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Supervisor’s Foreword

Phase transitions are an experience of everyday life that has fascinated scientists for
centuries. The quest to understand them has led to many Nobel Prize-worthy
developments ranging from the renormalization group in statistical mechanics to
fundamental aspects of quantum field theory. Freezing and boiling water constitute
simple examples of first-order phase transitions for which the density, a first
derivative of the free energy, changes discontinuously. But these are by no means
the only phase transitions. Indeed, in many respects, more interesting are
second-order phase transitions such as the ferromagnetic phase transition. Here, the
magnetization increases continuously from zero as the temperature is lowered
below the transition temperature, and it is the magnetic susceptibility, the second
derivative of the free energy, that changes discontinuously. Second-order phase
transitions are particularly interesting as they exhibit the remarkable phenomenon
of spontaneous symmetry breaking. When there is no external magnetic field and
the setting is therefore completely symmetric, the ferromagnetic material can
become magnetized in one of two possible directions which are chosen at random;
i.e., in each repetition of the experiment, there may be a new direction of magne-
tization. Although the physics was completely symmetric, the resulting state is not
and we speak of a spontaneously broken symmetry. The mechanism of spontaneous
symmetry breaking underlies, for example, the theory of the Higgs boson in the
standard model.

In quantum mechanics, a second-order quantum phase transition in a quantum
system describes an abrupt change in the ground-state properties upon a change of a
system parameter and separates quantum phases of matter, whose physical prop-
erties cannot be analytically connected. According to the traditional understanding,
the emergence of phase transitions can be explained only by invoking the concept
of the thermodynamic limit of infinitely many system components. Indeed, up until
recently, it has been widely assumed that a phase transition can only occur in this
limit. The reason for this assumption can be understood from the consideration
of the partition function. A partition function can be represented as a sum of
exponential functions, and the number of terms to be summed over is equal to the
dimension of the corresponding Hilbert space. As the sum of finite number of
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exponential functions, which are individually analytic functions, can never become
non-analytic, the possibility of any non-analyticity in the partition function and thus
the possibility of phase transition only arise when this sum is over infinitely many
terms. This simple observation rules out the existence of a phase transition for
quantum systems where each system component has a finite Hilbert space
dimension, such as in the case of spin systems. In the folklore of the research
community that has been concentrated, not correctly as we will see, in the belief
that only infinitely extended systems can exhibit a phase transition.

In his dissertation, Ricardo Puebla shows that this belief is not true. Indeed, in a
seminal contribution, he shows that this no-go type of principle does not apply to a
system composed of unbounded quantum systems residing in an infinite dimen-
sional Hilbert space such as a harmonic oscillator. In this case, the partition function
is a sum over an infinite number of exponential functions and therefore the pos-
sibility of non-analytic behavior is not necessarily ruled out by the finite number of
system components. Building on this insight, he then proceeds to construct explicit
examples of quantum phase transitions and critical phenomena in a minimal
quantum system, comprising a single two-level system and a bosonic mode. He
shows that in a suitable limit of the system’s parameters rather than in the con-
ventional thermodynamic limit in the particle number, this system exhibits all the
phenomenology of phase transitions. This novel notion, dubbed finite-component
size quantum phase transition, challenges the well-established idea of phase tran-
sitions which emerge due to an infinite number of degrees of freedom. Remarkably,
it is shown that by investigating and exploring systems featuring this novel phase
transition, which do not require large number of constituents, one can learn about
the critical traits of a truly quantum many-body system—typically more compli-
cated to realize experimentally—in the same manner as one studies simplified Ising
models to understand more complex systems which belong to the same universality
class. Ricardo does not only show that the ground-state properties exhibit a phase
transition but also extends these observations to time-dependent phenomena.
Indeed, when traversing a symmetry breaking second-order phase transition at a
finite rate, different parts of the system cannot interact fast enough and will choose
their symmetry broken phase at random and independent of each other. Hence,
different spatial regions may choose different symmetries, and the boundary
between two such regions forms a domain wall or a defect. In the traditional picture
of phase transitions, remarkably, the number of these domains is a function of the
rate at which one traverses the phase transition with exponents that are, somewhat
surprisingly, determined by the equilibrium properties of the phase transition. This
is the celebrated Kibble–Zurek scaling, and it was by no means clear that this
phenomenology would also be realized in the finite system phase transition, but
Ricardo was able to show this too by assuming that quantum excitations play the
role of defects. Beyond the actual conceptual novelty, a detailed analysis of a
potential experimental realization unveils its feasibility based on dynamical
decoupling techniques to cope with different and realistic noise sources.
Experiments of this type are now underway with laser-cooled trapped ions.
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This thesis not only offers a detailed account for the aforementioned scientific
results, but also places them into context by reviewing previous findings and dis-
cussing prospects directions for the future work. In addition, the introduction firms
down the necessary general concepts for the understanding of the subsequent
chapters and discussion. This thesis is therefore an excellent read for those inter-
ested in the realm of critical phenomena and Kibble–Zurek physics as well as in the
novel notion of finite-component system quantum phase transitions.

Ulm, Germany
July 2018

Prof. Dr. Martin B. Plenio
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Abstract

Phase transitions are inherent to many-body systems and constitute a paradigmatic
example of an emergent phenomenon, which stems from an infinite number of
microscopic constituents. Different phases of matter, that are characterized by
having distinct macroscopic properties, are separated by critical values of certain
external magnitudes at which a change of phase takes place, namely when a phase
transition occurs. As matter varies its collective properties in many and disparate
manners, phase transitions or critical phenomena appear also in the quantum realm.
In this regard, our understanding and the subsequent exploitation of distinct phases
of matter crucially rely on the comprehension of phase transitions and of their
underlying mechanisms. Continuous phase transitions deserve special attention as
they allow to investigate same physics across systems that are a priori utterly
distinct. This remarkable property is known as universality, and it provides a
powerful tool for the inspection of critical phenomena by analyzing simple models
that reproduce the main traits of more complex systems. However, while these
notions are well established in a static or equilibrium case, much less it is known
about how universal features emerge or are inherited in nonequilibrium scenarios.
In this context, we find the Kibble–Zurek mechanism, a theory aiming to explain
defect formation promoted by finite-rate ramps across a phase transition. This
mechanism establishes a relation between universal equilibrium critical exponents
and nonequilibrium features of the dynamics involving a phase transition. In this
thesis, we analyze continuous phase transitions in different low-dimensional sys-
tems, addressing their equilibrium and nonequilibrium aspects, as well as paying
special attention not only to the Kibble–Zurek mechanism but also to other uni-
versal traits of the dynamics. Moreover, we show that a model with only two
constituent elements undergoes a phase transition in a suitable parameter limit
rather than in the conventional thermodynamic limit and thus challenging the
common notion about phase transitions.

The Kibble–Zurek mechanism evidenced that universal traits also apply to
nonequilibrium scenarios. However, since Kibble–Zurek mechanism is based on
properties only valid in the thermodynamic limit, their examination and ultimate
verification in finite-size systems must be done prudently. Here, we discuss how
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universality of phase transitions can be attained and extended by exploiting and
combining finite-size scaling theory with a Kibble–Zurek problem. This is illus-
trated in a Ginzburg–Landau model as well as in a realistic linear to zigzag phase
transition in a Coulomb crystal, where in addition an approximate method is pro-
posed to gain insight into the dynamics. Furthermore, a brief exploration of a
feasible quantum many-body system suggests that the quantum Kibble–Zurek
mechanism may be observed within current ion-trap technology.

A relevant part of this thesis has been devoted to investigate the quantum Rabi
model, which describes the interaction between a qubit and a single bosonic mode.
Despite its apparent simplicity, it is demonstrated that the quantum Rabi model
undergoes a quantum phase transition when the ratio of qubit over bosonic fre-
quency becomes infinite, while keeping finite the number of system constituents—a
novel manner of attaining criticality that we have dubbed finite-component system
phase transition. In this limit, the exact effective low-energy solution reveals a
spontaneous symmetry breaking and the emergence of ground-state singularities at
the critical point. Furthermore, for finite, yet large, ratio values, an equivalent
formulation of finite-size scaling theory can be applied to this quantum phase
transition. This allows us to disclose that the quantum Rabi model falls in the same
universality class as that of the Dicke model. We extend our study of this critical
system to a nonequilibrium scenario, where among another findings, we show that
Kibble–Zurek physics can actually be observed in a zero-dimensional system,
contrary to the common belief prior this work. Hence, the quantum Rabi model
serves as an excellent test bed for the examination of different physics related to
quantum phase transitions. We complete our analysis by proposing a potential
experimental implementation of the quantum Rabi model using a single trapped ion
to probe the dynamics of a superradiant quantum phase transition, while at the same
time coping with realistic noise sources.
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Chapter 1
Introduction

Our understanding of nature is built on the precise knowledge of the interaction
between distinct constituents of matter. Certainly, the description of macroscopic
properties arising from microscopic details is one of the fundamental problems in
modern science, and of primarily importance in condensed matter physics and sta-
tistical mechanics [1]. In this regard, enlarging the degrees of freedom of a system
typically provokes the emergence of qualitatively different behavior, leading to the
appearance of macroscopic manifestation of microscopic interactions—cooperative
or emergent phenomena that cannot be grasped by few interacting elements, as P. W.
Anderson pointed out in his famous essay [2]. Examples are ubiquitous in nature,
such as the existence of matter in diverse thermodynamic phases despite compris-
ing the same atomic composition. These phases account for diverse macroscopic
properties, while it is possible to transform matter into another phase by changing
external conditions, an issue that has enthralled humankind throughout history and
has been addressed by diverse means. An explanation of this phenomenon dates back
to the ancient Greek philosophers Leucippus and Democritus, but it was not until the
arrival of statistical mechanics in the 19th century when a precise and formal theory
was introduced. It was then when the term phase transition was coined in relation to
the transitions between different phases of matter. Not surprisingly, phase transitions
appear at every scale of nature, from cosmology to the quantum world, thus repre-
senting an omnipresent phenomenon in physics, since matter varies its properties
in a number of manners, breaking and restoring symmetries at expense of varia-
tions on external conditions. Among the vast number of known phase transitions,
the emblematic case of water is perhaps the best illustration of this phenomenon.
Despite the fact that water is made of the same constituents, it appears in distinct
phases, namely, solid, liquid and gas. By simply varying the temperature one can
easily obtain different macroscopic properties, like crystalline order in ice.

The advent of quantummechanics irrevocablymodified our view of nature and the
underlying laws that govern it [3, 4]. This theory successfully addressed previously
unsolved problems, while pointing out novel phenomena, that led to the discovery
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2 1 Introduction

of new and exotic phases of matter. For example, the fact that Bose–Einstein con-
densation or superconductivity cannot be explained in classical terms reveals the
richer and striking properties that matter can acquire when quantum mechanical
effects become dominant. These emergent phases of quantum matter have attracted
the attention among the scientific community and their inspection assuredly has
become an active field of research during the last decades, not only due to our insa-
tiable desire to push the frontiers of knowledge, but also for practical reasons. In this
respect, for example, the quest for combining quantummechanical effects and statis-
tical mechanics has ultimately led to the discovery of phase transitions triggered by
quantum fluctuations, called quantum phase transitions (QPTs), which separate dif-
ferent exotic ordered phases of matter in the same manner as the more conventional
phase transitions [5, 6].

The great technological advances in quantum technologies have made possible
to study individual quantum entities with an unprecedented degree of precision,
isolation and control, bringing closer the compelling idea of Feynman [7]. Currently
it is feasible to explore the fundamental ingredients of matter and their interaction in
laboratories, an inconceivable task not long ago, as E. Schrödinger made clear: “[...]
in thought-experiments we sometimes assume that we do (work with single atoms or
molecules); this invariably entails ridiculous consequences” [8]. The manipulation
of mesoscopic quantum systems has made possible to inquire nature about the well-
grounded principles of thermodynamics and statisticalmechanics and how they break
down when dealing with single interacting particles—a fascinating and fundamental
issue.

Either classical or quantum, phase transitions can be classified in two subgroups,
namely first-order and continuous [5, 9, 10]. This classification has its roots in
the work of P. Ehrenfest [11] and took firm ground by 1940s, less than a decade
after being proposed. Motivated by contemporary experiments on the superfluid
transition of helium (the λ transition) , Eherenfest argued that whenever the Gibbs
free energy becomes discontinuous, there is a phase transition. Depending on the
order n of the derivative in which the discontinuity appears, the transition is then
considered to be of first (n = 1), second order (n = 2), or higher (n ≥ 3). Ironically,
this classification did not explain the λ transition, nor the logarithmic divergence
featured by a two-dimensional Ising model [12]. Thus, the Eherenfest classification
was patently incomplete and had to be either extended or amended. Later, it resulted
in the so-called modern classification, which only distinguishes between first-order
and continuous phase transitions [9, 10]. However, for historical reasons, the terms
second-order and continuous phase transitions are sometimes used indistinguishably.
Spontaneous symmetry breaking lies at the core of phase transitions, in which one of
the phases exhibits an order after a critical value (called critical point) of an external
parameter, such as temperature or magnetic field intensity.1

1Note that there are continuous phase transitions that do not break any symmetry, as it is the case
of the Kosterlitz–Thouless phase transition [13]. However, this special type of phase transition is
not covered in this thesis.
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On top of equilibrium properties, the dynamics of systems featuring phase tran-
sitions or subject to symmetry breaking is of relevance, which is typically embraced
under the generic name of nonequilibrium phenomena [9, 14–17]. Nonequilibrium
dynamics addresses the broad question of how a particular system behaves when
driven out of equilibrium, as, for example, how thermalization is attained after a
sudden change in the external parameters or how a system reacts when driving
across a phase transition. In addition, such effects can be of great relevance in other
assignments, such as quantum annealing in the realm of quantum information pro-
cessing [18, 19]. These issues, despite of their great relevance in nature, are much
less understood than their equilibrium or static counterparts. In particular, in the
context of dynamics of phase transitions we find the paradigmatic Kibble–Zurek
(KZ) mechanism of defect formation [20]. This mechanism establishes an elegant
and acclaimed relation between static and nonequilibrium properties of the phase
transition in terms of the rate at which it is traversed.

This thesis, however, does not attempt to provide an analysis of the disparate
critical phenomena emerging on diverse physical systems. Nonetheless, we will
steer the reader through different topics, always within the framework of continuous
phase transitions, starting in Chap. 2 with the paradigmatic Ginzburg–Landaumodel,
to then move into the quantum realm. In particular, Chaps. 3, 4 and 5 examine the
quantum Rabi model (QRM), a model in which we will unveil a novel type of critical
behaviors, and study its static and nonequilibrium physics, as well as a potential
experimental implementation. In addition, in the search for a robust implementation
of the QRM, we analyze a suitable strategy to cope with certain noise sources. In
Chap. 6 we consider a quantum many-body system, namely, an Ising model, which
will serve us as a testbed for the inspection of the quantum Kibble–Zurek (QKZ)
mechanism. The work presented in this thesis extends our knowledge about phase
transitions and their associated dynamics, and may help to elucidate the rich physics
uncovered by small quantum systems and their emergent phenomena. In addition,
the main outcomes within this thesis may encourage experimental inquiries into
these issues, which ultimately will allow us to understand and explore the intriguing
features of quantummatter out of equilibrium. Finally, in Chap. 7 we will present the
main conclusions and prospects for future work. Parts of this thesis have been first
published in [21–25], see List of publications in the front matter. Although we have
not introduced phrases or figures directly from these references, this thesis is based
on these works, and therefore the content may be similar to that of these references,
while citations are often omitted.

In this thesis we will focus on continuous phase transitions, and on their nonequi-
librium dynamics, that is, on the features of systems when phase transitions partic-
ipate or are involved in the dynamics. As aforementioned, in this context we find
the KZ mechanism, which will be examined in detail in distinct scenarios, both
classical and quantum. As continuous phase transitions constitute the central topic
of this thesis, it is convenient to provide an overview of these critical phenomena,
introducing the main concepts we will make use in the subsequent chapters. This
introductory part is devoted to this task, where we exemplify these aspects reviewing
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the celebrated Ising model. In addition, we discuss the nonequilibrium scenario we
will consider, together with an explanation of the KZ mechanism.

1.1 Continuous Phase Transitions

Phase transitions are classified in terms of how thermodynamics quantities behave
close to the critical value of an external parameter, say ε, which divides two phases
(or more) with different macroscopic properties. This critical value of the external
parameter is known as critical point, and it represents any quantity whose variation
triggers a phase transition at εc = 0, such as temperature or magnetic field intensity.2

For example, discontinuities in thermodynamic quantities lead to first-order phase
transitions, whose main hallmark consists in the coexistence of the two phases of
matter at the critical point and a non-zero latent heat [1, 14, 26]. However, while
these transitions are certainly of importance (solid-liquid phase transitions), we will
direct our attention to another kind, namely, continuous phase transitions. The latter
display a diverging correlation at the critical point, and thus, the system adopts a
unique, yet critical, state. As a consequence, the features of the system vary in a
continuous manner as the critical point is traversed. In the following we provide a
more detailed explanation of this type of phase transitions.

Let us briefly recall the basic procedure to determine thermodynamic quantities
at thermal equilibrium of a system governed by a Hamiltonian H . In this respect, the
so-called partition function Z plays a key role [1],

Z =
∑

σn

e−βH(σn) (1.1)

where σn represents the nth possible microstate with energy H(σn) and β−1 ≡
kBT the thermal energy, where kB corresponds to the Boltzmann constant. In this
manner, the probability of finding the a macroscopic state in the nth microstate reads
e−βH(σn)/Z , and thus,macroscopic quantities are obtained as 〈O〉 = ∑

n One−βH(σn)

/Z , where On stands for the value of O in the nth microstate. The thermodynamic
functions follow from Z , as for example the Helmholtz free energy

h = − 1

β
ln Z . (1.2)

However, these thermodynamic functions may undergo singularities at particular
values of an external parameter, denoted by ε, with εc = 0 the critical point. This
very fact seems to contradict the analytic behavior not only of Z , but also of these
thermodynamic functions. However, singularities take place only in the thermody-

2For temperature, for example, this parameter would become ε = T/Tc − 1 where Tc stands for
the critical temperature of the phase transition.
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(a) (b)

(c) (d)

Fig. 1.1 Schematic illustration of the main traits of a continuous phase transition, namely, order
parameter m (a) and correlation length ξ (b) as a function of the external parameter ε. The order
parameter vanishes in the disorder and increases as |ε|β for ε < εc = 0, while the correlation length
diverges as ξ ∼ |ε|−ν . In b the impact of finite-size systems is illustrated by dashed lines. The
panels c and d show the possible situation between QPT and classical or thermal phase transitions.
In c the system exhibits only a quantum critical point at εc and there is no phase transition at finite
temperature, as it is the case of a one-dimensional Ising model (Sects. 1.2.2 and 1.2.3). In d the
system portrays thermal phase transitions along the line, which terminates at T = 0 with a QPT

namic limit, N , L → ∞ keeping the density finite. This limit grants Eq. (1.1) the
possibility to develop singularities since the limit function of a sequence of analytic
functions need not be analytic.

Continuous phase transitions are characterized by the emergence of a spontaneous
ordering for values of the external parameter ε < εc = 0. In contrast to first-order
phase transitions, there is no abrupt jump, but rather a continuous variation on the
properties of the system.The underlyingmechanism resides in a diverging correlation
across the system, ξ ∝ |ε|−ν , where ξ represents the correlation length. Besides ξ,
it is possible to quantify the amount of order by the so-called order parameter m.
This quantity vanishes in the entire disordered phase (ε > 0), while it increases as
m ∝ |ε|β for ε < 0. We will comment in Sect. 1.1.1 the relevance of the exponents ν
andβ (called critical exponents), the impact of finite-size systems and the universality
of these phase transitions. These features are sketched in Fig. 1.1a and b, where in
the latter we highlight the impact of finite-size systems, that show no true singularity,
but they rather exhibit a smooth behavior.

The contribution of L. Landau deserves specialmention as he deeply improved our
understanding of phase transitions and critical phenomena [26]. The model currently
known as Ginzburg–Landau model provides a correct description, on phenomeno-
logical and mean-field grounds, of the behavior of the order parameter in the vicinity
of the critical point. As this model can be used to address critical behavior in several
scenarios, it explicitly highlighted the universality of continuous phase transitions.
However, we do not provide here a detailed explanation of this model as it will be
analyzed in Chap. 2.

Finally, we remark that, since quantum mechanics provides the most accurate
description of nature, everything should obey the laws of quantum mechanics. In
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this sense, all phase transitions are quantum. However, as we know, many prob-
lems do not demand a quantum mechanically description to be understood, and thus
classical phase transitions refer to those phase transitions which can be addressed
by means of classical statistical mechanics. On the order hand, there are transitions
between states of matter that cannot be accounted for by utilizing simply classi-
cal mechanics. Formalized in the last decades, these phase transitions have gained
the natural term of QPTs [5, 6]. The burgeoning field of QPTs has attracted great
attention, as quantum mechanical effects are behind exotic phases of matter such as
Bose–Einstein condensate or superconductivity.

Quantum phase transitions are revealed in the ground state of a certain quantum
system, therefore, they often receive the name of T = 0 phase transitions. Although
there are first-order QPTs, we shall focus on their continuous version. Let H = H0 +
gH1 be the Hamiltonian of the systemwhere H0 and H1 do not commute, [H0, H1] 
=
0, showing different symmetries. Loosely speaking, we may identify a critical point
gc atwhich there is an avoided crossing and fromwhich ground-state properties differ.
In the thermodynamic limit, the avoided crossing becomes a non-analytic point at
which the energy gap � vanishes, thus, gc is a quantum critical point. Moreover, the
theory of classical continuous phase transitions can be translated to this context, such
as the emergence of long-range correlations ξ and order parametersm. Yet, although
QPTs emerge at T = 0, they provide a good description of thermodynamic quantities
at non-zero temperatures T and for wide range of |g − gc| [5]. The discussion on
critical exponents, scaling laws and universality provided in the following lines also
applies to QPTs upon the identification ε = g/gc − 1. Finally, we point out that
there are two possible scenarios, as we will discuss later in the Ising model, that are
illustrated in Fig. 1.1c and d. For the former there is only a phase transition at strictly
zero temperature (e.g. one-dimensional Isingmodel, see Sects. 1.2.2 and 1.2.3), while
for the latter there is a critical line at which classical phase transitions take place;
such line terminates at T = 0, which leads to a QPT (e.g. two-dimensional Ising
model, see Sect. 1.2.2). For further elements on the phenomenology of QPTs see
[5, 6].

1.1.1 Critical Exponents

A continuous phase transition is characterized by a set of positive numbers named
critical exponents, which indicate how certainmacroscopic quantities behave close to
its critical point εc = 0 [9, 10].Wewill denote critical behavior when these quantities
show a power-law dependence as ε → 0 with a particular exponent, say κ, i.e., |ε|κ,
and from this it follows thatκ is a critical exponent. Certainly, these critical exponents
are of primary importance in the understanding of continuous phase transitions as
well as their classification in the so-called universality classes (see Sect. 1.1.3).

In general, certain quantities close to a continuous phase transition obey A =
A0|ε|κ whereA0 is simply a constant value depending on the microscopic details of
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the system. Then, a continuous phase transition is characterized by a set of critical
exponents, which can be gathered as3

cv ∼ |ε|−α, m ∼ |ε|β, χ ∼ |ε|−γ, m ∼ |g|1/δ, ξ ∼ |ε|−ν, and τ ∼ |ε|−zν,

(1.3)
which correspond to the heat capacity cv , order parameter m, susceptibility χ =
(∂m/∂g)|g=0, correlation length ξ and relaxation time τ . Note that the relation
m ∼ |g|1/δ takes place at the critical point εc = 0, where g denotes an external source
field, such as magnetic field in a standard Ising model (see Sect. 1.2). In addition, we
stress that β must not be confused with the inverse of the temperature—a common
but unfortunate notation, which is kept also in this thesis. The previous expressions
indicate that an infinitely extended system exhibits an infinitely correlation length at
the critical point, a clear symptom of ordering, and that it will take infinitely long
time to relax. In this regard, the two-point correlation function G(r1, r2) provides a
quantification of how correlations spread across a system, ultimately leading to the
definition of a correlation length ξ. In particular, withm(r) the local order parameter,

G(r1, r2) = 〈m(r1) · m(r2)〉 − 〈m(r1)〉 〈m(r2)〉 (1.4)

shows an exponential decay G(r1, r2) ∼ e−|r1−r2|/ξ with a typical length scale ξ,
called correlation length, typically defined as ξ2 = ∑

r |r|2G(r, 0)/
∑

r G(r, 0). In
the vicinity of the critical point, ξ diverges in the aforementioned fashion, leading to
a power-law decaying correlation G(r1, r2) ∼ |r1 − r2|2−d−η where η is yet another
critical exponent. However, among all these critical exponents, ν and z will play a
crucial role in the remaining of the thesis.

In contrast to the rest of critical exponents that are solely determined by static
properties, the dynamical critical exponent z depends on the dynamics. In the par-
ticular case of isolated quantum systems, a relevant energy � in the Hamiltonian
governing the system provides this relaxation time, τ = �−1, that vanishes at the
critical point as � ∼ |ε|zν [5]. Note that, since QPTs are originated in the ground
state of a quantum system, � typically stands for the energy gap between ground
and first excited state. In Table1.1 we provide the critical exponents of two paradig-
matic universality classes, namely, the two-dimensional Ising model and the mean
field (Ginzburg–Landau model discussed in Chap. 2). Finally, it is worth noting that
critical exponents are related among them by the so-called scaling laws, that may
also include the spatial dimension of the system [9, 10, 27].

3There is in principle no underlying reason to assume that these exponents take the same value at
both sides of the critical point, however, the inspection of phase transitions in most systems teaches
us that this is actually the case. Nevertheless, since m = 0 in the disordered phase, it is evident that
β is, by definition, an exception. It is worth mentioning however that there are special situations
where κ+ 
= κ−.
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Table 1.1 Critical exponents of the two-dimensional (classical) Ising model and those of the
standard mean-field description. The heat capacity exhibits a logarithmic divergence in the Ising,
and a finite jump in mean-field phase transitions, respectively [27]. Note that the dynamical critical
exponent z is not given. As we will see in detail in Chap. 2 in a Ginzburg–Landau model, this
exponent depends on the dynamics

α β γ δ η ν

2d Ising 0 (log) 1/8 7/4 15 1/4 1

Mean field 0 (jump) 1/2 1 3 0 1/2

1.1.2 Finite-Size Scaling Hypothesis

Phase transitions occur only in the thermodynamic limit, N , L → ∞. It is only upon
this limit when these striking power-law dependencies are valid (see Eq. 1.3), while
for any system consisting of a finite number of components they will eventually
break down as no true singularity can take place. This naturally leads us to ponder
on how critical features emerge as the system size increases. The beauty of phase
transitions resides in that the behavior in the limiting case allows us to understand
how these properties are recovered by approaching the thermodynamic limit, i.e., by
increasing its components, and vice versa.

A systemnear a critical point exhibits a remarkable feature,whichwasfirst pointed
out by B.Widom on phenomenological grounds and later formalized byM. E. Fisher
and M. N. Barber on the so-called finite-size scaling hypothesis [28, 29]. Finally,
these argumentswere better explainedwith the advent of renormalization group (RG)
techniques, suggested byL. P.Kadanoff andfirmly developed byWilson [30]. Briefly,
RG methods exploit the scale invariance or self-similarity that the system exhibits at
the critical point. In particular, the system shows a long-range correlation, featuring
fluctuations within a length scale ξ, and therefore, microscopic degrees of freedom
at smaller scales are irrelevant and can be neglected. This process is commonly
known as coarse-grain. One then needs to rescale spatial coordinates and renormalize
parameters of the system. However, we do not rely on RG arguments [30] but rather
introduce the finite-size scaling theory in a more heuristic fashion (the reader is
referred to [9, 10] for detailed explanation of RG). In the vicinity of the critical point
the system looks the same within length ξ. This self-similar condition motivates
the identification of x = L/ξ as a scaling variable, dropping the microscopic details
of the system. Thus, if A = A0|ε|κ in the thermodynamic limit, and because any
thermodynamic quantity must be well behaved for finite-size systems L < ∞,

A(L) = A0|ε|κFA (|ε|νL) (1.5)

where we have introduced the finite-size scaling function FA(x) satisfying the
asymptotic conditions limx→∞ FA(x) = 1 and limx→0 FA(x) ∼ x−κ/ν , which
restores the expected behavior in the L → ∞ and prevents singular behavior for
any finite L . We note that finite-size scaling functions are constructed on grounds of
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the leading order scaling, i.e., neglecting higher-order corrections. Hence, the larger
the system size the more accurate the finite-size scaling hypothesis.

From Eq. (1.5) one can draw two striking consequences. First, at the critical point
ε = 0 (x = 0) a simple scaling relation is accomplished

A(L) ∼ L−κ/ν . (1.6)

Therefore, as L grows the quantities scale as L−κ/ν at the critical point. In particular,
ξ scales linearly with L , ξ ∼ L , while the relaxation time grows as τ ∼ Lz . Second,
Eq. (1.5) implies that A|ε|−κ becomes independent of the specific values of ε and
L alone. Instead, A|ε|−κ adopts a universal form in terms of x = |ε|νL: data of A
obtained for different ε and L values collapse into a single curve, disclosing the
functional form of the finite-size scaling function FA(x). We stress that FA(x) has
in general a different shape for ε < 0 and ε > 0. However, in order to lighten the
notation this is not explicitly written.

1.1.3 Universality

The universality of continuous phase transitions is perhaps the most powerful tool
we possess to understand critical behaviors. As we have seen, phase transitions are
characterized by critical exponents, spatial dimension and their finite-size scaling
functions. The reader may have already noticed that these properties do not depend
on the microscopic details. This quite remarkable fact establishes a correspondence
between systems, that are a priori professedly distinct. Indeed, attending merely
to critical exponents, dimension and scaling functions, one can observe that their
physics is equivalent up to constant factors accounting for irrelevant microscopic
details [9, 10]. Therefore, systems that share these properties are said to fall into
the same universality class. This fact marked a milestone and constitutes one of the
central pillars in the theory of critical phenomena [31].

Therefore, either classical or quantum, phase transitions can be sorted in a series
of universality classes. Systems undergoing phase transitions that belong to the same
universality class behave similarly. This grants a powerful tool for the understand-
ing of the great diversity of phases and transitions between them. For example,
the paradigmatic Ising ferromagnetic phase transition, that we will present below,
falls into the same universality class as the liquid-gas phase transition, while a two-
component Heisenberg model, typically known as classical XY model or quantum
rotor, shares the same physics as that of superfluid-normal transition in, say, liq-
uid helium. Hence, by analyzing the Ising ferromagnetic phase transition one learns
about the liquid-gas phase transition. This adds importance to the study of systems
that are easier to handle, since their examination teaches us phenomena from much
more complicated models that fall into the same universality class.
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1.2 Ising Model

The Ising model is perhaps the most emblematic and popular system in the realm
of phase transitions and critical phenomena, with applications to diverse areas of
research. Although it was originally suggested by W. Lenz as a simplified model to
examine ferromagnetism, themodelwas named after his studentE. Ising for historical
reasons [32], who in 1925 solved the one-dimensional case [33] but failed to predict
its behavior in higher dimensions. It was then L. Onsager who in 1944 demonstrated
that a two-dimensional system does undergo a phase transition [12], bringing the
Isingmodel to the scientific spotlight and furnishing it with renewed interest. E. Ising
believed themodel hewas dealingwithwas too simple to be physically relevant.Quite
the opposite, although simple, the Ising model is currently regarded as a cornerstone
in statistical mechanics. Moreover, thanks to its simple formulation it can be applied
to several frameworks, ranging from condensed matter to social sciences.

The Ising model describes the interaction of N spins arranged in a d-dimensional
lattice, whose state can be either up (σi = +1) or down (σi = −1) and interact, in
the standard case, only between nearest neighbors. We will analyze a long-range
interaction in Chap. 6. The Hamiltonian of such a system can be written as

HIsing = −J
∑

〈i j〉
σiσ j − g

∑

i

σi (1.7)

where the sum 〈i j〉 runs over neighboring lattices sites. In addition, the parameter J
accounts for the type of spin-spin interaction (J > 0 ferromagnetic or J < 0 anti-
ferromagnetic) and g represents an external magnetic field. Throughout this Section,
wherewe introduce and illustrate the phenomenology of continuous phase transitions
in an Ising model, we will focus on ferromagnetic couplings, but the same arguments
can be applied to J < 0 since the models are mathematically identical.4 In Fig. 1.2
we plot a schematic representation of the model, for J > 0, illustrating the possible
ordered phases emerging at sufficiently low temperatures.

1.2.1 Mean-Field Theory

As in any other branch of physics, mean-field theories provide a helpful tool to gain
insight into a complex system of many interacting particles. In the realm of phase
transitions, mean-field approximations represent a usual and suitable strategy for
gaining analytic understanding, typically otherwise unattainable. This is however
not the case for the Ising model in one or two dimensions, which admits an exact
solution. Nevertheless, we provide here a brief discussion on how to apply a mean-

4Note that an anti-ferromagnetic Ising model with zero external field can be mapped onto its
ferromagnetic counterpart by redefining spin variables as σ̃i = (−1)iσi .
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Fig. 1.2 Schematic illustration of the phases of a two-dimensional Ising model. Below the critical
point, T < Tc, two equivalent ordered states arise in which all the spins are aligned, while for
T > Tc the spontaneous ordering is lost. See main text for details

field theory on the Ising model, discussing its benefits and flaws, while detailed
discussions can be found in any standard textbook on statistical mechanics (see [1]
for example). As aforementioned, Ginzburg–Landau model of phase transitions is a
mean-field theory, which we will analyze in Chap. 2.

The essential assumption of the mean-field theory resides in neglecting fluctua-
tions. In particular, for a d-dimensional Ising model, Eq. (1.7), the spin value can be
written as σi = 〈σi 〉 + σ̃i , with 〈σi 〉 = m = 1/N

∑
i 〈σi 〉 the mean magnetization

and σ̃i a fluctuation. Setting σ̃i = 0, the local Hamiltonian of a spin i th interacting
with γ nearest-neighbors reads

Hσi = −J
∑

〈 j〉
σiσ j − gσi

MF= −σi (γ Jm + g), (1.8)

and thus, we have effectively reduced the problem of N interacting spins to a sin-
gle spin subject to an effective magnetic field γ Jm + g. Hence, as 〈σi 〉 = m, the
magnetization can be obtained from

m = 〈σi 〉 = Trσi eβσi (γ Jm+g)

Tr eβσi (γ Jm+g)
= tanh (β(γ Jm + g)) (1.9)

The previous self-consistent expression has always a trivial solution for g = 0,
namelym = 0,while the interesting symmetry-breaking solutions (m 
= 0) takeplace
when βcγ J > 1, which leads to the critical temperature kBTc = γ J . Moreover, the
critical exponents of the mean-field phase transition can be worked out [27], and are
collected in Table1.1, equivalent to those of the Ginzburg–Landau model.

Interestingly, for d = 1 the mean-field approach erroneously predicts the exis-
tence of a phase transition, as E. Ising proved in [33]. For a two-dimensional cubic
lattice, γ = 4, there is indeed a phase transition at kBTc2J/ ln(1 + √

2) ≈ 2.269J
as shown by Onsager [12], which differs from this crude mean-field approximation,
kBTc = 4J . Note however that better estimates can be attained by means of more
refined mean-field procedures, as the typical Bragg–Williams or Bethe–Peierls the-
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ories [1]. Obviously, neglecting the fluctuations in small dimensional systems with
short-range interaction is a major approximation, which leads to an overestimation of
the capabilities of a system to order, ultimately conveying wrong predictions. Inter-
estingly, for higher dimensions, d > 4 in the case of the Ising model, the system falls
into the mean-field class and therefore, it can be well described by standard mean-
field theory. Nonetheless, for d ≤ 3, solving the seemingly harmless Ising model can
be an arduous task, as it is the case for d = 2, or even impossible as it seems to be
the case for d = 3.

1.2.2 Exact Solutions: Outline

The relatively easy solution of the one-dimensional Ising model, carried out by
Ising [33], contrasts with the one for two-dimensional Ising model, carried out by
Onsager [12]. In the following we briefly outline these solutions, which demonstrate
the absence of a phase transition in one dimension at finite temperature. For details
about the derivation we refer the interested reader to [1, 12, 33–35]. A solution to
the three-dimensional Ising model is to date not known, and thus, its properties are
typically obtained by means of numerical simulations.

1.2.2.1 One-Dimensional Model

For a one-dimensional system the partition function Z reads

Z =
∑

σ

e−βHIsing =
∑

σ

eβ[J
∑

i σiσi+1+ g
2

∑
i (σi+σi+1] (1.10)

=
∑

σ1

∑

σ2

. . .
∑

σN

〈σ1| T |σ2〉 〈σ2| T |σ3〉 . . . 〈σN | T |σ1〉 (1.11)

=
∑

σ1

〈σ1| T N |σ1〉 = Tr T N = λN
1 + λN

2 (1.12)

where a periodic system, σN+1 = σ1, has been considered for convenience, and the
two-spin matrix T , whose entries are given by 〈σi | T

∣∣σ j
〉 = eβ[Jσiσ j+g(σi+σ j )/2], has

two eigenvalues λ1,2 which read

λ1,2 = eβ J

[
cosh(βg) ± eβ(J−g)

√
e−4β J + sinh2(βg)

]
. (1.13)

Since we are interested in the thermodynamic limit N → ∞, and because λ1 > λ2,
the partition function simplifies to Z = λN

1 , from where the average magnetization
can be readily obtained
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m = − 1

N

1

β

∂ ln Z

∂g
= eβ(2J−g)(e2βg − 1)

2
√
1 + e4β J sinh2(βg)

. (1.14)

As soon as g = 0, the magnetization vanishes, and thus, there is no critical tempera-
ture below which spontaneous ordering occurs. There is no classical phase transition
in a one-dimensional Ising model. Note however that, as we will show in Sect. 1.2.3,
it is possible to attain criticality in a one-dimensional Ising model, but it happens
at T = 0 and it is a QPT instead, thus showing a phase diagram as illustrated in
Fig. 1.1c.

1.2.2.2 Two-Dimensional Model

The solution two-dimensional Ising model turns out to be rather lengthy and math-
ematically involved. For that reason, we refer the reader to the original work by
L. Onsager in 1944 [12], as well as to the work by Yang [34], or to the standard
textbooks [1, 35], while we quote here the main results.

The partition function of the two-dimensional Ising model, Eq. (1.7), with zero
field can be written again as Z = Tr T n where the number of spins is N = n2. How-
ever, finding the largest eigenvalue of the transfer matrix T , now of 2n × 2n dimen-
sion, is a laborious task. The Helmholtz free energy per spin becomes

h = − lim
N→∞

1

N

1

β
ln Z = − lim

n→∞
1

n

1

β
ln λ1 (1.15)

= − 1

β
ln [2 cosh(2β J )] − 1

2πβ

∫ π

0
dφ ln

[
1

2
+ 1

2

√
1 − K 2 sin2 φ

]
(1.16)

where K = 2 (cosh(2β J ) coth(2β J ))−1. From there, one can obtain the internal
energy per spin u

u = − lim
N→∞

1

N

∂ ln Z

∂β
= ∂(βh)

∂β
(1.17)

and subsequently, the heat capacity cv = ∂u
∂T , which reveals a logarithmic divergence

at a particular critical temperature. However, the real order-disorder transition—the
emergence of a spontaneous symmetry breaking for T < Tc—is quantified in terms
of the magnetization m = 〈

1
N

∑
i σi

〉
, which was worked out by Yang in [34], and

reads

m = [
1 − sinh(2β J )−4

]1/8
(1.18)

The critical temperature can be then obtained when m = 0, and corresponds to Tc =
2Jarcsinh−1(1) = 2J ln−1(1 + √

2). Moreover, from these results one extracts the
critical exponents, as β = 1/8 from Eq. (1.18), collated in Table1.1.
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1.2.3 Transverse-Field Quantum Ising Model

The one-dimensional quantum Isingmodelwith a transverse field, is perhaps themost
paradigmatic many-body system undergoing a QPT, whose fame certainly stems
from possessing an exactly solution [5, 35]. Moreover, as we have seen, such a
one-dimensional system lacks of a thermal phase transition, being the QPT the only
relevant critical phenomena of this system, and thus its phase diagram corresponds
to the one depicted in Fig. 1.1c. The Hamiltonian can be written as

HTFIM = −J
∑

j

(
σz
jσ

z
j+1 + gσx

j

)
, (1.19)

where now each spin is described quantum mechanically through the Pauli matrices
of the spin- 12 algebra,

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, and σz =

(
1 0
0 −1

)
, (1.20)

which satisfy
[
σi ,σ j

] = 2iεi jkσk . We remark that the interaction is limited to nearest
neighbors, while its long-ranged counterpart will be examined in Chap. 6. Here we
shall consider periodic boundary conditions, σx,y,z

N+1 = σ
x,y,z
1 . As commented, HTFIM

admits an exact solution, which is accomplished by mapping spins onto spinless
fermions, represented by the usual creation and annihilation operators, c†i and ci ,

respectively, satisfying
{
ci , c

†
j

}
= δi, j . Indeed, σz

j = 1 − 2c†j c j , and thus, spin up

corresponds to an empty fermionic site, and vice versa. Moreover, raising a spin
simply leads to the identification σ+

j = c†j . Although one may think that the previous
map can be directly introduced in HTFIM, one must notice that while spin operators
acting on different sites commute, fermionic operators anticommute. The previous
map is valid for a single spin, but it fails when dealing with more sites. The solution
to this problem was found by Jordan and Wigner [36], who proposed the following
transformation

σ+
j =

∏

i< j

(1 − 2c†i ci )c j (1.21)

σ−
j =

∏

i< j

(1 − 2c†i ci )c
†
j . (1.22)

under which commutation and anticommutation relations are indeed fulfilled. In
order to solve HTFIM we however take σz → σx and σx → −σz , that is
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σx
j = (1 − 2c†j c j ) (1.23)

σz
j = −(c j + c†j )

∏

i< j

(1 − 2c†i ci ). (1.24)

Moreover, after performing the previous map to HTFIM and Fourier transforming the
fermionic operators, ck = N−1/2 ∑

j c
−ikr j
j , the quantum Ising model becomes

HTFIM = J
∑

k

(
2 [g − cos(ka)] c†kck + i sin(ka)

[
c†−kc

†
k + c−kck

]
− g

)
, (1.25)

where a corresponds to the spacing between neighboring spins. The previous Hamil-
tonian can be diagonalized employing Bogoliubov transformation, that transforms ck
into a new fermionic operator γk ,

{
γk, γ

†
k ′

}
= δk,k ′ , such that its number is conserved,

γk = ukck − ivkc
†
−k, (1.26)

with u−k = uk and v−k = −vk real coefficients that satisfy u2k + v2
k = 1. Their spe-

cific value is determined demanding only terms γ†
kγk in the transformed HTFIM.

Choosinguk = cos(θk/2) andvk = sin(θk/2)with tan(θk) = sin(ka)/(g − cos(ka)),
we achieve

HTFIM =
∑

k

εk

(
γ†
kγk − 1

2

)
, with εk = 2J

(
1 + g2 − 2g cos(ka)

)1/2
. (1.27)

The ground state corresponds to a vacuum state |0〉, such that γk |0〉 = 0 ∀k,
while excited states are obtained occupying single-particle states, γ†

k1
γ†
k2

. . . γ†
kn

|0〉.
The minimum relevant energy gap takes place for ka = 2nπ with n = 0, 1, . . .,
� = 2J |g − gc| where gc = 1 locates the critical point. Therefore, zν = 1 for the
one-dimensional transverse field quantum Ising model. A closer inspection reveals
that ν = 1, z = 1 and β = 1/8, as the classical two-dimensional Ising model (see
Table1.1) [5]. This fact actually brings us to the quantum-classical map, that exploits
the similarity between e−βH and the time-evolution propagator e−i t H upon the iden-
tification of an imaginary time. Briefly, a QPT in d dimensions is related to a classical
phase transition in (d + z) dimensions (see Refs. [5, 6] for a detailed discussion).

1.3 Nonequilibrium Dynamics and the Kibble–Zurek
Mechanism

The properties of a system at thermal equilibrium is of primary interest for under-
standing collective phenomena, different phases of matter and their corresponding
transition between them, as we have briefly explained in the previous lines. How-
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ever, most interesting physics occurs when a system finds itself out of equilibrium.
Nonequilibrium phenomena are omnipresent at every level of physics, playing an
essential role in nature [14]. However, and despite their great relevance, nonequilib-
rium scenarios are, in general, much less understood than their equilibrium or static
counterparts.

Among the vast territory of nonequilibrium phenomena, it is perhaps worth high-
lighting different relevant topics such as thermalization (or the lack of), transport
properties, defect formation and the more traditional out-of-equilibrium thermody-
namics dealing with entropy production and irreversibility [14]. In this thesis we
are interested in the nonequilibrium aspects of phase transitions, or, in other words,
in how the system reacts when it is driven across or close to a critical point. This
particular issue has attracted attention during the last decades, being an active field of
research. However, the inspection of critical dynamics has encouraged novel ques-
tions and problems that still remain to be understood [37]. Even restricting ourselves
to the seemingly specific topic of dynamics of phase transitions, there is enough broad
phenomenology whose mention largely exceeds the purpose of this thesis (see [9,
15–17]). For that reason, we specify the particular problem we will analyze when
dealing with nonequilibrium dynamics.

In particular, we will consider mostly linear ramps across or towards the critical
point at which a continuous phase transition takes place, that is, we are mainly
interested in the dynamics of symmetry breaking, an important problem of statistical
mechanicswith application to several scenarios. For that reason,we rely on a protocol

ε(t) = ε0 + (ε1 − ε0)
t

τQ
, 0 ≤ t ≤ τQ, (1.28)

with ε0,1 being the initial and final values of the external parameter, and a quench
rate ε̇(t) = (ε1 − ε0)/τQ . The system is driven through the critical point into the
ordered phase, which as a consequence of the divergence of the relaxation time
τ ∼ |ε|−zν , unavoidably departs from equilibrium and the choice of a new symmetry-
breaking state must be done locally. Hence, different spatial regions adopt a different
symmetry, and the system is divided in a series of domains. Within a domain, the
system is ordered, namely, the order parameter adopts a homogeneous value mn

in these spatial regions, i.e., m(ri ) = mn ∀ri ∈ Dn with n = 1, 2 . . . Nd and Nd the
number of different domains. These domains are separated from others with different
order mn 
= mm , by an interface or defects, which are topologically stable objects.
Needless to say, these defects increase the energy of the system, and thus they are
excitations promoted by the divergences at the critical point. Intuitively, the slower
the critical point is traversed, the more adiabatic the protocol and less number of
defects is formed, ideally leading to Nd = 1 in a purely adiabatic ramp.

This dynamical problem was first suggested by T. W. B. Kibble as a possible
mechanism to explain topological defect formation in a cosmological context, where
causality prevents the acquisition of common symmetry-breaking states in regions
not connected through the light cone [38–40]. It was thenW. H. Zurek who harvested
the ideas ofKibble and applied them to condensedmatter problems, addressing defect
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formation as a fundamental consequence of symmetry breaking at finite rate [41, 42].
Moreover, thanks to the universality of continuous phase transitions, the number of
defects is predicted to follow a universal power-law scaling in terms of the quench rate
ε̇(t). This theory is currently known as KZ mechanism, and has become a milestone
in the realm of dynamics of phase transitions [20]. One of the seminal works [43]
clearly summarizes the aim of the KZ mechanism in its suggestive title: “Density
of kinks after a quench: when symmetry breaks, how big are the pieces?”. The KZ
mechanism has been acknowledged to be relevant across several systems [43–47],
extended to inhomogeneous systems [48–50] and successfully verified in a variety
of experiments [51–54]. Moreover, KZ mechanism can be also applied to QPTs, as
indicated in [55–58]. Nevertheless, the experimental confirmation of the quantum
KZ (QKZ) is evidently more challenging, and it has been only recently when QKZ
scaling laws have been observed [59, 60].

TheKZmechanism, in its standard formulation, canbe summarized as follows.Let
a system undergoing a continuous phase transition be characterized by its diverging
correlation length ξ and relaxation time τ ,

ξ = ξ0 |ε|−ν , and τ = τ0 |ε|−zν , (1.29)

respectively, where ε corresponds to the external varied parameter, following the
protocol given in Eq. (1.28), and ξ0 and τ0 are simply constant values. At εc = 0 there
is a continuous phase transition at g = gc. Then, because the system is driven towards
the critical point, there is a competition between two time scales. Far away from the
critical point the relaxation time τ is sufficiently short such that the systems follows
the changes imposed by the external ε(t), thus behaving adiabatically. However, as
ε(t) → 0, the critical slowing down, τ → ∞, implies that the system will not have
time to react—it remains frozen according to theKZ terminology—and consequently
will depart from equilibrium. Since τ → ∞, no matter how slow the protocol is
performed, the system will always abandon equilibrium. KZ mechanism establishes
a well-defined location of the freeze-out instant, which separates adiabatic from
impulse dynamics and can be estimated when the time remaining to the critical point
matches with the relaxation time (see Fig. 1.3)

τ0|ε̂|−zν = τQ |ε̂| ⇒ |ε̂| =
(

τQ

τ0

)−1/(zν+1)

, (1.30)

and also provides a freeze-out time, t̂ ∼ τ
zν/(zν+1)
Q . Then, the system remains frozen

while traversing the critical point, and thus the correlation length at ε̂ determines the
average size of domains selecting a common symmetry-breaking state. Hence, ξ̂ =
ξ0|ε̂|−ν ∼ τν/(zν+1). In the ordered phase, the density of defects (or independently
chosen domains) can be approximated by

nd ≈
(
L

ξ̂

)d

∼ τ
−dν/(zν+1)
Q (1.31)
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Fig. 1.3 Schematic representation of the KZ mechanism. The diverging relaxation time τ at the
critical point εc = 0 prevents the system to react to external changes in a finite time. First, ε(t) varies
in a time scale much longer than the relaxation time, and hence, the dynamics results adiabatic. To
the contrary, as ε(t) approaches the critical point, τ becomes much larger than the time in which
ε(t) varies. Therefore, close to εc, the dynamics turns into impulsive (shaded region), after which,
adiabatic regime is again recovered. The distance to εc at which the freeze-out instant takes place
is estimated when both time scales match (dark points). This yields

∣∣ε̂
∣∣ ∼ τ

−1/(zν+1)
Q on which

subsequent scaling predictions are based

where d corresponds to the spatial dimension of the system. Thus, the density of
defects crucially depends on the quench time τQ in a universal fashion. It is worth
noting that KZ arguments rely on nearly adiabatic ramps, that is, when non-adiabatic
effects aremainly caused by the critical point. Hence, the previous scaling is expected
to break down as τQ → 0, i.e., as the quench is performed too fast. In addition, we
must take into account that the relevance of Eq. (1.31) resides in the scaling, as it is
usually the case in critical phenomena. Indeed, KZ predictions typically overestimate
the actual number while correctly describing the power-law exponent.

The arguments supporting the KZ mechanism grabbed the attention in the scien-
tific community since they seemed to suggest that defect formation is decided before
the critical point is actually traversed. Certainly, while KZ arguments provide a good
estimate of the observed power-law scaling, they must be interpreted carefully. First,
KZ mechanism does not anticipate how many defect will form (normally it is over-
estimated), it provides solely a reliable power-law exponent. Second, it is definitely
important what happens at the other side of the critical point [61]. Third, this simple
KZ scenario does not suffice in general, as one must take into account diverse factors
which may affect the outcome, such as the sound velocity, i.e., the velocity at which
information can propagate along the system, which might set a tighter bound to
domain formation than KZ prediction. This is of particular relevance in systems with
large inhomogeneities, leading to amodification of the previously derived power-law
scaling relations [48, 50, 62]. Moreover, KZ predictions may fail when addressing
passages in systems with a more intricate phase diagram, and when traversing mul-
ticritical points as shown in [63].
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Finally, it is worth mentioning that the same nonequilibrium scaling relations can
be obtained by recasting the equation of motion by rescaling coordinates such that
the dependence on the quench rate is removed [64, 65]. This will be exemplified in
Chap. 2. Moreover, as we will see explicitly, KZ scaling can be encompassed in a
broader class of universality, applying finite-size scaling theory to a nonequilibrium
context, as we show in Chaps. 2 and 4.

1.4 Structure and Contents

During this thesis, we have covered and faced different topicswith a common denom-
inator, phase transitions and their associated dynamics. Yet, distinct techniques will
be used depending on the particular system and scenario, introduced in due course.
Here follows a description of each of the chapters presented in this thesis.

In Chap. 2 we tackle a paradigmatic model of phase transitions, namely, a
Ginzburg–Landau model. The inspection of this classical phase transition in a
nonequilibrium situation, in contact to a thermal bath, establishes the grounds for
subsequent analysis, such as KZ scaling laws and nonequilibrium finite-size scal-
ing functions. For that, we rely on a Fokker–Planck approach, that aims to deter-
mine probability distributions in a deterministic manner [66]. In the two paradig-
matic dynamical regimes, namely, overdamped and underdamped, we find a good
agreement with reported scaling laws. Moreover, in Chap. 2 we also examine a
Coulomb crystal system which can be experimentally realized in ion traps. In its
one-dimensional version, this model undergoes a continuous phase transition from
linear to zigzag configuration, and it represents a suitable and realistic platformwhere
defect formation can be examined, as recently demonstrated in [52, 53]. The advan-
tage of the developed method, based on a Fokker–Planck description, resides in the
capability of determining the probability distributions of the state at any time, and
thus it may have potential applications in the avenue of examining critical dynamics
from a thermodynamic perspective. The main results presented in Chap. 2 have been
published in Ref. [25].

In Chap. 3 we introduce the QRM, which will accompany us through Chaps. 4
and 5. Consisting of a single spin and a single bosonic mode, this model portrays one
of the most fundamental systems in quantum physics. In Chap. 3 wewill discuss why
the QRM is a suitable model to study critical phenomena, and demonstrate that the
QRM undergoes a QPT in a limit that differs from the conventional thermodynamic
limit. Indeed, we attain a QPT without scaling up the number of system constituents,
that is, quantum critical behavior can be attained even in a system comprising a single
spin and a bosonic mode. We dubbed finite-component system phase transition this
novel manner of achieving critical behaviors. Moreover, despite the absence of a
proper thermodynamic limit, we are able to apply finite-size scaling theory, which
reveals the universality class to which it belongs. Briefly, we show that this particular
QPT and that of the Dicke model, the so-called superradiant QPT, fall into the same
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universality class. We close Chap. 3 investigating the impact of criticality on excited
states, for which a semiclassical approach of the QRM becomes advisable. Part of
the materials presented in Chap. 2 have been published in Refs. [21, 22, 24].

