these Legendre transforms may be carried out in steady states, where Pv 
and V are univocally related, but in general they are not expected to be valid in fast 
varying states, where Pv and V behave in a completely independent way.

Note that an analogous analysis could be carried out for the Gibbs free energy, 
which has as basic variables the temperature and pressure instead of temperature 
and volume, and which plays a central role in physico-chemical thermodynamics, in 
the analysis of phenomena at constant temperature and constant pressure.

1.2.2  �Viscous Pressure and Diffusion Flux

In this subsection we consider a binary mixture and introduce the diffusion flux as a 
further independent variable, because it will play an important role in several of the 
phenomena studied in this monograph (Nettleton 1988; Jou et al. 1991, 2010; Gold-
stein and García-Colín 1993, 1994; Pérez-Guerrero and García-Colín 1991; Pérez-
Guerrero 1997; Nettleton 1993, 1996a, b). Furthermore, we carry out a detailed 
justification of the generalised form of the entropy, which was presented in (1.29) 
without derivation. Our aim is to analyse the couplings between the diffusion flux 
and the viscous pressure tensor. For the sake of simplicity, the latter will be consid-
ered here as a single independent variable with a single relaxation time instead of 
the addition of several independent contributions, each with its own relaxation time. 
The extension to the latter situation is straightforward but cumbersome. We will use 
the coupled evolution equations for the diffusion flux J and Pv in Chaps. 6–8.

Instead of (1.29), we write now the extended Gibbs equation in the form

� (1.42)

with c1 the concentration (mass fraction) of the solute, µ̃ ≡ µ1 − µ2  the difference 
between the specific chemical potentials of the solute and the solvent, and 1 and 2 
coefficients whose form will be identified below. We neglect here the effects of the 
bulk viscous pressure, for the sake of simplicity. Note the third and fourth terms on 

dF1 = −SdT − pdV − τV : d(V Pv),

dF2 = −SdT − pdV + V Pv : d(τV).

ds = T −1du + T −1pdv − T −1µ̃dc1 − vα1J · dJ − vα2Pv : dPv,

1 Non-equilibrium Thermodynamics and Rheology
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the right-hand side of (1.41), related to changes in composition and to the diffusion 
flux, which were absent from (1.29).

We assume for the entropy flux the expression

� (1.43)

The first two terms are classical; the latter one is characteristic of EIT, and it is of 
second order in the fluxes: β is a phenomenological coefficient characterizing the 
coupling of Pv and J.

The energy and the mass balance equations are, respectively,

� (1.44)

� (1.45)

Combination of (1.42), (1.44) and (1.45) yields for the time derivative of the 
entropy

� (1.46)

It is convenient to rewrite the two first terms of the right-hand side of (1.46) as

�
(1.47)

�
(1.48)

Then, taking into account (1.43), one obtains for the entropy production

�
(1.49)

where use has been made of the general form of the balance equation of entropy

� (1.50)

From now on, we consider an isothermal situation and neglect the heat flux. This 
does not mean, of course, that thermal effects are not important, but that we will 
focus our analysis on situations in which they are negligible, only for the sake of 
simplicity. Under this simplification, the simplest evolution equations for J and Pv 
compatible with the positive character of (1.49) are

� (1.51)

� (1.52)

J s = T −1q − T −1µ̃J + βPv · J .

ρu̇ = −∇ · q − p(∇ · v) − Pv : V,

ρċ = −∇ · J .

ρṡ = −T −1∇ · q + T −1µ̃∇ · J − T 1Pv : V − α1J · J̇ − α2Pv : Ṗv.

T −1∇ · q = ∇ · (T −1q) − q · ∇T −1,

T −1µ̃∇ · J = ∇ · (T −1µ̃J ) − J · ∇(T −1µ̃).

σ = q · ∇T −1 + J · [−∇(T −1µ̃) − α1J̇ + ∇ · (βPv)]

+ Pv : (−T −1V − α2Ṗv + β∇J),

ρṡ + ∇ · J S = σ.

−∇(T −1µ̃) − α1J̇ + ∇ · (βPv) = β1J ,

−T −1V − α2Ṗv + β(∇J )s = β2Pv,

1.2 Extended Irreversible Thermodynamics



16

where (∇J )s stands for the symmetric part of ∇J. The positive phenomenological 
coefficients β1 and β2 may be identified in physical terms by comparing (1.51) and 
(1.52) in the isothermal steady state and without couplings with the well known 
Navier–Stokes and Fick’s equations, namely

� (1.53)

where D̃  is a coefficient related to the usual diffusion coefficient D by means of 
D = D̃(∂µ̃/∂c1).  Such comparison yields β1 = (D̃T )−1, β2 = (2ηT )−1. Furthermore, 
one may identify the respective relaxation times of J and Pv as τ1 = α1/β1 = α1(D̃T ) , 
τ2 = α2/β2 = α2(2ηT ) . This allows one to identify in physical terms the coefficients 
1 and 2 appearing in the extended Gibbs Eq. (1.42) and yields for it the explicit form

� (1.54)

Note that the latter term has the form given in the last term of (1.29), which appears 
now explicitly justified, as well as its deep and direct relation with the relaxational 
terms in the constitutive Eq. (1.51).

It is also worthwhile to note that in the absence of viscous pressure and in a 
steady state, where J = −D∇c1, (1.54) may be integrated to give

� (1.55)

with l a correlation length defined by l = vD̃τ1/T . The contribution of the density 
gradients to the entropy, or to the free energy, is usually known as a Ginzburg–
Landau contribution, and will be discussed in Chap. 7.

The evolution equations for J and Pv may be rewritten as

�
(1.56)

and

� (1.57)

Equations  (1.56) and (1.57) clearly exhibit the couplings between diffusion and 
viscous stresses. For instance, in diffusion of small molecules in a polymer matrix, 
these couplings are due to the swelling due to the solvent, which produces a relative 
motion between neighbouring polymer chains, whose mutual friction may cause a 
viscous stress.

The material time derivatives of J and Pv in (1.56) and (1.57) should be replaced, 
in general, by frame-invariant time derivatives, as mentioned in Sect.  1.1. Their 
form for tensors has already been discussed in (1.7–1.8). The corresponding form 
for the frame-indifferent derivative of J is

� (1.58)

Pv = −2ηV, J = −D̃∇µ̃,

ds = T −1du + T −1pdv − T −1µ̃dc1 −
vτ1

D̃T
J · dJ −

vτ2

2ηT
Pv : dPv.

s = seq(u, v, c1) − l2∇c1 · ∇c1,

τ1J̇ = −(J + D∇c1) + βD̃T ∇ · Pv

τ2(Pv)· = −(Pv + 2ηV) + 2βTη(∇J)s.

DJ

Dt
= J̇ + W · J .

1 Non-equilibrium Thermodynamics and Rheology
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which corresponds to the rate of change of J in a local system rotating with the 
system. Relaxational effects of the diffusion flux are relevant, for instance, in the 
propagation of fast solidification fronts (Galenko 2007; Lecoq et al. 2009).

1.3  �Rational Extended Thermodynamics

EIT can be seen not only as an extension of the classical irreversible thermodynam-
ics, but it may also be formulated along the line of thought of rational thermody-
namics (RT), which will be called rational extended thermodynamics (RET). The 
formalism of RT, whose main objective is to provide a method for deriving consti-
tutive equations, was essentially developed by Coleman, Truesdell and Noll in the 
1960s (Truesdell 1971, 1984) and offers an approach whose rationale is drastically 
different from the classical irreversible thermodynamics. It is interesting to consider 
EIT from both perspectives of classical and rational irreversible thermodynamics 
because it provides, in some aspects, a common ground for comparison in spite of 
the unrelated appearance in their original formulations.

Among the basic hypotheses underlying the earliest versions of RT we can out-
line: (i) absolute temperature and entropy are considered primitive concepts, whose 
validity is not restricted to near-equilibrium situations; (ii) it is assumed that sys-
tems have memory, i.e. their behaviour at a given instant of time is determined not 
only by the values of the variables at the present time, but also by their past history, 
or, in other versions, by additional variables whose evolution is dictated by com-
plementary constitutive equations; (iii) the second law of thermodynamics, which 
serves fundamentally as a restriction on the form of the constitutive equations, is ex-
pressed in mathematical terms by means of the Clausius–Duhem inequality. To ob-
tain restrictions on the memory functionals requires a rather elaborate mathematical 
theory in functional analysis and is therefore very attractive from the point of view 
of applied mathematics. Besides these ideas, RT used some auxiliary “principles”, 
such as those of equipresence (all variables are assumed to be present, in principle, 
in all equations, and some of them may be eliminated by using, for instance, the 
restrictions of the second law), fading memory (the memory is assumed to be more 
intense for recent conditions than for old conditions imposed on the system) and 
frame-indifference (constitutive equations are assumed to be invariant under Eu-
clidean transformations). A comparison of rational thermodynamics with extended 
irreversible thermodynamics in the linear domain may be found, for instance, in 
(Silhavy 1997). Let us finally note that although RT considers an entropy which is 
more general than the local-equilibrium one, since it may depend on non-equilib-
rium variables, such as, for instance, the gradients of temperature and velocity, the 
equations of state obtained as derivatives of the entropy are usually not explored in 
detail, with some exceptions (Silhavy 1997). In contrast, one of the objectives of 
EIT is precisely the full exploration of such equations of state.

Some aspects of RT (for a description of whose evolution the reader is referred 
to (Silhavy 1997)) were reformulated at the beginning of the 1970s. One especially 

1.3 Rational Extended Thermodynamics
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interesting reformulation, due to Shi-Liu, is based on the use of Lagrange multi-
pliers to take into account the restrictions of the balance equations on the admis-
sible processes to be considered, instead of using some artificial source terms in 
the energy and momentum balance equations, as was done in the Coleman and 
Truesdell formulation. This method is widely used, for instance, by Müller and 
Ruggeri (1998) in their formulation of extended thermodynamics. Here, we will use 
the version of RT based on Lagrange multipliers as a working method to present an 
alternative analysis of the restrictions of the second law on the evolution equations 
for the fluxes.

To illustrate our approach, we consider a viscous heat-conducting fluid in mo-
tion. The space of the variables, denoted V, is formed by the union of the space 
of the classical variables C (the density ρ = ν−1, the specific internal energy u, the 
velocity ν) and the space of the fluxes F (here the heat flux q, and the viscous pres-
sure Pν), which imply fourteen independent variables (two scalars, ρ and u, three 
components of ν, and three of q and six components of the symmetric tensor Pν). 
The evolution of the classical variables is governed by the balance equations of 
mass and energy

� (1.59)

� (1.60)

Concerning the extra variables q and Pv, we suppose that they obey evolution equa-
tions of the general form

� (1.61)

� (1.62)

Q is a tensor of rank two representing the flux of the heat flux, and σ q is a vector 
corresponding to the supply of heat flux, Jv is a third-rank tensor designating the 
flux of the viscous pressure tensor, and σv its source term. At this stage of the analy-
sis these quantities are not determined and must be specified by means of constitu-
tive relations in terms of the whole set of variables V. This implies that s and J s are 
given by constitutive relations of the form s = s( V ), J s = J s( V ).

The evolution Eqs. (1.61–1.62) and the constitutive relations are not arbitrary. 
They have to comply with the constraints of Euclidean invariance (criterion of ob-
jectivity or frame indifference), positiveness of the rate of entropy production, and 
convexity of entropy.

To satisfy the second law of thermodynamics, it is assumed that there exists 
a regular and continuous function s, called entropy, which obeys a balance law 
given by

� (1.63)

ρv̇ = ∇ · v,

ρu̇ = −∇ · q − Pv : V − pU : V.

ρq̇ = −∇ · Q + σ q,

ρṖ
v = −∇ · Jv + σ v.

ρṡ + ∇ · J s = σ s ≥ 0,

1 Non-equilibrium Thermodynamics and Rheology
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where J s is the entropy flux and σs the non-negative rate of entropy production. As 
in rational thermodynamics, the non-negative property of σs is used to place restric-
tions on the constitutive equations. The rate of entropy production is calculated by 
performing the operations indicated on the left-hand side of (1.63).

At this point, let us emphasize some of the main differences between EIT and 
rational thermodynamics. Whereas in the latter theory the quantities q, and Pv are 
given by constitutive relations, in EIT they are counted among the set of indepen-
dent variables. Furthermore, the second law is not in the form of the Clausius–
Duhem inequality, as the entropy flux is not imposed a priori to be given by the 
ratio of the heat flux and the temperature, but may contain extra terms. Finally, the 
entropy is assumed to depend on the fluxes.

To take into account the restrictions placed by the second law (1.62), on the 
constitutive equations, we follow the method of Lagrange multipliers. According 
to this technique, we include in (1.63) the constraints introduced by the mass and 
the energy balances and by the evolution equations of q and Pv via the Lagrange 
multipliers 0, Λ'0, Λ1, and Λ2, all depending on u, , q, and Pv; then the inequality 
(1.62) will take the form

�
(1.64)

s and J s are, at this stage of the analysis, unknown functions of u, v, q, and Pv. By 
differentiating s and J s with respect to u, v, q, and Pv, and rearranging the various 
terms one obtains from (1.64)

�

(1.65)

Since the derivatives u̇, v̇, q̇, and Ṗv are arbitrary, a first requirement for the posi-
tiveness of (1.64) is that

� (1.66)

�
(1.67)

where we have identified 0 with T −1 and �
′
0  with pT −1 according to the classical 

interpretation of derivatives (1.66).

ρ ṡ + ∇ · Js − �0(ρu̇ + ∇ · q + Pv : V + pU : V) − �′
0(ρv̇ − ∇ · v)

− �1 · (ρq̇ + ∇ · Q + −σ q) − �2 : (ρṖv + ∇Jv − σ v) ≥ 0,

(
∂s

∂u
− �0

)
ρu̇ +

(
∂s

∂v
− �′

0

)
ρv̇ +

(
∂s

∂q
− �1

)
· ρq̇ +

(
∂s

∂Pv
− �2

)
: ρṖv

+
∂J s

∂u
· ∇u +

∂J s

∂v
· ∇v +

∂J s

∂q
: ∇q +

∂J s

∂Pv
: ∇Pv

− �0∇ · q − �0Pv : V − �0pU : V + �′
0∇ · v − �1 · (∇ · Q) + �1 · σ q

− �2 : (∇ · Jv) + �2 : σ v ≥ 0.

∂s

∂u
= �0 = T −1,

∂s

∂v
= �′

0 = pT −1,

∂s

∂q
= �1,

∂s

∂Pv
= �2,
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Omitting now second and higher-order terms in the fluxes, the most general ex-
pressions of Q, σq, Jv, and σν are simply

� (1.68)

� (1.69)

with ai( u, v) and bi( u, v) undetermined functions of u and v. Calculating the diver-
gence of Q and of Jv, without including non-linear terms, and substituting into the 
last three lines of (1.65) (recall that the first line was eliminated according to (1.66) 
and (1.67)), one has

�

(1.70)

after use is made of the relation �
′
0 = p�0 , obtained from (1.66), and of the iden-

tity ∇ · ν ≡ U:V. As the gradients of independent variables are arbitrary, the coef-
ficients of these quantities in (1.70) must vanish to preserve the inequality. This 
leads to

� (1.71a)

�
(1.71b)

which suggest for Js the expression, which is also confirmed by kinetic theory of 
gases (Jou et al. 2010, Chap. 3),

� (1.72)

where the coefficients βi depend a priori on u and v. Comparing now (1.71b) and the 
derivatives of Js with respect to q and Pv obtained from (1.72) one has

� (1.73)

Note that the value of β1 allows us to interpret (1.72) as a classical term (the first 
one) plus an extended contribution. Also, it is worth pointing out that comparing 
(1.71a) and the derivatives with respect to u and v obtained from (1.72), it can be 
demonstrated that β2 is constant. The remaining terms of (1.70) will be analysed 
below.

Q = a1(u, v)U + a2(u, v)Pv, σ q = −a3(u, v)q,

Jv = b1(u, v)qU + b2(u, v)vU, σ v = −b3(u, v)Pv,

(
∂Js

∂u
−

∂a1

∂u
�1

)
· ∇u +

(
∂Js

∂v
−

∂a1

∂v
�1

)
· ∇v +

(
∂Js

∂q
− b1�2 − �0U

)
: ∇q

(
∂Js

∂Pv
− a2�1U

)
... ∇Pv − �0Pv : V − b2�2 : V − a3�1 · q − b3�2 : Pv ≥ 0,

∂J s

∂u
−

∂a1

∂u
�1,

∂J s

∂v
−

∂a1

∂v
�1,

∂J s

∂q
= b1�2 + �0U,

∂J s

∂Pv
= a2�1U,

J s = β1q + β2Pv · q,

�0 = β1, �1 = (β2/b2)q, �2 = (β2/b1)Pv.

1 Non-equilibrium Thermodynamics and Rheology



21

In the linear approximation, the evolution equation of q given by (1.61) can be 
written as

� (1.74)

when (1.67) is taken into account. For the sake of convenience, (1.74) may be re-
written as

� (1.75)

where the coefficients are identified as follows

� (1.76)

Equation  (1.75) contains the thermal and viscous contributions to the time evo-
lution of q. For 1 =  =  0 one recovers the Fourier law with  = (∂T/∂u) and 
δ = (∂T/∂v),  being the thermal conductivity. Another result derived from (1.75) 
when viscous effects are neglected (  = 0) is the well-known Maxwell–Cattaneo 
equation τ1q̇ + q = −λ∇T .

Similarly, the evolution equation for Pv is obtained from (1.62) and (1.69). Thus, 
in the linear approximation, we have

� (1.77)

and putting

� (1.78)

yields

� (1.79)

We finally derive the generalised Gibbs equation. To do this, we write the differen-
tial of s = s( u, v, q, Pv) in the form

� (1.80)

when (1.66) and (1.67) are used. To identify β2/b2 we proceed as follows: from the 
first of relations (1.71a) and the second of (1.73) one has

� (1.81)

ρq̇ = −
∂a1

∂u
∇u −

∂a1

∂v
∇v − a2∇ · Pv − a3q,

τ1q̇ = −q − κ∇u − δ∇v + α∇ · Pv,

τ1 = ρ2/a3 , κ = (a3)−1(∂a1/∂u), δ = (a3)−1(∂a1/∂v), α = −a2/a3.

ρPv = −b1∇q − b2V − b3Pv,

τ2 = ρ/b3 , 2η = b2/b3 , γ = −(b1/b3),

τ2Ṗv = −Pv − 2ηV + γ∇q.

ds = �0du + �′
0dv + �1 · dq + �2 : dPv

= T−1du + pT−1dv +
β2

b2
q · dq +

β2

b1
Pv: dPv,

∂J s

∂u
=

β2

b2

∂a1

∂u
q
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and taking into account the first equality of (1.73), the derivative of (1.72) with 
respect to u only up to first order in the fluxes gives

� (1.82)

Equating now both expressions and using (∂a1/∂u) = ρλτ−1
1 (∂T /∂u)  according to 

(1.76) the equality of the respective first terms leads to

� (1.83)

The identification of β2/b1 is made in a similar way. The four last terms of (1.70) 
can be written as

� (1.84)

and preservation of inequality requires that the terms in parentheses vanish, i.e.

� (1.85)

where we have used the third of relations (1.73). From (1.85) and b2 = (2ηρ/2) de-
rived from (1.78) and Λ0  = T −1 according to (1.66), one arrives at

� (1.86)

Note that the last two terms of (1.84) adopt the quadratic form

� (1.87)

which imposes the positiveness of transport coefficients  and . Summarizing this 
derivation, the Gibbs equation finally has the form (Jou et al. 2010)

� (1.88)

If the heat flux may be neglected, (1.88) reduces to (1.29). We have seen here that 
the main results of Sect. 1.2 with respect to the entropy, the entropy flux and the 
evolution equations for the fluxes in EIT are confirmed in RET in the linear approx-
imation. The techniques in RET could be useful for obtaining some more detailed 
information than in the usual presentations of EIT in the non-linear regime.

∂J s

∂u
=

∂�0

∂u
q.

β2

b2
= −

τ1v

λT 2
.

−
(
�0Pv + b2�2

)
: V − a3�1 · q − b3�2 : Pv ≥ 0

�2 = −
�0

b2
Pv =

β2

b1
Pv,

β2

b1
= −

τ2v

2ηT
.

(λT 2)−1q · q + (2ηT )−1Pv : Pv ≥ 0,

ds = T −1du + pT −1dv −
τ1v

λT 2
q · dq −

τ2v

2ηT 2
Pv : dPv.
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1.4  �Theories with Internal Variables

Another interesting and useful perspective to deal with more general situations than 
those found in the local-equilibrium theory are theories with internal variables (Mei-
xner 1949, 1954; Verhas 1997; Lhuillier and Ouibrahim 1980; Maugin and Drouot 
1983; Maugin and Muschik 1994a, b; Maugin 1999; Manero et al. 2007). These theo-
ries introduce additional variables which allow a more detailed description of the sys-
tem and enlarge the domain of application of thermodynamics; they have been suc-
cessfully applied in such fields as rheology and in dielectric and magnetic relaxation 
(Ciancio et al. 1990; Ciancio and Verhas 1991). These theories may provide a link 
between the apparently very dissimilar formulations of rational thermodynamics and 
of classical irreversible thermodynamics, by defining an accompanying equilibrium 
state that is different from the local-equilibrium state, which turns out to be the adia-
batic projection of the accompanying equilibrium state on the manifold of equilibrium 
states in the space of classical variables (Kestin 1990, 1993; Muschik 1990, 1993).

These theories have several connections with EIT, since they introduce more 
variables and more equations. On the other hand, they differ from it since EIT uses 
the macroscopic fluxes as variables, whereas the internal variables are either un-
identified (when they have as the only purpose to provide more general equations 
for the classical variables rather than being themselves the subject of direct mea-
surement), or motivated by a microscopic modelling of the systems.

Indeed, when working with polymer solutions the macromolecular configuration 
of the polymers is incorporated as a supplementary variable into the entropy or the 
free energy. One usually takes as a description of the configuration the so-called 
configuration tensor C

� (1.89)

with  the configurational distribution function. More elaborate thermodynamic 
functions including as variables the whole distribution function have also been con-
sidered. Here, Q is the end-to-end vector of the macromolecules. Other descriptions 
are possible in terms of 〈QiQi〉, with Qi the vector from bead i to bead i  + 1, or the 
vector related with the ith normal mode in a Rouse–Zimm description.

As will be seen in the next section, the configuration tensors are directly related 
to the viscous pressure tensor. Indeed, for the contribution of the ith normal mode to 
the viscous pressure tensor one has (Bird et al. 1987b)

� (1.90)

n being the number of molecules per unit volume, H an elastic constant characteriz-
ing the intramolecular interactions, and kB the Boltzmann constant. Thus, introduc-
tion of Pv

i
 or of 〈QiQi〉 as independent variables into the free energy is essentially 

equivalent, in the case of dilute polymer solutions (this is not so in the case of ideal 
gases, where there are no internal degrees of freedom). The use of Pv

i
 or of 〈QiQi〉 

C = 〈QQ〉 =
∫

ψ(Q)QQdQ,

Pv
i = −nH

〈
QiQi

〉
+ nkBT U,
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as variables has, in both cases, some characteristic advantages. For the analysis 
of non-equilibrium steady states, Pv

i
 is directly related to the observables. For a 

microscopic understanding of the macromolecular processes taking place and for 
the analysis of light-scattering experiments the use of 〈QiQi〉 is more suitable. The 
dynamical equations for the configuration tensor thus provide evolution equations 
for the viscous pressure tensor.

To give an explicit illustration, assume that one includes C as an independent 
variable of the theory. The corresponding Gibbs equation would then be

� (1.91)

As a consequence, the time derivative of the entropy takes the form

� (1.92)

Taking into account the mass and energy balance equations, (1.92) may be cast in 
the form

� (1.93)

We recognize T −1q as the entropy flux and the term on the right-hand side as the 
entropy production. The simplest constitutive equations satisfying the positiveness 
of the entropy production are

� (1.94)

�
(1.95)

� (1.96)

with the matrix of the transport coefficients Lij being definite positive, and with 
L10 = −L01 due to Onsager–Casimir reciprocity relations, due to the different parity 
of (∇v)s and C with respect to time-reversal symmetry.

Equation  (1.94) yields the usual Fourier law provided one identifies L = T2. 
Equation (1.95) relates the viscous pressure tensor to the internal variable C and 
(1.96) describes the evolution of the internal variable. If one does not need to mea-
sure C but only Pv and (∇v)s, one may eliminate C by combining (1.95) and (1.96) 
to obtain an evolution equation for Pv. In the simplest linear situation (i.e. assum-
ing that L00T −1, L10T −1, L01T −1ρα and L11T −1ρα are constant) one may differentiate 
(1.95) and, combining it with (1.96) one obtains an evolution equation of the so-
called Jeffreys (or double-lag) form

� (1.97)

ds = T −1du + pT −1dv − αT −1C : dC.

ρṡ = T −1ρu̇ + pT −1ρv̇ − ραT −1C : Ċ.

ρṡ + ∇ · (T −1q) = q · ∇T −1 − T −1Pv : (∇v)s − ραT −1C : Ċ.

q = L∇T −1,

Pv = −L00T
−1(∇v)s − L01T

−1ραC,

Ċ = −L10T
−1(∇v)s − L11T

−1ραC,

τ
dPv

dt
+ Pv = −2η

[
(∇v)s + τ2

d(∇v)s

dt

]
,
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with the relaxation time   given by

� (1.98a)

the shear viscosity  expressed as

� (1.98b)

and the time 2 given by

� (1.98c)

We recover Maxwell’s equation when L00 = 0 (this is indeed the case when (1.90) is 
satisfied). In this case we have 2 = 0 and 2η = −(L01L10/L11T ) = L2

01/(L11/T ) . 
Furthermore, C and Pv are directly related as C  =  −( L01T −1ρα)−1Pv. This may be 
introduced into the Gibbs Eq. (1.91) and yields, in the linear situation we are con-
sidering,

� (1.99)

which in view of the above identifications of  and , may be rewritten as

� (1.100)

which is precisely the Gibbs Eq. (1.29) of EIT.
This short development shows that when the conformation tensor is directly re-

lated to the viscous pressure tensor (Bird et al. 1987b) it is possible, in principle, 
to directly compare both theories in the linear approach. The choice of variables 
will depend on the experimental measurements: if one controls the shear pressure, 
its choice as an independent variable, as in EIT, is more convenient, whereas if a 
more microscopic understanding is needed, the conformation tensor will be more 
useful. In other situations, the relation between C and Pv is non-linear, in such a way 
that several C may yield the same Pv, i.e. Pv is more macroscopic than C. In such 
situations, the theories with internal variables would be more detailed than EIT, as 
expected of a theory using some microscopic information.

Other differences between the two approaches are the following: (a) in the theories 
of internal variables it is usual to propose purely relaxational equations for these vari-
ables. In contrast, in EIT one assumes that the fluxes are field variables which satisfy 
their own balance equations, where a flux of the flux may be present in a natural way; 
(b) theories with internal variables usually associate such additional variables with 
some structure of underlying molecules, as in the mentioned example of macromole-

τ = (L11T
−1ρα)−1,

2η = −
L01L10 − L00L11

L11T
,

τ2 =
L00

2ηL11ρα
= τ

L00T
−1

2η
.

ds = T −1du + pT −1dv −
αT −1

(L01ραT −1)2 Pv : dPv,

ds = T −1du + pT −1dv −
τ

2ηρT
Pv : dPv,
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cules. However, in EIT one uses as variables Pv, q and other fluxes despite the particles 
composing the fluid being monatomic and without internal degrees of freedom. From 
this point of view, EIT aims to build a macroscopic formalism which is able to deal 
with a wide variety of systems, whereas the theories with internal variables refer usu-
ally to a given kind of system, for which the internal variable is explicitly identified.

1.5  �Hamiltonian Formulations

Hamiltonian formulations express in an elegant way a feature which is common 
to many different levels of description, namely, the Hamiltonian structure of the 
reversible part of evolution equations. This is found in the microscopic level of 
description (mechanics of the particles composing the system), the level of kinetic 
theory (based on a distribution function rather than on precise values for the me-
chanical variables of each microscopic particle), and macroscopic descriptions 
(such as, for instance, hydrodynamics or equilibrium thermodynamics). Therefore, 
it is logical to ask that mesoscopic intermediate descriptions should also have this 
structure. This compatibility condition among different levels is especially useful in 
the non-linear domain, where the thermodynamic inequalities do not provide use-
ful restrictions (Beris and Edwards 1994; Grmela and Öttinger 1997; Öttinger and 
Grmela 1997; Dressler et al. 1999; Öttinger 2005).

Here, we will follow the so-called generic (general equation for the non-equilib-
rium reversible–irreversible coupling) formulation by Grmela and Öttinger (Grme-
la and Öttinger 1997; Öttinger and Grmela 1997; Öttinger 2005). These authors 
propose that the time evolution equations of the physical systems may be written as

� (1.101)

where x represents a set of independent variables required for the complete descrip-
tion of the non-equilibrium system (namely, hydrodynamical fields and additional 
structural variables), E and S are the total energy and entropy of the system expressed 
in terms of x, and L and M are linear operators, whose essential features will be spec-
ified below. The dot indicates the multiplication of a vector by a matrix and /x usu-
ally implies functional rather than partial derivatives. The first term in the right-hand 
side of (1.101) is purely Hamiltonian and expresses the reversible contribution to the 
time evolution equations of x generated by the energy E and the entropy S, whereas 
the second term is Riemannian and corresponds to the irreversible contributions.

Equation (1.101) is supplemented by the following degeneracy requirements

� (1.102a)

The first requirement expresses the reversible contribution of L to the dynamics and 
requires that the functional form of the entropy must be such that it is unaffected 

dx

dt
= L ·

δE

δx
+ M ·

δS

δx
,

L ·
δS

δx
= 0,
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by the operator L generating the reversible dynamics. The second one expresses 
the conservation of the total energy by the contribution of the dynamics. Note that 
these degeneracy requirements express very essential and general physical aspects.

Furthermore, one defines the following brackets

� (1.103)

� (1.104)

where 〈 , 〉 denotes the scalar product. The bracket { , } extends the usual Poisson 
brackets of classical mechanics, whereas the [ , ] brackets are intended to describe 
the dissipative behaviour.

In terms of these brackets, (1.101) and the chain rule yield the following form for 
the evolution equation of an arbitrary function A

� (1.105)

Further conditions for L and M may be stated as the following general properties 
of the Poisson brackets:

� (1.106a)

� (1.106b)

from which it follows that the matrix L is antisymmetric, and restrict the possible 
forms of the connection mechanisms for the structural variables, and

� (1.107)

which requires that M is symmetric and definite positive. This non-negativeness 
property guarantees that dS/dt ≥ 0 and therefore, together with the degeneracy re-
quirement (1.102a), it expresses a form of the second law.

This form of writing the evolution equations in terms of two generators E and 
S and two matrices L and M aims to capture the most essential features of the 
dynamics of the systems, in an analogous way to the fundamental thermodynamic 
potentials capturing all the thermodynamic information into a single potential. The 
main innovation of GENERIC with respect to previous bracket formalisms is the 
use of two different generators, E and S, instead of a single generator: this gives 
more flexibility in the choice of variables. The matrix L is determined by the behav-
iour of the variables x under space transformations, whereas the dynamical material 
information enters in the friction matrix M. The symmetry requirements on L are 
usual in classical mechanics and guarantee the consistency of L with the structure 

{A, B} =
〈
δA

δx
, L ·

δB

δx

〉

[A, B] =
〈
δA

δx
, M ·

δB

δx

〉

dA

dt
= {A, E} + [A, S].

{A, B} = −{B, A} (antisymmetry)

{A, {B, C}} + {B, {C, A}} + {C, {A, B}} = 0 (Jacobi identity)

[A, B] = [B, A], [A, A] ≥ 0,
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of the equivalent Poisson bracket, whereas the symmetry of M is directly related to 
Onsager’s reciprocity relations.

The previous formalism may be applied to many physical situations (such as, for 
instance, polymer solutions, emulsions and blends, polymer melts, etc). Here, we 
will apply it to polymeric fluids as an illustration. As will be seen, it yields, amongst 
other results, non-equilibrium expressions for the entropy S, which are related to 
the dynamics in a very well specified form through the GENERIC formalism. In 
fact, entropy appears there as a primary concept, and its form is only verified a pos-
teriori, after the success of the evolution Eq. (1.105) has been verified. We follow 
here the presentation by Öttinger and Grmela (Grmela and Öttinger 1997; Öttinger 
and Grmela 1997; Öttinger 2005), specified to a dumbbell solution. We will use two 
different levels of description.

1.5.1  �Microscopic Level: Distribution Function  
as an Internal Variable

Assume a dumbbell model of a dilute polymer solution and take as essential vari-
ables x the mass density ( r) of the solution, the momentum density u( r) of the 
solution, the internal energy of the solvent ( r) and the configurational distribution 
function Ψ( r, Q), where Q is the dumbbell configuration vector (or, in a more gen-
eral situation, the end-to-end vector of a macromolecule). For dilute polymer solu-
tions, the polymer contributes essentially to stress and internal energy, whereas its 
contribution to mass and momentum is negligible. We will use these simplifications 
here, for the sake of simplicity.

The total energy density is obtained by adding the kinetic energy and the solvent 
and polymer potential energy in the form

� (1.108)

where V( Q) is the interaction potential between the beads of the dumbbell. In fact, 
since the interaction may be of energetic origin or of entropic origin, they also take 
into account an entropic potential V(s) ( r, Q), and they write the entropy in the form

�

(1.109)

where s( , ) is the solvent entropy and the ψ lnψ term is associated with the entro-
py of the dumbbells, whereas the entropic potential V(s) ( r, Q) takes account of the 
entropic effects on the finer level of polymer segments which have been eliminated 
in coarse-graining from the macromolecule level to the dumbbell level. Öttinger 
and Grmela (1997) also write the explicit form for the operators L and M, and ex-

E =
∫ [

1

2
ρ(r)u(r)2 + ε(r) +

∫
V (Q) ψ (r , Q) dQ

]
dr ,

S =
∫ {

s(ρ, ε) −
∫

ψ(r , Q)[T −1V (s)(r , Q) + kB ln ψ(r , Q)]dQ

}
dr ,
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press the evolution equation for , but we will not repeat it here because it is rather 
lengthy. It turns out that the usual equations for the polymer dynamics may indeed 
be written in the form proposed in GENERIC formalism.

1.5.2  �Mesoscopic Level: Configuration Tensor as an Internal 
Variable

The GENERIC formalism is not exclusive of the microscopic level. On the con-
trary, one of its appeals is precisely that the GENERIC structure of the equations is 
found at several levels of description. In particular, for the sake of comparison with 
the previous results in EIT, Grmela and Öttinger (1997) take as an independent vari-
able, instead of the whole conformational distribution function , the configuration 
tensor defined as

� (1.110)

which is more macroscopic than ( r, Q) and has less information than the full ( r, Q). 
They assume that all the dumbbell contribution is of entropic origin, so that they 

take V = 0 in (1.108) and suppose a quadratic form for V(s) ( r, Q) in (1.109), cor-
responding to a configurational distribution of the Gaussian type. Then, they obtain 
that S = Ss + Sp, with Ss the solvent entropy and Sp the polymer entropy, the latter 
being given by

� (1.111)

where the constant  is chosen such that C( r) = U at equilibrium. This expression is 
obtained by integrating over Q in the entropy given by (1.109) and neglecting the 
additive constants. Note that

� (1.112)

The Hamiltonian theory imposes the requirement that the pressure tensor in L space 
should be chosen in such a way that the gradient of the entropy lies in the null-space 
of L. A possible choice for the pressure tensor P is then

� (1.113)

where a divergence-free term may be added to PT−1. From (1.112) and (1.113) and 
neglecting the isotropic contributions one obtains

� (1.114)

C(r) =
∫

QQψ(r , Q)dQ,

Sp =
1

2
npkB

∫
{Tr [U − αC(r)] + ln [det αC(r)]}dr ,

δS

δC
=

1

2
npkB

[
C−1(r) − αU

]
.

P = T

(
2C ·

δSp

δC
+ SpU

)
,

P = npkBT (U − αC).
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The second-order approximation to the entropy (1.111) would yield instead of the 
usual form (1.114) the modified form

� (1.115)

which is not supported by the microscopic theory and which only coincides with 
(1.114) for small values of C. To avoid this, Grmela and Öttinger propose that the 
non-equilibrium entropy in terms of the viscous pressure should take the form 
(1.114), which may be written in terms of P as

� (1.116)

This expression generalises the quadratic expression of EIT. In Chap. 5 (see (5.24)) 
we will also obtain a form analogous to (1.116) in the kinetic theory of polymers.

To describe the dynamics of the system, one needs the expressions for the ma-
trices L and M which appear in (1.101). These are given by (Grmela and Öttinger 
1997; Öttinger 2005)

�

(1.117)

where (C · ∇ − U∇ · C)jkl ≡ ∇lCjk − Ukl(C · ∇)j ,  and

�

(1.118)

With these expressions for L and M, and of the potentials E and S, one recovers 
the balance equations for mass, momentum and energy and the convected Maxwell 
equation for the viscous pressure tensor.

Thus, the GENERIC formalism constitutes an independent way to assert the con-
sistency between a generalised entropy and the corresponding evolution equations 
of the system, and it suggests how to generalize the entropy of EIT in the non-linear 
regime, where terms beyond the second order in the viscous pressure tensor are 
needed. Instead of a direct formulation of time-evolution equations for the internal 
variables, GENERIC formalism advocates for their modelling in terms of these 

P = npkBT αC · (U − αC),

Sp =
1

2
npkB

∫
{Tr[P/npkBT ] + ln det[U − P/(npkBT )]}dr.

L =






0 ∇ρ 0 0

∇ρ [∇v + v∇]T ε∇ + ∇p + ∇ · P C · ∇ − U∇ · C

0 ∇ε + p∇ + P · ∇ 0 0

0 ∇C − UC · ∇ 0 0






,

M =






0 0 0 0

0 −(∇ηsT ∇ + U · ∇ · ηsT ∇)T ∇ · ηsT γ̇ 0

0 −ηsT γ̇ · ∇ 1
2ηsT γ̇ : γ̇ − ∇ · λT 2∇ 0

0 0 0 2
npkBcτ

C






.
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four building blocks, which emphasize their connection with thermodynamics. The 
special strengths of this formalism are: (i) its application up to the level of the 
microscopic distribution function, thus allowing for the modelling of kinetic equa-
tions; (ii) the restrictions imposed by the Jacobi identity; (iii) the ability to identify, 
through the form of L, the microscopic expression for the pressure tensor. Reviews 
of modelling of polymer solutions in non-isothermal conditions are provided in 
(Dressler et al. 1999; Öttinger 2005).

It must finally be mentioned that other formalisms based on a single generator 
model and Poisson brackets have been used to describe the generalised transport 
Eqs.  (1.56) and (1.57) for the diffusion flux and the viscous pressure tensor, by 
Beris and Edwards (Beris and Edwards 1994). Another interesting approach is the 
so-called Matrix Model for thermodynamically driven systems developed by Jong-
schaap (Jongschaap 1990; Jongschaap et al. 1994) and whose relation to GENERIC 
model has been explored in (Edwards et  al. 1997). The reader is referred to the 
original literature for these more advanced topics, which depart from the aims of 
this book, which is more focused on the relations between non-equilibrium thermo-
dynamical equations of state and rheological equations, rather than on rheological 
equations themselves.

1.5 Hamiltonian Formulations
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The aim of this chapter and of the three subsequent ones is to provide a microscopic 
basis for the macroscopic thermodynamic description of flowing systems that has 
been presented in Chap. 1. Indeed, a close interaction between macroscopic and 
microscopic approaches is necessary and convenient. On the one hand, it gives ex-
plicit expressions for the quantities appearing in the macroscopic description and al-
lows understanding the peculiar characteristics of the several different systems. On 
the other hand, the macroscopic approach outlines some common features which 
should be shared by very different physical systems. Usually, the microscopic anal-
ysis of non-equilibrium systems is focused on the calculation of transport coeffi-
cients; here, we pay particular attention to the non-equilibrium contributions to the 
entropy and the free energy.

The systems we have chosen for this analysis are ideal gases, phonons, real 
gases, and polymer solutions. Although from the microscopic point of view their 
study is rather different, we will underline their common aspects concerning the 
non-equilibrium contributions to the entropy and to the evolution equation for the 
viscous pressure tensor.

We explore the thermodynamics of ideal gases in shear flows from two different 
microscopic points of view: information theory and kinetic theory. It will be seen 
that the entropy exhibits an influence on the viscous pressure tensor or on the ve-
locity gradient, thus leading to a modification with respect to the local equilibrium 
entropy, as postulated from a macroscopic point of view in Chap. 1. The expres-
sions in this chapter allow us to go beyond the second order in contributions of the 
viscous pressure tensor to the non-equilibrium entropy, temperature and chemical 
potential.

Some of the expressions studied here are useful to discuss in detail several defi-
nitions of temperature out of equilibrium, and their respective relations as well as 
their connection with different physical variables. This is a fundamental topic in 
non-equilibrium statistical physics beyond the local-equilibrium approximation, 
and therefore we pay to it a detailed attention.

D. Jou et al., Thermodynamics of Fluids Under Flow, 
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2.1  �Review of Some Basic Concepts

The basic quantity in the microscopic description of ideal monatomic gases is the 
velocity distribution function f (r, c, t), which accounts for the number of particles 
between r and r + dr with velocity between c and c + dc at time t. The classical 
hydrodynamic description is based on the first five moments of the velocity distri-
bution function, namely, the mass density , the mean velocity v, and the internal 
energy u per unit mass, which are, respectively, defined in terms of the distribution 
function as

� (2.1)

� (2.2)

� (2.3)

where C = c − v is the relative velocity of the molecules with respect to the mean 
motion of the gas and m the mass of the particles. As is well known, these quanti-
ties are related to general conservation laws of mass, momentum and energy. Their 
respective evolution equations are

� (2.4)

� (2.5)

� (2.6)

Here, v is the reciprocal of the mass density , i.e. the specific volume, P the pres-
sure tensor and q the heat flux, which are given in microscopic terms by

� (2.7)

� (2.8)

Since, at equilibrium, f is an isotropic function of C, the pressure tensor reduces in 
equilibrium to P = pU, with U the identity tensor and p the equilibrium pressure, 
given by

� (2.9)

ρ(r , t) =
∫

mf (r , c, t)dc,

ρ(r , t)v(r , t) =
∫

mcf (r , c, t)dc,

ρ(r , t)u(r , t) =
∫

1

2
mC · Cf (r , c, t)dc,

ρv̇ = ∇ · v,

ρv̇ = −∇ · P + ρF ,

ρu̇ = −∇ · q − P :∇v.

P =
∫

mCCf dc,

q =
∫

1

2
mC2Cf dc.

p =
1

3

∫
mC2f dc.
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Thus, for ideal gases TrPv = TrP − 3p = 0. It is found from the definition (2.3) of the 
internal energy that p = 2

3ρu. The macroscopic thermal equation of state for ideal 
gases, p = nkBT, leads to define the absolute equilibrium temperature as:

� (2.10)

with n the number of particles per unit volume and kB the Boltzmann constant. Note 
that (2.10) is a mathematical definition which is very appealing and useful from a 
microscopic perspective and in computer simulations, because kinetic energy has a 
clear physical meaning and it is easy to evaluate in molecular dynamics calculations. 
However, this definition does not bear direct relation to the measurement of tem-
perature in non-equilibrium situations. Thus, the simplicity of the definition (2.10) 
should not mask the fact that the understanding of temperature in non-equilibrium 
situations is still a conceptual challenge, as we will underline in Sect. 2.4.

The main challenge in the microscopic description of non-equilibrium situations 
is to find the non-equilibrium distribution function f. Here, we will obtain it from 
information theory to explore in a simple way entropy and temperature in non-
equilibrium situations.

2.2  �Information Theory: General Formalism

The success of the Gibbsian ensemble method in equilibrium statistical mechan-
ics has fostered the search for an extension for it in non-equilibrium situations. 
Of course, the latter situations are much more complicated than the equilibrium 
situations; indeed, it is required to determine not only the equations of state (which 
are often taken to be those of local-equilibrium) but also the temporal and spatial 
dependence of measurable properties, to calculate transport coefficients and to de-
scribe dissipation.

Several methods have been devised with this aim. One of the most appealing 
is a non-equilibrium statistical operator method based on the maximum entropy 
approach (Grandy 1987; Levine and Tribus 1979; Zubarev et al. 1997; Luzzi and 
Vasconcellos 1990; Luzzi et al. 2001, 2002). Another is more inspired by a canoni-
cal extension of the moment method in the kinetic theory of gases (Eu 1998, 2002). 
We will begin this analysis by using the first method.

The maximum entropy method consists in the maximization, in the context of 
information theory, of Gibbs statistical entropy, subjected to constraints on the aver-
age values of a given set of variables. This principle states that the probability distri-
bution function should be taken to maximize the average missing information of the 
system, subjected to the constraints corresponding to the available information. In 
this way, the amount of spurious information attributed to the system is minimized. 
On several occasions, this method has been criticized as being unduly subjective. 
In our view, this is not a justified criticism. Indeed, the method will give sound 
physical results only when the choice of variables on which we focus our attention 

p =
2

3
ρu = nkBT ,
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coincides with the truly relevant variables in the context of the experiments we 
want to describe, but not when we arbitrarily fix the choice of the variables. Thus, 
one of the open problems in this field is the choice of which variables are needed 
to describe the system. In equilibrium these are the conserved variables, which are 
microscopic constants of motion, but in non-equilibrium the problem is much more 
complicated, because it involves, in principle, a host of non-conserved variables.

Here, we will focus our attention on non-equilibrium steady states, which are 
the most natural and simplest non-equilibrium generalization of equilibrium states. 
The essential difference between them is the presence of non-vanishing fluxes of 
energy, mass, momentum and charge in non-equilibrium systems. Note, also, that 
the assumption of maximum entropy in steady states is not in contradiction with the 
principle that entropy is maximum at equilibrium, since both statements refer to dif-
ferent sets of constraints. The maximum entropy corresponding to a steady state is 
always less than (or at most equal to) the entropy corresponding to the equilibrium 
state with the same internal energy, volume and number of particles as the steady 
state. Indeed, the latter one is submitted to a wider set of constraints than the equi-
librium state, because the fluxes, or other relevant non-equilibrium variables, must 
be also specified. Each restriction reduces the number of accessible microstates and, 
therefore, it lowers also the value of entropy.

To be specific, let us present the essential ideas of the method for a system of N 
particles characterized by their positions and momenta, µ′ = {r1, p1, . . . , rN , pN }. 
Assume that we know the local mean values 〈Ai〉  of a set of extensive observables 
Ai(µ′).  The aim is to obtain the probability density fN (µ′)  which maximizes the 
information in the system compatible with the measured quantities. In other words, 
one calculates the probability density which maximizes the global entropy S de-
fined by

� (2.11)

and subject to the constraints expressing the known values of the controlled vari-
ables, namely

� (2.12)

Here, dΓN = dr1dp1…drN dpN is the volume element in the phase space, and h and kB 
are, respectively, the Planck and Boltzmann constants.

To achieve the maximization of S subject to constraints (2.12), one has to maxi-
mize the quantity

� (2.13)

where the λi(r) are the Lagrange multipliers corresponding to the quantities Ai(r). 
The dot between λi and Ai indicates a scalar product. In equilibrium these quanti-
ties are the internal energy and the particle density. Out of equilibrium, additional 

S = −kB(h3NN !)−1
∫

fN (µ′) ln fN (µ′)d�N ,

(h3NN !)−1
∫

fN (µ′)Ai(µ
′)d�N = 〈Ai〉.

−kB

∫ [
fN ln fN + fNλ0 + fN

∑

i
λi(r) · Ai(µ

′)
]
d�N ,
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restrictions must be imposed. In extended irreversible thermodynamics, these fur-
ther restrictions are the fluxes across the system. For instance, a simple non-equi-
librium situation would consist of a closed system with internal energy U subjected 
to a viscous pressure tensor Pv; in this case, the constraints are U and Pv. Finally, λ0 
is the Lagrange multiplier accounting for normalization. In what follows, subscript 
i starts with i = 1.

Expression (2.13) is an extremum under the condition that fN satisfies

� (2.14)

This yields a generalised canonical distribution of the form

� (2.15)

where Z, related to λ0 by ln Z = 1 + λ0, is a generalised partition function that follows 
from the normalization condition for fN, namely

� (2.16)

The explicit expressions of the Lagrange multipliers in terms of the average values 
of the basic variables are derived from constraints (2.12). In view of the form (2.16) 
of the partition function, the constraints may be written in the compact form

� (2.17)

as follows from definition (2.16) of Z and relations (2.12). These are the equations 
of state corresponding to this description.

Introduction of the distribution density (2.13) in the definition (2.11) for the 
entropy yields

� (2.18)

The differential of S obtained from (2.18) is

� (2.19)

The second equality in (2.19) follows from relation (2.17), which cancels the con-
tributions from d ln Z with those coming from 

∑

i

〈Ai〉 · dλi .

Comparison of (2.19) with the macroscopic Gibbs equation yields a general 
interpretation for the Lagrange multipliers in physical terms. For instance, in an 

∂

∂fN

[

fN ln fN + fNλ0 + fN

∑

i

λi(r) · Ai(µ
′)

]

= 0.

fN = Z−1 exp

[

−
∑

i

λi(r) · Ai(µ
′)

]

,

Z = (h3NN !)−1
∫

exp

[

−
∑

i

λi(r) · Ai(µ
′)

]

d�N.

−
∂ ln Z

∂λi

= 〈Ai〉,

S(r) = kB

[
ln Z +

∑

i
λi · 〈Ai〉

]
.

dS = kB

[

d ln Z +
∑

i

〈Ai〉 · dλi +
∑

i

λi · d〈Ai〉
]

= kB

∑

i

λi · d〈Ai〉.
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equilibrium system with a given average value of the internal energy, (2.15) re-
duces to

� (2.20)

with H the Hamiltonian of the system. The corresponding differential form (2.19) 
is then

� (2.21)

which, when compared with the macroscopic Gibbs equation dS = T −1dU yields 
λ1 = ( kBT)−1, with T the absolute temperature, and (2.20) is simply the well known 
canonical distribution function. If one imposes as a further restriction the average 
value of the particle number, (2.15) takes the form

� (2.22)

with N  the particle-number operator. Equating the differential of the entropy in 
terms of the Lagrange multipliers with the macroscopic Gibbs equation one obtains

� (2.23)

which corroborates the previous result for λ1 and yields λ2 = −( kBT)−1 with  the 
chemical potential. With these identifications, (2.22) is the macrocanonical prob-
ability distribution function.

Out of equilibrium, when new non-equilibrium variables are included in the de-
scription, the physical meaning of the Lagrange multipliers is, in general, unknown, 
because of the lack of a Gibbs equation in such situations. Extended irreversible 
thermodynamics gives a generalised Gibbs equation which allows such a physi-
cal interpretation of the Lagrange multipliers conjugated to the fluxes, as will be 
emphasized below.

In some cases it is important to have information on the fluctuations of the basic 
variables with respect to their average values. The expression for the second mo-
ments of the fluctuations of the observables Ai( ′) around their average values is 
straightforwardly derived in terms of Z by differentiation of (2.16) and is given by

� (2.24)

It must be emphasized that the generalised canonical distribution function (2.11) 
is not the exact distribution function which would be obtained from first principles 
(for instance, starting from the Liouville equation). Indeed, it does not satisfy the 
Liouville equation, it only gives the correct averages and the fluctuations of the 
basic variables considered in the description, but not for the other variables, and 
it does not describe the dissipation in the steady state. However, it is the basis of 

f = Z−1 exp

[

−
∑

i

λ1H
]

,

dS = kBλ1dU ,

f = Z−1 exp[−λ1H − λ2N ],

dS = kBλ1dU + kBλ2dN = T −1dU − µT −1dN ,

〈(
Ai(µ

′) − 〈Ai〉
) (

Aj (µ′) − 〈Aj 〉
)〉

=
∂2 ln Z

∂λi∂λj

.
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the thermodynamics in the space of the chosen variables, in the approach known 
as informational statistical thermodynamics, which also deals with the transport 
equations, for whose analysis more information than that given in (2.16) is needed 
(Luzzi and Vasconcellos 1990; Luzzi et al. 2001, 2002).

2.3  �Information Analysis of an Ideal Gas Under  
Viscous Pressure

Now, we apply these general ideas to a flowing ideal gas of N particles in a volume 
V under the restrictions on the internal energy U and the viscous pressure tensor Pv 
(Bidar et al. 1996; Jou and Criado-Sancho 2001). Of course, the quality of the re-
sults in the description of actual experiments will depend on how the choice of these 
variables faithfully grasps the essential physical features of the system. It has been 
shown in Chap. 1 that this choice is satisfactory for viscoelastic fluids, which cover 
a wide and rich phenomenology on which we focus our attention.

Since the particles are independent, we will resort to the one-particle distribution 
function f. To obtain the generalised canonical distribution function f, we maximize 
the entropy

� (2.25)

under the constraints (2.1), (2.3) and (2.7)

� (2.26)

C being the relative velocity of the particles with respect to the mean (barycentric) 
velocity of the system and n the particle number density. Note that Eqs. (2.26) yield 
the result

� (2.27)

Note that the presence of a viscous pressure implies dissipation, in such a way that 
to keep constant internal energy the dissipated heat should be removed. This re-
moval may be carried out locally, as in the molecular dynamics algorithms that will 
be examined in Chap. 4, or −more realistically− by means of a heat flow across the 
system; we do not include the heat flux in the constraints, for the sake of simplicity.

In order to take into account the restrictions associated with tensor P we con-
sider two options. The first one imposes Lagrange multipliers related to the internal 
energy and the component P v

12  of P (Bidar et al. 1996) which is expected to be 
satisfactory enough when normal viscous pressure is small and P v

12  is the dominant 
viscous term, as in plane Couette or Poiseuille flows. As a second alternative (Jou 
and Criado-Sancho 2001) it is considered that measurable quantities are the energy 

S = −kBV

∫
f ln f dC

∫
f dC =

N

V
= n,

∫
mCCf dC = P,

∫
1
2mC2f dC =

U

V
= ρu,

U =
1

2
TrV P.
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and all the components of P, especially those from which the so-called shear flow 
material functions are defined as

�

where �1(γ̇ )  and �2(γ̇ )  are the first and second normal stress coefficients, respec-
tively, and η(γ̇ )  the shear-rate dependent viscosity, and N1 and N2 are the viscous 
normal pressures, introduced in Sect. 1.1.

The distribution function (2.15) under these constraints can be written as

� (2.29)

or in the more compact form

� (2.30)

with M the symmetric tensor given by

� (2.31)

When U and P v
12 are taken as the unique independent variables, the only non-van-

ishing Lagrange coefficients will be  and λ12.
In the case that the average values of U, P v

12,  P v
11 − P v

22  and P v
22 − P v

33  are im-
posed as constraints, the expression (2.30) remains valid with M given by

� (2.32)

where the parameters , λ12, λ1 and λ2 are the Lagrange multipliers conjugated to 
the internal energy, the shear viscous pressure P v

12,  and the first and second normal 
pressures N1 and N2 respectively.

The matrix M (2.31) can be expressed in the form

� (2.33)

with U the unity matrix. Note that (2.32) could also be written as M = (kBT )−1U + λ′, 
with the component of λ′  defined accordingly.

P v
12 = −η(γ̇ )γ̇ ,

N1 = P v
11 − P v

22 = −�1(γ̇ )γ̇ 2,

N2 = P v
22 − P v

33 = −�2(γ̇ )γ̇ 2,

f = z−1 exp





−

1

2




∑

i

(β + 2λii)mC2
i +

∑

i

∑

j ( > i)

2λijmCiCj









,

f = z−1 exp

[
−

1

2
M :mCC

]
,

M =






β + 2λ11 λ12 λ13

λ12 β + 2λ22 λ23

λ13 λ23 β + 2λ33




 .

M =






β + 2λ1 λ12 0

λ12 β − 2λ1 + 2λ2 0

0 0 β − 2λ2




 ,

M = βU + λ
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The partition function related to the normalization of f is given by

� (2.34)

which after integration turns out to be

� (2.35)

with |M| the determinant of the matrix M. A similar result has been obtained by Far-
hat and Eu (1998), who also included normal-pressure effects in a non-equilibrium 
ensemble method proposed by Eu (1998). However, our aims are different from 
those of these authors, because we are interested in obtaining explicit expressions 
for the entropy, temperature and chemical potential, and in identifying explicitly the 
Lagrange multipliers conjugated to the non-equilibrium variables N1, N2 and P v

12.

The first aim is the interpretation of the tensor λ in terms of Pv. To achieve this goal, 
note that from the Gaussian character of (2.30), which implies 〈CC〉 = m−1M−1,  
one has

� (2.36)

We will write the tensor P as

� (2.37)

with Pv the viscous pressure tensor. In fact, it is usually assumed that P = nkBTU + Pv 
rather than (2.37) because  ≠ ( kBT)−1 is usually ignored in literature. However, the 
splitting (2.37) is mathematically more convenient and natural in the present con-
text (Camacho and Jou 1995; Criado-Sancho et al. 1994, 1998). Using (2.36) and 
(2.37) it immediately follows that

� (2.38)

where the series expansion for (1 + x)−1 has been used.
From the latter result, the Lagrange multipliers λ12, λ1 and λ2 may be written in 

terms of , n and Pv. Comparing (2.38) and (2.33) it follows that

� (2.39)

This expression gives the Lagrange multipliers in terms of the viscous pressure in 
any order in Pv.

z = V

∫
exp

[
−

1

2
mM :CC

]
dC,

z =
(2π )3/2V

m3/2N |M|1/2
,

P = n〈mCC〉 = nM−1.

P = nβ−1U + Pv,

M = β

[

U +
∞∑

i=1

(
−βn−1Pv

)i

]

,

λ = β

∞∑

i=1

(
−βn−1Pv

)i
.
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A physical interpretation of the Lagrange multipliers can be given from the com-
parison between expression (2.19), rewritten as

� (2.40)

and the non-equilibrium entropy (1.29) in the presence of a shear viscous pressure. 
If we are only dealing with the Lagrange multipliers  and λ12 the Gibbs Eq. (1.29) 
takes the form

� (2.41)

with  a generalised non-equilibrium temperature,  the relaxation time associated 
to P v

12 and  the coefficient of shear viscosity. Comparison of (2.40) and (2.41) 
leads to

� (2.42)

with γ̇  the shear rate. Note that (2.41) is valid for small values of P v
12,  i.e. the iden-

tification proposed here is strictly valid only in this limit. In Sect. 2.3 we will discuss 
in detail the differences between T and  or other possible definitions of temperature.

When we use (2.42) and only the first term of the expansion (2.39) is taken into 
account one has

� (2.43)

Note that near equilibrium it is known from kinetic theory that the viscosity coef-
ficient  = nkBT, with  the collision time and therefore (2.43) may be extrapolated 
from equilibrium yielding

� (2.44)

in agreement with the second equality in (2.42). This is the expression for λ in the 
usual formulation of EIT, when only quadratic terms in Pv are included in the non-
equilibrium entropy. The present analysis shows how to incorporate terms at any 
order in Pv in a more general non-equilibrium entropy.

2.3.1  �Non-equilibrium Entropy and Chemical Potential:  
General Formalism

The fundamental assumption underlying information theory establishes that in a 
physical situation described in terms of a complete set of macroscopic restrictions, 
the entropy takes its maximum value consistent with such restrictions. This does 

dS = kBβdU + kB

∑

i

λi · 〈dAi〉,

dS = θ−1dU −
τP v

12

ηT
d(VP v

12),

β =
1

kBθ
, λ12 = −

τP v
12

ηkBT
=

τ γ̇

kBT
,

λ ≈ −β2n−1Pv = −
1

nk2
Bθ2

Pv,

λ ≈ −
τ

kBθη
Pv.
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not imply any subjectivity or arbitrariness in the choice of the restrictions: the de-
scription of the system will lead to satisfactory results only when the choice of the 
restrictions corresponds to the suitable information required to describe the actual 
physical state of the system. From the Eqs. (2.25), (2.30) and (2.36), the entropy 
may be written explicitly as

� (2.45)

In order to stress the role played by the viscous pressure tensor on the non-equilib-
rium entropy, an alternative expression to (2.45) in terms of Pv can be derived using 
the Eqs. (2.35–2.37) and the relation

� (2.46)

From (2.45) and (2.46) we obtain for the entropy (2.42) the explicit form

�
(2.47)

One equivalent but more compact expression for the entropy can be written by us-
ing (2.35) and (2.36) together with (2.45)

� (2.48)

When a N-particle distribution function fN is introduced instead of the one-particle 
distribution f previously considered, and when we deal with a general system whose 
energy and extensive observables are given by {U, Ai} and their conjugated La-
grange multipliers are {, λi}, the distribution function that fulfils the requirements 
of maximum entropy has the form

� (2.49)

where ZN is the N-particles partition function.
According to (2.18), the expression for the total entropy is given by

� (2.50)

where Ai refer to observables different from U.
Expression (2.50) may be compared with the macroscopic Gibbs equation

� (2.51)
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with  the generalized pressure defined by π/θ = (∂S/∂V)U ,V Pv , whose physical 
meaning has been examined in (Domínguez and Jou 1995),  the chemical potential 
and Xi ≡ −kBλi.

By comparing (2.50) and (2.51) it follows that

� (2.52)

which generalizes the equilibrium relation

� (2.53)

It turns out from (2.47) or (2.48) that

� (2.54)

Thus, in spite of the fact that T and p are changed, respectively, to  and , the rela-
tion between T and p, namely p/T = nkB is the same as that between  and , since 
/ = nkB. This result was also found independently (Farhat and Eu 1998). Combin-
ing (2.54) with (2.52) one has for the chemical potential

� (2.55)

Taking into account that ZN = zN/N ! together with the explicit expression (2.35) 
for z, (2.55) is rewritten as

� (2.56)

Since |M| depends on the whole pressure tensor [cf. Eq. (2.36)], the chemical po-
tential depends also on all the components of the pressure tensor. The chemical 
potential (2.56) may be useful to describe some shear-induced effects (for instance, 
modification of the chemical composition of a mixture of gases under shear, or shift 
of the spinodal consolution line), which will be analysed in Chaps. 6–10.

2.3.2  �Analysis of Plane Couette Flow: Pure Shear Effects

In this section we will obtain explicit expressions for the non-equilibrium entropy 
(2.48) in terms of U, P12, P11 − P22 ≡ N1 and P22 − P33 ≡ N2. First of all we note that 
expression (2.48) may be written as

� (2.57)

where we have used Meq = ( kBT)−1U so that |M|eq = ( kBT)−3.
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For a system submitted to a fixed shear viscous pressure P v
12,  where normal ef-

fects are negligible, corresponding to a plane Couette flow with only  and λ12 as 
non-vanishing Lagrange multipliers, and taking into account (2.32) with λ1 = λ2 = 0, 
the determinant |M| adopts the form

� (2.58)

On the other hand, from Eqs. (2.17) and (2.35) it immediately follows that

� (2.59)

and Eqs. (2.40), (2.41), (2.58) and (2.59) let us write

�
(2.60)

Note that near equilibrium, i.e. when λ12 → 0, Eqs. (2.60) tend to U/V = 3/(2) and 
λ12 = −β2P v

12,  respectively. Thus, when P v
12 = 0  one recovers from (2.29) the 

standard Maxwell–Boltzmann distribution function. From (2.60) we obtain  and 
λ12 in terms of u and P v

12  as

� (2.61)

where the following auxiliary functions have been introduced

� (2.62)

which let us write

� (2.63)

It easy to show that lim
R→0

|M| = β3 = (kBT )−3  as expected.
By using (2.57) together with (2.63) and recalling that kBT = 2

3 (U/N )  the ex-
pression for the entropy can be written as

� (2.64)

where Seq stands for the equilibrium value of the entropy.
The latter equation, a main result in this section, gives an explicit expression for 

a non-equilibrium entropy dependent on the shear stress, and which is not limited 
to second-order non-equilibrium contributions, thus providing a generalization of 
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previous results on thermodynamics of fluids systems under shear viscous stress, 
restricted to second order in P v

12.  In Fig. 2.1, is plotted the entropy (2.64) and its 
second-order approximation in the viscous pressure.

It has been seen in (2.61) that although the present formalism yields the equa-
tion of state for /, it does not give any information on . Indeed, we have already 
mentioned that the generalised canonical distribution function (2.13) only gives the 
thermodynamic quantities (entropy, equations of state) in the space of the selected 
variables, but not the dynamics nor the dissipation. Thus,  must be obtained from 
a kinetic equation, whose formulation requires the full detail of the non-equilibrium 
statistical operator method (Zubarev et al. 1997; Luzzi and Vasconcellos 1990; Gal-
vao et al. 1995; Luzzi et al. 2002). This is rather complicated, and we will not deal 
with it in this monograph, which concentrates on the thermodynamic aspects. Here, 
we will tentatively assume that  does not depend on γ̇  in order to explore the con-
sequences of identification (2.61). When (2.61) is combined with (2.60), it yields 
for the dependence of the shear viscosity η(γ̇ )  on the shear rate γ̇

� (2.65)

Equation (2.65) describes a considerable reduction of the shear viscosity with in-
creasing γ̇ ,  a phenomenon (shear thinning) which is experimentally well known. 
For low values of R, this expression tends to 0 (the shear viscosity in the lin-
ear regime), whereas it tends to 0 when R tends to 1. Therefore, the viscous pres-
sure varies in the range 0 < P v

12 < u  when γ̇  changes from 0 to ∞. This limit may 
be understood from the kinetic interpretation of the pressure. Indeed, in kinetic 
theory one has P v

12 = 〈mC1C2〉.  Due to the inequality C1C2 < 1
2 (C2

1 + C2
2 ) and 

ρu = 1
2m(C2

1 + C2
2 + C2

3 ),  it follows that P v
12  must be less than or equal to the 

energy density.

η(γ̇ ) ≡
P v

12

γ̇
= −

3

2
η0

R2
[
R2 + (1 − y)

]

R2 + (2/3)(1 − y)
.

