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Preface

All what is necessary is simple and all what is too complex is not necessary
Nikolay Timofeev – Resovsky

To clarify the main objective of this book, we would like to compare the viewpoints
of two famous Russian scientists.

A.M. Lyapunov wrote that after its formulation, every mechanical problem has
to be solved analytically as a problem of pure Mathematics in all its rigor, no
matter how complex this problem will be. The idea of N.E. Zhukovsky was that
mechanicians have to derive the equations reasonably simple to be integrated and
analyzed.

It is now clear that the first viewpoint in its initial meaning turned out to not
be realistic, since many important mechanical problems do not allow any rigorous
mathematical treatment. Besides, all mathematical formulations of real-world prob-
lems are based on approximate physical models. Should one strive for complete
mathematical rigor if the accuracy of conclusions anyway cannot exceed that of the
initial model?

As for the viewpoint of N.E. Zhukovsky, its direct application to the contempo-
rary situation may lead to somewhat paradoxical conclusions. Indeed, it sometimes
seems that there is no need in Mechanics at all because almost any reasonable math-
ematical formulation of any mechanical problem can be explored numerically to
large extent. Therefore, almost any model with any initial and boundary conditions
can eventually be integrated.

As we can see, the two viewpoints have some point of convergence – almost any
problem can to some extent be examined numerically as a purely mathematical one
and very often almost nothing is available beyond these numerical results. This con-
vergence of both viewpoints led to the absolute domination of numerical simulation
in Mechanics.

There is no need to explain the strength of numerical methods in mechanical
problems, but some concerns should be mentioned. Sometimes one reads papers
which try to solve a certain mechanical problem numerically while taking as
many factors as possible into account without checking their relative significance.

v
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Consequently, the investigator obtains a huge amount of numerical information but
fails to interpret the results – despite all efforts, no understanding of the mechanical
situation is gained. In fact, a lot of papers are published with rather sophisticated
calculations that add nothing to our knowledge.

We suppose that the main goal of Mechanics is to develop the models providing
an understanding. The latter concept is rather vague; therefore we try to refine it
by using the term “tractable model”. The model is considered to be tractable if it is
based on clear physical assumptions, which allow the selection of significant effects
and a relatively simple mathematical formulation. These models may be obtained
either by phenomenological consideration (based on some physical hypotheses)
or by asymptotic reduction of a more general and often non-tractable model. The
mathematical formulation should be simple enough to provide direct relationship
between the results (no matter if analytic or numeric) and the initial assumptions.
The principal point is that the mathematical analysis of a tractable model has to
deliver a clear sense of the mechanical phenomenon described by it, providing gen-
uine understanding. As this takes place, computer simulation is a powerful tool for
examination, confirmation and sometimes for refutation of the hypotheses used to
formulate the model.

Successful tractable models are important milestones in any field of exact sci-
ence. Besides a wide field of application for the model itself, one often uses it for
comparison with the results provided by more refined models.

Very often, the tractable models have a clear asymptotic nature. Historically,
some of them appeared as a result of a mere guessing of appropriate asymp-
totics; others appeared with the help of regularized construction of the asymptotics.
The development of tractable models, including their formulation, analysis and
interpretation often leads to surprises and paradoxes.

This book tries to describe some of the significant tractable models widely used in
modern solid mechanics as well as some new ones. The models are selected in order
to illustrate main ideas which allowed scientists to describe complicated effects in
a rather simple manner and to clarify basic notions of Solid Mechanics. Of course,
the choice of the models is sole responsibility of the authors and no attempt is made
to cover the whole variety of mechanical models.

We restrict ourselves to problems related to mechanics of solids. The book is
divided into four chapters. The first chapter is introductory and reviews the historical
development of basic models in Solid Mechanics in general. The second chapter is
devoted to a more or less systematic review of the models with finite number of the
degrees of freedom. The third chapter deals with some infinite discrete systems, such
as chains and systems of these chains. The fourth chapter treats some continuous
models.

Some results and models presented in this book were obtained and formulated by
the authors, in cooperation with a number of other scientists. At this opportunity, we
would like to reveal our deep gratitude to our numerous co-authors, whose names
can be found in the references.

We are especially grateful to Prof. A.I. Manevich, Prof. I.V. Andrianov and
Dr. Y. Starosvetsky, who read the manuscript and made a lot of useful comments
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and recommendations. Needless to say, the authors are solely responsible for all
possible mistakes.

Last but not the least: the authors are deeply indebted and grateful to members
of their families: Anechka, Miriam, Sheina, Hava, Yelena, Elina and Oleg. Without
their support and inspiration the book would never have been conceived and written.
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CR chain of rotators
CV Cattaneo–Vernotte (equation)
nD n-dimensional (n=1,2,3)
DB discrete breather
DNA deoxyribonucleic acid
DOF degree of freedom
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LO linear oscillator
LPT limiting phase trajectory
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NNM nonlinear normal mode
PDE partial differential equation
PE polyethylene
PTFE polythetrafluoroethylene
SIM slow invariant manifold
SMR strongly modulated response
TET targeted energy transfer

ix



Contents

1 Introduction: Historical Development of Tractable Models . . . . . 1
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Discrete Finite Systems . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Linear Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Linear Conservative Oscillator . . . . . . . . . . . . . . 14
2.1.2 Linear Oscillator with Viscous Damping . . . . . . . . . 15
2.1.3 Linear Oscillator with Viscous Damping

and Periodic (Harmonic) Forcing . . . . . . . . . . . . . 21
2.1.4 Two Coupled Oscillators . . . . . . . . . . . . . . . . . . 24

2.2 Single-DOF Nonlinear Oscillator . . . . . . . . . . . . . . . . . 34
2.2.1 Quasilinear Oscillator . . . . . . . . . . . . . . . . . . . 36
2.2.2 Strongly Nonlinear Oscillator and Vibro-Impact

Approximation . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.3 Oscillator with Multiple Equilibriums . . . . . . . . . . . 46

2.3 Forced Nonlinear Oscillator . . . . . . . . . . . . . . . . . . . . 47
2.3.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . 47
2.3.2 Governing Equations . . . . . . . . . . . . . . . . . . . . 48
2.3.3 The Dynamics of the Oscillator without

Dissipation and the LPT . . . . . . . . . . . . . . . . . . 50
2.3.4 The Transient Dynamics of a Weakly Damped Oscillator . 53
2.3.5 Quasi-Linear Oscillations . . . . . . . . . . . . . . . . . 61

2.4 Entrainment, Synchronization and Resonance Capture . . . . . . 64
2.4.1 Pendulum with Constant External Torque . . . . . . . . . 65
2.4.2 Entrainment of the Van der Pol Oscillator

by External Harmonic Force . . . . . . . . . . . . . . . . 68
2.4.3 Synchronization of Oscillators and Related Models . . . . 75
2.4.4 Resonance Capture . . . . . . . . . . . . . . . . . . . . . 77
2.4.5 Forced Oscillator with Multiple States of Equilibrium . . 81

2.5 Symmetric Systems of Coupled Nonlinear Oscillators
Beating Phenomena . . . . . . . . . . . . . . . . . . . . . . . . 84
2.5.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xi



xii Contents

2.6 2DOF Systems of Nonlinear Oscillators with Essential
Asymmetry Targeted Energy Transfer (TET) . . . . . . . . . . . 94
2.6.1 Targeted Energy Transfer in an Unforced 2DOF System . 94
2.6.2 Targeted Energy Transfer in Forced 2DOF System . . . . 105

2.7 Coupled Nonlinear Oscillators with Time Delays . . . . . . . . . 133
2.7.1 Analytic Model . . . . . . . . . . . . . . . . . . . . . . 133
2.7.2 Numeric Verification – Straight Modes . . . . . . . . . . 141
2.7.3 Numeric Verification – “Oval” Modes and Phase –

Locked Solutions . . . . . . . . . . . . . . . . . . . . . 144
2.8 Low-DOF Discrete Nonlinear Systems . . . . . . . . . . . . . . 147
2.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 160
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

3 Infinite Discrete Systems . . . . . . . . . . . . . . . . . . . . . . . . 167
3.1 Dynamics of Infinite Nonlinear Chains . . . . . . . . . . . . . . 167

3.1.1 Long-Wavelength Approximation. Equation
of Supersonic Extension Solitons in an Infinite
FPU Chain . . . . . . . . . . . . . . . . . . . . . . . . . 167

3.1.2 Zigzag Chain and Long-Wave Solitons . . . . . . . . . . 169
3.1.3 Envelope Solitons . . . . . . . . . . . . . . . . . . . . . 171
3.1.4 Optical Breathers in a Zigzag Chain . . . . . . . . . . . . 176
3.1.5 Torsional Solitons . . . . . . . . . . . . . . . . . . . . . 186
3.1.6 Approximation of Immobile Neighbour Chains . . . . . . 188

3.2 Dynamics of Essentially Nonlinear and Vibro-Impact Chains . . 192
3.2.1 Oscillatory Chain with Rigid Barriers . . . . . . . . . . . 193
3.2.2 Discrete Breathers in a Vibro-Impact Chain . . . . . . . . 198

3.3 The Problem of Heat Conduction in Dielectrics . . . . . . . . . . 207
3.4 Solitons in Energetically Nondegenerate Quasi-One-

Dimensional Models . . . . . . . . . . . . . . . . . . . . . . . . 217
3.4.1 Quasi-One-Dimensional Model of a Molecular

Crystal: Soliton Modes of Motion in a Bistable
Nonlinear System . . . . . . . . . . . . . . . . . . . . . 219

3.5 Dynamics of Ensembles of Interacting Nonlinear Chains . . . . . 225
3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 233
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

4 Continuous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 237
4.1 One-Dimensional Models . . . . . . . . . . . . . . . . . . . . . 237

4.1.1 Bolotin Model . . . . . . . . . . . . . . . . . . . . . . . 237
4.1.2 Simplification of the Timoshenko Beam . . . . . . . . . 241

4.2 The Planar Dynamical Problem and Tractable
One-Dimensional Models of an Elastic Solid . . . . . . . . . . . 248

4.3 The Two-Dimensional Orthotropic Model and Its
Application to a Complex Contact Problem . . . . . . . . . . . . 253



Contents xiii

4.3.1 Basic Asymptotic Decomposition of the
Orthotropic Plate Problem . . . . . . . . . . . . . . . . . 253

4.3.2 The Contact Problem for a Planar Orthotropic Strip . . . 259
4.4 Models of Elastic Foundation . . . . . . . . . . . . . . . . . . . 264

4.4.1 General Equations and Asymptotic Analysis . . . . . . . 264
4.4.2 Example – Dynamical Problem . . . . . . . . . . . . . . 268
4.4.3 Example – An Axisymmetric Stamp . . . . . . . . . . . 270

4.5 On the Concept of Solids . . . . . . . . . . . . . . . . . . . . . 281
4.6 Models of Non-Fourier Heat Conduction . . . . . . . . . . . . . 284
4.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 291
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Afterword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297



Chapter 1
Introduction: Historical Development
of Tractable Models

The necessary precondition for the formulation of tractable models of mechanics is
an adequate understanding of the main notions and concepts involved in the theoret-
ical considerations. The lack of such understanding jeopardizes efficient scientific
development. This is clearly seen in the historical context – the way to formation of
mechanics was rather tortuous.

As it is well-known, the problem of two bodies in celestial mechanics was the
first dynamic model of theoretical physics. And fortunately, it was a tractable model
which allowed Newton to explain Kepler laws, derived by fitting experimental
observations, and to provide a solid basis for a universal gravitation theory.

The problem of three bodies turns out to be unsolvable in a general case and as
it is seen clearly now, there are very profound reasons for that. Therefore the only
possible way to calculate the deviations of the motion of the planets from trajec-
tories predicted by Kepler laws was to develop and apply perturbation techniques.
Such techniques were primarily based on power expansions by a small parameter
characterizing the ratio of the masses of the third body and the smaller one of two
others. Quite obviously, these techniques are based on the closeness to the tractable
model of two bodies.

After impressive achievements using the approach based on this model, G. Green
noted in 1828 “that a time when astronomy, from the state of perfection to which
it has attained, leaves little room for further applications of their (i.e., of Laplace,
Poisson, Cauchy and Fourier) art, the rest of the physical sciences should show
themselves daily more and more willing to submit to it. . .” (cited by Truesdell,
1968). The key point in the complexity of celestial mechanics from a mathematical
viewpoint is its essential nonlinearity that implies absence of common analytical
methods of its treatment. It is not surprising that the development of a linear theory
of vibrations (alongside with that – a theory of linear differential equations) as one
of the great achievements of theoretical science in the eighteenth century was not
strongly connected to celestial mechanics. This theory was initiated by dynamical
problems for massless deformable bodies with lumped masses and deformable bod-
ies with distributed mass, admitting the construction of tractable models in terms of
ordinary or partial differential equations.

1L.I. Manevitch, O.V. Gendelman, Tractable Models of Solid Mechanics, Foundations
of Engineering Mechanics, DOI 10.1007/978-3-642-15372-3_1,
C© Springer-Verlag Berlin Heidelberg 2011



2 1 Introduction

We understand today that it was necessary to develop low-dimensional, first of all
one-dimensional models of a deformable continuum before the general concepts of
stress and strain and of the relationship between them were properly understood and
elaborated. The formulation of such models also was rather tortuous and intricate.
The reason is clearly seen from Truesdell’s analysis of the Principia: “While we may
regard Newton’s laws as equivalent to the differential equations called ‘Newton’s
equations’ in modern textbooks, there is no evidence that Newton himself thought of
or ever used his principles in any general mathematical form. In Book 1 the problem
of two bodies is skillfully reduced to an equivalent problem of one body attracted
to a fixed center. Newton could indeed examine problems of this kind by means of
differential equations, expressed in his usual style in terms of components tangent
and normal to the trajectory, and then solve. But the three-body problem cannot be
reduced this way. Not only does Newton give no solution or approximate solution
for it in the modern sense, but he also shows no sign of any attempt even to set
up equations of motion. The year in which the ‘Newtonian equations’ for celestial
mechanics were first published is not 1687 but 1749 (by Euler). . . Moreover, there
was no direct way to derive equations of equilibrium or motion in other areas of
Mechanics. . . Even the basic necessary notions were not clarified. Is the Second
Law a mere definition of force? If so, does it bring us any nearer to the laws of
nature? If not, then what is force, and how do we measure and know it?” (Truesdell,
1968).

One can say the same about the concepts of body, inertia, and momentum.
Therefore the followers of Newton were frequently guided by the old ideas of his
predecessors. Not accidentally, the first clear enough tractable model in Solid State
Mechanics was a string subjected to arbitrary static loading along its length. In 1704,
Jacob Bernoulli obtained differential equations and was able to determine both the
shape and the tension of the string due to the applied load. Two crucial points lead to
the success of this model: the possibility to find the restoring forces in the string act-
ing on the masses without necessity to involve stresses, strains and relations between
them, and the application of a static device.

The case of a transversally loaded bar (beam) is more complicated than the string
under transversal loading. It is easy to construct a one-dimensional (tractable) model
for the case of the loaded bar, assuming uniform distribution of stresses in the cross-
section. Such an assumption was accepted by Galileo for bending of a beam and led
him to an erroneous estimation of the breaking load. In spite of Hooke’s observation
that in the case of transversal loading of a beam (a piece of dry wood) the fibers on
the convex side are stretched while the fibers on the concave side are compressed
(Truesdell, 1968; Timoshenko, 1983), the correct description was not achieved even
by J. Bernoulli and Euler, led by wrong “similarities” with levers and pendulums.
The full understanding of the problem has been achieved only by Coulomb (1773).
This was almost a 100 years after Leibnitz’ statement that the bending moment
is proportional to the moment of inertia of the cross section (1684); the latter in
fact implied the introduction of bending stiffness for an effective one-dimensional
continuum. The other obstacles were a lack of clear understanding of the stress
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distribution in the transversal section (J. Bernoulli, Euler) and of linear stress-strain
relations as a material property of the deformable medium (J. Bernoulli).

Actually, the adequate approach (before Coulomb’s one) had been elaborated by
Parent (1713). He was the first to mention that the areas under the curves repre-
senting the tensions and compressions have to be equal. It leads to the conclusion
that the neutral plane must be the central (middle) one. But such a viewpoint has
not been taken into account before Coulomb; he has written down all conditions
of equilibrium for the forces acting upon the cross-section of the loaded beam and
has proven that the shear stresses in this section are not only possible (as Parent has
concluded) but are also necessary for adequate description.

Complete understanding of the reduction problem has allowed Coulomb (1773)
to outline the basis for a tractable one-dimensional model of torsion of a circular
bar in which, contrary to the long transversally loaded beam, the shear stresses play
a dominant role. Coulomb has successfully calculated the torsional stiffness of the
circular shaft. Still, only Saint-Venant succeeded to derive these results on the basis
of a common theory of elasticity (1853).

Before the transition to dynamical models it is necessary to mention the stability
problem for a longitudinally loaded bar for which a first tractable model was devel-
oped by Euler (1744). He has formulated a well-known linear differential equation
valid in the case of small transversal deflections. Lagrange (1766) removed the latter
restriction and integrated the nonlinear equation of the problem in terms of series. In
these studies, from the very beginning the authors dealt with one-dimensional mod-
els. These models, similarly to other Euler’s studies, were based on J. Bernoulli’s
assumption that the curvature of an elastic beam at any point is proportional to the
bending moment at that point (without any consideration of strains and stresses).
These classical results by Euler and Lagrange are unique in the sense that they have
laid the foundation of the theory of stability in physics and of spectral theory in
mathematics.

The first tractable dynamical model was taut massless string loaded by n equal
and equidistant masses suggested by Daniel Bernoulli (1733) (Newton in his
“Principia”, proclaiming the basic foundations of mechanics, as it was mentioned
above, did not really deal with the systems having more than one essential degree
of freedom – the only tractable dynamic model available at that time). The point
was that the derivation of equations of motion for specific problems turned out to be
rather complicated till Euler’s “Discovery of a new principle of mechanics” (1747)
in which “Newton’s equations of motion” Max = Fx; May = Fy; Maz = Fz (mass
M being either finite or infinitesimal) were formulated for the first time.

This was very important, because, in spite of Newton’s formulation of his Second
Law, there existed very different opinions at that time about the priority of different
mechanical relations (e.g., equations of motion were not regarded as primary with
respect to general theorems of dynamics and conservation laws).

D’Alembert even tried to expel the notion of force from dynamics. Nevertheless
he “tacitly adopted the Newton approach deriving first famous linear wave equation
as governing the small vibration of a string” (1746) (Truesdell, 1968). This equation
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μ
∂2w

∂t2
− N

∂2w

∂x2
= 0 (1.1)

where μ is the linear density, w is the transversal displacement and N is the ten-
sile force, had later become one of three fundamental equations of mathematical
physics. It is a basis for many tractable dynamical models in different fields of
mechanics and physics. (As for the vibration problem for a discrete system of lin-
early coupled masses, its adequate understanding has been attained by Lagrange
in the theory of small oscillations, a part of his Analytical Mechanics. One can
compute normal modes; then, the superposition principle is valid and therefore, the
linear theory is a tractable one).

But even Euler circumvented the solution of partial differential equations and
used the quasi-static representation when determining the natural frequencies of a
cantilever beam. At the first stage, he derived a static equation introducing (by the
similarity to the restoring force for a pendulum) the force providing the equilibrium
of the beam for a given distribution of the displacements. Then this ordinary differ-
ential equation was solved and both the profile of displacement, corresponding to
normal mode, and the length of an “equivalent pendulum” were calculated. Finally,
the frequency of normal vibration was calculated based on the well-known solution
for the pendulum.

The formulation of the first tractable models of solid state mechanics became
possible when a differential equation of motion was applied to a finite or an infinites-
imal part of a one-dimensional body, with explicit or implicit hypotheses about
strains and stresses. One of the key points was reducing the three-dimensional beam
to a one-dimensional continuum. This procedure is directly related to the exten-
sion of the notion of pressure to consider non-uniform distribution of stresses. Such
extension leads to the general concept of normal stresses and also forces one to treat
shear stresses, absent in ideal liquid and gas, as well as in the string and the 1D
longitudinally loaded bar. Besides, it was necessary to formulate Hooke’s law for
stresses as a fundamental property of material but not of specific structure (other-
wise the parameters of specimens are also present in the formulation of Hooke’s
law).