We extend the scrutiny of the QRM to the nonequilibrium realm, in the spirit
of the KZ mechanism, which is the subject of study of Chap. 4. Because the QRM
adopts a simple form in the limit in which its QPT takes place, we have access to
the dynamics when the system is quenched towards the critical point at finite rate.
In this regard, it is worth mentioning that, prior to our work, KZ arguments were
believed to fail or to be not applicable to zero-dimensional systems [67, 68]. Quite the
contrary, we show that KZ scaling laws are precisely retrieved, thus KZ mechanism
successfully explains the dynamical behavior of the systemwhen adiabaticity breaks
down. However, since the QRM does not comprise a spatial dimension, it is certainly
not a standard system where QKZ or KZ physics applies, and therefore, in order to
avoid any misunderstanding, we stress that we apply KZ arguments that correctly
describe the observed scaling. Furthermore, we go beyond the analysis of the strict
limit in which the QPT takes place, and analyze how these universal power-law
relations break down as one moves away from criticality or when considering finite-
size systems. This latter issue brings us to examine nonequilibrium finite-size scaling
functions, which encompass KZ scaling as a limiting case. Remarkably, this extends
the concept of universality to a nonequilibrium scenario, which again coincides with
that of the universality class in which Dicke model falls. Moreover, we comment
that, because any realistic realization of the QRM is inevitably constrained to finite-
size systems, their inspection is of considerable importance. Some results of this
chapter have been published in Refs. [21, 24].

In Chap. 5 we propose a platform where the QPT of the QRM can be probed.
Indeed, a single trapped-ion experiment with coherent interaction with the motional
degrees of freedom can be engineered such that its physics is effectively dictated
by a QRM. In this manner, the physics of a QRM can be realized, and therefore,
that of its universality class. Although the realization of a QRM by means of a
single ion subject to classical radiation sources is already well established [69], the
extreme parameter regime demanded to observe the QPT in the QRM cannot be
trivially achieved. In Chap. 5 we first introduce the basics of a trapped ion setup, to
then propose a scheme in which larger parameter regimes can be explored, based
on a standing-wave disposition of irradiation sources. Moreover, although the QRM
may be correctly realized in an isolated trapped-ion Hamiltonian, the unavoidable
presence of experimental imperfections may spoil the targeted QRM and thus these
effects must be taken into account to elucidate whether the dynamics of its QPT can
be observed. Pure dephasing noise affecting the internal levels of the ion, encoding
the qubit, appears typically as the most relevant decoherence process, but it is still
possible to retrieve nonequilibrium scaling functions of QRM. The second part of
Chap. 5, Sect. 5.2, focuses on the application of continuous dynamical techniques
to cope with this source of noise, while at the same time allows to explore certain
interesting features of the QRM. The results presented in this chapter have been
published in Refs. [23, 24].
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InChap. 6we address theQKZmechanism.As discussed in Sect. 1.3, the quantum
counterpart of the KZmechanism considers the problem of traversing a QPT at finite
rate, where quantum excitations are promoted in the vicinity of the critical point
due to the loss of adiabaticity, and thus universal power-law dependencies on the
quench rate are expected. In particular, motivated by the great experimental progress
in ion-trap technologies [70], in Chap. 6 we consider a one-dimensional long-range
Ising model with transverse field as a testbed for a potential exploration of QKZ
physics in a truly quantum many-body system. We present a brief introduction of
the basic properties of such a system depending on the range of the interactions
and on the ferromagnetic or anti-ferromagnetic nature of the couplings. Indeed, the
range of the interaction largely affects the critical properties of the system. Yet, for
sufficiently short-range interaction, there is a QPT of the same universality class
of that of its nearest-neighbors counterpart. Nevertheless, due to the exponential
growth of the Hilbert space, an exploration of large system sizes becomes soon
impracticable, thus demanding approximate methods for their computation, such
as density matrix renormalization group. These techniques are extremely helpful
to address the properties of quantum many-body systems, however, we leave them
for future work. Yet, for a reasonable large number of spins, comparable to the
experimental capabilities, an exact procedure still allows to test the dynamics of
the system, which suggests that KZ scaling could be readily attained within current
technology.

Finally, although we have provided a summary and possible prospects of the work
presented in each of the aforementioned chapters, in Chap. 7 we close with a detailed
summary of the main topics covered throughout this thesis. There, we place the main
outcomes in a broader context and discuss interesting directions for future research
related to the presented work.
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Chapter 2
Structural Phase Transitions

Phase transitions appear in any scenario analyzed in physics, describing transition
of distinct phases of matter, which ranges from daily life experience to more exotics
realms as quantum physics or cosmology [1–3]. Yet, despite the disparate systems
in which they manifest and the fundamentally distinct physics involved, essential
features are shared among them. Indeed, the observation of these common proper-
ties across different fields strongly suggested and motivated a search for a deeper
underlying theory of phase transitions. As explained in the Introduction, the first
successful attempt to establish such a common ground is known nowadays as the
Ehrenfest classification (see [4] for an explanation and history of this classifica-
tion). This classification differentiates phase transitions according to their order [5],
namely, the order of the derivative respect to the free external parameter (typically
temperature) in which the free energy becomes discontinuous. However, although
the examined phase transition in this Chapter can be well described in terms of the
Ehrenfest classification, second-order, we will refer to it as a continuous phase tran-
sition, according to the modern classification (see Introduction). Since this thesis
aims to explore different physics related to continuous phase transitions, we shall
commence this journey with the analysis of a classical phase transition and later
move into the quantum realm.

The present Chapter is devoted to the study of the paradigmatic model of a contin-
uous classical phase transitions, the Ginzburg-Landau model. We will briefly moti-
vate its origin and its success in addressing variety of critical systems, as well as
the different critical phenomena associated with this simple model [6], presented in
Sect. 2.1. Moreover, as phase transitions occur only in the thermodynamic limit, an
inspection of finite-size effects is pertinent. Then, we will tackle a realistic linear
to zigzag phase transition in an ion Coulomb crystal [7, 8], and its corresponding
nonequilibrium behavior when the symmetry breaking transition is traversed at a
finite rate. This finite-rate symmetry breaking process promotes the formation of
nonequilibrium excitations that can stabilize, leading to topological defects, and
it is known as Kibble-Zurek (KZ) mechanism [9–11] (see Introduction, Sect. 1.3),
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which has been investigated in several experiments (see [12] for a review). How-
ever, while standard KZ arguments are sufficient to successfully explain results in
spatially homogeneous systems, some experimental systems are inevitably affected
significantly by inhomogeneities and finite-size effects, such as Bose-Einstein con-
densates [13–15], and ion Coulomb crystals [16, 17], which lead to a modification
of KZ scaling laws. Therefore, the measured power-law scaling may not agree with
the prediction in the thermodynamic limit. In these cases numerical simulations are
particularly valuable to gain insights into nonequilibrium dynamics, which typically
rely on the computation of several stochastic trajectories in order to attain an accurate
estimate of statistical quantities, as the average number of defects. The calculation of
statistical estimates from individual tracking of stochastic trajectories is commonly
known as Langevin approach. Yet, there is another equivalent approach that aims to
compute, in a deterministic manner, the time evolution of the probability distribu-
tions of the whole system. This description is based on the so-called Fokker-Planck
equations [18]. It is however worth noting that, since Fokker-Planck equations deter-
mine the probability over the whole configuration space, the resulting differential
equations may be involved and computationally demanding, and in certain cases, the
evaluation of individual stochastic trajectories might be a more suitable procedure.

The current Chapter pursues a manifold goal. First, we examine nonequilibrium
aspects of the Ginzburg-Landau theory, in the spirit of the KZ problem, and in differ-
ent parameter regimes that feature different physics, namely overdamped and under-
damped dynamics. Second, we make use of the Fokker-Planck treatment, discussing
its advantages and under what circumstances it becomes more suitable than the stan-
dard Langevin approach. Finally, we apply the developed framework to the realistic
linear to zigzag phase transition in a Coulomb ion crystal. The results collected in
this Chapter have been published in [19].

2.1 Ginzburg-Landau Theory

The Ginzburg-Landau (GL) theory of phase transitions has become the paradig-
matic model to describe, in a phenomenological manner, critical phenomena in a
broad variety of systems. In particular, although we refer to this theory as GL, it was
L. Landau who first established the grounds for a general framework of continu-
ous phase transitions exploiting symmetry arguments and in terms of a free energy
functional F [5]

F [φ] =
∫

dr
{

c0 + c1φ(r) + c2φ
2(r) + c3φ

3(r) + c4φ
4(r) + d2(∇φ(r))2 + . . .

}
. (2.1)

There φ(r) stands for the order parameter, r defines the d-dimensional vector posi-
tion, and the set of parameters {cn, dn} depend on themicroscopic details of the partic-
ular system. The free energy F [φ] is constructed such that it correctly describes the
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system when φ(r) and its gradients are small, as it consists just in a series expansion
in the vicinity of the phase transition. In this manner, the minimization ofF [φ] with
respect φ(r) permits to locate the critical point, if any, as well as the behavior of the
order parameter and the order of the phase transition. In particular, a nth order phase
transition features a discontinuity in ∂nF/∂εn at a certain critical value εc, where
ε represents an external parameter whose variation triggers the phase transition.
Heuristically, we can exemplify the arguments as follows. If the system possesses
different symmetrywithφ(r) = 0 andφ(r) �= 0, the parameter c1 must vanish c1 ≡ 0.
Hence, since φ(r) = 0 corresponds to a stable configuration at one side (c2 > 0) and
φ(r) �= 0 to the other (only possible if c2 < 0), then c2 = 0 corresponds to the crit-
ical point. Moreover, if by symmetry of the system it holds that F [φ] = F [−φ], it
follows that c3 ≡ 0, while c4 > 0 is required for stability. It is worth noting however
that more complex scenarios can be described depending on the specific {cn, dn} and
on distinct order parameters, such as in magnetism or superconductivity where φ(r)
represents a vector field or a complex function, respectively. The great success of
the GL theory lies therefore in its elegance and multidisciplinary nature—despite
its simple formulation, it encompasses variety of distinct critical phenomena. In
short, this theory manifests the universality across different phase transition prob-
lems [20]. Nevertheless, although Landau’s theory represented a big step forward in
the understanding of critical phenomena, we know nowadays that, while symmetries
are crucial, the role of fluctuations is also very important (see Introduction, Sect. 1.2).
Certainly, the latter feature does not appear in this simple theory. Later developments
indeed showed that Landau’s theory becomes a suitable description of phase tran-
sitions when mean field arguments work, as evidenced by the wrong predictions
regarding exactly solvable models [21], as dealing with one- and two-dimensional
Ising models (see Introduction). In terms of the Ginzburg criterion, systems above
the upper critical dimension (D = 4) are well addressed by mean field treatment
as fluctuations of the order parameter become negligible, although it may be also
possible to find mean-field systems at lower dimensions (d < D) if they contain
long-range interactions.

In particular, we focus on continuous phase transitions, which have been already
discussed in the Introduction, andwithinGL theory canbedescribedby the customary
single- to double-well potential. Note that, the partition function of the system reads

Z(β) =
∫

D [φ] e−βF [φ] (2.2)

where β−1 ≡ kB T gives account of the thermal energy at temperature T , kB the
Boltzmann constant, and

∫
D [φ] represents the integration over all possible config-

urations of the order parameter, i.e., summing over all microscopic states. From the
previous partition function, all thermodynamic quantities, including critical expo-
nents follow [22]. Certainly, while equilibrium properties of phase transitions are of
primarily interest, nonequilibrium scenarios encompass much richer physics, which
is precisely the subject of the present Chapter. Although the general equilibrium
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properties of continuous phase transitions have been discussed in the Introduction,
we will comment some of them in this part regarding the GL theory.

For the following developments, we shall consider a scalar one-dimensional order
parameter φ(x, t), where x represents the spatial dimension and t the time instant.
The free energy of the system can be written then as

F = 1

2

∫
dx
[
h2(∂xφ)2 + V (φ)

]
, (2.3)

where the GL potential V (φ) reads

V (φ) = ε

2
φ2 + λ

4
φ4, (2.4)

with the parameters λ and h depending on the microscopic details of the particular
system. The critical point takes place at εc = 0, which corresponds to a symmetry-
breaking transition from φ = 0 for ε > 0 to two energetically equivalent choices
at φ = ±√−ε/λ for ε < 0, as shown in Fig. 2.1. Therefore, the critical exponent
associated to the order parameter becomesβ = 1/2, sinceφ ∼ |ε − εc|β as explained
in the Introduction.

2.1.1 Nonequilibrium Dynamics

Here, we will consider the GLmodel to study the nonequilibrium dynamics resulting
fromafinite-rate symmetry-breaking, forced by externally varying the parameter ε(t)
and in contact with a Markovian heat bath. In particular, we shall consider a linear
functional dependence of ε on time, the simplest case, that is

ε(t) = ε0 + t

τQ
(ε1 − ε0) , 0 ≤ t ≤ τQ . (2.5)

where ε(0) = ε0 > 0 and ε(τQ) = ε1 < 0. Therefore, the systems finds itself in the
symmetric phase at the start of the quench protocol, and brought towards the critical
point to end in the symmetry broken phase. The rate at which the critical point is
traversed is dε(t)/dt = (ε1 − ε0)/τQ , and thus, it is determined by the quench time
τQ once ε0 and ε1 are fixed.

The considered phenomenological equation governing the dynamics of the system
corresponds to the model A of the classification done in [6],

(
∂2

∂t2
+ η

∂

∂t

)
φ(x, t) = h2 ∂2

∂x2
φ(x, t) − δV (φ)

δφ
+ ζ(x, t) (2.6)
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which is also known as time-dependent GL equation. There, the parameter η cor-
responds to the friction, and ζ(x, t) represents the stochastic force produced by
a thermal bath. Both are related through the fluctuation-dissipation theorem (see
Appendix A). It is worth noting that, while different model’s dynamics described
in [6] deal with particular conservation laws, the dynamics under Eq. (2.6) does not
conserve the order parameter. Moreover, although these dynamical equations should
be regarded simply as phenomenological descriptions, they can give account of real-
istic systems in the vicinity of critical points, and thus, serve as good models to study
defect formation, the emergence of scaling laws in out-of-equilibrium stages and the
relevance of finite-size effects.

A continuous phase transition is characterized by a diverging correlation length
at the critical point, which follows from the two-point correlation function,

G(x1, x2, t) = 〈φ(x1, t)φ(x2, t)〉 − 〈φ(x1, t)〉 〈φ(x2, t)〉 (2.7)

since G(x1, x2, t) ∝ e−|x1−x2|/ξ , and where 〈. . .〉 stands for stochastic average, i.e.,
average over many stochastic realizations under Eq. (2.6). In equilibrium, ξ ∝ |ε −
εc|−ν with ν = 1/2 the mean-field critical exponent. Indeed, the correlation length
can be extracted from Eq. (2.7) as

ξL(t) =
√∫ L/2

0 dx x2G(x, t)√
2
∫ L/2
0 dx G(x, t)

(2.8)

where we have assumed a spatially homogeneous system, G(x1, x2, t) ≡ G(x1 −
x2, t) and finite extension, x ∈ [0, L] such that it forms a ring. Note that the previous
expression retrieves ξ when G(x, t) ∝ e−|x |/ξ and taking the limit L → ∞. Recall
that KZ arguments crucially rely on the scaling of the correlation length in nonequi-
librium systems close to the critical point. Therefore, it also advisable to analyze
the number of defects promoted during the evolution, and that stabilize in the region
ε < 0. In this particular case, defects are related to the number of different choices of
the symmetry-breaking, whose number follows by simply counting how many times
φ(x, t) crosses zero, as studied in the seminal papers [23, 24]. The density of defects
can be then formulated as [25]

nL(t) = 1

L

〈∫ L

0
dx δ[φ(x, t)]

〉
(2.9)

Closely related to nL(t) we find the quantity gL(t), which we proposed as a good
quantification of defect formation. When one defect is created, the field φ(x, t)
interpolates rapidly, yet smoothly, between the two distinct chosen configurations,
φ = ±√−ε/λ, and thus, φ(x, t) exhibits large spatial variations. On the contrary,
a field with no defects has small spatial variations. Therefore, we introduce the
following quantity
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gL(t) = L

∫ L
0 dx

〈
(∂xφ(x, t))2

〉
∫ L
0 dx (〈φ(x, t)〉)2 , (2.10)

which gives account of the amount of different choices of symmetry-breaking
regions. Besides the diverging correlation length ξ ∝ |ε − εc|−ν , a continuous phase
transition is also characterized by a diverging relaxation time, τ ∝ |ε − εc|−zν , where
z is the dynamical critical exponent [6]. If the fourth and higher order terms of φ in
Eq. (2.4) are negligible then ν = 1/2 (mean field exponent), while depending on the
dynamical regime, z = 2 or z = 1, for overdamped or underdamped dynamics [9,
12, 23, 24, 26, 27]. The former regime is found when |ηφ̇| � |φ̈|, while the lat-
ter takes place in the opposite limit. In particular, overdamped dynamics exhibits a
relaxation time τ � |φ/φ̇|. Thus, changes in the potential lead to dynamics in a typ-
ical time scale τ ∝ η/|ε|, which readily determines the dynamical critical exponent
z = 2 in the overdamped limit [23, 24, 27]. In contrast, in underdamped dynamics
the term ηφ̇ can be neglected in favor of φ̈, and thus, τ � |φ/φ̈|1/2. For that reason,
τ ∝ |ε|−1/2 which gives the critical exponent z = 1 in the underdamped regime [12,
24, 26, 27]. Note however that these regimes emerge as limiting cases of the more
general situation in which the terms ηφ̇ and φ̈ compete. In particular, a fixed friction
coefficient η determines the dynamical regime and thus the corresponding z, which
together with ν fix the KZ scaling laws as the phase transition is traversed.

In order to derive scaling laws, resulting from traversing with finite rate a continu-
ous phase transition, we resort to the KZ arguments, as given in the Introduction and
briefly summarize here. Due to the diverging relaxation time near the critical point,
the system freezes, using the KZ terminology. This freeze-out instant takes place at t̂
from which the system remains insensitive to the external changes, and thus, it does
not recover equilibrium properties during the quench [9, 12]. As we have seen in
the Introduction, combining the divergence of correlation length and relaxation time,
and crossing the critical point at a rate τ−1

Q , entails ξ̂ ∼ τ
ν/(1+zν)

Q , where ξ̂ represents
the correlation length of the system at the freeze-out instant. Hence, one can estimate
the scaling of the density of defects as nL ∼ Ld/ξ̂d ∼ τ

−dν/(1+zν)

Q , where d is the
dimension of the system.1 Remarkably, these KZ scaling laws can be derived by
transforming the equations of motion as shown in [28–31], without relying on the
intuitive, yet physical, arguments of the transition between adiabatic and impulsive
dynamics [9, 12].

2.1.1.1 Langevin Approach

The stochastic Eq. (2.6) determines the evolution of φ(x, t), which after considering
the form of V (φ) leads to [6, 27, 32]

1Note that defects in this model have zero dimension as they simply separate one-dimensional
spatial regions of φ(x, t) with different symmetry breaking choices.
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Fig. 2.1 Schematic
representation of the
potential
V (φ) = λφ4/4 + εφ2/2
(solid lines) and the resulting
harmonic approximation
V (φ) ≈ εφ2/2 (dashed
lines) for three characteristic
scenarios, namely ε > 0
(light grey), ε = εc = 0
(grey) and ε < 0 (black)

ε>0

ε=0

ε<0

V(φ)

(
∂2

∂t2
+ η

∂

∂t

)
φ(x, t) = h2 ∂2

∂x2
φ(x, t) − εφ(x, t) − λφ3(x, t) + ζ(x, t) (2.11)

where the stochastic force ζ(x, t) fulfills

〈ζ(x, t)〉 = 0, (2.12)
〈
ζ(x, t)ζ(x ′, t ′)

〉 = 2η

β
δ(x − x ′)δ(t − t ′), (2.13)

that is, the noise is considered white and holds the fluctuation-dissipation theo-
rem [33] (see Appendix A). At the beginning of the quench, ε ≥ 0, the field φ(x, 0)
is considered to be in thermal equilibrium, and thus, it has small amplitude such that
|λφ3| � |εφ|. In this manner, to a good approximation, the higher order terms of φ in
V (φ) can be neglected, which results in an approximated harmonic or Gaussian GL
potential, V (φ) ≈ εφ2/2, whose comparison with the φ4 is plotted in Fig. 2.1. This
procedure may seem a rough simplification, however, it will be of great utility later
on, while at the same time, it correctly describes dynamics of realistic models [26,
27, 32], and agrees with well-known results including the nonlinear term φ4 [23, 24]
It is important to remark that, within this harmonic approximation, the system cannot
equilibrate since there exists no stable configuration for ε < 0. Nevertheless, as we
aim to derive and describe properties of the system when it finds itself far from equi-
librium, the lack of equilibration for ε < 0 is not a crucial limitation. Moreover, the
harmonic approximation still reproduces essential features of the φ4 model. Roughly
speaking, within the harmonic approximation, although the amplitude of the field
increases without limit for ε < 0, the number of defects remains equal as that of the
φ4. In addition, we are interested in the emergent scaling laws which are established
at or just after the critical point is traversed.

For convenience, we consider periodic boundary conditions, φ(0, t) = φ(L , t).
In the Fourier space, φ(x, t) can be written as φ(x, t) = ∑

n ϕn(t)eikn x , being kn =
2πn/L the wave-vector associated to the nth mode ϕn(t), which fulfills ϕn(t) =
ϕ∗−n(t) since the field is real. Performing the harmonic approximation, the stochastic
equation of motion decouples for each mode as
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(
∂2

∂t2
+ η

∂

∂t

)
ϕn(t) = (−k2

nh2 − ε(t)
)
ϕn(t) + ζn(t), (2.14)

where the noise now obeys 〈ζn(t)〉 = 0 and 〈ζn(t)ζm(t ′)〉 = 2ηβ−1δnmδ(t − t ′).
Different observables are then attained after stochastic average, that is, after aver-

aging over many noise realizations to provide a reliable statistical estimate. In this
manner, the ensemble averaged value of a macroscopic quantity A can be denoted
as
〈A[φ(t), φ̇(t); t]〉. Formally, this is achieved by integrating over all possible field

configurations, which in the Fourier space can be written as

〈A〉 =
∫ +∞

−∞
dϕ

∫ +∞

−∞
dϕ̇A

∏
n

Pn(t,ϕn, ϕ̇n), (2.15)

where dϕ and dϕ̇ denote integration over all the different modes, and Pn(t,ϕn, ϕ̇n)

represents the time-dependent probability distribution for the nth mode in the phase
space, that is, it quantifies the probability of obtaining the specific values ϕn and ϕ̇n

at time t , independently of the rest of the modes. Indeed, as they represent probability
distributions they must fulfill

∫ +∞

−∞

∫ +∞

−∞
dϕndϕ̇n Pn(t,ϕn, ϕ̇n) = 1. (2.16)

In the Langevin approach, one can obtain approximatelyA, and thus, the correspond-
ing probability distributions by repeatedly solving Eq. (2.14).

2.1.1.2 Fokker-Planck Approach

As aforementioned, the Fokker-Planck formalism sacrifices the knowledge of indi-
vidual stochastic trajectories in favor of a deterministic computation of probability
distributions. Thus, one may abandon the set of stochastic Langevin equations to
achieve deterministic partial differential equations that dictate the evolution of the
probability distributions Pn(t,ϕn, ϕ̇n) [18]. However, for the sake of brevity, we
leave the derivation of the Fokker-Planck equation to the Appendix A, and quote
here the result of the counterpart of Eq. (2.14) that reads

∂

∂t
Pn(t, ϕn, ϕ̇n) =
[
− ∂

∂ϕn
ϕ̇n + ∂

∂ϕ̇n

(
ηϕ̇n +

(
h2k2n + ε(t)

)
ϕn

)
+ η

β

∂2

∂ϕ̇2
n

]
Pn(t,ϕn, ϕ̇n), (2.17)

and it is known as the Kramers Equation [18].
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2.1.2 Overdamped Regime: Smoluchowski Equation

Before analyzing the general case of the dynamics dictated byEq. (2.14) or its Fokker-
Planck counterpart, Eq. (2.17), it is useful to consider the overdamped regime or pure
relaxational dynamics [6]. This regime takes place when the friction coefficient dom-
inates, that is, |ηφ̇| � |φ̈|. In such a limit, the equation ofmotion can be approximated
as

η
∂

∂t
φ(x, t) =

(
h2 ∂2

∂x2
− ε(t)

)
φ(x, t) + ζ(x, t), (2.18)

or in the Fourier space as

η
∂

∂t
ϕn(t) = (−h2k2

n − ε(t)
)
ϕn(t) + ζn(t), (2.19)

Note that in this regime the probability distributions depend on ϕn but not on ϕ̇n , and
thus, we will simply write Pn(ϕn, t). Furthermore, as ϕn(t) is in general complex, it
is useful to express φ(x, t) as

φ(x, t) = ϕR
0 (t)√
Nc

+
√

2

Nc

(Nc−1)/2∑
n=1

ϕR
n (t) cos(kn x) + ϕI

n(t) sin(kn x), (2.20)

where we have introduced a momentum cut-off kc that sets a maximum number
of modes (Nc − 1)/2, and ϕR

n (t) ≡ Re(ϕn(t)) and ϕI
n(t) ≡ Im(ϕn(t)). We choose

an odd number Nc, without loss of generality. The Fokker-Planck counterpart of
Eq. (2.19) is known as Smoluchowski equation [18] (see Appendix A)

η
∂Pn(t,ϕR,I

n )

∂t
= ∂

∂ϕR,I
n

[
1

β

∂

∂ϕR,I
n

+ (
h2k2

n + ε(t)
)
ϕR,I

n

]
Po,n(t,ϕ

R,I
n ). (2.21)

Initially, at ε0 the system is in thermal equilibrium, which is characterized by being
a stationary state, ∂t P th

n = 0. In particular, one finds that the following probability
distribution fulfills this requirement,

P th
n (ϕR,I

n ) = f thn√
π

e−( f thn ϕR,I
n )2 , with f thn =

√
β
(
h2k2

n + ε0
)
/2. (2.22)

Certainly, these probability distributions correspond to the Boltzmann distribution
at a given temperature 1/β, as one would have demanded. Interestingly, due to the
harmonic approximation, such a thermal state exists only as long as ε0 > εc = 0.
Moreover, we consider an Ansatz for the time-dependent probability distributions,
Pn(ϕ

R,I
n , t) = fn(t)√

π
e−( fn(t)ϕR,I

n )2 , that is, a Gaussian probability distribution, with a
time-dependent variance that obeys a non-linear differential equation
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∂

∂t
fn(t) = − 2

ηβ
f 3n (t) + 1

η

(
h2k2

n + ε(t)
)

fn(t), (2.23)

obtained upon substituting the Ansatz in Eq. (2.21). The initial condition fn(0) is
simply that of thermal equilibrium, i.e., fn(0) = f thn . In this manner, we achieve the
full knowledge of the probabilistic dynamics as it follows from a set of uncoupled and
simple differential equations determining the varianceof the probability distributions.
Note however that, while this has been achieved after a number of assumptions and
approximations, the procedure correctly captures nonequilibrium dynamics of the
system.

Assuming the Gaussian form of the probability distributions, we can calculate the
quantities of interests, namely ξL(t) and gL(t). The two-point correlation function
given by Eq. (2.7) simplifies to

G(x1, x2, t) = 1

2Nc f 20 (t)
+

Nc−1∑
n=1

cos(kn(x1 − x2))

Nc f 2n (t)
. (2.24)

from where it is obvious that G(x1, x2, t) = G(x1 − x2, t). In addition, recall that
due to symmetry, 〈φ(x, t)〉 ≡ 0. Then, the correlation length follows from Eq. (2.8),

ξL(t) = L

2
√
6

√√√√1 + 12 f 20 (t)
(Nc−1)/2∑

n=1

(−1)n

f 2n (t)n2π2
. (2.25)

as well as the expression for gL(t), Eq. (2.10),

gL(t) = L

∑(Nc−1)/2
n=1

k2n
f 2n (t)

1
2 f 20 (t)

+∑(Nc−1)/2
n=1

1
f 2n (t)

. (2.26)

The evaluation of the previous expressions will allow us to test the emergence of
the scaling laws. However, before entering in the finite-rate passages, we discuss
to limiting cases, namely, thermal equilibrium and sudden quenches, τQ → ∞ and
τQ → 0, respectively.

2.1.2.1 Thermal Equilibrium and Sudden Quenches

Thermal equilibrium at any ε is attained in the limiting case of an infinitely slow
quench, i.e., τQ → ∞, and allows us to gain valuable insights. From a practical
point of view, it is sufficient to replace fn(t) by f thn in the expression for two-point
correlation function, correlation length ξL and gL . In addition, we comment once
again that thermal equilibrium is only possible for ε > 0 as a consequence of the
harmonic approximation. Taking the continuum limit of Eq. (2.25), one gets
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ξthL (ε > 0) =
√

h2

ε
− hL

2ε1/2 sinh(ε1/2L/2h)
. (2.27)

The thermodynamic limit is of particular interest as it must reveal the diverging
ξL , that is, ξL ∝ |ε − εc|−ν as ε → εc. The thermodynamic limit consists in taking
L , Nc → ∞, while keeping the cut-off kc finite. In this manner, ξthL→∞(ε > 0) =
hε−1/2, and as expected for GL theory, the critical exponent results in ν = 1/2, and
the two-point correlation function becomes

G th(x) = e−√
ε|x |/hπ

hβ
√

ε
. (2.28)

Moreover, for finite systems and at ε = εc = 0, ξL adopts a simple expression

ξthL (ε = εc) = L

2
√
6
, (2.29)

which agreeswith the expectedfinite-size scaling theory, ξL (εc = 0) ∝ L [6, 34], and
gives account of themaximumcorrelation lengthwithin the harmonic approximation,
which evidently does not exceed the system size, ξL � L . In Fig. 2.2 we plot the two-
point correlation function, the correlation length together with its scaling close to
the critical point. In a similar way, we can calculate the gthL (ε) in the thermodynamic
limit as
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Fig. 2.2 Two-point correlation function G th(x) (a) and correlation length ξthL (b). The former
corresponds to the thermodynamic limit calculation for different values of ε, namely, 10 (dotted
light-grey line), 5 (dashed grey line) and 2.5 (dotted-dash black line). In b, ξthL is plotted as a function
of ε and for L = 10, 20 and 40, while in the inset its scaling as ε → εc = 0 is shown, with the
parameters h = 5 and β = 1. Note that ξL precisely follows the scaling law ξL ∝ |ε − εc|−ν with
ν = 1/2 (solid black line) until the saturation value is attained, L/(2

√
6)
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gthL→∞(ε > 0)/L ≈
∫ kc

0 dk k2

β(h2k2+ε)∫ kc

0 dk 1
β(h2k2+ε)

= ε1/2kc

h arctan(hkcε−1/2)
− ε

h2
, (2.30)

and therefore gthL→∞/L ∼ 2kc
hπ

(ε − εc)
1/2, as the critical point is approached, which

discloses the critical exponent 1/2.
In the sudden quench limit to the contrary, τQ → 0, the system has no time to

equilibrate at intermediate ε values, and thus, the quantities do not vary their initial
value, which is that of thermal equilibrium at ε0.

2.1.2.2 Finite-Rate Quenches

After discussing thermal equilibrium and sudden quenches properties, we finally
commence the study of finite-rate passages across the critical point. For that reason,
wenumerically solve the set ofEq. (2.23) that determine the nonequilibriumevolution
of an initially thermal state with temperature β, traversing the phase transition by the
time-varying ε(t). The control parameter is varied from ε(0) = ε0 to ε(τQ) = ε1 in
a time τQ , as given in Eq. (2.5). For the simulations we consider η = 10, h = 5 and
β = 1, the initial value ε0 = 100 and ε1 = −10. In addition, we set the momentum
cutoff kc = 5π which fixes the number of modes for a particular system size L .

In Fig. 2.3we show themain results for the nonequilibriumoverdamped dynamics.
In the first panel the scaling of the correlation length ξL and gL of the resulting
nonequilibrium state at the critical point is represented as a function of the quench
time τQ . Three different system sizes have been calculated, namely L = 10, 20 and
40. As the quench time increases, the quantities abandon their initial value as they
have time to adapt to the externally varied ε(t). In the τQ → ∞ limit, the correlation
length saturates to itsmaximumvalue, as discussed previously,while gL tends to zero.
In both cases, increasing the system size L provides awider range inwhich an evident
power-lawbehavior holds. In particular, performing afit in the region τQ ∈ [100, 103]
for L = 40 to a power-law function, τα

Q , results inα = −0.248(2) and−0.244(2) for
1/ξL andgL , respectively. Thesefitted exponents indeed agreewith theKZprediction,
as τ

−ν/(1+zν)

Q = τ
−1/4
Q with ν = 1/2 and z = 2 for overdamped dynamics [23, 24,

26]. Moreover, we go beyond the KZ scaling and analyze the nonequilibrium finite-
size scaling functions, which are hypothesized as

1/ξL ∼ τ
−ν/(1+zν)

Q fξ(τQ L−1/ν−z), and gL ∼ τ
−ν/(1+zν)

Q fg(τQ L−1/ν−z) (2.31)

with fξ(x) and fg(x) nonequilibrium scaling functions fulfilling fξ(x � 1) ∼ 1 or
simply a constant, and fξ(x � 1) ∼ xν/(1+zν). Note that while the former condition
gives account of the KZ scaling, the latter ensures that for adiabatic quenches the
finite-size scaling is recovered [32]. The previous expressions are tested in Fig. 2.3b,
where we observe a collapse of the data points when plotting L/ξL and LgL against
L−4τQ for different L and τQ values. Finally, we can also test the universality of the
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equation of motions in the same spirit as discussed in [28], which is accomplished
by finding an appropriate transformation of physical parameters, such as space and
time, that removes the dependence on τQ from the equations of motion. In the case of
overdamped dynamics, the transformation consists in rescaling the spatial and time
coordinates as x → xτ

−1/4
Q and t → (t − tc)τ

−1/2
Q , where tc = τQ

ε0
ε0−ε1

corresponds
to the time instant at which ε(tc) = εc. This is briefly shown in the following lines.
After shifting the time t ′ = t − tc, the equation of motion reads

η
∂

∂t ′ φ(x, t ′) =
(

h2 ∂2

∂x2
− ε1 − ε0

τQ
t ′
)

φ(x, t ′) + ζ(x, t ′), (2.32)

and thus, introducing t ′′ = θt t ′ and x ′ = θx x , it follows
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Fig. 2.3 Results for the overdamped dynamics. In a we plot the scaling of the inverse of the correla-
tion length, 1/ξL (full points) and gL (open points) at the critical point, εc, for three different system
sizes, L = 10 (light grey), 20 (grey) and 40 (black). At intermediate quench times, τQ ∈ [100, 103],
a fit results in 1/ξL ∝ τ

−0.248(2)
Q and gL ∝ τ

−0.244(2)
Q for L = 40. In b we show the nonequi-

librium finite-size scaling 1/ξL ∼ τ
−ν/(1+zν)
Q fξ(τQ L−1/ν−z) and gL ∼ τ

−ν/(1+zν)
Q fg(τQ L−1/ν−z)

with ν = 1/2 and z = 2 for overdamped dynamics. In c and d the collapse of the data into a single
curve unveils the universality of the dynamics regardless of τQ for ξL and gL , respectively. The
parameters used in the simulations were β = 1, η = 10, ε0 = 100, ε1 = −10 and h = 5. See main
text for further details regarding the transformations and discussion of the results
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η
∂

∂t ′′ φ(x ′, t ′′) =
(

h2 ∂2

∂(x ′)2
θ2x
θt

− ε1 − ε0

τQθ2t
t ′′
)

φ(x ′, t ′′) + θ−1
t ζ(x ′, t ′′). (2.33)

Wenow impose τQθ2t = 1and θ2x = θt , that lead to θt = τ
−1/2
Q and θx = τ

−1/4
Q .Hence,

the dynamics is expected to be universal in terms of (x ′, t ′′), that are achieved under
the aforementioned transformation, x ′ = xτ

−1/4
Q and t ′′ = (t − tc)τ

−1/2
Q . Note that

the stochastic term is enlarged by a factor τ
1/2
Q , which indicates that the universality

will be eventually lost for very slow quenches, τQ → ∞. However, τQ-independent
dynamics still holds for small temperatures and awide regionof quench rates (see [28]
for a detailed discussion on this topic). In short, performing this transformation the
dynamics becomes universal in the sense that they do not depend on τQ and hence,
ξLτ

−1/4
Q and gLτ

1/4
Q versus (t − tc)τ

−1/2
Q must show the same functional dependence

regardless of the specific τQ value, which is precisely plotted in Fig. 2.3c and d. Note
that this latter transformation conveys the KZ as a special case, since ξLτ

−1/4
Q ∼

constant and gLτ
1/4
Q ∼ constant for t = tc.

2.1.3 General and Underdamped Regime: Kramers Equation

So far we have analyzed the high friction limit, or simply, the overdamped dynamics
in the GL theory, which besides being a good example where different scaling laws
and the Fokker-Planck formalism can be applied, it has truly experimental relevance.
Nevertheless, a more general scenario can be exploited starting from Eq. (2.17). The
Fokker-Planck formalism describes the dynamics of the system through the so-called
Kramers equation, which we write again for convenience,

∂Pn(t,ϕn, ϕ̇n)

∂t
=

[
− ∂

∂ϕn
ϕ̇n + ∂

∂ϕ̇n

(
ηϕ̇n +

(
h2k2n + ε(t)

)
ϕn

)
+ η

β

∂2

∂ϕ̇2
n

]
Pn(t,ϕn, ϕ̇n). (2.34)

Themain differencewith respect to the overdamped case resides in that Pn(t,ϕn, ϕ̇n)
depends on both variables, ϕn and ϕ̇n . Hence, the analysis is more intricate although
still, due to the assumed conditions and approximations, the dynamics can be cap-
tured by simple differential equations. Indeed, we follow a very similar procedure as
in Sect. 2.1.2. Thermal equilibrium conditions are deduced from ∂t P th

n = 0, whose
solution in terms of ϕR

n ≡ Re(ϕn) and ϕI
n ≡ Im(ϕn) reads

P th
n =

√
(Ath

n Bth
n )2 − (C th

n )2

2π
Exp

[
− 1

2

((
Ath

n ϕR,I
n

)2 +
(

Bth
n ϕ̇R,I

n

)2 − 2C th
n ϕR,I

n ϕ̇R,I
n

)]
(2.35)

where the parameters of this two-dimensional Gaussian distribution are Ath
n =√

β
(
h2k2

n + ε
)
, B th

n = √
β, and C th

n = 0. The goal consists now in determining
the evolution of these coefficients, which upon introducing the Gaussian Ansatz in
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Eq. (2.34), it is straightforward to attain

∂ An(t)

∂t
= −Cn(t)

An(t)

(
ε(t) + h2k2

n + ηCn(t)

β

)
, (2.36)

∂Bn(t)

∂t
= ηBn(t) − η

β
B3

n (t) + Cn(t)

Bn(t)
, (2.37)

∂Cn(t)

∂t
= A2

n(t) + ηCn(t) − B2
n (t)

(
h2k2

n + ε(t) + 2ηCn(t)

β

)
. (2.38)

As one would expect, the general case must coincide with the Smoluchowski treat-
ment providedη is sufficiently large. It is then pertinent to define a reduced probability
distribution integrating over ϕ̇n ,

Qn(t,ϕ
R,I
n ) =

∫ +∞

−∞
dϕ̇R,I

n Pn(t,ϕ
R,I
n , ϕ̇R,I

n ) = Fn(t)√
π

e−F2
n (t)(ϕR,I

n )2 , (2.39)

where the term Fn(t) depends on the coefficients An(t), Bn(t) and Cn(t) as

Fn(t) =
√

1

2B2
n (t)

(
A2

n(t)B2
n (t) − C2

n (t)
)
. (2.40)

Note for example that F th
n coincides with f thn , as they represent the same physical

state (recall that the thermalization is guaranteed in both dynamical regimes, and it
is unique for a given β). Hence, neither thermal equilibrium nor sudden quenches
properties are discussed here, as they have been presented in Sect. 2.1.2.1. From a
more practical point of view, calculating Fn(t) enables the computation of G(x, t),
ξL(t) and gL(t) by merely replacing fn(t) by the previous Fn(t), as we will use in
the following.

2.1.3.1 Finite-Rate Quenches

Solving numerically the three coupled differential equations per mode, Eqs. (2.36),
(2.37) and (2.38), we study the low friction limit, i.e., underdamped dynamics, which
is expected when |ηφ̇| � |φ̈|. We take the same parameters as for the overdamped
dynamics h = 5, β = 1, ε0 = 100 and ε1 = −10, but η = 0.1 is chosen such that
the scaling laws will resemble those of the asymptotic limit η → 0.

The numerical results involving different quench times and system sizes are col-
lected in Fig. 2.4. The inverse of the correlation length 1/ξL and gL exhibit a power-
law scaling, which becomes more evident and broader as L increases, and agrees
with the KZ prediction. A fit for L = 40 in the range τQ ∈ [101, 103] provides

1/ξL ∝ τ−0.34(1)
Q and gL ∝ τ−0.36(1)

Q , while the KZ mechanism predicts a τ
−ν/(1+zν)

Q

scaling with ν = 1/2 and z = 1 for underdamped, and thus τ
−1/3
Q . In Fig. 2.4b the

nonequilibrium scaling functions are plotted for both quantities, supporting the exis-
tence of the functions fξ(τQ L−1/ν−z) and fg(τQ L−1/ν−z), regardless of the specific
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Fig. 2.4 Results for the underdamped dynamics. In a we plot the scaling of the inverse of the corre-
lation length, 1/ξL (full points) and gL (open points) at the critical point, εc , for three different system
sizes, L = 10 (light grey), 20 (grey) and 40 (black). At intermediate quench times, τQ ∈ [100, 103],
a fit results in 1/ξL ∝ τ

−0.34(1)
Q and gL ∝ τ

−0.36(1)
Q for L = 40. In b we show the nonequilib-

rium finite-size scaling 1/ξL ∼ τ
−ν/(1+zν)
Q fξ(τQ L−1/ν−z) and gL ∼ τ

−ν/(1+zν)
Q fg(τQ L−1/ν−z)

with ν = 1/2 and z = 1 for overdamped dynamics. In c and d the data collapse unveil the uni-
versality of the dynamics regardless of τQ for ξL and gL , respectively. The parameters used in the
simulations were β = 1, η = 0.1, ε0 = 100, ε1 = −10 and h = 5. See main text for further details
regarding the transformations and discussion of the results

values of L and τQ separately. Finally, for L = 40 we demonstrate the universality
of the dynamics, as discussed in [28]. Recall that this universality resides in that the
dynamics are self-similar in the parameter τQ , i.e., one can find a transformation such
that τQ dependence is removed. As explained in the case of overdamped dynamics,
Eq. (2.33), after shifting the time t ′ = t − tc with tc = τQ

ε0
ε0−ε1

we introduce x ′ = θx x
and t ′′ = θt t ′ such that the τQ dependence is removed from the equation of motion.
In this case the transformation turns out to be θt = θx = τ

−1/3
Q , that is, by trans-

forming the spatial and time coordinates as x → xτ
−1/3
Q and t → (t − tc)τ

−1/3
Q , we

find that the results for ξL and gL collapse into a single curve when plotted against
(t − tc)τ

−1/3
Q , as shown in Fig. 2.4c and d.
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2.2 Coulomb Crystal in Ion Traps

In this section we abandon the GL theory, at least for the moment, to tackle a realistic
setup, namely Coulomb crystals in ion traps, which has become an excellent plat-
form where novel theoretical aspects can be tested and new regimes of matter can be
explored thanks to the unprecedented control, cooling and isolation of ion traps [35,
36]. Indeed, Coulomb crystals in ion traps are assuredly one of the most accessible
platforms where the exciting frontier between plasma physics, mesoscopic systems
and quantum mechanics meet, and therefore, they appear as an excellent test-bed
for statistical mechanics [36, 37]. Crystalline structures are formed in this setup as
a consequence of Coulomb interaction, and thus, they differ from the customary
solid-state crystals where atoms gather forming bonds overlapping wave-functions
as a result of their electronic structure [38]. Although Coulomb crystallization of an
electron gas was first predicted by E. Wigner in 1934 [39] and have been studied
experimentally in certain systems such as a two-dimensional electron gas on the
surface of liquid helium [40], the development of ion traps undoubtedly brought
Coulomb crystals into the scientific spotlight, sparking renewed interest as well as
offering novel opportunities for their systematically inspection. Therefore, we shall
commence acknowledging the pioneer work of S. Earnshaw, who in 1842 proved
that a set of charged particles cannot be trapped or confined solely by means of a
time-independent electric field, and the memorable fabrication of the ion traps by
the Physics Nobel laureates in 1989, H. G. Dehmelt and W. Paul. The former made
use of a static electric field combined with an inhomogeneous magnetic field to
attain a global confining potential, which is known as Penning trap [41]. Yet, another
successful manner to confine charged particles was developed by W. Paul, which
instead relies on time-dependent electromagnetic fields, and it is known as Paul or
radio-frequency trap [42]. Since then, ion trap-based technologies have experienced
a stunning advance, and has become one of the most promising platforms for quan-
tum information processing [35, 43, 44]. It is worth commenting that, on top of
these trap techniques, laser cooling is an essential technology to attain Coulomb
crystallization [36] as well to exploit quantum effects [35].

Although the confinement is attained through different electromagnetic fields,
the effective potential governing both physical systems turns out to be equivalent,
up to corrections neglecting the so-called micromotion [45]. The full dynamics of
the ions follows the well-known Mathieu equations, which determine the required
stability conditions for the ion configurations depending on different parameters [35].
However, for the purposes of this thesis, micromotion effects are negligible and
therefore we will assume that the system is well described by the effective potential
V , while we refer to interested readers to the detailed analysis in [45],

V = 1

2

∑
j

m j
(
ω2

x x2
j + ω2

y y2j + ω2
z z2j
)+ 1

4πε0

∑
j<k

Q j Qk

|r j − rk | . (2.41)
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The first term captures the effect of the confinement provided by the electromagnetic
fields, leading to effective harmonic potential with frequencies ωx,y,z , and where
the position of the j th ion of mass m j and charge Q j has been denoted as r j =
(x j , y j , z j ), while the second term stands for Coulomb interaction. Note that, while
different species of ions can be confined, we will consider in the following a unique
type, i.e., m j ≡ m and Q j ≡ Q ∀ j .

At sufficiently low temperatures, the Coulomb repulsion becomes significant and
the ions localize at their equilibrium position forming crystal-like patterns. This
transition point can be quantified by the dimensionless coupling �, which gives
account of the ratio between the nearest-neighbour Coulomb energy and the average
thermal energy,

� = Q2

4πε0aWSkB T
(2.42)

where theWigner-Seitz radius aWS corresponds to the average distance between ions,
and thus, it is related to the particle density n = N/V as (4/3)πna3

WS ≡ 1. The ion
plasma behaves as a gas when � < 1 and as liquid when � > 2. The crystallization
however occurs at a much higher value,� ≈ 174, as shown in [46]. Depending on the
frequencies ωx,y,z , different crystal-like structures will be formed, as we illustrate
in Fig. 2.5. Considering periodic boundary conditions in the x-axis, and ωy suffi-
ciently large such that the ions are confined in the xz-plane (a quasi two-dimensional
system), a linear string or chain of ions is formed when ωz is large, Fig. 2.5a, with
zero transverse displacement

〈
z j
〉 = 0. If the transverse potential is reduced, that is,

if ωz becomes smaller than a critical value ωc
z , a structural phase transition takes

place, which brings the system into a zigzag structure with
〈
z j
〉 �= 0 as it becomes

energetically more favorable Fig. 2.5b. Reducing even more ωz , one will find a three-
row structure (Fig. 2.5c), then four rows and so on [7], which ultimately leads to a
triangular lattice. Three-dimensional crystals (bcc) are also possible, and will nat-
urally emerge if ωy does not constrain the system to the xz-plane. Although the
specific equilibrium positions r0j can be calculated minimizing the potential energy,
∂r j V

∣∣
r0j

= 0, which for a linear string were tabulated by James [47], an estimate of

(a) (b) (c)

Fig. 2.5 Crystal structures emerging in a homogeneous ion trap, depending on the ion species and
confinement potentials. For simplicity, ωy is assumed to be very large such that the crystal is formed
in the xz-plane, as well as x-axis periodic boundary conditions. A string or linear chain of ions
is formed when ωz > ωc

z with transverse displacement
〈
z j
〉 = 0 (dashed line) (a), while a zigzag

structure emerges since it is energetically more favorable when the transverse potential becomes
shallower, ωz < ωc

z , characterized by
〈
z j
〉 �= 0 (b). Reducing even more the transverse potential, a

three-row is formed (c)
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the distance between ions, a, results from the condition inwhich the confinement har-
monic force compensates the Coulomb repulsion, typically leading to few μm [36].
Then, assuming typical values n = 3 × 1014 m−3 (aWS ≈ 10 µm) and ion charge
Q = −e = 1.6 × 10−19 C, a temperature lower than 10 mK would be required to
form an ion crystal. This low temperature is achievable by means of Doppler cool-
ing, a widely used and suitable laser cooling technique [48], and therefore, Coulomb
crystals can be explored nowadays in trapped-ion platforms as demonstrated in sev-
eral works [16, 17, 49–51] (see [36] for a review). Finally, before starting a more
detailed analysis of the structural phase transition from linear to a zigzag chain [8,
27, 52], it is worth commenting that quantum effects become important when distinct
particle wavefunctions overlap, that is, when the thermal de Broglie wavelength λB

becomes comparable to the interparticle distance aws. Nevertheless, we will consider
a situation in which λB = (

h2/(3mkB T )
)1/2 � aws with h the Planck constant,2 and

thus, the system can be treated classically.

2.2.1 Ginzburg-Landau Map

The linear to zigzag phase transition was firstly investigated numerically in [53],
and later also including theoretical calculations [7]. It was however years later when
it was proven that the linear to zigzag phase transition is continuous [8], and also
providing a GL description. As we have already introduced in Sect. 2.1, GL theory
is a powerful tool that properly casts critical phenomena in a variety of systems,
although fails in certain circumstances (see Sect. 2.1). As we present in the following
lines, GL theory is suitable for the linear to zigzag phase transition.

The GL description of this physical problem starts with symmetry arguments.
In this regard, we should notice that, as depicted in Fig. 2.5, while the linear phase
features a unique stable equilibrium,

〈
z j
〉 = 0, the zigzag structure admits an equiv-

alent conformation, namely, a zagzig, which is the z-reflection counterpart of the
zigzag. That is, while one stable conformation in the zigzag phase can be written
as z j = (−1) j |zD| (with zD the transverse displacement amplitude), its symmetric
counterpart reads z j = (−1) j+1|zD|. In this manner, we can map the ion transverse
coordinate to a field asφ = (−1) j z j in order to attain a smoothφ function. Therefore,
we can already notice that, as the free energy within GL theory must preserve sym-
metry properties,F[φ] = F[−φ], which preventsF of containing any odd power of
φ. This is again the typical scenario of a symmetry breaking phase transition since
any fluctuation in φ will break the delicate Z2 symmetry.3 For simplicity, we con-
sider identical ion, periodic boundary condition in the x axis, and ωy sufficiently

2The de Broglie wavelength reads λB = h/p. For a particle of mass m and in thermal equilibrium
with temperature T , p takes the value p2 = 3mkBT , as a consequence of the equipartition theorem.
3Consider that the field φ(x) fluctuates around its mean value, φ0, such that φ(x) = φ0 + ψ(x).
Then, while in the linear phase (φ0 = 0) the system is symmetric by construction under fluctuation
reflections, F[ψ(x)] = F[ψ(x)], in the zigzag phase the symmetry is not preserved since F[φ0 +
ψ(x)] �= F[φ0 − ψ(x)].



44 2 Structural Phase Transitions

large to confine the ions to the xz-plane, although the procedure can be performed
in a straightforward manner for a more general situation [32]. Then, instead of the
general Eq. (2.41), the quasi two-dimensional system obeys the potential

V = 1

2

∑
j

mω2
z z2j + Q2

4πε0

∑
j<k

1√
(x j − xk)2 + (z j − zk)2

(2.43)

which, upon Taylor expanding it around the equilibrium positions withφ = (−1) j z j ,
it can be shown that [8, 27]

F[φ(x)] = m

2a

∫
dx

{
δφ2(x) + h2

(
∂φ(x)

∂x

)2

+ �φ4(x)

}
, (2.44)

with the interspacing ion distance a, h = ω0a
√
ln 2, δ = ω2

z − ω2
z,c and � =

93ζR(5)ω2
0/(32a2) with ζR(s) = ∑∞

s n−s the Riemann zeta function. The natural
frequency of the system and the critical value of the linear to zigzag transition are
given by ω0 = Q/(4πε0

√
ma3) and ωc = ω0

√
7ζR(3)/2, respectively. Remarkably,

Eq. (2.44) corresponds to a scalar φ4 potential as discussed in Sect. 2.1. Briefly, the
equilibrium configuration of the field φ0 follows from ∂φVGL(φ) = 0, where the
potential is simply,

VGL(φ0) = m

2a
δφ2

0 + m�

2a
φ4
0 (2.45)

which corresponds to the aforementioned Eq. (2.4). The situation is then completely
similar to the cases studied in the Sect. 2.1, and then, the linear to zigzag phase
transition is tantamount to the paramagnetic to ferromagnetic phase transition, among
others. In this manner, the order parameter φ0 undergoes a smooth transition from
φ0 = 0 for δ > 0 (ωz > ωz,c) to φ0 = ±√−δ/2� for δ < 0 (ωz < ωz,c) (Fig. 2.6).
More specifically, φ0 ∝ |δ − δc|β (recall that δ corresponds to ε in the previous
Section, and δc = 0) with β = 1/2 the mean-field critical exponent associated to the
order parameter, and as we have derived in Sect. 2.1, the correlation length ξ ≈ h/

√
δ

for |δ − δc| � 1, and thus, it diverges as ξ ∝ |δ − δc|−ν with ν = 1/2. Finite-size
systems do not exhibit these divergences but rather show a smooth behavior, as we
have shown in Sect. 2.1.

