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Preface

The real revolution in mathematical physics in the second half of twentieth century
(and in pure mathematics itself) was algebraic topology and algebraic geometry.
Meanwhile there is the Course in Mathematical Physics by W. Thirring, a large
body of monographs and textbooks for mathematicians and of monographs for
physicists on the subject, and field theorists in high-energy and particle physics are
among the experts in the field, notably E. Witten. Nevertheless, I feel it still not to
be easy for the average theoretical physicist to penetrate into the field in an
effective manner. Textbooks and monographs for mathematicians are nowadays
not easily accessible for physicists because of their purely deductive style of
presentation and often also because of their level of abstraction, and they do not
really introduce into physics applications even if they mention a number of them.
Special texts addressed to physicists, written both by mathematicians or physicists
in most cases lack a systematic introduction into the mathematical tools and rather
present them as a patchwork of recipes. This text tries an intermediate approach.
Written by a physicist, it still tries a rather systematic but more inductive intro-
duction into the mathematics by avoiding the minimalistic deductive style of a
sequence of theorems and proofs without much of commentary or even motivating
text. Although theorems are highlighted by using italics, the text in between is
considered equally important, while proofs are sketched to be spelled out as
exercises in this branch of mathematics. The text also mainly addresses students in
solid state and statistical physics rather than particle physicists by the focusses and
the choice of examples of application.

Classical analysis was largely physics driven, and mathematical physics of the
nineteens century was essentially the classical theory of ordinary and partial dif-
ferential equations. Variational calculus, since the very beginning of theoretical
mechanics a standard tool of physicists, was seen with great reservation by
mathematicians until D. Hilbert initiated its rigorous foundation by pushing for-
ward functional analysis. This marked the transition into the first half of twentieth
century, where under the influence of quantum mechanics and relativity mathe-
matical physics turned mainly into functional analysis (as for instance witnessed
by the textbooks of M. Reed and B. Simon), complemented by the theory of Lie



Vi Preface

groups and by tensor analysis. Physicists, nowadays more or less familiar with
these branches, still are on average mainly analytically and very little algebraically
educated, to say nothing of topology. So it could happen that for nearly sixty years
it was overlooked that not every quantum mechanical observable may be repre-
sented by an operator in Hilbert space, and only in the middle of the eighties of last
century with Berry’s phase, which is such an observable, it was realized how
polarization in an infinitely extended crystal is correctly described and that text-
books even by most renowned authors contained meaningless statements about
this question.

This author feels that all branches of theoretical physics still can expect the
strongest impacts from use of the unprecedented wealth of results of algebraic
topology and algebraic geometry of the second half of twentieth century, and to
introduce theoretical physics students into its basics is the purpose of this text. It is
still basically a text in mathematics, physics applications are included for illus-
tration and are chosen mainly from the fields the author is familiar with. There are
many important examples of application in physics left out of course. Also the
cited literature is chosen just to give some sources for further study both in
mathematics and physics. Unfortunately, this author did not find an English
translation of the marvelous Analyse Mathématique by L. Schwartz,' which he
considers (from the Russian edition) as one of the best textbooks of modern
analysis. A rather encyclopedic text addressed to physicists is that by Choquet-
Bruhat et al.,2 however, a compromise between the wide scope and limitations in
space made it in places somewhat sketchy.

The order of the material in the present text is chosen such that physics
applications could be treated as early as possible without doing too much violence
to the inner logic of the mathematical building. As already said, central results are
highlighted in italics but purposely avoiding the structure of a sequence of theo-
rems. Sketches of proofs are given, if they help understanding the matter. They are
understood as exercises for the reader to spell them out in more detail. Purely
technical proofs are omitted even if they prove central issues of the theory. A
compendium is appended to the basic text for reference also of some concepts (for
instance of general algebra) used in the text but not treated. This appendix is meant
as an expanded glossary and, apart form very few exceptions, not covered by the
index.

Finally, I would like to acknowledge many suggestions for improvement and
corrections by people from the Springer-Verlag.

Dresden, May 2010 Helmut Eschrig

! Schwartz, L.: Analyse Mathématique. Hermann, Paris (1967).

2 Choquet-Bruhat, Y., de Witt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics,
Elsevier, Amsterdam, vol. I (1982), vol. II (1989).
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Basic Notations

Sets A, B, .., X, Y, ... are subjects of the axioms of set theory. A = {x|P(x)}
denotes the family of elements x having the property P; if the elements x are
members of a set X, x € X, then the above family is a set, a subset (part) of the set
X:A C X. Xisasuperset of A, X D A. C, D will always be used to allow equality.
A proper subset (superset) would be denoted by A C X(X 2 A). Union, intersection
and complement of A relative to X have their usual meaning. The product of n sets
is in the usual manner the set of ordered n-tuples of elements, one of each factor.

Set and space as well as subset and part are used synonymously. Depending on
context the elements of a space may be called points, n-tuples, vectors, functions,
operators, or something else. Mapping and function are also used synonymously.
A function f from the set A into the set B is denoted f : A — B : x+—y. It maps
each point x € A uniquely to some point y = f(x) e B. A is the domain
of f and f(A) = {f(x)|x € A} C B is the range of f; if U C A, then f(U) =
{f(x)|x € U}is the image of U under f. The inverse image or preimage U =
f Y (V) CA of V C B under fis the set f(U) = {x|f(x) € V}. V need not be a
subset of the range f(A); f~' (V) may be empty. Depending on context, f may be
called real, complex, vector-valued, function-valued, operator-valued, ...

The function f: A — B is called surjective or onto, if f(A) = B. It is called
injective or one-one, if for each y € f(A), £~ '({y}) =f '(v) consists of a single
point of A. In this case the inverse function f ' : f(A) — A exists. A surjective and
injective function is bijective or onto and one-one. If a bijection between A and
B exists then the two sets have the same cardinality. A set is countable if it has the
cardinality of the set of natural numbers or of one of its subsets.

The identity mapping f : A — A : x+—x is denoted by Id4. Extensions and
restrictions of f are defined in the usual manner by extensions or restrictions of the
domain. The restriction of f: A — B to A’ C A is denoted by f|,,. If f: A — B and
g : B — C, then the composite mapping is denoted by gof:A — C:
xi g(f(2)).

The monoid of natural numbers (non-negative integers, 0 included) is denoted
by N. The ring of integers is denoted by Z, sometimes the notation N = Z, is

xi
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used. The field of rational numbers is denoted by @, that of real numbers is

denoted by R and that of complex numbers by C. R, is the non-negative ray of R.
The symbol = means ‘implies’, and < means ‘is equivalent to’. ‘Iff’

abbreviates ‘if and only if* (that is, <), and [J denotes the end of a proof.



Chapter 1
Introduction

Topology and continuity on the one hand and geometry or metric and distance on
the other hand are intimately connected pairs of concepts of central relevance both
in analysis and physics. A totally non-trivial concept in this connection is
parallelism.

As an example, consider a mapping f from some two-dimensional area into the
real line as in Fig. 1.1a. Think of a temperature distribution on that area. We say
that f is continuous at point x, if for any neighborhood V of y = f(x) there exists a
neighborhood U of x (for instance U in Fig. 1.1a for V indicated there) which is
mapped into V by f. It is clear that the concept of neighborhood is central in the
definition of continuity.

As another example, consider the mapping g of Fig. 1.1b. The curve segment
W, is mapped into V, but the segment W, is not: its part above the point x is
mapped into an interval above y = g(x) and its part below x is mapped disruptly
into a lower interval. Hence, there is no segment of the curve W, which contains x
as an inner point and which is mapped into V by g. The map g is continuous on the
curve W, but is discontinuous at x on the curve W,. (The function value makes a
jump at x.) Hence, it cannot be continuous at x as a function on the two-dimen-
sional area. To avoid conflict with the above definition of continuity, the curve W,
must not be considered a neighborhood of x in the two-dimensional area.

If f is a mapping from a metric space (a space in which the distance d(x,x")
between any two points x and x’ is defined) into another metric space, then it
suffices to consider open balls B,(x) = {x'|d(x,x") <&} of radius ¢ as neighbor-
hoods of x. The metric of the n-dimensional Euclidean space R" is given by

d(x,x') = (321, (x —x)*)"/* where the x' are the Cartesian coordinates of x. It
also defines the usual topology of the R". (The open balls form a base of that
topology; no two-dimensional open ball is contained in the set W; above.)

Later on in Chap. 2 the topology of a space will be precisely defined. Intuitively
any open interval containing the point x may be considered a neighborhood of x on
the real line R (open intervals form again a base of the usual topology on R).
Recall that the product X X Y of two sets X and Y is the set of ordered pairs (x,y),
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Fig. 1.1 Mappings from a
two-dimensional area into the
real line. a mapping f
continuous at x, b mapping g
discontinuous at x. The
arrows and shaded bars
indicate the range of the
mapping of the sets Uy, U,
W, and parts of W,,
respectively

(b)

x € X,y € Y. If X and Y are topological spaces, this leads naturally to the product
topology in X x Y with a base of sets {(x,y)[x € U,y € V} where U and V are in
the base of the topology of X and Y, respectively. If this way the Cartesian plane is
considered as the topological product of two real lines, R> = R x R, then the
corresponding base is the set of all open rectangles. (This base defines the same
topology in R? as the base of open balls.) Note that neither distances nor angles
need be defined so far in R x R: topology is insensitive to stretchings or skew
distortions as long as they are continuous.

Consider next the unit circle, ‘the one-dimensional unit sphere’ Sl as a topo-
logical space with all open segments as base of topology, and the open unit interval
I =10, 1] on the real line, with open subintervals as base of topology. Then, the
topological product S' x I is the unit cylinder with its natural topology. Cut the
cylinder on a line ‘above one point of S'*, turn one cut edge around by 180° and
glue the edges together again. A Mdobius band is obtained (Fig. 1.2). This rises the
question, can a Mdbius band be considered as a topological product similar to the
case of the unit cylinder? (Try it!) The true answer is no.

There are two important conclusions from that situation: (i) besides the local
properties of a topology intuitively inferred from its base there are obviously
important global properties of a topology, and (ii) a generalization of topological
product is needed where gluings play a key role.
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Fig. 1.2 a The unit cylinder
and b the Mobius band D

(a) s* (b)

This latter generalization is precisely what a (topological) manifold is. The unit
cylinder cut through in the above described way may be unfolded into an open
rectangle of the plane R?. Locally, the topology of the unit cylinder and of the
Mobius band and of R? are the same. Globally they are all different. (The
neighborhoods at the left and right edge of the rectangle are independent while on
the unit cylinder they are connected.) Another example is the ordinary sphere S?
embedded in the R3. Although its topology is locally the same as that of R,
globally it is different from any part of the R?. (From the stereographic projection
which is a continuous one-one mapping it is known that the global topology of the

sphere S? is the same as that of the completed or better compactified plane R* with
the ‘infinite point’ and its neighborhoods added.) The S?>-problem was maybe first
considered by Merkator (1512-1569) as the problem to project the surface of the
earth onto planar charts. The key to describe manifolds are atlases of charts.

Topological space is a vast category, topological product is a construction of
new topological spaces from simpler ones. Manifold is yet another construction to
a similar goal. An m-dimensional manifold is a topological space the local
topology of which is the same as that of R™. Not every topological space is a
manifold. Since a manifold is a topological space, a topological product of man-
ifolds is just a special case of topological product of spaces. A simple example is
the two-dimensional torus T? = §' x S' of Fig. 1.3.

More special cases of topological spaces with richer structure are obtained by
assigning to them additional algebraic and analytic structures. Algebraically, the

Fig. 1.3 The two-
dimensional torus
T =8"x 8
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R”" is usually considered as a vector space (see Compendium at the end of this
book) over the scalar field of real numbers, that is, a linear space. It may be
attached with the usual topology which is such that multiplication of vectors by
scalars, (4,x)— Ax, and addition of vectors, (x,y)—x +y, are continuous
functions from R x R" to R" and from R" x R" to R", respectively. As was
already mentioned, this topology can likewise be derived as a product topology
from n factors R or from the Euclidean metric related to the usual Euclidean scalar
product of vectors. The latter defines lengths and angles. For good reasons a metric
will be used only on a much later stage as it is too restrictive for many consid-
erations. So far, linear operations are defined and continuous, for instance
linear dependence is defined, but angles and orthogonality remain undefined. If
e;,i = 1...n are n linearly independent vectors of R", then any vector x € R" can
be written as x = ), x'e; with uniquely defined components x' in the basis {e;}.

If X and Y are two topological vector spaces, then their algebraic direct sum
Z =X & Y with the product topology is again a topological vector space. Any
vector z € Z is uniquely decomposed into z=x+y, x € X, y € Y, and the
canonical projections pr, and pr,, pr,(z) =x, pr,(z) =y are continuous.
(Orthogonality of x and y again is not an issue here.)

Analysis is readily introduced in topological vector spaces. Let f : R" — R”™ be
any function, f(x) =y or more explicitly with respect to bases, f(x!,...,x") =
(y',...,y™), that is, fi(x) = y'. If the limits

of!

o et re) — )
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t—0 t

(1.1)

X

exist and are continuous in x, then the vector function f is differentiable with

derivative
o (o o™\ (O
6x<6x’”" o) = \ag ) (1.2)

For n = 1 think of a velocity vector as the derivative of x(z), for m = n = 4 think
of the electromagnetic field tensor as twice the antisymmetric part of the derivative
of the four-potential A#(x"). Higher derivatives are likewise obtained.

Manifolds are in general not vector spaces (cf. Figs. 1.2, 1.3) and therefore
derivatives of mappings between manifolds cannot be defined in a direct way.
However, if m-dimensional manifolds are sufficiently smooth, one may at any
given point of the manifold attach a tangent vector space to it and project in a
certain way a neighborhood of that point from the manifold into this tangent space.
Then one considers derivatives in those tangent spaces. If a point moves in time on
a manifold, its velocity is a vector in the tangent space. If space—time is a curved
manifold, the electromagnetic four-potential is a vector and the field a tensor in the
tangent space.

The derivative of a vector field meets however a new difficulty: the numerator
of Eq. 1.1 is the difference of vectors at different points of the manifold which lie
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in different tangent spaces. Such differences cannot be considered before the
introduction of affine connections between tangent spaces in Chap. 7. However,
there are two types of derivative which may be introduced more directly and which
are considered in Chap. 4: Lie derivatives and exterior derivatives. They yield also
the basis for the study of Pfaff systems of differential forms playing a key role for
instance in Hamilton mechanics and in thermodynamics. In any case, analysis
leads to an important new construct of a manifold with a tangent space attached to
each of its points, the tangent bundle.

As an example, the circle S! as a one-dimensional manifold is shown in the
upper part of Fig. 1.4 together with its tangent spaces 7, (S!) at points x of S'. All
those tangent spaces together with the base manifold S' form again a manifold: If
all tangent spaces are turned around by 90° as in the lower part of Fig. 1.4, a
neighborhood of the tangent vector indicated in the upper part is obviously
smoothly deformed only. Hence it is natural to introduce a topology in the whole
construct which is locally equivalent to the product topology of V x R where V is
an open set of S' and hence in the whole this topology is equivalent to that of an
infinite cylinder, the vertically infinitely extended version of Fig. 1.2a. (Note that
the tangent vector spaces to different points of a manifold are considered disjoint
by definition. In the upper panel of Fig. 1.4 the lines in clockwise direction from S'
must therefore be considered on a sheet of paper different from that for the lines in
counterclockwise direction in order to avoid common points.) In this topology, the

canonical projection 7 from the tangent spaces to their base points in S' is

Fig. 1.4 The circle S'
attached with a bundle of
one-dimensional tangent
spaces Ty(S") (upper part). A
neighborhood U of a tangent
vector marked by an arrow is
indicated. If the tangent
spaces are turned around as
shown in the lower part, the
neighborhood U is just
smoothly deformed
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continuous. Such a rather special construct of a manifold is called a bundle, in the
considered case a tangent bundle T(S') which is a special case of a vector bundle.

All tangent spaces to a manifold are isomorphic to each other, they are iso-
morphic to R™ if the manifold M has a given (constant) dimension m (its local
topology is that of R™). Such a bundle of isomorphic structures is in general called
a fiber bundle, in the considered case the tangent bundle 7(M) with base M and
typical fiber R™ (tangent space). Fiber bundles are somehow manifolds obtained
by gluings along fibers. The complete definition of bundles given in Chap. 7
includes additionally transformation groups of fibers. The characteristic fiber of a
fiber bundle need not be a vector space, it can again be a manifold. As already
stated, a fiber bundle is again a new special type of manifold. Hence, one may
construct fiber bundles with other fiber bundles as base. ..

Given tangent and cotangent spaces in every point of a manifold, the latter as
the duals to tangent spaces, a tensor algebra may be introduced on each of those
dual pairs of spaces. This leads to the concept of tensor fields and the corre-
sponding tensor analysis. Totally antisymmetric tensors are called forms and play
a particularly important role because E. Cartan’s exterior calculus and the inte-
gration of forms leading to de Rham’s cohomology provide the basis for the
deepest interrelations between topology, analysis and algebra. In particular field
theories like Maxwell’s theory are most elegantly cast into cases of exterior cal-
culus. Tensor fields and forms as well as their Lie derivatives along a vector field
and the exterior derivative of forms are treated in Chap. 4. Besides the tensor
notation related to coordinates which is familiar in physics, the modern coordinate
invariant notation is introduced which is more flexible in generalizations to
manifolds, in particular in the exterior calculus.

On the real line R, differentiation and integration are in a certain sense inverse
to each other due to the Fundamental Theorem of Calculus

X

/ £ )y = £(x) — f(a). (1.3)

a

In general, however, while differentiation needs only an affine structure, integra-
tion needs the definition of a measure. However, it turns out that the integration of
an exterior differential n-form on an n-dimensional manifold is independent of the
actual local coordinates of charts. It is treated in Chap. 5. This implies the classical
integral theorems of vector analysis and is the basis of de Rham’s cohomology
theory which connects local and global properties of manifolds.

There are two classical roots of modern algebraic topology and homology,
of which two textbooks which have many times been reprinted still maintain
actuality not only for historical reasons. These are that of Herbert Seifert and
William Threlfall, Dresden [1], and that of Pawel Alexandroff and Heinz Hopf,
Gottingen/Moscow [2]. Seifert was the person who coined the name fiber
space, then in a meaning slightly different from what is called fiber bundle
nowadays.
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On the basis of integration of simplicial chains, Chap. 5 provides cohomology
theory in some detail as the purely algebraic skeleton of the theory of integration
of forms with its astonishingly far reaching generalizations for any type of graded
algebras or modules. Cohomology theory is intimately related to the general
continuation problems in mathematics and physics: given a certain quantity
defined on a domain U of a space X, can it continuously, smoothly, analytically,
... be continued to a quantity defined on a larger domain. Cohomology theory
forms nowadays the most powerful core of algebraic topology and led to a wealth
of results not only in mathematical physics but also in nearly every branch of pure
mathematics itself. Here, the focus nevertheless is on topological invariants.
Besides, as another example of application of (co)homology theory in mathematics
with physical relevance Morse’s theory of critical points of real functions on
manifolds is presented.

Physicists are well acquainted with the duality between alternating tensors of
rank r and alternating tensors of rank d — r in dimensions d =3 and d = 4,
provided by the Levi-Civita pseudo-tensor (alternating d-form). Its general basis is
Hodge’s star operator, which is treated in the last section of Chap. 5 in connection
with Maxwell’s electrodynamics as a case of application of the exterior calculus.
As another application of homology and homotopy theory, the dynamics of
electrons in a perfect crystal lattice as a case of topological classification of
embedding one- and two-dimensional manifolds into the 3-torus of a Brillouin
zone is considered in some detail.

The most general type of cohomology is sheaf cohomology, and sheaf theory is
nowadays used to prove de Rham’s theorem. Since sheaf theory is essentially a
technique to prove isomorphisms between various cohomologies and is quite
abstract for a physicist, it is not included here, and de Rham’s theorem is not
proved although it is amply used. The interested reader is referred to cited
mathematical literature.

Let X be a tangent vector field on a manifold M. In a neighborhood U(x) of
each point x € M it generates a flow ¢, : U(x) — M, —e<t<¢ of local transfor-
mations with a group structure ¢@,@, = @,.», ¢y = Idy(, (identical transforma-
tion), ¢, ' = ¢_, so that one may formally write ¢, = exp(X).

If the points of a manifold themselves form a group and M xM — M :
(x,y)—xy, and M — M : x+— x~! are smooth mappings, then M is a Lie group.
The tangent fiber bundle T(M) based on the Lie group M has the Lie algebra m of
M as its typical fiber.

Besides being themselves manifolds, Lie groups play a central role as trans-
formation groups of other manifolds. The theory of Lie groups and of Lie algebras
forms a huge field with relevance in physics by itself. In this text, the focus is on
two aspects, most relevant in the present context: covering groups, the most
prominent example of which in physics is the interrelation of spin and angular
momentum, and the classical groups and some of their descendants. Two amply
used links between Lie groups and their Lie algebras are the exponential mapping
and the adjoint representations. All these parts of the theory of topological groups
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are considered in Chap. 6. The Compendium at the end of the volume contains in
addition a sketch of the representation theory of the finite dimensional simple Lie
algebras, part of which is well known in physics in the theory of angular momenta
and in the treatment of unitary symmetry in quantum field theory.

The simplest fiber bundles, the so called principal fiber bundles have Lie groups
as characteristic fiber. Their investigation lays the ground for moving elements of
one fiber into another with the help of a connection form.

Given a linear base of a vector space which sets linear coordinates, a tensor is
represented by an ordered set of numbers, the tensor components. Physicists are
taught early on, however, that a tensor describes a physical reality independent of
its representation in a coordinate system. It is an equivalence class of doubles of
linear bases in the vector space and representations of the tensor in that base, the
transformations of both being linked together. Tensor fields on a manifold M live
in the tangent spaces of that manifold (more precisely in tensor products of copies
of tangent and cotangent spaces). All admissible linear bases of the tangent space
at x € M form the frame bundle as a special principal fiber bundle with the
transformation group of transformations of bases into each other as the charac-
teristic fiber. The tensor bundle, the fibers of which are formed by tensors relative
to the tangent spaces at all points x € M, is now a general fiber bundle associated
with the frame bundle, and the interrelation between both is precisely describing
the above mentioned equivalence classes, making up tensors. Connection forms on
frame bundles allow to transport tensors from one point x € M to another point
X' € M on paths through M, the result of the transport depending on the path, if M
is not flat. Only after so much work, the directional derivatives of tensor fields on
manifolds can be treated in Chap. 7. Now, also the curvature form and the torsion
form as local characteristics of a manifold as well as the corresponding torsion and
curvature tensors living in tensor bundles over manifolds are provided.

With the help of parallel transport, deep results on global properties of mani-
folds are obtained in Chap. 8: surprising interrelations between the holonomy and
homotopy groups of the manifold. In order to provide some inside into the flavor
of these mathematical constructs, the exact homotopy sequence and the homotopy
of sections are treated in some detail, although not so much directly used in
physics. The exact homotopy sequence is quite helpful in calculating homotopy
groups of various manifolds, some of which are also used at other places in the
text. The homotopy of sections in fiber bundles provides the general basis of
understanding characteristic classes, the latter topological invariants becoming
more and more used in physics. These interrelations are presented in direct con-
nection with very topical applications in physics: gauge field theories and the
quantum physics of geometrical phases called Berry’s phases. They are also in the
core of modern treatments of molecular physics beyond the simplest Born-
Oppenheimer adiabatic approximation.

By introducing an everywhere non-degenerate symmetric covariant rank 2
tensor field, the Levi-Civita connection is obtained as the uniquely defined metric-
compatible torsion-free connection form. This leads to the particular case of
Riemannian geometry, which is considered in Chap. 9, having in particular the
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theory of gravitation in mind the basic features of which are discussed. The text
concludes with an outlook on complex generalizations of manifolds and a short
introduction to Hermitian and Kihlerian manifolds. Besides providing the basis of
modern treatment of analytic complex functions of many variables, a tool present
everywhere in physics, the Kéhlerian manifolds as torsion-free Hermitian mani-
folds form in a certain sense the complex generalization of Riemannian manifolds.
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Chapter 2
Topology

The first four sections of this chapter contain a brief summary of results of analysis
most theoretical physicists are more or less familiar with.

2.1 Basic Definitions

A topological space is a double (X, 7) of a set X and a family 7 of subsets of X
specified as the open sets of X with the following properties:

1. DeT,XeT (I isthe empty set),
2. (UCT):><U UeT),

veld

N
3. (U, eT for1<n<NeN)= <ﬂ U,leT),
n=1
that is, 7 is closed under unions and under finite intersections. If there is no doubt
about the family 7, the topological space is simply denoted by X instead of (X, 7).
Two topologies 7 and 7, on X may be compared, if one is a subset of the
other; if 7, C 7T,, then 7, is coarser than 7, and 7, is finer that 7.
The coarsest topology is the trivial topology 7, = {{J, X}, the finest topology is
the discrete topology consisting of all subsets of X.
A neighborhood of a point x € X (of a set A C X) is an open' set U € T
containing x as a point (A as a subset). The complements C = X \ U of open sets
U € T are the closed sets of the topological space X. If A € X is any set, then the

closure A of A is the smallest closed set containing A, and the interior A of Ais
the largest open set contained in A; A and A always exist by Zorn’s lemma. Ais

" In this text neighborhoods are assumed open; more generally a neighborhood is any set
containing an open neighborhood.
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the set of inner points of A. A is the set of points of closure of A; points every
neighborhood of which contains at least one point of A. (The complement of A is
the largest open set not intersecting A.) The boundary 0A of A is the set A \ A A
is dense in X, if A = X. A is nowhere dense in X, if the interior of A is empty:
(A)° = . X is separable if X = A for some countable set A.

(One might wonder about the asymmetry of axioms 2 and 3. However, if
closure under all intersections would be demanded, no useful theory would result.
For instance, a point of the real line R can be obtained as the intersection of an
infinite series of open intervals. Hence, with the considered modification of axiom
3, points and all subsets of R would be open and closed and the topology would be
discrete as soon as all open intervals are open sets.)

The relative topology 7, on a subset A of a topological space (X,7) is
Ta={ANT|T € T}, thatis, its open sets are the intersections of A with open sets
of X. Consider the closed interval [0, 1] on the real line R with the usual topology
of unions of open intervals on R. The half-open interval ]x, 1],0<x<1, of R is an
open set in the relative topology on [0, 1] C R!

Most of the interesting topological spaces are Hausdorff: any two distinct
points have disjoint neighborhoods. (A non-empty space of at least two points and
with the trivial topology is not Hausdorff.) In a Hausdorff space single point sets
{x} are closed. (Exercise, take neighborhoods of all points distinct from x.)

Sequences are not an essential subject in this book. Just to be mentioned, a sequence of points
in a topological space X converges to a point x, if every neighborhood of x contains all but finitely
many points of the sequence. A partially ordered set / is directed, if every pair a, b of elements of
I has an upper bound ¢ € I,c > a,c > b. A set of points of X is a net, if it is indexed by a directed
index set /. A net converges to a point x, if for every neighborhood U of x there is an index b so
that x, € U for all a > b. In Hausdorff spaces points of convergence are unique if they exist.

The central issue of topology is continuity. A function (mapping) f from a
topological space X into a topological space Y (maybe the same space X) is
continuous at x € X, if given any (in particular small) neighborhood V of f(x) C Y
there is a neighborhood U of x such that f(U) C V (compare Fig. 1.1 of Chap. 1).
The function f is continuous if it is continuous at every point of its domain. In this
case, the inverse image f~!(V) of any open set V of the target space Y of f is an
open set of X. (It may be empty.) The coarser the topology of Y or the finer the
topology of X the more functions from X into Y are continuous. Observe that, if X is
provided with the discrete topology, then every function f : X — Y is continuous,
no matter what the topology of Y is. If f : X — Y and g : Y — Z are continuous
functions, then their composition gof : X — Z is obviously again a continuous
function.

Consider functions f(x) =y : [0, 1] — R. What means continuity at x = 1 if the
relative topology of [0, 1] C R is taken?

f is continuous iff it maps convergent nets to convergent nets; in metric spaces sequences
suffice instead of nets.

A homeomorphism is a bicontinuous bijection f (f and f~! are continuous
functions onro); it maps open sets to open sets and closed sets to closed sets.
A homeomorphism from a topological space X to a topological space Y provides a


http://dx.doi.org/10.1007/978-3-642-14700-5_1#Fig1
http://dx.doi.org/10.1007/978-3-642-14700-5_1
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one—one mapping of points and a one—one mapping of open sets, hence it provides
an equivalence relation between topological spaces; X and Y are called homeo-
morphic, X ~ Y, if a homeomorphism from X to Y exists. There exists always the
identical homeomorphism Idy from X to X, and a composition of homeomor-
phisms is a homeomorphism. The topological spaces form a category the mor-
phisms of which are the continuous functions and the isomorphisms are the
homeomorphisms (see Compendium C.1 at the end of the book).

A topological invariant is a property of topological spaces which is preserved
under homeomorphisms.

2.2 Base of Topology, Metric, Norm

If topological problems are to be solved, it is in most cases of great help that not
the whole family 7 of a topological space (X, 7 ) need be considered.

A subfamily B of 7 is called a base of the topology 7 if every U € 7T can be
formed as U = UpBg, By € B. A family B(x) is called a neighborhood base at x if
each B € B(x) is a neighborhood of x and given any neighborhood U of x there is a
B with U D B € B(x). A topological space is called first countable if each of its
points has a countable neighborhood base, it is called second countable if it has a
countable base.

The product topology on the product XxY of topological spaces X and Y is
defined by the base consisting of sets

{(x,y)|x€BX, yEBy}, BXeB)(, Bye[j’y, (21)

where By and By are bases of topology of X and Y, respectively. It is the coarsest
topology for which the canonical projection mappings (x, y) — x and (x,y) — y are
continuous (exercise). The R" with its usual topology is the topological product
R x --- X R, n times.

A very frequent special case of topological space is a metric space. A set X is a
metric space if a non-negative real valued function, the distance function d :
X x X — R, is given with the following properties:

1. d(x,y) =0, iffx=y,

2. d(x,y) = d(y,x),
3. d(x,z) <d(x,y) +d(y,z) (triangle inequality).

An open ball of radius r with its center at point x € X is defined as
B, (x) = {¥'|d(x,x") <r}. The class of all open balls forms a base of a topology of
X, the metric topology. It is Hausdorff and first countable; a neighborhood base of
point x is for instance the sequence B;/,(x), n=1,2,...

The metric topology is uniquely defined by the metric as any topology is
uniquely defined by a base. There are, however, in general many different metrics

defining the same topology. For instance, in R* 3 x = (x',x?) the metrics
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di(x,y) = (' =y + (2 =) Euclidean metric,
dZ(xvy) = max{|x1 - y1|a |)C2 7y2 }’
d;(x,y) = |x' —y'| + |x* —y?| Manhattan metric

define the same topology (exercise).
A sequence {x,} in a metric space is Cauchy if
lim d(x,x,) =0. (2.2)
m,n—oo
A metric space X is complete if every Cauchy sequence converges in X (in the
metric topology). The rational line @Q is not complete, the real line R is, it is an
isometric completion of Q. An isometric completion X of a metric space X
always exists in the sense that XDXis complete, X=X (closure of X in X), and
the distance function d(x,x’) is extended to X by continuity. X is unique up to
isometries (distance preserving transformations) which leave the points of X on
place. A complete metric space is a Baire space, that is, it is not a countable union
of nowhere dense subsets. The relevance of this statement lies in the fact that if a
complete metric space is a countable union X = U,U,,, then some of the U, must
have a non-empty interior [1, Section IIL5].

A metric space X is complete, iff every sequence C; O Cp D ... of closed balls
with radii r\,r, ... — 0 has a non-empty intersection.

Proof Necessity: Let X be complete. The centers x, of the balls C, obviously
form a Cauchy sequence which converges to some point x, and x € N,C,. Suffi-
ciency: Let x, be Cauchy. Pick n; so that d(x,, x,,) <1/2 for all n > n; and take x,,
as the center of a ball C of radius r; = 1. Pick ny > n; so that d(x,, x,,) <1/22 for
all n > n, and take x,, as the center of a ball C; of radius r, = 1/2... The sequence
C; D C; D ... has a non-empty intersection containing some point x. It is easily
seen that x = lim x,,. |

Let X be a metric space and let F' : X — X : x— Fx be a strict contraction, that
is a mapping of X into itself with the property

d(Fx,Fx')<id(x,x'), Ai<]1. (2.3)

(A contraction is a mapping which obeys the weaker condition
d(Fx, Fx') <d(x,x'); every contraction is obviously continuous since the preimage
of any open ball B,(Fx) contains the open ball B,(x). Exercise.) A vast variety of
physical problems implies fixed point equations, equations of the type x = Fx.
Banach’s contraction mapping principle says that a strict contraction F on a
complete metric space X has a unique fixed point.

Proof Uniqueness: Let x = Fx and y = Fy, then d(x,y) = d(Fx, Fy) < Ad(x,y),
A< 1. Hence, d(x,y) =0 that is x = y. Existence: Pick xo and let x, = F"xo.
Then, d(xpi1,%,) = d(Fxp, Fxy—1) < Ad(xy,%,-1) <---<2"d(x1,x0). Thus, if
n > m, by the triangle inequality and by the sum of a geometrical series,
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d(Xp,2xm) < D0y d(x, 0 — 1) < A™(1 — i)fld(xl,xo) —0 for mn— oo
implying that {x,} = {Fx,_;} is Cauchy and converges towards an x € X. By
continuity of F,x = Fx. U

Equation systems, systems of differential equations, integral equations or more
complex equations may be cast into the form of a fixed point equation. A simple
case is the equation x = f(x) for a function f : [a, b] — [a, b], [a,b] C R, obeying
the Lipschitz condition

If(x) —fO)<Ax—=X|, 2<1, x,x €]a,b].

If for instance |f'(x)]<A<1 for x € [a,b], the Lipschitz condition is fulfilled.
From Fig. 2.1 it is clearly seen how the solution process x, = f(x,—1) converges.
The convergence is fast if |f’(x)|<1. Consider this process for |f’(x)| > 1. Next
consider @ = —oo; why is a simple contraction not sufficient and a strict con-
traction needed to guarantee the existence of a solution?

There are always many ways to cast a problem into a fixed point equation.
If x = Fx has a solution xo, it is easily seen that x = Fx with Fx = x + p(Fx — x)
has the same solution xo. If F is not a strict contraction, F with a properly chosen p
sometimes is, although possibly with a very slow convergence of the solution
process. Sophisticated constructions have been developed to enforce convergence
of the solution process of a fixed point equation.

Another frequent special case of topological space is a topological vector
space X over a field K. (In most cases K = R or K = C.) It is also a vector space
(see Compendium) and its topology is such that the mappings

KxX—X:(4x)— A,
XXX —X:(x,x)—x+x

Y y=z Y y=x
b
f(z)
f(x)
flx) =z
. /|
a
a To X1 zo b a T To T b

Fig. 2.1 Illustration of the fixed point equation x = f(x) for f'(x) > 0 (left) and f’(x) <O (right)
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are continuous, where K is taken with its usual metric topology and K x X and
X x X are taken with the product topology. If (0) is a neighborhood base at the
origin of the vector space X, then the set B(x) of all open sets Bg(x) =
x+ Bg(0) = {x+x'|x € Bp(0)} with Bs(0) € B(0) is a neighborhood base at x.
For any open (closed) set A, x + A is open (closed). For two sets A C X, B C X the
vector sum is defined as A + B = {x + x’|x € A,x’ € B}.

Linear independence of a set £ C X means that if ZHN: | A"x, = 0 (upper index
at 2", not power of 1) holds for any finite set of N distinct vectors x, € E, then
A"=0 for all n=1,...,N. Linear independence (as well as its opposite, linear
dependence) is a property of the algebraic structure of the vector space, not of its
topology. A base E in a topological vector space is a linearly independent subset
the span of which (the set of all linear combinations over K of finitely many
vectors out of E) is dense in X : spangE = X. It is a base of vector space, not a
base of topology. It may, however, depend on the topology of X. The maximal
number of linearly independent vectors in E is the dimension of the topological
vector space X it is a finite integer n or infinity, countable or not. If the dimension
of a topological vector space X is n<oo, then X is homeomorphic to K”. If it is
infinite, the dimension is to be distinguished from the algebraic dimension of the
vector space (see Compendium). It can be shown that a topological vector space X
is separable if it admits a countable base. Any vector x of spangE has a

unique representation x = >__ 2"x,, x, € E with some finite N. Hence, if X is
Hausdorff, then every vector x € X has a unique representation by a converging
series x = Y~ A'x,, x, € E (exercise).

Two subspaces (see Compendium) M and N of a vector space X are called
algebraically complementary, if M NN = {0} and M + N = X. X is then said to
be the direct sum M @ N of the vector spaces M and N. Consider all possible sets
x+ M, x € X. They either are disjoint or identical (exercise). Let ¥ be the
equivalence class of the set x + M. By an obvious canonical transfer of the linear
structure of X into the set of classes X these classes form a vector space; it is called
the quotient space X/M of X by M (Fig. 2.2). Let the topology of X be such that
the one point set {0} is closed. Then, for any x € X, M, = {/x|1 € K} is a closed
subspace of X (exercise).

Fig. 2.2 A subspace M of a XIM
vector space X and cosets
x; + M with x; linearly M
independent of M. Note that / T3+
an angle between X /M and M T2+ M
has no meaning so far 1+ M
M
Xr_1 + M
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It is just by custom that the cosets x; + M were drawn as parallel planes in
Fig. 2.2, and that X/M was drawn as a straight line. Angles, curvature and all that
is not defined as long as X is considered as a topological vector space only. Any
continuous deformation of Fig. 2.2 is admitted. Even if a metric is defined on a
one-dimensional vector space, say, it would not make a difference if it would be
drawn as a straight line or a spiral provided it is consistently declared how to relate
the point Ax to the point x. These remarks are essential in later considerations.

A topological vector space X is said to be metrizable if its topology can be
deduced from a metric that is translational invariant: d(x,x") = d(x + a,x’ + a) for
all @ € X. Many topological vector spaces, in particular all metrizable vector
spaces, are locally convex: they admit a base of topology made of convex sets.
(A set of a vector space is convex if it contains the ‘chord’ between any two of its
points, that is, if x and x’ are two points of the set then all points Ax + (1 — )X/,
0< <1 belong to the set.)

In most cases a metrizable topological vector space is metrized either by a family
of seminorms or by a norm. A norm is a real function x — ||x|| with the properties

L e X < el + 1],
2. [ Ax]] = |4 []x[],
3. ||x|] =0, iffx=0.

From the first two properties the non-negativity of a norm follows; if the last
property is abandoned one speaks of a seminorm.The metric of a norm is given by
d(x,x") = ||]x — x'||. A complete metrizable vector space is a Fréchet space, a
complete normed vector space is a Banach space. Fréchet spaces whose metric
does not come from a single norm are used in the theory of generalized functions
(distributions).

A linear function (operator) L : X — Y from a vector space X into a vector
space Y over the same field K is a function with the property

L(/x+Ax) = JL(x)+ /LX), A,/ €K. (2.4)

A function from a vector space X into its field of scalars K is called a functional, if
it is linear it is called a linear functional. A linear function from a topological
vector space into a topological vector space is continuous, iff it is continuous at the
origin x = 0 (exercise). A linear function from a normed vector space X into a
normed vector space Y (for instance the one-dimensional vector space K) is
bounded if

L)Ly

[IL|| = sup —+— <00. (2.5)
0£xeX ||x|\x

The operator notation Lx is often used instead of L(x). A linear function from a
normed vector space into a normed vector space is bounded, iff it is continuous
(exercise). With the norm (2.5) (prove that it is indeed a norm), the set £L(X,Y) of
all bounded linear operators with linear operations among them defined in the
natural way is again a normed vector space; it is Banach if Y is Banach.
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Proof Let {L,} be Cauchy. Since |||Ly|| — ||La||| < [|Lm — Lal| — 0, {||Ln||} is a
Cauchy sequence of real numbers converging to some real number C. For each
x € X, {L,x} is a Cauchy sequence in Y. Since Y is complete, L, x converges to some
point y€Y. Define L by Lx=y. Then, |[|Lx||=1lim,_ ||L.x||<
lim,_, ||L4|| ||| = C||x||, where (2.5) was used. Hence, L is a bounded operator.
Moreover, ||(L — Ly)x|| = limy,—oo || (L — Ly)x|| < limy—oo || (Lin— Ly)|[]|x|| and
therefore lim,, . [|L — Ly, || = lim, .o sup, o ||(L — Ly)x|[ /[ X[ < limy, o [|Ln—
L,|| = 0. Hence, L, converges to L in the operator norm. O

The topological dual X* of a topological vector space X is the set of all
continuous linear functionals

fiX—>K:x—(f,x) €K, (fix+x)=2fx)+V{x), (2.6)

from X into K provided with the natural linear structure (Af + A'f’,x) = A{f,x) +
A{f', x). It is again a normed vector space with the norm ||f|| given by (2.5) with f
instead of L, |[|f]| = supg.ex [{f,X)|/[|x[|y- As there are the less continuous
functions the coarser the topology of the domain space is, the question arises, what
is the coarsest topology of X for which all bounded linear functionals are con-
tinuous. This topology of X is called the weak topology. A neighborhood base of
the origin for this weak topology is given by all intersections of finitely many open
sets {x| [{f,x)| <1/k}, k =1,2...forall f € E*, a base of the vector space X*. For
instance, if X = R", these open sets comprise all infinite ‘hyperplates’ of thickness
2/k sandwiching the origin and normal in turn to one of the n base vectors f' of
X* =R" (Fig. 2.3). Taken for every k, the intersections of n such ‘hyperplates’
containing {0} € X form a neighborhood base of the origin of R x --- x R,n
factors, in the product topology which in this case is equivalent to the standard
norm topology of R". Hence, the R" with both the weak and the norm topologies
are homeomorphic to each other and can be identified with each other. This does
not hold true for an infinite dimensional space X.

Fig. 2.3 Open sets of a
neighborhood base of the
origin of the R? in the weak
topology and their
intersection

€7

€1
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The topological dual of a normed vector space X is X* = L(X,K) (with the
norm ||f|| as above); if K is complete (as R or C) then X* is a Banach space (no
matter whether X is complete or not). The second dual of X is the dual X** = (X*)*
of X*. Let J : X — X** : x+— X where (¥,f) = (f,x) for all f € X*.

If X is a Banach space then the above mapping J is an isometric isomorphism
of X onto a subspace of X**, hence, one may consider X C X**.

The proof of this statement makes use of the famous Hahn-Banach theorem
which provides the existence of ample sets of continuous linear functionals
[1, Section II1.2.3]. X is said to be reflexive, if the above mapping J is onto X**.
In this case one may consider X = X**.

An inner product (or scalar product) in a complex vector space X is a
sesquilinear function X x X — C : (x,y) — (x|y) with the properties

L (xly) = (v]),

2. (xlyr +y2) = (x[y1) + (xly2),

3. (x|4y) = A(x]y) (convention in physics),
4. (x|x) >0 forx #0.

(In mathematics literature, the convention (Ax|y) = A(x|y) is used instead of 3.) An
inner product in a real vector space X is the corresponding bilinear function
X x X — R with the same properties 1 through 4. (1 is the complex conjugate of
7, in R of course A = /.) If an inner product is given,

x|l = (xx)'/2 (2.7)

has all properties of a norm (exercise, use the Schwarz inequality given below).
A normed vector space with a norm of an inner product is called an inner product
space or a pre-Hibert space. A complete inner product space is called a Hilbert
space. Some authors call it a Hilbert space only if it is infinite-dimensional; a
finite-dimensional inner product space is also called a unitary space in the
complex case and a Euclidean space in the real case. Two Hilbert spaces X and X’
are said to be isomorphic or unitarily equivalent, X ~ X', if there exists a unitary
operator U : X — X/, that is, a surjective linear operator for which (Ux|Uy) =
(x]y) holds for all x,y € X (actually it is bijective, exercise).
In an inner product space the Schwarz inequality

|Gy < el 111 (2.8)

holds, and in a real inner product space the angle between vectors x and y is
defined as

(x[y)
[l Iyl

cos(£(x,y)) = (2.9)

Proof of the Schwarz inequality Let 3 =y/||y|| and x; = (J|x)9, x2 =x — x;

implying (x;]x2) =0, x =x; + x. Then, ||x||2 = (x1 +x20x1 +x2) = ||x1||2+
2 2 2 2

ez ™ = [l |7 = [Cely) /11117 O
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Fig. 2.4 Orthogonal MLt~ XIM
complement M to a closed
subspace M of an inner
product space

M

Even in a complex inner product space, orthogonality is defined: two vectors x
and y are orthogonal to each other, if (x|y) = 0. An orthonormalized base in an
inner product space is a base E (of topological vector space, see p. 16) with
lle]| = 1 and (e|e) =0, e # €' for all e, ¢’ € E. Let {e,}_, C E. A slight gener-
alization of the proof of the Schwarz inequality proves Bessel’s inequality:
|[x])* > SV [ (enlx) 2. If M is a closed subspace of an inner product space X, then
the set of all vectors of X which are orthogonal to all vectors of M forms the
orthogonal complement M+ of M in X (Fig. 2.4, compare to Fig. 2.2). Every
vector x € X has a unique decomposition x = x; + x3, x] € M, x5 € M+ (exer-
cise), that is, X = M + M*.

If X and X’ are two Hilbert spaces over the same field K then their direct sum
X @ X' is defined as the set of all ordered pairs (x,x'),x € X,x" € X’ with the scalar
product ((x,x)|(y,)")) = (x[y)x + (x'|y')x. (Hence, in the above case also X =
M @& M~ holds.) The direct sum of more that two, possibly infinitely many Hilbert
spaces is defined accordingly. (The vectors of the latter case are the sequences {x'}
for which the sum of squares of norms converges.)

The tensor product X ® X' of Hilbert spaces X and X’ is defined in the fol-
lowing way: Consider pairs (x,x’') € X x X' and define for each pair a bilinear
function x ® x’ on the product vector space X x X’ by x @ x'(y,y") = (x[y)(¥|y).
Consider the linear space of all finite linear combinations ¢ = ZnN:1 CnXn ® X, and
define an inner product (@) by linear extension of (x @ X'|y ® y') = (x|y)(X'|y).
The completion of this space is X ® X'. (Exercise: show that (@) =0 if ¢ =
SN €nx, ® ¥, =0 and that (@[i) has the four properties of a scalar product.)

nFilnally, let X be a Hilbert space and let y € X. Then, f,(x) = (y|x) is a con-
tinuous linear function f, : X — K : x— (y|x), hence f, € X*. The Riesz lemma
says that there is a conjugate linear bijection y — f, between X and its dual X* [1].
We close the section with a number of examples of vector spaces from physics:
R" = R™, the set of real n-tuples a = {a',a?,...,a"}, is used as a mere
topological vector space with the product topology of R x R x - x R (n factors)
or as a Euclidean space (real finite-dimensional Hilbert space, (a|b) =a-b =
>a'b' implying the same topology) in the sequel, depending on context (cf. the
discussion in connection with Figs. 2.2 and 2.4). Both concepts play a central role
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in the theory of real manifolds. As a mere topological vector space it is the
configuration space of a many-particle system, as an Euclidean space the position
space or the momentum space of physics. For instance in the physics of vibrations,
C" ~ R?" by the isomorphism 7 = ¥/ + iy/ - (a¥~!,a¥) = (¥, y/) is used, where
only the ¥ describe actual amplitudes. In the sequel, vectors of the space K"
(K =R or C) are denoted by bold-face letters and the inner product is denoted by a
dot.

P as sequence spaces the points of which are complex or real number sequences
a={a'} 2, are defined for 1 <p<oo with the norm (a € 17, iff ||al|, <o0)

0 1/p
P lall, = (Z|ai|p> , 1<p<oo. (2.10)
i=1

Young’s inequality says |a'b'| <|a'|"/p + |b’|?/q for 1/p+ 1/q = 1. (It suffices
to take real positive @', b’ to prove it. Determine the maximum of the function
fo(d) = ba —|d|’/p.) Therefore, if 1<p<oo,1/p+1/q=1, [la]|,<o0,
|b]|, <oo then |(b,a)| = | b'a'|<oo, that is, b€ l¥ is a continuous linear
functional on /” 3 a, 19 C IP*. Tt can be proved that 1 = IP* |2, Section IV.9]. Since
X* is always a Banach space, I, 1 <p <oo is a Banach space. Additionally, the
normed sequence spaces [ D ¢y D f, all with norm

1+ lal| = supla'l, (2.11)

co CI®: limd =0,

fclI®: d =0 for all but finitely many i

are considered. It can be shown that /> and ¢, are Banach spaces and ['* = [ and
¢ =1'. Hence, I' is also a Banach space. It is easily seen that f has a countable
base as a vector space. Moreover, it is dense in ”, 1 <p<oo (in the topology of
the norm |[|-|| ) and in ¢ (in the topology of the norm [|-||,). Hence, those spaces
have a countable base and are separable. Finally, /> with the inner product (a|b) =
Zﬁbi is the Hilbert space of Heisenberg’s quantum mechanics. Every infinite-
dimensional separable Hilbert space is isomorphic to /2 [1, Section IL.3].

L[P(M,dy) [1]: Let (M,dp) be a measure space, for instance R" or a part of it
with Lebesgue measure d"x. Denote by f the class of complex or real functions on
M which differ from each other at most on a set of measure zero. Clearly, linear
combinations respect classes. L’ (M, dy) is the functional linear space of classes f
for which

1/p

il = | [ iran) <. (2.12)
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For p = 00, ||f||,, = esssup |f], that is the smallest real number ¢ so that |[f| > c at
most on a set of zero measure. For 1 <p <oo, [[f||, is a norm, and (M, dp) is
complete. L(M,du)" = LI(M,du), 1/p+1/g=1,1<p<oco with (g, f)=
Jygfdu. If M=R, and dp=)," 6(x—n)dx, then L’(M,dp)=1"r.
If u(M)<oo, then IP(M,du) C I’ (M,du) for p>p'. The Hilbert space of
Schrédinger’s quantum states of a spinless particle is L?>(R?, d%x), for a spin-S
particle is L>(R3, d*x) @ C*¥'!, where C*™' is the (2§ + 1)-dimensional state
space of spin. The L”-spaces are for instance used in density functional theories.

Fock space: Let H be a Hilbert space of single-particle quantum states, and
let H® = K (field of scalars) and H' = H®H ® ---® H (n factors). For any
vector Y, @Yy, ® - @Yy € H let Sy, @Yy, @ @Yy, = Yp Y, @

lpkv(z) ®--® lpk’l’(n) and A”l//kl ® lpkz Q- ® lpkn = ZP(_l)“lekP(l) ® lpk?(z) ®
e ® l/’kmy where the summation is over all permutations P of the numbers
1,2,...,n and |P] is its order. Let Sy = Ap = Id;p0. Then,

Fe(H) = ®,2(SaH"
is the bosonic Fock space, and
Fr(H) = @, (A H"

is the fermionic Fock space. An orthonormal base in both cases may be introduced as
the set of occupation number eigenstates for a fixed orthonormal basis {1/, } in H

[}, [n1,ma, .. ony), N=1,2,...,n, =0,1,2,...(bosons) andny = 0, 1 (fermions).
The state with vector |) € H° is called the vacuum state. The Fock space is the

closure (in the topology of the direct sum of tensor products of H) of the span of
all occupation number eigenstates.

2.3 Derivatives

Let F: Q —Y be a mapping (vector-valued function) from an open set Q of a
normed vector space X into a topological vector space Y. If the limes

d . F(xo +1x) — F(xo
DXF(XO) = EF(XO + tx)|z:0 = ,l(l)filo ( l‘) ( )

X0 +HxeQ

(2.13)

exists it is called a partial derivative or (for ||x|| = 1) directional derivative in the
direction of x of the function F at xy. D,F(xo) is a vector of the space Y. D, F(xg) is
of course defined for any value of norm of x; by replacing in the above definition ¢
by Az it is readily seen that D,,F(xy) = AD.F(x). (However, D,F(xg) as a
function of x need not be linear; for instance it may exist for some x and not for
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others.) If the directional derivative (for fixed x) exists for all xy € Q then D, F(xy)
is another function (of the variable xg) from Q into ¥ (which need not be con-
tinuous), and the second directional derivative Dy D,F(xy) may be considered if it
exists for some x’, and so on. If, given xy, the directional derivative D,F(xo) exists
for all x as a continuous linear function from X into Y, then it is called the Gateaux
derivative.

Caution: The existence of all directional derivatives is not sufficient for the
chain rule of differentiation to be valid; see example below.

Let Y also be a normed vector space. If there is a continuous linear function
DF(xg) € L(X,Y) so that

F(xo 4+ x) — F(xg) = DF(xo)x + R(x)|x||, )ICEI(I)R()C) =0, (2.14)

then DF'(xp) is called the total derivative or the Fréchet derivative of F at xy. R(x)
is supposed continuous at x = 0 with respect to the norm topologies of X and Y,
and R(0)=0. (For x#0, R(x) is uniquely defined to be [F(xp+x)—
F(x0) — DF (x0)x]/||x||-) Given x (and x¢), DF(xo)x is again a vector in Y, that is,
for given xo, DF (xp) is a continuous linear function from X into Y. If DF (x) exists
for all xo € Q, then DF is a mapping from Q into £(X,Y) and DFx (x fixed) is a
mapping from Q into Y. Hence, the second derivative D(DFx)(xo)x’ = D*F(x)xx'
may be considered, and so on. For instance, D*F is a mapping from Q into
L(X,L(X,Y)), the space of continuous bilinear functions from X x X into ¥ and,
given x and X/, D*Fxx’ is a mapping from Q into Y.

The total derivative may not exist even if all directional derivatives do exist. As
an example [3, §10.1], consider X = Rz, Y = R and the real function of two real
variables x! and x?

for (x!,x%) # (0,0),
0 for (x',x?) = (0,0).

Let 0 = (0,0) and x = (x',x?) # 0. Then, (F(0+ 1x) — F(0))/r = (28 (x')*x?)/
(*(x")* + 2(x2)*). For 2 = 0 this is 0, and for x2 # 0 it is of order O(r), hence,
D,F(0) = 0 for all x. Nevertheless, F(x!, (x')*) = x': the slope of the graph of F

on the curve x> = (x')* is unity. This means that DF(0), which should be zero
according to the directional derivatives, in fact does not exist: R(x) — 0 does not

hold for x = (x', (x')?). (Exercise: Show that D, F(x,) is discontinuous at xo = 0.)

If DyF(x;) exists for all x and for all x in a neighborhood U of xy and is
continuous as a function of xy, at xo, then DF (xy) exists and DF (xo)x = D,F(xg).

Proof For small enough x so that xo +x € U, consider the function r(xp,x) =
F(xo + x) — F(xo) — DyF(xq) with values in Y. Take any vector f of the dual space
Y* of Y and consider the scalar function f (1) = (f, F(xo + x)) of the real variable
t,0 <t <1. This function has a derivative



24 2 Topology

af . F(xo + tx 4 Atx) — F(xo + tx)\
i AI}LHO< ; Ar = (f, DxF(xo + 1x))

and hence f(1) —f(0) = (f,DiF(xo + tx)) for some t,0<7<1. Therefore,
{f, r(x0,x)) = {f, DyF (x0 + tx) — DyF(x0)). Choose f with ||f|| = 1 for which

4F, (o, 931> 5 11z, 0] = 5 1o, )1

holds. (It exists by the Hahn—Banach theorem.) It follows that ||r(xo,x)|| <2|{f, D,
F(x0 4+ ™) — DyF(x0))| < 2||DyxF(x0 + tx) — DF(x0)||. Finally, put x = ||x||X and
get ||r(x0,x)|| <2||Ds(xo + 7x) — Ds(x0)|| ||x]|. Hence, in view of the continuity of
Dx(xp) at x = xo it follows that r(xo, x) = R(x)||x|| with lim,_o R(x) = 0. d

In the special case Y = K, the scalar field of X, the mapping F : X — K is a
functional, and DF(xg) € L(X,K) = X* is a continuous linear functional and
hence an element of the dual space X*, if it exists. For instance, if X = K" then
DF(xg) =y € K" (gradient). If X is a functional space, DF(xy) is called the
functional derivative of F at xo. If X =17(K",d"z) >f(z) then DF(fy) =
g(z) € L1(K",d"z),1/p+ 1/q = 1. The functional derivative in the functional
space L7 is a function (more precisely class of functions) of the functional space
L?. A trivial example which nevertheless is frequently met in physics is F(f) =
(glf) with D(g|f)(f) = g (derivative of a linear function).

If X=K">x=xle;+x%+ ---+x", and Y =K">y=yle| +y%e)+
-+ y"e! thenF(x) = F'(x) e} + F*(x) e} +--- + F"(x)e and (f', DF (xo)e;) =
OF ' (x0)/Oxk, (f,e}) = J}. In this case,

6F‘ (xo) 6F1 (xo) aFl (JC())
Ox! ox? o ox"
an(xo) 6F2(x0) an(xo)
DF(x)) = ox! ox? o ox™ (2.15)
6F’”'(xo) 6F’"'(x0) aFm.(XQ)
Ox! ox? o ox"

is the Jacobian matrix of the function F:K" — K™. For any y* € Y*,
(y*, DF (x9)x) = y* - DF(x) - x, where the dot - marks the inner product in the
spaces K" and K. For m = n the determinant

DG,y det(aFi(x°)> (2.16)

D(x!,...,x") ox/

is the Jacobian.
Employing higher derivatives, the Taylor expansion of a function F from the
normed linear space X into a normed linear space Y reads

1 1
F(xo+x)=F(x0) —I—DF(xo)x—i-iDzF(xo)xx—l— . —I—HD"F(xo) xxeex 4o (2.17)
(k factors)
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provided xy and xy + x belong to a convex domain Q C X on which F is defined
and has total derivatives to all orders, which are continuous functions of xo in Q
and provided this Taylor series converges in the norm topology of Y. As explained
after (2.14), D*F(xo) € L(X, L(X,--+,L(X,Y)--+)) is a k-linear function from
X x X x -+ x X (k factors) into Y. For instance, in the case X = K", Y = K™ this
means
1
(y*,D"F(xo)x - - x) = Z y?%x" ceexk (2.18)

i,i] seeeslk

Proofs of this Taylor expansion theorem and the following generalizations from
standard analysis can be found in textbooks, for instance [4].

Recall that £(X,Y) is a normed vector space with the norm (2.5) which is
Banach if Y is Banach. Hence, £(X,£(X,Y)) is again a normed vector space
which is Banach if Y is Banach. If L, : X — L(X,Y) : x,x" — Ly(x,x') =: Lrxx is
a bilinear function from X x X into Y, its £(X, £(X,Y))-norm is (cf. (2.5))

|| Zoxx'{| £ x ) supyex [|Laxx’|[y/[1'|]
L2 :Sllp . = X . :
I Hz:(x.zxx,Y)) X [|x|]x xeX ||x[ |
||[Loxx'||y

= Sup ————7—-
xex [l [¥]]x

By continuing this process, £(X,L(X,---,L(X,Y)---)) (depth k) is a normed
vector space which is Banach if Y is Banach, and the norm of a k-linear function
LixMx@. . x®) g

||ka<1) .. .x(k>||y

HLkHﬁ(X,E(X,...,E(X, Y)..) :x<l).§ggex\|x(l>||x"'||x(k)|\x' (2.19)

depth k

A general chain rule holds for the case if F: XD>Q—Y,F(Q) CcQ,G:
YOO -Zand H=GoF :X D> Q— Z. Then,

DH()C()) = DG(F(X())) 9 DF()C()) (220)

if the right hand side derivatives exist. In this case, DF(xo) € L(X,Y) and
DG(F(xo)) € L(Y,Z) and hence DH(xo) € L(X,Z). Moreover, if DF :Q —
L(X,Y) is continuous at xo € Q and DG :Q — L(Y,Z) is continuous at
F(xo) € Q, then DH : Q — L(X,Z) is continuous at xo € Q.

Coming back to the warning on p. 23, take the function F:R — R*:
t— (1,), and for G : R* — R take the function of the example on p. 23. Then,
H(t) = (G o F)(t) = t and hence DH(0) = 1. Would one from D1 ,»yG(0,0) =0
for all (x',x?) infer that DG(0,0) =0, then one would get erroneously
DH(0) = DG(0,0) o DF(0) = 0. In more familiar notation for this case,
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dx?
(0,0) 4t

dx!
(0,0) 4t

dH

oG
dt

1
= X

oG

=0.
0 ox?

0

The chain rule does not hold because the total derivative of G does not exist at
(0,0); 0G/0x? is discontinuous there.

If X,Y and Z are the finite-dimensional vector spaces K", K” and K' with
general (not necessarily orthonormal) bases fixed, then the / x n Jacobian matrix
of DH(xp) is just the matrix product of the ! x m and m x n Jacobian matrices
(2.15) of DG(F(xp)) and DF(xg). It follows that in the case [ =m =n the
Jacobian of H is the product of the Jacobians of G and F:

D(',....2") _ D(,...,2")D(Y',...,y")

D(x!,....x") D, ...y")D(x!, ... x")’

Just this is suggested by the notation (2.16) of a Jacobian.
If F: XD Q— Q CY isa bijection and DF (xy) and DF~'(F(x0)) both exist,
then

(DF(x0))”"" = DF™'(F(xp)). (2.21)

This follows from the chain rule in view of F~! o F = Idg and DId(x,) = Id.
(From the definition (2.14) it follows for a linear function F € L£(X,Y) that
DF(x) = F independent of xy € X.) The case X = ¥ = K" now implies

D(x',...x") (D(yl,...,y")>1

D(x!, ... x")

for the Jacobian. For n = 1 this is the rule dx/dy = (dy/dx)".

A function F from an open domain Q of a normed space X into a normed space
Y is called a class C"(Q, Y) function if it has continuous derivatives D*F(xy) up to
order k = n (continuous as functions of xo € Q). If the domain Q and the target
space Y are clear from context, one speaks in short on a class C" function (or even
shorter of a C" function). A C° function means just a continuous function. A C>
function is also called smooth. A smooth function still need not have a Taylor
expansion. For instance the real function

felx) = {exp(_gZ/(82 —x%)) for |x|<e

0 for |x| >¢

is C*™ on the whole real line, but has no Taylor expansion at the points x = +¢
although all its derivatives are equal to zero and continuous there. (Up to the
normalization factor it is a d,-function.) A function which has a Taylor expansion
converging in the whole domain Q is called a class C?(Q,Y) function or an
analytic function. A complex-valued function of complex variables is analytic, iff
it is C' and its derivatives obey the Cauchy—Riemann equations.
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A C" (C> C®) diffeomorphism is a bijective mapping from Q C X onto Q' C
Y which, along with its inverse, is C",n > 0, (C*, C®).

With pointwise linear combinations of functions with constant coefficients,
(AF + 2'G)(x) = AF(x) + A G(x), the class C" (C*, C*) is made into a vector
space. The vector spaces C", C* include normed subspaces Cj, C;° (of all
functions with finite norm) by introducing the norm

IF]

eyl = Sup ID*F(xo)ll,  IFllco = sup [IF (xo)ll, (2.22)
.’(OE

Lo x0€Q
with the norms (2.19) on the right hand side of the first expression. These spaces
are again Banach if Y is Banach. Convergence of a sequence of functions in these
norms means uniform convergence on Q, of the sequence of functions and of the
sequences of all derivatives up to order n, or of unlimited order. (Besides, every
space C},m <n <00, is dense in the normed space CZ’.)

The mapping D : C}(Q,Y) — CY(Q,L(X,Y)): F—DF is a continuous linear
mapping with norm not exceeding unity.

Proof As a bounded linear mapping, D € L(C}(Q,Y), C)(Q, L(X,Y))), the norm
of D is ||D|| = supy ||DF||C2(Q,L(X7Y))/||F||Cé(Q,Y)' From (2.22) it is directly seen
that the numerator of this quotient cannot exceed the denominator, hence ||D|| < 1
and D is indeed bounded and hence continuous. (]

If the normed vector space Y in addition is an algebra with unity I (see
Compendium) and the norm has the additional properties

4|7 = 1,
S Ay 1< IHITL

then it is called a normed algebra. If it is complete as a normed vector space, it is
called a Banach algebra. If Y is a normed algebra, then with pointwise
multiplication, (FG)(x) = F(x)G(x), the class C}; (Cp°) with the norm (2.22) is
made into a normed algebra. (Show that FG is C}; if F and G both are C}.)

The derivative of a product in the algebra C",n > 1 is obtained by the Leibniz
rule

D(FG) = (DF)G + F(DG). (2.23)

(Exercise: Consider ®(x) = (F(x),G(x)), ¥(u,v) = uv and H(x) = (¥ o ®)(x)
and apply the chain rule to obtain (2.23).)

An implicit function is defined in general in the following manner: Let X be a
topological space, let Y be a Banach space and let Z be a normed vector space. Let
F:XxY DQ— Z be a continuous function and consider the equation

F(x,y) =¢, c€Z fixed. (2.24)
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Assume that DyF (xo,y0) € L(Y,Z) exists for all y € Y and is continuous on Q (as
a function of xo,yo), that F(a,b) = c and that Q = DyF(a,b) is a linear bijection
from Y onto Z, so that Q=" € L(Z,Y). Then, there are open sets A > a and B > b
in X and Y, so that for every x € A Eq. (2.24) has a unique solution y € B which
implicitly by Eq. (2.24) defines a continuous function G : A — Y : x—y = G(x).

The proofs of this theorem and of the related theorems below are found in
textbooks, for instance [4]. It is essential, that ¥ is Banach.

Let X be also a normed vector space and assume F € C'(Q,Z). Then the above
function G has a continuous total derivative at x = a, and

D,G(a) = —(DyF(a,b)) " o DyF(a,b), b= G(a). (2.25)
Formally, one may differentiate (2.24) by applying the chain rule,
D.F(a,b)dx+ DyF(a,b)dy=0, xeX,yeY,

where dx = DIdy = 1 and dy = D,G(a), and solve this relation for dy/dx.

In order to prove that DG(a) of (2.25) is a continuous function of a, that is, that
G € C'(A,Y), the continuity of (D,F(a,b))”" as function of a and b must be
stated. Since DyF(a,b) € L(Y,Z), this implies the derivative of the inverse of a
linear function with respect to a parameter which is of interest on its own:

Let X and Y be Banach spaces and let U and U™" be the sets of invertible
continuous linear mappings out of L(X,Y) and L(Y,X). Then, bothU and U™" are
open sets.

Proof for U; for U™" interchange X and Y Let Uy € U and U € L(X,Y) such that
ldx — Uy o Ul|¢x x) <1. Then,

Uy o U) ™" =1dy + (Idy — Uy o U) + (Idy — Uy ' 0 U)* + - -
converges and hence U =Uyo (Uy'oU)elU (U= (Uy'o U)'o Uyh).
Every Uy € U has a neighborhood, ||Uy — U|| <1/||Uy||, where this is realized. [J

Let X and Y be Banach spaces and U as above. Let ® : X DA — U C L(X,Y) :
xo — U(xo) be C'. Then ® : xg— (U(xo))~" is C', and its derivative is given by

D(®)(x0)x = —D(x0) 0 DD (xg)x 0 D(xg) € L(Y,X), x€X. (2.26)

The proof of continuity of the left hand side with respect to the xo-dependence
consists of an investigation of the relation ®(x) o ®(x) = Idy. It is left to the reader
(see textbooks of analysis). Differentiating this equation with respect to x at point
xo yields ®(xo) o DD(xo)x + DD(xo)x o B(xp) = 0. Composing with (D(x)) ™" =
&)(xo) from the left results in the above relation. If X = K", then U/ can only be
non-empty if also ¥ = K". After introducing bases U(x) is represented by a
regular n x n matrix M(x). One obtains the familiar result (x-9/ox)M'[, =
M~ (x-0/dx)M|, - M~"'. Along a straight line x = te, or for a one parameter

dependent matrix this reduces to dM~'/dt = M~ - (dM /dt) - M.
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2.4 Compactness

Compactness is the abstraction from closed bounded subsets of R". Before
introducing this concept, a few important properties of n-dimensional closed
bounded sets are reviewed.

The Bolzano—Weierstrass theorem says that in an n-dimensional closed
bounded set every sequence has a convergent subsequence. An equivalent
formulation is that every infinite set of points of an n-dimensional closed bounded
set has a cluster point.

A cluster point of a subset A of a topological space X is a point x € X every
neighborhood of which contains at least one point of A distinct from x. (Compare
the definition of a point of closure on p. 12. A cluster point is a point of closure,
but the reverse is not true in general.)

Weierstrass theorem: A continuous function takes on its maximum and
minimum values on an n-dimensional closed bounded set.

Brouwer’s fixed point theorem: On a convex n-dimensional closed bounded
set B the fixed point equation x = F(x), F : B — B continuous, has a solution.

These theorems do not necessarily hold in infinite dimensional spaces. Consider
for example the closed unit ball (e.g. centered at the origin) in an infinite
dimensional real Hilbert space. Clearly the sequence of distinct orthonormal unit
vectors does not converge in the norm topology: the distance between any pair of
orthogonal unit vectors is ||e; — e;|| = (e; — ejle; — e_,-)l/z = /2. It is easily seen
that open balls of radius 1/(2v/2) centered halfway on these unit vectors do not
intersect. The unit ball is too roomy for the Bolzano—Weierstrass theorem to hold;
it accommodates an infinite number of non-overlapping balls of a fixed non-zero
radius. This consideration yields the key to compactness.

A set C of a topological space is called a compact set, if every open cover {U},
a family of open sets with UU D C, contains a finite subcover, U’ U; D C.
A compact set in a Hausdorff space (the only case of interest in this volume) is
called a compactum.

Compactness is a topological property, the image C' of a compact set C under a
continuous mapping F is obviously a compact set: Take any open cover of C’.
Since the preimage F~!(U’) of an open set U’ is an open set U C C, these
preimages form an open cover of C. A selection of a finite subcover of these
preimages also selects a finite subcover of C’.

A compactum is closed.

Proof Let x be a point of closure of a compactum C, that is, every neighborhood
of x contains at least one point ¢ € C. Let x € C. Since C is Hausdorff, for every
¢ € C there are disjoint open sets U, > ¢ and V, . > x. Since the sets U, obviously
form an open cover of C, a finite subcover U,,,i = 1,...,n may be selected. Then,
V =nN;Vy. is a neighborhood of x not intersecting C, which contradicts the
preposition. Hence, C contains all its points of closure. U
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It easily follows that the inverse of a continuous bijection f of a compactum C
onto a compactum C' is continuous, that is, the bijection is a homeomorphism.

Proof Indeed, any closed subset A of the compactum C is a compactum; any open

cover of A together with the complement of A forms an open cover of C and hence there

is a finite subcover which is also a subcover of A. Now, since f is continuous, f'(A) is

also a compactum and hence a closed subset of C’. Consequently f maps closed sets to

closed sets, and because it is a bijection, it also maps open sets to open sets. O
Now, the Bolzano—Weierstrass theorem is extended:

Every infinite set of points of a compact set C has a cluster point.

Proof Assume that the infinite set A C C has no cluster point. A set having no
cluster point is closed. Indeed, if a is a point of closure of A, thena € Aoraisa
cluster point of A. Select any infinite sequence {a;} C A of distinct points a;.
The sets {a;};-, are closed for n =1,2,... and the intersection of any finite
number of them is not empty. Their complements U, in C form an open cover of
C, for which hence there exists no finite subcover. C is not a compact set. O

As a consequence, an unbounded set of a metric space cannot be compact.
Hence, the simple Heine—Borel theorem, that a closed bounded subset of
R", n<oo is compact, has a reversal: A compact subset of R" is closed and
bounded. (Recall that a metric space is Hausdorff.) This immediately also extents
the Weierstrass theorem:

A continuous real-valued function on a compact set takes on its maximum and
minimum values.

It maps the compact domain onto a compact set of the real line, which is closed
and bounded and hence contains its minimum and maximum. However, a much
more general statement on the existence of extrema will be made later on.

A closed subset of a compact set is a compact set.

Proof Take any open cover of the closed subset C’ of the compact set C. Together
with the set C\C’, open in C, it also forms an open cover of C. A finite subcover of
C also yields a finite subcover of C’. U

A set of a topological space is called relatively compact if its closure is
compact. A topological space is called locally compact if every point has a
relatively compact neighborhood. A function from a domain in a metric space X
into a metric space Y is called a compact function or compact operator if it is
continuous and maps bounded sets to relatively compact sets.

Brouwer’s fixed point theorem has now two important generalizations which
are given without proof (see textbooks of functional analysis):

Tychonoff’s fixed point theorem: A continuous mapping F:C — C in a
compact convex set C of a locally convex vector space has a fixed point.

Schauder’s fixed point theorem: A compact mapping F : C — C in a closed
bounded convex set C of a Banach space has a fixed point.
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Both theorems release the precondition of Banach’s fixed point theorem on F to
be a strict contraction (p. 14). As a price, uniqueness is not guaranteed any more.
Tychonoff’s theorem also releases the precondition of completeness of the space.

Every locally compact space has a one point compactification that is, a
compact space X° = X U {x} and a homeomorphism P : X — X\ {x».}.

Proof Let xo, ¢ X and let {U} be the class of open sets of X for which X\U is
compact in X. (X itself belongs to this class since (J is compact.) Take the open sets
of X¢ to be the open sets of X and all sets containing x, and having their intersections
with X in {U} . This establishes a topology in X“ and the homeomorphism. Let now
{V} be an open cover of X°. It contains at least one set Voo, = U U {Xo0 }, and X\ Vi,
is compact in X. Hence, {V} has a finite subcover. d

The compactified real line (circle) R and the compactified complex plane
(Riemann sphere) C are well known examples of one point compactifications.

To get more general results for the existence of extrema, the concept of
semicontinuity is needed. A function F from a domain of a topological space X
into R is called lower (upper) semicontinuous at the point xy € X, if either
F(xp) = —o0 (F(xp) = +0o0) or for every ¢ > 0 there is a neighborhood of x( in
which F(x) > F(xg) — ¢ (F(x)<F(x0) + ¢).

A lower semicontinuous function need not be continuous, its function value even
may jump from —oo to oo at points of discontinuity. However, at every point of
discontinuity it takes on the lowest limes of values. (For every net converging towards
Xo € X the function value at x is equal to the lowest cluster point of function values on
the net.) A lower semicontinuous function is finite from below, if F(x) > —oo for all
x. Analogous statements hold for an upper semicontinuous function.

If F is a finite from below and lower semicontinuous function from a non-empty
compactum A into R, then F is even bounded below and the minimum problem
mingeq F(x) = o has a solution xy € A, = F(xo).

An analogous theorem holds for a maximum problem. The proof of these
statements is simple: Consider the infimum of F on A, pick a sequence for which
F(x,) < inf F(x) 4+ 1/n and select a cluster point xo and a subnet converging to xo.
Hence, inf F(x) = F(xp) > —oo since F is finite from below.

Extremum problems are ubiquitous in physics. Many physical principles are
directly variational. Extremum problems are also in the heart of duality theory
which in physics mainly appears as theory of Legendre transforms. Moreover,
since every system of partial differential equations is equivalent to a variational
problem, extremum problems are also central in (particularly non-linear) analysis,
again with central relevance for physics.

It has become evident above that compactness of the domain plays a decisive
role in extremum problems. On the other hand, bounded sets in infinite-dimen-
sional normed spaces are not compact in the norm topology, while many varia-
tional problems, in particular in physics, are based on infinite-dimensional
functional spaces. (David Hilbert introduced the concept of functional inner
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product space to bring forward the variational calculus.) Rephrased, those func-
tional spaces are not locally compact in the norm topology. The question arises,
can one introduce a more cooperative topology in those spaces. The coarser a
topology, the less open sets exist, and the more chances appear for a set to be
compact. On p. 18, the weak topology was introduced as the coarsest topology
in the vector space X, for which all bounded linear functionals are continuous.
In a finite-dimensional space it was shown to be equivalent to the norm topology.
In an infinite-dimensional space it is indeed coarser than the norm topology, but
sometimes not coarse enough to our goal.

Let X be a Banach space and X* its dual. In general, X**, the space of all bounded
linear functionals on X*, may be larger than X. The weak topology of X* is the
coarsest topology in which all bounded linear functionals, that is all f € X** are
continuous. The weak™ topology is the coarsest topology of X* in which all bounded
functionals f € X are continuous. Since these are in general less functionals, in
general the weak™ topology is coarser than the weak topology. If X is reflexive, then
X* =X (and X** = X*), and the weak and weak* topologies of X* (and also of
X** = X) are equivalent. (A Banach space is in general not any more first countable
in the weak and weak* topologies; this is why instead of sequences nets are needed.)

The Banach—Alaoglu theorem states that the unit ball of the dual X* of a
Banach space X is compact in the weak* topology. As a corollary, the unit ball of a
reflexive Banach space is compact in the weak topology.

A proof which uses Tichonoff’s non-trivial theorem on topological products
may be found in textbooks on functional analysis. Now, the way is paved for
applications of the existence theorems of extrema. The price is that in the weak*
topology there are much less semicontinuous functions than in the norm topology.
Nevertheless, for instance the theory of functional Legendre transforms, relevant
in density functional theories is pushed far ahead [5, and citations therein].

A few applications of the concept of compactness in functional analysis are
finally mentioned which are related to the material of this volume. They use the
facts that every compactum X is a regular topological space, that is, every non-
empty open set contains the closure of another non-empty open set, and every
compactum is a normal topological space, which means that every single point
set {x} is closed and every pair of disjoint closed sets is each contained in one of a
pair of disjoint open sets.

Proof For each pair (x,y) of points in a pair of disjoint closed sets (Cy,C,),
CiNCy =, x € Cy,y € Cy, there is a pair of disjoint open sets (U, U, ),
x € U,,,y€U,,, since a compactum is Hausdorff. C, as a closed subset of a
compactum is compact, and hence has a finite open cover {U,, , Uy, x,...,
U)'m)f}’ yi € C;. Put U, = U,'Uy”x, U* = ﬂiUx.y‘., and U; = u/ij7 U, = ijX/’
Xj S Cl-

Regularity: Let U be an open set. Put C; = X\U and C; = {y}, y € U (G, is
closed since X is Hausdorff.). Take U, 3 y constructed above. U, CU.



2.4  Compactness 33

Normality: For the above constructions, obviously C; C U, C; C Us,
UNU, =. O

In a regular topological space every point has a closed neighborhood base.
For the proofs of the following theorems see textbooks of functional analysis.

Urysohn’s theorem: For every pair (Cy, Cy) of disjoint closed sets of a normal
space X there is a real-valued continuous function, F € C°(X,R), with the
properties 0 < F(x) <1,F(x) = 0 for x € Cy, F(x) =1 for x € C.

Tietze’s extension theorem: Let X be a compactum and C C X closed. Then
every C°(C,R)-function has a C°(X,R)-extension.

A function F defined on a locally compact topological space X with values in a
normed vector space Y is said to be a function of compact support, if it vanishes
outside of some compact set (in general depending on F). The support of a
function F, supp F is the smallest closed set outside of which F(x) = 0. If X is a
locally compact normed vector space, then corresponding to the classes
C",0<n<oo (p. 27) there are classes Cj of continuous or n times continuously
differentiable functions of compact support. Like the classes C", the classes Cjj are
vector spaces or in the case of an algebra Y algebras with respect to pointwise
operations on functions.

In the context of this volume, particularly Cg° (K", Y) functions, K =R or C,
are of importance. One could normalize the vector space Cjj,0<n < oo with the
Cj-norm (2.22), however, if X itself is not compact, Cj, would not be complete in
this norm topology even if ¥ would be Banach. For instance, the function sequence

n 1
Fn(x):zid)(xfk), ®cCRR), n=1,2,...,
k=1

is Cauchy in the Cj norm, but its limit does not have compact support. The
completion of the C3(X,Y) = CJ,(X,Y) space of continuous functions of compact
support in the Cj-norm is the space Co(X,Y) of continuous functions vanishing
for ||x||y — oo, that is, for every & > O there is a compact C, C X outside of which
||F(x)||y <& (Hence, C§(X,Y) is dense in Coo (X, Y) in the CY-norm; moreover, all
Ci(X,Y), 0<n<ooare dense in Cs (X, Y) in the CY-norm. If X is not compact, of
course non of those classes is dense in any Cj} in the Cj-norm: Let for instance
[|[F1(x)]|y = 1forall x € X, then ||F — F| o = forall F € Cg'. These are simple

statements on uniform approximations of functions by more well behaved
functions.)

Functions of compact support are very helpful in analysis, geometry and
physics. They are fairly wieldy since their study is much the same as that of
functions on a closed bounded subset of R". The tool of continuation of structures
from this rather simple situation to much more complex spaces, that is to connect
local with global structures, is called partition of unity. It works for all locally
compact spaces which are countable unions of compacta. (Caution: Not every
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countable union of compact sets is locally compact.) However, the most general
class of spaces where it works are the paracompact spaces.

A paracompact space is a Hausdorff topological space for which every open
cover, X C U,eaU,, has a locally finite refinement, that is an open cover UgepVp
for which every Vj is a subset of some U, and every point x € X has a
neighborhood W, which intersects with a finite number of sets Vg only.

A partition of unity on a topological space X is a family {¢,|o € A} of
C5°(X, R)-functions such that

1. there is a locally finite open cover, X C UpcpUyp,
2. the support of each ¢, is in some Uy, {supp ¢,|o € A} is locally finite,
3. 0<¢,(x) <1 on X for every o,

4. > ca@y(x) =1o0nX.

The last sum is well defined since, given x, only a finite number of items are non-
zero due to the locally finite cover governing the partition. The partition of unity is
called subordinate to the cover UgepUsp.

A paracompact space could also be characterized as a space which permits a
partition of unity. It can be shown that every second countable locally compact
Hausdorff space is paracompact. This includes locally compact Hausdorff spaces
which are countable unions of compact sets, in particular it includes R" for finite 7.
However, any (not necessarily countable) disconnected union (see next section) of
paracompact spaces is also paracompact.