Fig. 2.1   Non-equilibrium 
contribution to the entropy 
as a function of the ratio 
VP v

12/U. The solid line cor-
responds to (2.64) whereas 
the dashed line corresponds 
to its second-order approxi-
mation in VP v

12/U.  (Bidar 
et al. (1997))
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Taking into account that the partition function for the N-particle system is 
ZN = zN/N!, the characteristic function F ( , V, N, λij) which generalizes the usual 
free energy to the present non-equilibrium situation is

� (2.66)

where B is the auxiliary function B = R2( y − 1)−1 − 1, with R and y given by (2.62).
Finally, we may also use the generalised partition function (2.35) to study the 

fluctuations around non-equilibrium steady states. The second moments of the fluc-
tuations of u and P v

12  in a steady state with |M| given by (2.58) and (2.61) may be 
directly obtained from the well known relationships (2.24), which yield in this case

� (2.67a)

〈
δP v

12δP
v
12

〉
=

∂2 ln z

∂λ2
12

= u2
[
R2 + (B + 1)2

]
,
�

(2.67b)

� (2.67c)

These expressions may be of interest, for instance, in connection with the fluctua-
tion-dissipation theorem in non-equilibrium steady states.

2.3.3  �Plane Couette Flow: Shear and Normal Effects

In order to obtain explicit results when, instead of only the  and λ12 Lagrange 
multipliers we consider those conjugated to U, P v

12,  P v
11 − P v

22 ≡ N1  and 
P v

22 − P v
33 ≡ N2,  (Jou and Criado-Sancho 2001) we write |M| as a function of the 

four later variables, but restricting our attention to the case N2 = 0, which is a good 
approximation to the experimental observations.

Using the identity kBT = 2
3 (U/N ),  the expression (2.57) may be written as

� (2.68)

and due to the form of the pressure tensor given by (2.26), one finds immediately

� (2.69)
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In equilibrium, 〈C1C2〉 = 0 and

� (2.70)

and therefore the term inside the logarithm in (2.68) reduces to 1 and one has 
S  =  Seq, as it should be. Out of equilibrium, m〈C1C2〉 = P v

12  and the condition 
N2 = 0 implies 〈C2

2 〉 = 〈C2
3 〉.

The entropy (2.68) may be finally written in terms of P v
12  and N1 as

�

(2.71)

which is the explicit expression we were looking for, and which is plotted in Fig. 2.2 
as a function of VP v

12/U  for different values of VN1/U.
As concerning to the non-equilibrium chemical potential (2.56) we have

�

(2.72)

Note that (2.71) and (2.72) are mutually consistent. Indeed, recall that by definition

� (2.73)

Since the right hand side of (2.71) will remain constant during the differentiation 
with respect to N at the conditions specified by the subscripts attached to the paren-
theses in (2.73), relation (2.72) follows directly from (2.71) and (2.73). This simple 
relation between non-equilibrium entropy and chemical potential is a consequence 
of the fact that in an ideal gas both U and VP are simply additive, namely

� (2.74)

The presence of interactions amongst the particles, as in real gases, would make 
more complicated the relation between both non-equilibrium corrections.

Figure  2.2 shows a divergence of ( S  −  Seq)/NkB at a value of VP v
12/U which 

depends on the value of VN1/U. In Fig. 2.3 the isentropic curves are plotted, cor-
responding the dashed one to divergence of ( S − Seq)/NkB. This divergence indicates 
in fact a limit of the admissible values for the ratio VP v

12/U , which must be lower 
than 1.
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It is not yet clear whether this divergence of the entropy corresponds to an actual 
instability of the system or to a failure of the classical statistics in the regime where 
only a few microstates are available; for instance, Boltzmann statistics predicts an 
infinite entropy (with minus sign) when T tends to zero, but for low T a quantum 
statistics must be used which yields a vanishing entropy. At this moment, it is still 
premature to focus the attention on this extreme situation.

In summary, we have explored the influence of non-equilibrium variables (shear 
viscous pressure, and normal pressures) in the entropy and chemical potential of a 
dilute gas. In this way, we provide a microscopic basis for these quantities beyond 
the local equilibrium regime and we generalize extended irreversible thermody-
namics beyond the second order in these non-equilibrium parameters.

These results could be used, for instance, to explore the influence of a flow on the 
composition of a gas mixture in chemical equilibrium but under a velocity gradient 

Fig. 2.2   Non-equilibrium 
contribution of the viscous 
pressure to the entropy as 
a function of VP v

12/U  for 
several values of VN1/U. (Jou 
and Criado-Sancho 2001)
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Fig. 2.3   Isentropic curves in 
the plane VP v

12/U ,  VN1/U. 
The values of ( S − Seq)/NkB 
are given in the correspond-
ing line. The dashed curve 
corresponds to the divergence 
of the entropy. (Jou and 
Criado-Sancho 2001)
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or a viscous pressure, i.e. in a system whose chemical composition is equilibrated 
but which, nevertheless, is out of hydrodynamical equilibrium as will be done in 
Chap. 9.

2.4  �Non-equilibrium Temperatures in Flowing Gases  
and Mixtures

The exploration of temperature out of equilibrium is a relevant topic in statistical 
physics and thermodynamics beyond the local equilibrium approximation (Casas-
Vázquez and Jou 2003). In principle, there are several ways to define effective tem-
peratures out of equilibrium by extrapolating several equilibrium relations to non-
equilibrium steady states. Since there is not energy equipartition, the temperatures 
corresponding to different degrees of freedom will be in principle different from 
each other, and different definitions will lead to different values of temperature out 
of equilibrium. In the equilibrium limit, all these values tend to the same value, 
characterizing the equilibrium temperature.

We may take advantage of the results of Sect. 2.2 to illustrate explicitly that dif-
ferent definitions of temperature lead to different values for it, but that these values 
may be related to each other if a sufficiently detailed knowledge of the system is 
available. First, we compute from (2.30) and (2.32) the kinetic temperatures associ-
ated to the three spatial directions (namely, direction 1, along the flow, direction 2, 
corresponding to the velocity gradient, and direction 3, perpendicular to the two 
previous directions) of a flowing ideal gas in a plane Couette flow. The results are

� (2.75)

and

� (2.76)

where  ≡ ( kB)−1. The local-equilibrium temperature T has been defined in terms of 
the total kinetic energy, as in (2.10). Then

� (2.77)

Notice that, as it may be checked from (2.75) and (2.76), equipartition of energy 
in the three spatial directions is broken. The average kinetic energy in the direction 
perpendicular to the velocity and to the velocity gradient is less than in the other 
two directions; this is also found in non-equilibrium molecular dynamics for simple 
fluids with interacting molecules, although in that case the temperature along the 

〈
1

2
mc2

1

〉
=

〈
1

2
mc2

2

〉
=

1

2

β

β2 − λ2
12

≡
1

2
kBT1 >

1

2
kBT

〈
1

2
mc2

3

〉
=

1

2β
=

1

2
kBθ <

1

2
kBT ,

〈
1

2
m

(
c2

1 + c2
2 + c2

3

)
〉

=
3

2
kBT .

2 Non-equilibrium Temperature and Entropy in Flowing Ideal Gases



51

first and the second axes are not exactly equal (Baranyai 2000a, b). Furthermore, it 
is seen that the kinetic temperature corresponding to direction perpendicular to ve-
locity and to velocity gradient coincides with the non-equilibrium thermodynamic 
temperature , analogously to the situation when a heat flux is present in the system 
(Camacho and Jou 1995). A third temperature is the thermodynamic one, defined 
from the non-equilibrium Gibbs Eq. (2.41). It has been evaluated explicitly in terms 
of U/V and P v

12  in (2.61).
In Fig. 2.4, it is seen that , denoted as Tneq (and therefore the kinetic temperature 

in the z direction) is reduced for increasing values of viscous pressure, whereas the 
kinetic temperatures (2.75) in the other two directions increase with viscous pres-
sure (Criado-Sancho et al. 2006).

Still another effective non-equilibrium temperature Teff may be defined from 
the fluctuation-dissipation theorem (Barrat and Berthier 2000; Berthier and Barrat 
2002; Crisanti and Ritort 2003) relating response function and correlation function, 
as for instance the viscosity and the correlation function of the fluctuations of the 
shear viscous pressure. Under the assumption of an exponential relaxation for the 
viscous pressure fluctuations, this effective temperature Teff is defined as

� (2.78)

In equilibrium, Teff = T and (2.78) is the well-known Green–Kubo relation between 
shear viscosity and viscous pressure fluctuations when the decay of the latter is 
exponential with relaxation time . In fact, in the general definition of tempera-
ture from the fluctuation-dissipation theorem the whole time-dependent response 
function and correlation function are used, whereas in (2.78) the time integral of 
both functions are used instead. This may be safely done when the dynamics of the 

η

τ
≡

1

kBTeff

〈
δP ν

12(0)δP ν
12(0)

〉
.

Fig. 2.4   Several tempera-
tures are shown at a given 
value of U as a function of 
R = VP ν

12/U.  The tem-
peratures shown are: local 
equilibrium temperature T, 
thermodynamic non-equilib-
rium temperature Tneq (equal 
to the kinetic temperature 
along the z axis), the kinetic 
temperature in the 1 and 2 
directions, T1(= T2) and the 
fluctuation-dissipation effec-
tive temperature Teff. (Criado-
Sancho et al. 2006)
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observable is purely exponential. In the situation we are considering, we find from 
(2.61) and (2.67b)

� (2.79)

It is seen that Teff ≥ T ≥  and that both Teff and  tend to the local-equilibrium tem-
perature T when the viscous pressure tends to zero. However, their asymptotic limit 
far from equilibrium is very different, as  → 0 and Teff → ∞.

It may be noted that θ = 1/kBβ <T ,  and that it does not coincide with the 
local-equilibrium temperature except at equilibrium (Casas-Vázquez and Jou 1994; 
Camacho and Jou 1995; Jou et al. 1988, 1999a, b, 2010). In fact, the meaning of 
temperature in presence of a flow is being a subject of recent interest in molecular 
dynamical simulations (Evans and Morriss 1990; Baranyai and Evans 1991; Todd 
and Evans 1995, 1997).

It is expected that energy equipartition will be also broken in mixtures. In fact, 
kinetic theory of mixtures clearly shows that this is so (Garzó and Santos 2003). How-
ever, the extent and the conditions of the breaking depend on the model system: for 
instance, using the full Boltzmann equation or the linearized relaxation-time collision 
operator yields slightly different results. We have extended our previous analysis of 
one-component gas to binary mixtures (Criado-Sancho et al. 2008), using the velocity 
distribution function (2.29) with different values of mass, velocity, and Lagrange mul-
tipliers for each species of gases (namely a and b). A breaking of equipartition between 
different chemical species and different spatial directions is obtained when the entropy 
is maximized under a fixed energy, number of particles, and shear viscous pressure.

One would may alternatively use the velocity gradient as the non-equilibrium 
constraint, which would correspond to a slightly different physical situation. The 
Lagrange multipliers for each species are given by (2.60) and can be determined 
in terms of U/N and VP v

12/N , from which follows similar equations as (2.75) and 
(2.76) particularized for the respective species a and b.

We will consider that the total internal energy of the mixture U = Ua + Ub is 
fixed, and concerning the non-equilibrium constraint on the viscous pressure, two 
especially relevant situations will be considered: (a) the total shear viscous pres-
sure is fixed; (b) the shear rate is fixed; this will imply, up to the first order in γ̇ ,  
that P v

12,i = −nikBT v−1
i γ̇  (where index i refers to species i and vi the collision fre-

quency of species i).

a.	 Fixed total viscous pressure. If the total energy and the total shear viscous pres-
sure are fixed, the conditions on the Lagrange multipliers maximizing the total 
entropy are a = b, λ12,a = λ12,b and the energy per particle is the same for both 
species. By using the definition of the local equilibrium temperature, which in 
this case is the kinetic temperature, namely Ui/Ni ≡ 3

2kBTi ,  it follows that both 
species will share the same kinetic temperature, and also the same “thermody-
namic temperature” defined from the reciprocal of . Equipartition is broken, 
not at level of the species, but at the level of spatial directions, as in the one-
component gas.

Teff =
3

{
[R2/(y − 1)] 2

} [
R2 + 2

3 (1 − y)
]

2R2(y − 1 − R2)
T .
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b.	 Fixed velocity gradient. This case is called uniform shear flow, and it has been 
much studied in kinetic theory (Garzó and Santos 2003). The shear rate γ̇  is 
imposed to be equal for both species. Assuming, as before, that the total energy 
is fixed it follows that, a = b. The λ12,i will be different for each gas and they 
may be expressed in terms of the collision frecuencies va and vb of the species, 
which depend on the molar fractions. In this case , and the corresponding non-
equilibrium temperature Tneq = ( kB)−1, is equal for both species but their kinetic 
temperatures are different implying that equipartition is lost at the level of chem-
ical species, and not only at the level of spatial directions.

Introducing the variables wi ≡ ni/n and εba ≡ ν−1
b /ν−1

a ,  the additivity of the energy 
lets us to write T = waTa + (1 − wa)Tb, and we find from the conditions on λ12,i the 
following connection between Ta and Tb

				                 .� (2.79)

In Fig. 2.5 are plotted Ta, Tb and Tneq = Ta

[
1 + 2

3

(
ν−1

a γ̇
)2

]−1
.  It is seen than the 

higher the discrepancy in the collision frequencies va and vb, i.e. for values of ba 
farther from 1, the differences between the kinetic temperatures of both chemical 
species are higher and, of course, they increase with increasing γ̇ .

In summary, the results of the present simple analysis are the following ones: 
(1) Under a non-vanishing viscous pressure, equipartition is broken with respect to 
the different spatial directions, both for a one-component gas and for each species 
in the mixture. (2) If the total viscous pressure is imposed on the mixture, both the 
thermodynamic temperature and the local-equilibrium absolute temperature are the 
same for both species. In this case, equipartition is broken with respect to different 

Ta

Tb

= 1 +
2

3

(
1 − ε2

ba

)(
ν−1

a γ̇
)2 = 1 +

4

3
ν−1

(
ν−1

a − ν−1
b

)
γ̇ 2

Fig. 2.5   The kinetic tem-
peratures Ta and Tb of the 
components a and b and the 
non-equilibrium temperature 
Tneq = Ta

[
1 + 2

3 (ν−1
a γ̇ )

2
]−1  

are plotted in terms of ν−1
a γ̇  

for Na = Nb = 0.5N  for 
two different values of ba, 
namely 0.25 ( solid lines) and 
0.75 ( dashed lines) and for 
T = 298 K. (Criado-Sancho 
et al. 2008)
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spatial directions, but not with respect to different chemical species. (3) If homoge-
neous shear rate is imposed on both kinds of particles, and the total internal energy 
is fixed, the thermodynamic temperature is the same for both species, but the local-
equilibrium absolute temperature is different, and equipartition is broken for the 
species.

These results show some of the subtleties of temperature in non-equilibrium 
steady states. For instance, it is surprising that, under some conditions, equiparti-
tion may be broken with respect to different spatial directions but not with respect 
to different chemical species. It is also surprising that the thermodynamic tempera-
ture obtained from differentiation of the entropy may be equal, in some circum-
stances, for both species, although their local-equilibrium absolute temperatures 
are different.

2.5  �Partition Function for a Flowing Relativistic  
Ideal Gas

In this last section we write for completeness the partition function corresponding 
to a relativistic ideal gas under a shear viscous pressure P v

12,  which complements 
the information given in Sect. 2.2 concerning the flowing non-relativistic ideal gas. 
This analysis may be useful for discussions of relativistic nuclear collisions, or of 
supernovae explosions. The average values of the energy and of the pressure tensor 
are given, respectively, by

� (2.80)

p being the magnitude of the momentum p of the particle and c the speed of light. 
When these conditions, which are analogous to the conditions (2.22) for non-
relativistic ideal gases, are considered, we have instead of (2.23), the following 
momentum distribution function

� (2.81)

with z the one-particle partition function.
After integration over p, the partition function in the presence of a shear viscous 

pressure turns out to be

� (2.82)

∫
f (p)pcdp = u,

∫
f (p) 1

2 (pc + cp)dp = P,

f (p) = z−1 exp



−βpc −
∑

i

∑

j > i

λij
1
2 (picj + pjci)



 ,

z =
8πV

(cβh)3

1

3

2[1 + 3(λ12/β)] + [1 − (λ12/β)2]
3

[1 − (λ12/β)]3 ,
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where h is Planck’s constant and λ12 the Lagrange multiplier related to P v
12.  This 

partition function reduces to the equilibrium partition function of the relativistic gas 
in the limit of small λ12 and  = ( kBT)−1, namely

� (2.83)

and it diverges when λ12 tends to . Thus, it shares the same features as (2.32), 
where these are the two extreme behaviours found. To compute explicitly the La-
grange multipliers, one should use the conditions for the average values of the en-
ergy and of the viscous pressure, but taking into account the microscopic expres-
sions for the energy and the pressure of the relativistic gas, by using (2.17) for the 
average values in terms of the derivatives of the partition function with respect to 
Lagrange multipliers.

z = 8πV

(
kBT

ch

)3
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In this chapter we focus our attention on the kinetic theory description of dilute 
gases in shear flow, which provide a different view than that of information theory, 
explored in the previous chapter. In kinetic theory, the distribution function is found 
as the solution of a kinetic equation describing the effects of the collisions amongst 
the particles, which will lead, in the long run, to steady non-equilibrium state under 
the influence of steady boundary conditions. The kinetic theory of flowing gases is a 
very rich topic, which has been presented in depth by Garzó and Santos in their well-
known book published in 2003, to which the reader interested in the details and ad-
vanced developments is referred to. Here, in Sects. 3.1–3.3, we provide a short over-
view of the essential concepts in this field, which are necessary for the completeness 
of the presentation. In particular, the theory shows that transport equations, entropy 
and entropy flux may take more general forms than those of the classical theory.

In Sects. 3.4–3.5 we apply the ideas of the kinetic theory of gases to the kinetic 
theory of phonons. In particular, the Grad’s moment expansion may be used to de-
rive an evolution equation for the heat flux, in which nonlocal effects and memory 
effects analogous to those considered in Sect. 1.6, appear in a natural way. Here, 
we apply this formalism to the phonon flow in some nanosystems, which is seen to 
provide a fruitful approach to the description of heat transport in nanowires and thin 
layers and in porous materials. This analysis complements Chap. 10 of the fourth 
edition of the companion book Extended Irreversible Thermodynamics (Jou et al. 
2010), devoted to heat transport in micro- and nanosystems, and allows one to have 
a wider view of applications of the topics of fluids under flow. Furthermore, this 
section pays a special attention to the boundary conditions, referring to a slip heat 
flow tangential to the walls, which is also important in the analysis of microfluidic 
problems.

3.1  �Kinetic Theory: Basic Concepts

The most usual description of dilute gases in non-equilibrium situations is provided 
by the kinetic theory. The evolution of the one-particle distribution function f (r, c, 
t) is described by the well known Boltzmann equation, which takes into account 

D. Jou et al., Thermodynamics of Fluids Under Flow, 
DOI 10.1007/978-94-007-0199-1_3, © Springer Science+Business Media B.V. 2011

Chapter 3
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the effects of binary collisions between particles, and neglects collisions involving 
more than two particles, a quite plausible hypothesis in dilute gases (Grad 1958; 
Chapman and Cowling 1970). The equilibrium solution of this equation is the well 
known Maxwell–Boltzmann distribution function, which is a particular example of 
the canonical distribution function (2.20). The expression for f in non-equilibrium 
steady states is obtained by solving the Boltzmann equation with suitable boundary 
conditions. This is not a simple problem, because of the mathematical complexities 
of this non-linear integrodifferential equation.

The Boltzmann equation has the form

� (3.1)

Here,  f, f̃ ,  f ′,  and f̃ ′  stand for f (r, c, t), f (r, c~, t),  f (r, c',t), and  f (r, c̃′t ) respec-
tively; m is the mass of the particles and F the external force acting on the particles; 
σ(c – f (r, c̃, t), ) is the differential cross-section of the collisions between the particles, 
one of them with initial velocity c and the other with initial velocity f (r, c̃, t), to give as 
final velocities after collision c′ and c̃′;  is the angle between c and c′ ; dΩ is the 
differential solid angle around .

3.1.1  �H Theorem

Although the Boltzmann equation is very difficult to solve, several general con-
sequences can be drawn from it even without solving it explicitly, such as, for in-
stance, the form of the balance equations for mass, momentum and energy, as well 
as the so-called H theorem. We focus our interest on the latter, because of its relation 
with the topics we are discussing in this monograph. One defines  as follows:

� (3.2)

The evolution equation for this quantity may be derived by multiplying the 
Boltzmann equation (3.1) term-by-term by ln f and integrating over c. In this way, 
one obtains

� (3.3)

with the flux J η defined as

� (3.4)

The production term ση, defined as

� (3.5)

∂f

∂t
+ c ·

∂f

∂r
+

F

m
·
∂f

∂c
=

∫
dc

∫
d� |c − c̃|σ (c − c̃, θ )[f ′f̃ ′ − ff̃ ].

ρ(r , t)η(r , t) =
∫

f (r , c, t) lnf (r , c, t)dc.

∂(ρη)

∂t
+ ∇ · (J η + ρηv) = ση,

J η =
∫

Cf lnf dc.

σ η =
∫

J (f ) lnf dc
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can be written, taking into account well-known symmetry properties of J( f ) (Grad 
1958; Chapman and Cowling 1970), as

�

(3.6)

Inspecting the product of the quantities [f ′ f̃ ′ − f f̃ ]  and ln [f f̃ /f ′f̃ ′]  one sees 
immediately that  ≤ 0. This equality holds only for f ′ f̃ ′ = f f̃ , i.e. for J( f  ) = 0, 
which corresponds to equilibrium situations.

The equilibrium distribution function is obtained by realizing that, since 
feqf̃eq = f ′

eqf̃
′
eq , then ln feq is a collisional invariant and can therefore be expressed 

as a linear combination of m, mc, and 1
2mc2. The result is the Maxwell–Boltzmann 

distribution function

� (3.7)

The H theorem, stating the negative character of , suggests that the entropy s per 
unit mass and the entropy flux may be defined in terms of the distribution function 
respectively as s = −kB, i.e.

� (3.8)

� (3.9)

Indeed, when the equilibrium distribution function (3.7) is introduced into (3.8) 
the result coincides with the equilibrium entropy of ideal gases, except for additive 
constants. Out of equilibrium, the classical entropy is not defined. However, it may 
be asked whether the relation (3.8) may be used as a definition of a thermodynamic 
entropy out of equilibrium. This is not always strictly possible, because the ther-
modynamic entropy should be a function of a (small) number of well identified 
macroscopic variables, whereas out of equilibrium f could have a very complicated 
form. Despite this, in situations where the non-equilibrium function f depends on r 
and t parametrically through a (small) number of macroscopic variables, (3.8) may 
indeed provide a generalization of the entropy to non-equilibrium situations. How-
ever, it is important to make the distinction between the H theorem, which refers to 
the evolution of a microscopic quantity, and the second law, which deals with the 
increase of a macroscopic quantity. On the other hand, the H theorem is valid for 
distribution functions which satisfy the Boltzmann equation exactly, whereas the 
macroscopic non-equilibrium entropy is usually built from an approximated distri-
bution function, in such a way that the connection between its increase and the H 
theorem is far from trivial. The reader interested in this topic is referred to (Eu 1992; 
Woods 1993; Ichiyanagi 1997; Garzó and Santos 2003; Gorban and Karlin 2005).

ση =
1

4

∫
dc

∫
dc̃

∫
d� |c − c̃| σ [f ′f̃ ′ − f f̃ ][ln f + ln f̃ − ln f ′ − ln f̃ ′]

=
1

4

∫
dc

∫
dc̃

∫
d� |c − c̃| σ [f ′f̃ ′ − f f̃ ] ln [f f̃ /f ′f̃ ′].

feq = n

(
m

2πkBT

)3/2

exp

[
−

mC2

2kBT

]
.

ρs = −kB

∫
f lnf dc,

J s = −kB

∫
Cf lnf dc.

3.1 Kinetic Theory: Basic Concepts



60

3.1.2  �Non-equilibrium Distribution Function

Out of equilibrium, the distribution function may be expanded as

� (3.10)

where (1), (2), … are expressed in terms of a small parameter, for instance the 
ratio of the relaxation time to the macroscopic time, the ratio of the mean free path 
to a characteristic length of the macroscopic inhomogeneities, the higher-order mo-
ments of the velocity distribution function, etc. The function feq is the equilibrium 
distribution function either in global or local equilibrium (in the first case, , v, and 
T would not depend on position or time, and in the second case they would depend 
on these variables).

The quantities  = nm, v, and T are determined from the first five moments of the 
distribution function. This imposes on (i) the closure conditions

� (3.11a)

� (3.11b)

and when (3.10) are introduced into (3.8) and (3.9), one obtains up to second order

� (3.12a)

and

� (3.12b)

Owing to restrictions (3.11), (2)does not contribute to the entropy up to the second 
order of approximation. Furthermore, it follows from the third of conditions (3.11) 
that the bulk viscous pressure for an ideal monatomic gas vanishes identically. The 
first terms on the right-hand side of (3.12a) and (3.12b) are the classical ones; the 
second are related to the non-classical corrections on which we shall focus our at-
tention in the next section.

As it has been already noted, in contrast to the exact solutions of the Boltzmann 
equation, approximate solutions do not necessarily satisfy the H-theorem be-
yond the linear approximation. This same problem arises in macroscopic theories 
when non-linear truncated approximations of the constitutive equations are used. 
The requirement of a positive entropy production may provide a criterion on the 
range of validity of a given approximation, both in microscopic and in macro-
scopic theories. The positive entropy production requirement may also be useful 
to model the non-linear terms in such a way that entropy production is always 
positive.

f = feq
[
1 + φ(1) + φ(2) + · · ·

]
,

∫
feqφ

(i)dc = 0,
∫

feqφ
(i)C dc = 0,

∫
feqφ

(i)C2dc = 0 (i = 1, 2, . . . )

ρs = ρseq −
1

2
kB

∫
feqφ

(1)2dc

J s = qT −1 −
1

2
kB

∫
feqφ

(1)2C dc.
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3.2  �Grad’s Approach

Two important models, the Chapman–Enskog and Grad ones, have been proposed to 
solve the Boltzmann equation in non-equilibrium situations. In the first one (Chap-
man and Cowling 1970), f is expressed in terms of the first five moments n, v, and 
T and their gradients. Then, (1) is proportional to ∇v and ∇T, while (2) includes 
terms in ∇∇v, ∇∇T and so on. In Grad’s approach (Grad 1958), f is developed in 
terms of its moments with respect to the molecular velocity. Note that, in view of 
definitions (2.7–2.8), P and q are directly related to the moments of the velocity 
distribution function (the scalar viscous pressure pv vanishes in an ideal gas). There-
fore, the mean values of q and of 

0
Pv  are considered in Grad’s theory as independent 

variables, so that Grad’s theory is very close to the macroscopic developments of 
EIT in the use of the same independent variables.

In Grad’s approach, the non-equilibrium distribution function f (r, c, t) is replaced 
by the infinite set of variables  = mn(r, t), v(r, t), T(r, t), an(r, t), where an stand for 
the successive higher-order moments of the distribution function. These moments are 
chosen in such a way that they are mutually orthogonal, and they are given by Her-
mite polynomials. In the thirteen-moment approximation, the development is limited 
to all the second-order moments and to some of the third-order moments, those re-
lated to the heat flux. In this approximation, the distribution function is written as

� (3.13)

The coefficients A(r, t), 
0
Bv(r, t) and D(r, t) are determined by introducing (3.13) 

into (2.1), (2.2), (2.3), (2.7) and (2.8). Such equations allow us to identify A, 
0
Bv,, 

and D in terms of the heat flux q and the viscous pressure tensor 
0
Pv ::

� (3.14)

As a consequence, f may be written explicitly as

� (3.15)

After substitution of (3.15) into (3.12), the expressions for the entropy and entropy 
flux turn out to be

� (3.16)

� (3.17)

f = feq[1 + A · C +
0
Bv :

0
C C + (C · C)(C · D)].

A = −
m

pkBT
q,

0
Bv =

m

2pkBT

0
Pv, D =

m2

5pk2
BT 2

q.

f = feq

[
1 +

m

2pkBT

0
C C :

0
Pv +

2m

5pk2
BT 2

(
1

2
mC2 −

5

2
kBT

)
C · q

]
.

ρs = ρseq −
1

4pT

0
Pv :

0
Pv −

m

5pkBT 2
q · q,

J s =
1

T
q −

2

5pT

0
Pv · q.
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These results confirm the plausibility of the hypotheses of EIT stating that the en-
tropy may depend on the dissipative fluxes and that the entropy flux contains extra 
contributions besides T −1q.

The evolution equations for the fluxes can be obtained by inserting (3.15) into 
Boltzmann equation. In the thirteen-moment approximation one is led to (Grad 1958)

�

(3.18a)

and, for the heat flux,

�

(3.18b)

The coefficient  is given in terms of the collision integrals by

� (3.19)

and is shown to be a positive quantity, which has the meaning of a collision rate 
(Grad 1958).

We focus our attention on the linear terms of (3.18) and therefore omit non-linear 
terms, such as 

0
Pv · ∇T , because when we take perturbations around equilibrium, 

both 0
Pv  and ∇T can be considered as small perturbations. In the linear approxima-

tion, (3.18a, b) may be directly compared with the linear evolution equations for Pv 
and q derived from the macroscopic theory, namely

� (3.20a)

� (3.20b)

One is then led to the identifications

� (3.21a)

�
(3.21b)

Furthermore, one obtains for the coefficient in the extra term of the entropy flux 
 = −2(5pT)−1. Note also that the relaxation times of q and 

0
Pv  are not equal but 

τ1 = 3
2τ2 .

d
0
Pv

dt
= −

4

3
(

0
∇ q)s − 2p

0
V −ργ

0
Pv −

0
Pv · (∇v) − (∇v) · (

0
Pv)T

−
0
Pv(∇ · v) + 2

3 [
0
Pv : (∇v)]U,

dq

dt
= −

kBT

m
∇ ·

0
Pv −

5

2

pkB

m
∇T −

2

3
ργ q −

7

5
q · (∇v) −

2

5
q · (∇v)T

−
7

5
q(∇ · v) −

7

2

kBT

m

0
Pv · ∇T + ρ−1 0

Pv · (∇ ·
0
Pv).

γ =
2

5

√
2π

∫ ∞

0
x6e−x2/2

[∫ ∞

0
m−1σ

(
θ , x

√
2kBT/m

)
sin2θcos2θdθ

]
dx

τ2Ṗv + Pv = −2ηV − 2ηTβ(∇q)s

τ1q̇ + q = −λ∇T − 2λT 2β(∇ · Pv)

τ1 =
3

2ργ
, λ =

5pkB

2m
, −λT 2β =

kBT

m
τ1

τ2 =
1

ργ
, η = pτ2, −2ηTβ =

4

5
τ2.
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Now, if q = 0 and in the linear flow regime, (3.15) yields

� (3.22)

Since 
0
Pv

12 = −ηγ̇ ,, with γ̇  the shear rate, one may write (3.22) as

� (3.23)

The isotropic Maxwellian distribution is then distorted into an ellipsoid in velocity 
space, with the main axes rotated in the ±45° direction relative to the direction of 
the flow. The degree of distortion is determined by the dimensionless product τ γ̇ . 
For higher τ γ̇  (Loose and Hess 1987, 1991) obtain

�

(3.24)

Thus, there appear additional moments and a further dependence on the shear rate 
leading to further distortion in the C1C2 plane which causes shear-thinning, i.e. a re-
duction of the shear viscosity with increasing shear rate. The corresponding analysis 
needs then to go beyond the simple Grad approach.

3.3  �Comparison with Exact Results

The analysis of dilute gases under shear has received special interest in kinetic 
theory and in molecular dynamics as a relatively simple situation with many differ-
ent physical consequences (for a wide bibliography see Garzó and Santos 2003). An 
exact result for the evolution equations of the viscous pressure tensor was obtained 
for Maxwell molecules by Ikenberry and Truesdell (Ikenberry and Truesdell 1956). 
Many analyses with simplified models for the collisions term, such as, for instance, 
the relaxational BGK (Bhatnagar–Gross–Krook), model have been performed.

Brey and Santos (Brey and Santos 1992; Garzó and Santos 2003) provide a ve-
locity distribution of a dilute gas far from equilibrium for the BGK kinetic equation 
in uniform shear flow (characterized by a linear profile of the x-component of the 
local velocity along the y axis, a constant density and constant temperature: this has 
the advantage that the only non-zero gradient is ∂ux/∂y = γ̇ ) for arbitrary shear 
rates. If we denote γ̇ij = ∂vi/∂xj , the Boltzmann equation in the BGK approxima-
tion is written as

� (3.25)

f = feq

(
1 +

m

pkBT
C1C2

0
Pv

12

)
.

f = feq

(
1 − τ γ̇

m

kBT
C1C2

)
.

f = feq

[
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m
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τ 2γ̇ 2 + · · ·
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m
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√
4

7
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m
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.

∂f

∂t
+ γ̇ij cj

∂f

∂cj

= −
f − f0

τ
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Multiplying this equation by mcicj and integrating, one finds for the pressure tensor 
the following evolution equation

� (3.26)

For Maxwell molecules, this has an exact solution which shows non-linear features. 
For instance, the shear viscosity turns out to be a function of the shear rate

� (3.27)

with 0 = p. Non-linear effects are also found in the first normal stress coefficient, 
whereas the second normal stress coefficient is identically zero (Eu 1998).

Since the equation for Pij has been found without the need to obtain the ex-
plicit form of the velocity distribution function, it is not surprising to learn that 
the behaviour of Pij is rather insensitive to the details of the distribution function. 
For instance, it has been shown (Brey and Santos 1992; Garzó and Santos 2003) 
that a Chapman–Enskog expansion is only convergent for γ̇ τ <

√
2/3 , and that for 

higher values the distribution function shows highly non-linear features, such as, 
for instance, a divergence for vanishing velocity for γ̇ τ >

√
6 . These features are 

not visible in the behaviour of the second moments, and higher-order moments are 
necessary to account for them.

Brey and Santos (1992); Santos and Garzó (1995); Garzó and Santos (2003) 
have studied the fourth and the sixth moments in the BGK relaxation model and 
also from the exact solution of the Boltzmann equation. Montanero and Santos 
(Montanero and Santos 1996) have obtained the entropy up to the sixth order in the 
shear rate γ̇ . If one assumes that

� (3.28)

where fi are corrections of order i in τ γ̇ ,  the entropy may be expanded as

� (3.29)

The odd terms vanish by symmetry considerations, whereas the results for the coef-
ficients of the even terms are

� (3.30a)

� (3.30b)

�
(3.30c)

∂Pij

∂t
+ (γ̇ikPjk + γ̇jkPik) = −

1

τ
(Pij − pδij ).

η =
2

(γ̇ τ )2 η0sinh2

{
1

6
cosh−1

[
1 + 9(γ̇ τ )2

]
}

,

f = feq(1 + φ1 + φ2 + φ3 + φ4 + φ5),

S = kB

∑

n

S(n)(τ γ̇ )n.

S(2) = −
1

2
〈φ1|φ1〉,

S(4) = −
1
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φ1|φ3

1

〉
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〉
− 〈φ3|φ1〉,
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1
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〈
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〉
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2
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+
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where

� (3.31)

Montanero and Santos (Montanero and Santos 1996) have obtained 1, 2 , …, 6 
for the exact solution of the Boltzmann equation, for the relaxation time approxima-
tion and for the maximum-entropy approach. Their results for the consecutive contri-
butions to the entropy in (3.29) are

It is interesting to note that the values for S(2) coincide in the three cases. This 
feature points out an interesting robustness of the second-order non-equilibrium 
contribution to the entropy.

In contrast, the corresponding coefficients of the higher-order contributions ob-
tained by the different methods differ from each other. This seems to point out a fea-
ture which was already noted by Meixner in the 1960s, namely, the non-uniqueness 
of the entropy in non-equilibrium states. In particular, it is noticed that the maxi-
mum entropy expression yields the maximum value for S(4) and the minimum value 
for S(6), as could be expected. In some sense, if different methods yield different 
expressions for the non-equilibrium entropy, it is tempting to take the maximum 
entropy as giving an unequivocally defined expression for the entropy, rather than 
relying on fine details very sensitive to the mathematical model used to simplify the 
details of the collision term, or on the different mathematical expansions used to 
solve the corresponding kinetic equation.

In summary, it is seen that one may compute the non-equilibrium contributions 
to the entropy at several orders of approximation. This computation requires much 
more effort in the kinetic theory of gases than in the maximum-entropy approach. 
However, the possibility of computing non-equilibrium corrections must not lead 
us to forget the conceptual problems we have mentioned at several points of this 
chapter, namely, the relations between the microscopic definition of the entropy and 
its macroscopic expression, the positive character of the entropy production, and the 
meaning of the temperature.

3.4  �Kinetic Theory of Phonons and Phonon 
Hydrodynamics

In the previous sections we have dealt with ideal gases, but kinetic theory may be 
applied to many other kinds of systems, as for instance a photon gas colliding with 
charged particles, or a phonon gas colliding with phonons, impurities or defects in 

〈φi |φj 〉 =
∫

feqφiφj dc.

Theory
Boltzmann −0.5000 0.5842 −1.3650
Relaxation time −0.5000 0.2500 −0.0926
MaxEnt −0.5000 0.7500 −1.7593

S(2) S(4) S(6)
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dielectric solids. Both of them are situations analogous to the ideal gas, but applied 
to non-conserved quasiparticles. From the thermodynamic point of view, the es-
sential difference between conserved or non-conserved constituents is that in the 
first case the chemical potential is different from zero, whereas in the second case 
it is equal to zero. Here, we will refer to some results related to phonons and to 
their application in heat transfer in nanosystems, which are one of the main topics 
in transport theory nowadays (Tzou 1997; Cahill 2003; Chen 2005; Zhang 2007; 
Lebon et al. 2008).

In dielectric crystals, heat is transported by lattice vibrations, which in a quan-
tized formalism are described by means of phonon quasiparticles. The kinetic de-
scription of phonons is analogous to that of ideal gases with a few relevant changes. 
The phonons are characterized by their wavevector k and their frequency , which 
are respectively related to momentum p and energy e as p = h̄k  and e = h̄ω.  The 
function (k) relating  and k is the so-called dispersion relation, which follows 
from the equations of motion of the atoms of the lattice. Wave packets, and the cor-
responding phonons, move with the group velocity v = ∂ω/∂k.  The function (k) 
is an anisotropic function of k, reflecting the differences between longitudinal and 
transverse waves, and it is usually hard to obtain.

The corresponding Boltzmann–Peierls equation describing the evolution of the 
momentum distribution function f (r, k, t) is (Dreyer and Struchtrup 1993)

� (3.32)

where S( f ) is the collision term analogous to the collision term on the right-hand 
side of (3.1), and it includes interactions amongst phonons themselves, with impu-
rity, with defects, and with the boundaries of the crystal.

The energy e(r, t), and the energy flux q(r, t), identical to the heat flux because of 
the absence of convective motion, are given by

� (3.33a)

� (3.33b)

These equations are the analogous to (2.3) and (2.8) for ideal gases. Solutions to 
(3.32) may be obtained, for instance, by means of a moment expansion analogous 
to that of Grad’s approach. The equilibrium solution for phonons is the Einstein–
Planck distribution

� (3.34)

∂f

∂t
+

∂ω

∂k
· ∇f = S(f )

e(r , t) =
∫

h̄ω(k)f (k)dk

q(r , t) =
∫

h̄ω
∂ω

∂k
f (k)dk.

feq(k) ∼
1

exp [h̄ω(k)/kBT ] − 1
.
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In the relaxation-time approximation, the collision term S( f  ) in (3.32) is expressed as

� (3.35)

where R and N are the collision times corresponding to resistive (or umklapp) 
phonon collisions (momentum non-conserving collisions), and normal phonon col-
lisions (momentum-conserving collisions), and imp refers to collisions of phonons 
against impurities. Other terms related to collisions with defects or with the walls 
could also be added.

From now on we will consider the linear approximation to the dispersion rela-
tion in which ( k) = ck, and we will expand the solution up to the second-order 
moment Q(2). In this way, we will use (Dreyer and Struchtrup 1993; Dreyer et al. 
2004; Struchtrup 2005)

� (3.36a)

� (3.36b)

� (3.36c)

and we focus on the evolution of these quantities, one could go to higher-order mo-
ments, as Q(3),

� (3.37)

and higher-order moments. More convenient definitions for higher-order moments, 
in view to their orthonormal character—requiring that the different moments are 
orthogonal to each other—may be found in Dreyer and Struchtrup (1993) and Mül-
ler and Ruggeri (1997).

Note that in kinetic theory of ideal gases one could make an analogous approach 
but by taking for the heat flux q, the flux of the heat flux Q(2) and the higher order 
flux Q(3) the expressions

� (3.38a)

� (3.38b)

� (3.38c)
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∫
kf (r , k, t)dk,

q(r , t) = c2h̄
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∫
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Q(2) =
∫
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mC2CCf (c)dC,

Q(3) =
∫

1

2
mC2CCCf (c)dC.

3.4 Kinetic Theory of Phonons and Phonon Hydrodynamics



68

In general terms, the evolution equations for q and Q(2) in a linear approximation 
can be written as

� (3.39a)

� (3.39b)

Here,  is the thermal conductivity, 1 and 2 the relaxation times of q and Q(2), 2 
a transport coefficient linking Q(2)  and ∇q  and whose physical meaning will be 
explored below. This procedure could be followed to higher-order tensors, which 
in a linear approximation leads to a full hierarchy of equations involving couplings 
only between tensors of order n − 1, n, n + 1, and has the general form

� (3.39c)

which will be commented later on.
If it is assumed that τ2 � τ1  and that Q(3) may be neglected, Eq.  (3.39b) be-

comes Q(2) = −2(∇q). Introduction of this expression into (3.39a) and assuming 2 
constant for simplicity, one finally gets

� (3.40a)

where � may be identified as the phonon mean-free path, and λ2 = �2. This is known 
as the Guyer–Krumhansl equation, because these authors derived it for the first time 
from the Boltzmann equation for phonons. In particular, they found (Guyer and 
Krumhansl, 1966a, b)

� (3.40b)

with R and N the characteristic times of resistive and non-resistive phonon col-
lisions, c0 is the phonon speed, and cv the specific heat per unit volume. Here, we 
have denoted λ2 = �2, where � may be identified with the mean free path. The split-
ting of ∇ ⋅ Q(2) in ∇2q and 2∇∇ ⋅ q follows from the non-diagonal part of Q(2) and 
from the trace of Q(2) respectively.

The entropy and entropy flux consistent with equation (3.40a) have been studied 
in detail by Jou and Casas-Vázquez (1990); Dreyer and Struchtrup (1993); Tzou 
(1996); Cimmelli (2007, 2009); Jou et al. (2010); those corresponding to the hier-
archy (3.39c) are discussed in Jou et al. (2010). Here if suffices to mention that the 
entropy and entropy flux related to (3.39c) are

� (3.41a)

τ1q̇ + q = −λ∇T − ∇ · Q(2),

τ2Q̇(2) + Q(2) = −λ2(∇q) − ∇ · Q(3).

τnQ̇(n) + Q(n) = −λn(∇Q(n−1)) − ∇ · Qn+1,

τ1q̇ + q = −λ∇T + �2(∇2q + 2∇∇ · q).

∂q
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+
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3
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2
0∇T +
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0τN

(
∇2q + 2∇∇ · q
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Q(i) ⊗ Q(i),

3 Kinetic Theory of Flowing Gases and Phonons. Phonon Hydrodynamics



69

and

� (3.41b)

where ⊗ stands for the total contraction of indices, and i are coefficients propor-
tional to i+1. With these expressions, the hierarchy (3.39c) is compatible with the 
second law of thermodynamics, formulated as the definite positiveness of the pro-
duction of the generalizaed entropy (3.41a). In contrast, neither (3.40a, b) nor the 
hierarchy (3.39c) are compatible with the local-equilibrium formulation of non-
equilibrium thermodynamics, since they lead in some occasions to a negative entro-
py production when entropy is given by the local-equilibrium form (Jou et al. 2010).

3.5  �Poiseuille Phonon Flow and Heat Transport  
in Nanosystems

Now, we will show the application of equation (3.40a) to the description of heat 
transport in some nanosystems, as nanowires and thin layers. For the sake of sim-
plicity, we will restrict ourselves to situations in which the radius R of the nanowire 
or the thickness h of the layers is comparable or smaller to the mean free path � . 
In this case, one has that q � �2∇2q  because �2∇2q  is of the order of (�2 /R2)q . 
Furthermore, in the steady state, where q̇ = 0  and ∇ ⋅ q = 0, (3.40a) reduces to

� (3.42a)

This equation is analogous to the Navier–Stokes equation for Poiseuille flow of 
viscous fluids in rectilinear ducts, which is

� (3.42b)

where v  is the velocity,  the shear viscosity and p  the pressure. Thus, q, ∇T and 
�2 /λ play a role analogous to v , ∇p and  with this analogy, Eq. (3.40a) is analo-
gous to the so-called Stokes–Brinkman equation of hydrodynamics in resistive—or 
porous—media.

If one considers a nanowire of radius R, with a longitudinal heat flow along it 
and assumes non-slip heat flow on the boundaries, one obtains for the heat profile a 
parabolic form, analogous to the well-known parabolic Poiseuille profile of viscous 
fluid velocity,

� (3.43)

J s =
1

T
q +

∑

i

βiQ
(i+1) ⊗ Q(i),

∇2q =
λ

�2
∇T .

∇2v =
1

η
∇p,

q(r) =
λ�T

4�2L
(R2 − r2),

3.5 Poiseuille Phonon Flow and Heat Transport in Nanosystems



70

with L being the length of the nanowire and ∇T ≈ �T /L,  with ∆T the difference 
of temperatures between the two longitudinal ends of the system. Integrating this 
velocity profile across the transversal surface one has for the total longitudinal heat 
flow q(tot)

� (3.44)

From here it is usual to define an effective thermal conductivity for the nanowire as

� (3.45)

where Kn is the Knudsen number, Kn ≡ �/R.
It is seen that the effective conductivity depends on the radius R and that it tends 

to zero when R tends to zero. Thus, the effective thermal conductivity of nanowires 
depends on the size of the system, and is smaller than the thermal conductivity  
for the bulk material. This is indeed observed in nanomaterials and very relevant 
for applications.

For the sake of illustration and for further use, we give in Table 3.1 the values 
of  and �  for Si at several temperatures. In particular, the value of �  indicates the 
range of sizes below which classical heat transport Fourier law cannot be applied.

Though expression (3.45) gives a reduction of thermal conductivity its predic-
tions are much smaller than those observed. For instance, at 100 K, the bulk thermal 
conductivity for Si is  = 884 W m−1 K−1 and � = 557nm ; thus, (3.45) indicates 
that for R = 115 nm or R = 56 nm eff should be 4.7 and 1.1 W m−1 K−1 respectively, 
whereas the observed eff is, respectively, 45 and 24 W m−1 K−1 as seen in Table 
3.2. Furthermore, eff is experimentally seen to tend to zero as R/�  rather than 
as (R/�)2. Thus, something is lacking in this description. The drawback of this 
description comes from the assumption of the non-slip condition on the boundary. 
This will be incorporated in the next section.

3.6  �Boundary Conditions and Effective Thermal 
Conductivity in Smooth and Rough Nanowires

In the Poiseuille flow of rarefied gases, there is a boundary slip flow tangential to 
the wall, in a thin layer, called Knudsen layer, whose thickness is of the order of 
the mean free path. This surface flow is lacking in liquids and dense gases, where 

q(tot) =
∫ R

0
2πrq(r)dr =

πR4λ

8�2

�T

L
.

λeff ≡
q(tot)

πR2

L

�T
=

λ

8

R2

�2
=

λ

8

1

(Kn)2 ,

Table 3.1   Bulk thermal conductivity  and mean free path of phonons � in silicon at several 
temperatures

T = 300 K T = 150 K T = 100 K T = 80 K T = 50 K

 (W/m K) 148 409 884 1340 2680
�  (nm)   40 181 557 1432 6681

3 Kinetic Theory of Flowing Gases and Phonons. Phonon Hydrodynamics



71

the non-slip condition is imposed, requiring that the relative velocity of the fluid 
on the wall is zero (i.e. the fluid has the same velocity as the wall). In the kinetic 
theory, this problem is especially outstanding in rarefied gases, where the mean free 
path may be relevant. The slip velocity on the surface layer is usually given by the 
so-called Maxwell condition (Roldughin 1996; Cercignani 2000; Sharipov 2004; 
Struchtrup 2005)

� (3.46)

with vb the solution of the Navier-Stokes equation (3.42a, b) in the bulk of the fluid. 
The parameter C depends on the properties of the wall as C = (1 + p) / (1 − p), with 
p the specular parameter of the surface, 0 ≤ p ≤ 1, which describes the relative prob-
ability that a particle hitting the surface undergoes a specular collision, namely, 
a purely elastic collision leaving the surface with the same reflexion angle as the 
incidence angle. Thus, 1 − p describes the probability of diffuse collisions, in which 
the particle exchanges energy with the surface and leaves the surface in a random 
direction and with a random energy whose probability distribution function is the 
Maxwellian one, corresponding to the temperature of the wall.

3.6.1  �Heat Transfer in Thin Smooth Nanowires

Alvarez et al. (2009) have used an analogous condition to (3.46) but applied to pho-
non hydrodynamics. Thus, they have used

� (3.47)

with qb the heat profile solution of (3.42a). Note that qw, as well as vwall in (3.46), 
describes a flow in a layer of thickness of the order of �  parallel to the wall. Since 
we are dealing here with Knudsen numbers higher than 1, i.e. with R <� , this layer 
will in fact deeply influence the whole volume of the system. This relevance of the 
wall flow is one of the characteristic features of the hydrodynamics of dilute sys-
tems in narrow channels (Tabeling 2005; Bruus 2007) or in dilute gases (Cercignani 
2000).

Combining condition (3.46) with the solution (3.43) one finds for the heat profile

� (3.48)

By introducing this profile in (3.44), and using the definition (3.45) for the effective 
thermal conductivity one gets

� (3.49)

vwall = C�
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r=R
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∂qb
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)

r=R

,

q(r) =
λ�T

4�2L
(R2 − r2 + 2C�R).

λeff =
λ

8

R2
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For small values of R, this leads to a linear behaviour of eff with respect to R namely

� (3.50)

This linear dependence is indeed observed in experiments, in contrast to the 
quadratic behaviour predicted by (3.45). Thus, the introduction of the wall slip 
flow is essential in phonon hydrodynamics applied to nanowires. In Table 3.2 are 
shown the experimental values of the effective thermal conductivity, and the the-
oretical results obtained from (3.49) by choosing the value of C to fit the thermal 
conductivity for a given radius. Comparing with Table 3.1 it is seen the drastic 
reduction in thermal conductivity between one and two orders of magnitude less 
than that of bulk silicon.

3.6.2  �Heat Transfer in Thin Rough Nanowires

In the previous subsection we have assumed a nanowire with smooth wall, namely, 
such that the roughness of the walls is much smaller than the dominant phonon 
wavelength. Nanowires with rough walls have also been made and studied, and it 
has been seen that their effective thermal conductivity is much smaller than that of 
smooth nanowires as shown in Table 3.3 (Hochbaum et al. 2008). This reduction is 
attributed to phonon backscattering against the roughness of the wall. Thus, after 
these collisions, phonons bounce back and reduce the heat flow.

Sellito et al. (2010a, b) have proposed to use, instead of (3.47), the second-order 
boundary condition

� (3.51)

in such a way that the coefficient  is assumed to be related to phonon backscat-
tering and C to specular and diffuse collisions as in (3.47). Including terms up to 
second order in �  in the boundary conditions seems justified, as it is consistent with 
the fact that we have also taken into account second-order terms in �  from the bulk 
equation (3.40a) for the heat flux. Furthermore, it is also a well-known proposal 

λeff =
λC

2

R

�
.

qw = C�

(
∂qb

∂r

)

r=R

− α�2

(
∂2qb

∂r2

)

r=R

,

Table 3.2   Experimental and theoretical values of the effective thermal conductivity of Si wires of 
three different radii at different temperatures. (Li et al. 2003)

T = 150 K T = 100 K T = 80 K T = 50 K

R (nm) eff exp eff th eff exp eff th eff exp eff th eff exp eff th

115 46 68 45 45 40 40 19 19
  56 28 28 23 21 21 19 11   9
  37 17 17 14 14 11 13   6   6
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for rarefied gases (Cercignani 2000; Lockerby et al. 2004). The effective thermal 
conductivity may be obtained, by finding the heat profile, introducing it into (3.38) 
and applying definition (3.45), and it is

� (3.52)

for R/� higher than the critical value making eff = 0, and eff = 0 for smaller values 
of R/� . In this way, sufficiently rough nanowires could exhibit, in principle, a 
transition to an insulating behaviour for small enough values of Knudsen number 
(Sellitto et al. 2010a; Moore et al. 2008). It is worth to note that the heat flux profile 
corresponding to this situation has a region near the surface with negative value of 
q, i.e. with q going from cold to hot regions. The integrated heat flux across the sur-
face satisfies of course the usual statement of the second law, i.e. it flows from hot 
to cold regions. The negative value of q sufficiently near the wall illustrates that the 
restriction of the positiveness of the production of local-equilibrium entropy, given 
by q·grad T–1, is not obeyed everywhere; in contrast, the production of the extended 
entropy (3.41a) is positive everywhere, because it does not depend only on q, but 
also of Q(2) and higher-order fluxes. Up to second order and in the steady situation, 
Q(2) is proportional to ∇q, and contributes to the entropy production in the external 
region where the local-equilibrium entropy production q · ∇T −1  is negative (Sell-
itto et al. 2010a). Thus, the use of the generalized entropy (3.41a) is conceptually 
advantageous with respect to the local-equilibrium entropy in this situation.

If  is the characteristic height of the roughness peaks and L the average separa-
tion between them, Sellitto et al. (2010b) have suggested that

� (3.53a)

� (3.53b)

In this way, when the roughness scale  is very small,  tends to zero and backscat-
tering disappears.

Phonon hydrodynamics plus boundary conditions have been shown to provide 
a satisfactory description of heat transport in nanowires, and also in thin layers, 
of radius comparable or smaller than the mean free path � as it may be seen in 
Tables 3.2 and 3.3. This provides a phenomenological description, much simpler 

λeff =
λR2

8�2

(
1 + 4C

�

R
− 4α

�2

R2

)
,

C = C ′(T )

(
1 −

�

L

)
,

α = α′(T )
�

L
.

Table 3.3   Experimental and theoretical values of the effective thermal conductivity in Si nanow-
ires with rough walls (Δ = 3 nm, L’ = 6 nm) at different temperatures. (Hochbaum et al. 2008)
R (nm) T = 150 K T = 100 K T = 80 K T = 50 K

eff exp eff th eff exp eff th eff exp eff th eff exp eff th

115 7.8 15.1 5.7 6.9 4.9 6.5 2.5 2.3
  97 5.3   5.4 3.8 2.4 3.2 3.1 1.7 0.8

3.6 Boundary Conditions and Effective Thermal Conductivity



74

than usual descriptions based on the Boltzmann equation for phonons. The connec-
tion between both approaches is being carried out through microscopic analyses of 
the phenomenological coefficients , � , C and  appearing in this formalism and the 
microscopic features of phonon collisions against phonons, impurities, and defects 
(determining  and � ), and with the walls (determining C and ). Going to higher-
order approaches to kinetic theory and using them as a basis for phenomenologi-
cal equations derived from extended irreversible themodynamics is thus a fruitful 
procedure.

3.7  �Thermal Conductivity of Porous Silicon

We end this study on phonon hydrodynamics applied to nanosystems with a further 
application to the thermal conductivity of porous Si, where the pores will be con-
sidered as small insulating spheres of radius a (Alvarez et al. 2010). In this case, the 
system as a whole is not nanometric, but its internal structure is, and this requires 
the use of the generalized transport equation (3.40a) instead of the Fourier’s law. 
Porous silicon has a much lower thermal conductivity than bulk silicon (Drost et al. 
1995; Gesele et al. 1997; Benedetto et al. 1997; Lysenko et al. 1988, 2000; Song and 
Chen 2004; Lee et al. 2007). Reducing heat conductivity without reducing electrical 
conductivity is a required feature for thermoelectric energy conversion, one of the 
most outstanding aims of material sciences nowadays. Thus, describing this reduc-
tion of heat transfer is a relevant topic.

Usually, the effective thermal conductivity of a porous medium is referred to the 
bulk thermal conductivity of the medium through a function of the porosity . Such 
porosity is the ratio of the volume of the pores—namely 4

3πa3N ,  with N the num-
ber of pores—to the total volume of the material. For instance, it is assumed that

� (3.54)

The function f ( ), for which 0 ≤  f ( ) ≤  1, describes a reduction of the thermal 
conductivity of the porous medium with respect to the bulk system. Several theo-
ries have been proposed for f ( ) (Gesele et al. 1997; Benedetto et al. 1977). On the 
other side, the effective thermal conductivity of a material in which there is an array 
of spheres of a different material is a classical topic when the size of the spheres and 
their separation is much longer than the mean-free path, but it is a topic of current 
interest nowadays when the mean-free path is comparable to the size of the spheres 
or to their separation.

The phonon hydrodynamic model leads us to consider the pores not only as a 
reduction of the effective volume, but also as a source of resistance to the phonons. 
We will take for this resistance the expression analogous to the well-known Stokes 
law for the resistance to the motion of a sphere in a viscous flow. As we have said, 
the velocity must be substituted by the heat flux, and the viscosity by �2 /λbulk. 
However, for small spheres, of the order or less than the mean free path �, the Stokes 

λporous(ϕ) = f (ϕ)λbulk.
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law must be changed. On the basis of experimental observations, Millikan (1922) 
proposed

� (3.55)

with A(�/a)  a function which changes from A = 0.700 for �/a � 1  to A = 1.164 
for �/a � 1 . This expression reduces to Stokes law for � � a and it describes the 
transition to the so-called free molecular regime for � � a.

Since there are many spheres, instead of a single sphere, the flow perturbation 
of the one modifies the forces on the others. In the case of a random distribution of 
spheres, the force is given by

� (3.56)

The hydrodynamic resistance force per unit area leads to an enhancement of the 
resistance to the flow reflected in an increase of the pressure gradient necessary 
to sustain the flow. Analogously, in phonon hydrodynamics, this would lead to an 
increment of the temperature gradient necessary to sustain the heat flow or, in other 
words, this implies a source of additional thermal resistance. Then

� (3.57)

The porous thermal resistance obtained by translating the hydrodynamic results 
(3.55–3.56) to the phonon hydrodynamics is

� (3.58)

Thus, one finally gets (Alvarez et al. 2010)

�
(3.59)

This result indicates that for � � a,  one recovers that the thermal conductivity 
of the porous medium is a function of only the porosity. However, for �/a  com-
parable or higher to 1, the radius of the pores has also an influence in the thermal 
conductivity. In Table 3.4 we illustrate this dependence and compare it with experi-
mental results. We have taken f ( ) = (1 − )3 as in Gesele et al. (1997), for the sake 
of closer comparison.

In summary, in Sects.  3.4–3.7 we have shown that the formalism of phonon 
hydrodynamics seems to provide an efficient way to describe in phenomenological, 
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simple terms some relevant features of heat transport in nanosystems, either when 
the size of the system itself is small or when the system contains a nanosize inter-
nal structure. Furthermore, Navier-Stokes equation or Stokes-Brinkman equation 
have been the subject of much mathematical research in many different geometries. 
Thus, the analysis provided here could be applied without much additional effort to 
the analysis of the effective thermal conductivity in tubular nanowires, concentric 
nanowires, thin layers perforated through different arrays (square, triangular, ran-
dom) of cylindrical pores, porous materials having the structure of a superlattice of 
pores, and other kinds of structures arising often in current nanotechnology. In all 
these situations, the slip boundary conditions must be carefully considered, instead 
of the classical non-slip conditions. Such boundary conditions are currently studied 
in microfluidics. In this way, phonon hydrodynamics provides an interesting bridge 
between usual microfluidics and heat transport in nanosystems.

As a final comment, it could be argued that (3.40a) is only a truncation of a gen-
eral hierarchy (3.39c), and that for Knudsen numbers higher than 1, higher-order 
terms should be incorporated. Indeed, in Alvarez and Jou (2007, 2008), the full 
hierarchy (3.39c) has been considered. It leads to a continued-fraction expansion of 
the thermal conductivity of a system of size L and mean-free path �, having the form

�

(3.60)

If it is assumed that all coefficients ai are equal, in particular ai = 42, the asymptotic 
expression yields for the effective thermal conductivity

� (3.61)

In equations (3.60) and (3.61) L is an effective length given by L−2 = L−2
x + L−2

y + 
L−2

z , with Lx, Ly and Lz being the sizes of the system in the different directions. Thus, 

λeff (�/L) =
λ0

1 +
a1(�2/L2)

1 +
a2(�2/L2)

1 +
a3(�2/L2)

1 + . . .

.

λeff (L) =
λ

2π2

�2

L2





√

1 + 4

(
π�

L

)2
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

 .

Table 3.4   Experimental values of thermal conductivity of porous Si at 300 K for differents porosi-
ties and pore radii 1, 4, 2, and theoretical results from (3.59), with f( ) = (1 − )3. (Alvarez et al. 
2010),  = 148 Wm−1 K−1, � = 40 nm

Porosity (%) Radius (nm) Eq. (3.59) Standard

40     1.5   1.2   2.1 32
40 100 31.2 29.6 32
50   10   3.9   5.9 18.5
60   10   2.5   4.0   9.5
71     2     0.14   0.16   0.18

λeff (Wm−1K−1)
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for a thin layer parallel to the plane yz, i.e. with long Ly and Lz, L will be simply the 
thickness Lx. Instead, for a nanowire with its axis along the x direction, Lx is long and 
Ly = Ly = R; this implies that the effective size L in (3.61) will be L = R/

√
2; for 

tubular nanowires with the axis along the x direction, Lx is long and Ly = ( R1 + R2) 
and Lz = R1 − R2, with R1 and R2 being the external and the internal radius.. When 
these prescriptions for the effective size are used, the results for the effective thermal 
conductivity of nanowires, thin layers, and tubular nanowires in terms of the Knudsen 
number referred to the effective size fall into a same curve, providing in this way an 
interesting unification of the results for these different geometries. However, the re-
sults of such an approach are examined in detail in the companion volume Extended 
Irreversible Thermodynamics (Jou et al. 2010) and will not be repeated here.

In Sects. 3.5–3.7, we have taken the truncation (3.40a) as a phenomenological 
efficient way to describe heat transport. This has a practical interest, because more 
rigorous and detailed methods starting from the Boltzmann equation, or from mo-
lecular dynamics simulations, require very long times of computation. Thus, the 
analysis of phonon hydrodynamics could provide an approximate and fast method 
to carry out order-of-magnitude estimations of the thermal conductivity of nanode-
vices. Once found the kind of devices whose thermal properties seem most suitable, 
their detailed properties and structure may be analyzed with further depth by start-
ing from a microscopic basis. Trying to study all the situations from the microscopic 
basis, instead, would be too long and inefficient.

3.7 Thermal Conductivity of Porous Silicon
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This chapter deals with the microscopic basis for the non-equilibrium thermody-
namics of non-ideal fluids. This topic deserves special attention for several reasons: 
the contributions of the interaction potential to the pressure tensor may be, in some 
circumstances, more important than the purely kinetic contributions analysed in 
ideal gases; furthermore, this interaction allows for phase transitions, which may be 
affected by the non-equilibrium conditions, thus providing experimental possibili-
ties besides those found in ideal gases.

We first explore the non-equilibrium modifications of the equations of state, 
compare the non-equilibrium contributions of the ideal gas, studied in Chap.  2, 
with the non-ideal contributions due to the interaction potential amongst the par-
ticles, and describe how these non-equilibrium contributions to the equations of 
state could shift the critical point of van der Waals gases and of regular binary 
solutions in the presence of a shear flow. Afterwards, we compare the macroscopic 
formalism with the results of kinetic theory of real gases, up to second order in the 
density, and with computer non-equilibrium dynamical simulations carried out for 
fluids of soft spheres, which also yield non-equilibrium contributions to the equa-
tions of state.

Finally, we illustrate some consequences of these ideas in the study of high-ener-
gy collisions of nuclei, which are carried out in conditions very far from equilibrium 
and which could offer an interesting area for the use of generalised thermodynamic 
analyses. The present results are still very preliminary, and the aim of this section is 
to stimulate attention on the challenging thermodynamic aspects of this interesting 
and very active topic of research. Indeed, one of the main aims of this research is to 
achieve the transition between nuclear matter and quark-gluon plasma. Therefore, 
the non-equilibrium induced shifts in phase transitions studied in this book could 
also be useful in this field.

D. Jou et al., Thermodynamics of Fluids Under Flow, 
DOI 10.1007/978-94-007-0199-1_4, © Springer Science+Business Media B.V. 2011
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4.1  �Modified Equations of State and Shift  
of Critical Point

The modification of the equations of state in the presence of a non-vanishing viscous 
pressure tensor may lead to changes in the phase diagram of systems. In Chap. 6, 
we will study in detail such changes for binary polymer solutions, where the relax-
ation times are long and the non-classical effects are readily evident in experiments. 
Here, we outline this influence in two different critical points of non-ideal fluids, 
namely those of a van der Waals gas and of a binary regular solution. Both examples 
are seen here as simple theoretical illustrations, but the first may be of interest for 
comparison with non-equilibrium molecular simulations, while the second has been 
observed in actual experimental situations.

4.1.1  �Van der Waals Fluids

First we recall that the conditions defining the gas-liquid critical point in a single-
component fluid are (Callen 1960; Kondepudi and Prigogine 1998)

� (4.1)

The first equality in (4.1) defines the spinodal line, which sets the limit of stability 
of the one-phase system. The second relation, which is the condition of an extre-
mum of the spinodal line, specifies the critical point. As an explicit equation of state 
and for the sake of illustration, we take here the van der Waals equation, which is 
the simplest one leading to gas-liquid phase transition and to a critical point. The 
van der Waals gas is defined by the well known equation of state

� (4.2)

Here R is the constant of ideal gases, and a and b are the usual parameters of the 
van der Waals equation, which depend on the gas being studied and which incor-
porate in an averaged and phenomenological way the effects of the attractive and 
the repulsive part of the intermolecular interaction, respectively. Introduction of 
(4.2) into (4.1) yields two equations for the volume and the pressure of the critical 
point which give vc =3b,  pc = a/27b2 and, correspondingly, Tc = 8a/27bR. This well 
known result is derived in detail in all introductory textbooks on thermodynamics.