2.2.2 Defect Formation and Kibble-Zurek Scaling

The problem of linear to zigzag phase transition can bemapped onto aGL theorywith
suitable parameters to a very good approximation. In thismanner, it is straightforward
to apply the same analysis as in Sect. 2.1 to study nonequilibrium dynamics across the
critical point. However, we do not resort to the previously explained map, but apply
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Fig. 2.6 Schematic
representation of the GL
potential VGL(φ0) derived in
Eq. (2.45), for different
situations and their
associated crystal
conformation, namely, for
δ > 0 a linear string and for
δ < 0 the two equivalent
choices φ0 = ±√−δ/2�,
which correspond to the two
symmetric zigzag (zagzig)
disposition

δ>0

δ=0

δ<0
φ0

VGL(φ0)

the procedure directly to the realistic Coulomb crystal problem. Before introducing
the Fokker-Planck approach, we introduce the customary Langevin dynamics of the
ions and how kinks or defects are formed when the zigzag phase is induced by
varying the global confining potential [37, 54]. This situation, in the spirit of the
KZ mechanism, has been experimentally addressed in ion traps [16, 17] as well as
numerically in a number of works, where GL theory is commonly used [27, 32, 55].
Note however that here we consider periodic boundary conditions, which largely
simplifies the problem as well as the derivation of KZ scaling laws (see [27, 55–57]
for inhomogeneous systems).

The potential of the system can be written as

V = 1

2

N∑
j

m
(
ω2

y y2j + ω2
z (t)z

2
j

)+ Q2

4πε0

N∑
j<k

1

|r j − rk | . (2.46)

where the transverse potential frequency is varied linearly in time, from the linear to
the zigzag phase,

ωz(t) =

⎧⎪⎨
⎪⎩

ωz,0 for t < 0

ωz,0 + ωz,1−ωz,0

τQ
t for 0 ≤ t < τQ

ωz,1 for t ≥ τQ,

(2.47)

with τQ the total time of the quench and ωz,0 > ωz,c and ωz,1 < ωz,c. Hence, τQ →
∞ leads to an adiabatic passage through the phase transition. Note that, while we
considerωy large enough to constrain the ions to the xz-plane, i.e., y j ≈ 0, the impact
fluctuations and confinement potential in the y-axis have been taken into account in
the molecular dynamics simulations.

Initially, the N ions are in thermal equilibrium in a linear chain configuration,
ωz,0. Then, as a consequence of the finite-rate passage across the phase transi-
tion, the system is driven out of equilibrium entering into the zigzag phase, where
symmetry-breaking states can be chosen only locally and thus, promoting the appear-
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ance of defects or kinks, as exemplified in Fig. 2.7. In the following we address
the dynamics of the system by means of molecular dynamics simulations (solving
the Langevin equations) and, under the harmonic approximation, using the Fokker-
Planck approach.

The numerical simulationswere performedwith realistic parameters, namely, a =
10 µm, N = 21 ions, mass m = 172 amu and charge Q = −e = 1.6 ×
10−19 C, which corresponds to 172Yb+ ions. The temperature is set to T = 5 mK and
considered to be constant during the whole process. The frequency ω0 = 2π × 135
kHz and the critical frequency amounts to ωz,c = 2π × 278 kHz. The initial and
final frequencies are ωz,0 = 2π × 477 kHz and ωz,1 = 2π × 159 kHz. In addition,
we consider ωy = ωz,0 = 2π × 477 kHz, sufficiently large to ensure a quasi two-
dimensional Coulomb crystal.
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Fig. 2.7 Realistic crystal configurations are plotted in a, obtained solving the Langevin equations.
At the top (bottom), the ions before (after) the ramp across the critical point for N = 21 ions with
periodic boundary conditions. Note the presence of a defect in the zigzag phase, depicted in light
grey (see main text for further details). The b panel shows the scaling of the correlation length L/ξ,
number of defects 〈Nd 〉 and mean-square displacement

〈
z2
〉
as a function of the quench time τQ .

In c, we show the probability distribution for the transverse displacement z, while d corresponds
to the two-point correlation function G(x, t) at the critical point for a quench τQ = 41.7 µs. In e
the rescaled correlation length ξ/aτ

−1/3
Q is shown for different quench times which collapse into

a single curve, for both approaches. All the results of the molecular dynamics simulations were
obtained averaging 2000 stochastic trajectories, while the solid lines represent the results using the
presented Fokker-Planck approach
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2.2.2.1 Langevin Approach

The dynamics of the system is dictated by the following stochastic equations

m
d2x j

dt2
+ η

dx j

dt
+ ∂V

∂x j
= ζx

j (t), (2.48)

m
d2y j

dt2
+ η

dy j

dt
+ ∂V

∂y j
= ζ

y
j (t), (2.49)

m
d2z j

dt2
+ η

dz j

dt
+ ∂V

∂z j
= ζ z

j (t). (2.50)

There, η is the friction coefficient and ζ
x,y,z
j is the stochastic force that satisfies the

fluctuation-dissipation theorem (see Appendix A),

〈
ζα

j (t)
〉 = 0, (2.51)〈

ζα
j (t)ζ

γ
k (t ′)

〉 = 2ηβ−1δαγδ jkδ(t − t ′), (2.52)

where α, γ ∈ {x, y, z} and j, k ∈ {1, 2, ..., N }.
The friction coefficient can be estimated as η = 1.5 × 10−21 kg s−1 [16], while

the rest of the parameters have been given previously. The dynamics is then solved by
Langevin impulse integration method as explained in [58], and choosing a timestep
of 10 ns. Then, in order to ensure that the system initially is in thermal equilibrium,
we evolve the system under ωz,0 during 100 µs before starting the quench protocol.
The quench time τQ is varied from 10−400 µs. For each value of τQ , we perform
2000 simulations that provides an accurate estimation of statistical observables, as
we show here for the two-point correlation function G(x, t), correlation length ξ(t),
number of defects at the end of the quench 〈Nd〉, and the probability distribution
of the transverse displacement z(t), which due to translational symmetry does not
depend on the ion position.

In Fig. 2.7we have collected some important results. First, it is noticeable that, due
to the periodic boundary conditions and thus, the different topology, an odd (even)
number of ions leads to anodd (even) number of defects.Aswehave selected N = 21,
the minimum amount of defects will be one (Fig. 2.7a), therefore 〈Nd〉 saturates to 1
as τQ → ∞. To the contrary, too fast passages will destroy the crystal as too much
energy is suddenly given to the crystal, driven far from stability. Hence,we shall focus
on moderate passages across the critical point. In the panel (b), we show the scaling
of relevant quantities, namely, the average number of defects, correlation length L/ξ
and mean-square transverse displacement

〈
z2
〉
at the critical point. A fit to a τα

Q gives
α = −0.31(1) and −0.30(1) in the range of τQ ∈ [40, 200] μs for L/ξ and 〈Nd〉
using Langevin approach. These fitted exponents are indeed in agreement with the
KZ predictions for underdamped dynamics. Probability distributions can be retrieved
through histograms of the possible outcomes, as shown in Fig. 2.7c for the probability
distribution of the transverse displacement, P(z, t). In (d), the two-point correlation
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function G(x, t) is plotted, both for τQ = 47.7 µs. Finally, in (e) the collapse of
the correlation length applying the transformation is verified. Remarkably, while the
Langevin results include the full non-linear terms, the Fokker-Planck description
neglecting non-linear terms turns out to be a good approximation, which we discuss
in the following.

2.2.2.2 Harmonic Approximation and Fokker-Planck Approach

Since the linear to zigzag phase transition can be mapped onto a GL theory, we can
proceed as in Sect. 2.1, that is, dropping non-linear terms and relying on a Fokker-
Planck approach to attain probability distributions in a deterministic manner. We
emphasize however that we do not resort to the GL mapping, and thus, we apply the
introduced method to the ion crystal. As in the GL case, it is convenient to move
to the Fourier space, where the stochastic Langevin equations decouple for each
mode provided non-linear terms are neglected, which is a good approximation in
the vicinity of the critical point. The Fokker-Planck equations, or more specifically,
the resulting Kramers equation dictates the dynamics of the system, from where
statistical observables follow.

The equilibrium configuration of the ions for ωz > ωz,c is given by r(0)
j =

(x (0)
j , 0, 0), where for convenience we take xi > x j for i > j . As a consequence

of the translationally invariant system, equilibrium inter-particle distances are con-
stant, a = x (0)

j+1 − x (0)
j , in contrast to the inhomogeneous traps where, due to the

harmonic confinement potential, the distance a becomes smaller in the center than
on the edges [37]. Considering small fluctuations around the equilibrium position,
q j = x j − x (0)

j , we obtain a linear approximation of the equations of motion upon
Taylor expanding the potential. Indeed, up to second order, transverse and axial
motion decouple [27], and the transverse displacement z j evolves according to

mz̈ j + ηż j + mω2
t z j − 1

2

∑
i �= j

Ki, j
(
z j − zi

) = ζ z
j (t) (2.53)

where Ki, j ≡ −∂2V/∂x j∂xi

∣∣
x (0)

j
is given by

Ki, j = Q2

2πε0

1∣∣∣x (0)
i − x (0)

j

∣∣∣3
. (2.54)

Finally, as the Eq. (2.53) describes the motion of coupled oscillators, it adopts a
simpler form in terms of the normal modes, �n

z j = 1√
N

�+
0 +

√
2

N

(N−1)/2∑
n=1

(
�+

n cos(kn ja) + �−
n sin(kn ja)

)
, (2.55)
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where kn = 2πn/Na and the sign+ (−) indicates the parity under kn → −kn . Intro-
ducing Eq. (2.55) in the expression (2.53) gives the Langevin equation under the
harmonic approximation (i.e., neglecting non-linear interaction terms) in the Fourier
space,

m�̈±
n + η�̇±

n + mω2
n(t)�

±
n = ζ±

n (t), (2.56)

where ωn(t) defines the frequency of the normal modes,

ω2
n(t) = ω2

t (t) − 2

(
Q2

4πε0ma3

) N∑
j=1

1

j3
sin2

(
kn ja

2

)
, (2.57)

and ζ±
n (t) represents the stochastic force in the normal mode space, which again

fulfills
〈
ζ

p
n (t)ζq

m(t ′)
〉 = 2η/βδpqδnmδ(t − t ′). As we have seen in Sect. 2.1, Eq. (2.56)

adopts the form of a Kramers equation within the Fokker-Planck approach, which
now reads

∂Pn(t, �n, �̇n)

∂t
=

[
− ∂

∂�n
�̇n + η

2βm2
∂2

∂�̇2
n

+ ∂

∂�̇n

( η

m
�̇n + ω2

n(t)�n

)]
Pn(t, �n, �̇n), (2.58)

and in this manner, having the probability distributions for each mode allows to
compute any statistical quantity.We solve the previous equation resorting to the same
procedure explained in Sect. 2.1, i.e., assuming Gaussian probability distributions.
Therefore, we can obtain the two-point correlation functions, gL and correlation
length ξ in a straightforward manner. Moreover, from Eq. (2.55) and since �±

n are
statistically independent and Gaussian distributed, we can calculate the probability
over the transverse displacement, P(z, t), which adopts also a Gaussian form and
independent of j ,

P(z, t) = 1√
2πσ2(t)

e−z2/(2σ2(t)), (2.59)

with a time-dependent variance

σ2(t) = 1

N

(
1

2F2
0 (t)

+
(N−1)/2∑

n=1

1

F2
n (t)

)
, (2.60)

where Fn(t) is obtained from Eq. (2.58) in the same way as explained in Sect. 2.1.3.
Despite the approximate procedure, the Fokker-Planck results still reproduce the
essential features of the nonequilibrium states, as shown in Fig. 2.7.
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2.3 Conclusion and Outlook

In this chapter we have examined the celebrated GL theory of continuous phase
transitions. Although the equilibrium properties of this model have been discussed,
more emphasis have been devoted to analyze nonequilibrium passages across the
critical point, in the spirit of the KZ problem. Indeed, this constitutes the simplest
scenario in which KZ arguments can be tested, as shown by numerical simulations
in [23, 24] where the ideas developed in the seminal works by W. H. Zurek and
T. W. B. Kibble where confirmed [9, 10]. A finite-rate ramp traversing the critical
point forces the system to break the symmetry only locally, and thus, promoting the
formation of defects. In this chapter, we have studied this nonequilibrium scenario in
two distinct dynamical regimes, namely overdamped and underdamped dynamics,
resorting to a Fokker-Planck description and neglecting non-linear terms in the GL
potential. This apparent naive procedure turns out to be a good approximation in
the vicinity of the critical point. Moreover, Coulomb crystals in ion traps appear as
a suitable and realistic platform to explore KZ physics [27, 32, 37, 55], as shown
by the recent experimental works [16, 17]. In particular, we focus on quasi two-
dimensional crystals undergoing a linear to zigzag phase transition, which can be
well described by the GL theory [8, 27]. Therefore, the results presented in the GL
can be readily applied to this realistic platform. Nevertheless, we do not resort to
this map and study by means of the Fokker-Planck procedure (upon neglecting non-
linear interaction terms) and molecular dynamics simulations. We discuss the range
of validity of the performed approximation as well as the advantages it entails with
respect to the customary Langevin approach. Among them, we find the deterministic
computation of probability distributions and the possibility to apply the developed
framework to systems that are not well described by a GL model.

It is worth recalling and keeping in mind that the presented method to obtain an
advantageous Fokker-Planck approach relies on certain approximations. The most
remarkable certainly resides in the lack of thermal equilibrium in the symmetry
broken phase, as higher order terms are neglected. While these non-linear terms are
crucial to address and achieve thermalization in this phase, here we are interested
solely in nonequilibrium features, far from equilibrium, and therefore they need not
to be accounted for our purposes. In this respect, developing a Fokker-Planck theory
which allows to obtain valuable insights while including non-linear interaction terms
may be an interesting direction for future work.

Moreover, the results presented here had the clear goal of addressing the nonequi-
librium finite-size scaling functions and KZ scaling. However, there are several
attractive directions which remain to be disclosed and investigated. For example,
the developed framework may allow to gain theoretical insights in how correlations
are built in certain systems and in diverse situations, not necessarily involving phase
transitions. Indeed, the determination of entropy rates or information-inspired quan-
tities, such as Shannon entropy, is left for future work. This naturally brings us to
the question of whether the analyzed scaling laws emerge in typical thermodynamic
quantities, such as work done and entropy production, and their inspection is attract-
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ing an increasing attention from different scientific communities. In this regard, it is
worth noting the recent works combining ideas from quantum ormesoscopic thermo-
dynamics and nonequilibrium critical phenomena [59–61]. The natural confluence
of these two fields will assuredly uncover intriguing physics.
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Chapter 3
Quantum Rabi Model: Equilibrium

The quantumRabi model (QRM) is among themost fundamental models in quantum
physics. Succinctly, it describes a two-level system interacting with a single bosonic
mode, which besides of being a paradigmatic textbook example [1], has a relevance
describing realistic phenomena across different fields, such as in quantum optics and
quantum information [2]. This ubiquitous model is named after Isidor Isaac Rabi,
whose pioneer work on the interaction of a two-level systemwith a classical radiation
field [3, 4] established the basis of the nuclear magnetic resonance [5], for which
he was awarded the Nobel prize in Physics in 1944. However, the first quantized
version of the Rabi model is known as Jaynes–Cummings model [6], which repre-
sents a simplified version of the more general QRM, as we will discuss later on.
Remarkably, while the Jaynes–Cummings model dates from 1963, these fundamen-
tal light-matter interaction models continue to be subject to an intense research both
experimentally and theoretically [7]. Moreover, with the advent of quantum tech-
nologies, the QRM has recently experienced a renewed interest as it involves the key
ingredients in quantum information processing, namely, a qubit (typically modeled
as a two-level system) and a bosonic degree of freedom (harmonic oscillator). The
unprecedented degree of precision and isolation, required to coherently control these
fundamental quantum entities, is nowadays possible in different platforms, such as
in circuit QED [8] or in trapped-ion settings [9]. It is worth emphasizing that in a
trapped-ion experiment, the bosonic mode represents the quantized motion of the
ion, i.e., phonons, while in circuit QED the bosonic degree of freedom stands for
the photons of the field mode within the cavity. However, despite the distinct nature
of the platforms, they share the basic, yet appealing physics well described by the
Jaynes–Cummings model [10], namely, Rabi oscillations or collapses and revivals
of quantum state populations [11], and it has been experimentally realized for the
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preparation of Schrödinger cat states [12] among others. Furthermore, thanks to the
great experimental progress in the recent years, the interaction strength can be now
boosted and brought into a regime in which the simple Jaynes–Cummings model is
no longer valid, and therefore the general QRM is amore suitable description of these
interacting systems. These advances have not only promoted a renewed theoretical
inspection of the QRM but also have opened the door for experimental exploration
of the rich physics enclosed by light-matter interaction in novel coupling regimes.

In this chapter we will firstly introduce the QRM, paying attention to the different
coupling regimes and with special emphasis on the motivation to analyze such a
model from the point of view of phase transitions and critical phenomena. Then, in
the Sect. 3.2 we present the mathematical derivation to attain an effective model that
becomes exact in a suitable limit of the parameters. In that particular limit, the low-
energy effective solution reveals the presence of a quantum phase transition (QPT)
at a certain critical value of the interaction strength [13–15]. Certainly, QPTs are
expected occur in the thermodynamic limit of infinitely many constituents [16–18],
and therefore, the existence of a QPT in the QRM, which only involves a qubit and a
bosonic mode, challenges the established notion of phase transitions. We will stress
the relevance of this result and explain the underlying reason on how such a model
undergoes a QPT without resorting to the thermodynamic limit, i.e., without scaling
up the number of system constituents. The analysis presented in the first part of this
chapter will motivate further inquiries presented in the following Chaps. 4 and 5,
regarding nonequilibrium critical dynamics and a feasible experimental implemen-
tation to probe this QPT, respectively.

The rest of this chapter is devoted to examine the equilibrium fingerprints of
the QPT, which bear similarities with that of the Dicke model [19] and Lipkin–
Meshkov–Glick model [20]. Furthermore, it is well established that the existence
of a phase transition entails a number of scaling relations in relevant quantities of
the system as the thermodynamic limit is approached, which is typically known as
finite-size scaling (see Introduction) [18, 21, 22]. Even though the QRM undergoes
a QPT in a unusual limit, the finite-size scaling theory can be still applied. However,
conventional finite-size effects translate to the QRM as finite-frequency values of
the parameters (recall that the size of the QRM remains always finite), and there-
fore, we refer to this theory as finite-frequency theory to stress the difference. We
verify the correctness of the derived critical and finite-frequency scaling exponents
by means of numerical exact diagonalization of the QRM, corroborating the validity
of the effective low-energy Hamiltonian. Finally, as we explain in detail in Sect. 3.3,
the QRM also exhibits critical behavior in some excited states, at a particular exci-
tation energy. This phenomenon is known as excited-state quantum phase transition
(ESQPT), whose main hallmark resides in a singularity in the density of states [23–
29]. In short, this chapter is entirely devoted to the inspection of the critical properties
of the QRM at the eigenstate level, referred here as equilibrium and published in [30,
31], while the study of nonequilibrium dynamics involving the QPT is presented in
Chap. 4.
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3.1 Quantum Rabi Model

As we have already mentioned, the QRM describes the interaction of a two-level
system, or simply, a qubit, and a single bosonic mode. A schematic representation
of the physical scenario described by the QRM, together with the possible exchange
processes between the qubit and the bosonic mode, can be found in Fig. 3.1. The
Hamiltonian of the QRM can be written as

HQRM = ω0a†a + �

2
σz − λσx(a + a†) (3.1)

where we have introduced the usual bosonic annihilation and creation operators, a
and a†, respectively, fulfilling

[
a, a†

] = 1, that give account of the bosonic mode
of frequency ω0. The two-level system possesses a frequency splitting � and it is
described by means of the Pauli 1

2 -spin matrices, �σ = (
σx ,σy,σz

)
,

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, and σz =

(
1 0
0 −1

)
, (3.2)

which obey
[
σi ,σ j

] = 2iεi jkσk . Both subsystems interact through the latter term
on the previous Hamiltonian, σx

(
a + a†

)
, whose interaction strength is given by λ,

also known as coupling constant. This model shows a Z2 parity symmetry, as the
operator � = eiπ(a†a+σ+σ−) = eiπNexc commutes with HQRM,

[
HQRM,�

] = 0, with
σx = σ+ + σ− and Nexc = a†a + σ+σ−, the total number of excitations. Therefore,
the Hilbert space can be split according to the parity, that is, in two parity subpsaces,
and so the eigenstates of HQRM can be labeled depending on the parity of Nexc. The
previous Hamiltonian can be simplified for small coupling constant by neglecting the
so-called counter-rotating terms, namely, σ+a† and σ−a, and hence, HQRM ≈ HJCM,

HJCM = ω0a†a + �

2
σz − λ(σ+a + σ−a†). (3.3)

In particular, this approximation can be safely performed when the coupling con-
stant is small compared to� + ω0, i.e.,λ � |� + ω0|, which is the result of applying
a rotating-wave approximation (RWA), as explained in Appendix B. The resulting
Hamiltonian is known as Jaynes–Cummings model (JCM) [6], which is exactly solv-
able [1, 32, 33] and it has served to explain a number of experiments in the quantum
realm of light-matter interaction [10]. It is worth mentioning that the HJCM conserves
the total number of excitations since [HJCM, Nexc] = 0. Yet, this approximation can
lead to significant deviations from the actual physics dictated by the general HQRM

when the coupling constant becomes a large fraction of the bosonic frequency, the
so-called ultrastrong coupling regime (USC) 0.1 � λ/ω0 � 1. However, in the per-
turbative USC, i.e. λ/ω0 ∼ 0.1, it is still possible to find an approximate solution of
the QRM as follows [34, 35]
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(a) (b)

Fig. 3.1 Schematic representation of the quantum Rabi Model (QRM). In a we show the two
interacting subsystem, namely, a two-level system or qubit, represented by the levels |↓〉 and |↑〉
separated by a frequency �, that is coupled to a single-mode bosonic field of frequency ω0 with
a strength λ (coupling constant). The bosonic field is represented by the usual annihilation and
creation operators a and a†, which act on the Fock space |n〉 with n = 0, 1, 2, . . .. In this thesis
we will pay attention to the scenario ω0 � λ � �, and in particular to the limit �/ω0 → ∞ and
λ/ω0 → ∞, while keeping λ/

√
ω0� constant. In b the four possible exchange processes between

the qubit and the bosonic mode are shown, that correspond to σx (a + a†). At the top, the exchange
consists in emitting one boson when the qubit undergoes the transition |↑〉 → |↓〉, and vice versa,
as a consequence of the rotating terms. To the contrary, the counter-rotating terms produce the
exchanges that consists in emitting a boson when the qubit population raises, |↓〉 → |↑〉, and vice
versa

e−SBS HQRMeSBS ≈ HBS = ωBSσza
†a + ωBS

2
σz − ωBS

2
+ HJCM (3.4)

which is valid up to second order in λ/(ω0 + �) and where the anti-Hermitian
operator SBS = λ/(ω0 + �) (aσ− − a†σ+) + λ2/(2ω0(ω0 + �))(a2 − a†2)σz and
ωBS = λ2/(ω0 + �). This transformation reveals a Bloch–Siegert shift on the qubit
frequency, which has been measured in experiments performed in circuit QED [36,
37]. In addition, it is worth mentioning that HBS reduces to the Jaynes–Cummings
when λ � |ω0 + �|, as expected from the rough RWA.

Furthermore, a larger interaction strength between these two subsystems will
potentially lead to a departure from the simple physics dictated by HJCM or HBS [35].
As a paradigmatic example, we find the deep strong coupling regime, λ/ω0 � 1,
in which an unexpected structured behavior of collapses and revivals emerges [38].
Remarkably, two recent experiments performed in circuit QED were able to explore
the non-perturbative USC as the coupling constant was boosted to λ/ω0 ∼ 1 [39,
40], showing the potential opportunities of these platforms to further explore the
intriguing strong light-matter interaction. In this thesis we will examine the QRM
in a parameter regime where neither the RWA nor the Bloch–Siegert approximation
are applicable, and thus, counter-rotating terms are of great importance.

Even though the QRM may seem a simple model, its complexity should not be
underestimated. From a mathematical point of view, during the last decades con-
siderable efforts have been devoted to solve the QRM. However, it has been only
recently when the existence of the Z2 parity symmetry has been acknowledged to
be sufficient to demonstrate the integrability of the QRM, Eq. (3.1), carried out by
Braak in [41] (see [42] for a viewpoint). Therefore, according to Braak’s criterion, the
QRM is integrable and exactly solvable, which has posed similar questions on related
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models [43].Nevertheless, even though the provided solution is of great value, it lacks
of a closed form and therefore it is not directly applicable to the analysis performed
in this thesis.

Finally, it is worth emphasizing again that theQRMcomprises just two constituent
particles. Phase transitions are however expected to take place in the limit of infinitely
many particles, i.e., in the thermodynamic limit. In this regard, there are two paths to
attain the thermodynamic limit of the QRM. One consists in increasing the number
of qubits coupled to the bosonic mode, a multi-qubit version of the QRM, known
as Dicke model [19] that we will comment later. The other path deals with a single
qubit but coupled to several bosonic modes, typically a continuum, which primarily
appeared to describe the inherent quantum dissipation of quantum systems, and
it is known as spin-boson model [44, 45]. Indeed, both models exhibit a phase
transition in their corresponding thermodynamic limit [14, 46–50]. Note that the
phase transition of the Dicke model is known as superradiant as the system acquires
a large number of bosonic excitations at one side of the critical point. Assuredly,
the QRM is by definition far from being in the thermodynamic limit, and then,
it raises the question of whether such a finite-component system may be able to
display criticality in a certain parameter regime as studied in Refs. [51–55]. These
studies indeed reported certain fingerprints of a phase transition, as for example the
emergence of a pitchfork bifurcation, however, the used semiclassical approximation
hindered the observation of a much richer physics, as revealed by a fully quantum
mechanical description presented throughout this chapter. Although the QRM lacks
a conventional thermodynamic limit, the fact that its Hilbert space is infinitely large
can be exploited to realize a QPT even with a finite number of constituents, as we
show in the following.

3.2 Superradiant Quantum Phase Transition

In this sectionwe demonstrate that theQRMundergoes aQPT in the limit of�/ω0 →
∞ and λ/ω0 → ∞, while keeping the ratio λ/

√
ω0� finite. This entails a parameter

hierarchy,ω0 � λ � �. For that purpose, we present in Sect. 3.2.1 themathematical
derivation used to obtain the low-energy effective Hamiltonians that become exact in
the aforementioned limit, and reveal the presence of aQPTat a certain critical value of
the coupling constant. Moreover, the exact effective Hamiltonian in this limit allows
us to derive eigenstates, energy spectrum and expectation value of observables. In
addition, we will pay special attention to scaling properties of these quantities close
to the QPT, which will serve us as a test to confirm the validity of our theory by
comparing them with the exact numerical diagonalization of the QRM. However, for
the sake of readability, while we show the basic ingredients of the derivation in the
following lines, we refer the interested readers to the Appendix C for further details
regarding the mathematical aspects of the derivation.
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3.2.1 Low-Energy Effective Hamiltonians

We start writing the Hamiltonian of the QRM as HQRM = H0 − λV where

H0 = ω0a†a + �

2
σz, and V = (a + a†)σx . (3.5)

The unperturbedHamiltonian H0 has decoupled spin subspacesH↓ andH↑, such that
the entire Hilbert space H = H↑ ⊕ H↓. For �/ω0 
 1, the low-lying eigenstates
of H0 are confined in H↓, and they are just that of a simple harmonic oscillator.
The interaction Hamiltonian V , however, introduces coupling between the two spin
subspaces so that virtual transitions between them would modify the nature of the
low-lying eigenstates and energy eigenvalues. The goal is then to find a unitary
transformation U which makes the transformed Hamiltonian, U †HQRMU , free of
coupling terms between H↓ and H↑. This procedure is in the same spirit as the
Schrieffer–Wolff (SW) transformation [56, 57].

We consider a unitary transformation U = eS where the generator S is anti-
Hermitian and block-off-diagonal with respect to spin subspaces, i.e., U †U = 1
since S† = −S. Then, we can write the transformed Hamiltonian as

H ′ = e−S HQRMeS =
∞∑

k=0

1

k! [HQRM, S](k) (3.6)

where [H, S](k) ≡ [[H, S](k−1), S] represents the k-order of nested commutatorswith
[H, S](0) ≡ H . The transformed Hamiltonian can be now divided into diagonal and
off-diagonal part using the fact that S is block-off-diagonal and V is block-diagonal,
and denote them H ′

d and H ′
od , respectively. They are

H ′
d =

∞∑

k=0

1

2k! [H0, S](2k) −
∞∑

k=0

1

(2k + 1)! [λV, S](2k+1), (3.7)

H ′
od =

∞∑

k=0

1

(2k + 1)! [H0, S](2k+1) −
∞∑

k=0

1

(2k)! [λV, S](2k). (3.8)

We show explicitly the derivation for the strict �/ω0 → ∞ and λ/ω0 → ∞ limit,
while the dimensionless coupling constant g = 2λ/

√
ω0� remains finite. In this

manner, it only required that the lowest order terms in λ of the block-off-diagonal
H ′

od cancel out.However, for�/ω0 
 1, one can still obtain an effectiveHamiltonian
but more orders need to be considered (see Appendix C). Here we only focus in the
�/ω0 → ∞ limit, and thus, it is sufficient to require

[H0, S] = λV, (3.9)

which is fulfilled by the following generator
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S = λ

�
(a + a†)(σ+ − σ−) = i

g

2

√
ω0

�
(a + a†)σy, (3.10)

and then, after introducing this anti-Hermitian operator in Eq. (3.6), we obtain

H ′ = ω0a†a + �

2
σz + ω0g

2

4
(a + a†)2σz + ω0g

3

6

√
ω0

�
(a + a†)3σx + O

(ω0

�

)
. (3.11)

By construction, H ′ is block-diagonal up to the second order of the dimensionless
coupling constant g. Note that the third order term in g and higher order terms are
accompanied by a factor (ω0

�
)α withα ≥ 1

2 . Therefore, in the�/ω0 → ∞ limit, all the
higher order terms have coefficients that vanish, leaving only non-zero coefficients
up to second order of g and free of coupling between spin subspaces, that is,

H ′ = H ′
d = ω0a†a + �

2
σz + ω0g

2

4
(a + a†)2σz . (3.12)

This step deserves special attention. Note that since Eq. (3.11) contains unbounded
operators, a and a†, it is not straightforward to prove that Eq. (3.11) converges to
the previous expression, Eq. (3.12), even in the strict �/ω0 → ∞ limit. Indeed, a
rigorous proof of convergence would be required, although it may be an arduous task
in itself [58]. Instead, we propose a method to certify the validity of the effective
model in the �/ω0 → ∞ limit based on numerically exact diagonalization of the
QRM for finite�/ω0, as well as utilizing the scaling theory near the critical point [21,
22] as we will show in Sect. 3.2.3.

Since the above transformed Hamiltonian is diagonal in the spin basis, projecting
it onto the spin down subspace is an exact procedure,

Hnp = 〈↓| H ′
d |↓〉 = ω0a†a − ω0g

2

4
(a + a†)2 − �

2
. (3.13)

Furthermore, since Hnp is quadratic it can be diagonalized by a standard proce-
dure (see Appendix C for further details). Using the squeezing operator, S[x] =
ex/2(a†2−a2), we obtain

S†[rnp(g)]HnpS[rnp(g)] = εnp(g)a†a + EG,np(g), (3.14)

with εnp(g) = ω0

√
1 − g2 the excitation energy and EG,np(g) = (εnp(g) − ω0)/2 −

�/2 the ground-state energy, and rnp(g) = − 1
4 ln(1 − g2) the squeezing parameter.

Remarkably, this effective Hamiltonian is only valid for 0 ≤ g ≤ 1, as it is clear
from the fact that εnp becomes complex, and therefore, Hnp is not longer Hermitian.
Needless to say, this pinpoints that the previous procedure cannot be applied to HQRM
for g > 1. Although this will become more evident later, we can identify the failure
of the derivation in that the bosonic mode acquires a non-zero coherence, and thus
〈a〉 �= 0, and with

〈
a†a

〉
of the order of �/ω0. As a consequence, the suppressed

higher-order terms in Eq. (3.11) are not longer negligible and must be taken intro
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account. For that reason, in order to obtain an effective low-energy Hamiltonian for
g > 1, we first displace the field by α ∈ R, with D[x] = exa†−x∗a ,

H̃QRM(α) =
D†[α]HQRMD[α] = ω0(a

† + α)(a + α) + �

2
σz − λ(a + a†)σx − 2λασx , (3.15)

and then define a new spin basis, ˜|↑〉 = cos θ |↑〉 + sin θ |↓〉 and ˜|↓〉 = − sin θ |↑〉 +
cos θ |↓〉, with tan(2θ) = −2λα/� and �̃ = √

�2 + 16λ2α2 the spin frequency
splitting. Note that �τ = (τx , τy, τz) are the Pauli matrices associated with the rotated
spin states ˜|↑〉 and ˜|↓〉. Then,

H̃QRM(α) =

ω0a†a + �̃

2
τz − λ cos 2θ(a + a†)τx + ω0α

2 + (ω0α − λ sin 2θτz)(a + a†), (3.16)

we set α such that the last term of the previous expression vanishes upon projection
onto H↓̃, i.e., ω0α + λ sin 2θ = 0. Two solutions are found, ±αg ,

αg =
√

�

4g2ω0

√
g4 − 1, (3.17)

which provide two equivalent spin states, namely,
∣∣↓±〉 depending on the sign of±αg.

The choice of this displacement will lead to an undesired term onH↓̃ of±2αgω0(a +
a†) ˜|↑〉 ˜〈↑|, however, such a perturbation scales as (�/ω0)

−1/2. Therefore, this term
can be neglected as long as we are interested in the physics within the subspace H↓̃
and �/ω0 
 1, and thus

H̃QRM(±αg) = ω0a†a + �̃

2
τz − λ̃(a + a†)τx + ω0α

2
g, (3.18)

has the same form of the original HQRM but with different parameters, namely,
λ̃ = √

�ω0/2g and �̃ = g2�. Therefore, applying now the same procedure as done
for g < 1 to Eq. (3.18) we achieve

Hsp = ˜〈↓|H̃ ′
d

˜|↓〉 = ω0a†a − ω0

4g4
(a + a†)2 − �

4
(g2 + g−2), (3.19)

which is now valid only for g > 1. Again, and because its quadratic form, is possible
to diagonalize it (see Appendix C for further details)

S†[rsp(g)]HspS[rsp(g)] = εsp(g)a†a + EG,sp(g) (3.20)
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with an excitation energy εsp(g) = ω0

√
1 − g−4, ground-state energy EG,sp(g) =

(εsp(g) − ω0)/2 − �(g2 + g−2)/4 and rsp(g) = −1/4 ln(1 − g−4). It is worth
stressing that Hsp does not depend on the specific sign of αg, and thus there are
two equivalent low-energy Hamiltonians for g > 1.

Therefore, we have found the effective low-energy Hamiltonian of the QRM in
the�/ω0 → ∞. In addition, as they can be diagonalized, we know their eigenstates,

∣∣
∣ϕn

np(g)
〉
= S[rnp(g)] |n〉 |↓〉 0 ≤ g ≤ 1 (3.21)

∣
∣∣ϕn

sp(g)
〉

±
= D[±αg(g)]S[rsg(g)] |n〉 ∣∣↓±〉 g ≥ 1 (3.22)

where
∣∣↓±〉 = ∓√

(1 − g−2)/2 |↑〉 + √
(1 + g−2)/2 |↓〉. Indeed, there are two equiv-

alent ground states for g > 1,
∣∣∣ϕ0

sp(g)
〉

±
, that is, they take exactly the same energy

and do not respect the Z2 symmetry of the QRM, �
∣∣
∣ϕ0

sp(g)
〉

±
�= ±

∣∣
∣ϕ0

sp(g)
〉

±
. This

indicates that a spontaneous Z2 symmetry breaking takes place in the superradiant
phase. Note that spontaneous symmetry breaking is an essential feature of phase
transitions, and the QPT of the QRM is not an exception. Moreover, the superradiant
nature of the QPT refers to the fact that the ground state features a macroscopic
population of the bosonic mode. In fact,

〈
a†a

〉 ∝ �/ω0 → ∞. Note that this is also
the case for the superradiant QPT in the Dicke model, where

〈
a†a

〉 ∝ N → ∞ being
N the number of qubits [19, 46–49].

Hitherto, we have only focused on deriving the effective low-energyHamiltonians
in the�/ω0 → ∞ limit. However, applying amore general procedurewe can achieve
higher-order corrections to these Hamiltonians for large but still finite �/ω0, as
shown in detail in Appendix C. In particular, one can show that the first-order cor-
rection Hamiltonian for 0 ≤ g ≤ 1 takes the following form

H�
np = ω0a†a − ω0g

2

4
(a + a†)2 − �

2
+ ω2

0g
4

16�
(a + a†)4 + ω2

0g
2

4�
. (3.23)

Although the effective low-energy Hamiltonians, Hnp and Hsp, allow us to obtain rel-
evant information about the QPT taking place in the QRM, the impact of a finite ratio
�/ω0 should not be diminished. Indeed, H�

np is of great relevance both to validate our
effective theory and to provide measurable consequences that confirm the emergence
of a QPT as the ratio �/ω0 increases. Even though an exact diagonalization of this
Hamiltonian is now hindered by the quartic term (a + a†)4, relying on a variational
method still allows us to gain valuable insight regarding the QRM for �/ω0 
 1.
As we will see in Sect. 3.2.3, the variational estimate of the ground state will be of
considerable importance to analytically determine scaling exponents.
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3.2.2 Signatures of the Quantum Phase Transition

As shown previously, the low-energy physics of the QRM in the�/ω0 → ∞ limit is
described by an effective Hamiltonian, which crucially depends on the dimensionless
coupling constant g. At the critical value g = 1, the QRM becomes gapless, among
another remarkable features as we present in the following, such as spin and bosonic
mode observables or the entanglement between both subsystems, emphasizing also
their scaling behavior close to the critical point.

3.2.2.1 Energy Gap and Ground-State Energy

One of the main hallmarks of a QPT resides in the closing of the energy gap at the
critical point [13, 15]. Indeed, the energy gap � is expected to follow a universal
law close to the critical point as

�(g) ∼ |g − gc|zν, (3.24)

where z and ν are critical exponents of the QPT, as we have explained in the Chap. 1.
From the previous developments, it is straightforward to obtain the energy gap of the
QRM, directly given by εnp(g) and εsp(g)

�(g) =
{

ω0

√
1 − g2 0 ≤ g ≤ 1

ω0

√
1 − g−4 g > 1.

(3.25)

For g sufficiently close to gc = 1, it follows that�(g) ∼ |g − gc|1/2, that is, zν = 1/2.
Note that this value is a typical feature of mean-field phase transitions, which could
have been anticipated for the QRM due to the nature of the model.

The ground-state energy also shows singular behavior when undergoing a QPT.
In particular, the second derivative of ground-state energy with respect to the control
parameter becomes discontinuous at the critical point.1 This can be seen in the QRM,
since the ground-state energy EG(g) reads

EG(g) =
⎧
⎨

⎩

1
2

(
ω0

√
1 − g2 − ω0 − �

)
0 ≤ g ≤ 1

1
2

(
ω0

√
1 − g−4 − ω0 − �

2 (g2 + g−2)
)

g > 1
(3.26)

which is extensive in the ratio �/ω0. Therefore, we normalize EG by �/ω0 and then
take the limit �/ω0 → ∞,

1In this sense, by analogy with the Ehrenfest classification of phase transitions, we could refer to
this QPT as second order. However, we will continue using the term continuous phase transitions
as explained in the Introduction.
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eG(g) ≡ lim
�/ω0→∞

ω0

�
EG(g) =

{−ω0
2 0 ≤ g ≤ 1

−ω0
4 (g2 + g−2) g > 1

(3.27)

and thus, its first and second derivative with respect to g become

d

dg
eG(g) =

{
0 0 ≤ g ≤ 1
−ω0

2 (g − g−3) g > 1
(3.28)

d2

dg2
eG(g) =

{
0 0 ≤ g < 1
−ω0

2 (1 + 3g−4) g > 1,
(3.29)

which clearly manifests the expected discontinuity at g = 1 since limε→0+ d2

dg2
eG

(1 + ε) differs from limε→0− d2

dg2
eG(1 + ε). Ground-state energy eG(g) and its second

derivative can be found in Fig. 3.2a.

3.2.2.2 Qubit and Bosonic Mode Observables

Beyond the properties of the ground-state energy, qubit and bosonic observables
appear as essential signatures of theQPT, such asσz ,σx or

〈
a†a

〉
aswell as the variance

of the quadratures of the bosonic mode. Having access to the actual ground state
∣∣ϕ0(g)

〉
, either

∣∣∣ϕ0
np(g)

〉
or

∣∣∣ϕ0
sp(g)

〉

±
depending on g, allows us to obtain analytically

these relevant quantities as a function of g. Hence, the ground-state expectation value
of any observableA can be obtained from

〈
ϕ0(g)

∣∣A ∣∣ϕ0(g)
〉
. Due to the simple form

of the qubit part of the ground state, 〈�σ〉 readily gives

〈σx 〉 = 〈
ϕ0(g)

∣∣σx

∣∣ϕ0(g)
〉 =

{
0 0 ≤ g ≤ 1
∓√

1 − g−4 g > 1
(3.30)

〈σz〉 = 〈
ϕ0(g)

∣∣σz

∣∣ϕ0(g)
〉 =

{−1 0 ≤ g ≤ 1
− 1

g2
g > 1 (3.31)

and
〈
σy

〉 = 0. Remarkably, for g > 1, 〈σx 〉 �= 0 which is a direct consequence of the
broken symmetry. Recall that any state satisfying the Z2 symmetry is compelled to
〈σx 〉 = 0, and thus, the particular sign of 〈σx 〉 depends on the symmetry-breaking
branch. In addition, the qubit gains population in its upper level due to QPT, being
the state an eigenstate of σx in g → ∞ as 〈σz〉 → 0 and 〈σz〉 → ±1. On the other
hand, the computation of bosonic observables involve displaced and squeezed Fock
states. Since

〈
a†a

〉 ∝ �/ω0 in the superradiant phase, it is convenient to calculate the
rescaled number of bosonic excitations, which reads

nc = ω0

�

〈
a†a

〉 = ω0

�

〈
ϕ0(g)

∣∣ a†a
∣∣ϕ0(g)

〉

=
{

ω0
�

cosh[2rnp(g)]−1
2 0 ≤ g ≤ 1

g2−g−2

4 + ω
�

cosh[2rsp(g)]−1
2 g > 1

(3.32)
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Taking the limit �/ω0 → ∞, nc simply vanishes for 0 < g < 1, and becomes (g2 −
g−2)/4 in the superradiant phase. While

〈
a†a

〉
diverges for g > 1 as a consequence

of the infinitely large displacement, αg , the pathological case at g = 1 stems from an
infinitely squeezed state, which shows as well an infinitely large

〈
a†a

〉
. Recall that rnp

diverges at g = 1. An interesting feature of this QPT resides thus in the squeezing
of the bosonic mode, as expected from the form of

∣∣ϕ0(g)
〉
. In fact, this becomes

more evident analyzing the variance of the quadratures of the bosonic field, x =
a + a† and p = i(a† − a), i.e.,�x =

√〈
x2
〉 − 〈x〉2 and�p =

√〈
p2
〉 − 〈p〉2, which

result in

�x =
{

(1 − g2)−1/4 0 ≤ g ≤ 1
(1 − g−4)−1/4 g > 1

(3.33)

�p =
{

(1 − g2)1/4 0 ≤ g ≤ 1
(1 − g−4)1/4 g > 1.

(3.34)

Hence, the QPT is accompanied by an infinite amount of squeezing, since �p →
0 and �x → ∞ at the critical point. Interestingly,

∣
∣ϕ0(g)

〉
remains in a state of

minimum uncertainty since �x�p = 1 ∀g. Moreover, the bosonic field also points
out the spontaneous symmetry-breakingQPT, as seen in the previous section. For g >

1 the bosonic operators acquire a coherence since they are displaced a → a + αwith
α ∝ (�/ω0)

1/2, and thus, 〈a〉 �= 0. Recall that any state satisfying the Z2 symmetry
of the QRM must exhibit 〈a〉 = 〈

a†
〉 = 0. These signatures are plotted in Fig. 3.2.

3.2.2.3 Entanglement Entropy

So far, we have not investigated the role of quantum correlations among both subsys-
tems, which can be quantified by the entanglement. Certainly, QPTs are recognized
to leave also an imprint on the entanglement, responsible of long-range quantum
correlations [59–64]. As in the multi-qubit version of the QRM, the Dicke model,
we find that the entanglement entropy displays a singular behavior as a consequence
of the QPT.We quantify the entanglement relying on the vonNeumann entanglement
entropy,

SvN = −Tr
[
ρs log2 ρs

]
(3.35)

where ρs denotes the reduced spin or harmonic oscillator density matrix. Note that
SvN = 0 for ρs resulting in a pure state, as it is the case for the normal phase. To the
contrary, for g > 1 the symmetrized ground-state wave function reads

∣∣∣ϕ0
sp(g)

〉

S
= 1√

2

(∣∣∣ϕ0
sp(g)

〉

+
±

∣∣∣ϕ0
sp(g)

〉

−

)
(3.36)
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with
∣∣
∣ϕ0

sp(g)
〉

±
given in Eq. (3.22). Then, tracing out the harmonic oscillator degree

of freedom, we obtain the reduced spin density matrix (see Appendix C for more
details of the calculation)

ρs = 1

2

(
(1 − g−2) |↑〉 〈↑| + (1 + g−2) |↓〉 〈↓|) , (3.37)

from which it follows that the von Neumann entanglement entropy becomes

SvN(g) =
{
0 0 ≤ g ≤ 1

− 1−g−2

2 log2
(
1−g−2

2

)
− 1+g−2

2 log2
(
1+g−2

2

)
g > 1

, (3.38)

which vanishes close to the critical point as SvN(g) ≈ −(g − 1) log2(g − 1). Note
that in addition, there is a sudden growth of entanglement as the critical point is
traversed, as it can be observed in Fig. 3.3a.

3.2.2.4 Ground-State Fidelity

Zanardi and Paunković pointed out another fingerprint of QPTs, which can be
witnessed by the so-called ground-state fidelity [65]. This fidelity quantifies how
sensitive is the ground state to small variations in the control parameter g. For-
mally, let

∣∣ϕ0(g)
〉
be the ground state of a certain critical Hamiltonian H(g) which

undergoes a QPT at the critical value gc. Then, as a consequence of the QPT the
ground state at gc becomes orthogonal to

∣∣ϕ0(g)
〉
with g �= gc. This can be writ-

ten as F(g, δg) = | 〈ϕ0(g)
∣∣ ϕ0(g − δg)

〉 |, and thus, F(gc, δg) vanishes. As we have
obtained the exact form of the ground state of HQRM in the �/ω0 → ∞ limit (see
Eqs. (3.21) and (3.22)), we can calculate this ground-state fidelity. In particular, for
the QRM it reads

F(g, δg) =
∣
∣∣
〈
ϕ0
np(g)

∣
∣∣ ϕ0

np(g − δg)
〉∣∣∣ =

∣
∣∣〈↓| 〈0|S†[rnp(g)]S[rnp(g − δg)] |0〉 |↓〉

∣
∣∣ . (3.39)

Note that here we restrict ourselves to the normal phase, i.e., 0 ≤ g ≤ 1 with δg >

0. Since the overlap between two squeezed vacuum states is 〈0|S†[r2]S[r1] |0〉 =
(cosh(r1 − r2))

−1/2 with r1, r2 ∈ R, and thus

F(g, δg) =
√√√√

2
(

1−g2

1−(g−δg)2

)1/4 +
(

1−g2

1−(g−δg)2

)−1/4 . (3.40)

For a small variation close to the critical point gc = 1, |δg| � 1, the previous expres-
sion can be approximated as
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Fig. 3.2 Relevant ground-state signatures of the superradiant QPT underwent by the QRM in the
�/ω0 → ∞ limit. In a the normalized ground-state energy eG(g) togetherwith its second derivative,
showing the discontinuity at the critical point g = 1. In b the acquired coherence of the bosonic field
〈a〉 = ±αg(g) is represented, being non-zero for g > 1. The variance of the quadratures, shown
in c, �x and �p reveal an infinitely squeezed ground-state at the critical point. The figures e and
f show the qubit observables 〈σx 〉 and 〈σz〉, respectively. The former discloses the spontaneous
symmetry breaking, as 〈a〉 in b. In the superradiant phase the ground state shows an increasing
population of the upper level of the qubit, as indicated by 〈σz〉. Finally, the rescaled number of
bosonic excitations nc ≡ ω0/�

〈
a†a

〉
is plotted in f

F(g, δg) ≈ 21/2
(
1 − g

δg

)1/8

, (3.41)

that is, the fidelity vanishes at g = gc = 1 as F(g, δg) ∝ (1 − g)1/8. A small variation
of g close to the QPT produces a dramatic change in the ground state. Indeed, the
ground state around gc becomes orthogonal to the one at gc − δg. Note that, while the
previous result is only valid for the normal phase, a similar analysis in the superradiant
phasewill lead to the same power law. The ground-state fidelity is plotted in Fig. 3.3b.
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Fig. 3.3 Further signatures of the superradiant QPT of the QRM. In a the von Neumann entangle-
ment entropy SvN is plotted, according toEq. (3.38),which shows an abrupt increase of entanglement
as the critical point g = 1 is traversed. In b the ground-state fidelity, F(g, δg) with δg = 0.1, is
shown in a double logarithmic scale (see Eq. (3.40)), to illustrate its scaling as g → 1, which pre-
cisely follows |1 − g|1/8, plotted as a guide to the eyes (dotted line). Certainly, the ground-state
fidelity vanishes at the critical point, while it remains close to 1 before reaching the critical point,
as shown in the inset

3.2.2.5 Critical Exponents

As we have explained in the Introduction, the presence of a QPT entails a particu-
lar power-law scaling behavior close to the critical point, independently of micro-
scopic details. In general, we refer to singular observables to the ones for which their
expectation value can be written as 〈A〉 ∝ |g − gc|γA for |g − gc| � 1, where γA
corresponds to the critical exponent. It is worth remarking that finding the critical
exponents is a central task to identify its corresponding universality class. Moreover,
beyond the elegance of this compact and universal behavior, the derived γA will
serve us to corroborate the validity and consistence of the obtained results in the
�/ω0 → ∞ limit.

From the previous results, we can extract the following power-law behavior of the
observables close to the critical point, and thus, we can identify their corresponding
critical exponent γA,

� ∼ |g − gc|1/2 (3.42)

�x ∼ |g − gc|−1/4 (3.43)

�p ∼ |g − gc|1/4 (3.44)

〈a〉 ∼ |g − gc|1/2 (3.45)

nc ∼ |g − gc|1 (3.46)

〈σz〉 + 1 ∼ |g − gc|1 (3.47)

〈σx 〉 ∼ |g − gc|1/2 (3.48)
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F(g, δg) ∼ |g − gc|1/8. (3.49)

As aforementioned, zν = 1/2, while the rest are denoted simply by γA where A
stands for the different observables. We note that for some observables the power-
law behavior only takes place at one side of the QPT, such as 〈σz〉 + 1, nc, 〈a〉 and
〈σx 〉, whose value is strictly zero in the normal phase. However, the featured behavior
at the other side is sufficient to characterize its critical exponent, in the same manner
as the order parameter in the standard Ginzburg–Landau theory. Moreover, since 〈a〉
and 〈σx 〉 account for the spontaneous symmetry breaking and have a zero value in
one phase, they are good order parameters. Therefore, the critical exponent of the
order parameter reads β = 1/2, equivalent to that of mean-field theory.

3.2.3 Finite-Frequency Scaling

Strict singular behavior, characteristic of phase transitions, takes only place in the
thermodynamic limit. Indeed, finite-size systems do not display abrupt or sudden
changes, i.e., the singularities are smoothed. However, how a smooth behavior
evolves towards a sharp singularity when the system size increases is intimately
related with its behavior in the thermodynamic limit. In Chap. 1 we have discussed
this issue for a general system undergoing a phase transition, emphasizing the rel-
evance of the so-called finite-size scaling theory [21, 22], which for the QRM we
have dubbed finite-frequency scaling (FFS). Typically, critical exponents cannot be
directly accessed unless the system can be exactly solved. Needless to say, exactly
solvable many-body systems are an exception and finding a solution constitutes a
major task [66]. Therefore, thanks to the FFS the critical exponents can be inferred by
analyzing finite-size systems, and thus, a powerful tool when dealing with complex
many-body systems [18], which we will comment in Chap. 6.