The function f; on p. 26 is an example of a real Cj°-function on R. A simple
example of functions ¢, on R” is obtained by starting with the C*°-function

_fe 't fort>0
f(t)_{o for 1 <0

and putting g(r) = f()/(f(¢) +f(1 — 1)), which is C*, 0<g(r) <1, g(r) = 0 for
£<0,g(t) = 1 for 1> 1. Then, h(r) = g(t +2)g(2 — 1) is C, 0 < h(t) < 1, h(f) =
0 for |t| >2,h(t) = 1 for || <1. Now, with a dual base {f'} in R", the
C3°(R", R)-function

Px) = h(xh(2) - b, X = fox, (2.27)

has the properties 0 < /(x) < 1,(x) = 0 outside the compact n-cube |x| <2 with
edge length 4 which is contained in an open n-cube with edge length 4 + ¢, ¢ > 0,
and y(x) = 1 inside the n-cube with edge length 2, all centered at the origin of R”.
The total R" may be covered with open n-cubes of edge length 4 + ¢ centered at

points m = (x' = 3my,x*> = 3my,...,x" = 3m,), m; integer. Then,
oule) = PSS onle) = (228)
m Zml‘// X — m, m L

is a partition of unity on R" (Fig. 2.5).
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Fig. 2.5 Partition of unity on
R with functions (2.28)

Besides applications in the theory of generalized functions and in the theory of
manifolds, the partition of unity has direct applications in physics. For instance in
molecular orbital theory of molecular or solid state physics the single particle
quantum state (molecular orbital) is expanded into local basis orbitals centered at
atom positions. For convenience of calculations one would like to have the density
and self-consistent potential also as a site expansion of local contributions,
hopefully to be left with a small number of multi-center integrals. This is however
not automatically provided since the density is bilinear in the molecular orbitals,
and the self-consistent potential is non-linear in the total density. If v(x) is the
self-consistent potential in the whole space R? and > r @r(x) is a partition of unity
on R? with functions centered at the atom positions R, then

v(x) =Y (v(x)og(x)) = Y vk(x)
R

R

is the wanted expansion with potential contributions vg of compact support. Thus,
the number of multi-center integrals can be made finite in a very controlled way.
Finally, distributions (generalized functions) with compact support are shortly
considered which comprise Dirac’s J-function and its derivatives.
Consider the whole vector space C*°(R",R) and instead of (2.22) for every
compact C C R" introduce the seminorm

pem(F) =sup |D'F(x)|, D°F=F, I=(,...L), >0,
xeC
[l <m

; al]+]2+'~+[,l | 5
D'F(x) = F(x',x,...x"), L+bh+---+1L=]|
( ) (axl)ll (axz)[z o (6x")’" ( ) 1 2 | |

(2.29)

It is a seminorm because it may be pc,,(F) = 0, F # 0 (if supp F N C = ). In the
topology of the family of seminorms for all C C R" and all m, convergence of a
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sequence of functions means uniform convergence of the functions and of all their
derivatives on every compactum. This topology is a metric topology, and the vector
space C*(R",R) topologized in this way is also denoted £(R",R) or in short £.

Indeed, consider a sequence of compacta C; C C, C -- - with U2, C; = R”" (for
instance closed balls with a diverging sequence of radii). Then, the function

i dc(F,G) <. pem(F—G)
d(F,G) = o L S d~(F.G) = p—m _FCm\T T )
(F.G) ; 1 +dc,(F,G)’ c(F,G) mg) 14+ pew(F — G)

(2.30)

is a distance function.

Proof Clearly, d(F,G) # 0, if F(x) # G(x) for some x since the C; cover R". To
prove the triangle inequality, consider the obvious inequality (a+ f8)/(1 + o +
p)<a/(14+o)+ /(1 +p) for any pair o, of non-negative real numbers. In
view of o — | <|o— |+ |y — | for any three real numbers «, 5,7 it follows
loc = BI/ (1 + |oo = BI) < Joe = | /(1 + [ = 9[) + [y = BI/(1 + [y — BI). This yields
the triangle inequality for each fraction on the right hand side of the second
equation (2.30). Since each of these fractions is <1, the series converges to a
finite number also obeying the inequality for d¢. For d it is obtained along the
same line. (]

Any topological vector space the topology of which is given by a countable,
separating family of seminorms, which means that the difference of two distinct
vectors has at least one non-zero seminorm, can be metrized in the above manner.

E(R",R) is a Fréchet space.

Proof Completeness has to be proved. In &,1im; j_.., d(F;, F;) = 0 means that on
every compactum C C R" the sequence F; together with the sequences of all
derivatives converge uniformly. Hence, on every C and consequently on R" the
limit exists and is a C*°-function F. 0

The elements f of the dual space £ of £, that is the bounded linear functionals
on &, are called distributions or generalized functions. £ is called the base space
of the distributions f € £*. Formally, the writing

. F) = / dIxf(R)F(x), Fe&, (231)

is used based on the linearity in F of integration. However, f(x) has a definite
meaning only in connection with this integral. Every ordinary L'-function f with
compact support defines via the integral (2.31) in the Lebesgue sense a bounded
linear functional on &, hence these functions (more precisely, equivalence classes
of functions forming the elements of L!) are special £*-distributions. Derivatives
of distributions are defined via the derivatives of functions F € £ by formally
integrating by parts. Hence, per definition distributions have derivatives to all
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orders. This holds also for L'-functions (with compact support) considered as
distributions. Derivatives of discontinuous functions as distributions comprise
Dirac’s J-function

(0xy, F) = /d”xé(x—xo)F(x) = F(xo).

Elements of £ are not the most general distributions. In the spirit of formula
(2.31), more general distributions are obtained by narrowing the base space.
In physics, densities and spectral densities are in general distributions, if they
comprise point masses or point charges or point spectra (that is, eigenvalues).

Let U C R” be open and consider all F € & with supp F C U. If {f, F) = 0 for
all those F, then the distribution f is said to be zero on U, f(x) =0 on U. The
support of a distribution f is the smallest closed set in R" outside of which f is
zero. Since for a bounded functional f on £ the value (2.31) must be finite for all
F € £,&" is the space of distributions with compact support. (Dirac’s d-function
and its derivatives have one-point support.)

Another most important case in physics regards Fourier transforms of
distributions. Consider the subspace S of rapidly decaying functions of the class
C>*(R",C) for which for every k and m

sup " D*F (x)| <oo, x™ =[]()™, D'F like in (2.29).
x i=1

It is a topological vector space with the family of seminorms

pip(F) = sup |P(x)D*F(x)|, P : polynomial in x. (2.32)
X

Clearly, S is closed with respect to the operation with differential operators with
polynomial coefficients. Since obviously S C C*(R",C) N Cx(R*,C) (p. 33),
Ci°(R",C) is dense in S in the topology (2.32) of S. In fact, S is a complete (in
the topology of S) subspace of E(R",C); it is again a Fréchet space. The Fourier
transform of a function of S is

_ 1 "y e—i(k~x)
FR = [ axe 0rw),
1

— (T _ nxei(x-k) )
RO = (PR = [ axe=oErm

(2.33)

Depending on context, the prefactor may be defined differently. It can be shown
that F : S — S is an isomorphism and FF = Ids, that is 7! = F.

The dual §* of S is the space of tempered distributions, S* D £*. It is a module
on the ring of polynomials (see Compendium), and is closed under differentiation.
The Fourier transform in S* is defined through the Fourier transform in S as
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(Ff,F)y=(f,FF). (2.34)

Again, F : 8" — S* is an isomorphism, FF = Idg-. If f(k) = 1 € S is consid-
ered as a tempered distribution, then Ff = (2m)"/%5,.

A simple result relevant in the theory of Green’s functions is the Paley—Wiener
theorem: The Fourier transform of a distribution with compact support on R" can
be extended into an analytic function on C".

Proofs of the above and more details can be found in textbooks of functional
analysis, for instance [2]. (Closely related is also the theory of generalized solu-
tions of partial differential equations, which are elements of Sobolev spaces.)

2.5 Connectedness, Homotopy

So far, the focus was mainly on the local topological structure which can be
expressed in terms of neighborhood bases of points, although the concepts of
vector space and of compactness and in particular of partition of unity provide a
link to global topological properties. Connectedness has the focus on global
properties, though with now and then local aspects. Intuitively, connectedness
seems to be quite simple. In fact, it is quite touchy, and one has to distinguish
several concepts.

A topological space is called connected, if it is not a union of two disjoint
non-empty open sets; otherwise it is called disconnected (Fig. 2.6). Connected-
ness is equivalent to the condition that it is not a union of two disjoint non-empty
closed sets, and also to the condition that the only open-closed sets are the empty
set and the space itself. A subset of X is connected, if it is connected as the
topological subspace with the relative topology; it need neither be open nor closed
in the topology of X (cf. the definition of the relative topology). If A is connected
then every A’ with A C A’ C A is connected (exercise).

Caution: Two disjoint sets which are not both open or both closed may have
common boundary points being points of one of the sets and hence their union may
be connected. The union of disjoint sets need not be disconnected.

The connected component of a point x of a topological space X is the largest
connected set in X containing x. The relation R(x,y): (y belongs to the connected

Fig. 2.6 Two connected sets
A and B the union of which is
disconnected
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component of x) is an equivalence relation. The elements of the quotient space
X/R are the connected components of X.

A topological space is called totally disconnected, if its connected components
are all its one point sets {x}. Let 7 : X — X /R be the canonical projection onto the
above quotient space X/R. The quotient topology of X /R is the finest topology in
which 7 is continuous. Its open (closed) sets are the sets B for which 7! (B) is
open (closed) in X. X/R is totally disconnected in the quotient topology.

Every set X is connected in its trivial topology and totally disconnected in its
discrete topology. The rational line Q in the relative metric topology as a subset of
R is totally disconnected. Indeed, let a<f be two rational numbers and let
y,0<y<f} be an irrational number. Then, |—oo, y[ and |y, +oo[ are two disjoint
open intervals of Q the union of which is Q. Hence, no two rational numbers
belong to the same connected component of Q. This example shows that the
topology in which a space is totally disconnected need not be the discrete topol-
ogy. In Q, every one point set is closed (since Q as a metric space is Hausdorff)
but not open. Open sets of Q are the rational parts of open sets of R.

The image F(A) of a connected set A in a continuous mapping is a connected
set. Indeed, if F(A) would consist of disjoint open sets then their preimages would
be disjoint open sets constituting A. On the other hand, the preimage F~!(B) of a
connected set B need not be connected (construct a counterexample). However, as
connectedness is a topological property, a homeomorphism translates connected
sets into connected sets in both directions. Check that, if X is connected and Y is
totally disconnected, for example if Y is provided with the discrete topology, then
the only continuous functions F : X — Y are the constant functions on X.

Let R be any equivalence relation in the topological space X. Since the
canonical projection 7 : X — X/R is continuous in the quotient topology, it
follows easily that if the topological quotient space X /R is connected and every
equivalence class in X with respect to R is connected, then X is connected.

A topological space X is disconnected, iff there exists a continuous surjection
onto a discrete two point space. (The target space may be {0, 1} with the discrete
topology; then, some of the connected components are mapped onto {0} and some
onto {1}.)

The topological product of non-empty spaces is connected, iff every factor is
connected.

Proof Although the theorem holds for any number of factors, possibly uncount-
ably many in Tichonoff’s product, here only the case of finitely many factors is
considered. (Though the proof works in the general case, only Tichonoff’s product
was not introduced in our context.) Let X; be the factors of the product space X and
m; : X — X; the canonical projections. Since these are continuous in the topological
product, if X is connected, then every X; as the image of X in a continuous mapping
is connected. Now, assume that all X; are connected but X is not. Then, there is a
continuous surjection F of X onto {0,1}. Let for some X = (X,...,%,), X; €
X;, F(x) = 0. Consider the subset (x;, X2, . . ., X, ), where x; runs through X;, and the
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restriction of F on this subset. This restriction is a continuous function on X; and
hence is = 0 since X is connected. Starting from every point of this subset, let now
X, run through X, to obtain again F' = 0 for the restriction of F. After n steps, ' = 0
on X in contradiction to the assumption that F is surjective. O

A concept seemingly related to connectedness but in fact independent is local
connectedness. A topological space is called locally connected, if every point has
a neighborhood base of connected neighborhoods. (Not just one neighborhood, all
neighborhoods of the base must be connected.)

A connected space need not be locally connected. For instance, consider the
subspace of R? consisting of a horizontal axis and vertical lines through all rational
points on the horizontal axis, in the relative topology deduced from the usual
topology of the R?. It is connected, but no point off the horizontal axis has a
neighborhood base of only connected sets. (Compare the above statement on Q.) On
the other hand, every discrete space with more than one point, although it is totally
disconnected, is locally connected! Indeed, since every one point set is open and
connected in this case, it forms a connected neighborhood base of the point. (Check
it.) This seems all odd, nevertheless local connectedness is an important concept.

A topological space is locally connected, iff every connected component of an
open set is an open set. This is not the case in the above example with the vertical
lines through rational points of a horizontal axis, since the connected components
of open sets off the horizontal axis are not open.

Proof of the statement Pick any point x and any neighborhood of it and consider
the connected component of x in it. Since it is open, it is a neighborhood of x.
Hence, x has a neighborhood base of connected sets, and the condition of the
theorem is sufficient. Reversely, let A be an open set in a locally connected space,
A’ one of its connected components and x any point of A’. Let U be a neighborhood
of x in A. It contains a connected neighborhood of x which thus is in A’. Hence, x is
an inner point of A’ and, since x was chosen arbitrarily, A’ is open. O

As a consequence, a locally connected space is a collection of its connected
components which are all open-closed.

A topological quotient space of a locally connected space is locally connected.

Proof Let X be locally connected and let @ : X — X /R be the canonical projec-
tion. Let U C X/R be an open set and U’ one of its connected components. Let
x € n71(U’), and let A be the connected component of x in 7~ (U). Then, n(A) is
connected (since 7 is continuous) and contains 7(x). Hence, n(A) C U’ and A C
7~ 1(U"). Since X is locally connected and = !(U) is open (again because 7 is
continuous), 7' (U’) is also open due to the previous theorem. Now, by the
definition of the quotient topology, U’ is also open, and the previous theorem in the
opposite direction says that X/R is locally connected. O

The subsequently discussed further concepts of connectedness are based on
homotopy. Let I = [0, 1] be the closed real unit interval. Two continuous functions
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Fig. 2.7 Homotopic
functions F; and F,

Fy and F, from the topological space X into the topological space Y are called
homotopic, F; = F,, if there exists a continuous function H:I x X — Y :
H(0,:) =Fy, H(1,-) = F,. H is called the homotopy translating F; into F»
(Fig. 2.7). Since its definition is only based on the existence of continuous
functions, homotopy is a purely topological concept.

The F; may be considered as points in the functional space C°(X,Y). Then,
H(Z,-), 0<Z<1lisapathin C°(X,Y) from F; to F». If X and Y are normed vector
spaces or manifolds, sometimes, in a narrower sense, the functions F;, H are
considered to be C"-functions, 0 <n <oo. One then speaks of a C"-homotopy.
Of course, every C"-homotopy is also a C"-homotopy for m < n. Homotopy is the
C%homotopy. In the following statements homotopy may be replaced by
C"-homotopy with slight modifications in the construction of products HyH; (see
for instance [4, $VI.8]).

The product H, H, of two homotopies, H; translating F; into F, and H;
translating F, into F3, may be introduced as a homotopy translating F; into F3 in
the following natural way by concatenating the two translations:

_ [ Hi(24,x) for0<A<1/2
(HaH)(2, %) = {H2(2)v— 1,x) for1/2<i<1.

Hence, if F| = F, and F, = F3, then also F; = F5. This means that homotopy is
an equivalence relation among continuous functions. The corresponding equiva-
lence classes [F] of functions F are called homotopy classes. If a homeomorphism
P of X onto itself is homotopic to the identity mapping P = Idy, then Fo P > F
(exercise).

Two topological spaces X and Y are called homotopy equivalent, if there exist
continuous functions F:X —Y and G:Y — X so that GoF =~ 1Idy and
FoG=1Idy. Two homeomorphic spaces are also homotopy equivalent, the
inverse is, however, in general not true. A topological space is called contractible,
if it is homotopy equivalent to a one point space. For instance, every topological
vector space is contractible. The homotopy class of a constant function mapping X
to a single point is called the null-homotopy class.
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Of particular interest are the homotopy classes of functions from n-dimensional
unit spheres S” into topological spaces X possibly with a topological group
structure. The latter means that the points of X form a group (with unit element
e € X) and the group operations are continuous. The unit sphere S" may be con-
sidered as the set of points s € R""! with Z;’:ll (s")2 = 1. % is the two point set
80 = {—1,1}, 8" is the circle, S? is the ordinary sphere, and so on. For —1 <s' <1,
the points (s%,...,s"*!) with coordinates on $",n > 0, form an (n — 1)-dimen-
sional sphere (of radius » depending on s').

The case n = 0 is special and is treated separately. A topological space X is
called pathwise connected (also called arcwise connected), if for every pair (x,x)
of points of X there is a continuous function H : I — X, H(0) = x,H(1) = x'. Fora
general topological space X, pathwise connectedness of pairs of points is an
equivalence relation, and the equivalence classes are the pathwise connected
components of X. If X is pathwise connected, then it is connected (exercise). The
inverse is not in general true. Let X be the union of the sets of points (x,y) € R?
with y = sin(1/x) and (0,y), y € R in the relative topology as a subset of R?. It is
connected, but points with x =0 and x # 0 are not pathwise connected. (Points
(0,y) with |y|<1 are also not locally connected.) X is locally pathwise
connected, if every point has a neighborhood base of pathwise connected sets. If X
is locally pathwise connected, then it is locally connected, but again the inverse is
not in general true.

For the following, n > 1, and until otherwise stated, X is considered pathwise
connected. A homeomorphism between the sphere S, n > 1 and the n-dimensional
unit cube with a particular topology is needed. Consider the open unit cube " =
{x| — 1/2<x"<1/2} with its usual topology and its one point compactification I,
obtained by identifying the surface 0" of I" with the additional point x., of 7. I"
is obviously homeomorphic to the one point compactification R” of R, but it is
also homeomorphic to §" where a homeomorphism may be considered which maps
Xoo € I" and s = (1,0,...,0) € S" onto each other. For n = 1 a homeomorphism
between the unit circle and R is obvious, for n = 2 it is a stereographic projection

of the unit sphere $? onto the one-point compactified plane R?. A similar mapping
for n > 2 is easily found (exercise). The homeomorphism between S" and I"
which maps x,, € I" and 5o = (1,0,...,0) € S" onto each other is denoted by P.

A word on notation her: x, xy denote points of X not having themselves coor-
dinates since X in general is not a vector space; X, X, denote points in I C R”
having coordinates x!,x?,...,x" (not unique for x..); s,so denote points on S" C
R™*! having coordinates s',s%, ..., st S.(s')* = 1.

Now, fix xy in the topological space X and consider the class C,(xo) of con-
tinuous functions F : §" — X with F(sg) = x¢ fixed. Denote the homotopy classes
of functions F € Cy,(xq) by [F]. It is not the whole homotopy class of F in X,
because for the group construction below it is necessary that the mapping of

50— X is fixed in every function F. The mapping F' can be composed of two steps
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qn Zo

So X

Fig. 2.8 Mapping of $" onto I" and I" into X. It is visualized how the point s is expanded into
the square x,, which frames the image 1" of S" \ {s¢}, and then x, is mapped to xo

(Fig. 2.8): first map S" homeomorphically onto I by P, implying so+ X, and
then map 1" into X by the continuous function F with x,, — xo. Because P is a
bijection, there is also a bijection between F and F = F o P, and F(so) = xo.

This composition allows to explicitly define a group structure in the set of
homotopy classes [F] in the following way: For any two C,(xo)-functions F; and
F, define a product F»F; € C,(xo) by

o Fi(2x' +1/2,2%,...,x") —1/2<x'<0
(R = D Y ) e s
Fr(2x' —1/2,22,..,x") 0<x'<1/2, (2.35)
F2F1 :(FQﬁ])OP.

(FZF 1) is continuous, since the two functions F, and F, are glued together where
Fi(1/2,...) = Fi(xs) = xo = F5(xs) = F2(—1/2,...). Note that F is supposed
continuous with respect to the topology of I" in which the surface 8/ is contracted
into one point x,,. Moreover, for x! = —1/2 or x! = 1/2, that is x = x, (2.35)
yields (F2F))(xs) = X0, hence FoF; € Cy(xo). True, also (F2F))(0,...) =xp
which for |x;| <1/2,i =2,...,nis not demanded in the class C,(x¢). The construct
(2.35) effectively pinches the section x! = 0 of I for n > 1 into one point. Via P,
this section corresponds to a meridian S"~! of §" containing the pole so. By moving
from F,F; to the homotopy class [F,F}], this additional restriction (the pinch) is
released.

In particular for n = 1, I' is the line of length 1 with its endpoints identified
(loop); hence it can again be considered as a circle. The mapping P which maps
the pole so to the connected endpoints of the second circle is trivial in this case.
The point x = 0 corresponds to the diametrically opposed point of the circle.
In a product (2.35) of two mappings, this point is also mapped to xy making the
product into a double loop (Fig. 2.9). The final correct product definition in the set
of homotopy classes [F] of functions with base point F(sg) = xq is

[Fo][F1] = [F2F]. (2.36)
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Fig. 2.9 Two loops Fy,F, €

Ci(xo) of the topological Fy
space X (shadowed area) and X X

their product (2.35) (lower Fq

left panel). Also, another

representative of [F>F,| and a

loop homotopic to FoF; in X Zo Zo

is shown (lower right panel).

Since [F] 2 E in this case,

[FzF]] &~ [F]Fz] &~ [Fz}

Zo Zo

Next, having defined the product in (2.35, 2.36), it must be shown to be
associative. Consider first

Fi(4x' +3/2,...) —1/2<x'<—1/4
(F3(F2F1))(x) = Fy(dx' +1/2,...) —1/4<x'<0
F3(2x' —1/2,...) 0<x'<1/2

and

o Fi(2x' +1/2,...) —1/2<x'<0
(F3F2)Fy)(x) =< Fy(4x! —1/2,..) 0<x'<1/4
F3(4x' —3/2,...) 1/4<x'<1/2.

These two results differ only in a quite simple homeomorphism (piecewise linear
in x', identity in the other coordinates) of I" onto itself which is homotopic to Idz.
Hence, they are homotopic to each other (see p. 41). They also both map x, to xo.
Thus, [F3]([F2][F1]) = [F3(F2F1)] = [(FsF2) Fi] = ([F3][F2])[Fi].

If E is the constant mapping E(x) = xo then obviously e = [E] is a unity:
e[F] = [F] = [FJe for all [F]. Moreover, for F_(x) = F(—x',x>,...) (2.35) yields
[F_][F] =e=[F][F_]. Indeed, (F_F)(x',x?,...)=(F_F)(—x',x%,...): The
image (F _F ) (7”) is a double layer in X. By symmetrically contracting the interval
—1/2<x'<1/2 into x' = 0 with x?, ... left constant (F_F)(I") shrinks contin-
uously on itself into xo = E (7") by successive ‘annihilation’ of parts of the double
layer. In total a group m,(X,x0) = {[F]|F € Cu(x0)} is obtained with the group
multiplication (2.36).

Now, consider any point x of the pathwise connected space X and a continuous
path H: 1 — X with H(0) = xo, H(1) = x. Given F € Cy(xp), a function F' €
Co(x) may be constructed in the following manner:
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2oy JF(2x) W <1/4i=1,...n,
F(x)_{H(t) (2—-nHxedl, 0<t<1.

The base point x( of F is dragged along the path H to x. Apart from this path, the
sets F(I') and F'(I") are the same which hence is also true for F(I"') and F'(I").
Moving F through its homotopy class [F] with base point xo obviously also moves
F' through its homotopy class [F’] with base point x. Moreover, it is easily seen
(exercise) that F,Fy via H induces F}F/ for which [F}F}] = [F}][F}]. Hence, the
mapping H : [F] — [F'] is a homomorphism of groups. Two concatenated paths H;
and H, obviously induce a composition of homomorphisms H, o H,. Concatenate
now the path H with its reversed H_(t) = H(1 —t). Then H_H provides the
identity map Id¢,(,) while HH_ provides Id¢,y). H and H_ are thus inverse to

each other, and the homomorphism H is in fact an isomorphism. The groups
7,(X,x) and =, (X, x) are isomorphic, or, in other words, 7,(X,x) = 7,(X) does
not depend on xo. The group 7,(X) is called the nth homotopy group of the
pathwise connected topological space X.

Since the case n = 1 is of particular interest in the theory of integration on
manifolds (see Chap. 5), 7;(X) is called the fundamental group of X.

Formally, a ‘0-dimensional open cube’ can be considered as a one point set
1° = {x}, and its one point ‘compactification’ (1° is of course also compact) as the
discrete two point set 19 = {x, x. }. The homeomorphism P between S = {—1,1}
and 10 maps —1 to x and 1 to x.. Now, F : §° — X is a two point mapping, and
F € Cy(xp) means that F(—1) = x where x is any point of X, and F(1) = x,. The
classes [F] thus map —1 into the pathwise connected components of X, and x does
not play any role. For a pathwise connected topological space X, mo(X) = {e}
is trivial.

By inspection of (2.35) it is seen that interchanging the factors in the multi-
plication amounts to interchanging the halves x' <0 and x! >0 in I". For n > 1,
the positioning of these two halves relative to each other does not play a role
because of the pinch of the section x! =0 involved in (2.35). Therefore, the
interchanging of the two halves can be provided by a homeomorphism of /" onto
itself which is also homotopic to the identity mapping: note that I” is homeo-
morphic to a cylinder with axis perpendicular to the x!-axis. Rotate it by 180° to
transform continuously from the identity to the interchanging of the above two
halves. The groups n,(X), n>2 of a pathwise connected topological space X are
commutative. For that reason, in the literature the group operation of homotopy
groups is often denoted as addition instead of multiplication.

In the case n = 1 the interchanging may still be provided by a homeomor-
phism, however, the argument of deformation into a cylinder does not work any
more, and the interchanging is not any more homotopic to the identity mapping.
The fundamental group m(x) need not be commutative. Consider for instance a
two-dimensional space X with two holes and a loop first orbiting clockwise
around the first hole and then counterclockwise around the second. Check that
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this loop is not homotopic to the loop with the sequence of orbiting
interchanged.

If X itself has a group structure, that is, X is a topological group with multi-
plication denoted by a dot (to distinguish it from the multiplication (2.36)), and
Xo = e, then another product of C,(e)-functions and the inverse of a C,(e)-func-
tion may alternatively be defined by pointwise application of the group operations.
The C,(e)-unity is the constant mapping on e. Let F; = F| and F, = F) and
consider the homotopies H; translating F; into F!, (H;(0,-) = F;, H;(1,-) = F}).
Then H,-H, is a homotopy translating F;-F, into F}-F), hence
[Fi - F2] = [F} - F5]: the group multiplication in X is compatible with the homot-
opy class structure of C,(e) and the multiplication [F] - [F»] is properly defined.
Clearly, e = [E] is also the unity for the dot multiplication. Moreover, with (2.35),
F\Fy = (F\E) - (EF,) is easily verified (check it). The conclusion is
[F1][F2] = [F1] - [F2]: the dot-multiplication yields again the same homotopy group
7,(X, e) of the pathwise connected component of e in X as previously. Since the
multiplication (from left or right) with any element x of the component X° of e in
X yields a translation of that component which is also a homeomorphism of that
component X° onto itself, 7,(X, e) =~ m,(X,x) ~ m,(X¢) for any x of the compo-
nent of e in X.

However, if the topological group X is not pathwise connected, in a wider sense
the homotopy group 7,(X) with the dot-multiplication can still be constructed. In
this case, mo(X) is non-trivial, and the elements of 7(X) are in a one—one cor-
respondence with the pathwise connected components of X. Let x & X° be a group
element not in the pathwise connected component of e, and let xy € X°, that is,
there is a continuous path connecting xo with e. Since in a topological group the
group operations are continuous, it follows that there is a continuous path from
X-Xo to x-e=ux; x-x9 € X*, and likewise xy -x € X*. It is easily seen that all
pathwise connected components of a group X are homeomorphic to each other
(exercise). It follows further that there is a continuous path connecting x - xo - x!
with x - e - x~! = e. Hence, x - xo - x ! € X for every x € X and every xy € X¢ : X°
is an invariant subgroup of X. It is easily seen that X/X¢ ~ my(X). On the other
hand, x-x; -x '+ x},x; € X,x € X is an automorphism of X for any fixed x
which, as was seen, transforms pathwise connected components of X into
themselves.

Consider C, (x)-functions F from the S"-sphere into X with any base point x, not
necessarily in X°. The homotopy classes [F] in C,(x) form a larger group =, (X)
which now is only defined with the group multiplication [Fi]- [F,]. The above
considered automorphism of X yields in a canonical way an automorphism of
7,(X). Denote the elements of 79(X) by [H]; then the anticipated automorphism is
given by

[FI' = [H]-[F]-[H]™", [F]€mn(X), [H] € no(X). (2.37)
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If [F] C C,(e) then [F]' C C,(e), hence, m,(X¢) is an invariant subgroup of 7, (X),
and 7p(X) = m,(X)/m,(X¢). Because of the above discussed structure of the
pathwise connected classes of X, obviously also 7, (X¢) = n,(X)/7m(X) and hence

(X)) = no(X) X m,(X¢), n>0 (2.38)

for the homotopy groups of a topological group X. They can be quite different
from 7,(X¢) (and need not be commutative for any n > 0 since 7y(X) need not be
commutative any more).

A topological space X is called n-connected (sometimes called n-simple),
if every continuous image in X of the n-dimensional sphere S" is contractible.
A topological group X is n-connected, if m,(X) = np(X). An n-connected space
need not be connected. A O-connected space is pathwise connected, a 1-connected
space is called simply connected.” Although n-connectedness is very similarly
defined for different n, these properties are largely unrelated (except for the role of
7p). Some authors apply n-connectedness only to pathwise connected spaces X.
However, for many applications this is an unnecessary restriction.

Some examples are given without proof. Some of them are intuitively clear.
(1) A convex open subspace of a topological vector space is n-connected for any
n>0. (2) The sphere S" or the complement to the origin in R"*! is k-connected for
0<k<n-—1; for n > 1 it is simply connected. (3) n,(S") = Z (as an additively
written Abelian group). For an integer m € Z = m,(S"),|m| is the cardinality
of F~'(x) for any x€ 8" It is called the degree of the mapping F.
(4) m,(S™), n > m is a largely unsolved problem although many special cases have
meanwhile been compiled; 73(S?) = Z is a theorem by Hopf, and 75(S') = 0 is
easily understood. (5) For the torus T? (see Fig. 1.3), n;(T?) = Z x Z. One
integer of (m,my) € Z x Z counts the oriented windings around the circumfer-
ence of the tire, and the other those around its cross section.

These concepts are further exploited in Chaps. 5 and 8. Although the physical
relevance of homotopy was anticipated already by Poincaré, it turned out to be one
of the most difficult and unsolved tasks of topology to calculate the homotopy
groups of certain manifolds and to exploit them for classification. It was already
known to Poincaré that every compact simply connected two-dimensional
manifold without boundary is homeomorphic to the sphere S2. His conjecture that
the same is true in three dimensions and every compact simply connected three-
dimensional manifold without boundary is homeomorphic to the 3-sphere S°
withstood hard attempts by able mathematicians for hundred years to prove it and
was eventually proved only quite recently by G. Perelman.

2 There is a more general definition of simple connectedness and fundamental group in terms of
covering space. For pathwise connected locally pathwise connected spaces X it is equivalent to
the definition given here [6].
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2.6 Topological Charges in Physics

In quantum physics, thermodynamic phases are characterized by order parameters:
the particle densities of various particles, atom displacements of crystalline solids,
the magnetization density vector, the anomalous Green function of the super-
conducting or superfluid state and so on. In an inhomogeneous, in particular
defective state those order parameters are functions of space (and maybe time).
The various defects can often be classified by discrete topological charges, and
then those classes turn out to be stable: because of the discrete nature of the
charges there is no continuous transformation of one class into another.
The topological charges are often generating elements of homotopy groups.

Consider as a simple example a superconducting state in three dimensions
penetrated by a vortex line. The space X of the superconducting state is R* with the
vortex line cut out. It is homotopy equivalent to a circle S' around the vortex line.
The order parameter A = |A|e””™® of a conventional superconducting state (spin
singlet s wave) is a complex number having a phase ¢ the gradient of which is
proportional to the supercurrent while the absolute value |A| is the gap which is fixed
for a given material and for given temperature and pressure. A constant phase factor
isirrelevant, the state is degenerate with respect to an arbitrary complex phase factor.
The loop S' in the complex plane of all phase factors is the order parameter space I'
of degenerate states in that case. With a defect present in X, the order parameter in
general will be position dependent with values out of I'. This position dependence
defines a mapping F : X — I. Since A is a well defined function on X, the gradient
O0¢/0x of the phase must integrate along any closed loop to an integer,
$ds - (0¢/dx) = integer, and this integer must be the same for all homotopy
equivalent loops. On a loop not encircling the vortex line this integer must be zero,
since the loop may be continuously contracted within X to a point, and a non-zero
integer cannot continuously be changed to zero. On a loop once encircling the vortex
line the integral of the gradient of the phase ¢» may be any integer N characterizing
the vortex line. For a loop m times winding around the vortex line it then is Nm. N is
the number of magnetic flux quanta in the vortex line. It generates a group of
elements Nm with m € Z. This group is obviously isomorphic with the group Z,
which in this case is the fundamental group 7;(I" = S') of homotopy classes of
mappings from S! which is homotopy equivalent to X into I' = S'.

On a discrete lattice, the sum of unit lattice periods along a loop is similar to a
phase and must be an integer number of lattice vectors along the loop. For a loop
enclosing a defect free region of the crystal this sum is zero. For a loop around a
displacement line this is the Burgers vector of the displacement. Here the space
X of the crystalline phase is again the same as above and is again homotopy
equivalent to the circle S, this time around the displacement line. Any loop yields
m times the Burgers vector.

Such situations will in more generality and more detail be considered in Chap. 8.
Here, some principal remarks are in due place. The Hamiltonian of a macroscopic
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system has in general a number of symmetries, it is invariant with respect to
transformations of a symmetry group G, translational, rotational invariance, gauge
symmetries and others. Some of the symmetries may be approximate, but obeyed to
a sufficient level of accuracy. For instance in a rare gas liquid the coupling of the
nuclear spin with the rotational motion is so weak that invariance with respect to
spatial rotation and spin rotation may be considered separately. At sufficiently high
temperature, the state of the system is completely disordered, so that its thermo-
dynamic (macroscopic) variables are invariant under the symmetry transformations
of G. The thermodynamic state 7 fulfills the relation y = gy for all g € G and is thus
uniquely determined. In the course of lowering the temperature, phase transitions
may take place with developing non-zero order parameters so that now y is not any
more invariant with respect to all symmetry transformations g of G, but may still be
invariant with respect to a subgroup H of G. Then, y generates an orbit {gy|g € G}
which is isomorphic to the quotient space I' = G/H of left cosets of H in G. It is
this quotient space which figures as the order parameter space I' in the above
considerations.

In the above example of a line defect in R? it was essential only that the defect
free space X was homotopically equivalent to a circle S'. The number of topo-
logical ‘charges’ of the defect is then equal to the number of generators of the
homotopy group 7;(I') (one in the above cases). The same would be true for a
point defect in R? or a line defect propagating in time (defect world sheet) in four-
dimensional space—time. For a point defect in R?, X is homotopy equivalent to a
sphere S? enclosing the defect, and hence the number of its topological charges is
equal to the number of generators of 7,(I").

In general, the number of topological charges of a defect of codimension d in a
state with order parameter space I present in an n-dimensional position space
(i.e., the dimension of the defect is n — d) is equal to the number of generators of
the homotopy group n,_1(T').

In order to develop a non-zero topological quantum number (non-trivial
topological charge), a defect of codimension d in a state with order parameter
space I" must have a non-trivial homotopy group m,_;(I'). Consider as an
example an isotropic magnetically polarizable material. The Hamiltonian does
not prefer any direction in space, besides translational invariance which need not
be considered here (it assures that a magnetization vector smoothly depending on
position has low energy) the continuous symmetry group is SO(3) (cf. Chap. 6).
At sufficiently high temperature, above the magnetic order temperature, the
magnetic polarization is disordered on an atomic scale and the state y is
invariant: y = gy for all g € G =SO(3). Below the ordering temperature the
magnetization density vector is non-zero. Its absolute value is determined by the
material, temperature and pressure. Its direction may be arbitrary, and all
directions are energetically degenerate. Smooth long wavelength changes of
direction have low excitation energy. If the non-zero magnetization points in a
certain direction, the state is still invariant with respect to rotations of the group
H = SO(2) around the axis of polarization. The order parameter space is
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Fig. 2.10 Point defect of - - -
(a) an isotropic magnetic - -
material, so-called hedgehog, - -
and (b) of an easy plane -
anisotropic magnetic material -~
with no non-trivial . 2
topological charge possible ‘ ‘ ‘
- - -
- -

(a) (b)

SO(3)/S0(2) and consists of all vectors of a given length pointing in all possible
spatial directions. Topologically this group is homeomorphic to the sphere S°.
Hence, I' = 52, For a point defect in 3-space (codimension 3), m3(S?) = Z (see
end of last section). Hence, the point defect may have a non-trivial topological
charge in this case.

A point defect is a small spot where the magnetization density vanishes.
Outside of a sphere of a small radius it is again fully developed, but may for
instance everywhere point in radial direction (Fig. 2.10a). The change of direction
outside of this sphere is everywhere smooth, but there is no smooth transition into
a homogeneously magnetized state with constant magnetization direction.
This ‘hedgehog’ point defect has non-trivial topological charge and is stable: the
defect cannot be resolved by smooth magnetization changes.

Consider now an anisotropic magnetic material of the type easy plane. Again
the magnitude of the magnetization density vector is fixed at given temperature
and pressure, but can only point in the directions within a plane, I' = SO(2) ~ S'.
Now 7,(S!) = 0: the sphere S? is simply connected and cannot be continuously
wound around a circle. Hence no non-trivial topological charge of a point defect is
possible in this case. From Fig. 2.10b it is easily inferred that no hedgehog-like
structure is possible without singularity lines outside a sphere around the defect of
the magnetization vector field of constant magnitude. From the singularity lines
the magnetization density vector would point into all planar radial directions.
If this is a linear defect, it is governed by 7;(S') = Z, and a topological charge can
exist on the linear defect in an easy plane magnet.

A point defect of codimension 4 in four-dimensional space—time would be
capable of carrying a topological charge, if 73(I") is non-trivial. Just to mention it,
the Belavin—Polyakov instanton of a Yang—Mills field is such a case even without
a defect (Chap. 8).

Structures with topological charges may intrinsically exist without a material
defect. Consider the plane R> with a non-zero magnetization density which
approaches a homogeneous magnetization density vector of a fixed direction at
infinite distance from the origin of R?. This state may be considered as a state in

the compactified plane RZ~ S which is homeomorphic to a sphere via the
stereographic projection. Since the order parameter space I" of an SO(3) spin is
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Fig. 2.11 Baby skyrmion on
a planar magnet with
magnetization density vector
up in the center and down at
infinity by a spiral rotation
around the radial direction

also S2, one has 7,(T") = 7,(S?) = Z, and hence there exists a topological charge.
The corresponding magnetic state is called a ‘baby skyrmion’ and is the only
skyrmion structure for which a picture can be drawn. It is shown in Fig. 2.11.

This state has a three-dimensional analogue since R* ~ S* and 713($?) = Z is the
famous Hopf theorem. The corresponding Hopf mapping of S* onto S? is however
not easy to draw. In general, skyrmions are special solitons in n dimensions
corresponding to non-trivial homotopy groups 7,(I"). Originally, T. H. R. Skyrme
proposed a subgroup of the product of the left and right chiral copies of SU(N) as
the order parameter space I' to obtain local field structures as candidates of
baryons in Yang—Mills field theories. For a more detailed discussion of the Hopf
mapping and citations for further reading see [7].

More examples of topological charges can be found in [8].

The section is closed by a consideration of the topological stability of the Fermi
surface of a Fermi liquid. (A more detailed discussion of Fermi surfaces is given
in Sect. 5.9.) Again, first the two-dimensional case is considered which can easily
be visualized. For a non-interacting isotropic Fermi gas, the single-particle Green
function at imaginary frequency w = ipy is

1

- 2.39
ipo — ve(p — pr) (2.39)

G(lpo,p ) =
where p is the momentum vector, p = |p|, pr is the Fermi momentum, and vg is the
Fermi velocity. The energy dispersion close to the Fermi surface p = pg is
¢ = vr(p — pr). States with p<pr have negative energies (measured from the
chemical potential ¢ = ¢r) and are occupied, while states with p > pr have posi-
tive energies and are unoccupied. The Fermi surface p = pg in two-dimensional
momentum space is a circle (Fig. 2.12) separating the occupied momentum region
from the unoccupied one.

The Green function G(ipy,p) has a singularity line py = 0, p = pr forming the
Fermi surface and is otherwise a complex analytic function for imaginary
frequencies. If one maps the contour C in the (po,p)-space onto the complex plane
of G™! with Re G™! = —vg(p — pg), InG~! = py, it maps the circle C onto the
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Fig. 2.12 Left: Fermi surface Po
in two-dimensional
momentum space and P2
imaginary frequency axis
with a loop C around the Re G-!
Fermi surface. Right: the b1

Im G!

Qe

corresponding loop C of the
complex function G~!(ipg,p)

circle C. Writing G™! = |G|7le""7’ it is seen that the phase of G increases by 2n
when running around C, while for any loop not encircling the Fermi surface it
returns to the start value. (This is like the phase of the superconducting order
parameter when running around a vertex line.) The Fermi surface is like a defect
line in momentum space.

If now the interaction between the particles is continuously switched on, the
Green function changes smoothly. It cannot smoothly get rid of its denominator
because of this topological charge on the Fermi surface, hence it must have the
form

, VA
G(ipo,p) = -

| 2.40
iPo — V(P —pe) (2.40)

where Z is the spectral amplitude renormalization factor, and the Fermi velocity
may change. (That pr does not change is an independent result, the Luttinger
theorem.) Hence the Fermi surface is topologically stabilized and can only dis-
appear when Z becomes zero (which is only possible in a non-analytic way).

The only change for the case of three spatial dimensions is that now p is a
3-vector in the three-dimensional hyperplane of the four-dimensional frequency-
momentum space of points (pg,p) for pg = 0, which contains the only singularities
of (2.40) on the Fermi surface being now a 2-sphere. For every planar section in
the three-dimensional momentum space through its origin, Fig. 2.12 visualizes
further on the situation, and the Fermi surface is topologically stable.

A more general situation is present for electrons as spin 1/2 fermions in a
crystalline solid instead of ‘spinless fermions’ in an isotropic medium which was
considered so far. Here, the Green function is a complex valued matrix quantity
indexed with band and spin indices. The change of its phase, normalized to 27, as a
complex number when going around a loop (contour integral of the gradient of the
phase as considered in the case of a superconductor with a vertex line) is now to be
replaced by the quantity

ds . O .4,
N = trj{z—l{’ . G(lp(),p)@G "(ipo,p)

where the trace of the matrix product is to be formed, the contour integral is along
the previous contour C, and 0/0p is the four-dimensional gradient in the
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frequency-momentum space. The dot means the scalar product of the line element
vector with this gradient. This is the general structure of a homotopy invariant.’

Now, several sheets of Fermi surface may coexist of arbitrary shape. The shape
may change when the interaction is tuned up and individual sheets may appear or
disappear on the cost of other sheets. (If a Fermi radius shrinks to zero, in most
cases the Fermi velocity also approaches zero, and the singularity disappears.
Exceptions are so-called Dirac quasi-particles where the Fermi velocity remains
non-zero in the Fermi points.) Nevertheless, between such changes the Fermi
surface is topologically stable, and the only additional reason for its change is the
vanishing of the spectral amplitude renormalization function Z(py,p) on some part
of the Fermi surface.

A much deeper analysis can be found in [9].
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Chapter 3
Manifolds

Vector space is already a large category of topological spaces. However, due to its
linear structure, it is already too narrow for many applications in physics. Indeed,
the topological and analytic structure is uniquely defined from a neighborhood of
the origin alone. Manifold, on the one hand, is a generalization of metrizable
vector space, maintaining only the local structure of the latter. On the other hand,
every manifold can be considered as a (in general non-linear) subset of some
vector space.

Both aspects are used to approach the theory of manifolds. In Algebraic
Geometry one usually starts from the definition of manifolds in some vector space
by means of a set of algebraic equations for a coordinate system in the vector space
[1]. In physics, one rather knows local properties of manifolds and then asks for
possibilities of continuation into the large. This is the standard approach in Dif-
ferential Geometry [2], a rather complete classic; and [3], a well readable for
physicists. This approach is taken in this text also.

With respect to the analytic structure, manifolds may be continuous, C", smooth
or analytic. In this text the most important smooth case is treated, and for the sake
of an effective terminology, manifold means smooth manifold throughout this
text.

Since dimension of a vector space is a locally defined property, a manifold has a
dimension. Although infinite dimensional manifolds have relevance in physics too,
this text confines itself to n-dimensional manifolds, n < oo, for basis manifolds of
bundle spaces (which latter often form special infinite dimensional manifolds).

3.1 Charts and Atlases

An atlas of a manifold is a collection of charts projecting pieces of the manifold on
open sets of an n-dimensional Euclidean space R". In all what follows R" is taken
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to be a topological vector space homeomorphic to the Euclidean space while the
Euclidean metric given by the inner product structure is not used (cf. p. 13).
The most familiar case is an atlas of the surface of the earth as a two-dimensional
manifold. It is important to identify points of different charts of an atlas which
are projections of the same point from overlapping domains of the manifold.
Throughout this volume, points of an n-dimensional Euclidean space will be
denoted by bold-faced letters as it was already done. Sets of the R" will from now
on also be denoted by (capital) bold-faced letters.

A pseudo-group S of class C", m = 0,1,...,00, o consists of

1. a family S of homeomorphisms ¥, : U, — Up of class C"(U,, Ug), where U,,
Uy are open sets of R",

2. for every g, € S, its restriction to any open subset of U, also belongs to the
family S,

3. Conversely, if y: U — U’ is a homeomorphism, U = U, U, and Uly, €S
for all « € A, then ¥ € S,

4. 1dy belongs to the family S for every open set U € R",

. for every y;, €S, (l/lﬁ“)71 = (-p*‘)aﬁ €S,

6. if g, €Sand Yy €S, then Y09y, =y, : U, - U, €S.

9,1

A complete atlas A of charts (U,, ¢,), a € A, of a topological space M which
is compatible with the pseudo-group S of class C" consists of:

1. an open cover M = U,coU, of M,

2. every ¢, is a homeomorphism from the open set U, € M to an open set
U, e R",

3. if U,NUp # J, then S > l/lﬂa =@po (p;1 10, (UyNUp) — (pﬂ(Uu N Up),

4. the complete atlas is not a proper subset of any other atlas compatible with S.

A complete atlas compatible with a pseudo-group S of class C”, m > 0, is also
called a differentiable structure on M. Figure 3.1 shows the interrelations of open
sets U, of M and open sets U, of R" as well as the interrelation between
homeomorphisms ¢, and !/Iﬂl. The 1///3“ map images of the same point of M in
different charts onto each other. A collection of charts not obeying the condition 4

Fig. 3.1 Charts and
homeomorphisms of an atlas
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for complete atlases is simply called an atlas. It is not difficult to show that, given
a pseudo-group S of class C™, every atlas is subset of a complete atlas and that a
complete atlas of a topological space M is uniquely generated by an atlas.

In all what follows either the family of all C"-homeomorphisms of open sets of
the R" will be taken as the pseudo-group S, or (for m > 0 and to enforce ori-
entation of manifolds, see end of next section) those homeomorphisms with positive
Jacobian will be taken as the pseudo-group Sy. It is easily seen that these families
Sulfil all conditions 1-6 of a pseudo-group of class C".

With this convention, in both cases a complete atlas of a topological space M is
uniquely defined by the space M itself and an atlas of M. The latter generates a
complete atlas compatible with S or with S;. An admissible chart of an atlas is a
chart belonging to the corresponding complete atlas.

So far, only topological concepts (open sets and homeomorphisms) were
used, and with respect to the topological space M these will be the only concepts
to apply. The aim of mapping parts of M onto parts of R” is to use the much
richer structure of R”, its metric and linear structure as a vector space, in order
to bring real numbers and analysis into the game. This is achieved by specifying

a coordinate origin 0 in R" and fixing a base {e,...,e,} of vector space.
Every point x € U, is then given by coordinates, x = .7, x'e; for which x =
(x',...,x") will be written. The homeomorphism ¢, means now an ordered set

of n real-valued functions on U, € M : @, (x) = (@L(x),...,¢%(x)), x € U,. One
may also write ¢, = 7' o ¢, where 7'(x) = x' is the projection on e; in R". This
all is not a big step ahead since the points x € M are still not given by numbers.
However, instead of moving through M one now can move through its charts;
only once in a while one has to transit from one chart to another one by means
of the transition functions v, (x) = (l//[l;“(x), W), x = (x ) €
U, C R". This is now already an ordered set of n real-valued functions of n real
variables. It was only these transition functions of which class C" could be
required.

The set U, € M is now called a coordinate neighborhood and the set of
functions ¢ (x) is called a local coordinate system on U, € M. Since in the
Euclidean space R" the origin x = 0 may be chosen arbitrarily by using
affine-linearity, for every o separately it can always be chosen to be in U,.
If U,={x||x'|<a}, then this is called a coordinate cube centered at
(0.) ' (0)=x0 € M.

Finally, the commutative diagram (see Compendium C.1)

UaﬁU/jGM

Pol vy Ppluanuy (3.1)
Uy > 0o Uy 1 Up) Yselowwintn | @p(UxUp) C Up

is mentioned.
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3.2 Smooth Manifolds

An n-dimensional C"'-manifold is a paracompact topological space with a com-
plete atlas compatible with the structure S of all C""-homeomorphisms of open sets
of R" or with the structure S, of homeomorphisms with positive Jacobian.

The local topology of an n-dimensional manifold is very simple: it is the same as
that of R”. In particular a manifold is Hausdorff (by our definition of a paracompact
space). Like R” it is also normal (disjoint closed sets are contained in disjoint open
sets), first countable and locally compact, locally simply connected and locally
pathwise simply connected. Since manifolds can be obtained by gluing together an
arbitrary number of pieces in a most general way, they can be quite monstrous and
their global topology may get out of control. A standard tool of studying global
properties is by getting them as locally finite sums of local properties, in particular
via a partition of unity. For that reason, it is demanded that M be paracompact.
Alternatively, many authors demand that M be second countable; it can be shown
that in combination with the local topology paracompactness then follows.

The geometry, on the contrary, is in general already locally involved. It will be
studied from Chap. 7 on.

In all what follows, if not otherwise explicitly mentioned, manifold means a
finite-dimensional C*-manifold, that is, a smooth manifold.

Examples

R™: Tt is itself an n-dimensional manifold with the standard smooth pseudo-
group S (see Sect. 3.1) and the complete atlas containing (generated by) the chart
(R™, Idgn).

n-dimensional topological vector space X: (not necessarily provided with a
geometry by an inner product). If {e;} is an arbitrarily chosen base of X and {f'} is
the corresponding dual base, (f’, e;) = &/, then the projections 7 (x) = (f/,x) = ¥/
define a local coordinate system which is also a global one. A change of the basis
{e;} is a smooth homeomorphism of R" to R”", and those changes in open sets of
X provide a simple atlas compatible either with the standard pseudo-group Sy, if
transformations with positive Jacobian are taken only, or with the standard pseudo-
group S in the general case. (Further on the adjective standard is omitted.) There
exist many more charts in a complete atlas, e.g. with curved coordinate systems.

Sphere 8" € R": {x| /4! (x)* = 1}. Let the ‘south pole’ be s = (1,0, ...,0)
and the ‘north pole’ n = (—1,0,...,0). A complete atlas is generated by the two
charts (5" \ {s},ps) and (S" \ {n},pn), where p; and p,, are the stereographic pro-
jections from the south pole and from the north pole, respectively (Fig. 3.2).

n-dimensional projective space P": Define an equivalence relation = in R""! \
{0} asx =y, iff x = ay,R > a # 0. Denote the equivalence classes (straight lines
through the origin) by x = [x]. Then, P" = ((R""'\ {0})/=) = {x = [x]|x €
(R™1\ {0})}. (x',...,x"*!) are the homogeneous coordinates of x; they
are determined up to the factor @ # 0. The n + 1 open sets U; = {x|x' #0},
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T = ps(v)
U, =R"
s Y = pn(z)
xl
Fig. 3.2 The manifold S' with two stereographic projections
i=1,...,n+1 form an open cover of P". Unique coordinates in U; may be

chosen & =¥ /x', j# i, @,(x) = > i Clej- Tt follows ¥, (&;) = 554 Erej, & =
E(xl/xky = EJE forj # i, k and & = 1/&. These y,,; are smooth functions on
U;,NU; C R". The global topology of P” is more involved than that of S".

The projective space P' is depicted in Fig. 3.3. There are two homogeneous
coordinates x', x> forming a plane with removed origin. The open sets U;, U,
consist of the plane with removed x*- and x'-axis, respectively. There is only one
coordinate &; = f% and & = Cé, respectively, related by vy, (&) = 1/& = &,.
Hence, the Jacobian of /> reduces to the derivative d&,/d¢| = —1/(61)2<O.
Note that a 180° rotation of the (x', xz)-plane is the identity mapping Idp: of the
projective space P'.

Mébius band (Fig. 1.2b, p. 3 in Chap. 1): Take the rectangle M = {(x,y) €
R?| —n<x<m —1<y<I1} and glue the two edges x = =4 in such a way
together that the points (—=, y) and (7, —y) are identified with each other. Replace
x by the polar angle ¢ along the circumference of the glued together tape. Every
open set Uz = {(¢,y)|E<p <&+ 2n, — 1 <y<1} with ordinary planar coordi-
nates of the original rectangle is a coordinate neighborhood on the Mobius band

Fig. 3.3 The plane of 22
homogeneous coordinates
12 .
x', x~ of the projective space
,§2>0
P'. On the left panel, the set U b8
Uy, x' # 0, is shadowed, on C Us

the right panel U, 1

fl 752 <0
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which is a two-dimensional manifold. However, the mappings between the overlap
sets of neighborhoods U, for different £ have unavoidably partially positive and
partially negative Jacobians. A complete atlas with the structure S, is not possible
in this case.

A manifold for which a complete atlas compatible with S, exists is called an
orientable manifold. For n > 1, all presented examples except the Mobius band
and P" for n even are orientable manifolds. The Mobius band as well as P”, n even,
are not orientable. An orientable manifold may have two orientations. If (U, ¢,,)
are the charts of an oriented atlas of an orientable manifold, then another atlas
with charts (Uz, @;) with ;(x! x% ... x") = (—x!,x%,...,x") as transition
functions between these charts has the opposite orientation. (Show that the
inversion x — —x of the R”“,n even, inverts orientation; since x and —x
represent the same point of P” in homogeneous coordinates, P", n even, cannot be
orientable.)

Any open subset M; C M of a manifold M is again a manifold with the charts
(Us "My, 9,]y,0m,), if (Us, @,) are the charts of M. M, is called an open sub-
manifold of M. (A detailed discussion follows in Sect. 3.5.)

The product manifold of two manifolds (M,,.A;) and (M>,.A;) with complete
atlases 4 and A, is the product M; x M, of the topological spaces M, and M,
with the product topology. Its complete atlas is created by the charts (Ul x

U, @), x @) with evident notation. The dimension of the product manifold is

dim M, + dim M,. For instance the two-dimensional torus is the product manifold
T2 =S8'x S

A smooth mapping F from a manifold (M, .Ay) into a manifold (N, Ay) is a
mapping F : M — N so that for every pair of charts (U, @) € Ay, (V,0y) € Ay
the mapping @y o F o (py) ™" : py(U) = @y (V) is C*. (pyoFo(py)” is a
mapping from an open set of R™ into an open set of R™, hence its class of
differentiability is defined.) If M is the open interval |a, b[ € R (with its standard
manifold structure as an open submanifold of R = R!; see the first example
above), then F: M — N is called a smooth parametrized curve or simply a
parametrized curve which is always assumed smooth if not otherwise explicitly
mentioned.

If F is bijective and F : M — N and F~' : N — M are both smooth mappings,
then F is called a diffeomorphism of manifolds. The complete atlases Ay, and Ay
are called isomorphic, Ay ~ Ay, if a diffeomorphism F : M — N exists. (Just to
mention, diffeomorphism is more than homeomorphism; there are homeomorphic
C”-manifolds which are not diffeomorphic.)

3.3 Tangent Spaces

Before the general case is treated, a simple example is discussed which every
physicist should be familiar with.
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A simple (one-dimensional) manifold is a smooth curve x() in R" given by
n equations x' = x'(t), i = 1,...,n, a<t<b with respect to some base {e;} of the
vector space R”. It is the special case of a parametrized curve defined at the end of
the last section, where the manifold N of that definition is R". Consider the point x
at 1 = fy on this curve. As is well known, the tangent vector in R” on the curve
x(1) at the point x is the vector X,, = (dx'/d1| 1)+ Any vector of the R" is tangent
vector at any point of the R” on some smooth curve passing though that point, in
other words, R" is the tangent space to itself at any of its points. In this connection,
any given vector X eR"is tangent vector at xo € R” to a whole bunch of curves,
for instance thought of as all paths of motion through x, with velocity vector X at
that point. Above, a coordinate system in R” was used from the outset by choosing
a particular base {e;}. In vector analysis, analytic relations are defined and con-
sidered independent of the choice of a coordinate system, for instance by defining

f(xo = dx/dt|, in an invariant way. Consider next any real-valued smooth function
F:R" — R. (Class C' would suffice here, but for later considerations C” is
assumed from the outset.) By composing it with x(7) it defines a function F(f) =

F o x(t) with derivative

dx!
_ ZE

fo i

0

i
o ax X0

0

o OX

dF
dt

_ds
T dt

F =X,F. (3.2)
X0

It is just the directional derivative (Sect. 2.3) of F with respect to the vector f(xo
for which the operator of differentiation X,, acting on F has been introduced in
(3.2). As is seen from this chain of equations, Xy, may be thought of as a vector in
a vector space with base {0/0x'}, the components of which with respect to that
base are dx'/dt. Indeed, any vector operator Xy, = >, £'0/0x' defines a directional
derivative at xo corresponding for instance to the smooth curve (straight line)
E(t) =x0+1) ;&

A change of the base e; in the R” on which F was defined causes a change of the
base 0/0x' so that (3.2) remains invariant. Here, dF /dt is the scalar product of the
tangent vector dx /dr with the gradient vector OF /0x. In this chapter, differentials
are more important than derivatives. By writing dF,, = >_;(0F /dx')dx', and
understanding {dx'} as a base in the dual space to the tangent space, later intro-
duced as the cotangent space, with the relation (dx,0/0x*) = 5} one has dF,, =
X, Fdt = Xy F = (dFy,,Xx,) where dt has been put equal to unity by definition.
These are many details for the simple relation (3.2), but hopefully they help in
understanding the precise meaning of the following. Note in particular that all
considerations above need the functions involved only locally in any (arbitrarily
small) neighborhood of the point x.

If M is an arbitrary smooth manifold of n dimensions, the coordinates of its
points x € U, C M are locally defined by using a chart (U,, ¢,) out of the complete
atlas A of M : x, = ¢! (x) = 7' 0 @, (x). The only demand on ¢, is that it is a
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homeomorphism from U, to U, CR" and that the transition functions ¥y,
between charts are smooth. Linear coordinates in U, for instance do not have any
preference any more since in general M is not a vector space and hence linear
relations between its points are not defined any more. Within the complete atlas
(differentiable structure) of M there is a huge arbitrariness not only of choosing the
coordinates of a point x € M but also of choosing the neighborhood U, of x in
which those coordinates are defined. Since an arbitrarily small neighborhood
suffices for considerations of the tangent space, the local behavior of a function is
introduced by the concept of a germ of function. Consider a point xo, € M and the
family C;o of smooth real-valued functions F, defined in some neighborhood of
¢,(x) € Uy = ¢,(U,) for some chart for M containing the point x, (coordinate
neighborhood of x). Since the composition of smooth functions F, o ¥, = Fp is
smooth, F, defines a smooth function Fs in some neighborhood of ¢4(xo) € Uy for
every local coordinate system (Ug, (pﬂ) centered at x,. In other words, C;‘O may be
considered as the family of all smooth real-valued functions on any local coor-
dinate system of M centered at x,, and apart from their smoothness which is only
defined in connection with a local coordinate system, each of the functions F, of
C;‘O together with a local coordinate system defines a function F' = F, o ¢, on a
neighborhood of xo € M. This allows for the introduction of the family C,, of all
real-valued functions F' defined in some neighborhood of x, € M and smoothly
depending on the coordinates of any local coordinate system of M centered at xy.

Two functions F, G € Cy, are considered equivalent, F'~ G, if there exists a
neighborhood U of xq so that F|y; = G|y. (Note that two non-identical smooth real
functions still may coincide on some domain; smoothness is less than analyticity,
where functions are uniquely continued from any open domain.) Given any local
coordinate system of M centered at xo, if F ~ G, then obviously dF,/ox,|._, =
3G, /0x! |,_, where without loss of generality the coordinates x of x, are put to
zero. This is always done in what follows. An equivalence class [F] of a function
F € C,, is called a germ at xo on M. The set of germs at x, on M is denoted by

Fr = Cy/ == {[F]|IF € Cy,} (33)

(quotient set with respect to the equivalence relation ~ in C,,). Why is the concept
of germs needed instead of simply considering the family of functions defined on
some (fixed) neighborhood of xy? The point is that in order to decide which
functions are admissible in C,,, local coordinate systems have to be used and their
domain of definition cannot be fixed, it depends on the used charts and can in
particular become arbitrarily small. Note also that the same function F € C,,
corresponds to infinitely many different functions F, € Cy , Fy = Fy(x,,, ..., x}) for
different local coordinate systems.

Next, the family of (smooth) parametrized curves x(¢), ¢ € ]a, b[ in M passing
through x is considered (Fig. 3.4). Again without loss of generality it is assumed
that =0 is an inner point of the interval ]a, b[ and x(0) = xo. This time
smoothness is to be considered with respect to local coordinate systems of the
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Fig. 3.4 A path x() through
Xo in M and its image

x(t) through 0 in a coordinate
chart

Rn

target space M of the mapping ¢ — x(¢): x,(f) = @, o x(¢) must be smooth for some
¢, for which xo € U,; it then is smooth for any such chart, x(t) = @ o x(t) =
Vg, © @, 0 x(t). (More precisely, an appropriate restriction of the curve x(t) which
fits into U, and Uy is meant with x(¢) in the above composite mapping.) Consider
now any function F € C,,, any parametrized curve x(¢) passing through xo and any
local coordinate system of M centered at xy. The latter defines a function
Fu(xl,.. x) = (Foe,')(x,) and a curve x,(t) = (xL(¢),...,x"(¢)) correspond-
ing to (some restriction of) x(z). Furthermore, F,(t) = F, 0 x,(t) = (Fo ;' o
¢, 0 x)(t) = F(x(z)) is the function F, on the curve x,(¢) which by construction is
the same function of 7 as the original function F on the curve x(¢), and (3.2) with
F replaced by F, is valid for the directional derivative of F, with respect to the

tangent vector X7 = dx,/dt|, on the curve x,(1):
-G
— dt

(It will be seen that the vector operators X3 on a manifold form a vector space but
do not in general any more form a Euclidean space, therefore it is not any more
denoted in bold face.) Since the value of the third expression in this chain of
equations depends on the partial derivatives of F, at x = 0 only, it is the same
within a class [F] € F,, independent of its representative F. Moreover, a change of
the local coordinate system changes X and F, in such a way that (3.4) remains
unchanged.

Consider such a change of the local coordinate system in more detail. The
corresponding coordinates are

x, =10 ,(x),

xh =m0 py(x) = oy 0> mow g, (x) = U (xl, . xn), ()
J

dF (x(1))
dt

0

i
Oaxac

0

_ dF,(x4(1)) 0
o Oxy

0 dt

dx,

Fo=—7
0 dt

Fy=XF, (34)
0

0

where m; maps the number ¥ to a vector in R" with the jth component as the only
non-zero component equal to x/; ;(¥') = (0,...,0,%,0,...,0), 3" mj o @/ = Idg:.
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Hence, )

O i j ~1yJ
@ = (‘ﬁ/;a.)ja (‘//oc/i)i = (‘ﬁﬁx ) it (3.6)
The (ij)-matrix ((4,); ') is the Jacobian matrix of the coordinate transformation
¥, The last relation of (3.6) considers the property 5 of the pseudo-group S of
transformations. Now,

dxi Oty dod
B _ Bty
dt ;axj dt Z(l///)'%)j dt’

G _1,j O
axiﬁi ax/;a j Z zj:(wﬁa)iaxg{v

J

(3.7)

which again demonstrates the invariance of (3.4). A vector transforming according
to the first transformation rule of (3.7) is called a contravariant vector and one
transforming according to the second transformation rule of (3.7) is called a
covariant vector.

An abstract vector X,, may be introduced, translated by a local coordinate
system into the differential vector operator X7 = >, & (9/0x\) where the &
form the components of a contravariant vector and the operators d/dx!, form a base
in the space of vectors X,,. The base vectors transform like the components of a
covariant vector. According to (3.4), X, provides a mapping

Xy Gy = RFo X F =Y & (0F,/0x). (3.8)
This mapping has the obvious properties

1. X, ,(AF 4+ uG) = AX, F + 1X,,G, that is, it is linear,
2. X,,(FG) = (X,F)G(x0) + F(x0)(X,G), Leibniz rule.

Any vector X,, is called a tangent vector on M at the point x,. The vector space
of all tangent vectors X,, is the tangent space T,,(M) on M at the point xo. It is
also denoted by T, if there is no doubt about the manifold M.

Given any local coordinate system centered at point x,, consider the relation
S E(9/x) = 0, that is, 3, & (OF,/dx.) = 0 for all F € Cy,. Since F' € C,, for
Fi(x) = x, it follows that & =0 for all i = 1,...,n. This proves that the base
vectors 0/0x’, are linearly independent in T\, and the dimension of Ty, is equal to
n, that is, equal to the dimension of M. Note that although this result seems to be
obvious it is due to the differentiability of the pseudo-group of transition functions
only; differentiability directly on M cannot be defined. It is natural to provide T\,
with a topology to be homeomorphic with R".

Coming back to the set (3.3) of germs, the definition of linear operations and of
point wise multiplication of functions in F,,

AlF] = [AF], [F]+[G] = [F+G], [F|[G] = [FG] (3.9)
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makes F,, into a commutative algebra over R (which means that it is also a real
vector space, and as such is in fact a functional space and hence infinite dimen-
sional: for instance all distinct polynomials in the coordinates of a fixed local
coordinate system are linearly independent). On the right hand sides of (3.9) inside
the square brackets the functions F' + G and FG are understood on the intersection
of their domains of definition, this is why C,, is not an algebra: there is no common
domain of definition of all functions F € C,,. The mapping (3.8) induces a cor-
responding mapping X,, : Fy, — R : [F] — X, [F] = X\, F which inherits the same
mapping properties

L Xy, (A[F] + 1[G]) = 24Xy, [F] + 11X, [G],

2. Xo([F][G]) = (X4 [F])G(x0) + F(x0)(Xx,[G]), (3.10)

expressed by saying that X, is a linear derivation of the algebra 7, . The subset

]—"20 of all germs [Fy) vanishing at x, forms an ideal of the multiplicative ring of

vectors of the algebra F,, : -7:20-7):0 = fxO]-"gU = ]—"20. (The point wise product of
any function F with a function F yields another function Gy € .7-"20 .) Given a fixed

coordinate neighborhood « of xo,}"go

which is identical to zero, germs corresponding to all linear functions F, with
respect to the coordinates of a local coordinate system, germs of all quadratic

(more precisely bilinear) such functions, and so on. Since the product of two linear

00)2 contains in turn the germ of the function

contains in turn the germ of the function

functions is a bilinear function, (F
which is identical to zero, the germs due to quadratic functions F,, the germs due
to cubic functions, and so on. This holds true for any coordinate neighborhood «,
0 02
hence, F, D Fy D (F ) D+
From the properties (3.10) it is readily seen that every tangent vector X, maps

every germ from (F 20)2 to zero:

Xy ([Fo][Go]) = (Xy,[Fo])Go(xo) + Fo(xo)(Xx,[Go])
= (XXO[FO]) -0+0- (Xxo [GOD =0.

Hence, the action of X,, on F,, is completely determined by its action on the

quotient vector space ]—"20 / (]—"20)2 represented by linear functions with respect to

the coordinates of any local coordinate system. The members F € C,, of an
equivalence class which constitutes an element of F 20 /(F 20)2 differ between each
other by functions having zero partial derivatives at x, in all local coordinate
systems. These equivalence classes are denoted by dF,,, F° / (]-"20)2 = {dF,,},

Xo
and are called differentials of the functions F = Fj 4 const., since they are pre-
cisely what for functions in R" are ordinary differentials: the linear part of a
function (tangent hyperplane to the graph of the function). Recall again that
linearity is not directly defined for functions on M since M is in general not a
vector space. Moreover, the linear part of a function F' € C,, with respect to local

coordinates is in general different for different local coordinate systems. However,
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given a local coordinate system, by construction all functions within an equiva-
lence class dF), differ from each other by additive terms which are higher than first
order in the coordinates. Hence, from (3.8) it is also clear that for every given
tangent vector X,, the value X, F is uniquely determined by its action on the
differential dF,,. Moreover, it is easily seen now, that conversely any linear
derivation of F,, defines a tangent vector on M at xq, there is a one—one corre-
spondence between linear derivations of F, defined by (3.10) and tangent
vectors on M at xq defined by (3.8), T,,(M) = (.7-"20/(.7:20)2)* is the dual space to
Fol(F3).

Also from (3.8), (AXy, + uYy)F = AX F + pY, F, and therefore dF,, is a
linear functional on the tangent vector space: dFy, : T, (M)— R:
Xy = (dFy,, Xy,) € R or dF,, € T} (M) where the cotangent space T (M) on
M in the point x, is the dual to the tangent space T, (M). The differentials dF,,
form the cotangent vectors on M at the point xy. As the dual of the real
n-dimensional tangent vector space, the cotangent vector space T, (M) has the
same dimension n = dim M. Both vector spaces are isomorphic to R" as a vector
space, not in general as a Euclidean space; tangent and cotangent vectors are
carefully to be distinguished. While tangent and cotangent vectors have a well
defined meaning independent of a given local coordinate system, angles between
two tangent vectors or between two cotangent vectors are not defined independent
from local coordinates.

Given a local coordinate system centered at x and the corresponding functions
Fi(x) = x, the respective differentials denoted by dx/ form the base of the
cotangent vector space dual to the base {9/0x’ }:

i j i i j i 0 “1yj ©
(dv,, 0/0x]) = O, dxy =" dv)(y,);, a—%:Zwﬁ;)z@. (3.11)
J J

o
With respect to that local coordinate system,

dx (dFy, X)) = X F, Xy = Zga

dF,, — a = (3.12)

Hence, the components w? of a general cotangent vector with respect to the base
{dx; },
Wy = wa‘dx;, (3.13)
i
transform between local coordinate systems as a covariant vector and the base

vectors themselves transform like a contravariant vector. Equations (3.11, 3.12)
together with the transformation rules for the components,

of = Zw]a(lﬁﬁ;)l]» & = Z(‘ﬁ/ﬂ)}@a (3.14)

J

completely determine the calculus with tangent and cotangent vectors.
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3.4 Vector Fields

In the previous section, local entities on (smooth) manifolds M were considered
which depend on the local structure of the manifold only. To this end, germs [F] of
functions F were introduced and their directional derivatives as the application of
tangent vectors as well as their differentials as cotangent vectors containing the
information on all directional derivatives of F at xq (see 3.12).

Now, global entities are introduced which have a meaning on the whole
manifold M. The relation between the local entities and those global ones can be
highly non-trivial and depends on the properties of the manifold itself. The study
of those interrelations is one of the central tasks of the theory of manifolds.

A smooth real function on the manifold M is a smooth mapping F : M — R,
considered as a smooth mapping between the manifolds M and R (see the end of
Sect. 3.2). Since the real variable ¢ € R forms a local (and global, atlas of a single
chart) coordinate on the real line R as a manifold, F is smooth, iff F,(¢,(x)) =
F,(x,) is a smooth function of the local coordinates x, = (x.,...,x") for every
chart (U, ¢,) of the complete atlas of M. The class of smooth real functions on
M is denoted by C(M). Since, contrary to Cy, all functions of C(M) have the same
domain of definition M, linear combinations with real coefficients and point wise
products of smooth real functions are again in C(M). In other words, C(M) is a real
algebra (of infinite dimension; see below and the remark on F,, p. 65). Clearly, if
F €C(M), then F € C, at every point x € M. The first question that arises is
whether C(M) is non-empty at all. The answer is positive:

Every [F] € F, at any x € M can be continued into a smooth real function F €
C(M), that is, there is a locally defined function Fy € C, so that [F| = [F,] and F,
can be smoothly continued onto M.

Proof Consider a coordinate neighborhood U, of x on which some F, is defined
and smooth for which [F] = [F,]. Consider the open set U, € R". Since open
cubes form a base of topology for the R", there is an open cube V, the closure of
which is contained in U, and another open cube W, the closure of which is in V,
(R" is a regular topological space). Let W, = ¢! (W,). Then, [F] = [F,] for
F,. = Fa|wx- Let G” be a smooth function, defined on U, which is equal to unity on
W, and zero outside V, (see p. 34). Denote the corresponding function on U, C M
by G. Let F be equal to F,G (point wise multiplication) on U, and equal to zero on
M\U,. Obviously F € C(M) and F smoothly continues [F]: F is smooth on U, and
every point x ¢ U, has a coordinate neighborhood disjoint with V, (since the
closure of V, is in U,) on which F is zero. O

This situation is in stark contrast to the situation for analytic functions for which
the possibility of a continuation onto the whole manifold strongly limits the class
of admissible analytic manifolds.

A tangent vector field on a manifold M is a specification of a tangent vector
X, € T,(M) at every point x of M. For every smooth real function F on M, the
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tangent vector field defines another real function XF on M : (XF)(x) = X,F.
(X defines a real function even for all functions F for which F, is C' for every local
coordinate system centered at any point x in M; in this treatise only smooth
functions are, however, considered.) A tangent vector field is called a smooth
tangent vector field, if XF is smooth for every smooth function F, that is, X :
C(M) — C(M). Since smoothness is a local property, for tangent vector fields it
can again be expressed with the help of local coordinate systems: X is smooth, iff
for every local coordinate system the components & (x,) = & (@, (x)) of X =
> Eu(x,)(9/0x) are smooth functions of the local coordinates x, = (x},...,x").
It is clear that this is necessary and sufficient for XF = 3", & (x,)(0F /0x') to be
smooth for every smooth F. Moreover,

1. X(AF + uG) = JXF + uXG, I, ucR

2. X(FG) = (XF)G + F(XG), (3.15)

that is, X is a linear derivation of the algebra C(M).

Consider the set X'(M) of all smooth tangent vector fields on M. The question
whether it is non-empty is answered in the same way as for C(M), this time for
each component of X with respect to a local coordinate system. X'(M) is obviously
a real vector space with respect to point wise addition of tangent vector fields and
multiplication of tangent vector fields by real numbers. Point wise multiplication
of tangent vector fields in the sense of multiplication of differential operators,
however, does in general not lead again to a tangent vector field. (Check it.)
Nevertheless, if X and Y are two smooth tangent vector fields, then the
commutator

[X,Y] =XY —YX € X(M) forX,Y € X(M) (3.16)

is always again a tangent vector field: X' (M) is a Lie algebra. The commutator or
Lie product of vector fields has the following properties characterizing a Lie
algebra:
1. [X,Y]=-[Y,X],
2. [X+Y,Z|=[X,Z]+1Y,Z], (3.17)
3. [Xa [Y,Z]]+[Y, [ZvXH+[Za [Xa Y” =0.
The last of these relations is called Jacobi’s identity. All relations (3.16, 3.17) are

easily proved by means of a local coordinate system. For instance, if on some chart
(for the sake of simplicity of writing the chart index o is sometimes omitted, if no

misunderstanding can arise) X = 3, &(9/dx'), Y = 3, 1'(0/dx'), then
0¢
_ _ _ Tl
X, Y|F = X(YF) — Y(XF) § (5 - aﬂ) oF. (3.18)

(The terms with second derivatives of F cancel in the commutator, they prevent a
simple product from being a vector field. Exercise: Show that if X and Y obey



3.4 Vector Fields 69

(3.15), then [X, Y] also obeys these relations while XY does in general not.) Hence,
in this coordinate neighborhood,

N0 g (a0
[X’Y]_Zgéx“ C—jz@axj axj) (3.19)

The components (' of [X, Y] are smooth, if the & and 5" are smooth. (For X' (M) to
be an algebra, smoothness is essential; class C"* would not suffice, since then Ci
would be only of class C" "))

Let X be any linear derivation of C(M), that is, let X be a mapping X : C(M) —
C(M) obeying (3.15). Consider the constant function F = 1 on M. Then, the second
relation (3.15) reads XG = (XF)G + XG, and it must hold for any G € C(M),
hence XF = 0, and, by linearity (first relation 3.15), XF = 0 for every F = const.
on M. Now, let U C M be any open set, let supp F = U and let supp G = M\U.
Then, FG=0 on M and 0 = X(FG) = (XF)G + F(XG). Since F =0 on M\ U
and G #0 there, it follows that supp XF C U = supp F for any F. From that it
follows easily that the value of XF at x € M is completely determined by the germ
[F] € F, of F at x on M. Together with the equivalence of linear derivations X, of
F, and tangent vectors X, € T\ (M) this shows that any linear derivation X of the
algebra C(M) defines a tangent vector field X € X(M).

X(M) may also be considered as a module over the algebra (ring) C(M): For
X,Y € X(M) and F,G € C(M), the linear combination FX + GY is again a
smooth vector field € X(M) which is locally defined as (FX+ GY)(x) =
F(x)X, + G(x)Y,, that is, the components are (' (x,) = F,(x,)& (x,) + Gy(x,)
1’ (x,). Now, one finds

[FX,GY] = F(XG)Y — G(YF)X + (FG)[X,Y], F,GeC(M), X,Y € X(M)
(3.20)

by straightforward calculation of the action of [FX, GY] on another smooth
function H in a local coordinate system, using the second rule (3.15) (Leibniz
rule).

Later on, a geometric interpretation will be given of the Lie product of tangent
vector fields (Sect. 3.6).

Analogous to a tangent vector field, a cotangent vector field @ on a manifold
M is a specification of a cotangent vector w, € T; (M) at every point x € M, that is,
at every point x a real linear function on the tangent space 7,(M) is specified:
(o(X)), = (o, Xx). A cotangent vector field is smooth, if it defines a smooth real
function on M for every smooth tangent vector field X. By repeating previous
reasoning, e is smooth, if for every local coordinate system centered at every point
x €M the components o} of

0= o), o), = (0.X), =Y tw)dx)  G21)
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are smooth functions of the local coordinates x, = (x!,...,x"). A smooth cotan-
gent vector field is called a differential 1-form or in short a 1-form. It may also be
considered as a C(M)-linear mapping from the C(M)-module X' (M) into C(M):

o(FX + GY) = Fo(X) + Go(Y) € C(M), F,GeC(M), X,Y € X(M)
(3.22)

which is directly seen from the second relation (3.21).
Based on this consideration, an exterior product (wedge product) @ A o of
two 1-forms w and ¢ may be introduced with the properties (so far r = s = 1)

I. oho=(—1)"0cAw,
2. woA(Fo+Gt)=FoAo+ GoAt, (3.23)
3. (wAho)At=wA(0AT),

which (except for 3) defines an alternating (skew-symmetric) C(M)-bilinear
mapping from the direct product X(M) x X(M) into C(M): (w Ao)(X,Y) =
(1/2)(o(X) - 6(Y) — (YY) - a(X)). It is called an exterior differential 2-form.
More generally, an exterior differential r-form, or in short an r-form, is an
alternating C(M)-r-linear mapping from the direct product X(M) x - -+ x X (M)
(r factors) into C(M): (w; A+ Aw,)(X1,...,X,) = (1/r])det(w;(Xy)) in the
special case where the w,; are 1-forms. In a coordinate neighborhood (index o
dropped) the general expression of an r-form is

o= Y o ,@®d" N Ndx, 0=0 if r>n, (3.24)
i <--<i
where the w;, ; € C(M). Since dx' is a 1-form, the above determinant rule can

now be applied to each item of (3.24).

With the exterior product defined by its properties (3.23), an (r + s)-form is
obtained by wedge-multiplying an r-form with an s-form. From (3.24) it can be
inferred that if w is an r-form and F € C(M), then Fo is again an r-form. On this
basis, F € C(M) is called a O-form, and the real vector space D°(M) = C(M) is
introduced together with the real vector spaces D"(M) of r-forms. (For
r > n,D"(M) consists of the null-vector only, see Sect. 4.2.) Within this concept,
Fo may be written as F A w. The direct sum D(M)=> "7 D'(M)=
> ' o D' (M) forms an exterior algebra which is a graded algebra, graded by the
degree r of r-forms.

Recall that O-forms are functions and 1-forms are (total) differentials of
functions on M. A general exterior differentiation d is introduced which maps an
r-form into an (r + 1)-form with the defining rules (using the known rule of
forming dF, at point x € M)
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dF for F € D°(M) is the total differential on M,

d is real-linear and d(D"(M)) Cc D" (M),

dlwNo)=(do)No+ (-1)wA(ds), ®eD M), oecDM),
d* =0.

Sl S

(3.25)

The last rule means that a double application of d to any exterior differential form
yields the null-vector, that is, the form that is identical zero on all M.
Within a coordinate neighborhood, if w is given by (3.24), then

do= Y dowj ; Adx" N Ndx' (3.26)
i< <i,
As is discussed later on (Sect. 5.1), the exterior differentiation generalizes the
grad, rot (curl) and div operations of vector analysis. Note also that further on
every D"(M) may be understood as a C(M)-r-linear mapping from X(M) x -- - X
X(M) (r factors) into C(M). This is related to the scalar (contracting) product of
tensors and will be generalized in the next chapter.

3.5 Mappings of Manifolds, Submanifolds

At the end of Sect. 3.2 the concept of smooth mappings of manifolds into each
other was introduced. A smooth mapping F : M — N of a manifold M into a
manifold N induces at every point x € M a linear mapping F; : Tc(M) — T (N)
of the tangent space on M at point x into the tangent space on N at point F(x). F? is
called the push forward or the tangent map of the mapping F at point x.

For any tangent vector X, € 7,(M) its image F}(X,) € Tp)(N) is formed in the
following natural way: Let G be a smooth real function on N in a neighborhood of
F(x). Then, G o F is a smooth real function on M in a neighborhood of x. For every
G, by definition,

(F*(X,))G = X:(G o F). (3.27)

This definition ensures the following: Given any parametrized curve through x in
M, it is mapped by F into a parametrized curve through F(x) in N (which could
degenerate in the point F(x) only, if F is constant along the curve in M). The
directional derivative at point F(x) along the curve in N of any real function G on
N is obtained as the directional derivative at point x along the corresponding curve
in M of the real function Go F. (If F is constant along the considered curve in M,
this directional derivative is zero no matter what G in (3.27) is. Hence, (3.27)
means in that case that the projection of the tangent vector F7(X,) onto the
direction of the considered curve in N is zero.) Because of this interpretation the
mapping F?} is also called the differential at x of the mapping F of the manifold
M into the manifold N.
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Now, the natural question arises, given tangent vector fields X on the manifold
M, under which conditions do the tangent mappings F7 for all x €M result in a
mapping F. of tangent vector fields X on M to tangent vector fields Y on the
manifold N. This is obviously not the case, if F' is not onto, because then the
mapping would not define a tangent vector field Y on all N. Even if F is surjective
but not injective, if for instance F(x) = F(x') =y for x#x’, then any tangent
vector field X with different vectors at x and x’ would not give a uniquely defined
result at y€ N and hence not define a tangent vector field ¥ on N. Obviously,
F must be onto and one—one, that is, it must be a bijection of manifolds in order
that F, may be defined as a push forward of F' to a mapping of tangent vector fields
to tangent vector fields. But even then, the image by F. of a smooth tangent
vector field need not be smooth again. Consider for example M = N =R and
(F:R—R:x—y=2x) € C°(R,R). Take the smooth (constant) tangent vector
field X, =0/0x and a smooth real function G:y~— G(y). One has Y,G =
(F¥(X,))G = X, (G o F) = (0/0x)G(x*) = 3x*0G/dy = 3y*/30G/dy. Now, Y, =
F*(X,) = 3y*30/dy is not smooth at y = 0.