Let us now consider how this may be changed by the presence of a non-vanish-
ing viscous pressure tensor. We have seen in (2.54) that, up to the second order in 
the viscous pressure, the pressure of an ideal gas is changed as

� (4.3)
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where we denote here the actual pressure by p and the local-equilibrium pressure by 
peq and where θ is defined, according to (2.50) and (2.51) as

� (4.4)

Since η = pτ and du = cvdT ,  with cv the specific heat at constant volume, (4.4) 
yields

� (4.5)

Therefore, up to the second order in Pv (4.3) yields

� (4.6)

where we have used that peq = nkBT and cv = 3
2nkB.

Now, if one considers a non-ideal gas under a shear viscous pressure, one should 
take into account, besides the usual van der Waals correction p = pid − av−2  to the 
pressure pid of ideal gases due to attractive interactions amongst molecules, the non-
equilibrium corrections expressed in (4.6). Thus, we are directly led to the follow-
ing generalised van der Waals equation (Jou and Pérez-García 1983; Grmela 1987)

� (4.7)

where we have considered a plane Couette flow with shear rate γ̇ ,  so that 
Pv:Pv = 2η2γ̇ 2  and we have taken η = pτ, as it is usual in the kinetic theory. The 
isotherms corresponding to this equation under different values of γ̇  are shown in 
Fig. 4.1. From a microscopic perspective, the additional shear-dependent contribu-
tion comes essentially from a distortion of the velocity distribution function and the 
pair correlation function due to the flow. This will be commented more explicitly 
in Eq. (4.25). These second-order corrections are expected to be valid for relatively 
small values of τγ̇ ,  less than unit; otherwise, higher-order corrections should also 
be considered in (4.7).

To apply conditions (4.1) to (4.7), we take into account that for ideal gases 
η = pτ = nkBTτ, and thus τ = η( nkBT)−1. Given that the specific volume is v = (nm)−1,  
and η does not depend on v, the term τηγ̇ 2  is linear in v and may be written as 
(η2m/kBT )vγ̇ 2.  Thus, when we apply conditions (4.1) to (4.7) we obtain

� (4.8a)

�
(4.8b)
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Since the correction (4.6) is valid up to order γ̇ 2,  we solve these equations pertur-
batively up to order γ̇ 2,  i.e. we assume that vc(γ̇ ) = vc + δvc,  pc(γ̇ ) = pc + δpc  
Tc(γ̇ ) = Tc + δTc  and linearize the resulting equations with respect to the second-
order corrections δvc,  δpc, and δTc. We finally obtain

� (4.9a)

� (4.9b)

� (4.9c)

where vc,  pc, and Tc are the respective critical values in equilibrium. We note the 
negative shift in the critical temperature and the critical pressure. Analogously, the 
influence of the shear could slightly modify the vapour–liquid as well as solid–liquid 
coexistence lines, thus inducing some changes in the freezing and boiling tempera-
tures. For instance, in the presence of a shear flow, the freezing of water is expected 
to occur at a lower temperature than in quiescent water. Furthermore, from (4.7) it 
will follow that the vapour pressure characterizing the vapour-liquid coexistence in 
the presence of a small shear will be of the order of pvap = pvap,eq[1 − (2/3)τ 2γ̇ 2].
This would imply an increase of the boiling temperature in the presence of a shear. 
The reduction of the vapour pressure is illustrated in Fig. 4.1, where the horizontal 
segments indicate the vapour pressure. The dotted line corresponds to the quies-
cent situation (τγ̇ = 0 ), and the other two lines show the reduction of pvap as τγ̇  
increases.

vc(γ̇ ) = vc − 0.023
v2

c

RTc
τηγ̇ 2,

pc(γ̇ ) = pc − 0.667τηγ̇ 2,

Tc(γ̇ ) = Tc − 0.012
vc

R
τηγ̇ 2,

Fig. 4.1   Isotherms of the 
equation of state (4.7) under 
different values of the dimen-
sionless shear rate τ γ̇ .  The 
horizontal lines correspond 
to the typical Maxwell con-
struction for the coexistence 
of liquid and vapour. The 
dotted line corresponds to a 
quiescent situation. The data 
correspond to Ar at 120 K
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4.1.2  �Regular Binary Solutions

Binary solutions may be found as a one-phase system, where both components are 
well-mixed homogeneously over all the system, and as two-phase systems, where 
the system splits into two phases, one of them richer in one of the components and 
the other one richer in the second component. The stability conditions are now re-
lated to the derivatives of the chemical potential with respect to the concentrations. 
If we call the number of moles of the two components N0 and N1, and their respec-
tive chemical potentials μi( i = 0, 1), the stability conditions require that the matrix 
of the second derivatives of the Gibbs free energy G (Callen 1960; Kondepudi and 
Prigogine 1998), i.e.

� (4.10)

is definite positive, accordingly to the minimal character of G in equilibrium at 
fixed pressure and temperature. In matrix (4.10) we have taken into account 
that the chemical potentials are the first derivatives of free energy G, namely, 
µi = (∂G/∂Ni)T,p,Nj �=i

.  The line defined by the condition (∂µ1/∂N1)T ,p,N0 = 0  is 
the so-called spinodal line, and sets the limit of stability of the one-phase region 
in the T versus N0 (or N1) diagram. The maximum of this line is the critical point, 
which is thus defined by the two conditions

� (4.11)

which are analogous to the conditions (4.1) specifying the critical point of the gas-
liquid transition.

As an illustration, we will apply these conditions to the so-called regular binary 
solutions, defined by the following equation

�
(4.12)

where xi are the molar fractions, namely xi ≡ Ni/N with N = N0+N1 the total num-
ber of moles, µ(0)

i  the chemical potential of the corresponding pure substance, and 
λ( p) a parameter depending on p and related to the difference in interaction energy 
between similar and dissimilar molecules, which is zero for ideal solutions. The 
chemical potential for component 1 (an analogous expression is valid for compo-
nent 0) as obtained from (4.12) is

� (4.13)
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where it has been used that (∂x1/∂N1)N0 = x0/N  and (∂x0/∂N1)N0 = −x0/N.  
Introduction of (4.13) into (4.11) yields for the spinodal line

� (4.14)

which gives in the temperature-composition diagram the relation

� (4.15)

To obtain the critical point we must again differentiate expression (4.14) with re-
spect to N1, i.e. we must obtain the maximum of curve (4.15). Since this curve 
reaches the maximum for x1c = 1

2 ,  the critical temperature is given by the cor-
responding value

� (4.16)

For x1 = 1
2  and T < Tc the solution is not homogeneous and splits in two phases. If 

a non-equilibrium contribution ∆Gf due to the flow is added to (4.12), this would 
imply a change in the chemical potential. Therefore, (4.14) for the spinodal line 
would be changed to

i.e.

� (4.17)

The second equation defining the critical point would also be changed, thus yield-
ing a shift in the critical point. The explicit form of this shift depends on the form 
of �Gf (T , p, N0, N1, γ̇ ),  and is negative if ∂2�Gf/∂N2

1 > 0.  In Chap. 6 we will 
work out in detail the analogous problem of phase separation in polymer solutions, 
which is easily observed and has practical interest.

4.1.3  �Experimental Results

These results on the shift of the critical temperature may be partially compared with 
those obtained by Onuki (1980a, b), Onuki et al. (1981) by using renormalization-
group techniques, which are beyond the aim of the present monograph. In the case 
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when the fluid is under shear stress, they obtain for the shear-induced shift of criti-
cal temperature

� (4.18)

Here ε = 4 − d, d being the dimensionality of the system; 0 is a length related to the 
correlation length of the system by  = 0[( T/Tc) − 1]−v, with v the critical exponent 
which describes the divergence of  when T approaches the critical temperature. 
The critical wave number kc is determined by equating the decay rate Γk of the 
order parameter (in this case, the difference of composition of both phases) to the 
shear rate γ̇ .  The decay rate is given in the dynamic scaling theory by Γk = kzΩ( k), 
where z is a critical exponent. In the situation analysed by Onuki et al. (1981), and 
for k > 1, z = 3, and Ω( k) = kBT/16η, so that their result (4.18) may be rewritten 
for d = 3 as

� (4.19)

For an aniline-cyclohexane mixture in three dimensions ( z = 3, v ≈ 0.63), this ex-
pression takes the form

� (4.20)

This is in good agreement with the experimental results of Beysens and Gbadamassi 
(1979) and Beysens et al. (1979). Note that in EIT one would have a shift propor-
tional to the square of the shear rate; but this exponent does not coincide with 0.53. 
This is not very surprising since our theory, as well as the classical van der Waals 
equation, is a “mean field” phenomenological theory with an analytical develop-
ment. In the case of van der Waals interactions, the mean field is related to the 
interactions among molecules, while in our case the mean field is related to the 
non-equilibrium distortion of the pair-correlation function. Thus, a more detailed 
analysis of these situations would require using renormalization-group ideas, which 
have not yet been considered in the context of extended thermodynamics.

4.2  �Kinetic Theory of Dilute Non-ideal Gases

The treatment of non-ideal gases is obviously more complex than that of ideal gases 
which we have outlined in Chap.  2, owing to intermolecular interactions which 
contribute both to the viscous pressure tensor and to the heat flux. Thus, the one-
particle distribution function is no longer sufficient for an accurate description of 
the system, but the two-particle distribution function, accounting for the spatial cor-
relations amongst the particles due to the interaction, is also needed and plays, in 
fact, a central role.

Tc(γ̇ ) = Tc − 0.0832ε(kcξ0)1/ν .

Tc(γ̇ ) = Tc − 0.0832Tc

(
16ηξ 3

0

kBTc

) 1
zν

γ̇
1
zν .

Tc(γ̇ ) = Tc − 1.32 × 10−4γ̇ 0.53.
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For simplicity, we deal here only with the influence of the viscous effects on the 
pressure and the extended entropy, as the influence of a heat flux is considerably 
more involved. First, we note that in the kinetic theory of non-ideal gases, the pres-
sure tensor is split into a kinetic and a potential part

� (4.21)

given respectively by the usual kinetic expression (2.7), which we repeat here for 
the sake of completeness,

� (4.22)

and

� (4.23)

Note that the kinetic part Pk is expressed in terms of the one-particle distribution 
function f1(r, c), m is the mass of the particles, and C their peculiar velocities with 
respect to the barycentric velocity, and c their velocity in the laboratory frame of 
reference. In the potential part Pp, R = r1 − r2 is the relative position of molecule 1 
with respect to molecule 2, n the particle number density, ( R) the molecular inter-
action potential, with a prime indicating the spatial derivative with respect to R, and 
g( R) is the pair correlation function defined in terms of the two-particle correlation 
function f2(r1, c1, r2, c2) as

� (4.24)

The pair-correlation function g( R) describes how the number density of molecules 
changes with the distance with respect to one given molecule. Defining the ther-
modynamic equilibrium pressure as one-third of the trace of P at equilibrium, it 
follows from (4.21–4.23) that

� (4.25)

with geq( R) the equilibrium pair correlation function. The first term is the pres-
sure of ideal gases and the second provides the contribution of the intermolecular 
forces. In dense gases, the second term becomes especially important. If the inter-
action potential is attractive ( ( R) < 0), its contribution to (4.25) is negative, i.e. 
the attraction between molecules reduces the pressure they exert on the walls of 
the system. In the presence of a shear flow, the pair correlation function becomes 
distorted, and it depends on the shear rate (in fact, it depends not only on R but also 
on R · (∇v) · R). This will modify the pressure as it was commented in Sect. 4.1.1.

P = Pk + Pp,

Pk =
∫

mCCf1dc

Pp = −
1

2
n2

∫
φ′(R)R−1RRg(R)dR.

n2g(R) =
∫

f2(r1, c1, r2, c2)dc1dc2.

p = nkBT −
1

6
n2

∫
φ′(R)geq(R)RdR,
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Since the relaxation times of the one-particle distribution f1 and of the pair-cor-
relation function g do not necessarily coincide, one should not regard Pv as a single 
physical quantity, as was done in Chaps. 2 and 3 for ideal gases, but rather as the 
sum of two independent quantities, Pv

k  and Pv
p,  each with its own evolution equa-

tion. In Chap. 5 it will be seen that for polymer solutions the viscous pressure tensor 
is usually the superposition of several (or many) independent contributions corre-
sponding to the different normal modes of the macromolecules.

The thermodynamic phenomenological description of the non-ideal gas may be 
summarized as follows. The entropy has to take into account the independent con-
tributions of the kinetic and the potential part of the viscous pressure, and also the 
independent character of the bulk viscous pressure (namely, one-third of the trace 
of the viscous pressure tensor). The natural extension of (1.32) is

� (4.26)

We have only considered the potential bulk viscous pressure since its kinetic part 
pv

k  vanishes identically, as a consequence of (3.11b).
The relaxation times and viscosities appearing in (4.26) are defined through the 

evolution equations for their respective fluxes:

� (4.27a)

� (4.27b)

� (4.27c)

This is the simplest generalization of the linearized scheme proposed for ideal mon-
atomic gases in Chap. 3.

One may explore the consistency of the thermodynamic scheme (4.26, 4.27) 
from a microscopic point of view. For this purpose, we need an expression for the 
entropy in terms of f1 and f2, which is (Jou et al. 2010)

� (4.28)

where dΓ1 = dr1dc1 and dΓ12 = dr1dc1dr2dc2. The first term is the Boltzmann entropy 
introduced in (3.8) for the ideal gas, and the second term accounts for the ordering 
effect of the interparticle correlations.

An explicit form for the entropy in terms of f1 and g can be obtained by assuming 
that f2(1, 2) = f1(1) f1(2)g(1, 2). This result is exact at equilibrium and valid up to 

ρs = ρseq −
τk

4ηkT

0
Pv

k :
0
Pv

k −
τp

4ηpT

0
Pv

p :
0
Pv

p −
τ0

2ζT
pv

pp
v
p.

d

dt

0
Pv

k = −
1

τk
(

0
Pv

k + 2ηk
0
V ),

d

dt

0
Pv

p = −
1

τp
(

0
Pv

p + 2ηp
0
V ),

d

dt
pv

p = −
1

τ0
(pv

p + ζ∇ · v).

ρs = −kB

∫
f1(1) ln f1(1)d�1 −

1

2
kB

∫
f2(1, 2) ln

f2(1, 2)

f1(1)f1(2)
d�12,
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the first order in the shear rate for a wide class of interaction potentials. Within this 
approximation and setting f1 = f one has

� (4.29)

By analogy with Boltzmann equation, the evolution equations for f and g can be 
written as

� (4.30a)

� (4.30b)

where ∇R stands for the gradient with respect to the relative position R between two 
molecules. It is not necessary, for our purposes, to know the specific form of opera-
tors Jk and Jp on the right-hand sides of (4.30). The only result we need is that at 
equilibrium Jk( feq) = 0 and Jp( geq) = 0, with feq and geq given by

� (4.31)

The last expression defines an effective potential w( R) which coincides with the 
interaction potential ( R) only up to a first-order approximation in the density.

Now, by analogy with the analysis of ideal gases in Sect. 3.2, one expands the 
non-equilibrium distribution functions f and g in terms of the moments of C and R, 
respectively:

� (4.32)

� (4.33)

Here 
0
A and 

0
B  are traceless symmetric tensors and b is a scalar, which may be 

related to 
0
Pv

k,  
0
Pv

p,  and pv
p  by introducing (4.32, 4.33) into (4.22, 4.23). Note that 

because of conditions (2.3) the expansion of f is limited to the traceless term 
0

CC . 
It is found that

� (4.34a)

� (4.34b)

� (4.34c)

with 〈…〉 the corresponding equilibrium average.

ρs = −kB

∫
f ln f dc −

1

2
n2kB

∫
g ln g dR.

∂f

∂t
+ c ·

∂f

∂r
= Jk(f ),

∂g

∂t
+ R · (∇v) · ∇Rg = Jp(f ),

feq ≈ exp

[
−

mC2

2kBT

]
, geq ≈ exp

[
−

w(R)

kBT

]
.

f = feq[1 +
0

CC :
0
A (r , t)],

g = geq[1 +
0

RR :
0
B (r , t) + R2b(r , t)].

0
Pv

c = 2
15m〈C4〉

0
A,

0
Pv

p = − 1
15n2〈φ′(R)R3〉

0
B,

pv
p = −

1

6
n2〈φ′(R)R3〉b,
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Furthermore, one can derive an expression for the entropy by substituting (4.32) 
and (4.33) into (4.29). Letting f = feq[1 + k] and g = geq[1 + p], one obtains up to 
second order

� (4.35)

Relations (4.34) then allow us to express the entropy in terms of the dissipative 
fluxes:

� (4.36)

with

� (4.37a)

�
(4.37b)

� (4.37c)

Expression (4.36) confirms that the entropy depends on 
0
Pv

k,  
0
Pv

p,  and pv
p,  but it 

does not yet give the explicit form of the coefficients used in (4.26). To achieve 
this identification, we must study the relation between the coefficients kk, pp, and 
0 and their microscopic analogues are derived from the evolution equations for 
the fluxes. After introducing (4.32, 4.33) into (4.30), and multiplying the resulting 
equations term by term by CC, RR, and R2, respectively, one is led, after integration 
with respect to C and R, respectively, to

� (4.38a)

� (4.38b)

� (4.38c)

Here, NL stands for non-linear terms, while the relaxation times τk, τp, and τ0 are 
related to the collision operators Jk and Jp of (4.30) by

�

(4.39)

ρs = ρseq −
1

2
kB

∫
feqψ

2
k dc −

1

4
kBn2

∫
geqψ

2
p dR.

ρs = ρseq −
αkk

2T

0
Pv

k :
0
Pv

k −
αpp

2T

0
Pv

p :
0
Pv

p −
α0

2T
(pv

p)2,

αkk =
15kBT

2m2

1

〈C4〉
,

αpp =
15kBT

n2

〈R4〉
〈φ′(R)R3〉2 ,

α0 =
18kBT

n2

〈R4〉
〈φ′(R)R3〉2 .

2

15
〈C4〉

∂
0
A

∂t
+

2m

15kBT
〈C4〉

0
V = −

1

τk

0
V + NL,

2

15
〈R4〉

∂
0
B

∂t
−

2

15kBT
〈w′(R)R3〉

0
V = −

1

τp

0
B + NL,

〈R4〉
∂b

∂t
−

1

3kBT
〈w′(R)R3〉∇ · v = −

1

τ0
b + NL.

−
1

τk
= 〈C1C2Jk(C1C2)〉, −

1

τp
= 〈R1R2Jp(R1R2)〉, −

1

τ0
= 〈R2Jp(R2)〉.
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Here we do not require the explicit expressions for the relaxation times. In the more 
general case, the relaxation times form a fourth-rank tensor; however, here for sim-
plicity we consider only the particular case for which they reduce to scalar quanti-
ties. Because of (4.34a–c), expressions (4.38a–c) truly represent the evolution equa-
tions for the fluxes. The ratios τ/(2η) may be obtained directly from the ratio of the 
coefficients of the terms d

0
Pv/dt  and the corresponding terms in 

0
V,  as immediately 

seen by inspection of (4.31). Taking into account (4.39), it is found that

� (4.40a)

� (4.40b)

�
(4.40c)

Comparison of (4.40a) with (4.37a) shows that the thermodynamic prediction 
kk = τk/(2ηk) is satisfied. However, comparison of (4.40b, c) with (4.37b, c) is nei-
ther so direct nor general: the thermodynamic prediction is only correct at first order 
in the density. This is so because the generalised potential w( R) defined in (4.31b) 
and the interaction potential ( R) are identical only at this order of approximation. 
Up to this order, w′ = ′ and (4.40b, c) coincide with (4.37b, c) respectively, and 
thereby the thermodynamic identifications pp = τp/(2ηp) and 0 = τ0/ are justified.

The restriction of the latter identifications to first order in the density is not 

an important drawback, since pp and 0, of order n−2, are multiplied by 
0
Pv

p :
0
Pv

p 

and (pv
p)2, which, because of (4.23), are of order n4. The products αpp

0
Pv

p :
0

Pv
p

0
Pv

p :
0
Pv

p and 

α0(pv
p)2  in the entropy (4.36) are thus of order n2, so that the differences between pp 

and τp/(2ηp) and 0 and τ0/ are of order n3 in the expression of entropy. Such terms 
cannot be included in the present study because the definition (4.29) of entropy is 
valid up to order n2 only. To incorporate terms of order n3 one should have included 
f3, the three-particle distribution function, in (4.28). This is beyond the aims of the 
present book.

4.3  �Comparison with Computer Simulations

Computer simulations may be very useful to analyse in some specific situations 
the consistence of general thermodynamical proposals and they have, in fact, fos-
tered much progress in the domain of the statistical mechanics in non-linear regimes 

τk

2ηk
=

15kBT

m2

1

〈C4〉
,

τp

2ηp
=

15kBT

n2

〈R4〉
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,
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=

18kBT

n2

〈R4〉
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.

4 Non-ideal Fluids and Nuclear Collisions



91

(Evans and Morriss 1990, 2007). The main aims have been to obtain the transport 
coefficients of fluids in the non-linear domain, i.e. including the effect of a non-van-
ishing shear rate, and to analyse non-linear extensions of the fluctuation-dissipation 
theorems relating the transport coefficients and the time correlation function of the 
fluctuations of the corresponding fluxes. However, this approach may also be of 
special interest when one tries to formulate a non-equilibrium thermodynamics be-
yond the local-equilibrium approximation, by postulating, for instance, an entropy 
or a free energy dependent on the fluxes or on the gradients acting on the system.

However, up to now, these thermodynamic analyses, which have been success-
fully compared with several microscopic theories such as the kinetic theory of gases 
or the maximum-entropy formalism, as has been shown in Chaps. 2 and 3, have not 
yet benefited from a detailed comparison with computer results for the free energy 
under flow. Such results are available, for instance, from the work by Evans (1981), 
Evans and Hanley (1981), Evans and Morriss (1990) and of Daivis (2008), who 
have studied extensively and in great detail many aspects of the non-equilibrium 
thermodynamics of a system of particles under a shear flow, when a constant shear 
rate γ̇  is acting on the system and when a steady state is maintained through a suit-
able thermostating procedure which removes the dissipated heat in order to keep the 
temperature constant (Nosé 1984; Hoover 1985).

In this approach, the microscopic equations describing the motion of the mol-
ecules under the action of a velocity gradient ∇v are written as (Evans and Morriss 
1990, 2007)

� (4.41a)

� (4.41b)

where F is the external force acting on the molecule i and pi is a Gaussian thermo-
stat which removes energy from the system so as to keep the total kinetic energy 
fixed. This is achieved by imposing on (4.41b) the condition 

∑

i

pi · ṗi = 0  which 
implies

� (4.42)

This is, in fact, not completely realistic, as it implies that heat is removed at the 
same point where dissipation is produced, whereas in real situations heat flux is 
eliminated across the boundaries of the system. Furthermore, this Gaussian thermo-
stat produces sharply defined kinetic energy and only potential energy is distributed 
canonically. A better choice is the so-called Nosé–Hoover thermostat, which pro-
vides results according to the canonical ensemble for equilibrium systems, not only 
for the potential energy but also for the kinetic. Note that the numerator in (4.42) 
may be interpreted as the dissipated power, and therefore it may also be written 
as −VPv:(∇v). Since the rate of viscous heating is quadratic in the shear rate, the 

ṙ i =
pi

m
+ (∇v)T · r i ,

ṗi = F i − (∇v)T · pi − αpi ,

α =
∑N

i=1 [F i · pi − (∇v)T pi · pi]∑N
i=1 pi · pi

.

4.3 Comparison with Computer Simulations



92

results of both thermostats are obviously equal in the linear regime; in fact, Evans 
has shown that even in the non-linear regime, the non-linear response functions 
obtained by using both thermostats are identical under some conditions. The influ-
ence of different thermostats on the results in the non-linear regime is a topic of 
discussion.

Equations  (4.41) are known in the literature as SLLOD equations (Evans and 
Morriss 1990), in contrast with the so-called DOLLS equations, which were used 
for the first time to modelize the microscopic equations of motion of the particles, 
and in which such equations were obtained from an effective Hamiltonian (DOLLS 
Hamiltonian) given by

� (4.43)

with H0 the Hamiltonian of the system in the absence of the macroscopic flow. The 
SLLOD equations (which are not derivable from a Hamiltonian) and the DOLLS 
equations yield the same dissipation and the same linear behaviour, but the latter 
algorithm leads to incorrect results which are quadratic in the shear rate, which 
show up first in the normal stress differences. The main aim of these simulations is 
to obtain the transport coefficients of the gas, with a precision which is superior to 
that obtainable by the usual Green–Kubo techniques.

Although most practitioners of simulations do not pay attention to the thermo-
dynamic potentials, and directly identify the temperature as the kinetic temperature 
of the translational degrees of freedom, Hanley and Evans (1982), Evans (1989), 
Baranyai and Evans (1989) and Evans and Morriss (1990) have devoted consider-
able effort to the analysis of entropy, temperature and pressure out of equilibrium. 
In particular, for a system of soft discs interacting through a potential of the form 
( r) = ε( /r)12, truncated at r = 1.5, they calculated the entropy for an isoenergetic 
planar Couette flow at densities low enough that the configurational contribution to 
the entropy is negligible as compared with the kinetic contribution. The increased 
mean free paths in this low-density regime require very long runs to achieve ac-
curacy comparable to that for dense fluids. Table 4.1 shows some of Evans and 
Morriss’ results and shows the difference between the kinetic (local-equilibrium) 
temperature T and the (non-equilibrium) thermodynamic temperature θ defined as 
the derivative of the energy with respect to the entropy. Furthermore, they calcu-
lated the non-equilibrium pressure, defined as π = −(∂U/∂V )γ̇ ,  and compared it 

H = H0 +
∑

i

r ipi : (∇v)T ,

Table 4.1   Kinetic and thermodynamic temperatures T and θ at energy u = 2.134 for different ρ and 
γ̇ .  All the quantities are expressed in units of the parameters of the molecular potential ε, σ, and 
kB. (Evans and Morriss 1990, 2007)
 γ̇ T θ

0.100 0.5 2.171 2.048
0.100 1.0 2.169 1.963
0.075 0.5 2.190 2.088
0.075 1.0 2.188 1.902
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with the kinetic pressure p obtained from the trace of the pressure tensor. Some of 
their results for p and  (expressed in terms of ε−3) are reproduced in Table 4.2.

These results show clearly that there are significative differences between the 
values of θ and T and between those of  and p in presence of shear rates. Evans and 
Morriss (1990) have noticed that the numerical data for thermodynamic pressure 
 agree with the minimum eigenvalue of the pressure tensor. If instead of working 
in a dilute regime one includes also the configurational contribution to the entropy 
(the second term in (4.29)), the modifications of the potential contribution to the 
pressure may be understood in terms of a flow-induced distortion of the pair-corre-
lation function g( R) which would then modify the pressure according to the relation 
(4.25); an analogous modification would be found for the interaction contribution 
to the internal energy in the caloric equation of state.

Another interesting feature of the computer results (Todd and Evans 1999; Ba-
ranyai et al. 1992) is the observation of an isothermal shear-induced heat flow be-
tween regions which have the same kinetic temperature. This shows the difficulties 
associated with the formulation of a “zeroth principle” of thermodynamics out of 
equilibrium. Indeed, the most natural formulation of such a zeroth law would be to 
postulate that two steady-state systems have the same thermodynamic temperature 
when under steady-state conditions heat does not flow from one system to the other 
(see also Casas-Vázquez and Jou 1994; Domínguez and Jou 1995 for a detailed 
discussion). However, the results mentioned point out clearly that this condition is 
not met with the kinetic temperature defined by (2.10). This is one of the reasons 
we warned the reader in Sect. 2.1 not to ignore the conceptual complexities related 
to the definition of temperature, and which are often hidden by the simplicity of 
relation (2.10) which, however, has little to do with the measured temperature in 
non-equilibrium steady states.

Another approach to thermodynamics from the perspective of molecular dynam-
ics simulations is that of Daivis (2008), who has explored whether the Maxwell 
relations following from the equality of second-order crossed derivatives of a non-
equilibrium thermodynamic potential are or not confirmed from microscopic simu-
lations. For instance, he assumed

� (4.44a)

with 1 = 10/2, 10 being the first normal stress coefficient. From here it follows the 
Maxwell relation

� (4.44b)

dF = −SdT − pdV + ζ1dγ̇ ,

−
(

∂p

∂γ̇

)

V ,T

=
(

∂ζ1

∂V

)

γ̇ ,T

.

Table 4.2   Local-equilibrium and non-equilibrium pressure p and π at energy u = 2.134 and density 
ρ = 0.100 for different values of γ̇ .  (Evans and Morriss 1990, 2007)
γ̇ p 

0.0 0.244 0.215
0.5 0.245 0.145
1.0 0.247 0.085
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Since, in principle, p and 1 can be obtained from molecular dynamics, Daivis 
checked (4.44b) and showed that it was not satisfied, thus casting doubts on the 
internal consistency of the non-equilibrium free-energy (4.44a). However, he car-
ried out his simulations not at constant non-equilibrium temperature, but at constant 
kinetic temperature. This makes a difference which should be explored in future 
works. In any way, exploration of Maxwell relations like (4.44b) seems to provide 
an interesting way of checking the consistency of thermodynamic approaches.

Another of the conclusions of Evans (1981, 1989) was that one may define a 
generalised Helmholtz free energy depending not only on T, V and N but also on the 
shear rate γ̇ .  It was found that the dependence of such a free energy with the shear 
rate could be written as

� (4.45a)

at an intermediate range of the shear rate γ̇  i.e. in the range near γ̇ ≈ τ−1,  with τ 
the characteristic collision time, which is also the characteristic relaxation time of 
the viscous pressure. Furthermore, for very high values of γ̇  they found a behaviour 
of the form �S ≈ −τ γ̇  for the entropy (Evans and Morriss 1990).

Most of the analyses of EIT are restricted to second-order in the fluxes, and in 
this order of approximation, one finds non-equilibrium corrections to the free en-
ergy which are quadratic in the shear rate, and have the explicit form

� (4.45b)

Comparison of (4.45a) and (4.45b) shows a different exponent of γ̇  in both expres-
sions. This disagreement has been one of the main reasons for the lack of contact 
between both approaches up to now, because (4.45b) is valid at low values of γ̇ .  
Indeed, at low γ̇  Daivis (2008) has seen that molecular dynamics also leads to a 
quadratic behaviour.

One possibility to understand this difference in the exponents at low γ̇  and high γ̇  
is an analysis based on a specific microscopic model for a liquid, which introduces 
the volume fraction of locally dilated spherical regions as an internal state variable, 
and which at high values of the shear rate exhibits a bifurcation leading to a γ̇ 3/2  
behaviour (Nettleton 1987). Another more abstract and generic framework to recon-
cile these different behaviours (Bidar 1997) is to generalise the expressions of EIT 
to the non-linear regime valid for high values of the fluxes. One could use for this 
purpose the information theoretical analysis presented in Sect. 2.3 which indicates 
that the viscosity decreases with increasing γ̇ ,  in such a way that the viscous pres-
sure tends to a finite saturation value equal to the energy density u in the limit of 
very high γ̇  (γ̇ � τ−1).  The behaviour found in information theory (see (2.65) for 
the shear viscosity) may be roughly modelled as

�
(4.46)

where η0 is the value of the shear viscosity in the low shear-rate limit, and n is a 
fitting parameter.

F (T , V , N , γ̇ ) = Feq(T , V , N ) − A(T , V , N )γ̇ 3/2

F (T , V , N , γ̇ ) = Feq(T , V , N ) +
1

2
τηV γ̇ 2.

P v
xy = −η(γ̇ )C = −η0

[
1 +

(
2

3
τ γ̇

)n]−1/n

γ̇ ,
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Now, we introduce this expression for η(γ̇ )  into (4.45b) and find

�
(4.47)

This expression yields the limiting behaviour (4.45b) for low γ̇ ,  whereas for high 
γ̇  it yields a behaviour of the form

� (4.48)

This kind of linear behaviour at high shear rates is also observed in molecular dy-
namics experiments by Evans and Morriss (1990). Thus, the dependence of the free 
energy in terms of a dimensionless shear rate γ̇ ′ = τ γ̇  changes from (γ̇ ′)2  at low 
γ̇ ′  to γ̇ ′  at high γ̇ ′  Therefore, there will be a regime of intermediate values of γ̇ ′  
for which the behaviour of F − Feq could be fitted by (γ̇ ′)3/2,  in accordance with the 
trends shown in computer simulations. Furthermore, according to expression (4.48) 
and to the relation S = −(∂F/∂T)V,N one obtains that the non-equilibrium entropy 
shares this same kind of limiting dependence with the dimensionless shear rate.

Thus, if one takes into account the non-linear behaviour of the viscosity, the 
results of the non-linear extended thermodynamics may become compatible with 
those of non-equilibrium molecular dynamics in a regime of intermediate and high 
values for the shear rate. In fact, these limiting behaviours do not depend essentially 
on the explicit form of η(γ̇ ),  provided that it yields the expected behaviour of a 
saturation value of the viscous pressure at high γ̇ ,  and a linear relation between P v

xy  
and γ̇  at the low- γ̇  regime.

4.4  �Nuclear Collisions

We end this chapter with a short look at the non-equilibrium effects for nuclear 
matter in the description of nuclear collisions, which is another situation where 
relaxation effects are important, because of the very short duration of nuclear colli-
sions. The duration of the collisions between nuclei is only one order of magnitude 
longer than the mean collision time between nucleons inside the nuclei. Therefore, 
it is logical to assess the importance of non-equilibrium corrections and, at higher 
energies, their role on the shift of the transition line. The non-equilibrium equations 
of state of EIT provide a simplified framework for studying such problems.

4.4.1  �Internal Collective Flows and Information Theory

At moderate energies, one of the topics is up to what point multi-fragmentation 
processes following from nuclear collisions may be described by local-equilibri-
um thermodynamics and hydrodynamics. The presence of strong collective flows 

F (T , V , N , γ̇ ) = Feq(T , V , N ) +
1

2
τV η0

[
1 +

(
2

3
τ γ̇

)n]−1/n

γ̇ 2.

F (T , V , N , γ̇ ) = Feq(T , V , N ) +
1

2
Vρuτ γ̇ .
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inside the nuclei may modify the usual thermodynamic expressions. Gulminelli 
(2004) and Gulminelli and Chomaz (2004) have used information theory to derive a 
thermodynamics for systems in the presence of a collective flow, introducing infor-
mation on such a flow by means of suitable Lagrange multipliers, as it has been il-
lustrated in Sect. 2.3. However, instead of the viscous pressure, or second moments 
of the particle velocity, they take as variables the memory of the initial momentum 
of the collision along the beam axis (usually known in this field as “transparency”), 
or radial flow effects. They take for the probability distribution function of an event 
the expression

� (4.49)

where pz is the momentum along the beam axis with εi = −1 for the particles initially 
belonging to the target, εi = +1 for those belonging to the projectile, and  a La-
grange multiplier. In this way,  describes the internal collective longitudinal flow, 
and thus they are able to introduce several degrees of “transparency”, related to the 
quadrupolar deformation in the momentum space, namely 

(
〈p2

x〉 − 〈p2
z 〉

)
/3〈p2

z 〉,  
with 〈…〉 being averages. They show that different degrees of transparency lead 
to very different fragment size distribution, thus exhibiting the strong influence of 
non-equilibium variables. Besides the longitudinal collective motion a radial collec-
tive motion could also be introduced in a similar manner.

4.4.2  �Generalised Gibbs Equation

At yet higher energies, one of the main questions is related to the transition from 
nuclear matter to quark–gluon plasma (Schukraft 1993; Mornas and Omik 1995; 
Pratt 2008; Pratt and Vredevoogd 2008). This would provide an understanding of 
the inverse transition which took place in the early stages of the universe (at times 
of the order of 10−12 s), when the quarks in the primitive quark–gluon plasma con-
densated in groups of three quarks (the so-called baryons, among which protons and 
neutrons), and in groups of two quarks (the so-called mesons). The condition on 
such groups was that the total color charge (the charge related to the strong interac-
tions between quarks) was white, i.e. “neutral”.

Another relevant topic in the thermodynamics of nuclear collisions concerns 
the definition and measurement of temperature (Casas-Vázquez and Jou 2003). 
Different measurements may be related, for instance, to the relative probability of 
fragments of different mass and energy in nucleus fragmentation, or to the relative 
emission of pions, or to other kinds of observables. The strong anisotropy of the 
collisions makes that the disordered kinetic energy in the several directions may be 
considerably different, in analogy with what has been discussed in ideal gases in 
Couette flow in Sect. 2.4. The question of temperature is still under active discus-
sion underlying any hydrodynamic and thermodynamics analysis of this topic.

P ∼ exp

[

−βE − α

z∑

i

εipiz

]

,
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To write explicitly the non-equilibrium contributions to the Gibbs equation, we 
need expressions for the transport coefficients and the relaxation times for nuclear 
matter. They may be derived, for instance, from the kinetic theory by expanding 
the quantum version of the Boltzmann equation (the so-called Uhlenbeck–Uehling 
equation), in a way analogous to that of Chapman–Enskog, i.e. by expressing the 
non-equilibrium correction to the distribution function in terms of the temperature 
and the velocity gradients. In this way, Danielewicz (1984) has obtained for the 
shear viscosity η and the thermal conductivity λ

� (4.50a)

� (4.50b)

where kBT is expressed in MeV, η in MeV/fm2c, λ in c/fm2, the nucleon number n in 
fm−3 and where n0 = 0.145 fm−3 (here, fm stands for fermi, with 1 fm = 10−15m and 
c is the speed of light).

The relaxation times for the viscous pressure tensor Pv and the heat flux q in 
terms of the density and the temperature are given, respectively, by (Danielewicz 
1984)

� (4.51a)

� (4.51b)

where τi is expressed in fm/c. The last terms in the right-hand side correspond to bi-
nary collisions amongst nucleons, whereas the first terms describe collisions of nu-
cleons with the surface of the nuclei. For increasing T, the first term decreases more 
strongly than the second one. This means that binary collisions are more frequent at 
higher temperatures, whereas at lower ones, a ballistic regime of the nucleons inside 
the nucleus becomes dominant, in which the most frequent collisions are produced 
against the boundaries of the nucleus. The characteristic crossover temperature be-
tween these two regimes is of the order of kBT = 6 MeV, according to (4.51).

The generalised non-equilibrium entropy up to the second-order contributions in 
the fluxes is given by the expression

� (4.52)

This is (1.32) plus the contribution of the heat flux. Combination of (4.50–4.51) 
with (4.52) yields an explicit expression for the non-equilibrium entropy. To avoid 
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s(u, v, q, Pv) = seq(u, v) −
τ1

2λρT 2
q · q −

τ2

4ηρT
Pv : Pv.
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the rather cumbersome general expression, we particularize the results for high 
temperature, which is the regime of interest in high-energy collisions. In this case, 
(4.52) takes the form

� (4.53a)

For a system submitted only to a viscous pressure P v
12,  (4.53a) may be written as

� (4.53b)

where we have taken into account that in a pure shear flow Pv : Pv = 2P v
12P

v
12,  and 

where the terms in q2 have been neglected.
The caloric equation of state for the temperature, i.e. θ−1 = (∂s/∂u)v,q,P v

12
 may 

be calculated explicitly by using du = cdT, with c the specific heat per unit mass, 
which in the high-temperature limit considered here is c = 3/(2m) (recall that we set 
the Boltzmann constant kB equal to unit). The final expression for θ is (Bidar and 
Jou 1998)

� (4.54)

We may assess the relative importance of these corrections for the collision Au + Au 
analysed by Fai and Danielewicz (1996). From the results of simulations for the 
collision Au + Au at 400 MeV/nucleon, one has the following values for the param-
eters involved: γ̇ (shear rate) ≈ 0.07cfm−1,   ≈ 0.30 fm−3, T ≈ 44 MeV. The shear 
viscosity at these values of  and T is η ≈ 55 MeV/fm2c. It turns out that under these 
conditions θ−1 ≈ 1.065T−1, so that the relative non-equilibrium contribution to the 
temperature is of the order of 6.5%.

It is also interesting to compute the non-equilibrium corrections to the pressure 
from the definition

� (4.55)

Note that the quantity to be held constant during the differentiation is vP v
12  rather 

than P v
12  itself, because of the non-extensive property of P v

12.  Expression (4.55) 
yields /θ = p/T. Therefore, from (4.54) and (4.55) we finally obtain [see also (4.3)]

� (4.56)

We may now explore some observable physical consequences of (4.56). To do this 
we study one of the most relevant parameters in the equations of state for nuclear 
matter, which is the so-called isothermal nuclear-matter compressibility. It is de-
fined in nuclear physics as

� (4.57)
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The experimental results for this coefficient exhibit a wide dispersion, even for the 
same nucleus. Indeed, typical values of K range from 165 MeV to 220 MeV ac-
cording to the kind of experiments in which they have been obtained: some of these 
experiments are rather close to equilibrium (such as giant-monopole resonance) 
whereas others are obtained from nuclear collisions far from equilibrium.

To estimate the relative importance of non-equilibrium corrections in the evalua-
tion of K observed in nuclear collisions, Fai and Danielewicz (1996) have proposed 
using in K the non-equilibrium pressure  instead of the local-equilibrium pressure. 
If this is done, combination of (4.56) with (4.57) yields

� (4.58)

Using the numerical values for the reaction Au + Au given below (4.54) and taking 
into account P v

12 = ηγ̇ ,  one finds from (4.58) that K − Keq ≈ 20 MeV. Thus, this 
correction is not negligible and may account at least for a substantial part of the 
dispersion in the observed values of K.

To explore the shift in the transition line from nuclear matter to quark–gluon 
plasma, one would need to compute the non-equilibrium contributions to the chemi-
cal potential of both phases and to equate the respective chemical potentials, both 
of which would depend on Pv. This would lead us too far into technical details. The 
main concepts related to the possible shift of a coexistence line will be explored 
in great detail in Chaps. 5 and 6 for polymer solutions, where the observations are 
more direct and detailed.

4.4.3  �Causal Dissipative Hydrodynamics

A proper account of nuclear collisions requires to incorporate relativistic effects. In 
Sect. 3.4.1 we have introduced the formalism in a non-relativistic framework. In the 
companion book Extended Irreversible Thermodynamics (Jou et al. 2010), the rela-
tivistic version of EIT is presented in detail. Here, we will outline a short summary 
of a closely related approach, the causal dissipative hydrodynamics, developed by 
Koide et al. (2007a, b), Koide and Kodama (2008), Denicol et al. (2007a, b, c, 2008, 
2009) and Kodama et al. (2007), which have paid special attention to some of the 
problems arising in relativistic hydrodynamics of nuclear collisions.

The collective motion of the matter produced in heavy-ion collisions is gener-
ally described in the ideal fluid approach, and the results are amazingly satisfactory. 
However, viscosity is expected to play a role. The relativistic hydrodynamic formu-
lation is written as the conservation of the energy-momentum tensor T μv

� (4.59)

where indices μ, v may take the values 0, 1, 2, 3. The first one refers to temporal co-
ordinate and the other three ones to the spatial coordinates. The energy-momentum 
tensor is given by

� (4.60)

K = Keq +
5.89

mn2T
(P v

12)2.

∂νT
µν = 0,

T µν = (ε + p + pv)uµuν − (p + pv)gµν + P µν ,
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where ε, p, pv and uμ are, respectively, the energy density, pressure, bulk viscous 
pressure and the four-velocity, which is defined as uμ = ( , v), v being the usual 
three-space velocity and  the Lorentz factor, Pμv is the relativistic viscous pressure 
tensor and gμv is the metric tensor.

To close the system (4.59–4.60) equations of state for p in terms of ε is needed, 
and transport equations or constitutive equations for pv and Pμv, which in the causal 
dissipative approach are taken as

� (4.61a)

and

� (4.61b)

where τ0 and τ2 are the relaxation times, and  and η the bulk and shear viscosity 
and τ is the proper time. These equations generalize to the relativistic domain the 
relaxational Maxwell–Cattaneo Eqs. (4.27). We neglect in (4.60) the contribution 
of the heat flux for the sake of simplicity. The non-linear term in τRpv shown in the 
right-hand side of (4.61a) was obtained by Koide et  al. (2007a) and reduces the 
effects of the bulk viscosity, because in the expansion pv is negative. In contrast 
to the Navier–Newton–Stokes equations for viscous behaviour, corresponding to 
vanishing relaxation times, Eqs. (4.61a, b) lead to finite speed of propagation and, 
therefore, to causal behaviour. The bulk viscosity may be modelled in terms of the 
energy density ε or the entropy density s. In particular, Denicol et al. (2009) take 
 = as and τR = bζ( ε + p)−1, with a and b numerical constants. According to their 
analysis the non-linear term reduces the effects of viscosity and thus it could explain 
why the description of the collision in terms of ideal hydrodynamics works satis-
factorily, although it is expected that viscosity should be relevant. Furthermore, this 
term stabilizes numerical calculations in ultrarelativistic initial conditions.

Let us finally note that Olson and Hiscock (1989) have studied the restrictions 
placed by the stability conditions derived from EIT on the possible forms of the 
equations of state of nuclear matter. In the classical approach, it is required that the 
sound speed is less than the speed of light and this provides a first restriction on 
such equations but EIT brings additional limitations by requiring that the speeds 
of heat and viscous waves are lower than the speed of light. Note that though we 
have used here a non-relativistic formulation of EIT, a more detailed analysis of 
high-energy collisions would certainly require a covariant formulation, which may 
be found, for instance, in (Jou et al. 2010) and (Pavón 1992; Gariel and Le Denmat 
1994) and the references therein.

τ0
dP v

dt
+ P v = −(ζ + τRpv)∂µuµ,

τ2
dP µν

dt
+ P µν = −2η∂µuν ,
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In the presence of velocity gradients, different parts of a macromolecule are submit-
ted to different viscous forces. This produces deformation forces and orientational 
torques, and the macromolecules become stretched, oriented and displaced with 
respect to the quiescent situation, what modifies the internal energy stored in the 
macromolecules and their entropy and, as a consequence, the free energy of the 
whole system, to a much larger extent than in simple gases and liquids.

In this chapter, we study polymer solutions and blends to obtain explicitly the 
non-equilibrium contributions to the thermodynamic potentials. These expressions 
will be used in the following chapters, to analyse flow-induced effects. Since the 
relaxation times in polymers are much longer than in fluids of small molecules, 
the non-equilibrium modifications of the equations of state are easier to observe 
and have much more practical interest. The processing and moulding of polymers 
take place under flowing conditions and this gives to the corresponding analysis a 
practical perspective. Furthermore, the blending of polymers is a usual way of pro-
ducing new materials which combine the properties of the individual constituents to 
optimize the properties of the joint product. This is the practical reason that thermo-
dynamics and rheology of polymer blends receive much attention.

The essential concepts have already been discussed in detail in the two previous 
chapters for ideal and real gases. Since the flow contribution to the equation of state 
is related to the steady-state compliance, according to (1.32), we will focus our 
attention on this quantity. First, we will stress some simple descriptions of dilute 
polymer solutions, the freely jointed chain and the Rouse–Zimm approach to bead–
spring models. In Appendix B (Sect. B.4) we will deal with rigid dumbbell models 
to illustrate the basic features of the influence of a shear flow on the isotropic-to-
nematic transition in liquid crystals.

The analysis of concentrated solutions and melts, where several macromolecu-
lar chains become entangled, requires more sophisticated theoretical models, such 
as the reptation model, some of whose aspects are discussed in Sect. 5.4. Finally, 
we present some results for polymer blends in the context of the double-reptation 
model.

D. Jou et al., Thermodynamics of Fluids Under Flow, 
DOI 10.1007/978-94-007-0199-1_5, © Springer Science+Business Media B.V. 2011
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5.1  �Kinetic Theory of Dilute Polymeric Solutions

The most usual microscopic models of dilute polymer solutions describe the poly-
mer chain as a system of beads, representing the monomers, linked either by rigid 
but freely rotating joins or by elastic springs mimicking the bounds between suc-
cessive monomers. The whole chain is immersed in a Newtonian fluid, which rep-
resents the solvent. The interaction between the viscous solvent and the beads is 
assumed to be described by Stokes’ law, and the internal energy of the chain is 
related to the elastic energy of the chain’s configuration. The aim is to understand 
the flow properties of systems containing polymer molecules as a function of their 
length, their flexibility and their geometrical configuration. These simple models 
have been extensively used as the basis to obtain an insight into many rheological 
and thermodynamical properties of the systems (see, for instance, the well known 
monographs by Bird et  al. 1987b; Doi and Edwards 1986; Doi 1996). This de-
scription is not valid for concentrated solutions, as the molecules are no longer 
independent but start to overlap and to entangle with each other, and other models, 
such as the reptation model, are needed. Here, as in the two preceding chapters we 
will focus our attention on the thermodynamic aspects, rather than on the more well 
known rheological problems.

5.1.1  �Freely Jointed Chain

The first attempts to take into account the effects of the flow into the free energy of 
dilute polymer solutions, namely, the macroscopic consequences of stretching and 
orienting the macromolecules in the flowing system, were undertaken at the begin-
ning of the 1970s (Marrucci 1972; Janeschitz-Kriegl 1969; Sun and Denn 1972; 
Sarti and Marrucci 1973; Booij 1984). One of the main results was that the excess 
free energy per unit volume related to the flow is

� (5.1)

where the symbols have the same meaning as in the preceding chapters. Although 
apparently this form is very different from that involving (P v

12)2  which was given in 
(1.34) for plane Couette flows, it must be recalled, as was seen in (1.13–1.14), that 
in this class of flow TrPv is proportional to (P v

12)2  for upper-convected Maxwell 
fluids, which is the rheological model usually adopted in this monograph. In fact, 
in (5.24) it will be shown an expression for ∆f more general than (5.1) and which 
agrees with the extended entropy for all classes of flows.

The simplest way to show (5.1) is to assume a freely jointed chain of N statisti-
cally independent segments of length b. Since one supposes that the orientations of 
the successive segments ri are mutually independent, the average value of the end-
to-end vector of the chain, R =

∑N
i=1 ri ,  is given by the well known result

�f = −
1

2
TrPv,
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� (5.2)

where 〈ri  ⋅ rj〉 = 0 because of statistical independence of different segments, and 
〈r2

i 〉 = b2.

The simplest mathematical model to describe the chain is to consider the poly-
mer as a random walk of steps with equal length b but random orientation. In the 
Gaussian approximation which uses the results of this random-walk model (see 
Fig. 5.1), the conformational distribution function (R) giving the probability that 
the end-to-end vector is comprised between R and R + dR is given by the classical 
result

� (5.3)

This result is the analogous of diffusion theory with N playing a role analogous 
to time and with a diffusion coefficient given by D = 1

6 b2. In fact, this model is 
excessively simplistic since it allows the chain to loop back onto itself, but this is 
actually impossible because each segment occupies its own finite volume. To take 
into account this excluded-volume effect one must use a self-avoiding random walk 
for the description of the chain. In this case (5.2) and (5.3) are modified (Doi 1996); 
in particular, it turns out that 〈R2〉 is proportional to N6/5b2  instead of (5.2), i.e. the 
exponent of N is slightly higher than 1, thus yielding a longer end-to-end distance 
than the simple Gaussian approximation. Other non-ideal effects which must be 
taken into account are due to the nature of the interaction between the chain and the 
solvent. For instance, if the chain is hydrophobic, it will tend to be folded on itself 
if water is used as the solvent whereas a hydrophilic chain will tend to extend to in-
crease its contact with water as much as possible. Here we will only use the simplest 
descriptions to understand the physical basis of the phenomena we are considering.
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Fig. 5.1   The freely jointed 
model for the macromolecu-
lar chain. The rigid segments 
may rotate freely around their 
connection points
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In order to obtain the Helmholtz free energy f of a chain with a given end-to-end 
vector R we recall that the canonical equilibrium distribution function (R) is ex-
pressed in terms of the free energy as

� (5.4)

Thus, by inverting (5.4) and using (5.3), the free energy of the chain can be written 
as

� (5.5)

One may obtain from (5.5) an expression for the force F which should be applied 
to the ends of the chain to modify R. Indeed, we recall that −(∂f/∂R)T = F  (this 
relation is analogous to the classical expression −(∂f/∂V )T = p  in the bulk). By 
differentiating (5.5) one obtains −(∂f/∂R)T = (3kBT/Nb2)R.  This shows that the 
force F is proportional to R according to Hooke’s law for linear elasticity and there-
fore indicates that the freely jointed chain has an elastic constant given by

� (5.6)

Note that the origin of this elastic constant is purely entropic. Indeed, it is a conse-
quence of the fact that the more stretched configurations have less possible micro-
states, and therefore stretching the molecule implies a decrease in the entropy of 
the chain, which requires some work to be done on it. The linear dependence of the 
elastic constant on temperature is typical of entropic effects. Note, furthermore, that 
longer chains have lower elastic constant. Systems with entropic elasticity differ 
from those with energetic elasticity in the fact that the former ones contract when 
heated, whereas the latter ones expand.

Since there are n independent macromolecular chains per unit volume of the 
solution, the free energy of the solution per unit volume will be

� (5.7)

In order to relate (5.7) with the viscous pressure tensor, we recall that the contri-
bution of the polymer to the viscous pressure tensor for a solution of n Hookean 
dumbbells, i.e. elastic dumbbells whose spring satisfies the classical Hooke’s law, 
per unit volume is given by the Kramers expression (1.90) (Doi and Edwards 1986; 
Bird et al. 1987b)

� (5.8)

with k′ the elastic constant of the dumbbells and U the unit tensor. The tensor 
〈RR〉 describes the average configuration of the chains. Although the freely jointed 
chain is not in fact a dumbbell, it behaves grossly as an elastic dumbbell with 
the elastic constant determined in (5.6), and therefore, expression (5.8) may be 

ψ(R) ∝ exp (−f/kBT ) .

f = const +
3kBT

2Nb2
R2.

k′ =
3kBT

Nb2
.

f (T, n) = const +
3nkBT

2Nb2
〈R2〉.

Pv = −nk′ 〈RR〉 + nkBT U,
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used to obtain its contribution to the viscous pressure. In equilibrium, the tensor 
〈RR〉 becomes simply the diagonal 1

3 〈R2〉U  and, according to the equipartition law, 
1
2k′〈R2〉 = 3

2kBT . As a consequence, expression (5.8) for Pv. will vanish in equilib-
rium, as expected.

The flow will distort and stretch the chains and this will change the value of 〈RR〉 
and of 〈R2〉 with respect to its equilibrium value in a quiescent state. Its contribution 
to the free energy ∆f may be written, according to (5.7) as

� (5.9)

Indeed, we see that, in the absence of the flow, 〈R2〉 = 〈R2〉eq and therefore ∆f = 0. On 
the other hand, since TrPv = 0  in equilibrium, (5.8) can be rewritten as

� (5.10)

and therefore one will have

� (5.11)

Comparison of (5.9) and (5.11) yields (5.1). In fact, (5.9) is interesting in its own 
right, as it gives a microscopic understanding of the change in the free energy due 
to the flow in terms of the chain deformation.

The derivation presented here states clearly its own limitations: (1) the modifi-
cations of f are of entropic origin; no change in the internal energy of the chain with 
the flow is considered; (2) the solution must be very dilute so that the chains do 
not interact; (3) the hydrodynamic interactions between the different parts of the 
macromolecule are neglected; (4) the internal friction of the molecule is neglected; 
(5) a linear relationship between elastic forces and end-to-end vectors is assumed, 
but it breaks down when the macromolecules are much extended. In spite of these 
limitations, the derivation is very simple and illustrates in a concise way the need to 
take into account the flow contribution to the free energy.

5.1.2  �The Bead-and-Spring Rouse–Zimm Model

A more detailed and realistic description of the macromolecule and a more complete 
derivation of the non-equilibrium contribution to the free energy may be obtained 
if one considers that the joins between successive beads are not rigid rods but elas-
tic springs. This allows one to take into account the change in the internal energy 
of the chains due to the elongation or compression of the springs. Rouse in 1953 
(Rouse 1953; see also Doi and Edwards 1986; Bird et al. 1987b) used a Langevin 
equation to describe the motion of each bead, by taking into account the elastic 
force, the viscous friction, and a stochastic force due to the random interaction with 
the molecules of the solvent. This allowed him to obtain, in a rather direct way, a 

�f =
1

2
nk′〈R2〉 −

1

2
nk′〈R2〉eq.

Pv = −nk′ 〈RR〉 +
1

3
nk′〈R2〉eqU,

TrPv = −nk′〈R2〉 + nk′〈R2〉eq.
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description of viscoelasticity, with microscopic expressions for the relaxation times 
and the viscosities corresponding to the different normal modes of the chain. His 
analysis was generalised by Zimm (Zimm 1956; Doi and Edwards 1986; Bird et al. 
1987b), who included in an averaged way the effects of the hydrodynamic interac-
tions between the different parts of the macromolecule, which had been neglected 
in Rouse’s analysis. Here, we will derive the expression for the flow contribution 
to the free energy, which now has two parts: an entropic one, due to the changes 
in the orientation of the molecule under the flow, and an energetic one, due to the 
stretching of the springs.

To do this, let (R1, R2, …, RN−1) denote the configurational distribution func-
tion giving the probability that the bead-to-bead vectors Ri going from the ith bead 
to the ( i + 1)th bead are comprised between the values Ri and Ri + dRi, respectively 
(see Fig. 5.2). In fact, rather than with these vectors, which are coordinated among 
themselves through the condition that the end of one vector must coincide with the 
beginning of the next one, when analysing the energy and the dynamics of these 
chains it is more convenient to work in terms of the normal modes of the chain, 
which will be denoted as Q1, …, QN − 1, which automatically solve the mentioned co-
ordination of motions. Thus, from now on we call  the configurational distribution 
function expressed in terms of these new variables, which are a linear combination 
of the former ones through the expression reported below in Eq. (5.20).

5.1.2.1  �Free Energy

According to Boltzmann’s definition of entropy, the configurational contribution of 
the chains to the entropy per unit volume is

� (5.12)s = −nkB

∫
ψ ln ψdQ1...dQN−1.

Fig. 5.2   The bead–spring 
model for macromolecular 
chains. C is the centre of 
mass of the macromolecule 
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It has been assumed that the contribution of the velocity of the center of mass is 
purely the equilibrium one and is not affected by the flow. Although this is not 
exact, it turns out that the configurational contribution to the entropy is much more 
affected by the flow than the kinetic one, and therefore this approximation is quite 
realistic.

The internal energy of the macromolecules is given by the elastic potential en-
ergy of the springs, and therefore it may be written as

�

(5.13)

where H is the Hookean spring constant. To write the second equality, we have tak-
en into account that the equilibrium distribution function 0 has the canonical form

�
(5.14)

where advantage has been taken of the fact that the different normal modes are in-
dependent of each other, in such a way that the total distribution function factorizes 
into a product of the respective distribution functions i(Qi) of the ith normal mode. 
According to the canonical distribution function, the argument of the exponential 
in (5.14) is the energy of the chain, divided by kBT. Therefore, (5.13) is indeed the 
energy, except for an additive function coming from the logarithm of the normaliza-
tion factor in (5.14), which will not be important because we are interested in the 
excess Helmholtz free energy due to the flow rather than in the whole value of the 
free energy.

By using (5.12) and (5.13), the Helmholtz free energy per unit volume may be 
expressed as

� (5.15)

or, in a more compact form,

� (5.16)

Now, to obtain the flow contribution to the free energy one needs to know the form 
of  in the presence of the flow. This may be achieved by solving a kinetic equation 
describing the evolution of  or, in a different approach, by maximizing the entropy 
under the restrictions on the average value of the viscous pressure tensor, as was 
done in Sects. 2.2 and 2.3 for ideal gases. We defer an illustration of this latter ap-
proach to Sect. 5.3, and use here the kinetic approach.

u = −n

∫
ψ

∑

i

1

2
HQ2

i dQ1...dQN−1

= −nkBT

∫
ψ ln ψ0dQ1...dQN−1,

ψ0 =
∏

i

ψi(Qi)

= (H/2πkBT )3(N−1)/2 exp
[
−(H/2kBT )(Q2

1 + · · · + Q2
N−1)

]
,

f = u − T s = −nkBT

∫
ψ (ln ψ0 − ln ψ) dQ1...dQN−1,

f = nkBT

∫
ψ ln (ψ/ψ0) dQ1...dQN−1.
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Under non-equilibrium conditions, the configurational distribution function 
must fulfil the continuity equation in the configurational space, namely

� (5.17)

where the Ṙi  are obtained by a force balance over the beads (Bird et al. 1987b) 
which reads as

� (5.18)

The term on the left-hand side describes the friction of the fluid on the bead; it is 
proportional to the friction coefficient  of the beads and to the relative velocity of 
the bead with respect to the fluid, the former being Ṙi  and the latter (∇v) · Ri . 
On the right-hand side, the elastic forces are expressed through the function 0, 
as already commented below (5.14), whereas  gives the contribution of the ran-
dom force due to the microscopic impacts of the solvent molecules and the beads. 
Finally, the matrix A (which is constant and diagonal in the Rouse model) may 
include the effects of the hydrodynamic interactions amongst the beads through 
non-diagonal terms in the pre-averaged Zimm treatment. We will not specify the 
details concerning this point, which are studied in depth in (Bird et al. 1987b; Doi 
and Edwards 1986).

In terms of the configurational distribution functions of the different normal 
modes, (5.17–5.18) may be written as

� (5.19)

with i(Qi) the distribution function of the normal mode Qi. The normal modes are 
related to the bead-to-bead vectors Rj through

� (5.20)

where the orthogonal matrix Ω diagonalizes the matrix A in (5.18). The correspond-
ing diagonal elements of Ω ⋅ A ⋅ ΩT are the i, i.e. the eigenvalues of the matrix A, 
to each of which corresponds a relaxation time given by i = /(2Hλi).

It is usual to try an approximate Gaussian solution to solve (5.19), of the form

�
(5.21)

∂ψ

∂t
= −

∑

i

∂(ψṘi)

∂Ri

,

ζ
[
Ṙi − (∇v) · Ri

]
= −kBT

∑

i

Aij

∂(ψ/ψ0)

∂Rj

.

∂ψi

∂t
=

∂

∂Qi

·
[
ψi(∇v) · Qi −

H

ζ
λiψiQi −

kBT

ζ
λi

∂ψi

∂Qi

]
,

Ri =
∑

j

�ij · Qj ,

ψi

ψi0
=

(
H

kBT

)−3/2[
det〈QiQi〉

]−1/2

× exp

[(
H

2kBT

) (
QiQi −

1

2
Qi〈QiQj 〉−1Qj

)]
,
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with ψi0  the ith normal mode distribution function at equilibrium. In equilibrium, 
the matrix 〈QiQj〉 is diagonal and (5.21) reduces to (5.14). Out of equilibrium, de-
pends on the matrix describing the flow, but some general results for the free energy 
may be obtained without need of such explicit knowledge.

When the distribution function (5.21) is introduced into the expression (5.16) for 
the free energy one has,

�

(5.22)

It is possible to write this equation by outlining in a more explicit way the non-
equilibrium contribution. To do this, one may write 〈QiQj〉 in terms of the viscous 
pressure tensor. Indeed, each normal mode contributes to the viscous pressure, and 
one may write, instead of (5.8), the Kramers expression for Pv

i
 as

� (5.23)

Therefore, (5.22) may be written in terms of Pv
i

 as

� (5.24)

with (Pv
i )

′ = (nkBT )−1Pv
i .  Note that (5.24) is analogous to the expression (2.47) 

for ideal gases except for a change of sign in front of Pv,  which is due to the minus 
sign in (5.8) in contrast to the positive sign in (2.47). Expression (5.24) generalises 
(5.1) in two aspects: it takes into account the role of the different normal modes and 
it includes the contribution of the internal energy to the free energy in the second 
term of the right-hand side. Thus, the microscopic basis for the non-equilibrium free 
energy is now clear (Lebon et al. 1988; Pérez-García et al. 1989).

Now, we may work out (5.24) for some special flows. First of all, for shear flows, 
we may introduce the expression (1.13) in (5.24) and we obtain

�

(5.25)

For small values of γ̇  one may develop the logarithm in (5.25) and one finds

� (5.26)

in which we have used the relationships τ = ( nkBT)−1 and J = τ/, which will be 
justified below. Note that (5.26) has precisely the form (1.41) predicted by extended 
irreversible thermodynamics for low values of P v

12  if we bear in mind that in (1.41) 
the Helmholtz free energy is expressed in units of energy/volume.

f =
1

2
nkBT

{
∑

i

Tr[(H/kBT )〈QiQi〉 − U] −
∑

i

ln [ det (H/kBT )〈QiQi〉]
}

.

Pv
i = −nH 〈QiQi〉 + nkBT U.

�f = −
1

2
nkBT

{
∑

i

Tr(Pv
i )′ +

∑

i

ln
[
det (U − (Pv

i )′
]
}

,

�f =
1

2
nkBT

{
2τηγ̇ 2 − nkBT ln

[
1 + 2τηγ̇ 2/(nkBT ) − η2γ̇ 2/(nkBT )2

]}
.

�f =
1

2

η2γ̇ 2

nkBT
=

1
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η
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12)2 =
1

2
J (P v

12)2,
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For high values of γ̇ ,  the terms in 2τηγ̇ 2  are more important than the terms in 
the logarithm, so that (5.25) reduces to

� (5.27)

which is the expression following from (5.1) and (1.13).
For planar extensional flows, we may introduce the viscous pressure tensor 

(1.19) into the free energy (5.24), and we arrive at

�

(5.28)

By developing ln(1 + x) ≈ x − 1
2x2 one has, up to second order in P v

11,

� (5.29)

in agreement with the EIT expression (1.43) for low values of P v
11  and P v

22.