It is significant that earlier experimental studies of natural frequencies for
stressed strings had no effect on the theoretical studies. Advancement in the solution
of one-dimensional problems allowed Euler to consider a closely related two-
dimensional problem – vibrations of a membrane (1759), because there was no need
to introduce any new concepts. It was the first tractable two-dimensional continuum
model in mechanics of solids. Still, its extension to the case of a plate turned out
to be a more complicated problem, which was left to scientists of the nineteenth
century.

Beginning from Galileo, the scientists of the seventeenth and eighteenth centuries
were guided by pre-Hookean perception of a solid as a predominantly absolutely
rigid object; they did not take into account its elastic properties. As for the practi-
cal problems, the ultimate load was the focus of interest. The elastic deformations
seemed to be so small that their influence on this load could not be of any
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significance. Navier (1826) was probably the first who understood that it is very
important to know the upper limit up to which structures behave perfectly elastically.

This new understanding allowed him to synthesize the achievements and to
overcome the delusions of his great predecessors. Contrary to Euler and his fol-
lowers, which considered several particular cases of loaded beams (cantilevers and
symmetrically loaded simply supported beams) on the basis of the equation

M = EI
d2w

dx2
(1.2)

where w, E, I, M are the transversal displacement, elastic (Young) modulus,
moment of inertia and bending moment respectively, Navier has actually consid-
ered Eq. (1.2) as a universal relation (in contemporary terms this is Hooke’s law in
the case of bending). He applied it in a general case, including statically indetermi-
nate problems. In this latter case the role of even very small elastic deformations
becomes absolutely decisive.

One can say that in 1831, when Poisson wrote the equation of the equilibrium of
the beam

EI
d4w

dx4
= q (1.3)

where q is an arbitrary distributed transversal load, the creation of one of the key
tractable models was completed. The other key tractable models were D. Bernoulli’s
model of a taut string

N
d2w

dx2
= q (1.4)

or the mathematically equivalent model of a longitudinally stressed bar

ES
d2u

dx2
= p (1.5)

S, N, u, p being the area of cross-section, tensile force, longitudinal displace-
ment and distributed longitudinal load respectively. A further key model was a
combination of (1.3) and (1.5), yielding the equation of the bar stability

EI
d4w

dx4
+ N

d2w

dx2
= 0 (1.6)

These models constitute the basis of that we call now strength of materials.
The phenomenological model of the beam having a plane of symmetry and

loaded in this plane is based on three main hypotheses:
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(1) The cross sections of the beam remain planar during bending;
(2) There are no normal stresses in longitudinal sections parallel to the middle

plane;
(3) Relations between normal stresses and strains are determined by Hooke’s law.

This approach is valid if the length of the beam is much greater than the dimen-
sions of the cross section and deformations are small enough, so that the elasticity
remains linear. Otherwise, the first two, the third or all three hypotheses are not
valid.

It is significant that almost simultaneously with the formulation of the first
tractable models of solid state mechanics the first one-dimensional hydrodynam-
ics model that was introduced by D. Bernoulli in his “Hydraulics” (1744). The main
important point here was a clear distinction between the concepts of normal stress
and of pressure on the walls of a vessel or tube; the concepts were commonly mixed
before. Accounting for a possible nonuniformity of pressure (normal stress) together
with the clear formulation of the condition of mass conservation paved the way to a
description of the general 3D hydrodynamics of ideal (non-viscous) incompressible
liquid and gas (Euler, J. Bernoulli, 1746). This event was a great achievement of
mechanics because 3D hydrodynamics was the first three-dimensional mechanical
theory in which an infinitesimally small mass of liquid was considered as Newton’s
particle governed by Newton’s Second Law. That, in turn, yielded Euler’s famous
partial differential equations of motion. “By creating a simple field model for fluids,
defined by a set of partial differential equations, Euler opened to us a new range of
vision in physical science. It is the range we all work in today. In this great insight,
looking within the interior moving fluid, where neither eye nor experiment may
reach, he called upon the ‘imagination, fancy and invention’ which Swift could find
neither in music nor in mathematics” (Truesdell, 1968).

The general character of this ideologically very simple theory makes it too com-
plicated for an analytical solution of specific hydrodynamic problems. Therefore,
its appearance has opened a new stage in the construction of tractable models of
mechanics: they could be obtained as particular cases of the general theory or as its
asymptotic approximations.

The first possibility was realized in the wide application of the hydrodynamic 2D
model in the nineteenth and twentieth centuries. Such a model after its linearization
has become tractable because it turned out to be an ideal field for the application of a
potential theory, complex variables and conformal mapping which were elaborated
in close connection to 2D hydrodynamics. Linearization, which in the particular
case of Euler’s hydrodynamics is based on an assumption about the relative small-
ness of the velocities, has become a universal procedure which led to the formation
of linear mathematical physics in the nineteenth century.

In the three-dimensional case, analytical solutions can only be obtained in highly
symmetric cases. Complete, nonlinear hydrodynamics of liquids with an a priori
unknown free boundary (surface) does not allow, as a rule, the application of any
conventional analytical technique even in the two-dimensional case. This circum-
stance was a reason why the very important observation and description of solitary
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waves in the shallow channel by Scott Russel was not accepted by his outstand-
ing contemporaries and has not been fully understood until Korteveg and de Vries
had found a tractable model for shallow liquid (KdV-equation). On the basis of this
model, the solitary waves were obtained as particular solutions. Derivation of the
KdV-equation from two-dimensional hydrodynamic equations is a striking example
of how the second possibility opened by Euler’s hydrodynamics may be realized.

As for a compressible non-viscous liquid (gas), the simplest tractable model
available was one-dimensional acoustic approximation based on the linearization of
the equation of motion near the stationary state of gas or liquid with given constant
pressure, density and speed. This approximation goes back to Newton’s estimation
of sound velocity. In the nineteenth century it was developed into linear acoustics
described by 1D, 2D or 3D linear wave equations. The tractable models of linear
acoustics were comprehensively reflected in the “Theory of Sound” by Rayleigh
and in our time in the “Linear and Nonlinear Waves” by Whitham (1973). The new
element that acoustic models involve is that it is necessary to consider a relationship
between deflection of the pressure and density from their stationary values. In clas-
sical acoustics this relation is a linear one similarly to the relation between stresses
and deformations in the modified Hooke’s law for solids.

As for the extension of hydrodynamics to the general case of non-viscous com-
pressible liquid (gas), the first tractable model in both 1D and 2D cases (“gas
dynamics”) has been suggested by Riemann. This model requires determination of
the nonlinear relation between pressure and density, which leads, in particular, to
the existence of triple-valued solutions as shown in the Riemann equation

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0 (1.7)

One way to avoid such a problem is the introduction of discontinuity (shock
wave) with different densities at two sides of the break. In gas dynamics, the exis-
tence of rapidly changing solutions forces one to invoke the effects of viscosity and
also of non-mechanical factors like temperature and entropy. Such consideration
yields smooth solutions.

The viscosity of liquid has been taken into account in the famous Navier-Stokes
equations, where the linear relation between the shear stresses and the strain rates
was accepted, following Newton. The presence of viscosity complicates the prob-
lem in comparison to that for an ideal, non-viscous medium. This complication has
become a reason for the elaboration of one of the most efficient tractable models
of theoretical physics that is the theory of boundary layer. The point is that even
if the “viscous terms” in the equations of motion are relatively small (if they are
formed by higher order derivatives of unknown functions with relatively small coef-
ficients) they can be essential, e. g., near the surface of a streamlined body because
of the rapid changes of velocities in the vicinity of the surface region. This circum-
stance has allowed L. Prandtl (1904) to formulate a tractable model of the boundary
layer for the cases where the liquid mentioned above is an ideal, non-viscous one.
Prandtl’s theory of the boundary layer has become the basis for the construction of
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similar tractable models in different areas of Physics and of the Theory of Singular
Perturbations in Mathematics.

The first version of the theory of elasticity (Navier, 1821) was essentially based
on Boscovich’s remarks about molecular forces in elastic substances. In further
attempts to construct 3D theories of elasticity, A. Cauchy (1822) from the very
beginning considered a 3D linearly elastic continuum. He introduced both stress
and strain tensors as well as partial differential equations of motion and relations
between the six stress components and the six components of strain for an isotropic
body. This theory turned out to be more complex than hydrodynamics of a non-
viscous incompressible liquid since the shear stresses had to be taken into account.
In a certain sense it is similar to the linearized version of Navier-Stocks equations.

Full clarification of the basic concepts of the theory of elasticity was achieved
when Green (1828) introduced a potential function and explicitly rejected any
molecular models of elastic solids. The problem was that the idea of molecular
forces proportional to the changes in the distances between the molecules and acting
in the directions of lines joining them (accepted by Navier, Poisson and supported
even by Cauchy, Lame and Clapeyron), led to “one-constant” model in the isotropic
case. Green’s approach has shown clearly that two independent elastic constants
exist in an isotropic case as opposed to 21 constants (instead of 15 predicted by
molecular theory with “central forces”) for generic material without symmetries.
This approach was the next very important step after Euler and Cauchy in the devel-
opment of field representations in physics, today absolutely dominant (one should
mention that for several decades after Green’s famous paper his approach was con-
sidered by outstanding physicists as a purely mathematical exercise contrary to the
“truly physical” approach of Navier and his followers). With its acceptance, the clar-
ification of the main concepts of linear elasticity was completed. From this point
onwards, the 3D theory of elasticity became a foundation for tractable models of a
linear elastic body.

Naturally, first of all, similarly to 3D hydrodynamics, the highly symmetric prob-
lems were solved, such as the propagation of waves in an infinite elastic continuum
(Lame, 1852), an infinite body bounded by a plane upon which given normal forces
are distributed (high symmetry allowed the use of the Fourier integral), a similar
problem for a layer bounded by two parallel planes, a circular cylinder of infinite
length (Lame, Clapeyron,1833), where the symmetry has for the first time become
explicit due to introduction of cylindrical coordinates. In order to deal with more
complicated problems, the conditions for the application of 2D models were grad-
ually formulated in terms of planar deformation and planar stress state; this led,
in turn, to the creation of the theories of plates and shells. If the former supposes
elimination of one of dimensions in the cases of the planar deformation and planar
stress state, the latter represents the remote extension of earlier phenomenological
theories of one-dimensional beam models. This extension was realized by using
several additional hypotheses (Kirchhoff, Love), generalizing the hypotheses of
Bernoulli mentioned above. Justification of the phenomenological beam theory in
the framework of the theory of elasticity became possible due to the proposition
of the semi-inverse method by Saint-Venant (1855). The main achievement of this
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technique was a reduction of the problem of bar torsion to the 2D Laplace equa-
tion which is tractable for the same reasons as is the 2D linearized hydrodynamics
of an ideal incompressible liquid-potential theory: complex variables and confor-
mal mapping can be applied. It was the first result of the theory of elasticity that
had real significance for engineers. It finally broke their skepticism with respect to
mathematical constructions of this theory.

In the course of this development another important question arose: the total
torque twisting the bar may be a given one, but the detailed distribution of the
load on the ends of the bar “is determined by the method and cannot be assigned”
(Truesdell, 1968). Different distributions of load may produce different effects near
the end itself but far enough from it the difference is not essential if the total torque
is the same.

Boussinesq (1885) expressed this Saint Venant’s principle as follows: the dif-
ference between the effects produced by two different equivalent loads applied in
a given part of the body becomes very small at great distances from that part, the
equivalent loads being those which would have the same effect on the body if it was
rigid.

The justification of tractable phenomenological one-dimensional models to-
gether with the construction of two-dimensional models of membrane, plate, shell,
planar deformation and planar stress states with the help of the Saint Venant prin-
ciple was a triumph of solid state mechanics of the nineteenth century. In all these
models not only deformations, but also the internal rotations are assumed to be small
enough to linearize the relations between the strains and displacements. Therefore, it
is possible to consider the body as rigid while dealing with the equations of motion.
Such an approach does not allow the consideration of stability of bars or plates. This
is a reason why Euler considered the equilibrium of a deformed elastic line while
dealing with compressed bar. As a result, the ordinary linear differential equation
(1.6) generalizing this approach for the bent beam was derived. Bryan (1891) and R.
Lorenz (1908) obtained its extension for the cases of compressed plates and shells,
respectively.

In fact, Navier (1820) was their predecessor but the tractable differential equa-
tion of stability for the bi-axially compressed (by the same distributed forces N)
rectangular plate

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4

)
+ N

(
∂2w

∂x2
+ ∂2w

∂y2

)
= 0 (1.8)

and the equation of the plate bending were obtained on the basis of molecular
representations by Boscovich. Therefore, the expression for the bending rigidity
contained only one elastic constant. As for the dynamic tractable equation for
transversal vibrations of a plate, this was finally obtained by Lagrange (1812) within
the framework of earlier ideas of D. Bernoulli and L. Euler about the bent elastic
line.

Unfortunately, 2D models of an isotropic elastic body, for both planar defor-
mation and planar stress state, cannot be formulated in terms of potential theory
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(2D Laplace equation) with its extraordinary efficient tool-conformal mapping.
They are described by a biharmonic (not harmonic!) equation; on this basis only the
simplest 2D problems were solved in the nineteenth century. The situation changed
drastically at the beginning of the twentieth century after reducing the complete 2D
planar problem to the computation of two harmonic functions by Kolosov (1908)
and further development of corresponding techniques based on conformal mapping
by N. I. Muskhelishvili. This development turned 2D theory of elasticity into a
tractable model comparable at this point with 2D hydrodynamics.

The development of the mathematical tools of mechanics which was strongly
connected with the construction of its tractable models seems in retrospect to have
been very tortuous and intricate.

With notable exceptions of celestial mechanics and gas dynamics, the suc-
cess of tractable models was based on the linearity of their governing equations.
Linearization turned out to be a rather universal procedure, and this fact has both
physical and mathematical substantiation. From a physical viewpoint it, is a conse-
quence of a general principle: the reaction of the system on weak enough deflection
from an initial state in the lowest order of approximation is proportional to this
deflection itself. From a mathematical point of view, the linearization allows to find
a complete solution of the problem due to an appropriate number of internal sym-
metries, additional to space-time symmetries. It is often possible to find the change
of variables which splits the system of equations of motion into a number of uncou-
pled equations. In a dynamic case, a normal mode satisfies all equations of motion
and preserves its parameters during the evolution of the system.

As for complex behavior, this is caused by superposition of a number of the
elementary excitations (normal modes). The validity of the superposition principle
constitutes one of the most important consequences of linearization.

The change of the variables mentioned above means a transition to “collective
coordinates”. This approach turns out to be more appropriate in the case of strong
interparticle interaction because the interaction between the modes is absent in the
linear problem.

In linear static problems, the normal modes are substituted by elementary equilib-
rium forms, corresponding, e.g., to external actions which are harmonic with respect
to the space coordinates. Then, the superposition allows us to find a reaction of the
system to complex actions (with respect to their space distribution).

In problems of heat and mass transfer energy dissipation should be taken into
account. Thus, relaxation and damping will modify the notions of vibrations and
waves. Still, due to linearity, collective modes can be revealed, and their superposi-
tion gives a possibility to describe a complex relaxation of the system. In essence,
the elementary solutions in statics and the relaxation modes play a role similar to
normal modes in dynamics.

The area of efficient application of the linear theory is powerful rather wide.
Still, it does not take into account the important effects caused by even weak
nonlinearity and interaction of normal modes. One can mention, e.g., the ampli-
tude dependence of natural frequencies, modulational instability of quasi-harmonic
waves, abrupt change of amplitude frequency under minor change of the frequency
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of excitation, self-sustained vibrations assuming a specific energy exchange with
surrounding media. It turned out that in the mentioned cases it is possible to con-
sider the nonlinear effects as weak, though they qualitatively determine the type of
the process. As a result, a powerful quasi-linear approach to these processes and
phenomena was developed. It is also based on mutually independent unperturbed
modes. In spite of its magnificence and deepness, this approach also turns out to
be insufficient for understanding of certain very important phenomena. They are
strongly connected with the discovery of essentially nonlinear localized excitations.
In this book, we discuss the tractable models of quasi-linear and essentially nonlin-
ear solid state mechanics together with particularly complex problems of the linear
theory (e.g., due to complicated boundary conditions).
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Chapter 2
Discrete Finite Systems

An asymptotic approach is rather efficient when dealing with the theory of oscil-
lations, since one often can figure out a number of relatively simple limit cases
which can be efficiently treated and completely understood. Such an approach
allows the deepest possible simplification but preserves the most significant fea-
tures of dynamical behavior. At the same time, one can use the expansions by
small parameters characterizing the deviation of the system from the tractable limit
case.

The mathematician supposes usually that the small parameters are already
known and that construction and substantiation of the asymptotic expansions is
the only problem. Contrary to this, for physicists and engineers the choice of the
appropriate limit cases and corresponding small parameters is the most important
step.

Systems with a relatively small number of degrees of freedom offer convenient
frameworks for the explanation of the basic concepts and ideas related to the sim-
plification and formulation of the tractable models. Thus, in this part of the book we
are going to discuss the discrete models of a dynamical system – from one to few
degrees of freedom. The step-by-step approach will reveal essential new features
arising from each stage of complication of the discussed models.

2.1 Linear Oscillators

Beyond any doubt, a linear oscillator and a system of coupled linear oscillators are
the most popular and the best understood models of discrete dynamical systems. If
parameters of the oscillators are time-independent, then a general analytic solution
can be provided in the form of exponents (combined with polynomials in resonant
cases). This theory is widely known and can be found in standard textbooks (see,
e.g. Den Hartog, 1956; Meirovitch, 2000), so there is no reason to repeat it here.
Instead, we will concentrate on asymptotic aspects of behavior of individual and
coupled linear oscillators, keeping in mind possible generalizations for less common
systems.

13L.I. Manevitch, O.V. Gendelman, Tractable Models of Solid Mechanics, Foundations
of Engineering Mechanics, DOI 10.1007/978-3-642-15372-3_2,
C© Springer-Verlag Berlin Heidelberg 2011
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2.1.1 Linear Conservative Oscillator

The system consists of a point-like mass m and a linear spring (with stiffness c)
connecting the mass with an immobile point (Fig. 2.1) is one of the most simple and
important models of mechanics and physics. A pendulum with small amplitudes
(without friction) and oscillatory contour in radiophysics (without resistance) are
well known realizations of this model. This mathematical model is described by the
well known differential equation

m
d2U

dt2
+ cU = 0 (2.1)

(U is the displacement of point-like mass with respect to its equilibrium state, m is
the mass and c – the rigidity of the elastic spring). The initial conditions in certain

initial instant have to be supplied as U 0=U(0) and V0 = dU

dt
(0).

In dimensionless variables τ = ω0t, u = U/U 0, ω0 = √
c/m one obtains

d2u

dτ 2
+ u = 0 (2.2)

where u0 = u(0) = 1 and v0 = v(0) = du

dτ
(0) = V0/

ω0U0 for τ = 0. Due to linearity

of Eq. (2.1), its solution has to be easily found as

u = a cos (τ − τ0) (2.3)

(harmonic vibration with period T = 2π ); the amplitude a and phase shift τ 0 are
determined by the initial conditions. One easily obtains ω = 1 substituting (2.3) to
(2.2).

Equation (2.2) has no small parameters; still, it is not the simplest possible
description of the oscillator. After a reduction to two coupled first order differential
equations we can write

dV

dτ
= −u;

du

dτ
= v

Then it is possible to introduce conjugate complex variables

ψ = v + iu; ψ∗ = v − iu

Fig. 2.1 Sketch of the linear
oscillator
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Fig. 2.2 Rotation of the
complex vector

Complex representation was initially considered as a useful phenomenological
model for analyzing nonlinear effects in different fields of physics (Scott et al.,
1985; Kosevitch and Kovalyov, 1989). Recently it has been shown (Manevitch,
1999, 2001; Manevich and Manevitch, 2005) that complexification is instrumen-
tal for the analysis of enharmonic oscillators and nonlinear oscillatory chains. The
approach of (Manevitch, 1999, 2001) employs a complex combination of displace-
ments and velocities (similar to those applied in the linear problem of secondary
quantization in quantum mechanics) and replaces the initial second order equations
of motion by an array of first-order equations; the subsequent separation of fast
and slow time scales allows obtaining leading-order approximations of a nonlinear
process. We will often use this method below.