By duality, another linear mapping F;<x> : T;(X) (N) = T} (M) of the cotangent
space on N at point F(x) to the cotangent space on M at point x is obtained, defined
so that for every X, € T,(M) the relation

(Freo (@0F))(Xx) = (Fpu (0F) Xx) = (0F@), Fi (X)) = 0@ (Fi(X))),
(3.28)

holds where wp,) € Ty, (N) is a cotangent vector (1-form) on N at point F(x) and
Fj;(x)(a)F(x)) € T(M) is the corresponding cotangent vector on M at point x.
F;(x) is called the pull back of F at x. As is easily seen (next page), this time for
every smooth mapping F : M — N there is a mapping F~ which maps 1-forms on N
to 1-forms on M so that smooth 1-forms are mapped to smooth 1-forms. In Chap. 7
all (co)tangent spaces of a smooth manifold M will be glued together to form
another smooth manifold which is called the (co)tangent bundle (7" (M)) T(M) on
M. The mapping F~ of the cotangent bundle 7" (N) to the cotangent bundle
T"(M) is called the pull back by the smooth mapping F of M to N.

Now, let F : M — N be a diffeomorphism of manifolds, that is, F~! : N — M is
also smooth. Then, one can pull back 1-forms from M to N by (F~')" which by
duality between tangent vector fields and 1-forms means also to push forward
smooth tangent vector fields on M to smooth tangent vector fields on N. Then, for a
diffeomorphism F : M — N of manifolds F" is a mapping from the tangent bundle
T(M) to the tangent bundle T(N) which is called the push forward by the diffe-
omorphism F of M onto N.

Consider the mappings F7° and F ;(Xo) in terms of local coordinates. Choose

local coordinate systems of charts (Us, ¢,) € Ay and (U, @;) € Ay with local
coordinates x, = 7, 0 @, (x),x € M and y’ﬁ = nJI; 0 @4(y),y €N, where U, is a
coordinate neighborhood of xo €M and Upg is a coordinate neighborhood of
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F(xo) € N, both neighborhoods chosen such that F(U,) C Ug. The mapping
F induces a real vector function Fg, = @go F|; o @' of my real variables by the
following commutative diagram:

UaTﬁa’ Uﬁ

It consists of ny real functions F%x = n’é o Fg,,

y]/;:F/J;a(x;,...,x’;M), j=1,...ny, (3.29)

of ny, real variables. Any real function G on N generates a real function Gg =
Gly, © (pEl = Gy(y',...,y"™) of nyreal variables y/; and a real function (G o F),, =
Gly, o @5 o @goFly, 0@ = Gp(yp(xs), ...,y (x,)) of ny real variables x;.
Now take the base vectors X,; = 3/0x!, of the vector space Ty, (M) and find

d 0 oG oF)]
0 XO( F) = — Fl ” F”N B —ﬁ —ﬁa
(P0G = 5700 Pl = ZZOlFhfe) - P = 3 S0

which means

ny aFja
F* (ax’> Z ., 2y (3.30)

that is, the images of the base vectors 0/0x!, have components 6F ,/0xt, with
respect to the base vectors 0/ oy s of the tangent space T (y,), or in other words, the
matrix of the linear mapping F* (as matrix transformation of the vector compo-
nents) is the transposed of (0F,/ Ox’), the Jacobian matrix of the transformation
yp(x,). For a diffeomorphism F, the derivatives on the right hand side can

smoothly be expressed by derivatives with respect to y to yield a smooth vector
field on N.

Taking a base covector ij(XO) = dy]/; € Tp,,(N), and a base vector 0/ o €
T (M), (3.28, 3.30) and (3.11) yield

* j 0 j X0 0
Freah) ag) = o (7 (2

) Fh 0\ _ [ 502\
F(xo) - oxi, 6y’/§ B T oxt, ay’,,j, ox!,
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that is,
o M QFL
Fp (dy)y) = Zﬁdx;. (3.31)
i=1 o

The mapping F;(m is dual to the mapping F° between tangent spaces: it is in the
opposite direction and between the duals of the tangent spaces and its matrix is the
transposed to the matrix of the mapping F*. For every smooth w = > w;(y)dy
(3.31) together with the smooth function y = F(x) yields a smooth 1-form on M.

If F:M— N and G: N — P, then for the composite mapping GoF : M — P
the mappings of tangent and cotangent spaces are (GoF), = Gf<x) oF} and
(GOF)*G(F(X)) = F;m o GE(F(X)), that is, F, composes covariantly with F, and F*
contravariantly. (This is expressed by push forward and pull back.)

The mapping (3.28) may be generalized to r-forms at point F(x):

(F;(x)(w;(x)))(xlm e Xpx) = w}(x)<F:(XIX)7 o Fi(X). (3.32)

The expressions in local coordinates are directly obtained from (3.24) and (3.31).
Hence, F* is also a linear mapping from D(N) into D(M) (pull back).
A simple result is the following [4]:

Let M be a connected manifold and let F : M — N be such that F; = 0 at every
point x € M. Then F is a constant map.

Proof Since M is connected, it is the only non-empty subset of M which is open
and closed. Fix some pointy € F(M) C N. F~'(y) is closed as the preimage of a
closed set in a continuous mapping. Choose coordinate neighborhoods of some
x € F~'(y) and of y. Since GF;;a/ax; = O atevery x € U, F is constant in U, which
is open. Since x € F~!(y) was chosen arbitrarily, F~'(y) is open and closed, hence
it is M. 0

In a certain sense the opposite case is governed by the following inverse
function theorem:

Let F : M — N and let xo € M be some point in the manifold M.

1. If F}* is injective (one—one), then there exists a local coordinate system
xi, .. XM in a coordinate neighborhood U, of xo € M and a local coordinate

system y};, ey y%” in a coordinate neighborhood of F(xo) €N so that
Yy(F(x)) = x,(x) for all x€ Uy and i = 1,....,nmy and F|y, : Uy, — F(Uy) is a
diffeomorphism of manifolds (one—one and onto).

2. If F™ is surjective (onto), then there exists a local coordinate system x\, ..., xmm
in a coordinate neighborhood U, of xo € M and a local coordinate system
y/'?, .-, Y" in a coordinate neighborhood of F(xo) € N so that y;}(F(x)) = x (x)
for all xeUy, and i =1,...,ny and F|U7 : U, — N is an open mapping. (It
maps open sets to open sets.)
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3. If F is a linear isomorphism from Ty (M) to Tg(,)(N), then F defines a
diffeomorphism of some coordinate neighborhood of xo € M to some coordinate
neighborhood of F(xp) €N.

The last statement means that F|;, has a smooth inverse function (F |U“)_' :

Ug — U,. Since for ny = ny = n, local coordinates translate F into a mapping
Fp,=@goF|, o ¢, : U, — Uy from an open set of R" into an open set of R”,
the push forward F}° to be a linear isomorphism means a non-zero Jacobi deter-
minant of the mapping Fg, at ¢,(xo). Case 3 immediately follows from the well
known inverse function theorem of calculus (see any textbook of Analysis, e.g.
[3]). The cases 1 and 2 then follow easily also from the corresponding variants of
calculus.

If F is a smooth mapping of a manifold M into a manifold N (recall that all
manifolds in this volume are supposed smooth), for which F* is injective at every
point x € M, then F is called an immersion. One also says that M is immersed into
N by F. F(M) is locally diffeomorphic to M (F(U,) is diffeomorphic to
U, € M for sufficiently small U,), but F is not necessarily globally injective: there
may by self-intersections of F(M) so that F(M) is not necessarily a manifold. (See
examples below.)

If F: M — N itself is additionally injective, then F is called an embedding and
(M, F) is called an embedded submanifold of N. M is embedded into N by F.

Great care is needed to distinguish the topology of the embedding (M, F) from
F(M) as a subset of N with its relative topology. Except for open submanifolds
defined earlier and closed submanifolds, both considered below in more detail, the
topology of an embedded submanifold is in general different from the relative
topology of F(M) as a subset of the topological space N: it is in general finer. The
point is that embedded submanifolds are understood to inherit their complete
atlases from M: they are generated by charts (F(U,), ¢, o F~! lF(w,)) for U, €M
small enough so that U, and F(U,) are diffeomorphic. (Some authors, e.g. Warner,
use a slightly more special terminology of embedding.)

Examples

Open submanifolds of N: M CN is open in N and F = Idy,. Its manifold
structure (atlas) was considered previously on p. 60. The topology of M as a
topological space is the relative topology as a subspace of N. Note that although
M is open in the topology of N, it is open and closed in the relative topology (as
every topological space as a whole is open and closed by definition of topology.)
Since F7 = Idy, for every x € M, the dimension of M is always that of N.

Closed submanifolds of N: Let G': N—R, i=1,....k and M = n;(G')"(0),
that is M C N is the set of all points x€N for which G'(x) =0,i=1,... k.
Suppose dG!, ..., deC linearly independent in a neighborhood of M. Then M is a
closed subset of N and (M, Idy,) is a closed submanifold of N of dimension
dim N — k. Again the topology of M is the relative topology as a subspace of
N. For k = 1, M is called a hypersurface.
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Fig. 3.5 The immersed 2
submanifold of N = R? of X
Example 3

Example 3 Let M = {t|0<t<2n =0} (closed loop of length 2n) N = R?,
and F: M — N : t+— F(t) = (cost,sin2t) (see Fig. 3.5). It is an immersion since
it is self-intersecting at (0, 0) € N. Note that (M, F) is not a manifold since it
inherits charts for each of the two branches through (0, 0) implying different
tangent spaces at the same point (0, 0). It is also not a submanifold of R? in the
relative topology, since a neighborhood of (0, 0) is not homeomorphic to an open
set of R. In (M, F), pieces of the two branches through the origin (0, 0) are open
sets (since charts are open sets) while in the relative topology induced from
N =R? only pieces of both branches together are open sets (intersections of
F(M) with open sets of the plane). Hence, the topology of F(M) as an immersion is
finer (has more open sets) than the relative topology in N.

Example 4 M and N as in Example 3, and F : t— F(t) = (cost,sin?) (see
Fig. 3.6). M is just the unit circle in the plane N. It is an embedded submanifold since
this time F : M — N is an injection. It is also a closed submanifold (one-dimensional
‘hypersurface’) given by G(x',x2) = (x')* + (x2)*> — 1 = 0. Note that as a topo-
logical space itself and also in the relative topology induced from N, F(M) is closed
and also open. (It is the intersection of F(M) with an open set of N.)

Example 5 M = {t|0<t<2n},N = R? and F : t (sint,sin2¢). It looks like
in Fig. 3.5, but this time it is an embedded submanifold since the origin of N is
only the image of r = n. There is no continuous branch from left to right upwards
through the origin of N. Hence, there is only one tangent space on (M, F) at (0, 0)
from right to left upwards. Pieces of this branch containing (0, 0) are open sets of
(M, F) but not of F(M) which is the same as in Example 3. Again the topology of
(M, F) is finer than the relative topology of F(M)CN.

The discussion of the various topologies leads to a natural definition: If
(M, F) is an embedded submanifold of N and F(M) C N with the relative topology
is homeomorphic to M, then (M, F) is called a regular embedding of M into N.
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Fig. 3.6 The embedded XZ
submanifold of N = R? of
Example 4

(M, F) is a regular embedding, iff it is a closed submanifold of an open sub-
manifold of N.

Also:

If (M, F) is an embedded submanifold of N and M is compact, then (M, F) is a
regular embedding.

See e.g. [3] for proofs.

It can be shown that, if only the structure of a smooth manifold is observed, then
any n-dimensional manifold can be embedded as a submanifold into the R>"*!.

Here, a general comment is in due place: A circle in R? and a loop with a knot
in it are homeomorphic and homotopy equivalent. However, they cannot contin-
uously be deformed into each other by only homeomorphic maps: In order to open
the knot either the loop must be cut or at a stage of deformation it must be self-
intersecting. The same holds true for two linked circles (into a piece of chain) and
two unlinked circles. Knots and links are properties of embeddings of loops into
higher dimensional spaces, not of loops as such.

3.6 Frobenius’ Theorem

A very important issue is the interrelation of smooth tangent and cotangent vector
fields and smooth mappings of manifolds. Again, only smooth entities are con-
sidered in the sequel and the adjective smooth is dropped throughout. As con-
sidered in the last section, given a tangent vector field X on a manifold M and a
bijective mapping F of M into N, F,(X) that defines a tangent vector Yp(,) =
F¥(X,) at every point F(x) € F(M) C N, need not be a tangent vector field: ¥ =
F.(X) need not be smooth in a neighborhood of points F(x) for which Yy, = 0.
For a tangent vector field X on M, a point x€ M for which X, = 0 is called a
singular point of X.

Let X be a tangent vector field on M and let X,, #O0, that is, xo €M is a non-
singular point of X. Then there exists a local coordinate system (U,, @,) centered
at xo in which X|,, = 9/ox".
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(Since in this section the coordinate neighborhood is always denoted U,, the
index « at local coordinates is dropped as in x! = x1.) The technical proof by
standard analysis of this natural proposition is skipped, see for instance [3].

Let F be a mapping from M into N. The tangent vector fields X on M and Y on
N are called F-related tangent vector fields, if F}(X,) = Yp(, for every xe M.

Let F : M — N and let X, X, be tangent vector fields on M and Y, Y, tangent
vector fields on N. If X; and Y;, i = 1, 2, are F-related, then [Xy, X5] and [Y1, 2]
are F-related.

Apply straightforwardly (3.18) and (3.27) (exercise).

More interesting is the following problem: Given a set of tangent vector fields
on N, is there a submanifold of N for which these vectors span the tangent space at
every point? Let N be an n-dimensional manifold and m, 1 <m <n, an integer. A
selection of an m-dimensional subspace D, of the tangent space T,(N) at every
point x € N is called a (smooth) distribution D on N, if every point x, € N has a
neighborhood U and m tangent vector fields Xi,...,X,, of which the tangent
vectors Xiy, . . ., X, Span D, for every x € U. The tangent vector fields X, ..., X,
are said to form a local base of the distribution D. A tangent vector field X on N is
said to belong to a distribution D, if X, € D, at every x € N. A distribution D is
called involutive, if whenever the tangent vector fields X and Y belong to D then
also [X, Y] belongs to D. Finally, a connected submanifold (M, F) of N is called an
integral manifold of a distribution D on N, if F}(T,(M)) = Dgy) for every x € M,
that is, at every point F(x) the vector space Dy, is the tangent space on F(M).

The solution to the problem posed above is now given by the generalization to
manifolds of the Frobenius theorem of classical analysis:

Let D be an m-dimensional distribution on the n-dimensional manifold
N, 1 <m < n. There is a uniquely defined maximal connected (even pathwise
connected) integral manifold (M,, F,) through every point x € N, iff D is invol-
utive: Every connected integral manifold of D through x is an open submanifold of
(M, F,).

Of course, the case m = 1 is special. In this case, D is just given by a tangent
vector field which is nowhere singular (since D is one-dimensional at every
point x € N). Moreover, since trivially [X, X] = 0, a non-singular tangent vector
field yields always an involutive one-dimensional distribution. A one-dimensional
submanifold is a parametrized curve, it is called an integral curve of X, if it
is an integral manifold of D = {iX|1 € R}. Consider an integral curve
through x € N. There may be chosen an open interval M = {t|a<t<b} C R of
the real line (¢ may be —oo and b may be co0) containing r = 0 and a mapping
F: M — N so that (M, F) is the integral curve of X in N through x, = F(0). It was
stated above that for every X there is a coordinate neighborhood (U, ¢,,) of xo so
that X|,, = 0/dx'. It is easily seen that

F,(M)NU, ={(x',0,...,00}nU, (3.33)
represents the integral curve of X in that coordinate neighborhood and that it is
unique in U,. To prove the Frobenius theorem for m = 1, it remains to prove that
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the integral curve (3.33) is contained in a maximal integral curve. Order all
possible domains M C R of integral curves through x partially by inclusion. The
existence of a maximal element follows from Zorn’s lemma.

Proof of the Frobenius theorem by induction Consider a local base X, ..., X,
of D. The base vectors as tangent vectors on M, and on N, respectively, are
F,-related. Hence, the vectors [X;, X;] are also F,-related, which proves necessity
in the theorem. Sufficiency was proved for m = 1 above. Assume it holds for
m — 1, and assume that for every involutive D’ of dimension m — 1 and for every
Xp € N there is a local coordinate system U, C N so that D' is spanned by
0/dx',...,0/ax" ! and hence F,, (M} )NU, ={(x',...,.x""",0,...,0)} N U,.

Given xy € N, there exists a local coordinate system U, centered at xo and such
that X,, = 0/0x™. The vectors X|,...,X,,_; span an (m — 1)-dimensional distri-
bution D'. Let i, j, k run from 1 tom — 1. Let X! = X; — (X;¢)X,,, then X,,, @7} =
1, Xjop = 0. In view of the involutivity of D, [X],X/] = >, ckX} + d;X,,, and
from [X,’,Xj’](p’;’ =0 it follows d; =0, that is, D’ is involutive. Therefore,
assuming X, linearly independent of D’ (otherwise nothing is to be proved), there
exist local coordinates y',...,y""! in M. NU, so that X] = 0/0y". Again by the
involutivity of D, [0/0y, X,,] = Y, ck0/dy*. (A term with X,, does not appear on
the right hand side since further on 0x" /3y’ = X/ = 0.)

Now complete the coordinates y’ to a local coordinate system y',...,y" in
N. Then, X,, = S, &(8/0y') with certain functions ¢ defined in U,. This implies
[(8/3y"), X,,] = S0, (8¢ /ay!)(8/0y'), and comparison with the ¢ above yields
of oyl =0form <1 <n. PutX, =31 ¢(3/dy) for which still D is spanned
by 0/dy,X!. In the submanifold of U, of points with coordinates y' =0,
i=1,...,m— 1, there are new coordinates y’,m<I<n, so that X/, = 9/0y".
Hence, for every xo, € N there is a coordinate neighborhood U, so that D is
spanned by 0/dz',...,0/0z", 7 =y, " =y™, so that Fu,(My)NU, =
{(Z,..,2",0,...,0)} NU,.

The existence of a maximal integral manifold (M,, F,) is proved by intro-
duction of a partial order in the set of integral manifolds similarly as in the one-
dimensional case. (]

There is a dual variant of Frobenius’ theorem which is equally important. Given
an m-dimensional distribution D on N which in a neighborhood U, of the point
Xo €N is spanned by the m tangent vector fields X, ..., X,, and which defines an
m-dimensional subspace D, of each tangent space 7,(N) in that neighborhood, for
any x € U, there is an (n — m)-dimensional annihilator subspace of T'(N),

D = {w, € T}(N)|{w,, X,) = 0 for any X, € D, }, (3.34)

which in a neighborhood V, C U, of x, is spanned by n — m linearly independent
differential 1-forms w”*!, ... w". Complete these sets of tangent vector fields and
I-forms to linearly independent sets X;,...,X, and o', ..., " forming bases of
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T.(N) and T} (N), respectively, at points x in the neighborhood V,, of xo. Then, for
x € Vy, DY is characterized by the set of n — m total differential equations

o =0 or wa(x)dxlzo, m<i<n, x=(x',...x") €V, (3.35)
=1

which is called a Pfaffian equation system.

Consider do' = Y, dw A dx' and do'(X;,X), 1 <j,k <m. From the defini-
tions given after (3.23), do'(X;,Xy) = (1/2) 31, (dwi(X;)dx (X)) — dw)(X)
dd' (X)) = (1/2) XLy (doj(X)) & — doj(Xe)E). Now, doj(X;) = 3, (0w)/0x")
(>, g“f,(@/ax]‘/)) =37, & (0] /ax*) = X;] and, since o = 3" 0jdx', 30 =
o'(X;). All that together yields do'(X;,Xi) = (1/2)(X;0'(Xx) — Xpo' (X;) —
o'([Xj,Xk])). The last term appears since in the preceding terms the first X dif-
ferentiates also the components of the second X which has to be subtracted since it
does not appear in the previous expressions.

Since D, is spanned by the X,;, j <m and D; is spanned by the ', i > m, for
i >m and j, k < m it holds that ®'(X;) = @'(Xy) = 0, and hence do'(X;, Xx) =
—(1/2)'([X;, Xx]). The equations ' = 0 imply do' = 0. Hence, if the system
(3.35) has a solution, then [X;, X;] € D, that is, D is involutive. If D is involutive,
then do' =0, i > m, on D, that is do'=0 mod (0™!,... "), i > m, which
means do' =Y " | 67 A o/, where the ¢ are arbitrary 1-forms. Since generally
o A o = 0, this condition may also by expressed as dow' A ™' A - A" =0,
i > m. In this case there is an integral manifold of D. In summary, the dual
Frobenius theorem reads:

The Pfaffian equation system (3.35) describes a submanifold (M, F) of N, iff for
i>mdo =0mod (v, ... ") or equivalently do' N "' A+ A" = 0.

In that case, the Pfaffian system is called completely integrable. (See examples
in the next section.)

The section is closed with a continuation of the discussion of integral curves of
tangent vector fields X.

Consider an open set U, € N so that the construction leading to (3.33) exists
for every point xo € U, with a function F,,, defined on a fixed interval M =
I, =] —¢,¢[€ R. Define a mapping ¢ : I, x U, — N : (t,x) — ¢(t,x) = ¢,(x) =
F (1) so that obviously

I. ¢:I.,xU,— N:(t,x)— ¢,(x),

2. For each fixed ¢, ¢, is a diffeomorphism of U, onto ¢,(U,) (3.36)
with the inverse (¢,)' = ¢_,, .

3. byx) = b, 0 hy(x) = (b (x))-
Since for t € I, also —t € I, the expression for (qSt)*l follows directly from 3.

A mapping with these three properties is called a local 1-parameter group of
X. (Due to the restriction to I, it is not really a group.)
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A tangent vector field X on N is called complete if ¢,(x) defines an integral
curve of X for every x € N and for —o0 < 7 < co. In this case (3.36) holds with
U, replaced by N and I, replaced by R. The transformations ¢,(x) of N now form
indeed a group which is called the 1-parameter group of X.

On a compact manifold N every tangent vector field is complete.

Proof The family of all sets U, centered at all points x, € N of local 1-parameter
groups of X form an open cover of N, of which a finite subcover may be selected.
Let ¢ > 0 be the minimal e-value on that finite subcover. Then, ¢,(x) is defined on
I, x N and hence on R x N. O

Let ¢ be any transformation of N, that is, a diffeomorphism of N to itself.

If X creates the local 1-parameter group ¢.(x), then ¢«(X) creates the local

1-parameter group d)od)tocj)*l. X is invariant under the transformation

¢, ¢«(X) =X, iff ¢ o ¢, = ¢, 0 ¢.

This is rather obvious.
For real-valued functions f{¢, x) and g,(x) so that f = g, on I, x N consider the
identities
1
of(ts,x) (1)
tx)=t = : d = .
o9 =) = [ S 0as T =g
0
For an arbitrary real-valued function F(x) on N and a local 1-parameter group

¢.(x), put f(t, x) = F(¢p,(x)) — F(x) and find

]imw - ]iml (t,x) = 152 g(x) = go(x).

t—0 t t—0

Now, take two tangent vector fields X and Y on N and the local 1-parameter group
¢:(x) created by X and find from the above

gx) =X F, ((¢), () F =Yy (Fod,) =Yy F+1Yy (98

and

Y — Y Y./F =Yy oF .
hm ( (d)t)*( ))x F — llm ¢—r( ) _ hm YqL (x)gt
1—0 t =0 t =0 T

=X, (YF) — Y80 = [X, Y] .F.
Since F was arbitrary, the following proposition was demonstrated:

Let X and Y be two tangent vector fields on N and let the local 1-parameter
group ¢.(x) be created by X. Then

[X Y] — llIIl YX — ((¢t)¥(Y))x — hm (((bft)*(y))x - YX
T 0 t —0 t

(3.37)

forall x € N.
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The tangent vector field [X, Y] describes the derivative of Y along the integral
curve (flow) of X. A natural consequence is that the elements of the two local 1-
parameter groups created by X and Y commute, iff [X, Y] = 0.

3.7 Examples from Physics
3.7.1 Classical Point Mechanics

(See e.g. any textbook on Mechanics, or, quite advanced, [6].) An assembly of mass
points (particles) is described by their positions as functions of time. At any time, the
positions are described by a collection of coordinates ¢’ on an m-dimensional
manifold M, the configuration space. If n particles can occupy positions indepen-
dently from each other, then m is three times their number n and M is the topological
vector space R™. If there are constraints, the dimension may be reduced. If for
instance two particles form a molecule with a fixed bond length, the configuration
space has five dimensions instead of six. It is the product R* x $2 of an Euclidean
space with a sphere. If n particles form a molecule with n(n — 1)/2 fixed bond
lengths, M is more involved. (For many problems it suffices to consider molecules as
assemblies of point masses, atomic nuclei, in a rigid mutual geometry.)

At any time, each particle has a velocity v = dg'/dt. The collection of all
velocity components v' for some configuration ¢ € M forms an m-dimensional
vector V, € T,(M),V, = >",v/(0/d¢'), in the tangent space on M at point . The
motion is governed by a Lagrange function, which for a conservative system is a
real function of ¢ and for each g of the tangent vector V,, that is, it is a real
function on the tangent bundle T(M) on the configuration space, L : T(M) — R :
(', ..., q™vh . v = L(g', ..., ¢!, ..., v™). From the extremal principle of
action S = | Ldt along trajectories with dq'/dr =v' with positions at the end
points fixed it follows that (d/dt)(OL/0v') = OL/dq'. These are Lagrange’s
equations of motion.

In the Hamilton formalism, momenta P =), p;dq' as cotangent vectors on
M are introduced instead of velocities V so that (P,V)=> 1pv €R. As a
cotangent vector on M, P has a meaning as a 1-form on M, independent of the
chosen local coordinates of M. Likewise, for a cotangent field P = P(q), o = —
dP has such an independent meaning, which in every local coordinate system of
M expresses as the canonical 2-form o = > ", dg' Adp;. Coordinate transfor-
mations in the configuration space M of mechanics are called point
transformations.

The Hamilton function H is a real function on the cotangent bundle 7" (M)
which is defined by the Legendre transformation

H(ql, cesd"D1y e Pm) = ?ukl}){<P, V) fL(ql, .. .,qm;vl, VMY (3.38)
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where it is assumed that L is a strictly convex C'-function of the v/. Then,

oL

pi=5 (3.39)
and
OH . OH . oL .
dH: —.dl —d,' = ldl'——4dl .
3 (e ) =)
From Lagrange’s equations now Hamilton’s equations of motion
dq¢ OH dp; OH
o _ T P (3.40)

dt ~ opi dt  dq

follow. Note that the first set of equations forms a tangent vector equation in
T(M) while the second set forms a cotangent vector equation in 7' (M).

The cotangent bundle 7" (M) on M is a special 2m-dimensional manifold Q, the
local coordinates of which may be chosen as the collection of local coordinates ¢'
of the configuration space M and for each set (qi) of the components p; of the
momentum cotangent vector P, € T, (M). In a chart (U,, ¢,) of Q = T'(M) the

points x € Q are send by ¢, tox = (¢.,...,¢%pl,...,p") € U,. The manifold Q
itself is called the phase space of the mechanical system. While up to (3.40) the p;
were understood as components of a cotangent vector on M and hence as
depending on the chosen local coordinates ¢, they are now understood as inde-
pendent local coordinates of Q; for that reason p/ was now written instead of Dj.

Of course, it cannot be expected that the form of the equations of motion (3.40)
would be the same in arbitrarily chosen local coordinates of Q with ¢’ and p’
independently chosen. They will have this form for all point transformations in
M with the components p; of (3.39) and H of (3.38). The natural question arises,
what are the most general coordinate transformations (diffeomorphisms)
g, ....q"p", ... p"), pi(q',....q";p",...,p™) that leave the form (3.40)
unchanged. These are the canonical transformations which leave the canonical
(symplectic) 2-form @ = Y"1 dg’' Adp' invariant. Obviously these transforma-
tions form a subgroup of the automorphism group of Q. At the end of the next
chapter Hamilton’s equations of motion will be cast into a form from which it is
readily seen that canonical transformations leave them invariant.

Introduce on Q a tangent vector field W which in local coordinates has the
general form W =" (v/(0/dq') + d'(d/dp')), and put in given local coordi-
nates v\ = OH /0p’, a' = —0H /dq'. For this special vector field W = Wy,

m (0H & OH 0
W ;{@p’ oq'  0q' Opf } (341)

consider the local 1-parameter group ¢,(x) created by Wy It is obtained by inte-
gration of the Hamilton equations (3.40). Since (dH, Wy) = WyH = 0 (cf. 3.12),
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H(x) is constant along every integral curve x(t) = ¢,(x) of Wy: H © ¢, = H.Itisthe
energy of the conservative system. More generally, any real function F on the phase
space Q for which Wy F = 0 is constant on integral curves: Fo¢, = F. F is a con-
served quantity. WyF = {H, F} is called the Poisson bracket' of H and F. The
vector field Wy on Q is called the Hamiltonian vector field, in statistical physics it is
called the Liouvillian. The corresponding local 1-parameter group ¢,(x) is called the
Hamiltonian flow, in statistical physics the Liouvillian flow.

Like in (3.41) for H, a tangent vector field Wy may be defined for any
C'-function F on the phase space Q, and for functions F, G € C! (Q) a Poisson
bracket {F, G} is defined. Poisson brackets have the following algebraic proper-
ties (with real numbers 4;):

1. {F,G} = —{G,F},
2. {F,)1Gy + J2Gs} = J{F, G} + 22{F,G,},  together with 1 bilinearity,
3. {F,{G,K}}+{G,{K,F}} +{K,{F,G}} =0, Jacobi identity,
4. {F,G1Gy} = Go{F,G,} + G{F,G,}, Leibniz rule.
(3.42)

Comparison of 1-3 with (3.17) shows that the Poisson brackets form a Lie
algebra; 4. holds since {F,-} = Wp is a derivation, cf. (3.41) for F = H.

If 2m — [ conserved quantities Fy,k =1+ 1,...,2m are given, then the equa-
tions dF;, = 0 form a Pfaffian system for the 1-forms dF; which is completely
integrable since d(dF;) = d*F; = 0. Hence, in this case the motion takes place on
a submanifold of Q of lower dimension /. For m > 1, only in very special cases
enough conserved quantities can be found so that / = 1 and the motion takes place
on curves which are regular embeddings in Q, and little is known on general
conditions under which this takes place. In most cases the motion in some sub-
manifold ® of Q is chaotic, the closure of the orbit of any x € ® in the relative

topology of ® C Q, {¢,(x)] — co<t<oo}, is all ®.

3.7.2 Classical and Quantum Mechanics

Useful as the introduction of the phase space is, it looses track of important
features of the inner structure of this manifold as the cotangent bundle on the
configuration space M. Canonical transformations may interchange position
coordinates and momentum components, while in a curved manifold M the
position coordinates do not form a vector at all. This becomes a real problem of
still ongoing research if one wants to quantize a general mechanical theory on a
curved configuration manifold M (see [7] and citations therein).

' We use the traditional definition of Poisson brackets in standard Physics textbooks; in
Mathematics it is more standard to call WyF a Poisson bracket {F, H}.
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Consider canonical local coordinates (¢', p;) in any coordinate neighborhood of
the cotangent bundle T*(M) over the configuration space M, dimM = m, of a
mechanical system. Let F, G, ... be smooth functions on M with compact support,
that is, the F, G, ... € Cj°(M) depend on the 4" only. Then one finds for the Poisson
brackets

(F.G) =0, {Fy=n {ppmi} =0
q

The second relation says that p; acts on F via the Poisson bracket like the tangent
vector 0/0g/. Recall from (3.20) that the tangent bundle, instead being considered
locally spanned by the m base vectors 0/dg”/, may be considered as a module over
the algebra of smooth functions on M. Its subalgebra C°(M) then refers to the
submodul To(M) of (smooth) tangent vector fields with compact support. Let
X,Y,... € To(M), and let the just mentioned module structure be denoted by the
mapping (called Rinehart product) (C5° (M), To(M)) — To(M) : (F,X)—F O X,
where F ® X means FX of (3.20), and

FO(GoX)=(FG)OX. (3.43)
With the notation XF and XY — YX from Sect. 3.4, we have

{F,G} =0, {X,F}=XF=-{F, X}, {X,Y}=XY-YX (3.44)
and

{X,FOY}={X,F}0Y+F®{X,Y}, Leibniz rule. (3.45)
If M itself is not compact, add a unity function 1 to C3°(M) so that

10F=F, 16X=X, {X,1}=0, (3.46)

it is the constant function on M equal to unity (and hence not C°(M) if M itself is
not compact). The algebra ({1}+)C5°(M) + To(M) 3 A, B, ... with the products
{*,} and ©® obeying (3.43-3.46) is called the Lie-Rinehart algebra Lg(M) of the
manifold M. Any element A € Lg(M) is a linear combination of 1 and elements
from C3°(M) and To(M). With F © X = FX it obeys (3.42) and hence is a Poisson
algebra.

The elements of the Lie-Rinehart algebra Lg(M) are at most linear in the
tangent vector fields. For quantum mechanics one wants the momenta also to form
an associative polynomial algebra for the operator product, in particular to treat
spectra, and with an involution (*) leaving the variables invariant to guarantee real
spectra (Hermitian operators). Therefore such an algebraic structure with an (in
general not commutative) dot-product is introduced as a second algebraic structure
replacing the ®-product in (3.43-3.46), with
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I. A«(B-C)=(A-B)-C=A-B-C, 1-A=A,
2. [A,Bj=A-B—B-A,

3. (A-B)'=B"-A", but{A B} ={A" B},
{A,B-C} ={A,B}-C+B-{A,C}, Leibniz rule.

(3.47)

B

Such an algebra with the Poisson bracket {-, -} with properties (3.42) extended to
all its elements is called a Poisson *-algebra. Per se the commutator [-, -] and the
Poisson bracket are independent, however, they are intertwined by the Leibniz
rule, property 4. above, which ensures that {A,-} is further on a derivation.
Repeated application of this rule and the property 1 in (3.42) to the identity
{A-C,B-D}+{B-D,A-C} =0 yields straightforwardly (exercise)

[A,B] - {C,D} = {A,B}-[C,D. (3.48)

For any commutative Poisson *-algebra, [-, ] = 0, this is trivially true.

The Poisson-Rinehart algebra Ag(M) of a manifold M is the unique enveloping
Poisson *-algebra of M in which the Lie-Rinehart algebra Lg(M) is injected,
J: Lr(M) — Ag(M), so that (A,B,....F,G,....X,Y,... € Lr(M))

- J({A,B}) = {J(A),](B)},
2. J(1) =1,

(
3. J(FG) = J(F)-J(G), (3.49)
4 JFOX) = %(J(F) J(X) +J(X) - J(F))

and so that Agx(M) is universal, that is, if J/ : Lzx(M) — A’ satisfies 1-4, then there
is a unique homomorphism p : Agx(M) — A’ so that J' = po J.

It has been shown [7] that there exists (or may be added with a simple limiting
process if M is not compact) an element Z in the center of both algebraic structures
of Agx(M), unique up to a real constant factor, so that

[A,B]=Z-{A,B}, {Z,A}=0=[Z,A], Z=-Z" (3.50)

Classical physics is obtained with Z = 0 (resulting in the quotient algebra Agx(M)/
I where [ is the ideal generated by the elements [A, B]). In standard phase space
quantization on a flat M, as is well known, Z = ih-1. The value of # is of course
phenomenology. It is interesting that, the above structure accepted, the existence
of Z follows from this structure alone, and it is up to a constant factor (multiple of
1) unique for each configuration manifold M.

3.7.3 Classical Point Mechanics Under Momentum Constraints

In what follows, the constraints which are called primary constraints below are
linear in the canonical momenta. They are called momentum constraints here in
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order to distinguish this case from constraints in a totally different context con-
sidered afterwards.

The so far outlined theory presupposes that the Lagrange function L is strictly
convex in V. If as usual L has second derivatives with respect to the vi, this means
that for all ¢ € M and for any base in 7,,(M) the symmetric m x m-matrix of those
second derivatives (the Hessian) has maximal rank:

oL oL
rank(aviavf) =m, det(m) > 0. (3.51)

This is not always the case. The theory considered now was pioneered by Dirac in
the 1950 and 1960 [8], essentially to the goal of canonical quantization of gauge
field theories (which itself is beyond the scope of the present text). With the rise of
importance of Yang-Mills theories it was a very active subject of research in the
1980 and 1990 (see, e.g. [9]), and it holds unsolved problems till now.

For the sake of simplicity of notation the theory is usually presented for a finite
number of degrees of freedom (m in our text), although corresponding systems of
that type with a finite number of degrees of freedom look rather academic.
However, the results readily transfer to fields (with a continuum of degrees of
freedom), and all gauge fields are standard cases of this transfer.

Consider, in appropriate coordinates, a Lagrange function

L(g,V) = {f(g,V),V) + L(q,V%
f = (fﬁ+17 . 7f;ﬂ) V= Vﬁykmﬂy .. '7Km)’ (352)

’L
rank (6\/’61}1) =m<m, det( av/)

Define the action integral as

5]

Slg(®),V(r),P(2)] = /(L(q, V) + (P,dgq/dt — V))dt (3.53)

a1

where the P;,i = 1,...,m, are Lagrange multipliers for the conditions dg/dt =
along the trajectories ¢(¢) through M. The variation with fixed end points ¢ yields
the usual Lagrange equations of motion

d—q—V:O, (a—L—P> =0, (a_L_d_GL) =0 (3.54)
dt ov Vdg/dt Oq  dioV)y_yyrae

with a self-explanatory vector notation of the derivatives of L (remark after 3.40).
Now, for instance,

sup{ p,v" —fu(g, )z} {O for p, =fn(9,V) (3.55)

400 else,
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(exercise), and

— — 0oL — —
sup{(P,V) —L(¢q,V)} = P-— =0 = V= V(¢q,P,V). (3.56)
v
From the last line of (3.52) it follows that the middle relations of (3.56) can be
resolved for V, and for P = (P, P) the same notation as for V was used. Inserting
the last result into f yields

p,=fi(a,V(q,P,V)) = fi (¢,P), i=m+1,.. . m. (3.57)

If the V would not drop out from the functions f;, then obviously the rank in
(3.52) would be larger than 7. Altogether (3.38) results in

H(g.P) = { H(q,P) forP=f(qP), (3.58)
+00 else
with
H(q,P) = (P,V(q,P)) — L(q,V(q.P)). (3.59)
There are m = m — m primary constraints
CDf”(q,P):]Zi—]E(q,T’):O, i=m+1,...,m, (3.60)

for the momenta P on the trajectories.
The trajectories are now obtained from the extremum of the action integral

5]

S'lq (1), P(1), A(1)] = /(<P,de/dt> — H(q,P) — (®"(q,P),2))dt,  (3.61)

h

where ', i =@+ 1,...,m, are the Lagrange multipliers for the constraints. This
may be abbreviated as

S = / (<P, dg/dr) — HV (g, P, i))dﬁ

1 B 1 (3.62)
H"(q,P, ) = H(q,P) + (®"(q,P), 2).
Again with a notation g = (¢, g), the variation yields
dg oH"Y [ dg ©oH" d dp oHW
dq _ or_ M _\ T % p_p (363
dt opP dt oP ' dt dt Jq ~
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The Lagrange multipliers turn out to be the velocities on the trajectories which
remained unresolved in (3.56). It is seen that the time derivative along a trajectory
of any function A(g, P) is obtained from the Poisson bracket,

dA 0A dHW oH") 2A
AwP) G = " Moo = (50 55) ~ (G599

where the constraints must be taken after the calculation of the brackets.

Note that the constraints (3.60) form a Pfaffian equation system defining an 7-
dimensional distribution in T(M). Any trajectory being solution of (3.54) must be
kept in this distribution at all times, whence the time derivatives of the constraints
should vanish,

doW)
dt

= {H(U,(D(l)}(b(l):o = {I;Iaq)(l)}@(”:o + <{CD(1)’CD<1>}(I)(]):07 /L> =0
(3.65)

Here, ®) and {H ,(D(')} are understood as cotangent vector fields on M while
{1 1} is a 2-form on M (a g-dependent antisymmetric m X m-matrix in local
coordinates ¢').

Let, as a matrix in local coordinates qi,

rank({(l)(1>,(l)(1)}¢<1):0) =p;, 0<p <m. (3.66)

As the rank of an antisymmetric matrix, p; is even. Then, there exist m — p, non-
zero vector fields Uy, so that

(10,00 gy, Uy) =0, Uy = WUy U, k=pit1,m
(3.67)

Hence, Eq. 3.65 determines the m linearly independent vector functions
A(g, P, t) modulo Ux); a number of m — p; linear combinations remain undeter-
mined. Instead, (3.65) comprise the conditions

<{Ij, <I><1)}q,u>:0, U(k))> =0, (3.68)

some of which may be identities, some may not be independent of the constraints
@, but a number m,; of them may form new constraints oD, Inserting the p,
determined expressions A in terms of ¢, P (as well as of the suppressed variable ¢)
and the remaining undetermined combinations A’ into (3.65) yields a combination
of p; independent expressions denoted as ‘I’(l>(q, P, /'), of m primary constraints
®(g, P) and of m, new constraints ®*"(g, P). Since {H", ®} is linear in
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the constraints, (3.65) has a structure, with ® = (®;) further on written as a
column,

v (g, P, )

{HV, 00y =0 & AP oV(gPr) |=0 (369
oV (q,P)

where AV is an (m x (p, + m + m,))-matrix function divided into three blocks

with rank AEDI()U‘W(U =, A((Dl()l)‘q)(l) = 1, (unit matrix) and rank AEDI()U@(Z_,,) =m, in

an obvious block matrix notation. At the same step, introducing the determined
expressions for the A into the Hamiltonian (3.62) results in a new Hamiltonian
Hgl)(q,P, ') for which (3.65) transforms into {H%l),q)(l)}q)(l):o = 0. Repeating

this process with H il) (q,P, ") and with the new constraints results in a second step

\P(Z.l)(q,P’ /l//)
)
{(H", 020} yo_y =0 & A(q,P) (1?2 1)(q7P) =0. (3.70)
PRCRTN '="(q,P)
o2 (g, P)

After a finite number of / steps there appear no new independent constraints in the
[ + 1st step although there may still remain unresolved multipliers /. (The number
of independent constraints cannot exceed the dimension of T;(M).) All constraints
®?J) are called secondary constraints.

This process of ‘breeding constraints’ results in a number g =m+m; +--- +
my, unique for a given Lagrange function, of constraints @, independent in the
sense that the rank of the Jacobi matrix

D(®)
rank <D(q, P)

@0) =L (3.71)

Let (superscript ¢ meaning the transposed, @' being a row)

v = —rank({®,®'}q_,). (3.72)

These ranks are independent of a linear functional transformation with a (i x p)-
matrix V,

@ (q,P) = V(q,P)®(q,P), detV|y_, #0. (3.73)

There is such a transformation that

Vo = (; > 1=0ot)s @ = (Purrs @), (3.74)

with
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{1, @} = 0(®), det({¢,¢}p_q) #O, (3.75)

where O(®) means order of ®@; O(®)|,_, = 0. The constraints (x, @) =0 are
equivalent to ® = 0. The y are called first-class constraints, and the ¢ are called
second-class constraints.

Consider first the simpler case if there are only second-class constraints.
Compared to (3.60) we subtract 7 from all subscripts i of the constraints and of all
superscripts of the /4 in what follows. In the actually considered case, in any local
coordinate system, the matrix {®, CI)’} has maximal rank in the neighborhood of
® = 0, so that its inverse {®, ®'} " exists,

(@, 0,0} =1, = {©,0'}{D, '}, (3.76)

where 1, means the (4 x p) unit matrix. This means that all 4 may be determined
from (3.65) to be

XM:{(I) O}y AP, HY +0(®), k=1,...m, (3.77)

while

u
> (@, 0 )@, HY =0(®), k=m+1,...,u (3.78)
=1

In the equations of motion (3.64), terms of higher than first order in the ® may
be added to the Hamiltonian before the Poisson brackets are calculated, since
after their calculation now all ® are put to zero. One hence may define a
Hamiltonian

H® = H - o'{0,d'} ' {®, H}, (3.79)
and obtain canonical equations of motion
dA
A(g, P) : 5= {H® A} g_p- (3.80)

Alternatively, one may define Dirac’s brackets” instead of the Poisson brackets
by

{A,B}* = {A,B} — {A, 0'}{D,d'} ' {®, B} (3.81)

and have

2 Do not confuse them with Dirac’s notation of Hilbert vectors by bras and kets.
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dA
= H.AY,. (352)
The brackets {-,-}* have algebraic properties (3.42) like the Poisson brackets.

As the rank of the antisymmetric matrix {¢@, ¢} of (3.75) must be even, the
number of second-class constraint is always even. It can be shown [9] that a
canonical transformation from (¢, P) to new canonical variables (1, ¢) exists so
that the # and the ¢ separately consist of pairs of canonically conjugate variables
and the ¢ form the constraints in the new coordinates. Then, the equations of
motion take the form

d
?’Z ={H’.n}, ¢=0, H®=H|,_o=H@). (3.83)

That means, the presence of only second-class constraints simply reduces the
system to an ordinary Hamilton system on a submanifold of M defined by the
distribution of the 1-forms ¢.

First-class constraints cannot form in Dirac’s ‘breeding’ process, if there were
no primary first-class constraints present: among first-class constraints there are
necessarily primary first-class constraints. In this case the existence of a canonical
transformation has been shown [9] to new canonical variables (1, Q, I1, ¢) in
which the dynamics is described by the equations of motion

& {H?.n}, M=0=¢,

doW 1 do®
dar B

— (1)
dt gy

A(n), H = H| (11 40,
(3.84)

where IT = (H(l), H<2>), Y are the primary and ? the secondary first-class
constraints, and Q are the conjugate variables to first-class constraints. A(n) are
fixed functions appearing in Dirac’s procedure, and A0 = Agn (17, Q,1) are the
remaining undetermined Lagrange multipliers which do not enter the other
equations of motion. Hence, for any initial condition the time evolution contains m
arbitrary functions of the canonical variables and of time ¢, that is, an m-dimen-
sional class of trajectories.

The only way to save causality, which is supported by experience, is to say
that each trajectory out of this class describes the same physical process. The
A merely constitute redundancy in the description, for whatsoever good rea-
sons. This redundancy is conventionally called gauge freedom. Since transitions
between the trajectories of a given class can be performed one after another and
the Apo may continuously be varied, those transitions form a continuous
transformation group the elements of which are continuously connected to the
identity transformation. This is the group of gauge transformations (see
Sect. 8.3).

There is a systematic actual way to arrive at the indicated special canonical
variables which is in general, however, quite technical (see [10]).
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3.7.4 Classical Mechanics Under Velocity Constraints

We now consider sketchily a case which was already initiated towards the end of
nineteenth century, essentially by H.R. Hertz and S.A. Chaplygin, which devel-
oped into a huge branch of Mathematical Physics and of various disciplines of
engineering over the last century, and which is a very active field of research even
today including also aspects of quantization [11].

We first switch to a much broader understanding of the configuration space
M. It may be any smooth manifold the points of which describe some mechanical
setting, for instance describing the group elements of translation and rotation
groups of rigid bodies. It may even describe the instantaneous state of some
sensor-actuator system which need not be mechanical.

Let L(g, V) be a regular Lagrange function on M,

L(g,V) : det 62_L =m=dimM (3.85)
A vidvi) T ' '

Let be given pt < m linearly independent smooth 1-forms f <k)(q) on M so that the
motion of the system is constrained by the conditions

O V@) =0 forallt, k=1,...u (3.86)

According to (3.34) the f*) form the annihilator D* of an (m — p)-dimensional
distribution D of velocity vectors. Constraints nonlinear in V are also considered in
literature, but here we limit ourselves to linear constraints. The constraints cause
constraint forces during the motion which are not (and in general cannot be)
described by the Lagrange function (3.85) and which have to be added to the
equations of motion (understood as a cotangent vector equation as previously),

I

doL oL
— ®) () =fl 3.87
oV g kE:If (@) 2 (q:1) = f4, (3.87)

where the coefficient functions A(g, f) are uniquely determined by the conditions
(3.86). (One has {f, V). = 0, the constraint forces do not perform work along the
trajectories of motion; d’Alembert’s principle.) On transition to the Hamilton
function (3.38) corresponding to the Lagrange function (3.85) and adding the
constraint forces and the constraints to the canonical equations of motion one gets

dg_OH dP__OH oH

The time derivative of the constraints must be zero. The time derivative of the last
equation of (3.88) along trajectories is

aH

) o

(Glr5) )+ (e

oPOP
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where in the second term a second rank tensor 0°H/(OPOP) in T(M) is projected
on the 1-forms on both sides. This expression can uniquely be resolved for the 4, if

<f ‘6a;gg‘f> #0, (3.89)

which condition indeed follows from (3.85) and from the linear independence of
the f ), Hence, the constraint forces are correctly determined.

If the distribution D defined by (3.86) is involutive, that is, if df) Af(VA - -
AfW =0, k=1,...,u then the constraints are called holonomic. In this case the
constraints are completely integrable and the distribution of velocities D defines a
submanifold N of M as its integral manifold to which the whole motion of the
system is confined.

If D is not involutive, the constraints are called nonholonomic. The classical
example is a rolling disc without slipping on an inclined plane (Chaplygin).
Though nonholonomic motion is rather the standard case in everydays life (see the
just mentioned example) it comprises a huge in large parts unexplored field, and
even the motion of simple (but tricky) toys like the ‘rattleback’ is poorly under-
stood. There is in general a ‘bracket formulation’ of the equations of motion [12],
but the brackets do not obey property 3 of Poisson brackets, the Jacobi identity
(3.42).

3.7.5 Thermodynamics

The thermodynamic equilibrium state of a gas of N particles is described by its
volume v and temperature 7. The thermodynamic phase space is M = R? in this
case. The amount of heat put into an ideal gas is

50 = c(t)dt + Xy, (3.90)
1%

where ¢(f) is the heat capacity at constant volume which is a function of tem-
perature only and R is the gas constant. A change of the thermodynamic state is
called adiabatic, if no heat is exchanged, that is, if 6Q = 0.

The question is, whether 6Q = 0 defines uniquely paths through the phase
space. Since (3.90) is a 1-form in R?, 0Q = 0 is a Pfaffian equation, for which
déQ = (0(Rt/v)/0t)dt A dv # 0, but since d6Q A 6Q = 0, the equation is com-
pletely integrable (as any 1-form in two dimensions, since dw A  is a 3-form for
every l-form ). Hence, the answer to the question is positive, and there is an
adiabatic flow ¢2(z, v) (t € R is some curve parameter) through the phase space:
through every point (¢, v) there is exactly one adiabatic trajectory. Consequently,
there are functions, constant on trajectories and hence invariant under the adiabatic
flow.
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Nature or microscopic reasoning in Statistical Physics tells us, that as part of

Second Law of thermodynamics it always holds that entropy s, given by ds =
0Q/t is such an adiabatic invariant, that is, ds is always a total differential, and

so¢™ =s.
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Chapter 4
Tensor Fields

4.1 Tensor Algebras

Let V and V' be two arbitrary real vector spaces of any finite dimension each.
Consider the product vector space V x V' consisting of all ordered pairs (v,V'),v €
V.,V € V. For instance, given v € V.v' € V' and 4, u € R, (Av, ') and (uv, V')
are two different vectors of V x V’. Let W be the free real vector space generated
by V x V', that is, the vector space consisting of all real linear combinations of
vectors out of V x V'. For instance, 24(v,V'), (Av,v') + (v, V') are two more of
different vectors of W. Let I be the subspace of W generated by all vectors of the
forms

(Vl + V27vl) - (vlvv/) - (VZvv/) (Va V/I + v/2) - (V’Vll) - (Vv v/2)
(v, V) = A, V) (v, ) = A(v,V).

The tensor product V @ V' of the two vector spaces V and V' is the quotient space
W/I. Its elements are linear combinations of the tensor products v ® v' of vectors
veV,v eV (image of the canonical mapping of V x V' to V ® V') with the
properties

i+v)@V =@V +neV,
ve (Vi +5) =ve v +veh, (4.1)
Avev) =)V =ve ().

Besides the elements of the form v ® V', the space V ® V' contains all their linear
combinations. However, the canonical mapping ¢:VxV - VeV :
(v,V)—v®V of ordered pairs (v,V') to their equivalence classes v ® V' of the
quotient space formation is a universal bilinear mapping in the following sense: If
W is any vector space and i : V x V' — W is any bilinear mapping, then there is a
unique linear mapping /' : V.® V/ — W so that y =y o ¢. Up to isomorphisms,
¢ is uniquely determined by this universality property.

H. Eschrig, Topology and Geometry for Physics, Lecture Notes in Physics, 822, 97
DOI: 10.1007/978-3-642-14700-5_4, © Springer-Verlag Berlin Heidelberg 2011
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There are unique (obvious, canonical) isomorphisms between V ® V' and V' ®
V and between V® (V' @ V") and (V ® V') ® V”. Therefore it makes sense to
write V ® V' ® V" and accordingly for more factors, and the order of factors can
be fixed by convention in these product constructions. (This does of course not
mean that vi ® v/ + v, ® v/ and v; ® V' +V' ® v, are equal; the second expression
as a linear combination of elements of two different spaces is even not defined, if
V and V' are different, and is different from the first expression, if V =V’
However, the first expression and v/ ® (v; + v;) are conjugate by the canonical
isomorphism.)

Let {e1,...,en } and {e},..., e, } be bases of the vector spaces V and V'. Then
{e; ®ej}7 i=1,...,ny, j=1,...,nyisabase of V@ V.

All these are simple statements which can be proved as an exercise (cf. for
instance [1]).

Let now V be any finite-dimensional real vector space and let V* be its dual.
Then the tensor space V, ; of type (r,s) is

Viy=V@ VeV V. (4.2)
r copies s copies
A base in V, is
{en® - ®e@f1 @ 0f}, (4.3)

where the e; form a base of V and the f/ form a base in V* conveniently chosen
dual to that of V: (f/ e;) = 5’1 Additionally one defines Voo =R. If V is
n-dimensional, then the tensor space V,; is an n’"S-dimensional vector space. A
general element of V, is the tensor

(=St @ @e, @f @ B (4.4)

where the summation runs from 1 to n over all indices which appear twice on the
right hand expression, once as subscript and once as superscript. Further on, the
summation sign will be omitted in tensor calculus, but not in exterior calculus for
reasons becoming evident below, and Einstein’s summation convention will be
used which means the just described summation over pairs of indices always
understood.

Now, the direct sum

=Y Vi Voo =R, (4.5)

rs>0

is called the tensor algebra of V. It is an associative but non-commutative (see

remark in parentheses above on this page) graded (by r, s) algebra with unit. If
M@ @y, @w!® - @w eV, ad VeV ow!e e
w2 e Vs, then their tensor product is defined as v; ® - Q@ v, RV| ® -+ ®

Vo@w! @ @w @w @ @ W™ € V, 454y, Where the order of factors
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belongs to the definition of the product in the algebra (see above). The product of
the two considered tensors as factors in inverse order is V| ® ---® V. @ v ®
SRV, ® Wl oW eowlg. - @w e Viitrsi+s,- Lensors in some
V,s are called homogeneous of degree (r,s). If they are single tensor products of
vectors and covectors as in the examples just considered, then they are called
decomposable.
A change of the base and dual base,

ei=yke, fl=0 N i) =9, (4.6)

with a regular n X n transformation matrix ¥, which should leave the tensor (4.4)
unaffected, results in a transformation of the tensor components according to

L 7 Al (/D LEERN (A (4.7)

Hence, a tensor transforms like a contravariant vector with respect to its upper
indices and like a covariant vector with respect to its lower indices. The tensor
product of the tensors t € V,; and ¢ € Vv y has components
i ir. Ay
(re t) oy = =1 /vtljsi: J;H (4.8)

while the reversed order of the two factors leads to the reversed arrangement of the
index groups in the tensor product and hence in general to a different result. Two
tensors are equal if they have the same components with the order of indices
observed.

Consider a decomposable tensor ¢ of degree (r,s) and two integers p, 1 <p <r,
and g,1 < g <s. The tensor contraction C,, : V., — V,_;,_; is defined as

Cog(t) =Cpgi @ @V, W' @ - @w")
= (VW Q- V1 QVpy1 D v, QW]
®"'®W*q_l ®W*q+l ®"'®W*S, (49)
and for an arbitrary homogeneous tensor of degree (r,s) it is defined by linear

continuation. For an arbitrary homogeneous tensor of degree (r,s) one has in
components (summation over k)

Cpg ()it = gl ottt (4.10)

Jteds-1 J1-fg-1kig--js—1
There are various interrelations of tensors with mappings. First, every homo-
geneous tensor of degree (r,s) may be considered as a multilinear mapping
VX xVEX VX x VSR
r copies s copies

(w*l,...,w*r,vl,...,v‘v)»—>w;.‘11« :‘rj’: "v" Vi (4.11)
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of the indicated product vector space into the scalar field R. Because of the
universality of the canonical mapping ¢ of this product vector space onto V, as
considered for two factors after (4.1), one has the following isomorphism:

V,.s is canonically isomorphic to the vector space of all (r + s)-linear mappings
of Vix - XV*XV x .- xV ((r + s)factors) into R.

There are simple variants of that proposition. For instance, there is a canonical
isomorphism between V; ; and the s-linear mappings of Vx --- xV (s factors) into
V. A symmetric (see below) tensor g € Vo, with the property g(v,v)>0 and
g(v,v) = 0 iff v =0 defines a scalar product in V and hence converts a general
vector space V into a Euclidean space. Of course, all these mappings are mappings
of vector spaces and do not depend on the actually chosen base in V. In this sense,
scalars, vectors and tensors are called invariant and contra- and covariant,
respectively, entities.

For s = r, one may also consider (4.11) as a bilinear mapping V,, x V.o — R.
It is easily seen that every bilinear mapping of these spaces into R has the form
(4.11), hence the two spaces are dual to each other:

Vor = (Vro)™- (4.12)

For » = 1, this is just the duality of V and V*, and, if V is a Euclidean space so that
V* is identified with V, then the mapping is the scalar product.

Next, consider mappings of V into another vector space V'. By duality, a
homomorphism H from V to V' induces a homomorphism H* from V'* to V* :
(W Hv)y = (H*'W",v), v € V, w" € V'*. (Recall that a finite-dimensional vector
space is reflexive. Given bases in V and V', H is represented by a matrix, and H*
by its transposed.) If V and V' are isomorphic, so are V* and V'*, and there is also
an isomorphic mapping from V* onto V'* which is H*~'. Let H : T(V) — T(V')
be an isomorphism which in case of decomposable tensors acts like H on each
vector factor and like H*~! on each covector factor. It is easily seen that H
commutes with contractions, if it acts on Vyo =R as the identity mapping
(exercise). The following statement is now rather obvious:

There is a canonical one—one mapping between isomorphisms from V to V' and
isomorphisms from T(V) to T(V') which preserve the degree and commute with
tensor contraction. In particular, the automorphism group of V is isomorphic to
the automorphism group of T(V).

The automorphisms of a vector space are also called (regular) transforma-
tions. By the canonical isomorphism between V;; and the space of linear map-
pings (endomorphisms) of V into V (see top of this page) there is a one—one
correspondence of tensors a of degree (1,1) with components given by regular
matrices and automorphisms A of V. These tensors are called transformation
tensors. Sometimes these transformations, which transform a given vector v € V in
general in a different one v/ = Av, in components related to a fixed base v/’ = a,
are called ‘active coordinate transformations’ while ordinary coordinate
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transformations (4.6), which leave all vectors on place and only switch to another
base are called ‘passive coordinate transformations’.

Accordingly, if B: V — V is any endomorphism of V, it corresponds to a
tensor b € V;; whose components do not necessarily form a regular matrix. By an
automorphism A, B is transformed into ABA~! and the corresponding transfor-
mation of b in T(V) is in components 5! — ajb(a~")!. Endomorphisms of vector
spaces form a ring: if B, B’ are two endomorphisms, then B + B’ and BB’ are again
endomorphisms. With the Lie product [B,B']| = BB’ — B'B they form also a Lie
algebra. An endomorphism D of T(V) is called a derivation, if

1. D preserves the degree: DV, C V,,
2. D)= (D)ot +1tx (D), (4.13)
3. DC,4 = C, D for every tensor contraction.

It is directly seen that, if D, D’ are two derivations of T(V), then [D, D'] is again a
derivation. The derivations of T(V) form another Lie algebra.

The Lie algebra of derivations of T(V) is isomorphic to the Lie algebra of
endomorphisms of V; the isomorphism is provided by the restriction B of deri-
vations D to V C T(V).

Proof As an endomorphism, DAr = ADt, /. € R. However, it = A®1 in T(V).
From property 2 of (4.13) it follows that DA = 0 for every A € R. Hence, with
property 3, 0= D{w*,v) = (Dw*,v) + (w*,Dv) for all veV and w*e€ V*
(exercise). By putting Dv = By, it follows Dw* = —B*w* where B* is the endo-
morphism transposed to B, (w*, Bv) = (B*w*,v). Given B, from these relations D
is determined for decomposable tensors and is uniquely extended by linearity to all
T(V). It is easily seen that B+— D is a bijection. d

If B’ is another endomorphism of V, it is transformed by the derivation D with
Dv = Bv into DB’ = BB' — B'B = [B, B'].

Let P, be the permutation group of the set {1,...,r} of r numbers and let
P € P,. Denote by the same letter a mapping P : V,g — V,o : 11— (Pr)-ir =
¢7-ir and an analogous mapping P : Vo, — Vo . This definition is obviously
independent of the choice of a base in V. The symmetrization of a tensor of degree
either (r,0) or (0,r) is

Sr:lth (4.14)

PEP,
and the alternation is
1 .
At = ] Z sign(P)Pt, (4.15)
PEP,
where sign(P) = +1 for an even permutation and sign(P) = —1 for an odd per-

mutation. A tensor St is called a symmetric tensor and a tensor Az is called an
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alternating tensor. It is directly seen that these tensors provide symmetric and
alternating multilinear mappings of the product vector space of r factors V* or r
factors V into R.

4.2 Exterior Algebras

Let T(V) =32, V.o be the subalgebra of contravariant tensors of T(V) and let
I(V) be the two-sided ideal of T(V) generated by all elements of the form v ®
v, v € V, that is, I(V) is the linear span of the sets T(V) ® v ® v ® T(V) for all
v € V. The exterior algebra or Grassmann algebra of V is the graded algebra
A(V) =T(V)/I(V). Then, T(V*) is the subalgebra of covariant tensors of T(V)
and A(V*) =T(V*)/I(V*). Grassmann was the first to introduce the exterior
algebra for the study of subspaces of vector spaces.

A(V) is graded in the following way: A¢(V) =R, Ai(V) =V, A (V) =
Vio/L(V), L(V)=IV)NV,oforr>1 and A(V)=> 7 A(V). Since for
every vi,v; € V the products vi ® vi, v ® v, and (vi +v3) ® (v1 + ;) are ele-
ments of L(V), it follows that also v; ® v, +v, @ vi € LL(V). Hence, if the
product in A(V) is denoted by A, then v; A v, = —v A vy. It is easily seen that, if
w,0,7 € A(V) and F,G € R = Ay(V), then the exterior product A in A(V) has
all the properties (3.23) of a wedge-product.

Since every decomposable tensor vi ® --- ® v,, r > 1, containing two con-
secutive equal factors is in I(V) and reordering of the factors in T(V) leads to
representatives of the same or of the reversed (reversed sign) equivalence class of
T(V)/I(V) = A(V), the elements of the exterior algebra A(V) may be represented
as linear combinations of

1; ei,/\--~/\eir:eil®--'®€i,a i1<"‘<ir7 I">0, (416)

for any given base {e;} of V. (The ‘base vector’ 1 spans Ag(V) =R, and
1 Nej=1le; —e;1 =0.) Hence, (4.16) forms a base of A(V). It immediately
follows that, if dim V = n, then

dim A, (V) = (”

r

> " AW ~R A(V) = {0} forr>n
(4.17)

and hence dim A(V) = 2". As opposed to the tensor algebra T(V), the exterior
algebra A(V) is finite-dimensional.

Again the canonical mapping ¢’ : V x -+ x V — A (V) : (vi,..., )=V A
-+~ Av, has the universality property that, if W is any vector space and  :
V x --. x V — W is any alternating r-linear mapping, then there is a unique linear
mapping ¥’ : A,(V) — W so that y = o ¢'. Up to isomorphisms, ¢’ is uniquely
determined by this universality property.
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From the base (4.16) and the properties (3.23) it is seen that the elements of the
exterior algebra A(V) may be represented by the linear combinations of alternating
tensors » . At,, t, € V, . Likewise, the elements of A(V*) may be represented by
the linear combinations >, At", " € V,,. If t € A,(V), r > 0, then it may be
represented as

t= Z e, @ @e;, = 1l Z frlre N Ne . (4.18)

I yeensly i <...<ly

In the middle expressions, the i-sums run independently from 1 to n, but since ¢
is alternating, only items with distinct i are non-zero, and their r! permutations
appearing in the sums may be summed up into the right expressions.

Consider now e;, A --- A e; , which is a special homogeneous tensor. According
to (4.18), its components consist only of alternating sign factors:

1 .
e, N Nep = ] Z sign(P)e;,, @ -+ - ® ej,.
' PEP,

As an alternating r-linear mapping from V* x --- x V* (r factors) into R like in
(4.11) it yields (cf. the text after (3.23))

1 .
ei, N Nep (W W) = ﬁdet(<w*’,e]~>). (4.19)

By r-linearity and by the expansion rule for determinants, the base vectors in this
relation may be replaced by any set of r linearly independent vectors vy, ..., v, of
the vector space V = A;. Using tensor contractions, one may also consider the
bilinear mapping A,(V*) x A, (V) — R, for which again the right hand side of
(4.19) would follow. However, in order to avoid nasty factorial prefactors in the
exterior calculus, one redefines the prefactor of the latter mapping as

WA AWT VA A = det((WH ). (4.20)

By linearity this mapping (4.20) can be extended to all A,(V*) x A,(V), and this
form comprises all linear functions from A,(V) into R. Hence, A,(V*) is iso-
morphic to the dual vector space to A,(V) :

(A(V))" =~ A, (V*) and hence (A(V))" ~ A(V*). (4.21)

Since the dual to a finite direct sum of vector spaces is isomorphic to the direct
sum of their duals, the second relation follows. Note that this duality relation (-, -)
differs from that transferred from (4.12) via the quotient algebra formation by an
additional prefactor r!. For r = 1 they are equal. In practice, in the exterior cal-
culus only the form (4.20) is used and no confusion can arise.

Consider again dual bases {¢;} in V and {f'} in V*, (f',¢;) = 6. Equation
4.20 yields

(fUN - Afr e N Nei) =Y sign(P)S], -0 = ol (4.22)

Jri Ji-dr”
PeP,
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This is called a generalized Kronecker symbol. It is zero, if the sets of integers
{ix} and {ji} are not the same; it is equal to 1, if they are the same and the ordered
set (ji,.--,jr) is an even permutation of the ordered set (iy,...,i,), and equal to
—1, if it is an odd permutation. Let now 7 € A,(V) be any alternating tensor (4.18)
or ¢ € A,(V*), then

iy L i / Loy
£ :ﬁ<fl A NfE, Lo :ﬁ<t’ej' /\..-/\ejr>, (4.23)

These are the general rules of calculating vector components by projection on the
dual basis, applied to the cases of A,(V) and A,(V*). For later use, an important
consequence of (4.22) for the relation between tensor algebra and exterior
algebra is

1
HOX A AXY) = Cri G0 @ X1 ® - ®X,), (4.24)

where o is an arbitrary alternating tensor of type (0,r) and X; are vectors.
Next, important endomorphisms of A(V) are considered. In (4.17) it was
already noted that A,(V) = {0}, if » > dim V. In addition, by definition,

A(V)={0} forr<0, A(V)= Y A(V). (4.25)

—oo<r<oo

Obviously, the last relation is the same as that given at the beginning of this
section. An endomorphism L of a graded algebra A is called an endomorphism of
degree s, if

L:A — A, —oco<r,s<oo. (4.26)

For instance, for any u € A (V), the wedge-multiplication L, : A(V) — A(V):
t—u At is an endomorphism of degree s. An endomorphism is called a deriva-
tion, if

D(tAt)= Dty Nt +1tA(DF) forall t,1 € A, (4.27)
it is called an anti-derivation, if
D(tAt)= (D) AT+ (—1)tA(Df) forallt€A,, 1 €A. (4.28)

By repeated application of (4.28) and realization of the associativity of the algebra
A(V) one gets for an antiderivation of a decomposable element

DA Avy) =Y (=D Ao A (DY) A A, (4.29)
i=1
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As opposed to the derivatives in analysis considered in Sect. 2.3, the derivations of
an algebra (or a ring) are always endomorphisms. Examples of derivations of
degree O are the linear derivation of the algebra F,, of germs of real functions,
(3.10), (formally, any algebra can be considered as a graded algebra, where all
subspaces of non-zero degree are {0}), the derivation of the algebra C(M) of
smooth real functions, (3.15), by any tangent vector field and the derivation (4.13)
of a tensor algebra. An example of an anti-derivation of degree 1 is the exterior
differentiation d of r-forms, (3.25).

With regard to mutually dual algebras A(V) and (A(V))" = A(V*), the trans-
posed of the above mentioned endomorphism L,, u € A(V) may be considered. It
is denoted by 1, :

o AV = A(VF) (it F) = (5, L) = (', u AT)  for every I’ € A(V).
(4.30)

It is called the interior multiplication by u in A(V*). (For *,¢ € Ag(V) =R it
follows from the remark in parentheses after (4.16) that 1,#* = 0.) An example is
the Hodge operator considered in Sect. 5.1.

Forv € V, the endomorphism 1, is an anti-derivation of degree —1 on A(V*).

Proof Since L, is of degree 1 according to its description after (4.26), it follows
from (4.30) that 1, is of degree —1. Consider decomposable elements. From the
definition of 1,, (1,, (W' A  AWT) va Ao AV = (WA AWT VAV A
o« Av,) = det((w*,v;)). If one replaces in (4.29) D with 1,, and v; with w* and
inserts the right hand side of the obtained relation into (1, (W*' A -+ Aw*),
va A -+ Av,), one obtains the expansion of the same determinant with respect to
its first line. U

If ¥ : V — V' is a homomorphism of vector spaces, it extends to a homo-
morphism (push forward) vy, : A(V) — A(V’) of algebras as ¥, (vi A--- Av,) =
Y(vi) A--- Ay(v,) and further by linear extension. It also yields by duality a
homomorphism (pull back) ¥* : A(V'*) — A(V*) via (Y*(u'™), 1) = (", (1))
for all " € A(V'") and all t € A(V).

The section is closed with three simple useful theorems which are easily proved
by completion of the considered sets of vectors to a base of the vector space and by
observing that for any base {v;} of an n-dimensional vector space V the wedge-
product v; A --- A v, is non-zero, and that an expansion of a vector into a base has
unique components.

A set of vectors vy, ...,v, € V is linearly dependent, iff vi A --- Av, =0.

Let {v;} and {V.} be two sets each of r vectors of V so that y ._, v \V; = 0.
If the v; are linearly independent, then the v} may be linearly expanded into the v;,
V= >, WYivi, with a symmetric coefficient matrix, Y; = ;.

Let {v;} be a set of r linearly independent vectors of V and let t € A;(V). Then,
t=0mod (vy,...,v,), that is t=vi Au;+---+v.Au, with certain u; €
Ax_l(V), lﬁc ViA- AV, ANt =0.
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Prove the theorems as an exercise. For s = 2 the last one was considered in the
Frobenius theorem for Pfaffian systems, Sect. 3.6.

4.3 Tensor Fields and Exterior Forms

In Sect. 3.4 tangent vector fields on a manifold M were introduced by assigning a
tangent vector to every point x € M. While smoothness of real functions on M
could naturally be defined with the help of coordinate neighborhoods on the basis
of a well-defined atlas structure for M (pseudo-group of transition functions), this
is not so simple for a general vector field. Although an n dimensional vector field
may be given by n real component functions, these components depend on the
choice of a base in the vector space at each point of M, and for the concept of
smoothness some rules are needed how the bases of vector spaces on neighboring
points x of M should be related. This will be finally worked out in Chap. 7 with the
concept of fiber bundles. For the special case of tangent space the problem was
solved by relating the bases of the tangent spaces to the coordinates on coordinate
neighborhoods of M via considering the action of a tangent vector on real func-
tions on M. Then, the bases of cotangent spaces were related to those of tangent
spaces via considering the action of cotangent vectors (1-forms) on tangent vec-
tors. Since the base of a tensor algebra or an exterior algebra on a vector space is
determined by the base of the vector space, tensor fields and exterior fields on
tangent and cotangent spaces, which are sections of corresponding fiber bundles
considered in Chap. 7, can be treated here without the concept of fiber bundles.

Let M be a manifold, 7 the tangent space and 7’ the cotangent space at point
x € M. Consider the sets

T.s(M) = U (T),, : tensor bundle of type (r,s) over M, (4.31)
xeM ’
A(M) = U A(T}) : exterior r bundle over M. (4.32)
xXeM

In Chap. 7 a topology will be introduced into these sets to provide them with the
special manifold structure of bundles.

Consider sets of r 1-forms ', i=1,...,r and s tangent vector fields X;,
j=1,...,5s on M, and multilinear mappings ¢ : T*(M) X --- x T*(M) x T(M) x
<o+ x T(M) — C(M) with r factors T*(M) and s factors T(M). According to
(4.11), at each point x € M the mapping is given by (@!,..., 0", &py..., &)
t,l,l,l (xX)ay; - co;irfji‘x -+ &) e R. Recall that in coordinate neighborhoods in M
the base forms dx' in T*(M) and the base vectors 0/0¥ in T(M) are smooth.
Hence, the mapping is into C(M), if the component functions tJ’]lj” (x) are smooth
functions of x. In this case,
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() =X @@ ai., Qdx)' @ ® dxh (4.33)
is called a tensor field of type (r,s) on M.

The collection of all tensor fields of type (r,s) on M forms again a real vector
space T, ;(M) with respect to point wise linear combinations as is easily seen from
(4.33). It is an infinite-dimensional functional vector space. It can also be con-
sidered a C(M)-module with respect to point wise multiplications with C(M)-
functions. The graded algebra of tensor fields on M is

T(M) =Y T,,(M). (4.34)

It is a real associative but non-commutative algebra with point wise tensor mul-
tiplication as the multiplication in 7 (M). Note that according to the definition
(4.34) a tensor field of a certain type at some point x € M has the same type all
over M. For connected components of M this is a consequence of the demand of
smoothness, for distinct components of a multicomponent manifold it is just by
definition. Also, tensor contractions of tensor fields on M are defined as the same
contraction performed at every point x € M.

An important example of a symmetric tensor field of type (0,2) is the
Riemannian metric tensor, in a coordinate neighborhood given by g(x) =
g;i(x)dx' ® d¥/, or, as a bilinear mapping, g(X,Y) = g;&'n/ with the properties
g(X,X)>0,g(X,X) =0, iff X=0, and g(X,Y) = g(¥,X). It defines at every
point x € M a scalar product and hence converts the tangent space 7,(M) into an
inner product space (cf. p. 19) and M into a Riemannian manifold, a concept
which is considered in more detail in Chap. 9.

An endomorphism of 7 (M) is a real linear mapping from tensor fields to tensor
fields. At every point x € M, it induces an endomorphism of the tensor algebra
T(T,) of the tangent space T, on M at that point x, which in a sense analyzed in
Chap. 7 depends smoothly on x. The endomorphism of 7 (M) is again called a
derivation, if at every x it has the properties (4.13). As an endomorphism, a
derivation of 7 (M) again vanishes applied to a constant . € C(M) = T (M) but
not in general for a function F € C(M). (An endomorphism of 7 (M) is an R-linear
mapping but not a C(M)-linear mapping.)

The most important derivation is the Lie derivative Ly with respect to the
tangent vector field X. From (3.15) on p. 68 it follows that for every tangent vector
field X € X(M) =T, 0(M) the mapping X : C(M) — C(M) : F— XF 1is a deri-
vation of 7oo(M) =C(M). It maps F to the directional derivative of F in the
directions of the integral curves of X on M. In (3.37) on p. 82 it was shown that the
mapping X : 719(M) — T1o(M) : Y+ [X,Y] maps similarly a tangent vector
field Y € T, ¢(M) to its derivatives along the integral curves of X and hence is a
derivation of 7 o(M) = X(M). By definition, in these two cases

LyF = XF, LyY =[X,Y]. (4.35)
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Fig. 4.1 The Lie derivative N t( L XY)
along ¢,(x) corresponding to
the tangent vector field X

or — t(Lxw)

Both cases may be understood in the following way (Fig. 4.1): Fix a tangent
vector field X on M. It defines a local 1-parameter group ¢,(x) in a neighborhood
of every point x € M. Fix x and consider the (unique maximal) integral curve
¢,(x) of X through x. Push the considered entity (F or Y) forward by (¢_,), (that
is backward on the curve ¢,(x)). This way its value originally at x' = ¢,(x) is
brought to x, and there it is compared to the original value at x. A similar pro-
cedure can be applied to a cotangent vector field w. This time it is pulled back
from x’ to x by (¢,)" (cf. (3.28) on p. 72). Hence, a derivation may be defined for
any tensor field u € T (M) as

Do — .
MU g {(qb,)* for tangent vector fields (436)

Lyu = H% t (¢,)*  for cotangent vector fields
which declares @, for decomposable tensor fields, and then extended by linearity.
The proof that (4.36) is indeed a derivation is the same as for the product rule of
any derivative. Obviously, Ly : 7, (M) — 7, ,(M), and Ly commutes with tensor
contractions as expressions of the type (4.36) do commute with linear combination
with constant coefficients.

It is again obvious that real linear combinations and Lie products [D,D'] =
DD’ — D'D of derivations form again derivations; the set of all derivations of
7T (M) is a Lie algebra. Let D be a derivation of 7 (M). As it was shown in Sect. 3.4,
its action on To(M) = C(M) comes from a tangent vector field ¥ and can be
localized at every point x € M. According to the first relation (4.35) it may be
denoted Ly and acts as a Lie derivative. Let U C M be an open set and consider all
functions F € C(M) with suppF C U. A tangent vector field X € X(M) may be
said to be zero on U, if XF = 0 for all those F, and supp X may be defined as the
smallest closed subset of M outside of which X is zero. Now, consider the action of
any derivation D of 7(M) on FX =F ® X € T1o(M) = X(M). From the second
property (4.13), by arguments analogous to those in Sect. 3.4, it is seen that the
action of D on X(M) can be localized: supp DX C supp X. Hence, at every point
x € M, any derivation D of 7 (M) which vanishes on C(M) induces an endo-
morphism of 7,(M) which according to the analysis after (4.13) uniquely defines a
derivation of the tensor algebra T (7). Let D and D' coincide on C(M) and on
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X(M). Then, D — D' vanishes there and hence vanishes on the whole 7 (M). The
consequence is the first part of the following theorem:

Any derivation D of T (M) is uniquely determined by its restrictions to
TooM)=C(M) and to T | o(M) = X(M). Moreover, it has the form D = Ly + S
with a uniquely determined tangent vector field X and a uniquely determined
endomorphism S given by a tensor field s of type (1,1).

Proof of the second statement of the theorem Fix a derivation D of T (M). The
analysis of (3.15) on p. 68 shows that every derivation of C(M) is provided by a
tangent vector field X. Take this X and consider the derivation D — Ly of 7 (M). It
is zero on C(M). Let D’ be any derivation vanishing on C(M), let Y be any tangent
vector field and F € C(M). Then, D'(FY) = FD'Y which is a linear mapping of
X(M) into X(M) and hence, according to the theorem after (4.13), it defines
uniquely a tensor field s € 7 ;(M). Now, the second statement of the theorem
follows from the first one. O

If again D is any derivation of 7 (M) and S is any tensor field of type (1, 1),
then [D, S|F = (DS)F + S(DF) — SDF = FDS which is another tensor field of
type (1,1) : [D,S] € T11(M) for S € T11(M). In other words, 7 ; (M) is an ideal
of the Lie algebra of all derivations of 7 (M). Now, [Lx, Ly]F = [X, Y]F, and, for
ZeXM), [Lx,Ly)Z = [X,[Y,Z]] - [Y,[X,Z]] = [[X, Y], Z] due to Jacobi’s iden-
tity (3.17-3). Hence,

[Lx,Ly] = Lix y). (4.37)

The algebra of all Lie derivatives is itself a Lie subalgebra of the Lie algebra of
all derivations of T (M).

In order to find the coordinate expressions of Lie derivatives, consider first
Ly(C11(Y ® w)) = C11((LxY) ®  + Y ® (Lyw)) which equation can be rewrit-
ten as C11(Y ® Lyw) = XC11 (Y ® w) — C11([X, Y] ® w). In a coordinate neigh-
borhood in which X = 37 & (8/dx') and Y = 3 #/(0/0x!) with 5/ = 8%, with
(4.10) and (3.19) straightforwardly (Ly), = @;(d¢//dx*) is obtained. In the same
case, (LyY)' = [X, Y]’ = —0¢& /ox* results. Now, for a general tensor field u of type

(r,s),
LyCiy -+ Crigrps(u®@0' @ @0 X, @ ®X,)

_Cl‘l"'Cr+s7r+s<(LXu)®wl®"'®wr®X1®"'®Xs
+Y w0 @@ (k)@ R0 X ® - X,
p=1

—I—Zu@a)l®--~®w’®X1®~--®(LXX4)®---®XJ>. (4.38)
g=1


http://dx.doi.org/10.1007/978-3-642-14700-5_3
http://dx.doi.org/10.1007/978-3-642-14700-5_3
http://dx.doi.org/10.1007/978-3-642-14700-5_3

110 4 Tensor Fields

For ' =dx' and X; =0/0x/, the left hand side of the equation (4.38) is
Ly (ul i) = éiau]{::":’/Gx" and the first term on the right hand side is (Lyu)!"

J1--s Js J1ewds?
altogether,
iy...0y r i» o ) s j
(L u)ilu.i, _ iiaujlu.js B aép {1...1.p,111,,+1..4l, aé I/llll' - ) (4 39)
X jids oxi O d1ds Qo d1-da-dige1-ds” :
p=1 g=1

It was shown in the last section that the elements of A,(T7) are just the
alternating tensors of type (0,r). Hence, the sections out of AY(M) are just the
alternating tensor fields of type (0, r). They can be identified with the exterior
differential r-forms already introduced in Sect. 3.4 on p. 70. They form the real
vector space D’ (M) which is also a C(M)-module with respect to point wise linear
combinations. Their point wise exterior multiplication yields the graded exterior
algebra

DM) = i D'(M), D'(M)={0} forr<Oandr>n (4.40)

r=—00

studied in Sect. 3.4.

Consider a mapping F : M — N from the manifold M into the manifold N and
at every x € M its push forward (differential) as a mapping F7 : T,(M) — Tr(y)(N)
from tangent vectors on M to tangent vectors on N, given by (3.27) on p. 71. It
induces the mapping F*: D(N) — D(M) between the exterior algebras, given
point wise by (3.32) on p. 74, which pulls back any r-form on N to an r-form on
M. As it was explained in Sect. 3.5, there is no such induced mapping between the
tensor algebras 7 (M) and 7 (N). This is why the exterior algebra of r-forms plays
such a central role in the theory of manifolds as was first realized by E. Cartan.