This confirmation of EIT at low values of γ̇  has also been obtained without need 
of the general expression (5.21) but by writing the second-order solution of (5.19) 
for . In a steady state, (5.19) reduces to

� (5.30)

(Note that the subscript i refers to the ith normal mode, i.e. i = 1, 2, …, N, whereas 
j and k refer to the Cartesian components of Qi, i.e. j, k = 1, 2, 3). For ∇v = 0,  the 
second term of the right-hand side vanishes and the solution of (5.30) is the equi-
librium expression (5.14). Out of equilibrium, Eq. (5.30) is integrable when ∇v is 
symmetric. Its solution is then

� (5.31)

Taking into account the form (5.14) for the equilibrium distribution function i0, 
and expanding the exponential in powers of the velocity gradient, one may write 
(5.31) up to the first order as

� (5.32)

When this expression is introduced into (5.16), one obtains (5.25) for the flow con-
tribution to the free energy.

�f = τηγ̇ 2 = J (P v
12)2,

�f = −
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2
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+
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−
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+
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.

�f = −
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4
(nkBT )−1

[
(P v

11)2 + (P v
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1

4
J

[
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11)2 + (P v
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1

ψi

∂ψi

∂Qi

= −
H

kBT
Qi +

ζ

λikBT
(∇ν) · Qi .

ψi
∼= exp
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−

H

kBT
Qi · Qi +

ζ

2λikBT
(∇v) : QiQi

]
.

ψi = ψi0

[
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ζ

4λikBT
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.
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When the flow is rotational, as in shear flow, (5.30) cannot be integrated, because 
it does not satisfy the equality of the second-order crossed derivatives. Indeed, it fol-
lows from (5.28) that ∂2ψ/∂Qk∂Qj = δk vj  and ∂2ψ/∂Qj∂Qk = δjvk ,  in such 
a way that these crossed derivatives are equal only if the velocity gradient tensor 
is symmetric. In fact, it is intuitive to understand that in a rotational flow the mol-
ecules do not achieve a stationary distribution function, since they rotate due to the 
flow. This rotation is described by the non-symmetric part of the velocity gradient. 
In this situation, expression (5.32) is not an exact solution, but only a time average 
over the rotation. When this molecular rotation is not macroscopically relevant, it is 
logical that it should not appear in the macroscopic entropy. Otherwise, the kinetic 
rotational contribution to the internal energy should be taken into account.

5.1.2.2  �Evolution Equation for the Viscous Pressure

Here we are interested in relating the non-equilibrium entropy to the evolution equa-
tion for the viscous pressure tensor. Indeed, it has been seen in (1.53) and (1.55) that 
the non-equilibrium contribution of the viscous pressure to the entropy is intimately 
related to the relaxation effects in the evolution equation for Pv.. Therefore it is 
convenient, for the sake of completeness, to derive from microscopic grounds the 
latter equation. It should take into account the contributions of the different normal 
modes, as expressed by (5.23), and to each normal mode will correspond a relax-
ation time τi and a viscosity i. To obtain them, one may combine the expression 
(5.23) for Pv

i
 with the evolution equation for the configurational distribution func-

tion i, given by (5.19). One obtains in this way, in the linear approximation,

� (5.33)

with the relaxation time τi given by (2Hλi)
−1 with i the eigenvalues of the matrix 

A defined in (5.20) and i = nkBTi. Indeed, multiplying (5.19) by Qi and integrating 
over Qi one has

�

(5.34)

Taking into account that i(Qi) and its first and second-order derivatives decay very 
rapidly with Qi, (5.34) becomes, up to the first order in the velocity gradient,

� (5.35)

When the Kramers expression (5.23) for Pv
i  is taken into account, one is led to 

(5.33) and the noted identifications of the viscosity and relaxation time.

τi

∂Pv
i

∂t
+ Pv

i = −2ηi(∇v)s ,

∂

∂t
〈QiQi〉 =

∫
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∂Qi

·
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ψi(∇v) · Qi −

Hλi

ζ
ψiQi −

kBT
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∂ψi

∂Qi
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The explicit values of the relaxation times depend on the model being used in 
the analysis. For the Rouse model, the relaxation time of the jth mode turns out to 
be (Bird et al. 1987b)

� (5.36)

In the limit of large N and small j (i.e. for the largest time constants), (5.36) may be 
written as

� (5.37a)

It is usual to write H as H = 3kBT/b2, with b the root mean square length of the 
strings, by taking into account the relation (5.6) (with N = 1) for the elastic constant 
of a chain. In terms of these variables, (5.37a) becomes

� (5.37b)

Since the relaxation times decay very rapidly with increasing j, it follows that the 
longer relaxation times ( j = 1, 2, 3) account for practically all viscosity; thus, al-
though the number N of normal modes may be very large, in practice only a very 
small number of them account for the observed viscosity. For the Zimm model, the 
relaxation times are given by (Bird et al. 1987b)

� (5.38)

with s the viscosity of the solvent. Note that the relaxation times depend on tem-
perature in several ways: they are inversely proportional to T, in a explicit way, 
and implicitly, they are also affected by the temperature dependence of the solvent 
viscosity and of the mean-square separation b2 of the ends of the segments.

From (5.37) and (5.38) one may obtain the scaling laws which express the de-
pendence of the relaxation times with the mass M of the polymer (or with the num-
ber of monomers N) and which are widely used in the study of polymer physics. In 
the Rouse model and recalling that the number N of monomers is proportional to 
the polymer mass M, one has from (5.37) that τ ∼= M2  whereas in the Zimm model 
(5.38) yields τ ∼= M3/2.  Furthermore, since i = nkBTτi and n = c/( MNA) with c the 
polymer concentration expressed in terms of mass per unit volume and NA the Avo-
gadro number, one has η ∼= cRT τ /M ,  and thus the scaling laws for the viscosity 
are, respectively, η ∼= cM  (Rouse) and η ∼= cM1/2  (Zimm). Finally, the steady-
state compliance J = τ/ follows the scaling laws J ∼= c−1M  both for Rouse and 
for Zimm models. A comparison with experimental data shows (Bird et al. 1987a; 
Holmes et al. 1966, 1968) that Zimm’s theory may be used for low concentrations, 

τj =
ζ/(2H )
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.

τj ≈
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whereas when the concentration increases the system tends to the behaviour pre-
dicted by Rouse. Therefore, there is a smooth shift from the Zimm model to the 
Rouse model with increasing polymer concentration, always in the dilute regime.

5.2  �Derivation of the Steady-State Compliance

As has been seen in (1.31) and (1.32), the steady-state compliance J plays a central 
role in the non-equilibrium contributions to the free energy. Since we will need to 
know in detail its dependence on the concentration in latter applications, we analyse 
this coefficient in the framework of the Rouse–Zimm model. For a system with only 
a single relaxation time one would have J = τ/. However, when there are several 
normal modes and therefore several different non-equilibrium contributions to the 
free energy, the effective steady-state compliance J to be used in the thermodynamic 
analysis is defined from the form of the free energy (1.32) as

� (5.39)

where Pv is the total viscous pressure of the solution, given by Pv =
∑

i Pv
i ,  

where the contribution of the solvent is also taken into account. After writing 
Pv

i = −2ηi(∇v)s and expressing the non-equilibrium contribution in both sides of 
(5.39) in terms of the velocity gradient, yields

� (5.40)

where the sum in the denominator must include the solvent viscosity s (corre-
sponding to i = 0) besides the viscosities related to the different normal modes of 
the polymer. However, it does not appear in the numerator because we are assum-
ing a purely Newtonian solvent, with vanishing relaxation time, i.e. τ0 = 0. Since 
i = nkBTτi, (5.40) may be rewritten as

� (5.41)

where we have written n (number of molecules of polymer per unit volume of so-
lution) in terms of the polymer mass per unit volume c taking into account that 
c = nM2NA with M2 the polymer molecular mass. The total contribution p of the 
polymer to the viscosity is ηp = nkBT

∑
i τi . Furthermore,  = s + p, and then 

(5.41) may be re-written as

� (5.42)
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where C is a constant. Since τi = τ1i−α, with α = 2 in Rouse model (5.37) and α = 3/2  
in Zimm model (5.38), C is given by

� (5.43)

In Rouse model, C = 0.4 since 
∑∞

1 i−2 = 1
6π2  and 

∑∞
1 i−4 = 1

90π4,  and in Zimm 
model ( n = 3/2), C = 0.206.

In order to express J as a function of the concentration c, it is necessary to know 
how  depends on the concentration of the mixture. Since here we want to analyse 
generically the thermodynamic model for dilute solutions, we have preferred not 
to use a specific functional for ( c) but we simply take the second-order expansion

� (5.44)

where kH is the so-called Huggins constant, which depends on the solution being 
analysed, and [] is the intrinsic viscosity defined as

� (5.45)

where  is the viscosity of the solution, s the viscosity of the solvent, and c the mass 
of polymer per unit volume of solution.

Combining (5.42) and (5.45) we may write J as a function of the reduced concen-
tration c̃,  defined as c̃ = [η]c,  in the form

� (5.46)

where �(c̃)  is a function defined as

� (5.47)

Note that the simplest scaling law for J in terms of c mentioned at the end of 
Sect. 5.1.2 would yield J ≈ c−1M.  This is true for relatively large concentrations, 
where the contribution of the polymer to the viscosity is much higher than that of 
the solvent, but not in the very dilute regime, where the viscosity of the solvent can-
not be neglected (Holmes et al. 1966, 1968). The dependence of  on the concentra-
tion is crucial in the analysis of the shear-induced shift of the critical point, as will 
be discussed in the next chapter.

The experimental values for J are usually obtained by several methods, such as 
from creep recovery, by integration over the stress relaxation data following sudden 
start or sudden cessation of steady flows, or from normal stress measurements.

The transition from the behaviour described by Zimm to the behaviour described 
by Rouse with increasing polymer concentration is monotonous and reflects the fact 
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that with increasing concentration the hydrodynamic effects become less relevant. It 
may be qualitatively described by assuming that the parameter C in (5.46) depends 
on the composition of the system. To describe the gradual transition from the Zimm 
to the Rouse behaviour one may assume (Criado-Sancho et al. 1995)

� (5.48)

where α is a parameter which indicates how steep the transition is. In Chap. 6 this 
expression will be used in an analysis of the influence of the hydrodynamic interac-
tions on the shear-induced shift of the critical point.

5.3  �Maximum-Entropy Approach

In Sect. 2.1 we have used the maximum-entropy approach to find the thermody-
namic functions of ideal gases under shear flow. Here we again use this procedure to 
derive the steady-state configurational distribution function (5.35) for bead–spring 
chains, which was previously derived as a solution of the kinetic Eq. (5.30). In this 
way, we stress the parallelism in the study of two rather different physical systems, 
namely ideal gases and dilute polymer solutions, and we also underline two differ-
ent methods for the analysis of dilute polymer solutions (Jou et al. 1999b).

We have seen in Sect. 2.2 that in a non-equilibrium steady state characterized by 
a non-vanishing viscous pressure tensor, the maximum-entropy distribution func-
tion is given by (2.29), which we rewrite here in the form

� (5.49)

with H the Hamiltonian, P̂
v the microscopic operator for the viscous pressure ten-

sor, and  a tensorial Lagrange multiplier which accounts for the restriction on the 
average value of the viscous pressure tensor. In (2.44) we have identified  as

� (5.50)

For a bead-spring chain, P̂
v

 and Pv  are sums of N independent contributions each 
with its own relaxation time τi and therefore (5.49) generalises to

� (5.51)

The contribution of the ith normal mode of one single molecule to the viscous pres-
sure Pv  is, according to Kramers expression (5.23)

� (5.52)
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Introducing this expression into (5.51), and restricting our attention to the configu-
rational part of the total distribution function it is found

� (5.53)

where ieq is the equilibrium part of i. Since (∇v) : U = ∇ · v  and in view of the 
incompressibility condition ∇ · v = 0,  the contribution of the first term in the ex-
ponent of (5.53) vanishes. Finally, we recall that i = /(2Hλi). Thus, (5.53) may be 
finally rewritten as (5.31). In this situation, information theory and kinetic theory 
yield the same result for the distribution function, instead of coinciding only in the 
first-order non-equilibrium corrections.

5.4  �Entangled Solutions. Reptation Model

When the concentration becomes sufficiently higher, the macromolecules begin to 
overlap with each other and can no longer be considered as independent: hydrody-
namic interactions, excluded volume effects, and entanglement interactions must be 
considered, and the microscopic analysis becomes very complicated. A well known 
model for the analysis of concentrated solutions is the so-called reptation model (de 
Gennes 1971; Doi and Edwards 1978a, b, 1986; Doi 1996; Marrucci and Grizzutti 
1983).

The reptation model, initially proposed by de Gennes in 1971, assumes that the 
average effect of the meshwork of macromolecules on a given macromolecule is 
to impede its transverse motions across the strands of the other macromolecules. 
Thus, the macromolecular chain must move inside an effective tube formed by the 
other chains, in such a way that the motion of the chain is that of reptation, namely, 
a diffusive wriggling of the molecular chain along the length of such a tube. If 
the system is deformed, the cages along which the chain moves are distorted and 
the chains are carried into new configurations, in such a way that stress relaxation 
proceeds first by a relatively rapid equilibration of chain configurations within the 
distorted cages (of the order of the Rouse relaxation times), and then by a relatively 
slow diffusion of chains out of the distorted cages (of the order of the so-called 
disengagement time).

The relation (5.16) for the free energy in terms of the distribution function may 
also be used in these models, but with a different meaning of the distribution func-
tion, by defining (u, s, t) as the probability that the unit tangent vector at a position 
s (a scalar which denotes the position along the chain) and time t is in the direction 
u( s, t). The connection of u with the viscous pressure tensor Pv  is given by

� (5.54)

ψi = ψieq exp

[
−

τi

kBT
(∇v)s : (kBT U − HQ′

iQ
′
i)

]
,

Pv = −
3nkBT

Nb2

〈∫ L(t)

0
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[
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1

3
U

]〉
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This formula, which generalises (5.8), shows that the viscous pressure tensor is de-
termined by two quantities, the length of the tube L( t) and the orientation of u( s, t).

In the limit of small deformations of the polymer, one may consider that the 
length is the same as in equilibrium, and that the deformation only changes the lo-
cal orientation in space. This is called the independent-alignment approximation, 
in which the primitive chain segments, i.e. the tube segments which connect two 
consecutive entanglements along a polymer chain, are taken to behave as rigid rods 
in such a way that their distribution function is completely specified in the space of 
unit vectors u. In this approximation, one has

� (5.55)

where n is the number of polymer chains per unit volume, N the number of mono-
mers per polymer and (u, s, t) the orientation distribution function in the deformed 
state for a primitive segment located a distance s along the primitive chain; (u0, s, t) 
is the corresponding distribution function in the undeformed fluid. This expression 
is analogous to (5.16).

The change in the orientational distribution function (u) due to the deformation 
of the fluid is obtained by requiring the continuity condition

� (5.56)

with u0, u, dΩ0 and dΩ corresponding to the unit vectors and solid angles before and 
after the deformation. On the other hand, since the continuum deforms at constant 
volume, one must have r3

0 d�0 = r3d�,  with r the magnitude of the position vector 
r. Then, the ratio (u)/0(u0) can be written as r3/r3

0  and (5.55) becomes

� (5.57)

with 〈· · · 〉  indicating the average value over the orientation distribution function. 
The ratio r3 /r3

0  may also be written in terms of the deformation gradient tensor 
E, defined by means of the relation r = E · r0, as r3/r3

0 = det (E),  so that (5.57) 
becomes

� (5.58)

It is interesting to show some explicit results for the free energy in simple plane situ-
ations. In this case, one must take in (5.57) ln (r2/r2

0 )  rather than ln (r3/r3
0 ). For a 

plane shear deformation γ in the z direction, one has x = z0 + x0 and z = z0, and then

� (5.59)

If instead of a static shear deformation one has a steady shear flow, the simplest 
naive way to proceed would be to take x = 0 (i.e. to follow the motion of the fluid) 
and for the shear deformation the value γ = γ̇ τ ,  with τ the relaxation time, which 

�f = nNkBT

∫
ψ ln [ψ(u, s, t)/ψ(u0, s, t)]du,

ψ0(u0)d�0 = ψ(u)d�,

�f = nNkBT 〈ln (r/r0)3〉,

�f = nNkBT 〈ln [det (E)]〉 .

r2 = r2
0 + γ 2z2

0 + 2γ x0z0.
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in the reptation model may be identified with the disengagement time τd. For small 
values of the shear rate, writing ln (r2/r2

0 ) = ln (1 + γ 2cos2θ ) ≈ γ 2cos2θ  with 
cos ≡ x0/r0, and taking into account that the mean value of cos2 is 1/2, we have

� (5.60)

which coincides with the usual expression of EIT for low values of γ̇ .

A more general approximation (Marrucci and Grizzutti 1983), valid for any ar-
bitrary deformation, is given by

� (5.61)

with µ(t − t′) the relaxation function giving the fraction of segments which at time t 
are still trapped in the deformed tubes. In the reptation model this function has the 
form

� (5.62)

The disengagement time τd is (Doi and Edwards 1978b)

� (5.63)

where M0 is the mass of a monomer and Me the average molecular mass between 
successive entanglement points. The main difference of the relaxation times τj = τd/j2 
and the relaxation times (5.37b) following from the Rouse theory with the expres-
sion (5.63) is the term M/Me, which becomes equal to 1 when there are no entangle-
ments, because then Me coincides with M. This term shifts the scaling law for τ in 
terms of M from  ≈ M 2 to  ≈ M 3. In fact, experimentally it is observed that  ≈ M 3.4. 
It is thought that the scaling law with the exponent 3 is exact for very high molecular 
mass, whereas for lower molecular mass other mechanisms different from that of 
reptation may contribute to the relaxation, thus changing the scaling law.

The scaling laws for the shear viscosity and the steady state compliance are the 
following ones. In the reptation model, one has

� (5.64)

In (5.64), only odd values of i are admissible, and the relaxation times of the differ-
ent modes have the form τi = τdi−2 with τd the reptation or disengagement time given 
in (5.63). Then, the total contribution of the polymer to the viscosity is

� (5.65)
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Thus, the scaling laws for p in (5.65) is  ≈ M 3c, in the limit of high molecular 
masses, and η ≈ M3.4cb,  with b an exponent close to 1, in many experimental 
results.

Expression (5.40) for the steady-state compliance J may be written in this case as

� (5.66)

Taking into account that for a concentrated solution the solvent viscosity is negli-
gible as compared to the polymer viscosity, one has  = s + p ≈ p, and using the 
ratio (5.65) one may write (5.66) as

� (5.67)

with the constant C given by

� (5.68)

The appearance in (5.67) of Me( c) instead of M modifies the scaling laws of J in 
terms of c, since Me depends on the concentration: it becomes smaller when c in-
creases because the average length between successive entanglements is shorter 
for higher concentrations. The dependence is of the order of c−2; more explicitly, 
it may be written as Me(φ) = M0

e (ρ(φp)/ρ0
p )φ−2

p ,  where p is the volume fraction 
of the polymer, M0

e  the value of Me for the melt of the pure polymer, ρ0
p  the mass 

density of the pure melt and ρ(φp)  the density of the solution with polymer volume 
fraction p.

5.5  �Polymer Blends. Double Reptation Model

Besides dilute and entangled polymer solutions, shear-induced effects have also 
been studied in polymer blends. In this case, instead of having long macromolecules 
solved in a solvent of small molecules, one has a mixture of long macromolecules 
A and long macromolecules B. Often, these blends are formed by seeking for an 
optimal combina-tion of the physical properties of the separate components. Entro-
pic considerations, always relevant in mixing processes, are especially important in 
the blending of polymers, where the length of the macromolecules and their high 
number of microscopic configurations make entropy a large quantity.

The memory function for the stress relaxation of the blend must take explicitly 
the relaxational properties of each component. Intuitively, one could expect that 
the stress relaxation function is the weighted sum of the corresponding functions 
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for each component, but this is not realistic because of the mixing and topological 
interaction of chains of both kinds. Clarke and McLeish (1998) take the following 
expression

�

(5.69)

where i, Gi and τi are respectively the volume fraction, plateau modulus and relax-
ation time of pure polymer i, Gi being, as in (1.21), Gi = i/τi. This non-linear mix-
ing rule follows from the model of double-reptation (des Cloizeaux 1988) which, 
in physical terms, accounts for the fact that polymers do not reptate in fixed tubes, 
but that the surrounding polymers which form the tube also relax with a charac-
teristic time scale. Thus, stress relaxation depends not only on the dynamics of an 
individual polymer, but also on the dynamics of the surrounding ones, which are 
molecules of both kinds A and B. This is the simplest way to describe the details 
of stress relaxation in polymer blends, by taking into account that the relaxation 
of both components is coupled, with a degree of coupling depending on the rela-
tive concentrations. The relaxation times τi correspond to the tube survival time for 
chains of species i in an environment in which the chemical heterogeneity is that of 
the blend, but all chains have the same relaxation time.

Equation (5.69) yields for the steady viscous stresses the following expressions

� (5.70)

and for the first normal stress coefficient

�

(5.71)

whereas the second stress N2 = σyy − σzz is equal to zero in the Maxwell model. The 
terms in AB describe the coupling between both kind of chains.

The diagonal components of the stress tensor are assumed to have the form

� (5.72)

so that Tr σ = 0 Note that this assumption is different from the one from the Maxwell 
upper-convected model, where σxx = N1 and σyy = σzz = 0.

The explicit form of the steady state compliance J for such polymer blends may 
be obtained from the general formula (5.40), namely,

� (5.40)
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and from the fact that the memory function G( t) in (5.69) may be explicitly rewrit-
ten as

�
(5.73)

where τ−1
C = 2(τ−1

A + τ−1
B ).  In (5.73), the functions Gi( t) and τi do not correspond 

to the pure A and B fluids, but are formal expressions to be used in (5.40). By com-
bining (5.40) and (5.73), it follows for the steady-state compliance

� (5.74)

For pure A ( A = 1) or pure B ( B = 1), this expression tends respectively to J = 1/GA, 
J = 1/GB, as it should be. The expressions (5.46–5.47), (5.67) and (5.74) for the 
steady-state compliance will be used in the Chap. 6 for analysing shear-induced 
effects.
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In equilibrium thermodynamics, the chemical potential plays one of the most im-
portant roles in the analysis of multicomponent systems and, in particular, it is the 
most useful tool to study the phase coexistence and the equilibrium and stability 
conditions in chemical reactions. In the previous chapters we have shown, from 
macroscopic and microscopic perspectives, that the free energy of flowing fluids 
and, consequently, the chemical potential may depend on the flow.

The definition of the chemical potential for non-equilibrium situations points 
out the possibility of generalising the classical equilibrium analysis of phase dia-
grams and of reacting systems to non-equilibrium steady states. Indeed, it is well 
known that shear flows modify the phase diagram of polymer solutions and blends, 
for which the application of a viscous stress may induce phase segregation or a 
modification of the molecular weight distribution of the polymer because of shear-
induced degradation. Thus, it is worthwhile to study in detail the predictions of the 
non-equilibrium chemical potential to compare them with the experimental results.

Shear-induced effects have practical importance, because many industrial pro-
cessing involving polymers are carried out in flowing systems, and temperature and 
flow are expected to control the microstructure and the mesoscopic morphology 
of materials. The use of equilibrium results in these situations may be misleading, 
predicting, for instance, a homogeneous mixture whereas in actual fact the system 
separates into two fluid phases as a consequence of flow-induced effects. If a fast 
solidification of the system is then produced, the mechanical and elastic properties 
of the final product may be influenced by the degree of local inhomogeneity of the 
corresponding fluid system from which it was originated.

However, an analysis of stability in flowing systems must not be based on an 
extrapolation of the equilibrium thermodynamic equations to non-equilibrium situ-
ations, by simply introducing into the stability conditions the non-equilibrium po-
tential instead of the local-equilibrium one. Each proposition must be carefully and 
critically examined from a dynamical basis, as it will be done in Chap. 7, where it 
is seen that the relations between thermodynamic stability and dynamic stability 
become much more involved in non-equilibrium states. The present chapter is de-
voted to the discussion of the chemical potential and its application to the analysis 
of thermodynamic stability in shear flows of polymer solutions and blends.

D. Jou et al., Thermodynamics of Fluids Under Flow, 
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6.1  �Survey of Experimental Results

In this section, we give an overview of some shear-induced effects on the phase 
diagram of polymer solutions, as a physical motivation for the subsequent analysis. 
The influence of the shear flow on the phase separation in fluids has been analysed 
from different points of view, in particular the shear-induced shift of the critical 
point and the spinodal line. The observations are usually made on the basis of tur-
bidity or of viscosity. In the first case, they are based on the direct observation of a 
change in the appearance of turbidity in the flowing solution as compared with the 
solution at rest. In other cases, the observation stems from changes in the viscosity. 
These results are interpreted in several different ways: some authors propose that 
the observed turbidity is due to dynamically enhanced concentration fluctuations 
in the presence of the flow, rather than to a true phase separation. Other authors 
have suggested that there is a true shift of the coexistence line and the spinodal 
line, implying an actual phase separation, leading to turbidity, which may be further 
enhanced by the dynamical effects of the flow on the concentration fluctuations. In 
principle, the shift due to purely thermodynamic effects should be manifested in 
other independent phenomena where the chemical potential plays a role, such as, for 
instance, in chemical equilibrium or on the intensity of fluctuations.

Changes in solubility of polymers due to the presence of a flow have been re-
ported many times in the literature since the 1950s and have received attention from 
several points of view. We do not presume here to cover all the literature on this 
topic, which is very extensive. The papers by Rangel-Nafaile et al. (1984) and of 
Barham and Keller (1990), Hashimoto et al. (1993) and Wang and Chatterjee (2002) 
as well as the reviews (Jou et al. 1995, 2003; Onuki 1997, 2002) cover a wide bib-
liography on the subject, which is updated in this book.

To our knowledge, the first reports on the influence of flow on the polymer solu-
bility are due to Silberberg and Kuhn (1952, 1954). These authors studied a solution 
of two different polymers (polystyrene and ethylcellulose) in a common solvent 
(benzene). In this system, the critical temperature (at the concentrations studied by 
the authors) below which phase separation occurs is T c = 31.7°C. The presence of 
a flow with shear rate γ̇ = 200s−1  was able to reverse the separation and to lower 
the critical temperature some 10°C, up to T c = 21.7°C. In many other situations, 
however, the critical temperature is raised by the presence of the shear flow.

Inclusion of the effects of the flow into the free energy for the analysis of the 
phase separation problems was made for the first time by Ver Straate and Philipoff 
(1974), by using Marrucci’s formula (5.1) for the free-energy excess. These authors 
observed that a clear polymer solution upon passing from a reservoir into a capil-
lary, a region of high shear rate, became turbid in the capillary. After leaving it, the 
solution became clear again. This phenomenon was exhibited only above a certain 
shear rate depending on the polymer, solvent, concentration and temperature. The 
viscosity of the solution was seen to undergo unusual changes in this turbid state, 
also called a turbidity point or cloud point, passing through a minimum as the shear 
rate increased. The visual observation of the cloud points, always made in laminar 
flow, showed an increase in the cloud point temperature, instead of the decrease 
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seen in the two-polymers-one-solvent system of Silberberg and Kuhn, i.e. the tur-
bidity curves were shifted to higher temperatures.

In 1984, Rangel-Nafaile et al. (1984) studied solutions of polystyrene in dioctyl-
phthalate and observed a shift of the cloud point curves towards higher temperatures 
(Fig. 6.1). The shift in the critical temperature could reach 24°C (at P v

12 = 400 N/m2). 
They also used a thermodynamic formalism based on Marrucci’s formula (5.1) for 
the excess free energy. Also Wolf (1984) used a thermodynamic theory based on the 
Flory–Huggins equation for the mixing free energy and Marrucci’s formula (5.1) 
for the change in the free energy due to the flow. By studying the phase separation 
of polystyrene solutions in transdecalin, he observed a decrease in the cloud point 
temperatures for relatively low-molecular-weight polystyrene and an increase for 
high-molecular-weight polystyrene, and attributed this behaviour to non-Newto-
nian effects arising in high-weight molecular solutions. Furthermore, Wolf found 
that the turbidity curves of the flowing solutions could exhibit two maxima instead 
of one. Spinodal curves with two maxima under flow have also been studied by 
Lyngaae-Jorgensen and Sondergaard (1987).

Non-equilibrium phase diagrams of PMMA in dimethyl-phthalate, depending on 
temperature, concentration and shear rate, for solutions in Couette cylindrical flow 
have also been studied by Barham and Keller (1990), who observed a shift of the 
coexistence lines towards higher temperatures, of the order of up to 30°C.

The detailed evolution of the separation process has been studied experimentally 
by Takebe et al. (1989, 1990); the time rate and the geometrical structures which 
appear in the intermediate stages of the separation exhibit a rich phenomenology, 
which is beyond the present thermodynamic approach. In Chap. 7 we will introduce 
the dynamical aspects needed to describe these time-varying phenomena.

Fig. 6.1   Shear-induced shift 
of the coexistence line of 
polymer solutions. Results 
reported by Rangel-Nafaile 
et al. (1984) where the 
dashed line corresponds to 
the equilibrium solution
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Here we have referred to upper critical points, i.e. to the maximum temperature 
below which phase separation is found. Some mixtures present, in contrast, a lower 
critical point: the solution is miscible at low temperatures but it separates at high 
enough temperatures. The effect of shear on the lower critical temperature of a 
polystyrene solution under shear has been explored by Mazich and Carr (1983). 
Here, the flow raises the phase transition temperature of the polymer blend and fa-
vours solubility (see Fig. 6.2). An analogous situation is found in micellar solutions 
(Hamano et al. 1995, 1997).

Still another subject of study concerns the changes in the shear viscosity. Time-
dependent changes of the viscosity under certain conditions were observed and 
attributed to a network formation induced by the flow. The entanglement and dis-
entanglement dynamics would then produce time-dependent changes in the ap-
parent viscosity. Temporary network formation in sheared polymer solutions was 
observed by Peterlin and Turner (1965), Peterlin et al. (1965) and by Matsuo et al. 
(1967).

Barham and Keller (1990) have scrutinized possible different explanations for 
the anomalous flow phenomena observed in solutions. Indeed, appearance of tur-
bidity, or changes in flow rate at constant stress or of shear stress at constant shear 
rate, could be attributed either to some change of phase induced by the flow or to the 
formation of an adsorption entanglement layer. To discriminate both situations, one 
could perform experiments under an oscillatory flow, in which the adsorption layer 
effects could be much reduced with respect to a steady-state experiment, because 
only a small number of macromolecules could pass near the layer. In contrast, the 
shear stress in the bulk would be maintained at a relatively high value. In this way, 
bulk phenomena would not be much affected by rapid oscillations whereas surface 
phenomena would be much reduced. These authors presented a classification of the 
different oscillatory experiments according to the most plausible kind of explana-
tion (phase separation, or adsorption-entanglement layers).

Fig. 6.2   In solutions with 
a lower critical point, a 
shear-induced increase of 
the spinodal temperature 
enhances the solubility. The 
continuous line corresponds 
to the quiescent solution and 
the dashed one to the solution 
under shear. (From Mazich 
and Carr 1983)
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6.2  �Equilibrium Chemical Potential and Stability Analysis

In this Section we briefly recall the essential ideas about thermodynamic stability 
applied to a quiescent polymer solution. The usual definition of the chemical poten-
tial i of component i in equilibrium thermodynamics is

� (6.1)

where G is the Gibbs free energy and ni the number of moles of the species i.
The equilibrium Gibbs function for a dilute polymer solution may be expressed 

according to the Flory–Huggins model, whose level of approximation is the same 
as that obtained by a random phase approximation developed in the context of a 
mean-field model applied to a polymer solution. Because a lattice model is inherent 
in the Flory–Huggins theory, the volume of the system is expressed in such a way 
that V = v1�  where the parameter Ω is defined as

� (6.2)

with n1 the number of moles of the solvent, v1  its molar volume, np the number of 
moles of the polymer and m a new parameter (characteristic of the lattice model on 
which the Flory–Huggins approximation is based), which allows one to express the 
volume fraction  as

� (6.3)

At first sight, m may be identified as the polymerization index and its value should 
coincide with the ratio of the molar volumes of the polymer and the solvent, but in 
practice there is not such a coincidence and this leaves open the way to several op-
tions to determine m (Rangel-Nafaile et al. 1984, Krämer-Lucas et al. 1988, Criado-
Sancho et al. 1991, Onuki 1989). The total Gibbs function of the system is given by

� (6.4)

with  the Flory–Huggins interaction parameter, which depends on the tempera-
ture as

� (6.5)

where Θ is the theta temperature (the temperature at which the repulsive excluded 
volume effects balance the attractive forces between the segments, in such a way 
that the polymer has the behaviour of an ideal chain) and  is a parameter which 
does not depend on T.

µi =
(

∂G

∂ni

)

T ,p,nj

,

� = n1 + mnp,

φ = mnp/�.

G

RT
= n1 ln(1 − φ) + np ln φ + χ (1 − φ)�φ,

χ =
1

2
+ �(T −1� − 1),
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From Eqs. (6.1) and (6.4) we can derive the chemical potentials of the solvent, 
1, and of the polymer, p, which are given, respectively, by

� (6.6)

� (6.7)

The limit of stability of the homogeneous solution corresponds to the spinodal line 
in the plane T-, built from the condition (see Sect. 4.1 for a discussion)

� (6.8)

When (∂1/∂) is positive, the homogeneous solution is stable; otherwise, the solu-
tion splits into two phases with different polymer concentrations. The maximum 
of the spinodal line is the critical point, which is specified by the further condition

� (6.9)

From the expression (6.6) and the conditions (6.8), (6.9) one immediately obtains 
that the critical point is defined by the following system of equations

� (6.10a)

� (6.10b)

The first equation describes the spinodal line in a diagram T- (recall that  depends 
on T as (6.5)). The combination of (6.10a) and (6.10b) yields for the coordinates of 
the critical point

� (6.11)

Note that instead of writing directly Tc we have written c, which is related to Tc by 
the definition (6.5), and which comes out in a more direct form from the equations. 
For high molecular mass polymers, m is very high and the critical temperature Tc 
tends towards the theta temperature and the critical volume fraction tends towards 
zero.

µ1

RT
= ln(1 − φ) +

(
1 −

1

m

)
φ + χφ2,

µp

RT
= lnφ + (1 − m)(1 − φ) + χm(1 − φ)2.

(
∂µ1

∂φ

)

T ,p,nj

= 0.

(
∂2µ1

∂φ2

)

T ,p,nj

= 0.

−(1 − φ)−1 + (1 − m−1) + 2χφ = 0,

−(1 − φ)−2 + 2χ = 0.

φc =
1

1 + m1/2
, χc =

1

2
+ �

(
�

Tc
− 1

)
=

1

2

(
1 +

1

m1/2

)2

.
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6.3  �Non-equilibrium Chemical Potential  
and Stability Analysis

As it has been remarked in Chap. 5, the presence of a flow elongates and orients the 
macromolecules in the solution, thus modifying its internal energy and its entropy 
and, consequently its free energy. To incorporate these effects, the expression (6.1) 
can be generalised to non-equilibrium situations by including in G the contribution 
∆G due to the flow. In accordance with this criterion, the chemical potential of com-
ponent j for a flowing system is then defined as

� (6.12)

Note that here we have favoured Pv as the variable to be kept fixed during the dif-
ferentiation; since the pressure p is a natural variable of G in equilibrium, it seems 
tempting to take the total pressure tensor (i.e. both p and Pv) as a natural variable for 
G in non-equilibrium states. However, other independent variables could be used, 
as for instance the configuration tensor, which is especially appealing because of 
its relation with the microstructure of the solution and, therefore, for a microscopic 
understanding of the phenomena. In the next subsection we consider a Legendre 
transform allowing passing from viscous pressure to configuration tensor as inde-
pendent variable.

6.3.1  �The Choice of Non-equilibrium Variables:  
Viscous Pressure or Configuration Tensor

The choice of the non-equilibrium variable kept constant in (6.12) is not completely 
arbitrary. Indeed, recall that in equilibrium i = (∂G/∂ni)T, p, but i ≠ (∂G/∂ni)T, V, i.e. 
given a thermodynamical potential, the quantities to be kept constant during dif-
ferentiation for the definition of the chemical potential or other thermodynamic 
quantities are not arbitrary. However, this point is not yet clear out of equilibrium: 
for instance, Rangel-Nafaile et al. (1984) used (though not directly) a definition at 
constant P v

12,  Wolf (1984) at constant γ̇ ,  and Onuki (1989) at constant configura-
tion tensor W.

To clarify this point, we explore the form of the non-equilibrium free energy 
for a polymer solution, when one takes as a non-equilibrium variable the viscous 
pressure tensor Pv or, alternatively, the macromolecular configuration tensor W, 
defined as

� (6.13)

µj =
(

∂G

∂Nj

)

T ,p,Ni ,P v

=
(

∂(Geq + �G)

∂Nj

)

T ,p,Ni ,P v

.

W =
H

kBT
〈QQ〉 −

1

3
U,
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where Q is the end-to-end vector of the macromolecule (for the sake of simplicity, 
we consider only one normal mode of the macromolecule and a dilute solution), 
H the elastic constant of the springs in the bead-and-spring model of macromol-
ecules, U the unit tensor, and 〈· · · 〉  stands for an average over the macromolecules 
in the unit volume. This tensor, or the closely related tensor 〈QQ〉, may be measured 
through light-scattering techniques. Recall that Pv and W are related, for a dilute 
polymer solution, through the Kramers relation (5.8) or (5.23), namely Pv = −J −1W, 
where J is the steady-state compliance given by J = /, with  and  the relaxation 
time and the viscosity corresponding to the macromolecule.

In equilibrium thermodynamics, several choices of variables may contain the 
whole information on the system, provided that one uses the suitable thermody-
namic potential (Callen 1960): the internal energy U( S, V, N), when S, V and N are 
taken as variables; the Helmholtz free energy F( T, V, N) when T is used as variable 
instead of S; or the Gibbs free energy G( T, p, N), when S and V are replaced by T and 
p. These thermodynamic potentials are connected by Legendre transforms, which 
allow one to pass from one choice of variables to another without losing informa-
tion. However, information is lost if thermodynamic functions are not expressed in 
terms of their natural variables, as for instance S( T, p, N), or F( T, p, N).

Here, we examine a Legendre transform connecting a non-equilibrium Gibbs 
free energy G1( T, p, N, VPv) depending on Pv, and a non-equilibrium Gibbs free 
energy G2( T, p, N, W) depending on W (Casas-Vázquez et al. 2001, 2002). The 
viscous pressure tensor is more macroscopic than the configuration tensor, and is 
especially suited for the description of non-equilibrium steady states, as it directly 
accounts for the effects of the external forces acting on the system, whereas the 
second one is more useful for a microscopic understanding of the problem. Accord-
ing to EIT, the Gibbs equation in non-equilibrium has the form (1.31), which may 
be rewritten as

� (6.14)

where we have used the relation Pv = − J −1W to write explicitly the conjugate of 
VPv. Note that we are using VPv rather than Pv as the variable of U, in order to use 
extensive quantities, as S, V and N. We can thus write for the Gibbs free energy G1 
the expression

� (6.15)

in which S and V have been replaced by T and p as independent variables.
If, instead of VPv, W is preferred as independent variable, the corresponding 

Gibbs free energy G2 should also incorporate the change of VPv by W, analogously 
to the changes introduced in (6.15), namely

� (6.16)

dU = T dS − pdV + µdN −
1

2
JW :d(V Pv)

G1(T , p, N , V Pv) ≡ U −
∂U

∂S
S −

∂U

∂V
V = U − T S + pV ,

G2(N , W) ≡ G1 −
∂U

∂(V Pv)
:V Pv = G1(N , W) +

1

2
W :V Pv,
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where, for the sake of notation’s simplicity, we do not write explicitly the de-
pendence of G1 nor G2 on T and p. The use of the suitable expression for the 
Gibbs free energy is essential to obtain correct results for the chemical potential. 
Indeed, in equilibrium thermodynamics it is well known that  = (∂G/∂N)T, p but 
 ≠ (∂F/∂N)T, p. Similarly, in the presence of a viscous flow the chemical potential 
would be given by

� (6.17)

but, in contrast,

� (6.18)

It follows that both VPv and W can legitimately play the role of independent vari-
ables in the definition of the chemical potential, provided one uses the respective 
correct expression for the free energy. Unfortunately, misunderstandings about the 
definition of  in non-equilibrium situations have been influential in the literature, 
because of lack of due attention to the non-equilibrium variables, and constitute 
a serious difficulty to assess the validity of thermodynamics in non-equilibrium 
steady states.

To illustrate explicitly this discussion, consider, for instance,

� (6.19)

where Geq( N) stands for the local-equilibrium free energy at given T and p. Taking 
into account (6.16), the corresponding expression for the free energy G2 in terms 
of W is

� (6.20)

In contrast, if one writes directly G1 in terms of W, i.e. if one simply expresses VPv 
in terms of W in (6.19), one gets

� (6.21)

Note the different sign in the non-equilibrium term in (6.20) and (6.21), which 
yields therefore opposite predictions for the non-equilibrium contributions.

The corresponding expressions for the chemical potential derived from (6.19) 
and (6.20) will be

� (6.22)

µ =
(

∂G1(N , V Pv)

∂N

)

T ,p,V Pv

=
(

∂G2(N , W)

∂N

)

T ,p,W
,

µ �=
(

∂G1(N , W)

∂N

)

T ,p,W
.

G1(N , V Pv) = Geq(N ) +
1

4
JV Pv :Pv,

G2(N , W) = Geq(N ) −
1

4
J−1W :V W.

G1(N , W) = Geq(N ) +
1

4
J−1V W :W.

µ =
(

∂G1

∂N

)

T ,p,V Pv

= µeq +
1

4

(
∂J

∂N

)

T ,p,V Pv

V Pv :Pv,
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and

� (6.23)

By using the relation Pv = − J −1W, it is easy to see that (6.22) and (6.23) coincide. 
In contrast, these results are different from that obtained by direct differentiation of 
(6.21), namely

� (6.24)

The chemical potential (6.24) is incorrect and the qualitative trends predicted by it 
on the shear-induced shift of the critical temperature are opposite to experimental 
observations.

6.3.2  �Stability Analysis

The stability condition (6.8) is valid in equilibrium but it cannot be taken for granted 
in non-equilibrium steady states. For the latter, a general dynamical stability anal-
ysis must be undertaken, starting from the whole set of balance and constitutive 
equations for the concentration c, the average velocity u, the diffusion flux J, and 
the polymer viscous pressure tensor Pv, namely

� (6.25)

� (6.26)

� (6.27)

� (6.28)

Equations  (6.25) and (6.26) are the mass and momentum balance equations, and 
Eqs. (6.27) and (6.28) have been discussed in Sect. 1.2 (see Eqs. (1.51) and (1.52)). 
In these equations s and p are the solvent and the polymer contributions to the 
viscosity, respectively, Pv

p  is the polymer contribution to the pressure tensor, and D′ 
is related to the diffusion coefficient D through D′ = D(∂µeq /∂ni)

−1
T ,p. Note that in 

(6.27) it appears the chemical potential, for which the non-equilibrium expression 

µ =
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∂G2

∂N

)

T ,p,W
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1

4

(
∂J−1
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)

T ,p,W
V W :W.

(
∂G1(N , W)

∂N

)

T ,p,W
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1
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(
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∂N

)

T ,p,W
V W :W.

∂c

∂t
+ u · ∇c = −∇ · J ,

ρ
∂u
∂t

+ ρu · ∇u = −∇p + ηs∇2u − ∇ · Pv
p,

τ1

(
dJ

dt

)
+ J = −D′∇µ + D′T ∇ · (βPv

p),

τ2

(
dPv

p

dt

)
+ Pv

p = −2ηp(∇u) + 2ηpTβ(∇J ).
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(6.12) should be used instead of the local-equilibrium form because the macromol-
ecules are stretched and oriented by the flow, and this effect is obviously lacking 
in equilibrium. The stability of (6.25–6.28) to perturbations of the concentration 
and the velocity must be studied in detail. This will be done in Chap. 7. Here, we 
restrict our attention to situations where the coupling between J and Pv as expressed 
through the β in (6.27) and (6.28) are absent, in which case it will be shown in 
Chap.  7 that the dynamical stability criterion coincides with the thermodynamic 
criterion (6.8).

6.3.3  �Two-Fluids Model

Another description which has been often used is a two-fluid description in which 
the solute and the solvent are considered as two independent fluids, each one with 
its mass density and velocity A, vA, B, vB, and whose relative velocity vA − vB is 
related to the diffusion flux. This model is more transparent, from a microscopic 
perspective, than the one-fluid model analyzed above. Such a description has been 
used as the starting point of the analysis by Doi and Onuki (1992) (see Sect. 6.6 for 
more detailed discussion). The main result of this approach is the following expres-
sion for the evolution of the volume fraction A of one of the fluids, say, polymer A,

� (6.29)

where v is the volume average velocity, M the mobility tensor, and α a parameter 
coupling the viscous pressure to the diffusion flux, which is given by

� (6.30)

where the parameter α plays a role analogous to −Tβ in Eq. (6.27).
Once the chemical potentials are known in terms of the volume fraction, 

Eqs. (6.29) and (6.30) may be used as a basis for the analysis of the stability of the 
system. In usual analyses, A and B are taken as the local-equilibrium chemical 
potentials of fluids A and B respectively, and the coupling of the diffusion with the 
viscous pressure comes only from the latter term in (6.30). Another possibility is to 
take into account non-equilibrium contributions to the chemical potentials A and 
B, as those analyzed in (6.22) and (6.23), which provide an additional coupling be-
tween diffusion and viscous pressure. As stressed above, it is logical to use the non-
equilibrium form for the chemical potential to take into consideration the stretching 
and orientation of the macromolecules in flow. Though it is evident that this may 
play a crucial role in shear-induced phenomena, it could be argued whether these 
effects are sufficiently well represented by Pv

p , and their inclusion into the chemi-
cal potential is redundant. Two facts illustrate that incorporation of non-equilibrium 
effects in  and Pv

p  is not redundant: in , they are quadratic in Pv
p , whereas in Pv

p  
they are linear; second, ∇ and ∇ ⋅ Pv have usually different directions.

∂φA

∂t
= −∇ · (vφA) + ∇ ·

{
M ·

[
∇(µA − µB) + α∇ · Pv

p

]}
,

J = −M ·
[
∇(µA − µB) + α∇ · Pv

p

]
,
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6.4  �Phase Diagram of Polymer Solutions Under  
Shear Flow

The inclusion of non-equilibrium contributions to the Gibbs free energy and the 
chemical potential leads to modifications in the phase diagram of flowing polymer 
solutions, whose essential phenomenology has been described in Sect. 6.1. Here, 
we address our attention to the shift of the critical point and the spinodal line cor-
responding to the separation of two phases in the polymer solution as described by 
the non-equilibrium chemical potential. In Sect. 6.6 the corresponding analysis will 
be carried out for polymer blends.

Let us now evaluate the flow contribution to the chemical potential. In accor-
dance with (1.37) the flow contribution to the Gibbs function can be written as

� (6.31)

where V is the volume of the system and J the steady-state compliance. Thus, when 
a flowing system is considered, the Gibbs energy function is given by the equilib-
rium contribution (6.4) plus the flow contribution (6.31) as

� (6.32)

where V = v1�  with �  defined by (6.2). Differentiation of (6.32) allows us to 
write for the chemical potentials of the solvent and of the polymer the equations 
homologous to (6.6) and (6.7)

�

(6.33)

�
(6.34)

To have a more compact notation, it is useful to introduce a new variable F de-
fined as

� (6.35)

in terms of which the expressions for the chemical potential take, after consider-
ation of (6.2) and (6.3), the following form

� (6.36)

�G = VJ (P v
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,
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�
(6.37)

From these expressions, we will obtain the flow-induced influence on the spinodal 
line and the critical point. As a generalization of the equilibrium results (6.8) and 
(6.9), and under the conditions mentioned in Sect. 6.3.2, namely coefficient β = 0 in 
(6.27) and (6.28), we assume that the spinodal line satisfies the equation

� (6.38)

and the critical temperature is determined from the additional condition

� (6.39)

Here, Z is a non-equilibrium quantity which depends on the physical conditions 
to which the system is submitted, in contrast with the differentiation in (6.12) de-
fining the chemical potential, where P v

12  must be kept constant. We consider here 
two different situations, by keeping constant either γ̇  or P v

12  during the differ-
entiation of the chemical potential in (6.38) and (6.39). These two situations are 
not mere formal choices, but they correspond to different physical situations; for 
instance, if the viscosity depends on the concentration, namely P v

12 = −η(c)γ̇ ,
to keep P v

12  constant when the concentration fluctuates, γ̇  must be changed ac-
cordingly and, reciprocally, P v

12  must be changed if one wants to keep γ̇  con-
stant under fluctuations of the concentration. In a flow along a tube, these situ-
ations would be related to keep a constant pressure head or a constant flow rate, 
respectively.

Conditions (6.38), (6.39) are like (6.8) and (6.9), but with the non-equilibrium 
chemical potential instead of the local-equilibrium chemical potential. As we have 
emphasized above, the range of applicability of condition (6.38) will be justified 
by dynamical analysis in Sect. 7.1, where it is shown that (6.38) is valid in non-
equilibrium states where P v

yy =0 , as in upper-convected Maxwell fluids in Couette 
flow, but it must be generalised otherwise.

6.4.1  �Dilute and Semidilute Polymer Solutions

The differences in the several kinds of materials are reflected in the different expres-
sions for the steady-state compliance J( c) which have been analysed in Chap. 5. We 
begin our analysis with dilute and semidilute solutions as described respectively 
by the Rouse and Zimm models of Sects. 5.1 and 5.2. When we take into account 
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+
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expression (5.46) for J( c) and (6.31) for ∆G we may write the non-equilibrium 
contribution to G as

� (6.40)

where C is the Rouse–Zimm parameter introduced in (5.42), B a parameter defined 
as B = v1M2[η]/R2 , and �(c̃)  is a function of the reduced concentration given by 
(5.47). Furthermore, we take for C(c̃)  the expression proposed in (5.48) to describe 
the transition from the Rouse to the Zimm model with increasing concentration.

The explicit expression for the non-equilibrium contribution to the chemical 
potential is

� (6.41)

where C′ stands for the derivative of the Rouse–Zimm parameter in (5.48) with 
respect to c̃ and where we have introduced the auxiliary functions

�
(6.42a)

� (6.42b)

with kH the Huggins constant defined in (5.44).
The stability criterion (6.38) yields the following expression for the spinodal line

� (6.43)

The explicit expression of the equilibrium term is given by

� (6.44)

with  a constant defined as ϕ = v2/M2[η] , being v2  the polymer molar volume. 
For the corresponding derivatives of the non-equilibrium contribution to (6.43) at 
constant shear pressure and constant shear rate one obtains, respectively
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�

(6.45b)

In the latter expressions P ′
n

 stand for the derivatives of Pn with respect to c̃ , and 
C′ and C′′ the two first derivatives of the parameter C (5.48) with respect to c̃ . We 
have written the cumbersome expressions (6.45a, b) only to show explicitly that the 
stability conditions at constant P v

12  or constant γ̇  will be in general different from 
each other.

The results for the spinodal line at constant γ̇  for the Rouse–Zimm model are 
given in Fig. 6.3. The spinodal line is shifted again to higher temperatures but there 
is a difference between this behaviour and the shift at constant P v

12 . In the latter, 
the shift is higher for lower values of concentration, whereas at constant shear rate 
the shift is higher at higher values of concentration. Accordingly, at constant P v

12  
the value of the critical concentration is lowered, but it shows an opposite trend at 
constant γ̇ . The role of the hydrodyamic interactions is more relevant in the shift of 
the critical temperature Tc than in the shift of the critical concentration.

The results at constant P v
12 , in Fig. 6.4, show a shift of the spinodal line towards 

higher temperatures and, consequently, an increase in the critical temperature. This 
means that a shear flow will enhance demixing in systems which, at rest, would 
be totally mixed. An interesting point in the Fig. 6.4 is the role of hydrodynamic 
effects. It is seen that when these effects are neglected, as in the Rouse model, the 
shift in the critical point is maximum, and it is minimum in the Zimm model, where 
hydrodynamic interactions play a relevant role. Our model also shows that the role 
of hydrodynamic interactions is more relevant in the shift (increase) of the critical 
temperature T than in the shift (decrease) of the critical concentration.

∂

∂c̃

( µ1

RT

)

γ̇
= −

2BCη2
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Fig. 6.3   Spinodal curve of a 
Rouse–Zimm binary solution 
at equilibrium ( dashed line) 
and in a non-equilibrium 
steady state at constant  
shear rate γ̇ = 1500s−1  
( continuous line) for poly-
styrene (520 kg mol–1) in 
transdecalin. (Criado-Sancho 
et al. 1995)
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6.4.2  �Entangled Solutions

To describe concentrated solutions where the different macromolecules become en-
tangled with each other, we use the reptation model. The corresponding expression 
for the steady state compliance, as derived in (5.65), may be written as

� (6.46)

with M∗ = M0
e [ρ(φ)/ρ0

p ]  and v1  the molar volume of the solvent. The appear-
ance of Me namely, the average molecular mass between neighbouring entangle-
ment points, in (5.67) instead of M, the full molecular mass, modifies the scaling 
laws of J in terms of c with respect to that of dilute solutions, since Me depends on 
the concentration: it becomes smaller when c increases because the average length 
between successive entanglements is shorter for higher concentrations; the depen-
dence may be written as Me(φ) = M0

e [ρ(φ)/ρ0
p]φ−2 , where M0

e  is the value of Me 
for the melt of the pure polymer, ρ0

p  the mass density of the pure melt and ( ) the 
density of the solution with polymer volume fraction .

In the entangled regime, Eq. (6.40) together with (6.46) yields

� (6.47)

J =
2M∗

RT

(
M[η]

mv1

)2

[η]c̃−3,

�G(s)

RT
=

2B∗

T 2
(P v

12)2

(
M[η]

mv1

)
�c̃−3,

Fig. 6.4   Spinodal curve of the binary solution at equilibrium (the dashed line corresponds 
to Flory–Huggins) and in a non-equilibrium steady state at constant shear viscous pressure 
P v

12 = 150Nm−2.  In the figure are shown the lines corresponding to the Rouse model (without 
hydrodynamic interactions), the Zimm model (which takes into account hydrodynamic interac-
tions) and two intermediate models for the values α = 0.5 and α = 1.5 in expression (5.48) for 
polystyrene (520 kg mol–1) in transdecalin. (Criado-Sancho et al. 1995)
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and the non-equilibrium contribution to chemical potential is given by

� (6.48)

where the new parameter B∗ = v1M
∗[η]/R2  is introduced.

As in the previous section, we study stability by keeping constant either γ̇  or P v
12  

during the experiment. The thermodynamic criterion for the stability limit (6.38) 
yields the spinodal line. The explicit expression of the derivative of the equilibrium 
contribution is (6.44). The corresponding derivative of the non-equilibrium contri-
bution (6.48) at constant viscous pressure is

� (6.49)

Since the non-equilibrium contribution (6.49) is negative, it favours stability of the 
solution and therefore the spinodal curve is shifted to lower values of the tem-
perature in contrast with the behaviour obtained for dilute solutions in Fig. 6.4. The 
results are explicitly shown in Fig. 6.5. To obtain them, we consider a solution of 
polystyrene of molecular mass 520 kg mol−1 in transdecalin taking for the param-
eters the same values used in Criado-Sancho et al. (1995), and we have taken for 
M* the estimative values 2.6 × 10−3 kg mol−1 and 5.2 × 10−3 kg mol−1 (Criado-Sancho 
et al. 2002).The shift is higher for the higher value of M*.

To study the situation at constant shear rate, we need to express the viscous 
pressure in (6.48) in terms of the shear rate. Considering the non-truncated Martin 
formula for the shear viscosity in terms of the reduced concentration c̃ , defined as 
c̃ = [η]c

� (6.50)

1

RT
(µ1)ent =

8B∗

T 2
(P v

12)2

(
M[η]

mv1

)
c̃−3v,

[
∂

∂c̃

(
(µ1)ent

RT

)]

P v
12

= −
24B∗

T 2
(P v

12)2

(
M[η]

mv1

)2

c̃−4.

η

ηs

= 1 + c̃ exp (kHc̃),

Fig. 6.5   Shear-induced 
shift of the spinodal line 
at constant P v

12  for an 
entangled polymer solution 
of polystyrene (520 kg mol–1) 
in transdecalin for two differ-
ent values of the parameter 
M*, indicated in this figure. 
The upper dotted curve cor-
responds to the equilibrium 
spinodal line. (Criado-Sancho 
et al. 2002)
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Eq. (6.48) takes the form

� (6.51)

where the constant D is given by

� (6.52)

The derivative of (6.51) with respect to the concentration at constant shear rate 
yields

�

(6.53)

In this case, the sign of (6.53), determining increase or decrease of the stability 
region, depends on the concentration. The value of the concentration at which there 
is a crossover from a shift to lower stability to a shift to higher stability depends 
only on the value of the Huggins constant kH. The modifications in spinodal line are 
plotted in Fig. 6.6 (Criado-Sancho et al. 2002).

For the reptation model at constant shear rate and for low concentrations, the 
spinodal line is shifted to lower temperature whereas for high concentrations (where 
the reptation model is more realistic and useful), the shift is towards higher tem-
perature, i.e. it produces demixing. Thus, the different characteristics of dilute, 
semi-dilute or entangled polymer solutions are reflected, through the steady-state 
compliance and the viscous pressure, in different behaviours in shear flows; these 
behaviours depend, furthermore, on the physical constraints, namely fixed shear 
rate or fixed viscous pressure, acting on the system.

1

RT
µ1,ent = Dγ̇ 2[1 + c̃ exp (kHc̃)]2c̃−3,

D =
4B∗Crepη

2
0

T 2

(
M[η]

mv1

)2

.

[
∂

∂c̃

(µ1,ent

RT

)]

γ̇

= −Dγ̇ 2

× [3 + 2(2 − kHc̃)c̃ exp (kHc̃) + (1 − 2kHc̃)c̃2 exp (2kHc̃)]c̃−4.

Fig. 6.6   Shear-induced 
shift of the spinodal line 
at constant of the spinodal 
line at constant γ̇  for an 
entangled polymer solution 
of polystyrene (520 kg mol–1) 
in transdecalin, the upper 
dotted curve corresponds to 
the equilibrium spinodal line. 
(Criado-Sancho et al. 2002)
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6.5  �A Practical Illustration: Flow Effects in Polymer 
Extraction from a Porous Matrix

As a practical illustration of the former results, we consider polymer extraction from 
a porous matrix, which is a problem of much practical interest as, for instance, in 
oil extraction or pollutant extraction from a soil, or in chromatographic techniques, 
which have received a big impulse from microfluidics. The thermodynamic force 
driving the polymer from the porous medium to the fluid along a channel drilled in 
the matrix is the free energy difference between the polymer in the pores and in the 
fluid (the situation is sketched in Fig. 6.7).

The entropy of the polymer is much higher in the bulk fluid than in the channels 
of the porous medium, because a much higher number of microscopic configura-
tions is accessible for it in the absence of walls. This will produce an entropic force 
tending to pull the macromolecule out of the pores towards the bulk fluid. Usually, 
it is assumed that the motion of the bulk fluid does not contribute to the free energy 
of the polymer, but in fact if the fluid is in motion, the polymer will be elongated 
and oriented by the flow, thus increasing its internal energy and reducing its entropy 
with respect to its corresponding value in the fluid at rest. In this way, the tendency 
of the polymer to go from the pores to the bulk fluid will be less than predicted by 
the local equilibrium theory. The flow contribution to the free energy of the polymer 
in the fluid and, consequently, on the thermodynamic force driving the transport of 
the polymer from the porous matrix to the fluid is given by (6.31) and it may be 
relevant in the practice, as it has been seen in the previous section.

Here, to be simple and specific, we consider a cylindrical channel of radius R0 
and length L along the z-axis inside a porous matrix of infinite extension in the x − y 
directions. We study the influence of the flow contribution to the chemical potential 
on the mass of polymer extracted from the matrix per unit time, which is given by

� (6.54)dw

dt
≡

mass of polymer extracted

time
= c(L)Q,

Fig. 6.7   Sketch of the 
situation considered in this 
section. Polymers embed-
ded in the porous region are 
extracted by means of a suit-
able solvent flowing along a 
cylindrical tube drilled in it

Region 1
x

z

Region 2

L1
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Flow
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L
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where Q is the flow rate along the channel and c( L) the concentration of the poly-
mer in the outgoing solution. To obtain c( L) one needs to know the profile c( z) 
of the average polymer concentration along the tube. The equation governing the 
longitudinal concentration profile is the mass conservation equation complemented 
with an equation for the rate Jp of polymer transfer per unit area between the porous 
medium and the flowing fluid, given by

� (6.55)

where 1( T, c1) stands for the chemical potential of the polymer in the porous 
matrix, c1 being an effective concentration of polymer in the porous matrix, and 
µ(T , c, P v

rz)  the chemical potential of the polymer in the flowing fluid, P v
rz

 the vis-
cous pressure acting on the fluid, and α a phenomenological coefficient related, for 
instance, to the size of pores arriving to the unit area of the walls of the channel.

We take into consideration the flow contribution to the chemical potential, as in 
Sect. 6.4. When (6.55) is combined with the mass conservation equation, one gets 
for the transfer of polymer per unit time and unit length of the channel

� (6.56)

To obtain this expression we have equated the polymer inflow across the lateral 
walls of the tube, 2R0Jpdz, to the increase in the axial flow of polymer along the 
tube between z and z  +  dz, namely c( z  +  dz)Q  −  c( z)Q  ≈  (dc/dz)Qdz. Using the 
auxiliary quantities z̃ = z/L, c̃ = [η]c, Q0 = Q/R3

0, w̃ = [η]w/R3
0  with [] the in-

trinsic viscosity (see (5.45)), Eq. (6.56) can be written in a compact form as

� (6.57)

being  and α0 the new coefficients  = L/R0, α0 = (2[]RTα)/R0, and R the gas con-
stant. In this notation, Eq. (6.54) takes the form dw̃/dt = c̃(1)Q0.  As for the flow 
contribution to the chemical potential we use (6.39) with the transversal average 
〈Pv : Pv〉 approximated by

� (6.58)

This average corresponds to the parabolic velocity profile in Poiseuille flow. Note 
however that we assume that the viscosity of the solution will be in principle a func-
tion of the polymer concentration η(c̃),  which is a realistic assumption.

When Pv does not influence the chemical potential, Eq. (6.57) simplifies to

� (6.59)

where α0
0 = (α0/RT )(∂µFH/∂c̃)c̃1. After integration of (6.59) one finds for the re-

duced concentration profile

Jp = α
[
µ1(T , c1) − µ(T , c, P ν

rz)
]

,

Q
dc

dz
= 2πR0α

{
µ1(c1) − µ

[
c(z), P v

rz

]}
.

dc̃

dz̃
=

λα0

Q0

[
µFH(c̃1, χ1)

RT
−

µFH(c̃, χ )

RT
−

µflow(c̃, P v
rz)

RT

]
,

〈Pv : Pv〉 =
16Q2

0

π2
η2(c̃).

dc̃

dz̃
=

λα0
0

Q0
(c̃1 − c̃),
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�
(6.60)

Introducing it into Eq. (6.54) for the rate of polymer extraction yields

� (6.61)

Thus, the extraction will be small either for very low or very high dimensionless 
flow rate Q0, and will be an intermediate optimum flow rate of the extracting sol-
vent. This is to be expected, because for low flow rates the outgoing fluid has a 
relatively high polymer concentration, but only a small amount of fluid goes out 
per unit time. In contrast, at high values of the flow rate, the amount of outgoing 
fluid per unit time is high but the polymer concentration is very low, as the fluid 
has not been a long time enough inside the porous matrix to absorb the polymer. 
Furthermore, low  (short channel) or low α0 (low transport coefficient) will imply 
low extraction rates, as it is logical.

In Figs. 6.8 and 6.9 we compare the results obtained from the local-equilibrium 
Eq. (6.59) with those from (6.57), incorporating the flow contribution to the chemi-
cal potential, for polystyrene in transdecalin (Criado-Sancho et al. 2005). Of course, 
the analysis would be of higher practical interest if oil was considered, but we do 
not know, at present, the necessary parameters.

In Fig. 6.8 the longitudinal concentration profile along the tube is plotted. Solid 
lines refer to the results of the full Eq. (6.57), incorporating the effects of the non-
equilibrium chemical potential as described by (6.31). Dashed lines correspond to 
the simple exponential profile (6.60), where such effects are ignored. The lines cor-
respond to α0 = 10 (corresponding to a long tube or a high exchange coefficient). 
The gross features of the profiles, obtained for three different values of Q0 ≡ Q/R3, 

c̃ = c̃1

[
1 − exp

(
−

λα0
0

Q0
z̃

)]
.

dw̃

dt
= Q0c̃1

[
1 − exp

(
−

λα0
0

Q0

)]
.

6.5 A Practical Illustration: Flow Effects in Polymer Extraction from a Porous Matrix

Fig. 6.8   Reduced concentra-
tion profile along the tube for 
α0 = 10 for several values 
of the reduced flow rate. 
The dashed line corresponds 
to the classical approxima-
tion, in which the flow 
contributions to the chemical 
potential of the polymer are 
neglected, whereas the solid 
line takes them into account. 
(Criado-Sancho et al. 2005)
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are as expected: of course, they increase with z and, for a given z, they decrease 
with the flow rate. The flow contribution to the chemical potential of the polymer 
is mainly reflected in the comparison of the full lines and dashed lines. It is seen 
that the concentration in the tube is lower when the flow contribution is included, 
because in this case the thermodynamic force driving the polymer from the soil to 
the tube, namely, the difference of the chemical potentials in the porous matrix and 
the flowing fluid will be less than in local-equilibrium model.