Aswe have seen, theQRMexhibits aQPT even in the absence of a thermodynamic
limit but in a suitable parameter limit. Therefore, the size of the system remains fixed
while increasing the ratio�/ω0 leads to the emergence of the aforementioned critical
signatures.As an example,we show inFig. 3.4 how the spectral gap�(g) of the HQRM

closes at g = 1 as the ratio �/ω0 increases. Accordingly, and because the size of the
system remains constant, we denote this scaling theory as finite-frequency scaling
when applied to the QPT of the QRM. Moreover, since we have provided an exact
solution of the QRM that unveils the presence of a QPT we will not use this scaling
theory to obtain the critical exponents but rather to confirm their value. In short, we
recall that the finite-size scaling theory hypothesizes that if 〈A〉 behaves as

〈A〉 (L → ∞, g) = A0|g − gc|γA (3.50)

for |g − gc| � 1 in the L → ∞ limit, then, for a large but still finite L ,
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Fig. 3.4 Behavior of three relevant quantities of the QRM as the ratio �/ω0 increases, as function
of the dimensionless coupling g. The panels a, b and c correspond to 〈σz〉, nc = ω0/�

〈
a†a

〉
and

energy gap �, respectively. In the �/ω0 → ∞ limit, the singular behavior plotted in Fig. 3.2 is
recovered, that is, increasing the ratio �/ω0 leads to the appearance of the superradiant QPT. The
finite-size scaling theory can be applied to this QPT, where the ratio �/ω0 plays the role of the
conventional size. Therefore, we denote this scaling theory as finite-frequency scaling when applied
to the QPT of the QRM

〈A〉 (L , g) = A0|g − gc|γA FA

(
L

ξ

)
(3.51)

= A0|g − gc|γA FA (|g − gc|ν L) (3.52)

where FA(x) is function which is only defined in terms of the asymptotic properties,
i.e. it fulfills

lim
x→∞ FA(x) = 1, and lim

x→0
FA(x) ∝ x−γA/ν . (3.53)

Hence, in the L → ∞ limit, the expected behavior of Eq. (3.50) is recovered, while
for finite L , the singularity is washed out and the following scaling at gc is predicted

〈A〉 (L , g = gc) ∝ L−γA/ν . (3.54)

Note that, independently of the observable A, the function FA depends solely on
the ratio between the length of the system L and its correlation length ξ, which for
a continuous QPT follows ξ ∝ |g − gc|−ν [13, 67]. For this reason, FA is known
as a scaling function. The correctness of the finite-size scaling hypothesis can be
proved by computing 〈A〉 for different L and g, since 〈A〉 (L , g)|g − gc|−γA should
collapse into a single curve when plotted against |g − gc|ν L , independently of the
values of L and g alone.Wewill come back to these scaling functions in Sect. 3.2.3.2.
Note however that, since the finite-size scaling hypothesis is based on leading order
in 1/L , it is expected to capture correctly the behavior of the system for larger
sizes. Moreover, as shown in Eq. (3.54), the scaling of 〈A〉 (L , g = gc) in terms
of L enables the determination of −γA/ν. In this way, from finite-size systems one
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can gain information about how a certain observable behaves in the L → ∞ limit.
Remarkably, the critical exponent γA depends on the particular observableA, while
ν governs the diverging correlation length ξ.

However, the lack of a correlation lengthmakes the previous argument not directly
applicable to study the QPT of the QRM. This is indeed the case for another quantum
systems which have been recognized to exhibit a QPT, such as the Dicke model [19,
46, 47] and Lipkin–Meshkov–Glick model [20, 24, 68, 69]. However, one can still
translate the same arguments to these zero-dimensional critical models, as discussed
in Refs. [70, 71] assuming the existence of a coherence length which plays the
role of the absent correlation length, and where L is now replaced by the number
of constituents N [70, 71]. Moreover, one can still introduce Eq. (3.52) without
resorting to any diverging length scale, where the scaling variable adopts the form
x = |g − gc|ν N . The validity of such an assumption will be then tested if finite-
size scaling functions exist and the scaling variable applies in all the examined
observables. We stress that, while one may argue whether such a coherence length
does or not correspond to a proper length scale, it was proposed by analogy with
spatially extended systems, solely intended to correctly grasp scaling features in zero-
dimensional models. This is the very case for the Dicke and Lipkin–Meshkov–Glick
models, which successfully follow the finite-size scaling theory as reported in [69,
72–74]. Nevertheless, the QPT in the QRMchallenges evenmore the notion of finite-
size scaling. The limit �/ω0 → ∞ provokes the exploration of the whole infinite
Hilbert space by the low-energy states, which typically occurs in a conventional
thermodynamic limit. In view of this, we hypothesize a finite-frequency scaling
theory for the QRM replacing L by the ratio �/ω0 in the previous equations. This
theory provides de facto a good description of the QRM as it �/ω0 increases, as we
will support both theoretically and numerically. Therefore, the observables discussed
in Sect. 3.2.2 are expected to obey the following scaling

〈A〉 (�/ω0, g = gc) ∝
(

�

ω0

)δA

, (3.55)

where we have introduced the finite-frequency scaling exponent of A as δA ≡
−γA/ν, being γA the critical exponent that dictates the behavior of 〈A〉 close to
gc in the �/ω0 → ∞ limit (see Eq. (3.50)). These critical exponents γA have been
determined analytically for several observables from our effective model. How-
ever, one may have noticed that ν only appears in the QRM in combination with
z, namely zν = 1/2, while we have used this critical exponent in the scaling vari-
able x = |g − gc|ν�/ω0, by analogy with spatially extended systems. Nevertheless,
as the system lacks correlation length, one could have proposed a different scaling
variable, say x ′ = |g − gc|ν ′

�/ω0, such that ν ′ �= ν. Certainly, if FA(x) exists, also
FA(xν ′/ν) = FA(x ′), which would lead to δ′

A = −γA/ν ′. The point is that, while
the critical exponent ν may be considered ambiguous due to the absence of spatial
dimension, it acquires a clear meaning and defined value upon the identification of
the scaling given in Eq. (3.55). For example, if one might argue that the diverging
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Fig. 3.5 Scaling of different quantities at g = gc as �/ω0 increases, namely, from top to bottom
�p (squares), energy gap � (circles), the order parameter nc (stars), and ground-state energy
correction eG (diamonds). The analytical results, depicted with solid lines, predict precisely the
exact diagonalization results (points) for all observables. Note however, the deviation for nc,gc for
�/ω0 � 102, which can be better visualized in Fig. 3.6. The finite-frequency scaling exponents for
each observable are indicated, as obtained from our effective theory, and the corresponding fitted
exponents are collected in the Table3.1

variance �x plays the role of the absent correlation length in this system, it would
lead to ν = 1/4 and z = 2 (see Eq. (3.43)) and therefore, it would provide wrong δA

scaling exponents, as we will see in the following. We will rely on finite-frequency
scaling theory to determine the value of ν, as also done in the developments involving
Dicke and Lipkin–Meshkov–Glick models [69, 72–74]. Finally, although one may
resort directly to a numerical diagonalization of HQRM to corroborate the validity of
these predicted scaling laws, given in Eq. (3.55), and then find a common critical
exponent ν, one can still go further with our effective theory to predict these scaling
exponents in an analytical manner, as we present in the following (Fig. 3.5).

3.2.3.1 Variational Method for Finite-Frequency Scaling

Here we show how to obtain the finite-frequency scaling exponents δA for the consid-
ered observables. For that purpose, we shall start from the low-energy Hamiltonian
with the first-order correction in ω0/�. As we are interested in the scaling at the
critical point, we may use the normal-phase Hamiltonian H�

np given in Eq. (3.23).
However, since the latter Hamiltonian cannot be diagonalized, we propose an Ansatz
for the wave function |ψ0(s)〉 = S[s] |0〉 |↓〉 by comparison with the actual ground
state in the �/ω0 → ∞ limit. Then, we resort to a variational method with a unique
free parameter s, that will be determined minimizing the following energy functional

E0(s) = 〈ψ0(s)| H�
np |ψ0(s)〉 = ω0

2
cosh(2s) − ωg2

4
e2s + 3ω2

0g
4

16�
e4s − �

2
+ g2ω2

0

4�
. (3.56)

From d E0(s)/ds = 0 and since d2E0(s)/ds2 > 0 for any real s, the sought value of s
is obtained solving 3g4ω0

2� e6s + (1 − g2)e4s − 1 = 0, which at the critical point gc = 1
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becomes particularly simple, sc = 1
6 log

(
2�
3ω0

)
. Making use now of this variational

solution for the ground state at gc and finite �/ω0, one can show that

eG,gc (�/ω0) = ω0

�
(〈ψ0(sc)| H�

np |ψ0(sc)〉 − EG,np(gc)) = ω0

4

(
2�

3ω0

)−4/3
+ O

(
ω2
0

�2

)

, (3.57)

and for rescaled cavity photon number nc,

nc,gc (�/ω0) = ω0

�
〈ψ(sc)| a†a |ψ(sc)〉 ≈ 1

6

(
2�

3ω0

)−2/3

− 1

3

(
2�

3ω0

)−1

+ 1

6

(
2�

3ω0

)−4/3

(3.58)

It is worth emphasizing that, while the leading order scaling exponent is−2/3, higher-
order terms may have an important impact in nc as their scaling exponents are close
to −2/3, namely, −1 and −4/3. Therefore, they may be non-negligible for moderate
�/ω0 values and may affect the leading-order scaling, as we will see later with the
numerical verification of this scaling. Next, we find the leading order correction of
the variance of cavity field quadratures,

�xgc(�/ω0) = esc =
(
2�

3ω0

)1/6

, �pgc(�/ω0) = e−sc =
(
2�

3ω0

)−1/6

. (3.59)

Wenowassume that themth excited states areS[smin(�/ω0, g)] |m〉. Thus, the energy
gap �n,m(gc) between the states S(smin) |n〉 and S(smin) |m〉 at the critical point is

�n,m(g,�/ω0)
∣∣
g=gc

= 〈m|S†[sc]H�
npS[sc] |m〉 − 〈n|S†[sc]H�

npS[sc] |n〉

= ω0
(m − n)(3 + m + n)

4

(
2�

3ω0

)−1/3

. (3.60)

The finite-frequency correction for the the excitation energy at g = gc is, then,

�gc (�/ω0) = 〈1|S†[sc]H�
npS[sc] |1〉 − 〈0|S†[sc]H�

npS[sc] |0〉 = ω0

(
2�

3ω0

)−1/3

. (3.61)

From the previous expression we can extract the value of critical exponent z. Note
that δ� = −γ�/ν with γ� = zν = 1/2 and thus, from Eq. (3.55), finite-frequency
scaling �(�/ω0, gc) ∝ (�/ω0)

−z , and therefore, z = 1/3 and ν = 3/2.
Note however that the finite-frequency scaling for qubit observables, such as 〈σz〉,

cannot be obtained simply considering e−S ≈ 1 as done for previous observables.
To the contrary, one must calculate

〈σz〉 (�/ω0, g = gc) = 〈↓| 〈0|S†[sc]U †σzUS[sc] |0〉 |↓〉 (3.62)

where U = eλS1+λ3S3 , as discussed in Sect. 3.2.1, which brings us to
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Table 3.1 Critical and finite-frequency scaling exponents at gc for certain relevant quantities of the
QPT in the QRM. The exponent ν must be equal for any observable, whose value is ν = 3/2. The
FFS exponents are obtained analytically through a variational method, and numerically by fitting
the exact numerical results of the QRM. The fits were performed from�/ω0 = 103 to�/ω0 = 105

� nc 〈σz〉 + 1 �p

Critical exponent (γA) 1/2 1 1 1/4

FFS exponent (δA = −γA/ν) −1/3 −2/3 −2/3 −1/6

ν 3/2 3/2 3/2 3/2

Fitted result for δA −0.3317(4) −0.629(5) −0.665(1) 0.16661(1)

〈σz〉 (�/ω0, g = gc) ≈ −1 + 1

3

(
2�

3ω0

)−2/3

. (3.63)

These scaling relations are consistent with the hypothesized finite-frequency scal-
ing theory, supporting the value of the critical exponent ν = 3/2, and the obtained
exponents δσz = −2/3, δ�x = 1/6 and δnc = −2/3. In the next part we present a
numerical verification of these exponents, as well as a corroboration of the validity
of the low-energy effective Hamiltonians.

3.2.3.2 Numerical Confirmation

Exact numerical diagonalization of the HQRM allows us to verify the derived critical
exponents of the QPT, as well as the validity of the effective low-energy description
of the QRM for �/ω0 
 1. In this regard, the finite-frequency scaling theory gains
considerable importance since it enables the comparison between numerical com-
puted expectation values and the results from the effective theory. However, since
the number of relevant Fock states blows up with a diverging �/ω0, a numerical
diagonalization of the HQRM in this extreme regime becomes increasingly harder
and costly from a computational point of view. The numerical simulations presented
here were performed ensuring the convergence of ground state properties upon the
inevitable Fock space truncation, achieving results up to �/ω0 ∼ 105. These large
�/ω0 values allow us to verify the predicted power-law scaling in a clean manner
even for small exponents such as 1/6 as featured by �x .

In the Table3.1 we collect the obtained fitted scaling exponents from the exact
numerical diagonalization, and compared with the predicted exponents. The agree-
ment is excellent, supporting the correctness of our low-energy effective theory. The
fits were performed in the range from �/ω0 = 103 to �/ω0 = 105 in order to avoid,
as much as possible, sub-leading correction to the scaling exponents. Indeed, higher-
order corrections become particularly important for nc,gc , as we anticipated after
deriving its finite-frequency scaling in Eq. (3.58), which lead to a worse agreement
between the fitted finite-frequency scaling exponent and its leading-order scaling
predicted theoretically, −2/3, see Eq. (3.58). In Fig. 3.6 we illustrate the deviation
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Fig. 3.6 Finite-frequency scaling of nc,gc at the critical point gc obtained by exact numer-
ical diagonalization of HQRM (light-gray points), together with the predicted leading-order
scaling 1/6(2�/(3ω0))

−2/3 (solid line) and with higher-order corrections (dashed line),
1/6(2�/(3ω0))

−2/3 − 1/3(2�/(3ω0))
−1 + 1/6(2�/(3ω0))

−4/3 (see Eq. (3.58)). For small �/ω0
values the predicted scaling breaks down, while it is recovered approximately starting from
�/ω0 = 103

of the simple leading-order scaling for small �/ω0 values, and the recovery of the
power-law scaling starting at�/ω0 ≈ 103. The failure of a simple power-law scaling
for small �/ω0 values is expected, since the predicted relations have been attained
considering just the first-order correction Hamiltonian H�

QRM, and thus only valid
for �/ω0 
 1. Furthermore, it should be also mentioned that these scaling relations
have been obtained using a variationalmethodwhich turns out to provide an excellent
description of the critical ground state in this regime. As a side remark we comment
that the expected scaling of the ground-state fidelity at the critical point results in

F(gc, δg) ∝
(

�
ω0

)−1/12
, however, a numerical verification of such a small scaling

exponent is difficult within the accessible �/ω0 range.
Finally, in order to quantify the agreement between H�

QRM and the actual HQRM for
�/ω0 
 1, we propose a last numerical test. We compute numerically the ground-
state energy, energy gap, �p and nc from H�

QRM and compare them with the ones
obtained from the HQRM. This is plotted in the Fig. 3.7 for two values of the dimen-
sionless coupling, g = 1/2 and g = 1. Certainly, these results show that the deviation
from the exact solution is very small and decays fast as �/ω0 increases. This further
supports the validity of the presented results, and that H�

QRM is indeed a very good
approximation of HQRM for �/ω0 
 1.

3.2.3.3 Finite-Frequency Scaling Functions

As we have seen previously, the finite-frequency scaling hypothesis entails a power-
law scaling of different quantities at the critical point as the ratio�/ω0 increases. Yet,
finite-frequency scaling relies on the existence of scaling functions, FA(x) with x =
�/ω0|g − gc|ν , which are independent of the specific values of the ratio�/ω0 and g.
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Fig. 3.7 Difference, in percentage, between the solutions from the effectiveHamiltonian H�
QRM and

the numerically exact HQRM at g = 1/2 (light-gray circles) and g = 1 (black squares), for different
quantities, a ground-state energy, b ground-state number of bosonic excitations, c energy gap and
d variance of p = i(a† − a) at the ground state. In particular, we plot 100 × (Oexact − O)/Oexact

where Oexact corresponds to the numerically exact value obtained from HQRM and O its counterpart
computed using H�

QRM. The errors decay fast as a function of �/ω0, indicating that H�
QRM is a very

good approximation of the QRM for �/ω0 
 1

Therefore, by scanning different�/ω0 and g one obtains a set of data, 〈A〉 (�/ω0, g),
which collapses into a single curve upon a proper rescaling. These scaling functions,
together with the critical exponents, are essential to disclose the universality class
to which a phase transition belongs [17, 18]. Note that FA(x) together with the
aforementioned scaling solely at the critical point, given in Eq. (3.55), appear as a
handy tool to determine the critical exponents γA.

These scaling functions can be easily computed for different quantities by simply
performing numerical diagonalization of the full HQRM for various �/ω0 and g
values. Then, since FA(x) ≡ 〈A〉 |g − gc|−γA with x = �/ω0|g − gc|ν , organizing
the ground-state expectation values such that FA(x) is plotted as a function of x ,
it should result in data collapse into a single curve, and thus disclosing the actual
form of the scaling function. This is precisely plotted in Fig. 3.8 for the energy gap
�, rescaled boson number nc, qubit population σz + 1 and variance of the bosonic
position quadrature �x . As a matter of fact, the collapse of different data points
is evident, supporting the validity of finite-frequency scaling theory for the QRM.
Moreover, the behavior of the scaling function as x → 0 is shown in the insets, where
the predicted power law is observed, i.e., FA(x) → x−γA/ν .
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Fig. 3.8 Finite-frequency scaling functions of the QRM for different quantities A, FA(x) with
x = �/ω0|g − gc|ν and ν = 3/2. The panel a corresponds to the energy gap�, the rescaled number
of bosonic excitations nc = ω0

�

〈
a†a

〉
is plotted in b, while σz + 1 and �x in c and d, respectively.

The different point styles correspond to various �/ω0 values, as indicated in a. As expected from
finite-frequency scaling theory, 〈A〉 |g − gc|−γA = FA(x), and thus the date collapse into a single
curve, independently of the particular value of �/ω0 or g. Note that the scaling functions are
plotted for both sides, g < gc and g > gc, and in addition panels b, c and d show the scaling of
FA(x) for x → 0, which precisely follows the expected power-law FA(x) → x−γA/ν . Recall that
γσz = γnc = 1 and γ�x = −1/4

3.2.4 Universality Class

Throughout the present chapter we have mentioned repeatedly the similarities
between the QRM and its multi-spin version, the so-called Dicke model [19], as
well as with the Lipkin–Meshkov–Glick model [20]. Since it is well established
that the Dicke and Lipkin–Meshkov–Glick models belong to the same universal-
ity class, we shall consider only the Dicke model in the following for the sake of
brevity. The Dicke model undergoes a continuous superradiant QPT in the limit of
N → ∞ spins [46–49], however, we have so far not explicitly shown whether the
QPT in the QRM belongs to the same universality class as the QPT of the Dicke or
Lipkin–Meshkov–Glick models. Recall that within the theory of continuous phase
transitions, twomodels that undergo critical behavior belong to the same universality
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classwhen they share critical exponents andfinite-size scaling functions, as explained
in Chap. 1. In the following we demonstrate that both models do belong to the same
universality class. For that purpose, we shall consider he Dicke Hamiltonian, which
can be written as

HDicke = ωa Jz + ωba†a + g

√
ωaωb

2
√

N
Jx (a + a†) (3.64)

where the angular momentum operators �J = (
Jx , Jy, Jz

)
with Jα = ∑N

i σα/2
describe the N spins coupled to one bosonic mode, as in the case of the QRM.
Since J 2 commutes with HDicke, the analysis can be restricted to the highest angular
momentum subspace, J = N/2. As shown in previous works, the Dicke undergoes a
QPT at gc = 1, that divides the normal (g < gc) from the superradiant phase (g > gc).
The properties of these phases are similar to those of the QRM, as the ground state
exhibits 〈Jz〉 + J = 0 and

〈
a†a

〉
/N = 0 for g < gc, while for g > gc, 〈Jz〉 + J �= 0

and
〈
a†a

〉
/N �= 0, as well as 〈a〉 �= 0 as a result of a spontaneous Z2 symmetry

breaking. Moreover, the QPT of the Dicke model is characterized by the same set
of critical exponents as the ones obtained for the QRM, see Table1 in Ref. [74].
Among others, we find that the Dicke model features ν = 3/2, z = 1/3, γJz = 1 and
γnc = 1, that is, in the limit N → ∞ the energy gap closes at the critical point as
� ∝ |g − gc|zν , and the observables Jz and a†a behave as 〈Jz〉 /J + 1 ∝ |g − gc|γJz

and nc ≡ 〈
a†a

〉
/N ∝ |g − gc|γnc . In addition, the universality class to which these

models belong is identified upon equivalent finite-size scaling functions (finite-
frequency for the QRM) and critical exponents. For that reason, we compute the
finite-size scaling functions of the Dicke model, obtained from a numerical diago-
nalization of HDicke, and demonstrate that they are indeed equivalent to those of the
QRM, as we show in Fig. 3.9 for the energy gap � and spin population Jz . Note that,
since the equivalence among scaling functions is only required up to constant fac-
tors [17], to better illustrate this equivalence, we plot the finite-size scaling functions
of the Dicke model as K1 F̃A(K2 x̃) where x̃ = N |g − gc|ν and K1,2 are constant
factors included here to reproduce its counterpart in the QRM, FA(x). In Fig. 3.9 we
have considered K2 = 2 and K1 = 1.275, which provide a good agreement between
FA(x) (QRM) and K1 F̃A(K2 x̃) (Dicke model).

Hence, the QRM undergoes a QPT which lies within the same universality class
of the superradiant QPT of the Dicke or Lipkin–Meshkov–Glick models, that is, they
are of a mean field type [75]. However, it is worth mentioning that the superradiant
QPT in the Dicke model owns critical signatures which are absent in the QRM,
and vice versa. This is for example the case for the amount of entanglement (see
[54] for an extended analysis) or for the correlation functions

〈
J 2
α

〉
/N 2 for α =

x, y, z in the ground state [74] (see [68, 69, 72, 73] for a discussion regarding the
Lipkin–Meshkov–Glickmodel). As shown in [61, 62], the N spins get entangledwith
the bosonic mode, which ultimately leads to a diverging entanglement entropy at the
critical point, SvN ∝ −ν log2 |g − gc|, in the N → ∞ limit. Nevertheless, since the
QRM involves just a single spin these features are absent in its QPT, although it still
shows an abrupt growth in SvN.
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Fig. 3.9 Equivalence among the scaling functions of the Dicke model F̃A(x̃)with x̃ = N |g − gc|ν
(finite-size) and the QRM, FA(x) (finite frequency). In a and c, the scaling function corresponds
to the energy gap �, while in b and d to J z/J + 1 for the Dicke model, and its equivalent for
the QRM, σz + 1. Note that c and d are a zoom for small x values of a and b, respectively. The
finite-frequency scaling functions of the QRM are depicted with a solid black line (obtained from
the collapse of different data, as shown in Fig. 3.8), while the data computed for the Dicke model
with different number of spins N is plotted with points. To better illustrate the equivalence between
these scaling functions, we represent K1 F̃A(K2 x̃) with K2 = 2 and K1 = 1.275

3.3 Excited-State Quantum Phase Transition

Besides the superradiant QPT exhibited by the QRM, this model features yet another
kind of critical behavior, which is the subject of the present section. This feature
accompanies the QPT but manifests itself in a collection of excited states of the
Hamiltonian that governs the system. Thus, non-analytic signatures can also be found
at non-zero excitation energies [25, 27, 28, 76, 77]. Aswewill see later on, the origin
of this singularities is strongly related to the underlying properties of the correspond-
ing semi-classical counterpart of the quantum system [23, 24, 27, 28]. Such critical
phenomenon is known as excited-state quantum phase transition (ESQPT), whose
main feature resides in a singularity in the density of states or in its derivatives at a
certain critical excitation energy [27, 28]. The order of the derivative of the density
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Fig. 3.10 Energy spectrum ε±
k of HQRM as a function of the dimensionless coupling g for a ratio

�/ω0 = 40 (a). The solid black and dashed gray lines correspond to different parities. For g � 1
and ε � −1 there is a pair of nearly degenerate ground state. In b we plot the energy difference
�k = |ε+

k − ε−
k | as a function of ε and g for�/ω0 = 40, which serves as a phase diagramwhere the

crossover at ε = −1 is noticeable. There is an increase of the level density around ε = −1 which is
a precursor of the diverging semiclassical density of states, as it can be seen in c where each point
corresponds to a different energy eigenvalue of HQRM for �/ω0 = 4 × 103 and g = 1.2

of states at which non-analytic behavior appears depends crucially on the number
of degrees of freedom, being specially relevant in low-dimensional systems. More
specifically, ESQPTs in a system with f degrees of freedom stem from the extremal
points of its f -dimensional energy landscape, producing abrupt changes or diver-
gences in the ( f − 1)-derivative of the density of states [28, 78]. As a paradigmatic
example, we find again the already mentioned Dicke and Lipkin–Meshkov–Glick
models [19, 20], with f = 2 and f = 1, respectively, which in the thermodynamic
limit display a logarithmic divergence in the first derivative and in the density of states
itself, respectively [68, 69, 79, 80]. Such singularities in the density of states have
been recently observed in microwave photonic crystals [81, 82]. Besides a singular
density of states, an ESQPT may have an impact into the system in diverse manners,
both static [83, 84] and from a dynamical point of view [76, 77, 85–90].

Therefore, the QRM appears as a perfect candidate to exhibit an ESQPT as it
undergoes a QPT while at the same time has only one degree of freedom, f = 1.
Additionally, it is also interesting to investigate whether a finite-component system
QPT is accompanied by an ESQPT, which is not evident or straightforward from the
previous analysis. As an anticipation of the following developments and results, we
will show that the QRM does display all the hallmarks of an ESQPT, including a log-
arithmic divergence of the semiclassical density of states at a certain critical energy,
critical behavior of the mean-field observables and its corresponding precursors such
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as level clustering and the crossover from almost degenerate low-energy eigenstates
to non-degenerate high-energy eigenstates in the superradiant phase.

As the ESQPT takes place at a certain non-zero excitation energy, it is convenient
to express the HQRM as

HQRM =
∑

k=0

∑

α=±
Eα

k

∣∣ϕα
k

〉 〈
ϕα

k

∣∣ (3.65)

where
∣∣ϕα

k

〉
denotes the kth eigenstate of HQRM with parity α and eigenvalue Eα

k , that
is, �

∣∣ϕ±
k

〉 = ± ∣∣ϕ±
k

〉
and HQRM

∣∣ϕ±
k

〉 = E±
k

∣∣ϕ±
k

〉
. Moreover, as we are interested in

the �/ω0 → ∞ limit, we define a dimensionless energy ε±
k ≡ 2E±

k /�. Note that,
thanks to the Z2 parity symmetry of the HQRM, one can split the QRMproblem in two
parity subspaces. Certainly, each parity subspace can be effectively described as a
single non-linear harmonic oscillator and thus, with only one degree of freedom [91].
It is worth recalling that both eigenstates and energy eigenvalues crucially depend
on the coupling g, although this dependence has not been explicitly written in the
previous equation.

In the�/ω0 → ∞ limit the Z2 symmetry is spontaneously broken in the superra-
diant phase (g > gc = 1), and all the low-energy eigenstates become doubly degen-
erate, that is, ε+

k = ε−
k , which would entail a regular density of states. Hence, the

inspection of the an eventual ESQPT is not attainable within the derived low-energy
effective Hamiltonians, presented previously. A first, yet naive approach, consists
in computing the energy spectrum ε±

k to observe if there is a sign, reminiscence of
an ESQPT. For that purpose, we choose �/ω0 = 40 and compute the correspond-
ing spectrum as a function of g, as well as the energy difference between the kth
eigenstates of opposite parity, �k = |ε+

k − ε−
k |, which is plotted in Fig. 3.10. The

results suggest the existence of a transition between a doubly degenerate spectrum
(for ε < −1) and non-degenerate eigenstates (for ε > −1) for any g > 1. Certainly,
as a consequence of finite-frequency effects, the degeneracy between

∣∣ϕ+
k

〉
and

∣∣ϕ−
k

〉
,

with ε±
k < −1, is lifted, although the difference �k becomes vanishingly small for

large�/ω0. Moreover, in Fig. 3.10a one can advise a clustering of eigenstates around
ε = −1,whichbecomesmore clear inFig. 3.10c that corresponds to�/ω0 = 4 × 103

and g = 1.2. The presence of a clustering of eigenstates implies an increase of the
density of states, which takes place around the energy ε = −1. Hence, because the
ESQPT is related to changes in the phase space under the semiclassical limit of the
quantum system, a semiclassical analysis of the QRM is suitable, presented in the
following.

3.3.1 Semiclassical Approach

The observations reported in the previous part require a proper analysis of the HQRM

at higher energies than considered in Sect. 3.2, which can be attained by means of
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a semiclassical approach. Note that this crucially differs from the previous quantum
mechanical solution in the �/ω0 → ∞ limit, where we have seen that quantum
fluctuations in the bosonic mode are of great relevance (ω0 > 0 while � → ∞).
The semiclassical approach however simplifies the QRM to a classical harmonic
oscillator (ω0 → 0), which despite it discloses certain singular behaviors [53–55],
quantum fluctuations cannot be captured, such as the diverging squeezing of the
cavity field. The semiclassical version of the QRM is accomplished in a standard
manner. For that, we first describe the harmonic oscillator by means of its position
and momentum operators, x̂ and p̂, respectively,

x̂ = 1√
2
(a† + a), (3.66)

p̂ = i
1√
2
(a† − a). (3.67)

and then, we take the classical limit, i.e.,
[
x̂, p̂

] → 0 [92], achieved replacing the
operators x̂ and p̂ by continuous variables x ′ and p′. Therefore, the semiclassical
version of the QRM reads

Hscl(x ′, p′) = ω0

2
(x ′2 + p′2) − ω0

2
+ �

2
σz − λ

√
2xσx . (3.68)

The previous Hamiltonian acquires a more recognizable form upon diagonalization
of the spin Hamiltonian and rescaling the oscillator variables, x = √

ω0/�x ′ and
p = √

ω0/�p′. Thus, the semiclassical Hamiltonian becomes

H±
scl(x, p)/� = p2

2
+ V ±

eff(x), with V ±
eff(x) = 1

2
x2 ± 1

2

√
1 + 2g2x2. (3.69)

where V ±
eff(x) represents an effective semiclassical potential [53–55], and ± stand

for the two different spin branches. Recall that g = 2λ/
√

ω0� is the dimensionless
coupling constant, and gc = 1 corresponds to theQPT [30]. This effective potential is
plotted in Fig. 3.11 for three different, and characteristic, g values, namely, g = 1/2,
g = 1 and g = 2. For high energy ∼�, the effective potential has always unique
energy minimum located at x = 0, in contrast to the more interesting situation at
lower energies, for which V −

eff(x) presents the typical bifurcation from a unique
minimum at x = 0 for g < 1 to two minima at x = ±√

(g2 − g−2)/2 for g > 1. In
other words, the QPT of the QRM appears in its semiclassical limit as a transition
from a single- to double-well potential. As V +

eff(x) describes the high energy subspace
(ε ≥ 1), and we are interested in the properties of the QRM around εc = −1, we
restrict ourselves to the analysis of V −

eff(x). Note that the effective potential already
indicates that the classical orbits sharply change for g > 1 as a function of the energy
E ; while for E < Ec ≡ −�/2 (or in terms of the dimensionless energy, ε < εc) the
orbits remain in either of the two disconnected regions of the double wells, as soon
as E > Ec (or ε > εc) the orbits explore the whole phase space. Note that, since
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Fig. 3.11 Effective semiclassical potential V ±
eff (x) for three different and characteristic coupling

constants, g = 1/2 (normal phase), g = 1 (critical point) and g = 2 (superradiant phase), plotted
with solid black, dotted gray and dotted-dashed light-gray lines, respectively. Note that the lower
energy branch, V −

eff (x) exhibits the ubiquitous single- to double-well potential transition. The pres-
ence of a local maximum at x = 0 for g > 1 will be crucial for the ESQPT

H±
scl(x, p) = H±

scl(−x, p), the localization of classical orbits for ε > εc at one side,
x ≶ 0, hints at a spontaneous symmetry breaking. As a matter of fact, this strongly
supports the observations of the QRM, as plotted in Fig. 3.10, where nearly doubly
degenerate eigenstates appear for g > 1 and with eigenenergies ε±

k < εc = −1.
As commented before, the phase-space structure in the semiclassical limit is inti-

mately connected with the ESQPT [28], which in turn is related to the properties
of the density of states ν(E, g) [93]. The semiclassical version of the quantum den-
sity of states, or level density, can be obtained making use of the Gutzwiller trace
formula [93], or by means of an inverse Laplace transformation of the partition func-
tion [93], recently used in the realm of ESQPT for generalized Dicke models [79].
Here, however, we follow a standard yet suitable procedure to compute ν(E, g).

3.3.1.1 Density of States

The quantum density of states, or level density of a quantum system with spectrum{
Eα

k

}
is simply given by

νq(E, g) =
∑

k=0

∑

α=±
δ
[
E − Eα

k

]
. (3.70)

Recall that the dependence on g of νq(E, g) resides in the spectrum
{

Eα
k

}
and it is not

explicitly written. In addition, it is convenient to introduce the accumulated number
of states below an energy E , N (E, g) or number staircase function [93], which reads

N (E, g) =
∫ E

−∞
d E ′ ν(E ′, g). (3.71)

The semiclassical approximation of the quantum density of states of a system with
f degrees of freedom is attained by integrating the phase-space shell at the corre-
sponding energy E , that is,



3.3 Excited-State Quantum Phase Transition 85

νscl(E, g) = 1

(2π) f

∫
d �p d �x δ

[
E − Hscl(�x, �p, g)

]
. (3.72)

For the QRM, the semiclassical density of states can be simplified to

νscl(ε, g) = 1

ω0π

∂

∂ε

∫
dx dp �

[
ε − p2 − x2 +

√
1 + 2g2x2

]
(3.73)

= ∂

∂ε
N (ε, g), (3.74)

where we have introduced the dimensionless energy ε ≡ 2E/� and rescaled coor-
dinates x and p. From Eq. (3.74) it follows that N (ε, g) is obtained as the total
phase-space volume enclosed in the shell of energy ε. Integrating over the momen-
tum p, νscl(ε, g) becomes (see Appendix D for further details)

νscl(ε, g) = 2

ω0π

∫ x2

x1

dx
1

√
ε − x2 + √

1 + 2g2x2
, (3.75)

where the integration limits are

x1 =
√

ε + g2 −
√

g4 + 2εg2 + 1 � [εc − ε] (3.76)

x2 =
√

ε + g2 +
√

g4 + 2εg2 + 1. (3.77)

Then, depending on the energy ε and coupling g, we can calculate the semiclassi-
cal density of states. In particular, we concentrate on obtaining analytical expres-
sions for νscl(ε, g) for two important cases, namely, for g = 1 and εc and g > 1 for
εc. The former corresponds to the QPT, while the latter will disclose the presence
of an ESQPT. In the following, we present the derivation of the νscl(εc, g = 1),
and then, in Sect. 3.3.2 we will discuss the signatures of the ESQPT. For the
sake of brevity, we leave the detailed mathematical derivation of νscl(ε, g) for the
Appendix D, and summarize the main findings here. In addition, we confirm the
validity of this semiclassical approximation by comparing with the numerical results
of the QRM. For that reason, after computing the energy spectrum of HQRM for
a given coupling g, it is mandatory to perform an average of delta-level density,
νq(ε, g) = ∑

k,α δ
[
ε − εα

k

]
, which we denote as ν̃q(ε, g) (quantum averaged density

of states) and is attained as follows. We choose an energy window of M consecu-
tive eigenstates, whose width is�ε = εk+N − εk with k ≥ 0, then ν̃q(ε, g) = M/�ε
where ε denotes the middle energy within the chosen window. Note that, while M
is left as a free parameter, its value must be large enough to provide a smooth aver-
age while at the same time small to retrieve the features of ν(ε, g) and prevent any
numerical artifact.

In order to derive an analytic expression of the density of states for g = 1 close
to the energy εc (recall that εc corresponds to the ground-state energy for g = 1).
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As we are interested in the behavior close to εc, we shall consider ε = ε + δε being
0 < δε � 1. Since ε > εc, x1 = 0 while the upper limit can be Taylor expanded
as x2 = (2δε)1/4 + O(δε3/4). Then, we can perform the integration of Eq. (3.75) at
leading order of δε, which results in (see Appendix D for further details),

νscl(εc + δε, g = 1) ≈ �(5/4)

�(3/4)

25/4

ω0
√

π
δε−1/4, (3.78)

where �(m) is the Euler gamma function, �(z) = ∫ ∞
0 dx xz−1e−x . Therefore, the

semiclassical density of states diverges as νscl(ε, g = 1) ∝ (ε − εc)
−1/4 for ε − εc

� 1, i.e., close to the ground-state energy. This divergence is yet another a signature
of the QPT, which stems from the low-energy spectral collapse at the critical point
(see Eq. (3.14)). On the other hand, one can show that for g < 1, the density of
states does not show any singular behavior. In Fig. 3.12a we plot the semiclassical
density of states as a function of the dimensionless energy ε for g = 1/4 and g = 1
obtained from Eq. (3.75), and compared with the quantum averaged density of states
obtained numerically from theQRM, ν̃q(ε, g). The divergence of the density of states
is corroborated by the numerical results, as shown in Fig. 3.12c, which support the
power-law scaling close to εc. In the following, we discuss the signatures of the
ESQPT, whose main feature resides in a logarithmic divergence on the density of
states for any g > 1 at εc.

3.3.2 Signatures of the ESQPT

In this part we show certain signatures of the ESQPT in the QRM, starting with the
logarithmic divergence of the semiclassical density of states at εc for any g > 1. As
done for the g = 1 case, we shall calculate ε = εc + δε with 0 < δε � 1. However,
since εc is no longer the ground-state energy, we may approach εc from the different
side, i.e., δε may be negative. The procedure is equivalent as the one given here for
δε > 0, and left to the Appendix D, where we also provide a detailed derivation of
the following results. Then, as ε > εc, x1 = 0 and x2 = √

2(g2 − 1) + O(δε), with
a density of states

νscl(εc + δε, g) = 2

ω0π

∫ x2

x1

dx
1

√
−1 + δε − x2 + √

1 + 2g2x2
. (3.79)

The previous expression contains two possible singularities right at the integration
limits, x1 and x2 when δε = 0. For that reason, it is convenient to split the integration
as

∫ x2
x1

dx = ∫ xm

x1
dx + ∫ x2

xm
dx where the arbitrary xm is chosen such that 0 < xm � 1

but still greater than δε. In addition, one can show that the latter integral does not
lead to any true singularity in νscl and just results in a constant shift, denoted by K .
In this manner, we obtain
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Fig. 3.12 Density of states of the QRM as a function of the dimensionless energy ε for different
couplings, g = 1/4, 1 (a), 1.2 and 1.4 (b). The semiclassical density of states, νscl(ε, g) is plotted
with lines, while the points correspond to the quantum average density of states ν̃q (ε, g) for a HQRM
with �/ω0 = 103 and M = 10 (see main text for further details). In a and c the divergence of the
density of states is observed for g = 1 close to the ground-state energy, εc. For g > 1, εc no longer
corresponds to the ground-state energy, and the density of states exhibits a logarithmic divergence,
better illustrated in d. This feature locates the ESQPT

νscl(εc + δε, g) = 2

ω0π

∫ xm

x1

dx

(
1

√
δε(g2 − 1)x2

+ O(x4)

)

+ K (3.80)

≈ 1

ω0π
√

g2 − 1
ln

(
2x2

m(g2 − 1)

δε

)
+ K . (3.81)

Hence, νscl(ε, g > 1) diverges at εc in logarithmic fashion, i.e., differently compared
to the ground-stateQPTcase. In addition,wefind the samebehavior for ε − εc → 0−,
and therefore we can write

νscl(ε, g > 1) ∼ − ln |ε − εc|
ω0π

√
g2 − 1

for |ε − εc| � 1, (3.82)

which is a clear indication of an ESQPT taking place in the QRM in the�/ω0 → ∞
limit. In Fig. 3.12b and d we plot νscl(ε, g) computed from Eq. (3.75), together
with the quantum averaged density of states, ν̃q(ε, g), for g = 1.2 and g = 1.4.
Indeed, both results nicely agree as well as confirm the presence of the diver-
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gence at εc. Nonetheless, since we deal with finite-frequency systems, the diver-
gence is smoothed, but still it is feasible to observe the scaling close to εc, which
precisely follows the analytic expression derived for νscl(ε, g). Furthermore, as we
have commented in the introduction of the ESQPT, Sect. 3.3, critical behaviors also
appear in some relevant observables, such as 〈σz〉 and

〈
a†a

〉
, which are calculated

closely following Ref. [79]. Indeed, the expectation value of an observableA can be
obtained as

〈A〉 (ε, g) = 1

νq(ε, g)

∑

k=0

∑

α=±

〈
ϕα

k |A| ϕα
k

〉
δ
[
ε − εα

k

]
, (3.83)

where 〈A〉 (ε, g) denotes the energy averaged value of the observable A at energy
ε and coupling strength g. This expression is exact with the quantum density of
states, νq(ε, g). Then, its semiclassical approximation consists in replacing νq(ε, g)

by νscl(ε, g). Moreover, if the Hamiltonian linearly depends on the observable with a
proportional constant β, thenA = ∂β H , and using the Hellmann–Feynman theorem,
we can show that

〈A〉 (ε, g) = − 1

νscl(ε, g)

∂

∂β
Nscl(ε, g) (3.84)

where Nscl(ε, g) = ∫ ε

−∞ de νscl(e, g) is the accumulated number of states (see
Appendix D for further details). Note that the dependence of Nscl(ε, g) on β is not
explicitly written. In this manner, because a†a = ∂ω0 H and σz = 2∂� H , it follows

〈
a†a

〉
(ε, g) = − 1

νscl(ε, g)

∂

∂ω0
Nscl(ε, g) (3.85)

〈σz〉 (ε, g) = − 2

νscl(ε, g)

∂

∂�
Nscl(ε, g), (3.86)

and therefore, a singular νscl(ε, g) conveys singular behaviors in these mean-field
expectation values. The theoretical prediction given by Eqs. (3.85) and (3.86) is
plotted in Fig. 3.13, together with the numerically exact quantum expectation values
for HQRM, i.e.,

〈
ϕ±

k

∣∣a†a
∣∣ϕ±

k

〉
and

〈
ϕ±

k |σz| ϕ±
k

〉
. The good agreement between the

semiclassical approximation and the quantum expectation observables for �/ω0 =
102 and �/ω0 = 103 can be seen in Fig. 3.13, which also unveil the presence of a
sharp dip close to εc. It is worth noting that this singular behavior is present for any
g > 1, in the same manner as in νscl(εc, g).

Assuredly, an interesting feature of the ESQPT resides in that the eigenstates
have a vanishing average qubit and boson population around εc for g > 1, that is, the
eigenstates resemble a vacuum state,

∣∣φ0,↓
〉 = |0〉 |↓〉. This fact can be understood as

a consequence of wave-function localization around x = 0 [27, 87]. In particular, the
overlap Pk,+

0,↓ = ∣∣〈φ0,↓
∣∣ ϕ+

k

〉∣∣2 reaches amaximumvalue for some k such that ε+
k ≈ εc.

Note that the spectrum of HQRM can be labeled according to the parity symmetry, and



3.3 Excited-State Quantum Phase Transition 89

 0

 0.1

 0.2

 0.3

-1 -0.5  0

(a)  

( 〈σ z〉 +1)/2

g =1.4

g =1.2

Ω /ω0 =10
2

Ω /ω0 =10
3

ε

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0

(b)  

〈a†
a 〉ω 0/Ω

g =1.4

g =1.2

ε

Fig. 3.13 Comparison between quantum and semiclassical results, obtained from Eqs. (3.85) and
(3.86) for the boson number,

〈
a†a

〉
and 〈σz〉, respectively. In a we show (〈σz〉 + 1)/2 while in

b the rescaled boson number
〈
a†a

〉
ω0/�, for two coupling strengths, g = 1.2 and g = 1.4. The

semiclassical result is depicted by a solid line, while the points correspond to the expectation value
of the HQRM, i.e.,

∣∣ϕ±
k

〉
with energy ε±

k ; light gray for �/ω0 = 102 and black for �/ω0 = 103.
Note that the points basically lie on top of the lines, i.e., on the semiclassical result

therefore Pk,−
0,↓ ≡ 0 because |0〉 |↓〉 belongs to the positive subspace. Nevertheless,

considering Pk,−
1,↓ one can draw the same conclusion for the negative parity subspace,

i.e., Pk,−
1,↓ becomes maximal for some k such that ε−

k ≈ εc. These overlaps are given
in Fig. 3.14, for g = 1.2 and 1.4 with a frequency ratio �/ω0 = 103. As one can
observe, the eigenstates close to εc, where the ESQPT occurs, recall a vacuum state.
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zoom close to the critical energy εc
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3.4 Conclusion and Outlook

This chapter has been devoted to demonstrate and support the existence of both a
continuous QPT and ESQPT in the QRM in a suitable limit of system parameters,
rather than in the conventional thermodynamic limit of infinitely many particles.
Hence, in order to stress the difference, we call this novel manner of obtaining
critical behaviors finite-component system phase transitions. Moreover, in spite of
the different origin of this phase transition, we have shown that its signatures bear
similarities to those of certain many-body quantum systems, such as Dicke and
Lipkin–Meshkov–Glickmodels. TheQRMcanbe thendivided in twodistinct phases,
namely, normal and superradiant. Among the different signatures, we can highlight
the diverging cavity field squeezing at the critical point, diverging number of bosonic
excitation in the superradiant phase, as well as spontaneous symmetry breaking.
Moreover, thanks to the derived analytical solution, we identified critical and finite-
frequency scaling exponents, which coincide with those of the other models. Indeed,
a closer inspection to the scaling functions reveals that the QPTs of the QRM and
Dicke belong to the same universality class, i.e., they are of a mean field type.
Therefore, the paradigmatic QRM, which consists of two constituent particles, qubit
and harmonic oscillator, can display a superradiant QPT, as the Dicke model.

It is worth mentioning that the question of whether the critical behavior of
Dicke and Lipkin–Meshkov–Glick models correspond actually to a QPT is under
debate [75], as their T = 0 phase transitions can be captured by a mean-field analy-
sis neglecting quantum fluctuations. However, these systems exhibit singularities in
the ground state in agreement with continuous QPTs. In addition, we find the QRM
that presents similar behavior as these totally connected models, as it shows the same
type of critical phenomena. Hence, the phase transition in the QRM can be termed
continuous QPT in the same manner as that of the Dicke model [75]. Moreover, we
remark that while some properties of these systems can be well addressed under a
semiclassical approximation, there are remarkable non-classical fingerprints, such
as entanglement or cavity field squeezing, distinctive of quantum fluctuations.

These results may constitute a conceptual change on phase transitions, that is,
a modification on how we look at critical systems, so far restricted to many-body
systems. Indeed, one of the most exciting prospects consists in the capability of
studying critical phenomena, inherent of truly many-body systems, in a small, thus
controllable, fully coherent quantum system. We will come back to this point later,
in Chap. 5, where we will propose a potential experimental platform where QRM
dynamics involving the QPT can be explored. However, for that we shall first go
through Chap. 4, to elucidate and learn the rich physics of nonequilibrium dynamics
in this system. Therefore, we leave the outlook and future prospects on the dynamics
and implementation of the QRM to the corresponding Chaps. 4 and 5.

Interestingly, the findings reported in this chapter may stimulate not only further
inquiries into the QRM and the different footprints of criticality, but also at a deeper
fundamental level, such as whether finite-component system QPTs represent a dis-
tinct manner of achieving phase transitions and how this approach reconciles with
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the conventional thermodynamic limit. This of a particular relevance in the Dicke
model as it reduces simply to the QRM when only a single qubit is considered, so
then, what does occur to the superradiant QPT of the Dicke model if the�/ω0 → ∞
limit is performed and vice versa, how does the superradiant QPT of the QRM break
down when increasing the number of qubits? A conclusive answer to these issues
may take advantage of the recent works on the existence of approximate integral of
motion in the Dicke model [94].

In particular, one interesting direction of further research consists in finding
whether quantum critical phenomena may appear in another models without scaling
up the number of system components (i.e., without resorting to the conventional
thermodynamic limit), and if so, determine under what conditions it occurs. In this
regard, the work presented in [95] constitutes a big step forward in this direction.
In Ref. [95] the concept of a finite-component system phase transition is extended
to a Jaynes–Cummings lattice system, which presents distinct physics to that of the
QRM, with different critical exponents. Therefore, it is certainly possible to observe
rich phenomena of phase transitions without scaling up system size but rather tuning
system parameters, as explained in this chapter for the QRM. In addition, it is worth
mentioning that in [95] it is shown that a single Jaynes–Cummings model undergoes
a QPT where, instead of a discrete parity as that of the QRM, a continuous symme-
try is spontaneously broken, and consequently a Goldstone mode emerges. Hence,
these two works demonstrate that finite-component system phase transitions are not
restricted to a specific symmetry nor to a type of interaction.

Moreover, it has been recently shown that theQRMalso features a phase transition
when the bosonic mode undergoes dissipation, leading to different phases in terms of
steady states [96]. As in the isolated case, this opens new avenues to investigate and
explore dynamics of dissipative phase transitions in a small and fully controllable
open quantum system, and at the same time, it demonstrates that finite-component
system phase transitions do exist in the realm of open quantum systems. Among the
multiple and interesting prospects triggered by these findings, one could mention the
potential critical behavior of a QRM under different noise types [97], which in the
Dicke model leads to the modification of critical exponents [98] and a rich steady-
state phase diagram [99, 100]. That is, how the abrupt changes of the steady state
depend on both amplitude and spectral noise properties, and whether the latter has
an impact in the dissipative phase transition.

In short, we have unveiled a novel type of phase transitions that take place without
scaling up the number of system constituents, and thus, it paves the way for the
realization of critical models by means of small and fully controllable quantum
systems. Therefore, phase transitions may be explored overcoming the complexity
of coherently manipulating and storing an increasing number of quantum registers
as required for conventional critical systems, and hence, opening the door for many
intriguing possibilities.
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Chapter 4
Quantum Rabi Model: Nonequilibrium

In the previous chapter we have demonstrated that the quantum Rabi model (QRM)
undergoes a quantum phase transition (QPT) in a suitable parameter limit. Thanks
to the derived effective description of the QRM in this limit, we have been able
to identify critical exponents, scaling functions and the universality class to which
its QPT belongs. In this respect, the scrutiny of the QRM carried out in Chap. 3
has been restricted to eigenstate properties, or in other words, the previous chapter
has been devoted to investigate solely equilibrium features of this critical model.
Unquestionably, equilibrium properties are essential to understand QPTs and ulti-
mately, to interrogate about their universal properties. However, more intriguing
aspects lie nowadays in the vast territory of nonequilibrium critical dynamics, where
several questions remain to be disclosed [1–5]. Among them, the question to what
extent universal equilibrium features of a system undergoing a QPT are inherited
by nonequilibrium dynamics endures elusive, although significant efforts have been
devoted to it [2, 6–13]. In this context we find the celebrated Kibble–Zurek (KZ)
mechanism [14], which is the paradigmatic description of nonequilibrium physics
involving phase transitions (see Introduction, Sect. 1.3 as well as Chap. 2 for a KZ
analysis in the realm of classical continuous phase transitions). The KZ mechanism
has become a milestone as it applies across a broad diversity of physical systems
thanks to the universal features of continuous phase transitions [15–18], including as
well QPTs [1, 7, 19–21]. Recall that its major achievement consists in the prediction
of scaling laws for defect formation across a phase transition, which depend on the
equilibrium critical exponents of the concerned phase transition.

Remarkably, although the KZ mechanism applies to QPTs [1, 19–21], prior to
our work KZ arguments were considered to fail or not applicable when dealing with
zero-dimensional models [11, 22]. We will make special emphasis on this particular
subject throughout this chapter, even though different nonequilibrium scenarios are
investigated. Indeed, while the strict �/ω0 → ∞ limit of the QRM is of interest in
itself and allows us to gain valuable insights on the dynamics (Sect. 4.1), such as the
appearance of KZ physics, how these particular nonequilibrium critical phenomena
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emerge from a QRM with finite, yet large, �/ω0 value is a fascinating topic. This
is precisely the subject of Sect. 4.2, where we extend the scope of finite-frequency
scaling functions to nonequilibrium dynamics. Moreover, as in the equilibrium case,
we show the equivalence between finite-frequency scaling functions of the QRM and
those of the Dicke model in a nonequilibrium scenario, further supporting that both
indeed belong to the same universality class, as stated in Chap. 3. Some of the results
presented in this chapter have been published in [23, 24].

4.1 Nonequilibrium Dynamics and Kibble–Zurek Scaling
Laws

In this part we study a simple time-dependent QRM, which among several sub-
jects allows us to examine the KZ mechanism in this model. We recall that KZ
arguments have been applied to QPTs with successful outcomes [1, 19–21], where
quantum excitations play the role of long-lived topological defects in the traditional
KZmechanism [2, 8, 9].Moreover, while in spatially extended quantum systems one
can still define defects, see for example the paradigmatic Ising model (Sect. 1.2 and
Chap. 6), in zero-dimensional models one must deal with quasiparticle excitations,
as it is the case of the QRM. Furthermore, although KZ predictions can be applied to
zero-dimensional quantum systems, numerical simulations have cast doubts on the
validity of KZ arguments on these systems [11, 22]. In the following lines we present
an exhaustive analysis of nonequilibrium dynamics following a quench towards the
critical point which uncovers rich physics and reveals the soundness of KZ argu-
ments. In particular, we shall consider a time-dependent Hamiltonian

HQRM(t) = ω0a†a + �

2
σz − λ(t)σx(a + a†), (4.1)

where λ(t) depends linearly on time, unless stated otherwise, and the total time
of the evolution or quench amounts to τQ . We start in Sect. 4.1.1 scrutinizing the
�/ω0 → ∞ limit and considering as initial state the ground state of HQRM atλ(0). As
wewill show, KZ physics naturally arises in this situation. Then, in Sects. 4.1.2, 4.1.3
and 4.1.4, we extend the analysis to non-linear protocols, as well as to investigate the
impact of different initial states and the persistence of universal scaling in sudden
quenches, respectively. Finally, in Sect. 4.2 we address the impact of finite-frequency
systems (�/ω0 < ∞), that is, QRMs in which there is a precursor of the phase
transition.

4.1.1 Infinite Limit: Kibble–Zurek Physics

In the strict �/ω0 → ∞ limit, the QRM Hamiltonian adopts a simple form, as we
have shown in Chap. 3. Moreover, since we project the spin onto the low energy
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subspace,H↓, the spin degree of freedom is not explicitly written. We first consider
for simplicity a linear quench g(t) = λ(t)/λc ∝ t/τQ as well as 0 ≤ g(t) ≤ gc = 1.
Hence, although we do not traverse the critical point, this scenario is sufficient to
analyzewhether KZ scaling predictions apply to the critical dynamics of theQRM. In
this manner, the considered nonequilibrium scenario reduces to the time-dependent
Hamiltonian

Hnp(t) = ω0a†a − ω0g
2(t)

4

(
a + a†

)2 − �

2
. (4.2)

We firstly take as initial state |ψ(0)〉 = |0〉, which is the ground state of Hnp at g = 0
and a quench g(t) = g f t/τQ for t ∈ [

0, τQ
]
with 0 ≤ g f ≤ 1. Recall that at the crit-

ical point gc = 1, the QRM becomes gapless and the number of bosonic excitations
becomes infinitely large,

〈
a†a

〉 → ∞, among other signatures. Therefore, one must
examine carefully the dynamics of the system, as we will see later on. However,
before discussing how to actually obtain |ψ(t)〉 or expectation values of observables
under Hnp(t), we review KZ arguments and how they apply to our problem.