Notation: The same quantity as an alternating tensor field 7 or as an exterior
form o is conventionally written as

= t,-]“_irdx"' R dxi’ = Z a),»]_,,irdxi' VANEERIAN dxi’, Wi, ., = r!t,-]“_i,.

i <--<i,

(4.41)

Not all authors use the factor ! in this connection. Check up in each case.

4.4 Exterior Differential Calculus

This is the differential calculus for the algebra D(M) of exterior forms on M. By
comparison of (3.25) on p. 71 with (4.28) it is seen that the exterior differen-
tiation d is an anti-derivation of degree 1 (cf. (4.26)). Its action in a coordinate
neighborhood on a general r-form (3.24) is repeated here:
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do = Z doj, i N dx' A - A dxT

i< <iy
= > %dxi A dx't A A di
i,il <<y ax
+1
_ STy O0icissisevivit it p - gy 4.42
=D (-t 3D S A
= i< <ippq »

Any derivation or anti-derivation of D(M) is defined by its action on the space
D°(M) = C(M) of functions F and on the space D' (M) of 1-forms or differentials
dF (exercise; consider first decomposable forms and then the linearity of the
derivation). An anti-derivation of degree 1 on D(M) is uniquely defined by (3.25)
(see for instance [2]).

Let F : M — N be a smooth mapping from the manifold M into the manifold N.
Then, from (3.31) it follows that for every smooth 1-form w on N the pulled back
1-form F*(w) on M is smooth. Equation 3.32 shows that a general r-form on N
can be pulled back in a coordinate neighborhood according to (4.23) to a smooth
r-form on M so that the pull back F* : D(N) — D(M) is a homomorphism of
algebras. Moreover, F* commutes with d, that is,

d(F*(w)) = F*(dw), o € D(N). (4.43)

This holds due to (3.31) for 1-forms as the differentials of 0-forms (functions).
For the general case it is straightforwardly demonstrated using a coordinate neigh-
borhood.

From the statement proved after (4.30) on p. 105 it follows that for any vector
field X € X(M) by point wise application the interior multiplication 1x(w) is an
anti-derivation of degree —1 on D(M). Since it is of degree —1 and D' = {0}, 1x
yields 0 if applied to any F € D°(M), see remark in parentheses after (4.30). On
D'(M), its action is given by (4.30) for the case v =X and ¢ = F, which with
(3.21) and (4.10) immediately yields 1x(w) = w(X) = C1(X ® w) for any w €
D'(M). The general expression is

x(@)=CLX®w)=r Z f"wiilm,‘yfldx"‘ A ANdx, @ e DI(M).

iy <o <iy

(4.44)

For D = 1x and decomposable forms, (4.28) is proved with (4.20) by Laplace’s
expansion formula for a determinant. Hence, (4.44) is the correct extension from
D°(M) and D' (M). Since w € D' (M) is alternating,

(1x)* = 0 on D(M) (4.45)

follows immediately from (4.44).
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As an example, let M =R3 r =d = 3 and o = & =dx' A dx*> A dx’. Then,
(1x(e), Y NZ) = el = (X,Y,Z), & =083 (cf. (4.22)), (4.46)

is the triple scalar product of the vectors X,Y and Z with the components &, 1/
and ¥, respectively.

Finally, since for every tangent vector field X € X(M) = 7 (M) the mapping
Ly :C(M) — C(M) : F— XF is a derivation (of degree 0) of C(M) and the map-
ping Ly : To (M) = D'(M) — D'(M) : 0+ Lyw with (Lyw)(Y) = X(w(Y)) —
o([X,Y]) for every ¥ € X(M) is a derivation of degree 0 of D'(M), the Lie
derivative (4.36) for alternating tensors u of type (0, r) is a derivation of degree 0
of D(M).

On D(M), the connection between d, 1y and Ly is

Ly=doix+ixod, [dLx]=0, [iy,Lx]=1yx, d*=0, (ix)°=0.

(4.47)

Proof From (3.32) on p. 74 it is easily seen by operation with d on both sides that
d commutes with F* for every mapping F of manifolds. Hence, d commutes with
(¢,)* of (4.36) and therefore also with Ly. Since ixD°(M) = 0, for F € D°(M) the
first equation reduces to LyF = ix(dF) = dF(X) = XF, which is true due to the
definition of Ly. Now, let D and D’ be two derivations of degree 0 of D(M) which
coincide on D°(M) and commute with d. From (D — D')F = 0 and (D — D')dG =
d(D — D')G =0 one has for a general 1-form @ = FdG that also (D — D")w =
((D — D')F)dG + F(D — D')dG = 0 and hence D and D' coincide on D'(M).
Consequently, both sides of the first relation (4.47) coincide on D°(M) and on
D'(M) and thus on D(M) (cf. remark after (4.42)). The second relation is a direct
consequence of the first and d> = 0.

Again because of 1xD°(M) = 0, both sides of the third equation are zero on
D°(M). Now, recall that for any 1-form @ and any tangent vector X, ixm =
o(X) =C11(X®w) € D°(M) and LxF = XF,LxY = [X,Y]. Then, [iy,Lx]o =
tyLxw — Lyiy® = (Lyw)(Y) — Ly (C1 1 (Y ® ®)) = lim,—o(1/2)(((¢,) "0 — 0)(Y)—
1im,_,0(1/t)C1,1 ((¢7t)*Y — Y) RWM—Y® (((j)t)*w - CU)) = _Cl,l (w®hm,_>0(1/t)
((p-).Y =Y) = =Cri(0® [X,Y]) = —o([X,Y]) = o([Y,X]) = yyxjo which
proves the third equation (4.47) on D'(M) and hence on all D(M).

The remaining two equations were considered previously and are only repeated
here for completeness. O

For an r-form o in place of the tensor u in (4.38), (4.38) and (4.24) yield
L)(<CO,X1 /AR /\Xr> = <Lx(0,X] AR /\Xr>

+D (0, Xi A AKX A AKX (448)
p=1


http://dx.doi.org/10.1007/978-3-642-14700-5_3

4.4  Exterior Differential Calculus 113

With this relation and the first equation (4.47), induction with respect to r yields

(do, Xy N+ ANXpiy)
r+1 .
= Z(—1)P+ Ly (@, X1 A AXpt AXpit A AXpst)
p=1

r+1
3 (1)U, X X AXUA - A Xyt Ay
rP<q
Ao AXyt AXgsr Ao AXppr). (4.49)

From (4.48) the coordinate expression of Ly is obtained in the following manner.
Put X, = 0/0x', then the left hand side is Ly (w;, ;) = >, &'0w;, ,; /Ox', and the
first term on the right hand side is (Lyw); ;. In the rest use [X, (d/dx")] =

—5°,(8¢ Jaxia) (9/0x"). The result is

a i r n avi
(Lxo);, ;, Zil wl - +ZZaiwil...i,,,,ii,,ﬂmi, (4.50)

p=1 i=1

iendy”

which of course coincides with (4.39), if w is treated as an alternating tensor of
type (0, r). Observe that in the last sum the subscripts of @ are not in ascending
order; ordering them introduces additional sign factors. A similar treatment of
(4.49) would make the last sum of this relation vanish since [X),, X,] would be zero,
and the rest would just recover (4.42).

As an example the phase space Q of classical point mechanics is again
considered. This 2m-dimensional manifold has a symplectic structure. A sym-
plectic structure on an even-dimensional manifold is defined by a symplectic
2-form, that is a 2-form (alternating tensor field) @ which has the properties

do =0, (w(V,W)=0forall VeT,(Q)—W=0. (4.51)

Instead of diffeomorphisms of a differentiable structure, symplectomorphisms
which leave w invariant are now admitted to form the pseudo-group S.
The symplectic 2-form of the phase space Q is

w =" "dq Ndp'. (4.52)
i=1

Clearly dw =0, and o(V,W) =31 (VW™ —y"Hiy) =0 for all V implies
W = 0. In local coordinates w is given by the skew-symmetric 2m X 2m matrix

w:<_01 (1)) o(V,W) =V oW, (4.53)
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where the entries 0 and 1 are m x m zero and unit matrices. Hamilton’s equations
of motion (3.40) and the Poisson brackets spell now

lw@ = dH — W = WH, {F7 G} = Iwplwg O = <(U, WG A\ WF>, (454)

where in a local coordinate system Wy is given by (3.41) and Wr correspondingly.
With the first relation (4.47) it follows immediately from (4.54) and (4.51) that the
Lie derivative of @ with respect to Wy vanishes: Ly, @ = d(iw,®) + 1w, (dw) =
d*H = 0. This implies that the Hamiltonian flow ¢, of the vector field Wy leaves
the symplectic form invariant:

d;0 = . (4.55)

In this context w is called the Poincaré invariant. Ly, is called the Liouvillian.
(Applied to real C'-functions on Q it is just Wy.)

Before continuing and giving further examples of application in physics,
integration over manifolds as an important application of the exterior calculus is
treated in the next chapter.
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Chapter 5
Integration, Homology and Cohomology

5.1 Prelude in Euclidean Space

To start from commonly familiar ground, the Euclidean space R”" is considered.
Let x = (x',...,x") be Cartesian coordinates in R" so that the volume element
(measure) is T = dx! - - dx", a real number equal to the volume of an n-dimen-
sional brick with edge lengths dx'. In (4.17) on p. 102 it was stated that A, (R") ~
R and hence dx! A --- A dx" is equivalent to a real number. Put

t=dx' - dx" =dx' Ao N dX" (5.1)

Lety = y(x) = (' (x),...,¥"(x)) be arbitrary smooth coordinate functions, and
let w: Y(R") — R be a real (piece wise continuous) function. It is well known
from integral calculus that

D', ... ")

T E g dy” 5.2
D(x!, ... x") " * (52)

[ omat = / o)

¥(U)

with the Jacobian defined in (2.16). Here, dy' - - - dy" is the volume element in the
Euclidean target space y(R") of the mapping ¥ where the y' form Cartesian
coordinates. On the other hand, considering ' as a O-form and 4’ as a 1-form on
the original R", one has according to (4.42) and with (4.22)

oy oYt
AU A ANdYt = I
lp A A l/j e a_xll axjn

dx.il A A dxj"

1 no
= Z %---%5{};‘,{"dx1/\-~-/\dx”

OxJi Ox/n

=TT g A AdX (5.3)
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together with the definition (5.1), this justifies to write (5.2) as

/ codyl/\~--/\dy”:/|//*(codyl/\--~/\dy”), (5.4)
¥(U) U

where, besides zpi and dl//i being treated as forms, i is also treated as a trans-
formation which pulls back w on (R") to *(®) = w o ¥ on R" and, according to
(3.31) on p. 74, pulls back dy' to y*(dy') = >, (' /ox/)dx/ on the corre-
sponding cotangent spaces which in the considered Euclidean case are again
Y(R") and R”", respectively. U and y(U) are supposed to have finite volume. I7 is
also assumed that the \J' are indexed in such an order that the Jacobian is positive.

Since dimD"(R") = 1, the expression w(Y)dy' A--- Ady" is the general
expression of an n-form in y(R") expressed in coordinates /', if e is smooth. One
may consider it as a generalized volume element by giving the measure in ¥(R") a
more flexible meaning. Any n-form

o=o@)dy A---ANdy", oly) > 0 everywhere (5.5)

is called a volume form. Since it transforms from one coordinate system to
another (x being not necessarily the original Cartesian coordinates) by (5.3), a
positive n-form (5.5) remains a positive n-form under all regular coordinate
transformations with positive Jacobian. By writing the integral (5.2) as | w(v) @

according to (5.4) any smooth transformation y yields

/ w:/.p*(w) (5.6)
W) U

with the meaning that in Cartesian coordinates (5.1) holds.

The R" is orientable (p. 60). A mapping  of a part of R” into a part of ¥(R")
is said to preserve orientation, if the Jacobian of the mapping is positive, it reverses
orientation, if the Jacobian is negative. For two domains U and U’ which contain

the same points but have reversed orientation, U’ = —U is written. According to
the last expression (5.1), © = —7 in this case. Therefore,
/ w=— / o. (5.7)
-U U

If the disjoint sum of two domains U; and U, is denoted by U; + U,, then

/ w:/w+/cu (5.8)

U,+U, U, U,


http://dx.doi.org/10.1007/978-3-642-14700-5_3

5.1 Prelude in Euclidean Space 117

holds, and accordingly for more items. Equations 5.7 and 5.8 provide together a
homomorphism from the Abelian group of domains of oriented manifolds into the
Abelian group of integrals over domains of a fixed form w. One even may extend
those groups and the homomorphism to real vector spaces by setting

/ w:)vl/w—&—iz/w, )Ll,izeR. (59)

MU +,U; U, U,

If for instance domains and integrals have a physical meaning one may think of
probability distributions over the integrals corresponding to probability distribu-
tions over domains.

Now, let U= {x|0<x'<1,i=1,...,n} € R" and let ¥ : R" — R", m>n,
be a regular embedding of a neighborhood of U € R" into the Euclidean space R™
of possibly higher dimension. Let @ be any n-form (not necessarily positive) on a
neighborhood of ¥(U) in R™. Recall, that as an embedding ¥ is smooth and
injective and ¥ is injective at every point x € U, that is, the Jacobi matrix has
rank n (cf. p. 75). One defines now the left hand side of (5.6) as an integral over an
embedded n-dimensional manifold in R™, m > n, by the right hand side which is
an integral of an n-form over the coordinate cube U in R”".

Letn =1and w =Y 7", w;(y)dy’ a 1-form on an open subset of R” containing
Y (U) where U is the unit interval of R and y(U) is a parametrized curve y = y(x)
in R™ of finite length with the curve parameter x € U. Then, (5.6) reads

[o=] gwxy)dy": / S oty W

W) yv) =

Replacing dx by —dx and integrating from x = 1 to x = O reverses also the sign of
ay' /dx and hence the sign of the value of the integral. This is the integral over
—(U). Next, fix the point y, = ¥(0) and let s be the arc length from y, along the
curve y = (x). This yields a one—one function x = x(s) with x(S) = 1 where S is
the total length of the curve from y, = ¥(0) to y; = y(1). Then,

N ' s ‘
[ o= [ o0 G- [ o)L
¥(U) o =t i—1

0

and in this sense the integral is independent of the parametrization of the curve.
Now, assume that there is a real function u(y) on R™, which can be taken as a
0-form, and that » = du = >_;(du/dy')dy’. Then,

[ o=t - utvy). o=

¥(U)
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which is the Fundamental Theorem of Calculus for the case of a parametrized
curve. Moreover, since w may be considered as a linear mapping of tangent vector
fields to scalar functions, the motion of a point in time ¢ along the curve from y, at
t=0toy; at t = T may be considered,

T .
B m A dl//l
/ a)/iz;w,(y(t)) el
¥(U) 0

where now o may be a force field and dy/dr a velocity field, and the integral is the
work performed on the point. Again, if the force field w has a potential u, then
the work depends only on the potential values at the boundary points y, and y; of
the path.

Next, let n =2 and @ = Y, _; _; <, ©i,i,()dy" Ady” a 2-form on an open
subset of R™ containing y(U) where U is the unit square of R* and y(U) is a
parametrized surface y = y(x',x?) in R™ of finite area with parameters
x!,x?, (x',x?) € U. Then, (5.6) reads

/w: / Yo o md Ady®

w(v) wv) 1<iij<i<m
1 1 awll l//iz }
= Z wiliz(y(x)) ax] /\ ax dx ?
0 o !Si<iz<m Jis2=1

S S~ _

al//i] alpiz alpil al//iz
Z wi'iz(y(x))<6xl 2 ox2 ox! dx' A ds*

1<ii<ib<m

L ox?

o\_ o — _

m awt. awtz
Z i ((x dx'dx?.

In the last equality it was used that w; ;, is an alternating tensor.
Let u =Y 1 ui(y)dy be a 1-form and » = du, that is (cf. (4.42))

m

W= Zdui ANdy = Z & iy dy” A dy™
i=1

i1,ih=1

auiz auil i i
- 2 (G a)er e

1<ii<ia<m

Inserting this expression in parentheses for w;,;, into the last line of the integral of
the previous paragraph and using the chain rule du;/x/ = 3, (du;/3y*) (Dy* /ox/)
one finds
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[

¥(U)

" (u oY Y o L,
Z(@xl ox2  ox! 6x2>dx dx

i=1

S—_ _

1 .
m a 1
[ 32 (1) - uio ) e
0

i=1

—(wi(x", 1) — u;(x",0)) %ﬁd)&)

[ [ ue [ us [

Yo=Y Yoo—Yo1 Yo1—=Y11 Yoo—Y10

where in the second equation integrations per part over x! in the first item and over
x? in the second item were done. The terms with the second derivative of v/’
cancel. For the sake of simpler writing u(x) stands for u(y(x)). If then y;; denotes
(i, j), i, j=0,1 (see Fig. 5.1), then the four terms of the integral are in fact
curvilinear integrations along the boundaries of ¥(U) as depicted in Fig. 5.1. By
observing (5.7) they constitute an integral around (U) with consecutive orien-
tation in the mathematical positive sense with regard to the x',x>-plane. Inter-
changing x! with x> would reverse this positive sense and also the sign of the
integral.

In general, the integral over an n-dimensional regularly embedded manifold in
the R™, m > n, as described above of an n-form  is obtained as

[ o

¥(U)

Z ;i (y(x)) det (aw )dx A Adx!

I<ii<-<ip<m

T T

S o)L g (5.10)

Ox! ox

el el

it omin=1

What was above considered for n = 1,2, if @ = du, is Stokes’ theorem for the
case of a coordinate n-cube of the R”",

Fig. 5.1 The image y(U) of Yor '911
the unit square U. For the
notation of the corners see ;

text ’
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du = u, (5.11)
¥(U) W (U)

where 0y(U) means the boundary of ¥(U), oriented in a way in general specified
later. The boundary of a curve consists of its end points oriented outward, if the
curve is not closed (otherwise it has no boundary). To treat the Fundamental
Theorem of Calculus as the special case of Stokes’ theorem for n = 1, the integral
over a point of a O-form is defined as the function value of the O-form at that point,
provided with an appropriate sign for the orientation of that end point. For n > 1
the proof goes along the same line as for n = 1. The orientations of the faces are
obtained from the sign factors of (4.42) in combination with the integrations per
part. Since any n-dimensional domain can be approximated by small n-cubes, and
since cubes which touch each other by a face have this face with opposite
orientation, (5.8) shows that all the integrals over inner faces of the covering of the
domain by cubes cancel and only those of surface faces survive. Instead of cubes
less regular polyhedra can be used. This makes it evident that Stokes’ theorem
does not only hold for cubes but for any shape of domains. This will be worked out
in detail in the following sections.

As an example consider m = 3 and the n-forms ®", n =0,1,2,3 on R3. Let
o" =dw" ', n=1,2,3, in particular (cf. (4.42)),

3
Q)IZE

aw awl
w? g ( )dy" Ady? = (rote') - dS,
1<i,ih <3

= (grad @°) - dy,

ayl] aylz

Z 5111?01})1 A dyX,
7/k 1

o0 ow dw?
3 23 13 12 1 2 3 :
) _<6y1 62+63>dy Ady” Ady —(leQ)-‘L’,

ijk >
2! Z 01230 jk

i,j,k=1

Stokes’ theorem reads in these cases

/ (grad o) - dy = / o = 0*(y,) — 0 (y),

U U
/(rotw1)~dS: / o' - dy,
U U

/(din)~T: /w-dS.

U oUu
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The first case is the classical Fundamental Theorem of Analysis, the second case is
the classical Stokes theorem, and the third case is Gauss’ theorem.

Differential forms are the equivalents to alternating covariant tensors. Hence
they have a geometrical meaning independent of coordinate systems. The orien-
tation of an oriented manifold may be changed by a mapping, in local coordinates
expressed as (y',y?,...,y") — (=y',»%,...,)"). Likewise, the orientation of R"
for odd n changes by inflection y — —y of the space coordinates. Hence, in an
odd-dimensional space, tensors of odd degree change sign of their tensor com-
ponents in an inflection of spatial coordinates and tensors of even degree do not.
Additionally, pseudo-tensors are introduced with reversed sign-change behavior
compared to tensors with respect to a change of orientation of space. If the above
considered n-forms " are tensor equivalents, then obviously rot ', dS and o are
pseudo-vectors and div © and 7 are pseudo-scalars. The other quantities are tensors
(including vectors and scalars). Alternatively, the »" may be understood as
pseudo-forms (pseudo-tensor equivalents), and then the roles of tensors and
pseudo-tensors in these relations are reversed. One easily checks that all the above
relations remain valid in this case. (Orientation and pseudo-character have only a
relative meaning.)

In the above examples in R*, a 2-form was related to a pseudo-vector rot ' and
a 3-form to a pseudo-scalar div Q. This has a generalization to any dimension. The
Euclidean space R™ is an inner product space with the standard inner product
(a|b) =>"", aib;, if a; and b; are the components of the vectors @ and b with

respect to an orthonormal basis {f', ..., f"}, (f'|f/) = &;. This inner product may
be extended to an inner product of the exterior algebra A(R") by putting

(@ A---Ad'lb' A---AB") = det((@' |b7)), n<m, (5.12)

putting A,(R™) and A, (R™) orthogonal to each other for n # n/, taking the
ordinary product of numbers in Ag(R™), and finally extending by bilinearity to
all A(R™). Note that in case of an inner product a bilinear form on the direct
product of the space with itself is meant, not with its dual which may be a different
space. The latter case is more general and was considered in (4.20). Nevertheless,
as in (4.22),

(Fr A A S

where the right hand side is —1, 0, or 1.

W. V. D. Hodge introduced as the anticipated generalization of the above
situation the star operator or Hodge operator * : A,(R") — A,_,(R"™) defined
as a linear operator by

s (D) =f Ao A f™ (A A =1,
* (FUN Ay =S A A fiyall 1< <m distinct,

f]l A /\f]n) — 5}1.1--.1,, (513)

14jn?

(5.14)
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and extended by linearity to arbitrary exterior forms. Note that an order of the
orthonormal basis vectors f is to be fixed to define the positive orientation of R™.
Changing the orientation of R, for instance by replacing f' — —f", introduces a
minus sign in the right hand side of all three defining relations (5.14). In either
case it immediately follows that

_ Sitehn Sttt Imdin n(m—n)
sk = 01, 01, =(-1)

on base forms, if all numbers i, are distinct. (The sign is just the sign of the
permutation from the superscripts of the first d-factor into those of the second
because for an equal order 6° = 1 would result.) Since the right hand side is a
constant sign for each n, the result is valid in general for the application of *x* to an
n-form:

s = (—1)"mn) (5.15)

that is, up to a possible sign the Hodge operator is its own inverse. Also, since
A, (R™) and A,,—,(R™) have the same dimension, from the definition (5.14) it
follows that * is an isomorphism between these vector spaces.

On the basis of (5.13) one easily checks for two n-forms w and &

(w]g) = *(w A x6) = *(a A *w). (5.16)

Since ¢ is an n-form, *¢ is an (m — n)-form and ® A *¢ is an m-form which is
equivalent to the number (w | o). Let u € Aj(R™), 0 € A, y(R™) and w € A, (R™).
Then (cf. (4.30) on p. 105), (1,0 |w) = (0| Lyw) = (6| u A ®). Application of the
second variant (5.16) yields *(m A %(1,6)) = *(u A w Axa) = (—=1)" % (o AuA
xc) for any @ € A,(R™). Hence, since # is an isomorphism, *(1,06) = (—1)"u A
*a. With (5.15), one more application of * to this result yields

wo = (=)D s (uA (x0)), o€ A(R™), ue A(R"), n+1<m.

The Hodge operator is mainly used to extend the Laplacian to manifolds
(Sect. 5.9, see also Sect. 9.6).

5.2 Chains of Simplices

In order to analyze the boundary operation in a more general context, instead of
coordinate cubes simplices as the simplest polyhedra in R” are considered and
their images in continuous or smooth mappings into manifolds, which are called
singular simplices.

Let (vg,...,v,) be r+ 1 linear independent vectors of the R", n > r. The set

S oy ovy) ={x =2+ 2V, |2 >0,0 4+ =1} (5.17)
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of points of the R" is an r-dimensional simplex, in short an r-simplex with vertices
v;. A O-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle, a
3-simplex is a tetrahedron, higher dimensions are considered by analogy. For later
use, an r-simplex for any r <0 is the empty set. It is clear that

AN ={x=0" .., 0)|"F>0 +. . +1<1} (5.18)

is an r-simplex (with its vertices the origin and the first r orthonormal base vectors
of the R") and that it is homeomorphic to any r-simplex S" (v, ...,v,). A" is called
the standard r-simplex. It is understood as oriented by the r-form dA' A --- A dJ’.

An r-simplex has r + 1 faces, each of which is an (r — 1)-simplex. The faces of
S"(vo,...,v,) are S (vo,....¥i 1,Vii1,..¥,),i=0,...,r. The faces of an
r-simplex are empty for r <0, a 1-simplex has two 0-simplices (points) as faces, a
2-simplex (triangle) has three 1-simplices (legs) as faces, a 3-simplex (tetrahe-
dron) has four 2-simplices (triangles) as faces, and so on. The oriented boundary
of a simplex is defined as

r

aSr(vOa RS Vr) = Z(_l)isril(v()a s Vi Vigd, - - -,Vr)~ (519)
i=0
See Fig. 5.2 where 3S' (v, v) = +5°(v1) — S°(vo), 382 (vo, v1,v2) = +S' (vy,v2) —
S'(vo,v2) + S'(vo,v1), and the corresponding expression (5.19) for r=3 is
visualized.

Suppose an orientation of S" (v, ...,v,) has been fixed. As previously in (5.7),
the same simplex with the opposite orientation is denoted by —S"(vo,...,v,).
Obviously,

0(=S"(vo,...,v;)) = =08 (vo,...,v;). (5.20)

Moreover, like domains in (5.8), simplices may be added in which case the sums
can be understood to be unions of disjoint sets. In this sense, faces of dimension
less than r — 1 are counted several times in (5.19). This will not be a problem in
the following. (In R"~! a set of dimension less than r — 1 has zero measure and

V3
Vo V1 +
o——20 -
T SO
Vo U1 V2o

U1

Fig. 5.2 Oriented boundaries of simplices. The 4+ and — signs are those of (5.19), the arrows
indicate the orientation of the faces as simplices entering (5.19)
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does not change integrals.) Now, let S/~! = 8!(v,...,vi1,Vit1,...,v,) and
5572 = Sriz(l’(), e Vieh Vil - 5 V=1, Vit - - .7Vr),j > i. Then,
- i+j j+Hi—1 cr—
QS (vo, .. vr) = D (DS (1) = (5.21)
j<i i<j

For r > 1, the boundary of a simplex is closed and hence its boundary is empty.
For r<1,82 is by definition empty anyhow.

Let M be any manifold. A continuous (smooth) singular r-simplex ¢ in M is a
continuous (smooth) mapping (of an open neighborhood in R”) of the standard
r-simplex A" into M (Fig. 5.3). M is supposed to be smooth in case of a smooth
singular r-simplex. For r <0, ¢ is the empty mapping from the empty set into the
empty set. In order to define the boundary operation for o, first a mapping
/1;71 ATV S A i=0,...,r, of A" onto the faces of A" must be fixed. (Since
A" has no faces for r <0, no /lffl for r <0 is needed.) For r = 1, that is A = {0}
and A' = [0,1],29(0) = 1 and 29(0) = 0. For r > 1 one finds

B, i) = (( Z;J) o ) o

AN Yy =N A0 T, =1

27N (A™1) s the face of A” opposite to the origin, and 4 '(A”"') are the faces
with 2’ = 0in A" (and A/ of A™™" is becoming /™! of A" for j>i).

Like it was done in the last section for domains of integration, formally linear
combinations of singular simplices with integer coefficients may be introduced and
usefully exploited. An r-chain of singular r-simplices g; in M is a finite linear

Fig. 5.3 A singular 22
2-simplex
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combination ¢ = Y, kj0;, k; € Z. The set of r-chains forms the free Abelian group
generated by the set of all singular r-simplices. It can also be considered as a
Z-module. However, it turns out to be useful to allow for a field K instead of the
ring K =7 of integers. Most important besides K = Z are K = R and K = [F;,
the field of integers modulo 2: F, ={0,1},0+0=0,0+£1=1,1+1=0,0:
0=0-1=0,1-1=1.Witha field K (R or F,), the r-chains form a vector space.
The module or vector space over K of all r-chains in M is denoted as

0C-(M,K) = {c = Zk,a; |k, € K, o, continuous singular r-simplices in M},
[

«Cr(M,K) = {c = ka |k; € K, o, smooth singular r-simplices in M}.
1

(5.23)

Since for every non-trivial manifold M there is an infinite set of distinct singular
simplices @, both spaces (9 ~)C,(M, K) are in general infinite-dimensional for r >0
with the distinct singular simplices forming a base. For r <0, there is no base
element, and hence

000)Cr(M,K) = {0} for r<0. (5.24)

Later, the direct sum of these spaces will be treated as a grated (by r) module
(vector space).
Now, the boundary operation may be defined as

dord,: (O,OO)Cr(MvK) - (O,OC)Crfl(MaK),

aC:a<Zk[O'1> :Zklao—,, GG:i(_l)io‘Oi;—].
1 1

(5.25)
i=0

If it is necessary to indicate the dimension r of the chain to which the boundary
operator is applied, the notation 0, will be used. The boundary of a chain is defined
as the corresponding chain of boundaries of the singular simplices, and the
boundary of a singular simplex is a chain (with integer coefficients 1) formed by
first mapping by ){_] the standard (r — 1)-simplex A" onto the ith face of the
standard r-simplex A’, then mapping by ¢ this face of A" into M, and finally
linearly combining those mappings.

The standard r-simplex A" is a special case of an r-simplex S and hence (5.21)
holds for it. It is then obvious that

000=0 (5.26)

holds on every r-chain.
Let M be a smooth n-dimensional manifold and let the image of the r-chain ¢ of
smooth singular simplices be part of an open set in the topology of M on which an
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r-form w is defined, r <n. By the singular r-simplex o, w may be pulled back
to A". In a coordinate neighborhood of x =g(x) € M, x € A", that is, 0 =
(¢'(x),...,0"(x)), @ may be given as @ =Y _; _.._; p iy, (X)dX" A A
dx'r. Then, with the orthonormal base in R” 3 A" and the corresponding coordi-
nates A, 6*(w) may be given as ¢*(w) = Zl<i|<~--<i,<n w,-,,“,-,(a(x))zjlw
Jr@a™ JOA) -+ (D6 JOA NI N NdI =3y oy < iy (0(x))D(0™ . 07) )
DA, .., 00dA A+ NdA" (cf. (5.2)). The integral of the r-form w over the

image of the singular r-simplex ¢(A”) in M may now be defined as the ordinary
R’-integral of the pull-back ¢*(w) over A"

/w:A/a*(w) forr>1, /w:w(o(O)) for r = 0. (5.27)

g

The integral over an r-chain ¢ = " k;0; is defined as

/w = zl:kl/w. (5.28)

c g

Now, Stokes’ theorem for r-chains,

/w = /dw7 (5.29)
dc c

can be proved in the general r-dimensional case, where it obviously suffices to
prove it for a smooth singular r-simplex. The proof is technical but straightforward
with the above developed tools. It can be left as an exercise.

Stokes’ theorem for r-chains is the key to the deepest interrelations between
topology, algebra and analysis, the investigation of which in the middle of 20th
century, but proposed mainly by Poincaré at its beginning, was initiated by de
Rham’s theorem (Sect. 5.4).

In the above considerations, ¢ must at least be of class C'(R”) in order that
o can be pulled back. For o itself it would suffice for the integral to exist that
it is a continuous r-form. However, in Stokes’ theorem o must also be C!. In
most applications both ¢ and w may be assumed smooth. Note that in this
section, ¢ was not assumed to be bijective; for that reason the simplices ¢ were
called singular. For instance, ¢ might be constant: 6(A") = {x}, x € M. In this
case the pull back of w is the constant r-form equal to its value at x and the
integral is the volume |A"| = 1/r! of A" times this constant w. In that sense,
integrals over r-chains are still integrals in R”. Nevertheless, these constructs
are very useful. Before exploiting them, in the next section more natural
integrals which may be understood more directly over domains of manifolds
are considered.
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5.3 Integration of Differential Forms

First, a regular domain Q in a paracompact smooth orientable n-dimensional
manifold M is defined: every point x € M is either an inner point of Q or an inner
point of M \ Q or there is a coordinate neighborhood (U, ¢) of x such that ¢(U N
Q) = (U) NR" where R” is the half-space of points x = (1',...,1") € R" with
S, A" < 1. In other words, the boundary of Q is locally diffeomorphic to an (1 — 1)-
dimensional hyperplane (the hyperplane 3", = 1 of R"). In this precise sense a
regular domain Q is a domain with smooth boundary 0Q. Note, however, that a
regular domain Q need not have a boundary at all, it could for instance be all M.

Let Q have a boundary. Consider a smooth real function F on a neighborhood
of 0Q, which is constant on 0Q and for which F(x;) < F(x,) whenever x; is an inner
point of Q and x, is an inner point of M\ Q. Let x € 0Q. A vector X of the
n-dimensional tangent space 7, (M) is an outer vector to Q, if XF > 0. Consider
now the (n — 1)-dimensional tangent space T,(0Q) at a boundary point x € 0Q.
A base Xj,...,X,_; in this tangent space is called coherently oriented with M, if
with an outer vector X to Q the base X, X, ..., X, of T,(M) defines the orien-
tation of M, that is, the dual base dx, dx!, .. .,dx""! in T*(M) defines the positive n-
form dx A dx' A--- Adx"!. It is clear that this definition of coherent orientation
does not depend on the chosen outer vector X, and that there is a coordinate
neighborhood U of x in 0Q and there are local coordinates x’l,...,x’"_1 in U
smoothly defining an orientation coherent with that of M. In other words, an
orientation of 7,(0Q) coherent with that of M is a smooth and hence all the more
continuous function of x on 0Q. Since an orientation can only have two discrete
values, if the orientation on 0Q is coherent with that of M, it must be constant on
each topological component of 0Q.

Now, let Q be a regular domain in M and let & be an at least continuous n-form,
n = dim M, with compact support. In order to define the integral of w over Q,
regular n-simplices are defined as diffeomorphisms ¢ from a neighborhood in R”
of the standard n-simplex A" into M. If ¢ preserves orientation, it is called an
oriented regular simplex.

A partition of unity on M (which exists since M is paracompact) is used to
reduce the integral over Q) to a sum of integrals over oriented regular simplices
covering supp w N Q. Since suppw N is compact, it has a finite open cover
{Uy,...,Upy}. Let furthermore U be the open set U = M \ (suppw N Q), so that
{U,Uy,...,U,} is a finite open cover of M. Consider a partition of unity
{¢,¢y,...,¢,,} subordinate to this open cover of M, that is, supp¢ C
U, suppgp, CU;, i=1,...,mand ¢(x) + > ,¢;(x) =1 on M. If U; C Q, choose
an oriented regular simplex o; the image of A" of which contains U; and is entirely
in Q (which is always possible since Q is closed and U; is open). If U; N 0Q is non-
empty, choose an oriented regular n-simplex g; with Q O ¢;(A") D U; N Q and so
that 0Q intersects only with the image of the face of A" opposite to the origin
(Fig. 5.4).
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Fig. 5.4 Regular 2-simplices
for a parition of unity of M

Although U may intersect Q, no simplex need be chosen for U since supp ¢ N
suppw NQ = & and hence ¢(x)w(x) =0 on Q. The images of the simplices
g, i=1....,m form a closed (overlapping) cover of suppw N, and o;(A") N
(M\ Q) = for all i. On the other hand, ¢;(x)w(x) are smooth n-forms with
support in Uj;, if @ is smooth (since the ¢; are smooth by definition of a partition of
unity), and © = dw + ), ¢;w on M. Since, however, v =00onQ, 0 = >, p;»
on Q. Therefore, one may define

[o=3 [60=3 [a@o. (530)
Q =l =1

The last sum is over well defined ordinary integrals in R”. It remains to show that
this expression is unique in the sense that it does not depend on the used partition
of unity.

Indeed, consider another partition {i, ,, ..., 1, } subordinate to the open cover
{U,Vi,...,V;} and correspondingly chosen simplices ¢}, i =1,...,l. (U was
defined by Q and ® only, hence it is not changed.) On supp w N Q, there holds
¢ = = 0. Hence,

izml:!@wzij:!%d)iwv jil(!lﬁjwzij:(!qﬁilﬁjw.

By the above construction, for each pair (i, j) one has that supp(y;¢;w) N a;(A") =
supp(¢;;0) N a’;(A"). It may be empty. If it is non-empty, 6; ' o ¢; is an ori-
entation preserving diffeomorphism on its open domain of definition in R" (open
neighborhood of part of A") which maps part of A" into A". Therefore,

Jupo= [ aitipe = [ (o 0d) Wb

A" A"

= [ @0 = [ b0,

A"
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and both double sums in the previous expressions are equal. ((o; ! 0 ¢’;)"0 o7 =
"0 gF = ¢*; was used, see p. 74).

The definition (5.30) may now justly be considered to be the integral of the n-
form o over the regular domain Q in M. If, on the other hand, w is a smooth
(n — 1)-form on M, dimM = n, and w has compact support, then dw has also
compact support, and Stokes’ theorem holds:

/dco: /w (5.31)
Q 20

Proof Use the partition of unity as in the definition of fQ. Since ) .¢;=1ona
neighborhood of suppw N Q, >~ dp; =d Y "; ¢; = 0 there and hence ), d($;w) =
> ¢idw = dw on Q. For U; C Q, [, ¢;0 = 0 because ¢; = 0 on 0Q. ¢; =0 on
the image of dg; too, and since a regular simplex is all the more a smooth singular
simplex, (5.29) applies, and [, ¢;0 = [, ¢;0 =0. Let U;NOQ # . Then,

¢; # 0 in the interior of ¢;(A} ') only where Aj~' is the face of A" opposite to

] *

gj °0;

the origin. Since Agfl is coherently oriented with A" and o; is orientation pre-
serving, a;(Al"') is coherently oriented with ¢;(A"). Again (5.29) applies,
and [, d(dp0) = [ d(¢;w) = [, ¢;o= [,o¢;». Hence in total, [,dw=
Ja2Zid($i0) = [iq 2 bir = [oq - O

Observe for both the definition of the integral over Q and the proof of Stokes’
theorem: If Q itself is compact, then  need not have compact support in M.

5.4 De Rham Cohomology

Consider as an example dim M = 2 and the equation dw = p where a 2-form p is
given and a 1-form w, in local coordinates @ = wdx' 4+ w,dx?, is sought. One has
dw = (0w, /0x' — dw; /dx*)dx' A dx*. How must p behave in order that the
equation has a solution w? For any domain Q of finite measure one has fQ o=
Jodo = [,o . Hence, if Q has no boundary (for instance if Q = 52 is the two-
dimensional sphere), then pr =0 must hold as a necessary condition for a
solution  to exist. If M = R?, then there are no such compact domains Q without
boundary, and no such condition need be posed on p.

In the latter case, R®> may be considered as the complex plane, x' =
Re z, x> = Imz, and » may be considered as a complex function, & = i(w; +
i,). For an analytic function @, in this notation dw = 0 by the Cauchy-Riemann
equations, and hence faQ o = 0, if Q is an oriented domain of analyticity of o the
oriented boundary of which is 0Q. This integral is in the adopted notation the
imaginary part of the complex integral, and its vanishing is part of Cauchy’s
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integral theorem. For the integral to vanish it is sufficient that 0Q is the complete
oriented boundary of a domain of analyticity of @.

The two natural questions that arise in these considerations are: (i) which are
the domains Q of a manifold M that have no boundary, and (ii) which surfaces of
M are complete oriented boundaries of oriented domains Q. If for instance M is the
two-dimensional torus of Fig. 1.3 on p. 3 (which is orientable), then non of the
circles drawn in the figure is a complete oriented boundary, because as a boundary
it would have to have both orientations simultaneously. Only pairs of oppositely
oriented circles (winding around the torus in opposite directions are boundaries of
domains of the torus.

A domain which has no boundaries is called a cycle. (For instance a circle is a
one-dimensional cycle, an n-dimensional sphere S” is an n-cycle.) Clearly, every
boundary is a cycle, but, as the above example shows, the reverse need not be true.
Not every cycle need be a boundary. The classification of cycles and boundaries of
manifolds is the subject of homology theory. However, this theory turned out to be
simpler in a more general setting.

In Sect. 5.2, as a certain generalization of domains of manifolds r-chains of
singular r-simplices were introduced. Consider the real vector space »,C,(M,R) of
r-chains ¢ = Zl k;o, of linear combinations with real coefficients k; of smooth
singular r-simplices ¢;. Only the smooth case is treated in the sequel although most
results hold also true in the continuous case. Therefore, the presubscript will be
omitted, C,(M,R) = C,(M,R). Let B,(M,R) be the set of boundaries and
Z,(M,R) the set of cycles of C,(M,R). Since linear combinations of boundaries
are boundaries and linear combinations of cycles are cycles, both sets are linear
subspaces of C,(M,R). The boundary operator (recall that its operation on
C,(M,K) is sometimes denoted by O,) maps C,(M,R) into B,_;(M,R)C
Z—1(M,R) C C,_1(M,R) (since 0o 0 =0), and by definition of cycles it maps
Z,(M,R) to 0:

Im@, = B,,_l(M7 R), Ker@,_] =7 (M, R) D B,,_1(1W7 R), (532)

where Im 0, means the image of the boundary operator 0, defined on C,(M,R),
and the kernel Ker 0,_; is defined as the preimage of the origin of C,_»(M,R) in
C,—1(M,R). (See Compendium C.1 on homomorphisms.)

The direct sum of all C,(M,R), r € Z may be considered as a graded (by r)
vector space C(M,R) with an endomorphism O of degree —1:

CM,R) = {- - —5Cpi1 (M, R)-5C, (M, R)—C, (M, R) - -}, (5.33)

C(M,R) is called a (real) chain complex. Recall that by definition C,(M,K) =
{0} for r <0, hence C(M,K) may be considered as an infinite sequence of map-
pings 0, of modules. Together with a collection of r-simplices (repetition allowed)
the chain complex C(M,Z) contains all their oriented faces as (r — 1)-simplices,
the oriented faces of the latter as (r — 2)-simplices and so on down to the oriented
edges of 2-simplices as line elements and their oriented endpoints as 0-simplices
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Fig. 5.5 1-cycles on a 2-torus. Left: z; and z, are not boundaries, z3 is a boundary. Right:
b =71 + 22 + z3 is a boundary

(set of all vertices of the original collection). This is how complexes originally
were introduced in topology. In the case of C(M,R) all those collections have in
addition real coefficients.

As an example, consider the three 1-cycles on the 2-torus depicted on the left
part of Fig. 5.5. As was already discussed, the cycles z; and z, are not boundaries.
Depending on the orientation of the torus, b = z; + z» is the boundary of the
visible domain Q on the torus or of —Q. Let the first case be valid. Then, z3 is the
boundary of minus the visible domain enclosed by this cycle. The sum b =
21 + 22 + z3 depicted on the right part of the figure is the boundary of the visible
enclosed domain denoted again Q on this figure. One realizes, if certain cycles are
not boundaries, nevertheless their sums or differences may be boundaries. The
alert reader also immediately realizes the relevance of considerations of that type
for complex analysis, and indeed complex analysis of several variables was one of
the early motivations to develop homology theory.

Two r-cycles zj, z; are called homologous, z; ~ z;, if their difference is an
r-boundary:

Z,M,K)>z1~2 <= z1—2 €B.,(M,K). (5.34)

A boundary is called homologically trivial. Hence, two cycles are homologous, if
their difference is homologically trivial. Clearly, the homology relation (5.34) is
an equivalence relation. The Abelian group of equivalence classes in homology of
r-cycles is called the rth homology group H,(M,K). It is the quotient group

H,(M,K) = Z,(M,K)/B,(M,K) = Kerd,/Im&,,,. (5.35)

In the case K = Z, as every Abelian group it may also be considered a module; if
K is a field (like R), more specifically it is a vector space. Unlike Z,(M, K) and
B,(M,K), H,(M,K) is finite-dimensional in most interesting cases.

The reader may convince himself from the above example that the main
topological difference between the 2-torus T and the plane R? is that in R? every
cycle is a boundary (of the encircled domain) while in T there are cycles which
are not boundaries. If all cycles of a chain complex (5.33) are boundaries, this
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means that Im0,; = Ker 0, for all r, or, equivalently, that all homology groups
are trivial: H,(M, K) = {0}. A sequence of morphisms between algebraic objects
like (5.33) is called an exact sequence, if the image of one morphism in the
sequence is the kernel of the next. Sequences of non-trivial chain complexes are
not exact.

Yet, exact sequences form a powerful tool in algebra. For instance, the exact
sequence of homomorphisms of Abelian groups or modules (in particular vector
spaces)

0 G-LH

means that f is injective: Since the image of the first mapping can only consist of
the zero element of G, the kernel of f must be {0}, and by linearity f must be
injective. If, on the other hand, the sequence

GLH -0

is exact, this means that f is surjective: since all of H is mapped to O by the right
mapping, its kernel is all of H which also must be the image of /. Hence, the exact
sequence

0-G-LH =0

means that the homomorphism f is indeed an isomorphism. Interpret as an exercise
the so called short exact sequence for the case of Abelian groups or modules,

0—-H—G—G/H—DO,

where H is a subgroup or submodule of G and G/H is the quotient structure.
Coming back to the homology groups H,(M, K) of (5.35), it will be seen later
that their dimensions are topological invariants.

B (M) = dim H,(M, R) (5.36)

is called the rth Betti number of M.

Recall that a 0-simplex is just a point of M, a O-chain hence is a linear com-
bination of points. Since C_; (M, R) is trivial, a O-chain has zero boundary. Hence,
every O-chain is a O-cycle. The standard 1-simplex is a line element, its image in M
is a finite path between two points. Every pair of points (z;,z,) which can be
connected by a path Q in M yields a boundary as its difference: 0Q =z, — z;.
Hence, all points which can be connected by a path in M are homologous: the
pathwise connected components of M form a base of the vector space Hy(M,R),
and the zeroth Betti number of any manifold M is equal to the number of pathwise
connected components of M.

If M is contractible (see Sect. 2.5), that is M may continuously be contracted
into one point, then it is intuitively clear and will formally be proved in the next
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section that every r-cycle, r > 0 is a boundary, that is, H.(M,R) = {0}. Hence,
B (M) =0, r>0,if Mis contractible. In particular,

FRY =1, FR)Y=0, r>0,n>1l. (5.37)

Less trivial cases will be considered in the sequel.

Comparison of 0 0 0 = 0 with d o d = 0 for the exterior derivation d of degree
+1 and consideration of Stokes’ theorem suggest a duality between the chain
complex C(M,R) and the graded algebra D(M) of exterior forms:

DM) = {-- LD )< () D () (5.38)

Again, as previously in Sect. 4.2, D" = {0} if r<0 or r > dimM. An exterior
r-form w on M is called a closed form, if dw = 0, it is called an exact form, if
there exists an (r — 1)-form ¢ so that w = do. Two closed forms ' and
?, do' = 0 are called cohomologous to each other, w! ~ w?, if their difference is
exact, that is, w' — w? = do for some form ¢. An exact form is called cohomo-
logically trivial. Clearly, every exact form is closed, and clearly, closed forms as
well as exact forms form linear subspaces of the vector spaces D" (M). De Rham’s
cohomology group is the quotient group

Hp(M) = {closed r-forms}/{exact r-forms} = Kerd, /Imd,_;. (5.39)

Since dim H, (M) < dim D" (M) because H),(M) is a quotient space of a subspace
of D'(M), clearly dimHz(M) =0 for r<0 or r> dimM. Moreover, from
dimD~' =0 it follows that Ind_; = {0}, and hence H% (M) = Kerdy. Now, a
0-form ° is a real function on M, and hence dw® = 0 means that the function @°
is constant on each pathwise connected component of M (by integration of dw®
along any path in M). If M has m components, then Kerdy is the space of real
m-tuples which means that dim H),(M) = dim Kerdy is equal to the number of
pathwise connected components of M and hence equal to the Betti number ﬂo (M).
It will be seen that this is not an accident.
Let o be a closed r-from and let z be an r-cycle. Consider the real number

)= [o

given by the integral (5.27, 5.28). It is obviously bilinear in w and z as suggested
by the way of writing. Let o’ = do be any exact r-form and let b = 07’ be any
r-boundary. Then, by virtue of Stokes’ theorem (5.29) for singular chains,

(a)+w’,z>:/w—i—/da:/w—i—/a:(w,z),
z z z &

since 0z = 0 for a cycle z. Likewise,
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<a),z+b>:/w+/a):/w+/dw:<w,z>,

oz z

since dw = 0 for a closed form . In effect, the considered integral depends on the
homology class [z] of the cycle z and on the cohomology class [w] of the closed
form w only:

(e, ]} = / @ (5.40)

Z

is a linear form on the space H,(M,R), that is, an element of the dual space
(H,(M,R))", and every element [w] of H)(M) yields uniquely such a linear form.
In other words, (5.40) yields a homomorphism of vector spaces

Hx(M) — (H(M,R))". (5.41)

This reflects the point of view of letting [w] run through H/,(M) and considering
(5.40) as linear functions on H,(M,R), that is, as elements of (H,(M,R))".

De Rham’s theorem states that (5.41) is in fact an isomorphism.

In this connection the real number (5.40) is called the period of the r-form w
over the cycle z,

per(z) = ([w], [7]) = /w (5.42)

4

De Rham’s theorem implies that, if there exists a linear function per on Z,(M,R)
with the property per(b) =0 for every boundary b, then there exists a closed
r-form o so that [ w = per(z). It also implies

dim H',(M) = dim(H, (M, R))" = dim H,(M,R) = " (M). (5.43)

Two isomorphic vector spaces have the same dimension, and two spaces con-
nected by a non-degenerate bilinear form have also the same dimension. More-
over, Hjp(M) ~ H.(M,R), if (M) < o0, since two real finite-dimensional vector
spaces of the same dimension are isomorphic. Now, considering (5.40) as a
bilinear form on Hj,(M) x H,(M,R), for every [w] # O there is a [z] so that (5.40)
is non-zero. Otherwise (5.40) would yield the same result on all [z] for [w] # 0 and
for [@/] =0 and (5.41) could not be an isomorphism. Likewise, for every [z] # 0
there is an [w] so that (5.40) is non-zero. Otherwise for all [w] € dim H},(M)
(5.40) would yield the same value 0 on [z] # 0 and on ['] = 0 and (5.41) would
not be surjective.
An immediate consequence is

p(M)=0 forr>dimM (5.44)
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and also that dim H/x(M) = 0 for all r > 0, if M is contractible. Hence in par-
ticular, on a contractible manifold M the necessary and sufficient condition for the
equation dw = p to have a solution w is that p is closed, dp =0, since
dim H/ (M) = 0 means that every closed form is exact.

In these considerations both H)jz(M) and H,(M,R) are treated as real vector
spaces. (Recall that every vector space is an Abelian group with respect to vector
addition. This justifies to retain the names homology group and cohomology group
in the considered more special cases.) However, D(M) is also an algebra with
respect to exterior multiplication. It is easily seen that the wedge product is
compatible with the cohomology classes of D(M). Indeed, let v, V', w, @’ be closed
forms and let v — v = dp, w — @' = do for some forms p and g, that is, [v — V'] =
0, [ — '] = 0. Then, obviously v A @ and v/ A @' are also closed forms, and

VA=V A =0V -V)ANo+VA(w-o)=dpNo+V Nda
=dlpho+ (=1)"VAag)+ (=1)"p Adw — (=1)"dV' A a.

The last two terms vanish since w and V' are closed forms. Hence, v A w — vV A o’
is an exact form. This implies that v A (w — @') and (v — V') A @ as special cases
of the just considered one are also exact forms. This altogether means that the
cohomology class [v A w] does not depend on the representatives of the coho-
mology classes [v] and [w], and one may define a wedge product in H)j,(M) by

VA o] =[vA o). (5.45)

Therefore, the de Rham cohomology Huk(M), the direct sum of all H),(M), is
indeed again a graded algebra.

5.5 Homology and Homotopy

The alert reader may anticipate from the last section that there is a close con-
nection between the homology of chain complexes and homotopy.

Let F : M — N be a (smooth) mapping from the (smooth) manifold M into the
(smooth) manifold N. (Recall that generally smooth entities are considered in this
volume.) Let C(M,R) be the chain complex on M. A (smooth) singular r-simplex
o € C(M,R) is a mapping of a neighborhood of the standard r-simplex in R" into
M. Clearly, F.(0) = Foo is a singular r-simplex in N. Since the oriented
boundary of ¢ was defined in (5.25) as the push forward by o of the oriented
boundary of the standard r-simplex, it is clear that F, maps cycles on M into cycles
on N and boundaries on M into boundaries on N. These mappings need of course
not be one—one, also, M and N need not have the same dimension. Recall that a
singular r-simplex in N even may consist of a single point. Nevertheless, and that
is one of the main advantages of singular chains, it is clear that F, o0 =00 F,
and that F, : H.(M,R) — H,(N,R) is a homomorphism of vector spaces. Indeed,
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if z; ~ z, are homologous chains of C(M,R) then F.(z1) ~ F.(z2) are homologous
chains of C(N,R).

Now, let F; and F, be two homotopic mappings from M into N, that is
(Sect. 2.5), there is a continuous mapping H : [0, 1] x M — N with H(0,-) = F;
and H(1,-) = F,. H may be extended to I x M where I is an open neighborhood in
R of the closed interval [0, 1]. Together with M, I x M is also a smooth manifold.
Hence, H may be assumed to be smooth since F; and F, are smooth and a
continuous function on a smooth manifold (which latter is locally diffeomorphic
with R") may be arbitrarily closely approximated by a smooth function.

Let z € C(M,R) be an r-cycle. Then, (Id;,z) € C(I x M,R) is a singular
(r + 1)-chain, which is the image of an (r + 1)-cylinder in R"™! of height 1 whose
basis and top is the same cycle of ordinary simplices. Clearly its boundary is
(1,2) — (0,z) (Fig. 5.6, z itself as a cycle has no boundary). Hence, H.(Id;,z) €
C(N,R) is also a chain whose boundary is (F3),(z) — (F1),(z). Since the latter
difference is a boundary, (F;),(z) ~ (F2),(z) are homologous:

The homomorphisms in homology (Fy), and (F,), of homotopic maps F| and
Fy from M into N are the same: (Fy), = (F2),.

Finally, let M and N be homotopy equivalent, that is, there exist mappings
F:M— N and G:N — M so that GoF = 1dy and F o G = 1dy (Sect. 2.5).
Since (Idy), : H,(M,R) — H,(M,R) is the identity homomorphism and
(GoF), =G, oF, (cf. p. 73), it follows that G, = (F,)”" and hence H,(M,R)
and H,(N,R) are isomorphic:

Homotopy equivalent manifolds have isomorphic homology groups.

Consider now a contractible manifold, that is, a manifold that is homotopy
equivalent to the one-point manifold {x}. In the latter manifold, every singular »-
simplex is a constant mapping ¢” of the standard r-simplex to x. Hence, every r-
chain is given as k", k € R, »>0. From (5.25) it follows that for r > 0 the
boundary of k¢” is ko"~1if ris even and is the zero r-chain, if r is odd. That means
that for r > 0, r odd, every r-chain is a cycle and at the same time is a boundary of
an (r + 1)-chain, while for r > 0, r even, there are no non-zero cycles. In sum-
mary, all homology groups H,({x}, R) for r > 0 are trivial (consist of the zero
element only and hence are also zero-dimensional). In view of the last theorem the
same is true for any contractible manifold, which also proves (5.37).

Fig. 5.6 A cylinder of height ‘
1 with a cycle z (boundary of 1
a triangle) as basis
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Coming back to the homotopy H of the two homotopic mappings F; and F,
from M into N, consider first two cohomologous r-forms o' ~w? on
N, d(w? — ') = 0. They are pulled back to M by (F;)*, and, since according to
(4.43) any F* commutes with d, cohomologous r-forms on N are pulled back to
cohomologous r-forms on M. Moreover, since any F*:D(N) — D(M) is a
homomorphism of algebras (see p. 111), one finds:

The pull back F* due to a smooth mapping F from M into N provides a
homomorphism from the de Rham cohomology algebra Hyr(N) into Har(M).

With the definition (5.27, 5.28) of integrals of singular chains, the above
considerations of the functors F, and F* immediately imply

/F*(w): / o, c¢€CM,R), we D). (5.46)

c F.(c)
With this relation, from the definition (5.40) it follows that
((F* ()], [2l) = ([], [F-(2)]), z€Z(M,R), ® € DN), do =0,  (5.47)

for the homology and cohomology classes. With the non-degeneracy of the bilinear
form (-,-) which was deduced from de Rham’s theorem on p. 134, one arrives at
the result that homotopic mappings F = F, (which yield the same homomor-
phisms (F}), = (F2), in homology) yield also the same homomorphisms (Fy)" =
(F2)" in cohomology. Historically, the latter result was in an earlier context proved
independently from de Rham’s theorem by Poincaré by a direct analysis using
coordinate neighborhoods and was used by de Rham to prove his theorem.
Directly from de Rham’s theorem and the situation with homology it follows:

Homotopy equivalent manifolds have isomorphic cohomology groups.

As an example consider again a one-point manifold {x}. It is zero-dimensional,
and hence all D’ ({x}) for r > 0 are zero-dimensional. The above theorem yields in
an extremely simple way that all groups Hz(M) ~ H,(M,R) for r > 0 are trivial
for a contractible manifold M. Generally, cohomology is easier to handle than
homology which circumstance substantiates the central role of de Rham’s theorem
in algebraic topology.

These interrelations between homology and homotopy have a very important
consequence. At the beginning of this section the fact was used that every ho-
motopy can arbitrarily closely be approximated by a smooth homotopy provided
the manifold is smooth, that is, the manifold is locally diffeomorphic to R". With
the same homotopic approximations of continuous mappings by smooth mappings
it can be proved that all homology and cohomology results obtained for smooth
mappings between manifolds hold true for only continuous mappings provided
only that the considered manifolds themselves are smooth. In particular, the
oH,(M,K) are isomorphic to the H.(M,K) (therefore the presubscript co was
already omitted) and for K =R both are isomorphic to Hjp(M).
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In order to emphasize the duality between homology and cohomology, the
algebra D(M) is also called a cochain complex C*, the closed forms are then
called cocycles, forming sets Z'(C*) C D"(M), and exact forms are called co-
boundaries, forming sets B"(C*) C Z"(C*) C D"(M). The derivation operator d is
called a coboundary operator in this context.

It would be desirable to have also a pure cohomology notion of homotopy. Let
again F; and F, be two homotopic mappings from a pathwise connected manifold
M into N, let @™ and d" be the exterior derivations in D(M) and D(N). Suppose
there exist linear mappings h, : D" (N) — D"~'(M) (h, = 0 for r <0) so that for
every o € D'(N)

by (dV0) + d" h,(0) = (F2)" () - (F1)" ().

If w is closed, the first term is zero and the second is exact. Hence, the left hand
side is exact for every closed w, which is precisely the property of the right hand
side, if | and F, yield the same homomorphism in de Rham cohomology from
Hr(N) to Har(M). This is the case since F; = F,. (The first term on the left hand
side is needed since for a general w not every form (F,)"(w) — (F1)"(w) is closed
even for homotopic F;.) Specifically, for r = 0 a closed form is a constant on every
connected component, hence the right hand side is zero for homotopic mappings
from a pathwise connected manifold. In the above relation, # may be considered as
an endomorphism from D(N) into D(M) of degree —1, and, in an operator notion,
the relation may be written as

hod+doh=(F) — (F))". (5.48)

If such an operator 4 exists it is called a homotopy operator for F| and F,. This
compares with the mappings z — (Idj, z) and H,(Id;, z) and the boundary operators
0; x M and Oy of homology which were combined to yield (F»),(z) — (F1),(z) on
p- 136.

As an example consider the mappings Fy : M — {x} C M and F, = Idy, for a
contractible manifold M. Then, F; = F, and (F;)" = 0 for r > 0 as previously for
a pull back from the one-point manifold while (F;)" = Idp ). The existence of a
homotopy operator # in this case,

/’lOd—‘rdOh:IdD(M)
was proved by Poincaré and its explicit form in coordinate neighborhoods was
given [1, paragraph 4.19]. This way he proved that on contractible manifolds the

condition dp =0 is not only necessary but also sufficient for the differential
equation dw = p to have a solution w.

5.6 Homology and Cohomology of Complexes

The algebraic structure of a cochain complex has a variety of applications in
algebra and topology. Let K be a field (for instance K = R, or more generally let K
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be a ring, for instance K = Z) and let C* = (...,C~!,C% C!,...) be a sequence of
vector spaces over K (more generally a sequence of K-modules; an example of a
Z-module is a crystal lattice; unlike the case of a vector space, the equation
Jx+uy =0, ,u€K,x,y€ C need not have a solution x for all y in a module
ch).

As already mentioned, a cochain complex C* is a sequence

r—1 r
s e Lot S Imd! C Kerd' (5.49)

As previously, instead of d” often d is written for all r. It is called the coboundary
operator and has obviously the property d o d = 0 which is equivalent to the right
relation of (5.49). B'(C*) =Imd"! is the set of degree r coboundaries, and
Z"(C*) = Kerd" is the set of degree r cocycles.

The quotient module (space)

H'(CY) = Z'(C")/B'(C) (5.50)

is called the rth cohomology module (or cohomology group). One also introduces
the direct sums

C*=@a,C", H(C')=@aH(C) (5.51)

as graded modules (vector spaces, sometimes even algebras as in the de Rham
cohomology). A graded morphism f of degree s from a graded module C* into a
graded module D* is a sequence of homomorphisms f” from C” into D"**. (d is a
graded morphism of degree 1 from C* to C*.)

A cochain mapping f : C* — D* is a graded morphism of degree 0 for which
each diagram

r+l ! r+l
C — D

d’T Td’ (5.52)
c L. p

commutes. Because of this commutativity, f sends cocycles into cocycles and
coboundaries into coboundaries (exercise). Hence, it canonically induces a graded
morphism (also denoted by f)

H*(CH) L1 (D). (5.53)

One could denote the cohomology mappings by H(d) instead of d and by H(f)
instead of f, and consider H a functor from the category of cochain complexes into
the category of graded K-modules (see C.1).

With respect to their algebraic structure, homology and cohomology are totally
symmetric. One may drop all prefixes ‘co’ in the above text and reverse all arrows
(or equivalently reverse all degrees of grading) and obtain the completely anal-
ogous homology structure. Hence, all algebraic statements on cohomology
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transfer to homology, and in algebra both names cohomology and homology are

used synonymously. The preference of ‘co’ comes from applications in topology.
Consider a short exact sequence (p. 132) of cochain mappings

0—cLp*E 0 (5.54)

which expands in detail into the diagram

R

00— Cr+2 f Dr+2 g Er+2 — 50

B |

0—C* L p+t L, gl L0 (5.55)
d |
f g

00— ¢ — D' — E" —0

o

where every cell of arrows is a commutative diagram. The horizontal short exact
sequences mean that E” = D"/C" are quotient modules and f” is the canonical
injection of C” into D" as a submodule, while g" is the canonical surjection of D"
onto E” by mapping the elements of D" to their equivalence classes in E’.

Pick any cocycle z € E7, thatis, 0 = dz € E'*!. Since g" is surjective, one finds
(not uniquely) an element ¢ € D" so that gc = z. Commutativity means dg" =
g""'d},. (Superscripts and subscripts are used occasionally for the sake of clarity.)
Therefore, gdc = dgc = dz = 0 must hold implying dc € Ker g™ = Im f"*! or,
in other words, there is an element ¢’ € C'*! for which f¢’ = dc and hence dfc’ =
ddc = 0. Now, from the commutativity dj,"'f™*! =24 it follows that
0 = dfc’ = fdc', and the injectivity of f implies dc’ = 0. Hence, ¢’ is a cocycle,
¢’ € Z1(C*). In this sequence of mappings, ¢’ = f~'dc € f~'dg~'z, the element
¢ € g~ 'z was not necessarily uniquely determined, because g need not be injective.
However, since E" = D"/C’", the element ¢ is determined modulo an additive
element ¢ € D" for which there is an element ¢ € C” with f¢” = ¢ and, because of
the commutativity djf” = f"*'dr., it holds that fd¢” = df¢” = de. Surjectivity of
f finally guarantees an element ¢’ for which f¢’ = d¢ = fd¢” and hence ¢’ = d¢”,
that is, ¢ is a coboundary, ¢’ € B"*!(C*). To summarize, ¢’ € Z'™1(C*) is deter-
mined by z € Z"(E*) up to a coboundary, or, the mapping ¢’ € f~'dg~'z induces
homomorphisms & : Z"(E*) — Z"1(C*) /B! (C*). Now, specifically pick
z=>b € B"(E*) to be a coboundary. Then, there are elements ¢, € C"~! so that
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dgc, = b = gdcp, = gc and hence b = gc where now ¢ = dc;, itself is a coboun-
dary. Hence, by the above reasoning, ¢" maps a coboundary b € B"(E*) into a
coboundary ¢ € B"*1(C*). Thus, it induces canonically a graded morphism (also
denoted 0) of degree 1

H(E)) -5 H*(CY). (5.56)

As it was shown, 0 is uniquely determined by the short exact sequence (5.54), that
is, by the quotient structure of the cochain complex E* = D*/C*.

By similar tedious but straightforward chasing around the diagram (5.55) it can
be shown that the sequence

ol () LH (DY) S (B
s ; . 5 (5.57)
—H"(C")—H"(D")—H" (E*)— -

is exact.

The link between this purely algebraic (co)homology theory and topology is
provided by sheaf theory. A sheaf of modules is a topological space X each point of
which is attached with a K-module (a stalk) and a quite fine topology is extended
from X to the sheaf. (The germs [F] of real functions F on open sets U C M with
x € U form the stalks JF of a sheaf of R-algebras on M, see Sect. 3.3. Sheaf theory is
mainly a rather abstract application of diagrams of commuting and exact parts
(sometimes in a positive sense called ‘abstract nonsense’). It is used to prove the de
Rham theorem and the equivalence of many homology theories. It is not considered
here since it would digress from the main goal of this text. The interested reader is
referred to the concise and clear introduction by Warner [1, Chap. 5].

The central role of (co)homology in topology derives from the fact that the
homology groups are the best understood topological invariants. It was seen in
Sect. 5.5 that even homotopy equivalent manifolds have up to isomorphy the same
homology and cohomology groups. (Recall from Sect. 2.5 that topologically
equivalent spaces, that is, homeomorphic spaces are homotopy equivalent; the
inverse is not in general true, e.g. a single point and a contractible space are
homotopy equivalent.) The (co)homology groups for the same topological space
depend, however, in general on the ring K. In this respect, most important is the
case K = Z, because from the (co)homology groups of this case those for all other
rings K may be straightforwardly calculated by applying results of algebra. On the
other hand, the de Rham theory holds for the case K = R. As another example of
the above algebra, the classical theory of polyhedra in combinatorial topology is
shortly considered.

A polyhedron |c| in R" is the union (of sets of points of the R") of a collection
of r-simplices S} of (5.17) in regular mutual position. If {vo,...,v,} is the set of
vertices of the simplex S7, then any proper subset of s + 1, s <r, vertices spans an
s-face of the r-simplex S which itself is an s-simplex. (The vertices themselves
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Fig. 5.7 A polyhedron
consisting of one tetrahedron
and three triangles

are 1-faces.) Regular mutual position of simplices of the polyhedron means that
any two of the simplices of the polyhedron either are disjoint or intersect precisely
by some faces of either simplex. The collection of all distinct vertices v = {v; |j =
0,...,1} of the simplices of the polyhedron are put into a fixed order. Then, there is
a one—one correspondence between simplices S; of the polyhedron and subsets c;
of the set v consisting of r vertices in an order derived from v. A set c is formed the
elements of which are all those subsets ¢; corresponding to the simplices S} of the
polyhedron, and to all distinct faces of simplices contributing to c. For instance, in
Fig. 5.7 a polyhedron consisting of one tetrahedron and three triangles is shown.
Into its set ¢ one four-point set, 7 three-point sets corresponding to the 7 triangles
including the four faces of the tetrahedron, 14 two-point sets corresponding to all
distinct legs of the triangles, and 10 one-point sets corresponding to the 10 vertices
of the polyhedron enter. The set c is called the abstract complex corresponding to
the polyhedron. It is easily seen that by the given convention there is a one—one
correspondence between actual realizations of polyhedra by simplices and abstract
complexes. However, for a given polyhedron there is an infinite many of possi-
bilities of realizations by simplices. For instance, a triangle may be given by a set
of smaller triangles in regular mutual position. The set of simplices corresponding
to the ¢; of the abstract complex is called the geometrical complex. The geo-
metrical complex of the polyhedron of Fig. 5.7 consists of one tetrahedron, 7
triangles, 14 line segments and 10 points (vertices). An orientation is defined in
both the abstract and the geometrical complexes by defining the simplices in the
fixed order of their vertices as positively oriented. An odd permutation of the
vertices reverses orientation. Linear combination of the elements ¢; of an abstract
complex with coefficients of some ring K and introduction of the boundary
operator derived from (5.19) make it into a chain complex, which is isomorphic to
a subset of the complex of continuous singular chains (C(|c|,K) considered in
Sect. 5.4. Indeed it can be shown that the homology groups of this complex and
those of chains of the abstract complex of the polyhedron |c| are isomorphic.

Before considering the homology of chains of an abstract complex, a simple
result on embedding of polyhedra is considered. The dimension of a polyhedron
is the largest dimension » = m of a simplex entering the polyhedron. m 4 1 points
Vo, ..., Vi Of the R"(n >m) are linearly independent, if the vectors from vy to the
v;, i = 1,...,m are linearly independent. This does not depend on the order of the
v; and on which of them is taken to be vy. For an arbitrary number m, m points of
the R" are in general position, if any n + 1 of them are linearly independent.

An m-dimensional polyhedron with | vertices may be embedded into R by
choosing arbitrarily | vertices in general position.
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Proof Obviously, all polyhedra with the same number of vertices grouped in the
same way into simplices are homeomorphic. (Recall that geometrical simplices of
polyhedra are in regular mutual position.) Distribute the vertices of the polyhedron
in general position over the R*"*! and consider the geometrical simplices with
these vertices corresponding to the simplices of the polyhedron. Let S7 and S5 be
two simplices of the polyhedron, hence r,s<m. Consider the (r-+s+ 1)-
dimensional simplex spanned by all r + s + 2 vertices of the former two simplices
of the polyhedron. It may not be part of the polyhedron, but some part of its
boundary is. All simplices of the boundary of a given simplex are in regular mutual
position. Hence, the obtained embedding is homeomorphic to the originally given
polyhedron. U

This result may be used to prove that every compact smooth m-dimensional
manifold may be embedded in the R*""! [2]. Much harder is it to prove the fact
that the same also holds for non-compact manifolds. (Note also that much higher
dimensions may be needed to embed a metric manifold isometrically into some
R™)

Now, let a polyhedron |c| of dimension m in R" be given and consider the
corresponding abstract complex c. The collection of all abstract simplices c¢; of ¢
with dimension <r is called the rth skeleton ¢ of ¢ = ¢™. Let C,(c,R) be the
chain module (in fact a vector space in this case) over K = R generated by all
simplices ¢; € ¢\ ¢"~!, that is by all r-dimensional simplices of c. This implies
C,(c,R) = {0} for r<0 and for r > m. Let C(c,R) = &,C,(c,R) be the chain
complex of the abstract complex ¢ corresponding to the polyhedron |c| of
dimension m.

The boundary operator 0 induced in ¢ by (5.19) obviously has the properties
dc” C ¢" ! and d 0 @ = 0. By linearity it generalizes to a boundary operator d in
C(c,R) which is a graded morphism of degree —1 of the graded vector space
C(c,R). B(c,R) =0C(c,R) contains the boundaries of C(c,R), and B(c,R) C
Z(c,R) = Ker0, the set of cycles of C(c,R). The homology groups (vector
spaces) of this chain complex are H,(c,R) = Z,(c,R)/B,(c,R).

Among the polyhedra |c| of dimension m there are in particular polyhedra
which are also C’-manifolds M of dimension m. In a quite similar manner as for
Ho(M,R) on p. 133 it is easily seen that dim Hy(c,R) is equal to the number of
components of the polyhedron (two in the case of Fig. 5.7). Hence, for a poly-
hedron |c| = M which is a manifold, both groups are isomorphic, Hy(c,R) =
Ho(M,R). Assume further |c| =M, dim|c|] =dimM = m, and consider an
m-cycle of singular simplices, which is a chain of mappings of standard m-sim-
plices into |c|. If its image would contain only part of a given m-simplex of c, it
could not be a cycle, since it would have a boundary in the sense of singular
simplices. Hence, its image can only consist of whole m-simplices of ¢, and to be a
cycle in C,,(M,R) these m-simplices must form also a cycle in C(c,R). Since in
both chain complexes there are no m-boundaries (C,4; = {0}), one has
H,(M,R) =Z,(M,R) = Z,(c,R) = H,(c,R).
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Next consider a singular (m — 1)-boundary the image of which lies entirely in
the (m — 1)-skeleton ¢”~! of c. In order to do so it must be the boundary of a
singular m-chain the image of which consists of entire m-simplices of |c|. Con-
sequently it is also a boundary in C,_i(c,R). Of course, a general singular
(m — 1)-boundary need not have this property that its image lies entirely in ¢~ !.
This image may instead intersect the interior of an m-simplex of |c| as a hyper-
surface of dimension smaller than m. But then obviously it can homotopically be
moved into ¢”~!. In summary, two homology equivalent cycles of Z, ;(c,R)
correspond to homology equivalent cycles of Z,_;(M,R). An arbitrary cycle of
Zn—1(M,R) may likewise homotopically be moved into the skeleton |c”~!|. Then,
by repeating the above consideration with |c| replaced by the skeleton |¢”~!|, one
finally has H, (M,R) =~ Z, ((|¢" '[,R)/Bu_1(|c"'|,R) = Z,_1(c,R)/Bp_1(c,R) =
Hm,1 (C, R)

By repeating these considerations for skeletons |c¢"| of lower dimensions
one finds that indeed for |c| =M the homologies H(M,R) and H(c,R)
are isomorphic.

Of course there exists an abstract formal proof replacing these plausibility
considerations which however needs further technical tools.

C,(c,R) is a finite-dimensional real vector space of which the r-simplices of ¢
form a basis. A linear functional f on this vector space maps every r-simplex c; to
a real number (f, ¢;) and extends to all C,(c, R) by linearity. The set of all linear
functionals forms the dual vector space C'(c,R) = (C,(c,R))" of the same
dimension as C,(c,R). Let d be the operator in C"(c¢,R) adjoint to 0, that is,
(df ,ci) = {f,0c;), and extension by linearity. From (ddf,c;) = (f,00¢;) =0 it
follows immediately that d o d = 0. Clearly, C*(¢,R) = &,C"(c,R) is a graded
vector space and d : C"(c,R) — C"*!(c,R) is a graded morphism of degree +1.
Hence, C*(c,R) is a cochain complex. Consider two homologous cycles z, 7 =
z+ Ou, 0z = 07 = 0 and two cohomologous cocycles f, f' = f +dg, df = df’ =
0. It follows {f,z') = {f,z) and {f’,z) = {f,2), hence (f,z) = ([f], [z]) where [z]
and [f] are the (co)homology classes of z and f and the statement is that the linear
functional is independent of the representatives within these classes. This, how-
ever, means H*(c,R) = (H(c,R))", and, since dual finite-dimensional vector
spaces are isomorphic, the cohomology H*(c,R) is isomorphic to the homology
H(c,R). Together with the de Rham theorem one has

Harlle) ~ H(lel,R) ~ H(c,R) ~ H'(c, R). (5.58)

However, the relation between polyhedra |c| and abstract complexes c is as already
mentioned not one—one. It immediately follows that abstract complexes c related
to the same polyhedron |c| have the same (co)homology groups. The reader should
check this in a few simple cases of small complexes ¢ by direct verification.

On p. 133 it was already stated (and proved in Sect. 5.5) for real singular chain
complexes that all homology groups for r > 0 of a contractible space are trivial.
Since the n-dimensional unit ball B" is contractible, H,(B",R) = {0}, r > 0; and
Hy(B",R) =R, since B" is pathwise connected. Hence,
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B'={reR'|r|<1}, Hy(B",R)=R, H,(B"R)={0},r#£0. (559)

The same is true for a single n-simplex since it is homeomorphic and hence all the
more homotopy equivalent to B". Let ¢ be the complex of a single n-simplex.
Then, for 0 <r<n the skeleton ¢" consists of all faces of all simplices of e
Hence, ¢”\ ¢"~! consists of the r-faces of a collection of (r + 1)-simplices. The
r+ 2 r-faces of an (r + 1)-simplex form an r-cycle. It can now be inferred from
(5.58, 5.59) that every r-cycle (0<r<n) is the boundary of a collection of
(r + 1)-simplices. This fact is hard to prove directly with polyhedra.

Consider now the polyhedron |¢"~!| where c is again the complex of a single
n-simplex. This polyhedron is homeomorphic to the (n — 1)-sphere $"~!. (Find as
an exercise a continuous one—one mapping.) For n — 1 <r <0, the same holds true
as above. However, the single (n — 1)-cycle ¢"~!\¢"~2 of this case is not any more
a boundary because ¢ does not any more belong to the polyhedron. Hence,
H,(|c*"'|,R) = R and in total

S = {reR||r =1},

n—1 n—1 n—1 (560)
Hy(S" ", R)=H, (8" ,R) =R, H(S" ", R)={0}, r#0,n—1.

In both cases, the arguments and the results remain the same, if K = R is replaced
by K =Z.

The interior of an n-simplex is homeomorphic to an open n-ball and its
boundary is homeomorphic to an (n — 1)-sphere. The latter is homeomorphic to an
open (n — 1)-ball compactified by a point. A point is considered as an open 0-ball.
Spaces, homeomorphic to an open ball are called cells. Instead of building a
topological space which is homeomorphic to a polyhedron out of simplices, it can
be build out of cells. Then, cell complexes and (co)homologies of cell chains are
obtained which latter can again be shown to be isomorphic to (5.58). They often
provide an even simpler approach to the (co)homology groups. For the calculation
of (co)homology groups, all kinds of isomorphies and of homotopies are exten-
sively exploited.

For instance, for compact oriented n-dimensional manifolds M, Poincaré’s
duality is the isomorphism

H,_.(M,R) ~ H'(M,R), (5.61)

where H" means the dual of H,. In view of (5.58) this also means " = " for the
Betti numbers in this case. Poincaré studied this duality (and coined the name Betti
numbers in honor of the Italian pioneer of topology, Enrico Betti), but it was
proved in general only with the help of so-called cup and cap products which
extend the (co)homologies of simplicial chain complexes into graded algebras like
the de Rham algebra (see p. 135) and which are not considered here. It is only
mentioned that in view of de Rham’s theorem (5.61) implies Hj(M,R) ~
Hp"(M,R) which implies that for every r-form o on M there is an (n — r)-form t
so that (w,7) = [, AT #0.



146 5 Integration, Homology and Cohomology

Flg..5.8 A two-dimensional a1 by & by az bg ag
manifold of genus g. The
upper part shows a torus T§
with g holes, the lower part
shows a ball with g handles.
See text for further
explanations

As another example, a two-dimensional pretzel Tﬁ with g holes is sketched in
the upper part of Fig. 5.8. To each hole, there correspond two cycles a;,b;,
i=1,...,g which are not boundaries as was already discussed previously for the
torus. Each of them represents a homology class of similar cycles, and any other
cycle which is not a boundary as for instance ¢ may be represented as a combination
of the cycles a;, b;, for instance ¢ = b; — b,. By homotopically deforming this torus
(and thereby contracting a path from point A to point B, dotted in the upper part of the
figure, into a single point A of the lower part), the torus is deformed into a topo-
logically equivalent ‘sphere with g handles’. Both surfaces are homology equivalent
and called surfaces of genus g. This can be summarized into

Ho(T;,R) = Hy(T;,R) =R, H,(T},R) = R*. (5.62)

It can be shown that any connected compact oriented two-dimensional manifold is
homology equivalent either to a sphere (g = 0) or to one of these spheres with
handles and is homologically characterized by its genus.

At the end of Chap. 2 it was stated that our knowledge about the homotopy
groups 7,(S"), m > n is limited; however, unlike this largely unsolved problem
on mappings between spheres of high dimensions, all (co)homology groups
H,,(S",K) are known and are trivial for m > n. Discovered half a century later
than regular simplicial homology and homotopy, (co)homology nevertheless
turned out to be a much simpler concept than homotopy to find topological
invariants (but also providing less of them).

5.7 Euler’s Characteristic

Consider a polyhedron |c| or a manifold homeomorphic to a polyhedron, and
consider an abstract complex ¢ corresponding to that polyhedron. Denote the
number of r-simplices in ¢ by a,(c). Then, the Euler—Poincaré theorem states
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Fig. 5.9 A pentagon
subdivided into three
triangles

w(lel) =D (=1 aule) = Y (=1)F (lel). (5.63)

r r

The middle expression of this relation is called Euler’s characteristic y of the
polyhedron |c|. Leonard Euler observed that for any closed three-dimensional
ordinary polyhedron og(c) — a1(c) + a2(c) =2 holds (number of corners —
number of edges + number of faces), even if arbitrary polygons are considered as
faces of the polyhedron (their number being a,(c)). If a polygon with n corners is
divided into triangles, n — 3 more edges (legs of the triangles) and n — 3 more
faces (n — 2 triangles instead of the single polygon) are introduced cancelling in
the first sum (5.63). Figure 5.9 shows as an example the subdivision of a pentagon
into three triangles by introducing two more legs. The number of triangles equals
the number of pentagons (one) plus 2 =5 — 3.

The surface of an ordinary polyhedron is homeomorphic to a 2-sphere. The
latter has Betti numbers f° = 1, ' =0, > = 1 yielding 2 in the second sum of
(5.63). Thus, Euler found a topological invariant in the 18th century.

Proof of the second equality of (5.63) Observe the simple facts that for a
homomorphism of vector spaces f:X — Y the relation dimX = dimImf +
dim Ker f holds, and that for a chain complex

0—Z7.=Kero, - C, - B,_;y =Iméd, — 0

is an exact sequence. Hence, dim C, = dim Z, + dim B,_; where for an abstract
complex dim C,(c,R) = «, since C,(c,R) is spanned by the abstract r-simplices.
On the other hand (again for vector spaces), H,=Z/B, implies
dim H, = dim Z, — dim B,, and Poincaré’s original definition of Betti numbers was
p" = dim H,(c,R). Inserting all that into (5.63) proves equality there. Agreement
with (5.36) comes from the isomorphy (5.58) between singular simplicial chain
homology and abstract simplicial chain homology. U

Since the Betti numbers are topological invariants, Euler’s characteristic is also
a topological invariant, and the first sum of (5.63) is independent of the ‘trian-
gulation’ of the polyhedron, its subdivision into simplices, and also is the same for
homeomorphic polyhedrons. The second sum is defined for any space homotopy
equivalent to a polyhedron, and so is Euler’s characteristic. Moreover, combining
the last sum of (5.63) with Poincaré’s duality (5.61) and using of de Rham’s
theorem leads immediately to the result that Euler’s characteristic of a compact
orientable manifold of odd dimension is zero.
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Euler’s characteristic has many applications in topology and geometry. The
above proof fits into a much more general scheme. Consider the category of
K-modules and a fixed Abelian group A. Consider further an Euler—Poincaré
mapping ¢ of K-modules into A, that is a mapping with the following property:
For every exact sequence 0 — M’ — M — M” — 0 of K-modules, if ¢(M’) and
¢(M") exist, then ¢(M) exists and ¢p(M) = H¢(M') + ¢p(M"). (For R-vector spaces
M, A =7 and ¢(M) = dim M this is obviously the case of the proof above.) Now,

let0 — C L>Di>E — 0 be an exact sequence of chain complexes of K-modules

with morphisms f and g of degree O like in (5.54) (there it was written for the
cochain case which just means a sign reversion of the degree of grading). Define
the characteristic y,(C) = >_.(=1)"¢(C,). Then, if the characteristic y, is
defined for two of the complexes C,D, E, then it is defined for the third one and
% (D) = 24(C) + 14(E). This results from the existence of the long exact
sequence H of (5.57) which can be viewed as a chain complex of K-modules with
trivial homology (all H,(H) = {0}) in which each H,(C) or H,(D) or H,(E) is
placed between modules H, or H,; of the two other chains C, D, E. Since because
of the triviality 0 = y,(H) = 74(C) — 14(D) + x4(E) (all ¢(H,(H)) = 0), the
above statement follows.