The equations of motion can be expressed as

dψ

dτ
− iψ = 0,

dψ∗

dτ
+ iψ∗ = 0 (2.4)

Only one of these equations is independent. The solution of the Eq. (2.4) isψ = ceiτ

and ψ∗ = c∗e−iτ (c = c1+ic2 is a complex number). These complex functions have
a very simple geometric sense (Fig. 2.2). The first of them corresponds to counter-
clockwise rotation in the complex plane of the vector ψ(v, u) (“positive” rotation)
and the second one to clockwise rotation of the vector ψ∗ (“negative” rotation).
Each one of these two rotations conveys complete information about the process.

One can speculate that each of the Eq. (2.4) is simpler than (2.2) since it is of
the first order. In this respect, we consider its solution as more “fundamental” than
(2.3), although of course they are mathematically equivalent. We replace the oscilla-
tions by rotations. We will see below that this transition significantly simplifies the
solution of much more complicated problems.

In the considered case, the function ψ∗ is absent in the equation for ψ and vice
versa. However, account of the viscous friction changes this situation.

2.1.2 Linear Oscillator with Viscous Damping

In this case the equation of motion can be written as follows

m
d2U

dt2
+ 2η

dU

dt
+ cU = 0 (2.5)



16 2 Discrete Finite Systems

under initial conditions U = U 0, V = dU

dt
= V0 for t = 0.

After introduction of the dimensionless variables and parameters one obtains

d2u

dτ 2
+ 2ε

du

dτ
+ u = 0 (2.6)

where τ = ω0t, ε = η
/
mω0

,ω0 = √c/m. Due to linearity of (2.6) one can find

again the exact analytical solution. Standard anzats u = ceλτ yields the algebraic
equation for λ:

λ2 + 2ελ+ 1 = 0

Depending on the magnitude of ε, these quadratic equations has two real or two
complex roots

(a) λ1,2 = −ε ± √
ε2 − 1 for ε2 > 1

(b) λ1,2 = ε ± i
√

1 − ε2 for ε2 < 1

so that in the cases a and b

(a) u = c1eλ1τ + c2eλ2τ

(b) u = ce−ετ cos
(√

1 − ε2 τ − ϕ
)

In the special resonant case of ε = 1 the solution is

(c) u = (c1 + c2τ )e−τ

Certainly, it is possible to find the power expansions of the solution both for small
and large ε. But we would like to show that even in linear case further simplification
is possible before beginning to solve the differential equations. This simple example
allows introducing the ideas and tools which become necessary in more general and
complicated cases.

2.1.2.1 Strong Energy Dissipation (ε >> 1)

This case physically corresponds to monotonous approach to equilibrium (relax-
ation). After dividing of the Eq. (2.6) by ε one obtains

ε−1
(

d2u

dτ 2
+ u

)
+ 2

du

dτ
= 0 (2.7)

The main problem is choice of appropriate limit cases for ε−1<< 1. How to
choose the limiting systems? One has no a priori knowledge about the characteristic
decrease rate of function u(t) with respect to parameter ε due to time differentiation
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(the order of the variable itself is irrelevant due to linearity). To determine this char-
acteristic rate, let us perform a new change of the independent variable τ1 = εατ ,
where the exponent α characterizes change of time scale due to damping. Then the
equation of motion is written as follows:

ε−1

(
ε2α d2u

dτ 2
1

+ u

)
+ 2εα

du

dτ1
= 0.

Consistent asymptotic expansion may be obtained if in this equation two terms have
the same order and the third one has smaller order of magnitude (with respect to ε–1).
Only two such cases are possible:

1. 2α − 1 = α, α = 1;
2. α = −1.

These exponents correspond to fast and slow change of solution respectively. The
main approximation in the first case has the following form (after one integration):

du

dτ1
+ 2u = 0 (2.8)

taking into the account the decay condition (for τ → ∞) that results in the slowly
decaying solution:

u = c1e−2τ1 = ae−2ετ .

In the second case the main approximation is written as follows

2
du

dτ1
+ u = 0 (2.9)

Solution of (2.9) describes a rapid relaxation:

u = c2e
−1

2
τ1 = c2e

−1

2
ε−1τ

.

Equations (2.8) and (2.9) provide a tractable model of the strongly damped oscil-
lator. They describe (in main approximation) equilibrating the damping and elastic
forces (Eq. 2.8) or that of inertial and damping forces (Eq. 2.9). In other terms, for
every particular case the tractable model corresponds to the balance of two certain
forces, whereas the other terms in the equations of dynamics yield only small cor-
rections. As one can see, limit Eq. (2.9) describes early stage of a fast relaxation,
whereas Eq. (2.8) describes the late stage of relatively slow relaxation. However, it
is not enough in order to solve the initial value problem (IVP) for Eq. (2.5) – one
should also know how to combine these expansions together and to satisfy the ini-
tial conditions. Due to the linearity of the initial equation, one should be tempted
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to simply add together these two asymptotic expressions. Unfortunately, this idea
is first of all wrong from a mathematical viewpoint, since expressions (2.8) and
(2.9) yield asymptotic formulas with respect to different orders of ε not with the
same accuracy. Besides, it is instructive to see a more systematic way of getting the
asymptotic expansions including terms with different time scales, since the luxury
of linear superposition is often unavailable.

Let us rescale time in Eq. (2.6) as ξ = τε and introduce the new parameter
δ = ε–2. The resulting equation obtains the following form:

uξξ + 2uξ + δu = 0 (2.10)

Let us introduce the sequence of time scales

ξk = δkξ , k = 0, 1, . . .

Then, the dependent function is considered as a function of these multiple time
scales:

u = u(ξ0, ξ1, . . .)

The differentiation with respect to time is performed by a common chain rule. For
the case of the multiple scales expansion, this rule can be conveniently written in
the form of expansion of the differentiation operator:

d/
dξ = ∂

/
∂ξ0

+ δ∂/∂ξ1 + . . .
Substituting this expansion in Eq. (2.10), we get in the zero order of approximation
the following equation:

uξoξo + 2uξo = 0 ⇒ u = C1(ξ1, . . .) exp(−2ξ0) + C2(ξ1, . . .) (2.11)

where C1 and C2 are yet undefined functions of higher time scales – “constants”
with respect to the scale ξ0. In order to determine these functions, we have to take
into account the terms of order δ:

2∂
2u
/
∂ξ0∂ξ1

+ 2∂u/
∂ξ1

+ u = 0 ⇒
{

−2∂C1
/
∂ξ1

+ C1 = 0

2∂C2
/
∂ξ1

+ C2 = 0
(2.12)

Finally, coming back to initial variables of Eq. (2.6), we obtain the following
asymptotic expansion of the solution:

u(τ ) =C(τO(1/ε3)) exp(−τ (2ε − 1/2ε))+
+D(τO(1/ε3)) exp(−τ/2ε) (2.13)

where C and D are arbitrary functions. In order to establish their exact shape, fur-
ther orders of approximation should be analyzed. One can see that the accuracy of
expansion (2.13) is the same in both terms (the first one is a boundary layer with
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Fig. 2.3 Response of the linear oscillator – the case of the strong damping, ε = 2, u(0)=1,
du/dt(0)=0. Red line – exact solution, black – approximate solution in accordance with (2.13)
(they almost coincide), green (upper line in the figure) – slow dissipation, blue (below t axis) –
boundary layer (fast initial dissipation)

a fast decay and the second one corresponds to a slow dissipation). For this sake,
two orders should be kept in the first term although only the fast one is required to
understand the qualitative behavior. Needless to say, expansion (2.13) can be easily
obtained from the exact solution. The time history of the typical solution for this
case is illustrated at Fig. 2.3.

2.1.2.2 Weak Energy Dissipation (ε<<1)

If ε <<1, the dissipative force manifests itself in (1) decrease of the oscillations
amplitude, (2) shift of the frequency. The former effect is more significant since it
reveals itself in the first order of ε.

To obtain the tractable model, let us use the complex representation of the equa-
tions of motion (as well as in the case of a conservative oscillator). Application of
the complex representation to Eq. (2.6) yields

Then one can write

dψ

dτ
− iψ + ε (ψ + ψ∗) = 0

dψ∗

dτ
+ iψ∗ + ε (ψ + ψ∗) = 0

(2.14)
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The equations are now coupled due to the friction. To obtain the tractable model we
use a change of variables

ψ = ϕ eiτ , ψ∗ = ϕ∗ e−iτ

Such a transformation means that we describe the process in a rotating reference
system. After substitution (2.15) into (2.14) one obtains

dϕ

dτ
+ ε

(
ϕ + ϕ∗ e−2iτ

)
= 0 (2.15)

and the conjugate equation.
In accordance with multiple scale procedure, we introduce a “slow” time τ1 = ετ

alongside with “fast” time τ0 = τ , so that

d

dτ
= ∂

∂τ0
+ ε ∂

∂τ1
(2.16)

and look for the solution as power expansion

ϕ = ϕ0 + εϕ1 + · · · (2.17)

Substituting (2.17) into (2.15) with taking into account (2.16), selecting the terms
of similar order by parameter ε and equating their sum to zero, one obtains

ε0 :
∂ϕ0

∂τ0
= 0, soϕ0 = ϕ0 (τ1) (2.18)

ε1 :
∂ϕ1

∂τ0
+ ∂ϕ0

∂τ1
+
(
ϕ0 + ϕ∗

0 e−2iτ0
)

= 0

Integrating the second equation by the fast time, one obtains:

ϕ1 = −
(
∂ϕ0

∂τ1
+ ϕ0

)
τ0 − i

2
ϕ∗

0 e−2iτ0 + C(τ1)

The first terms in the right-hand side of this equation imply secular growth of the
solution with respect to the fast time scale. In order to avoid it, one must require that
this coefficient disappears:

∂ϕ0

∂τ1
+ ϕ0 = 0 (2.19)

describing in the main asymptotic approximation the effect of the damping –
exponential decrease of the length of complex vector ϕ0.

ϕ0 = c e−τ1
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The Eq. (2.19) provides the tractable model of the oscillator if the damping is weak.

2.1.2.3 Exercise

Find the asymptotic solution (similar to (2.13)) for the strongly damped oscillator
after action of initial impact (zero initial coordinate, non-zero initial velocity).

2.1.3 Linear Oscillator with Viscous Damping and Periodic
(Harmonic) Forcing

The equation of motion may be written as follows

m
d2U

dt2
+ 2η

dU

dt
+ cU = F cosωt (2.20)

General system (2.20) can be solved exactly (Den Hartog, 1956; Meirovitch, 2000),
but we are primarily interested in various simplified limit cases due to different
possible small parameters (Fig. 2.4)

For the beginning, let us consider
ω

ω0
= ε as a characteristic parameter and let

us also introduce the following rescaling:

F = εβ f , u = Uc/
f

Then the equation of motion may be written as follows:

ε2 d2u

dτ 2
+ 2εη1

du

dτ
+ u = εβ cos τ (2.21)

where η1 = η√
cm

.

Two limit cases yield consistent asymptotic expansions:

1. ε → 0, β = 0
2. ε → ∞, β = 2.

In the first case, the elastic and external forces are the most important (they have
0th order with respect to small parameter ε). Such a situation is typical for static
loading; therefore one can speak about a quasi-static approach.

In the second case, the inertial and external forces dominate and we deal with a
“quasi-dynamic” approach. Corresponding limiting equations look like this:

u = cos τ

Fig. 2.4 Forced and damped
linear oscillator
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d2u

dτ 2
= cos τ , so u = − cos τ .

These are the tractable models because they take the most significant effects into
account and provide a clear physical understanding of the problem.

Besides, if ε = ω

ω0
∼ 1, it is possible to introduce the small parameter

ε1 = ω0 − ω
ω0

= 1 − ω

ω0

because the case ε1 << 1 is of special interest. The conditions ε~1 or ε1 << 1 mean
that inertial and elastic forces are very close by their magnitude so the process is
similar to that of the free vibrations. To provide this, the force parameter also has to
be small. As this takes place, the small dissipative term already in the main approx-
imation may be important. Let us perform the transition to the complex variables
and present external force and dissipative coefficients as

F1 = ε
β

1
f

2

(
eiω t + e−iω t) , η = ε

γ

1 υ, (2.22)

and introduce the change of variables

τ = ω0t, u = Uc/
f

After transition to complex variables and with account of (2.22) one obtains

dψ

dτ
− iψ + εγ1 υ

(
ψ + ψ∗) = 1

2
ε
β

1

(
eiεt + e−iεt)

dψ∗

dτ
+ iψ∗ + εγ1 υ

(
ψ + ψ∗) = 1

2
ε
β

1

(
eiεt + e−iεt)

Using the multiple scale procedure with

β = 1, γ = 1, τn = ε1τ ,
d

dτ
= ∂

∂τ0
+ ε1

∂

∂τ1
+ ε2

1
∂

∂τ2
+ · · ·

ψ = ψ0 + ε1ψ1 + ε2
1ψ2 + · · · ,

we obtain the system

∂ψ0

∂τ0
− iψ0 = 0

∂ψ1

∂τ0
− iψ1 = −∂ψ0

∂τ1
− υ (ψ0 + ψ∗

0

)+ f

2

(
ei(1−ε1)τ0 + e−i(1−ε1)τ0

)
= 0

(2.23)
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Change of dependent variable

ψ0 = ϕ0 eiτ0

leads to relation ϕ0 = ϕ0 (τ1, τ2, . . . ) and the tractable model of the main asymp-
totic approach may be written as follows (from the second equation of (2.23)):

∂ϕ0

∂τ1
+ υϕ0 = f

2
eiτ1

so that

φ0 = �(τ1, . . .) e−iυτ1 + f

2η1
eiτ1

The first term describes the damped free oscillations and the second one corresponds
to stationary forced vibrations describing their amplitude and phase shift due to
damping (Fig. 2.5).

2.1.3.1 Exercise

Calculate the frequency correction caused by the linear damping (use the second
equation of (2.23)).

Fig. 2.5 Response of the
forced oscillator close to the
resonance. One can clearly
see the exponentially
decaying initial transient and
further stationary response
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2.1.4 Two Coupled Oscillators

The system of two oscillators coupled by an elastic spring is the next step after the
isolated oscillator by degree of complexity. This is also the fundamental model of
the theory of vibrations (Fig. 2.6).

This system is described by the following equations:

{
m1ü1 + c11u1 + c12(u1 − u2) = 0
m2ü2 + c22u2 + c12(u2 − u1) = 0

(2.24)

This system is linear and therefore can be solved by an exact analytic procedure.
Still, the results are not easy to interpret and we would like to develop the asymptotic
approach instead in order to find the simplest description of the dynamics which
reflects the main features of the system. It turns out that these qualitative features
are determined both by coupling between the oscillators and by the relationship
between their natural frequencies.

Fig. 2.6 System of two
coupled linear oscillators

2.1.4.1 Weakly Coupled Oscillators with Strongly Different Frequencies

Let us consider the case when two oscillators with the frequencies ω1 =
√

c11

m1
and

ω2 =
√

c22

m2
respectively are connected by the linear spring with stiffness c12, so

that
ω2

1

ω2
2

= ε << 1 and
c12

c11
= με << 1 (parameters of coupling and ratio of the

squared frequencies are supposed to be of the same order with respect to the small
positive dimensionless parameter ε).

Smallness of the parameter ε can be caused by strong difference of masses or
stiffness; therefore it is reasonable to consider two different limit cases:

(a) c11 = c22, but
m2

m1
= ε << 1

(b) m1 = m2, but
c11

c22
= ε << 1.

The exact equality of the masses or the stiffness’s is of course not compulsory,
but it does not change the main idea and somewhat simplifies the treatment. Using
dimensionless variable τ1 = ω1t, one can see that the equations of motion for cases
(a) and (b) are different:

For the case (a):
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d2u1

dτ 2
1

+ u1 + με (u1 − u2) = 0

ε
d2u2

dτ 2
1

+ u2 + με (u2 − u1) = 0

(2.25)

For the case (b):

d2u1

dτ 2
1

+ u1 + με (u1 − u2) = 0

ε
d2u2

dτ 2
1

+ u2 + με2 (u2 − u1) = 0

(2.26)

Due to the introduction of dimensionless time we have implicitly introduced the
small parameter into the equation of motion. Looking for a solution in the form of
harmonic vibration ui = Ai cosωτ (i = 1,2) leads to the system of two coupled
linear algebraic equations with respect to amplitudes Ai with coefficients depen-
dent on a yet unknown frequency ω. For an existence of a nontrivial solution of
the system the determinant has to be equal to zero; that leads to a biquadratic
equation with respect to frequency (instead of a quadratic one in the case of an iso-
lated oscillator). Substitution of the ω values satisfying to the biquadratic equation
gives us two independent particular solutions, corresponding to natural frequencies
(eigenfrequences). Relations between amplitudes of the particles can be found after
substitution of the normal frequencies into the linear algebraic equations. In this
manner, the normal modes corresponding to each of two eigenfrequencies are deter-
mined. Arbitrary linear combination of normal modes (due to linear superposition
principle) gives a general solution of the problem with the amplitudes and phases
being calculated from the initial conditions.

We will examine the limit systems of differential equations (2.26). For this, it is
necessary to determine the yet unknown relations (by small parameter ε) between
two dependent variables as well as between these variables and their derivatives.
Therefore we will use the new dependent variables having the same order by ε and
new independent variable τ , differentiation by which does not change the order of
smallness:

u1 = w1, u2 = w2ε
β , τ = ε−ατ1

(parameter β characterizes the relationship between displacements of two particles).
After such a change the equation of motion can be written in the case (a) as

ε−2α d2w1

dτ 2
+ w1 + με (w1 − εβw2

) = 0

ε−2α+β+1 d2w2

dτ 2
+ εβw2 + με (εβw2 − w1

) = 0.

(2.27)
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Taking into account that ε << 1, it is possible to determine the consistent values
of the yet unknown exponents α and β. It means that corresponding limit systems
have to contain no parameter ε but to allow subsequent determination of unknown
functions. It is easy to see that there are only two different limiting cases:

1. 2α = 0,β = 1;
2. 2α = 1,β = −2

In the first case the limiting system is:

d2w1

dτ 2
+ w1 = 0,

w2 − μw1 = 0.
(2.28)

The first equation describes free vibrations of the low frequency oscillator; the sec-
ond oscillator has small displacements (of order ε) and feels a coupling with first
oscillator as action of external force μw1(τ ). As this takes place, the equation of
motion for a weakly excited oscillator corresponds to a quasi-static regime (the
inertial term plays a secondary role). From the mathematical viewpoint, we obtain
an essential simplification and replace the system of two differential equations by
one simple algebraic relation. The solution of the limiting system is extraordinarily
simple:

w1 = c cos (τ − τ0) ,
w2 = μc cos (τ − τ0) ,

(2.29)

where the arbitrary constants c and τ 0 have to be determined from the initial condi-
tions for a low-frequency oscillator. Returning to the initial variables, one can write

u1 = c cos (ω1t − τ0) ,
u2 = εμc cos (ω1t − τ0) .

In the second case, the limiting system can be written as follows

d2w2

dτ 2
+ w2 = 0,

d2w1

dτ 2
− μw2 = 0 (2.30)

Here, the first equation describes the free vibrations of the oscillator with a higher
frequency. Its displacements can be found using the corresponding initial conditions.
Then the other oscillator perceives the action of the first one as an external force
μw2(τ ). In this case, the second oscillator moves in quasi-dynamic regime, with
weak effect of the elastic force. The solution of this limiting system is:

w2 = c cos (τ − τ0) , w1 = −μc cos (τ − τ0) (2.31)

and in the initial variables:
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u1 = c cos (ω2t − τ0) , u2 = −ε−2 c cos (ω2t − τ0) .

In the case (b), when the stiffnesses of the oscillators are strongly different, the limit-
ing systems are the same, although the relationship between the unknown functions
for the first combinations of α and β is different. Because there is no qualitative
difference here, we restrict ourselves by this notion.

Let us summarize several points. We see that in the system of weakly coupled
oscillators with essentially different frequencies, the motions of two types occur. In
both cases, it is possible to say that the “individuality” of the oscillators is preserved.
As this takes place, their interaction manifests itself in such a manner that the first
oscillator in the case 1 and the second in the case 2 produces periodic force act-
ing on the other oscillator. Corresponding forced motion occurs in weakly excited
subsystem, periodic force being generated by a strongly excited subsystem. In prin-
ciple, arbitrary motion of the system, can due to its linearity be presented as a linear
combination of two distinguished types of motion, corresponding to normal (one-
frequency) modes of vibration. Let us underline once more that every one of weakly
coupled oscillators with strongly different frequencies nearly preserves its individ-
uality. Weak interaction between two oscillators can be understood in terms of the
combination of free and forced one-particle models.

