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Preface

The real revolution in mathematical physics in the second half of twentieth century
(and in pure mathematics itself) was algebraic topology and algebraic geometry.
Meanwhile there is the Course in Mathematical Physics by W. Thirring, a large
body of monographs and textbooks for mathematicians and of monographs for
physicists on the subject, and field theorists in high-energy and particle physics are
among the experts in the field, notably E. Witten. Nevertheless, I feel it still not to
be easy for the average theoretical physicist to penetrate into the field in an
effective manner. Textbooks and monographs for mathematicians are nowadays
not easily accessible for physicists because of their purely deductive style of
presentation and often also because of their level of abstraction, and they do not
really introduce into physics applications even if they mention a number of them.
Special texts addressed to physicists, written both by mathematicians or physicists
in most cases lack a systematic introduction into the mathematical tools and rather
present them as a patchwork of recipes. This text tries an intermediate approach.
Written by a physicist, it still tries a rather systematic but more inductive intro-
duction into the mathematics by avoiding the minimalistic deductive style of a
sequence of theorems and proofs without much of commentary or even motivating
text. Although theorems are highlighted by using italics, the text in between is
considered equally important, while proofs are sketched to be spelled out as
exercises in this branch of mathematics. The text also mainly addresses students in
solid state and statistical physics rather than particle physicists by the focusses and
the choice of examples of application.

Classical analysis was largely physics driven, and mathematical physics of the
nineteens century was essentially the classical theory of ordinary and partial dif-
ferential equations. Variational calculus, since the very beginning of theoretical
mechanics a standard tool of physicists, was seen with great reservation by
mathematicians until D. Hilbert initiated its rigorous foundation by pushing for-
ward functional analysis. This marked the transition into the first half of twentieth
century, where under the influence of quantum mechanics and relativity mathe-
matical physics turned mainly into functional analysis (as for instance witnessed
by the textbooks of M. Reed and B. Simon), complemented by the theory of Lie
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groups and by tensor analysis. Physicists, nowadays more or less familiar with
these branches, still are on average mainly analytically and very little algebraically
educated, to say nothing of topology. So it could happen that for nearly sixty years
it was overlooked that not every quantum mechanical observable may be repre-
sented by an operator in Hilbert space, and only in the middle of the eighties of last
century with Berry’s phase, which is such an observable, it was realized how
polarization in an infinitely extended crystal is correctly described and that text-
books even by most renowned authors contained meaningless statements about
this question.

This author feels that all branches of theoretical physics still can expect the
strongest impacts from use of the unprecedented wealth of results of algebraic
topology and algebraic geometry of the second half of twentieth century, and to
introduce theoretical physics students into its basics is the purpose of this text. It is
still basically a text in mathematics, physics applications are included for illus-
tration and are chosen mainly from the fields the author is familiar with. There are
many important examples of application in physics left out of course. Also the
cited literature is chosen just to give some sources for further study both in
mathematics and physics. Unfortunately, this author did not find an English
translation of the marvelous Analyse Mathématique by L. Schwartz,1 which he
considers (from the Russian edition) as one of the best textbooks of modern
analysis. A rather encyclopedic text addressed to physicists is that by Choquet-
Bruhat et al.,2 however, a compromise between the wide scope and limitations in
space made it in places somewhat sketchy.

The order of the material in the present text is chosen such that physics
applications could be treated as early as possible without doing too much violence
to the inner logic of the mathematical building. As already said, central results are
highlighted in italics but purposely avoiding the structure of a sequence of theo-
rems. Sketches of proofs are given, if they help understanding the matter. They are
understood as exercises for the reader to spell them out in more detail. Purely
technical proofs are omitted even if they prove central issues of the theory. A
compendium is appended to the basic text for reference also of some concepts (for
instance of general algebra) used in the text but not treated. This appendix is meant
as an expanded glossary and, apart form very few exceptions, not covered by the
index.

Finally, I would like to acknowledge many suggestions for improvement and
corrections by people from the Springer-Verlag.

Dresden, May 2010 Helmut Eschrig

1 Schwartz, L.: Analyse Mathématique. Hermann, Paris (1967).
2 Choquet-Bruhat, Y., de Witt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics,
Elsevier, Amsterdam, vol. I (1982), vol. II (1989).
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Basic Notations

Sets A, B, ..., X, Y, ... are subjects of the axioms of set theory. A ¼ fx jPðxÞg
denotes the family of elements x having the property P; if the elements x are
members of a set X, x 2 X, then the above family is a set, a subset (part) of the set
X: A , X. X is a superset of A;X � A. �;� will always be used to allow equality.
A proper subset (superset) would be denoted by A(XðX )AÞ: Union, intersection
and complement of A relative to X have their usual meaning. The product of n sets
is in the usual manner the set of ordered n-tuples of elements, one of each factor.

Set and space as well as subset and part are used synonymously. Depending on
context the elements of a space may be called points, n-tuples, vectors, functions,
operators, or something else. Mapping and function are also used synonymously.
A function f from the set A into the set B is denoted f : A! B : x 7! y: It maps
each point x 2 A uniquely to some point y = f (x) [ B. A is the domain
of f and f ðAÞ ¼ f f ðxÞ j x 2 Ag � B is the range of f ; if U � A; then f ðUÞ ¼
f f ðxÞ j x 2 Ugis the image of U under f. The inverse image or preimage U ¼
f�1ðVÞ � A of V � B under f is the set f ðUÞ ¼ fx j f ðxÞ 2 Vg. V need not be a
subset of the range f (A); f -1 (V) may be empty. Depending on context, f may be
called real, complex, vector-valued, function-valued, operator-valued, ...

The function f : A ? B is called surjective or onto, if f (A) = B. It is called
injective or one-one, if for each y 2 f ðAÞ, f -1({y}) = f-1(y) consists of a single
point of A. In this case the inverse function f -1 : f (A) ? A exists. A surjective and
injective function is bijective or onto and one-one. If a bijection between A and
B exists then the two sets have the same cardinality. A set is countable if it has the
cardinality of the set of natural numbers or of one of its subsets.

The identity mapping f : A! A : x 7! x is denoted by IdA. Extensions and
restrictions of f are defined in the usual manner by extensions or restrictions of the
domain. The restriction of f : A ? B to A0 , A is denoted by f jA0 : If f : A ? B and
g : B ? C, then the composite mapping is denoted by g � f : A! C :
x 7! gð f ðxÞÞ:

The monoid of natural numbers (non-negative integers, 0 included) is denoted
by N: The ring of integers is denoted by Z; sometimes the notation N ¼ Zþ is

xi



used. The field of rational numbers is denoted by Q; that of real numbers is
denoted by R and that of complex numbers by C. Rþ is the non-negative ray of R:

The symbol ) means ‘implies’, and , means ‘is equivalent to’. ‘Iff’
abbreviates ‘if and only if’ (that is, ,), and h denotes the end of a proof.
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Chapter 1
Introduction

Topology and continuity on the one hand and geometry or metric and distance on
the other hand are intimately connected pairs of concepts of central relevance both
in analysis and physics. A totally non-trivial concept in this connection is
parallelism.

As an example, consider a mapping f from some two-dimensional area into the
real line as in Fig. 1.1a. Think of a temperature distribution on that area. We say
that f is continuous at point x, if for any neighborhood V of y ¼ f ðxÞ there exists a
neighborhood U of x (for instance U1 in Fig. 1.1a for V indicated there) which is
mapped into V by f . It is clear that the concept of neighborhood is central in the
definition of continuity.

As another example, consider the mapping g of Fig. 1.1b. The curve segment
W1 is mapped into V , but the segment W2 is not: its part above the point x is
mapped into an interval above y ¼ gðxÞ and its part below x is mapped disruptly
into a lower interval. Hence, there is no segment of the curve W2 which contains x
as an inner point and which is mapped into V by g. The map g is continuous on the
curve W1 but is discontinuous at x on the curve W2. (The function value makes a
jump at x.) Hence, it cannot be continuous at x as a function on the two-dimen-
sional area. To avoid conflict with the above definition of continuity, the curve W1

must not be considered a neighborhood of x in the two-dimensional area.
If f is a mapping from a metric space (a space in which the distance dðx; x0Þ

between any two points x and x0 is defined) into another metric space, then it
suffices to consider open balls BeðxÞ ¼ fx0jdðx; x0Þ\eg of radius e as neighbor-
hoods of x. The metric of the n-dimensional Euclidean space Rn is given by

dðx; x0Þ ¼ ð
Pn

i¼1ðxi � x0iÞ2Þ1=2 where the xi are the Cartesian coordinates of x. It
also defines the usual topology of the Rn. (The open balls form a base of that
topology; no two-dimensional open ball is contained in the set W1 above.)

Later on in Chap. 2 the topology of a space will be precisely defined. Intuitively
any open interval containing the point x may be considered a neighborhood of x on
the real line R (open intervals form again a base of the usual topology on R).
Recall that the product X � Y of two sets X and Y is the set of ordered pairs ðx; yÞ,
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x 2 X, y 2 Y . If X and Y are topological spaces, this leads naturally to the product
topology in X � Y with a base of sets fðx; yÞjx 2 U; y 2 Vg where U and V are in
the base of the topology of X and Y , respectively. If this way the Cartesian plane is
considered as the topological product of two real lines, R2 ¼ R� R, then the
corresponding base is the set of all open rectangles. (This base defines the same
topology in R2 as the base of open balls.) Note that neither distances nor angles
need be defined so far in R� R: topology is insensitive to stretchings or skew
distortions as long as they are continuous.

Consider next the unit circle, ‘the one-dimensional unit sphere’ S1, as a topo-
logical space with all open segments as base of topology, and the open unit interval
I ¼ �0; 1½ on the real line, with open subintervals as base of topology. Then, the
topological product S1 � I is the unit cylinder with its natural topology. Cut the
cylinder on a line ‘above one point of S1’, turn one cut edge around by 180� and
glue the edges together again. A Möbius band is obtained (Fig. 1.2). This rises the
question, can a Möbius band be considered as a topological product similar to the
case of the unit cylinder? (Try it!) The true answer is no.

There are two important conclusions from that situation: (i) besides the local
properties of a topology intuitively inferred from its base there are obviously
important global properties of a topology, and (ii) a generalization of topological
product is needed where gluings play a key role.

(a)

(b)

Fig. 1.1 Mappings from a
two-dimensional area into the
real line. a mapping f
continuous at x, b mapping g
discontinuous at x. The
arrows and shaded bars
indicate the range of the
mapping of the sets U1, U2,
W1 and parts of W2,
respectively
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This latter generalization is precisely what a (topological) manifold is. The unit
cylinder cut through in the above described way may be unfolded into an open
rectangle of the plane R2. Locally, the topology of the unit cylinder and of the
Möbius band and of R2 are the same. Globally they are all different. (The
neighborhoods at the left and right edge of the rectangle are independent while on
the unit cylinder they are connected.) Another example is the ordinary sphere S2

embedded in the R3. Although its topology is locally the same as that of R2,
globally it is different from any part of the R2. (From the stereographic projection
which is a continuous one-one mapping it is known that the global topology of the

sphere S2 is the same as that of the completed or better compactified plane R2 with
the ‘infinite point’ and its neighborhoods added.) The S2-problem was maybe first
considered by Merkator (1512–1569) as the problem to project the surface of the
earth onto planar charts. The key to describe manifolds are atlases of charts.

Topological space is a vast category, topological product is a construction of
new topological spaces from simpler ones. Manifold is yet another construction to
a similar goal. An m-dimensional manifold is a topological space the local
topology of which is the same as that of Rm. Not every topological space is a
manifold. Since a manifold is a topological space, a topological product of man-
ifolds is just a special case of topological product of spaces. A simple example is
the two-dimensional torus T2 ¼ S1 � S1 of Fig. 1.3.

More special cases of topological spaces with richer structure are obtained by
assigning to them additional algebraic and analytic structures. Algebraically, the

Fig. 1.3 The two-
dimensional torus
T2 ¼ S1 � S1

(b)(a)

Fig. 1.2 a The unit cylinder
and b the Möbius band
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Rn is usually considered as a vector space (see Compendium at the end of this
book) over the scalar field of real numbers, that is, a linear space. It may be
attached with the usual topology which is such that multiplication of vectors by
scalars, ðk; xÞ 7! k x, and addition of vectors, ðx; yÞ 7! xþ y, are continuous
functions from R� Rn to Rn and from Rn � Rn to Rn, respectively. As was
already mentioned, this topology can likewise be derived as a product topology
from n factors R or from the Euclidean metric related to the usual Euclidean scalar
product of vectors. The latter defines lengths and angles. For good reasons a metric
will be used only on a much later stage as it is too restrictive for many consid-
erations. So far, linear operations are defined and continuous, for instance
linear dependence is defined, but angles and orthogonality remain undefined. If
ei; i ¼ 1. . .n are n linearly independent vectors of Rn, then any vector x 2 Rn can
be written as x ¼

P
i xiei with uniquely defined components xi in the basis feig:

If X and Y are two topological vector spaces, then their algebraic direct sum
Z ¼ X � Y with the product topology is again a topological vector space. Any
vector z 2 Z is uniquely decomposed into z ¼ xþ y, x 2 X, y 2 Y , and the
canonical projections pr1 and pr2, pr1ðzÞ ¼ x, pr2ðzÞ ¼ y are continuous.
(Orthogonality of x and y again is not an issue here.)

Analysis is readily introduced in topological vector spaces. Let f : Rn ! Rm be
any function, f ðxÞ ¼ y or more explicitly with respect to bases, f ðx1; . . .; xnÞ ¼
ðy1; . . .; ymÞ, that is, f iðxÞ ¼ yi. If the limits

of i

oxk

�
�
�
�
x

¼ lim
t!0

f iðxþ tekÞ � f iðxÞ
t

ð1:1Þ

exist and are continuous in x, then the vector function f is differentiable with
derivative

of

ox
¼ of 1

ox
; . . .;

of m

ox

� �

¼ of i

oxk

� �

: ð1:2Þ

For n ¼ 1 think of a velocity vector as the derivative of xðtÞ, for m ¼ n ¼ 4 think
of the electromagnetic field tensor as twice the antisymmetric part of the derivative
of the four-potential AlðxmÞ. Higher derivatives are likewise obtained.

Manifolds are in general not vector spaces (cf. Figs. 1.2, 1.3) and therefore
derivatives of mappings between manifolds cannot be defined in a direct way.
However, if m-dimensional manifolds are sufficiently smooth, one may at any
given point of the manifold attach a tangent vector space to it and project in a
certain way a neighborhood of that point from the manifold into this tangent space.
Then one considers derivatives in those tangent spaces. If a point moves in time on
a manifold, its velocity is a vector in the tangent space. If space–time is a curved
manifold, the electromagnetic four-potential is a vector and the field a tensor in the
tangent space.

The derivative of a vector field meets however a new difficulty: the numerator
of Eq. 1.1 is the difference of vectors at different points of the manifold which lie
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in different tangent spaces. Such differences cannot be considered before the
introduction of affine connections between tangent spaces in Chap. 7. However,
there are two types of derivative which may be introduced more directly and which
are considered in Chap. 4: Lie derivatives and exterior derivatives. They yield also
the basis for the study of Pfaff systems of differential forms playing a key role for
instance in Hamilton mechanics and in thermodynamics. In any case, analysis
leads to an important new construct of a manifold with a tangent space attached to
each of its points, the tangent bundle.

As an example, the circle S1 as a one-dimensional manifold is shown in the
upper part of Fig. 1.4 together with its tangent spaces TxðS1Þ at points x of S1. All
those tangent spaces together with the base manifold S1 form again a manifold: If
all tangent spaces are turned around by 90� as in the lower part of Fig. 1.4, a
neighborhood of the tangent vector indicated in the upper part is obviously
smoothly deformed only. Hence it is natural to introduce a topology in the whole
construct which is locally equivalent to the product topology of V � R where V is
an open set of S1 and hence in the whole this topology is equivalent to that of an
infinite cylinder, the vertically infinitely extended version of Fig. 1.2a. (Note that
the tangent vector spaces to different points of a manifold are considered disjoint
by definition. In the upper panel of Fig. 1.4 the lines in clockwise direction from S1

must therefore be considered on a sheet of paper different from that for the lines in
counterclockwise direction in order to avoid common points.) In this topology, the
canonical projection p from the tangent spaces to their base points in S1 is

Fig. 1.4 The circle S1

attached with a bundle of
one-dimensional tangent
spaces TxðS1Þ (upper part). A
neighborhood U of a tangent
vector marked by an arrow is
indicated. If the tangent
spaces are turned around as
shown in the lower part, the
neighborhood U is just
smoothly deformed
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continuous. Such a rather special construct of a manifold is called a bundle, in the
considered case a tangent bundle TðS1Þ which is a special case of a vector bundle.

All tangent spaces to a manifold are isomorphic to each other, they are iso-
morphic to Rm if the manifold M has a given (constant) dimension m (its local
topology is that of Rm). Such a bundle of isomorphic structures is in general called
a fiber bundle, in the considered case the tangent bundle TðMÞ with base M and
typical fiber Rm (tangent space). Fiber bundles are somehow manifolds obtained
by gluings along fibers. The complete definition of bundles given in Chap. 7
includes additionally transformation groups of fibers. The characteristic fiber of a
fiber bundle need not be a vector space, it can again be a manifold. As already
stated, a fiber bundle is again a new special type of manifold. Hence, one may
construct fiber bundles with other fiber bundles as base. . .

Given tangent and cotangent spaces in every point of a manifold, the latter as
the duals to tangent spaces, a tensor algebra may be introduced on each of those
dual pairs of spaces. This leads to the concept of tensor fields and the corre-
sponding tensor analysis. Totally antisymmetric tensors are called forms and play
a particularly important role because E. Cartan’s exterior calculus and the inte-
gration of forms leading to de Rham’s cohomology provide the basis for the
deepest interrelations between topology, analysis and algebra. In particular field
theories like Maxwell’s theory are most elegantly cast into cases of exterior cal-
culus. Tensor fields and forms as well as their Lie derivatives along a vector field
and the exterior derivative of forms are treated in Chap. 4. Besides the tensor
notation related to coordinates which is familiar in physics, the modern coordinate
invariant notation is introduced which is more flexible in generalizations to
manifolds, in particular in the exterior calculus.

On the real line R, differentiation and integration are in a certain sense inverse
to each other due to the Fundamental Theorem of Calculus

Zx

a

f 0ðyÞdy ¼ f ðxÞ � f ðaÞ: ð1:3Þ

In general, however, while differentiation needs only an affine structure, integra-
tion needs the definition of a measure. However, it turns out that the integration of
an exterior differential n-form on an n-dimensional manifold is independent of the
actual local coordinates of charts. It is treated in Chap. 5. This implies the classical
integral theorems of vector analysis and is the basis of de Rham’s cohomology
theory which connects local and global properties of manifolds.

There are two classical roots of modern algebraic topology and homology,
of which two textbooks which have many times been reprinted still maintain
actuality not only for historical reasons. These are that of Herbert Seifert and
William Threlfall, Dresden [1], and that of Pawel Alexandroff and Heinz Hopf,
Göttingen/Moscow [2]. Seifert was the person who coined the name fiber
space, then in a meaning slightly different from what is called fiber bundle
nowadays.
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On the basis of integration of simplicial chains, Chap. 5 provides cohomology
theory in some detail as the purely algebraic skeleton of the theory of integration
of forms with its astonishingly far reaching generalizations for any type of graded
algebras or modules. Cohomology theory is intimately related to the general
continuation problems in mathematics and physics: given a certain quantity
defined on a domain U of a space X, can it continuously, smoothly, analytically,
. . . be continued to a quantity defined on a larger domain. Cohomology theory
forms nowadays the most powerful core of algebraic topology and led to a wealth
of results not only in mathematical physics but also in nearly every branch of pure
mathematics itself. Here, the focus nevertheless is on topological invariants.
Besides, as another example of application of (co)homology theory in mathematics
with physical relevance Morse’s theory of critical points of real functions on
manifolds is presented.

Physicists are well acquainted with the duality between alternating tensors of
rank r and alternating tensors of rank d � r in dimensions d ¼ 3 and d ¼ 4,
provided by the Levi-Civita pseudo-tensor (alternating d-form). Its general basis is
Hodge’s star operator, which is treated in the last section of Chap. 5 in connection
with Maxwell’s electrodynamics as a case of application of the exterior calculus.
As another application of homology and homotopy theory, the dynamics of
electrons in a perfect crystal lattice as a case of topological classification of
embedding one- and two-dimensional manifolds into the 3-torus of a Brillouin
zone is considered in some detail.

The most general type of cohomology is sheaf cohomology, and sheaf theory is
nowadays used to prove de Rham’s theorem. Since sheaf theory is essentially a
technique to prove isomorphisms between various cohomologies and is quite
abstract for a physicist, it is not included here, and de Rham’s theorem is not
proved although it is amply used. The interested reader is referred to cited
mathematical literature.

Let X be a tangent vector field on a manifold M. In a neighborhood UðxÞ of
each point x 2 M it generates a flow ut : UðxÞ ! M;�e\t\e of local transfor-
mations with a group structure utut0 ¼ utþt0 , u0 ¼ IdUðxÞ (identical transforma-

tion), u�1
t ¼ u�t so that one may formally write ut ¼ expðtXÞ.

If the points of a manifold themselves form a group and M �M ! M :

ðx; yÞ 7! xy, and M ! M : x 7! x�1 are smooth mappings, then M is a Lie group.
The tangent fiber bundle TðMÞ based on the Lie group M has the Lie algebra m of
M as its typical fiber.

Besides being themselves manifolds, Lie groups play a central role as trans-
formation groups of other manifolds. The theory of Lie groups and of Lie algebras
forms a huge field with relevance in physics by itself. In this text, the focus is on
two aspects, most relevant in the present context: covering groups, the most
prominent example of which in physics is the interrelation of spin and angular
momentum, and the classical groups and some of their descendants. Two amply
used links between Lie groups and their Lie algebras are the exponential mapping
and the adjoint representations. All these parts of the theory of topological groups
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are considered in Chap. 6. The Compendium at the end of the volume contains in
addition a sketch of the representation theory of the finite dimensional simple Lie
algebras, part of which is well known in physics in the theory of angular momenta
and in the treatment of unitary symmetry in quantum field theory.

The simplest fiber bundles, the so called principal fiber bundles have Lie groups
as characteristic fiber. Their investigation lays the ground for moving elements of
one fiber into another with the help of a connection form.

Given a linear base of a vector space which sets linear coordinates, a tensor is
represented by an ordered set of numbers, the tensor components. Physicists are
taught early on, however, that a tensor describes a physical reality independent of
its representation in a coordinate system. It is an equivalence class of doubles of
linear bases in the vector space and representations of the tensor in that base, the
transformations of both being linked together. Tensor fields on a manifold M live
in the tangent spaces of that manifold (more precisely in tensor products of copies
of tangent and cotangent spaces). All admissible linear bases of the tangent space
at x 2 M form the frame bundle as a special principal fiber bundle with the
transformation group of transformations of bases into each other as the charac-
teristic fiber. The tensor bundle, the fibers of which are formed by tensors relative
to the tangent spaces at all points x 2 M, is now a general fiber bundle associated
with the frame bundle, and the interrelation between both is precisely describing
the above mentioned equivalence classes, making up tensors. Connection forms on
frame bundles allow to transport tensors from one point x 2 M to another point
x0 2 M on paths through M, the result of the transport depending on the path, if M
is not flat. Only after so much work, the directional derivatives of tensor fields on
manifolds can be treated in Chap. 7. Now, also the curvature form and the torsion
form as local characteristics of a manifold as well as the corresponding torsion and
curvature tensors living in tensor bundles over manifolds are provided.

With the help of parallel transport, deep results on global properties of mani-
folds are obtained in Chap. 8: surprising interrelations between the holonomy and
homotopy groups of the manifold. In order to provide some inside into the flavor
of these mathematical constructs, the exact homotopy sequence and the homotopy
of sections are treated in some detail, although not so much directly used in
physics. The exact homotopy sequence is quite helpful in calculating homotopy
groups of various manifolds, some of which are also used at other places in the
text. The homotopy of sections in fiber bundles provides the general basis of
understanding characteristic classes, the latter topological invariants becoming
more and more used in physics. These interrelations are presented in direct con-
nection with very topical applications in physics: gauge field theories and the
quantum physics of geometrical phases called Berry’s phases. They are also in the
core of modern treatments of molecular physics beyond the simplest Born-
Oppenheimer adiabatic approximation.

By introducing an everywhere non-degenerate symmetric covariant rank 2
tensor field, the Levi-Civita connection is obtained as the uniquely defined metric-
compatible torsion-free connection form. This leads to the particular case of
Riemannian geometry, which is considered in Chap. 9, having in particular the
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theory of gravitation in mind the basic features of which are discussed. The text
concludes with an outlook on complex generalizations of manifolds and a short
introduction to Hermitian and Kählerian manifolds. Besides providing the basis of
modern treatment of analytic complex functions of many variables, a tool present
everywhere in physics, the Kählerian manifolds as torsion-free Hermitian mani-
folds form in a certain sense the complex generalization of Riemannian manifolds.
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Chapter 2
Topology

The first four sections of this chapter contain a brief summary of results of analysis
most theoretical physicists are more or less familiar with.

2.1 Basic Definitions

A topological space is a double ðX; T Þ of a set X and a family T of subsets of X
specified as the open sets of X with the following properties:

1. [ 2 T ; X 2 T ð[ is the empty setÞ;

2. ðU � T Þ )
S

U2U
U 2 T

� �

;

3. ðUn 2 T for 1� n�N 2 NÞ )
TN

n¼1
Un 2 T

� �

;

that is, T is closed under unions and under finite intersections. If there is no doubt
about the family T , the topological space is simply denoted by X instead of ðX; T Þ:

Two topologies T 1 and T 2 on X may be compared, if one is a subset of the
other; if T 1 � T 2, then T 1 is coarser than T 2 and T 2 is finer that T 1.
The coarsest topology is the trivial topology T 0 ¼ f[;Xg, the finest topology is
the discrete topology consisting of all subsets of X.

A neighborhood of a point x 2 X (of a set A � X) is an open1 set U 2 T
containing x as a point (A as a subset). The complements C ¼ X n U of open sets
U 2 T are the closed sets of the topological space X. If A 2 X is any set, then the

closure A of A is the smallest closed set containing A, and the interior Å of A is

the largest open set contained in A; A and Å always exist by Zorn’s lemma. Å is

1 In this text neighborhoods are assumed open; more generally a neighborhood is any set
containing an open neighborhood.
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the set of inner points of A. A is the set of points of closure of A; points every
neighborhood of which contains at least one point of A. (The complement of A is

the largest open set not intersecting A.) The boundary oA of A is the set A n Å: A
is dense in X, if A ¼ X: A is nowhere dense in X, if the interior of A is empty:
ðAÞ� ¼ [: X is separable if X ¼ A for some countable set A.

(One might wonder about the asymmetry of axioms 2 and 3. However, if
closure under all intersections would be demanded, no useful theory would result.
For instance, a point of the real line R can be obtained as the intersection of an
infinite series of open intervals. Hence, with the considered modification of axiom
3, points and all subsets of R would be open and closed and the topology would be
discrete as soon as all open intervals are open sets.)

The relative topology T A on a subset A of a topological space ðX; T Þ is
T A ¼ fA \ TjT 2 T g; that is, its open sets are the intersections of A with open sets
of X. Consider the closed interval ½0; 1� on the real line R with the usual topology
of unions of open intervals on R: The half-open interval �x; 1�; 0\x\1, of R is an
open set in the relative topology on ½0; 1� � R!

Most of the interesting topological spaces are Hausdorff: any two distinct
points have disjoint neighborhoods. (A non-empty space of at least two points and
with the trivial topology is not Hausdorff.) In a Hausdorff space single point sets
fxg are closed. (Exercise, take neighborhoods of all points distinct from x.)

Sequences are not an essential subject in this book. Just to be mentioned, a sequence of points
in a topological space X converges to a point x, if every neighborhood of x contains all but finitely
many points of the sequence. A partially ordered set I is directed, if every pair a; b of elements of
I has an upper bound c 2 I; c� a; c� b. A set of points of X is a net, if it is indexed by a directed
index set I. A net converges to a point x, if for every neighborhood U of x there is an index b so
that xa 2 U for all a� b. In Hausdorff spaces points of convergence are unique if they exist.

The central issue of topology is continuity. A function (mapping) f from a
topological space X into a topological space Y (maybe the same space X) is
continuous at x 2 X, if given any (in particular small) neighborhood V of f ðxÞ � Y
there is a neighborhood U of x such that f ðUÞ � V (compare Fig. 1.1 of Chap. 1).
The function f is continuous if it is continuous at every point of its domain. In this
case, the inverse image f�1ðVÞ of any open set V of the target space Y of f is an
open set of X. (It may be empty.) The coarser the topology of Y or the finer the
topology of X the more functions from X into Y are continuous. Observe that, if X is
provided with the discrete topology, then every function f : X ! Y is continuous,
no matter what the topology of Y is. If f : X ! Y and g : Y ! Z are continuous
functions, then their composition g � f : X ! Z is obviously again a continuous
function.

Consider functions f ðxÞ ¼ y : ½0; 1� ! R: What means continuity at x ¼ 1 if the
relative topology of ½0; 1� � R is taken?

f is continuous iff it maps convergent nets to convergent nets; in metric spaces sequences
suffice instead of nets.

A homeomorphism is a bicontinuous bijection f (f and f�1 are continuous
functions onto); it maps open sets to open sets and closed sets to closed sets.
A homeomorphism from a topological space X to a topological space Y provides a
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one–one mapping of points and a one–one mapping of open sets, hence it provides
an equivalence relation between topological spaces; X and Y are called homeo-
morphic, X� Y , if a homeomorphism from X to Y exists. There exists always the
identical homeomorphism IdX from X to X, and a composition of homeomor-
phisms is a homeomorphism. The topological spaces form a category the mor-
phisms of which are the continuous functions and the isomorphisms are the
homeomorphisms (see Compendium C.1 at the end of the book).

A topological invariant is a property of topological spaces which is preserved
under homeomorphisms.

2.2 Base of Topology, Metric, Norm

If topological problems are to be solved, it is in most cases of great help that not
the whole family T of a topological space ðX; T Þ need be considered.

A subfamily B of T is called a base of the topology T if every U 2 T can be
formed as U ¼ [bBb; Bb 2 B: A family BðxÞ is called a neighborhood base at x if
each B 2 BðxÞ is a neighborhood of x and given any neighborhood U of x there is a
B with U 	 B 2 BðxÞ: A topological space is called first countable if each of its
points has a countable neighborhood base, it is called second countable if it has a
countable base.

The product topology on the product X
Y of topological spaces X and Y is
defined by the base consisting of sets

fðx; yÞj x 2 BX ; y 2 BYg; BX 2 BX ; BY 2 BY ; ð2:1Þ

where BX and BY are bases of topology of X and Y , respectively. It is the coarsest
topology for which the canonical projection mappings ðx; yÞ 7! x and ðx; yÞ 7! y are
continuous (exercise). The Rn with its usual topology is the topological product
R
 � � � 
 R; n times.

A very frequent special case of topological space is a metric space. A set X is a
metric space if a non-negative real valued function, the distance function d :
X 
 X ! Rþ is given with the following properties:

1. dðx; yÞ ¼ 0; iff x ¼ y,
2. dðx; yÞ ¼ dðy; xÞ,
3. dðx; zÞ� dðx; yÞ þ dðy; zÞ ðtriangle inequalityÞ.

An open ball of radius r with its center at point x 2 X is defined as
BrðxÞ ¼ fx0j dðx; x0Þ\rg. The class of all open balls forms a base of a topology of
X, the metric topology. It is Hausdorff and first countable; a neighborhood base of
point x is for instance the sequence B1=nðxÞ; n ¼ 1; 2; . . .

The metric topology is uniquely defined by the metric as any topology is
uniquely defined by a base. There are, however, in general many different metrics
defining the same topology. For instance, in R2 3 x ¼ ðx1; x2Þ the metrics
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d1ðx; yÞ ¼ ððx1 � y1Þ2 þ ðx2 � y2Þ2Þ1=2 Euclidean metric,
d2ðx; yÞ ¼ maxfjx1 � y1j; jx2 � y2jg,
d3ðx; yÞ ¼ jx1 � y1j þ jx2 � y2j Manhattan metric

define the same topology (exercise).
A sequence fxng in a metric space is Cauchy if

lim
m;n!1

dðxm; xnÞ ¼ 0: ð2:2Þ

A metric space X is complete if every Cauchy sequence converges in X (in the
metric topology). The rational line Q is not complete, the real line R is, it is an
isometric completion of Q. An isometric completion ~X of a metric space X
always exists in the sense that ~X 	 X is complete, ~X ¼ X (closure of X in ~X), and
the distance function dðx; x0Þ is extended to ~X by continuity. ~X is unique up to
isometries (distance preserving transformations) which leave the points of X on
place. A complete metric space is a Baire space, that is, it is not a countable union
of nowhere dense subsets. The relevance of this statement lies in the fact that if a
complete metric space is a countable union X ¼ [nUn, then some of the Un must
have a non-empty interior [1, Section III.5].

A metric space X is complete, iff every sequence C1 	 C2 	 . . . of closed balls
with radii r1; r2; . . .! 0 has a non-empty intersection.

Proof Necessity: Let X be complete. The centers xn of the balls Cn obviously
form a Cauchy sequence which converges to some point x, and x 2 \nCn. Suffi-
ciency: Let xn be Cauchy. Pick n1 so that dðxn; xn1Þ\1=2 for all n� n1 and take xn1

as the center of a ball C1 of radius r1 ¼ 1. Pick n2� n1 so that dðxn; xn2Þ\1=22 for
all n� n2 and take xn2 as the center of a ball C2 of radius r2 ¼ 1=2. . . The sequence
C1 	 C2 	 . . . has a non-empty intersection containing some point x. It is easily
seen that x ¼ lim xn: h

Let X be a metric space and let F : X ! X : x 7!Fx be a strict contraction, that
is a mapping of X into itself with the property

dðFx;Fx0Þ � kdðx; x0Þ; k\1: ð2:3Þ

(A contraction is a mapping which obeys the weaker condition
dðFx;Fx0Þ � dðx; x0Þ; every contraction is obviously continuous since the preimage
of any open ball BrðFxÞ contains the open ball BrðxÞ. Exercise.) A vast variety of
physical problems implies fixed point equations, equations of the type x ¼ Fx.
Banach’s contraction mapping principle says that a strict contraction F on a
complete metric space X has a unique fixed point.

Proof Uniqueness: Let x ¼ Fx and y ¼ Fy, then dðx; yÞ ¼ dðFx;FyÞ� kdðx; yÞ,
k\1. Hence, dðx; yÞ ¼ 0 that is x ¼ y. Existence: Pick x0 and let xn ¼ Fnx0.
Then, dðxnþ1; xnÞ ¼ dðFxn;Fxn�1Þ� kdðxn; xn�1Þ� � � � � kndðx1; x0Þ. Thus, if
n [ m, by the triangle inequality and by the sum of a geometrical series,
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dðxn; xmÞ�
Pn

l¼mþ1 dðxl; xl � 1Þ� kmð1� kÞ�1dðx1; x0Þ ! 0 for m; n!1
implying that fxng ¼ fFxn�1g is Cauchy and converges towards an x 2 X. By
continuity of F; x ¼ Fx: h

Equation systems, systems of differential equations, integral equations or more
complex equations may be cast into the form of a fixed point equation. A simple
case is the equation x ¼ f ðxÞ for a function f : ½a; b� ! ½a; b�; ½a; b� � R; obeying
the Lipschitz condition

jf ðxÞ � f ðx0Þj � kjx� x0j; k\1; x; x0 2 ½a; b�:

If for instance jf 0ðxÞj � k\1 for x 2 ½a; b�, the Lipschitz condition is fulfilled.
From Fig. 2.1 it is clearly seen how the solution process xn ¼ f ðxn�1Þ converges.
The convergence is fast if jf 0ðxÞj�1. Consider this process for jf 0ðxÞj[ 1. Next
consider a ¼ �1; why is a simple contraction not sufficient and a strict con-
traction needed to guarantee the existence of a solution?

There are always many ways to cast a problem into a fixed point equation.
If x ¼ Fx has a solution x0, it is easily seen that x ¼ ~Fx with ~Fx ¼ xþ pðFx� xÞ
has the same solution x0. If F is not a strict contraction, ~F with a properly chosen p
sometimes is, although possibly with a very slow convergence of the solution
process. Sophisticated constructions have been developed to enforce convergence
of the solution process of a fixed point equation.

Another frequent special case of topological space is a topological vector
space X over a field K. (In most cases K ¼ R or K ¼ C.) It is also a vector space
(see Compendium) and its topology is such that the mappings

K 
 X ! X : ðk; xÞ 7! kx;

X 
 X ! X : ðx; x0Þ 7! xþ x0

Fig. 2.1 Illustration of the fixed point equation x ¼ f ðxÞ for f 0ðxÞ[ 0 (left) and f 0ðxÞ\0 (right)
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are continuous, where K is taken with its usual metric topology and K 
 X and
X 
 X are taken with the product topology. If Bð0Þ is a neighborhood base at the
origin of the vector space X, then the set BðxÞ of all open sets BbðxÞ ¼
xþ Bbð0Þ ¼ fxþ x0j x0 2 Bbð0Þg with Bbð0Þ 2 Bð0Þ is a neighborhood base at x.
For any open (closed) set A, xþ A is open (closed). For two sets A � X;B � X the
vector sum is defined as Aþ B ¼ fxþ x0j x 2 A; x0 2 Bg.

Linear independence of a set E � X means that if
PN

n¼1 knxn ¼ 0 (upper index
at kn, not power of k) holds for any finite set of N distinct vectors xn 2 E, then
kn ¼ 0 for all n ¼ 1; . . .;N. Linear independence (as well as its opposite, linear
dependence) is a property of the algebraic structure of the vector space, not of its
topology. A base E in a topological vector space is a linearly independent subset
the span of which (the set of all linear combinations over K of finitely many
vectors out of E) is dense in X : spanKE ¼ X: It is a base of vector space, not a
base of topology. It may, however, depend on the topology of X. The maximal
number of linearly independent vectors in E is the dimension of the topological
vector space X; it is a finite integer n or infinity, countable or not. If the dimension
of a topological vector space X is n\1, then X is homeomorphic to Kn. If it is
infinite, the dimension is to be distinguished from the algebraic dimension of the
vector space (see Compendium). It can be shown that a topological vector space X
is separable if it admits a countable base. Any vector x of spanKE has a
unique representation x ¼

PN
n¼1 knxn; xn 2 E with some finite N. Hence, if X is

Hausdorff, then every vector x 2 X has a unique representation by a converging
series x ¼

P1
n¼1 knxn; xn 2 E (exercise).

Two subspaces (see Compendium) M and N of a vector space X are called
algebraically complementary, if M \ N ¼ f0g and M þ N ¼ X. X is then said to
be the direct sum M 
 N of the vector spaces M and N. Consider all possible sets
xþM; x 2 X. They either are disjoint or identical (exercise). Let ~x be the
equivalence class of the set xþM. By an obvious canonical transfer of the linear
structure of X into the set of classes ~x these classes form a vector space; it is called
the quotient space X=M of X by M (Fig. 2.2). Let the topology of X be such that
the one point set f0g is closed. Then, for any x 2 X, Mx ¼ fkxjk 2 Kg is a closed
subspace of X (exercise).

Fig. 2.2 A subspace M of a
vector space X and cosets
xi þM with xi linearly
independent of M. Note that
an angle between X=M and M
has no meaning so far
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It is just by custom that the cosets xi þM were drawn as parallel planes in
Fig. 2.2, and that X=M was drawn as a straight line. Angles, curvature and all that
is not defined as long as X is considered as a topological vector space only. Any
continuous deformation of Fig. 2.2 is admitted. Even if a metric is defined on a
one-dimensional vector space, say, it would not make a difference if it would be
drawn as a straight line or a spiral provided it is consistently declared how to relate
the point kx to the point x. These remarks are essential in later considerations.

A topological vector space X is said to be metrizable if its topology can be
deduced from a metric that is translational invariant: dðx; x0Þ ¼ dðxþ a; x0 þ aÞ for
all a 2 X. Many topological vector spaces, in particular all metrizable vector
spaces, are locally convex: they admit a base of topology made of convex sets.
(A set of a vector space is convex if it contains the ‘chord’ between any two of its
points, that is, if x and x0 are two points of the set then all points kxþ ð1� kÞx0;
0\k\1 belong to the set.)

In most cases a metrizable topological vector space is metrized either by a family
of seminorms or by a norm. A norm is a real function x 7! jjxjj with the properties

1. jjxþ x0jj � jjxjj þ jjx0jj,
2. jjkxjj ¼ jkj jjxjj,
3. jjxjj ¼ 0; iff x ¼ 0:

From the first two properties the non-negativity of a norm follows; if the last
property is abandoned one speaks of a seminorm.The metric of a norm is given by
dðx; x0Þ ¼ jjx� x0jj. A complete metrizable vector space is a Fréchet space, a
complete normed vector space is a Banach space. Fréchet spaces whose metric
does not come from a single norm are used in the theory of generalized functions
(distributions).

A linear function (operator) L : X ! Y from a vector space X into a vector
space Y over the same field K is a function with the property

Lðkxþ k0x0Þ ¼ kLðxÞ þ k0Lðx0Þ; k; k0 2 K: ð2:4Þ

A function from a vector space X into its field of scalars K is called a functional, if
it is linear it is called a linear functional. A linear function from a topological
vector space into a topological vector space is continuous, iff it is continuous at the
origin x ¼ 0 (exercise). A linear function from a normed vector space X into a
normed vector space Y (for instance the one-dimensional vector space K) is
bounded if

jjLjj ¼ sup
0 6¼x2X

jjLðxÞjjY
jjxjjX

\1: ð2:5Þ

The operator notation Lx is often used instead of LðxÞ. A linear function from a
normed vector space into a normed vector space is bounded, iff it is continuous
(exercise). With the norm (2.5) (prove that it is indeed a norm), the set LðX; YÞ of
all bounded linear operators with linear operations among them defined in the
natural way is again a normed vector space; it is Banach if Y is Banach.
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Proof Let fLng be Cauchy. Since jjLmjj � jjLnjjj j � jjLm � Lnjj ! 0, jjLnjjf g is a
Cauchy sequence of real numbers converging to some real number C. For each
x 2 X, fLnxg is a Cauchy sequence in Y . Since Y is complete, Lnx converges to some
point y 2 Y . Define L by Lx ¼ y. Then, jjLxjj ¼ limn!1 jjLnxjj �
limn!1 jjLnjj jjxjj ¼ Cjjxjj, where (2.5) was used. Hence, L is a bounded operator.
Moreover, jjðL� LnÞxjj ¼ limm!1 jjðLm � LnÞxjj � limm!1 jjðLm� LnÞjjjjxjj and
therefore limn!1 jjL� Lnjj ¼ limn!1 supx 6¼0 jjðL� LnÞxjj=jjxjj � limm;n!1 jjLm�
Lnjj ¼ 0: Hence, Ln converges to L in the operator norm. h

The topological dual X� of a topological vector space X is the set of all
continuous linear functionals

f : X ! K : x 7! hf ; xi 2 K; hf ; kxþ k0x0i ¼ khf ; xi þ k0hf ; x0i; ð2:6Þ

from X into K provided with the natural linear structure hkf þ k0f 0; xi ¼ khf ; xi þ
k0hf 0; xi: It is again a normed vector space with the norm jjf jj given by (2.5) with f
instead of L, jjf jj ¼ sup0 6¼x2X jhf ; xij=jjxjjX: As there are the less continuous
functions the coarser the topology of the domain space is, the question arises, what
is the coarsest topology of X for which all bounded linear functionals are con-
tinuous. This topology of X is called the weak topology. A neighborhood base of
the origin for this weak topology is given by all intersections of finitely many open
sets fxj jhf ; xij\1=kg; k ¼ 1; 2. . . for all f 2 E�, a base of the vector space X�. For
instance, if X ¼ Rn, these open sets comprise all infinite ‘hyperplates’ of thickness
2=k sandwiching the origin and normal in turn to one of the n base vectors f i of
X� ¼ Rn (Fig. 2.3). Taken for every k, the intersections of n such ‘hyperplates’
containing f0g 2 X form a neighborhood base of the origin of R
 � � � 
 R; n
factors, in the product topology which in this case is equivalent to the standard
norm topology of Rn. Hence, the Rn with both the weak and the norm topologies
are homeomorphic to each other and can be identified with each other. This does
not hold true for an infinite dimensional space X.

Fig. 2.3 Open sets of a
neighborhood base of the
origin of the R2 in the weak
topology and their
intersection
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The topological dual of a normed vector space X is X� ¼ LðX;KÞ (with the
norm jjf jj as above); if K is complete (as R or C) then X� is a Banach space (no
matter whether X is complete or not). The second dual of X is the dual X�� ¼ ðX�Þ�
of X�. Let J : X ! X�� : x 7!~x where h~x; f i ¼ hf ; xi for all f 2 X�.

If X is a Banach space then the above mapping J is an isometric isomorphism
of X onto a subspace of X��, hence, one may consider X � X��.

The proof of this statement makes use of the famous Hahn–Banach theorem
which provides the existence of ample sets of continuous linear functionals
[1, Section III.2.3]. X is said to be reflexive, if the above mapping J is onto X��.
In this case one may consider X ¼ X��.

An inner product (or scalar product) in a complex vector space X is a
sesquilinear function X 
 X ! C : ðx; yÞ 7! ðxjyÞ with the properties

1. ðxjyÞ ¼ ðyjxÞ;
2. ðxjy1 þ y2Þ ¼ ðxjy1Þ þ ðxjy2Þ,
3. ðxjkyÞ ¼ kðxjyÞ (convention in physics),
4. ðxjxÞ[ 0 for x 6¼ 0:

(In mathematics literature, the convention ðkxjyÞ ¼ kðxjyÞ is used instead of 3.) An
inner product in a real vector space X is the corresponding bilinear function
X 
 X ! R with the same properties 1 through 4. (�k is the complex conjugate of
k, in R of course �k ¼ k.) If an inner product is given,

jjxjj ¼ ðxjxÞ1=2 ð2:7Þ

has all properties of a norm (exercise, use the Schwarz inequality given below).
A normed vector space with a norm of an inner product is called an inner product
space or a pre-Hibert space. A complete inner product space is called a Hilbert
space. Some authors call it a Hilbert space only if it is infinite-dimensional; a
finite-dimensional inner product space is also called a unitary space in the
complex case and a Euclidean space in the real case. Two Hilbert spaces X and X0

are said to be isomorphic or unitarily equivalent, X � X0, if there exists a unitary
operator U : X ! X0, that is, a surjective linear operator for which ðUxjUyÞ ¼
ðxjyÞ holds for all x; y 2 X (actually it is bijective, exercise).

In an inner product space the Schwarz inequality

jðxjyÞj � jjxjj jjyjj ð2:8Þ

holds, and in a real inner product space the angle between vectors x and y is
defined as

cosð]ðx; yÞÞ ¼ ðxjyÞ
jjxjj jjyjj : ð2:9Þ

Proof of the Schwarz inequality Let ŷ ¼ y=jjyjj and x1 ¼ ðŷjxÞŷ; x2 ¼ x� x1

implying ðx1jx2Þ ¼ 0; x ¼ x1 þ x2. Then, jjxjj2 ¼ ðx1 þ x2jx1 þ x2Þ ¼ jjx1jj2þ
jjx2jj2� jjx1jj2 ¼ jðxjyÞj2=jjyjj2: h
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Even in a complex inner product space, orthogonality is defined: two vectors x
and y are orthogonal to each other, if ðxjyÞ ¼ 0. An orthonormalized base in an
inner product space is a base E (of topological vector space, see p. 16) with
jjejj ¼ 1 and ðeje0Þ ¼ 0, e 6¼ e0 for all e; e0 2 E. Let fengN

n¼1 � E. A slight gener-
alization of the proof of the Schwarz inequality proves Bessel’s inequality:
jjxjj2�

PN
n¼1 jðenjxÞj2. If M is a closed subspace of an inner product space X, then

the set of all vectors of X which are orthogonal to all vectors of M forms the
orthogonal complement M? of M in X (Fig. 2.4, compare to Fig. 2.2). Every
vector x 2 X has a unique decomposition x ¼ x1 þ x2; x1 2 M; x2 2 M? (exer-
cise), that is, X ¼ M þM?.

If X and X0 are two Hilbert spaces over the same field K then their direct sum
X 
 X0 is defined as the set of all ordered pairs ðx; x0Þ; x 2 X; x0 2 X0 with the scalar
product ððx; x0Þjðy; y0ÞÞ ¼ ðxjyÞX þ ðx0jy0ÞX0 . (Hence, in the above case also X ¼
M 
M? holds.) The direct sum of more that two, possibly infinitely many Hilbert
spaces is defined accordingly. (The vectors of the latter case are the sequences fxig
for which the sum of squares of norms converges.)

The tensor product X � X0 of Hilbert spaces X and X0 is defined in the fol-
lowing way: Consider pairs ðx; x0Þ 2 X 
 X0 and define for each pair a bilinear
function x� x0 on the product vector space X 
 X0 by x� x0ðy; y0Þ ¼ ðxjyÞðx0jy0Þ.
Consider the linear space of all finite linear combinations u ¼

PN
n¼1 cnxn � x0n and

define an inner product ðujwÞ by linear extension of ðx� x0jy� y0Þ ¼ ðxjyÞðx0jy0Þ.
The completion of this space is X � X0. (Exercise: show that ðujwÞ ¼ 0 if u ¼
PN

n¼1 cn xn � x0n ¼ 0 and that ðujwÞ has the four properties of a scalar product.)
Finally, let X be a Hilbert space and let y 2 X. Then, fyðxÞ ¼ ðyjxÞ is a con-

tinuous linear function fy : X ! K : x 7! ðyjxÞ, hence fy 2 X�. The Riesz lemma
says that there is a conjugate linear bijection y 7! fy between X and its dual X� [1].

We close the section with a number of examples of vector spaces from physics:
Rn ¼ Rn�, the set of real n-tuples a ¼ fa1; a2; . . .; ang, is used as a mere

topological vector space with the product topology of R
 R
 � � � 
 R (n factors)
or as a Euclidean space (real finite-dimensional Hilbert space, ðajbÞ ¼ a � b ¼
P

aibi implying the same topology) in the sequel, depending on context (cf. the
discussion in connection with Figs. 2.2 and 2.4). Both concepts play a central role

Fig. 2.4 Orthogonal
complement M? to a closed
subspace M of an inner
product space
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in the theory of real manifolds. As a mere topological vector space it is the
configuration space of a many-particle system, as an Euclidean space the position
space or the momentum space of physics. For instance in the physics of vibrations,
Cn � R2n by the isomorphism zj ¼ xj þ iyj 7! ða2j�1; a2jÞ ¼ ðxj; yjÞ is used, where
only the xj describe actual amplitudes. In the sequel, vectors of the space Kn

(K ¼ R or C) are denoted by bold-face letters and the inner product is denoted by a
dot.

lp as sequence spaces the points of which are complex or real number sequences
a ¼ faig1i¼1 are defined for 1� p\1 with the norm (a 2 lp, iff jjajjp\1)

lp : jjajjp ¼
X1

i¼1

jaijp
 !1=p

; 1� p\1: ð2:10Þ

Young’s inequality says jaibij � jaijp=pþ jbijq=q for 1=pþ 1=q ¼ 1. (It suffices
to take real positive ai; bi to prove it. Determine the maximum of the function
fbiðaiÞ ¼ biai � jaijp=p.) Therefore, if 1\p\1; 1=pþ 1=q ¼ 1; jjajjp\1;
jjbjjq\1 then jhb; aij ¼ j

P
biaij\1, that is, b 2 lq is a continuous linear

functional on lp 3 a, lq � lp�. It can be proved that lq ¼ lp� [2, Section IV.9]. Since
X� is always a Banach space, lp; 1\p\1 is a Banach space. Additionally, the
normed sequence spaces l1 	 c0 	 f , all with norm

l1 : jjajj1 ¼ sup
i
jaij; ð2:11Þ

c0 � l1 : lim
i!1

ai ¼ 0;

f � l1 : ai ¼ 0 for all but finitely many i

are considered. It can be shown that l1 and c0 are Banach spaces and l1� ¼ l1 and
c�0 ¼ l1. Hence, l1 is also a Banach space. It is easily seen that f has a countable
base as a vector space. Moreover, it is dense in lp; 1� p\1 (in the topology of
the norm jj�jjp) and in c0 (in the topology of the norm jj�jj1). Hence, those spaces

have a countable base and are separable. Finally, l2 with the inner product ðajbÞ ¼
P

ia
ibi is the Hilbert space of Heisenberg’s quantum mechanics. Every infinite-

dimensional separable Hilbert space is isomorphic to l2 [1, Section II.3].
LpðM; dlÞ [1]: Let ðM; dlÞ be a measure space, for instance Rn or a part of it

with Lebesgue measure dnx. Denote by f the class of complex or real functions on
M which differ from each other at most on a set of measure zero. Clearly, linear
combinations respect classes. LpðM; dlÞ is the functional linear space of classes f
for which

jjf jjp ¼
Z

M

jf jpdl

0

@

1

A

1=p

\1: ð2:12Þ
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For p ¼ 1; jjf jj1 ¼ ess sup jf j, that is the smallest real number c so that jf j[ c at
most on a set of zero measure. For 1� p�1; jjf jjp is a norm, and LpðM; dlÞ is
complete. LpðM; dlÞ� ¼ LqðM; dlÞ; 1=pþ 1=q ¼ 1; 1� p\1 with hg; f i ¼R

M gfdl. If M ¼ Rþ and dl ¼
P1

n¼1 dðx� nÞdx, then LpðM; dlÞ ¼ lp.

If lðMÞ\1, then LpðM; dlÞ � Lp0 ðM; dlÞ for p� p0. The Hilbert space of
Schrödinger’s quantum states of a spinless particle is L2ðR3; d3xÞ, for a spin-S
particle is L2ðR3; d3xÞ � C2Sþ1, where C2Sþ1 is the ð2Sþ 1Þ-dimensional state
space of spin. The Lp-spaces are for instance used in density functional theories.

Fock space: Let H be a Hilbert space of single-particle quantum states, and
let H0 ¼ K (field of scalars) and Hn ¼ H�H� � � � � H (n factors). For any
vector wk1

� wk2
� � � � � wkn

2 Hn; let Snwk1
� wk2

� � � � � wkn
¼
P
P wkPð1Þ �

wkPð2Þ � � � � � wkPðnÞ and Anwk1
� wk2

� � � � � wkn
¼
P
Pð�1ÞjPjwkPð1Þ � wkPð2Þ �

� � � � wkPðnÞ ; where the summation is over all permutations P of the numbers

1; 2; . . .; n and jPj is its order. Let S0 ¼ A0 ¼ IdH0 : Then,

FBðHÞ ¼ 
1n¼0SnHn

is the bosonic Fock space, and

FFðHÞ ¼ 
1n¼0AnHn

is the fermionic Fock space. An orthonormal base in both cases may be introduced as
the set of occupation number eigenstates for a fixed orthonormal basis fwkg in H

ji; jn1; n2; . . .; nNi; N ¼ 1; 2; . . .; nk ¼ 0; 1; 2; . . .(bosons) and nk ¼ 0; 1 (fermions):

The state with vector ji 2 H0 is called the vacuum state. The Fock space is the
closure (in the topology of the direct sum of tensor products of H) of the span of
all occupation number eigenstates.

2.3 Derivatives

Let F : X!Y be a mapping (vector-valued function) from an open set X of a
normed vector space X into a topological vector space Y . If the limes

DxFðx0Þ ¼
d

dt
Fðx0 þ txÞjt¼0¼ lim

t 6¼0;t!0
x0þtx2X

Fðx0 þ txÞ � Fðx0Þ
t

ð2:13Þ

exists it is called a partial derivative or (for jjxjj ¼ 1) directional derivative in the
direction of x of the function F at x0. DxFðx0Þ is a vector of the space Y . DxFðx0Þ is
of course defined for any value of norm of x; by replacing in the above definition t
by kt it is readily seen that DkxFðx0Þ ¼ kDxFðx0Þ. (However, DxFðx0Þ as a
function of x need not be linear; for instance it may exist for some x and not for
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others.) If the directional derivative (for fixed x) exists for all x0 2 X then DxFðx0Þ
is another function (of the variable x0) from X into Y (which need not be con-
tinuous), and the second directional derivative Dx0DxFðx0Þ may be considered if it
exists for some x0, and so on. If, given x0, the directional derivative DxFðx0Þ exists
for all x as a continuous linear function from X into Y , then it is called the Gâteaux
derivative.

Caution: The existence of all directional derivatives is not sufficient for the
chain rule of differentiation to be valid; see example below.

Let Y also be a normed vector space. If there is a continuous linear function
DFðx0Þ 2 LðX; YÞ so that

Fðx0 þ xÞ � Fðx0Þ ¼ DFðx0Þxþ RðxÞjjxjj; lim
x!0

RðxÞ ¼ 0; ð2:14Þ

then DFðx0Þ is called the total derivative or the Fréchet derivative of F at x0. RðxÞ
is supposed continuous at x ¼ 0 with respect to the norm topologies of X and Y ,
and Rð0Þ ¼ 0. (For x 6¼ 0, RðxÞ is uniquely defined to be ½Fðx0 þ xÞ�
Fðx0Þ � DFðx0Þx�=jjxjj.) Given x (and x0), DFðx0Þx is again a vector in Y , that is,
for given x0, DFðx0Þ is a continuous linear function from X into Y . If DFðx0Þ exists
for all x0 2 X, then DF is a mapping from X into LðX; YÞ and DFx (x fixed) is a
mapping from X into Y . Hence, the second derivative DðDFxÞðx0Þx0 ¼ D2Fðx0Þxx0

may be considered, and so on. For instance, D2F is a mapping from X into
LðX;LðX; YÞÞ; the space of continuous bilinear functions from X 
 X into Y and,
given x and x0, D2Fxx0 is a mapping from X into Y .

The total derivative may not exist even if all directional derivatives do exist. As
an example [3, §10.1], consider X ¼ R2; Y ¼ R and the real function of two real
variables x1 and x2

Fðx1; x2Þ ¼
2ðx1Þ3x2

ðx1Þ4 þ ðx2Þ2
for ðx1; x2Þ 6¼ ð0; 0Þ;

0 for ðx1; x2Þ ¼ ð0; 0Þ:

8
<

:

Let 0 ¼ ð0; 0Þ and x ¼ ðx1; x2Þ 6¼ 0. Then, ðFð0þ txÞ � Fð0ÞÞ=t ¼ ð2t3ðx1Þ3x2Þ=
ðt4ðx1Þ4 þ t2ðx2Þ2Þ. For x2 ¼ 0 this is 0, and for x2 6¼ 0 it is of order OðtÞ, hence,
DxFð0Þ ¼ 0 for all x. Nevertheless, Fðx1; ðx1Þ2Þ ¼ x1: the slope of the graph of F

on the curve x2 ¼ ðx1Þ2 is unity. This means that DFð0Þ, which should be zero
according to the directional derivatives, in fact does not exist: RðxÞ ! 0 does not
hold for x ¼ ðx1; ðx1Þ2Þ. (Exercise: Show that DxFðx0Þ is discontinuous at x0 ¼ 0.)

If DxFðx00Þ exists for all x and for all x00 in a neighborhood U of x0 and is
continuous as a function of x00 at x0, then DFðx0Þ exists and DFðx0Þx ¼ DxFðx0Þ.

Proof For small enough x so that x0 þ x 2 U, consider the function rðx0; xÞ ¼
Fðx0 þ xÞ � Fðx0Þ � DxFðx0Þ with values in Y . Take any vector f of the dual space
Y� of Y and consider the scalar function f ðtÞ ¼ hf ;Fðx0 þ txÞi of the real variable
t; 0� t� 1. This function has a derivative
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df

dt
¼ lim

Dt!0
f ;

Fðx0 þ txþ DtxÞ � Fðx0 þ txÞ
Dt

� �

¼ hf ; DxFðx0 þ txÞi

and hence f ð1Þ � f ð0Þ ¼ hf ;DxFðx0 þ sxÞi for some s; 0� s� 1. Therefore,
hf ; rðx0; xÞi ¼ hf ;DxFðx0 þ sxÞ � DxFðx0Þi. Choose f with jjf jj ¼ 1 for which

jhf ; rðx0; xÞij �
1
2
jjf jj jjrðx0; xÞjj ¼

1
2
jjrðx0; xÞjj

holds. (It exists by the Hahn–Banach theorem.) It follows that jjrðx0; xÞjj � 2jhf ;Dx

Fðx0 þ sxÞ � DxFðx0Þij � 2jjDxFðx0 þ sxÞ � DxFðx0Þjj. Finally, put x ¼ jjxjjx̂ and
get jjrðx0; xÞjj � 2jjDx̂ðx0 þ sxÞ � Dx̂ðx0Þjj jjxjj. Hence, in view of the continuity of
Dx̂ðx00Þ at x00 ¼ x0 it follows that rðx0; xÞ ¼ RðxÞjjxjj with limx!0 RðxÞ ¼ 0: h

In the special case Y ¼ K, the scalar field of X, the mapping F : X ! K is a
functional, and DFðx0Þ 2 LðX;KÞ ¼ X� is a continuous linear functional and
hence an element of the dual space X�, if it exists. For instance, if X ¼ Kn then
DFðx0Þ ¼ y 2 Kn (gradient). If X is a functional space, DFðx0Þ is called the
functional derivative of F at x0. If X ¼ LpðKn; dnzÞ 3 f ðzÞ then DFðf0Þ ¼
gðzÞ 2 LqðKn; dnzÞ; 1=pþ 1=q ¼ 1. The functional derivative in the functional
space Lp is a function (more precisely class of functions) of the functional space
Lq. A trivial example which nevertheless is frequently met in physics is Fðf Þ ¼
ðgjf Þ with Dðgjf Þðf Þ ¼ g (derivative of a linear function).

If X ¼ Kn 3 x ¼ x1e1 þ x2e2 þ � � � þ xnen and Y ¼ Km 3 y ¼ y1e01 þ y2e02þ
� � � þ yme0m, then FðxÞ ¼ F1ðxÞ e01 þ F2ðxÞ e02 þ � � � þ FmðxÞe0m and hf i;DFðx0Þeki ¼
oFiðx0Þ=oxk; hf i; e0ki ¼ di

k. In this case,

DFðx0Þ ¼

oF1ðx0Þ
ox1

oF1ðx0Þ
ox2

. . .
oF1ðx0Þ

oxn

oF2ðx0Þ
ox1

oF2ðx0Þ
ox2

. . .
oF2ðx0Þ

oxn

..

. ..
. ..

.

oFmðx0Þ
ox1

oFmðx0Þ
ox2

. . .
oFmðx0Þ

oxn

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

ð2:15Þ

is the Jacobian matrix of the function F : Kn ! Km. For any y� 2 Y�,
hy�;DFðx0Þxi ¼ y� � DFðx0Þ � x, where the dot � marks the inner product in the
spaces Kn and Km. For m ¼ n the determinant

Dðy1; . . .; ynÞ
Dðx1; . . .; xnÞ ¼ det

oFiðx0Þ
oxj

� �

ð2:16Þ

is the Jacobian.
Employing higher derivatives, the Taylor expansion of a function F from the

normed linear space X into a normed linear space Y reads

Fðx0þxÞ¼Fðx0ÞþDFðx0Þxþ
1
2!

D2Fðx0Þxxþ���þ 1
k!

DkFðx0Þ xx���x|fflffl{zfflffl}
ðk factorsÞ

þ���; ð2:17Þ
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provided x0 and x0 þ x belong to a convex domain X � X on which F is defined
and has total derivatives to all orders, which are continuous functions of x0 in X
and provided this Taylor series converges in the norm topology of Y . As explained
after (2.14), DkFðx0Þ 2 LðX;LðX; � � � ;LðX; YÞ � � �ÞÞ is a k-linear function from
X 
 X 
 � � � 
 X (k factors) into Y . For instance, in the case X ¼ Kn; Y ¼ Km this
means

hy�;DkFðx0Þx � � � xi ¼
X

i;i1;...;ik

y�i
oFiðx0Þ

oxi1 � � � oxik
xi1 � � � xik : ð2:18Þ

Proofs of this Taylor expansion theorem and the following generalizations from
standard analysis can be found in textbooks, for instance [4].

Recall that LðX; YÞ is a normed vector space with the norm (2.5) which is
Banach if Y is Banach. Hence, LðX;LðX; YÞÞ is again a normed vector space
which is Banach if Y is Banach. If L2 : X ! LðX; YÞ : x; x0 7! L2ðx; x0Þ ¼: L2xx0 is
a bilinear function from X 
 X into Y , its LðX;LðX; YÞÞ-norm is (cf. (2.5))

jjL2jjLðX;LðX;YÞÞ ¼ sup
x2X

jjL2xx0jjLðX;YÞ
jjxjjX

¼ sup
x2X

supx02X jjL2xx0jjY=jjx0jjX
jjxjjX

¼ sup
x;x02X

jjL2xx0jjY
jjxjjX jjx0jjX

:

By continuing this process, LðX;LðX; � � � ;LðX; YÞ � � �ÞÞ (depth k) is a normed
vector space which is Banach if Y is Banach, and the norm of a k-linear function
Lkxð1Þxð2Þ� � �xðkÞ is

jjLkjjLðX;LðX; . . .;LðX; YÞ. . .ÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

depth k

¼ sup
xð1Þ���xðkÞ2X

jjLkxð1Þ � � � xðkÞjjY
jjxð1ÞjjX � � � jjxðkÞjjX

: ð2:19Þ

A general chain rule holds for the case if F : X 	 X! Y;FðXÞ � X0;G :

Y 	 X0 ! Z and H ¼ G � F : X 	 X! Z. Then,

DHðx0Þ ¼ DGðFðx0ÞÞ � DFðx0Þ ð2:20Þ

if the right hand side derivatives exist. In this case, DFðx0Þ 2 LðX; YÞ and
DGðFðx0ÞÞ 2 LðY ; ZÞ and hence DHðx0Þ 2 LðX; ZÞ. Moreover, if DF : X!
LðX; YÞ is continuous at x0 2 X and DG : X0 ! LðY ; ZÞ is continuous at
Fðx0Þ 2 X0, then DH : X! LðX; ZÞ is continuous at x0 2 X.

Coming back to the warning on p. 23, take the function F : R! R2 :

t 7! ðt; t2Þ; and for G : R2 ! R take the function of the example on p. 23. Then,
HðtÞ ¼ ðG � FÞðtÞ ¼ t and hence DHð0Þ ¼ 1. Would one from Dðx1;x2ÞGð0; 0Þ ¼ 0

for all ðx1; x2Þ infer that DGð0; 0Þ ¼ 0, then one would get erroneously
DHð0Þ ¼ DGð0; 0Þ � DFð0Þ ¼ 0. In more familiar notation for this case,
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dH

dt

�
�
�
�
t¼0

6¼ oG

ox1

�
�
�
�
ð0;0Þ

dx1

dt

�
�
�
�
0

þ oG

ox2

�
�
�
�
ð0;0Þ

dx2

dt

�
�
�
�
0

¼ 0:

The chain rule does not hold because the total derivative of G does not exist at
ð0; 0Þ; oG=ox2 is discontinuous there.

If X; Y and Z are the finite-dimensional vector spaces Kn; Km and Kl with
general (not necessarily orthonormal) bases fixed, then the l
 n Jacobian matrix
of DHðx0Þ is just the matrix product of the l
 m and m
 n Jacobian matrices
(2.15) of DGðFðx0ÞÞ and DFðx0Þ. It follows that in the case l ¼ m ¼ n the
Jacobian of H is the product of the Jacobians of G and F:

Dðz1; . . .; znÞ
Dðx1; . . .; xnÞ ¼

Dðz1; . . .; znÞ
Dðy1; . . .; ynÞ

Dðy1; . . .; ynÞ
Dðx1; . . .; xnÞ :

Just this is suggested by the notation (2.16) of a Jacobian.
If F : X 	 X! X0 � Y is a bijection and DFðx0Þ and DF�1ðFðx0ÞÞ both exist,

then

ðDFðx0ÞÞ�1 ¼ DF�1ðFðx0ÞÞ: ð2:21Þ

This follows from the chain rule in view of F�1 � F ¼ IdX and DIdðx0Þ ¼ Id.
(From the definition (2.14) it follows for a linear function F 2 LðX; YÞ that
DFðx0Þ ¼ F independent of x0 2 X.) The case X ¼ Y ¼ Kn now implies

Dðx1; . . .; xnÞ
Dðy1; . . .; ynÞ ¼

Dðy1; . . .; ynÞ
Dðx1; . . .; xnÞ

� ��1

for the Jacobian. For n ¼ 1 this is the rule dx=dy ¼ ðdy=dxÞ�1.
A function F from an open domain X of a normed space X into a normed space

Y is called a class CnðX; YÞ function if it has continuous derivatives DkFðx0Þ up to
order k ¼ n (continuous as functions of x0 2 X). If the domain X and the target
space Y are clear from context, one speaks in short on a class Cn function (or even
shorter of a Cn function). A C0 function means just a continuous function. A C1

function is also called smooth. A smooth function still need not have a Taylor
expansion. For instance the real function

feðxÞ ¼ expð�e2=ðe2 � x2ÞÞ for jxj\e
0 for jxj � e

�

is C1 on the whole real line, but has no Taylor expansion at the points x ¼ �e
although all its derivatives are equal to zero and continuous there. (Up to the
normalization factor it is a de-function.) A function which has a Taylor expansion
converging in the whole domain X is called a class CxðX; YÞ function or an
analytic function. A complex-valued function of complex variables is analytic, iff
it is C1 and its derivatives obey the Cauchy–Riemann equations.
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A Cn (C1;Cx) diffeomorphism is a bijective mapping from X � X onto X0 �
Y which, along with its inverse, is Cn; n [ 0, (C1; Cx).

With pointwise linear combinations of functions with constant coefficients,
ðkF þ k0GÞðxÞ ¼ kFðxÞ þ k0GðxÞ, the class Cn (C1; Cx) is made into a vector
space. The vector spaces Cn, C1 include normed subspaces Cn

b , C1b (of all
functions with finite norm) by introducing the norm

jjFjj
Cn=1

b
¼ sup

x02X
k� n=1

jjDkFðx0Þjj; jjFjjC0
b
¼ sup

x02X
jjFðx0Þjj; ð2:22Þ

with the norms (2.19) on the right hand side of the first expression. These spaces
are again Banach if Y is Banach. Convergence of a sequence of functions in these
norms means uniform convergence on X, of the sequence of functions and of the
sequences of all derivatives up to order n, or of unlimited order. (Besides, every
space Cn

b ;m� n�1, is dense in the normed space Cm
b .)

The mapping D : C1
bðX; YÞ ! C0

bðX;LðX; YÞÞ : F 7!DF is a continuous linear
mapping with norm not exceeding unity.

Proof As a bounded linear mapping, D 2 LðC1
bðX; YÞ;C0

bðX;LðX; YÞÞÞ; the norm
of D is jjDjj ¼ supF jjDFjjC0

bðX;LðX;YÞÞ
=jjFjjC1

bðX;YÞ
: From (2.22) it is directly seen

that the numerator of this quotient cannot exceed the denominator, hence jjDjj � 1
and D is indeed bounded and hence continuous. h

If the normed vector space Y in addition is an algebra with unity I (see
Compendium) and the norm has the additional properties

4: jjIjj ¼ 1;
5: jjyy0jj � jjyjj jjy0jj;

then it is called a normed algebra. If it is complete as a normed vector space, it is
called a Banach algebra. If Y is a normed algebra, then with pointwise
multiplication, ðFGÞðxÞ ¼ FðxÞGðxÞ, the class Cn

b (C1b ) with the norm (2.22) is
made into a normed algebra. (Show that FG is Cn

b if F and G both are Cn
b .)

The derivative of a product in the algebra Cn; n� 1 is obtained by the Leibniz
rule

DðFGÞ ¼ ðDFÞGþ FðDGÞ: ð2:23Þ

(Exercise: Consider UðxÞ ¼ ðFðxÞ;GðxÞÞ; Wðu; vÞ ¼ uv and HðxÞ ¼ ðW � UÞðxÞ
and apply the chain rule to obtain (2.23).)

An implicit function is defined in general in the following manner: Let X be a
topological space, let Y be a Banach space and let Z be a normed vector space. Let
F : X 
 Y 	 X! Z be a continuous function and consider the equation

Fðx; yÞ ¼ c; c 2 Z fixed: ð2:24Þ
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Assume that DyFðx0; y0Þ 2 LðY ;ZÞ exists for all y 2 Y and is continuous on X (as
a function of x0; y0), that Fða; bÞ ¼ c and that Q ¼ DyFða; bÞ is a linear bijection
from Y onto Z, so that Q�1 2 LðZ; YÞ: Then, there are open sets A 3 a and B 3 b
in X and Y , so that for every x 2 A Eq. (2.24) has a unique solution y 2 B which
implicitly by Eq. (2.24) defines a continuous function G : A! Y : x 7! y ¼ GðxÞ.

The proofs of this theorem and of the related theorems below are found in
textbooks, for instance [4]. It is essential, that Y is Banach.

Let X be also a normed vector space and assume F 2 C1ðX; ZÞ. Then the above
function G has a continuous total derivative at x ¼ a, and

DxGðaÞ ¼ �ðDyFða; bÞÞ�1 � DxFða; bÞ; b ¼ GðaÞ: ð2:25Þ

Formally, one may differentiate (2.24) by applying the chain rule,

DxFða; bÞdxþ DyFða; bÞdy ¼ 0; x 2 X; y 2 Y;

where dx ¼ DIdX ¼ 1 and dy ¼ DxGðaÞ, and solve this relation for dy=dx.
In order to prove that DGðaÞ of (2.25) is a continuous function of a, that is, that

G 2 C1ðA; YÞ, the continuity of ðDyFða; bÞÞ�1 as function of a and b must be
stated. Since DyFða; bÞ 2 LðY ;ZÞ; this implies the derivative of the inverse of a
linear function with respect to a parameter which is of interest on its own:

Let X and Y be Banach spaces and let U and U�1 be the sets of invertible
continuous linear mappings out of LðX; YÞ and LðY ;XÞ. Then, both U and U�1 are
open sets.

Proof for U; for U�1 interchange X and Y Let U0 2 U and U 2 LðX; YÞ such that
jjIdX � U�1

0 � UjjLðX;XÞ\1: Then,

ðU�1
0 � UÞ�1 ¼ IdX þ ðIdX � U�1

0 � UÞ þ ðIdX � U�1
0 � UÞ2 þ � � �

converges and hence U ¼ U0 � ðU�1
0 � UÞ 2 U ðU�1 ¼ ðU�1

0 � UÞ�1 � U�1
0 Þ:

Every U0 2 U has a neighborhood, jjU0 � Ujj\1=jjU0jj, where this is realized. h

Let X and Y be Banach spaces and U as above. Let U : X 	 A! U � LðX; YÞ :

x0 7!Uðx0Þ be C1. Then ~U : x0 7! ðUðx0ÞÞ�1 is C1, and its derivative is given by

Dð~UÞðx0Þx ¼ �~Uðx0Þ � DUðx0Þx � ~Uðx0Þ 2 LðY;XÞ; x 2 X: ð2:26Þ

The proof of continuity of the left hand side with respect to the x0-dependence
consists of an investigation of the relation UðxÞ � ~UðxÞ ¼ IdY : It is left to the reader
(see textbooks of analysis). Differentiating this equation with respect to x at point
x0 yields Uðx0Þ � D~Uðx0Þxþ DUðx0Þx � ~Uðx0Þ ¼ 0: Composing with ðUðx0ÞÞ�1 ¼
~Uðx0Þ from the left results in the above relation. If X ¼ Kn, then U can only be
non-empty if also Y ¼ Kn. After introducing bases UðxÞ is represented by a
regular n
 n matrix MðxÞ. One obtains the familiar result ðx � o=oxÞM�1jx0

¼
M�1 � ðx � o=oxÞMjx0

�M�1: Along a straight line x ¼ te, or for a one parameter

dependent matrix this reduces to dM�1=dt ¼ M�1 � ðdM=dtÞ �M�1.
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2.4 Compactness

Compactness is the abstraction from closed bounded subsets of Rn. Before
introducing this concept, a few important properties of n-dimensional closed
bounded sets are reviewed.

The Bolzano–Weierstrass theorem says that in an n-dimensional closed
bounded set every sequence has a convergent subsequence. An equivalent
formulation is that every infinite set of points of an n-dimensional closed bounded
set has a cluster point.

A cluster point of a subset A of a topological space X is a point x 2 X every
neighborhood of which contains at least one point of A distinct from x: (Compare
the definition of a point of closure on p. 12. A cluster point is a point of closure,
but the reverse is not true in general.)

Weierstrass theorem: A continuous function takes on its maximum and
minimum values on an n-dimensional closed bounded set.

Brouwer’s fixed point theorem: On a convex n-dimensional closed bounded
set B the fixed point equation x ¼ FðxÞ;F : B! B continuous, has a solution.

These theorems do not necessarily hold in infinite dimensional spaces. Consider
for example the closed unit ball (e.g. centered at the origin) in an infinite
dimensional real Hilbert space. Clearly the sequence of distinct orthonormal unit
vectors does not converge in the norm topology: the distance between any pair of

orthogonal unit vectors is jjei � ejjj ¼ ðei � ejjei � ejÞ1=2 ¼
ffiffiffi
2
p

: It is easily seen
that open balls of radius 1=ð2

ffiffiffi
2
p
Þ centered halfway on these unit vectors do not

intersect. The unit ball is too roomy for the Bolzano–Weierstrass theorem to hold;
it accommodates an infinite number of non-overlapping balls of a fixed non-zero
radius. This consideration yields the key to compactness.

A set C of a topological space is called a compact set, if every open cover fUg,
a family of open sets with [U 	 C, contains a finite subcover, [n

i¼1Ui 	 C.
A compact set in a Hausdorff space (the only case of interest in this volume) is
called a compactum.

Compactness is a topological property, the image C0 of a compact set C under a
continuous mapping F is obviously a compact set: Take any open cover of C0.
Since the preimage F�1ðU0Þ of an open set U0 is an open set U � C, these
preimages form an open cover of C. A selection of a finite subcover of these
preimages also selects a finite subcover of C0.

A compactum is closed.

Proof Let x be a point of closure of a compactum C, that is, every neighborhood
of x contains at least one point c 2 C. Let x 62 C. Since C is Hausdorff, for every
c 2 C there are disjoint open sets Uc 3 c and Vx;c 3 x. Since the sets Uc obviously
form an open cover of C, a finite subcover Uci ; i ¼ 1; . . .; n may be selected. Then,
V ¼ \iVx;ci is a neighborhood of x not intersecting C, which contradicts the
preposition. Hence, C contains all its points of closure. h
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It easily follows that the inverse of a continuous bijection f of a compactum C
onto a compactum C0 is continuous, that is, the bijection is a homeomorphism.

Proof Indeed, any closed subset A of the compactum C is a compactum; any open
cover of A together with the complement of A forms an open cover of C and hence there
is a finite subcover which is also a subcover of A. Now, since f is continuous, f ðAÞ is
also a compactum and hence a closed subset of C0. Consequently f maps closed sets to
closed sets, and because it is a bijection, it also maps open sets to open sets. h

Now, the Bolzano–Weierstrass theorem is extended:

Every infinite set of points of a compact set C has a cluster point.

Proof Assume that the infinite set A � C has no cluster point. A set having no
cluster point is closed. Indeed, if a is a point of closure of A, then a 2 A or a is a
cluster point of A. Select any infinite sequence faig � A of distinct points ai.
The sets faig1i¼n are closed for n ¼ 1; 2; . . . and the intersection of any finite
number of them is not empty. Their complements Un in C form an open cover of
C, for which hence there exists no finite subcover. C is not a compact set. h

As a consequence, an unbounded set of a metric space cannot be compact.
Hence, the simple Heine–Borel theorem, that a closed bounded subset of
Rn; n\1 is compact, has a reversal: A compact subset of Rn is closed and
bounded. (Recall that a metric space is Hausdorff.) This immediately also extents
the Weierstrass theorem:

A continuous real-valued function on a compact set takes on its maximum and
minimum values.

It maps the compact domain onto a compact set of the real line, which is closed
and bounded and hence contains its minimum and maximum. However, a much
more general statement on the existence of extrema will be made later on.

A closed subset of a compact set is a compact set.

Proof Take any open cover of the closed subset C0 of the compact set C. Together
with the set CnC0, open in C, it also forms an open cover of C. A finite subcover of
C also yields a finite subcover of C0: h

A set of a topological space is called relatively compact if its closure is
compact. A topological space is called locally compact if every point has a
relatively compact neighborhood. A function from a domain in a metric space X
into a metric space Y is called a compact function or compact operator if it is
continuous and maps bounded sets to relatively compact sets.

Brouwer’s fixed point theorem has now two important generalizations which
are given without proof (see textbooks of functional analysis):

Tychonoff’s fixed point theorem: A continuous mapping F : C ! C in a
compact convex set C of a locally convex vector space has a fixed point.

Schauder’s fixed point theorem: A compact mapping F : C ! C in a closed
bounded convex set C of a Banach space has a fixed point.
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Both theorems release the precondition of Banach’s fixed point theorem on F to
be a strict contraction (p. 14). As a price, uniqueness is not guaranteed any more.
Tychonoff’s theorem also releases the precondition of completeness of the space.

Every locally compact space has a one point compactification that is, a
compact space Xc ¼ X [ fx1g and a homeomorphism P : X ! Xc n fx1g:

Proof Let x1 62 X and let fUg1 be the class of open sets of X for which XnU is
compact in X. (X itself belongs to this class since [ is compact.) Take the open sets
of Xc to be the open sets of X and all sets containing x1 and having their intersections
with X in fUg1. This establishes a topology in Xc and the homeomorphism. Let now
fVg be an open cover of Xc. It contains at least one set V1 ¼ U [ fx1g, and XcnV1
is compact in X. Hence, fVg has a finite subcover. h

The compactified real line (circle) R and the compactified complex plane
(Riemann sphere) C are well known examples of one point compactifications.

To get more general results for the existence of extrema, the concept of
semicontinuity is needed. A function F from a domain of a topological space X
into R is called lower (upper) semicontinuous at the point x0 2 X, if either
Fðx0Þ ¼ �1 (Fðx0Þ ¼ þ1) or for every e [ 0 there is a neighborhood of x0 in
which FðxÞ[ Fðx0Þ � e ðFðxÞ\Fðx0Þ þ eÞ:

A lower semicontinuous function need not be continuous, its function value even
may jump from �1 to 1 at points of discontinuity. However, at every point of
discontinuity it takes on the lowest limes of values. (For every net converging towards
x0 2 X the function value at x0 is equal to the lowest cluster point of function values on
the net.) A lower semicontinuous function is finite from below, if FðxÞ[�1 for all
x. Analogous statements hold for an upper semicontinuous function.

If F is a finite from below and lower semicontinuous function from a non-empty
compactum A into R; then F is even bounded below and the minimum problem
minx2A FðxÞ ¼ a has a solution x0 2 A; a ¼ Fðx0Þ.

An analogous theorem holds for a maximum problem. The proof of these
statements is simple: Consider the infimum of F on A, pick a sequence for which
FðxnÞ� inf FðxÞ þ 1=n and select a cluster point x0 and a subnet converging to x0.
Hence, inf FðxÞ ¼ Fðx0Þ[�1 since F is finite from below.

Extremum problems are ubiquitous in physics. Many physical principles are
directly variational. Extremum problems are also in the heart of duality theory
which in physics mainly appears as theory of Legendre transforms. Moreover,
since every system of partial differential equations is equivalent to a variational
problem, extremum problems are also central in (particularly non-linear) analysis,
again with central relevance for physics.

It has become evident above that compactness of the domain plays a decisive
role in extremum problems. On the other hand, bounded sets in infinite-dimen-
sional normed spaces are not compact in the norm topology, while many varia-
tional problems, in particular in physics, are based on infinite-dimensional
functional spaces. (David Hilbert introduced the concept of functional inner
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product space to bring forward the variational calculus.) Rephrased, those func-
tional spaces are not locally compact in the norm topology. The question arises,
can one introduce a more cooperative topology in those spaces. The coarser a
topology, the less open sets exist, and the more chances appear for a set to be
compact. On p. 18, the weak topology was introduced as the coarsest topology
in the vector space X, for which all bounded linear functionals are continuous.
In a finite-dimensional space it was shown to be equivalent to the norm topology.
In an infinite-dimensional space it is indeed coarser than the norm topology, but
sometimes not coarse enough to our goal.

Let X be a Banach space and X� its dual. In general, X��, the space of all bounded
linear functionals on X�, may be larger than X. The weak topology of X� is the
coarsest topology in which all bounded linear functionals, that is all f 2 X�� are
continuous. The weak� topology is the coarsest topology of X� in which all bounded
functionals f 2 X are continuous. Since these are in general less functionals, in
general the weak� topology is coarser than the weak topology. If X is reflexive, then
X�� ¼ X (and X��� ¼ X�), and the weak and weak� topologies of X� (and also of
X�� ¼ X) are equivalent. (A Banach space is in general not any more first countable
in the weak and weak� topologies; this is why instead of sequences nets are needed.)

The Banach–Alaoglu theorem states that the unit ball of the dual X� of a
Banach space X is compact in the weak� topology: As a corollary, the unit ball of a
reflexive Banach space is compact in the weak topology.

A proof which uses Tichonoff’s non-trivial theorem on topological products
may be found in textbooks on functional analysis. Now, the way is paved for
applications of the existence theorems of extrema. The price is that in the weak�

topology there are much less semicontinuous functions than in the norm topology.
Nevertheless, for instance the theory of functional Legendre transforms, relevant
in density functional theories is pushed far ahead [5, and citations therein].

A few applications of the concept of compactness in functional analysis are
finally mentioned which are related to the material of this volume. They use the
facts that every compactum X is a regular topological space, that is, every non-
empty open set contains the closure of another non-empty open set, and every
compactum is a normal topological space, which means that every single point
set fxg is closed and every pair of disjoint closed sets is each contained in one of a
pair of disjoint open sets.

Proof For each pair ðx; yÞ of points in a pair of disjoint closed sets ðC1;C2Þ;
C1 \ C2 ¼ [; x 2 C1; y 2 C2, there is a pair of disjoint open sets (Ux;y;Uy;xÞ;
x 2 Ux;y; y 2 Uy;x, since a compactum is Hausdorff. C2 as a closed subset of a
compactum is compact, and hence has a finite open cover fUy1;x;Uy2;x; . . .;
Uyn;xg; yi 2 C2. Put Ux ¼ [iUyi;x;U

x ¼ \iUx;yi , and U1 ¼ [jUxj ;U2 ¼ \jUxj ;

xj 2 C1:
Regularity: Let U be an open set. Put C1 ¼ XnU and C2 ¼ fyg; y 2 U (C2 is

closed since X is Hausdorff.). Take U2 3 y constructed above. U2 � U:
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Normality: For the above constructions, obviously C1 � U1; C2 � U2;
U1 \ U2 ¼ [: h

In a regular topological space every point has a closed neighborhood base.
For the proofs of the following theorems see textbooks of functional analysis.

Urysohn’s theorem: For every pair ðC0;C1Þ of disjoint closed sets of a normal
space X there is a real-valued continuous function, F 2 C0ðX;RÞ; with the
properties 0�FðxÞ� 1;FðxÞ ¼ 0 for x 2 C0; FðxÞ ¼ 1 for x 2 C1.

Tietze’s extension theorem: Let X be a compactum and C � X closed. Then
every C0ðC;RÞ-function has a C0ðX;RÞ-extension:

A function F defined on a locally compact topological space X with values in a
normed vector space Y is said to be a function of compact support, if it vanishes
outside of some compact set (in general depending on F). The support of a
function F; supp F is the smallest closed set outside of which FðxÞ ¼ 0. If X is a
locally compact normed vector space, then corresponding to the classes
Cn; 0� n�1 (p. 27) there are classes Cn

0 of continuous or n times continuously
differentiable functions of compact support. Like the classes Cn, the classes Cn

0 are
vector spaces or in the case of an algebra Y algebras with respect to pointwise
operations on functions.

In the context of this volume, particularly C10 ðKn; YÞ functions, K ¼ R or C;
are of importance. One could normalize the vector space Cn

0 ; 0� n�1 with the
Cn

b-norm (2.22), however, if X itself is not compact, Cn
0b would not be complete in

this norm topology even if Y would be Banach. For instance, the function sequence

FnðxÞ ¼
Xn

k¼1

1
2k

Uðx� kÞ; U 2 Cn
0ðR;RÞ; n ¼ 1; 2; . . .;

is Cauchy in the Cn
b norm, but its limit does not have compact support. The

completion of the C0
0ðX; YÞ ¼ C0

0bðX; YÞ space of continuous functions of compact
support in the C0

b-norm is the space C1ðX; YÞ of continuous functions vanishing
for jjxjjX !1, that is, for every e [ 0 there is a compact Ce � X outside of which
jjFðxÞjjY\e. (Hence, C0

0ðX; YÞ is dense in C1ðX; YÞ in the C0
b-norm; moreover, all

Cn
0ðX; YÞ; 0� n�1 are dense in C1ðX; YÞ in the C0

b-norm. If X is not compact, of
course non of those classes is dense in any Cn

b in the Cn
b-norm: Let for instance

jjF1ðxÞjjY ¼ 1 for all x 2 X, then jjF � F1jjCn
b
¼ 1 for all F 2 Cm

0 . These are simple

statements on uniform approximations of functions by more well behaved
functions.)

Functions of compact support are very helpful in analysis, geometry and
physics. They are fairly wieldy since their study is much the same as that of
functions on a closed bounded subset of Rn: The tool of continuation of structures
from this rather simple situation to much more complex spaces, that is to connect
local with global structures, is called partition of unity. It works for all locally
compact spaces which are countable unions of compacta. (Caution: Not every
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countable union of compact sets is locally compact.) However, the most general
class of spaces where it works are the paracompact spaces.

A paracompact space is a Hausdorff topological space for which every open
cover, X � [a2AUa, has a locally finite refinement, that is an open cover [b2BVb

for which every Vb is a subset of some Ua and every point x 2 X has a
neighborhood Wx which intersects with a finite number of sets Vb only.

A partition of unity on a topological space X is a family fuaja 2 Ag of
C10 ðX;RÞ-functions such that

1. there is a locally finite open cover, X � [b2BUb,
2. the support of each ua is in some Ub; fsupp uaja 2 Ag is locally finite,
3. 0�uaðxÞ� 1 on X for every a,
4.
P

a2A uaðxÞ ¼ 1 on X:

The last sum is well defined since, given x, only a finite number of items are non-
zero due to the locally finite cover governing the partition. The partition of unity is
called subordinate to the cover [b2BUb:

A paracompact space could also be characterized as a space which permits a
partition of unity. It can be shown that every second countable locally compact
Hausdorff space is paracompact. This includes locally compact Hausdorff spaces
which are countable unions of compact sets, in particular it includes Rn for finite n.
However, any (not necessarily countable) disconnected union (see next section) of
paracompact spaces is also paracompact.

The function fe on p. 26 is an example of a real C10 -function on R. A simple
example of functions ua on Rn is obtained by starting with the C1-function

f ðtÞ ¼ e�1=t for t [ 0
0 for t� 0

�

and putting gðtÞ ¼ f ðtÞ=ðf ðtÞ þ f ð1� tÞÞ, which is C1; 0� gðtÞ� 1; gðtÞ ¼ 0 for
t� 0; gðtÞ ¼ 1 for t� 1. Then, hðtÞ ¼ gðt þ 2Þgð2� tÞ is C10 ; 0� hðtÞ� 1; hðtÞ ¼
0 for jtj � 2; hðtÞ ¼ 1 for jtj � 1. Now, with a dual base ff ig in Rn; the
C10 ðRn;RÞ-function

wðxÞ ¼ hðx1Þhðx2Þ � � � hðxnÞ; xi ¼ f i � x; ð2:27Þ

has the properties 0�wðxÞ� 1;wðxÞ ¼ 0 outside the compact n-cube jxij � 2 with
edge length 4 which is contained in an open n-cube with edge length 4þ e; e [ 0,
and wðxÞ ¼ 1 inside the n-cube with edge length 2, all centered at the origin of Rn:
The total Rn may be covered with open n-cubes of edge length 4þ e centered at
points m ¼ ðx1 ¼ 3m1; x2 ¼ 3m2; . . .; xn ¼ 3mnÞ; mi integer. Then,

umðxÞ ¼
wðx�mÞ

P
m0 wðx�m0Þ ;

X

m

umðxÞ ¼ 1; ð2:28Þ

is a partition of unity on Rn (Fig. 2.5).
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Besides applications in the theory of generalized functions and in the theory of
manifolds, the partition of unity has direct applications in physics. For instance in
molecular orbital theory of molecular or solid state physics the single particle
quantum state (molecular orbital) is expanded into local basis orbitals centered at
atom positions. For convenience of calculations one would like to have the density
and self-consistent potential also as a site expansion of local contributions,
hopefully to be left with a small number of multi-center integrals. This is however
not automatically provided since the density is bilinear in the molecular orbitals,
and the self-consistent potential is non-linear in the total density. If vðxÞ is the
self-consistent potential in the whole space R3 and

P
R uRðxÞ is a partition of unity

on R3 with functions centered at the atom positions R, then

vðxÞ ¼
X

R

ðvðxÞuRðxÞÞ ¼
X

R

vRðxÞ

is the wanted expansion with potential contributions vR of compact support. Thus,
the number of multi-center integrals can be made finite in a very controlled way.

Finally, distributions (generalized functions) with compact support are shortly
considered which comprise Dirac’s d-function and its derivatives.

Consider the whole vector space C1ðRn;RÞ and instead of (2.22) for every
compact C � Rn introduce the seminorm

pC;mðFÞ ¼ sup
x2C
jlj �m

jDlFðxÞj; D0F ¼ F; l ¼ ðl1; . . .; lnÞ; lj� 0;

DlFðxÞ ¼ ol1þl2þ���þln

ðox1Þl1ðox2Þl2 � � � ðoxnÞln
Fðx1; x2; . . .; xnÞ; l1 þ l2 þ � � � þ ln ¼ jlj:

ð2:29Þ

It is a seminorm because it may be pC;mðFÞ ¼ 0;F 6¼ 0 (if supp F \ C ¼ [). In the
topology of the family of seminorms for all C � Rn and all m, convergence of a

30-3
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Fig. 2.5 Partition of unity on
R with functions (2.28)
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sequence of functions means uniform convergence of the functions and of all their
derivatives on every compactum. This topology is a metric topology, and the vector
space C1ðRn;RÞ topologized in this way is also denoted EðRn;RÞ or in short E.

Indeed, consider a sequence of compacta C1 � C2 � � � � with [1i¼1Ci ¼ Rn (for
instance closed balls with a diverging sequence of radii). Then, the function

dðF;GÞ ¼
X1

i¼1

2�i dCiðF;GÞ
1þ dCiðF;GÞ

; dCðF;GÞ ¼
X1

m¼0

2�m pC;mðF � GÞ
1þ pC;mðF � GÞ

ð2:30Þ

is a distance function.

Proof Clearly, dðF;GÞ 6¼ 0, if FðxÞ 6¼ GðxÞ for some x since the Ci cover Rn: To
prove the triangle inequality, consider the obvious inequality ðaþ bÞ=ð1þ aþ
bÞ� a=ð1þ aÞ þ b=ð1þ bÞ for any pair a; b of non-negative real numbers. In
view of ja� bj � ja� cj þ jc� bj for any three real numbers a; b; c it follows
ja� bj=ð1þ ja� bjÞ � ja� cj=ð1þ ja� cjÞ þ jc� bj=ð1þ jc� bjÞ. This yields
the triangle inequality for each fraction on the right hand side of the second
equation (2.30). Since each of these fractions is � 1, the series converges to a
finite number also obeying the inequality for dC. For d it is obtained along the
same line. h

Any topological vector space the topology of which is given by a countable,
separating family of seminorms, which means that the difference of two distinct
vectors has at least one non-zero seminorm, can be metrized in the above manner.

EðRn;RÞ is a Fréchet space.

Proof Completeness has to be proved. In E; limi; j!1 dðFi;FjÞ ¼ 0 means that on
every compactum C � Rn the sequence Fi together with the sequences of all
derivatives converge uniformly. Hence, on every C and consequently on Rn the
limit exists and is a C1-function F: h

The elements f of the dual space E� of E; that is the bounded linear functionals
on E; are called distributions or generalized functions. E is called the base space
of the distributions f 2 E�: Formally, the writing

hf ;Fi ¼
Z

dnx f ðxÞFðxÞ; F 2 E; ð2:31Þ

is used based on the linearity in F of integration. However, f ðxÞ has a definite
meaning only in connection with this integral. Every ordinary L1-function f with
compact support defines via the integral (2.31) in the Lebesgue sense a bounded
linear functional on E; hence these functions (more precisely, equivalence classes
of functions forming the elements of L1) are special E�-distributions. Derivatives
of distributions are defined via the derivatives of functions F 2 E by formally
integrating by parts. Hence, per definition distributions have derivatives to all
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orders. This holds also for L1-functions (with compact support) considered as
distributions. Derivatives of discontinuous functions as distributions comprise
Dirac’s d-function

hdx0 ;Fi ¼
Z

dnx dðx� x0ÞFðxÞ ¼ Fðx0Þ:

Elements of E� are not the most general distributions. In the spirit of formula
(2.31), more general distributions are obtained by narrowing the base space.
In physics, densities and spectral densities are in general distributions, if they
comprise point masses or point charges or point spectra (that is, eigenvalues).

Let U � Rn be open and consider all F 2 E with supp F � U. If hf ;Fi ¼ 0 for
all those F, then the distribution f is said to be zero on U, f ðxÞ ¼ 0 on U. The
support of a distribution f is the smallest closed set in Rn outside of which f is
zero. Since for a bounded functional f on E the value (2.31) must be finite for all
F 2 E; E� is the space of distributions with compact support. (Dirac’s d-function
and its derivatives have one-point support.)

Another most important case in physics regards Fourier transforms of
distributions. Consider the subspace S of rapidly decaying functions of the class
C1ðRn;CÞ for which for every k and m

sup
x
jxmDkFðxÞj\1; xm ¼

Yn

i¼1

ðxiÞmi ; DkF like in (2.29):

It is a topological vector space with the family of seminorms

pk;PðFÞ ¼ sup
x
jPðxÞDkFðxÞj; P : polynomial in x: ð2:32Þ

Clearly, S is closed with respect to the operation with differential operators with
polynomial coefficients. Since obviously S � C1ðRn;CÞ \ C1ðRn;CÞ (p. 33),
C10 ðRn;CÞ is dense in S in the topology (2.32) of S. In fact, S is a complete (in
the topology of S) subspace of EðRn;CÞ; it is again a Fréchet space. The Fourier
transform of a function of S is

ðFFÞðkÞ ¼ 1

ð2pÞn=2

Z

dnx e�iðk�xÞFðxÞ;

FðxÞ ¼ ð �FðFFÞÞðxÞ ¼ 1

ð2pÞn=2

Z

dnx eiðx�kÞðFFÞðkÞ:
ð2:33Þ

Depending on context, the prefactor may be defined differently. It can be shown
that F : S ! S is an isomorphism and F �F ¼ IdS ; that is F�1 ¼ �F :

The dual S� of S is the space of tempered distributions, S� 	 E�: It is a module
on the ring of polynomials (see Compendium), and is closed under differentiation.
The Fourier transform in S� is defined through the Fourier transform in S as
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hF f ;Fi ¼ hf ;FFi: ð2:34Þ

Again, F : S� ! S� is an isomorphism, FF ¼ IdS� : If f ðkÞ � 1 2 S� is consid-

ered as a tempered distribution, then F f ¼ ð2pÞn=2d0:
A simple result relevant in the theory of Green’s functions is the Paley–Wiener

theorem: The Fourier transform of a distribution with compact support on Rn can
be extended into an analytic function on Cn:

Proofs of the above and more details can be found in textbooks of functional
analysis, for instance [2]. (Closely related is also the theory of generalized solu-
tions of partial differential equations, which are elements of Sobolev spaces.)

2.5 Connectedness, Homotopy

So far, the focus was mainly on the local topological structure which can be
expressed in terms of neighborhood bases of points, although the concepts of
vector space and of compactness and in particular of partition of unity provide a
link to global topological properties. Connectedness has the focus on global
properties, though with now and then local aspects. Intuitively, connectedness
seems to be quite simple. In fact, it is quite touchy, and one has to distinguish
several concepts.

A topological space is called connected, if it is not a union of two disjoint
non-empty open sets; otherwise it is called disconnected (Fig. 2.6). Connected-
ness is equivalent to the condition that it is not a union of two disjoint non-empty
closed sets, and also to the condition that the only open-closed sets are the empty
set and the space itself. A subset of X is connected, if it is connected as the
topological subspace with the relative topology; it need neither be open nor closed
in the topology of X (cf. the definition of the relative topology). If A is connected
then every A0 with A � A0 � A is connected (exercise).

Caution: Two disjoint sets which are not both open or both closed may have
common boundary points being points of one of the sets and hence their union may
be connected. The union of disjoint sets need not be disconnected.

The connected component of a point x of a topological space X is the largest
connected set in X containing x. The relation Rðx; yÞ: (y belongs to the connected

Fig. 2.6 Two connected sets
A and B the union of which is
disconnected
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component of x) is an equivalence relation. The elements of the quotient space
X=R are the connected components of X.

A topological space is called totally disconnected, if its connected components
are all its one point sets fxg. Let p : X !X=R be the canonical projection onto the
above quotient space X=R. The quotient topology of X=R is the finest topology in
which p is continuous. Its open (closed) sets are the sets B for which p�1ðBÞ is
open (closed) in X. X=R is totally disconnected in the quotient topology.

Every set X is connected in its trivial topology and totally disconnected in its
discrete topology. The rational line Q in the relative metric topology as a subset of
R is totally disconnected. Indeed, let a\b be two rational numbers and let
c; a\c\b be an irrational number. Then, ��1; c½ and �c;þ1½ are two disjoint
open intervals of Q the union of which is Q. Hence, no two rational numbers
belong to the same connected component of Q. This example shows that the
topology in which a space is totally disconnected need not be the discrete topol-
ogy. In Q; every one point set is closed (since Q as a metric space is Hausdorff)
but not open. Open sets of Q are the rational parts of open sets of R:

The image FðAÞ of a connected set A in a continuous mapping is a connected
set. Indeed, if FðAÞ would consist of disjoint open sets then their preimages would
be disjoint open sets constituting A. On the other hand, the preimage F�1ðBÞ of a
connected set B need not be connected (construct a counterexample). However, as
connectedness is a topological property, a homeomorphism translates connected
sets into connected sets in both directions. Check that, if X is connected and Y is
totally disconnected, for example if Y is provided with the discrete topology, then
the only continuous functions F : X ! Y are the constant functions on X.

Let R be any equivalence relation in the topological space X. Since the
canonical projection p : X ! X=R is continuous in the quotient topology, it
follows easily that if the topological quotient space X=R is connected and every
equivalence class in X with respect to R is connected, then X is connected.

A topological space X is disconnected, iff there exists a continuous surjection
onto a discrete two point space. (The target space may be f0; 1g with the discrete
topology; then, some of the connected components are mapped onto f0g and some
onto f1g.)

The topological product of non-empty spaces is connected, iff every factor is
connected.

Proof Although the theorem holds for any number of factors, possibly uncount-
ably many in Tichonoff’s product, here only the case of finitely many factors is
considered. (Though the proof works in the general case, only Tichonoff’s product
was not introduced in our context.) Let Xi be the factors of the product space X and
pi : X ! Xi the canonical projections. Since these are continuous in the topological
product, if X is connected, then every Xi as the image of X in a continuous mapping
is connected. Now, assume that all Xi are connected but X is not. Then, there is a
continuous surjection F of X onto f0; 1g. Let for some �x ¼ ð�x1; . . .;�xnÞ; �xi 2
Xi; Fð�xÞ ¼ 0: Consider the subset ðx1;�x2; . . .;�xnÞ, where x1 runs through X1, and the
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restriction of F on this subset. This restriction is a continuous function on X1 and
hence is� 0 since X1 is connected. Starting from every point of this subset, let now
x2 run through X2 to obtain again F � 0 for the restriction of F. After n steps, F � 0
on X in contradiction to the assumption that F is surjective. h

A concept seemingly related to connectedness but in fact independent is local
connectedness. A topological space is called locally connected, if every point has
a neighborhood base of connected neighborhoods. (Not just one neighborhood, all
neighborhoods of the base must be connected.)

A connected space need not be locally connected. For instance, consider the
subspace of R2 consisting of a horizontal axis and vertical lines through all rational
points on the horizontal axis, in the relative topology deduced from the usual
topology of the R2: It is connected, but no point off the horizontal axis has a
neighborhood base of only connected sets. (Compare the above statement on Q:) On
the other hand, every discrete space with more than one point, although it is totally
disconnected, is locally connected! Indeed, since every one point set is open and
connected in this case, it forms a connected neighborhood base of the point. (Check
it.) This seems all odd, nevertheless local connectedness is an important concept.

A topological space is locally connected, iff every connected component of an
open set is an open set. This is not the case in the above example with the vertical
lines through rational points of a horizontal axis, since the connected components
of open sets off the horizontal axis are not open.

Proof of the statement Pick any point x and any neighborhood of it and consider
the connected component of x in it. Since it is open, it is a neighborhood of x.
Hence, x has a neighborhood base of connected sets, and the condition of the
theorem is sufficient. Reversely, let A be an open set in a locally connected space,
A0 one of its connected components and x any point of A0. Let U be a neighborhood
of x in A. It contains a connected neighborhood of x which thus is in A0. Hence, x is
an inner point of A0 and, since x was chosen arbitrarily, A0 is open. h

As a consequence, a locally connected space is a collection of its connected
components which are all open-closed.

A topological quotient space of a locally connected space is locally connected.

Proof Let X be locally connected and let p : X ! X=R be the canonical projec-
tion. Let U � X=R be an open set and U0 one of its connected components. Let
x 2 p�1ðU0Þ, and let A be the connected component of x in p�1ðUÞ. Then, pðAÞ is
connected (since p is continuous) and contains pðxÞ. Hence, pðAÞ � U0 and A �
p�1ðU0Þ: Since X is locally connected and p�1ðUÞ is open (again because p is
continuous), p�1ðU0Þ is also open due to the previous theorem. Now, by the
definition of the quotient topology, U0 is also open, and the previous theorem in the
opposite direction says that X=R is locally connected. h

The subsequently discussed further concepts of connectedness are based on
homotopy. Let I ¼ ½0; 1� be the closed real unit interval. Two continuous functions
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F1 and F2 from the topological space X into the topological space Y are called
homotopic, F1 ffi F2, if there exists a continuous function H : I 
 X ! Y :
Hð0; �Þ ¼ F1; Hð1; �Þ ¼ F2. H is called the homotopy translating F1 into F2

(Fig. 2.7). Since its definition is only based on the existence of continuous
functions, homotopy is a purely topological concept.

The Fi may be considered as points in the functional space C0ðX; YÞ. Then,
Hðk; �Þ; 0� k� 1 is a path in C0ðX; YÞ from F1 to F2. If X and Y are normed vector
spaces or manifolds, sometimes, in a narrower sense, the functions Fi; H are
considered to be Cn-functions, 0� n�1. One then speaks of a Cn-homotopy.
Of course, every Cn-homotopy is also a Cm-homotopy for m� n. Homotopy is the
C0-homotopy. In the following statements homotopy may be replaced by
Cn-homotopy with slight modifications in the construction of products H2H1 (see
for instance [4, $VI.8]).

The product H2 H1 of two homotopies, H1 translating F1 into F2 and H2

translating F2 into F3, may be introduced as a homotopy translating F1 into F3 in
the following natural way by concatenating the two translations:

ðH2H1Þðk; xÞ ¼
H1ð2k; xÞ for 0� k� 1=2
H2ð2k� 1; xÞ for 1=2� k� 1:

�

Hence, if F1 ffi F2 and F2 ffi F3, then also F1 ffi F3. This means that homotopy is
an equivalence relation among continuous functions. The corresponding equiva-
lence classes ½F� of functions F are called homotopy classes. If a homeomorphism
P of X onto itself is homotopic to the identity mapping P ffi IdX , then F � P ffi F
(exercise).

Two topological spaces X and Y are called homotopy equivalent, if there exist
continuous functions F : X ! Y and G : Y ! X so that G � F ffi IdX and
F � G ffi IdY . Two homeomorphic spaces are also homotopy equivalent, the
inverse is, however, in general not true. A topological space is called contractible,
if it is homotopy equivalent to a one point space. For instance, every topological
vector space is contractible. The homotopy class of a constant function mapping X
to a single point is called the null-homotopy class.

Fig. 2.7 Homotopic
functions F1 and F2
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Of particular interest are the homotopy classes of functions from n-dimensional
unit spheres Sn into topological spaces X possibly with a topological group
structure. The latter means that the points of X form a group (with unit element
e 2 X) and the group operations are continuous. The unit sphere Sn may be con-
sidered as the set of points s 2 Rnþ1 with

Pnþ1
i¼1 ðsiÞ2 ¼ 1. S0 is the two point set

S0 ¼ f�1; 1g; S1 is the circle, S2 is the ordinary sphere, and so on. For �1\s1\1,
the points ðs2; . . .; snþ1Þ with coordinates on Sn; n [ 0, form an ðn� 1Þ-dimen-
sional sphere (of radius r depending on s1).

The case n ¼ 0 is special and is treated separately. A topological space X is
called pathwise connected (also called arcwise connected), if for every pair ðx; x0Þ
of points of X there is a continuous function H : I ! X;Hð0Þ ¼ x;Hð1Þ ¼ x0. For a
general topological space X, pathwise connectedness of pairs of points is an
equivalence relation, and the equivalence classes are the pathwise connected
components of X. If X is pathwise connected, then it is connected (exercise). The
inverse is not in general true. Let X be the union of the sets of points ðx; yÞ 2 R2

with y ¼ sinð1=xÞ and ð0; yÞ; y 2 R in the relative topology as a subset of R2: It is
connected, but points with x ¼ 0 and x 6¼ 0 are not pathwise connected. (Points
ð0; yÞ with jyj � 1 are also not locally connected.) X is locally pathwise
connected, if every point has a neighborhood base of pathwise connected sets. If X
is locally pathwise connected, then it is locally connected, but again the inverse is
not in general true.

For the following, n� 1, and until otherwise stated, X is considered pathwise
connected. A homeomorphism between the sphere Sn; n� 1 and the n-dimensional
unit cube with a particular topology is needed. Consider the open unit cube In ¼
fxj � 1=2\xi\1=2g with its usual topology and its one point compactification In,
obtained by identifying the surface oIn of In with the additional point x1 of In: In

is obviously homeomorphic to the one point compactification Rn of Rn; but it is
also homeomorphic to Sn where a homeomorphism may be considered which maps
x1 2 In and s0 ¼ ð1; 0; . . .; 0Þ 2 Sn onto each other. For n ¼ 1 a homeomorphism
between the unit circle and R is obvious, for n ¼ 2 it is a stereographic projection

of the unit sphere S2 onto the one-point compactified plane R2: A similar mapping
for n [ 2 is easily found (exercise). The homeomorphism between Sn and In

which maps x1 2 In and s0 ¼ ð1; 0; . . .; 0Þ 2 Sn onto each other is denoted by P.
A word on notation her: x; x0 denote points of X not having themselves coor-

dinates since X in general is not a vector space; x; x1 denote points in In � Rn

having coordinates x1; x2; . . .; xn (not unique for x1); s; s0 denote points on Sn �
Rnþ1 having coordinates s1; s2; . . .; snþ1;

P
iðsiÞ2 ¼ 1.

Now, fix x0 in the topological space X and consider the class Cnðx0Þ of con-
tinuous functions F : Sn ! X with Fðs0Þ ¼ x0 fixed. Denote the homotopy classes
of functions F 2 Cnðx0Þ by ½F�. It is not the whole homotopy class of F in X,
because for the group construction below it is necessary that the mapping of
s0 7! x0 is fixed in every function F. The mapping F can be composed of two steps
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(Fig. 2.8): first map Sn homeomorphically onto In by P, implying s0 7! x1, and
then map In into X by the continuous function ~F with x1 7! x0: Because P is a
bijection, there is also a bijection between ~F and F ¼ ~F � P; and Fðs0Þ ¼ x0.

This composition allows to explicitly define a group structure in the set of
homotopy classes ½F� in the following way: For any two Cnðx0Þ-functions F1 and
F2 define a product F2F1 2 Cnðx0Þ by

ð~F2 ~F1ÞðxÞ ¼
~F1ð2x1 þ 1=2; x2; . . .; xnÞ �1=2� x1� 0
~F2ð2x1 � 1=2; x2; . . .; xnÞ 0� x1� 1=2;

(

F2F1 ¼ ð~F2 ~F1Þ � P:

ð2:35Þ

ð~F2 ~F1Þ is continuous, since the two functions ~F1 and ~F2 are glued together where
~F1ð1=2; . . .Þ ¼ ~F1ðx1Þ ¼ x0 ¼ ~F2ðx1Þ ¼ ~F2ð�1=2; . . .Þ: Note that ~F is supposed
continuous with respect to the topology of In in which the surface oIn is contracted
into one point x1. Moreover, for x1 ¼ �1=2 or x1 ¼ 1=2, that is x ¼ x1, (2.35)
yields ð~F2 ~F1Þðx1Þ ¼ x0; hence F2F1 2 Cnðx0Þ. True, also ð~F2 ~F1Þð0; . . .Þ ¼ x0

which for jxij\1=2; i ¼ 2; . . .; n is not demanded in the class Cnðx0Þ. The construct
(2.35) effectively pinches the section x1 ¼ 0 of In for n [ 1 into one point. Via P,
this section corresponds to a meridian Sn�1 of Sn containing the pole s0. By moving
from F2F1 to the homotopy class ½F2F1�, this additional restriction (the pinch) is
released.

In particular for n ¼ 1, I1 is the line of length 1 with its endpoints identified
(loop); hence it can again be considered as a circle. The mapping P which maps
the pole s0 to the connected endpoints of the second circle is trivial in this case.
The point x ¼ 0 corresponds to the diametrically opposed point of the circle.
In a product (2.35) of two mappings, this point is also mapped to x0 making the
product into a double loop (Fig. 2.9). The final correct product definition in the set
of homotopy classes ½F� of functions with base point Fðs0Þ ¼ x0 is

½F2�½F1� ¼ ½F2F1�: ð2:36Þ

Fig. 2.8 Mapping of Sn onto In and In into X. It is visualized how the point s0 is expanded into
the square x1 which frames the image In of Sn n fs0g; and then x1 is mapped to x0
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Next, having defined the product in (2.35, 2.36), it must be shown to be
associative. Consider first

ð~F3ð~F2 ~F1ÞÞðxÞ ¼
~F1ð4x1 þ 3=2; . . .Þ �1=2� x1��1=4
~F2ð4x1 þ 1=2; . . .Þ �1=4� x1� 0
~F3ð2x1 � 1=2; . . .Þ 0� x1� 1=2

8
<

:

and

ðð~F3 ~F2Þ~F1ÞðxÞ ¼
~F1ð2x1 þ 1=2; . . .Þ �1=2� x1� 0
~F2ð4x1 � 1=2; . . .Þ 0� x1� 1=4
~F3ð4x1 � 3=2; . . .Þ 1=4� x1� 1=2:

8
<

:

These two results differ only in a quite simple homeomorphism (piecewise linear
in x1, identity in the other coordinates) of In onto itself which is homotopic to IdIn :

Hence, they are homotopic to each other (see p. 41). They also both map x1 to x0.
Thus, ½F3�ð½F2�½F1�Þ ¼ ½F3ðF2F1Þ� ¼ ½ðF3F2ÞF1� ¼ ð½F3�½F2�Þ½F1�.

If ~E is the constant mapping ~EðxÞ � x0 then obviously e ¼ ½E� is a unity:
e½F� ¼ ½F� ¼ ½F�e for all ½F�. Moreover, for ~F�ðxÞ ¼ ~Fð�x1; x2; . . .Þ (2.35) yields
½F��½F� ¼ e ¼ ½F�½F��. Indeed, ð~F�~FÞðx1; x2; . . .Þ ¼ ð~F�~FÞð�x1; x2; . . .Þ: The
image ð~F�~FÞðInÞ is a double layer in X. By symmetrically contracting the interval
�1=2� x1� 1=2 into x1 ¼ 0 with x2; . . . left constant ð~F�~FÞðInÞ shrinks contin-
uously on itself into x0 ¼ ~EðInÞ by successive ‘annihilation’ of parts of the double
layer. In total a group pnðX; x0Þ ¼ f½F�jF 2 Cnðx0Þg is obtained with the group
multiplication (2.36).

Now, consider any point x of the pathwise connected space X and a continuous
path H : I ! X with Hð0Þ ¼ x0; Hð1Þ ¼ x. Given F 2 C0ðx0Þ, a function F0 2
C0ðxÞ may be constructed in the following manner:

Fig. 2.9 Two loops F1;F2 2
C1ðx0Þ of the topological
space X (shadowed area) and
their product (2.35) (lower
left panel). Also, another
representative of ½F2F1� and a
loop homotopic to F2F1 in X
is shown (lower right panel).
Since ½F1� ffi E in this case,
½F2F1� ffi ½F1F2� ffi ½F2�
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~F0ðxÞ ¼
~Fð2xÞ jxij � 1=4; i ¼ 1; . . .; n;
HðtÞ ð2� tÞx 2 oIn; 0� t� 1:

�

The base point x0 of F is dragged along the path H to x. Apart from this path, the
sets ~FðInÞ and ~F0ðInÞ are the same which hence is also true for FðInÞ and F0ðInÞ.
Moving F through its homotopy class ½F� with base point x0 obviously also moves
F0 through its homotopy class ½F0� with base point x. Moreover, it is easily seen
(exercise) that ~F2 ~F1 via H induces ~F02 ~F01 for which ½F02F01� ¼ ½F02�½F01�. Hence, the
mapping ~H : ½F� 7! ½F0� is a homomorphism of groups. Two concatenated paths H1

and H2 obviously induce a composition of homomorphisms ~H2 � ~H1. Concatenate
now the path H with its reversed H�ðtÞ ¼ Hð1� tÞ. Then H�H provides the
identity map IdC0ðx0Þ while HH� provides IdC0ðxÞ. ~H and ~H� are thus inverse to

each other, and the homomorphism ~H is in fact an isomorphism. The groups
pnðX; xÞ and pnðX; x0Þ are isomorphic, or, in other words, pnðX; x0Þ � pnðXÞ does
not depend on x0. The group pnðXÞ is called the nth homotopy group of the
pathwise connected topological space X.

Since the case n ¼ 1 is of particular interest in the theory of integration on
manifolds (see Chap. 5), p1ðXÞ is called the fundamental group of X.

Formally, a ‘0-dimensional open cube’ can be considered as a one point set
I0 ¼ fxg, and its one point ‘compactification’ (I0 is of course also compact) as the
discrete two point set I0 ¼ fx; x1g: The homeomorphism P between S0 ¼ f�1; 1g
and I0 maps �1 to x and 1 to x1. Now, F : S0 ! X is a two point mapping, and
F 2 C0ðx0Þ means that Fð�1Þ ¼ x where x is any point of X, and Fð1Þ ¼ x0. The
classes ½F� thus map �1 into the pathwise connected components of X, and x0 does
not play any role. For a pathwise connected topological space X, p0ðXÞ ¼ feg
is trivial.

By inspection of (2.35) it is seen that interchanging the factors in the multi-
plication amounts to interchanging the halves x1� 0 and x1� 0 in In. For n [ 1,
the positioning of these two halves relative to each other does not play a role
because of the pinch of the section x1 ¼ 0 involved in (2.35). Therefore, the
interchanging of the two halves can be provided by a homeomorphism of In onto
itself which is also homotopic to the identity mapping: note that In is homeo-
morphic to a cylinder with axis perpendicular to the x1-axis. Rotate it by 180� to
transform continuously from the identity to the interchanging of the above two
halves. The groups pnðXÞ; n� 2 of a pathwise connected topological space X are
commutative. For that reason, in the literature the group operation of homotopy
groups is often denoted as addition instead of multiplication.

In the case n ¼ 1 the interchanging may still be provided by a homeomor-
phism, however, the argument of deformation into a cylinder does not work any
more, and the interchanging is not any more homotopic to the identity mapping.
The fundamental group p1ðxÞ need not be commutative. Consider for instance a
two-dimensional space X with two holes and a loop first orbiting clockwise
around the first hole and then counterclockwise around the second. Check that
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this loop is not homotopic to the loop with the sequence of orbiting
interchanged.

If X itself has a group structure, that is, X is a topological group with multi-
plication denoted by a dot (to distinguish it from the multiplication (2.36)), and
x0 ¼ e, then another product of CnðeÞ-functions and the inverse of a CnðeÞ-func-
tion may alternatively be defined by pointwise application of the group operations.
The CnðeÞ-unity is the constant mapping on e. Let F1 ffi F01 and F2 ffi F02 and
consider the homotopies Hi translating Fi into F0i , (Hið0; �Þ ¼ Fi; Hið1; �Þ ¼ F0i).
Then H1 � H2 is a homotopy translating F1 � F2 into F01 � F02, hence
½F1 � F2� ¼ ½F01 � F02�: the group multiplication in X is compatible with the homot-
opy class structure of CnðeÞ and the multiplication ½F1� � ½F2� is properly defined.
Clearly, e ¼ ½E� is also the unity for the dot multiplication. Moreover, with (2.35),
~F1 ~F2 ¼ ð~F1 ~EÞ � ð~E~F2Þ is easily verified (check it). The conclusion is
½F1�½F2� ¼ ½F1� � ½F2�: the dot-multiplication yields again the same homotopy group
pnðX; eÞ of the pathwise connected component of e in X as previously. Since the
multiplication (from left or right) with any element x of the component Xe of e in
X yields a translation of that component which is also a homeomorphism of that
component Xe onto itself, pnðX; eÞ � pnðX; xÞ � pnðXeÞ for any x of the compo-
nent of e in X.

However, if the topological group X is not pathwise connected, in a wider sense
the homotopy group pnðXÞ with the dot-multiplication can still be constructed. In
this case, p0ðXÞ is non-trivial, and the elements of p0ðXÞ are in a one–one cor-
respondence with the pathwise connected components of X. Let x 62 Xe be a group
element not in the pathwise connected component of e, and let x0 2 Xe, that is,
there is a continuous path connecting x0 with e. Since in a topological group the
group operations are continuous, it follows that there is a continuous path from
x � x0 to x � e ¼ x; x � x0 2 Xx, and likewise x0 � x 2 Xx. It is easily seen that all
pathwise connected components of a group X are homeomorphic to each other
(exercise). It follows further that there is a continuous path connecting x � x0 � x�1

with x � e � x�1 ¼ e. Hence, x � x0 � x�1 2 Xe for every x 2 X and every x0 2 Xe : Xe

is an invariant subgroup of X. It is easily seen that X=Xe � p0ðXÞ. On the other
hand, x � x1 � x�1 7! x01; x1 2 X; x 2 X is an automorphism of X for any fixed x
which, as was seen, transforms pathwise connected components of X into
themselves.

Consider CnðxÞ-functions F from the Sn-sphere into X with any base point x, not
necessarily in Xe. The homotopy classes ½F� in CnðxÞ form a larger group pnðXÞ
which now is only defined with the group multiplication ½F1� � ½F2�. The above
considered automorphism of X yields in a canonical way an automorphism of
pnðXÞ. Denote the elements of p0ðXÞ by ½H�; then the anticipated automorphism is
given by

½F�0 ¼ ½H� � ½F� � ½H��1; ½F� 2 pnðXÞ; ½H� 2 p0ðXÞ: ð2:37Þ
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If ½F� � CnðeÞ then ½F�0 � CnðeÞ, hence, pnðXeÞ is an invariant subgroup of pnðXÞ,
and p0ðXÞ � pnðXÞ=pnðXeÞ. Because of the above discussed structure of the
pathwise connected classes of X, obviously also pnðXeÞ ¼ pnðXÞ=p0ðXÞ and hence

pnðXÞ ¼ p0ðXÞ 
 pnðXeÞ; n [ 0 ð2:38Þ

for the homotopy groups of a topological group X. They can be quite different
from pnðXeÞ (and need not be commutative for any n� 0 since p0ðXÞ need not be
commutative any more).

A topological space X is called n-connected (sometimes called n-simple),
if every continuous image in X of the n-dimensional sphere Sn is contractible.
A topological group X is n-connected, if pnðXÞ � p0ðXÞ. An n-connected space
need not be connected. A 0-connected space is pathwise connected, a 1-connected
space is called simply connected.2 Although n-connectedness is very similarly
defined for different n, these properties are largely unrelated (except for the role of
p0). Some authors apply n-connectedness only to pathwise connected spaces X.
However, for many applications this is an unnecessary restriction.

Some examples are given without proof. Some of them are intuitively clear.
(1) A convex open subspace of a topological vector space is n-connected for any
n� 0. (2) The sphere Sn or the complement to the origin in Rnþ1 is k-connected for
0� k� n� 1; for n [ 1 it is simply connected. (3) pnðSnÞ ¼ Z (as an additively
written Abelian group). For an integer m 2 Z ¼ pnðSnÞ; jmj is the cardinality
of F�1ðxÞ for any x 2 Sn. It is called the degree of the mapping F.
(4) pnðSmÞ; n [ m is a largely unsolved problem although many special cases have
meanwhile been compiled; p3ðS2Þ ¼ Z is a theorem by Hopf, and p2ðS1Þ ¼ 0 is
easily understood. (5) For the torus T2 (see Fig. 1.3), p1ðT2Þ ¼ Z
 Z: One
integer of ðm1;m2Þ 2 Z
 Z counts the oriented windings around the circumfer-
ence of the tire, and the other those around its cross section.

These concepts are further exploited in Chaps. 5 and 8. Although the physical
relevance of homotopy was anticipated already by Poincaré, it turned out to be one
of the most difficult and unsolved tasks of topology to calculate the homotopy
groups of certain manifolds and to exploit them for classification. It was already
known to Poincaré that every compact simply connected two-dimensional
manifold without boundary is homeomorphic to the sphere S2. His conjecture that
the same is true in three dimensions and every compact simply connected three-
dimensional manifold without boundary is homeomorphic to the 3-sphere S3

withstood hard attempts by able mathematicians for hundred years to prove it and
was eventually proved only quite recently by G. Perelman.

2 There is a more general definition of simple connectedness and fundamental group in terms of
covering space. For pathwise connected locally pathwise connected spaces X it is equivalent to
the definition given here [6].
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2.6 Topological Charges in Physics

In quantum physics, thermodynamic phases are characterized by order parameters:
the particle densities of various particles, atom displacements of crystalline solids,
the magnetization density vector, the anomalous Green function of the super-
conducting or superfluid state and so on. In an inhomogeneous, in particular
defective state those order parameters are functions of space (and maybe time).
The various defects can often be classified by discrete topological charges, and
then those classes turn out to be stable: because of the discrete nature of the
charges there is no continuous transformation of one class into another.
The topological charges are often generating elements of homotopy groups.

Consider as a simple example a superconducting state in three dimensions
penetrated by a vortex line. The space X of the superconducting state is R3 with the
vortex line cut out. It is homotopy equivalent to a circle S1 around the vortex line.
The order parameter D ¼ jDjei2p/ of a conventional superconducting state (spin
singlet s wave) is a complex number having a phase / the gradient of which is
proportional to the supercurrent while the absolute value jDj is the gap which is fixed
for a given material and for given temperature and pressure. A constant phase factor
is irrelevant, the state is degenerate with respect to an arbitrary complex phase factor.
The loop S1 in the complex plane of all phase factors is the order parameter space C
of degenerate states in that case. With a defect present in X, the order parameter in
general will be position dependent with values out of C. This position dependence
defines a mapping F : X ! C. Since D is a well defined function on X, the gradient
o/=ox of the phase must integrate along any closed loop to an integer,H

ds � ðo/=oxÞ ¼ integer, and this integer must be the same for all homotopy
equivalent loops. On a loop not encircling the vortex line this integer must be zero,
since the loop may be continuously contracted within X to a point, and a non-zero
integer cannot continuously be changed to zero. On a loop once encircling the vortex
line the integral of the gradient of the phase / may be any integer N characterizing
the vortex line. For a loop m times winding around the vortex line it then is Nm. N is
the number of magnetic flux quanta in the vortex line. It generates a group of
elements Nm with m 2 Z: This group is obviously isomorphic with the group Z;

which in this case is the fundamental group p1ðC ¼ S1Þ of homotopy classes of
mappings from S1 which is homotopy equivalent to X into C ¼ S1.