If one defines B/ (c,R) = B,_1(c,R) and considers the exact sequence 0 —

Z(c,R)—C(c, R)iﬁﬂL (¢,R) — 0 of chain complexes of real vector spaces with
the canonical injection 1 and the boundary operator 0 of the simplicial complex
which due to the definition of the grading of B is of degree 0, then without
thinking one obtains (with ¢(M) =dimM) y4m(C) = %d4im(Z) + Yaim(BT) =
Yaim(Z) = Yaim(B) = aim(Z/B) which is again (5.63).

Given a set A of modules over the same ring, defined up to isomorphism and
such that for every exact sequence 0 - M — M — M” — 0 the module M
belongs to A, if M’ and M” belong to A, the set of Euler—Poincaré mappings
(¢,A) has a universal element (y, K(A)), that is, an Abelian group K(.A) and a
mapping 7 so that every A is a subgroup of K(.A) with injection 1 and ¢ = 10 y.
K(A) is Grothendieck’s K-group of A. K-theory is another powerful tool to prove
theorems in algebra and topology.

5.8 Critical Points

As an application of (co)homology theory of great relevance in physics, the Morse
theory of critical points of smooth real functions on smooth manifolds is con-
sidered. Again the adjective smooth is dropped in the text.

Let M be an m-dimensional manifold and F € C(M) be a real function on M.
Let xo € M and let U, C M be a coordinate neighborhood of x, with coordinates
(x',...,x™). The subscript o is dropped where there is no risk of clarity.
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The restriction F|;, is given by F,(x',...,x") o ¢,. A critical point x of F is a
point where the differential dF vanishes, in local coordinates

oF,

=7 =0 i=l..m. (5.64)

X0

This definition, like dF', is independent of the actual local coordinate system o, since
the Jacobian matrix (lﬁ/};)f of the second line of (3.7) is regular between two local
coordinate systems. The real value of F at the critical point is a critical value F(xp).

The critical point x is non-degenerate, if the Hessian of F, at x,
0%F,
OxiOx/

, (5.65)

Xo

is a non-degenerate (i,j)-matrix. Again, this condition is independent of the used
local coordinate system. The index of the non-degenerate critical point is the
number 4, of negative eigenvalues of the Hessian of F, at xo. Since the Hessian is
non-degenerate, it has all eigenvalues non-zero. A family of local coordinate
transformations with regular Jacobian matrices, smoothly depending on parame-
ters, cannot transform the determinant of the Hessian to zero, hence the eigen-
values cannot smoothly change sign depending on local coordinate systems. The
index again is uniquely defined for a function F. Clearly, if the index is O, F has a
minimum, if the index is m, F has a maximum, and if the index has another value,
F has a saddle point.

Consider a function F that has at most finitely many critical points on a compact
manifold M without boundary. By the Weierstrass theorem, F' takes on its minimal
and maximal values on M. (Would that happen on a boundary, the corresponding
points would not necessarily be critical.) Denote by M, the subset F~!((—o0, ¢)) of
M, that is, the set of points x € M with values F(x) <, and denote by S, its boundary
given by F(x) = c. Clearly, M, C M, for ¢’ <c. One may think of M as an m-
dimensional generalization of a geographical surface of a porous ground and F as a
gravitational potential. If this geography is gradually flooded up to sea level ¢ (in
terms of a gravitational potential level), then M, is the part of the geography under
water. (In fact just this problem was analyzed for m = 2 in a paper by J. C. Maxwell
in 1870 that can be regarded as the early root of Morse theory.)

In the following, local coordinates are used and the subscript o is dropped
throughout. In Chap. 9 it will be shown, that in every smooth manifold a
Riemannian metric g7, g/gy = 52, (p- 107) can be introduced. Consider the tangent
vector field, in local coordinates given by

dx’ - OF oF oF\ !
- ot [ ok 2 2T
dt o(x)g ox/ ( Oxk 6xl> (5.66)

(Einstein summation understood). At non-critical points it is parallel to the tangent
vector g/0F /0x/ and hence in the Riemannian metric orthogonal to SF@)-
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(The Riemannian metric is needed to ensure that this expression is regular at non-
critical points.) At critical points the right hand side of (5.66) is not defined.
Therefore, the smooth non-negative prefactor ¢(x) is introduced which is defined
to be unity outside 20-balls centered at all critical points and zero inside the
corresponding J-balls. The right hand side of (5.66) is defined to vanish inside
those d-balls. This vector field can be integrated to a local 1-parameter group ¢, (x)
with the obvious property

w:%%: —o(x) <0 (5.67)

for which purpose it was constructed. For # > 0, ¢, maps every set M, into itself.

Let ¢’ > ¢ such that for some small e the interval (¢ — €, ¢’ + €) does not contain
critical values of F. Then, 0 can be chosen small enough so that ¢(x) =1 on
My \ M. since for any real interval of F-values there are at most finitely many
critical points. Take ¢ € [0,¢’ — ¢| and integrate (5.67) to F(¢y_.(x)) — F(x) =
¢ — ¢ for x € S». Hence, ¢_. maps S into S.. Likewise it is seen that it maps
continuously (by the integral flow of a smooth tangent vector field) M, into M.,.
Generally, from 0 < ¢ <1 in (5.67) it follows that |F(¢,(x)) — F(x)| <|¢|, hence
¢ o = (¢o_.)"" maps continuously M, into M. It follows that My and M, are
homeomorphic.

A topological space M is called of category k = cat(M), if it can be covered
with k contractible subsets of M but not with fewer number. A sphere S”, n > 0 for
instance is of category 2, cat(S") = 2, since it is not itself contractible, but can be
covered with two contractible half-spheres. Category is a topological property,
homeomorphic spaces like for instance M, and M above have the same category.

If ¢ is a critical value corresponding to r critical points, then for small enough €
so that there are no more critical values in the interval (¢ — 2¢,c¢ + 2¢), by the
same analysis a flow ¢, from M, into itself is constructed. Choose ¢ such that
the 20-balls B;, i = 1,...r, around the r critical points do not overlap M,._. and
each other and are inside M. .. Then, ¢, provides a flow of parts of M. into all of
M. . C M., and of parts into the B; C M., .. Take the contraction by this flow to
see that cat(M,._.) + r contractible sets cover M.,.. Of course, several of them
may be covered by one contractible set, hence cat(M...) <cat(M._.) + r. Now,
start with co< min, F(x). Then, M, = &, cat(M,,) =0. By continuously
increasing c to a value ¢; > max, F(x), for which M., = M, cat(M,) may jump at
most C(F : M — R) times by one, where C(F : M — R) is the number of critical
points of F. (Up to here they need not be non-degenerate.) The result is

C(F: M — R)>cat(M). (5.68)

It is easily seen that for this result it would suffice that M is any manifold, with
cat(M) either finite or +o0o, and that F would have a minimum and in every finite
real interval at most finitely many critical values each corresponding to finitely
many critical points.
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Fig. 5.10 F, — c in the 2?
image of a coordinate
neighborhood. The image of
U, "M,._. is the dark
shadowed area, and that of
U, "M, consists of both
the dark and the light
shadowed areas

—(@)?2+ (22)?=€e>0

Let xy be a non-degenerate critical point of F of index / with critical value c.
A coordinate neighborhood U, C M centered at x( exists the coordinate image of
which may be chosen to be the open unit ball of R” with

Fo=c— (") = = (") + (™2 + -+ 4+ (¥)? + higher terms.

(Morse observed that always coordinates can be found that all higher terms
vanish.) Figure 5.10 shows the case m =2 and 1 = 1.

M, as an open subset of M is an m-dimensional manifold or empty. The change
of its homology at a critical value c can be studied by the change of homology of
the image of U,NM. in R™. U,NM,. . is empty for . =0, or homotopy
equivalent to a sphere §*~! (S8, that is two points, in the case of Fig. 5.10), while
U, N M, is homotopy equivalent to a point for 4 = 0, or to a ball B* (B!, that is a
horizontal line segment, in the case of Fig. 5.10; think of a third axis x* in that
figure replacing x*> while the new x?-axis should point into the drawing plane, and
put 2 =2, which makes the figure rotational symmetric around the x3-axis and
leads to a circle S' and a disk B? in the (x!, x?)-plane instead of S° and B! along the
x!-axis).

To proceed, the concept of relative homology is helpful. Let N be a sub-
manifold of M and consider the singular chain complexes on both manifolds. For
short they will be called M-chains and N-chains. Clearly, every N-chain is also an
M-chain, hence C,(N,R) is a subspace of C,(M,R), and the quotient spaces
C,(M,R)/C,(N,R) may be considered which form a chain complex in which M-
chains which differ only by an N-chain are identified. An M-chain whose boundary
is an N-chain represents a cycle in the quotient complex, and an M-chain which
combines with an N-chain to an M-boundary represents a boundary in the quotient
complex. It is readily seen that the boundary operator O for M-chains induces the
boundary operator

ar : Cr(M7 R)/Cr(N’ R) - Crfl(Ma R)/C,,](N, R) (569)
and that
0 — C(N,R) — C(M,R) — C(M,R)/C(N,R) — 0 (5.70)

is an exact sequence, which according to (5.57) induces the long exact sequence
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—H, (C(N,R)) = --- (5.71)

H(C(M,R)/C(N,R)) is called the relative homology of M mod N.

The exactness of the sequence ALBi»C of vector spaces implies
dim B = dimIm g + dim Ker g = dimIm g + dim Imf (recall Imf = Ker g). Since
dimImg < dimC and dimImf<dimA, it follows dimB<dimA + dimC.
Applied to (5.71) this yields for the Betti numbers

Br(M)< B'(N) + p'(MmodN), [ (MmodN) = dimH,(C(M,R)/C(N,R)).
(5.72)

Coming back to the case of a single non-degenerate critical point with index A on
an m-dimensional manifold, it was seen that (U, N M.,)mod(U, N M._.) was
homotopy equivalent to B* modS$*~' which is homotopy equivalent to S*.
(For instance a two-disc whose circumference is contracted into a point yields a
two-sphere: a piece of textile is tightened into a bag by going the left two steps of
Fig. 2.8 on p. 43 backwards.) The Betti numbers of an empty set are all zero, and

the Betti numbers of §* are f° = * = 1 and all others zero (see (5.60)). Starting
with M_,, = ¢ and proceeding to M, = M, it is readily seen that

C,(F: M — R)>p*(M), (5.73)

where C, is the total number of critical points of index 4 of a function F on a
compact manifold M provided F has only finitely many non-degenerate critical
points. This is the weak Morse inequality.

Next, following in (5.71) the equalities of dimensions in exact sequences given
before (5.72) from r + 1 down to r = 0, one finds (we drop the field R for the sake
of shorter writing)

dim Im(H, ., (C(M)/C(N)) — H,(C(N))
= dimH,(C(N)) — dimIm(H,(C(N)) — H,(C(M)))
— B'(N) — (dim H,(C(M)) — dim Im(H,(C(M)) — H,(C(M)/C(N)))
— B'(N) — /(M) + dim H,(C(M)/C(N))
— dim Im(H, (C(M)/C(N)) — H,—(C(N)))
— B'(N) = /(M) + B/ (M mod N)
— (BN = BN (M) + B (Mmod N)) 4 — -

Realizing that the leftmost expression of this chain of equations is non-negative
and that all ="' are zero one may cast this result into

r

Y(M) <y (N) +9 (MmodN), "= (=1)""F, (5.74)
s=0
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which analogously to the above consideration yields the strong Morse inequality

A

D (=1)TCF M - R) > i(—l))*_“ﬁ‘Y(M). (5.75)
s=0

s=0 s

Finally, (5.44) says that the long exact sequence (5.71) becomes trivial at the left
end for r > m, which yields instead of the inequality (5.74) now an equality for the
Euler characteristics,

x(M) = y(N) + y(MmodN). (5.76)

This makes (5.75) also into an equality for that case, the so called algebraic
number of critical points of F,

m

D (—1)'C(F : M — R) = y(M). (5.77)

s=0

Recall that in all these results it was assumed that M is compact and F has only
finitely many non-degenerate singular points.

However, meanwhile Morse theory has been widely generalized to be exploited
in the theory of non-linear equations.

5.9 Examples from Physics

As a first example, classical point mechanics is revisited again (cf. Sect. 3.7 and
the end of Sect. 4.4): Tt is easily checked, that the Liouville measure 7o on the
phase space Q can be expressed via the canonical (symplectic) 2-form w as

-1 (m—1)m/2
ngdql/\-~-/\dqm/\dp1/\---/\dp’":( ) oA---ANa. (5.78)

m factors

m!

In the wedge product of m factors w all m! terms with all dg’, dp' distinct survive,
all with the same sign due to the pairing. The (not very important) reordering
according to Liouville’s definition then yields the sign factor.

Since w = —dP and dw = 0, the canonical 2-form is exact (coboundary) and
hence closed. The same is true for the 2m-form tq of the Liouville measure:

(_] )(17171)171/2
Q= — dPANONA--- ANw),
—_——

m—1 factors

m!

and dtg = 0 as a consequence, but also in general as a (2m + 1)-form on the 2m-
dimensional phase space. Hence,
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http://dx.doi.org/10.1007/978-3-642-14700-5_4

154 5 Integration, Homology and Cohomology

(_1)(m71)m/2
/rgz—i/P/\w/\n-/\w)
—_——
U

m!
U m~—1 factors

for every subset U of the phase space Q.

Most importantly, from the invariance (4.55) of w under the time-evolution ¢,
(Hamilton flow), the same invariance of the Liouville measure follows
immediately:

d)f’[g =1Q. (579)

This is Liouville’s theorem which has well known important applications in
statistical physics, and which bears the well known danger of misinterpretation
too.

For more details on classical point mechanics see [3, 4].

Next, Maxwell’s electrodynamics on a four-dimensional manifold of space-
time is considered. The electromagnetic field is a 2-form which in Minkowski
coordinates (y',y%,y*,y*) = (¢,x',x%,x%) is given as

1 ,
F= EF,lvdy“ Ady’ = Eydt A dx' 4 Eydt A dx* + Esdt A dx®
— Bidx® Ndx® — Bydx® Ndx' — Bydx' Adx*,  (5.80)

where units with €y = yy = ¢ = 1 are used here and in the following (e is the
vacuum permittivity, y, the vacuum permeability and ¢ the vacuum velocity of
light, all in flat space-time).

Maxwell theory was brought into its most concise form half a century ago based
on E. Cartan’s exterior calculus and on Hodge’s duality (p. 121). This form holds
likewise in global Minkowski geometry of a flat space-time as well as in general.

A pseudo-Riemannian geometry is introduced by the non-degenerate sym-
metric covariant metric tensor or fundamental tensor g, in local Minkowski
coordinates given as (in the following we use Einstein’s summation convention)

! = () = (@) = (@2~ @ or ()= (o ) 580

It defines an indefinite scalar product, sign carrying lengths, and angles in the
tangent space in the usual way,

- x|y
(X]Y) = g X'X',  |X| = (X]X)"/?, 4(X,Y)=arccos( D) for IX| %0 |Y].

X]1Y]
(5.82)
It further provides a bijection between tangent and cotangent spaces,
J gt OO i i i i
w;=giX, g =g'——— X =glu, glgi=27, (5.83)

Oy’ Oy’
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for which (w,Y) = (X|Y) holds (cf. (4.24)). A more detailed treatment is given in
Chap. 9.

For the sake of generality, the next relations are given for m dimensions.
The coordinate independence of the scalar product in (5.82) implies g;X'X/ =
XX = g}clwfx//jl.Xin and hence g; = g}clx//f‘x//j where the determinant of the
transformation (3.6) from the y' to the y" is the Jacobian J = deti. Taking the

1/2

determinant of g yields det g = det g’J? and hence J = |det g/det g’|'/*. Therefore,

instead of (5.1),
T= \detg\l/zdyl A Ndy™ (5.84)

yields a coordinate independent volume form in the present case. The corre-
sponding alternating covariant tensor is the Levi-Civita pseudo-tensor E;..,, =
|detg|l/ *. Its general components are

E; ..i, = |detg|1/253{::',;7"7 Eitin — |de:;|1/2 5111;;”7 s, = sign det g, (585)

where the contravariant form according to the bijection (5.83) follows from
Elem — glil ,_,gmimEi]‘_'im _ gli, ...gmi,,,éil]«::‘y;lm‘detg“ﬂ _ detg—l |detg|1/2,

In order to adjust Hodge’s star operator (5.14) to the present more general
case, the second line of (5.14) is written as

*0 = 1,F, (5.86)
which according to (4.30) for an n-form w and any (m — n)-form ¢ means
<lv)E7 0) = <E7 (OFA O'> = EilMimwil“-inainﬂ-"im

and hence (cf. (4.23))

o 1 o
i P
(xa)™ = n)'E JOTI
| £ (5.87)
(*(D) = E. . @i = hetm giljl .. .ginjna), .
Iyl Im (m _ l’l)' Lplm (m _ n)| Junt
A second star operation results in
(x * ) = lE (*co)k”*""k’”
bk, = 1 Bk k,
— 1 E Eil“'inkrl+l"'km .
= 7’1'(”1 — I’l)' ki1 -+ kmky -k Wi, -,
o 1--m ik ok S
= Sgék,” ]“'kmkl'”knél“"n Wi, -..j,,

= Sg(fl)n(m_n)wkl“.kn .
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First, all items of the ij ---i,-sums are equal to 5’1“,,'_',‘5’”a)kl..k (no summation)

which cancels the factor 1/n!, and then the summation over the distinct indices
knt1 - - -k, cancels the other prefactor 1/(m — n)!. The final answer is

kok = sg(—l)”(mfn). (5.88)

For consistency, the second relation (5.14) is also redefined while the first relation
remains in effect:

w(1)=ady' Ao Ady™, x(dy' Ao Ady™) = s, (5.89)

(In (5.14) g;j = &;; was assumed, then, for m = 3, Ejy = E/ = 55%3. For example,
for the three-dimensional 2-form —F;; build by the spatial part of (5.80) one has
from the first equation (5.87) —(+F)" = —EF; = Bt.)

Besides the metric independent derivatives d and Ly of exterior forms, the
codifferential operator ¢ : D(M) — D(M) is introduced, which applied to an n-
form o is given by (sign factors are nasty but unavoidable in oriented manifolds)

o= (—1)"+"dxw= sg(fl)mo'+1>+1 xdxw, oeD' (M),

i (5.90)

do = (—1)""+5+x" o.
The second equation of the first line is obtained with (5.88) and (—1)" """ = 1 for
every n. One has x» € D" "(M),d * @ € D" "' (M) and hence dw~ *d * » €
D"~ !(M). This implies that §F = 0 for a 0-form (function) F. For a I-form o =X
(cf. (5.82)) and g; = J;; one has éw = divX, hence the codifferential operator
generalizes the divergence of a vector field. The second line of (5.90) is obtained
by substituting *~'w € D" (M) for w € D"(M) and hence m — n for n in the first
equation of the first line and operating with * from the left. It is readily seen that
Pk ldssxlds =5x1d%% = 0.

The Laplace-Beltrami operator is defined as

A =dd +ds (5.91)

which applied to a function in a flat metric reduces to the ordinary Laplace
operator, AF = div gradF. Simple rules are

dA=Ad, SA=AS, *A=Ax. (5.92)

The first two follow readily from the definition (5.91) and d*> = 0 = &°. The last
one follows from corresponding commutation rules *dd = do* and *dd = ddx
which demand just a bit more of straightforward calculations. One also finds for
o€ D' (M),s € D'(M)

dloNxo)=doAxo+ (—1)""orndxc=doNxc—wAxdc  (5.93)

where in the last equation the first relation (5.90) was used.
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For a compact manifold M or in general on the exterior algebra D.(M) of forms
with compact support, a scalar product

[w|a]:/a}/\*a form,c € Di(M), [wlo]=0 foroeD)(M)Fo

M
(5.94)
is introduced. Since (5.93) for € D'~ (M), o € D"(M) implies
0= /d(w A*¢) = [do|o] — [w|da],
M
one has
[dwlo] = [w]|da]. (5.95)

In this sense d and ¢ are mutually adjoint operators in D.(M) considered as a
functional space, normed by the scalar product (5.94).

Finally, for a positive metric g it follows from (5.16) that the scalar product
(5.94) is positive and symmetric. Now, do = 0 and 0w = 0 obviously implies
Aw = 0. Inversely, if Aw = 0, one has

0 = [Aw|w] = [(dd + dd)w|w] = [dw]dw] + [do|dw]

and hence, in the case of a positive norm, éw = 0 and dw = 0.
Coming now back to Maxwell’s electrodynamics, Maxwell’s equations in
modern form read

dF =0 and O0F=J or dxF=xJ, (5.96)
where
J = Judy" = g Jtdy’ (5.97)

is related to the four-current density of electric charges as analyzed below, and F
was given in (5.80). These equations are valid independently of the chosen local
coordinate system and, more importantly, independently of a possible curvature of
space-time due to the presence of a gravitational field. It is remarkable that for the
formulation of Maxwell’s equations no connections (Christoffel symbols, see
Chap. 7) and no curvature tensor (Chap. 9) are needed explicitly.

The homogeneous Maxwell equations, dF = 0, contain the 3-form dF which in
a four-dimensional manifold has four independent components. Hence they
comprise four equations (of which due to their particular structure only three are
independent, since they are connected by the one condition d*F = 0 for a 4-form
in four-dimensions). These four equations may be written as * dF = 0 which with
(5.87) means E*°*(dF),,. = 0 and hence 8}53,0F,;/0y" =0, the common ten-
sorial writing of the homogeneous Maxwell equations. With (5.80), the time
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component (x4 = 1) of this latter four-vector equation is 5'{;61% Jox' = divB =0,
which in three dimensions also means *dF = 0. (Caution! Note that the definition
of * depends on g and on the dimensions.) In the remaining three equations for
i=u# 1 the v-sum contains the v =1 contribution which may be written as
oV 0F /ot = —0B /0t and the contribution with v # 1 which is 67%,0F, /ox/ =
rot E. Hence, these equations read in 3-vector notation rot E = —0B/0t.

If N3 is any three-dimensional hypersurface in M with boundary ON3, then

/ F= /dF 0. (5.98)

ON3

These are a two-dimensional integral over a 2-form and a three-dimensional
integral over a 3-form. Hence Stokes’ theorem applies. If in particular N5 is any
space-like finite volume, ¢ = const., then ON3 has no time component, and (5.98)
reads faM B - dS = 0, where dS is the surface normal vector to ON3. This is Gauss’
law for magnetism, and it expresses the absence of magnetic charges (monopoles).
The total magnetic flux through a closed surface is always zero. Next take N3 to be
a cylinder (Fig. 5.11) with base S in the (x',x?)-plane, x* = 0, and extending in
t-direction from z = #; to t = t,. Now, the first equation (5.98) reads f: fas ds -

E— | S ds-B+ |. Sis dS - B = 0 where ds is the line element of the bounding

contour OS of the cylinder base. The first integral is over the cylinder mantle and
the two others are over the base and the top plane. Differentiation with respect to
time yields Faraday’s law of induction §,.ds - E = —(d/dt) [(dS - B.

Finally, if H[%R(M) = 0 but not in general, then the relation dF = 0, which
means that F is closed, also implies that it is exact:

F=dA, AcD'(M). (5.99)

This is in particular true in a contractible manifold M and locally in every manifold
since every point of a manifold has a contractible neighborhood. A is the four-
potential of the electromagnetic field F. It is never unique, since A and A’ =
A +dy with any real smooth function y on M lead obviously to the same
electromagnetic field F. This is the gauge freedom of the electromagnetic four-
potential. A is a cohomology class of I-forms rather than a single 1-form.

Fig. 5.11 Hypersurface N3 t
as a cylinder in 7-direction

2
with base in the (x',x%)-plane

(N
et
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However, as just discussed, the first equation (5.96) is more fundamental than
(5.99). The equation (5.99) has a 2-form on both sides, hence Stokes’ theorem
applies for two-dimensional hypersurfaces in M and their boundary curves. Inte-
grals over the fields on surfaces are related to contour integrals over potentials.
The inhomogeneous Maxwell equations in the form 6F = J have a 1-form on
both sides since ¢ is a graded morphism of degree —1. Equating 1-forms, they
comprise again four equations (of which because of 0 = 0*F = 6J again only
three are independent, see below). However, since J has the physical meaning of a
charge and current density, three-dimensional volume integrals are more relevant,
which are obtained by integrating d x F' = x J which has 3-forms on both sides:

/*F:/d*F:/*J. (5.100)

ON3 N3

From the fact that three-volume integrals over J are demanded from physics and
that they involve the star operator it follows that electrodynamics requires a metric
of space-time. Among the consequences there is bending of light propagation by
gravitational fields.

In local coordinates, (x F),, = (1/2)EsepF* and (d % F),,. = (1/2)(0E gy -
F*/3y"). Therefore, (6F)" = (xd*F)" =E"° (d*F), . = (1/2)E"" (0Ewyp-
FF [oy") =—1/(2ldetg|'*)5}5356,5% (0ldet g|/2F*F [oy") = —|det g ~/(9},5), — 0,))
(O|detg|F*P Jdy") = 2|detg\71/2(6|detg|1/2F"“/6y")‘ Again it is seen that J is rela-
ted to the divergence of vector analysis as was mentioned after (5.90). Now it is
readily seen from (5.80) and (5.97) that in local coordinates 0F =J reads
2|det g\fl/ % (0]det g| e all /0y") = J* which again as for the homogeneous equations
is the common tensorial writing of the inhomogeneous Maxwell equations. In tensor
notation one usually omits the factor 2 here and the factor 1/2 in (5.80).

In order to find the physical meaning of J* consider the 3-form *J =

(1/31)|det g|1/ 251234 Ty A dy’ A dy°. If Nj is a spatial three-dimensional hyper-

et

surface of M, then the contained charge is Q = [, *J = [, |det g2 10dx! A

d® Ndx = |, N, pdx'dx*dx’. Hence J° = p/|det g|1/ ? where p is the charge density
in locally flat coordinates, and in these coordinates the inhomogeneous Maxwell
equation for u = 1 reads div E = p or, in the form (5.100), faM E - dS = Q which
is Gauss’ law of electrostatics. If N; is the finite hypersurface of Fig. 5.11 with
¥ =0, then [, jdudx'ax’ = [, xJ= [ detg|"/273dt A dx! Adx® with the

electric current density j in locally flat coordinates, hence J =j/ |detg|1/ *. Now,

after differentiation with respect to ¢, with the same notation as on the previous
page (5.100) reads §,cds - B = [;dS -J + (d/dt) [(dS - E which is Ampere’s law
with Maxwell’s extension by the displacement current.

The inhomogeneous Maxwell equations (5.95) cannot hold for an arbitrary
form J. Because of 6> = 0 = d?, it must hold that
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6J=0=dxJ, /*J:/d*J:O, (5.101)
N, Ny

which expresses the charge conservation law. Ny is any compact four-dimensional
submanifold of M. Equation 5.101 means that * J is closed, and for a contractible
M, from that it already follows that it is also exact, that is, that there exists a form
* F' so that the last equation (5.96) holds. In general this last equation has a deeper
meaning. If for instance the universe for r = 0, N3, is closed, ON3 = 0, then from
the last equation (5.96) it follows that Q = [, *J = [, * F =0: a closed
universe must be exactly electrically neutral. In a closed universe, to every
positive charge as a source of electric field lines there must correspond a negative
charge as a sink of electric field lines.

If the punctured three-space R*\ {0} is considered or the Minkowski space
with the time axis x' = x> = x> = 0 removed, then the field

m S m
F=——=0>xd/ nd = —r-dS
8nlr| |r|

is closed but not exact. There is no vector potential A on R* \ {0} from which this

field derives. However, for the part of R? \ {0} with the positive x>-axis removed,
it is easily checked (exercise) that

xldx? — x2dx!
= m———-:
T a3 — )

is a potential of the above field, and likewise

xldx? — x%dx!
A =m—————
Anlr|(x® + |r])

for the part of R\ {0} with the negative x*-axis removed. In the overlap of the
two domains of definition both potentials are cohomologous and hence gauge
equivalent. Integrating F over a large sphere S> around the origin of the three-

space, one obtains
/ F= / B-dS =m.
e 5

This is the magnetic charge of the magnetic Dirac monopole in the origin.
In classical electrodynamics F must be a 2-form in the whole Minkowki space and
no magnetic monopole is possible. However, in unified theories of particle physics
the above case might be allowed [5, Chap. 12].

More details on Maxwell theory can for instance be found in [6].

Consider next the dynamics in ideal crystalline solids. An ideal crystal is
assumed to be infinitely extended in the position space R with non-degenerate
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vectors of lattice periods a;,a,,as. In classical approximation, in the ground state
the atoms forming the crystal are at rest in positions R, +S; where R, =
ma, + ma, + n3as, n; integer, —oo <n; < oo, is the (arbitrarily chosen) reference
point of the periodicity volume or unit cell of the crystal lattice and S; are finitely
many atom positions within a unit cell. In quantum theory the ground state is a
many-particle wave function the absolute square of which has the periodicity of
the lattice. The atoms have a probability distribution centered at S; which is
conceived as ‘zero point vibrations’ around S;. The set of all lattice vectors R,
forms an Abelian module over the ring (integral domain) Z with the three gen-
erators a;. This module will be denoted I, and is called the Bravais lattice of the
crystal.

If a particle is localized at position r, it makes no physical difference in which
unit cell r is chosen; due to the infinite extension, the physics of the crystal looks
identically the same when considered from position r or from position r + R,, for
any lattice vector R,,. Hence, for a single excited particle over the ground state the
physical configuration space is the 3-torus ']I‘f = R3/L, in which positions r and
r+a;, [ =1,2,3 are identified. Figure 5.12 shows how a 2-torus is formed out of
a two-dimensional unit cell; a 3-torus is formed analogously, it is only hard to
draw. If a particle on motion leaves a unit cell it may be considered to enter it
immediately at the equivalent position on the opposite face, keeping up its
direction and velocity of motion. All physically measurable quantities must be
real-valued periodic functions on R3 with the periods a; or, which means the same,
real single-valued functions on the torus T2. This situation holds for both classical
and quantum physics which is important since kinetic processes in solids are often
treated sufficiently well quasi-classically.

A quantum wave function of a particle (for instance moving in the mean
potential field of the crystal; quasi-particle theory yields a more general theoretical
basis for this picture) is by itself not measurable, it may have a phase factor on it
different in different unit cells. Group theory says that this phase factor can always
be chosen so that the wave function obeys ¢(r + R,,) = exp(ip - R, /h)$(r). This
is the content of Bloch’s theorem. The parameter p, which has the physical
meaning of the quasi-momentum of the quasi-particle wave, is determined by this
relation only as

Fig. 5.12 The formation of a 2-torus out of a two-dimensional unit cell (parallelogram)
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p =p mod hG,,, G, R, =21 - integer. (5.102)

This implies G,, = ZZZI myby, my integer, by - a; = 2ndy. The G, form the
reciprocal lattice IL, to L,. The space of quasi-momenta p is again a 3-torus, 'IF;,
formed out of the unit cell of the reciprocal lattice IL,,. This unit cell is called the
first Brillouin zone. Alternatively, the torus may be again unfolded into the space
]R; = T; ® L, this time of momenta, in which all physical quantities must be
periodic functions. This is called a repeated zone scheme.

Note that the choice of the unit cell as the periodicity volume in R® is not
unique. In Fig. 5.13 two different choices are sketched for a two-dimensional
lattice. Often the choice of the right pattern of the figure is made which has
the point symmetry of the Bravais lattice and is called the Wigner—Seitz cell.
Nevertheless, the tori ']Tf and TI‘; are defined by the quotient spaces with respect to
the lattices only and inherit the quotient topology from the R?. Figure 5.14 shows
how the torus of Fig. 5.12 which corresponds to the left choice of Fig. 5.13 is also
obtained from the right choice of Fig. 5.13.

In both cases, Tf and ’]I‘;, the space R? is the simply connected covering space
(next chapter) of the tori: it winds an infinite number of times around the torus in
a,(by)-direction and an infinite number of times opposite to the a; (b;)-direction,
an infinite number of times in (against) a,(b,)-direction and an infinite number of
times in (against) a;3(b3)-direction. A closed loop on the tori is characterized by its
three winding numbers (n;, 1y, n3) until it closes. This triple of integers classifies

Fig. 5.13 Unit cell of a
lattice. Left: spanned by some
smallest linear independent
lattice vectors, right:

Wigner—Seitz cell enclosed / W
by the bisectrices of all lattice ~ e -
vectors W/

D D
B o DBI
s e
r B AEC
A A

Fig. 5.14 The formation of a 2-torus out of a Wigner—Seitz cell in R?
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the homotopy classes of loops in the fundamental group of the 3-torus which is
m(T?) = Z* (Sect. 2.5).

This approach treats a crystalline solid in the thermodynamic limit V — oo,
V /N, = const. which focusses on so-called bulk properties of the solid and
neglects surface effects. Here, V is the crystal volume and N, its particle number
of sort «. Since the limit V — oo is subtle in many respects, instead one often
chooses a large but finite crystal volume consisting of a large number of unit cells
in a large parallelepiped with edge lengths Lia;, [ = 1,2,3, L; large integers, and
puts periodic boundary conditions, also called Born—van Kdrméan boundary con-
ditions, on that volume by closing it into a large 3-torus. Then, the above peri-
odicity requirements in r-space for singly excited quasi-particles now even are in
effect for a finite total volume of the large 3-torus because no unit cell on that torus
is distinguished. Since a quantum wavefunction is always required to be single-
valued in the whole r-space (this requirement yields for instance all quasi-classical
quantization conditions), the allowed momenta (5.102) now take on discrete
values p, = ZZ: | Mxbi, Lipy integer, only. These discrete momentum values are
forming a lattice on the torus ’]I‘; and also on the still infinite momentum space R;
of the repeated zone scheme. The thermodynamic limit now means to let the lattice
spacings of this discrete momentum lattice go to zero.

In particular the dispersion relation, that is the energy quasi-momentum
relation of a single excited quasi-particle (lattice phonon, Bloch electron, ...), is a
multi-valued periodic function of quasi-momentum in the repeated zone scheme or
equivalently a smooth (with few exceptions) multi-valued function on the
Brillouin zone ’]I‘;. Its derivative at p is the group velocity of a wave pocket
concentrated around p in quasi-momentum space:

v, = 2—27 ¢ = &(p mod AGy,).
The subscript v is the band index, including a polarization or spin index if
necessary. The terminology ‘quasi’-... refers to that meaning of p modulo 7
times a reciprocal lattice vector (Bragg reflection on the lattice I,) and to the
corresponding multi-valued energies of a lattice vibration spectrum, a band
structure, ...

The smoothness of a multi-valued function needs an explanation [7, Paragraph
I1.5]. Tt always suffices to consider a finite number N of bands, if necessary by
cutting off the band structure at the upper energy end. Then, the values {e&,(p), v =
l,...,N} are considered as a non-ordered set E(p). If band energies are degen-
erate, they are counted according to their multiplicity. A metric is introduced into
the space of sets E with the distance function (exercise)

d(E,E") = min max
P v

& — Epy| (5.103)

where P runs over all permutations of the N subscripts of the second set E'.
Smoothness is now understood with respect to that metric. Alternatively, in the
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case when all ¢, are real (by neglecting their imaginary parts which describe
quasi-particle lifetime), sometimes it is appropriate to use an ordered set E =
{& @), v=1,...,N} of single-valued functions &(p), for each value p ordered in
ascending order of energies. These functions are in most cases continuous but not
smooth.

As a consequence of the general dispersion law (5.103), the angle between the
quasi-momentum vector p and the group velocity vector v can be quite arbitrary,
they even can point in opposite directions (negative effective mass) or v can be
zero for non-zero momentum (standing waves with non-zero momentum and
hence non-zero phase velocity). Points p of zero group velocity lead to so-called
van Hove singularities in the quasi-particle density of states

3 d2
Dle) = zv:/d‘pé(g ~elp)) = zv: / I@SV(PI)D/@PI
& (p)=¢

where the last integral runs over an iso-energy surface in ’JT;. Note, that for all
lattices the tori ’]I‘f and ']I‘; are compact, and hence so are all iso-energy surfaces

on the latter torus.

The van Hove singularities arise from the zero in the denominator of the
integral over the iso-energy surface, hence each band &, (p), if it has a critical point
in the sense of Morse theory, contributes a singularity. In order to apply Morse
theory, the Betti numbers of the 3-torus are needed. They are found in textbooks of
topology and follow from the Kiinneth theorem: If M = M| x M,, then

H;’R(Mv R) = @pw:rHsR(MlvR) ® HZR(MZa ]R),

which may be condensed into a product formula for the graded cohomology
algebras as H*(M) = H*(M,) ® H*(M>) and which yields for the Euler charac-
teristics y(M) = y(M;)y(M>). For an n-torus T" = S' x --- x S' (n factors), by
induction this results in (exercise)

B(T") = dimH (T") = nr, 7(T") = (1—1)"=0. (5.104)

For the 3-torus the sequence of Betti numbers is 1,3,3,1,0,0,....

For a single analytic band with only non-degenerate critical points there are
minima of index A =0, two kinds of saddle points of signature (++ —) and
(+ — —) of indices A =1 and A = 2, respectively, and maxima of index A = 3.

The weak Morse inequalities say C; (¢, : T> — R) > f*(T*) which means in turn
COZI» C1237 CZZ?,’ C321

Stronger estimates are provided by the strong Morse inequalities, resulting in
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Co>1, C—C=22, C—-C+C>1, C—-C+C—Co>0.

The left hand side of the last inequality is in fact the negative of the algebraic
number of critical points, and hence even equality holds there:

Co—Ci+Cy—C3=y(TYH =0.

There must be at least one minimum and one maximum and three saddle points of
each type, but of course there can be many more relative minima and maxima and
many more saddle points for a general dispersion low. Even then their numbers are
not independent. They must fulfil the strong Morse inequalities, and their algebraic
number must be zero.

These are the estimates for the corresponding numbers of van Hove singular-
ities of a smooth single non-hybridized band in three dimensions. Analogous
results are easily found for two- and one-dimensional cases. For acoustic branches,
the minimum at p = 0 is often not smooth. Nevertheless there is a singularity
(non-analyticity) of the density of states there, possibly of a more soft type. In the
case of hybridizing bands there may be zero-, one- and two-dimensional band
crossings which may be minima or maxima or saddle points of &,(p), but which do
not lead to van Hove singularities since v is non-zero there. (Again they may lead
to softer singularities.) In that case the number of van Hove singularities per band
may be reduced. The above estimates then give the minimum numbers for a whole
band group as a smooth multi-valued function.

In simple models of dispersion there may occur degenerate critical points. For
instance in the nearest-neighbor tight-binding model for an s-band in the bcc
lattice there appears a degenerate saddle point, and in the corresponding model for
the fcc and hep lattices there appears a degenerate maximum. Similar degenerate
critical points appear in the d-band complexes of such models. They all lead to
stronger van Hove singularities in lesser number compared to non-degenerate
critical points.

Next, the quasi-classical dynamics of Bloch electrons of metals in an external
homogeneous magnetic field is considered. This problem was essentially solved
for all physics-relevant situations without use of topological methods in the late
fifties of 20th century by I. M. Lifshits and coworkers [8]. The topological treat-
ment is due to S. P. Novikov and coworkers [9, Chap. 2].

In these processes, only electrons in a vicinity of the Fermi level of negligible
width on the scale of ¢,(p) are involved. In three dimensions, the Fermi surface,
FS = {ple,(p) = ¢r for some v}, is a compact two-dimensional surface (oriented
submanifold) in ’]T; under the assumption that it does not contain critical points of

&,(p) and that there are no band crossings (degeneracies) at the Fermi energy &.
If critical points on the Fermi surface or band crossings at the Fermi energy appear,
they can be removed by a small perturbing potential, and afterwards the limes may
be considered in which the amplitude of this perturbing potential approaches zero.
Since the Fermi surface separates the domains in ’]T; with ¢,(p) <eg from the rest

for smooth functions ¢,(p), it is a boundary with orientation defined by the velocity
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vector (5.103). It is also a closed submanifold of T; (see second example on p. 75)
and as a closed subset of a compact set it is compact.

The number of connected components (number of ‘sheets’) of the Fermi sur-
face is f°(FS) = dim Ho(FS,R), and the genus g of each connected component
FS, is g = B'(FS,)/2 = (dim H,(FS,,R))/2 (cf. (5.62) and Fig. 5.8, sphere,
2-torus, pretzel with g holes).

Consider the homotopy of sheets of Fermi surfaces. The sheet index u is
suppressed in the following. If a sheet has genus g = 0, that is, it is homotopy
equivalent to a sphere and hence contractible on the torus T;, then 7;(FS) = 0.
If it has genus g = 1, that is, it is a 2-torus, then a loop may have two independent
windings, 7, (FS) = Z? (cf. the end of Sect. 2.5). If the genus of a sheet in general
is g, then the same arguments as in connection with Fig. 5.8 on p. 146 yield
n1(FS) = Z2¢. 1t is a peculiarity of a two-dimensional compact oriented manifold
that ‘Itl(FS) =H, (FS, Z)

Next, consider the embedding map F of a Fermi surface sheet into the Brillouin
zone, F : FS — T;, that is, a point on FS in an arbitrary surface parametrization is
mapped by F onto the corresponding quasi-momentum p. This mapping induces a
mapping of any loop on FS onto a loop on T; and also a mapping of homotopy
classes of loops on FS into homotopy classes of loops in ']I‘;. If two loops are
homotopic on FS, that is, they can continuously be deformed into each other on
FS, then they can a fortiori be continuously deformed into each other in T; where
the deformation need not be kept on FS. Hence, the push forward F, : 7| (FS) —
T (T;) is a homomorphism of groups. Therefore, the image of the mapping F is a
subgroup of 7;(T?) = Z* which has 0, Z, Z? and Z* as subgroups of rank 0, 1,2
and 3. Generator of the subgroup Z for instance can be any element (n;,ny,n3) of
the original group Z>, where n(ny,ny,n3), n € Z are the elements of Z; accord-
ingly for the other subgroups. The rank r of F.(m; (FS)) is also called the rank of
the Fermi surface sheet FS.

Now, the relation between the genus g and the rank r of a Fermi surface sheet is
studied. The details are depicted in Fig. 5.15. From left to right in the first row the
following cases are shown: First, an F'S is shown which is homotopic to a sphere.
This was discussed above to yield 7;(FS) = 0, hence, trivially F.(m;(FS)) =0
and r = 0. Next, a torus is shown, n;(FS) =2, g =1, of which however both
winding loops, a and a loop around the hole of the torus, are contractible in T;.
Hence, F.(n1(FS)) =0 and r = 0. In the right picture another torus is shown as
FS which, unfolded in the covering space R?, yields a corrugated cylinder. Here, a
loop around the cylinder is still contractible in ’IF;, but the loop a is not any more
contractible, it winds around one closure of the torus ']I‘;. The loop b winds two
times around that closure, there are loops winding n times around it or n times in
the opposite winding direction (counted —n). Hence, F.(n(FS)) =Z and r = 1.
In the second row from left to right, first a pretzel with two holes and hence g = 2
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Fig. 5.15 Genus g and rank r of Fermi surface sheets. The Brillouin zone ']I‘; is shown as a cube
of which opposite faces have to be identified. Further explanations are given in the text

is shown where again all loops are contractible in T; which means r = 0. Next, a
pretzel is shown of which one hole is again inside ']I‘; and the other one coincides
with one hole of ’JI‘; (that one closing the top and bottom face). There is only one
type of loops not contractible in ’]I‘; and hence r = 1. Why the last picture in this

row shows a pretzel with two holes in ’H‘; is indicated in the sketches below, where
first the left and right faces are closed and then the top and bottom faces. Here
there are two types of loops on FS, one from bottom to top and one from left to
right, which are not contractible in ’]I‘;. Hence, F.(n;(FS)) =Z* and r =2.
Finally, in the bottom row only the case r = 3 for a F'S which is a pretzel with tree
holes and hence g = 3 is shown. As an exercise the reader may draw sketches for
FS with any g > 2 for cases r =0, 1,2, 3.
The conjecture from these consideration is

r<3, r<g.

It was already shown by the homomorphism argument for F, that » <3 and that
g = 0 implies r = 0, hence r > 0 implies g > 0. That means that only the second
inequality for » = 2, 3 remains to be proved. To that goal, the homology groups H,
of FS and of TI‘; are considered. Suppose that a single FS sheet is a boundary in the
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Brillouin zone. The alternative is considered below. Here, the push forward of the
embedding F is another homomorphism F, : Hy(FS,R) — HZ(T;,R), which is
trivial, F..(Hy(FS,R)) = 0, since FS is a boundary in ’IF;. Therefore, for any closed
2-form w, dw = 0, on ’JI‘; the bilinear form [,cw = ([w], [FS]) = [,-1do =0
(cf. (5.40), 9" FS is the domain in ’]1'; to which FS is the boundary), which implies
that the pull back F* : HﬁR(TIf) — H%(FS) is also trivial. Moreover, since Z" =
F.(n1(FS)) = F.(H,(FS,Z)), there are r mutually non-homologous cycles c¢(FS)
(not combined into boundaries) on FS which remain non-homologous on ’JI‘;. Again
exploiting the non-degeneracy of (5.40), there must be r linearly independent
cohomology classes [o] of closed 1-forms ¢ on T; so that ([a], [c(FS)]) # 0. Hence,
F* (H}R(T;,R)) =R’ C Hlx(FS) = R*. Now, in R* a symplectic structure may
be introduced with the non-degenerate closed 2-form = Y%  dg' Adp'
(cf. p. 113), where ¢’ and p' may be, roughly speaking, local coordinates along the
cycles a; and b; of Fig. 5.8. Assume for some i that dg’ and dp' are both pull-backs of
some closed 1-forms o;,7; on T,. Then, F*([o; A t;]) C F*(H},(T,)) = 0 which
contradicts the non-degeneracy of w. Hence, at most one of each pair of 1-forms in
the symplectic form w can be a pull-back of a closed 1-form on TI‘;, and consequently
2r <2g. (Accordingly, in Fig. 5.15 at least one of the cycles a;, b; for each pretzel
hole of the FS is contractible in the Brillouin zone "JI‘;.)

Note that in these considerations a central point was that the considered single
FS sheet is a boundary. The only alternative is a pair of corrugated planes ‘in
average’ parallel to each other which are not pathwise connected in ']T; but which
only together form a boundary. For that reason they must always appear in pairs,
since the total FS is necessarily a boundary as shown earlier. According to their
orientation, the two partners have homology classes opposite to each other. They
are heuristically seen to form two 2-tori (g = 2) with r = 2 each, which also can
be proved formally.

On Fig. 5.16, the development of a real Fermi surface of YCos under increasing
pressure is shown where sheets of all ranks except r = 3 appear. In the third upper
panel there are small sheets with g = r = 0 centered at the top and bottom faces of
the Brillouin zone while in the lower panels the emergence under pressure of a
sheet with g = r = 0 around the center of the Brillouin zone is shown. In the
second upper panel there are small sheets (tori) with g = 2, » = 0 centered on the
edges of the hexagonal faces. The sheet of the left upper panel is a corrugated
cylinder with g = r = 1. The large sheet of the second panel has g = 3, r = 1: the
six holes around the vertical edges of the hexagonal Brillouin zone yield, after
closing the sides of the Brillouin zone as shown in Fig. 5.14 on p. 162, two holes
centered at the points AEC and DBF of Fig. 5.14 (each of the six holes belongs to
three zones). Cycles around these holes are, however, obviously contractible (into
the above mentioned points) in ’]I‘;. Hence the only non-contractible class of
trajectories appears due to closing the top and bottom face of the Brillouin zone



5.9 Examples from Physics 169

|

|

|

|

|

|

i
— N g TN | T 5
N N ] N ] s

Fig. 5.16 Real Fermi surface of two majority spin conduction bands of hexagonal YCos under
increasing pressure from left, 0 GPa, to right, about 25 GPa (courtesy of H. Rosner)

into a torus, like in the first band arising from trajectories parallel to the hexagonal
axis. The monster like Fermi surface sheet of the third panel has g = 7, r = 2: the
two holes centered on the hexagonal axis and the tree holes centered on the edges
of the hexagonal faces (one from two opposite edges) all yield contractible cycles
in TI‘;. The only two relevant holes are those appearing by closing the two unin-
terrupted horizontal edge lines of the Fermi surface sheet around the mantle of the
Brillouin zone as in Fig. 5.14. They yield two classes of cycles non-contractible in
’]1‘3, from trajectories in three directions in the hexagonal plane two of which are
linearly independent. No trajectory perpendicular to the hexagonal plane remains
non-contractible.

The rank r of a Fermi surface is defined to be equal to the maximal rank of its
sheets. Why is the rank of a Fermi surface interesting? It for instance governs the
magneto-resistivity of pure samples at low temperatures in strong magnetic fields.
In this case the dynamics of the electrons can be treated quasi-classically. If no
voltage is applied, the equations of motion are

dpi e .. 0 e [Os, Poe ;
‘:—FU—. v =~ |=_ B| =- v B) - =W == 1
dt ¢ Eﬁpl'g ) ¢ [ap x } c[v x Bl a dp (5.105)
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where e is the electron charge and c is the velocity of light. B is a spatially
homogeneous applied magnetic field and v, is the Fermi velocity of a Bloch
electron on the Fermi surface of band v. The motion in quasi-momentum space is
all the time perpendicular to the Fermi velocity, hence the Bloch electron stays all
the time at constant energy on the Fermi surface. If Cartesian coordinates are
introduced in both the quasi-momentum space and the position space with the
z-axis in B-direction, then the projection of the motion onto the x,y-plane in
quasi-momentum space is geometrically similar with the motion in position space
rotated by 90° in the mathematically positive direction (due to the negative
sign of e) as compared to the motion in quasi-momentum space. While p3 =
const., dz/dt = v:(p,(t)) is a periodic function of p, which in the simplest model
case of a Fermi sphere is a constant. Recall, however, that in general v is an
arbitrary function of p, and both are in general not collinear.

While in the considered case with a homogeneous magnetic field the motion in
quasi-momentum space is always on closed orbits, the position space is a torus
only in the idealized model of an infinite perfect crystal. In reality the distance of a
unit cell from a boundary of a sample is measurable, and hence the physical
motion is in the universal covering space R>. Then, the trajectory of the Bloch
electrons through the crystal is a closed orbit, if the corresponding trajectory in
the Brillouin zone is contractible. It is running through the whole crystal as an
open trajectory, if the corresponding trajectory in the Brillouin zone is not con-
tractible, which can be the case in r linearly independent directions for each
Fermi surface sheet the rank r of which is non-zero. The directions are given by

the generators (n],n},n]), j=1,...,r of the subgroup F. (m;(FS)) C nl(T;), that

is, by the reciprocal lattice vectors G/ = nl’ b, + nébz + n§b3. Only in the case of
pairs of corrugated planes there are open trajectories in all directions on those
planes.

If the mean scattering time of Bloch electrons (defined by the purity of the
crystal and by the temperature) is 7, then the length of the trajectory in quasi-
momentum space between two scattering events is on average Ap = |(evg/c)B71|
where v is the average Fermi velocity. Strong magnetic fields are those for which
Ap > Rb;|, but pg.,B < er in order that the quasi-classical treatment applies. If
only closed trajectories in position space are present, then the conductivity tensor o
and the resistivity tensor p are [§]

B2 B! B! b B b*
o/~ B B2 B, pi~| B B b®
B~ 1 B~ 1 a% b pY  p*

while, if open trajectories are present, then
B2 B! B! B> B B
dl~ | B @y @t |, pi~| B OB b
B~ 1 a® a< B bY  p=%
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The field direction is assumed to be the z-direction and in the second case the
direction of open trajectories in the quasi-momentum space is the x-direction. The
entries @’ and bY in the matrices mean that these components stay constant in the
limit B — oo of the quasi-classical theory. The quotient p**/B = R is the Hall
constant.

Further analysis now needs for a given Fermi surface to find the directions of
magnetic field B with respect to the reciprocal lattice for which open trajectories
may occur. This task can again be solved with topological methods [9, Chapter 2].
Even if r = 1 there need not be directions for the field so that open orbits appear: if
the ‘corrugated cylinder’ is a spiral shaped tube, there may be no plane intersecting
it in open trajectories.
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Chapter 6
Lie Groups

6.1 Lie Groups and Lie Algebras

A Lie group is a smooth manifold that is also a group. Lie groups play a central
role in the geometry of manifolds and in the theory of invariants of dynamical
systems in physics. They are named in honor of S. Lie, their theory was much
developed by E. Cartan.

A Lie group G is a smooth manifold with a group structure such that for all
g,h € G the mapping G x G — G : (g,h) — gh~! is smooth. Then, the mapping
h— h~! is also smooth, since it can be considered as a case of the previous
mapping with g = e, the unit element of the group. The composition of these two
mappings yields the mapping (g, %) — gh, which hence is also smooth. In sum-
mary, all group operations are smooth as a consequence of the smoothness of
(g,h)—gh™!.

Since a Lie group is a special case of a topological group, all the arguments
used on p. 46 for topological groups are valid. In particular, if the group consists of
more than one pathwise connected component as a topological space, then each
pathwise connected component is diffeomorphic to the pathwise connected com-
ponent G° containing the unit element e of the group, and G/G® = ny(G), the
zeroth homotopy group of G whose elements are in one—one correspondence with
the pathwise connected components of G.

A simple case of a Lie group is R" with its usual topology and vector addition
as group operation. It is Abelian and additively written. The product G x G’ of
two Lie groups G and G’ with the product manifold structure (p. 60) and the
direct product group structure (Compendium C.1) is a Lie group. For instance
R"=R x --- x R (n factors).

Let {aj,...,a,} be a base of the vector space R", and consider the lattice
L={Y"na;|n; € Z}. Lis asubgroup of the Lie group R". The quotient group
T" = R"/L is also a topological space with the quotient topology. T" is a Lie
group and is called the n-torus group. The 1-torus group can be viewed as the
multiplicative group S! = {¢™ |t € R}. Then, T" ~ S' x --- x S' (n factors).

H. Eschrig, Topology and Geometry for Physics, Lecture Notes in Physics, 822, 173
DOI: 10.1007/978-3-642-14700-5_6, © Springer-Verlag Berlin Heidelberg 2011
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Write the points of R" as real n x n-matrices A, and consider the subset of R"
of non-singular matrices, detA # 0, with the relative topology from R". Since
det A is a polynomial and hence a smooth function on R”, GI (n,R) = {A|detA #

0} is an open subset of dimension n? of R” and hence an n*-dimensional smooth
submanifold. It becomes a Lie group under matrix multiplication where AB~! is a set
of rational functions with non-zero denominators and hence smooth. It is called the
general linear group of n dimensions (linear transformations of the vector space
R"). In particular GI(1,R) = R\ {0} is the multiplicative group of non-zero real
numbers. It consists of two pathwise connected components, the positive and the

negative real numbers. Likewise, the points of C” ~R™ (p. 21) may be written as
complex n x n-matrices C, and the submanifold Gi(n,C) = {C | det C # 0} forms
the complex general linear group of n dimensions. In particular GI(1,C) =
C\ {0} is the multiplicative group of non-zero complex numbers. It is pathwise
connected but not simply connected.

Consider the product manifold GI(n,R) x R", but instead of the ordinary
direct product group structure define the group operations by (A,x)(A’,x') =
(AA’;Ax’ 4+ x). This is the Lie group of affine motions or affine linear trans-
formations of R". By defining the action of the group elements (A,x) on any point
y € R" by (A,x)y = Ay +x, any group element performs an affine motion of R"
and group multiplications correspond to compositions of affine motions (exercise).
Formally, (A,x) may be represented by a special (n+ 1) x (n+ 1)-matrix for
which the group operation is now the matrix product:

(A x)»—><A x) <A x)(A/ x’>:<AA’ Ax’+x>

’ 0 1)’ 0 1 0 1 0 1 '

The action on y € R" becomes a matrix multiplication by appending an n + 1st
unit element to y.

Returning to the general theory, every element g € G defines mappings [, :
h+ gh and rg : h+— hg of G into itself. They are called left and right translations
by g. If H is a subset of G, then [,(H) = gH,r,(H) = Hg. These mappings are
injective: gh = gk yields h = k after left translation by g~!. They are also sur-
jective: any element k € G is g(g~'k) and hence image of some element g~'k € G
with respect to the left translation by g. These simple considerations apply likewise
to right translations. Being group operations the translations are smooth trans-
formations of the manifold G.

Let X € X(G) be a tangent vector field on the manifold G. At every point h € G
it defines a tangent vector X;, € T,,(G). Let G be n-dimensional and let x(#') =
(x'(W),...,x"(K")) be alocal coordinate system centered at &, x(h) = 0. For every
smooth real function F:G — R it yields X,F =Y, & (h)(0F/dx'),_,. For
every h € G, a left translation by g induces as a push forward a mapping IZ* :
T4(G) — Tgi(G). A tangent vector field X is called a left invariant vector field, if
IZ* (Xn) = Xgn, that is, the tangent vector at & is pushed forward into the tangent
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vector at gh of the same tangent vector field. Right invariant vector fields are
defined analogously.

Let g be the set of all left invariant vector fields on the Lie group G. Then,

1. g is a real vector space isomorphic to T,(G) by the isomorphism 7 : X — X,.
Consequently, dim g = dim 7,(G) = dim G.
2. X € g is smooth.

3. X,Yeg= [X,Y] €gq, that is, g is a Lie algebra (p. 63).
4. Let {Xy,...,X,} be a base of the vector space g, then there are constants cg-
such that

X, Xj]| = chﬁXk, Cg + c]].‘i =0, Z(cfjcﬂ + cjl-ka’ + c,l{ic;}’) =0. (6.1
k=1 1

These constants are uniquely defined by G and the base {X;} of g.

Proof Linear combinations of left invariant vector fields are clearly left invariant
vector fields, hence g is a subspace of the real vector space X(G). 7 is injective,
since 7(X) = n(Y) = X, =Y, = X, = Y, forall g € G due to left invariance. 7 is
also surjective, since for every X, € T,(G) there is X € X(G) with X, = g (X, ).
Hence, 7 is an isomorphism of vector spaces.

Smoothness of left invariant vector fields is traced back to smoothness of the
group operations of Lie groups and properties of the push forward, analyzed in
(3.29, 3.30) on the basis of the commutative diagram on p. 73. In the present case,
h € Uy, ly(h) =gh € Ug and local coordinates x, = ¢,(h) € U, and y; =
(pﬁ(gh) € Uy are to be considered, where smoothness of the group operations
means that the coordinates y; = (Iy) 4, (x,) are smooth functions of the coordinates
x, for all admissible charts (U, @,) and (Ug, ¢p). Equation 3.30 with F = [, now
reads I, (0/0xl) = Zj(a(zg);;a/ax;)(a/ay;;). The first factor of the last expression
is the jth component of the vector field at y; and, as the derivative of the smooth
function (Iy),, is a smooth function of the x,.

If X and Y are [,-related (p. 78), then [X, Y] is [,-related, and hence Lie products
of left invariant vector fields are left invariant vector fields. From that, the exis-
tence and uniqueness of the constants cg follows. Their properties are a direct
consequence of the properties (3.17) of the Lie product. O

Depending on context both isomorphic Lie algebras g and T, (G) are called the
Lie algebra of the Lie group G. The relevance of this Lie algebra lies in the fact
that it locally, and in the important case of pathwise connected, simply connected
Lie groups also globally, completely determines the Lie group. In physics one
speaks of the elements of the Lie algebra as of the infinitesimal generators of the
Lie group. The constants cg are called the structure constants of the Lie group G.

Let ® € D"(G) be an r-form on G. At each point & € G, wj, is an element of
An(T;) (cf. (4.32)). A left translation [, induces as a pull back a mapping [ ) :

ATy (G)) — AT, (G)). The r-form o is called a left invariant r-form, if
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l;h(a)gh) = wy, that is, the r-form at gh is pulled back to its own value at h. Left
s
inv

invariant r-forms form the vector space D! (G) and the exterior algebra

Diny(G) = Y Dpy (G), n=dimG. (6.2)
r=0
Like the case of tangent vector fields, here due to a property of pull back,
smoothness of r-forms is a consequence of left invariance. Right invariant r-forms
are defined analogously.
The left invariant 1-forms, which in local coordinates are Y, w;(h)dx’, are
called the Maurer—Cartan forms.

Left invariant r-forms have the following properties:

—_—

. They are smooth.
2. Dinw(G) is a subalgebra of D(G). By the isomorphism ©* : '+ w,, Dy (G) is
isomorphic to A(T*(G)); in particular D} (G) is isomorphic to T!(G) and
hence dual to g.

3. w €D} ,(G) and X € g= (w,X) = const. on G.
4. w € D! (G)and X,Y € g = (do,X NY) = — (o, [X, Y]).
5. If 9" € DL (G) and {9',...,9"} is the base dual to {Xi,...,X,}, then the
Maurer-Cartan equations or structure equations
A =— N At = (0 [X, X)) (6.3)
1<j<k<n

hold.

The isomorphism of 2 is proved analogously to the case of vector fields, and 3 is
a direct consequence. 4 follows from (4.49) where the second line vanishes due to
3, and 5 follows from the duality (¢, X;) = 51’: together with (4.22, 6.1) and 4. Let
9 =Y, 9'X;, then (J,,-) maps T,(G) isomorphically onto g. The tangent-vector
valued 1-form ¢ is called the canonical Maurer—Cartan form.

Depending on context, in the whole concept of Lie algebra of Lie groups
sometimes right invariant vector fields and forms are used, mainly for the sake of
convenience of notation. Since in both cases the Lie algebra g is isomorphic to the
same 7T, (G) and Diny (G) is isomorphic to the same A(7T(G)), the buildings in both
cases are isomorphic to each other. However, the composition of two right
translations is rgr, : h+— hgg' and hence ryy = ryry. This contravariant behavior
transfers to the push forward rg and therefore the Lie product [X,Y] of left
invariant vector field corresponds to the Lie product [Y,X] of right invariant
vector fields. Correspondingly, the structure constants of both cases differ by a
sign while all the above given relations remain valid for both cases.

For an Abelian Lie group (like for instance R") left and right invariant vector
fields coincide, hence all structure constants vanish and the corresponding Lie
algebra is also Abelian: all Lie products are zero.

%)


http://dx.doi.org/10.1007/978-3-642-14700-5_4
http://dx.doi.org/10.1007/978-3-642-14700-5_4

6.2 Lie Group Homomorphisms and Representations 177

6.2 Lie Group Homomorphisms and Representations

A mapping F : G — H of a Lie group G into a Lie group H is a Lie group
homomorphism, if it is both a smooth mapping of manifolds and a homomor-
phism of groups, that is, F(gh™') = F(g)F(h™'). If it is a diffeomorphism of
manifolds then it is an isomorphism, because in that case F is onto and F —1 exists
and hence F~'(F(g))F '(F(h™")) =gh™' =F '(F(gh™")) = F ' (F(g)F(h™"))
which proves that F~! is also a homomorphism. A (Lie group) isomorphism from
G onto itself is a (Lie group) automorphism. Naturally, the automorphisms of G
form a group with respect to composition as group operation (exercise). If H is the
transformation group Aut (V) (automorphism group) of some vector space V
(p. 100), for instance H = Gl(n,R) or H = Gl(n, C), then the homomorphism F is
called a representation of the Lie group G.

A K-linear mapping L: g — b (K =R or C) from a Lie algebra g over K
into a Lie algebra ) over K which preserves Lie products, L([X,Y]) =
[L(X),L(Y)], is a (Lie algebra) homomorphism. (It is an ordinary homomorphism
of algebra.) If it is one—one and onto, then it is an isomorphism. An isomorphism
from g onto itself is an automorphism. If ) is the algebra End(V) of K-linear
mappings of some vector space V over K into itself (endomorphisms, forming an
algebra with respect to composition as multiplication, exercise), for instance ) =
gl(n,R) or h = gl(n,C) (all real or complex n x n-matrices, respectively), then
the homomorphism L is called a representation of the Lie algebra g.

Let G and H be Lie groups with Lie algebras g and V), and let F : G — H be a Lie
group homomorphism. Then, for every X € g, X and F.(X) are F-related, and
F.:g—bis a Lie algebra homomorphism.

Proof By definition of the tangent map F, of the mapping F (p. 71), F. (X)F(g) =
F%(X,), which also means that X and F, (X) are F-related (p. 78). It is to be proved
that F,.(X) is a left invariant vector field on H. Let e be the unit in G and e the unit
in H. Since F is a Lie group homomorphism, lp,) o F = Fol,, and hence
Fu(X) g = FS(Xo) = FE(I5. (X)) = (Fol,), (Xe) = (lpg) o F). (Xe) = £, (Fu(X),)
where in the third and fifth equality the covariance of the push forward (p. 73) was
used. Hence, F,(X) €. It remains to prove that F,([X,Y]) =[F.(X),F.(Y)]. But
this follows from the previous result and the statement on p. 78. O

Quite similarly it is shown that F* pulls back left (right) invariant r-forms & on
H to left (right) invariant r-forms w = F*(@®) on G. In particular, since invariant
1-forms are dual to invariant vector fields, F* on D} (H) = b is transposed to F,
on g. Since the exterior differentiation d commutes with F*, (4.43), it follows from
(6.3) for the pulled back 1-forms

dF(9)=— > EF W) AF (), (6.4)

1<j<k<n
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where the ¥ form a base of Maurer—Cartan forms of H and Z’;k are the structure
constants of H.

There are intimate algebraic interrelations between Lie groups G and their Lie
algebras g. Let a Lie group G of dimension m be given with its Lie algebra g. Let a
collection of linearly independent left invariant 1-forms w',...,&™ out of g* ~
D] . (G) be given, i not necessarily related to m. The natural questlon arises, is there
a Lie group H of dimension 7 with Lie algebra ), with abase @', ..., @" of h* and a
Lie group homomorphism F : G — H so that F* (&) = o,i = 1,.. .,/ holds.

Observe that, if F exists, its graph is an embedded submanifold (G, y) of the product
manifold G x H (which is also a Lie group with its Lie algebra g & b)) withy : G >
g (g, F(g)) € G x H. Introduce the canonical projections 7 : G X H — G and
ny : G X H — H which both are Lie group homomorphisms. Hence, the 1-forms

(v = 7 (o)) — w5 (@) = 75 (F* (@) — my (@) [i = 1, i} (6.5)

are left invariant 1-forms on G x H. ny; and mj; are pull backs from G and H,
respectively, to G x H, and F* pulls back from H to G. Since the nj;(w') are
obviously linearly independent from the 7j;(®') (they belong to subspaces of
(g D)" linearly independent of each other) and the @',i=1,...,m were
supposed to form a base of §* and hence to be linearly independent from each
other, the forms (6.5) are also linearly independent. Consider the two-sided ideal
Z of Diny(G x H) generated by the forms (6.5), that is, the algebra

T = spang{Diny (G x H) AV A Dy (G x H)} (6.6)

which is the span of all elements of the set on the right hand side. From (6.4),

d(ng(F* (@) = (@) =Y el (mG(F (@) A (F* (&) — iy (@7) Amyy (1))
ZZCJ-k 16 (F(@07)) =ty (0))] A (F* ("))
+ 1y (@7) A g (F* (@) — m (@1)]),

where the c_fk are the structure constants of G x H. This result shows dZ C Z,
which is expressed by saying that 7 is a differential ideal of D;,,(G x H).

Now, pull back the 1-forms v’ from G x H to the graph of F by the embedding
mapping y of the graph of F into G x H. With ng oy = Idg and 7y oy = F one
finds

7 (V) = (g 09) (F/ (@) = (i 07) (&) = F'(') — F'(@') =0,

where also y* o, = (ng o y)" was used and the corresponding relation for my.
Hence, on the graph of F there hold m independent relations v/ =0, and
dvi =0modv!,...,v". By the dual Frobenius theorem (p. 80) this means that the
graph of F is the integral manifold of the completely integrable Pfaffian system
vi=0,i=1,...,imon G x H.



6.2 Lie Group Homomorphisms and Representations 179

These considerations presupposed the existence of F. Now, suppose that only a
homomorphism f : ¢ — [) is given (in the above case f = F,). The transpose f* of
f maps 1-forms on H to 1-forms on G. In a way analogous to the above it is
straightforwardly demonstrated that the 1-forms on G x H,

= m(F (@) — 7 (@) i = 1,...,iw} (6.7)

generate a differential ideal Z of Di,, (G x H) and hence define a graph of a
homomorphism F : G — H as the unique integral manifold of the system v’ =
0,i=1,...,m=dimH through the point (e,e) € G x H, if G is pathwise con-
nected. A first consequence is the following theorem:

Let the Lie group G be pathwise connected, and let F and F' be Lie group
homomorphisms from G into the Lie group H such that the Lie algebra homo-
morphisms F, and F'. from g into Yy are identical. Then, F = F'.

Proof As homomorphisms, F and F’ agree at the unit e € G. Moreover, F* and
F’* agree as the transposes to F,. and F.. Hence, F and F’ define identical dif-
ferential ideals on G x H and hence have identical graphs. O

6.3 Lie Subgroups

Let G and H be Lie groups, and let H be a subset of G, not necessarily provided
with the relative topology as a topological space, but such that

1. H is a subgroup of G,
2. (H,1d) is an embedded submanifold of G.

A Lie group which is isomorphic to H is called a Lie subgroup of G. If one speaks
of uniqueness of a Lie subgroup, uniqueness of H as a subset of G is always meant.
The topology of the embedding must be such that smoothness of the group operations
is provided, the embedding need not be regular. H is called a closed Lie subgroup of
G if in addition the subset H is closed in the topology of G. It can be shown [1] that the
Lie subgroup H is a regular embedding, iff it is a closed Lie subgroup of G.

If g is a Lie algebra and Iy C g is a linear subspace of g closed under the Lie
product [X, Y] of g, then ) is also a Lie algebra; it is called a subalgebra of g.

Let H be a Lie subgroup of the Lie group G, and let ) and g be their Lie
algebras. Then Yy is a subalgebra of g.

This simply follows from (Idy), = Id, where (Idy), is a Lie algebra homo-
morphism (see p. 177).

Let G be a connected Lie group, and let U be a neighborhood of the unit e. Then,
U generates G, which means

G=|)U", U'={g g |geU} (6.8)
nL;Jl N’

group product
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Proof LetV=UNU""U"'={g'|ge U}, andlet H=UX V" C UX U" It
is easily seen that H is a subgroup of G. It is also an open subset of G since for every
g € H the set gV is aneighborhood of g and gV C H. Thus, forevery g € G the coset
gH is an open subset of G. Since cosets are disjoint, either gH = HorgH N H = J,
which means that the open subset H of G as the complement of all cosets gH # H is
also closed in G. Since G is connected and H is not empty, H = G. O

Since a Lie group is a finite dimensional manifold, it has a neighborhood U of
the unit e for which U is compact and hence contains a countable dense set. From
that and the above theorem it follows easily that the connected component G, is
second countable. Hence,

A Lie group G is second countable, iff G/G, is countable.

In this text the latter is always presupposed, that is, a Lie group is supposed to
have at most countably many connected components and so to be second
countable.

Let G be a Lie group with Lie algebra g, and let 1) be a subalgebra of g. Then
there is a unique connected Lie subgroup H of G which has Yy as its Lie algebra.

Proof 1is a (diml) = /n)-dimensional involutive distribution on G (Sect. 3.6). By
the Frobenius theorem, there is a unique maximal connected integral manifold
(H',F) through e € G. Let H = F(H'). b is left invariant, therefore for every
h € H, (H, 1, oF)is also an integral manifold of [ through e, and, because of the
maximality of (H', F), I, o F(H') C H. Hence, if h,k € H, then h~'k € H and H
is a subgroup of G. One must show that (h, k) — h~'k is smooth in the topology of H
inherited from the embedding (H’, F). This follows since F is smooth and one—one
and [, 1 is a diffeomorphism: A~'k = ([,-1 o F)(F~'(k)) is a smooth function of & for
fixed k, in particular h~! is a smooth function of 4. Also, k~'% is a smooth function
of k for fixed h and so is (k~'h) ' = h~'k. Thus, H is a Lie subgroup of G.
Assume that there is another connected Lie subgroup K of G which has | as its
Lie algebra. Both must coincide in a neighborhood of e, and therefore they are
identical due to the previous theorem. O

In summary, there is a one—one correspondence between the connected Lie
subgroups of a Lie group and the subalgebras of its Lie algebra. It can be shown
(Sect. 9.2) that for every subgroup of a Lie group there is at most one manifold
structure which makes it into a Lie subgroup.

6.4 Simply Connected Covering Group

Universal coverings have deep consequences in physics, therefore they are
considered here in some detail. Who is not so much interested in the technical
details may just take notice of the theorems in italics and skip the proofs.
The following analysis is essentially due to Pontrjagin [2, §50].
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A continuous mapping 7 : M — M of a topological space M onto a topological
space M is called a covering, if every point x € M has a neighborhood U which is
evenly covered by 7, meaning that the preimage n~!(U) of U is a (possibly
infinite) union of disjoint open sets V,, of M each of which is homeomorphic to U.
M is called the base of the covering, and M is called the covering space.
Two homeomorphic covering spaces M and M’ with coverings 7 and 7’ onto M are
considered equivalent coverings of M, if there exists a homeomorphism F :
M' — M for which ' = o F.

For example, 7 : t+— ¢ = e is an co-fold covering of the unit circle S! in the
complex plane (with Arg ¢ as local coordinate) by the real line R (with global
coordinate ¢). In general of course, only local coordinate relations are possible.
More sophisticated familiar examples of coverings are Riemann surfaces with
branch points and poles removed as coverings of domains of holomorphy of
complex functions in the complex plane.

So far, nothing on the connectedness of M was presupposed. If, however, N is a
connected topological space which is continuously mapped by F into M and by
mo F into some U C M so that the intersection F(N) N V,, with one of the sets V,
of an even covering of U is non-empty, then obviously F(N) C V,. F(N) as the
continuous image of a connected space is connected, and the V, are mutually
disconnected since they are disjoint and homeomorphic to the open set U and
hence open.

In particular, if F:1— M,I =10,1] is a path in M starting at x = F(0) and
F*:I — M is a path in M with F = 1 o F*, then it is straightforward to demon-
strate that the path F* is uniquely defined by its starting point F*(0) and by F
(Fig. 6.1). Moreover, a continuous deformation of F causes a continuous

‘/n+3
Vn+2
Vn+1
- v
n
o
T
T
v F
.F/ 4)
Sl

Fig. 6.1 Lifting of a path F from M to a path F" in the covering M. Lef an evenly covered open
set U C M and some of its covering sets V,, C M are shown. F" is uniquely defined by F and
F'(0) (black dot). If F leaves U and then returns, F' need not return in the same V,, where it
started, but its end point is still uniquely defined by F and F m(O) This is illustrated on the right
side for the covering of S' by R
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deformation of F*. This is the basis of the homotopy of coverings. In the fol-
lowing, as in Sect. 2.5, F_ means a path running against F (from the end point of
F to the starting point of F through the same intermediate points in opposite
direction) and F'F means the concatenation of paths, first running through F and
then through F’. For concatenation the end point of F must be the starting point of
F'. A closed path starting and ending at point x is a loop with base point x.

Let m: M — M be a covering of a pathwise connected space M by a pathwise
connected space M, let x € M be any point and let X be some point of 1~ (x). Then,
the covering © generates a homomorphism from the homotopy group m, (M ,X) into
the homotopy group w(M,x). In fact this homomorphism is an isomorphism of
n1(M, %) onto some subgroup p(m,X) of m(M, x), and, if X runs through all points
of 1~ (x), then p(m,X') runs through all members g~ ' p(n,X)g, g € m1(M,x), of the
conjugacy class of the subgroup p(n,x) of m1(M, x).

Proof 1t is clear that a continuous mapping © maps loops into loops and contin-
uous deformations of loops into continuous deformations of loops. Hence it
induces a homomorphism from 7, (M, %) into 7;(M,x). However, it was stated
above that the homotopy classes of loops of 7 (1\71 ,X) are uniquely determined by X
and by the homotopy classes of loops of m; (M, x), which means that the homo-
morphism is injective and hence is an isomorphism into a subgroup of 7; (M, x).

Now, let X and ¥’ be two arbitrary points of 7~!(x), let F* and F*' be loops with
base point X and X', respectively, and let F*” be a path from X to X. All three paths
are mapped by 7 into loops F,F’,F” in M with base point x. In M, the paths
F*, F*"F*F*" are loops with the same base point X and F*, F*"F*F*" are loops
with the same base point X', so that their images of the mapping 7 belong to the
homotopy classes [F], [F"] '[F'|[F"] of p(m,%) and [F'], [F"][F][F"]"" of p(n,&).
Hence, [F"] 'p(n,#)[F"] C p(m,%) and [F"]p(m,%)[F"]"" C p(n,X'), which
means p(n,%) = [F"]p(m, X)[F"] "

Let now [F”] be any element of m;(M,x), and let F” be one of its loops.
Choose X as the starting point of a corresponding path F*” in M which latter is
uniquely determined by ¥ and F”. It ends at some point ¥ € 7~ !(x), and the

relation at the end of the last paragraph holds. This proves the last statement of
the theorem. (]

Since in pathwise connected spaces the homotopy groups (M, x) are isomorphic
for all x € M and conjugated subgroups are also isomorphic, up to isomorphisms the
subgroup of the last theorem is independent of x and is denoted by g (7).

Let F* be an arbitrary path in M starting at %. It is closed, iff F = 7o F* is
closed and [F] € p(n,X). Indeed, if F* is closed, the condition follows. Let F be
closed and [F] € p(=,X). Then, there is a loop F*' in M, which starts in ¥ and
which is mapped by 7 into [F]. Since 7o F* = F, there is a continuous defor-
mation of F* into F* without moving the end point. Then, F* is closed together
with F*.
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More generally, let F* and F* be two arbitrary paths starting from X. They will
have the same end point in M, iff F and F’ have the same end point in M and
[F'_F] € p(m,X). Indeed, if F* and F* have the same end point, then F and F’ have
the same end point, F*'F* is closed and hence [F’ F] € p(n, ). Reversely, F' F is
the image of a path F*'F*, where F*" starts at F*(1) and is mapped by = to F’ .
Since F’ F is closed and [F’ F] € p(m, %), F*""F* is also closed and the end point of
F*" is x. Thus, both paths F* and F* start at X and are mapped to F’, hence they
are identical, and F* ends at F*(1).

Now, let in the latter case in particular F and F” both be closed. Then, [F] and
[F'] both are elements of m;(M,x), and F* and F* both have end points in
' (x). If [F_F) = [F]"[F] € p(n,%), that is [F] € [F']p(n,X), then these end
points fall together. Clearly, the number of end points, that is the number of
points of 7~ !(x), is equal to the number of (left) cosets [F']p(r, %) of p(r,X) as
subgroup of 7;(M,x) (which is called the index of the subgroup). If the car-
dinality of m;(M,x) is finite, then this index is the ratio of cardinalities of
7 (M,x) and p(m,X). In pathwise connected spaces this cardinality o (finite or
infinite) is independent of x; it is called the multiplicity of covering, the
covering is called a-fold.

Now, the most important questions of existence and uniqueness of coverings
can be answered. First, uniqueness is considered.

Let m and 7' be two coverings of a pathwise connected and locally pathwise
connected space M by covering spaces M and M’ respectively. Let x € M, X €
' (x), ¥ € ®''(x), and p(n,%) C p(n',X'). Then, there exists a covering 7 :
M — M’ such that n' o @ = 1. Moreover, w and @ are equivalent coverings of M,

iff o(n) = a(n').
Proof Let F, F*, F* be paths starting at x, X, X’ and ending at y, 3,3, respectively,
and let F be the image of both paths F* and F* by = and 7/, respectively. Since
p(n,x) C p(',¥), a deformation of the path F which does not change the end
point ¥ of F* will not change the end point y' of F* either, hence y' is uniquely
defined by y, and the just described construction defines a mapplng M — M :
y+—y, for which ' o 7 = 7. If p(n,X) = p(n',¥’), then 7 and 7’ may be inter-
changed to prove that 7 is one—one and onto.

It remains to show that 7 is a covering. Let F, F*, F*' be as above, and let U be
a neighborhood of y such that V,, > y and V}, > §' are open sets of even coverings
of U by © and «', respectively. Such an U exists since M is locally pathwise
connected. Let F~ be a path in V,, from j to some point z, let F = n(F *), and let F
be a path starting at 3 with 7/(F*') = F. Because of the even coverings, F*' is in

.. Moreover, ' (F*F*') = FF, and hence by construction of 7, 7(z) € V/,. Since

the restrlctlons of = and 7’ to V, and V), respectively, are homeomorphisms,
7|y, =7n""" om|y, is also a homeomorphism from V, onto V,,. By choosing y
arbitrarily in M’, the preimage 7' (V/,) with ' € V., consists of all V, for which
y € #-1(y) which proves that 7 is a covering.
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If ¢(n) = o(n'), then according to the first theorem of this section a one—one
correspondence between the points of 7! (x) and the points of 7'~ '(x) can be
chosen so that p(m,X) = p(n/,X’), and then 7 is also one-one and hence a
homeomorphism making n« and 7’ to be equivalent coverings. O

Existence of a covering is governed by the following theorem:

Let M be a pathwise connected, locally pathwise connected and semi-locally
1-connected topological space. (Every point x € M has a neighborhood U such
that every loop in U with base point x is contractible in M into x.) Let p be a given
subgroup of a given subgroup of m1(M,x). There exists a covering of M by a
pathwise connected space M such that p(n,%) = p for X € n~'(x). In particular,
there exists a covering by a simply connected covering space M which is uniquely
defined up to homeomorphisms.

M is called the universal covering space of M.

Proof of the theorem Step one is establishing M as a set. Two paths F and F’ in M
starting at x are considered equivalent by p, if they have the same end point and
[F"_F] € p. This subdivides the set of all paths in M starting at x into equivalence
classes { F'}. Now, M is taken to be the set of these equivalence classes, and n({F}) =
y is defined to be the end point y of F. Since M is pathwise connected, (M) = M.