The energygapbetweendifferent eigenstates of HQRM vanishes in the�/ω0 → ∞
limit at gc = 1 as εnp(g) ∝ |g − gc|zν with zν = 1/2. In particular, the relevant energy
gap for the dynamics turns out to be εnp(g) = 2ω0

√
1 − g2 since the first excited state

cannot be accessed due to symmetry constraints. This energy gap conveys a time
scale, τ = εnp(g)−1, that sets the scale in which the system responses, and can be
used for KZ arguments. On the other hand, the control parameter is linearly changed
on time as g(t) = g f t/τQ , which in turn introduces another time scale. The main
idea of KZ mechanism relies on introducing a dichotomy between adiabatic and
impulsive dynamics. As sketched in Fig. 4.1, applying KZ arguments in terms of
these time scales, namely, τ = (2ω0

√
1 − g2)−1 and the remaining time to reach

0

τQ /2

τQ

 0  0.2  0.4  0.6  0.8  1

t 〉

tr (g)

τ(g)
g〉

g(t)

Fig. 4.1 Illustration of the boundary between adiabatic and impulsive dynamics as stated by KZ
mechanism for the Rabi model. When τ (g) 	 tr (g) the dynamics is essentially adiabatic; as the
QPT is approached, τ (g) 
 tr (g) and the dynamics becomes impulsive. In the figure τ (g) and tr (g)

are depicted by black solid and gray dotted lines, respectively. The boundary ĝ is obtained when
both time scales match, which depends on the quench rate τ−1

Q . If τQ is large enough, the boundary

follows the scaling law (1 − ĝ) ∼ (τQω0)
−1/(zν+1)
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the critical point tr = τQ(1 − g), one can define the freeze-out instant or boundary
between these two distinct dynamical regimes, adiabatic and impulsive, as g(t̂) ≡ ĝ.
That is, when both time scales match, KZ arguments predict that the state enters in
the impulsive regime. In particular, when 1 − ĝ 	 1 + ĝ, i.e., ĝ close to the critical
point, then

1 − ĝ ≈ (
23/2τqω0

)−1/(zν+1)
. (4.3)

Additionally, the freeze-out time t̂ associated with this coupling instant results in
t̂ = τQ − τ

zν/(zν+1)
Q /(2ω2/3

0 ). Therefore, according to KZ arguments, the departure
from equilibrium follows a universal power-law scaling characterized by the equi-
librium critical exponents z and ν of the QPT. One should keep in mind however that
such a freeze-out instant constitutes merely a working hypothesis, yet very helpful
for deriving scaling laws. Evidently, a realistic system does not experience an abrupt
transition between adiabatic and impulse dynamics at a particular instant, and there-
fore, these relations must be interpreted carefully. Nevertheless, one can test these
first KZ scaling predictions by numerically solving the critical dynamics, and then
estimating at what instant the system becomes less adiabatic. In this respect, although
there is not a uniquemanner to quantify the loss of adiabaticity, we rely on the fidelity
F(t), which provides a good estimate [19]. This fidelity compares the evolved quan-

tum state |ψ(g(t))〉 with the actual ground state at g(t),
∣∣∣ϕ0

np(g)
〉
= S[rnp(g)] |0〉

(note that we have dropped out the spin degree of freedom as it remains in the |↓〉
state), where S[x] represents the squeezing operator and rnp(g) = −1/4 ln(1 − g2)
corresponds to the squeezing parameter. That is, the fidelity reads

F(t) =
∣
∣∣
〈
ϕ0
np(g(t))

∣
∣∣ ψ(t)〉

∣
∣∣ . (4.4)

We estimate then the coupling at the freeze-out instant ĝ, for a particular driving
time τQ , as the coupling from which the fidelity drops below a certain threshold fk ,
F(g(t) > ĝ) < fk . This also provides the estimator of the freeze-out time t̂ = τQ ĝ.
We remark that, since Hnp(t) becomes singular at gc = 1, the computation of |ψ(t)〉
is not straightforward. In particular, we obtain the fidelity, Eq. (4.4), solving the the
Schrödinger equation for the unitary evolution operator. We refer to the interested
readers to Appendix E for a detailed derivation, while here we quote the main results.
The time-evolved state |ψ(t)〉 can be written as

|ψ(t)〉 = ea(t)+i�eb(t)a†2 |0〉 , (4.5)

where � accounts for a constant factor, and thus ei� is just a global phase, and the
coefficients a(t) and b(t) obey the following equation of motion
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i ȧ(t) = −ω0t2

2τ 2
Q

b(t) (4.6)

i ḃ(t) = −ω0t2

4τ 2
Q

+ 2ω0

(

1 − t2

2τ 2
Q

)

b(t) − ω0t2

τ 2
Q

b2(t), (4.7)

whose initial conditions are a(0) = b(0) = 0 such that |ψ(0)〉 = |0〉. Finally, since
|ψ(t)〉 = ∑∞

n=0 αn(t)
∣
∣∣ϕn

np(g(t))
〉
, the fidelity directly follows F(g(t)) = |α0(t)|,

which turns out to be

F(t) = |α0(t)| = eRe[a(t)]
∣∣(cosh rnp(t)

∣∣(1 − 2eiθ(t)
)∣∣ |b(t)| tanh rnp(t)

)∣∣1/2
, (4.8)

where θ(t) = arctan(Im[b(t)]/Re[b(t)]). Solving numerically the equations of
motion for a(t) and b(t) with a particular driving time τQ , we determine F(g(t))
according to Eq. (4.8). In Fig. 4.2a we show the time-evolution of the fidelity F(t) for
three different quench rates τQ , fromwhichwe can obtain estimators of the freeze-out
instant. For that, selecting a value fk , an estimated ĝ follows, as depicted in Fig. 4.2a.
For the chosen fk , we plot 1 − ĝ and τQ − t̂ as a function of τQ to corroborate the
KZ scaling predictions. As we observe in Fig. 4.2b, independently of the fk value,
the scaling perfectly agrees with its KZ prediction for large enough τQ , namely,
1 − ĝ ∼ τ

−1/(zν+1)
Q = τ

−2/3
Q and τQ − t̂ ∼ τ

zν/(zν+1)
Q = τ

1/3
Q . To the contrary, as τQ

gets shorter, the scaling breaks down as the dynamics becomes sudden where KZ
arguments are not longer valid, ĝ ∼ const and τQ − t̂ ≈ τQ .

 0

 0.2

 0.4

 0.6

 0.8

 1

10-5 10-4 10-3 10-2 10-1

f1
f2

f3

(a)   
F(t)

τQ=100

τQ=101

τQ=102

1-g(t)

10-6

10-4

10-2

100

10-3 10-2 10-1 100 101 102 103 104

(b)

τQ
-1/(zν+1)

τQ
zν/(zν+1)

ω0τQ

Fig. 4.2 First test of KZ scaling predictions. In a the time evolution of the fidelity F(t) as a
function of 1 − g(t) is plotted, considering three different rates, i.e., three τQ values. An estimation
of the freeze-out instant ĝ is obtained when F(t) drops below a certain value fk . Here, we chose
f1 = 0.95 (red), f2 = 0.85 (blue) and f3 = 0.75 (green), which allow us to obtain the scaling
of 1 − ĝ (full points) and τQ − t̂ (open points) plotted in b. We confirm the KZ scaling prediction

1 − ĝ ∼ τ
−1/(zν+1)
Q and τQ − t̂ ∼ τ

zν/(zν+1)
Q for large τQ , with zν = 1/2.Note that for τQ → 0,KZ

arguments are not valid and the dynamics results in a sudden quench, ĝ ∼ const while τQ − t̂ ∼ τQ .

The dotted lines in b are simply guides to the eyes following the power-laws τ
1/3
Q and τ

−2/3
Q
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This elementary inspection on the critical dynamics of the QRM has already
served us to verify the first KZ scaling prediction. Indeed, while the distinction
between adiabatic and impulsive dynamics is somehow arbitrary, the scaling law
of such a frontier between these dynamical regimes (see Eq. (4.3)) plays a crucial
role in subsequent predictions. Moreover, the previous analysis grants the freeze-
out argument a physical meaning, which corroborates the intuitive and expected
behavior of the dynamics, namely, the slower the quench, the more adiabatic the
evolution. However, due to the zero energy gap at the critical point, the departure
from equilibrium is unavoidable, although the coupling at which adiabatic dynamics
breaks down approaches the critical point as the quench gets slower, i.e., ĝ → gc as
ω0τQ → ∞.

The emblematic hallmark of theKZmechanism resides, however, in the prediction
that the formed excitations, created as a consequence of a phase transition, follow
a universal scaling in terms of the quench rate. In the quantum realm one translates
the arguments to quantum excitations. As in classical systems, one must quantify
these excitations in a suitable manner, specifically for each system (see for example
Introduction, Sect. 1.3, or Chap. 6, for a discussion on the Ising model). Since the
QRM lacks spatial dimension, it is convenient to resort to the residual energy Er (τQ)

that quantifies the amount of quantum excitations formed during a ramp towards the
critical point, providing a good measure of the adiabaticity of the evolution [7, 10,
11, 22, 25]. In our case, we rely on the residual energy at the end of the quench,
which can be defined as

Er (g(τQ)) = 〈
ψ(τQ)

∣
∣ Hnp(τQ)

∣
∣ψ(τQ)

〉 − EGS(g(τQ)), (4.9)

that is, it gives account of the excess of energy with respect to the ground state. Since

|ψ(0)〉 =
∣∣∣ϕ0

np(0)
〉
, a perfect adiabatic evolution results in Er ≡ 0.

In order to derive aKZ scaling prediction for the residual energy, we first introduce
the adiabatic perturbation theory (APT), a perturbation treatment of nearly adiabatic
dynamics in terms of τ−1

Q , very helpful to compute leading order corrections to the
perfect adiabatic wave function [10, 26]. Then, applying KZ arguments and using the
relation given in Eq. (4.3), we attain the KZ scaling for the residual energy which will
be verified by numerical simulations in the strict �/ω0 → ∞ limit. Note however,
that we will also comment later on the behavior of other relevant quantities of the
system, such as the number of bosonic excitations,

〈
a†a

〉
.

Again, in order to ease the reading of this part, we defer the detailed mathematical
derivation of the APT to Appendix E, while quoting here the main outcomes. The
time-evolvedwavefunction obeying the Schrödinger equation can bewritten in terms

of the instantaneous eigenstates of Hnp(t) as |ψ(t)〉 = ∑
n αn(t)e−i�n(t)

∣
∣∣ϕn

np(g(t))
〉

where �n(t) = ∫ t
0 εn(t ′)dt ′ with εn(t) = nω0

√
1 − g2(t) the corresponding energy

of the nth eigenstate. Then, the formal solution to the Schrödinger equation can be
written as
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αn(g) = −
∑

m

∫ g

0
dg′αm(g′)

〈
ϕn
np(g

′)
∣∣
∣ ∂g′

∣∣
∣ϕm

np(g
′)
〉

ei(�n(g
′)−�0(g

′)). (4.10)

The previous expression simplifies significantly considering first α0(0) = 1 and sec-
ond, slow quenches ġ ∝ τ−1

Q 	 1. Indeed, substituting the specific form of the eigen-

states, we find that, at leading order in τ−1
Q , α2(g) turns out to be the unique non-zero

coefficient which reads

α2(g) ≈ −i ġg

25/2ω0
(
1 − g2

)zν+1 ei(�2(g)−�0(g)) + O(ġ2). (4.11)

Then, the residual energy Er given in Eq. (4.19) can be recast as Er (g f ) =
∑

n>0 εn(g f )
∣∣αn(g f )

∣∣2 and thus, it can be approximated as Er (g f ) ≈ ε2(g f )∣∣α2(g f )
∣∣2 for nearly adiabatic dynamics. Therefore, by means of APT, assuming

ġ 	 1 (or equivalently ω0τQ 
 1), we obtain

Er (g f ) ≈ τ−2
Q

g4f

16ω0(1 − g2f )
zν+2

. (4.12)

It is worth mentioning that Er ∼ τ−2
Q corresponds to the standard scaling under

APT [2]. However, the APT fails as soon as the quench involves the quantum critical
point, that is, when g f → 1 since the adiabatic limit breaks down [7]. Hence, we need
to resort to a different approach in this situation. Not surprisingly, KZ mechanism
offers an answer. Specifically, making use of the simple dichotomy between adiabatic
and impulsive dynamics, KZ mechanism states that, once the freeze-out instant is
reached, the dynamics remains frozen as the system cannot react to external changes.
Accordingly, KZ arguments predict that the residual energy at the critical point scales
as

Er (gc) ≈ Er (ĝ) ∼ τ
−zν/(zν+1)
Q = τ

−1/3
Q , (4.13)

where we have used 1 − ĝ ∼ τ
−1/(zν+1)
Q , derived in Eq. (4.3). The scaling of α2(g)

deserves special attention since α2(ĝ) ∼ τ 0
Q , in agreement with previous works for a

zero-dimensional system [7–10]. Loosely speaking, theKZ scaling for a quantity that
behaves asA ∝ |g − gc|γA close to the critical point turns out to beA ∼ τ

−γA/(zν+1)
Q ,

while in general for a d-dimensional model it becomes τ
−(γA+dν)/(zν+1)
Q [10]. At this

stage it is important to remark that these scaling relations have been also predicted
for other zero-dimensional systems, as Dicke or Lipkin–Meshkov–Glick models.
Nevertheless, despite the considerable numerical efforts, these power-law scalings
remained elusive, casting doubts on the validity of KZ arguments in these sys-
tems [11, 22]. Moreover, we recall that the KZ scaling prediction is relevant only
if γA/(zν + 1) < 2, as otherwise becomes sub-leading and the standard τ−2

Q scaling
dominates. Indeed, in spatially extended systems with a dimension d above the so-
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called upper critical dimension, du = z + 2/ν, the KZ scaling fades away [10, 25].1

This, however, is not relevant for low-dimensional systems, as it is the case for the
QRM, which features zν = 1/2 and therefore zν/(zν + 1) = 1/3.

In addition, as we have commented previously, the KZ universal scaling emerges
in distinct relevant observables of the system, not only on the residual energy. As the
spin degree of freedom is frozen in the lower subspace |↓〉, we must handle bosonic
observables that behave singularly, such as the number of bosonic excitations

〈
a†a

〉

and its squeezing, namely, �x =
√〈

x2
〉 − 〈x〉2 with x = a + a†. Both observables

show a singular behavior close to the critical point, see Chap. 3, Sect. 3.2, with
their corresponding critical exponents γ�x = −1/4 and γnexc = 1. Note however that
the latter was defined as nexc ≡ lim�/ω0→∞

〈
a†a

〉
ω0
�

in order to capture the super-
radiant nature of the QPT, since

〈
a†a

〉 ∝ �/ω0 for g > 1. Here we focus on
〈
a†a

〉

in the normal phase, that does diverge as g → 1 because the eigenstates consist of

infinitely squeezed Fock states at the critical point,
∣∣∣ϕn

np(g)
〉
= S[rnp(g)] |n〉 with

rnp(g) = −1/4 ln(1 − g2). A simple calculation leads to
〈
ϕn
np(g)

∣∣∣ a†a
∣∣∣ϕn

np(g)
〉
=

sinh2(rnp(g)) + n cosh(2rnp(g)), which unveils that in the vicinity of the critical point〈
ϕ0
np(g)

∣∣∣ a†a
∣∣∣ϕ0

np(g)
〉
∝ |g − gc|−1/2 and therefore γa†a = −1/2. Thus, for nearly

adiabatic dynamics reaching the critical point we expect

〈
ψ(τQ)

∣∣ a†a
∣∣ψ(τQ)

〉 ∼ τ
−γa†a/(zν+1)
Q = τ

1/3
Q , (4.14)

�x(τQ) ∼ τ
−γ�x /(zν+1)
Q = τ

1/6
Q . (4.15)

We now tackle the numerical confirmation of Eqs. (4.13), (4.14) and (4.15). It is
then convenient to solve the unitary dynamics in the Heisenberg picture. Since the
Hamiltonian in the �/ω0 → ∞ limit and for 0 ≤ g ≤ 1 reads

Hnp(g(t)) = ω0a†a − ω0g
2(t)

4

(
a + a†

)2 − �

2
, (4.16)

the equation of motion is simply given by i ȧH (t) = [
aH (t), Hnp,H (t)

]
where the

subscript H indicates operators in the Heisenberg picture, and aH (t) = u(t)a +
v∗(t)a† with u(0) = 1 and v(0) = 0. The equality |u(t)|2 − |v(t)|2 = 1 guarantees

that the commutation relation
[
aH (t), a†

H (t)
]

= 1 is fulfilled. In this manner, the

critical dynamics is attained after solving (see Appendix E)

1In this context, the upper critical dimension is defined as the dimension for which KZ scaling
matches the standard APT scaling, τ−2

Q , although it depends on the specific considered observable.

Since the scaling of the residual energy for a non-zero dimensional system is Er τ
−(d+z)ν/(zν+1)
Q ,

it follows du = z + 2/ν. However, for the number of excitations, nex ∼ τ
−dν/(zν+1)
Q , one obtains a

different upper critical dimension d̃u = 2z + 2/ν.
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d

dt
u(t) = −iω0

[(
1 − g2(t)

2

)
u(t) − g2(t)

2
v(t)

]
, (4.17)

d

dt
v(t) = iω0

[(
1 − g2(t)

2

)
v(t) − g2(t)

2
u(t)

]
, (4.18)

while the residual energy can be computed as

Er (g) = 〈0| Hnp,H (g) |0〉 − EGS(g)

= ω0 |v(t)|2 − ω0g
2(t)

4
|u(t) + v(t)|2 − εnp(g) − ω0

2
, (4.19)

and the number of bosonic excitations results simply in
〈
ψ(τQ)

∣
∣ a†a

∣
∣ψ(τQ)

〉 =
〈0| a†

H (t)aH (t) |0〉 = |v(t)|2, while�x(t)=√
1 + 2|v(t)|2 + u(t)v∗(t) + u∗(t)v(t).

In Fig. 4.3 the residual energy Er is plotted as a function of the quench time,
which precisely follows KZ scaling prediction when the critical point is reached,
τ

−zν/(zν+1)
Q = τ

−1/3
Q . A fit to a power law function τ

β
Q in the range ω0τQ ∈ [

103, 106
]

provides β = −0.333(1), in excellent agreement with the KZ prediction. On the
contrary, when g < gc the energy gap opens, i.e., it becomes non zero and the APT
can be successfully applied. As expected, for τQ → 0 the scaling breaks down as a
consequence of the loss of adiabaticity, and Er saturates. For quenches ending close
to the critical point there is a crossover between both scaling laws, namely from
τ

−zν/(zν+1)
Q to τ−2

Q , as explicitly shown for g = 0.999 in Fig. 4.3. In these situations,
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τQ
-zν/(zν+1)

τ
Q -2

ω0τQ

g= 0.75
g= 0.999

g= 1

Fig. 4.3 Nonequilibrium scaling of the residual energy Er for three remarkable cases, namely,
at g = 0.75 < gc where the APT is applicable (light-gray squares), at g = gc = 1 where APT
fails and KZ mechanism arguments successfully explain the universal scaling law (black circles)
and also for a quench ending close to the critical point, g = 0.999 (gray triangles), which show the
crossover betweenuniversalKZand standardAPTscaling. The residual energy Er is calculated from
Eq. (4.19) solving the equations of motion, (4.17) and (4.18). For g < gc, we observe the standard
APT scaling, τ−2

Q while when the critical point is reached, KZ scaling law emerges, τ
−zν/(zν+1)
Q .

The dashed black lines are guided to the eyes with the corresponding power-law scaling. Note that
KZ scaling holds for slow quenches, ω0τQ � 100, breaking down as τQ becomes shorter since the
adiabatic condition is not satisfied, which corresponds to the limit of sudden quenches
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Fig. 4.4 Nonequilibrium scaling for the number of excitations
〈
a†a

〉
(a) and the variance �x (b) at

the endof the quench as a functionof the total time τQ .As inFig. 4.3,we consider three representative
cases, namely g = 0.75 (light-gray squares), g = 0.99 (gray triangles) and g = 1 (black circles).
For sufficiently slow quenches, the predicted KZ scaling holds for the quench ending at the critical

point,
〈
ψ(τQ)

∣∣ a†a
∣∣ψ(τQ)

〉 ∼ τ
−γa†a/(zν+1)
Q = τ

1/3
Q and �x ∼ τ

−γ�x /(zν+1)
Q = τ

1/6
Q . For quenches

ending at g < gc, these quantities saturate once their corresponding value at g is attained, making
it possible to observe traces of KZ scaling, if g is close enough to gc. For fast quenches,

〈
a†a

〉

increases quadratically with time and the dynamics becomes nearly adiabatic. The dashed black
lines are guides to the eyes with the corresponding power-law scaling

the eigenstates are close enough to be considered gapless for certain quench rates,
while slower quenches will eventually resolve the small non-zero energy gap, and
thus, shift the dynamics to the standard τ−2

Q scaling. In terms of the KZ mechanism,
the loss of adiabaticity will follow the universal law as if g f were the strict critical
point. Hence, KZ scaling holds until the freeze-out instant ĝ surpasses the actual g f ,
after which the dynamics abandon KZ physics in favor of nearly adiabatic dynamics
well described by APT. In addition, we show the scaling of the number of excita-
tions at the end of the quench as well as the squeezing �x in Fig. 4.4, where we
further support the validity of KZ arguments for distinct observables. For g f < gc

the scaling breaks down when these quantities reach the corresponding value at g f ,
while at gc they become infinitely large and it is never attained. Depending on how
close g f is to the critical point, the universal scaling may emerge before saturating
to a specific value, as shown for g f = 0.99. In particular for

〈
a†a

〉
, the scaling τ 2

Q for
very rapid quenches simply follows fromEqs. (4.17) and (4.18) since v(τQ) ∝ τQ for
ω0τQ 	 1. These results demonstrate that KZ mechanism can be applied to critical
dynamics even in a zero-dimensional system as it is the case of the QRM. In the
following we provide an analysis of distinct scenarios, such as nonlinear ramps and
the role of different initial states. The impact of finite-frequency systems is presented
in Sect. 4.2.
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4.1.2 Nonlinear Protocols

Nonlinear protocols are perhaps themost natural extension to the linear ramp towards
the critical point [10, 25, 27]. Yet, the scaling relations are modified in a non-trivial
fashion depending on the nonlinear coefficient r > 0 of the protocol g(t), which
reads2

g(t) = g f

(
1 −

(
1 − t

τQ

)r)
. (4.20)

Naturally, for r = 1 the linear ramp studied previously is retrieved (see Fig. 4.5a).
In addition to being an interesting theoretical extension, nonlinear protocols might
be relevant in certain experimental platforms and also they might be of help to
determine critical exponents of the system, although one must have prior knowledge
of the location of the critical point. Note however that, although the functional formof
g(t) can be arbitrary, the procedure we present in the following lines can be applied
unequivocally for any other nonlinear protocols, such as sinusoidal or hyperbolic

functions [12]. Again, we take as initial coupling g(0) = 0 with |ψ(0)〉 =
∣∣
∣ϕ0

np(0)
〉

and 0 ≤ g f ≤ gc. The main difference with respect to the linear case lies in that the
rate ġ is not longer constant and depends on t ,

ġ(t) = g f

τQ
r

(
1 − t

τQ

)r−1

. (4.21)

Aswe are interested in nearly adiabatic quenches, as in the case of the linear ramp, we
first obtain the leading order correction in τ−1

Q by means of the APT, which becomes
(see Appendix E for further details on the APT)

|α2(g)|2 ≈ g2g2f r2

τ 2
Q

(
g f

g f − g

)(2−2r)/r 1

32ω2
0(1 − g2)2zν+2

, (4.22)

and allows us to estimate the residual energy as

Er (g) ≈ g2g2f r2

τ 2r
Q

(τQ − t)2r−2

16ω0(1 − g2)zν+2
. (4.23)

Remarkably, as long as g f < gc, APT predicts Er ∼ τ−2r
Q . Recall that a KZ scaling

prediction of the Er crucially relies on the scaling between adiabatic and impulsive
dynamics, i.e., on the scaling of ĝ. Although one can still work out the location of ĝ
when the two relevant time scales of the problem coincide, the fact that ġ(t) actually

2The form of the function g(t) has been chosen by analogy with previous works, where g(t) =
(t/τQ)r butwith g(0) = 0 the critical point [10, 25],whose equivalent nonlinear quench for g(τQ) =
gc = 1 corresponds to that given in Eq. (4.20).
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diverges at gc for r < 1 and vanishes for r > 1 hinders this procedure.3 Hence, we
estimate the freeze-out instant as the coupling constant ĝ at which the probability of
excitation becomes of the order O(1), or in other words, when APT breaks down.
Hence, considering g f = 1 and from

∑
n>0

∣∣αn(ĝ)
∣∣2 = 1, we obtain

1 − ĝ ≈
(
16τQω0

r

)−r/(zνr+1)

, (4.24)

where we can already observe that the nonlinear coefficient r modifies the exponent
in a non-trivial fashion. We emphasize that, although for r = 1 the prefactor differs
from the relation obtained in Eq. (4.3), we are merely interested in the scaling, that is,
in how ĝ scales with τQ . Then, applying KZ arguments once again, Er (gc) ≈ Er (ĝ),
we predict

Er (gc) ≈ 2
√
2ω0

(
16τQω0

r

)−zνr/(zνr+1)

∼ τ
−zνr/(zνr+1)
Q . (4.25)

In the same manner, we obtain
〈
ψ(τQ)

∣∣ a†a
∣∣ψ(τQ)

〉 ∼ τ
−γa†ar/(zνr+1)
Q and �x(τQ) ∼

τ
−γ�x r/(zνr+1)
Q once the quench reaches the critical point. We confirm these scaling
predictions by numerically solving the critical dynamics, although we only show
explicitly the scaling of the residual energy Er in Fig. 4.5b, c. Note that Eq. (4.25)
overestimates the actual Er by a factor O(1), as it also occurs in other systems
applyingKZarguments [1, 14, 19].However, the scaling exponent follows accurately
the KZ prediction. Indeed, a fit of Er to a power-law τ

μ
Q when g f = gc for different

r matches with μ = −zνr/(zνr + 1), see Fig. 4.5d.

4.1.3 Thermal States

The nonequilibrium scaling laws derived previously strongly rely on a ground state as

initial state, |ψ(0)〉 =
∣
∣∣ϕ0

np(g = 0)
〉
. Therefore, it is pertinent to analyzewhether these

universal scaling laws survive when such a perfect ground state cannot be prepared,
for example due to thermal effects. It is worth stressing that we only analyze the
role of a thermal initial state, while it is assumed that thermal effects are irrelevant
during the quench. Note that, since equilibrium properties even at finite temperature
are dictated by the QPT in the surroundings of the critical point [28], nonequilibrium
dynamics with thermal states may also follow the ground-state dynamics previously
studied. In this respect, it is worth noting the works [8, 9] (see also the various

3One could nevertheless assume that the relevant time scale near gc corresponds to the lowest
non-vanishing (or non-diverging) time derivative of g(t) at gc, i.e., dm/dtmg(t)|t=τQ �= 0 with
dn/dtng(t)|t=τQ = 0 for n < m. Although this argument provides the correct scaling for an integer
r we resort here to a more transparent procedure.
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Fig. 4.5 Nonlinear quenches towards the critical point, as given in Eq. (4.20), for different r
coefficients (a). The residual energy Er scaling for nearly adiabatic quenches is modified: while
for g f = 0.75 < gc APT predicts τ−2r

Q (b), at the critical point KZ arguments lead to τ
−zνr/(zνr+1)
Q

(c), which perfectly agree with the numerical results. Moreover, a fit of Er when g f = gc to a
power-law function τ

μ
Q in the region ω0τQ ∈ [

101, 106
]
for different r agrees with the expected

scaling −zνr/(zνr + 1), as shown in d

works within [10]), where the effect of finite temperature on the scaling laws was
investigated, finding a modification of the scaling depending on the nature of the
quasiparticles, namely, whether they obey fermion or boson particle statistics.

For that purpose it is convenient to consider first an nth eigenstate of Hnp at

0 ≤ g0 < 1 with n ≥ 0, that is |ψ(0)〉 =
∣∣∣ϕn

np(g0)
〉
. We denote by Er (n, g(t)) the

residual energy starting with the nth eigenstate, and due to the harmonic nature of
the spectrum, it follows Er (n, g(t)) = (2n + 1)Er (0, g(t)) (see Appendix E). This
relation is particularly useful for any diagonal ensemble. In particular, for a thermal
state at g0 with temperature β−1, the state reads

ρ(g0,β) =
∑

n=0 e−βHnp(g0)
∣∣∣ϕn

np(g0)
〉 〈

ϕn
np(g0)

∣∣∣

Tr
[
e−βHnp(g0)

] , (4.26)

where we have used the effective low-energy Hamiltonian of the QRM, and there-
fore, we assume that the spin splitting is still the largest energy scale in HQRM and
so, much larger than the thermal energy, i.e., � 
 1/β. In this manner, the resid-
ual energy adopts a simple form, E th

r (β, g(t)) = ∑
n pn Er (n, g(t)) = ∑

n pn(2n +
1)Er (0, g(t)), with pn being the initial probability of populating the eigenstate
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∣
∣∣φn

np(g0)
〉

of Hnp(g0), which for a thermal state reads pn = e−βnω0

√
1−g20

(
eβω0

√
1−g20 − 1

)
,

E th
r (β, g(t)) = Er (n = 0, g(t)) coth

(
1

2
βω0

√
1 − g20

)
. (4.27)

Evidently, for zero temperature, β → ∞, we recover Er (n = 0, g(t)). For temper-
atures higher than the characteristic energy, but still small compared with the spin

splitting, � 
 1/β 
 ω0

√
1 − g20 we obtain

E th
r (β → 0, g(t)) ≈ Er (n = 0, g(t))

2

βω0

√
1 − g20

∼ β−1τ
−zνr/(zνr+1)
Q , (4.28)

which reveals that, while the residual energy is largely enhanced, it does follow the
same scaling as that of an initial ground state, Er (n = 0, g(t)). Remarkably, because
the QRM lacks spatial dimension, this scaling differs from the prediction for systems
obeying bosonic statisticswith d > 0 [8–10], where instead Er ∼ β−1τ

−dνr/(zνr+1)
Q is

found. Note however that the scaling in Eq. (4.28) appears in those spatially extended
systems for each of the individual spatial modes, which upon summation leads to the
previously mentioned scaling.

4.1.4 Sudden Quenches

So far we have considered nearly adiabatic ramps towards the critical point, however,
sudden quenches also deserve to be mentioned as they also display a scaling law
governed by equilibrium critical exponents of the system. Needless to say, sudden
quenches appear in the opposite limit of nearly adiabatic ramps, and therefore, KZ
scaling does not apply here. Indeed, since these quenches emerge as a limiting case
when τQ → 0, we do not look into how the quantities scale with τQ but rather as
a function of the quench amplitude �g = g1 − g0 [8–10]. Recall that we are solely
interested in the state of the system right after the quench, and as in the case of
non-zero τQ , we do not concern ourselves with an eventual thermalization.

In this particular scenario, τQ → 0, it is straightforward to obtain the scaling of
different quantities as the coefficients keep their initial value, u = 1 and v = 0. In
particular, choosing g f = 1 the residual energy follows (see Appendix E for details)

E sq
r = (2n + 1)ω0

√
1 + g0

4
�g1/2 (4.29)

for an initial state |ψ(0)〉 =
∣∣
∣ϕn

np(g0)
〉
. Note that this scaling agrees with the general

prediction, Er ∝ |�g|(d+z)ν [9, 10].
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4.2 Finite-Frequency Case: Breakdown of KZ Scaling

As we have seen in Chap. 3, a finite-frequency ratio �/ω0 < ∞ lifts the singular
behavior in the same manner that it occurs for any finite-size system undergoing a
conventional phase transition. On the other hand, the confirmed KZ scaling predic-
tions are based on the strict�/ω0 → ∞ limit, and thus, it is imperative to investigate
whether KZ scaling holds or if it can be observed at all in finite-frequency systems.
Moreover, since any realistic implementation of the QRM is unavoidably limited to
a finite �/ω0, this question is of great relevance for an experimental observation of
KZ physics. Indeed, we will make use of the theoretical framework developed here
to probe the critical dynamics of the QRM in a realistic experimental platform (see
Chap. 5). Loosely speaking, KZ scaling must be absent when �/ω0 is too small,
while as �/ω0 increases, equilibrium scaling relations emerge, and therefore KZ
scaling may be progressively recovered.

As in Sect. 4.1, wewill address these questions solving theQRMunitary dynamics
under a time-dependent protocol g(t) with a total quench time τQ . However, we now
include the first order correction in ω0/� in the effective low-energy Hamiltonian,
introduced in Chap. 3 (see Eq. (3.23)),

H�
np(t) =

ωa†a − ω0g
2(t)

4

(
a + a†)2 + ω2

0g
4(t)

16�

(
a + a†)4 − �

2
+ ω2

0g
2(t)

4�
. (4.30)

In order to calculate the first order correction to the dynamics in the�/ω0 → ∞ limit,
we assume aH (t) to be linear in a and a† and keep only linear terms in a and a† in the
normal-ordered Heisenberg equation of motion for aH (t). This procedure is suitable
as long as the quartic term is small, that is, when it can be treated perturbatively. Then,
the equations of motion for finite �/ω0 adopt the following form (see Appendix E)

d

dt
u(t) =

− iω0

[(
1 − g2(t)

2

)
u(t) − g2(t)

2
v(t)

]
− i

3ω0g
4(t)

4�
(u(t) + v(t)) |u(t) + v(t)|2 , (4.31)

d

dt
v(t) =

iω0

[(
1 − g2(t)

2

)
v(t) − g2(t)

2
u(t)

]
+ i

3ω0g
4(t)

4�
(u(t) + v(t)) |u(t) + v(t)|2 , (4.32)

where the initial condition is u(0) = 1 and v(0) = 0. The residual energy is obtained
subtracting to 〈0| H�

np,H (t) |0〉 the ground-state energy E�
GS(g(t)). As we have shown

in Chap. 3, E�
GS(g) is known at g = 1 (see Eq. 3.57), thus, the residual energy at

g = 1 for a finite ratio �/ω0 can be explicitly written as

E�
r (g = 1) = ω0

∣∣v(τQ )
∣∣2 − ω0

4

∣∣u(τQ ) + v(τQ )
∣∣2 + 3ω2

0
16�

∣∣u(τQ ) + v(τQ )
∣∣4 − ω0

4

(
2�

3ω0

)−1/3
. (4.33)
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Fig. 4.6 Impact of finite-frequency�/ω0 values in nonequilibrium scaling. In aweplot the residual
energy E�

r for different value �/ω0 as a function of the quench time τQ ending at the critical
point g = 1. The �/ω0 values correspond to 102 (squares), 103 (circles), 104 (triangles) and 105

(diamonds), from light gray to black. The fitted scaling exponent τμ
Q as a function of the quench time

τQ is plotted in b that illustrates the transition from τ−2
Q (dynamics dictated by APT) to τ

−zν/(zν+1)
Q

(KZ physics). The inset in a shows the expected scaling of the crossover time τc ∼ �/ω0, where
τc corresponds to the quench time at which the exponent becomes μ ≈ −7/6 (see main text for
further details)

Taking the�/ω0 → ∞ limitwe recoverEq. (4.19) inSect. 4.1. InFig. 4.6awepresent
the results for the residual energy E�

r (g = 1) as a function of the quench time τQ .
There is a crossover from the universal scaling τ

−1/3
Q to the conventional τ−2

Q as the
ratio �/ω0 decreases, and for a given �/ω0, as τQ becomes larger. The breakdown
of the KZ scaling stems from the fact that, for any finite �/ω0, the energy gap at the
critical point is non zero, and thus, there is a minimum quench time τ ∗

Q ∝ (ε�
np)

−1

after which the dynamics becomes adiabatic and well described by APT. Therefore,
for quencheswith τQ ≥ τ ∗

Q APT scaling is recovered (see Eq. (4.12)). This is indeed a
similar scenario as for a quench ending close but not exactly at the critical point, aswe
have discussed earlier. For larger �/ω0, the energy gap decreases leading to a larger
τ ∗

Q , enabling the observation of KZ scaling in a broader region of τQ . Eventually, in
the�/ω0 → ∞ limit, τ ∗

Q becomes infinitely large and therefore KZ scaling holds for
any quench time τQ in the nearly adiabatic regime, that is, ω0τQ � 1. The transition
between these two dynamical regimes can be better observed in Fig. 4.6b, where we
present the fitted scaling exponent μ, from E�

r ∝ τ
μ
Q , as a function of τQ and for

different �/ω0 values. The fitted exponent μ for a quench time τQ is computed in
a window τQ ∈ [

τQ/�τQ, τQ�τQ
]
with log10 �τQ = 0.01 such that we ensure an

homogeneous sampling in a logarithmic scale.4 The results show a clear crossover
from the KZ scaling law, μ = −zν/(zν + 1) = −1/3, to μ = −2, as dictated by
APT, and a convergence to KZ scaling as �/ω0 increases. Remarkably, it is possible
to witness KZ scaling for a large but still finite �/ω0, such as 105 or 104 at short
quench times, ω0τQ ≈ 10. This evidences the extremely large system sizes required

4Note that, in order to attain a reliable fit more quench times were computed, samplingmore densely
τQ than the data shown in Fig. 4.6a.
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to attain KZ scaling. Note that in the �/ω0 → ∞ limit, μ adopts the discussed
universal form, μ = −zν/(zν + 1) = −1/3.

Moreover, since the opening of the energy gap is at the root of the crossover
between these two dynamical regimes, it is not surprising that such a transition also
manifests a power-law behavior related to the critical exponents of the system. Let
τc denote the quench time at which the crossover between KZ and APT scaling
occurs. Then, since the minimum energy gap sets a time scale t̂ ∼ ε−1

np and because

εnp(g = 1) ∝ (�/ω0)
−z , it follows t̂ ∼ (�/ω0)

z . On the other hand, t̂ ∼ τ
zν/(zν+1)
Q

as derived using KZ arguments. The crossover time τc results when both match,
τ

zν/(zν+1)
c ∼ (�/ω0)

z , which leads to τc ∼ (�/ω0)
(zν+1)/ν = �/ω0.Numerically,we

estimate τc as the quench time at which the scaling exponent μ is half away from
KZ and APT scaling, i.e., when μ = −7/6 in Fig. 4.6b. Despite the rough estimate,
it corroborates the scaling τc ∼ �/ω0, shown in the inset of Fig. 4.6a. Finally, we
emphasize that the same conclusions can be drawn from other relevant magnitudes
such as

〈
a†a

〉
and �x , which although we have not shown them explicitly here, their

behavior is very similar to that presented in Fig. 4.4, where instead�/ω0 < ∞ plays
the role of g f < gc.

4.2.1 Nonequilibrium Finite-Frequency Scaling Functions

The emergence of interesting scaling relations in nonequilibriumdynamics is sparked
by the existence of a critical point, or more precisely, due to a precursor of a critical
point. As we have seen previously, the QRM displays a rich nonequilibrium behav-
ior, in which KZ physics appear as a limiting case. Finite-frequency cases reveal that
even the manner in which the dynamics abandons its universal scaling is dictated by
equilibrium critical exponents. We can however go beyond the previous considera-
tions and encompass, in a compact and elegant fashion, the nonequilibrium response
of finite-frequency systems in a universal function in the same spirit as finite-size
scaling functions for equilibrium [11, 29]. In this manner, the nonequilibrium scaling
functions depend on two scaling variables, one exclusively dynamical and related to
the quench time τQ , and the other as in the equilibrium case, x = �/ω0|g − gc|ν (see
Sect. 3.2). Assuming nearly adiabatic dynamics and a linear quench g(t) = g f t/τQ ,
the equation of motion can be cast in a universal form through a rescaling of param-
eters, exploiting the universal form of certain quantities such as the energy gap close
to the critical point [11]. Indeed, upon this transformation, the dynamics does not
longer depend on �/ω0, τQ and the final coupling g f alone, but on two scaling
variables, x ≡ �/ω0|g − gc|ν and T ≡ τQ(�/ω0)

−(1+zν)/ν .
We present a brief derivation of this claim starting from the equation of motion in

terms of the coefficients αn(t) such that |ψ(t)〉 = ∑
n αn(t)e−i

∫ t
0 εn(t ′)dt ′

∣
∣∣ϕn

np(g(t))
〉
,

that is, from Eq. (4.10). Then, assuming that the dynamics is nearly adiabatic far
away from the critical point, the coefficients αn(t) remain constant until g ∼ gc, and
thus, we can rely on the equilibrium scaling functions of the energy difference and
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transition amplitudes between nth and mth eigenstates, �n,m = εm(g) − εn(g) and

χn,m =
〈
ϕn
np(g)

∣∣∣ ∂g

∣∣∣ϕm
np(g)

〉
respectively. While �n,m has been discussed in Chap. 3

(see Eqs. (3.25) and (3.60)), the latter is derived here. In particular, χn,m can be

obtained knowing that
∣∣∣ϕn

np(g)
〉
= S[rnp(g)] |n〉 |↓〉 with rnp = −1/4 ln(1 − g2) for

0 ≤ g ≤ gc,

χn,m =
〈
ϕn
np(g)

∣
∣∣ ∂g

∣
∣∣ϕm

np(g)
〉
=

〈
ϕn
np(g)

∣
∣∣
1

2

∂rnp(g)

∂g

(
a2 − (a†)2

) ∣
∣∣ϕm

np(g)
〉

(4.34)

= g

4(1 − g2)

(√
n(n − 1)δm+2,n − √

m(m − 1)δm−2,n

)
.

Therefore, χn,m ∼ |g − gc|γχ with γχ = −1. As we are interested in the behav-
ior of these quantities close to the critical point and for finite �/ω0 values,
we introduce the finite-frequency scaling functions �n,m = (�/ω0)

−z��(x) and
χn,m = (�/ω0)

−γχ/ν�χ(x) = (�/ω0)
1/ν�χ(x) where x is the scaling variable x ≡

�/ω0|g − gc|ν (see Chap. 3). Note that we have written the dependence on �/ω0

explicitly. Making use of the previous expressions, Eq. (4.10) transforms into

αn(x) = −
∑

m

∫
dx

1

ν
x1/ν−1αm(x)�χ(x) e

−i
τQ
νg f

(�/ω0)
−(1+zν)/ν

∫
dx x1/ν−1��(x)

.

(4.35)

Therefore, defining T ≡ τQ(�/ω0)
−(1+zν)/ν , the above expression depends only on

x f = �/ω0|g f − gc|ν and T , and so does the evolved state |ψ(t)〉. Recall that ν =
3/2 and z = 1/3, and thus T = τQ(�/ω0)

−1. Using this powerful result we can
construct nonequilibrium scaling functions for several relevant quantities, which
must collect both KZ physics and APT scaling as well as the crossover between
them.

We first consider the residual energy E�
r as it has played a central role in the

previous parts of this chapter, which can be recast as

E�
r =

∑

n

|αn(τQ)|2�0,n(g f ) ≈
(

�

ω0

)−z

SEr (x, T ), (4.36)

valid only if |g f − gc| 	 1 and where we have used that αn(τQ) is a function of x
and T , from Eq. (4.35). The first consequence of this expression directly leads us to
observe that SEr (x f , T ) ≡ (�/ω0)

z E�
r turns out to be a universal scaling function,

which fulfills SEr ∼ T −zν/(zν+1) for T 	 1 and SEr ∼ T −2 for T 
 1. The simplest
case, g f = gc and thus x f = 0, suggests that plotting (�/ω0)

z E�
r as a function

of T = τQ(�/ω0)
−(1+zν)/ν should collapse in a single curve, independently of the

individual values of τQ or �/ω0. However, we remark that τQ must be large enough
to ensure nearly adiabatic dynamics, as the procedure is only valid when excitations
are caused in the vicinity of the critical point. This is plotted in Fig. 4.7 for several
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Fig. 4.7 Nonequilibrium finite-frequency scaling function of the residual energy E�
r obtained

as SEr ≡ E�
r (�/ω0)

z under a linear protocol g(t) = t/τQ , for different quench times and �/ω0
values. Then SEr results in a universal function when plotted against T ≡ τQ(�/ω0)

−(1+zν)/ν . The
residual energy was calculated through the low-energy effective Hamiltonian H�

np (see Eq. (4.33)).

Different values from �/ω0 = 101 until 108 were considered, each of them plotted in a gray scale,
ranging from light-gray (101) to black (108). The dashed lines are guides to the eyes fixing the
characteristic KZ and APT power-law scaling

τQ and �/ω0 values, relying on Eq. (4.33) and for ω0τQ > 1. As we clearly observe,
this nonequilibrium scaling function SEr (x, T ) encompasses both dynamical regimes
(KZ and APT), enabling the observation of their corresponding scaling as well as
the crossover between them. As a consequence, we can estimate that the dynamics
of a QRM for a particular �/ω0 value will lie in the KZ when T � 10−4, that is,
when τQ � 10−4�/ω0 but still ω0τQ � 1 due to the nearly adiabatic condition. This
sets a constrain for the observation of KZ physics with a finite �/ω0 system, which
is consistent with Fig. 4.6, where �/ω0 � 105 is needed to witness the universal
scaling exponent μ = −zν/(zν + 1). Furthermore, the function SEr (x, T ) reveals
that the resulting dynamics from different �/ω0 are equivalent when they share
the same value x f = �/ω0|g f − gc|ν . That is, when the protocol ends at g f = gc −
(xω0/�)1/ν , plotting E�

r (�/ω0)
z the data collapses into a single and universal curve.

Note, however, that |g f − gc| 	 1 to ensure the validity of the universal features of
the phase transition and thus, we expect worse data collapse for larger x and smaller
�/ω0 values.

In a straightforward manner, same arguments as for Er can be applied to argue the
existence of nonequilibriumscaling functions for other quantities, such as

〈
a†a

〉
ω0/�

or �p, which we denote as Snc and S�p. Interestingly, we can obtain a nonequi-
librium scaling function for 〈σz〉, which may be extremely advantageous from an
experimental point of view, as spin degrees of freedom are commonly more acces-

sible than bosonic observables. Since
〈
ϕn
np(g)

∣
∣∣σz

∣
∣∣ϕn

np(g)
〉
≈

〈
ϕ0
np(g)

∣
∣∣σz

∣
∣∣ϕ0

np(g)
〉

to a very good approximation for �/ω0 
 1, and
〈
ϕ0
np(g)

∣∣∣σz

∣∣∣ϕ0
np(g)

〉
≈ −1 +

1/3(2�/(3ω0))
−γσz /ν with γσz = 1 (see Chap.3, Sect. 3.2),
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Sσz (x, T ) ≡
(

�

ω0

)γσz /ν ∣∣∣
〈
ψ(τQ)

∣∣σz

∣∣ψ(τQ)
〉 −

〈
ϕ0
np(g)

∣∣∣σz

∣∣∣ϕ0
np(g)

〉∣∣∣ (4.37)

becomes a nonequilibrium scaling function, in the same manner as SEr (x, T ).
As for equilibrium, we abandon the effective low-energy Hamiltonian and show

the validity of this scaling functions solving the dynamics in the full HQRM. We
compute the nonequilibrium scaling functions of a quantity A as SA = (�/ω0)

−δA
∣∣〈A〉 (τQ,�/ω0, g f ) − 〈A〉GS (�/ω0, g f )

∣∣ where δA = −γA/ν denotes the finite-
frequency scaling exponent, while 〈A〉 (τQ,�/ω0, g f ) and 〈A〉GS (�/ω0, g f ) the
expectation value of A at the end of a quench g(t) = g f t/τQ with �/ω0 and its
ground-state value, respectively.

The resulting nonequilibrium scaling functions are shown in Fig. 4.8 for 〈σz〉,
the residual energy E�

r , the squeezing �p and nc for three different values of x ,
namely, 0, 1/2 and 1. The collapse of the data into single curves (one for each
value of x) strongly supports the existence of these nonequilibrium scaling functions
merging different dynamical regimes and bearing the equilibrium critical exponents.
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Fig. 4.8 Nonequilibriumfinite-frequency scaling functions of theQRM, for three different x values,
namely, x = 0, 1/2 and 1 from top to bottom, and as function of the rescaled quench time T ≡
τQ(�/ω0)

−(1+zν)/ν for four different values of �/ω0, 50, 100, 200 and 400, plotted with different
colors and point shapes. In a we plot Sσz (x, T ), in b SEr (x, T ), while c and d correspond to
S�p(x, T ) and Snc (x, T ). The data falls into different curves depending on x and T , i.e. the data
collapse, which strongly supports the suitability of these scaling functions (see main text for further
details)
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In this respect, these scaling functions provide great information regarding the critical
features of the system, in and out of equilibrium. This procedure may be extremely
helpful to verify the presence of the QPT and test the validity of equilibrium critical
exponents in experimental setups, as evolution times are much shorter than required
for adiabatic preparation. We finally comment that we have presented a similar idea
in Chap. 2 in the realm of Ginzburg–Landau theory and a linear to zigzag phase
transition in a Coulomb crystal.

4.2.2 Universality Class

Aswe have discussed for the equilibrium case in Chap. 3, the finite-frequency scaling
functions of the QRM are equivalent to those of the Dicke [30] or Lipkin–Meshkov–
Glick models [31], a clear indication that their QPTs belong to the same universality
class. Hence, one may question whether the nonequilibrium features of the QRM,
discussed previously, are representative of its universality class. In this regard, it is
worth noting the work done in Ref. [11], where the nonequilibrium scaling functions
were used to disclose that the dynamics of different models that lie in the same
equilibrium universality class, as Dicke and Lipkin–Meshkov–Glick models, are not
equivalent during the complete nonequilibrium protocol g(t). However, in our case,
we are concerned solely with dynamical features at the end of the protocol and in the
vicinity of the critical point, which turn out to be indeed universal, that is, equivalent
and also include the QRM. Again, as for equilibrium scaling functions, we resort
to the Dicke model since the equivalence with the Lipkin–Meshkov–Glick model is
well established when |g f − gc| 	 1 [11]. For convenience, we rewrite the Dicke
Hamiltonian

HDicke = ωa Jz + ωba†a + g

√
ωaωb

2
√

N
Jx (a + a†), (4.38)

where the N two-level systems are described in terms of the collective angular
momenta Jα = ∑N

i σi
α/2. Note that HDicke exhibits a QPT at gc = 1 in the N → ∞

limit [32–35]. As it is customary in the Dicke model, we consider the resonant
condition ωa = ωb and then solve numerically its critical unitary dynamics under
the protocol g(t) = g f t/τQ for various τQ and N = 2J values. The initial state
is, as in the QRM, the ground state at g(0) = 0, namely, |ψ(0)〉 = |J,−J 〉 |0〉 such
that J 2 |J,−J 〉 = J (J + 1) |J,−J 〉 and Jz |J,−J 〉 = −J |J,−J 〉. Note that, since
both critical exponents and equilibrium finite-size scaling functions are equivalent
to those of the QRM, the procedure presented in 4.2.1 is also valid for the Dicke
model, although the nonequilibrium scaling function for a quantity A, denoted
by S̃A, depends now on x̃ = N |g − gc|ν and T̃ = τQ N−(1+zν)/ν . The equivalence
between the critical dynamics of these two models is supported by the fact that both
share the same nonequilibrium scaling functions up to constant factors, as shown in
Fig. 4.9. There, we compare the Sσz (x, T ) and SEr (x, T ) of theQRMwith those of the
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Fig. 4.9 Nonequilibrium finite-size scaling functions of the Dicke model (points) compared with
those of the QRM (solid lines) for σz (a) and residual energy (b). Different size systems are plotted
with different colors and point shapes. In order to better illustrate the equivalence between these
scaling functions, we plot K1 S̃Jz (x̃, T̃ K2) and K1 S̃Er (x̃, T̃ K2) with K1,2 constant factors that
account for microscopic differences between both models. Note that although they share critical
exponents, the scaling variables for the Dicke model read x̃ = N |g − gc|ν and T̃ = τQ N−(1+zν)/ν .
In a we have chosen K1 = 5 and K2 = 1/2 that correctly reproduce the three different values of
x considered here (x = 0, 1/2 and 1), while in b a good agreement is found for K1 = 10. The
equivalence between these models, that fall into the same universality class, extends also into a
nonequilibrium scenario

Dicke model, K1 S̃Jz (x̃, T̃ K2) and K1 S̃Er (x̃, T̃ K2) with K1,2 constant factors explic-
itly included here account for different microscopic details of the Dicke model [36].
Choosing K1 = 5 and K2 = 1/2 we obtain a very good agreement for σz and Jz for
each of the x sheets (x = 0, 1/2 and 1), while for the residual energy we found that
K1 = 10 reproduces well that of the QRM.

These results further support that the superradiant QPT of the QRM belongs to
the same universality class as those of Dicke and Lipkin–Meshkov–Glick models.
Moreover, this equivalence holds even in a nonequilibrium scenario and therefore,
the critical dynamics in the QRM is representative of its universality class.

4.3 Conclusion and Outlook

This chapter has been devoted entirely to an in-depth analysis of nonequilibrium
dynamics of the QRM involving the QPT, with special emphasis on nearly adiabatic
dynamics in the spirit of the KZ mechanism. The question of to what extent equi-
librium universal features are captured in a nonequilibrium scenario has attracted
the attention of researchers during the last decades and significant efforts have been
invested in its inspection [1, 2, 7, 10, 25]. In this chapter we have not only shown
that KZ scaling holds even in a zero-dimensional system, in contrast to the common
belief prior to this work [11, 22], but hopefully, we have also convinced the reader
that the QRM constitutes a formidable system where distinct nonequilibrium scenar-
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ios can be tested. Among them, nonequilibrium finite-frequency scaling functions
deserve special mention, which include the KZ scaling as a limiting case, and show
a functional form that is shared within models belonging to the same universality
class, such as the Dicke or Lipkin–Meshkov–Glick models. Note that these functions
have been also discussed in Chap. 2 in the context of classical continuous phase tran-
sitions. In addition, as any experimental realization of the QRM is limited to a finite
value of �/ω0, these nonequilibrium finite-frequency scaling functions appear as a
promising tool to experimentally probe the critical dynamics of a superradiant QPT,
which is the subject of the following Chapter.