On a discrete lattice, the sum of unit lattice periods along a loop is similar to a
phase and must be an integer number of lattice vectors along the loop. For a loop
enclosing a defect free region of the crystal this sum is zero. For a loop around a
displacement line this is the Burgers vector of the displacement. Here the space
X of the crystalline phase is again the same as above and is again homotopy
equivalent to the circle S1, this time around the displacement line. Any loop yields
m times the Burgers vector.

Such situations will in more generality and more detail be considered in Chap. 8.
Here, some principal remarks are in due place. The Hamiltonian of a macroscopic
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system has in general a number of symmetries, it is invariant with respect to
transformations of a symmetry group G, translational, rotational invariance, gauge
symmetries and others. Some of the symmetries may be approximate, but obeyed to
a sufficient level of accuracy. For instance in a rare gas liquid the coupling of the
nuclear spin with the rotational motion is so weak that invariance with respect to
spatial rotation and spin rotation may be considered separately. At sufficiently high
temperature, the state of the system is completely disordered, so that its thermo-
dynamic (macroscopic) variables are invariant under the symmetry transformations
of G. The thermodynamic state c fulfills the relation c ¼ gc for all g 2 G and is thus
uniquely determined. In the course of lowering the temperature, phase transitions
may take place with developing non-zero order parameters so that now c is not any
more invariant with respect to all symmetry transformations g of G, but may still be
invariant with respect to a subgroup H of G. Then, c generates an orbit fgcjg 2 Gg
which is isomorphic to the quotient space C ¼ G=H of left cosets of H in G. It is
this quotient space which figures as the order parameter space C in the above
considerations.

In the above example of a line defect in R3 it was essential only that the defect
free space X was homotopically equivalent to a circle S1. The number of topo-
logical ‘charges’ of the defect is then equal to the number of generators of the
homotopy group p1ðCÞ (one in the above cases). The same would be true for a
point defect in R2 or a line defect propagating in time (defect world sheet) in four-
dimensional space–time. For a point defect in R3, X is homotopy equivalent to a
sphere S2 enclosing the defect, and hence the number of its topological charges is
equal to the number of generators of p2ðCÞ.

In general, the number of topological charges of a defect of codimension d in a
state with order parameter space C present in an n-dimensional position space
(i.e., the dimension of the defect is n - d) is equal to the number of generators of
the homotopy group pd�1ðCÞ:

In order to develop a non-zero topological quantum number (non-trivial
topological charge), a defect of codimension d in a state with order parameter
space C must have a non-trivial homotopy group pd�1ðCÞ. Consider as an
example an isotropic magnetically polarizable material. The Hamiltonian does
not prefer any direction in space, besides translational invariance which need not
be considered here (it assures that a magnetization vector smoothly depending on
position has low energy) the continuous symmetry group is SOð3Þ (cf. Chap. 6).
At sufficiently high temperature, above the magnetic order temperature, the
magnetic polarization is disordered on an atomic scale and the state c is
invariant: c ¼ gc for all g 2 G ¼ SOð3Þ. Below the ordering temperature the
magnetization density vector is non-zero. Its absolute value is determined by the
material, temperature and pressure. Its direction may be arbitrary, and all
directions are energetically degenerate. Smooth long wavelength changes of
direction have low excitation energy. If the non-zero magnetization points in a
certain direction, the state is still invariant with respect to rotations of the group
H ¼ SOð2Þ around the axis of polarization. The order parameter space is
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SOð3Þ=SOð2Þ and consists of all vectors of a given length pointing in all possible
spatial directions. Topologically this group is homeomorphic to the sphere S2.
Hence, C ¼ S2. For a point defect in 3-space (codimension 3), p2ðS2Þ ¼ Z (see
end of last section). Hence, the point defect may have a non-trivial topological
charge in this case.

A point defect is a small spot where the magnetization density vanishes.
Outside of a sphere of a small radius it is again fully developed, but may for
instance everywhere point in radial direction (Fig. 2.10a). The change of direction
outside of this sphere is everywhere smooth, but there is no smooth transition into
a homogeneously magnetized state with constant magnetization direction.
This ‘hedgehog’ point defect has non-trivial topological charge and is stable: the
defect cannot be resolved by smooth magnetization changes.

Consider now an anisotropic magnetic material of the type easy plane. Again
the magnitude of the magnetization density vector is fixed at given temperature
and pressure, but can only point in the directions within a plane, C ¼ SOð2Þ� S1.
Now p2ðS1Þ ¼ 0: the sphere S2 is simply connected and cannot be continuously
wound around a circle. Hence no non-trivial topological charge of a point defect is
possible in this case. From Fig. 2.10b it is easily inferred that no hedgehog-like
structure is possible without singularity lines outside a sphere around the defect of
the magnetization vector field of constant magnitude. From the singularity lines
the magnetization density vector would point into all planar radial directions.
If this is a linear defect, it is governed by p1ðS1Þ ¼ Z, and a topological charge can
exist on the linear defect in an easy plane magnet.

A point defect of codimension 4 in four-dimensional space–time would be
capable of carrying a topological charge, if p3ðCÞ is non-trivial. Just to mention it,
the Belavin–Polyakov instanton of a Yang–Mills field is such a case even without
a defect (Chap. 8).

Structures with topological charges may intrinsically exist without a material
defect. Consider the plane R2 with a non-zero magnetization density which
approaches a homogeneous magnetization density vector of a fixed direction at
infinite distance from the origin of R2: This state may be considered as a state in

the compactified plane R2� S2 which is homeomorphic to a sphere via the
stereographic projection. Since the order parameter space C of an SOð3Þ spin is

(a) (b)

Fig. 2.10 Point defect of
(a) an isotropic magnetic
material, so-called hedgehog,
and (b) of an easy plane
anisotropic magnetic material
with no non-trivial
topological charge possible
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also S2, one has p2ðCÞ ¼ p2ðS2Þ ¼ Z; and hence there exists a topological charge.
The corresponding magnetic state is called a ‘baby skyrmion’ and is the only
skyrmion structure for which a picture can be drawn. It is shown in Fig. 2.11.

This state has a three-dimensional analogue since R3� S3 and p3ðS2Þ ¼ Z is the
famous Hopf theorem. The corresponding Hopf mapping of S3 onto S2 is however
not easy to draw. In general, skyrmions are special solitons in n dimensions
corresponding to non-trivial homotopy groups pnðCÞ. Originally, T. H. R. Skyrme
proposed a subgroup of the product of the left and right chiral copies of SUðNÞ as
the order parameter space C to obtain local field structures as candidates of
baryons in Yang–Mills field theories. For a more detailed discussion of the Hopf
mapping and citations for further reading see [7].

More examples of topological charges can be found in [8].
The section is closed by a consideration of the topological stability of the Fermi

surface of a Fermi liquid. (A more detailed discussion of Fermi surfaces is given
in Sect. 5.9.) Again, first the two-dimensional case is considered which can easily
be visualized. For a non-interacting isotropic Fermi gas, the single-particle Green
function at imaginary frequency x ¼ ip0 is

Gðip0; pÞ ¼
1

ip0 � vFðp� pFÞ
; ð2:39Þ

where p is the momentum vector, p ¼ jpj, pF is the Fermi momentum, and vF is the
Fermi velocity. The energy dispersion close to the Fermi surface p ¼ pF is
e ¼ vFðp� pFÞ. States with p\pF have negative energies (measured from the
chemical potential e ¼ eF) and are occupied, while states with p [ pF have posi-
tive energies and are unoccupied. The Fermi surface p ¼ pF in two-dimensional
momentum space is a circle (Fig. 2.12) separating the occupied momentum region
from the unoccupied one.

The Green function Gðip0; pÞ has a singularity line p0 ¼ 0; p ¼ pF forming the
Fermi surface and is otherwise a complex analytic function for imaginary
frequencies. If one maps the contour C in the ðp0; pÞ-space onto the complex plane
of G�1 with Re G�1 ¼ �vFðp� pFÞ; Im G�1 ¼ p0, it maps the circle C onto the

Fig. 2.11 Baby skyrmion on
a planar magnet with
magnetization density vector
up in the center and down at
infinity by a spiral rotation
around the radial direction
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circle ~C. Writing G�1 ¼ jGj�1e�i/ it is seen that the phase of G increases by 2p
when running around C, while for any loop not encircling the Fermi surface it
returns to the start value. (This is like the phase of the superconducting order
parameter when running around a vertex line.) The Fermi surface is like a defect
line in momentum space.

If now the interaction between the particles is continuously switched on, the
Green function changes smoothly. It cannot smoothly get rid of its denominator
because of this topological charge on the Fermi surface, hence it must have the
form

Gðip0; pÞ ¼
Z

ip0 � v0Fðp� pFÞ
; ð2:40Þ

where Z is the spectral amplitude renormalization factor, and the Fermi velocity
may change. (That pF does not change is an independent result, the Luttinger
theorem.) Hence the Fermi surface is topologically stabilized and can only dis-
appear when Z becomes zero (which is only possible in a non-analytic way).

The only change for the case of three spatial dimensions is that now p is a
3-vector in the three-dimensional hyperplane of the four-dimensional frequency-
momentum space of points ðp0; pÞ for p0 ¼ 0, which contains the only singularities
of (2.40) on the Fermi surface being now a 2-sphere. For every planar section in
the three-dimensional momentum space through its origin, Fig. 2.12 visualizes
further on the situation, and the Fermi surface is topologically stable.

A more general situation is present for electrons as spin 1/2 fermions in a
crystalline solid instead of ‘spinless fermions’ in an isotropic medium which was
considered so far. Here, the Green function is a complex valued matrix quantity
indexed with band and spin indices. The change of its phase, normalized to 2p, as a
complex number when going around a loop (contour integral of the gradient of the
phase as considered in the case of a superconductor with a vertex line) is now to be
replaced by the quantity

N ¼ tr
I

dsp

2i
� Gðip0; pÞ

o

op
G�1ðip0; pÞ

where the trace of the matrix product is to be formed, the contour integral is along
the previous contour C, and o=op is the four-dimensional gradient in the

Fig. 2.12 Left: Fermi surface
in two-dimensional
momentum space and
imaginary frequency axis
with a loop C around the
Fermi surface. Right: the
corresponding loop ~C of the
complex function G�1ðip0; pÞ
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frequency-momentum space. The dot means the scalar product of the line element
vector with this gradient. This is the general structure of a homotopy invariant.3

Now, several sheets of Fermi surface may coexist of arbitrary shape. The shape
may change when the interaction is tuned up and individual sheets may appear or
disappear on the cost of other sheets. (If a Fermi radius shrinks to zero, in most
cases the Fermi velocity also approaches zero, and the singularity disappears.
Exceptions are so-called Dirac quasi-particles where the Fermi velocity remains
non-zero in the Fermi points.) Nevertheless, between such changes the Fermi
surface is topologically stable, and the only additional reason for its change is the
vanishing of the spectral amplitude renormalization function Zðp0; pÞ on some part
of the Fermi surface.

A much deeper analysis can be found in [9].
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Chapter 3
Manifolds

Vector space is already a large category of topological spaces. However, due to its
linear structure, it is already too narrow for many applications in physics. Indeed,
the topological and analytic structure is uniquely defined from a neighborhood of
the origin alone. Manifold, on the one hand, is a generalization of metrizable
vector space, maintaining only the local structure of the latter. On the other hand,
every manifold can be considered as a (in general non-linear) subset of some
vector space.

Both aspects are used to approach the theory of manifolds. In Algebraic
Geometry one usually starts from the definition of manifolds in some vector space
by means of a set of algebraic equations for a coordinate system in the vector space
[1]. In physics, one rather knows local properties of manifolds and then asks for
possibilities of continuation into the large. This is the standard approach in Dif-
ferential Geometry [2], a rather complete classic; and [3], a well readable for
physicists. This approach is taken in this text also.

With respect to the analytic structure, manifolds may be continuous, Cn, smooth
or analytic. In this text the most important smooth case is treated, and for the sake
of an effective terminology, manifold means smooth manifold throughout this
text.

Since dimension of a vector space is a locally defined property, a manifold has a
dimension. Although infinite dimensional manifolds have relevance in physics too,
this text confines itself to n-dimensional manifolds, n \?, for basis manifolds of
bundle spaces (which latter often form special infinite dimensional manifolds).

3.1 Charts and Atlases

An atlas of a manifold is a collection of charts projecting pieces of the manifold on
open sets of an n-dimensional Euclidean space Rn: In all what follows Rn is taken
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to be a topological vector space homeomorphic to the Euclidean space while the
Euclidean metric given by the inner product structure is not used (cf. p. 13).
The most familiar case is an atlas of the surface of the earth as a two-dimensional
manifold. It is important to identify points of different charts of an atlas which
are projections of the same point from overlapping domains of the manifold.
Throughout this volume, points of an n-dimensional Euclidean space will be
denoted by bold-faced letters as it was already done. Sets of the Rn will from now
on also be denoted by (capital) bold-faced letters.

A pseudo-group S of class Cm, m ¼ 0; 1; . . .;1; x consists of

1. a family S of homeomorphisms wba : Ua ! Ub of class Cm(Ua, Ub), where Ua,
Ub are open sets of Rn;

2. for every wba 2 S; its restriction to any open subset of Ua also belongs to the
family S,

3. Conversely, if w : U ! U0 is a homeomorphism, U ¼ [a2AUa, and wjUa
2 S

for all a 2 A, then w 2 S;
4. IdU belongs to the family S for every open set U 2 Rn;

5. for every wba 2 S; ðwbaÞ
�1 ¼ ðw�1Þab 2 S;

6. if wba 2 S and wcb 2 S; then wcb � wba ¼ wca : Ua ! Uc 2 S:

A complete atlas A of charts ðUa;uaÞ; a 2 A; of a topological space M which
is compatible with the pseudo-group S of class Cm consists of:

1. an open cover M ¼ [a2AUa of M,
2. every ua is a homeomorphism from the open set Ua 2 M to an open set

Ua 2 Rn;

3. if Ua \ Ub 6¼ [; then S 3 wba ¼ ub � u�1
a : uaðUa \ UbÞ ! ubðUa \ UbÞ;

4. the complete atlas is not a proper subset of any other atlas compatible with S.

A complete atlas compatible with a pseudo-group S of class Cm, m [ 0, is also
called a differentiable structure on M. Figure 3.1 shows the interrelations of open
sets Ua of M and open sets Ua of Rn as well as the interrelation between
homeomorphisms ua and wba: The wba map images of the same point of M in
different charts onto each other. A collection of charts not obeying the condition 4

Fig. 3.1 Charts and
homeomorphisms of an atlas
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for complete atlases is simply called an atlas. It is not difficult to show that, given
a pseudo-group S of class Cm, every atlas is subset of a complete atlas and that a
complete atlas of a topological space M is uniquely generated by an atlas.

In all what follows either the family of all Cm-homeomorphisms of open sets of
the Rn will be taken as the pseudo-group S, or (for m [ 0 and to enforce ori-
entation of manifolds, see end of next section) those homeomorphisms with positive
Jacobian will be taken as the pseudo-group S0. It is easily seen that these families
fulfil all conditions 1–6 of a pseudo-group of class Cm.

With this convention, in both cases a complete atlas of a topological space M is
uniquely defined by the space M itself and an atlas of M. The latter generates a
complete atlas compatible with S or with S0. An admissible chart of an atlas is a
chart belonging to the corresponding complete atlas.

So far, only topological concepts (open sets and homeomorphisms) were
used, and with respect to the topological space M these will be the only concepts
to apply. The aim of mapping parts of M onto parts of Rn is to use the much
richer structure of Rn; its metric and linear structure as a vector space, in order
to bring real numbers and analysis into the game. This is achieved by specifying
a coordinate origin 0 in Rn and fixing a base fe1; . . .; eng of vector space.
Every point x 2 Ua is then given by coordinates, x ¼

Pn
i¼1 xiei for which x ¼

ðx1; . . .; xnÞ will be written. The homeomorphism ua means now an ordered set
of n real-valued functions on Ua 2 M : uaðxÞ ¼ ðu1

aðxÞ; . . .;un
aðxÞÞ; x 2 Ua: One

may also write ui
a ¼ pi � ua; where piðxÞ ¼ xi is the projection on ei in Rn: This

all is not a big step ahead since the points x 2 M are still not given by numbers.
However, instead of moving through M one now can move through its charts;
only once in a while one has to transit from one chart to another one by means
of the transition functions wbaðxÞ ¼ ðw1

baðxÞ; . . .;wn
baðxÞÞ; x ¼ ðx1; . . .; xnÞ 2

Ua � Rn: This is now already an ordered set of n real-valued functions of n real
variables. It was only these transition functions of which class Cm could be
required.

The set Ua 2 M is now called a coordinate neighborhood and the set of
functions ui

aðxÞ is called a local coordinate system on Ua 2 M. Since in the
Euclidean space Rn the origin x = 0 may be chosen arbitrarily by using
affine-linearity, for every a separately it can always be chosen to be in Ua.
If Ua ¼ fxj jxij\ag; then this is called a coordinate cube centered at
ðuaÞ

�1ð0Þ ¼ x0 2 M:
Finally, the commutative diagram (see Compendium C.1)

Ua Ub M

a |Ua Ub

Ua a(Ua Ub ) b (Ua Ub ) Ub

b |Ua Ub

ba | a (Ua Ub )

ð3:1Þ

is mentioned.
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3.2 Smooth Manifolds

An n-dimensional Cm-manifold is a paracompact topological space with a com-
plete atlas compatible with the structure S of all Cm-homeomorphisms of open sets
of Rn or with the structure S0 of homeomorphisms with positive Jacobian.

The local topology of an n-dimensional manifold is very simple: it is the same as
that of Rn: In particular a manifold is Hausdorff (by our definition of a paracompact
space). Like Rn it is also normal (disjoint closed sets are contained in disjoint open
sets), first countable and locally compact, locally simply connected and locally
pathwise simply connected. Since manifolds can be obtained by gluing together an
arbitrary number of pieces in a most general way, they can be quite monstrous and
their global topology may get out of control. A standard tool of studying global
properties is by getting them as locally finite sums of local properties, in particular
via a partition of unity. For that reason, it is demanded that M be paracompact.
Alternatively, many authors demand that M be second countable; it can be shown
that in combination with the local topology paracompactness then follows.

The geometry, on the contrary, is in general already locally involved. It will be
studied from Chap. 7 on.

In all what follows, if not otherwise explicitly mentioned, manifold means a
finite-dimensional C?-manifold, that is, a smooth manifold.

Examples

Rn: It is itself an n-dimensional manifold with the standard smooth pseudo-
group S (see Sect. 3.1) and the complete atlas containing (generated by) the chart
ðRn; IdRnÞ:

n-dimensional topological vector space X: (not necessarily provided with a
geometry by an inner product). If {ei} is an arbitrarily chosen base of X and ff jg is
the corresponding dual base, hf j; eii ¼ dj

i; then the projections pjðxÞ ¼ hf j; xi ¼ xj

define a local coordinate system which is also a global one. A change of the basis
{ei} is a smooth homeomorphism of Rn to Rn; and those changes in open sets of
X provide a simple atlas compatible either with the standard pseudo-group S0, if
transformations with positive Jacobian are taken only, or with the standard pseudo-
group S in the general case. (Further on the adjective standard is omitted.) There
exist many more charts in a complete atlas, e.g. with curved coordinate systems.

Sphere Sn � Rnþ1: fxj
Pnþ1

i¼1 ðxiÞ2 ¼ 1g: Let the ‘south pole’ be s ¼ ð1; 0; . . .; 0Þ
and the ‘north pole’ n ¼ ð�1; 0; . . .; 0Þ: A complete atlas is generated by the two
charts ðSn n fsg; psÞ and ðSn n fng; pnÞ, where ps and pn are the stereographic pro-
jections from the south pole and from the north pole, respectively (Fig. 3.2).

n-dimensional projective space Pn: Define an equivalence relation P in Rnþ1 n
f0g as xP y; iff x ¼ ay;R 3 a 6¼ 0: Denote the equivalence classes (straight lines
through the origin) by x ¼ ½x�: Then, Pn ¼ ððRnþ1 n f0gÞ=PÞ ¼ fx ¼ ½x�j x 2
ðRnþ1 n f0gÞg: ðx1; . . .; xnþ1Þ are the homogeneous coordinates of x; they
are determined up to the factor a = 0. The n ? 1 open sets Ui ¼ fx j xi 6¼ 0g;
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i ¼ 1; . . .; nþ 1 form an open cover of Pn. Unique coordinates in Ui may be
chosen nj

i ¼ xj=xi; j 6¼ i; uiðxÞ ¼
P

jð6¼iÞ n
j
iej: It follows wkiðniÞ ¼

P
jð6¼kÞ n

j
kej; n

j
k ¼

nj
iðxi=xkÞ ¼ nj

i=n
k
i for j = i, k and ni

k ¼ 1=nk
i : These wki are smooth functions on

Ui \ Uk � Rn: The global topology of Pn is more involved than that of Sn.
The projective space P1 is depicted in Fig. 3.3. There are two homogeneous

coordinates x1, x2 forming a plane with removed origin. The open sets U1, U2

consist of the plane with removed x2- and x1-axis, respectively. There is only one
coordinate n1 ¼ n2

1 and n2 ¼ n1
2, respectively, related by w21ðn1Þ ¼ 1=n1 ¼ n2:

Hence, the Jacobian of w12 reduces to the derivative dn2=dn1 ¼ �1=ðn1Þ2\0:
Note that a 180� rotation of the (x1, x2)-plane is the identity mapping IdP1 of the
projective space P1.

Möbius band (Fig. 1.2b, p. 3 in Chap. 1): Take the rectangle M ¼ fðx; yÞ 2
R2j � p� x� p;�1\y\1g and glue the two edges x = ±p in such a way
together that the points (-p, y) and (p, -y) are identified with each other. Replace
x by the polar angle / along the circumference of the glued together tape. Every
open set Un ¼ fð/; yÞjn\/\nþ 2p;� 1\y\1g with ordinary planar coordi-
nates of the original rectangle is a coordinate neighborhood on the Möbius band

Fig. 3.2 The manifold S1 with two stereographic projections

Fig. 3.3 The plane of
homogeneous coordinates
x1, x2 of the projective space
P1. On the left panel, the set
U1, x1

= 0, is shadowed, on
the right panel U2
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which is a two-dimensional manifold. However, the mappings between the overlap
sets of neighborhoods Un for different n have unavoidably partially positive and
partially negative Jacobians. A complete atlas with the structure S0 is not possible
in this case.

A manifold for which a complete atlas compatible with S0 exists is called an
orientable manifold. For n [ 1, all presented examples except the Möbius band
and Pn for n even are orientable manifolds. The Möbius band as well as Pn, n even,
are not orientable. An orientable manifold may have two orientations. If ðUa;uaÞ
are the charts of an oriented atlas of an orientable manifold, then another atlas
with charts ðU~a;u~aÞ with wa~aðx1; x2; . . .; xnÞ ¼ ð�x1; x2; . . .; xnÞ as transition
functions between these charts has the opposite orientation. (Show that the
inversion x 7! � x of the Rnþ1; n even, inverts orientation; since x and -x
represent the same point of Pn in homogeneous coordinates, Pn, n even, cannot be
orientable.)

Any open subset M1�M of a manifold M is again a manifold with the charts
ðUa \M1;uajUa\M1

Þ; if ðUa;uaÞ are the charts of M. M1 is called an open sub-
manifold of M. (A detailed discussion follows in Sect. 3.5.)

The product manifold of two manifolds ðM1;A1Þ and ðM2;A2Þ with complete
atlases A1 and A2 is the product M1 9 M2 of the topological spaces M1 and M2

with the product topology. Its complete atlas is created by the charts ðU1
a �

U2
b;u

1
a � u2

bÞ with evident notation. The dimension of the product manifold is
dim M1 þ dim M2: For instance the two-dimensional torus is the product manifold
T2 ¼ S1 � S1:

A smooth mapping F from a manifold ðM;AMÞ into a manifold ðN;ANÞ is a
mapping F : M ! N so that for every pair of charts ðU;uUÞ 2 AM; ðV;uVÞ 2 AN

the mapping uV � F � ðuUÞ
�1 : uUðUÞ ! uVðVÞ is C?. (uV � F � ðuUÞ

�1 is a
mapping from an open set of RnM into an open set of RnN ; hence its class of
differentiability is defined.) If M is the open interval �a; b½ 2 R (with its standard
manifold structure as an open submanifold of R ¼ R1; see the first example
above), then F : M ! N is called a smooth parametrized curve or simply a
parametrized curve which is always assumed smooth if not otherwise explicitly
mentioned.

If F is bijective and F : M!N and F�1 : N!M are both smooth mappings,
then F is called a diffeomorphism of manifolds. The complete atlases AM and AN

are called isomorphic, AM � AN , if a diffeomorphism F : M!N exists. (Just to
mention, diffeomorphism is more than homeomorphism; there are homeomorphic
C?-manifolds which are not diffeomorphic.)

3.3 Tangent Spaces

Before the general case is treated, a simple example is discussed which every
physicist should be familiar with.
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A simple (one-dimensional) manifold is a smooth curve x(t) in Rn given by
n equations xi ¼ xiðtÞ; i ¼ 1; . . .; n; a\t\b with respect to some base feig of the
vector space Rn: It is the special case of a parametrized curve defined at the end of
the last section, where the manifold N of that definition is Rn: Consider the point x0

at t = t0 on this curve. As is well known, the tangent vector in Rn on the curve
x(t) at the point x0 is the vector X̂x0 ¼ ðdxi=dtjt0Þ: Any vector of the Rn is tangent
vector at any point of the Rn on some smooth curve passing though that point, in
other words, Rn is the tangent space to itself at any of its points. In this connection,
any given vector X̂ 2 Rn is tangent vector at x0 2 Rn to a whole bunch of curves,
for instance thought of as all paths of motion through x0 with velocity vector X̂ at
that point. Above, a coordinate system in Rn was used from the outset by choosing
a particular base {ei}. In vector analysis, analytic relations are defined and con-
sidered independent of the choice of a coordinate system, for instance by defining
X̂x0 ¼ dx=dtjt0 in an invariant way. Consider next any real-valued smooth function
F : Rn ! R: (Class C1 would suffice here, but for later considerations C? is
assumed from the outset.) By composing it with x(t) it defines a function F̂ðtÞ ¼
F � xðtÞ with derivative

dF̂

dt

�
�
�
�
t0

¼
X

i

dxi

dt

�
�
�
�
t0

o

oxi

�
�
�
�
x0

F ¼ dx

dt

�
�
�
�
t0

	 o

ox

�
�
�
�
x0

F ¼ Xx0 F: ð3:2Þ

It is just the directional derivative (Sect. 2.3) of F with respect to the vector X̂x0

for which the operator of differentiation Xx0 acting on F has been introduced in
(3.2). As is seen from this chain of equations, Xx0 may be thought of as a vector in
a vector space with base fo=oxig; the components of which with respect to that
base are dxi=dt. Indeed, any vector operator Xx0 ¼

P
i n

io=oxi defines a directional
derivative at x0 corresponding for instance to the smooth curve (straight line)
nðtÞ ¼ x0 þ t

P
i n

iei:
A change of the base ei in the Rn on which F was defined causes a change of the

base o=oxi so that (3.2) remains invariant. Here, dF̂=dt is the scalar product of the
tangent vector dx=dt with the gradient vector oF=ox: In this chapter, differentials
are more important than derivatives. By writing dFx0 ¼

P
iðoF=oxiÞdxi; and

understanding {dxi} as a base in the dual space to the tangent space, later intro-
duced as the cotangent space, with the relation hdxi; o=oxki ¼ di

k one has dF̂x0 ¼
Xx0 Fdt ¼ Xx0 F ¼ hdFx0 ;Xx0i where dt has been put equal to unity by definition.
These are many details for the simple relation (3.2), but hopefully they help in
understanding the precise meaning of the following. Note in particular that all
considerations above need the functions involved only locally in any (arbitrarily
small) neighborhood of the point x0.

If M is an arbitrary smooth manifold of n dimensions, the coordinates of its
points x2Ua � M are locally defined by using a chart ðUa;uaÞ out of the complete
atlas A of M : xi

a ¼ ui
aðxÞ ¼ pi � uaðxÞ: The only demand on ua is that it is a
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homeomorphism from Ua to Ua � Rn and that the transition functions wba

between charts are smooth. Linear coordinates in Ua for instance do not have any
preference any more since in general M is not a vector space and hence linear
relations between its points are not defined any more. Within the complete atlas
(differentiable structure) of M there is a huge arbitrariness not only of choosing the
coordinates of a point x 2 M but also of choosing the neighborhood Ua of x in
which those coordinates are defined. Since an arbitrarily small neighborhood
suffices for considerations of the tangent space, the local behavior of a function is
introduced by the concept of a germ of function. Consider a point x0 2 M and the
family Ca

x0
of smooth real-valued functions Fa defined in some neighborhood of

uaðx0Þ 2 Ua ¼ uaðUaÞ for some chart for M containing the point x0 (coordinate
neighborhood of x0). Since the composition of smooth functions Fa � wab ¼ Fb is
smooth, Fa defines a smooth function Fb in some neighborhood of ubðx0Þ 2 Ub for
every local coordinate system ðUb;ubÞ centered at x0. In other words, Cax0

may be
considered as the family of all smooth real-valued functions on any local coor-
dinate system of M centered at x0, and apart from their smoothness which is only
defined in connection with a local coordinate system, each of the functions Fa of
Cax0

together with a local coordinate system defines a function F ¼ Fa � ua on a
neighborhood of x0 2 M. This allows for the introduction of the family Cx0 of all
real-valued functions F defined in some neighborhood of x0 2 M and smoothly
depending on the coordinates of any local coordinate system of M centered at x0.

Two functions F;G 2 Cx0 are considered equivalent, F’G, if there exists a
neighborhood U of x0 so that F|U = G|U. (Note that two non-identical smooth real
functions still may coincide on some domain; smoothness is less than analyticity,
where functions are uniquely continued from any open domain.) Given any local
coordinate system of M centered at x0, if F’G, then obviously oFa=oxi

ajx¼0 ¼
oGa=oxi

ajx¼0 where without loss of generality the coordinates x of x0 are put to
zero. This is always done in what follows. An equivalence class [F] of a function
F 2 Cx0 is called a germ at x0 on M. The set of germs at x0 on M is denoted by

F x0 ¼ Cx0= ’¼ f½F�jF 2 Cx0g ð3:3Þ

(quotient set with respect to the equivalence relation ^ in Cx0 ). Why is the concept
of germs needed instead of simply considering the family of functions defined on
some (fixed) neighborhood of x0? The point is that in order to decide which
functions are admissible in Cx0 ; local coordinate systems have to be used and their
domain of definition cannot be fixed, it depends on the used charts and can in
particular become arbitrarily small. Note also that the same function F 2 Cx0

corresponds to infinitely many different functions Fa 2 Cax0
;Fa ¼ Faðx1

a; . . .; xn
aÞ for

different local coordinate systems.
Next, the family of (smooth) parametrized curves x(t), t 2 ]a, b[ in M passing

through x0 is considered (Fig. 3.4). Again without loss of generality it is assumed
that t = 0 is an inner point of the interval ]a, b[ and x(0) = x0. This time
smoothness is to be considered with respect to local coordinate systems of the
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target space M of the mapping t 7! xðtÞ: xaðtÞ ¼ ua � xðtÞ must be smooth for some
ua for which x0 2 Ua; it then is smooth for any such chart, xbðtÞ ¼ ub � xðtÞ ¼
wba � ua � xðtÞ: (More precisely, an appropriate restriction of the curve x(t) which
fits into Ua and Ub is meant with x(t) in the above composite mapping.) Consider
now any function F 2 Cx0 ; any parametrized curve x(t) passing through x0 and any
local coordinate system of M centered at x0. The latter defines a function
Faðx1

a; . . .; xn
aÞ ¼ ðF � u�1

a ÞðxaÞ and a curve xaðtÞ ¼ ðx1
aðtÞ; . . .; xn

aðtÞÞ correspond-
ing to (some restriction of) x(t). Furthermore, F̂aðtÞ ¼ Fa � xaðtÞ ¼ ðF � u�1

a �
ua � xÞðtÞ ¼ FðxðtÞÞ is the function Fa on the curve xa(t) which by construction is
the same function of t as the original function F on the curve x(t), and (3.2) with
F replaced by Fa is valid for the directional derivative of Fa with respect to the
tangent vector X̂a

0 ¼ dxa=dtj0 on the curve xa(t):

dFðxðtÞÞ
dt

�
�
�
�
0

¼ dFaðxaðtÞÞ
dt

�
�
�
�
0

¼
X

i

dxi
a

dt

�
�
�
�
0

o

oxi
a

�
�
�
�
0

Fa ¼
dxa

dt

�
�
�
�
0

	 o

oxa

�
�
�
�
0

Fa ¼ Xa
0Fa: ð3:4Þ

(It will be seen that the vector operators X0
a on a manifold form a vector space but

do not in general any more form a Euclidean space, therefore it is not any more
denoted in bold face.) Since the value of the third expression in this chain of
equations depends on the partial derivatives of Fa at x = 0 only, it is the same
within a class ½F� 2 F x0 independent of its representative F. Moreover, a change of
the local coordinate system changes Xa

0 and Fa in such a way that (3.4) remains
unchanged.

Consider such a change of the local coordinate system in more detail. The
corresponding coordinates are

xi
a ¼ pi � uaðxÞ;

xi
b ¼ pi � ubðxÞ ¼ pi � wba �

X

j

pj � pj � uaðxÞ ¼ wi
baðx1

a; . . .; xn
aÞ; ð3:5Þ

where pj maps the number xj to a vector in Rn with the jth component as the only
non-zero component equal to xj; pjðxjÞ ¼ ð0; . . .; 0; xj; 0; . . .; 0Þ;

P
j pj � pj ¼ IdRn :

Fig. 3.4 A path x(t) through
x0 in M and its image
x(t) through 0 in a coordinate
chart
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Hence,
oxi

b

ox j
a
¼ ðwbaÞ

i
j; ðwabÞ

j
i ¼ ðw�1

ba Þ
j
i: ð3:6Þ

The (ij)-matrix ððwbaÞ
i
jÞ is the Jacobian matrix of the coordinate transformation

wba. The last relation of (3.6) considers the property 5 of the pseudo-group S of
transformations. Now,

dxi
b

dt
¼
X

j

oxi
b

ox j
a

dx j
a

dt
¼
X

j

ðwbaÞ
i
j

dx j
a

dt
;

o

oxi
b

¼
X

j

o x j
a

oxi
b

o

ox j
a
¼
X

j

ðwabÞ
j
i

o

ox j
a
¼
X

j

ðw�1
ba Þ

j
i

o

ox j
a
;

ð3:7Þ

which again demonstrates the invariance of (3.4). A vector transforming according
to the first transformation rule of (3.7) is called a contravariant vector and one
transforming according to the second transformation rule of (3.7) is called a
covariant vector.

An abstract vector Xx0 may be introduced, translated by a local coordinate
system into the differential vector operator Xa

0 ¼
P

i n
i
aðo=oxi

aÞ where the ni
a

form the components of a contravariant vector and the operators o=oxi
a form a base

in the space of vectors Xx0 : The base vectors transform like the components of a
covariant vector. According to (3.4), Xx0 provides a mapping

Xx0 : Cx0 ! R : F 7!Xx0 F ¼
X

i

ni
aðoFa=oxi

aÞ: ð3:8Þ

This mapping has the obvious properties

1. Xx0ðkF þ lGÞ ¼ kXx0 F þ lXx0 G; that is, it is linear,
2. Xx0ðFGÞ ¼ ðXx0 FÞGðx0Þ þ Fðx0ÞðXx0 GÞ; Leibniz rule.

Any vector Xx0 is called a tangent vector on M at the point x0. The vector space
of all tangent vectors Xx0 is the tangent space Tx0ðMÞ on M at the point x0. It is
also denoted by Tx0 if there is no doubt about the manifold M.

Given any local coordinate system centered at point x0, consider the relation
P

i n
i
aðo=oxi

aÞ ¼ 0; that is,
P

i n
i
aðoFa=oxi

aÞ ¼ 0 for all F 2 Cx0 : Since Fi 2 Cx0 for
Fi

aðxÞ ¼ xi
a, it follows that ni

a ¼ 0 for all i ¼ 1; . . .; n: This proves that the base
vectors o=oxi

a are linearly independent in Tx0 ; and the dimension of Tx0 is equal to
n, that is, equal to the dimension of M. Note that although this result seems to be
obvious it is due to the differentiability of the pseudo-group of transition functions
only; differentiability directly on M cannot be defined. It is natural to provide Tx0

with a topology to be homeomorphic with Rn:
Coming back to the set (3.3) of germs, the definition of linear operations and of

point wise multiplication of functions in F x0 ;

k½F� ¼ ½kF�; ½F� þ ½G� ¼ ½F þ G�; ½F�½G� ¼ ½FG� ð3:9Þ
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makes F x0 into a commutative algebra over R (which means that it is also a real
vector space, and as such is in fact a functional space and hence infinite dimen-
sional: for instance all distinct polynomials in the coordinates of a fixed local
coordinate system are linearly independent). On the right hand sides of (3.9) inside
the square brackets the functions F ? G and FG are understood on the intersection
of their domains of definition, this is why Cx0 is not an algebra: there is no common
domain of definition of all functions F 2 Cx0 : The mapping (3.8) induces a cor-
responding mapping Xx0 : F x0 ! R : ½F� 7!Xx0 ½F� ¼ Xx0 F which inherits the same
mapping properties

1: Xx0ðk½F� þ l½G�Þ ¼ kXx0 ½F� þ lXx0 ½G�;
2: Xx0ð½F�½G�Þ ¼ ðXx0 ½F�ÞGðx0Þ þ Fðx0ÞðXx0 ½G�Þ;

ð3:10Þ

expressed by saying that Xx0 is a linear derivation of the algebra F x0 : The subset
F 0

x0
of all germs [F0] vanishing at x0 forms an ideal of the multiplicative ring of

vectors of the algebra F x0 : F 0
x0
F x0 ¼ F x0F 0

x0
¼ F 0

x0
: (The point wise product of

any function F with a function F0 yields another function G0 2 F 0
x0
:) Given a fixed

coordinate neighborhood a of x0;F 0
x0

contains in turn the germ of the function
which is identical to zero, germs corresponding to all linear functions Fa with
respect to the coordinates of a local coordinate system, germs of all quadratic
(more precisely bilinear) such functions, and so on. Since the product of two linear
functions is a bilinear function, ðF 0

x0
Þ2 contains in turn the germ of the function

which is identical to zero, the germs due to quadratic functions Fa, the germs due
to cubic functions, and so on. This holds true for any coordinate neighborhood a,
hence, F x0 
 F 0

x0

 ðF 0

x0
Þ2 
 	 	 	 :

From the properties (3.10) it is readily seen that every tangent vector Xx0 maps
every germ from ðF 0

x0
Þ2 to zero:

Xx0ð½F0�½G0�Þ ¼ ðXx0 ½F0�ÞG0ðx0Þ þ F0ðx0ÞðXx0 ½G0�Þ
¼ ðXx0 ½F0�Þ 	 0þ 0 	 ðXx0 ½G0�Þ ¼ 0:

Hence, the action of Xx0 on F x0 is completely determined by its action on the
quotient vector space F 0

x0
=ðF 0

x0
Þ2 represented by linear functions with respect to

the coordinates of any local coordinate system. The members F0 2 Cx0 of an
equivalence class which constitutes an element of F 0

x0
=ðF 0

x0
Þ2 differ between each

other by functions having zero partial derivatives at x0 in all local coordinate
systems. These equivalence classes are denoted by dFx0 ; F 0

x0
=ðF 0

x0
Þ2 ¼ fdFx0g;

and are called differentials of the functions F ¼ F0 þ const., since they are pre-
cisely what for functions in Rn are ordinary differentials: the linear part of a
function (tangent hyperplane to the graph of the function). Recall again that
linearity is not directly defined for functions on M since M is in general not a
vector space. Moreover, the linear part of a function F 2 Cx0 with respect to local
coordinates is in general different for different local coordinate systems. However,
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given a local coordinate system, by construction all functions within an equiva-
lence class dFx0 differ from each other by additive terms which are higher than first
order in the coordinates. Hence, from (3.8) it is also clear that for every given
tangent vector Xx0 the value Xx0 F is uniquely determined by its action on the
differential dFx0 : Moreover, it is easily seen now, that conversely any linear
derivation of F x0 defines a tangent vector on M at x0, there is a one–one corre-
spondence between linear derivations of F x0 defined by (3.10) and tangent

vectors on M at x0 defined by (3.8), Tx0ðMÞ ¼ ðF 0
x0
=ðF 0

x0
Þ2Þ� is the dual space to

F 0
x0
=ðF 0

x0
Þ2:

Also from (3.8), ðkXx0 þ lYx0ÞF ¼ kXx0 F þ lYx0 F; and therefore dFx0 is a
linear functional on the tangent vector space: dFx0 : Tx0ðMÞ ! R :
Xx0 7! hdFx0 ;Xx0i 2 R or dFx0 2 T�x0

ðMÞ where the cotangent space T�x0
ðMÞ on

M in the point x0 is the dual to the tangent space Tx0ðMÞ: The differentials dFx0

form the cotangent vectors on M at the point x0. As the dual of the real
n-dimensional tangent vector space, the cotangent vector space T�x0

ðMÞ has the
same dimension n = dim M. Both vector spaces are isomorphic to Rn as a vector
space, not in general as a Euclidean space; tangent and cotangent vectors are
carefully to be distinguished. While tangent and cotangent vectors have a well
defined meaning independent of a given local coordinate system, angles between
two tangent vectors or between two cotangent vectors are not defined independent
from local coordinates.

Given a local coordinate system centered at x0 and the corresponding functions
Fi

aðxÞ ¼ xi
a, the respective differentials denoted by dxi

a form the base of the
cotangent vector space dual to the base fo=oxi

ag:

hdxi
a; o=ox j

ai ¼ di
j; dxi

b ¼
X

j

dx j
aðwbaÞ

i
j;

o

oxi
b

¼
X

j

ðw�1
ba Þ

j
i

o

ox j
a
: ð3:11Þ

With respect to that local coordinate system,

dFx0 ¼
X

i

oFa

oxi
a

�
�
�
�
0

dxi
a; hdFx0 ;Xx0i ¼ Xx0 F; Xx0 ¼

X

i

ni
a

o

oxi
a
: ð3:12Þ

Hence, the components xa
i of a general cotangent vector with respect to the base

fdxi
ag,

xx0 ¼
X

i

xa
i dxi

a; ð3:13Þ

transform between local coordinate systems as a covariant vector and the base
vectors themselves transform like a contravariant vector. Equations (3.11, 3.12)
together with the transformation rules for the components,

xb
i ¼

X

j

xa
j ðw�1

ba Þ
j
i ; ni

b ¼
X

j

ðwbaÞ
i
jn

j
a; ð3:14Þ

completely determine the calculus with tangent and cotangent vectors.
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3.4 Vector Fields

In the previous section, local entities on (smooth) manifolds M were considered
which depend on the local structure of the manifold only. To this end, germs [F] of
functions F were introduced and their directional derivatives as the application of
tangent vectors as well as their differentials as cotangent vectors containing the
information on all directional derivatives of F at x0 (see 3.12).

Now, global entities are introduced which have a meaning on the whole
manifold M. The relation between the local entities and those global ones can be
highly non-trivial and depends on the properties of the manifold itself. The study
of those interrelations is one of the central tasks of the theory of manifolds.

A smooth real function on the manifold M is a smooth mapping F : M ! R,
considered as a smooth mapping between the manifolds M and R (see the end of
Sect. 3.2). Since the real variable t 2 R forms a local (and global, atlas of a single
chart) coordinate on the real line R as a manifold, F is smooth, iff FaðuaðxÞÞ ¼
FaðxaÞ is a smooth function of the local coordinates xa ¼ ðx1

a; . . .; xn
aÞ for every

chart ðUa;uaÞ of the complete atlas of M. The class of smooth real functions on
M is denoted by CðMÞ. Since, contrary to Cx; all functions of CðMÞ have the same
domain of definition M, linear combinations with real coefficients and point wise
products of smooth real functions are again in CðMÞ: In other words, CðMÞ is a real
algebra (of infinite dimension; see below and the remark on F x0 , p. 65). Clearly, if
F 2 CðMÞ; then F 2 Cx at every point x 2 M. The first question that arises is
whether CðMÞ is non-empty at all. The answer is positive:

Every ½F� 2 F x at any x 2 M can be continued into a smooth real function F 2
CðMÞ; that is, there is a locally defined function Fx 2 Cx so that [F] = [Fx] and Fx

can be smoothly continued onto M.

Proof Consider a coordinate neighborhood Ua of x on which some Fa is defined
and smooth for which [F] = [Fa]. Consider the open set Ua 2 Rn. Since open
cubes form a base of topology for the Rn, there is an open cube Va the closure of
which is contained in Ua and another open cube Wa the closure of which is in Va

(Rn is a regular topological space). Let Wa ¼ u�1
a (Wa). Then, [F] = [Fx] for

Fx ¼ FajWa
: Let Ga be a smooth function, defined on Ua, which is equal to unity on

Wa and zero outside Va (see p. 34). Denote the corresponding function on Ua � M
by G. Let F be equal to FaG (point wise multiplication) on Ua and equal to zero on
MnUa: Obviously F 2 CðMÞ and F smoothly continues [F]: F is smooth on Ua and
every point x 62Ua has a coordinate neighborhood disjoint with Va (since the
closure of Va is in Ua) on which F is zero. h

This situation is in stark contrast to the situation for analytic functions for which
the possibility of a continuation onto the whole manifold strongly limits the class
of admissible analytic manifolds.

A tangent vector field on a manifold M is a specification of a tangent vector
Xx 2 TxðMÞ at every point x of M. For every smooth real function F on M, the

3.4 Vector Fields 67



tangent vector field defines another real function XF on M : ðXFÞðxÞ ¼ XxF:
(X defines a real function even for all functions F for which Fa is C1 for every local
coordinate system centered at any point x in M; in this treatise only smooth
functions are, however, considered.) A tangent vector field is called a smooth
tangent vector field, if XF is smooth for every smooth function F, that is, X :
CðMÞ ! CðMÞ: Since smoothness is a local property, for tangent vector fields it
can again be expressed with the help of local coordinate systems: X is smooth, iff
for every local coordinate system the components ni

aðxaÞ ¼ ni
aðuaðxÞÞ of X ¼

P
i naðxaÞðo=oxi

aÞ are smooth functions of the local coordinates xa ¼ ðx1
a; . . .; xn

aÞ:
It is clear that this is necessary and sufficient for XF ¼

P
i n

i
aðxaÞðoF=oxi

aÞ to be
smooth for every smooth F. Moreover,

1: XðkF þ lGÞ ¼ kXF þ lXG; k; l 2 R

2: XðFGÞ ¼ ðXFÞGþ FðXGÞ;
ð3:15Þ

that is, X is a linear derivation of the algebra CðMÞ:
Consider the set XðMÞ of all smooth tangent vector fields on M. The question

whether it is non-empty is answered in the same way as for CðMÞ; this time for
each component of X with respect to a local coordinate system. XðMÞ is obviously
a real vector space with respect to point wise addition of tangent vector fields and
multiplication of tangent vector fields by real numbers. Point wise multiplication
of tangent vector fields in the sense of multiplication of differential operators,
however, does in general not lead again to a tangent vector field. (Check it.)
Nevertheless, if X and Y are two smooth tangent vector fields, then the
commutator

X; Y½ � ¼ XY � YX 2 XðMÞ for X; Y 2 XðMÞ ð3:16Þ

is always again a tangent vector field: XðMÞ is a Lie algebra. The commutator or
Lie product of vector fields has the following properties characterizing a Lie
algebra:

1: X; Y½ � ¼ � Y ;X½ �;
2: X þ Y; Z½ � ¼ X; Z½ � þ Y ; Z½ �;
3: X; Y; Z½ �½ � þ Y ; Z;X½ �½ � þ Z; X; Y½ �½ � ¼ 0:

ð3:17Þ

The last of these relations is called Jacobi’s identity. All relations (3.16, 3.17) are
easily proved by means of a local coordinate system. For instance, if on some chart
(for the sake of simplicity of writing the chart index a is sometimes omitted, if no
misunderstanding can arise) X ¼

P
i n

iðo=oxiÞ; Y ¼
P

i g
iðo=oxiÞ; then

X; Y½ �F ¼ XðYFÞ � YðXFÞ ¼
X

ij

njogi

oxj
� gjoni

oxj

� �
o

oxi
F: ð3:18Þ

(The terms with second derivatives of F cancel in the commutator, they prevent a
simple product from being a vector field. Exercise: Show that if X and Y obey
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(3.15), then [X, Y] also obeys these relations while XY does in general not.) Hence,
in this coordinate neighborhood,

X; Y½ � ¼
X

i

fi o

oxi
; fi ¼

X

j

njogi

oxj
� gjoni

oxj

� �

: ð3:19Þ

The components fi of [X, Y] are smooth, if the ni and gi are smooth. (For XðMÞ to
be an algebra, smoothness is essential; class Cm would not suffice, since then fi

would be only of class Cm-1.)
Let X be any linear derivation of CðMÞ; that is, let X be a mapping X : CðMÞ !

CðMÞ obeying (3.15). Consider the constant function F� 1 on M. Then, the second
relation (3.15) reads XG = (XF)G ? XG, and it must hold for any G 2 CðMÞ;
hence XF = 0, and, by linearity (first relation 3.15), XF = 0 for every F � const.
on M. Now, let U�M be any open set, let supp F ¼ U and let supp G ¼ MnU:
Then, FG� 0 on M and 0 ¼ XðFGÞ ¼ ðXFÞGþ FðXGÞ: Since F = 0 on M n U
and G 6¼ 0 there, it follows that supp XF � U ¼ supp F for any F. From that it
follows easily that the value of XF at x2M is completely determined by the germ
½F� 2 F x of F at x on M. Together with the equivalence of linear derivations Xx of
F x and tangent vectors Xx 2 TxðMÞ this shows that any linear derivation X of the
algebra CðMÞ defines a tangent vector field X 2 XðMÞ:
XðMÞ may also be considered as a module over the algebra (ring) CðMÞ: For

X; Y 2 XðMÞ and F;G 2 CðMÞ; the linear combination FX ? GY is again a
smooth vector field 2 XðMÞ which is locally defined as ðFX þ GYÞðxÞ ¼
FðxÞXx þ GðxÞYx, that is, the components are fi

aðxaÞ ¼ FaðxaÞni
aðxaÞ þ GaðxaÞ

gi
aðxaÞ: Now, one finds

FX;GY½ � ¼ FðXGÞY � GðYFÞX þ ðFGÞ X; Y½ �; F;G 2 CðMÞ; X; Y 2 XðMÞ
ð3:20Þ

by straightforward calculation of the action of [FX, GY] on another smooth
function H in a local coordinate system, using the second rule (3.15) (Leibniz
rule).

Later on, a geometric interpretation will be given of the Lie product of tangent
vector fields (Sect. 3.6).

Analogous to a tangent vector field, a cotangent vector field x on a manifold
M is a specification of a cotangent vector xx 2 T�x ðMÞ at every point x2M, that is,
at every point x a real linear function on the tangent space Tx(M) is specified:
ðxðXÞÞx ¼ hxx;Xxi: A cotangent vector field is smooth, if it defines a smooth real
function on M for every smooth tangent vector field X. By repeating previous
reasoning, x is smooth, if for every local coordinate system centered at every point
x2M the components xa

i of

x ¼
X

i

xa
i ðxaÞdxi

a; xðXÞx ¼ hx;Xix ¼
X

i

xa
i ðxaÞni

aðxaÞ ð3:21Þ

3.4 Vector Fields 69



are smooth functions of the local coordinates xa ¼ ðx1
a; . . .; xn

aÞ: A smooth cotan-
gent vector field is called a differential 1-form or in short a 1-form. It may also be
considered as a CðMÞ-linear mapping from the CðMÞ-module XðMÞ into CðMÞ:

xðFX þ GYÞ ¼ FxðXÞ þ GxðYÞ 2 CðMÞ; F;G 2 CðMÞ; X; Y 2 XðMÞ
ð3:22Þ

which is directly seen from the second relation (3.21).
Based on this consideration, an exterior product (wedge product) x ^ r of

two 1-forms x and r may be introduced with the properties (so far r = s = 1)

1: x ^ r ¼ ð�1Þrsr ^ x;

2: x ^ ðFrþ GsÞ ¼ Fx ^ rþ Gx ^ s;

3: ðx ^ rÞ ^ s ¼ x ^ ðr ^ sÞ;
ð3:23Þ

which (except for 3) defines an alternating (skew-symmetric) CðMÞ-bilinear
mapping from the direct product XðMÞ � XðMÞ into CðMÞ: ðx ^ rÞðX; YÞ ¼
ð1=2ÞðxðXÞ 	 rðYÞ � xðYÞ 	 rðXÞÞ: It is called an exterior differential 2-form.
More generally, an exterior differential r-form, or in short an r-form, is an
alternating CðMÞ-r-linear mapping from the direct product XðMÞ � 	 	 	 � XðMÞ
(r factors) into CðMÞ : ðx1 ^ 	 	 	 ^ xrÞðX1; . . .;XrÞ ¼ ð1=r!Þ detðxiðXkÞÞ in the
special case where the xi are 1-forms. In a coordinate neighborhood (index a
dropped) the general expression of an r-form is

x ¼
X

i1\			\ir

xi1...irðxÞdxi1 ^ 	 	 	 ^ dxir ; x ¼ 0 if r [ n; ð3:24Þ

where the xi1...ir 2 CðMÞ: Since dxi is a 1-form, the above determinant rule can
now be applied to each item of (3.24).

With the exterior product defined by its properties (3.23), an (r ? s)-form is
obtained by wedge-multiplying an r-form with an s-form. From (3.24) it can be
inferred that if x is an r-form and F 2 CðMÞ; then Fx is again an r-form. On this
basis, F 2 CðMÞ is called a 0-form, and the real vector space D0ðMÞ ¼ CðMÞ is
introduced together with the real vector spaces DrðMÞ of r-forms. (For
r [ n;DrðMÞ consists of the null-vector only, see Sect. 4.2.) Within this concept,
Fx may be written as F ^ x. The direct sum DðMÞ ¼

P1
r¼0DrðMÞ ¼

Pn
r¼0DrðMÞ forms an exterior algebra which is a graded algebra, graded by the

degree r of r-forms.
Recall that 0-forms are functions and 1-forms are (total) differentials of

functions on M. A general exterior differentiation d is introduced which maps an
r-form into an (r ? 1)-form with the defining rules (using the known rule of
forming dFx at point x2M)
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1: dF for F 2 D0ðMÞ is the total differential on M;

2: d is real-linear and dðDrðMÞÞ � Drþ1ðMÞ;
3: dðx ^ rÞ ¼ ðdxÞ ^ rþ ð�1Þrx ^ ðdrÞ; x 2 DrðMÞ; r 2 DsðMÞ;
4: d2 ¼ 0:

ð3:25Þ

The last rule means that a double application of d to any exterior differential form
yields the null-vector, that is, the form that is identical zero on all M.

Within a coordinate neighborhood, if x is given by (3.24), then

dx ¼
X

i1\			\ir

dxi1...ir ^ dxi1 ^ 	 	 	 ^ dxir : ð3:26Þ

As is discussed later on (Sect. 5.1), the exterior differentiation generalizes the
grad, rot (curl) and div operations of vector analysis. Note also that further on
every DrðMÞ may be understood as a CðMÞ-r-linear mapping from XðMÞ � 	 	 	 �
XðMÞ (r factors) into CðMÞ: This is related to the scalar (contracting) product of
tensors and will be generalized in the next chapter.

3.5 Mappings of Manifolds, Submanifolds

At the end of Sect. 3.2 the concept of smooth mappings of manifolds into each
other was introduced. A smooth mapping F : M!N of a manifold M into a
manifold N induces at every point x 2 M a linear mapping Fx

� : TxðMÞ ! TFðxÞðNÞ
of the tangent space on M at point x into the tangent space on N at point F(x). Fx

� is
called the push forward or the tangent map of the mapping F at point x.

For any tangent vector Xx 2 TxðMÞ its image Fx
�ðXxÞ 2 TFðxÞðNÞ is formed in the

following natural way: Let G be a smooth real function on N in a neighborhood of
F(x). Then, G �F is a smooth real function on M in a neighborhood of x. For every
G, by definition,

ðFx
�ðXxÞÞG ¼ XxðG � FÞ: ð3:27Þ

This definition ensures the following: Given any parametrized curve through x in
M, it is mapped by F into a parametrized curve through F(x) in N (which could
degenerate in the point F(x) only, if F is constant along the curve in M). The
directional derivative at point F(x) along the curve in N of any real function G on
N is obtained as the directional derivative at point x along the corresponding curve
in M of the real function G �F. (If F is constant along the considered curve in M,
this directional derivative is zero no matter what G in (3.27) is. Hence, (3.27)
means in that case that the projection of the tangent vector Fx

�ðXxÞ onto the
direction of the considered curve in N is zero.) Because of this interpretation the
mapping Fx

� is also called the differential at x of the mapping F of the manifold
M into the manifold N.
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Now, the natural question arises, given tangent vector fields X on the manifold
M, under which conditions do the tangent mappings Fx

� for all x2M result in a
mapping F� of tangent vector fields X on M to tangent vector fields Y on the
manifold N. This is obviously not the case, if F is not onto, because then the
mapping would not define a tangent vector field Y on all N. Even if F is surjective
but not injective, if for instance F(x) = F(x0) = y for x 6¼ x0, then any tangent
vector field X with different vectors at x and x0 would not give a uniquely defined
result at y2N and hence not define a tangent vector field Y on N. Obviously,
F must be onto and one–one, that is, it must be a bijection of manifolds in order
that F� may be defined as a push forward of F to a mapping of tangent vector fields
to tangent vector fields. But even then, the image by F� of a smooth tangent
vector field need not be smooth again. Consider for example M ¼ N ¼ R and
ðF : R! R : x 7! y ¼ x3Þ 2 C1ðR;RÞ: Take the smooth (constant) tangent vector
field Xx ¼ o=ox and a smooth real function G : y 7!GðyÞ: One has YyG ¼
ðFx
�ðXxÞÞG ¼ XxðG � FÞ ¼ ðo=oxÞGðx3Þ ¼ 3x2oG=oy ¼ 3y2=3oG=oy: Now, Yy ¼

Fx
�ðXxÞ ¼ 3y2=3o=oy is not smooth at y = 0.

By duality, another linear mapping F�FðxÞ : T�FðxÞðNÞ! T�x ðMÞ of the cotangent

space on N at point F(x) to the cotangent space on M at point x is obtained, defined
so that for every Xx 2TxðMÞ the relation

ðF�FðxÞðxFðxÞÞÞðXxÞ ¼ hF�FðxÞðxFðxÞÞ;Xxi ¼ hxFðxÞ;F
x
�ðXxÞi ¼ xFðxÞðFx

�ðXxÞÞ;
ð3:28Þ

holds where xFðxÞ 2 T�FðxÞðNÞ is a cotangent vector (1-form) on N at point F(x) and

F�FðxÞðxFðxÞÞ 2 T�x ðMÞ is the corresponding cotangent vector on M at point x.

FF(x)
* is called the pull back of F at x. As is easily seen (next page), this time for

every smooth mapping F : M!N there is a mapping F* which maps 1-forms on N
to 1-forms on M so that smooth 1-forms are mapped to smooth 1-forms. In Chap. 7
all (co)tangent spaces of a smooth manifold M will be glued together to form
another smooth manifold which is called the (co)tangent bundle (T*(M)) T(M) on
M. The mapping F* of the cotangent bundle T*(N) to the cotangent bundle
T*(M) is called the pull back by the smooth mapping F of M to N.

Now, let F : M!N be a diffeomorphism of manifolds, that is, F�1 : N!M is
also smooth. Then, one can pull back 1-forms from M to N by (F-1)* which by
duality between tangent vector fields and 1-forms means also to push forward
smooth tangent vector fields on M to smooth tangent vector fields on N. Then, for a
diffeomorphism F : M!N of manifolds F* is a mapping from the tangent bundle
T(M) to the tangent bundle T(N) which is called the push forward by the diffe-
omorphism F of M onto N.

Consider the mappings Fx0
� and F�Fðx0Þ in terms of local coordinates. Choose

local coordinate systems of charts ðUa;uaÞ 2 AM and ðUb;ubÞ 2 AN with local

coordinates xi
a ¼ pi

a � uaðxÞ; x 2 M and yj
b ¼ pj

b � ubðyÞ; y 2 N; where Ua is a
coordinate neighborhood of x0 2M and Ub is a coordinate neighborhood of
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F(x0) 2 N, both neighborhoods chosen such that FðUaÞ � Ub: The mapping
F induces a real vector function Fba ¼ ub � FjUa

� u�1
a of nM real variables by the

following commutative diagram:

M Ua
F |Ua Ub N

a b

Ua
Fba

Ub

It consists of nN real functions F j
ba ¼ p j

b � Fba;

y j
b ¼ F j

baðx
1
a; . . .; xnM

a Þ; j ¼ 1; . . .; nN ; ð3:29Þ

of nM real variables. Any real function G on N generates a real function Gb ¼
GjUb

� u�1
b ¼ Gbðy1; . . .; ynN Þ of nN real variables y b

j and a real function ðG � FÞa ¼
GjUb

� u�1
b � ub � FjUa

� u�1
a ¼ Gbðy1

bðxaÞ; . . .; ynN
b ðxaÞÞ of nM real variables xi

a.

Now take the base vectors Xai ¼ o=oxi
a of the vector space Tx0ðMÞ and find

ðFx0
� ðXaiÞÞG ¼

o

oxi
a
ðG � FÞa ¼

o

oxi
a
GbðF1

baðxaÞ; . . .;FnN
ba ðxaÞÞ ¼

X

j

oGb

oy j
b

oF j
ba

oxi
a
;

which means

Fx0
�

o

oxi
a

� �

¼
XnN

j¼1

oF j
ba

oxi
a

o

oy j
b

; ð3:30Þ

that is, the images of the base vectors o=oxi
a have components oF j

ba=oxi
a with

respect to the base vectors o=oy j
b of the tangent space TFðx0Þ; or in other words, the

matrix of the linear mapping Fx0
� (as matrix transformation of the vector compo-

nents) is the transposed of ðoF j
ba=oxi

aÞ; the Jacobian matrix of the transformation
ybðxaÞ: For a diffeomorphism F, the derivatives on the right hand side can
smoothly be expressed by derivatives with respect to y to yield a smooth vector
field on N.

Taking a base covector x j
Fðx0Þ ¼ dy j

b 2 T�Fðx0ÞðNÞ, and a base vector o=oxi
a 2

Tx0ðMÞ; (3.28, 3.30) and (3.11) yield

ðF�Fðx0Þðx
j
Fðx0ÞÞÞ

o

oxi
a

� �

¼ x j
Fðx0Þ Fx0

�
o

oxi
a

� �� �

¼ x j
Fðx0Þ

X

k

oFk
ba

oxi
a

o

oyk
b

 !

¼ dy j
b;
X

k

oFk
ba

oxi
a

o

oyk
b

* +

¼
oF j

ba

oxi
a
;
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that is,

F�Fðx0Þðdy j
bÞ ¼

XnM

i¼1

oF j
ba

oxi
a

dxi
a: ð3:31Þ

The mapping F�Fðx0Þ is dual to the mapping Fx0
� between tangent spaces: it is in the

opposite direction and between the duals of the tangent spaces and its matrix is the
transposed to the matrix of the mapping Fx0

� : For every smooth x ¼
P

xjðyÞdyj

(3.31) together with the smooth function y = F(x) yields a smooth 1-form on M.
If F : M!N and G : N!P, then for the composite mapping G �F : M!P

the mappings of tangent and cotangent spaces are ðG �FÞx� ¼ GFðxÞ
� �Fx

� and
ðG �FÞ�GðFðxÞÞ ¼ F�FðxÞ �G�GðFðxÞÞ, that is, F� composes covariantly with F, and F�

contravariantly. (This is expressed by push forward and pull back.)
The mapping (3.28) may be generalized to r-forms at point F(x):

ðF�FðxÞðxr
FðxÞÞÞðX1x; . . .;XrxÞ ¼ xr

FðxÞðFx
�ðX1xÞ; . . .;Fx

�ðXrxÞÞ: ð3:32Þ

The expressions in local coordinates are directly obtained from (3.24) and (3.31).
Hence, F� is also a linear mapping from DðNÞ into DðMÞ (pull back).

A simple result is the following [4]:

Let M be a connected manifold and let F : M ! N be such that Fx
� ¼ 0 at every

point x2M: Then F is a constant map.

Proof Since M is connected, it is the only non-empty subset of M which is open
and closed. Fix some point y 2 FðMÞ � N: F-1(y) is closed as the preimage of a
closed set in a continuous mapping. Choose coordinate neighborhoods of some
x 2 F�1ðyÞ and of y. Since oFj

ba=oxi
a ¼ 0 at every x2Ua; F is constant in Ua which

is open. Since x2F�1ðyÞ was chosen arbitrarily, F-1(y) is open and closed, hence
it is M. h

In a certain sense the opposite case is governed by the following inverse
function theorem:

Let F : M!N and let x0 2M be some point in the manifold M.

1. If Fx0
� is injective (one–one), then there exists a local coordinate system

x1
a; . . .; xnM

a in a coordinate neighborhood Ua of x0 2M and a local coordinate
system y1

b; . . .; ynN
b in a coordinate neighborhood of Fðx0Þ 2N so that

yi
bðFðxÞÞ ¼ xi

aðxÞ for all x2Ua and i ¼ 1; . . .; nM and FjUa
: Ua ! FðUaÞ is a

diffeomorphism of manifolds (one–one and onto).
2. If Fx0

� is surjective (onto), then there exists a local coordinate system x1
a; . . .; xnM

a
in a coordinate neighborhood Ua of x0 2M and a local coordinate system
y1
b; . . .; ynN

b in a coordinate neighborhood of Fðx0Þ 2N so that yi
bðFðxÞÞ ¼ xi

aðxÞ
for all x2Ua and i ¼ 1; . . .; nN and FjUa

: Ua ! N is an open mapping. (It
maps open sets to open sets.)

74 3 Manifolds



3. If Fx0
� is a linear isomorphism from Tx0ðMÞ to TFðx0ÞðNÞ; then F defines a

diffeomorphism of some coordinate neighborhood of x0 2M to some coordinate
neighborhood of Fðx0Þ 2N:

The last statement means that FjUa
has a smooth inverse function ðFjUaÞ

�1 :

Ub!Ua: Since for nM ¼ nN ¼ n, local coordinates translate F into a mapping
Fba ¼ ub � FjUa

� u�1
a : Ua ! Ub from an open set of Rn into an open set of Rn,

the push forward Fx0
� to be a linear isomorphism means a non-zero Jacobi deter-

minant of the mapping Fba at uaðx0Þ: Case 3 immediately follows from the well
known inverse function theorem of calculus (see any textbook of Analysis, e.g.
[5]). The cases 1 and 2 then follow easily also from the corresponding variants of
calculus.

If F is a smooth mapping of a manifold M into a manifold N (recall that all
manifolds in this volume are supposed smooth), for which Fx

� is injective at every
point x2M, then F is called an immersion. One also says that M is immersed into
N by F. F(M) is locally diffeomorphic to M (F(Ua) is diffeomorphic to
Ua 2 M for sufficiently small Ua), but F is not necessarily globally injective: there
may by self-intersections of F(M) so that F(M) is not necessarily a manifold. (See
examples below.)

If F : M!N itself is additionally injective, then F is called an embedding and
(M, F) is called an embedded submanifold of N. M is embedded into N by F.

Great care is needed to distinguish the topology of the embedding (M, F) from
F(M) as a subset of N with its relative topology. Except for open submanifolds
defined earlier and closed submanifolds, both considered below in more detail, the
topology of an embedded submanifold is in general different from the relative
topology of F(M) as a subset of the topological space N: it is in general finer. The
point is that embedded submanifolds are understood to inherit their complete
atlases from M: they are generated by charts ðFðUaÞ;ua � F�1jFðUaÞÞ for Ua 2 M

small enough so that Ua and F(Ua) are diffeomorphic. (Some authors, e.g. Warner,
use a slightly more special terminology of embedding.)

Examples

Open submanifolds of N: M�N is open in N and F = IdM. Its manifold
structure (atlas) was considered previously on p. 60. The topology of M as a
topological space is the relative topology as a subspace of N. Note that although
M is open in the topology of N, it is open and closed in the relative topology (as
every topological space as a whole is open and closed by definition of topology.)
Since Fx

� ¼ IdTx for every x2M, the dimension of M is always that of N.

Closed submanifolds of N: Let Gi : N!R; i ¼ 1; . . .; k and M ¼ \iðGiÞ�1ð0Þ,
that is M�N is the set of all points x2N for which GiðxÞ ¼ 0; i ¼ 1; . . .; k:
Suppose dG1

x ; . . .; dGk
x linearly independent in a neighborhood of M. Then M is a

closed subset of N and (M, IdM) is a closed submanifold of N of dimension
dim N - k. Again the topology of M is the relative topology as a subspace of
N. For k = 1, M is called a hypersurface.
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Example 3 Let M ¼ ft j 0� t� 2p � 0g (closed loop of length 2p) N ¼ R2;
and F : M ! N : t 7!FðtÞ ¼ ðcos t; sin 2tÞ (see Fig. 3.5). It is an immersion since
it is self-intersecting at (0, 0) 2 N. Note that (M, F) is not a manifold since it
inherits charts for each of the two branches through (0, 0) implying different
tangent spaces at the same point (0, 0). It is also not a submanifold of R2 in the
relative topology, since a neighborhood of (0, 0) is not homeomorphic to an open
set of R: In (M, F), pieces of the two branches through the origin (0, 0) are open
sets (since charts are open sets) while in the relative topology induced from
N ¼ R2 only pieces of both branches together are open sets (intersections of
F(M) with open sets of the plane). Hence, the topology of F(M) as an immersion is
finer (has more open sets) than the relative topology in N.

Example 4 M and N as in Example 3, and F : t 7!FðtÞ ¼ ðcos t; sin tÞ (see
Fig. 3.6). M is just the unit circle in the plane N. It is an embedded submanifold since
this time F : M!N is an injection. It is also a closed submanifold (one-dimensional
‘hypersurface’) given by Gðx1; x2Þ ¼ ðx1Þ2 þ ðx2Þ2 � 1 ¼ 0: Note that as a topo-
logical space itself and also in the relative topology induced from N, F(M) is closed
and also open. (It is the intersection of F(M) with an open set of N.)

Example 5 M ¼ ft j 0\t\2pg;N ¼ R2; and F : t 7! ðsin t; sin 2tÞ: It looks like
in Fig. 3.5, but this time it is an embedded submanifold since the origin of N is
only the image of t = p. There is no continuous branch from left to right upwards
through the origin of N. Hence, there is only one tangent space on (M, F) at (0, 0)
from right to left upwards. Pieces of this branch containing (0, 0) are open sets of
(M, F) but not of F(M) which is the same as in Example 3. Again the topology of
(M, F) is finer than the relative topology of FðMÞ�N:

The discussion of the various topologies leads to a natural definition: If
(M, F) is an embedded submanifold of N and FðMÞ�N with the relative topology
is homeomorphic to M, then (M, F) is called a regular embedding of M into N.

x
1

x
2Fig. 3.5 The immersed

submanifold of N ¼ R2 of
Example 3
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(M, F) is a regular embedding, iff it is a closed submanifold of an open sub-
manifold of N.

Also:

If (M, F) is an embedded submanifold of N and M is compact, then (M, F) is a
regular embedding.

See e.g. [3] for proofs.
It can be shown that, if only the structure of a smooth manifold is observed, then

any n-dimensional manifold can be embedded as a submanifold into the R2nþ1:

Here, a general comment is in due place: A circle in R3 and a loop with a knot
in it are homeomorphic and homotopy equivalent. However, they cannot contin-
uously be deformed into each other by only homeomorphic maps: In order to open
the knot either the loop must be cut or at a stage of deformation it must be self-
intersecting. The same holds true for two linked circles (into a piece of chain) and
two unlinked circles. Knots and links are properties of embeddings of loops into
higher dimensional spaces, not of loops as such.

3.6 Frobenius’ Theorem

A very important issue is the interrelation of smooth tangent and cotangent vector
fields and smooth mappings of manifolds. Again, only smooth entities are con-
sidered in the sequel and the adjective smooth is dropped throughout. As con-
sidered in the last section, given a tangent vector field X on a manifold M and a
bijective mapping F of M into N, F�ðXÞ that defines a tangent vector YFðxÞ ¼
Fx
�ðXxÞ at every point FðxÞ 2FðMÞ�N, need not be a tangent vector field: Y ¼

F�ðXÞ need not be smooth in a neighborhood of points F(x) for which YF(x) = 0.
For a tangent vector field X on M, a point x2M for which Xx = 0 is called a
singular point of X.

Let X be a tangent vector field on M and let Xx0 6¼ 0, that is, x0 2M is a non-
singular point of X. Then there exists a local coordinate system ðUa;uaÞ centered
at x0 in which XjUa

¼ o=ox1:

x
1

x
2Fig. 3.6 The embedded

submanifold of N ¼ R2 of
Example 4
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(Since in this section the coordinate neighborhood is always denoted Ua, the
index a at local coordinates is dropped as in x1 ¼ x1

a:) The technical proof by
standard analysis of this natural proposition is skipped, see for instance [3].

Let F be a mapping from M into N. The tangent vector fields X on M and Y on
N are called F-related tangent vector fields, if Fx

�ðXxÞ ¼ YFðxÞ for every x2M:

Let F : M!N and let X1, X2 be tangent vector fields on M and Y1, Y2 tangent
vector fields on N. If Xi and Yi, i = 1, 2, are F-related, then [X1, X2] and [Y1, Y2]
are F-related.

Apply straightforwardly (3.18) and (3.27) (exercise).
More interesting is the following problem: Given a set of tangent vector fields

on N, is there a submanifold of N for which these vectors span the tangent space at
every point? Let N be an n-dimensional manifold and m; 1�m� n, an integer. A
selection of an m-dimensional subspace Dx of the tangent space Tx(N) at every
point x 2 N is called a (smooth) distribution D on N, if every point x0 2 N has a
neighborhood U and m tangent vector fields X1; . . .;Xm of which the tangent
vectors X1x; . . .;Xmx span Dx for every x 2 U. The tangent vector fields X1; . . .;Xm

are said to form a local base of the distribution D. A tangent vector field X on N is
said to belong to a distribution D, if Xx 2 Dx at every x 2 N. A distribution D is
called involutive, if whenever the tangent vector fields X and Y belong to D then
also [X, Y] belongs to D. Finally, a connected submanifold (M, F) of N is called an
integral manifold of a distribution D on N, if Fx

�ðTxðMÞÞ ¼ DFðxÞ for every x 2 M,
that is, at every point F(x) the vector space DF(x) is the tangent space on F(M).

The solution to the problem posed above is now given by the generalization to
manifolds of the Frobenius theorem of classical analysis:

Let D be an m-dimensional distribution on the n-dimensional manifold
N, 1 B m B n. There is a uniquely defined maximal connected (even pathwise
connected) integral manifold (Mx, Fx) through every point x 2 N, iff D is invol-
utive: Every connected integral manifold of D through x is an open submanifold of
(Mx, Fx).

Of course, the case m = 1 is special. In this case, D is just given by a tangent
vector field which is nowhere singular (since D is one-dimensional at every
point x 2 N). Moreover, since trivially [X, X] = 0, a non-singular tangent vector
field yields always an involutive one-dimensional distribution. A one-dimensional
submanifold is a parametrized curve, it is called an integral curve of X, if it
is an integral manifold of D ¼ fkXjk 2 Rg: Consider an integral curve
through x 2 N. There may be chosen an open interval M ¼ ft j a\t\bg � R of
the real line (a may be -? and b may be ?) containing t = 0 and a mapping
F: M ? N so that (M, F) is the integral curve of X in N through x0 = F(0). It was
stated above that for every X there is a coordinate neighborhood ðUa;uaÞ of x0 so
that XjUa

¼ o=ox1. It is easily seen that

FaðMÞ \ Ua ¼ fðx1; 0; . . .; 0Þg \ Ua ð3:33Þ
represents the integral curve of X in that coordinate neighborhood and that it is
unique in Ua. To prove the Frobenius theorem for m = 1, it remains to prove that
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the integral curve (3.33) is contained in a maximal integral curve. Order all
possible domains M � R of integral curves through x partially by inclusion. The
existence of a maximal element follows from Zorn’s lemma.

Proof of the Frobenius theorem by induction Consider a local base X1; . . .;Xm

of D. The base vectors as tangent vectors on Mx and on N, respectively, are
Fx-related. Hence, the vectors [Xi, Xj] are also Fx-related, which proves necessity
in the theorem. Sufficiency was proved for m = 1 above. Assume it holds for
m - 1, and assume that for every involutive D0 of dimension m - 1 and for every
x0 2 N there is a local coordinate system Ua � N so that D0 is spanned by
o=ox1; . . .; o=oxm�1 and hence F0ax0

ðM0x0
Þ \ Ua ¼ fðx1; . . .; xm�1; 0; . . .; 0Þg \ Ua:

Given x0 2 N, there exists a local coordinate system Ua centered at x0 and such
that Xm ¼ o=oxm: The vectors X1; . . .;Xm�1 span an (m - 1)-dimensional distri-
bution D0. Let i, j, k run from 1 to m - 1. Let X0i ¼ Xi � ðXium

a ÞXm; then Xmum
a ¼

1; X0iu
m
a ¼ 0: In view of the involutivity of D; ½X0i ;X0j � ¼

P
k ck

ijX
0
k þ dijXm; and

from ½X0i ;X0j �um
a ¼ 0 it follows dij = 0, that is, D0 is involutive. Therefore,

assuming Xm linearly independent of D0 (otherwise nothing is to be proved), there
exist local coordinates y1; . . .; ym�1 in M0x0

\Ua so that X0i ¼ o=oyi. Again by the

involutivity of D, o=oyi;Xm½ � ¼
P

k ck
i o=oyk: (A term with Xm does not appear on

the right hand side since further on oxm=oyi ¼ X0iu
m
a ¼ 0:)

Now complete the coordinates yi to a local coordinate system y1; . . .; yn in
N. Then, Xm ¼

Pn
l¼1 nlðo=oylÞ with certain functions nl defined in Ua. This implies

ðo=oyiÞ;Xm½ � ¼
Pn

l¼1ðonl=oyiÞðo=oylÞ; and comparison with the ck
i above yields

onl=oyi ¼ 0 for m B l B n. Put X0m ¼
Pn

l¼m nlðo=oylÞ for which still D is spanned
by o=oyi;X0m: In the submanifold of Ua of points with coordinates yi ¼ 0;
i ¼ 1; . . .;m� 1, there are new coordinates y0l;m� l� n, so that X0m ¼ o=oy0m:
Hence, for every x0 2 N there is a coordinate neighborhood Ua so that D is
spanned by o=oz1; . . .; o=ozm; zi ¼ yi; zm ¼ y0m; so that Fax0ðMx0Þ \ Ua ¼
fðz1; . . .; zm; 0; . . .; 0Þg \ Ua:

The existence of a maximal integral manifold (Mx, Fx) is proved by intro-
duction of a partial order in the set of integral manifolds similarly as in the one-
dimensional case. h

There is a dual variant of Frobenius’ theorem which is equally important. Given
an m-dimensional distribution D on N which in a neighborhood Ua of the point
x0 2N is spanned by the m tangent vector fields X1; . . .;Xm and which defines an
m-dimensional subspace Dx of each tangent space Tx(N) in that neighborhood, for
any x2Ua there is an (n - m)-dimensional annihilator subspace of T�x ðNÞ,

D?x ¼ fxx 2 T�x ðNÞjhxx;Xxi ¼ 0 for any Xx 2 Dxg; ð3:34Þ

which in a neighborhood Va � Ua of x0 is spanned by n - m linearly independent
differential 1-forms xmþ1; . . .;xn: Complete these sets of tangent vector fields and
1-forms to linearly independent sets X1; . . .;Xn and x1; . . .;xn forming bases of
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Tx(N) and T�x ðNÞ, respectively, at points x in the neighborhood Va of x0. Then, for
x2Va;D?x is characterized by the set of n - m total differential equations

xi
x ¼ 0 or

Xn

l¼1

xi
lðxÞdxl ¼ 0; m\i� n; x ¼ ðx1; . . .; xnÞ 2 Va; ð3:35Þ

which is called a Pfaffian equation system.
Consider dxi ¼

Pn
l¼1 dxi

l ^ dxl and dxiðXj;XkÞ; 1� j; k�m: From the defini-
tions given after (3.23), dxiðXj;XkÞ ¼ ð1=2Þ

Pn
l¼1ðdxi

lðXjÞdxlðXkÞ � dxi
lðXkÞ

dxlðXjÞÞ ¼ ð1=2Þ
Pn

l¼1ðdxi
lðXjÞnl

k � dxi
lðXkÞnl

jÞ: Now, dxi
lðXjÞ ¼

P
kðoxi

l=oxkÞ
dxkð

P
k0 n

k0

j ðo=oxk0 ÞÞ ¼
P

k nk
j ðoxi

l=oxkÞ ¼ Xjxi
l and, since xi ¼

P
lx

i
ldxl;

P
lx

i
ln

l
j ¼

xiðXjÞ: All that together yields dxiðXj;XkÞ ¼ ð1=2ÞðXjxiðXkÞ � XkxiðXjÞ �
xið½Xj;Xk�ÞÞ: The last term appears since in the preceding terms the first X dif-
ferentiates also the components of the second X which has to be subtracted since it
does not appear in the previous expressions.

Since Dx is spanned by the Xxj; j�m and D?x is spanned by the xi
x; i [ m, for

i [ m and j, k B m it holds that xiðXjÞ ¼ xiðXkÞ ¼ 0, and hence dxiðXj;XkÞ ¼
�ð1=2Þxið½Xj;Xk�Þ: The equations xi = 0 imply dxi = 0. Hence, if the system
(3.35) has a solution, then ½Xj;Xk� 2D, that is, D is involutive. If D is involutive,
then dxi ¼ 0; i [ m, on D, that is dxi� 0 mod ðxmþ1; . . .;xnÞ; i [ m, which
means dxi ¼

Pn
j¼mþ1 rij ^ xj, where the rij are arbitrary 1-forms. Since generally

x ^ x = 0, this condition may also by expressed as dxi ^ xmþ1 ^ 	 	 	 ^ xn ¼ 0;
i [ m: In this case there is an integral manifold of D. In summary, the dual
Frobenius theorem reads:

The Pfaffian equation system (3.35) describes a submanifold (M, F) of N, iff for
i [ m dxi � 0 mod ðxmþ1; . . .;xnÞ or equivalently dxi ^ xmþ1 ^ 	 	 	 ^ xn ¼ 0:

In that case, the Pfaffian system is called completely integrable. (See examples
in the next section.)

The section is closed with a continuation of the discussion of integral curves of
tangent vector fields X.

Consider an open set Ua 2 N so that the construction leading to (3.33) exists
for every point x0 2Ua with a function Fax0 defined on a fixed interval M ¼
Ie ¼ � � e; e½ 2 R: Define a mapping / : Ie � Ua ! N : ðt; xÞ 7!/ðt; xÞ ¼ /tðxÞ ¼
FaxðtÞ so that obviously

1: / : Ie � Ua ! N : ðt; xÞ 7!/tðxÞ;
2: For each fixed t;/t is a diffeomorphism of Ua onto /tðUaÞ

with the inverse ð/tÞ�1 ¼ /�t;

3: /sþtðxÞ ¼ /t � /sðxÞ ¼ /tð/sðxÞÞ:

ð3:36Þ

Since for t 2 Ie also �t 2 Ie; the expression for (/t)
-1 follows directly from 3.

A mapping with these three properties is called a local 1-parameter group of
X. (Due to the restriction to Ie it is not really a group.)
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A tangent vector field X on N is called complete if /t(x) defines an integral
curve of X for every x 2 N and for -?\ t \?. In this case (3.36) holds with
Ua replaced by N and Ie replaced by R: The transformations /t(x) of N now form
indeed a group which is called the 1-parameter group of X.

On a compact manifold N every tangent vector field is complete.

Proof The family of all sets Ua centered at all points x0 2 N of local 1-parameter
groups of X form an open cover of N, of which a finite subcover may be selected.
Let e [ 0 be the minimal e-value on that finite subcover. Then, /t(x) is defined on
Ie � N and hence on R� N: h

Let / be any transformation of N, that is, a diffeomorphism of N to itself.

If X creates the local 1-parameter group /t(x), then /*(X) creates the local

1-parameter group / � /t � /�1. X is invariant under the transformation
/, /*(X) = X, iff / � /t = /t � /.

This is rather obvious.
For real-valued functions f(t, x) and gt(x) so that f = tgt on Ie � N consider the

identities

f ðt; xÞ ¼ tgtðxÞ ¼
Z1

0

of ðts; xÞ
os

ds;
of ðt; xÞ

ot

�
�
�
�
t¼0

¼ g0ðxÞ:

For an arbitrary real-valued function F(x) on N and a local 1-parameter group
/t(x), put f(t, x) = F(/t(x)) - F(x) and find

lim
t!0

Fð/tðxÞÞ � FðxÞ
t

¼ lim
t!0

1
t
f ðt; xÞ ¼ lim

t!0
gtðxÞ ¼ g0ðxÞ:

Now, take two tangent vector fields X and Y on N and the local 1-parameter group
/t(x) created by X and find from the above

g0ðxÞ ¼ XxF; ðð/tÞ�ðYÞÞxF ¼ Y/�tðxÞðF � /tÞ ¼ Y/�tðxÞF þ tY/�tðxÞgt

and

lim
t!0

ðY � ð/tÞ�ðYÞÞx
t

F ¼ lim
t!0

YxF � Y/�tðxÞF

t
� lim

t!0
Y/�tðxÞgt

¼ XxðYFÞ � Yxg0 ¼ ½X; Y�xF:

Since F was arbitrary, the following proposition was demonstrated:

Let X and Y be two tangent vector fields on N and let the local 1-parameter
group /t(x) be created by X. Then

½X; Y �x ¼ lim
t!0

Yx � ðð/tÞ�ðYÞÞx
t

¼ lim
t!0

ðð/�tÞ�ðYÞÞx � Yx

t
ð3:37Þ

for all x 2 N.
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The tangent vector field [X, Y] describes the derivative of Y along the integral
curve (flow) of X. A natural consequence is that the elements of the two local 1-
parameter groups created by X and Y commute, iff [X, Y] = 0.

3.7 Examples from Physics

3.7.1 Classical Point Mechanics

(See e.g. any textbook on Mechanics, or, quite advanced, [6].) An assembly of mass
points (particles) is described by their positions as functions of time. At any time, the
positions are described by a collection of coordinates qi on an m-dimensional
manifold M, the configuration space. If n particles can occupy positions indepen-
dently from each other, then m is three times their number n and M is the topological
vector space Rm: If there are constraints, the dimension may be reduced. If for
instance two particles form a molecule with a fixed bond length, the configuration
space has five dimensions instead of six. It is the product R3 � S2 of an Euclidean
space with a sphere. If n particles form a molecule with n(n - 1)/2 fixed bond
lengths, M is more involved. (For many problems it suffices to consider molecules as
assemblies of point masses, atomic nuclei, in a rigid mutual geometry.)

At any time, each particle has a velocity vi ¼ dqi=dt. The collection of all
velocity components vi for some configuration q 2 M forms an m-dimensional
vector Vq 2 TqðMÞ;Vq ¼

P
i viðo=oqiÞ; in the tangent space on M at point q. The

motion is governed by a Lagrange function, which for a conservative system is a
real function of q and for each q of the tangent vector Vq, that is, it is a real
function on the tangent bundle T(M) on the configuration space, L : TðMÞ ! R :

ðq1; . . .; qm; v1; . . .; vmÞ 7! Lðq1; . . .; qm; v1; . . .; vmÞ: From the extremal principle of
action S = $ Ldt along trajectories with dqi=dt ¼ vi with positions at the end
points fixed it follows that ðd=dtÞðoL=oviÞ ¼ oL=oqi: These are Lagrange’s
equations of motion.

In the Hamilton formalism, momenta P ¼
P

i pidqi as cotangent vectors on
M are introduced instead of velocities V so that hP;Vi ¼

Pm
1 pivi 2 R: As a

cotangent vector on M, P has a meaning as a 1-form on M, independent of the
chosen local coordinates of M. Likewise, for a cotangent field P = P(q), x = -

dP has such an independent meaning, which in every local coordinate system of
M expresses as the canonical 2-form x ¼

Pm
i¼1 dqi ^ dpi: Coordinate transfor-

mations in the configuration space M of mechanics are called point
transformations.

The Hamilton function H is a real function on the cotangent bundle T*(M)
which is defined by the Legendre transformation

Hðq1; . . .; qm; p1; . . .; pmÞ ¼ sup
fvkg
fhP;Vi � Lðq1; . . .; qm; v1; . . .; vmÞg; ð3:38Þ
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where it is assumed that L is a strictly convex C1-function of the v j. Then,

pj ¼
oL

ov j
ð3:39Þ

and

dH ¼
X

i

oH

oqi
dqi þ oH

opi
dpi

� �

¼
X

i

vidpi �
oL

oqi
dqi

� �

:

From Lagrange’s equations now Hamilton’s equations of motion

dqi

dt
¼ oH

opi
;

dpi

dt
¼ � oH

oqi
ð3:40Þ

follow. Note that the first set of equations forms a tangent vector equation in
T(M) while the second set forms a cotangent vector equation in T*(M).

The cotangent bundle T*(M) on M is a special 2m-dimensional manifold X, the
local coordinates of which may be chosen as the collection of local coordinates qi

of the configuration space M and for each set (qi) of the components pj of the
momentum cotangent vector Pq 2 T�q ðMÞ. In a chart ðUa;uaÞ of X = T*(M) the

points x 2 X are send by ua to x ¼ ðq1
a; . . .; qn

a; p1
a; . . .; pn

aÞ 2 Ua. The manifold X
itself is called the phase space of the mechanical system. While up to (3.40) the pj

were understood as components of a cotangent vector on M and hence as
depending on the chosen local coordinates qi, they are now understood as inde-
pendent local coordinates of X; for that reason p j was now written instead of pj.

Of course, it cannot be expected that the form of the equations of motion (3.40)
would be the same in arbitrarily chosen local coordinates of X with qi and pi

independently chosen. They will have this form for all point transformations in
M with the components pj of (3.39) and H of (3.38). The natural question arises,
what are the most general coordinate transformations (diffeomorphisms)
�qiðq1; . . .; qm; p1; . . .; pmÞ; �piðq1; . . .; qm; p1; . . .; pmÞ that leave the form (3.40)
unchanged. These are the canonical transformations which leave the canonical
(symplectic) 2-form �x ¼

Pm
i¼1 d�qi ^ d�pi invariant. Obviously these transforma-

tions form a subgroup of the automorphism group of X. At the end of the next
chapter Hamilton’s equations of motion will be cast into a form from which it is
readily seen that canonical transformations leave them invariant.

Introduce on X a tangent vector field W which in local coordinates has the
general form W ¼

Pm
i¼1ðviðo=oqiÞ þ aiðo=opiÞÞ, and put in given local coordi-

nates vi ¼ oH=opi; ai ¼ �oH=oqi: For this special vector field W = WH,

WH ¼
Xm

i¼1

oH

opi

o

oqi
� oH

oqi

o

opi

� �

; ð3:41Þ

consider the local 1-parameter group /t(x) created by WH. It is obtained by inte-
gration of the Hamilton equations (3.40). Since hdH;WHi ¼ WHH ¼ 0 (cf. 3.12),
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H(x) is constant along every integral curve x(t) = /t(x) of WH: H � /t = H. It is the
energy of the conservative system. More generally, any real function F on the phase
space X for which WHF = 0 is constant on integral curves: F�/t ¼ F. F is a con-
served quantity. WHF ¼ fH;Fg is called the Poisson bracket1 of H and F. The
vector field WH on X is called the Hamiltonian vector field, in statistical physics it is
called the Liouvillian. The corresponding local 1-parameter group /t(x) is called the
Hamiltonian flow, in statistical physics the Liouvillian flow.

Like in (3.41) for H, a tangent vector field WF may be defined for any
C1-function F on the phase space X, and for functions F, G 2 C1(X) a Poisson
bracket {F, G} is defined. Poisson brackets have the following algebraic proper-
ties (with real numbers ki):

1: fF;Gg ¼ �fG;Fg;
2: fF; k1G1 þ k2G2g ¼ k1fF;G1g þ k2fF;G2g; together with 1 bilinearity;

3: fF; fG;Kgg þ fG; fK;Fgg þ fK; fF;Ggg ¼ 0; Jacobi identity;

4: fF;G1G2g ¼ G2fF;G1g þ G1fF;G2g; Leibniz rule:

ð3:42Þ

Comparison of 1–3 with (3.17) shows that the Poisson brackets form a Lie
algebra; 4. holds since fF; 	g ¼ WF is a derivation, cf. (3.41) for F = H.

If 2m - l conserved quantities Fk; k ¼ lþ 1; . . .; 2m are given, then the equa-
tions dFk = 0 form a Pfaffian system for the 1-forms dFk which is completely
integrable since dðdFkÞ ¼ d2Fk ¼ 0: Hence, in this case the motion takes place on
a submanifold of X of lower dimension l. For m [ 1, only in very special cases
enough conserved quantities can be found so that l = 1 and the motion takes place
on curves which are regular embeddings in X, and little is known on general
conditions under which this takes place. In most cases the motion in some sub-
manifold U of X is chaotic, the closure of the orbit of any x 2 U in the relative
topology of U � X, f/tðxÞj �1\t\1g, is all U.

3.7.2 Classical and Quantum Mechanics

Useful as the introduction of the phase space is, it looses track of important
features of the inner structure of this manifold as the cotangent bundle on the
configuration space M. Canonical transformations may interchange position
coordinates and momentum components, while in a curved manifold M the
position coordinates do not form a vector at all. This becomes a real problem of
still ongoing research if one wants to quantize a general mechanical theory on a
curved configuration manifold M (see [7] and citations therein).

1 We use the traditional definition of Poisson brackets in standard Physics textbooks; in
Mathematics it is more standard to call WHF a Poisson bracket {F, H}.
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Consider canonical local coordinates ðqi; pjÞ in any coordinate neighborhood of
the cotangent bundle T*(M) over the configuration space M; dim M ¼ m, of a
mechanical system. Let F;G; . . . be smooth functions on M with compact support,
that is, the F;G; . . .2C10 ðMÞ depend on the qi only. Then one finds for the Poisson
brackets

fF;Gg ¼ 0; fpj;Fg ¼
oF

oq j
; fpj; pkg ¼ 0:

The second relation says that pj acts on F via the Poisson bracket like the tangent
vector o=oq j: Recall from (3.20) that the tangent bundle, instead being considered
locally spanned by the m base vectors o=oq j; may be considered as a module over
the algebra of smooth functions on M. Its subalgebra C10 ðMÞ then refers to the
submodul T0(M) of (smooth) tangent vector fields with compact support. Let
X; Y ; . . . 2 T0ðMÞ, and let the just mentioned module structure be denoted by the
mapping (called Rinehart product) ðC10 ðMÞ; T0ðMÞÞ ! T0ðMÞ : ðF;XÞ 7!F 
 X;
where F
X means FX of (3.20), and

F 
 ðG
 XÞ ¼ ðFGÞ 
 X: ð3:43Þ

With the notation XF and XY - YX from Sect. 3.4, we have

fF;Gg ¼ 0; fX;Fg ¼ XF ¼ �fF;Xg; fX; Yg ¼ XY � YX ð3:44Þ

and

fX;F 
 Yg ¼ fX;Fg 
 Y þ F 
 fX; Yg; Leibniz rule: ð3:45Þ

If M itself is not compact, add a unity function 1 to C10 ðMÞ so that

1
 F ¼ F; 1
 X ¼ X; fX; 1g ¼ 0; ð3:46Þ

it is the constant function on M equal to unity (and hence not C10 ðMÞ if M itself is
not compact). The algebra ðf1gþÞC10 ðMÞ þ T0ðMÞ 3A;B; . . . with the products
f	; 	g and 
 obeying (3.43–3.46) is called the Lie–Rinehart algebra LRðMÞ of the
manifold M. Any element A 2 LRðMÞ is a linear combination of 1 and elements
from C10 ðMÞ and T0(M). With F
X ¼ FX it obeys (3.42) and hence is a Poisson
algebra.

The elements of the Lie–Rinehart algebra LRðMÞ are at most linear in the
tangent vector fields. For quantum mechanics one wants the momenta also to form
an associative polynomial algebra for the operator product, in particular to treat
spectra, and with an involution ð�Þ leaving the variables invariant to guarantee real
spectra (Hermitian operators). Therefore such an algebraic structure with an (in
general not commutative) dot-product is introduced as a second algebraic structure
replacing the 
-product in (3.43–3.46), with
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1: A 	 ðB 	 CÞ ¼ ðA 	 BÞ 	 C ¼ A 	 B 	 C; 1 	 A ¼ A;

2: ½A;B� ¼ A 	 B� B 	 A;
3: ðA 	 BÞ� ¼ B� 	 A�; but fA;Bg� ¼ fA�;B�g;
4: fA;B 	 Cg ¼ fA;Bg 	 C þ B 	 fA;Cg; Leibniz rule:

ð3:47Þ

Such an algebra with the Poisson bracket f	; 	g with properties (3.42) extended to
all its elements is called a Poisson �-algebra. Per se the commutator ½	; 	� and the
Poisson bracket are independent, however, they are intertwined by the Leibniz
rule, property 4. above, which ensures that fA; 	g is further on a derivation.
Repeated application of this rule and the property 1 in (3.42) to the identity
fA 	 C;B 	 Dg þ fB 	 D;A 	 Cg ¼ 0 yields straightforwardly (exercise)

½A;B� 	 fC;Dg ¼ fA;Bg 	 ½C;D�: ð3:48Þ

For any commutative Poisson �-algebra, ½	; 	� � 0, this is trivially true.
The Poisson–Rinehart algebra KR(M) of a manifold M is the unique enveloping

Poisson �-algebra of M in which the Lie–Rinehart algebra LRðMÞ is injected,
J : LRðMÞ ! KRðMÞ, so that (A;B; . . .;F;G; . . .;X; Y ; . . . 2 LRðMÞ)

1: JðfA;BgÞ ¼ fJðAÞ; JðBÞg;
2: Jð1Þ ¼ 1;

3: JðFGÞ ¼ JðFÞ 	 JðGÞ;

4: JðF 
 XÞ ¼ 1
2

JðFÞ 	 JðXÞ þ JðXÞ 	 JðFÞð Þ

ð3:49Þ

and so that KR(M) is universal, that is, if J0 : LRðMÞ ! K0 satisfies 1–4, then there
is a unique homomorphism q : KRðMÞ ! K0 so that J0 ¼ q � J:

It has been shown [7] that there exists (or may be added with a simple limiting
process if M is not compact) an element Z in the center of both algebraic structures
of KR(M), unique up to a real constant factor, so that

½A;B� ¼ Z 	 fA;Bg; fZ;Ag ¼ 0 ¼ ½Z;A�; Z ¼ �Z�: ð3:50Þ

Classical physics is obtained with Z = 0 (resulting in the quotient algebra KR(M)/
I where I is the ideal generated by the elements [A, B]). In standard phase space
quantization on a flat M, as is well known, Z ¼ i�h	1: The value of �h is of course
phenomenology. It is interesting that, the above structure accepted, the existence
of Z follows from this structure alone, and it is up to a constant factor (multiple of
1) unique for each configuration manifold M.

3.7.3 Classical Point Mechanics Under Momentum Constraints

In what follows, the constraints which are called primary constraints below are
linear in the canonical momenta. They are called momentum constraints here in
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order to distinguish this case from constraints in a totally different context con-
sidered afterwards.

The so far outlined theory presupposes that the Lagrange function L is strictly
convex in V. If as usual L has second derivatives with respect to the vi, this means
that for all q 2 M and for any base in Tq(M) the symmetric m 9 m-matrix of those
second derivatives (the Hessian) has maximal rank:

rank
o2L

oviov j

� �

¼ m; det
o2L

oviov j

� �

[ 0: ð3:51Þ

This is not always the case. The theory considered now was pioneered by Dirac in
the 1950 and 1960 [8], essentially to the goal of canonical quantization of gauge
field theories (which itself is beyond the scope of the present text). With the rise of
importance of Yang-Mills theories it was a very active subject of research in the
1980 and 1990 (see, e.g. [9]), and it holds unsolved problems till now.

For the sake of simplicity of notation the theory is usually presented for a finite
number of degrees of freedom (m in our text), although corresponding systems of
that type with a finite number of degrees of freedom look rather academic.
However, the results readily transfer to fields (with a continuum of degrees of
freedom), and all gauge fields are standard cases of this transfer.

Consider, in appropriate coordinates, a Lagrange function

Lðq;VÞ ¼ hf ðq;VÞ;Vi þ L� ðq;VÞ;

f ¼ ðfmþ1; . . .; fmÞ; V ¼ ðV;VÞ ¼ ðv1; . . .; vm; vmþ1; . . .; vmÞ;

rank
o2L

oviov j

� �

¼ m\m; det
o2L

oviov j

� �

[ 0:

ð3:52Þ

Define the action integral as

S½qðtÞ;VðtÞ;PðtÞ� ¼
Zt2

t1

Lðq;VÞ þ hP; dq=dt � Við Þdt ð3:53Þ

where the Pi; i ¼ 1; . . .;m, are Lagrange multipliers for the conditions dq=dt ¼ V
along the trajectories q(t) through M. The variation with fixed end points q yields
the usual Lagrange equations of motion

dq

dt
� V ¼ 0;

oL

oV
� P

� �

V¼dq=dt

¼ 0;
oL

oq
� d

dt

oL

oV

� �

V¼dq=dt

¼ 0 ð3:54Þ

with a self-explanatory vector notation of the derivatives of L (remark after 3.40).
Now, for instance,

sup
vm

p
m

vm � fmðq;VÞvm
n o

¼ 0 for p
m
¼ fmðq;VÞ

þ1 else;

�

ð3:55Þ
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(exercise), and

sup
V

hP;Vi � Lðq;VÞ
� �

) P� oL

oV
¼ 0 ) V ¼ Vðq;P;VÞ: ð3:56Þ

From the last line of (3.52) it follows that the middle relations of (3.56) can be
resolved for V; and for P ¼ ðP;PÞ the same notation as for V was used. Inserting
the last result into f yields

p
i
¼ fiðq;Vðq;P;VÞÞ ¼ fi�

ðq;PÞ; i ¼ mþ 1; . . .;m: ð3:57Þ

If the V would not drop out from the functions fi�
; then obviously the rank in

(3.52) would be larger than m: Altogether (3.38) results in

Hðq;PÞ ¼
H� ðq;PÞ for P ¼ f

�
ðq;PÞ;

þ1 else

(

ð3:58Þ

with

H� ðq;PÞ ¼ hP;Vðq;PÞi � L� ðq;Vðq;PÞÞ: ð3:59Þ

There are m ¼ m� m primary constraints

Uð1Þi ðq;PÞ ¼ p
i
� fi�

ðq;PÞ ¼ 0; i ¼ mþ 1; . . .;m; ð3:60Þ

for the momenta P on the trajectories.
The trajectories are now obtained from the extremum of the action integral

S0½qðtÞ;PðtÞ; kðtÞ� ¼
Zt2

t1

ðhP; dq=dti � H� ðq;PÞ � hU
ð1Þðq;PÞ; kiÞdt; ð3:61Þ

where ki; i ¼ mþ 1; . . .;m; are the Lagrange multipliers for the constraints. This
may be abbreviated as

S0 ¼
Z

hP; dq=dti � Hð1Þðq;P; kÞ
	 


dt;

Hð1Þðq;P; kÞ ¼ H� ðq;PÞ þ hU
ð1Þðq;PÞ; ki:

ð3:62Þ

Again with a notation q ¼ ðq; qÞ; the variation yields

dq

dt
¼ oHð1Þ

oP
or

dq

dt
¼ oHð1Þ

oP
;

dq

dt
¼ k

� �

;
dP

dt
¼ � oHð1Þ

oq
; P ¼ f

�
: ð3:63Þ

88 3 Manifolds



The Lagrange multipliers turn out to be the velocities on the trajectories which
remained unresolved in (3.56). It is seen that the time derivative along a trajectory
of any function A(q, P) is obtained from the Poisson bracket,

Aðq;PÞ :
dA

dt
¼ fHð1Þ;AgUð1Þ¼0 ¼

oA

oq
;
oHð1Þ

oP

� �

� oHð1Þ

oq
;
oA

oP

� �� �

Uð1Þ¼0

ð3:64Þ

where the constraints must be taken after the calculation of the brackets.
Note that the constraints (3.60) form a Pfaffian equation system defining an m-

dimensional distribution in T(M). Any trajectory being solution of (3.54) must be
kept in this distribution at all times, whence the time derivatives of the constraints
should vanish,

dUð1Þ

dt
¼ fHð1Þ;Uð1ÞgUð1Þ¼0 ¼ fH� ;U

ð1ÞgUð1Þ¼0 þ fUð1Þ;Uð1ÞgUð1Þ¼0; k
D E

¼ 0:

ð3:65Þ

Here, U(1) and fH� ;U
ð1Þg are understood as cotangent vector fields on M while

fUð1Þ;Uð1Þg is a 2-form on M (a q-dependent antisymmetric m� m-matrix in local
coordinates qi).

Let, as a matrix in local coordinates qi,

rank fUð1Þ;Uð1ÞgUð1Þ¼0

	 

¼ q1; 0� q1�m: ð3:66Þ

As the rank of an antisymmetric matrix, q1 is even. Then, there exist m� q1 non-
zero vector fields U(k) so that

fUð1Þ;Uð1ÞgUð1Þ¼0;UðkÞ
D E

¼ 0; UðkÞ ¼ ðU1
ðkÞ; . . .;U

m
ðkÞÞ; k ¼ q1 þ 1; . . .;m:

ð3:67Þ

Hence, Eq. 3.65 determines the m linearly independent vector functions
k(q, P, t) modulo U(k); a number of m� q1 linear combinations remain undeter-
mined. Instead, (3.65) comprise the conditions

fH� ;U
ð1ÞgUð1Þ¼0;UðkÞÞ

� �

¼ 0; ð3:68Þ

some of which may be identities, some may not be independent of the constraints
U(1), but a number m1 of them may form new constraints U(2,1). Inserting the q1

determined expressions k in terms of q, P (as well as of the suppressed variable t)
and the remaining undetermined combinations k0 into (3.65) yields a combination
of q1 independent expressions denoted as Wð1Þðq;P; k0Þ, of m primary constraints
U(1)(q, P) and of m1 new constraints U(2,1)(q, P). Since {H(1), U(1)} is linear in
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the constraints, (3.65) has a structure, with U = (Ul) further on written as a
column,

fHð1Þ;Uð1ÞgUð1Þ¼0 ¼ 0 , Kð1Þðq;PÞ
Wð1Þðq;P; k0Þ
Uð1Þðq;PÞ
Uð2;1Þðq;PÞ

0

@

1

A ¼ 0; ð3:69Þ

where K(1) is an (m� ðq1 þ mþ m1ÞÞ-matrix function divided into three blocks

with rank Kð1Þ
Uð1Þ;Wð1Þ

¼ q1; Kð1Þ
Uð1Þ;Uð1Þ

¼ 1m; (unit matrix) and rank Kð1Þ
Uð1Þ;Uð2;1Þ

¼ m1 in

an obvious block matrix notation. At the same step, introducing the determined
expressions for the k into the Hamiltonian (3.62) results in a new Hamiltonian

Hð1Þ1 ðq;P; k
0Þ for which (3.65) transforms into fHð1Þ1 ;Uð1ÞgUð1Þ¼0 ¼ 0: Repeating

this process with Hð1Þ1 ðq;P; k
0Þ and with the new constraints results in a second step

fHð1Þ1 ;Uð2;1Þg Uð1Þ¼0
Uð2;1Þ¼0

¼ 0 , Kð2Þðq;PÞ
Wð2;1Þðq;P; k00Þ

Uð1Þðq;PÞ
Uð2;1Þðq;PÞ
Uð2;2Þðq;PÞ

0

B
B
@

1

C
C
A ¼ 0: ð3:70Þ

After a finite number of l steps there appear no new independent constraints in the
l ? 1st step although there may still remain unresolved multipliers k. (The number
of independent constraints cannot exceed the dimension of Tp

*(M).) All constraints
Uð2; jÞ are called secondary constraints.

This process of ‘breeding constraints’ results in a number l ¼ mþ m1 þ 	 	 	 þ
mk; unique for a given Lagrange function, of constraints U, independent in the
sense that the rank of the Jacobi matrix

rank
DðUÞ

Dðq;PÞ

�
�
�
�
U¼0

� �

¼ l: ð3:71Þ

Let (superscript t meaning the transposed, Ut being a row)

m ¼ l� rank fU;UtgU¼0


 �
: ð3:72Þ

These ranks are independent of a linear functional transformation with a ðl� lÞ-
matrix V,

U0ðq;PÞ ¼ Vðq;PÞUðq;PÞ; det VjU¼0 6¼ 0: ð3:73Þ

There is such a transformation that

VU ¼ v
u;

� �

; v ¼ ðv1; . . .; vmÞt; u ¼ ðumþ1; . . .;ulÞt; ð3:74Þ

with
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fv;Ug ¼ OðUÞ; det fu;ugU¼0


 �
6¼ 0; ð3:75Þ

where O(U) means order of U; OðUÞjU¼0 ¼ 0. The constraints ðv;uÞ ¼ 0 are
equivalent to U = 0. The v are called first-class constraints, and the u are called
second-class constraints.

Consider first the simpler case if there are only second-class constraints.
Compared to (3.60) we subtract m from all subscripts i of the constraints and of all
superscripts of the k in what follows. In the actually considered case, in any local
coordinate system, the matrix {U, Ut} has maximal rank in the neighborhood of
U = 0, so that its inverse {U, Ut}-1 exists,

fU;Utg�1fU;Utg ¼ 1l ¼ fU;UtgfU;Utg�1; ð3:76Þ

where 1l means the (l 9 l) unit matrix. This means that all k may be determined
from (3.65) to be

kk ¼ �
Xl

l¼1

ðfU;Utg�1ÞklfUl; H� g þ OðUÞ; k ¼ 1; . . .;m; ð3:77Þ

while

Xl

l¼1

ðfU;Utg�1ÞklfUl; H� g ¼ OðUÞ; k ¼ mþ 1; . . .; l: ð3:78Þ

In the equations of motion (3.64), terms of higher than first order in the U may
be added to the Hamiltonian before the Poisson brackets are calculated, since
after their calculation now all U are put to zero. One hence may define a
Hamiltonian

HU ¼ H� � UtfU;Utg�1fUl; H� g; ð3:79Þ

and obtain canonical equations of motion

Aðq;PÞ :
dA

dt
¼ fHU;AgU¼0: ð3:80Þ

Alternatively, one may define Dirac’s brackets2 instead of the Poisson brackets
by

fA;BgU ¼ fA;Bg � fA;UtgfU;Utg�1fU;Bg ð3:81Þ

and have

2 Do not confuse them with Dirac’s notation of Hilbert vectors by bras and kets.
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dA

dt
¼ fH� ;Ag

U
U¼0: ð3:82Þ

The brackets f	; 	gU have algebraic properties (3.42) like the Poisson brackets.
As the rank of the antisymmetric matrix fu;ug of (3.75) must be even, the

number of second-class constraint is always even. It can be shown [9] that a
canonical transformation from (q, P) to new canonical variables (g, /) exists so
that the g and the / separately consist of pairs of canonically conjugate variables
and the / form the constraints in the new coordinates. Then, the equations of
motion take the form

dg
dt
¼ fH/; gg; / ¼ 0; H/ ¼ Hj/¼0 ¼ HðgÞ: ð3:83Þ

That means, the presence of only second-class constraints simply reduces the
system to an ordinary Hamilton system on a submanifold of M defined by the
distribution of the 1-forms /.

First-class constraints cannot form in Dirac’s ‘breeding’ process, if there were
no primary first-class constraints present: among first-class constraints there are
necessarily primary first-class constraints. In this case the existence of a canonical
transformation has been shown [9] to new canonical variables (g, Q, P, /) in
which the dynamics is described by the equations of motion

dg
dt
¼ fH/; gg; P ¼ 0 ¼ /;

dQð1Þ

dt
¼ kPð1Þ ;

dQð2Þ

dt
¼ AðgÞ; H/ ¼ HjðP;/Þ¼0;

ð3:84Þ

where P ¼ ðPð1Þ;Pð2ÞÞ;Pð1Þ are the primary and P(2) the secondary first-class
constraints, and Q are the conjugate variables to first-class constraints. A(g) are
fixed functions appearing in Dirac’s procedure, and kPð1Þ ¼ kPð1Þ ðg;Q; tÞ are the
remaining undetermined Lagrange multipliers which do not enter the other
equations of motion. Hence, for any initial condition the time evolution contains m
arbitrary functions of the canonical variables and of time t, that is, an m-dimen-
sional class of trajectories.

The only way to save causality, which is supported by experience, is to say
that each trajectory out of this class describes the same physical process. The
kPð1Þ merely constitute redundancy in the description, for whatsoever good rea-
sons. This redundancy is conventionally called gauge freedom. Since transitions
between the trajectories of a given class can be performed one after another and
the kPð1Þ may continuously be varied, those transitions form a continuous
transformation group the elements of which are continuously connected to the
identity transformation. This is the group of gauge transformations (see
Sect. 8.3).

There is a systematic actual way to arrive at the indicated special canonical
variables which is in general, however, quite technical (see [10]).
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3.7.4 Classical Mechanics Under Velocity Constraints

We now consider sketchily a case which was already initiated towards the end of
nineteenth century, essentially by H.R. Hertz and S.A. Chaplygin, which devel-
oped into a huge branch of Mathematical Physics and of various disciplines of
engineering over the last century, and which is a very active field of research even
today including also aspects of quantization [11].

We first switch to a much broader understanding of the configuration space
M. It may be any smooth manifold the points of which describe some mechanical
setting, for instance describing the group elements of translation and rotation
groups of rigid bodies. It may even describe the instantaneous state of some
sensor-actuator system which need not be mechanical.

Let L(q, V) be a regular Lagrange function on M,

Lðq;VÞ : det
o2L

oviov j

� �

¼ m ¼ dim M: ð3:85Þ

Let be given l\ m linearly independent smooth 1-forms f (k)(q) on M so that the
motion of the system is constrained by the conditions

hf ðkÞ;VðtÞi ¼ 0 for all t; k ¼ 1; . . .; l: ð3:86Þ

According to (3.34) the f (k) form the annihilator D\ of an (m - l)-dimensional
distribution D of velocity vectors. Constraints nonlinear in V are also considered in
literature, but here we limit ourselves to linear constraints. The constraints cause
constraint forces during the motion which are not (and in general cannot be)
described by the Lagrange function (3.85) and which have to be added to the
equations of motion (understood as a cotangent vector equation as previously),

d

dt

oL

oV
� oL

oq
¼
Xl

k¼1

f ðkÞðqÞkðkÞðq; tÞ ¼ f k; ð3:87Þ

where the coefficient functions k(q, t) are uniquely determined by the conditions
(3.86). (One has hf ;Vik ¼ 0, the constraint forces do not perform work along the
trajectories of motion; d’Alembert’s principle.) On transition to the Hamilton
function (3.38) corresponding to the Lagrange function (3.85) and adding the
constraint forces and the constraints to the canonical equations of motion one gets

dq

dt
¼ oH

oP
;

dP

dt
¼ � oH

oq
þ f k; f ;

oH

oP

� �

¼ 0: ð3:88Þ

The time derivative of the constraints must be zero. The time derivative of the last
equation of (3.88) along trajectories is

o

oq
f ;

oH

oP

� �� �

;
oH

oP

� �

þ f
o2H

oPoP

�
�
�
�

�
�
�
��

oH

oq
þ f k

� �

¼ 0;
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where in the second term a second rank tensor o2H=ðoPoPÞ in T(M) is projected
on the 1-forms on both sides. This expression can uniquely be resolved for the k, if

f
o2H

oPoP

�
�
�
�

�
�
�
� f

� �

6¼ 0; ð3:89Þ

which condition indeed follows from (3.85) and from the linear independence of
the f (k). Hence, the constraint forces are correctly determined.

If the distribution D defined by (3.86) is involutive, that is, if df ðkÞ ^ f ð1Þ^ 	 	 	
^ f ðlÞ ¼ 0; k ¼ 1; . . .; l, then the constraints are called holonomic. In this case the
constraints are completely integrable and the distribution of velocities D defines a
submanifold N of M as its integral manifold to which the whole motion of the
system is confined.

If D is not involutive, the constraints are called nonholonomic. The classical
example is a rolling disc without slipping on an inclined plane (Chaplygin).
Though nonholonomic motion is rather the standard case in everydays life (see the
just mentioned example) it comprises a huge in large parts unexplored field, and
even the motion of simple (but tricky) toys like the ‘rattleback’ is poorly under-
stood. There is in general a ‘bracket formulation’ of the equations of motion [12],
but the brackets do not obey property 3 of Poisson brackets, the Jacobi identity
(3.42).

3.7.5 Thermodynamics

The thermodynamic equilibrium state of a gas of N particles is described by its
volume v and temperature t. The thermodynamic phase space is M ¼ R2 in this
case. The amount of heat put into an ideal gas is

dQ ¼ cðtÞdt þ Rt

v
dv; ð3:90Þ

where c(t) is the heat capacity at constant volume which is a function of tem-
perature only and R is the gas constant. A change of the thermodynamic state is
called adiabatic, if no heat is exchanged, that is, if dQ = 0.

The question is, whether dQ = 0 defines uniquely paths through the phase
space. Since (3.90) is a 1-form in R2, dQ = 0 is a Pfaffian equation, for which
ddQ ¼ ðoðRt=vÞ=otÞdt ^ dv 6¼ 0; but since ddQ ^ dQ = 0, the equation is com-
pletely integrable (as any 1-form in two dimensions, since dx ^ x is a 3-form for
every 1-form x). Hence, the answer to the question is positive, and there is an
adiabatic flow /s

ad(t, v) (s 2 R is some curve parameter) through the phase space:
through every point (t, v) there is exactly one adiabatic trajectory. Consequently,
there are functions, constant on trajectories and hence invariant under the adiabatic
flow.
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Nature or microscopic reasoning in Statistical Physics tells us, that as part of
Second Law of thermodynamics it always holds that entropy s, given by ds ¼
dQ=t is such an adiabatic invariant, that is, ds is always a total differential, and
s �/ad ¼ s:
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Chapter 4
Tensor Fields

4.1 Tensor Algebras

Let V and V 0 be two arbitrary real vector spaces of any finite dimension each.
Consider the product vector space V � V 0 consisting of all ordered pairs ðv; v0Þ; v 2
V ; v0 2 V 0: For instance, given v 2 V; v0 2 V 0 and k; l 2 R; ðkv;lv0Þ and ðlv; kv0Þ
are two different vectors of V � V 0: Let W be the free real vector space generated
by V � V 0; that is, the vector space consisting of all real linear combinations of
vectors out of V � V 0: For instance, 2kðv; v0Þ; ðkv; v0Þ þ ðv; kv0Þ are two more of
different vectors of W : Let I be the subspace of W generated by all vectors of the
forms

ðv1 þ v2; v
0Þ � ðv1; v

0Þ � ðv2; v
0Þ ðv; v01 þ v02Þ � ðv; v01Þ � ðv; v02Þ

ðkv; v0Þ � kðv; v0Þ ðv; kv0Þ � kðv; v0Þ:

The tensor product V � V 0 of the two vector spaces V and V 0 is the quotient space
W=I: Its elements are linear combinations of the tensor products v� v0 of vectors
v 2 V ; v0 2 V 0 (image of the canonical mapping of V � V 0 to V � V 0) with the
properties

ðv1 þ v2Þ � v0 ¼ v1 � v0 þ v2 � v0;

v� ðv01 þ v02Þ ¼ v� v01 þ v� v02;

kðv� v0Þ ¼ ðkvÞ � v0 ¼ v� ðkv0Þ:
ð4:1Þ

Besides the elements of the form v� v0; the space V � V 0 contains all their linear
combinations. However, the canonical mapping / : V � V 0 ! V � V 0 :
ðv; v0Þ 7! v� v0 of ordered pairs ðv; v0Þ to their equivalence classes v� v0 of the
quotient space formation is a universal bilinear mapping in the following sense: If
W is any vector space and w : V � V 0 ! W is any bilinear mapping, then there is a
unique linear mapping w0 : V � V 0 ! W so that w ¼ w0 � /: Up to isomorphisms,
/ is uniquely determined by this universality property.

H. Eschrig, Topology and Geometry for Physics, Lecture Notes in Physics, 822,
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There are unique (obvious, canonical) isomorphisms between V � V 0 and V 0 �
V and between V � ðV 0 � V 00Þ and ðV � V 0Þ � V 00: Therefore it makes sense to
write V � V 0 � V 00 and accordingly for more factors, and the order of factors can
be fixed by convention in these product constructions. (This does of course not
mean that v1 � v0 þ v2 � v0 and v1 � v0 þ v0 � v2 are equal; the second expression
as a linear combination of elements of two different spaces is even not defined, if
V and V 0 are different, and is different from the first expression, if V ¼ V 0:
However, the first expression and v0 � ðv1 þ v2Þ are conjugate by the canonical
isomorphism.)

Let fe1; . . .; enVg and fe01; . . .; e0nV 0
g be bases of the vector spaces V and V 0: Then

fei � e0jg; i ¼ 1; . . .; nV ; j ¼ 1; . . .; nV 0 is a base of V � V 0:

All these are simple statements which can be proved as an exercise (cf. for
instance [1]).

Let now V be any finite-dimensional real vector space and let V� be its dual.
Then the tensor space Vr;s of type ðr; sÞ is

Vr;s ¼ V � � � � � V|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
r copies

� V� � � � � � V�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
s copies

: ð4:2Þ

A base in Vr;s is

fei1 � � � � � eir � f j1 � � � � � f jsg; ð4:3Þ

where the ei form a base of V and the f j form a base in V� conveniently chosen
dual to that of V : hf j; eii ¼ d j

i: Additionally one defines V0;0 ¼ R: If V is
n-dimensional, then the tensor space Vr;s is an nrþs-dimensional vector space. A
general element of Vr;s is the tensor

t ¼
X

ti1...ir
j1...js ei1 � � � � � eir � f j1 � � � � � f js ; ð4:4Þ

where the summation runs from 1 to n over all indices which appear twice on the
right hand expression, once as subscript and once as superscript. Further on, the
summation sign will be omitted in tensor calculus, but not in exterior calculus for
reasons becoming evident below, and Einstein’s summation convention will be
used which means the just described summation over pairs of indices always
understood.

Now, the direct sum

TðVÞ ¼
X

r;s� 0

Vr;s; V0;0 ¼ R; ð4:5Þ

is called the tensor algebra of V: It is an associative but non-commutative (see
remark in parentheses above on this page) graded (by r; s) algebra with unit. If
v1 � � � � � vr1 � w�1 � � � � � w�s1 2 Vr1;s1 and v01 � � � � � v0r2

� w0�1 � � � � �
w0�s2 2 Vr2;s2 ; then their tensor product is defined as v1 � � � � � vr1 � v01 � � � � �
v0r2
� w�1 � � � � � w�s1 � w0�1 � � � � � w0�s2 2 Vr1þr2;s1þs2 where the order of factors
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belongs to the definition of the product in the algebra (see above). The product of
the two considered tensors as factors in inverse order is v01 � � � � � v0r2

� v1 �
� � � � vr1 � w0�1 � � � � � w0�s2 � w�1 � � � � � w�s1 2 Vr1þr2;s1þs2 : Tensors in some
Vr;s are called homogeneous of degree ðr; sÞ: If they are single tensor products of
vectors and covectors as in the examples just considered, then they are called
decomposable.

A change of the base and dual base,

ei ¼ wk
i ~ek; f j ¼ ðw�1Þ j

l
~f l; wk

i ðw
�1Þ j

k ¼ d j
i; ð4:6Þ

with a regular n� n transformation matrix w; which should leave the tensor (4.4)
unaffected, results in a transformation of the tensor components according to

~ti1...ir
j1...js ¼ wi1

k1
� � �wir

kr
tk1...kr
l1...ls

ðw�1Þl1j1 � � � ðw
�1Þlsjs : ð4:7Þ

Hence, a tensor transforms like a contravariant vector with respect to its upper
indices and like a covariant vector with respect to its lower indices. The tensor
product of the tensors t 2 Vr;s and t0 2 Vr0;s0 has components

ðt � t0Þi1...irþr0
j1...jsþs0

¼ ti1...ir
j1...js t

0irþ1...irþr0
jsþ1...jsþs0

; ð4:8Þ

while the reversed order of the two factors leads to the reversed arrangement of the
index groups in the tensor product and hence in general to a different result. Two
tensors are equal if they have the same components with the order of indices
observed.

Consider a decomposable tensor t of degree ðr; sÞ and two integers p; 1	 p	 r;
and q; 1	 q	 s: The tensor contraction Cp;q : Vr;s ! Vr�1;s�1 is defined as

Cp;qðtÞ ¼ Cp;qðv1 � � � � � vr � w�1 � � � � � w�sÞ
¼ hvp;w

�qiv1 � � � � � vp�1 � vpþ1 � � � � � vr � w�1

� � � � � w�q�1 � w�qþ1 � � � � � w�s; ð4:9Þ

and for an arbitrary homogeneous tensor of degree ðr; sÞ it is defined by linear
continuation. For an arbitrary homogeneous tensor of degree ðr; sÞ one has in
components (summation over k)

Cp;qðtÞi1...ir�1
j1...js�1

¼ t
i1...ip�1kip...ir�1

j1...jq�1kjq...js�1
: ð4:10Þ

There are various interrelations of tensors with mappings. First, every homo-
geneous tensor of degree ðr; sÞ may be considered as a multilinear mapping

t : V� � � � � � V�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
r copies

� V � � � � � V|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
s copies

! R :

ðw�1; . . .;w�r; v1; . . .; vsÞ 7!w�1i1
� � �w�ris

ti1...ir
j1...js v

j1
1 � � � vjs

s ð4:11Þ
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of the indicated product vector space into the scalar field R: Because of the
universality of the canonical mapping / of this product vector space onto Vr;s as
considered for two factors after (4.1), one has the following isomorphism:

Vr;s is canonically isomorphic to the vector space of all ðr þ sÞ-linear mappings
of V�� � � � �V��V � � � � �V ððr þ sÞfactorsÞ into R:

There are simple variants of that proposition. For instance, there is a canonical
isomorphism between V1;s and the s-linear mappings of V� � � � �V (s factors) into
V : A symmetric (see below) tensor g 2 V0;2 with the property gðv; vÞ� 0 and
gðv; vÞ ¼ 0 iff v ¼ 0 defines a scalar product in V and hence converts a general
vector space V into a Euclidean space. Of course, all these mappings are mappings
of vector spaces and do not depend on the actually chosen base in V : In this sense,
scalars, vectors and tensors are called invariant and contra- and covariant,
respectively, entities.