Concerning the rate of extraction dw̃ /dt  as a function of the reduced flow rate 
Q0, it is plotted in Fig. 6.9 for different values of the coefficient α0. Solid lines 
refer to the full situation and dashed lines to the classical one. It is seen that the 
non-equilibrium effects lower the extraction rate, in 12 and 10% approximately for 
α0 = 10 (longer tubes) and α0 = 5 (shorter tubes) respectively. The fact that the 
flow effects are more important for high values of α0 is easy to understand from a 
qualitative point of view. Indeed, high values of , for given values of Q0 and of the 
tube length L, correspond to narrow channels, where the velocity gradients will be 
higher for a given flow rate, and so will be non-equilibrium effects. This is also the 
case of parameter α0, which is inversely proportional to the radius of the channel. 
For more details, the reader is referred to Criado-Sancho et al. (2005).

6.6  �Flow-Induced Effects in Polymer Blends: Two-Fluid 
Approach and Extended Approach

Shear-flow effects on phase separation of polymer blends where two kinds of macro-
molecules, A and B, are mixed and entangled with each other have some peculiar 
aspects which are not found in usual solutions discussed in Sect. 6.4. Whereas in a 

Fig. 6.9   Polymer extrac-
tion rate (in reduced 
units) as a function of 
the reduced flow rate of 
the fluid, for α0 = 5 and 
α0 = 10. The dashed 
line corresponds to the 
classical approximation 
whereas the solid line 
incorporates the flow con-
tributions to the chemical 
potential (Criado-Sancho 
et al. 2005). The latter 
imply a considerable 
reduction of the polymer 
extraction
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polymer solution in a small molecular solvent there is only one relevant relaxation 
time, corresponding to macromolecules, in polymer blends there are two different 
relevant relaxation times, with corresponding viscoelastic effects, and characteristic 
viscosities. Thus, some new effects not found in polymer solutions appear in blends; 
for instance, both shear-induced mixing and demixing may be found, depending on 
the relative relaxation times and viscosities of the two components.

6.6.1  �Two-Fluid Approach

In this section we compare the two-fluid approach and the EIT approach to illustrate 
the main differences between both. Clarke and McLeish (1998) and Clarke (1999) 
used a two-fluid description of polymer blends proposed by Doi and Onuki (1992). 
This model, briefly introduced in Sect. 6.3.3, starts from the force balance equations 
for the two components A and B, which are

� (6.62a)

� (6.62b)

where νA and νB are the velocities of both components, i their respective friction 
coefficients, defined as ςi = φi(Ni/Nei)ς0 , with Ni the total number of monomers 
of chain i, Nei the average number of monomers between successive entanglements, 
i the volume fraction, and ς0  the friction coefficient of a single monomer, which 
for the sake of simplicity is assumed to be equal for both species. The coefficient 
ς is defined by ς = ςAςB(ςA + ςB)−1 . The first term in (6.62a, b) is the frictional 
force, which is balanced by the osmotic pressure term ∇A, the pressure gradient 
∇p, and the viscous effect ∇ · Pv

p , with Pv
p  the polymer contribution to the viscous 

pressure tensor. Note that inertial effects implying acceleration of the components 
have been neglected.

Eliminating ∇p from (6.62a) and (6.62b), expression (6.62a) can be written as

� (6.63)

where the coefficient α is given by

� (6.64)

The sign of α depends on  NA and  NB; in particular, α > 0 for N′A ≡ NA/NAi > NB/NBi ≡ N′B. 
This possible difference in the sign will be the key factor in the difference of behav-
iour in blends with N′A > N′B or N′A < N′B. Instead, for a dilute solution, component B 

ς (vA − vB) + φA∇µA + φA∇p +
ςA

ςA + ςB
∇ · Pv

p = 0,

ς (vB − vA) + φB∇µB + φB∇p +
ςB

ςA + ςB
∇ · Pv

p = 0,

ς (vA − vB) = φAφB
[
−∇(µA − µB) − α∇ · Pv

p

]
,

α =
(

ςA

φA
−

ςB

φB

)
1

ςA + ςB
.
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could be identified as the Newtonian solvent, with N′B = 1 �  N′A. Here, A is taken 
as the component with longest relaxation time.

Equation (6.63) may be combined with the continuity equation for constituent A

� (6.65)

This leads finally to

� (6.66)

where ν is the volume average velocity defined as v  = AvA +  BvB and the mobility 
tensor M = (φ2

Aφ2
B /ς )U. This is the equation introduced in (6.29). In the analysis 

by Clarke and McLeish (1998), the coupling term α∇ · Pv
p  plays an essential role in 

the shift of the spinodal line, whereas A and B are the local-equilibrium chemical 
potentials of polymers A and B respectively.

For the shear and normal viscous stresses of polymer blends, it is usual to take 
the “quadratic mixing rule” expressions (5.70) and (5.71), derived from the double 
reptation model, which exhibit the influence of two different relaxation times A and 
B, and two different plateau moduli GA and GB, namely

�
(6.67)

�

(6.68)

where X( A) and Y( A) are polynomials in A defined to have compact expres-
sions in (6.67) and (6.68). The two relaxational features are mixed in a way de-
pending on the respective volume fractions. Some alternative mixing rules have 
been proposed, but the quadratic mixing in (6.67) and (6.68) is up to now the 
one with a clearest theoretical background. For a polymer solution in a Newto-
nian solvent B  =  0 and (6.67) and (6.68) reduce to P v

12,p = −γ̇ GAτA = −γ̇ ηA , 
N1 = −2γ̇ 2ηAτA, which are the expressions found in Chap.  5 for upper-con-
vected Maxwell model. The diagonal components of the pressure tensor are as-
sumed by Clarke and McLeish to be P v

11,p = − 2
3N1  and P v

22,p = P v
33,p = 1

3N1,
so that TrPv

p = 0 .
One may define an effective diffusion coefficient Deff by rewriting the perturbed 

form of (6.66) as

� (6.69)

∂φA

∂t
= −∇ · (vAφA).

∂φA

∂t
= −∇ · (vφA) + ∇ ·

{
M ·

[
∇(µA − µB) + α∇ · Pv

p

]}
,

P v
12,p = −γ̇

[
φ2

AGAτA + 4φAφB(GAGB)1/2 τAτB

τA + τB
+ φ2

BGBτB

]

≡ −GAτAγ̇ Y (φA),

N1 = P v
12 − P v

22 = −2γ̇ 2

[

φ2
AGAτ 2

A + 8φAφB(GAGB)1/2

(
τAτB

τA + τB

)2

+ φ2
BGBτ 2

B

]

≡ −2GA(τAγ̇ )2X(φA),

∂δφA

∂t
= −Deffq

2δφA,
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where q is the wavevector and A the perturbation in the volume fraction of poly-
mer A. For wavevectors in the z direction (when the velocity is in the x direction and 
the velocity gradient in the y direction), the effective diffusion coefficient is

� (6.70)

where  is the Flory–Huggins interaction parameter given in Eq. (6.5), c its value 
on the quiescent spinodal (6.11) and  the interfacial energy between both phases, 
and �χc(γ̇ , qz)  describes the γ̇  dependent shift in the spinodal line. The spinodal 
line indicating the onset of instability of the homogeneous phase is given by the 
condition Deff = 0. Indeed, for positive values of the effective diffusion coefficient, 
inhomogeneities will tend to disappear according to (6.69), whereas a negative value 
of Deff will enhance inhomogeneities. In Clarke and McLeish (1998), �χc(γ̇ , qz),  
describing the shift in the spinodal line is found to be

� (6.71)

In the y direction, the shift of the spinodal line is given by

� (6.72)

X′ and Y′ being the derivatives of the functions X( A) and Y( A) defined in (6.67) 
and (6.68). When ∆c < 0 , there is shear-induced demixing, i.e. phase separation is 
enhanced by the flow, whereas ∆c > 0 corresponds to shear-induced mixing, which 
contributes to the stability of the one-phase system. The sign of ∆c will depend 
on the sign of α, which depends on whether N′A > N′B (with α > 0) or N′A < N′B(with 
α < 0). Thus, when N′A > N′B shear flow will contribute to stability, and N′A < N′B  to 
instability, leading to constituent separation. According to this model, for polymer 
solutions in a Newtonian solvent one has ′ = 0 and ∆c > 0, leading to increased 
stability, i.e. to a shift of the spinodal line towards lower temperatures.

6.6.2  �Extended Approach

Note that in (6.71), (6.72) ∆c comes exclusively from the coupling between the vis-
cous stress and the diffusion flux, namely, from the last term in (6.66), whereas the 
chemical potentials A and B are assumed to retain their local-equilibrium form. 
Another possibility is to consider that non-equilibrium chemical potentials include 
the flow contributions (6.31) and taking an upper-convected Maxwell model, for 
which P v

11,p = −N1, P v
22,p = P v

33,p = 0, in contrast with the model by Clarke and 

Deff = 2M
[
χc − χ + κq2

z + �χc(γ̇ , qz)
]

,

�χc(qz) =
2α

3kBT
(γ̇ τA)2GAX′.

�χc(γ̇ , qy) =
2α

3kBT
(γ̇ τA)2GA

(
1

2
X′ −

XY ′

Y

)
,
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McLeish. From (6.31), (6.67) and (6.68) one may derive the non-equilibrium con-
tributions to the chemical potentials as

� (6.73)

� (6.74)

where Z( A) and W( A) are polynomials in A similar to X( A) and Y( A) whose 
explicit cumbersome expressions is found in (Criado-Sancho et al. 2002a). Accord-
ing to the second term of expression (6.66), these non-equilibrium contributions to 
the A and B contribute to the effective diffusion coefficient as

� (6.75)

The explicit form of the steady state compliance J for polymer blends has been 
obtained in (5.74), and it may be introduced into (6.75).

The corresponding shift in the z and y directions are

�

(6.76)

�
(6.77)

with Z′, W′ and Y′ standing for the derivatives of Z( A), W( A) and Y( A) intro-
duced in (6.72) and (6.73). As in the Clarke and McLeish model, one is led to the 
conclusion that in the presence of the flow one should consider an effective diffu-
sion coefficient of the form Deff = D − a(γ̇ τA)2, with a a coefficient different in 
both models, but leading to similar qualitative results.

The results are plotted in Fig.  6.10. In the y direction (Pv constant) both the 
Clarke and McLeish (CML) model and the EIT model predict an increase of the 
critical temperature of the same order, but opposite trends for the shift of the criti-
cal concentration, positive in the former model and negative in the latter one. In 
the z direction (γ̇ constant),  EIT predicts a shear-induced increase in the critical 
temperature whereas the CML predicts a decrease. Detailed experimental analyses 
are still lacking.

Furthermore, it is interesting to see that constant viscous pressure and constant 
shear rate conditions may coexist in the same problem. In the direction y, the direc-
tion of the velocity gradient, shear rate must be constant (in the plane Couette flow). 

�µA = v0NAGA(τAγ̇ )2 Z(φA) + W (φA)

Y (φA)
,

�µB = v0NAGA(τAγ̇ )2 Z(φA)

Y (φA)
,

(�Deff )this work = M
∂

∂φA

[
∂(VJ )

∂NA
−

∂(VJ )

∂NB

]
(P v

12)2.

�χc(γ̇ , qy) =
v0NA

2kBT
GA(τAγ̇ )2

× [−3WY ′ + YW ′ + (1 − λ)(−3ZY ′ + YZ′)]Y−2,

�χc(γ̇ , qz) =
v0NA

2kBT
GA(τAγ̇ )2

× [−WY ′ + YW ′ + (1 − λ)(−ZY ′ + YZ′)]Y−2,
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Instead, along the z direction, orthogonal to the velocity and the velocity gradient, 
the shear pressure is constant. Thus, the shear flow may induce separation in the y 
direction and suppress it in the z direction.

A two-fluid model analogous to (6.65), (6.66) has also been used by Yuan and 
Jupp (2002), Jupp et al. (2003), Jupp and Yuan (2004), Ouyang et al. (2004) to study 
the formation of concentration bands and mechanical shear bands in complex fluids, 
a topic which will be discussed in Chap. 8. In particular, they find that dynamic 
asymmetry between components A and B can have a strong influence in the dynam-
ics of the phase transition and can produce a diversity of intermediate morphologies 
during the separation processes.

6.7  �Non-Newtonian Effects in Phase Separation

In the Sects. 6.4–6.6, we have assumed that the steady-state compliance J is a func-
tion of the volume fraction  (or the concentration c). Here, we briefly introduce 
the more general situation in which J depends also on P v

12  as it may be expected in 
non-Newtonian fluids, where the viscosity depends on the shear rate. We suppose 
that the expression for the non-equilibrium entropy is still given by (6.31) but with 
J (φ, P v

12)  instead of J( ), and explore the phase diagram of dioctyl-phthalate and 
polystyrene by taking into account this dependence.

The spinodal curve is given by the condition (6.38), i.e.

�

(6.78)

(
∂(µ1/RT )

∂φ

)

P v
12

= −
1

1 − φ
+

(
1 −

1

m

)
+ 2χφ

+
v1

(
P v

12

)2

RT
J

[
F (1 − F )

φ
− F ′

]
= 0,

Fig. 6.10   Spinodal lines for polymer blends at constant Pv ( left). Spinodal lines for polymer 
blends at γ̇  constant ( right) (Criado-Sancho et  al. (2002)). The dotted line corresponds to the 
equilibrium spinodal. The continuous line corresponds to the EIT model, and the dashed one to the 
Clarke-McLeish model
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where F′ denotes the derivative of F with respect to  defined in (6.35). On the 
other hand, the composition of the coexisting phases is given by the so-called coex-
istence line, given from the condition set by the equality of the chemical potentials, 
namely

� (6.79)

where 1 and p correspond to the expressions (6.24) and (6.25), respectively, and 
are represented in Fig. 6.11.

In Fig.  6.12, the coexistence and spinodal curves of polystyrene in dioctyl-
phthalate are plotted for several values of the applied shear stress P v

12.  Both curves 
have a common critical point. It is convenient to note that the composition of the 
phases coexisting in the steady state is simpler to obtain than that corresponding to 
the limits of stability indicated by the spinodal lines.

µ1(φ(α)) = µ1(φ(β)), µp(φ(α)) = µp(φ(β))

Fig. 6.11   Chemical potential 
of the solvent (subindex 1) 
and solute (subindex 2) for a 
solution of dioctyl-phthalate 
and polystyrene as a func-
tion of the volume fraction 
 at P v

12 = 200Nm−2  and 
T = 286 K. The dashed line 
corresponds to the equi-
librium situation. (Criado-
Sancho et al. 1994)

0.01

–20

–10

� 1
 /R

T
.1

06

�
2 

/R
T

.1
0–3

0

(1)

(1)

(p)

(p)

0.02 0.03 0.04 0.05 0.06
–1.726

–1.724

–1.722

�

Fig. 6.12   The coexistence 
( continuous lines) and 
spinodal curves ( dashed 
lines) in the diagram T- 
for polystyrene in dioctyl-
phthalate calculated for the 
Flory–Huggins model (FH) 
and for several values of the 
applied shear stress pv

12.  
(Criado-Sancho et al. 1998)

295

290

T
 (

K
)

285

280
0 0.02 0.04 0.06 0.08

200

400

FH

�

                  

                  

6 Non-equilibrium Chemical Potential and Shear-Induced Effects



151

In Table 6.1 are listed the values of the shift of the critical temperature for three 
different values of the shear viscous pressure, and they are compared with the 
corresponding experimental results. It is seen that the predicted values are system-
atically lower than the observed ones. As will be discussed in Chap. 7, this differ-
ence is due to the effects of shear-enhanced density fluctuations, which contribute to 
the turbidity of the flowing mixtures in the experimental observations.

6.8  �Other Approaches: Flexibility and Droplet 
Approaches

In this last section, we briefly describe two other thermodynamic approaches to 
shear-induced effects, one is based on a model of semi-flexible molecules and the 
other one emphasizes the role of the surface tension of the droplets in the phase 
separation process. In these models, a flow contribution to the free energy is also 
proposed, but interpreted in a different way than we have done in Chap. 5.

6.8.1  �The Flexibility Approach

An alternative thermodynamic approach to the description of phase separation of 
polymer solutions under flow has been undertaken by Vrahopoulou-Gilbert and 
McHugh (1984). These authors start from the idea that, since the frictional forces 
due to the flow cause the macromolecules to uncoil from their quiescent conforma-
tion to a more extended state of lower conformational entropy, this is equivalent 
to introducing a variable degree of rigidity into the polymer coils, because more 
rigid coils have a longer average length than more flexible coils. In this way, the 
thermodynamic properties of the solution become those of a system of semi-flex-
ible chains. This approach (modification of macromolecular rigidity), and the one 
discussed in this monograph (addition of stored free energy), are not completely 
equivalent and they may produce, according to the authors, different phase dia-
grams. Vrahopoulou-Gilbert and McHugh (1984) have criticized that the usual ex-
pressions for the stored free energy were based on solution properties rather than on 
individual polymer molecules, and that no distinction of the stored free energy in 
the different phases was made.

Table 6.1   Experimental and theoretical values of the shift in the critical temperature (K) for a 
solution of polystyrene in dioctyl-phthalate, at different values of P v

12

P v
12  (N m−2) 100 200 400

Experimental 4 14 24
Criado-Sancho et al. (1991) 1.6   3.5   9.2
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The effective flexibility parameter ϑ of a semi-flexible macromolecule stretched 
by a force F has been proposed to be (Vrahopoulou-Gilbert and McHugh 1984, 
1986)

� (6.80)

with F the stretching force of the viscous flow applied to a segment of length l, and 
z and E are respectively the lattice coordination number and the intrinsic segment 
energy in the energetically favoured configuration in absence of the flow.

The relation between ϑ and the mean-square end-to-end separation of the macro-
molecule is

� (6.81)

for a chain having N segments of length l. For complete flexibility ( E = 0, F = 0), 
〈r2〉 = Nzl2/( z − 2). For z = 3 this formula leads to 〈r2〉 = Nb2, with b2 = 3l2, which 
corresponds to the result (5.2) for Gaussian chains.

The Gibbs free energy change per mole associated with the flow is

� (6.82)

It is zero when 1 − ϑ = 1/( z − 1), which corresponds to (6.80) in the absence of flow 
( F = 0). For the construction of thermodynamic diagrams it is important, according 
to this view, to make a distinction between the situation when the flexibility of the 
macromolecules is the same in both phases, or when they are different. In the first 
case, upon equating the chemical potentials in the two phases, the non-equilibrium 
contributions cancel out. When the flexibility ϑ′′ of macromolecules in the con-
centrated phase differs from that in the dilute phase ϑ one obtains changes in the 
binodal curves provided that ϑ  > ϑ′.

6.8.2  �The Droplet Approach

Another description is based on the consideration of the role of the shear flow on 
the droplets constituting one phase inside the other one (Wolf 1980, 1984). The 
underlying idea is that, since near the critical point the surface tension is very low, 
the flow may be very effective in producing smaller and smaller droplets. Homog-
enization of the system in a single phase would be achieved when the dimension 
of the droplets is of the order of the macromolecular gyration radius (Wolf 1980).

Also in the droplet model, the non-equilibrium free energy is needed referred in 
this case to the droplets rather than to macromolecules. Vanoene (1972) takes for 

ϑ =
(z − 2) exp [−(E/kBT ) − (F l/kBT )]

1 + (z − 2) exp [−(E/kBT ) − (F l/kBT )]
,

〈r2〉 = Nϑ−1l2(2 − ϑ),

�Gs

RT
= (N − 2) ln [(1 − ϑ)(z − 1)].
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the flow contribution to the free energy the expression proposed by Janeshitz-Kriegl 
(1969)

� (6.83)

with Pz = Prr = −Pθθ the corresponding components of the total pressure tensor P.
Besides this flow contribution, analogous to that considered in Sect. 6.4, where 

it was assumed that P v
yy = 0 , an additional contribution of the droplets interfacial 

tension under flow γαβ of a droplet of fluid α in a matrix fluid β must be considered. 
This contribution, which has not been included in the previous sections, but which 
should be taken into account in the case that one phase is constituted of small drop-
lets inside the other phase, is given by

� (6.84)

with aα the droplet radius and γ (0)
αβ  the interfacial tension in the absence of flow, and 

N2 the second normal stress coefficient of the corresponding phase.
Following Coleman and Markovitz (1964), Vanoene (1972) uses N2 = −JP 2

rz 
for relatively low shear stress, and takes for J, the steady state compliance,

� (6.85)

with Mw the weight-average molecular weight and Mz and Mz + 1 the so-called z and 
z + 1 averages (see Sect. 10.3 for a discussion of these averages in Eq. (10.30)). This 
is analogous to (5.42) for Rouse model, but with a different expression taking ac-
count that there is not a single macromolecular mass M but a whole distribution. If 
only a single macromolecular mass is present, one gets J  =  0.4M/( RT), which is 
the simple scaling law for J discussed in (5.40). As a final result, Vanoene obtains 
that the criterion for the formation of a droplet of phase α in phase β requires that

� (6.86)

From here it follows that: (1) if phase β does not form droplets in phase α, then 
phase α will form droplets in phase β; (2) since the shear rate does not appear ex-
plicitly in (6.86), it follows that if a particular morphology is observed, it should 
not be influenced by the magnitude of the shear rate except for effects which can be 
attributed to the hydrodynamic stability of a particular mode of dispersion; (3) the 
phase with the largest normal stress function will form droplets. The interfacial ten-
sion may also play a role in the dynamics and the geometrical features of the phase 
separation process, which are not studied in this chapter.

�F =
1

2
( −TrP + 3Pz),

γαβ = γ
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There are many reasons to study dynamical effects instead of limiting ourselves to 
a purely thermodynamic analysis. First, as we have repeatedly stressed, it is impor-
tant to recall that thermodynamic arguments cannot be automatically extrapolated 
to non-equilibrium steady states. Indeed, it is not clear a priori whether the classical 
thermodynamic stability criteria, such as, for instance, those based on the deriva-
tives of the chemical potential with respect to the concentration, may be used or not 
in non-equilibrium steady states. In Sect. 7.1 we provide a dynamical basis to the 
stability criteria (6.38) and (6.39) used in Chap. 6, and analyse their conditions of 
applicability. It turns out that, in some occasions, the stability criteria of classical 
thermodynamics must be modified in presence of the flow.

On the other hand, it has been argued by several authors that the turbidity ob-
served in polymer solutions in some flow conditions may be attributed either to 
density fluctuations of thermodynamical origin or to a purely dynamical enhance-
ment, due to the flow, of density fluctuations. It is not easy to establish how both 
contributions are related. Thus, in Sects. 7.2 and 7.3 a dynamical analysis is carried 
out to study how the enhanced density fluctuations due to the shear flow contribute 
to the dynamical structure factor. This factor is the Fourier transform of the density 
autocorrelation function, and it provides a very useful way to describe the response 
of the solution to the fluctuations, because it is a quantity directly measurable by 
means of light-scattering experiments. It is shown that both thermodynamical and 
purely dynamical effects contribute to the apparent shift of the critical point.

Finally, dynamical descriptions are necessary to study time-dependent features 
of the phase separation, as well as the modifications in transport properties and 
the different structures appearing in the flow during the separation. For instance, 
Tanaka (1996) observed, in deep-quench experiments of polymer solutions, that in 
addition to the usual initial diffusive and final hydrodynamic stages of the classical 
separation process, there is also an intermediate viscoelastic stage, where elastic 
forces have a predominating influence on the domain structure. Although there is 
much experimental and theoretical activity on these topics, they are beyond the 
reach of a strictly thermodynamical analysis and we will not deal with them in this 
monograph, but they may provide very fruitful challenges for future developments 
of the theory.

D. Jou et al., Thermodynamics of Fluids Under Flow, 
DOI 10.1007/978-94-007-0199-1_7, © Springer Science+Business Media B.V. 2011
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7.1  �Dynamical Derivation and Generalization of 
Thermodynamical Stability Criteria

Some authors (Helfand and Fredrickson 1989; Onuki 1990, 1997; Milner 1991) 
have proposed purely dynamical approaches in which the phase separation under 
shear is examined as an instability of stationary solutions to some dynamical equa-
tions. A dynamical approach is not at all incompatible with the thermodynamical 
approach. In fact, the use of equations of state (such as, for instance, that for the 
chemical potential) is unavoidable in dynamical analyses but, in contrast to trans-
port equations, these equations have received insufficient attention, because one 
usually takes for them their local-equilibrium form. Here we will carry out the 
dynamical analysis but with generalised equations of state incorporating the flow 
contribution.

To study in detail the thermodynamical and dynamical approaches we start from 
the Gibbs Eq. (1.42) that includes the effects of diffusion and of viscous pressure, 
and which we rewrite here as

� (7.1)

Recall that c1 is the mass fraction of the solute, µ̃ = µ1 − µ2  the difference be-
tween the specific chemical potentials of the solute and the solvent, J1 the diffusion 
flux of the solute, and Pv the viscous pressure tensor. According to (1.29) the param-
eter α2 is equal to τ2/(2Τ  ) and α1 turns out to be given by τ1/( D′T). The coefficient 
D′ is related to the diffusivity D through D = D′(∂µ̃/∂c1)T ,p,  and τ1 and τ2 are the 
relaxation times of J1 and Pv, respectively.

The corresponding generalised expression for the entropy flux given by (1.43) 
is rewritten as

� (7.2)

where β is a coupling coefficient which will appear in the dynamical equations. As 
shown in Sect. 1.2.2, the dynamical equations for the dissipative fluxes Pv and J1 
are then

� (7.3)

� (7.4)

[see (1.56), (1.57)]. The upper star stands for an objective time derivative such as, 
for instance, the upper-convected time derivative used in (1.8a) or in (1.58), and the 
brackets with an upper s indicate the symmetric part of the corresponding tensor.

For situations where the diffusion effects in (7.1) may be neglected as compared 
with those of Pv (e.g. when the system is subjected to a relatively high shear stress 

ds = T −1du + T −1pdv − T −1µ̃dc1 − vα1J 1 · dJ 1 − vα2Pv : dPv.

J s = T −1q − T −1µ̃J 1 + βPv · J 1,

τ1J
∗
1 + J 1 = −D∇µ̃ + D′T ∇ · (βPv),

τ2(Pv)∗ + Pv = −2η(∇v)s + 2ηTβ(∇J 1)s ,
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but when the diffusion flux is sufficiently low) one has for the non-equilibrium 
chemical potential including the flow contributions

� (7.5)

as it has been discussed in Sect. 6.3.
We will explore here under which conditions the usual thermodynamic stability 

criterion (∂µ̃/∂c1) ≥ 0,  which is valid in equilibrium (see Sect. 4.1), may be used 
with the generalised chemical potential (7.5) to obtain the spinodal line in the pres-
ence of a shear, as we have assumed in Sect. 6.3. Later, we will also include the 
contributions of the diffusion flux to the free energy.

7.1.1  �Situations Without Coupling Between Diffusion and Shear

First, we will assume that β = 0 in (7.3, 4) i.e. absence of coupling between diffusion 
and viscous pressure. In this case, (7.3) reduces in the steady state to

� (7.6)

Note that both µ̃  and D′ may, in principle, depend on γ̇ . The dependence of the 
chemical potential on the shear rate may be obtained from thermodynamic argu-
ments if the steady-state compliance τ/ appearing in α2 of (7.5) is known as it has 
been discussed at length in Chap. 6. In contrast, the dependence of the transport 
coefficient D′ on the shear rate depends entirely on kinetic microscopic arguments 
and the only thermodynamic restriction is that it must be positive to satisfy the 
second law.

If we focus our attention on a situation with homogeneous shear rate, i.e. with 
uniform γ̇ ,  (7.6) can be written as

� (7.7)

where, in order to compare with previous chapters, we have replaced the solute 
mass fraction c1 by the volume fraction . Thus, one may identify an effective dif-
fusion coefficient Deff as

� (7.8)

When Deff becomes negative, the homogeneous state becomes unstable and the sys-
tem separates into two or more phases: the inhomogeneities in the solute concentra-
tion are amplified with time. In Chap. 8 we will deal at length with this point, with ex-
plicit illustrations and paying attention to applications. According to the positiveness 
of entropy production, D′(φ, γ̇ )  is always positive. Thus, for thermodynamically 

µ̃(T , p, c1, Pv) = µ̃(T , p, c1) +
1

2
T

[
∂(vα2)

∂c1

]

T ,p

Pv : Pv,

J 1 = −D′(c1, γ̇ )∇µ̃(c1, γ̇ ).

J 1 = −D′(φ, γ̇ )(∂µ̃/∂φ)T ,γ̇ ∇φ,

Deff = D′(φ, γ̇ )(∂µ̃/∂φ)T ,γ̇ .
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stable states (∂µ̃/∂φ)T ,γ̇ > 0  and Deff > 0, but when (∂µ̃/∂φ)T ,γ̇  becomes nega-
tive, Deff becomes negative. Then, the criterion (∂µ̃/∂φ)T ,γ̇ = 0  yields the separa-
tion between stable and unstable situations, both from the thermodynamical and the 
dynamical points of view.

An example of a generalised chemical potential dependent on the shear rate is 
provided by Nozières and Quemada (1986). They assumed that the diffusion flux is 
modified by the shear and described it as

� (7.9)

with α( n1) a friction coefficient, F a “thermodynamic force” which, for local-equi-
librium systems, is given by F = −∇µ̃eq,  and n1 is the number density of the 
solute. They assumed that fluid flows along the x-direction, and that the velocity 
vx changes along the y-axis, and they generalised F by including a hydrodynamic 
lift force Flift as F lift = 1

2χ (∂γ̇ 2/∂y),  with  a constant coefficient (Nozières and 
Quemada 1986). Then, they write

� (7.10)

If  is a constant, one may introduce it into the derivative and write a generalised 
chemical potential of the form

� (7.11)

so that in this case, the non-equilibrium chemical potential µ̃′  is related to the dif-
fusion flux as

� (7.12)

Introducing this flux in the evolution equations for the concentration n and the ve-
locity vx, it is found

� (7.13)

� (7.14)

In (7.13) is has been assumed that P v
xy = −η(n1)γ̇  and in (7.14) we have used 

(7.12). It follows from a linear stability analysis of (7.13), (7.14) that the homoge-
neous state is unstable when γ̇  is higher than a critical value γ̇c  given by

� (7.15)

J 1 = α(n1)n1F ,

F = −
∂µ̃eq

∂y
−

1

2
χ
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∂y
.
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1

2
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.

ρ
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∂t
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This result coincides with the purely thermodynamical result based on the require-
ment (∂µ̃′/∂n1) = 0  with µ̃′  given by (7.11) and the derivative calculated at con-
stant Pv. Thus, in this model the dynamical and thermodynamical criteria for the 
spinodal line lead to the same result for the limit of stability but on the condition to 
use a generalised non-equilibrium chemical potential dependent on the shear rate.

7.1.2  �Situations with Coupling Between Diffusion and Shear

Assume now that the coefficient β in (7.3) is different from zero (Casas-Vázquez 
et al. 1993). The last term in (7.3) may be interpreted as the viscous reaction to the 
differential swelling produced by the change of composition of the mixture due to 
the diffusion. In a steady state and in a shear flow with a velocity distribution vx( y), 
(7.3) for the component of the diffusion flux along the shear direction, Jy, reduces to

� (7.16)

where we have taken into account that the quantities appearing in (7.3) do not 
change along the direction of the flow, corresponding to the x axis.

This equation is at the basis of the Thomas–Windle model for case-II diffusion 
(Thomas and Windle 1982). These authors identify −Tβ = v,  v  being the partial 
molar volume of the solvent. In this way, one may identify a generalised chemical 
potential µ̃′′  as

� (7.17)

with µ̃(n1, γ̇ )  the chemical potential of EIT used in (7.6) or (7.11). The basic idea 
below this interpretation of β (Thomas and Windle 1982; Jou et al. 1991) is that the 
normal pressure P v

yy  may be interpreted as a supplementary osmotic pressure act-
ing on the system. In terms of µ̃′′,  (7.16) can be simply written as

� (7.18)

In this case, the stability condition, i.e. the condition for a positive effective diffu-
sion coefficient defined as D′(∂µ̃′′/∂φ)  is

� (7.19)

instead of the condition (∂µ̃/∂φ)T ,γ̇ > 0  found in (6.8). In situations where the 
normal viscous pressure P v

yy
 along the direction of the shear is zero (such as, for in-

stance, in Maxwell upper-convected derivative models, where the normal pressure 

Jy = −D′(n1, γ̇ )
∂

∂y

[
µ̃(n1, γ̇ ) − TβP v

yy

]
,

µ̃′′(n1, γ̇ ) = µ̃(n1, γ̇ ) + vP v
yy ,

Jy = −D′(n1, γ̇ )
∂

∂y
µ̃′′(n1, γ̇ ).

∂µ̃′′

∂φ
> 0
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along the x-direction is different from zero but the normal pressures along the y and 
z directions are zero, as seen in (1.13)) µ̃′′(n1, γ̇ )  in (7.17) coincides with the chem-
ical potential of EIT, namely µ̃(n1, γ̇ ) . Therefore, the results obtained in Chap. 6 
about the stability and the shear-induced shift of the polymer solutions are valid as 
long as the upper-convected Maxwell model may be used.

To further illustrate this situation, we comment on the analysis of phase separa-
tion in polymer solutions under shear by Onuki (1990, 1997). This author examines 
the linear stability of a homogeneous shear flow of a semi-dilute polymer solution 
against perturbations of the volume fraction  and the velocity vx, under constant 
shear pressure. Onuki considers a non-equilibrium free energy which includes the 
effects of the flow by incorporating the configuration tensor as an independent non-
equilibrium variable. However, he does not directly use the thermodynamic crite-
rion (∂µ̃/∂φ) ≥ 0  for the analysis of the stability but a dynamical analysis based on 
the stability of the evolution equations for v and  which take the form (Onuki 1990)

� (7.20)

� (7.21)

Here, Pv
p  is the polymer contribution to the viscous pressure,  the osmotic pres-

sure, 0 the solvent shear viscosity and J, the diffusion flux, is described under the 
form (Onuki 1990)

� (7.22)

where  is a friction coefficient, πφ  and el are the equilibrium and the non-
equilibrium contributions to the osmotic pressure and stand, respectively, for 
πφ = (φ∂/∂φ − 1)feq,  πel = (φ∂/∂φ − 1)fel,  with fel being the elastic contribution 
of the flow to the Helmholtz free energy f. This equation, analogous to Eq. (6.30), 
yields for the component of the diffusion flux Jy along the shear direction the result

� (7.23)

with DT an effective diffusion coefficient in the shear direction, given by

� (7.24)

Notice that (7.22) may be obtained from (7.16), i.e. the normal viscous pressure P v
yy  

is included into the osmotic pressure as an additional contribution. Onuki writes 
(7.22) following a model by Doi (1990) and uses as a stability criterion the positive 
character of DT. It is interesting to note that this result is equivalent to the criterion 
(7.19), as one has that φdπeff ∝ dµ̃′′,  in which πeff = πφ + πel + P v

yy ,  so that one 
may write ∂µ̃′′/∂φ ∝ φ∂π/∂φ .

ρ0
∂v

∂t
= −∇ · (Pv

p + πU) − ∇p − η0∇2v,

∂φ

∂t
+ ∇ · (φv) = −∇ · J .

J = −(φ/ζ )
[
∇(πφ + πel) + ∇ · Pv

p

]
,

Jy = −DT (n, γ̇ )
∂φ

∂y
,

DT = ζ−1φ
∂

∂φ
(πφ + πel + P v

yy).
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Thus, we have seen in this section that the instability condition (6.38) defining 
the spinodal region is the same in the thermodynamic analysis as in the dynamical 
analysis when P v

yy = 0,  so that there is no contradiction between them as far as 
one limits oneself to a phase stability analysis. In contrast, a dynamical approach is 
necessary to describe the evolution of the phase separation process.

7.2  �Structure Factor

Probably, one of the best perspectives to carry out a dynamical analysis is provided 
by the structure factor, i.e. by the Fourier transform of the correlation function of 
the density fluctuations, which is measurable through light scattering or neutron 
scattering experiments. This point of view has been followed, for instance, in (Hel-
fand and Fredrickson 1989; Onuki 1990; Milner 1991; Criado-Sancho et al. 1997; 
Sun et al. 1997; Clarke and McLeish 1998; Ortiz de Zárate and Sengers 2006). In 
this section, it will be seen that non-equilibrium contributions both of thermody-
namic and dynamic origin appear in the structure factor, the former stemming from 
the contribution of the viscous pressure tensor to the non-equilibrium equation of 
state for the chemical potential (namely (7.5)), and the second arising from the 
contribution of the velocity gradients to the dynamical balance equations. It has 
been a topic of intense debate whether the observed shift of the critical temperature 
in the presence of a shear flow is due to a modification of the equations of state or 
whether it is a purely hydrodynamical effect related to the enhancement of fluctua-
tions in the presence of a velocity gradient. In fact, both points of view will be seen 
to be complementary, rather than mutually exclusive, as both effects contribute to 
a shift of the critical temperature.

In the usual literature concerning the structure factor under shear (Helfand and 
Fredrickson 1989; Onuki 1990; Milner 1991) it is considered that the effect of spa-
tial inhomogeneities on the free energy and on the density fluctuations is of the so-
called Ginzburg–Landau or Cahn–Hilliard form, in which the free energy per unit 
volume is expanded up to second order in the concentration gradient (Landau and 
Lifshitz 1969), namely

� (7.25)

where the subscript 0 refers to a homogeneous reference equilibrium state 
G0 ≡ G(c0),  c is the concentration, and a and b are coefficients depending on the 
temperature T and the pressure p. In particular, a is given by a = (∂2G/∂c2)T ,p,  
and (1/2)a(c − c0)2  corresponds to the second-order term in an expansion of G in 
powers of the concentration fluctuations. The ratio b/a has dimensions of the square 
of a length (we will denote b/a as l2) which is the correlation length of the con-
centration fluctuations. The last term in (7.25) describes that the fluctuations with 
stronger inhomogeneities imply a higher increase in free energy and have less prob-
ability to appear.

G(c, ∇c) = G0 +
1

2
a(c − c0)2 +

1

2
b(∇c) · (∇c),
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The chemical potential corresponding to the free energy (7.25) is obtained from 
G by the functional derivative /c defined as

� (7.26)

Therefore, for G given by (7.25) it has the form

� (7.27)

in which µeq = a(c − c0) .
The structure factor S(k) is the most important quantity in the analysis of the 

dynamics of concentration fluctuations, since it may be measured by light scattering 
experiments: it is defined as

� (7.28)

with k the wavevector and (k) the Fourier transform of the density fluctuations, 
and 〈· · · 〉 denotes an equilibrium ensemble average. The form of S(k) around equi-
librium is usually obtained in a straightforward way by combining the well known 
expression for the probability of fluctuations (Callen 1960; Landau and Lifshitz 
1969)

� (7.29)

where 2G stands for the second variation of the Gibbs free energy, namely, 
δ2G = 1

2 (∂2G/∂φ2)(δφ)2  or, in terms of μ, δ2G = 1
2 (∂µ/∂φ)(δφ)2 . The explicit 

expression for 2G may be obtained from (7.25). This yields the so-called Ornstein–
Zernike form for the structure factor (Landau and Lifshitz 1969), namely

� (7.30)

where the Fourier transform of 〈( )2〉 has been used. This expression is a good 
approximation to S( k) for values of (b/a)k2 = l2k2 � 1  around equilibrium, and 
must be modified near to critical points, where the exponent 2 of k in the denomina-
tor is changed to a different value.

7.2.1  �Generalized Ginzburg–Landau Potential in Flowing 
Systems

Though the potential (7.25) is very well known in quiescent systems, in the pres-
ence of a velocity gradient one should consider the more general form (Criado-
Sancho et al. 1999)

µ =
(

δG

δc

)

T ,p,P v
xy

=
(

∂G

∂c

)

T ,p,P v
xy

− ∇ ·
(

∂G

∂(∇c)

)

T ,p,P v
xy

.

µ(c) = µeq − b∇2c,

S(k) = 〈φ(k)φ(−k)〉,

Pr ∝ exp

[
−

δ2G

kBT

]
,

S(k) =
S(k = 0)

1 + (b/a)k2
,
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�

(7.31)

where u is the barycentric velocity of the fluid and d a new coefficient which may 
depend on T and p, and the upper-index T denoted the transposition. The new term 
in (7.31) implies that the concentration fluctuations whose gradient is perpendicular 
to the shear direction require a different energy from those whose gradient is par-
allel to the shear direction. Thus, the presence of the velocity gradient makes the 
basic state anisotropic, in contrast to the isotropic equilibrium state which refers to 
the concentration fluctuations appearing in the usual Ginzburg–Landau Eq. (7.25).

According to (7.26), the corresponding expression for the chemical potential 
derived from (7.31) would be

� (7.32)

which reduces to (7.27) for a fluid at rest or in uniform velocity flows.
To estimate the value of the last term in (7.31) we write the Gibbs free energy of 

EIT in the presence of a diffusion flux J and of a viscous pressure tensor Pv, up to 
third-order approximation

� (7.33)

The terms in J · J  and in Pv : Pv  are well known in the usual formulations of 
extended irreversible thermodynamics, where the coefficients α(1) and α(2) are given 
by α(1) = τ1/D and α(2) = τ2/2 [see Chap. 1, (1.42)]. The last term in (7.33), coupling 
J and Pv, has not been considered up to now, but it arises from simple tensorial ar-
guments. An analogous contribution to the extended entropy of the form q · Pv · q,  
with q the heat flux, was considered in Jou and Casas-Vázquez (1983), where its 
coefficient was expressed in terms of the third moments of the equilibrium fluctua-
tions of q and Pv, was explicitly computed for ideal gases, and it was shown that the 
result is identical with that obtained from the kinetic theory of gases.

The coefficient α(3) may be obtained from fluctuation theory. According to (Jou 
and Casas-Vázquez 1983), the coefficient α(3) may be written as

� (7.34)

where  stands for the fluctuation of the corresponding quantity. Using again 
fluctuation theory [see for instance Chap.  5 of (Jou et  al. 2010)] according to 
which α(1) = kBT 〈δJxδJx〉−1  and α(2) = kBT 〈δP v

xyδP
v
xy〉−1,  (7.34) may also be 

written as

� (7.35)

G(c, ∇c, ∇u) = G0 +
1

2
a(c − c0)2 +

1

2
b(∇c) · (∇c) + d(∇c)T · (∇u) · (∇c),

µ = µeq − b∇2c − 2d∇ · [(∇u) · (∇c)],

G = Geq +
1

2
α(1)J · J +

1

2
α(2)Pv : Pv + α(3)J · Pv · J .

α(3) = −
2

(kBT )2 α2
(1)α(2)

〈
δJxδP

v
xyδJy

〉
,

α(3) = −2kBT

〈
δJxδP

v
xyδJy

〉

〈δJxδJx〉2
〈
δP v

xyδP
v
xy

〉 .
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The microscopic operator for Jx is given by Jx = nζx with x the component along 
the x axis of the relative speed of the centre of mass of the macromolecules with 
respect to the barycentric velocity u of the polymer solution. This leads to the result 
〈δJxδJx〉 = n2〈ξ 2

x 〉. On the other hand, P v
xy  has a contribution of the form mξxy 

owing to the motion of the centre of mass plus another one due to the internal 
(configurational) degrees of freedom. Since the latter ones are uncorrelated with the 
motion of the centre of mass, the only contribution to 

〈
δJxδP

v
xyδJy

〉
 in (7.34) will 

be n2〈mξ 2
x ξ 2

y 〉 . This allows us to write α(3) = −2α(1)α(2) = α(1)(τ2/η).
If the frequencies involved in the system are not too high, in order that the re-

laxation terms may be neglected, one may use the Fick’s law J = −D∇c and (7.33) 
becomes

� (7.36)

The quantity α2 stands for α(1)D2 and may be written as RT( l2/c2), l being a correla-
tion length of the density fluctuations.

7.2.2  �Dynamical Contributions to the Chemical Potential

Expression (7.36) contains quadratic terms in the concentration gradient and terms 
which couple the concentration gradient with the pressure tensor. The latter may be 
written in terms of the velocity gradient if one uses the Newton–Stokes law for the 
pressure tensor, i.e. Pv = −2(∇u)s. In general, the chemical potential obtained from 
(7.36) through the functional differentiation (7.26) turns out to be

� (7.37)

where (P) stands for the part coming from the third term in the right-hand side of 
(7.36), and Je =  τ2/ is the steady-state compliance, where subscript e is used to 
avoid confusion with the symbol for the diffusion flux.

A rather general expression for the chemical potential (7.37) in terms of the ve-
locity gradient may be obtained if instead of the simple Fick and Newton–Stokes 
equations for J and Pv one takes

� (7.38)

and

� (7.39)

where D′ and β are transport coefficients. Note that (7.38) is a simplified version of 
(7.3). Equation (7.39) for the viscous pressure tensor corresponds to a generalised 

G = Geq +
α2

2
(∇c) · (∇c) +

α(2)

2
Pv : Pv −

α2τ2

η
(∇c)T · Pv · (∇c).

µ = µeq + µ(P ) − α2∇2c + 2α2Je∇ · (Pν · ∇c),

J = −D′∇µ − β∇ · Pv

τ2

[
∂Pv

∂t
+ u · ∇Pv − (∇u)T · Pv − Pv · (∇u)

]
= −Pv − 2η(∇u)s ,
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upper-convected Maxwell model (1.8a) with τ2 the relaxation time (which will be 
denoted simply as τ from now on).

If we expand (7.39) around the steady state for a simple shear flow, with a veloc-
ity profile u = (γ̇ y, 0, 0),  with γ̇  the shear rate, we find for the viscous pressure 
tensor the form given in (1.13). When this expression is introduced in (7.37), it 
yields for the chemical potential

�
(7.40)

The terms in the square bracket have an influence on the structure factor, which will 
be explicitly analysed in the next section.

7.3  �Derivation of the Structure Factor

After having obtained a generalised expression for the contributions of the inhomo-
geneities to the chemical potential in the presence of a flow, we shall study its con-
sequences on the structure factor for a polymer solution, generalising the previous 
analyses in (Helfand and Fredrickson 1989; Criado-Sancho et al. 1997).

7.3.1  �Evolution Equations

To analyse the structure factor in the presence of a shear flow, one must solve the 
hydrodynamical equations describing the fluid. The mass balance law for the solute 
may be written in the form

� (7.41)

with c the monomer concentration, related to the volume fraction  by  = vmc, with 
vm the molar volume of the monomer, and J the corresponding diffusion flux. As a 
constitutive equation for the diffusion flux we take (7.38), which when introduced 
into (7.41) yields

� (7.42)

except for the hydrodynamic noise v, which has been included for the analysis of 
fluctuations. The relationship between  (a parameter which we use for the sake of 
comparison with Helfand and Fredrickson 1989) and the transport coefficient D′ is 
given by D′ = c/( kBT), and we have taken βT = −c−1, as in the above reference, and 
consistently with the proposal in (7.17).

µ = µeq + µ(P ) − α2∇2c

− 4α2γ̇ Je

[
η∇x∇yc + τηγ̇∇x∇xc + η′∇x∇yc + (τη)′γ̇∇x∇yc

]
.

dc

dt
= −∇ · J ,

∂c

∂t
+ u · ∇c =

λ

kBT
∇ · (c∇µ) +

λ

kBT
∇∇ : Pν + θν ,
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The balance equation for the linear momentum is

� (7.43)

where T⊥ is a transverse projection operator which projects the fluctuations on 
the plane perpendicular to the wavevector, because incompressibility (∇ · u = 0) 
requires that k · n = 0 . Equations (7.39), (7.42), (7.43) and the equation of state 
(7.40) for the chemical potential describe the evolution of the system. An alterna-
tive set of equations could be established from the two-fluid model discussed in 
Sect. 6.6.

7.3.2  �Equations of State

In order to work out a specific situation we shall consider (7.40) for polymer so-
lutions and we need expressions for (p), α, Je, and . We use for the steady-state 
compliance J, the Rouse expression (5.42)

� (7.44)

where c′ is the mass polymer per unit volume, C = 0.4 (in the Rouse model) and M 
the polymer molecular mass. To obtain (p) recall that for the system constituted by 
n1 moles of solvent and n2 moles of a polymer of degree of polymerization N, we 
have for G

� (7.45)

where Geq is the local-equilibrium free energy, given by the classical Flory–Huggins 
expression (6.4); the second term is the non-equilibrium contribution due to the 
presence of the viscous pressure tensor (since we are considering a Couette flow, 
we only take the xy component), and is given by Eq.  (6.17). For α we will take 
α2 = RT vm × (2π−2)R2

gφ
−1
0 N−1,  Rg being the mean gyration radius of the macro-

molecules and 0 the mean-field value of the volume fraction.
The classical Flory–Huggins contribution eq obtained from (6.4) may be writ-

ten as

� (7.46)

where  is the Flory–Huggins interaction parameter defined in (6.5) and c the 
perturbation in the concentration. Taking into account (7.44), the contribution of the 
shear viscous pressure to the Gibbs free energy is

� (7.47)

ρ
∂u
∂t

= T⊥
[
−ρu · ∇u + ηs∇2u − ∇ · Pν + (∇c)µ + θu] ,

Je =
CM

c′RT

(
1 −

ηs

η

)2

,

G = Geq + νm (n1 + Nn2) Je

(
P ν

xy

)2 +
1

2
α2 (∇c) · (∇c),

µ(FH) = µ(FH)(φ0) + RT vm
[
(1 − φ0)−1 + (Nφ0)−1 − 2χ

]
δc,

G(P) =
CMνm [η]

RT

(
P ν

xy

)2
(n1 + Nn2)F (x),
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with F( x) a function whose form comes from (5.42), namely

� (7.48)

kH being the Huggins constant introduced in (5.44) and x = []M0c where [] is the 
intrinsic viscosity (5.45) and M0 the monomer molecular mass. The non-equilib-
rium contribution of the flow to the chemical potential of the solute may thus be 
written as

� (7.49)

and up to the first order in the fluctuation c, it can be expressed as

�

(7.50)

where x0 =  []M0c0 and F′ and F″ are the first and second derivatives of F with 
respect to x.

The dependence of the viscosity in terms of the concentration is given by 
(5.44), i.e.

� (7.51)

with the values of s, kH, [] and M0 for the system transdecalin-polystyrene given 
in Appendix A.

7.3.3  �Flow Contribution to the Structure Factor

The flow contribution to the structure factor S(k) may be obtained by solving the 
equations of motion (7.39), (7.42), and (7.43), after introducing (7.40) into the two 
latter equations. We will restrict our analysis to first order in the amplitude of the 
fluctuations c. This linear approach is suitable to describe the first stages of the 
spinodal decomposition but not the advanced stages where non-linear terms are es-
sential. The viscosity  and the normal stress coefficient Ψ1 are written in terms of 
the concentration perturbations c(r) around the average concentration c0 as

� (7.52a)

� (7.52b)

In the absence of concentration inhomogeneities, the velocity field is assumed 
to be the simple shear flow, i.e. vx = γ̇ y . The dependence of  and Ψ1 on the 

F (x) = x(1 + kHx)2
(
1 + x + kHx2

)−2
,

µ(P ) =
CMvm[η]

RT
(P v

xy)2

[
F (x)

1 − vmc
+

[η]M0F
′(x)

vm

]
,

µ(P ) = µ(P )(x0) +
CN [η]3M3

0

RT
(P v

xy)2

[
1

x2
0

F (x0) +
1

x0
F ′(x0) + F ′′(x0)

]
δc,

η/ηs = 1 + [η] M0c + kH[η]2M2
0 c2

η(c) = η(c0) + η′δc,

�1(c) = �1(c0) + � ′
1∂c.
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concentration slightly modifies Pv and therefore the flow. By ignoring in (7.39), 
(7.42), and (7.43) the terms in ∂/∂t and u · ∇,  and introducing the expressions for 
Pv and  (up to the first order in c) in (7.42), one is led, after a Fourier transform, 
to the following closed equation for S(k) (Helfand and Fredrickson 1989)

� (7.53)

where all the variables are reduced according to γ̇ = γ̇ τ ,  k = kRg,  and 
λ = λT/(NR2

g).
The function Ω in (7.53) is given by

� (7.54)

where the reduced variable α2 = (α2Nφ0)/(RT vmR2
g)  has been introduced. In 

(7.54) it is manifest that Ω(k) also depends on the angle β that k makes with the x axis 
(i.e. with the velocity). The function h( β) is given by (Helfand and Fredrickson 1989)

�
(7.55)

where lx = cos β  and lx = sin β , whereas g( β) is given by

� (7.56)

The first normal stress coefficient is given by Ψ1 = 2 in an upper-convected Maxwell 
fluid [see (1.15)], and the reduced quantities appearing in (7.55) and (7.56) have been 
defined as η = ηNφ0vm/(kBT τ 2)  and �1 = �1Nφ0vm/(kBT τ 2) . The form of h( β) 
and g( β) in the range 0 ≤ β ≤ π/2,  are represented in Figs. 7.1 and 7.2 for polysty-
rene in transdecalin. Note that the values of g( β) are one order of magnitude less than 
those of h( β), and the form of the two functions is different and their sign opposite.

The symbol  stands for the dimensionless expression of ∂/∂c given by

� (7.57)

and, when l�(k) � γ̇ ,  S is given by

� (7.58)

Note that if h( β) + g( β) is positive, the flow enhances the fluctuations.

[

2λ�(k) − γ̇ kx

∂

∂ky

]

S(k) = 2λk
2
,

� (k) = k2
[
ε + ε(P ) − h(β) + α2k2 − g(β)

]
,

h(β) = 2lx ly γ̇ η′ + l2
x γ̇

2
�

′
1 −

[(
l2
x − l2

y

)
γ̇ η′ − lx ly γ̇

2
�

′
1

]

×
l2
x γ̇

2
�

′
1

γ̇ (η − ηs) + lx ly γ̇
2
�

′
1

,

g(β) = −4
k

2
α2

RT νm
γ̇

(
lx ly + γ̇ l2

x

)
.

ε = 1 + (1 − φ0)−1Nφ0 − 2Nχφ0 + Nφ0
(
∂µ(P)/∂c

)
,

S(k) ≈
1

ε + ε(P ) − h(β) + α2k2 − g(β)
.
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In Fig. 7.3 we represent the curves corresponding to S( k = 1) at an angle β = 42° 
(corresponding to the maximum of h( β)) which include, correspondingly: (1) the 
equilibrium structure factor; (2) the dynamical contribution h( β); (3) the non-equi-
librium thermodynamic contribution ε(P); (4) both ε(P) and h( β); (5) ε(P), h( β) and 
g( β). All the curves include the Ginzburg–Landau contribution l2k2. It is seen that 
all the contributions modify the apparent critical point, which corresponds to the 
steep increase of S, i.e. of the fluctuations. Note that in Fig. 7.3 we have plotted the 
curves corresponding to k = kRg = 2π (Rg/λ

′) = 1,  with Rg the gyration radius 
of the chains and ′ the wavelength of the visible light (we are studying the onset 
of visible turbidity). Thus, ′ = 5.5 × 10−7 m and the situation k = 1  corresponds 

Fig. 7.1   The function h( β) 
appearing in (7.55) is plotted 
in terms of β for polystyrene 
in transdecalin for a given 
value of the shear rate and 
for different values of the 
volume fraction , which 
label the different curves. 
This function is maximum for 
β near 42°. (Criado-Sancho 
et al. 1997)

4

3

2

1

0
0 20 40 60 80

�

h

0.04

0.03

0.02

0.01

0.006

T = 290 k
.
� = 0.25

Fig. 7.2   The function 
g( β) appearing in (7.56) 
for different values of the 
shear rate for polystyrene 
in transdecalin. This 
function does not depend 
on the volume fraction 
. (Criado-Sancho et al. 
1997)
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to Rg = 9 × 10−8 m. Since the solution is under flow, the chains are stretched and 
it is not easy to specify exactly the value of Rg even when Rg in equilibrium is 
known. The dependence of Rg on N shows that for lower polymerization numbers 
one should consider k < 1  in the analysis of S(k).

It is seen that when one includes both hydrodynamic and thermodynamic effects, 
an increase in turbidity may appear for temperatures higher than the actual critical 
temperature. Thus, if one a priori identified this turbidity with the approach to the 
critical point, one would overestimate the value of the critical temperature under 
shear.

This does not mean that the critical temperature itself is not modified by the 
flow. Indeed, the results in Table 6.1 show that the thermodynamic contribution of 
the viscous pressure tensor in the equations of state yields values for the shift in the 
critical temperature which are lower than the experimental ones. Here, we see that a 
possible reason for this discrepancy is the effect of the dynamically enhanced fluc-
tuations, whose contribution to the apparent shift in the critical point may be two or 
three times that due to purely thermodynamical effects.

The contribution of the last terms in (7.36) or (7.37), not found in the usual 
bibliography, to the apparent shift of the critical point is small, of the order of 5% 
of the total shift in the critical temperature. Nevertheless, since it depends on the 
shear viscosity and the normal shear coefficient, rather than on their derivatives, in 
situations where the shear viscosity does not depend on the concentration, and the 
first normal stress coefficient vanishes, g( β) would be different from zero, whereas 
h( β)would vanish.

In contrast to the dynamical contributions of h( β), the non-equilibrium contribu-
tion g( β) has a thermodynamical origin because it appears directly in the gener-
alised entropy, as well as the contributions due to the viscous pressure tensor. Thus, 
the connections between thermodynamics and dynamics are multiple and subtle, 
not contradictory to each other, but complementary, as the generalized overview 
presented in this chapter has shown.

Fig. 7.3   Curves correspond-
ing to s( k = 1) at an angle 
β = 42° including: (1) the 
equilibrium structure factor; 
(2) the dynamical contri-
bution h( β); (3) the non-
equilibrium thermodynamic 
contribution εP; (4) both εP 
and h( β); (5) εP, h( β) and 
g( β). All the contributions 
modify the apparent critical 
point, which corresponds to 
the steep increase of S, i.e. 
of the fluctuations. (Criado-
Sancho et al. 1997)
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The presence of inhomogeneities in the flow velocity is an ubiquitous feature in 
nature and laboratory, from flow in tubes to motion in rivers and oceans; in contrast 
with an uniform velocity profile, which simply adds a displacement to the usual 
Fickian diffusion, inhomogeneities in the velocity profile exert a deep influence 
on the behaviour of diffusion whose consequences have practical interest in many 
situations ranging from microfluidic chromatographic flows to pollutant transport 
in oceans and atmosphere. Some of these influences are purely dynamical; others, 
however, modify the equations of state and their analysis requires the use of non-
equilibrium thermodynamics. In this chapter, we consider several examples of the 
modification of the usual diffusion behaviour in the presence of a velocity gradient.

In the situations considered here, the thermodynamic aspects of the coupling 
between flow and diffusion become especially relevant. For instance, we analyse 
how the non-equilibrium chemical potential depending on the shear rate, which has 
been used in Chaps. 6 and 7, contributes to shear-induced polymer migration. It is 
seen that its non-equilibrium contribution strongly enhances, above a threshold of 
polymer concentration and of shear rate, the migration of the polymer towards the 
regions with lower stress and accelerates the splitting of the initially homogeneous 
system into two different phases.

Since these migration effects are strongly dependent on the solute macromo-
lecular mass, they may be used to separate macromolecules with different masses, 
which is a relevant operation in macromolecular biology and in chemical engineer-
ing. These separation techniques are known as flow chromatography, and offer an 
alternative to other well-known separation techniques as ultracentrifugation and 
electrophoresis, as for instance in protein purification.

8.1  �Shear-Induced Migration of Polymers

The coupling between viscous effects and diffusion is a very active topic in rheo-
logical analyses (Highgate 1966; Agarwal et al. 1994; Olmsted 2008). In particu-
lar, shear-induced migration of polymers deserves attention for its practical aspects 
(chromatography, separation techniques, flow through porous media) and its theo-
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retical implications in non-equilibrium thermodynamics and transport theory. In-
deed, this topic implies the coupling between vectorial fluxes and tensorial forces, 
which is beyond the usual constitutive equations of classical irreversible thermo-
dynamics, and it is a useful testing ground of non-equilibrium equations of state.

8.1.1  �The Simplest Model for Shear-Induced Migration

The simplest constitutive equation coupling the diffusion flux J and the viscous 
pressure tensor Pv  is

� (8.1)

where n is the polymer concentration, D the translational diffusivity, and Pv  the 
symmetric second-order tensor representing the polymeric contribution to the vis-
cous pressure. This constitutive equation has been examined from different macro-
scopic and microscopic points of view (Aubert and Tirrell 1980; Aubert et al. 1980; 
Lhuillier 1983; Bhave et al. 1991; Mavrantzas and Beris 1992; Öttinger 1992; Beris 
and Mavrantzas 1994; Zamankha et al. 1998; Curtiss and Bird 1999; Apostolakis 
et al. 2002). The coupling term may be interpreted in terms of the force acting on the 
macromolecules per unit volume (−∇ · Pv)  times the macromolecular mobility—
or reciprocal of friction coefficient—which, according to Einstein’s equation for the 
diffusion coefficient, is given by D( kBT )−1 (per molecule) or D( RT )−1 (per mol). In 
(1.51) and (7.38) we have presented a more general extension of the Fick equation 
which reduces to (8.1) when relaxation effects and the non-linear, non-equilibrium 
contributions to the chemical potential are ignored.

The physical meaning of the second term in (8.1) is clear: inhomogeneities in the 
viscous pressure will contribute to a migration of solute. For instance, consider a 
cone-and-plate configuration (see Fig. 8.1), where the only non-zero components of 
the viscous pressure tensor Pv  are given by

� (8.2)

Here r,  and θ refer to the radial, axial and azimuthal directions, respectively,  is 
the polymer relaxation time and γ̇  the shear rate. Combination of (8.1) and (8.2) 
yields for the components of the diffusion flux the expressions

� (8.3)

� (8.4)

� (8.5)

J = −D∇n −
D

RT
∇ · Pv,

P v
φφ = −2RT n(τ γ̇ )2, P v

φθ = −RT nτ γ̇ .

Jr = −D
∂n

∂r
− Dβ

n

r
,

Jθ = −D
1

r

∂n

∂θ
− Dβ

n

r
cot θ ,

Jφ = −D
1

r sin θ

∂n

∂φ
− Dβ

n

r
cot θ ,
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with the parameter  being defined as β = 2(τ γ̇ )2  and where the independence 
of n with respect to  because of the rotational symmetry of the situation has been 
taken into account. The radial component (8.3) is especially relevant from the prac-
tical point of view. It is seen that the shear flow will produce a migration of macro-
molecules towards the apex of the cone (since r points towards the external region, a 
negative sign in Jr implies motion towards the centre of the device). Thus, if initially 
one has a homogeneous concentration profile (∂n/∂r = 0), the rotation will produce a 
migration of macromolecules towards the centre, until achieving a steady profile in 
which Jr = 0. This allows to separate the solute from the solvent, because the internal 
part of the device will be richer in the solute.

Combination of (8.1–8.5) and the mass balance equation

� (8.6)

yields

� (8.7)

which leads to the closed evolution equation for the concentration

�
(8.8)

To obtain (8.8) it has been assumed that the steady viscometric flow has only a non-
zero component of the velocity (the r component), which depends on the r and θ co-
ordinates and that the convection of molecules by migration contributes negligibly 

∂n

∂t
= −∇ · J

∂n

∂t
= D∇2n +

D

RT
− ∇ · (∇ · Pv),

∂n

∂t
=

D

r2

∂

∂r

(
r2 ∂n

∂r
+ βrn

)
− Dβ

n

r2
.

Fig. 8.1   The flows of matter are indicated in the cone-and-plate configuration. Arrow ( 1) shows 
the shear-induced flow described by the second term in the right-hand side of (8.1) and (8.9); 
arrows ( 2) and ( 3) indicate the diffusion flux corresponding to the first term in the right-hand side 
of (8.9) when the effective diffusion coefficient (8.13) is positive or negative. When it is positive, 
the diffusion flux ( 2) opposes to the shear-induced flow ( 1), whereas when it is negative, the dif-
fusion flux ( 3) enhances the shear-induced effects
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to the stress. The term in , arising from the second term in (8.2), induces a flux of 
solute towards the apex of the cone (shown as arrow 1 in Fig. 8.1) which is usually 
believed to produce the total induced migration.

However, as demonstrated by MacDonald and Muller (1996), this contribution 
cannot explain by itself the actual rate of migration; it falls short by two or three 
orders of magnitude in comparison with observations. These authors have obtained 
a short-time solution of (8.8) for n( r, t). In their analysis they miss the last term, 
which comes from the shear-induced flux in the θ direction, and which is negli-
gible when the angle between the cone and the plate becomes small, as in the ex-
periment they were analysing. They compared it with their experimental results for 
polystyrene macromolecules, nearly monodisperse, of different molecular weights 
2.0 × 106 g mol−1 and 4.0 × 106 g mol−1 (denoted by 2M and 4M, respectively) in a 
solvent of oligomeric polystyrene molecules of 500 g mol−1, when the cone is ro-
tated producing a shear γ̇ = 2 s−1. The initial homogeneous concentration of the 
molecules of each solution was 0.20 and 0.12 wt% for the 2M and 4M solutions, re-
spectively. According to an average value of  obtained from the steady-state shear 
data, they obtained for the 2M and 4M solutions the values 2 = 240 and 4 = 1 500, 
respectively.

Nevertheless, when they tried to fit the profile obtained from (8.8) with the ob-
served concentration profiles, very severe discrepancies arose, as they found that 
the migration was much faster than predicted by (8.8). When they tried to fit the 
data by allowing  to be an adjustable parameter, they found that it is necessary that 
2 = 200 000 and 4 = 1 100 000, instead of 240 and 1 500. Thus, the discrepancy be-
tween the observed and the measured , which expresses the shear-induced flux in 
(8.8), is almost three orders of magnitude. It will be seen that this discrepancy may 
be overcome when the flow contributions to the chemical potential are considered.

8.1.2  �Non-equilibrium Chemical Potential and Effective 
Diffusion Coefficient

According to thermodynamics, it is more fundamental to express the diffusion flux 
in terms of the gradient of the chemical potential as was done in (1.51) and (7.38) 
rather than in terms of the concentration gradient as in (8.1). Thus, we write instead 
of (8.1)

� (8.9)

where  is the chemical potential of the solute and D̃  is related to the classical 
diffusion coefficient D by D = D̃(∂µeq/∂n).  Here, eq is the local-equilibrium 
chemical potential of the solute. The essential point is that in the presence of a non-
vanishing Pv,   itself contains contributions of Pv,  thus providing an additional 
coupling between viscous effects and diffusion, besides the term in ∇ · Pv.