Despite the detailed analysis presented here, it is worth recalling that we have
just provided a first glance at nonequilibrium critical features of the QRM, as we
have addressed the simplest case, namely, the unitary dynamics of an isolated QRM
driven by an external time-dependent coupling. Even in this case, there are more
topics which might deserve a short mention, such as the role of more general initial
states, optimal nonlinear protocols [37, 38] or the design of the so-called shortcuts
to adiabaticity [39]. These techniques, besides being of theoretical interest, can lead
to outstanding advantages in experimental platforms as, for example, in the search
for fast preparation of valuable states. This becomes crucial if ones pursues the
ground state at the critical point, a necessary condition to verify equilibrium scaling
functions, since the required time to adiabatically prepare it under a naive linear
ramp grows exponentially due to the closing of the energy gap. In the context of
a driven isolated QRM, we mention the work done in [40], which closely follows
the developments presented here considering instead a generalized QRM, that is, a
QRM where rotating and counter-rotating terms have different weights, and finding
non-trivial modifications to scaling exponents.

The inclusion of a non-negligible interaction with an environment definitely
affects the critical dynamics, not only due to an eventual modification of equilib-
rium critical exponents [41, 42] but also as a consequence of environment-induced
transitions. Note for example that the latter may lead to universal scaling in terms of
the temperature of the bath [43–46] and potentially to an anti-KZ regime, in which
slower quenches generate larger number of excitations [47], although more aspects
may be explored [48–51]. In short, the inspection of system-environment interactions
in a critical system joins the endless list of attractive subjects to investigate in the
realm of quantum critical phenomena, being of particular significance in any exper-
imental platform. We remark that neither these effects nor thermalization have been
considered in this chapter, which constitute exciting directions of future research.

The QRMmight also be a suitable model to explore and study the bonds between
nonequilibrium KZ physics and concepts of thermodynamics, such as irreversible
work done and entropy production, as well as ultimately the connection with the
fluctuation theorems, namely, Jarzynksi equality and Tasaki-Crooks theorem [52,
53] (see Ref. [54] for a review).
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Chapter 5
Superradiant QPT with a Single Trapped
Ion

In Chaps. 3 and 4 we have examined equilibrium and nonequilibrium features of the
quantum phase transition (QPT) exhibited by the quantum Rabi model (QRM). As
we have emphasized, this finite-component system QPT differs from conventional
phase transitions in many-body systems as it appears without scaling up system
constituents. The present chapter exploits this fact, proposing a single trapped-ion
experiment in which universal features of a superradiant QPT can be examined. This
chapter completes, and also complements, the previous Chaps. 3 and 4 involving the
QRM.

An experimental realization of a finite-component system QPT would open the
door to the inspection of the dynamics involving a QPT in a small, fully controlled
quantum system with a high degree of coherence without the necessity of scaling
up the number of system components. It is therefore worth pursuing a potential
implementation of the QRM in the parameter regime in which QPT becomes notice-
able. The QRM naturally arises in a variety of platforms, as commented in Chap. 3.
Among them, trapped ions [1, 2], circuit and cavity QED [3, 4], optomechanical
systems [5], cold atoms [6, 7] and color centers in membranes [8] deserve special
mention. Despite each of the platforms may exhibit certain advantages with respect
to the rest, trapped ions are perhaps the most versatile setup up to date featuring high
coherent quantum control, tunability of system parameters and the possibility of per-
forming high-fidelity measurements [1, 2, 9–11]. In addition, as reported in [12, 13]
and studied here in Chap. 2, trapped-ions have been demonstrated to be a suitable
platform to study classical phase transitions.

Wewill then show the suitability of a single trapped-ion experiment to explore the
features of a superradiant QPT. The trapped-ionQRM realization allows to access the
extreme parameter regime required for the observation of the QPT, which may not be
trivially achieved in another platforms. It is worth noting that the observation of crit-
ical phenomena typically requires a system comprising many constituents. Despite
the formidable advances in trapped-ion technologies, quantum control, preservation
of quantum coherence, and state measurements involving many ions still constitutes
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a major challenge [10, 11] (see however the very recent works [14, 15]). This draw-
back can be overcome considering the QRM, which merely deals with a coherent
interaction between a qubit and a single bosonic mode.

Trapped ions, as any other platform, is inevitably prone to experimental imper-
fections and uncontrolled interactions with the environment. Although the QRM can
be well realized in a trapped-ion setup, these realistic imperfections may spoil the
pursued universal traits of a superradiant QPT. It is therefore pertinent to examine
the effect of different noise sources, and whether such universal behavior survives.
Indeed, we find that nonequilibrium scaling functions can be still observed since they
involve much shorter quench times than those required for adiabatic preparation, and
thus, they are more resilient against noise than their equilibrium counterparts. More-
over, while the first part of this chapter, Sect. 5.1 is devoted to the inspection of
the validity of the trapped-ion model to realize the QRM in the needed parameter
regime, the second part, Sect. 5.2, is entirely dedicated to provide a strategy to cope
with magnetic-field fluctuations. These fluctuations are typically the main source of
decoherence in various trapped-ion setups. For that purpose, we will apply continu-
ous dynamical decoupling techniques [16, 17], theoretically analyzed [18–21] and
whose experimental feasibility and suitability has been already reported in [22, 23].
Here we extend the applicability of continuous dynamical decoupling methods for
the implementation of a robust, noise resilient, yet tunable QRM.

Part of the results andmaterials collated in this chapter have been published in [24,
25], while similar ideas developed by the author [26, 27] have been omitted in this
thesis.

5.1 Proposed Trapped-Ion Experiment

A single trapped-ion, subject to classical radiation, is sufficient to realize the
QRM [28, 29] in several parameter regimes. As explained in Chap. 2, Sect. 2.2,
individual ions can be trapped by means of either inhomogeneous static electric and
magnetic fields (Penning trap) [30] or due to time-dependent electromagnetic fields
(radio-frequency or Paul trap) [31]. In the following we will introduce the basic
ingredients we need to construct a QRM from a trapped-ion Hamiltonian, to later
discuss its validity to retrieve the aimed dynamics involving its superradiant QPT.

5.1.1 Trapped-Ion Platform and QRM

Consider a single atomic ion, where two internal electronic states, denoted by |g〉
and |e〉 are separated by a frequency ωI . The ion, in turn is placed in the trap, which
to a very good approximation may be considered to produce a harmonic confinement
potential, with frequency ν. Recall that ν has been used in previous chapters to denote
a critical exponent, however, for consistency with customary trapped-ion notation,
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ν corresponds in this chapter to the frequency of the trap. Note that, while the ion
is trapped along any direction, we are just interested in the motion along one axis,
say x-axis. In addition, we neglect the so-called micromotion when describing the
ion position r (see Chap. 2, Sect. 2.2 for a discussion, as well as the review [2]). The
interaction of the trapped ion with distinct classical light fields is well described by
the following Hamiltonian (� = 1),

HTI = ωI

2
σz + νa†a +

∑

j

� j

2
σx

[
ei(k j ·r−ω j t−φ j ) + H.c.

]
, (5.1)

where the wave-vector k = (kx , ky, kz), amplitude or Rabi frequency � j , frequency
ω j and initial phaseφ j characterize the j th classical radiation source. It is important to
remark that the previousHamiltonian is only valid as long asω j ≈ ωI which allows to
reduce the full, generally complex, internal state structure of the ion to a simple two-
level system, |g〉 and |e〉, such that the qubit is described by the usual spin- 12 algebra,
namely σx = |e〉 〈g| + |g〉 〈e|, σy = −i |e〉 〈g| + i |g〉 〈e| and σz = |e〉 〈e| − |g〉 〈g|.
Furthermore, the light fields are considered to have a detuning such that only the
motion along the x-axis is excited or allowed (as we have seen in Chap. 2, by tuning
trap frequencies one can effectively achieve a one-dimensional system). Therefore,
we can simply considerk j · r = k j x where the position of the ion in the harmonic trap
can be written as x = (2mν)−1/2

(
a + a†

)
, where m denotes the ion mass. Then, it is

insightful to introduce the so-calledLamb-Dicke parameter η j = k j (2mν)−1/2 which
accounts for the ratio between the extension of the ground-state motional wave func-
tion and the wavelength of the applied radiation. The amplitude or Rabi frequency
� j of the j th light field depends on the specific coupling between the electronic ion
states and the electromagnetic field E0, typically involving dipolar or quadrupolar
transitions. In thismanner,� j/2 = e 〈g| E0 · r |e〉 or� j/2 = e(k/2) 〈g| x(E0 · r) |e〉
with e the electron charge, respectively. Note however that, states coupled through
quadrupolar transitions are typically used to encode qubits since they exhibit smaller
spontaneous emission rates, i.e., longer coherence time, than dipolar transitions,
which are commonly used for measurements. Yet, there are other schemes relying
on adiabatic elimination of intermediates states, ultimately leading to a Hamiltonian
of the form of Eq. (5.1), as it is the case of the so-called Raman scheme. Briefly, in
this scheme the qubit is encoded by two ground states, connected near resonance
via dipolar coupling by electromagnetic fields with a third excited state. Since this
auxiliary state is short lived and sufficiently detuned, its population is negligible
and can be adiabatically eliminated [32]. Then, the parameters in HTI correspond to
differences between the parameters of the two light fields, (see [2] for more details).
In either of these schemes, the effective coupling between radiation and electronic
states is captured by the last term in Eq. (5.1).

It is worth recalling that, since the ions possessmany different internal levels, there
is not a uniquemanner to encode a qubit. However, one demands long coherence time,
and thus, the sought internal statesmust feature a very slow spontaneous emission rate
(long lifetime), that is, they are either part of the electronic ground state or metastable
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states, forwhich transitions to lower states are forbidden. Typically, a qubit is encoded
following two cases, namely, either using different electronic states, as typically
done in a 40Ca+ [33, 34], or by means of hyperfine levels of the electronic ground
state, as in 171Y b+ [22, 35]. In the following we will resort to the former, 40Ca+,
where the metastable states

∣∣S1/2, m j = 1/2
〉
and

∣∣D5/2, m j = 3/2
〉
are normally

utilized to encode the qubit, which are separated by ωI = 2π × 4 · 1014 Hz that
corresponds to an optical wavelength of 729 nm. In addition, to better understand the
forthcoming approximations, it is helpful to keep in mind typical parameter values
for trapped-ion experiments. For example, trap frequencies ν amount to few MHz,
the amplitudes or Rabi frequencies of the light fields lie in the range of kHz and
thus ω j ≈ ωI � ν � � j (although |ω j − ωI | may be of the order of ν), while the
Lamb-Dicke parameter results typically in η ∼ 10−1 or 10−2 [33, 34].

The main task now consists in attaining a QRM from HTI. For that purpose,
we closely follow the procedure reported in [28], which we present briefly in the
following lines. Note that, while a single trapped-ion experiment may explore the
QRM in distinct parameter regimes, as the deep-strong coupling [36], it is cer-
tainly not straightforward to accomplish a faithful realization of the QRM in the
sought extreme parameter regime. The strategy consists in (i) moving to an interac-
tion picture with respect to the free energy terms, HTI,0 = ωI σz/2 + νa†a such that
HTI = HTI,0 + HTI,1, (ii) approximating the resulting Hamiltonian using a rotating-
wave approximation (RWA) (see Appendix B for an explanation) and considering

the Lamb-Dicke regime, η
√〈

(a + a†)2
〉 � 1, and finally (iii) identifying a suitable

interaction picture inwhich the trapped-ionHamiltonian adopts the formof theQRM.
In the interaction picture, H I

TI,1 ≡ U†
TI,0HTI,1UTI,0 with UTI,0 = e−i

∫
dt ′ HTI,0(t ′) the

time-evolution propagator, the Hamiltonian adopts the following form

H I
TI,1 =

∑

j

� j

2

(
σ+eiωI t + σ−eiωI t

) [
eiη j (ae−iνt +a†eiνt )e−iω j t e−φ j + H.c.

]
. (5.2)

Then, since we are dealing with near resonant irradiation, |ωI − ω j | � |ωI + ω j |
and because � j � ωI , we can safely apply a RWA to eliminate the counter-rotating
terms, i.e., those rotatingwith frequencyωI + ω j . This step is known as optical RWA.

Moreover, requiring η
√〈

(a + a†)2
〉 � 1, that is, within the Lamb-Dicke regime, the

exponential terms can be expanded as

eiη(a+a†) ≈ I + iη(a + a†) − η2

2
(a + a†)2 + O(η3(a + a†)3). (5.3)

Hence, to a very good approximation the trapped-ion Hamiltonian becomes

H I
TI,1 ≈

∑

j

� j

2

[
σ+ {

I + iη(ae−iνt + a†eiνt )
}

ei(ωI −ω j )t e−iφ j + H.c.
]
. (5.4)
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(a) (b) (c)

Fig. 5.1 a Schematic representation of a trapped-ion irradiated by two bichromatic lasers, driving
detuned blue- and red-sidebands. Two internal electronic states, separated by a frequencyωI , encode
the qubit, while the motion of ion represents the bosonic degree of freedom, with frequency ν. In b
we sketch the transitions driven by red- and blue-sidebands, as they create interaction terms of the
type

(
σ+a + H.c.

)
(Jaynes-Cummings) and

(
σ+a† + H.c.

)
(anti-Jaynes-Cummings), respectively.

The laser frequencies can be slightly detuned from these sidebands, i.e., ωr,b = ωI ∓ ν − δr,b, as
represented in c. See main text for further details

The final step consists in tuning the laser frequency ω j such that it coincides with
a multiple of the motional frequency ν. For example, for a single resonant driving
(denoted by the subscript c), ωc = ωI , the Hamiltonian adopts the form of a carrier
excitation, H I

TI,1 ≈ �c/2(σ+e−iφc + σ−e−iφc). This is accomplished after neglecting
terms rotating with frequency ν or higher, known as vibrational RWA, valid as long
as the amplitude of the neglected terms is much smaller than the frequency at which
they rotate. In particular, for the the carrier resonance we find the condition�η � ν,
that holds in this setup. However, a more interesting situation appears when tuning
the frequencies to ωr,b = ωI ∓ ν, since it results in a coherent interaction between
the qubit and the motion, namely

H I
TI,1 ≈ �r

2

[
σ+ae−iφr + H.c.

] + �b

2

[
σ+a†e−iφb + H.c.

]
, (5.5)

where the first (last) term corresponds to a red-sideband (blue-sideband) excitation,
producing transitions of the type |g〉 |n〉 ↔ |e〉 |n − 1〉 (|g〉 |n〉 ↔ |e〉 |n + 1〉). Note
that the previous Hamiltonian is valid for �r,b � ν. Recognizably, the interaction
created by a red-sideband excitation is formally equivalent to a Jaynes-Cummings,
while the blue-sideband leads to an anti-Jaynes-Cummings term, which essentially
entangles the motion of the ion with its internal degrees of freedom, or in other
words, the ion motion depends on the state |e〉 or |g〉. Recall that these interactions
are similar to those investigated in the realm of cavity QED [3, 37].

For the realization of the QRMwith a single trapped-ion we consider two detuned
red- and blue-sidebands, namely, ωr,b = ωI ∓ ν − δr,b, such that |δr,b| � ν. As we
have explained previously, HTI transforms into

H I
TI,1 ≈ −η�

2

[
σ+(aeiδr t + a†eiδbt ) + H.c.

]
, (5.6)
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which in a suitable rotating frame becomes time independent and assumes the form
of a QRM [28, 29]. Defining the QRM as H̃QRM = H̃0 + H̃1, with H̃0 = �̃/2σz +
ω̃0a†a and H̃1 = −λ̃σx (a + a†), then H̃ I

1 ≡ Ũ†
0 H̃1Ũ0 ≈ H I

TI,1, or equivalently, in
terms of time-evolution propagators

ŨQRM ≈ UEUTI (5.7)

with UE ≡ Ũ0U†
TI,0 = e−i t ((�̃−ωI )/2σz+(ω̃0−ν)a†a). The parameters of the simulated

QRM are related to those of the trapped-ion setup as

�̃ = 1

2
(δb + δr ) , ω̃0 = 1

2
(δb − δr ) , and λ̃ = η�

2
. (5.8)

We emphasize that the QRM parameters are denoted in this chapter by �̃, ω̃0 and
λ̃, not to be confused with the utilized trapped-ion frequencies. Note that we have
considered equal Lamb-Dicke parameters and Rabi frequencies for both drivings,
ηr,b ≡ η and �r,b ≡ �, as well as φr,b = 3π/2. See Fig. 5.1 for a schematic rep-
resentation of the setup, the excited transitions and the detuned frequencies of the
bichromatic light fields.

It is worthmentioning that, while higher-order sidebandsmay be excited by tuning
ωnr,nb = ωI ∓ nν, their amplitudes become decreasingly smaller,�nr,nbη

n/2(n!) and
at the same time, the vibrational RWA deteriorates. Nevertheless, one can still find
suitable parameters that allow the inspection of models with non-linear spin-boson
interaction terms [26, 38].

The superradiant QPT of the QRM emerges in the limit �̃/ω̃0 � 1 at the crit-
ical point g̃ = 2λ̃/

√
ω̃0�̃ = 1. Hence, because the realization of the QRM in the

trapped-ion setup is crucially constrained by the Lamb-Dicke regime and the valid-
ity of the considered RWAs, it is not evident that HTI can reproduce the QRM in
such a demanding parameter regime. In particular, as we have discussed in Chaps. 3
and 4, the number of bosonic excitations increases proportionally to �̃/ω̃0, leading
to a potential departure from the Lamb-Dicke regime, while at the same time reach-
ing the critical point requires large Rabi frequencies, compromising the validity of
the vibrational RWA. We will comment later on that a detuned carrier excitation,
coming from each of the detuned sidebands drivings, appears as the leading-order
contribution deteriorating the correct functioning of the QRM realization.

Finally, besides the actual validity of the previous approximations, preparation
of an initial motional vacuum is relevant for our purposes. We briefly comment that
applying well-established cooling techniques (resolved sideband cooling) the state
can be brought close to the motional ground state |0〉, while the internal qubit states
can be prepared easily by generating pulse sequences. Indeed, considering simply a
red-sideband driving, and a decay rate �c � ν such that produces transitions |e〉 →
|g〉, one can attain a extremely small phonon population

〈
a†a

〉 ≈ (�c/ν)2 � 1 [2].
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5.1.2 Protocol and Trapped-Ion Simulations

In order to probe the QPT, we rely on an adiabatic ramp towards the critical point,
starting from g̃(0) = 0 to g̃(τQ) ≈ g̃c, as we have investigated in Chap. 4. Indeed, as
�̃/ω̃0 is finite, for sufficiently slow passages, the dynamics becomes to all effects adi-
abatic and the equilibriumscaling functions canbe retrieved (seeChap. 3, Sect. 3.2.3),
although the required time increases with increasing �̃/ω̃0. This involves preparing
an initial state |ψ(0)〉 = |0〉 |g〉 and then linearly increasing in time the Rabi frequen-

cies, �(t) = �f t/τQ with �f = g̃ f

√
δ2b − δ2r /(2η) with 0 ≤ g̃ f ≤ g̃c = 1. Recall

that Rabi frequencies can be modulated in a time-dependent fashion. In this man-
ner, for different quench rates τQ , final coupling g̃ f and frequency ratio �̃/ω̃0, we
can reconstruct the finite-frequency scaling functions, both in equilibrium FA (for
τQ � 1) and nonequilibrium SA(x, T ) in the same manner as discussed in Chaps. 3
and 4. In the following we only consider σz as it can be measured with high fidelity
in trapped ions, while measurements on the bosonic degree of freedom are typically
more difficult to perform [2]. Nevertheless, if different observables can be experi-
mentally accessed, the procedure is essentially the same as for σz , although one must
remember thatA ∝ |g̃ − g̃c|γA is required. Recall also from Chap. 4 that the scaling
variables for the QRM are x ≡ �̃/ω̃0|g̃ − g̃c|3/2 and T ≡ τQ(�̃/ω̃0)

−1.
We performed the numerical simulations with realistic and feasible parameters,

namely, ω̃0 = 2π × 200 Hz, and 2π × 10 ≤ �̃ ≤ 2π × 80 kHz, which enables the
exploration of reasonably high frequency ratios 50 ≤ �̃/ω̃0 ≤ 400. Note that the pre-
vious parameters correspond to the frequencies of the realized QRM. The maximum
Rabi frequency, depending on the specific value of �̃/ω̃0 results in 2π × 23.6 ≤
�f ≤ 2π × 66.6 kHz considering η = 0.06, and a trap frequency ν = 2π × 1.36
MHz [33]. In order to retrieve equilibrium scaling functions, we consider a quench
rate τQ = 50 × 2π/(ω̃0) = 250 ms, while for the nonequilibrium function much
faster protocols can be performed, 0.1 ≤ τQω̃0/(2π) ≤ 2, that is, 0.5 ≤ τQ ≤ 10
ms. Under the adiabatic protocol, τQ = 50 × 2π/(ω̃0), the overlap between the

time-evolved trapped-ion state |ψ(g(t))〉 and the actual QRM ground state
∣∣∣ϕ0

np(g)
〉

becomes | 〈ψ(gc)| ϕ0
np(gc)

〉
| ≈ 0.99 for �̃/ω̃0 = 400, while for smaller �̃/ω̃0 and

g < gc it is highly enhanced. Recognizably, the quench time to approximately meet
adiabatic dynamics is too long compared to typical decoherence times and noise
rates affecting the setup. We leave however the discussion of the potential impact of
noises to 5.1.4, while in 5.2 we will discuss how to cope with a typical and relevant
source of decoherence, namely, magnetic-field fluctuations.

The numerical simulations of the trapped ion system have been performed assum-
ing solely the optical RWA, that is, simulating the following Hamiltonian

H I
TI =

∑

j=r,b

� j

2

[
σ+eiη j (ae−iνt +a†eiνt )ei(ωI −ω j )t e−iφ j + H.c.

]
, (5.9)
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Fig. 5.2 Trapped ion reconstruction of the finite-frequency scaling functions for σz of the QRM
to probe the superradiant QPT. The ideal scaling functions of the QRM are depicted with solid
black lines, while the trapped-ion results are displayed with color points for the different �̃/ω̃0
values, namely, 50, 100, 200 and 400. In a we represent the equilibrium scaling function Fσz (x),
and in the inset we show it in logarithmic scale to indicate its scaling behavior. The nonequilibrium
finite-frequency scaling function Sσz (x, T ) is plotted in b, for x = 0, 1/2 and 1. Trapped-ion results
were obtained from Eq. (5.9) considering a quench time τQ = 50 × 2π/(ω̃0) = 250 ms in a and
0.1 ≤ τQ ω̃0/(2π) ≤ 2 in b. The deviation for large values of �̃/ω̃0 obscures the observation of the
universality in the dynamics of the QRM. See main text for further details

where the parameters and their relation with those of the QRM have been given
above (also collected in Table5.1, presented later under the name of zeroth layer,
notation which will become more evident in Sect. 5.2). The numerical results have
been plotted in Fig. 5.2, together with the ideal QRM scaling functions. In (a) we rep-
resent the equilibrium finite-frequency scaling function Fσz (x) of the QRM and its
reconstruction by means of trapped-ion simulations. As one can observe, the agree-
ment between the QRM and trapped-ion simulations deteriorates as �̃/ω̃0 increases,
as the data no longer collapse into the single curve Fσz (x). Speeding up the pas-
sage does not help neither, as one can deduce from Fig. 5.2b for the nonequilibrium
finite-frequency scaling function Sσz (x, T ). Indeed, �̃/ω̃0 = 400 provides the worse
results, leading to scattered points, and thus hindering the observation of the scaling
function. Recall that different values of x convey a distinct final coupling according
to x = �̃/ω̃0|g̃ f − g̃c|3/2.

As aforementioned, a detuned carrier excitation appears as the main spurious
contribution for the correct functioning of the required approximations to attain a
QRM, becoming dominant for increasing �̃/ω̃0. As we proposed in [25] and explain
in the following, the effect of such a carrier excitation can be overcome utilizing a
standing-wave disposition of the light fields.
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Fig. 5.3 Trapped ion reconstruction of the finite-frequency scaling functions for σz of the QRM
to probe the superradiant QPT. The ideal scaling functions of the QRM are depicted with solid
black lines, while the trapped-ion results based on a standing-wave configuration, are displayed
with color points for the different �̃/ω̃0 values, namely, 50, 100, 200 and 400. Compare the results
with those plotted in Fig. 5.2 for a running-wave scheme. In a we represent the equilibrium scaling
function Fσz (x), and in the inset we show it in logarithmic scale to indicate its scaling behavior. The
nonequilibrium finite-frequency scaling function Sσz (x, T ) is plotted in b, for x = 0, 1/2 and 1.
Trapped-ion results were obtained from Eq. (5.9) using standing-wave light fields driving detuned
red- and blue-sidebands with 8% error between �r,b and �rs,bs . In a the quench time amounts to
τQ = 50 × 2π/(ω̃0) = 250 ms, and 0.1 ≤ τQ ω̃0/(2π) ≤ 2 in b. See main text for further details

5.1.3 Standing-Wave Configuration

The validity of Eqs. (5.6) and (5.7) relies on a number of approximations, namely,
optical and vibrational RWAs as well as on the Lamb-Dicke regime. The main con-
tribution to the breakdown of the realization of the QRM stems from a detuned
carrier excitation produced by detuned red- and blue-sidebands, of the form Hd.c. =∑

j=r,b
� j

2

[
iσ+ei(±ν+δ j )t + H.c.

]
. Note that, for �̃/ω̃0 = 400, the Rabi frequencies

results in �r,b = 2π × 66.6 kHz while δb = 2π × 80.2 kHz and δb = 2π × 79.8
kHz. Therefore, | ± ν − δr,b|/�r,b ≈ 20whichmay cause already relevant and unde-
sired excitations (see Appendix B). In order to correctly realize a QRM with large
�̃/ω̃0 values, we resort to a standing-wave disposition of the light fields to eliminate
these detuned carrier excitations [39]. For that, we introduce two additional radia-
tion sources, denoted by rs and bs subscripts, such that ωrs = ωr = ωI − ν − δr and
ωbs = ωb = ωI + ν − δb. In general, the combination of two detuned red-sideband
drivings leads to (up to η2)

H I
TI,1 ≈ 1

2

[
σ+ei(ν+δr )t

(
�r e−iφr + �rse−iφrs

)

+iσ+aeiδr t
(
ηr�r e−iφr + ηrs�rse−iφrs

) + H.c.
]
. (5.10)

Hence, choosing �r = �rs with ηr = −ηrs and φr = φrs + π, the detuned car-
rier excitation is canceled out (actually, all the excitation terms accompanied by odd
powers η2n+1). This relation between the Lamb-Dicke parameters and phase is
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known as standing-wave configuration since the light fields kr · r = −krs · r, are
counterprogating keeping a fixed relation between their phases. The same argument
applies to the detuned blue-sideband. In this manner, and considering�r,b,rs,bs ≡ �,
φr,b = 3π/2, φrs,bs = π/2, and ηr,b = −ηrs,bs = η, the trapped-ion Hamiltonian
adopts the form

H I,SW
TI,1 ≈ −η�

[
σ+ (

aeiδr t + a†eiδbt
) + H.c.

]
. (5.11)

Themain difference between H I,SW
TI,1 and H I

TI,1 fromEq. (5.6) resides in that the former
is free of detuned carrier excitations, while in the latter it is only assumed that they
will produce a vanishing impact. In addition, the resulting coupling in the standing-
wave scheme is doubled with respect to the running wave scheme, λ̃ = η�, while
the qubit and mode frequency of the simulated QRM are equal, ω̃0 = (δb − δr )/2
and �̃ = (δb + δr )/2.

A standing-wave configuration of the light fields is however experimentally chal-
lenging to attain, and furthermore, it may also lead to significant imperfections in its
implementation [40]. For that reason, and in order to illustrate that the exploration
of the superradiant QPT in the QRM is possible even in the presence of certain
imperfections, we perform numerical simulations of the trapped-ion Hamiltonian
including errors in the Rabi frequencies, that is, �r,b �= �rs,bs . Therefore, the spuri-
ous carrier excitation is not completely canceled out, and at the same time, the inter-
action terms are not perfectly realized. The numerical simulations up to 8% of error
among �r,b and �rs,bs , provide a good agreement with the targeted QRM. Note that
these conditions are experimentally feasible, as reported in [40]. The results using a
standing-wave configuration are shown in Fig. 5.3, with the same format as in Fig. 5.2
for the running-wave scheme. As we observe, and in contrast to the running-wave
scheme, the QRM finite-frequency scaling functions are now well reproduced. The
parameters used for the simulations are the same as in Sect. 5.1.2 with the exception
of the Rabi frequency, which halves, i.e., 2π × 11.8 ≤ �f ≤ 2π × 33.3 kHz. How-
ever, although the trapped-ion simulations disclose that the critical dynamics of a
superradiant QPT can be explored in a single trapped-ion setup, the potential impact
of distinct noise sources has been so far not examined, such as spin dephasing and
motional heating. The rest of this chapter is devoted to the inspection and analysis
of particular noise sources in a realistic trapped-ion implementation.

5.1.4 Effects of Noise

The quench time considered for the adiabatic preparation of the ground state, required
to retrieve the equilibrium scaling function Fσz (x), lies definitely in a region in which
the effect of noise sources cannot be disregarded (τQ = 250 ms). Moreover, as 〈σz〉
adopts values close to −1, any eventual spurious |g〉 → |e〉 transition will cause
a substantial impact in Sσz (x, T ). It is therefore pertinent to analyze whether the
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Fig. 5.4 Equilibrium and nonequilibrium finite-frequency scaling functions for σz of the QRM
under the presence of realistic noise sources. The ideal scaling functions of the QRM are depicted
with solid black lines, while the results including noise (see Eq. (5.12)) are depicted with color
points for the different �̃/ω̃0 values, namely, 50, 100, 200 and 400 In a we represent the equilibrium
scaling function Fσz (x), largely affected by noise hindering the observation of universal equilibrium
properties of the superradiant QPT. The nonequilibrium finite-frequency scaling function Sσz (x, T )

however turns out to be much more robust against noise, which is plotted in b, for x = 0, 1/2 and 1.
the quench times are shortened to 0.1 · 2π/(ω̃0) ≤ τQ ≤ 0.275 · 2π/(ω̃0), enabling the observation
of the universal function Sσz (x, T ). See main text for further details

universal scaling functions can be observed under realistic experimental conditions.
For that, we rely on a phenomenological master equation that governs the adiabatic
evolution of a HQRM, that is,

ρ̇ = −i[HQRM(t), ρ] + �dpL[σz] + �cL[σ−] + �aL[a] + �hL[a†],

where L[x] = xρx† − x†xρ/2 − ρx†x/2 represents the customary Lindbladian
superoperators [41]. Typical, yet optimistic, noise rates can be estimated as �dp =
2π × 20 Hz and �c,a,h = 2π × 10 Hz. Therefore, according to the considered
trapped-ion parameters, it corresponds to �dp/ω̃0 = 0.1 and �c,a,h/ω̃0 = 0.05. We
then solve the dynamics with these parameters to reconstruct the universal scaling
functions Fσz (x) and Sσz (x, T ). In Fig. 5.4 we plot the results, which indicate that,
while the equilibrium scaling function Fσz (x) is strongly modified by the noise, its
nonequilibrium counterpart Sσz (x, T ) is much more robust to the effect of noise.
The data for different �̃/ω̃0 does not collapse onto the predicted universal function
Fσz (x) since the quench time is much longer than the coherence time of 50 ms.
Hence, the universality of equilibrium properties is lost. Recall that although the
scaling remains (∼x−γσZ /ν), data collapse is an indispensable requirement for the
existence of Fσz (x) and so for the QPT (see Introduction, Sect. 1.1.2 for a discus-
sion). A closer inspection reveals that a noise rate �dp/ω̃0 � 10−3, together with
�c,a,h = �dp/2, would be required for its experimental observation. On the other
hand, the nonequilibrium function Sσz (x, T ) is a good candidate to probe the uni-
versal dynamics of a superradiant QPT. The resilience of this function stems from
the relatively short quench times compared to noise rates. Indeed, in Fig. 5.4b we
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have considered only 0.1 ≤ τQω̃0/(2π) ≤ 0.275, that is, evolution times are much
faster than the time in which decoherence processes take place. Recall that the nearly
adiabatic dynamics to obtain Sσz (x, T ) needs to be adiabatic only far from the critical
point, where the energy does not vanish, making its experimental observation more
favorable and feasible than its equilibrium counterpart.

5.2 Continuous Dynamical Decoupling

The development of theoretical and experimental schemes to overcome the impact
of different noise sources, and thus preserving quantum coherence of a particular
system, is essential for the correct functioning of technologies exploiting quan-
tumness. As aforementioned, among the different theoretical methods to prolong
quantum coherence, we find decoherence-free subspaces [42] and dynamical decou-
pling [16]. In this regard, it is worth noting that these methods can handle distinct
noise scenarios. In particular, dynamical decoupling emerges as a promising tool to
handle noise exhibiting finite-width spectral density. Succinctly, in its continuous
configuration, the method consists in creating a dressed basis whose energy gap is
sufficiently large such that the effect of noise is eliminated. In this section we focus
on examining the applicability of dynamical decoupling techniques in the reign of
ion traps, allowing us to cope with a main source of decoherence in these setups,
namely, spin dephasing. Here, we show that dynamical decoupling methods can be
applied to a single trapped-ion setup realizing the QRM, prolonging its quantum
coherence, and ultimately leading to a faithful inspection of the universal critical
dynamics of the QRM. Moreover, although continuous dynamical decoupling has
been already proposed [18–21] and experimentally realized [22, 23] in trapped ions,
this technique allows us to apply decoupling in a concatenated manner, that is, intro-
ducing radiation sources consecutively to eliminate further noise sources. This is
known as concatenated continuous decoupling (CCD), which has been proposed
and experimentally demonstrated in a nitrogen-vacancy center in diamond [43].

Therefore, while the development of a robust and noise resilient implementation
of a QRM with a single trapped ion can certainly be advantageous for the inspec-
tion of universal critical dynamics, it might also serve to explore various appealing
parameter regimes of the QRM, such as the deep-strong coupling regime [27, 36] or
the regime in which QRM reduces to the Dirac equation [33, 34, 44, 45]. We start in
Sect. 5.2.1 explaining the basic operating principle of continuous dynamical decou-
pling, and then in Sect. 5.2.2, we discuss how this can be carried out to realize a robust
QRM with a single trapped ion. In addition, in Sect. 5.2.3 we discuss the feasibility
of a CCD scheme in the realm of trapped ions to attain a QRM. Finally, we comment
that the developed techniques can be beneficial for the implementation of differ-
ent spin-boson models, as for example a robust two-photon QRM in a trapped-ion
setup [26, 38].
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5.2.1 Basic Operating Principle

In the following lines we explain the basic operating principle of continuous dynami-
cal decoupling.Weare interested on the decoherence of a qubit causedby the unavoid-
able presence of experimental imperfections or uncontrolled interactions with the
environment. Let simply consider a pure dephasing noise, H = ω0σz/2 + δm(t)σz/2.
We do not consider transverse noise components because their effect is much less
relevant than the dephasing noise in a trapped ion, δm(t)σz/2. Recall that neglecting
transverse noise effectively leads to an infinitely large T1, while T2 depends on the
fluctuating term δm(t). However, as we will restrict ourselves to evolution times∼T2,
this is justified. We will come back to this issue later.

Introducing a continuous driving field with amplitude �D and frequency ωD , the
Hamiltonian becomes

H = ω0

2
σz + δm

2
σz + �D cos(ωDt)σx . (5.12)

In a rotating frame with respect to ω0σz/2, choosing ωD = ω0 and invoking a RWA,
valid if �D � ω0, the Hamiltonian adopts a simple form

H I ≈ δm(t)

2
σz + �D

2
σx . (5.13)

Since δm(t) can be decomposed in Fourier space as δm(t) = ∫
dωeiωt δ̃m(ω), the

previous Hamiltonian can be well approximated by �D/2σx when |δ̃m(ω)| � |ω ±
�D|. Hence, if �D lies in a region in which the noise spectrum is negligible, the
qubit will be protected against the noise δm(t)/2σz , being encoded instead in a
dressed basis �D/2σx . In particular, the amplitude of the light field, �D takes a
double role: it determines the energy gap of the dressed basis, while at the same
time eliminates the noise. In order to achieve a successful elimination of the noise,
we have relied on a RWA, and therefore, because a RWA presents slightly different
performance depending on the considered initial states, the proposedmethod inherits
its dependence. This indeed is of particular relevance when dealing with states for
which the noise does only introduce a global phase (in this case, |e〉 or |g〉), since the
inclusion of a continuous dynamical decoupling protection rotates the basis, enabling
the noise to produce transitions.

In Fig. 5.5 we show a specific noise model for the stochastic fluctuation δm(t),
namely, an Orstein-Uhlenbeck (OU) noise [46, 47], which is a Markov and Gaus-
sian stochastic process with an exact update formula and non-zero correlation time
[48, 49]. This model correctly reproduces the observed exponential decay of coher-
ences [32], and it is widely used to model these fluctuations [18, 19, 21, 43]. We
explain in the following its application to a trapped-ion setup. Briefly, the expecta-
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Fig. 5.5 Illustration of the basic operating principle of the continuous dynamical decoupling to
cope with a noise δm(t)σz/2, which is modeled as an Orstein-Uhlenbeck (OU) process. In a two
evolution runs for δm(t) with relaxation time τ = 50 µs (black) and τ = 5 ms (gray) and intensity
such that T2 = 3 ms. After averaging 1000 stochastic trajectories, the expectation value 〈σx (t)〉
for an initial state |↑〉x = (|e〉 + |g〉) /

√
2, as shown in b for both characteristic types of noise,

τ � T2 and τ � T2, whose main trait consists in an exponential or Gaussian decay, respectively.
By definition, 〈σx (T2)〉 = e−1. In c we show the noise spectrum S( f ), and three corresponding
driving amplitudes �D which result in the curves shown in d (from light-gray to black dashed
lines). The larger �D , the more is the noise suppressed, attaining larger coherence times. Recall
that � � ω0 must be also fulfilled. See main text for details

tion value 〈σx (t)〉 for an initial state |↑〉x = (|e〉 + |g〉) /
√
2 decays as a consequence

of this fluctuation. Selecting driving amplitudes �D for which the noise spectrum
becomes small and the RWA can be applied, 〈σx (t)〉 remains closer to the ideal and
noiseless value, 〈σx (t)〉 = 1 (see Fig. 5.5c and d) and the further developments.

5.2.2 Trapped-Ion Setup and Continuous Dynamical
Decoupling

In this part we comment how to apply the previously explained method to obtain a
robust QRM with a single trapped ion. As we have seen, the previous method copes
with pure dephasing noise affecting a qubit.Hence, continuous dynamical decoupling
appears as a promising tool to protect the ion internal states from magnetic fluctua-
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tions, which is relevant when the qubit is encoded in magnetically sensitive internal
states, as for example in the case of the states

∣∣D5/2, m j = 3/2
〉
and

∣∣S1/2ss, m j = 1/2
〉

utilized in the 40Ca+ ion [33, 34]. Under these conditions, magnetic-dephasing noise
emerges as themain source of decoherence, since phonon heating and qubit decay are
expected to produce an impact in amuch longer time scale,∼100ms and∼1 s, respec-
tively [50]. In the same manner, trapped-ion experiments involving magnetic-field
gradients are also affected by magnetic-field fluctuations, leading to similar coher-
ence times, as in the case of the microwave-driven 171Yb+ ion [22]. See Table1.1
in [51] for a comparison of coherence times between different ion species. Therefore,
no further sources of noise have been included in our analysis since the examined
total evolution time is, at least, one order of magnitude shorter than their typical rates,
and thus, their effect is expected to be negligible. In the following we first present
how to account for magnetic-field fluctuations in the trapped-ion Hamiltonian, how
to model them, and then, how to apply CCD methods to overcome this noise while
at the same time realizing a QRM.

5.2.2.1 Magnetic-Field Fluctuations

To exemplify the suitability of CCD methods, we consider a relatively short, yet
realistic, coherence time T2 = 3 ms as a consequence of magnetic-field fluctuations.
Besides the well-controlled trapped-ion Hamiltonian, HTI given in Eq. (5.1), noisy
terms which can be enclosed in a stochastic Hamiltonian description adding terms
of the form Hn, = δα

m(t)σα/2 for α = x , y and z, where δα
m(t) stands for a stochastic

time-dependent fluctuation. Note however that while transverse noise, α = x, y,
produces transitions between internal levels and is related to qubit decay (T1),
its parallel component gives account of pure dephasing noise, or equivalently, T2.
Since for trapped-ion setups T2 � T1, and we constrain ourselves to evolution times
∼T2, we only scrutinize the role of the parallel noise component (pure dephasing),
and therefore, the noisy trapped-ion Hamiltonian becomes (by simplicity we denote
δm(t) ≡ δz

m(t)) H̃TI = δm(t)σz/2 + HTI, that is,

H̃TI = δm(t)

2
σz + ωI

2
σz + νa†a +

∑

j

� j

2
σx

[
ei(η(a+a†)−ω j t−φ j ) + H.c.

]
. (5.14)

These magnetic-field fluctuations can be modeled as an OU noise [46–49]. While
this simple Gaussian noise model allows to gain theoretical insight, as its time-
evolution is known exactly, it provides a finite-width spectral density and correctly
reproduces experimental observations [43]. Hence, it has become a good description
of realistic noise in various setups, as in trapped-ions or nitrogen-vacancy centers in
diamond [43]. We leave the details of the OU process for the Appendix F, and quote
here the main useful results for our discussion.

Let δm(t)be a stochastic variable that follows anOUprocess. Then, sinceOUnoise
isGaussian, δm(t) is fully determinedby its first twomoments, i.e., by twoparameters.



138 5 Superradiant QPT with a Single Trapped Ion

These parameters are commonly known as relaxation time τ and diffusion constant
c. The exact update formula for δm(t) reads [48, 49]

δm(t) = δm(0)e−t/τ +
[cτ

2

(
1 − e−2t/τ

)]1/2
N (t) (5.15)

such that N (t) stands for a normal-distributed random variable, that is, N (t) = 0
and N (t)N (t ′) = δ(t − t ′). Note that the overline stands for the stochastic ensemble
average. Hence, δm(t) experiences fluctuations around its zero-mean value, δm(t) =
0, as depicted in Fig. 5.5a for two different parameters τ and c. The spectral density
reads

S( f ) = 2cτ 2

1 + 4π2τ 2 f 2
, f ≥ 0, (5.16)

whose form has been plotted in Fig. 5.5c. For latter developments, it is insight-
ful defining a characteristic frequency fcr = 1/(2πτ ) at which the spectral density
becomes half of its zero-frequency value, i.e., S( fcr) = S(0)/2.

The relaxation time of the noise, τ , sets the width of the spectral density, while
the diffusion constant gives account of the intensity of the noise and will be fixed
to correctly reproduce the coherence time T2. Indeed, in Ref. [21], τ ≈ 100 µs is
proposed as a good estimate for the correlation time of the magnetic noise. For the
results presented here we take τ = 50 µs. Then, the diffusion constant c is chosen

such that the definition of coherence time is satisfied,
〈
σx,y(T2)

〉 = e−1
〈
σx,y(0)

〉
.

Considering simply an initial state |↑〉x = (|e〉 + |g〉) /
√
2 evolving under Hn,z for a

single run of the stochastic fluctuation leads to

〈σx (t)〉 = cos (�(t)) , with �(t) =
∫ t

0
dt ′ δm(t ′). (5.17)

and hence, 〈σx (T2)〉 = e−1/2�2(t). Since δm(t) is a Gaussian noise, it is possible to
obtain an analytic expression for�2(t), allowing us to establish the required relation
between τ , c and T2 (see Appendix F)

c = 2

τ 2
[
T2 − τ

2

(
3 − 4e−T2/τ + e−2T2/τ

)] . (5.18)

Therefore, knowing τ and choosing a specific coherence time T2, the diffusion con-
stant follows from the previous expression. For τ � T2, the expression further simpli-
fies to c ≈ 2/(τ 2T2), which conveys an exponential decay of 〈σx (t)〉. This is indeed
the typical situation in trapped-ion setups, as observed experimentally [32], since
T2 ∼ ms and τ ∼ µs. On the other limit, τ � T2, we find a Gaussian decay of the
coherence. This is illustrated in Fig. 5.5b, where we show the analytic result 〈σx (t)〉
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and the one obtained numerically after averaging 1000 stochastic trajectories for two
cases, τ = 50 µs and τ = 5 ms, both featuring T2 = 3 ms.

Note that the Fourier components δ̃m(ω) follow from the spectral density. The
basic operating principle of the continuous dynamical decoupling is exemplified
in Fig. 5.5c and d. In the former the spectral density is plotted, highlighting three
different frequencies �D , which correspond to 〈σx (t)〉 in (d). For larger frequencies
S(�D/(2π)) � 1, qubit coherence is preserved during longer times, prolonging T2.
Having explained continuous dynamical decoupling and how to model dynamical
decoupling, we proceed now to implement finally this method for obtaining a QRM
in a trapped-ion setup.

5.2.3 Concatenated Continuous Dynamical Decoupling

Our goal here consists in applying the idea developed in Sect. 5.2.1 for the elimi-
nation of magnetic-field fluctuations from Eq. (5.14). In particular, under same the
procedure followed in Sect. 5.1, the noisy trapped-ion Hamiltonian H̃TI would still
realize a QRM, but with an explicit noise contribution, H̃QRM = δm (t)

2 σz + HQRM,
which jeopardizes its correct and faithful realization. Note that this simple result
follows because the considered approximations and rotating frames commute with
σz . We will refer to this unprotected method (the strategy presented in Sect. 5.1) as
zeroth-layer.

5.2.3.1 First Layer

In order to eliminate magnetic-field fluctuations, a driving at resonant frequency
ωD1 = ωI and amplitude �D1 > fcr is imperative. Evidently, the Rabi frequency
is much smaller than the qubit transition frequency, �D1 � ωI , and thus, H̃TI in a
rotating frame with respect to HTI,0 = ωI σz/2 + νa†a, after the optical RWA reads

H̃ I
TI,1 ≡ U†

TI,0 H̃TI,1UTI,0 ≈δm(t)

2
σz + �D1

2

[
σ+eiηD1(ae−iνt +a†eiνt ) + H.c.

]

+
∑

j

� j

2

[
σ+eiη j (ae−iνt +a†eiνt )ei((ωI −ω j )t−φ j ) + H.c.

]
,

(5.19)

where we have already chosen φD1 = 0. In this manner, we can encode now the
qubit in the dressed basis defined by �D1σx/2, in which the effect of δm(t)σz/2
is suppressed. We remark that the Lamb-Dicke parameter ηD1 can adopt an arbi-
trary small value, although not necessarily zero. Moreover, within the Lamb-Dicke
regime and applying the vibration RWA, the Jaynes-Cummings interaction terms are
achieved by driving red- and blue-sidebands, ωr,b = ωI ∓ ν − δr,b. Indeed, choosing
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Table 5.1 Trapped-ion parameters to simulate the QRM using CCD scheme. Zeroth layer corre-
sponds to the scheme presented in Sect. 5.1. Qubit basis and interaction stand for the spin axis in
which the terms in QRM appear. Recall that we have considered �r,b ≡ � and ηr,b ≡ η.

Zeroth layer First layer Second layer

ωr ωI − ν − δr ωI − ν − δr ωI − ν − δr

ωb ωI + ν − δb ωI + ν − δb —

ωD1 — ωI ωI

ωD2 — — ωI

φr,b 3π/2 3π/2 3π/2

φD1 — 0 0

φD2 — — π/2

Qubit basis σz σx σy

Interaction σx σy σx

�̃ 1
2 (δb + δr ) �D1 �D2

ω̃0
1
2 (δb − δr ) −δr −δr

λ̃ η�
2

η�
2

η�
4

φr,b = 0 and δb = −δr = δ, the previous Hamiltonian adopts a more recognizable
form (�r,b ≡ � and ηr,b ≡ η)

H̃ I
TI,1 ≈ �D1

2
σx − η�

2
σy

(
ae−iδt + a†eiδt

)
. (5.20)

Indeed, the previous Hamiltonian corresponds to a QRM in a rotating frame of δa†a.
That is, UQRM ≈ UEUTI where now UE = e−i t(−ωI σz/2+(δ−ν)a†a). The realized QRM
has a rotated spin basis compared with the zeroth-layer method, and it is protected
against magnetic-field fluctuations as long as �D1 > fcr. This latter requirement
constraints the parameter regime of the realized QRM since �D1 directly gives the
qubit frequency of the QRM, i.e., �̃ = �D1. Nevertheless, one can still rely on
different strategies to achieve small values of �̃ while at the same time protecting
the setup against dephasing noise [27]. Recall that we have utilized three radiation
sources, driving a carrier excitation, and detuned red- andblue-sidebands. InTable5.1
we collect and present the used trapped-ion parameters as well as how they relate to
those of the resulting QRM, while numerical results are discussed after introducing
an additional layer of protection.

5.2.3.2 Second Layer

The main idea behind the CCD scheme consists in applying consecutively radiation
sources that average out further noise sources. Here we demonstrate the applicability
of such a concatenated scheme to realize a QRM, shielded not only against magnetic-
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field fluctuations, as in the previous case (first layer), but also against laser amplitude
fluctuations, another relevant noise source [1]. Let consider that the Rabi frequen-
cies are not completely stable but fluctuate around � j as � j (t) = � j (1 + δ� j (t)).
Moreover, once magnetic-field fluctuations have been overcome, laser-amplitude
fluctuations may still spoil quantum coherence within the considered time scale. For
that, we characterize δ� j (t) again as an OU process, although with a slower noise,
τ� = 1 ms following [1], while taking a relative strength of 0.1% (p = 0.001), that
is, c� = 2p2/τ�. In this manner, the main source of noise resulting from the first
layer appears to be�D1δ�D1(t)σx/2. Note that the latter causes pure dephasing noise
in the realized QRM by the first layer scheme. Therefore, it can be handled in the
same manner as we did to eliminate δm(t)σz/2 from Eq. (5.14). The main complica-
tion however resides in that an additional driving needs to be introduced such that,
after the first interaction picture, the same procedure as explained in Sect. 5.2.1 can
be applied. In particular, the trapped-ion Hamiltonian H̃ I

TI,1 after the optical RWA
(as well as assuming ηDk � 1 and �Dkηk � ν for k = 1, 2) becomes

H̃ I
TI,1 ≈ δm(t)

2
σz + �D1

2
σx + �D1δ�D1

2
σx + �D2 cos(�D1t)

[
σ+e−iφD2 + H.c.

]

+
∑

j

� j

2

[
σ+eiη j (ae−iνt +a†eiνt )ei((ωI −ω j )t−φ j ) + H.c.

]
, (5.21)

where we have considered a modulated Rabi frequency �D2 cos(�D1t) for the an
auxiliary carrier driving, ωD2 = ωI .1 In addition, for simplicity the laser-amplitude
fluctuation is only explicitly written for the �D1 term. Recall that in order to elim-
inate noise in the σx basis, we must provide an orthogonal driving, and thus we
choose φD2 = π/2. Then, we move to an additional rotating frame with respect to
�D1σx/2. Assuming that �D1 > fcr, δm(t) is averaged out, while at the same time
we require�D2 � �D1 to further simplify theHamiltonian neglecting terms rotating
at frequencies �D1. Therefore, we finally obtain

H̃ I I
TI,1 ≈ �D2

2
σy +

∑

j

� j

4

[
σx eiη j (ae−iνt +a†eiνt )ei((ωI −ω j )t−φ j ) + H.c.

]
. (5.22)

The noise �D1δ�D1σx/2 is canceled if �D2 > 1/(2πτ�), which together with the
condition �D1 > fcr = 1/(2πτ ) leads to τ� � τ . The latter requirement can be
though of as a necessary condition to successfully eliminate this noise by means
of CCD scheme. From previous developments is now evident that Eq. (5.22) cor-
responds to a QRM driving a single sideband, say ωr = ωI − ν − δr . In Table5.1
we show the used trapped-ion parameters as well as how they relate to those of the
resulting QRM. Finally, we comment that the realization of a QRM in a parameter

1Note that a time-independent Rabi frequency could have been used instead. For that, one would
have to tune the frequency ωD2 = ωI + �D1 in order to provide the required resonant terms with
�D1σx/2.
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Fig. 5.6 Realization of the QRM characteristic dynamics in two interesting regimes. In a we show
〈σz(t)〉 (oscillating curve) and the fidelity of each of the considered trapped-ion scheme with the
ideal and noiseless QRM, for a resonant QRM and g̃ = 1/4. Red, blue and green lines correspond
to zeroth, first and second layer, while solid-black lines to the ideal QRM results. The initial state
is |ψ(0)〉 = |0〉 (|e〉 + |g〉)/√2. Recall that for the first and second layer, the spin basis rotated. In
b we show the universal scaling function Sσz (x, T ) and the data points obtained considering a first
layer and �̃/ω̃0 = 50 (red circles) and 100 (blue squares). In the inset the results for the zeroth and
second layer. Trapped-ion results have been obtained after averaging 200 (a) and 100 (b) stochastic
trajectories. See main text for further details

regime in which both �̃ � ω̃0 and λ̃ � ω̃0 is expected to fail because �̃ = �D2,
while �D2 � �D1 to satisfy the RWA. Hence, although an inspection of the critical
dynamics is hindered, this scheme may be useful to obtain a faithful realization of
the QRM in other appealing regimes.

5.2.3.3 Numerical Simulations

Weshow the suitability of theCCDscheme to obtain a faithful realization of theQRM
in presence of magnetic-field fluctuations as well as laser-amplitude noise. For that,
using a trapped-ion Hamiltonian with their corresponding number of drivings and
parameters (see Table5.1), we realize theQRM in two parameter regimes. First, in the
resonant case, �̃ = ω̃0 and coupling g̃ = 1/4, whose main and emblematic hallmark
resides in the Jaynes-Cummings oscillations. Second, in the limit of �̃/ω̃0 � 1 under
a nearly adiabatic protocol to reconstruct the universal scaling function Sσz (x, T ), as
discussed in Chap. 4 and in Sect. 5.1 of this chapter. In the following paragraph we
provide a list of the parameters used for the numerical simulations that correspond
to the results plotted in Fig. 5.6.