2.1.4.2 Exercise

Describe the vibrations of weakly coupled oscillators with strongly different
frequencies after action of given initial pulse applied to one of the oscillators.

2.1.4.3 Weakly Coupled Oscillators with Close Frequencies

Let us suppose that both oscillators considered have close frequencies. As in the
previous case, small parameter ε, characterizing a weak coupling between the oscil-
lators, can be introduced to the system. However, instead of the frequencies ratio,
now their relative difference

�ω

ω1
= ω2 − ω1

ω1
<< 1

turns out to be small.
For the sake of simplicity, we here consider the case of weakly coupled oscillators

with equal frequencies. After transition to dimensionless variables in the system
(2.24) one can write

d2u1

dτ 2
+ u1 + ε (u1 − u2) = 0

d2u2

dτ 2
+ u2 + νε (u2 − u1) = 0

(2.32)
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τ = ω0t,ω0 =
√

c11

m1
=
√

c22

m2
,

k

c11
= ε << 1, ν = c11

c22
= m1

m2
,

(ν = 1 in the particular case of the identical oscillators). We admit exact equality of
the frequencies of both oscillators; this restriction does not affect qualitative charac-
teristics of the response. The direct asymptotic approach to the equations of motion
distinguishes the system of independent oscillators as a limiting one. However, both
intuition and experience tell us that interaction between the oscillators is impor-
tant even for very weak coupling (phenomenon of beating). Does it mean that we
can not use a smallness of coupling and have to consider the starting system as a
tractable model? Similar to the case of isolated damped oscillator, the direct expan-
sion of the solution by small parameter leads to “resonance” (appearance of secular
non-periodic terms). To avoid this obstacle, we reduce the system to the form:

(1)
dv1

dτ
= −u1 − ε (u1 − u2) = 0,

(2)
du1

dτ
= v1,

(3)
dv2

dτ
= −u2 − νε (u2 − u1) = 0,

(4)
du2

dτ
= v2

Multiplying the Eqs. (2) and (4) from the above system by imaginary unity i and
summing them up with (1) and (3) respectively, one can obtain a system of complex
equations

dψn

dτ
− iψn − i

νn

2
ε
[ (
ψn − ψ∗

n

)− (ψ3−n − ψ∗
3−n

)] = 0

n = 1, 2; ν1 = 1; ν2 = ν

(2.33)

Using the change of variables ψn = ϕn eiτ , we transform the system (2.33) to the
equations

dϕn

dτ
− i
νn

2
ε
[
(ϕn − ϕ3−n)−

(
ϕ∗

n − ϕ∗
3−n

)
e−2iτ

]
= 0 (2.34)

and conjugate equation. Exactly as in the case of an isolated oscillator, one can now
introduce a “slow” time τ1 = ετ together with a “fast” time τ and look for a solution
in the form of power series by parameter ε

ϕn =
∑

j

ϕn, jε
j (2.35)
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Substituting (2.35) into the equations of motion, selecting the terms of the same
order of the small parameter and equating them to zero, one obtains (for νn = 1):

∂ϕn,0

∂τ
= 0, ϕn,0 = ϕn,0 (τ1) (2.36)

dϕn

dτ
= −dϕn,0

dτ1
− i
[ (
ϕn,0 − ϕ3−n,0

)− (ϕ∗
n,0 − ϕ∗

3−n,0

)
e−2iτ

]
= 0 (2.37)

Integration of (2.37) by τ yields secular growth. To avoid it, we should put:

dϕn,0

dτ1
+ i
(
ϕn,0 − ϕ3−n,0

) = 0 (2.38)

and it is the main asymptotic approximation and tractable model of the problem.
The conventional manner of its solution uses linearity and superposition of in-
phase (ϕn,0 = ϕ3−n,0) and out-of phase (ϕn,0 = −ϕ3−n,0) normal modes. Such
an approach is not applicable to nonlinear problems. Therefore we will use an alter-
native way, based on integrals of motion. Such integrals will appear also in the
nonlinear problems. Let us make an additional change of variables

ϕn,0 = e−iτ fn,0 (2.39)

Then the equations of motion are written as follows:

dfn,0

dτ1
− if3−n,0 = 0 (2.40)

and the integrals of motion have the form:

H = i
(

f1,0 f ∗
2,0 + f1,0

∗f2,0

)
= H0∣∣ f1,0

∣∣2 + ∣∣ f2,0
∣∣2 = N.

(2.41)

The second of these integrals motivates the following change of variables:

f1,0 = √
N cos θ (τ1) e−iδ1τ1 , f2,0 = √

N sin θ (τ1) e−iδ2τ1 (2.42)

Substituting (2.42) into (2.40) and separating real and imaginary parts, one obtains
the following equations for dependent variables θ and � = δ1 − δ2:

dθ

dτ1
= sin�;

d�

dτ1
= ctgθ cos� (2.43)

This system has two different fixed points (1) θ = π

2
, � = 0; ( 2) θ = π

2
, �=π ,

corresponding to the in-phase and out-in-phase linear normal modes respectively.
The phase trajectories close to the stationary points describe periodic motions with
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weak energy exchange between the oscillators (the normal modes are cooperative
motions in which an identity of every oscillator is not seen). But for phase tra-
jectories lying far from the stationary points the situation is very different. Let us
consider the limiting phase trajectory (LPT) (Manevitch, 2005), which is maximally
distant from the stationary points. This trajectory corresponds to a complete periodic
energy exchange between the oscillators. The period of such an energy exchange
equals 2π

/
ε (if to return to starting time variable). If, in the initial instant, all

energy is concentrated on one of the oscillators (e.g., θ = 0), the energy exchange
with other oscillators requires a very large time if ε << 1. So, over a rather long
time we can distinguish the oscillators as, to a certain degree, independent ones.
However, consideration of the tractable model in slow time demonstrates beating
due to the internal resonance. This is a transition to a true two-particle model without
domination of any oscillator.

In spite of the linearity of the starting equations of motion, the Eq. (2.43) in
the variables θ , � are nonlinear. They may be linearized in the vicinities of both
stationary points:

{
θ̈1 + θ1 = 0; θ1 = θ − π

4
�̈+� = 0

(2.44)

{
θ̈1 + θ1 = 0; �1 = �− π
�̈1 +�1 = 0

(2.45)

The dots denote the derivatives with respect to τ1. So, these variables characterizing
the relationship between the amplitudes and phase shift behave as a linear oscillator
for θ1<<1, �1<<1.

The solution corresponding to the LPT can be also written in a rather simple
form:

θ = τ̃ , � = π

2
e (2.46)

where τ̃ (τ1) and e(τ1) are non-smooth functions, presented in Fig. 2.7 (Pilipchuk,
1999b).

The solution which is close to LPT may be presented as

θ = X1 (τ1)+ Y 1 (τ1) e (τ1) ,
� = X2 (τ1)+ Y 2 (τ1) e (τ1) .

(2.47)

In turn, the smooth functions X1, Y1 can be determined as a power series with respect
to τ1:

Xi =
∑

j

Xi, jτ1
j; Yi =

∑
j

Yi, jτ1
j (2.48)
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Fig. 2.7 Saw – tooth function τ̃ (τ1) and its derivative e(τ1)

2.1.4.4 Exercise

Find the first correction to the functions Xi(τ ), Yi(τ ) using series (2.48)

2.1.4.5 Strongly Coupled Oscillators with Essentially Different Frequencies

Going over to the system of strongly coupled oscillators, let us begin from the case
of a strong difference between the frequencies due to a large magnitude of the
masses ratio or of the stiffnesses ratio. In the first case (the stiffnesses are of the
same order), the equations of motion are reduced to the form

d2u1

dτ 2
1

+ u1 + μ (u1 − u2) = 0

ε
d2u2

dτ 2
1

+ μ

ν
u2 + μ (u2 − u1) = 0

(2.49)

where τ1 =
√

c11

m1
t, μ = k

c11
, ν = k

c22
, ε = m2

m1
, and ui are normalized, as

previously, by U0
i

In the second case (the masses mi are adopted to be identical),
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d2u1

dτ 2
1

+ u1 + μ (u1 − u2) = 0

δ
d2u2

dτ 2
1

+ u2 + μδ (u2 − u1) = 0

(2.50)

where δ = c11

c22
<< 1.

Let us begin with the first case. We use the new variables having the same order
again, with respect to the small parameter ε and new time variable, differentiation
by which does not change the orders of unknown functions

u1 = w1, u2 = w2ε
β , τ = εατ1 (2.51)

Substitution of (2.51) into (2.49) gives the equations

ε2α d2w1

dτ 2
+ w1 + μ (w1 − εβw2

) = 0

ε2α+β+1 d2w2

dτ 2
+ εβ μ

ν
w2 + μ (εβw2 − w1

) = 0

A consistent asymptotic approximation is obtained for the following values of the
parameters:

(1) α = 0,β = 0;
(2) 2α = −1,β = −1

In the first case one obtains the following system:

d2w1

dτ 2
+ w1 + μ (w1 − w2) = 0

w2 + μ (w2 − w1) = 0
(2.52)

If, for simplicity, one supposes that c11 = c22, ν = μ, the following simplified
equations are obtained:

d2w1

dτ 2
+ 1 + 2μ

1 + μ w1 = 0, w2 = μ

1 + μw1, (2.53)

This type of motion corresponds to cooperative mode because the displace-
ments (and the energies) of both oscillators have the same order with respect to
parameter ε.

In case (2) we have the limiting system

d2w2

dτ 2
+ (1 + μ) w2 = 0,

d2w1

dτ 2
− μw2 = 0.
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We come to one of the important notions of the theory of vibrations – “partial
system”. The main equation with respect to the dominating displacement u2 now
describes the vibration of the system which may be obtained from the initial one if
one “fixes” the other oscillator – u1 = 0. This regime is rather different from the
vibration of the isolated oscillator. The partial system lies in the “middle” between
the isolated oscillator and cooperative normal modes; one of the oscillators is excited
more intensively and its interaction with the weakly excited oscillator is taken into
account in the main approximation. The additional equation describes, similarly to
the case of weak coupling, a quasi-dynamical excitation of the other oscillator. One
of the tractable models with one degree of freedom is again obtained asymptotically
from a more complicated model.

In the case described by Eq. (2.50), after substitution (2.51) with small parame-
ter δ one obtains:

δ2α d2w1

dτ 2
+ w1 + μ (w1 − δβw2

) = 0

δ2α+β+1 d2w1

dτ 2
+ δβw2 + μδ (δβw2 − w1

) = 0

The consistent pairs of the exponents α, β are somewhat different from the previous
ones:

(1) α = 0,β = 0;
(2) α = −1,β = −1

and corresponding limiting systems are as follows:
For the case (1):

d2w1

dτ 2
+ (1 + μ) w1 = 0, w2 − μw1 = 0.

For the case (2):

d2w2

dτ 2
+ w2 = 0,

d2w1

dτ 2
− μw2 = 0.

Here, in both limiting cases, the main approximations correspond to the vibrations of
the partial systems. So, if the essential difference of the frequencies of the oscillators
is due to the strong mass asymmetry, then the strong coupling brings about the
cooperative normal mode (in only one of two limiting systems).

2.1.4.6 Exercise

Describe the vibrations of the strongly coupled oscillators with essentially different
frequencies after action of impact applied to one of oscillators.
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2.1.4.7 Strongly Coupled Oscillators with Close Frequencies

It is in this case only that we completely lose a connection, not only with the notion
of the isolated oscillator, but also with the concepts of the partial system and of the
beats (which are in fact a weakened manifestation of the cooperative effects). As
well as in the case of weak coupling between the oscillators with identical frequen-
cies, the equations of motion have the shape (2.32), but the parameter ε is not small
any more and the initial system does not contain any small coefficients. Therefore
we change ε by γ (ε = γ ). However, for the system with strong coupling between the
oscillators having identical or close frequencies, a small parameter can be related to
the deflection from the system of two identical oscillators. On particular, supposing
that ν = 1 + ε, one obtains in the limit ε → 0 the following pair of equations

d2u1

dτ 2
1

+ u1 + γ (u1 − u2) = 0

d2u2

dτ 2
1

+ u2 + γ (u2 − u1) = 0

(2.54)

This system has rather high symmetry (it is invariant under change u1 ↔ u2). As a
consequence, one can easily derive an independent equations for the normal modes
for the functions

W1 = u1 + u2

2
, W2 = u2 − u1

2
(2.55)

(e.g. after summing the equations and subtracting the first equation from the second
one):

d2W1

dτ 2
1

+ W1 = 0,
d2W2

dτ 2
1

+ (1 + 2γ )W2 = 0

Both these equations describe the cooperative normal modes (in-phase and out-in-
phase respectively). Linear combination of W1 and W2 gives the general solution for
arbitrary initial conditions. There are also the motions of the oscillators, but these
are “cooperative” ones.

2.1.4.8 Exercise

Describe the vibrations of the strongly coupled oscillators with close frequencies
after action of initial pulse.

2.2 Single-DOF Nonlinear Oscillator

The next level of complexity corresponds to the model of a 1DOF nonlinear
autonomous oscillator. Such a model is, generally speaking, described by the
following equation:
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ü + f (u, u̇) = 0 (2.56)

Of course, no general analytic procedure exists for the description of Eq. (2.56).
It seems that the only positive statement possible here is that the system can be
completely represented in two-dimensional state space (u, u̇). This fact has some
significant consequences for the global dynamics – for instance, absence of chaotic
regimes and a very restricted set of possible limit trajectories (Guckenheimer and
Holmes, 2002). Still, these facts are not enough to understand the dynamics.

If one agrees that the function f in (2.56) depends only on the displacement,
but not on the velocity, the situation becomes simpler and the solution is readily
obtained in quadratures:

t − to =
∫

du√
2(E − F(u))

, F′(u) = f (u) (2.57)

where E is the constant energy of the oscillator. The shape of the function F(u)
determines whether the trajectories of the system are bounded or unbounded for
different values of E (Landau and Lifshits, 1976). From a certain viewpoint, this
model is already tractable. Let us consider the oscillator with the potential function
F(u) depicted in Fig. 2.8.

According to (2.57), the motion is possible if the expression under the square
root has a nonnegative value. Then, for different values of E the following motions
are possible:

Fig. 2.8 Model potential function
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• Unbounded escape into zone III – all values of energy (for E < E4 the motion
occurs only in zone III, for E ≥ E4 it will pass also over zones I and II).

• Oscillations in zone I – E1 ≤ E ≤ E3.
• Oscillations in zone II – E2 ≤E ≤ E3.
• Oscillations over zones I and II – E3 ≤ E ≤ E4

A particular example of such qualitative analysis of the motion will be presented
in Sect. 2.2.3.

If one is interested in more detailed information about the dynamics, it is nec-
essary to compute and invert the integral (2.57). It may be a rather awkward task
since no general algorithm exists for it. So, in order to assess main effects caused by
the nonlinearity, we are going to resort to even simpler models, which allow deeper
treatment.

2.2.1 Quasilinear Oscillator

The first and the most popular model to be considered here is that of the quasilinear
oscillator, often referred to as Duffing model (Nayfeh and Mook, 1995). We restrict
ourselves to the lowest order symmetric nonlinearity and linear viscous damping.
The system may be written down as follows:

mü + γ u̇ + ku + au3 = 0 (2.58)

where m is the mass if the oscillator, k and γ -linear stiffness and damping coef-
ficients respectively, a – the coefficient of the nonlinear term. Rescaling u = Uw,
t = τ/ω0 yields the following equation:

wττ + λwτ + w + αw3 = 0 (2.59)

where ω0 =
√

k/
m, λ = γ

/
ωom, α = aU2/

mω2
0
.

Equation (2.59) can be integrated exactly for the case λ = 0 in terms of Jacobi
elliptic functions (Kosevitch and Kovalyov, 1989), but here we are interested in the
quasilinear case, which corresponds to small deviations from the regime of linear
oscillations and, therefore, to small values of α. It should be mentioned, that such a
regime of motion can be realized for any values for the parameters in the initial Eq.
(2.58), provided that the characteristic amplitude U is small enough. Hence, we can
adopt α = 4ε/ 3, ε << 1. The damping is also considered to be small and therefore
is also adopted to be of order ε: λ = εσ . Finally, Eq. (2.59) is considered in the
form

wττ + εσwτ + w + 4ε

3
w3 = 0 (2.60)

Transition to complex variables and change of the dependent variable yield:
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ϕ = e−iτ (wτ + iw)

ϕτ + εσ

2
(ϕ + ϕ∗e−2iτ ) + iε

6
e−iτ (ϕeiτ − ϕ∗e−iτ )3 = 0

(2.61)

Equation (2.61) can be approximately solved with the help of multiple-scales
expansion:

τk = εkτ , k = 0, 1, . . .

ϕ = ϕ0 + εϕ1 + . . . , ϕk = ϕk(τ0, τ1, . . .)
(2.62)

Expansion of Eq. (2.61) according to (2.62) yields in orders ε0 and ε1:

∂ϕ0

∂τ0
= 0 ⇒ ϕ0 = ϕ0(τ1, . . .)

∂ϕ1

∂τ0
+
[
∂ϕ0

∂τ1
+ σ

2
ϕ0 − i

2
|ϕ0|2 ϕ0

]
+ ϕ∗

0 e−2iτ0+

+ i

6

(
ϕ3

0e2iτ0 + 3 |ϕ0|2 ϕ∗
0 e−2iτ0 − ϕ∗3

0 e−4iτ0
) = 0

(2.63)

The expression in the square brackets does not depend on τ0, therefore it will cause
secular linear growth of ϕ1, inconsistent with bounded oscillations. Therefore, for
the sake of consistency, this secular term should disappear:

∂ϕ0

∂τ1
+ σ

2
ϕ0 − i

2
|ϕ0|2 ϕ0 = 0 (2.64)

Equation (2.64) can be easily solved as follows:

ϕ0 = N exp(iδ)

N(τ1) = N0 exp
(−στ1

/
2
)

, δ(τ1) = 1

2
N2

0 exp(−στ1)τ1 + ζ0 (2.65)

The dependence on higher time scales is not analyzed here and is omitted for the
sake of brevity. Finally, the approximate “tractable” solution of Eq. (2.60) is written
as follows:

w(τ ) = N0 exp
(
−εστ

2

)
×

× sin
(
τ (1 + ε

2
N2

0 exp(−εστ ) + O(ε2)) + ξ0
)

+ O(ε)
(2.66)

where N0 and ξ0 are determined by the initial conditions of the problem.
Expression (2.66) requires some further comments. First of all, from a formal

viewpoint it is asymptotically not completely consistent – some corrections of order
ε are “inside” the main approximation and some are “outside”. Such distinction is
justified since the remaining ε-order terms describe the principal effects of the damp-
ing (decrease of the amplitude) and the nonlinearity (dependence of the frequency
on the amplitude). At Fig. 2.9a, b, the accuracy of approximate solution (2.66) is
cross-checked with the result of the numeric solution of initial Eq. (2.60).
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(a)

(b)

Fig. 2.9 Comparison between exact numeric and approximate analytic solution for the damped
nonlinear oscillator. Dotted line corresponds to the numeric solution, solid to the approximate
analytic solution, (a) ε = 0.05, σ = 1, x(0)=1, dx/dt(0)= –0.025; (b) ε = 1, σ = 1, x(0)=1,
dx/dt(0)= –0.5

As one can see, for weak nonlinearity the coincidence is very good, although
the discrepancy due to growing phase shift can be observed for larger times. Even
for relatively strong nonlinearity (Fig. 2.9b) the approximation still works, but the
inaccuracy is noticeable.
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2.2.2 Strongly Nonlinear Oscillator and Vibro-Impact
Approximation

As it was demonstrated in the previous section, the weakly nonlinear (or quasilinear)
oscillator can be efficiently treated on the basis of the linear model; the effects of
nonlinearity (such as frequency dependence on the amplitude) can be taken into
account by asymptotic procedure. If the nonlinearity is strong, such an approach
will become irrelevant and one should look for alternative ways to simplify the
system.

An impact is arguably the strongest possible manifestation of the nonlinear-
ity in mechanics. As for an appropriate potential function, the impact interaction
corresponds to a vertical wall, which restricts the motion of the particle. Simple
description of this process, dating back to Newton, interprets the impact as an abrupt
change of the particle velocity

v(t0 + 0) = −kv(t0 − 0) (2.67)

if the impact occurs at time t0. The coefficient k lies in the interval 0 ≤ k ≤1 and
is referred to as the restitution coefficient. It characterizes the loss of mechanical
energy in the impact.