Next, a topology is introduced in M. Let F be any path in M from x to y, and let
U be a neighborhood of y in M. Let U be the set of all points {F.F} where F_ is a
pathin U from y to z € U. Since M is locally pathwise connected and semi-locally
1-connected, for every point y € M there exists a neighborhood base B, of path-
wise connected sets U for which this construction is possible. { F;F} depends only
on {F} and on z. Indeed, let F', F be any other paths for which {F'} = {F} and F]
is in U from y to z. Then, (F.F)_F.F' = F_F._FF' = F_F' since F._F. is null-
homotopic in M. Since {F'} = {F} means that [F_F'| € p, also [(F.F)_F.F'] € p
or {F/F'} = {F.F}. Hence, the restriction of 7 to U is a one—one mapping. Taking
for every point {F} of M all sets U for all U € By to form a neighborhood
base B{F} of {F} defines a topology on M which makes 7 into a local homeo-
morphism from sets U to sets U. Indeed, let any union of sets U be an open set of
M. Take any two sets U and U’ which have a common point {F}. Then, there
exists a common point z = 7({F}) of U = n(U) and U’ = n(U’) in M and hence a
neighborhood V 3 z of the above type with V. C UNU’. By construction of
neighborhood bases in M, the set V is a neighborhood of {F}, and V.C UNU'.
Hence, every intersection of two open sets of M as just defined is an open set of /1
and these sets form a topology of M. This topology is Hausdorff: Let {F} # {F'}.
If n({F}) # n({F'}) then there are disjoint open sets U and U’ of the Hausdorff
space M with n({F}) € U and n({F'}) € U’, and hence U and U’ are two disjoint
open sets with {F} € U and {F'} € U'. If n({F}) = n({F'}), take any neigh-
borhood U of n({F}) of the above type and let U and U’ be the corresponding
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neighborhoods of {F} and {F’}. Since both are homeomorphic to U, they are
either disjoint or identical. The latter case is excluded since it would imply
{F} =2 (x({F'})) = =~ (n({F})) = {F}.

From the above it is already clear that 7 is a covering of M. Let F be any path in
M starting at x. Let Fy(f) = F(st),s € I = [0, 1], then F is a path continuously
depending on s. Fy is the one point path at x, and {Fy} = X as well as n({F,}) =
F(1). To prove that M is pathwise connected, it suffices to prove that {F,} is a
continuous function of s in M. This is rather obvious, since for sg an € > 0 can be
chosen so that the end points of F; are in some of the above described neigh-
borhoods U for |s — so| <e. These F, can be represented as F'F, where F' is
completely in U. Hence, U is a neighborhood of {F;,} in M which contains all
{F} = {F'F,,} for |s — so| <e.

To prove that p(m,X) = p, consider the path I > s+ {F,} in M which is closed,
iff F is closed in M and [F] € p(n,X). Now F € {F,},and {F,} = {Fo} =X, iff F
is closed and [F] € p.

Finally, let p = {e} be trivial. Then, p(n,X) ~ n;(M,X) is also trivial, and
hence M is simply connected. Since for every simply connected covering 7 :
M — M the fundamental group 7;(M) is trivial, it follows immediately from the
previous uniqueness theorem that M and the latter M are equivalent and hence
homeomorphic. U

Now, let M be a second countable m-dimensional manifold. Since it is
second countable and locally homeomorphic to R™, it can be covered by a
countable number of open sets each of which is homeomorphic to an open ball
in R™. Any loop in M runs through a countable sequence of these open sets, and
loops running through the same sequence are obviously homotopy equivalent.
Since there is at most a countable number of distinct such sequences, 7| (M, x)
is countable for every x € M. Consequently, the multiplicity of any covering ©
of each component of M is at most countable. Hence, the covering space M of
any covering of M is second countable. Requiring that the local homeomor-
phisms of evenly covered open sets are diffeomorphisms defines uniquely a
differentiable structure on M which makes 7 into a smooth covering by a
smooth manifold M for which the linear mapping n* of the tangent spaces is
nowhere singular.

If G is a connected Lie group, then, since G is locally homeomorphic to R™ it is
locally pathwise connected and semi-locally 1-connected. From (6.8) it follows
that it is also pathwise connected. Hence, it has a universal covering space G
which has a uniquely defined differentiable structure for which the covering 7 is
smooth and 7' is nowhere singular. In fact, G can be provided with a group
structure which makes it into the universal covering group of G. It remains to
establish the group structure of G.

Let G be further on a connected Lie group, and let D be a discrete subgroup of
G, that is, the one point sets of D are mutually disconnected in the topology of G.
Consider the quotient space G/D of the left cosets of G with respect to D, that is,
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of sets {dg|d € D} for all g € G, provided with the quotient topology as the finest
topology for which the canonical projection = : G — G/D is continuous. Its open
sets are the sets U for which 7! (U) is open in G. The elements of D form a
discrete grid in G, so that there is a neighborhood U of the unit e of G such that the
sets dU,d € D are disjoint. Each of these sets is diffeomorphically projected onto
U by =. Hence, 7 is a covering of the manifold G/D by the covering space G, and
G/D and G have the same dimension.

Let F be any path in G from ¢ = F(0) to some element d = F(1) of D, and let
[F] be its homotopy class. Let F/ be another path from e to d’. Then, F(1)F' is a
path from d to dd’ which is obtained by a left translation of F’ by d. Introduce the
product of homotopy classes as [F'|[F] = [F(1)F'F] where F(1)F'F is the path F
concatenated with the translated path F(1)F’. It will be seen that this makes the set
of classes [F] into a group. Since the end points of the paths F and F’ are in D, the
projections n(F) and 7(F’) in G/D are loops with base point 7(e), and the pro-
jection w(F(1)F') of the translated path F(1)F' is equal to n(F’). Since = is
continuous, homotopy equivalent paths F' are projected into homotopy equivalent
loops #n(F) in G/D. It is obvious that the corresponding projections 7. ([F]) =
[z(F)] of homotopy classes [F] form the fundamental group 7,(G/D,n(e)).
Moreover, . ([F[[F]) = [(F()F'F)] = [x(F)|[x(F)] = .([F)x.([F)), and
hence 7, is an isomorphism between the multiplicative set of homotopy classes of
paths F from e to elements of D and the fundamental group 7,(G/D, (e)) of the
space G/D. As anticipated, the former set with the introduced multiplication is a
group.

In G, the homotopy classes of loops based on e form the fundamental group
71(G,e) which is isomorphically mapped into the subgroup p(m,e) of
m1(G/D, =(e)) by the covering 7. Let [Fo] € m1(G, e), and let [F] be any homotopy
class of paths from e into D. Then, since Fy(1) =e = F_(1), [F][Fo][F]""' =
[FFol[F-] = [FFoF_] = [Fo]. (FFoF_ just moves homotopically the base point of
Fy from e to the end point of F.) Hence, [F][Fo][F]”" = [Fo] for every [Fo] €
71(G, e) and every [F] with 7.([F]) € m1(G/D, n(e)). Inversely, if the last relation
holds, then [FFyF_] = [Fy] which is only possible, if Fy is closed. In summary,
p(m, e) is the central normal subgroup of 7, (G/D, n(e)), that is, the subgroup of
all elements [Fy] with [F|[Fo][F]™" = [F] for all [F] € n,(G/D, n(e)). If the end
points of paths F from e run through D, then = ([F|n; (G, e)) = n.([F])p(=, €) runs
through the quotient group 7n1(G/D, n(e))/p(m,e) which latter hence is isomor-
phic with D. If in particular G is simply connected and hence p(, e) is trivial, then
71(G/D, n(e)) is isomorphic with D.

As a simple example, consider the n-torus group T". Let G=R"=
{(x1,.-x2) | x; €R}, and let L=7" = {(ky,...,k,) | ki € Z} be the n-dimen-
sional unit lattice. Let T" =R"/L={(#,...,t,) |t; = x;mod 1}. Since R" is
simply connected, 71 (T", 0) is isomorphic to L : Paths from the origin of R" to one
of the lattice points correspond to k;-fold windings around the n non-homotopic
circles of T". This fact was heuristically already used in Sects. 2.5 and 5.9.
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In a sense inverse to the above is the following theorem:

Each connected Lie group G has a simply connected covering space G which is
again a Lie group and the covering n: G — G is a Lie group homomorphism the
kernel of which is a discrete subgroup of G.

Proof It was already seen that G has a simply connected covering space G.
Choose an arbitrary element of 7! (e) (where e is the unit of G) to be the unit & of
G. Let F; and F;, be two paths in G from e to arbitrarily chosen points g and 7,
respectively. Let Fy = n(F;), Fy = n(F},), g =n(g) and h=n(h). Let F' =
gF,F, be the path in G obtained by concatenation of F, and the g-translated image
of F, and let F/ be a path in G starting at ¢ and being projected by © onto F’. Its
end point k depends only on g and 4 and not on the particular paths chosen. Indeed,

let F% and F;; alternatively chosen paths, let F g, and F), be their projections, and

let F” be a path starting at ¢ and being projected onto F” = gF}F o Since
[Fy Fel, [F},_Fy] € p(n,e) and (FF')_ = F_F_, it follows that F” F' = (gF,F,)_
(8FnFy) = Fy_gF), gFyFy = (F,_F,)(F},_Fy), and hence [F"F'| € p(n,e) with
the consequence that F’ and F”, both starting at &, have the same end point k. On
this basis, the product gh = k in G is correctly defined, and by considering cor-
responding paths associativity of this product, unit property of e and the existence
of g~! is demonstrated. Furthermore, n(gh) = n(g)n(h) was underlying the con-
struction of the product. Hence, g is a group and the covering 7 is a group
homomorphism.

It remains to show that the product gh~' is smooth in G. This is straightfor-
wardly demonstrated with the help of paths F(f) = F(st) smoothly depending on s
in G and using the fact that = is a local diffeomorphism.

Finally, since 7 is a covering, there is a neighborhood U of e in G the preimage
of which consists of disjoint open sets of G homeomorphic with U. In particular,
the preimage of e which is the kernel of the homomorphism 7 is discrete. U

Hence, for every connected Lie group G there exists a simply connected Lie
group G which is a covering of G. The natural question arises, whether and in
which sense G is unambiguously determined. It was already demonstrated that
simply connected coverings of G are diffeomorphic as manifolds. That they are
also isomorphic as groups follows from the connection between the Lie groups and
their Lie algebras.

Let G and H be connected Lie groups, and let F : G — H be a Lie group
homomorphism. Then F is a covering, iff F, : ¢ — b is a Lie algebra isomorphism.

Proof Suppose that F is a covering. Then F, must be injective. Otherwise F, :
T,(G) — Tp(g)(H) would have a non-trivial kernel at every point g. These kernels
form an involutive distribution having an integral manifold (Frobenius theorem)
which is mapped into a point of H by F, and F could not be a local homeomor-
phism. F, must also be surjective, since otherwise F would define a proper
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submanifold of H. Being an injective and surjective homomorphism, F, is a Lie
algebra isomorphism.

Suppose now that F is a Lie algebra isomorphism. Then, by the inverse function
theorem, p. 74 f, F is everywhere a local diffeomorphism, and, since F(e) =
e, F(G) contains a neighborhood of the unit e € H and hence, by (6.8), F(G) = H.
It remains to show that a neighborhood of every point of H is evenly covered by G.
Observe, since F is a local homeomorphism, that F’ -1 (e) = Ker F = K is a discrete
normal subgroup of G. Therefore, there exists a small enough neighborhood U of
e € Gsuchthat (U~'U) N K = {e}. Using the continuous group operations it is not
difficult to show that F(U) is a neighborhood of e € H evenly covered by F. This
even cover may be translated to every point of H. O

Let G and H be Lie groups, and let G be simply connected. Let F : ¢ — 1y be a
homomorphism. Then there exists a unique homomorphism F : G — H such that
F. = F. In particular, if simply connected Lie groups have isomorphic Lie alge-
bras, then they are isomorphic.

Uniqueness was proved at the end of Sect. 6.2. The proof of existence which
uses considerations similar to those of Sect. 6.3 is skipped, see for instance
[1, p. 101].

Now, for any Lie group G the Lie algebra g is isomorphic to the tangent space
T.(G) (p. 175). If G and H are diffeomorphic (as manifolds) Lie groups and g and
h are elements mapped to each other by the diffeomorphism, then the tangent
spaces T,(G) and T,(H) are isomorphic (inverse function theorem, p. 74 f).
Hence, from the above it follows that connected Lie groups have (up to isomor-
phism) uniquely defined simply connected covering groups, which are called
universal covering groups. Just to mention an important simple example from
physics: the group of transformations of spinors SU(2) is the universal covering
group of the group of rotations in 3-space SO(3). (See Sect. 6.6 for details.)

6.5 The Exponential Mapping

Recall the formal Taylor expansion of a real function f of a real variable, analytic
in a neighborhood of x:
d 2 d?
Flet ) =) =1+l + 5L+ (69)
The real line G; = R is a simple case of a simply connected Lie group with respect
to addition as group operation. Its Lie algebra consists of the one-dimensional
vector fields #(d/dx), t € R, that is g, = R.

Consider any Lie group G and its Lie algebra g. Let X € g be a left invariant
vector field on G, then exp,(X):g, =R — g:7—1X is a Lie algebra homo-
morphism. (The notation exp will become evident soon.) According to the end of
last section there is a unique Lie group homomorphism exp(X) : Gy =R — G :
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t+— exp(X), for every X € g from R onto a 1-parameter subgroup of G. On the
other hand, the tangent vector fields (d/dx) and X are exp(X)-related (see p. 78)
and hence, according to the Frobenius theorem, there is a unique integral curve of
X in the manifold G for which exp(X), = e, the latter since exp(X) is a Lie group
homomorphism. Moreover, since X is left invariant, there are unique integral
curves of X for which I, o exp(X), = g for every g € G, in particular for every
g € exp(X)g = {exp(X), |t € R}. Thus, the l-parameter subgroup exp(X)g
consists of the integral curve of X through e € G, and the left invariant tangent
vector fields on a Lie group are always complete. (See p. 81.)

Note that this is a global statement. Locally, one could introduce a local
coordinate system in G like (3.33) and argue with (6.9). Now, with the help of left
translations one easily finds globally, that is for all t,1,,, € R,

exp(iX) = exp(1X), = exp(X),,
exp((f; + 1)X) = exp(r;X)exp(2X), (6.10)
exp(—1X) = (exp(X)) .

So far, exp(X) for every fixed X € g was a mapping 7+— exp(X), from R to G.
With the relations (6.10) one may put exp(X), = exp(X) and consider exp as a
mapping from g to G.

As a mapping from g to G, exp maps a sufficiently small neighborhood u of the
origin of g homeomorphic to a neighborhood U of ¢ in G, and, according to (6.8)
G*¢ as a whole is obtained by all kinds of products of factors out of U. However, the
mapping exp : ¢ — G° need not be onto (compare the exercise on p. 200) nor need
it be one—one (compare the mapping exp: R = s! — §': ¢+ ¢2™). It can be
shown that exp is a smooth map. Moreover, it can be shown for every Lie group
that there exists a unique complete analytic atlas (that is, all transition functions
between charts are analytic) so that the group operations and the mapping exp are
analytic. (See for instance [2].)

With the help of the exponential mapping the interrelation between a Lie group
and its Lie algebra can further be explored. If ' : G — H is a Lie group homo-
morphism, then the following diagram is commutative:

Fa

g — b
epr Jexp (6.11)
G —+t—H
Indeed,
F(exp(X)) = exp(F.(X)). (6.12)

Since F is a homomorphism, F(exp(X)g) is a 1-parameter subgroup of H. On the
other hand, exp(F. (X)) is an integral curve of F.(X) in H, and both are uniquely
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defined by F.(X) at e € H. Left translation from e to g € H and left invariance of
F.(X) prove their equality.

If, in particular, F(G) is a Lie subgroup of H and X € F,(g), then exp(tX) €
F(G) for all t € R. If exp(tX) € F(G) for some interval of values ¢, then
exp(foX) = F(g) for an inner value # of that interval and some g € G, and
exp((r — 10)X) = exp(1X)(F(g))”" € F(G) is a local 1-parameter group through e
in F(G), hence (t — 19)X € F.(g) implying X € F.(g).

The following basic results can be proved with the help of the exponential
mapping [1]:

Let H be a Lie group, and let G be an algebraic subgroup of H closed in the
topology of H. Then there is a unique complete atlas of G making it into a Lie
subgroup of H.

Let F : G — H be a Lie group homomorphism, and let K = Ker F, T = Ker F.,.
Then K is a closed Lie subgroup of G with Lie algebra t.

6.6 The General Linear Group Gl(n,K)

A most important case of a Lie algebra is formed by the n?-dimensional real vector
space of all n x n-matrices A, B, ... with the multiplication (commutator)

[A,B] = AB — BA (6.13)

where AB is the ordinary matrix multiplication. This Lie algebra is called the
general linear algebra gl(n, R).

Abase Xj), i,j = 1,...,n may be introduced consisting of matrices X;; having
unity as matrix element of the ith row and jth column and zeros at all other entries.
Then, obviously

X X)) = 01X — 51X (6.14)
and comparison with (6.1) yields the structure constants

ol = 90615, — 0013, (6.15)

Any matrix A can be expanded in this base as A = ) A’:X(,ﬁ where the vector

n
ij=14
components of A in the vector space gl(n, R) are the ordinary matrix elements A} in
row i and column j. As a topological vector space, gl(n,R) is homeomorphic to
an

The complex general linear algebra gl(n, C) is obtained just by replacing the
real components A; with complex ones. Hence, it has the same base and structure

. . 2 . .
constants as gl(n,R), but is homeomorphic to C" ~R> The following consid-
eration is the same for both cases.
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Let |A| = max; |Aj], then it is easily seen that |A"| < n"~1|A|" holds for the mth
power of A. Denote the n X n unit matrix by 1 and consider the series

A2 A" X A™
exp(A):1+A+?+~--+W+---=ZW. (6.16)
[ ! !

Its partial sums are n x n-matrices, and for all A with |A|<c it converges uni-
formly for any fixed positive constant c, since the absolute value of each matrix
element of the mth item is bounded by n"~'¢"/m! and 3 (nc)"/m! = €" con-
verges. Since the matrix multiplication is continuous in gl(n,K), K = R or C,

o(35) -3 617

m=0 m=0

and accordingly for the right multiplication, and hence
Be'B! = B4 ) (6.18)

for any B € gl(n, K). Now, for any matrix A there is a matrix B such that BAB™! is
upper-triangular, and the product of two upper-triangular matrices is again an
upper-triangular matrix. Hence, the right hand side of (6.18) for such a B is an
upper-triangular matrix, and, if ay, . . ., a, are the diagonal elements of BAB™!, then
e, ...,e" are the diagonal elements of that right hand side. In particular, no
matter what the numbers q; are,

dete’ = det(Be’B™") = detePAB ) = He“" = "BABT) — oA £ (6.19)
i1

Here, the simple matrix rules det(AB) = detA det B and tr(ABC) = tr(CAB) were
used.

At the beginning of this chapter it was already mentioned that the general
linear group

Gl(n,K) = {A|detA # 0} (6.20)

is a Lie group. Consider for any matrix A’ the 1-parameter subgroup ¢ et €
R. Its tangent vector at 7 = 0, that is, for e’ =1, is A’. It is simply obtained by

term wise differentiating the uniformly converging power series for ¢’ with
respect to ¢. This proves

exp(A) = &, 9K generates (Gl(n,K))". (6.21)

The general linear algebra is the Lie algebra of the general linear group, the
exponential mapping coincides with the ordinary matrix exponentiation and yields
the component containing the unity of the general linear group. GI(n,K) is
pathwise connected for K = C. It is not difficult to see that a path from any
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non-singular matrix Ag to any other non-singular matrix A; in C" can always be
infinitesimally deformed into a path avoiding detA = 0 (for instance encircling
detA = 0 in the complex plane always in the positive sense). This does not hold
for K = R for which there are two components with detA Z0. Gl(n,C) is not
simply connected, which is most easily seen for GI(1,C) = C\ 0. However,

(GI(n,R))" is simply connected: Let Ay and A, be two arbitrary matrices both with
positive (negative) determinant. There are paths By(t),B;(¢),t € [0, 1],B;(0) =
1,detB;(t) = 1 which continuously transform B;(¢)A;B; ! () into upper triangular
matrices without changing the determinant. Having determinants of the same sign,
the signs of diagonal elements of both triangular matrices can only differ in an
even number of them. Group neighboring diagonal elements not having the same
signs into pairs and consider a (2 x 2)-matrix. Put a;(t) = ta;;, ar2(t)ay (1) =
(> — Dayaxn, ax (1) = ax(—1) = 0 and let ¢ run from 1 to —1. It reverses the
signs of diagonal elements without changing the determinant on a path from upper
triangular form to upper triangular form. It does also not change the determinant of
the full matrix which is up to the considered (2 x 2)-block upper triangular. (This
can directly be inferred from the Laplace expansion with respect to the two rows
containing the (2 x 2)-block.) In this way successively all diagonal elements of
B (1)A;By'(1) differing in sign from those of By(1)A¢B,'(1) can be moved
together and then sign reverted. A further continuous path brings the absolute
values of the diagonal elements into coincidence without changing signs. Con-
catenation of all changes completes the path from A to A; in GI(n, R). Since any
path from detA > 0 to det A <0 must unavoidably cross detA = 0, this proves that

the polynomial condition detA = 0 defines a smooth hypersurface in R” dividing
it into just two connected components. Consider any loop in the component with
detA > 0, and take the point on it with minimal detA as base point of the loop.
(The minimum exists since a loop is compact.) Transform every point of the loop
by the above transformation into the base point. This transformation may be
chosen as a continuous function of the points of the loop and keeps det A above the
value at the base point, contracting the loop into the base point. Hence, (GI(n, R))"
is simply connected.

Any n X n-matrix may be considered as a linear mapping of the n-dimensional
vector space K" over the field K into itself (endomorphisms End(K")). Likewise, a
non-singular matrix may be considered as the transformation matrix of an auto-
morphism of K". Hence, one has also

exp : End(K") — Aut(K"). (6.22)
Again, this mapping need not be surjective, for instance, if Aut(K") is not con-

nected. If G is any Lie group and F : G — Aut(K") is a representation of G, and if
X € g, then it follows immediately from (6.11) that

F.(X)*
2!
where F.(X) € gl(n,K) is a matrix obtained from [dF (exp(tX))/dt],_,.

F(expX) = exp(F.(X)) =1+ F.(X) + +-- (6.23)
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It has been shown (theorem by Ado) that every finite-dimensional Lie algebra
is isomorphic to a subalgebra of gl(n,R) for some n. (That means that also
gl(n’,C) is isomorphic to such a subalgebra, of course with n > n’.) By expo-
nentiation, every subalgebra of gl(n, R) generates a connected Lie group to which
this subalgebra is the corresponding Lie algebra. Every such Lie group has a
uniquely (up to Lie group isomorphism) determined simply connected covering
group. This provides a one—one correspondence between Lie subalgebras of
gl(n,R) and simply connected Lie groups.

(A complete classification of all Lie algebras has not yet been achieved, to say
nothing about a complete classification of all Lie groups.)

Some important Lie subgroups of Gi(n, K) are shortly considered:

The special linear group

Slin,K) ={A|detA =1}, n>1, (6.24)
is a closed connected Lie subgroup of Gl(n,K) and has its Lie algebra
sl(n,K) = {A"|tr A" = 0}. (6.25)

Indeed, if tr A’ = 0, then detexp(A’) = 1 follows directly from (6.19). Conversely,
detexp(A’) = 1 implies trA’ = (2xi)k with some integer k, and only in the case
k = 0 the A’ may form a vector space over the field K. This trace condition reduces
the number of independent diagonal elements of A by one, hence the dimension of
sl(n,K) and of Sl(n,K) is equal to n> — 1, in the case of complex algebra for
K = C, and sl(n,C) and SI(n,C) have the dimension 2n* — 2 in real algebra.
Sl(n,K) is closed since det A = 1 is a polynomial equation in K". Let Ay and A; be
two arbitrary elements of SI(n, C). Since Gl(n, C) is connected, there is a path B(r)
in Gl(n,C) connecting Ag = B(0) with A; = B(1). For every ¢ there is a path
D(u,t)B(t), where D(u,t) = A(u, 1)1 and A(u,t) is a continuous non-zero complex
scalar function with 2(0,7) =1, A(1,7) = (detB(¢))~" (It is continuous in both
variables u and ¢ and may for instance be chosen always to go around the origin of
the complex plane in the positive sense). Now, D(u, #)B(¢) continuously deforms
the path B(r) into a path A(¢) € GI(n, C) (in the relative topology from an) from
Ap to A, where now A(¢) is in Si(n, C). Hence, SI(n, C) is connected. In fact it is
even simply connected. An analogous argument shows that SI(n,R) = Si(n,C) N
Gl(n,R) is a connected subspace of (GI(n,R))". (SI(1,K) = {1} is trivial.)
The unitary group

Un)={A|AT=4"1} (6.26)

is a connected compact (closed bounded) Lie subgroup of GI(n,C). AT means the
Hermitian conjugate of the matrix A. Indeed, from 1 = (AAT)! =3, |A};|2 it fol-
lows that |AL| <1, and hence U(n) is bounded in C”. 1t is closed since the

condition AT = A~! implies detA # 0, and hence this former condition can be
expressed as a set of polynomial equations in the matrix elements. One further has
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. 112 A/2

= (exp(4"))" = (exp(4")) ™" = exp(-A")

from which chain it is seen that the commutator algebra of skew-Hermitian
matrices

u(n) = {A'|AT + A" =0} (6.27)

is the Lie algebra of U(n). Since the matrices A’ € u(n) necessarily have a van-
ishing real part of the diagonal matrix elements, it is an algebra over K = R.
Although the matrices themselves may be complex, U(n) is a real Lie group and
u(n) is a real Lie algebra, both with real dimension n?. U(1) is the unit circle in the
complex plane (which is not simply connected). The angle ¢ may be taken as its
real coordinate.

Let D, , be the diagonal matrix with the first p diagonal entries equal to 1 and
the last g diagonal entries equal to —1, p,g>1, p+ g = n. The generalized
unitary group

Ulp,q) ={A |Dp~,qATDp,q = Ail} (6.28)
is a real subgroup of Gl(n,C) with the real Lie algebra
u(p,q) = {A'| D, A''D,, + A =0}. (6.29)

U(p, q) is not compact as the example

cosh@ sinh0
(sinhO coshO) eU(1,1), 0eR (6.30)
shows. The real dimension is again n?.
The orthogonal group
O(n,K) ={A|A"=A""} (6.31)

is a closed Lie subgroup of Gl(n, K). Here, A’ means the transposed of the matrix
A. For K = R, it is compact by the same argument as in the unitary case. However,

since 1 = det(AA™!) = detAdet A’ = (detA)?, it consists of the two components
with detA = £1 and is not connected. A chain of equations analogous to the
unitary case shows that the commutator algebra of skew-symmetric matrices

o(n,K) ={A'|A" + A" =0} (6.32)

is the Lie algebra of O(n, K). Since all matrices of o(n, C) have zero diagonal
elements, complex coefficients will not violate the skew-symmetry condition;
o(n,C) is a complex Lie algebra and O(n,C) a complex Lie group, both with
complex dimension n(n — 1)/2 because of the vanishing diagonal of A’ € o(n,C)
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and the skew-symmetry of the off-diagonal elements. The corresponding real
dimension is n(n — 1). O(n,R) = O(n) = U(n) N Gl(n,R) and o(n,R) = o(n) =
u(n) N gl(n,R) consist of real matrices and are of real dimension n(n —1)/2.
(O(1,K) = O(1) is discrete and consists of the two elements 1 and —1; hence its
Lie algebra is trivial, o(1) = {0}.)

The generalized orthogonal group (again p,q>1, p+q =n)

0(p,q) ={A|Dp,A'D, g =A""} (6.33)
is a non-compact non-connected Lie subgroup of Gl(n,R) with the Lie algebra
o(p,q) = {A'| D, ,A"D,, +A =0} (6.34)

It is not difficult to see that O(p,q) has the four components (O(p,q)' =
0*(p,q), —10"(p,q), D,,0%(p,q) and —D, ,0"(p,q)). The matrix (6.30) is
obviously also an element of O(1,1). The real dimension of O(p,q) is again
n(n—1)/2.
The special unitary group
SU() =Um)NSI(n,C) ={A|AT=A"" detA=1}, n>1,  (6.35)

is a simply connected compact real Lie subgroup of both U(n) and SI(n,C) with
the Lie algebra

su(n) = u(n) Nsl(n,C) = {A’'|AT + A" =0, rA’ = 0}. (6.36)

Its (real) dimension is n*> — 1.
The generalized special unitary group
SU(p,q) = Ulp,q) N SInC),  p,g=1, p+q=n, (6.37)

has also dimension n> — 1, but is not compact. Again, (6.30) is also an element of
SU(1,1).
The special orthogonal group
SO(n,K) = 0(n,K)NSI(n,K) = {A|A"=A"" detA =1}, n>1, (6.38)
is a connected Lie subgroup of both O(n,K) and SI(n,K) with the Lie algebra
so(n,K) = o(n,K), (6.39)

since the skew-symmetry implies a vanishing diagonal and hence tracelessness.
SO(n, C) is not compact and has complex dimension n(n — 1)/2 and real dimension
n(n—1). SO(n,R) = SO(n) is compact and has real dimension n(n — 1) /2.

The generalized special orthogonal group

SO(p,q) = O(p,q) N SI(n,R), p,g>1, p+q=n, (6.40)

has also real dimension n(n — 1)/2. It is again not compact, and (6.30) is also an
element of SO(1,1).
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Finally, let

0 1,
Iy = (_ln 0) (6.41)

be the matrix which replaces the first n coordinates of K** with the second n
coordinates and the second ones with the negative first ones. (For R? it just rotates
by —n/2.) The symplectic group

Sp(2n) = {A| 1A, =A" AT =471} >, (6.42)
is a simply connected compact real Lie subgroup of U(2n) with the Lie algebra
sp(2n) = {A'|J,A"J, + A" = 0,4 + A" = 0}. (6.43)

Like U(n) it is a real group and algebra, although the elements are complex. It is a
simple exercise to see that its (real) dimension is n(2n 4 1). The elements A’ of the
algebra sp(2n) have two skew-Hermitian n x n diagonal blocks being the negative
transposed of each other and two symmetric n x n off-diagonal blocks being the
skew-Hermitian conjugate of each other. Sp(2) = SU(2).

The symplectic K-group

Sp(2n,K) = {A| LA, =AY, n>1, (6.44)

is a connected (but non-compact and not simply connected) Lie subgroup of
GI(2n,K) with the Lie algebra

sp(2n,K) = {A"|J,A"J, + A’ = 0}. (6.45)

The K-matrices A’ consist of two n x n diagonal blocks being the negative
transposed of each other and two independent symmetric off-diagonal n x n
blocks. The K-groups and K-algebras have the K-dimension n(2n+ 1).
Sp(2,K) = SI(2,K).

The Lie groups SU(n),n>2,Sp(2n),n>2,50(n),n>7, are compact simply
connected and as such universal covering groups corresponding to their respective
Lie algebras. If the Lie algebra g of a Lie group G is isomorphic to one of the
algebras su(n),sp(2n), 0(n) with integers n from above, then the corresponding
group SU(n), Sp(2n) or SO(n), respectively, is the universal covering group of G.
(s0(3) = sp(2) ~ su(2),s0(4) = su(2) @ su(2),s0(5) ~ sp(4),s0(6) =~ su(4).)
All compact, simply connected, simple Lie groups (Lie groups having simple Lie
algebras, see Compendium C.4) were classified by W. Killing and H. Cartan
(which leads in addition to the just mentioned classical groups to the five so-called
exceptional groups Es, E7, Eg, F4, G, see again Compendium C.4).

The relevance of the general linear group and its subgroups lies in the fact
that they may be understood as transformation groups of an n-dimensional vec-
tor pace K" over the field K. If x € K" with coordinates x, i = 1,...,n, then
Ax € K" is the transformed vector with coordinates A;xj . The composition of two
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transformations, that is their subsequent performance, corresponds to matrix mul-
tiplication and hence to the group operation. Hence, any set of transformations
closed with respect to composition is a group. For instance, U(n) is the group of
unitary transformations in the rn-dimensional unitary space leaving the scalar
product invariant. These are the unitary ‘rotations’ of the group SU(n) as well as
reflections from coordinate hyperplanes and their combinations. Accordingly,
O(n,R) are the transformations of the n-dimensional Euclidean space leaving the
scalar product invariant. The group of affine motions in the Euclidean space is the
semi-direct product E(n) = O(n,R)xR" C Gl(n + 1,R) consisting of the matri-
ces (A,x),A € O(n,R), x € R" as mentioned in the introduction to this chapter. The
Lorentz group is the group O(1,3) consisting of four components obtained by time
inversion, spatial reflection and their composition, and O" (1, 3) is the proper or-
thochronous Lorentz group while O(1,3)xR* C GI(5,R) is the Poincaré group of
time and space translations and Lorentz transformations. Finally, the group
Sp(2n,K) leaves a symplectic form, like (4.52) for K =R, on the space K*"
invariant. Hence, sp(2n,R) contains the Jacobi matrices of canonical transforma-
tions (in phase space) of Hamilton mechanics. For more details see for instance [3].

6.7 Example from Physics: The Lorentz Group

Two points in flat space-time (absence of a gravitational field) which may be
connected by a light signal obey the condition

(et —x* = ()7 = (x')? = ()" = () = x*(D13) " = 0, (6.46)

where ¢ is the velocity of light. A transformation x* — x* = L“x", which leaves
the velocity of light invariant, must obey the condition x'*(D; 3) X" = 0, while

0=x"(D13),,x" = Lix"(Dy3),,Ljx" = x*(L'Dy 3L),,;x". (6.47)

In order that for all x obeying (6.46) also (6.47) follows and vice versa, L'D 3L =
D, 3 or equivalently D;3L'D, 3 = L~" must hold, because a real quadratic form
that has zeros is uniquely determined by all its zeros. Hence, L € O(1,3), and the
classical Lorentz group is the generalized orthogonal group O(1,3).

The group O(1,3) obviously contains the element

u(,1) o coshf sinhf
B(Q’e1>:( (0 : 12)’ U(]’]):<sinh9 cosh@)’ (6.48)

with U(1,1) as in (6.30). In order to reveal the physical meaning of 0, consider
first the limit @ — 0. In lowest order, ¥° = ¢’ = ¢t + 0x!, x¥'' = Oct + x'. In the

original reference system, the origin of the primed x''-axis is described by x! =
—0ct, hence it moves with the velocity v = —0c, measured in the original system
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in its e;-direction, while ¥ =t +vx!/c?> ~¢t. In the limit |0] —|v/c| — O the
Galilei transformation is obtained. For a general 6, the origin of the primed system
0 =x"' = ¢t sinh 0 + x' cosh § moves with the velocity

tanh 0 = —v/c (6.49)

along the e;-axis, and this relation implies cosh = 1/4/1 — (v?/c?), sinh 0 =
—(v/e)/+/1 — (vV*/c?). From |tanh 0| <1 the restriction |v/c|<1 follows. 0 is
called the rapidity parameter.

Experimentally, the speed of light c is in all reference systems moving with
constant speed relative to each other the same. Hence, the Lorentz transformations
L € O(1,3) describe physically correctly the transformation of space and time
from one reference system to another one moving relative to the first with a
constant speed v.

A Lorentz transformation to a system moving in any direction e in 3-space is
obtained as

1 0 1 0 cosh 0 —e'sinh 0 — e
B(0,¢) = (0 R3)3(9’81><0 Rg) o (—esinh() 1; +ee’(cosh0—1)>’
(6.50)

where R; = (efg) with three mutually orthogonal unit (column) vectors e, f, g in
R®. A general rotation of the reference system in 3-space,

R(a,ﬁ,y):<(1) R3(£ﬁ,y)), Ri(xB,7) €S0(3),  (6:51)

which can be uniquely characterized by the Euler angles a, 3,y is another par-
ticular Lorentz transformation. Both particular transformations (6.50) and (6.51)
have the properties L) > 0,detL = 1. Since 6 may be any real number and SO(3)
is connected, both transformations belong to O*(1,3) which is called the proper
orthochronous Lorentz group (orthochronous because it preserves the direction of
time flow).

Every element of O"(1,3) may uniquely be written as L = B(0,e)R(a, f3,7).

Proof Let X¥* = L*x" be any element of O (1,3). If ¥* = x°, then necessarily
B(0,e) = B(0) = 1,. Otherwise x"° # +x and one may choose the unit vector e
perpendicular to ey in the plane spanned by ey and €'y, so that X% = x%cosh 0 +
e - x sinh 0 with some value 0. Put R(, 5,7) = (B(0, e))flL7 then (R(«, f, y))g =1
and L has the demanded form. Let B(0/,€¢')R(«/, f',7") = L = B(0,e)R(x, B, 7) be
another such decomposition of L. Then, (B(0/,¢)) 'B(0,e) =R(«,f,7)
(R(a, 7)) " is a product of two rotations and hence a rotation, which implies
((B(@’,e'))_lB(G,e))g = 52 and hence 0 = 0,¢' = e. O
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The transformation (6.50) is called a boost, and any element of O"(1,3) may
be uniquely decomposed into a 3-rotation followed by a boost (or alternatively into
an in general different boost followed by a 3-rotation). In the last section the
simple fact was already stated that O(1,3) consists of four connected components.
Two of them are orthochronous and two are proper in the sense that their elements
do not imply an odd number of spatial reflections.

So far, the Lorentz transformation was interpreted in the passive sense of the
description of the same point in space—time seen from different reference systems.
Consider a particle with rest mass m placed at the origin of the reference system
and hence with zero momentum p. From another primed reference system
the origin of which is moving with velocity v in direction —e as measured in
the unprimed system, this particle is seen as moving with velocity v in the
direction e. Hence, in this system it has energy moc?//1 — (v2/c?) = myc?* cosh 0
and momentum emyv/\/1 — (v?/c?) = —emyc sinh 0. The four-momentum (p*) =
(E/c,p")" of the particle at rest in the unprimed reference system (as a column
vector) is (mgc,0")" while that in the primed reference system is (mgccosh 0,
—e'myc sinh 0)'. This may be written as (E'/c,p") = B(0,e) (moc,0')" and may
also be interpreted in the active sense that the particle at rest in the fixed
unprimed reference system is boosted to velocity v = ve by the transformation
B(0,e). However, boosts alone do not form a group: the composition of two
boosts is a Lorentz transformation, but in general not again a boost (check it).
Conversely, the transition from one boost to another boost is also a Lorentz
transformation, but in general not a boost. Hence, the generalization of the just
considered relation is

!
(E{C) :L(E/C>, Leo(1,3) (6.52)
p p

with an interpretation again in the active sense that the physical content of the
fixed unprimed reference system is first rotated and then boosted by the unique
rotation and boost content of L according to the above theorem.

As is well known from physics, the infinitesimal generators of a 3-rotation
(generators of the Lie algebra 0(3,R)) are the three components of Schrédinger’s
angular momentum operator multiplied by the imaginary unit and the infinitesimal
generators of boosts (infinitesimal boosts may be described by infinitesimal Galilei
transformations as seen above after (6.48)) are the three components of the
momentum operator. Hence, the dimension of the Lorentz group is 6 = 4(4 — 1)/2
in accord with the general dimension of O(p, g).

Instead of describing a point of space—time as a four-vector in Minkowski space
R* provided with a pseudo-metric g,, = (D 3) . s in (6.46), it may likewise be
characterized by a complex Hermitian 2 X 2 matrix which also has four real
entries, by the correspondence
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. O+ X —id 1
()~ X = x'o, = (xl L OB )T Etr(Xa#) = ("),  (6.53)

with

0 1 0 —i 1 0
()'():127 0'1:(1 O), 0'2:(1. O), 0'3:(0 _1>. (654)

0i,i =1,2,3 are the Pauli matrices, while all real quadruples with arithmetic
operations according to (a,b,c,d) = agy + bicz + cio, + dioy form a realization
of the field of Hamilton’s quaternions. Obviously, (6.53) provides a one—one
mapping between the points (x*) and X. Moreover,

detX = () — (x)* = (2®)* = (*)? (6.55)

defines Minkowski’s pseudo-metric on the space of the complex Hermitian
matrices X. A Lorentz transformation must now be a linear transformation of
matrices X which preserves Hermiticity and keeps the determinant of X constant.
A simple such transformation is

X' = AXA", detA=1, thatis, A € SI(2,C). (6.56)

In fact it would suffice to demand |detA| = 1, but A and ™A, 1 real, provide the
same transformation (6.56) with det(e”A) = e’>*detA. Hence, for every A’ with
|detA’| = 1 one may choose A = (detA’)™/?A’ with detA = 1.

Every transformation (6.56) is via (6.53) mapped to a Lorentz transformation
of (x*), and this mapping is obviously both smooth and a group homomorphism.
Hence, there is a Lie group homomorphism SI(2,C) — O(1,3). Since SI(2,C) is
simply connected, it is smoothly mapped into the connected component of

07%(1,3). This latter mapping is even onto. Consider first a rotation by an angle

—¢ around the es-axis, x'' = x! cos ¢ — x*sin ¢, x> = x! sin ¢ + x? cos ¢ while
x% and x* do not change. It is easy to check by direct calculation that it is provided

via (6.53) and (6.56) by

exp((i@/Z)o‘g) =1, + i$a3 _i(2>2 i <¢)363 4.

2 2\2/ 31\2
_ (COS((P/2)+isin((p/2) 0 ) (6.57)
= 0 cos(@/2) —isin(¢p/2)

which is obviously an element of SI(2,C). Similar expressions hold for rotations
around the other spatial axes. Since any rotation of SO(3) can be performed by
rotating around ez by the first Euler angle, then rotating around the new e;-axis
by the second Euler angle and finally rotating around the thus obtained e3-axis
by the third Euler angle, every SO(3)-rotation corresponds to a product of three
SI(2,C)-transformations. Similarly it is seen that a boost along the es-axis is
provided by
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0 1/0\* 1/0\
exp((9/2)03):12+553 +5<§) +§(§) 03 + -+

_ (cosh(@/Z) + sinh(6/2) 0

0 cosh(0/2) — sinh(0/2) > (6.58)

a general boost along any e-direction is then obtained from (6.58) by replacing o3
with e - ¢ where ¢ means the 3-vector of the three Pauli matrices. Finally, since
any proper orthochronous Lorentz transformation can be written as an SO(3)-
rotation followed by a boost, it may be likewise written as a transformation (6.56)
with A generated by expressions exp(4 - 6) where 4 is a general complex 3-vector,
and detexp(Ad-o) =exptr(A-o) =exp(0) =1 since the Pauli matrices are
traceless. Exercise: Show that a rotation by 7 around the y-axis followed by a boost
in z-direction cannot be given by a single exponent exp(4 - 6).

A traceless complex 2 x 2-matrix has three independent complex entries and
can be expressed as a complex linear combination of the three Pauli matrices.
From the result of the last paragraph it follows, that the Pauli matrices generate the
Lie algebra sl(2,C) with six real dimensions. The three matrices ioy,k = 1,2,3
generate infinitesimal rotations, and the matrices o,k = 1,2,3 generate infini-
tesimal boosts. On physical grounds it is clear, and it can of course be shown
technically, that the Lie algebras o(1,3) and sl(2,C) are isomorphic.

If one, however, replaces the matrices (6.57) or (6.58) by their negative (which
does not change detA because of even rank), the transformation (6.56) is not
affected. Two elements of S/(2, C) differing in a sign only lead to the same Lorentz
transformation:

07(1,3) ~ SI(2,C) /{1, ~1,}. (6.59)

While SI(2,C) is simply connected, O"(1,3) having a Lie algebra isomorphic to
that of SI(2,C) cannot be simply connected. SI(2,C) is the universal covering
group of O (1,3).

The matrices exp(id - ) with real ¥ are in fact unitary as any exponentiation of

a skew-Hermitian matrix. Hence, the rotations belong to the subgroup SU(2) of
SI(2,C), and it holds that

SO(3) ~ SU(2) /{15, 15} (6.60)

The Lie algebra s11(2) is the real Lie algebra generated by ioy,k = 1,2,3 and is
isomorphic to the Lie algebra of angular momenta. SU(2) is the universal covering
group of SO(3).

The representation theory of the groups SU(2) and S/(2,C) can be found in
textbooks of quantum mechanics and is not considered here. Only a few final
remarks are in due place. In the last section, SI(2,C) = Sp(2,C) was mentioned.
As a consequence, every SI(2, C)-transformation leaves a skew-symmetric bilinear
form on the representation space invariant the skew-symmetric matrix providing it
being often called the ‘metric spinor’. With respect to the SU(2) being a subgroup
of SI(2,C), due to unitarity there is additionally a unitary bilinear form left
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invariant. This brings it about that SI(2,C) has two unitarily inequivalent
two-dimensional irreducible representations (undotted and dotted spinors) while
SU(2) has only one (up to unitary equivalence). Moreover, SI(2,C) x
{1,,P,T, TP} where A =P and A =T, respectively, provide space and time
inversion in (6.56) is the cover of the complete Lie group O(1,3) relevant in
quantum theory, which has no two-dimensional faithful (see next section) repre-
sentation. These facts were pointed out by van der Waerden immediately after
Dirac’s formulation of the relativistic theory of the electron.

6.8 The Adjoint Representation

As stated in Sect. 6.2, a homomorphism from a Lie group G into the Lie group
Gl(n,K) is called a representation of the Lie group G. Even for a finite dimen-
sional Lie group there may be infinite dimensional irreducible representations in
the Lie group GI(V) of automorphisms of an infinite dimensional vector space V.
A representation is called a faithful representation, if the homomorphism is
injective which means that its kernel is trivial. The group may then be identified
with its image of this representation. An important faithful representation of a
special class of Lie groups is the adjoint representation.
Consider any Lie group G and fix one element x € G. Then,

=lLor-i(g) =re10lL(g) (6.61)

is an automorphism of G called an inner automorphism. Indeed, R,(gh™!) =
R.(g)R.(h™") for all g,h € G and both translations [, and r, were shown in
Sect. 6.1 to be injective. Since Lie group homomorphisms are pushed forward to
Lie algebra homomorphisms (Sect. 6.2), R, is pushed forward to the Lie algebra
automorphism

Ri(g) = xgx™!

Ad(x) = (Ry), : g — @. (6.62)

As a Lie algebra automorphism, Ad(x) is a non-singular linear transformation of
the vector space g of dimension n = dim G and hence is an element of the Lie
group Gl(n, K).

Ad: G — Aut(g) C Gl(n,K). (6.63)

This mapping is a Lie group homomorphism, because it is smooth as a composition
of smooth mappings leading to (6.63), and first R, 1(g) = xy 'g(xy )" =
xy~'gyx~! = Ry(R,-1(g)) and hence R,,-1 = R, o R,1, and then finally Ad(xy™') =
(Ry1), = (RyoRy1), = (Ry), o (Ry1), = Ad(x)Ad(y") where the last expres-
sion means matrix multiplication. As a Lie group homomorphism into GI(n,K),
Ad is an n-dimensional Lie group representation. It is called the adjoint represen-
tation of G. Again invoking the push forward from Lie group homomorphisms to
Lie algebra homomorphisms,
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ad = Ad, : g — End(g) C gl(n,K) (6.64)

is a Lie algebra representation of g as an algebra of linear transformations of the
vector space g itself.

The diagram (6.11) applied to F = R, and F = Ad yields the following two
commutative diagrams

g A g g LN End(qg)
exp l lexp exp l lexp (665)
G —G G —— Aut(g)
R Ad

meaning
exp(tAd(x)(Y)) = xexp(t¥)x! and exp(rad(X)) = Ad(exp(tX)). (6.66)

Differentiation of the last relation with respect to ¢t at r =0 yields ad(X) =
[(d/dt)Ad(exp(tX))],_,- Now, ad(X) € End(g), and elements of Lie algebras are
left invariant vector fields of their respective Lie groups. Hence,

d d
ad(X)(Y,) = E[Ad(exp(zX))Ye]l:(): E[(Rexp(m)*ye}tzo
d
= E[(rexp(ftX) © lexp(tX))*Ye]t:()
d
= E[(rexp(ftx))* o (lexp(tX))*Ye} =0
d (rexp(—tX))*Yexp(zX) -Y

[(rEXP(*tX) )* YEXp(tX)] —0 lim

T dr —0 t

(The last but one equality is due to the left invariance of Y.) Recall that exp(¢X)
describes the integral curve ¢,(e) of the vector field X on G through e € G. Since

at e € G left and right invariant vector fields coincide, (Fexp(—rx)), is just @; of
(4.36), and (cf. (3.37))

ad(X)Y = LyY = [X, Y]. (6.67)

This is called the adjoint representation of the Lie algebra.

The center ZG of a Lie group G is defined as the subgroup consisting of the
elements of G commuting with all elements of G separately (the latter as distinct
from a mere invariant subgroup):

ZG ={z€G|gzg ' =z forall g € G}. (6.68)
Accordingly, the center 3g of a Lie algebra g is

39=1{Zeg|[X,Z] =0 forall X € g}. (6.69)
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The center of a connected Lie group G is the kernel of the adjoint
representation.

Proof Letz € ZG. Then, forevery X € gandall7 € R, exp(tX) = z(exp(tX))z ' =
exp(tAd(z)(X)). Hence, from the left diagram (6.65), X = Ad(z)(X) which means
z € Ker Ad. Conversely, let z € Ker Ad. Then, z(exp(tX))z ' = exp(tAd(z)(X)) =
exp(tX), and z commutes with all exp(¢X) forming a neighborhood of e € G. Since G
is connected, z commutes with all G and hence is in its center. O

If G’ is a Lie group and ZG' is its center, then G = G'/ZG' is a Lie group with
trivial center which can be identified with its adjoint representation and hence with
a Lie subgroup of some Gl(n,K), n = dim G. Comparing (6.1) with (6.67), this
identification of G with Ad(G) and of g with ad(g) yields

(ad(X;)f = (Xi); =k,  Ad(exp(1X;)) = exp(tX;) = exp((cf)) (6.70)

where (cX) in the last exponent means the matrix with matrix elements cf]- for i

ij
fixed.
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Chapter 7
Bundles and Connections

In Chap. 3, manifolds were introduced as a special category of topological spaces
having locally a topology like a (finite-dimensional) metric vector space. In order
to glue together these quite simple local patches, in addition to the topology a
differentiable structure (pseudo-group, complete atlas) of transition functions ¥y
was introduced which allowed to develop an analysis on manifolds. Globally,
however, manifolds may be very complex. Fiber bundles form a special category
of manifolds which locally behave like a topological product of manifolds, but
which again are provided with additional specific structure to allow for a rich
content of theory. Their global topology may be as complex as that of any man-
ifold; in fact, fiber bundles are build on any type of manifold.

In order to have an illustrative introductory example, consider a smooth real
function F defined on a manifold M, the circle M = S' say. The graph of F is a set
F ={(x,F(x))|x € M} of pairs (x,F(x)) which can be viewed as points of the
product manifold M x R which in the considered example would be an (infinite)
cylinder. Considered merely as a product manifold, arbitrary coordinate patches of
that cylinder (charts) may be used to describe it by means of homeomorphic
mappings onto open domains U € R?. However, this way the important feature of
a function is lost, namely that F has precisely one point (x, F(x)) for every x € M.
Moreover, often pointwise algebraic operations with functions on M are of
interest, that is, the algebraic structure of R as an Abelian group (of additions) or
even as a vector space matters. A simple but in physics particularly important case
is that of complex functions on M of absolute value equal to unity (phases). Then,
instead of R, the Abelian Lie group G = U(1) forms the space of values of F. In
this case, the graph of F is a subset of M x G. If M is a manifold of quantum
states, then G may be an Abelian gauge group. It is clear immediately that also
non-Abelian groups are of great relevance.

Again, only smooth bundles are considered in this volume, and for the sake
of brevity the adjective smooth is omitted throughout (but recalled now and
then).

H. Eschrig, Topology and Geometry for Physics, Lecture Notes in Physics, 822, 205
DOI: 10.1007/978-3-642-14700-5_7, © Springer-Verlag Berlin Heidelberg 2011
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7.1 Principal Fiber Bundles

A principal fiber bundle (P, M, r,G), or in short notation P, consists of

1. a manifold P,

2. a Lie group G which acts freely on P from the right, that is, there is a smooth
mapping R, : P x G — P : (p,g) — pg = Rep with Ry = Rj-1R; and so that
R.p # p unless g = e, the unit in G,

3. M is the quotient space P/G with respect to the action of G in P, and the
canonical projection © : P — M is smooth,

4. P is locally trivial, that is, for every x € M there is a neighborhood U C M of x
so that 7! (U) is diffeomorphic to U x G in the sense that there is a smooth
bijection Y : 771 (U) — U x G so that y(p) = (n(p), d(p)) for all p € n~ (V)
with ¢(pg) = ¢(p)g for all g € G.

The points 2 and 3 together mean that 7! (x) ~ G for every x € M and hence
that G acts transitively on 7! (x), that is, for every pair (p,p’) of points of 7! (x)
there is a g € G with p’ = pg.

M is called the base space of the bundle and P is called the bundle space while
7 is the bundle projection, 7~'(x) is the fiber over x € M, and in a principal fiber
bundle all fibers are isomorphic to the Lie group G, the structure group of the
bundle.

The simplest principal fiber bundle is the trivial bundle or product bundle
M x G (Fig. 7.1). If, moreover, G = R as the Abelian Lie group with respect to
addition of numbers, then P = {(x,r)| x € M,r € R} as a manifold is the infinite
cylinder over M as base (viewed for instance by fixing r = 0) and 7 is the pro-
jection onto the base of that cylinder.

Note that in general the only connection between P and M is the mapping .
Despite the simplified sketches in Fig. 7.1 and in some of the following figures
there is no reason to think of M as a subset of P. Subsets of P homeomorphic to M
(which even need not exist in general) are the images of global sections of P
defined below.

Fig. 7.1 A trivial principal P
bundle P = M x G with

M =S" and G = R. See also
emphasized text above

-M
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The trivial bundle M x G is, however, not the only principal fiber bundle P with
M as base space and G as structure group. To see this, consider an open cover
{U,} of M fine enough so that for every U, the restriction n~!(U,) of P to U, is
trivial according to point 4 of the above definition, that is, on the trivial bundle
' (U,) there is a diffeomorphism p— y,(p) = (n(p), $,(p)). Let U, N Uy

be non-empty and let p € n~!(U, N Up). Then, qﬁﬂ(pg)(gba(pg))*l = ¢4(p)ge™!

(¢,(p) " = (j)/;(p)(qﬁ“(p))*l, where (¢,(pg))”" is the inverse group element to
¢,(pg) in G. Hence, qﬁﬁ(pg)((j)“(pg))*l does not depend on g. Moreover, since G
acts freely and transitively on n~!(x), for every p,p’ € n!(x) there is g € G so

that p’ = pg. Consequently, d)/;(pg)(qﬁ“(pg))*l depends on p only through n(p) €
U, NUp C M. As a result, for every pair (U,, Up) with U, N Upg # J there is a

transition function y,(n(p)) = q’)ﬁ(p)(qb“(p))*l, n(p) € U,NUp, with the
obvious properties

Vo) = (W ()71 W (%) = Y5 (1), (x)  for all x € U, N Up N U,
(7.1)

The function values of these transition functions are elements of the Lie group G,
and on the right hand sides of (7.1) the group operations are meant. Of course, for
y = B = o the second relation implies ¥/, = e and hence, for y = «, it also implies
the first relation. (If G is Abelian and additively written, all group multiplications
used so far in this section are to be replaced by additions.)

Recall that a (principal) fiber bundle is a special manifold, and hence it has
transition functions of its coordinate neighborhoods as a manifold. Because of the
more complex structure of a fiber bundle as a manifold, its transition functions

1/~/ﬁ1(p) = (Yp,(%s), ¥, (x)) (here marked with a tilde) have also a more complex
structure: ¥, is the transition function on M as in Chap. 3, and the G-group valued
function /4, was analyzed above. See Fig. 7.2 on the next page.

Take as an example again M = S' 5 ¢/* = z with coordinate « on M, consider
the open cover {Uy, U}, U; = S'\ {1},U, =S"\ {—1} of M. Let G =R U {I}
be the Lie group of all translations by g € R and of the inversion / of the real line,
in (somewhat non-standard) multiplicative writing gh =hg =g+ h,gl = Ig =
—g,I*> = e. Consider the case Y, (z) = /,(z) = e. Then, P = §' x G which can
again be visualized as the cylinder of Fig. 7.1. Now, consider the possibility
Wy (z) = Y15(2) = I. It fulfils the conditions (7.1): e.g. ¥1,(z) = Y 12(2)¥y(z) =
I> = e. It is easily seen that P for this case is the Mobius band infinitely extended
perpendicular to S (cf. Fig. 1.2 for a finite version). One may consider it either as
the tape U; x G turned around and glued together at z = 1 or as the tape U, x G
turned around and glued together at z = —1. Clearly it is distinct from the cylinder
already as a manifold, both cases are not homeomorphic.

Let M be any manifold and let G be any Lie group. It is not difficult to
show (e.g. [1, vol. I]) that if there is an open cover {U,} of M and if there are
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U, x G

(pa(m(p)), ¢a(p))

d’ﬂ o

Fig. 7.2 The interrelations between a principal fiber bundle P and its local trivializations U, x G
as well as the transition functions between the latter. Note that the fiber above x, here drawn as a
line, can have any dimension. (Strictly speaking, instead of ¢, o, it should be written

(¢, x 1dg) 0 ¥r,)

transition functions Y, : U, N Ug — G for all non-empty U, N Uy which fulfil
the conditions (7.1), then there exists a corresponding principal fiber bundle
(P,M,7,G).

The principal fiber bundle (P,M,n,G) may be constructed as follows: Take the trivial
bundles Q, = U, x G and form their disjoint union Q = U,0Q,. A point in Q is a triple
(o, x,8), x € Uy, g € G. Introduce the equivalence relation R : (a,x,8) = (f,x,¢'), if x=x" €
U, NUp and g' = 5, 8. Take the quotient space P = Q/R. It is easy to see that P is a principal
fiber bundle with structure group G, base space M = P/G, open cover {U,} of M and transition
functions ¥, .

This rises the question of the morphisms of the category of bundles. Leaving
aside general bundle morphisms, a bundle homomorphism of principal fiber
bundles is a triple (F, F, F) of smooth mappings from a bundle (P",M’, 7', G’) into
a bundle (P,M,n,G) where F: P — P,F : M’ — M so that the diagram

F
P —

v| | (7.2)
M — M
F

is commutative, and F : G’ — G is a Lie group homomorphism so that F(p'g') =
F(p')F(g') for every p' € P’ and every ¢’ € G'. Because of (7.2), F maps fibers of
P’ into fibers of P. Indeed, (mo F)(p') = x € M equals (F o 7')(p’) which only
depends on 7'(p') = x' € M’. Hence, for all p/ in the fiber 7/~'(x') above ¥’ the
image F(p') is in the fiber 7! (x) above x. In the following, (F, F, F) is often in
short denoted simply by F or by F : P' — P, where in the last notation P’ and P are
the short notations of (P',M',n’,G’) and (P,M, r,G).
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(F,F,F): (P,M',7',G') — (P,M,r,G) is a bundle embedding, if the map-
ping F: M — M is an embedding of manifolds and F : G' — G is injective.
Identifying (P',M',#’, G') with its image by a bundle embedding F, it is called a
subbundle of (P,M,n,G).

If moreover M’ = M and F = 1dy, but F(G') # G, then F is called a reduction
of the structure group G of P to G’ and P’ is called a reduced fiber bundle. A
principal fiber bundle P is called reducible, if there exists a reduction F : P’ — P.
It can straightforwardly be shown [1, vol. I], that

a principal fiber bundle with structure group G is reducible to the structure
group G, iff there is an open cover of M with transition functions obeying (7.1)
and having values only in G'.

Of particular interest in physics is the case of bundle isomorphisms with M’ =
M, F = Idy. If F is an isomorphism, then F must also be an isomorphism which
means that G’ and G are isomorphic, and hence F may be viewed as an auto-

morphism of P onto itself which maps fibers onto fibers: 7' (x) = 7'~ ' (x) for all
x € M. It is therefore often called a vertical automorphism of a principal fiber
bundle. As in general for automorphisms, these vertical automorphisms form a
group "Aut(P) which is called the group of gauge transformations of P with the
symmetry group G. It will be discussed in more detail in the next chapter. In fact,
modern gauge theory in physics and the theory of principal fiber bundles were
developed in parallel in the second half of 20th century.

Let g be the Lie algebra of right invariant vector fields on the Lie group G of the
principal fiber bundle P and let X'(P) be the Lie algebra of (smooth) tangent vector
fields on the manifold P. For every X € g, the 1-parameter subgroup exp(tX) of G
induces a local 1-parameter group (p. 81) ¢,(p) = pexp(¢X) through every point
p € P which is tangent to the fiber containing p because the action of G maps fibers
of P onto themselves, and, by differentiation with respect to #, it induces a
(smooth) tangent vector field X* € X'(P) which is everywhere tangent to fibers of
P. How are X and X* related algebraically? Recall that a tangent vector on a
manifold is defined by its action on smooth real functions on that manifold. Let
f : P — R be a smooth function understood as a differential O-form on P. Pull the
right action of G on P, Rep = pg, Ryt = Rj-1Rg back by f (p. 72): Ryf (Rep) =

f(p). From
RiR; f(pgh™") = Rif (pg) = f(p) = R}y f (pgh™")

for every f € C(P) = D°(P) it follows that RyR; =Ry, .. (Observe how the
contravariance of the right action of G is neutralized by the contravariance of
the pull back; that is why principal fiber bundles are defined with a right action of
the structure group.) The result is, that the restriction of R* to any fiber 7! (x), x €
M, of P is a representation of the Lie group G in the infinite-dimensional func-
tional space C(n~!(x)) as representation space. It is called the regular repre-
sentation of G. In other words, there is a Lie group homomorphism from G into
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R*. According to the theorem on p. 177, this homomorphism is pushed forward to
a Lie algebra homomorphism R* : ¢ — X(n~!(x)), and R*(X) = X* (cf. (6.11)).
Suppose that X = 0 on some point p. This would imply pexp(tX) = p. Since G
acts freely on P, this means exp(zX) = e for all 7 and hence X = 0.

X* = R:(X) is called the fundamental vector field corresponding to X. For
X # 0 it is nowhere zero on P. From that and the fact that dim7,(z ! (x)) =
dim(n~!(x)) = dim G = dimg it follows that R* is an isomorphism of vector
spaces. (The infinite-dimensional regular representation R* of G is obviously
reducible.) Moreover, from the content of Sect. 6.8 it is easily obtained that

if X*=R:(X), then for every g € G there is a fundamental vector field
(R,),(X*) corresponding to (Ad(g™"))X € g.

Here, (R,), is the push forward by the right action R, of G on P to the
corresponding action on the Lie algebra X(P) of tangent vector fields on P.

Finally, the functions on M anticipated in the introduction to this chapter are
treated by the notion of bundle sections. A local section of a fiber bundle
(P,M,=,G) is a smooth function s : M D U — P for which mos = Idy, that is,
n(s(x)) = x for every x € U. If s is defined on all M, it is called a global section or
simply a section. In Sect. 7.6 below, vector bundles are considered which always
have (global) sections. For a principal fiber bundle this is not the case in general.

A principal fiber bundle has a (global) section, iff it is trivial.

Proof LetP =M x G.Then, s : x— (x,e) is a section. Conversely, lets : M — P
be a section of (P, M, n,G). The sets {s(x)g|g € G} ~ G for each fixed x € M are
the fibers of P yielding a global trivialization P = M X G. O

Take for instance a Mobius band as M and the (discrete multiplicative) Lie
group G = {1, —1} locally describing orientation on M. There is no global section
s : M — G smooth on M, not even a continuous one.

This section is closed with a number of examples of principal fiber bundles.

Let G be a Lie group and let H be a closed Lie subgroup of G. The quotient
space G/H of left cosets gH of H in G is a homogeneous manifold or homo-
geneous space with respect to the action of G, that is, G acts transitively (by group
multiplication) on G/H. Let 7 : g+ gH be the canonical projection, it is a sur-
jective Lie group homomorphism with kernel H. Then, (G,G/H,n,H) is a prin-
cipal fiber bundle. Principal fiber bundles of this type form a subcategory of
principal fiber bundles characterized as those for which the bundle space is a Lie
group and the base space is a homogeneous space of that Lie group. For more
details see Sect. 9.2.

Let M be a pathwise connected manifold and let 7;(M) be its fundamental
group. A manifold is locally homeomorphic to some R" 6 hence a pathwise
connected manifold is locally pathwise connected and semi-locally 1-connected
(Sect. 6.4). Let M be its universal covering manifold, and let 7 : M — M be the
canonical projection. Then, (M, M, n,n;(M)) is a principal fiber bundle. If, for
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instance, M is the unit cell of an infinite crystal (three-dimensional torus T3), then
m(T*) =~ Z* 5 n = (n1,ny,n3) and M = R* = U, _,:(M + n) is the infinite rep-
etition of M. The fiber over a point x of M (the unit cell) is the lattice {x + n} of
points equivalent to x by the discrete translational symmetry.

Let C"*!' = C"*!'\ {0} be the punctured complex vector space (with the topol-
ogy from R**2), and let G = GI(1,C) be the multiplicative group of non-zero
complex numbers. Then, CP" = C""'/GI(1,C) is the n-dimensional projective
complex space, and, with the canonical projection = : (Cg’+1 — CP",
(Cr*' CP", 7,GI(1,C)) is a principal fiber bundle. Recall that U(1) is a
(closed) subgroup of GI(1,C). Let $*"*!' € C""' be the unit sphere. Then,
(§2+1 CP" m,U(1)) is a reduced fiber bundle of the principal fiber bundle
(Cr! CP", 7, GI(1,C)). Here,  is just the restriction of the above projection 7 to
§27+1_ This latter case is extremely relevant in physics for n = co with the topology
from the norm of the complex Hilbert space /2. The projective Hilbert space is the
space of quantum states, its unit sphere that of normalized states, and U(1) is the
gauge group for particle conservation. (See textbooks on quantum theory.)

For the n-sphere 8" in R""! and for G = {e, I} with the inversion I of space
(G is a discrete Lie group), RP" = §"/G is the real projective space, and, again
with the canonical projection 7, (§", RP", 7, G) is a principal fiber bundle.

The most important special category of principal fiber bundles is considered
now.

7.2 Frame Bundles

Let M be an m-dimensional K-manifold, K = R or C. A linear frame at point
X € M consists of point x and an ordered base (Xi,...,X,,) in the tangent space
T.(M) on M at point x. Denote a linear frame as p = (x, X, ..., X,,), and denote
the set of all linear frames at all points of M by L(M). It is easily seen that the Lie
group Gl(m, K) acts freely from the right on L(M) and maps linear frames at x into
linear frames at the same point x. Indeed, let ¢ = (g/) € GI(m,K)(g! € K), then
P =pg=(x, ZJ'"ZIXngJ, i=1,....,m), and p/ =p implies g = e = &/. (Matrix
convention is used throughout this book understanding an upper index as row
index and a lower one as column index.) It is also clear that GI(m, K) acts tran-
sitively on any set of linear frames at any fixed point x € M. Let n:p =
(x,X1,...,Xm) —x be the projection from L(M) onto M. In order to see that
(L(M),M,m,Gl(m,K)) is a principal fiber bundle, a differentiable structure must
be defined on L(M) so that 7 is smooth.

The differentiable structure on L(M) is obtained in a straightforward way: Take
an atlas Ay of M and choose a coordinate neighborhood U of x € M where
X; = X¥(9/0x*) (Einstein summation over k). For a base of T,(M), the matrix X¥
of the coefficients of the tangent vectors X; in this coordinate neighborhood (which
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are smooth functions of the coordinates in U) is not degenerate, that is, its
determinant is non-zero. This yields a diffeomorphism between n~!(U) C L(M)
and U x Gl(m,K). Taking {n~!(U)|U € Ay} as an atlas of L(M) and (x*,X¥,i =
1,...,m) as local coordinates in 7~ !(U) makes L(M) into an m(m + 1)-dimen-
sional manifold, for which obviously 7 : L(M) — M is smooth. The principal fiber
bundle L(M) is called the (linear) frame bundle over M.

A technical possibility to obtain the points of L(M) is the following: Take the
base ¢; = (1,0,...,0),...,e, = (0,...,0,1) of K™. Then, any point p of the fiber
over x = 7(p) in L(M) can be obtained from a non-degenerate linear mapping
u(p) : K™ — Typ) (M) : e;—u(p)e; = X;. In local coordinates one has X} =
S ube! = uf, and with g = (g¥) € GI(m, K) and pg = (x, (Xg),) one finds (Xg)t
Zu]’fgj{efl = Zu_fgij, that is, u(pg) = u(p)g. This shows again that, as for every
principal fiber bundle, the typical fiber is isomorphic to the structure group,
Gl(m,K) in the considered case. With this convention, which is amply used later,
for every fiber over some point x there is a one—one correspondence between
p € n(x) and linear mappings u(p) : p = (n(p),u(p)e;).

Figure 7.3 shows a number of frames of L(S?) as an example. (Moving frames
(repére mobile) as a central technical tool in the theory of Lie groups were
introduced by E. Cartan.) Below it will be seen that for every (paracompact)
K-manifold M the structure group of L(M) may be reduced from Gi(m, K) to the
unitary group U(m) for K = C and to the orthogonal group O(m) for K = R. From
Fig. 7.3 it is intuitively clear that orthogonal frame bundles can be treated as
(smooth) principal fiber bundles.

Instead of taking the tangent space T,(M) on M at x to be the (linear) vector space of the
frame bundle, the affine-linear space A,(M) may be considered with the group of affine-linear
transformations introduced in Sect. 6.1 as transformation group. This group is described there
explicitly and is denoted A(m,R) = GI(m,R)xR™ (semi-direct product). There is a short exact
sequence

0 —R" "5 A(m,R) L= GI(m,R) — e,

(where R™ is considered as the Abelian group of vector addition) and a homomorphism

Fig. 7.3 The manifold M =
S? with some examples of
frames. At point x the frames
of the full and dotted arrow
lines both belong to L(S?).
(All arrows are understood
tangent to S?)
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g 0

y: GI(m,R) - A(m,R) : gr—7(g) = (0 L)7 g € Gl(m,R),

so that oy = Idgy(ur). There is also a short exact sequence
0 — R" 5 a(m,R) 25 gl(m,R) — 0

and a homomorphism 7y, : gl(m,R) — a(m,R) for the corresponding Lie algebras, so that
a(m,R) = gl(m,R) & R™ (semi-direct sum). In the same matrix notation as used for A(m, R) the
elements of a(m,R) are

A X A0 0 X .
<O 0>7<0 O>+(0 0)7 A: (m x m)-matrix, X : m-column.

If p=(x,Xy,...,X,) is a linear frame at x € M, then p = (x, Xy, ..., Xy, Xpu+1) is an affine
frame at that point, where X, stands for the affine shift vector. As in the case of linear frames,
let g € A(m,R) act from the right on an affine frame as p’ = pg = (x, Zj’";ll Xf,:7 i=1,...m+
1). Denote the set of all affine frames p on M by A(M), and the projection (x, X, ..., Xp41)— X
by 7, then (A(M), M, 71, A(m,R)) is a principal fiber bundle. It is the affine frame bundle over M.
Like in the case of linear frame bundles, by introducing the same natural base in R™*! as above in
K™, a linear mapping @(p) : R"*! — T;(5) (M) generates every frame out of the canonical frame
of the fixed natural base. (Show that the base vector e, = (0,...,0,1) corresponds to a zero
shift in the transformation on p. 174 since the m + 1st coordinate of the vectors in R™ is
fictitious. )

7.3 Connections on Principle Fiber Bundles

Now, manifolds are again treated as R-manifolds. Let (P, M, 7, G) be a principal
fiber bundle, let 7,,(P) be the tangent space on P at point p, and let G, be the linear
subspace of T,,(P) which is tangent to the fiber of P containing p. A connection I"
on P specifies a subspace Q, of T,(P) at every point p € P so that

L T,(P) = G, & Qp,
2. Qpe = (Ry), 0, for every p € P and every g € G (see below),
3. O, depends smoothly on p € P.

Here, G, and Q, are again treated just as topological vector spaces, not as
Euclidean spaces. Scalar products and angles between vectors are not defined.
For the direct sum of vector spaces see p. 16. Orthogonality also is not defined
and not demanded between G, and Q,,. (Orthogonality between vectors of 7, (P)
and T,(P), however, is always defined by (w,X) =0 as usual.) Nevertheless,
any vector X € T,(P) has a unique decomposition X ="X +"X,"X € G,,
hX € Q,. To give these two components a name, 'X is called the vertical
component and "X is called the horizontal component; to say it again, no angle
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between vertical and horizontal components matters. These names are suggested
by Fig. 7.1 where fibers are ‘vertical’ on the ‘horizontal’ base manifold M,
although also Fig. 7.1 is just some visualization, and angles between the base
manifold and fibers do not matter. Strictly speaking, what is denoted M in that
figure is rather some section s : M — P, which, as orientation on the Mobius
band showed, even does not always exist globally for a principal fiber bundle.
Nevertheless, given any point p € P, T,(P) and G, always exist, since P and the
fiber are manifolds, the latter as a space isomorphic to a Lie group. Hence, Q) as
a complement to G, in the vector space T,(P) may always be defined, although
not uniquely: there is freedom in choosing a connection. G, is called the vertical
space and Q, is called the horizontal space. The structure group G of a fiber
bundle allows to transform distinct points on a fiber into each other, to compare
them or to combine them in pointwise manipulations of functions on M. The
connection is the general tool to transform distinct fibers into one another by
‘parallel’ transport, and thus to compare functions on M at distinct points and to
obtain derivatives.

For a fixed g € G, the right action R, : P — P : p+— pg is a smooth mapping of
the manifold P onto itself. For every p € P, it is pushed forward to a linear
mapping (R,), : T,(P) — T,(P) (see p. 71 and the transformation of fundamental
vector fields by g € G in Sect. 7.1). While the fundamental vector fields are
vertical in the new nomenclature, (R,), of course yields also a linear mapping of
horizontal vectors at p to vectors at pg. The condition 2 says that the image of this
mapping must again be a horizontal vector at pg and the mapping of 0, must be
onto Q,,. Since by condition 1 dim Q, = dim7,(P) — dim G, and the latter two
spaces have dimensions independent of p (as tangent spaces of manifolds), the
dimension of Q, must also be independent of p, and (R, ), must be a regular linear
mapping (isomorphism of vector spaces).

In Sect. 7.1, the isomorphism of vector spaces R} was considered which exists
for every principal fiber bundle and which maps every X € g to a fundamental
vector field X* on P which is vertical at every point p € P, that is X € G,,.
Conversely, consider a covector w, with g-valued components and a linear
mapping (wy, -) from 7,(P) into g ~ T,(G) which maps any tangent vector X €
T,(P) to the uniquely defined vector (w,,X;) =X € g for which Ri(X) ="X;.
(For the sake of distinction, again vectors of g are denoted by X here and tangent
vectors to P by X*.) X is indeed uniquely defined by X, since "X is uniquely
defined for every X and R; is an isomorphism between g and the space of
fundamental vector fields on P and hence provides a bijection between g and the
vertical space G,,. Clearly, (w,,X,) = 0, iff X} is horizontal. The mapping w, is a
g-vector-valued linear function on T,(P) for every p € P. Since fibers of a prin-
cipal fiber bundle depend smoothly on p and because of condition 3 of the defi-
nition of Q,, for every (smooth) tangent vector field X* on P, X* € X(P), the
mapping w equal to w, for all p may be considered as a smooth mapping from
X (P) to g-valued functions on P. Introduce a (fixed) base {E;|i = 1,...,dim G} in
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g, so that X, = >, X'(g)E; for every X € g with real components X'(g). Then, »
induces dim G real functions o' : X(P) — C(P) : X* — (0, X*)' = (', X*), with
(o, X*)(p) = (@}, X5), which in fact are 1-forms on P. For that reason, o is
considered as a vector-valued or g-valued 1-form on P, it is called the connection
form of the connection I'.

The connection form o has the following two decisive properties:

1. (w,R:(X)) = X for every X € g,
2. {(Ry) @, X*) = (Ad(g~")w, X*) for every g € G and every X* € X(P).

Property 1 follows directly from the definition of the connection form. Consider as
a vertical vector field (vertical X at every p € P) a fundamental vector field X*.
One has

((Rg)" @), X5) = (@pg, (Re), (X)) = (g, (RI(Ad(g7)X) ) = Ad(g™")X
= Ad(g™" (o, X;) = (Ad(g™ )y, X;).

The first equality expresses just the general duality between pulling back a form
and pushing forward a vector field (((R;)"®), = (Rq) ®),). The second equality
is an application of the rule for pushing forward a fundamental vector field by
(Rg), given on p. 210. The third and fourth equalities use property 1 forth and
back, in the last step with R(X) = X*. The last expression follows since
Ad(g™") acts on g and hence on the g-valued covector w, of the last two
expressions. On the other hand, for a horizontal vector hX;, (Rg)*(hX;) is also
horizontal by the condition 2 of the definition of a connection I'. Hence, the
second expression of the above chain of equations is already zero. (Recall from
the text above, that (w,X*) = 0, if X* is horizontal.) Hence, by linearity, in the
first and last expressions of the above chain of equations the vertical vector X
may be replaced by any vector X; € T,(P). In particular, since p € P is arbitrary,
X}, may belong to any vector field X* € & (P), and property 2 holds. Now, given
a g-valued 1-form o with properties 1 and 2, define

0y = {X, € T,(P)|(w), X)) = O}. (7.3)

It is easily seen that this defines a connection I'.

There is a one—one correspondence between connections I' and g-valued
L-forms o having properties 1 and 2. The correspondence is expressed by (7.3).

Consider now the bundle projection n: P — M of the principal fiber bundle
(P,M,n,G). It is a smooth mapping between manifolds and hence is pushed
forward to a linear mapping 7, : T,(P) — Ty (M). In a neighborhood U of

x=n(p) €M there is a local trivialization P D n~!(U) ~ U x G and hence
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dim P = dim M + dim G. Pushing this trivialization forward to the tangent spaces
on 7t~ !'(U) and considering a connection I on P, it is easily seen that G, is mapped
by the push forward to g and Q) is mapped isomorphically to T,(U). (The tangent
space on U x G at p may be realized as Ty, (U) @ g, with Ty, (U) = Ty, (M).)
Since the trivialization is a local bundle isomorphism, the same statement can be
made for the connection on P itself:

For every connection on a principle fiber bundle the bundle projection T is
pushed forward to a linear bijection (isomorphism) m. of Q, onto Ty, (M).

A horizontal tangent vector field X* € X'(P) is called a (horizontal) lift of a
tangent vector field X € X (M), if n, (X;) = Xy for every p € P. (Now, tangent
vector fields on M are denoted by X.) X* is invariant under the action of (R,),,
since the horizontal space Q) is invariant and, since n(Ry(p)) = n(p), it must hold
that m.((Rg).X;) = m.(X;).

Given a connection on a principal fiber bundle (P,M, n,G), there is a one—one
correspondence between tangent vector fields X on M and horizontal tangent
vector fields on P invariant under (Ry),; the latter being the lifts X* of X. This
correspondence observes addition and Lie products of tangent vector fields as well
as multiplication by real functions.

It is readily seen that a horizontal vector field X* on P which is invariant under
G is the lift of X = m.(X*). That the lift of every X € X(M) is smooth can easily
be checked in a local trivialization of P. The rest is obvious.

So far, two ways are obtained to define a connection on a principal fiber bundle,
by specifying a family I" of horizontal tangent spaces O, obeying conditions 1 to 3
or by specifying a g-valued 1-form w having properties 1 and 2 Instead of spec-
ifying a global 1-form w on P, a third way is to specify a family of local g-valued
1-forms on M as considered below. All three ways are of equal practical
importance.

As on p. 207, let {U,} be an open cover of M so that a family of diffeomor-
phisms ¥, : n71(U,) — Uy x G : p— (n(p), ¢,(p)) is a local trivialization of P.
Let Y,5, Y,5(x) € G, x € U, N Uy C M be the corresponding transition functions.

Let s, : Uy, — n'(U,) : x — s,(x) =, (x,e) be the canonical local section,
where e is the unit in G. In fact, any local section on U, may be expressed as
s(x) = s,(x)g(x) through the canonical local section and a function U, >
x +— g(x) € G. In particular, on U, N Up the canonical local sections s, and s are
linked by the transition function W, : U, N Uy — G, indeed

sp(x) = W' (v e) = (Y o, 05" )(x,€) = sa(x) ().

w;l maps (x,e) € Ug x G to the point sg(x) = p € P with n(p) = x and ¢4(p) =

e. Then, v, maps this point p to (x, ¢,(p)) = (x, ,(P)(d(P)) ™) = (x,€)b,(p)
(qﬁﬁ(p))_l = (x,e)Y,5(x), where in the first equality use was made that ¢g(p) =
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e= ((b/;(p))fl, and in the second equality the action of G on a principal fiber
bundle was employed. Finally, /' ((x, e),p(x)) = v, (x, e)Wop(x) = 55 (X)W ,5(x).

The canonical section s, is a mapping of the manifold U, into the manifold P,
hence it may be pushed forward to a linear mapping s,. of the tangent spaces
T.(M) into the tangent spaces T, ) (P). Likewise, the mapping i, of the manifold
U, N Up into G may be pushed forward to a linear mapping 4, from the spaces
T.(M) into the spaces Ty () (G). Since these push forwards are differentials
(Sect. 3.5), the Leibniz rule applies to the above displayed relation: For every
tangent vector X, € T(M), x € U, N Uy,

$pe (Xe) = S0 (X)R(W) + (52(x)) W, (X))

where R is the representation of G by right action onto the vector space
Ty, x)(P), (Rg),(Y) = YR(g), and (s,(x)), is the push forward of s,(x), for fixed x
considered as a mapping G > g+ s,(x)g € P, to a linear mapping from T, () (G)
into T, (P) with sg(x) = s4(x),5(x), cf. Fig. 7.4.

Let {E;li=1,...,dimG} be a fixed base in g and let » = ), »’E; be a con-

nection form on P. Then, as o, € Ty (P), <w§ﬁ<x) ,8p+ (X)) is a real number and, if x

is varied through Uy, it is a smooth real function on Up. Hence, Zi<w§ﬂ(x),sﬁ*
(X,))E; is a smooth vector valued function on Uy with values in g. It is denoted by
wp and is the pull back of o' € D'(P) to D'(Up) by s} : (), X,) = <w§,ﬁ(x),s1;*
(Xy)) = (s}(wiﬁ(x)),XQ, that is, wp = sj(w). Applying @ on both sides of the

above displayed Leibniz rule one obtains for X € X (U, N Up)

(wp, X) = (Ad(Y1 )0s), X) + (Dop, X), @ = s3(@), Do = Yp(9),
(7.4)

where ¢ is the canonical Maurer—Cartan 1-form (p. 176) of G and the g-valued
1-forms o, = s}(w) are called local connection forms. They are pull backs of

Fig. 7.4 Lgcal sect%olns 5gx(Xy)
sy and sg with transition
function v, and push
forwards

(sa(x))*waﬁ* (Xz)
Saux (XI)R(waﬁ)
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the connection form @ from the canonical local section s,(U,) C P to U, C M.
The first term on the right hand side was transformed with the property 2 of

connection forms: (@, s, (X)R(Y,5)) = (@, (Ry,,). (52(X))) = ((Ry,,) @), $2s
(X)) = (((Ry,,) @), X) = ((Ad(5)@),, X) = ((Ad(;5)0,), X). The last step

o

realizes the independent linear action of Ad(g) and of 57 on X : (Z] Ad(zp;ﬁ1 )j’wf ) =
o

> Ad(t//;ﬂ' );wo{ . As regards the second term on the right hand side of (7.4), consider
the left invariant vector field ¥ on G which for g = ,5(x) equals ;. (X,) €
Tixy)((UsNUp) x G) and apply the canonical Maurer-Cartan 1-form:
(0,Y,4.(X,)) = (9,Y) =Y,. The isomorphism G~ n'(x) translates Y
into a fundamental vector field Y} = Ri(Y,) on P, the value of which at p =
(W () 5 (530)), W (). Now, (@, (55(3)), . (X)) = (00, R(Y.)) = ¥, =
(0, Vg (X)) = ((W5(9)), Xo)-

The transition formula (7.4) from U, to Uy for the local connection forms of a
connection form w, that is, from w, to wg looks quite involved. Consider the
important special case where G is GI(n,K) or a subgroup thereof, that is, where
both G and g~ T,(G) consist of n x n-matrices. Recall that ,;(x) € G and
(w,X) € g. The relation (7.4) becomes a matrix equation and reads

<CO/,‘,X> = l//;[il <CO“,X>I//1/3 + l//;[fllpa[i*(x)

The first expression is due to the definition of the adjoint representation of G in this
case, and in the second expression w;,} pulls back the vertical vector V5, X) €
T,y (UzNUp) X G) to a vertical vector of T, ((UxNUp) x G) ~ g.
Recall, that v, is the differential of y,.