J = −D̃∇µ −
D

RT
∇ · Pv,
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To be explicit, and as in the previous chapters, we use for the Gibbs free energy 
G in presence of a viscous stress Pv  the expression

� (8.10)

where Geq is the local-equilibrium value of the free energy at the corresponding 
values of T, p and Ni (we take N for the number of moles of the solute and N0 the 
number of moles of the solvent) and J is the steady-state compliance.

The chemical potential of the solute is defined by µ = (∂G/∂N )T ,p,Pv .  If we 
write N in terms of the solute concentration n (moles per unit volume) as N = nV,  
may be expressed as

� (8.11)

where V ′ = ∂V/∂N is the partial molar volume of the solute. The term in parentheses 
in (8.11) takes into account the fact that a variation of N at constant p produces a 
change in the total volume V.

According to (8.10) and (8.11), the chemical potential of the solute is

� (8.12)

The use of the generalised chemical potential leads us to define an effective dif-
fusion coefficient as Deff = D̃(∂µ/∂n)  or, by writing D̃  in terms of the classical 
diffusion coefficient D,

� (8.13)

where the new function Ψ is defined as

� (8.14)

which, using (8.10), takes the explicit form

� (8.15)

If the contribution of the term in Pv :Pv  were negative, it would induce a flow of 
solute towards higher solute concentrations, i.e. opposite to the usual Fickian dif-
fusion. This would reinforce the contribution of the term in ∇ · Pv,  which yields a 
migration of the molecules of the solute towards the centre, and would render the 
migration process much faster, as sketched in Fig. 8.1.

G(T , p, Ni , Pv) = Geq(T , p, Ni) +
1

4
JV Pv : Pv,

µ =
1

V
(1 − V ′n)

(
∂G

∂n

)

T ,p,Pv

,

µ = µeq +
1

4V
(1 − V ′n)

∂

∂n
(VJ )Pv : Pv.

Deff = D�(n, γ̇ ),

�(n, γ̇ ) =
(∂µ/∂n)
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�(n, γ̇ ) = 1 +
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∂n
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]
.
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For this system, the derivative of chemical potential for different Deborah num-
bers τ γ̇  is plotted in Fig. 8.2. To obtain this figure we have used for the equilibrium 
chemical potential the expression from the classical Flory–Huggins model (6.4) 
and we have taken for J the formula (5.46) following from the Rouse–Zimm model 
combined with the Huggins expression (5.44) for ( c). The expression for the non-
equilibrium contribution to the chemical potential of the solute is thus

� (8.16)

where m is the ratio between the molar volumes of the solute and the solvent, V1 
the molar volume of the solvent, c̃  the reduced concentration defined by c̃ = [η]c 
(note that c̃  is related to n by means of c̃ = [η]nM ) and �(c̃),  P5(c̃)  and P6(c̃)  
the auxiliary functions defined in (6.42).

When a cone-and-plate experiment is considered, we can write the expressions

� (8.17)

� (8.18)

1

RT
µne =

CV1M[η]

4R2T 2
Pv :Pv

{
M[η]

V1

�(c̃)

c̃
+ 2

[
M2[η]

c̃V1
− m

]
P5(c̃)

P6(c̃)

}
,

Pv :Pv = (P v
φφ)2 + 2(P v

φθ )2 = �(γ̇ )c̃2,

�(γ̇ ) =
(

RT

M[η]

)2 [
4(τ γ̇ )4 + 2(τ γ̇ )2

]

Fig. 8.2   For different Deborah numbers, the variation of (∂µ/∂c̃),  which is proportional to the 
polymer effective diffusivity, in terms of the reduced concentration c̃  is presented, for polystyrene 
in transdecalin solution. The discontinuous line corresponds to the equilibrium Flory–Huggins 
contribution. It is seen that for c̃  higher than a critical value approximately equal to 0.5, and 
for high enough values of the Deborah number, the effective diffusivity becomes negative. (del 
Castillo et al. 2000)
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and the derivative (∂µ/∂c̃)  is calculated from

�
(8.19)

The numerical values of this derivative for the system PS/TD with a polymer 
molar mass of 520 kg mol−1, are plotted in Fig.  8.2, where the values k = 1.40, 
[] = 0.043 m3 kg−1 and s = 0.0023 Pa-s are used, as in Sect. 6.5.

It is seen in Fig. 8.2 that for low enough concentrations (∂µ/∂c̃),  and therefore 
Deff, is positive, whereas for higher concentrations (∂µ/∂c̃),  and consequently Deff 
is negative. As can be appreciated in Fig. 8.2, the critical reduced concentration 
for this transition is near c̃ ≈ 0.5 c̃ .  This value corresponds to a volume fraction  
(which in the system under consideration is given by φ = 2.168 × 10−2 c̃ ) of 0.01 
and to a corresponding mass percentage of 1.2 wt%. We must insist, as we did in 
Sect. 6.5, that in the calculation leading to (8.16), use has been made of the Rouse 
expression (5.46) for the steady state compliance, instead of the simplest approxi-
mation J = ( nRT)−1, which would yield an opposite sign for the non-equilibrium con-
tributions to the chemical potential. The need for the use of the rigorous expression 
for J is thus confirmed again.

Therefore, the effective polymer diffusivity depends on the shear rate, molecu-
lar weight (through the dependence of the relaxation time) and concentration. In 
Fig. 8.3, the corresponding effective polymer diffusivity versus the Deborah num-
ber τ γ̇  for the same system of Fig. 8.2 is presented, for several values of the re-
duced concentration. For low values of the latter, the effective diffusivity is always 
positive and increases with the shear rate and the molecular weight. In this range 
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Fig. 8.3   For different 
reduced concentrations 
c̃, (∂µ/∂c̃),  which is 
proportional to the polymer 
effective diffusivity, is shown 
as a function of the Deborah 
number x = τ γ̇ ,  for polysty-
rene in transdecalin solution. 
For c̃  lower than the critical 
value c̃ ≈ 0.5  the effective 
diffusivity is always positive, 
whereas for higher values of 
c̃,  the effective diffusivity 
becomes negative for suf-
ficiently high shear rates. (del 
Castillo et al. 2000)
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of concentrations the induced migration is expected to be very slow. However, for 
reduced concentrations higher than the critical one, the diffusivity becomes nega-
tive for sufficiently high values of the shear rate, the decrease being steeper for 
higher molecular weights.

Thus, it is seen that the stress contribution to the chemical potential of the poly-
mer has important effects with respect to the formulation (8.1), where the gradient 
of n rather than the gradient of  was considered. It is especially worth mentioning 
that for a given concentration (higher than a critical value), the effective diffusion 
coefficient is reduced when the shear stress increases, and it becomes negative. In 
this regime, the non-equilibrium contribution to the chemical potential considerably 
enhances the polymer migration. This may explain why the migration observed is 
much faster than that predicted by (8.1). Furthermore, it is seen in Fig. 8.3 that for 
a given value of the concentration, the effective diffusion coefficient is positive for 
values of the shear rate lower than some critical value. Thus, at low shear rates, the 
only thermodynamic force leading migration is the coupling of the second term in 
(8.9), and migration is very slow. For higher shear rates, the diffusion coefficient 
becomes negative and migration is much faster.

In the migration experiment in MacDonald and Muller (1996), the polymer solu-
tion confined in the cone-and-plate shear device has a homogeneous concentration 
c̃0  before the system is sheared. During the shear, a dependence of concentration on 
time and radial position is observed, yielding a concentration profile c̃(r , t).  This 
radial migration can be explained by using the model we just have considered under 
the condition that Deff takes negative values. Using (8.19) and the information about 
the system polystyrene dissolved in oligomeric polystyrene given in Appendix A, 
the numerical values of the derivative of chemical potential can be calculated and 
yield the results shown in Fig. 8.4 for the system called 2M by MacDonald and 
Muller (1996). In this figure a critical concentration c̃c  can be observed, for which 
the derivative of chemical potential is equal to zero for any shear rate considered. 

Fig. 8.4   Numerical values 
of the function Ψ in (8.14) 
calculated from the Rouse–
Zimm model using the infor-
mation given in Appendix A 
for the system 2M of Mac-
Donald and Muller (1996). 
The labels in the curves cor-
respond to the values of the 
shear rate given in s−1. (del 
Castillo et al. 2000)
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When the calculations are carried out for several values of the polymer molecular 
mass M, it is possible to find that c̃c = 0.00545M0.20.

In order to explain from a theoretical point of view the experimental results in 
(MacDonald and Muller 1996) we use (8.9) together with the mass balance equation 
(8.6) to obtain the differential equation which describes the shape of the concentra-
tion profile

� (8.20)

If a series expansion of the form

� (8.21)

is assumed for the solution of the latter equation, we can conclude that in some 
particular conditions (homogeneous concentration at the beginning of the ex-
periment) the following identifications can be established a0(0) = c̃0, aj(0) =         
0 (j > 0), c̃(0, t) = a0(t).

After the experimental results for system 2M it is possible to generate Fig. 8.5 
where the numerical values of a0( t) and its derivative are plotted as functions of 
time. From this plot we verify the existence of two values of time for which the 
derivative is zero, one corresponds to the beginning of the experiment and the 
other is associated with a maximum for a0(0) at time t > 0. The presence of this 
maximum prevents any monotone increase with the time of concentration in the 
cone apex. The reader interested in the details is referred to Criado-Sancho et al. 
(2000).
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Fig. 8.5   The upper curve 
corresponds to the experi-
mental and fitted values 
of reduced concentrations 
of system 2M of Mac-
Donald and Muller (1996) 
at the apex cone at several 
times. In the lower curve 
the temporal derivative 
is plotted as a function of 
time. (del Castillo et al. 
2000)
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8.2  �Shear-Induced Concentration Banding and 
Macromolecular Separation in Cone-and-Plate Flows

One of the consequences of shear-induced migration is the so-called shear-induced 
concentration banding, namely, the appearance of bands of different concentrations 
under the action of a viscous pressure in an initially homogeneous polymer solution 
(Goveas and Fredrickson 1999; Bautista et al. 2002, 2007). This phenomenon has 
practical outcomes in chromatography, i.e. for separation of macromolecules of dif-
ferent mass, as in other technical and biological situations, because the banding pro-
file depends on the molecular mass. These procedures for separation are especially 
useful in biotechnology and pharmacology, as for instance for protein purification. 
Here we will deal with a simplified mathematical model. There are several configura-
tions of interest: cone-and-plate, rotating concentric cylinders, flow along long tubes.

In Fig. 8.6 we plot the region of negative values of the effective diffusion coeffi-
cient Deff for the system so called 2M in MacDonald and Muller (1996) for different 
values of the shear rate. It is seen that for γ̇  higher than a threshold value, Deff is 
negative for concentration values between c̃1  and c̃2,  which depend on γ̇  (espe-
cially the upper value c̃2,  whereas the lower one is relatively insensitive to γ̇ ).

Figure 8.6 shows the domain of values of c̃  and γ̇  for which Deff is negative (at 
given T and p): this corresponds to the region above the curve, which has a mini-
mum for a given critical value γ̇c  of the shear rate. In fact, this curve is the spinodal 
line in the c̃ − γ̇  plane, as it corresponds to the limit of stability of the solution. For 
a fixed γ̇ ,  the values of c̃1  and c̃2  are given by the intersection of this curve with 
the corresponding horizontal line. Note the threshold c̃th,  below which the effective 
diffusion coefficient is always positive: banding would not be present for concentra-
tions lower than this value.

Figures 8.4 and 8.6 suggest directly a mechanism for shear banding. Assume 
one starts from an homogeneous solution with initial concentration c̃0  and that one 

Fig. 8.6   For values of shear 
rate and concentration in the 
region above the curve, the 
effective diffusion coeffi-
cient (8.13) is negative and 
therefore the system splits 
in two regions with different 
concentrations. For a given 
value of γ̇  these concentra-
tions are given by the inter-
section of the horizontal line 
corresponding to the value of 
γ̇  with the curve plotted in 
the figure. The minimum of 
this curve corresponds to the 
threshold value of γ̇  for shear 
banding. (Jou et al. 2001)
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imposes on the system a constant shear rate by rotating the cone at suitable angular 
speed. The second term in Eq. (8.20) always produces a flux of solute towards the 
apex of the cone. When Deff is positive, this flux will be opposed by the concen-
tration-driven diffusion flux and an (usually smooth) inhomogeneous steady state 
will be reached eventually. If, in contrast, Deff is negative, the inhomogeneization 
process will be much faster because the flux produced by ∇ · Pv  will be amplified.

This migration will eventually lead to a steady state in which the system will 
be split in two different bands, as sketched in Fig. 8.7. The inner band will have a 
high solute concentration approximately equal to c̃2  and the outer one a low solute 
concentration approximately equal to c̃1  separated by a rather sharp region. The 
conditions imposed on the profile are c̃ = c̃1  for x = 1 and c̃ = c̃2  for x = 0, with 
x = r/R, being r the distance to the apex and R the outer radius of the device. In fact, 
this profile will be rounded-off as a compromise between the migration towards 
the centre due to the second term in (8.9) and the outgoing diffusion driven by the 
concentration gradient in the regions with positive Deff but the detailed numerical 
analysis is far from trivial.

For initial inhomogeneous concentration higher than c̃th  (the lowest concen-
tration for which Deff may become negative for sufficiently high γ̇ ,  according to 
Fig. 8.6) banding will appear for values of the shear rate higher than the ones cor-
responding to the minimum of the curve in Fig. 8.6. Goveas and Fredrickson (1999) 
obtained a similar behaviour in their theoretical analysis of banding in a polymer 
solution in a wide-gap Couette flow between two coaxial cylinders; a steep part in 
the concentration profile appears for sufficiently high values of the shear rate.

Chromatographic techniques, i.e. the separation of different molecules initially 
mixed, have wide applications (Dill 1979; Dill and Zimm 1979; Schafer et al. 1974; 
Lou and Harinath 2004). To study it one needs to consider the effect of molecular 
mass on the banding.

In Fig. 8.8 we plot the boundary of the region where Deff is negative in the plane 
of shear rate γ̇  versus reduced concentration c̃  for three different molecular masses 
(2 000, 3 000 and 4 000 kg/mol, respectively) of macromolecular polystyrene in 

Fig. 8.7   Sketch of the 
steady-state concentra-
tion profile in a cone-
and-plate device for 
three different values of 
γ̇ (1.5s−1, 1.0s−1 and 0.8s−1)  
as a function of the ratio 
x ≡ r/R of the distance r to 
the apex of the cone and the 
outer radius R of the device. 
The initial homogeneous con-
centration value c̃0  is higher 
than the value c̃threshold.  (Jou 
et al. 2001)
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oligomeric polystyrene. Figure 8.8 generalizes Fig. 8.6, in which the region of nega-
tive Deff was plotted only for a single molecular mass ( M = 2 000 kg/mol). According 
to the experimental data, the critical value γ̇c  corresponding to the minimum of the 
curves is seen to depend on the macromolecular mass as γ̇c(M) ∝ M−1.35.

From this graph it is easy to find a semi-quantitative description of the mass sep-
aration process. Though the detailed analysis would be much cumbersome, a sim-
plified semi-quantitative analysis is useful in understanding the role of Deff in the 
separation process. Here, we will illustrate with two different situations the physical 
process. We consider a solution of three kinds of macromolecular polystyrene, of 
respective masses 2 000, 3 000 and 4 000 kg mol−1 in oligomeric poslystyrene. We 
assume, for the sake of simplicity, that the reduced concentration of these three 
species is initially the same, namely c̃0 = 0.5,  in an homogeneous solution in the 
cone-and-plate device. As a further simplification, we assume that the concentra-
tion is low enough that the different macromolecular species behave independently 
of each other. We aim to describe the concentration profile of the three kinds of 
macromolecular species in the steady state reached after a sufficiently long time of 
rotation of the cone.

First, we consider a shear rate γ̇ = 0.35s−1.  The point corresponding to the 
initial conditions of the system is situated in the region where Deff is negative for 
the macromolecules of M = 4 000, but it is positive for the two other molecular 
species. Thus, the concentration of the latter ones will vary slightly on the position, 
but, in contrast, since Deff is negative for macromolecules of M = 4 000, the system 
will split into two different regions: one near the centre, with a high concentration 
of M = 4 000 macromolecules, and another with a low concentration near the wall. 
The values of these two concentrations are given approximately by the intersection 
of the horizontal line corresponding to γ̇ = 0.35s−1  with the curve labelled 4 000 
in Fig. 8.8. This situation is depicted schematically in Fig. 8.9 upper, where the 
almost-vertical part of the profile has been calculated from the mass conservation 
condition.

Fig. 8.8   The same as 
Fig. 8.6, but for different 
values of the polymer mass. 
The curves correspond to 
solutions of macromolecular 
polystyrene with M = 2 000, 
3 000, 4 000 kg/mol, respec-
tively, solved in oligomeric 
polystyrene of 0.5 kg/mol. 
(Jou et al. 2001)
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The second situation corresponds to a shear rate γ̇ = 1.0s−1.  For this value of  γ̇  
and for c̃0 = 0.4,  Deff is negative for the three macromolecular species. Now, the sys-
tem will split into two regions for each species. The values of the concentration near 
the central region and in the external region are given approximately by the intersec-
tion of the horizontal line corresponding to γ̇ = 1.0s−1  with the three corresponding 
curves plotted in Fig. 8.8. The situation is depicted in Fig. 8.9 lower when the same 
initial concentration is supposed for all the species. The change of effective viscos-
ity related to phase separation is also a topic of interest (Criado-Sancho et al. 2003).

Of course, further analysis is necessary either to get higher precision and to apply 
it to other initial conditions, but we think that this short presentation may look suf-
ficiently promising to encourage further development of this approach.

A related configuration with higher technological interest corresponds to the flow 
between two concentric cylinders rotating at different angular velocities, which is 

Fig. 8.9   Concentration 
profiles of polystyrene 
macromolecules of differ-
ent molecular mass 2 000, 
3 000, 4 000 kg/mol under 
shear viscous pressure. The 
two figures correspond to 
different initial homogeneous 
conditions, detailed in the 
text. (Jou et al. 2001)
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the basis of the so-called radial flow chromatography (Gu et al. 1993; Lay et al. 
2006). The central cylinder is porous and allows the transfer of macromolecules to 
the volume inside the smaller cylinder, from which the material is removed. This 
method has some advantages over the separation in flows along long tubes, because 
of a relatively large flow area with a short flow path. This has been the basis of 
new and more efficient methods for gluten separation in wheat flour (Peighambar-
doust et al. 2008, 2010) or in separation through hollow fiber membranes (Ren et al. 
2002).

8.3  �Shear-Induced Migration and Molecular Separation 
in Tubes

In Sects. 8.1 and 8.2 we have analyzed stress-induced migration in cone-and-plate 
experiments. A situation with even more practical interest is found in straight tubes 
(Tirrell and Malone 1977; Zhen and Yeung 2002). It was considered as a basis 
for flow-induced chromatography of long molecules of DNA—a difficult topic in 
usual electrically-driven chromatography because it becomes very inefficient in 
separating molecules of different high mass—and it is of interest for actual flows of 
polymer solutions in tubes. In straight tubes, the only non-vanishing components of 
the viscous pressure tensor are

� (8.22)

where  is the shear viscosity and N1 and N2 the normal-stress coefficients. We will 
specialize our attention to upper-convected Maxwell fluids, for which N1 = 2 and 
N2 = 0. In this case, it turns out that the radial component of ∇ · Pv  is zero, because 
Prr  = Pθθ = Pθr = 0 and Pzr does not depend on z. This is an important difference with 
respect to cone-and-plate flows, where the term ∇ · Pv  is different from zero and 
points towards the axis of the device, thus promoting a migration of the particles to-
wards the centre. Thus, Eq. (8.9) reduces to J = −D̃∇µ.  In the steady state, J = 0 
and therefore, according to (8.9), one must have

� (8.23)

i.e.

� (8.24)

where the constant does not depend on the radial position r. We assume Flory-
Huggins expression for the equilibrium chemical potential, expression (8.16) for 
the flow contribution, and

� (8.25)

Prz = Pzr = −ηγ̇ , Pzz = (N1 + N2)γ̇ 2, Prr = N2γ̇
2,

∇(µeq + �µflow) = 0,

µeq(c) + �µf low(c, Pv) = const,

Pv :Pv = 2P 2
rz + P 2

zz = 2η2γ̇ 2 + (2τη)2γ̇ 4.
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For Newtonian flow, with  independent of concentration and  = 0, one has a para-
bolic velocity profile (the Poiseuille profile) for which γ̇  depends on the radial 
position as

� (8.26)

where vm  is the maximum velocity and R the radius of the tube. The parameter  
can be also written as  = 16Q2/2R8 being Q the total flow rate. Here we assume 
that the velocity profile remains parabolic regardless of the concentration redistri-
bution and non-Newtonian effects. Thus for consistency, we assume small values 
of γ̇ .

In order to determine the constant appearing in (8.24), for a given value of pa-
rameter Q/R3 the concentration profile must satisfy the condition the mass conser-
vation condition

� (8.27)

being x = r/R. In Fig. 8.10 we show the steady-state concentration profile obtained 
for a solution of polystyrene of molecular mass 2 000 kg mol−1 solved in an oligo-
meric polystyrene whose molecular mass is 0.5 kg mol−1 for several values of the 
flow rate Q.

Since ∆flow depends on the radius, through (8.25) and (8.26), the concentration 
profile determined from (8.24) will also depend on the radius in the steady state. 
Furthermore, since  and  depend on the macromolecular mass, the profile will 
depend on molecular mass. In this way, an axial flow of the solution will induce a 
radial flow of the macromolecules.

γ̇ 2 =
4v2

m

R4
r2 = βr2,

∫ 1

0

c(x)

c0
x dx =

1

2

Fig. 8.10   Concentra-
tion profiles of the 
solute (polystyrene of 
M = 2 000 kg/mol solved 
in oligomeric polystyrene 
0.5 kg/mol for several 
values of Q/R3 (in s−1). 
The horizontal line cor-
responds to the initial 
homogeneous profile, 
which would be stationary 
if the fluid were at rest 
( Q = 0). (Jou et al. 2002a)
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An important feature in the separation process is the separation rate. Indeed, 
if the separation is too slow, the length of the tubes needed to observe the steady 
concentration profile is very long, and the separation process is inefficient. Some 
of the existing evaluations predict in fact a slow separation. In the cone-and-plate 
device we found that for high enough shear rates, a shear-induced instability occurs 
which accelerates very much the separation with respect to the predictions based on 
the local-equilibrium chemical potential. In tubes a similar phenomenon may arise 
and may have interest in flow through porous systems or along arteries and veins.

8 Shear-Induced Migration and Flow Chromatography
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Diffusion is a very rich phenomenon which goes beyond the classical simple de-
scription in quiescent systems. On the one side, inhomogeneities in the flow veloc-
ity exert a deep influence on the behaviour of diffusion and have enormous envi-
ronmental and industrial importance, as for instance in the transport of pollutants 
or in the functioning of chemical reactors under continuous flow. Furthermore, the 
exponents characterizing the temporal behaviour of diffusion are drastically altered 
in the presence of velocity gradients. Indeed, the presence of a simple shear changes 
the usual behaviour 〈x2〉 ∼ t to 〈x2〉 ∼ t3, with x the displacement of the solute particles 
with respect to the moving solvent in the direction of the flow. This implies an enor-
mous enhancement of diffusion along this direction. Note that an exponent 3 for 
time also appears in diffusion in turbulent situations (Isichenko 1992).

On the other side, in some systems the mentioned exponents also differ from 
those of classical Fickian ones even in quiescent states, in such a way that the aver-
age value of the square of the displacement of the particles is proportional to some 
fractional power of time, higher or lower than unity. These cases are known as 
anomalous diffusion, which can be sub-diffusive (slower than Fickian diffusion) or 
superdiffusive (faster than Fickian diffusion). This behaviour is found, for instance, 
in amorphous materials or, in general, in materials with a complex microstructure.

Both situations, Taylor dispersion and anomalous diffusion, whose purely dy-
namical features have been much studied, imply interesting thermodynamical chal-
lenges beyond the classical formalisms. The most well-known results for Taylor 
dispersion refer to asymptotically long times, and cannot be used for short times. 
Generalized transport equations for intermediate times are needed for practical pur-
poses and extended irreversible thermodynamics has been used as a guide to obtain 
them. Finally, for the sake of completeness, we study Taylor dispersion in the con-
text of anomalous diffusion.

Hydrodynamics and thermodynamics of flow have applications in domains that 
are not studied in the present book, but which have much practical and conceptual 
interest, as for instance the description of flow in porous media or the optimization 
of fluid transport systems. In porous media, the pores form a disordered tangle 
along which the fluid is transported. Thermodynamic principles have been used to 
restrict the possible forms of the constitutive equations describing the transport in 
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these systems (Sahimi 1995; Gray and Miller 2005, 2006; Miller and Gray 2008; 
Restuccia 2010), which are of obvious interest in hydrology or in oil extraction. The 
interplay between the viscosity of the fluid, the elasticity of the walls, erosion of the 
solid matrix, and other several factors make this topic a very rich one.

Still richer is the case of biological transport networks for blood in bodies, or 
sap in leaves, or air in lungs. In them, the ensemble of the vessels is organized in 
very subtle structures, in order to optimize some aspects of the transport (Bernot 
et al. 2009; Kizilova 2010). The configuration of such transport systems often cor-
responds to optimize the liquid delivering at the minimal costs on the liquid motion 
and on the vessel construction and maintenance. Bejan and Lorente (2006) have 
proposed the so-called constructal law, according to which for a finite-size flow sys-
tem to persist in time, its configuration must evolve in such a way that it provides an 
easier access to the currents that flow through it. This principle describes not only 
natural systems, but is also applicable to the optimization of engineering problems.

9.1  �Brownian Motion in Shear Flow

The drastic effect of a velocity gradient on diffusion may be directly described by 
the mathematical solution of the evolution equation for the concentration (in moles 
per unit volume) n, namely,

� (9.1)

with D the molecular diffusion coefficient. When one uses for the velocity v ap-
pearing in the convective term, the expression for a simple shear flow, namely 
v = (γ̇ y, 0, 0)  with γ̇  the shear rate, the shear effects on diffusion may be found 
(see, for instance, Foister and van den Ven 1980).

The mentioned hydrodynamic result may also be obtained in a clear but rath-
er lengthy way by analysing the behaviour of Brownian motion described by the 
Langevin equation for a particle under shear flow. We follow here the pedagogical 
approach by Katayama and Terauti (1996), which gives a deeper view of the micro-
scopic process. The Langevin equation describing the motion of Brownian particles 
in the presence of the flow is

� (9.2)

with m and u the mass and the velocity of the Brownian particle, v(r) the velocity of 
the fluid,  the friction coefficient of the particle, and ξ  a random force due to the 
collisions with the particles in the fluid. As it is usual in the description of Brownian 
motion, this force is assumed to be Gaussian and to satisfy

�
(9.3)

∂n

∂t
+ v · ∇n = D∇2n,

m
du
dt

= −ζ (u − v) + ξ ,

〈ξi(t)〉 = 0,
〈
ξi(t1)ξj (t2)

〉
= 2kBT ζδij δ(t1 − t2),
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where the subscripts i, j refer to the spatial components of the noise, δij is Kro-
necker’s delta and δ( t1 − t2) is the Dirac delta expressing that the noise is purely 
Markovian, i.e. without memory. Conditions (9.3) state that the second moments of 
the noise are proportional to the friction coefficient and to the temperature.

From now on, we consider a plane Couette flow, with v = (γ̇ y, 0, 0) . Integration 
of (9.2) yields

� (9.4)

where  stands for /m and α = /m. Analogously, the y component of (9.2) yields

� (9.5)

By assuming x(0) = y(0) = (0), and integrating (9.5), it follows for the displacement 
y( t)

� (9.6)

When this expression is introduced into (9.4), one is led to

�

(9.7)

The expression for x( t) may now be obtained by introducing (9.7) into

� (9.8)

and integrating it with respect to time. The reader is referred to Katayama and Ter-
auti (1996) for the simple but cumbersome details.

By using (9.8) and (9.7), and taking into account only the dominant terms in the 
long-time behaviour, one obtains for the average value of the square of the displace-
ment

� (9.9)

� (9.10)

ux(t) = ux(0)e−αt +
∫ t

0
e−α(t−τ )

[
αγ̇ y(τ ) + ξ ′

x(τ )
]
dτ ,

uy(t) = uy(0)e−αt +
∫ t

0
e−α(t−τ)ξ ′

y(τ )dτ.

y(t) =
∫ t

0
uy(τ )dτ =

1

α
uy(0)(1 − e−αt ) +

1

α

∫ t

0

[
1 − e−α(t−τ )

]
ξ ′
y(τ )dτ.

ux(t) = ux(0)e−αt +
γ̇

α
uy(0)(1 − e−αt ) − γ̇ uy(0)e−αt

+
γ̇

α

∫ t

0

[
1 − e−α(t−τ )

]
ξ ′
y(τ )dτ − γ̇

∫ t

0
dτ

∫ τ

0
dτ ′e−α(t−τ ′)ξ ′

y(τ ′)

+
∫ τ

0
e−α(t−τ )ξ ′

y(τ )dτ.

x(t) =
∫ t

0
ux(τ )dτ ,

〈
〈x2(t)〉

〉
= 2Dt

(
1 + 2

γ̇ 2

α2
−

3

2

γ̇ 2

α
t +

1

3
γ̇ 2t2

)
,

〈
〈y2(t)〉

〉
= 2D

(
t −

1

α

)
,
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where D is the diffusion coefficient which is identified as D = kBT/ in accordance 
with the Einstein formula and 〈〈. . .〉〉 stands for the double average over the initial 
velocity distribution and over the ensemble of the random force. Thus, the dominant 
terms when t � 1/α  are

� (9.11a)

� (9.11b)

It is seen in (9.11) that in the absence of the shear i.e. γ̇ = 0 , one recovers the 
classical result, whereas for γ̇ �= 0 , the new term coming from the flux becomes 
dominant and changes the temporal behaviour from t to t3, but this modification 
only appears on the longitudinal term.

Although the behaviour in t3 may be obtained, as was noted, from a purely hy-
drodynamic analysis (Foister and van den Ven 1980), the terms in (9.9) including 
the parameter α (which is the inverse of a relaxation time) cannot be obtained from 
the hydrodynamic analysis, because (9.1) does not contain any microscopic relax-
ation time. For this reason, the analysis presented here is more detailed than the one 
based on the direct analytical solution of (9.1).

In this section, the coupling between diffusion and shear is purely dynami-
cal, i.e. the constitutive equation for matter diffusion is the usual Fick’s law, and 
no modification of the classical thermodynamics nor statistical framework is re-
quired.

9.2  �Taylor Dispersion and Microfluidics

The coupling of an inhomogeneous convective flow and particle diffusion leads to 
dramatic effects on the dispersion of particles, which is much enhanced with respect 
to pure molecular diffusion. This situation is important in many circumstances, such 
as diffusion of pollutants in rivers and estuaries, or of medical products in arteries 
or veins. In this frame, Taylor (1953, 1954) showed that the combined action of a 
gradient in the velocity field and the transverse molecular diffusion leads after a 
relatively long time to a purely longitudinal diffusion, as shown in Fig. 9.1, with an 
effective diffusion coefficient given by

� (9.12)

Dm being the molecular diffusion coefficient in a fluid at rest and DT the Taylor cor-
rection, which is of the form

� (9.13)

〈
〈x2(t)〉

〉
= 2Dt +

2

3
Dγ̇ 2t3,

〈
〈y2(t)〉

〉
= 2Dt.

Deff = Dm + DT,

DT = AU 2d2/Dm,

9 Taylor Dispersion and Anomalous Diffusion
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with U the mean velocity, d the width of the duct and A a numerical coefficient 
which depends on the details of the flow (for a plane Couette flow between paral-
lel plates separated by a distance d, A = 1/210 and for a cylindrical Poiseuille flow 
in a duct of radius d, A = 1/48). Note that DT is much larger than Dm, for instance, 
if Dm ∼ 10−10 m2/s, U =10−1m/s, and d  = 10−1  m, DT will be of the order of 
10−1 m2/s. Thus, DT becomes dominant in a wide range of situations, and implies 
much faster diffusion than that in a quiescent fluid.

This feature may be qualitatively understood by considering an initially homo-
geneous band of solute perpendicular to the velocity direction and studying how it 
disperses under the combined action of the flow and the diffusion. If the diffusion 
did not play any role, the particles would be dragged by the flow and the initially flat 
band would be stretched into a paraboloidal band corresponding to the paraboloidal 
velocity profile of Poiseuille flow. However, diffusion induces a transversal flow of 
particles from the high to the low concentration regions, and it eventually produces 
a uniform plug with increasing width moving downstream. It may seem surpris-
ing that the Taylor dispersion coefficient (9.13) is higher for lower values of the 
molecular diffusion coefficient Dm. However, the interpretation of this seemingly 
paradoxical feature is clear: the slower the transverse diffusion, the longer the fast 
particles remain in the fast layers and the slow particles in the slow layers, and, as a 
consequence, the rate at which they separate longitudinally from each other is faster.

The characteristic time that the particles take to cross the duct of width d is, 
according to (9.11b), of the order of tc = d 2/2Dm. On the other hand, as it has seen 
in Sect.  9.1, the longitudinal diffusion along the flow, given by (9.11a), may be 
written in terms of an effective diffusion coefficient Deff( t) depending on time as 
〈x2〉 ≡ 2Deff (t)t  with

� (9.14)

If one introduces in (9.14) the time tc characterizing the transversal diffusion and 
writes γ̇ d = U,  one obtains Deff (t) ≡ Dm + AU 2d2/Dm.  Thus, the transversal 
diffusion modifies the effective longitudinal diffusion coefficient and enhances it 
dramatically. The original rigorous derivation for the expressions describing the 
shear-enhanced longitudinal diffusion may be found in Taylor (1953, 1954) and 
Aris (1956).

Deff (t) ≡ Dm

(
1 +

1

3
γ̇ 2t2

)
.

Fig. 9.1   Taylor’s dispersion: in A the particles of the solvent are aligned perpendicular to the flow, 
whose parabolic velocity profile is shown; in B, the particles have moved with the fluid; in C, the 
combination of the velocity field and the transversal diffusion of the particles yields an enhanced 
longitudinal diffusion. This latter stage is known as Taylor’s dispersion

A B C
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Another range of situations of potential interest is that arising in microfluid-
ics and we will make an estimation in this regime. As an illustration in micro-
fluidics, let us consider the longitudinal diffusion of glucose in water, for which 
Dm � 5 × 10−10 m2 s−1, in a cylindrical tube with radius R  = 100 μm with an aver-
age speed ν = 10−3 m s−1. In this case, the Taylor effective diffusion would be

� (9.15)

To reach this effective value, one needs a time interval of the order of teff = R2/2D = 10 s. 
Therefore, the minimum length of the tube is leff = vteff = 10−2m = 104µmmm. If we 
have a tube of this length, the effective coefficient will change from the purely 
molecular value Dm to the effective value computed in this illustration. Thus, the 
short-time behaviour of Deff( t) will be needed, unless the tube is much longer than 
this value.

Thus, Taylor’s formula is only valid for asymptotic long times (i.e. t � tc), and 
attempts have been made to obtain a description valid at any time (see Camacho 
1993a, b, c; Smith 1981, 1987a, b for references) which are necessary for ducts 
shorter than Utc. A rough estimation of the actual value of the effective diffusion 
coefficient could be obtained, for instance, from expression (9.14) for times shorter 
than tc. In this very simplified estimation, expression (9.15) would be modified as

� (9.16)

for t ≤ tc, and (9.15) for t ≥ tc.
This rough estimation may be improved by starting from the convection-diffu-

sion hydrodynamic equations. However, the direct study of the intermediate time 
scales turns out to be very complicated and clever simplifications are useful for 
practical aims (Camacho 1993a, b, c; Berentsen et al. 2005; Berentsen and Kruijs-
dijk 2008; Hamdan et al. 2008). They will be considered in the next section.

9.3  �Taylor Dispersion for Short and Intermediate Times

Camacho (1993a, b, c) proposed a simplified approach to the intermediate-time 
behaviour of Taylor dispersion based on a dynamical equation for the Taylor dif-
fusion flux. The intuitive idea is that for very short times the longitudinal motion 
of the particles is determined by the drag of the flow, and therefore it could be 
reversed if the flow was reversed (this is the period during the transition from A 
to B in Fig. 9.1). In contrast, for longer times, the combination of the transversal 
spread and shear flow (transition from B to C in Fig. 9.1) would make the motion 
irreversible even if the flow was reversed. This generalization is especially useful 
in microfluidic flows, where the tubes must be very thin and very short (Tabeling 
2005; Bruus 2008).

DT = D

[

1 +
1

48

(
vR

D

)2
]

= 5 × 10−10 m2

s
[1 + 800].

DT = Dm

[

1 +
1

48

(
t

tc

)2( vR

Dm

)2
]

,
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The advantage of such a model is that it allows elimination of one degree of 
freedom (the distribution of the particle in the y direction, perpendicular to the flow) 
yielding a description in terms of only one spatial component, namely x, the posi-
tion along the flow. From the point of view of transport theory, this has the further 
interest of exhibiting a transition from a reversible behaviour at short times to an 
irreversible behaviour for times longer than τ.

9.3.1  �Evolution Equation for the Flow of Matter

The generalized Maxwell–Cattaneo for the Taylor diffusion flux JT, proposed by 
Camacho (1993a) is

� (9.17)

where ū  is the mean velocity in the direction of the flow, c the concentration, β a 
phenomenological coefficient, and τT the characteristic relaxation time (of the order 
of tc used in (9.14)). This relation contains relaxational and non-local terms—analo-
gous to other generalized transport equations as the Guyer–Krumhansl equation 
for the heat flux—and includes, besides, a new term (the third term on the left-
hand side) which describes a transient anisotropic dispersion due to the fact that the 
solute disperses differently down-flow and up-flow. For long times and relatively 
homogeneous situations, this equation reduces to JT = −DT(∂c/∂x), i.e. the Fick’s 
equation written in terms of Taylor’s effective diffusion coefficient.

Substitution of (9.17) into the solute balance equation results in

�

(9.18)

The results for the effective diffusion coefficient as a function of time, derived from 
this equation are plotted in Fig. 9.2. It is seen that it changes from the molecular dif-
fusion coefficient at short times to the Taylor’s diffusion coefficient at long times, 
and gives the value of the effective diffusion coefficient at all intermediate times.

9.3.2  �Evolution of Effective Diffusion Coefficient: From 
Reversible to Irreversible Behaviours

Furthermore, the results from (9.18) are compared with a numerical simulation of 
a Taylor’s dispersing flow between parallel plates (Camacho 1993b) (Fig. 9.2). In 
this simulated experiment (transmission dispersion simulation), one computes the 

JT + τT
∂JT

∂t
+ τTβū

∂JT

∂x
= −DT

∂c

∂x
+ l2

T
∂2JT

∂x2
,

τT
∂2c

∂t2
+

∂c

∂t
+ τTβū

∂2c

∂x∂t
− (τTDm + l2

T)
∂3c

∂x2∂t

= D
∂2c

∂x2
+ τTβūDm

∂3c

∂x3
+ l2

TDm
∂4c

∂x4
.
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average of the displacements of the particles with respect to the mean convective 
motion over the simulation distribution 〈(∆x)2( t)〉 at different points as a function of 
time, and represents the ratio 〈(�x)2(t)〉/2t = D∗(t)  versus the penetration length 
of the solute as a whole, given by L = 〈∆x( t)〉; D* is called the effective dispersion 
coefficient, as it has the dimensions of a diffusion coefficient and tends asymptoti-
cally to D in the long-time limit and it provides a useful generalization of Taylor’s 
results for all time regimes. Other simulations (echo dispersion simulations) consist 
of letting the system evolve during a time t and suddenly reversing the velocity field 
and representing again D*( t) as a function of L. As it could be expected, if the flow 
reversal is produced at very short times, most of the solute particles are still able to 
go back to their original position. The longer the time interval they have been carried 
out by the fluid, however, the more improbable will be that they recover their initial 
position. The results of the theoretical predictions based on (9.18) are compared 
with those of the simulations in Fig. 9.2. The agreement is very satisfactory for a 
wide range of velocities (always in the laminar regime) and therefore it provides an 
illustration of the transition from reversible short-time behaviour to an irreversible 
long-time behaviour, an interesting basic topic in generalized transport equations.

9.3.3  �Entropy and Entropy Flux: From Exhaustive Information 
to the Relevant Information

Coefficients τT, lT and DT appearing in (9.17) are not arbitrary. They may be ob-
tained from an analysis of the behaviour of the Fourier modes of the number particle 
density, cn( x, t), the velocity νn and the fluxes Jn = 1

2cn(x, t)vn , and by relating 
them to the Taylor flux as JT =

∑
n Jn . It was found (Camacho 1993b) that

� (9.19)τT =
DT

〈v2〉
, l2

T = τTDm, DT =
∞∑

n=0

1

2
v2
nτn,

Fig. 9.2   Comparison 
between the theoretical 
predictions of reference by 
Camacho (1993b) accord-
ing to (9.18) ( solid lines) 
and the simulations. Squares 
and diamonds correspond 
to transmission and echo 
simulations, respectively. 
(Camacho 1993c)
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where the time spectrum τn ( τn is the relaxation time of the nth mode Jn of the dif-
fusion flux) is given by n = ( n22D/l2)−1 and depends on the kind of hydrodynamic 
flow. The reader interested in further details is referred to Camacho (1993b).

For the sake of illustration, and for the interest from a thermodynamic perspec-
tive, we show that the non-equilibrium entropy incorporating the contribution of the 
fluxes and its relation with the evolution equation for the diffusion flux are in total 
agreement with extended irreversible thermodynamics and how they summarize the 
essentially relevant physical information coming from the elimination of irrelevant 
degrees of freedom. Indeed, according to EIT, the entropy is given by

� (9.20)

and the entropy flux is given by

� (9.21)

where J is the total particle flux, namely J = Jm + JT, and Pn denotes the flux of Jn, 
whereas αmn and δn  are coefficients independent of the fluxes.

In order to corroborate expressions (9.20) and (9.21) from a more detailed point 
of view, Camacho started from the relation between entropy and concentration at a 
given point x, y, at time t,

� (9.22)

Here C( x, y, t) is the concentration at point x, y at time t. We are not interested in 
such a detailed description, but only in the behaviour of the concentration c( x, t) av-
eraged over y. Therefore we are faced with the problem of the reduction of variables 
without losing the essential observable information. It is useful to express C( x, y, t) 
in terms of its Fourier components over the transverse direction as C( x, y, t) = c( x, t)
(1 + ), with  given by

� (9.23)

with d the width of the duct and cn the corresponding Fourier component. After 
introducing (9.23) into (9.22) one obtains

� (9.24)

The first term is the local-equilibrium entropy corresponding to the averaged 
concentration. When  is small, i.e. when the transverse inhomogeneities are 

s = seq −
∞∑

n=1

1

2
αnJn · Jn,

J s = −
µ

T
J −

1

2

∞∑

n,m=1

αmnJm · Jn −
∞∑

n=1

δnPn · Jn,

s(x, y, t) = −kC(x, y, t)[ ln C(x, y, t) − 1].

φ(x, y, t) =
1

c(x, t)

∞∑

n=1

cn(x, t) cos
nπy

d
,

s(x, t) = −kc(x, t)[ ln c(x, t) − 1] − kc(x, t)
∫ d

0

dy

d
(1 + φ) ln (1 + φ).
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small compared to the average value, the second-order expansion of the logarithm 
yields

� (9.25)

Finally, substituting (9.22) into (9.24) and using Jn = cnνn, with Jn and νn the corre-
sponding Fourier components of J and ν, one obtains

� (9.26)

Therefore, we may identify

� (9.27)

This approach confirms that the elimination of the transverse degrees of freedom 
gives a contribution to the entropy which is related to the fluxes. The situation has 
some similarity with that found in Chap. 3 in the kinetic theory of gases, where the 
elimination of the fast degrees of freedom in non-equilibrium contributes as a term 
additional to the local-equilibrium entropy.

Analogously, the non-equilibrium contributions to the entropy flux may be ob-
tained by following a similar path by starting from the expression for the entropy 
flux in the bidimensional space, where

� (9.28)

By expanding s, ν, and J in terms of the Fourier components, one obtains expression 
(9.21) with

� (9.29)

Thus, in this section the thermodynamic framework of EIT has been used to for-
mulate a generalised hydrodynamics describing the relevant one-dimensional fea-
tures of the matter transport along the flow, by capturing the relevant aspects of the 
transversal transport. Interesting generalizations of this procedure may be found in 
Berentsen and Kruijsdijk (2008) and Hamdan et al. (2008). This is of much practical 
interest because there are many situations where the length of the duct (tubes, arter-
ies, veins) is not enough to reach the dispersion regime, and therefore a description 
for short and intermediate times is extremely useful.

s(x, t) − seq(x, t) = −
1

2
kc(x, t)

∫ d

0

dy

d
φ2.

s − seq = −
1

4

k

c(x, t)

∞∑

n=1

c2
n = −

k

c(x, t)

∞∑

n=1

1

v2
n

J 2
n .

αn =
k

c(x, t)

2

v2
n

.

J s
x (x, y, t) = s(x, y, t)v(x, y, t) − µ(x, y, t)T −1Jmol,x.

αmn =
k

c(x, t)

vm+n + vm−n

vmvn

, δn =
k

c(x, t)

2

v2
4

.
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9.4  �Anomalous Diffusion and Non-equilibrium 
Thermodynamics

Anomalous diffusion is an interesting stochastic transport phenomenon in which the 
root-mean-square characteristic value of the displacement of the particles, which in 
classical diffusion grows proportionally to t in the long-time limit, behaves as

� (9.30)

with σ  ≠  1. If σ  = 1 one recovers the usual diffusion and the behaviour for σ  < 1 or 
σ  > 1 is called subdiffusive or superdiffusive, respectively. This kind of behaviour 
is found, for instance, in diffusion in fractal spaces, transport in chaotic dynamics, 
flow in porous media, solid-on-solid surface growth, spreading of thin liquid films, 
particle diffusion in fluctuating magnetic fields, and, in general, in systems with 
a complex underlying microstructure (Bouchaud and Georges 1990; Schlesinger 
et al. 1993, 1995; Klages et al. 2008).

From a microscopic perspective, anomalous diffusion does not correspond to a 
classical Brownian motion but to Lévy flights, for superdiffusive systems. There 
are two main ways to derive dynamical behaviours leading to anomalous diffu-
sion: one of them is to use the formalism of fractional derivatives, either temporal 
or spatial; the other one is to resort to a nonconventional statistical description, 
which takes into account our limited knowledge of the complexities of the micro-
scopic structure. The dynamic aspects of diffusion leading to (9.30) have received 
much interest but, in contrast, the analysis of its thermodynamics aspects has been 
very scarce (Alemany and Zanette 1994; Zanette and Alemany 1995; Compte and 
Jou 1996; Frank 2002). We have proposed a thermodynamic model for anomalous 
diffusion which uses nonstandard nonadditive entropies, as the so-called Tsallis 
entropy, Renyi entropy, or the Sharma–Mittal entropy, which extend the classical 
thermodynamic formalism.

9.4.1  �Classical Irreversible Thermodynamics and Diffusion

First, we recall the classical formalism of diffusion in the framework of non-equi-
librium thermodynamics, in which one starts from the usual definition for entropy 
as applied to a continuous distribution function P( x, t):

� (9.31)

where x is the position in an N-dimensional space (for instance, the phase space, 
or the actual space). By taking the continuity equation ∂P/∂t = −∇ · J  and 

〈(�x)2〉 ∝ tσ ,

S(t) = −kB

∫
P (x, t)lnP (x, t)dNx,
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assuming, as is usual in classical irreversible thermodynamics, a linear relation be-
tween the diffusion flux J and the thermodynamic force ∇(∂S/∂P) in the form

� (9.32)

with L a transport coefficient, the following diffusion equation follows

� (9.33)

Note that if an external force Fext was acting on the system, a convective contribu-
tion of the form µ̃FextP  should be added to (9.32), with µ̃  being the mobility, 
i.e. with µ̃Fext  giving the drift velocity produced by the external force. In this 
case, (9.33) would have the corresponding additional term and would become the  
Fokker–Planck equation. Coming again to the purely diffusive situation, it is usu-
ally assumed that the transport coefficient L in (9.32) is a constant times the dis-
tribution function P, namely, L = ( D/kB)P. By using this relation one may finally 
cast (9.33) in the more familiar form of a diffusion equation

� (9.34)

with D the corresponding diffusion coefficient. More general equations could be 
obtained with other choices.

9.4.2  �Non-conventional Statistical Mechanics

Anomalous diffusion is usually found, as it has already been mentioned, in systems 
with complex microstructures, such as fractal and porous media, polymer networks, 
micelles, and so on. It has been proposed that a convenient way to deal with systems 
with some hidden structure, implying that the researcher is unable to satisfy Fisher’s 
criteria for efficiency and sufficiency in statistics, is to resort to non-conventional 
statistical mechanics which, among other features, are not additive and contain an 
adjustable power index, which must be obtained experimentally, and which depends 
on the dynamics, fractality, geometry, dimensions, thermodynamic state and the ex-
perimental protocols (Luzzi et al. 2002). This choice modifies the relative statistical 
weight of the different microscopic states with respect to their weight in conven-
tional statistical physics. For instance, in a fractal underlying structure there will 
be an accumulation of microscopic states at small length scales: if a cut-off length 
scale is used, the number of “hidden” states below such a scale will be relevant, but 
it will not be directly described by a conventional statistical description in the space 
of states truncated by the limitations of the experimental accessibility. There is a 

J = L∇
∂S

∂P
,

∂P

∂t
= kB∇(L∇ ln P ).

∂P

∂t
= D∇2P ,
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large family of such non-conventional statistics: one of the first ones to be proposed 
was Renyi’s entropy, defined as

� (9.35)

where q is a constant parameter; this entropy reduces to the Boltzmann one for 
q → 1 .

Another current non-standard thermodynamic formalism uses the Tsallis entro-
py, defined as

� (9.36)

where q is a constant parameter. For a system with a discrete set of possible states, 
the Tsallis entropy is written as

� (9.37)

This generalised entropy, proposed by Tsallis (1995, 1999) and Tsallis et al. (1995) 
on the basis of multifractal analysis, reduces to Boltzmann’s one in the limit when q 
tends to 1, as it may be easily seen by applying the L’Hôpital rule to (9.37). In this 
case, (9.37) tends to

� (9.38)

or, in continuous terms, (9.36) tends to (9.31).
In contrast with the Boltzmann entropy, generalized entropies are not extensive. 

Indeed, if one has two independent systems (1) and (2) described, respectively, by 
the set of probabilities p(1)

i  and p(2)
i  it is easy to check that the total entropy of the 

system (1) + (2) is not the sum of the entropies of systems (1) and (2). In particular, 
and for the sake of illustration, in the Tsallis entropy (9.37), assuming that the value 
of the parameter q is the same for both systems, its value for the total system com-
posed of subsystems (1) and (2) is

� (9.39)

Thus, 1 − q is a measure of the lack of extensivity. It has been shown that the gener-
alised thermodynamic formalism based on the Tsallis entropy is consistent with pos-
itivity, concavity (if q  >  0), or convexity (if q  <  0), irreversibility ( H-theorem), and 
the Legendre-transformation framework of standard thermodynamics. Furthermore, 

SR
q ≡

kB

1 − q
ln

[∫
Pq(x, t)dN x

]
,

Sq(t) = −
kB

1 − q

∫
P (x, t)l

[
1 − P q−1(x, t)

]
dNx,

Sq = −
kB

1 − q

(

1 −
∑

i

p
q

i

)

= −
kB

1 − q

∑

i

pi

(
1 − p

q−1
i

)
.

S = −kB

∑

i

pi ln pi

Stot = S(1)
q + S(2)

q +
1 − q

kB
S(1)

q S(2)
q .
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it is also consistent with the fluctuation-dissipation theorem, the Onsager reciproc-
ity relations, and other relevant properties linking thermodynamics and statistical 
physics in non-equilibrium situations (Tsallis 1995, 1999; Tsallis et al. 1995).

Since one of the essential differences between unconventional entropies and 
Boltzmann entropy is the non-extensive (or non-additive) character of the former, 
it may be expected that it will play a relevant role in situations where non-additiv-
ity should be expected, i.e. when some long-range interactions are essential, as in 
self-gravitating systems and in systems with long correlations. Indeed, it has been 
shown that Tsallis entropy, by means of an adequate variational principle, makes it 
possible to find sensible distribution functions for stellar polytropes or to reproduce 
the distribution of the velocities of galaxies in clusters of galaxies, while the use of 
Boltzmann entropy yields unphysical distributions.

A different situation exhibiting long-range correlations arises in anomalous 
diffusion. Indeed, from a microscopic point of view, anomalous diffusion may be 
described, for instance, by random walks exhibiting either a long-tailed waiting 
time distribution or a long-tailed distribution of jump lengths, the paradigmat-
ic situation in discrete time being the so-called Lévy flights, which are random 
motions without any defined spatial scale (Schlesinger et al. 1995; Metzler and 
Klafter 2000; Klages et al. 2008). Indeed, it turns out that the set of points visited 
by the random walker is self-similar, i.e. fractal. Thus, from this perspective, it is 
logical to seek a relation between unconventional entropies and anomalous dif-
fusion.

9.4.3  �Generalized Thermodynamics and Anomalous Diffusion

Here, we propose a thermodynamic model for anomalous diffusion based on Tsal-
lis entropy (Compte and Jou 1996). There are some parallels between this idea and 
extended irreversible thermodynamics. In the latter, the introduction of memory and 
non-local effects in the transport equations implies non-equilibrium contributions 
to the entropy. Here, we inquire whether anomalous diffusion, which modifies the 
usual transport equation for diffusion, may also be related to some modifications of 
the entropy.

By analogy with the classical formalism presented in Sect. 9.4.1, we write the 
flux of probability in this generalised Tsallis thermodynamic formalism as

� (9.40)

Introduction of (9.40) into the conservation equation for the probability yields

� (9.41)

J = L∇
∂Sq

∂P
=

kBq

1 − q
L∇P q−1.

∂P

∂t
=

kBq

1 − q
∇(L∇P q−1).
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The corresponding entropy production may be found by evaluating the time deriva-
tive of the generalised entropy, namely

� (9.42)

By introducing (9.41), integrating by parts, and assuming that the surface term van-
ishes, one obtains

� (9.43)

Therefore, the entropy production in this formalism is positive definite, as it 
should be.

We note that, since in classical irreversible thermodynamics L depends on P as 
L = DP/kB, with D a constant, we are led to the possibility of a dependence for L on P 
as L = DPα/kB. For α = 1 one recovers the classical situation and for α ≠ 1 anomalous 
effects are introduced. A concentration-dependent diffusivity of this form has been 
proposed, for instance, for fractal diffusion, particle diffusion across magnetic fields 
and for the motion of a polytropic gas in porous media. Thus, anomalous diffusion 
may have thermodynamic contributions (due to q  ≠  1) and dynamical contributions 
( α  ≠  1).

Introducing this expression for L into (9.41) we obtain the following diffusion 
equation which generalizes the classical one (9.34)

� (9.44)

This non-linear equation, which is sometimes referred to as the “porous media equa-
tion” (Vázquez 2007), as it was proposed in 1937 to describe the flow of water or oil 
in porous media, has been thoroughly studied in several mathematical publications. 
In N dimensions, the solutions are of the form

�
(9.45)

� (9.46)

Thus, their characteristic scaling is easily seen to correspond to anomalous diffusive 
behaviour. To check that (9.45) leads to behaviour (9.30) we examine it with more 
detail. First of all, it must be commented that, since in some cases the second mo-
ments of (9.45) are divergent, we focus our attention on the measure of the radius 

dSq

dt
=

kBq

1 − q

∫
P q−1(x, t)

∂P

∂t
dNx.

dSq

dt
=

(
kBq

1 − q

)2∫
L(∇P q−1)

2
dNx.

∂P

∂t
= D

q

α + q − 1
∇2P α+q−1.

P (x, t) = t−µf (xt−µ/N ),

µ =
N

N (q + α − 2) + 2
.
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r( t) of the sphere which contains a given fraction β < 1 of the total probability, de-
fined as

� (9.47)

where ΩN is the surface of N-dimensional sphere of unitary radius. Then, we con-
sider the variation of (9.47) with time, for the change of variable

� (9.48)

This leads to

� (9.49)

Comparison of (9.47) and (9.49) leads to the conclusion that

� (9.50)

independently of β. Thus, it is recognized the anomalous diffusive scaling

� (9.51)

with

� (9.52)

Then, σ  > 1 (superdiffusion) if q  +  α  <  2, and σ  <  1 (subdiffusion) for q  +  α  >  2. This 
expression shows that indeed both thermodynamic factors ( q) and dynamic effects 
( α) may contribute to the anomalous diffusion, and that it reduces to the classical 
situation for q = α = 1, in which case the classical Boltzmann entropy is recovered.

It is interesting to see that anomalous diffusion seems to require a modification 
of the classical entropy, in analogous way as memory and non-local effects require 
to modify the classical entropy in extended irreversible thermodynamics. Of course, 
in the present example it is not clear whether one is forced to modify the entropy 
( q ≠ 1) or if it is sufficient to assume a non-linear dynamical law without modifying 
the entropy ( q = 0 but α ≠ 1). Frank (2002) has studied with more generality the 
relation between anomalous diffusion and several forms of generalized entropies 
in the framework of a generalized Fokker–Planck equation. It is interesting to note 
that the stationary solution of (9.44) maximize some unconventional entropies, as 
Tsallis’ or Renyi’s ones, thus adding a further relationship between thermodynamics 
and diffusion.

∫ r(t0)

0
P (|x|, t0) �N |x|N−1d|x| = β,

x ′ =
(

t

t0

)−µ/N

|x|.

∫ (t/t0)−µ/N r(t)

0
P (x ′, t0)�Nx ′N−1dx ′ = β.

r(t) =
(

t

t0

)µ/N

r(t0),

r ∼ tσ/2,

σ

2
=

µ

N
=

1

N (q + α − 2) + 2
.
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For an initial delta distribution, the solution of (9.44) is

� (9.53a)

� (9.53b)

where

� (9.54)

with  given by (9.46) and a a constant (depending on q and ) to be determined 
by normalization. These solutions correspond respectively to the subdiffusion and 
super-diffusion. These solutions generalise the standard Gaussian profile of classi-
cal diffusion for an initial delta profile.

9.5  �Anomalous Diffusion in Flowing Systems

In this chapter we have been paying a special attention to the influence of inhomo-
geneous flows on diffusion (Compte et al. 1997a). In this section, we will generalize 
the previous analysis to anomalous diffusion. In the presence of a velocity distribu-
tion, we would have, instead of (9.44),

� (9.55)

In the last equality we have used D′  ≡  Dq(   + q − 1)−1 and   ≡    +  q  −  1, to have a 
more compact notation. To solve (9.55), we assume that the physical solution for an 
initial delta distribution has the form

� (9.56)

The functions B( t) and ( t) must be determined by substituting (9.56) into (9.55), 
which yields the following differential equations

� (9.57)

� (9.58)

P (x, t) = bt−µ
(
a2 − x2t−2µ/N

)1/(q+α−2)
for q + α > 2,

P (x, t) = bt−µ

(
1

a2 + x2t−2µ/N

)1/(2−q−α)

for 2
N − 1

N
< q + α < 2,

b =
{

|q + α − 2|
2Dq[N (q + α − 2) + 2]

}1/(q+α−2)

,

∂P

∂t
+ ∇ · (P v) =

Dq

α + q − 1
∇2P α+q−1 = D′∇2nγ .

P(x, t) = B(t)
[

1 +
1 − γ

2
(x − x̄) · ζ−1(t) · (x − x̄)

]
.

dB

dt
= −γD′Bγ Trζ−1 − BTr(A),

dζ

dt
= 2γD′Bγ−1U + A · ζ + [A · ζ ]T ,
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with A describing the velocity profile as v = A · x. Furthermore, we will demand 
P(x, t) to be normalized throughout the evolution. This yields the condition

� (9.59)

This gives an additional relation between the functions B( t) and ( t). A direct com-
putation leads for the second moments of the displacements to the relation

� (9.60)

Thus, by solving ( t) from (9.57), (9.58), and (9.59) we directly obtain 〈x2〉 as a 
function of time. In particular, for N = 2, (9.59) yields B(t) = (γ /2π )( det ζ−1)1/2, 
which, when introduced into (9.56), allows us to obtain ( t). When one takes for the 
velocity distribution a pure shear, as in bidimensional Couette flow, namely

� (9.61)

one is led, after rather cumbersome calculations, to the asymptotic behaviour 
(Compte et al. 1997)

� (9.62)

with

� (9.63)

In the classical situation ( σ  =  1) one recovers the classical results for diffusion under 
shear flow mentioned in the introduction, namely, that 〈x2〉 ∼ t3 whereas 〈y2〉 ∼ t.

An alternative way to describe anomalous diffusion instead of the non-linear 
Eq. (9.44) is to use fractional derivatives for time or space, such as

� (9.64)

� (9.65)

where ∂α/∂tα  stands for the Riemann–Liouville fractional derivative of order α, 
and ∇2µ  is defined as the inverse Fourier transformation of −k2μ. Equation (9.65) 
leads to a solution of the form x2 ∼ t1/µ .

The modifications of the exponents due to the shear flow would be different if, 
instead of starting from (9.44)—namely using (9.55)—, models based on fractional 

2πN/2

�(N/2)

√
det σB

[
1
2 (1 − γ )

]−N/2
∫ ∞

0
rN−1(1 + r2)

1/(q−1)
dr = 1.

〈xx〉 =
[
1 + 1

2 (N + 2)(γ − 1)
]−1

ζ .

A =
(

0 0
γ̇ 0

)
,

〈x2〉 ∝ t2σ+1, 〈y2〉 ∝ t2σ−1, 〈xy〉 ∝ t2σ ,

σ =
1

γ
=

1

α + q − 1
.

∂αu

∂tα
= D∇2u,

∂u

∂t
= D∇2µu,
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time or space derivatives were used. For instance, when a plane shear flow is added 
to (9.65), namely, when one writes

� (9.66)

the solution becomes

� (9.67)

Thus, the influence of a shear leads to different modifications for 〈x2〉 in the descrip-
tions (9.44) or (9.65). If in quiescent systems one has 

〈
x2

〉
∼ tν ,  in shear flows 

(9.44) leads to 
〈
x2

〉
∼ t2ν+1,  whereas (9.65) leads to 

〈
x2

〉
∼ tν+2,. For classical for-

malism, with v  =  1 both equations result 
〈
x2

〉
∼ t3,  as found in Sect. 9.1. However, 

the presence of the flow does not allow us to discriminate between thermodynamic 
and dynamic effects, as q and α always appear in the combination q  +  α.

9.6  �Taylor Dispersion and Anomalous Diffusion

In an analogous way that a velocity gradient modifies classical diffusion into Taylor 
dispersion, as it has been seen in Sect. 9.2, we ask for such a coupling in anomalous 
diffusion. This problem was dealt with by Compte and Camacho (1997) from Levy 
flight formalism. They start from the fractional diffusion equation of the form

� (9.68)

with ∂1−γ /∂t1−γ  stands for the Riemann–Liouville fractional derivative of order 
1 − , and Dγ  is a constant coefficient which generalizes the role of the usual diffu-
sion coefficient to situations with  ≠ 1.

Their final result is

� (9.69)

with

� (9.70)

a generalized Taylor dispersion coefficient, with vn the n-th Fourier coefficient of 
vx( y) and τn the decay time of vn, given by

� (9.71)

∂u

∂t
+ γ̇ y

∂u

∂x
= D∇2µu,

〈x2〉 ∼ t (1+2µ)/µ.

∂

∂t
P (y) = Dγ

∂1−γ

∂t1−γ

∂2

∂2y
P (y),

〈(�x(t))2〉 =
2Dγ tγ

�(1 + γ )
+

2DT(γ )t2−γ

�(3 + γ )
,

DT(γ ) ≡
1

2

n∑

n=1

v2
nτn,

τn =
(

n2π2

l2
Dγ

)−1/γ

,
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This coefficient involves information on the velocity of the flow and the diffusion 
constant, and therefore represents a Taylor-like dispersion, because it corresponds 
to a coupling between advection and transversal diffusion. It is worthy to note that 
the anomalous Taylor dispersion contribution, i.e. the second term in (9.69), is not 
diffusive, but it grows as 

〈
x2

〉
∼ t2−γ .

When  = 1 both terms of the right-hand side in (9.69) have the same time depen-
dence and the usual Taylor dispersion behaviour is recovered. When  tends to zero, 
the tracer particles essentially follow the velocity profile and the anomalous Taylor 
dispersion behaves as 〈v2

x〉t2 , i.e. as a ballistic limit. For  < 1, i.e. when the behav-
iour in quiescent systems would be sub-diffusive, the anomalous Taylor dispersion 
in (9.69) gives a super-diffusive contribution, because the exponent 2 −  is higher 
than 1. Analogously, when   > 1 (super-diffusive behaviour in quiescent fluids), the 
anomalous Taylor dispersion would be sub-diffusive. It is surprising to find that for 
smaller , i.e. slower transverse diffusion, the faster is the longitudinal dispersion, 
but this is not inconsistent, but analogous to the inverse proportionality of the Taylor 
dispersion coefficient DT of (9.14).

In (9.69), the dispersion coefficient DT( ) given in (9.70) is basically the same 
as in standard Taylor dispersion, but with the generalized coefficient Dγ  replacing 
the usual diffusion coefficient D. Thus (9.69) may be rewritten in a form closer to 
(9.12) as

� (9.72)

with aγ  a constant depending on the velocity distribution characterizing the flow, 
〈v2

x〉  the mean square velocity and d the width of the channel.

9.7  �Diffusion on Fractals

In this last section, we complement the overview on non-Fickian diffusion by de-
scribing some recent approaches to diffusion in fractals; these approaches illustrate 
in an explicit way the relation between the fractal geometry of the space and the 
dynamics of diffusion. Fractals are geometric structures whose main characteris-
tic is self-similarity in space. Mathematically, this easily connects with the idea 
of scale-invariance and power law scaling. From a formal point of view, one can 
define a fractal as a structure with a non-integer Hausdorff dimension. If M denotes 
the mass of the fractal (provided that the density is constant) then it is proportional 
to Ldf , where L is the characteristic fractal length and df is the Hausdorff (or fractal) 
dimension.