Empiric relationship (2.67) allows efficient treatment of mechanical systems with
impacts. It can be viewed as a boundary condition for the matching of trajectories
before and after the impact. In addition, it allows one to use the tools of theory of
generalized functions for investigation of the vibro-impact motions, as demonstrated
in the next section.

2.2.2.1 Special Solutions for Vibro-Impact Motions

Let us consider the case of an absolutely elastic interaction between the particle and
rigid barriers (the restitution coefficient is equal to the unity). The particle’s motion
in this case is described by the Newton equation:

m
d2u

dt2
+ P

(
u,

du

dt

)
= 0 (2.68)

P

(
u,

du

dt

)
= 2

du

dt
[δ(u +�) − δ(u −�)], |u ≤ �| (2.69)

Coefficient 2 on the right-hand side of (2.69) appears since every elastic impact
changes the velocity by 2du/dt at the point of impact. There are three natural
approaches to the description of vibro-impact processes. The first one was proposed
in (Zhuravlev and Klimov, 1988) and uses the evident solution of Eqs. (2.68 and
2.69) which is saw-tooth sine of period 2π and amplitude 1:

u(t) = �τ (ϕ) = 2�

π
arcsin[sin(ϕ)],

dϕ

dt
= (1/2)πv/� (2.70)
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where φ is the phase and v the constant velocity of the particle. A non-smooth
change of the dependent variable transforms Eq. (2.68) to the simplest form:

d2φ

dt2
= 0 (2.71)

Another possibility proposed in papers (Manevitch et al., 1998; Pilipchuk, 1999a, b,
2001) is based on the change of the right-hand part of expression (2.69) by a peri-
odic function reflecting a sequence of periodic pulses. A Delta-function describes
impact interaction of the particle with a rigid barrier with the intensity depending on
impulse 2p. The generalized function can also be presented in a more compact form
as the second derivative (in the sense of generalized functions, see e.g. Courant and
Hilbert, 1962) of saw-tooth periodic function:

P

(
u,

du

dt

)
= 2p

⎧⎨
⎩

∞∑
j=−∞

δ[t − (T/4 + jt −�)]−
−δ[t − (−T/4 + jt −�)]

⎫⎬
⎭ = p

d2τ

dt2
(2.72)

where T is the period of the oscillations,Φ is the phase. The period on the right-hand
part of expression (2.72) is determined by the impulse intensity.

It is important to note that, contrary to initial system, when using the presentation
(2.72), the system becomes formally linear, although with a non-smooth right-hand
part.

This approach is closely connected with a non-smooth change of the independent
(temporal) variable that may be naturally made by introducing of non-smooth sine-
like and cosine-like basic functions τ (t), e(t) (see Fig. 2.7). The latter is considered
as a generalized derivative of the former one. As it was mentioned above, these
basic functions were first introduced by V. Pilipchuk (Pilipchuk, 1988, 1999b) and
the corresponding procedure was further developed later (Pilipchuk, 2001); see also
(Azeez et al., 1999).

Looking for the solution as

u = U(τ ) (2.73)

we find, quite similarly to (2.71):

d2U

dτ 2
= 0 (2.74)

and

U(τ ) = �τ (2.75)

So, the solution of the problem in non-smooth basis is even simpler than that for
classical linear oscillator and is presented as the straight line: in real time it corre-
sponds to periodic motion with periodically repeating impacts. Both Eqs. (2.71 and



2.2 Single-DOF Nonlinear Oscillator 41

2.74) are tractable models of the vibro-impact system and they can be extended to
the cases of many degrees of freedom and forced vibrations.

The third approach is based on a canonical transformation of displacement and
velocity to the action and angle variables. If, following Lin and Reichl (1986), one
considers a particle of mass 1/2 oscillating in an infinite square well potential, its
Hamiltonian is written as follows:

H = p2 + b[η(w − 1) + η(−w − 1)] (2.76)

Where, again, w is the position of the particle, p is the momentum, η is the unit step
function, b is the height of the square well.

New variables can be introduced by transformation:

w = −1 + (2ϑ/π )sign[sin(ϑ)], p = (π I/2)sign[sinϑ] (2.77)

ϑ ∈ [−π ,π ], w ∈ [−1, 1] and p are periodic functions of ϑ with period 2π . This
transformation can be easily predicted because it reproduces the uniform periodic
motion of the particle between the rigid barriers with period T = 2/ |p| over the
time period [−τ/2, τ/2], if I = (2

√
E0)/π , ϑ = π2It/2. This solution is related to

a transformed Hamiltonian

H = π2I2/4. (2.78)

and equations of motion

dI

dt
= dH

dϑ
,

dϑ

dt
= −dH

dI
(2.79)

with initial conditions t = 0 : I =(2/π )
√

E0,ϑ = 0.
Let us now use the generalized functions for the description of a linear oscillator

with natural frequency ω0 and impact clearance �. If a linear oscillator vibrates
between two rigid barriers, after introduction of non-smooth basic functions and
presentation of the solution in the form

u = U

(
4

T
τ

)
, u ≤ � (2.80)

we obtain the tractable model (Pilipchuk, 2001) described by this equation:

(
4

T

)2 d2

dτ 2
U + ω2

0U = 0,
dU

dτ
[|τ = ±1] =

(
T

4

)2

p (2.81)

Taking into account (together with (2.80)) the condition U=±� when τ=±1, one
can find the solution of the boundary value problem in the form:

u = sin[(T/4)ω0τ ]

sin[(T/4)ω0]
(2.82)
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If u(0) = 0 it means that φ = 0 and total energy is expressed as

E = 1/2

(
du

dt

)2

(2.83)

and

ω0(T/4) = ±1

2
arccos

(
1 − ω2

0�
2

E

)
+ kπ , k = 0, 1, 2 . . . (2.84)

There is a critical value of energy

E = Ecr = ω2
0�

2

2
(2.85)

of the extent that the oscillator can reach the constraints if E ≥ Ecr..
In the case of a unilateral barrier (e.g. if the left hand barrier is removed) the

problem can be solved similarly (Pilipchuk, 2001).
There is a natural limit case that can be found from analysis of Eq. (2.79). It

corresponds to condition ω0→ 0 when

u → �τ = �τ

(
t

T/4
+�

)
(2.86)

corresponding to the solution for the free particle between two rigid barriers.

2.2.2.2 Vibro-Impact Systems Treatable by Analytic Functions

The vibro-impact model can be considered as a limiting case for the systems with
strongly nonlinear but smooth potentials of interaction which may be of the power
or exponential type. This situation is typical when considering solids on the molec-
ular level, because atomic potentials of interaction in the compression region are
commonly described by power or exponential functions (Lennard–Jones or Morse
potentials respectively).

Let us briefly discuss how to formally change a strongly nonlinear but smooth
elastic force and impact interaction. The former can be described, e.g. by power
nonlinearity of high degree such as w2n+1, n. >> 1. After introducing the dimen-
sionless variable W = w/�, where � is the amplitude, the latter corresponds to the
limiting case n → ∞. As it is shown by Andrianov (1993), one can formally change
a smooth nonlinearity by impact interaction with the help of Laplace transformation
of the power elastic force

φ(p) = p−n−1γ (n + 1, p). (2.87)

where γ (n + 1, p) is an incomplete Gamma-function. After its expansion by a small
parameter 1/n and returning to originals, the elastic force is presented as follows (in
terms of generalized functions):
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f (W) = (1/n + 1)[δ(W − 1) − δ(W + 1)]−
−[1/(n + 1)(n + 2)]

[
dδ

dt
(W − 1) − dδ

dt
(W + 1)

]
+ . . . (2.88)

Thus we replace the strongly nonlinear power force by impact interaction and the
equation of motion in principal approximation is presented as follows:

d2 W

dt2
+ �n−1

n + 1
[δ(W − 1) − δ(W + 1)] = 0, (2.89)

where the multiplier before squared brackets plays the role of the impulse change
which is the result of “collision”.

So, the system is transformed to a view typical for the particle vibrating between
two rigid barriers, in striking similarity to the procedure described in the previous
paragraph. Construction of the corrections to the main asymptotic approximation is
also discussed by Andrianov (1993).

The argument can also be used in the opposite direction – instead of imposing
exact impact conditions, it is possible to simulate the impact-like motion with the
help of smooth potential functions (Gendelman, 2006; Gendelman and Meimukhin,
2007; Babitsky and Veprik, 1998; Sokolov et al., 2007). Two common models of
this sort are the models of two-sided impact, where the particle is allowed to move
between two restraints, and one-sided impact – with only one restraint. In the for-
mer case, the smooth-function approximation takes advantage of the potential of the
shape x2n with n-positive integer and the motion is considered for x in the interval
(–∞,+∞). Still, if n is large enough, the motion of the particle is localized in the
vicinity of the interval (–1,1). Therefore, impact restraints at points ±1 are simu-
lated. In the case of one-sided impact the potential x–α, α > 0 is used, simulating the
impact restraint at x = 0. In this case, the motion is restricted to the interval (0, ∞).

The smooth-function models of impact interactions described above were
designed for the case of purely elastic impacts (with unity restitution coefficient).
One should mention, that there exist a number of models which simulate the inelas-
tic impact with the help of viscoelastic elements (Babitsky and Veprik, 1998;
Sokolov et al., 2007), but this approach is completely linear.

Let us generalizations of the strongly nonlinear smooth models for the case of
the inelastic impact for both the cases of two-sided and one-sided impacts. A com-
mon one-dimensional model for simulating the elastic impacts by means of smooth
functions is formulated with the help of the following equation:

ü + (n + 1)u2n+1 = 0 (2.90)

where u denotes the displacement of the particle, n is the positive integer. Limit
n→∞ corresponds to the motion of a free particle between impact restraints at
u = ±1.
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Our goal is to generalize the model described by Eq. (2.90) in order to describe
the impacts with non-unity restitution coefficient. In other terms, we are looking for
the model described by the equation

ü + f (u̇, u) + (n + 1)u2n+1 = 0 (2.91)

which will satisfy the following conditions:

As n → ∞, f (u̇, u) → 0, |u| < 1,
f (u̇, u) → ∞, |u| = 1

(2.92)

For u = 0:
κ |u̇(0)|before impact = |u̇(0)|after impact

(2.93)

where κ is the restitution coefficient. The value of κ should not depend on the value
of the initial velocity of the particle.

Condition (2.93) for invariance of the restitution coefficient with respect to veloc-
ity imposes severe restrictions on possible shapes of the function f. Scaling with
respect to time should preserve the symmetry of the equation; therefore the function
f must have a shape

f (u̇, u) = u̇2m+1g(u) (2.94)

with m – nonnegative integer. Further simplifications are based on the fact that veloc-
ity independence of the “restitution coefficient” simulated by Eq. (2.93) manifests
additional internal symmetry of the system, i.e. its invariance with respect to a cer-
tain nontrivial group. Infinitesimal Lie generators of such a group for Eq. (2.91) may
be written as (Bluman and Kumei, 1989):

Z = ξ (u, t)
∂

∂t
+ η(u, t)

∂

∂u

Z1 = (ηt + p(ηu − ξt) − p2ξu)
∂

∂p

Z2 = (ηtt + p(2ηut − ξtt) + p2(ηuu − 2ξut)−
− p3ξuu + r(ηu − 2ξt) − 3prξu)

∂

∂r

(2.95)

where Z1 and Z2 are the first and the second prolongations of the infinitesimal oper-
ator Z respectively, p ≡ du/dt, r ≡ d2u/dt2. The symmetry condition for Eq. (2.91)
with an account of (2.94) is:

(Z + Z1 + Z2)(r + p2m+1g(u) + (n + 1)u2n+1) = 0 (2.96)

Equation (2.96) may be easily solved by standard methods (Bluman and Kumei,
1989). The result is summarized below:
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η = Cu, ξ = −Ctn provided that m = 0, g(u) = μun

where C and μ are constants. It is convenient to rescale n = 2k,μ = λ(2k + 1).
Condition (2.92) imposes additional restrictions (the effective dissipation in the
system should be positive) and finally the required system will be presented as
follows:

ü + λ(2k + 1)u̇u2k + (2k + 1)u4k+1 = 0 (2.97)

with k – positive integer. Equation (2.97) is integrable, although non-Hamiltonian.
Substituting w(u) = u̇, y(u) = u−2 k−1w(u), one finally gets the integral of
Eq. (2.97):

(y2 + λy + 1)1/2 exp

(
−λ√

1 − λ2/4
tan−1

(
y√

1 − λ2/4

))
u2 k+1 = const (2.98)

For the initial conditions u(0) = 0, u̇(0) = v0, one gets in the vicinity of the initial
point: y→+∞, w(u)→v0. After one “impact” we have y→–∞, w(u)→–v1 as u→0.
Thus, from Eq. (2.98) one obtains:

κ =
∣∣∣∣v1

v0

∣∣∣∣ = exp

(
− πλ

2
√

1 − λ2/4

)
(2.99)

Velocity ratio at u = 0, expressed by Eq. (2.99), depends neither on the initial veloc-
ity nor on k. Consequently, it represents the genuine restitution coefficient in the
limit k→∞. Therefore, Eq. (2.97) provides a suitable model for the description of
an inelastic two-sided impact by means of smooth functions.

The standard model for description of the one-sided impact may be written as

ü − α − 1

2uα
= 0 (2.100)

α > 0 may be not integer, since only the motion for u > 0 is considered in this
problem. The velocity of the particle as u → ∞ should be considered as velocity
before and after impact. Equation (2.100) may also be modified in order to describe
the inelastic one-sided impacts. The consideration is similar to the one presented in
the previous section and it is not necessary to repeat it here. The modified model
may be thus written as

ü − λu̇
α − 1

2u(α+1)/2
− α − 1

2uα
= 0 (2.101)

The restitution coefficient will be also expressed by Eq. (2.99).
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2.2.3 Oscillator with Multiple Equilibriums

In the previous sections we have considered the single-DOF oscillators with weakly
nonlinear and extremely nonlinear (vibro-impact) potential functions. In all cases
considered, the oscillator possessed only one state of equilibrium and all oscilla-
tions occurred around this point. However, in many applications it is necessary to
consider the motion of the oscillator with multiple (or an infinite number of) states
of equilibrium. Typical examples of this sort may be molecules with multiple con-
formational states (Grosberg and Khokhlov, 1989) or buckling structural elements
(Manevitch et al., 1989).

The general qualitative treatment of such an oscillator has been described above
in introduction to Sect. 2.2. For the generic shape of the potential function, each state
of stable equilibrium is the bottom of a “potential well”. Qualitatively, oscillations
in every single potential well may be described by quasilinear approximation. If the
motion is bounded and the potential function is “nonlinear enough”, then for high
energies the approximation of the vibro-impact type may be used.

There exists an additional interesting limit case, which corresponds to interme-
diate energy levels. If the states of the stable equilibrium are multiple and isolated,
then they are separated by the unstable equilibrium points. Let us treat a motion in
the vicinity of such a point for the particular example of the potential function with
three equilibria:

F(u) = 1

2
(−u2 + u4) (2.102)

Corresponding equation of motion

ü − u + 2u3 = 0 (2.103)

has two stable fixed points for u = ±1/
√

2 and one unstable fixed point for u = 0.
Phase portrait of the system is presented in Fig. 2.10

The general solution of Eq. (2.103) is written as:

t − t0 =
∫

du√
2E − u2 + u4

(2.104)

The integral can be computed in terms of Jacobi elliptic functions. Even with-
out such computation, it is easy to recognize that for –1/8 < E <0 the trajectory
will oscillate around one of the equilibriums and for E >0 it will surround both
equilibriums. The trajectory, which corresponds to E = 0, will separate these two
qualitatively different types of motion. It is referred to as separatrix. Quite naturally,
it will approach the saddle point (0, 0) at the phase portrait. The explicit equation
for this trajectory will read

us(t) = ± 1

cosh(t − t0)
(2.105)
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Fig. 2.10 Phase portrait of
Eq. (2.103)

“Plus” and “minus” correspond to the two branches of the separatrix. It is easy
to see that the velocity of the oscillator at the separatrix decreases exponentially
with time as t → ±∞; then, the whole loop of the separatrix will take an infi-
nite time. It should be mentioned that the separatrix approaches the saddle point as
t → ±∞. Such phase trajectories are often referred to as homoclinic connec-
tions and are generic in single-DOF conservative systems with multiple states of
equilibrium.

2.3 Forced Nonlinear Oscillator

2.3.1 General Remarks

The purpose of this section is to analyze the energy exchange between a source
of harmonic excitation and the Duffing oscillator under the condition of a primary
1:1 resonance. It is well known that a nearly-resonance excitation may induce two
stable solutions of small and large amplitudes. The solution corresponding to large
amplitude is associated with the efficient energy exchange between the source and
the oscillator.

As shown below, motion of the system can be divided into two stages. The first
stage, associated with maximum energy pumping from the source to the oscilla-
tor, is characterized by fast large deviation from the initial position. At the second
stage, motion of the system is approaching stationary resonance oscillations near the
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steady state. At the first stage, an approximate description of motion is based on the
concept of the limiting phase trajectories (LPT) suggested in (Manevitch, 2007)
and mentioned above (Sect. 2.1.4) when considering the linear weakly coupled
oscillators with close natural frequencies.

2.3.2 Governing Equations

We investigate the transient response of the Duffing oscillator in the presence of
resonance 1:1. The dimensionless equation of motion is written as

d2u

dt2
+ 2εγ

du

dt
+ u + 8αεu3 = 2εFsin[(1 + εs)t +Θ] (2.106)

where ε > 0 is a small parameter. We recall that maximum energy pumping from the
source of excitation into the oscillator takes place if the oscillator is initially at rest;
this corresponds to the initial conditions

t = 0, u = 0;
du

dt
= 0 (2.107)

An orbit satisfying conditions (2.107) is in fact the limiting phase trajectory (LPT)
– see above, Sect. 2.1.4.

Following (Manevitch, 1999, 2001), we introduce the complex variables as
follows:

ϕ = e−it
(

du

dt
+ iu

)
,ϕ∗ = eit

(
du

dt
− iu

)
(2.108)

where i = √−1; the asterisk denotes a complex conjugate. Inserting ϕ, ϕ∗ from
(2.108) into (2.106), we obtain the following (still exact) equation of motion

dϕ

dτ
+ εγ (ϕ + ϕ∗e−2iτ ) +

+ εiα[ϕ3e2iτ − (ϕ∗)3e−4iτ − 3 |ϕ|2 ϕ + 3 |ϕ|2 ϕ∗e−2iτ ] =
= 2ε2e−iτF sin[(1 + εs)τ +�],

(2.109)

The multiple time-scale approach (Kevorkian and Cole, 1996; Nayfeh, 2000) is
applied to construct an approximate solution of (2.109). To this end, we introduce
the following transformation

ϕ(t, ε) = ϕ0(τ0, τ1) + εϕ1(τ0, τ1) + . . .
d

dt
= ∂

∂τ0
+ ε ∂

∂τ1
,

d2

dt2
= ∂2

∂τ 2
0

+ 2ε
∂2

∂τ0∂τ1
+ . . . (2.110)
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where τ 0 = t and τ 1 = εt are the fast and slow time-scales, respectively. A similar
representation is valid for the function ϕ∗. Then we substitute expressions (2.110)
into (2.109) and equate the coefficients of equal powers of ε. In the leading-order
(ε0) approximation we obtain the equation

∂ϕ0

∂τ0
= 0, (2.111)

which implies that a leading-order approximation for ϕ is a slowly-varying function
to be found at the next level of approximation.

Equating the coefficients of order ε leads to

∂ ϕ1

∂τ0
+ ∂ ϕ0

∂τ1
+ γ (ϕ0 + ϕ∗

0 e−2iτ0 ) − iα[ϕ∗3

0 e−4iτ0 −3|ϕ0|2ϕ∗
0 e−2iτ0

+3|ϕ0|2ϕ0 − ϕ3
0e2iτ0 ] = −iF

(
ei(sτ1+�) − e−i(2τ0+sτ1+�)

)
.