For s ¼ r; one may also consider (4.11) as a bilinear mapping V0;r � Vr;0 ! R:
It is easily seen that every bilinear mapping of these spaces into R has the form
(4.11), hence the two spaces are dual to each other:

V0;r ¼ ðVr;0Þ�: ð4:12Þ

For r ¼ 1; this is just the duality of V and V�; and, if V is a Euclidean space so that
V� is identified with V ; then the mapping is the scalar product.

Next, consider mappings of V into another vector space V 0: By duality, a
homomorphism H from V to V 0 induces a homomorphism H� from V 0� to V� :
hw0�;Hvi ¼ hH�w0�; vi; v 2 V; w0� 2 V 0�: (Recall that a finite-dimensional vector
space is reflexive. Given bases in V and V 0;H is represented by a matrix, and H�

by its transposed.) If V and V 0 are isomorphic, so are V� and V 0�; and there is also
an isomorphic mapping from V� onto V 0� which is H��1: Let ~H : TðVÞ ! TðV 0Þ
be an isomorphism which in case of decomposable tensors acts like H on each
vector factor and like H��1 on each covector factor. It is easily seen that ~H
commutes with contractions, if it acts on V0;0 ¼ R as the identity mapping
(exercise). The following statement is now rather obvious:

There is a canonical one–one mapping between isomorphisms from V to V 0 and
isomorphisms from TðVÞ to TðV 0Þ which preserve the degree and commute with
tensor contraction. In particular, the automorphism group of V is isomorphic to
the automorphism group of TðVÞ:

The automorphisms of a vector space are also called (regular) transforma-
tions. By the canonical isomorphism between V1;1 and the space of linear map-
pings (endomorphisms) of V into V (see top of this page) there is a one–one
correspondence of tensors a of degree (1,1) with components given by regular
matrices and automorphisms A of V : These tensors are called transformation
tensors. Sometimes these transformations, which transform a given vector v 2 V in
general in a different one v0 ¼ Av; in components related to a fixed base v0i ¼ ai

jv
j;

are called ‘active coordinate transformations’ while ordinary coordinate
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transformations (4.6), which leave all vectors on place and only switch to another
base are called ‘passive coordinate transformations’.

Accordingly, if B : V ! V is any endomorphism of V ; it corresponds to a
tensor b 2 V1;1 whose components do not necessarily form a regular matrix. By an
automorphism A; B is transformed into ABA�1 and the corresponding transfor-
mation of b in TðVÞ is in components bi

j ! ai
kbk

l ða�1Þlj: Endomorphisms of vector
spaces form a ring: if B;B0 are two endomorphisms, then Bþ B0 and BB0 are again
endomorphisms. With the Lie product ½B;B0
 ¼ BB0 � B0B they form also a Lie
algebra. An endomorphism D of TðVÞ is called a derivation, if

1: D preserves the degree: DVr;s � Vr;s;
2: Dðt � t0Þ ¼ ðDtÞ � t0 þ t � ðDt0Þ;
3: DCp;q ¼ Cp;qD for every tensor contraction:

ð4:13Þ

It is directly seen that, if D;D0 are two derivations of TðVÞ; then ½D;D0
 is again a
derivation. The derivations of TðVÞ form another Lie algebra.

The Lie algebra of derivations of TðVÞ is isomorphic to the Lie algebra of
endomorphisms of V ; the isomorphism is provided by the restriction B of deri-
vations D to V � TðVÞ:

Proof As an endomorphism, Dkt ¼ kDt; k 2 R: However, kt ¼ k� t in TðVÞ:
From property 2 of (4.13) it follows that Dk ¼ 0 for every k 2 R: Hence, with
property 3, 0 ¼ Dhw�; vi ¼ hDw�; vi þ hw�;Dvi for all v 2 V and w� 2 V�

(exercise). By putting Dv ¼ Bv; it follows Dw� ¼ �B�w� where B� is the endo-
morphism transposed to B; hw�;Bvi ¼ hB�w�; vi: Given B; from these relations D
is determined for decomposable tensors and is uniquely extended by linearity to all
TðVÞ: It is easily seen that B 7!D is a bijection. h

If B0 is another endomorphism of V; it is transformed by the derivation D with
Dv ¼ Bv into DB0 ¼ BB0 � B0B ¼ ½B;B0
:

Let Pr be the permutation group of the set f1; . . .; rg of r numbers and let
P 2 Pr: Denote by the same letter a mapping P : Vr;0 ! Vr;0 : ti1...ir 7! ðPtÞi1...ir ¼
tiP1...iPr and an analogous mapping P : V0;r ! V0;r: This definition is obviously
independent of the choice of a base in V: The symmetrization of a tensor of degree
either ðr; 0Þ or ð0; rÞ is

St ¼ 1
r!

X

P2Pr

Pt ð4:14Þ

and the alternation is

At ¼ 1
r!

X

P2Pr

signðPÞPt; ð4:15Þ

where signðPÞ ¼ þ1 for an even permutation and signðPÞ ¼ �1 for an odd per-
mutation. A tensor St is called a symmetric tensor and a tensor At is called an
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alternating tensor. It is directly seen that these tensors provide symmetric and
alternating multilinear mappings of the product vector space of r factors V� or r
factors V into R:

4.2 Exterior Algebras

Let TðVÞ ¼
P1

r¼0 Vr;0 be the subalgebra of contravariant tensors of TðVÞ and let
IðVÞ be the two-sided ideal of TðVÞ generated by all elements of the form v�
v; v 2 V; that is, IðVÞ is the linear span of the sets TðVÞ � v� v� TðVÞ for all
v 2 V : The exterior algebra or Grassmann algebra of V is the graded algebra
KðVÞ ¼ TðVÞ=IðVÞ: Then, TðV�Þ is the subalgebra of covariant tensors of TðVÞ
and KðV�Þ ¼ TðV�Þ=IðV�Þ: Grassmann was the first to introduce the exterior
algebra for the study of subspaces of vector spaces.

KðVÞ is graded in the following way: K0ðVÞ ¼ R; K1ðVÞ ¼ V ; KrðVÞ ¼
Vr;0=IrðVÞ; IrðVÞ ¼ IðVÞ \ Vr;0 for r [ 1 and KðVÞ ¼

P1
r¼0 KrðVÞ: Since for

every v1; v2 2 V the products v1 � v1; v2 � v2 and ðv1 þ v2Þ � ðv1 þ v2Þ are ele-
ments of I2ðVÞ; it follows that also v1 � v2 þ v2 � v1 2 I2ðVÞ: Hence, if the
product in KðVÞ is denoted by ^; then v1 ^ v2 ¼ �v2 ^ v1: It is easily seen that, if
x; r; s 2 KðVÞ and F;G 2 R ¼ K0ðVÞ; then the exterior product ^ in KðVÞ has
all the properties (3.23) of a wedge-product.

Since every decomposable tensor v1 � � � � � vr; r [ 1; containing two con-
secutive equal factors is in IðVÞ and reordering of the factors in TðVÞ leads to
representatives of the same or of the reversed (reversed sign) equivalence class of
TðVÞ=IðVÞ ¼ KðVÞ; the elements of the exterior algebra KðVÞ may be represented
as linear combinations of

1; ei1 ^ � � � ^ eir ¼ ei1 � � � � � eir ; i1\ � � �\ir; r [ 0; ð4:16Þ

for any given base feig of V : (The ‘base vector’ 1 spans K0ðVÞ ¼ R; and
1 ^ ei ¼ 1ei � ei1 ¼ 0:) Hence, (4.16) forms a base of KðVÞ: It immediately
follows that, if dim V ¼ n; then

dim KrðVÞ ¼
n
r

� �

¼ n!

r!ðn� rÞ!; KnðVÞ � R; KrðVÞ ¼ f0g for r [ n

ð4:17Þ

and hence dim KðVÞ ¼ 2n: As opposed to the tensor algebra TðVÞ; the exterior
algebra KðVÞ is finite-dimensional.

Again the canonical mapping /0 : V � � � � � V ! KrðVÞ : ðv1; . . .; vrÞ 7! v1 ^
� � � ^ vr has the universality property that, if W is any vector space and w :
V � � � � � V ! W is any alternating r-linear mapping, then there is a unique linear
mapping w0 : KrðVÞ ! W so that w ¼ w0 � /0: Up to isomorphisms, /0 is uniquely
determined by this universality property.
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From the base (4.16) and the properties (3.23) it is seen that the elements of the
exterior algebra KðVÞ may be represented by the linear combinations of alternating
tensors

P
r Atr; tr 2 Vr;0: Likewise, the elements of KðV�Þ may be represented by

the linear combinations
P

rAtr; tr 2 V0;r: If t 2 KrðVÞ; r [ 0; then it may be
represented as

t ¼
X

i1;...;ir

ti1...ir ei1 � � � � � eir ¼ r!
X

i1\...\ir

ti1...ir ei1 ^ � � � ^ eir : ð4:18Þ

In the middle expressions, the i-sums run independently from 1 to n; but since ti1...ir

is alternating, only items with distinct i are non-zero, and their r! permutations
appearing in the sums may be summed up into the right expressions.

Consider now ei1 ^ � � � ^ eir ; which is a special homogeneous tensor. According
to (4.18), its components consist only of alternating sign factors:

ei1 ^ � � � ^ eir ¼
1
r!

X

P2Pr

signðPÞeiP1 � � � � � eiPr :

As an alternating r-linear mapping from V� � � � � � V� (r factors) into R like in
(4.11) it yields (cf. the text after (3.23))

ei1 ^ � � � ^ eir ðw�1; . . .;w�rÞ ¼ 1
r!

detðhw�i; ejiÞ: ð4:19Þ

By r-linearity and by the expansion rule for determinants, the base vectors in this
relation may be replaced by any set of r linearly independent vectors v1; . . .; vr of
the vector space V ¼ K1: Using tensor contractions, one may also consider the
bilinear mapping KrðV�Þ � KrðVÞ ! R; for which again the right hand side of
(4.19) would follow. However, in order to avoid nasty factorial prefactors in the
exterior calculus, one redefines the prefactor of the latter mapping as

hw�1 ^ � � � ^ w�r; v1 ^ � � � ^ vri ¼ detðhw�i; vjiÞ: ð4:20Þ
By linearity this mapping (4.20) can be extended to all KrðV�Þ � KrðVÞ; and this
form comprises all linear functions from KrðVÞ into R: Hence, KrðV�Þ is iso-
morphic to the dual vector space to KrðVÞ :

ðKrðVÞÞ� � KrðV�Þ and hence ðKðVÞÞ� � KðV�Þ: ð4:21Þ
Since the dual to a finite direct sum of vector spaces is isomorphic to the direct
sum of their duals, the second relation follows. Note that this duality relation h�; �i
differs from that transferred from (4.12) via the quotient algebra formation by an
additional prefactor r!: For r ¼ 1 they are equal. In practice, in the exterior cal-
culus only the form (4.20) is used and no confusion can arise.

Consider again dual bases fejg in V and ff ig in V�; h f i; eji ¼ di
j: Equation

4.20 yields

h f i1 ^ � � � ^ f ir ; ej1 ^ � � � ^ ejri ¼
X

P2Pr

signðPÞdi1
jP1
� � � dir

jPr
¼ di1...ir

j1...jr : ð4:22Þ
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This is called a generalized Kronecker symbol. It is zero, if the sets of integers
fikg and fjkg are not the same; it is equal to 1, if they are the same and the ordered
set ðj1; . . .; jrÞ is an even permutation of the ordered set ði1; . . .; irÞ; and equal to
�1; if it is an odd permutation. Let now t 2 KrðVÞ be any alternating tensor (4.18)
or t0 2 KrðV�Þ; then

ti1...ir ¼ 1
r!
h f i1 ^ � � � ^ f ir ; ti; t0j1...jr

¼ 1
r!
ht0; ej1 ^ � � � ^ ejri: ð4:23Þ

These are the general rules of calculating vector components by projection on the
dual basis, applied to the cases of KrðVÞ and KrðV�Þ: For later use, an important
consequence of (4.22) for the relation between tensor algebra and exterior
algebra is

1
r!
hx;X1 ^ � � � ^ Xri ¼ C1;1 � � �Cr;rðx� X1 � � � � � XrÞ; ð4:24Þ

where x is an arbitrary alternating tensor of type ð0; rÞ and Xi are vectors.
Next, important endomorphisms of KðVÞ are considered. In (4.17) it was

already noted that KrðVÞ ¼ f0g; if r [ dim V: In addition, by definition,

KrðVÞ ¼ f0g for r\0; KðVÞ ¼
X

�1\r\1
KrðVÞ: ð4:25Þ

Obviously, the last relation is the same as that given at the beginning of this
section. An endomorphism L of a graded algebra K is called an endomorphism of
degree s; if

L : Kr ! Krþs; �1\r; s\1: ð4:26Þ

For instance, for any u 2 KsðVÞ; the wedge-multiplication Lu : KðVÞ ! KðVÞ :
t 7! u ^ t is an endomorphism of degree s: An endomorphism is called a deriva-
tion, if

Dðt ^ t0Þ ¼ ðDtÞ ^ t0 þ t ^ ðDt0Þ for all t; t0 2 K; ð4:27Þ

it is called an anti-derivation, if

Dðt ^ t0Þ ¼ ðDtÞ ^ t0 þ ð�1Þrt ^ ðDt0Þ for all t 2 Kr; t0 2 K: ð4:28Þ

By repeated application of (4.28) and realization of the associativity of the algebra
KðVÞ one gets for an antiderivation of a decomposable element

Dðv1 ^ � � � ^ vrÞ ¼
Xr

i¼1

ð�1Þiþ1v1 ^ � � � ^ ðDviÞ ^ � � � ^ vr: ð4:29Þ
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As opposed to the derivatives in analysis considered in Sect. 2.3, the derivations of
an algebra (or a ring) are always endomorphisms. Examples of derivations of
degree 0 are the linear derivation of the algebra F x0 of germs of real functions,
(3.10), (formally, any algebra can be considered as a graded algebra, where all
subspaces of non-zero degree are f0g), the derivation of the algebra CðMÞ of
smooth real functions, (3.15), by any tangent vector field and the derivation (4.13)
of a tensor algebra. An example of an anti-derivation of degree 1 is the exterior
differentiation d of r-forms, (3.25).

With regard to mutually dual algebras KðVÞ and ðKðVÞÞ� ¼ KðV�Þ; the trans-
posed of the above mentioned endomorphism Lu; u 2 KðVÞ may be considered. It
is denoted by iu :

iu : KðV�Þ ! KðV�Þ : hiut�; t0i ¼ ht�; Lut0i ¼ ht�; u ^ t0i for every t0 2 KðVÞ:
ð4:30Þ

It is called the interior multiplication by u in KðV�Þ: (For t�; t0 2 K0ðVÞ ¼ R it
follows from the remark in parentheses after (4.16) that iut� ¼ 0:) An example is
the Hodge operator considered in Sect. 5.1.

For v 2 V ; the endomorphism iv is an anti-derivation of degree �1 on KðV�Þ:

Proof Since Lv is of degree 1 according to its description after (4.26), it follows
from (4.30) that iv is of degree �1: Consider decomposable elements. From the
definition of iv; hiv1ðw�1 ^ � � � ^ w�rÞ; v2 ^ � � � ^ vri ¼ hw�1 ^ � � � ^ w�r; v1 ^ v2 ^
� � � ^ vri ¼ detðhw�i; vjiÞ: If one replaces in (4.29) D with iv1 and vi with w�i and
inserts the right hand side of the obtained relation into hiv1ðw�1 ^ � � � ^ w�rÞ;
v2 ^ � � � ^ vri; one obtains the expansion of the same determinant with respect to
its first line. h

If w : V ! V 0 is a homomorphism of vector spaces, it extends to a homo-
morphism (push forward) w� : KðVÞ ! KðV 0Þ of algebras as w�ðv1 ^ � � � ^ vrÞ ¼
wðv1Þ ^ � � � ^ wðvrÞ and further by linear extension. It also yields by duality a
homomorphism (pull back) w� : KðV 0�Þ ! KðV�Þ via hw�ðu0�Þ; ti ¼ hu0�;w�ðtÞi
for all u0� 2 KðV 0�Þ and all t 2 KðVÞ:

The section is closed with three simple useful theorems which are easily proved
by completion of the considered sets of vectors to a base of the vector space and by
observing that for any base fvig of an n-dimensional vector space V the wedge-
product v1 ^ � � � ^ vn is non-zero, and that an expansion of a vector into a base has
unique components.

A set of vectors v1; . . .; vr 2 V is linearly dependent, iff v1 ^ � � � ^ vr ¼ 0:

Let fvig and fv0ig be two sets each of r vectors of V so that
Pr

i¼1 vi ^ v0i ¼ 0:
If the vi are linearly independent, then the v0j may be linearly expanded into the vi;

v0j ¼
Pr

i¼1 wjivi; with a symmetric coefficient matrix, wji ¼ wij:

Let fvig be a set of r linearly independent vectors of V and let t 2 KsðVÞ: Then;
t 
 0 mod ðv1; . . .; vrÞ; that is t ¼ v1 ^ u1 þ � � � þ vr ^ ur with certain ui 2
Ks�1ðVÞ; iff v1 ^ � � � ^ vr ^ t ¼ 0:
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Prove the theorems as an exercise. For s ¼ 2 the last one was considered in the
Frobenius theorem for Pfaffian systems, Sect. 3.6.

4.3 Tensor Fields and Exterior Forms

In Sect. 3.4 tangent vector fields on a manifold M were introduced by assigning a
tangent vector to every point x 2 M: While smoothness of real functions on M
could naturally be defined with the help of coordinate neighborhoods on the basis
of a well-defined atlas structure for M (pseudo-group of transition functions), this
is not so simple for a general vector field. Although an n dimensional vector field
may be given by n real component functions, these components depend on the
choice of a base in the vector space at each point of M; and for the concept of
smoothness some rules are needed how the bases of vector spaces on neighboring
points x of M should be related. This will be finally worked out in Chap. 7 with the
concept of fiber bundles. For the special case of tangent space the problem was
solved by relating the bases of the tangent spaces to the coordinates on coordinate
neighborhoods of M via considering the action of a tangent vector on real func-
tions on M: Then, the bases of cotangent spaces were related to those of tangent
spaces via considering the action of cotangent vectors (1-forms) on tangent vec-
tors. Since the base of a tensor algebra or an exterior algebra on a vector space is
determined by the base of the vector space, tensor fields and exterior fields on
tangent and cotangent spaces, which are sections of corresponding fiber bundles
considered in Chap. 7, can be treated here without the concept of fiber bundles.

Let M be a manifold, Tx the tangent space and T�x the cotangent space at point
x 2 M: Consider the sets

Tr;sðMÞ ¼
[

x2M

ðTxÞr;s : tensor bundle of type ðr; sÞ over M; ð4:31Þ

K�r ðMÞ ¼
[

x2M

KrðT�x Þ : exterior r bundle over M: ð4:32Þ

In Chap. 7 a topology will be introduced into these sets to provide them with the
special manifold structure of bundles.

Consider sets of r 1-forms xi; i ¼ 1; . . .; r and s tangent vector fields Xj;

j ¼ 1; . . .; s on M; and multilinear mappings t : T�ðMÞ � � � � � T�ðMÞ � TðMÞ �
� � � � TðMÞ ! CðMÞ with r factors T�ðMÞ and s factors TðMÞ: According to
(4.11), at each point x 2 M the mapping is given by ðx1

x ; . . .;xr
x; n1x; . . .; nsxÞ 7!

ti1...ir
j1...js ðxÞx

1
xi1
� � �xr

xir
n j1

1x � � � n js
sx 2 R: Recall that in coordinate neighborhoods in M

the base forms dxi in T�ðMÞ and the base vectors o=oxj in TðMÞ are smooth.
Hence, the mapping is into CðMÞ; if the component functions ti1...ir

j1...js ðxÞ are smooth
functions of x: In this case,
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tðxÞ ¼ ti1...ir
j1...js ðxÞ

o

oxi1
� � � � � o

oxir
� dx j1 � � � � � dx js ð4:33Þ

is called a tensor field of type ðr; sÞ on M:
The collection of all tensor fields of type ðr; sÞ on M forms again a real vector

space T r;sðMÞ with respect to point wise linear combinations as is easily seen from
(4.33). It is an infinite-dimensional functional vector space. It can also be con-
sidered a CðMÞ-module with respect to point wise multiplications with CðMÞ-
functions. The graded algebra of tensor fields on M is

T ðMÞ ¼
X1

r;s¼0

T r;sðMÞ: ð4:34Þ

It is a real associative but non-commutative algebra with point wise tensor mul-
tiplication as the multiplication in T ðMÞ: Note that according to the definition
(4.34) a tensor field of a certain type at some point x 2 M has the same type all
over M: For connected components of M this is a consequence of the demand of
smoothness, for distinct components of a multicomponent manifold it is just by
definition. Also, tensor contractions of tensor fields on M are defined as the same
contraction performed at every point x 2 M:

An important example of a symmetric tensor field of type ð0; 2Þ is the
Riemannian metric tensor, in a coordinate neighborhood given by gðxÞ ¼
gijðxÞdxi � dxj; or, as a bilinear mapping, gðX; YÞ ¼ gijn

ig j with the properties
gðX;XÞ� 0; gðX;XÞ ¼ 0; iff X ¼ 0; and gðX; YÞ ¼ gðY ;XÞ: It defines at every
point x 2 M a scalar product and hence converts the tangent space TxðMÞ into an
inner product space (cf. p. 19) and M into a Riemannian manifold, a concept
which is considered in more detail in Chap. 9.

An endomorphism of T ðMÞ is a real linear mapping from tensor fields to tensor
fields. At every point x 2 M; it induces an endomorphism of the tensor algebra
TðTxÞ of the tangent space Tx on M at that point x; which in a sense analyzed in
Chap. 7 depends smoothly on x: The endomorphism of T ðMÞ is again called a
derivation, if at every x it has the properties (4.13). As an endomorphism, a
derivation of T ðMÞ again vanishes applied to a constant k 2 CðMÞ ¼ T 0;0ðMÞ but
not in general for a function F 2 CðMÞ: (An endomorphism of T ðMÞ is an R-linear
mapping but not a CðMÞ-linear mapping.)

The most important derivation is the Lie derivative LX with respect to the
tangent vector field X: From (3.15) on p. 68 it follows that for every tangent vector
field X 2 XðMÞ ¼ T 1;0ðMÞ the mapping X : CðMÞ ! CðMÞ : F 7!XF is a deri-
vation of T 0;0ðMÞ ¼ CðMÞ: It maps F to the directional derivative of F in the
directions of the integral curves of X on M: In (3.37) on p. 82 it was shown that the
mapping X : T 1;0ðMÞ ! T 1;0ðMÞ : Y 7! ½X; Y
 maps similarly a tangent vector
field Y 2 T 1;0ðMÞ to its derivatives along the integral curves of X and hence is a
derivation of T 1;0ðMÞ ¼ XðMÞ: By definition, in these two cases

LXF ¼ XF; LXY ¼ ½X; Y 
: ð4:35Þ
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Both cases may be understood in the following way (Fig. 4.1): Fix a tangent
vector field X on M: It defines a local 1-parameter group /tðxÞ in a neighborhood
of every point x 2 M: Fix x and consider the (unique maximal) integral curve
/tðxÞ of X through x: Push the considered entity (F or Y) forward by ð/�tÞ� (that
is backward on the curve /tðxÞ). This way its value originally at x0 ¼ /tðxÞ is
brought to x; and there it is compared to the original value at x: A similar pro-
cedure can be applied to a cotangent vector field x: This time it is pulled back
from x0 to x by ð/tÞ� (cf. (3.28) on p. 72). Hence, a derivation may be defined for
any tensor field u 2 T ðMÞ as

LXu ¼ lim
t!0

Utu� u

t
; Ut ¼

ð/�tÞ� for tangent vector fields
ð/tÞ

� for cotangent vector fields

�

ð4:36Þ

which declares Ut for decomposable tensor fields, and then extended by linearity.
The proof that (4.36) is indeed a derivation is the same as for the product rule of
any derivative. Obviously, LX : T r;sðMÞ ! T r;sðMÞ; and LX commutes with tensor
contractions as expressions of the type (4.36) do commute with linear combination
with constant coefficients.

It is again obvious that real linear combinations and Lie products ½D;D0
 ¼
DD0 � D0D of derivations form again derivations; the set of all derivations of
T ðMÞ is a Lie algebra. Let D be a derivation of T ðMÞ: As it was shown in Sect. 3.4,
its action on T 0;0ðMÞ ¼ CðMÞ comes from a tangent vector field Y and can be
localized at every point x 2 M: According to the first relation (4.35) it may be
denoted LY and acts as a Lie derivative. Let U � M be an open set and consider all
functions F 2 CðMÞ with supp F � U: A tangent vector field X 2 XðMÞ may be
said to be zero on U; if XF ¼ 0 for all those F; and supp X may be defined as the
smallest closed subset of M outside of which X is zero. Now, consider the action of
any derivation D of T ðMÞ on FX ¼ F � X 2 T 1;0ðMÞ ¼ XðMÞ: From the second
property (4.13), by arguments analogous to those in Sect. 3.4, it is seen that the
action of D on XðMÞ can be localized: supp DX � supp X: Hence, at every point
x 2 M; any derivation D of T ðMÞ which vanishes on CðMÞ induces an endo-
morphism of TxðMÞ which according to the analysis after (4.13) uniquely defines a
derivation of the tensor algebra TðTxÞ: Let D and D0 coincide on CðMÞ and on

Fig. 4.1 The Lie derivative
along /tðxÞ corresponding to
the tangent vector field X
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XðMÞ: Then, D� D0 vanishes there and hence vanishes on the whole T ðMÞ: The
consequence is the first part of the following theorem:

Any derivation D of T ðMÞ is uniquely determined by its restrictions to
T 0;0ðMÞ ¼ CðMÞ and to T 1;0ðMÞ ¼ XðMÞ: Moreover, it has the form D ¼ LX þ S
with a uniquely determined tangent vector field X and a uniquely determined
endomorphism S given by a tensor field s of type ð1; 1Þ:

Proof of the second statement of the theorem Fix a derivation D of T ðMÞ: The
analysis of (3.15) on p. 68 shows that every derivation of CðMÞ is provided by a
tangent vector field X: Take this X and consider the derivation D� LX of T ðMÞ: It
is zero on CðMÞ: Let D0 be any derivation vanishing on CðMÞ; let Y be any tangent
vector field and F 2 CðMÞ: Then, D0ðFYÞ ¼ FD0Y which is a linear mapping of
XðMÞ into XðMÞ and hence, according to the theorem after (4.13), it defines
uniquely a tensor field s 2 T 1;1ðMÞ: Now, the second statement of the theorem
follows from the first one. h

If again D is any derivation of T ðMÞ and S is any tensor field of type ð1; 1Þ;
then ½D; S
F ¼ ðDSÞF þ SðDFÞ � SDF ¼ FDS which is another tensor field of
type ð1; 1Þ : ½D; S
 2 T 1;1ðMÞ for S 2 T 1;1ðMÞ: In other words, T 1;1ðMÞ is an ideal
of the Lie algebra of all derivations of T ðMÞ: Now, ½LX; LY 
F ¼ ½X; Y
F; and, for
Z 2 XðMÞ; ½LX; LY 
Z ¼ ½X; ½Y ; Z

 � ½Y; ½X; Z

 ¼ ½½X; Y 
; Z
 due to Jacobi’s iden-
tity (3.17-3). Hence,

½LX ; LY 
 ¼ L½X;Y 
: ð4:37Þ

The algebra of all Lie derivatives is itself a Lie subalgebra of the Lie algebra of
all derivations of T ðMÞ:

In order to find the coordinate expressions of Lie derivatives, consider first
LXðC1;1ðY � xÞÞ ¼ C1;1ððLXYÞ � xþ Y � ðLXxÞÞ which equation can be rewrit-
ten as C1;1ðY � LXxÞ ¼ XC1;1ðY � xÞ � C1;1ð½X; Y
 � xÞ: In a coordinate neigh-
borhood in which X ¼

P
niðo=oxiÞ and Y ¼

P
g jðo=ox jÞ with g j ¼ d j

k; with
(4.10) and (3.19) straightforwardly ðLXxÞk ¼ xjðon j=oxkÞ is obtained. In the same
case, ðLXYÞi ¼ ½X; Y 
i ¼ �oni=oxk results. Now, for a general tensor field u of type
ðr; sÞ;

LXC1;1 � � �Crþs;rþsðu� x1 � � � � � xr � X1 � � � � � XsÞ

¼ C1;1 � � �Crþs;rþs ðLXuÞ � x1 � � � � � xr � X1 � � � � � Xs

 

þ
Xr

p¼1

u� x1 � � � � � ðLXxpÞ � � � � � xr � X1 � � � � � Xs

þ
Xs

q¼1

u� x1 � � � � � xr � X1 � � � � � ðLXXqÞ � � � � � Xs

!

: ð4:38Þ
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For xi ¼ dxi and Xj ¼ o=ox j; the left hand side of the equation (4.38) is

LXðui1...ir
j1...jsÞ ¼ nioui1...ir

j1...js=oxi and the first term on the right hand side is ðLXuÞi1...ir
j1...js

;

altogether,

ðLXuÞi1...ir
j1...js
¼ nioui1...ir

j1...js

oxi
�
Xr

p¼1

onip

oxi
u

i1...ip�1iipþ1...ir
j1...js þ

Xs

q¼1

onj

oxjq
ui1...ir

j1...jq�1jjqþ1...js : ð4:39Þ

It was shown in the last section that the elements of KrðT�x Þ are just the
alternating tensors of type ð0; rÞ: Hence, the sections out of K�r ðMÞ are just the
alternating tensor fields of type ð0; rÞ: They can be identified with the exterior
differential r-forms already introduced in Sect. 3.4 on p. 70. They form the real
vector space DrðMÞ which is also a CðMÞ-module with respect to point wise linear
combinations. Their point wise exterior multiplication yields the graded exterior
algebra

DðMÞ ¼
X1

r¼�1
DrðMÞ; DrðMÞ ¼ f0g for r\0 and r [ n ð4:40Þ

studied in Sect. 3.4.
Consider a mapping F : M ! N from the manifold M into the manifold N and

at every x 2 M its push forward (differential) as a mapping Fx
� : TxðMÞ ! TFðxÞðNÞ

from tangent vectors on M to tangent vectors on N; given by (3.27) on p. 71. It
induces the mapping F� : DðNÞ ! DðMÞ between the exterior algebras, given
point wise by (3.32) on p. 74, which pulls back any r-form on N to an r-form on
M: As it was explained in Sect. 3.5, there is no such induced mapping between the
tensor algebras T ðMÞ and T ðNÞ: This is why the exterior algebra of r-forms plays
such a central role in the theory of manifolds as was first realized by E. Cartan.

Notation: The same quantity as an alternating tensor field t or as an exterior
form x is conventionally written as

t ¼ ti1...ir dxi1 � � � � � dxir ¼
X

i1\���\ir

xi1...ir dxi1 ^ � � � ^ dxir ; xi1...ir ¼ r!ti1...ir :

ð4:41Þ

Not all authors use the factor r! in this connection. Check up in each case.

4.4 Exterior Differential Calculus

This is the differential calculus for the algebra DðMÞ of exterior forms on M: By
comparison of (3.25) on p. 71 with (4.28) it is seen that the exterior differen-
tiation d is an anti-derivation of degree 1 (cf. (4.26)). Its action in a coordinate
neighborhood on a general r-form (3.24) is repeated here:
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dx ¼
X

i1\���\ir

dxi1...ir ^ dxi1 ^ � � � ^ dxir

¼
X

i;i1\���\ir

oxi1...ir

oxi
dxi ^ dxi1 ^ � � � ^ dxir

¼
Xrþ1

s¼1

ð�1Þsþ1
X

i1\���\irþ1

oxi1...is�1isþ1...irþ1

oxis
dxi1 ^ � � � ^ dxirþ1 : ð4:42Þ

Any derivation or anti-derivation of DðMÞ is defined by its action on the space
D0ðMÞ ¼ CðMÞ of functions F and on the space D1ðMÞ of 1-forms or differentials
dF (exercise; consider first decomposable forms and then the linearity of the
derivation). An anti-derivation of degree 1 on DðMÞ is uniquely defined by (3.25)
(see for instance [2]).

Let F : M ! N be a smooth mapping from the manifold M into the manifold N:
Then, from (3.31) it follows that for every smooth 1-form x on N the pulled back
1-form F�ðxÞ on M is smooth. Equation 3.32 shows that a general r-form on N
can be pulled back in a coordinate neighborhood according to (4.23) to a smooth
r-form on M so that the pull back F� : DðNÞ ! DðMÞ is a homomorphism of
algebras. Moreover, F� commutes with d; that is,

dðF�ðxÞÞ ¼ F�ðdxÞ; x 2 DðNÞ: ð4:43Þ

This holds due to (3.31) for 1-forms as the differentials of 0-forms (functions).
For the general case it is straightforwardly demonstrated using a coordinate neigh-
borhood.

From the statement proved after (4.30) on p. 105 it follows that for any vector
field X 2 XðMÞ by point wise application the interior multiplication iXðxÞ is an
anti-derivation of degree �1 on DðMÞ: Since it is of degree �1 and D�1 ¼ f0g; iX

yields 0 if applied to any F 2 D0ðMÞ; see remark in parentheses after (4.30). On
D1ðMÞ; its action is given by (4.30) for the case v ¼ X and t0 ¼ F; which with
(3.21) and (4.10) immediately yields iXðxÞ ¼ xðXÞ ¼ C1;1ðX � xÞ for any x 2
D1ðMÞ: The general expression is

iXðxÞ ¼ C1;1ðX � xÞ ¼ r
X

i;i1\���\ir

nixii1...ir�1 dxi1 ^ � � � ^ dxir�1 ; x 2 DrðMÞ:

ð4:44Þ

For D ¼ iX and decomposable forms, (4.28) is proved with (4.20) by Laplace’s
expansion formula for a determinant. Hence, (4.44) is the correct extension from
D0ðMÞ and D1ðMÞ: Since x 2 DrðMÞ is alternating,

ðiXÞ2 ¼ 0 on DðMÞ ð4:45Þ

follows immediately from (4.44).
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As an example, let M ¼ R3; r ¼ d ¼ 3 and x ¼ e ¼dx1 ^ dx2 ^ dx3: Then,

hiXðeÞ; Y ^ Zi ¼ eijkn
igjfk ¼ ðX; Y ; ZÞ; eijk ¼ d123

ijk ðcf: ð4:22ÞÞ; ð4:46Þ

is the triple scalar product of the vectors X; Y and Z with the components ni; gj

and fk; respectively.
Finally, since for every tangent vector field X 2 XðMÞ ¼ T 1;0ðMÞ the mapping

LX : CðMÞ ! CðMÞ : F 7!XF is a derivation (of degree 0) of CðMÞ and the map-
ping LX : T 0;1ðMÞ ¼ D1ðMÞ ! D1ðMÞ : x 7! LXx with ðLXxÞðYÞ ¼ XðxðYÞÞ�
xð½X; Y 
Þ for every Y 2 XðMÞ is a derivation of degree 0 of D1ðMÞ; the Lie
derivative (4.36) for alternating tensors u of type ð0; rÞ is a derivation of degree 0
of DðMÞ:

On DðMÞ; the connection between d; iX and LX is

LX ¼ d � iX þ iX � d; ½d; LX
 ¼ 0; ½iY ; LX 
 ¼ i½Y ;X
; d2 ¼ 0; ðiXÞ2 ¼ 0:

ð4:47Þ

Proof From (3.32) on p. 74 it is easily seen by operation with d on both sides that
d commutes with F� for every mapping F of manifolds. Hence, d commutes with
ð/tÞ� of (4.36) and therefore also with LX: Since iXD0ðMÞ ¼ 0; for F 2 D0ðMÞ the
first equation reduces to LXF ¼ iXðdFÞ ¼ dFðXÞ ¼ XF; which is true due to the
definition of LX: Now, let D and D0 be two derivations of degree 0 of DðMÞ which
coincide on D0ðMÞ and commute with d: From ðD� D0ÞF ¼ 0 and ðD� D0ÞdG ¼
dðD� D0ÞG ¼ 0 one has for a general 1-form x ¼ FdG that also ðD� D0Þx ¼
ððD� D0ÞFÞdGþ FðD� D0ÞdG ¼ 0 and hence D and D0 coincide on D1ðMÞ:
Consequently, both sides of the first relation (4.47) coincide on D0ðMÞ and on
D1ðMÞ and thus on DðMÞ (cf. remark after (4.42)). The second relation is a direct
consequence of the first and d2 ¼ 0:

Again because of iXD0ðMÞ ¼ 0; both sides of the third equation are zero on
D0ðMÞ: Now, recall that for any 1-form x and any tangent vector X; iXx ¼
xðXÞ ¼ C1;1ðX � xÞ 2 D0ðMÞ and LXF ¼ XF; LXY ¼ ½X; Y 
: Then, ½iY ; LX
x ¼
iY LXx� LXiYx¼ ðLXxÞðYÞ � LXðC1;1ðY �xÞÞ ¼ limt!0ð1=tÞ ðð/tÞ�x�xÞðYÞ�ð
limt!0ð1=tÞC1;1 ð/�tÞ�Y � Y

� �
�x� Y�ðð/tÞ�x�xÞÞ ¼�C1;1ðx� limt!0ð1=tÞ

ðð/�tÞ�Y � YÞ ¼ �C1;1ðx � ½X; Y
Þ ¼ �xð½X; Y
Þ ¼ xð½Y ; X
Þ ¼ i½Y ;X
x which

proves the third equation (4.47) on D1ðMÞ and hence on all DðMÞ:
The remaining two equations were considered previously and are only repeated

here for completeness. h

For an r-form x in place of the tensor u in (4.38), (4.38) and (4.24) yield

LXhx;X1 ^ � � � ^ Xri ¼ hLXx;X1 ^ � � � ^ Xri

þ
Xr

p¼1

hx;X1 ^ � � � ^ ½X;Xp
 ^ � � � ^ Xri: ð4:48Þ
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With this relation and the first equation (4.47), induction with respect to r yields

hdx; X1 ^ � � � ^ Xrþ1i

¼
Xrþ1

p¼1

ð�1Þpþ1LXphx;X1 ^ � � � ^ Xp�1 ^ Xpþ1 ^ � � � ^ Xrþ1i

þ
Xrþ1

p\q

ð�1Þpþqhx; ½Xp;Xq
 ^ X1 ^ � � � ^ Xp�1 ^ Xpþ1

^ � � � ^ Xq�1 ^ Xqþ1 ^ � � � ^ Xrþ1i: ð4:49Þ

From (4.48) the coordinate expression of LXx is obtained in the following manner.
Put Xq ¼ o=oxiq ; then the left hand side is LXðxi1...irÞ ¼

P
i n

ioxi1...ir=oxi; and the
first term on the right hand side is ðLXxÞi1...ir

: In the rest use X; ðo=oxiqÞ½ 
 ¼
�
P

iðoni=oxiqÞðo=oxiÞ: The result is

ðLXxÞi1...ir
¼
Xn

i¼1

nioxi1...ir

oxi
þ
Xr

p¼1

Xn

i¼1

oni

oxip
xi1...ip�1iipþ1...ir ð4:50Þ

which of course coincides with (4.39), if x is treated as an alternating tensor of
type ð0; rÞ: Observe that in the last sum the subscripts of x are not in ascending
order; ordering them introduces additional sign factors. A similar treatment of
(4.49) would make the last sum of this relation vanish since ½Xp;Xq
 would be zero,
and the rest would just recover (4.42).

As an example the phase space X of classical point mechanics is again
considered. This 2m-dimensional manifold has a symplectic structure. A sym-
plectic structure on an even-dimensional manifold is defined by a symplectic
2-form, that is a 2-form (alternating tensor field) x which has the properties

dx ¼ 0; xxðV ;WÞ ¼ 0 for all V 2 TxðXÞð Þ ! W ¼ 0: ð4:51Þ

Instead of diffeomorphisms of a differentiable structure, symplectomorphisms
which leave x invariant are now admitted to form the pseudo-group S:

The symplectic 2-form of the phase space X is

x ¼
Xm

i¼1

dqi ^ dpi: ð4:52Þ

Clearly dx ¼ 0; and xðV;WÞ ¼
Pm

i¼1ðviwmþi � vmþiwiÞ ¼ 0 for all V implies
W ¼ 0: In local coordinates x is given by the skew-symmetric 2m� 2m matrix

x ¼ 0 1
�1 0

� �

; xðV;WÞ ¼ V � x �W; ð4:53Þ
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where the entries 0 and 1 are m� m zero and unit matrices. Hamilton’s equations
of motion (3.40) and the Poisson brackets spell now

iWx ¼ dH ! W ¼ WH ; fF;Gg ¼ iWF iWGx ¼ hx;WG ^WFi; ð4:54Þ

where in a local coordinate system WH is given by (3.41) and WF correspondingly.
With the first relation (4.47) it follows immediately from (4.54) and (4.51) that the
Lie derivative of x with respect to WH vanishes: LWH x ¼ dðiWH xÞ þ iWH ðdxÞ ¼
d2H ¼ 0: This implies that the Hamiltonian flow /t of the vector field WH leaves
the symplectic form invariant:

/�t x ¼ x: ð4:55Þ

In this context x is called the Poincaré invariant. LWH is called the Liouvillian.
(Applied to real C1-functions on X it is just WH :)

Before continuing and giving further examples of application in physics,
integration over manifolds as an important application of the exterior calculus is
treated in the next chapter.
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Chapter 5
Integration, Homology and Cohomology

5.1 Prelude in Euclidean Space

To start from commonly familiar ground, the Euclidean space Rn is considered.
Let x ¼ ðx1; . . .; xnÞ be Cartesian coordinates in Rn so that the volume element
(measure) is s ¼ dx1 � � � dxn, a real number equal to the volume of an n-dimen-
sional brick with edge lengths dxi: In (4.17) on p. 102 it was stated that KnðRnÞ �
R and hence dx1 ^ � � � ^ dxn is equivalent to a real number. Put

s ¼ dx1 � � � dxn ¼ dx1 ^ � � � ^ dxn: ð5:1Þ

Let y ¼ wðxÞ ¼ ðw1ðxÞ; . . .;wnðxÞÞ be arbitrary smooth coordinate functions, and
let x : wðRnÞ ! R be a real (piece wise continuous) function. It is well known
from integral calculus that

Z

wðUÞ

xðyÞdy1 � � � dyn ¼
Z

U

xðwðxÞÞ Dðw1; . . .;wnÞ
Dðx1; . . .; xnÞ

�
�
�
�

�
�
�
�dx1 � � � dxn ð5:2Þ

with the Jacobian defined in (2.16). Here, dy1 � � � dyn is the volume element in the
Euclidean target space wðRnÞ of the mapping w where the yi form Cartesian
coordinates. On the other hand, considering wi as a 0-form and dwi as a 1-form on
the original Rn; one has according to (4.42) and with (4.22)

dw1 ^ � � � ^ dwn ¼
X

j1;...; jn

ow1

ox j1
� � � own

oxjn
dx j1 ^ � � � ^ dxjn

¼
X

j1;...; jn

ow1

ox j1
� � � own

oxjn
d j1���jn

1���n dx1 ^ � � � ^ dxn

¼ Dðw1; . . .;wnÞ
Dðx1; . . .; xnÞ dx1 ^ � � � ^ dxn: ð5:3Þ
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together with the definition (5.1), this justifies to write (5.2) as
Z

wðUÞ

x dy1 ^ � � � ^ dyn ¼
Z

U

w� x dy1 ^ � � � ^ dyn
� �

; ð5:4Þ

where, besides wi and dwi being treated as forms, w is also treated as a trans-
formation which pulls back x on wðRnÞ to w�ðxÞ ¼ x � w on Rn and, according to
(3.31) on p. 74, pulls back dwi to w�ðdwiÞ ¼

P
jðowi=ox jÞdx j on the corre-

sponding cotangent spaces which in the considered Euclidean case are again
wðRnÞ and Rn; respectively. U and wðUÞ are supposed to have finite volume. It is
also assumed that the wi are indexed in such an order that the Jacobian is positive.

Since dimDnðRnÞ ¼ 1; the expression xðwÞdw1 ^ � � � ^ dwn is the general
expression of an n-form in wðRnÞ expressed in coordinates wi, if x is smooth. One
may consider it as a generalized volume element by giving the measure in wðRnÞ a
more flexible meaning. Any n-form

x ¼ xðyÞdy1 ^ � � � ^ dyn; xðyÞ[ 0 everywhere ð5:5Þ

is called a volume form. Since it transforms from one coordinate system to
another (x being not necessarily the original Cartesian coordinates) by (5.3), a
positive n-form (5.5) remains a positive n-form under all regular coordinate
transformations with positive Jacobian. By writing the integral (5.2) as

R
wðUÞ x;

according to (5.4) any smooth transformation w yields

Z

wðUÞ

x ¼
Z

U

w�ðxÞ ð5:6Þ

with the meaning that in Cartesian coordinates (5.1) holds.
The Rn is orientable (p. 60). A mapping w of a part of Rn into a part of wðRnÞ

is said to preserve orientation, if the Jacobian of the mapping is positive, it reverses
orientation, if the Jacobian is negative. For two domains U and U0 which contain
the same points but have reversed orientation, U0 ¼ �U is written. According to
the last expression (5.1), s0 ¼ �s in this case. Therefore,

Z

�U

x ¼ �
Z

U

x: ð5:7Þ

If the disjoint sum of two domains U1 and U2 is denoted by U1 þ U2; then
moreover

Z

U1þU2

x ¼
Z

U1

xþ
Z

U2

x ð5:8Þ
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holds, and accordingly for more items. Equations 5.7 and 5.8 provide together a
homomorphism from the Abelian group of domains of oriented manifolds into the
Abelian group of integrals over domains of a fixed form x: One even may extend
those groups and the homomorphism to real vector spaces by setting

Z

k1U1þk2U2

x ¼ k1

Z

U1

xþ k2

Z

U2

x; k1; k2 2 R: ð5:9Þ

If for instance domains and integrals have a physical meaning one may think of
probability distributions over the integrals corresponding to probability distribu-
tions over domains.

Now, let U ¼ fx j 0� xi� 1; i ¼ 1; . . .; ng 2 Rn; and let w : Rn ! Rm; m� n;
be a regular embedding of a neighborhood of U 2 Rn into the Euclidean space Rm

of possibly higher dimension. Let x be any n-form (not necessarily positive) on a
neighborhood of wðUÞ in Rm: Recall, that as an embedding w is smooth and
injective and w�x is injective at every point x 2 U; that is, the Jacobi matrix has
rank n (cf. p. 75). One defines now the left hand side of (5.6) as an integral over an
embedded n-dimensional manifold in Rm; m� n; by the right hand side which is
an integral of an n-form over the coordinate cube U in Rn:

Let n ¼ 1 and x ¼
Pm

i¼1 xiðyÞdyi a 1-form on an open subset of Rm containing
wðUÞ where U is the unit interval of R and wðUÞ is a parametrized curve y ¼ wðxÞ
in Rm of finite length with the curve parameter x 2 U: Then, (5.6) reads

Z

wðUÞ

x ¼
Z

wðUÞ

Xm

i¼1

xiðyÞdyi ¼
Z1

0

Xm

i¼1

xiðyðxÞÞ
dwi

dx
dx:

Replacing dx by �dx and integrating from x ¼ 1 to x ¼ 0 reverses also the sign of
dwi=dx and hence the sign of the value of the integral. This is the integral over
�wðUÞ: Next, fix the point y0 ¼ wð0Þ and let s be the arc length from y0 along the
curve y ¼ wðxÞ: This yields a one–one function x ¼ xðsÞ with xðSÞ ¼ 1 where S is
the total length of the curve from y0 ¼ wð0Þ to y1 ¼ wð1Þ: Then,

Z

wðUÞ

x ¼
ZS

0

Xm

i¼1

xiðyðxðsÞÞÞ
dwi

dx

dx

ds
ds ¼

ZS

0

Xm

i¼1

xiðyðsÞÞ
dwi

ds
ds;

and in this sense the integral is independent of the parametrization of the curve.
Now, assume that there is a real function uðyÞ on Rm; which can be taken as a
0-form, and that x ¼ du ¼

P
iðou=oyiÞdyi: Then,

Z

wðUÞ

x ¼ uðy1Þ � uðy0Þ; x ¼ du;
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which is the Fundamental Theorem of Calculus for the case of a parametrized
curve. Moreover, since x may be considered as a linear mapping of tangent vector
fields to scalar functions, the motion of a point in time t along the curve from y0 at
t ¼ 0 to y1 at t ¼ T may be considered,

Z

wðUÞ

x ¼
ZT

0

Xm

i¼1

xiðyðtÞÞ
dwi

dt
dt;

where now x may be a force field and dw=dt a velocity field, and the integral is the
work performed on the point. Again, if the force field x has a potential u, then
the work depends only on the potential values at the boundary points y0 and y1 of
the path.

Next, let n ¼ 2 and x ¼
P

1� i1\i2 �m xi1i2ðyÞdyi1 ^ dyi2 a 2-form on an open

subset of Rm containing wðUÞ where U is the unit square of R2 and wðUÞ is a
parametrized surface y ¼ wðx1; x2Þ in Rm of finite area with parameters
x1; x2; ðx1; x2Þ 2 U: Then, (5.6) reads

Z

wðUÞ

x ¼
Z

wðUÞ

X

1� i1\i2 �m

xi1i2ðyÞdyi1 ^ dyi2

¼
Z1

0

Z1

0

X

1� i1\i2 �m

xi1i2ðyðxÞÞ
X2

j1; j2¼1

owi1

ox j1
dx j1 ^ owi2

ox j2
dx j2

¼
Z1

0

Z1

0

X

1� i1\i2 �m

xi1i2ðyðxÞÞ
owi1

ox1

owi2

ox2
� owi1

ox2

owi2

ox1

� �

dx1 ^ dx2

¼
Z1

0

Z1

0

Xm

i1;i2¼1

xi1i2ðyðxÞÞ
owi1

ox1

owi2

ox2
dx1dx2:

In the last equality it was used that xi1i2 is an alternating tensor.
Let u ¼

Pm
i¼1 uiðyÞdyi be a 1-form and x ¼ du, that is (cf. (4.42))

x ¼
Xm

i¼1

dui ^ dyi ¼
Xm

i1;i2¼1

oui2

oyi1
dyi1 ^ dyi2

¼
X

1� i1\i2 �m

oui2

oyi1
� oui1

oyi2

� �

dyi1 ^ dyi2 :

Inserting this expression in parentheses for xi1i2 into the last line of the integral of
the previous paragraph and using the chain rule oui=ox j ¼

P
kðoui=oykÞðowk=ox jÞ

one finds
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Z

wðUÞ

x ¼
Z1

0

Z1

0

Xm

i¼1

oui

ox1

owi

ox2
� owi

ox1

oui

ox2

� �

dx1dx2

¼
Z1

0

Xm

i¼1

uið1; x2Þ � uið0; x2Þ
� � owi

ox2
dx2

�

� uiðx1; 1Þ � uiðx1; 0Þ
� � owi

ox1
dx1

�

¼
Z

y10!y11

u�
Z

y00!y01

u�
Z

y01!y11

uþ
Z

y00!y10

u;

where in the second equation integrations per part over x1 in the first item and over
x2 in the second item were done. The terms with the second derivative of wi

cancel. For the sake of simpler writing uðxÞ stands for uðyðxÞÞ: If then yij denotes
wði; jÞ; i; j ¼ 0; 1 (see Fig. 5.1), then the four terms of the integral are in fact
curvilinear integrations along the boundaries of wðUÞ as depicted in Fig. 5.1. By
observing (5.7) they constitute an integral around wðUÞ with consecutive orien-
tation in the mathematical positive sense with regard to the x1; x2-plane. Inter-
changing x1 with x2 would reverse this positive sense and also the sign of the
integral.

In general, the integral over an n-dimensional regularly embedded manifold in
the Rm; m� n; as described above of an n-form x is obtained as

Z

wðUÞ

x¼
Z1

0

� � �
Z1

0

X

1� i1\���\in �m

xi1���inðyðxÞÞ det
owij

oxk

� �

dx1 ^ � � � ^ dxn

¼
Z1

0

� � �
Z1

0

Xm

i1;...;in¼1

xi1���inðyðxÞÞ
owi1

ox1
� � � owin

oxn
dx1 � � � dxn: ð5:10Þ

What was above considered for n ¼ 1; 2, if x ¼ du, is Stokes’ theorem for the
case of a coordinate n-cube of the Rn;

Fig. 5.1 The image wðUÞ of
the unit square U: For the
notation of the corners see
text
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Z

wðUÞ

du ¼
Z

owðUÞ

u; ð5:11Þ

where owðUÞ means the boundary of wðUÞ; oriented in a way in general specified
later. The boundary of a curve consists of its end points oriented outward, if the
curve is not closed (otherwise it has no boundary). To treat the Fundamental
Theorem of Calculus as the special case of Stokes’ theorem for n ¼ 1, the integral
over a point of a 0-form is defined as the function value of the 0-form at that point,
provided with an appropriate sign for the orientation of that end point. For n [ 1
the proof goes along the same line as for n ¼ 1: The orientations of the faces are
obtained from the sign factors of (4.42) in combination with the integrations per
part. Since any n-dimensional domain can be approximated by small n-cubes, and
since cubes which touch each other by a face have this face with opposite
orientation, (5.8) shows that all the integrals over inner faces of the covering of the
domain by cubes cancel and only those of surface faces survive. Instead of cubes
less regular polyhedra can be used. This makes it evident that Stokes’ theorem
does not only hold for cubes but for any shape of domains. This will be worked out
in detail in the following sections.

As an example consider m ¼ 3 and the n-forms xn; n ¼ 0; 1; 2; 3 on R3: Let
xn ¼ dxn�1; n ¼ 1; 2; 3; in particular (cf. (4.42)),

x1 ¼
X3

i¼1

ox0

oyi
dyi ¼ ðgrad x0Þ � dy;

x2 ¼
X

1� i1;i2 � 3

ox1
i2

oyi1
�

ox1
i1

oyi2

� �

dyi1 ^ dyi2 ¼ ðrot x1Þ � dS;

dSi ¼
1
2!

X3

i; j;k¼1

d123
ijk dy j ^ dyk;

x3 ¼ ox2
23

oy1
� ox2

13

oy2
þ ox2

12

oy3

� �

dy1 ^ dy2 ^ dy3 ¼ ðdiv XÞ � s;

Xi ¼ 1
2!

X3

i; j;k¼1

dijk
123x

2
jk:

Stokes’ theorem reads in these cases
Z

U

ðgrad x0Þ � dy ¼
Z

oU

x0 ¼ x0ðy1Þ � x0ðy0Þ;

Z

U

ðrot x1Þ � dS ¼
Z

oU

x1 � dy;

Z

U

ðdiv XÞ � s ¼
Z

oU

x � dS:
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The first case is the classical Fundamental Theorem of Analysis, the second case is
the classical Stokes theorem, and the third case is Gauss’ theorem.

Differential forms are the equivalents to alternating covariant tensors. Hence
they have a geometrical meaning independent of coordinate systems. The orien-
tation of an oriented manifold may be changed by a mapping, in local coordinates
expressed as ðy1; y2; . . .; ynÞ ! ð�y1; y2; . . .; ynÞ: Likewise, the orientation of Rn

for odd n changes by inflection y! �y of the space coordinates. Hence, in an
odd-dimensional space, tensors of odd degree change sign of their tensor com-
ponents in an inflection of spatial coordinates and tensors of even degree do not.
Additionally, pseudo-tensors are introduced with reversed sign-change behavior
compared to tensors with respect to a change of orientation of space. If the above
considered n-forms xn are tensor equivalents, then obviously rot x1; dS and x are
pseudo-vectors and div X and s are pseudo-scalars. The other quantities are tensors
(including vectors and scalars). Alternatively, the xn may be understood as
pseudo-forms (pseudo-tensor equivalents), and then the roles of tensors and
pseudo-tensors in these relations are reversed. One easily checks that all the above
relations remain valid in this case. (Orientation and pseudo-character have only a
relative meaning.)

In the above examples in R3; a 2-form was related to a pseudo-vector rot x1 and
a 3-form to a pseudo-scalar div X: This has a generalization to any dimension. The
Euclidean space Rm is an inner product space with the standard inner product
ða j bÞ ¼

Pm
i¼1 aibi; if ai and bi are the components of the vectors a and b with

respect to an orthonormal basis ff 1; . . .; f mg; ðf i j f jÞ ¼ dij: This inner product may
be extended to an inner product of the exterior algebra KðRmÞ by putting

ða1 ^ � � � ^ anjb1 ^ � � � ^ bnÞ ¼ detððai j b jÞÞ; n�m; ð5:12Þ

putting KnðRmÞ and Kn0 ðRmÞ orthogonal to each other for n 6¼ n0, taking the
ordinary product of numbers in K0ðRmÞ; and finally extending by bilinearity to
all KðRmÞ: Note that in case of an inner product a bilinear form on the direct
product of the space with itself is meant, not with its dual which may be a different
space. The latter case is more general and was considered in (4.20). Nevertheless,
as in (4.22),

ðf i1 ^ � � � ^ f in j f j1 ^ � � � ^ f jnÞ ¼ di1���in
j1���jn ; ð5:13Þ

where the right hand side is �1, 0, or 1.
W. V. D. Hodge introduced as the anticipated generalization of the above

situation the star operator or Hodge operator � : KnðRmÞ ! Km�nðRmÞ defined
as a linear operator by

� ð1Þ ¼ f 1 ^ � � � ^ f m; �ðf 1 ^ � � � ^ f mÞ ¼ 1;

� ðf i1 ^ � � � ^ f inÞ ¼ di1���im
1���m ðf inþ1 ^ � � � ^ f imÞ; all 1� ik�m distinct;

ð5:14Þ
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and extended by linearity to arbitrary exterior forms. Note that an order of the
orthonormal basis vectors f i is to be fixed to define the positive orientation of Rm:

Changing the orientation of Rm; for instance by replacing f 1 ! �f 1; introduces a
minus sign in the right hand side of all three defining relations (5.14). In either
case it immediately follows that

�� ¼ di1���im
1���m dinþ1���imi1���in

1���m ¼ ð�1Þnðm�nÞ

on base forms, if all numbers ik are distinct. (The sign is just the sign of the
permutation from the superscripts of the first d-factor into those of the second
because for an equal order d2 ¼ 1 would result.) Since the right hand side is a
constant sign for each n, the result is valid in general for the application of �� to an
n-form:

�� ¼ ð�1Þnðm�nÞ; ð5:15Þ

that is, up to a possible sign the Hodge operator is its own inverse. Also, since
KnðRmÞ and Km�nðRmÞ have the same dimension, from the definition (5.14) it
follows that � is an isomorphism between these vector spaces.

On the basis of (5.13) one easily checks for two n-forms x and r

ðxjrÞ ¼ �ðx ^ �rÞ ¼ �ðr ^ �xÞ: ð5:16Þ

Since r is an n-form, �r is an ðm� nÞ-form and x ^ �r is an m-form which is
equivalent to the number ðx j rÞ: Let u 2 KlðRmÞ; r 2 KnþlðRmÞ and x 2 KnðRmÞ:
Then (cf. (4.30) on p. 105), ðiur jxÞ ¼ ðr j LuxÞ ¼ ðr j u ^ xÞ: Application of the
second variant (5.16) yields �ðx ^ �ðiurÞÞ ¼ �ðu ^ x ^ �rÞ ¼ ð�1Þln � ðx ^ u ^
�rÞ for any x 2 KnðRmÞ: Hence, since � is an isomorphism, �ðiurÞ ¼ ð�1Þlnu ^
�r: With (5.15), one more application of � to this result yields

iur ¼ ð�1Þnðm�n�lÞ � ðu ^ ð�rÞÞ; r 2 KnþlðRmÞ; u 2 KlðRmÞ; nþ l�m:

The Hodge operator is mainly used to extend the Laplacian to manifolds
(Sect. 5.9, see also Sect. 9.6).

5.2 Chains of Simplices

In order to analyze the boundary operation in a more general context, instead of
coordinate cubes simplices as the simplest polyhedra in Rn are considered and
their images in continuous or smooth mappings into manifolds, which are called
singular simplices.

Let ðv0; . . .; vrÞ be r þ 1 linear independent vectors of the Rn; n [ r: The set

Srðv0; . . .; vrÞ ¼ fx ¼ k0v0 þ � � � þ krvr j ki� 0; k0 þ � � � þ kr ¼ 1g ð5:17Þ
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of points of the Rn is an r-dimensional simplex, in short an r-simplex with vertices
vi: A 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle, a
3-simplex is a tetrahedron, higher dimensions are considered by analogy. For later
use, an r-simplex for any r\0 is the empty set. It is clear that

Dr ¼ fx ¼ ðk1; . . .; krÞ j ki� 0; k1 þ � � � þ kr � 1g ð5:18Þ

is an r-simplex (with its vertices the origin and the first r orthonormal base vectors
of the Rn) and that it is homeomorphic to any r-simplex Srðv0; . . .; vrÞ. Dr is called
the standard r-simplex. It is understood as oriented by the r-form dk1 ^ � � � ^ dkr:

An r-simplex has r þ 1 faces, each of which is an ðr � 1Þ-simplex. The faces of
Srðv0; . . .; vrÞ are Sr�1ðv0; . . .; vi�1; viþ1; . . .; vrÞ; i ¼ 0; . . .; r. The faces of an
r-simplex are empty for r� 0, a 1-simplex has two 0-simplices (points) as faces, a
2-simplex (triangle) has three 1-simplices (legs) as faces, a 3-simplex (tetrahe-
dron) has four 2-simplices (triangles) as faces, and so on. The oriented boundary
of a simplex is defined as

oSrðv0; . . .; vrÞ ¼
Xr

i¼0

ð�1ÞiSr�1ðv0; . . .; vi�1; viþ1; . . .; vrÞ: ð5:19Þ

See Fig. 5.2 where oS1ðv0; v1Þ ¼ þS0ðv1Þ � S0ðv0Þ; oS2ðv0; v1; v2Þ ¼ þS1ðv1; v2Þ�
S1ðv0; v2Þ þ S1ðv0; v1Þ; and the corresponding expression (5.19) for r ¼ 3 is
visualized.

Suppose an orientation of Srðv0; . . .; vrÞ has been fixed. As previously in (5.7),
the same simplex with the opposite orientation is denoted by �Srðv0; . . .; vrÞ:
Obviously,

oð�Srðv0; . . .; vrÞÞ ¼ �oSrðv0; . . .; vrÞ: ð5:20Þ

Moreover, like domains in (5.8), simplices may be added in which case the sums
can be understood to be unions of disjoint sets. In this sense, faces of dimension
less than r � 1 are counted several times in (5.19). This will not be a problem in
the following. (In Rr�1 a set of dimension less than r � 1 has zero measure and

Fig. 5.2 Oriented boundaries of simplices. The þ and � signs are those of (5.19), the arrows
indicate the orientation of the faces as simplices entering (5.19)
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does not change integrals.) Now, let Sr�1
i ¼ Sr�1ðv0; . . .; vi�1; viþ1; . . .; vrÞ and

Sr�2
ij ¼ Sr�2ðv0; . . .; vi�1; viþ1; . . .; vj�1; vjþ1; . . .; vrÞ; j [ i: Then,

ooSrðv0; . . .; vrÞ ¼
X

j\i

ð�1ÞiþjSr�2
ji þ

X

i\j

ð�1Þ jþi�1Sr�2
ij ¼£: ð5:21Þ

For r [ 1, the boundary of a simplex is closed and hence its boundary is empty.
For r� 1; Sr�2 is by definition empty anyhow.

Let M be any manifold. A continuous (smooth) singular r-simplex r in M is a
continuous (smooth) mapping (of an open neighborhood in Rr) of the standard
r-simplex Dr into M (Fig. 5.3). M is supposed to be smooth in case of a smooth
singular r-simplex. For r\0; r is the empty mapping from the empty set into the
empty set. In order to define the boundary operation for r, first a mapping
kr�1

i : Dr�1 ! Dr; i ¼ 0; . . .; r, of Dr�1 onto the faces of Dr must be fixed. (Since
Dr has no faces for r� 0, no kr�1

i for r� 0 is needed.) For r ¼ 1, that is D0 ¼ f0g
and D1 ¼ ½0; 1	; k0

0ð0Þ ¼ 1 and k0
1ð0Þ ¼ 0: For r [ 1 one finds

kr�1
0 ðk1; . . .; kr�1Þ ¼ 1�

Xr�1

j¼1

k j

 !

; k1; . . .; kr�1

 !

;

kr�1
i ðk

1; . . .; kr�1Þ ¼ ðk1; . . .; ki�1; 0; ki; . . .; kr�1Þ; i ¼ 1; . . .; r:

ð5:22Þ

kr�1
0 ðD

r�1Þ is the face of Dr opposite to the origin, and kr�1
i ðD

r�1Þ are the faces
with ki ¼ 0 in Dr (and k j of Dr�1 is becoming k jþ1 of Dr for j� i).

Like it was done in the last section for domains of integration, formally linear
combinations of singular simplices with integer coefficients may be introduced and
usefully exploited. An r-chain of singular r-simplices rl in M is a finite linear

Fig. 5.3 A singular
2-simplex
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combination c ¼
P

l klrl; kl 2 Z: The set of r-chains forms the free Abelian group
generated by the set of all singular r-simplices. It can also be considered as a
Z-module. However, it turns out to be useful to allow for a field K instead of the
ring K ¼ Z of integers. Most important besides K ¼ Z are K ¼ R and K ¼ F2;
the field of integers modulo 2: F2 ¼ f0; 1g; 0
 0 ¼ 0; 0
 1 ¼ 1; 1
 1 ¼ 0; 0�
0 ¼ 0 � 1 ¼ 0; 1 � 1 ¼ 1: With a field K (R or F2), the r-chains form a vector space.
The module or vector space over K of all r-chains in M is denoted as

0CrðM;KÞ ¼ c ¼
X

l

klrl kl 2 K; rl continuous singular r-simplices in Mj g;
(

1CrðM;KÞ ¼ c ¼
X

l

klrl kl 2 K; rl smooth singular r-simplices in Mj g
(

:

ð5:23Þ

Since for every non-trivial manifold M there is an infinite set of distinct singular
simplices r, both spaces ð0;1ÞCrðM;KÞ are in general infinite-dimensional for r� 0
with the distinct singular simplices forming a base. For r\0, there is no base
element, and hence

ð0;1ÞCrðM;KÞ ¼ f0g for r\0: ð5:24Þ

Later, the direct sum of these spaces will be treated as a grated (by r) module
(vector space).

Now, the boundary operation may be defined as

o or or : ð0;1ÞCrðM;KÞ ! ð0;1ÞCr�1ðM;KÞ;

oc ¼ o
X

l

klrl

 !

¼
X

l

klorl; or ¼
Xr

i¼0

ð�1Þir � kr�1
i :

ð5:25Þ

If it is necessary to indicate the dimension r of the chain to which the boundary
operator is applied, the notation or will be used. The boundary of a chain is defined
as the corresponding chain of boundaries of the singular simplices, and the
boundary of a singular simplex is a chain (with integer coefficients 
1) formed by
first mapping by kr�1

i the standard ðr � 1Þ-simplex Dr�1 onto the ith face of the
standard r-simplex Dr, then mapping by r this face of Dr into M, and finally
linearly combining those mappings.

The standard r-simplex Dr is a special case of an r-simplex Sr and hence (5.21)
holds for it. It is then obvious that

o � o ¼ 0 ð5:26Þ

holds on every r-chain.
Let M be a smooth n-dimensional manifold and let the image of the r-chain c of

smooth singular simplices be part of an open set in the topology of M on which an
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r-form x is defined, r� n: By the singular r-simplex r; x may be pulled back
to Dr: In a coordinate neighborhood of x ¼ rðxÞ 2 M; x 2 Dr; that is, r ¼
ðr1ðxÞ; . . .; rnðxÞÞ; x may be given as x ¼

P
1\i1\���\ir\n xi1���irðxÞdxi1 ^ � � � ^

dxir : Then, with the orthonormal base in Rr 3 Dr and the corresponding coordi-
nates ki; r�ðxÞ may be given as r�ðxÞ ¼

P
1\i1\���\ir\n xi1���irðrðxÞÞ

P
j1;...;

jrðori1=ok j1Þ � � � ðorir=ok jr Þdk j1 ^ � � � ^ dk jr ¼
P

1\i1\���\ir\n xi1���ir ðrðxÞÞDðri1 ; . . .; rir Þ=
Dðk1; . . .; krÞdk1 ^ � � � ^ dkr (cf. (5.2)). The integral of the r-form x over the
image of the singular r-simplex rðDrÞ in M may now be defined as the ordinary
Rr-integral of the pull-back r�ðxÞ over Dr:

Z

r

x ¼
Z

Dr

r�ðxÞ for r� 1;
Z

r

x ¼ xðrð0ÞÞ for r ¼ 0: ð5:27Þ

The integral over an r-chain c ¼
P

lklrl is defined as

Z

c

x ¼
X

l

kl

Z

rl

x: ð5:28Þ

Now, Stokes’ theorem for r-chains,

Z

oc

x ¼
Z

c

dx; ð5:29Þ

can be proved in the general r-dimensional case, where it obviously suffices to
prove it for a smooth singular r-simplex. The proof is technical but straightforward
with the above developed tools. It can be left as an exercise.

Stokes’ theorem for r-chains is the key to the deepest interrelations between
topology, algebra and analysis, the investigation of which in the middle of 20th
century, but proposed mainly by Poincaré at its beginning, was initiated by de
Rham’s theorem (Sect. 5.4).

In the above considerations, r must at least be of class C1ðRrÞ in order that
x can be pulled back. For x itself it would suffice for the integral to exist that
it is a continuous r-form. However, in Stokes’ theorem x must also be C1: In
most applications both r and x may be assumed smooth. Note that in this
section, r was not assumed to be bijective; for that reason the simplices r were
called singular. For instance, r might be constant: rðDrÞ ¼ fxg; x 2 M: In this
case the pull back of x is the constant r-form equal to its value at x and the
integral is the volume jDrj ¼ 1=r! of Dr times this constant x: In that sense,
integrals over r-chains are still integrals in Rr: Nevertheless, these constructs
are very useful. Before exploiting them, in the next section more natural
integrals which may be understood more directly over domains of manifolds
are considered.
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5.3 Integration of Differential Forms

First, a regular domain X in a paracompact smooth orientable n-dimensional
manifold M is defined: every point x 2 M is either an inner point of X or an inner
point of M n X or there is a coordinate neighborhood ðU;uÞ of x such that uðU \
XÞ ¼ uðUÞ \ Rn

� where Rn
� is the half-space of points x ¼ ðk1; . . .; knÞ 2 Rn with

P
i k

i� 1: In other words, the boundary of X is locally diffeomorphic to an ðn� 1Þ-
dimensional hyperplane (the hyperplane

P
ik

i ¼ 1 of Rn). In this precise sense a
regular domain X is a domain with smooth boundary oX: Note, however, that a
regular domain X need not have a boundary at all, it could for instance be all M:

Let X have a boundary. Consider a smooth real function F on a neighborhood
of oX, which is constant on oX and for which FðxiÞ\FðxoÞ whenever xi is an inner
point of X and xo is an inner point of M n X: Let x 2 oX: A vector X of the
n-dimensional tangent space TxðMÞ is an outer vector to X, if XF [ 0: Consider
now the ðn� 1Þ-dimensional tangent space TxðoXÞ at a boundary point x 2 oX:
A base X1; . . .;Xn�1 in this tangent space is called coherently oriented with M, if
with an outer vector X to X the base X;X1; . . .;Xn�1 of TxðMÞ defines the orien-
tation of M, that is, the dual base dx; dx1; . . .; dxn�1 in T�x ðMÞ defines the positive n-
form dx ^ dx1 ^ � � � ^ dxn�1: It is clear that this definition of coherent orientation
does not depend on the chosen outer vector X, and that there is a coordinate
neighborhood U of x in oX and there are local coordinates x01; . . .; x0n�1 in U
smoothly defining an orientation coherent with that of M: In other words, an
orientation of TxðoXÞ coherent with that of M is a smooth and hence all the more
continuous function of x on oX: Since an orientation can only have two discrete
values, if the orientation on oX is coherent with that of M, it must be constant on
each topological component of oX:

Now, let X be a regular domain in M and let x be an at least continuous n-form,
n ¼ dim M, with compact support. In order to define the integral of x over X,
regular n-simplices are defined as diffeomorphisms r from a neighborhood in Rn

of the standard n-simplex Dn into M: If r preserves orientation, it is called an
oriented regular simplex.

A partition of unity on M (which exists since M is paracompact) is used to
reduce the integral over X to a sum of integrals over oriented regular simplices
covering supp x \ X: Since supp x \ X is compact, it has a finite open cover
fU1; . . .;Umg: Let furthermore U be the open set U ¼ M n ðsupp x \ XÞ, so that
fU;U1; . . .;Umg is a finite open cover of M: Consider a partition of unity
f/;/1; . . .;/mg subordinate to this open cover of M, that is, supp / �
U; supp /i � Ui; i ¼ 1; . . .;m and /ðxÞ þ

P
i/iðxÞ ¼ 1 on M: If Ui � X, choose

an oriented regular simplex ri the image of Dn of which contains Ui and is entirely
in X (which is always possible since X is closed and Ui is open). If Uj \ oX is non-
empty, choose an oriented regular n-simplex rj with X � rjðDnÞ � Uj \ X and so
that oX intersects only with the image of the face of Dn opposite to the origin
(Fig. 5.4).
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Although U may intersect X, no simplex need be chosen for U since supp / \
supp x \ X ¼£ and hence /ðxÞxðxÞ ¼ 0 on X: The images of the simplices
ri; i ¼ 1: . . .;m form a closed (overlapping) cover of supp x \ X, and riðDnÞ \
ðM n XÞ ¼£ for all i: On the other hand, /iðxÞxðxÞ are smooth n-forms with
support in Ui, if x is smooth (since the /i are smooth by definition of a partition of
unity), and x ¼ /xþ

P
i /ix on M: Since, however, /x ¼ 0 on X;x ¼

P
i /ix

on X: Therefore, one may define

Z

X

x ¼
Xm

i¼1

Z

ri

/ix ¼
Xm

i¼1

Z

Dn

r�i ð/ixÞ: ð5:30Þ

The last sum is over well defined ordinary integrals in Rn: It remains to show that
this expression is unique in the sense that it does not depend on the used partition
of unity.

Indeed, consider another partition fw;w1; . . .;wlg subordinate to the open cover
fU;V1; . . .;Vlg and correspondingly chosen simplices r0i; i ¼ 1; . . .; l: (U was
defined by X and x only, hence it is not changed.) On supp x \ X, there holds
/ ¼ w ¼ 0: Hence,

Xm

i¼1

Z

ri

/ix ¼
X

ij

Z

ri

wj/ix;
Xl

j¼1

Z

r0 j

wjx ¼
X

ij

Z

r0 j

/i wjx:

By the above construction, for each pair ði; jÞ one has that suppðwj/ixÞ \ riðDnÞ ¼
suppð/iwjxÞ \ r0jðDnÞ: It may be empty. If it is non-empty, r�1

i � r0j is an ori-
entation preserving diffeomorphism on its open domain of definition in Rn (open
neighborhood of part of Dn) which maps part of Dn into Dn: Therefore,

Z

ri

wj/ix ¼
Z

Dn

r�i ðwj/ixÞ ¼
Z

Dn

ðr�1
i � r0jÞ�ðr�i ðwj/ixÞÞ

¼
Z

Dn

r0�jð/i wjxÞ ¼
Z

r0 j

/i wjx;

M

σi

σj

Ui

Ω

Uj

Fig. 5.4 Regular 2-simplices
for a parition of unity of M
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and both double sums in the previous expressions are equal. (ðr�1
i � r0jÞ�� r�i ¼

r0j
� � r�1

i
� � r�i ¼ r0�j was used, see p. 74).

The definition (5.30) may now justly be considered to be the integral of the n-
form x over the regular domain X in M: If, on the other hand, x is a smooth
ðn� 1Þ-form on M; dim M ¼ n, and x has compact support, then dx has also
compact support, and Stokes’ theorem holds:

Z

X

dx ¼
Z

oX

x: ð5:31Þ

Proof Use the partition of unity as in the definition of
R

X : Since
P

i/i ¼ 1 on a
neighborhood of supp x \ X;

P
i d/i ¼ d

P
i /i ¼ 0 there and hence

P
i dð/ixÞ ¼P

i /i dx ¼ dx on X: For Ui � X;
R

oX /ix ¼ 0 because /i ¼ 0 on oX. /i ¼ 0 on
the image of dri too, and since a regular simplex is all the more a smooth singular
simplex, (5.29) applies, and

R
X /ix ¼

R
ri

/ix ¼ 0: Let Ui \ oX 6¼£: Then,

/i 6¼ 0 in the interior of riðDn�1
0 Þ only where Dn�1

0 is the face of Dn opposite to
the origin. Since Dn�1

0 is coherently oriented with Dn and ri is orientation pre-
serving, riðDn�1

0 Þ is coherently oriented with riðDnÞ: Again (5.29) applies,
and

R
X dð/ixÞ ¼

R
ri

dð/ixÞ ¼
R

ori
/ix ¼

R
oX /ix: Hence in total,

R
X dx ¼

R
X

P
i dð/ixÞ ¼

R
oX

P
i /ix ¼

R
oX x: h

Observe for both the definition of the integral over X and the proof of Stokes’
theorem: If X itself is compact, then x need not have compact support in M:

5.4 De Rham Cohomology

Consider as an example dim M ¼ 2 and the equation dx ¼ q where a 2-form q is
given and a 1-form x, in local coordinates x ¼ x1dx1 þ x2dx2; is sought. One has
dx ¼ ðox2=ox1 � ox1=ox2Þdx1 ^ dx2: How must q behave in order that the
equation has a solution x? For any domain X of finite measure one has

R
X q ¼

R
X dx ¼

R
oX x: Hence, if X has no boundary (for instance if X ¼ S2 is the two-

dimensional sphere), then
R

Xq ¼ 0 must hold as a necessary condition for a
solution x to exist. If M ¼ R2; then there are no such compact domains X without
boundary, and no such condition need be posed on q:

In the latter case, R2 may be considered as the complex plane, x1 ¼
Re z; x2 ¼ Im z, and x may be considered as a complex function, ~x ¼ iðx1 þ
ix2Þ: For an analytic function ~x; in this notation dx ¼ 0 by the Cauchy–Riemann
equations, and hence

R
oX x ¼ 0; if X is an oriented domain of analyticity of ~x the

oriented boundary of which is oX: This integral is in the adopted notation the
imaginary part of the complex integral, and its vanishing is part of Cauchy’s
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integral theorem. For the integral to vanish it is sufficient that oX is the complete
oriented boundary of a domain of analyticity of ~x:

The two natural questions that arise in these considerations are: (i) which are
the domains X of a manifold M that have no boundary, and (ii) which surfaces of
M are complete oriented boundaries of oriented domains X: If for instance M is the
two-dimensional torus of Fig. 1.3 on p. 3 (which is orientable), then non of the
circles drawn in the figure is a complete oriented boundary, because as a boundary
it would have to have both orientations simultaneously. Only pairs of oppositely
oriented circles (winding around the torus in opposite directions are boundaries of
domains of the torus.

A domain which has no boundaries is called a cycle. (For instance a circle is a
one-dimensional cycle, an n-dimensional sphere Sn is an n-cycle.) Clearly, every
boundary is a cycle, but, as the above example shows, the reverse need not be true.
Not every cycle need be a boundary. The classification of cycles and boundaries of
manifolds is the subject of homology theory. However, this theory turned out to be
simpler in a more general setting.

In Sect. 5.2, as a certain generalization of domains of manifolds r-chains of
singular r-simplices were introduced. Consider the real vector space 1CrðM;RÞ of
r-chains c ¼

P
l klrl of linear combinations with real coefficients kl of smooth

singular r-simplices rl: Only the smooth case is treated in the sequel although most
results hold also true in the continuous case. Therefore, the presubscript will be
omitted, CrðM;RÞ ¼ 1CrðM;RÞ: Let BrðM;RÞ be the set of boundaries and
ZrðM;RÞ the set of cycles of CrðM;RÞ: Since linear combinations of boundaries
are boundaries and linear combinations of cycles are cycles, both sets are linear
subspaces of CrðM;RÞ: The boundary operator (recall that its operation on
CrðM;KÞ is sometimes denoted by or) maps CrðM;RÞ into Br�1ðM;RÞ �
Zr�1ðM;RÞ � Cr�1ðM;RÞ (since o � o ¼ 0), and by definition of cycles it maps
ZrðM;RÞ to 0:

Im or ¼ Br�1ðM;RÞ; Ker or�1 ¼ Zr�1ðM;RÞ � Br�1ðM;RÞ; ð5:32Þ

where Im or means the image of the boundary operator or defined on CrðM;RÞ;
and the kernel Ker or�1 is defined as the preimage of the origin of Cr�2ðM;RÞ in
Cr�1ðM;RÞ: (See Compendium C.1 on homomorphisms.)

The direct sum of all CrðM;RÞ; r 2 Z may be considered as a graded (by r)
vector space CðM;RÞ with an endomorphism o of degree �1:

CðM;RÞ ¼ f� � � �!o Crþ1ðM;RÞ�!o CrðM;RÞ�!o Cr�1ðM;RÞ�!o � � �g: ð5:33Þ

CðM;RÞ is called a (real) chain complex. Recall that by definition CrðM;KÞ ¼
f0g for r\0, hence CðM;KÞ may be considered as an infinite sequence of map-
pings or of modules. Together with a collection of r-simplices (repetition allowed)
the chain complex CðM;ZÞ contains all their oriented faces as ðr � 1Þ-simplices,
the oriented faces of the latter as ðr � 2Þ-simplices and so on down to the oriented
edges of 2-simplices as line elements and their oriented endpoints as 0-simplices
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(set of all vertices of the original collection). This is how complexes originally
were introduced in topology. In the case of CðM;RÞ all those collections have in
addition real coefficients.

As an example, consider the three 1-cycles on the 2-torus depicted on the left
part of Fig. 5.5. As was already discussed, the cycles z1 and z2 are not boundaries.
Depending on the orientation of the torus, b ¼ z1 þ z2 is the boundary of the
visible domain X on the torus or of �X: Let the first case be valid. Then, z3 is the
boundary of minus the visible domain enclosed by this cycle. The sum b ¼
z1 þ z2 þ z3 depicted on the right part of the figure is the boundary of the visible
enclosed domain denoted again X on this figure. One realizes, if certain cycles are
not boundaries, nevertheless their sums or differences may be boundaries. The
alert reader also immediately realizes the relevance of considerations of that type
for complex analysis, and indeed complex analysis of several variables was one of
the early motivations to develop homology theory.

Two r-cycles z1; z2 are called homologous, z1
 z2, if their difference is an
r-boundary:

ZrðM;KÞ 3 z1
 z2 () z1 � z2 2 BrðM;KÞ: ð5:34Þ

A boundary is called homologically trivial. Hence, two cycles are homologous, if
their difference is homologically trivial. Clearly, the homology relation (5.34) is
an equivalence relation. The Abelian group of equivalence classes in homology of
r-cycles is called the rth homology group HrðM;KÞ: It is the quotient group

HrðM;KÞ ¼ ZrðM;KÞ=BrðM;KÞ ¼ Ker or=Im orþ1: ð5:35Þ

In the case K ¼ Z; as every Abelian group it may also be considered a module; if
K is a field (like R), more specifically it is a vector space. Unlike ZrðM;KÞ and
BrðM;KÞ; HrðM;KÞ is finite-dimensional in most interesting cases.

The reader may convince himself from the above example that the main
topological difference between the 2-torus T2 and the plane R2 is that in R2 every
cycle is a boundary (of the encircled domain) while in T2 there are cycles which
are not boundaries. If all cycles of a chain complex (5.33) are boundaries, this

Fig. 5.5 1-cycles on a 2-torus. Left: z1 and z2 are not boundaries, z3 is a boundary. Right:
b ¼ z1 þ z2 þ z3 is a boundary
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means that Im orþ1 ¼ Ker or for all r, or, equivalently, that all homology groups
are trivial: HrðM;KÞ ¼ f0g: A sequence of morphisms between algebraic objects
like (5.33) is called an exact sequence, if the image of one morphism in the
sequence is the kernel of the next. Sequences of non-trivial chain complexes are
not exact.

Yet, exact sequences form a powerful tool in algebra. For instance, the exact
sequence of homomorphisms of Abelian groups or modules (in particular vector
spaces)

0! G�!f H

means that f is injective: Since the image of the first mapping can only consist of
the zero element of G, the kernel of f must be f0g, and by linearity f must be
injective. If, on the other hand, the sequence

G�!f H ! 0

is exact, this means that f is surjective: since all of H is mapped to 0 by the right
mapping, its kernel is all of H which also must be the image of f : Hence, the exact
sequence

0! G�!f H ! 0

means that the homomorphism f is indeed an isomorphism. Interpret as an exercise
the so called short exact sequence for the case of Abelian groups or modules,

0! H ! G! G=H ! 0;

where H is a subgroup or submodule of G and G=H is the quotient structure.
Coming back to the homology groups HrðM;KÞ of (5.35), it will be seen later

that their dimensions are topological invariants.

brðMÞ ¼ dim HrðM;RÞ ð5:36Þ

is called the rth Betti number of M:
Recall that a 0-simplex is just a point of M, a 0-chain hence is a linear com-

bination of points. Since C�1ðM;RÞ is trivial, a 0-chain has zero boundary. Hence,
every 0-chain is a 0-cycle. The standard 1-simplex is a line element, its image in M
is a finite path between two points. Every pair of points ðz1; z2Þ which can be
connected by a path X in M yields a boundary as its difference: oX ¼ z2 � z1:
Hence, all points which can be connected by a path in M are homologous: the
pathwise connected components of M form a base of the vector space H0ðM;RÞ;
and the zeroth Betti number of any manifold M is equal to the number of pathwise
connected components of M:

If M is contractible (see Sect. 2.5), that is M may continuously be contracted
into one point, then it is intuitively clear and will formally be proved in the next
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section that every r-cycle, r [ 0 is a boundary, that is, HrðM;RÞ ¼ f0g: Hence,
brðMÞ ¼ 0; r [ 0, if M is contractible. In particular,

b0ðRnÞ ¼ 1; brðRnÞ ¼ 0; r [ 0; n� 1: ð5:37Þ

Less trivial cases will be considered in the sequel.
Comparison of o � o ¼ 0 with d � d ¼ 0 for the exterior derivation d of degree

+1 and consideration of Stokes’ theorem suggest a duality between the chain
complex CðM;RÞ and the graded algebra DðMÞ of exterior forms:

DðMÞ ¼ f� � � �d Drþ1ðMÞ �d DrðMÞ �d Dr�1ðMÞ �d � � �g: ð5:38Þ

Again, as previously in Sect. 4.2, Dr ¼ f0g if r\0 or r [ dim M: An exterior
r-form x on M is called a closed form, if dx ¼ 0, it is called an exact form, if
there exists an ðr � 1Þ-form r so that x ¼ dr: Two closed forms x1 and
x2; dxi ¼ 0 are called cohomologous to each other, x1
x2, if their difference is
exact, that is, x1 � x2 ¼ dr for some form r: An exact form is called cohomo-
logically trivial. Clearly, every exact form is closed, and clearly, closed forms as
well as exact forms form linear subspaces of the vector spaces DrðMÞ: De Rham’s
cohomology group is the quotient group

Hr
dRðMÞ ¼ fclosed r-formsg=fexact r-formsg ¼ Ker dr=Im dr�1: ð5:39Þ

Since dim Hr
dRðMÞ� dimDrðMÞ because Hr

dRðMÞ is a quotient space of a subspace
of DrðMÞ; clearly dim Hr

dRðMÞ ¼ 0 for r\0 or r [ dim M: Moreover, from
dimD�1 ¼ 0 it follows that Im d�1 ¼ f0g, and hence H0

dRðMÞ ¼ Ker d0: Now, a
0-form x0 is a real function on M, and hence dx0 ¼ 0 means that the function x0

is constant on each pathwise connected component of M (by integration of dx0

along any path in M). If M has m components, then Ker d0 is the space of real
m-tuples which means that dim H0

dRðMÞ ¼ dim Ker d0 is equal to the number of

pathwise connected components of M and hence equal to the Betti number b0ðMÞ:
It will be seen that this is not an accident.

Let x be a closed r-from and let z be an r-cycle. Consider the real number

hx; zi ¼
Z

z

x

given by the integral (5.27, 5.28). It is obviously bilinear in x and z as suggested
by the way of writing. Let x0 ¼ dr be any exact r-form and let b ¼ oz0 be any
r-boundary. Then, by virtue of Stokes’ theorem (5.29) for singular chains,

hxþ x0; zi ¼
Z

z

xþ
Z

z

dr ¼
Z

z

xþ
Z

oz

r ¼ hx; zi;

since oz ¼ 0 for a cycle z: Likewise,
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hx; zþ bi ¼
Z

z

xþ
Z

oz0

x ¼
Z

z

xþ
Z

z0

dx ¼ hx; zi;

since dx ¼ 0 for a closed form x: In effect, the considered integral depends on the
homology class ½z	 of the cycle z and on the cohomology class ½x	 of the closed
form x only:

h½x	; ½z	i ¼
Z

z

x ð5:40Þ

is a linear form on the space HrðM;RÞ; that is, an element of the dual space
ðHrðM;RÞÞ�; and every element ½x	 of Hr

dRðMÞ yields uniquely such a linear form.
In other words, (5.40) yields a homomorphism of vector spaces

Hr
dRðMÞ ! ðHrðM;RÞÞ�: ð5:41Þ

This reflects the point of view of letting ½x	 run through Hr
dRðMÞ and considering

(5.40) as linear functions on HrðM;RÞ; that is, as elements of ðHrðM;RÞÞ�:

De Rham’s theorem states that (5.41) is in fact an isomorphism.

In this connection the real number (5.40) is called the period of the r-form x
over the cycle z,

perðzÞ ¼ h½x	; ½z	i ¼
Z

z

x: ð5:42Þ

De Rham’s theorem implies that, if there exists a linear function per on ZrðM;RÞ
with the property perðbÞ ¼ 0 for every boundary b, then there exists a closed
r-form x so that

R
zx ¼ perðzÞ: It also implies

dim Hr
dRðMÞ ¼ dimðHrðM;RÞÞ� ¼ dim HrðM;RÞ ¼ brðMÞ: ð5:43Þ

Two isomorphic vector spaces have the same dimension, and two spaces con-
nected by a non-degenerate bilinear form have also the same dimension. More-
over, Hr

dRðMÞ � HrðM;RÞ; if brðMÞ\1, since two real finite-dimensional vector
spaces of the same dimension are isomorphic. Now, considering (5.40) as a
bilinear form on Hr

dRðMÞ � HrðM;RÞ; for every ½x	 6¼ 0 there is a ½z	 so that (5.40)
is non-zero. Otherwise (5.40) would yield the same result on all ½z	 for ½x	 6¼ 0 and
for ½x0	 ¼ 0 and (5.41) could not be an isomorphism. Likewise, for every ½z	 6¼ 0
there is an ½x	 so that (5.40) is non-zero. Otherwise for all ½x	 2 dim Hr

dRðMÞ
(5.40) would yield the same value 0 on ½z	 6¼ 0 and on ½z0	 ¼ 0 and (5.41) would
not be surjective.

An immediate consequence is

brðMÞ ¼ 0 for r [ dim M ð5:44Þ
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and also that dim Hr
dRðMÞ ¼ 0 for all r [ 0, if M is contractible. Hence in par-

ticular, on a contractible manifold M the necessary and sufficient condition for the
equation dx ¼ q to have a solution x is that q is closed, dq ¼ 0, since
dim Hr

dRðMÞ ¼ 0 means that every closed form is exact.
In these considerations both Hr

dRðMÞ and HrðM;RÞ are treated as real vector
spaces. (Recall that every vector space is an Abelian group with respect to vector
addition. This justifies to retain the names homology group and cohomology group
in the considered more special cases.) However, DðMÞ is also an algebra with
respect to exterior multiplication. It is easily seen that the wedge product is
compatible with the cohomology classes of DðMÞ: Indeed, let m; m0;x;x0 be closed
forms and let m� m0 ¼ dq; x� x0 ¼ dr for some forms q and r, that is, ½m� m0	 ¼
0; ½x� x0	 ¼ 0: Then, obviously m ^ x and m0 ^ x0 are also closed forms, and

m ^ x� m0 ^ x0 ¼ ðm� m0Þ ^ xþ m0 ^ ðx� x0Þ ¼ dq ^ xþ m0 ^ dr

¼ dðq ^ xþ ð�1Þrm m0 ^ rÞ þ ð�1Þrmq ^ dx� ð�1Þrmdm0 ^ r:

The last two terms vanish since x and m0 are closed forms. Hence, m ^ x� m0 ^ x0

is an exact form. This implies that m ^ ðx� x0Þ and ðm� m0Þ ^ x as special cases
of the just considered one are also exact forms. This altogether means that the
cohomology class ½m ^ x	 does not depend on the representatives of the coho-
mology classes ½m	 and ½x	, and one may define a wedge product in Hr

dRðMÞ by

½m	 ^ ½x	 ¼ ½m ^ x	: ð5:45Þ

Therefore, the de Rham cohomology HdRðMÞ; the direct sum of all Hr
dRðMÞ; is

indeed again a graded algebra.

5.5 Homology and Homotopy

The alert reader may anticipate from the last section that there is a close con-
nection between the homology of chain complexes and homotopy.

Let F : M ! N be a (smooth) mapping from the (smooth) manifold M into the
(smooth) manifold N: (Recall that generally smooth entities are considered in this
volume.) Let CðM;RÞ be the chain complex on M: A (smooth) singular r-simplex
r 2 CðM;RÞ is a mapping of a neighborhood of the standard r-simplex in Rn into
M: Clearly, F�ðrÞ ¼ F � r is a singular r-simplex in N: Since the oriented
boundary of r was defined in (5.25) as the push forward by r of the oriented
boundary of the standard r-simplex, it is clear that F� maps cycles on M into cycles
on N and boundaries on M into boundaries on N: These mappings need of course
not be one–one, also, M and N need not have the same dimension. Recall that a
singular r-simplex in N even may consist of a single point. Nevertheless, and that
is one of the main advantages of singular chains, it is clear that F� � o ¼ o � F�
and that F� : HrðM;RÞ ! HrðN;RÞ is a homomorphism of vector spaces. Indeed,
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if z1
 z2 are homologous chains of CðM;RÞ then F�ðz1Þ
F�ðz2Þ are homologous
chains of CðN;RÞ:

Now, let F1 and F2 be two homotopic mappings from M into N, that is
(Sect. 2.5), there is a continuous mapping H : ½0; 1	 �M ! N with Hð0; �Þ ¼ F1

and Hð1; �Þ ¼ F2. H may be extended to ~I �M where ~I is an open neighborhood in
R of the closed interval ½0; 1	: Together with M; ~I �M is also a smooth manifold.
Hence, H may be assumed to be smooth since F1 and F2 are smooth and a
continuous function on a smooth manifold (which latter is locally diffeomorphic
with Rn) may be arbitrarily closely approximated by a smooth function.

Let z 2 CðM;RÞ be an r-cycle. Then, ðId~I ; zÞ 2 Cð~I �M;RÞ is a singular
ðr þ 1Þ-chain, which is the image of an ðr þ 1Þ-cylinder in Rnþ1 of height 1 whose
basis and top is the same cycle of ordinary simplices. Clearly its boundary is
ð1; zÞ � ð0; zÞ (Fig. 5.6, z itself as a cycle has no boundary). Hence, H�ðId~I ; zÞ 2
CðN;RÞ is also a chain whose boundary is ðF2Þ�ðzÞ � ðF1Þ�ðzÞ: Since the latter
difference is a boundary, ðF1Þ�ðzÞ
 ðF2Þ�ðzÞ are homologous:

The homomorphisms in homology ðF1Þ� and ðF2Þ� of homotopic maps F1 and
F2 from M into N are the same: ðF1Þ� ¼ ðF2Þ�:

Finally, let M and N be homotopy equivalent, that is, there exist mappings
F : M ! N and G : N ! M so that G � F ffi IdM and F � G ffi IdN (Sect. 2.5).
Since ðIdMÞ� : HrðM;RÞ ! HrðM;RÞ is the identity homomorphism and

ðG � FÞ� ¼ G� � F� (cf. p. 73), it follows that G� ¼ ðF�Þ�1 and hence HrðM;RÞ
and HrðN;RÞ are isomorphic:

Homotopy equivalent manifolds have isomorphic homology groups.

Consider now a contractible manifold, that is, a manifold that is homotopy
equivalent to the one-point manifold fxg: In the latter manifold, every singular r-
simplex is a constant mapping rr of the standard r-simplex to x: Hence, every r-
chain is given as krr; k 2 R; r� 0: From (5.25) it follows that for r [ 0 the
boundary of krr is krr�1 if r is even and is the zero r-chain, if r is odd. That means
that for r [ 0; r odd, every r-chain is a cycle and at the same time is a boundary of
an ðr þ 1Þ-chain, while for r [ 0; r even, there are no non-zero cycles. In sum-
mary, all homology groups Hrðfxg;RÞ for r [ 0 are trivial (consist of the zero
element only and hence are also zero-dimensional). In view of the last theorem the
same is true for any contractible manifold, which also proves (5.37).

0

1
Fig. 5.6 A cylinder of height
1 with a cycle z (boundary of
a triangle) as basis
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Coming back to the homotopy H of the two homotopic mappings F1 and F2

from M into N, consider first two cohomologous r-forms x1
x2 on
N; dðx2 � x1Þ ¼ 0: They are pulled back to M by ðFiÞ�; and, since according to
(4.43) any F� commutes with d, cohomologous r-forms on N are pulled back to
cohomologous r-forms on M: Moreover, since any F� : DðNÞ ! DðMÞ is a
homomorphism of algebras (see p. 111), one finds:

The pull back F� due to a smooth mapping F from M into N provides a
homomorphism from the de Rham cohomology algebra HdRðNÞ into HdRðMÞ:

With the definition (5.27, 5.28) of integrals of singular chains, the above
considerations of the functors F� and F� immediately imply

Z

c

F�ðxÞ ¼
Z

F�ðcÞ

x; c 2 CðM;RÞ; x 2 DðNÞ: ð5:46Þ

With this relation, from the definition (5.40) it follows that

h½F�ðxÞ	; ½z	i ¼ h½x	; ½F�ðzÞ	i; z 2 ZðM;RÞ; x 2 DðNÞ; dx ¼ 0; ð5:47Þ

for the homology and cohomology classes. With the non-degeneracy of the bilinear
form h�; �i which was deduced from de Rham’s theorem on p. 134, one arrives at
the result that homotopic mappings F1 ffi F2 (which yield the same homomor-
phisms ðF1Þ� ¼ ðF2Þ� in homology) yield also the same homomorphisms ðF1Þ� ¼
ðF2Þ� in cohomology. Historically, the latter result was in an earlier context proved
independently from de Rham’s theorem by Poincaré by a direct analysis using
coordinate neighborhoods and was used by de Rham to prove his theorem.

Directly from de Rham’s theorem and the situation with homology it follows:

Homotopy equivalent manifolds have isomorphic cohomology groups.

As an example consider again a one-point manifold fxg: It is zero-dimensional,
and hence all DrðfxgÞ for r [ 0 are zero-dimensional. The above theorem yields in
an extremely simple way that all groups Hr

dRðMÞ � HrðM;RÞ for r [ 0 are trivial
for a contractible manifold M: Generally, cohomology is easier to handle than
homology which circumstance substantiates the central role of de Rham’s theorem
in algebraic topology.

These interrelations between homology and homotopy have a very important
consequence. At the beginning of this section the fact was used that every ho-
motopy can arbitrarily closely be approximated by a smooth homotopy provided
the manifold is smooth, that is, the manifold is locally diffeomorphic to Rn: With
the same homotopic approximations of continuous mappings by smooth mappings
it can be proved that all homology and cohomology results obtained for smooth
mappings between manifolds hold true for only continuous mappings provided
only that the considered manifolds themselves are smooth. In particular, the
0HrðM;KÞ are isomorphic to the 1HrðM;KÞ (therefore the presubscript 1 was
already omitted) and for K ¼ R both are isomorphic to Hr

dRðMÞ:
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In order to emphasize the duality between homology and cohomology, the
algebra DðMÞ is also called a cochain complex C�, the closed forms are then
called cocycles, forming sets ZrðC�Þ � DrðMÞ; and exact forms are called co-
boundaries, forming sets BrðC�Þ � ZrðC�Þ � DrðMÞ: The derivation operator d is
called a coboundary operator in this context.

It would be desirable to have also a pure cohomology notion of homotopy. Let
again F1 and F2 be two homotopic mappings from a pathwise connected manifold
M into N, let dM and dN be the exterior derivations in DðMÞ and DðNÞ: Suppose
there exist linear mappings hr : DrðNÞ ! Dr�1ðMÞ (hr ¼ 0 for r� 0) so that for
every x 2 DrðNÞ

hrþ1ðdNxÞ þ dMhrðxÞ ¼ ðF2Þ�ðxÞ � ðF1Þ�ðxÞ:

If x is closed, the first term is zero and the second is exact. Hence, the left hand
side is exact for every closed x, which is precisely the property of the right hand
side, if F1 and F2 yield the same homomorphism in de Rham cohomology from
HdRðNÞ to HdRðMÞ: This is the case since F1 ffi F2: (The first term on the left hand
side is needed since for a general x not every form ðF2Þ�ðxÞ � ðF1Þ�ðxÞ is closed
even for homotopic Fi:) Specifically, for r ¼ 0 a closed form is a constant on every
connected component, hence the right hand side is zero for homotopic mappings
from a pathwise connected manifold. In the above relation, h may be considered as
an endomorphism from DðNÞ into DðMÞ of degree �1, and, in an operator notion,
the relation may be written as

h � d þ d � h ¼ ðF2Þ� � ðF1Þ�: ð5:48Þ
If such an operator h exists it is called a homotopy operator for F1 and F2: This
compares with the mappings z 7! ðId~I ; zÞ and H�ðId~I ; zÞ and the boundary operators
o~I �M and oN of homology which were combined to yield ðF2Þ�ðzÞ � ðF1Þ�ðzÞ on
p. 136.

As an example consider the mappings F1 : M ! fxg � M and F2 ¼ IdM for a
contractible manifold M: Then, F1 ffi F2 and ðF1Þ� ¼ 0 for r [ 0 as previously for
a pull back from the one-point manifold while ðF2Þ� ¼ IdDðMÞ: The existence of a
homotopy operator h in this case,

h � d þ d � h ¼ IdDðMÞ

was proved by Poincaré and its explicit form in coordinate neighborhoods was
given [1, paragraph 4.19]. This way he proved that on contractible manifolds the
condition dq ¼ 0 is not only necessary but also sufficient for the differential
equation dx ¼ q to have a solution x:

5.6 Homology and Cohomology of Complexes

The algebraic structure of a cochain complex has a variety of applications in
algebra and topology. Let K be a field (for instance K ¼ R; or more generally let K
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be a ring, for instance K ¼ Z) and let C� ¼ ð. . .;C�1;C0;C1; . . .Þ be a sequence of
vector spaces over K (more generally a sequence of K-modules; an example of a
Z-module is a crystal lattice; unlike the case of a vector space, the equation
kxþ ly ¼ 0; k; l 2 K; x; y 2 Ci need not have a solution x for all y in a module
Ci).

As already mentioned, a cochain complex C� is a sequence

� � � ! Cr�1�!d
r�1

Cr�!d
r

Crþ1 ! � � � ; Im dr�1 � Ker dr: ð5:49Þ

As previously, instead of dr often d is written for all r: It is called the coboundary
operator and has obviously the property d � d ¼ 0 which is equivalent to the right
relation of (5.49). BrðC�Þ ¼ Im dr�1 is the set of degree r coboundaries, and
ZrðC�Þ ¼ Ker dr is the set of degree r cocycles.

The quotient module (space)

HrðC�Þ ¼ ZrðC�Þ=BrðC�Þ ð5:50Þ

is called the rth cohomology module (or cohomology group). One also introduces
the direct sums

C� ¼ �rC
r; H�ðC�Þ ¼ �rH

rðC�Þ ð5:51Þ

as graded modules (vector spaces, sometimes even algebras as in the de Rham
cohomology). A graded morphism f of degree s from a graded module C� into a
graded module D� is a sequence of homomorphisms f r from Cr into Drþs: (d is a
graded morphism of degree 1 from C� to C�:)

A cochain mapping f : C� ! D� is a graded morphism of degree 0 for which
each diagram

Cr+1 f r +1

Dr+1

dr dr

Cr f r

Dr

ð5:52Þ

commutes. Because of this commutativity, f sends cocycles into cocycles and
coboundaries into coboundaries (exercise). Hence, it canonically induces a graded
morphism (also denoted by f )

H�ðC�Þ�!f H�ðD�Þ: ð5:53Þ

One could denote the cohomology mappings by HðdÞ instead of d and by Hðf Þ
instead of f , and consider H a functor from the category of cochain complexes into
the category of graded K-modules (see C.1).

With respect to their algebraic structure, homology and cohomology are totally
symmetric. One may drop all prefixes ‘co’ in the above text and reverse all arrows
(or equivalently reverse all degrees of grading) and obtain the completely anal-
ogous homology structure. Hence, all algebraic statements on cohomology
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transfer to homology, and in algebra both names cohomology and homology are
used synonymously. The preference of ‘co’ comes from applications in topology.

Consider a short exact sequence (p. 132) of cochain mappings

0! C��!f D��!g E� ! 0 ð5:54Þ

which expands in detail into the diagram

0 Cr+2 f
Dr+2 g

Er+2 0

d d d

0 Cr+1 f
Dr+1 g

Er+1 0

d d d

0 Cr f
Dr g

Er 0

ð5:55Þ

where every cell of arrows is a commutative diagram. The horizontal short exact
sequences mean that Er ¼ Dr=Cr are quotient modules and f r is the canonical
injection of Cr into Dr as a submodule, while gr is the canonical surjection of Dr

onto Er by mapping the elements of Dr to their equivalence classes in Er:

Pick any cocycle z 2 Er, that is, 0 ¼ dz 2 Erþ1: Since gr is surjective, one finds
(not uniquely) an element c 2 Dr so that gc ¼ z: Commutativity means dr

Egr ¼
grþ1dr

D: (Superscripts and subscripts are used occasionally for the sake of clarity.)
Therefore, gdc ¼ dgc ¼ dz ¼ 0 must hold implying dc 2 Ker grþ1 ¼ Im f rþ1 or,
in other words, there is an element c0 2 Crþ1 for which fc0 ¼ dc and hence dfc0 ¼
ddc ¼ 0: Now, from the commutativity drþ1

D f rþ1 ¼ f rþ2drþ1
C it follows that

0 ¼ dfc0 ¼ fdc0, and the injectivity of f implies dc0 ¼ 0: Hence, c0 is a cocycle,
c0 2 Zrþ1ðC�Þ: In this sequence of mappings, c0 ¼ f�1dc 2 f�1dg�1z, the element
c 2 g�1z was not necessarily uniquely determined, because g need not be injective.
However, since Er ¼ Dr=Cr, the element c is determined modulo an additive
element ~c 2 Dr for which there is an element ~c00 2 Cr with f~c00 ¼ ~c and, because of
the commutativity dr

Df r ¼ f rþ1dr
C; it holds that fd~c00 ¼ df~c00 ¼ d~c: Surjectivity of

f finally guarantees an element ~c0 for which f~c0 ¼ d~c ¼ fd~c00 and hence ~c0 ¼ d~c00;
that is, ~c0 is a coboundary, ~c0 2 Brþ1ðC�Þ: To summarize, c0 2 Zrþ1ðC�Þ is deter-
mined by z 2 ZrðE�Þ up to a coboundary, or, the mapping c0 2 f�1dg�1z induces
homomorphisms dr : ZrðE�Þ ! Zrþ1ðC�Þ=Brþ1ðC�Þ: Now, specifically pick
z ¼ b 2 BrðE�Þ to be a coboundary. Then, there are elements cb 2 Cr�1 so that
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dgcb ¼ b ¼ gdcb ¼ gc and hence b ¼ gc where now c ¼ dcb itself is a coboun-
dary. Hence, by the above reasoning, dr maps a coboundary b 2 BrðE�Þ into a
coboundary ~c0 2 Brþ1ðC�Þ: Thus, it induces canonically a graded morphism (also
denoted d) of degree 1

H�ðE�Þ�!d H�ðC�Þ: ð5:56Þ

As it was shown, d is uniquely determined by the short exact sequence (5.54), that
is, by the quotient structure of the cochain complex E� ¼ D�=C�:

By similar tedious but straightforward chasing around the diagram (5.55) it can
be shown that the sequence

� � � �!d HrðC�Þ�!f HrðD�Þ�!g HrðE�Þ

�!d Hrþ1ðC�Þ�!f Hrþ1ðD�Þ�!g Hrþ1ðE�Þ�!d � � �
ð5:57Þ

is exact.
The link between this purely algebraic (co)homology theory and topology is

provided by sheaf theory. A sheaf of modules is a topological space X each point of
which is attached with a K-module (a stalk) and a quite fine topology is extended
from X to the sheaf. (The germs ½F	 of real functions F on open sets U � M with
x 2 U form the stalksF x of a sheaf ofR-algebras on M, see Sect. 3.3. Sheaf theory is
mainly a rather abstract application of diagrams of commuting and exact parts
(sometimes in a positive sense called ‘abstract nonsense’). It is used to prove the de
Rham theorem and the equivalence of many homology theories. It is not considered
here since it would digress from the main goal of this text. The interested reader is
referred to the concise and clear introduction by Warner [1, Chap. 5].

The central role of (co)homology in topology derives from the fact that the
homology groups are the best understood topological invariants. It was seen in
Sect. 5.5 that even homotopy equivalent manifolds have up to isomorphy the same
homology and cohomology groups. (Recall from Sect. 2.5 that topologically
equivalent spaces, that is, homeomorphic spaces are homotopy equivalent; the
inverse is not in general true, e.g. a single point and a contractible space are
homotopy equivalent.) The (co)homology groups for the same topological space
depend, however, in general on the ring K: In this respect, most important is the
case K ¼ Z; because from the (co)homology groups of this case those for all other
rings K may be straightforwardly calculated by applying results of algebra. On the
other hand, the de Rham theory holds for the case K ¼ R: As another example of
the above algebra, the classical theory of polyhedra in combinatorial topology is
shortly considered.

A polyhedron jcj in Rn is the union (of sets of points of the Rn) of a collection
of r-simplices Sr

i of (5.17) in regular mutual position. If fv0; . . .; vrg is the set of
vertices of the simplex Sr

i ; then any proper subset of sþ 1; s\r, vertices spans an
s-face of the r-simplex Sr

i which itself is an s-simplex. (The vertices themselves
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are 1-faces.) Regular mutual position of simplices of the polyhedron means that
any two of the simplices of the polyhedron either are disjoint or intersect precisely
by some faces of either simplex. The collection of all distinct vertices v ¼ fvj j j ¼
0; . . .; lg of the simplices of the polyhedron are put into a fixed order. Then, there is
a one–one correspondence between simplices Sr

i of the polyhedron and subsets ci

of the set v consisting of r vertices in an order derived from v: A set c is formed the
elements of which are all those subsets ci corresponding to the simplices Sr

i of the
polyhedron, and to all distinct faces of simplices contributing to c: For instance, in
Fig. 5.7 a polyhedron consisting of one tetrahedron and three triangles is shown.
Into its set c one four-point set, 7 three-point sets corresponding to the 7 triangles
including the four faces of the tetrahedron, 14 two-point sets corresponding to all
distinct legs of the triangles, and 10 one-point sets corresponding to the 10 vertices
of the polyhedron enter. The set c is called the abstract complex corresponding to
the polyhedron. It is easily seen that by the given convention there is a one–one
correspondence between actual realizations of polyhedra by simplices and abstract
complexes. However, for a given polyhedron there is an infinite many of possi-
bilities of realizations by simplices. For instance, a triangle may be given by a set
of smaller triangles in regular mutual position. The set of simplices corresponding
to the ci of the abstract complex is called the geometrical complex. The geo-
metrical complex of the polyhedron of Fig. 5.7 consists of one tetrahedron, 7
triangles, 14 line segments and 10 points (vertices). An orientation is defined in
both the abstract and the geometrical complexes by defining the simplices in the
fixed order of their vertices as positively oriented. An odd permutation of the
vertices reverses orientation. Linear combination of the elements ci of an abstract
complex with coefficients of some ring K and introduction of the boundary
operator derived from (5.19) make it into a chain complex, which is isomorphic to
a subset of the complex of continuous singular chains 0Cðjcj;KÞ considered in
Sect. 5.4. Indeed it can be shown that the homology groups of this complex and
those of chains of the abstract complex of the polyhedron jcj are isomorphic.

Before considering the homology of chains of an abstract complex, a simple
result on embedding of polyhedra is considered. The dimension of a polyhedron
is the largest dimension r ¼ m of a simplex entering the polyhedron. mþ 1 points
v0; . . .; vm of the Rnðn�mÞ are linearly independent, if the vectors from v0 to the
vi; i ¼ 1; . . .;m are linearly independent. This does not depend on the order of the
vi and on which of them is taken to be v0: For an arbitrary number m;m points of
the Rn are in general position, if any nþ 1 of them are linearly independent.

An m-dimensional polyhedron with l vertices may be embedded into R2mþ1 by
choosing arbitrarily l vertices in general position.

Fig. 5.7 A polyhedron
consisting of one tetrahedron
and three triangles
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Proof Obviously, all polyhedra with the same number of vertices grouped in the
same way into simplices are homeomorphic. (Recall that geometrical simplices of
polyhedra are in regular mutual position.) Distribute the vertices of the polyhedron
in general position over the R2mþ1 and consider the geometrical simplices with
these vertices corresponding to the simplices of the polyhedron. Let Sr

1 and Ss
2 be

two simplices of the polyhedron, hence r; s�m: Consider the ðr þ sþ 1Þ-
dimensional simplex spanned by all r þ sþ 2 vertices of the former two simplices
of the polyhedron. It may not be part of the polyhedron, but some part of its
boundary is. All simplices of the boundary of a given simplex are in regular mutual
position. Hence, the obtained embedding is homeomorphic to the originally given
polyhedron. h

This result may be used to prove that every compact smooth m-dimensional
manifold may be embedded in the R2mþ1 [2]. Much harder is it to prove the fact
that the same also holds for non-compact manifolds. (Note also that much higher
dimensions may be needed to embed a metric manifold isometrically into some
Rn:)

Now, let a polyhedron jcj of dimension m in Rn be given and consider the
corresponding abstract complex c: The collection of all abstract simplices ci of c
with dimension � r is called the rth skeleton cr of c ¼ cm: Let Crðc;RÞ be the
chain module (in fact a vector space in this case) over K ¼ R generated by all
simplices ci 2 cr n cr�1; that is by all r-dimensional simplices of c: This implies
Crðc;RÞ ¼ f0g for r\0 and for r [ m: Let Cðc;RÞ ¼ �rCrðc;RÞ be the chain
complex of the abstract complex c corresponding to the polyhedron jcj of
dimension m:

The boundary operator o induced in c by (5.19) obviously has the properties
ocr � cr�1 and o � o ¼ 0: By linearity it generalizes to a boundary operator o in
Cðc;RÞ which is a graded morphism of degree �1 of the graded vector space
Cðc;RÞ. Bðc;RÞ ¼ oCðc;RÞ contains the boundaries of Cðc;RÞ; and Bðc;RÞ �
Zðc;RÞ ¼ Ker o; the set of cycles of Cðc;RÞ: The homology groups (vector
spaces) of this chain complex are Hrðc;RÞ ¼ Zrðc;RÞ=Brðc;RÞ:

Among the polyhedra jcj of dimension m there are in particular polyhedra
which are also C0-manifolds M of dimension m: In a quite similar manner as for
H0ðM;RÞ on p. 133 it is easily seen that dim H0ðc;RÞ is equal to the number of
components of the polyhedron (two in the case of Fig. 5.7). Hence, for a poly-
hedron jcj ¼ M which is a manifold, both groups are isomorphic, H0ðc;RÞ �
H0ðM;RÞ: Assume further jcj ¼ M; dim jcj ¼ dim M ¼ m, and consider an
m-cycle of singular simplices, which is a chain of mappings of standard m-sim-
plices into jcj: If its image would contain only part of a given m-simplex of c, it
could not be a cycle, since it would have a boundary in the sense of singular
simplices. Hence, its image can only consist of whole m-simplices of c, and to be a
cycle in CmðM;RÞ these m-simplices must form also a cycle in Cðc;RÞ: Since in
both chain complexes there are no m-boundaries ðCmþ1 ¼ f0gÞ, one has
HmðM;RÞ ¼ ZmðM;RÞ � Zmðc;RÞ ¼ Hmðc;RÞ:
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Next consider a singular ðm� 1Þ-boundary the image of which lies entirely in
the ðm� 1Þ-skeleton cm�1 of c: In order to do so it must be the boundary of a
singular m-chain the image of which consists of entire m-simplices of jcj: Con-
sequently it is also a boundary in Cm�1ðc;RÞ: Of course, a general singular
ðm� 1Þ-boundary need not have this property that its image lies entirely in cm�1:
This image may instead intersect the interior of an m-simplex of jcj as a hyper-
surface of dimension smaller than m: But then obviously it can homotopically be
moved into cm�1: In summary, two homology equivalent cycles of Zm�1ðc;RÞ
correspond to homology equivalent cycles of Zm�1ðM;RÞ: An arbitrary cycle of
Zm�1ðM;RÞ may likewise homotopically be moved into the skeleton jcm�1j: Then,
by repeating the above consideration with jcj replaced by the skeleton jcm�1j, one
finally has Hm�1ðM;RÞ � Zm�1ðjcm�1j;RÞ=Bm�1ðjcm�1j;RÞ � Zm�1ðc;RÞ=Bm�1ðc;RÞ ¼
Hm�1ðc;RÞ:

By repeating these considerations for skeletons jcrj of lower dimensions
one finds that indeed for jcj ¼ M the homologies HðM;RÞ and Hðc;RÞ
are isomorphic:

Of course there exists an abstract formal proof replacing these plausibility
considerations which however needs further technical tools.

Crðc;RÞ is a finite-dimensional real vector space of which the r-simplices of c
form a basis. A linear functional f on this vector space maps every r-simplex ci to
a real number hf ; cii and extends to all Crðc;RÞ by linearity. The set of all linear
functionals forms the dual vector space Crðc;RÞ ¼ ðCrðc;RÞÞ� of the same
dimension as Crðc;RÞ: Let d be the operator in Crðc;RÞ adjoint to o; that is,
hdf ; cii ¼ hf ; ocii; and extension by linearity. From hddf ; cii ¼ hf ; oocii ¼ 0 it
follows immediately that d � d ¼ 0: Clearly, C�ðc;RÞ ¼ �rCrðc;RÞ is a graded
vector space and d : Crðc;RÞ ! Crþ1ðc;RÞ is a graded morphism of degree þ1:
Hence, C�ðc;RÞ is a cochain complex. Consider two homologous cycles z; z0 ¼
zþ ou; oz ¼ oz0 ¼ 0 and two cohomologous cocycles f ; f 0 ¼ f þ dg; df ¼ df 0 ¼
0: It follows hf ; z0i ¼ hf ; zi and hf 0; zi ¼ hf ; zi; hence hf ; zi ¼ h½f 	; ½z	i where ½z	
and ½f 	 are the (co)homology classes of z and f and the statement is that the linear
functional is independent of the representatives within these classes. This, how-
ever, means H�ðc;RÞ ¼ ðHðc;RÞÞ�; and, since dual finite-dimensional vector
spaces are isomorphic, the cohomology H�ðc;RÞ is isomorphic to the homology
Hðc;RÞ: Together with the de Rham theorem one has

HdRðjcjÞ � Hðjcj;RÞ � Hðc;RÞ � H�ðc;RÞ: ð5:58Þ

However, the relation between polyhedra jcj and abstract complexes c is as already
mentioned not one–one. It immediately follows that abstract complexes c related
to the same polyhedron jcj have the same (co)homology groups. The reader should
check this in a few simple cases of small complexes c by direct verification.

On p. 133 it was already stated (and proved in Sect. 5.5) for real singular chain
complexes that all homology groups for r [ 0 of a contractible space are trivial.
Since the n-dimensional unit ball Bn is contractible, HrðBn;RÞ ¼ f0g; r [ 0; and
H0ðBn;RÞ ¼ R; since Bn is pathwise connected. Hence,
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Bn ¼ fr 2 Rnjjrj � 1g; H0ðBn;RÞ ¼ R; HrðBn;RÞ ¼ f0g; r 6¼ 0: ð5:59Þ

The same is true for a single n-simplex since it is homeomorphic and hence all the
more homotopy equivalent to Bn: Let c be the complex of a single n-simplex.
Then, for 0\r\n the skeleton cr consists of all faces of all simplices of crþ1:

Hence, cr n cr�1 consists of the r-faces of a collection of ðr þ 1Þ-simplices. The
r þ 2 r-faces of an ðr þ 1Þ-simplex form an r-cycle. It can now be inferred from
(5.58, 5.59) that every r-cycle ð0\r\nÞ is the boundary of a collection of
ðr þ 1Þ-simplices. This fact is hard to prove directly with polyhedra.

Consider now the polyhedron jcn�1j where c is again the complex of a single
n-simplex. This polyhedron is homeomorphic to the ðn� 1Þ-sphere Sn�1: (Find as
an exercise a continuous one–one mapping.) For n� 1\r\0, the same holds true
as above. However, the single ðn� 1Þ-cycle cn�1ncn�2 of this case is not any more
a boundary because c does not any more belong to the polyhedron. Hence,
Hnðjcn�1j;RÞ ¼ R and in total

Sn�1 ¼ fr 2 Rnj jrj ¼ 1g;
H0ðSn�1;RÞ ¼ Hn�1ðSn�1;RÞ ¼ R; HrðSn�1;RÞ ¼ f0g; r 6¼ 0; n� 1:

ð5:60Þ

In both cases, the arguments and the results remain the same, if K ¼ R is replaced
by K ¼ Z:

The interior of an n-simplex is homeomorphic to an open n-ball and its
boundary is homeomorphic to an ðn� 1Þ-sphere. The latter is homeomorphic to an
open ðn� 1Þ-ball compactified by a point. A point is considered as an open 0-ball.
Spaces, homeomorphic to an open ball are called cells. Instead of building a
topological space which is homeomorphic to a polyhedron out of simplices, it can
be build out of cells. Then, cell complexes and (co)homologies of cell chains are
obtained which latter can again be shown to be isomorphic to (5.58). They often
provide an even simpler approach to the (co)homology groups. For the calculation
of (co)homology groups, all kinds of isomorphies and of homotopies are exten-
sively exploited.

For instance, for compact oriented n-dimensional manifolds M, Poincaré’s
duality is the isomorphism

Hn�rðM;RÞ � HrðM;RÞ; ð5:61Þ

where Hr means the dual of Hr: In view of (5.58) this also means br ¼ bn�r for the
Betti numbers in this case. Poincaré studied this duality (and coined the name Betti
numbers in honor of the Italian pioneer of topology, Enrico Betti), but it was
proved in general only with the help of so-called cup and cap products which
extend the (co)homologies of simplicial chain complexes into graded algebras like
the de Rham algebra (see p. 135) and which are not considered here. It is only
mentioned that in view of de Rham’s theorem (5.61) implies Hr

dRðM;RÞ �
Hn�r

dR ðM;RÞ which implies that for every r-form x on M there is an ðn� rÞ-form s
so that hx; si ¼

R
M x ^ s 6¼ 0:
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As another example, a two-dimensional pretzel T2
g with g holes is sketched in

the upper part of Fig. 5.8. To each hole, there correspond two cycles ai; bi;
i ¼ 1; . . .; g which are not boundaries as was already discussed previously for the
torus. Each of them represents a homology class of similar cycles, and any other
cycle which is not a boundary as for instance c may be represented as a combination
of the cycles ai; bi, for instance c ¼ b1 � b2: By homotopically deforming this torus
(and thereby contracting a path from point A to point B, dotted in the upper part of the
figure, into a single point A of the lower part), the torus is deformed into a topo-
logically equivalent ‘sphere with g handles’. Both surfaces are homology equivalent
and called surfaces of genus g: This can be summarized into

H0ðT2
g;RÞ ¼ H2ðT2

g;RÞ ¼ R; H1ðT2
g;RÞ ¼ R2g: ð5:62Þ

It can be shown that any connected compact oriented two-dimensional manifold is
homology equivalent either to a sphere ðg ¼ 0Þ or to one of these spheres with
handles and is homologically characterized by its genus.

At the end of Chap. 2 it was stated that our knowledge about the homotopy
groups pmðSnÞ; m [ n is limited; however, unlike this largely unsolved problem
on mappings between spheres of high dimensions, all (co)homology groups
HmðSn;KÞ are known and are trivial for m [ n: Discovered half a century later
than regular simplicial homology and homotopy, (co)homology nevertheless
turned out to be a much simpler concept than homotopy to find topological
invariants (but also providing less of them).

5.7 Euler’s Characteristic

Consider a polyhedron jcj or a manifold homeomorphic to a polyhedron, and
consider an abstract complex c corresponding to that polyhedron. Denote the
number of r-simplices in c by arðcÞ: Then, the Euler–Poincaré theorem states

Fig. 5.8 A two-dimensional
manifold of genus g: The
upper part shows a torus T2

g

with g holes, the lower part
shows a ball with g handles.
See text for further
explanations
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vðjcjÞ ¼
X

r

ð�1ÞrarðcÞ ¼
X

r

ð�1ÞrbrðjcjÞ: ð5:63Þ

The middle expression of this relation is called Euler’s characteristic v of the
polyhedron jcj: Leonard Euler observed that for any closed three-dimensional
ordinary polyhedron a0ðcÞ � a1ðcÞ þ a2ðcÞ ¼ 2 holds (number of corners �
number of edges þ number of faces), even if arbitrary polygons are considered as
faces of the polyhedron (their number being a2ðcÞ). If a polygon with n corners is
divided into triangles, n� 3 more edges (legs of the triangles) and n� 3 more
faces (n� 2 triangles instead of the single polygon) are introduced cancelling in
the first sum (5.63). Figure 5.9 shows as an example the subdivision of a pentagon
into three triangles by introducing two more legs. The number of triangles equals
the number of pentagons (one) plus 2 ¼ 5� 3:

The surface of an ordinary polyhedron is homeomorphic to a 2-sphere. The
latter has Betti numbers b0 ¼ 1; b1 ¼ 0; b2 ¼ 1 yielding 2 in the second sum of
(5.63). Thus, Euler found a topological invariant in the 18th century.

Proof of the second equality of (5.63) Observe the simple facts that for a
homomorphism of vector spaces f : X ! Y the relation dim X ¼ dim Im f þ
dim Ker f holds, and that for a chain complex

0! Zr ¼ Ker dr ! Cr ! Br�1 ¼ Im dr ! 0

is an exact sequence. Hence, dim Cr ¼ dim Zr þ dim Br�1 where for an abstract
complex dim Crðc;RÞ ¼ ar since Crðc;RÞ is spanned by the abstract r-simplices.
On the other hand (again for vector spaces), Hr ¼ Zr=Br implies
dim Hr ¼ dim Zr � dim Br, and Poincaré’s original definition of Betti numbers was
br ¼ dim Hrðc;RÞ: Inserting all that into (5.63) proves equality there. Agreement
with (5.36) comes from the isomorphy (5.58) between singular simplicial chain
homology and abstract simplicial chain homology. h

Since the Betti numbers are topological invariants, Euler’s characteristic is also
a topological invariant, and the first sum of (5.63) is independent of the ‘trian-
gulation’ of the polyhedron, its subdivision into simplices, and also is the same for
homeomorphic polyhedrons. The second sum is defined for any space homotopy
equivalent to a polyhedron, and so is Euler’s characteristic. Moreover, combining
the last sum of (5.63) with Poincaré’s duality (5.61) and using of de Rham’s
theorem leads immediately to the result that Euler’s characteristic of a compact
orientable manifold of odd dimension is zero.