For random-walks on fractals one empirically finds that the mean square dis-
placement follows asymptotically a scaling 

〈
r2

〉
∼ t2/dw ,  where r is the distance 

from the origin of the walk and dw is known as the random walk fractal dimension. 
This clearly departs from the scaling expected from Fickian diffusion, i.e. diffusion 

〈x2〉 =
2Dγ

�(1 + γ )
tγ +

2αγ

�(3 − γ )

〈v2
x〉d2

Dγ

t2−γ ,
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on fractals is found to be anomalous. Also, several authors have pointed out the 
relevant role that the chemical distance l plays in diffusive transport. The chemical 
distance is defined as the distance of the shortest path within the fractal connecting 
two given points (see Fig. 9.3). The chemical and Euclidean distances are related 
by the fractal dimension of the minimum path dmin, which is defined through the 
scaling l ∼ rdmin .

So, df, dw and dmin are the main parameters necessary to understand random-
walks on fractals. Of course, it would be desirable to have general relations between 
them in order to obtain the random-walk exponent dw as a function of the geometri-
cal dimensions df and dmin. However, such relations are only known for very specific 
kinds of fractals (for example, for 1D topological fractals one has df = dmin = 1

2dw 
(Bunde and Havlin 1991), so at practice all the three parameters must be considered 
independently in order to formulate a model for transport in fractals.

For many years, the form of the probability distribution function (empirically 
obtained from random-walk simulations and from scaling arguments) was accepted 
to follow the scaling relation

� (9.73)

where c is a positive constant. Mosco (1997) considered an alternative approach and 
introduced an intrinsic metric for fractals, defined by

� (9.74)

P (r , t) ∼ t−df /dw exp

[
−c

( r

t1/dw

) dw
dw−1

]
,

s ≡ rdw/2,

Fig. 9.3   Comparison 
between the chemical 
distance l = l1 + l2 + l3 and the 
Euclidean distance r between 
two points a and a′ of the 
Sierpinski gasket

S

S´

r

l2

l1

l3
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where s is the intrinsic distance (O’Shaugnessy and Procaccia 1995). Using scaling 
arguments in the intrinsic metrics he found

� (9.75)

which can be viewed as a generalization of (9.73). Note that the parameter dmin was 
not taken into account in the result (9.73). It must be stressed that for most fractal 
structures dmin takes values equal or very close to 1, so in those cases the relation 
(9.73) is recovered from (9.75).

Now, the question remains of how to build a diffusion model able to account for 
the characteristics above for diffusion on fractals. One of the first attempts to solve 
this problem was given by O’Shaugnessy and Procaccia (1995), even before the re-
sults (9.73) or (9.75) had been derived (Mosco 1997). They proposed a generalized 
diffusion equation in a df-dimensional space which reads

� (9.76)

D( r) here represents a generalized diffusion coefficient, and the scaling D(r) ∼ r2−dw  
was considered in order to recover the asymptotic behaviour 〈r2〉 ∼ t2/dw. Equa-
tion (9.76), however, cannot reproduce the probability density (9.75). Hence, sev-
eral generalizations and approaches were conducted in the following years. In most 
cases, partial differential equations based on fractional derivatives were proposed 
in order to fit the behaviour required. However, there has been increasing evidence 
that equations based on fractional calculus are not appropriate to describe anoma-
lous transport due to an underlying self-similar structure. Specifically, many diffu-
sion equations with fractional derivatives are known to arise from models based on 
Continuous-Time Random Walks (Metzler and Klafter 2000). In this case, particles 
performing a random walk in a homogenous media experience very long waiting 
times (distributed according to a power-law decay) between consecutive jumps, 
leading to ergodicity breaking in the system. On the contrary, anomalous diffusion 
arising from heterogeneous or fractal media is known to be ergodic, which makes 
a clear difference between both situations. A way to reconcile the result (9.75) with 
the original approach by O’Shaugnessy and Procaccia (1995), without the need of 
fractional calculus, has been found by Campos, Méndez and Fort (2004). Using the 
idea of the intrinsic metrics proposed by Mosco, they assumed that the Eq. (9.76) 
should be correct if written in terms of the intrinsic distance s instead of r. When 
transformed to the Euclidean metrics r, their approach leads then to the diffusion 
equation

� (9.77)

P (r , t) ∼ t−df /dw exp

[

−c
( r

t1/dw

) dwdmin
dw−dmin

]

,

∂P

∂t
=

1

rdf −1

∂

∂r

[
D(r)rdf −1 ∂P

∂r

]
.

∂P

∂t
=

4D0

dw2rdf −1

∂

∂r

[( r

t1/dw

) dw
2−2dwdmin
dw−dmin

rdf −dw+1 ∂P

∂r

]

,
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whose exact point-source solution coincides with the result (9.73), and D0 is a con-
stant. Note that the main ingredient introduced in this approach is a space and time-
dependent diffusion coefficient. This is made evident from the constitutive relation

� (9.78)

To validate the model, they verified through random-walk simulations that Eq. (9.78) 
was fulfilled for several fractals. In Fig. 9.4 it is shown that the generalized diffu-
sion coefficient for a random-walk on a 2D percolation cluster follows a power-law 
decay, with an exponent very close to the value (2dmin − dw)/( dw − dmin) = −0.35 pre-
dicted by (9.78).

Subsequently, Eq.  (9.77) has been also used to explain satisfactorily propaga-
tion (front-like) processes on fractals (Méndez et al. 2004) with applications, for 
example, in the field of human migrations (Hamilton and Buchanan 2007), or in 
ecological and biomedical applications, and in reaction-transport systems (Méndez 
et al. 2010).

J (r , t) = D(r , t)
∂P

∂r
=

4D0

d2
w

( r

t1/dw

) d2
w−2dwdmin
dw−dmin

rdf −dw+1 ∂P

∂r
.

Fig. 9.4   Time dependence of 
the diffusion coefficient for 
a percolation cluster in a 2D 
square lattice ( open circles) 
in comparison with the 
results obtained for a homo-
geneous lattice ( full circles). 
The solid line represents the 
theoretical scaling predicted 
by (9.78). (Campos et al. 
2004)
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In Chaps. 6 and 8 we analysed some of the consequences of the non-equilibrium 
modifications of the chemical potential on the phase diagram of dilute polymer so-
lutions and in shear-induced diffusion. It is logical to ask what are the consequences 
of such modifications in another situation where the chemical potential plays a cru-
cial role, namely, chemical reactions. This is the aim of this chapter, where we deal 
with a thermodynamic description of polymer degradation under shear. This macro-
scopic study is complemented with a microscopic analysis of the modifications of 
the chemical equilibrium constant for reactions of dilute gases under shear on the 
basis of the kinetic theory.

In this analysis, a situation is found which is analogous to that studied in Chap. 7 
in reference to the relation between dynamic and thermodynamic points of view. 
Here, we derive from the thermodynamic basis the equilibrium constant in the pres-
ence of a shear flow, without reference to the kinetic mechanisms. A more detailed 
point of view would take into account how the kinetic constants characterizing the 
direct and reverse elementary reactions are modified by the shear rate. This would 
allow one to obtain as a particular case the equilibrium constant under shear and, 
furthermore, it would describe how the kinetic details are modified.

Thus, it is clear that the kinetic approach is wider in scope than the thermody-
namic one but, on the other hand, it requires more effort and its results are less 
general, i.e. they depend in a more crucial way on the particular microscopic mod-
el, than the thermodynamic approach. This is not surprising, as the same situation 
is found in equilibrium, where kinetic analyses are more detailed but less general 
than thermodynamic results. To compare both approaches, we have used here the 
thermodynamics in the analysis of shear-induced polymer degradation, whereas we 
have outlined the kinetic approach for reactions in ideal gases under shear flow.

10.1  �Thermodynamic Formulation

Let us consider a chemical reaction described by

� (10.1)
r∑

k=1

νkXk = 0,
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where the Xk denote the different chemical components participating in the reaction 
and vk the respective stoichiometric coefficients (which are taken to be positive for 
the products of the reaction and negative for the reactans). Here, we will consider 
chemical equilibrium not in a quiescent fluid, as is the usual situation, but in a 
fluid submitted to an inhomogeneous but steady motion in the presence of a non-
vanishing viscous pressure tensor Pν. To find the condition of chemical equilibrium 
at constant temperature T, pressure p and viscous pressure Pν we start from the 
Gibbs equation (1.29) which yields, for the differential of the Gibbs free energy, the 
following expression

� (10.2)

with J the steady state compliance, as used in (1.32) and in Chaps. 6 and 7. Here, μk 
is the generalised chemical potential of component k, which has been discussed in 
detail in Sect. 6.2, and which has the form

� (10.3)

where μk,eq is the usual local-equilibrium chemical potential. We have used this 
expression at length in Chaps. 6 and 8. The non-equilibrium chemical potential may 
be written also as

� (10.4)

where the term µ(s)
k  contains the flow contributions of Pν to the chemical potential.

At constant T, p and Pν, the rate of variation of the generalised Gibbs free en-
ergy is

� (10.5)

The variations of the different components are not arbitrary, but they are related by 
the stoichiometry of (10.1). We may express dNk in terms of the degree of advance-
ment of the reaction ξ  (Callen 1960; Kondepudi and Prigogine 1998; Lebon et al. 
2008) in the form

� (10.6)

and therefore (10.5) may be rewritten as

� (10.7)

dG = −SdT + V dp +
∑

k

µkdNk +
1

2
VJ Pv : dPv,

µk(T , p, Nj , Pv) = µk,eq(T , p, Nj ) +
1

4

∂

∂Nk

(VJ )Pv : Pv,

µk(T , p, Nj , Pv) = µk,eq(T , p, Nj ) + µ
(s)
k (T , p, Nj , Pv),

dG

dt
=

r∑

k=1

µk

dNk

dt
.

dNk = νkdξ

dG

dt
=

r∑

k=1

µkνk

dξ

dt
.
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In analogy with the classical theory of non-equilibrium thermodynamics (De Groot 
and Mazur 1962; Lebon et al. 2008), we define the affinity A  as

� (10.8)

Note that in (10.8) the generalised chemical potentials appear instead of the usual 
local-equilibrium chemical potentials.

According to the second law, the rate of variation of the Gibbs free energy at con-
stant T and p must be definite negative (this is, in fact, equivalent to requiring that 
the entropy production is definite positive, because the production of free energy is 
given by minus the product of absolute temperature times the entropy production). 
This implies restrictions on the possible dependence of the reaction rate dξ/dt  with 
the affinity A. In the simplest linear approximation one may write this relation as

� (10.9)

with L a kinetic parameter, which must be positive. Since dξ/dt = 0  when equi-
librium is reached, the condition of equilibrium is obtained by setting the affinity  
A equal to zero

� (10.10)

When AA > 0 , the reaction will proceed in the direct direction (from reactants to 
products) and for AA < 0  in the reverse direction. For vanishing Pν, the generalised 
chemical potentials defined by (10.3) reduce to the local-equilibrium chemical po-
tentials and Eq.  (10.10) reduces to the well known condition for chemical equi-
librium (Callen 1960; Prigogine 1961; de Groot and Mazur 1962; Kondepudi and 
Prigogine 1998; Gyarmati 1970). For non-vanishing Pν, both the affinity A and the 
kinetic coefficient L may depend on Pν (Tirrell 1986; Onuki 1997). The dependence 
of L on Pν is a complicated kinetic problem, and therefore we will restrict our atten-
tion to the dependence of the affinity A, which is sufficient to study the equilibrium 
conditions.

From the expression for the non-equilibrium chemical potential, it is seen that 
the affinity is affected by the viscous pressure tensor. By imposing the equilibrium 
condition (10.10) one obtains the relation

� (10.11)

where ak is the activity, defined in the usual form

� (10.12)

A = −
∑

k

vkµk.

dξ

dt
= −LA,

A = −
∑

k

vkµk = 0.

∏

k

aνk = K(T , p)λ(T , p, Nj , Pv),

µk,eq = µ0
k,eq(T , p) + RT ln ak ,
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with µ0
k,eq(T , p)  the chemical potential corresponding to pure component k at the 

corresponding standard reference at given T and p. Furthermore, K is the classical 
equilibrium constant given by

� (10.13)

The function λ in (10.11) contains the flow contributions to the chemical potentials, 
and is given by

� (10.14)

It will act as a correction to the effective equilibrium constant Keff = λK which takes 
into account the effects of the viscous shear pressure over the fluid and therefore 
will change the composition of the system at chemical equilibrium.

10.2  �Shear-Induced Polymer Degradation:  
Kinetic Analysis

The flow contributions to the chemical potential are conceptually rather general. 
However, from the practical point of view, they are usually much higher in polymer 
solutions than in solutions of small molecules, due to the longer relaxation times for 
polymers. Therefore, we will concentrate our attention to polymer solutions and, 
as a concrete example, we will study the shear-induced degradation of polymers, 
i.e. the increase in the proportion of low-weight macromolecules as a consequence 
of the shear-induced breaking of the high-weight macromolecules. In order to un-
derline the unity of the thermodynamic description we will take for the chemical 
potentials the expressions we have used in Chaps. 6–8.

The verification that mechanical stresses may produce the degradation of poly-
mers and the first attempts to explain this phenomenon are due to Staudinger (1932). 
Since then, the phenomenon of degradation under flow has been studied by assum-
ing that only the bonds between monomeric units are broken, and one of the prob-
lems has concerned the position of the breaking point along the macromolecule. 
Some authors in the 1930s considered that bond reactivity cannot be treated as a 
random process, because each bond in a macromolecule depends on its particular 
chemical environment. Some experimental results seem to indicate that in some 
degradation processes all bonds have a similar breaking behaviour, whereas in some 
other studies the breaking of macromolecules is produced preferentially in a central 
position along the chain.

lnK = −
1

RT

∑

k

νkµ
0
k,eq.

λ = exp





−

1

RT

∑

j

νj

[
1
4∂(VJ )/∂Nj

]
Pv : Pv





.
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The analysis of polymer degradation is usually undertaken through techniques 
which are typical of chemical kinetics, which is a methodology which implies some 
specific reaction mechanism as the basis to set the equations which describe the 
evolution of the system composition with time (Basedow and Ebert 1975; Basedow 
et al. 1978; Mark and Simha 1940; Montroll and Simha 1940; Simha 1941; Mon-
troll 1941; Glynn et al. 1972).

A kinetic model has also been the basis of the studies carried out by Nguyen and 
Kausch (1992) on the mechanical degradation of polymers in transient elongational 
flows, where degradation is more efficient than in simple shear flows, because in 
the latter the particle rotates with the flow field and only spends, at each turn, a 
limited amount of time in high strain-rate regions, whereas in elongational flows 
the fluid element is in a continued state of dilatation. These authors have studied the 
evolution of the molecular size distribution during the degradation process starting 
from the expression of the kinetics describing the rate of bond scission, and have 
incorporated the spatial distribution and the time dependence of strain-rate in tran-
sient flow; their results, as well as a detailed comparison with experimental data, 
have been reviewed in (Nguyen and Kausch 1992).

The basic hypothesis underlying any kinetic mechanism for polymer degradation 
is to assume that each chain is broken only at one point (i.e. only two fragments are 
produced per broken macromolecule). The second hypothesis assumes that each 
elementary reaction

� (10.15)

follows a first-order kinetics, i.e.

� (10.16)

where ni and nj stand for the number of macromolecules with i and j degrees of po-
lymerization, respectively, and kji is the kinetic constant describing the breaking of 
a macromolecule with j monomers to give a macromolecule with i monomers and 
another one with j − i monomers. Finally, the kinetic models assume that kji depend 
on the shear rate.

The kinetic model described here has been widely used since the work by Base-
dow et al. (1978). These authors consider a polydisperse macromolecular system, 
with r the maximum degree of polymerization, in such a way that the coupling of 
the degradation reactions is given by the following set of linear differential equa-
tions

� (10.17)

Pj → Pi + Pj−i

dni

dt
= kjinj ,







dn1/dt

·
·
·

dnr/dt







= A ·







n1

·
·
·
nr







,
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where the matrix A of the coefficients has the form

� (10.18)

according to the reaction mechanism proposed by Simha (1941).
Besides numerical complexities, the solution of the above system is only pos-

sible through the classical techniques used in the analysis of differential equations, 
so that the only (and very non-trivial) problem is to determine the values of the 
kinetic constants kij. In the paper by Basedow et  al. (1978), three situations are 
analysed: (1) the simplest one is to assume that all bonds have the same breaking 
probability, so that the value of kij is independent of i and j and the macromolecular 
fragmentation is a random process; (2) a slightly more complicated situation as-
sumes that the kinetic constant depends on the length of the chain which is broken, 
but not on the length of the ensuing fragments, i.e. the value of kij depends on i but 
not on j; (3) the most complicated situation arises when kij depends on the position 
of the breaking point; this situation is usually dealt with by assuming that the value 
of the kinetic constant varies along the chain according to a parabola whose mini-
mum is at the central point of the macromolecule, i.e. one assumes that the bonds 
near the ends of the chain are more easily broken than those in the central region. 
A different point of view is to assume that the central bonds are those preferentially 
broken (Basedow et al. 1978), and to suppose, for instance, that the breaking prob-
ability distribution of monomer–monomer bonds is a Gaussian function which has 
the maximum at the centre of the macromolecule. These conclusions have been 
experimentally verified on several occasions (Bueche 1960).

Thus, one could make the hypothesis that the kinetic constant for the breaking of 
any chain is given by a Gaussian function in such a way that kij is given by

� (10.19)

where the standard deviation σi is supposed to be proportional to the length of the 
chain

� (10.20)

The parameters R and X appearing in (10.19–10.20) are not known a priori and k is 
a global kinetic constant describing the breaking of bonds in a global analysis of all 
the macromolecules in the system, and which may be experimentally determined.

A =






0 2k1 k31 + k32 · kr1kr ,r−1

0 −k21 k32 + k31 · kr2kr ,r−2

0 0 −
2∑

j=1
k3j · kr3kr ,r−3

· · · · ·

0 0 0 0 −
r−1∑

j=1
krj






,

kij = k(i − 1)X
[
σi(2π )1/2

]−1
exp

[
−1/(2σ 2

1 )(j − i/2)2
]

,

σi = R(i − 1).
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A polymer in solution is usually a polydisperse system, and the number of macro-
molecules of a given length is commonly given by the molecular weight distribu-
tion (MWD), from which one may obtain the set of values ni. Such values are the 
solution of the differential equations (10.17–10.18) and, by fitting the subsequent 
curve with the experimental data, one may obtain the values of R and X.

However, the kinetic mechanism by Simha (1941) and Basedow et al. (1978) 
does not include the recombination of macromolecules. Therefore, in order that 
the experimental data are consistent with the results derived from the theoretical 
model it is necessary to carry out the measurements under conditions where the re-
combination of the fragments produced in the breaking of other macromolecules is 
inhibited. A usual technique to achieve this situation is to introduce some scavenger 
radicals in the system (Henglein 1956), which neutralize the fragments produced 
in the breaking of the chains. When such recombination inhibitors are not present, 
the MWD of a sample of polystyrene with a narrow distribution is practically not 
modified during the degradation, whereas such modification is more conspicuous 
for wide distributions of the kind of the most probable distribution (Ballauff and 
Wolf 1984, 1988). We will see below that these conclusions are also found by using 
a purely thermodynamic model (Criado-Sancho et al. 1994, 1998; Jou et al. 1995).

Therefore, the kinetic mechanism proposed in (10.15) is not the most general 
one, and we propose to consider it as a particular case of a degradation-combination 
scheme of the form

� (10.21)

When one considers the equilibrium in the scheme (10.21), one must include the 
new kinetic constant Kji which corresponds to the recombination of the chains Pi and 
Pj − i and which is related to the chemical equilibrium constant Kij in the usual form

� (10.22)

Furthermore, the kinetic equations in the degradation-combination mechanism are 
now the non-linear set of differential equations

� (10.23)

where n is the column vector appearing on the right-hand-side member of (10.17), 
A is the matrix of coefficients defined in (10.18) and where one has introduced the 
new matrix

� (10.24)

Pj →← Pi + Pj−1.

Kij =
kji

κji

.

dn

dt
= [A − B(n1, ..., nr )] · n,

B =







κ21n1 κ31n1 · κr1n1 0
κ32n2 κ42n2 · 0 0

· · · · ·
κr ,r−1nr−1 0 · 0 0

0 0 0 0 0








.
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Although in the bibliography the effect of the shear rate on the degradation process 
is considered (Bestul 1956; Ballauff and Wolf 1981, 1984, 1988; Wolf 1987), it 
is easy to see in the previous expressions that γ̇  does not appear explicitly in the 
formalism. One way to include the effects of the shear in the above reaction mecha-
nisms would be to assume that the kinetic constants depend on the shear rate or on 
the shear viscous pressure. This would yield, as a consequence, a modification of 
the equilibrium constant defined in (10.22). Our aim in the next section is to study 
directly the modifications of the equilibrium constant from thermodynamic argu-
ments without going through the process, more detailed but much more compli-
cated, of studying the modifications of the kinetic constants.

10.3  �Shear-Induced Polymer Degradation: 
Thermodynamic Analysis

Here we will use a purely thermodynamical approach to describe the change pro-
duced by the shear flow on the polymer weight distribution. We consider the system 
as a multicomponent mixture, constituted by the solvent (component 1) and a set of 
polymeric species Pi (with i the degree of polymerization, i.e. the number of mono-
meric units in the chain). In this way, the polydispersivity plays a fundamental role 
in the theoretical treatment, because the degradation is attributed to the change 
in the equilibrium constant of the breaking-recombination reactions of polymeric 
chains expressed in (10.21) due to the contribution of the viscous pressure to the 
chemical potentials.

The consideration of the solute as a mixture of the chemical species Pi leads to 
a change with respect to the formalism used in the analysis of the phase diagram 
in Chap. 6. There, polydispersivity did not appear explicitly in the formalism, but 
now it is crucial, of course, to take into account its effects by including the chemical 
potentials for macromolecules with different lengths

� (10.25)

where ΔGs is the non-equilibrium contribution to the Gibbs free energy as explained 
in Chap. 6.

Furthermore, the average character of the polymeric molecular mass in the solu-
tion leads to consideration of M2 as a function of ni, i.e. each molecule with degree 
of polymerization i has a mass given by i times M0, M0 being the mass of one 
monomer. Now, instead of a binary mixture, we have a system with ñ1  moles of 
solvent and ni moles of macromolecules for each degree of polymerization i. As a 
consequence, the total number of moles of solute is given by

� (10.26)

µj = µj ,eq +
(

∂�Gs

∂nj

)

nk ,γ̇

,

ñ2 =
∑

i

ni ,
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and one may define the global molar fraction of the solute as

� (10.27)

by introducing the new quantity ñ0 = ñ1 + ñ2  which accounts for the total number 
of moles in the system.

The chemical potential of species j is given by the generalization of expression 
(6.23) and reads as

� (10.28)

where we recall that the non-equilibrium contribution has the form

� (10.29)

with  the volume fraction, J the steady-state compliance and F a function of the 
concentration defined in (6.35).

For the mean molecular mass M2 a generalised expression is used of the kind

� (10.30)

where Mi is the molecular mass of macromolecules with degree of polymerization i 
and q is a parameter which depends on the kind of average carried out ( q = 1, num-
ber average, q = 2, weight average, and q = 3, z average, are the most usual ones).

If one applies (10.11) to the equilibrium (10.21) and one assumes for simplic-
ity an ideal mixture, for which ak = Nk/Ntot , with Nk the number of chains with k 
units, one may write

� (10.31)

The superscript (0) refers to values with γ̇ = 0 , for which the flow contribution λ 
introduced in (10.11) is equal to unity (the exponent of λ in (10.31) is −1 because 
the equilibrium constant of (10.21) would be given by NiNj−i/Nj instead of Nj/( NiNj−i) 
we are writing in (10.31)).

To determine the explicit form of λ( i, j) it is necessary to define the chemical 
potential for macromolecules with a given degree of polymerization Ni. Thus, the 
function λ( i, j) is obtained by comparison with (10.11) and is given by

� (10.32)

To be specific, we will explicitly evaluate the shear-induced modification of the 
polymer weight distribution. To do this, we will use an explicit mathematical 

x2 = ñ2 /ñ0

µj

RT
=

µj ,eq

RT
+ �(φ, P v

12)jNj ,

�(φ, P v
12) =

v(P v
12)2

RT
J

(
1 − φ

φ
F + 1

)

M2 =
∑

i

niM
q

i

/ ∑

i

niM
q−1
i ,

Nj

NiNj−1
=

N
(0)
j

N
(0)
i N

(0)
j−i

λ(i, j )−1.

λ(j , i) = exp
{
−�[(j − i)Nj−1 + iNi − jNj ]

}
.
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expression for the polymer weight distribution. In particular, it is rather common to 
use the Schulz distribution (Kurata 1982)

� (10.33)

where W( i) is the polymeric mass with a degree of polymerization between i and i + 
di ( i is considered as a continuous parameter in this model), Γ is the gamma function 
and h and y are parameters which characterize the solution, and satisfy the relations

� (10.34)

with Mw the average weight of the macromolecules and r the so-called polydis-
persivity index, defined as r = Mw/Mn, with Mn the number average as defined in 
(10.30) (with q = 1).

The presence of the flow will modify the values of h and y. Let h(0) and y(0) be the 
parameters of the distribution in the absence of shear. When one combines (10.28), 
(10.32) and (10.33) one arrives at the following results

� (10.35)

and

�
(10.36)

Equations (10.35) and (10.36) allow one to determine how the parameters of the 
Schulz distribution are varied under the presence of Pv

12 . To do this, one may use 
the algorithm described in Sect. 10.5.

Another common expression for the polymer weight distribution is, instead of 
the Schulz one, the so-called most probable distribution, which has the form

� (10.37)

where α is a parameter which characterizes the distribution. The parameters of the 
equilibrium distributions without shear, α0 and with shear, α are related as

� (10.38)

in the particular case when q = 1.
From (10.31) one may draw several conclusions about the degradation mecha-

nism. In the case when one considers the molecular mass averaged over the number 

W (i) =
(yM0)n

�(h)
ih−1 exp ( − yM0i),

y =
h + 1

Mw

, h =
1

r − 1
,

Nj

NiNj−1
=

�(h(0))

(y(0)M0)h(0)

[
j

i(j − i)

]h(0)−1

λ(i, j )−1

λ(i, j ) = exp
[
−�(yM0)h[�(h)]−1

{
(j − i)h exp [−yM0(j − i)]

+ ih exp [−yM0i] − jh exp [−yM0j ]
}]

.

W (i) = α2i(1 − α)i−1,

α2
0(1 − α0)−1 = α2(1 − α)−1λ−1(α)
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( q = 1) it is obvious that λ does not depend on i nor on j: this implies that the modi-
fication of the equilibrium constant does not depend on the length of the original 
chain nor on the length of the resulting fragments after the chain is broken. This 
result is not very satisfactory from the physical point of view and it corroborates 
the empirical equations by Graessley (1974) where other kind of averages appear, 
as the weight average ( q = 2) or even the z average ( q = 3) in the expressions for J. 
In contrast, when one adopts for M2 a weight average ( q = 2) it follows that λ has a 
minimum when the chain is broken at the centre and, therefore, the modification of 
the MWD is maximum under these conditions, in agreement with the experimental 
results.

On the other hand, the molecular mass before the degradation and after the deg-
radation due to the shear may be related through the following approximation

� (10.39)

where, in practice, λ is almost independent of i and j.
When this model is applied to the analysis of a solution of polystyrene of mo-

lecular mass 1 770 kg/mol in transdecalin, it is observed that in the degradation 
process the parameter q has only a very slight influence, whereas the changes in the 
polydispersivity index, Mw/Mn influence the results much more strongly (Fig. 10.1) 
in agreement with the experimental observations (Ballauff and Wolf 1981).

Figure 10.2 shows the equilibrium distribution of segments and the difference 
between the probability Ni of finding a segment of length j for a solution of polysty-
rene in dioctyl-phtalate submitted to a shear flow. For Pν

12 = 400 Nm−2, the modi-
fication of the probability weight distribution is of the order of 1%. A comparison of 
both curves yields the conclusion that the application of a shear implies a reduction 
in the number of long chains (negative values of the continuous curve), the chains 
with a length of the order of 20 000 segments being those which are most affected 

Mw

M
(0)
w

= λ(i, j )−1/h,

Fig. 10.1   Differential 
mass fraction of the system 
polystyrene-transdecalin 
for a molecular weight of 
1 170 kg/mol under several 
shear rates assuming a Schulz 
distribution with polydisper-
sivity index 1.14 (experi-
mental value). Dashed line 
corresponds to a equilibrium 
situation. (Criado-Sancho 
et al. 1994)
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by the degradation. In contrast, the positive values of Ni − N
(0)
i  for lengths below 

15 000 segments shows the increase in the number of short chains. This increase is 
maximum for macromolecules of the order of 7 000 segments whereas the macro-
molecules of the order of 15 000 segments are almost unaffected by the degradation.

10.4  �Kinetic Theory of Chemical Reactions

Chemical reactions in ideal gases should also show, in principle, non-equilibrium 
modifications such as those mentioned in the previous section. Although usually the 
corrections will be much smaller than those arising in polymer solutions, because of 
the much shorter relaxation times of the viscous pressure, we may use ideal gases to 
understand from a kinetic point of view the origin of the modification of the chemi-
cal constant in the presence of a viscous flow or a thermal flux. Analyses by these 
means were undertaken by Eu and Li (1977), Cukrowski and Popielawski (1986) 
and Fort et al. (1999).

Indeed, we consider a dilute gas A undergoing a simple bimolecular reaction

� (10.40)

To simplify the calculations, we neglect the products B and C in the kinetic analy-
ses, i.e. we assume that they are removed very efficiently from the system.

In the presence of the chemical reaction, the Boltzmann equation describing the 
evolution of the distribution function of particles A must take into account the dif-
ferent contributions of elastic and of reactive collisions; so, it takes the form

� (10.41)

A + A → B + C.

∂f

∂t
+ c ·

∂f

∂r
=

(
∂f

∂t

)

el

+
(

∂f

∂t

)

ch

,

10 Chemical Reactions and Polymer Degradation Under Flow

Fig. 10.2   Continuous 
curve representing the 
difference between the 
probability Nj of finding a 
segment of length j when 
the system (polystyrene 
in dioctyl-phthalate) is 
subjected to pv

12  and the 
value of such a prob-
ability in a rest state N

(0)
j  

( dashed line). (Criado-
Sancho et al. 1994)
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where f denotes the molecular velocity distribution function for component A and 
c the molecular velocity. The first term in the right-hand side of (10.41) indicates 
the change in f due to elastic collisions, the only ones which were considered in the 
kinetic theory analysis of Sect. 3.1, whereas the second term indicates the effects of 
the reactive collisions.

In Sect. 3.1 we gave the expression for (∂f/∂t)el. The corresponding expression 
for the contribution of the reactive collisions is

� (10.42)

where f and f1 stand for f = f(c) and f1 = f(c1) and g = c1 − c is the relative veloc-
ity before collision, and k is a parameter of the binary encounter; and αch(g) is the 
probability that a collision with relative velocity g is reactive. Note that in (10.42) 
there are no inverse collisions, because the products are assumed to be removed ef-
ficiently, as has been already stated.

The rate of the chemical reaction in these conditions is then given by (10.42), i.e.

� (10.43)

The rate constant k for the forward chemical reaction is defined as

� (10.44)

where [A] is the concentration of component A. We will denote ε = 1
4mg2  as the 

energy of the collision in the frame of centre of mass, and ε∗  as the activation energy 
of the chemical reaction. We will assume, for simplicity, the following form for α( g)

� (10.45)

For hard spheres of diameter σ, k1 is given by k1 = σ 2g · k .
In thermal equilibrium, the reaction rate may be obtained by introducing the 

Maxwell–Boltzmann distribution function (3.7) in (10.39), and yields

� (10.46)

which corresponds to the usual result of chemical kinetics, the so-called Arrhenius 
form.

In the presence of a velocity gradient or a temperature gradient, one should use 
in (10.43) the expression for the non-equilibrium distribution function. One could 
use either Grad’s expression (3.15) or, in the Chapman–Enskog model, the form

� (10.47)

(
∂f

∂t

)

ch

= −
∫∫

ff1αch(g)k1dkdc1,

Jch = −
∫∫

ff1αch(g)k1dkdc1dc.

Jch = −k[A]2,

αch(g) = 0 for ε < ε∗, αch(g) = 1 − (ε/ε∗) for ε > ε∗.

J
(0)
ch = −4n2σ 2

(
πkBT

m

)1/2

exp

(
−

ε∗

kBT

)
,

f (1) = feq

[
1 −

mb

2kBT n
CC : (∇v)

]
,
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with b = 2η1(kBT )−1 , η1  being the first-order approximation to the value of the 
viscosity. When (10.47) is introduced into (10.43) one obtains

� (10.48)

in which the non-equilibrium contribution of the viscous flow is given by

�

(10.49)

This expression shows that the kinetic constants are modified in the presence of 
the viscous flow. Thus, it is logical to expect a change in the chemical equilibrium. 
Of course, in the simple situation where the products are immediately removed 
from the system, equilibrium cannot be reached. To study the modification of the 
equilibrium constant one should study both the direct and the reverse elementary 
equations. Thus, one would have for the complete reaction

� (10.50)

The equilibrium constant is then

� (10.51)

with kdir and krev the kinetic constants of the direct and reverse reactions. In (10.48) 
and (10.45) it has been seen that

� (10.52)

with χ (T )  a function of temperature which may be identified from (10.49). Assum-
ing for the reverse reaction an analogous dependence, but with a different function

� (10.53)

one would obtain

� (10.54)

The thermodynamic analysis gives directly the modification of the equilibrium con-
stant in terms of the shear rate, without the need to study the detailed microscopic 
mechanisms leading to the kinetic reaction constants.

Cuckrowski and Popielaski (1986) have evaluated the order of magnitude of 
these corrections in several situations. In particular, they have considered a shock 
wave where ∂vz/∂z  is the only non-vanishing component of ∇v. They obtain

Jch = J
(0)
ch + J

(v)
ch ,

J
(v)
ch = −

2

15
σ 2

(
πkBT

m

)1/2

exp

(
−

ε∗

kBT

) [(
ε∗

kBT

)2

−
ε∗

kBT
−

1

4

]

b2(∇v) : (∇v).

A + A →← B + C.

K =
[B]eq[C]eq

[A]2
eq

=
kdir

krev
,

kdir(γ̇ ) = kdir(0)
[
1 + χdir(T )γ̇ 2

]
,

krev(γ̇ ) = krev(0)
[
1 + χrev(T )γ̇ 2

]
,

K(γ̇ ) = K(0)
1 + χdirγ̇

2

1 + χrevγ̇ 2
.
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�
(10.55)

with a′ = (5kBT/3m)1/2  and �  the mean free path of the molecules. For the values 
m = 10−23 g, σ = 10−8 cm, n = 2.69 × 1019 cm−3, and ∂vz/∂z = 4.3 × 108s−1 , they 
obtain J (v)

ch ≈ 0.49J
(0)
ch . In less extreme situations and for monatomic gases, the 

non-equilibrium corrections are very small.
Viscous pressure is not the only dissipative flux that may change the reaction 

rates. A similar analysis in the framework of Grad’s approach in the presence of a 
heat flux has been performed by Eu and Li (1977), and in terms of the information 
theory by Fort and Cuckrowski (1997, 1998), Nettleton (1996a, b) and by Nettleton 
and Torrisi (1991).

We will finally note, for the sake of completeness, that in the presence of a heat 
flux, the non-equilibrium distribution function is

� (10.56)

with a = −3η1(2kBT)−1. The result for the chemical reaction rate is (Cuckrowski and 
Popielaski 1986)

�

(10.57)

Thus, in general, it is expected that the reaction rate may depend on viscous pres-
sure or temperature gradients. A possible domain of interest for this influence could 
be the prebiotic reactions taking place on a thin hot layer, carried by a heat flux or, in 
general, other kinds of reactions between antigens and antibodies in the blood flow, 
in the presence of a shear flow.

10.5  �Recurrence Method for Probability Weight 
Distribution Under Viscous Pressure

Here we show a recurrence method to obtain the probability distribution function 
in the presence of a non-vanishing shear viscous pressure by iteratively solving 
(10.35) and (10.36). The general method is shown in Fig. 10.3.

J
(v)
ch

J
(0)
ch

=
25π

1152

[(
ε∗

kBT

)2

−
ε∗

kBT
−

1

4

] (
�

a′
∂vz

∂z

)2

,

f (1) = feq

[

1 +
1

n

√
2kB

mT
a

(
C2 −

5

2

)
C · ∇T

]

,

J
q

ch = −
1

3
σ 2

(
πkBT

m

)1/2

× exp

(
−

ε∗

kBT

) [

−
(

ε∗

kBT

)3

+
17

2

(
ε∗

kBT

)2

+
15

4

(
ε∗

kBT

)
+

29

8

]
kBa2

mT
∇T · ∇T .
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We adopt as the starting point the recurrence relation

� (10.58)

where L = E( j/2) is the integer part of j/2 and the explicit expression for λ( i, j) is 
derived from (10.36). In this way, a discrete distribution Ni is generated for which 
the sums

� (10.59)

allow one to determine the normalization constant and the number average molecu-
lar weight

� (10.60)

Nj =
1

L

L∑

i=1

λ(i, j )NiNj−1,

Sn =
∑

j

jnNj (n = 0, 1, ...)

Mn =
S1

S0
M0.

Fig. 10.3   Diagram showing 
how the probability weight 
distribution out of equilib-
rium is obtained from (10.35) 
and (10.36). (Criado-Sancho 
et al. 1994)

Initial values of parameters
y (0) and h (0)

The recurrence relation (10.58)
is accomplished

Calculation of S0, S1 and S0
(S)

Calculation of Mn using (10.60)

NONew value for
y

Equations (10.62) and (10.63)
are used to calculate

Mw and h

YES

NO
h = h(0)

YES

End

New value for
h

S0 = S0
(S)
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The former distribution does not necessarily coincide with Schulz’s distribution 
given in (10.32), which will now be denoted as N (S)

j
, and for which are defined the 

sums analogous to (10.59)

� (10.61)

Furthermore, recalling (10.34) and the definition of polydispersivity index ( r = 
Mw/Mn) it is concluded that the weight-averaged molecular mass satisfies the fol-
lowing relations

� (10.62)

� (10.63)

If one formulates the hypothesis that for the considered values of P v
12  the probabil-

ity weight distribution is still of the Schulz’s form and only its parameters are modi-
fied, the new parameters h and y are obtained by means of the algorithm sketched 
in Fig. 10.3.

S(S)
n =

∑

j

jnN
(S)
j (n = 0, 1, ...).

Mw =
h + 1

h
Mn,

h = yMw − 1.

10.5 Recurrence Method for Probability Weight Distribution Under Viscous Pressure
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In this chapter we present an overview of some applications of non-equilibrium 
thermodynamics to flowing superfluids, both in the laminar as in the turbulent re-
gimes. Since the flowing behaviour of superfluids is especially surprising and chal-
lenging, and as it crucially depends on thermodynamical parameters, it is logical 
to include this topic in a book devoted to the special thermodynamic features of 
flowing fluids.

As a basic theoretical framework for the description of superfluids one could 
choose the classical and well-known two-fluid model, proposed by Tisza (1938) 
and by Landau (1941), or a one-fluid model with a vectorial internal degree of free-
dom, which may be identified, for instance, as the heat flux, or the relative velocity 
between normal and superfluid components of the two-fluid model. Since in this 
book we use extended irreversible thermodynamics as a unifying framework, which 
finds in superfluids an especially suitable field of application, because of the very 
long relaxation time of the heat flux, we will use and compare both models. The 
translation from one model to the other in linear situations is easy, as the heat flux q 
is closely related to the relative velocityV = vn − vs between normal and superfluid 
components of the two-fluid model.

Phenomena in the laminar regime have been studied for decades and are well 
understood. However, at high enough values of the relative velocity or the heat flux, 
a turbulent regime appears which exhibit peculiar quantum feature. Quantum turbu-
lence has the special feature that vorticity is quantized, and the flow is characterized 
by an irregular tangle of quantized vortex filaments, whose total length per unit 
volume depends on the heat flow. Thus, in turbulent states the fluid is populated by 
a mesh of lines which in turn, influence the dynamics of the fluid. The dynamics of 
quantized vortices is a topic of much current interest not only in usual superfluids, 
but also in rotating Bose–Einstein condensates and in superconductors submitted to 
external magnetic fields.

D. Jou et al., Thermodynamics of Fluids Under Flow, 
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11.1  �Essential Concepts and Phenomena of Superfluids

Helium was the last gas to be liquefied. This achievement was due to Kammerling 
Onnes in 1908, at 4.2 K and a pressure of 25 atm. However, the superfluid proper-
ties of liquid helium were not discovered until much later, from 1937, by Men-
delsohn, Kapitza, Allen, Misener and other scientists. Helium II, namely, superfluid 
liquid 4He below the so-called lambda point, at approximately 2.2 K, at which there 
is a sharp and narrow peak in the specific heat due to the phase transition between 
normal fluid and superfluid, exhibits a number of exceptional features which make 
it a physically outstanding system. Its most well-known peculiarities are its ability 
to flow along narrow capillaries or porous media without viscous resistance, which 
has given it its characteristic name; however, when a rotating disk is introduced 
in it and allowed to oscillate as a torsion pendulum, such rotating oscillations are 
damped as in a usual fluid. The contrast between these so different behaviours, one 
of them compatible with a total lack of viscosity and the other exhibiting a consid-
erable viscosity, is very challenging and it was one of the intuitive motivations for 
the two-fluid model.

The propagation of two kinds of longitudinal waves, namely first sound (a den-
sity or pressure wave identical to usual sound) and an exceptional second sound (a 
temperature wave), and the so-called fountain effect and thermomechanic effect, 
which are related to crossed effects between heat transport and mass transport, are 
other peculiar effects of superfluids, as well as the ability to creep along surfaces 
and to escape by climbing up the walls of the containers. Helium II has a practically 
infinite thermal conductivity, the heat flux has a practically infinite relaxation time, 
and its viscosity at low temperature is vanishingly small. It could flow during years 
along a closed circuit without decaying to rest (Wilks 1967).

The research on these phenomena has been a very active frontier of knowledge 
for many years. These frontiers were much enlarged when in 1970, it was found that 
3He also present superfluid phases. But 3He has spin 1/2 and is therefore a fermion, 
in contrast with 4He, which is a boson; thus 3He cannot directly have a Bose–Ein-
stein transition. A necessary requirement to have it is to form pairs—analogous 
to the Cooper pairs in superconductors—which have total spin 1 and are bosons. 
Superfluidity appears in 3He at much lower temperatures than in 4He, namely, at 
the scale of millikelvin. Furthermore, since the 3He pairs have a vectorial degree of 
freedom, as they have spin 1, which is lacking in 4He, which has spin 0, superfluid-
ity in 3He is richer and far more complex than in 4He.

Superfluids have practical use in cryogenics, to keep at very low temperatures 
superconducting magnets or smaller devices, as they flow very efficiently and have 
a high thermal conductivity. Futhermore, they are thought to play a role in neutron 
stars, after pair formation of neutrons.

When the flow reaches a critical velocity, however, some resistance to the flow 
suddenly appears, and the attenuation of second sound correspondingly increases. 
These effects can be explained by the formation of quantized vortex filaments in 
Helium II, and their friction with the flow of helium giving rise to a very rich phe-
nomenology, which will be discussed in Sect. 11.4–11.7.

11 Non-equilibrium Thermodynamics of Laminar and Turbulent Superfluids
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11.2  �The Two-Fluid Model and Second Sound

The classical and most widely known model of superfluids is the two-fluid model, 
which assumes that Helium II is a mixture of two components: a superfluid one and 
a normal one. The superfluid component has zero viscosity (vanishing resistance) 
and zero entropy, and its flow is irrotational; the normal component exhibits some 
resistance (normal viscosity) and has non-vanishing entropy. Each component is 
characterized by a density and a velocity, namely, ρs, vs, ρn  and vn,  respectively, in 
such a way that the total density  is  = s + n and the bulk velocity of the liquid 
v is defined as ρv = ρsvs + ρnvn. The densities n and s strongly depend on tem-
perature. At the lambda temperature T = Tλ, and above it, s = 0 and all the fluid is 
found in the normal phase; at decreasing T, below Tλ, s( T) increases and n( T) de-
creases until the limit of T = 0, in which the normal component has completely dis-
appeared and the liquid is entirely in the pure superfluid state. The proportion of the 
normal component may be measured, for instance, with a rotating disk experiment, 
whose attenuation shows the viscous effects characterizing the normal component.

The microscopic idea behind the two-fluid model is the so-called Bose–Einstein 
condensation, a typical quantum effect, predicted by Einstein in 1925, in which a 
macroscopic fraction of the total number of particles condensates into the funda-
mental state of the system and exhibits a coherent global behaviour of the collective 
quantum wave function of the system, which strongly reduces its viscosity. In 1938, 
Laszlo Tisza and Fritz London independently suggested that the condensed phase 
would correspond to the superfluid component and the remaining part would be the 
normal component, which may be considered as a sum of elementary excitations, or 
quasiparticles, of two kinds: phonons and rotons, as proposed by Landau in 1949; 
phonons predominate below 0.8 K, and rotons are the main contributors above 0.8 K. 
This quantum feature of the reduction of viscosity is analogous to the drastic reduc-
tion of electrical resistivity in superconductors, where pairs of electrons—Cooper 
pairs—constitute a kind of superfluid which is able to flow within the material with-
out resistance due to the coherence of the collective wavefunction describing the con-
densed phase. In most of the superfluids, the interaction amongst the particles makes 
the phenomenon a little bit different than the true Bose–Einstein condensation, but 
since 1995 it has been possible to achieve a true Bose–Einstein condensation in dilute 
monatomic gases with negligible interatomic interactions, which exhibit, in some 
domains, superfluid behaviour, especially related to the quantization of vortices.

The two-fluid model explains in an intuitive and efficient way the several ob-
servations: the flow without resistance along narrow capillaries corresponds to the 
flow of the superfluid component; the thermomechanical effect—which is the fact 
that the flow of heat is accompanied by a flow of momentum—is also explained by 
the fact that the superfluid carries both momentum and heat; the first sound corre-
sponds to a wave where both normal and superfluid components oscillate in phase 
with each other, and the total density changes; in the second sound, the normal and 
superfluid components have opposite oscillations, in such a way that density does 
not change but temperature does; in the fountain effect, giving heat to the fluid 
communicates also momentum and sets it in motion, and so on (Putterman 1974).

11.2 The Two-Fluid Model and Second Sound
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11.2.1  �Evolution Equations and Wave Propagation

As an illustration of the behaviour of superfluids, and for the sake of further com-
parison, we present the description of longitudinal wave perturbations, which lead 
to first and second sounds. It is usual to take as variables the total mass density , 
the total momentum density j ≡ ρv = ρsvs + ρnvn,  the entropy density s, and the 
velocity vs  of the superfluid component. In the absence of viscous effects and ne-
glecting non-linear terms the evolution equations are

� (11.1)

� (11.2)

� (11.3)

� (11.4)

Equation  (11.1) is the mass conservation equation, (11.2) is the entropy balance 
equation, with ρsvn the entropy flux and where entropy production, being non-
linear, has been neglected, and (11.4) is the equation of motion of the superfluid 
component, with  the superfluid chemical potential. This equation may understood 
from (11.6), and taking into account that for the superfluid s = 0. In these expres-
sions, viscous effects due to the normal component have been neglected in (11.3) 
for the sake of simplicity; they will be introduced in the last section. Obtaining the 
derivative of (11.1) with respect to time and using (11.3) we have

� (11.5)

Because of the Gibbs–Duhem thermodynamic relation, we may write

� (11.6)

and using this expression in (11.3) and (11.4) it is found

� (11.7)

Futhermore, note that

� (11.8)

∂ρ

∂t
+ ∇ · j = 0,

∂(ρs)

∂t
+ ρs∇ · vn = 0,

∂j

∂t
+ ∇p = 0,

∂vs

∂t
+ ∇µ = 0.

∂2ρ

∂t2
= ∇2p.

∇p = ρs∇T + ρ∇µ,

ρn
∂

∂t
(vn − vs) + ρs∇T = 0.

∇ · (vs − vn) =
ρ

ρss

∂s

∂t
.
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This result comes from the equality

� (11.9)

If we combine now (11.7) and (11.8) we obtain

� (11.10)

Equations (11.5) and (11.10) determine the propagation of density and entropy per-
turbations in superfluids. Writing the perturbations as s′, p′, T ′ and ′, and expand-
ing ′ and s′ in terms of p′ and T ′  one has

� (11.11a)

� (11.11b)

Introduction of these expressions into (11.5) and (11.10) yields

� (11.12)

� (11.13)

Looking for plane wave solutions for p′ and T ′ of the form

� (11.14a)

� (11.14b)

with p̃′ and T̃ ′  the amplitude,  and k the angular frequency and wavevector, 
Eqs. (11.12) and (11.13) yield

� (11.15a)

� (11.15b)
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ρ
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∂2T ′
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−

ρss
2
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The compatibility condition of these set of equations, namely, the condition that the 
associated determinant is null, is

� (11.16)

where u = /k is the propagation speed and cv = T (∂s/∂T )v the heat capacity per 
unit volume. Equation  (11.16) determines two values for the wave propagation 
speed u. Note that if s = 0, i.e. in the absence of the superfluid component, (11.16) 
simplifies in such a way that one of these velocities is zero and the other one is 
the usual sound velocity u2

10 = (∂p/∂ρ)s . In the presence of the superfluid compo-
nent ( s ≠ 0), a new wave appears. Since the thermal expansion coefficient is very 
small in helium, the adiabatic and isothermal compressibility coefficients (∂p/∂ρ)s
and (∂p/∂ρ)T are very similar to each other, as well as cp  and cv.  With this simpli-
fication, the solutions of (11.16) are

� (11.17a)

� (11.17b)

The first wave is the first sound, and its velocity does not change much with tem-
perature. This wave is a pressure and velocity wave. The second wave, a purely 
temperature wave, is called second sound and is a temperature (and heat) wave 
characteristic of superfluids, as it vanishes for s = 0, and it was experimentally ob-
served by the first time in 1944, 6 years after the theoretical prediction, by Peskov. 
The velocity u20 is very sensitive to temperature, as s( T) and n( T) are strongly 
temperature dependent. If the entropy of the superfluid component was not strictly 
zero, but s′ per unit volume, the term s2 in (11.17b) should be replaced by ( s − s′)2, 
and would reduce the speed (and increase the attenuation).

As it has been said before, in the first sound, normal and superfluid components 
oscillate in phase, as a whole, i.e. as if there was a single fluid. Instead, in the second 
sound they oscillate out of phase, with the relation ρv = ρsvs + ρnvn = 0 . In this 
case, there is no mass flow, but the internal oscillations of the normal component 
imply an oscillation in entropy and temperature, leading to propagating tempera-
ture waves, which are completely different from the damped temperature waves 
produced in usual media by periodic variation of temperature on the boundaries 
of the system. Non-linear aspects of these waves were studied for the first time by 
Khalatnikov.

The interesting property of liquid helium II of flowing along very narrow chan-
nels without any resistance, for sufficiently small velocities, leads also to two new 
kinds of waves, predicted by Atkin in 1959, and called third sound and fourth sound, 

u4 − u2

[(
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ρsT s2

ρncv

(
∂p
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which have special interest in helium flow through porous media. Fourth sound is 
a pressure wave that travels only in the superfluid, when the normal fluid is immo-
bilized by, for instance, a very fine powder. The analysis of this flow requires a de-
tailed attention to the boundary conditions of the fields, especially for higher-order 
fields. Indeed, these boundaries establish a connection between the variations of 
the average speed and of the heat flux. As a consequence, in this wave all the fields 
vibrate, as it was discussed in Sect. 11.1.1. The results of the fourth sound establish 
an upper experimental bound on the entropy carried by the superfluid component, 
which turns out to be less than 1% of the total entropy (Mongiovì 2001). Third 
sound is a surface wave on thin films of liquid helium and also requires a careful 
specification of boundary conditions on the wall.

11.2.2  �Thermodynamics of Superfluid Helium

From the thermodynamic point of view, the Gibbs equation for the superfluid does 
not depend only on the classical variables (entropy and volume, for instance) but 
also on the momentum density j, and is given, in the superfluid rest frame and re-
ferred to unit volume, by (Landau and Lifshitz 1970)

� (11.18)

The two first terms are the standard ones in usual fluids; the last one expresses the 
fact that the derivative of the energy with respect to momentum is the velocity, 
which in the superfluid rest frame corresponds to the relative velocity of the normal 
component minus the velocity of the superfluid component.

On the other hand, the chemical potential may be expressed in terms of p, T and 
vn − vs  as (Landau and Lifshitz 1970)

� (11.19)

Expanding the expressions for s and , attained from Eq.  (11.17), i.e. from 
s = −(∂µ/∂T )p,vn−vs

 and ρ−1 = −(∂µ/∂p)T ,vn−vs ,  we obtain

� (11.20a)

� (11.20b)

These expressions are valid up to the second order in (vn − vs) ,  and explicit-
ly show the influence of the dynamical variable vn − vs  on the thermodynamic 

d(ρu) = µdρ + T d(ρs) + (vn − vs) · dj .

dµ = −sdT +
1

ρ
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ρn

ρ
(vn − vs) · d(vn − vs).
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2
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(
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ρ
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,
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ρ

)
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quantities. Also, from the Euler form for the entropy it follows that the pressure 
p is given by

� (11.20c)

thus exhibiting the contribution of the relative motion between normal and super-
fluid components.

11.3  �The Extended One-Fluid Model of Liquid Helium II

An alternative way to describe most of the properties mentioned above without us-
ing the two-fluid model is to assume a one-fluid model with a vector internal degree 
of freedom which, in extended thermodynamics, may be identified as the heat flux 
q. It may be shown that in terms of the two-fluid model, q may be identified as

� (11.21)

Indeed, the non-convective part of the entropy flux is J s
non-convective = ρs(vn − v) = 

s
non-convective = ρs(vn − v) = ρss(vn − vs), where the second equality arises by writing 

v = (ρnvn + ρsvs)/ρ. Identifying this non-convective entropy flux as T−1q leads to 
(11.21). Thus, q describes the energy transport associated to the relative motion 
between normal and superfluid components. Furthermore, the heat flow turns out 
in this case to be related to a flow of momentum, this setting a basis for thermome-
chanic and fountain effects.

The idea of a one-fluid model with an internal degree of freedom is less intuitive 
than the two-fluid model, but it has also some physical appeal because, in actual 
fact, the two fluids cannot be directly separated and observed as such, because they 
do not correspond to individually different particles (Atkin and Fox 1975, 1984; 
Greco and Müller 1984; Lebon and Jou 1979; Mongiovì 1991, 1992, 1993a, b, 
2000, 2001). In fact, in expressions (11.18–11.20) it is seen that vn − vs does indeed 
play a role in the thermodynamic functions of the superfluid component. Further-
more, superfluid helium is not strictly a Bose–Einstein condensate, but the strong 
interactions amongst atoms make it to deviate from this ideal model, which was one 
of the original motivations of the two-fluid model.

In the one-fluid model of helium II, the basic variables are the total density , 
barycentric velocity v,  absolute temperature T, and the heat flux q. Thus, a dif-
ference with the two-fluid model is that the former one uses j ≡ ρv,  and vs  as 
variables, whereas here, instead of vs,  the heat flux (related to vn − vs ) is used. The 
generalized Gibbs equation would be

� (11.22)

with τ1 the relaxation time of the heat flux. A Gibbs equation of this form is typical 
of extended thermodynamics, and it should be compared to the Gibbs equation of 

p = −ρu + ρT s + ρµ + ρn(vn − vs)
2,

q = ρsT s(vn − vs).

d(ρs) =T −1d(ρu) − T −1µdρ −
[
τ1/(λT 2)

]
q · dq,
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the two-fluid model (11.18), but formulated in the centre of mass frame of refer-
ence, which is

� (11.23)

where the chemical potential μ′ is related to the chemical potential μ in the super-
fluid rest frame appearing in (11.18) as

� (11.24)

Introducing the relation (11.21) into (11.23) one obtains that the term in q · dq in 
d( u) has the form ρn(ρsT

2s2)−1q · dq . Comparing with the last term in q · dq in 
d( ρu) as obtained from (11.22) one finds that

� (11.25)

a result which will be used below.
The linearized set of evolution equations, neglecting viscous phenomena due to 

the normal component and written in an inertial frame, is

� (11.26)

� (11.27)

� (11.28)

� (11.29)

where u is the internal energy per unit mass, p the thermodynamic pressure, τ1 the 
relaxation time of the heat flux, and λ the thermal conductivity. Viscous effects will 
be taken into consideration in the last section of the chapter. Equation (11.29) is the 
relaxational extension of Fourier’s law, the so-called Maxwell–Cattaneo equation; in 
superfluids, τ1 and λ are very long, in contrast with what happens in ordinary fluids.

We will study here the longitudinal waves, corresponding, as it has been said, 
to the first and second sounds. To do so, we consider the propagation of harmonic 
plane waves of the form

� (11.30a)

� (11.30b)
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ρ
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ρ
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ρ
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+ ∇ · q + p∇ · v = 0,

τ1
dq

dt
+ q + λ∇T = 0,

ρ = ρ0 + ρ̃ exp [i(kn · x − ωt)],

v = ṽ exp [i(kn · x − ωt)],
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� (11.30c)

� (11.30d)

where k = kr + iki is the complex wave number, ω the real frequency, n the unit vec-
tor in the direction of wave propagation, the subscript 0 refers to the equilibrium 
reference state and the oversigned quantities denote small amplitudes of the pertur-
bations, whose product may be neglected in a linear approximation. The real part 
kr is related to the propagation speed u as u = ω/kr, whereas the imaginary part ki is 
proportional to the reciprocal of the characteristic attenuation length of the waves.

We introduce (11.30a, b, c, d) into (11.26–11.29) and keep terms linear in the 
amplitudes. One obtains

� (11.31a)

� (11.31b)

�
(11.31c)

� (11.31d)

This leads, for longitudinal waves and neglecting thermal dilation, i.e. assuming 
(∂p/∂T )ρ ≈ 0, to the following dispersion relation

� (11.32)

where u1 and u2 are the phase speeds of the longitudinal waves, given by

� (11.33)

where the subscripts 10 and 20 refer to waves 1 and 2 in the absence of thermal dila-
tion. The first one corresponds to the normal sound wave, where only pressure and 
velocity vibrate, and it is called first sound, and the second one is the temperature 
wave, or second sound in which only temperature and heat flux vibrate. Introducing 
the relation (11.25) in (11.33) it is found that the result for the second sound speed 
becomes identical to that found in (11.17), as it is the case of the first sound speed.

When thermal dilation is taken into account, more complicated dispersion rela-
tions follows, which leads to the conditions

� (11.34a)

�
(11.34b)
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T0

cv0

(
∂p

∂T

)

ρ

ṽ · n = 0,

−ωq̃ + k(λ/τ1)0T̃ n = 0.

(ω2 − k2u2
1)(ω2 − k2u2

2) = 0,

u2
10 =

(
∂p

∂ρ

)

T

, u2
20 =

λ

cvτ1
,

u2
1u2

2 = u2
10u2

20,

u2
1 + u2

2 = u2
10 + u2

20 + w1w2,
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with w1 = ρ−1
0 (∂p/∂T )ρ  and w2 = (T/ρcv)0(∂p/∂T )ρ . In this case first and sec-

ond sounds become coupled with each other.

11.4  �Quantized Vortices in Rotation and Counterflow

From the historical point of view, the first surprises concerning vorticity in super-
fluids were experiments carried out in the 1950s in rotating cylindrical containers 
filled with helium II (Osborne 1950). Vorticity is defined as the curl of the fluid, i.e. 
the circulation per unit area. In principle, the superfluid, due to its non-viscous and 
irrotational character, should not participate in the rotation. However, it was real-
ized that the free surface of the liquid in the rotating cylinder assumed a paraboloi-
dal shape exactly of the same form that would result from the rigid rotation of both 
normal and superfluid constituents, thus meaning that the superfluid was dragged 
by the normal component, but this seemed in contrast with its irrotational character. 
It was predicted that the superfluid, in fact, could develop vorticity singularities cor-
responding to very thin vortices, whose core would have a radius of the order of the 
atomic radius, with quantized vorticity, the quantum of vorticity being κ = h/m, with 
h Planck’s constant and m the mass of the helium atom ( κ = 9.97 ×10−4 cm2s−1).

The quantized character of vorticity in superfluid helium had been predicted 
by Onsager in 1949, and further elaborated by Feynman in 1950, from a more mi-
croscopic perspective (Donnelly 1991; Barenghi et al. 2001). This quantization is 
analogous to Bohr quantization condition for electronic orbits in the atoms, namely, 
2πmvr = nh with n an integer. Since the vorticity (defined as the integral of the 
velocity along a closed line) is 2πvr  for a circular line of radius r and velocity v, 
one has 2πvr = n(h/m) = nk . However, in the superfluid it is much more costly, 
from an energetic perspective, the formation of vortices with n  = 2 than elongating 
a vortex with n = 1, for a given total value of the vorticity; thus stronger vorticity 
extends the existent vortex lines and loops rather than keeping constant the length 
and increasing the rotational velocity.

In rotating cylinders, it was observed an array of straight quantized vortices par-
allel to the rotation axis, whose density per unit of transverse area (or the corre-
sponding vortex line density per unit volume of the system, L) is

� (11.35)

The interpretation of this equation is very simple, since for straight parallel vortex 
lines the vortex line density is equal to the number of vortex lines per unit transver-
sal area. The total vorticity of the fluid will be 2πRv = 2πR2�

 with R the external 
radius of the cylinder, but this vorticity is equal to the total number of vortices LR2 
multiplied by the vorticity quantum κ. By equating both expressions, (11.35) is im-
mediately obtained. This array of parallel quantum vortices has strong analogies with 
electrical vortex lines in superconductors submitted to intense magnetic fields. Thus, 
an understanding of vortices in superfluids may be also useful in superconductors.

L =
2�

κ
.
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Furthermore, Hall and Vinen (1956) studied the second-sound propagation in 
rotating superfluids and realized that when its direction of propagation is perpen-
dicular to the rotation axis it suffers an extra attenuation compared to the non-
rotating container, proportional to the angular velocity. In contrast, there was no 
extra attenuation when the second sound propagated along the rotation axis. It was 
then suggested that the extra attenuation should be due to a friction force between 
the normal fluid and the quantized vortices. Such a force was seen to have the 
form

� (11.36)

where B( T) and B′( T) are two frictional coefficients which depend on the tempera-
ture and which express the longitudinal and transversal components of the friction 
force between the normal component of the superfluid and the vortices. Here, V is 
the relative velocity of the normal component with respect to the superfluid com-
ponent, namely V = vn − vs. From a microscopic perspective, the longitudinal and 
transversal friction forces arise from the collisions of the quasi-particles of the nor-
mal component with the vortex line, thus leading to a difference between longitudi-
nal and transversal forces. The collision cross section of the vortex line is a function 
of the direction of the excitations relative to the vortex line.

A further observation was carried out in the early 1960s in the presence of a 
heat flux across the system. In particular, the heat transport was carried out with-
out net transport of mass, in a closed container, i.e. the flow of mass of superfluid 
component in one direction was compensated by an opposite flow of normal fluid, 
namely ρnvn + ρsvs = 0. The heat applied to an end of the system excites the fluid 
and produces a normal component with velocity vn  leaving from it. This fluid is re-
placed by the superfluid component arriving with velocity vs = −(ρn/ρs)vn. When 
the value of the heat flow is higher than some characteristic value, it was found a 
transition to a turbulent state, characterized by a non-vanishing value of the vortex 
line density L. In this case, the vortex lines form a disordered tangle, whose total 
length density increases with increasing heat flow (Donnelly 1991; Nemirovskii 
and Fiszdom 1995; Barenghi et al. 2001; Mongiovi and Jou 2006). In fact, if the 
heat flow is further increased, another transition arises from the first turbulent state 
with a low value of L (TI turbulence) to a second turbulent state with a high value 
of L (TII turbulence). Again in this case, the attenuation of second sound was in-
creased with respect to its attenuation in the fluid in the absence of heat flux as a 
consequence of its interaction with the vortex lines of the tangle; the corresponding 
increase in attenuation allows one to measure the vortex line density L. 

In the presence of the turbulent vortex tangle, the superfluid does no longer flow 
without resistance, as it experiences a friction with the vortex lines. This is the 
reason that for a velocity sufficiently high, the superfluid flow along a capillary 
presents a non-vanishing resistance. An alternative way to produce turbulence in 
superfluid helium explored since the 1990s, is by towing thin grids through the 
superfluid, which is able to create very intense turbulence, spanning five orders of 

F = B(T )
�

�
× � × V + B ′(T )� × V ,
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magnitude in the vortex density. To achieve comparable results in classical wind 
tunnel in usual fluids it would need a length of a thousand kilometres as compared 
with the half meter length in superfluid helium (Donnelly 1991); this shows clearly 
the interest of turbulence in superfluid helium as a benchwork to deepen into the 
subtleties of turbulence at very high Reynolds numbers.

11.4.1  �Macroscopic Description of Vortex Friction

It is possible to describe these two seemingly very different situations (rotating 
fluid, counterflow) by introducing in the evolution equations the frictional effects of 
the vortex array or the vortex tangle—i.e. their contribution to viscous dissipation 
in the superfluid by means of a tensor Pv

ω
. As it has been said above, this friction 

results from the collisions of the excitations constituting the normal fluid—mainly 
the rotons—with the core of the vortex lines. The collision cross section is a maxi-
mum when the roton travels perpendicular to this line, and it is a minimum—in 
fact, zero—when it moves parallel to it. The microscopic mechanisms are the same 
in rotating helium II and in counterflow turbulence. It is logical to ask for a tensor 
incorporating the local direction of the vortex lines through their local tangent unit 
vector s′, and the vortex line density. We are therefore led to take

� (11.37)

where L is the vortex line density, s′ the unit vector tangent to the vortices at a 
given point—the vortices may be represented parametrically by a vectorial function 
s( ,t),  being the arc-length along the line, so that the derivative of s with respect 
to , denoted as s′, is the unit tangent vector—the angular brackets denote an aver-
age over the different orientations of the vortices in a given volume, U is the unit 
tensor, and W a third-order completely antisymmetric tensor, i.e. the term in W · q 
is an antisymmetric second-order tensor. Finally, λ̃(T , ρ)  is a coefficient related to 
the energy of the vortices and describing the probability of interaction between the 
elementary excitations and the vortex unit length.