(2.112)

Equation (2.112) gives an O(ε)-approximation of the slow dynamics. In order to
avoid the secular growth of ϕ1(τ 0, τ 1) with respect to the fast time τ 0, i.e., to avoid
a response not uniformly valid with increasing time, we eliminate non-oscillating
terms from (2.112) (Kevorkian and Cole, 1996). This yields the following equation
for ϕ0

∂ϕ0

∂τ1
+ γ ϕ0 − 3iα|ϕ0|2ϕ0 = −iFei(sτ1+�), ϕ0(0) = 0. (2.113)

Then, as usual, we introduce the polar representation

ϕ0 = aeiδ (2.114)

where a and δ represent a real amplitude and a real phase of the process ϕ0(τ 1).
Inserting (2.114) into (2.113) and separating the real and imaginary parts, Equation
(2.113) is transformed into the system

da

dτ1
+ γα = −Fsin�

a
d�

dτ1
= − sa + 3αa3 − Fcos�

(2.115)

where a > 0, Δ = δ – (sτ 1 + Θ). It now follows from (2.108, 2.114) that

u(t, ε) = a(τ1)sin[t + δ(τ1)] + O(ε), τ1 = εt (2.116)

This means that the amplitude a(τ 1) and the phase δ(τ 1) completely determine the
process u(t,ε) (in the leading-order approximation). Note that a = 0 if the oscillator
is not excited.
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2.3.3 The Dynamics of the Oscillator without Dissipation
and the LPT

In this section, we recall main definitions and results concerning the dynamics of
the underlying non-dissipative system. In the absence of damping (γ = 0), system
(2.115) is rewritten as

da

dτ1
= −Fsin�

a
d�

dτ1
= − sa + 3αa3 − Fcos�

(2.117)

It is easy to prove that system (2.117) is integrable; it conserves the integral of
motion

H = 3

4
αa4 − sa2

2
− Fa cosΔ = H0, (2.118)

where H0 depends on initial conditions. In the phase plane, the LPT corresponds to
the contour H = 0, as only in this case the LPT goes through the point a = 0. Taking
H0 = 0, we obtain the following expression

H = a

(
3αa3

4
− sa

2
− F cos�

)
= 0. (2.119)

Excluding the solution a ≡ 0 from consideration, we obtain a as a solution of the
cubic equation

3αa3

4
− sa

2
− F cos� = 0. (2.120)

Equation (2.120) gives the second initial condition a(0+)= 0, cosΔ(0+) = 0. We
suppose that da/dτ 1 > 0 at τ 1 = 0+; under this assumption, Δ(0+) = –π /2. Hence
the initial conditions for the LPT take the form

τ1 = 0+, a(0+) = 0,�(0+) = −π
2

. (2.121)

In the following, we will write 0 instead of 0+, except as otherwise noted.
The steady state of system (2.117) can be found as the solution of the equations

da

dτ1
= 0,

d�

dτ1
= 0 (2.122)

This yields

− sa + 3αa2 − F cos� = 0 (2.123)
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where cosΔ = ±1. Due to periodicity of the solution in Δ, it is sufficient to study
only the cases Δ = 0 or Δ = – π . We analyze the properties of Eq. (2.123) through
the properties of its discriminant D

D = 1

9α2

(
F2

4
− s3

81α

)
(2.124)

If D < 0, Eq. (2.123) has 3 different real roots; if D > 0, Eq. (2.123) has a single real
and two complex conjugate roots; if D = 0, two real roots merge (Korn and Korn,
2000.). The latter condition gives a critical value of the parameter α

α∗ = 4s3

81F2
(2.125)

A straightforward investigation proves that, if α < α∗ (weak nonlinearity), then there
exist two stable centres C–: (–π , a–), C+: (0, a+), and an intermediate unstable hyper-
bolic point O: (–π , a0); if α > α∗ (strong nonlinearity), then there exists only a
single stable centre C+: (0, a+). Note that oscillations around the centre C– is asso-
ciated with the quasilinear dynamics of the system; oscillations around the centre
C+ correspond to strongly nonlinear motion.

As seen in Figs. 2.11 and 2.12, the shape of the LPT depends on the parameters
of the system. We next find a critical value αcr ensuring the transition from small
quasilinear (α < α∗) to large-amplitude strongly nonlinear (α > α∗) oscillations. In
the critical case αcr = α∗, an unstable hyperbolic point coincides with the maximum
of the left branch of the LPT at Δ = –π (Fig. 2.13).

The discriminant of Eq. (2.120) at Δ = –π equals

D = 4

α2

(
F2 − 2s3

81α

)
(2.126)

The condition D = 0 yields a critical parameter

a) b)

Fig. 2.11 Phase portrait (a) and plot of a(τ 1) (b) for quasi-linear oscillations: s = 0.4, F = 0.13,
α = 0.093
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a) b)

Fig. 2.12 Phase portrait (a) and plot of a(τ 1) (b) for strongly nonlinear oscillations: s = 0.4, F =
0.13, α=0.094

Fig. 2.13 Transition from
small to large oscillations

αcr = 2s3

81F2
= α∗

2
(2.127)

which defines a boundary between small quasi-linear (α < αcr) and large nonlinear
(α > αcr) oscillations.

In particular, for s = 0.4, F = 0.13 we obtain αcr=0.0935. Figures 2.11 and
2.12 are plotted for α < αcr and α > αcr, respectively. In Fig. 2.11a, one can see
the LPT encircling the center C– of relatively small oscillations; Fig. 2.12a shows
the LPT encircling the centre C+ of large oscillations; this case is associated with
the maximum energy absorption. Figures 2.11b and 2.12b demonstrate the temporal
behavior of the function a(τ 1) corresponding to the respective branch of the LPT.
Note that both branches of the LPT begin at the same point (2.121).

If α = α∗ = 2αcr, the above-mentioned coincidence of the stable and unstable
points at Δ = –π results in the transformation of the phase portraits (Fig. 2.14) and
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a) b)

Fig. 2.14 Phase portrait (a) and plot of a(τ 1) (b) for s = 0.4, F = 0.13, α = 0.187

disappearance of the stable centre C–. Figure 2.14a demonstrates the existence of a
single stable fixed point corresponding to Δ = 0.

2.3.4 The Transient Dynamics of a Weakly Damped Oscillator

In this section we investigate the dynamics of a weakly damped oscillator with
strong nonlinearity (α > αcr). As mentioned previously, strongly nonlinear oscil-
lations of large amplitude are associated with maximum energy absorption; it is
often the case of particular interest.

As one can see in Fig. 2.15, the damped system exhibits strongly nonlinear
behavior on the time interval [0, τ 1

∗]; an instant τ 1
∗ corresponds to the first

–3 –2 –1 0 1 2 3
Δ

1 .

2

3

a

a)

0 50 100 150
τ1

0.5

1.0

1.5

a

b)

Fig. 2.15 Phase portrait (a)
and plot of a(τ 1) (b) for
strongly nonlinear
oscillations: s = 0.4, F =
0.13, α=0.094, γ = 0.01
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maximum of the function a (τ 1). After that, motion becomes similar to smooth
oscillations around the stationary point. This allows separating the transient dynam-
ics into two stages. While on the interval 0 ≤ τ 1 ≤ τ 1

∗ motion is close to the
LPT of the undamped system, at the second stage, τ 1 ≥ τ 1

∗, motion is similar to
quasi-linear oscillations.

In the remainder of this section we study nonlinear motion at the first stage of
motion. Quasi-linear oscillations will be studied in Sect. 2.3.5.

2.3.4.1 Non-smooth Temporal Transformations

Figure 2.14b shows that strongly nonlinear oscillations are similar to motion of
a particle moving with constant velocity between two symmetric motion-limiters.
A connection between smooth and vibro-impact modes of motion in a smooth
nonlinear oscillator has been revealed in (Pilipchuk, 1988). A detailed discussion
of this effect can be found in (Vakakis et al., 1996).

Owing to similarity of the system dynamics to vibro-impact motion, the method
of non-smooth transformations (Pilipchuk, 1999b, 2001) can be used to describe the
first stage of motion. In order to extend this method to systems with damping, we
introduce the new fast and slow time scales. The slow time scale is defined as t0 =
γ τ 1; the fast time scale τ is represented as a saw-tooth sine (2.70) (see Fig. 2.7),
and dϕ/

dτ1
= ω(τ ).

We now construct the solution of (2.117) in the form

a(τ1) = X1(τ , t0) + e(φ)Y1(τ , t0)
�(τ1) = X2(τ , t0) + e(φ)Y2(τ , t0).

(2.128)

Using the slow and fast time scales, the derivatives with respect to τ 1 are

d

dτ1
= ∂

∂τ

∂τ

∂φ

∂φ

∂τ1
+ ∂

∂t0

∂t0

∂τ1
+ ∂

∂φ

∂φ

∂τ1
= eω

∂

∂τ
+ γ ∂

∂t0
+ ω ∂

∂φ
(2.129)

We now recall that

∂e

∂ϕ
= δ(φ − n)

with Dirac’s delta-function on the right-hand side, n = 1, 2, . . . . The δ-singularity
is excluded by requiring

Y1,2 = 0,
∂X1,2

∂τ
= 0 at τ = 1, 2, . . . , (2.130)

Using (2.128, 2.129), we obtain the following system
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da

dτ1
= eω

∂X1

∂τ
+ γ ∂X1

∂t0
+ ω∂Y1

∂τ
+ eγ

∂Y1

∂t0
,

d�

dτ1
= eω

∂X2

∂τ
+ γ ∂X2

∂t0
+ ω∂Y2

∂τ
+ eγ

∂Y2

∂t0

(2.131)

provided Y1,2 = 0 at τ = 1, 2,. . .. To obtain the equations for Xi, Yi, i = 1, 2, we
insert (2.131) into (2.117) and separate the terms with and without e. This yields the
set of equations

ω
∂Y1

∂τ
+ γ

(
∂X1

∂t0
+ X1

)
= −F sin X2 cos Y2

ω
∂X1

∂τ
+ γ

(
∂Y1

∂t0
+ Y1

)
= −F sin Y2 cos X2

ω

(
X1
∂Y2

∂τ
+ Y1

∂X2

∂τ

)
+ γ

(
X1
∂X2

∂t0
+ Y1

∂Y2

∂t0

)
+

+sX1 − 3αX3
1 − 9αX1Y2

1 = −F cos Y2 cos X2

ω

(
X1
∂X2

∂τ
+ Y1

∂Y2

∂τ

)
+ γ

(
X1
∂Y2

∂t0
+ Y1

∂X2

∂t0

)
+

+sY1 − 3αY3
1 − 9αY1X2

1 = F sin Y2 sin X2

(2.132)

2.3.4.2 The Construction of a Generating Solution

Considering γ as a small parameter, we construct an approximate solution in the
form of an expansion

Xi(τ , t0 ) = Xi0(τ , t0 ) + γXi1(τ , t0 ) . . . ,

Yi(τ , t0 ) = Yi0(τ , t0 ) + γYi1(τ , t0 ) + . . . , i = 1, 2;

ω(t0 ) = ω0(t0 ) + γω1(t0 ) + . . .
(2.133)

Inserting (2.133) into (2.132) and considering only the leading order terms, we find
that Y10 = 0, X20 = 0; in this case the variables X10 and Y10 satisfy the equations

ω0
∂X10

∂τ
+ F sin Y20 = 0

ω0X10
∂Y20

∂τ
+ sX10 − 3αX3

10 + FcosY20 = 0

(2.134)

The generating system (2.134) obviously corresponds to the undamped system
(γ = 0). System (2.134) is integrable, yielding the following first integral of motion

H = X10

(
3

4
αX3

10 − s

2
X10 − F cos Y20

)
= 0. (2.135)
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By analogy with (2.121), we obtain the initial conditions for system (2.134) in the
form

X10 = 0, Y20 = −π/2,ω0
∂X10

∂τ
= F at τ = 0, t0 = 0. (2.136)

For the further analysis, it is convenient to transfer (2.134) into the second-order
form. Using (2.135) to exclude Y20, the resulting equation is written as

∂2X10

∂τ 2
+ λ2

0 f (X10) = 0 (2.137)

where λ0(t0) = 1/ω(t0), and

f (X10) = s2

4
X10 − 3sα

2
X3

10
+ 27α2

16
X5

10

In addition, we use the following approximations to conditions (2.130):

∂X10

∂τ
= 0, Y20 = 0 at τ = 1. (2.138)

In contrast to (2.130), conditions in (2.138) are not independent; they are equivalent
by virtue of the first Eq. (2.134). Using this equivalence, we involve only the first
equality in the further analysis. It is worth noting that equalities (2.138) have a clear
physical meaning: X10(τ ) attains its maximum at an instant τ such that Y20(τ ) = 0.

In order to highlight the substantial features of the solution, we use an approach
known as vibro-impact approximations (Vakakis et al., 1996). Following this
approach, we represent the solution for problems (2.137, 2.138) as

X10 = x0 + x1 (2.139)

where it is assumed that |x1(τ , t0)| << |x0(τ , t0)|. The correctness of the lat-
ter assumption will be shown below. The generating solution x0 is chosen as the
solution of the equation

∂2x0

∂τ 2
= 0 (2.140)

The initial conditions follow from (2.138)

x0 = 0,ω0(0)
∂x0

∂τ
= F at τ = 0, t0 = 0. (2.141)

The solution of Eq. (2.140) satisfying (2.141) is

x0(τ , t0) = A0 (t0) τ ; A0 (0) ω0 (0) = F. (2.142)
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Formulas (2.142) show that if γ = 0, then the solution x0(τ , 0) = A0(0)τ
corresponds to the motion of a particle between two rigid stops.

The next approximation x1 is governed by the following equation

∂2x1

∂τ 2
= −λ2

0 (t0) f (x0)

x1(τ , t0) = −λ2
0 (t0)

τ∫
0

(τ − ξ )f (A0 (t0) ξ )dξ
(2.143)

Combining solutions (2.142) and (2.143) and imposing constraints (2.140), we find

∂X10

∂τ
= ∂x0

∂τ
+ ∂x1

∂τ
= 0, τ = 1 (2.144)

and, therefore,

ω2
0A0 =

1∫
0

f (A0ξ )dξ , ω2
0 = A−2

0 � (A0)

�(A0) =
A0∫
0

f (s)ds = A2
0

8

(
3

2
αA2

0 − s

)2 (2.145)

Obvious transformations yield a connection between ω0(t0) and A0(t0)

ω2
0 (t0) = 1

8

[
3

2
α A2

0 (t0)− s

]2

(2.146)

If we consider A0(t0) and ω(t0) as the amplitude and the phase of the saw-tooth
sine function x0(τ , t0) = A0(t0)τ (φ(τ 1)), then (2.146) represents the slowly varying
backbone curve of system (2.139) (Meirovitch, 2000).

It follows from (2.142, 2.146) that the initial values ω0(0) and A0(0) can be found
from the equations

� (A0 (0)) = [A0 (0) ω0 (0)]2 = F2

A2
0 (0)

[
3α

2
A2

0 (0)− s

]2

= 8F2, ω0 (0) = F

A0(0)

(2.147)

By definition, t0 = 0 as γ = 0. This implies that the values ω0(0) and A0(0) can be
interpreted as the frequency and the amplitude of the undamped system.

Given A0(t0) and ω0(t0), formula (2.143) yields

x1(τ , t0) = −A0(t0)τ 3

4ω2(t0)

{
9α2

56
[A0 (t0) τ ]4 − 3sα

5
[A0 (t0) τ ]2 + s2

6

}
(2.148)
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We now find the function Y20(t0,τ ). Arguing as above, we construct a generating
solution Y20 in the form

Y20 = y0 + y1 (2.149)

where it is assumed that |y1(τ , t0)| << |y0(τ , t0)| in an interval of interest. The
leading order term y0 can be found as a solution to the first Eq. (2.134), in which
X10 = x0. This yields

y0 (t0) = −arcsin

(
F

A0(t0)ω(t0)

)
, y0 (0) = −π

2
(2.150)

The term y1(t0,τ ) is defined by the second Eq. (2.134). As before, we take X10 = x0
and exclude cosY20 by (2.135). Then we obtain

∂y1

∂τ
= 1

ω0

(
− s

2
+ 9

4
αA2

0τ
2
)

y1(τ , t0) = 1

ω0(t0)

(
− sτ

2
+ 3

4
αA2

0(t0)τ 3
) (2.151)

It will be shown below that the correction terms x1, y1 are negligibly small compared
to x0, y0. This allows taking approximations X10 = x0, Y20 = y0 into the subsequent
analysis.

2.3.4.3 Calculation of A0(t0) and ω0(t0)

We find A0(t0) and ω0(t0) by proceeding to the next order of approximation. To this
end, we use the procedure of iterative approximations. A detailed review of iterative
approximations algorithms can be found e.g. in (Berinde, 2007).

The first iteration is constructed as:

X(1)
1 = X10 + γX11, Y (2)

2 = y20 + γY21, X(2)
2 = γX21, Y (1)

1 = γY11,ω(1) = ω0 + γω1
(2.152)

Inserting Xi
(1), Yi

(1) into (2.132), taking into account γ -order terms, and letting
X10 = x0, Y20 = y0, we obtain two independent sets of equations

ω(1)
∂Y (1)

1

∂τ
+ Fsin

(
X(1)

2

)
cos(Y (1)

2 ) = − γ
(
∂x0

∂t0
+ x0

)

ω(1)X(1)1

∂X(1)
2

∂τ
+ sY (1)

1 − 9αY (1)
1

(
X(1)

1

)2 −
−Fsin(Y (1)

2 )sin(X(1)
2 ) = −γ x0

∂y0

∂t0
,

(2.153)

and
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ω(1) ∂X(1)
1

∂τ
+ F sin(Y (1)

2 ) = 0,

ω(1)X(1)
1

∂Y (1)
2

∂τ
+ sX(1)

1 − 3α(X(1)
1 )3 + F cos Y (1)

2 = 0.

(2.154)

Choosing x0(τ , t0) as a solution of the equation

∂x0

∂t0
+ x0 = 0 (2.155)

we find

dA0

dt0
+ A0 = 0, A0 (t0) = A0 (0) exp(−t0) (2.156)

and, therefore,

x0(τ , t) = A0 (0) τe−t0 , (2.157)

where A0(0) can be found from (2.147). Substitution of (2.156) into (2.146) yields:

ω0 (t0) = 1

2
√

2

∣∣∣∣32αA2
0 (0) exp(−2t0) − s

∣∣∣∣ (2.158)

Insertion A0(t0) and ω0(t0) from (2.156, 2.158) into (2.150) and (2.151) determines
y0(t0) and y1(τ , t0). The approximation holds until ω0 is of order unity.

As an example, we consider a system with the parameters

γ = 0.1 (or γ = 0), s = 0.2, α = 0.333; F = 1, θ = 0 (2.159)

Figure 2.16 demonstrates the shape of ω0(t0), t0 = γ τ .
Figure 2.17a, b depict the LPT for the undamped system (2.115) and the solutions

X10 for system (2.134) with parameters (2.159). As the frequency ω0(t0) decreases,
the time to reach the first maximum of X10 in system (2.116) exceeds a similar
interval in its undamped counterpart (3.1) but the maximum value of X10 in (2.115)
is less than in (2.117). For the undamped system (2.117) we have the maximum M =
X∗

10 ≈ 1.835 at τ 1
∗ ≈ 1.835 in the leading order approximation, and M ≈ 1.686 at

τ 1
∗ ≈ 2 for the numerical solution; for system (2.115) with γ = 0.1 we have the

maximum

M = X∗
10 ≈ 1.46 at τ1

∗
≈ 2.4. (2.160)

Figure 2.17b proves that the correction term x1 is negligibly small. In a similar
way, one can evaluate the small term y1. This implies that one can ignore the terms
x1, y1 in the further analysis and let

X10 = x0, Y20 = y0 (2.161)
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Fig. 2.16 Function ω0(t0)
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Fig. 2.17 (a) Numerical
solution (solid line) and two
analytical approximations
(dashed – the leading order,
dash-and-dot – the first
order), corresponding to LPT;
(b) Analytical solution for
X10 (dashed – the leading
order, dash-and-dot – the first
order)
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Explicit estimates of x1 and y1 can be found by the direct calculation by formulas
(2.144) and (2.151). For brevity, we omit the calculation of the terms X11, Y21 as
well as the determination of higher order approximations.

Finally, we determine an instant τ 1
∗ at which the function X10 reaches its first

maximum. Given ω0(t0), we obtain from Eq. (2.128)

τ∗
1∫

0

ω0(γ s)ds = 1. (2.162)

2.3.5 Quasi-Linear Oscillations

In this section we examine quasi-linear oscillations in the second interval of motion,
τ > 1. It is easy to see that an orbit of the dissipative system tends to its steady state
as τ → ∞. The steady state O: (a0, Δ0) for system (2.115) is determined by the
equality

a2
[
(s − 3αa2)2 + γ 2

]
= F2 (2.163)

or, for sufficiently small γ ,

γ a0 = −F sin�0, sa0 − 3αa3
0 = −F cos�0

�0 ≈ −γ a0/F + O(γ 3), a0(s − −3αa2
0) = − F + O(γ 2).