Fig. 5.9 A pentagon
subdivided into three
triangles
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Euler’s characteristic has many applications in topology and geometry. The
above proof fits into a much more general scheme. Consider the category of
K-modules and a fixed Abelian group A: Consider further an Euler–Poincaré
mapping / of K-modules into A, that is a mapping with the following property:
For every exact sequence 0! M0 ! M ! M00 ! 0 of K-modules, if /ðM0Þ and
/ðM00Þ exist, then /ðMÞ exists and /ðMÞ ¼ /ðM0Þ þ /ðM00Þ: (For R-vector spaces
M; A ¼ Z and /ðMÞ ¼ dim M this is obviously the case of the proof above.) Now,

let 0! C�!f D�!g E ! 0 be an exact sequence of chain complexes of K-modules

with morphisms f and g of degree 0 like in (5.54) (there it was written for the
cochain case which just means a sign reversion of the degree of grading). Define
the characteristic v/ðCÞ ¼

P
rð�1Þr/ðCrÞ: Then, if the characteristic v/ is

defined for two of the complexes C;D;E, then it is defined for the third one and
v/ðDÞ ¼ v/ðCÞ þ v/ðEÞ: This results from the existence of the long exact
sequence H of (5.57) which can be viewed as a chain complex of K-modules with
trivial homology (all HrðHÞ ¼ f0g) in which each HrðCÞ or HrðDÞ or HrðEÞ is
placed between modules Hr or Hr
1 of the two other chains C;D;E: Since because
of the triviality 0 ¼ v/ðHÞ ¼ v/ðCÞ � v/ðDÞ þ v/ðEÞ (all /ðHrðHÞÞ ¼ 0), the
above statement follows.

If one defines Bþr ðc;RÞ ¼ Br�1ðc;RÞ and considers the exact sequence 0!
Zðc;RÞ�!i Cðc;RÞ�!o Bþðc;RÞ ! 0 of chain complexes of real vector spaces with
the canonical injection i and the boundary operator o of the simplicial complex
which due to the definition of the grading of Bþ is of degree 0, then without
thinking one obtains (with /ðMÞ ¼ dim M) vdimðCÞ ¼ vdimðZÞ þ vdimðBþÞ ¼
vdimðZÞ � vdimðBÞ ¼ vdimðZ=BÞ which is again (5.63).

Given a set A of modules over the same ring, defined up to isomorphism and
such that for every exact sequence 0! M0 ! M ! M00 ! 0 the module M
belongs to A; if M0 and M00 belong to A; the set of Euler–Poincaré mappings
ð/;AÞ has a universal element ðc;KðAÞÞ; that is, an Abelian group KðAÞ and a
mapping c so that every A is a subgroup of KðAÞ with injection i and / ¼ i � c.
KðAÞ is Grothendieck’s K-group of A. K-theory is another powerful tool to prove
theorems in algebra and topology.

5.8 Critical Points

As an application of (co)homology theory of great relevance in physics, the Morse
theory of critical points of smooth real functions on smooth manifolds is con-
sidered. Again the adjective smooth is dropped in the text.

Let M be an m-dimensional manifold and F 2 CðMÞ be a real function on M:
Let x0 2 M and let Ua � M be a coordinate neighborhood of x0 with coordinates
ðx1; . . .; xmÞ: The subscript a is dropped where there is no risk of clarity.

148 5 Integration, Homology and Cohomology



The restriction FjUa
is given by Faðx1; . . .; xmÞ � ua: A critical point x0 of F is a

point where the differential dF vanishes, in local coordinates

oFa

oxi

�
�
�
�
x0

¼ 0; i ¼ 1; . . .;m: ð5:64Þ

This definition, like dF, is independent of the actual local coordinate system a, since
the Jacobian matrix ðw�1

ba Þ
j
i of the second line of (3.7) is regular between two local

coordinate systems. The real value of F at the critical point is a critical value Fðx0Þ:
The critical point x0 is non-degenerate, if the Hessian of Fa at x0,

o2Fa

oxiox j

�
�
�
�
x0

; ð5:65Þ

is a non-degenerate ði; jÞ-matrix. Again, this condition is independent of the used
local coordinate system. The index of the non-degenerate critical point is the
number kx0 of negative eigenvalues of the Hessian of Fa at x0: Since the Hessian is
non-degenerate, it has all eigenvalues non-zero. A family of local coordinate
transformations with regular Jacobian matrices, smoothly depending on parame-
ters, cannot transform the determinant of the Hessian to zero, hence the eigen-
values cannot smoothly change sign depending on local coordinate systems. The
index again is uniquely defined for a function F: Clearly, if the index is 0, F has a
minimum, if the index is m;F has a maximum, and if the index has another value,
F has a saddle point.

Consider a function F that has at most finitely many critical points on a compact
manifold M without boundary. By the Weierstrass theorem, F takes on its minimal
and maximal values on M: (Would that happen on a boundary, the corresponding
points would not necessarily be critical.) Denote by Mc the subset F�1ðð�1; cÞÞ of
M, that is, the set of points x 2 M with values FðxÞ\c, and denote by Sc its boundary
given by FðxÞ ¼ c: Clearly, Mc0 � Mc for c0 � c: One may think of M as an m-
dimensional generalization of a geographical surface of a porous ground and F as a
gravitational potential. If this geography is gradually flooded up to sea level c (in
terms of a gravitational potential level), then Mc is the part of the geography under
water. (In fact just this problem was analyzed for m ¼ 2 in a paper by J. C. Maxwell
in 1870 that can be regarded as the early root of Morse theory.)

In the following, local coordinates are used and the subscript a is dropped
throughout. In Chap. 9 it will be shown, that in every smooth manifold a
Riemannian metric gij; gijgjk ¼ di

k; (p. 107) can be introduced. Consider the tangent
vector field, in local coordinates given by

dxi

dt
¼ �uðxÞgij oF

ox j
gkl oF

oxk

oF

oxl

� ��1

ð5:66Þ

(Einstein summation understood). At non-critical points it is parallel to the tangent
vector gijoF=ox j and hence in the Riemannian metric orthogonal to SFðxÞ:
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(The Riemannian metric is needed to ensure that this expression is regular at non-
critical points.) At critical points the right hand side of (5.66) is not defined.
Therefore, the smooth non-negative prefactor uðxÞ is introduced which is defined
to be unity outside 2d-balls centered at all critical points and zero inside the
corresponding d-balls. The right hand side of (5.66) is defined to vanish inside
those d-balls. This vector field can be integrated to a local 1-parameter group /tðxÞ
with the obvious property

dFð/tðxÞÞ
dt

¼ oF

oxi

dxi

dt
¼ �uðxÞ� 0 ð5:67Þ

for which purpose it was constructed. For t� 0;/t maps every set Mc into itself.
Let c0[ c such that for some small � the interval ðc� �; c0 þ �Þ does not contain

critical values of F: Then, d can be chosen small enough so that uðxÞ ¼ 1 on
Mc0 nMc since for any real interval of F-values there are at most finitely many
critical points. Take t 2 ½0; c0 � c	 and integrate (5.67) to Fð/c0�cðxÞÞ � FðxÞ ¼
c� c0 for x 2 Sc0 : Hence, /c0�c maps Sc0 into Sc: Likewise it is seen that it maps
continuously (by the integral flow of a smooth tangent vector field) Mc0 into Mc:
Generally, from 0�u� 1 in (5.67) it follows that jFð/tðxÞÞ � FðxÞj � jtj, hence
/c�c0 ¼ ð/c0�cÞ�1 maps continuously Mc into Mc0 : It follows that Mc0 and Mc are
homeomorphic.

A topological space M is called of category k ¼ catðMÞ, if it can be covered
with k contractible subsets of M but not with fewer number. A sphere Sn; n [ 0 for
instance is of category 2, catðSnÞ ¼ 2, since it is not itself contractible, but can be
covered with two contractible half-spheres. Category is a topological property,
homeomorphic spaces like for instance Mc and Mc0 above have the same category.

If c is a critical value corresponding to r critical points, then for small enough �
so that there are no more critical values in the interval ðc� 2�; cþ 2�Þ, by the
same analysis a flow /t from Mcþ� into itself is constructed. Choose u such that
the 2d-balls Bi; i ¼ 1;. . .r, around the r critical points do not overlap Mc�� and
each other and are inside Mcþ�: Then, /t provides a flow of parts of Mcþ� into all of
Mc�� � Mcþ� and of parts into the Bi � Mcþ�: Take the contraction by this flow to
see that catðMc��Þ þ r contractible sets cover Mcþ�: Of course, several of them
may be covered by one contractible set, hence catðMcþ�Þ� catðMc��Þ þ r: Now,
start with c0\ minx FðxÞ: Then, Mc0 ¼£; catðMc0Þ ¼ 0: By continuously
increasing c to a value c1 [ maxx FðxÞ, for which Mc1 ¼ M; catðMcÞ may jump at
most CðF : M ! RÞ times by one, where CðF : M ! RÞ is the number of critical
points of F: (Up to here they need not be non-degenerate.) The result is

CðF : M ! RÞ� catðMÞ: ð5:68Þ

It is easily seen that for this result it would suffice that M is any manifold, with
catðMÞ either finite or þ1, and that F would have a minimum and in every finite
real interval at most finitely many critical values each corresponding to finitely
many critical points.
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Let x0 be a non-degenerate critical point of F of index k with critical value c:
A coordinate neighborhood Ua � M centered at x0 exists the coordinate image of
which may be chosen to be the open unit ball of Rm with

Fa ¼ c� ðx1Þ2 � � � � � ðxkÞ2 þ ðxkþ1Þ2 þ � � � þ ðxmÞ2 þ higher terms:

(Morse observed that always coordinates can be found that all higher terms
vanish.) Figure 5.10 shows the case m ¼ 2 and k ¼ 1:

Mc0 as an open subset of M is an m-dimensional manifold or empty. The change
of its homology at a critical value c can be studied by the change of homology of
the image of Ua \Mc0 in Rm. Ua \Mc�� is empty for k ¼ 0, or homotopy
equivalent to a sphere Sk�1 (S0, that is two points, in the case of Fig. 5.10), while
Ua \Mcþ� is homotopy equivalent to a point for k ¼ 0, or to a ball Bk (B1, that is a
horizontal line segment, in the case of Fig. 5.10; think of a third axis x3 in that
figure replacing x2 while the new x2-axis should point into the drawing plane, and
put k ¼ 2, which makes the figure rotational symmetric around the x3-axis and
leads to a circle S1 and a disk B2 in the ðx1; x2Þ-plane instead of S0 and B1 along the
x1-axis).

To proceed, the concept of relative homology is helpful. Let N be a sub-
manifold of M and consider the singular chain complexes on both manifolds. For
short they will be called M-chains and N-chains. Clearly, every N-chain is also an
M-chain, hence CrðN;RÞ is a subspace of CrðM;RÞ; and the quotient spaces
CrðM;RÞ=CrðN;RÞ may be considered which form a chain complex in which M-
chains which differ only by an N-chain are identified. An M-chain whose boundary
is an N-chain represents a cycle in the quotient complex, and an M-chain which
combines with an N-chain to an M-boundary represents a boundary in the quotient
complex. It is readily seen that the boundary operator o for M-chains induces the
boundary operator

or : CrðM;RÞ=CrðN;RÞ ! Cr�1ðM;RÞ=Cr�1ðN;RÞ ð5:69Þ

and that

0! CðN;RÞ ! CðM;RÞ ! CðM;RÞ=CðN;RÞ ! 0 ð5:70Þ

is an exact sequence, which according to (5.57) induces the long exact sequence

Fig. 5.10 Fa � c in the
image of a coordinate
neighborhood. The image of
Ua \Mc�� is the dark
shadowed area, and that of
Ua \Mcþ� consists of both
the dark and the light
shadowed areas
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� � � ! HrðCðN;RÞÞ ! HrðCðM;RÞÞ ! HrðCðM;RÞ=CðN;RÞÞ
! Hr�1ðCðN;RÞÞ ! � � � ð5:71Þ

HðCðM;RÞ=CðN;RÞÞ is called the relative homology of M mod N:

The exactness of the sequence A�!f B�!g C of vector spaces implies
dim B ¼ dim Im gþ dim Ker g ¼ dim Im gþ dim Im f (recall Im f ¼ Ker g). Since
dim Im g� dim C and dim Im f � dim A, it follows dim B� dim Aþ dim C:
Applied to (5.71) this yields for the Betti numbers

brðMÞ� brðNÞ þ brðM mod NÞ; brðM mod NÞ ¼ dim HrðCðM;RÞ=CðN;RÞÞ:
ð5:72Þ

Coming back to the case of a single non-degenerate critical point with index k on
an m-dimensional manifold, it was seen that ðUa \Mcþ�ÞmodðUa \Mc��Þ was
homotopy equivalent to Bk mod Sk�1 which is homotopy equivalent to Sk:
(For instance a two-disc whose circumference is contracted into a point yields a
two-sphere: a piece of textile is tightened into a bag by going the left two steps of
Fig. 2.8 on p. 43 backwards.) The Betti numbers of an empty set are all zero, and
the Betti numbers of Sk are b0 ¼ bk ¼ 1 and all others zero (see (5.60)). Starting
with M�1 ¼£ and proceeding to M1 ¼ M, it is readily seen that

CkðF : M ! RÞ� bkðMÞ; ð5:73Þ

where Ck is the total number of critical points of index k of a function F on a
compact manifold M provided F has only finitely many non-degenerate critical
points. This is the weak Morse inequality.

Next, following in (5.71) the equalities of dimensions in exact sequences given
before (5.72) from r þ 1 down to r ¼ 0, one finds (we drop the field R for the sake
of shorter writing)

dim ImðHrþ1ðCðMÞ=CðNÞÞ ! HrðCðNÞÞÞ
¼ dim HrðCðNÞÞ � dim ImðHrðCðNÞÞ ! HrðCðMÞÞÞ
¼ brðNÞ � ðdim HrðCðMÞÞ � dim ImðHrðCðMÞÞ ! HrðCðMÞ=CðNÞÞÞ
¼ brðNÞ � brðMÞ þ dim HrðCðMÞ=CðNÞÞ
� dim ImðHrðCðMÞ=CðNÞÞ ! Hr�1ðCðNÞÞÞ
¼ brðNÞ � brðMÞ þ brðM mod NÞ
� ðbr�1ðNÞ � br�1ðMÞ þ br�1ðM mod NÞÞ þ � � � �

Realizing that the leftmost expression of this chain of equations is non-negative
and that all b�1 are zero one may cast this result into

crðMÞ� crðNÞ þ crðM mod NÞ; cr ¼
Xr

s¼0

ð�1Þr�sbr; ð5:74Þ
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which analogously to the above consideration yields the strong Morse inequality

Xk

s¼0

ð�1Þk�sCsðF : M ! RÞ�
Xk

s¼0

ð�1Þk�sbsðMÞ: ð5:75Þ

Finally, (5.44) says that the long exact sequence (5.71) becomes trivial at the left
end for r [ m, which yields instead of the inequality (5.74) now an equality for the
Euler characteristics,

vðMÞ ¼ vðNÞ þ vðM mod NÞ: ð5:76Þ

This makes (5.75) also into an equality for that case, the so called algebraic
number of critical points of F,

Xm

s¼0

ð�1ÞsCsðF : M ! RÞ ¼ vðMÞ: ð5:77Þ

Recall that in all these results it was assumed that M is compact and F has only
finitely many non-degenerate singular points.

However, meanwhile Morse theory has been widely generalized to be exploited
in the theory of non-linear equations.

5.9 Examples from Physics

As a first example, classical point mechanics is revisited again (cf. Sect. 3.7 and
the end of Sect. 4.4): It is easily checked, that the Liouville measure sX on the
phase space X can be expressed via the canonical (symplectic) 2-form x as

sX ¼ dq1 ^ � � � ^ dqm ^ dp1 ^ � � � ^ dpm ¼ ð�1Þðm�1Þm=2

m!
x ^ � � � ^ x|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

m factors

: ð5:78Þ

In the wedge product of m factors x all m! terms with all dqi; dpi distinct survive,
all with the same sign due to the pairing. The (not very important) reordering
according to Liouville’s definition then yields the sign factor.

Since x ¼ �dP and dx ¼ 0, the canonical 2-form is exact (coboundary) and
hence closed. The same is true for the 2m-form sX of the Liouville measure:

sX ¼ �
ð�1Þðm�1Þm=2

m!
dðP ^ x ^ � � � ^ x|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

m�1 factors

Þ;

and dsX ¼ 0 as a consequence, but also in general as a ð2mþ 1Þ-form on the 2m-
dimensional phase space. Hence,

5.8 Critical Points 153

http://dx.doi.org/10.1007/978-3-642-14700-5_3
http://dx.doi.org/10.1007/978-3-642-14700-5_4


Z

U

sX ¼ �
ð�1Þðm�1Þm=2

m!

Z

oU

P ^ x ^ � � � ^ x|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
m�1 factors

Þ

for every subset U of the phase space X:
Most importantly, from the invariance (4.55) of x under the time-evolution /t

(Hamilton flow), the same invariance of the Liouville measure follows
immediately:

/�t sX ¼ sX: ð5:79Þ

This is Liouville’s theorem which has well known important applications in
statistical physics, and which bears the well known danger of misinterpretation
too.

For more details on classical point mechanics see [3, 4].

Next, Maxwell’s electrodynamics on a four-dimensional manifold of space-
time is considered. The electromagnetic field is a 2-form which in Minkowski
coordinates ðy1; y2; y3; y4Þ ¼ ðt; x1; x2; x3Þ is given as

F ¼ 1
2

Flmdyl ^ dym ¼ E1dt ^ dx1 þ E2dt ^ dx2 þ E3dt ^ dx3

� B1dx2 ^ dx3 � B2dx3 ^ dx1 � B3dx1 ^ dx2; ð5:80Þ

where units with �0 ¼ l0 ¼ c ¼ 1 are used here and in the following (�0 is the
vacuum permittivity, l0 the vacuum permeability and c the vacuum velocity of
light, all in flat space-time).

Maxwell theory was brought into its most concise form half a century ago based
on E. Cartan’s exterior calculus and on Hodge’s duality (p. 121). This form holds
likewise in global Minkowski geometry of a flat space-time as well as in general.

A pseudo-Riemannian geometry is introduced by the non-degenerate sym-
metric covariant metric tensor or fundamental tensor g, in local Minkowski
coordinates given as (in the following we use Einstein’s summation convention)

gijdyidy j ¼ ðdtÞ2 � ðdx1Þ � ðdx2Þ2 � ðdx3Þ2 or ðgijÞ ¼
1 0
0 �13

� �

: ð5:81Þ

It defines an indefinite scalar product, sign carrying lengths, and angles in the
tangent space in the usual way,

ðXjYÞ ¼ gijX
iXj; jXj ¼ ðXjXÞ1=2; \ðX; YÞ ¼ arccos

ðXjYÞ
jXjjY j for jXj 6¼ 0 6¼ jY j:

ð5:82Þ

It further provides a bijection between tangent and cotangent spaces,

xi ¼ gijX
j; g�1 ¼ gij o

oyi

o

oy j
Xi ¼ gijxj; gijgjk ¼ di

k; ð5:83Þ
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for which hx; Yi ¼ ðXjYÞ holds (cf. (4.24)). A more detailed treatment is given in
Chap. 9.

For the sake of generality, the next relations are given for m dimensions.
The coordinate independence of the scalar product in (5.82) implies gijXiXj ¼
g0klX

0kX0l ¼ g0klw
k
i w

l
jX

iXj and hence gij ¼ g0klw
k
i w

l
j where the determinant of the

transformation (3.6) from the yi to the y0i is the Jacobian J ¼ det w: Taking the

determinant of g yields det g ¼ det g0J2 and hence J ¼ jdet g=det g0j1=2: Therefore,
instead of (5.1),

s ¼ jdet gj1=2dy1 ^ � � � ^ dym ð5:84Þ

yields a coordinate independent volume form in the present case. The corre-

sponding alternating covariant tensor is the Levi-Civita pseudo-tensor E1���m ¼
jdet gj1=2: Its general components are

Ei1���im ¼ jdet gj1=2d1���m
i1���im ; Ei1���im ¼ sg

jdet gj1=2
di1���im

1���m ; sg ¼ sign det g; ð5:85Þ

where the contravariant form according to the bijection (5.83) follows from

E1���m ¼ g1i1 � � � gmim Ei1���im ¼ g1i1 � � � gmimd1���m
i1���im jdet gj1=2 ¼ det g�1jdet gj1=2:

In order to adjust Hodge’s star operator (5.14) to the present more general
case, the second line of (5.14) is written as

�x ¼ ixE; ð5:86Þ

which according to (4.30) for an n-form x and any ðm� nÞ-form r means

hixE; ri ¼ hE;x ^ ri ¼ Ei1���imxi1���inrinþ1���im

and hence (cf. (4.23))

ð�xÞinþ1���im ¼ 1
ðm� nÞ! Ei1���imxi1���in ;

ð�xÞinþ1���im ¼
1

ðm� nÞ! Ei1���imxi1���in ¼ Ei1���im
ðm� nÞ! gi1j1 � � � ginjnxj1���jn :

ð5:87Þ

A second star operation results in

ð� � xÞk1���kn
¼ 1

n!
Eknþ1���kmk1���knð�xÞ

knþ1���km

¼ 1
n!ðm� nÞ! Eknþ1���kmk1���kn Ei1���inknþ1���kmxi1���in

¼ sgd
1���m
knþ1���kmk1���kn

di1���inknþ1���km
1���m xi1���in

¼ sgð�1Þnðm�nÞxk1���kn :
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First, all items of the i1 � � � in-sums are equal to dk1���km
1���m xk1���kn (no summation)

which cancels the factor 1=n!, and then the summation over the distinct indices
knþ1 � � � km cancels the other prefactor 1=ðm� nÞ!: The final answer is

�� ¼ sgð�1Þnðm�nÞ: ð5:88Þ

For consistency, the second relation (5.14) is also redefined while the first relation
remains in effect:

�ð1Þ ¼ dy1 ^ � � � ^ dym; �ðdy1 ^ � � � ^ dymÞ ¼ sg: ð5:89Þ

(In (5.14) gij ¼ dij was assumed, then, for m ¼ 3;Eijk ¼ Eijk ¼ d123
ijk : For example,

for the three-dimensional 2-form �Fij build by the spatial part of (5.80) one has

from the first equation (5.87) �ð�FÞk ¼ �EijkFij ¼ Bk:)
Besides the metric independent derivatives d and LX of exterior forms, the

codifferential operator d : DðMÞ ! DðMÞ is introduced, which applied to an n-
form x is given by (sign factors are nasty but unavoidable in oriented manifolds)

dx ¼ ð�1Þn ��1 d � x ¼ sgð�1Þmðnþ1Þþ1 � d � x; x 2 DnðMÞ;
dx ¼ ð�1Þm�n � d ��1 x:

ð5:90Þ

The second equation of the first line is obtained with (5.88) and ð�1Þðnþ1Þn ¼ 1 for
every n: One has �x 2 Dm�nðMÞ; d � x 2 Dm�nþ1ðMÞ and hence dx
 � d � x 2
Dn�1ðMÞ: This implies that dF ¼ 0 for a 0-form (function) F: For a 1-form x ¼̂X
(cf. (5.82)) and gij ¼ dij one has dx ¼ div X; hence the codifferential operator
generalizes the divergence of a vector field. The second line of (5.90) is obtained
by substituting ��1x 2 Dm�nðMÞ for x 2 DnðMÞ and hence m� n for n in the first
equation of the first line and operating with � from the left. It is readily seen that
d2
 ��1 d � ��1d � ¼ ��1d2 � ¼ 0:

The Laplace–Beltrami operator is defined as

D ¼ dd þ dd ð5:91Þ

which applied to a function in a flat metric reduces to the ordinary Laplace
operator, DF ¼ div gradF: Simple rules are

dD ¼ Dd; dD ¼ Dd; � D ¼ D � : ð5:92Þ

The first two follow readily from the definition (5.91) and d2 ¼ 0 ¼ d2: The last
one follows from corresponding commutation rules �dd ¼ dd� and �dd ¼ dd�
which demand just a bit more of straightforward calculations. One also finds for
x 2 Dn�1ðMÞ; r 2 DnðMÞ

dðx ^ � rÞ ¼ dx ^ � rþ ð�1Þn�1x ^ d � r ¼ dx ^ � r� x ^ � dr ð5:93Þ

where in the last equation the first relation (5.90) was used.
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For a compact manifold M or in general on the exterior algebra DcðMÞ of forms
with compact support, a scalar product

½xjr	 ¼
Z

M

x ^ � r for x; r 2 Dn
cðMÞ; ½xjr	 ¼ 0 for x 2 Dn

cðMÞ 63 r

ð5:94Þ

is introduced. Since (5.93) for x 2 Dn�1
c ðMÞ; r 2 Dn

cðMÞ implies

0 ¼
Z

M

dðx ^ � rÞ ¼ ½dxjr	 � ½xjdr	;

one has

½dxjr	 ¼ ½xjdr	: ð5:95Þ

In this sense d and d are mutually adjoint operators in DcðMÞ considered as a
functional space, normed by the scalar product (5.94).

Finally, for a positive metric g it follows from (5.16) that the scalar product
(5.94) is positive and symmetric. Now, dx ¼ 0 and dx ¼ 0 obviously implies
Dx ¼ 0: Inversely, if Dx ¼ 0, one has

0 ¼ ½Dxjx	 ¼ ½ðddþ ddÞxjx	 ¼ ½dxjdx	 þ ½dxjdx	

and hence, in the case of a positive norm, dx ¼ 0 and dx ¼ 0:
Coming now back to Maxwell’s electrodynamics, Maxwell’s equations in

modern form read

dF ¼ 0 and dF ¼ J or d � F ¼ �J; ð5:96Þ

where

J ¼ Jldyl ¼ glmJ
ldym ð5:97Þ

is related to the four-current density of electric charges as analyzed below, and F
was given in (5.80). These equations are valid independently of the chosen local
coordinate system and, more importantly, independently of a possible curvature of
space-time due to the presence of a gravitational field. It is remarkable that for the
formulation of Maxwell’s equations no connections (Christoffel symbols, see
Chap. 7) and no curvature tensor (Chap. 9) are needed explicitly.

The homogeneous Maxwell equations, dF ¼ 0, contain the 3-form dF which in
a four-dimensional manifold has four independent components. Hence they
comprise four equations (of which due to their particular structure only three are
independent, since they are connected by the one condition d2F ¼ 0 for a 4-form
in four-dimensions). These four equations may be written as � dF ¼ 0 which with
(5.87) means ElmrsðdFÞmrs ¼ 0 and hence dlmrs

1234oFrs=oym ¼ 0; the common ten-
sorial writing of the homogeneous Maxwell equations. With (5.80), the time
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component ðl ¼ 1Þ of this latter four-vector equation is dijk
123oFjk=oxi ¼ div B ¼ 0;

which in three dimensions also means �dF ¼ 0: (Caution! Note that the definition
of � depends on g and on the dimensions.) In the remaining three equations for
i ¼̂ l 6¼ 1 the m-sum contains the m ¼ 1 contribution which may be written as
dijk

123oFjk=ot ¼ �oB=ot and the contribution with m 6¼ 1 which is dijk
123oF0k=ox j ¼

rot E: Hence, these equations read in 3-vector notation rot E ¼ �oB=ot:
If N3 is any three-dimensional hypersurface in M with boundary oN3; then

Z

oN3

F ¼
Z

N3

dF ¼ 0: ð5:98Þ

These are a two-dimensional integral over a 2-form and a three-dimensional
integral over a 3-form. Hence Stokes’ theorem applies. If in particular N3 is any
space-like finite volume, t ¼ const:, then oN3 has no time component, and (5.98)
reads

R
oN3

B � dS ¼ 0; where dS is the surface normal vector to oN3: This is Gauss’
law for magnetism, and it expresses the absence of magnetic charges (monopoles).
The total magnetic flux through a closed surface is always zero. Next take N3 to be
a cylinder (Fig. 5.11) with base S in the ðx1; x2Þ-plane, x3 ¼ 0, and extending in
t-direction from t ¼ t1 to t ¼ t2: Now, the first equation (5.98) reads

R t2
t1

R
oS ds �

E�
R

St¼t1
dS � Bþ

R
St¼t2

dS � B ¼ 0 where ds is the line element of the bounding

contour oS of the cylinder base. The first integral is over the cylinder mantle and
the two others are over the base and the top plane. Differentiation with respect to
time yields Faraday’s law of induction

H
oS ds � E ¼ �ðd=dtÞ

R
S dS � B:

Finally, if H2
dRðMÞ ¼ 0 but not in general, then the relation dF ¼ 0, which

means that F is closed, also implies that it is exact:

F ¼ dA; A 2 D1ðMÞ: ð5:99Þ

This is in particular true in a contractible manifold M and locally in every manifold
since every point of a manifold has a contractible neighborhood. A is the four-
potential of the electromagnetic field F: It is never unique, since A and A0 ¼
Aþ dv with any real smooth function v on M lead obviously to the same
electromagnetic field F: This is the gauge freedom of the electromagnetic four-
potential. A is a cohomology class of 1-forms rather than a single 1-form.

Fig. 5.11 Hypersurface N3

as a cylinder in t-direction
with base in the ðx1; x2Þ-plane
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However, as just discussed, the first equation (5.96) is more fundamental than
(5.99). The equation (5.99) has a 2-form on both sides, hence Stokes’ theorem
applies for two-dimensional hypersurfaces in M and their boundary curves. Inte-
grals over the fields on surfaces are related to contour integrals over potentials.

The inhomogeneous Maxwell equations in the form dF ¼ J have a 1-form on
both sides since d is a graded morphism of degree �1: Equating 1-forms, they
comprise again four equations (of which because of 0 ¼ d2F ¼ dJ again only
three are independent, see below). However, since J has the physical meaning of a
charge and current density, three-dimensional volume integrals are more relevant,
which are obtained by integrating d � F ¼ � J which has 3-forms on both sides:

Z

oN3

� F ¼
Z

N3

d � F ¼
Z

N3

� J: ð5:100Þ

From the fact that three-volume integrals over J are demanded from physics and
that they involve the star operator it follows that electrodynamics requires a metric
of space–time. Among the consequences there is bending of light propagation by
gravitational fields.

In local coordinates, ð� FÞrs ¼ ð1=2ÞErsabFab and ðd � FÞmrs ¼ ð1=2ÞðoErsab �
Fab=oymÞ: Therefore, ðdFÞl ¼ ð� d � FÞl ¼ Elmrsðd � FÞmrs ¼ ð1=2ÞElmrsðoErsab �
Fab=oymÞ¼�1=ð2jdet gj1=2Þdlmrs

1234d
1234
abrsðojdet gj1=2Fab=oymÞ¼�jdet gj�1=2ðdl

ad
m
b � dm

ad
l
bÞ

ðojdet gjFab=oymÞ ¼ 2jdet gj�1=2ðojdet gj1=2Fml=oymÞ: Again it is seen that d is rela-
ted to the divergence of vector analysis as was mentioned after (5.90). Now it is
readily seen from (5.80) and (5.97) that in local coordinates dF ¼ J reads

2jdet gj�1=2ðojdet gj1=2Fml=oymÞ ¼ Jl which again as for the homogeneous equations
is the common tensorial writing of the inhomogeneous Maxwell equations. In tensor
notation one usually omits the factor 2 here and the factor 1=2 in (5.80).

In order to find the physical meaning of Jl consider the 3-form � J ¼
ð1=3!Þjdet gj1=2d1234

lmrsJsdyl ^ dym ^ dyr: If N3 is a spatial three-dimensional hyper-

surface of M, then the contained charge is Q ¼
R

N3
� J ¼

R
N3
jdet gj1=2J0dx1 ^

dx2 ^ dx3 ¼
R

N3
qdx1dx2dx3: Hence J0 ¼ q=jdet gj1=2 where q is the charge density

in locally flat coordinates, and in these coordinates the inhomogeneous Maxwell
equation for l ¼ 1 reads div E ¼ q or, in the form (5.100),

R
oN3

E � dS ¼ Q which
is Gauss’ law of electrostatics. If N3 is the finite hypersurface of Fig. 5.11 with

x3 ¼ 0, then
R

N3
j3dtdx1dx2 ¼

R
N3
� J ¼

R
N3
jdet gj1=2J3dt ^ dx1 ^ dx2 with the

electric current density j in locally flat coordinates, hence J ¼ j=jdet gj1=2: Now,
after differentiation with respect to t, with the same notation as on the previous
page (5.100) reads

H
oS ds � B ¼

R
S dS � J þ ðd=dtÞ

R
S dS � E which is Ampere’s law

with Maxwell’s extension by the displacement current.
The inhomogeneous Maxwell equations (5.95) cannot hold for an arbitrary

form J: Because of d2 ¼ 0 ¼ d2, it must hold that

5.9 Examples from Physics 159



dJ ¼ 0 ¼ d � J;

Z

oN4

� J ¼
Z

N4

d � J ¼ 0; ð5:101Þ

which expresses the charge conservation law. N4 is any compact four-dimensional
submanifold of M: Equation 5.101 means that � J is closed, and for a contractible
M, from that it already follows that it is also exact, that is, that there exists a form
� F so that the last equation (5.96) holds. In general this last equation has a deeper
meaning. If for instance the universe for t ¼ 0; N3, is closed, oN3 ¼ 0; then from
the last equation (5.96) it follows that Q ¼

R
N3
� J ¼

R
oN3
� F ¼ 0: a closed

universe must be exactly electrically neutral. In a closed universe, to every
positive charge as a source of electric field lines there must correspond a negative
charge as a sink of electric field lines.

If the punctured three-space R3 n f0g is considered or the Minkowski space
with the time axis x1 ¼ x2 ¼ x3 ¼ 0 removed, then the field

F ¼ m

8pjrj3
d123

ijk xidx j ^ dxk ¼ m

jrj3
r � dS

is closed but not exact. There is no vector potential A on R3 n f0g from which this
field derives. However, for the part of R3 n f0g with the positive x3-axis removed,
it is easily checked (exercise) that

Aþ ¼ m
x1dx2 � x2dx1

4pjrjðx3 � jrjÞ

is a potential of the above field, and likewise

A� ¼ m
x1dx2 � x2dx1

4pjrjðx3 þ jrjÞ

for the part of R3 n f0g with the negative x3-axis removed. In the overlap of the
two domains of definition both potentials are cohomologous and hence gauge
equivalent. Integrating F over a large sphere S2 around the origin of the three-
space, one obtains

Z

S2

F ¼
Z

S2

B � dS ¼ m:

This is the magnetic charge of the magnetic Dirac monopole in the origin.
In classical electrodynamics F must be a 2-form in the whole Minkowki space and
no magnetic monopole is possible. However, in unified theories of particle physics
the above case might be allowed [5, Chap. 12].

More details on Maxwell theory can for instance be found in [6].

Consider next the dynamics in ideal crystalline solids. An ideal crystal is
assumed to be infinitely extended in the position space R3 with non-degenerate
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vectors of lattice periods a1; a2; a3: In classical approximation, in the ground state
the atoms forming the crystal are at rest in positions Rn þ Si where Rn ¼
n1a1 þ n2a2 þ n3a3; nl integer, �1\nl\1; is the (arbitrarily chosen) reference
point of the periodicity volume or unit cell of the crystal lattice and Si are finitely
many atom positions within a unit cell. In quantum theory the ground state is a
many-particle wave function the absolute square of which has the periodicity of
the lattice. The atoms have a probability distribution centered at Si which is
conceived as ‘zero point vibrations’ around Si: The set of all lattice vectors Rn

forms an Abelian module over the ring (integral domain) Z with the three gen-
erators al: This module will be denoted Lr and is called the Bravais lattice of the
crystal.

If a particle is localized at position r; it makes no physical difference in which
unit cell r is chosen; due to the infinite extension, the physics of the crystal looks
identically the same when considered from position r or from position rþ Rn for
any lattice vector Rn: Hence, for a single excited particle over the ground state the
physical configuration space is the 3-torus T3

r ¼ R3=Lr in which positions r and
rþ al; l ¼ 1; 2; 3 are identified. Figure 5.12 shows how a 2-torus is formed out of
a two-dimensional unit cell; a 3-torus is formed analogously, it is only hard to
draw. If a particle on motion leaves a unit cell it may be considered to enter it
immediately at the equivalent position on the opposite face, keeping up its
direction and velocity of motion. All physically measurable quantities must be
real-valued periodic functions on R3 with the periods al or, which means the same,
real single-valued functions on the torus T3

r : This situation holds for both classical
and quantum physics which is important since kinetic processes in solids are often
treated sufficiently well quasi-classically.

A quantum wave function of a particle (for instance moving in the mean
potential field of the crystal; quasi-particle theory yields a more general theoretical
basis for this picture) is by itself not measurable, it may have a phase factor on it
different in different unit cells. Group theory says that this phase factor can always
be chosen so that the wave function obeys /ðrþ RnÞ ¼ expðip � Rn=�hÞ/ðrÞ: This
is the content of Bloch’s theorem. The parameter p; which has the physical
meaning of the quasi-momentum of the quasi-particle wave, is determined by this
relation only as

Fig. 5.12 The formation of a 2-torus out of a two-dimensional unit cell (parallelogram)
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p ¼ p mod �hGm; Gm � Rn ¼ 2p � integer: ð5:102Þ

This implies Gm ¼
P3

k¼1 mkbk; mk integer, bk � al ¼ 2pdkl: The Gm form the
reciprocal lattice Lp to Lr: The space of quasi-momenta p is again a 3-torus, T3

p;

formed out of the unit cell of the reciprocal lattice Lp: This unit cell is called the
first Brillouin zone. Alternatively, the torus may be again unfolded into the space
R3

p ¼ T3
p � Lp; this time of momenta, in which all physical quantities must be

periodic functions. This is called a repeated zone scheme.
Note that the choice of the unit cell as the periodicity volume in R3 is not

unique. In Fig. 5.13 two different choices are sketched for a two-dimensional
lattice. Often the choice of the right pattern of the figure is made which has
the point symmetry of the Bravais lattice and is called the Wigner–Seitz cell.
Nevertheless, the tori T3

r and T3
p are defined by the quotient spaces with respect to

the lattices only and inherit the quotient topology from the R3: Figure 5.14 shows
how the torus of Fig. 5.12 which corresponds to the left choice of Fig. 5.13 is also
obtained from the right choice of Fig. 5.13.

In both cases, T3
r and T3

p; the space R3 is the simply connected covering space
(next chapter) of the tori: it winds an infinite number of times around the torus in
a1ðb1Þ-direction and an infinite number of times opposite to the a1ðb1Þ-direction,
an infinite number of times in (against) a2ðb2Þ-direction and an infinite number of
times in (against) a3ðb3Þ-direction. A closed loop on the tori is characterized by its
three winding numbers ðn1; n2; n3Þ until it closes. This triple of integers classifies

Fig. 5.13 Unit cell of a
lattice. Left: spanned by some
smallest linear independent
lattice vectors, right:
Wigner–Seitz cell enclosed
by the bisectrices of all lattice
vectors

Fig. 5.14 The formation of a 2-torus out of a Wigner–Seitz cell in R2

162 5 Integration, Homology and Cohomology



the homotopy classes of loops in the fundamental group of the 3-torus which is
p1ðT3Þ ¼ Z3 (Sect. 2.5).

This approach treats a crystalline solid in the thermodynamic limit V !1;
V=Na ¼ const. which focusses on so-called bulk properties of the solid and
neglects surface effects. Here, V is the crystal volume and Na its particle number
of sort a: Since the limit V !1 is subtle in many respects, instead one often
chooses a large but finite crystal volume consisting of a large number of unit cells
in a large parallelepiped with edge lengths Llal; l ¼ 1; 2; 3; Ll large integers, and
puts periodic boundary conditions, also called Born–van Kármán boundary con-
ditions, on that volume by closing it into a large 3-torus. Then, the above peri-
odicity requirements in r-space for singly excited quasi-particles now even are in
effect for a finite total volume of the large 3-torus because no unit cell on that torus
is distinguished. Since a quantum wavefunction is always required to be single-
valued in the whole r-space (this requirement yields for instance all quasi-classical
quantization conditions), the allowed momenta (5.102) now take on discrete
values pl ¼

P3
k¼1 lkbk; Lklk integer, only. These discrete momentum values are

forming a lattice on the torus T3
p and also on the still infinite momentum space R3

p

of the repeated zone scheme. The thermodynamic limit now means to let the lattice
spacings of this discrete momentum lattice go to zero.

In particular the dispersion relation, that is the energy quasi-momentum
relation of a single excited quasi-particle (lattice phonon, Bloch electron, …), is a
multi-valued periodic function of quasi-momentum in the repeated zone scheme or
equivalently a smooth (with few exceptions) multi-valued function on the
Brillouin zone T3

p: Its derivative at p is the group velocity of a wave pocket
concentrated around p in quasi-momentum space:

vm ¼
oem

op
; e ¼ emðp mod �hGmÞ:

The subscript m is the band index, including a polarization or spin index if
necessary. The terminology ‘quasi’-… refers to that meaning of p modulo �h
times a reciprocal lattice vector (Bragg reflection on the lattice Lr) and to the
corresponding multi-valued energies of a lattice vibration spectrum, a band
structure, …

The smoothness of a multi-valued function needs an explanation [7, Paragraph
II.5]. It always suffices to consider a finite number N of bands, if necessary by
cutting off the band structure at the upper energy end. Then, the values femðpÞ; m ¼
1; . . .;Ng are considered as a non-ordered set EðpÞ: If band energies are degen-
erate, they are counted according to their multiplicity. A metric is introduced into
the space of sets E with the distance function (exercise)

dðE;E0Þ ¼ min
P

max
m
jem � e0Pmj ð5:103Þ

where P runs over all permutations of the N subscripts of the second set E0:
Smoothness is now understood with respect to that metric. Alternatively, in the

5.9 Examples from Physics 163

http://dx.doi.org/10.1007/978-3-642-14700-5_2


case when all em are real (by neglecting their imaginary parts which describe
quasi-particle lifetime), sometimes it is appropriate to use an ordered set ~E ¼
f~emðpÞ; m ¼ 1; . . .;Ng of single-valued functions ~eðpÞ; for each value p ordered in
ascending order of energies. These functions are in most cases continuous but not
smooth.

As a consequence of the general dispersion law (5.103), the angle between the
quasi-momentum vector p and the group velocity vector v can be quite arbitrary,
they even can point in opposite directions (negative effective mass) or v can be
zero for non-zero momentum (standing waves with non-zero momentum and
hence non-zero phase velocity). Points p of zero group velocity lead to so-called
van Hove singularities in the quasi-particle density of states

DðeÞ ¼
X

m

Z

d3pdðe� emðpÞÞ ¼
X

m

Z

emðpÞ¼e

d2p

joemðpÞ=opj

where the last integral runs over an iso-energy surface in T3
p: Note, that for all

lattices the tori T3
r and T3

p are compact, and hence so are all iso-energy surfaces

on the latter torus.
The van Hove singularities arise from the zero in the denominator of the

integral over the iso-energy surface, hence each band ~emðpÞ; if it has a critical point
in the sense of Morse theory, contributes a singularity. In order to apply Morse
theory, the Betti numbers of the 3-torus are needed. They are found in textbooks of
topology and follow from the Künneth theorem: If M ¼ M1 �M2, then

Hr
dRðM;RÞ ¼ �pþq¼rH

p
dRðM1;RÞ � Hq

dRðM2;RÞ;

which may be condensed into a product formula for the graded cohomology
algebras as H�ðMÞ ¼ H�ðM1Þ � H�ðM2Þ and which yields for the Euler charac-
teristics vðMÞ ¼ vðM1ÞvðM2Þ: For an n-torus Tn ¼ S1 � � � � � S1 (n factors), by
induction this results in (exercise)

brðTnÞ ¼ dim HrðTnÞ ¼ nr; vðTnÞ ¼ ð1� 1Þn ¼ 0: ð5:104Þ

For the 3-torus the sequence of Betti numbers is 1; 3; 3; 1; 0; 0; . . .:
For a single analytic band with only non-degenerate critical points there are

minima of index k ¼ 0, two kinds of saddle points of signature ðþ þ �Þ and
ðþ � �Þ of indices k ¼ 1 and k ¼ 2, respectively, and maxima of index k ¼ 3:

The weak Morse inequalities say Ckðem : T3 ! RÞ� bkðT3Þ which means in turn

C0� 1; C1� 3; C2� 3; C3� 1:

Stronger estimates are provided by the strong Morse inequalities, resulting in
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C0� 1; C1 � C0� 2; C2 � C1 þ C0� 1; C3 � C2 þ C1 � C0� 0:

The left hand side of the last inequality is in fact the negative of the algebraic
number of critical points, and hence even equality holds there:

C0 � C1 þ C2 � C3 ¼ vðT3Þ ¼ 0:

There must be at least one minimum and one maximum and three saddle points of
each type, but of course there can be many more relative minima and maxima and
many more saddle points for a general dispersion low. Even then their numbers are
not independent. They must fulfil the strong Morse inequalities, and their algebraic
number must be zero.

These are the estimates for the corresponding numbers of van Hove singular-
ities of a smooth single non-hybridized band in three dimensions. Analogous
results are easily found for two- and one-dimensional cases. For acoustic branches,
the minimum at p ¼ 0 is often not smooth. Nevertheless there is a singularity
(non-analyticity) of the density of states there, possibly of a more soft type. In the
case of hybridizing bands there may be zero-, one- and two-dimensional band
crossings which may be minima or maxima or saddle points of ~emðpÞ; but which do
not lead to van Hove singularities since v is non-zero there. (Again they may lead
to softer singularities.) In that case the number of van Hove singularities per band
may be reduced. The above estimates then give the minimum numbers for a whole
band group as a smooth multi-valued function.

In simple models of dispersion there may occur degenerate critical points. For
instance in the nearest-neighbor tight-binding model for an s-band in the bcc
lattice there appears a degenerate saddle point, and in the corresponding model for
the fcc and hcp lattices there appears a degenerate maximum. Similar degenerate
critical points appear in the d-band complexes of such models. They all lead to
stronger van Hove singularities in lesser number compared to non-degenerate
critical points.

Next, the quasi-classical dynamics of Bloch electrons of metals in an external
homogeneous magnetic field is considered. This problem was essentially solved
for all physics-relevant situations without use of topological methods in the late
fifties of 20th century by I. M. Lifshits and coworkers [8]. The topological treat-
ment is due to S. P. Novikov and coworkers [9, Chap. 2].

In these processes, only electrons in a vicinity of the Fermi level of negligible
width on the scale of emðpÞ are involved. In three dimensions, the Fermi surface,
FS ¼ fpjemðpÞ ¼ eF for some mg; is a compact two-dimensional surface (oriented
submanifold) in T3

p under the assumption that it does not contain critical points of
emðpÞ and that there are no band crossings (degeneracies) at the Fermi energy eF:
If critical points on the Fermi surface or band crossings at the Fermi energy appear,
they can be removed by a small perturbing potential, and afterwards the limes may
be considered in which the amplitude of this perturbing potential approaches zero.
Since the Fermi surface separates the domains in T3

p with emðpÞ\eF from the rest
for smooth functions emðpÞ; it is a boundary with orientation defined by the velocity
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vector (5.103). It is also a closed submanifold of T3
p (see second example on p. 75)

and as a closed subset of a compact set it is compact.
The number of connected components (number of ‘sheets’) of the Fermi sur-

face is b0ðFSÞ ¼ dim H0ðFS;RÞ; and the genus g of each connected component
FSl is g ¼ b1ðFSlÞ=2 ¼ ðdim H1ðFSl;RÞÞ=2 (cf. (5.62) and Fig. 5.8, sphere,
2-torus, pretzel with g holes).

Consider the homotopy of sheets of Fermi surfaces. The sheet index l is
suppressed in the following. If a sheet has genus g ¼ 0, that is, it is homotopy
equivalent to a sphere and hence contractible on the torus T3

p; then p1ðFSÞ ¼ 0:
If it has genus g ¼ 1, that is, it is a 2-torus, then a loop may have two independent
windings, p1ðFSÞ ¼ Z2 (cf. the end of Sect. 2.5). If the genus of a sheet in general
is g, then the same arguments as in connection with Fig. 5.8 on p. 146 yield
p1ðFSÞ ¼ Z2g: It is a peculiarity of a two-dimensional compact oriented manifold
that p1ðFSÞ ¼ H1ðFS;ZÞ:

Next, consider the embedding map F of a Fermi surface sheet into the Brillouin
zone, F : FS! T3

p; that is, a point on FS in an arbitrary surface parametrization is
mapped by F onto the corresponding quasi-momentum p: This mapping induces a
mapping of any loop on FS onto a loop on T3

p and also a mapping of homotopy

classes of loops on FS into homotopy classes of loops in T3
p: If two loops are

homotopic on FS, that is, they can continuously be deformed into each other on
FS, then they can a fortiori be continuously deformed into each other in T3

p where

the deformation need not be kept on FS: Hence, the push forward F� : p1ðFSÞ !
p1ðT3

pÞ is a homomorphism of groups. Therefore, the image of the mapping F� is a

subgroup of p1ðT3Þ ¼ Z3 which has 0; Z; Z2 and Z3 as subgroups of rank 0, 1, 2
and 3. Generator of the subgroup Z for instance can be any element ðn1; n2; n3Þ of
the original group Z3; where nðn1; n2; n3Þ; n 2 Z are the elements of Z; accord-
ingly for the other subgroups. The rank r of F�ðp1ðFSÞÞ is also called the rank of
the Fermi surface sheet FS:

Now, the relation between the genus g and the rank r of a Fermi surface sheet is
studied. The details are depicted in Fig. 5.15. From left to right in the first row the
following cases are shown: First, an FS is shown which is homotopic to a sphere.
This was discussed above to yield p1ðFSÞ ¼ 0, hence, trivially F�ðp1ðFSÞÞ ¼ 0
and r ¼ 0: Next, a torus is shown, p1ðFSÞ ¼ 2; g ¼ 1, of which however both
winding loops, a and a loop around the hole of the torus, are contractible in T3

p:

Hence, F�ðp1ðFSÞÞ ¼ 0 and r ¼ 0: In the right picture another torus is shown as
FS which, unfolded in the covering space R3; yields a corrugated cylinder. Here, a
loop around the cylinder is still contractible in T3

p; but the loop a is not any more

contractible, it winds around one closure of the torus T3
p: The loop b winds two

times around that closure, there are loops winding n times around it or n times in
the opposite winding direction (counted �n). Hence, F�ðp1ðFSÞÞ ¼ Z and r ¼ 1:
In the second row from left to right, first a pretzel with two holes and hence g ¼ 2

166 5 Integration, Homology and Cohomology

http://dx.doi.org/10.1007/978-3-642-14700-5_2


is shown where again all loops are contractible in T3
p which means r ¼ 0: Next, a

pretzel is shown of which one hole is again inside T3
p and the other one coincides

with one hole of T3
p (that one closing the top and bottom face). There is only one

type of loops not contractible in T3
p and hence r ¼ 1: Why the last picture in this

row shows a pretzel with two holes in T3
p is indicated in the sketches below, where

first the left and right faces are closed and then the top and bottom faces. Here
there are two types of loops on FS, one from bottom to top and one from left to
right, which are not contractible in T3

p: Hence, F�ðp1ðFSÞÞ ¼ Z2 and r ¼ 2:
Finally, in the bottom row only the case r ¼ 3 for a FS which is a pretzel with tree
holes and hence g ¼ 3 is shown. As an exercise the reader may draw sketches for
FS with any g [ 2 for cases r ¼ 0; 1; 2; 3:

The conjecture from these consideration is

r� 3; r� g:

It was already shown by the homomorphism argument for F� that r� 3 and that
g ¼ 0 implies r ¼ 0, hence r [ 0 implies g [ 0: That means that only the second
inequality for r ¼ 2; 3 remains to be proved. To that goal, the homology groups H2

of FS and of T3
p are considered. Suppose that a single FS sheet is a boundary in the

Fig. 5.15 Genus g and rank r of Fermi surface sheets. The Brillouin zone T3
p is shown as a cube

of which opposite faces have to be identified. Further explanations are given in the text
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Brillouin zone. The alternative is considered below. Here, the push forward of the
embedding F is another homomorphism F� : H2ðFS;RÞ ! H2ðT3

p;RÞ; which is

trivial, F�ðH2ðFS;RÞÞ ¼ 0; since FS is a boundary in T3
p: Therefore, for any closed

2-form x; dx ¼ 0, on T3
p the bilinear form

R
FS x ¼ h½x	; ½FS	i ¼

R
o�1FS dx ¼ 0

(cf. (5.40), o�1FS is the domain in T3
p to which FS is the boundary), which implies

that the pull back F� : H2
dRðT3

pÞ ! H2
dRðFSÞ is also trivial. Moreover, since Zr ¼

F�ðp1ðFSÞÞ ¼ F�ðH1ðFS;ZÞÞ; there are r mutually non-homologous cycles cðFSÞ
(not combined into boundaries) on FS which remain non-homologous on T3

p:Again
exploiting the non-degeneracy of (5.40), there must be r linearly independent
cohomology classes ½r	 of closed 1-forms r on T3

p so that h½r	; ½cðFSÞ	i 6¼ 0: Hence,

F�ðH1
dRðT3

p;RÞÞ ¼ Rr � H1
dRðFSÞ ¼ R2g: Now, in R2g a symplectic structure may

be introduced with the non-degenerate closed 2-form x ¼
Pg

i¼1 dqi ^ dpi

(cf. p. 113), where qi and pi may be, roughly speaking, local coordinates along the
cycles ai and bi of Fig. 5.8. Assume for some i that dqi and dpi are both pull-backs of
some closed 1-forms ri; si on T3

p: Then, F�ð½ri ^ si	Þ � F�ðH2
dRðT3

pÞÞ ¼ 0 which
contradicts the non-degeneracy of x: Hence, at most one of each pair of 1-forms in
the symplectic form x can be a pull-back of a closed 1-form onT3

p; and consequently
2r� 2g: (Accordingly, in Fig. 5.15 at least one of the cycles ai; bi for each pretzel
hole of the FS is contractible in the Brillouin zone T3

p:)
Note that in these considerations a central point was that the considered single

FS sheet is a boundary. The only alternative is a pair of corrugated planes ‘in
average’ parallel to each other which are not pathwise connected in T3

p but which
only together form a boundary. For that reason they must always appear in pairs,
since the total FS is necessarily a boundary as shown earlier. According to their
orientation, the two partners have homology classes opposite to each other. They
are heuristically seen to form two 2-tori ðg ¼ 2Þ with r ¼ 2 each, which also can
be proved formally.

On Fig. 5.16, the development of a real Fermi surface of YCo5 under increasing
pressure is shown where sheets of all ranks except r ¼ 3 appear. In the third upper
panel there are small sheets with g ¼ r ¼ 0 centered at the top and bottom faces of
the Brillouin zone while in the lower panels the emergence under pressure of a
sheet with g ¼ r ¼ 0 around the center of the Brillouin zone is shown. In the
second upper panel there are small sheets (tori) with g ¼ 2; r ¼ 0 centered on the
edges of the hexagonal faces. The sheet of the left upper panel is a corrugated
cylinder with g ¼ r ¼ 1: The large sheet of the second panel has g ¼ 3; r ¼ 1: the
six holes around the vertical edges of the hexagonal Brillouin zone yield, after
closing the sides of the Brillouin zone as shown in Fig. 5.14 on p. 162, two holes
centered at the points AEC and DBF of Fig. 5.14 (each of the six holes belongs to
three zones). Cycles around these holes are, however, obviously contractible (into
the above mentioned points) in T3

p: Hence the only non-contractible class of
trajectories appears due to closing the top and bottom face of the Brillouin zone
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into a torus, like in the first band arising from trajectories parallel to the hexagonal
axis. The monster like Fermi surface sheet of the third panel has g ¼ 7; r ¼ 2: the
two holes centered on the hexagonal axis and the tree holes centered on the edges
of the hexagonal faces (one from two opposite edges) all yield contractible cycles
in T3

p: The only two relevant holes are those appearing by closing the two unin-
terrupted horizontal edge lines of the Fermi surface sheet around the mantle of the
Brillouin zone as in Fig. 5.14. They yield two classes of cycles non-contractible in
T3

p; from trajectories in three directions in the hexagonal plane two of which are
linearly independent. No trajectory perpendicular to the hexagonal plane remains
non-contractible.

The rank r of a Fermi surface is defined to be equal to the maximal rank of its
sheets. Why is the rank of a Fermi surface interesting? It for instance governs the
magneto-resistivity of pure samples at low temperatures in strong magnetic fields.
In this case the dynamics of the electrons can be treated quasi-classically. If no
voltage is applied, the equations of motion are

dpi
m

dt
¼ e

c
Fij o

op j
emðpÞ ¼

e

c

oem

op
� B

� 	i

¼ e

c
½vm � B	i; dr

dt
¼ vm ¼

oem

op
; ð5:105Þ

Fig. 5.16 Real Fermi surface of two majority spin conduction bands of hexagonal YCo5 under
increasing pressure from left, 0 GPa, to right, about 25 GPa (courtesy of H. Rosner)
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where e is the electron charge and c is the velocity of light. B is a spatially
homogeneous applied magnetic field and vm is the Fermi velocity of a Bloch
electron on the Fermi surface of band m: The motion in quasi-momentum space is
all the time perpendicular to the Fermi velocity, hence the Bloch electron stays all
the time at constant energy on the Fermi surface. If Cartesian coordinates are
introduced in both the quasi-momentum space and the position space with the
z-axis in B-direction, then the projection of the motion onto the x; y-plane in
quasi-momentum space is geometrically similar with the motion in position space
rotated by 90� in the mathematically positive direction (due to the negative
sign of e) as compared to the motion in quasi-momentum space. While pz

m ¼
const.; dz=dt ¼ vz

mðpmðtÞÞ is a periodic function of pm which in the simplest model
case of a Fermi sphere is a constant. Recall, however, that in general v is an
arbitrary function of p; and both are in general not collinear.

While in the considered case with a homogeneous magnetic field the motion in
quasi-momentum space is always on closed orbits, the position space is a torus
only in the idealized model of an infinite perfect crystal. In reality the distance of a
unit cell from a boundary of a sample is measurable, and hence the physical
motion is in the universal covering space R3: Then, the trajectory of the Bloch
electrons through the crystal is a closed orbit, if the corresponding trajectory in
the Brillouin zone is contractible. It is running through the whole crystal as an
open trajectory, if the corresponding trajectory in the Brillouin zone is not con-
tractible, which can be the case in r linearly independent directions for each
Fermi surface sheet the rank r of which is non-zero. The directions are given by
the generators ðn j

1; n
j
2; n

j
3Þ; j ¼ 1; . . .; r of the subgroup F�ðp1ðFSÞÞ � p1ðT3

pÞ; that

is, by the reciprocal lattice vectors G j ¼ n j
1b1 þ n j

2b2 þ n j
3b3: Only in the case of

pairs of corrugated planes there are open trajectories in all directions on those
planes.

If the mean scattering time of Bloch electrons (defined by the purity of the
crystal and by the temperature) is s, then the length of the trajectory in quasi-
momentum space between two scattering events is on average Dp ¼ jðevF=cÞBsj
where vF is the average Fermi velocity. Strong magnetic fields are those for which
Dp� �hjbij; but lBohrB� eF in order that the quasi-classical treatment applies. If
only closed trajectories in position space are present, then the conductivity tensor r
and the resistivity tensor q are [8]

rij

B�2 B�1 B�1

B�1 B�2 B�1

B�1 B�1 azz

0

@

1

A; qij

bxx B bxz

B byy byz

bzx bzy bzz

0

@

1

A

while, if open trajectories are present, then

rij

B�2 B�1 B�1

B�1 ayy ayz

B�1 azy azz

0

@

1

A; qij

B2 B B
B byy byz

B bzy bzz

0

@

1

A
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The field direction is assumed to be the z-direction and in the second case the
direction of open trajectories in the quasi-momentum space is the x-direction. The
entries aij and bij in the matrices mean that these components stay constant in the
limit B!1 of the quasi-classical theory. The quotient qyx=B ¼ R is the Hall
constant.

Further analysis now needs for a given Fermi surface to find the directions of
magnetic field B with respect to the reciprocal lattice for which open trajectories
may occur. This task can again be solved with topological methods [9, Chapter 2].
Even if r ¼ 1 there need not be directions for the field so that open orbits appear: if
the ‘corrugated cylinder’ is a spiral shaped tube, there may be no plane intersecting
it in open trajectories.
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Chapter 6
Lie Groups

6.1 Lie Groups and Lie Algebras

A Lie group is a smooth manifold that is also a group. Lie groups play a central
role in the geometry of manifolds and in the theory of invariants of dynamical
systems in physics. They are named in honor of S. Lie, their theory was much
developed by E. Cartan.

A Lie group G is a smooth manifold with a group structure such that for all
g; h 2 G the mapping G� G! G : ðg; hÞ 7! gh�1 is smooth. Then, the mapping
h 7! h�1 is also smooth, since it can be considered as a case of the previous
mapping with g ¼ e; the unit element of the group. The composition of these two
mappings yields the mapping ðg; hÞ 7! gh; which hence is also smooth. In sum-
mary, all group operations are smooth as a consequence of the smoothness of
ðg; hÞ 7! gh�1:

Since a Lie group is a special case of a topological group, all the arguments
used on p. 46 for topological groups are valid. In particular, if the group consists of
more than one pathwise connected component as a topological space, then each
pathwise connected component is diffeomorphic to the pathwise connected com-
ponent Ge containing the unit element e of the group, and G=Ge ¼ p0ðGÞ; the
zeroth homotopy group of G whose elements are in one–one correspondence with
the pathwise connected components of G:

A simple case of a Lie group is Rn with its usual topology and vector addition
as group operation. It is Abelian and additively written. The product G� G0 of
two Lie groups G and G0 with the product manifold structure (p. 60) and the
direct product group structure (Compendium C.1) is a Lie group. For instance
Rn ¼ R� � � � � R (n factors).

Let fa1; . . .; ang be a base of the vector space Rn; and consider the lattice
L ¼ f

Pn
i¼1 niai j ni 2 Zg: L is a subgroup of the Lie group Rn: The quotient group

Tn ¼ Rn=L is also a topological space with the quotient topology. Tn is a Lie
group and is called the n-torus group. The 1-torus group can be viewed as the
multiplicative group S1 ¼ fei2pt j t 2 Rg: Then, Tn � S1 � � � � � S1 (n factors).

H. Eschrig, Topology and Geometry for Physics, Lecture Notes in Physics, 822,
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Write the points of Rn2
as real n� n-matrices A; and consider the subset of Rn2

of non-singular matrices, det A 6¼ 0; with the relative topology from Rn2
: Since

det A is a polynomial and hence a smooth function on Rn2
;Glðn;RÞ ¼ fA j det A 6¼

0g is an open subset of dimension n2 of Rn2
and hence an n2-dimensional smooth

submanifold. It becomes a Lie group under matrix multiplication where AB�1 is a set
of rational functions with non-zero denominators and hence smooth. It is called the
general linear group of n dimensions (linear transformations of the vector space
Rn). In particular Glð1;RÞ ¼ R n f0g is the multiplicative group of non-zero real
numbers. It consists of two pathwise connected components, the positive and the

negative real numbers. Likewise, the points of Cn2 � R2n2
(p. 21) may be written as

complex n� n-matrices C; and the submanifold Glðn;CÞ ¼ fC j det C 6¼ 0g forms
the complex general linear group of n dimensions. In particular Glð1;CÞ ¼
C n f0g is the multiplicative group of non-zero complex numbers. It is pathwise
connected but not simply connected.

Consider the product manifold Glðn;RÞ � Rn; but instead of the ordinary
direct product group structure define the group operations by ðA; xÞðA0; x0Þ ¼
ðAA0;Ax0 þ xÞ: This is the Lie group of affine motions or affine linear trans-
formations of Rn: By defining the action of the group elements ðA; xÞ on any point
y 2 Rn by ðA; xÞy ¼ Ayþ x; any group element performs an affine motion of Rn

and group multiplications correspond to compositions of affine motions (exercise).
Formally, ðA; xÞ may be represented by a special ðnþ 1Þ � ðnþ 1Þ-matrix for
which the group operation is now the matrix product:

ðA; xÞ 7! A x
0 1

� �

;
A x
0 1

� �
A0 x0

0 1

� �

¼ AA0 Ax0 þ x
0 1

� �

:

The action on y 2 Rn becomes a matrix multiplication by appending an nþ 1st
unit element to y:

Returning to the general theory, every element g 2 G defines mappings lg :
h 7! gh and rg : h 7! hg of G into itself. They are called left and right translations
by g: If H is a subset of G; then lgðHÞ ¼ gH; rgðHÞ ¼ Hg: These mappings are
injective: gh ¼ gk yields h ¼ k after left translation by g�1: They are also sur-
jective: any element k 2 G is gðg�1kÞ and hence image of some element g�1k 2 G
with respect to the left translation by g: These simple considerations apply likewise
to right translations. Being group operations the translations are smooth trans-
formations of the manifold G:

Let X 2 XðGÞ be a tangent vector field on the manifold G: At every point h 2 G
it defines a tangent vector Xh 2 ThðGÞ: Let G be n-dimensional and let xðh0Þ ¼
ðx1ðh0Þ; . . .; xnðh0ÞÞ be a local coordinate system centered at h, xðhÞ ¼ 0: For every
smooth real function F : G! R it yields XhF ¼

P
i n

iðhÞðoF=oxiÞx¼0: For
every h 2 G; a left translation by g induces as a push forward a mapping lhg� :

ThðGÞ ! TghðGÞ: A tangent vector field X is called a left invariant vector field, if
lh
g�ðXhÞ ¼ Xgh; that is, the tangent vector at h is pushed forward into the tangent
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vector at gh of the same tangent vector field. Right invariant vector fields are
defined analogously.

Let g be the set of all left invariant vector fields on the Lie group G: Then,

1. g is a real vector space isomorphic to TeðGÞ by the isomorphism p : X 7!Xe:
Consequently, dim g ¼ dim TeðGÞ ¼ dim G:

2. X 2 g is smooth.
3. X; Y 2 g) ½X; Y� 2 g; that is, g is a Lie algebra (p. 68).
4. Let fX1; . . .;Xng be a base of the vector space g; then there are constants ck

ij

such that

½Xi;Xj� ¼
Xn

k¼1

ck
ijXk; ck

ij þ ck
ji ¼ 0;

X

l

ðcl
ijc

m
lk þ cl

jkcm
li þ cl

kic
m
lj Þ ¼ 0: ð6:1Þ

These constants are uniquely defined by G and the base fXig of g:

Proof Linear combinations of left invariant vector fields are clearly left invariant
vector fields, hence g is a subspace of the real vector space XðGÞ: p is injective,
since pðXÞ ¼ pðYÞ ) Xe ¼ Ye ) Xg ¼ Yg for all g 2 G due to left invariance. p is
also surjective, since for every Xe 2 TeðGÞ there is X 2 XðGÞ with Xg ¼ leg�ðXeÞ:
Hence, p is an isomorphism of vector spaces.

Smoothness of left invariant vector fields is traced back to smoothness of the
group operations of Lie groups and properties of the push forward, analyzed in
(3.29, 3.30) on the basis of the commutative diagram on p. 73. In the present case,
h 2 Ua; lgðhÞ ¼ gh 2 Ub and local coordinates xa ¼ uaðhÞ 2 Ua and yb ¼
ubðghÞ 2 Ub are to be considered, where smoothness of the group operations
means that the coordinates yb ¼ ðlgÞbaðxaÞ are smooth functions of the coordinates
xa for all admissible charts ðUa;uaÞ and ðUb;ubÞ: Equation 3.30 with F ¼ lg now

reads lh
g�ðo=oxi

aÞ ¼
P

jðoðlgÞ j
ba=oxi

aÞðo=oy j
bÞ: The first factor of the last expression

is the jth component of the vector field at yb and, as the derivative of the smooth
function ðlgÞba; is a smooth function of the xa:

If X and Y are lg-related (p. 78), then ½X; Y� is lg-related, and hence Lie products
of left invariant vector fields are left invariant vector fields. From that, the exis-
tence and uniqueness of the constants ck

ij follows. Their properties are a direct
consequence of the properties (3.17) of the Lie product. h

Depending on context both isomorphic Lie algebras g and TeðGÞ are called the
Lie algebra of the Lie group G: The relevance of this Lie algebra lies in the fact
that it locally, and in the important case of pathwise connected, simply connected
Lie groups also globally, completely determines the Lie group. In physics one
speaks of the elements of the Lie algebra as of the infinitesimal generators of the
Lie group. The constants ck

ij are called the structure constants of the Lie group G:

Let x 2 DrðGÞ be an r-form on G: At each point h 2 G; xh is an element of
KrðT�h Þ (cf. (4.32)). A left translation lg induces as a pull back a mapping l�g;h :

KrðT�ghðGÞÞ ! KrðT�h ðGÞÞ: The r-form x is called a left invariant r-form, if
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l�g;hðxghÞ ¼ xh; that is, the r-form at gh is pulled back to its own value at h: Left
invariant r-forms form the vector space Dr

invðGÞ and the exterior algebra

DinvðGÞ ¼
Xn

r¼0

Dr
invðGÞ; n ¼ dim G: ð6:2Þ

Like the case of tangent vector fields, here due to a property of pull back,
smoothness of r-forms is a consequence of left invariance. Right invariant r-forms
are defined analogously.

The left invariant 1-forms, which in local coordinates are
P

i xiðhÞdxi; are
called the Maurer–Cartan forms.

Left invariant r-forms have the following properties:

1. They are smooth.
2. DinvðGÞ is a subalgebra of DðGÞ: By the isomorphism p� : x 7!xe;DinvðGÞ is

isomorphic to KðT�e ðGÞÞ; in particular D1
invðGÞ is isomorphic to T�e ðGÞ and

hence dual to g:

3. x 2 D1
invðGÞ and X 2 g) hx;Xi ¼ const. on G:

4. x 2 D1
invðGÞ and X; Y 2 g) hdx;X ^ Yi ¼ �hx; ½X; Y �i:

5. If #i 2 D1
invðGÞ and f#1; . . .; #ng is the base dual to fX1; . . .;Xng; then the

Maurer–Cartan equations or structure equations

d#i ¼ �
X

1� j\k� n

ci
jk#

j ^ #k; ci
jk ¼ h#i; ½Xj;Xk�i ð6:3Þ

hold.

The isomorphism of 2 is proved analogously to the case of vector fields, and 3 is
a direct consequence. 4 follows from (4.49) where the second line vanishes due to
3, and 5 follows from the duality h#i;Xji ¼ di

j together with (4.22, 6.1) and 4. Let

# ¼
P

i #
iXi; then h#e; �i maps TeðGÞ isomorphically onto g: The tangent-vector

valued 1-form # is called the canonical Maurer–Cartan form.
Depending on context, in the whole concept of Lie algebra of Lie groups

sometimes right invariant vector fields and forms are used, mainly for the sake of
convenience of notation. Since in both cases the Lie algebra g is isomorphic to the
same TeðGÞ and DinvðGÞ is isomorphic to the same KðT�e ðGÞÞ; the buildings in both
cases are isomorphic to each other. However, the composition of two right
translations is rg0rg : h 7! hgg0 and hence rgg0 ¼ rg0rg: This contravariant behavior
transfers to the push forward rh

g�; and therefore the Lie product ½X; Y� of left

invariant vector field corresponds to the Lie product ½Y ;X� of right invariant
vector fields. Correspondingly, the structure constants of both cases differ by a
sign while all the above given relations remain valid for both cases.

For an Abelian Lie group (like for instance Rn) left and right invariant vector
fields coincide, hence all structure constants vanish and the corresponding Lie
algebra is also Abelian: all Lie products are zero.
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6.2 Lie Group Homomorphisms and Representations

A mapping F : G! H of a Lie group G into a Lie group H is a Lie group
homomorphism, if it is both a smooth mapping of manifolds and a homomor-
phism of groups, that is, Fðgh�1Þ ¼ FðgÞFðh�1Þ: If it is a diffeomorphism of
manifolds then it is an isomorphism, because in that case F is onto and F�1 exists
and hence F�1ðFðgÞÞF�1ðFðh�1ÞÞ ¼ gh�1 ¼ F�1ðFðgh�1ÞÞ ¼ F�1ðFðgÞFðh�1ÞÞ
which proves that F�1 is also a homomorphism. A (Lie group) isomorphism from
G onto itself is a (Lie group) automorphism. Naturally, the automorphisms of G
form a group with respect to composition as group operation (exercise). If H is the
transformation group Aut ðVÞ (automorphism group) of some vector space V
(p. 100), for instance H ¼ Glðn;RÞ or H ¼ Glðn;CÞ; then the homomorphism F is
called a representation of the Lie group G:

A K-linear mapping L : g! h (K ¼ R or C) from a Lie algebra g over K
into a Lie algebra h over K which preserves Lie products, Lð½X; Y �Þ ¼
½LðXÞ; LðYÞ�; is a (Lie algebra) homomorphism. (It is an ordinary homomorphism
of algebra.) If it is one–one and onto, then it is an isomorphism. An isomorphism
from g onto itself is an automorphism. If h is the algebra EndðVÞ of K-linear
mappings of some vector space V over K into itself (endomorphisms, forming an
algebra with respect to composition as multiplication, exercise), for instance h ¼
glðn;RÞ or h ¼ glðn;CÞ (all real or complex n� n-matrices, respectively), then
the homomorphism L is called a representation of the Lie algebra g:

Let G and H be Lie groups with Lie algebras g and h; and let F : G! H be a Lie
group homomorphism. Then, for every X 2 g; X and F�ðXÞ are F-related, and
F� : g! h is a Lie algebra homomorphism.

Proof By definition of the tangent map F� of the mapping F (p. 71), F�ðXÞFðgÞ ¼
Fg
�ðXgÞ; which also means that X and F�ðXÞ are F-related (p. 78). It is to be proved

that F�ðXÞ is a left invariant vector field on H: Let e be the unit in G and ~e the unit
in H: Since F is a Lie group homomorphism, lFðgÞ 	 F ¼ F 	 lg; and hence
F�ðXÞFðgÞ ¼Fg

�ðXgÞ¼Fg
�ðle

g�ðXeÞÞ¼ ðF 	 lgÞ�ðXeÞ¼ ðlFðgÞ 	FÞ�ðXeÞ¼ l~eFðgÞ�ðF�ðXÞ~eÞ
where in the third and fifth equality the covariance of the push forward (p. 73) was
used. Hence, F�ðXÞ2h: It remains to prove that F�ð½X;Y �Þ¼ ½F�ðXÞ;F�ðYÞ�: But
this follows from the previous result and the statement on p. 78. h

Quite similarly it is shown that F� pulls back left (right) invariant r-forms ~x on
H to left (right) invariant r-forms x ¼ F�ð~xÞ on G: In particular, since invariant
1-forms are dual to invariant vector fields, F� on D1

invðHÞ ¼ h� is transposed to F�
on g: Since the exterior differentiation d commutes with F�; (4.43), it follows from
(6.3) for the pulled back 1-forms

dðF�ð ~#iÞÞ ¼ �
X

1� j\k� n

~ci
jkF�ð ~#jÞ ^ F�ð ~#kÞ; ð6:4Þ
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where the ~#i form a base of Maurer–Cartan forms of H and ~ci
jk are the structure

constants of H:
There are intimate algebraic interrelations between Lie groups G and their Lie

algebras g: Let a Lie group G of dimension m be given with its Lie algebra g: Let a
collection of linearly independent left invariant 1-forms x1; . . .;x~m out of g� �
D1

invðGÞ be given, ~m not necessarily related to m: The natural question arises, is there
a Lie group H of dimension ~m with Lie algebra h;with a base ~x1; . . .; ~x~m of h� and a
Lie group homomorphism F : G! H so that F�ð~xiÞ ¼ xi; i ¼ 1; . . .; ~m holds.

Observe that, if F exists, its graph is an embedded submanifold ðG; cÞ of the product
manifold G� H (which is also a Lie group with its Lie algebra g
 h) with c : G 3
g 7! ðg;FðgÞÞ 2 G� H: Introduce the canonical projections pG : G� H ! G and
pH : G� H ! H which both are Lie group homomorphisms. Hence, the 1-forms

fmi ¼ p�GðxiÞ � p�Hð~xiÞ ¼ p�GðF�ð~xiÞÞ � p�Hð~xiÞ j i ¼ 1; . . .; ~mg ð6:5Þ

are left invariant 1-forms on G� H: p�G and p�H are pull backs from G and H;
respectively, to G� H; and F� pulls back from H to G: Since the p�GðxiÞ are
obviously linearly independent from the p�Hð~xiÞ (they belong to subspaces of
ðg
 hÞ� linearly independent of each other) and the ~xi; i ¼ 1; . . .; ~m were
supposed to form a base of h� and hence to be linearly independent from each
other, the forms (6.5) are also linearly independent. Consider the two-sided ideal
I of DinvðG� HÞ generated by the forms (6.5), that is, the algebra

I ¼ spanKfDinvðG� HÞ ^ mi ^ DinvðG� HÞg ð6:6Þ

which is the span of all elements of the set on the right hand side. From (6.4),

d p�GðF�ð~xiÞÞ�p�Hð~xiÞ
� �

¼
X

ci
jk p�GðF�ð~x jÞÞ ^p�GðF�ð~xkÞÞ�p�Hð~x jÞ^p�Hð~xkÞ
� �

¼
X

ci
jk ½p�GðF�ð~x jÞÞ�p�Hð~x jÞ� ^p�GðF�ð~xkÞÞ
�

þp�Hð~x jÞ ^ ½p�GðF�ð~xkÞÞ�p�Hð~xkÞ�
�
;

where the ci
jk are the structure constants of G� H: This result shows dI � I ;

which is expressed by saying that I is a differential ideal of DinvðG� HÞ:
Now, pull back the 1-forms mi from G� H to the graph of F by the embedding

mapping c of the graph of F into G� H: With pG 	 c ¼ IdG and pH 	 c ¼ F one
finds

c�ðmiÞ ¼ ðpG 	 cÞ�ðF�ð~xiÞÞ � ðpH 	 cÞ�ð~xiÞ ¼ F�ð~xiÞ � F�ð~xiÞ ¼ 0;

where also c� 	 p�G ¼ ðpG 	 cÞ� was used and the corresponding relation for pH :

Hence, on the graph of F there hold ~m independent relations mi ¼ 0; and
dmi ¼ 0 mod m1; . . .; m~m: By the dual Frobenius theorem (p. 80) this means that the
graph of F is the integral manifold of the completely integrable Pfaffian system
mi ¼ 0; i ¼ 1; . . .; ~m on G� H:
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These considerations presupposed the existence of F: Now, suppose that only a
homomorphism f : g! h is given (in the above case f ¼ F�). The transpose f � of
f maps 1-forms on H to 1-forms on G: In a way analogous to the above it is
straightforwardly demonstrated that the 1-forms on G� H;

fmi ¼ p�Gðf �ð~xiÞÞ � p�Hð~xiÞ j i ¼ 1; . . .; ~mg ð6:7Þ

generate a differential ideal I of DinvðG� HÞ and hence define a graph of a
homomorphism F : G! H as the unique integral manifold of the system mi ¼
0; i ¼ 1; . . .; ~m ¼ dim H through the point ðe;~eÞ 2 G� H; if G is pathwise con-
nected. A first consequence is the following theorem:

Let the Lie group G be pathwise connected, and let F and F0 be Lie group
homomorphisms from G into the Lie group H such that the Lie algebra homo-
morphisms F� and F0� from g into h are identical. Then, F � F0:

Proof As homomorphisms, F and F0 agree at the unit e 2 G: Moreover, F� and
F0� agree as the transposes to F� and F0�: Hence, F and F0 define identical dif-
ferential ideals on G� H and hence have identical graphs. h

6.3 Lie Subgroups

Let G and H be Lie groups, and let H be a subset of G; not necessarily provided
with the relative topology as a topological space, but such that

1. H is a subgroup of G;
2. ðH; IdÞ is an embedded submanifold of G:

A Lie group which is isomorphic to H is called a Lie subgroup of G: If one speaks
of uniqueness of a Lie subgroup, uniqueness of H as a subset of G is always meant.
The topology of the embedding must be such that smoothness of the group operations
is provided, the embedding need not be regular. H is called a closed Lie subgroup of
G if in addition the subset H is closed in the topology of G: It can be shown [1] that the
Lie subgroup H is a regular embedding, iff it is a closed Lie subgroup of G:

If g is a Lie algebra and h � g is a linear subspace of g closed under the Lie
product ½X; Y� of g; then h is also a Lie algebra; it is called a subalgebra of g:

Let H be a Lie subgroup of the Lie group G; and let h and g be their Lie
algebras. Then h is a subalgebra of g:

This simply follows from ðIdHÞ� ¼ Idh where ðIdHÞ� is a Lie algebra homo-
morphism (see p. 177).

Let G be a connected Lie group, and let U be a neighborhood of the unit e: Then,
U generates G; which means

G ¼
[1

n¼1

Un; Un ¼ f g1 � � � gn|fflfflfflffl{zfflfflfflffl}
group product

j gi 2 Ug: ð6:8Þ
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Proof Let V ¼ U \ U�1;U�1 ¼ fg�1 j g 2 Ug; and let H ¼ [1n¼1Vn � [1n¼1Un: It
is easily seen that H is a subgroup of G: It is also an open subset of G since for every
g 2 H the set gV is a neighborhood of g and gV � H: Thus, for every g 2 G the coset
gH is an open subset of G: Since cosets are disjoint, either gH ¼ H or gH \ H ¼ [;
which means that the open subset H of G as the complement of all cosets gH 6¼ H is
also closed in G: Since G is connected and H is not empty, H ¼ G. h

Since a Lie group is a finite dimensional manifold, it has a neighborhood U of
the unit e for which U is compact and hence contains a countable dense set. From
that and the above theorem it follows easily that the connected component Ge is
second countable. Hence,

A Lie group G is second countable, iff G=Ge is countable.

In this text the latter is always presupposed, that is, a Lie group is supposed to
have at most countably many connected components and so to be second
countable.

Let G be a Lie group with Lie algebra g; and let h be a subalgebra of g: Then
there is a unique connected Lie subgroup H of G which has h as its Lie algebra.

Proof h is a ðdim h ¼ ~mÞ-dimensional involutive distribution on G (Sect. 3.6). By
the Frobenius theorem, there is a unique maximal connected integral manifold
ðH0;FÞ through e 2 G: Let H ¼ FðH0Þ: h is left invariant, therefore for every
h 2 H; ðH0; lh�1 	 FÞ is also an integral manifold of h through e; and, because of the
maximality of ðH0;FÞ; lh�1 	 FðH0Þ � H: Hence, if h; k 2 H; then h�1k 2 H and H
is a subgroup of G:One must show that ðh; kÞ 7! h�1k is smooth in the topology of H
inherited from the embedding ðH0;FÞ: This follows since F is smooth and one–one
and lh�1 is a diffeomorphism: h�1k ¼ ðlh�1 	 FÞðF�1ðkÞÞ is a smooth function of h for
fixed k; in particular h�1 is a smooth function of h: Also, k�1h is a smooth function
of k for fixed h and so is ðk�1hÞ�1 ¼ h�1k: Thus, H is a Lie subgroup of G:

Assume that there is another connected Lie subgroup K of G which has h as its
Lie algebra. Both must coincide in a neighborhood of e; and therefore they are
identical due to the previous theorem. h

In summary, there is a one–one correspondence between the connected Lie
subgroups of a Lie group and the subalgebras of its Lie algebra. It can be shown
(Sect. 9.2) that for every subgroup of a Lie group there is at most one manifold
structure which makes it into a Lie subgroup.

6.4 Simply Connected Covering Group

Universal coverings have deep consequences in physics, therefore they are
considered here in some detail. Who is not so much interested in the technical
details may just take notice of the theorems in italics and skip the proofs.
The following analysis is essentially due to Pontrjagin [2, §50].
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A continuous mapping p : ~M ! M of a topological space ~M onto a topological
space M is called a covering, if every point x 2 M has a neighborhood U which is
evenly covered by p; meaning that the preimage p�1ðUÞ of U is a (possibly
infinite) union of disjoint open sets Va of ~M each of which is homeomorphic to U:
M is called the base of the covering, and ~M is called the covering space.
Two homeomorphic covering spaces ~M and ~M0 with coverings p and p0 onto M are
considered equivalent coverings of M; if there exists a homeomorphism F :
~M0 ! ~M for which p0 ¼ p 	 F:

For example, p : t 7!/ ¼ eit is an 1-fold covering of the unit circle S1 in the
complex plane (with Arg / as local coordinate) by the real line R (with global
coordinate t). In general of course, only local coordinate relations are possible.
More sophisticated familiar examples of coverings are Riemann surfaces with
branch points and poles removed as coverings of domains of holomorphy of
complex functions in the complex plane.

So far, nothing on the connectedness of M was presupposed. If, however, N is a
connected topological space which is continuously mapped by F into ~M and by
p 	 F into some U � M so that the intersection FðNÞ \ Va with one of the sets Va

of an even covering of U is non-empty, then obviously FðNÞ � Va: FðNÞ as the
continuous image of a connected space is connected, and the Va are mutually
disconnected since they are disjoint and homeomorphic to the open set U and
hence open.

In particular, if F : I ! M; I ¼ ½0; 1� is a path in M starting at x ¼ Fð0Þ and
F� : I ! ~M is a path in ~M with F ¼ p 	 F�; then it is straightforward to demon-
strate that the path F� is uniquely defined by its starting point F�ð0Þ and by F
(Fig. 6.1). Moreover, a continuous deformation of F causes a continuous

Fig. 6.1 Lifting of a path F from M to a path F* in the covering ~M. Left an evenly covered open
set U � M and some of its covering sets Va � ~M are shown. F* is uniquely defined by F and
F*(0) (black dot). If F leaves U and then returns, F* need not return in the same Va where it
started, but its end point is still uniquely defined by F and F*(0). This is illustrated on the right
side for the covering of S1 by R
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deformation of F�: This is the basis of the homotopy of coverings. In the fol-
lowing, as in Sect. 2.5, F� means a path running against F (from the end point of
F to the starting point of F through the same intermediate points in opposite
direction) and F0F means the concatenation of paths, first running through F and
then through F0: For concatenation the end point of F must be the starting point of
F0: A closed path starting and ending at point x is a loop with base point x:

Let p : ~M ! M be a covering of a pathwise connected space M by a pathwise
connected space ~M; let x 2 M be any point and let ~x be some point of p�1ðxÞ: Then,
the covering p generates a homomorphism from the homotopy group p1ð ~M;~xÞ into
the homotopy group p1ðM; xÞ: In fact this homomorphism is an isomorphism of
p1ð ~M;~xÞ onto some subgroup qðp;~xÞ of p1ðM; xÞ; and, if ~x0 runs through all points
of p�1ðxÞ; then qðp;~x0Þ runs through all members g�1qðp;~xÞg; g 2 p1ðM; xÞ; of the
conjugacy class of the subgroup qðp;~xÞ of p1ðM; xÞ:

Proof It is clear that a continuous mapping p maps loops into loops and contin-
uous deformations of loops into continuous deformations of loops. Hence it
induces a homomorphism from p1ð ~M;~xÞ into p1ðM; xÞ: However, it was stated
above that the homotopy classes of loops of p1ð ~M;~xÞ are uniquely determined by ~x
and by the homotopy classes of loops of p1ðM; xÞ; which means that the homo-
morphism is injective and hence is an isomorphism into a subgroup of p1ðM; xÞ:

Now, let ~x and ~x0 be two arbitrary points of p�1ðxÞ; let F� and F�0 be loops with
base point ~x and ~x0; respectively, and let F�00 be a path from ~x to ~x0: All three paths
are mapped by p into loops F;F0;F00 in M with base point x: In ~M; the paths
F�;F�00� F�0F�00 are loops with the same base point ~x and F�0;F�00F�F�00� are loops
with the same base point ~x0; so that their images of the mapping p belong to the
homotopy classes ½F�; ½F00��1½F0�½F00� of qðp;~xÞ and ½F0�; ½F00�½F�½F00��1 of qðp;~x0Þ:
Hence, ½F00��1qðp;~x0Þ½F00� � qðp;~xÞ and ½F00�qðp;~xÞ½F00��1 � qðp;~x0Þ; which
means qðp;~x0Þ ¼ ½F00�qðp;~xÞ½F00��1:

Let now ½F00� be any element of p1ðM; xÞ; and let F00 be one of its loops.
Choose ~x as the starting point of a corresponding path F�00 in ~M which latter is
uniquely determined by ~x and F00: It ends at some point ~x0 2 p�1ðxÞ; and the
relation at the end of the last paragraph holds. This proves the last statement of
the theorem. h

Since in pathwise connected spaces the homotopy groups pðM; xÞ are isomorphic
for all x 2 M and conjugated subgroups are also isomorphic, up to isomorphisms the
subgroup of the last theorem is independent of x and is denoted by rðpÞ:

Let F� be an arbitrary path in ~M starting at ~x: It is closed, iff F ¼ p 	 F� is
closed and ½F� 2 qðp;~xÞ: Indeed, if F� is closed, the condition follows. Let F be
closed and ½F� 2 qðp;~xÞ: Then, there is a loop F�0 in ~M; which starts in ~x and
which is mapped by p into ½F�: Since p 	 F�0 ffi F; there is a continuous defor-
mation of F�0 into F� without moving the end point. Then, F� is closed together
with F�0:
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More generally, let F� and F�0 be two arbitrary paths starting from ~x: They will
have the same end point in ~M; iff F and F0 have the same end point in M and
½F0�F� 2 qðp;~xÞ: Indeed, if F� and F�0 have the same end point, then F and F0 have
the same end point, F�0�F� is closed and hence ½F0�F� 2 qðp;~xÞ: Reversely, F0�F is
the image of a path F�00� F�; where F�00� starts at F�ð1Þ and is mapped by p to F0�:
Since F0�F is closed and ½F0�F� 2 qðp;~xÞ;F�00� F� is also closed and the end point of
F�00� is ~x: Thus, both paths F�0 and F�00 start at ~x and are mapped to F0; hence they
are identical, and F�0 ends at F�ð1Þ:

Now, let in the latter case in particular F and F0 both be closed. Then, ½F� and
½F0� both are elements of p1ðM; xÞ; and F� and F�0 both have end points in
p�1ðxÞ: If ½F0�F� ¼ ½F0��1½F� 2 qðp;~xÞ; that is ½F� 2 ½F0�qðp;~xÞ; then these end
points fall together. Clearly, the number of end points, that is the number of
points of p�1ðxÞ; is equal to the number of (left) cosets ½F0�qðp;~xÞ of qðp;~xÞ as
subgroup of p1ðM; xÞ (which is called the index of the subgroup). If the car-
dinality of p1ðM; xÞ is finite, then this index is the ratio of cardinalities of
p1ðM; xÞ and qðp;~xÞ: In pathwise connected spaces this cardinality a (finite or
infinite) is independent of x; it is called the multiplicity of covering, the
covering is called a-fold.

Now, the most important questions of existence and uniqueness of coverings
can be answered. First, uniqueness is considered.

Let p and p0 be two coverings of a pathwise connected and locally pathwise

connected space M by covering spaces ~M and ~M0; respectively. Let x 2 M; ~x 2
p�1ðxÞ; ~x0 2 p0�1ðxÞ; and qðp;~xÞ � qðp0;~x0Þ: Then, there exists a covering ~p :
~M ! ~M0 such that p0 	 ~p ¼ p: Moreover, p and p0 are equivalent coverings of M;
iff rðpÞ ¼ rðp0Þ:

Proof Let F;F�;F�0 be paths starting at x;~x;~x0 and ending at y;~y;~y0; respectively,
and let F be the image of both paths F� and F�0 by p and p0; respectively. Since
qðp;~xÞ � qðp0;~x0Þ; a deformation of the path F which does not change the end
point ~y of F� will not change the end point y0 of F�0 either, hence ~y0 is uniquely
defined by ~y; and the just described construction defines a mapping ~p : ~M ! ~M0 :
~y 7!~y0; for which p0 	 ~p ¼ p: If qðp;~xÞ ¼ qðp0;~x0Þ; then p and p0 may be inter-
changed to prove that ~p is one–one and onto.

It remains to show that ~p is a covering. Let F;F�;F�0 be as above, and let U be
a neighborhood of y such that Va 3 ~y and V 0a0 3 ~y0 are open sets of even coverings
of U by p and p0; respectively. Such an U exists since M is locally pathwise
connected. Let ~F

�
be a path in Va from ~y to some point ~z; let ~F ¼ pð~F�Þ; and let ~F�0

be a path starting at ~y0 with p0ð~F�0Þ ¼ ~F: Because of the even coverings, ~F�0 is in
V 0a0 : Moreover, p0ð~F�0F�0Þ ¼ ~FF; and hence by construction of ~p; ~pð~zÞ 2 V 0a0 : Since
the restrictions of p and p0 to Va and V 0a0 ; respectively, are homeomorphisms,
~p j Va ¼ p0�1 	 p j Va is also a homeomorphism from Va onto V 0a0 : By choosing ~y0

arbitrarily in M0; the preimage ~p�1ðV 0a0 Þ with ~y0 2 V 0a0 consists of all Va for which
~y 2 ~p�1ð~y0Þ which proves that ~p is a covering.
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If rðpÞ ¼ rðp0Þ; then according to the first theorem of this section a one–one
correspondence between the points of p�1ðxÞ and the points of p0�1ðxÞ can be
chosen so that qðp;~xÞ ¼ qðp0;~x0Þ; and then ~p is also one–one and hence a
homeomorphism making p and p0 to be equivalent coverings. h

Existence of a covering is governed by the following theorem:

Let M be a pathwise connected, locally pathwise connected and semi-locally
1-connected topological space. (Every point x 2 M has a neighborhood U such
that every loop in U with base point x is contractible in M into x:) Let q be a given
subgroup of a given subgroup of p1ðM; xÞ: There exists a covering of M by a
pathwise connected space ~M such that qðp;~xÞ ¼ q for ~x 2 p�1ðxÞ: In particular,
there exists a covering by a simply connected covering space �M which is uniquely
defined up to homeomorphisms.

�M is called the universal covering space of M:

Proof of the theorem Step one is establishing ~M as a set. Two paths F and F0 in M
starting at x are considered equivalent by q; if they have the same end point and
½F0�F� 2 q: This subdivides the set of all paths in M starting at x into equivalence
classes fFg:Now, ~M is taken to be the set of these equivalence classes, and pðfFgÞ ¼
y is defined to be the end point y of F: Since M is pathwise connected, pð ~MÞ ¼ M:

Next, a topology is introduced in ~M: Let F be any path in M from x to y; and let
U be a neighborhood of y in M: Let ~U be the set of all points fFzFg where Fz is a
path in U from y to z 2 U: Since M is locally pathwise connected and semi-locally
1-connected, for every point y 2 M there exists a neighborhood base By of path-
wise connected sets U for which this construction is possible. fFzFg depends only
on fFg and on z: Indeed, let F0;F0z be any other paths for which fF0g ¼ fFg and F0z
is in U from y to z: Then, ðFzFÞ�F0zF

0 ¼ F�Fz�F0zF
0 ffi F�F0 since Fz�F0z is null-

homotopic in M: Since fF0g ¼ fFg means that ½F�F0� 2 q; also ½ðFzFÞ�F0zF
0� 2 q

or fF0zF0g ¼ fFzFg: Hence, the restriction of p to ~U is a one–one mapping. Taking
for every point fFg of ~M all sets ~U for all U 2 BpðfFgÞ to form a neighborhood

base ~BfFg of fFg defines a topology on ~M which makes p into a local homeo-

morphism from sets ~U to sets U: Indeed, let any union of sets ~U be an open set of
~M: Take any two sets ~U and ~U0 which have a common point fFg: Then, there
exists a common point z ¼ pðfFgÞ of U ¼ pð~UÞ and U0 ¼ pð~U0Þ in M and hence a
neighborhood V 3 z of the above type with V � U \ U0: By construction of
neighborhood bases in ~M; the set ~V is a neighborhood of fFg; and ~V � ~U \ ~U0:
Hence, every intersection of two open sets of ~M as just defined is an open set of ~m
and these sets form a topology of ~M: This topology is Hausdorff: Let fFg 6¼ fF0g:
If pðfFgÞ 6¼ pðfF0gÞ then there are disjoint open sets U and U0 of the Hausdorff
space M with pðfFgÞ 2 U and pðfF0gÞ 2 U0; and hence ~U and ~U0 are two disjoint
open sets with fFg 2 ~U and fF0g 2 ~U0: If pðfFgÞ ¼ pðfF0gÞ; take any neigh-
borhood U of pðfFgÞ of the above type and let ~U and ~U0 be the corresponding
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neighborhoods of fFg and fF0g: Since both are homeomorphic to U; they are
either disjoint or identical. The latter case is excluded since it would imply
fF0g ¼ p�1ðpðfF0gÞÞ ¼ p�1ðpðfFgÞÞ ¼ fFg:

From the above it is already clear that p is a covering of M: Let F be any path in
M starting at x: Let FsðtÞ ¼ FðstÞ; s 2 I ¼ ½0; 1�; then Fs is a path continuously
depending on s: F0 is the one point path at x; and fF0g ¼ ~x as well as pðfF1gÞ ¼
Fð1Þ: To prove that ~M is pathwise connected, it suffices to prove that fFsg is a
continuous function of s in ~M: This is rather obvious, since for s0 an �[ 0 can be
chosen so that the end points of Fs are in some of the above described neigh-
borhoods U for js� s0j\�: These Fs can be represented as F0Fs0 where F0 is
completely in U: Hence, ~U is a neighborhood of fFs0g in ~M which contains all
fFsg ¼ fF0Fs0g for js� s0j\�:

To prove that qðp;~xÞ ¼ q; consider the path I 3 s 7! fFsg in ~M which is closed,
iff F is closed in M and ½F� 2 qðp;~xÞ: Now F 2 fF1g; and fF1g ¼ fF0g ¼ ~x; iff F
is closed and ½F� 2 q:

Finally, let q ¼ feg be trivial. Then, qðp;~xÞ � p1ð ~M;~xÞ is also trivial, and
hence ~M is simply connected. Since for every simply connected covering �p :
�M ! M the fundamental group p1ð �MÞ is trivial, it follows immediately from the
previous uniqueness theorem that �M and the latter ~M are equivalent and hence
homeomorphic. h

Now, let M be a second countable m-dimensional manifold. Since it is
second countable and locally homeomorphic to Rm; it can be covered by a
countable number of open sets each of which is homeomorphic to an open ball
in Rm: Any loop in M runs through a countable sequence of these open sets, and
loops running through the same sequence are obviously homotopy equivalent.
Since there is at most a countable number of distinct such sequences, p1ðM; xÞ
is countable for every x 2 M: Consequently, the multiplicity of any covering p
of each component of M is at most countable. Hence, the covering space ~M of
any covering of M is second countable. Requiring that the local homeomor-
phisms of evenly covered open sets are diffeomorphisms defines uniquely a
differentiable structure on ~M which makes p into a smooth covering by a
smooth manifold ~M for which the linear mapping p~x

� of the tangent spaces is
nowhere singular.

If G is a connected Lie group, then, since G is locally homeomorphic to Rm; it is
locally pathwise connected and semi-locally 1-connected. From (6.8) it follows
that it is also pathwise connected. Hence, it has a universal covering space �G
which has a uniquely defined differentiable structure for which the covering p is
smooth and p~x

� is nowhere singular. In fact, �G can be provided with a group
structure which makes it into the universal covering group of G: It remains to
establish the group structure of �G:

Let G be further on a connected Lie group, and let D be a discrete subgroup of
G; that is, the one point sets of D are mutually disconnected in the topology of G:
Consider the quotient space G=D of the left cosets of G with respect to D; that is,
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of sets fdg j d 2 Dg for all g 2 G; provided with the quotient topology as the finest
topology for which the canonical projection p : G! G=D is continuous. Its open
sets are the sets U for which p�1ðUÞ is open in G: The elements of D form a
discrete grid in G; so that there is a neighborhood U of the unit e of G such that the
sets dU; d 2 D are disjoint. Each of these sets is diffeomorphically projected onto
U by p: Hence, p is a covering of the manifold G=D by the covering space G; and
G=D and G have the same dimension.

Let F be any path in G from e ¼ Fð0Þ to some element d ¼ Fð1Þ of D; and let
½F� be its homotopy class. Let F0 be another path from e to d0: Then, Fð1ÞF0 is a
path from d to dd0 which is obtained by a left translation of F0 by d: Introduce the
product of homotopy classes as ½F0�½F� ¼ ½Fð1ÞF0F� where Fð1ÞF0F is the path F
concatenated with the translated path Fð1ÞF0: It will be seen that this makes the set
of classes ½F� into a group. Since the end points of the paths F and F0 are in D; the
projections pðFÞ and pðF0Þ in G=D are loops with base point pðeÞ; and the pro-
jection pðFð1ÞF0Þ of the translated path Fð1ÞF0 is equal to pðF0Þ: Since p is
continuous, homotopy equivalent paths F are projected into homotopy equivalent
loops pðFÞ in G=D: It is obvious that the corresponding projections p�ð½F�Þ ¼
½pðFÞ� of homotopy classes ½F� form the fundamental group p1ðG=D; pðeÞÞ:
Moreover, p�ð½F0�½F�Þ ¼ ½pðFð1ÞF0FÞ� ¼ ½pðF0Þ�½pðFÞ� ¼ p�ð½F0�Þp�ð½F�Þ; and
hence p� is an isomorphism between the multiplicative set of homotopy classes of
paths F from e to elements of D and the fundamental group p1ðG=D; pðeÞÞ of the
space G=D: As anticipated, the former set with the introduced multiplication is a
group.

In G; the homotopy classes of loops based on e form the fundamental group
p1ðG; eÞ which is isomorphically mapped into the subgroup qðp; eÞ of
p1ðG=D; pðeÞÞ by the covering p: Let ½F0� 2 p1ðG; eÞ; and let ½F� be any homotopy
class of paths from e into D: Then, since F0ð1Þ ¼ e ¼ F�ð1Þ; ½F�½F0�½F��1 ¼
½FF0�½F�� ¼ ½FF0F�� ¼ ½F0�: (FF0F� just moves homotopically the base point of
F0 from e to the end point of F:) Hence, ½F�½F0�½F��1 ¼ ½F0� for every ½F0� 2
p1ðG; eÞ and every ½F� with p�ð½F�Þ 2 p1ðG=D; pðeÞÞ: Inversely, if the last relation
holds, then ½FF0F�� ¼ ½F0� which is only possible, if F0 is closed. In summary,
qðp; eÞ is the central normal subgroup of p1ðG=D; pðeÞÞ; that is, the subgroup of
all elements ½F0� with ½F�½F0�½F��1 ¼ ½F0� for all ½F� 2 p1ðG=D; pðeÞÞ: If the end
points of paths F from e run through D; then p�ð½F�p1ðG; eÞÞ ¼ p�ð½F�Þqðp; eÞ runs
through the quotient group p1ðG=D; pðeÞÞ=qðp; eÞ which latter hence is isomor-
phic with D: If in particular G is simply connected and hence qðp; eÞ is trivial, then
p1ðG=D; pðeÞÞ is isomorphic with D:

As a simple example, consider the n-torus group Tn: Let G ¼ Rn ¼
fðx1; . . .; xnÞ j xi 2 Rg; and let L ¼ Zn ¼ fðk1; . . .; knÞ j ki 2 Zg be the n-dimen-
sional unit lattice. Let Tn ¼ Rn=L ¼ fðt1; . . .; tnÞ j ti ¼ xi mod 1g: Since Rn is
simply connected, p1ðTn; 0Þ is isomorphic to L : Paths from the origin of Rn to one
of the lattice points correspond to ki-fold windings around the n non-homotopic
circles of Tn: This fact was heuristically already used in Sects. 2.5 and 5.9.
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In a sense inverse to the above is the following theorem:

Each connected Lie group G has a simply connected covering space �G which is
again a Lie group and the covering p : �G! G is a Lie group homomorphism the
kernel of which is a discrete subgroup of �G:

Proof It was already seen that G has a simply connected covering space �G:
Choose an arbitrary element of p�1ðeÞ (where e is the unit of G) to be the unit �e of
�G: Let �F�g and �F�h be two paths in �G from �e to arbitrarily chosen points �g and �h;
respectively. Let Fg ¼ pð�F�gÞ; Fh ¼ pð�F�hÞ; g ¼ pð�gÞ and h ¼ pð�hÞ: Let F0 ¼
gFhFg be the path in G obtained by concatenation of Fg and the g-translated image
of Fh and let �F0 be a path in �G starting at �e and being projected by p onto F0: Its
end point �k depends only on �g and �h and not on the particular paths chosen. Indeed,
let �F0�g and �F0�h alternatively chosen paths, let F0g and F0h be their projections, and

let �F00 be a path starting at �e and being projected onto F00 ¼ gF0hF0g: Since
½F0g�Fg�; ½F0h�Fh� 2 qðp;�eÞ and ðFF0Þ� ¼ F0�F�; it follows that F00�F0 ¼ ðgF0hF0gÞ
ðgFhFgÞ ¼ F0g�gF0h�gFhFg ffi ðF0g�FgÞðF0h�FhÞ; and hence ½F00�F0� 2 qðp;�eÞ with

the consequence that F0 and F00; both starting at �e; have the same end point �k: On
this basis, the product �g�h ¼ �k in �G is correctly defined, and by considering cor-
responding paths associativity of this product, unit property of �e and the existence
of �g�1 is demonstrated. Furthermore, pð�g�hÞ ¼ pð�gÞpð�hÞ was underlying the con-
struction of the product. Hence, �g is a group and the covering p is a group
homomorphism.

It remains to show that the product �g�h�1 is smooth in �G: This is straightfor-
wardly demonstrated with the help of paths FsðtÞ ¼ FðstÞ smoothly depending on s
in G and using the fact that p is a local diffeomorphism.

Finally, since p is a covering, there is a neighborhood U of e in G the preimage
of which consists of disjoint open sets of �G homeomorphic with U: In particular,
the preimage of e which is the kernel of the homomorphism p is discrete. h

Hence, for every connected Lie group G there exists a simply connected Lie
group �G which is a covering of G: The natural question arises, whether and in
which sense �G is unambiguously determined. It was already demonstrated that
simply connected coverings of G are diffeomorphic as manifolds. That they are
also isomorphic as groups follows from the connection between the Lie groups and
their Lie algebras.

Let G and H be connected Lie groups, and let F : G! H be a Lie group
homomorphism. Then F is a covering, iff F� : g! h is a Lie algebra isomorphism.

Proof Suppose that F is a covering. Then F� must be injective. Otherwise F� :

TgðGÞ ! TFðgÞðHÞ would have a non-trivial kernel at every point g: These kernels
form an involutive distribution having an integral manifold (Frobenius theorem)
which is mapped into a point of H by F; and F could not be a local homeomor-
phism. F� must also be surjective, since otherwise F would define a proper
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submanifold of H: Being an injective and surjective homomorphism, F� is a Lie
algebra isomorphism.

Suppose now that F� is a Lie algebra isomorphism. Then, by the inverse function
theorem, p. 74 f, F is everywhere a local diffeomorphism, and, since FðeÞ ¼
e; FðGÞ contains a neighborhood of the unit e 2 H and hence, by (6.8), FðGÞ ¼ H:
It remains to show that a neighborhood of every point of H is evenly covered by G:
Observe, since F is a local homeomorphism, that F�1ðeÞ ¼ Ker F ¼ K is a discrete
normal subgroup of G: Therefore, there exists a small enough neighborhood U of
e 2 G such that ðU�1UÞ \ K ¼ feg: Using the continuous group operations it is not
difficult to show that FðUÞ is a neighborhood of e 2 H evenly covered by F: This
even cover may be translated to every point of H. h

Let G and H be Lie groups, and let G be simply connected. Let ~F : g! h be a
homomorphism. Then there exists a unique homomorphism F : G! H such that
F� ¼ ~F: In particular, if simply connected Lie groups have isomorphic Lie alge-
bras, then they are isomorphic.

Uniqueness was proved at the end of Sect. 6.2. The proof of existence which
uses considerations similar to those of Sect. 6.3 is skipped, see for instance
[1, p. 101].

Now, for any Lie group G the Lie algebra g is isomorphic to the tangent space
TeðGÞ (p. 175). If G and H are diffeomorphic (as manifolds) Lie groups and g and
h are elements mapped to each other by the diffeomorphism, then the tangent
spaces TgðGÞ and ThðHÞ are isomorphic (inverse function theorem, p. 74 f).
Hence, from the above it follows that connected Lie groups have (up to isomor-
phism) uniquely defined simply connected covering groups, which are called
universal covering groups. Just to mention an important simple example from
physics: the group of transformations of spinors SUð2Þ is the universal covering
group of the group of rotations in 3-space SOð3Þ: (See Sect. 6.6 for details.)

6.5 The Exponential Mapping

Recall the formal Taylor expansion of a real function f of a real variable, analytic
in a neighborhood of x:

f ðxþ tÞ ¼ et d
dxf ðxÞ ¼ f ðxÞ þ t

df

dx
ðxÞ þ t2

2!

d2f

dx2
ðxÞ þ � � � ð6:9Þ

The real line G1 ¼ R is a simple case of a simply connected Lie group with respect
to addition as group operation. Its Lie algebra consists of the one-dimensional
vector fields tðd=dxÞ; t 2 R; that is g1 ¼ R:

Consider any Lie group G and its Lie algebra g: Let X 2 g be a left invariant
vector field on G; then exp�ðXÞ : g1 ¼ R! g : t 7! tX is a Lie algebra homo-
morphism. (The notation exp will become evident soon.) According to the end of
last section there is a unique Lie group homomorphism expðXÞ : G1 ¼ R! G :
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t 7! expðXÞt for every X 2 g from R onto a 1-parameter subgroup of G: On the
other hand, the tangent vector fields ðd=dxÞ and X are expðXÞ-related (see p. 78)
and hence, according to the Frobenius theorem, there is a unique integral curve of
X in the manifold G for which expðXÞ0 ¼ e; the latter since expðXÞ is a Lie group
homomorphism. Moreover, since X is left invariant, there are unique integral
curves of X for which lg 	 expðXÞ0 ¼ g for every g 2 G; in particular for every
g 2 expðXÞR ¼ fexpðXÞt j t 2 Rg: Thus, the 1-parameter subgroup expðXÞR
consists of the integral curve of X through e 2 G; and the left invariant tangent
vector fields on a Lie group are always complete. (See p. 81.)

Note that this is a global statement. Locally, one could introduce a local
coordinate system in G like (3.33) and argue with (6.9). Now, with the help of left
translations one easily finds globally, that is for all t; t1; t2 2 R;

expðtXÞ ¼ expðtXÞ1 ¼ expðXÞt;
expððt1 þ t2ÞXÞ ¼ expðt1XÞexpðt2XÞ;
expð�tXÞ ¼ ðexpðtXÞÞ�1:

ð6:10Þ

So far, expðXÞ for every fixed X 2 g was a mapping t 7! expðXÞt from R to G:
With the relations (6.10) one may put expðXÞ1 ¼ expðXÞ and consider exp as a
mapping from g to G:

As a mapping from g to G; exp maps a sufficiently small neighborhood u of the
origin of g homeomorphic to a neighborhood U of e in G; and, according to (6.8)
Ge as a whole is obtained by all kinds of products of factors out of U: However, the
mapping exp : g! Ge need not be onto (compare the exercise on p. 200) nor need
it be one–one (compare the mapping exp : R ¼ s1 ! S1 : t 7! ei2pt). It can be
shown that exp is a smooth map. Moreover, it can be shown for every Lie group
that there exists a unique complete analytic atlas (that is, all transition functions
between charts are analytic) so that the group operations and the mapping exp are
analytic. (See for instance [2].)

With the help of the exponential mapping the interrelation between a Lie group
and its Lie algebra can further be explored. If F : G! H is a Lie group homo-
morphism, then the following diagram is commutative:

F*

exp exp

G
F

H

ð6:11Þ

Indeed,

FðexpðXÞÞ ¼ expðF�ðXÞÞ: ð6:12Þ

Since F is a homomorphism, FðexpðXÞRÞ is a 1-parameter subgroup of H: On the
other hand, expðF�ðXÞÞR is an integral curve of F�ðXÞ in H; and both are uniquely
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defined by F�ðXÞ at e 2 H: Left translation from e to g 2 H and left invariance of
F�ðXÞ prove their equality.

If, in particular, FðGÞ is a Lie subgroup of H and X 2 F�ðgÞ; then expðtXÞ 2
FðGÞ for all t 2 R: If expðtXÞ 2 FðGÞ for some interval of values t; then
expðt0XÞ ¼ FðgÞ for an inner value t0 of that interval and some g 2 G; and
expððt � t0ÞXÞ ¼ expðtXÞðFðgÞÞ�1 2 FðGÞ is a local 1-parameter group through e
in FðGÞ; hence ðt � t0ÞX 2 F�ðgÞ implying X 2 F�ðgÞ:

The following basic results can be proved with the help of the exponential
mapping [1]:

Let H be a Lie group, and let G be an algebraic subgroup of H closed in the
topology of H: Then there is a unique complete atlas of G making it into a Lie
subgroup of H:

Let F : G! H be a Lie group homomorphism, and let K ¼ Ker F; k ¼ Ker F�:
Then K is a closed Lie subgroup of G with Lie algebra k:

6.6 The General Linear Group Gl(n,K)

A most important case of a Lie algebra is formed by the n2-dimensional real vector
space of all n� n-matrices A;B; . . . with the multiplication (commutator)

½A;B� ¼ AB� BA ð6:13Þ

where AB is the ordinary matrix multiplication. This Lie algebra is called the
general linear algebra glðn;RÞ:

A base XðijÞ; i; j ¼ 1; . . .; n may be introduced consisting of matrices XðijÞ having
unity as matrix element of the ith row and jth column and zeros at all other entries.
Then, obviously

½XðijÞ;XðklÞ� ¼ d j
kXðilÞ � di

lXðkjÞ; ð6:14Þ

and comparison with (6.1) yields the structure constants

cðpqÞ
ðijÞðklÞ ¼ dp

i d
q
l d

j
k � dp

kd
q
j d

i
l: ð6:15Þ

Any matrix A can be expanded in this base as A ¼
Pn

i;j¼1 Ai
jXðijÞ where the vector

components of A in the vector space glðn;RÞ are the ordinary matrix elements Ai
j in

row i and column j: As a topological vector space, glðn;RÞ is homeomorphic to

Rn2
:
The complex general linear algebra glðn;CÞ is obtained just by replacing the

real components Ai
j with complex ones. Hence, it has the same base and structure

constants as glðn;RÞ; but is homeomorphic to Cn2 �R2n2
: The following consid-

eration is the same for both cases.

190 6 Lie Groups



Let jAj ¼ maxij jAi
jj; then it is easily seen that jAmj � nm�1jAjm holds for the mth

power of A: Denote the n� n unit matrix by 1 and consider the series

expðAÞ ¼ 1þ Aþ A2

2!
þ � � � þ Am

m!
þ � � � ¼

X1

m¼0

Am

m!
: ð6:16Þ

Its partial sums are n� n-matrices, and for all A with jAj\c it converges uni-
formly for any fixed positive constant c; since the absolute value of each matrix
element of the mth item is bounded by nm�1cm=m! and

P
ðncÞm=m! ¼ enc con-

verges. Since the matrix multiplication is continuous in glðn;KÞ; K ¼ R or C;

B
X1

m¼0

Am

m!

 !

¼
X1

m¼0

B
Am

m!
ð6:17Þ

and accordingly for the right multiplication, and hence

BeAB�1 ¼ eðBAB�1Þ ð6:18Þ

for any B 2 glðn;KÞ: Now, for any matrix A there is a matrix B such that BAB�1 is
upper-triangular, and the product of two upper-triangular matrices is again an
upper-triangular matrix. Hence, the right hand side of (6.18) for such a B is an
upper-triangular matrix, and, if a1; . . .; an are the diagonal elements of BAB�1; then
ea1 ; . . .; ean are the diagonal elements of that right hand side. In particular, no
matter what the numbers ai are,

det eA ¼ detðBeAB�1Þ ¼ det eðBAB�1Þ ¼
Yn

i¼1

eai ¼ etrðBAB�1Þ ¼ etr A 6¼ 0: ð6:19Þ

Here, the simple matrix rules detðABÞ ¼ det A det B and trðABCÞ ¼ trðCABÞ were
used.

At the beginning of this chapter it was already mentioned that the general
linear group

Glðn;KÞ ¼ fA j det A 6¼ 0g ð6:20Þ

is a Lie group. Consider for any matrix A0 the 1-parameter subgroup t 7! etA0 ; t 2
R: Its tangent vector at t ¼ 0; that is, for etA0 ¼ 1; is A0: It is simply obtained by
term wise differentiating the uniformly converging power series for etA0 with
respect to t: This proves

expðA0Þ ¼ eA0 ; eglðn;KÞ generates ðGlðn;KÞÞ1: ð6:21Þ

The general linear algebra is the Lie algebra of the general linear group, the
exponential mapping coincides with the ordinary matrix exponentiation and yields
the component containing the unity of the general linear group. Glðn;KÞ is
pathwise connected for K ¼ C: It is not difficult to see that a path from any
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non-singular matrix A0 to any other non-singular matrix A1 in Cn can always be
infinitesimally deformed into a path avoiding det A ¼ 0 (for instance encircling
det A ¼ 0 in the complex plane always in the positive sense). This does not hold
for K ¼ R for which there are two components with det A? 0: Glðn;CÞ is not
simply connected, which is most easily seen for Glð1;CÞ ¼ C n 0: However,
ðGlðn;RÞÞ1 is simply connected: Let A0 and A1 be two arbitrary matrices both with
positive (negative) determinant. There are paths B0ðtÞ;B1ðtÞ; t 2 ½0; 1�;Bið0Þ ¼
1; det BiðtÞ ¼ 1 which continuously transform BiðtÞAiB�1

i ðtÞ into upper triangular
matrices without changing the determinant. Having determinants of the same sign,
the signs of diagonal elements of both triangular matrices can only differ in an
even number of them. Group neighboring diagonal elements not having the same
signs into pairs and consider a ð2� 2Þ-matrix. Put aiiðtÞ ¼ taii; a12ðtÞa21ðtÞ ¼
ðt2 � 1Þa11a22; a21ð1Þ ¼ a21ð�1Þ ¼ 0 and let t run from 1 to �1: It reverses the
signs of diagonal elements without changing the determinant on a path from upper
triangular form to upper triangular form. It does also not change the determinant of
the full matrix which is up to the considered ð2� 2Þ-block upper triangular. (This
can directly be inferred from the Laplace expansion with respect to the two rows
containing the ð2� 2Þ-block.) In this way successively all diagonal elements of
B1ð1ÞA1B�1

1 ð1Þ differing in sign from those of B0ð1ÞA0B�1
0 ð1Þ can be moved

together and then sign reverted. A further continuous path brings the absolute
values of the diagonal elements into coincidence without changing signs. Con-
catenation of all changes completes the path from A0 to A1 in Glðn;RÞ: Since any
path from det A [ 0 to det A\0 must unavoidably cross det A ¼ 0; this proves that

the polynomial condition det A ¼ 0 defines a smooth hypersurface in Rn2
dividing

it into just two connected components. Consider any loop in the component with
det A [ 0; and take the point on it with minimal det A as base point of the loop.
(The minimum exists since a loop is compact.) Transform every point of the loop
by the above transformation into the base point. This transformation may be
chosen as a continuous function of the points of the loop and keeps det A above the
value at the base point, contracting the loop into the base point. Hence, ðGlðn;RÞÞ1
is simply connected.

Any n� n-matrix may be considered as a linear mapping of the n-dimensional
vector space Kn over the field K into itself (endomorphisms EndðKnÞ). Likewise, a
non-singular matrix may be considered as the transformation matrix of an auto-
morphism of Kn: Hence, one has also

exp : EndðKnÞ ! AutðKnÞ: ð6:22Þ

Again, this mapping need not be surjective, for instance, if AutðKnÞ is not con-
nected. If G is any Lie group and F : G! AutðKnÞ is a representation of G; and if
X 2 g; then it follows immediately from (6.11) that

Fðexp XÞ ¼ expðF�ðXÞÞ ¼ 1þ F�ðXÞ þ
F�ðXÞ2

2!
þ � � � ð6:23Þ

where F�ðXÞ 2 glðn;KÞ is a matrix obtained from ½dFðexpðtXÞÞ=dt�t¼0:
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It has been shown (theorem by Ado) that every finite-dimensional Lie algebra
is isomorphic to a subalgebra of glðn;RÞ for some n: (That means that also
glðn0;CÞ is isomorphic to such a subalgebra, of course with n [ n0:) By expo-
nentiation, every subalgebra of glðn;RÞ generates a connected Lie group to which
this subalgebra is the corresponding Lie algebra. Every such Lie group has a
uniquely (up to Lie group isomorphism) determined simply connected covering
group. This provides a one–one correspondence between Lie subalgebras of
glðn;RÞ and simply connected Lie groups.

(A complete classification of all Lie algebras has not yet been achieved, to say
nothing about a complete classification of all Lie groups.)

Some important Lie subgroups of Glðn;KÞ are shortly considered:
The special linear group

Slðn;KÞ ¼ fA j det A ¼ 1g; n [ 1; ð6:24Þ

is a closed connected Lie subgroup of Glðn;KÞ and has its Lie algebra

slðn;KÞ ¼ fA0 j tr A0 ¼ 0g: ð6:25Þ

Indeed, if tr A0 ¼ 0; then det expðA0Þ ¼ 1 follows directly from (6.19). Conversely,
det expðA0Þ ¼ 1 implies tr A0 ¼ ð2piÞk with some integer k; and only in the case
k ¼ 0 the A0 may form a vector space over the field K: This trace condition reduces
the number of independent diagonal elements of A by one, hence the dimension of
slðn;KÞ and of Slðn;KÞ is equal to n2 � 1; in the case of complex algebra for
K ¼ C; and slðn;CÞ and Slðn;CÞ have the dimension 2n2 � 2 in real algebra.
Slðn;KÞ is closed since det A ¼ 1 is a polynomial equation in Kn: Let A0 and A1 be
two arbitrary elements of Slðn;CÞ: Since Glðn;CÞ is connected, there is a path BðtÞ
in Glðn;CÞ connecting A0 ¼ Bð0Þ with A1 ¼ Bð1Þ: For every t there is a path
Dðu; tÞBðtÞ; where Dðu; tÞ ¼ kðu; tÞ1 and kðu; tÞ is a continuous non-zero complex
scalar function with kð0; tÞ ¼ 1; kð1; tÞ ¼ ðdet BðtÞÞ�1 (It is continuous in both
variables u and t and may for instance be chosen always to go around the origin of
the complex plane in the positive sense). Now, Dðu; tÞBðtÞ continuously deforms

the path BðtÞ into a path AðtÞ 2 Glðn;CÞ (in the relative topology from Cn2
) from

A0 to A1; where now AðtÞ is in Slðn;CÞ: Hence, Slðn;CÞ is connected. In fact it is
even simply connected. An analogous argument shows that Slðn;RÞ ¼ Slðn;CÞ \
Glðn;RÞ is a connected subspace of ðGlðn;RÞÞ1: (Slð1;KÞ ¼ f1g is trivial.)

The unitary group

UðnÞ ¼ fA jAy ¼ A�1g ð6:26Þ

is a connected compact (closed bounded) Lie subgroup of Glðn;CÞ: Ay means the
Hermitian conjugate of the matrix A: Indeed, from 1 ¼ ðAAyÞii ¼

P
k jAi

kj
2 it fol-

lows that jAi
kj � 1; and hence UðnÞ is bounded in Cn2

: It is closed since the
condition Ay ¼ A�1 implies det A 6¼ 0; and hence this former condition can be
expressed as a set of polynomial equations in the matrix elements. One further has
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expðA0yÞ ¼ 1þ A0y þ A0y2

2!
þ � � � ¼ ð1þ A0 þ A02

2!
þ � � �Þy

¼ ðexpðA0ÞÞy ¼ ðexpðA0ÞÞ�1 ¼ expð�A0Þ

from which chain it is seen that the commutator algebra of skew-Hermitian
matrices

uðnÞ ¼ fA0 jA0y þ A0 ¼ 0g ð6:27Þ

is the Lie algebra of UðnÞ: Since the matrices A0 2 uðnÞ necessarily have a van-
ishing real part of the diagonal matrix elements, it is an algebra over K ¼ R:
Although the matrices themselves may be complex, UðnÞ is a real Lie group and
uðnÞ is a real Lie algebra, both with real dimension n2: Uð1Þ is the unit circle in the
complex plane (which is not simply connected). The angle / may be taken as its
real coordinate.