There is a one—one correspondence of connection forms w on P and families of
local connection forms w, on M obeying (7.4). The correspondence is expressed
by the second relation (7.4).

A local connection form w, is a connection form on the trivial bundle U, x G.
It is easily seen that on a trivial bundle M x G the lifts Q(, ) of the tangent spaces
O(xe) on the reduced bundle M x {e}, that is, all tangent spaces on all submani-
folds M x {g}, form a connection. It is called the canonical flat connection.
(Later it becomes clear why it is called flat.) Since all manifolds are supposed to
be paracompact, the technique of partitioning of unity (Sect. 2.4) can be used to
show that on every principal fiber bundle any local connection may be continued
to a global connection [1, vol. I, Sect. I1.2].

A connection exists on every principal fiber bundle.

Let (L(M),M,r,GI(m,R), m = dimM be the frame bundle over M. A con-
nection form o on L(M) is called a linear connection. (There is a modification
compared to the general case which is explained in more detail at the end of Sect.

7.7.) A linear connection is a gl(m,R)-valued 1-form o =73, wJ’E,] with
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properties 1 and 2 on p. 215, where {Eij\i,j =1,...,m} is a fixed base in gl(m, R),
for instance given by the real m x m-matrices E,] having a unit entry in the ith row
and jth column and zeros otherwise, (E; )in = 0l3/ . Recall from Sect. 7.2 that a
linear frame is an ordered base (Xi,...,X,) of Ty(M), and L(M)>p=
(X,Xl, .. 7Xm)

Consider a local trivialization of L(M) by an open cover {U,} of M and
introduce local coordinates ¢, : U, — U, C R™ : x — >, xke;, where {e;} is the
base of R™ introduced in Sect. 7.2. As was done there, consider again the linear
bijection u(p) : R™ — T, (M), u(pg) = u(p)g and find local coordinates

(p) = ((p), uf(p)) on Uy x Gl(m,R) C L(M) and ¥, (pg) = (*(p). u} (p)g}),
where u¥(p) is a real non-degenerate m x m-matrix. Therefore, the coordinate
expression of a tangent vector is

T,(L(M)) > X} = Zxk %JrZXk ="Xr+'X0.

While the first coordinate expression has no component tangent to the fiber and hence
belongs to the horizontal space hX; only, the second one may, depending on the
connection, belong partially to both hX; and "X . Nevertheless, the horizontal space
must be m-dimensional since it is isomorphic to 7, (M) and the vertical space must be
m?-dimensional since it is isomorphic to gl(m, R). The canonical local section is
_ - k
s 0 (xh (x), 0F) and sp(x) = (3 (x), 0 = v (), (Wap)7).
Let 0 be the R™-(vector)-valued 1-form on L(M), defined as
(B ;) = ' (m.(X)). X, € T,(L0M)), 15)

P “*p

where 7, : T,(L(M)) — Ty, (M) is the push forward of 7 as previously which
projects any tangent vector X* on the bundle space L(M) to the tangent space on
the base space M, and u = u(p) : R" — T,y (M) is the linear bijection as above
and in Sect. 7.2 which transforms the orthonormal standard base of the R™ into the
frame p. u~! then represents the vector X, = T, (X;,) in the frame p. 0 is called the

canonical form on L(M) (sometimes called the soldering form which ‘solders’
structural objects of the points of L(M) like tangent vectors to the base space M).
If X, is vertical, then m.(X;) =0 (n(p(r)) has zero derivative at t where

the tangent vector X, to the curve p(r) is vertical) and hence (0, X;) = 0 for
vertical X7 In the case of a general X, a group action yields ((R;(0y)),X;) =
* -1 * — — * — * .
(Opg; Ree (X)) = (ug) ™ (m.(Ree(X;))) = ¢~ 'u ! (m(X;)) = g '(0,,X;). (Since
R¢.(X;)) is in the same fiber as X, 7. (Rg. (X)) = m.(X).) Hence, R;(0) = g7 'o.
Now, since O, ~R™, let B be a linear mapping of R" > X into the space
H(L(M)) > B(X) of horizontal vector fields on L(M), B(X), € Q), defined by

(0,BX)) =0, (0,B(X)) = X. (7.6)
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Fig. 7.5 Example of vertical Gy

space G, and horizontal space Q
Q, of a two-dimensional P
tangent space T),(P) (drawing
plane), showing how the
connection form w, w, €
T;(P), determines Q,, with 9
G, independently given

Wp

The first relation ensures that YB(X) = 0 while the second relation spells out
as m.(B(X),) = (u(p))(X), and, since Q), ~ Ty(,)(L(M)), B(X) is uniquely defined
by (7.6). It is called the standard horizontal vector field corresponding to X.
There are m? linearly independent fundamental vertical vector fields, which are
independent of the connection ®, and m linearly independent standard horizontal
vector fields, which depend on the choice of the connection w by the first relation
of (7.6) (Fig. 7.5).

7.4 Parallel Transport and Holonomy

The connection I" on a principal fiber bundle (P, M, n,G) is used to define the
parallel transport of fibers on the base space M. Let F : I — M, [ = [0,1] C R, be
a path in M from xo = F(0) to x; = F(1). A (horizontal) lift F* of the path F is a
path F*:1 — P which is projected to F so that wo F* = F and which has
a horizontal tangent vector in every of its points F*(z), r€ I. If X € X(M) is a
tangent vector field on M and if F is an integral curve of X, then F* is obviously an
integral curve in P of the lift X* of X. Since there is a one—one correspondence of
tangent vector fields X on M and their lifts X* on P, which was stated on p. 216,
and since there is a unique maximal integral curve of X* through every point p € P
by Frobenius’ theorem, there is precisely one lift F* of the path F starting at a
given point py € 7 '(xp). In other words, for every py € n~!(xo) there is a
uniquely defined lift F* which transports po to a point p; € 7! (x;), for given x;
on F uniquely defined by F and po. This is written as p; = F(py). Obviously,
F(pog) = F(po)g, since (R,),(X*) = X* for every horizontal vector field. Hence,
F:n'(xg) — n'(x;) is a Lie group isomorphism. It is called the parallel
transport of the fiber along the path F from x( to x;.

If F is a path in M, then F_, F_(t) = F(1 — 1) is the inverse path, and F_ =

F ' is the inverse isomorphic mapping of fibers. If F is a path from xo to x; and F’
is a path from x; to x,, then the concatenation (p. 182) F” = F'F is a path from xg
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to x, (not necessarily smooth at x;, but this does not pose a problem in the present
context, piecewise smooth paths may be allowed). Obviously, ' = F' o F.

If F is a loop with base point x, then F is an automorphism of 7~ (x). Every loop
F yields such an automorphism. Let £, be the family of all loops in M with base
point x. From the last paragraph it follows that all automorphisms due to the loops of
L, form a group, the holonomy group H, of the connection I" with base point x. If
Eg is the family of all null-homotopic loops with base point x, then the corresponding
subgroup of the holonomy group is the restricted holonomy group H)‘().

Take a loop F based on x, and take any point p € n~!(x). It is parallel trans-
ported by the loop to p' = F(p) € n~'(x), and, since G acts transitively from the
right on 7! (x), there is gr € G so that F(p) = pgr. Clearly, F’I/’(p) = pgrgr =
Rg,,¢.(p). This provides a homomorphism from the holonomy group H, of auto-
morphisms of 7~ !(x) into the right action R of the structure group G of P, and,
since G acts freely on 7! (x), into G itself. The image of this homomorphism in G
is a subgroup of G, it is called the holonomy group H, with reference point p.
The restricted holonomy group Hg with reference point p is likewise defined. If the

reference point is changed within a fiber from p to pg, then F'F (pg) = pggrgr =
p(ggrg 'ggrg ')g = F'F(p)g. Hence, the holonomy group H, with reference
point p is changed into H,, = gH,g~' (and H,) is changed into gHyg™").

Observe, that by the above definitions the holonomy group H, is a subgroup of
Aut(n7'(x)) = Aut(G), while H, is a subgroup of G itself. Let F and F’ be two
loops with base point x = n(p) and so that p’gr # p'gp for some p’ € n~!(x), that
is the automorphisms corresponding to F and F’ are not the same. Then, since G
acts freely on n~!(x), p'gr # p'gr for all p’ € n~'(x). Hence, F and F’ yield two
different elements in every H,,, which means that the homomorphism from H, to
H, C G is injective. H, and H, for x = n(p) are isomorphic.

More generally, let p and p’ be two points (not necessarily of the same fiber)
which may be parallel transported into each other by a lift of some path F from
n(p) to n(p), p' = F(p). Then, for every loop F, € £,(£") with base point x =
n(p) there is a loop Fy = FF.F_ € L,(£%) with base point ¥ = n(p'). Let pr, =
F.(p) = pgr,, that is, gp, € H,. Then, Pr, = (FoF,o F_l)(p/) = F(F.(p)) =
F(pgr,) = F(p)gr, = p'gr,. In the last but one equality, it was used that F is a Lie
group isomorphism from n~!(x) to n~!(x’). Hence, gr, € H, too:

If p can be parallel transported to p', then H, = H, and HS = Hl?,.
It can be proved [1, vol. I, Sect. IL.3] that

if M is pathwise connected (and paracompact), then for every p € (P, M, r,G)
the holonomy group H, is a Lie subgroup of G whose connected component of
unity is HS, while H,,/HS is countable.

As a very simple example reconsider the universal covering of S' by R of
Fig. 6.1 on p. 181. At the end of Sect. 7.1 the universal covering of a connected


http://dx.doi.org/10.1007/978-3-642-14700-5_6#Fig1

222 7 Bundles and Connections

manifold was considered as a principal fiber bundle, in the present case
(R,S", 7,7 (S')) where the bundle projection is m:R >t ¢ =" € S, and
71(S') &~ Z is the fundamental group of the circle S'. Since this is a discrete Lie
group, its Lie algebra is trivial, and there are no vertical vector fields. Like the
whole bundle P = R, the horizontal space is one-dimensional and coincides with
R at every point p = ¢, which is likewise the tangent space on S' at every point
x = €. A lift of the loop based on ¢ = 1 and running once around S' is an interval
[27n,2n(n+ 1)] € R, n € Z. Hence, the holonomy group H; = Z for every t €
R = P, while H’ = 0 (both groups in additive writing). If a loop F from ¢ = 1
returns to ¢ = 1 without running around S', then F* from 27n returns to 27n.
H, = H,/H" = 7 is a countable discrete Lie subgroup of G = r;(S"), which in this
case coincides with G itself.

The reader easily verifies that the holonomy group H, for every point p of the
Mobius band is {e, 1}, while H) is again trivial.

Less trivial examples of holonomy groups will be considered later.

7.5 Exterior Covariant Derivative and Curvature Form

Like the g-valued 1-form o, the connection form with property 2 on p. 215,
consider more generally g-valued r-forms ¢ = (a',...,0%™%), so that (¢/,X; A

-+ AX;), X; € X(P), are real functions on P and
(R,)*d = Ad(g ")o  for every g € G. (7.7)

Such a form is called a pseudo-tensorial r-form of type (Ad, g). It is said to be
horizontal, if (a7, (X;), A--- A (X,),) = 0 whenever at least one of the tangent
vectors (X;), at p € P is vertical (tangent to the fiber). A horizontal pseudo-
tensorial r-form is called a tensorial r-form. Note that a connection form o is
vertical in this sense, it is a pseudo-tensorial 1-form of type (Ad, g), but not a
tensorial 1-form.

For every pseudo-tensorial r-form o, a tensorial r-form "¢ may be uniquely
defined by

("a, X\ AN NX,) = (a,"X) A--- ATX). (7.8)

Indeed, because of the r-linearity of o, "¢ is uniquely defined by the above
relation, and together with ¢ it is of type (Ad,g). Furthermore, it vanishes
whenever at least one of the vectors X; is vertical, which means that ”Xj vanishes.
For a connection form o always " = 0 holds.

The exterior covariant derivative D of a pseudo-tensorial r-form ¢ is defined
as
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Do ="(do). (7.9)

It is a linear mapping from pseudo-tensorial r-forms to tensorial (r + 1)-forms.
Indeed, by the linearity of the exterior derivative, together with ¢ the exterior
derivative do is a pseudo-tensorial form.

The tensorial 2-form

Q=Dw (7.10)

is called the curvature form of the connection I" given by the connection form w.
This name derives from the geometric meaning in the case of the Riemannian
geometry (Chap. 9). Recall that there is no angle between a vector and a covector,
both living in different spaces, nevertheless one often speaks of orthogonality, if a
covector annihilates a vector, (w, X) = 0. Likewise, there is no radius of curvature
of a manifold not having gotten a metric. Nevertheless, the curvature form mea-
sures the deviation of parallel transport between two points along distinct paths,
and the manifold is said to be flat (see below), if the curvature form vanishes.

Let X = "X and Y = "Y be two horizontal tangent vectors at p € P. Then, (7.8)
yields ("¢, X AY) = (6,X AY) for any pseudo-tensorial 2-form ¢. Hence,
(do, X NY) = (Q,X A'Y) in this case. Now, let X = "X further be horizontal and
Y’ ="Y’ be vertical. Continue X to a horizontal vector field on P and Y’ to the
uniquely defined (vertical) fundamental vector field Y* = R*(Y), equal to Y’ at p
and corresponding to Y € g. First of all, according to (3.37), [X,Y*] = —[V*,X] =
—lim,o((¢_,),(X) — X)/t where the 1-parameter group ¢, created by Y* is a
subgroup of G and therefore it leaves the horizontal vector field X horizontal.
Hence, [X,Y*] is a horizontal vector field. Now, (4.49) yields (dw,X AY*) =
—Lx{w,Y*) + Ly-{(w,X) — (o, [X, Y*]) = 0. The first Lie derivative vanishes since
(w,Y*) = (w,R:(Y)) = Y is constant, in the second and third {w, . ..) = 0 since the
argument is horizontal. Finally, if both X" and Y’ are vertical and X* and Y* are the
corresponding fundamental vector fields, then (dw,X* A Y*) = —(w, [X*,Y*]) =
—[X, Y] = —[{w, X*), (w, Y*)]. Again the two Lie derivatives vanish as derivatives
of a constant, and in the remaining term (w, X*) = X was used twice.

Let X,Y € T,(P) be two arbitrary tangent vectors, decompose them into their
horizontal and vertical components and continue them into tangent vector fields as
above. By virtue of the bilinearity of the 2-form dw, E. Cartan’s structure
equations for a connection ® on a principal fiber bundle,

(do, X AY) = —[(0,X), (0, Y)] + (XA Y), (7.11)

are obtained. In symbolic writing they are often expressed as dw = —[w, »] + Q.
Eq. 7.11 is a g-valued equation consisting of dim G real equations. They may be
obtained by introducing a base {E;|li =1,...,dimG} in g with corresponding
structure constants c§. Then, » = Y, 0'E;, Q = 37, Q'E; and from the left Ad(g)
invariance of w and (6.3) one has


http://dx.doi.org/10.1007/978-3-642-14700-5_9
http://dx.doi.org/10.1007/978-3-642-14700-5_3
http://dx.doi.org/10.1007/978-3-642-14700-5_4
http://dx.doi.org/10.1007/978-3-642-14700-5_6

224 7 Bundles and Connections
i 1 i k i
dw :—Echka)JAw + Q. (7.12)
Jk

(In addition the obvious relation ) cjo/w* = 37(1/2)chw/ A o following from
the properties of the structure constants was used, observe that each vector com-
ponent d' of the g-vector is a 2-form in Ay(7;(P)), and the wedge-product of 1-
forms is such a 2-form.)

A word on notation. In exterior calculus the convention

[, o] = (@i, Oy iy — iy iy Dy i) (7.13)

iy

. . . k
is used. If @ and o are matrices, then the matrix element (w;,_; 0y, .,); may not

be the same as (ai,flu_,-mco,-l,',,-,_)f, and one of them may even not be defined
according to the concatenation rule for matrices. Then, [w, o] would not exist.
However, in general [0, 0] =wAw for a l-form, while (o, 0]+ [,0]); =
(0;0; — wjo; + w;g; — ojw;) need not vanish for general 1-forms, and hence
generally it may be that [0, w] # —[w, o]. In analogy to the derivation of (7.11),
the exterior covariant derivative of a tensorial 1-form ¢ may be obtained as
Do =do + ([o,0] + [0,0])/2.

Like the local connection forms , of a connection form w, local curvature
forms (Q), X: A Yy) = (Q (1), 80: (Xe) A s (Vo)) = (55,(€ (1)), Xx A Yy) on open
sets U, C M of local bundle trivializations may be introduced with the help of the
canonical local sections s,, that is, Q, = s%(Q) are pull backs of the curvature form
on P to U, C M. However, since Q is a tensorial form with the property (7.7) and

since ¥4, (hX) vanishes, the transition relations are simply

Qp = Ad(Y,5)Q  or Qp =5, (7.14)

where the second relation again holds, if G is a subgroup of GI(n,K) in matrix
notation. Since a pull back is a homomorphism of exterior algebras commuting
with the exterior differentiation, one immediately has dw, = —[w,, w,] + Q,.
Taking the exterior derivative of (7.12), one finds 0 = ddo' = =37 ciydw’ A
* + dQ' as an equation of 3-forms. Let X, ¥, Z be three horizontal tangent vectors

at p € P. Since »* annihilates horizontal vectors, it follows that (dQ',X A Y A
Z) = 0. In view of (7.8, 7.9), this may be expressed as

DQ = 0. (7.15)

These are the Bianchi identities for the curvature form. Alternatively, for any
pseudo-tensorial r-form DDc = D"(do) = "(dds), and D* = 0 is inherited from
d* = 0; hence (7.15) immediately follows from (7.10).
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On p. 218 the canonical flat connection of a trivial principal fiber bundle
P =M x G was introduced. Consider the canonical Maurer—Cartan form 9 of G
and the projection n; : M X G — G. Then,

w = (V) (7.16)

is the canonical flat connection form. Indeed, the 19; form a dual base to a base in
T,(G) and hence 75(0)) = (m; 0 )" = ¥* o m; pulls any vector X € T\, (P) first
back to T,(G) and then isomorphically to T, (G). Hence, (w,X) = 0, iff the pull
back of X to T,(G) vanishes, that is, iff X is tangent to M x {g} (cf. Fig. 7.5).

Now, do = d(n5(9)) = m3(d) = m3(~[9, ) = —[m3(9), w3(9)] = [, o],
and hence Q = 0. In the third equality the Maurer—Cartan equations of a Lie group
where used.

A connection in a general principal fiber bundle (P,M,n,G) is called a flat
connection, if every point x € M has a neighborhood U for which there exists an
isomorphism F : 7! (U) — U x G mapping horizontal spaces on 7! (U) to tangent
spaces on U x {g}. Since the above considerations were local ones, it is clear that
Q = 0 for a flat connection. However, the reverse is also true, which is the result of
three theorems presented here without proof (see for instance [1, vol. I, Chap. II]).

Reduction theorem: Let (P,M,n,G) be a principal fiber bundle, let M be
pathwise connected (and paracompact), and let I' be a connection on P with
connection form @ and curvature form Q. For every p € P, denote P(p) the set of
all points p' € P which may be parallel transported to p. Then, P(p) is a reduced
fiber bundle with the reduction of the structure group from G to H,. Let F :
P(p) — P be the corresponding bundle homomorphism with the push forward
F.:b, — g, and let I be a connection on P(p) with connection form o' and
curvature form . Then, F.(o') = F*(w), F.(Q) = F*(Q), where F* pulls o'
and Q' back from D(P) to D(P(p)), however, still forming vectors of g.

Ambrose-Singer theorem on holonomy: In the settings and notation of the
previous theorem, the Lie algebra ), is generated by all those elements of g which
may be expressed as (Qy,Xy NYy), where X,y and Y,y are arbitrary horizontal
vectors in Ty (P).

Theorem on flat connections: A connection on a principal fiber bundle is a flat
connection, iff the corresponding curvature form vanishes.

Let I' be a flat connection on (P, M, n,G), Q = 0, and let M be connected. Let
p € P be arbitrary and consider the holonomy bundle through p. Denote it M =
P(p). In view of the Ambrose-Singer theorem, bp is trivial. Hence, [)2 is also
trivial, and, since Hl? is a connected Lie subgroup of G and hence uniquely defined
by [)g, it is also trivial. Consequently, H, = H, /Hl? is countable and therefore

discrete. It follows that M is a covering space of M. In particular, if M is simply
connected, then P is isomorphic to the trivial bundle M x G and I' is isomorphic to
the canonical flat connection of the latter.
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The theory of principal fiber bundles forms the base of the theory of more
special and important vector bundles considered in the following sections. How-
ever, it also yields immediately the mathematics of gauge field theories and, more
generally, of geometric phases (Berry phases) in quantum physics, which will be
considered in the next chapter.

7.6 Fiber Bundles

Before more general covariant derivatives of parallel transport of vector and tensor
fields are considered with the help of a connection, as a further step more special
structure is introduced into fiber bundles.

A general bundle over M is a triple (E, M, x) of two topological spaces, E and
M and a smooth surjective mapping 7 : E — M. In a fiber bundle (E, M, ng, F, G),
M is a manifold (locally homeomorphic to R” for some m = dim M), and all
spaces 7z !(x), x € M are isomorphic to each other and isomorphic to a manifold
F, the typical fiber. Moreover, there is a Lie group G of transformations of F
which introduces more structure into F (for instance the group GI(n,K), n =
dim F introduces the structure of a K-vector space into F) and which in physics
often has the meaning of a symmetry group. In a principle fiber bundle the typical
fiber is the group G itself which acts on itself from the right. In order to adjust the
action of G to the fiber bundle (E, M, ng, F,G), it is incorporated by a principle
fiber bundle (P, M, r,G).

A fiber bundle (E, M, ng, F,G), or in short E, consists of

—_

. a principal fiber bundle (P, M, n,G),

2. G acts on F from the left, thatis, G X F — F : (g,f) =gf, § € G, f € F,isa
linear mapping and hence a representation of the Lie group G,

3. E=P X F, that is, (p,f) = (pg,g”'f) is an equivalence relation R in P x F,
and E = (P x F)/R, the elements of E are denoted p(f),

4. g : E— M : p(f)— n(p),

5. every local diffeomorphism ! (U) ~U x G,U C M, induces a local diffeo-

morphism 7z (U)~U x F.

Item 3 may be understood as a mapping p : F — n;'(x) C E,x € M : f — p(f) of
the typical fiber F' into E. In this respect, an isomorphism of fibers is a mapping
pop ' (¥) — mz'(x) where ¥ = n(p'), x = n(p). Since x’ = x implies p’ =
pg~! for some g € G, p op’71 =pogop ! in this case, the group of automor-
phisms of a fiber ;! (x) is isomorphic to the structure group itself. Item 5 fixes the
topology in E in such a way that for every local trivialization of 7~!(U) in P there
is a local trivialization of nz!(U) in E. Of course, this is only possible, if there
exists a bijection between m;!(U) defined by the previous items and U x F.

Consider (U x G x F)/R = {{(x,g¢',¢'"'f)|¢’ € G}}. Choosing g’ = g~', any
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“

(pg,97 ')}, 9€G, feF

Fig. 7.6 Sketch of a fiber bundle (E,M,ng, F,G) associated with a principal fiber bundle
(P,M,n,G). A point ¢ of a fiber over x € M is an equivalence class of pairs (pg, g~ 'f)

point of this set may be represented as (x, e, g f), and since F = eF C GF C F for
a representation of G in F, the distinct points of this type are in one—one and onto
correspondence with the points of U x F. This also shows that the fibers of E are
isomorphic to the typical fiber F.

M is again the base space of the bundle and E is called the bundle space, 7g is
called the bundle projection, 7;'(x) is the fiber over x € M, and G is the
structure group of the fiber bundle (E, M, ng, F, G) associated with the principal
fiber bundle (P, M, n,G).

This appears to be a quite complex definition, nevertheless the structure of a
fiber bundle (Fig. 7.6) is very common in analysis and physics as seen from the
examples below. By definition, every fiber bundle E is based on a principle fiber
bundle P. In this respect, a fiber bundle is more special than its principle fiber
bundle, it has additional structure, introduced by an additional typical fiber F. On
the other hand, taking F as the primary structure as in many applications, a
principal fiber bundle may appear as a special case of a fiber bundle, in which the
typical fiber F and the structure group G (the typical fiber of P) coincide. Many
texts treat the principal fiber bundle in this sense as a special case after having
introduced into the theory of (general) fiber bundles.

In the latter sense, a local section of a fiber bundle (E, M, ng, F,G) assigns a
point € of the fiber 7z ' (x) over x to every point x € U C M. Thus it is defined as a
smooth function s : M D U — E for which ng o s = Idy, and if this holds for all
M, then s is called a (global) section of E.

Before continuing with the general theory, for illustration a number of
important examples are now considered which will be treated in more detail
subsequently.

Let V ~ K" be an n-dimensional K-vector space, K = R or C, so that Aut(V) =
Gl(n,K) is the Lie group of general linear transformations of V. Let (P, M, , G)
be some principal fiber bundle, and fix a representation R of G in GI(n,K). The
fiber bundle (E, M, g, V,G) with the left action R of G on V is called a (real or
complex) vector bundle over the manifold M with the structure group G. Sections
s on M are (smooth) vector fields on M of the type V. (Consider electromagnetic
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fields on space-time as an example.) As physicists are well aware of, a vector is
not just a column of numbers with respect to the fixed canonical base of the typical
space K". Instead it is a physical entity which has a meaning independent of any
base. If G is the group Gl(n, K), then pg can be understood as transformation from
a base p to another equivalent base pg by applying g from the right to p. (Compare
the frame bundles of Sect. 7.2.) If the vector with respect to the base p is repre-
sented by the column f, then the same vector is represented with respect to the base
pg by the transformed column g~!f. Precisely in this sense a vector bundle
associated with a principal fiber bundle is needed to give a general vector field on
M (not just a tangent vector field) a meaning independent of a reference base at
each point x of M (compare (3.11) with (3.14)).

The set S(M) of all sections on M forms an infinite-dimensional vector space
(functional space of vector fields) with respect to pointwise addition or multipli-
cation by a constant k € K. Pointwise means at points x of M, or within fibers
n;'(x) of E. Addition and multiplication means, if €; = p(fi) and e = p(f>)
where p € n7'(x) and €; € n;'(x), then € + €2 = p(fi + /) and ke = p(kfi). If
the product of a smooth function F € C(M) with a vector field s € S(M) is
pointwise taken, (Fs)(x) = F(x)s(x), then S(M) may also be considered as a
module over the ring C(M) of smooth functions. Every vector bundle has trivially
the global section x +— 0. It can be shown with the partition of unity technique, that
for paracompact M every local section of a vector bundle and more generally of a
fiber bundle the typical fiber F of which is contractible, given on a closed subset of
M, can be continued into a global section; what does not always exist as will be
shown in Sect. 8.2 below is a vector field without nodes.

Let (E,M,ng,V,G) and (E',M, 7, V', G) be two vector bundles over the same
manifold M. The sum of vector bundles which is also called the Whitney sum,
(E®E M,npep, V& V', G), orin short E& E', is a vector bundle over M the
typical fiber of which is the direct sum V & V' of vector spaces V and V' with
the obvious bundle projection (g} (x) = 5" (x) @ 1z (x)). The left action of the
(common) structure group G on V & V' is the direct sum of representations R & R/
from E and E’. The sum of more than two items is defined analogously. Likewise,
the tensor product of vector bundles, (E ® E', M, ngzp,V ® V', G), or in short
E ® E', is a vector bundle over M the typical fiber of which is the tensor product
V ® V' of vector spaces V and V' again with the obvious bundle projection. The
left action of the structure group G on V ® V' is the tensor product R ® R’ of
representations (in the obvious meaning of the tensor product of transformation
matrices, cf. (4.7)). Again, the tensor product of more than two factors is defined
analogously. Likewise, the exterior product of vector bundles is obtained.

Let V* be the dual space to V, that is, (0, X) € K, w € V*, X € V is bilinear.
The dual bundle, (E*, M, ng-, V*,G), or in short E*, is a vector bundle over M the
typical fiber of which is V* and the representation of G in V* is the dual R* of the
representation R of G in V, that is, (R*(g)w, R(g)X) = (w, X) for all g € G. Hence,
(p(w),p(X)) = (pg(w),pg(X)) for pe P, p(w) € E*, p(X) €E, is a bilinear
scalar invariant under the action of G. (Think for instance of an electric field as an
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element of V and an electric dipole density as an element of V* under the group of
rotation, both on a spatial manifold M.)

In particular, the tangent bundle T(M)= (T(M),M,nr,K",Gl(m,K)),
m =dimM (p. 106) is an m-dimensional K-vector bundle associated with the
frame bundle L(M) as principal fiber bundle over M. It is easily seen that 77! (x) ~
T.(M) is the tangent space on M at x and S(T(M)) = X (M) is the space of tangent
vector fields. The structure group Gl(m, K) ensures that tangent vector fields have
an unambiguous meaning independent of local coordinate systems and indepen-
dent of the choice of a local frame. The dual of the tangent bundle is the cotangent
bundle 7*(M) = (T*(M),M, iz, K™, Gl(m,K)). Tts fibers n;!(x) =~ T*(M) are
the cotangent spaces on M at x and its sections form the space S(T*(M)) = D'(M)
of differential 1-forms. Finally, by taking the tensor product of r factors T(M) and
s factors T*(M) one obtains the tensor bundle 7, (M) of type (r,s) over M, and
by taking the exterior product of r factors 7*(M) one obtains the exterior r bundle
A(M) over M.

To a physicist, tensor bundles associated with frame bundles elucidate the
usefulness of the definition of fiber bundles: In order to express a tensor in
numbers, a frame is needed. Transforming the frame into another equivalent one
demands to transform the tensor components inversely.

Now, the question of reducibility (p. 209) of a principal fiber bundle can be
reconsidered. Let (P, M, n, G) be a principal fiber bundle, and let H be a closed Lie
subgroup of G (Fig. 7.7). It was already shown that (G, G/H, ng,H) is a principal
fiber bundle with base space G/H, bundle projection g : g+— gH and structure
group H. The left cosets gH, g € G form the quotient space G/H on which G acts
from the left. Since G acts on P from the right, H as its subgroup acts also on P
from the right. The orbits pH C P of this action form the quotient space P/H
(in which p and ph,h € H form the same point pH). Hence, the fiber bundle

Fig. 7.7 A sketch of the

interrelations between the H
bundles (P, M, n,G), P
(P/H7M77TP/H7G/H7P)7

(G7G/H77TG7H)7 e
(P.P/H. 7. 1) o

G/H

|

TPIH ™

M
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(P/H,M,npy,G/H,G) associated with (P, M, ,G) may be considered with the
typical fiber G/H and the bundle projection 7p/y : P/H — M induced by 7 :
P — M in an obvious manner. It is not difficult to see that (P, P/H, np, H) is also a
principal fiber bundle with base space P/H, bundle projection 7p : p+— pH and
structure group H. Indeed, let U € M yield a local trivialization n;/lH(U) =

U x G/H of the fiber bundle (P/H,M,np/y,G/H,G) and let V € G/H be so that
ng' (V)= VxHCG. Then UxV CUxG/H=mn),(U). There is W C
n;/]H(U ) which corresponds to U x V by the latter isomorphism, and 7' (W) ~
W x H. Hence, (P,P/H,np,H) is locally trivial.

The structure group G of the principal fiber bundle (P,M,,G) can be reduced to
the closed Lie subgroup H, iff the associated fiber bundle (P/H,M,1p/y, G/H,G)
has a section s : M — P/H.

Proof Let G be reducible to H and let (P', M, 7', H) be the reduced principal fiber
bundle with the corresponding bundle embedding F : P’ — P. Let mp be the
projection from P to P/H in the principal fiber bundle (P, P/H, np,H). If p’ and p”
lie in the same fiber of P/, then p” = p'h with some h € H. Therefore, np(F(p")) =
np(F(p')h) = mp(F(p')) does not depend on p’ € n'~'(x) but depends only on
x € M. Hence, s =npoF : M — P/H is a section on (P/H,M,np/y,G/H,G).
Conversely, let s : M — P/H be a section on (P/H,M,np/y,G/H,G). For
every x € M, mp'(s(x)) C P is non-empty. Let p’ and p” belong to this set which
implies p” = p'h for some h € H. Since G acts freely on P and H is a subgroup of
G, H acts also freely on P, that is, np'(s(x)) ~ H is a fiber over x € M. Let
P' = n,!(s(M)) C P, it is not difficult to see that (P',M,n', H) with ' = 7|, is a
principal fiber bundle, reduced from (P, M, n, G) by reduction of G to H. O

As was already mentioned, every fiber bundle (E,M,ng, F,G) with a con-
tractible typical fiber F has a section. Since the elements of GI(m,R) may be
expressed by matrices e* with general real m x m-matrices A, and the elements of
O(m) may in the same manner be expressed with skew-symmetric matrices A, the
quotient space GI(m,R)/O(m), the space of linear deformations of the R™, is
given by matrices ! with A symmetric. Hence, GI(m,R)/O(m) is diffeomorphic
to the m(m + 1)/2-dimensional real space of symmetric m x m-matrices A, which
is a vector space. Hence, the typical fiber of (L(M)/O(m), M, s 0(m):
Gl(m,R)/O(m),Gl(m,R)) is contractible and the bundle has a section, which
means that the frame bundle (L(M),M,n,GI(m.R)) can be reduced to
(Lo(M),M,n’,0(m)), where Lo(M) consists of orthonormalized frames of
orthonormal base vectors only, and 7’ is the corresponding restriction of . (Here,
normalization of the orthogonal frames is just an admissible convention, since
O(m) preserves norm of vectors.)

Analogously, the complex frame bundle (L(M), M, n, G(m,C)) can be reduced
to (Ly(M),M,n',U(m)), again consisting of frames of orthonormalized base
vectors, but this time unitarily related over the field of complex numbers.
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7.7 Linear and Affine Connections

Linear and affine connections are special connections on vector bundles. Before
considering them, the parallel transport is generalized from principal fiber bundles
to general fiber bundles.

Let (E,M,ng, F,G) be a fiber bundle associated with the principal fiber bundle
(P,M,7,G), let a connection I' on P be given, and let ¢ =p(f)), f € F, be
any point of E (see 3 of the definition of a fiber bundle on p. 226). The point
e ={(pg,g"'f)|g € G} can be represented (for g =e) by the point p of the
principal fiber bundle P and the point f of the typical fiber F. The tangent space
T.(E) on E at point € is split into the direct sum of the vertical and horizontal
spaces, T.(E) = F. & Q.. The vertical space F. is by definition tangent to the fiber
p(F) = ;' (n(p)) CE. Since p(F)~F, it holds that F.~ T;(F), dimF, =
dim F. Now, consider the projection P X F — E : (p,f) — e. Fixing f yields the
restriction 7y : P x {f} — E. The image of Q, of the connection I'" by its push
forward, ny, : T,(P) — T(E), is by definition the horizontal space Q. = 77.(Q)).
Represent € by (pg,g¢~'f) instead and consider Qp, = (R,),Q, and w17 : P X
{g7'f} = E. Now, my17,(Qpg) = mg17. 0 (Ry),(Qp) = 17:(Qp) = Qe and, as it
should be, the definition of Q. does not depend on the chosen representative of e
from P x F. The projection 7y induces a local mapping 7|, : U X G x {f} —
UxF:((x,8),f)— (x,(e,g7'f)) or (x,g)+ (x,g"'f) which maps fibers of P
into fibers of E over the same point x and thus implies a mapping Idy. Hence,
Qp = Ty (M) = Trp()(M) = Q., and dim Q, = dimM = dim Q. with the con-
sequence dim F, + dim Q, = dim 7.(E). Moreover, F. and Q. are obviously lin-
early independent and thus indeed T.(E) = F. @ Q..

A (horizontal) lift ®* of the path ®:7 — M,I =[0,1] CR, in E is a path
®* : I — E which is projected to ® so that g o @* = ® and which has a horizontal
tangent vector in every of its points ®*(¢), ¢ € I. (In this section a path is denoted
by @ because F is reserved for the typical fiber here.) Like in the case of a
principal fiber bundle (p. 220 f), if @ is a path from xy to xi, then for every
€0 € ;! (xo) there is a uniquely defined lift ®* which transports ¢, to a uniquely
defined point €; € m;!(x;). Indeed, if (po,f) is a representation of ¢y = po(f) and
@}, : t— p, is the unique lift of @ in P starting at po, then ¢, = p,(f) is the lift ®*. It
is the parallel transport along the path @ from € to €;. A local sections : U — E
is called parallel, if s5.(7,(M)) = Q) at every x € U. A parallel section s (local
or global) is parallel transported into itself.

Now, the considerations are specialized to vector bundles (E,M,=,,V,G),
where V &~ K", a representation R of G in GI(n, K) is operative as the left action of
G on V, and a connection I on the principal fiber bundle (P, M, n, G) is fixed. It is
this situation for which the covariant derivative of vector fields is introduced
(Fig. 7.8, next page).

Let s : M D U — E be a local section (smooth V-vector field) on U, let @ :
I — U be apath in U and let X = @’ (3/0t) € T,,(M) be a tangent vector on M at
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Fig. 7.8 A sketch of the s(l't-&-é)
covariant derivative of a
vector field s(x). (One single
vector component of s(x) is
drawn)

(I)Z‘t+§,t)(3(xt+5))

horizontal lifts
of ®(t)

Vxs(zy)

x, = ®(¢) € U for some t €]0, 1[ which is tangent to @ (in local coordinates
X = Z?;’?M(axi /0t)(9/0x")) and pushed forward by @, from d/0t € T,(I). Then,
the covariant derivative of s at x; in the direction of X is defined as

Vys(x) = lim (D?H—é,z) (8(x45)) — s(xr)
X 1) = 1

lim 5 , (7.17)

*

where @{,_ ; ) means the parallel (or horizontal) transport from X5 to x; along the
(inverted) path ®. It is intuitively clear and not difficult but tedious to show that
the right hand side expression depends on X but not on the actual path @ to which
X is tangent at x,. The same notation as on the left hand side above is used, if
X € X(M) is a tangent vector field (that is, Vxs(x) = Vx, s(x)). For a (local)
section (V-vector field) s in E, Vs is again a (local) section (V-vector field) in E.
For a parallel section s, the numerator of the right hand side expression vanishes,
since the parallel transport brings s(x..5) back to s(x;). Hence, Vxs = 0 for all X
for a parallel section s.

It is easy to convince oneself of the additivity of the covariant derivative with
respect to X and s:

Vix,4x,5 = Vx5 + Vy,s, Vx(s1 + Sz) = Vyxs; + Vyss. (7.18)

The second relation is obvious and the first can be obtained by using vector fields
defined on U and their families of integral curves with smoothness arguments
(Fig. 7.9, the analysis is again straightforward but tedious). It is also clear that a
rescaling of 0 only in the numerator of (7.17), which is equivalent to an inverse
rescaling of the denominator only, amounts to the same as a rescaling of X.

Moreover, if 4 is a smooth K-valued function on M, then one has @,
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Fig. 7.9 Families of integral X1+ Xo
curves of tangent vector fields Xo

X1

(A(xi40)s(X115)) = A(X1s0) Rfyys) (5(x145)) and Timso(A(xiss) — A(x:)) /6 = X2
Hence,

V,xs = AVxs, Vx(4s) = AVxs + (XA)s. (7.19)

If the X are tangent vector fields on M (or on U C M), then all relations (7.138,
7.19) are relations between sections in E (V-vector fields).

By the very definition of a fiber bundle, it is associated with a principal fiber
bundle. A connection, defined on the principal fiber bundle determines the parallel
transport also on the associated fiber bundle. If the latter is a vector bundle, covariant
derivatives are defined on the basis of the parallel transport. There are ample
examples of vector bundles in physics. For instance matter fields are described by
vectors of representations of abstract groups of ‘inner’ symmetry (SU(2) x U(1) in
electroweak theory, or SU(3) x SU(3) x U(1) in quantum chromodymanics)
which are functions of position in the base manifold M being space—time in these
cases. The structure of M itself determines the ‘outer’ four-tensor symmetry of each
of the above vector components. This latter structure is the subject of tangent,
cotangent and general tensor bundles, and is now considered.

Recall, that tangent, cotangent and tensor bundles are associated with the frame
bundle (L(M), M, r, Gl(m,R)), m = dim M as principal fiber bundle. (Here, the real
case is considered.) Connections on L(M) are called linear connections and were
considered at the end of Sect. 7.3. There, m standard horizontal vector fields X; were
defined by (7.6), the values of which at any point p € L(M) span the horizontal space:
Op = spang{X;, = B(X;),|i = 1,...,m} where the X; are taken to be any base of R".

The standard horizontal vector fields were uniquely defined via (7.6) by two
1-forms: the connection form w, in the present case of type (Ad, gl(m, R)), that is,
being a gl(m,R)-valued pseudo-tensorial 1-form which transforms under the
action of G = Gl(m, R) according to the adjoint representation of G (cf. (7.7)) and
whose exterior covariant derivative is the (tensorial) curvature form Q, and by the
soldering canonical R™-valued 1-form 0 of (7.5). On p. 219 it was found that
(Ry(0pg)), Xp) = (g7'0,,X,), and hence, by the defining property (7.7), 0 is a
tensorial 1-form of type (GI(m,R),R™). (It is tensorial, that is, horizontal, since
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(0,,X,) =0 for every vertical vector X,.) Since for the m standard horizontal
vector fields X; defined above (0, X;) = X;,

the tensorial 1-form 0 consists of m 1-forms 0 which are dual to the standard
horizontal vector fields X; : (0", X;) = b;

The tensorial 2-form of type (GI(m,R),R™)
® =D0 (7.20)

is called the torsion form of the linear connection I" which latter defines 0 and w.

Let X,Y € T,(L(M)). By definition (7.8, 7.9), if X and Y are two horizontal
tangent vectors, then (@, X A Y) = (d0,X A Y). If X’ and Y’ both are vertical, then
fundamental vector fields X* and Y* may be chosen whose values at p are X’ and
Y’. Since © as defined by (7.20) is horizontal, (®,X’ A Y') = 0. On the other hand
(cf. (4.49)), (dO,X* NY*) = Ly-(0,Y*) — Ly« (0, X*) — (0, [X*, Y*]). Since R :
g — X(n7!(x)) is an isomorphism of vector spaces, [X*,Y*] = [R:(X),R:(Y)] =
R:([X,Y]), and hence [X*,Y*] is vertical. Thus, all three of the above right hand
expressions for (d0,X* AY*) vanish because 0 is horizontal. Hence, at p
again (d0, X’ NY') =0=(0,X' AY'). It remains to consider the case where X
is horizontal and (without loss of generality) equal to the value at p of the
standard horizontal vector field B(X),X € R"™, and Y’ is vertical and as above
represented by the fundamental vector field Y*. In this case, still (©,X' AY') =0
since @ is horizontal. Moreover, (d0, B(X) A Y*) = Lgx)(0,Y*) — Ly-(0, B(X)) —
(0, [B(X), Y*]). The first expression on the right hand side vanishes again since Y*
is vertical. The second expression vanishes since (0,B(X)) =X is constant.
It remains to analyze the last term. First of all (compare p. 223), [B(X),Y*] =
=Y, BX)] = —lim; o ((¢_,).(B(X)) — B(X))/t = —lim,o(B(¢,X) — B(X))/t =
—B(lim,_(¢,X — X)/t) = —B(YX). In the present case, ¢, created by Y* =
R:(Y), Y € g, is a 1-parameter subgroup of GI(m,R) which corresponds via R* to
$, = exp(tY). In the last but one equality of the above chain of equations the
linearity of the mapping B : R” — O, was used. Now recall that ¥ = (w, Y*) and
summarize —(0, [B(X),Y*]) = (0,B(YX)) =YX = (0, Y*){0,B(X)) or (d0,X A
Y") = (0, Y")(0,X). The order of terms in the last product matters since the first
factor is gl(m, R)-valued and the second is R"-valued, the product (like YX above)
is a matrix product of an (m X m)-matrix with an m-column vector.

By decomposing tangent vectors in their horizontal and vertical components
and using the multi-linearity of forms, the first structure equation of a linear
connection on a manifold M (that is, on its frame bundle L(M))

(d0,X A Y) = —((0,X){0,Y) — (0, Y)(0,X)) + (©,X A Y), (7.21)

is readily obtained. The second structure equation,
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(do, X NY) = —[(0,X), (@, Y)] + (Q, X NY), (7.22)

which is of course the same as in the general case, is repeated here for comparison.

By fixing a base {ej,...,e,} of R™ and a base {E},,E}H,E%,,E;Z} of
gl(m,R), with 0 =3 0'¢;, @ = mO'e;, » =Y 0E], Q=3 QE/ the struc-
ture equations may be written in components as

do' == A0 + 0, dol=- o Aof+Q. (7.23)
j k

The second equation compares to (7.12) with the structure constants (6.15) of the
general linear group. These equations are symbolically often written as df =
—o N0+ 0, do=—w A o+ Q. Besides the mnemonic power of such a writing,
it demonstrates the algebraic power of E. Cartan’s exterior calculus by focussing
onto the exterior algebraic structure of the expressions and not diverting by the
maybe quite complex inner structure (hence the name exterior calculus). Of
course, using it needs a certain routine. In particular, like in operator calculus it is
strongly recommended never to change the order of factors in expressions
obtained. (Compare the product wf above.)

There is a choice of standard horizontal vector fields B; and of fundamental

vector fields E/* determined by
(0",B;) =0, (0X,E')=0, (of,B)=0, (o E/")=0], (7.24)

which form an absolutely parallel base of 7,(L(M)) of horizontal and vertical
vectors at every point p and thus provide the decomposition of any X, which could
not explicitly be given by the displayed expressions before (7.5). (It is not difficult
to see that the tangent vectors B; and El’* are nowhere zero and everywhere
linearly independent.)

Taking the exterior covariant derivative of d0 and using the first structure
equation yields 0= —dw A0+ o AdO+ dO. Therefore, (DO, XAYANZ) =
(dO,"X N'Y N'Z) = (do AN O"X N'Y N'Z) — (o AdO,"X AN'Y ANPZ). The last
term vanishes because w vanishes on horizontal vector fields. The first term is
equal to (QA0,"X A"Y A"Z) which on its part is equal to (QA O, X AY AZ),
since Q A 0 as the (wedge) product of two horizontal forms is horizontal. Sum-
marizing, the first Bianchi identity

DO =QA0 (7.25)

is obtained while the second Bianchi identity is as previously DQ = 0, (7.15). As
an example of the rule not to change the order of factors in exterior calculus (here
the order of the forms Q and 6), the application of (7.25) to three vectors is
presented:
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(DO XANYNZ) = (QXNY)0,Z) +(Q,YNZ)(0,X)+ (Q,ZANX)(0,Y).

The left hand side is an alternating 3-form applied to an alternating product of
three vectors (trilinear mapping to real numbers). It is invariant under common
alternation of the components of the form and the vector product. This invariance
is used to keep the order of the form components fixed. (The three anti-cyclic
permutations of the vectors are absorbed into the application of the alternating
2-form Q to two of the vectors.)

With a linear connection on a manifold M defined, covariant derivatives of
tensor fields on M can be formed. If r € 7, (M) is a tensor field of type (r,s)
and X € X(M) is a tangent vector field, then, since the tensor bundle
T,s(M) = (Trs,M, 77, ,R™"  Gl(m,R)) is a special vector bundle associated with
the frame bundle L(M) as its principal fiber bundle (GI(m, R) acts on the typical fiber

R™ " by a tensor product of r factors of the representation in R” and s factors of its
transposed) and ¢ is a section on T (M), the general approach (7.17) applies. (To
consider the covariant derivative of t at a given point x € M, itis enough that X = X,
is given at that point and ¢ is given in a neighborhood of x or even on a curve through
x only to which X is tangent.) It is readily seen, that Vx : 7 (M) — T(M) is a
derivation D in the sense of (4.13). By the theorem proved on p. 109,

Vx is uniquely determined by its action on C(M) and on X(M).
In analogy to that proof it can be shown that

any derivation D : T (M) — T (M) has the form D = Vx + S with a uniquely
determined tangent vector field X and a uniquely determined endomorphism S’
given by a tensor field s' of type (1,1).

The covariant derivative of a smooth function F € C(M) is simply
VxF = XF. (7.26)

This was shown before (7.19). For the application of Vx on tangent vectors
s € X(M), the rules (7.18, 7.19) hold.

Recall (p. 100), that a homogeneous tensor ¢ of type (r,s) at x € M may be
considered as an s-linear mapping of T,(M)x---xT.(M) (s factors) into
(T.(M)),, by the expression #(Xy,...,X;) = Cp1 - Cos(t @ X ® - - @ X;). With
t, Vxt is of the same type (r,s). Considering Vit as such an s-linear mapping into
(T«(M)), o, one may write (Vxt)(Xi,...,Xs) = (V#)(Xi,...,Xs;X) and hence
consider the homogeneous tensor V¢ of type (r,s + 1). The tensor V7 is called the
covariant differential of the tensor ¢. In this sense, V is a mapping from 7, ;(M)
to 7, 541(M). One has

(VX1 X X) = Valt(X1, - X)) = 3 (K VKiK. (127)
i=1
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Proof Apply Vx to #(X1,...,X;) =Ci - Ce,(t®X1 ®---®X,) and observe
(4.13) for D = Vy. O

One now may apply V a second time and obtain (V?#)(Xy,...,X;X;Y) =
(Vy(V1)(Xy,...,X;X), or recursively more generally

(V) (.. 5 X155 X)) = (Ve, (V7)) (s X5 X)) (7.28)

Like in the general case of sections in a vector bundle, the tensor field 7 is a
parallel tensor field, if Vyr = 0 for all X € T, (M) at all x € M, that is, Vi = 0.

The alert reader might be intrigued by the question why there are two structure equations in
the case of a linear connection on M while there is in general only one (the second). Some insight
into this situation is obtained by considering generalized affine connections as introduced by
Kobayashi and Nomizu. These are connections on the affine frame bundle considered in Sect. 7.2.
Take a connection form @ defining a connection I on the affine frame bundle A(M). It is a
pseudo-tensorial 1-form of type (Ad, a(m,R)). Pull it back to the linear frame bundle L(M) by
the homomorphism 7 considered in Sect. 7.2. According to the semi-direct sum a(m,R) =
gl(m,R) ® R™ one obtains

V(@) =0+ o,

where o is a pseudo-tensorial 1-form of type (Ad, gl(m,R)) and ¢ is of type (GI(m,R),R"™). It
acts linearly on R™ (on the last column of the (m + 1)Xx (m + 1)-matrix representation given in
Sect. 7.2) and produces R"-vectors, hence it can be represented by an R™-tensor #, of type (1,1).
On L(M), the vertical spaces are isomorphic to gl(m, R) which does not have the m + 1st column,
hence ¢ is horizontal on L(M) and constitutes a tensorial 1-form of type (Gl(m,R),R™) there.

As a pseudo-tensorial 1-form of type (Ad, gl(m,R)), w defines a linear connection I on L(M).
The mapping between connections, I — (T, t,), where t, is any tensor field of type (1,1) on M
turns out to be one—one, it comprises a pushed forward homomorphism g, : I'+— T (from
p:A(m,R) — GL(m,R)). Take the exterior derivative of the above displayed relation (it
commutes with the homomorphism y*, see (4.43)) and obtain y*(d®) = dw + d¢. Let X, Y be
two horizontal vector fields on L(M), then the right hand side of the last equation
yields ((do+de), X \NY) =((Q+D¢),X AY). Its left hand side yields, with the structure
equation of I, (di, . (X) A 7,(¥)) = ~[(@,7,(X)}, (., (¥))] + (&, 7,(X) A7, (Y)). Since X, ¥
are horizontal for T, (w,X) = (w,Y) =0 and (®,X)= (¢,X),{®,Y) = (p,Y). However,
R™ is Abelian and hence [(¢,X), (¢,Y)] =0 and (y*(d®),X AY) = (d@,y.(X) Ay, (Y)) =

(Q.7.(X) A9.(Y)) = (7 (Q). X A Y). In total,

7" (Q) = Q + De.

Use again the structure equation of I on A(M), dé = —@ A @+ Q, pull it back to L(M) and
insert @ + ¢ for y*(®). Split the resulting equation d(®w + ¢) = —w A w — o A ¢ + Q + D¢ into
the gl(m, R)-components and the R™-components and obtain finally

dp=—-oAN@+Dp, do=-oAo+Q.

In view of this result, a generalized affine connection I on M is called an affine connection, if the
R"-valued 1-form ¢ is the canonical form 0 on L(M). In this case the above relations are just the
structure equations of a linear connection I" on M. The canonical form 6 as introduced by (7.5)
maps the horizontal space identical into the horizontal space, hence the corresponding tensor 7, is
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the unit tensor, and one is left with a one—one correspondence between affine connections I" and
linear connections I" on M. Therefore these two names are used synonymously in the literature.
However, if one uses the principal fiber bundle A(M) instead of L(M) to define a linear con-
nection, the two structure equations are again merged into a single one like in the general case.

7.8 Curvature and Torsion Tensors

Let a linear connection I' be given on a manifold M, and let X, Y be two tangent
vector fields on M. Let X*, Y* be lifts of X, Y into L(M), and consider (®,X* A Y*)
with the torsion form ® of the connection I'. Since ©® is a tensorial 2-form of type
(Gl(m,R),R™), this expression defines a vector T}, € R™ at every point p € L(M).
With the linear mapping u(p) introduced in Sect. 7.2, T, is mapped to a tangent
vector of T, (M), and the whole result depends linearly on X A Y. Hence it may
be expressed by a tensor field T of type (1,2) on M as

(T, XAY) = u(®,X* AY*), (7.29)

which is to be understood that the value of the left hand side at x = n(p) € M is
given by u(p) applied to the value at p of the argument of u on the right hand side.
It is easily seen, that the result at x does not depend on the actual point p € 7! (x).
Indeed, let p' = pg, g € Gl(m,R). Then as lifts, X, = (R,).X;, Y, = (R,),Y,.
The right hand side of (7.29) at p’ is u(p')(®y, X5 AY,) = u(p')(Oy, (Re).X;,
ARy).Y3) = u(p (R (@), X; A Y3) = u(p) g™ ©p, X3 A Ty) = u(p)g™ (@, X; A ;).
In the last but one equality it was used that ® is a tensorial 2-form of type
(GI(m,R),R™) (compare (7.7) with GI(m,R) instead of Ad). Now, since
u(p')g™' = u(p’'g™") = u(p), the result is the same as that at p. Hence, for every
x € M, (7.29) is uniquely defined by the right hand side and is a tangent vector of
T, (M) for every pair of tangent vectors X, Y, which means that T € T1,(M) is a
tensor field of type (1,2) alternating in the lower indices (in coordinate repre-
sentation). It is called the torsion tensor field or simply also the torsion of the
linear connection I' on M. Equation 7.29 is called the torsion operation on the
pair X, Y.

In an analogous manner the curvature operation on a pair X,Y is defined.
Since the curvature form Q is a tensorial 2-form of type (Ad, gl(m,R)), the cur-
vature operation at x is an element of the Lie algebra gl(m,R) and hence a (not
necessarily regular) linear transformation of tangent vectors. This transformation
of a tangent vector field Z is defined as

CUR,XANY)®Z) = u({Q, X ANY*)(u"'Z)), (7.30)

where C means the contraction (4.9) of the tensor product (in local coordinates of
the lower index of the tensor (R, X A Y) of type (1, 1) with the upper index of Z).
On the right hand side, (Q,X* AY*) € gl(m,R) and u~'Z € R™. Hence, the
argument of u is again in R” which is mapped by u into 7 (M). The independence
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of the right hand side on p € n~!(x) to which X and Y are lifted is seen in the same
manner as above, only now Ri(Q,) = Ad(g)Q, =g 'Q,g and ulp) ' =
(u(p)g™")™" = gu(p)™". The result depends multi-linearly on X,Y,Z and is a
tangent vector field on M. Hence, it may be represented by a tensor field of type
(1,3) which is alternating in its first two lower indices in a coordinate represen-
tation. It is called the curvature tensor field or simply also the curvature of the
linear connection I" on M.

Of course, a neighborhood of x suffices to define the curvature and torsion
tensors at x.

The torsion and curvature operations can be expressed in terms of covariant
derivatives as

(T,XA\Y)=VyxY —VyX - [X,Y], (RXAY)=[Vx,Vy]—Viy. (7.31)

Proof Start with (T, Xy A Yy) = u(p)(©,,X; AY,), n(p) = x. With (7.21), since

X* and Y* are horizontal lifts and hence (w,X*) =0 = (0, Y*), (©,,X; A Y)) =
<d0P7X; A Y;) = LX; <6: Y*> - LY,f <95X*> - <9P7 [X*7 Y*L) = X;(H, Y*> - Y;<67X*>_

(0p, [X*,Y7],). With (7.5), the last term yields u(p){0,, [X*,Y*],) = n.([X*,Y*],) =
[X,Y],. It remains to consider u(p)(X,(0,Y")). Take first (0,,Y,) = u(p) ' (Yy)
which is a vector in R whose components are functions of p. Let ¢,(x), ¢o(x) = x,
be a curve in M through x to which X, is tangent, and let ¢; (p) be its lift through p

which is a curve in the frame bundle L(M) to which X is tangent. Hence,

X;(0,Y") = lim u(@; ()" (V) = ulp) "' (¥)

0—0 t

and

YN
u(p) (X:(0,Y")) = };Ln(l)”(l’) o u(¢, (p)i (Yo0) = Y

Here, u(¢; (p))~" maps Yy, () into R™ and u(p) maps this image into T,(M). Since
¢;(p) and p = ¢ (p) are connected by a horizontal path in L(M), the two map-
pings realize a horizontal transport of Yy () from ¢,(x) to x = ¢(x). Call this
transport @[, and compare to (7.17) to see that the result is (VxY),. Putting
together these findings proves the first relation (7.31).

Now, start with C((Ry, X, AY) ®Z) = u(p)((Qy, X5 AY:) (ulp) ™' Zy)).
Since X* and Y* are again horizontal lifts, (Q,X* AY*) = (dw,X* AY*) =
Ly {0, Y*) — Ly-{®,X*) — (0, [X*,Y*]) = —(w,"[X*,Y*]). (Recall that @ anni-
hilates horizontal vectors.) Let A* be the fundamental vector field on L(M)
which at p equals A; ="[X*,Y"], so that A= (w,,A,) is an element
of gl(m,R). So far, C((Ry,XiAYy)®Z)=ulp)(—(w,"[X",Y"],)(0,,Z)).
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F=1(0,Z") is an R"-valued function on L(M) which is tensorial of type
(GI(m,R),R™). Hence,

AL = lim (peXp(tf:))—F(p):}E%exp(—tA)Ft(p) F(p) _

—AF(p).

Therefore, —(w,,"[X",Y*],)(0,,Z;)) ="[X",Y"] (0,Z") = ([X", Y], — hix*, Y+,
(0,Z*). From the first part of the proof above, u(p)("[X*, Y],(0,2%)) = (Vixy2),
for the horizontal vector "[X*, Y*] - On the other hand, again with the first part of
the proof and using the horizontality of X*, Y*, one obtains u(p)(X;(Y,0(Z"))) =
u(p) (X, (u(p) ™" o u(p) (¥;(6,27)))) = ulp) (X; (u(p) ™ (V¥Z),)) = u(p)(X; (6, (V¥2),)) =
(VxVyZ),. Putting everything together and observing that one may formally write
(VxZ), = C(Vx®Z)), (Vx acts like a transformation tensor of type (1, 1)), the
proof of the second relation (7.31) is completed, since Z was chosen completely
arbitrarily. U

7.9 Expressions in Local Coordinates on M

In this section, finally local coordinate expressions are derived for the forms, the
covariant derivative and the torsion and curvature tensors of a linear connection on
M. For the sake of simplicity of notation, the same letter is used for points in
manifolds and in corresponding coordinate spaces. As in Sect. 7.2, local coordi-
nates p = (x*,X¥,i =1,...,m), so that x = (x',...,x") and X; = >, X*(0/0x"),
det(X¥) # 0, are introduced in 7n~'(U) C L(M) where U is a coordinate neigh-
borhood of x in M. The inverse of the (m x m)-matrix (X¥) is denoted by (X¥),
so that

ki _ Shyi _ sk
D XX =Y Xix] =, (7.32)
J J
In addition, in R™ the natural base {ey,...,e,} is introduced, for which
0="> 0. (7.33)

For any p = (x*, X¥) € U, the mapping u(p) : R” — T.(M), x = n(p), maps e; to
Zinj(a/éxf)x (see Sect. 7.2). Let

5= S () X ()

be any tangent vector in 7,(L(M)). Its projection to the tangent space on M,
/

T.(M), is 7. (Y:) = 3, Y (p)(0/0x]

)., hence
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(05, Yy) = ulp)™ (n(¥y)) = Y _(Xi(p) Y (p))es,

7

since u(p) ' (0/0x)), = > X/(p)e;. Comparison with the representation (7.33)
yields (0, Y;) = >, Xi(p)Y/(p) or, with (dx/,0/dx*) = 5],

0, = Z)?J’(p)dx){ or in short 0 = Z&’jdx" (7.34)
7 j

as the local coordinate expression of the canonical form 6 on L(M). As an
R™-valued 1-form, the local coordinate expression 5(]’ of 0 has an upper index i as
an R™-vector and a lower index j as a 1-form according to the general local
coordinate representation (3.24) of an exterior form.

Consider the transition properties of 6 between two overlapping coordinate
neighborhoods U, N Ug > x. According to (3.14), the tangent vector X; on M
transforms as Xfﬁ =>4 (g,) X% where g, is the Jacobian matrix of the coor-

dinate transformation given by (3.6). Hence, X' transforms like a cotangent vector,
Xiy = 32 X!, (5,);, in order that > X]xp = of = >, X], X!, With the second
relation (3.11) this ensures that 3, )N(;;jdxé = >, Xidx]. As seen, 0' behaves
indeed like a tensor of type (0, 1) on M, which yields another justification to call it
a tensorial 1-form. (Recall that originally 6 was introduced in Sect. 7.3 as a 1-form
on L(M).)

The connection form o of a linear connection I' on M is a gl(m,R)-valued
1-form. For its corresponding local coordinate expression the natural base {Ej’} in
gl(m,R) is needed, which consists of matrices with a unity in the ith column and
Jjth row and zeros otherwise (p. 219). The analogue of (7.33) is

=Y Wk (7.35)
ik

On a coordinate neighborhood U, C M, the analogue of (7.34) is first considered
for the local connection forms w, only, which are pull-backs from the canonical
local section s, C L(M) to U,:

o, = Z F;k (x)d¥. orin short ', = Z ijdxj.
J J

The components F]’ik of the local connection form are called Christoffel symbols.
Unlike the components of the canonical form 6, the Christoffel symbols to
not form a tensor on M. The local connection forms w, must have the transi-
tion properties (7.4), that is, the pairing with a tangent vector field X on M,
Xy = >, (p,),X;, must obey the relation
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(s Xg) = D (Wi s Xo) W) (D )+ (D) X W)

Imn

where for X, the local connection forms w, and wg were the pulled back con-
nection forms from p, = s,(x) and pg = sp(x) given by the canonical local sec-
tions. (Recall also that /5 = lpl;;)

In order to find the coordinate transition expression ¥,p = l,b;ﬁ(ﬂ) of the
Maurer—Cartan 1-form 9 of Gl(m,R), the way (7.4) was obtained has to be
reconsidered. In the coordinate neighborhood U, > x, let s, be the canonical
local section which maps x to the frame (x, (6/6x) ., (0/0x")). Clearly,
(x, (0/0xp), ..., (B/x)) = (x, 3 (W) (B/2x), .., (W )i, (a/@ﬂ) (x, (0/0x3), -,
(0/0x)) 5 as was used in (7.4). Any frame p of 77! (x) is obtained by acting
from the right on s,(x) with an element g of the Lie group GI(m,R), p = 5,(x)g.
(Recall that according to property 2 on p. 215 the same group acts on @ as an
element of gl(m, R) by the adjoint representation.) Use again the natural base E} in
gl(m,R) as above. An element g in natural coordinates of the Lie group GI(m, R)
is represented by g, det(gi) # 0. Let (g;) be the matrix inverse to (gi). The
Maurer—Cartan form maps left invariant tangent vector fields on GI(m,R) into
gl(m,R) and maps (0/g!), € T.(Gl(m,R)) to E/: (¥, (9/dg}),) = E]. Let G} be
the left invariant tangent vector field which at e is G/, = (9/ 0g}),, that is, Ggi =
Su gfglj(é/@gf)g. It must also hold that (¥,,G') = E/. As a gl(m,R)-valued
1-form, write ¥ = 37, 9 dgf E% and use (dgf, (0/dg!)) = 0{5/. There must
be Zklm” okn 8i g,’ E;) = E,j which finally results in 192’};,1 = gkmg; or ¥, =
Eklmn gk gn dgl E:ln Now,

Dup = V3p(0) = Dy = D (W) W) d W), (7.36)
kimn
where
i @x’“ i
A(op); = D 2 dxy = D (dyy) e (7.37)
7 OxpOx; Z

Putting everything together results in

rﬁ/k - IZ 1—‘otmn l/j/}ot (wﬁx) wﬂx + Z lp[foc dlpﬂac )]k7 (738>

which shows that F}k is indeed not a tensor on M (whence w was called a pseudo-
tensorial 1-form).

In local coordinates p = (x*, X¥), a vertical tangent vector on L(M) has the form
Yr=>u ¥}(3/0Xj), and since (dx', (9/0X})) = 0, the pairings of local connec-
tion forms with vertical tangent vectors vanish. The connection form o itself must,
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however, have the properties 1 and 2 given on p. 215. Hence, w must consist of a
term which, if paired with vertical tangent vectors, restores these properties 1 and
2 and of another term which pulls back to w,. It is easily found that the right
expression is

=) X <de +) rgjnx;"dx’>E,.f : (7.39)
ijk im
Indeed, consider the fundamental vector field (X/)* = R*(E/) which on the
canonical local section s, with local coordinates s,(x) = (x¥,d) is (X{);(X) =
(6/6)(;)Si(x). A general point p on the fiber over x is p = (x*, X¥) = s5,(x)g, g = X*
in local coordinates. A fundamental vector field is a left invariant vector field on
Gl(m,R), hence (X)), = g(X)); () = 2 Xf(0/0X}), = 3y X}/ (9/0X}),,. Now,
(@, (X)) = S igns X0 (dX;, (0/0XF))XSOEpy = Yo X{ X[ S{E,, = E/ and prop-
erty 1 is fulfilled. Property 2 is directly read off the factor at EIJ in (7.39), since the
second term of (7.38) vanishes for o = . Moreover, since s}, pulls back from Xlk to
51'?, it pulls the first term of (7.39) back to zero and the second term to the
expression for w, introduced after (7.35). Hence, (7.39) is the final local coor-
dinate expression for the linear connection form.

Every transformation step from (7.4) to (7.38) was one—one. Hence, symbols F;k

transforming according to (7.38) yield local connection forms , which obey (7.4).
On the other hand, as it was seen there, local connection forms w, obeying (7.4)
define uniquely a connection form @ on L(M) and hence a linear connection I" on M.

Symbols Fj’:k in local coordinates having the transition properties (7.38) define
uniquely a connection form through (7.39) and thus a linear connection T on M.
Next, let X; = (0/0x') be a tangent vector on U, and let Xj = (0/0x'), +
> (X)), (8/0X;7), be its horizontal lift through p = (x*,X¥). Then, 0=

(w},XZ‘) => X (X; )jk + > m X};Fﬁan"”. Multiplication with X” and summation

over i yields (X;);} = — 3, I',,X/" and hence
* 0 m 0 *
Xi=gi- kz F;kaiW ="xr. (7.40)

This expression only now determines the splitting of a general tangent vector on
L(M) into its horizontal and vertical parts, first mentioned on p. 219, by giving the
structure of horizontal vectors in terms of local coordinates.

Now, the tangent bundle (T (M), M, n7,R™, Gl(m,R)) = T(M) associated with
the frame bundle L(M) is considered where GI(m, R) acts on the vector space R™ by
the identical representation, and L(M) is provided with a linear connection I'. Let
f:L(M) — R™ be a R"-valued function with the property f(pg) = g~ 'f(p). It may
be understood to be a tensorial O-form of type (GI(m,R), R™). In combination with
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the canonical local section s, in L(M) it defines a local section f, : U, — T(M) :
x> (s,(x)g, & 'f(s5(x))) on U, in the tangent bundle T (M), where the section point
for x corresponds to the tangent vector with components £/ (s, (x)) in the frame &' given
by the natural base {ey, ..., e,} at x. In particular, the functions f;; : p = (x*, X]k) —

ok for given i, that is, f/; = X! by matrix multiplication to the frame coordinates,
provide this property. The section f; consists of the tangent vector (0/0x') at every
x € U,. According to (7.17), its directional derivative along a path with horizontal
tangent vector X is Vx(0/0x"). Apply the horizontal vector X from (7.40) to f; and
obtain Veyex (8/0x) = — Yy, TiX, (/X)) Xler = Yy TiXiX[ (9)0,)Xler = 3,
l"j’-;’f(;e, where in the second equality (2.26) was used. By reinserting (0/0x™) =
>, X! e, in the last expression, the final result

Voo (0/0x) Z (0/axb) (7.41)

is obtained. Replacing in these considerations the tangent bundle 7(M) by the
cotangent bundle T*(M) replaces fofl. = )N(ll by fi, = X! only and results in

Vojaudy' == Thdx*. (7.42)
k

This analysis underlines the role of the frame bundle as principal fiber bundle with
which tangent, cotangent and general tensor bundles over M are associated. Would
one try to define connections directly on those bundles, the definition would
unavoidably depend on the used local coordinate systems in a quite involved way.
The use of the frame bundle makes it possible to define linear connections inde-
pendently of local coordinate systems, and in addition leads to general forms of
coordinate expressions. (It was invented by E. Cartan.)

The properties (7.18, 7.19) of covariant derivatives can now be used to obtain
the local coordinate expressions of the derivatives of general tensor fields as
sections of tensor bundles, from (7.41, 7.42). With the general local coordinate
expression (4.33) one gets

11 t, s
i.. l, _ J1--ds § : iy 11 lu ipgrdy 2 : [ iy..dy
(th( )) ( axk + rkl j] rkj;ltjl-'Jullj;t+l<--js> .
pu=l1

(7.43)

The notation
(Vormet@jy) = (Ve)ty = g, () (7.44)

is generally used. The tensor contraction of the right hand side with any tangent
vector X gives (7.43) back, which shows that the expression in parentheses on the
right hand side of (7.43) forms the components of a tensor of type (r,s + 1), the
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covariant differential of . Higher order covariant differentials are recursively
obtained:
iy...dy ey
(V" ))ji skt ...kn tj:...j:;kl;u.;k,,' (745)

Compare (7.27, 7.28). These are the generalizations of tensor gradients from
trivial connections for which the Christoffel symbols vanish. (They do not vanish
even in flat connections, if general non-linear coordinates are used.)

The local coordinate expressions of the torsion and curvature tensors are now
straightforwardly obtained from (7.31). First write the left hand sides as

D : 9
k kvl
(T.XAY) =TpXY'oo (RXAY) = RygX Y/,

and then use (7.41) and (7.18, 7.19) on the the right hand sides to find (exercise)

(7.46)

T =T} — T} (7.47)
and
i al—‘;j ar;(] my-i myi
Riy =74 =2t T Uik = T, (7.48)

For a smooth function F on M one also directly finds that
Fjp—Fyj = T/lkFJ (7.49)
and for a tangent vector field X that
Xy — Xiy = Ry X — TLXL. (7.50)
Thus, the covariant derivatives of functions commute, if the torsion of the linear
connection vanishes, and the covariant derivatives of vector fields commute, if the

linear connection is flat and torsion free.
A smooth curve x(t) in M which locally solves the equations

dx/dx )
Z W g =0 i=loam (7.51)

dﬂ
is called a geodesic. The vector X = (dx'/dt)(d/0x) is tangent to this curve. From
(7.43) it follows that VxX = 0:

The tangent vector to a geodesic is parallel transported to itself on the
geodesic.

Finally, the Lie derivative (4.36) is compared to the covariant derivative (7.17).
A direct comparison of (3.37) with the first relation (7.31) yields immediately

LyY = VxY —VyX — (T,X A Y) (7.52)

for any tangent vector field Y, while for any 1-form o
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(on')j = (V)(O')j + O',‘Xf]- — 71-’;-Xi0'k (753)

is an exercise. While in Fig. 4.1 for the Lie derivative the transport is along the
flow of X (local 1-parameter group) without a twist, in Fig. 7.8 for the covariant
derivative it is horizontally in the direction of X.
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Chapter 8
Parallelism, Holonomy, Homotopy
and (Co)homology

This chapter is devoted to most topical and important applications of topology and
geometry in physics: gauge field theory and the physics of geometric phases which
vastly emerges from the notion of the Aharonov—Bohm phase and later more
generally from the notion of a Berry phase (see [l, 2]) and even penetrates
chemistry and nuclear chemistry. The central notion in these applications is hol-
onomy. Since holonomy is based on lifts of integral curves of tangent vector fields
on the base manifold M of a bundle, and maximal integral curves may end in
singular points of tangent vector fields, non-singularity of tangent vector fields
plays its role. Non-zero tangent vector fields can be expressed as sections of the
‘punctured tangent bundle’ on M. This is a subject of the interrelation of holonomy
with homotopy of fiber bundles, an important issue by itself. Therefore the chapter
starts with two sections on homotopy of fiber bundles before gauge fields and
finally geometric phases in general are considered. All these issues fall also into
the vast realm of characteristic classes and index theory. In a first reading the first
two sections may be skipped.

8.1 The Exact Homotopy Sequence

Let a fiber bundle (E,M,ng,F,G) associated with a principal fiber bundle
(P,M,n,G) be given. (In particular E may be P itself.) So far (horizontal) lifts of
paths in M to E were considered. Now the goal is to lift homotopy classes of
mappings of n-dimensional spheres into M. Recall, that a special intermediate
bijective mapping P of n-spheres " to one point compactified cubes I" was needed
in order to define a group structure on the sets of homotopy classes (Sect. 2.5, in
particular Fig. 2.8). In the following, I", I denote the n-cube, unit interval closed in
the ordinary Euclidean topology, I".1 denote their interior, and I" as previously

denotes the one-point compactification of "

H. Eschrig, Topology and Geometry for Physics, Lecture Notes in Physics, 822, 247
DOI: 10.1007/978-3-642-14700-5_8, © Springer-Verlag Berlin Heidelberg 2011
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Let @ : I" — M be a mapping with ®(dI") = xo € M, where I" = x, is the
boundary of the unit cube I" which is defined to be the point x,, of the one-point
compactification of the open cube /" to I". Then, ® = ® o P is the mapping of the
n-sphere " into M which in Sect. 2.5 was considered for a general topological
space X instead of a manifold M, and for which ®(sg) = xo. The part of the
homotopy class of ® with the mapping so— x fixed is [®] = {®g: [ x §" —
M | ®y(0,-) = , (1, 50) = xofort € I}. It corresponds to [®] = {®y : I x I" —
M| (I)H(O, ) = (D, (I)H(I X 61") = {)C()}}.

As in Sect. 5.5, all continuous mappings from a closed simplex (or a cube) of
R¥ into M may be arbitrarily closely uniformly approximated (in the metrics of R
and of coordinate neighborhoods U, of M) by smooth mappings of some neigh-
borhood of the simplex (cube) into M. In this sense all mappings are again sup-
posed to be smooth in the following.

Let D* be a (sufficiently smoothly bounded) domain in R*. A general lift of
®:D* — M to E is a (smooth) function ®* : D¥ — E with 1z o @* = .

Let ® :I x I'" — M be given and let Q = ({0} x I") U (I x OI"). Let @, :Q —
E be a general lift of the restriction (D\Q of © to Q. Then, there exists a general lift
O : [ xI" — E of ® with ®*|, = @,

Proof Consider first the case that ®(/ x I") lies in a trivializing coordinate
neighborhood U of the base space M of E, so that nEI(U) ~ U x F. Then,
@50+ maps x € I" to (P(x), p(x)), where ¢ is some mapping from /" to the
typical fiber F. Consider ® as a homotopy of ®@|,, and take any homotopy of ¢ in F
to obtain a general lift of @.

Next, take a homeomorphism g of I x I" onto itself which maps {0} x I"
onto 0. Such a homeomorphism exists, it can explicitly be constructed in the
following way (Fig. 8.1). Map I" homeomorphically into an n-ball B” and hence
I xI" into a spherical cylinder I x B". Then, in a first step (a), embed
the domain 7 x B" (n =1 in the figure) into a large enough ball B"*!, and then
stretch it homogeneously along the drawn arrows from some inner point in such
a way that the domain {0} x B" (thick line of the figure) is mapped onto the
lower half-sphere of the boundary of the (n+ 1)-ball (thick arc). This is a
homeomorphic map of 7 x B" onto the ball B"*!. Next, shift the (n+ 1)-ball
upwards as shown in part (b) of the figure and shrink it homogeneously along
the drawn arrows to / x B" which after going back to I x I" maps the lower half-
sphere to Q. The composition of all homeomorphisms yields the sought map ¢
from I x I" to I x I" mapping {0} x I" to Q. (Is the mapping from I" to B"
necessary in this construction?) The mapping d=0do g maps I x I" to U, and
&)|{0}X1,, =0|,0q. &)’é = ®, 0 q is a general lift of &)‘{O}xl”' It was seen in the

previous paragraph that it has an extension to a lift ®* of ®. ®* = ®*ogq! is
now the wanted general lift of ®. On the trivializing neighborhood U the
statement holds in an elementary way also for n = 0.
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Fig. 8.1 The mapping ¢ in
two steps for n = 1. See text
for explanation

(a)

(b)

/N

Now, the general case is reduced to the just considered by subdividing I x I"
into N"*! small cubes of equal size, small enough that each of them is mapped by
® into a trivializing coordinate neighborhood in M. In a first step, I of the
homotopy is replaced by the interval [0, 1/N], and then, step by step the contin-
uation is performed to all /. Start at the small cube with corner (0, ...,0) and scan
lexicographically with respect to the coordinates of the corner closest to the origin
through the cubes. At any stage, ®* is determined on the n-face of the cube with
x! = const. and on some of the n-faces sharing an (n — 1)-face with the latter. An
n'-face is an n’-cube, and the above extension procedure can be applied to it,
provided ®@* is already defined on all its (n' — 1)-faces sharing (n’ — 2)-faces with
the n-face x' = const.. In case of necessity one has further to go down with »’ at
most to n’ = 0 in which case the above continuation of ®* (from a point to an
interval) is always possible. Stepping from there upwards again with n’ finally
extents @ to the whole (n + 1)-cube, and one can proceed to the next. @ is finally
established on 7 x I". O

As seen from the given proof, in the above statement the cube [I" may be
replaced by any domain which is homeomorphic to a ball, in particular also by an
n-simplex. Even more generally, it may even be replaced by any polyhedron |c|
(see p. 141 f), when 0I" is replaced by any subpolyhedron || of |c|. By definition,
a subpolyhedron of |c| is a polyhedron which is also a subset of the skeleton of
some complex realizing the polyhedron |c|.
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Let M be contractible, and let @ : 1 x M — M be given with ®(0,x) = x fixed
for all x € M and ®(1,x) = x. Let ¢y € E be some point. The just mentioned
generalization of the above lifting proposition says that there is a general lift ®* of
®, and for ®(1, ) this is a (global) section of E. Hence, every fiber bundle with a
contractible base space has a section. This is also true for principal fiber bundles,
for which it was shown in Sect. 7.1 that a principal fiber bundle P which has a
section is trivial (that is, P &~ M x G). By the very definition of fiber bundles
associated with principal fiber bundles, triviality transfers also to the former:

A fiber bundle with contractible base space is trivial.

With the help of the lifting proposition a group homomorphism
0: my(M,x0) — my_1(F, fo), n > 1, between homotopy groups may be con-
structed. Given a group element of 7, (M, xy), a representing mapping @ : I" —
M, ®(I") = {xo} is chosen. Lift xy to any point €y = {(pog, g 'fo)} € nz'(x0).
This can be extended to a general lift of @ to ®* : [" — E which lifts (I)|Q7 0=
or\ {1} x (I""1)° to €. Since ®({1} x I""') = {xo}, it holds that ®*({1} x
I"1) C mz'(x0). Moreover, 9({1} x I""!) C Q, and hence @|(1} -1 Tepresents a
group element of 7, (F, fy). Let @ : I" — M, ®'(d") = {xo} be a mapping
homotopic with ®. That means that there is a mapping ®:1xI"— M with
®| 5,0 = P, |y, = . This can be lifted to ®* with ®*|(y,,,, = ©* and
hence yields a homotopy in F between ®* and &)*| (1}~ Hence, the constructed
correspondence between representatives of group elements of m,(M,xo)
and 7, (F, fy) yields a correspondence between the group elements themselves
independent of the chosen representatives (Fig. 8.2). Taking the construction (2.35),
itis easy to see that the just constructed mapping o from 7, (M, xo) to 7, (F, fp) isa
group homomorphism forn > 1. Forn = 1 itis still a well defined mapping from the
fundamental group 7 (M, xo) to 7o (F, fp). Only 7o (F, fp) is not in general a group.
It is a set in bijective relation to the pathwise connected components of F.

The exact homotopy sequence is

T i)71:}1(1:‘7 fo)i—*ﬂfn(E, 60)37'["<M,X())L>7T,I,I(F, fO)L) T (8])

Fig. 8.2 A cube 1",1123.Q 8({1} X ]”71) {1} (Infl)o
is its surface without the

interior of its upper face

(open box). ({1} x I"1) 1
consists of the edges of the

upper face m
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where i is the inclusion mapping of F onto the fiber through €y = {(pog, g 'f0)} €
nz'(x0) in E, mg is the bundle projection, and both mappings are pushed forward to
the corresponding homotopy groups.

Proof of the exactness of the sequence The elements of m,(F, fy) are homotopy
classes of mappings from the cube I into F with 0I" mapped to fy. The inclusion
mapping i maps these mappings to mappings of the same cube into the fiber of E
containing €j, and hence the images of these mappings are projected by ng, to
constant mappings of the cube I" to the point xo = 7g(€p), which represent the zero
element of m,(M, xo). Hence Im i, C Ker 7g,.