(2.164)

In fact, the smallness of γ is required only in the second set of Eq. (2.164).
We define deviations from the steady state as

ξ = a − a0 , η = �0. (2.165)

In addition, we must impose the matching conditions

a0 + ξ = x∗
0,

dξ

dτ1
= 0 at τ1 = τ1 (2.166)

where x0
∗ = x0(τ 1

∗). The instant τ 1
∗ is determined by formula (2.151).

As above, we construct an approximate solution by the multiple scale method.
First, we suppose that the contribution of the nonlinear terms and dissipation force
in the overall response is relatively small. Secondly, to account for the small effects,
we introduce the parameter μ symbolizing small terms. As a result, we obtain

dξ

dτ1
+ Fη = −μγ ξ

dη

dτ1
− k1

a0
ξ = μ

(
s

a2
0

ξ2 + F

2a0
η2

)
− μγη.

(2.167)
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where

k1 = 9αa2
0 − s, k2 = 18αa0,

In the final solution we let μ = 1. We introduce the fast and slow time scales as
θ0 = τ 1, θ1 = μθ0. As above, the solution is sought as the expansion

ξ = ξ0 + μξ1 + · · · , η = η0 + μη1 + · · · , (2.168)

and

dξ

dτ1
= ∂ξ0

∂θ0
+ μ

(
∂ξ0
∂θ1

+ ∂ξ1

∂θ0

)
+ . . .

dη

dτ1
= ∂η0

∂θ0
+ μ

(
∂η0
∂θ1

+ ∂η1

∂θ0

)
+ . . .

(2.169)

Using the procedure similar to that of Sect. 2.3.4, we obtain the equations of the
leading order approximation

∂ξ0

∂θ0
+ Fη0 = 0,

∂η0

∂θ0
− k1

a0
ξ0 = 0, (2.170)

with the matching conditions

ξ0 = x∗
0 − a0

∂ξ0

∂
= 0 at θ0 = τ ∗

1 . (2.171)

If k1 > 0, the solution of system (2.170, 2.171) is written as

ξ0 = (θ0, θ1) = C0(z1) cos(kz0), η0(θ0, θ1) = rC0(z1) sin kz0, (2.172)

where we denote

z0 = θ0 − τ ∗
1 = τ1 − τ ∗

1 > 0, z1 = εz0, k2 = Fk1/a0 > 0, r = k/F.

The slowly varying function C0(z1) will be found at the next step of approximation.
The equations of the first order approximations take the form

∂ξ1

∂θ0
+ Fη1 = −

(
∂ξ0

∂θ1
+ γ ξ0

)

∂η1

∂θ0
− k1

a0
ξ1 =

(
s

a2
0

ξ2
0 + F

2a0
η2

0

)
−
(
∂η0

∂θ1
+ γ η0

)
.

(2.173)

Insertion of (2.172) into (2.173) and exclusion of the secular terms yield

C0(z1) = coe−γZ1, c0 = x∗
0 − a0. (2.174)
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and

ξ1(θ0, θ1) = − 1

2κ2
Fc2

0e−2γ z1

(
K1 − K2

3
cos2kz0

)

η1(θ0, θ1) = − 1

F

∂ξ1

∂z0
= −K2

3κ
c2

0e−2γ z1 sin2kz0,
(2.175)

where

K1 = s

a2
0

+ F

2a0
, K2 = s

a2
0

− F

2a0

In particular, for system (2.173) with the parameters (2.159), we find

x∗
0 = 1.46, a0 = 1.065,�0 = 0.1.k1 = 3.2, k2 = 6.39, K1 = 0.645, K2 = −0.294

and, therefore,

c0 = 0.395, k = √
3 (2.176)

Since γ <<κ; the assumption of small dissipation holds. Finally, we obtain

ξ1(θ0, θ1) = −c2
0e−2γ z1 (0.108 + 0.098 cos2kz0)

η1(θ0, θ1) = 0.075c2
0e−2γ z1 sin2kz0

(2.177)

It is obvious that |ξ1(θ0, θ1)|<<|ξ0(θ0, θ1)|, |η1(θ0, θ1)| << |η0(θ0, θ1)|, and,
therefore, the linear approximation suffices to describe the second stage of motion
(Fig. 2.18).

Fig. 2.18 Transient dynamics of system (2.115): solid line – numerical solution; dot-and-dash line
– segment (2.157); dashed line – nonlinear solution (2.168); dotted line – linear solution (2.172)
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Figure 2.18 demonstrates a good agreement between the numerical solution of
Eq. (2.115) with the parameters (2.157) and the approximate solution found by
matching the segment (2.157) (dot-and-dash line) with the approximate analytic
solution of the linearized (dotted line) and nonlinear (dashed line) systems at the
point τ 1

∗; the latter solution is calculated by (2.168, 2.172, 2.177) with μ = 1. As
seen in Fig. 2.18, small nonlinear terms (2.177) allow considering a weak asym-
metry of the nonlinear solution. Despite a certain discrepancy in the initial interval
of motion, the numerical and analytic solutions approach closely as τ 1 increases.
In particular, this implies that a simplified model, expressed by (2.157) for 0 ≤ τ 1
≤ τ 1

∗, and linear solution (2.172) for τ 1 ≥ τ 1
∗, suffices to describe a complicated

near-resonance dynamics.
Results of numerical integration for the original Eq. (2.106) are given in Fig. 2.19
We now correlate numerical and analytic results. As seen in Fig. 2.19, the first

maximum of the slowly varying envelope of the process u(t,ε) equals M1 ≈ 1.5; it
is reached at the instant t∗ ≈ 20, or τ 1

∗ ≈ 2; the second maximum M2 ≈ 1.4 is at t∗
≈ 60, τ 1

∗ ≈ 6, the third maximum M3 ≈ 1.3 is at t∗ ≈ 100, τ 1
∗ ≈ 10, etc. When

these results are compared with that of Fig. 2.18, it is apparent that the numerically
constructed envelope is in a good agreement with the asymptotic approximations of
the function a(τ 1).

Fig. 2.19 Numerical
integration of Eq. (2.106): ε
= 0.1, s = 0.2, α = 0.333,
F = 1, and γ = 0.1

Arguing as above, one can obtain the solution in case k1 < 0. Denoting k2 =
F|k1|/a0 and assuming γ << k, we find a solution similar to (2.172, 2.175), with
cosh (kz) and sinh (kz) in place of cos (κz) and sin (κz), respectively.

Finally, we note that, contrary to Sect. 2.2 considering the vibro-impact pro-
cesses, here we deal with a quasi-linear system; the applicability of so similar
mathematical tools seems unexpected and exciting.

2.4 Entrainment, Synchronization and Resonance Capture

There exist many situations, in which the motion of oscillatory systems is affected
by external forces. Perhaps, the simplest example is the motion of linear oscillator
under harmonic forcing, considered above in Sect. 2.1. Still, if the linear system
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is asymptotically stable and subject to external harmonic forcing, it is possible to
prove that the response regime will be unique.

Even for weakly nonlinear systems (to say nothing about the essentially nonlinear
ones), this uniqueness is in general not the case. The forced and damped nonlinear
system may exhibit different behavior, dependent on the initial conditions. In this
case it is accepted to say that the system has multiple attractors. Without going into
deeper mathematical details (some of them will be discussed below), it is possible
to say that the attractor is the limit set of points in the state space of the dynamical
system for t→∞. The knowledge of these attractors may help one to bring the
nonlinear system to desired regime of motion or to avoid some undesired regimes.

Sometimes such control over the attractor of the oscillating system may be of
vital importance – for instance, the role of heart pacemakers is to keep the heart of
the patient close to the attractor associated with the normal beating and far from the
attractor associated with potentially mortal fibrillations. The other example may be
taken from the fields of mechanical and civil engineering – the designer would like
to avoid attractors related with high-amplitude oscillations of the structure, which
may bring about failure.

The current section describes a few simple basic models of nonlinear systems
under external forcing and discusses possible dependence of the response regimes
on parameters and initial conditions.

2.4.1 Pendulum with Constant External Torque

The first and perhaps the simplest model of essentially nonlinear system under
effect of external forcing which demonstrates the idea of alternative attractors is
the model of a pendulum with constant external torque. Without loss of generality,
if the damping is absent, the governing equation for this model may be written as:

ü + sin u = c (2.178)

where c = const, frequency of the pendulum is set to unity. We restrict ourselves
only by the case of non-negative c – the opposite case is considered trivial by change
of x sign.

Fixed points of Eq. (2.178) ue are determined by the obvious equation:

sin ue = c (2.179)

Equation (2.179) has solutions only if c≤1, therefore one should expect a qualitative
change of the system behavior if c passes unity. In order to visualize and explain this
change, it is instructive to plot the potential energy for Eq. (2.178) for both cases
(Fig. 2.20a, b):

U(u) = − cos u − cu (2.180)
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b)a)

Fig. 2.20 Potential function (2.180) (a) c>1; (b) c<1

At Fig. 2.20a the case of c>1 is presented. It is easy to see that there are no equi-
librium points and the system will inevitably rotate with growing velocity. On the
contrary, the profile of the potential energy for c < 1 at Fig. 2.20b has infinitely
many potential wells. Therefore, the system may either travel through the system
with growing velocity, as in previous case, or oscillate in one of the wells. So, two
qualitatively different types of motion are possible here. It should be mentioned that
due to the presence of the first integral the system may be integrated in quadratures.

The regime of motion of the system is determined by its initial conditions. To
clarify this point, we present the phase portraits of the system with c > 1 (Fig. 2.21a)
and c < 1 (Fig. 2.21b).

Fig. 2.21 Phase portrait of the oscillator with external constant torque, (a) c>1; (b) c<1
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It is clear that all phase trajectories in Fig. 2.21a describe unlimited growth of
the solution, whereas in Fig. 2.21b some of the solutions still grow without limit,
whereas the amplitude of the others (situated inside the homoclinic loops) remains
limited. In order to find the limited amplitude for all times one should start close
enough to the stable equilibrium point – within the homoclinic loop. If the phase
trajectory starts beyond this region, it will have an infinitely growing amplitude.

If viscous damping is introduced into the pendulum, Eq. (2.178) will be modified
to the form

ü + λu̇ + sin u = c (2.181)

where λ is the damping coefficient. Unlikely Eq. (2.178), this equation does not
possess the first integral and cannot be integrated in quadratures. Still, its fixed
points are described by Eq. (2.179) and no solutions exist for c>1. In this case,
the phase portrait will be very similar to one presented at Fig. 2.21a (the symmetry
with respect to horizontal axis will be lost) and no solutions with limited amplitude
will exist, despite the damping. For c<1, however, drastic change will occur. Phase
portrait for the case c = 0.5 and λ = 0.1 is presented in Fig. 2.22.

One can see that the homoclinic loop is destroyed (stable and unstable manifolds
are split) and therefore some phase trajectories coming “from infinity” will enter the
vicinity of the fixed point and will eventually be attracted to it – such a situation is
not possible in the conservative version of the system. It is acceptable to say that
such phase trajectories of the system are captured by the fixed point. It is possible
to demonstrate that a relative amount of these captured trajectories is proportional
to λ.

One more remark will be in order in this section. In the conservative case, the
trajectories within the homoclinic loops remain bounded but never approach the

Fig. 2.22 Phase portrait of
the damped system
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fixed points. In the damped case, the captured trajectories are attracted to the fixed
points, entering an arbitrarily small vicinity of the point at some finite time.

2.4.2 Entrainment of the Van der Pol Oscillator by External
Harmonic Force

As an example of a system with self-excitation affected by a signal from outside,
let us consider a standard Van-der-Pol oscillator with external harmonic forcing. Its
equation of motion in dimensionless form, with frequency of external forcing and
characteristic amplitude of the nonlinear term normalized to unity, may be written
as:

ü − ε(1 − u2)u̇ + 2u = εA cos t (2.182)

It is supposed that the natural frequency of the oscillator is close to the forcing
frequency:  = 1 + �ε. Values of A and � are considered to be of order unity,
ε << 1.

Transfer to complex variables according to standard ansatz:

φ(t) exp(it) = u̇ + iu (2.183)

with subsequent averaging yields the following condition for absence of the secular
terms (up to order O(ε)):

ϕ′ − iε�ϕ − ε

2

(
1 − |ϕ|2

4

)
ϕ = εA

2
(2.184)

The apostrophe denotes the derivative with respect to slow time after the averaging.
Steady-state responses of the system correspond to fixed points ϕ0 of Eq. (2.184)
and may be computed from the following equation:

− i�ϕ0 − 1

2

(
1 − |ϕ0|2

4

)
ϕ0 = A

2
(2.185)

In order to investigate possible solution of Eq. (2.185), we split the complex
function ϕ(t) to modulus and argument ϕ(t) = N(t) exp(iδ(t)) and, accordingly,
ϕ0 = N0 exp(iδ0). Then, from Eq. (2.184) we can obtain two real equations:

δ′ − ε� = − εA
2 N

sin δ

N′ − ε

2

(
1 − N2

4

)
N = εA

2
cos δ

and from Eq. (2.185) for the fixed points:
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� = A

2N0
sin δ0

−1

2

(
1 − N2

0

4

)
N0 = A

2
cos δ0

(2.186)

By putting N2
0 = Z, dividing the second equation of (2.186) by 2, squaring up and

summing, one obtains a single equation for Z:

�2Z + 1

4
(1 − Z/4)2Z = A2/4

Technical change of variables

σ = 2�, ρ = Z/4, F = A/2 (2.187)

reduces the equation above to the standard form:

σ 2ρ + ρ(1 − ρ)2 = F2 (2.188)

Our goal is to investigate how number and properties of solutions of Eq. (2.188)
depend on values of parameters F and σ. First of all, let us investigate possible
behavior of function f (ρ) = σ 2ρ + ρ(1 − ρ)2 (clearly, ρ cannot be negative). For
ρ = 0 f = 0, for ρ→∞ f(ρ)→∞, therefore for every value of σ and F at least one
solution of (11) exists. More than one solution can exist if f(ρ) is not monotonous
for ρ ≥ 0. To check that, we find extreme points of f(ρ):

f ′(ρ0) = σ 2 + 1 − 4ρ0 + 3ρ2
0 = 0 (2.189)

Solutions of Eq. (2.189) are

ρ0 = 2

3
± 1

3

√
1 − 3σ 2 (2.190)

From (2.190) it is clear that for |σ | < 1/
√

3 the function f(ρ) will have a maximum
and a minimum in the points with positive ρ, otherwise it will grow monotonously
and only one solution of (2.188) will exist. These two possibilities are presented in
Fig. 2.23a (|σ | < 1/

√
3) and 2.23b (|σ | > 1/

√
3).

From Fig. 2.23a it is clear that for given σ for Q1 > F2 > Q2 there are three
solutions; otherwise, there is only one. The boundaries correspond to merging of
two solutions. Values of Q1 and Q2 are easily obtained from (1.188) and (1.190):

Q1 = 2

3
σ 2 + 2

27
+
(

2

9
σ 2 − 2

27

)√
1 − 3σ 2

Q2 = 2

3
σ 2 + 2

27
−
(

2

9
σ 2 − 2

27

)√
1 − 3σ 2

(2.191)
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a)

b)

Fig. 2.23 Possible behaviors
of function f(ρ)

The zone with three solutions at the plane of parameters (σ, F) is presented in
Fig. 2.24 in accordance with Eq. (2.191).

It is easy to see that Eq. (2.188) can have three solutions only for F < Fcrit =√
8/27 and σ < σcrit = 1/

√
3.

The result obtained here means that for certain combinations of parameters
Eq. (2.188) can have more than one solution and therefore Eq. (2.182) in principle
can have more than one response regime. However, in order to characterize these
regimes one should describe the motion in the vicinity of the fixed points, i.e to
determine their stability characteristics.

Easy way to do that is to consider small perturbation of the solution for the fixed
point:

ϕ = ϕ0 + γ (t), γ << 1 (2.192)
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Fig. 2.24 Zones of
multiplicity on the parametric
plane

By substitution of (2.192) by (2.184) and keeping only linear terms, one obtains:

γ ′ − iε�γ + ε

8

(
ϕ2

0γ
∗ + |ϕ0|2 γ

)
− ε

2

(
1 − |ϕ0|2

4

)
γ = 0 (2.193)

Solution of Eq. (2.193) is searched in a form

γ = γ+ exp(μt) + γ− exp(μ∗t) (2.194)

By substituting (2.194) to (2.193) and equating the coefficients of each of two
exponents, one gets

(
μ− iε�+ ε |ϕ0|2

4
− ε

2

)
γ+ + ε |ϕ0|2

8
γ ∗− = 0

(
μ∗ − iε�+ ε |ϕ0|2

4
− ε

2

)
γ− + ε |ϕ0|2

8
γ ∗+ = 0

(2.195)

Equations (2.195) are commensurate only if

(
μ+ ε |ϕ0|2

4
− ε

2

)2

+ ε2�2 = ε2 |ϕ0|4
64

(2.196)

or, in terms of new variables (2.187):
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μ = ε

2

(
1 − 2ρ ±

√
ρ2 − σ 2

)
(2.197)

Stability of a given fixed point is determined by sign of real part of μ. Two cases
should be distinguished:

(a) If σ > ρ, then the solution is stable for ρ > 1/2 and unstable for ρ < 1/2.
(b) If σ < ρ, then for 3ρ2 − 4ρ + 1 + σ 2 > 0 the fixed point is stable, otherwise –

stable for ρ > 1/2 and unstable for ρ < 1/2.

Stability zones described above are presented in Fig. 2.25:
Partial information concerning stability of solutions on the plane of control

parameters is summarized in Fig. 2.26. It should be mentioned again that this picture
is only partial; especially, in the center of the picture there exists a very interesting
region with complicated bifurcational structure. For detailed analysis, see (Rand,
2009).

It is remarkable that for relatively small values of detuning and relatively large
forcing there exists only one stable steady-state solution. In other terms, the Van-der
Pol oscillator oscillates with a frequency of external forcing rather than with its own
frequency. Such behavior is referred to as entrainment – external force imposes its
frequency on the oscillator.

For relatively large detuning and small forcing, the solution corresponding to
entrainment is unstable. It is possible to demonstrate that the loss of stability occurs
due to Hopf bifurcation at ρ = 1/2 and therefore stable limit cycle is formed for
Eq. (2.184) – for initial forced Van-der-Pol equation, it corresponds to Neimark–
Sacker bifurcation. It means that two frequencies are present in the solution –
approximately frequency of the forcing and approximately natural frequency of the

Fig. 2.25 Stability zones on
the parametric plane ρ–σ



2.4 Entrainment, Synchronization and Resonance Capture 73

Fig. 2.26 Stability zones at
the plane of parameters σ–F
(partial view)

Fig. 2.27 Time series simulation of the forced Van-der-Pol oscillator. (a) Phase – locked response;
(b) Quasiperiodic response

oscillator. Such behavior is referred to as heterodyning, beating, or quasiperiodic
oscillations.

Numerical examples which illustrate these two types of behavior in initial Eq.
(2.182) are presented in Fig. 2.27a (A = 1.6, � = 0.1, ε = 0.01) and Fig. 2.27b
(A = 1.2, � = 0.35, ε = 0.3).

Figure 2.27a describes the regime of entrainment and Fig. 2.27b the regime of
heterodyning or quasiperiodic response. The beatings in Fig. 2.27b are caused by
the presence of two close frequencies – the natural frequency of the oscillator and
the frequency of the external forcing.

The model of entrainment of the oscillator with self-excitation by external peri-
odic force has many applications. Besides the already mentioned heart pacemakers
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which entrain the heart of the patient to beat with the prescribed frequency, the con-
cept of entrainment appears useful in studies of circadean rhythms in living systems
and even for the tuning of piano strings (Jackson, 1991).