Let Dp;q be the diagonal matrix with the first p diagonal entries equal to 1 and
the last q diagonal entries equal to �1; p; q� 1; pþ q ¼ n: The generalized
unitary group

Uðp; qÞ ¼ fA jDp;qAyDp;q ¼ A�1g ð6:28Þ

is a real subgroup of Glðn;CÞ with the real Lie algebra

uðp; qÞ ¼ fA0 jDp;qA0yDp;q þ A0 ¼ 0g: ð6:29Þ

Uðp; qÞ is not compact as the example

cosh h sinh h
sinh h cosh h

� �

2 Uð1; 1Þ; h 2 R ð6:30Þ

shows. The real dimension is again n2:
The orthogonal group

Oðn;KÞ ¼ fA jAt ¼ A�1g ð6:31Þ

is a closed Lie subgroup of Glðn;KÞ: Here, At means the transposed of the matrix
A: For K ¼ R; it is compact by the same argument as in the unitary case. However,
since 1 ¼ detðAA�1Þ ¼ det Adet At ¼ ðdet AÞ2; it consists of the two components
with det A ¼ �1 and is not connected. A chain of equations analogous to the
unitary case shows that the commutator algebra of skew-symmetric matrices

oðn;KÞ ¼ fA0 jA0t þ A0 ¼ 0g ð6:32Þ

is the Lie algebra of Oðn;KÞ: Since all matrices of oðn;CÞ have zero diagonal
elements, complex coefficients will not violate the skew-symmetry condition;
oðn;CÞ is a complex Lie algebra and Oðn;CÞ a complex Lie group, both with
complex dimension nðn� 1Þ=2 because of the vanishing diagonal of A0 2 oðn;CÞ
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and the skew-symmetry of the off-diagonal elements. The corresponding real
dimension is nðn� 1Þ: Oðn;RÞ ¼ OðnÞ ¼ UðnÞ \ Glðn;RÞ and oðn;RÞ ¼ oðnÞ ¼
uðnÞ \ glðn;RÞ consist of real matrices and are of real dimension nðn� 1Þ=2:
(Oð1;KÞ ¼ Oð1Þ is discrete and consists of the two elements 1 and �1; hence its
Lie algebra is trivial, oð1Þ ¼ f0g:)

The generalized orthogonal group (again p; q� 1; pþ q ¼ n)

Oðp; qÞ ¼ fA jDp;qAtDp;q ¼ A�1g ð6:33Þ

is a non-compact non-connected Lie subgroup of Glðn;RÞ with the Lie algebra

oðp; qÞ ¼ fA0 jDp;qA0tDp;q þ A0 ¼ 0g: ð6:34Þ

It is not difficult to see that Oðp; qÞ has the four components ðOðp; qÞ1 ¼
Oþðp; qÞ; �1Oþðp; qÞ; Dp;qOþðp; qÞ and �Dp;qOþðp; qÞÞ: The matrix (6.30) is
obviously also an element of Oð1; 1Þ: The real dimension of Oðp; qÞ is again
nðn� 1Þ=2:

The special unitary group

SUðnÞ ¼ UðnÞ \ Slðn;CÞ ¼ fA jAy ¼ A�1; det A ¼ 1g; n [ 1; ð6:35Þ

is a simply connected compact real Lie subgroup of both UðnÞ and Slðn;CÞ with
the Lie algebra

suðnÞ ¼ uðnÞ \ slðn;CÞ ¼ fA0 jA0y þ A0 ¼ 0; tr A0 ¼ 0g: ð6:36Þ

Its (real) dimension is n2 � 1:
The generalized special unitary group

SUðp; qÞ ¼ Uðp; qÞ \ SlðnCÞ; p; q� 1; pþ q ¼ n; ð6:37Þ

has also dimension n2 � 1; but is not compact. Again, (6.30) is also an element of
SUð1; 1Þ:

The special orthogonal group

SOðn;KÞ ¼ Oðn;KÞ \ Slðn;KÞ ¼ fA jAt ¼ A�1; det A ¼ 1g; n [ 1; ð6:38Þ

is a connected Lie subgroup of both Oðn;KÞ and Slðn;KÞ with the Lie algebra

soðn;KÞ ¼ oðn;KÞ; ð6:39Þ

since the skew-symmetry implies a vanishing diagonal and hence tracelessness.
SOðn;CÞ is not compact and has complex dimension nðn� 1Þ=2 and real dimension
nðn� 1Þ: SOðn;RÞ ¼ SOðnÞ is compact and has real dimension nðn� 1Þ=2:

The generalized special orthogonal group

SOðp; qÞ ¼ Oðp; qÞ \ Slðn;RÞ; p; q� 1; pþ q ¼ n; ð6:40Þ

has also real dimension nðn� 1Þ=2: It is again not compact, and (6.30) is also an
element of SOð1; 1Þ:
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Finally, let

Jn ¼
0 1n

�1n 0

� �

ð6:41Þ

be the matrix which replaces the first n coordinates of K2n with the second n
coordinates and the second ones with the negative first ones. (For R2 it just rotates
by �p=2:) The symplectic group

Spð2nÞ ¼ fA j JnAtJn ¼ A�1;Ay ¼ A�1g; n [ 1; ð6:42Þ

is a simply connected compact real Lie subgroup of Uð2nÞ with the Lie algebra

spð2nÞ ¼ fA0 j JnA0tJn þ A0 ¼ 0;A0y þ A0 ¼ 0g: ð6:43Þ

Like UðnÞ it is a real group and algebra, although the elements are complex. It is a
simple exercise to see that its (real) dimension is nð2nþ 1Þ: The elements A0 of the
algebra spð2nÞ have two skew-Hermitian n� n diagonal blocks being the negative
transposed of each other and two symmetric n� n off-diagonal blocks being the
skew-Hermitian conjugate of each other. Spð2Þ ¼ SUð2Þ:

The symplectic K-group

Spð2n;KÞ ¼ fA j JnAtJn ¼ A�1g; n [ 1; ð6:44Þ

is a connected (but non-compact and not simply connected) Lie subgroup of
Glð2n;KÞ with the Lie algebra

spð2n;KÞ ¼ fA0 j JnA0tJn þ A0 ¼ 0g: ð6:45Þ

The K-matrices A0 consist of two n� n diagonal blocks being the negative
transposed of each other and two independent symmetric off-diagonal n� n
blocks. The K-groups and K-algebras have the K-dimension nð2nþ 1Þ:
Spð2;KÞ ¼ Slð2;KÞ:

The Lie groups SUðnÞ; n� 2; Spð2nÞ; n� 2; SOðnÞ; n� 7; are compact simply
connected and as such universal covering groups corresponding to their respective
Lie algebras. If the Lie algebra g of a Lie group G is isomorphic to one of the
algebras suðnÞ; spð2nÞ; oðnÞ with integers n from above, then the corresponding
group SUðnÞ; Spð2nÞ or SOðnÞ; respectively, is the universal covering group of G:
(soð3Þ � spð2Þ � suð2Þ; soð4Þ � suð2Þ 
 suð2Þ; soð5Þ � spð4Þ; soð6Þ � suð4Þ:)
All compact, simply connected, simple Lie groups (Lie groups having simple Lie
algebras, see Compendium C.4) were classified by W. Killing and H. Cartan
(which leads in addition to the just mentioned classical groups to the five so-called
exceptional groups E6;E7;E8;F4;G2; see again Compendium C.4).

The relevance of the general linear group and its subgroups lies in the fact
that they may be understood as transformation groups of an n-dimensional vec-
tor pace Kn over the field K: If x 2 Kn with coordinates xi; i ¼ 1; . . .; n; then
Ax 2 Kn is the transformed vector with coordinates Ai

jx
j: The composition of two
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transformations, that is their subsequent performance, corresponds to matrix mul-
tiplication and hence to the group operation. Hence, any set of transformations
closed with respect to composition is a group. For instance, UðnÞ is the group of
unitary transformations in the n-dimensional unitary space leaving the scalar
product invariant. These are the unitary ‘rotations’ of the group SUðnÞ as well as
reflections from coordinate hyperplanes and their combinations. Accordingly,
Oðn;RÞ are the transformations of the n-dimensional Euclidean space leaving the
scalar product invariant. The group of affine motions in the Euclidean space is the
semi-direct product EðnÞ ¼ Oðn;RÞoRn � Glðnþ 1;RÞ consisting of the matri-
ces ðA; xÞ;A 2 Oðn;RÞ; x 2 Rn as mentioned in the introduction to this chapter. The
Lorentz group is the group Oð1; 3Þ consisting of four components obtained by time
inversion, spatial reflection and their composition, and Oþð1; 3Þ is the proper or-
thochronous Lorentz group while Oð1; 3ÞoR4 � Glð5;RÞ is the Poincaré group of
time and space translations and Lorentz transformations. Finally, the group
Spð2n;KÞ leaves a symplectic form, like (4.52) for K ¼ R; on the space K2n

invariant. Hence, spð2n;RÞ contains the Jacobi matrices of canonical transforma-
tions (in phase space) of Hamilton mechanics. For more details see for instance [3].

6.7 Example from Physics: The Lorentz Group

Two points in flat space–time (absence of a gravitational field) which may be
connected by a light signal obey the condition

ðctÞ2 � x2 ¼ ðx0Þ2 � ðx1Þ2 � ðx2Þ2 � ðx3Þ2 ¼ xlðD1;3Þlmx
m ¼ 0; ð6:46Þ

where c is the velocity of light. A transformation xl ! x0l ¼ Ll
m xm; which leaves

the velocity of light invariant, must obey the condition x0lðD1;3Þlmx
0m ¼ 0; while

0 ¼ x0lðD1;3Þlmx
0m ¼ Ll

jxjðD1;3ÞlmL
m
kxk ¼ xjðLtD1;3LÞjkxk: ð6:47Þ

In order that for all x obeying (6.46) also (6.47) follows and vice versa, LtD1;3L ¼
D1;3 or equivalently D1;3LtD1;3 ¼ L�1 must hold, because a real quadratic form
that has zeros is uniquely determined by all its zeros. Hence, L 2 Oð1; 3Þ; and the
classical Lorentz group is the generalized orthogonal group Oð1; 3Þ:

The group Oð1; 3Þ obviously contains the element

Bðh; e1Þ ¼
Uð1; 1Þ 0

0 12

� �

; Uð1; 1Þ ¼ cosh h sinh h
sinh h cosh h

� �

; ð6:48Þ

with Uð1; 1Þ as in (6.30). In order to reveal the physical meaning of h; consider
first the limit h! 0: In lowest order, x00 ¼ ct0 ¼ ct þ hx1; x01 ¼ hct þ x1: In the
original reference system, the origin of the primed x01-axis is described by x1 ¼
�hct; hence it moves with the velocity v ¼ �hc; measured in the original system
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in its e1-direction, while t0 ¼ t þ vx1=c2 � t: In the limit jhj !jv=cj ! 0 the
Galilei transformation is obtained. For a general h; the origin of the primed system
0 ¼ x01 ¼ ct sinh hþ x1 cosh h moves with the velocity

tanh h ¼ �v=c ð6:49Þ

along the e1-axis, and this relation implies cosh h ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv2=c2Þ

p
; sinh h ¼

�ðv=cÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv2=c2Þ

p
: From jtanh hj\1 the restriction jv=cj\1 follows. h is

called the rapidity parameter.
Experimentally, the speed of light c is in all reference systems moving with

constant speed relative to each other the same. Hence, the Lorentz transformations
L 2 Oð1; 3Þ describe physically correctly the transformation of space and time
from one reference system to another one moving relative to the first with a
constant speed v:

A Lorentz transformation to a system moving in any direction e in 3-space is
obtained as

Bðh; eÞ ¼ 1 0
0 R3

� �

Bðh; e1Þ
1 0
0 Rt

3

� �

¼ cosh h �et sinh h� e
�e sinh h 13 þ eetðcosh h� 1Þ

� �

;

ð6:50Þ

where R3 ¼ ðefgÞ with three mutually orthogonal unit (column) vectors e; f ; g in
R3: A general rotation of the reference system in 3-space,

Rða; b; cÞ ¼ 1 0
0 R3ða; b; cÞ

� �

; R3ða; b; cÞ 2 SOð3Þ; ð6:51Þ

which can be uniquely characterized by the Euler angles a; b; c is another par-
ticular Lorentz transformation. Both particular transformations (6.50) and (6.51)
have the properties L0

0 [ 0; det L ¼ 1: Since h may be any real number and SOð3Þ
is connected, both transformations belong to Oþð1; 3Þ which is called the proper
orthochronous Lorentz group (orthochronous because it preserves the direction of
time flow).

Every element of Oþð1; 3Þ may uniquely be written as L ¼ Bðh; eÞRða; b; cÞ:

Proof Let x0l ¼ Llmxm be any element of Oþð1; 3Þ: If x00 ¼ x0; then necessarily
Bðh; eÞ ¼ Bð0Þ ¼ 14: Otherwise x00 6¼ �x0 and one may choose the unit vector e

perpendicular to e0 in the plane spanned by e0 and e00; so that x00 ¼ x0 cosh hþ
e � x sinh h with some value h: Put Rða; b; cÞ ¼ ðBðh; eÞÞ�1L; then ðRða; b; cÞÞ00 ¼ 1
and L has the demanded form. Let Bðh0; e0ÞRða0;b0; c0Þ ¼ L ¼ Bðh; eÞRða; b; cÞ be
another such decomposition of L: Then, ðBðh0; e0ÞÞ�1Bðh; eÞ ¼ Rða0; b0; c0Þ
ðRða; b; cÞÞ�1 is a product of two rotations and hence a rotation, which implies
ððBðh0; e0ÞÞ�1Bðh; eÞÞ0l ¼ d0

l and hence h0 ¼ h; e0 ¼ e: h
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The transformation (6.50) is called a boost, and any element of Oþð1; 3Þ may
be uniquely decomposed into a 3-rotation followed by a boost (or alternatively into
an in general different boost followed by a 3-rotation). In the last section the
simple fact was already stated that Oð1; 3Þ consists of four connected components.
Two of them are orthochronous and two are proper in the sense that their elements
do not imply an odd number of spatial reflections.

So far, the Lorentz transformation was interpreted in the passive sense of the
description of the same point in space–time seen from different reference systems.
Consider a particle with rest mass m0 placed at the origin of the reference system
and hence with zero momentum p: From another primed reference system
the origin of which is moving with velocity v in direction �e as measured in
the unprimed system, this particle is seen as moving with velocity v in the
direction e: Hence, in this system it has energy m0c2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv2=c2Þ

p
¼ m0c2 cosh h

and momentum em0v=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv2=c2Þ

p
¼ �em0c sinh h: The four-momentum ðplÞ ¼

ðE=c; ptÞt of the particle at rest in the unprimed reference system (as a column
vector) is ðm0c; 0tÞt while that in the primed reference system is ðm0c cosh h;
�etm0c sinh hÞt: This may be written as ðE0=c; p0tÞt ¼ Bðh; eÞ ðm0c; 0tÞt and may
also be interpreted in the active sense that the particle at rest in the fixed
unprimed reference system is boosted to velocity v ¼ ve by the transformation
Bðh; eÞ: However, boosts alone do not form a group: the composition of two
boosts is a Lorentz transformation, but in general not again a boost (check it).
Conversely, the transition from one boost to another boost is also a Lorentz
transformation, but in general not a boost. Hence, the generalization of the just
considered relation is

E0=c
p0

� �

¼ L
E=c

p

� �

; L 2 Oð1; 3Þ ð6:52Þ

with an interpretation again in the active sense that the physical content of the
fixed unprimed reference system is first rotated and then boosted by the unique
rotation and boost content of L according to the above theorem.

As is well known from physics, the infinitesimal generators of a 3-rotation
(generators of the Lie algebra oð3;RÞ) are the three components of Schrödinger’s
angular momentum operator multiplied by the imaginary unit and the infinitesimal
generators of boosts (infinitesimal boosts may be described by infinitesimal Galilei
transformations as seen above after (6.48)) are the three components of the
momentum operator. Hence, the dimension of the Lorentz group is 6 ¼ 4ð4� 1Þ=2
in accord with the general dimension of Oðp; qÞ:

Instead of describing a point of space–time as a four-vector in Minkowski space
R4 provided with a pseudo-metric glm ¼ ðD1;3Þlm as in (6.46), it may likewise be
characterized by a complex Hermitian 2� 2 matrix which also has four real
entries, by the correspondence
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ðxlÞ 7!X ¼ xlrl ¼ x0 þ x3 x1 � ix2

x1 þ ix2 x0 � x3

� �

7! 1
2

trðXrlÞ
� �

¼ ðxlÞ; ð6:53Þ

with

r0 ¼ 12; r1 ¼
0 1
1 0

� �

; r2 ¼
0 �i
i 0

� �

; r3 ¼
1 0
0 �1

� �

: ð6:54Þ

ri; i ¼ 1; 2; 3 are the Pauli matrices, while all real quadruples with arithmetic
operations according to ða; b; c; dÞ ¼ ar0 þ bir3 þ cir2 þ dir1 form a realization
of the field of Hamilton’s quaternions. Obviously, (6.53) provides a one–one
mapping between the points ðxlÞ and X: Moreover,

det X ¼ ðx0Þ2 � ðx1Þ2 � ðx2Þ2 � ðx3Þ2 ð6:55Þ

defines Minkowski’s pseudo-metric on the space of the complex Hermitian
matrices X: A Lorentz transformation must now be a linear transformation of
matrices X which preserves Hermiticity and keeps the determinant of X constant.
A simple such transformation is

X0 ¼ AXAy; det A ¼ 1; that is, A 2 Slð2;CÞ: ð6:56Þ

In fact it would suffice to demand jdet Aj ¼ 1; but A and eikA; k real, provide the
same transformation (6.56) with detðeikAÞ ¼ ei2kdet A: Hence, for every A0 with

jdet A0j ¼ 1 one may choose A ¼ ðdet A0Þ�1=2A0 with det A ¼ 1:
Every transformation (6.56) is via (6.53) mapped to a Lorentz transformation

of ðxlÞ; and this mapping is obviously both smooth and a group homomorphism.
Hence, there is a Lie group homomorphism Slð2;CÞ ! Oð1; 3Þ: Since Slð2;CÞ is
simply connected, it is smoothly mapped into the connected component of
Oþð1; 3Þ: This latter mapping is even onto. Consider first a rotation by an angle
�u around the e3-axis, x01 ¼ x1 cos u� x2 sin u; x02 ¼ x1 sin uþ x2 cos u while
x0 and x3 do not change. It is easy to check by direct calculation that it is provided
via (6.53) and (6.56) by

expððiu=2Þr3Þ ¼ 12 þ i
u
2
r3 �

1
2!

u
2

� 	2
� i

3!

u
2

� 	3
r3 þ � � �

¼
cosðu=2Þ þ i sinðu=2Þ 0

0 cosðu=2Þ � i sinðu=2Þ

� � ð6:57Þ

which is obviously an element of Slð2;CÞ: Similar expressions hold for rotations
around the other spatial axes. Since any rotation of SOð3Þ can be performed by
rotating around e3 by the first Euler angle, then rotating around the new e2-axis
by the second Euler angle and finally rotating around the thus obtained e3-axis
by the third Euler angle, every SOð3Þ-rotation corresponds to a product of three
Slð2;CÞ-transformations. Similarly it is seen that a boost along the e3-axis is
provided by
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expððh=2Þr3Þ ¼ 12 þ
h
2
r3 þ

1
2!

h
2

� �2

þ1
3!

h
2

� �3

r3 þ � � �

¼
coshðh=2Þ þ sinhðh=2Þ 0

0 coshðh=2Þ � sinhðh=2Þ

� �

: ð6:58Þ

a general boost along any e-direction is then obtained from (6.58) by replacing r3

with e � r where r means the 3-vector of the three Pauli matrices. Finally, since
any proper orthochronous Lorentz transformation can be written as an SOð3Þ-
rotation followed by a boost, it may be likewise written as a transformation (6.56)
with A generated by expressions expðk � rÞ where k is a general complex 3-vector,
and det expðk � rÞ ¼ exp trðk � rÞ ¼ expð0Þ ¼ 1 since the Pauli matrices are
traceless. Exercise: Show that a rotation by p around the y-axis followed by a boost
in z-direction cannot be given by a single exponent expðk � rÞ:

A traceless complex 2� 2-matrix has three independent complex entries and
can be expressed as a complex linear combination of the three Pauli matrices.
From the result of the last paragraph it follows, that the Pauli matrices generate the
Lie algebra slð2;CÞ with six real dimensions. The three matrices irk; k ¼ 1; 2; 3
generate infinitesimal rotations, and the matrices rk; k ¼ 1; 2; 3 generate infini-
tesimal boosts. On physical grounds it is clear, and it can of course be shown
technically, that the Lie algebras oð1; 3Þ and slð2;CÞ are isomorphic.

If one, however, replaces the matrices (6.57) or (6.58) by their negative (which
does not change det A because of even rank), the transformation (6.56) is not
affected. Two elements of Slð2;CÞ differing in a sign only lead to the same Lorentz
transformation:

Oþð1; 3Þ � Slð2;CÞ=f12;�12g: ð6:59Þ
While Slð2;CÞ is simply connected, Oþð1; 3Þ having a Lie algebra isomorphic to
that of Slð2;CÞ cannot be simply connected. Slð2;CÞ is the universal covering
group of Oþð1; 3Þ:

The matrices expðik � rÞ with real kk are in fact unitary as any exponentiation of
a skew-Hermitian matrix. Hence, the rotations belong to the subgroup SUð2Þ of
Slð2;CÞ; and it holds that

SOð3Þ � SUð2Þ=f12;�12g: ð6:60Þ

The Lie algebra suð2Þ is the real Lie algebra generated by irk; k ¼ 1; 2; 3 and is
isomorphic to the Lie algebra of angular momenta. SUð2Þ is the universal covering
group of SOð3Þ:

The representation theory of the groups SUð2Þ and Slð2;CÞ can be found in
textbooks of quantum mechanics and is not considered here. Only a few final
remarks are in due place. In the last section, Slð2;CÞ ¼ Spð2;CÞ was mentioned.
As a consequence, every Slð2;CÞ-transformation leaves a skew-symmetric bilinear
form on the representation space invariant the skew-symmetric matrix providing it
being often called the ‘metric spinor’. With respect to the SUð2Þ being a subgroup
of Slð2;CÞ; due to unitarity there is additionally a unitary bilinear form left
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invariant. This brings it about that Slð2;CÞ has two unitarily inequivalent
two-dimensional irreducible representations (undotted and dotted spinors) while
SUð2Þ has only one (up to unitary equivalence). Moreover, Slð2;CÞ �
f12;P; T; TPg where A ¼ P and A ¼ T ; respectively, provide space and time
inversion in (6.56) is the cover of the complete Lie group Oð1; 3Þ relevant in
quantum theory, which has no two-dimensional faithful (see next section) repre-
sentation. These facts were pointed out by van der Waerden immediately after
Dirac’s formulation of the relativistic theory of the electron.

6.8 The Adjoint Representation

As stated in Sect. 6.2, a homomorphism from a Lie group G into the Lie group
Glðn;KÞ is called a representation of the Lie group G: Even for a finite dimen-
sional Lie group there may be infinite dimensional irreducible representations in
the Lie group GlðVÞ of automorphisms of an infinite dimensional vector space V:
A representation is called a faithful representation, if the homomorphism is
injective which means that its kernel is trivial. The group may then be identified
with its image of this representation. An important faithful representation of a
special class of Lie groups is the adjoint representation.

Consider any Lie group G and fix one element x 2 G: Then,

RxðgÞ ¼ xgx�1 ¼ lx 	 rx�1ðgÞ ¼ rx�1 	 lxðgÞ ð6:61Þ

is an automorphism of G called an inner automorphism. Indeed, Rxðgh�1Þ ¼
RxðgÞRxðh�1Þ for all g; h 2 G and both translations lx and rx were shown in
Sect. 6.1 to be injective. Since Lie group homomorphisms are pushed forward to
Lie algebra homomorphisms (Sect. 6.2), Rx is pushed forward to the Lie algebra
automorphism

AdðxÞ ¼ ðRxÞ� : g! g: ð6:62Þ

As a Lie algebra automorphism, AdðxÞ is a non-singular linear transformation of
the vector space g of dimension n ¼ dim G and hence is an element of the Lie
group Glðn;KÞ:

Ad : G! AutðgÞ � Glðn;KÞ: ð6:63Þ

This mapping is a Lie group homomorphism, because it is smooth as a composition
of smooth mappings leading to (6.63), and first Rxy�1ðgÞ ¼ xy�1gðxy�1Þ�1 ¼
xy�1gyx�1 ¼ RxðRy�1ðgÞÞ and hence Rxy�1 ¼ Rx 	 Ry�1 ; and then finally Adðxy�1Þ ¼
ðRxy�1Þ� ¼ ðRx 	 Ry�1Þ� ¼ ðRxÞ� 	 ðRy�1Þ� ¼ AdðxÞAdðy�1Þ where the last expres-
sion means matrix multiplication. As a Lie group homomorphism into Glðn;KÞ;
Ad is an n-dimensional Lie group representation. It is called the adjoint represen-
tation of G: Again invoking the push forward from Lie group homomorphisms to
Lie algebra homomorphisms,
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ad ¼ Ad� : g! EndðgÞ � glðn;KÞ ð6:64Þ

is a Lie algebra representation of g as an algebra of linear transformations of the
vector space g itself.

The diagram (6.11) applied to F ¼ Rx and F ¼ Ad yields the following two
commutative diagrams

Ad(x)

exp exp

G
Rx

G

ad
End( )

exp exp

G
Ad

Aut( )

ð6:65Þ

meaning

expðtAdðxÞðYÞÞ ¼ x expðtYÞx�1 and expðtadðXÞÞ ¼ AdðexpðtXÞÞ: ð6:66Þ

Differentiation of the last relation with respect to t at t ¼ 0 yields adðXÞ ¼
½ðd=dtÞAdðexpðtXÞÞ�t¼0: Now, adðXÞ 2 EndðgÞ; and elements of Lie algebras are
left invariant vector fields of their respective Lie groups. Hence,

adðXÞðYeÞ ¼
d

dt
AdðexpðtXÞÞYe½ �t¼0¼

d

dt
ðRexpðtXÞÞ�Ye


 �
t¼0

¼ d

dt
ðrexpð�tXÞ 	 lexpðtXÞÞ�Ye


 �
t¼0

¼ d

dt
ðrexpð�tXÞÞ� 	 ðlexpðtXÞÞ�Ye


 �
t¼0

¼ d

dt
ðrexpð�tXÞÞ�YexpðtXÞ

 �

t¼0
¼ lim

t!0

ðrexpð�tXÞÞ�YexpðtXÞ � Y

t
:

(The last but one equality is due to the left invariance of Y :) Recall that expðtXÞ
describes the integral curve /tðeÞ of the vector field X on G through e 2 G: Since
at e 2 G left and right invariant vector fields coincide, ðrexpð�tXÞÞ� is just Ut of
(4.36), and (cf. (3.37))

adðXÞY ¼ LXY ¼ ½X; Y�: ð6:67Þ

This is called the adjoint representation of the Lie algebra.
The center ZG of a Lie group G is defined as the subgroup consisting of the

elements of G commuting with all elements of G separately (the latter as distinct
from a mere invariant subgroup):

ZG ¼ fz 2 G j gzg�1 ¼ z for all g 2 Gg: ð6:68Þ

Accordingly, the center zg of a Lie algebra g is

zg ¼ fZ 2 g j ½X; Z� ¼ 0 for all X 2 gg: ð6:69Þ
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The center of a connected Lie group G is the kernel of the adjoint
representation.

Proof Let z 2 ZG: Then, for every X 2 g and all t 2 R; expðtXÞ ¼ zðexpðtXÞÞz�1 ¼
expðtAdðzÞðXÞÞ: Hence, from the left diagram (6.65), X ¼ AdðzÞðXÞ which means
z 2 Ker Ad: Conversely, let z 2 Ker Ad: Then, zðexpðtXÞÞz�1 ¼ expðtAdðzÞðXÞÞ ¼
expðtXÞ; and z commutes with all expðtXÞ forming a neighborhood of e 2 G: Since G
is connected, z commutes with all G and hence is in its center. h

If G0 is a Lie group and ZG0 is its center, then G ¼ G0=ZG0 is a Lie group with
trivial center which can be identified with its adjoint representation and hence with
a Lie subgroup of some Glðn;KÞ; n ¼ dim G: Comparing (6.1) with (6.67), this
identification of G with AdðGÞ and of g with adðgÞ yields

ðadðXiÞÞkj ¼ ðXiÞkj ¼ ck
ij; AdðexpðtXiÞÞ ¼ expðtXiÞ ¼ expðtðck

ijÞÞ ð6:70Þ

where ðck
ijÞ in the last exponent means the matrix with matrix elements ck

ij for i

fixed.
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Chapter 7
Bundles and Connections

In Chap. 3, manifolds were introduced as a special category of topological spaces
having locally a topology like a (finite-dimensional) metric vector space. In order
to glue together these quite simple local patches, in addition to the topology a
differentiable structure (pseudo-group, complete atlas) of transition functions wba

was introduced which allowed to develop an analysis on manifolds. Globally,
however, manifolds may be very complex. Fiber bundles form a special category
of manifolds which locally behave like a topological product of manifolds, but
which again are provided with additional specific structure to allow for a rich
content of theory. Their global topology may be as complex as that of any man-
ifold; in fact, fiber bundles are build on any type of manifold.

In order to have an illustrative introductory example, consider a smooth real
function F defined on a manifold M; the circle M ¼ S1 say. The graph of F is a set
F ¼ fðx;FðxÞÞj x 2 Mg of pairs ðx;FðxÞÞ which can be viewed as points of the
product manifold M � R which in the considered example would be an (infinite)
cylinder. Considered merely as a product manifold, arbitrary coordinate patches of
that cylinder (charts) may be used to describe it by means of homeomorphic
mappings onto open domains U 2 R2: However, this way the important feature of
a function is lost, namely that F has precisely one point ðx;FðxÞÞ for every x 2 M:
Moreover, often pointwise algebraic operations with functions on M are of
interest, that is, the algebraic structure of R as an Abelian group (of additions) or
even as a vector space matters. A simple but in physics particularly important case
is that of complex functions on M of absolute value equal to unity (phases). Then,
instead of R; the Abelian Lie group G ¼ Uð1Þ forms the space of values of F: In
this case, the graph of F is a subset of M � G: If M is a manifold of quantum
states, then G may be an Abelian gauge group. It is clear immediately that also
non-Abelian groups are of great relevance.

Again, only smooth bundles are considered in this volume, and for the sake
of brevity the adjective smooth is omitted throughout (but recalled now and
then).
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7.1 Principal Fiber Bundles

A principal fiber bundle ðP;M; p;GÞ; or in short notation P; consists of

1. a manifold P;
2. a Lie group G which acts freely on P from the right, that is, there is a smooth

mapping Rg : P� G! P : ðp; gÞ 7! pg ¼ Rgp with Rgh�1 ¼ Rh�1 Rg and so that
Rgp 6¼ p unless g ¼ e; the unit in G,

3. M is the quotient space P/G with respect to the action of G in P; and the
canonical projection p : P! M is smooth,

4. P is locally trivial, that is, for every x 2 M there is a neighborhood U � M of x
so that p�1ðUÞ is diffeomorphic to U � G in the sense that there is a smooth
bijection w : p�1ðUÞ ! U � G so that wðpÞ ¼ ðpðpÞ;/ðpÞÞ for all p 2 p�1ðUÞ
with /ðpgÞ ¼ /ðpÞg for all g 2 G:

The points 2 and 3 together mean that p�1ðxÞ � G for every x 2 M and hence
that G acts transitively on p�1ðxÞ; that is, for every pair ðp; p0Þ of points of p�1ðxÞ
there is a g 2 G with p0 ¼ pg:

M is called the base space of the bundle and P is called the bundle space while
p is the bundle projection, p�1ðxÞ is the fiber over x 2 M; and in a principal fiber
bundle all fibers are isomorphic to the Lie group G; the structure group of the
bundle.

The simplest principal fiber bundle is the trivial bundle or product bundle
M � G (Fig. 7.1). If, moreover, G ¼ R as the Abelian Lie group with respect to
addition of numbers, then P ¼ fðx; rÞj x 2 M; r 2 Rg as a manifold is the infinite
cylinder over M as base (viewed for instance by fixing r ¼ 0) and p is the pro-
jection onto the base of that cylinder.

Note that in general the only connection between P and M is the mapping p:
Despite the simplified sketches in Fig. 7.1 and in some of the following figures
there is no reason to think of M as a subset of P. Subsets of P homeomorphic to M
(which even need not exist in general) are the images of global sections of P
defined below.

Fig. 7.1 A trivial principal
bundle P ¼ M � G with
M ¼ S1 and G ¼ R: See also
emphasized text above
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The trivial bundle M � G is, however, not the only principal fiber bundle P with
M as base space and G as structure group. To see this, consider an open cover
fUag of M fine enough so that for every Ua the restriction p�1ðUaÞ of P to Ua is
trivial according to point 4 of the above definition, that is, on the trivial bundle
p�1ðUaÞ there is a diffeomorphism p 7!waðpÞ ¼ ðpðpÞ;/aðpÞÞ: Let Ua \ Ub

be non-empty and let p 2 p�1ðUa \ UbÞ: Then, /bðpgÞð/aðpgÞÞ�1 ¼ /bðpÞgg�1

ð/aðpÞÞ�1 ¼ /bðpÞð/aðpÞÞ�1; where ð/aðpgÞÞ�1 is the inverse group element to

/aðpgÞ in G: Hence, /bðpgÞð/aðpgÞÞ�1 does not depend on g: Moreover, since G

acts freely and transitively on p�1ðxÞ; for every p; p0 2 p�1ðxÞ there is g 2 G so
that p0 ¼ pg: Consequently, /bðpgÞð/aðpgÞÞ�1 depends on p only through pðpÞ 2
Ua \ Ub � M: As a result, for every pair ðUa;UbÞ with Ua \ Ub 6¼£ there is a

transition function wbaðpðpÞÞ ¼ /bðpÞð/aðpÞÞ�1; pðpÞ 2 Ua \ Ub; with the
obvious properties

wabðxÞ ¼ ðwbaðxÞÞ
�1; wcaðxÞ ¼ wcbðxÞwbaðxÞ for all x 2 Ua \ Ub \ Uc:

ð7:1Þ

The function values of these transition functions are elements of the Lie group G;
and on the right hand sides of (7.1) the group operations are meant. Of course, for
c ¼ b ¼ a the second relation implies waa ¼ e and hence, for c ¼ a; it also implies
the first relation. (If G is Abelian and additively written, all group multiplications
used so far in this section are to be replaced by additions.)

Recall that a (principal) fiber bundle is a special manifold, and hence it has
transition functions of its coordinate neighborhoods as a manifold. Because of the
more complex structure of a fiber bundle as a manifold, its transition functions
~wbaðpÞ ¼ ðwbaðxaÞ;wbaðxÞÞ (here marked with a tilde) have also a more complex
structure: wba is the transition function on M as in Chap. 3, and the G-group valued
function wba was analyzed above. See Fig. 7.2 on the next page.

Take as an example again M ¼ S1 3 eia ¼ z with coordinate a on M; consider
the open cover fU1;U2g;U1 ¼ S1 n f1g;U2 ¼ S1 n f�1g of M: Let G ¼ R [ fIg
be the Lie group of all translations by g 2 R and of the inversion I of the real line,
in (somewhat non-standard) multiplicative writing gh ¼ hg ¼ gþ h; gI ¼ Ig ¼
�g; I2 ¼ e: Consider the case w21ðzÞ ¼ w12ðzÞ ¼ e: Then, P ¼ S1 � G which can
again be visualized as the cylinder of Fig. 7.1. Now, consider the possibility
w21ðzÞ ¼ w12ðzÞ ¼ I: It fulfils the conditions (7.1): e.g. w11ðzÞ ¼ w12ðzÞw21ðzÞ ¼
I2 ¼ e: It is easily seen that P for this case is the Möbius band infinitely extended
perpendicular to S1 (cf. Fig. 1.2 for a finite version). One may consider it either as
the tape U1 � G turned around and glued together at z ¼ 1 or as the tape U2 � G
turned around and glued together at z ¼ �1: Clearly it is distinct from the cylinder
already as a manifold, both cases are not homeomorphic.

Let M be any manifold and let G be any Lie group. It is not difficult to
show (e.g. [1, vol. I]) that if there is an open cover fUag of M and if there are
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transition functions wba : Ua \ Ub ! G for all non-empty Ua \ Ub which fulfil
the conditions (7.1), then there exists a corresponding principal fiber bundle
ðP;M; p;GÞ:

The principal fiber bundle ðP;M;p;GÞ may be constructed as follows: Take the trivial
bundles Qa ¼ Ua � G and form their disjoint union Q ¼ taQa: A point in Q is a triple
ða; x; gÞ; x 2 Ua; g 2 G: Introduce the equivalence relation R : ða; x; gÞ � ðb; x0; g0Þ; if x ¼ x0 2
Ua \ Ub and g0 ¼ wbag: Take the quotient space P ¼ Q=R: It is easy to see that P is a principal
fiber bundle with structure group G; base space M ¼ P=G; open cover fUag of M and transition
functions wba:

This rises the question of the morphisms of the category of bundles. Leaving
aside general bundle morphisms, a bundle homomorphism of principal fiber
bundles is a triple ðF; �F; ��FÞ of smooth mappings from a bundle ðP0;M0; p0;G0Þ into
a bundle ðP;M; p;GÞ where F : P0 ! P; �F : M0 ! M so that the diagram

P
F

P

p p

M
F

M

ð7:2Þ

is commutative, and ��F : G0 ! G is a Lie group homomorphism so that Fðp0g0Þ ¼
Fðp0Þ��Fðg0Þ for every p0 2 P0 and every g0 2 G0: Because of (7.2), F maps fibers of
P0 into fibers of P: Indeed, ðp � FÞðp0Þ ¼ x 2 M equals ð�F � p0Þðp0Þ which only
depends on p0ðp0Þ ¼ x0 2 M0: Hence, for all p0 in the fiber p0�1ðx0Þ above x0 the
image Fðp0Þ is in the fiber p�1ðxÞ above x: In the following, ðF; �F; ��FÞ is often in
short denoted simply by F or by F : P0 ! P; where in the last notation P0 and P are
the short notations of ðP0;M0; p0;G0Þ and ðP;M; p;GÞ:

Fig. 7.2 The interrelations between a principal fiber bundle P and its local trivializations Ua � G
as well as the transition functions between the latter. Note that the fiber above x; here drawn as a
line, can have any dimension. (Strictly speaking, instead of ua � wa it should be written
ðua � IdGÞ � wa)
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ðF; �F; ��FÞ : ðP0;M0; p0;G0Þ ! ðP;M; p;GÞ is a bundle embedding, if the map-
ping �F : M0 ! M is an embedding of manifolds and ��F : G0 ! G is injective.
Identifying ðP0;M0; p0;G0Þ with its image by a bundle embedding F; it is called a
subbundle of ðP;M; p;GÞ:

If moreover M0 ¼ M and �F ¼ IdM ; but ��FðG0Þ 6¼ G; then F is called a reduction
of the structure group G of P to G0 and P0 is called a reduced fiber bundle. A
principal fiber bundle P is called reducible, if there exists a reduction F : P0 ! P:
It can straightforwardly be shown [1, vol. I], that

a principal fiber bundle with structure group G is reducible to the structure
group G0; iff there is an open cover of M with transition functions obeying (7.1)
and having values only in G0:

Of particular interest in physics is the case of bundle isomorphisms with M0 ¼
M; �F ¼ IdM : If F is an isomorphism, then ��F must also be an isomorphism which
means that G0 and G are isomorphic, and hence ��F may be viewed as an auto-
morphism of P onto itself which maps fibers onto fibers: p�1ðxÞ ¼ p0�1ðxÞ for all
x 2 M: It is therefore often called a vertical automorphism of a principal fiber
bundle. As in general for automorphisms, these vertical automorphisms form a
group vAutðPÞ which is called the group of gauge transformations of P with the
symmetry group G: It will be discussed in more detail in the next chapter. In fact,
modern gauge theory in physics and the theory of principal fiber bundles were
developed in parallel in the second half of 20th century.

Let g be the Lie algebra of right invariant vector fields on the Lie group G of the
principal fiber bundle P and let XðPÞ be the Lie algebra of (smooth) tangent vector
fields on the manifold P: For every X 2 g; the 1-parameter subgroup expðtXÞ of G
induces a local 1-parameter group (p. 81) /tðpÞ ¼ p expðtXÞ through every point
p 2 P which is tangent to the fiber containing p because the action of G maps fibers
of P onto themselves, and, by differentiation with respect to t; it induces a
(smooth) tangent vector field X� 2 XðPÞ which is everywhere tangent to fibers of
P: How are X and X� related algebraically? Recall that a tangent vector on a
manifold is defined by its action on smooth real functions on that manifold. Let
f : P! R be a smooth function understood as a differential 0-form on P: Pull the
right action of G on P; Rgp ¼ pg; Rgh�1 ¼ Rh�1 Rg back by f (p. 72): R�gf ðRgpÞ ¼
f ðpÞ: From

R�gR�h�1 f ðpgh�1Þ ¼ R�gf ðpgÞ ¼ f ðpÞ ¼ R�gh�1 f ðpgh�1Þ

for every f 2 CðPÞ ¼ D0ðPÞ it follows that R�gR�h�1 ¼ R�gh�1 : (Observe how the
contravariance of the right action of G is neutralized by the contravariance of
the pull back; that is why principal fiber bundles are defined with a right action of
the structure group.) The result is, that the restriction of R� to any fiber p�1ðxÞ; x 2
M; of P is a representation of the Lie group G in the infinite-dimensional func-
tional space Cðp�1ðxÞÞ as representation space. It is called the regular repre-
sentation of G: In other words, there is a Lie group homomorphism from G into
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R�: According to the theorem on p. 177, this homomorphism is pushed forward to
a Lie algebra homomorphism R�� : g! Xðp�1ðxÞÞ; and R��ðXÞ ¼ X� (cf. (6.11)).
Suppose that X�p ¼ 0 on some point p: This would imply p expðtXÞ ¼ p: Since G

acts freely on P; this means expðtXÞ ¼ e for all t and hence X ¼ 0:
X� ¼ R��ðXÞ is called the fundamental vector field corresponding to X: For

X 6¼ 0 it is nowhere zero on P: From that and the fact that dim Tpðp�1ðxÞÞ ¼
dimðp�1ðxÞÞ ¼ dim G ¼ dim g it follows that R�� is an isomorphism of vector
spaces. (The infinite-dimensional regular representation R� of G is obviously
reducible.) Moreover, from the content of Sect. 6.8 it is easily obtained that

if X� ¼ R��ðXÞ; then for every g 2 G there is a fundamental vector field
ðRgÞ�ðX�Þ corresponding to ðAdðg�1ÞÞX 2 g:

Here, ðRgÞ� is the push forward by the right action Rg of G on P to the
corresponding action on the Lie algebra XðPÞ of tangent vector fields on P:

Finally, the functions on M anticipated in the introduction to this chapter are
treated by the notion of bundle sections. A local section of a fiber bundle
ðP;M; p;GÞ is a smooth function s : M 	 U ! P for which p � s ¼ IdU ; that is,
pðsðxÞÞ ¼ x for every x 2 U: If s is defined on all M; it is called a global section or
simply a section. In Sect. 7.6 below, vector bundles are considered which always
have (global) sections. For a principal fiber bundle this is not the case in general.

A principal fiber bundle has a (global) section, iff it is trivial.

Proof Let P ¼ M � G: Then, s : x 7! ðx; eÞ is a section. Conversely, let s : M ! P
be a section of ðP;M; p;GÞ: The sets fsðxÞgjg 2 Gg � G for each fixed x 2 M are
the fibers of P yielding a global trivialization P ¼ M � G: h

Take for instance a Möbius band as M and the (discrete multiplicative) Lie
group G ¼ f1;�1g locally describing orientation on M: There is no global section
s : M ! G smooth on M; not even a continuous one.

This section is closed with a number of examples of principal fiber bundles.
Let G be a Lie group and let H be a closed Lie subgroup of G: The quotient

space G=H of left cosets gH of H in G is a homogeneous manifold or homo-
geneous space with respect to the action of G; that is, G acts transitively (by group
multiplication) on G=H: Let p : g 7! gH be the canonical projection, it is a sur-
jective Lie group homomorphism with kernel H: Then, ðG;G=H; p;HÞ is a prin-
cipal fiber bundle. Principal fiber bundles of this type form a subcategory of
principal fiber bundles characterized as those for which the bundle space is a Lie
group and the base space is a homogeneous space of that Lie group. For more
details see Sect. 9.2.

Let M be a pathwise connected manifold and let p1ðMÞ be its fundamental
group. A manifold is locally homeomorphic to some Rn; hence a pathwise
connected manifold is locally pathwise connected and semi-locally 1-connected
(Sect. 6.4). Let ~M be its universal covering manifold, and let p : ~M ! M be the
canonical projection. Then, ð ~M;M; p; p1ðMÞÞ is a principal fiber bundle. If, for
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instance, M is the unit cell of an infinite crystal (three-dimensional torus T3), then
p1ðT3Þ � Z3 3 n ¼ ðn1; n2; n3Þ and ~M ¼ R3 ¼ [n2Z3ðM þ nÞ is the infinite rep-
etition of M: The fiber over a point x of M (the unit cell) is the lattice fxþ ng of
points equivalent to x by the discrete translational symmetry.

Let Cnþ1
� ¼ Cnþ1 n f0g be the punctured complex vector space (with the topol-

ogy from R2nþ2), and let G ¼ Glð1;CÞ be the multiplicative group of non-zero
complex numbers. Then, CPn ¼ Cnþ1

� =Glð1;CÞ is the n-dimensional projective
complex space, and, with the canonical projection p : Cnþ1

� ! CPn;

ðCnþ1
� ;CPn; p;Glð1;CÞÞ is a principal fiber bundle. Recall that Uð1Þ is a

(closed) subgroup of Glð1;CÞ: Let S2nþ1 � Cnþ1
� be the unit sphere. Then,

ðS2nþ1;CPn; p;Uð1ÞÞ is a reduced fiber bundle of the principal fiber bundle
ðCnþ1
� ;CPn; p;Glð1;CÞÞ: Here, p is just the restriction of the above projection p to

S2nþ1: This latter case is extremely relevant in physics for n ¼ 1 with the topology
from the norm of the complex Hilbert space l2: The projective Hilbert space is the
space of quantum states, its unit sphere that of normalized states, and Uð1Þ is the
gauge group for particle conservation. (See textbooks on quantum theory.)

For the n-sphere Sn in Rnþ1 and for G ¼ fe; Ig with the inversion I of space
(G is a discrete Lie group), RPn ¼ Sn=G is the real projective space, and, again
with the canonical projection p; ðSn;RPn; p;GÞ is a principal fiber bundle.

The most important special category of principal fiber bundles is considered
now.

7.2 Frame Bundles

Let M be an m-dimensional K-manifold, K ¼ R or C: A linear frame at point
x 2 M consists of point x and an ordered base ðX1; . . .;XmÞ in the tangent space
TxðMÞ on M at point x: Denote a linear frame as p ¼ ðx;X1; . . .;XmÞ; and denote
the set of all linear frames at all points of M by LðMÞ: It is easily seen that the Lie
group Glðm;KÞ acts freely from the right on LðMÞ and maps linear frames at x into
linear frames at the same point x: Indeed, let g ¼ ðg j

i Þ 2 Glðm;KÞðg j
i 2 K), then

p0 ¼ pg ¼ ðx;
Pm

j¼1 Xjg
j
i ; i ¼ 1; . . .;mÞ; and p0 ¼ p implies g ¼ e ¼ d j

i : (Matrix
convention is used throughout this book understanding an upper index as row
index and a lower one as column index.) It is also clear that Glðm;KÞ acts tran-
sitively on any set of linear frames at any fixed point x 2 M: Let p : p ¼
ðx;X1; . . .;XmÞ 7! x be the projection from LðMÞ onto M: In order to see that
ðLðMÞ;M; p;Glðm;KÞÞ is a principal fiber bundle, a differentiable structure must
be defined on LðMÞ so that p is smooth.

The differentiable structure on LðMÞ is obtained in a straightforward way: Take
an atlas AM of M and choose a coordinate neighborhood U of x 2 M where
Xi ¼ Xk

i ðo=oxkÞ (Einstein summation over k). For a base of TxðMÞ; the matrix Xk
i

of the coefficients of the tangent vectors Xi in this coordinate neighborhood (which
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are smooth functions of the coordinates in U) is not degenerate, that is, its
determinant is non-zero. This yields a diffeomorphism between p�1ðUÞ � LðMÞ
and U � Glðm;KÞ: Taking fp�1ðUÞjU 2 AMg as an atlas of LðMÞ and ðxk;Xk

i ; i ¼
1; . . .;mÞ as local coordinates in p�1ðUÞ makes LðMÞ into an mðmþ 1Þ-dimen-
sional manifold, for which obviously p : LðMÞ ! M is smooth. The principal fiber
bundle LðMÞ is called the (linear) frame bundle over M:

A technical possibility to obtain the points of LðMÞ is the following: Take the
base e1 ¼ ð1; 0; . . .; 0Þ; . . .; em ¼ ð0; . . .; 0; 1Þ of Km: Then, any point p of the fiber
over x ¼ pðpÞ in LðMÞ can be obtained from a non-degenerate linear mapping
uðpÞ : Km ! TpðpÞðMÞ : ei 7! uðpÞei ¼ Xi: In local coordinates one has Xk

i ¼
P

uk
j e j

i ¼ uk
i ; and with g ¼ ðgk

j Þ 2 Glðm;KÞ and pg ¼ ðx; ðXgÞiÞ one finds ðXgÞki ¼
P

uk
j g j

j0e
j0

i ¼
P

uk
j g j

i ; that is, uðpgÞ ¼ uðpÞg: This shows again that, as for every
principal fiber bundle, the typical fiber is isomorphic to the structure group,
Glðm;KÞ in the considered case. With this convention, which is amply used later,
for every fiber over some point x there is a one–one correspondence between
p 2 p�1ðxÞ and linear mappings uðpÞ : p ¼ ðpðpÞ; uðpÞeiÞ:

Figure 7.3 shows a number of frames of LðS2Þ as an example. (Moving frames
(repère mobile) as a central technical tool in the theory of Lie groups were
introduced by E. Cartan.) Below it will be seen that for every (paracompact)
K-manifold M the structure group of LðMÞ may be reduced from Glðm;KÞ to the
unitary group UðmÞ for K ¼ C and to the orthogonal group OðmÞ for K ¼ R: From
Fig. 7.3 it is intuitively clear that orthogonal frame bundles can be treated as
(smooth) principal fiber bundles.

Instead of taking the tangent space TxðMÞ on M at x to be the (linear) vector space of the
frame bundle, the affine-linear space AxðMÞ may be considered with the group of affine-linear
transformations introduced in Sect. 6.1 as transformation group. This group is described there
explicitly and is denoted Aðm;RÞ ¼ Glðm;RÞoRm (semi-direct product). There is a short exact
sequence

0! Rm�!a Aðm;RÞ�!b Glðm;RÞ ! e;

(where Rm is considered as the Abelian group of vector addition) and a homomorphism

Fig. 7.3 The manifold M ¼
S2 with some examples of
frames. At point x the frames
of the full and dotted arrow
lines both belong to LðS2Þ:
(All arrows are understood
tangent to S2)
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c : Glðm;RÞ ! Aðm;RÞ : g 7! cðgÞ ¼ g 0
0 1;

� �

; g 2 Glðm;RÞ;

so that b � c ¼ IdGlðm;RÞ: There is also a short exact sequence

0! Rm�!a� aðm;RÞ�!b� glðm;RÞ ! 0

and a homomorphism c� : glðm;RÞ ! aðm;RÞ for the corresponding Lie algebras, so that
aðm;RÞ ¼ glðm;RÞ 
 Rm (semi-direct sum). In the same matrix notation as used for Aðm;RÞ the
elements of aðm;RÞ are

A X
0 0

� �

¼ A 0
0 0

� �

þ 0 X
0 0

� �

; A : ðm� mÞ-matrix; X : m-column:

If p ¼ ðx;X1; . . .;XmÞ is a linear frame at x 2 M; then ~p ¼ ðx;X1; . . .;Xm;Xmþ1Þ is an affine
frame at that point, where Xmþ1 stands for the affine shift vector. As in the case of linear frames,
let ~g 2 Aðm;RÞ act from the right on an affine frame as ~p0 ¼ ~p~g ¼ ðx;

Pmþ1
j¼1 Xj~g

j
i; i ¼ 1; . . .;mþ

1Þ: Denote the set of all affine frames ~p on M by AðMÞ; and the projection ðx;X1; . . .;Xmþ1Þ 7! x
by ~p; then ðAðMÞ;M; ~p;Aðm;RÞÞ is a principal fiber bundle. It is the affine frame bundle over M:

Like in the case of linear frame bundles, by introducing the same natural base in Rmþ1 as above in
Km; a linear mapping ~uð~pÞ : Rmþ1 ! T~pð~pÞðMÞ generates every frame out of the canonical frame
of the fixed natural base. (Show that the base vector emþ1 ¼ ð0; . . .; 0; 1Þ corresponds to a zero
shift in the transformation on p. 174 since the mþ 1st coordinate of the vectors in Rm is
fictitious.)

7.3 Connections on Principle Fiber Bundles

Now, manifolds are again treated as R-manifolds. Let ðP;M; p;GÞ be a principal
fiber bundle, let TpðPÞ be the tangent space on P at point p; and let Gp be the linear
subspace of TpðPÞ which is tangent to the fiber of P containing p: A connection C
on P specifies a subspace Qp of TpðPÞ at every point p 2 P so that

1. TpðPÞ ¼ Gp 
 Qp;
2. Qpg ¼ ðRgÞ�Qp for every p 2 P and every g 2 G (see below),
3. Qp depends smoothly on p 2 P:

Here, Gp and Qp are again treated just as topological vector spaces, not as
Euclidean spaces. Scalar products and angles between vectors are not defined.
For the direct sum of vector spaces see p. 16. Orthogonality also is not defined
and not demanded between Gp and Qp: (Orthogonality between vectors of T�p ðPÞ
and TpðPÞ; however, is always defined by hx;Xi ¼ 0 as usual.) Nevertheless,
any vector X 2 TpðPÞ has a unique decomposition X ¼ vX þ hX; vX 2 Gp;
hX 2 Qp: To give these two components a name, vX is called the vertical
component and hX is called the horizontal component; to say it again, no angle
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between vertical and horizontal components matters. These names are suggested
by Fig. 7.1 where fibers are ‘vertical’ on the ‘horizontal’ base manifold M;
although also Fig. 7.1 is just some visualization, and angles between the base
manifold and fibers do not matter. Strictly speaking, what is denoted M in that
figure is rather some section s : M ! P; which, as orientation on the Möbius
band showed, even does not always exist globally for a principal fiber bundle.
Nevertheless, given any point p 2 P; TpðPÞ and Gp always exist, since P and the
fiber are manifolds, the latter as a space isomorphic to a Lie group. Hence, Qp as
a complement to Gp in the vector space TpðPÞ may always be defined, although
not uniquely: there is freedom in choosing a connection. Gp is called the vertical
space and Qp is called the horizontal space. The structure group G of a fiber
bundle allows to transform distinct points on a fiber into each other, to compare
them or to combine them in pointwise manipulations of functions on M: The
connection is the general tool to transform distinct fibers into one another by
‘parallel’ transport, and thus to compare functions on M at distinct points and to
obtain derivatives.

For a fixed g 2 G; the right action Rg : P! P : p 7! pg is a smooth mapping of
the manifold P onto itself. For every p 2 P; it is pushed forward to a linear
mapping ðRgÞ� : TpðPÞ ! TpgðPÞ (see p. 71 and the transformation of fundamental
vector fields by g 2 G in Sect. 7.1). While the fundamental vector fields are
vertical in the new nomenclature, ðRpÞ� of course yields also a linear mapping of
horizontal vectors at p to vectors at pg: The condition 2 says that the image of this
mapping must again be a horizontal vector at pg and the mapping of Qp must be
onto Qpg: Since by condition 1 dim Qp ¼ dim TpðPÞ � dim Gp and the latter two
spaces have dimensions independent of p (as tangent spaces of manifolds), the
dimension of Qp must also be independent of p; and ðRgÞ� must be a regular linear
mapping (isomorphism of vector spaces).

In Sect. 7.1, the isomorphism of vector spaces R�� was considered which exists
for every principal fiber bundle and which maps every X 2 g to a fundamental
vector field X� on P which is vertical at every point p 2 P; that is X�p 2 Gp:

Conversely, consider a covector xp with g-valued components and a linear
mapping hxp; �i from TpðPÞ into g � TeðGÞ which maps any tangent vector X�p 2
TpðPÞ to the uniquely defined vector hxp;X�pi ¼ X 2 g for which R��ðXÞ ¼ vX�p :

(For the sake of distinction, again vectors of g are denoted by X here and tangent
vectors to P by X�:) X is indeed uniquely defined by X�p ; since vX�p is uniquely
defined for every X�p and R�� is an isomorphism between g and the space of
fundamental vector fields on P and hence provides a bijection between g and the
vertical space Gp: Clearly, hxp;X�pi ¼ 0; iff X�p is horizontal. The mapping xp is a
g-vector-valued linear function on TpðPÞ for every p 2 P: Since fibers of a prin-
cipal fiber bundle depend smoothly on p and because of condition 3 of the defi-
nition of Qp; for every (smooth) tangent vector field X� on P; X� 2 XðPÞ; the
mapping x equal to xp for all p may be considered as a smooth mapping from
XðPÞ to g-valued functions on P: Introduce a (fixed) base fEiji ¼ 1; . . .; dim Gg in
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g; so that Xg ¼
P

i XiðgÞEi for every X 2 g with real components XiðgÞ: Then, x

induces dim G real functions xi : XðPÞ ! CðPÞ : X� 7! hx;X�ii ¼ hxi;X�i; with
hxi;X�iðpÞ ¼ hxi

p;X
�
pi; which in fact are 1-forms on P: For that reason, x is

considered as a vector-valued or g-valued 1-form on P; it is called the connection
form of the connection C:

The connection form x has the following two decisive properties:

1. hx;R��ðXÞi ¼ X for every X 2 g;

2. hðRgÞ�x;X�i ¼ hAdðg�1Þx;X�i for every g 2 G and every X� 2 XðPÞ:

Property 1 follows directly from the definition of the connection form. Consider as
a vertical vector field (vertical X�p at every p 2 P) a fundamental vector field X�:
One has

hððRgÞ�xÞp;X�pi ¼ hxpg; ðRgÞ�ðX�pÞi ¼ hxpg; ðR��ðAdðg�1ÞXÞpgÞi ¼ Adðg�1ÞX
¼ Adðg�1Þhxp;X

�
pi ¼ hAdðg�1Þxp;X

�
pi:

The first equality expresses just the general duality between pulling back a form
and pushing forward a vector field ðððRgÞ�xÞp ¼ ðRgÞ�xpgÞ: The second equality
is an application of the rule for pushing forward a fundamental vector field by
ðRgÞ� given on p. 210. The third and fourth equalities use property 1 forth and
back, in the last step with R��ðXÞ ¼ X�: The last expression follows since
Adðg�1Þ acts on g and hence on the g-valued covector xp of the last two

expressions. On the other hand, for a horizontal vector hX�p ; ðRgÞ�ð
hX�pÞ is also

horizontal by the condition 2 of the definition of a connection C: Hence, the
second expression of the above chain of equations is already zero. (Recall from
the text above, that hx;X�i ¼ 0; if X� is horizontal.) Hence, by linearity, in the
first and last expressions of the above chain of equations the vertical vector X�p
may be replaced by any vector X�p 2 TpðPÞ: In particular, since p 2 P is arbitrary,
X�p may belong to any vector field X� 2 XðPÞ; and property 2 holds. Now, given
a g-valued 1-form x with properties 1 and 2, define

Qp ¼ fX�p 2 TpðPÞjhxp;X
�
pi ¼ 0g: ð7:3Þ

It is easily seen that this defines a connection C:

There is a one–one correspondence between connections C and g-valued
1-forms x having properties 1 and 2. The correspondence is expressed by (7.3).

Consider now the bundle projection p : P! M of the principal fiber bundle
ðP;M; p;GÞ: It is a smooth mapping between manifolds and hence is pushed
forward to a linear mapping p� : TpðPÞ ! TpðpÞðMÞ: In a neighborhood U of
x ¼ pðpÞ 2 M there is a local trivialization P 	 p�1ðUÞ � U � G and hence
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dim P ¼ dim M þ dim G: Pushing this trivialization forward to the tangent spaces
on p�1ðUÞ and considering a connection C on P; it is easily seen that Gp is mapped
by the push forward to g and Qp is mapped isomorphically to TxðUÞ: (The tangent
space on U � G at p may be realized as TpðpÞðUÞ 
 g; with TpðpÞðUÞ ¼ TpðpÞðMÞ:)
Since the trivialization is a local bundle isomorphism, the same statement can be
made for the connection on P itself:

For every connection on a principle fiber bundle the bundle projection p is
pushed forward to a linear bijection (isomorphism) p� of Qp onto TpðpÞðMÞ:

A horizontal tangent vector field X� 2 XðPÞ is called a (horizontal) lift of a
tangent vector field X 2 XðMÞ; if p�ðX�pÞ ¼ XpðpÞ for every p 2 P: (Now, tangent
vector fields on M are denoted by X:) X� is invariant under the action of ðRgÞ�;
since the horizontal space Qp is invariant and, since pðRgðpÞÞ ¼ pðpÞ; it must hold
that p�ððRgÞ�X�pÞ ¼ p�ðX�pÞ:

Given a connection on a principal fiber bundle ðP;M; p;GÞ; there is a one–one
correspondence between tangent vector fields X on M and horizontal tangent
vector fields on P invariant under ðRgÞ�; the latter being the lifts X� of X. This
correspondence observes addition and Lie products of tangent vector fields as well
as multiplication by real functions.

It is readily seen that a horizontal vector field X� on P which is invariant under
G is the lift of X ¼ p�ðX�Þ: That the lift of every X 2 XðMÞ is smooth can easily
be checked in a local trivialization of P: The rest is obvious.

So far, two ways are obtained to define a connection on a principal fiber bundle,
by specifying a family C of horizontal tangent spaces Qp obeying conditions 1 to 3
or by specifying a g-valued 1-form x having properties 1 and 2 Instead of spec-
ifying a global 1-form x on P; a third way is to specify a family of local g-valued
1-forms on M as considered below. All three ways are of equal practical
importance.

As on p. 207, let fUag be an open cover of M so that a family of diffeomor-
phisms wa : p�1ðUaÞ ! Ua � G : p 7! ðpðpÞ;/aðpÞÞ is a local trivialization of P:
Let wab; wabðxÞ 2 G; x 2 Ua \ Ub � M be the corresponding transition functions.

Let sa : Ua ! p�1ðUaÞ : x 7! saðxÞ ¼ w�1
a ðx; eÞ be the canonical local section,

where e is the unit in G: In fact, any local section on Ua may be expressed as
sðxÞ ¼ saðxÞgðxÞ through the canonical local section and a function Ua 3
x 7! gðxÞ 2 G: In particular, on Ua \ Ub the canonical local sections sa and sb are
linked by the transition function wab : Ua \ Ub ! G; indeed

sbðxÞ ¼ w�1
b ðx; eÞ ¼ ðw

�1
a � wa � w�1

b Þðx; eÞ ¼ saðxÞwabðxÞ:

w�1
b maps ðx; eÞ 2 Ub � G to the point sbðxÞ ¼ p 2 P with pðpÞ ¼ x and /bðpÞ ¼

e: Then, wa maps this point p to ðx;/aðpÞÞ ¼ ðx;/aðpÞð/bðpÞÞ�1Þ ¼ ðx; eÞ/aðpÞ
ð/bðpÞÞ�1 ¼ ðx; eÞwabðxÞ; where in the first equality use was made that /bðpÞ ¼
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e ¼ ð/bðpÞÞ�1; and in the second equality the action of G on a principal fiber

bundle was employed. Finally, w�1
a ððx; eÞwabðxÞÞ ¼ w�1

a ðx; eÞwabðxÞ ¼ saðxÞwabðxÞ:
The canonical section sa is a mapping of the manifold Ua into the manifold P;

hence it may be pushed forward to a linear mapping sa� of the tangent spaces
TxðMÞ into the tangent spaces TsaðxÞðPÞ: Likewise, the mapping wab of the manifold
Ua \ Ub into G may be pushed forward to a linear mapping wab� from the spaces
TxðMÞ into the spaces TwabðxÞðGÞ: Since these push forwards are differentials
(Sect. 3.5), the Leibniz rule applies to the above displayed relation: For every
tangent vector Xx 2 TxðMÞ; x 2 Ua \ Ub;

sb�ðXxÞ ¼ sa�ðXxÞRðwabÞ þ ðsaðxÞÞ�wab�ðXxÞ;

where R is the representation of G by right action onto the vector space
TsaðxÞðPÞ; ðRgÞ�ðYÞ ¼ YRðgÞ; and ðsaðxÞÞ� is the push forward of saðxÞ; for fixed x
considered as a mapping G 3 g 7! saðxÞg 2 P; to a linear mapping from TwabðxÞðGÞ
into TsbðxÞðPÞ with sbðxÞ ¼ saðxÞwabðxÞ; cf. Fig. 7.4.

Let fEiji ¼ 1; . . .; dim Gg be a fixed base in g and let x ¼
P

i x
iEi be a con-

nection form on P: Then, as xi
p 2 T�p ðPÞ; hxi

sbðxÞ; sb�ðXxÞi is a real number and, if x

is varied through Ub; it is a smooth real function on Ub: Hence,
P

ihxi
sbðxÞ; sb�

ðXxÞiEi is a smooth vector valued function on Ub with values in g: It is denoted by
xb and is the pull back of xi 2 D1ðPÞ to D1ðUbÞ by s�b : hxi

b;Xxi ¼ hxi
sbðxÞ; sb�

ðXxÞi ¼ hs�bðxi
sbðxÞÞ;Xxi; that is, xb ¼ s�bðxÞ: Applying x on both sides of the

above displayed Leibniz rule one obtains for X 2 XðUa \ UbÞ

hxb;Xi ¼ hðAdðw�1
ab ÞxaÞ;Xi þ h#ab;Xi; xa ¼ s�aðxÞ; #ab ¼ w�abð#Þ;

ð7:4Þ
where # is the canonical Maurer–Cartan 1-form (p. 176) of G and the g-valued
1-forms xa ¼ s�aðxÞ are called local connection forms. They are pull backs of

Fig. 7.4 Local sections
sa and sb with transition
function wab and push
forwards
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the connection form x from the canonical local section saðUaÞ � P to Ua � M:
The first term on the right hand side was transformed with the property 2 of
connection forms: hx; sa�ðXÞRðwabÞi ¼ hx; ðRwab

Þ�ðsa�ðXÞÞi ¼ hððRwab
Þ�xÞ; sa�

ðXÞi ¼ hððRwab
Þ�xÞa;Xi ¼ hðAdðw�1

ab ÞxÞa;Xi ¼ hðAdðw�1
ab ÞxaÞ;Xi: The last step

realizes the independent linear action of AdðgÞ and of s�a on X :
P

j Adðw�1
ab Þ

i
jx

j
� �

a
¼

P
j Adðw�1

ab Þ
i
jx

j
a:As regards the second term on the right hand side of (7.4), consider

the left invariant vector field Y on G which for g ¼ wabðxÞ equals wab�ðXxÞ 2
Tðx;wabðxÞÞððUa \ UbÞ � GÞ and apply the canonical Maurer–Cartan 1-form:

h#;wab�ðXxÞi ¼ h#; Yi ¼ Ye: The isomorphism G � p�1ðxÞ translates Y
into a fundamental vector field Y�e ¼ R��ðYeÞ on P; the value of which at p ¼
saðxÞwabðxÞ is ðsaðxÞÞ�wab�ðXxÞ:Now, hx; ðsaðxÞÞ�wab�ðXxÞi ¼ hx;R��ðYeÞi ¼ Ye ¼
h#;wab�ðXxÞi ¼ hðw�abð#ÞÞ;Xxi:

The transition formula (7.4) from Ua to Ub for the local connection forms of a
connection form x; that is, from xa to xb looks quite involved. Consider the
important special case where G is Glðn;KÞ or a subgroup thereof, that is, where
both G and g � TeðGÞ consist of n� n-matrices. Recall that wabðxÞ 2 G and
hx;Xi 2 g: The relation (7.4) becomes a matrix equation and reads

hxb;Xi ¼ w�1
ab hxa;Xiwab þ w�1

ab wab�ðXÞ:

The first expression is due to the definition of the adjoint representation of G in this
case, and in the second expression w�1

ab pulls back the vertical vector wab�ðXÞ 2
Tðx;wabðxÞÞððUa \ UbÞ � GÞ to a vertical vector of Tðx;eÞððUa \ UbÞ � GÞ � g:

Recall, that wab� is the differential of wab:

There is a one–one correspondence of connection forms x on P and families of
local connection forms xa on M obeying (7.4). The correspondence is expressed
by the second relation (7.4).

A local connection form xa is a connection form on the trivial bundle Ua � G:
It is easily seen that on a trivial bundle M � G the lifts Qðx;gÞ of the tangent spaces
Qðx;eÞ on the reduced bundle M � feg; that is, all tangent spaces on all submani-
folds M � fgg; form a connection. It is called the canonical flat connection.
(Later it becomes clear why it is called flat.) Since all manifolds are supposed to
be paracompact, the technique of partitioning of unity (Sect. 2.4) can be used to
show that on every principal fiber bundle any local connection may be continued
to a global connection [1, vol. I, Sect. II.2].

A connection exists on every principal fiber bundle.

Let ðLðMÞ;M; p;Glðm;RÞ; m ¼ dim M be the frame bundle over M: A con-
nection form x on LðMÞ is called a linear connection. (There is a modification
compared to the general case which is explained in more detail at the end of Sect.

7.7.) A linear connection is a glðm;RÞ-valued 1-form x ¼
P

ij x
i
jE

j
i with
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properties 1 and 2 on p. 215, where fE j
i ji; j ¼ 1; . . .;mg is a fixed base in glðm;RÞ;

for instance given by the real m� m-matrices E j
i having a unit entry in the ith row

and jth column and zeros otherwise, ðE j
i Þ

l
m ¼ dl

id
j
m: Recall from Sect. 7.2 that a

linear frame is an ordered base ðX1; . . .;XmÞ of TxðMÞ; and LðMÞ 3 p ¼
ðx;X1; . . .;XmÞ:

Consider a local trivialization of LðMÞ by an open cover fUag of M and
introduce local coordinates ua : Ua ! Ua � Rm : x 7!

P
k xkek; where fekg is the

base of Rm introduced in Sect. 7.2. As was done there, consider again the linear
bijection uðpÞ : Rm ! TpðpÞðMÞ; uðpgÞ ¼ uðpÞg and find local coordinates

waðpÞ ¼ ðxkðpÞ; uk
i ðpÞÞ on Ua � Glðm;RÞ � LðMÞ and waðpgÞ ¼ ðxkðpÞ; uk

j ðpÞg
j
iÞ;

where uk
i ðpÞ is a real non-degenerate m� m-matrix. Therefore, the coordinate

expression of a tangent vector is

TpðLðMÞÞ 3 X�p ¼
X

k

XkðpÞ o

oxk
þ
X

ik

Xk
i ðpÞ

o

ouk
i

¼ hX�p þ vX�p :

While the first coordinate expression has no component tangent to the fiber and hence
belongs to the horizontal space hX�p only, the second one may, depending on the

connection, belong partially to both hX�p and vX�p :Nevertheless, the horizontal space
must be m-dimensional since it is isomorphic to TxðMÞ and the vertical space must be
m2-dimensional since it is isomorphic to glðm;RÞ: The canonical local section is
sa : x 7!w�1

a ðxk
aðxÞ; dk

i Þ and sbðxÞ ¼ w�1
a ðxk

aðxÞ; dk
i Þwab ¼ w�1

a ðxk
aðxÞ; ðwabÞ

k
i Þ:

Let h be the Rm-(vector)-valued 1-form on LðMÞ; defined as

hhp;X
�
pi ¼ u�1ðp�ðX�pÞÞ; X�p 2 TpðLðMÞÞ; ð7:5Þ

where p� : TpðLðMÞÞ ! TpðpÞðMÞ is the push forward of p as previously which
projects any tangent vector X� on the bundle space LðMÞ to the tangent space on
the base space M; and u ¼ uðpÞ : Rm ! TpðpÞðMÞ is the linear bijection as above
and in Sect. 7.2 which transforms the orthonormal standard base of the Rm into the
frame p: u�1 then represents the vector Xx ¼ p�ðX�pÞ in the frame p: h is called the
canonical form on LðMÞ (sometimes called the soldering form which ‘solders’
structural objects of the points of LðMÞ like tangent vectors to the base space M).
If X�p is vertical, then p�ðX�pÞ ¼ 0 (pðpðtÞÞ has zero derivative at t where
the tangent vector X�pðtÞ to the curve pðtÞ is vertical) and hence hhp;X�pi ¼ 0 for

vertical X�p : In the case of a general X�p a group action yields hðR�gðhpgÞÞ;X�pi ¼
hhpg;Rg�ðX�pÞi ¼ ðugÞ�1ðp�ðRg�ðX�pÞÞÞ ¼ g�1u�1ðp�ðX�pÞÞ ¼ g�1hhp;X�pi: (Since

Rg�ðX�pÞ is in the same fiber as X�p ; p�ðRg�ðX�pÞÞ ¼ p�ðX�pÞ:) Hence, R�gðhÞ ¼ g�1h:
Now, since Qp � Rm; let B be a linear mapping of Rm 3 X into the space

HðLðMÞÞ 3 BðXÞ of horizontal vector fields on LðMÞ; BðXÞp 2 Qp; defined by

hx;BðXÞi ¼ 0; hh;BðXÞi ¼ X: ð7:6Þ
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The first relation ensures that vBðXÞ ¼ 0 while the second relation spells out
as p�ðBðXÞpÞ ¼ ðuðpÞÞðXÞ; and, since Qp � TpðpÞðLðMÞÞ; BðXÞ is uniquely defined
by (7.6). It is called the standard horizontal vector field corresponding to X:

There are m2 linearly independent fundamental vertical vector fields, which are
independent of the connection x; and m linearly independent standard horizontal
vector fields, which depend on the choice of the connection x by the first relation
of (7.6) (Fig. 7.5).

7.4 Parallel Transport and Holonomy

The connection C on a principal fiber bundle ðP;M; p;GÞ is used to define the
parallel transport of fibers on the base space M: Let F : I ! M; I ¼ ½0; 1� � R; be
a path in M from x0 ¼ Fð0Þ to x1 ¼ Fð1Þ: A (horizontal) lift F� of the path F is a
path F� : I ! P which is projected to F so that p � F� ¼ F and which has
a horizontal tangent vector in every of its points F�ðtÞ; t 2 I: If X 2 XðMÞ is a
tangent vector field on M and if F is an integral curve of X; then F� is obviously an
integral curve in P of the lift X� of X: Since there is a one–one correspondence of
tangent vector fields X on M and their lifts X� on P; which was stated on p. 216,
and since there is a unique maximal integral curve of X� through every point p 2 P
by Frobenius’ theorem, there is precisely one lift F� of the path F starting at a
given point p0 2 p�1ðx0Þ: In other words, for every p0 2 p�1ðx0Þ there is a
uniquely defined lift F� which transports p0 to a point p1 2 p�1ðx1Þ; for given x1

on F uniquely defined by F and p0: This is written as p1 ¼ ~Fðp0Þ: Obviously,
~Fðp0gÞ ¼ ~Fðp0Þg; since ðRgÞ�ðX�Þ ¼ X� for every horizontal vector field. Hence,
~F : p�1ðx0Þ ! p�1ðx1Þ is a Lie group isomorphism. It is called the parallel
transport of the fiber along the path F from x0 to x1:

If F is a path in M; then F�; F�ðtÞ ¼ Fð1� tÞ is the inverse path, and ~F� ¼
~F
�1

is the inverse isomorphic mapping of fibers. If F is a path from x0 to x1 and F0

is a path from x1 to x2; then the concatenation (p. 182) F00 ¼ F0F is a path from x0

Fig. 7.5 Example of vertical
space Gp and horizontal space
Qp of a two-dimensional
tangent space TpðPÞ (drawing
plane), showing how the
connection form x;xp 2
T�p ðPÞ; determines Qp with
Gp independently given
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to x2 (not necessarily smooth at x1; but this does not pose a problem in the present

context, piecewise smooth paths may be allowed). Obviously, ~F
00 ¼ ~F

0 � ~F:
If F is a loop with base point x; then ~F is an automorphism of p�1ðxÞ: Every loop

F yields such an automorphism. Let Lx be the family of all loops in M with base
point x: From the last paragraph it follows that all automorphisms due to the loops of
Lx form a group, the holonomy group Hx of the connection C with base point x: If
L0

x is the family of all null-homotopic loops with base point x; then the corresponding
subgroup of the holonomy group is the restricted holonomy group H0

x :

Take a loop F based on x; and take any point p 2 p�1ðxÞ: It is parallel trans-
ported by the loop to p0 ¼ ~FðpÞ 2 p�1ðxÞ; and, since G acts transitively from the

right on p�1ðxÞ; there is gF 2 G so that ~FðpÞ ¼ pgF: Clearly, gF0FðpÞ ¼ pgFgF0 ¼
RgF0gF ðpÞ: This provides a homomorphism from the holonomy group Hx of auto-
morphisms of p�1ðxÞ into the right action R of the structure group G of P; and,
since G acts freely on p�1ðxÞ; into G itself. The image of this homomorphism in G
is a subgroup of G; it is called the holonomy group Hp with reference point p:
The restricted holonomy group H0

p with reference point p is likewise defined. If the

reference point is changed within a fiber from p to pg; then gF0FðpgÞ ¼ pggFgF0 ¼
pðggFg�1ggF0g�1Þg ¼gF0FðpÞg: Hence, the holonomy group Hp with reference
point p is changed into Hpg ¼ gHpg�1 (and H0

p is changed into gH0
pg�1).

Observe, that by the above definitions the holonomy group Hx is a subgroup of
Autðp�1ðxÞÞ � AutðGÞ; while Hp is a subgroup of G itself. Let F and F0 be two
loops with base point x ¼ pðpÞ and so that p0gF 6¼ p0gF0 for some p0 2 p�1ðxÞ; that
is the automorphisms corresponding to F and F0 are not the same. Then, since G
acts freely on p�1ðxÞ; p0gF 6¼ p0gF0 for all p0 2 p�1ðxÞ: Hence, F and F0 yield two
different elements in every Hp0 ; which means that the homomorphism from Hx to
Hp0 � G is injective. Hp and Hx for x ¼ pðpÞ are isomorphic.

More generally, let p and p0 be two points (not necessarily of the same fiber)
which may be parallel transported into each other by a lift of some path F from
pðpÞ to pðp0Þ; p0 ¼ ~FðpÞ: Then, for every loop Fx 2 LxðL0

xÞ with base point x ¼
pðpÞ there is a loop Fx0 ¼ FFxF� 2 Lx0 ðL0

x0 Þ with base point x0 ¼ pðp0Þ: Let pFx ¼
~FxðpÞ ¼ pgFx ; that is, gFx 2 Hp: Then, p0Fx0

¼ ð~F � ~Fx � ~F
�1Þðp0Þ ¼ ~Fð~FxðpÞÞ ¼

~FðpgFxÞ ¼ ~FðpÞgFx ¼ p0gFx : In the last but one equality, it was used that ~F is a Lie
group isomorphism from p�1ðxÞ to p�1ðx0Þ: Hence, gFx 2 Hp0 ; too:

If p can be parallel transported to p0; then Hp ¼ Hp0 and H0
p ¼ H0

p0 :

It can be proved [1, vol. I, Sect. II.3] that

if M is pathwise connected (and paracompact), then for every p 2 ðP;M; p;GÞ
the holonomy group Hp is a Lie subgroup of G whose connected component of
unity is H0

p ; while Hp=H0
p is countable.

As a very simple example reconsider the universal covering of S1 by R of
Fig. 6.1 on p. 181. At the end of Sect. 7.1 the universal covering of a connected
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manifold was considered as a principal fiber bundle, in the present case
ðR; S1; p; p1ðS1ÞÞ where the bundle projection is p : R 3 t 7!/ ¼ eit 2 S1; and
p1ðS1Þ � Z is the fundamental group of the circle S1: Since this is a discrete Lie
group, its Lie algebra is trivial, and there are no vertical vector fields. Like the
whole bundle P ¼ R; the horizontal space is one-dimensional and coincides with
R at every point p ¼ t; which is likewise the tangent space on S1 at every point
x ¼ eit: A lift of the loop based on / ¼ 1 and running once around S1 is an interval
½2pn; 2pðnþ 1Þ� 2 R; n 2 Z: Hence, the holonomy group Ht ¼ Z for every t 2
R ¼ P; while H0

t ¼ 0 (both groups in additive writing). If a loop F from / ¼ 1
returns to / ¼ 1 without running around S1; then F� from 2pn returns to 2pn:
Ht ¼ Ht=H0

t ¼ Z is a countable discrete Lie subgroup of G ¼ p1ðS1Þ; which in this
case coincides with G itself.

The reader easily verifies that the holonomy group Hp for every point p of the
Möbius band is fe; Ig; while H0

p is again trivial.
Less trivial examples of holonomy groups will be considered later.

7.5 Exterior Covariant Derivative and Curvature Form

Like the g-valued 1-form x; the connection form with property 2 on p. 215,
consider more generally g-valued r-forms r ¼ ðr1; . . .; rdim GÞ; so that hri;X1 ^
� � � ^ Xri; Xj 2 XðPÞ; are real functions on P and

ðRgÞ�r ¼ Adðg�1Þr for every g 2 G: ð7:7Þ

Such a form is called a pseudo-tensorial r-form of type ðAd; gÞ: It is said to be
horizontal, if hri

p; ðX1Þp ^ � � � ^ ðXrÞpi ¼ 0 whenever at least one of the tangent
vectors ðXjÞp at p 2 P is vertical (tangent to the fiber). A horizontal pseudo-
tensorial r-form is called a tensorial r-form. Note that a connection form x is
vertical in this sense, it is a pseudo-tensorial 1-form of type ðAd; gÞ; but not a
tensorial 1-form.

For every pseudo-tensorial r-form r; a tensorial r-form hr may be uniquely
defined by

hhr;X1 ^ � � � ^ Xri ¼ hr; hX1 ^ � � � ^ hXri: ð7:8Þ

Indeed, because of the r-linearity of r; hr is uniquely defined by the above
relation, and together with r it is of type ðAd; gÞ: Furthermore, it vanishes
whenever at least one of the vectors Xj is vertical, which means that hXj vanishes.
For a connection form x always hx ¼ 0 holds.

The exterior covariant derivative D of a pseudo-tensorial r-form r is defined
as
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Dr ¼ hðdrÞ: ð7:9Þ

It is a linear mapping from pseudo-tensorial r-forms to tensorial ðr þ 1Þ-forms.
Indeed, by the linearity of the exterior derivative, together with r the exterior
derivative dr is a pseudo-tensorial form.

The tensorial 2-form

X ¼ Dx ð7:10Þ

is called the curvature form of the connection C given by the connection form x:
This name derives from the geometric meaning in the case of the Riemannian
geometry (Chap. 9). Recall that there is no angle between a vector and a covector,
both living in different spaces, nevertheless one often speaks of orthogonality, if a
covector annihilates a vector, hx;Xi ¼ 0: Likewise, there is no radius of curvature
of a manifold not having gotten a metric. Nevertheless, the curvature form mea-
sures the deviation of parallel transport between two points along distinct paths,
and the manifold is said to be flat (see below), if the curvature form vanishes.

Let X ¼ hX and Y ¼ hY be two horizontal tangent vectors at p 2 P: Then, (7.8)
yields hhr;X ^ Yi ¼ hr;X ^ Yi for any pseudo-tensorial 2-form r: Hence,
hdx;X ^ Yi ¼ hX;X ^ Yi in this case. Now, let X ¼ hX further be horizontal and
Y 0 ¼ vY 0 be vertical. Continue X to a horizontal vector field on P and Y 0 to the
uniquely defined (vertical) fundamental vector field Y� ¼ R��ðYÞ; equal to Y 0 at p
and corresponding to Y 2 g: First of all, according to (3.37), ½X; Y�� ¼ �½Y�;X� ¼
�limt!0ðð/�tÞ�ðXÞ � XÞ=t where the 1-parameter group /t created by Y� is a
subgroup of G and therefore it leaves the horizontal vector field X horizontal.
Hence, ½X; Y�� is a horizontal vector field. Now, (4.49) yields hdx;X ^ Y�i ¼
�LXhx; Y�i þ LY� hx;Xi � hx; ½X; Y��i ¼ 0: The first Lie derivative vanishes since
hx; Y�i ¼ hx;R��ðYÞi ¼ Y is constant, in the second and third hx; . . .i ¼ 0 since the
argument is horizontal. Finally, if both X0 and Y 0 are vertical and X� and Y� are the
corresponding fundamental vector fields, then hdx;X� ^ Y�i ¼ �hx; ½X�; Y��i ¼
�½X; Y� ¼ �½hx;X�i; hx; Y�i�: Again the two Lie derivatives vanish as derivatives
of a constant, and in the remaining term hx;X�i ¼ X was used twice.

Let X; Y 2 TpðPÞ be two arbitrary tangent vectors, decompose them into their
horizontal and vertical components and continue them into tangent vector fields as
above. By virtue of the bilinearity of the 2-form dx; E. Cartan’s structure
equations for a connection x on a principal fiber bundle,

hdx;X ^ Yi ¼ �½hx;Xi; hx; Yi� þ hX;X ^ Yi; ð7:11Þ

are obtained. In symbolic writing they are often expressed as dx ¼ �½x;x� þ X:
Eq. 7.11 is a g-valued equation consisting of dim G real equations. They may be
obtained by introducing a base fEiji ¼ 1; . . .; dim Gg in g with corresponding
structure constants ck

ij: Then, x ¼
P

i x
iEi; X ¼

P
i X

iEi and from the left AdðgÞ
invariance of x and (6.3) one has

7.5 Exterior Covariant Derivative and Curvature Form 223

http://dx.doi.org/10.1007/978-3-642-14700-5_9
http://dx.doi.org/10.1007/978-3-642-14700-5_3
http://dx.doi.org/10.1007/978-3-642-14700-5_4
http://dx.doi.org/10.1007/978-3-642-14700-5_6


dxi ¼ �1
2

X

jk

ci
jkx

j ^ xk þ Xi: ð7:12Þ

(In addition the obvious relation
P

ci
jkx

jxk ¼
P
ð1=2Þci

jkx
j ^ xk following from

the properties of the structure constants was used, observe that each vector com-
ponent dxi of the g-vector is a 2-form in K2ðT�p ðPÞÞ; and the wedge-product of 1-
forms is such a 2-form.)

A word on notation. In exterior calculus the convention

½x; r�i1...irþs
¼ ðxi1...ir rirþ1...irþs � rirþ1...irþsxi1...ir Þ ð7:13Þ

is used. If x and r are matrices, then the matrix element ðxi1...ir rirþ1...irþsÞ
k
l may not

be the same as ðrirþ1...irþsxi1...irÞ
k
l ; and one of them may even not be defined

according to the concatenation rule for matrices. Then, ½x; r� would not exist.
However, in general ½x;x� ¼ x ^ x for a 1-form, while ð½r;x� þ ½x; r�Þij ¼
ðrixj � xjri þ xirj � rjxiÞ need not vanish for general 1-forms, and hence
generally it may be that ½r;x� 6¼ �½x; r�: In analogy to the derivation of (7.11),
the exterior covariant derivative of a tensorial 1-form r may be obtained as
Dr ¼ drþ ð½r;x� þ ½x; r�Þ=2:

Like the local connection forms xa of a connection form x; local curvature
forms hXi

a;Xx ^ Yxi ¼ hXi
saðxÞ; sa�ðXxÞ ^ sa�ðYxÞi ¼ hs�aðXi

saðxÞÞ;Xx ^ Yxi on open
sets Ua � M of local bundle trivializations may be introduced with the help of the
canonical local sections sa; that is, Xa ¼ s�aðXÞ are pull backs of the curvature form
on P to Ua � M: However, since X is a tensorial form with the property (7.7) and
since wab�ð

hXÞ vanishes, the transition relations are simply

Xb ¼ Adðw�1
ab ÞXa or Xb ¼ w�1

ab Xawab; ð7:14Þ

where the second relation again holds, if G is a subgroup of Glðn;KÞ in matrix
notation. Since a pull back is a homomorphism of exterior algebras commuting
with the exterior differentiation, one immediately has dxa ¼ �½xa;xa� þ Xa:

Taking the exterior derivative of (7.12), one finds 0 ¼ ddxi ¼ �
P

ci
jkdx j ^

xk þ dXi as an equation of 3-forms. Let X; Y ; Z be three horizontal tangent vectors
at p 2 P: Since xk annihilates horizontal vectors, it follows that hdXi;X ^ Y ^
Zi ¼ 0: In view of (7.8, 7.9), this may be expressed as

DX ¼ 0: ð7:15Þ

These are the Bianchi identities for the curvature form. Alternatively, for any
pseudo-tensorial r-form DDr ¼ DhðdrÞ ¼ hðddrÞ; and D2 ¼ 0 is inherited from
d2 ¼ 0; hence (7.15) immediately follows from (7.10).
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On p. 218 the canonical flat connection of a trivial principal fiber bundle
P ¼ M � G was introduced. Consider the canonical Maurer–Cartan form # of G
and the projection p2 : M � G! G: Then,

x ¼ p�2ð#Þ ð7:16Þ

is the canonical flat connection form. Indeed, the #i
g form a dual base to a base in

TgðGÞ and hence p�2ð#Þ ¼ ðp2 � #Þ� ¼ #� � p�2 pulls any vector X 2 Tðx;gÞðPÞ first
back to TgðGÞ and then isomorphically to TeðGÞ: Hence, hx;Xi ¼ 0; iff the pull
back of X to TgðGÞ vanishes, that is, iff X is tangent to M � fgg (cf. Fig. 7.5).

Now, dx ¼ dðp�2ð#ÞÞ ¼ p�2ðd#Þ ¼ p�2ð�½#; #�Þ ¼ �½p�2ð#Þ; p�2ð#Þ� ¼ �½x;x�;
and hence X ¼ 0: In the third equality the Maurer–Cartan equations of a Lie group
where used.

A connection in a general principal fiber bundle ðP;M; p;GÞ is called a flat
connection, if every point x 2 M has a neighborhood U for which there exists an
isomorphism F : p�1ðUÞ ! U � G mapping horizontal spaces on p�1ðUÞ to tangent
spaces on U � fgg: Since the above considerations were local ones, it is clear that
X ¼ 0 for a flat connection. However, the reverse is also true, which is the result of
three theorems presented here without proof (see for instance [1, vol. I, Chap. II]).

Reduction theorem: Let ðP;M; p;GÞ be a principal fiber bundle, let M be
pathwise connected (and paracompact), and let C be a connection on P with
connection form x and curvature form X: For every p 2 P; denote PðpÞ the set of
all points p0 2 P which may be parallel transported to p. Then; PðpÞ is a reduced
fiber bundle with the reduction of the structure group from G to Hp: Let F :
PðpÞ ! P be the corresponding bundle homomorphism with the push forward
F� : hp ! g; and let C0 be a connection on PðpÞ with connection form x0 and

curvature form X0: Then, F�ðx0Þ ¼ F�ðxÞ; F�ðX0Þ ¼ F�ðXÞ; where F� pulls xi

and Xi back from DðPÞ to DðPðpÞÞ; however, still forming vectors of g:

Ambrose–Singer theorem on holonomy: In the settings and notation of the
previous theorem, the Lie algebra hp is generated by all those elements of g which
may be expressed as hXp0 ;Xp0 ^ Yp0 i; where Xp0 and Yp0 are arbitrary horizontal
vectors in Tp0 ðPÞ:

Theorem on flat connections: A connection on a principal fiber bundle is a flat
connection, iff the corresponding curvature form vanishes.

Let C be a flat connection on ðP;M; p;GÞ; X ¼ 0; and let M be connected. Let
p 2 P be arbitrary and consider the holonomy bundle through p: Denote it ~M ¼
PðpÞ: In view of the Ambrose–Singer theorem, hp is trivial. Hence, h0

p is also

trivial, and, since H0
p is a connected Lie subgroup of G and hence uniquely defined

by h0
p; it is also trivial. Consequently, Hp ¼ Hp=H0

p is countable and therefore

discrete. It follows that ~M is a covering space of M: In particular, if M is simply
connected, then P is isomorphic to the trivial bundle M � G and C is isomorphic to
the canonical flat connection of the latter.
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The theory of principal fiber bundles forms the base of the theory of more
special and important vector bundles considered in the following sections. How-
ever, it also yields immediately the mathematics of gauge field theories and, more
generally, of geometric phases (Berry phases) in quantum physics, which will be
considered in the next chapter.

7.6 Fiber Bundles

Before more general covariant derivatives of parallel transport of vector and tensor
fields are considered with the help of a connection, as a further step more special
structure is introduced into fiber bundles.

A general bundle over M is a triple ðE;M; pÞ of two topological spaces, E and
M and a smooth surjective mapping p : E! M: In a fiber bundle ðE;M; pE;F;GÞ;
M is a manifold (locally homeomorphic to Rm for some m ¼ dim M), and all
spaces p�1

E ðxÞ; x 2 M are isomorphic to each other and isomorphic to a manifold
F; the typical fiber. Moreover, there is a Lie group G of transformations of F
which introduces more structure into F (for instance the group Glðn;KÞ; n ¼
dim F introduces the structure of a K-vector space into F) and which in physics
often has the meaning of a symmetry group. In a principle fiber bundle the typical
fiber is the group G itself which acts on itself from the right. In order to adjust the
action of G to the fiber bundle ðE;M; pE;F;GÞ; it is incorporated by a principle
fiber bundle ðP;M; p;GÞ:

A fiber bundle ðE;M; pE;F;GÞ; or in short E; consists of

1. a principal fiber bundle ðP;M; p;GÞ;
2. G acts on F from the left, that is, G� F ! F : ðg; f Þ ¼ g f ; g 2 G; f 2 F; is a

linear mapping and hence a representation of the Lie group G;
3. E ¼ P�G F; that is, ðp; f Þ ¼ ðpg; g�1f Þ is an equivalence relation R in P� F;

and E ¼ ðP� FÞ=R; the elements of E are denoted pð f Þ;
4. pE : E! M : pð f Þ 7! pðpÞ;
5. every local diffeomorphism p�1ðUÞ
U � G;U � M; induces a local diffeo-

morphism p�1
E ðUÞ
U � F:

Item 3 may be understood as a mapping p : F ! p�1
E ðxÞ � E; x 2 M : f 7! pð f Þ of

the typical fiber F into E: In this respect, an isomorphism of fibers is a mapping
p � p0�1 : p�1

E ðx0Þ ! p�1
E ðxÞ where x0 ¼ pðp0Þ; x ¼ pðpÞ: Since x0 ¼ x implies p0 ¼

pg�1 for some g 2 G; p � p0�1 ¼ p � g � p�1 in this case, the group of automor-
phisms of a fiber p�1

E ðxÞ is isomorphic to the structure group itself. Item 5 fixes the
topology in E in such a way that for every local trivialization of p�1ðUÞ in P there
is a local trivialization of p�1

E ðUÞ in E: Of course, this is only possible, if there
exists a bijection between p�1

E ðUÞ defined by the previous items and U � F:

Consider ðU � G� FÞ=R ¼ ffðx; gg0; g0�1f Þjg0 2 Ggg: Choosing g0 ¼ g�1; any
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point of this set may be represented as ðx; e; g f Þ; and since F ¼ eF � GF � F for
a representation of G in F; the distinct points of this type are in one–one and onto
correspondence with the points of U � F: This also shows that the fibers of E are
isomorphic to the typical fiber F:

M is again the base space of the bundle and E is called the bundle space, pE is
called the bundle projection, p�1

E ðxÞ is the fiber over x 2 M; and G is the
structure group of the fiber bundle ðE;M; pE;F;GÞ associated with the principal
fiber bundle ðP;M; p;GÞ:

This appears to be a quite complex definition, nevertheless the structure of a
fiber bundle (Fig. 7.6) is very common in analysis and physics as seen from the
examples below. By definition, every fiber bundle E is based on a principle fiber
bundle P: In this respect, a fiber bundle is more special than its principle fiber
bundle, it has additional structure, introduced by an additional typical fiber F: On
the other hand, taking F as the primary structure as in many applications, a
principal fiber bundle may appear as a special case of a fiber bundle, in which the
typical fiber F and the structure group G (the typical fiber of P) coincide. Many
texts treat the principal fiber bundle in this sense as a special case after having
introduced into the theory of (general) fiber bundles.

In the latter sense, a local section of a fiber bundle ðE;M; pE;F;GÞ assigns a
point � of the fiber p�1

E ðxÞ over x to every point x 2 U � M: Thus it is defined as a
smooth function s : M 	 U ! E for which pE � s ¼ IdU ; and if this holds for all
M; then s is called a (global) section of E:

Before continuing with the general theory, for illustration a number of
important examples are now considered which will be treated in more detail
subsequently.

Let V � Kn be an n-dimensional K-vector space, K ¼ R or C; so that AutðVÞ �
Glðn;KÞ is the Lie group of general linear transformations of V: Let ðP;M; p;GÞ
be some principal fiber bundle, and fix a representation R of G in Glðn;KÞ: The
fiber bundle ðE;M; pE;V ;GÞ with the left action R of G on V is called a (real or
complex) vector bundle over the manifold M with the structure group G: Sections
s on M are (smooth) vector fields on M of the type V: (Consider electromagnetic

Fig. 7.6 Sketch of a fiber bundle ðE;M;pE;F;GÞ associated with a principal fiber bundle
ðP;M; p;GÞ: A point � of a fiber over x 2 M is an equivalence class of pairs ðpg; g�1f Þ
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fields on space–time as an example.) As physicists are well aware of, a vector is
not just a column of numbers with respect to the fixed canonical base of the typical
space Kn: Instead it is a physical entity which has a meaning independent of any
base. If G is the group Glðn;KÞ; then pg can be understood as transformation from
a base p to another equivalent base pg by applying g from the right to p: (Compare
the frame bundles of Sect. 7.2.) If the vector with respect to the base p is repre-
sented by the column f ; then the same vector is represented with respect to the base
pg by the transformed column g�1f : Precisely in this sense a vector bundle
associated with a principal fiber bundle is needed to give a general vector field on
M (not just a tangent vector field) a meaning independent of a reference base at
each point x of M (compare (3.11) with (3.14)).

The set SðMÞ of all sections on M forms an infinite-dimensional vector space
(functional space of vector fields) with respect to pointwise addition or multipli-
cation by a constant k 2 K: Pointwise means at points x of M; or within fibers
p�1

E ðxÞ of E: Addition and multiplication means, if �1 ¼ pð f1Þ and �2 ¼ pð f2Þ
where p 2 p�1ðxÞ and �i 2 p�1

E ðxÞ; then �1 þ �2 ¼ pð f1 þ f2Þ and k�1 ¼ pðk f1Þ: If
the product of a smooth function F 2 CðMÞ with a vector field s 2 SðMÞ is
pointwise taken, ðFsÞðxÞ ¼ FðxÞsðxÞ; then SðMÞ may also be considered as a
module over the ring CðMÞ of smooth functions. Every vector bundle has trivially
the global section x 7! 0: It can be shown with the partition of unity technique, that
for paracompact M every local section of a vector bundle and more generally of a
fiber bundle the typical fiber F of which is contractible, given on a closed subset of
M; can be continued into a global section; what does not always exist as will be
shown in Sect. 8.2 below is a vector field without nodes.

Let ðE;M; pE;V;GÞ and ðE0;M; pE0 ;V 0;GÞ be two vector bundles over the same
manifold M: The sum of vector bundles which is also called the Whitney sum,
ðE 
 E0;M; pE
E0 ;V 
 V 0;GÞ; or in short E 
 E0; is a vector bundle over M the
typical fiber of which is the direct sum V 
 V 0 of vector spaces V and V 0 with
the obvious bundle projection (p�1

E
E0 ðxÞ ¼ p�1
E ðxÞ 
 p�1

E0 ðxÞ). The left action of the
(common) structure group G on V 
 V 0 is the direct sum of representations R
 R0

from E and E0: The sum of more than two items is defined analogously. Likewise,
the tensor product of vector bundles, ðE � E0;M; pE�E0 ;V � V 0;GÞ; or in short
E � E0; is a vector bundle over M the typical fiber of which is the tensor product
V � V 0 of vector spaces V and V 0 again with the obvious bundle projection. The
left action of the structure group G on V � V 0 is the tensor product R� R0 of
representations (in the obvious meaning of the tensor product of transformation
matrices, cf. (4.7)). Again, the tensor product of more than two factors is defined
analogously. Likewise, the exterior product of vector bundles is obtained.

Let V� be the dual space to V; that is, hx;Xi 2 K; x 2 V�; X 2 V is bilinear.
The dual bundle, ðE�;M; pE� ;V�;GÞ; or in short E�; is a vector bundle over M the
typical fiber of which is V� and the representation of G in V� is the dual R� of the
representation R of G in V ; that is, hR�ðgÞx;RðgÞXi ¼ hx;Xi for all g 2 G: Hence,
hpðxÞ; pðXÞi ¼ hpgðxÞ; pgðXÞi for p 2 P; pðxÞ 2 E�; pðXÞ 2 E; is a bilinear
scalar invariant under the action of G: (Think for instance of an electric field as an
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element of V and an electric dipole density as an element of V� under the group of
rotation, both on a spatial manifold M:)

In particular, the tangent bundle TðMÞ ¼ ðTðMÞ;M; pT ;Km;Glðm;KÞÞ;
m ¼ dim M (p. 106) is an m-dimensional K-vector bundle associated with the
frame bundle LðMÞ as principal fiber bundle over M: It is easily seen that p�1

T ðxÞ �
TxðMÞ is the tangent space on M at x and SðTðMÞÞ ¼ XðMÞ is the space of tangent
vector fields. The structure group Glðm;KÞ ensures that tangent vector fields have
an unambiguous meaning independent of local coordinate systems and indepen-
dent of the choice of a local frame. The dual of the tangent bundle is the cotangent
bundle T�ðMÞ ¼ ðT�ðMÞ;M; pT� ;Km;Glðm;KÞÞ: Its fibers p�1

T� ðxÞ � T�x ðMÞ are
the cotangent spaces on M at x and its sections form the space SðT�ðMÞÞ ¼ D1ðMÞ
of differential 1-forms. Finally, by taking the tensor product of r factors TðMÞ and
s factors T�ðMÞ one obtains the tensor bundle Tr;sðMÞ of type ðr; sÞ over M; and
by taking the exterior product of r factors T�ðMÞ one obtains the exterior r bundle
K�r ðMÞ over M:

To a physicist, tensor bundles associated with frame bundles elucidate the
usefulness of the definition of fiber bundles: In order to express a tensor in
numbers, a frame is needed. Transforming the frame into another equivalent one
demands to transform the tensor components inversely.

Now, the question of reducibility (p. 209) of a principal fiber bundle can be
reconsidered. Let ðP;M; p;GÞ be a principal fiber bundle, and let H be a closed Lie
subgroup of G (Fig. 7.7). It was already shown that ðG;G=H; pG;HÞ is a principal
fiber bundle with base space G=H; bundle projection pG : g 7! gH and structure
group H: The left cosets gH; g 2 G form the quotient space G=H on which G acts
from the left. Since G acts on P from the right, H as its subgroup acts also on P
from the right. The orbits pH � P of this action form the quotient space P=H
(in which p and ph; h 2 H form the same point pH). Hence, the fiber bundle

Fig. 7.7 A sketch of the
interrelations between the
bundles ðP;M; p;GÞ;
ðP=H;M;pP=H ;G=H;PÞ;
ðG;G=H; pG;HÞ;
ðP;P=H; pP;HÞ
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ðP=H;M; pP=H ;G=H;GÞ associated with ðP;M; p;GÞ may be considered with the
typical fiber G=H and the bundle projection pP=H : P=H ! M induced by p :

P! M in an obvious manner. It is not difficult to see that ðP;P=H; pP;HÞ is also a
principal fiber bundle with base space P=H; bundle projection pP : p 7! pH and
structure group H: Indeed, let U 2 M yield a local trivialization p�1

P=HðUÞ �
U � G=H of the fiber bundle ðP=H;M; pP=H ;G=H;GÞ and let V 2 G=H be so that
p�1

G ðVÞ � V � H � G: Then U � V � U � G=H � p�1
P=HðUÞ: There is W �

p�1
P=HðUÞ which corresponds to U � V by the latter isomorphism, and p�1

P ðWÞ �
W � H: Hence, ðP;P=H; pP;HÞ is locally trivial.

The structure group G of the principal fiber bundle ðP;M; p;GÞ can be reduced to
the closed Lie subgroup H; iff the associated fiber bundle ðP=H;M; pP=H ;G=H;GÞ
has a section s : M ! P=H:

Proof Let G be reducible to H and let ðP0;M; p0;HÞ be the reduced principal fiber
bundle with the corresponding bundle embedding F : P0 ! P: Let pP be the
projection from P to P=H in the principal fiber bundle ðP;P=H; pP;HÞ: If p0 and p00

lie in the same fiber of P0; then p00 ¼ p0h with some h 2 H: Therefore, pPðFðp00ÞÞ ¼
pPðFðp0ÞhÞ ¼ pPðFðp0ÞÞ does not depend on p0 2 p0�1ðxÞ but depends only on
x 2 M: Hence, s ¼ pP � F : M ! P=H is a section on ðP=H;M; pP=H ;G=H;GÞ:

Conversely, let s : M ! P=H be a section on ðP=H;M; pP=H ;G=H;GÞ: For
every x 2 M; p�1

P ðsðxÞÞ � P is non-empty. Let p0 and p00 belong to this set which
implies p00 ¼ p0h for some h 2 H: Since G acts freely on P and H is a subgroup of
G; H acts also freely on P; that is, p�1

P ðsðxÞÞ � H is a fiber over x 2 M: Let
P0 ¼ p�1

P ðsðMÞÞ � P; it is not difficult to see that ðP0;M; p0;HÞ with p0 ¼ pjP0 is a
principal fiber bundle, reduced from ðP;M; p;GÞ by reduction of G to H: h

As was already mentioned, every fiber bundle ðE;M; pE;F;GÞ with a con-
tractible typical fiber F has a section. Since the elements of Glðm;RÞ may be
expressed by matrices eA with general real m� m-matrices A; and the elements of
OðmÞ may in the same manner be expressed with skew-symmetric matrices A; the
quotient space Glðm;RÞ=OðmÞ; the space of linear deformations of the Rm; is
given by matrices eA with A symmetric. Hence, Glðm;RÞ=OðmÞ is diffeomorphic
to the mðmþ 1Þ=2-dimensional real space of symmetric m� m-matrices A; which
is a vector space. Hence, the typical fiber of ðLðMÞ=OðmÞ;M; pLðMÞ=OðmÞ;

Glðm;RÞ=OðmÞ;Glðm;RÞÞ is contractible and the bundle has a section, which
means that the frame bundle ðLðMÞ;M; p;Glðm:RÞÞ can be reduced to
ðLOðMÞ;M; p0;OðmÞÞ; where LOðMÞ consists of orthonormalized frames of
orthonormal base vectors only, and p0 is the corresponding restriction of p: (Here,
normalization of the orthogonal frames is just an admissible convention, since
OðmÞ preserves norm of vectors.)

Analogously, the complex frame bundle ðLðMÞ;M; p;Gðm;CÞÞ can be reduced
to ðLUðMÞ;M; p0;UðmÞÞ; again consisting of frames of orthonormalized base
vectors, but this time unitarily related over the field of complex numbers.
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7.7 Linear and Affine Connections

Linear and affine connections are special connections on vector bundles. Before
considering them, the parallel transport is generalized from principal fiber bundles
to general fiber bundles.

Let ðE;M; pE;F;GÞ be a fiber bundle associated with the principal fiber bundle
ðP;M; p;GÞ; let a connection C on P be given, and let � ¼ pð f ÞÞ; f 2 F; be
any point of E (see 3 of the definition of a fiber bundle on p. 226). The point
� ¼ fðpg; g�1f Þjg 2 Gg can be represented (for g ¼ e) by the point p of the
principal fiber bundle P and the point f of the typical fiber F: The tangent space
T�ðEÞ on E at point � is split into the direct sum of the vertical and horizontal
spaces, T�ðEÞ ¼ F� 
 Q�: The vertical space F� is by definition tangent to the fiber
pðFÞ ¼ p�1

E ðpðpÞÞ � E: Since pðFÞ � F; it holds that F� � Tf ðFÞ; dim F� ¼
dim F: Now, consider the projection P� F ! E : ðp; f Þ 7! �: Fixing f yields the
restriction pf : P� ffg ! E: The image of Qp of the connection C by its push
forward, pf� : TpðPÞ ! T�ðEÞ; is by definition the horizontal space Q� ¼ pf�ðQpÞ:
Represent � by ðpg; g�1f Þ instead and consider Qpg ¼ ðRgÞ�Qp and pg�1f : P�
fg�1f g ! E: Now, pg�1f�ðQpgÞ ¼ pg�1f� � ðRgÞ�ðQpÞ ¼ pf�ðQpÞ ¼ Q�; and, as it
should be, the definition of Q� does not depend on the chosen representative of �
from P� F: The projection pf induces a local mapping pf jU�G : U � G� ffg !
U � F : ððx; gÞ; f Þ 7! ðx; ðe; g�1f ÞÞ or ðx; gÞ 7! ðx; g�1f Þ which maps fibers of P
into fibers of E over the same point x and thus implies a mapping IdU : Hence,
Qp � TpðpÞðMÞ ¼ TpEð�ÞðMÞ � Q�; and dim Qp ¼ dim M ¼ dim Q� with the con-
sequence dim F� þ dim Q� ¼ dim T�ðEÞ: Moreover, F� and Q� are obviously lin-
early independent and thus indeed T�ðEÞ ¼ F� 
 Q�:

A (horizontal) lift U� of the path U : I ! M; I ¼ ½0; 1� � R; in E is a path
U� : I ! E which is projected to U so that pE � U� ¼ U and which has a horizontal
tangent vector in every of its points U�ðtÞ; t 2 I: (In this section a path is denoted
by U because F is reserved for the typical fiber here.) Like in the case of a
principal fiber bundle (p. 220 f), if U is a path from x0 to x1; then for every
�0 2 p�1

E ðx0Þ there is a uniquely defined lift U� which transports �0 to a uniquely
defined point �1 2 p�1

E ðx1Þ: Indeed, if ðp0; f Þ is a representation of �0 ¼ p0ðf Þ and
U�P : t 7! pt is the unique lift of U in P starting at p0; then �t ¼ ptðf Þ is the lift U�: It
is the parallel transport along the path U from �0 to �1: A local section s : U ! E
is called parallel, if s�ðTxðMÞÞ ¼ QsðxÞ at every x 2 U: A parallel section s (local
or global) is parallel transported into itself.

Now, the considerations are specialized to vector bundles ðE;M; pe;V ;GÞ;
where V � Kn; a representation R of G in Glðn;KÞ is operative as the left action of
G on V ; and a connection C on the principal fiber bundle ðP;M; p;GÞ is fixed. It is
this situation for which the covariant derivative of vector fields is introduced
(Fig. 7.8, next page).

Let s : M 	 U ! E be a local section (smooth V-vector field) on U; let U :
I ! U be a path in U and let X ¼ Ut

�ðo=otÞ 2 TxtðMÞ be a tangent vector on M at
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xt ¼ UðtÞ 2 U for some t 2 �0; 1½ which is tangent to U (in local coordinates
X ¼

Pdim M
i¼1 ðoxi

t=otÞðo=oxiÞ) and pushed forward by Ut
� from o=ot 2 TtðIÞ: Then,

the covariant derivative of s at xt in the direction of X is defined as

rXsðxtÞ ¼ lim
d!0

U�ðtþd;tÞðsðxtþdÞÞ � sðxtÞ
d

; ð7:17Þ

where U�ðtþd;tÞ means the parallel (or horizontal) transport from xtþd to xt along the
(inverted) path U: It is intuitively clear and not difficult but tedious to show that
the right hand side expression depends on X but not on the actual path U to which
X is tangent at xt: The same notation as on the left hand side above is used, if
X 2 XðMÞ is a tangent vector field (that is, rXsðxÞ ¼ rXx sðxÞ). For a (local)
section (V-vector field) s in E; rXs is again a (local) section (V-vector field) in E:
For a parallel section s; the numerator of the right hand side expression vanishes,
since the parallel transport brings sðxtþdÞ back to sðxtÞ: Hence, rXs ¼ 0 for all X
for a parallel section s:

It is easy to convince oneself of the additivity of the covariant derivative with
respect to X and s:

rX1þX2 s ¼ rX1 sþrX2 s; rXðs1 þ s2Þ ¼ rXs1 þrXs2: ð7:18Þ

The second relation is obvious and the first can be obtained by using vector fields
defined on U and their families of integral curves with smoothness arguments
(Fig. 7.9, the analysis is again straightforward but tedious). It is also clear that a
rescaling of d only in the numerator of (7.17), which is equivalent to an inverse
rescaling of the denominator only, amounts to the same as a rescaling of X:
Moreover, if k is a smooth K-valued function on M; then one has U�ðtþd;tÞ

Fig. 7.8 A sketch of the
covariant derivative of a
vector field sðxÞ: (One single
vector component of sðxÞ is
drawn)
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ðkðxtþdÞsðxtþdÞÞ ¼ kðxtþdÞU�ðtþd;tÞðsðxtþdÞÞ and limd!0ðkðxtþdÞ � kðxtÞÞ=d ¼ Xk:

Hence,

rkXs ¼ krXs; rXðksÞ ¼ krXsþ ðXkÞs: ð7:19Þ

If the X are tangent vector fields on M (or on U � M), then all relations (7.18,
7.19) are relations between sections in E (V-vector fields).

By the very definition of a fiber bundle, it is associated with a principal fiber
bundle. A connection, defined on the principal fiber bundle determines the parallel
transport also on the associated fiber bundle. If the latter is a vector bundle, covariant
derivatives are defined on the basis of the parallel transport. There are ample
examples of vector bundles in physics. For instance matter fields are described by
vectors of representations of abstract groups of ‘inner’ symmetry (SUð2Þ � Uð1Þ in
electroweak theory, or SUð3Þ � SUð3Þ � Uð1Þ in quantum chromodymanics)
which are functions of position in the base manifold M being space–time in these
cases. The structure of M itself determines the ‘outer’ four-tensor symmetry of each
of the above vector components. This latter structure is the subject of tangent,
cotangent and general tensor bundles, and is now considered.

Recall, that tangent, cotangent and tensor bundles are associated with the frame
bundle ðLðMÞ;M; p;Glðm;RÞÞ; m ¼ dim M as principal fiber bundle. (Here, the real
case is considered.) Connections on LðMÞ are called linear connections and were
considered at the end of Sect. 7.3. There, m standard horizontal vector fields Xi were
defined by (7.6), the values of which at any point p 2 LðMÞ span the horizontal space:
Qp ¼ spanRfXip ¼ BðXiÞpji ¼ 1; . . .;mgwhere the Xi are taken to be any base ofRm:

The standard horizontal vector fields were uniquely defined via (7.6) by two
1-forms: the connection form x; in the present case of type ðAd; glðm;RÞÞ; that is,
being a glðm;RÞ-valued pseudo-tensorial 1-form which transforms under the
action of G ¼ Glðm;RÞ according to the adjoint representation of G (cf. (7.7)) and
whose exterior covariant derivative is the (tensorial) curvature form X; and by the
soldering canonical Rm-valued 1-form h of (7.5). On p. 219 it was found that
hðR�gðhpgÞÞ;Xpi ¼ hg�1hp;Xpi; and hence, by the defining property (7.7), h is a
tensorial 1-form of type ðGlðm;RÞ;RmÞ: (It is tensorial, that is, horizontal, since

Fig. 7.9 Families of integral
curves of tangent vector fields
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hhp;Xpi ¼ 0 for every vertical vector Xp:) Since for the m standard horizontal
vector fields Xi defined above hh;Xii ¼ Xi;

the tensorial 1-form h consists of m 1-forms hi which are dual to the standard
horizontal vector fields Xi : hhi;Xji ¼ di

j:

The tensorial 2-form of type ðGlðm;RÞ;RmÞ

H ¼ Dh ð7:20Þ

is called the torsion form of the linear connection C which latter defines h and x:
Let X; Y 2 TpðLðMÞÞ: By definition (7.8, 7.9), if X and Y are two horizontal

tangent vectors, then hH;X ^ Yi ¼ hdh;X ^ Yi: If X0 and Y 0 both are vertical, then
fundamental vector fields X� and Y� may be chosen whose values at p are X0 and
Y 0: Since H as defined by (7.20) is horizontal, hH;X0 ^ Y 0i ¼ 0: On the other hand
(cf. (4.49)), hdh;X� ^ Y�i ¼ LX� hh; Y�i � LY� hh;X�i � hh; ½X�; Y��i: Since R�� :

g! Xðp�1ðxÞÞ is an isomorphism of vector spaces, ½X�;Y�� ¼ ½R��ðXÞ;R��ðYÞ� ¼
R��ð½X; Y �Þ; and hence ½X�; Y�� is vertical. Thus, all three of the above right hand
expressions for hdh;X� ^ Y�i vanish because h is horizontal. Hence, at p
again hdh;X0 ^ Y 0i ¼ 0 ¼ hH;X0 ^ Y 0i: It remains to consider the case where X
is horizontal and (without loss of generality) equal to the value at p of the
standard horizontal vector field BðXÞ;X 2 Rm; and Y 0 is vertical and as above
represented by the fundamental vector field Y�: In this case, still hH;X0 ^ Y 0i ¼ 0
since H is horizontal. Moreover, hdh;BðXÞ ^ Y�i ¼ LBðXÞhh; Y�i � LY� hh;BðXÞi �
hh; ½BðXÞ; Y��i: The first expression on the right hand side vanishes again since Y�

is vertical. The second expression vanishes since hh;BðXÞi ¼ X is constant.
It remains to analyze the last term. First of all (compare p. 223), ½BðXÞ; Y�� ¼
�½Y�;BðXÞ� ¼ � limt!0ðð/�tÞ�ðBðXÞÞ � BðXÞÞ=t ¼ � limt!0ðBð~/tXÞ � BðXÞÞ=t ¼
�Bðlimt!0ð~/tX � XÞ=tÞ ¼ �BðYXÞ: In the present case, /t created by Y� ¼
R��ðYÞ; Y 2 g; is a 1-parameter subgroup of Glðm;RÞ which corresponds via R�� to
~/t ¼ expðtYÞ: In the last but one equality of the above chain of equations the
linearity of the mapping B : Rm ! Qp was used. Now recall that Y ¼ hx; Y�i and
summarize �hh; ½BðXÞ; Y��i ¼ hh;BðYXÞi ¼ YX ¼ hx;Y�ihh;BðXÞi or hdh;X ^
Y 0i ¼ hx; Y 0ihh;Xi: The order of terms in the last product matters since the first
factor is glðm;RÞ-valued and the second is Rm-valued, the product (like YX above)
is a matrix product of an ðm� mÞ-matrix with an m-column vector.

By decomposing tangent vectors in their horizontal and vertical components
and using the multi-linearity of forms, the first structure equation of a linear
connection on a manifold M (that is, on its frame bundle LðMÞ)

hdh;X ^ Yi ¼ � hx;Xihh; Yi � hx; Yihh;Xið Þ þ hH;X ^ Yi; ð7:21Þ

is readily obtained. The second structure equation,
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hdx;X ^ Yi ¼ �½hx;Xi; hx; Yi� þ hX;X ^ Yi; ð7:22Þ

which is of course the same as in the general case, is repeated here for comparison.
By fixing a base fe1; . . .; emg of Rm and a base fE1

1; . . .;E1
m;E

2
1; . . .;Em

mg of
glðm;RÞ; with h ¼

P
hiei; H ¼ mHiei; x ¼

P
xi

jE
j

i ; X ¼
P

Xi
jE

j
i the struc-

ture equations may be written in components as

dhi ¼ �
X

j

xi
j ^ hj þHi; dxi

j ¼ �
X

k

xi
k ^ xk

j þ Xi
j: ð7:23Þ

The second equation compares to (7.12) with the structure constants (6.15) of the
general linear group. These equations are symbolically often written as dh ¼
�x ^ hþH; dx ¼ �x ^ xþ X: Besides the mnemonic power of such a writing,
it demonstrates the algebraic power of E. Cartan’s exterior calculus by focussing
onto the exterior algebraic structure of the expressions and not diverting by the
maybe quite complex inner structure (hence the name exterior calculus). Of
course, using it needs a certain routine. In particular, like in operator calculus it is
strongly recommended never to change the order of factors in expressions
obtained. (Compare the product xh above.)

There is a choice of standard horizontal vector fields Bi and of fundamental
vector fields E j�

i determined by

hhk;Bii ¼ dk
i ; hhk;E j�

i i ¼ 0; hxk
l ;Bii ¼ 0; hxk

l ;E
j�

i i ¼ dk
i d

j
l ; ð7:24Þ

which form an absolutely parallel base of TpðLðMÞÞ of horizontal and vertical
vectors at every point p and thus provide the decomposition of any Xp which could
not explicitly be given by the displayed expressions before (7.5). (It is not difficult
to see that the tangent vectors Bi and E j�

i are nowhere zero and everywhere
linearly independent.)

Taking the exterior covariant derivative of dh and using the first structure
equation yields 0 ¼ �dx ^ hþ x ^ dhþ dH: Therefore, hDH;X ^ Y ^ Zi ¼
hdH; hX ^ hY ^ hZi ¼ hdx ^ h; hX ^ hY ^ hZi � hx ^ dh; hX ^ hY ^ hZi: The last
term vanishes because x vanishes on horizontal vector fields. The first term is
equal to hX ^ h; hX ^ hY ^ hZi which on its part is equal to hX ^ h;X ^ Y ^ Zi;
since X ^ h as the (wedge) product of two horizontal forms is horizontal. Sum-
marizing, the first Bianchi identity

DH ¼ X ^ h ð7:25Þ

is obtained while the second Bianchi identity is as previously DX ¼ 0; (7.15). As
an example of the rule not to change the order of factors in exterior calculus (here
the order of the forms X and h), the application of (7.25) to three vectors is
presented:
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hDH;X ^ Y ^ Zi ¼ hX;X ^ Yihh; Zi þ hX; Y ^ Zihh;Xi þ hX; Z ^ Xihh; Yi:

The left hand side is an alternating 3-form applied to an alternating product of
three vectors (trilinear mapping to real numbers). It is invariant under common
alternation of the components of the form and the vector product. This invariance
is used to keep the order of the form components fixed. (The three anti-cyclic
permutations of the vectors are absorbed into the application of the alternating
2-form X to two of the vectors.)

With a linear connection on a manifold M defined, covariant derivatives of
tensor fields on M can be formed. If t 2 T r;sðMÞ is a tensor field of type ðr; sÞ
and X 2 XðMÞ is a tangent vector field, then, since the tensor bundle
Tr;sðMÞ ¼ ðTr;s;M; pTr;s ;R

mrþs
;Glðm;RÞÞ is a special vector bundle associated with

the frame bundle LðMÞ as its principal fiber bundle (Glðm;RÞ acts on the typical fiber
Rmrþs

by a tensor product of r factors of the representation in Rm and s factors of its
transposed) and t is a section on Tr;sðMÞ; the general approach (7.17) applies. (To
consider the covariant derivative of t at a given point x 2 M; it is enough that X ¼ Xp

is given at that point and t is given in a neighborhood of x or even on a curve through
x only to which X is tangent.) It is readily seen, that rX : T ðMÞ ! T ðMÞ is a
derivation D in the sense of (4.13). By the theorem proved on p. 109,

rX is uniquely determined by its action on CðMÞ and on XðMÞ:

In analogy to that proof it can be shown that

any derivation D : T ðMÞ ! T ðMÞ has the form D ¼ rX þ S0 with a uniquely
determined tangent vector field X and a uniquely determined endomorphism S0

given by a tensor field s0 of type ð1; 1Þ:

The covariant derivative of a smooth function F 2 CðMÞ is simply

rXF ¼ XF: ð7:26Þ

This was shown before (7.19). For the application of rX on tangent vectors
s 2 XðMÞ; the rules (7.18, 7.19) hold.

Recall (p. 100), that a homogeneous tensor t of type ðr; sÞ at x 2 M may be
considered as an s-linear mapping of TxðMÞ� � � � �TxðMÞ (s factors) into
ðTxðMÞÞr;0 by the expression tðX1; . . .;XsÞ ¼ C1;1 � � �Cs;sðt � X1 � � � � � XsÞ: With
t; rXt is of the same type ðr; sÞ: Considering rXt as such an s-linear mapping into
ðTxðMÞÞr;0; one may write ðrXtÞðX1; . . .;XsÞ ¼ ðrtÞðX1; . . .;Xs; XÞ and hence
consider the homogeneous tensor rt of type ðr; sþ 1Þ: The tensor rt is called the
covariant differential of the tensor t: In this sense, r is a mapping from T r;sðMÞ
to T r;sþ1ðMÞ: One has

ðrtÞðX1; . . .;Xs; XÞ ¼ rXðtðX1; . . .;XsÞÞ �
Xs

i¼1

tðX1; . . .;rXXi; . . .;XsÞ: ð7:27Þ
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Proof Apply rX to tðX1; . . .;XsÞ ¼ C1;1 � � �Cs;sðt � X1 � � � � � XsÞ and observe
(4.13) for D ¼ rX : h

One now may apply r a second time and obtain ðr2tÞðX1; . . .;Xs; X; YÞ ¼
ðrYðrtÞÞðX1; . . .;Xs; XÞ; or recursively more generally

ðrntÞð. . .; X1; . . .; XnÞ ¼ ðrXnðrn�1tÞÞð. . .; X1; . . .; Xn�1Þ: ð7:28Þ

Like in the general case of sections in a vector bundle, the tensor field t is a
parallel tensor field, if rXt ¼ 0 for all X 2 TxðMÞ at all x 2 M; that is, rt ¼ 0:

The alert reader might be intrigued by the question why there are two structure equations in
the case of a linear connection on M while there is in general only one (the second). Some insight
into this situation is obtained by considering generalized affine connections as introduced by
Kobayashi and Nomizu. These are connections on the affine frame bundle considered in Sect. 7.2.
Take a connection form ~x defining a connection ~C on the affine frame bundle AðMÞ: It is a
pseudo-tensorial 1-form of type ðAd; aðm;RÞÞ: Pull it back to the linear frame bundle LðMÞ by
the homomorphism c considered in Sect. 7.2. According to the semi-direct sum aðm;RÞ ¼
glðm;RÞ 
 Rm one obtains

c�ð~xÞ ¼ xþ u;

where x is a pseudo-tensorial 1-form of type ðAd; glðm;RÞÞ and u is of type ðGlðm;RÞ;RmÞ: It
acts linearly on Rm (on the last column of the ðmþ 1Þ� ðmþ 1Þ-matrix representation given in
Sect. 7.2) and produces Rm-vectors, hence it can be represented by an Rm-tensor tu of type ð1; 1Þ:
On LðMÞ; the vertical spaces are isomorphic to glðm;RÞ which does not have the mþ 1st column,
hence u is horizontal on LðMÞ and constitutes a tensorial 1-form of type ðGlðm;RÞ;RmÞ there.

As a pseudo-tensorial 1-form of type ðAd; glðm;RÞÞ; x defines a linear connection C on LðMÞ:
The mapping between connections, ~C 7! ðC; tuÞ; where tu is any tensor field of type ð1; 1Þ on M

turns out to be one–one, it comprises a pushed forward homomorphism b� : ~C 7!C (from
b : Aðm;RÞ ! GLðm;RÞ). Take the exterior derivative of the above displayed relation (it
commutes with the homomorphism c�; see (4.43)) and obtain c�ðd ~xÞ ¼ dxþ du: Let X;Y be
two horizontal vector fields on LðMÞ; then the right hand side of the last equation
yields hðdxþ duÞ;X ^ Yi ¼ hðXþ DuÞ;X ^ Yi: Its left hand side yields, with the structure
equation of ~C; hd ~x; c�ðXÞ ^ c�ðYÞi ¼ �½h~x; c�ðXÞi; h~x; c�ðYÞi� þ h~X; c�ðXÞ ^ c�ðYÞi: Since X;Y
are horizontal for C; hx;Xi ¼ hx; Yi ¼ 0 and h~x;Xi ¼ hu;Xi; h~x;Yi ¼ hu;Yi: However,
Rm is Abelian and hence ½hu;Xi; hu;Yi� ¼ 0 and hc�ðd ~xÞ;X ^ Yi ¼ hd ~x; c�ðXÞ ^ c�ðYÞi ¼
h~X; c�ðXÞ ^ c�ðYÞi ¼ hc�ð~XÞ;X ^ Yi: In total,

c�ð~XÞ ¼ Xþ Du:

Use again the structure equation of ~C on AðMÞ; d ~x ¼ �~x ^ ~xþ ~X; pull it back to LðMÞ and
insert xþ u for c�ð~xÞ: Split the resulting equation dðxþ uÞ ¼ �x ^ x� x ^ uþ Xþ Du into
the glðm;RÞ-components and the Rm-components and obtain finally

du ¼ �x ^ uþ Du; dx ¼ �x ^ xþ X:

In view of this result, a generalized affine connection ~C on M is called an affine connection, if the
Rm-valued 1-form u is the canonical form h on LðMÞ: In this case the above relations are just the
structure equations of a linear connection C on M: The canonical form h as introduced by (7.5)
maps the horizontal space identical into the horizontal space, hence the corresponding tensor tu is
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the unit tensor, and one is left with a one–one correspondence between affine connections ~C and
linear connections C on M: Therefore these two names are used synonymously in the literature.
However, if one uses the principal fiber bundle AðMÞ instead of LðMÞ to define a linear con-
nection, the two structure equations are again merged into a single one like in the general case.