We take as ν = 2π × 1.36 MHz as the trap frequency, while the Lamb-Dicke
parameters ηr,b = η = 0.06 and ηD1,D2 = 0.01 for the considered light fields. As
aforementioned,we take a coherence timeofT2 = 3ms, andmodel themagnetic-field
fluctuations as an OU process with τ = 50 µs, while laser-amplitude noise features
τ� = 100 ms and a p = 0.001 of relative strength. Then, to realize a resonant QRM
with ω̃0 = �̃ = 2π × 5 kHz and g̃ = 1/4 (recall g̃ = 2λ̃/

√
ω̃0�̃), we select: (zeroth



5.2 Continuous Dynamical Decoupling 143

layer) δb = 2π × 10 kHz, δr = 0, and �r,b = 2π × 20.83 kHz, (first layer) δr =
−δb = 2π × 5 kHz, �D1 = 2π × 5 kHz and �r,b = 2π × 20.83 kHz, and (second
layer) δr = 2π × 5 kHz, �D2 = 2π × 5 kHz and �D1 = 40�D2 = 2π × 200 kHz,
�r = 2π × 41.67 kHz. For the inspection of the dynamics of the QRM involving
the QPT, we consider ω̃0/�̃ = 50 and 100, and adiabatically quenching the ground
state towards the critical point, g̃ = 1. The considered parameters of the QRM are
ω̃0 = 2π × 1 kHz for the zeroth and first layer, while ω̃0 = 2π × 400Hz for the
second layer, where the qubit frequency is simply given by �̃/ω̃0 = 50 and 100. The
finalRabi frequency, required to reach the critical couplingparameter in a time0.02 ≤
τQω̃0/(2π) ≤ 8.6, amounts to 2π × 117.8 (2π × 166.7) kHz for �̃/ω̃0 = 50 (100)
and zeroth and first layers, while for the second it results in 2π × 94.3 (2π × 133.3)
kHz. Moreover, in the second layer we set a large amplitude, �D2 = 2π × 200 kHz,
for which the failure of the required RWA to attain the QRM (Eq. (5.22)) is evident
since the ratio�D1/�D2 becomes too small, namely 10 and 5 for the two considered
values �̃/ω̃0. Decreasing further �D2 leads however to long evolution times, and at
the same time, reducing the performance on suppressing laser-amplitude noise.

In Fig. 5.6 we plot the results of the numerical simulations, for the three schemes
using a trapped-ion Hamiltonian together with the aimed ideal and noiseless QRM
dynamics. We remark that, as for the results presented in Sect. 5.1, we assume
solely the optical RWA. In addition, magnetic-field and laser-amplitude fluctu-
ations have been included in the three schemes. In (a) we show the represen-
tative Rabi oscillations of the QRM in a resonant case, considering an initial
state |ψ(0)〉 = |0〉 (|e〉 + |g〉)/√2, and plotting 〈σz(t)〉 as well as the state fidelity
Fk(t) = ∣∣〈ψTI,k(t)

∣∣ ψQRM(t)
〉∣∣ where

∣∣ψTI,k(t)
〉
represents the trapped-ion evolved

wave function making use of the kth layer and
∣∣ψQRM(t)

〉
the targeted quantum state

evolved under the ideal HQRM. In this particular case, the performance of the each
subsequent layer improves the previous, achieving F2 ∼ 0.99 at the end of the evo-
lution, in contrast to the poor F0 ∼ 0.65.

Nevertheless, as the CCD scheme relies on the performance of the RWA, different
initial states behave in a diverse fashion. This becomes clear dealing with states
for which the initially fought noise generates just a global phase. In this case, this
happens for states like |n〉 |e〉 or |n〉 |g〉 evolving under a weakly coupled QRM in
the zeroth layer. For these very cases, which have not been plotted here, introducing
layers of protection becomes disadvantageous as in the dressed basis the noise may
cause relevant transitions. Finally, we inspect the critical dynamics of the QRM by
reconstructing Sσz (x, T ), as shown in Fig. 5.6b for x = 0 and using the first layer
scheme, while in the inset the results using zeroth and second layer are plotted. The
remarkable improvement of the first compared to the zeroth layer contrasts with the
failure of the second layer. Note that, as discussed after attaining Eq. (5.22), the latter
scheme is based on a RWA that breaks down in this parameter regime. Therefore,
depending on the specific setup conditions, parameter regime and aimed states, CDD
may be optimized to accomplish enhanced performances.
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5.3 Conclusion and Outlook

In this chapterwe have shown that the dynamics of theQRM in the extreme parameter
regime required to observe precursors of the QPT can be realized in a trapped-ion
experiment. In this setup, the QRM is realized by means of two light fields driving
near-resonance red- and blue-sidebands, and thus, coherently coupling the internal
electronic states of the ion (encoding the qubit) with the motion along one direction
of the trap [28, 29]. However, the parameter regime in which the QPT emerges
challenges its correct realization using a trapped-ion Hamiltonian. Recall that since
the latter adopts the form of a QRM after a number of approximations, it is not
evident that critical traits of the QRM can be observed under realistic conditions.

In order to probe the critical dynamics of theQRM,we rely on the finite-frequency
scaling functions, widely discussed in previous Chaps. 3 and 4. Although we mainly
focused on the spin population, σz , because it is experimentally more accessible than
phonon observables, the latter would disclose also rich behavior, as shown inChap. 4.
Pushing the limit of the accessible �̃/ω̃0 � 1 values, we find that carrier excitations
coming from detuned sidebands strongly deteriorate the scaling functions, obscuring
the universal behavior. We solve this limitation by using a standing-wave disposition
of the light fields, which despite of being experimentally demanding, will definitely
allow us to accomplish larger �̃/ω̃0 ratios. Moreover, by analyzing realistic noise
sources we find that nonequilibrium finite-frequency scaling function is more robust
against noise than its equilibrium counterpart since the former can be attained by
faster drivings, i.e., shorter quench times than those required to adiabatically prepare
the ground state. We also consider the applicability of continuous dynamical meth-
ods to implement a noise resilient, yet tunable, QRM in a trapped-ion setup, and
the followed procedure to cope with magnetic-field fluctuations is detailed. More-
over, we corroborate that the recently proposed concatenated continuous dynamical
decoupling in the realm of nitrogen-vacancy centers in diamond [43], can be also
applied to trapped ions, where further sources of noise are tackled.

This chapter completes and complements previous chapters involving the QRM,
finally undertaking here its possible experimental implementation. As a matter of
fact, we have corroborated that a single trapped-ion experiment can explore the
dynamics of a superradiant QPT, typically appearing in the thermodynamic limit of
infinitely many particles. In this respect, and despite the great advances in trapped-
ion technologies, scaling up the number of ions to observe critical phenomena, while
preserving quantum coherence, controllability and efficient state reconstruction still
constitutes a daunting task [10, 11]. In this manner, the QRM emerges as an excellent
candidate where quantum critical features can be examined, without the need of
scaling up the system and thus, without affecting quantum control and coherence of
a single quantum register.

Needless to say, multiple issues regarding possible experimental conditions
remain to be analyzed and determined, as well as potential schemes to preserve
quantum coherence. Indeed, while the present chapter has been intended to be suf-
ficiently general, the implementation of the proposed schemes need to be optimized
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depending on particular conditions.Moreover, since theQRM is an ubiquitousmodel
in nature, its realization is not constrained to trapped ions, but quite the opposite.
Indeed, another platforms relevant for quantum technologies, such as circuit and
cavity QED [3, 4], cold atoms [6, 7] or even in spin-mechanical systems [8], may
enable the exploration of distinct features of the universal dynamics of a superradiant
QPT with the most fundamental quantum entities, a qubit and a single mode.
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Chapter 6
Quantum Kibble–Zurek Mechanism

The Kibble–Zurek (KZ) mechanism, the paradigmatic theory addressing nonequi-
librium dynamics involving continuous phase transitions, has played a key role
throughout this thesis. The main ideas of this mechanism have been explained in
the Introduction and examined in the classical realm in Chap. 2. In addition, we have
extended its arguments to a zero-dimensional system exhibiting a quantum phase
transition (QPT), as shown in Chap. 4, which precisely explains the emergence of
universal power-law relations in terms of equilibrium critical exponents. As a matter
of fact, the seminal works published in 2005 [1–4] scrutinized the validity of KZ
arguments when traversing a quantum critical point, and found that KZ mechanism
also succeeds at predicting the witnessed power-law scaling of defect formation, as
it does in classical phase transitions. In the quantum realm, although quasiparticle
excitations play the role of long-lived topological defects of the traditional KZ, same
freeze-out arguments can be still applied, which was dubbed quantum Kibble–Zurek
(QKZ) mechanism. See Introduction, Sect. 1.3 for a detailed yet general derivation,
and Chap. 4 for its application to the QRM. The aim of this Chapter consists in elu-
cidating nonequilibrium dynamics of a truly and experimentally feasible quantum
many-body system traversing a QPT, and whether its nonequilibrium aspects agree
with QKZ predictions.

However, despite the pertinence and generality of these theoretical works [1–4],
an experimental confirmation of QKZ predictions has long remained elusive. Indeed,
it has only been very recently when QKZ scaling laws have been finally observed in
Bose-Einstein condensates [5, 6]. The dearth of experiments in this field stems from
the fact that QKZ inquiry requires bringing an entire and large quantum many-body
system through a QPT in a controllable manner, while at the same time safeguarding
the system from decoherence processes—certainly a tremendous and challenging
task. Note in addition the experiments reported in [7, 8] where QKZ arguments were
tested relying explicitly on a Landau-Zener problem.

On the other hand, since the introduction of a ferromagnetism toy model by
E. Ising in 1925 [9], that now bears his name, the Ising model has became a
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cornerstone in statistical physics, with relevance in many and disparate areas of
science. In its standard form, the Ising model comprises only nearest-neighbors
interactions. In particular, its relevance does not only stem from being one of the
simplest models showing classical and QPTs, but also because in certain cases it
admits an exact solution [10–12]—assuredly the holy grail of statistical physics and
a rare exception in the realm of many-body systems. Therefore, it is not surprising
why the Ising model is regarded as a testbed for novel methods and theories in sta-
tistical mechanics. In particular, in the quantum realm, the one-dimensional Ising
model with transverse field features a QPT in the thermodynamic limit of infinitely
many spins N → ∞ [11, 12]. Moreover, the extension of KZ mechanism to the
quantum realm was exemplified first in this paradigmatic model [2–4]. We refer to
the Introduction for further details regarding the Ising model, and its critical traits.

Following a recent theoretical proposal [13], it has been experimentally demon-
strated that a platform of N trapped ions can be adequately engineered to reproduce
the physics of an Isingmodel [14–20]. In particular, the resulting spin-spin interaction
approximately decays as a power-law with the distance, 1/rα, where the exponent α
can be tuned. Motivated by these ground-breaking experiments in which dozens of
ions have been trappedwhile preserving coherent interactions, the accessible number
of spins might be already large enough to attain sufficiently prominent QPT precur-
sors, and thus, posing the question of whether critical features may be examined in
such a system, as QKZ mechanism. This is precisely the goal of the present Chapter,
although it is worth mentioning that a similar study has been carried out recently in
Ref. [21]. We remark that the results presented are solely intended to provide indi-
cations on that QKZ scaling may be readily verified in a truly quantum many-body
system with state-of-the-art ion trap technology. Therefore, we leave for future work
an in-depth inspection of the critical properties, both in- and out-of-equilibrium, of
the long-range transverse field Ising model by means of approximate methods well
suited for one-dimensionalmodels [22] that would allow us to delve into large system
sizes, otherwise unattainable.

6.1 Long-Range Transverse Field Ising Model

The long-range transverse field Ising model describes N spins interacting at long
distances, unlike the nearest-neighbors interaction contemplated in its standard form.
In particular, we focus on a one-dimensional system where the interaction between
the i th and j th spin decays as Ji, j = J0|i − j |−α for i �= j with α > 0. In addition,
there is a homogeneous magnetic field g orienting the spins to a transverse direction.
The Hamiltonian of such a system can be written as

HLRI =
∑

i< j

Ji, jσ
x
i σx

j + g
∑

i

σz
i , (6.1)
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which is sketched in Fig. 6.1a. Evidently, in the α → ∞ limit, one recovers the stan-
dard nearest-neighbors interaction. Indeed, the interplay between the three parame-
ters of HLRI, namely, J0,α and g conceals rich physics, as we sketch in the following.

Firstly, we note that HLRI is symmetric under the transformation σx
i → −σx

i ,
σz

i → σz
i . This Z2 symmetry does not break for finite N , and allows us to split the

Hilbert space asH = H+ ⊕ H− where the+(−) sign corresponds to even (odd) num-
ber of excited spins |↑〉. Indeed, since H can be spanned by the states of the form
|γ1, γ2, . . . , γN 〉 where γ can be either ↑ or ↓, and because HLRI |γ1, γ2, . . . , γN 〉
does not change the parity of the total number of excited spins, � = eiπ/2(

∑
i σz

i +1)

is a conserved quantity. That is, the states are labeled as � |γ1, γ2, . . . , γN 〉 =
± |γ1, γ2, . . . , γN 〉, where +(−) indicates its parity symmetry.

For zero external magnetic field, g = 0, it is straightforward to notice that the
ground state depends on the sign of J0, which defines the ferro or anti-ferromagnetic
character of the system. For J0 > 0, the anti-ferromagnetic interaction provokes
a staggered spin alignment, and the ground state becomes doubly degenerate,
namely, a superposition of the Néel states |→←→ . . . ←〉 and |←→← . . . →〉
such that σx |←〉 = + |←〉 and σx |→〉 = − |→〉. The emergence of a Néel state,
|ψNeel〉 = 1√

2
(|←→← . . . →〉 ± |→←→ . . . ←〉), or equivalently, the magnetic

frustration, embodies themain trait of antiferro-magnetic interaction.On the contrary,
for ferromagnetic interaction J0 < 0, the spins align in absence of magnetic field
resulting as well in two degenerated ground states, |→→ . . . →〉 and |←← . . . ←〉,
which we denote by |ψF〉. On the other hand, for g � |J0|, the system becomes fully
polarized in the z-direction |ψP〉 = |↓↓ . . . ↓〉, that is, paramagnetic in the x direc-
tion. We recall that, since g ≥ 0, and because we will consider an even number of
spins, we restrict our calculations to the even parity subspace, H+, as it encloses
|ψP〉 the ground state for g � |J0|.

In the N → ∞, the Z2 symmetry spontaneously breaks in the ferro- or anti-
ferromagnetic phase g < gc(α), where gc(α) denotes the quantum critical point
as a function of α. In addition, gc(α) depends on the sign of J0. In the thermo-

Fig. 6.1 Schematic illustration of the one-dimensional long-range Ising model with a transverse
field, whose Hamiltonian is given in Eq. (6.1). The spins, which interact through σx

i σx
j with a

coupling Ji, j = J0|i − j |−α for i �= j (a), are subject to a uniformmagnetic field g in the z direction.
This long-range interacting model can be realized experimentally, where α can be tuned between
0 and 3 (see for further details). Indeed, in b we show a possible experimental coupling matrix Ji, j
for N = 24, where α ≈ 0.5, obtained from Eq. (6.2)
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dynamic limit, and for g < gc(α), the system acquires a non-zero magnetization
〈mF〉 = 〈

1/N
∑

i σx
i

〉 �= 0 and 〈mAF〉 = 〈
1/N

∑
i (−1)iσx

i

〉 �= 0, for ferro- and anti-
ferromagnetic couplings,whilemF,AF ≡ 0 in the paramagnetic phase. Indeed,

〈
mF,AF

〉

is a good order parameter of the phase transition. Recall that for the nearest-neighbor
counterpart, 〈m〉 ∝ |g − gc|β with β = 1/8 its critical exponent. However, this Z2

symmetry holds for any finite N compelling the eigenstates to 〈m〉 ≡ 0. For that
reason, it is convenient to compute

〈
m2

F,AF

〉
instead. We will discuss more in detail

the ground-state properties as well as nonequilibrium dynamics in the following
sections.

For α = 0, the interaction Ji, j looses its spatial dependence as all the spins inter-
act equally strongly with the rest, and hence, the system becomes fully connected.
Introducing the total spin operators Sβ = ∑

i σ
β
i , it leads to S2

x = ∑
i �= j σx

i σx
j + N ,

and therefore, HLRI adopts the form of a Lipkin-Meshkov-Glick model, HLMG =
J0S2

x + gSz [23].
In the classical realm, the one-dimensional long-range Ising model has been sub-

ject to an intense research during the last decades, aiming to determine the full phase
diagram, their corresponding critical exponents as well as the connection between
short-range and long-range behavior. Recall that the Hamiltonian of a classical Ising
model is attained when spin operators commute, and it is typically studied in the
absence of an external magnetic field, g = 0. As we have already mentioned in the
Introduction, the standard one-dimensional Ising model does not undergo a phase
transition at any finite temperature T > 0. This situation dramatically changes when
the interactionbecomes long ranged, as demonstratedbyF.Dyson in [24],whoproved
that there is indeed a transition for ferromagnetic couplings when 1 < α < 2, while
for α ≤ 1 the energy is not longer a extensive quantity. Furthermore, the phase dia-
gram becomes more exotic, if possible. Indeed, for α = 2 there is a phase transition
but of a Kosterlitz–Thouless type [25] as suggested by analytical [26] and numer-
ical results [27], while for α > 2 the system recovers its short-range nature and
hence, there is no phase transition at any finite temperature. The situation becomes
clearly more complicated in higher dimensions (but still below the upper critical
dimension1), which evidences that there is no simple connection between short-
and long-range properties, demanding numerical simulations involving large system
sizes to correctly determine them (see [28] and references therein).

6.1.1 Experimental Realization

As aforementioned, themodel described in Eq. (6.1) can be implemented experimen-
tally, where the range of the interactions, determined by α, can be tuned. This was
first proposed in [13] and first realized in [14] involving few spins or qubits (see also

1Recall that the upper critical dimension is defined as the spatial dimension of a system after which
the mean field description becomes exact. For the nearest-neighbors Ising model dU = 4.
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Refs. [15–18]). Nevertheless, the tremendous advances in trapped-ion technologies
have made it possible to explore much richer physics of a truly quantum many-body
system using the HLRI as a testbed, as dozens of trapped ions can be now coher-
ently controlled [29–31]. Needless to say, these experiments have reached a level of
complexity that challenges the classical capabilities for an exact computation of spin
dynamics.

We can differentiate two manners of implementing HLRI in a trapped-ion setup
(i) either manipulating optical transitions of 40Ca+ ions, as carried out in the group
of R. Blatt in Innsbruck [19, 31, 32], or (ii) using 171Yb+ ions, where the qubit is
encoded using hyperfine clock states [33], as performed in the laboratory led by C.
Monroe [15–18, 20, 29, 30]. In the following we briefly explain the latter scheme.

Considering N atomic ions of 171Yb+, trapped in a linear Paul trap, the qubits are
encoded in the hyperfine clock states |F = 1, m F = 0〉 and |F = 0, m F = 0〉 of the
state 2S1/2 of the valence electron and spin- 12 nucleus. Here F and m F correspond
to the total atomic angular momentum and its projection along the axis given by a
weak magnetic field ∼4 Gauss. These two hyperfine states encode the spin states,
|↑〉 and |↓〉 and are separated by ωHF = 2π × 12.642 GHz [33]. Applying two off-
resonant Raman beams homogeneously onto the ions, with wave-number difference
�k, and each of them driving red and blue sidebands of the transverse trapped-
ion motion, ω0 ± μ, with μ comparable to the transverse motional frequencies, an
effective Ising-type interaction is obtained

Ji, j = �i� j
(�k)2

2M

∑

m

bi,mb j,m

μ2 − ω2
m

(6.2)

where bi,m stands for the transformation of the i th ion with the mth normal mode of
frequency ωm [34], �i represents the Rabi frequency on the i th ion, and M the ion
mass, which is valid within the Lamb-Dicke regime and |μ − ωm | � ηi,m�i . Note
that ηi,m stands for the Lamb-Dicke parameter ηi,m = bi,m�k(2Mωm)−1/2. Hence,
one can control the effective range of spin-spin interactions by tuningμ, namely, from
infinitely ranged when μ ∼ ωcom (center of mass mode frequency) to a dipole-dipole
type of interaction if μ � ωcom. In this manner, spin-spin interaction Ji, j approx-
imately adopts a power-law decaying form, Ji, j = J0|i − j |−α where 0 < α < 3.
See Fig. 6.1b for a realistic coupling matrix Ji, j with α ≈ 0.5. Finally, choosing the
lasers with a beatnote detuning μ asymmetrically around the carrier by a value g,
ω0 ± μ + g, a global Stark shift is produced, which has the same effect as a uniform
transverse magnetic field g

∑
i σz

i . Note that the frequencies J0 and g lie in the range
of kHz [18, 20, 30]. Moreover, we stress that high-fidelity measurements can be per-
formed in this platform, as well as high-fidelity state preparation. For further details,
we refer to [13, 15, 16, 20].
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6.1.2 Ground-State Properties

In the following we tackle the ground-state properties of a one-dimensional long-
range quantum Ising model, HLRI. As commented previously, when the exponent
α < 2, HLRI undergoes a classical phase transition at sufficiently low temperature,
but still T > 0, while for α > 2, the behavior of the paradigmatic nearest-neighbors
is retrieved and thus only a phase transition occurs at T = 0. Besides the existence of
classical phase transitions, HLRI features distinct QPTs in the thermodynamic limit
N → ∞ depending on the value of α ≥ 0. Yet, how the critical traits of HLRI vary as
a function of α remains to be disclosed, although big efforts have been devoted to it
recently [21, 35, 36]. In particular, although it is well established that the QPT falls
into the universality class of the nearest-neighbors type when α > 2, how the critical
exponents modify for smaller α values needs to be determined. In the following we
sketch the main theoretical ingredients aiming to ascertain such a dependence, as
well as to locate the value of the critical magnetic-field gc(α).

As discussed at the beginning of this Section, we expect to observe a crossover
between paramagnetic states, for g � |J0|, where all the spins are oriented along the
z-axis, to a ferromagnetic or anti-ferromagnetic ordering for g � |J0|, depending of
the sign of J0. The properties of the ground state can be quantified resorting to the
two-point correlation function,

Ci, j = 〈
σx

i σx
j

〉 − 〈
σx

i

〉 〈
σx

j

〉
. (6.3)

In particular, when g � |J0| the ground state becomes |ψP〉 and thus Ci, j ≈ 0 is
expected. On the other hand, when g < gc(α), an anti-ferromagnetic ground state
emerges |ψNeel〉, or |ψF〉 for the ferromagnetic case. Hence, the two-point cor-
relation function Ci, j acquires a utterly different shape: Ci, j = (−1)i− j for anti-
ferromagnetic and Ci, j = 1 for a ferromagnetic case. Loosely speaking, the critical
point gc(α) finds itself along the crossover between these two behaviors. In Fig. 6.2
we plot CN/2,N/2+k for N = 20 spins, α = 2.5, and three different magnetic field
values, which reveal the aforementioned crossover.

In addition, ground-state properties also disclose such crossover, which in the
N → ∞ are separated by aQPT. For example, the energy gapbetween the ground and
first excited state � becomes minimal in the vicinity of the critical point, ultimately
leading to � ∝ |g − gc|zν in the N → ∞ limit [11]. Moreover, in the same spirit of
the two-point correlation, the overlap between the actual ground state of HLRI and
the states |ψNeel〉, |ψF〉 and |ψP〉 provides a good estimate of the crossover between
(anti-)ferromagnetic and paramagnetic phases. Finally, it is convenient to introduce
the so-called Binder cumulant [37],

B(N , g) = 1

2

(
3 −

〈
m4

〉
〈
m2

〉2

)
, (6.4)
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Fig. 6.2 Two-point correlation functions Ci, j =
〈
σx

i σx
j

〉
− 〈

σx
i

〉 〈
σx

j

〉
on the ground state for anti-

ferromagnetic (J0 > 0) and ferromagnetic couplings (J0 < 0), shown in a and b, respectively, and
for different values of the external magnetic field g, N = 20 spins and an interaction decaying as
J = ±|i − j |−α with α = 2.5 (that is |J0| = 1). For large magnetic field g0 � |J0|, the system
shows little correlation along x direction, as it is polarized along the z axis, and thus Ci, j adopts
small values. Reducing g, the system enters in the (anti-)ferromagnetic phase, and Ci, j reveals the
predominance of a (Néel) ferromagnetic state. In a Ci, j shows alternating sign due to the staggered
Néel state, |ϕNeel〉. To the contrary, for ferromagnetic couplings,Ci, j indicates a collective alignment
of the spins along the x axis, as shown in b

where the dependence on N and g stems from 〈mn〉, with mF,AF = 1/N
∑

i (±1)iσx
i

the order parameter. In the N → ∞, the Binder cumulant features a sharp transition
at the critical point. Indeed, B(N , g) is particularly helpful to locate the critical
point gc(α), as we comment later. These quantities are plotted in Fig. 6.3 for anti-
ferromagnetic couplings. Needless to say, although Ci, j helps to identify the nature
of the ground state, it does not provide an accurate location of the critical point,
which can be accomplished based on finite-size scaling theory and will be explained
in the following.

6.1.2.1 Locating the Critical Point and Critical Exponents

The typical procedure to determine the position of the critical point of a phase tran-
sition and its associated critical exponents relies on finite-size scaling theory. In par-
ticular, the order parameter displays a behavior 〈m〉 ∝ |g − gc|β close to the critical
point gc. As discussed in the Introduction, according to the finite-size scaling the-
ory [38, 39], any quantity A behaving as A = A0 |g − gc|γA in the thermodynamic
limit admits the following form for finite N

A(N , g) = |g − gc|γA FA(|g − gc|ν N ), (6.5)
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Fig. 6.3 Precursors of the QPT in a HLRI with anti-ferromagnetic couplings, J0 > 0, for α = 2.5
and considering four different system sizes, N = 4, 8, 16 and 22. As the system size increases,
ground state properties become sharper close to the critical point, as one can observe in a for
the energy gap between the ground and second-excited state. In b we plot the Binder cumulant
B(N , g), whose intersections between different system sizes indicate an estimate of the critical
point gc(α). As a consequence of higher-order corrections to the finite-size scaling hypothesis,
B(N , g∗) = B(N ′, g∗) with g∗ → gc(α) for N N ′ → ∞. See the inset for a zoom close to the
region where distinct B(N , g) cross. The overlap of the ground state of HLRI,

∣∣ϕAF
0 (g,α)

〉
, with the

expected states at g � J0 (Néel state) and g � J0 (fully polarized state), denoted by |ψNeel〉 and
|ψzP〉, respectively, is plotted in c. The overlap | 〈ϕAF

0 (g,α)
∣∣ ϕNeel〉 | is represented by red lines,

while | 〈ϕAF
0 (g,α)

∣∣ ψP〉 | is shown with blue lines. Finally, in d, we plot
∑

i

〈
σz

i

〉
/N (red lines) and∑N−1

i

〈
1 + σx

i σx
i+1

〉
/N (blue lines), quantities thatwill be essential for addressing defect formation.

See main text for details

where higher-order corrections are neglected, and with FA(x) the universal scaling
function, satisfying limx→∞ FA(x) = A0 and limx→0 FA(x) ∼ x−γA/ν . Hence, it
follows thatA(N , g = gc) ∝ N−γA/ν . Nevertheless, the previous assumption works
for large N , and thus, including the first higher-order correction, we expectA(N , g =
gc) ∝ N−γA/ν(1 + aA N−ωA) where aA is simply a constant and ωA ≥ 0 a scaling
exponent, which accounts for higher-order corrections and becomes sub-leading for
N � 1.

At this stage, the usefulness of the Binder cumulant B(N , g) becomes visible,
Eq. (6.4). In particular, upon introducing Eq. (6.5) and considering g = gc, B(N , gc)

adopts a size-independent form. This property is extremely helpful to locate the
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critical point: computing B(N , g) for different system sizes N and N ′, they intersect
at one particular g value, which would correspond precisely to the critical point
gc. Nevertheless, due to higher-order finite-size corrections, this is not exact, and
B(N , gc) �= B(N ′, gc). Instead, the Binder cumulant for two different N intersects
at a certain value g∗, that is, B(N , g∗) = B(N ′, g∗), such that g∗ → gc when N N ′ →
∞. See Fig. 6.3b for an illustration of B(N , g) for anti-ferromagnetic couplings and
different system sizes. Indeed, the critical point follows from g∗

c (x) = gc(1 + bx−ω)

with b and ω > 0 constants, while x = N N ′ as done in [40]. Note as well the similar
procedures carried out in [28, 41].

In order to determine the critical exponent ν we first recast the scaling function as
Fmn (x̃) = N−nβ/νφmn (x̃) with x̃ = x1/ν = |g − gc|N 1/ν , where now φmn (x̃) = am,0

for x̃ → 0. Then, one can show

ln
∂

∂g

〈
mn

〉∣∣∣∣
g=gc

= 1 − nβ

ν
ln N + ln

∂φmn (x̃)

∂ x̃

∣∣∣∣
x̃=0

, (6.6)

where the last term produces just a constant shift. In this manner, by computing the
derivatives of

〈
m2

〉
and

〈
m4

〉
at the critical point, ν can be determined without a prior

knowledge of any critical exponent, as it follows from

2 ln
∂

∂g

〈
m2

〉∣∣∣∣
g=gc

− ln
∂

∂g

〈
m4

〉∣∣∣∣
g=gc

= 1

ν
ln N + K , (6.7)

where K stands for a constant. Finally, once ν is determined one can rely on standard
finite-size scaling methods to attain different critical exponents, either from the scal-
ing function itself FA(x) or from scaling at the critical point, 〈A〉 (N , gc) ∝ N−γA/ν .
In particular, the dynamical critical exponent z follows from the excitation energy,
whose behavior in the thermodynamic limit is given by �(g) ∝ |g − gc|zν [11], and
therefore �(N , gc) ∝ N−z for large N .

We remark that, in order to accurately determine the critical traits of HLRI, larger
system sizes are required, N � 1, as we rely on power-law relations on N to obtain
gc and critical exponents (see Eq. (6.7)). Nevertheless, since the dimension of the
Hilbert space grows exponentially with N (as 2N−1 if one restricts to one parity sub-
space), exact numerical methods soon become unfeasible, and suitable approximate
techniques must be employed [21, 35]. We leave however this task for future work.
Instead, in order to gain insight into HLRI, we show the energy gap � as a function
of g and α, which allows us to provide a rough estimate of gc(α), plotted in Fig. 6.4.

6.1.3 Nonequilibrium Dynamics and Scaling Laws

As explained in the Introduction, nonequilibrium dynamics involving phase transi-
tions is an exciting problem and of interest in several fields. In this thesis we have
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Fig. 6.4 Color map, in gray scale, of the energy gap � as a function of the exponent α of the
interaction and the external magnetic field g, for anti-ferromagnetic (a) and ferromagnetic couplings
(b). The results havebeen computed for N = 18 spins.Note the different scale ing andof� (encoded
by the colormap) for both cases.A roughestimate of the critical point as functionofα canbeobtained
from g̃c(α) = ming�(g,α). This is precisely plotted in c, where light-gray squares and black circles
correspond to anti-ferromagnetic (gAFc (α) ≤ 1) and ferromagnetic case (gFc (α) ≥ 1), respectively.
The dashed lines represent a theoretical approximation of gAF,F

c (α) derived in [21] relying on a
truncated Jordan-Wigner approach, namely, gAFc (α) = ζ(α) and gFc (α) = (1 − 21−α)ζ(α) where
ζ(x) = ∑∞

n=1 n−x represents the Riemann zeta function. It is worth recalling that gc = 1 (dotted
line) for nearest-neighbors couplings, which is qualitatively well reproduced, gc(α � 1) → 1

focusedmainly on the universal fingerprints inherited by nonequilibrium states when
the singular behavior characteristic of a continuous phase transition participates in
the dynamics. In this respect, the celebrated KZmechanism predicts a set power-law
scaling in terms of the equilibrium critical exponents and the finite rate at which the
critical point is traversed (see Introduction, Sect. 1.3). In this thesis we have tested
these KZ predictions both in a classical and a QPT (see Chaps. 2 for Ginzburg-
Landau and 4 for the QPT in the quantum Rabi model), and in addition, we have
exploited the finite-size scaling relations to attain its nonequilibrium counterpart that
encompasses the KZ scaling as a limiting case. In the following we examine the KZ
problem in the one-dimensional long-range transverse field Ising model, HLRI. How-
ever, we emphasize that the results serve simply as a proof-of-principle on that the
KZ mechanism could be readily tested in a truly quantum many-body system, while
we leave for future work the exhaustive inspection of different parameter regimes
and nonequilibrium scaling functions.

As studied in the seminal works given in Refs. [1–4], the KZ mechanism can be
successfully translated to the quantum realm, where quantum excitations play the
role of topological defects in the standard KZmechanism formulation. This quantum
counterpart of the KZ mechanism (QKZ) appropriately describes the power-law
behavior exhibited by the density of defects nd ∼ τ

−dν/(zν+1)
Q when the magnetic

field is quenched at a rate g(t) ∝ τ−1
Q crossing the QPT of the paradigmatic one-

dimensional nearest-neighbors Isingmodelwith transverse field (see Introduction for
a further discussion on this model) [2–4]. In this manner, at the end of the quench, the
state consists of a quantum superposition of different states with different number
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of defects. In particular, for ferromagnetic couplings, these possible states possess
local order within domains, namely,

|. . . ←←←←→→→→→←←←←←←→→→ . . .〉 . (6.8)

As an example, the previous state explicitly shows four domains that are separated
by three defects. We remark that, although the situation is similar to the classical
KZ mechanism, the underlying mechanism is distinct as now the final quantum state
comprises a superposition of different number of domains and defects. In addition, it
is worth emphasizing that theQKZmechanism applies even to a system under unitary
dynamics which preserves the parity symmetry (this symmetry is only spontaneously
broken in the N → ∞ limit). Nevertheless, quantum excitations are promoted as a
consequence of the finite-rate ramp across the critical point and the number of defects
is expected to follow a KZ scaling.

The protocol we consider here is similar and experimentally feasible [17, 18].
The magnetic field varies linearly in time g(t) = g0 + (g1 − g0)t/τQ . For simplicity,
we choose g1 = 0 (g(t) = g0(1 − t/τQ)) and consider g0 � gc such that a fully z-
polarized initial state |ψ(0)〉 = |ψP〉 |↓↓ . . . ↓〉 is a suitable description, to a very

good approximation, of the actual ground state of HLRI, |
〈
ϕAF,F
0 |ψP

〉
| ≈ 1. Then, the

number of defects can be obtainedmeasuring N − 1 times a two-site observable, that
is,

∑N−1
i σx

i σx
i+1. In particular, depending on the couplings, we quantify the density

of defects by

nAF
d = 1

2(N − 1)

N−1∑

i

(
1 + σx

i σx
i+1

)
, (6.9)

nF
d = 1

2(N − 1)

N−1∑

i

(
1 − σx

i σx
i+1

)
. (6.10)

Note that the sum runs up to N − 1 due to open boundary conditions and the dif-
ference of sign depending on J0 > 0 (AF) and J0 < 0 (F). For a strictly adiabatic
passage (τQ → ∞), one retrieves the ground state at g = 0, and therefore nAF,F

d ≡ 0
since

∑N−1
i

〈
σx

i σx
i+1

〉 = −N + 1 for anti-ferromagnetic and N − 1 for ferromag-

netic couplings. Moreover, for g = 0, the excited states exhibit
∑N−1

i

〈
σx

i σx
i+1

〉 =
−N + 1 + k or N − 1 − k, with k a positive integer number, that corresponds to the
number of kinks. A wrong spin alignment in the ordered states represents a defect or
kink, as illustrated previously. Since we consider an even number of spins, and we
have constrained ourselves to the even parity subspace, only even number of kinks
can be formed. In particular, the first excited state for anti-ferromagnetic couplings
possesses

∑N−1
i

〈
σx

i σx
i+1

〉 = −N + 3 for g = 0.
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In this manner, since the time-evolved state
∣∣ψ(τQ)

〉
can be written as

∣∣ψ(τQ)
〉 =

∑

k

ck(τQ) |ϕ2k(g = 0)〉 (6.11)

where |ϕ2k(g = 0)〉 is the 2kth eigenstate of HLRI, and thus, the density of defects
follows from nd = ∑

k 2k|ck(τQ)|2 which is then expected to adopt a universal form
if aQPT is involved in the dynamics nd ∼ τ

−dν/(zν+1)
Q and as long as dν < 2(zν + 1),

as otherwise QKZ scaling becomes sub-leading and the standard τ−2
Q dominates [12,

42, 43]. Recall that, applying adiabatic perturbation theory (APT) we could argue
that |ck(τQ)|2 ∼ τ

−dν/(zν+1)
Q (see Appendix E). Finally, if α is sufficiently large, ν

and z are expected to adopt its short-range values, namely ν = z = 1, which together
with d = 1 provides the QKZ predicted scaling, nd ∼ τ

−1/2
Q .

We obtain |ψ(t)〉 solving the time evolution of |ψ(0)〉 = |ψP〉 under HLRI with
realistic couplings Ji, j , Eq. (6.2), and subject to different quench rates across the crit-
ical point gc(α). Then, we compute the number of defects from Eq. (6.9). We remark
that we only focus on an anti-ferromagnetic scenario. AlthoughQKZmechanism can
be examined in both cases, in the ferromagnetic scenario gc(α) largely increases as
α approaches 1, and thus one would need to prepare an initial state at g0 � |J0|. Fur-
thermore, for α < 1 one would need to normalize Ji, j to properly achieve a thermo-
dynamic limit [44]. Note that an initial value g0 = 2|J0| together with 0.5 � α � 1.5
can be currently achieved [20]. The main results are collected in Fig. 6.5, where we
have considered N = 16 and N = 24 spins and the spin-spin interactions approxi-
mately fall off with an exponent α ≈ 1.41, 1.16 and 0.76. As expected, for a too fast
evolution across the critical point, J0τQ � 1, the number of defects saturates, while
it decreases as the ramp is performed slower, eventually decaying in a power-law
fashion τ

μ
Q . According to the QKZmechanism, μ = −dν/(zν + 1), which assuming

short-range critical exponents leads to μ = −1/2. For N = 16 and α ≈ 1.41, a fit in
the region 5 ≤ J0τQ ≤ 50 provides an exponent μ = −0.48(1), while for N = 24
andα ≈ 1.16, μ = −0.49(1) for 5 ≤ J0τQ ≤ 30, in agreement with QKZ prediction
for short-range interactions, as well as with the results reported in [21]. However, for
α ≈ 0.76, we find an exponent μ = −0.20(1). Finally, since J0 ≈ 2π × 1 kHz [18,
20, 30] and because the effect of decoherence processes may be relevant for τQ � 3
ms [18, 20], we should consider evolution times 5 ≤ J0τQ ≤ 20. A fit within this
region for N = 24 and α = 1.16 still provides a good agreement with QKZ predic-
tion. However, a closer inspection to the critical exponents for α ≈ 0.76 is required
to address this regime, and to verify whether QKZ still applies.

We have performed a primary inspection of the nonequilibrium dynamics in a
one-dimensional long-range Ising model with transverse field, which suggests that
QKZ mechanism could be corroborated with state-of-the-art ion trap technology.
The number of qubits and required α exponents are indeed available within cur-
rent technology, as well as the possibility of performing ramps varying the external
magnetic field [17, 18, 20]. Moreover, the effect of decoherence processes may
be disregarded for evolution times τQ � 3 ms [18, 20], which for a typical value
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Fig. 6.5 Density of formed defects in a long-range Ising model, HLRI, as a function of the quench
time τQ , for g(t) = g0(1 − t/τQ) and g0 = 2J0, and for different interaction profiles obtained
from Eq. (6.2), which approximately follows Ji, j ≈ J0|i − j |−α, with α indicated in the plots. We
consider an initial state fully polarized state in the z direction, |ψ(0)〉 = |ϕF〉 = |↓↓ . . . ↓〉, as it
corresponds to the ground state of HLRI for g � |J0|. In addition, J0 > 0, and thus, at g(τQ) = 0 one
canmeasure the amount of kinks or defects resorting to nAF

d (see Eq. (6.9)). Since g0 = 2J0 > gc(α)

for anti-ferromagnetic couplings, the critical point is traversed and defect formation may follow a
power-law in a universal fashion as predicted by QKZ, nd ∼ τ

−dν/(zν+1)
Q . Assuming short-range

critical exponents, d = z = ν = 1, it results in τ
−1/2
Q . In a we show the results for N = 16 spins and

α ≈ 1.41, which suggest that QKZ scaling is indeed attained (a fit provides an exponent−0.48(1)).
The same applies to a larger system, N = 24 withα ≈ 1.16, as plotted in b, resulting in an exponent
−0.49(1). For an interaction much long ranged, as α ≈ 0.76, the QKZ prediction based on short-
range critical exponents breaks down. See main text for details

J0 ≈ 2π × 1 kHz [18, 20, 30] would still enable the observation of QKZ scaling.
Distinct experimental imperfections may be yet relevant and a more detailed anal-
ysis of the potential impact of noise sources is pertinent. Finally, we comment that,
as we have shown in the QRM, one can resort to nonequilibrium scaling functions,
requiring shorter evolution times to witness its universal behavior (see Chap. 4).

6.2 Conclusion and Outlook

In this Chapter we have analyzed an experimentally feasible model where the QKZ
mechanism could be tested. Thanks to the formidable advance in trapped-ion tech-
nologies, quantum simulation of systems with sufficiently large number of particles
required to observe first indications of critical phenomena are now experimentally
accessible. In particular, one can engineer the effective interactions undergone by N
trapped ions, which adopt a Ising-like form [13, 45]. The resulting interaction decays
approximately as a power-law with the distance, whose exponent α can be tuned.
The realization of such an interacting quantum many-body system paves the way
for the inspection of novel critical phenomena in the quantum realm, which encom-
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passes an eventual confirmation of the QKZ among other prospects. For example, the
recent exploration of a dynamical QPT deserves special mention [19, 20]. Briefly, in
contrast to the standard QPT, a dynamical QPT manifests itself as non-analyticities
in the Loschmidt echo at particular evolution times of an initial state evolving under
a Hamiltonian [46].

The understanding of complex many-body systems lies at the core of statistical
physics. The interplay between quantum correlations within the system and from
surroundings, distinct phases of matter and nonequilibrium effects is far from being
elucidated, and it is the ultimate responsible for the emergence of exotic quantum
states of matter. In this respect, the Ising model, a paradigmatic model exhibiting
classical and quantumcontinuous phase transitions, has served as an excellent testbed
for diverse novel aspects and theories in statistical mechanics.

The recent work [21] deserves special mention, as it pursues the same goal as the
results presented in this Chapter, and where matrix-product states have been utilized
to extrapolate critical points, and to estimate nonequilibrium power-law exponents
as a function of α, that is, of the interaction range. Although the mentioned Ref. [21]
contains valuable results, a concise determination of critical exponents as well as
finite-size scaling functions, both in- and out-of-equilibrium, remain to be elucidated.
An interesting open question resides inwhetherQKZ successfully applieswhen long-
range interaction dominates. The inspection of these issues would allow to disclose
the universality class of the QPTs in such long-range interacting system featuring
an exotic phase diagram. Finally, we stress that we leave a detailed investigation of
large system sizes relying on approximate methods for future work.
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Chapter 7
Concluding Remarks and Outlook

In this thesis we have studied equilibrium and nonequilibrium aspects of continu-
ous phase transitions in distinct systems. We have made special emphasis on their
nonequilibrium features, a much less understood topic than their static counterparts,
aiming to elucidate questions such as to what extent the well-established univer-
sal static properties apply to the dynamics. In this regard, we have examined and
extended the predicted nonequilibrium scaling laws dictated by Kibble–Zurek (KZ)
mechanism in classical and quantum systems, covering standardmany-body systems
such as a Coulomb crystal [1] and an Ising model. Moreover, we have found that
a small quantum system, namely the quantum Rabi model (QRM), turns out to be
a suitable model to test and learn from the rich phenomenology of phase transi-
tions [2–5]. In the following we provide a brief summary of the main outcomes of
the work presented throughout the thesis, as well as some interesting directions for
future research, while we refer the reader to the conclusions of different chapters for
a more detailed account of the main results in each of them.

The KZ mechanism explains the unavoidable departure from equilibrium as a
consequence of a diverging relaxation time, a hallmark of continuous phase transition
at the critical point, and thus promoting defect formation. As a nearly-adiabatic
dynamics across the critical point inherits fingerprints of equilibriumdivergences, the
dynamics is said to be universal. However, KZ predictions are based on the features
of a phase transition in the thermodynamic limit, and thus cannot account for finite-
size systems. Therefore, in order to elucidate universal properties in nonequilibrium
scenarios embracing finite-size effects a more general framework is required. In
Chap. 2 we have analyzed a Ginzburg–Landau model [6] and a realistic zigzag phase
transition in a Coulomb crystal [7, 8], driving the system at finite speed towards the
ordered phase. This forces a local symmetry breaking promoting defect formation,
which turns out to be a suitable scenario to examine KZ physics, as indicated in
previous theoretical works (see [9–11] for the Ginzburg-Landau model and [12–15]
for zigzag phase transition in Coulomb crystals) and experimentally verified in two
ion trap experiments [16, 17]. In this part, we have studied this problem using a
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Fokker–Planck approach, aiming to obtain phase-space probability distributions in
a deterministic manner. Under certain approximations, this method is more efficient
than computing ensemble averages from individual stochastic trajectories.Moreover,
we show as well that non-linear interaction terms are not essential to capture KZ
scaling laws, and thus the corresponding physics can be well described by a Gaussian
approximation of both Ginzburg–Landau model and zigzag phase transition in a
Coulomb crystal, which has been published in [1]. The developed framework may
allow to gain valuable insights in systems driven out of equilibrium, not necessarily
involving phase transitions. In this regard, it may certainly be interesting to delve into
nonequilibrium thermodynamics quantities such as work done, entropy production
and fluctuation theorems [18, 19]. Needless to say, their connection with critical
phenomena, defect formation and symmetry breaking represents an exciting prospect
for future work (note the recent works in these directions [20–22]).

The investigation presented in this thesis leads us to reconsider one of the most
common conceptions about phase transitions. This well established notion is con-
cisely summarized by L. P. Kadanoff: “In particular, phase transitions cannot occur
in any finite system; they are solely a property of infinite systems, [...] there can-
not be any phase transition in any finite system described by the Ising model or
indeed any statistical system with everything in it being finite” [23]. That is, there
can only be a phase transition if there are infinitely many system components. We
however show that it is indeed possible to attain critical behavior while keeping finite
the number of constituents of a system, thus challenging this idea of phase transi-
tions. We have dubbed finite-component system phase transition this novel manner
to achieve critical behavior. In particular, we exemplify this finite-component sys-
tem phase transition in Chap. 3 considering QRM, a fundamental model in quantum
physics that describes a single spin interacting with a single bosonic mode [24]. In
this sense, the QRM finds itself far from being in the thermodynamic limit and one
would not expect to observe any kind of phase transition. Note however the previous
works which pointed out certain footprints of critical behavior [25–29]. Instead of
scaling system constituents, the QRM undergoes a quantum phase transition (QPT)
in a suitable parameter limit, which involves an infinitely large spin splitting � over
the bosonic frequency �/ω0 → ∞, and at the same time an infinitely large coupling
strength λ/ω0 → ∞ such that g ≡ 2λ/

√
�ω0 remains finite. This finite-component

system phase transition exploits the inherent infinitely large Hilbert space provided
by the harmonic oscillator, and takes place in a parameter limit in which an infinite
part of the Hilbert space becomes relevant.

In Chap. 3 we provide a detailed derivation of the equilibrium or static properties
of the QRM in this limit, which discloses all the hallmarks of a QPT. In particular,
it bears the same similarities as those of the Dicke model [30]—the multi-spin ver-
sion of the QRM—and Lipkin–Meshkov–Glick model [31], which undergo a QPT
in the standard thermodynamic limit. This type of QPT is known as superradiant
QPT [32–37]. As in any other conventional phase transition, we examine the impact
of a finite-size system, which in the QRM translates to a finite �/ω0 value, and find
that finite-size scaling theory is still applicable (or finite-frequency scaling to stress
that we are interested in finite values of the parameters, while the system always
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comprises a spin and a single bosonic mode). This allows us to assert that the QRM
falls into the same universality class of that of Dicke and Lipkin–Meshkov–Glick
models, as they share critical exponents and finite-size scaling functions. A closer
inspection to higher excited states unveils the presence of a logarithmic singularity in
the density of states, which is known as excited-state quantum phase transition [38–
40]. We then examine its nonequilibrium dynamics in Chap. 4, in the spirit of the KZ
problem, that is, driving the system towards the critical point. Remarkably, we find
a perfect agreement with the KZ predictions, and thus, extending the application of
KZ mechanism to a zero-dimensional system. Note that, prior to our work, the KZ
mechanism was considered to fail or not applicable to these systems [41, 42]. As
done in the first part of the thesis, we extend the universality to a nonequilibrium sce-
nario, which encompasses KZ scaling laws and finite-frequency systems. The Dicke
model andQRMexhibit equivalent nonequilibrium finite-size scaling functions, sup-
porting their equivalence and the universality of the dynamics. Hence, despite the
apparent simplicity of the QRM, the presented theoretical work strongly suggests
that the QRM is a suitable model to study critical dynamics. Finally, we propose
to probe the dynamics of the QPT realizing a QRM in an ion trap, which allows
us to explore a superradiant QPT with only one single trapped ion, as we explain
in Chap. 5. As a trapped-ion setup is prone to experimental imperfections and differ-
ent noise sources, we rely on nonequilibrium scaling functions and demonstrate that
their observation is feasible under realistic parameters and noise. Furthermore, as
magnetic field fluctuations are acknowledged as the main source of noise in certain
trapped-ion schemes, we propose to apply dynamical decoupling methods to attain
a robust and noise-resilient QRM with a trapped ion. Part of the results presented in
Chaps. 3, 4 and 5, have been published in Refs. [2–5].

In this manner, the QRM emerges as a good candidate to analyze other
interesting scenarios. For example, we have not mentioned possible design of opti-
mized protocols aiming to attain reliable ground states in much shorter evolution
times than those required under a naive linear quench [43–45]. These optimized pro-
tocols may be of considerable experimental relevance andmay open the possibility to
test static traits of the QPT by almost-adiabatic ground-state preparation. In addition,
the QRMmay also exhibit nonequilibrium phase transitions (not to be confused with
nonequilibrium traits of a QPT, as we have studied here), which refer to non-trivial
stable states when parameters of the system are periodically driven, as shown in the
Dicke model [46]. Another interesting prospect resides in the dissipative effect in
the dynamics, which may ultimately lead to critical transitions in steady states, i.e.,
a dissipative phase transition, and recently studied in [47].

However, more work needs to be done to establish a rigorous framework of finite-
component phase transitions. In this line, the recent work done in [48] deserves
special mention, as it extends this notion to a different system, a Jaynes–Cummings
lattice model. Although a similar phenomenology is observed, a continuous U (1)
symmetry spontaneously breaks instead, leading to a Goldstone mode. In addition,
it is worth noting a recent work which has analyzed the impact of different weights
of counter-rotating terms (an anisotropic QRM) on the QPT [49]. Hence, finite-
component system phase transitions may be present in a broad range of physical
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systems. On the other hand, investigation of system-environment interactions is also
of considerable interest, not only due to its experimental relevance but also to study
various theoretical aspects. For example, it has been reported that different spectral
properties of an external bath may modify the critical exponents of the superradiant
QPT in the Dicke model [50, 51]. Moreover, environment-induced transitions may
play an important role during adiabatic passages in the vicinity of a QPT [52–55].
As a consequence of the ubiquity of spin and boson interaction, the QRM naturally
arises in different platforms. Here we have only focused on its trapped-ion realiza-
tion, however, the QRM may be attained in other setups such as circuit QED [56],
cold-atom system [57] or by using color centers in membranes [58]. Nevertheless,
depending on the particular platform, it might be challenging to reach the extreme
parameter limit required to witness critical fingerprints of the QRM.

In the last part of this thesis we have studied the quantum Kibble–Zurek mech-
anism (QKZ) considering an experimentally feasible quantum many-body system,
namely, a long-range Ising model with transverse field. The QKZ differs from its
classical version on that quantum excitations produced during a finite-time, yet uni-
tary, evolution traversing a QPT follow a universal power law, in the same fashion
as the number of topological defects does in the KZ mechanism. Theoretically pro-
posed in [59–62], the predicted QKZ scaling laws have been only very recently
confirmed in [63, 64]. Chapter 6 intends to provide a proof of concept indicating
that QKZ mechanism can be tested and verified in a long-range Ising model within
current technology. Thanks to the great experimental progress in trapped-ion setups
(high fidelity measurements and state preparation, and high degree of isolation and
control [65]), the realization of this model in the laboratory has opened the door to
examine striking quantum effects and exotic phases of matter, such as the onset of
ferromagnetic QPTs [66–69], quantum time crystal [70] and dynamical QPTs [71,
72]. Hence, the long-range Ising model with transverse field has become an excellent
model where novel aspects of quantum many-body physics can be tested. Needless
to say, these works also constitute a great step forward in the quest for quantum
simulation and computation. We recall that the effective spin-spin interaction decays
as a power-law with the distance between them, a feature that crucially modifies the
universality of the phase transition. However, for sufficiently short-range interactions
the model falls into the universality class of its nearest-neighbors counterpart. We
discuss the ground-state properties, and observe that, for a feasible number of spins,
N ∼ 20, and realistic couplings, the QKZ scaling might already be experimentally
observed. We however leave for future work an in-depth analysis of the rich and
compelling static and dynamical features of this model. For example, in order to
answer the question of whether QKZ scaling holds when long-range dominates, one
needs first to determine static critical exponents, thus requiring the inspection of
large system sizes to obtain reliable estimates based on finite-size scaling. Because
the Hilbert space grows exponentially with the number of spins, exact procedures
become soon unfeasible, thus demanding suitable approximate techniques such as
density matrix renormalization group methods [73], as done in [74, 75].
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Appendix A
Survey on Stochastic Processes

In this Appendix, we present a very brief revision of stochastic processes, starting
from the Langevin equation, to later introduce the Fokker-Planck equation [1], which
has been used in Chap.2. These equations dictate the time evolution of the proba-
bility distributions, both in the high friction limit and in the general case known
as Smoluchowski and Kramers equations, respectively. In addition, we discuss the
fluctuation-dissipation theorem.