We assume that the interaction between the vortices and the heat flux may be 
described by adding to the evolution equation (11.29) for the heat flux a source 
term proportional to −Pv

ω · q,  because the heat flux q is related to a flow of excita-
tions and Pv

ω
 describes the force produced by the vortices on the excitations. To be 

specific, we generalize the evolution equations (11.2–11.5) to a rotating framework 
with angular speed  in the presence of vortices. We have

� (11.38)

� (11.39)

Pv
ω = λ̃κL

〈
U − s ′s ′ + W · s ′〉 ,

dρ

dt
+ ρ∇ · v = 0,

ρ
dv
dt

+ ∇p − i0 + 2ρ� × v = 0,
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� (11.40)

� (11.41)

where α is a phenomenological coefficient, and i0 − 2ρ� × v  denotes the inertial 
force. The term 2 × q in (11.41) accounts for the time variation of the vector q due 
to the rotation. Below we show that the source term on the right-hand side of (11.41) 
is able to describe in an unified way the effect of the vortices on the dynamics of 
the heat flux, both in the rotating system as in the counterflow situation, provided 
the coefficients α and λ̃  are suitably identified in terms of the frictional coefficients 
B( T) and B′( T) of (11.36) (Jou et al. 2002b; Mongiovì et al. 2004).

11.4.2  �Rotating Frame

In the rotating frame, the vortices are parallel to the angular velocity vector L = a1 |�| , and 
L = a1 |�| , which in virtue of (11.35) it turns out that a1 = 2/κ; then, the unit 
tangent vectors s′ are parallel to L = a1 |�| ,, i.e. s ′ = �/ |�| , and the production term on the 
right-hand side of (11.41) becomes

� (11.42)

where a2 is a coefficient linked to the antisymmetric tensor W as Wijk = −a2εijk ,  
being the Ricci third-order tensor, i.e. the complete antisymmetric tensor whose co-
efficients are 0, 1 or −1. The first term on the right hand side of (11.42) comes from 
the relation (U − s ′s ′) · q = −s ′ × (s ′ × q),  and the second one from the relation 
ε· s ′ · q = −s ′ × q . Then, we may write (11.41) as

� (11.43)

where B and B′ are the friction coefficients appearing in (11.36) and are related to 
the coefficients in (11.42) as B = a1κλ̃  and B ′ = a2κλ̃ . The rotation has therefore 
an important influence on the dynamics of the heat flux.

11.4.3  �Counterflow Turbulence

Now that we have identified the coefficient α appearing in (11.41) in terms of the 
friction coefficients, we may use (11.41) to describe counterflow turbulence in a 

ρ
du

dt
+ ∇ · q + p∇ · v = 0,

dq

dt
+

1

τ
q +

λ

τ
∇T + 2� × q = −αPv

ω · q,

−Pv
ω · q = −a1κλ

�

|�| × � × q − a2κλ� × q,

dq

dt
+

1

τ
q +

λ

τ
∇T + 2� × q = −B

�

|�| × � × q − B ′� × q,
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non-rotating tube with diameter d, submitted to a longitudinal heat flow q. The ex-
periments indicate that when the counterflow velocity increases beyond a first criti-
cal value Vc1 = c1κ/d, with c1 a numerical constant, there suddenly appears a contri-
bution to dissipation, and when it reaches a second critical value Vc2 = c2κ/d, with 
c2 > c1 the dissipation has a second sudden increase (Fig. 11.1). For higher values of 
V, the flow resistance associated with dissipation increases continuously as V2. The 
values of c1 and c2 depend on the temperature; for Helium II at 1.5 K, c1 = 127 and 
c2 = 129; at 1.7 K, c1 = 98 and c2 = 186 (Martin and Tough 1983).

It is generally accepted that this dissipation is the result of the interaction be-
tween the normal fluid and a disordered tangle of quantized vortex filaments. In 
the first transition, the vortex tangle appears, but with a relatively low value of the 
vortex line density. The discontinuity from L = 0 (laminar regime) to this first turbu-
lent regime TI at V = Vc1 is of the order of L1d

2 ≈ 2.5. Afterwards, L increases as 
L

1/2
1 = γ1V − (b1/d), γ1 and b1 being numerical parameters. At the second critical 

counterflow velocity Vc2, there is a sudden change in the slope of L as a function of 
V2, and for higher V a regime L1/2

2 = γ2V − (b2/d)  is reached, of fully developed 
turbulence with high values of L2. Below, we will briefly discuss the relation be-
tween L and V. Now, our aim is to describe dissipation in counterflow turbulence 
in general terms.

Fig. 11.1   The vortex 
line density as a function 
of the relative velocity 
vn − vs ≡ V.  The figure is 
the plot of y ≡ L1/2d ver-
sus x ≡ Vd/κ for T = 1.5 K 
and T = 1.7 K. The circles 
correspond to experimental 
data from Martin and Tough 
(1983), and the lines are 
determined from Eq. (11.57). 
(Mongiovì and Jou 2005c)
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To do that, we will use again (11.41). The essential difference with rotation 
comes from the geometry of the vortices, which form a tangle where the vortex 
segments are distributed in a (quasi)isotropic way instead of being a regular array 
of parallel vortices. Then,

� (11.44)

where it has been taken into account that s′ is a unit vector and that 〈s ′s ′〉 = U . As 
a consequence, the production term in (11.41) takes the form

� (11.45)

Often this expression is written by assuming that L ≈ γ q2,  a result which will be 
further commented since it is a good approximation for high values of q, and one 
writes (11.44) as

� (11.46)

with B ′′ = 2
3κλ̃γ. This describes a friction force proportional to the third power of 

the heat flux, known as Görter–Mellink force. Thus, the use of the production term 
−Pv

ω · q  in the evolution equation (11.41) for the heat flux is able to summarize in 
a single compact expression the vortex contribution to dissipation, both in rotating 
cylinders as in counterflow turbulence, the difference between both cases being the 
geometrical distribution of vortex orientation, whereas the microscopic interaction 
between rotons and vortices has the same form in both cases.

11.5  �Second Sound Propagation in the Presence  
of Quantized Vortices

Propagation of the low amplitude second sound, which does not appreciably perturb 
the vortex lines but experiences their frictional effects, is a very useful experimental 
tool to obtain information about the density and the distribution of vortex lines. 
Because of this practical interest, we will study it starting from Eqs. (11.38–11.41) 
with the suitable expressions for the dissipation term −Pw

ω · q,  (11.43) for rotating 
cylinders and (11.46) for thermal counterflow.

11.5.1  �Rotating Cylinders

We assume again the set of plane harmonic waves specified in (11.30) and introduce 
them into (11.38–11.41). The linearized set of equations is now

〈U − s ′s ′〉 =
2

3
U,

−Pv
ω · q = −

2

3
κλ̃Lq.

−Pv
ω · q = −B ′′q2q,
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� (11.47a)

� (11.47b)

� (11.47c)

� (11.47d)

For the waves parallel to the rotation axis, one has � × q̃ = 0  and � × v = 0,
and the dispersion relation is the same as (11.32), and thus, neither the first nor the 
second sound are influenced by the rotation.

In contrast, when the direction of propagation of the waves is orthogonal to the 
rotation axis, one obtains, up to first order terms in |�| ,

� (11.48)

The first sound is not influenced, whereas the second sound or temperature wave is 
attenuated. Explicitly, it is found for the phase speed u′

2  and attenuation coefficient 
ks,2 of the second sound

� (11.49)

Thus, measurement of the attenuation coefficient of these waves allows us to obtain 
the friction coefficient B.

11.5.2  �Second Sound and Counterflow Turbulence

In this case, (11.47a) and (11.47c) remain as before, whereas in absence of rotation, 
and taking into account the expression (11.46) for the source term, (11.47b) and 
(11.47d) are changed into

� (11.50a)

� (11.50b)

−ωρ̃ + kρ0ṽ · n = 0,

−ωṽ + kρ−1
0 (∂p/∂ρ)0ρ̃n − 2i� × v = 0,

−ωT̃ + kρ−1
0 (∂u/∂T )−1

0 q̃ · n = 0,

−ωq̃ + k(λ/τ )0T̃ n − i(2 − B ′)� × q̃ + iB
�

|�|
× � × q̃ = 0.

(ω2 − k2u2
1)(ω2 + iBω |� | − k2u2

2) = 0.

u′
2 = u2

(
1 − k2

s,2
u2

2

2ω2

)
, k(2)

s =
B

2u2
|�| + O(�2).

−ων̃+kρ−1
0 (∂p/∂p)0ρ̃n = 0,

−(ω + iB ′′L0/γ )q̃ + k(λ/τ )0T̃ n = 0.
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From here, it follows the dispersion relation, independently of the propagation di-
rection,

� (11.51)

As in the previous situation, the sound wave is not influenced by the vortex tangle, 
whereas the second sound experiences changes in phase speed and attenuation giv-
en by

� (11.52)

The measurements of ks and v2 allow us to obtain the vortex line density L0. This 
makes second sound a very valuable tool for the measurement of L0 in superfluid 
turbulence.

11.6  �Evolution Equation for the Vortex Line Density

The most relevant quantity for the description of turbulent vortex tangles in coun-
terflow experiments is the vortex line density L, i.e. the total length of quantized 
vortices per unit volume of the fluid, which becomes a new independent variable 
characterizing the turbulent state. Then, an evolution equation is needed for it. We 
consider here a well-known equation derived by Vinen (1957a, b). He assumed 
that

� (11.53)

where the subscripts f and d stand for formation and destruction, respectively. He 
then considered dimensional arguments, by combining L (length−2), the vorticity 
quantum κ (length2/time), and V = vn − vs,  the relative velocity between normal 
and superfluid components (length/time) to explore the form of the formation and 
destruction terms. Note that with these quantities one can construct three combina-
tions having the dimensions of reciprocal of time, namely

� (11.54)

Vinen used only t1 and t3, but for the moment we will keep the three times; t1 and t2 
are usually associated to the formation terms, because the velocity V is necessary to 

(ω2 − k2u2
1)

(
ω2 + iB ′′ω

L0

γ
− k2u2

2

)
= 0.

u′
2 = u2

(
1 −

u2
2

2ω2
k2
s,2

)
, k

(2)
s,2 =

B ′′

2v2

L0

γ 2
.

dL

dt
=

(
dL

dt

)

f

−
(

dL

dt

)

d

,

1

t1
∝ V L1/2,

1

t2
∝ V 2κ−1,

1

t3
∝ κL.
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form vortices, and t3 to the destruction term, because the vortices will decay when 
V is equated to zero. Thus, one may write

� (11.55)

where α, α′ and β are dimensionless constants which depend on temperature. In Vin-
en’s approach, α′ = 0. The L2 dependence of the destruction term may be understood 
intuitively from the idea that two vortices rotating in opposite way may anihilate 
each other, or may cross and break each other, in such a way that this term should 
depend on the pairs of vortices per unit volume. These equations have been given a 
microscopic ground on the dynamics of vortices by Schwarz (1985, 1988) and have 
been derived on thermodynamic grounds by Geurst (1989) from the energy and 
impulse balance equations of the vortex tangle. In the steady state, Vinen’s equation 
(11.55) with α′ = 0 leads to

� (11.56)

The same dependence L ∼ V 2  in the steady state is obtained with the full equa-
tion (11.55) in such a way that it cannot provide arguments in favour or against the 
possible vanishing of coefficient α′. The solution L = 0 corresponds to the laminar 
regime. In fact, (11.55) is too simplistic, because it leads to turbulence as soon as 
V  ≠ 0, instead of having a threshold value of V.

11.6.1  �Transition from the Laminar to the Turbulent Regime

Equation (11.55) does not describe the transition from the laminar to the turbulent 
regime, as it yields L ≠ 0 for any value of V, even for low values of V. A description 
of this transition may be achieved when the influence of the walls, as described by 
the diameter d of the tube, is taken into account. This leads to the following gener-
alization of (11.55) (Mongiovì and Jou 2005a, 2006)

� (11.57)

In the ratio L−1/2/d, the numerator L−1/2 indicates the average separation between 
vortex lines. When L is low, the separation becomes comparable to the diameter d of 
the cylinder, and the effects of the walls become dominant because the vortex lines 
have a higher probability of hitting the walls than other vortices. The new term (the 
term in ω̃, which is a constant coefficient that must not be confused with the angular 
frequency) describes a reduction of the vortex production when the vortex density is 

dL

dt
=

L

t1
+

L

t2
−

L

t3
= αV L3/2 + α′ V

2

κ
L − βκL2,

L =
(

α

β

)2 1

κ2
V 2.

dL

dt
= αV L3/2

(
1 − ω̃

L−1/2

d

)
+ α′ V

2

κ
L − βκL2.
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low, because there are less crossings. In contrast, for dense tangles with high values 
of L, the separation between vortex lines becomes very small and Vinen’s equation 
(Eq. (11.55) with α′ = 0) is recovered.

The steady state solutions of (11.57) are

� (11.58)

The solutions L2,3 correspond to the + and − signs, respectively. These solutions are 
real only for values of V higher than

� (11.59)

Note in (11.59) that the dimensionless quantity Vd/κ plays in counterflow turbu-
lence a role analogous to the Reynolds number ( Vd/, with v  the kinematical vis-
cosity) in the turbulence of classical viscous fluids. Instead of the kinematical vis-
cosity, which appears in the denominator of the Reynolds number but which is zero 
in the superfluid component, this combination has in the denominator the quantum 
of vorticity, which has the same dimensions as a kinematical viscosity. For low 
values of Vd/κ, the flow is laminar whereas beyond a critical value of Vd/κ, the 
flow becomes turbulent. A Reynolds number could also be defined for the normal 
component, which has a finite kinematic viscosity νn. When this Reynolds number 
is sufficiently high, the normal component may also become turbulent.

At the transition, when V = Vc1, there is a discontinuity in L from L = 0, cor-
responding to the laminar regime, to a vortex tangle with length density given by

� (11.60)

The discontinuity in L is higher for thinner cylinders, as seen in (11.60) and as it is 
observed in experiments (Martin and Tough 1983).

The stability of the solutions (11.58) may be studied from the equation for a per-
turbation L of L, obtained from (11.57), and which is given by

� (11.61)

From this equation follows that L1  =  0 is stable up to a value V ′
c1  given by 

V ′
c1 = (α1ω/α′)(κ/d). The solution L2 is stable where it exists, i.e. for V >V ′

c1 and 
L3 is unstable. Furthermore, according to (11.59) the critical velocity Vc1 for the 
appearance of turbulence is lower than the maximum speed V ′

c1  where the laminar 
solution becomes necessarily unstable. In the range between Vc1 and V ′

c1,  the solu-
tion L1 = 0, corresponding to the laminar regime, is metastable. These results are 
in qualitative agreement with experiments: one recovers the dependence V ∝ κ/d

L
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α2 + 4βα′
κ

d
.

L
1/2
c1 =

2α2ω

α2 + 4αβ

1

d
.

dδL

dt
= −

(
2βκL −

3

2
αV L1/2 − α′ V

2

κ
+ αω

V

d

)
δL.

11 Non-equilibrium Thermodynamics of Laminar and Turbulent Superfluids



249

and L1/2
c1 ∝ d−1, the discontinuity in the transition from laminar to turbulent flow, 

and the existence of a metastable region of the laminar state. However, this equation 
does not describe the transition from TI to TII regimes. This topic is too specialized 
to be dealt here. It is discussed at length in Mongiovì and Jou (2005a, b).

11.6.2  �Simultaneous Rotation and Counterflow

Rotation and counterflow, which have been dealt with separately in the previous 
sections, may be simultaneously combined, by allowing heat to flow parallel to 
the rotation axis of a rotating container. It is experimentally found (Swanson et al. 
1983) that the effects of rotation and counterflow are not additive, i.e. the total 
vortex length density in the combined situation is not the sum of the vortex length 
densities corresponding to pure rotation and pure counterflow, and the ordered ar-
ray of vortices is deformed and mixed by the counterflow tangle, thus leading to an 
anisotropic tangle (Jou and Mongiovì 2004, 2005, 2006).

When the container is rotating at a given angular speed  and an increasing 
heat flow parallel to  is imposed, the laminar regime disappears and two critical 
counterflow velocities V HR

c1  and V HR
c2  are found, scaling as 1/2. For V <V HR

c1  the 
length density L is independent of V and proportional to , namely, L = 2/κ, as in 
absence of counterflow. For V HR

c1 < V < V HR
c2  the situation is analogous, but the 

proportionality constant between L and  is slightly increased. For V HR
c2 < V ,  L 

becomes dependent on V and increases with it, becoming proportional to V2 at high 
values of V, with a proportionality constant independent on , as in the situation of 
pure counterflow (see Fig. 11.2).

These features may be described by means of a generalized Vinen’s equation of 
the form (Mongiovì and Jou 2005c)

� (11.62)
dL

dt
= −βκL2 +

(
αV + α2

√
κ�

)
L3/2 −

(

β1� + β2
V

√
�

√
κ

)

L.
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Fig. 11.2   Values of L1/2d as 
a function of Vd/κ in rotating 
containers for a rotation fre-
quency of 0.0073 Hz ( lower 
line) and 0.05 Hz ( upper 
line). The dots correspond 
to experimental data from 
Swanson et al. (1983) and 
the lines are determined from 
Eq. (11.62). (Mongiovì and 
Jou 2005b)
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The new terms are the simplest dimensional combinations of V, , κ and L describ-
ing a rate of change of L. When  = 0, the classical Vinen’s equation (11.55), with 
α′ = 0, is recovered. Though there are three new terms related to , it may be shown 
that relatively general arguments about the form of the observed solutions yield two 
independent relations between their coefficients, namely,

� (11.63)

Thus, in fact there is only one independent coefficient, α2, which may be obtained 
by fitting the experimental data. The signs of the different terms are given by com-
parison with the experimental data. The term in V

√
�  deserves special attention, 

as it establishes the non-additive coupling between rotation and counterflow. An 
interesting topic arising in this domain is the degree of anisotropy of the tangle. The 
effects of rotation tend to orient the vortex lines along the rotation axis, whereas 
the counterflow tends to randomize their directions. Thus,  and V play, respec-
tively, analogous roles to a magnetic field and temperature on magnetic systems: 
the magnetic field tends to orient the magnetic dipoles along its direction, whereas 
the disordered thermal energy tends to randomize them. This magnetic analogy has 
been a basis for several heuristic analyses of the anisotropy of the vortex tangle in 
terms of  and V (Tsubota et al. 2003; Mongiovì and Jou 2005c).

11.6.3  �Non-equilibrium Thermodynamics of Vortex Tangles

Up to now we have assumed that the vortex array or the vortex tangle is essentially 
homogeneous, and that the temperature wave of the second sound does not modify 
the vortices. This is reasonable if the amplitude of the wave is small, since it will 
not be able to produce nor destroy vortex tangles. However, the wave may displace 
or deform a little bit the vortices, thus producing a wave in the vortex length density 
L itself. Thus, a more complete analysis of the turbulent tangle would be achieved 
if L itself is added to the set of independent space-dependent fields. In other words, 
we will generalize (11.57) as

� (11.64)

where σL is the net production term as given, for instance, by the right-hand side 
of (11.57), and JL a vortex diffusion flux. The addition of this new flux will also 
produce a coupling with the heat flux.

We thus write the Gibbs equation incorporating L as

� (11.65)

β2 =
√

2α, β1 =
√

2α2 − 2β.

dL

dt
= −∇ · JL + σL,

ds = T −1du − T −1µLdL − αqρ
−1T −1q · dq,
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where L is the chemical potential corresponding to variations of L. If only the en-
ergetic contribution to L is taken into account—and not the entropic one—it turns 
out that, according to vortex theory,

� (11.66)

where a0 is a length of the order of the radius of the core of the vortices. The entropy 
production and entropy flux obtained from (11.65)—disregarding the contribution 
of the production terms in the evolution equations for q and L, for simplicity—is

� (11.67)

From here, we may write the following equations for JL and q

� (11.68)

� (11.69)

or, equivalently,

� (11.70)

� (11.71)

where D denotes the diffusion coefficient of vortex lines. Indeed, in inhomogeneous 
vortex tangles the vortices tend to distribute homogeneously and go from high L to 
low L regions, as it is typical in diffusive processes. If we replace JL on the right-
hand side of (11.70) by (11.71) we get

� (11.72)

with λ′ = λ + L′
qLL′

Lq ,  i.e. the coupling between JL and q produces a modification 
in the thermal conductivity, which instead of being simply λ becomes increased in 
the coupling quantity. Introducing (11.72) into (11.64) and taking into account the 
production terms in the evolution equation for q, we obtain for the joint evolution of 
q and L the following equations

� (11.73a)

� (11.73b)

µL =
ρsκ

2

4π
ln

(
1

a0L1/2

)
,

σs = −JL · ∇(T −1µL) + T −1q · (∇T −1 − αq q̇).

∇T −1 − αq q̇ = Lqqq + LqLJL,

−∇(T −1µL) = LLqq + LLLJL,

τ q̇ + q = −λ∇T + L′
qLJL,

JL = −D∇L + L′
Lqq,

τ q̇ + q = −λ′∇T + χ0∇L,

∂q

∂t
+

1

τ
q + ς∇T + χ∇L = −KLq,

∂L

∂t
= D∇2L + L′

qL∇ · q + σL,
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where ς = λ/τ and χ = D′
qL/τ ,  and K a friction coefficient between the vortex 

lines and the normal fluid, as expressed in (11.45), i.e. K = 2
3ακ.

Note that if L′
qL = 0,  we obtain from (11.64) a reaction-diffusion equation for 

L, with the reaction term given by the right-hand side of (11.57) or some analogous 
expression. Second, there is the possibility of coupled heat and vortex waves, im-
plying local changes in T and L simultaneously. The simplest expression for them 
is obtained by ignoring the production terms and the coefficient D, and assuming 
that the relaxation time is long. The behaviour of vortex density waves and high-
frequency second sound and their mutual interplay has been studied by Sciacca 
et al. (2007). In fact, to Eqs. (11.73a, 11.7b) one should add an equation for the ve-
locity of the superfluid. This topic is dealt with from a thermodynamic perspective 
in Nemirovskii and Fiszdom (1995) and in Jou and Mongiovì (2005) and Mongiovi 
et al. (2007). Further details are given in Sect. 11.7.

Let us finally mention that in (11.65) we have assumed that the entropy of the 
vortex tangle depends only on L. However, it has also a configurational entropy, 
related to the length distribution function of the vortex loops constituting the tangle 
and to the orientation distribution of the vortex lines. From the point of view of 
the length distribution of the vortex lines, it must be noted that the vortex lines are 
either closed vortex loops or lines which have their ends pinned on the walls. For 
fully developed turbulence, closed vortex loops are dominating. The vortex length 
distribution function has a potential form (Nemirovskii and Fiszdom 1995)

� (11.74a)

where a and C are positive constants, b = 4−a and �min  is the minimum vortex loop 
length. Nemirovski obtained a = 5/2. From here follows that the contribution to the 
entropy has the form (Jou and Mongiovì 2009)

� (11.74b)

with C′ a positive constant. Since L is roughly proportional to the internal energy 
density, (11.74b) may be written as

� (11.74c)

Jou and Mongiovì (2009) have studied in detail the thermodynamic consequences of 
(11.74). In particular, it follows from T −1 = (∂S/∂U )V  and pT −1 = (∂S/∂V )U
that

� (11.74d)

The first of these expressions implies a negative heat capacity, analogously to black 
holes, and the second one indicates a negative contribution to the pressure, in a form 
which could be of interest for the analysis of dark energy in cosmology, assuming 

Pr (�)d� = C
�−ad�

(�min)b
,

S1(L) = C ′L3/2V ,

S1(U , V ) = C ′′U 3/2V −1/2.

U

V
=

2

3C ′′ T
−2; p = −

1

3

U

V
.
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that it is constituted by cosmic string loops, because dark energy needs a nega-
tive enough pressure to accelerate the cosmic expansion. Analogies between vortex 
loops and topological cosmic defects are an interesting topic (Volovik 2005), but we 
cannot deal with them here.

To estimate the configurational entropy of the tangle related to the orientation, 
we make an analogy with polymer physics. In the latter, the configuration tensor C 
is defined as (see Eq. (1.110))

� (11.75)

with R the end-to-end vector—or simply the orientation vector, if the molecule 
is rigid, as in rigid dumbbells or liquid crystals, and 〈· · · 〉  standing for average. 
Analogously, the geometry of the tangle may be described by the tensor 〈s ′s ′〉, or by 
UU − s′s ′,  as it has been said in (11.37). Then, as well as in polymer physics, one may 
define the orientational contribution to the configurational entropy of the tangle as

� (11.76)

(see Eqs. (1.111) and (5.22)). In this way, the detailed study of the thermodynamics 
of vortex tangles should in fact incorporate not only the vortex line density L but 
also the configuration entropy, being still this an open topic.

11.7  �Hydrodynamics of Turbulent Superfluids

In Sect. 11.1.1 we have presented a hydrodynamic approach for superfluid flows by 
using as dynamical variables ρ, s, j = ρv  and vs. There we did not consider the 
viscous contribution of the normal component nor the presence of vortices which 
arise in turbulent flows and contribute to internal dissipation. In Sect. 11.6 we have 
paid a detailed attention to the vortices in rotating cylinders and in counterflow situ-
ations, but we have considered that vs  and vn − vs  were fixed, and we concentrated 
our study on the vortex array or the vortex tangle.

To end this chapter we take a more general perspective and consider that vs  and 
vn  themselves are varying with time and space, and discuss the so-called Hall–
Vinen–Bekarevich–Khalatnikov hydrodynamical model for the description of the 
evolution of the system (Donnelly 1991; Mongiovì and Jou 2007).

The evolution equations for vn  and vs  in HVBK framework are (Donnelly 1991)

� (11.77)

� (11.78)

C = 〈RR〉 ,

S = kBL
[

1
2 Tr〈U − s ′s ′〉 + ln

∣
∣det〈s ′s ′〉

∣
∣] .

ρn
∂vn

∂t
+ ρnvn · ∇vn = −

ρn

ρ
∇pn − ρss∇T + F ns + ηn∇2vn,

ρs
∂vs

∂t
+ ρsvs · ∇vs = −

ρs

ρ
∇ps + ρss∇T − Fns + ρsT ,
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where n is the dynamic viscosity of the normal component. The effects of the vorti-
ces on the motion of the components of the superfluid are described by Fns, the fric-
tion force of the superfluid component on the normal fluid, which bears an opposite 
sign in the Eq. (11.78), as it is consistent with its character of an internal force, and 
by ρsT, the vortex tension force, related to the average curvature of the vortices. The 
quantities pn and ps, the effective pressures acting on the normal and the superfluid 
components, respectively, are defined as

� (11.79a)

� (11.79b)

with p being the total hydrodynamic pressure.
The expressions for Fns and T describing the effect of the vortices on the evolu-

tion of the velocities vn  and vs  in the HVBK model, in terms of the vortex lines, 
are (Donnelly 1991)

� (11.80)

� (11.81)

where vns  is used for the difference vn − vs, ω = ∇ × vs is the rotational of the su-
perfluid vorticity, ω̂ ≡ ω/|ω| is the unit vector along ω, and β̃  is the vortex tension 
parameter defined as

� (11.82)

c being a constant of the order of unity, a0 the radius of the vortex core, and α and α′ 
the friction coefficients appearing in (11.41). Note that in Sect. 11.6 we have used 
the symbol V for the average of vn − vs  on the whole system, whereas in (11.80), 
(11.81) we are considering the local values of vn  and vs  in the inhomogeneous 
situation, and vns  for their difference.

In the case of isotropic vortex tangles, the tension T appearing in (11.78) is T = 0, 
because the averaged curvature is zero, and the friction force Fns in (11.77–11.78) 
reduces to

� (11.83)

Thus, the description of Fns requires the knowledge of the vortex line density L, 
whose evolution equation in inhomogeneous situations may be taken as (11.60), 
with L given by (11.55) or some of its generalizations.

∇pn = ∇p +
1

2
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1

2
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F ns = ρsαω̂ ×
[
ω × (vns − β̃∇ × ω̂)

]
+ ρsα

′ω × (vns − β̃∇ × ω̂),

T = (β̃∇ × ω̂) × ω = β̃ω · ∇ω̂,

β̃ =
κ

4π
ln

(
c

a0L1/2

)
,

F ns = −
2

3
ρsκαLvns.
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The set of Eqs. (11.77), (11.78) and (11.80), (11.81) describes the evolution of 
vn, vs  and L in superfluid helium flows, and is able to cover a wide range of physical 
situations, although a generalization may be required in some circumstances. We 
will not go further in this direction because it would take us to specialized problems 
as Taylor–Couette flow and Poiseuille flow (Jou et al. 2008). These are interesting 
physical situations, of practical interest in cryogenic flows of liquid helium.

Furthermore, it is thought that internal parts of neutrons stars, submitted to high 
pressures, may be in superfluid state. Since many of these stars have a very fast 
rotation, it is expected that a dense array of quantized vortices will be present in 
them. In some circumstances, there may be sudden transitions from ordered parallel 
vortices to a disordered vortex tangle (Peralta et al. 2006). This implies changes in 
the inertia of the rotating fluid and, therefore, changes in the angular speed of the 
stars. Finally, turbulent superfluids provide models of topological defects—vortex 
lines—which may be of interest for the analysis of topological defects in other 
systems, as in cosmic strings (Volovik 2005; Jou and Mongiovì 2009), or in super-
conducting materials.

11.7 Hydrodynamics of Turbulent Superfluids
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The experimental information about the different polymer solutions studied in this 
monograph is collected in this Appendix. These data, taken from the bibliography, 
have been used in Chaps. 5–10 to verify the capacity of prediction of the proposed 
theoretical models.

A.1  Polystyrene in Dioctyl-Phthalate (PS/DOP)

The experimental information for the analysis of this system is taken from 
Rangel-Nafaile et al. (1984), where a solution of polystyrene of molecular weight 
Mw = 1.8 × 103 kg mol−1 and polydispersivity index ( r = Mw/Mn = 1.3) in dioctyl-
phthalate (solvent density 900 kg m−3) is considered. For this solution, the param-
eters of the Flory–Huggins model (Jou et al. 1991; Casas-Vázquez et al. 1993) are 
Θ = 288 K and Ψ = 1.48 and the critical temperature at rest is 285 K. The parameter 
m is estimated by fitting the critical point predicted by the Flory–Huggins model 
and the experimental one with the result m = 3516.

When the system is under shear stress at P v
12  constant, the following functional 

relation for the steady state compliance J can be obtained by fitting the experimental 
data of Rangel-Nafaile et al. (1984),

� (A.1)

where the values of the corresponding parameters are b0 = 4, b1 = 7.85, b2 = 0.319, 
b3 = 14.7, b4 = 0.164, and 0 = 0.042, and where we have introduced the function

� (A.2)

In order to obtain explicit expressions for the non-equilibrium chemical potential, 
defined in Chap. 6 and its derivatives, the functional dependence on  and P v

12  of 
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b3φ

−b0
0

2
(P v

12)−2φb0 exp

[
b4(P v
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(P v
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]
,
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the auxiliary functions (6.35) and (6.78) must be known. Using (A.1) and (A.2) the 
following results are obtained

� (A.3)

�
(A.4)

When the empirical fit (A.1) is used for J, (A.2)–(A.4) lead, straightforwardly, to

� (A.5)

�
(A.6)

where Ξ is the auxiliary function defined as

� (A.7)

A.2  Polystyrene in Transdecalin (PS/TD)

According to the experimental results of Nakata et  al. (1976) it is possible to 
determine the critical temperature of this system and the parameters of the 
Flory–Huggins model. When the molecular mass of the PS is 520  kg  mol−1 
( M0 = 0.104 kg mol−1, N = 5 000), the values Θ = 294.4 K and Ψ = 0.50 are ob-
tained. Furthermore, starting from the values for the molar volumes given by Wolf 
(1984), namely, 1.586 × 10−4 m3 mol−1 for the solvent (transdecalin, molar mass 
M1 = 0.138 kg mol−1) and 0.486 × 10−4 m3 mol−1 for the polystyrene, one obtains 
m = 3 064, in agreement with the result obtained by interpolating the values calcu-
lated from the data of the critical concentration fc proposed by Nakata et al. (1976) 
for several molecular masses of PS. When one uses the latter values of m, Θ, and 
Ψ, one obtains, from the Flory–Huggins theory, Tc = 284.1 K for the equilibrium 
critical temperature.
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To describe how the viscosity of the system depends on the polymer concentra-
tion we use the Martin equation (Bird et al. 1987a)

� (A.8)

where s is the viscosity of the pure solvent, kH the Huggins constant, [] the intrin-
sic viscosity, and c̃ = [η]c  the reduced concentration.

It is an easy exercise to yield (5.44) as a power expansion of the Martin equation. 
In (Wolf 1984) the values of the parameters appearing in (A.8), and consequently 
in (5.45), are reported for the system PS/TD with the molecular mass previously 
quoted. Those values are 1.40 for the Huggins constant kH, 0.0023 Pa s for the sol-
vent viscosity and 0.043 m3 kg−1 for the intrinsic viscosity.

However, in (Wolf 1984) a different model for the equilibrium contribution to 
the chemical potential was used. This model is in agreement with further results 
proposed by Flory et al. (1964a, b) and Flory (1965) and its main difference with 
the previous model is the dependence on composition of the interaction parameter 
 through the expression

� (A.9)

where  is the volume fraction and Ai are functions of the temperature defined as

� (A.10)

gij being parameters whose values have been determined in (Wolf 1984) from mea-
surements of the chemical potential of the solvent in different conditions of tem-
perature and composition.

For polymers with high molecular mass, the behaviour is far from Newtonian, 
and expressions (5.26) and (5.44) are no longer a good approximation. This is the 
case for the system PS/TD described by Kramer and Wolf (1985) and Krämer-Lucas 
et  al. (1988) where the molecular mass of the polymer is 1770 kg  mol–1. These 
authors propose for the non-equilibrium contribution to the Gibbs function a modi-
fication of the one proposed by Vinogradov and Malkin (1980)

� (A.11)

where B is the slope of the curve η(γ̇ ) .
For the explicit form of J we take that proposed by Graessley (1974)

� (A.12)

where γ̇0.8  is defined as the value of the shear rate for which η(γ̇ )  is the 80% of 
(0).

η

ηs

= 1 + c̃ exp(kHc̃)

χ = (A0 − A1) + 2(A1 − A2)φ + 3A2φ
2,

Ai = (gi0/T ) + gi1T ,

�G = VJ [η(γ̇ )γ̇ ]2(1+B),

J = 0.7[η(0) − ηs]
[
η(0)2γ̇0.8

]−1
,
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In dealing with the dependence of non-Newtonian viscosity with respect to shear 
rate, we have proposed (Criado-Sancho et al. 1992) the following modelization

� (A.13)

where to a first approximation the parameter B is directly proportional to the molar 
fraction of the polymer and γ̇0  is inversely proportional to this quantity. Prior to 
assuming this dependence on composition of parameters γ̇0  and B, use has been 
made of the fact that B ≈ −0.5 and that in the whole expression for ∆G the factor 
(γ̇ / γ̇0)2B+1  appears.

A.3  Polystyrene Dissolved in Oligomeric Polystyrene

In this section we consider some solutions of polystyrene of high molecular mass 
dissolved in an oligomeric polystyrene of molecular mass 0.5 kg mol–1 and vis-
cosity 80 Pa s. Using the density of a polystyrene chain with 5 000 segments re-
ported by Wolf (1984), the molar volume of a monomer unit can be estimated as 
9.7 × 10−5 m3 mol−1, in such a way that the molar volume of the oligomeric solvent 
is ν1 = 4.66 × 10−4 m3 mol−1.

Experimental information for three solutions with different values of the solute 
molecular mass M2 can be found in MacDonald and Muller (1996), where relax-
ation times calculated from the Rouse model are also reported. Using these times, 
the intrinsic viscosity for the systems considered may be calculated, yielding the 
values collected in Table A.1.

Whereas in MacDonald and Muller (1996) concentration is given by the weight 
fraction, in Table A.1 the concentration is expressed by the mass of solute by unit 
volume c To relate c to the weight fraction defined in the usual form

� (A.14)

with ni the number of moles of the component i and Mi its molecular mass, we used 
the expression

� (A.15)

η =
{

η0(γ̇ / γ̇0)
B γ̇ > γ̇0

η0 γ̇ < γ̇0,

w2 =
n2M2

n1M1 + n2M2
,

c =
M1

v1
w2

∼=
M0

v0
w2,

M2 
(kg mol−1)

Concentration 
(kg m−3)

Viscosity of the 
solution (Pa s)

Intrinsic viscosity 
(m3 kg−1)

2 000 2.14 165 0.122
4 000 1.28 136 0.171
6 850 0.963 120 0.233

Table A.1

Appendix A: Experimental Data on Polymer Solutions

              



261

with M0 and ν0 the molecular mass and molar volume of a segment of polystyrene 
and where it was assumed that M2 = mM1 and ν2 = mν1, where m may be calculated 
from the polymerization index of the solute.

Using the values of the intrinsic viscosity collected in Table A.1 we obtain the 
following dependence on the molecular mass of the solute

� (A.16)

Concerning the Huggins constant kH to be used in (5.44), the best value is obtained 
by fitting of experimental dates of Table A.1 and yields the result

� (A.17)

These results will be used in Chaps. 5–10 to illustrate the predictions on shear in-
duced phase transitions, shear-induced polymer diffusion and molecular separation, 
and shear-induced degradation. In the future, it would be of interest to have these 
data for a wider variety of systems.

[η] = 2.25 × 10−3M0.524
2 .

kH = 497.9M−0.49
2 .

A.3 Polystyrene Dissolved in Oligomeric Polystyrene



263

In liquid crystals, there is a marked coupling between flow and orientation and 
therefore the presence of velocity gradients does affect the phase transitions such 
as, for instance, the first-order nematic-isotropic transition. This topic has some dif-
ferences from the problems studied throughout this monograph: orientation, rather 
than the concentration, is the main relevant variable. Therefore, the application of 
the non-equilibrium chemical potential which has been used as the unifying basis 
of Chaps. 6–9 is not directly applicable to this situation, but one should work with 
a chemical potential referred to the orientation of the particles. We have already 
remarked in Chap. 5 that, since shear flow is rotational, an orientational steady state 
is not strictly reached because the molecules rotate. When concentration is the rel-
evant variable, as in the previous chapters, this is not important, because one may 
average over the period of rotation. In contrast, when orientation is the essential 
variable, there arise new challenges to the applicability of thermodynamic poten-
tials to determine the steady state, and a wider use of dynamic concepts is needed.

Despite this, we devote an appendix to this important problem for the sake of 
completeness, because there is an increasing bibliography on it, and because it in-
dicates a line of progress for future extensions of the thermodynamic perspective.

B.1  �Equilibrium Thermodynamics and the  
Isotropic-Nematic Phase Transition

Liquid crystals are composed of long rigid molecules. In the isotropic phase, the ori-
entation of the molecules is random. In the nematic phase, the long axis of the mol-
ecules, denoted by the vector n, is oriented, on average, along a particular direction 
characterised by a unit vector n′ called the director. The simplest models suppose 
that all the molecules are aligned along the director, whereas more detailed mod-
els assume that the direction of the axis is described by an orientational distribu-
tion function designated as Ψ(n). The system may undergo a phase transition from 
isotropic to nematic phase due to density effects or to temperature effects: higher 
density implies more interactions amongst the molecules, which will be ordered by 
purely steric effects; lower temperatures imply less ability to rotate. Here, we will 
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give a simple discussion of the isotropic-nematic phase transition in equilibrium 
(the fluid at rest) due to temperature effects. For a detailed introduction to the phys-
ics of liquid crystals see (de Gennes and Prost 1990; Chandrasekhar 1992; Chaikin 
and Lubenski 1995).

Assume a rigid rod-like polymer characterized by a direction n. The order pa-
rameter tensor or orientation tensor is defined as

� (B.1)

where n (which is often taken to be a unit vector with n · n = 1) indicates the axis of 
the molecules and Ψ(n) is the orientational distribution function. The tensor S may 
be measured experimentally through shear-induced birefringence.

For uniaxial nematic liquid crystals, Sαβ takes the simpler form

� (B.2)

where the scalar parameter S is given by

� (B.3)

 being the angle between the molecular axis and the director n′, which expresses 
the average orientation of the molecules.

The free energy F in equilibrium depends on the temperature, pressure and also 
on the scalar invariants of the tensor S (Hess 1975, 1976, 1977; de Gennes and Prost 
1990; Blenk et al. 1991). F is usually assumed to have the Landau–de Gennes form, 
namely

�
(B.4)

with the parameters ai being functions of the temperature and the density. In fact, 
for 3 × 3 symmetric traceless tensors the term in Tr(S · S · S · S) is proportional to 
Tr(S · S) × Tr(S · S), but these terms may be different in more general situations. 
Note, furthermore, that since Tr S = 0 the last term is rather formal and it is written 
here for purposes which will be described below. To this expression one often adds 
the so-called Frank’s terms, which account for the contributions due to the inhomo-
geneities in S, and which depend therefore on the gradients of S.

B.1.1  Phase Transition Induced by Temperature Changes

In terms of the parameter S introduced in (B.2), the free energy (B.4) may be writ-
ten as

� (B.5)

Sαβ =
∫

(nαnβ −
1

3
n · nδαβ)�(n)dn,

S = S

(
n′n′−

1

3
U

)
,

S =
1

2

∫
(3cos2θ − 1)�(θ )dθ ,

F = a2Tr(S · S) + a3Tr(S · S · S) + a4Tr(S · S · S · S)

+ a′
4Tr(S · S)Tr(S · S) + a5Tr (S · S)Tr S,

F =
1

2
rS2 − wS3 + uS4,
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with r, w, and u suitable combinations of the coefficients ai. The transition from 
the isotropic ( S = 0) to the nematic ( S ≠ 0) phases under the effect of a temperature 
change is described in a simple way by assuming that r = a′( T − T*) whereas w and 
u are independent of temperature. The presence of the cubic term makes that transi-
tion discontinuous in S, i.e. a first-order transition.

The transition temperature Tc and the value Sc of S at T = Tc are calculated by 
requiring that F is an extremum with respect to S in equilibrium, and that the free 
energies of both phases are equal at equilibrium. The first condition yields

� (B.6)

Since ∆F = 0 for the isotropic phase, the second condition states

� (B.7)

Thus, by solving the set of Eqs. (B.6) and (B.7) one obtains

� (B.8)

The latent heat may be obtained by comparing the entropy per unit volume of the 
isotropic phase, which is taken to be zero, and that of the nematic phase, which is 
lower than that of the isotropic phase, as it is a more ordered phase. The latter en-
tropy may be obtained from the free energy (B.5) as

� (B.9)

and therefore the latent heat Q is Q = TcS = − (1/2)a′ Tc( w/2u)2. Note indeed that if 
w = 0, i.e. if the cubic term was absent in (B.5), the transition would be of second 
order, i.e. continuous in the order parameter S and with a vanishing latent heat.

B.1.2  Phase Transition Induced by Density Changes

Another important situation arises when the phase transition is induced by density 
changes. In fact, the first statistical mechanical theory of a phase transition for a 
fluid consisting of rigid long molecules which interact through an infinite repulsion 
was developed by Onsager (see Onsager 1942), by considering changes in the den-
sity. In this case, one writes (B.4) as

� (B.10)

where U is a parameter proportional to nbL2, with n the number density of the 
rod-like polymers in solution, b their thickness and L their length. This form 

∂F

∂S
= (r − 3wS + 4uS2)S = 0.

�F =
(

1

2
r − wS + uS2

)
S2 = 0.

Sc =
w

2u
; rc = a′(Tc − T ∗) =

w2

2u
.

S = −
∂F

∂T
= −

1

2
a′S2

c = −
1

2
a′

( w

2u

)2
,

F =
1

2
(U − 3) Tr(S · S) −

U

3
Tr(S · S · S) +

U

4
Tr (S · S)Tr (S · S),
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of F corresponds to the following identification of the coefficients in (B.4) 
a2 = 1

2 [1 − (U/3)] , a3 = −( U/3), a4 = 0, a′
4 = U/4 , a5 = ( U/3). It follows that

� (B.11)

Equating this expression to zero, and taking into account the form (B.2), yields for 
the parameter S the equation

� (B.12)

This is a cubic equation, analogous to the van der Waals equation, which may have 
one (stable) solution for S, or three solutions (two stable and one unstable), depend-
ing on the value of the parameter U, i.e. on the density. It turns out that for U < 3, i.e. 
for a number density lower than bL2/3, the only solution is S = 0, which corresponds 
to the isotropic case, whereas for U > 3, correspondingly n > bL2/3, the stable solu-
tions correspond to S ≠ 0, i.e. to the nematic situation. It is logical to expect that an 
increase in the number density may produce a phase change, because the molecules 
will be close enough to each other to make rotations of their orientation vector 
very unlikely. Another more microscopic formulation, closely related to the origi-
nal formulation by Onsager, is based on the orientational distribution function f ( ) 
(Thirumalai 1986; Lee 1987).

B.2  Dynamic Equations in the Presence of a Flow

In Sect. B.1 we considered the fluid at rest. Now, we will show how the presence of 
a flow changes the phase transition. Indeed, since the flow is an ordering factor, it is 
to be expected that the transition will be changed (see Olmsted and Goldbard 1990; 
Wang et al. 1993; Berret et al. 1994 for bibliography on this rich subject). We start 
from the dynamical equations coupling S with the flow, which will be obtained here 
microscopically. For a thermodynamic derivation of evolution equations of S see 
(Blenk et al. 1991a, b; Hess 1975, 1976, 1977).

The evolution equations for the order parameter tensor around equilibrium may 
be obtained from the generalised kinetic equation for the orientational distribution 
function Ψ(n, t), which has the form (Marrucci and Ciferri 1977; Doi and Edwards 
1986)]

� (B.13)

where D is the rotational diffusion coefficient of the rods, U  the effective potential 
due to the interparticle (excluded volume) interactions, and ∇n stands for the gra-
dient with respect to n. By multiplying this equation by nn − (1/3)U, which is the 

∂F

∂S
= (3 − U )S − 3US · S + UTr(S · S)U + UTr(S · S)S.

6S − 2US(2S + 1)(1 − S) = 0.

∂�

∂t
= D∇n · (∇n� + �∇nU) − ∇n · (�n),
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microscopic expression for the order parameter, and integrating with respect to n, 
one obtains

� (B.14)

with F given by (B.10). Then, it turns out that the stable solutions of this equation 
correspond to the thermodynamically stable solutions obtained above.

When a homogeneous flow field ν of the form ν = κ  ·  r, with κ  the velocity gradi-
ent and r the position vector, is imposed on the system, the evolution equation for 
the tensor S becomes (Doi and Edwards 1986; See et al. 1990)

� (B.15)

with

�
(B.16)

See et al. (1990) have studied the effect of steady flow fields on such a phase tran-
sition of rigid rod-like polymers starting from this set of equations and analysing 
the stability of their solutions for several flows. For a shear flow, the only non-zero 
components of S are Sxx, Syy, and Sxy. The corresponding evolution equations for 
these components are

� (B.17a)

� (B.17b)

� (B.17c)

The final solutions are

� (B.18a)

� (B.18b)

∂Sαβ

∂t
= −D

∂F

∂Sαβ

,

∂Sαβ

∂t
= −D

∂F

∂Sαβ

+ Gαβ(S),

Gαβ =
1

3

(
καβ + κβα

)
+ καµSµβ + κβµSµα

−
2

3
δαβκµνSνµ − 2κµνSµνSαβ.

1

D

∂Sxx

∂t
= −(3 − U )Sxx + US2

xx − 2US2
yy + S2

xy − 2SxxSyy ,

1

D

∂Syy

∂t
= −(3 − U )Syy − 2US2

xx + US2
yy + S2

xy − 2SxxSyy ,

1

D

∂Sxy

∂t
= −(3 − U )Sxy + 3USxxSxy + 3USyySxy +

1

2

γ̇

D
.

Sxx = Syy =
1

6(1 +
√

3)
(U ∗ − U ) ∼= 0.061(U ∗ − U ),

Sxy =
(2

√
3 + 3)

1/2

2(
√

3 + 3)
(U ∗ − U ) ∼= 0.027(U ∗ − U ),
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� (B.18c)

with U* = 3, i.e. the critical value of U (or, equivalently, of the number density of 
rods, since U = nbL2, as noted in the previous section) corresponding to a vanishing 
shear rate, i.e. γ̇ = 0.  The equality (B.18c) may be rewritten as

� (B.19)

Thus, as a consequence of the ordering effect of the flow, the value of the density 
required to produce the phase transition is lowered with respect to the value without 
flow.

See et  al. (1990) have also studied with special emphasis the situation of ex-
tensional flow defined by vz = ξz; vx = − 1

2ξx; vx = − 1
2ξy,  where  is a constant 

parameter, with dimensions of inverse of time. In this case, the only non-vanishing 
components of S are Szz = 2S and Sxx = Syy = −S. The completely isotropic situation 
corresponds to  S = 0 and the completely nematic one to S = 1. The kinetic equation 
for S is

� (B.20)

In the steady state (∂S/∂t = 0), this equation may be rewritten as

� (B.21)

Analogously to the van der Waals equation of state, depending on the values of U 
and  there can be only one stable solution for S or three solutions (two stable and 
one unstable). The boundary between the stable and unstable regions is described 
by (∂/∂S)U = 0. For small values of , and neglecting higher-order corrections in 
S and in 3 − U, one obtains for the critical value of U in the presence of the flow

� (B.22)

The elongational flow plays an important role in the comparison between dynami-
cal and thermodynamical approaches in non-equilibrium states, as will be men-
tioned below. For values of U between Uc( ) and Uc(0) the fluid would be isotropic 
in the absence of flow, but it is nematic in the presence of the flow.

See et al. (1990) showed that for irrotational flows (i.e. for flows where the ve-
locity field may be derived from a potential), the results derived from a dynamical 
method based on the evolution equations for the order parameter tensor and on a 
thermodynamical method based on a free energy depending on the flow are equiva-

∣∣∣∣
γ̇

D

∣∣∣∣ =
(2

√
3 + 3)

2
√

3 + 4

1/2

(U ∗ − U )2 ∼= 0.341(U ∗ − U )2,

Uc(γ̇ ) = Uc(0) − 1.712

(∣
∣
∣
∣
γ̇

D

∣∣
∣
∣

)1/2

.

∂S

∂t
= −6DS + 2UDS(2S + 1) + ξ + 2ξS − S(2S + 1)(2UDS + ξ ).

ξ

D
=

6S

(2S + 1) (1 − S)
− 2US.

Uc(ξ ) = −6(ξ/D)1/2.
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lent, whereas they stated that a thermodynamic approach based on a thermodynamic 
potential is not possible in the case of shear flow.

Several authors have generalised the thermodynamic description to situations 
corresponding to an extensional flow (Peterlin 1966; Auvray 1981; Thirumalai 
1986; Lee 1987). Since extensional flows are irrotational, the velocity derives from 
a potential. Furthermore, since in a low-Reynolds number the hydrodynamic forces 
are proportional to the velocity of the particles with respect to the flow, it follows 
that the hydrodynamic forces in this case derive from a potential. Thus, this poten-
tial may be included in the energy, and one may define a generalised free energy, 
as suggested by Kramers (1946). This line of analysis has been followed by Thi-
rumalai (1986), whose analysis was refined by Lee (1987). Olmsted and Goldbart 
(1990) and Olmsted and Yu (1997) have studied the effects of the shear on a thermo-
tropic nematic liquid crystal and have provided a phase diagram in terms of T and γ̇ . 
The basis for their analysis was a set of evolution equations for the order parameter 
S obtained from linear irreversible thermodynamics.

B.3  �Thermodynamic Formulation

In Sect. B.2 we studied the effect of the flow on the isotropic-nematic transition 
from a purely dynamical point of view. Since in this monograph we are especially 
interested in the thermodynamical approach, we will discuss here the possibility of 
a pure thermodynamic description of the transition, i.e. a description based on the 
equations of state rather than on the evolution equations. One possible interpreta-
tion of non-equilibrium thermodynanics would be to find a potential related to the 
dynamics, as in (B.12), i.e. in such a way that the time derivative of the thermody-
namic variables is proportional to the functional derivative of the free energy. From 
this point of view, one could ask under which conditions one may write the dynami-
cal Eq. (B.13) as the derivative of the equilibrium free energy plus a contribution of 
the flow to the free energy, namely

� (B.23)

with Aflow being given by

�
(B.24)

where bi are coefficients which should be identified by comparison of the deriva-
tive of (B.24) with (B.13). It turns out that this is possible only in the linear regime, 
where only the first term in (B.13) and in (B.24) play a role, provided one identifies 
b2 = − (1/3)L.

∂Sαβ

∂t
= −L

∂(A + Aflow)

∂Sαβ

,

Af low = b2Tr(κ ·S) + b3Tr(S·κ ·S) + b′
4Tr(S · S)Tr(S·κ)

+ b′
4Tr(S · S·κ ·S) + b5Tr(S·κ)TrS,
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In general terms, (B.16) may be obtained from (B.24) only when the follow-
ing conditions are satisfied: (1) κ is symmetric; (2) S is proportional to κ. Indeed, 
since S is symmetric, the antisymmetric part of the velocity gradient disappears in 
Tr(S·κ). As a consequence, the derivative of the second term in expression (B.24) 
leads to ( καμ)

sSμβ + ( κβμ)
sSμα instead of the second and third terms of (B.16), where 

καβ rather than its symmetric part appears. Furthermore, the derivative of the third 
term in (B.24) yields Tr(S · S)κ + 2Tr(S · κ)S. The first of these two terms may be 
related to the last term in (B.14) but the second has no corresponding term in (B.16). 
Thus, only when S is proportional to κ may both terms be superposed into the last 
one of (B.16). These conditions are satisfied in the extensional flows but not in 
shear flows, provided we identify b3 = −2/L, b5 = −2/3L. Thus, apparently, for shear 
flows it is possible to use a non-equilibrium thermodynamic potential only when the 
first term in (B.24) is considered, i.e. when non-linear terms may be neglected in the 
non-equilibrium dynamical contribution. Although this is rather restrictive, it is pre-
cisely this situation which has been studied in (See et al. 1990). In Chap. 5 we found 
an analogous situation, where the dynamical Eq. (5.30) for the distribution function 
has a steady-state solution only for irrotational flows, because the polymers rotate 
with the fluid. However, to build the thermodynamic function, as well as to evaluate 
the shear viscosity, it is sufficient to consider the average of the distribution function 
over a period of rotation.

B.4  Maximum-Entropy Approach

In Chap.  2 we used the maximum-entropy approach to find the thermodynamic 
functions of ideal gases under shear flow. Here we will again use this procedure 
for rigid dumbbells, which are considered here as a simple microscopic model for 
liquid crystals (Camacho and Jou 1990). First, recall that the canonical distribution 
function in equilibrium reads as

� (B.25)

with H  the unperturbed equilibrium Hamiltonian and T the absolute temperature. 
We have commented in Sects. 2.2 and 4.1.4 that in a non-equilibrium steady state 
characterized by a non-vanishing viscous pressure tensor, one should use instead of 
(B.25) the more general expression (4.51), namely

� (B.26)

with P̂
v  the microscopic operator for the viscous pressure tensor and Λ a matrix of 

Lagrange multipliers (Jou et al. 1999a, b), which we have identified in (4.52). We 
will show that the thermodynamic analyses using the classical expression (B.25) 

f ∼= exp

[
−

H
kBT

]
,

f ∼= exp

[
−

H
kBT

− � : P̂v

]
,
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with a suitable “potential energy” for the flow is indeed a particular situation of 
(B.27), provided the identification (B.27) is made. This reinforces such identifica-
tion. We consider a solution of rigid dumbbells for which the microscopic operator 
for the viscous pressure tensor is (Bird et al. 1987b, p. 135)

� (B.27)

where the subindex i indicates a sum over the dumbbells, with (Bird et al. 1987b)

� (B.28)

� (B.29)

with ni the vector indicating the orientation of the ith dumbbell and 2 a time con-
stant which depends on the hydrodynamic interactions among the particles.

According to (B.26), the distribution function should have the form

� (B.30)

where we have taken into account the identification of the Lagrange multipliers 
discussed in Chap. 2. The respective values of 1 and 2 are (Bird et al. 1987b)

� (B.31)

Therefore, (B.30) reduces to

� (B.32)

The expression for ∇ν for the extensional flow is

� (B.33)

Now, if one denotes nx = cos sin, ny = cos cos, nz = sin, (B.32) and (B.33) 
yield

� (B.34)

P̂v =
∑

i

P̂v(1)
i +

∑

i

P̂v(2)
i ,

P̂v(1)
i = kBT U − 3kBT nini ,

Pv(2)
i = −6kBT λ2(∇v)T : nininini ,

f ∝ exp

[

−
H

kBT
−

τ1

kBT
(∇v) :

∑

i

Pv(1)
i −

τ2

kBT
(∇v) :

∑

i

Pv(2)
i

]

,

τ1 =
ς L2

12kBT
; τ2 = 0.

f ∝ feq exp

[

τ1(∇v)T :
∑

i

(kBT Ui − 3nini)

]

.

∇v =




− 1

2� 0 0
0 − 1

2� 0
0 0 �



 .

f ∝ feq exp

[
−

9

2
τ1�sin2θ

]
∝ feq exp

[
−

ς L2�

8kBT
sin2θ

]
.
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This expression coincides with that obtained in (Bird et al. 1987b) as the solution of 
the dynamical equations.

Thus, the idea that a thermodynamic formalism is only possible when the flow is 
irrotational (potential) is too restrictive. In the presence of a non-vanishing viscous 
pressure, the classical equilibrium form (B.25) should be generalised to (B.26), 
which is, in fact, the direct non-equilibrium steady-state extension of the canonical 
distribution function. In turn, (B.26) yields, for extensional flows (and also for other 
potential flows), the results obtained from (B.25) by adding to it the correspond-
ing non-equilibrium potential. Thus, (B.25) indeed represents a valid extension of 
the equilibrium distribution function to potential situations, but it is too restrictive 
to deal with non-potential situations, as simple shear flow, which may be studied 
through (B.26). It must be noted, however, that whereas (B.26) yields a result coin-
cident with that obtained from dynamical arguments in the extensional situation, in 
the shear flow the form (B.26) only coincides with the dynamical solution up to the 
first order in the viscous pressure, which is of the form

� (B.35)

The situation is, in fact, analogous to that found in ideal gases, where the results for 
the distribution function obtained by maximum-entropy arguments coincide with 
the results of the Boltzmann equation up to first order in the shear rate. This is an 
illustration of the fact that the maximum-entropy distribution function is not the 
exact distribution function, but it is sufficient to describe the thermodynamics in the 
chosen space of states.

f ∝ feq [1 − τ (∇v) : (3nn − U)] .
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In general, we have used tensorial notation throughout the book. Tensors of rank 0 
(scalars) are denoted by means of italic type letters a; tensors of order 1 (vectors) 
by means of boldface italic letters a and tensors of rank two and higher orders by 
capital boldface letters A. In some special circumstances, three-dimensional Carte-
sian coordinates are used:

a( ai)	� vector,
A( Aij)	� tensor of rank 2,
U( ij)	� unit tensor ( ij is Kronecker’s symbol),
J( Jijk)	� tensor of rank 3.

C.1  Symmetric and Antisymmetric Tensors

Denoting by superscript T the transpose, the symmetric and antisymmetric tensors 
are respectively defined as

� (C.1)

The trace of a tensor is defined as the sum of its diagonal components, namely

� (C.2)

C.2  Decomposition of a Tensor

It is customary to decompose second-order tensors into a scalar (invariant) part A, a 
symmetric traceless part 

0
A , and an antisymmetric part Aa as follows

� (C.3)

symmetric A = AT (Aij = Aji), antisymmetric A = −AT (Aij = Aji).

trace of a tensor Tr A =
∑

i

Aii .

A =
1

3
(TrA)U +

0
A +Aa =

1

3
Aδij +

0
Aij + Aa

ij .
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Note that this decomposition implies Tr
0
A = 0

(
∑

i

0
Aii = 0

)
.

The antisymmetric part of the tensor is often written in terms of an axial vector 
aa whose components are defined as
�

(C.4)

where the permutation symbol ijk has the values

�
(C.5)

C.3  Scalar (or Dot) and Tensorial (Inner) Products

We have used for the more common products the following notation:
Dot product between

�

(C.6)

Double scalar product between tensors

� (C.7)

The trace of a tensor may also be written in terms of its double scalar product with 
the unit matrix as TrA = A : U.

C.4  �(Inner) Tensorial Product (Also Named Dyadic Product)

�
(C.8)

aa
i =

∑

j ,k

εijkA
a
jk ,

εijk =






+1 for even permutations of indices (i.e.123, 231, 312)
−1 for odd permutations of indices (i.e. 321, 132, 213)

0 for repeated indices.

two vectors a · b =
∑

i

aibi (scalar),

a vector anda tensor A · b =
∑

j

aij bi (vector),

a tensor and a vector b · A =
∑

j

bjajk (vector),

two tensors A · B =
∑

k

aikbkj (tensor).

A :B =
∑

i,k

aikbkj (scalar).

between two vectors (ab)ij = aibj (tensor of rank 2),

a vector and a tensor (aB)ijk = aiBjk (tensor of rank 3),

a tensor and a vector (Ba)ijk = Bijak (tensor of rank 3),

two tensors (AB)ijkl = AijBkl (tensor of rank 4).

Appendix C: Summary of Vector and Tensor Notation
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C.5  �Cross Multiplication Between Two Vectors  
and Between a Tensor and a Vector

�
(C.9)

C.6  Differentiation

The most usual differential operators acting on tensorial fields may be expressed in 
terms of the so-called nabla operator, defined in Cartesian coordinates as

� (C.10)

Gradient (defined as dyadic product)

Divergence (defined as the scalar product)

� (C.11)

Rotational or curl (defined as the cross product)

The most usual second-order differential operator in tensorial analysis is the Lapla-
cian, defined as

� (C.12)

(a × b)k = εijkaibj (vector),

(B × a)ik =
∑

j ,l
εjklBij bl (tensor).

∇ =
(

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
.

(∇a)i =
∂a

∂xi

(vector),

(∇a)ij =
∂aj

∂xi

(tensor of rank 2),

(∇A)jki =
∂Ajk

∂xi

(tensor of rank 3).

∇ · a =
∑

i

∂ai

∂xi

(scalar), (∇ · A)i =
∑

j

∂Aji

∂xj

(vector).

(∇ × a)i =
∑

j ,k

εijk

∂ak

∂xj

(vector), (∇ × A)ik =
∑

j ,l

εijk

∂Aij

∂xl

(tensor of rank 2).

∇ · ∇ =
∑

i

∂2

∂xi∂xi

.

C.6 Differentiation
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C.7  Tensor Invariants

Some combinations of the elements of a tensor remain invariant under changes of 
coordinates. Such invariant combinations are

�

(C.13)

Other invariant combinations may also be formed, but they are combinations of I1, 
I2, and I3; for instance, one often finds the invariants I, II, and III defined as

� (C.14)

The invariants I, II, and III appear as coefficients in the “characteristic equation”

It is also possible to form joint invariants of two tensors A and B as

�
(C.15)

I1 = TrA = A :U =
∑

i

Aii ,

I2 = Tr A · A = A :A =
∑

i,j

AijAji ,

I3 = Tr A · A · A =
∑

i,j ,k

AijAjkAki .

I = I1, II =
1

2
(I 2

1 − I2), III =
1

6
(I 3

1 − 3I1I2 + 2I3) = det A.

det(λU − A) = 0.

I11 = TrA · B,

I21 = TrA · A · B,

I12 = TrA · B · B,

I22 = TrA · A · B · B.

Appendix C: Summary of Vector and Tensor Notation
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We present here some useful integrals appearing in several calculations based on 
the kinetic theory of gases. Let F(C) be any scalar function of the peculiar velocity 
C such that the integrals appearing below converge, and let Cx and Cy be two com-
ponents of C. Then

� (D.1)

� (D.2)

� (D.3)

The following definite integrals are also useful

� (D.4)

� (D.5)

∫
F (C)C2

x dC =
1

3

∫
F (C)C2dC,

∫
F (C)C4

x dC =
1

5

∫
F (C)C4dC,

∫
F (C)C2

xC
2
y dC =

1

15

∫
F (C)C4dC.

∫ ∞

0
exp(−αC2)CrdC =

√
π

2

1

2

3

2

5

2
· · ·

r − 1

2
α−(r+1)/2 (r even),

∫ ∞

0
exp(−αC2)CrdC =

1

2
[(r − 1)/2]!α−(r+1)/2 (r odd).

Appendix D
Useful Integrals in the Kinetic Theory of Gases

D. Jou et al., Thermodynamics of Fluids Under Flow, 
DOI 10.1007/978-94-007-0199-1, © Springer Science+Business Media B.V. 2011



Appendix E
Some Physical Constants

Boltzmann’s constant kB 1.38 × 10−23 J K−1 = 8.62 × 10−5 eV K−1

Stefan–Boltzmann’s  
constant

0 5.67 × 10−8 W m−2 K−4

Radiation constant α = 40/c 7.56 × 10−16 J m−3 K−4

Atomic mass unit amu 1.66 × 10−27 kg
Electron charge e 1.60 × 10−19 C
Electron mass me 9.11 × 10−31 kg
Proton mass mp 1.673 × 10−27 kg
Planck’s constant h 6.63 × 10−34 J s = 4.14 × 10−15 eV s

D. Jou et al., Thermodynamics of Fluids Under Flow, 
DOI 10.1007/978-94-007-0199-1, © Springer Science+Business Media B.V. 2011
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