7.8 Curvature and Torsion Tensors

Let a linear connection C be given on a manifold M; and let X; Y be two tangent
vector fields on M: Let X�; Y� be lifts of X; Y into LðMÞ; and consider hH;X� ^ Y�i
with the torsion form H of the connection C: Since H is a tensorial 2-form of type
ðGlðm;RÞ;RmÞ; this expression defines a vector Tp 2 Rm at every point p 2 LðMÞ:
With the linear mapping uðpÞ introduced in Sect. 7.2, Tp is mapped to a tangent
vector of TpðpÞðMÞ; and the whole result depends linearly on X ^ Y : Hence it may
be expressed by a tensor field T of type (1,2) on M as

hT ;X ^ Yi ¼ uhH;X� ^ Y�i; ð7:29Þ

which is to be understood that the value of the left hand side at x ¼ pðpÞ 2 M is
given by uðpÞ applied to the value at p of the argument of u on the right hand side.
It is easily seen, that the result at x does not depend on the actual point p 2 p�1ðxÞ:
Indeed, let p0 ¼ pg; g 2 Glðm;RÞ: Then as lifts, X�p0 ¼ ðRgÞ�X�p ; Y�p0 ¼ ðRgÞ�Y�p :
The right hand side of (7.29) at p0 is uðp0ÞhHp0 ;X�p0 ^ Y�p0 i ¼ uðp0ÞhHp0 ; ðRgÞ�X�p
^ ðRgÞ�Y�p i ¼ uðp0ÞhR�gðHp0 Þ;X�p ^ Y�p i ¼ uðp0Þhg�1Hp;X�p ^ Y�p i ¼ uðp0Þg�1hHp;X�p ^ Y�p i:
In the last but one equality it was used that H is a tensorial 2-form of type
ðGlðm;RÞ;RmÞ (compare (7.7) with Glðm;RÞ instead of Ad). Now, since
uðp0Þg�1 ¼ uðp0g�1Þ ¼ uðpÞ; the result is the same as that at p: Hence, for every
x 2 M; (7.29) is uniquely defined by the right hand side and is a tangent vector of
TxðMÞ for every pair of tangent vectors X; Y; which means that T 2 T 1;2ðMÞ is a
tensor field of type ð1; 2Þ alternating in the lower indices (in coordinate repre-
sentation). It is called the torsion tensor field or simply also the torsion of the
linear connection C on M: Equation 7.29 is called the torsion operation on the
pair X; Y :

In an analogous manner the curvature operation on a pair X; Y is defined.
Since the curvature form X is a tensorial 2-form of type ðAd; glðm;RÞÞ; the cur-
vature operation at x is an element of the Lie algebra glðm;RÞ and hence a (not
necessarily regular) linear transformation of tangent vectors. This transformation
of a tangent vector field Z is defined as

CðhR;X ^ Yi � ZÞ ¼ uðhX;X� ^ Y�iðu�1ZÞÞ; ð7:30Þ

where C means the contraction (4.9) of the tensor product (in local coordinates of
the lower index of the tensor hR;X ^ Yi of type ð1; 1Þ with the upper index of Z).
On the right hand side, hX;X� ^ Y�i 2 glðm;RÞ and u�1Z 2 Rm: Hence, the
argument of u is again in Rm which is mapped by u into T ðMÞ: The independence
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of the right hand side on p 2 p�1ðxÞ to which X and Y are lifted is seen in the same
manner as above, only now R�gðXp0 Þ ¼ Adðg�1ÞXp ¼ g�1Xpg and uðp0Þ�1 ¼
ðuðpÞg�1Þ�1 ¼ guðpÞ�1: The result depends multi-linearly on X; Y ;Z and is a
tangent vector field on M: Hence, it may be represented by a tensor field of type
ð1; 3Þ which is alternating in its first two lower indices in a coordinate represen-
tation. It is called the curvature tensor field or simply also the curvature of the
linear connection C on M:

Of course, a neighborhood of x suffices to define the curvature and torsion
tensors at x:

The torsion and curvature operations can be expressed in terms of covariant
derivatives as

hT ;X ^ Yi ¼ rXY �rY X � ½X; Y �; hR;X ^ Yi ¼ ½rX ;rY � � r½X;Y �: ð7:31Þ

Proof Start with hTx;Xx ^ Yxi ¼ uðpÞhHp;X�p ^ Y�p i; pðpÞ ¼ x: With (7.21), since
X� and Y� are horizontal lifts and hence hx;X�i ¼ 0 ¼ hx; Y�i; hHp;X�p ^ Y�p i ¼
hdhp;X�p ^ Y�p i ¼ LX�p hh; Y�i � LY�p hh;X�i � hhp; ½X�; Y��pi ¼ X�phh; Y�i � Y�p hh;X�i�
hhp; ½X�; Y��pi: With (7.5), the last term yields uðpÞhhp; ½X�; Y��pi ¼ p�ð½X�; Y��pÞ ¼
½X; Y �x: It remains to consider uðpÞðX�phh; Y�iÞ: Take first hhp; Y�p i ¼ uðpÞ�1ðYxÞ
which is a vector in Rm whose components are functions of p: Let /tðxÞ; /0ðxÞ ¼ x;
be a curve in M through x to which Xx is tangent, and let /�t ðpÞ be its lift through p
which is a curve in the frame bundle LðMÞ to which X�p is tangent. Hence,

X�phh; Y�i ¼ lim
d!0

uð/�t ðpÞÞ
�1ðY/tðxÞÞ � uðpÞ�1ðYxÞ

t

and

uðpÞðX�phh; Y�iÞ ¼ lim
d!0

uðpÞ � uð/�t ðpÞÞ
�1ðY/tðxÞÞ � Yx

t
:

Here, uð/�t ðpÞÞ
�1 maps Y/tðxÞ into Rm and uðpÞ maps this image into TxðMÞ: Since

/�t ðpÞ and p ¼ /�0ðpÞ are connected by a horizontal path in LðMÞ; the two map-
pings realize a horizontal transport of Y/tðxÞ from /tðxÞ to x ¼ /0ðxÞ: Call this
transport U�ðt;0Þ and compare to (7.17) to see that the result is ðrXYÞx: Putting
together these findings proves the first relation (7.31).

Now, start with CðhRx;Xx ^ Yxi � ZxÞ ¼ uðpÞðhXp;X�p ^ Y�p iðuðpÞ
�1ZxÞÞ:

Since X� and Y� are again horizontal lifts, hX;X� ^ Y�i ¼ hdx;X� ^ Y�i ¼
LX� hx; Y�i � LY� hx;X�i � hx; ½X�; Y��i ¼ �hx; v½X�; Y��i: (Recall that x anni-
hilates horizontal vectors.) Let A� be the fundamental vector field on LðMÞ
which at p equals A�p ¼ v½X�; Y��p; so that A ¼ hxp;A�pi is an element
of glðm;RÞ: So far, CðhRx;Xx ^ Yxi � ZxÞ ¼ uðpÞð�hx; v½X�; Y��pihhp; Z�p iÞ:
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F ¼ hh;Z�i is an Rm-valued function on LðMÞ which is tensorial of type
ðGlðm;RÞ;RmÞ: Hence,

A�pF ¼ lim
t!0

Fðp expðtAÞÞ � FðpÞ
t

¼ lim
t!0

expð�tAÞFðpÞ � FðpÞ
t

¼ �AFðpÞ:

Therefore, �hxp;
v½X�;Y��pihhp;Z�piÞ ¼ v½X�; Y��phh;Z�i ¼ ð½X�; Y��p � h½X�;Y��pÞ

hh; Z�i: From the first part of the proof above, uðpÞðh½X�; Y��phh; Z�iÞ ¼ ðr½X;Y �ZÞx
for the horizontal vector h½X�; Y��p: On the other hand, again with the first part of
the proof and using the horizontality of X�; Y�; one obtains uðpÞðX�pðY�p hðZ�ÞÞÞ ¼
uðpÞðX�pðuðpÞ

�1 � uðpÞðY�p hh; Z�iÞÞÞ ¼ uðpÞðX�pðuðpÞ
�1ðrY ZÞxÞÞ ¼ uðpÞðX�phhp; ðrY ZÞ�piÞ ¼

ðrXrY ZÞx: Putting everything together and observing that one may formally write
ðrXZÞx ¼ CðrX � ZÞÞx (rX acts like a transformation tensor of type ð1; 1Þ), the
proof of the second relation (7.31) is completed, since Z was chosen completely
arbitrarily. h

7.9 Expressions in Local Coordinates on M

In this section, finally local coordinate expressions are derived for the forms, the
covariant derivative and the torsion and curvature tensors of a linear connection on
M: For the sake of simplicity of notation, the same letter is used for points in
manifolds and in corresponding coordinate spaces. As in Sect. 7.2, local coordi-
nates p ¼ ðxk;Xk

i ; i ¼ 1; . . .;mÞ; so that x ¼ ðx1; . . .; xmÞ and Xi ¼
P

k Xk
i ðo=oxkÞ;

detðXk
i Þ 6¼ 0; are introduced in p�1ðUÞ � LðMÞ where U is a coordinate neigh-

borhood of x in M: The inverse of the ðm� mÞ-matrix ðXk
i Þ is denoted by ð~Xk

i Þ;
so that

X

j

Xk
j
~Xj

i ¼
X

j

~Xk
j Xj

i ¼ dk
i : ð7:32Þ

In addition, in Rm the natural base fe1; . . .; emg is introduced, for which

h ¼
X

i

hiei: ð7:33Þ

For any p ¼ ðxk;Xk
i Þ 2 U; the mapping uðpÞ : Rm ! TxðMÞ; x ¼ pðpÞ; maps ei to

P
j X j

i ðo=ox jÞx (see Sect. 7.2). Let

Y�p ¼
X

j

Y jðpÞ o

ox j

� �

x

þ
X

jk

Y j
k ðpÞ

o

oX j
k

 !

p

be any tangent vector in TpðLðMÞÞ: Its projection to the tangent space on M;

TxðMÞ; is p�ðY�p Þ ¼
P

j YjðpÞðo=ox jÞx; hence
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hhp; Y
�
p i ¼ uðpÞ�1ðp�ðY�p ÞÞ ¼

X

ij

ð~Xi
jðpÞYjðpÞÞei;

since uðpÞ�1ðo=ox jÞx ¼
P

i
~X i

j ðpÞei: Comparison with the representation (7.33)

yields hhi
p; Y

�
p i ¼

P
j
~Xi

jðpÞYjðpÞ or, with hdx j; o=oxki ¼ d j
k ;

hi
p ¼

X

j

~Xi
jðpÞdx j

x or in short hi ¼
X

j

~Xi
jdx j ð7:34Þ

as the local coordinate expression of the canonical form h on LðMÞ: As an
Rm-valued 1-form, the local coordinate expression ~Xi

j of h has an upper index i as
an Rm-vector and a lower index j as a 1-form according to the general local
coordinate representation (3.24) of an exterior form.

Consider the transition properties of h between two overlapping coordinate
neighborhoods Ua \ Ub 3 x: According to (3.14), the tangent vector Xi on M

transforms as Xj
bi ¼

P
kðwbaÞ

j
k Xk

ai where wba is the Jacobian matrix of the coor-

dinate transformation given by (3.6). Hence, ~Xi transforms like a cotangent vector,
~Xi

bj ¼
P

k
~Xi

akðw
�1
ba Þ

k
j ; in order that

P
j
~X j

biX
k
bj ¼ dk

i ¼
P

j
~Xj

aiX
k
aj: With the second

relation (3.11) this ensures that
P

j
~Xi

bjdx j
b ¼

P
j
~Xi

ajdx j
a: As seen, hi behaves

indeed like a tensor of type ð0; 1Þ on M; which yields another justification to call it
a tensorial 1-form. (Recall that originally h was introduced in Sect. 7.3 as a 1-form
on LðMÞ:)

The connection form x of a linear connection C on M is a glðm;RÞ-valued
1-form. For its corresponding local coordinate expression the natural base fEi

jg in
glðm;RÞ is needed, which consists of matrices with a unity in the ith column and
jth row and zeros otherwise (p. 219). The analogue of (7.33) is

x ¼
X

ik

xi
kEk

i : ð7:35Þ

On a coordinate neighborhood Ua � M; the analogue of (7.34) is first considered
for the local connection forms xa only, which are pull-backs from the canonical
local section sa � LðMÞ to Ua:

xi
ak ¼

X

j

Ci
jkðxÞdxj

x or in short xi
ak ¼

X

j

Ci
jkdxj:

The components Ci
jk of the local connection form are called Christoffel symbols.

Unlike the components of the canonical form h; the Christoffel symbols to
not form a tensor on M: The local connection forms xa must have the transi-
tion properties (7.4), that is, the pairing with a tangent vector field X on M;

Xj
b ¼

P
nðwbaÞ

j
nXn

a ; must obey the relation
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hxi
bk;X

j
bi ¼

X

lmn

ðw�1
ab Þ

i
lhxl

am;X
n
aiðwabÞ

m
k ðwbaÞ

j
n þ hð#abÞik;Xn

aiðwbaÞ
j
n

where for Xx the local connection forms xa and xb were the pulled back con-
nection forms from pa ¼ saðxÞ and pb ¼ sbðxÞ given by the canonical local sec-
tions. (Recall also that wab ¼ w�1

ba :)
In order to find the coordinate transition expression #ab ¼ w�abð#Þ of the

Maurer–Cartan 1-form # of Glðm;RÞ; the way (7.4) was obtained has to be
reconsidered. In the coordinate neighborhood Ua 3 x; let sa be the canonical
local section which maps x to the frame ðx; ðo=ox1

aÞ; . . .; ðo=oxm
a ÞÞ: Clearly,

ðx; ðo=ox1
bÞ; . . .; ðo=oxm

b ÞÞ ¼ ðx;
P

jðw
�1
ba Þ

j
1ðo=ox j

aÞ; . . .; ðw�1
ba Þ

j
mðo=ox j

aÞ ¼ ðx; ðo=ox1
aÞ; . . .;

ðo=oxm
a ÞÞwab as was used in (7.4). Any frame p of p�1ðxÞ is obtained by acting

from the right on saðxÞ with an element g of the Lie group Glðm;RÞ; p ¼ saðxÞg:
(Recall that according to property 2 on p. 215 the same group acts on x as an
element of glðm;RÞ by the adjoint representation.) Use again the natural base Ei

k in
glðm;RÞ as above. An element g in natural coordinates of the Lie group Glðm;RÞ
is represented by gi

k; detðgi
kÞ 6¼ 0: Let ð~gi

kÞ be the matrix inverse to ðgi
kÞ: The

Maurer–Cartan form maps left invariant tangent vector fields on Glðm;RÞ into
glðm;RÞ and maps ðo=ogi

jÞe 2 TeðGlðm;RÞÞ to E j
i : h#e; ðo=ogi

jÞei ¼ E j
i : Let G j

i be

the left invariant tangent vector field which at e is G j
ei ¼ ðo=ogi

jÞe; that is, G j
gi ¼

P
kl ~gk

i g j
l ðo=ogk

l Þg: It must also hold that h#g;Gi
gji ¼ E j

i : As a glðm;RÞ-valued

1-form, write # ¼
P

klmn #
lm
kn dgk

l En
m and use hdgk

l ; ðo=ogi
jÞi ¼ dk

i d
j
l : There must

be
P

klmn #
lm
gkn ~gk

i g j
l En

m ¼ E j
i which finally results in #lm

gkn ¼ gm
k ~gl

n or #g ¼
P

klmn gm
k ~gl

n dgk
l En

m: Now,

#ab ¼ w�abð#Þ ¼ #wab
¼
X

klmn

ðwabÞ
m
k ðw

�1
ab Þ

l
n dðwabÞ

k
l En

m; ð7:36Þ

where

dðwabÞ
i
j ¼

X

k

oxi
a

ox j
boxk

b

dxk
b ¼

X

k

ðdwabÞ
i
jkdxk

b: ð7:37Þ

Putting everything together results in

Ci
bjk ¼

X

lmn

Cl
amnðwbaÞ

i
lðw
�1
ba Þ

m
j ðw

�1
ba Þ

n
k þ

X

l

ðwbaÞ
i
lðdw�1

ba Þ
l
jk; ð7:38Þ

which shows that Ci
jk is indeed not a tensor on M (whence x was called a pseudo-

tensorial 1-form).
In local coordinates p ¼ ðxk;Xk

i Þ; a vertical tangent vector on LðMÞ has the form
Y� ¼

P
jk Yj

kðo=oXj
kÞ; and since hdxi; ðo=oXj

kÞi ¼ 0; the pairings of local connec-
tion forms with vertical tangent vectors vanish. The connection form x itself must,
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however, have the properties 1 and 2 given on p. 215. Hence, x must consist of a
term which, if paired with vertical tangent vectors, restores these properties 1 and
2 and of another term which pulls back to xa: It is easily found that the right
expression is

x ¼
X

ijk

~Xi
k dXk

j þ
X

lm

Ck
lmXm

j dxl

 !

E j
i : ð7:39Þ

Indeed, consider the fundamental vector field ðX j
i Þ
� ¼ R��ðE

j
i Þ which on the

canonical local section sa with local coordinates saðxÞ ¼ ðxk; dk
i Þ is ðXj

iÞ
�
saðxÞ ¼

ðo=oXi
jÞsaðxÞ: A general point p on the fiber over x is p ¼ ðxk;Xk

i Þ ¼ saðxÞg; g ¼ Xk
i

in local coordinates. A fundamental vector field is a left invariant vector field on
Glðm;RÞ; hence ðXj

iÞ
�
p ¼ gðXj

iÞ
�
saðxÞ ¼

P
k Xk

i ðo=oXk
j Þp ¼

P
kl Xk

i d
j
l ðo=oXk

l Þp: Now,

hx; ðXj
iÞ
�i ¼

P
klmrs

~Xm
s hdXs

r ; ðo=oXk
l ÞiXk

i d
j
l Er

m ¼
P

klm
~Xm

k Xk
i d

j
l El

m ¼ E j
i and prop-

erty 1 is fulfilled. Property 2 is directly read off the factor at E j
i in (7.39), since the

second term of (7.38) vanishes for a ¼ b: Moreover, since s�a pulls back from Xk
j to

dk
j ; it pulls the first term of (7.39) back to zero and the second term to the

expression for xa introduced after (7.35). Hence, (7.39) is the final local coor-
dinate expression for the linear connection form.

Every transformation step from (7.4) to (7.38) was one–one. Hence, symbols Ci
jk

transforming according to (7.38) yield local connection forms xa which obey (7.4).
On the other hand, as it was seen there, local connection forms xa obeying (7.4)
define uniquely a connection form x on LðMÞ and hence a linear connection C on M:

Symbols Ci
jk in local coordinates having the transition properties (7.38) define

uniquely a connection form through (7.39) and thus a linear connection C on M:

Next, let Xl ¼ ðo=oxlÞ be a tangent vector on Ua and let X�lp ¼ ðo=oxlÞx þ
P

mnðX�l Þ
m
n ðo=oXm

n Þp be its horizontal lift through p ¼ ðxk;Xk
i Þ: Then, 0 ¼

hxi
j;X
�
l i ¼

P
k

~Xi
kðX�l Þ

k
j þ

P
km

~Xi
kC

k
lmXm

j : Multiplication with Xn
i and summation

over i yields ðX�l Þ
n
j ¼ �

P
m Cn

lmXm
j and hence

X�l ¼
o

oxl
�
X

kmn

Cm
lkXk

n

o

oXm
n

¼ hX�l : ð7:40Þ

This expression only now determines the splitting of a general tangent vector on
LðMÞ into its horizontal and vertical parts, first mentioned on p. 219, by giving the
structure of horizontal vectors in terms of local coordinates.

Now, the tangent bundle ðTðMÞ;M; pT ;R
m;Glðm;RÞÞ ¼ TðMÞ associated with

the frame bundle LðMÞ is considered where Glðm;RÞ acts on the vector space Rm by
the identical representation, and LðMÞ is provided with a linear connection C: Let
f : LðMÞ ! Rm be a Rm-valued function with the property f ðpgÞ ¼ g�1f ðpÞ: It may
be understood to be a tensorial 0-form of type ðGlðm;RÞ;RmÞ: In combination with
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the canonical local section sa in LðMÞ it defines a local section fa : Ua ! TðMÞ :

x 7! ðsaðxÞg; g�1f ðsaðxÞÞÞ on Ua in the tangent bundle TðMÞ; where the section point
for x corresponds to the tangent vector with components f lðsaðxÞÞ in the frame dl

i given
by the natural base fe1; . . .; emg at x: In particular, the functions fai : p ¼ ðxk;Xk

j Þ 7!
dk

i for given i; that is, f l
ai ¼ ~Xl

i by matrix multiplication to the frame coordinates,
provide this property. The section fai consists of the tangent vector ðo=oxiÞ at every
x 2 Ua: According to (7.17), its directional derivative along a path with horizontal
tangent vector X isrXðo=oxiÞ: Apply the horizontal vector X�j from (7.40) to fai and

obtain ro=ox jðo=oxiÞ ¼ �
P

klmn Cm
jkXk

nðo=oXm
n Þ~Xl

iel ¼
P

klmnrs Cm
jkXk

n
~Xr

i ðd
n
r d

s
mÞ~Xl

sel ¼
P

lm

Cm
ji

~Xl
mel where in the second equality (2.26) was used. By reinserting ðo=oxmÞ ¼

P
l
~Xl

mel in the last expression, the final result

ro=ox jðo=oxiÞ ¼
X

k

Ck
jiðo=oxkÞ ð7:41Þ

is obtained. Replacing in these considerations the tangent bundle TðMÞ by the
cotangent bundle T�ðMÞ replaces f l

ai ¼ ~Xl
i by f i

al ¼ Xi
l only and results in

ro=ox j dxi ¼ �
X

k

Ci
jkdxk: ð7:42Þ

This analysis underlines the role of the frame bundle as principal fiber bundle with
which tangent, cotangent and general tensor bundles over M are associated. Would
one try to define connections directly on those bundles, the definition would
unavoidably depend on the used local coordinate systems in a quite involved way.
The use of the frame bundle makes it possible to define linear connections inde-
pendently of local coordinate systems, and in addition leads to general forms of
coordinate expressions. (It was invented by E. Cartan.)

The properties (7.18, 7.19) of covariant derivatives can now be used to obtain
the local coordinate expressions of the derivatives of general tensor fields as
sections of tensor bundles, from (7.41, 7.42). With the general local coordinate
expression (4.33) one gets

rXtðxÞð Þi1...ir
j1...js
¼ Xk

oti1...ir
j1...js

oxk
þ
Xr

l¼1

Cil
klt

i1...il�1lilþ1...ir
j1...js �

Xs

l¼1

Cl
kjl

ti1...ir
j1...jl�1ljlþ1...js

 !

:

ð7:43Þ

The notation

ro=oxk tðxÞi1...ir
j1...js

� �
¼ ðrtðxÞÞi1...ir

j1...jsk
¼ ti1...ir

j1...js;k
ðxÞ ð7:44Þ

is generally used. The tensor contraction of the right hand side with any tangent
vector X gives (7.43) back, which shows that the expression in parentheses on the
right hand side of (7.43) forms the components of a tensor of type ðr; sþ 1Þ; the
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covariant differential of t: Higher order covariant differentials are recursively
obtained:

ðrntÞÞi1...ir
j1...jsk1...kn

¼ ti1...ir
j1...js;k1;...;kn

: ð7:45Þ

Compare (7.27, 7.28). These are the generalizations of tensor gradients from
trivial connections for which the Christoffel symbols vanish. (They do not vanish
even in flat connections, if general non-linear coordinates are used.)

The local coordinate expressions of the torsion and curvature tensors are now
straightforwardly obtained from (7.31). First write the left hand sides as

hT ;X ^ Yi ¼ Ti
jkXjYk o

oxi
; hR;X ^ Yi ¼ Ri

jklX
kYldx j o

oxi
; ð7:46Þ

and then use (7.41) and (7.18, 7.19) on the the right hand sides to find (exercise)

Ti
jk ¼ Ci

jk � Ci
kj ð7:47Þ

and

Ri
jkl ¼

oCi
lj

oxk
�

oCi
kj

oxl
þ Cm

lj C
i
km � Cm

kjC
i
lm: ð7:48Þ

For a smooth function F on M one also directly finds that

F;j;k � F;k; j ¼ Ti
jkF;i ð7:49Þ

and for a tangent vector field X that

Xi
;l;k � Xi

;k;l ¼ Ri
jklX

j � Tj
klX

i
; j: ð7:50Þ

Thus, the covariant derivatives of functions commute, if the torsion of the linear
connection vanishes, and the covariant derivatives of vector fields commute, if the
linear connection is flat and torsion free.

A smooth curve xðtÞ in M which locally solves the equations

d2xi

dt2
þ
X

jk

Ci
jk

dx j

dt

dxk

dt
¼ 0; i ¼ 1; . . .;m ð7:51Þ

is called a geodesic. The vector X ¼ ðdxi=dtÞðo=oxiÞ is tangent to this curve. From
(7.43) it follows that rXX ¼ 0:

The tangent vector to a geodesic is parallel transported to itself on the
geodesic.

Finally, the Lie derivative (4.36) is compared to the covariant derivative (7.17).
A direct comparison of (3.37) with the first relation (7.31) yields immediately

LXY ¼ rXY �rY X � hT;X ^ Yi ð7:52Þ

for any tangent vector field Y; while for any 1-form r
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ðLXrÞj ¼ ðrXrÞj þ riX
i
;j � Tk

ijX
irk ð7:53Þ

is an exercise. While in Fig. 4.1 for the Lie derivative the transport is along the
flow of X (local 1-parameter group) without a twist, in Fig. 7.8 for the covariant
derivative it is horizontally in the direction of X:

Reference

1. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Interscience, vols. I and II.
New York (1963, 1969)
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Chapter 8
Parallelism, Holonomy, Homotopy
and (Co)homology

This chapter is devoted to most topical and important applications of topology and
geometry in physics: gauge field theory and the physics of geometric phases which
vastly emerges from the notion of the Aharonov–Bohm phase and later more
generally from the notion of a Berry phase (see [1, 2]) and even penetrates
chemistry and nuclear chemistry. The central notion in these applications is hol-
onomy. Since holonomy is based on lifts of integral curves of tangent vector fields
on the base manifold M of a bundle, and maximal integral curves may end in
singular points of tangent vector fields, non-singularity of tangent vector fields
plays its role. Non-zero tangent vector fields can be expressed as sections of the
‘punctured tangent bundle’ on M: This is a subject of the interrelation of holonomy
with homotopy of fiber bundles, an important issue by itself. Therefore the chapter
starts with two sections on homotopy of fiber bundles before gauge fields and
finally geometric phases in general are considered. All these issues fall also into
the vast realm of characteristic classes and index theory. In a first reading the first
two sections may be skipped.

8.1 The Exact Homotopy Sequence

Let a fiber bundle ðE;M; pE;F;GÞ associated with a principal fiber bundle
ðP;M; p;GÞ be given. (In particular E may be P itself.) So far (horizontal) lifts of
paths in M to E were considered. Now the goal is to lift homotopy classes of
mappings of n-dimensional spheres into M: Recall, that a special intermediate
bijective mapping P of n-spheres Sn to one point compactified cubes In was needed
in order to define a group structure on the sets of homotopy classes (Sect. 2.5, in
particular Fig. 2.8). In the following, In; I denote the n-cube, unit interval closed in
the ordinary Euclidean topology,�In:�I denote their interior, and In as previously
denotes the one-point compactification of�In:

H. Eschrig, Topology and Geometry for Physics, Lecture Notes in Physics, 822,
DOI: 10.1007/978-3-642-14700-5_8, � Springer-Verlag Berlin Heidelberg 2011
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Let eU : In ! M be a mapping with eUðoInÞ ¼ x0 2 M; where oIn ¼ x1 is the
boundary of the unit cube In which is defined to be the point x1 of the one-point
compactification of the open cube�In to In: Then, U ¼ eU � P is the mapping of the
n-sphere Sn into M which in Sect. 2.5 was considered for a general topological
space X instead of a manifold M, and for which Uðs0Þ ¼ x0: The part of the
homotopy class of U with the mapping s0 7! x0 fixed is ½U� ¼ fUH : I � Sn !
M jUHð0; �Þ ¼ U;UHðt; s0Þ ¼ x0 for t 2 Ig: It corresponds to ½eU� ¼ feUH : I � In !
M j eUHð0; �Þ ¼ eU; eUHðI � oInÞ ¼ fx0gg:

As in Sect. 5.5, all continuous mappings from a closed simplex (or a cube) of
Rk into M may be arbitrarily closely uniformly approximated (in the metrics of Rk

and of coordinate neighborhoods Ua of M) by smooth mappings of some neigh-
borhood of the simplex (cube) into M: In this sense all mappings are again sup-
posed to be smooth in the following.

Let Dk be a (sufficiently smoothly bounded) domain in Rk: A general lift of
U : Dk ! M to E is a (smooth) function U� : Dk ! E with pE � U� ¼ U:

Let U : I � In ! M be given and let Q ¼ ðf0g � InÞ [ ðI � oInÞ: Let U�Q : Q!
E be a general lift of the restriction UjQ of U to Q: Then, there exists a general lift
U� : I � In ! E of U with U�jQ ¼ U�Q:

Proof Consider first the case that UðI � InÞ lies in a trivializing coordinate
neighborhood U of the base space M of E, so that p�1

E ðUÞ � U � F: Then,
U�Qjf0g�In maps x 2 In to ðUðxÞ;/ðxÞÞ, where / is some mapping from In to the
typical fiber F: Consider U as a homotopy of UjIn and take any homotopy of / in F
to obtain a general lift of U:

Next, take a homeomorphism q of I � In onto itself which maps f0g � In

onto Q: Such a homeomorphism exists, it can explicitly be constructed in the
following way (Fig. 8.1). Map In homeomorphically into an n-ball Bn and hence
I � In into a spherical cylinder I � Bn: Then, in a first step (a), embed
the domain I � Bn (n ¼ 1 in the figure) into a large enough ball Bnþ1, and then
stretch it homogeneously along the drawn arrows from some inner point in such
a way that the domain f0g � Bn (thick line of the figure) is mapped onto the
lower half-sphere of the boundary of the ðnþ 1Þ-ball (thick arc). This is a
homeomorphic map of I � Bn onto the ball Bnþ1: Next, shift the ðnþ 1Þ-ball
upwards as shown in part (b) of the figure and shrink it homogeneously along
the drawn arrows to I � Bn which after going back to I � In maps the lower half-
sphere to Q: The composition of all homeomorphisms yields the sought map q
from I � In to I � In mapping f0g � In to Q: (Is the mapping from In to Bn

necessary in this construction?) The mapping eU ¼ U � q maps I � In to U, and
eUjf0g�In ¼ UjQ � q. eU�Q ¼ U�Q � q is a general lift of eUjf0g�In : It was seen in the

previous paragraph that it has an extension to a lift eU� of eU. U� ¼ eU� � q�1 is
now the wanted general lift of U: On the trivializing neighborhood U the
statement holds in an elementary way also for n ¼ 0:
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Now, the general case is reduced to the just considered by subdividing I � In

into Nnþ1 small cubes of equal size, small enough that each of them is mapped by
U into a trivializing coordinate neighborhood in M: In a first step, I of the
homotopy is replaced by the interval ½0; 1=N�, and then, step by step the contin-
uation is performed to all I: Start at the small cube with corner ð0; . . .; 0Þ and scan
lexicographically with respect to the coordinates of the corner closest to the origin
through the cubes. At any stage, U� is determined on the n-face of the cube with
x1 ¼ const. and on some of the n-faces sharing an ðn� 1Þ-face with the latter. An
n0-face is an n0-cube, and the above extension procedure can be applied to it,
provided U� is already defined on all its ðn0 � 1Þ-faces sharing ðn0 � 2Þ-faces with
the n-face x1 ¼ const.: In case of necessity one has further to go down with n0 at
most to n0 ¼ 0 in which case the above continuation of U� (from a point to an
interval) is always possible. Stepping from there upwards again with n0 finally
extents U� to the whole ðnþ 1Þ-cube, and one can proceed to the next. U� is finally
established on I � In: h

As seen from the given proof, in the above statement the cube In may be
replaced by any domain which is homeomorphic to a ball, in particular also by an
n-simplex. Even more generally, it may even be replaced by any polyhedron jcj
(see p. 141 f), when oIn is replaced by any subpolyhedron jc0j of jcj: By definition,
a subpolyhedron of jcj is a polyhedron which is also a subset of the skeleton of
some complex realizing the polyhedron jcj:

(a)

(b)

Fig. 8.1 The mapping q in
two steps for n ¼ 1: See text
for explanation
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Let M be contractible, and let U : I �M ! M be given with Uð0; xÞ ¼ x0 fixed
for all x 2 M and Uð1; xÞ ¼ x: Let �0 2 E be some point. The just mentioned
generalization of the above lifting proposition says that there is a general lift U� of
U, and for Uð1; �Þ this is a (global) section of E: Hence, every fiber bundle with a
contractible base space has a section. This is also true for principal fiber bundles,
for which it was shown in Sect. 7.1 that a principal fiber bundle P which has a
section is trivial (that is, P � M � G). By the very definition of fiber bundles
associated with principal fiber bundles, triviality transfers also to the former:

A fiber bundle with contractible base space is trivial.

With the help of the lifting proposition a group homomorphism
d : pnðM; x0Þ ! pn�1ðF; f0Þ; n [ 1, between homotopy groups may be con-
structed. Given a group element of pnðM; x0Þ, a representing mapping U : In !
M; UðoInÞ ¼ fx0g is chosen. Lift x0 to any point �0 ¼ fðp0g; g�1f0Þg 2 p�1

E ðx0Þ:
This can be extended to a general lift of U to U� : In ! E which lifts UjQ; Q ¼
oIn n f1g � ðIn�1Þ� to �0: Since Uðf1g � In�1Þ ¼ fx0g, it holds that U�ðf1g �
In�1Þ 	 p�1

E ðx0Þ: Moreover, oðf1g � In�1Þ 	 Q; and hence U�jf1g�In�1 represents a

group element of pn�1ðF; f0Þ: Let U0 : In ! M; U0ðoInÞ ¼ fx0g be a mapping
homotopic with U: That means that there is a mapping eU : I � In ! M with
eUjf0g�In ¼ U; eUjf1g�In ¼ U0: This can be lifted to eU� with eU�jf0g�In ¼ U� and

hence yields a homotopy in F between U� and eU�jf1g�In : Hence, the constructed
correspondence between representatives of group elements of pnðM; x0Þ
and pn�1ðF; f0Þ yields a correspondence between the group elements themselves
independent of the chosen representatives (Fig. 8.2). Taking the construction (2.35),
it is easy to see that the just constructed mapping d from pnðM; x0Þ to pn�1ðF; f0Þ is a
group homomorphism for n [ 1: For n ¼ 1 it is still a well defined mapping from the
fundamental group p1ðM; x0Þ to p0ðF; f0Þ: Only p0ðF; f0Þ is not in general a group.
It is a set in bijective relation to the pathwise connected components of F:

The exact homotopy sequence is

� � � �!d pnðF; f0Þ�!
i� pnðE; �0Þ�!

pE� pnðM; x0Þ�!
d

pn�1ðF; f0Þ�!
i� � � � ð8:1Þ

Fig. 8.2 A cube In; n ¼ 3. Q
is its surface without the
interior of its upper face
(open box). oðf1g � In�1Þ
consists of the edges of the
upper face
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where i is the inclusion mapping of F onto the fiber through �0 ¼ fðp0g; g�1f0Þg 2
p�1

E ðx0Þ in E; pE is the bundle projection, and both mappings are pushed forward to
the corresponding homotopy groups.

Proof of the exactness of the sequence The elements of pnðF; f0Þ are homotopy
classes of mappings from the cube In into F with oIn mapped to f0: The inclusion
mapping i maps these mappings to mappings of the same cube into the fiber of E
containing �0, and hence the images of these mappings are projected by pE� to
constant mappings of the cube In to the point x0 ¼ pEð�0Þ, which represent the zero
element of pnðM; x0Þ: Hence Im i� 	 Ker pE�:

The elements of pnðE; �0Þ are homotopy classes of mappings U� of the cube In

into E with oIn mapped to �0: By pE� they are projected to mappings pE � U� of In

into M with oIn mapped to x0: Then, d maps the latter to the restriction to f1g �
In�1 of any general lift ðpE � U�Þ� which maps f0g � In�1 to f0: If one takes U� as
such a general lift, it maps f1g � In�1 to ff0g which belongs to the zero of
pn�1ðF; f0Þ: Hence Im pE� 	 Ker d:

Finally, the elements of pnðM; x0Þ are homotopy classes of mappings U of the
cube In into M with oIn mapped to x0. d puts them to the homotopy classes of the
restriction U�jf1g�In�1 of a general lift U� with U�jf0g�In�1 ¼ f�0g, which means
that U�jf1g�In�1 is null-homotopic. Hence Im d 	 Ker i�:

To prove exactness, the reverse inclusions have also to be demonstrated.
Suppose that the homotopy class of U� : In ! E belongs to Ker pE�, that is, that

pE � U� is null-homotopic in M: Lift the homotopy between U0 
 x0 and pE � U�

to eU� : Inþ1 ! E: It shows that U� is homotopic to a mapping of In into p�1
E ðx0Þ

and thus belongs to Im i�: Hence Im i� � Ker pE�:
Suppose that the homotopy class of U : In ! M belongs to Ker d: That means

that U can be chosen so that Uðf1g � In�1Þ 	 p�1
E ðx0Þ and Uðf0g � In�1Þ ¼ f�0g:

This can be lifted to U� belonging to pnðE; �0Þ: Hence Im pE� � Ker d:
The last step is a little bit more elaborate. Let U� : In�1 ! F; U�ðoIn�1Þ ¼

ff0g belong to Ker i�: This means that there exists a mapping (homotopy) eU� � P :

I � Sn�1 ! E with eU� � Pjf1g�Sn�1 ¼ i � U� � P; eU� � Pðf0g � Sn�1Þ ¼ f�0g and
eU� � PðI � fs0gÞ ¼ f�0g: This implies eU� : I � In�1 ! E with eU�jf1g�In�1 ¼ i �
U�; eU�ðf0g � In�1Þ ¼ f�0g and eU�ðI � oIn�1Þ ¼ f�0g: Now it is easily seen that
U ¼ pE � eU� represents an element of pnðM; x0Þ which by d is mapped to the
element of pn�1ðF; f0Þ represented by U�. Hence Im d � Ker i� h

If one defines the ‘zero’ of the set p0ðX; x0Þ to correspond to the pathwise
connected component of X containing x0, then it is easy to see that (8.1) extends to
n ¼ 0: If one further defines pnðF; f0Þ ¼ pnðE; �0Þ ¼ pnðM; x0Þ ¼ 0 for n\0 and
dðp0ðM; x0ÞÞ ¼ f0g, then the exact homotopy sequence extends infinitely in both
directions as an exact sequence.

The exact homotopy sequence can amply be used to compute homotopy groups.
Let, for instance, pnðM; x0Þ ¼ 0 for some n: This implies Ker pE� ¼ pnðE; �0Þ and
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hence, by exactness of the homotopy sequence, that i� is surjective. If now
additionally pnþ1ðM; x0Þ ¼ 0, then Im d ¼ 0 in pnðF; f0Þ and hence i� is also
injective, which means that

if pnðM; x0Þ ¼ pnþ1ðM; x0Þ ¼ 0, then pnðF; f0Þ � pnðE; �0Þ:
In the same way one obtains

if pn�1ðF; f0Þ ¼ pnðF; f0Þ ¼ 0, then pnðE; �Þ � pnðM; x0Þ;

in particular, for n ¼ 0,

If F and M are (pathwise) connected, so is E,

and

if pn�1ðE; �0Þ ¼ pnðE; �0Þ ¼ 0, then pnðM; x0Þ � pn�1ðF; f0Þ:

If X is a discrete topological space, then pnðX; x0Þ ¼ 0 for all n [ 0: Hence it
follows from the second of the above conclusions that

if the fiber F is discrete, then pnðE; �0Þ � pnðM; x0Þ for all n [ 1:

For instance, since SUð2Þ is a twofold cover of SOð3Þ, it can be considered as a
principal fiber bundle with base space SOð3Þ and the discrete structure group
G ¼ F2 ¼ ðZ mod 2Þ consisting of two elements. On the other hand, according to
(6.35), the elements of SUð2Þ are represented by matrices

A ¼ x1 þ ix2 x3 þ ix4
�x3 þ ix4 x1 � ix2

� �

; det A ¼ x2
1 þ x2

2 þ x2
3 þ x2

4 ¼ 1; ð8:2Þ

and therefore SUð2Þ is homeomorphic to S3: Hence, pnðSOð3ÞÞ � pnðSUð2ÞÞ �
pnðS3Þ for all n [ 1: (See also p. 226 f for more details.)

As another example (by taking E ¼ P and F ¼ G), consider the principal fiber
bundle ðR; S1; p; 2pZÞ with pðt 2 RÞ ¼ expðitÞ 2 S1; already discussed previously.
It follows that pnðS1Þ � pnðRÞ ¼ 0 for all n [ 1, which is intuitively clear since an
n-sphere with n [ 1 cannot continuously be wound around S1: Since SOð2Þ is
homeomorphic to S1, also pnðSOð2ÞÞ ¼ 0 holds for n [ 1:

As yet another example, consider the principal fiber bundle ðSOð3Þ;
S2; p; SOð2ÞÞ with bundle space SOð3Þ, base space S2 and structure group SOð2Þ:
(Any SOð3Þ-transformation corresponds bijectively to a directed rotation axis, that
is, a point of S2 and a rotation in the mathematically positive sense around this
axis, which rotations are in bijective correspondence to SOð2Þ-transformations.
More generally, it can be shown that ðSOðnÞ; Sn�1; p; SOðn� 1ÞÞ is a principal
fiber bundle, [3, Section 9.3]). Now, since pnðSOð2ÞÞ ¼ 0 for n [ 1, the second of
the above conclusions from the exact homotopy sequence yields pnðSOð3ÞÞ �
pnðS2ÞÞ and hence also pnðS3Þ � pnðS2Þ for n [ 2: This implies the Hopf theorem
p3ðS2Þ � p3ðS3Þ � Z as a special case (cf. the end of Sect. 2.5).

Suppose that there exists a section s : M ! E in the fiber bundle E: Then,
pE � s ¼ IdM and hence pE� � s� ¼ IdpnðM;x0Þ, where the pushes forward from the
spaces to their homotopy groups are considered. Therefore, every ½U� 2 pnðM; x0Þ
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is the image of some ½U�� 2 pnðE; �0Þ : Im pE� ¼ pnðM; x0Þ: Because of the
exactness of (8.1) this means pnðM; x0Þ ¼ Ker d, which is the same as d 
 0:

If E has a section, then

0! pnðF; f0Þ�!
i� pnðE; �0Þ�!

pE� pnðM; x0Þ ! 0 for all n; ð8:3Þ

that is, pnðM; x0Þ ¼ pnðE; �0Þ=pnðF; f0Þ:

8.2 Homotopy of Sections

The construction of (global) sections in a fiber bundle is a case of interrelation
between homotopy and homology. In this section it will be presupposed that the base
space M is a compact manifold (of dimension m as always in this text), which is
homeomorphic to a polyhedron jcM j embedded into some Rn; n�m: (Section 5.6;
recall that every polyhedron of dimension m may be embedded into the R2mþ1;
hence, besides M being compact, the presupposition is not really restrictive.)

Let an abstract complex cM corresponding to the polyhedron jcM j be fixed, and
let cr be the rth skeleton of cM ¼ cm: For simplicity it will now further be assumed
that p0ðFÞ ¼ 0, that is, the typical fiber F is assumed to be pathwise connected. By
smoothness, a section through �0 ¼ p0ðf0Þ ¼ fðp0g; g�1f0Þg consists of points
� 2 E, represented (for g ¼ e) by ðp; f Þ, where f stays in the pathwise connected
component of f0 for all x 2 M, if M is pathwise connected. Hence, for pathwise
connected M, instead of a bundle ðE0;M; pE0 ;F0;PÞ the subbundle ðE;M; pE;F;GÞ
may be considered in the general case with F being the pathwise connected
component of f0 2 F0:

Next, assume that a section on jclj is given for some l\m and that pkðFÞ ¼ 0
for all k\l: (Recall that for a pathwise connected space F; pkðF; f0Þ ¼ pkðFÞ does
not depend on the point f0:) Try to extend the section to jclþ1j: If this is done,
induction in l can be used, since p0ðF; f0Þ ¼ 0, and jc0j consists of discrete points
(vertices) only for which the existence of a section is trivial.

Consider first a trivial fiber bundle E ¼ M � F:
Take a (regular) simplex given by clþ1

i 2 clþ1: As any regular ðlþ 1Þ-simplex,
jclþ1

i j is homeomorphic to the ðlþ 1Þ-ball. Its boundary belongs to the lth skeleton,
oclþ1

i 2 cl, and joclþ1
i j is homeomorphic to the l-sphere Sl: A section s on joclþ1

i j is
homotopic to a mapping s : Sl ! F and hence defines an element gsðclþ1

i Þ of the
homotopy group plðFÞ: It is easily seen that the section s can be extended to all of
jclþ1

i j, iff gsðclþ1
i Þ ¼ 0: (For instance by contracting the values of s on Sl to one

point when contracting Sl to its center.)
Consider the ðlþ 1Þ-chain module Clþ1ðcM ;ZÞ generated by the ðlþ 1Þ-sim-

plices of clþ1: Any section s on joclþ1j gives rise to a mapping of each simplex clþ1
i

of clþ1 to some element gsðclþ1
i Þ of plðFÞ: Since the homotopy group plðFÞ is

Abelian, this mapping may be extended by linearity to a mapping hs; clþ1
m i :
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Clþ1ðcM ;ZÞ ! plðFÞ; where clþ1
m ¼

P
i mic

lþ1
i ; mi integer. All these mappings for

all sections form a cochain module Clþ1ðcM; plðFÞÞ with coefficients in the ho-
motopy group plðFÞ: If the cochain hs; �i is trivial (zero-dimensional), then every
section on jclj may be extended to a section on jclþ1j: Therefore, the cochain hs; �i
is called the obstruction cochain to the extension of the section s to jclþ1j: It is
obviously constant under continuous (homotopic) deformations of s:

With the help of the lifting proposition on p. 248, it can be demonstrated that all
sections on jcl�1j are mutually homotopic as long as all homotopy groups pkðFÞ
are trivial for all k\l: To see this, take two arbitrary sections s and s0 and construct
a homotopy of their restrictions to jc0j, which is always possible since jc0j consists
of isolated points. By means of the lifting proposition, extend this homotopy to a
homotopy of sjc1 with some s1 on jc1j which coincides with s0 on joc1j:
If p1ðFÞ ¼ 0, all sections on jc1j coinciding on joc1j are homotopic, and hence s1

may be homotopically deformed into s0jc1 : These two steps may be repeated until
jcl�1j is reached.

Given two sections s and s0 on jclj which coincide on joclj; for each simplex jcl
ij

the mapping /s;s0 : Sl ! F is considered, which maps the upper hemisphere of Sl

homeomorphically to the simplex and composes this mapping with s, maps the
lower hemisphere of Sl again homeomorphically to the simplex and composes with
s0, in such a way that both mappings coincide on the equator of Sl which is mapped
onto jocl

ij: The homotopy class of this mapping is denoted by h/s;s0 ; c
l
ii and forms

by linear extension a cochain of the module ClðcM; plðFÞÞ: It is called the dif-
ference cochain between s and s0: Clearly h/s;s0 ; �i ¼ 0, iff s and s0 are homotopic.

From the construction of both cochains it is clear that

hd/s;s0 ; �i ¼ hs; �i � hs0; �i; hd/s;s0 ; c
lþ1
m i ¼ h/s;s0 ; oclþ1

m i: ð8:4Þ

Indeed, two arbitrary sections s and s0 on jclj are homotopic to sections s and ~s0

which coincide on jcl�1j since on jcl�1j all sections are homotopic. Putting /s;s0 ¼
/s;~s0 ; /s;s0 is defined for all sections s and s0 on jclj: Moreover, (2.35) in additive
writing for the group operation implies the left relation (8.4), if hd/s;s0 ; �i is defined
by the right relation. (Note that by the above construction the coordinate x1 of
(2.35) runs in the opposite direction for s0, hence the minus sign.)

Since o2 ¼ 0; the second relation (8.4) implies d2 ¼ 0: Take s0 to be the con-
stant section s0 for which hs0; �i ¼ 0, and obtain hs; �i ¼ hd/s;s0

; �i, that is, the
obstruction cochain is a coboundary (and also a cocycle, since d2 ¼ 0).

If l ¼ m, there are no ðlþ 1Þ-simplices in jcM j 
M: By extension of the second
relation (8.4) to this case, h/s;s0 ; �i may be considered to be a cocycle on cm n cm�1

(hd/s;s0 ; �i ¼ 0), and there are no non-trivial m-boundaries. It follows that, if
pkðFÞ ¼ 0 for all k\m, then the set of homotopy classes of sections of M � F is in
bijective correspondence with the cohomology group Hmðc;pmðFÞÞ:

So much for a trivial bundle M � F: If E is not a trivial fiber bundle, then an
abstract complex for M is to be considered which corresponds to a subdivision of
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the polyhedron jcMj 
M into simplices fine enough so that each simplex lies
within a trivializing coordinate neighborhood U of M: Instead of F, now a fiber
above some point xi 2 Ui is to be taken, which is isomorphic to F as a fiber.
However, instead of f0 each m-simplex has now its own reference point �0, and
instead of pkðF; f0Þ, now the set of isomorphic groups pkðp�1

E ðxiÞ; �iÞ is to be
considered, which leads to cochains with values in local groups. The technicalities
are considered in [3, Section 11.4]. The definition of corresponding (co)homology
groups of M is straightforwardly transfered to the new situation.

The obstruction cochain and the difference cochain are now defined to have
coefficients in the local homotopy groups, which are all isomorphic and connected
by group isomorphisms as transition functions. The relations (8.4) as local rela-
tions remain valid. In particular, from the very definition of difference cochains it
is clear, that for a given section s of E, the mapping h/s;s0 ; �i into the cochain
module is surjective. Indeed, given l and a section s on the l-skeleton of cM , take
any simplex cl

i of the l-skeleton. By the definition of the homotopy group
plðp�1

e ðxiÞÞ; xi 2 jcl
ijÞ; for any predefined group element gi there is a mapping

eU
�
i : jcl

ij ! p�1
E ðxiÞ;U�i jjocl

ij
¼ �i representing gi: It is homotopic to a mapping

U�i : jcl
ij ! p�1

E ðxiÞ;U�i jjocl
ij
¼ sjjocl

ij
since on the skeleton cl�1 all sections are

homotopic. Let s0 be the section on the l-skeleton which on jcl
ij is equal to U�i : It is

a section because on jocl
ij it coincides with the section s and hence it is continuous

(and thus homotopic to a smooth section). Consequently, for every predefined
cochain there exists a section s0 of jclj so that h/s;s0 ; �i is mapped to that cochain.

However, since on a non-trivial bundle a constant section does not necessarily
exist, obstruction cochains are not necessarily coboundaries any more. Only, for
any obstruction cochain hs0; �i and any coboundary hd/; �i, the cochain hs; �i ¼
hs0; �i þ hd/; �i is again an obstruction cochain. Moreover, as long as pkðFÞ ¼ 0 for
k\l, every hs; �i is a cocycle: hds; clþ1

m i ¼ hs; oclþ1
m i ¼ 0: (hs; oclþ1

m i maps to
pl�1ðp�1

E ðxiÞ; �iÞ � pl�1ðFÞ ¼ 0 by assumption.) Hence, the obstruction cochains
form a certain cohomology class corresponding to an element hlþ1ðEÞ of the
cohomology group Hlþ1ðc; ~plðFÞÞ ¼ Zlþ1ðc; ~plðFÞÞ=Blþ1ðc; ~plðFÞÞ; where ~plðFÞ
means the set of local homotopy groups connected by transition isomorphisms. This
cohomology class hlþ1ðEÞ is called a characteristic class of the fiber bundle E:

The fiber bundle ðE;M; pE;F;GÞ admits a section over the ðlþ 1Þ-skeleton, iff
the characteristic class is hlþ1ðEÞ ¼ 0; hlþ1ðEÞ is defined, iff all hkðEÞ ¼ 0 for k� l:

Characteristic classes will be considered in more detail later. As seen from
above, they provide a measure of ‘non-triviality’ of a fiber bundle.

As a simple application, consider the problem of singular points of tangent
vector fields on compact manifolds M: Consider the punctured tangent bundle
T�ðMÞ ¼ ðT�ðMÞ;M; pT ;R

m n f0g;Glðm;RÞÞ: Its typical fiber F ¼ Rm n f0g is
homotopy equivalent to the sphere Sm�1: It was mentioned at the end of Sect. 2.5
that pkðSm�1Þ ¼ 0 for k\m� 1 and pm�1ðSm�1Þ ¼ Z: (See [3, Section 7.1] for an
outline of a proof.) Therefore, there is always a non-zero tangent vector field on
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the ðm� 1Þ-skeleton of any polyhedron jcM j 
M: The attempt to extend it to M
will run into an obstruction, if hmðT�ðMÞÞ is non-zero.

hmðT�ðMÞÞ is an element of the cohomology group HmðM;ZÞ: If M is con-
nected and orientable, then, since Poincaré’s duality (5.61) holds also for K ¼ Z

instead of R; one has HmðM;ZÞ � H0ðM;ZÞ ¼ Z; and hmðT�ðMÞÞ is an integer
depending on M (since the typical fiber F was fixed).

Isolated nodes of a tangent vector field are called singularities. Let x 2 M be a
singular point of a tangent vector field X: Put a small sphere Sm�1 around that point,
so that no other singularity is enclosed and the enclosed ball is inside a single
coordinate neighborhood of M: Then, XjSm�1 can be considered as a mapping from
Sm�1 to Rm: Composing it with the central projection Rm n f0g ! Sm�1; a mapping
of Sm�1 to itself is obtained. The degree of such a mapping was defined on p. 47.
This degree is called the index of the singular point of the tangent vector field.
Replacing the enclosed ball by a homeomorphic simplex, it is easily seen that the
index of the singularity is the obstruction to continue the non-zero tangent vector
field X from the boundary of the ball (sphere) into the whole ball. The obstruction in
the given case is an element of the homotopy group pm�1ðSm�1Þ � Z:

Next, consider a decomposition of M into simplices small enough that each
simplex contains at most one singularity. Take the non-zero vector field X on the
ðm� 1Þ-skeleton of this decomposition, and let n define the characteristic class of
T�ðMÞ, which is the obstruction to continue the non-zero X to all M: It is clear that
n is the sum of all indices of all singularities of X:

The sum of the indices of all singularities of a tangent vector field does not
depend on X, it only depends on M and is a topological invariant of M:

This is a simple case of an index theorem. By taking a sufficiently simple
tangent vector field for which the index sum is easy to compute, one can show that
n is Euler’s characteristic in that case. (For instance the gradient vector field of a
real function on M provided with a metric can be analyzed by means of Morse
theory (Sect. 5.8).) Since the only non-zero Betti numbers of a sphere Sm are
b0ðSmÞ ¼ bmðSmÞ ¼ 1 (cf. (5.60)), Euler’s characteristic of an even dimensional
sphere is 2 and of an odd dimensional sphere is 0. Hence, an even dimensional
sphere cannot have a non-zero tangent vector field without singularities. (In two
dimensions: ‘every hedgehog has a vortex’; in fact it has at least one vortex of
index 2 or two vortices of index 1.) Odd dimensional spheres have non-singular
tangent vector fields. In fact, again by Poincaré’s duality, this is true for any odd-
dimensional compact orientable manifold.

8.3 Gauge Fields and Connections on R4

The theory of connections on principal fiber bundles and gauge field theory
describe the same situation in different languages; for several decades they were
developed in parallel and largely independently.
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First gauge field theories on Rm are considered which every physicist is familiar
with, and then the general case is treated. In particular, R4 may describe
Minkowski’s space–time. (As will be seen, the Minkowski metric is needed only
to specify the dynamics of the theory.)

As the prototype of a gauge field theory, reconsider Maxwell’s electrody-
namics (Sect. 5.9). Since H2

dRðR4Þ ¼ 0; one may start from (5.99) with the 1-form

A; in coordinates A ¼
X

l

Aldxl; ð8:5Þ

of gauge potentials from which the gauge fields derive as

F ¼ dA; in coordinates F ¼
X

l\m

Flmdxl ^ dxm;

Flm ¼ olAm � omAl; ol 
 o=oxl:

ð8:6Þ

(Since R4 may be covered by a single chart, natural coordinates as a single local
and global coordinate system are used.) As a consequence of (8.6), the homo-
geneous set of Maxwell’s equations,

dF ¼ 0; ð8:7Þ

immediately follows as identities, while in order to get the dynamics of the fields,
an action integral is needed. The simplest action is the Maxwell action

S½A� ¼ 1
2

Z

R4

F ^ �F; ð�FÞrs ¼
d1234

lmrs

2
gljgmkFjk; ð8:8Þ

where the prefactor sets the energy scale and hence is convention, and Hodge’s
star operator (5.87) in the present case results in the second relation. Note that the
star operator makes use of the Minkowski metric, so that in tensor notation

1
2

Z

R4

F ^ �F ¼ � 1
4

Z

R4

FlmF
lmd4x ¼ 1

2

Z

R4

E2 � B2
� �

; ð8:9Þ

where E and B are the electric and magnetic fields. The dynamics derives from the
stationarity of the action which in view of (5.93) and (8.7) implies the second set
of Maxwell’s equations,

dF ¼ 0 ¼ d � F; ð8:10Þ

which coincides with (5.96) in the absence of matter. Clearly, because of (8.6), a
gauge transformation

A! A0 ¼ Aþ dv; dv ¼
X

l

olvdxl ð8:11Þ
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with a smooth single valued function v on R4 does not change Maxwell’s
equations.

To include the interaction with a matter field W, the integral over the
Lagrangian density LðW; olWÞ of the matter field has to be added to the action
(8.8) (which must be Hermitian, e.g. LðW; olWÞ ¼ iWclolW� mWW in the case
of the electron–positron field of mass m, where cl are the Dirac matrices and
W ¼ Wyc0), and then all partial derivatives ol are to be replaced by the gauge-
covariant derivative

Dl ¼ ol � ieAl or D ¼ d � ieA ð8:12Þ

in a minimal interaction, where e is the charge of the matter field. (Depending on
units used in which the vacuum speed of light is c 6¼ 1 and the action unit is
�h 6¼ 1; e is sometimes to be replaced by ðe=�hcÞ in (8.12); in this text the above
choice c ¼ �h ¼ 1 is always made.) In the case of electrodynamics, (8.6) remains
unaltered since the potential components Al commute among one another. How-
ever, the gauge transformation (8.11) has now to be supplemented with

W! W0 ¼ eievW; ð8:13Þ

so that D0lW0 ¼ eievDlW; and the action remains invariant. Equations 8.12 and
8.11 may also be combined into

D ! D0 ¼ eievDe�iev; ð8:14Þ

from which together with (8.13) one directly infers that the Lie group Uð1Þ is the
local symmetry group of the gauge symmetry. (This is the so-called Weyl rotation
in the charge space; H. Weyl found it in 1929 in a (failed) attempt to unify
electromagnetism with gravity and called it the ‘relativity principle in the charge
space’.) Note that the local value of iv may be taken as an element of the Lie
algebra uð1Þ ¼ iR which transforms according to the adjoint representation Ad of
the group Uð1Þ, compare (6.66). The second set of Maxwell’s equations (8.10) is
now completed to become

dF ¼ J ¼ � d � F; Jl ¼ eWclW: ð8:15Þ

The theory is simple because Uð1Þ is an Abelian group.
In 1954, Yang and Mills found a non-Abelian generalization, which however

had to wait for two decades as a seeming formal curiosity until it finally celebrated
its triumph in particle physics not only by saving field theory from agony. Replace
Uð1Þ with any appropriate compact Lie group G of dimension n, under which the
matter fields W (N components) transform according to some N-dimensional
unitary representation w of G:

W0i ¼ wi
jðgÞWj; W

0
i ¼ Wjðw�1Þji; g 2 G: ð8:16Þ
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Define the ‘derivative’

ðDlWÞi ¼ olW
i þAi

ljW
j ¼ old

i
j þA

i
lj

� �
Wj; in short Dl ¼ ol þAl;

ð8:17Þ

where the ðN � NÞ-matrix valued 1-forms Al are subject to the adjoint repre-
sentation Ad of G in the Lie algebra g of G, which is an n-dimensional vector
space (spanned by the ‘infinitesimal generators’ of G), so that there are n linearly
independent 1-forms Al; which transform according to the transformation group
Aut ðgÞ for every ‘outer’ (spatial) index l, compare (6.65, 6.66). The group G is
called the inner symmetry group of the gauge field theory (isospin, color, . . .),
while the 1-form derives from the outer symmetry of space–time (scalar, vector,
spinor, . . .). As indicated by the writing in (8.17), the gauge potentials Al are
taken in the representation of the matter fields W, that is, by N � N-matrices. The
form (8.17) should be covariant under G-transformations in the sense

D0W0 ¼ wDw�1wW: ð8:18Þ
This readily implies

A0l ¼ wAlw
�1 þ wðolw

�1Þ ¼ wAlw
�1 � ðolwÞw�1: ð8:19Þ

Note that while Dl is understood as a differential operator, that is, ol of its first
term of (8.12) operates on everything written right of this operator, the derivative
in (8.19) is taken of w�1 and w, respectively, only. (Compare the end of Sect. 2.3
for the last rewriting of (8.19).) Note also that, if G ¼ Uð1Þ and the one-dimen-
sional representation w ¼ eiv is operative, then A0l ¼ Al � iolv; compare to
(8.11) with A ¼ �iA and e ¼ 1: Introduce gauge fields (matrix valued 2-forms)

F lm ¼ DlAm �DmAl ¼ olAm � omAl þ ½Al;Am� ¼ ½Dl;Dm�; ð8:20Þ

for which from the last expression and (8.18) the transformation property

F0lm ¼ wF lmw
�1 ð8:21Þ

derives. Now, as for any commutator product, ½Dk; ½Dl;Dm�� þ ½Dl; ½Dm;Dk�� þ
½Dm; ½Dk;Dl�� ¼ 0 and ½Dk; ½Dl;Dm�� ¼ ½Dk;F lm� ¼ ðokF lmÞ þ ½Ak;F lm�; where in
the first term again the derivative extends to F lm only. Therefore, the fields must
obey the kinematic equations

½Dk;F lm� þ ½Dl;F mk� þ ½Dm;F kl� ¼ 0; ð8:22Þ

which replace in Yang–Mills theory the first group of Maxwell’s equations.
The Yang–Mills action integral

S½A;W� ¼ �
X

a

1

2k2
a

Z

R4

tr ðF a ^ �F aÞ þ
Z

R4

iWclDlW�WmW
� �

d4x ð8:23Þ
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is invariant under the G-transformations. Distinct from electrodynamics, the fields
themselves now carry charges which were (together with the imaginary factor,
hence the minus sign in (8.23) compared to (8.8)) included into the potentials,
compare (8.17) with (8.12). This is consequent since now the gauge fields directly
interact with each other as seen from the last term of the last but one expression of
(8.20). Therefore, the squares of the coupling constants ka (instead of e in Max-
well’s theory) now appear in the denominator of the Lagrangian of the fields. In
(8.23) it is assumed that the symmetry group G is semi-simple, and one coupling
constant enters for each simple component a: The trace is the matrix trace over the
product of representation matrices ðF a

lmÞ
i
j of each simple component of the group.

While the Yang–Mills action itself is invariant, the dynamical field equations
derived from that action,

½Dl; �F lm� ¼ �kJm; kjJ
li
j ¼ ik2

j Wjc
lWi;

iclDlW� mW ¼ 0;
ð8:24Þ

are covariant under the gauge transformations wðgðxlÞÞ with the gauge function
gðxlÞ:

Note a significant difference between Abelian and non-Abelian gauge field
theories. Due to (8.11), in the Abelian case, the gauge field strength (8.6) is gauge
invariant and hence measurable. Due to (8.21), the non-Abelian gauge fields
transform covariantly under gauge transformations wi

jðgÞ and, like the phase of the
wave function (8.13), they themselves are not measurable. A simple example of a
measurable quantity is trF lm; where the trace is taken with respect to the inner
symmetry group G, that is with respect to the vector indices i and j of the matter
field.

All these considerations regard the classical wave equations. Quantization of
gauge field theories [4] has its own problems, which are not considered here.

Consider the vector bundle ðE;R4; pE;C
N ;GÞ and the corresponding Hermitian

conjugate bundle Ey associated with the trivial principal fiber bundle
ðP;R4; p;GÞ ¼ R4 � G; where G is the symmetry group of a local gauge field
theory and the inner product space CN is the unitary representation space for an
N-dimensional unitary representation w of G corresponding to matter fields. Let
W be a (global) section of E (which always exists in a vector bundle), and let Wy

be the corresponding hermitian conjugate section in Ey: Then,

W0ðxlÞ ¼ wðgðxlÞÞ�1WðxlÞ; xl 2 R4 ð8:25Þ

with a (global) section g : R4 ! G of P (which exists since P is trivial) is a gauge
transformation of the matter field W: (By convention, in comparison to (8.16) w�1

instead of w is used here in view of what follows.)
Introduce the g-valued 1-form A as a connection form on P: Since P is trivial, a

single global coordinate neighborhood U ¼ R4 can be used. Let p 7! ðpðpÞ;/aðpÞÞ
be coordinates on P and introduce the canonical section sa : x 7! ðx; eÞ of P:
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Denote the local connection form in these coordinates by Aa: According to
Sect. 7.3 it is the pull back of the connection form A from sa to R4: With Aal ¼
Aaðo=oxlÞ; the local connection form expresses as Aa ¼

P
l AalðxÞdxl: A coor-

dinate transformation on the fibers of P by /bðpÞ ¼ /aðpÞgðpðpÞÞ provided by the
gauge transformation gðxÞ leads to a canonical section sbðxÞ ¼ saðxÞgðxÞ corre-
sponding to the new coordinates. According to (7.4) on p. 217, the connection
form must transform according to

Abl ¼ ðAdðg�1ÞAaÞl þ g�ð#Þl ð8:26Þ

where # is the Maurer–Cartan 1-form of G at p ¼ ðx; gÞ and g� pulls it back to a
1-form at x on R4:

Moving over to the representation of the Lie group G by a subgroup of GlðN;CÞ
of complex ðN � NÞ-matrices wðgÞ acting on CN ; the elements Aal of the Lie
algebra g are likewise represented by ðN � NÞ-matrices Aal which are elements of
the Lie algebra glðN;CÞ: The transformation low (8.26) now reads

Abl ¼ w�1Aalwþ w�1ðow=oxlÞ; ð8:27Þ

where w ¼ wðgðxlÞÞ, and w�ð#Þl ¼ w�1w�ðo=oxlÞ ¼ w�1ðow=oxlÞ: the differ-

ence between the lifts of the tangent vector o=oxl on R4 to pb ¼ ðx; gÞ and to
pa ¼ ðx; eÞ, respectively, in TgðGÞ is og=oxl; and its ðN � NÞ-representation
ow=oxl is pulled back to glðN;CÞ by w�1: Comparison of (8.16, 8.19) with (8.25,
8.27) (with w replaced by w�1) reveals that

the gauge potentials of a local gauge field theory yield a local connection form,
represented in the space CN of matter fields, of the principal fiber bundle
ðP;R4; p;GÞ with the inner symmetry group G of the gauge field theory.

Now, by putting hX; ðo=oxlÞ ^ ðo=oxmÞi ¼ Xlm and hdA; ðo=oxlÞ ^ ðo=oxmÞi ¼
oAm=oxl � oAl=oxm one immediately infers from (7.11) on p. 223 that

the gauge fields

F lm ¼ ðdAÞlm þ ½Al;Am� or F ¼ DA ð8:28Þ

form the local curvature form of the connection given by the local connection form
A on ðP;R4; p;GÞ; both represented in the space CN of matter fields. The exterior
covariant derivative in this representation is

D ¼ ½d þA; �� ð8:29Þ

yielding the right version of (8.28).

Fixing a local gauge AðxlÞ links the position space with the ‘charge space’ CN

and thus defines a parallel transport of vector fields WðxlÞ, which are sections of
ðE;R4; pE;C

N ;GÞ: The Bianchi identities DF ¼ 0 for the fields read
hDF ; ðo=oxkÞ ^ ðo=oxlÞ ^ ðo=oxmÞi ¼ 0 or
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½Dk;F lm� þ ½Dl;F mk� þ ½Dm;F kl� ¼ 0;

which is (8.22) and which forms the first group (8.7) of Maxwell’s equations in
Maxwell’s electrodynamics, where G ¼ Uð1Þ is Abelian and all forms commute.
With respect to (8.29) compare also the text after (7.15).

Pure gauge potentials are gauge potentials Ap
l which ‘can be gauged away’,

that is, for which there exists a gauge fixing in which

Ap
l ¼ w�1ðow=oxlÞ ð8:30Þ

and for which hence according to (8.27) for every trivializing coordinate neigh-
borhood there exists a gauge transformation wðgðxlÞÞ for which Al vanishes. This
means that A is a flat connection in this case, and hence, by virtue of the theorem
on flat connections,

A gauge potential is a pure gauge potential, iff the corresponding gauge fields
F lm vanish:

Pure gauge potentials may reflect topological properties of the base manifold on
which the fields live and which may have consequences without direct gauge field
interactions of matter fields as considered in the next section.

8.4 Gauge Fields and Connections on Manifolds

Instead of having R4 as the base space of a local gauge field theory, the latter may
be considered on any manifold M: In many examples, M is just an open subset of
Rm; for instance with cut-outs where the gauge field diverges (point charges,
monopoles, dipoles, . . . More generally, M may be any curved space–time in the
presence of a gravitational field. Even more generally, M may be a high-dimen-
sional manifold of which space–time is a submanifold, and M=R4 is compact. This
is the situation in string theory.

As a connection on the principal fiber bundle ðP;M; p;GÞ, the local gauge field
theory readily transfers. The important difference is that P is in general not
globally trivial any more. This enhances topological aspects strongly. It was
already seen in Sect. 7.1 that a non-trivial principal fiber bundle does not have a
global section. Hence, g : x 7! gðxÞ 2 G cannot be given globally, and (8.26, 8.27)
cannot hold globally any more. However, if A and A0 are two locally given sets of
local connection forms with the same sets of transition functions gðxÞ, then their
difference may be a globally given 1-form, for which it locally holds that

ðA� A0Þb ¼ Adðg�1ÞðA� A0Þa; that is, ðAbl �A0blÞ ¼ w�1ðAal �A0alÞw:
ð8:31Þ

All, that follows (8.27) in the last section, transfers locally to the general case.
A simple example is Dirac’s monopole. It is a case of magnetostatics as one

time-independent part of Maxwell’s electrodynamics. The symmetry group is
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Uð1Þ: Consider the punctured three-space R3
� ¼ R3 n f0g as the base manifold of

the principal fiber bundle ðPD;R
3
�; p;Uð1ÞÞ: Introduce polar coordinates (Fig. 8.3)

ðr; h;/Þ; r 6¼ 0 in R3
�; and cover it by the two open sets Uþ ¼ fr j h 6¼ pg and

U� ¼ fr j h 6¼ 0g: Define the local connection forms (uð1Þ-valued form,
uð1Þ ¼ iR)

Aþ ¼ ikð1� cos hÞd/; A� ¼ �ikð1þ cos hÞd/: ð8:32Þ

Write the Uð1Þ-valued transition function as

wþ� ¼ eiv; ð8:33Þ

where v is a real function on Uþ \ U�, that is, a real function of ðr; h;/Þ: Then,
(8.27) reads

ðA�Þ/ ¼ w�1
þ�ðAþÞ/wþ� þ w�1

þ�ðowþ�=o/Þ ¼ ðAþÞ/ þ iðov=o/Þ: ð8:34Þ

Comparison with (8.32) yields v ¼ �2k/: The transition function must be
uniquely defined on the intersection Uþ \ U� ¼ fr j h 6¼ 0; pg, which finally
demands

v ¼ �2k/; 2k 2 Z; ð8:35Þ

since / and /þ 2p describe the same point of R3
�; and hence it must be e�i2k2p ¼

1: According to the theorem following (7.4), there is a connection form x on PD

corresponding to the local connection forms (8.32) on U� 	 R3
�; provided (8.35)

is fulfilled. Since Uð1Þ is Abelian, the local curvature forms are

F� ¼ dA� ¼ ik sin h dh ^ d/ ¼ ik
do

r2
: ð8:36Þ

They have a common analytic expression on both open sets U� and are propor-
tional to the directed surface element do of spheres centered at the origin of R3

�;
with an r-dependent coefficient.

Translating this result into physics means that A� ¼ �ieA�; where A� is the
vector potential of the magnetic field Bi ¼ ði=2eÞdijk

123F jk in Cartesian coordinates

Fig. 8.3 The manifold R3
�

with spherical coordinates
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xi, in spherical coordinates the magnetic field has only a radial component Br ¼
�k=ðer2Þ: The total magnetic flux through a sphere S2 centered at the origin is
independent of r and equal to

U ¼
Z

S2

B � do ¼
Z

S2
þ

dAþ þ
Z

S2
�

dA� ¼
Z

S1

ðAþ � A�Þ ¼ �4p
k
e
¼ 4pl; ð8:37Þ

where l is the strength of the magnetic monopole sitting at the origin of R3
�: Here,

S2
� mean the upper and lower half-sphere h7p=2; S1 is the equator h ¼ p=2, and

the trivial first integral has been rewritten and then treated with Stokes’ theorem
for later discussion. The result is Gauss’ law for a magnetic monopole l: Dirac’s
interest was attracted by the fact, that already in classical electrodynamics k ¼
�el (in ordinary units k ¼ �el=ð�hcÞ) is topologically quantized (!) to be half-
integer. If somewhere in the universe there exists a magnetic monopole of strength
jl0j ¼ 1=ð2eÞ ¼ lBohr=aBohr, then this would explain why all observed charges are
multiples of e (a phenomenologically hard fact, with 22 orders of magnitude of
relative experimental accuracy, for which otherwise there is no explanation). Here,
lBohr is Bohr’s magneton and aBohr is Bohr’s radius. After the surprising topo-
logical conclusion on p. 160 that a closed universe must be exactly electrically
neutral, this is one more global topological conclusion of an intertwining of local
magnetic and electric properties of the universe, resulting from the topological
structure of Maxwell’s electrodynamics. It does not mean that it is the correct
explanation in physics since quantization of the fields themselves and linkage to
other fields was not yet considered. Nevertheless, it reveals an important feature of
the internal structure of Maxwell’s theory. For a review on the actual theoretical
and experimental status of magnetic monopoles see [5]. The example also shows
that in gauge field theories the gauge potentials need exist only on open patches of
the base space, in our case on R3

� n (some ‘string’ from the origin to infinity): The
gauge fields may still be defined and smooth as tensor fields on all base space R3

�:
(Gauge potentials correspond to the pseudo-tensorial connection form while gauge
fields correspond to tensorial curvature forms.)

Returning to the principal fiber bundle ðPD;R
3
�; p;Uð1ÞÞ; it is easily seen that

the quantization of k is a case of a topological charge (Sect. 2.6). Consider the
homotopy equivalence Uþ \ U� ffi S1: Hence, the transition function wþ�, which
takes on the role of an order parameter for the field, is homotopic to a function
F : S1 ! Uð1Þ ffi S1, for which the homotopy group p1ðUð1ÞÞ ¼ p1ðS1Þ ¼ Z is
relevant, resulting in a topological charge 2k 2 p1ðUð1ÞÞ: The above result is
hence general and not related to the particular gauge fixing (8.32).

Another simple example is the Aharonov–Bohm effect. It refers to an electron
moving outside of a confined magnetostatic field (Fig. 8.4). Here, the base space is
M ¼ R3 n S;where S is a cylinder infinitely extending in x3-direction, which contains
a solenoid penetrated by a magnetic flux U and which keeps the electron outside by
means of a potential wall. Outside of S there is no magnetic field. The electron is
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injected at point P (for instance from an aperture before a cathode) and then after
quantum propagation observed at point Q (for instance on a screen). In this case there
is a globally defined local connection formAiðrÞ ¼ �ieAiðrÞ; in cylinder coordinates
ðq;/; x3Þ; q2 ¼ ðx1Þ2 þ ðx2Þ2; / ¼ arctanðx2=x1Þ outside of S given by

A ¼ U
2p

d/; ð8:38Þ

for which it is directly seen that

F ¼ dA ¼ 0: ð8:39Þ

The connection x on the manifold ðPAB;M; p;Uð1ÞÞ given by A on M is flat
(outside of S), there is no magnetic field outside of S: The formal reason for (8.39)
is that (8.38) is a pure gauge potential, A ¼ dv; v ¼ /U=ð2pÞ: On the other hand,
taking a circular area B2 in the ðx1; x2Þ-plane centered at the origin and containing
the cross section of S, one finds trivially by means of Stokes’ theorem

Z

B2

F ¼
Z

S1

A ¼ U; ð8:40Þ

where S1 is the oriented boundary of B2: The magnetic flux in S is indeed U:
Consider for the sake of simplicity a non-relativistic electron with the Lagrangian

L̂ ¼ �ðDiÞ2=2m ¼ Ĥ equal to the Hamiltonian. Let W be a stationary wavefunction
normalized according to an emission of one electron per unit time from the source P
for U ¼ 0: For U 6¼ 0, the wave function is W0 ¼ eievW ¼ eie/U=ð2pÞW:The geometry
was chosen such that at point Pð/ ¼ 0Þ there is W0 ¼ W, since this value was fixed
by normalization. However, at point Q;/ is not uniquely given. There are pairs of
distinct homotopy classes of paths from P to Q, the pair ðc1; c2Þ of Fig. 8.4 and
similar pairs winding additionally a certain number of times around S in mutually
opposite directions. Hence, for symmetry reasons, at point Q,

W0 ¼
X

n

an eieUð2nþ1Þ=2 þ e�ieUð2nþ1Þ=2
� �

W: ð8:41Þ

Fig. 8.4 The Aharonov–Bohm setup: S is the solenoid confining the magnetic field and
excluding the electron by means of a potential wall, P and Q are considered possible positions of
the electron, connected by typical paths c1 and c2: Cartesian coordinates are indicated, the
solenoid extends infinitely in x3-direction

8.4 Gauge Fields and Connections on Manifolds 265



The absolute value of this function is periodic in U with the period eU0 ¼ 2p (or in
ordinary units U0 ¼ hc=e). jW0j2 has minima for eU ¼ ð2k þ 1Þp and maxima
halfway in-between. Although the electron wavefunction does not seem to directly
see the flux U, it is equal to zero in S due to infinite potential walls, and although
hence there is no Lorentz force from the magnetic field inside S onto the electron,
it nevertheless reacts on the flux. It is, as if the electron sees directly the gauge
potential and not only the gauge field like in classical physics. However, in truth it
sees only the integral over the gauge potential over a closed loop, which is, as will
be seen in the next but one section, a Berry phase. The Aharonov–Bohm effect has
brilliantly been demonstrated in experiment.

As regards physics, another truth is that there are no infinite potential walls in
nature, and hence the electron does see the field at the boundary of S by proximity
(tunneling), and this boundary condition continues as a topological constraint via
Stokes’ theorem into all the outer space. The topological treatment relieves one
from any detailed consideration of the proximity situation. This is a very general
case with boundary conditions in physics. See also the discussion of polarization at
the end of Sect. 8.6.

The wavefunction of the Aharonov–Bohm situation is a section of the complex
line bundle (one-dimensional complex vector bundle) ðE;M; pE;C;Uð1ÞÞ associ-
ated with the principal fiber bundle PAB:The paths contributing to (8.41) correspond
to the elements of the holonomy group HQ of the connection A with base point Q:

Relativistic field theory is conveniently first developed in Euclidean space R4

(with imaginary time) and then analytically continued (Wick rotated) to real time
in the Minkowski space. As an example with a non-Abelian symmetry group, the
Belavin–Polyakov instanton, is considered. Choose a Yang–Mills theory on R4

for which the field part of the action (first term of (8.23)) is finite. This demands
that the gauge fields vanish for the spacial radius r !1 and hence the gauge
becomes pure. Technically this can be realized by compactifying the R4 to the
sphere S4 and demanding that the gauge is pure in the vicinity of the infinite point
(south pole). Hence, the principal fiber bundle ðPBP; S4; p;GÞ is operative.

As a simple case, take G ¼ SUð2Þ for the symmetry group. A general element
of SUð2Þ is

g ¼ exp i
X3

i¼1

tiri

 !

; rirj ¼ dij12 þ i
X

k

d123
ijk rk; ti 2 R; ð8:42Þ

since the Lie algebra suð2Þ is spanned by the Pauli matrices ri: Expanding the
exponential function one gets g ¼ 12 þ i

P
tiri � ð1=2!Þ

P
tit jðdij12 þ id123

ijk rkÞ þ
� � � : On summation over i and j the last spelled out term vanishes as a summation
over a product of a symmetric factor tit j with an alternating factor d123

ijk : Hence, g

may be cast into the form (compare (8.2))

g ¼ u012 þ
X

i

uiiri; ul 2 R; u0 ¼ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðtiÞ2

q
: ð8:43Þ

266 8 Parallelism, Holonomy, Homotopy and (Co)homology



Unitarity means 12 ¼ gyg ¼ ð
P3

l¼0ðulÞ2Þ12 þ i
P

ijk uiu jd123
ijk rk; where the last

sum again vanishes, leaving
P

lðulÞ2 ¼ 1 as the unitarity condition. The con-
straint det g ¼ 1 yields again the same condition. (It was already plugged into
(8.42) by the traceless Pauli matrices, recall det ðexp AÞ ¼ expðtr AÞ:) Hence,
SUð2Þ is homotopic to the sphere S3: Put r0 ¼ i12, then the inverse relations are

ulðgÞ ¼ tr ðgrlÞ=ð2iÞ; ð8:44Þ

that is, the mapping SUð2Þ ! S3 is even a bijection. (Distinct from (6.53, 6.54),
here the sphere S3 in the Euclidean space R4 figures.) The parameter space S3 3 ul

is of course to be distinguished from the base space R4 3 xl of the principal fiber
bundle, in which the gauge fields live.

Returning to the base space R4; take the two patches U0 ¼ fðxlÞ 2
R4 j jxj\2Rg and U1 ¼ fðxlÞ 2 R4 j jxj[ R=2g of R4 for some fixed radius R,
and gauge away the pure gauge outside R=2, that is, fix the local gauge potential

A1l ¼ 0 ) A0l ¼ w�1ðow=oxlÞ; ð8:45Þ

where w ¼ w01ðgðxlÞÞ is the transition function from U1 to U0: It suffices to
consider the transition function for jxj ¼ R, that is, on another sphere S3: In order
to classify possible field configurations one has to classify the mappings S3 3
ðxlÞ 7! gðxlÞ 2 SUð2Þ
 S3: This is provided by the homotopy group p3ðSUð2ÞÞ ¼
p3ðS3Þ ¼ Z:

Use homogeneous coordinates ðwlÞ ¼ ðxlÞ=R; jwj ¼ 1, on the sphere S3 of the
base space and consider the mappings S3 ! S3
 SUð2Þ : ðwlÞ 7! ðulÞ ¼
ðtr ðgnðwmÞrlÞ=ð2iÞÞ ¼ ðtr ððw012 þ wiiriÞnÞrlÞ=ð2iÞÞ; n 2 Zþ: For n ¼ 1 this is
the identity mapping as seen from (8.44). For n [ 1, the sphere S3 is ‘wrapped n
times’ by its preimage S3 as can be seen from the last relation (8.43) since g 7! gn

corresponds to ti 7! nti, and the mapping g 7! ðulÞ is bijective. As is likewise easily
seen for small ti, the mappings preserve orientation of the manifold S3 in the
vicinity of its north pole ðu0 ¼ 1Þ, and hence everywhere due to smoothness. Let
j : S3 ! S3 be the mapping which interchanges the coordinates w1 and w2 and
hence reverses orientation of S3: Replacing above gnðwlÞ by gnðjðwlÞÞ yields
representatives for negative integer homotopy classes. All mappings for non-zero n
are not homotopic to the trivial mapping g0ðwlÞ ¼ e ¼ 12:

Belavin and Polyakov considered (anti)self-dual solutions F ¼ � � F of the
Yang–Mills equations. Under this condition the field part of the Yang–Mills action
becomes �ð2k2Þ�1 R

R4 tr ðF ^ FÞ; where the integrand is a 4-form in a four-
dimensional space and hence is closed, dtr ðF ^ FÞ ¼ 0: Since the patch U0 is
contractible, tr ðF ^ FÞ is also exact (end of Sect. 5.5), that is, there exists a
3-form K so that tr ðF ^ FÞ ¼ dK: (Recall that F ¼ 0 on U1 and hence this
relation is trivially fulfilled on U1 with any constant K:)
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In the given case,

K ¼ tr A ^ dAþ 2
3
A ^A ^A

� �

; dK ¼ tr ðF ^ FÞ: ð8:46Þ

and
Z

R4

tr ðF ^ FÞ ¼
Z

U0

dK ¼
Z

S3

K ¼ � 1
3

Z

S3

tr ðA ^ A ^ AÞ: ð8:47Þ

Proof Straightforwardly, with dA ¼ F �A ^A;

dK ¼ tr dA^dAþ2
3
ðdA^A^A�A^dA^AþA^A^dA

� �

¼ tr ðF �A^AÞ^ðF �A^AÞð

þ2
3
ðF �A^AÞ^A^A�A^ðF �A^AÞ^AþA^A^ðF �A^AÞð Þ

�

¼ tr F ^F �F ^A^A�A^A^F þA^A^A^Að

þ2
3
ðF ^A^A�A^F ^AþA^A^F �A^A^A^AÞ

�

:

Now, using the alternating property of the wedge product and the cyclicity of the
trace of matrices,

tr ðA ^ A ^A ^AÞ ¼ 1
4!

X

jklm

tr ðAjAkAlAmÞdxj ^ dxk ^ dxl ^ dxm

¼ � 1
4!

X

jklm

tr ðAmAjAkAlÞdxm ^ dxj ^ dxk ^ dxl ¼ �tr ðA ^ A ^A ^AÞ:

Hence, tr ðA ^ A ^A ^AÞ ¼ 0: Likewise, tr ðF ^ A ^ AÞ ¼ �tr ðA ^ F ^ AÞ ¼
tr ðA ^ A ^ FÞ is found. This reduces the above result for dK to (8.46) and thus
proves the latter. In the next section this will become a special case of a very
general result.

In (8.47), S3 is the sphere of radius R in R4; and Stokes’ theorem was used in the
second equality. Again using dA ¼ F �A ^A; K may be cast into K ¼ tr ðA ^
FÞ � ð1=3Þtr ðA ^ A ^AÞ: The first term vanishes on S3, since F ¼ 0 there. h

Now, consider the strength of the instanton,

q ¼
Z

R4

tr ðF ^ FÞ: ð8:48Þ

For the sake of simplicity the identical (sometimes called fundamental) two-
dimensional representation of the symmetry group is considered, wðgÞ ¼ g, where
g is the ð2� 2Þ-matrix (8.42). The results are qualitatively general, only the
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topological charge may get an additional dimension factor from the trace due to a
more general representation. For g0ðxlÞ ¼ e, from (8.45) one has A0l ¼ 0 and
hence q ¼ q0 ¼ 0: For g1ðxlÞ ¼ w012 þ

P
i wiiri; one has A0l ¼ ðw012þ

P
i w

iiriÞ�1ðoðw012þ
P

i w
iiriÞ=oxlÞ ¼ ðw012þ

P
i wiiriÞ�1ðoðw012þ

P
i wiiriÞ=

owlÞ=R: Since this corresponds to the identity mapping S3! S3 :

wl 7!ulðwmÞ ¼wl, the gauge potential may be expressed as A0lðumÞ ¼ g�1

ðog=oulÞð1=RÞ ¼ ð1=RÞðo lng=oulÞ ¼ ði=RÞ
P

i riðoti=oulÞ or A0¼
P

l A0ldxl¼
i
P

i;l riðoti=oulÞdul ¼ i
P

i ridti: This yields trðA0^A0^A0Þ ¼ i3tr ðrirjrkÞdti^
dt j^dtk ¼ i33! trðr1r2r3Þdt1^dt2^dt3¼ 3!2ds; where ds is the 3-volume ele-
ment of the manifold SUð2Þ: The integration of the last expression of (8.47) is
now replaced by an integration over the unit sphere S3
SUð2Þ with the result
q¼ q1¼�4 �2p2¼�8p2 where 2p2 is the volume of the unit sphere S3 (see
footnote on p. 53). Now, realize that gn¼ gn�1g1: Since the gauge is a pure gauge
on S3, it can be gauged away on every trivial patch (chart) of S3: Cover S3 by UN

and US, the north and the south open hemisphere overlapping at the equator.
Gauge away gn�1 from the north hemisphere, that is, deform gn�1ðwlÞ smoothly
into g0n�1ðwlÞ, where g0n�1¼ e is constant on the north hemisphere. In view of the
bijection between SUð2Þ and S3 this amounts to a smooth coordinate transfor-
mation on S3, which transforms the integral over S3 n ðnorth poleÞ into an integral
over the south hemisphere. Likewise gauge away g1 from the south hemisphere.
Now, g0n¼ eg01¼ g01 on the north hemisphere and g0n¼ g0n�1e¼ g0n�1 on the south
hemisphere, and �ð1=3Þ

R
S3 trðA0n^A

0
n^A

0
nÞ ¼ q1þqn�1: For negative n, the

reversion of orientation of S3 simply results in q�n¼�qn: In summary,

qn ¼ �8p2n or

n ¼ 1
24p2

Z

S3

tr g�1dg ^ g�1dg ^ g�1dg
� �

¼ 1
2

Z

R4

tr
iF
2p
^ iF

2p

� �

; ð8:49Þ

that is, the Belavin–Polyakov instanton has a topologically quantized strength
(topological charge, cf. Sect. 2.6). Note, that compared to Dirac’s monopole there is
not even a singularity string of the gauge potential in the present case; the gauge
potential of the Belavin–Polyakov instanton is smooth everywhere in the base space
R4: It is a soliton-like solution of the field equations, which per se also has no length
scale: R was arbitrary in the choice of U0 and U1, (8.48) does not depend on it.
However, distinct from an ordinary soliton the instanton field strength F is non-
zero in a vicinity of the origin of the four-space only: it is local and exists only an
instant of time, hence instanton. Its presence imposes a gauge invariant non-trivial
boundary condition for fields propagating in time from �1 to 1:

Recall that in this case the quantization of (8.49) had its origin in the
requirement that the gauge field vanishes at infinity, or the gauge potential is pure

there. In fact, instead of R4 the compactified space R4
 S4 was treated.
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8.5 Characteristic Classes

The topological quantizations (8.37) and (8.49) have a common feature which
reflects a very general algebraic structure admitting of a deep analysis. In both
cases an integral of an exact r-form (coboundary) over an r-dimensional closed
manifold (cycle) M is taken as a sum of integrals over charts, the items of which
are transformed using Stokes’ theorem into integrals over the boundaries of the
charts. If the continuation of the preimage of the coboundary from one chart into
the other is obstructed, then the total integral may be nonzero, but only depending
on a cohomology class of Hr

dRðMÞ, called a characteristic class. (Compare also
Sect. 8.2.) Recall, that a gauge potential is a local connection form on a principal
fiber bundle and the gauge field is its local curvature form.

Let ðP;M; p;GÞ be a principal fiber bundle with the Lie group G as its structure
group and g as its Lie algebra. In view of possible fiber bundles ðE;M; pE;F;GÞ
associated with P;G and g may be replaced in the following by any complex
matrix representation in F: An Ad G invariant symmetric r-linear function p :
g� � � � � gðr factorsÞ ! C is a symmetric ðpð. . .;Xi; . . .;Xj; . . .Þ ¼ pð. . .;Xj; . . .;
Xi; . . .ÞÞ r-linear function with the property

pðAd gX1; . . .;Ad gXrÞ ¼ pðX1; . . .;XrÞ for all g 2 G; Xi 2 g: ð8:50Þ

In matrix representations,

pðgX1g�1; . . .; gXrg
�1Þ ¼ pðX1; . . .;XrÞ: ð8:51Þ

Given a connection form x on P, recall that the curvature form X ¼ Dx is a g-
valued tensorial 2-form on P, that is, at every q 2 P; hX; Z1 ^ Z2i 2 g for any pair
of tangent vectors Z1; Z2 of TqðPÞ: Define

pXðZ1; . . .; Z2rÞ ¼
1
ð2rÞ!

X

P
ð�1ÞjPjpðhX;ZPð1Þ ^ ZPð2Þi; . . .; hX; ZPð2r�1Þ ^ ZPð2rÞiÞ;

ð8:52Þ

where p is any Ad G invariant r-linear complex function, P means permutations of
the numbers ð1; . . .; 2rÞ, and Zi 2 TqðPÞ: Then, there holds the

Chern–Weil theorem (a) There is a unique global 2r-form on M equal to the
local 2r�forms pXa ¼ s�aðpXÞ (p. 224) on trivializing neighborhoods Ua of the base
space M of P, which is closed: dpXa ¼ 0:

(b) Let x and x0 be two different connection forms on P: Then, the difference
pXa � pX0a

is an exact 2r-form on M, that is, the de Rham cohomology class

associated with the glued together pXa in H2r
dRðMÞ is independent of x:

Proof (a) As defined in Sect. 7.5, the local curvature form Xa is uniquely defined
by X and is linearly depending on X for every coordinate neighborhood Ua 2
M : hXax;X1x ^X2xi ¼ hs�aðXsaðxÞÞ;X1x^X2xi ¼ hXsaðxÞ;s

x
a�ðX1xÞ^ sx

a�ðX2xÞi ¼ hXsaðxÞ;
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hðsx
a�ðX1xÞÞ^ hðsx

a�ðX1xÞÞi: By r-linearity, pXa ¼ s�aðpXÞ is uniquely defined by pX

through Zisa ¼ sa�ðXiÞ for which inversely p�ðZisaÞ ¼ Xi; where p is the bundle
projection of the principal fiber bundle P: The tangent vector ZisaðxÞ may be pushed
forward to any other point saðxÞg on the fiber p�1ðxÞ as ðRgÞ�ZisaðxÞ; and
hX;ðRgÞ�Z1^ðRgÞ�Z2i ¼ hR�gX;Z1^Z2i ¼Adðg�1ÞhX;Z1^Z2i; since X is a ten-
sorial form of type ðAd;gÞ: Since ðRgÞ�ZisaðxÞ �ZisaðxÞ is vertical, also
p�ððRgÞ�ZisaðxÞÞ ¼Xi; and in summary hpXa ;p�ðZ1Þ; . . .;p�ðZ2rÞi ¼ hp�ðpXaÞ;Z1; . . .;

Z2ri ¼ hpX;Z1; . . .;Z2ri or in short p�ðpXaÞ ¼ pX; where Xi¼ p�ðZiÞ ¼ p�ðhZiÞ (since
p�ðvZÞ ¼ 0). This also implies that pXa ¼ pXb on Ua\Ub, and hence the local
forms pXa define a unique global 2r-form on all M, which is pulled back to pX on P
by the bundle projection.

Next it is shown that for every n-form p on P which is equal to p�~p for some
n-form ~p on M it holds that dp ¼ Dp: Indeed, again with Xi ¼ p�ðZiÞ ¼ p�ðhZiÞ
and by linearity of p� and d; ðdpÞðZ1; . . .; Znþ1Þ ¼ ðdp�~pÞðZ1; . . .; Znþ1Þ ¼ ðp�d~pÞ
ðZ1; . . .;Znþ1Þ¼ðd~pÞðX1; . . .;Xnþ1Þ¼ðp�d~pÞðhZ1; . . .;

h Znþ1Þ¼ðdpÞðhZ1; . . .;
h Znþ1Þ¼

ðDpÞðZ1; . . .;Znþ1Þ:
Now, from Bianchi’s identity, 0 ¼

P
pð. . .; hDX; Zi ^ Zj ^ Zki; . . .Þ ¼ Dpð. . .;

hX;Zj ^ Zki; . . .Þ ¼ DpXðZ1; . . .; Z2rþ1Þ ¼ dpXðZ1; . . .; Z2rþ1Þ ¼ dpXaðX1; . . .;X2rþ1Þ;
the last equality again by linearity of p� and d: This completes the proof of (a).

(b) Let x0 and x1 be two connection forms on P, that is, two g-valued 1-forms
with properties 1 and 2 given on p. 215. In view of the affine linearity of 1 and the
linearity of 2 of these properties in x;xt ¼ x0 þ th; h ¼ x1 � x0, is another
connection form for every t 2 ½0; 1�, and Xt ¼ dxt þ ½xt;xt� ¼ dx0 þ ½x0;x0� þ
tðdhþ ½x0; h� þ ½h;x0�Þ þ t2½h; h� ¼ X0 þ tðdhþ ½xt; h� þ ½h;xt�Þ � t2½h; h� ¼ X0þ
tDth� t2½h; h� is the corresponding curvature form. One has dXt=dt ¼ Dth:
Moreover,

pX1 � pX0 ¼
Z1

0

dtdpXt=dt ¼ r

Z1

0

dtpðhDth; � ^ �i; hXt; � ^ �i; . . .; hXt; � ^ �iÞ

¼ r

Z1

0

dtDtpðhh; �i; hXt; � ^ �i; . . .; hXt; � ^ �iÞ

¼ r

Z1

0

dtdpðhh; �i; hXt; � ^ �i; . . .; hXt; � ^ �iÞ

¼ d

Z1

0

dtrpðhh; �i; hXt; � ^ �i; . . .; hXt; � ^ �iÞ ¼ dH:

ð8:53Þ

8.5 Characteristic Classes 271



The first equality is trivial, in the second the symmetry of pXt was used, in the third
Bianchi’s identity DtXt ¼ 0 was exploited, and in the fourth it was realized that Dt

again applies to a pull back from M by p since h like the connection forms xi is a
pseudo-tensorial form of type ðAd; gÞ; pulled back from its local form on M by p:
Now, since H, the integral of the last line, is a pseudo-tensorial form, in analogy to
(a) a form Ha ¼ s�aðHÞ may be defined, so that pX1a � pX0a ¼ dHa on M:
According to (5.39), the de Rham cohomology classes, that is, the group elements
of the de Rham cohomology group H2r

dRðMÞ are the sets of closed 2r-forms which
differ at most by an exact 2r-form. Hence, pX1a and pX0a belong to the same
element of H2r

dRðMÞ. h

As in Sect. 8.2, the de Rham cohomology classes associated with pXa are called
the characteristic classes. They depend on P and on the chosen Ad G invariant
r-linear function p, but not on the chosen connection on P:

The set of formal sums of Ad G invariant symmetric r-linear functions (for all
integer r� 0, complex numbers for r ¼ 0) is made into a graded commutative
algebra I�ðGÞ by defining the product

pp0ðX1; . . .;XrþsÞ ¼
1

ðr þ sÞ!
X

P
pðXPð1Þ; . . .;XPðrÞÞp0ðXPðrþ1Þ; . . .;XPðrþsÞÞ:

ð8:54Þ

Note that r-linear functions by (8.52) give rise to forms of even degree 2r:

Weil homomorphism The mapping I�ðGÞ ! H�dRðMÞ by p 7! fpXg is a
homomorphism of graded algebras.

fpXg means the de Rham cohomology class of pX: This result is clear from the
above, and by realizing that the image of the homomorphism consists of coho-
mology groups of even degree only and that in H�dRðMÞ the ^-product of factors of
even degree is commutative. Of course, the homomorphism depends on the topology
of M:Hence, the whole mapping depends on the principal fiber bundle ðP;M; p;GÞ:

There is a one–one correspondence between symmetric r-linear functions and
polynomials of degree r: Define the polynomial pðrÞ associated with p by

pðrÞðuÞ ¼ pðu; . . .; uÞ; r arguments; ð8:55Þ

then pðu1; . . .; unÞ is ð1=r!Þ times the coefficient of t1� � �tr in pðrÞðt1u1 þ � � � þ trurÞ;
this is called the polarization of the polynomial pðrÞ: It is clear that, iff
pðX1; . . .;XrÞ is Ad G invariant, so is pðrÞ, it is called an Ad G invariant polyno-
mial. Now, I�ðGÞ is isomorphic with the algebra of Ad G invariant polynomials.

An in a sense most general case is a complex vector bundle
ðE;M; pE;C

k;Glðk;CÞÞ on a (real) m-dimensional base manifold M, associated
with the principal fiber bundle ðP;M;p;Glðk;CÞÞ: In this case there are k distinct
Ad G invariant polynomials obtained from the characteristic polynomial of a
general complex ðk � kÞ-matrix X as an element of glðk;CÞ:
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det k1k �
1

2pi
X

� �

¼
Xk

r¼0

pðrÞc ðXÞkk�r: ð8:56Þ

The (in principle arbitrary) normalization convention of X ensures that the Chern
numbers defined below will be real integers or fractions with small integer
denominators. Since det ðk01k � gXg�1Þ ¼ det ðgðk01k � XÞg�1Þ ¼ det g detðk01k�
XÞdet ðg�1Þ ¼ det ðk01k � XÞdet ðgg�1Þ ¼ det ðk01k � XÞ; it is clear, that the

polynomials pðrÞc ðXÞ are Ad G invariant. Let X be the curvature form of some
connection form x on P: The rth Chern class CrðEÞ of the complex vector bundle
E is the de Rham cohomology class of the closed 2r-form

crðY1; . . .; Y2rÞ ¼ pcXðsa�ðY1Þ; . . .; sa�ðY2rÞÞ; Yi 2 XðMÞ; ð8:57Þ

where pcXðZ1; . . .; Z2rÞ is the polarization of pðrÞc ðZÞ: After introducing a base in
TxðMÞ; x 2 Ua, the 2-form Xa becomes a complex ðk � kÞ-matrix. A somewhat
involved but straightforward calculation yields

cr ¼
ð�1Þr

ð2piÞrðr!Þ d
i1...ir
j1...jrðXaÞ j1

i1 ^ � � � ^ ðXaÞ jr
ir : ð8:58Þ

Each matrix element ðXaÞ j
i is a 2-form on M: It can be shown that the Chern

classes generate the whole image of I�ðGlðk;CÞÞ in H�dRðMÞ: Their representation
depends on E as seen from (8.58). The total Chern class corresponds to the direct
sum over r of the cr:

Some important other characteristic classes are:

Chern character Consider instead of (8.56) the expression

tr exp � 1
2pi

X

� �� �

¼ tr
X1

r¼0

1
r!
� 1

2pi
X

� �r
 !

¼
X1

r¼0

pðrÞch ðXÞ: ð8:59Þ

It is easily seen that because of the trace the left expression is Ad G invariant.

The rth Chern character ChrðEÞ corresponds to pðrÞch , in a base of TxðMÞ,

chr ¼ ð1=r!Þtr ðiXa=ð2pÞ ^ � � � ^ iXa=ð2pÞÞ: ð8:60Þ

(chr is related to pchX, the polarization of pðrÞch , like (8.57).) The total Chern
character is again the direct sum, which is finite, since the last expression vanishes,
if 2r [ dim M:

Todd classes Let E be the Whitney sum E ¼ L1 � � � � � Lk, where each Li is
the complex line bundle over M: Let xi ¼ c1ðLiÞ be the first Chern class of Li: The
2r-form of the expansion of

td ¼
Yk

i¼1

ð^Þ xi

1� expð�xiÞ
; ð8:61Þ
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where the exponential is meant as the formal ^-expansion, is the rth Todd class
TdrðEÞ:

Pontrjagin classes They are the analogue of Chern classes for real vector
bundles ðE;M; pE;R

k;Glðk;RÞÞ: Instead of (8.56) one uses

det k1k �
1

2p
X

� �

¼
Xk

r¼0

pðrÞp ðXÞk
k�r: ð8:62Þ

Replacing X in the determinant by the skew-symmetric matrix X ¼ �Xt, one finds
det ð1k � XÞ ¼ det ð1k þ XtÞ ¼ det ð1k þ XÞ since det A ¼ det At: From that it
immediately follows that the odd Pontrjagin classes vanish. One finds

p2r ¼
1

ð2pÞ2rð2rÞ!2
di1...i2r

j1...j2r
ðXaÞ j1

i1 ^ � � � ^ ðXaÞ j2r
i2r
: ð8:63Þ

If one identifies the complex k-vector bundle E with the real 2k-vector bundle E0,
then the rth Chern class becomes the 2rth Pontrjagin class, CrðEÞ ¼ P2rðE0Þ:

Euler class Consider an orientable manifold M of even dimension dim M ¼
2m and let ðTðMÞ;M; pT ;R

2m;Oð2mÞÞ be the tangent vector bundle on M asso-
ciated with the reduced frame bundle ðLOðMÞ;M; p;Oð2mÞÞ of orthonormal
frames. The Euler class is given by

e ¼ ð�1Þm

ð4pÞmm!
d1...2m

i1...i2m
ðXaÞi1i2 ^ � � � ^ ðXaÞi2m�1

i2m
; ð8:64Þ

in view of Xa ¼ �Xt
a implying e2 ¼ ð2pÞ�2mdet ðXaÞ and hence being Ad Oð2mÞ

invariant.

Let ½z� be the homology class of a 2r-dimensional cycle in M, and let ½p� be the
cohomology class of a closed 2r-form on M (cocycle). Equation 5.40 says that the
integral

R
z p depends only on the (co)homology classes of z and p, and hence is a

topological invariant. Since characteristic classes are closed forms on M, they give
rise to topological invariant numbers by integration over cycles in M: Best known
is the

Gauss–Bonnet–Chern–Avez theorem Let M be an orientable 2m-dimen-
sional compact manifold, let e be its Euler class and let vðMÞ be its Euler char-
acteristic (Euler–Poincaré characteristic) (5.63). Then,

vðMÞ ¼
Z

M

e: ð8:65Þ

Particular cases of this general theorem are considered in [6]. For 2m ¼ 2 the
theorem reduces to the well known Gauss–Bonnet theorem vðMÞ ¼ 1=ð2pÞ

R
MK

where K ¼ Xa is the curvature form of the surface M:
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Integrals over a 2r-cycle in M of an rth characteristic class are called Chern
numbers. In field theory, for dim M ¼ 4, the Chern numbers

Z

M

ch2 and
Z

M

ch1 ^ ch1 ð8:66Þ

are of particular interest. In the real case with dim M ¼ 4;
R

M p2 is the Pontrjagin
number.

Let ðE;M; pE;Kk;GÞ be a K-vector bundle associated with a principal fiber
bundle ðP;M; p;GÞ, and let pX be a 2r-form (8.52) representing a characteristic class
of P in a K-matrix representation. According to the Chern–Weil theorem, pXa ¼
s�aðpXÞ for all trivializing neighborhoods Ua 2 M defines a closed 2r-form on all M:
In view of Poincaré’s lemma (end of Sect. 5.5) this implies that locally, but not in
general globally, pXa is also exact, that is, there are local ð2r � 1Þ-forms qa, so that

pXa ¼ dqa: ð8:67Þ
Let x ¼ x1 be a connection form leading to the curvature form X: On a trivial-
izing subbundle Ua�G of P, the vertical ‘unit’ form x0 which is pulled back to
0 ¼ x0a ¼ s�aðx0Þ provides a flat connection on Ua: Let xta ¼ txa ¼ ts�aðxÞ on
Ua: Then, after pulling back with s�a the chain of equations (8.53) in the proof of
the second part of the Chern–Weil theorem yields

qa ¼ r

Z1

0

dtpðhxa; �i; hXta; � ^ �i; . . .; hXta; � ^ �iÞ; ð8:68Þ

where Xta ¼ tdxa þ t2½xa;xa� ¼ tXa þ ðt2 � tÞ½xa;xa�: The g-valued (in the
representation vector space Kk) local ð2r � 1Þ-form qa on Ua 2 M is called the
Chern–Simons form of pXa :

Consider as an example the Chern–Simons ð2r � 1Þ-form of the rth Chern
character Chr:

qðrÞcha ¼
1

ðr � 1Þ!
i

2p

� �rZ1

0

dttr ðxa ^ Xta ^ � � � ^ Xta|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
r�1factors

Þ: ð8:69Þ

In particular

qð1Þcha ¼
i

2p

Z1

0

dttr xa ¼
i

2p
tr xa;

qð2Þcha ¼
i

2p

� �2Z1

0

dttr ðxa ^ ðtdxa þ t2xa ^ xaÞ

¼ 1
2

i

2p

� �2

tr xa ^ dxa þ
2
3
xa ^ xa ^ xa

� �

;

� �� ð8:70Þ
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In local gauge field theory xa is commonly denoted A as the gauge potential and
Xa is denoted F as the gauge field. In a one-dimensional vector bundle (line
bundle) on M of two dimensions one has simply trA ¼ A: The vector potential

A ¼ ði=eÞA is just ð2p=eÞqð1Þch : Hence, (8.39) is a trivial case of a Chern character
eF=ð2pÞ and a Chern–Simons form eA=ð2pÞ: Likewise it is seen that
ð�1=ð8p2ÞÞtr ðF ^ FÞ is a Chern character Ch2, and that K of (8.46) is up to a

factor of convention a Chern–Simons form: K ¼ �8p2qð2Þch : Both relations (8.39,
8.46) are special cases of (8.67).

8.6 Geometric Phases in Quantum Physics

8.6.1 Berry–Simon Connection

Consider a quantum system under the influence of its surroundings. For the sake of
simplicity non-relativistic quantum mechanics is considered, although more gen-
eral cases could be treated similarly. The system is described by a Hamiltonian,
and the influence of the surroundings is expressed by a set of in general time-
dependent parameters the Hamiltonian depends on. Collect the parameters into a
set R of real numbers which varies in some real m-dimensional manifold. Let the
Hamiltonian and hence its eigenvalues, calculated for fixed R,

ĤðRÞjWðRÞi ¼ jWðRÞiEðRÞ; hWðRÞjWðRÞi ¼ 1; R fixed, ð8:71Þ

continuously depend on R [7]. Let EðRÞ be a non-degenerate and isolated eigen-
value of ĤðRÞ for some value R of the parameters. Then, a manifold M can always
be found on which EðRÞ varies continuously with R and remains isolated. Since
jWðRÞi is defined up to a phase eic, a Lie group Uð1Þ is attached to each point R of
the manifold M, which makes it into a principal fiber bundle ðP;M; p;Uð1ÞÞ: (The
Lie group Uð1Þ is the symmetry group related to the conservation of hWjWi for
complex jWi which eventually is related to particle conservation).

Let R depend on time t through s ¼ t=T where T is a speed scaling factor for
this dependence. The time-dependent Schrödinger equation reads ð�h ¼ 1Þ

i
djWTðRðsÞ; tÞi

dt
¼ ĤðRðsÞÞjWTðRðsÞ; tÞi: ð8:72Þ

Let jWðRðsÞÞi be the state of (8.71). Then, the quantum adiabatic theorem says
that

lim
T!1

jWTðRðsÞ; tÞihWTðRðsÞ; tÞj ¼ jWðRðsÞÞihWðRðsÞÞj; ð8:73Þ

where s is kept constant in the limiting process. In order to determine the phase
change of jWðRÞi on a path through M, put the ansatz
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jWTðRðsÞ; tÞi ¼ jWðRðsÞÞi exp icðtÞ � i

Z t

0

dt0EðRðs0ÞÞ

0

@

1

A ð8:74Þ

into the equation (8.72) and find straightforwardly after multiplication from the
left with hWTðRðsÞ; tÞj

dc
dt
¼ i WðRðsÞÞ d

dt

















WðRðsÞÞ

� �

or

cðtÞ ¼ i

Z t

0

dt0 WðRðsÞÞ d

dt0

















WðRðsÞÞ

� �

¼ i

ZRðtÞ

Rð0Þ

dR WðRÞh j o

oR
WðRÞj i

¼ i

Z

C

hWðRÞjdjWðRÞi; ð8:75Þ

where C is the considered path RðsÞ through M: The phase cðtÞ is called Berry’s
phase (Berry, 1984).1 It is in many instances a measurable quantity, and it took
nearly 60 years since the foundation of the Hilbert space representation of quan-
tum theory to realize that not every dynamical quantum observable is represented
as a Hermitian operator.

B. Simon was the first to realize that the last integrand is a local connection
form on ðP;M; p;Uð1ÞÞ:

A ¼
X

i

AidRi ¼ hWðRÞjdjWðRÞi ¼ �ðdhWðRÞjÞjWðRÞi: ð8:76Þ

The last relation is a direct consequence of the normalization of jWðRÞi: It shows
that A is anti-Hermitian, it is called the Berry–Simon connection . To see that it is
a local connection form, consider two local sections saðRÞ ¼ jWðRÞia and sbðRÞ ¼
jWðRÞib with the transition function wab ¼ expðivÞ; jWðRÞib ¼ jWðRÞiawabðRÞ:
Then,

AbðRÞ ¼ bhWðRÞjdjWðRÞib
¼ w�1

ab ahWðRÞjdjWðRÞiawab þ w�1
ab ahWðRÞjWðRÞiadwab

¼ w�1
abAaðRÞwab þ w�1

ab dwab ¼ AaðRÞ þ idvðRÞ;

which proves the required property. (In the first term on the second line d is meant
to operate on jWðRÞia only.) The corresponding curvature form F ¼ DA ¼ dA
(the latter since Uð1Þ is Abelian) is called Berry’s curvature, it is given by

1 A collection of most of the relevant original papers on the subject is gathered in the volume [1].
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F ¼ ðdhWðRÞjÞ ^ ðdjWðRÞiÞ ¼ ohWðRÞj
oRi

ojWðRÞi
oRj

dRi ^ dR j: ð8:77Þ

A phase difference of two quantum states or two classical waves can be measured,
if both waves are brought to interference. This happens, if parts of the wave
propagate along different paths between the same start and end points or, equiv-
alently, if a wave circuits along a closed loop C: In the latter case it interferes with
itself according to the phase difference (8.75). Clearly, if x 2 M is a base point of
loops, then all possible phase differences cðCÞ for all possible loops C based on x
and running through M constitute the holonomy group Hx related to the connection
on ðP;M; p;Uð1ÞÞ provided by the local connection form A:

Let S be a two-dimensional surface in M bounded by C ¼ oS: Then, Stokes’
theorem yields

cðCÞ ¼ i

Z

C¼oS

A ¼ i

Z

S

F ; ð8:78Þ

that is, Berry’s phase equals i times the flux of Berry curvature through the surface
S: This is suggestive of magnetism and of Aharonov–Bohm physics, but is much
more general.

The expressions (8.76, 8.77) point out yet another important generalization of
these considerations: As a connection in a physical parameter space, the Berry–
Simon connection A and also Berry’s phase (8.75) between distinct points of the
parameter space is a gauge potential and hence gauge dependent and in general
not measurable. On the contrary, Berry’s curvature (8.77) is a gauge field and
hence has physical relevance leading not only to a measurable quantity (8.78) but
is also measurable locally along any path through the parameter space, closed or
not.

8.6.2 Degenerate Case

Shortly after Berry’s and Simon’s papers, Wilczek and Zee pointed out that this
concept has a relevant non-Abelian generalization. It happens that a quantum state
has an isolated energy level which however is globally, that is on a whole
parameter manifold M; N-fold degenerate. Think for instance of a Kramers
degenerate doublet state of a molecule (see p. 337). Instead of (8.73), now

XN

a¼1

jWaðRÞihWaðRÞj; hWaðRÞjWbðRÞi ¼ da
b ð8:79Þ

is the adiabatic quantity, where locally the orthonormalized states jWaðRÞi can
always be chosen smoothly depending on the parameter set R ([7]).
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With the ansatz

jWðtÞi ¼
XN

a¼1

caðtÞjWaðRðsÞÞi ð8:80Þ

one finds after projection on hWbðRðsÞÞj

dcbðtÞ
dt
þ
XN

a¼1

WbðRðsÞÞ
d

dt

















WaðRðsÞÞ

� �

þ iEðRðsÞÞdb
a

� �

caðtÞ ¼ 0 ð8:81Þ

with the formal solution

cbðtÞ ¼
XN

a¼1

T exp

Z t

0

dt �AðRðsÞÞ � iEðRðsÞÞ1Nð Þ

2

4

3

5

b

a

cað0Þ; ð8:82Þ

where now the simple power series expressed by the exponentiation is to be
replaced by a series which observes the order of factors with ascending time
from right to left. This is formally expressed by the time-ordering operator T
physicists are familiar with. In the adiabatic limit, the time integration can again
be expressed as a path integration along the path parameter s in the parameter
space, leading to

Ab
a ¼

X

i

Ab
aidRi ¼

X

i

WbðRÞ
o

oRi

















WaðRÞ

� �

dRi ¼ hWbðRÞjdjWaðRÞi ð8:83Þ

for which the transition between local patches Ua and Ub of the m-dimensional

parameter manifold M, jWaðRÞib ¼
P

b jWbðRÞiawabðRÞ
b
a; in complete analogy to

the case (8.76) yields

Ab ¼ w�1
abAawab þ w�1

ab dwab; Aa ¼
X

i

Ab
aidRi

 !

a

; ð8:84Þ

that is, A is again a local connection form of a connection on ðP;M; p;GÞ: a
1-form on M, which is g-valued, where g is the Lie algebra to the Lie group
G 3 wab providing the degeneracy of quantum states. Note that due to (8.79) G is

unitarily acting on the space CN of wave functions jWðRÞi at given R: The geo-
metric change of state along a closed loop is given by

~wðCÞ ¼ P exp �
I

C
A

� �

; ð8:85Þ

where P means path ordering from right to left surviving from the time ordering
T : For loops based on x 2 M it is again an element of the holonomy group Hx

related to the connection on ðP;M; p;GÞ provided by the local connection form
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A: In gauge field theory the corresponding quantity is called Wilson’s loop
integral.

The integral ~wðCÞ is gauge covariant. Indeed, take any gauge transformation
wðgðRÞÞ on M, where wðgÞ as on p. 261 is an element of the unitary representation
of G in CN . It now corresponds to a smooth (on M) transition to new states
jW0aðRÞi ¼

P
b jWbðRÞiwb

aðgðRÞÞ alternative to (8.79). The corresponding change
of the connection is A0 ¼ w�1Awþ w�1dw: Exploit expðB�1ABÞ ¼ B�1ðexp AÞB,
which holds for arbitrary matrices A;B: Consider the transformed loop integral

~wðCÞ¼
Y

dR

exp �w�1Aw�w�1dR
o

oR
w

� �

¼
Y

dR

w�1expð�AÞexp �dR
o

oR

� �

w

¼
Y

dR

wðgðRÞÞ�1
expð�AÞwðgðR�dRÞÞ¼wðgðR0ÞÞ

Y

dR

expð�AÞ
 !

wðgðR0ÞÞ;

where the product is understood in path order which precisely leads to cancellation
of the intermediate products wðgðR� dRÞwðgðR� dRÞÞ�1, and R0 is the base point

of the loop C. Hence ~w
0ðCÞ ¼ wðgðR0ÞÞ�1 ~wðCÞwðgðR0ÞÞ: This also means that

~wðCÞ is gauge dependent and hence not directly measurable.
Recall from (8.70) that i=ð2pÞtrA (with the trace taken in g) is the Chern–

Simons form of the first Chern character i=ð2pÞF of the connection provided by
A; since F ¼ DA ¼ dAþA ^A; it follows that trF ¼ d trA; because trA ^
A ¼ 0: Hence, if one takes the trace under the integrals of (8.78), one gets again a
gauge invariant measurable Berry phase:

cðCÞ ¼ i

Z

C¼oS

trA ¼ i

Z

S

trF : ð8:86Þ

The above considerations show that

tr ~wðCÞ ¼ trP exp

I

C
A ð8:87Þ

is another gauge-independent quantity which can be measured.
Finally, Aharonov and Anandan generalized the concept to general non-adia-

batic situations. Although this seems not to lead to new measurable quantities, it
provides a general classification of UðNÞ principal fiber bundles and hence of all
possible cases of geometric phases in quantum physics [2].

Nowadays there is a wealth of applications of this concept in solid state physics.
The interested reader is referred to [1, 2] and citations therein. We only select a few
typical examples.
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8.6.3 Electrical Polarization

For details see the reviews [8, 9] and [10] and citations therein. This presentation
follows closely [8]. Consider the bulk electric dipole density of a material, that is,
the dipole density which is independent of the shape and the surfaces of a piece of
material. This quantity is what is described by the thermodynamic limit, where the
volume is let go to infinity with all average densities kept constant. To get rid of
surface effects one uses periodic boundary conditions, that is, one replaces a
volume L3 by a 3-torus x1 
 x1 þ L; x2 
 x2 þ L; x3 
 x3 þ L: Any charge
density is forced to be periodic. For the sake of simplicity consider just one
dimension. The electric charge density is qðxÞ ¼ qðxþ LÞ: Let it be represented by
a generating function RðxÞ; qðxÞ ¼ dRðxÞ=dx: For a neutral case, it must be
R aþL

a dxqðxÞ ¼
R aþL

a dxðdR=dxÞ ¼ Rðaþ LÞ � RðaÞ ¼ 0 for arbitrarily chosen a.
Hence RðxÞ is also periodic. Of course, an additive constant to R has no physical
consequence and hence no physical meaning. Now calculate the ‘average dipole

density’ with the help of integration by parts: ð1=LÞ
R aþL

a dx xqðxÞ ¼
�ð1=LÞ

R aþL
a dxðRðxÞ � RðaÞÞ ¼ �ð1=LÞ

R aþL
a dxRðxÞ þ RðaÞ: Due to periodicity

of RðxÞ the first term is independent of a: Hence, via the second term the result
depends on the physically irrelevant reference position a: Although formally a
‘bulk dipole density’ seems to be defined, it can be given a quite arbitrary value, it
is not at all related to the physics at hand. This flaw has entered many textbooks. In
fact, the dipole density anticipated in physics, although a bulk property, is fixed by
the surface of the sample which destroys periodicity. Opposite charges move in an
applied electric field in the bulk in opposite directions and accumulate only at the
surface, although the bulk determines how far charge is moving.

Consider a reference situation of an infinite crystal with zero electrical polar-
ization for physical reasons, for instance since the crystal has a center of inversion.
Let the system polarize by destroying this symmetry in an adiabatic process with
keeping the periodicity fixed (that is, retaining some fixed periodicity without
which the thermodynamic limit can hardly be dealt with), for instance by letting a
ferroelectric slowly polarize by moving a (charged) sublattice of nuclei in some
direction or by applying a spatially periodically oscillating electric field.

To treat these cases, the notion of lattices Lr 3 R and Lk 3 G inverse to each
other is adopted and of the corresponding three-tori T3

r and T3
k as introduced in

Sect. 5.9 on p. 160 ff to be the unit cells of those lattices. (Here, the notation
k ¼ p=�h is used and

P
R f ðRÞ is written instead of

P
n f ðRnÞ, likewise for G:)

Recall that in infinite three-space

dðkÞ ¼ 1

ð2pÞ3
Z1

d3re�ik�r ¼ 1

ð2pÞ3
Z

T3
r

d3re�ik�r

0

B
@

1

C
A

X

R

eik�R

 !

¼ FðkÞGðkÞ:

ð8:88Þ
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Here, F is clearly smooth and finite while the infinite sum G is a distribution like
dðkÞ, with the obvious property Gðkþ GÞ ¼ GðkÞ due to R�G ¼ 2p � integer
(5.102). Moreover, for k! 0 obviously dðkÞ ¼ ðjT3

r j=ð2pÞ3ÞGðkÞ with the cell
volume jT3

r j; while FðGÞ is easily found by direct calculation, together with a
corresponding integral over the reciprocal cell,

Z

T3
r

d3re�iG�r ¼ jT3
r j dG0;

Z

T3
k

d3ke�ik�R ¼ jT3
kjdR0; ð8:89Þ

with the Kronecker symbol dG0 on the lattice Lk and dR0 on Lr; respectively.
Altogether one has

X

R

eik�R ¼ jT3
kj
X

G

dðk� GÞ;
X

G

eiG�r ¼ jT3
r j
X

R

dðr� RÞ; ð8:90Þ

where we also added the analogous relation for the reciprocal lattice, and jT3
kj ¼

ð2pÞ3=jT3
r j: If one limits the variables k and r to the corresponding tori only

(considering periodic functions), then only the single item with G ¼ 0 and R ¼ 0,
respectively, survives on the right hand sides.

The electron charge density of a crystal may in principle rigorously be obtained
from an effective one particle equation, the Kohn–Sham equation of density
functional theory (e.g. [11]). The crystal orbitals themselves being eigenfunctions
of the Kohn–Sham Hamiltonian, H ¼ �ð�h2=2mÞr2 þ U with Uðrþ RÞ ¼ UðrÞ,
are not lattice periodic; according to Bloch’s theorem they carry a phase eik�r and
are obtained from HwnkðrÞ ¼ wnkðrÞenk with the orthonormality condition
R1

d3rw�nkwn0k0 ¼ dnn0dðk� k0Þ: Comparison of this condition with the first equality

(8.88) tells that in a constant potential U the state is wk ¼ ð2pÞ�3=2eik�r which
means jT3

r j=ð2pÞ3 ¼ 1=jT3
kj electrons per cell T3

r : The states may, however, be
represented as

wnkðrÞ ¼
eik�r

jT3
kj1=2

unkðrÞ; unkðrþ RÞ ¼ unkðrÞ; un;kþGðrÞ ¼ unkðrÞ; ð8:91Þ

where the periodic functions unk are obtained as eigenfunctions of the Hamiltonian
Hk ¼ e�ik�rHeik�r ¼ ð�h2=2mÞð�irþ kÞ2 þ U which acts on functions on the torus
T3

r and depends parametrically on k 2 T3
k;

Hkun;kðrÞ ¼ un;kðrÞenk; ðunkjun0kÞ ¼
Z

T3
r

d3ru�nkðrÞun0kðrÞ ¼ dnn0 : ð8:92Þ

The last orthonormality relation results from the orthonormality condition for the
wnk with (8.91) and the first equality (8.90). The functions unk still carry an
arbitrary k-dependent but now r-independent phase as seen from the last
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eigenvalue problem; it is, however, essential for the following that this phase is
chosen to be a periodic function on T3

k (and hence is the same for k and kþ G).
This assumption has already been made in the last relation (8.91).

In a semiconductor, there is an energy gap between all occupied energies enk

and all unoccupied energies. Then, for all occupied bands the n-non-ordered sets
fenkg and funkg are smooth functions of k 2 T3

k (in an appropriate topology of a
functional space of set-valued functions, [7]).

Instead of the periodically repeated functions unk, multi-band Wannier func-
tions

anRðrÞ ¼
1

jT3
kj

Z

T3
k

d3keik�ðr�RÞ
Xocc:

n0
Unn0 ðkÞun0kðrÞ; UyðkÞ ¼ U�1ðkÞ; ð8:93Þ

with a unitary-matrix function UðkÞ may be introduced for the occupied bands.
The matrix function UðkÞ must again be periodic as function of k 2 T3

k but may
otherwise be rather arbitrary. It is well known that, depending on its choice, for an
energy-gap separated band group the Wannier functions can be exponentially
localized in r-space. With the relations above one easily verifies (exercise)

ðanRjan0R0 Þ ¼
Z1

d3ra�nRðrÞan0R0 ðrÞ ¼ dn;n0dRR0 : ð8:94Þ

It is another simple exercise to show that (n runs over the bands per spin and over
the spin quantum number)

X

R

Xocc:

n

janRðrÞj2 ¼
Xocc:

n

1

jT3
kj

Z

T3
k

d3k wnkðrÞj j2¼ qðrÞ ð8:95Þ

is the total electron density of the crystal, in the left expression written as a sum
over the unit cells of the lattice. This lattice sum may be used to express a change
of the average electron dipole density of the crystal as

DPe ¼ �
e

jT3
r j
Xocc:

n

Z1

d3rrDjan0ðrÞj2

¼ e

jT3
r j

D
�i

jT3
kj

Z

T3
k

d3k
Xocc

n

Z

T3
r

d3rðUuÞynkrkðUuÞnk

0

B
@

1

C
A

ð8:96Þ

where e is the positive electric charge unit (proton charge). The last expression is
obtained by inserting (8.93) into the previous one, using reik�r ¼ �irkeik�r; inte-
grating per parts, and again using

R1 d3reik�rFðrÞ ¼
P

R eik�R R
jT3

r j
d3reik�rFðrÞ ¼

jT3
kjdðkÞ

R
jT3

r j
d3reik�rFðrÞ for a periodic function F (exercise).
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By applying the Leibniz rule, the unitarity of the matrix UðkÞ and (8.92), the
last r-integral in (8.96) is easily transformed,

Xocc:

n

�
ðUuÞnk rkðUuÞnk






�
¼
Xocc:

n

unkð jrkunkÞ þ tr U�1ðkÞrkUðkÞ
� �

: ð8:97Þ

With (5.19) in the form det U ¼ det exp lnU ¼ exp tr lnU and the linearity of the
trace the last term is cast into trr ln U ¼ rtr ln U ¼ r ln det U ¼ ir#; since U
is unitary its determinant is det U ¼ ei#: Now, recall that UðkÞ was supposed
periodic in k, hence the same must hold for ei# which implies #ðkÞ ¼
aðkÞ þ

P0
R k � R with again a periodic function aðkÞ and some finite selection of

lattice vectors R; here,
P0

R means a sum over finitely many items. We mention
without proof (because this would go off to far from our subject) that for
exponentially localized Wannier functions aðkÞ must be smooth. Finally, when
put into (8.96), application of Stokes’ theorem yields

R
T3

k
d3krkaðkÞ ¼

R
oT3

k
d2kaðkÞ ¼ 0 since the torus T3

k has no boundary oT3
k (or equivalently, to

each point on a face of a reciprocal cell there is an identical point on the
opposite face with the same value of aðkÞ but opposite surface normal vector
d2k). There remains, however, a term

X

R

0
Pe;R ¼

e

jT3
r j
X

R

0
R ð8:98Þ

undetermined (per spin; if spin degeneracy holds as in normal ferroelectrics, then
there always appears twice this term). Judged from (8.95, 8.96) this undetermined
integer multiple of ‘dipole quanta’ Pe;i ¼ ðe=jT3

kjÞai; i ¼ 1; 2; 3; where the ai form
a basis of the lattice Lr of an infinite crystal, appears quite natural because the
assignment of a Wannier function to a lattice position R has this arbitrariness. If a
surface for a finite crystal is introduced, then a change of this assignment means a
change of the surface contribution too which cancels the change of (8.98) ren-
dering the total dipole moment unique. The remaining dipole density of the finite
crystal is normally much smaller than the quanta Pe;i, and the term (8.98) may be
skipped when calculating DPe:

In order to reveal the algebraic-topological structure of the obtained results we
introduce lattice adapted (in general non-orthogonal) coordinates given by r ¼
P

ir
iai; k ¼

P
jkjb

j where the ai and b j form bases of the lattices Lr and Lk;

respectively; ai � b j ¼ 2pd j
i ; that is, ri ¼ ð2pÞ�1bi � r and kj ¼ ð2pÞ�1aj � k: The

cell volumes expressed in these bases are jT3
r j ¼ ða1; a2; a3Þ and jT3

kj ¼ ðb1; b2; b3Þ
with the triple scalar products ð�; �; �Þ (4.46). On the tori the coordinates run from 0
to 1, so that the volume element in T3

k is d3k ¼ jT3
kjdk1 ^ dk2 ^ dk3 while rk ¼

ð2pÞ�1P
i aio=oki: We have to cope with two dualities here, that between position

and momentum and that between tangent vectors dk and forms on the torus of
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quasi-momenta k: This is why here tangent vectors have lower indices and forms
upper.