A.1 Brownian Motion and Langevin Equation

Let us consider a particle of mass m subject to a force f (x) = −dV (x)/dx with
V (x) the potential, as well as to a stochastic force ζ(t) that effectively describes
the interaction of the particle with the infinitely many degrees of freedom of the
environment. Then, the equation of motion of this simple system reads

mẍ(t) + γ ẋ(t) = f (x) + ζ(t), (A.1)

where γ represents the friction coefficient, as its surrounding fluid opposes to the
movement. This expression is known as Langevin equation, which for the typical
Brownian motion the noise adopts a Gaussian form, namely,

〈ζ(t)〉 = 0 (A.2)
〈
ζ(t)ζ(t ′)

〉 = σ2δ(t − t ′), (A.3)

where σ represents the amplitude of the thermal fluctuations. Intuitively, thermal
fluctuations must be related to the dissipated energy through the friction coefficient,
an intuition that becomes clear in the fluctuation-dissipation theorem [2], as we
present in the following.
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A.2 Fluctuation-Dissipation Theorem

In order to derive the fluctuation-dissipation theorem we follow a standard proce-
dure. We start considering the Langevin equation, Eq. (A.1), which can be formally
integrated as

ẋ(t) = ẋ(0)e− γ
m t + 1

m

∫ t

0
dt ′ e− γ

m (t−t ′)ζ(t ′), (A.4)

where we have considered that the particle moves freely, i.e., f (x) ≡ 0. Then, we
shall analyze how the particle diffuses and thermal equilibrium is attained, and specif-
ically, how it relates to the noise amplitude, σ. For that reason, we first take the limit
t → ∞, multiply by ẋ(t) and take stochastic average,

lim
t→∞

〈
ẋ2(t)

〉 = 1

m2

∫ ∞

0
dt ′′
∫ ∞

0
dt ′e− γ

m (2t−t ′−t ′′) 〈ζ(t ′)ζ(t ′′)
〉
. (A.5)

Assuming
〈
ζ(t ′)ζ(t ′′)

〉 ≡ 〈ζ(0)ζ(t ′′ − t ′)
〉
, i.e., the noise correlation is independent of

the specific time and just depends on time differences, and defining r = t − t ′′ and
s = t ′′ − t ′, it follows that

lim
t→∞

〈
ẋ2(t)

〉 = 1

m2

∫ ∞

0
dr
∫ ∞

−∞
ds e− γ

m (2r+s) 〈ζ(0)ζ(s)〉 (A.6)

= 1

2mγ

∫ ∞

−∞
ds e− γ

m s 〈ζ(0)ζ(s)〉 . (A.7)

Since the t → ∞ limit ensures that the particle reaches thermal equilibrium, and
because of the equipartition theorem, the kinetic energy takes half of the thermal
energy, m

〈
ẋ2
〉
/2 = (2β)−1, or simply

〈
ẋ2
〉 = 1/(mβ) with β ≡ (kBT )−1. Finally,

this leads to
∫ ∞

−∞
ds e− γ

m s 〈ζ(0)ζ(s)〉 = 2γ

β
, (A.8)

which can be further simplified under the assumption of a short correlated noise,
i.e. if 〈ζ(0)ζ(t)〉 decays in a time typical time scale τ such that τ � γ/m, then∫∞
−∞ ds 〈ζ(0)ζ(s)〉 = 2 γ

β
. This result is known as fluctuation-dissipation theorem as

it relates the amplitude of thermal fluctuations with the dissipated by friction. Finally,
for white noise,

〈
ζ(t)ζ(t ′)

〉 = σ2δ(t − t ′) the relation is exact

σ2 = 2γ

β
. (A.9)
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A.3 Fokker-Planck Equation

We derive here the Fokker-Planck counterpart of the Langevin equation, given here
in Eq. (A.1), which is known as Kramers equation. For that reason, it is convenient
to rewrite the Langevin equation in a general manner as

dV = α(X, V )dt +√β(X, V )dtNt (A.10)

dX = Vdt, (A.11)

where we have introduced the general functions α(X, V ) and β(X, V ). Note that
Nt stands for a random number following a normal distribution, i.e., zero mean and
variance unity. In particular, for the case discussed previously, β(x, v) = σ2/m2, and
α(x, v) = −γv/m + F(x). Then, using

∫∫
dx dv f (x, v)

∂ p(x, v, t)

∂t
=
〈
d f (X, V )

dt

〉
(A.12)

where p(x, v, t) corresponds to the probability distribution, and since f (X, V )

depends on t through X and V , it can be expanded as (keeping only terms up to
dt)

d f = ∂ f

∂X
dX + ∂ f

∂V
dV + ∂2 f

∂V 2

(dV )2

2
+ O(dX2, dV 3) (A.13)

= ∂ f

∂X
Vdt + ∂ f

∂V

[
α(X, V )dt +√β(X, V )dt Nt

]
+ ∂2 f

∂V 2

β(X, V )N 2
t

2
dt + O(dt2).

(A.14)

Then, taking the average, noting that 〈Nt 〉 = 0 and
〈
N 2
t

〉 = 1 by definition, and inte-
grating

∫∫
dx dv f (x, v)

∂ p(x, v, t)

∂t
=

∫∫
dx dv p(x, v, t)

[
v

∂ f

∂x
+ α(x, v)

∂ f

∂v
+ β(x, v)

2

∂2 f

∂v2

]
, (A.15)

which upon part-integration of the r.h.s. and assuming that the probability distribution
vanishes on the boundaries (neglecting the surface terms), we obtain the Kramers
equation,

∂ p(x, v, t)

∂t
= −v

∂ p(x, v, t)

∂x
− ∂

∂v
[α(x, v)p(x, v, t)] + 1

2

∂2

∂v2
(β(x, v)p(x, v, t)) , (A.16)

which corresponds to the Eq. (2.17) in the Chap.2. In a straightforward manner
one can derive the Smoluchowski equation, see (2.21), which represents the high
friction limit or overdamped dynamics, and it is attained simply considering dX =
α(X)dt + √

β(X)dt Nt , and thus,

∂ p(x, t)

∂t
= − ∂

∂x
[α(x)p(x, t)] + 1

2

∂

∂x
[β(x)p(x, t)] . (A.17)
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Appendix B
Rotating Wave Approximation

In thisAppendixweprovide a detailed description of the rotatingwave approximation
(RWA),which is essential to understand the developments carried out inChap.5.Note
that this customary approximation the realm of quantum optics [1, 2, 3, 4] can be
applied to a quantum Rabi model to neglect counter-rotating terms, as commented
in Chap.3. The main task consist in analyzing under what conditions the following
Hamiltonian

H(t) = ω

2
σz + �

2

[
σ+eiδt + σ−e−iδt

]
(B.1)

can be well approximated by H0 = ωσz/2. For that, it is insightful to move to an
interaction picture with respect to H0,

H I
1 (t) ≡ e−i t H0(H(t) − H0)e

it H0 = �

2

[
σ+ei(δ+ω)t + σ−e−i(δ+ω)t

]
. (B.2)

If the Hamiltonian given in Eq. (B.1) is well approximated by H0, the time-
evolution propagator of the previous Hamiltonian must be close to the unity,
U I
1 (t) ≡ T e−i

∫ t
0 dt

′H I
1 (t ′) ≈ 1 with T the time-ordering operator. Upon a Magnus

expansion,U I
1 (t) = e

∑∞
k �k (t) where�k(t) contains the k-order time integrals, whose

first three terms read

�1(t) = −i
∫ t

0
dt1H

I
1 (t1) (B.3)

�2(t) = − 1

2

∫ t

0
dt1

∫ t ′

0
dt2
[
H I
1 (t1), H

I
1 (t2)

]
(B.4)

�3(t) = i
1

6

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3
([

H I
1 (t1),

[
H I
1 (t2), H

I
1 (t3)

]]
+
[
H I
1 (t3),

[
H I
1 (t2), H

I
1 (t1)

]])
,

we find that �1(t) = i�/(2(δ + ω))[−σ+(eit (δ+ω) − 1) + σ−(e−i t (δ+ω) − 1)] and
�2(t) = −i�2/(4(δ + ω)2)σz[(δ + ω)t − sin((δ + ω)t)]. Note that, there are terms
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which do not give an accumulated effect in time, and therefore, provided � � (δ +
ω), the time-evolution propagator, up to O(�3t/(δ + ω)2), reads

U I
1 (t) ≈ e−i t �2

4(δ+ω)
σz . (B.5)

Hence, the approximation H(t) ≈ H0 is valid if �/(δ + ω) � 1, or more specifi-
cally,�2t � (δ + ω). Note that the same result follows considering instead a Dyson
expansion of U I

1 (t).
Finally, we comment that the performance of aRWAcan be enhanced by including

the effective time-evolution obtained in Eq. (B.5). Indeed, since U(t) = U0(t)U I
1 (t),

we notice that Eq. (B.1) effectively translates to a shift in the qubit frequency as
ω′ = ω + �2/(2(δ + ω)), the so-called Bloch-Siegert shift [4],

H(t) ≈ H ′ = ω′

2
σz = ω

2

(
1 + �2

2ω(δ + ω)

)
σz . (B.6)
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Appendix C
Effective Hamiltonians of the Quantum Rabi
Model

As explained inChap.3, Sect. 3.2,we are interested in obtaining the low-energy effec-
tive Hamiltonians of the QRM in the �/ω0 → ∞ limit, together with λ/ω0 → ∞,
while keeping g ≡ 2λ/

√
�ω0 finite. In this Appendix we discuss the detailed proce-

dure to attain the an effective Hamiltonian, together with its first-order perturbative
correction in ω0/�. In addition, we also show the standard procedure to diagonal-
ize them, Sect.C.2, and the derivation of the entanglement entropy Sect.C.3. In this
manner the material presented here complements the mathematical aspects of the
developments shown in Chap.3.

C.1 First-Order Correction for the Normal Phase

Here we provide the mathematical derivation to attain the first-order correction
Hamiltonian for the normal phase, 0 ≤ g ≤ 1, denoted by H�

np, which reduces to
Hnp in the �/ω0 → ∞ limit. We start considering the QRM Hamiltonian, HQRM,
which can be written as

HQRM = H0 − λV (C.1)

where

H0 = ωa†a + �

2
σz, V = (a + a†)σx . (C.2)

The unperturbed Hamiltonian H0 has decoupled spin subspaces H↓ and H↑. For a
ratio �/ω0 � 1, the low-energy eigenstates of H0 are confined in the subspaceH↓,
and they are simply those of a simple harmonic oscillator. However, the interaction
Hamiltonian V introduces coupling between the two subspaces and therefore, the
structure of these low-energy eigenstates will change as soon as the interaction term
is included. As commented in Sect. 3.2, our strategy consists in finding a unitary
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transformation U such that U †HQRMU has decoupled spin subspaces, i.e., it is free
of coupling between |↑〉 and |↓〉, which is similar to the Schrieffer-Wolff transforma-
tion [1, 2]. In particular, the unitary transformation can be expressed asU = eS where
S is an anti-Hermitian and block-off-diagonal with respect to the spin subspaces. The
transformed Hamiltonian then reads

H ′ = e−SHQRMe
S =

∞∑

k=0

1

k!
[
HQRM, S

](k)
(C.3)

where [H, S](k) ≡ [[H, S](k−1) , S
]
denotes the k-order nested commutator, and

[H, S](0) ≡ H . As we aim to obtain a transformed H ′ free of coupling between
spin subspaces, it is convenient to split H ′ in diagonal and off-diagonal parts making
use of the block-off-diagonal S and block-diagonal V , i.e.,

H ′
d =

∞∑

k=0

1

(2k)! [H0, S]
(2k) −

∞∑

k=0

1

(2k + 1)! [λV, S](2k+1) , (C.4)

H ′
od =

∞∑

k=0

1

(2k + 1)! [H0, S]
(2k+1) −

∞∑

k=0

1

(2k)! [λV, S](2k) . (C.5)

Then, we need to look for S such that H ′
od vanishes. However, since we are interested

in the �/ω0 � 1 limit, we require that H ′
od vanishes up a certain order of λ. Indeed,

in Sect. 3.2 we have seen that for the �/ω0 → ∞ limit, only up to the second order
in λ is needed, as higher-order terms vanish. Nevertheless, in order to accomplish
a H�

np, we must go up to fourth order, i.e., the terms of H ′
od up to λ4 must vanish.

Denoting the generator S ≡ λS1 + λ3S3, H ′
od up to λ4 can be written as

H ′
od = [H0, S] + 1

6
[H0, S]

(3) − λV − 1

2
[λV, S](2) + O(λ5) (C.6)

= λ [H0, S1] + λ3 [H0, S3] + λ3

6
[[[H0, S1] , S1] , S1] − λV − λ3

2
[[V, S1] , S1] + O(λ5),

and collecting terms in λ and λ3, H ′
od = 0 leads to

[H0, S1] = V (C.7)

[H0, S3] = 1

3
[[V, S1] , S1] . (C.8)

A generator S that fulfills the previous conditions is

S1 = 1

�
(a + a†)(σ+ − σ−) + O

( ω0

�2

)
(C.9)

S3 = − 4

3�3
(a + a†)3(σ+ − σ−) + O

( ω0

�4

)
. (C.10)
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Now, making use of the Eq. (C.4),

H ′ = H0 + 1

2
[H0, S]

(2) + 1

24
[H0, S]

(4) − [λV, S] − 1

6
[λV, S](3) + O(λ6) (C.11)

= H0 − λ2

2
[V, S1] − λ4

2
[V, S3] + λ4

24
[[[V, S1] , S1] , S1] + O(λ6) (C.12)

= ω0a
†a + �

2
σz + ω2

0g
2

4�
+ ω0g

2

4
(a + a†)2σz − ω2

0g
4

16�
(a + a†)4σz + O

(
g2ω3

0

�2

)

,

where we have introduced the dimensionless coupling constant g = 2λ/
√

�ω0. The
previous Hamiltonian contains terms up to first order in ω0/� without coupling
between the spin subspaces. Hence, after projecting onto H↓, we finally obtain

H�
np ≡ 〈↓| H ′ |↓〉 = ω0a

†a − ω0g
2

4
(a + a†)2 + ω2

0g
4

16�
(a + a†)4 − �

2
+ g2ω2

0

4�
,

which corresponds to the Hamiltonian given in Eq. (3.23).

C.2 Diagonalization

Here, we briefly show how these effective low-energy Hamiltonians, Hnp and Hsp,
which present a quadratic term, (a + a†)2, can be diagonalized bymeans of squeezing
operators. These Hamiltonians can be written in a compact manner as

Hq = c1a
†a + c2(a + a†)2 + c0, (C.13)

where c1,2,3 represent the different parameters. Then,we transform Hq via the squeez-
ing operator S[r ] = er/2(a

†2−a2) considering r ∈ R,

S†[r ]HqS[r ] = (c1 + 2c2)

(
cosh(2r)a†a + 1

2
sinh(2r)(a2 + (a†)2) + sinh2 r

)

+ c2
(
2 sinh(2r)a†a + cosh(2r)(a2 + (a†)2) + sinh(2r) + 1

)+ c0

= a†a ((c1 + 2c2) cosh(2r) + 2c2 sinh(2r))

+ (a2 + (a†)2)

(
c2 cosh(2r) + (c1 + 2c2)

2
sinh(2r)

)

+ (c1 + 2c2) sinh
2 r + c2(sinh(2r) + 1) + c0 (C.14)

Note thatwith the definitionofS[r ], the bosonic operators transformasS†[r ]aS[r ] =
a cosh r + a† sinh r and S†[r ]a†S[r ] = a† cosh r + a sinh r . Then, the previous
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transformation adopts a diagonal form when the coefficient accompanying the term
a2 + (a†)2 vanishes. Thus, the squeezing parameter that diagonalizes Hq follows
from

c2 cosh(2rs) + (c1 + 2c2)

2
sinh(2rs) = 0 (C.15)

that is,

rs = −1

4
log

(
4c2
c1

+ 1

)
(C.16)

For Hnp, the parameters are c1 = ω0, c2 = −ω0g
2/4 and c0 = −�/2. Thus, the

squeezing parameter is rnp = −1/4 log(1 − g2). For the superradiant phase, the
parameters c2 and c0 are different, with c2 = −ω0/(4g4) and c0 = −�/4(g2 + g−2),
which lead to rsp = −1/4 log(1 − g−4). In general, under the choice of rs , Eq. (C.16),
the transformed Hamiltonian takes the following form

S†[rs]HqS[rs] = √c1(c1 + 4c2)a
†a + c1

2

(√

1 + 4c2
c1

− 1

)

+ c0, (C.17)

which after substituting the parameters for Hnp, we recover the expression given in
Chap.3, Eq. (3.14),

S†[rnp]HnpS[rnp] = ω0

√
1 − g2a†a + ω0

2

(√
1 − g2 − 1

)
− �

2
(C.18)

= εnp(g)a†a + EG,np(g), (C.19)

wherewe have introduced the excitation energy εnp(g) = ω0

√
1 − g2 and the ground-

state energy EG,np(g) = (εnp(g) − ω0)/2 − �/2. In a straightforward manner, we
obtain the diagonalized Hsp,

S†[rsp]HspS[rsp] = ω0

√
1 − g−4a†a + ω0

2

(√
1 − g−4 − 1

)
− �

4
(g2 + g−2)

= εsp(g)a†a + EG,sp(g), (C.20)

with εsp(g) = ω0

√
1 − g−4 and ground-state energy EG,sp(g) = (εsp(g) − ω0)/2 −

�(g2 + g−2)/4.
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C.3 Entanglement Entropy

Here we derive the expression of the von Neumann entropy across the QPT given in
the Chap.3. The von Neumann entanglement entropy SvN can be written as

SvN = −Tr
[
ρs log2 ρs

]
, (C.21)

where ρs here denotes the reduced spin density matrix. Since we are interested in

the ground-state properties, ρ =
∣∣∣ϕ0

np(g)
〉 〈

ϕ0
np(g)

∣∣∣ for 0 < g < 1 and
∣∣∣ϕ0

sp(g)
〉
for the

superradiant phase. Certainly, for the normal phase it is straightforward to show that
SvN = 0 since ρs = |↓〉 〈↓|. To the contrary, for the superradiant phase we consider
the symmetrized ground state, that is,

∣∣∣ϕ0
sp(g)

〉

S
= 1√

2

(∣∣∣ϕ0
sp(g)

〉

+
±
∣∣∣ϕ0

sp(g)
〉

−

)
, (C.22)

with
∣∣∣ϕn

sp(g)
〉

±
= D[±αg(g)]S[rsg(g)] |n〉 ∣∣↓±〉 , (C.23)

where the spin states read

∣∣↓±〉 = ∓
√
1 − g−2

2
|↑〉 +

√
1 + g−2

2
|↓〉 . (C.24)

Then, from the full density matrix, ρ =
∣∣∣ϕ0

sp(g)
〉

S

〈
ϕ0
sp(g)

∣∣∣
S
, we obtain the reduced

spin density matrix as

ρs = 1

π

∫
d2β |β〉 〈β| ρ (C.25)

= 1

2π

∫
d2β

(∣∣↓+〉 〈↓+∣∣ 〈β|αg

〉 〈
αg|β

〉+ ∣∣↓−〉 〈↓−∣∣ 〈β| − αg

〉 〈−αg|β
〉

− ∣∣↓−〉 〈↓+∣∣ 〈β| + αg

〉 〈−αg|β
〉− ∣∣↓+〉 〈↓−∣∣ 〈β| − αg

〉 〈+αg|β
〉)

(C.26)

where |β〉 = D(β) |0〉 denotes a coherent state and d2β = |β|d|β|dθ since β =
|β|eiθ. Then, considering that the overlap

〈
αg|β

〉 = δαg,β . Note that, in general
〈α|β〉 = e−(|α|2+|β|2)/2−α∗β , however, since thedisplacementαg → ∞ in the�/ω0 →
∞, the overlap vanishes exponentially. Recall that αg = √�/(4g2ω0)

√
g4 − 1.

Thus, in this limit ρs results in
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ρs = 1

2

(∣∣↓+〉 〈↓+∣∣+ ∣∣↓−〉 〈↓−∣∣) (C.27)

= 1

2

(
(1 − g−2) |↑〉 〈↑| + (1 + g−2) |↓〉 〈↓|) . (C.28)

Note that ρs is already diagonal in the spin basis, and therefore SvN simply reads

SvN = −1 − g−2

2
log2

(
1 − g−2

2

)
− 1 + g−2

2
log2

(
1 + g−2

2

)
, (C.29)

which corresponds to the Eq. (3.38).
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Appendix D
Semiclassical Approach of the Quantum Rabi
Model

In this Appendix we present a detailed analysis of the semiclassical density of states
of the QRM that allowed us to unveil the existence of an excited-state quantum phase
transition (ESQPT) in the �/ω0 → ∞ limit, as well as relate the singular density of
states to the mean-field observables. For that purpose, we first show how to obtain the
semiclassical density of states, and then, the subsequent and necessary derivations to
attain analytical expressions that disclose its divergence at a certain critical excitation
energy, given in Sect.D.1. Finally, in Sect.D.2, we show how to obtain Eq. (3.84) by
means of the Hellmann-Feynman theorem.

D.1 Semiclassical Density of States

The semiclassical density of states of the QRMplays a key role in the Chap.3.84, as it
exhibits singular behavior at a certain non-zero excitation energy. The semiclassical
density of states, νscl(ε, g) can be written as

νscl(ε, g) = 1

ω0π

∫
dxdp δ

[
ε − 2H−

scl(x, p, g)/�
]

(D.1)

= 1

ω0π

∫
dxdp δ

[
ε − p2 − x2 +

√
1 + 2g2x2

]
(D.2)

= 1

ω0π

∫
dx

(
δ[p − p+]

|∂p2Hscl(x, p, g)/�|p=p+
+ δ[p − p−]

|∂p2Hscl(x, p, g)/�|p=p−

)

= 2

ω0π

∫ x2

x1

dx
1

√
ε − x2 +√1 + 2g2x2

(D.3)
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where p± = ±
√

ε − x2 +√1 + 2g2x2 are the positive and negative roots of ε −
2H−

scl(x, p, g)/� = 0. Note that we only take into account H−
scl(ε, g), as the positive

branch is only relevant at energies ε > 1. The integration limits are given by

x1 =
√

ε + g2 −
√

g4 + 2εg2 + 1 � [εc − ε] (D.4)

x2 =
√

ε + g2 +
√

g4 + 2εg2 + 1. (D.5)

In this manner, we are able to compute νscl(ε, g). However, as shown in Chap.3, we
can provide analytical expressions for some relevant and interesting cases, namely
εc = −1 for g = 1 and g > 1.We start considering g = 1, for which the ground-state
energy is simply εc = −1. Then, for an energy ε = εc + δε with 0 < δε � 1, we
can expand the integration limits as well as the Eq. (D.3) such that

νsc(εc + δε, g = 1) ≈ 2

ω0π

∫ (2δε)1/4

0
dx

⎛

⎝ 1
√

δε − x4
2

+ O(x6)

⎞

⎠ = �(5/4)

�(3/4)

25/4

ω0
√

π
(δε)−1/4.

Therefore, the semiclassical density of states diverges at the critical point of the QPT
as νscl(ε, g = 1) ∝ (ε − εc)

−1/4 for ε − εc � 1.
On the other hand, for g > 1 we first consider 0 < δε � 1. In this case, the

integration limits result in x2 = √2(g2 − 1) + O(δε) and x1 = 0. Then, we split
the integration interval as

∫ x2
x1

dx = ∫ xm
x1

dx + ∫ x2
xm

dx and the arbitrary intermediate
value xm is chosen such that 0 < xm � 1 but still greater than δε. Then,

νsc(εc + δε, g > 1) ≈ 2

ω0π

∫ xm

0
dx

(
1

√
δε + (g2 − 1)x2

+ O(x4)

)

+ K (D.6)

≈ 1

ω0π
√

g2 − 1
ln

(
2x2m(g2 − 1)

δε

)
+ K , (D.7)

where K denotes the result of the integral from xm to x2, which only produces
a constant shift, as we demonstrate in the following. Certainly, the denominator
of Eq. (D.3) vanishes for x2 = √2(g2 − 1) as

√
δε and therefore it may lead to a

divergence in νscl(εc, g > 1). However, defining yet another intermediate integration
limit xn such that

∫ x2
xm

dx = ∫ xn
xm

dx + ∫ x2
xn

dx with xm < xn < x2 and 0 < x2 − xn �
1, we can denote the result of the integral between xm and xn as K̃ as it does not
involve any singularity and thus, it just contributes to νscl(εc, g > 1) with a constant
value. Then, the shift K can be expressed as
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K = 2

ω0π

∫ x2

xm

dx
√

δε − 1 − x2 +√1 + 2g2x2

= K̃ + 2

ω0π

∫ x2

xn

dx
√

δε − 1 − x2 +√1 + 2g2x2

= K̃ + 2

ω0π

∫ x2

xn

dx

⎛

⎝ 1
√

δε + 2
√
2(g2−1)3/2

2g2−1 (x − x2)
+ O((x − x2)

2)

⎞

⎠

≈ K̃ + 2

ω0π

(2g2 − 1)√
2(g2 − 1)3/2

⎛

⎝

√

δε + 4(g2 − 1)2 − 2
√
2(g2 − 1)3/2

2g2 − 1
− √

δε

⎞

⎠ ,

where xn = x2 − δx . Indeed, if we select δε = 0, the previous expression adopts a
form

K ≈ K̃ + 2

ω0π

21/4
√

δx(2g2 − 1)

(g2 − 1)3/4
, (D.8)

which is analytic for any g > 1. Moreover, we now analyze the limit in which the
critical energy is approached from the opposite side, i.e., ε = εc − δε. Then, the
integration limits can be expanded as

x1 =
√

δε

g2 − 1
+ O(δε), (D.9)

x2 =
√
2(g2 − 1) + O(δε). (D.10)

In a straightforward manner, we obtain

νscl(ε, g) = 2

ω0π

∫ x2

x1

dx

(
1

√
(g2 − 1)x2 − δε

+ O(x4)

)

(D.11)

≈ 1

ω0π
√

g2 − 1

(
ln

(
8(g2 − 1)2

δε

))
, (D.12)

and therefore, we can conclude that νscl(ε, g > 1) diverges logarithmically for |ε −
εc| � 1, as given in Eq. (3.82).
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D.2 Hellman-Feynman Theorem

In Chap.3, we have made use of the Hellmann-Feynman theorem to connect expec-
tation values with derivatives of the accumulated number of states N (ε, g) (see
Eq.3.84). Briefly, the Hellmann-Feynman theorem indicates [1]

∂

∂β
E(β) = 〈ϕ(β)| ∂

∂β
H(β) |ϕ(β)〉 , (D.13)

where β denotes a real parameter and |ϕ(β)〉 an eigenvector of the Hamiltonian
H(β). Then, since H(β) |ϕ(β)〉 = E(β) |ϕ(β)〉, and 〈ϕ(β) | ϕ(β)〉 = 1, one obtains
that

∂

∂β
E(β) = ∂

∂β
〈ϕ(β)| H(β) |ϕ(β)〉 (D.14)

= 〈ϕ(β)| ∂

∂β
H(β) |ϕ(β)〉 + E(β)

{[
∂

∂β
〈ϕ(β)|

]
|ϕ(β)〉 + 〈ϕ(β)|

[
∂

∂β
|ϕ(β)〉

]}
,

which reduces to the Eq. (D.13) since the last two terms correspond to ∂β(〈ϕ(β) |
ϕ(β)〉) = 0. Therefore, taking Eq. (D.13) and noting that if an observableA appears
in the Hamiltonian with a linear dependence on a parameter β, i.e., A = ∂βH(β),
then

∂

∂β
E(β) = 〈ϕ(β)|A |ϕ(β)〉 = 〈A〉 . (D.15)

Therefore, to attain Eq. (3.84), we shall start with Eq. (3.83),

〈A〉 (ε, g) = 1

νq(ε, g)

∑

k=0,α=±

〈
ϕα
k |A| ϕα

k

〉
δ
[
ε − εα

k

]
(D.16)

= 1

νq(ε, g)

∑

k=0,α=±

〈
ϕα
k

∣∣ ∂

∂β
H(β)

∣∣ϕα
k

〉
δ
[
ε − εα

k

]
(D.17)

= 1

νq(ε, g)

∑

k=0,α=±

∂

∂β
εα
k (β)δ

[
ε − εα

k

]
. (D.18)

On the other hand, the derivative of the accumulated number of states ∂βNq(ε, g)

reads,
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∂

∂β
Nq (ε, g) = ∂

∂β

∫ ε

−∞
dε′νq (ε′, g) (D.19)

= νq (ε, g)
∂ε

∂β
− lim

x→−∞ νq (x, g)
∂x

∂β
+
∫ ε

−∞
dε′ ∂

∂β
νq (ε, g) (D.20)

=
∫ ε

−∞
dε′ ∂

∂β

∑

k=0,α=±
δ
[
ε′ − εα

k

] =
∫ ε

−∞
dε′ ∑

k=0,α=±

∂ε′

∂β

∂

∂ε′ δ
[
ε′ − εα

k

]
(D.21)

= −
∑

k=0,α=±

∫ ε

−∞
dε′ ∂

∂ε′
∂ε′

∂β
δ
[
ε′ − εα

k

] = −
∑

k=0,α=±

∂

∂β
εα
k δ
[
ε − εα

k

]
. (D.22)

Note that the energy ε is an external parameter and does not depend on β, while εα
k

are the energy eigenvalues of H(β). Hence, combining Eqs. (D.18) and (D.22), we
finally obtain the expression given in Eq. (3.84),

〈A〉 (ε, g) = − 1

νq(ε, g)

∂

∂β
Nq(ε, g), (D.23)

whose semiclassical approximation is achieved replacing νq(ε, g) and Nq(ε, g) by
νscl(ε, g) and Nscl(ε, g), respectively.
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Appendix E
Adiabatic Perturbation Theory and Critical
Dynamics

In this Appendix we explain first, in Sect.E.1, the general adiabatic perturbation
theory (APT) [1, 2] and how to apply it to the quantum Rabi model (QRM). Then, in
Sect.E.2, we show how to compute the time-evolved wave function when the QRM
exhibits a quantum phase transition, and in particular, how to calculate the fidelity
given in Eq. (4.8) of Chap.4. In addition, in Sect.E.3 we provide the derivation of
the equation of motion given in Eqs. (4.17) and (4.18), (4.31) as well as the required
information for Sects. 4.1.3 and 4.1.4.

E.1 Adiabatic Perturbation Theory

The APT aims to obtain a correction to the an ideal adiabatic evolution. In particular,
considering a Hamiltonian H(t) that varies in a characteristic time τQ , the parameter
τ−1
Q is treated perturbatively (τQ → ∞ corresponds to the adiabatic limit) and leading

order corrections in τ−1
Q are sought. In the following lines we closely follow the

derivation given in [3]. In general, let H(t) denote a time-dependent Hamiltonian
such that H(t) =∑n εn(t) |φn(t)〉where εn(t) is the energy of the nth instantaneous
eigenstate |φn(t)〉, and considering that H depends on t through the variation of a
parameter g(t) = g f t/τQ . Furthermore, we express the wave function at time t in
termsof |φn(t)〉, that is, |ψ(t)〉 =∑n αn(t)e−i�n(t) |φn(t)〉with�n(t) = ∫ t

0 εn(t ′)dt ′.
Then, the Schrödinger equation for the coefficients αn(t) reads

α̇n(t) = −
∑

m

αm(t) 〈φn(t)| ∂t |φm(t)〉 ei(�n(t)−�m (t)), (E.1)

whose formal solution is given by

αn(g) = −
∑

m

∫ g

0
dg′αm(g′)

〈
φn(g

′)
∣∣ ∂g′

∣∣φm(g′)
〉
ei(�n(g

′)−�m (g′)), (E.2)
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where we have changed the variables assuming a linear quench g = ġt . Since we
are interested in nearly-adiabatic dynamics, the quench rate is small, ġ � 1, and in
addition, we take as initial condition the ground state, α0(0) = 1 and αn(0) = 0 for
n ≥ 1. Then, in the leading order of ġ, Eq. (E.2) becomes

αn(g) ≈ −
∫ g

0
dg′ 〈φn(g

′)
∣∣ ∂g′

∣∣φ0(g
′)
〉
ei(�n(g

′)−�0(g
′)). (E.3)

Moreover, since�n(g) = 1
ġ

∫ g

0 εn(g
′)dg′, the phase term ei(�n(g)−�0(g)) rapidly oscil-

lates. Using the standard evaluation of a fast oscillating integral,
∫ x2
x1

f (x)eiηg(x)dx =
1
iη

f (x)
g′(x)e

iag(x)
∣∣∣
x2

x1
+ O(η−2), we obtain

αn(g) ≈ i ġ

〈
φn(g)

∣∣∂g

∣∣φ0(g)
〉

εn(g) − ε0(g)
ei(�n(g)−�0(g))

∣∣∣
g

0
+ O

(
ġ2
)
. (E.4)

Hence, knowing
〈
φn(g)

∣∣∂g

∣∣φ0(g)
〉
and the energy spectrum, εn(g) one obtains the

coefficients αn(g) within the APT, thus valid for ġ � 1. In addition, it is worth
noting that if the Hamiltonian becomes gapless, εn(g) = ε0(g) for a certain n and g,
the previous theory does not apply.

In the case a QRM in the �/ω0 → ∞ limit, we have have all the ingredients
needed to compute αn(g). As we consider g(t) = g f t/τQ with 0 ≤ g f ≤ gc = 1 we

remain in the normal phase, and thus |φn(g)〉 =
∣∣∣ϕn

np(g)
〉
= Snp[rnp(g)] |n〉 |↓〉 with

εn(g) − ε0(g) = nω0(1 − g2)zν with zν = 1/2. Note that we have explicitly written
the dependence on the critical exponents. In addition, since the squeezing parameter
reads rnp(g) = −1/4 ln(1 − g2),

〈
ϕn
np(g)|∂g|ϕm

np(g)
〉
= 1

2

∂rnp(g)

∂g

〈
ϕm
np(g)

∣∣(a†2 − a2
)∣∣ϕn

np(g)
〉
= −

√
2g

4
(
1 − g2

)δm,2.

Therefore, at leading order in τ−1
Q , the only non-vanishing correction to an adiabatic

evolution reads

α2(g) ≈ −i
g f

τQ

gei(�2(g)−�0(g))

4
√
2ω0(1 − g2)zν+1

. (E.5)

We focus now on the scaling of the residual energy Er , but same arguments apply
in a straightforward manner to other observables. The residual energy, defined as
Er (g f ) = 〈ψ(g f )

∣∣ Hnp(g f )
∣∣ψ(g f )

〉− EGS(g f ) can be written as

Er (g f ) =
∑

n>0

εn(g f )
∣∣αn(g f )

∣∣2 ≈ ε2(g f )
∣∣α2(g f )

∣∣2 ≈ τ−2
Q

g4f

16ω0(1 − g2f )
zν+2

.
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Therefore, if the quench stops before the critical point g f < gc, the APT is expected
to correctly describe the dynamics, and thus, we attain the scaling Er ∼ τ−2

Q . Note

that for nonlinear quenches, the same procedure leads to Er ∼ τ−2r
Q , where r is the

nonlinear exponent of the protocol (see Chap. 4). Remarkably, once g f → gc = 1,
the APT breaks down and one needs to resort to Kibble-Zurek arguments which
correctly describe the observed scaling, Er ∼ τ

−zν/(zν+1)
Q , as explained in Chap.4.

Remarkably, fromprevious expressions |α2|2 does not showa scaling if g f = gc using
Kibble-Zurek arguments, which is consistent with the predicted scaling τ

−dν/(zν+1)
Q

for d-dimensional systems.

E.2 Time Evolution of Fidelity in Quench Dynamics

Here we show how to calculate the time evolution of the fidelity between the evolved
state and the ground state at the same coupling instant g(t) in the�/ω0 → ∞ limit of
a QRM. We start considering the effective Hamiltonian for 0 ≤ g ≤ 1, which under
a protocol g(t) = t/τq reads

Hnp(t) = ω0

(

1 − t2

2τ 2
Q

)

a†a − ω0t2

4τ 2
Q

(
a2 + a†2

)− ω0t2

4τ 2
Q

− �

2
, (E.6)

where we have made the Hamiltonian to be normal ordered. Then, the Schrödinger
equation for the unitary evolution operator reads

∂

∂t
Unp(t) = −i Hnp(t)Unp(t). (E.7)

Since the ground state energy term gives simply a phase factor, we split it according

toUnp(t) = ei�U (t), where � =
(

ω0t3

12τ 2
Q

+ �
2 t
)
, and the equation of motion forU (t)

reads

∂U (t)

∂t
= −i

[

ω0

(

1 − t2

2τ 2
Q

)

a†a − ω0t2

4τ 2
Q

(a2 + a†2)

]

U (t) (E.8)

Note that U (t) is a function of a and a†, that is, U (t) = U (a, a†, t). Taking the
diagonal elements in a coherent state basis, Un(α,α∗, t) = 〈α|U (a, a†, t) |α〉, the
equation becomes

∂Un(α,α∗, t)

∂t
=

− i

[

h0(t)α
∗
(

α + ∂

∂α∗
)

+ h1(t)

((
α + ∂

∂α∗
)2

+ α∗2
)]

Un(α,α∗, t) (E.9)
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where we have used

|α〉 〈α| a =
(

α + ∂

∂α∗

)
|α〉 〈α| (E.10)

and defined

h0(t) = ω0

(

1 − t2

2τ 2
Q

)

, and h1(t) = −ω0t2

4τ 2
Q

. (E.11)

Once we obtainUn(α,α∗, t), we can getU (a, a†, t) by replacing α and α∗ to a and
a†, respectively, in a normal ordered fashion. Since Eq. (E.9) contains only quadratic
terms in α and α∗, we rely on an Ansatz of the form

Un(α,α∗, t) = ea(t)+b(t)α∗2+c(t)α2+d(t)α∗α (E.12)

from where it follows

∂

∂t
Un(α,α∗, t) = −i

[
(h0(t) + 4h1(t)b(t))(1 + d(t))α∗α (E.13)

+ (h1(t) + 2h0(t)b(t) + 4h1(t)b
2(t))α∗2 (E.14)

+(h1(t) + 2h1(t)d(t) + h1(t)d
2(t)))α2 + (2h1(t)b(t))

]
Un(α,α∗, t) (E.15)

while the left hand side reads

∂

∂t
Un(α,α∗, t) = [ḋ(t)α∗α + ḃ(t)α∗2 + ċ(t)α2 + ȧ(t)

]
Un(α,α∗, t). (E.16)

Therefore, the coefficients obey the following set of differential equations,

ȧ(t) = −i2h1(t)b(t) (E.17)

ḃ(t) = −i
(
h1(t) + 2h0(t)b(t) + 4h1(t)b

2(t)
)

(E.18)

ċ(t) = −i
(
h1(t) + 2h1(t)d(t) + h1(t)d

2(t)
)

(E.19)

ḋ(t) = −i (h0(t) + 4h1(t)b(t))(1 + d(t)) (E.20)

Since the equation for b(t) is decoupled from others, we solve b(t) first and then
a(t) and d(t), followed by c(t). We can construct the unitary evolution operator from
these solutions,

U (a, a†, t) = N [Un(α,α∗, t)] = ea(t)eb(t)a
†2N [ed(t)a†a]ec(t)a2 (E.21)

whereN is a normal ordering operator. Note that the coefficients a(t), b(t), c(t) and
d(t) have to define an unitary operatorU (a, a†, t) for any time t . Including the phase
factor, we have
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Unp(t) = ei�U (t) = ea(t)+i�eb(t)a
†2N [ed(t)a†a]ec(t)a2 . (E.22)

Since we take as initial state the vacuum, |ψ(0)〉 = |0〉, the evolved wave function
simplifies to

|ψ(t)〉 = Unp(t) |0〉 = ea(t)+i�eb(t)a
†2 |0〉 . (E.23)

The wave function can be expressed in terms of the instantaneous eigenstates

|ψ(t)〉 =
∞∑

n=0

αn(t)
∣∣∣ϕn

np(g(t))
〉
, (E.24)

and thus, the probability of finding |ψ(t)〉 in the instantaneous ground state is simply
|α0(t)|2, that is

P0(t) = |c0(t)|2 = |
〈
ϕ0
np(g(t))|ψ(t)

〉
|2

= e2Re[a(t)]
∣∣∣
〈
0
∣∣∣S†[r(t)]eb(t)a†2

∣∣∣ 0
〉∣∣∣
2

(E.25)

Calculating
〈
0
∣∣∣S†[r(t)]eb(t)a†2

∣∣∣ 0
〉
seems to be rather involved, but we can exploit

the following property for a squeezing operator [4, 5],

S(z) = exp[ 1
2
(za†a† − z∗aa)]

= exp[ 1
2
(eiθ tanh |z|)a†a†] exp[− ln(cosh |z|)(a†a + 1

2
)] exp[− 1

2
(eiθ tanh |z|)aa] (E.26)

where z = |z|eiθ. Therefore,
exp[ 12 (eiθ tanh |z|)a†a† = S(z) exp[ 12 (eiθ tanh |z|)aa] exp[ln(cosh |z|)(a†a + 1

2 )], (E.27)

which allows us to identify b(t) = 1
2e

iθ(t) tanh |z(t)|, or equivalently, |z(t)| =
arctanh(2|b(t)|) and the angle θ(t) = arctan

(
Im[b(t)]
Re[b(t)]

)
. Therefore,

〈
0
∣∣∣S†[rnp(g(t))]eb(t)a†2

∣∣∣ 0
〉

= 〈0 ∣∣S†[rnp(g(t))]S[z]∣∣ 0〉 cosh 1
2 |z| = 〈rnp(g(t))|z〉 cosh 1

2 |z|,

which can be now computed making use of the overlap between two squeezed states
(see Eq. (3.25) in Ref. [6]),

S†[ξ]aS[ξ] = a cosh r + a†eiφ sinh r (E.28)
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with a definition of the squeezing operator S(ξ) = exp[ 12 (ξ(a†)2 − ξ∗a2)] and ξ =
reiφ. The overlap reads

〈ξ2|ξ1〉 = (cosh r1 cosh r2 − ei(φ1−φ2) sinh r1 sinh r2)
− 1

2 (E.29)

and for our particular case,

〈r(t)|z〉 = (cosh |z| cosh r(t) − eiθ sinh |z| sinh r(t))− 1
2 . (E.30)

Finally, we obtain the probability P0(t),

P0(t) = e2Re[a(t)]
∣∣∣
〈
0
∣∣∣S†[r(t)]eb(t)a†2

∣∣∣ 0
〉∣∣∣
2

(E.31)

= e2Re[a(t)]

cosh rnp(g(t))
∣∣(1 − 2eiθ |b(t)| tanh rnp(g(t))

)∣∣ , (E.32)

while the fidelity given in Eq. (4.8) corresponds simply to F(t) = √
P0(t).

E.3 Heisenberg Equation of Motion

Herewe provide the derivation of theHeisenberg equation ofmotion for the�/ω0 →
∞ limit first, namely, Eqs. (4.17) and (4.18) in Chap.4. Then, we consider a finite
�/ω0 value. Finally, we give the necessary information to obtain residual energy
formulas used in Chap. 4 for the discussion on thermal states Sect. 4.1.3 and sudden
quenches Sect. 4.1.4.

E.3.1 �/ω0 → ∞ limit

In order to solve the critical dynamics under the effective Hamiltonian of the QRM
in the �/ω0 → ∞ limit, Hnp, we resort to the Heisenberg equation, i ȧH (t) =[
aH (t), Hnp,H (t)

]
where the subscript indicates operators in the Heisenberg picture.

The bosonic operators are now expressed as aH (t) = u(t)a + v∗(t)a† with u(0) = 1
and v(0) = 0 (as a Bogoliubov transformation). In addition, to satisfy the commuta-

tion relation
[
aH (t), a†H (t)

]
= 1, the coefficients must fulfill |u(t)|2 − |v(t)|2 = 1.

The Hamiltonian reads

Hnp,H (g(t)) = ω0a
†
H (t)aH (t) − ω0g

2(t)

4

(
aH (t) + a†H (t)

)2 − �

2
, (E.33)
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and thus, the Heisenberg equation results in

i u̇(t)a(0) + i v̇∗(t)a†(0) (E.34)

= ω0

[(
1 − g2(t)

2

)
u(t) − g2(t)

2
v(t)

]
a(0) + ω0

[(
1 − g2(t)

2

)
v∗(t) − g2(t)

2
u∗(t)

]
a†(0)

which upon taking a commutator with a(0) and a†(0), we obtain the Eqs. (4.17)
and (4.18).

E.3.2 Finite �/ω0 Case

We calculate here the equation of motion when �/ω0 < ∞, including the first-order
correction in ω0/�, namely, using

H�
np(t) = ωaa

†a − ω0g
2(t)

4
(a + a†)2 − �

2
+ ω2

0g
4(t)

16�
(a + a†)4. (E.35)

The procedure is straightforward, however, we need to obtain i ȧH (t) =
[
aH (t), H�

np

]

which involves

[
aH (t),

(
aH (t) + a†H (t)

)4]
. Introducing again aH (t) = u(t)a +

v∗(t)a† with u(0) = 1 and v(0) = 0, and using
[
a,
(
a + a†

)4] = 4a†3 + 4a3 +
12a†2a + 12a†a2 + 12a† + 12a, we arrive to the Heisenberg equation (to ease the
notation we denote a ≡ a(0) and a† ≡ a†(0))

i u̇(t)a + i v̇∗(t)a† = [aH (t), Hnp(t)
]

+ ω2
0g

4(t)

16�

{
4
(
v(t)3a3 + u∗(t)v(t)2a2a† + u∗(t)2v(t)a†a

+ u∗(t)v(t)2(2a†a + 1)a + u∗(t)2v(t)(2a†a + 1)a† + u∗(t)3a†3
)

+ 4
(
u(t)3a3 + v∗(t)u(t)2a2a† + v∗(t)2u(t)a†2a + v∗(t)3a†3

+ v∗(t)u(t)2(2a†a + 1)a + v∗(t)2u(t)(2a†a + 1)a†
)

+ 12
(
v(t)2u(t)a3 + |u(t)|2u∗(t)a†2a + |u(t)|2v(t)(2a†a + 1)a

+ +|v(t)|2v(t)a2a† + u∗(t)2v∗(t)a†3 + u∗(t)|v(t)|2(2a†a + 1)a†
)

+ 12
(
v(t)u(t)2a3 + |v(t)|2v∗(t)aa†2 + |v(t)|2u(t)a(2a†a + 1)

+ |u(t)|2u(t)a†a2 + u∗(t)v∗(t)2a†3 + |u(t)|2v∗(t)a†(2a†a + 1)
)

+ 12 (v(t) + u(t)) a + 12
(
v∗(t) + u∗(t)

)
a†
}

. (E.36)
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Wenowkeeponly linear terms ina anda† in the normal-orderedHeisenberg equation,
which is an approximate procedure and valid as long as �/ω0 � 1. In this manner,
applying the commutator with a or a† we achieve the equations of motion,

d

dt
u(t) = −iω0

[(
1 − g2(t)

2

)
u(t) − g2(t)

2
v(t)

]
− i

3ω0g
4(t)

4�
(u(t) + v(t)) |u(t) + v(t)|2 ,

d

dt
v(t) = iω0

[(
1 − g2(t)

2

)
v(t) − g2(t)

2
u(t)

]
+ i

3ω0g
4(t)

4�
(u(t) + v(t)) |u(t) + v(t)|2 ,

which are those presented in Eq. (4.31). Then, the residual energy follows from

E�
r (g) = 〈ψ0| H�

np,H(t) |ψ0〉 − EGS(g) (E.37)

where |ψ0〉 = |0〉 is the initial state at g = 0 (note that the spin state is simply |↓〉
and not explicitly written).

E.3.3 Residual Energy and Initial States

In general, for an initial state |ψ0〉 =
∣∣∣ϕn

np(g0)
〉
= S[rnp(g0)] |n〉 |↓〉 at coupling con-

stant g0 < gc we can calculate the residual energy Er (n, g) as

Er (n, g(t)) = 〈�0| Hnp,H(t) |�0〉 − En(g(t)). (E.38)

In terms of u and v, we obtain,

〈ψ0| a†HaH |ψ0〉 =
(2n + 1)

(
|u + v|2 cosh(2r0)

2
− Re

{
uv∗} cosh(2r0) − Re {uv} sinh(2r0)

)
− 1

2
, (E.39)

〈ψ0|
(
a†H + aH

)2 |ψ0〉 =
(2n + 1)

(
|u + v|2 cosh(2r0) −

[
Re {uv} − Re

{
u2
}

− Re
{
v2
}]

sinh(2r0)
)

. (E.40)

Therefore, the residual energy is achieved from

Er (n, g(t)) = (2n + 1)

[
ω0

(
|u + v|2 cosh(2r0)

2
− Re

{
uv∗} cosh(2r0) − Re {uv} sinh(2r0)

)
−

−ω0g
2(t)

4

(
|u + v|2 cosh(2r0) −

[
Re {uv} − Re

{
u2
}

− Re
{
v2
}]

sinh(2r0)
)]

−

− (2n + 1)
ω0
√
1 − g2(t)

2
= (2n + 1) Er (0, g(t)). (E.41)
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where Er (0, g(t)) corresponds to the residual energy when the initial state is the
ground state. This result is used in Sect. 4.1.3 for thermal states and in Sect. 4.1.4 for
sudden quenches. In particular, Eq. (4.29) follows when considering u = 1, v = 0
and g = gc = 1 with g0 < gc = 1.
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Appendix F
Orstein-Uhlenbeck Process

In this Appendix we provide some details of the Orstein-Uhlenbeck (OU) stochastic
process used in Chap.5 tomodel realistic magnetic-field fluctuations in a trapped-ion
platform.

An stochastic process ξ represents an OU noise [1, 2] when ξ is continuous and
memoryless (a continuousMarkov process) whose time evolution follows an explicit
and analytic closed-form expression,

ξ(t + dt) = ξ(t)e−t/τ +
[cτ
2

(
1 − e−2t/τ

)]
N (t), (F.1)

where c and τ completely determine the OU process ξ, and N (t) represents a normal
random variable, N (t) = 0 and N (t)N (t ′) = δ(t − t ′), where the overline denotes
stochastic average. Recall that a continuous Markov process fulfills i) the increment
is memoryless, that is, given ξ(t) = ζ, then �(dt; ζ, t) = ξ(t + dt) − ξ(t) depends
solely on t , dt and ζ, ii) �(dt; ζ, t) depends smoothly on dt , ζ and t and iii) ξ(t)
satisfies the continuity condition, i.e., limdt→0 �(dt, ζ, t) → 0 ∀t, ζ. See [3] for
further mathematical details of this stochastic process.

This Gaussian noise depends on two variables, namely correlation or relaxation
time τ and diffusion constant c. In this context, an important property is the so-
called spectral density S( f ) ≡ limT→∞ 2|ξ̂( f )|2/T which quantifies the portion of
noise intensity at a particular frequency, with ξ(t) = ∫ d f ξ̂( f )e−2πi f t the Fourier
transform. It is then defined in terms of the auto-covariance C(t ′) of a stationary ξ,
which for an OU process has the following form [3, 4]

C(t ′) ≡ ξ(t)ξ(t + t ′) = cτ

2
e−t ′/τ for t ′ ≥ 0. (F.2)

Then, it can be shown that S( f ) can be written as

S( f ) = 4
∫ ∞

0
dt ′ C(t ′) cos(2π f t ′) = 2cτ 2

1 + 4π2τ 2 f 2
. (F.3)
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Additionally, it is worth noting the total intensity of the noise is given by ξ2(t) =
C(0) = cτ/2 or equivalently, by

∫∞
0 d f S( f ). The noise spectrum decays as 1/ f 2 for

large frequencies (Brownian noise), while it features an approximately constant spec-
trum at small frequencies (white noise). The characteristic frequency fcr = 1/(2πτ )

provides a good estimate of this crossover between these regimes.
For the following purposes, it is convenient to introduce the stochastic average of

the integral of ξ(t), namely, �(t) = ∫ t
0 dt

′ ξ(t ′). In particular, we are interested in

�2(t) whose expression can be written as [3]

�2(t) = cτ 2

(
t − 3τ

2
+ 2τe−t/τ − τ

2
e−2t/τ

)
. (F.4)

F.1 Coherence Time T2

The coherence time T2 corresponds to the time it takes for an initial state, say |↑〉x ,
σx |↑〉x = + |↑〉x , to reduce its coherence a factor 1/e. For longer times, the coher-
ence is lost and the state evolves towards |ψ〉 〈ψ| ≈ |e〉 〈e| + |g〉 〈g| due to the pres-
ence of pure dephasing noise. This situation can be modeled by a stochastic Hamil-
tonian

H = ξ(t)

2
σz (F.5)

that effectively captures pure dephasing noise and where ξ stands for an OU process,
as aforementioned. Therefore, the expectation value of σx after a single run and time
t reads

〈σx (t)〉 = cos (�(t)) (F.6)

which upon stochastic average becomes

〈σx (t)〉 = cos (�(t)) = e− 1
2 �2(t), (F.7)

where we have assumed that the stochastic noise ξ is Gaussian, that is, the moments
fulfill ξ2n = ξ2

n
(2n)!/(2nn!), as is the case for an OU noise. Finally, �2(t) can be

obtained analytically as a function of τ and c, given in Eq. (F.4) [4]. Thus, we can
obtain a relation between c, τ and T2 since 〈σx (T2)〉 = e−1, leading to

c = 2

τ 2
(
T2 − τ

(
3
2 − 2e−T2/τ + 1

2e
−2T2/τ

)) . (F.8)
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In the special of a short correlated noise, τ � T2, c ≈ 2/(T2τ 2), which gives an
exponential decay of the coherence, 〈σx (t)〉 ∝ e−t/T2 as observed experimentally [5].
To the contrary, when τ � T2, 〈σx (t)〉 features a Gaussian decay, e−(t/T2)2 . Both
scenarios have been illustrated in Fig. 5.5b.
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