The elements of 7, (E, ¢)) are homotopy classes of mappings ®* of the cube I”
into E with 0" mapped to €. By 7, they are projected to mappings g o ®* of I"
into M with 0" mapped to xo. Then, é maps the latter to the restriction to {1} x
I"~! of any general lift (mz o ®*)" which maps {0} x I""! to fy. If one takes ®* as
such a general lift, it maps {1} x I"! to {fo} which belongs to the zero of
Tu—1(F, fo). Hence Im mg, C Ker 0.

Finally, the elements of =, (M,x) are homotopy classes of mappings ® of the
cube I" into M with 0I" mapped to xg. 0 puts them to the homotopy classes of the
restriction @7 |}y, ;1 of a general lift @ with @[, ;s = {€o}, which means
that @y, -1 is null-homotopic. Hence Im 6 C Ker ..

To prove exactness, the reverse inclusions have also to be demonstrated.

Suppose that the homotopy class of ®* : [" — E belongs to Ker ng,, that is, that
ng o @ is null-homotopic in M. Lift the homotopy between @y = xy and 7 o ®*
to ®* : I""' — E. It shows that ®* is homotopic to a mapping of I" into ! (x0)
and thus belongs to Im i,. Hence Im i, D Ker ng,.

Suppose that the homotopy class of @ : " — M belongs to Ker d. That means
that @ can be chosen so that ®({1} x I"~!) C n;!'(xp) and ®({0} x I""!) = {0 }.
This can be lifted to ®* belonging to n,(E, y). Hence Im ng, D Ker 9.

The last step is a little bit more elaborate. Let ®* : "' — F, ®*(or"!) =

{fo} belong to Ker i,. This means that there exists a mapping (homotopy) ®* o P :
Ix 81— E with ® 0P|y, g1 =io® oP, ® oP({0} x $" ') = {6} and
®" o P(I x {so}) = {o}. This implies @ : I x I"™! — E with ®"|;;y 1 =io
@*, ({0} x I"™") = {eo} and ®*(I x ") = {ey}. Now it is casily seen that
® = 1z o O represents an element of 7,(M,xy) which by ¢ is mapped to the
element of 7, (F, fy) represented by ®*. Hence Im ¢ D Ker i, O

If one defines the ‘zero’ of the set my(X,xp) to correspond to the pathwise
connected component of X containing x, then it is easy to see that (8.1) extends to
n = 0. If one further defines 7, (F, fy) = 7, (E, €9) = m,(M,x9) = 0 for n<0 and
d(mo(M,xp)) = {0}, then the exact homotopy sequence extends infinitely in both
directions as an exact sequence.

The exact homotopy sequence can amply be used to compute homotopy groups.
Let, for instance, n,(M,xy) = 0 for some n. This implies Ker ng,. = 7,(E, €) and
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hence, by exactness of the homotopy sequence, that i, is surjective. If now
additionally 7,1 (M,xo) =0, then Im 6 =0 in 7,(F, fy) and hence i, is also
injective, which means that

if 1, (M, x0) = 701 (M, x0) =0, then n,(F, fo) =~ m,(E, €).-
In the same way one obtains

if tu_1(F, fo) = m,(F, fo) = 0, then m,(E, €) =~ m,(M,xp),
in particular, for n = 0,

If F and M are (pathwise) connected, so is E,

and
if tu-1(E, €0) = mu(E, €0) = 0, then m,(M,x0) = 1,-1(F, fo).

If X is a discrete topological space, then 7, (X,xo) = O for all n > 0. Hence it
follows from the second of the above conclusions that

if the fiber F is discrete, then m,(E, €) =~ m,(M,xo) for all n > 1.

For instance, since SU(2) is a twofold cover of SO(3), it can be considered as a
principal fiber bundle with base space SO(3) and the discrete structure group
G =, = (Z mod 2) consisting of two elements. On the other hand, according to
(6.35), the elements of SU(2) are represented by matrices

A= (—)C)1C3++Dl€§4 ;i * g;), detA=x7+5+x5+x =1, (8.2)

and therefore SU(2) is homeomorphic to $°. Hence, 7,(SO(3)) =~ ,(SU(2)) ~
7,(S?) for all n > 1. (See also p. 226 f for more details.)

As another example (by taking E = P and F = G), consider the principal fiber
bundle (R, S', 7, 2nZ) with n(t € R) = exp(it) € S', already discussed previously.
It follows that 7,,(S!) ~ m,(R) = 0 for all n > 1, which is intuitively clear since an
n-sphere with n > 1 cannot continuously be wound around S'. Since SO(2) is
homeomorphic to S!, also ,(SO(2)) = 0 holds for n > 1.

As yet another example, consider the principal fiber bundle (SO(3),
$?,7,80(2)) with bundle space SO(3), base space S? and structure group SO(2).
(Any SO(3)-transformation corresponds bijectively to a directed rotation axis, that
is, a point of $? and a rotation in the mathematically positive sense around this
axis, which rotations are in bijective correspondence to SO(2)-transformations.
More generally, it can be shown that (SO(n),S"!, n,SO(n — 1)) is a principal
fiber bundle, [3, Section 9.3]). Now, since 7,(SO(2)) = 0 for n > 1, the second of
the above conclusions from the exact homotopy sequence yields m,(SO(3)) =
7,(S?)) and hence also 7,(S*) ~ m,(S?) for n > 2. This implies the Hopf theorem
713(S?) ~ m3(S*) ~ Z as a special case (cf. the end of Sect. 2.5).

Suppose that there exists a section s: M — E in the fiber bundle E. Then,
ng o s = Idy, and hence 7g, o s, = Idnn(Mﬁm, where the pushes forward from the
spaces to their homotopy groups are considered. Therefore, every [®] € 7, (M, xo)
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is the image of some [®*] € m,(E,¢€p) : Im ng = m,(M,x0). Because of the
exactness of (8.1) this means ,(M,xy) = Ker 0, which is the same as 6 = 0.
If E has a section, then

0 — 7 (F, fo)—oma(E, €0)~57,(M, x0) — 0 for all n, (8.3)
that is, m,(M,x0) = m,(E, €0) /7n(F, fo)-

8.2 Homotopy of Sections

The construction of (global) sections in a fiber bundle is a case of interrelation
between homotopy and homology. In this section it will be presupposed that the base
space M is a compact manifold (of dimension m as always in this text), which is
homeomorphic to a polyhedron |c)| embedded into some R”, n > m. (Section 5.6;
recall that every polyhedron of dimension m may be embedded into the R?"*!,
hence, besides M being compact, the presupposition is not really restrictive.)

Let an abstract complex ¢y, corresponding to the polyhedron |cy| be fixed, and
let ¢” be the rth skeleton of ¢y, = ¢™. For simplicity it will now further be assumed
that 7o(F) = 0, that is, the typical fiber F is assumed to be pathwise connected. By
smoothness, a section through ey = po(fo) = {(pog, g 'fo)} consists of points
€ € E, represented (for g = e) by (p,f), where f stays in the pathwise connected
component of f, for all x € M, if M is pathwise connected. Hence, for pathwise
connected M, instead of a bundle (E', M, ng, F’, P) the subbundle (E, M, g, F, G)
may be considered in the general case with F being the pathwise connected
component of fy € F'.

Next, assume that a section on |c!| is given for some /<m and that m;(F) = 0
for all k<!. (Recall that for a pathwise connected space F', m(F, fo) = mx(F) does
not depend on the point fy.) Try to extend the section to |c/"!|. If this is done,
induction in [ can be used, since mo(F, fy) = 0, and |c°| consists of discrete points
(vertices) only for which the existence of a section is trivial.

Consider first a trivial fiber bundle E =M X F.

Take a (regular) simplex given by c/*! € ¢/*!. As any regular (I + 1)-simplex,
|ct™1| is homeomorphic to the (I + 1)-ball. Its boundary belongs to the Ith skeleton,
ocit! € ¢!, and [ocit!| is homeomorphic to the I-sphere S'. A section s on [dc/t!| is
homotopic to a mapping s : S’ — F and hence defines an element gs(cf“) of the
homotopy group m;(F). It is easily seen that the section s can be extended to all of
|ctTh, iff go(c!™') = 0. (For instance by contracting the values of s on §' to one
point when contracting S’ to its center.)

Consider the (/4 1)-chain module Ci;(cp,Z) generated by the (/ + 1)-sim-

plices of ¢/*!. Any section s on [0c/™!| gives rise to a mapping of each simplex ¢!'!

of ¢!*! to some element g,(c!*!) of m;(F). Since the homotopy group m(F) is

Abelian, this mapping may be extended by linearity to a mapping (s,c!"!) :
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Crii(em, Z) — m(F), where ¢! =37 viclt! v, integer. All these mappings for
all sections form a cochain module C'*!(cy, m(F)) with coefficients in the ho-
motopy group 7;(F). If the cochain (s, ) is trivial (zero-dimensional), then every
section on |¢!| may be extended to a section on |c/*!|. Therefore, the cochain (s, -)
is called the obstruction cochain to the extension of the section s to |c/*!|. It is
obviously constant under continuous (homotopic) deformations of s.

With the help of the lifting proposition on p. 248, it can be demonstrated that all
sections on |c¢!~!| are mutually homotopic as long as all homotopy groups 7, (F)
are trivial for all k <I. To see this, take two arbitrary sections s and 5" and construct
a homotopy of their restrictions to |c°|, which is always possible since |c°| consists
of isolated points. By means of the lifting proposition, extend this homotopy to a
homotopy of s|. with some s; on |c!| which coincides with s’ on [Oc!|.
If 71, (F) = 0, all sections on |c!| coinciding on [dc!| are homotopic, and hence s
may be homotopically deformed into §'|... These two steps may be repeated until
|c!=1| is reached.

Given two sections s and s’ on |c¢!| which coincide on [dc'|, for each simplex |c|
the mapping ¢, : S' — F is considered, which maps the upper hemisphere of '
homeomorphically to the simplex and composes this mapping with s, maps the
lower hemisphere of S’ again homeomorphically to the simplex and composes with
s', in such a way that both mappings coincide on the equator of S’ which is mapped
onto |dc!|. The homotopy class of this mapping is denoted by (¢, ., c!) and forms

5,59

by linear extension a cochain of the module C'(cy, m(F)). It is called the dif-

ference cochain between s and s'. Clearly (¢, y,-) = 0, iff s and s’ are homotopic.
From the construction of both cochains it is clear that

<d¢s,s’v > = <S7 > - <sl7 '>7 <d¢s,s’7ci~+1> = <¢s,s’7aci+l>' (84)
Indeed, two arbitrary sections s and s’ on |c!| are homotopic to sections s and 5’
which coincide on |¢'~!| since on |¢'~!| all sections are homotopic. Putting ¢, , =
¢s5: G,y is defined for all sections s and s’ on |c!|. Moreover, (2.35) in additive
writing for the group operation implies the left relation (8.4), if (d¢, ,, -) is defined
by the right relation. (Note that by the above construction the coordinate x' of
(2.35) runs in the opposite direction for s', hence the minus sign.)

Since 0* = 0, the second relation (8.4) implies d> = 0. Take s’ to be the con-
stant section so for which (sp,-) =0, and obtain (s,-) = (d¢,,,-), that is, the
obstruction cochain is a coboundary (and also a cocycle, since d* = 0).

If I = m, there are no (! + 1)-simplices in |cy| ~ M. By extension of the second
relation (8.4) to this case, (¢, ., ) may be considered to be a cocycle on ¢ \ ¢!
((d¢,y,-) =0), and there are no non-trivial m-boundaries. It follows that, if
i (F) = 0 for all k <m, then the set of homotopy classes of sections of M x F is in
bijective correspondence with the cohomology group H"(c, 7, (F)).

So much for a trivial bundle M x F. If E is not a trivial fiber bundle, then an
abstract complex for M is to be considered which corresponds to a subdivision of
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the polyhedron |cy|~M into simplices fine enough so that each simplex lies
within a trivializing coordinate neighborhood U of M. Instead of F, now a fiber
above some point x; € U; is to be taken, which is isomorphic to F as a fiber.
However, instead of fy each m-simplex has now its own reference point €y, and
instead of m(F, f), now the set of isomorphic groups m(nz!(x;),€;) is to be
considered, which leads to cochains with values in local groups. The technicalities
are considered in [3, Section 11.4]. The definition of corresponding (co)homology
groups of M is straightforwardly transfered to the new situation.

The obstruction cochain and the difference cochain are now defined to have
coefficients in the local homotopy groups, which are all isomorphic and connected
by group isomorphisms as transition functions. The relations (8.4) as local rela-
tions remain valid. In particular, from the very definition of difference cochains it
is clear, that for a given section s of E, the mapping (¢, ,-) into the cochain
module is surjective. Indeed, given [ and a section s on the /-skeleton of ¢y, take
any simplex ¢! of the I-skeleton. By the definition of the homotopy group
m(n, ' (x;)), x; € |cl]), for any predefined group element g; there is a mapping
&)f sl — ngl(xi),d);‘hacﬂ = ¢; representing g;. It is homotopic to a mapping

=1 all sections are

O el = mgt(w), @} o1 = Sloy since on the skeleton ¢
homotopic. Let s’ be the section on the /-skeleton which on |c!] is equal to ®}. It is
a section because on |dc!| it coincides with the section s and hence it is continuous
(and thus homotopic to a smooth section). Consequently, for every predefined
cochain there exists a section 5" of |c/| so that (¢, ,,-) is mapped to that cochain.
However, since on a non-trivial bundle a constant section does not necessarily
exist, obstruction cochains are not necessarily coboundaries any more. Only, for
any obstruction cochain (s',-) and any coboundary (d¢,-), the cochain (s,-) =
(s',+) + (d¢,-) is again an obstruction cochain. Moreover, as long as 7, (F) = 0 for
k<l, every (s,-) is a cocycle: (ds,ct!) = (s,dct*!) = 0. ({s,dc}"!) maps to
m-1(n;' (%), &) ~ w1 (F) = 0 by assumption.) Hence, the obstruction cochains
form a certain cohomology class corresponding to an element A'"'(E) of the
cohomology group H'™'(c,7)(F)) = Z" (¢, 7)(F)) /B (¢, 7)(F)), where 7;(F)
means the set of local homotopy groups connected by transition isomorphisms. This
cohomology class h'*!(E) is called a characteristic class of the fiber bundle E.

The fiber bundle (E,M, g, F,G) admits a section over the (I + 1)-skeleton, iff
the characteristic class is ™' (E) = 0; k' (E) is defined, iff all i*(E) = 0 for k <.

Characteristic classes will be considered in more detail later. As seen from
above, they provide a measure of ‘non-triviality’ of a fiber bundle.

As a simple application, consider the problem of singular points of tangent
vector fields on compact manifolds M. Consider the punctured tangent bundle
T.(M) = (T.(M),M,nr,R™ \ {0}, Gl(m,R)). Its typical fiber F =R"\ {0} is
homotopy equivalent to the sphere S”~!. It was mentioned at the end of Sect. 2.5
that 7 (S"~!) = 0 for k<m — 1 and m,,_;(S""') = Z. (See [3, Section 7.1] for an
outline of a proof.) Therefore, there is always a non-zero tangent vector field on
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the (m — 1)-skeleton of any polyhedron |cy| ~ M. The attempt to extend it to M
will run into an obstruction, if 4™ (T,(M)) is non-zero.

W"(T,(M)) is an element of the cohomology group H™(M,Z). If M is con-
nected and orientable, then, since Poincaré’s duality (5.61) holds also for K = Z
instead of R, one has H"(M,Z) ~ Hy(M,Z) = Z, and h"(T,(M)) is an integer
depending on M (since the typical fiber F was fixed).

Isolated nodes of a tangent vector field are called singularities. Let x € M be a
singular point of a tangent vector field X. Put a small sphere $”~! around that point,
so that no other singularity is enclosed and the enclosed ball is inside a single
coordinate neighborhood of M. Then, X|. 1 can be considered as a mapping from
§™=! to R™. Composing it with the central projection R \ {0} — $"~! a mapping
of §"~! to itself is obtained. The degree of such a mapping was defined on p. 47.
This degree is called the index of the singular point of the tangent vector field.
Replacing the enclosed ball by a homeomorphic simplex, it is easily seen that the
index of the singularity is the obstruction to continue the non-zero tangent vector
field X from the boundary of the ball (sphere) into the whole ball. The obstruction in
the given case is an element of the homotopy group 7, (S !) ~ Z.

Next, consider a decomposition of M into simplices small enough that each
simplex contains at most one singularity. Take the non-zero vector field X on the
(m — 1)-skeleton of this decomposition, and let n define the characteristic class of
T, (M), which is the obstruction to continue the non-zero X to all M. It is clear that
n is the sum of all indices of all singularities of X.

The sum of the indices of all singularities of a tangent vector field does not
depend on X, it only depends on M and is a topological invariant of M.

This is a simple case of an index theorem. By taking a sufficiently simple
tangent vector field for which the index sum is easy to compute, one can show that
n is Euler’s characteristic in that case. (For instance the gradient vector field of a
real function on M provided with a metric can be analyzed by means of Morse
theory (Sect. 5.8).) Since the only non-zero Betti numbers of a sphere S™ are
B2(S™) = B (S™) =1 (cf. (5.60)), Euler’s characteristic of an even dimensional
sphere is 2 and of an odd dimensional sphere is 0. Hence, an even dimensional
sphere cannot have a non-zero tangent vector field without singularities. (In two
dimensions: ‘every hedgehog has a vortex’; in fact it has at least one vortex of
index 2 or two vortices of index 1.) Odd dimensional spheres have non-singular
tangent vector fields. In fact, again by Poincaré’s duality, this is true for any odd-
dimensional compact orientable manifold.

8.3 Gauge Fields and Connections on R*

The theory of connections on principal fiber bundles and gauge field theory
describe the same situation in different languages; for several decades they were
developed in parallel and largely independently.
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First gauge field theories on R™ are considered which every physicist is familiar
with, and then the general case is treated. In particular, R* may describe
Minkowski’s space—time. (As will be seen, the Minkowski metric is needed only
to specify the dynamics of the theory.)

As the prototype of a gauge field theory, reconsider Maxwell’s electrody-

namics (Sect. 5.9). Since H2z(R*) = 0, one may start from (5.99) with the 1-form

A, in coordinates A = ZA,,dx“, (8.5)
u

of gauge potentials from which the gauge fields derive as

F =dA, in coordinates F = ZFuvdx“ A dx’,
u<v (8.6)
F, =0,A, —0,A,, 0,=0/x".

(Since R* may be covered by a single chart, natural coordinates as a single local
and global coordinate system are used.) As a consequence of (8.6), the homo-
geneous set of Maxwell’s equations,

dF =0, (8.7)

immediately follows as identities, while in order to get the dynamics of the fields,
an action integral is needed. The simplest action is the Maxwell action

1234
1

5 VOoT ¢ )
S|A] = 3 / F A xF, (xF),, = ”Tg“"g"lF,d, (8.8)
R4

where the prefactor sets the energy scale and hence is convention, and Hodge’s
star operator (5.87) in the present case results in the second relation. Note that the
star operator makes use of the Minkowski metric, so that in tensor notation

1 1 v d 1 2 2
E/F/\*F:—Z/FWF”deE/(E - B?), (8.9)

R* R* R*

where E and B are the electric and magnetic fields. The dynamics derives from the
stationarity of the action which in view of (5.93) and (8.7) implies the second set
of Maxwell’s equations,

SF =0=dxF, (8.10)

which coincides with (5.96) in the absence of matter. Clearly, because of (8.6), a
gauge transformation

A=A =A+dy, dy=) 0ydx" (8.11)
u
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with a smooth single valued function y on R* does not change Maxwell’s
equations.

To include the interaction with a matter field ¥, the integral over the
Lagrangian density £(¥,0,¥) of the matter field has to be added to the action
(8.8) (which must be Hermitian, e.g. £(¥,0,¥) = i¥"0,¥ — mPVY in the case
of the electron—positron field of mass m, where y* are the Dirac matrices and
¥ = ‘I’Tyo), and then all partial derivatives 0, are to be replaced by the gauge-
covariant derivative

D,=0,—ieA, or D=d—ieA (8.12)

in a minimal interaction, where e is the charge of the matter field. (Depending on
units used in which the vacuum speed of light is ¢ # 1 and the action unit is
h # 1, e is sometimes to be replaced by (e/fic) in (8.12); in this text the above
choice ¢ = i = 1 is always made.) In the case of electrodynamics, (8.6) remains
unaltered since the potential components A, commute among one another. How-
ever, the gauge transformation (8.11) has now to be supplemented with

Y- ¥ =y, (8.13)

so that D,¥" = ¢/D, ¥, and the action remains invariant. Equations 8.12 and
8.11 may also be combined into

D — D = “tDe "%, (8.14)

from which together with (8.13) one directly infers that the Lie group U(1) is the
local symmetry group of the gauge symmetry. (This is the so-called Weyl rotation
in the charge space; H. Weyl found it in 1929 in a (failed) attempt to unify
electromagnetism with gravity and called it the ‘relativity principle in the charge
space’.) Note that the local value of iy may be taken as an element of the Lie
algebra u(1) = /R which transforms according to the adjoint representation Ad of
the group U(1), compare (6.66). The second set of Maxwell’s equations (8.10) is
now completed to become

OF =J=xd*F, J'=ePy'Y. (8.15)

The theory is simple because U(1) is an Abelian group.

In 1954, Yang and Mills found a non-Abelian generalization, which however
had to wait for two decades as a seeming formal curiosity until it finally celebrated
its triumph in particle physics not only by saving field theory from agony. Replace
U(1) with any appropriate compact Lie group G of dimension n, under which the
matter fields W (N components) transform according to some N-dimensional
unitary representation iy of G:

Y=y, Yi=FW ), <G (8.16)
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Define the ‘derivative’

(DY) = 8,8 + AW = (8,8 + AL )W, in short D, =, + A,
(8.17)

where the (N x N)-matrix valued 1-forms .4, are subject to the adjoint repre-
sentation Ad of G in the Lie algebra g of G, which is an n-dimensional vector
space (spanned by the ‘infinitesimal generators’ of G), so that there are n linearly
independent 1-forms A,, which transform according to the transformation group
Aut (g) for every ‘outer’ (spatial) index p, compare (6.65, 6.66). The group G is
called the inner symmetry group of the gauge field theory (isospin, color, ...),
while the 1-form derives from the outer symmetry of space—time (scalar, vector,
spinor, ...). As indicated by the writing in (8.17), the gauge potentials A, are
taken in the representation of the matter fields P, that is, by N x N-matrices. The
form (8.17) should be covariant under G-transformations in the sense

DY = yDy Y. (8.18)
This readily implies
A=A @) =y AY T — Q) (8.19)

Note that while D, is understood as a differential operator, that is, 6# of its first
term of (8.12) operates on everything written right of this operator, the derivative
in (8.19) is taken of ' and v, respectively, only. (Compare the end of Sect. 2.3
for the last rewriting of (8.19).) Note also that, if G = U(1) and the one-dimen-
sional representation iy = €% is operative, then -A;; = A, —i0,y; compare to
(8.11) with A = —iA and e = 1. Introduce gauge fields (matrix valued 2-forms)

Fuw =DyA — DA, =0,A, —0,A, + [A,, A] = [D,,D,], (8.20)
for which from the last expression and (8.18) the transformation property
Fly = Y F ! (8.21)

derives. Now, as for any commutator product, [D;, Dy, D,]] + Dy, Dy, D;]] +
[Dy,[D;,D,]] =0and [D;, [D,,D,]] = [D;, Fn]) = (0;F ) + [As, F ], where in
the first term again the derivative extends to F,, only. Therefore, the fields must
obey the kinematic equations

[’Di, .7:!”] + [Dl“ .7:v)~] + ['Dv, .7:;4,] =0, (8.22)

which replace in Yang—Mills theory the first group of Maxwell’s equations.
The Yang—-Mills action integral

1 — —
S[A Y] = — E e / tr (F*A«F*) + / (iY9"D,¥ — Pm¥)d*x (8.23)
a ‘a R4 R4
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is invariant under the G-transformations. Distinct from electrodynamics, the fields
themselves now carry charges which were (together with the imaginary factor,
hence the minus sign in (8.23) compared to (8.8)) included into the potentials,
compare (8.17) with (8.12). This is consequent since now the gauge fields directly
interact with each other as seen from the last term of the last but one expression of
(8.20). Therefore, the squares of the coupling constants 7, (instead of e in Max-
well’s theory) now appear in the denominator of the Lagrangian of the fields. In
(8.23) it is assumed that the symmetry group G is semi-simple, and one coupling
constant enters for each simple component a. The trace is the matrix trace over the

product of representation matrices (F fw )J’ of each simple component of the group.
While the Yang—Mills action itself is invariant, the dynamical field equations

derived from that action,
Dy, F*) = =AJ", /ljJJf‘i = iy,

(8.24)
WD,Y —m¥ =0,

are covariant under the gauge transformations y/(g(x*)) with the gauge function
g(x").

(N)ote a significant difference between Abelian and non-Abelian gauge field
theories. Due to (8.11), in the Abelian case, the gauge field strength (8.6) is gauge
invariant and hence measurable. Due to (8.21), the non-Abelian gauge fields
transform covariantly under gauge transformations lp]’ (g) and, like the phase of the
wave function (8.13), they themselves are not measurable. A simple example of a
measurable quantity is tr 7 ,,, where the trace is taken with respect to the inner
symmetry group G, that is with respect to the vector indices i and j of the matter
field.

All these considerations regard the classical wave equations. Quantization of
gauge field theories [4] has its own problems, which are not considered here.

Consider the vector bundle (E, R*, 7z, C¥, G) and the corresponding Hermitian
conjugate bundle E' associated with the trivial principal fiber bundle
(P,R* 1,G) = R* x G, where G is the symmetry group of a local gauge field
theory and the inner product space CV is the unitary representation space for an
N-dimensional unitary representation i of G corresponding to matter fields. Let
¥ be a (global) section of E (which always exists in a vector bundle), and let ‘P!
be the corresponding hermitian conjugate section in Ef. Then,

W) = (g() P, o eR (8.25)

with a (global) section g : R* — G of P (which exists since P is trivial) is a gauge
transformation of the matter field ¥. (By convention, in comparison to (8.16) i~
instead of ¥ is used here in view of what follows.)

Introduce the g-valued 1-form A as a connection form on P. Since P is trivial, a
single global coordinate neighborhood U = R* can be used. Let p — (n(p), ¢,(p))
be coordinates on P and introduce the canonical section s, :x— (x,e) of P.
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Denote the local connection form in these coordinates by A,. According to
Sect. 7.3 it is the pull back of the connection form A from s, to R*. With Ay =
A,(0/0x"), the local connection form expresses as A, = Ayu(x)dx*. A coor-
dinate transformation on the fibers of P by ¢4(p) = ¢,(p)g(n(p)) provided by the
gauge transformation g(x) leads to a canonical section sg(x) = s,(x)g(x) corre-
sponding to the new coordinates. According to (7.4) on p. 217, the connection
form must transform according to

Apo = (Ad(g™")A,), + 8" (9), (8.26)

where ¢ is the Maurer—Cartan 1-form of G at p = (x, g) and g* pulls it back to a
1-form at x on R*,

Moving over to the representation of the Lie group G by a subgroup of GI(N, C)
of complex (N x N)-matrices y(g) acting on C", the elements A,, of the Lie
algebra g are likewise represented by (N x N)-matrices A,, which are elements of
the Lie algebra gl(N, C). The transformation low (8.26) now reads

Ape =¥ Ay +y (0 /x), (8.27)

where ¥ = (g(x")), and y*(9), = YL (0/axt) = ! (O /oxt): the differ-
ence between the lifts of the tangent vector d/0x* on R* to ps = (x,g) and to
Pa = (x,e), respectively, in T,(G) is Og/0x*, and its (N x N)-representation
Oy /ox* is pulled back to gI(N, C) by y~'. Comparison of (8.16, 8.19) with (8.25,
8.27) (with  replaced by ') reveals that

the gauge potentials of a local gauge field theory yield a local connection form,
represented in the space C of matter fields, of the principal fiber bundle
(P, R*, 7, G) with the inner symmetry group G of the gauge field theory.

Now, by putting (Q, (0/0x") A (0/0x")) = Q,, and (dA, (0/dx") A (0/0x")) =
0A,/ox* —0.A,/0x" one immediately infers from (7.11) on p. 223 that

the gauge fields

Fu = (dA),, +[A, A] or F=DA (8.28)

form the local curvature form of the connection given by the local connection form

Aon (P,R* n,G), both represented in the space CN of matter fields. The exterior
covariant derivative in this representation is

D=[d+ A, (8.29)

vielding the right version of (8.28).

Fixing a local gauge .A(x*) links the position space with the ‘charge space’ cV
and thus defines a parallel transport of vector fields W (x*), which are sections of
(E,R* ng,CY,G). The Bianchi identities DF =0 for the fields read
(DF, (0/x*) A (8/dx*) A (0/2x")) = 0 or
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[Di; Fuv] + [Duy —7:1%] + [DW —,’tiu] = 07

which is (8.22) and which forms the first group (8.7) of Maxwell’s equations in
Maxwell’s electrodynamics, where G = U(1) is Abelian and all forms commute.
With respect to (8.29) compare also the text after (7.15).

Pure gauge potentials are gauge potentials .Az which ‘can be gauged away’,
that is, for which there exists a gauge fixing in which

AL =y Oy /oxt) (8.30)

and for which hence according to (8.27) for every trivializing coordinate neigh-
borhood there exists a gauge transformation (g (x*)) for which A, vanishes. This
means that A is a flat connection in this case, and hence, by virtue of the theorem
on flat connections,

A gauge potential is a pure gauge potential, iff the corresponding gauge fields
F v vanish.

Pure gauge potentials may reflect topological properties of the base manifold on
which the fields live and which may have consequences without direct gauge field
interactions of matter fields as considered in the next section.

8.4 Gauge Fields and Connections on Manifolds

Instead of having R* as the base space of a local gauge field theory, the latter may
be considered on any manifold M. In many examples, M is just an open subset of
R™, for instance with cut-outs where the gauge field diverges (point charges,
monopoles, dipoles, ... More generally, M may be any curved space—time in the
presence of a gravitational field. Even more generally, M may be a high-dimen-
sional manifold of which space—time is a submanifold, and M/ R*is compact. This
is the situation in string theory.

As a connection on the principal fiber bundle (P, M, , G), the local gauge field
theory readily transfers. The important difference is that P is in general not
globally trivial any more. This enhances topological aspects strongly. It was
already seen in Sect. 7.1 that a non-trivial principal fiber bundle does not have a
global section. Hence, g : x— g(x) € G cannot be given globally, and (8.26, 8.27)
cannot hold globally any more. However, if A and A’ are two locally given sets of
local connection forms with the same sets of transition functions g(x), then their
difference may be a globally given 1-form, for which it locally holds that

(A—A)y=Ad(g ")(A-A"),, thatis, (Ag—Ap) =y " (Ay— A, Y.
(8.31)

All, that follows (8.27) in the last section, transfers locally to the general case.
A simple example is Dirac’s monopole. It is a case of magnetostatics as one
time-independent part of Maxwell’s electrodynamics. The symmetry group is
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Fig. 8.3 The manifold R} R3
with spherical coordinates

)%

e

U(1). Consider the punctured three-space R> = R*\ {0} as the base manifold of
the principal fiber bundle (Pp,R?, 7, U(1)). Introduce polar coordinates (Fig. 8.3)
(r,0,¢),r #0 in R?, and cover it by the two open sets U, = {r|0 # n} and
U_- ={r|0#0}. Define the local connection forms (1(1)-valued form,
u(l) =iR)

Ay =il(1 —cosO)dp, A_ = —iA(1+ cos0)de. (8.32)
Write the U(1)-valued transition function as

Y, =, (8.33)

where y is a real function on U, N U_, that is, a real function of (r, 0, ¢). Then,
(8.27) reads

(A-)g = YL (A + YL (@0, _/0¢) = (Ay), +i(07/09).  (8.34)

Comparison with (8.32) yields y = —24¢. The transition function must be
uniquely defined on the intersection U, NU_ = {r|0 # 0,n}, which finally
demands

1=-2.¢, 2.€, (8.35)

since ¢ and ¢ + 27 describe the same point of R?, and hence it must be e~>/2" =
1. According to the theorem following (7.4), there is a connection form  on Pp
corresponding to the local connection forms (8.32) on Uy C R?, provided (8.35)

is fulfilled. Since U(1) is Abelian, the local curvature forms are
iy ..do
Fi=dAs =ilsin0dONdp = z}vﬁ. (8.36)

They have a common analytic expression on both open sets Uy and are propor-
tional to the directed surface element do of spheres centered at the origin of Rg,
with an r-dependent coefficient.

Translating this result into physics means that 4. = —ieAL, where A is the

vector potential of the magnetic field B' = (i/ 26)5%3.7: i in Cartesian coordinates
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x!, in spherical coordinates the magnetic field has only a radial component B" =
—2/(er?). The total magnetic flux through a sphere S? centered at the origin is
independent of r and equal to

A
<D:/B-d0:/dA+—|—/dA,:/(A+—A,):—4n—:4n,u, (8.37)
e
s 52

5 2 2 st

where p is the strength of the magnetic monopole sitting at the origin of R?. Here,
S2 mean the upper and lower half-sphere 6<n/2,S! is the equator 0 = /2, and
the trivial first integral has been rewritten and then treated with Stokes’ theorem
for later discussion. The result is Gauss’ law for a magnetic monopole u. Dirac’s
interest was attracted by the fact, that already in classical electrodynamics 1 =
—ep (in ordinary units A = —eu/(fic)) is topologically quantized (!) to be half-
integer. If somewhere in the universe there exists a magnetic monopole of strength
ltol = 1/(2€) = upgpe/aBonr» then this would explain why all observed charges are
multiples of e (a phenomenologically hard fact, with 22 orders of magnitude of
relative experimental accuracy, for which otherwise there is no explanation). Here,
Upops 1S Bohr’s magneton and agop, is Bohr’s radius. After the surprising topo-
logical conclusion on p. 160 that a closed universe must be exactly electrically
neutral, this is one more global topological conclusion of an intertwining of local
magnetic and electric properties of the universe, resulting from the topological
structure of Maxwell’s electrodynamics. It does not mean that it is the correct
explanation in physics since quantization of the fields themselves and linkage to
other fields was not yet considered. Nevertheless, it reveals an important feature of
the internal structure of Maxwell’s theory. For a review on the actual theoretical
and experimental status of magnetic monopoles see [5]. The example also shows
that in gauge field theories the gauge potentials need exist only on open patches of
the base space, in our case on R? \ (some ‘string’ from the origin to infinity). The
gauge fields may still be defined and smooth as tensor fields on all base space R?.
(Gauge potentials correspond to the pseudo-tensorial connection form while gauge
fields correspond to tensorial curvature forms.)

Returning to the principal fiber bundle (Pp,R?, 7, U(1)), it is easily seen that
the quantization of A is a case of a topological charge (Sect. 2.6). Consider the
homotopy equivalence U, N U_ = S'. Hence, the transition function 1/ +_, which
takes on the role of an order parameter for the field, is homotopic to a function
F:S'"— U(1) >~ S", for which the homotopy group 7;(U(1)) = n1(S') = Z is
relevant, resulting in a topological charge 24 € m;(U(1)). The above result is
hence general and not related to the particular gauge fixing (8.32).

Another simple example is the Aharonov-Bohm effect. It refers to an electron
moving outside of a confined magnetostatic field (Fig. 8.4). Here, the base space is
M =R} \ S, where Sis a cylinder infinitely extending in x*-direction, which contains
a solenoid penetrated by a magnetic flux ® and which keeps the electron outside by
means of a potential wall. Outside of S there is no magnetic field. The electron is
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C1

C2

Fig. 8.4 The Aharonov—Bohm setup: S is the solenoid confining the magnetic field and
excluding the electron by means of a potential wall, P and Q are considered possible positions of
the electron, connected by typical paths ¢; and c¢,. Cartesian coordinates are indicated, the
solenoid extends infinitely in x’-direction

injected at point P (for instance from an aperture before a cathode) and then after
quantum propagation observed at point Q (for instance on a screen). In this case there

is a globally defined local connection form .4;(r) = —ieA;(r), in cylinder coordinates
(p, ¢, %), p* = (x")* + (x)*, ¢ = arctan(x?/x") outside of S given by
(1)
A=—d 8.38
~do, (838)

for which it is directly seen that
F=dA=0. (8.39)

The connection @ on the manifold (Pag,M,n, U(1)) given by A on M is flat
(outside of S), there is no magnetic field outside of S. The formal reason for (8.39)
is that (8.38) is a pure gauge potential, A = dy, y = ¢®/(2x). On the other hand,
taking a circular area B? in the (x',x?)-plane centered at the origin and containing
the cross section of S, one finds trivially by means of Stokes’ theorem

/F:/A:cb, (8.40)

where S' is the oriented boundary of B>. The magnetic flux in S is indeed ®.

Consider for the sake of simplicity a non-relativistic electron with the Lagrangian
L = —(D;)*/2m = H equal to the Hamiltonian. Let P be a stationary wavefunction
normalized according to an emission of one electron per unit time from the source P
for ® = 0. For ® # 0, the wave function is ¥’ = ¢/ = ¢/¢®/20¥_ The geometry
was chosen such that at point P(¢p = 0) there is ¥’ = ¥, since this value was fixed
by normalization. However, at point Q, ¢ is not uniquely given. There are pairs of
distinct homotopy classes of paths from P to Q, the pair (c,c;) of Fig. 8.4 and
similar pairs winding additionally a certain number of times around S in mutually
opposite directions. Hence, for symmetry reasons, at point Q,

Wy Za" (eie®(2n+1)/2 + efied)(2n+l)/2)\P' (8.41)

n
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The absolute value of this function is periodic in ® with the period e®y = 27 (or in
ordinary units ®y = hc/e). |¥'|* has minima for e® = (2k 4+ 1)7 and maxima
halfway in-between. Although the electron wavefunction does not seem to directly
see the flux @, it is equal to zero in S due to infinite potential walls, and although
hence there is no Lorentz force from the magnetic field inside S onto the electron,
it nevertheless reacts on the flux. It is, as if the electron sees directly the gauge
potential and not only the gauge field like in classical physics. However, in truth it
sees only the integral over the gauge potential over a closed loop, which is, as will
be seen in the next but one section, a Berry phase. The Aharonov—Bohm effect has
brilliantly been demonstrated in experiment.

As regards physics, another truth is that there are no infinite potential walls in
nature, and hence the electron does see the field at the boundary of S by proximity
(tunneling), and this boundary condition continues as a topological constraint via
Stokes’ theorem into all the outer space. The topological treatment relieves one
from any detailed consideration of the proximity situation. This is a very general
case with boundary conditions in physics. See also the discussion of polarization at
the end of Sect. 8.6.

The wavefunction of the Aharonov—Bohm situation is a section of the complex
line bundle (one-dimensional complex vector bundle) (E, M, ng, C, U(1)) associ-
ated with the principal fiber bundle Pag. The paths contributing to (8.41) correspond
to the elements of the holonomy group Hy of the connection A with base point Q.

Relativistic field theory is conveniently first developed in Euclidean space R*
(with imaginary time) and then analytically continued (Wick rotated) to real time
in the Minkowski space. As an example with a non-Abelian symmetry group, the
Belavin—Polyakov instanton, is considered. Choose a Yang—Mills theory on R*
for which the field part of the action (first term of (8.23)) is finite. This demands
that the gauge fields vanish for the spacial radius » — co and hence the gauge
becomes pure. Technically this can be realized by compactifying the R* to the
sphere S* and demanding that the gauge is pure in the vicinity of the infinite point
(south pole). Hence, the principal fiber bundle (Pgp, $*, 7, G) is operative.

As a simple case, take G = SU(2) for the symmetry group. A general element
of SU(2) is

3
g =exp (12 tiai>, oi0; = 051> + iZ 5}]%30'1(, t €R, (8.42)
i=1 k

since the Lie algebra s11(2) is spanned by the Pauli matrices o;. Expanding the
exponential function one gets g = 1 +i Y fio; — (1/2!) 32 £1/(815 + id}3 o) +
---. On summation over i and j the last spelled out term vanishes as a summation
over a product of a symmetric factor #'#/ with an alternating factor . Hence, g

may be cast into the form (compare (8.2))

g=ul, + Zuiiai, u' €R, u° = cos \/Z(ﬂ)z. (8.43)

123
O
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Unitarity means 1, = gflg = (Zzzo(u“)z)lz +iY 5 u'ui8 or, where the last
sum again vanishes, leaving Zﬂ(u")2 =1 as the unitarity condition. The con-
straint detg = 1 yields again the same condition. (It was already plugged into
(8.42) by the traceless Pauli matrices, recall det(expA) = exp(trA).) Hence,

SU(2) is homotopic to the sphere S°. Put ¢ = il,, then the inverse relations are

ut(g) = tr(gay)/(2i), (8.44)

that is, the mapping SU(2) — S° is even a bijection. (Distinct from (6.53, 6.54),
here the sphere $° in the Euclidean space R* figures.) The parameter space S> > u*
is of course to be distinguished from the base space R* 5 x* of the principal fiber
bundle, in which the gauge fields live.

Returning to the base space R*, take the two patches Uy = {(x*) €
R*||x| <2R} and U, = {(x*) € R*||x| > R/2} of R* for some fixed radius R,
and gauge away the pure gauge outside R/2, that is, fix the local gauge potential

Aoo,u =0 = AOM = lp_l (6¢/6x"), (845)

where ¥ = . (g(x*)) is the transition function from U, to Up. It suffices to
consider the transition function for |x| = R, that is, on another sphere S°. In order
to classify possible field configurations one has to classify the mappings S° >
(x*) — g(x*) € SU(2) ~ S>. This is provided by the homotopy group 73(SU(2)) =
3 (SS) = 7.

Use homogeneous coordinates (w*) = (x*)/R, |w| = 1, on the sphere S* of the
base space and consider the mappings S° — S*~SU(2): (W")— (ut) =
(tr (gn(Ww")a,)/(20)) = (tr (W12 + wiic;)")o,)/(2i)), n € Z.. For n=1 this is
the identity mapping as seen from (8.44). For n > 1, the sphere S° is ‘wrapped n
times’ by its preimage S as can be seen from the last relation (8.43) since g~ g"
corresponds to £ — nt', and the mapping g — (u*) is bijective. As is likewise easily
seen for small #, the mappings preserve orientation of the manifold S* in the
vicinity of its north pole (1° = 1), and hence everywhere due to smoothness. Let
j: 83— 8 be the mapping which interchanges the coordinates w' and w? and
hence reverses orientation of S°. Replacing above g,(w") by g,(j(w")) yields
representatives for negative integer homotopy classes. All mappings for non-zero n
are not homotopic to the trivial mapping go(w*) = e = 1,.

Belavin and Polyakov considered (anti)self-dual solutions F = £ « F of the
Yang—Mills equations. Under this condition the field part of the Yang—Mills action
becomes T(24%)~" Jgetr (F AF), where the integrand is a 4-form in a four-
dimensional space and hence is closed, dtr (F A F) = 0. Since the patch Uy is
contractible, tr (F A F) is also exact (end of Sect. 5.5), that is, there exists a
3-form K so that tr (F A F) =dK. (Recall that F =0 on U, and hence this
relation is trivially fulfilled on Uy with any constant K.)
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In the given case,
2
Kztr(A/\dA+3A/\A/\A>, dK = tr (F A F). (8.46)

and

/ummfyz/dK:/K:—%/uMAAAm. (8.47)

RA UO 53 53

Proof Straightforwardly, with dA = F — AN A,

dK =tr (dA/\dA-l—%(dA/\A/\A—AAdAAA+AAAAdA)

tr((F—ANA)AN(F—ANA)
+§“F—ANMAAAA—AAUlmmMMAA+ANAM?—AAA»)
=tr(FAF—FAANA—ANANF + ANANANA
+%fAAAA—AAfAA+AAAAf—AAAAAAAO.

Now, using the alternating property of the wedge product and the cyclicity of the
trace of matrices,

tr(ANANANA) = %Z tr (A Az ALA)dxS A dd A dxt A dx’

KAy

= _ % Z tr (A A A A dx Adx® A dxt A diet = —tr (ANANANA).

g

Hence, tr (AN AN AN A) =0. Likewise, tr (FAAANA) = —tr(AANFAA) =
tr (AA AN F) is found. This reduces the above result for dK to (8.46) and thus
proves the latter. In the next section this will become a special case of a very
general result.

In (8.47), S? is the sphere of radius R in R*, and Stokes’ theorem was used in the
second equality. Again using dA =F — AA A, K may be cast into K = tr (4 A
F)—(1/3)tr (AA AN A). The first term vanishes on %, since 7 = 0 there. [

Now, consider the strength of the instanton,

q= /tr(]-'/\]-'). (8.48)
R4
For the sake of simplicity the identical (sometimes called fundamental) two-

dimensional representation of the symmetry group is considered, y(g) = g, where
g is the (2 x 2)-matrix (8.42). The results are qualitatively general, only the
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topological charge may get an additional dimension factor from the trace due to a
more general representation. For go(x*) = e, from (8.45) one has Ay, =0 and
hence g =¢qo=0. For g;(x*)=w1,+ > wlia;, one has Ay, = (w1, +
S whic) T (OO, + 32, whiay) /xt) = (W01, + 3, whiar) T (Q(w01y + 3, wia) /
Ow")/R. Since this corresponds to the identity mapping S°—S°:
wh—ul(w") =wk, the gauge potential may be expressed as Ag,(u’)=g"!
(0g/ou")(1/R) = (1/R)(dlng/du") = (i/R) >, 0:(dr /ou) or Ay = Zu Apudxt =
iy, ,0/(0f [out)dut =iy~ o;dr’. This yields tr (Ao A Ao A Ag) = Ptr (ai0;04)dt' A
dt' Ndi* = B3\tr (610203)dt! Adt? Adt? =3!2dt, where dt is the 3-volume ele-
ment of the manifold SU(2). The integration of the last expression of (8.47) is
now replaced by an integration over the unit sphere S° ~SU(2) with the result
g=q1=—4-2n*> = —8n> where 27* is the volume of the unit sphere $° (see
footnote on p. 53). Now, realize that g, = g,_1g;. Since the gauge is a pure gauge
on $%, it can be gauged away on every trivial patch (chart) of $>. Cover S° by Uy
and Uy, the north and the south open hemisphere overlapping at the equator.
Gauge away g,_; from the north hemisphere, that is, deform g,_;(w*) smoothly
into g/, (w"), where g/ _, = e is constant on the north hemisphere. In view of the
bijection between SU(2) and $* this amounts to a smooth coordinate transfor-
mation on S*, which transforms the integral over S\ (north pole) into an integral
over the south hemisphere. Likewise gauge away g; from the south hemisphere.
Now, g/ =eg| =g} on the north hemisphere and g/, =g/, ,e=g/,_, on the south
hemisphere, and —(1/3) [, tr(A, AA, AA))=q1+¢gu—1. For negative n, the

reversion of orientation of S* simply results in g_, = —¢g,. In summary,
qn = —8m’n or
1 _4 1 4 1 / iF iF (8.49)
=—— [t dgNhNg dgng 'dg) == | r | ——A—— :
" 247r2/r<g gAgdgngldg) =5 [ {5 Ao
$3 R4

that is, the Belavin—Polyakov instanton has a topologically quantized strength
(topological charge, cf. Sect. 2.6). Note, that compared to Dirac’s monopole there is
not even a singularity string of the gauge potential in the present case; the gauge
potential of the Belavin—Polyakov instanton is smooth everywhere in the base space
R*. It is a soliton-like solution of the field equations, which per se also has no length
scale: R was arbitrary in the choice of Uy and Uy, (8.48) does not depend on it.
However, distinct from an ordinary soliton the instanton field strength F is non-
zero in a vicinity of the origin of the four-space only: it is local and exists only an
instant of time, hence instanton. Its presence imposes a gauge invariant non-trivial
boundary condition for fields propagating in time from —oo to co.

Recall that in this case the quantization of (8.49) had its origin in the
requirement that the gauge field vanishes at infinity, or the gauge potential is pure

there. In fact, instead of R* the compactified space R* ~ §* was treated.
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8.5 Characteristic Classes

The topological quantizations (8.37) and (8.49) have a common feature which
reflects a very general algebraic structure admitting of a deep analysis. In both
cases an integral of an exact r-form (coboundary) over an r-dimensional closed
manifold (cycle) M is taken as a sum of integrals over charts, the items of which
are transformed using Stokes’ theorem into integrals over the boundaries of the
charts. If the continuation of the preimage of the coboundary from one chart into
the other is obstructed, then the total integral may be nonzero, but only depending
on a cohomology class of H,(M), called a characteristic class. (Compare also
Sect. 8.2.) Recall, that a gauge potential is a local connection form on a principal
fiber bundle and the gauge field is its local curvature form.

Let (P,M, 7, G) be a principal fiber bundle with the Lie group G as its structure
group and g as its Lie algebra. In view of possible fiber bundles (E, M, ng, F,G)
associated with P,G and g may be replaced in the following by any complex
matrix representation in F. An Ad G invariant symmetric r-linear function p :
g X --- x g(r factors) — C is a symmetric (p(...,X;,...,X;,...) =p(... X}, ...,
X;,...)) r-linear function with the property

p(AdgX,,...,AdgX,) =p(Xy,..,X,) forall geqG, X; €g. (8.50)
In matrix representations,

p(gX]gfl,...,gX,gfl) =pX1,..,X). (8.51)

Given a connection form o on P, recall that the curvature form Q = Do is a g-
valued tensorial 2-form on P, that is, at every ¢ € P, (Q,Z; A Z,) € g for any pair
of tangent vectors Z;,Z, of T,(P). Define

PaZn,- - Z2) = ¢ ,Z D@ Zp) A Zp))s- - (@ Zpar 1) A Zpiar)))s

(8.52)

where p is any Ad G invariant r-linear complex function, P means permutations of
the numbers (1,...,2r), and Z; € T,(P). Then, there holds the

Chern—Weil theorem (a) There is a unique global 2r-form on M equal to the
local 2r—forms po, = si(pa) (p. 224) on trivializing neighborhoods U, of the base
space M of P, which is closed: dpq, = 0.

(b) Let w and o' be two different connection forms on P. Then, the difference
po, — Po, is an exact 2r-form on M, that is, the de Rham cohomology class

associated with the glued together pq, in H[%IQ(M) is independent of w.

Proof (a) As defined in Sect. 7.5, the local curvature form Q, is uniquely defined
by Q and is linearly depending on Q for every coordinate neighborhood U, €
M: <Qo:x7X1x /\X2x> = <s;(QS1()());X1X /\X2x> = <qu(x) s, (Xlx) /\S};*(XZx» = <Qs1(x)a

I ok
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(st (X1x)) A"(s2,(X1x))). By r-linearity, po, = s%(pq) is uniquely defined by pq
through Z;;, = s..(X;) for which inversely m.(Z;,)=X;, where m is the bundle
projection of the principal fiber bundle P. The tangent vector Z; () may be pushed
forward to any other point s,(x)g on the fiber n~'(x) as (R,),Z, ), and
(Q,(Ry).Z1 N (Ry), Z2) = (RyQ,Z1 NZp) = Ad(g7')(Q,Z1 A Zy), since Q is a ten-
sorial form of type (Ad,g). Since (Ry),Z, () —Zis,x) is vertical, also
7. ((Ry), Zis,(v)) = Xi, and in summary (po,,7.(Z1),...,7.(Z2,)) = (7" (pa,), Z1,. . .,
Zor) ={pa,Z1,. .., Zp) or in short n*(pa,) = pa, where X; = n.(Z;) = ., (hZ,-) (since
n.("Z) =0). This also implies that po, = po, on U,NUp, and hence the local
forms pq, define a unique global 2r-form on all M, which is pulled back to pq on P
by the bundle projection.

Next it is shown that for every n-form p on P which is equal to n*p for some
n-form jp on M it holds that dp = Dp. Indeed, again with X; = 7, (Z) = n.("Z)
and by linearity of 7* and d, (dp)(Zi,...,Zy11) = (d7*D)(Zy, ..., Zyi1) = (n*dp)
(ZiyosZoid) = (dP) (X1, K1) = (w*dp) "2y, ... Zo 1) = (dp) "2y, ... Zo 1) =
(Dp)(Z] oo -7Zn+l )

Now, from Bianchi’s identity, 0 = Y p(...,(DQ,Z; NZ; NZ),...) = Dp(...,
(Q,ZNZ),...) =Dpa(Zi,....20r41) = dpa(Zy, . . ., Zori1) = dpo, (X1, . - . Xari1),
the last equality again by linearity of 7" and d. This completes the proof of (a).

(b) Let wp and @ be two connection forms on P, that is, two g-valued 1-forms
with properties 1 and 2 given on p. 215. In view of the affine linearity of 1 and the
linearity of 2 of these properties in w,®w, = wy + t0,0 = | — wy, is another
connection form for every 7 € [0, 1], and Q, = dw; + [y, ;] = dwo + [wo, wo] +
t(d0 + [wo, 0] + [0, wo)) + £2[0, 0] = Qo + t(d0 + [y, 0] + [0, w,]) — [0, 0] = Qo+
tD,0 — £20,0] is the corresponding curvature form. One has dQ,/dt = D,0.
Moreover,

1 1

Poy — poy — / didpe, [dt = r / dip({D0, - A, Q- A, (1 A )

0 0
1

:r/dtDtp(<0 NoAQ - A )y (- A )

dtdp((0,-), (Q, - A ), ( Q- A )

d dtrp Qt? >,...,<Qt,'/\'>) :d®.

oo
fom

(8.53)



272 8 Parallelism, Holonomy, Homotopy and (Co)homology

The first equality is trivial, in the second the symmetry of pg, was used, in the third
Bianchi’s identity D;Q, = 0 was exploited, and in the fourth it was realized that D,
again applies to a pull back from M by = since 0 like the connection forms w; is a
pseudo-tensorial form of type (Ad, g), pulled back from its local form on M by =.
Now, since O, the integral of the last line, is a pseudo-tensorial form, in analogy to
(a) a form ®, =s:(®) may be defined, so that pg,, —pgq, =dO®, on M.
According to (5.39), the de Rham cohomology classes, that is, the group elements
of the de Rham cohomology group H25(M) are the sets of closed 2r-forms which
differ at most by an exact 2r-form. Hence, pq,, and pq, belong to the same
element of Hix(M). O

As in Sect. 8.2, the de Rham cohomology classes associated with pq, are called
the characteristic classes. They depend on P and on the chosen Ad G invariant
r-linear function p, but not on the chosen connection on P.

The set of formal sums of Ad G invariant symmetric r-linear functions (for all
integer r >0, complex numbers for » = 0) is made into a graded commutative
algebra I*(G) by defining the product

1
pp/(Xh .. 'aXr+s) = ﬁZP(XP(l)a .- '7X73(r))p/(XP(r+1)7 <. '7X77(r+s))'
(r+s)! 5
(8.54)

Note that r-linear functions by (8.52) give rise to forms of even degree 2r.

Weil homomorphism The mapping I"(G) — Hx(M) by pw—{pa} is a
homomorphism of graded algebras.

{pa} means the de Rham cohomology class of pq. This result is clear from the
above, and by realizing that the image of the homomorphism consists of coho-
mology groups of even degree only and that in H;, (M) the A-product of factors of
even degree is commutative. Of course, the homomorphism depends on the topology
of M. Hence, the whole mapping depends on the principal fiber bundle (P, M, , G).

There is a one—one correspondence between symmetric r-linear functions and
polynomials of degree r. Define the polynomial p(") associated with p by

p"(u) = p(u,...,u), rarguments, (8.55)

then p(uy, .. .,u,) is (1/r!) times the coefficient of #,- - -, in p) (tyu; + - - - + t,u,);
this is called the polarization of the polynomial p(). It is clear that, iff
p(Xy,...,X,) is AdG invariant, so is p), it is called an Ad G invariant polyno-
mial. Now, I*(G) is isomorphic with the algebra of Ad G invariant polynomials.

An in a sense most general case is a complex vector bundle
(E,M, ng,C* Gl(k,C)) on a (real) m-dimensional base manifold M, associated
with the principal fiber bundle (P, M, n, GI(k,C)). In this case there are k distinct
AdG invariant polynomials obtained from the characteristic polynomial of a
general complex (k x k)-matrix X as an element of gl(k,C):
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det (Alk - X) ch . (8.56)

The (in principle arbitrary) normalization convention of X ensures that the Chern
numbers defined below will be real integers or fractions with small integer
denominators. Since det (A'1; — gXg™!) = det (g(A'1x — X)g~!) = det gdet(A'1;—
X)det (g7') = det (A'1; — X)det (gg~') = det (A'1; — X), it is clear, that the
polynomials py) (X) are AdG invariant. Let Q be the curvature form of some
connection form o on P. The rth Chern class C,(E) of the complex vector bundle
E is the de Rham cohomology class of the closed 2r-form

(Y1 Ya) = Pea(sun(Y)s -+ v 5me(Yar)),  Yi € X(M), (8.57)

where pea(Zi,...,Z) is the polarization of pﬁ” (Z). After introducing a base in

T.(M), x € U,, the 2-form Q, becomes a complex (k X k)-matrix. A somewhat
involved but straightforward calculation yields

G TR
= Gty 1y O Sl Ao Ay (8.58)

Each matrix element (Qa),] is a 2-form on M. It can be shown that the Chern
classes generate the whole image of I*(Gl(k,C)) in H}jz(M). Their representation
depends on E as seen from (8.58). The total Chern class corresponds to the direct
sum over r of the c,.

Some important other characteristic classes are:

Chern character Consider instead of (8.56) the expression

tr (exp(—%X)):tr @;:%( P )) chh (8.59)

It is easily seen that because of the trace the left expression is Ad G invariant.

The rth Chern character Ch,(E) corresponds to pgl), in a base of T,(M),

ch, = (1/rtr (iQ,/27) A -+ - NiQ,/(27)). (8.60)

(ch, is related to p.uq, the polarization of pgl), like (8.57).) The total Chern
character is again the direct sum, which is finite, since the last expression vanishes,
if 2r > dim M.

Todd classes Let E be the Whitney sum E = L; & - - - & Ly, where each L; is
the complex line bundle over M. Let x; = ¢ (L;) be the first Chern class of L;. The
2r-form of the expansion of

d =[N, (8.61)
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where the exponential is meant as the formal A-expansion, is the rth Todd class
Td,(E).

Pontrjagin classes They are the analogue of Chern classes for real vector
bundles (E, M, nz, R*, GI(k,R)). Instead of (8.56) one uses

1 k
det (Al — —X ) = ) (x) 2. 8.62

et (7= 32%) = 20 (8.62)

Replacing X in the determinant by the skew-symmetric matrix Q = —', one finds

det (1 — Q) = det (1; + Q') = det (1; + Q) since detA = detA’. From that it
immediately follows that the odd Pontrjagin classes vanish. One finds

1 o ; i
51]..1%(9“)]1 A A (Qx)h" (8.63)

P = W Jieedar i iy

If one identifies the complex k-vector bundle E with the real 2k-vector bundle E’,
then the rth Chern class becomes the 2rth Pontrjagin class, C,(E) = P, (E').

Euler class Consider an orientable manifold M of even dimension dim M =
2m and let (T(M), M, iy, R*™ O(2m)) be the tangent vector bundle on M asso-
ciated with the reduced frame bundle (Lo(M),M,n,O0(2m)) of orthonormal
frames. The Euler class is given by

(_1)"1 51...2m

(4n)mm| i1.iom (Qa)il JARRRNA (Qz)iZWIa (864)

i> iom

e =

in view of Q, = —Q' implying ¢? = (27) *"det (Q,) and hence being Ad O(2m)
invariant.

Let [z] be the homology class of a 2r-dimensional cycle in M, and let [p] be the
cohomology class of a closed 2r-form on M (cocycle). Equation 5.40 says that the
integral fz p depends only on the (co)homology classes of z and p, and hence is a
topological invariant. Since characteristic classes are closed forms on M, they give
rise to topological invariant numbers by integration over cycles in M. Best known
is the

Gauss-Bonnet—-Chern-Avez theorem Let M be an orientable 2m-dimen-
sional compact manifold, let e be its Euler class and let y(M) be its Euler char-
acteristic (Euler-Poincaré characteristic) (5.63). Then,

(M) = /e. (8.65)
M
Particular cases of this general theorem are considered in [6]. For 2m = 2 the

theorem reduces to the well known Gauss—Bonnet theorem y(M) = 1/(27) [,,K
where K = Q, is the curvature form of the surface M.
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Integrals over a 2r-cycle in M of an rth characteristic class are called Chern
numbers. In field theory, for dim M = 4, the Chern numbers

/Ch2 and /Ch] /\Cl’l] (866)

M M

are of particular interest. In the real case with dim M = 4, |, 1 P2 is the Pontrjagin
number.

Let (E,M,ng,K*,G) be a K-vector bundle associated with a principal fiber
bundle (P, M, , G), and let po be a 2r-form (8.52) representing a characteristic class
of P in a K-matrix representation. According to the Chern-Weil theorem, pqo, =
st(pa) for all trivializing neighborhoods U, € M defines a closed 2r-form on all M.
In view of Poincaré’s lemma (end of Sect. 5.5) this implies that locally, but not in
general globally, pg, is also exact, that is, there are local (2r — 1)-forms g, so that

pa, = dq,. (8.67)
Let v = w; be a connection form leading to the curvature form Q. On a trivial-
izing subbundle U, x G of P, the vertical ‘unit’ form wy which is pulled back to
0 = wp, = sk(wo) provides a flat connection on U,. Let w,, = tw, = tsi(w) on
U,. Then, after pulling back with s the chain of equations (8.53) in the proof of
the second part of the Chern—Weil theorem yields
1

G = r/dtp((a)a,-),(Qm,-/\ (@A), (8.68)
0
where Q,, = tdw, + 1*|w,, w,] = tQ, + (£ — t)[wy, w,]. The g-valued (in the
representation vector space K*) local (2r — 1)-form g, on U, € M is called the
Chern-Simons form of pq, .
Consider as an example the Chern—-Simons (2r — 1)-form of the rth Chern
character Ch,:

1
’ 1 i\’
Gl = ] <%) /dttr(waAQ,a/\---/\Qw). (8.69)
0 r—1factors

In particular

1

qch% / dttr w, = tra),(7
0

1
2
qﬁhl ( ) / ditr (w, A (tdwy, + Py, A o,)
0

—1 2t Ad +2 A A
=5 2n 1| @0x Adwy+ 205 Ny Aoy ),

(8.70)
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In local gauge field theory w, is commonly denoted A as the gauge potential and
Q, is denoted F as the gauge field. In a one-dimensional vector bundle (line
bundle) on M of two dimensions one has simply tr.4 = A. The vector potential

A = (i/e)Ais just (2n/e)q£11]). Hence, (8.39) is a trivial case of a Chern character
eF/(2n) and a Chern-Simons form eA/(2m). Likewise it is seen that
(—1/(8n))tr (F A F) is a Chern character Ch,, and that K of (8.46) is up to a

factor of convention a Chern—Simons form: K = —SanEi). Both relations (8.39,
8.46) are special cases of (8.67).

8.6 Geometric Phases in Quantum Physics
8.6.1 Berry-Simon Connection

Consider a quantum system under the influence of its surroundings. For the sake of
simplicity non-relativistic quantum mechanics is considered, although more gen-
eral cases could be treated similarly. The system is described by a Hamiltonian,
and the influence of the surroundings is expressed by a set of in general time-
dependent parameters the Hamiltonian depends on. Collect the parameters into a
set R of real numbers which varies in some real m-dimensional manifold. Let the
Hamiltonian and hence its eigenvalues, calculated for fixed R,

HR)|P(R)) = [¥(R)ER), (P(R)|P(R)) =1, R fixed, (8.71)

continuously depend on R [7]. Let E(R) be a non-degenerate and isolated eigen-
value of H(R) for some value R of the parameters. Then, a manifold M can always
be found on which E(R) varies continuously with R and remains isolated. Since
|'W(R)) is defined up to a phase e, a Lie group U(1) is attached to each point R of
the manifold M, which makes it into a principal fiber bundle (P, M, =, U(1)). (The
Lie group U(1) is the symmetry group related to the conservation of (‘¥|¥) for
complex |¥) which eventually is related to particle conservation).

Let R depend on time ¢ through © = ¢/T where T is a speed scaling factor for
this dependence. The time-dependent Schrodinger equation reads (7 = 1)

¥ (R(D),1)
dt

Let |'Y(R(1))) be the state of (8.71). Then, the quantum adiabatic theorem says
that

= H(R(0))[¥1(R(v),1). (8.72)

Jim W7 (R(7), 1) (Fr(R(0), 1)| = [F(R(2))) (¥ (R(7))], (8.73)

where 7 is kept constant in the limiting process. In order to determine the phase
change of |Y(R)) on a path through M, put the ansatz
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[¥r(R(z), 1)) = [¥(R(7))) exp | i7(2) *i/dt'E(R(T’)) (8.74)
0

into the equation (8.72) and find straightforwardly after multiplication from the
left with (W7 (R(7),1)|

7 =i PR | )
or
t R(1)
10 =i [[ar (PR R ) =i [ aROR S PR
0 R(0)
= i/(‘I"(R)|d\‘P(R)>, (8.75)
C

where C is the considered path R(t) through M. The phase y(¢) is called Berry’s
phase (Berry, 1984)." It is in many instances a measurable quantity, and it took
nearly 60 years since the foundation of the Hilbert space representation of quan-
tum theory to realize that not every dynamical quantum observable is represented
as a Hermitian operator.

B. Simon was the first to realize that the last integrand is a local connection
form on (P,M,=,U(1)):

A=) AdR = (P(R)|d|¥(R)) = —(d(¥(R)])¥(R)). (8.76)

The last relation is a direct consequence of the normalization of |W(R)). It shows
that A is anti-Hermitian, it is called the Berry—Simon connection . To see that it is
a local connection form, consider two local sections s,(R) = |¥(R)), and s3(R) =

|'¥(R)); with the transition function 5 = exp(iy), |'¥(R))s = [¥(R)),¥,5(R).
Then,
Ap(R) = (Y (R)|d|¥(R));
= Vg (PRI (R)) Wy + Wog o (P (R)F(R)) 5
= Vg ARy + o disg = Au(R) + idy(R),
which proves the required property. (In the first term on the second line d is meant

to operate on |W(R)), only.) The corresponding curvature form 7 = DA =dA
(the latter since U(1) is Abelian) is called Berry’s curvature, it is given by

' A collection of most of the relevant original papers on the subject is gathered in the volume [1].
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F = (d(¥Y[R)|) A (d|¥(R))) = MMM AN dR’. (8.77)
OR! OR/
A phase difference of two quantum states or two classical waves can be measured,
if both waves are brought to interference. This happens, if parts of the wave
propagate along different paths between the same start and end points or, equiv-
alently, if a wave circuits along a closed loop C. In the latter case it interferes with
itself according to the phase difference (8.75). Clearly, if x € M is a base point of
loops, then all possible phase differences y(C) for all possible loops C based on x
and running through M constitute the holonomy group H, related to the connection
on (P,M,n,U(1)) provided by the local connection form .A.
Let S be a two-dimensional surface in M bounded by C = 0S. Then, Stokes’
theorem yields

P(C) =i / A= i/]-", (8.78)

C=0S

that is, Berry’s phase equals i times the flux of Berry curvature through the surface
S. This is suggestive of magnetism and of Aharonov—Bohm physics, but is much
more general.

The expressions (8.76, 8.77) point out yet another important generalization of
these considerations: As a connection in a physical parameter space, the Berry—
Simon connection .4 and also Berry’s phase (8.75) between distinct points of the
parameter space is a gauge potential and hence gauge dependent and in general
not measurable. On the contrary, Berry’s curvature (8.77) is a gauge field and
hence has physical relevance leading not only to a measurable quantity (8.78) bur
is also measurable locally along any path through the parameter space, closed or
not.

8.6.2 Degenerate Case

Shortly after Berry’s and Simon’s papers, Wilczek and Zee pointed out that this
concept has a relevant non-Abelian generalization. It happens that a quantum state
has an isolated energy level which however is globally, that is on a whole
parameter manifold M, N-fold degenerate. Think for instance of a Kramers
degenerate doublet state of a molecule (see p. 337). Instead of (8.73), now

Z [Fa(R)(Ya(R)],  (Ya(R)[¥s(R)) = 0} (8.79)

is the adiabatic quantity, where locally the orthonormalized states |¥,(R)) can
always be chosen smoothly depending on the parameter set R ([7]).
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With the ansatz

[¥(1) = c"(1)]¥a(R(x))) (8.80)

one finds after projection on (Wj(R(7))]

Y W, (R(0)| LW, (R (7)) +HER() ) () =0  (8.81)
i dt

with the formal solution
; b

N
Z T exp / “A(R(7)) — ERE) )| (0, (8.82)

0 a

where now the simple power series expressed by the exponentiation is to be
replaced by a series which observes the order of factors with ascending time
from right to left. This is formally expressed by the time-ordering operator 7°
physicists are familiar with. In the adiabatic limit, the time integration can again
be expressed as a path integration along the path parameter t in the parameter
space, leading to

= 0 AR = (R WalR) R = (B RAE(R) (859

for which the transition between local patches U, and U/; of the m-dimensional
parameter manifold M, [V(R))s = >_, |'V5(R)),¥,5(R )?, in complete analogy to
the case (8.76) yields

that is, A is again a local connection form of a connection on (P,M,n,G): a
I-form on M, which is g-valued, where g is the Lie algebra to the Lie group
G > Y, providing the degeneracy of quantum states. Note that due to (8.79) G is

unitarily acting on the space C" of wave functions |\¥(R)) at given R. The geo-
metric change of state along a closed loop is given by

¥(C) = PCXP<£A), (8.85)

where P means path ordering from right to left surviving from the time ordering
T. For loops based on x € M it is again an element of the holonomy group H,
related to the connection on (P, M,n,G) provided by the local connection form
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A. In gauge field theory the corresponding quantity is called Wilson’s loop
integral.

The integral l]/(C) is gauge covariant. Indeed, take any gauge transformation
Y (g(R)) on M, where /(g) as on p. 261 is an element of the unitary representation
of G in CV. It now corresponds to a smooth (on M) transition to new states
[P (R)) =, [¥5(R))¥(g(R)) alternative to (8.79). The corresponding change
of the connection is A" = v~ Ay 4y 'di. Exploit exp(B~'AB) = B~!(expA)B,
which holds for arbitrary matrices A, B. Consider the transformed loop integral

- 0
¥(C) :Hexp <—¢_1Alﬁ— lﬁ_ldRﬁW)
dR
0
- lt;[w_] exp(—A)exp (—dR§> v

=[[v(s(R) " exp(—A)(s(R—dR)) =4 (g(Ro)) (Hexp(—A)> ¥(8(Ro)),
dR dR

where the product is understood in path order which precisely leads to cancellation
of the intermediate products y(g(R — dR)/(g(R — dR)) ™', and Ry is the base point

of the loop C. Hence IL/(C) = Y(g(Ro)) " W(C)Y(g(Ry)). This also means that
1/~/(C) is gauge dependent and hence not directly measurable.

Recall from (8.70) that i/(2n)tr A (with the trace taken in g) is the Chern—
Simons form of the first Chern character i/(2n)F of the connection provided by
A; since F = DA=dA+ AN A, it follows that tr F = dtr A, because tr. A A
A = 0. Hence, if one takes the trace under the integrals of (8.78), one gets again a
gauge invariant measurable Berry phase:

y(C) =i / trA=i [ uF. (8.86)

C=0S N

The above considerations show that
trx/}(C) = trPexp]{ A (8.87)
c

is another gauge-independent quantity which can be measured.

Finally, Aharonov and Anandan generalized the concept to general non-adia-
batic situations. Although this seems not to lead to new measurable quantities, it
provides a general classification of U(N) principal fiber bundles and hence of all
possible cases of geometric phases in quantum physics [2].

Nowadays there is a wealth of applications of this concept in solid state physics.
The interested reader is referred to [1, 2] and citations therein. We only select a few
typical examples.
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8.6.3 Electrical Polarization

For details see the reviews [8, 9] and [10] and citations therein. This presentation
follows closely [8]. Consider the bulk electric dipole density of a material, that is,
the dipole density which is independent of the shape and the surfaces of a piece of
material. This quantity is what is described by the thermodynamic limit, where the
volume is let go to infinity with all average densities kept constant. To get rid of
surface effects one uses periodic boundary conditions, that is, one replaces a
volume L* by a 3-torus x! =x'+ L, x> =x> + L, x> = x> + L. Any charge
density is forced to be periodic. For the sake of simplicity consider just one
dimension. The electric charge density is p(x) = p(x 4+ L). Let it be represented by
a generating function R(x), p(x) = dR(x)/dx. For a neutral case, it must be
[ dxp(x) = [“*" dx(dR/dx) = R(a + L) — R(a) = 0 for arbitrarily chosen a.
Hence R(x) is also periodic. Of course, an additive constant to R has no physical
consequence and hence no physical meaning. Now calculate the ‘average dipole

density’ with the help of integration by parts: (1/L) [ ath dxxp(x) =

a

—(1/L) [**F dx(R(x) — R(a)) = —(1/L) [** dxR(x) + R(a). Due to periodicity
of R(x) the first term is independent of a. Hence, via the second term the result
depends on the physically irrelevant reference position a. Although formally a
‘bulk dipole density’ seems to be defined, it can be given a quite arbitrary value, it
is not at all related to the physics at hand. This flaw has entered many textbooks. In
fact, the dipole density anticipated in physics, although a bulk property, is fixed by
the surface of the sample which destroys periodicity. Opposite charges move in an
applied electric field in the bulk in opposite directions and accumulate only at the
surface, although the bulk determines how far charge is moving.

Consider a reference situation of an infinite crystal with zero electrical polar-
ization for physical reasons, for instance since the crystal has a center of inversion.
Let the system polarize by destroying this symmetry in an adiabatic process with
keeping the periodicity fixed (that is, retaining some fixed periodicity without
which the thermodynamic limit can hardly be dealt with), for instance by letting a
ferroelectric slowly polarize by moving a (charged) sublattice of nuclei in some
direction or by applying a spatially periodically oscillating electric field.

To treat these cases, the notion of lattices I, R and IL; © G inverse to each
other is adopted and of the corresponding three-tori 'Jl‘f and ']I‘i as introduced in
Sect. 5.9 on p. 160 ff to be the unit cells of those lattices. (Here, the notation
k=p/his used and ) ,f(R) is written instead of ), f(R,), likewise for G.)
Recall that in infinite three-space

_ 1 i 3 ikr _ 1 3 ikr ok R
5&%me/d (mf/d (%: ) (8.88)

T

= F(k)G(k).
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Here, F is clearly smooth and finite while the infinite sum G is a distribution like
o(k), with the obvious property G(k + G) = G(k) due to R-G = 2x- integer
(5.102). Moreover, for k — 0 obviously (k) = (|T?|/(27)*)G(k) with the cell
volume |T?|, while F(G) is easily found by direct calculation, together with a
corresponding integral over the reciprocal cell,

/ d*re76T = |T3| 60, / d*ke R = | T3| 5o, (8.89)

3 3
T T

with the Kronecker symbol dgo on the lattice Iy and dgo on L,, respectively.
Altogether one has

D= 6k —G). Y UT=(TY 6 —R),  (890)
3 G G k

where we also added the analogous relation for the reciprocal lattice, and |T;| =

(2n)*/|T3|. If one limits the variables k and r to the corresponding tori only
(considering periodic functions), then only the single item with G = 0 and R = 0,
respectively, survives on the right hand sides.

The electron charge density of a crystal may in principle rigorously be obtained
from an effective one particle equation, the Kohn-Sham equation of density
functional theory (e.g. [11]). The crystal orbitals themselves being eigenfunctions
of the Kohn—Sham Hamiltonian, H = —(#*/2m)V? + U with U(r +R) = U(r),
are not lattice periodic; according to Bloch’s theorem they carry a phase ¢*” and
are obtained from Hy,,(r) = Y, (r)eq with the orthonormality condition

[ &rp e = Surd(k — k). Comparison of this condition with the first equality
(8.88) tells that in a constant potential U the state is Y, = (21) /?¢*" which
means |T?|/(2r)* = 1/|T}| electrons per cell T?. The states may, however, be
represented as

eik-r

T}

lpnk(r) unk(r); ullk(r+R) = unk(r)7 un,kJrG(r) = unk(r)7 (891)
where the periodic functions u,; are obtained as eigenfunctions of the Hamiltonian
Hy = e *"He*™ = (12 /2m)(—iV 4 k)* + U which acts on functions on the torus
’H‘f and depends parametrically on k € T,SC,

Hkun,’k(r) = u,l,k(r)ank, (u,1k|unrk) = / d3m;‘lk(r)un«k(r) = 5nn’- (892)
T
The last orthonormality relation results from the orthonormality condition for the

W with (8.91) and the first equality (8.90). The functions u, still carry an
arbitrary k-dependent but now r-independent phase as seen from the last
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eigenvalue problem; it is, however, essential for the following that this phase is
chosen to be a periodic function on Tz (and hence is the same for k and k + G).
This assumption has already been made in the last relation (8.91).

In a semiconductor, there is an energy gap between all occupied energies &
and all unoccupied energies. Then, for all occupied bands the n-non-ordered sets
{euw} and {u,} are smooth functions of k € T} (in an appropriate topology of a
functional space of set-valued functions, [7]).

Instead of the periodically repeated functions u,), multi-band Wannier func-
tions

occC.

1
anR(r) ‘T /d’; i-(r=R) Z Unn’ un’k U]L(k) - Uﬁl(k), (893)
K

with a unitary-matrix function U(k) may be introduced for the occupied bands.
The matrix function U(k) must again be periodic as function of k € T3 but may
otherwise be rather arbitrary. It is well known that, depending on its choice, for an
energy-gap separated band group the Wannier functions can be exponentially
localized in r-space. With the relations above one easily verifies (exercise)

oo

(anrlayr) = / d3ra;R(r)an,Rr (r) = Onworr- (8.94)

It is another simple exercise to show that (n runs over the bands per spin and over
the spin quantum number)

occC.

S5 P =S > / PR (1) P= p(r) (8.95)

is the total electron density of the crystal, in the left expression written as a sum
over the unit cells of the lattice. This lattice sum may be used to express a change
of the average electron dipole density of the crystal as

occC.

e
AP, = mﬂzn:/d3rrA|ano(r)

0occC

e 3 3,

(8.96)

where e is the positive electric charge unit (proton charge). The last expression is
obtained by inserting (8.93) into the previous one, using re*” = —iV;e*"  inte-
grating per parts, and again using [* d’re*"F(r) = 3op e [l d*re*"F(r) =

T3 |5(k ) S d*re™TF(r) for a periodic function F (exercise).
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By applying the Leibniz rule, the unitarity of the matrix U(k) and (8.92), the
last r-integral in (8.96) is easily transformed,

i (V) e[ V() ) = i(unk\vkunk) +u (U R)VU®K)) . (8.97)

With (5.19) in the form det U = detexpInU = exptrInU and the linearity of the
trace the last term is cast into tr VInU = Vtrln U = VIndet U = iV; since U
is unitary its determinant is det U = ¢"”. Now, recall that U(k) was supposed
periodic in k, hence the same must hold for ¢ which implies 9(k) =
a(k) + S R k - R with again a periodic function a(k) and some finite selection of
lattice vectors R; here, Y means a sum over finitely many items. We mention
without proof (because this would go off to far from our subject) that for
exponentially localized Wannier functions «(k) must be smooth. Finally, when
put into (8.96), application of Stokes’ theorem yields fTﬁ dPkVia(k) =

Jops d*ko(k) = 0 since the torus T has no boundary 9T} (or equivalently, to
k

each point on a face of a reciprocal cell there is an identical point on the
opposite face with the same value of (k) but opposite surface normal vector
dzk). There remains, however, a term

S P = IT%\ZR:/R (8.98)

R

undetermined (per spin; if spin degeneracy holds as in normal ferroelectrics, then
there always appears twice this term). Judged from (8.95, 8.96) this undetermined
integer multiple of ‘dipole quanta’ P,; = (e/|T}|)a;, i = 1,2,3, where the a; form
a basis of the lattice I, of an infinite crystal, appears quite natural because the
assignment of a Wannier function to a lattice position R has this arbitrariness. If a
surface for a finite crystal is introduced, then a change of this assignment means a
change of the surface contribution too which cancels the change of (8.98) ren-
dering the total dipole moment unique. The remaining dipole density of the finite
crystal is normally much smaller than the quanta P, ;, and the term (8.98) may be
skipped when calculating AP,.

In order to reveal the algebraic-topological structure of the obtained results we
introduce lattice adapted (in general non-orthogonal) coordinates given by r =
Sirlaik = ijjbj where the a; and b’ form bases of the lattices L, and Ly,
respectively; a;-b’ = 219/, that is, r = (27)"'b' -r and k; = (21) 'a; - k. The
cell volumes expressed in these bases are |T>| = (a;,a,,a3) and |T3| = (b',b%,5°)
with the triple scalar products (-, -, -) (4.46). On the tori the coordinates run from 0
to 1, so that the volume element in T; is d*k = |T}|dk; A dky A dks while Vy =

(2n)~"' 3, @;0/0k;. We have to cope with two dualities here, that between position
and momentum and that between tangent vectors dk and forms on the torus of
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quasi-momenta k. This is why here tangent vectors have lower indices and forms
upper.

Consider now an adiabatic parameter A changing from 0 to 1 with P,(1)
changing from P,(0)=0 to P.(1)=P,. Since it was important for the
Wannier representation analysis to have energy-gap separated occupied bands
in order that the unitary transformation matrices U(4,k) and the set of occupied
states {u} resulted in a smoothly k-dependent phase o(4,k), the crystal must
remain semiconducting all the way along the ZA-path. Combine k and A in a
four-dimensional manifold M = [0,1] x T}, with the volume form |Tj|d2 A
dky N dky A dks. The boundary of M is OM = (1,T;) — (0,T;) where the
minus sign indicates that the surface normal at A = 0 points into the negative
A-direction. (Ti itself has no boundary.) Also, introduce the notation of a
1-form

6Mn/lk o aunik

ity = dkj,  (dunx) = ‘ 8.99
e = 3l () = (8.99)
Then, the result (8.96) may be cast into
e a; ;
P, =—= —J/AJ
T3] 4=2n
: M
A = =iy (i (ditniae) ) dky N dlicy N s (8.100)

occC.

=iy (dutnin)|unix )y N ks A k.

Though the expression for Al is multiplied with the imaginary unit i, it is clear
from the derivation that, like P,, the A’ are real. The last equality holds because of
the constancy of normalization, (u,|u,;x) = 1. Comparison to (8.76) clearly
shows that the polarization density component in a;-direction is given by A’, the
wedge-product of a Berry—Simon connection form in b'-direction with the volume
form of a two-dimensional section in ’H‘i perpendicular to the a;-direction (spanned
by b? and b® in the case of a, ). The integration domain OM contains the cycle from
ki = 0 to k; = 1 while the /J-path in the adiabatic parameter space is not closed
here. This particular case of a Berry phase in an adiabatic change of a band
structure was first observed by Zak.”

2 Phys. Rev. Lett. 62, 2747-2750 (1989).
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The expression with Berry’s curvatures F/ = d A’ corresponding to (8.100) is
e a; ;
P, = L | FJ
< Z.Zn /