Consider now an adiabatic parameter k changing from 0 to 1 with PeðkÞ
changing from Peð0Þ ¼ 0 to Peð1Þ ¼ Pe: Since it was important for the
Wannier representation analysis to have energy-gap separated occupied bands
in order that the unitary transformation matrices Uðk; kÞ and the set of occupied
states funkkg resulted in a smoothly k-dependent phase aðk; kÞ, the crystal must
remain semiconducting all the way along the k-path. Combine k and k in a
four-dimensional manifold M ¼ ½0; 1� � T3

k; with the volume form jT3
kj dk ^

dk1 ^ dk2 ^ dk3: The boundary of M is oM ¼ ð1;T3
kÞ � ð0;T3

kÞ where the
minus sign indicates that the surface normal at k ¼ 0 points into the negative
k-direction. (T3

k itself has no boundary.) Also, introduce the notation of a
1-form

dunkk ¼
X

j

ounkk

okj
dkj; ðdunkkÞ j ¼ ounkk

okj
: ð8:99Þ

Then, the result (8.96) may be cast into

Pe ¼
e

jT3
r j
X

j

aj

2p

Z

oM

A j

A j ¼ �i
Xocc:

n

ðunkkjðdunkkÞ jÞdk1 ^ dk2 ^ dk3

¼ i
Xocc:

n

ððdunkkÞ jjunkkÞdk1 ^ dk2 ^ dk3:

ð8:100Þ

Though the expression for A j is multiplied with the imaginary unit i, it is clear
from the derivation that, like Pe, the A j are real. The last equality holds because of
the constancy of normalization, ðunkkjunkkÞ ¼ 1: Comparison to (8.76) clearly
shows that the polarization density component in ai-direction is given by Ai; the
wedge-product of a Berry–Simon connection form in bi-direction with the volume
form of a two-dimensional section in T3

k perpendicular to the ai-direction (spanned
by b2 and b3 in the case of a1). The integration domain oM contains the cycle from
kj ¼ 0 to kj ¼ 1 while the k-path in the adiabatic parameter space is not closed
here. This particular case of a Berry phase in an adiabatic change of a band
structure was first observed by Zak.2

2 Phys. Rev. Lett. 62, 2747–2750 (1989).
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The expression with Berry’s curvatures F j ¼ dA j corresponding to (8.100) is

Pe ¼
e

jT3
r j
X

j

aj

2p

Z

M

F j ;

F j ¼ �2i
Xocc:

n

ððdunkkÞ0jðdunkkÞ jÞdk ^ dk1 ^ dk2 ^ dk3; ðdunkkÞ0 ¼
ounkk

ok
:

ð8:101Þ

(As usually o2unkk=ðokokjÞ dk ^ dkj ¼ 0 since the second derivative is symmetric;
the prefactor 2 is introduced since the matrix element in F j is understood as
element of an alternating tensor ð�Þ0j � ð�Þ j0, see below and (4.18)). While the
connection Ai is only determined modulo an item (8.98), the curvature F i does
not have this ambiguity; since it must be smooth in M from k ¼ 0 to k ¼ 1 it
cannot jump by discrete values (8.98).

Equation 8.101 allows for another physical interpretation. Let (with some
adiabatic rescaling as in 8.72) k ¼ t denote time. Then, (8.101) may be understood

as Pe ¼
R T

0 dtJeðtÞ with the electronic charge current density Je ¼ ðe=jT3
r jÞP

jðaj=2pÞ
R
T3

k
F j averaged over the unit cell of the crystal. This flowing charge

against the lattice during the time T makes up the polarization density Pe. This
clearly shows that Berry’s curvature is uniquely connected to a physical
observable and hence not dependent on the gauge center R of the Wannier
function.

To pursue the latter aspect further, a lattice periodic electric field Eðr; tÞ ¼
ðoA=cot �rrA0Þðr; tÞ is applied (cf. (5.80, 5.99)). Use a gauge with A0 ¼ 0, then
E ¼ �oA=cot and the Hamiltonian in (8.92) becomes (with k ¼ t ¼ k0, the
electron charge �e and the canonical momentum operator p)

Htk ¼
�h2

2m
�irr þ kþ e

�hc
Aðr; tÞ

� �2
þ UðrÞ ¼ p2

2m
þ UðrÞ ð8:102Þ

implying the commutation relations

½rk;Htk� ¼ �h
p

m
;

o

ok0
;Htk


 �

¼ � e

m
E � p ð8:103Þ

and, with kl ¼ ðk0; kiÞ,

umkl

o

okm
;Hkl


 �















unkl

� �

¼ ðenkl � emklÞ umkl

o

okm
unkl










��

¼ ðenkl � emklÞðumkl jðdunklÞ
mÞ: ð8:104Þ

What enters the expression F j in (8.101) is the alternating tensor
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Xocc:

n

ððdunklÞ
0jðdunklÞ

jÞ � ððdunklÞ
jjðdunklÞ

0Þ
� �

¼
Xocc:

n

X

m

ððdunklÞ
0jumklÞðumkl jðdunklÞ

jÞ � ððdunklÞ
jjumklÞðumkl jðdunklÞ

0ÞÞ
� �

¼
Xocc:

n

X

m

ððdunklÞ
0jumklÞðumkl jðdunklÞ

jÞ � ððdumklÞ
0junklÞðunkl jðdumklÞ

jÞÞ
� �

:

The last relation holds again because of dðumkl junklÞ ¼ 0. The m-sum belongs to
the inserted completeness relation and runs over all bands m, occupied and
unoccupied. However, from the last line of the displayed chain of equations it is
seen that the contributions from the occupied bands m cancel. Together with
ð2pÞ�1P

j ajo=okj ¼ rk; Eq. 8.101 may now be rewritten as (exercise)

Pe ¼
ZT

0

dt
i�h

ð2pÞ3
Z

T3
k

d3k
Xocc:

n

Xunocc:

m

ðumtkj jejuntkÞðuntkj je � EjumtkÞ � c:c:

ðemtk � entkÞ2

¼
ZT

0

dt rEðtÞ ¼
ZT

0

dtJeðtÞ: ð8:105Þ

Here, je ¼ �ep=m is the current operator for one electron (dHtk ¼ �ð1=cÞ je � dA)
and the whole expression which scalarly multiplies E is the longitudinal compo-
nent of the conductivity tensor r of the electrons expressed by Kubo’s formula as a
current–current correlation function (see Eq. 8.111). This proves that indeed
(8.101) is the time integral over the current density rE of the electrons, no matter
whether E is a quasi-static applied electric ac field of some lattice-commensurable
periodicity or the field produced by a shift of a sublattice of nuclei. Of course, to
get the total polarization density of the solid the contribution of the nuclei has to be
added.

In passing comparison of (8.105) with (8.101) shows that in the adiabatic limit
the conductivity of the considered situation is a ground state property; the excited
states do not figure in (8.101). Recall that a gaped band structure is considered
corresponding to an insulating state. The current in the ground state has much in
common with a supercurrent, it is not connected with a dissipative process.

The obtained results have many more facets [2]. For instance, consider the case
where T is a full period of the time dependence of E: Then, the domain M of
(8.101) may be treated as a four-torus, that is, a cycle, oM ¼ [: Consider the
current component J1

e in the direction of a1 through a section element dk2 ^ dk3 at
fixed values ki; i ¼ 2; 3 which means considering the closed submanifold (two-
torus) M1 ¼ T2 spanned by k0 ¼ t=T and k1; 0� k0; k1� 1 with kl 

kl þ 1; l ¼ 0; 1, again with oM1 ¼ [: (The forms A and F considered below are
scale invariant under rescaling of k0; k1, it makes no difference whether the
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circumferences of tori are taken to be 1 or 2p or any other value.) Ask for the
amount of charge flowing through this section element in one period T of time and
integrated from k1 ¼ 0 to k1 ¼ 1, that is, from a face of the k-cell to the opposite
face. It is proportional to

R
M1 F 1: Locally, that is on any chart of M1; F 1 was

obtained as the (covariant) derivation of A1 ¼ �i
Pocc:

n tr ðU�1ðk0; k1Þ
o1Uðk0; k1ÞÞ dk1; ol ¼ o=okl; which is proportional to the Chern–Simons form of

the first Chern character on the principal fiber bundle ðP;T2; p;UðNÞÞ; A1 ¼
�2pqð1Þch ; cf. (8.70). Here, the fiber UðNÞ is the Lie group of global (in r-space)
unitary transformations of the N quantum states per k-value (number of occupied
bands, cf. (8.93, 8.96)). Would the relation F 1 ¼ DA1 ¼ dA1 hold globally on
M1, then due to Stokes’ theorem this amount of charge would be zero,

R
M1 F 1 ¼

R
M1 dA1 ¼

R
oM1 A1; oM1 ¼ [: (The group UðNÞ is non-Abelian, hence

F ¼ DA ¼ dAþ i½A;A�, compare (8.20) where here the forms have an addi-
tional factor ð�iÞ; however, because of the trace in A on has ½A;A� ¼ 0.)
Although the curvature form F 1 ¼ �2pch1 (cf. (8.60)) is globally defined on M1

on the basis of the Chern–Weil theorem and is related to an observable quantity
J1

e , the continuation of the local relation F 1 ¼ dA1 ¼ �2i
Pocc:

n tr ðo0ðU�1ðk0;

k1ÞÞo1Uðk0; k1ÞÞdk0 ^ dk1 to all of M j is obstructed by the topology of P; the
quantum state may acquire a phase of a multiple of 2p around a cycle since M1 is
not simply connected. The amount of charge transported through the unit cell T3

r

(after integration over the section of the ki; i ¼ 2; 3) may be non-zero, but is
quantized. It is an integer multiple of ðe=jT3

r jÞa1, compare (8.98). The charge
quantum is proportional to the corresponding first Chern number C1 (do not
confuse it with the first Chern class C1ðEÞ considered in the previous section),

C1 ¼ �
1

2p

Z

M1

F 1

¼ i

2p

Z

dk0dk1tr o0ðU�1ðk; k1ÞÞo1Uðk; k1Þ � ðo0o1 $ o1o0Þ
� �

; ð8:106Þ

of the first Chern character ch1: It is integer for all values of N of the bundles
ðP;T2; p;UðNÞÞ as was shown after (8.97). This fact was first mentioned by
Thouless.3

If this charge quantum is not fixed to zero by independent physical reasons (e.g.
mirror symmetry equivalence between a1 and �a1), then quantized charge per
time period T can be pumped through the unit cell of the crystal, for instance, by
vibrating nuclei driving a charge density wave. Also in agreement with the Chern–
Weil theorem, the curvature form �F 1=ð2pÞ is expressed by the current–current
correlation function (8.105) and as such is independent of the gauge of the

3 Phys. Rev. B 27, 6083–6087 (1983).
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electromagnetic potential and of the choice of the k-dependence of the total phase
of the ground state

Pocc:
n unk while the local connection form �A1=ð2pÞ depends

on those choices.

8.6.4 Orbital Magnetism

The role of surface currents in producing the Landau diamagnetism of a non-
interacting free-electron gas has been known as a paradox in physics over many
decades [12]. On application of a homogeneous magnetic field the electrons start to
move around the field lines on helical curves whose projections on the plane
perpendicular to the field are circular cyclotron orbits with a homogeneous distri-
bution of their centers over this plane so that all their currents mutually cancel. If the
electron system is confined in some volume, then the cyclotron orbits crossing
the boundary of this volume cannot be run through, the electrons are reflected at the
surface and start a new orbit with a shifted center determined by the reflection
conditions. It is easily seen that this shift of the cyclotron orbits produces a current
tangent to the surface and circulating around the volume opposite to the circulation
of a single complete cyclotron orbit. Classically the cancellation of all these currents
still would persist; according to the well known Pauli–van Leeuwen theorem there
cannot be orbital magnetic polarization in an equilibrium state in classical physics.
Quantization of closed orbits is different for cyclotron orbits in the bulk and surface
orbits around the bulk, it produces a slight difference in favor of the surface current.
It creates a magnetization density in the volume which exactly equals the diamag-
netic polarization of Landau’s diamagnetism, including the superimposed de Haas–
van Alphen oscillations at high magnetic fields. The free-electron model is of course
an extreme idealization, the existence of such non-dissipative (as long as the applied
static magnetic field is present) macroscopic currents on the surface of a sample was
long denied for a realistic metal, and Landau obtained the magnetization from the
thermodynamic potential instead. The non-dissipating edge currents were eventu-
ally observed in laboratory in two-dimensional quantum Hall samples. Meanwhile
there is a large body of literature on the subject, see again [2].

Consider a two-dimensional crystalline sample, for the sake of simplicity with a
square lattice with base vectors a1 ¼ aex; a2 ¼ aey, in a homogeneous magnetic
field B ¼ r� A in z-direction and an electric field E in y direction. Use Landau
gauge Ax ¼ 0; Ay ¼ Bx� Ect; B ¼ Bez; E ¼ Eey, both E and B independent of r:

The Hamiltonian becomes (recall that the electron charge is �e)

H ¼ �h2

2m
�i

o

ox

� �2

þ �i
o

oy
þ e

�hc
Bx� e

�h
Et

� �2
 !

þ Uðx; yÞ ð8:107Þ

where Uðx; yÞ is the two-dimensional crystal potential. This Hamiltonian is not any
more periodic in x-direction. However, if one introduces a magnetic translation
operator
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TðRÞ ¼ exp iR � �ir� ðe=�hcÞeyBx
� �� �

; R ¼ n1a1 þ n2a2; ð8:108Þ

with the commutation rules, easily verified by direct calculation,

TðRÞTðR0Þ ¼ exp ðie=�hcÞB � R� R0ð Þ TðR0ÞTðRÞ ð8:109Þ

and defines a superlattice ~R ¼ n1~a1 þ n2~a2 whose base vectors are integer multi-
ples of a1 and a2, respectively, and such that ðe=�hcÞB � a1 � a2 ¼ 2p; then there is
a common eigenfunction system of the Hamiltonian and the magnetic translations

Tð~RÞ ¼ ei~R�ĵ :

Hjuj ¼ ujej; Hj ¼
�h2ðĵþ jÞ2

2m
þ U; ĵ ¼ �irþ ðe=�hcÞeyðBx� EctÞ:

ð8:110Þ

Although the relation (8.109) is most easily directly calculated for a square lattice,
it is written already in a form which holds for any two-dimensional lattice with
base vectors a1; a2. The unit cell of the superlattice of vectors ~R is chosen such
that it is penetrated by one quantum U0 ¼ B � ~a1 � ~a2 ¼ 2p�hc=e of magnetic flux.
The eigenvalues j of the operator ĵ run through the unit cell T2

j of the lattice
reciprocal to the superlattice.

Kubo’s formula for the static conductivity tensor of the considered situation is

rab ¼ i�h

ð2pÞ2
Z

d2j
Xocc:

n

Xunocc:

m

ðumjj jae junjÞðunjj jbe jumjÞ � c:c:

ðemj � enjÞ2
ð8:111Þ

(Its derivation is beyond the scope of this text.4) Here, a and b are Cartesian
indices, and we consider our two-dimensional case. This expression yields rxx ¼ 0
(related to constant E, the Fermi level is in a gap between Landau levels) and
rxy ¼ rH, the Hall conductivity. Here, as previously, d2j ¼ ðð2pÞ2=jT2

r jÞ dj1 ^
dj2 (the ji run from 0 through 1). Using again je ¼ �ðe=�hÞ½rj;Hj� and
rj ¼ ð2pÞ�1P

i ~ai o=oji; j~a1 � ~a2j ¼ jT2
r j, rH may be cast into

rH ¼
e2

2p�h

1
2p

Z

jT2
jj

Xocc:

n

ð�2iÞðo1unjjo2unjÞ dj1 ^ dj2

0

B
B
@

1

C
C
A; oi ¼ o

oji
: ð8:112Þ

The integrand is again the curvature form F of the local Chern–Simons connection
form A ¼

Pocc:
n ð�iÞðunjjojunjÞ djj on the bundle ðP;T2

j; p;UðNÞÞ over the closed
manifold T2

j, and the integral expression in large parentheses is an integer, the first
Chern number C1, which due to the Chern–Weil theorem only depends on the
bundle P and is independent of the actually chosen local connection form A, that

4 See for instance D. Cohen, Phys. Rev. B 68, 155303-1–15 (2003).
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is, of the gauge of the electromagnetic potential Al which determines the
r-dependent phases of the unj, and of the choice of (smoothly j-dependent)
r-independent unitary transformations of the unj. Hence, rH is quantized,

rH ¼
e2

2p�h
C1; C1 2 Z: ð8:113Þ

On this Chern number form of the Hall conductivity of a two-dimensional electron
system the whole theory of the quantum Hall effect is essentially based. Note that
demands of smoothness in the last expression again require an excitation gap of
eigenenergies enj between occupied and unoccupied states. Here, this is the gap
between adjacent Landau levels, which latter form a discrete sequence in two
dimensions (but not in three). The chosen relation between the magnetic field B
and the superlattice just ensures that the Fermi level lies in one such gap. The
corresponding values of magnetic field strength would form a discrete sequence
for an ideal two-dimensional crystal, and the corresponding values of the Hall
voltage as function of the field strength would just lie on the classical straight line.
However, potential perturbations present in a real sample may fill the gaps
between Landau levels with disorder-localized states, still leaving a mobility gap.
Since the role of the gap in the topological argument is essentially to localize the
states, the Hall conductivity remains quantized (with an extremely high precision
of less than one in 109) over some interval of magnetic field and the Hall voltage
shows plateaus.

Sometimes the situation, although with N occupied bands, is interpreted with
the Uð1Þ-bundle ðP;T2

j; p;Uð1ÞÞ. This is possible since only the trace of the UðNÞ
group element enters the first Chern number which is just a phase.

In the ð2þ 1Þ-dimensional effective field theory of the situation,
xl ¼ ðct; x; yÞ; l ¼ 0; 1; 2, the transport equation is

jle ¼ rH dlmr
012 omAr ¼

dSeff

dAl
; Seff ¼

rH

2!

Z

d3x dlmr
012AlomAr; ol ¼

o

oxl
; ð8:114Þ

where j0
e ¼ cqe is given by the charge density qe, Ar is the potential of the elec-

tromagnetic field Fl ¼ dlmr
012omAr (U(1) gauge field), and the interaction part of the

effective action is the Chern–Simons action Seff . (Do not confuse Ar and Fl with
the forms A and F above.) The settings before (8.107) yield j0

e ¼ cqe ¼
rHB ¼ rHBz; jx

e ¼ rHE ¼ rHEy; jy
e ¼ 0. Under the action of an electric field in y-

direction there is a Hall current in x-direction; the current does not gain energy out
of the field, hence it does also not dissipate energy. The proportionality between the
charge density qe and the magnetic field strength perpendicular to the sample might
seem strange; however, the time derivative of this relation together with the con-
tinuity relation for the charge density (charge conservation) yields ð1=cÞoBz=ot ¼
r�1

H oqe=ot ¼ �r�1
H rje ¼ �ðr � EÞz which is Faraday’s law of induction.

So far the analysis (8.108–8.113) was based on the consideration of an infinite
periodic two-dimensional crystal which does not have edges. Consider as a more
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realistic situation a strip extending in y-direction and confined in x-direction.
Assume it of length L in y-direction and closed to a loop (periodic boundary
conditions in y-direction). Choose this direction to be that of ~a2 so that periodicity
of the Hamiltonian in this direction is preserved and j2 ¼ j remains a valid
quantum number of stationary states. In x-direction the states unj are now localized
across the strip with discrete quantum numbers included in n. The Hamiltonian
(8.110) is changed into a one-dimensional Hamiltonian Hj; j ¼ jðxÞ ¼
�io=oyþ ðe=�hcÞðBx� EctÞ. For simple tight-binding models this Hamiltonian
can directly be solved for E ¼ 0. There are still states sufficiently far from the
edges of the strip grouped in Landau levels. Close to the edges there appear states
whose energy as function of j disperses across the gaps between Landau levels
in a chiral manner; on the edge with larger x-coordinate their group velocity
oe=oj points in the negative y-direction only and vice versa. The corresponding
edge currents in opposite directions on opposite edges do not lead to a net current
along the strip nor do they dissipate energy. The current in x-direction cannot
stationarily flow any more. Instead it polarizes the sample until the Hall voltage
due to this polarization counterbalances the current driving force due to the voltage
along the sample. Instead of applying an electric field Ey the magnetic field
strength B ¼ Bz could adiabatically be changed in time which itself produces an
electric field Ey ¼ �ðx=cÞ oB=ot (in agreement with Faraday’s law). Hence,
oqe=ot ¼ �ojx

e=ox ¼ �rH oE=ox ¼ ðrH=cÞ oB=ot. The magnetic flux through
the strip is LxLyB where Lx and Ly ¼ L are the extensions of the strip. The total
amount Qe of charge which flows across the strip is given by dQe=dt ¼
LxLyoqe=ot ¼ ðrH=cÞLxLyoB=ot. Hence a change of flux by one flux unit U0

transports precisely one charge unit across the strip polarizing it and contributing
to the Hall voltage (Laughlin). Needless to say that this is only valid as long as the
magnetic field varies within one quantum Hall plateau, because the whole
approach is based on the position of the Fermi level in a mobility gap inside the
strip.

This result also provides a connection with the situation of (8.101). Let the
change in magnetic field DB be so weak that the variation of DBx through one unit
cell can be neglected. (In semiconductor physics this is related to a switch from
description with a microscopic wave function to one with envelope wave functions
which are averaged over unit cells.) Small changes of E and B may then be treated
as an adiabatic parameter kðx; tÞ on which the Hamiltonian Hkðt;xÞj and the
quantum state untxj depend, which, however, can be taken out of the matrix ele-
ments ðumtxj j untxjÞ. One has ½ðo=otÞ;Hkj� ¼ �ðx=cÞðoB=otÞðe=mÞ py ¼ ðx=cÞ
ðoB=otÞ jy

e. The polarization in x-direction is given like in (8.105) by dPx=dt ¼ jx,
hence ojx=ox ¼ �oq=ot ¼ o2Px=ðotoxÞ, and with a notation ðt; x; jÞ ¼ ðq0; q2; q2Þ
one has

ji ¼ �dij
01

oPx

oq j
; i; j ¼ 0; 1; ð8:115Þ

and with
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AA ¼
Xocc:

n

ð�iÞðunqjoAunqÞ; F ¼ dA; oA ¼
o

oqA
; A ¼ 0; 1; 2; ð8:116Þ

one finds ji ¼ �1=ð2pÞ
R

d2q d012
i2j F 2j, in particular

dPx
e

dt
¼ jxe ¼

e

jT2
r j
ja2j
2p

Z

d2q ð�2iÞðo2unqÞjo0unqÞ
x

c

oB

ot
: ð8:117Þ

The t-integral of which compares precisely with a one-dimensional version of
(8.101), if one identifies ðx=cÞ oB=ok with the driving force polarizing the system.
Cycling this force provides another mean to pump charge through the insulator in
the ground state. The ð2þ 1Þ-dimensional quantum field theory of the quantum
Hall system reduces to a ð1þ 1Þ-dimensional quasi-classical field theory for an
adiabatic charge pumping process by replacing one wave-vector component by an
adiabatically time-dependent parameter performing a closed loop in parameter
space.

The whole story may be cast in yet another form relevant in most topical types
of solids christened topological insulators, Chern insulators or topological semi-
conductors. Define phase space variables q ¼ ðqAÞ ¼ ðt; x1; x2; k1; k2Þ;
A ¼ 0; 1; 2; 3; 4; oA ¼ o=oqA, the corresponding electromagnetic potential ðAAÞ ¼
ðA0;A1;A2; 0; 0Þ and the Berry–Simon connection ðð�iÞ

Pocc:
n ðunq3q4 j

oAunq3q4ÞÞ ¼ ðAAÞ ¼ ð0; 0; 0;A3;A4Þ. Then, inserting (8.112) in the form

e2=ð�hð2pÞ2Þ
R
ðo3A4 � o4A3Þ dq3dq4 for rH, the effective action (8.114) may be

expressed as

Sð2þ1Þ
eff ¼ e2

�h

1

2!ð2pÞ2
Z

d5q dABCDE
01234 AAoBACtr ðoDAEÞ ð8:118Þ

Now, replace k1 þ A1 by the adiabatic parameter kðt; x1Þ, replace o3 by ok, Amn
3 ¼

ð�iÞðumq3q4 jo3unq3q4Þ by Amn
k ¼ ð�iÞðumkq4 jokumkq4Þ, remove the integrations over

dq1 ¼ dx1 and over dq3=ð2pÞ ¼ dk1=ð2pÞ and let the only non-constant gauge
potential A2 depend on t; x1 ¼ q0; q1 only, so that dABC

012 AAoBAC ¼ 2ðA0o1A2�
A1o0A2Þ ¼ 2ðA0o1k� A1o0kÞ. This changes (8.118) into

e2

�h

1
2p

Z

dtdx1 ðA0o1k� A1o0kÞ
Z

dk2 tr ðok2Ak � okAk2Þ :

Now, unkq4 depends on t and on x1 through k only, hence ðo0kÞokAk2 ¼ o0Ak2 and
ðo1kÞokAk2 ¼ o1Ak2 as well as ðo0kÞok2Ak ¼ ok2A0 and ðo1kÞok2Ak ¼ ok2A1

which rewrites the displayed expression as

e2

�h

1
2p

Z

dtdx1dk2 A0tr ðok2A1 � o1Ak2Þ � A1tr ðok2A0 � o0Ak2Þð Þ

or finally, renaming t; x1; k2 into qA; qB; qC,
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Sð1þ1Þ
eff ¼ e2

�h

1
2p

Z

d3q dABC
012 AAtr ðoBACÞ ð8:119Þ

which is the phase space expression for the interaction part of the action in ð1þ 1Þ
dimensions describing the quantum Hall strip, obtained by the dimension reduction
procedure introduced by Qi et al. [13].

Only very recently activities were started to develop a Berry curvature theory of
the orbital magnetic moment density in analogy to theory of the electric dipole
density (see [14]). As mentioned above for the model of free electrons, it is
produced by electric ring currents flowing in the bulk. This time, two dimensions
are at least needed to consider ring currents (Fig. 8.5). While again the average
physical moment density cannot be determined from the current density, it cor-
responds to a counterclockwise ring current density for a periodicity volume which
is an integer multiple of the cells drawn in full lines on the left part of Fig. 8.5, and
to a clockwise ring current for a periodicity volume which is an integer multiple of
the dashed cell, the presence of a surface (not its shape) determines what are the
physical ring currents adding up to a physically measurable edge current along the
boundary of the sample volume.

8.6.5 Topological Insulators

This is a rapidly developing subject which was initiated in the first years of the
present millennium. The aspects relevant in our context are best described in [13] .
Consider the principal bundle ðP;T2r; p;UðNÞÞ over the 2r-torus. The rth Chern
number Cr of the rth Chern character is (cf. 8.61), iF 1 replaced by F 1 from above)

Cr ¼
1
r!

Z

tr
F 1

2p
^ � � � ^ F

1

2p

� �

¼ tr
2

2p

Z

d2k ðF 1Þ12
� �r� �

¼ 1
ð2pÞr

Z

tr ðF 1Þ12ðF 1Þ34 � � � ðF 1Þ2r�1;2r
� �

dk1 ^ dk2 ^ � � � ^ dk2r

¼ 1
r!2rð2pÞr

Z

d2rk d12���2r
i1i2���i2r

tr ðF 1Þi1i2ðF 1Þi3i4 � � � ðF 1Þi2r�1i2r
� �

ð8:120Þ

Fig. 8.5 Ring currents with
respect to different
periodicity volumes
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where ðF 1Þ12
mn ¼ ð�iÞðo1umkjo2unkÞ þ i½A;A�12

mn with A1
mn ¼ ð�iÞðU�1ðkÞo1

UðkÞÞmn. Under the trace the matrices
R

d2kF 1
mn may be trigonalized without

changing the trace; the skew-symmetric part i½A;A�mn thereby remaining skew-
symmetric and hence with zero diagonal. The trace of the rth power of triangular
matrices equals the sum of the rth powers of the diagonal elements. Since we found

earlier that tr ð2=2pÞ
R

d2kðF 1Þ12
� �

is an integer independent of the order of the

matrix, all diagonal elements of this matrix are integers. Hence, Cr is also an integer.
Consider formally the ð2r þ 1Þ-dimensional effective Chern–Simons gauge

field theory with the interaction part of the action

Sð2rþ1Þ
eff ¼ e2

�h

Cr

ð2pÞr
Z

A0o1A2 � � � o2r�1A2r dt ^ dx1 ^ � � � ^ dx2r

¼ e2

�h

Cr

ðr þ 1Þ!ð2pÞr
Z

d2rþ1x dlm...rs
01...2r Alom � � � orAs;

jl ¼ e2

�h

Cr

r!ð2pÞr dlm...rs
01...2romA: � � � orAs :

ð8:121Þ

Greek indices like l run through 0; 1; . . .; 2r. In total as previously for r ¼ 1 the
action integral may be written as

Sð2rþ1Þ
eff ¼ e2

�h

1

r!ðr þ 1Þ!ð2pÞ2r

Z

d4rþ1q dA0A2...A4r
01...4r

� AA0oA1 � � � oA2r�1 AA2r tr DA2rþ1AA2rþ2 � � �DA4r�1AA4r

� �
ð8:122Þ

with q ¼ ðqAÞ ¼ ðt; x1; . . .; x2r; k1; . . .; k2rÞ and the subscripts Ai running from 0
through 4r. Now, ðAAÞmn ¼ ð�iÞ

Pocc:ðumk j oAunkÞ and DA ¼ dAþ i½A;A�. This
is called a ð2r þ 1Þ-dimensional effective Chern–Simons field theory for a fun-
damental 2r-dimensional lattice-periodic topological insulator with a Brillouin
torus T2r

k :
So far there is no experimental realization for r [ 1. However, a dimension

reduction of the ð4þ 1Þ-dimensional case yields a quasi-classical adiabatic
ð3þ 1Þ-dimensional theory of a three-dimensional topological insulator where in
addition an F2 time-reversal symmetry plays a crucial role. Very recently, Bi2Se3,
Bi2Te3, and Sb2Te3 have been found as realizations of this case. A further
dimension reduction leads to a ð2þ 1Þ-dimensional theory for a so called spin-
Hall insulator, of which a HgTe quantum dot on CdTe is a realization. For more
details see for instance [15].

The crux in all these cases is that crystal periodicity or periodic boundary
conditions produce tori which on the one hand eliminate surface effects and
preserve volume properties and on the other hand have non-trivial Chern numbers
expressing those volume properties.

In order not to digress to far from our subject we used a Kohn–Sham approach
in the whole presentation. In a more general many-body approach the same sort of

8.6 Geometric Phases in Quantum Physics 295



theory may be formulated with quasi-particle Green’s functions G
 j�Þð�j=ðe� RÞ
with a self-energy R, and where Kubo’s formula takes on the form of an
expression 
 tr ðGjeGjeÞ and the (Berry) Chern–Simons form is 
 tr ðG�1dGÞ:
Otherwise all results remain the same.

8.7 Gauge Field Theory of Molecular Physics

In the Born–Oppenheimer adiabatic treatment of molecular motion and chemical
reactions, the 3N coordinates R ¼ ðR1; . . .;RNÞ of the N involved nuclear positions
form the adiabatic parameter manifold M for the electronic states jWaðRÞi. The
adiabatic Hamiltonian is (�h ¼ jej ¼ me ¼ 1, with electron charge e and mass me,
Zn is the charge of nucleus n)

ĤadðRÞ ¼
X

s

r2
s

2
þ
X

ss0

1
jrs � rs0 j �

X

sn

Zn

jRn � rsj þ
X

nn0

ZnZn0

jRn � Rn0 j
: ð8:123Þ

Via

ĤadðRÞhrjWaðRÞi ¼ hrjWaðRÞiEaðRÞ ð8:124Þ

it yields the effective adiabatic potential EaðRÞ for the nuclear motion:

Ĥhr;RjWEi ¼ hr;RjWEiE; hr;RjWEi ¼
X

a

hrjWaðRÞihWaðRÞjhRjWEi: ð8:125Þ

Ĥ ¼
P

nr2
n=ð2MnÞ þ ĤadðRÞ is still the full Hamiltonian, hrjWaðRÞi is an r-

dependent wave function parametrically also depending on R, and
hWaðRÞjhRjWEi ¼ Wa

EðRÞ is a nuclear wave function depending only on R while
the r-dependence is integrated out in the Hilbert scalar product. (hrj and hRj are
position eigenstates.) So far (8.125) does not contain approximations.

In order to have a discrete spectrum of Ĥ, the center of gravity of the nuclei is
now eliminated, and further on R denotes relative nuclear coordinates rescaled in
such a way that all corresponding relative masses l are equal. This also implies
neglecting the electron mass in the relative motion. Then, for the ð3N � 3Þ-
dimensional Hilbert-space momentum vector operator �P corresponding to the
relative coordinates and obeying hr;Rj�PjWEi ¼ �irRhr;RjWEi, where rR means
the covariant differential (7.28) in the R-manifold, one easily obtains

hWaðRÞjhRj�PjWEi ¼
X

b

�ida
brR � iAa

bðRÞ
� �

Wb
EðRÞ ð8:126Þ

with

Aa
bðRÞ ¼ hWaðRÞjrRjWbðRÞi: ð8:127Þ
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It was already seen in (8.84) that A is a local connection form of a Berry–Simon
connection and hence may be taken as a gauge potential. It is called a Mead–
Berry gauge potential. Correspondingly, the exterior covariant derivative

D ¼ 1rR þAðRÞ ð8:128Þ

is introduced which casts (8.125) into

�D2=ð2lÞ þ EðRÞ � E1
� �

WEðRÞ ¼ 0; ð8:129Þ

where WEðRÞ means a column with elements Wa
EðRÞ, EðRÞab ¼ da

bEaðRÞ, matrix
multiplication is understood and (8.129) in principle contains an infinite column of
equations, which in practical applications is cut off at a finite dimension for a small
number of lowest eigenvalues EaðRÞ. The ordinary Born–Oppenheimer approxi-
mation means taking only the lowest EaðRÞ and neglecting A.

Equations 8.127–8.129 form the basis of the gauge theory of molecular physics.
If the dimension of the problem (matrix dimension of A) is not cut of, the gauge
field vanishes and the potential A can locally be gauged away. To see this, con-
sider the gauge field F ¼ DA ¼ dAþA ^A in more detail:

F a
b ¼

X

ij

rRihWajrRj jWbi þ
X

c

hWajrRi jWcihWcjrRj jWbi
 !

dRi ^ dRj;

where Ri and Rj are local coordinates in a coordinate patch of the R-manifold M.
Because of orthonormality and completeness of the W, the second term in
parentheses is �

P
chðrRiWaÞjWcihWcjrRj jWbi ¼ �hðrRiWaÞjrRj jWbi. This may

be written as �rRihWajrRj jWbi þ hWajrRirRj jWbi. Now, rRirRj jWbi dRi ^
dRj ¼ d2jWbi ¼ 0. Hence, F ¼ 0 results. This does not mean that the full theory is
trivial. In fact, (8.127) is not defined at points of term crossing, and hence all those
points have to be excluded from the manifold M, which thus becomes homotop-
ically highly non-trivial resulting in Aharonov–Bohm type situations. This is also
the main case of application of this gauge field theory, if only a few lowest
electronic terms are retained. If there is a degeneracy of lowest electronic levels on
a whole manifold M, a case of non-Abelian gauge field theory is realized. A wealth
of resulting phenomena is considered in [2].
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Chapter 9
Riemannian Geometry

In Chaps. 3–8 the theory of manifolds was based on the smooth differentiable
structure, a complete atlas compatible with a pseudogroup S of class C1 intro-
duced at the beginning of Sect. 3.1. With the only exception of Hodge’s star
operator introduced at the end of Sect. 5.1, a metric was not needed on general
manifolds and on bundles and was not introduced. Since the notion of manifold M
was restricted to local homeomorphy with Rm in this text, by differentiation of real
functions along paths in M the tangent space was defined in Sect. 3.3 as a local
linearization of M. On this basis, tensor bundles, the tensor calculus and the
exterior calculus as well as integration of exterior forms could be introduced and
the whole theory up to here could be built without a metric on M. Now, by defining
a metric of a norm on the tangent spaces, due to the locally linear relation between
M and its tangent spaces, the manifold M itself is provided with a Riemannian
metric. A connection compatible with this metric makes M into a Riemannian
geometric space provided with a Riemannian geometry.

Despite the generality of Riemann’s concepts, in his time and afterwards, the
focus was on homogeneous manifolds having everywhere the same geometry, in
particular the same curvature. Only the work of Einstein and Hilbert on general
relativity provided an important application case of the concept of a general
Riemannian space. In recent time, with R. Hamilton’s concept of Ricci flow which
is beyond the scope of this text, homogeneous manifolds came again into focus in
classification problems of low-dimensional manifolds and in the theory of partial
differential equations. So far these developments culminated into Perelman’s proof
of Poincaré’s conjecture (see end of Sect. 2.5). Homogeneous manifolds are
considered in Sect. 9.2.

The Riemannian geometry proper, with the unique linear connection for which
everywhere rg ¼ 0, is treated in Sects. 9.3–9.5, while gravitation as the most
important application of this case is shortly considered in Sect. 9.6.

Apart from a few occasions, this short excursion through topology and
geometry was devoted to real manifolds. It is finally concluded with a brief
outlook on some complex generalizations.
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9.1 Riemannian Metric

Let M be a manifold of dimension m, and let g be a symmetric tensor field of type
ð0; 2Þ, in a coordinate neighborhood

g ¼ gijðxÞdxi � dx j; gij ¼ gji: ð9:1Þ

g is called a non-degenerate rank 2 tensor at point x 2 M, if the linear equation
system

gijðxÞXj ¼ 0; i ¼ 1; . . .;m ð9:2Þ

has Xj ¼ 0 as its only solution, that is, det gðxÞ 6¼ 0. (For the sake of simplicity of
notation, both the tensor g and the matrix g ¼ ðgijÞ in local coordinates are denoted
by the same letter.) g is called a positive definite rank 2 tensor at point x, if the
contraction

gðX;XÞ ¼ C1;1C2;2ðg� X � XÞ[ 0 for all X 6¼ 0; X 2 TxðMÞ; ð9:3Þ

that is, the matrix ðgijÞðxÞ is positive definite in the sense of linear algebra.
A generalized Riemannian manifold is a manifold M provided with an

everywhere on M non-degenerate symmetric tensor field g of type ð0; 2Þ, its
metric tensor or fundamental tensor. If g is positive definite, then M is called a
Riemannian manifold.1

The metric tensor of a Riemannian manifold M makes every tangent space
TxðMÞ into a Euclidean space with inner product and norm

ðXjYÞ ¼ gijðxÞXiYj; jXj ¼ ðXjXÞ1=2: ð9:4Þ

For the first time in this text (besides mentioning it in passing in Sect. 5.1) this
defines an angle

\ðX; YÞ ¼ arccos
ðXjYÞ
jXjjYj

� �

for jXj 6¼ 0 6¼ jY j ð9:5Þ

between tangent vectors at the same point x.
Being a smooth tensor field, (9.1) may be considered as a symmetric differ-

ential 2-form on M (to be distinguished from an exterior 2-form, which by
definition is alternating), called the metric form, in the following sense: Let
C : �t0; t1½! M be a smooth path in M and let x ¼ CðtÞ for some t0\t\t1. In a
coordinate neighborhood of x the path is given as xi ¼ xiðtÞ; i ¼ 1; . . .;m. A tan-
gent vector to the path is Xi ¼ dxi=dt. By definition of a tensor field (Sect. 4.1),

1 Besides an indefinite metric there are many more generalizations of Riemannian manifold in
the mathematical literature; the case of an indefinite metric is also called a pseudo-Riemannian
manifold. In this text generalized Riemannian manifold just comprises Riemannian and pseudo-
Riemannian manifold.
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the expression (9.1) is independent of the choice of local coordinates. Hence, the
square of the norm of Xdt,

ds2 ¼ gij
dxi

dt

dx j

dt
dt2 ¼ gijdxidx j; ð9:6Þ

is also independent of the choice of local coordinates, and the integral

sðCÞ ¼
Zt1

t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gij
dxi

dt

dx j

dt

r

dt ¼
Z

C

ds ð9:7Þ

too has a real value independent of the used local coordinates. This integral is a
property of the path C alone and is called its arc length, ds ¼

ffiffiffiffiffiffiffi
ds2
p

is called the
element of the arc length.

Assigning in the case of a Riemannian manifold M this way an arc length to
every piecewise smooth curve is said to define a Riemannian metric on every
connected component of M. The corresponding distance function is

dðx; yÞ ¼ inf
Cðx;yÞ

Z

Cðx;yÞ

ds for g [ 0; ð9:8Þ

where Cðx; yÞ is any path from x to y in M, and the infimum is taken over all paths.
As a distance function it must have the properties 1–3 given on p. 13. Let x be any
point of M and take any coordinate neighborhood Ua of x. It is homeomorphic to a
neighborhood Ua ¼ uaðUaÞ � Rm of x ¼ uaðxÞ. As an open set of Rm, for any
point y 6¼ x, Ua contains a closed ball BdðxÞ of some radius d [ 0 not containing
y ¼ uaðyÞ. BdðxÞ is compact, and hence the positive function of x equal to
minfX;jXj¼1g gijðxÞXiXj of x takes on a positive minimum value there. Let this value
be e2. It is readily seen that dðx; yÞ[ de [ 0, no matter is y 2 Ua or not: Cðx; yÞ \
Ua is part of any path Cðx; yÞ and the above minimum value e yields an estimate of
the integral (9.8) over this part from below. Hence dðx; yÞ ¼ 0, iff x ¼ y, and
property 1 from p. 13 is fulfilled. Property 2 is obvious, and property 3 simply
follows from concatenation of paths. Thus, (9.8) makes connected components of
M into metric spaces.

In the case of a generalized Riemannian manifold with g not being positive
definite, (9.6) is still called the element of the (sign carrying) arc length. Since in
every coordinate neighborhood the matrix gij is symmetric, it can be diagonalized

at a given point x 2 M, yielding ds2 ¼ giiðdxiÞ2. Depending on the direction of dxi

in M, ds2 may be positive, zero or negative. Hence, in this case g does not define a
metric. Nevertheless, it is said to define an indefinite Riemannian metric on M.
The expressions (9.4) are called an indefinite inner product and an indefinite
norm; (9.5) defines an angle for jXj 6¼ 0 6¼ jY j, a non-zero vector X with jXj ¼ 0 is
said to be isotropic. Although (9.8) does not make sense in this case, large parts of
the subsequent theory apply, and the indefinite Minkowski metric gives it rele-
vance in physics.
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There exists a Riemannian metric on any m-dimensional smooth (paracompact)
manifold M.

Proof Recall that manifolds were supposed to be paracompact by definition.
Hence, there exists a locally finite coordinate covering fðUa;uaÞg of M and a
partition of unity fua j supp ua � Ua; ua� 0g;

P
a ua ¼ 1 on M. Then, ds2

a ¼Pm
i¼1ðdxi

aÞ
2 defines a positive definite symmetric 2-form on Ua (gaij is the unit

matrix). Take a coordinate neighborhood U of x 2 M with x ¼ ðxiÞ ¼ uðxÞ 2
U � Rm for which U is compact. It intersects with finitely many of the Ua only.
Put

ds2 ¼ gijdxidx j; gij ¼
X

a

Xm

k¼1

ua
oxk

a

oxi

oxk
a

ox j
:

The sum defining gij is finite, and hence the definition is correct. Since the
Jacoby matrix oxk

a=oxi is regular and at least one of the uaðxÞ, ub, say, is

positive, ds2ðxÞ�ubðxÞ
P

iðdxi
bÞ

2 is positive definite and defines a Riemannian
metric on M: h

This statement means that the bundle of symmetric covariant tensors of rank 2
on every manifold M has a positive definite section. This is remarkable. Recall
from the end of Sect. 8.2, that the vector bundle over even a quite simple manifold,
while always having a section, may not have a non-zero section. In general, there
may also not exist an indefinite Riemannian metric on M.

Let F : N ! M be an embedding of the manifold N into a Riemannian mani-
fold M with metric form g. Then,

�gðX; YÞ ¼ gðF�X;F�YÞ for all X; Y 2 TxðNÞ ð9:9Þ

defines a Riemannian metric on N. Such a statement does again not hold for an
indefinite metric. (Why?)

The following considerations apply to generalized Riemannian manifolds with
both definite or indefinite metric.

The transformation law of the metric form between overlapping coordinate
neighborhoods is

gbij ¼
oxk

a

oxi
b

gakl
oxl

a

ox j
b

: ð9:10Þ

Denote the matrix inverse to gij by gij:
X

k

gikgkj ¼
X

k

gjkgki ¼ di
j: ð9:11Þ

Then, since the inverse of the Jacobi matrix oxk
a=ox j

b is oxk
b=ox j

a and since gkl is
symmetric, from (9.10) it follows that

302 9 Riemannian Geometry

http://dx.doi.org/10.1007/978-3-642-14700-5_8


gij
b ¼

oxi
b

oxk
a

gkl
a

ox j
b

oxl
a
; ð9:12Þ

that is, (9.11) defines a symmetric contravariant rank 2 tensor with components gij

(tensor of type ð2; 0Þ), uniquely attached with g.
Let x 2 M and X 2 TxðMÞ. Then, xX ¼ gðX; :Þ is a 1-form: hxX ; Yi ¼ gðX; YÞ

is a real number for every Y 2 TxðMÞ. Obviously, if X runs through the tangent
vector space TxðMÞ, xX runs through the cotangent vector space T�x ðMÞ. Since g is
non-degenerate, it provides a bijection between the tangent and cotangent vector
spaces at every point x 2 M, depending smoothly on x: If X ¼ niðxÞðo=oxiÞ is a
tangent vector field on U � M, then xX ¼ ðgijðxÞniðxÞÞdx j is a cotangent vector
field, since ðgijðxÞniðxÞÞ depends smoothly on x and transforms like a cotangent
vector between overlapping coordinate neighborhoods, and X ¼ ðgikxXkÞ
ðo=oxiÞ ¼ ðgikgkln

lÞðo=oxiÞ ¼ ðdi
ln

lÞðo=oxiÞ ¼ niðo=oxiÞ:
The metric tensor g establishes an isomorphism between tangent and cotangent

spaces on M with its inverse mapping g�1 locally given by g�1ðdxi; dx jÞ ¼ gij.
It likewise establishes an isomorphism between the spaces XðMÞ and D1ðMÞ of
tangent vector fields and cotangent vector fields (1-forms). Together with the
automorphism of the structure group which maps every group element to its
inverse, it also establishes an isomorphism between the tangent bundle TðMÞ and
the cotangent bundle T�ðMÞ.

The last of these statements is rather obvious. These isomorphisms extent by
linearity to isomorphisms between tensors, tensor fields and tensor bundles of types
ðr; sÞwith r þ s fixed. In coordinate neighborhoods the corresponding mappings are
obtained by raising and lowering of tensor indices, for example, with some n,

ti1...irþ1
j1...js�1

¼ girþ1kti1...ir
j1...jn�1kjn...js�1

; ti1...ir�1
j1...jsþ1

¼ gj1kti1...in�1kin...ir�1
j2...js : ð9:13Þ

Recall the convention (4.4) that in a tensor of type ðr; sÞ all contravariant indices
precede all covariant indices. If the tensor t is not symmetric, the order of rising or
lowering of indices must carefully be respected. Hence, in generalized Riemannian
manifolds instead of types ðr; sÞ of tensors only their rank r þ s matters. Moreover, the
metric tensor g provides the following inner product in the tensor space of rank r þ s:

ðt j uÞ ¼ ti1...ir
j1...js g

j1l1 � � � g jsls gi1k1 � � � girkr u
k1...kr
l1...ls

: ð9:14Þ

In the case of an indefinite Riemannian metric it is an indefinite inner product.

9.2 Homogeneous Manifolds

Among the examples of principal fiber bundles at the end of Sect. 7.1, the notion of
homogeneous manifold was introduced as the quotient space G=H of a Lie group
G over its closed Lie subgroup H with the canonical projection p : G! G=H.
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The homogeneous manifold forms the base space of the principal fiber bundle
ðG;G=H; p;HÞ.

A subgroup H of a Lie group G is not automatically a Lie subgroup. According
to the definition in Sect. 6.3, ðH; IdÞ must also be an embedded submanifold of G,
and that depends on the topology and differentiable structure introduced in H.
However,

if a manifold structure of the subgroup H of the Lie group G exists which makes
ðH; IdÞ into a (second countable) submanifold of G, it is unique, and H is a Lie
subgroup of G.

Proof Since H has a manifold structure, it has a tangent space TeðHÞ at the
identity e 2 H � G. By left translations in G, pushed forward to tangent vectors, a
(dim H)-dimensional involutive distribution D on G is defined (Sect. 3.6). Clearly,
at any h 2 H all tangent vectors of Dh are in the tangent space ThðHÞ. The con-
nected component He is an integral manifold of D on G through e. Indeed: let
dim H ¼ k, and let for some h 2 H the tangent space ThðHÞ be not contained in
Dh. Then, there would be at least k þ 1 curves through h in H, which are smooth in
G and have at least k þ 1 linearly independent tangent vectors in G. Left trans-
lating h back to e, the mapping ðx1; . . .; xkþ1Þ 7! ðF1ðx1Þ; . . .;Fkþ1ðxkþ1ÞÞ could be
completed by m� k � 1; m ¼ dim G, further linearly independent curves to a
diffeomorphism F of Rm to some neighborhood U of e in G. F�1 	 IdH would be a
smooth immersion of H \ U into Rm containing some Rkþ1. This is not possible:
H is second countable, and hence H \ U is an at most countable union of sets of
dimension k. Now, with the left translation lh; h 2 H in G, ðH; lhÞ is the uniquely
defined (p. 78) smooth integral manifold of D through h and lh is a (smooth) left
translation of H. Moreover, ðh0; hÞ 7! h0h�1 is smooth in G and hence smooth in
ðH; IdÞ. Since Id is injective, H is an embedded submanifold and a uniquely
defined Lie subgroup of G: h

Hence, a subgroup of a Lie group can only in a unique way (with a uniquely
defined total atlas) be a Lie subgroup under the identity mapping (inclusion
mapping). This answers uniqueness, it does not yet answer the question under
which conditions a submanifold structure exists making ðH; IdÞ into a Lie
subgroup of G.

From the above proof it can be seen that, if H is an embedded submanifold of G
in the relative topology from G, then it must be closed in G in this relative
topology. Conversely, let G be a second countable Lie group, and let H be a
subgroup of G closed in the relative topology from G. That implies that if Un is a
countable base of the topology of G, then H \ Un is a countable base of the relative
topology of H, and H is second countable. Let V be the closure of a coordinate
neighborhood U of e 2 G being homeomorphic to some closed ball of Rm.
Then, H [ V is homeomorphic to a closed subset of this ball being complete in the
metric of Rm and being a union of at most countably many closed subsets of H.
Hence, H [ V is a Baire space, and at least one of its subsets has an open interior
UH . Translating UH with all lh; h 2 H yields an embedding of H in G as a
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submanifold with the relative topology. (A closed subset of R2 in the relative
topology excludes the possibility of Example 5 on p. 76.)

ðH; IdÞ is a Lie subgroup of the (second countable) Lie group G, iff it is a
subgroup closed in the relative topology from G.

Hence, if G is a (second countable) Lie group and H is a closed subgroup of G
(in the relative topology), then ðG;G=H; p;HÞ with the uniquely defined manifold
structure of H as above is a principal fiber bundle, and G=H is a homogeneous
manifold.

Let G be a Lie group acting smoothly from the left on a manifold M by
R : G
M ! M. Then, for a fixed g 2 G, Rðg; �Þ ¼ Rg : M ! M is obviously a
diffeomorphism of M into itself. Pick m 2 M, then Gm ¼ fg 2 G jRgðmÞ ¼ mg is a
closed (as the preimage of the closed set fmg) subgroup of G, the isotropy group
at m. (It may be trivial: Gm ¼ feg.) Gm acts also from the left on M by Rm ¼ RjGm

and leaves m on place as a fixed point. By linearization, this action can be pushed
forward to a mapping Rm� : Gm ! AutðTmðMÞÞ of the isotropy group into the
automorphism group of the tangent space at m, yielding a Lie group representation
of Gm in the vector space TmðMÞ. (Exercise: Show that Rm� is a smooth
homomorphism of Lie groups.) The image of the homomorphism Rm� is called the
linear isotropy group at m.

Consider as an example the Lie group OðnÞ of real orthogonal ðn
 nÞ-matrices
acting from the left on the unit sphere Sn�1 of Rn. The elements of OðnÞ of the form

R ¼ R0 0
0 1

� �

; ð9:15Þ

where R0 is an element of Oðn� 1Þ and the zeros denote zero column and row, are
precisely the elements of the isotropy group at the south pole s ¼ ð0; . . .; 0; 1Þ of
Sn�1, and Oðn� 1Þ is a closed subgroup of OðnÞ (exercise). Since TsðSn�1Þ �
Rn�1, the linear isotropy group at s is again Oðn� 1Þ in this case.

Now, let R be a transitive action of the Lie group G on M (p. 206), and let again
m 2 M. Then, the mapping

~R : G=Gm ! M : gGm 7! ~RðgGmÞ ¼ RgðmÞ ð9:16Þ

is correctly defined, since for every g0 2 Gm one has Rgg0 ðmÞ ¼ RgðRg0 ðmÞÞ ¼
RgðmÞ: ~R is onto and one–one: it is surjective since G acts transitively, and it is
easily shown that ~Rðg1GmÞ ¼ ~Rðg2GmÞ implies g�1

2 g1 2 Gm and hence ~R is
injective. It can even be shown [1] that it is a diffeomorphism and hence M and
G=Gm are equivalent homogeneous manifolds.

Returning to the above example G ¼ OðnÞ; M ¼ Sn�1; Gs ¼ Oðn� 1Þ, the
quotient space OðnÞ=Oðn� 1Þ consists of the cosets ROðn� 1Þ; R 2 OðnÞ of
the subgroup Oðn� 1Þ in OðnÞ. There is the diffeomorphism OðnÞ=
Oðn� 1Þ ! Sn�1 : ROðn� 1Þ 7!Rs; R 2 OðnÞ, and OðnÞ=Oðn� 1Þ and Sn�1 are
equivalent homogeneous manifolds. As was shown on p. 194, OðnÞ consists of two
connected components for det R ¼ �1, and OðnÞe ¼ SOðnÞ. Therefore one has also
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an equivalence of the former two homogeneous manifolds with SOðnÞ=SOðn� 1Þ,
which was already considered in Sect. 2.6. Consider SOð3Þ, the group of all
rotations of R3. If one fixes the south pole of the unit sphere S2 in R3, then there
remain the rotations with the rotation axis through the south pole fixed, which form
the group SOð2Þ of rotations of the equator of the sphere S2 the elements of which
are just given by the angle of rotation. Any coset RSOð2Þ; R 2 SOð3Þ consists of a
rotation with the south pole fixed and a subsequent free rotation, which possibly
moves the south pole to any point of the sphere S2. This can also be achieved by first
rotating the south pole to the new position and then making a rotation with that
position fixed. (R and the element of SOð2Þ related to the new axis are of course
different in this case, since SOð3Þ is non-Abelian.) Hence, all cosets of
SOð3Þ=SOð2Þ are in one–one and onto correspondence with all points of the sphere
S2. All those points can be obtained by an SOð3Þ-rotation Rs of the south pole s.

Let G be a (second countable) Lie group and let H be its invariant closed
subgroup. Then the homogeneous manifold G=H with its quotient group structure
is a Lie group.

Since G=H is a manifold, it is only to check that the group operations are
smooth. This is straightforward by use of local coordinates.

Now, let G be a (second countable) Lie group and let H be a compact subgroup
(in the relative topology). Then, H is a Lie subgroup and G=H is a homogeneous
manifold of cosets x ¼ gxH; gx 2 G (gx defines uniquely a coset x, but not vice
versa) on which G acts transitively from the left by G
 G=H ! G=
H : ðg; gxHÞ 7! ggxH. Pick x 2 G=H. The isotropy group at x is Gx ¼ fg 2 G j
gðgxHÞ ¼ gxHg which implies g�1

x ggxH ¼ H and, since cosets are disjoint,
g�1

x ggx 2 H. It is not difficult to see (exercise) that together with H also Gx and the
linear isotropy group Rx� of transformations of the tangent space TxðG=HÞ are
compact. In a compact group, a finite invariant measure (Haar’s measure) can be
introduced. Take any positive scalar product in the vector space TxðG=HÞ and
average it over the invariant measure with respect to the transformations of Rx�.
The result is an invariant scalar product gxðX; YÞ ¼ gijðxÞXiYj ¼ gijðxÞðg�XÞi

ðg�YÞ j ¼ gxðg�X; g�YÞ for all X; Y 2 TxðG=HÞ and all g� 2 Rx�. Since G acts
transitively on G=H, for every x0 2 G=H there is gxx0 2 G so that x0 ¼ gxx0x. Then,

gx0 ðX; YÞ ¼ gxðg�1
xx0�X; g

�1
xx0�YÞ ð9:17Þ

is easily shown to be independent of the special choice of gxx0 . It defines an
invariant metric on the homogeneous manifold G=H and makes this manifold
into a homogeneous Riemannian manifold.

In the above example this is just the ordinary metric on the sphere Sn�1 which in
orthogonal local coordinates is given by the unit matrix g.

Let again G be a Lie group and consider the product manifold G
 G (not the
direct product of groups) with the group multiplication ðg1; g2Þðg01; g02Þ ¼
ðg1g01; g2g02Þ. It is easily seen that this makes G
 G into another Lie group.
Consider its action on G from the left as ðG
 GÞ 
 G! G : ððg1; g2Þ; gÞ 7!
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g1gg�1
2 , and consider the corresponding isotropy group at e 2 G. It is given as

fðg1; g2Þ j g1eg�1
2 ¼ eg implying g1 ¼ g2. Hence, the isotropy group ðG
 GÞe is

the diagonal D ¼ fðg1; g1Þ j g1 2 Gg � G. Moreover, G
 G acts transitively on
G, since for arbitrary g; g0 2 G there is g0 ¼ g0gg�1 ¼ ðg0; gÞ � g. Hence, ðG

GÞ=D! G : ðg1; g2ÞD 7! g1eg�1

2 is a diffeomorphism of manifolds. By choosing
ðg�1

2 ; g�1
2 Þ 2 D for a representative of the coset ðg1; g2ÞD one finds ðg1g�1

2 ; eÞ
which together with the coset is mapped to g1g�1

2 by the above diffeomorphism, so
that the diffeomorphism is also a homomorphism of groups and hence it is a Lie
group isomorphism, ðG
 GÞ=D � G. Consequently, if the Lie group G and hence
also D is compact, G � ðG
 GÞ=D itself can be provided with an invariant metric
and thus be made into a homogeneous Riemannian manifold.

Consider the Lie algebra g � TeðGÞ of the Lie group G and introduce on it the
symmetric 2-form

jðX; YÞ ¼ trðadðXÞ 	 adðYÞÞ; X; Y 2 g: ð9:18Þ

It is called the Killing form or Killing–Cartan form of g. Since the elements of
the Lie algebra g are left invariant vector fields on G, (9.18) is clearly an invariant
2-form:

jðX;YÞ ¼ jðle
g�X; l

e
g�YÞ for all g 2 G; ð9:19Þ

where le
g� is the left translation of tangent vectors from e to g in G like in Sect. 6.1.

Recall from that section, that after choosing a base fX1; . . .;Xmg in g, one gets
adðXiÞXj ¼ ½Xi;Xj� ¼

Pm
k¼1 ck

ijXk with the structure constants ck
ij of the Lie group

G. Thus, adðXiÞkj ¼ ck
ij is cast into an ðm
 mÞ-matrix acting on the m-dimensional

vector space g ¼ spanRfX1; . . .;Xmg, the composition of adðYÞ with adðXÞ
becomes the matrix multiplication and the trace becomes the matrix trace. From
the theory of Lie algebras [2] and citations therein it is known that the Killing form
j is non-degenerate, iff the Lie algebra g is semi-simple; it is negative definite, iff g

is moreover the Lie algebra of a compact Lie group G: Hence,

gðX; YÞ ¼ �jðX; YÞ ð9:20Þ

is an invariant metric making a compact semi-simple Lie group into a homoge-
neous Riemannian manifold, and it is an invariant indefinite metric making a
non-compact semi-simple Lie group into a generalized homogeneous Riemannian
manifold.

In the above considered simple case G ¼ OðnÞ, the Lie algebra is g � Rn�1, and
after introducing a standard orthonormal base in Rn�1, gðXi;XjÞ ¼ gij becomes the
unit matrix, related to standard orthogonal local coordinates on the sphere Sn�1.

In physics, a closed finite piece of a Riemannian manifold with fixed time-
independent distances between all of its points is called a rigid body. The pecu-
liarity of a homogeneous manifold is that a piece of it as a rigid body can move
through it without deformation. For that reason, after Riemann’s habilitation talk
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where he introduced his revolutionary new concept of geometry, many scholars
including Helmholtz thought that physical relevance should be restricted to
homogeneous manifolds, because the free motion of rigid bodies in space was still
a dogma based on Kant’s absolute space and time. At least after Einstein’s theory
of relativity it is known that rigid bodies are an abstraction from the real world,
only possible in the limit of infinite velocity of light. Nevertheless, as this limit is
often a very good approximation, homogeneous manifolds may continue to have
relevance in kinematics and classical physics. Besides, Lagrangian Grassmannians
are important homogeneous manifolds forming subspaces of the phase space of
classical mechanics.

9.3 Riemannian Connection

Further on, M is a generalized Riemannian manifold with the metric form g. Like
any tensor field, g can be considered as a section in a tensor bundle over M which
is associated with the frame bundle ðLðMÞ;M; p;Glðm;RÞÞ as its principal fiber
bundle. In Sect. 7.7, linear connections on M were introduced as connections on
LðMÞ, and covariant derivatives rXt of tensor fields t in the direction of the
tangent vector X as well as covariant differentials rt were associated with linear
connections. A linear connection C on M is called a metric connection, if rg ¼ 0
on M, a metric connection is called a Riemannian connection, or Levi–Civita
connection, if it is torsion free, T ¼ 0 on M. This is subject of the Fundamental
Theorem of Riemannian Geometry:

Every generalized Riemannian manifold allows for exactly one Riemannian
connection. It is defined by the following expression for rXY valid for every
X; Y ; Z 2 g:

2gðrXY; ZÞ ¼ XgðY ; ZÞ þ YgðX; ZÞ � ZgðX; YÞ
� gðX; ½Y ; Z�Þ � gðY ; ½X; Z�Þ þ gðZ; ½X; Y �Þ; ð9:21Þ

where the first line on the right hand side is understood according to (7.26).

A Riemannian connection is said to define a pseudo-Riemannian geometry on
a generalized Riemannian manifold with indefinite metric tensor, it is said to
define a Riemannian geometry on a Riemannian manifold. A metric tensor
defines uniquely not only a (possibly indefinite) metric on M, but also a (pseudo-)
Riemannian geometry. A tensor bundle or more generally any vector bundle
associated with LðMÞ with a Riemannian connection is called a Riemannian
vector bundle and g is called a Riemannian structure on it.

Put in local coordinates X ¼ o=oxi; Y ¼ o=ox j and Z ¼ o=oxk into (9.21). From
(3.19) it is immediately seen that the second line of (9.21) vanishes in this case.
Recall gðo=oxi; o=ox jÞ ¼ gij and, from (7.42), ro=oxiðo=ox jÞ ¼

P
l C

l
ijðo=oxlÞ. One

readily obtains
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X

l

glkC
l
ij ¼

1
2

ogjk

oxi
þ ogik

ox j
� ogij

oxk

� �

¼ Cikj: ð9:22Þ

The last expression defines new Christoffel symbols for the Riemannian
connection. For historical reasons they are also called Christoffel symbols of the
first kind while the general Christoffel symbols introduced in Sect. 7.9 are called
Christoffel symbols of the second kind. (Recall that Christoffel symbols are not
tensors.) For reference, some properties of Christoffel symbols valid for
Riemannian connections are given which are obvious from (9.22):

Ck
ij ¼

1
2

gkl ogil

ox j
þ ogjl

oxi
� ogij

oxl

� �

¼ Ck
ji; ð9:23Þ

Cikj ¼ Cjki;
ogij

oxk
¼ Cijk þ Cjik: ð9:24Þ

Proof of the Fundamental Theorem Let a Riemannian connection be given and let
r be the corresponding covariant differential. Then, rg ¼ 0 and hT;X ^
Yi ¼rXY �rY X � ½X; Y� ¼ 0 (see (7.31)). From (7.27), 0 ¼ ðrgÞðY; Z; XÞ ¼
rXgðY ;ZÞ � gðrXY ;ZÞ � gðY;rXZÞ ¼ XgðY ;ZÞ � gðrXY;ZÞ � gðY ;rZXÞ � g
ðY; ½X;Z�Þ, since g is bilinear and gðY ;ZÞ is a real function (see (7.26)). Likewise,
0¼rY gðX;ZÞ� gðrY X;ZÞ� gðX;rY ZÞ ¼ YgðX;ZÞ� gðrXY ;ZÞ� gðZ; ½Y ;X�Þ�
gðX;rY ZÞ and 0¼rZgðX;YÞ�gðrZX;YÞ�gðX;rZYÞ¼ ZgðX;YÞ�gðrZX;YÞ�
gðX;rY ZÞ�gðX; ½Z;Y �Þ. Adding the first two relations and subtracting the last one
yields (9.21).

Conversely, assume that (9.21) is valid. Since g is non-degenerate, (9.21)
defines the action of rX on tangent vector fields Y uniquely, its action on functions
is understood according to (7.26) by definition. Hence, according to Sect. 7.7
the action of rX on tensor fields is uniquely defined, if it is a derivative. Due to
multi-linearity of the right hand side of (9.21), (7.18) is readily fulfilled, and the
validity of (7.19) is easily checked. Hence, (9.21) defines a covariant derivative
with Christoffel symbols (9.23) for which the demanded transformation properties
(7.38) may straightforwardly calculated from the latter expression. This shows that
(9.21) defines uniquely a linear connection on M. With (9.24) and (7.43), rg ¼ 0
is straightforwardly calculated, and hence C is a metric connection. It is torsion
free which follows most easily from (7.47) and (9.23). h

The reader should perform the straightforward calculations of this proof as an
exercise.

Useful relations are obtained from

gijCk
ij ¼

1
2

gijgkl ogil

ox j
þ ogjl

oxi
� ogij

oxl

� �

¼ gilgkj ogij

oxl
� 1

2
gklgij ogij

oxl
:
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From gkjgij ¼ dk
i it follows that gkjogij=oxl ¼ �gijogkj=oxl, and hence the first term

of the displayed result is �ogkl=oxl. Since ðgijÞ is the matrix inverse to ðgijÞ the
element gij is the minor of gij divided by det g, or det g gij ¼ o det g=ogij and hence

o det g
oxl

¼ o det g
ogij

ogij

oxl
¼ det g gij ogij

oxl
¼ �det g gij

ogij

oxl
: ð9:25Þ

The last equality is just a special case of the preceding consideration. Now, one
has

gijCk
ij ¼ �

ogkl

oxl
� 1

2
gkl

det g

o det g
oxl

¼ � 1
ffiffiffiffiffiffiffiffiffiffiffiffi
jdet gj

p
o

ffiffiffiffiffiffiffiffiffiffiffiffi
jdet gj

p
gkl

� �

oxl
: ð9:26Þ

On the other hand, rg ¼ 0 implies gkl
;l ¼ 0, and with (7.44, 7.45) this means

�ogkl=oxl ¼ gmlCk
ml þ gkmCl

ml, which combines with (9.26) to

Ci
ji ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffi
jdet gj

p
o
ffiffiffiffiffiffiffiffiffiffiffiffi
jdet gj

p

ox j
: ð9:27Þ

The latter result yields for the divergence C1;1rX of a vector field X

Xi
;i ¼

oXi

oxi
þ Ci

jiX
j ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet gj

p
oð

ffiffiffiffiffiffiffiffiffiffiffiffi
jdet gj

p
XiÞ

oxi
: ð9:28Þ

A similar expression is obtained for the divergence tij
; j of an alternating tensor t.

Let local coordinates be given in LðMÞ as before (7.23), and let it be provided
with a Riemannian connection with connection form x. Then, the first structure
equation (7.23) for vanishing torsion reads (as previously, the index a of a
coordinate neighborhood is only occassionally used for the sake of clarity at local
forms and is dropped here)

dhi �
X

j

h j ^ xi
j ¼ 0: ð9:29Þ

In view of (7.43), the condition for x to be a metric connection reads 0 ¼
rg ¼ ðogij=oxk � Cl

kiglj � Cl
kjgilÞdxi � dx j � dxk ¼ ðdgij � gljxl

i � gilxl
jÞ dxi � dx j,

where in the last equality the definition of the Christoffel symbols by the local
connection form given on p. 241 was used. Hence, this condition reads

dgij � gljx
l
i � gilx

l
j ¼ 0; ð9:30Þ

where dgij is the ordinary differential of the component of the symmetric 2-form g.
These last two relations yield an equivalent formulation of the Fundamental
Theorem of Riemannian Geometry:

Given a generalized Riemannian manifold M with metric form g and given m
linearly independent 1-forms hi; i ¼ 1; . . .;m on every coordinate neighborhood U
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of M, there exists a unique set of m2 1-forms xi
j solving the equations (9.29, 9.30)

and forming local connection forms of a Riemannian connection. The metric form

may then be expressed as gklh
k � hl:

Use coordinate lines according to the integral curves of m standard horizontal
vector fields Xi; hhk;Xii ¼ dk

i (p. 234). Then, gij ¼ gðXi;XjÞ ¼ gklhhk;Xiihhl;Xji.
In the case of a Riemannian manifold (that is with a positive definite metric form)
one may choose linearly independent standard horizontal vector fields for which
gij ¼ dij and hence ds2 ¼

P
iðh

iÞ2. Then, (9.30) yields a skew-symmetric local

connection form: xi
j þ x j

i ¼ 0.
Since gijðxÞ is a smooth function, the exterior derivative of its differential

vanishes: d ^ dgij ¼ 0. The exterior derivative of (9.30) yields 0 ¼ gkjxk
l^

xl
i þ glkxk

j ^ xl
i þ gljdxl

i þ gklxk
i ^ xl

j þ gikxk
l ^ xl

j þ gildxl
j. The second and the

fourth terms cancel, and, after some renaming of summation indices, ðxl
k ^ xk

i þ
dxl

iÞglj þ gilðxl
k ^ xk

j þ dxl
jÞ ¼ 0 results. According to (7.23), the parentheses of

the last relation contain the components of the curvature form X ¼ dxþ x ^ x,
so that this relation reads

Xl
iglj þ gilX

l
j ¼ 0: ð9:31Þ

Xij ¼ Xl
iglj of a Riemannian connection (with possibly indefinite metric) is skew-

symmetric.
Expressing (7.30) in local coordinates results in (exercise, see also the text of

the next paragraph)

Xi
j ¼

X

k\l

Ri
jkldxk ^ dxl; ð9:32Þ

where the curvature tensor R is given by (7.49). The curvature tensor field of a
generalized Riemannian manifold,

Rijkl ¼ gimRm
jkl; ð9:33Þ

has the following properties:

Rijkl ¼ �Rjikl ¼ �Rijlk;

Rijkl þ Riklj þ Riljk ¼ 0;

Rijkl ¼ Rklij:

ð9:34Þ

The first line follows directly from (9.31, 9.32). To obtain the second line, first
realize that (9.29) must hold locally for any linear independent system of 1-forms
hi. Putting locally hi ¼ dxi yields 0 ¼

P
jx

i
j ^ dx j. take the exterior derivative of

this relation and use it again to get 0 ¼
P

j dxi
j ^ dx j ¼

P
jðX

i
j �
P

k xi
k ^ xk

j Þ^
dx j ¼

P
j X

i
j ^ dx j. Insert (9.32) and obtain

P
j\k\l Ri

jkl dx j ^ dxk ^ dxl ¼ 0 from
which the second line follows. Interchanging in the second line i with j, subtracting
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the result from the second line and observing the first line yields 2Rijklþ
Riklj þ Rljik þ Riljk þ Rjkil ¼ 0. Interchanging here ij with kl, subtracting and
observing again the first line of (9.34) yields the third one.

Finally, exterior differentiation of X ¼ dxþ x ^ x yields the Bianchi identi-
ties in the form dX ¼ dx ^ x� x ^ dx ¼ X ^ x� x ^ X. This relation, which is
still a relation of forms on the frame bundle, in the notation of (7.30) paired with
tangent vectors X� on LðMÞ, may be pulled back from the canonical section to the
base manifold M as the same relation for the corresponding local forms on a
trivializing coordinate neighborhood in M, which are paired with tangent vectors
X on M as hXa; ðo=oxkÞ ^ ðo=oxlÞi ¼ Ri

jkldx jðo=oxiÞ or Xi
aj ¼

P
Ri

jkldxk ^ dxl

(compare the text before (7.5) and before (7.14) as well as (7.46) and (9.32)).
Insert this expression together with xi

aj from p. 241 into the relation dXi
aj ¼

�xi
an ^ Xn

aj þ Xi
an ^ xn

aj and obtain

X oRi
jkl

oxm
dxm ^ dxk ^ dxl ¼

X
�Ci

mnRn
jkl þ Cn

mjR
i
nkl

� �
dxm ^ dxk ^ dxl:

Complete the left hand side to a covariant derivative according to (7.43) and get

X
Ri

jkl;m dxm ^ dxk ^ dxl ¼ �
X

Cn
mkRi

jnl þ Cn
mlR

i
jkn

� �
dxm ^ dxk ^ dxl:

Now, this right hand side vanishes in the torsion free case, because according to
(7.47) in this case the Christoffel symbols are symmetric in the lower indices.
Hence, also the left hand side vanishes, which means that the corresponding
alternating combination of Ri

jkl;m in the last three subscripts must vanish. This is the
sum with cyclic permutation minus the sum with anti-cyclic permutation of these
subscripts. In view of the alternating dependence of R on its last two subscripts the
six items can be combined into three. Thus,

Rijkl;m þ Rijlm;k þ Rijmk;l ¼ 0 ð9:35Þ

expresses the Bianchi identities for a Riemannian connection.

9.4 Geodesic Normal Coordinates

In this section, the linear connection on M is specialized step by step.
First a general manifold M with a linear connection is considered, that is, the

frame bundle LðMÞ with a linear connection C. In a coordinate neighborhood
Ua � M, the system of ordinary differential equations (7.51),

d2xi

dt2
þ
X

jk

Ci
jk

dx j

dt

dxk

dt
¼ 0; i ¼ 1; . . .;m; ð9:36Þ
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has the geodesics as solutions, which are the curves in M whose tangent vector is
transported parallel to itself along the curve. As is well known from standard
analysis, given initial conditions

xið0Þ ¼ ui;
dxi

dt

�
�
�
�
0

¼ vi; ð9:37Þ

there are a neighborhood U � Ua and two positive real numbers r; d, so that for all
ðuiÞ 2 U ¼ uaðUÞ and ðviÞ ¼ v 2 Rm; jvj\r the system (7.51) has a unique
solution

xi ¼ yiðt; uk; vkÞ for jtj\d; ð9:38Þ

where yi depends smoothly on t; uk; vk. It may be thought of as a motion in time t
through M passing at t ¼ 0 through ðukÞ with velocity vector ðvkÞ. Rescaling the
time by a factor c is equivalent to rescaling the velocity with 1=c:

yiðct; uk; vk=cÞ ¼ yiðt; uk; vkÞ or yiðct; uk; vkÞ ¼ yiðt; uk; cvkÞ: ð9:39Þ

In these relations, the left hand side is defined where the right hand side was
defined in (9.38). Take jcj\d and fix ðukÞ 2 U. Then, with the first initial con-
dition (9.37), the relation

xi ¼ yið1; uk; vkÞ with ui ¼ yið0; uk; vkÞ ¼ yið1; uk; 0Þ ¼ ui ð9:40Þ

provides a mapping ðvkÞ 7! ðxiÞ from a neighborhood of the origin of TuðMÞ � Rm

onto a neighborhood of u 2 M with the origin of TuðMÞ mapped to u. Indeed, now
with the second initial condition (9.37),

oyið1; uk; vkÞ
ov

�
�
�
�
v¼0

� v ¼ oyið1; uk; tvkÞ
ot

�
�
�
�
t¼0

¼ oyiðt; uk; vkÞ
ot

�
�
�
�
t¼0

¼ vi

and hence oyið1; uk; vkÞ=ov j
� 	

v¼0¼ di
j so that the mapping is regular at v ¼ 0 and

provides a bijection of some neighborhood of v ¼ 0 onto a neighborhood of
u 2 M. This latter neighborhood is a coordinate neighborhood of M with coordi-
nates vi whose transition to the original coordinates xi is defined by the first
relation (9.40). The coordinates vi are called geodesic normal coordinates at u or
in short normal coordinates. Of course, they are determined up to the choice of a
base in TuðMÞ, that is up to a non-degenerate linear transformation. (So far, M is a
linear connection space, a metric in M and angles in TuðMÞ were not yet intro-
duced.) For every u 2 M and every fixing of a base in TuðMÞ there is a neigh-
borhood UðuÞ and a local coordinate system in UðuÞ of geodesic normal
coordinates at u; it is called a normal coordinate neighborhood of u.

Choose a coordinate neighborhood Ua � M (with respect to coordinates xi), a
point u 2 Ua and a base fXiu j i ¼ 1; . . .;mg in TuðMÞ, and consider a tangent vector
Xu ¼

P
i�v

iXiu. The points with geodesic normal coordinates ðvi ¼ t�viÞ form a
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geodesic through the point u 2 M (at t ¼ 0) which has Xu as its tangent vector at u.
If this tangent vector is parallel transported along the geodesic, it remains tangent to
it in all points of the geodesic (Fig. 9.1). From the above analysis it is clear that
given a point u0 2 UðuÞ with normal coordinates vi (with respect to u), the tangent
vector Xu of a geodesic from u to u0 is uniquely defined up to a scaling factor with an
inverse scaling of the curve parameter t of the geodesic. Such a rescaling does of
course not change the geodesic curve itself, it changes only its parametrization.

In a normal coordinate neighborhood UðuÞ of u 2 M, there is for every point
u0 2 UðuÞ a uniquely defined geodesic curve connecting u and u0.

For small enough q[ 0, there is a q-ball neighborhood

UqðuÞ ¼ x
Xm

i¼1

ðviðxÞÞ2\q2

�
�
�
�
�

( )

; UqðuÞ ¼ x
Xm

i¼1

ðviðxÞÞ2\q2

�
�
�
�
�

( )

ð9:41Þ

of u contained in the normal coordinate neighborhood UðuÞ (UqðuÞ ¼ uaðUqðuÞÞ).
Moreover, if Bdð0Þ is the open ball of radius d centered at the origin of the
Euclidean space Rm, then there is d [ 0 so that through every point u0 2 UqðuÞ and
for every v 2 Bdð0Þ there is a unique geodesic through u0 with tangent vector v at u0

and given by xi ¼ yiðt; u0k; vkÞ; jtj\2. In summary, there is a mapping

w : UqðuÞ 
 Bdð0Þ ! UqðuÞ 
 Ua : ðu0k; vÞ 7!wðu0k; vÞ ¼ ðu0k; ykð1; u0k; vkÞÞ:
ð9:42Þ

For every u 2 Ua there are such positive numbers q and d (depending on u). Of
basic importance for the following is the statement visualized in Fig. 9.2:

For any point u in a linear connection manifold M there exists a neighborhood
W of u such that every point u0 2 W has a normal coordinate neighborhood Uðu0Þ
that contains W .

Proof By the analysis after (9.39), the Jacobian of the mapping w is ½oðu0k; ykÞ=
oðu0k; vkÞ�ðu;0Þ ¼ 1. Hence, the differential wðu;0Þ� is a linear isomorphism, and from
the inverse function theorem (Sect. 3.5, case 3) it follows that there is a neighbor-
hood V of ðu; 0Þ 2 UqðuÞ 
 Bdð0Þ and a positive number �\d so that the restriction

Fig. 9.1 A geodesic through
the point u with the
corresponding geodesic
normal coordinates
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wjV :V ! U�ðuÞ 
 U�ðuÞ is a diffeomorphism. For every point u0 2 U�ðuÞ take the
set of vectors Bu0 ¼ fv 2 B�ð0Þjðu0; vÞ 2 Vg. Then, the set of points x 2 Ua with
a-coordinates xi ¼ yið1; u0k; vkÞ; v 2 Bu0 is contained in a normal coordinate
neighborhood Uðu0Þ of u0 and is diffeomorphic to U�ðuÞ ¼ W : h

An immediate consequence is that every pair of points of W can be connected
by a geodesic.

Now, let the linear connection space W additionally be torsion-free. The normal
coordinates along a geodesic through a given point u may be chosen vi ¼ t�vi,
hence d2vi=dt2 ¼ 0, with t ¼ 0 at u, and for instance unit vectors �v, and the system
(9.36) at u, expressed with the normal coordinates vi instead of the xi, reads
P

jk Ci
jkð0Þ�vj�vk ¼ 0, where now the Christoffel symbols Ci

jkðvlÞ refer to the normal
coordinates at u. Since in the torsion-free case these symbols are symmetric in the
lower indices in any coordinate system, it follows that Ci

jkð0Þ ¼ 0 for all
i; j; k ¼ 1; . . .;m.

At any point u of a torsion-free linear connection manifold M, by choosing
geodesic normal coordinates at u the Christoffel symbols Ci

jkð0Þ at u are made

vanish.

This is again an indication that the Christoffel symbols do not form a tensor, for
a tensor vanishing in some coordinate system would vanish in any coordinate
system.

Another remarkable property of torsion-free linear connection manifolds is that
the local connection form of a torsion-free linear connection manifold M is

uniquely defined by the curvature tensor.

Proof Let u 2 M be any point and let UðuÞ be a normal coordinate neighborhood
of u. Fix a frame ðu;X1; . . .;XmÞ at u and choose corresponding geodesic normal
coordinates in the following way:

P
i �viXi;

P
ið�viÞ2 ¼ 1; is a tangent vector at u in

any direction given by the components �vi with respect to the fixed frame; ðviÞ ¼
ðt�viÞ are geodesic normal coordinates in UðuÞ on geodesics having the tangent

Fig. 9.2 See statement on
the previous page
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vector
P

i �viXi at u. Build a frame field in UðuÞ by transporting the chosen frame at
u parallel (horizontally in LðMÞ) along geodesics. Tangent vectors to geodesics,
expressed in the polar coordinates �vi; t;

P
iðviÞ2 ¼ 1 are o=ot and have constant

components �vi with respect to this frame field along geodesics through u. Since the
frame field is spanned by horizontal vectors, m linearly independent vector fields
Xj with constant components �vi

j extend to standard horizontal vector fields Bð�vjÞ on
LðMÞ (compare (7.7)). Hence, according to (7.24), the canonical 1-form h and the
connection 1-form x are given as hi ¼ �vidt þ �hi; xi

j ¼ �xi
j, where �hi and �xi

j depend

on the �vi and on t but do not contain dt (annihilate tangent vectors to geodesics
�v ¼ const.). Moreover, since at t ¼ 0 a tangent vector in any direction is
proportional to dt (away from t ¼ 0 this holds only for vectors tangent to the
constructed geodesics through u), �xi

jjt¼0 ¼ 0 and �hijt¼0 ¼ 0:
In view of the vanishing torsion, the structure equations (7.23) read

dhi þ
X

j

xi
j ^ hi ¼ 0; dxi

j þ
X

k

xi
k ^ xk

j ¼ Xi
j: ð9:43Þ

Since each component Xi
j of the tensorial curvature form X is a horizontal 2-form,

it can be expressed as Xi
j ¼

P
k\l

�Ri
jklh

k ^ hl. In fact, �Ri
jkl is the (bijective) u-trans-

formation of the curvature tensor Ri
jkl ¼ ui

p
�Rp

qrsðu�1Þqj ðu�1Þrkðu�1Þsl in the meaning of
(7.30) and (7.6); the u-transformation is not to be confused with the point u above.
The components of both tensors R and �R are functions of the �vi and of t. Comparing in
the equations (9.43) of forms only the terms proportional to dt yields

d�vi � o�hi

ot
þ
X

j

�xi
j�v

j

 !

^ dt ¼ 0;
o�xi

j

ot
�
X

kl

�Ri
jkl�v

k�hl

 !

^ dt ¼ 0: ð9:44Þ

(Note that d�hi ¼ dt ^ ðo�hi=otÞ þ � � � ¼ �ðo�hi=otÞ ^ dt þ � � � :) Hence, the expres-
sions in parentheses must vanish. A further differentiation of the first expression
with respect to t (t and �vi are independent) and then insertion of the second results in

o2�hi

ot2
�
X

jkl

�Ri
jkl�v

j�vk�hl ¼ 0: ð9:45Þ

Given Ri
jkl and hence �Ri

jkl, this last equation is in fact an ordinary differential

equation for �hi, which with the initial conditions hijt¼0 ¼ 0 and ðo�hi=otÞt¼0 ¼
d�vi þ

P
j �v j �xi

jjt¼0 ¼ d�vi has a unique solution �hið�vk; tÞ ¼
P

j
��h

i
jð�vk; tÞd�v jþ

��h
i
tð�vk; tÞdt. (Recall that the components �hi are 1-forms, (9.45) is an equation of

forms and contains an equation for every ��h
i
j and every ��h

i
t:)

Finally, take any point in UðuÞ with coordinates ðviÞ ¼ ðt�viÞ. For every fixed
l ¼ 1; . . .;m there is a (non-unique) regular linear transformation w with
�v j ¼

P
k w j

kd
k
l . Inserting this into the first equation (9.44) yields
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X

j

xi
jw

j
l ¼

o�hi

ot
� d�vi; l ¼ 1; . . .;m;

which after matrix multiplication with w�1 from the right uniquely determines
xi

jð�vk; tÞ on UðuÞ: h

Now, let M be a Riemannian manifold and consider the Riemannian geometry
provided by the Riemannian connection on M. Let u 2 M be any point. Modify the
choice of the fixed frame at u from the above proof into an orthonormal frame with
respect to the Riemannian metric tensor: ðXiu jXjuÞ ¼ dij. (Compare (9.4, 9.5).)
Then, t acquires the meaning of the arc length of geodesics measured from the point
u, and the frame field becomes a local section in the orthonormal frame bundle
LOðMÞ. With respect to the corresponding normal coordinates vi ¼ t�vi, a tangent
vector on M at u, that is, at v ¼ 0 is Xu ¼ o=ot ¼

P
jðov j=otÞðo=ov jÞ ¼

P
�v jðo=ov jÞ.

By the above choice, gijðuÞ ¼ gðXiu;XjuÞ ¼ dij, or, with hhk;Xii ¼ dk
i ,

g ¼
Pm

i¼1 hi � hi. Since, by definition of a Riemannian connection, g does not
change upon parallel transport, the last expression holds on the whole normal
coordinate neighborhood UðuÞ. (Caution: hi 6¼ dvi in general on UðuÞ and g is not
P

idvi � dvi.) Moreover, for the local connection forms themselves in these normal

coordinates xi
j þ x j

i ¼ 0 (see text after the second formulation of the Fundamental
Theorem of Riemannian Geometry in the previous section). There are m standard
horizontal vector fields Xi; i ¼ 1; . . .;m whose values at point u are Xiu and which on
UðuÞ hence make up the above frame field, and dual to them there are m components
hi of the canonical one form so that hhi;Xji ¼ di

j (p. 234) yielding

ds2 ¼ gijh
ih j ¼

X

i

ðhiÞ2 ð9:46Þ

for the element of the arc length. The symmetric 2-form (9.46) is called the first
fundamental form of a Riemannian geometry. It is obviously covariant under
OðmÞ-transformations of the structure group of the orthonormal frame bundle
LOðMÞ. The corresponding natural definition of a volume form of a Riemannian
geometry is

s ¼ h1 ^ � � � ^ hm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet gj

p
dx1 ^ � � � ^ dxm; ð9:47Þ

where the first expression is invariant under SOðmÞ-transformations and only
changes sign under OðmÞ-transformations with determinant �1 of the transfor-
mation matrix (and hence switching orientation of the frame), while the second
expression holds in any local coordinate system as was shown for (5.84).

As in the previous proof on p. 316, hi ¼ �vidt þ �hi, where
P

ið�viÞ2 ¼ 1; �hijt¼0 ¼
0; ðo�hi=otÞt¼0 ¼ d�vi and �hi does not contain dt. The element of the arc length in
UðuÞ is obtained as

ds2 ¼ dt2 þ 2dt
X

i

�vi�hi þ
X

i

ð�hiÞ2:
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However,
P

i �vi�hijt¼0 ¼ 0, and by the first equality (9.44), ðo=otÞ
P

i �vi�hi� 	
¼

P
i �vid�vi þ

P
ij �vi �xi

j�v
j ¼ 0; the first sum vanishes because of the normalization of

ð�viÞ and the second because of the skew-symmetry of xi
j. Hence,

P
i �vi�hi ¼ 0 on

UðuÞ, and

ds2 ¼ dt2 þ
X

i

ð�hiÞ2; �hi ¼ td�vi þ
X

j

��h
i
jð�vk; tÞd�v j;

��h
i
j

�
�
�
t¼0
¼ 0;

o��h
i
j

ot

�
�
�
�
�
t¼0

¼ 0:

ð9:48Þ

In particular, (9.48) implies ðdtj�hiÞ ¼ 0; i ¼ 1; . . .;m on UðuÞ. Observe that
m� 1 linearly independent linear combinations of the m (linearly dependent
because of the linear dependence of the d�vi) cotangent vectors �hi span locally
(infinitesimally) the hypersurface t2 ¼

P
iðviÞ2 ¼ const., while dt is a cotangent

vector on the geodesic through u. (Since with respect to normal coordinates
gij ¼ di

j, tangent vectors X with components Xi and cotangent vectors r with

components ri ¼ gijXj ¼ Xi are equivalent.)

In a Riemannian geometry, in every normal coordinate neighborhood of a point
u, geodesics through u are orthogonal to hypersurfaces (hyperspheres)
P

iðviÞ2 ¼ const.

It is easy now to prove that

in a Riemannian geometry M there exists at every point u 2 M a normal
coordinate neighborhood W such that (i) every point u0 2 W has a normal
coordinate neighborhood that contains W and (ii) the geodesic curve that con-
nects u and u0 2 W is the unique shortest curve in W connecting these two points.

Proof (i) was already proved to hold true for any linear connection manifold.
Hence, it holds in particular for the Riemannian connection of a Riemannian
manifold.

To prove (ii), let W ¼ U�ðuÞ with sufficiently small � be the neighborhood
(9.41) of u with respect to normal coordinates vi at u. Pick u0 2 W , and let
C0 : vi ¼ �vit; �vi ¼ const.; 0
 t
 t0 be the geodesic connecting u with u0, t0 being
its arc length, that is, u0 has normal coordinates �vit0. Let C : vi ¼ viðtÞ be any curve
in W from u to u0 with parameter t, without loss of generality chosen to be the
geodesic arc length from u to the point u00 2 C with normal coordinates viðtÞ. Then,
the arc length of C is

s ¼
Zt0

0

ds ¼
Zt0

0

dt2 þ
X

i

ð�hiÞ2
 !1=2

�
Zt0

0

dt ¼ t0:
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Hence, s cannot be shorter then t0, and s ¼ t0 implies �hi ¼ 0 for i ¼ 1; . . .;m. In
view of (9.48), this means that for 0
 t
 t0

d�vi þ
X

j

��h
i
jð�vk; tÞ

t
d�v j ¼ 0;

while d�vi is independent of t, and limt!0ð��h
i
jð�vk; tÞ=tÞ ¼ 0 due to the initial

conditions of (9.48). Hence, it follows d�vi ¼ 0 and �vi ¼ const. for 0
 t
 t0, which
means that C is the unique geodesic C0 connecting u and u0: h

In the normal coordinate neighborhood W of this theorem the distance (9.8)
from u to u0 equals the arc length of the unique geodesic connecting the two points.
This is in general not true globally; for instance, on a sphere geodesics are the
great circles, and for two points on a great circle not being antipodes there are two
arcs of different length connecting them.

Sufficiently small �-ball normal coordinate neighborhoods have important
properties in relation to geodesics which are analogues of corresponding properties
of balls of any radius in Euclidean space in relation to straight lines. This section is
concluded with their consideration.

Let UðuÞ be a normal coordinate neighborhood of u in a Riemannian geometry
and let

Sq ¼ x
Xm

i¼1

ðviðxÞÞ2 ¼ q

�
�
�
�
�

( )

ð9:49Þ

be a hypersphere of radius q in UðuÞ. Then, (i) there exists a positive number � so
that for any q; 0\q\�, any geodesic curve viðsÞ tangent to Sq at s ¼ 0 is outside
Sq for small values of the curve parameter s and has s ¼ 0 as its only one point in
common with Sq in a neighborhood of s ¼ 0; (ii) there exists a positive q such that
for any two points in the q-ball neighborhood UqðuÞ of u there is a unique
geodesic in UqðuÞ connecting the two points.

A neighborhood of u having the two properties of UqðuÞ of this theorem is
called a geodesic convex neighborhood; the theorem states the existence of a
geodesic convex neighborhood of every point in a Riemannian geometry.

Proof Consider the real function Fðv1; . . .; vmÞ ¼ ð1=2Þð
P

iðviÞ2 � q2Þ. Then, Sq

is determined by FðviðxÞÞ ¼ 0. Let C : viðsÞ be a geodesic through u0 2 Sq and
being tangent to Sq at this point, with curve parameter s passing through zero at u0.
Since it was already shown that a geodesic C0 : vi ¼ tviðs ¼ 0Þ from u to u0 is
orthogonal to Sq at u0, the latter condition amounts to saying that C is orthogonal to
C0 at u0. Denote tangent vectors to these geodesics at u0 by XC and XC0 , respec-
tively. Their orthogonality spells

0 ¼ ðXC0 jXCÞ ¼
Xm

i¼1

viðs ¼ 0Þdvi

ds

�
�
�
�
s¼0

:

9.4 Geodesic Normal Coordinates 319



This implies

dFðvkðsÞÞ
ds

�
�
�
�
s¼0

¼
X

i

við0Þdvi

ds

�
�
�
�
s¼0

¼ 0;

d2FðvkðsÞÞ
ds2

�
�
�
�
s¼0

¼
X

i

dvi

ds

dvi

ds
�
X

ijk

vkð0ÞCk
ijðvlð0ÞÞ dvi

ds

dv j

ds
;

where all derivatives are taken for s ¼ 0 and (9.36) was used in the second
derivative. Therefore,

FðvkðsÞÞ ¼ s2

2

X

i

dvi

ds

� �2

�
X

ijk

vkð0ÞCk
ijðvlð0ÞÞ dvi

ds

dv j

ds

 !

þ oðs2Þ:

Since with respect to normal coordinates Ci
jkð0Þ ¼ 0, its value at u0, that is, for

vlð0Þ can be made arbitrarily small by taking a small value of q. Therefore, for
small enough q, FðvkðsÞÞ is zero for s ¼ 0 and strictly positive for small non-zero
values of s. This proves (i).

Next, chose q
 �=4 where � is the value of statement (i). For the distance of
two points u1; u2 2 UqðuÞ the triangle inequality yields dðu1; u2Þ

dðu; u1Þ þ dðu; u2Þ\2q
 �=2. Hence, u2 2 U�=2ðu1Þ, and for any x 2 U�=2ðu1Þ it
holds that dðu; xÞ
 dðu; u1Þ þ dðu1; xÞ\3�=4. According to the theorem visual-
ized in Fig. 9.2, U�ðuÞ may be chosen such that every point u0 2 U�ðuÞ has a
normal coordinate neighborhood Uðu0Þ that contains U�ðuÞ. Then,
U�=2ðu1Þ � U�ðuÞ � Uðu1Þ, and normal coordinates at u1 can be used in U�=2ðu1Þ.
By the previous theorem above there is a unique geodesic C connecting u1 with u2

whose arc length is dðu1; u2Þ, and for any intermediate point x on this geodesic
dðu1; xÞ
 dðu1; u2Þ. C � U�=2ðu1Þ � U�ðuÞ, and hence dðu; xÞ is bounded by � on
C, while dðu; u1Þ and dðu; u2Þ are less than q
 �=4. Suppose that the maximum of
dðu; xÞ on C is at an intermediate point x0 and is equal to d0\�. Then, C is tangent
to Sd0 and hence by virtue of (i) d0 is a local minimum on C. This contradiction
proves dðu; xÞ\q, that is, C lies in UqðuÞ: h

Again, in that last theorem no statement is made on the global behavior of
geodesics. For large enough values of the curve parameter s, a geodesic tangent to
Sq at u0 may return arbitrarily close to u0 and cross Sq, and likewise two points in
UqðuÞ may in addition to the claimed unique geodesic in UqðuÞ be connected by a
geodesic (maybe the same) that intermediately leaves UqðuÞ; think for instance
again of a great circle on a spherical manifold.

Modifying the last proof in such a way that one works only with Euclidean
distances in coordinate neighborhoods U, the existence of geodesic convex
neighborhoods can be proved for any linear connection manifold independent of
the presence of a Riemannian metric [3].

From the above analysis it is also clear that a curve xi ¼ xiðtÞ in a linear
connection space M is a geodesic, iff it is the projection on M of an integral curve
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of a standard horizontal vector field on the frame bundle LðMÞ. Recall, that every
integral curve of a vector field is contained in a maximal integral curve
corresponding to some open interval a\t\b of the parameter t of the local
1-parameter group. A linear connection is called a complete linear connection, if
every geodesic with parameter t may be continued to a geodesic for �1\t\1:

9.5 Sectional Curvature

For the case of a Riemannian geometry a more detailed geometric meaning of the
curvature tensor can now be found.

The Riemannian curvature tensor (9.33), as any tensor of type ð0; 4Þ may be
considered as a quadrilinear function R : TxðMÞ 
 TxðMÞ 
 TxðMÞ 
 TxðMÞ ! R:

RðW ;X; Y ; ZÞ ¼ hR;W � X � Y � Zi ¼ RijklW
iXjYkZl: ð9:50Þ

In particular, in arbitrary local coordinates,

Rijkl ¼ R
o

oxi
;

o

ox j
;

o

oxk
;

o

oxl

� �

: ð9:51Þ

The properties (9.34) transfer to corresponding properties of the quadrilinear
function:

RðW ;X; Y; ZÞ ¼ �RðX;W ; Y; ZÞ ¼ �RðW ;X;Z; YÞ;
RðW ;X; Y; ZÞ þ RðW ; Y ; Z;XÞ þ RðW ; Z;X; YÞ ¼ 0;

RðW ;X; Y; ZÞ ¼ RðY; Z;W ;XÞ:
ð9:52Þ

On p. 311 f it was shown that the third line of (9.34) follows from the first two
lines. Hence, the same is true for (9.52). Moreover, let R and R0 be two quadri-
linear functions on some vector space V , having the properties of the first two lines
of (9.52). If

RðX; Y ;X; YÞ ¼ R0ðX; Y ;X; YÞ for all X; Y 2 V ; ð9:53Þ

then R ¼ R0. Indeed, consider R00 ¼ R0 � R and suppose R00ðX; Y ;X; YÞ ¼ 0 for all
X; Y 2 V . Then, for all Z 2 V , 0 ¼ R00ðX; Y þ Z;X; Y þ ZÞ ¼ R00ðX; Y;X; ZÞ þ
R00ðX; Z;X; YÞ ¼ 2R00ðX; Y;X; ZÞ due to the third line of (9.52) which follows from
the first two lines. Hence, R00ðX; Y;X; ZÞ ¼ 0 for all X; Y ; Z 2 V and therefore
0¼ R00ðW þ Y;X;W þ Y;ZÞ ¼ R00ðW ;X;Y;ZÞþR00ðY;X;W ;ZÞ ¼ R00ðW ;X;Y ;ZÞþ
R00ðW ;Z;Y ;XÞ ¼ R00ðW ;X;Y ;ZÞ�R00ðW ;Z;X;YÞ, where in the third equality the
third line of (9.52) was used and in the last equality the first line. Thus, also
R00ðW ;X;Y;ZÞ ¼ R00ðW ;Z;X;YÞ and, by simply renaming X;Y ;Z into Y ;Z;X,
R00ðW ;Y;Z;XÞ ¼ R00ðW ;X;Y ;ZÞ for all W ;X;Y;Z 2 V . From these last two rela-
tions, 3R00ðW ;X;Y ;ZÞ ¼ R00ðW ;X;Y ;ZÞþR00ðW ;Y ;Z;XÞþR00ðW ;Z;X;YÞ ¼ 0 for
all W ;X;Y;Z 2 V and hence R¼ R0.
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A quadrilinear function determined solely by the metric tensor (9.3), which has
the same properties (9.52), is

GðW ;X; Y ; ZÞ ¼ GðW ;YÞGðX; ZÞ � GðW ; ZÞGðX; YÞ: ð9:54Þ

For X; Y 2 TxðMÞ,

GðX; Y;X; YÞ ¼ jXj2jY j2 � ðXjYÞ2 ¼ jXjjY j sin\ðX; YÞð Þ2: ð9:55Þ

This is the square of the area of a parallelepiped spanned by the vectors X and
Y . Let X0; Y 0 span the same two-dimensional subspace E of TxðMÞ as X; Y , that is,
ðX0; Y 0Þt ¼ AðX; YÞt, where A is a regular ð2
 2Þ-matrix, det A 6¼ 0. From the
properties (9.52) it is easily found (exercise) that

RðX0; Y 0;X0;Y 0Þ ¼ ðdet AÞ2RðX; Y ;X; YÞ;
GðX0; Y 0;X0;Y 0Þ ¼ ðdet AÞ2GðX;Y ;X; YÞ:

Hence, the quotient of R and G is an invariant of E. Its negative is called the
sectional curvature of M at ðx;EÞ:

Kðx;EÞ ¼ � RðX; Y ;X; YÞ
GðX;Y ;X; YÞ : ð9:56Þ

Since G is uniquely defined by the metric tensor, it follows from the above that
the curvature tensor of a Riemannian manifold M at point x is uniquely determined
by the sectional curvatures of all the two-dimensional subspaces of the tangent
space TxðMÞ:

Gauss’ theory of surfaces uses a parameter representation

r ¼ rðx1; x2Þ; r ¼ ðr1; r2; r3Þ ð9:57Þ

with parameters x1; x2 for a two-dimensional smooth surface E embedded in the three-dimen-
sional Euclidean space R3, with Cartesian coordinates ri (with respect to an orthonormalized base
fa1; a2; a3g, r ¼

P
ir

iai). The frame (Fig. 9.3)

e1 ¼
or

ox1
; e2 ¼

or

ox2
; n ¼ e1 
 e2

je1 
 e2j
; e1 
 e2 6¼ 0; ð9:58Þ

at point rðx1
0; x

2
0Þ 2 R3 describes the tangent plane on E at point ðx1

0; x
2
0Þ 2 E as the plane spanned

by the vectors e1 and e2 and having the normal n in R3. In the metric inherited from R3, the
element of arc length on E is given by

ds ¼ e1dx1 þ e2dx2 ¼ or

ox1
dx1 þ or

ox2
dx2;

ds2 ¼
X3

i¼1

X2

j;k¼1

ori

ox j
dx j ori

oxk
dxk ¼ Eðdx1Þ2 þ 2Fdx1dx2 þ Gðdx2Þ2 ¼ gjkdxidxk;

E ¼
X3

i¼1

ori

ox1

� �2

; F ¼
X3

i¼1

ori

ox1

ori

ox2
; G ¼

X3

i¼1

ori

ox2

� �2

; ðgjkÞ ¼
E F

F G

� �

:

ð9:59Þ

The second line is Gauss’ first fundamental form of the surface E. The volume form of E
(surface area element, without a definition of sign of orientation) is
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jsj ¼ je1dx1 
 e2dx2j ¼ ðje1jje2j � e1 � e2Þ1=2dx1dx2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG� F2
p

dx1dx2

¼
ffiffiffiffiffiffiffiffiffiffi
det g

p
dx1dx2:

ð9:60Þ

From dn ¼ je1 
 e2j�1ðde1 
 e2 þ e1 
 de2Þ þ n � � � and n � ds ¼ 0, for Gauss’ second fun-
damental form one easily finds

�dn � ds ¼ Lðdx1Þ2 þ 2Mdx1dx2 þ Nðdx2Þ2 ¼ bjkdx jdxk;

L ¼ ðEG� F2Þ�1=2det

r1
11 r2

11 r3
11

r1
1 r2

1 r3
1

r1
2 r2

2 r3
2

0

B
B
@

1

C
C
A;

M ¼ ðEG� F2Þ�1=2det

r1
12 r2

12 r3
12

r1
1 r2

1 r3
1

r1
2 r2

2 r3
2

0

@

1

A; ðbjkÞ ¼
L M

M N

� �

;

N ¼ ðEG� F2Þ�1=2det

r1
22 r2

22 r3
22

r1
1 r2

1 r3
1

r1
2 r2

2 r3
2

0

B
@

1

C
A

ð9:61Þ

with the abbreviations ri
jk ¼ o2ri=ox joxk , ri

j ¼ ori=ox j. While the first fundamental form depends

only on the metric on E, the second fundamental form depends also on the embedding of E inR3 (on
the differential dn of the normal vector n on E in R3).

Any point r 2 E may be chosen as origin of R3, and the Cartesian base fa1; a2; a3g may in
particular be chosen such that a1; a2 span the tangent plane on E and a3 ¼ n. Then, in a
neighborhood of this point, with the just introduced notation of derivatives the surface E is
described as r3ðx1; x2Þ ¼ ðr3

11ðx1Þ2þ 2r3
12x1x2 þ r3

22ðx2Þ2Þ=2þ � � � ; x1 ¼ r1; x2 ¼ r2, where the
derivatives are taken at the origin. By a rotation of the ðx1; x2Þ-plane around n this expression
may be brought to the form r3ðx1; x2Þ ¼ ðk1ðx1Þ2 þ k2ðx2Þ2Þ=2þ � � � from which it is immedi-
ately seen that kj are the two principal curvatures in the two (orthogonal to each other) principal
curvature directions e1 ¼ a1 and e2 ¼ a2, that is, the inverse values of the curvature radii of the
corresponding parabolic intersection lines of the planes spanned by ej and n with E. The total

Fig. 9.3 A smooth surface E
embedded in the Euclidean
space R3
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curvature or Gaussian curvature is defined as the product Kðx1; x2Þ ¼ k1k2. The signs of k1 and
k2 depend on the orientation of E (or n, determined by the choice of subscripts of e1 and e2).
Their product K, however, is a true scalar. The special choice of coordinates implies ri

j ¼
di

j; r
i
jk ¼ 0 for i ¼ 1; 2 and r3

jk ¼ kjdjk . Hence, LN �M2 ¼ K; EG� F2 ¼ 1, and the canonical
fundamental forms are (compare (9.46))

ds2 ¼ ðdx1Þ2 þ ðdx2Þ2; �dn � ds ¼ k1ðdx1Þ2 þ k2ðdx2Þ2: ð9:62Þ

Now, K has a geometric meaning of the embedding of E in R3 which is independent of used
coordinates. On the other hand, gjk and bjk are tensors of type ð0; 2Þ in two dimensions, and hence
the quotient det b=det g is also independent of used coordinates. Hence,

K ¼ det b

det g
¼ LN �M2

EG� F2
ð9:63Þ

holds independently of chosen coordinates.
Let the frame fe1; e2; ng move on E. The corresponding derivatives of ej at ðx1

0; x
2
0Þ may be re-

expanded into the frame there:

oej

oxk
¼
X2

l¼1

Cl
jkel þ bjkn: ð9:64Þ

The first term is an intrinsic relation on E and does not make use of the embedding in R3.
Identifying in view of the first line of (9.59) ej with o=ox j, this term becomes a case of (7.41) and
recovers Cl

jk as the Christoffel symbols of the two-dimensional Riemannian manifold E, which
according to (9.23) are expressed in terms of derivatives of the metric tensor g. As regards the
second term, the general property ej � n ¼ 0 of the considered frame implies dej � n ¼ �ej � dn,
and scalar multiplication of (9.64) with n dx jdxk , dx j and dxk arbitrary, and summation over the
two values of j and k yields bjkdx jdxk ¼ ðoej=oxkÞ � n dx jdxk ¼ �ej � ðon=oxkÞdx jdxk ¼ �ds � dn,
which agrees with (9.61). Equation 9.64 is Gauss’ equation for the moving frame. For the change
of n, Weingarten’s equation

on

oxk
¼ �

X2

j¼1

g jlblkej; g jlglk ¼ d j
k; ð9:65Þ

is obtained, where summation over l ¼ 1; 2 as tensor multiplication is understood and as usual
ðg jkÞ is the inverse of ðgjkÞ. First of all, n2 ¼ 1 implies n � dn ¼ 0, and hence a term proportional
to n is missing on the right hand side. Scalar multiplication of (9.65) with eldxldxk , the latter two
again arbitrary, and summation yields ðon=oxkÞ � eldxldxk ¼ dn � ds ¼ �blkdxldxk and hence
ðon=oxkÞ � el ¼ �blk . The final result follows since gjk ¼ ej � ek implies

P
lj elgljej ¼ 1.

The relations (9.64, 9.65) comprise 18 differential equations for the 9 functions e1; e2;n of
x1 and x2, and hence for their solubility by smooth functions integrability conditions must be
imposed on their right hand sides. These are the 9 conditions

o

oxi

X
Cl

jkel þ bjkn
� �

¼ o2ej

oxioxk
¼ o

oxk

X
Cl

jiel þ bjin
� �

; ð9:66Þ

In the present context, most important of the implications of a straightforward but lengthy
analysis (preferably in the above particular coordinates of R3) of these integrability conditions is
Gauss’ theorema egregium (exquisite theorem)
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Kðx0Þ ¼
R1212

det g
; R1212 ¼

oC122

ox1
� oC121

ox2
þ
X2

j¼1

Cj
11C2j2 � Cj

12C2j1
� 	

: ð9:67Þ

Gauss found it amazing since the two principal curvatures k1 and k2 clearly depend on ðbjkÞ and
hence on the second fundamental form, that is, on the embedding of E inR3 while their product does
not. It is uniquely defined by the metric ðgjkÞ of E and hence can be determined by measurements on
E alone without reference to the embedding in R3. For instance, on a cylinder one of the principal
curvatures is zero and the other is non-zero. On a plane both values are zero. The total curvature K is
zero in both cases, and in fact both manifolds per se are isometric and locally essentially equivalent,
their embedding in R3, however, is locally different.

Comparison of (9.67) with (7.48) shows, that R1212 is the component of the curvature tensor,
which due to the general properties (9.34) in the case of a two-dimensional Riemannian geometry
is up to permutations of subscripts the only non-zero tensor component of the curvature tensor
Rijkl: for i ¼ j or k ¼ l it is zero, and the remaining components are equal up to a sign.

Returning to the general case, let M again be a Riemannian geometry of
dimension m, let u 2 M, and let X and Y span the two-dimensional subspace
E � TuðMÞ. Choose an orthogonal frame fe1; . . .; emg at u for which e1; e2 span E.
Consider the submanifold E of M formed by the points of all geodesics through u
and tangent to E. Then, E is given by the conditions

E : vr ¼ 0; r ¼ 3; . . .;m; ð9:68Þ

for the normal coordinates vi at u. The submanifold E is a two-dimensional
Riemannian geometry with metric tensor (cf. (9.9))

�gijðv1; v2Þ ¼ gijðv1; v2; 0; . . .; 0Þ; 1
 i; j
 2; ð9:69Þ

inherited from the metric tensor gij of M, and v1; v2 are normal coordinates at u in
E since the shortest path in M between two points of E, which is completely in E, is
a fortiori the shortest path in E between the points. Clearly, the Christoffel symbols
Cijk of E are

1
2

o�gjk

ovi
þ o�gij

ovk
� o�gik

ov j

� �

¼ Cijkðv1; v2Þ ð9:70Þ

again for 1
 i; j; k
 2. In particular, since vi are normal coordinates at u in both
manifolds, Cijkð0Þ ¼ Cijkð0Þ ¼ 0 at u. Hence,

R1212ð0Þ ¼
oC122

ov1
� oC121

ov2

� �

¼ oC122

ov1
� oC121

ov2

� �

¼ �R1212ð0Þ: ð9:71Þ

At u one has det �gð0Þ ¼ g11g22 � g2
12 ¼ Gðe1; e2; e1; e2Þ, so that finally the

important result

Kðu;EÞ ¼ � Rðe1; e2; e1; e2Þ
Gðe1; e2; e1; e2Þ

¼ �
�R1212

det �g
¼ �KðuÞ ð9:72Þ
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follows. (Recall, that the value of Kðu;EÞ is independent of the tangent vectors
X; Y 2 TuðMÞ used which span E.)

The sectional curvature Kðu;EÞ in a Riemannian geometry M is equal to the
total curvature of the surface E formed by all geodesics through u which are
tangent to E, with the inherited metric.

A Riemannian geometry M is called wandering at u, if Kðu;EÞ ¼ KðuÞ is
independent of E � TuðMÞ. Since RðW ;X; Y ; ZÞ is uniquely determined by all
RðX; Y ;X; YÞ for all linearly independent X; Y 2 TuðMÞ, and likewise for G,

RijklðuÞ ¼ �KðuÞ gikðuÞgjlðuÞ � gilðuÞgjkðuÞ
� 	

; iff M is wandering at u:

ð9:73Þ

M is called a constant curvature space, if it is wandering at every point and
KðuÞ ¼ K is independent of u.

In three dimensions, for every real value of K there is up to positioning exactly
one two-dimensional connected constant curvature space; for K [ 0 it is a sphere
(of radius 1=K), for K ¼ 0 it is a plane, and for K\0 it is called a pseudo-sphere
(obtained by rotating a tractrix around its asymptote; it is singular on its largest
circumference).

9.6 Gravitation

(For further studies [4] is recommended.)
Identical physical entities as atoms or molecules from which one can say that

they are positioned at fixed mutual distance emit characteristic light with identical
frequency spectra. This allows for the definition of an absolute time scale (unit of
time). Phenomenologically there is no velocity of propagation of information
observed exceeding the velocity of light in vacuum, which is found to be the same
in all directions. Therefore the speed of light is assumed to be a universal constant.
Distances on the other hand of remote events can only be measured reliably by
propagating light signals between them. It is natural to define distances by the time
interval a light signal needs to propagate forth and back between the events. This is
why Minkowski’s metric

ds2 ¼ glm dxldxm ¼ ðdx0Þ2 � ðdx1Þ2 � ðdx2Þ2 � ðdx3Þ2; dx0 ¼ cdt; ð9:74Þ

where t is time, c is the vacuum speed of light, and x1; x2; x3 are taken to be
Cartesian spatial coordinates, is assumed to have physical reality.

Think of a clock fixed with an isolated particle (for instance realized by the
phase of a vibration mode of a molecule). In a frame attached to the particle,
P3

i¼1ðdx0iÞ2 ¼ 0 and hence ds2 ¼ ðcdt0Þ2. An observer, who sees the particle move
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with velocity v relative to himself, observes in the same interval ds (which is an
invariant and hence the same in all reference systems) the particle run a distance
P

iðdxiÞ2 ¼ ðvdtÞ2. Hence, ðcdt0Þ2 ¼ ds2 ¼ ðcdtÞ2 � ðvdtÞ2 or

dt0 ¼ dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v

c

� �2
r

: ð9:75Þ

The time interval dt0 is the proper time interval experienced by the particle.
Consider an observer moving with constant speed on a straight world line C
(Fig. 9.4) and observing a particle departing from his own position x1 and
returning to him at position x2. Since the particle moves relative to the observer, its
proper time t0 stays all the way behind that of the observer, t. (In Fig. 9.4 an
inertial reference system is used which moves relative to both observer and par-
ticle. Of course both must have velocities not exceeding c, indicated by the two
lines x1 ¼ �ct in the figure.) Hence,

t2 � t1 ¼
Z

C

ds [
Z

C0

ds ¼ t02 � t01;

and clearly the straight world line has the maximum length of all world lines
between two given world points. (The situation is asymmetric between C and C0

because in vacuum a set of reference systems which move relative to each other at
most with constant speed is distinguished as inertial systems.)

A massive particle propagates between world points (events) xl
1 and xl

2 on a
world line C which is determined by the principle of least action. If nothing is
present besides the particle, the only invariant action that can be formed is

S ¼ �mc

Zx2

x1

ds ¼
Zt2

t1

Ldt; ð9:76Þ

Fig. 9.4 World lines of
observer, C, and a particle, C0
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where the prefactor is convention and sets a mass or energy scale while the minus
sign is needed because in Minkowski’s metric, as just shown, the integral has a
maximum but no minimum. It yields the Lagrange function L ¼ �mc2

ð1� ðv=cÞ2Þ1=2, where v is the velocity of the particle. In general geometric terms
this action means that the world line of the particle is a geodesic in the Minkowski
space, which is a straight line.

However, if a force acts on the particle, its motion is accelerated, and it turns
out that, if the force is that of a gravitational field, all accelerations of all particles
passing a region where the field has a certain value (measured statically by means
of a spring-balance) are the same independent of the particle mass. Exactly the
same way force-free particle motions are seen by an accelerated observer, that is, if
the particle coordinates are described with respect to an accelerated frame.
Because these two situations are indistinguishable and (9.74) is invariant under
mere changes of the coordinates, the same action (9.76) must describe the motion
of a particle under the action of a gravitational field, while the metric tensor glm

now may be much more general than in the case of use of mere general coordinates
in the above discused case of absence of gravitation. Hence, the world line of a
particle in a gravitational field is still a geodesic, but now in a more general metric.
If one takes the geodesic arc length s as curve parameter, the equation of motion is

d2xk

ds2
þ
X3

lm¼0

Ck
lm

dxl

ds

dxm

ds
¼ 0; ð9:77Þ

with the Christoffel symbols Ck
lm of the Riemannian connection of the metric

tensor g now describing the action of the gravitational field. The Christoffel
symbols are obtained from derivatives of the metric tensor with respect to the
coordinates, hence the metric tensor itself may be viewed as forming gravitational
potentials.

Since coordinates are now arbitrary and cannot have any more an immediate
physical meaning, their relation to time intervals and distances in ordinary space
must be analyzed. In this section, systematically Latin tensor indices run from 1 to
3, Greece indices run from 0 to 3, and t means the physical time, that is the proper
time of a material entity. Although a consequent covariant formulation of physical
laws as used in the theory of gravitation would tolerate the use of completely
arbitrary (smooth) coordinate systems, every point of physical space time is the
apex of a cone of future and of a cone of past, and the convention is reasonable to
use only coordinate systems where the coordinate line for x0 runs from the past to
the future while the coordinate lines of xi are outside of the cones. Such coordi-
nates may be realized by material constructions (sample holders and clocks). If in
such a case dxi ¼ 0, then ds2 ¼ g00ðdx0Þ2 ¼ ðcdtÞ2, and

dt ¼ 1
c

ffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxÞ

p
dx0; t ¼ 1

c

Z ffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxÞ

p
dx0; g00ðxÞ[ 0; ð9:78Þ

328 9 Riemannian Geometry



describes the proper time of a world line xlðsÞ. To find an expression for spatial
distances, consider two neighboring world lines C and C0 with their proper times t
and t0. Send a light signal from C to C0 which arrives at C0 at world point xl and is
reflected back to C. It departs from C at world point xl þ dxl

1 and returns to C at
xl þ dxl

2 . For the propagation forth and back (a ¼ 1; 2) one has

0 ¼ glmdxl
adxm

a ¼ g00ðdx0
aÞ

2 þ 2g0idx0
adxi

a þ gijdxi
adx j

a:

Assume the two world lines kept at constant spatial distance, dxi
1 ¼ dxi

2 ¼ dxi.
Then,

dx0
a ¼ �

1
g00

g0idxi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðg0idxiÞ2 � g00gijdxidx j

q� �

with the upper sign for a ¼ 1 and the lower sign for a ¼ 2 yield the proper time
interval on world line C from departure to return of the light signal as

dt ¼ 1
c

ffiffiffiffiffiffi
g00
p ðdx0

2 � dx0
1Þ ¼

2
c
ffiffiffiffiffiffi
g00
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg0ig0j � g00gijÞdxidx j

q
:

This time is apparently two times the spatial distance between the world lines
divided by c, hence the square of the distance is

dl2 ¼ �gijdxidx j; �gij ¼
g0ig0j

g00
� gij; �gij ¼ �gij; ð9:79Þ

with the metric tensor �gij of the spatial submanifold in a coordinate neighborhood
of materializable coordinates xl of space–time given by x0 ¼ const. The last
relation, in which as usual ðglmÞ is the inverse of ðglmÞ and likewise for ð�gijÞ, is a
simple exercise.

For physical reasons, since it describes spatial distances, �gij must be a positive
definite metric. This implies for the submatrices

�g11 [ 0; det
�g11 �g12

�g21 �g22

� �

[ 0; det �g [ 0: ð9:80Þ

The last equations (9.78) and (9.79) then require

g00 [ 0; det
g00 g01

g10 g11

� �

\0; det
g00 g01 g02

g10 g11 g12

g20 g21 g22

0

@

1

A[ 0; det g\0:

ð9:81Þ
(Caution: Some authors of physics textbooks, including [4], use a convention
ds2 ¼ �glmdxldxm, then only \ signs appear in (9.81), and the second and third
relations (9.79) have reversed signs.) These relations must be fulfilled in any
coordinate system realized by matter constructions.
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As a simple example, consider an observer at rest and use cylinder coordinates
ðx00; r0;u0; z0Þ,

ds2 ¼ ðdx00Þ2 � ðdr0Þ2 � r02ðdu0Þ2 � ðdz0Þ2:

Let the observer rotate around the z0-axis with angular velocity x. He now makes
observations with respect to coordinates x0 ¼ x00; r ¼ r0;u ¼ u0 � ðx=cÞx0;
z ¼ z0, and

ds2 ¼ 1� x2r2

c2

� �

ðdx0Þ2 � 2
xr2

c
dudx0 � ðdrÞ2 � r2ðduÞ2 � ðdzÞ2:

For r [ c=x one would have g00 \ 0 and hence outside of this radius the
considered rotating coordinate systems would not be materializable. Matter at
radius r \ c=x, seen at rest by the rotating observer, ‘in truth’ moves with velocity
v ¼ xr in the primed coordinates. The proper time t of the rotating matter is
related to the time t0 of an observer at rest as

dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2r2

c2

r

dt0: ð9:82Þ

Compared to a time interval Dt0 ¼ Dx00=c ¼ Dx0=c, its proper time interval is
DtðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2r2=c2

p
Dt0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2r2=c2

p
Dtð0Þ. Light emitted from this matter

at r by atomic vibrations is observed at r ¼ 0 by the observer who is measuring
with his atomic clocks at rest ticking with frequency mðr ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2r2=c2

p
mðrÞ. Since the clocks of the observer tick at lower frequency, he

registers the incident light coming from r blue shifted and approaching infinite
frequency for r ! c=x from below.

Consider the observed circumference of a circle of radius r:

L ¼
I

r

dl ¼
Z2p

0

ffiffiffiffiffiffiffiffi
�guu

p
du ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

0u

g00
� guu

s

¼ 2pr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2r2=c2

p : ð9:83Þ

The observed radius would be unchanged: R ¼
R r

0

ffiffiffiffiffiffi
�grr
p

dr ¼
R r

0 dr ¼ r. The
observed ratio L=R approaches the familiar value 2p only for r ! 0 and is
otherwise larger than 2p, diverging for r ¼ c=x. The reason is the following.
Assume, in the primed system at rest an observer calibrates a measuring rod to
have length l0 ¼ r0=n ¼ r=n; n� 1, and lays it down tangent to the circle with
radius r centered at r0 ¼ r ¼ 0. Its ends seen from the origin form an angle
du0 ¼ l0=r ¼ 1=n. The rotating observer sees the rod move with velocity v ¼ xr
(against the rotation direction), and hence sees it Lorentz contracted to length
l ¼ l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2r2=c2

p
. Its ends seen from him at the origin form an angle

du ¼ du0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2r2=c2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2r2=c2

p
=n. This comes about by synchroniza-

tion of clocks at both ends of the rod in the rotating system. A by a factor
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1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2r2=c2

p
larger number of rods is needed to cover the full angle of 2p, or,

alternatively expressed, the seen angle summed up of rods filling one circumfer-
ence is smaller than 2p. At r ¼ c=x the rods would be seen shrunk to zero. The
observed 2-space perpendicular to z is not Euclidean any more, it has got a neg-
ative curvature. (On a sphere having positive curvature, obviously L=R \ 2p, if
the radius is measured from a pole along a great circle.)

The proper time t of rotating matter (including electromagnetic matter as light)
so that it is at rest in the rotating system is related to the time t0 of the observer at
rest at r ¼ 0 as (9.82). Compared to his it runs slower and slower at increasing
distances from the observer, and, since the vacuum speed of light is the same
constant if measured with proper time (9.78) and is defining lengths (9.79), if he
sends out a light signal radially, it will propagate less and less distance, if less and
less of time is passing. At r ¼ c=x it seems to come to a halt. In fact it does not
propagate radially in the rotating coordinates. Instead its ray bends against the
direction of rotation and finally it nestles to the sphere r ¼ c=x. Similarly, a light
ray emitted from rotating matter inward is bent in the opposite direction.
The observer is unable to trace any process outside the radius c=x since any two
signals coming close in time from the same direction are originating from a-causal
events (separated by Ds \ 0). Nevertheless, the particular role of r ¼ c=x is solely
caused by the chosen rotating coordinate system. The physics is not special there,
and for instance det g, which is invariant under linear coordinate transformations,
in the considered case is regular in both systems, det g0 ¼ det g ¼ r2 as directly
calculated from the above two expressions for ds2.

The observer at r ¼ 0 would see the same physics regardless whether he is
rotating or a gravitational field is in effect which acts on all masses with a force
equal to the fictitious forces of the rotating system in the domain r \ c=x: As
soon as he is able to be convinced to see real physical processes outside this
domain simply by changing his rotation frequency with respect to his reference
system, he can put an upper limit to such a gravitational field and finally exclude
its existence by extending his observations to unlimited distances. So much
about the example.

Since the space-time manifold M (generalization of the Minkowski space) has
got a metric, the Hodge operator (4.89) may be defined and applied to the external
calculus on M. Since det g \ 0, according to (4.87) and (9.47) the invariant
volume form is

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det g

p
dx0 ^ dx1 ^ dx2 ^ dx3; ð9:84Þ

and the Levi–Civita pseudo-tensor (5.85) is

Ejklm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det g

p
d0123

jklm; Ejklm ¼ �1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det g
p d0123

jklm: ð9:85Þ

For various alternating tensors x, (5.87) now reads
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ð�1Þjklm ¼ Ejklm;

ð�xÞm ¼ Ejklmxjkl; ð�xÞklm ¼ 1
6 Ejklmxj;

ð�xÞlm ¼ 1
2 Ejklmxjk; ð�xÞlm ¼ 1

2 Ejklmxjk;

ð�xÞklm ¼ 1
6 Ejklmxj; ð�xÞm ¼ Ejklmxjkl;

ð�1Þjklm ¼ Ejklm:

ð9:86Þ

These rules provide a duality between alternating tensors x of rank n and
alternating tensors �x of rank 4� n. The dual d to the external differentiation d is
(5.90) for m ¼ 4:

dx ¼ �ðdð�xÞÞ; ð9:87Þ

and for x; r 2 Dn
cðMÞ; 0
 n
 4

½xjr� ¼
Z

M

x ^ �r ð9:88Þ

is an invariant integral to which Stokes’ theorem can be applied. For contravariant
alternating tensors x the forms �x of the right column of (9.86) are often called
tensor densities, which name, however, has no deeper meaning; the understanding of
tensor and tensor density may be interchanged in (9.88). Among many other things
these relations allow to apply readily the equations (5.96) to (5.101) and their
consequences to the case of Maxwell fields in the presence of a gravitational field.

As is seen from (9.77), gravitation is related to deviations of space–time from
being flat. In a flat space-time, Ck

lm � 0 for chosen coordinates, all free particles
move along straight lines of an inertial system of coordinates which means that no
gravitational field is present (or it is exactly compensated in an accelerated ref-
erence system of the observer, as for instance in the case of an observer in a freely
falling lift; these two possibilities can principally not be distinguished). In order to
construct an action integral for the gravitational field, one needs a scalar formed
from curvature of space–time. The Christoffel symbols cannot directly be used
since they are not covariant at all. Scalars can systematically be formed by con-
traction of tensors. The Riemannian curvature tensor (9.33) allows only for one
non-zero contraction

Rlm ¼ gjkRjlkm; Rlm ¼ Rml; ð9:89Þ

since contraction of the first or last pair of indices of Rjklm yields a vanishing result
due to the alternating behavior (first line of (9.34)) and the remaining contractions
are equal up to a sign. The obtained Ricci tensor is symmetric due to the last line
of (9.34) and hence may have again a non-zero contraction, the curvature scalar

R ¼ glmRlm: ð9:90Þ
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Einstein’s action is

S½g� ¼ c

j

Z

Rs; ð9:91Þ

where j is Einstein’s gravitational constant, but the prefactor is convention as long
as no interaction with matter is considered. However, the action integral would not
have a minimum unless this prefactor is positive. The volume form s was given in
(9.84). True, this action contains second derivatives of the potentials glm, however,
they can be eliminated by an integration by parts. The variation of this action
yields

d R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det g

p� �
¼ d glmRlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det g

p� �

¼ Rlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det g

p
dglm þ Rd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det g

p
þ glm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det g

p
dRlm:

With (9.25),

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det g

p
¼ � dg

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det g
p ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det g

p
glmdglm;

and the above variation may be cast into

d R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det g

p� �
¼ Rlm �

1
2

Rglm

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det g

p
dglm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det g

p
glmdRlm:

The last expression is a total derivative, which can be seen from calculating it in
normal coordinates at xl, where then the Ck

lm and the derivatives of the glm vanish

at xl. (See p. 315; rg ¼ 0, and for vanishing Ck
lm one has from (7.43)

ro=oxlg ¼ og=oxl.) From (7.48), in normal coordinates,

glmdRlm ¼ glm o

ovj
dCj

lm �
o

ovm
dCj

lj

� �

¼ o

ovj
glmdCj

lm � gljdCm
lm

� �
¼ owj

ovj
:

In these expressions, dCj
lm is the variation of Cj

lm under a variation of the metric
glm. Such a variation does not affect the second term on the right hand side of (7.38)
which only depends on the transition function between two local coordinate
systems. Hence, it drops out of the variation of (7.38), and from what remains it is
seen that unlike Cj

lm itself its variation is a tensor. (It measures the difference of two
parallel transported tensors along the same path element in different metrics and
hence takes the difference of two tensors in the same point of the manifold.) Thus,
wj is a vector, and since the left hand side of the above chain of equations is a
scalar, the right hand side must also be a scalar. This allows to write down this
relation in arbitrary coordinates as glmdRlm ¼ wj

;j. Now, from (9.91),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det g
p

glmdRlm ¼ oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det g
p

wjÞ=oxj, and this derivative can be omitted in the
variation of the action (9.91). For a free gravitational field the final equation of
motion is Rlm � ð1=2ÞRglm ¼ 0 or
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Rl
m �

1
2

Rdl
m ¼ 0: ð9:92Þ

Linearization of this equation at g0lm, equal to the Minkowski metric (9.74),

that is, linearization in hlm from glm ¼ g0lm þ hlm, yields the wave equation hhm
l ¼

ðo=octÞ2 �
P

iðo=oxiÞ2
� �

hm
l ¼ 0 for gravitational waves in vacuum. With (9.85–

9.87) it is a simple exercise to get the relation ðdxÞj ¼ ð1=2Þgjkðo=oxlÞx l
k for an

alternating tensor field x and a homogeneous metric, glm ¼ const. Hence,
ðddxÞ j

k ¼ ð1=2Þgjmo2=ðoxkoxlÞx l
m , from which ðddÞjm

kl ¼ ð1=2Þgjmo2=ðoxkoxlÞ
results. Similarly, ðddÞjm

kl yields the same result. That means that the d’Alembert
operator h for a homogeneous metric is to be replaced by the Laplace–Beltrami
operator ðdd þ ddÞ in covariant relations for an arbitrary metric. Therefore, ðdd þ
ddÞhm

l ¼ 0 is the wave equation for the propagation of gravitational waves on top
of any gravitational field.

If in addition to a gravitational field matter fields are present, then similar to
(9.91) an action integral

Sm ¼
1
2c

Z

Tlmglms ð9:93Þ

may additionally be introduced with again a prefactor of convention and of setting
an energy scale, where Tlm is the energy–momentum tensor of matter. Its
expression for various forms of matter can be found in theoretical physics text-
books. (T00=c is an energy density in 3-space, and its multiplication with the
4-volume gives an action.) The mere demand of covariance couples matter to the
gravitational potential glm. (By using anti-commutators in the symmetry group,
gravity as supergravity becomes a Yang–Mills theory and hence a gauge field
theory [5, Chapter 18].) Varying glm in the sum of (9.91) and (9.93) yields
Einstein’s final field equations for the gravitational field as

Rl
m �

1
2

Rdl
m ¼

j
c2

Tl
m ; R ¼ � j

c2
T ; Rl

m ¼
j
c2

Tl
m �

1
2

Tdl
m

� �

ð9:94Þ

in which the energy-momentum tensor appears as the source term for gravitation
as phenomenologically expected. The second and hence the third equation simply
follow from tensor contraction of the first. Note that this equation, on which
nowadays the construction of highest resolution GPS is based, was established
prior to all experimental observations of its consequences.

Let

g00 ¼ 1þ 2u
c2
; g0i ¼ 0; gij ¼ �dij 1� 2u

c2

� �

;
2u
c2
� 1; ð9:95Þ
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and let T0
0 ¼ mc2dðrÞ ¼ T ; r ¼ ðx1; x2; x3Þ be the only non-zero component of the

energy-momentum tensor for a point particle of mass m at rest at the coordinate
origin. Then, from the last equation (9.94),

R0
0 ¼

1
2
jmdðrÞ; R0

i ¼ Ri
0 ¼ 0; Ri

k ¼ �di
k

1
2
jmdðrÞ:

From (7.48) and (9.23), in lowest order of 1=c,

R0
0 � R00 �

oCi
00

oxi
� 1

2
gii o

2g00

oxi2
¼ 1

c2
Du � �Ri

i

with the Laplacian D. Hence,

Du ¼ c2jm

2
dðrÞ ¼ 4pkmdðrÞ; j ¼ 8pk

c2
; ð9:96Þ

which is Newton’s law, if k is Newtons phenomenological gravitational constant.
This finally determines Einstein’s constant in (9.91).

A solution of (9.96) is uðrÞ ¼ �km=r. It has a singularity at r ¼ 0, and for
an observer on a world line xlðsÞ proper time and length element (9.78, 9.79)
are

dt ¼ 1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2km

c2r

r

dx0; dl2 ¼ 1þ 2km

c2r

� �X3

i¼1

ðdxiÞ2:

Although (9.96) is the right equation for the gravitational field of a point
charge only in lowest order in 1=c and hence only for large enough
distances from the center r ¼ 0 (in truth, in modified coordinates ðr; h;/Þ in
which 2pr means the length of a circle centered at the mass center so
that due to the curvature r is not any more the proper radius, dl2 ¼ dr2=

ð1� 2km=ðc2rÞÞ þ r2ðsin h d/2 þ dh2Þ), a qualitative feature is retained in the
solution of the exact equation: there is a horizon, the Schwarzschild radius
r0 ¼ 2km=c2 at which dt vanishes for any world line xlðsÞ. A clock on this
world line becomes so fast that any motion with velocity v
 c measured with
this clock seems to come to a halt. No passing of the horizon by matter or
light seems to be possible. The latter is indeed what happens with matter or
light from smaller radii. However, in the above mentioned exact Schwarzschild
solution of the problem, grr and hence dl2 diverges at the same radius r0, and all
world lines of matter are bent inward for r\r0, which radius thus can be passed
only in one direction. Although g00 and grr are singular in the chosen coordi-
nates, det g for the exact solution has again no singularity there. For an observer
from outside, in regularized coordinates the surface of the r0-sphere shrinks to a
point in which all information approaching it disappears. Inside r0 no materi-
alizable rest frame exists. All matter moves eventually only further inward; there
is no cone of future opening outward from r0. If for a real spherical mass
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distribution of high enough mass density q there is a solution of r ¼ r0ðmðrÞÞ,
where mðrÞ is the total mass inside r, then this situation of a black hole is
realized. Even at large enough values of r for which (9.96) is justified,
clocks, for instance atomic vibrations, slow down with increasing r. For an
observer at a fixed value r1; r0\r1\r light from atomic spectra at r arrives
at r1 red shifted and its rays are bent. This gravitational red shift and bend-
ing from the earth’s mass has to be taken into account in the high resolution
GPS.

9.7 Complex, Hermitian and Kählerian Manifolds

Throughout this text real manifolds were considered with differentiable structures
(complete atlases) for simplicity assumed smooth although many statements on
manifolds generalize to less restrictive cases of Cm-manifolds for sufficiently large
m (between 0 and 3 for most statements). If M has a complete atlas of coordinate
neighborhoods Ua which are homeomorphic to open sets Ua 2 Cm in such a way
that all transition functions ub 	 u�1

a : uaðUa \ UbÞ ¼ Ua \ Ub ! Ua \ Ub ¼
ubðUa \ UbÞ, are analytic (Cx), then M is called an m-dimensional complex
manifold.

Recall from complex function theory, that a complex function Fðz1; . . .; zmÞ ¼
Re Fðx1; y1; . . .; xm; ymÞ þ i Im Fðx1; y1; . . .; xm; ymÞ; z j ¼ x j þ iy j is analytic (ho-
lomorphic) at point ðz jÞ, iff it obeys the Cauchy–Riemann conditions

oRe F

ox j
¼ oIm F

oy j
;

oRe F

oy j
¼ � oIm F

ox j
; j ¼ 1; . . .;m; ð9:97Þ

or iff it can be Taylor expanded in a neighborhood of ðz jÞ. If a mapping is analytic
and a homeomorphism, then the inverse mapping exists and is also analytic. Recall
also that a complex function F analytic on some domain cannot assume an extremal
absolute value jFj at an inner point of that domain unless it is a constant. Hence, any
analytic mapping of a compact, connected complex manifold without boundary into
the Cm must be a mapping to one single point of Cm. This gives some flavor of how
restrictive the condition of analyticity on complex manifolds is.

As the simplest example, consider a two-dimensional oriented real manifold M

with a Riemannian metric ds2 ¼ ðx1Þ2 þ ðx2Þ2, where x j are two 1-forms on M,
in a coordinate neighborhood given by x j ¼ x j

xðx; yÞdxþ x j
yðx; yÞdy. A complex-

valued 1-form x in two real dimensions is called an analytic 1-form, if it can be
written as x ¼ f ðzÞdz; z ¼ xþ iy, with an analytic complex function f . If in the
above metric x1 þ ix2 is analytic, then ds2 ¼ ðx1 þ ix2Þðx1 � ix2Þ is called an
analytic metric. This metric can be written as

ds2 ¼ j f ðzÞj2dzd�z ¼ j f ðzÞj2ðdx2 þ dy2Þ: ð9:98Þ
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Thus, locally an analytic Riemannian metric on a two-dimensional real mani-
fold can always be brought into the form (9.98). Coordinates x; y in this form are
called isothermal coordinates. If two metrics g1 and g2 are related as g2 ¼ fg1

where f is a positive function, then it is readily seen from (9.4, 9.5) that all angles
have the same values in both metrics. The Riemannian geometries with such two
metrics are called conformal, and mappings F : M1 ! M2 between geometries M1

and M2 which preserve all angles are called conformal mappings. Hence, an
analytic Riemannian metric on a two-dimensional manifold is always locally
conformal to the Euclidean metric. If there are coordinates w ¼ uþ iv in which
ds2 may be written as ds2 ¼ j/ðwÞj2dwd�w, then either dw is proportional to dz
(orientation preserving) or to d�z (orientation reversing). In the first case w is an
analytic function of z. If FðzÞ is an analytic complex function with dF=dz ¼ f ðzÞ,
then locally ds2 ¼ dFd�F and Re F and Im F are Cartesian local coordinates in the
above considered manifold M.

The metric (9.98) defines a one-dimensional complex Riemannian manifold
which is also called a Riemannian surface. Note that ðx1 þ ix2Þ ¼ f dz means
x1

x ¼ x2
y ¼ Re f ;x1

y ¼ �x2
x ¼ Im f . It is seen that every two-dimensional orient-

able real manifold allows for a complex manifold structure with a locally
Euclidean metric that makes it into a Riemannian surface.

Let M be a complex manifold of dimension m and consider the tangent space
TzðMÞ on M at point z ¼ ðz1; . . .; zmÞ. The linear mapping J : TzðMÞ ! TzðMÞ :

JX ¼ iX or JX ¼ �iX has the obvious property J2 ¼ J 	 J ¼ �IdTzðMÞ. Conversely,
if V is a vector space, then a linear transformation J : V ! V; J2 ¼ �IdV is called
a complex structure on V . Treat V as a real vector space, then two vectors X and
JX cannot be proportional to each other, JX ¼ kX with real k, because then
J2X ¼ k2X; k2� 0, against the assumption. Hence, X and JX span a two-dimen-
sional subspace EX of V which is clearly invariant under J; JEX ¼ EX , and every
invariant subspace of J in V is two-dimensional. A complex structure can only
exist on V , if as a real vector space it is even-dimensional. If V� is the dual space
of V , then a complex structure J on V induces a complex structure (also called J)
on V� by the definition

hx; JXi ¼ hJx;Xi for all x 2 V�; X 2 V : ð9:99Þ

From this definition, J2 ¼ �IdV� readily follows.
An example from physics is the time reversal operator bT in quantum

mechanics. As an operator in the space of spinor quantum states W it has the
property bT 2 ¼ �Id and hence is a complex structure. If a Hamiltonian bH com-
mutes with bT , then bHW ¼ WE implies bHðbTWÞ ¼ bT bHW ¼ ðbTWÞE, and all
eigenvalues E of bH are twofold degenerate. This is called Kramers degeneracy.
Much more general implications of a complex structure on quantum physics are
discussed in [6].
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Treat further on V as a real even-dimensional vector space provided with a
complex structure J. Consider the set of complex valued linear functions on V as
the complexification V� � C of the dual space V�. Since V� is a real vector space
of dimension m, V� � C is a complex vector space of complex dimension m. Any
element X 2 V� � C can be written as X ¼ x1 þ ix2; x j 2 V�. Extend J from V�

to V� � C by complex linearity. The linear operator J has eigenvectors as elements
of V� � C with eigenvalues �i, which are called elements of type ð1; 0Þ (upper
sign) and ð0; 1Þ (lower sign), respectively. Denote the subspace of V� � C of all
elements of type ð1; 0Þ by V�C and the subspace of all elements of type ð0; 1Þ by �V�C.
Let X be any vector in V� � C and let X1 ¼ ð1� iJÞX=2; X2 ¼ ð1þ iJÞX=2.
Then, X ¼ X1 þ X2 and JX1 ¼ ðJ þ iÞX=2 ¼ iX1; JX2 ¼ ðJ � iÞX=2 ¼ �iX2.
Hence, X1 2 V�C; X2 2 �V�C and V� � C ¼ V�C � �V�C. Moreover, J maps V�C onto �V�C
under complex conjugation. Indeed, let again X ¼ x1 þ ix2 and let it be in V�C.
Then, JX ¼ iðx1 þ ix2Þ ¼ �x2 þ ix1. Hence, Jx1 ¼ �x2; Jx2 ¼ x1, and
J �X ¼ Jðx1 � ix2Þ ¼ �x2 � ix1 ¼ �i�X, which means �X 2 �V�C for X 2 V�C. Both
spaces V�C and �V�C are complex vector spaces of dimension m=2 each. If fX j j j ¼
1; . . .;m=2g is any base in V�C, then fX j; �X j j j ¼ 1; . . .;m=2g is a base in V� � C.
Let

X j ¼ x j þ ixm=2þj 2 V�C; �X j ¼ x j � ixm=2þj 2 �V�C; j ¼ 1; . . .;m=2 ð9:100Þ

with xk 2 V�; k ¼ 1; . . .;m. Since fx j ¼ ðX j þ �X jÞ=2;xm=2þj ¼ ðX j � �X jÞ=ð2iÞj j ¼
1; . . .;m=2g is just another base in V� � C with real base vectors x j; j ¼ 1; . . .;m,
it is also a base in the real space V�. Because JX j ¼ iX j; J �X j ¼ �i�X j,

Jx j ¼ �xm=2þj; Jxm=2þj ¼ x j; j ¼ 1; . . .;m=2: ð9:101Þ

The base fx j j j ¼ 1; . . .;mg in V� is called a J-adapted base. For the dual base
fXk j k ¼ 1; . . .;mg in V , hx j;Xki ¼ d j

k, this immediately implies

JXk ¼ Xm=2þk; JXm=2þk ¼ �Xk; k ¼ 1; . . .;m=2: ð9:102Þ

It is likewise a J-adapted base. With these notations one has x j ^ Jx j ¼
�x j ^ xm=2þj ¼ �ði=2ÞX j ^ �X j, whence the volume element is (with the obvious
notation ^m

j¼1x
j ¼ x1 ^ � � � ^xm)

s ¼
m̂=2

j¼1

ðx j ^ xm=2þjÞ ¼ i

2

� �m=2 m̂=2

j¼1

ðX j ^ �X jÞ: ð9:103Þ

Any linear base transformation Pj ¼
Pm=2

k¼1 XkAj
k with a complex

ððm=2Þ 
 ðm=2ÞÞ-matrix A yields ^jðPj ^ �PjÞ ¼ jdet Aj2 ^j ðX j ^ �X jÞ and
hence it corresponds to a linear base transformation in V which preserves the
orientation of V .
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Summarizing: If J is a complex structure on a real vector space V , then V is of
even dimension m, and there exists a base fXk; JXk j k ¼ 1; . . .;m=2g in V , and any
two such bases yield the same orientation of V: Conversely, if the dimension m of
V is even and there exists a direct sum decomposition V� � C ¼ V�C � �V�C of the
complexified dual of V such that complex conjugation maps bijectively V�C onto
�V�C; then there is a complex structure on V for which the elements of V�C are of type
ð1; 0Þ and the elements of �V�C are of type ð0; 1Þ:

For the last statement one simply puts JX ¼ iX in V�C and JX ¼ �iX in �V�C.
A ðpþ qÞ-linear alternating complex function on V which may be written as

X

j1\���\jp;�j1\���\�jq

Cj1...jp;�j1...�jqX
j1 ^ � � � ^ X jp ^ �X

�j1 ^ � � � ^ �X
�jq ð9:104Þ

is called an exterior ðp; qÞ-form. Obviously, if X is an exterior ðp; qÞ-form, then �X
is an exterior ðq; pÞ-from, and if P is an exterior ðr; sÞ-form, then X ^P is an
exterior ðpþ r; qþ sÞ-from.

Like the J-adapted base fx j j j ¼ 1; . . .;mg could be used as a base in both the
real space V� and the complex space V� � C, the J adapted base fXk j k ¼
1; . . .;mg in V can also be used in the complex m-dimensional space V � C. Then,
introduce in the latter space the alternative base

Zk ¼
1
2

Xk � iXm=2þk

� 	
; �Zk ¼

1
2

Xk þ iXm=2þk

� 	
; k ¼ 1; . . .;m=2 ð9:105Þ

and find hX j; Zki ¼ hðx j þ ixm=2þjÞ; ðXk � iXm=2þkÞi=2 ¼ d j
k ¼ h�X

j; �Zki; j; k ¼
1; . . .m=2 since x j and Xk were dual to each other for j; k ¼ 1; . . .;m. Likewise one
finds hX j; �Zki ¼ 0 ¼ h�X j; Zki. The bases fX j; �X jg and fZk; �Zkg are dual to each
other in the complex spaces V� � C and V � C.

Let V again be a real vector space with a complex structure J, and let H :
V 
 V ! C be a complex function of two vector variables with the properties
(physics convention, mathematics convention would interchange the first with the
second argument, compare p. 19)

1: HðX; k1X1 þ k2X2Þ ¼ k1HðX;X1Þ þ k2HðX;X2Þ; X;Xj 2 V; kj 2 R;

2: HðY;XÞ ¼ HðX; YÞ; X; Y 2 V;

3: HðX; JYÞ ¼ iHðX; YÞ:

Then, H is called a Hermitian structure. The first two conditions mean that Re H
is a symmetric bilinear function, and Im H is an alternating bilinear function while
it follows from the second and third properties that

Re HðX; JYÞ ¼ �Im HðX; YÞ; Im HðX; JYÞ ¼ Re HðX; YÞ;
HðJX; JYÞ ¼ HðX;YÞ:

ð9:106Þ
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If besides the complex structure J a symmetric bilinear function FðX; YÞ on V is
given (or an alternating bilinear function GðX; YÞ), then it defines with the rela-
tions (9.106) a Hermitian structure Re H ¼ F (Im H ¼ G). The Hermitian struc-
ture H is called positive definite, if Re H ¼ F is a positive definite function. It is
easily seen that a positive definite Hermitian structure defines a (real) inner
product in V ,

ðXjYÞ ¼ Re HðX; YÞ ¼ 1
2

HðX; YÞ þ HðY;XÞð Þ; ð9:107Þ

that is invariant under the mapping J, ðJXjJYÞ ¼ ðXjYÞ.
Expanded in the J-adapted base (9.102), general vectors X; Y 2 V are

X ¼
Xm=2

k¼1

nkXk þ nm=2þkJXk

� �
; Y ¼

Xm=2

k¼1

gkXk þ gm=2þkJXk

� �
; nk; gk 2 R

and hence,

HðX; YÞ ¼
Xm=2

j;k¼1

n j � inm=2þj
� �

gk þ igm=2þk
� �

HðXj;XkÞ:

Now, n j ¼ hx j;Xi, and hence, with (9.100), n j � inm=2þj ¼ h�X j;Xi;
gk þ igm=2þk ¼ hXk; Yi. Therefore,

HðX; YÞ ¼
Xm=2

j;k¼1

H�jkh�X j;XihXk; Yi; H�jk ¼ HðXj;XkÞ ¼ �Hk�j; ð9:108Þ

that is, the Hermitian structure is given by a Hermitian 2-form

H ¼
Xm=2

j;k¼1

H�jk
�X j � Xk ð9:109Þ

expressed in a J-adapted base in V� � C:
The alternating 2-form (exterior 2-from) G with hG;X ^ Yi ¼ Im HðX; YÞ ¼

HðX;YÞ �HðX;YÞ
� �

=ð2iÞ ¼
Pm=2

j;k¼1 H�jkh�X j;XihXk;Yi � h�X j;YihXk;Xi
� �

=ð2iÞ ¼

ð�i=2Þ
Pm=2

j;k¼1 H�jk
�X j ^Xk;X ^ Y

D E
, that is,

iG ¼ 1
2

Xm=2

j;k¼1

H�jk
�X j ^ Xk; ð9:110Þ

is called the Kählerian form of the Hermitian structure H. Hence, H ¼ F þ iG,
where F ¼ Re H is a symmetric 2-form.

If V is a complex vector space of dimension m=2, then a Hermitian structure
on the complex vector space is a function H : V 
 V ! C with the properties
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1: HðZ; k1Z1 þ k2Z2Þ ¼ k1HðZ; Z1Þ þ k2HðZ; Z2Þ; Z; Zj 2 V ; kj 2 C;

2: HðZ2; Z1Þ ¼ HðZ1; Z2Þ; Zj 2 V :

It is said to be positive definite, if HðZ; ZÞ[ 0. Thus, if V is an m-dimensional
real vector space with a complex structure J, then by defining iX ¼ JX for all
X 2 V it extends by complex linearity to a complex vector space of dimension m;
if it has a Hermitian structure H, then this is both a Hermitian structure of the real
and complex vector spaces V .

A real manifold M of dimension m with a given smooth real tensor field J of
type ð1; 1Þ such that at every point x 2 M the tensor Jx provides the tangent space
TxðMÞ with a complex structure is called an almost complex manifold and J is
called an almost complex structure on M. Clearly, M must be orientable and of
even dimension. However, it can be shown that not every orientable manifold of
even dimension can have an almost complex structure. Suppose M is an almost
complex manifold and x j are local coordinates in M. Then,

Jx
o

ox j

� �

¼
Xm

k¼1

Jk
j ðxÞ

o

oxk
;
Xm

l¼1

Jl
jðxÞJk

l ðxÞ ¼ �dk
j ; ð9:111Þ

with smooth functions Jk
j ðxÞ.

As will be seen now, every complex manifold is an almost complex manifold,
the opposite, however, is in general only true for m ¼ 2. Let M be an m=2-
dimensional complex manifold. It can be viewed as an m-dimensional real man-
ifold. Consider a coordinate neighborhood with local complex coordinates
ðz1; . . .; zm=2Þ; z j ¼ x j þ iy j; x j; y j 2 R. Define the tensor field J by

Jz
o

ox j

� �

¼ o

oy j
; Jz

o

oy j

� �

¼ � o

ox j
: ð9:112Þ

Obviously, J2
z ¼ �IdTzðMÞ. Of course, the definition of J must have a coordinate

independent meaning. Let z j ¼ z jðwkÞ be m=2 analytic complex functions in a
neighborhood of the point z 2 M, so that wk ¼ uk þ ivk; uk; vk 2 R are alternative
local coordinates there. Due to the Cauchy–Riemann conditions (9.97) for the
functions z j, one gets from (9.112)

Jz
o

ouk

� �

¼ Jz

X

j

ox j

ouk

o

ox j
þ
X

j

oy j

ouk

o

oy j

 !

¼ o

ovk
;

Jz
o

ovk

� �

¼ Jz

X

j

ox j

ovk

o

ox j
þ
X

j

oy j

ovk

o

oy j

 !

¼ � o

ouk
:

Thus, J is correctly defined. This almost complex structure defined by (9.112)
is called the canonical almost complex structure of the complex manifold M.
From (9.99) it follows that
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Jzðdx jÞ ¼ �dy j; Jzðdy jÞ ¼ dx j; ð9:113Þ

and hence dz j ¼ dx j þ idy j is a complex differential ð1; 0Þ-form, Jzðdz jÞ ¼ idz j,
and d�z j ¼ dx j � idy j is a complex differential ð0; 1Þ-form, Jzðd�z jÞ ¼ �id�z j, both
as elements of the complex vector space T�z ðMÞ � C ¼ T�z ðMÞC � T�z ðMÞC.
Accordingly, in the complexified tangent space TzðMÞ � C,

o

oz j
¼ 1

2
o

ox j
� i

o

oy j

� �

;
o

o�z j
¼ 1

2
o

ox j
þ i

o

oy j

� �

; j ¼ 1; . . .;m=2; ð9:114Þ

are tangent vectors of type ð1; 0Þ; Jzðo=oz jÞ ¼ iðo=oz jÞ; and ð0; 1Þ; Jzðo=o�z jÞ ¼
�iðo=o�z jÞ; respectively, which together span the complex tangent space
TzðMÞ � C ¼ TzðMÞC � TzðMÞC. The real cotangent space of M taken as an m-
dimensional real manifold is spanned by the combinations dx j ¼ ðdz j þ
d�z jÞ=2; dy j ¼ ðdz j � d�z jÞ=ð2iÞ and likewise for the real tangent space. As is seen,
any complex manifold is indeed an almost complex manifold.

Conversely, let M be an almost complex manifold of (real) dimension m with
an almost complex structure given by the smooth tensor field J of type ð1; 1Þ.
Consider this almost complex structure locally given by m=2 linearly independent
differential 1-forms X j; j ¼ 1; . . .;m=2 of type ð1; 0Þ and m=2 corresponding
differential 1-forms �X of type ð0; 1Þ. Let dx j ¼ ðX j þ �X jÞ=2 and
dy j ¼ ðX j � �X jÞ=ð2iÞ. If these differentials integrate locally to real analytic
coordinates (that is, to coordinates belonging to an analytic complete atlas with
only analytic transition functions of M), then M is a complex manifold. By virtue
of Frobenius’ theorem this is the case, iff

dX j � 0 mod Xk; 1
 k
m=2
� 	

; ð9:115Þ

because this also implies d �X j � 0 mod ð�Xk; 1
 k
m=2Þ, and in that case �X j ¼
0; j ¼ 1; . . .;m=2 defines an analytic submanifold of M, the complexified tangent
spaces to which are Tðx;yÞðMÞC and in which hence m=2 analytic complex coor-

dinates z j may be chosen. Since fX j; �X jg is a base in T�ðx;yÞðMÞ � C, the exterior

differential 2-form dX j may be written as

dX j ¼
X

k\l

Aj
klX

k ^ Xl þ
X

kl

B j
klX

j ^ �Xl þ
X

k\l

C j
kl

�Xk ^ �Xl;

and (9.115) means C j
kl � 0. Since these expressions for dX j are tensor relations,

C j
kl is a tensor and its vanishing and hence the condition (9.115) is invariant under

linear transformations of the X j as it must be. If an almost complex manifold
fulfills the condition (9.115), it is called integrable.

It has been proved by quite technical means that real analyticity need not be
presupposed, so that
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every (smooth) integrable almost complex manifold M derives its almost
complex structure from a canonical complex structure of a complex manifold
structure of M.

Since for m ¼ 2 the condition (9.115) imposes no restriction (X ¼ dxþ idy in
that case and hence dX ¼ 0), a two-dimensional almost complex manifold always
derives from a one-dimensional complex manifold, that is, from a Riemannian
surface. For all even m [ 2 there exist almost complex manifolds which cannot be
given the structure of a complex manifold. (This holds for instance for the real
sphere S4.)

Let M be a real manifold of even dimension m and let an almost complex
structure J on M be given. Let ðx1; . . .; xmÞ be arbitrary local coordinates in M. In
view of (9.111), hJxðdx jÞ; o=oxki ¼ hdx j; Jxðo=oxkÞi ¼

Pm
l Jl

kðxÞhdx j; o=oxli ¼
J j

kðxÞ. Hence, Jxðdx jÞ ¼
Pm

k J j
kðxÞdxk. Now,

Pm
k J j

kðxÞ þ id j
k

� 	
dxk ¼ ðJx þ iÞdx j

and JxðJx þ iÞdx j ¼ iðiþ JxÞdx j; JxðJx � iÞdx j ¼ �ið�iþ JxÞdx j. This proves that

Xm

k

J j
kðxÞ þ id j

k

� 	
dxk is an exterior differential (1,0)-form, and

Xm

k

J j
kðxÞ � id j

k

� 	
dxk is an exterior differential (0,1)-form.

Suppose the integrability condition (9.115) is valid, It follows that

d
Xm

k

J j
kðxÞ þ id j

k

� 	
dxk

 !

¼
Xm

l\k

Jj
kldxl ^ dxk

� 0 mod
Xm

p

Jn
pðxÞ þ idn

p

� �
dxp; 1
 n
m

 !

;

where

J j
kl ¼

oJ j
k

oxl
� oJ j

l

oxk
: ð9:116Þ

The 1-forms
Pm

p ðJn
pðxÞ þ idn

pÞdxp; 1
 p
m; of type ð1; 0Þ annihilate the
subspace of tangent vectors

Pm
n ðJn

pðxÞ � idn
pÞo=oxn; 1
 p
m; of type ð0; 1Þ.

Hence, the conditions above (9.116) can be expressed as

Xm

kl

J j
kl Jk

p � idk
p

� �
Jl

q � idl
q

� �
¼ 0; for all 1
 j; p; q
m;

or, with (9.116) and the second relation (9.111),

T j
kl ¼ 0; T j

kl ¼
Xm

p

J j
kpJp

l � J j
lpJp

k

� �
: ð9:117Þ
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The tensor field Tj
kl of type ð1; 2Þ is called the torsion tensor field of the almost

complex structure J (not to be confused with the torsion tensor of a linear
connection).

The almost complex structure J on M is integrable, iff its torsion tensor field is
zero.

A very systematic complex external calculus can be developed on an integrable
almost complex manifold (and hence on a complex manifold). If the components
Cj1...jp;�j1...�jq of (9.104) are smooth functions on M, then (9.104) is called an exte-
rior differential ðp; qÞ-form. Like in the real case, the algebra of all complex
exterior forms over the ring of smooth complex functions on M may be considered,
of which the exterior ðp; qÞ-forms are homogeneous elements. Clearly, like in the
case of the 1-form X j, if X is an exterior ðp; qÞ-form, then dX is a sum of a
ðpþ 2; q� 1Þ-form (in general non-zero, if q [ 0), a ðpþ 1; qÞ-form, a ðp; qþ 1Þ-
form and a ðp� 1; qþ 2Þ-form (in general non-zero, if p [ 0). Let oX be the part
of dX which is a ðpþ 1; qÞ-form and let �oX be the part of dX which is a ðp; qþ 1Þ-
form. Take the coordinate representation (9.104) of X and consider the integra-
bility condition (9.115). It is easily seen that either of the conditions

d ¼ oþ �o; �o2 ¼ 0 ð9:118Þ

is equivalent to the integrability condition (9.115).

Proof Indeed, in either case (9.115) and (9.118), left condition, the ðpþ 2;
q� 1Þ-part and the ðp� 1; qþ 2Þ-part of dX vanish, and the other two parts are
obtained under both conditions. Moreover, d2 ¼ 0 which holds generally implies
o2 þ o 	 �oþ �o 	 oþ �o2 ¼ 0 because of the left condition of (9.118), and, since
forms of different type are linearly independent, o2 ¼ 0; o 	 �oþ �o 	 o ¼ 0; �o2 ¼ 0.
Conversely, for a smooth function F one obtains oF ¼

P
j FjX

j with smooth

functions Fj. Now, �o2F is the ð0; 2Þ-part of dð�oFÞ ¼ dðd � oÞF ¼ �dðoFÞ ¼
�
P

jðdFjÞ ^ X j �
P

j FjdX j. The first term has no ð0; 2Þ-part, and that of the

second term is �ð1=2Þ
P

jkl FjC
j
kl

�Xk ^ �Xl. Hence, �o2 ¼ 0 implies Cj
kl ¼ 0 which is

equivalent to (9.115). h

With dz j ¼ dx j þ idy j and (9.114), the differential of a smooth complex
function F on M may be written as

dF ¼
Xm=2

j¼1

oF

ox j
dx j þ oF

oy j
dy j

� �

¼
Xm=2

j¼1

oF

oz j
dz j þ oF

o�z j
d�z j

� �

;

hence

oF ¼
Xm=2

j¼1

oF

oz j
dz j; �oF ¼

Xm=2

j¼1

oF

o�z j
d�z j: ð9:119Þ
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For a general exterior differential ðp; qÞ-form

X ¼
X

k1\���\kp;�l1\���\�lq

Xk1...kp;�l1...�lq dzk1 ^ � � � ^ dzkp ^ d�zl1 ^ � � � ^ d�zlq ð9:120Þ

one has (cf. (3.40))

oX ¼
Xpþ1

r¼1

ð�1Þrþ1

X

k1\���\kpþ1;�l1\���\�lq

oXk1...kr�1krþ1...kpþ1;�l1...�lq

ozkr
dzk1 ^ . . . ^ dzkp ^ d�zl1 ^ . . . ^ d�zlq

ð9:121Þ

and

�oX ¼
Xqþ1

s¼1

ð�1Þpþsþ1

X

k1\���\kp;�l1\���\�lqþ1

oXk1...kp;�l1...�ls�1
�lsþ1...�lqþ1

o�z�ls
dzk1 ^ � � � ^ dzkp ^ d�zl1 ^ � � � ^ d�zlqþ1 :

ð9:122Þ

Splitting F in (9.119) into its real and imaginary parts as in (9.97) it is readily
seen that

F is analytic, iff �oF ¼ 0:

Likewise, if X is an exterior differential ðp; 0Þ-form, it is analytic, iff �oX ¼ 0,
and then it holds that dX ¼ oX.

If M is a complex manifold of (complex) dimension n and ðz1; . . .; znÞ is a local
coordinate system, then the tangent vectors o=oz j span the (complex) tangent
space TzðMÞ. If a Hermitian structure is given on TzðMÞ for every z 2 M so that in
every coordinate neighborhood the functions H�jkðzÞ ¼ Hððo=oz jÞ; ðo=ozkÞÞ are
smooth functions of z, then M is called a Hermitian manifold. If moreover, the
Kählerian form G of H, in local coordinates

iG ¼ 1
2

Xn

j;k¼1

H�jkd�z j ^ dzk; ð9:123Þ

where G is a real-valued differential ð1; 1Þ-form, is a closed differential form, that
is, dG ¼ 0, then M is called a Kählerian manifold.

The definition of bundles and connections transfers readily to complex
manifolds M. If the typical fiber of a fiber bundle is a complex vector space V of
dimension n, a complex vector bundle on M is obtained. Complex tangent and
cotangent bundles, as well as tensor and exterior bundles on the basis of the
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former, are the constructions in which the so far considered tangent, cotangent
and tensor fields and complex exterior differential forms live. In particular, the
consideration of complex frame fields leads to linear connections, for which the
notion of torsion and curvature forms can be generalized. Complex bundles were
occassionally already discussed as complex Lie groups and their Lie algebras or
in connection with characteristic classes. If a positive Hermitian structure is
smoothly assigned to the fibers of a complex vector bundle, then it is called a
Hermitian vector bundle. It turns out that a Hermitian manifold is Kählerian, iff
its Hermitian tangent bundle is torsion-free. For further reading see for instance
[7] or [3].
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Compendium

C.1 Basic Algebraic Structures

See for instance [1].

Monoid ðM; �Þ or shortly M:

• g1 � g2 2 M for all g1, g2 2 M,
• (g1 � g2) � g3 = g1 � (g2 � g3),
• e 2 M with e � g = g � e = g for all g 2 M, (frequent notation e =:1)

Group (G, �) or G:

• (G, �) is a monoid,
• g-1 2 G with g � g-1 = g-1 � g = e for all g 2 G.

Abelian (commutative) group (G, +):

• g1 + g2 = g2 + g1, e =: 0.

Ring (K, + , �) or K (with unity):

• (K, +) is an Abelian group with e =: 0,
• (K, �) is a monoid with e =:1,
• k1 � (k2 + k3) = k1 � k2 + k1 � k3, (k1 + k2) � k3 = k1 � k3 + k2 � k3,

(distributivity; if 1 = 0 then K = {0}).

Division ring:

• 1 = 0,
• ðK n f0g; �Þ is a group.
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Field

• K is a division ring with commutative multiplication.

(Some authors consider rings without unity of multiplication and call a division
ring also a field.)

Module (V, K, +) or V over the ring K (K-module):

• (V, +) is an Abelian group with e =: 0,
• for all a, b 2 K and for all a, b 2 V, aa 2 V holds with

– a(a + b) = aa + ab,
– (a + b)a = aa + ba,
– a(ba) = (a � b)a.

K itself is a special (one-dimensional) module over K.

Vector space over K (K-vector space):

• K is a field. (Often K ¼ R or K ¼ C:)

K itself is a special (one-dimensional) vector space over K.

Algebra (A, K, + , �) or A (K-algebra):

• K is a commutative ring (with unity),
• (A, K, +) is a module,
• (A, �) is a monoid, and for all a, b, c 2 A and for all a 2 K

– a � (b + c) = a � b + a � c, (a + b) � c = a � c + b � c,
– a(a � b) = (aa) � b = a � (ab).

K itself is a special (one-dimensional) algebra over K.

Associative algebra:

• (a � b) � c = a � (b � c).

Algebra with unity:

• e 2 A with a � e = e � a = a for all a 2 A.

In an associative algebra with unity (A, �) is a ring.

Commutative algebra:

• a � b = b � a.
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Algebraic homomorphism f : AS ? AS0, where f commutes with all algebraic
operations, for instance

f ðg1 � g2Þ ¼ f ðg1Þ � f ðg2Þ etc.

In cases of modules or vector spaces and algebras, usually only K = K0 is of
interest. Homomorphisms of modules or of vector spaces are called linear
mappings or linear functions or linear operators.

Kernel of the homomorphism: Ker f = f-1(e0).

f : AS ? AS0 is called an algebraic isomorphism, if f and f-1 are algebraic
homomorphisms. AS and AS0 are called algebraically isomorphic in this case:
AS � AS0:

A homomorphism f : AS ? AS is called Endomorphism (f 2 End (AS)).

An isomorphism f : AS ? AS is called Automorphism (f 2 Aut (AS)).

AS is called a sub-AS of AS0, if it is isomorphic to a part of AS0. For every
homomorphism f : AS ? AS0, f(AS) is a sub-AS of AS0.

Let S be part of an AS. The intersection of all sub-AS containing S is called the
sub-AS generated by S. A part S generating a module is said to be linearly
independent if every finite subset of S is linearly independent; a linearly
independent set S generating a module is called its algebraic base. The
cardinality of an algebraic base of a vector space is its algebraic dimension.

Invariant subgroup (normal subgroup) H of G:

H is a subgroup of G and

g H g�1 � H for all g 2 G:

In this case there exists a homomorphism f : G ? G0 with Ker f = H and
f (G) = G0.

G0 is the quotient group or factor group G=H.

For any g0 2 G=H; f�1ðg0Þ � G is called coset of H in G.

If G0 ¼ G=H is also an invariant subgroup of G, then G = H 9 G0 is a direct
product of groups, that is,

G ¼ g ¼ g1 � g2 ¼ g2 � g1 j g1 2 H; g2 2 G0; g � g0 ¼ ðg1 � g01Þ � ðg2 � g02Þ
� �

:

Ideal ((twosided) invariant subring) I of a ring K:
I is a subring of K and

aI � I; Ia � I for all a 2 K:
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In this case there exists a homomorphism f : K ! K 00 � K 0 with Ker f = I and
f (K) = K0.

K0 is the quotient ring (factor ring) K=I.

If K 0 ¼ K=I is also an ideal of K, then K ¼ I � K 0 is a direct sum of rings, that
is,

K ¼ a ¼ a1 þ a2 j a1 2 I; a2 2 K 0; a � a0 ¼ a1 � a01 þ a2 � a02
� �

:

Simple group a group G = {e} that has no non-trivial invariant subgroups, that
is, no invariant subgroups besides G and {e}.

Representation of a group G is a homomorphism D : G ? Aut (S) into the group
of transformations (permutations) of a non-empty set S.

Dðg1 � g2Þ ¼ Dðg1Þ � Dðg2Þ ð) DðeÞ ¼ Id SÞ:

The adjoint representation Ad : G ? Aut (G) represents g 2 G as the
transformation g0 7! gg0g�1 of G,

Ad ðgÞ : G! G : g0 7! Ad ðgÞg0 ¼ gg0g�1:

In this case, a common notation is

Ad ðg�1Þg0 ¼ g�1g0g ¼ ðg0Þg; ððg0ÞgÞh ¼ ðg0Þgh; ðg0Þe ¼ g0:

Another most important special case of group representation is that S is a
complex vector space V (C-vector space).

Representation of a K-algebra A is a homomorphism D : A ? End(V) into the
K-algebra of endomorphisms of a K-module V, the representation module,
which commutes with the action of K into both algebras:

• D(e) = Id V if A is an algebra with unity,
• D(aa + bb) = aD(a) + bD(b), a, b 2 K, a, b 2 A,
• D(a � b) = D(a) � D(b).

For both groups and algebras there exists always the trivial representation (unit
representation, null representation)

• D(g) = Id S for all g 2 G and
• D(a) = 0 for all a 2 A.

If G(A) itself is a group (algebra) of automorphisms (endomorphisms), then the
identical isomorphism is called the identical representation.

A representation is called faithful, if the representing homomorphism is
injective.

If a group G or an algebra A is represented in a finite-dimensional vector space
V and V contains an invariant subspace V1, that is, D(g)V1 , V1 for all g 2 G or
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A, then the representation D is called algebraically reducible, otherwise it is
algebraically irreducible. If D is reducible, then there exists a suitable basis in
V so that

DðgÞ ¼ D1ðgÞ F

0 D2ðgÞ

� �

for all g 2 G or g 2 A:

If V2 ¼ V=V1 is also invariant, then D ¼ D1 � D2 is a direct sum of
representations, that is,

DðgÞ ¼ D1ðgÞ 0
0 D2ðgÞ

� �

for all g 2 G or g 2 A:

Two representations D and D0 in V and V0 are called equivalent, D � D0; if
there is an isomorphism L : V ? V0 so that

DðgÞ ¼ L�1D0ðgÞL for all g 2 G or g 2 A:

Schur’s lemma If D is a finite-dimensional irreducible representation in V, then
each linear operator L in V which commutes with all D(g), g 2 G or A is
proportional to the unit operator, L = k IdV.

Derivation d Linear mapping d : A ? A of an algebra A to itself obeying the
Leibniz rule d(g1g2) = d(g1)g2 + g1d(g2) for all g1, g2 2 A.

Category A : Consisting of

• a class ObðAÞ ¼ fA;B;C; . . .g of objects,
• a class Ar ðAÞ of morphisms (arrows) f, g,... with the properties

– for each pair ðA;BÞ 2 Ob ðAÞ � Ob ðAÞ there is a set MorðA;BÞ 2ArðAÞ
so that the composition rule

Mor ðB;CÞ � Mor ðA;BÞ ! Mor ðA;CÞ : ðg; f Þ 7! g 	 f

holds,
– Ar ðAÞ ¼ [ðA;BÞ Mor ðA;BÞ is a disjoint union,
– for each A 2 Ob ðAÞ there is IdA [ Mor (A, A) = End (A) with

IdB 	 f ¼ f ¼ f 	 Id A for every f 2 Mor ðA;BÞ;

– when it is defined, the composition of morphisms is associative:

ðh 	 gÞ 	 f ¼ h 	 ðg 	 f Þ:

Isomorphism and automorphism have their usual meaning; End (A) is obviously
a monoid with respect to composition, Aut (A) is a group (its morphisms are
called permutations or transformations). Hence there are group homomorphisms
from any group G into Aut (A) of any category.

Compendium 351



Examples of categories are sets with mappings, various AS with algebraic
homomorphisms, topological spaces with continuous functions, topological AS
with homomorphisms, topological, differentiable, smooth, analytic manifolds
with corresponding mappings, fiber spaces with homomorphisms and so on.

Diagrams For f 2 Mor (A, B) the diagram

A
f

B

is used. If A is a category then its arrows may be taken as objects of a new
category M : Ar ðAÞ ¼ Ob ðMÞ: A morphism f ! g; f ; g 2 Ar ðAÞ of M
is a pair ðu;wÞ so that the following diagram is commutative:

A C

f

B D

The commutative diagram means w 	 f ¼ g 	 u: If B = D and w = Id B

are fixed, then a category AB is obtained with morphisms u:

Covariant functor F from category A into category B :

• Ob ðAÞ 3 A! FðAÞ 2 Ob ðBÞ with F(IdA) = Id F(A),
• Mor ðA;BÞ 3 f ! Fðf Þ 2 Mor ðFðAÞ;FðBÞÞ with F(g 	 f) = F(g) 	 F(f).

Instead of F(f) the notation f* is often used: push forward.

A cleaning covariant functor maps a category into a simpler category.

Let S be the category of sets, and let some category A and an object A 2
Ob ðAÞ be fixed. The functor MA : A ! S given by

• MA(X) = Mor (A, X) (taken as a set of mappings) for every X 2 Ob ðAÞ;
• MAðuÞ : Mor ðA;XÞ ! Mor ðA;X0Þ : w 7!u 	 w for every u 2 Mor ðX;

X0Þ � Ar ðAÞ

is called a representing covariant functor.

Contravariant functor F from category A into category B :

• Ob ðAÞ 3 A! FðAÞ 2 Ob ðBÞ with F(Id A) = Id F(A),
• Mor ðA;BÞ 3 f ! Fðf Þ 2 Mor ðFðBÞ;FðAÞÞ with F(g 	 f) = F(f)	F(g).

Instead of F(f) the notation f* is often used: pull back.

Let again some category A and an object A 2 Ob ðAÞ be fixed. The functor
MA : A ! S given by
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• MA(X) = Mor (X, A) (taken as a set of mappings) for every X 2 Ob ðAÞ;
• MAðuÞ : Mor ðX;AÞ ! Mor ðX0;AÞ : w 7!w 	 u for every u 2 Mor ðX0;

XÞ � ArðAÞ
is called a representing contravariant functor.

A functor puts isomorphisms into isomorphisms.

Representing functors are used to transfer certain structures on sets to arbitrary
categories. (If e.g. A has a group structure, then Mor (X, A) has also a group
structure by (fg)(x) = f(x)g(x), and MA is a functor from the category A into the
category of groups. Conversely, if Mor (X, A) has some group structure, then, by
the same relation, A has a group structure.)

Complexes of K-modules

• C ¼ �r2ZCr with Cr � Cr0 � Crþr0 is a graded (by r) module (vector space,
algebra) over a ring (field) K,

• d ¼ fdr j r 2 Zg : C ! C0 is a graded morphism of degree s, dr : Cr ? C0r+s

from the graded module C into the graded module C0,
• a complex (C, d) consists of a graded K-module C and a graded

endomorphism d : C ? C of degree 1,
• a morphism f : (C, d) ? (C0, d0) of complexes of degree s is a graded

morphism for which the diagram

Cr−1
f r−1 Cr−1+s

dr−1 dr−1+s

Cr
f r

Cr+s

commutes.

Homology and cohomology of a complex (C, d):

• Zr = Ker dr is the module of r-cocycles,
• Br ¼ Im dr�1 is the module of r-coboundaries,
• Hr ¼ Zr=Br is the rth cohomology module of the cohomology H(C) of the

complex (C, d).
• if f : (C, d) ? (C0, d0) is a graded morphism of degree s, then it is pushed

forward to a canonical homomorphism f* : H(C) ? H(C0) of degree s of their
cohomologies,

• homology is the same for a complex (C, d) with d of degree -1; this is
included into the above scheme by the mapping r ? -r.

Exact sequences

• a sequence of morphisms of AS,

� � � ! A! B! � � �
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is called exact, if the image of each morphism in the sequence is the kernel of
the next,

• 0 ! G�!f H means that f is injective,
• G�!f H ! 0 means that f is surjective,
• 0! G�!f H ! 0 means that f is an isomorphism,
• for Abelian groups or modules, the sequence

0! H ! G! G=H ! 0

is called a short exact sequence,
• let

0! ðC; dCÞ�!
f ðD; dDÞ�!

g ðE; dEÞ ! 0

be a short exact sequence of graded morphisms, without loss of generality of
degree 0, of complexes; then there exists canonically a graded morphism

HðEÞ�!d HðCÞ

of degree 1 of their cohomologies, so that the long sequence

� � � �!d HrðCÞ�!
f


HrðDÞ�!
g


HrðEÞ

�!d Hrþ1ðCÞ�!
f


Hrþ1ðDÞ�!
g


Hrþ1ðEÞ�!
d � � �

is exact (‘snake lemma’).

vector spaces

locally convex vector spaces

topological spaces

metric spaces

Lie groups

fiber bundles

manifolds

normed vector spaces

Schematic interrelation of various topological spaces
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C.2 Basic Topological (Analytic) Structures

See for instance [2]; for homotopy groups, [3].

Topological space ðX; T Þ or shortly X:

• T is the set of open subsets of X; [ 2 T ; X 2 T ;
• Every union of sets T 2 T belongs to T ;
• Every intersection of finitely many sets T 2 T belongs to T ;

T is called the topology on X.

Coarser (finer) topology T 0 on X : T 0 � T ; ðT 0 � T Þ: Discrete topology: T ¼
PðXÞðPðXÞ : set of all subsets of X). Trivial topology: T ¼ f[;Xg:

Closed sets C : C ¼ XnU for some U 2 T : In the discrete topology every set is
open-closed. The closure A of a set A , X is the smallest closed set containing

A; the interior A
	

is the largest open set contained in A. The boundary oA of

A is A n A
	
. A is dense in X, if X ¼ A; A is nowhere dense in X, if ðAÞ	 ¼ [. X is

separable, if X ¼ A for some countable A.

Neighborhood of a point x 2 X : UðxÞ 2 T ; x 2 UðxÞ: A neighborhood of a set is
a neighborhood of every point of the set. Inner point x of A , X: U(x) , A for

some neighborhood UðxÞ; x 2 A
	
: Point of closure x of A , X: A \ U(x) = [

for any neighborhood UðxÞ; x 2 A: Cluster point x of A � X : ðA n fxgÞ \
UðxÞ 6¼ [ for any neighborhood U(x).

Relative topology T A on A , X related to ðX; T Þ : T A ¼ fA \ T j T 2 T g:

Hausdorff topology Every pair of points x = y 2 X has a pair of disjoint
neighborhoods, U(x) \ U(y) = [. Then, every one point set {x} is closed. The
limes of a sequence of points is unique if it exists. Regular topology: Every
non-empty open set contains the closure of another non-empty open set.
Normal topology: Every one point set is closed and every pair of disjoint
closed sets has a pair of disjoint neighborhoods.

Continuous function F: X ? Y from a topological space ðX; T Þ into a topological
space ðY ;UÞ : For every U 2 U; F�1ðUÞ 2 T :

Homeomorphism F: X ? Y: a bicontinuous bijection F: F-1 exists and F and F-1

are continuous. X and Y are homeomorphic, X * Y, if a homeomorphism F:
X ? Y exists. A topological invariant is a property preserved under
homeomorphisms.
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Base of the topology T : Family B � T ; so that every T 2 T is a union of sets
B 2 B: Neighborhood base BðxÞ at x 2 X: Every B 2 BðxÞ is a neighborhood
of x, and for every neighborhood U(x) there is a B 2 BðxÞ with B , U(x). X is
first countable, if every x 2 X has a countable neighborhood base, X is second
countable if it has a countable base of topology.

Product topology ðX; T Þ ¼ ð
Q

a2A Xa; f
Q

a2A UagÞ where Ua 2 T a and Ua = Xa

for all but finitely many Ua (Tychonoff’s product; the set
Q

a2A Xa is the set of
all functions F : a 7! xa 2 Xa on A.)

Quotient topology The finest topology on X=R (R is an equivalence relation in
X) in which the canonical projection p: X ! X=R is continuous. (U 2 X=R is
open, iff p-1(U) 2 X is open.)

Metric topology with base B ¼ fB1=nðxÞj x 2 X; 0\n 2 Zg of open balls
BrðxÞ ¼ fx0j dðx; x0Þ\r; r [ 0g; d : X � X ! Rþ is the distance function:

• d(x, y) = 0 iff x = y,
• d(x, y) = d(y, x),
• d(x, z) B d(x, y) + d(y, z) (triangle inequality).

Metrizable space A topological space with topology which has a base of open
balls in some metric d.

Cauchy sequence in a metric space X: {xn} with limm;n dðxm; xnÞ ¼ 0:

Complete metric space X Every Cauchy sequence converges in X. Every
contracting sequence C1 . C2 . _ of closed balls has a non-empty
intersection.

Topological vector space X over the field K : K � X ! X : ðk; xÞ 7! kx;X � X !
X : ðx; x0Þ 7! xþ x0; k 2K; x; x0 2 X are continuous. Sum of subsets:
A + B = {x + x0 x j 2 A, x0 2 B}. If {Ba(0)} is a neighborhood base at
x = 0, then {x + Ba(0)} is a neighborhood base at x. (x + A =: {x} + A.)

Functional F: X ? K.

Linear independence of a set E , X If
PN

n¼1 knxn holds for any set of N \?
distinct xn 2 E, then all kn = 0. With arbitrary kn 2 K, all possible such linear
combinations with all possible N \? form the span spanKE of E. If spanKE ¼
X; then the cardinality of E is the dimension of X and E forms a base in the
vector space X. X is separable, if it admits a countable base. If E is a base of
X and F is a base of Y, then E [ F taken as a linear independent disjunct sum is
a base of X + Y, the direct sum of the topological vector spaces X and Y with
the product topology; X \ Y = {0}.
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Seminorm in a vector space: a function p : X ! Rþ with the properties

• p(x + x0) B p(x) + p(x0) (subadditivity),
• pðkxÞ ¼ jkjpðxÞ
• If moreover p(x) = 0, iff x = 0, then pðxÞ ¼ kxk is called a norm.

A family of seminorms {pa j a 2 A} in the vector space X is separating, if for
every x 2 X, x = 0 there is some a with pa(x) [ 0.

Locally convex space Vector space topologized with a separating family of
seminorms and with the neighborhood base at 0 of open sets Bfðai;eiÞg;nð0Þ ¼
fx 2 X j pai\eiði ¼ 1; . . .; nÞ; ei [ 0g; 0\n\1:

A locally convex space with a countable neighborhood base at 0 can be metrized

with the distance function dðx; yÞ ¼
P1

i¼1 2�ipaiðx� yÞð1þ paiðx� yÞÞ�1:

Normed vector space A neighborhood base at 0 and a metric are defined by a
single norm: dðx; yÞ ¼ kx� yk:

Fréchet space Complete metrizable locally convex space.

Banach space Complete normed vector space.

Banach algebra Banach space X with a norm continuous multiplication X � X !
X : ðx; yÞ 7! xy which makes X into an algebra with unity e, and

• kek ¼ 1,
• kxyk�kxkkyk:

Linear function (linear operator) L: X ? Y, X, Y normed vector spaces:
L(kx + k0x0) = kL(x) + k0 L(x0).

L is bounded if kLk ¼ sup0 6¼x2X kLðxÞkY=kxkX\1: A bounded linear function
is continuous.

LðX; YÞ ¼ fL : X ! Y j kLk\1g is a normed vector space by ðkLþ
k0L0ÞðxÞ ¼ kLðxÞ þ k0L0ðxÞ; k; k0 scalars in Y. It is Banach, if Y is Banach.

Topological dual X
 ¼ LðX;KÞ of a topological vector space X Set of all
continuous linear functionals f : X ! K : x 7! hf ; xi 2 K; hf ; kxþ k0x0i ¼
khf ; xi þ k0hf ; x0i, made into a vector space by hkf þ k0f 0; xi ¼ khf ; xi þ
k0hf 0; xi (observe the difference to an inner product). X* is always Banach
(since K is Banach).

There is an embedding J : X ! X

 ¼ ðX
Þ
 : x 7!~x, were ~x is defined by
h~x; f i ¼ hf ; xi for all f 2 X*. If J is surjective, X = X** is called reflexive.

Weak topology on X Given by the neighborhood base at 0 of open sets
fx 2 X j jhf ; xij\1=ng; n ¼ 1; 2; . . . for all f 2 E*, a base of the vector space
X*. In general, X is only locally convex in the weak topology; in a finite
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dimensional X weak and norm topologies are equal.

Weak* topology on X* Given by the neighborhood base at 0 of open sets
ff 2 X
j jhf ; xij\1=ng; n ¼ 1; 2; . . . for all x 2 E, a base of X , X**.

Inner product space A sesquilinear form (inner product) X � X ! C ðor RÞ :
ðx; yÞ 7! ðxjyÞ is defined with the properties

• ðxjyÞ ¼ ðyjxÞ; z : complex conjugate of z, (z ¼ z for z 2 R),
• ðxjy1 þ y2Þ ¼ ðxjy1Þ þ ðxjy2Þ;
• ðxjkyÞ ¼ kðxjyÞðphysics conventionÞ;
• ðxjxÞ[ 0 for x 6¼ 0:

kxk ¼ ðxjxÞ1=2 is a norm for which the Schwarz inequality jðxjyÞj � kxkkyk
holds. Two vectors x, y 2 X are called orthogonal to each other, if (x|y) = 0.

Hilbert space Complete inner product space. In a direct sum X � Y of Hilbert
spaces, X and Y = X\ are orthogonal by definition. The tensor product
X � Y of Hilbert spaces is the product space with the inner product
ðx� yjx0 � y0Þ ¼ ðxjx0Þðyjy0Þ.

Unitary space Finite dimensional complex Hilbert space.

Euclidean space Finite dimensional real Hilbert space. Angles are defined by
cos]ðx; yÞ ¼ ðxjyÞ=ðkxkkykÞ:

Directional derivative of a function F: X ? Y from an open set X of a normed
vector space X into a topological vector space Y:

DxFðx0Þ ¼
d

dt
Fðx0 þ txÞ

�
�
�
t¼0
¼ lim

t 6¼0; t!0
x0þtx2X

Fðx0 þ txÞ � Fðx0Þ
t

; kxk ¼ 1:

Gâteaux derivative, if DxF(x0) is a continuous linear function of x 2 X.

Total derivative (Fréchet derivative) of a function F: X ? Y from an open set X
of a normed vector space X into a normed vector space Y : DFðx0Þ 2 LðX;YÞ
so that

Fðx0 þ xÞ � Fðx0Þ ¼ DFðx0Þxþ RðxÞkxk; lim
x!0

RðxÞ ¼ 0;

If DxF(x0) is a continuous function of x0 2 X, then DxF(x0) = DF(x0)x.

Functional derivative of a functional F: X ? K from an open set X of a normed
vector space X into its scalar field K.

If X ¼ LpðKn; dnzÞ 3 f ðzÞ then DFðf0Þ ¼ gðzÞ 2 LqðKn; dnzÞ; 1=pþ 1=q ¼ 1:
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Taylor expansion

Fðx0 þ xÞ ¼ Fðx0Þ þ DFðx0Þxþ
1
2!

D2Fðx0Þxxþ � � � þ 1
k!

DkFðx0Þ xx � � � x|fflfflffl{zfflfflffl}
ðk factorsÞ

þ � � � ;

provided x0 and x0 + x belong to a convex domain X , X on which F is defined
and has total derivatives to all orders, which are continuous functions of x0 in X
and provided this Taylor series converges in the norm topology of Y. Here,
DkFðx0Þ 2 LðX;LðX; . . .;LðX; YÞ. . .ÞÞ is a k-linear function from X 9 X 9 _
9 X (k factors) into Y.

kLkkLðX;LðX; . . .;LðX; YÞ. . .ÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

depth k

¼ sup
xð1Þ���xðkÞ2X

kLkxð1Þ � � � xðkÞY kY

kxð1ÞkX � � � kxðkÞkX

:

Chain rule F: X . X ? Y, F(X) , X0, G: Y . X0 ? Z and H = G 	 F:
X . X ? Z. Then,

DHðx0Þ ¼ DGðFðx0ÞÞ 	 DFðx0Þ

if the right hand side derivatives exist. In this case, DFðx0Þ 2 LðX; YÞ and
DGðFðx0ÞÞ 2 LðY ; ZÞ and hence DHðx0Þ 2 LðX; ZÞ: Moreover, if DF : X!
LðX; YÞ is continuous at x0 2 X and DG : X0 ! LðY ; ZÞ is continuous at
F(x0) 2 X0, then DH : X! LðX; ZÞ is continuous at x0 2 X.

Class Cn(X, Y) function n = 0, 1, …, ?, x: F: (X , X) ? Y which for n = 0 is
continuous, has continuous derivatives up to order n, n = 1, 2,…,?, and has a
converging Taylor expansion for n = x. For n = ? it is called smooth, for
n = x it is called analytic.

Cn diffeomorphism a bijective mapping from X , X onto X0 , Y which, along
with its inverse, is Cn, n [ 0, (C?, Cx).

Derivative of a product in a Cn-algebra, n C 1:

DðFGÞ ¼ ðDFÞGþ FðDGÞ:

Implicit function theorem Let X, Z be normed vector spaces and let Y be a
Banach space. Let F 2 C1((X , X 9 Y), Z) and consider the equation

Fðx; yÞ ¼ c; c 2 Z fixed:

Assume that F(a, b) = c and that Q = DyF(a, b) is a linear bijection from
Y onto Z, so that Q�1 2 LðZ; YÞ: Then, there are open sets A 3 a and B 3 b in
X and Y, so that for every x 2 A the above equation has a unique solution y 2 B
which defines a continuous function G : A! Y : x 7! y ¼ GðxÞ implicitly by
the above equation. The function G has a continuous total derivative at x = a,
and
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DGðaÞ ¼ �ðDyFða; bÞÞ�1 	 DxFða; bÞ; b ¼ GðaÞ:

Open cover of a set X in a topological space X: Family of open sets Ua,a 2 A so
that [aUa � X: A subfamily which is also a cover is called a subcover.

Compact set C Every open cover of C contains a finite subcover, [n
i¼1Ui � C: A

Hausdorff compact set is a compactum. A set is relatively compact, if its
closure is compact.

A compactum is closed. A closed subset of a compact set is compact.

Every infinite subset of a compact set has a cluster point.

Every sequence in a compact set has a convergent subsequence.

Locally compact topological space X Every point x 2 X has a relatively compact
neighborhood.

Compact function (operator) It is continuous and maps bounded sets into
relatively compact sets.

Lower (upper) semicontinuous function F : X ! R : For every x 2 X and every
e [ 0 there is a neighborhood UeðxÞ in which F [ FðxÞ � eðF\FðxÞ þ eÞ:

F is finite from below, if F(x) [ -? for all x.

Extremum problems A continuous real-valued function on a compact set takes on
its maximum and minimum values.

If F is a finite from below and lower semicontinuous function from a non-empty
compactum A into R; then F is even bounded below and the minimum problem
minx2A FðxÞ ¼ a has a solution x0 2 A, F(x0) = a.

Fixed point theorems Banach: A strict contraction F : X ! X; dðFx;Fx0Þ �
kdðx; x0Þ; k\1, on a complete metric space X has a unique fixed point.

Tychonoff: A continuous mapping F: C ? C in a compact convex set C of a
locally convex space has a fixed point.

Schauder: A compact mapping F: C ? C in a closed bounded convex set C of a
Banach space has a fixed point.

Banach-Alaoglu theorem The unit ball of the dual X* of a Banach space X is
compact in the weak* topology.

The unit ball of a reflexive Banach space is compact in the weak topology.

A Banach space is in general not first countable in the weak and weak*

topologies; this is why instead of sequences nets are needed.
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Net Set of points xa 2 X indexed with a directed set I 3 a (every pair
(a, b) 2 I 9 I has an upper bound c 2 I, a B c, b B c).

Every net in a compact set has a convergent subnet.

Function of compact support F: X ? Y, X locally compact space, Y normed
vector space, supp F is contained in some compactum; supp F is the smallest
closed set outside of which F(x) = 0. A class C0

n(X, Y) function is a class
Cn(X, Y) function with compact support (n = 0, …, ?).

Partition of unity A family fua j a 2 Ag of C10 ðX;RÞ-functions such that

• there is a locally finite open cover, X � [b2B Ub (every x 2 X has a
neighborhood Wx which intersects only with finitely many Ub),

• the support of each ua is in some Ub,
• 0�uaðxÞ� 1 on X for every a,
•
P

a2A uaðxÞ ¼ 1 on X.

The partition of unity is called subordinate to the cover [b2B Ub:

Paracompact space A Hausdorff topological space for which every open cover,
X � [a2A Ua, has a locally finite refinement, that is a locally finite open cover
[b2BVb for which every Vb is a subset of some Ua.

It is a space which permits a partition of unity.

Connectedness A topological space is connected, if

• it is not a union of two disjoint non-empty open sets, or equivalently,
• it is not a union of two disjoint non-empty closed sets, or equivalently,
• the only open-closed sets are the empty set and the space itself.

Otherwise it is disconnected.

The connected component of a point x of a topological space X is the largest
connected set in X containing x.

X is totally disconnected, if its connected components are all its one point sets
{x}. (A discrete space is totally disconnected; the rational line Q in the relative
topology as a subset of R is totally disconnected, but not discrete.)

X is locally connected, if every point has a neighborhood base of connected
neighborhoods.

The image F(A) of a connected set A in a continuous mapping is a connected
set.

Homotopy Continuous function H: [0, 1] 9 X ? Y translating the continuous
function F1 : X ? Y into the continuous function F2 : X ? Y: H(0, �) = F1 and
H(1, �) = F2. F1 and F2 are called homotopic, F1 % F2. By concatenating two
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homotopies, H1 translating F1 into F2 and H2 translating F2 into F3, their
product H2H1 is defined as a homotopy translating F1 into F3. Homotopic, %, is
an equivalence relation dividing C0(X, Y) into homotopy classes [F]. The
homotopy class of a constant function mapping X into a single point of Y is
called the null-homotopy class.

Homotopy equivalent Two topological spaces X and Y are homotopy equivalent,
if their exists continuous functions F: X ? Y and G: Y ? X so that
F 	 G % Id Y and G 	 F % Id X. X is called contractible, if it is homotopy
equivalent to a one point space.

Pathwise connected (also called arcwise connected) A topological space X is
pathwise connected, if for every pair (x, x0) of points of X there is a continuous
function H: [0, 1] ? X, H(0) = x, H(1) = x0. A general space X consists of the
set p0(X) of its pathwise connected components. If X is a topological group,
then p0(X) is its zeroth homotopy group.

Locally pathwise connected A space X is locally pathwise connected, if every
point has a neighborhood base of pathwise connected sets.

nth homotopy group pn(X) of a pathwise connected topological space X: The
homotopy classes of functions from the n-dimensional sphere Sn into X,
mapping the north pole of the sphere into a fixed point of X. By an intermediate
homeomorphism from the n-sphere to the one-point compactified n-cube, two
mappings may be concatenated along the x1-axis of the cube. Concatenation as
group operation yields a group structure in pn(X). If X is a (not necessarily
pathwise connected) topological group, then the group multiplication yields an
isomorphic group structure on pn(Xe) for the pathwise connected component Xe

of X, and pn(X) = p0(X) 9 pn(Xe). p1(X) is called the fundamental group of X.

n-connected A topological space is called n-connected (also n-simple), if every
continuous image in X of the n-dimensional sphere Sn is contractible. A
topological group X is n-connected, if pnðXÞ� p0ðXÞ: A 0-connected space is
pathwise connected, a 1-connected space is called simply connected.

C.3 Smooth Manifolds

See for instance [4].

Finite-dimensional smooth manifold M

• M is a paracompact topological space, or slightly more special, M is locally
compact, Hausdorff and second countable,

• every point x 2 M has a neighborhood Ua which is homeomorphic to an open
subset Ua of the Euclidean space Rm by a homeomorphism ua : Ua ! Ua,
m is the dimension of M,
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• the charts ðUa;uaÞ form an atlas of M, that is, the Ua form a cover of M, and
there is a complete family of C?-diffeomorphisms wba from Ua to Ub,
compatible with the ua with respect to composite mappings.

• There exists always a complete atlas AM which is not a proper subset of any
other atlas of M; it is also called the differentiable structure of M.

Coordinate neighborhood of x0 2 M:

• A base {e1, …, em} with uaðx0Þ as origin in Rm so that x ¼
P

xiei 2 Ua and
uaðxÞ ¼ ðu1

aðxÞ; . . .;um
a ðxÞÞ with ui

a ¼ pi 	 ua and pi(x) = xi,

• transition functions wba ¼ ðw1
baðxÞ; . . .;wm

baðxÞ with a regular Jacobian.

• The set fui
ag is called a local coordinate system on Ua 2 M; fui

aðxÞg are
local coordinates of x 2 M.

Orientable manifold A smooth manifold M which permits a complete atlas the
transition functions of which all have only positive Jacobians.

Product manifold of two manifolds ðM;AMÞ and ðN;ANÞ is the manifold ðM �
N;AM �ANÞ with the product topology and the complete atlas containing the
natural product of the complete atlases AM and AN ; its dimension is dim
M + dim N.

Smooth parametrized curve in M : R � 
a; b½ 3 t 7! xðtÞ 2 M; so that every
xaðtÞ ¼ ua 	 xðtÞ for a restriction of x(t) to the corresponding open interval of
t is a smooth vector function with values in Ua.

Smooth real function on M : M 3 x 7! FðxÞ 2 R: It defines in every coordinate
neighborhood Ua a smooth real function Faðx1

a; . . .; xm
a Þ ¼ ðF 	 u�1

a ÞðxaÞ:

Tangent vector XX0 on M at x0: For every smooth real function F;Xx0 :
F 7!Xx0 F 2 R : in local coordinates

Xx0 F ¼
X

i

ni
a
oFa

oxi
a
; ni

b ¼
X

j

nj
aðwbaÞ

i
j; ðwbaÞ

i
j ¼ pi 	 wba 	 pj;

where pjðxjÞ ¼ ð0; . . .; 0; xj; 0; . . .; 0Þ 2 Rm; the tangent vectors at x0 span an m-
dimensional real vector space, the tangent space Tx0ðMÞ:

Cotangent vector xx0 on M at x0: For every Xx0 ;xx0 : Xx0 7! hxx0 ;Xx0i 2 R : in
local coordinates

hxx0 ;Xx0i ¼
X

i

xa
i n

i
a; xb

i ¼
X

j

ðw�1
ba Þ

j
i x

a
j ; ðw�1

ba Þ
j
i ¼ ðwabÞ

j
i ;

the cotangent vectors span the m-dimensional real cotangent space T
x0
ðMÞ; in

particular
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dFx0 ¼
X

i

oFa

oxi
a

�
�
�
�
0

dxi
a; hdFx0 ;Xx0i ¼ Xx0 F:

Local bases
Xx0 ¼

X

i

ni
ao=oxi

a; xx0 ¼
X

i

xa
i dxi

a;

hdxi
a; o=ox j

ai ¼ di
j; dxi

b ¼
X

j

dx j
aðwbaÞ

i
j; o=oxi

b ¼
X

j

ðw�1
ba Þ

j
i o=ox j

a:

Tangent and cotangent vector fields Functions X : M 3 x 7!Xx 2 TxðMÞ and
x : M 3 x 7!xx 2 T
x ðMÞ, so that XF : x 7!XxF and xðXÞ : x 7! hxx;Xxi are
smooth real functions on M for every smooth F and every smooth X,
respectively. In any local coordinate system the components ni of X and xi of x
are smooth real functions of the local coordinates.

Lie product of two tangent vector fields: It is a tangent vector field

½X; Y 
 ¼ XY � YX; ½X; Y 
F ¼
X

ij

n j ogi

ox j
� gj oni

ox j

� �
o

oxi
F;

the tangent vector fields on M form a Lie algebra.

Smooth mapping of manifolds F: M ? N induces at every point x 2 M as a
push forward a linear mapping F*

x: Tx(M) ? TF(x)(N) and at every point
F(x) 2 N as a pull back a linear mapping FF(x)

* : TF(x)
* (N) ? Tx

*(M) with

hF
FðxÞðxFðxÞÞÞ;Xxi ¼ hxFðxÞ;F
x

ðXxÞi;

the composite of F: M ? N and G: N ? P yields (G 	 F)*
x = G*

F(x) 	 F*
x and

(G 	 F)G(F(x))
* = FF(x)

* 	 GG(F(x))
* , that is, F* composes covariantly and F*

composes contravariantly; if F*
x is injective at every point x 2 M, then the

mapping F is an immersion of M into N; if in addition F itself is injective, then
it is an embedding of M into N and M is an embedded submanifold of N.

Tensor fields on M: Functions t mapping x 2 M into a tensor product of tangent
and cotangent spaces on M at x, in local coordinates

tðxÞ ¼ ti1...ir
j1...js ðxÞ

o

oxi1
� � � � � o

oxir
� dx j1 � � � � � dx js ;

with Einstein summation over pairs of equal upper and lower indices
understood, so that the component functions ti1...ir

j1...js ðxÞ are smooth in every
coordinate neighborhood and transform for each index like tangent and
cotangent vector components, respectively; t is of type (r, s).

Tensor product t � t0, in coordinate neighborhoods

ðt � t0Þi1...irþr0
j1...jsþs0

¼ ti1...ir
j1...js t

0irþ1...irþr0
jsþ1...jsþs0

:
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Tensor contraction Cp,q(t), in coordinate neighborhoods

Cp;qðtÞi1...ir�1
js...js�1

¼ t
i1...ip�1kip...ir�1

j1...jq�1kjq...js�1
:

Lie derivative LX with respect to a tangent vector field X, in coordinate
neighborhoods

ðLXuÞi1...ir
j1...js
¼ ni oui1...ir

j1...js

oxi
�
Xr

p¼1

onip

oxi
u

i1...ip�1iipþ1...ir
j1...js þ

Xs

qþ1

on j

ox jq
ui1...ir

j1...jq�1jjqþ1...js ;

it maps tensors of type (r, s) to tensors of the same type and is the derivative of
u along integral curves (‘field lines’) of X; L[X,Y] = [LX, LY].

Exterior r-form is an alternating tensor of type (0, r).

Exterior product For r-, s-, and t-forms x, r, and s and functions F and G,

• x ^ r = (- 1)rsr ^ s,
• x ^ (Fr + Gs) = Fx ^ r + Gx ^ s,
• (x ^ r) ^ s = x ^ (r ^ s);

the general r-form in a coordinate neighborhood is

x ¼
X

i1\...\ir

xi1...irðxÞdxi1 ^ � � � ^ dxir ; x ¼ 0 if r [ m;

x ¼ ti1...ir dxi1 � � � � � dxir ; xi1...ir ¼ r! ti1...ir ; t alternating:

½x; r
 ¼
X

i1\���\irþs

xi1...ir rirþ1...irþs � rirþ1...irþsxi1...ir

� 	
dxi1 ^ � � � ^ dxirþs ;

1-forms: [x, r] = x ^ r (in general = -r ^ x for non-commutative
quantities xi and rj).

Exterior derivative d in coordinate neighborhoods

dx ¼
Xrþ1

s¼1

ð�1Þsþ1
X

i1\���\irþ1

oxi1...is�1isþ1...irþ1

oxis
dxi1 ^ � � � ^ dxirþ1 :

Interior multiplication For a tangent vector field X and an r-form x,

iXðxÞ ¼ C1;1ðX � xÞ ¼ r
X

i;i1\���\ir

nixii1...ir�1 dxi1 ^ � � � ^ dxir�1 :

Exterior calculus Basic relations are

LX ¼ d 	 iX þ iX 	 d; ½d; LX
 ¼ 0; ½iY ; LX 
 ¼ i½Y ;X
; d2 ¼ 0; ðiXÞ2 ¼ 0:
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Stokes’ theorem
Z

X

dx ¼
Z

oX

x

where X is a domain in M with boundary oX and x is an m-form, m = dim M.

C.4 Topological Groups

See for instance [5, 4].

Topological group G

• G is a group (the abstract group of G),
• G is a topological space,
• G � G ! G : ðg; hÞ 7! gh�1 is continuous.

If Be ¼ fBe
ag is a neighborhood base of the unity e 2 G, then Bg ¼ fgBe

ag is a
neighborhood base of g for every g 2 G.

Subgroup H

• H is an abstract subgroup of G,
• H is a closed subset of G.

If H is an abstract subgroup of G, then H is a subgroup of the topological group G.

Homomorphism f : G ? G0:

• f is an algebraic homomorphism,
• f is continuous.

An isomorphism is an algebraic isomorphism and a homeomorphism.

The kernel N ¼ ker f of a homomorphism f : G ? G0 is an invariant subgroup
of G, and the quotient group G=N with the quotient topology is a topological
group.

The direct product of groups of two topological groups is a topological group in
the product topology.

If U is any neighborhood of the unity e 2 G, then [n=1
? Un = Ge is the

connected component of e of G. Ge is an invariant subgroup of G, and G
 ¼
G=Ge is totally disconnected. (If Ge is pathwise connected, then G* = p0(G),
the zeroth homotopy group of G.)

Lie group G:

• G is a topological group,
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• G is a smooth (real or complex) manifold,
• G � G ! G : ðg; hÞ 7! gh�1 is smooth.

Since G as a smooth manifold is second countable and locally Euclidean, it is
locally compact, locally pathwise connected, semi-locally one-connected
(every point x 2 M has a neighborhood U such that every loop in U with
base point x is contractible in M into x), and its connected components are
pathwise connected.

For every Lie group G, the differentiable manifold structure which makes the
topological group G into a Lie group is uniquely defined (up to Lie group
isomorphisms, see below, this will always be understood under uniqueness). It
has even a uniquely defined substructure of an analytic manifold for which the
mappings ðg; hÞ 7! gh�1 are analytic.

Left and right translations Let G be a Lie group, let g be a fixed element and let
h be a running element of G.

lg : h 7! gh; rg : h 7! hg

are C?(Cx)-diffeomorphisms of manifolds of G onto G.

Left (right) invariant vector field X 2 XðGÞ with

lg
Xh ¼ Xgh ðrg
Xh ¼ XhgÞ;

that is, X is pushed forward by a translation from its value at h to its own value
at gh (hg) and hence is uniquely defined by its value Xe at e 2 G (called
infinitesimal generators of Ge in physics). Invariant vector fields are
automatically smooth (analytic), they form a dim G-dimensional subspace of
XðGÞ which is isomorphic to the tangent space Te(G) on G at e.

The Lie product [X, Y] of left (right) invariant vector fields is again an invariant
vector field; left (right) invariant vector fields form two isomorphic realizations
of a Lie algebra, the Lie algebra g of the Lie group G. If right invariant vector
fields are distinguished by a tilde, then the isomorphism is X 7! ~X;
X; Y½ 
 7! ~Y; ~X


 �
:

Left (right) invariant r-form: x 2 DðGÞ with

l
gxgh ¼ xg ðr
gxhg ¼ xgÞ;

that is, x is pulled back by a translation from its value at gh (hg) to its own
value at h. Left (right) invariant 1-forms form a dim G-dimensional subspace of
D1ðGÞ which is dual to g: They are called the Maurer-Cartan forms of G.

Lie group homomorphisms and representations Mappings f : G ? G0 with

• f is an algebraic group homomorphism,
• f is a smooth (analytic) mapping of manifolds.
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f is a Lie group isomorphism, if it is an algebraic isomorphism and a
diffeomorphism of manifolds.
A Lie group homomorphism f : G ? G0 is pushed forward to a Lie algebra
homomorphism f
 : g! g0:

If V is some K0-vector space, then a homomorphism r: G ? Aut (V) is a
representation of G; if it is finite-dimensional, Glð dim V;K 0Þ � Aut ðVÞ is
used. K 0 ¼ R or C; but it is not in general directly related to the local Euclidean
structure Kdim G of G (it may contain K as a subfield, see end of this section).

Lie subgroup H of the Lie group G:

• ~H is an abstract subgroup of G,
• ð~H; Id ~HÞ is an embedded submanifold of G,
• There is a Lie group H which is algebraically isomorphic to ~H:

H is a regular embedding into G, that is, with the relative topology as a
submanifold of G, iff ~H is closed in the topology of G.

If f : G ? G0 is a Lie group homomorphism, then Ker f is a closed Lie
subgroup of G; the quotient group G=Ker f is also a Lie group.

Covering space ~M of a topological space M:

• A continuous surjective mapping p : ~M ! M;
• every x 2 M has a neighborhood U which is evenly covered, that is,

p-1(U) is a (possibly infinite) union of sets Va each of which is
homeomorphic to U.

Universal covering group ~G of a connected Lie group G;

• ~G is a connected, simply connected covering space of G,
• p : ~G! G is a Lie group homomorphism.

The kernel of p is a discrete subgroup of ~G:

Every connected Lie group has (up to isomorphisms) a uniquely defined
connected, simply connected covering group.

There is a one-one correspondence between connected, simply connected Lie
groups and Lie algebras.

The connection between a Lie algebra g and its connected, simply connected
Lie group ~G is obtained by the exponential mapping exp : g 3 X 7! expðXÞ 2
~G: Any other Lie group G with the same Lie algebra g is a Lie subgroup of ~G

where the homomorphism from ~G to G has a discrete kernel. This largely
reduces the study of Lie groups to the study of Lie algebras.
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Lie algebra g over K ¼ R or C of finite dimension:

• g is a K-vector space and a multiplicative monoid with respect to the Lie
product ðX; YÞ 7! X; Y½ 
; X; Y 2 g;

• X; Y½ 
 þ Y ;X½ 
 ¼ 0 ðanti-commutativityÞ;
• X; Y; Z½ 
½ 
 þ Y ; Z;X½ 
½ 
 þ Z; X; Y½ 
½ 
 ¼ 0 ðJacobi identityÞ:

Infinite-dimensional Lie groups and Lie algebras are not considered here.

With respect to a given base fX1; . . .;Xng; n ¼ dim g in the vector space g;

½Xi;Xj
 ¼
Xn

k¼1

ck
ijXk; ck

ij þ ck
ji ¼ 0;

Xn

k¼1

ck
ijc

m
kl þ ck

jlc
m
ki þ ck

lic
m
kj ¼ 0;

the structure constants cij
k depend on the chosen base, nevertheless, they

determine the Lie algebra uniquely.

With respect to the same base, the structure constants of the Lie algebra of right
invariant vector fields of a Lie group differ from those of left invariant vector
fields by a sign.

With respect to the dual base {x1, …, xn} in g
 for Maurer-Cartan forms,
hxi, Xji = dj

i, the Maurer-Cartan equations or structure equations

dxk ¼ �
X

1� i\j� n

ck
ij x

i ^ xj; ck
ij ¼ xkð½Xi;Xj
Þ

hold.

Lie subalgebra h of g :

• h is a linear subspace of the vector space g;
• h is itself a Lie algebra.

Ideal h of a Lie algebra g :

• h is a Lie subalgebra of g;
• g; h½ 
 � h with g; h½ 
 ¼ spanKf X; Y½ 
 jX 2 g; Y 2 hg

g is a simple Lie algebra, if it contains no ideals except g itself and {0}; it is a
semi-simple Lie algebra, if it is a direct sum of simple Lie algebras.

The ideal g; g½ 
 of g is the derived algebra of g: The series gð0Þ ¼ g; . . .; gðkÞ ¼
gðk�1Þ; gðk�1Þ
 �

; . . . is the derived series of g: A Lie algebra is called solvable, if
the derived series ends up with the trivial ideal {0} after a finite number of
items. The radical grad is the maximal solvable ideal of g; g is solvable, if
grad ¼ g: The radical of a semi-simple Lie algebra is zero, gð1Þ ¼ gðkÞ ¼ g; thus
semi-simplicity is a strong opposite of solvability.

The series of ideals gð1Þ ¼ g; . . .; gðkÞ ¼ ½g; gðk�1Þ
; . . . is the lower central
series of g: A Lie algebra is called nilpotent, if the lower central series ends up
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with the trivial ideal {0} after a finite number of items. A maximal nilpotent
ideal g0 of g is a Cartan subalgebra.

Center zðgÞ of a Lie algebra g : zðgÞ ¼ fY j Y;X½ 
 ¼ 0 for all X 2 gg:

Lie algebra homomorphisms and representations F : g! g0 :

• F is a linear mapping of vector spaces,
• Fð X; Y½ 
Þ ¼ FðXÞ;FðYÞ½ 
;X; Y 2 g:

If g0 � End ðVÞ ¼ glðdim g;K 0Þ for some K0-vector space V, the representation
space, then the homomorphism R : g! End ðVÞ with

Rð½X; Y 
Þ ¼ RðXÞ 	 RðYÞ � RðYÞ 	 RðXÞ;

where 	 means the composition of endomorphisms of V, is a representation of
g: After introducing a base in V R(X) is given by a dim V 9 dim V-K0-matrix,
and 	 is the matrix multiplication.

A representation is irreducible, if V does not contain proper subspaces
invariant under R. Every irreducible representation of a solvable Lie algebra is
one-dimensional.

If R : g! End ðVÞ ¼ glðdim g;K 0Þ is a representation of the Lie algebra g;
then expðRÞ : G! Aut ðVÞ ¼ Glðdim g;K 0Þ is a representation of the Lie
group G, exp(R) is irreducible, iff R is irreducible.

If V ¼ g (g taken as vector space) then ad : g! End ðgÞ : X 7! ad ðXÞ with ad
(X)Y = [X, Y] for all Y 2 g is the adjoint representation of g; its dimension is
dim g; also expðadÞ ¼ Ad, the adjoint representation of G (see p. 350).

jðX; YÞ ¼ tr ðadðXÞ 	 adðYÞÞ is the Killing form of g: It is a bilinear form on
the vector space g; which is non-degenerate, iff g is semi-simple.

Universal enveloping algebra UðgÞ of a Lie algebra g :
UðgÞ is the quotient algebra of the tensor algebra, TðgÞ=JðgÞ; with g taken as
the vector space, where the ideal JðgÞ is generated by all tensors X � Y -

Y � X - [X, Y]. UðgÞ is a graded algebra with UðgÞ0 ¼ K;UðgÞ1 ¼ g; and all
UðgÞk consisting of symmetric tensors of type (k, 0) for k C 2.

Casimir element Ch of the algebra UðgÞ corresponding to a simple ideal h of the
Lie algebra g :

• Let {Xi} be any base of the vector space h;
• let j be the Killing form of h;
• Ch ¼

P
i; j jðXi;XjÞXi � Xj; it belongs to the center of UðgÞ and hence is a

constant for every irreducible representation of g:
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Classification of all finite-dimensional complex simple Lie algebras g :

• Let r be the (unique) dimension of a Cartan subalgebra g0; and choose a base
{Hi j i ¼ 1; . . .; r} of g0; compatible with the relations below (Chevalley
basis),

• g is generated by 3r generators {E�i ; Hi j i ¼ 1; . . .; r} with the Lie products

½Hi;Hj
 ¼ 0; ½Hi;E
�
j 
 ¼ �nj

iE
�
j ; ½Eþi ;E�j 
 ¼ dj

iHj;

the Jacobi identities and the Serre relations ðadðE�i ÞÞ
1þnj

i E�j ¼ 0 for i = j,
• the (by convention negative of the) Cartan matrix nj

i has the diagonal
nj

i = -2, and the only possibilities for the off-diagonal elements are
nj

i = ni
j = 0 or nj

i = 1, ni
j = 1, 2, or 3, while det n\0; this also fixes the

normalization of the generators (mathematics convention, in physics one uses
half of the values nj

i so that the ladder elements Ei
± shift the eigenvalues of

Hi by ± 1 instead of by ±2),

• the Dynkin diagram for g consists of r dots connected by mi
j ¼ maxðni

j; n
j
iÞ

lines and an arrow from i to j if ni
j [ nj

i; the Dynkin diagram must be
connected for a simple Lie algebra,

• a purely combinatorial task yields the following complete set of solutions:

Ar :

Br :

Cr :

Dr :

(r ≥ 1)

(r ≥ 2)

(r ≥ 3)

(r ≥ 4)

Er :

(r = 6,7,8)

F4:

G2:

The restrictions given for r are made since otherwise one would have
C2 � B2;D3 � A3;E4 � A4;E5 � D5:

The four infinite series are called classical Lie algebras, the other five are called
exceptional.

In the notation of Sect. 6.6, the classical Lie algebras are:

Ar � slðr þ 1;CÞ;Br � soð2r þ 1;CÞ;Cr � spðr;CÞ; and Dr � soð2r;CÞ:

There is (up to isomorphisms) a unique way of complexification of a real Lie
algebra by linear extension of the field K. However, several non-isomorphic
real Lie algebras may result in the same complex one. For instance, the real Lie
algebras slðr;RÞ; suðr;CÞ and several others yield the same complex Lie
algebra slðr;CÞ: From this it is also clear that a real Lie algebra may have
relevant representations in a complex (or even in a quaternionic) representation
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space.

Among the real simple Lie algebras g whose complexification yields the same
complex simple Lie algebra there is always only one for which the simple Lie
group expðgÞ is compact as a manifold. These so called compact real Lie
algebras for Ar, Br, Cr, and Dr are in turn

suðr þ 1;CÞ; soð2r þ 1;RÞ; spð2rÞ; and soð2r;RÞ;

spð2rÞ � uðr;HÞ where H means the quaternion field).

An example of infinite-dimensional Lie algebras large parts of which can be
completely classified are the Kac-Moody algebras of smooth mappings of the
circle S1 (as a manifold) to finite-dimensional Lie algebras. They are related to
the so called quantum groups in physics [6].

C.5 Fiber Bundles

See for instance [7].

Principal fiber bundle (P, M, p, G), in short P:

• P is a manifold,
• the Lie group G acts freely on P from the right: Rg : P� G! P : ðp; gÞ 7!

pg ¼ Rgp; Rgh�1 ¼ Rh�1 Rg; Rgp 6¼ p for g 6¼ e;
• M ¼ P=G and the natural projection p: P ? M is smooth,
• P is locally trivial: M = [aUa, p-1(Ua) * Ua 9 G: diffeomorphism

wa(p) = (p(p), /a(p)) for all p 2 p-1(Ua): /a(pg) = /a(p)g for all g 2 G.

For every x 2 M: p-1(x) * G is the fiber over x, the structure group G is the
typical fiber, M is the base space, P is the total space, and p is the bundle
projection.

Set of transition functions wba(p(p)) = /b(p)/a
-1(p) with wcaðxÞ ¼ wcbðxÞ

wbaðxÞ for all x 2 Ua \ Ub \ Uc:

Bundle homomorphismðF; �F;FÞ :

P
F

P

pp

M –
F

M

––
F : G G.

P0 is a subbundle of P, if M0 ? M is an embedding; if M0 = M and �F ¼ IdM ,

372 Compendium



then F is called a reduction of the structure group G to G0.

Frame bundle (L(M), M, p, Gl(m, K)) is an important case of a principal fiber
bundle, with p = (x, X1, …, Xm) 2 L(M), where any ordered base (X1, …, Xm)
in the tangent space Tx(M) is a frame, and frames in Tx(M) are transformed into
one another by g 2 Gl(m, K). The structure group Gl(m, K) can be reduced to
U(m) for K ¼ C and to O(m) for K ¼ R: Local coordinates: waðpÞ ¼
ðxkðpÞ; uk

i ðpÞ; i ¼ 1; . . .;mÞ; pðpÞ ¼ x; uðpÞ : Km ! TxðMÞ : ei 7! uðpÞei:

Section s : M ? P with p 	 s = IdM; a local sections: M . U ? P always
exists, canonical local section: sa : Ua ! p�1ðUaÞ : x 7! saðxÞ ¼ w�1

a ðx; eÞ.
P has a (global) section, iff it is trivial, that is, P = M 9 G.

Fundamental vector field X* on P: Let g ¼ fXg be the Lie algebra of G, then,
R

 : g! Xðp�1ðxÞÞ : X 7!X
 ¼ R

ðXÞ is an isomorphism between left
invariant vector fields on G (elements of g) and left invariant (with respect of
the action of G) vector fields on each fiber p-1(x) of P.

Connection C on a principal fiber bundle P:

• TpðPÞ ¼ Gp � Qp ¼ vertical space Gp ¼ Tpðp�1ðxÞÞ

 �

� horizontal space½ 
,
• Qpg = (Rg)*Qp for every p 2 Pand every g 2 G,
• Qp depends smoothly on p 2 P.

Connection form x (g-valued 1-form on P in one-one correspondence with C):

• xðR

ðXÞÞ ¼ X for every X 2 g;

• ððRgÞ
xÞðX
Þ ¼ ð Ad ðg�1ÞxÞðX
Þ for every g 2 G and every X
 2 XðPÞ:

Qp = {X* 2 Tp(P) j hx, X*i = 0}, for every p;Qp � TpðpÞðMÞ:

Unique decomposition of any tangent vector at p, Xp ¼ vXp þ hXp; into its
vertical and horizontal components.

Local connection forms xa = sa
*(x) are g-valued 1-forms on Ua:

• xb(X) = wab
-1 xa(X) wab + wab

-1 wab *(X),
• every set of local g-valued 1-forms with this transition property defines a

connection on P.

Holonomy

• lift F*of a path F: [0, 1] ? M: F*: [0, 1] ? P with p 	 F* = F and with a
horizontal tangent vector in every point p,

• parallel transport of the fiber over x0 to the fiber over x1 along the path F:
isomorphism ~F : p�1ðx0Þ ! p�1ðx1Þ provided by all lifts of F,

• holonomy group Hx is the automorphism group of p-1(x) due to all closed
loops F with base point x,
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• restricted holonomy group Hx
0: group of automorphisms due to null-

homotopic loops,
• holonomy group Hp with reference point p : Hp ¼ fgjp may be parallel

transported into pg} , G, likewise Hp
0.

Pseudo-tensorial r-form of type ðAd; gÞ : ðRgÞ
r ¼ Ad ðg�1Þ r for every g 2 G:

Tensorial r-form hr of r: hhr, X1 ^ … ^ Xri = hr, hX1 ^ … ^ hXri.

Exterior covariant derivative: Dr = h(dr).

Curvature form X of the connection form x : X ¼ Dx; dx ¼ � x;x½ 
 þ X:

Bianchi identities: DX = 0.

Fiber bundle (E, M, pE, F, G), in short E:

• E is associated with a principal fiber bundle (P, M, p, G),
• G acts on F from the left, that is, G 9 F ? F: (g, f) = gf, g 2 G, f 2 F,
• E = P 9 GF, that is, (p, f) = (pg, g-1f) is an equivalence relation R in

P 9 F, and E ¼ ðP� FÞ=R, the elements of E are denoted p(f),
• pE : E ! M : pðf Þ 7! pðpÞ,
• every local diffeomorphism p-1(U) * U 9 G, U , M, induces a local

diffeomorphism pE
-1(U) * U 9 F.

Now F is the typical fiber, pE
-1(x) is the fiber over x, G is the structure group,

E is the bundle space, and pE is the bundle projection. Sections and local
sections in E are defined in analogy to those in P.

Vector bundle (E, M, pE, V = Kn, G), G , Gl(n, K).

Whitney sum of vector bundles: ðE � E0;M; pE � pE0 ;V � V 0;GÞ:

Tensor product of vector bundles: ðE � E0;M; pE � pE0 ;V � V 0;GÞ,
analogously exterior product of vector bundles.

Tangent bundle: T(M) = (T(M), M, pT, Km, Gl(m, K)), m = dim M, its dual
is the cotangent bundle T
ðMÞ ¼ ðT
ðMÞ;M; pT
 ;Km;Glðm;KÞÞ, both
associated with the frame bundle L(M).

Tensor bundle Tr,s(M) of type (r, s) over M: tensor product of tangent and
cotangent bundles, exterior r bundle Kr

*(M) over M.

Vertical and horizontal spaces T�ðEÞ ¼ F�ðEÞ � Q�ðEÞ; � ¼ pðf Þ; pEð�Þ ¼ x :

• Vertical space F�ðEÞ ¼ T�ðp�1
E ðxÞÞ � Tf ðFÞ;

• Horizontal space Q�ðEÞ ¼ pf
ðQpÞ � Qp � TxðMÞ; pf : P! E : p 7! pðf Þ ¼
fðpg; g�1f Þj g 2 Gg for fixed f.
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Vector bundles

Vector field: local or global section s: M . U ? E, pE 	 s = IdU.

covariant derivative

rXF ¼ XF; rXsðxtÞ ¼ lim
d!0

U
ðtþd;tÞðsðxtþdÞÞ � sðxtÞ
d

;

U(t+d,
*

t) is the parallel transport from xt+d to xt along the path U in M, X is tangent
to U at xt = U(t).

Tensor bundles (Xp
* 2 Tp(L(M)), Xx = p*(Xp

*) 2 Tx(M))

Connections on L(M) are called linear connections.

Canonical form h: Rm-valued 1-form on L(M), defined by

hpðX
pÞ ¼ u�1ðp
ðX
pÞÞ; X
p 2 TpðLðMÞÞ:

Torsion form H = Dh, it depends on the linear connection form via D.

Structure equations: dh ¼ �x ^ hþH; dx ¼ �x ^ xþ X:

Bianchi identities: DH ¼ X ^ h; DX ¼ 0:

Torsion tensor T : hT;X ^ Yi ¼ uhH;X
 ^ Y
i ¼ rXY �rY X � X; Y½ 
:

Curvature tensor R: CðhR;X ^ Yi � ZÞ ¼ uðhX;X
 ^ Y
iðu�1ZÞÞ; hR;X ^
Yi ¼ ½rX ;rY 
 � r X;Y½ 
:

Expressions in local coordinates x ¼ ðx1; . . .; xmÞ; Xi ¼
P

k Xk
i ðo=oxkÞ :

Canonical form: hi ¼
P

j
~Xi

jdx j;
P

j Xk
j
~X j

i ¼
P

j
~Xk

j X j
i ¼ dk

i ;

Connection form: x =
P

ik xk
i Ei

k with base Ei
k of glðm;RÞ; xi

ak ¼
P

j C
i
jkdx j;

Ci
bjk ¼

X

lmn

Cl
amnðwbaÞ

i
lðw
�1
ba Þ

m
j ðw

�1
ba Þ

n
k þ

X

l

ðwbaÞ
i
lðdw�1

ba Þ
l
jk;

Every set of symbols Cjk
i with this transition property defines a connection form.

Covariant derivative of a tensor field t:

rXtðxÞð Þi1...ir
j1...js
¼ Xk

oti1...ir
j1...js

oxk
þ
Xr

l¼1

Cil
klt

i1...il�1lilþ1...ir
j1...js �

Xs

l¼1

Cl
kjl

ti1...ir
j1...jl�1ljlþ1...js

 !

;

convention: ro=oxk tðxÞ
� 	i1...ir

j1...jsk
¼ ti1...ir

j1...js;k
ðxÞ; ðrntÞÞi1...ir

j1...jsk1...kn
¼ ti1...ir

j1...js;k1;...;kn
;
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Torsion and curvature tensors:

Ti
jk ¼ Ci

jk � Ci
kj; Ri

jkl ¼
oCi

lj

oxk
�

oCi
kj

oxl
þ Cm

lj C
i
km � Cm

kjC
i
lm;

Geodesic: curve on which the tangent vector to it is transported parallel to itself,

d2xi

dt2
þ
X

jk

Ci
jk

dxj

dt

dxk

dt
¼ 0; i ¼ 1; . . .;m:

Exact homotopy sequence for fiber bundles

� � � ! pnðF; f0Þ ! pnðE; �0Þ ! pnðM; x0Þ ! pn�1ðF; f0Þ ! � � �

Local gauge field theories Fiber bundle with the vector space of the matter field
vector as typical fiber, associated with a principal fiber bundle on the physical
space-time as base space and the inner symmetry group of the gauge fields as
structure group.

gauge potential $ local connection form

gauge covariant derivative $ exterior covariant derivative

gauge field $ local curvature form

homogeneous field equations $ Bianchi identities

pure gauge $ flat connection.

C.6 Basic Geometric Structures

See for instance [7, 8].

Metric tensor (fundamental tensor) g of type (0, 2) on a manifold M: In local
coordinates

g ¼ gijðxÞdxi � dxj; gij ¼ gji; det g 6¼ 0;

gikgkj ¼ gjkgki ¼ di
j;

Raising and lowering of tensor indices

ti1...irþ1
j1...js�1

¼ gi1kti2...irþ1
j1...jn�1kjn...js�1

; ti1...ir�1
j1...jsþ1

¼ gj1kti1...in�1kin...ir�1
j2...js ;

Inner product in tangent spaces and homogeneous tensor spaces on M:

ðXjYÞ ¼ gijX
iYj; ðtjuÞ ¼ ti1...ir

j1...js g
j1l1 � � � gjsls gi1k1 � � � girkr u

k1...kr
l1...ls

:
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Generalized Riemannian manifold M: manifold with a metric tensor g. If g is not
positive definite (has negative eigenvalues), then it is said to define an indefinite
metric.

Element of the arc length: ds ¼
ffiffiffiffiffiffiffi
ds2
p

; ds2 ¼ gijdxidxj;

Length of a path C in M: s(C) = $C ds.

Riemannian manifold M: manifold with a positive definite metric tensor g.

Euclidean geometry in the tangent space:

jXj ¼ ðXjXÞ1=2; \ðX; YÞ ¼ arccos
ðXjYÞ
jXj jY j

� �

for jXj 6¼ 0 6¼ jYj;

Riemannian metric on M: To every picewise smooth curve C in M a positive
arc length s(C) = $C ds is assigned.

Example of a homogeneous Riemannian manifold: Let G be a Lie group
considered as a manifold, and let g be its Lie algebra.

gijX
iYj ¼ gðX; YÞ ¼ �jðX; YÞ ¼ � tr ðadðXÞ 	 ad ðYÞÞ; X; Y 2 g

with the Killing form j is an invariant metric on G.

Metric connection C: A linear connection on M for which rg = 0. If it is torsion-
free, it is called a Riemannian connection or a Levi-Civita connection. It is
uniquely determined by g and defines a pseudo-Riemannian geometry for an
indefinite metric and a Riemannian geometry for a positive definite metric.

Christoffel symbols of the Riemannian connection for g:

X

l

glkC
l
ij ¼

1
2

ogjk

oxi
þ ogik

oxj
� ogij

oxk

� �

¼ Cikj; Cikj ¼ Cjki;

ogij

oxk
¼ Cijk þ Cjik;

Ci
ji ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p

oxj
; Xi

;i ¼
oXi

oxi
þ Ci

jiX
j ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
oð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
XiÞ

oxi
:

Curvature tensor field R (see p. 375): Rijkl = gimRm
jkl

Rijkl ¼ �Rjikl ¼ �Rijlk; Rijkl þ Riklj þ Riljk ¼ 0; Rijkl ¼ Rklij;
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Rijkl;m þ Rijlm;k þ Rijmk;l ¼ 0; (Bianchi identities).

Sectional curvature: Gaussian curvature of E � M formed by geodesics
through x and tangent to E,

Kðx;EÞ ¼ � RðX; Y ;X; YÞ
jXj2jY j2 � ðXjYÞ2

; E ¼ spanfX; Yg:

Ricci tensor: The only non-zero contraction of the Riemann curvature tensor,

Rlm ¼ gjkRjlkm; Rlm ¼ Rml:

Curvature scalar: R = glmRlm.

References

1. Lang, S.: Algebra. Addison-Wesley, Reading (1965)
2. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. I: Functional Analysis.

Academic Press, New York (1973)
3. Steenrod, N.E.: The Topology of Fiber Bundles, 6th ed. Princeton University Press, Princeton

(1967)
4. Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Springer, New York

(1983)
5. Pontrjagin, L.S.: Topological Groups, 2nd ed. Gordon and Breach, New York (1966)
6. Fuchs, J.: Affine Lie Algebras and Quantum Groups. Cambridge University Press, Cambridge

(1992)
7. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry (Interscience, New York,

1963 and 1969), Vol. I and II.
8. Chern, S.S., Chen, W.H., Lam, K.S.: Lectures on Differential Geometry. World Scientific,

Singapore (2000)

378 Compendium



List of Symbols

*, 13
�, 19, 349
ffi, 41
�, 16, 20
�, 20, 97
9, 2
^, 70, 102
k � k, 17, 27
h�; �i, 18, 103
ð�; �Þ, 19
½�; �
, 68, 223

*, 121
r, 232, 236
Aj

i, 190
Ad, 202
Aut(V), 177
Br(C*), 138, 139
BrðM;RÞ, 130
C, xii
CðMÞ, 67
Cm-manifold, 58
CrðM;RÞ, 130
D, 222
DðMÞ;DrðMÞ, 70, 110
DinvðGÞ, 176
E, 36
E, (E, M, pE, F, G), 226
E
, 36
End(V), 177
F*, 72, 74
F*, 71, 74
G, 173
Gl(n, K), 191
Glðn;CÞ, 174
Glðn;RÞ, 174
HrðC
Þ, 139
HdR

r (M), 133

Hr(M, K), 131
IdA, xi
Ker, 130
L(M), 211
LðX;YÞ, 17
Lp, 21
LX, 107
K(V), 103
Kr

* (M), 106, 229
MmodN, 151
M?, 20
N, xi
O(n), 195
O(n, K), 194
O(p, q), 195
P, (P, M, p, G), 206
Q, xii
R;Rþ, xii
R

, 210
S, 37
SðMÞ, 228
S
, 37
SO(n, K), 195
SU(n), 195
Sl(n, K), 193
Sp(2n), 196
Sp(2n, K), 196
T(M), 72, 229
T ðMÞ; T r;sðMÞ, 107
TðVÞ, 98
T*(M), 72, 229
Tr,s(M), 106, 229
U(n), 193
U(p, q), 194
XðMÞ, 68
X*, 18

379



(cont.)
Z;Zþ, xi
ZrðC
Þ, 138, 139
ZrðM;RÞ, 130
a, 20
ad, 203
br(M), 132
cjk

i , 175
d, 70, 110, 139
q, 12, 120, 123, 125, 344
�o, 344
d, 156

exp, 189
g, 175
g 	 f , xi
glðn;CÞ, 174, 190
glðn;RÞ, 174, 190
iX , 105, 111
oðnÞ, 195
pn(X), 45, 47
slðn;KÞ, 193
spð2n;KÞ, 196
spanK, 16
suppF, 33

380 List of Symbols



Index

A
Abstract complex, 142
AdG invariant, 270

polynomial, 272
Adiabatic, 94
Affine

connection, 237
Generalized, 237

frame, 213
motion, 174

Aharonov–Bohm effect, 264
Algebra of tensor fields, 107
Algebraic number of critical points, 153
Algebraically complementary, 16
Almost complex

manifold, 341
structure, 341

Alternating tensor, 102
Ambrose–Singer theorem on holonomy, 225
Analytic

1-form, 336
function, 26
metric, 336

Angle, 19
Annihilator subspace, 79
Anti-derivation, 104
Arc length, 301
Atlas, 57

Complete, 56
Automorphism, 177

Inner, 202

B
Baire space, 14
Ball neighborhood, 314

Banach
algebra, 27
space, 17

Banach–Alaoglu theorem, 32
Base

in a topological vector space, 16
J-adapted, 338
Local

of a distribution, 78
Neighborhood, 13
of the covering, 181
of topology, 13
Orthonormalized, 20
point, 182
space, 36, 206, 227

Belavin–Polyakov instanton, 266
Belong to a distribution, 78
Berry’s

curvature, 277
phase, 277

Berry–Simon connection, 277
Bessel’s inequality, 20
Betti number, 132
Bianchi identities, 224, 235, 261, 312
Bijective, xi
Black hole, 336
Bloch’s theorem, 161
Bolzano–Weierstrass theorem, 29
Boundary, 12

Oriented, of a simplex, 123
Bounded linear function, 17
Bravais lattice, 161
Brillouin zone, 162
Brouwer’s fixed point theorem, 29
Bundle

Cotangent, 229
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Dual vector, 228
embedding, 209
Exterior, 229
Fiber, 226

Principal, 206
homomorphism, 208
projection, 206, 227
space, 206, 227
Tangent, 229
Tensor, 229
Trivial, 206
Vector, 228

Riemannian, 308

C
Canonical

2-form, 82
almost complex structure, 341
form on L(M), 219, 241
transformations, 83

Category, 351
Cauchy sequence, 14
Cauchy–Riemann conditions, 336
Cell, 145

chains, (co)homology of, 145
complex, 145

Central normal subgroup, 186
Chain

complex, 130
rule, 25

r-chain, 124
Characteristic class, 255, 272
Chart, 56

Admissible, 57
Chern

character, 273
class, 273

Chern–Simons form, 275
Chern–Weil theorem, 270
Christoffel symbols, 241, 309
Class

Cn function, 26
C0

n function, 33
Classical mechanics

and quantum mechanics, 84
under velocity constraints, 93

Classical point mechanics, 82, 113, 153
under momentum constraints, 86

Closed
form, 133
Lie subgroup, 163
set, 11

submanifold, 75
Closure, 11
Cluster point, 29
Coboundary, 138, 139

operator, 137, 139
Cochain

complex, 138, 139
mapping, 139

Cocycle, 138, 139
Codifferential operator, 156
Coherently oriented, 127
Cohomologically trivial, 133
Cohomologous, 133
Cohomology module, 139
(Co)homology of cell chains, 145
Commutative diagram, 352
Commutator, 68
Compact

function, 30
set, 29

Compactum, 29
Complete

atlas, 56
linear connection, 321
space, 13
tangent vector field, 81

Completely integrable, 80
Complex

general linear group, 174
manifold, 336
structure, 337

Composite mapping, xi
Concatenation of paths, 182
Configuration space, 21, 82
Conformal, 337

mapping, 337
Connected, 38

component, 38
Pathwise, 42

Pathwise, 42
Connection, 213

Affine, 237
Generalized, 230

Flat, 225
Canonical, 218
Theorem on, 225

form, 215
Local, 217

Levi-Civita, 308
Linear, 218, 233
Metric, 308
Riemannian, 308

Constant curvature space, 326
Constraint forces, 93
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First-class, 91
Primary, 88
Second-class, 91
Secondary, 90

Continuous function, 12
Contractible, 41
Contravariant vector, 64, 99
Coordinate

cube, 57
neighborhood, 57
system,

Local, 57
Coordinates

Geodesic normal, 313
Homogeneous, 58

Cotangent
space, 66
vector, 66

Countable, xi
Covariant

derivative, 231, 244, 259
differential, 236, 245
vector, 64, 99

Covering, 181
a-fold, 183
group,

Universal, 185, 188
Multiplicity of, 183
space, 181
space,

Universal, 184
Coverings

Equivalent, 181
Critical

point, 149
Non-degenerate, 149

points,
Algebraic number of, 153

value, 149
Curvature

form, 233
Local, 224

Gaussian, 323
operation, 238
Principal, 323
Scalar, 332
Sectional, 322
tensor field, 239, 311
Total, 323

Cycle, 130

D
de Rham’s

cohomology group, 133
theorem, 134

Decomposable tensor, 99
Degree of mapping, 47
Dense, 12
Densities and spectral densities, 37
Density functional theories, 22, 32
Derivation, 101, 104, 107

Linear
of an algebra, 65

of a tensor algebra, 107
Derivative

Covariant, 231, 235, 244
Directional, 22
Exterior covariant, 222
Functional, 24
Lie, 107, 111
of a product, 27
Total, 23

Diffeomorphism, 27, 60
Difference cochain, 254
Differentiable structure, 56
Differential, 65, 71

(p, q)-form,
Exterior, 339

r-form,
Exterior, 70, 110

1-form, 70
Covariant, 236, 245
ideal, 178

Dimension, 16
of a polyhedron, 142

Dirac’s
d-function, 37
brackets, 91
monopole, 262

Direct sum, 16
of Hilbert spaces, 20

Directional derivative, 22
Disconnected, 38
Dispersion relation, 163
Distance function, 13
Distribution, 36

Belong to a, 78
Involutive, 78
Local base of a, 78
on a manifold, 78

Divergence, 310
Dynamics in ideal crystalline solids, 160

E
Einstein’s summation convention, 98
Embedded submanifold, 75
Embedding, 75
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E (cont.)
Bundle, 209
Regular, 76

Endomorphism of degrees, 104
Entropy, 95
Equivalent coverings, 181
Euclidean space, 19
Euler class, 274
Euler’s characteristic, 147
Euler–Poincaré theorem, 146
Evenly covered, 181
Exact

form, 133
sequence, 132

Short, 132
Exact homotopy sequence, 250
Exterior

algebra, 70, 102, 110
covariant derivative, 222
differential

(p, q)-form, 344
r-form, 70, 110

differentiation, 70, 110
(p, q)-form, 344
product, 70, 102

of vector bundles, 228

F
Faithful representation, 202
Fermi surface, 51, 165
Fiber, 206, 227

bundle, 226
bundle, Principal, 206
Typical, 227

Finite from below, 31
First countable, 13
Fixed point equation, 14
Flat connection, 225
Fock space, 22
Fourier transforms of distributions, 37
Frame

Affine, 213
Bundle, 212
Linear, 211

Fréchet space, 17
Function, xi

of compact support, 33
Functional, 17

derivative, 24
Functor, 352
Fundamental

form, First, 317
group, 45

tensor, 154, 300
vector field, 210

Fundamental Theorem of
calculus, 118
Riemannian geometry, 308, 310

G
Gauge

field, 257, 259, 261, 278
freedom, 92, 158
potential, 257, 259, 261, 278

Pure, 262
transformations, 260

Group of, 92, 209
Gauss’ theory of surfaces, 322
Gauss–Bonnet–Chern–Avez theorem, 274
Gaussian curvature, 324
General linear

algebra, 190
group, 174, 191

Generalized
functions, 36
Kronecker symbol, 104
orthogonal group, 195
unitary group, 194

Geodesic, 245
convex neighborhood, 319
normal coordinates, 313

Germ, 62
Graph, 178
Grassmann algebra, 102
Gravitational

field, 328
potential, 328

H
Hamilton function, 82
Hausdorff property, 12
Heisenberg’s quantum mechanics, 21
Hermitian

manifold, 345
structure, 339, 340

Hilbert space, 19
Hodge operator, 121, 155
Holonomic, 94
Holonomy group, 221

Restricted, 221
with reference point, 221

Homeomorphic, 13
Homeomorphism, 12
Homogeneous

coordinates, 58
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manifold, 210, 303
Riemannian manifold, 306
tensors, 99

Homologically trivial, 131
Homologous, 131
Homology

group, 131
Relative, 151

Homomorphism of Lie algebra, 177
Homotopic functions, 41
Homotopy, 40

classes, 41
equivalent, 41
group, 45, 47
operator, 138

Horizontal
component, 213
space, 214, 231

Hypersurface, 75

I
Identity mapping, 41
Immersion, 75
Implicit function, 27
Index

of a singular point of a tangent vector field,
256

of the non-degenerate critical point, 149
Injective, xi
Inner

automorphism, 202
point, 12
product, 19, 56, 300

Indefinite, 301
space, 19

Inner symmetry group of the gauge field the-
ory, 259

Integrable almost complex manifold, 342
Integral

curve, 78
manifold, 78

Interior, 11
multiplication, 105, 111

Invariant metric, 306
Inverse function theorem, 74
Involutive distribution, 78
Isometric completion, 14
Isomorphic

atlasses, 60
Hilbert spaces, 19

Isomorphism, 177
of fibers, 226

Isothermal coordinates, 337

Isotropic vector, 301
Isotropy group, 305

Linear, 305

J
J-adapted base, 338
Jacobi’s identity, 68
Jacobian, 24

matrix, 24, 64

K
Kählerian

form, 340
manifold, 345

Kernel, 130
Killing form, 307
Kramers degeneracy, 278, 337

L
Lagrange function, 82, 87
Laplace–Beltrami operator, 156
Left

and right translation, 174
invariant r-form, 175
invariant vector field, 174

Legendre transformation, 82
Leibniz rule, 27, 64
Levi-Civita

connection, 308
pseudo-tensor, 155, 331

Lie
algebra, 68

Abelian, 176
of the Lie group, 175

derivative, 107, 112
group

Abelian, 176
homomorphism, 177

product, 68
subgroup, 179

Closed, 179
Lift

General, 248
of a path, 220, 231
of a tangent vector field, 216

Linear
connection, 218, 233

Complete, 320
derivation of an algebra, 65
frame, 211
function (operator), 17
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L (cont.)
functional, 17, 18
independence, 16
isotropy group, 305

Liouville measure, 153
Liouville’s theorem, 154
Liouvillian, 114
Local

1-parameter group, 80
base of the distribution, 78
coordinate system, 57

Locally
compact, 30
connected, 40
convex, 17
finite, 34
pathwise connected, 42
trivial, 206

Loop, 182
Lower (upper) semicontinuous, 31

M
Manifold, 55

Cm-, 58
Almost complex, 336
Complex, 337
Hermitian, 345
Integral, 78
Kählerian, 336
Orientable, 60, 147
Product, 60
Riemannian, 300

Generalized, 300
Homogeneous, 306

Smooth, 55, 58
Mapping, xi

Cochain, 139
Composite, xi
Multi-linear, 99
Smooth, 60

Matter field, 258–260
Maurer–Cartan

equations, 176
form,

canonical, 176
Maxwell’s

electrodynamics, 154, 257, 264
equations, 157

Mead–Berry gauge potential, 297
Metric

connection, 308
form, 300
Invariant, 306

Riemannian, 301
Indefinite, 301

space, 13
tensor, 107, 154, 300
topology, 13

Metrizable, 17
Möbius band, 2, 207
Molecular orbital theory, 35
Morphism, 351
Morse

inequality
Strong, 153
Weak, 152

theory, 148
Multi-linear mapping, 99
Multiplicity of covering, 183

N
n-connected, 47
Neighborhood, 11

Ball, 314
base, 13
Normal coordinate, 313

Non-degenerate
critical point, 149
rank 2 tensor, 300

Norm, 17, 300
Indefinite, 301

Normal
coordinate neighborhood, 313
topological space, 32

Normed algebra, 27
Nowhere dense, 12
Null-homotopy class, 41

O
Obstruction cochain, 254
One point compactification, 31
1-Parameter

group, 81
subgroup, 189

Open
ball, 13
set, 11
submanifold, 60, 75

Orbital magnetism, 288
Orientable manifold, 60, 116
Oriented boundary of a simplex, 123
Orthogonal, 20

complement, 20
group, 194

Orthonormalized base, 20
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Outer
symmetry of space–time, 259
vector, 127

P
Paley–Wiener theorem, 38
Paracompact space, 34
Parallel

section, 231
tensor field, 237
transport, 220, 231

Parametrized curve, 60
Partition of unity, 34
Pathwise connected, 42

component, 42
Period, 134
Pfaffian equation system, 80
Phase space, 83, 113
Physics of vibrations, 21
Poincaré invariant, 114
Poincaré’s duality, 145
Point of closure, 12
Poisson bracket, 84
Polarization, 272
Polyhedron, 141
Pontrjagin class, 274
Positive definite rank 2 tensor, 300
Principal

curvature, 323
fiber bundle, 206

Product
Exterior, 70, 102
Lie, 68
manifold, 60
Semi-direct, 197
Tensor, 20, 97, 99
topology, 13

Proper time, 327, 329
Pseudo-group, 56
Pseudo-Riemannian

geometry, 154, 308
Pseudo-tensor, 121
Pseudo-tensorial r-form, 222
Pull back, 72
Pure gauge potential, 262
Push forward, 71, 72

Q
Quantum Hall effect, 289–292
Quantum states, 22
Quaternions, 200
Quotient

space, 16
topology, 39

R
Raising and lowering of tensor indices, 303
Rapidly decaying functions, 37
Reduced fiber bundle, 209
Reducible, 209
Reduction of the structure group, 209
Reduction theorem, 225
Reflexive space, 19
Regular

n-simplex, 127
domain, 127
embedding, 76
topological space, 32

F-related tangent vector fields, 78
Relative

homology, 151
topology, 12

Relatively compact, 30
Representation, 177

regular, 209
Ricci tensor, 332
Riemannian

connection, 308
geometry, 308
manifold, 300

Generalized, 300
Homogeneous, 306

metric, 301
Indefinite, 301

structure, 308
surface, 337
vector bundle, 308

Rigid body, 307

S
Saddle point, 149
Schauder’s fixed point theorem, 30
Schwarz inequality, 19
Second countable, 13
Section, 210, 227

Global, 210
Local, 210, 227

Canonical, 216
parallel, 231

Sectional curvature, 322
Semi-direct product, 197
Seminorm, 17
Separable, 12, 16
Sesquilinear function, 19
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S (cont.)
Set, 11
Short exact sequence, 132
r-simplex, 123

Singular, 124
Standard, 123

Simply connected, 47
Singular

r-simplex, 124
point of a tangent vector field, 77, 255

Skeleton, 143
Skyrmion, 51
Smooth, 26

bundle, 205
manifold, 55, 58
mapping, 60
real function, 67
tangent vector field, 68

Space
Base, 36, 206, 227
Constant curvature, 326
Homogeneous, 210

Span, 16
Special

linear group, 193
orthogonal group, 195
unitary group, 195

Standard
r-simplex, 123
horizontal vector field, 220

Star operator, 121, 155
Stokes’ theorem, 119, 126, 129
Strict contraction, 14
Strong Morse inequality, 153
Structure

Almost complex, 341
Complex, 341
constants, 175
equations, 176, 223, 234
group, 206, 227
Hermitian, 339, 340

Subalgebra, 179
Subbundle, 209
Submanifold

Closed, 75
Embedded, 75
Open, 75

Subordinate, 34
Sum of vector bundles, 228
Support

of a distribution, 37
of a function, 33

Surjective, xi
Symmetric tensor, 101

Symplectic
K-group, 196
group, 196
structure, 113

T
Tangent

map, 71
space, 64
vector, 64
vector field, 67

Complete, 81
Singular point of a, 77, 255
Smooth, 68

Taylor expansion, 24
Tempered distributions, 37
Tensor

algebra, 98
Alternating, 102
contraction, 99
field, 107

Parallel, 237
fields,

Algebra of, 107
Fundamental, 154, 300
Levi-Civita pseudo-, 155, 331
Metric, 107, 154, 300
product, 20, 97, 99

of vector bundles, 228
Pseudo-, 121
rank, 303
Ricci, 332
space, 98
Symmetric, 101

Tensorial r-form, 222
Theorema egregium, 324
Thermodynamic limit, 162
Thermodynamics, 94
Tietze’s extension theorem, 33
Todd class, 273
Topological

charge, 48
dual, 18
invariant, 13
space, 11
vector space, 15

Topology, 11
Coarser, 11
Discrete, 11
Finer, 11
Product, 13
Quotient, 39
Relative, 12
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Trivial, 11
Weak, 18
Weak*, 32

Torsion
form, 234
operation, 238
tensor field, 238, 344

Torus group, 173
Total

curvature, 323
derivative, 23

Totally disconnected, 39
Transformation, 81, 100
Transition function, 57, 207
Translation, 174
Tychonoff’s fixed point theorem, 30

U
Unit cell of the crystal lattice, 161
Unitary

group, 193
operator, 19
space, 19

Universal
covering group, 185, 188
covering space, 184

Urysohn’s theorem, 33

V
van Hove singularities, 164
Vector

Contravariant, 64, 99
Cotangent, 66
Covariant, 64, 99
field, 227

Fundamental, 210
Left invariant, 174

tangent, 64
Vertical

automorphism, 209
component, 213
space, 214, 231

Volume form, 116, 317

W
Wandering, 326
Weak

Morse inequality, 152
topology, 18

Weak* topology, 32
Weierstrass theorem, 29
Weil homomorphism, 272
Whitney sum, 228
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