It should be mentioned that the model of the Van-der-Pol oscillator presented
above has certain advantages and shortcomings. The main advantage, of course, is
that it is the classic (historically, the first) model of a self-excited system, which
exhibits entrainment in the case of large forcing and small detuning, and does not
exhibit it in the opposite case. However, there are some effects (multiplicity of solu-
tions, complicated bifurcations as in the central part of Fig. 2.26) which occur due
to the special shape of Eq. (2.182) rather than they represent essential common fea-
tures of the entrainment process. In other terms, real systems with self-excitation and
entrainment should exhibit the common features mentioned above but can have very
different peculiarities of behavior from those predicted by the Van-der-Pol equation.
Therefore, it might be instructive to develop a simpler model which will capture
essential features of the phenomenon and will avoid irrelevant complications caused
by special choice of the equation of self-excited oscillations.

The idea of such a model is given by the first equation of System (2.186). If one
neglects variations of N, this equation may be presented in a form

dδ

dt
= ω + G sin δ (2.198)

where ω and G are constants. Such a model is referred to as phase-only model of
entrainment, ω represents instantaneous frequency of oscillations, G – the intensity
of external forcing. Note that Eq. (2.198) is somewhat similar to Eq. (2.198) of
the pendulum with constant external torque, but is of the first order. Of course,
Eq. (2.198) is exactly solvable. Fixed points exist in (2.198) if and only if

∣∣∣ω
G

∣∣∣ ≤ 1 (2.199)

Physically, this condition means that the forcing is strong enough. Fixed points cor-
respond to the states with zero frequency, i.e. to the frequency of external force,
and therefore describe the regime of entrainment. Moreover, exact solution of
Eq. (2.198) for this case yields

δ = 2 tan−1

⎛
⎝−G

ω
+
√(

G

ω

)2

− 1 tanh

(
− t − t0

2

√
G2 − ω2

)⎞⎠ (2.200)

It is easy to see that for any initial conditions and t→∞ solution (2.200) yields
δ → − sin−1(ω/G), i.e. for any initial conditions the system will be finally attracted
by the stable regime of entrainment. If condition (2.199) is not valid, then no fixed
point exists and the entrainment does not occur – all solutions exhibit a drift with a
never vanishing instantaneous frequency.
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2.4.3 Synchronization of Oscillators and Related Models

The phenomenon of synchronization is a “close relative” of the phenomenon of
entrainment discussed in the previous section. Historically, the concept of syn-
chronization preceded that of entrainment by many years. Synchronization of a
two pendulum clock with sufficiently close frequencies hung back to back on
the same wall has been observed as early as in Seventeenth century by Christian
Huygens. The physical reason for this synchronization is interaction between two
self-excited oscillators – if it is strong enough and the frequencies are close enough,
the oscillators will synchronize their motion.

In order to describe the synchronization in this case, we will take advantage of
phase-only approximation, although historically this phenomenon was described by
the treatment of coupled Van-der-Pol oscillators (see, e.g. Landa, 1996).

Two coupled phase-only oscillators are described by the following system of
equations:

dθ1

dt
= ω1 + F1(θ1, θ2)

dθ2

dt
= ω2 + F2(θ1, θ2)

(2.201)

Variables θi are phases, therefore functions Fi should be 2π-periodic with respect
to both variables. At the beginning, for the sake of simplicity, we’ll adopt that both
functions Fi depend only on phase difference δ = θ1 − θ2. Then (2.202) may be
trivially reduced to the form

dδ

dt
= ω1 − ω2 + F(δ), F = F1 − F2 (2.202)

Function F is 2π-periodic. If we make the further assumption that only the first
Fourier component of F is significant, then Eq. (2.202) is reduced to the form

dδ

dt
= ω1 − ω2 + F̃1 sin(δ + δ0) (2.203)

where F̃1 is the amplitude of this significant Fourier component and δ0 is the con-
stant phase shift. Obviously, Eq. (2.203) is completely equivalent to Eq. (2.198) and
therefore, phase variables θ1 and θ2 will be synchronized (i.e. δ will be constant) if
and only if

∣∣∣∣∣
F̃1

ω1 − ω2

∣∣∣∣∣ > 1 (2.204)

Physically, Condition (2.204) is rather understandable: in order to synchronize the
oscillations, coupling between the oscillators should be strong enough and the
difference between frequencies not too large.
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Now is the time to refute the assumption that the interaction depends only on the
phase difference. Generally speaking, 2π-periodicity of F1 and F2 with respect to
both arguments implies that these functions may be presented as sums of a Fourier
series including sines and cosines of all combinations kθ1 + mθ2, where k and m are
whole numbers. Let us admit that one such Fourier component is significant and all
others can be neglected. Then, it is again possible to reduce the system to a single
first-order differential equation:

dϑ

dt
= kω1 + mω2 + F̃km sin(ϑ + ϑ0)

ϑ = kθ1 + mθ2

(2.205)

This equation, again, is formally equivalent to (2.198) and the system is attracted to
a fixed point with ϑ = const if and only if∣∣∣∣∣

F̃km

kω1 + mω2

∣∣∣∣∣ > 1 (2.206)

If Condition (2.206) is valid and k�=–m, then the oscillators are not synchronized;
instead, the ratio of their frequencies is a rational number, or, in other terms, the
frequencies are commensurate. This situation is referred to as phase locking in
the system of coupled oscillators. The other common notion is that the oscillators
are engaged in the resonance k: m. In the state space, the motion of the system is
periodic, with period equal to the least common multiple of k and m.

Physically, Condition (2.206) means that either appropriate Fourier component
is large, or the value kω1 + mω2 is small. The former condition may be the result
of some peculiar form of the coupling. The latter condition implies that the ratio
of the frequencies is close to some rational number. In fact, any frequency ratio is
arbitrarily close to some rational number, but for “well-behaved” functions F, the
coefficients of Fourier components decay very rapidly (in fact, exponentially) for
large k and m. That is why usually the phase locking is observed for not very large
absolute values of k and m; however, in principle it is possible for every rational
number.

The analysis presented above is by no means rigorous. Mathematical treatment
of the phase locking phenomenon involves consideration of so-called circular map
and is presented in many books (see, e.g. Arnold et al., 2006). The final conclusion
is similar: the locking can occur at any frequency ratio k:m, provided that the combi-
nation kω1+mω2 is small enough or the relevant Fourier-component of the coupling
is large enough. In the space of parameters, the zones of phase locking exist in the
vicinity of any rational frequency ratio – they are known as Arnold tongues. Their
relative width decreases drastically with growth of k and m.

Concepts of synchronization and phase locking have been broadly used in the
last decades, for consideration of various systems of coupled oscillators, for the
study of synchronization in chaotic systems and for the design of chaos control. The
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interested reader may consult recent books (Blekhman, 2000 and references therein,
Pikovsky et al., 2003) to find out necessary details.

2.4.4 Resonance Capture

Resonance motions (i.e. appearance of commensurate frequencies) are ubiquitous
in dynamical systems around us. The most common example, of course, is related
to the motion of the Moon: we always see one side only and this means that the
frequency of the rotation around the axis is equal to the frequency of rotation around
the Earth. It is possible to say that we deal here with a 1:1 resonance. A less known
example is related to the motion of Mercury around the sun: the two frequencies are
related as 3:2. There are a lot of other resonances in the sun system (Arnold et al.,
2006).

It seems that when the sun system was formed, resonant relationships between
different rotation frequencies did not exist then – the question is really why the
complicated and sometimes stochastic (hypothetically) process of planet formation
should give rise to commensurate rotation frequencies characterized by ratios of rel-
atively small numbers? Maybe, it is more reasonable to suggest that the frequency
relations under discussion are the result of further evolution of the dynamical sys-
tem; in other terms, the systems were captured into the resonance. This suggestion
was presented (and the term capture was coined) in a paper by P. Goldreich and S.
Peale (1966).

Before a brief presentation of their model, we would like to discuss briefly the
physics of the involved phenomena. Quite obviously, if the planet rotating around
the sun would be ideally spherical and absolutely rigid, then the spin motion and
the orbital motion of the planet would be completely decoupled. The reason is that
the gravitational interaction of two spheres according to Newton’s law is exactly
equivalent to the interaction of two points and rotation of the sphere is therefore not
important, up to relativistic corrections which are irrelevant in our case. However, a
real planet is neither ideally spherical nor absolutely rigid. Due to the eccentricity,
the gravitational force between the Sun and the planet depends on the orientation
of the planet with respect to the plane of its orbit. Absence of absolute rigidity is
even more important – it gives rise to tidal forces which are capable of damping the
energy of planetary spin out.

The model of Goldreich and Peale is based on the equation of planetary motion
taking into account the eccentricity of the planet:

Cθ̈ + 3

2
(B − A)

GM

r3
sin 2ψ = 0 (2.207)

where A, B, C are main moments of inertia of the planets, C it the moment
around the spin axis, M is the mass of the sun, G – the gravitational constant,
r – instantaneous radius, θ – angular position of the planet’s longer axis with respect
to the longer axis of its orbit, ψ – the angle between the axis of the planet and the
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center of the orbit. It is easy to see that if there is no eccentricity of the planet
(A=B), then θ̇ = const, in accordance with the second Kepler law. This law
is based on conservation of the angular momentum. Therefore, we see that the
eccentricity of the planet gives rise to coupling between the spin and the orbital
motion.

If the system is close to the resonance, one can take γ = θ−qL small, where L is
the mean anomaly (the phase variable determining the position of the celestial body
at its Kepler orbit) and q is the resonance ratio – rational number, which defines the
ratio of periods in the state of exact resonance. The central idea here is that both L
and θ change significantly at each period of orbit, but their difference changes only
slightly due to the resonance relationship. Therefore one can average over period
and get the following equation for γ:

Cγ̈ + Q sin 2γ = 0 (2.208)

where Q is certain constant. Needless to say, Eq. (2.208) describes a regular
pendulum!

It is rather difficult to take into account the tidal force in an exact manner, but
it can have a very significant effect on the motion. One of the suggestions made by
Goldreich and Peale was to proceed empirically and to add the following terms to
the right-hand side of Eq. (2.208):

Cγ̈ + Q sin 2γ = a − bγ̇ (2.209)

The term a on the right-hand side describes the constant torque which appears as a
result of change of the planet eccentricity due to the tidal effects. The second term
describes the dissipation of energy (for instance, due to viscous forces acting in the
ocean). Again, the exact shape of these terms should not be taken too seriously –
they are only empirical terms required to take into account the main features of the
phenomenon rather than to describe it exactly.

It is easy to recognize Eq. (2.209) – it is the equation of the pendulum with
constant external torque and viscous damping. One can immediately conclude that
if the coefficient Q/C is large enough, then the system has a chance to be captured
into the domain of attraction of the fixed point. This fixed point satisfies the equation
γ = const, which implies the exact resonance between the orbital and the spin
motions. Now it should be recalled that Q ∼ |A − B|; therefore, the chances of the
planet to be captured into such a resonance grow together with its eccentricity. The
characteristic values of the tidal forces are also of great importance.

A very similar model in a more abstract framework (related to problem of
averaging and formulated in the action-angle variables) has been proposed by
A.I. Neishtadt (Neishtadt, 1975). In the book (Arnold et al., 2006) it was also
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demonstrated that capture into the resonance may occur if a dynamical system
moves into the vicinity of any resonant hypersurface (and generically, such hyper-
surfaces fill the whole state space) and the local problem is qualitatively similar to
the model of the pendulum with the external torque and damping.

The other well-known example of capture into the resonance is also related to
the motion of eccentric systems in the rotating machinery. As it is presented in the
paper of R. Rand (1998):

Imagine a slightly unbalanced wheel attached to an elastic support. If a constant torque is
applied to the wheel, then we would expect that the wheel would begin to spin faster and
faster. A surprising thing happens, however, when the wheel’s angular speed gets close to
the natural frequency of the elastic support. The wheel may cease to spin up and the energy
of the applied torque will instead produce large motions of the support. The wheel is said
to be captured into the resonance.

The mechanism of the process mentioned above is described in details in papers
(Quinn et al., 1995; Rand and Quinn, 1995). It is in fact very similar to the models
inferred from celestial mechanics, but instead of the separatrix splitting due to the
damping terms it involves the slow evolution of the separatrix, allowing the phase
trajectories to cross it and to enter the capture region.

All models of the resonance capture mentioned here have one interesting com-
mon feature. Only a certain share of the phase trajectories is captured into the
resonance. It is rather easy to understand from Fig. 2.22 that only the trajectories
which enter the space between the split branches of the separatrix will be eventually
captured, so the fate of the trajectory depends on the initial conditions. Moreover, it
is possible to prove (Arnold et al., 2006) that in certain classes of systems the points
in the state space which correspond to captured and non-captured trajectories are
mixed in a such way that in every “ball” of size ε in the space of initial conditions
one can find the origins for both captured and non-captured trajectories. If the accu-
racy of the initial condition is ε or less, then one cannot distinguish between them
and therefore the resonance capture should be treated as probabilistic phenomenon,
despite the completely deterministic nature of the system.

Such probabilistic models for resonance capture cannot explain the ubiquity of
dynamical systems where the capture really occurs – they usually provide very low
estimations for the capture probabilities. However, there exist more refined models
which describe the deterministic resonance capture for large regions in the space of
initial conditions. Interestingly enough (and unlike the model analyzed in this sec-
tion above), all such models known to authors involve more than two time scales.
It seems that the first such model has been introduced by Burns and Jones (2003).
It provides a somewhat formal generalization of the model of A.I. Neishtadt men-
tioned earlier (Neishtadt, 1975), with introduction of an additional super-slow time
scale. We do not present it here in detail, since a somewhat similar model which
yields deterministic capture into the resonance for relatively large regions in the
space of initial conditions will be discussed in Sect. 2.6: a targeted energy transfer
in a linear oscillator with essentially nonlinear attachment.
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2.4.4.1 Exercises

1. Consider the Neishtadt system in action-angle variables:

İ = ε

(
1 + a sin γ − 1

4
I

)

γ̇ = I
a > 0

Demonstrate that this model describes capture into the resonance and find the con-
ditions for the capture. What characteristic share of phase trajectories will be
captured?

2. Consider phase-only system of coupled oscillators:

(A)
θ̇1 = 1 + a sin θ1 cos θ2

θ̇2 = −1.1 + a cos θ1 sin θ2

(B)
θ̇1 = 1.2 + a sin θ1 cos θ2 + 0.2 sin θ2

θ̇2 = 0.85 + a cos θ1 sin θ2 + 0.1 sin θ1

(C)
θ̇1 = 1.01 + a sin2 θ1 cos θ2

θ̇2 = 0.47 + a cos2 θ1 sin θ2

For what values of parameters will the motion of the oscillators be synchronized
or phase-locked? At what frequency ratio? Verify your analytic findings by numeric
simulations.
Solution
(A)

θ̇1 = 1 + a sin θ1 cos θ2

θ̇2 = −1.1 + a cos θ1 sin θ2

Right-hand sides of the equations may be easily presented in a form of Fourier
series:

θ̇1 = 1 + a

2
(sin(θ1 + θ2) + sin(θ1 − θ2))

θ̇2 = −1.1 + a

2
(sin(θ1 + θ2) − sin(θ1 − θ2))

Obviously, only phase locking with k = m = 1 and k = 1, m = –1 is possible. By
introducing new variables:

� = θ1 + θ2

� = θ1 − θ2

the problem is reduced to a trivial system of equations

�̇ = −0.1 + a sin�
�̇ = 2.1 − a sin�
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Fig. 2.28 Illustration to Problem 2A – phase portraits

Therefore, one should conclude that for |a| < 0.1 the system will not be phase-
locked, for 0.1 < |a| < 2.1 the system will be phase-locked with θ1 + θ2 = const.
For 2.1 < |a| the condition θ1 − θ2 = const also must be valid. This can be only
if both variables are constants, i.e. the system is attracted to the fixed point for
any initial conditions. Evolution of the phase portrait of the system is demonstrated
in Fig. 2.28a (a = 0.05; no phase locking), Fig. 2.28b (a = 1, phase locking at
θ1 + θ2 = const) and Fig. 2.28c (a = 3, appearance of attractors – fixed points).

2.4.5 Forced Oscillator with Multiple States of Equilibrium

Let us consider the motion of a simple symmetric oscillator with two states
of equilibrium subject to external harmonic forcing and linear viscous damping
(Guckenheimer and Holmes, 2002):
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ü − u + 2u3 + ε(λu̇ − γ cosωt) = 0 (2.210)

For ε = 0 the phase portrait of this system is presented in Fig. 2.10. It is characterized
by two centres and one saddle point. Characteristic trajectories include two families:
one of them corresponds to low energies and surrounds only one centre and the
other corresponds to high energies and encircles both centres. These two families
are divided by the separatrix trajectory.

If the perturbation in (2.210) is small enough, one should expect that the state
of the system can still be qualitatively characterized on the base of Fig. 2.10. In
particular, the saddle point will be preserved, as well as the two-well structure. If the
frequency of the external forcing allows, one can expect nonlinear resonances in one
of two potential wells or above two wells, giving rise to periodic or quasiperiodic
trajectories. Such regimes can be considered with the help of the methods presented
in the previous sections; the presence of multiple states of equilibrium is not very
significant for this case.

The situation drastically changes if the perturbed motion occurs in the vicinity
of the separatrix. In this case the trajectory can “switch” between encircling either
one of the two wells or both, thus giving rise to chaotic behaviour. This problem
has been thoroughly studied since 1960s, starting from pioneering works of V.K.
Melnikov (1963). If the homoclinic orbit is perturbed, then the stable and the unsta-
ble manifolds of the saddle point do not coincide anymore and this highly degenerate
structure is destroyed (Fig. 2.29).

In the case of general small perturbation, one can use the so-called Melnikov
function to establish whether the stable and the unstable manifolds of the homoclinic

Fig. 2.29 Perturbation of the
homoclinic orbit and splitting
of the stable and unstable
manifolds of the saddle point
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point intersect. This function is proportional to the split between the manifolds. In
the particular case of Eq. (2.210), this function is defined as:

M(t0) =
∞∫

−∞
u̇s(t)(γ cosω(t + t0) − λu̇s(t)) = −2λ

3
+ γπω sin(ωt0)

cosh(πω2 )
(2.211)

where us is determined by Eq. (2.105). The intersection occurs if M = 0. Thus, the
following criterion for the intersection of the manifolds can be formulated:

γ ≥ γcrit = λ

2 cosh
(πω

2

)
3πω

(2.212)

It is proven in (Guckenheimer and Holmes, 2002) that if single intersection occurs,
then an infinite number of such intersections will occur, giving rise to the spe-
cial structure of a Smale horseshoe. Still, it should be mentioned that criterion
(2.212) can strongly underestimate the critical amplitude of the forcing required
for transition to chaos (see Fig. 2.30)

Fig. 2.30 Chaotic response of equation (), ε=0.1, ω=2, λ=1, γ=6.15. For this case, γ~5γcrit. For
γ~3γcrit or lower, no chaos is observed in simulations at these values of the parameters
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2.5 Symmetric Systems of Coupled Nonlinear Oscillators
Beating Phenomena

Beating in a linear system with two degrees of freedom (2 DOF) having close
eigenfrequencies is one of the most well-known dynamic phenomena. Because of
the validity of the superposition principle, their analytical description presents no
difficulties and was considered above in Sect. 2.1.4. Several decades ago, close phe-
nomena in nonlinear systems became the subject of growing interest because of their
significant role in nonlinear optics (Akhmeriev and Ankiewicz, 1992; Uzunov et al.,
1995). A similar problem arises in nonlinear mechanics (Kosevitch and Kovalyov,
1989; Manevich and Manevitch, 2005). Besides nonlinear optics and mechanics,
intensive energy transfer may be important in all physical systems described by
coupled Klein–Gordon equations (Khasnutdinova and Pelinovsky, 2003) as well as
in the nonlinear dynamics of coupled polymer chains and deoxyribonucleic acid
(DNA) double helices.

Let us first consider the simplest nonlinear problem of energy transfer in two
weakly coupled equal nonlinear oscillators with cubic restoring forces. This prob-
lem can be described by the following system of two nonlinear equations (in
dimensionless form):

d2U1

dτ 2
0

+ U1 + 2βε(U1 − U2) + 8αεU3
1 = 0,

d2U2

dτ 2
0

+ U2 + 2βε(U2 − U1) + 8αεU3
2 = 0,

(2.213)

where

Uj = uj0

L0
, τ0 =

√
c1

m
t, 8αε = c3L2

0

c1
; 2β ε = c12

c1
(2.214)

L0 is the length of unloaded nonlinear spring c1 and c3 are the linear and nonlinear
stiffnesses of the oscillators respectively, and c12 is the stiffness of the coupling
spring. Introducing the complex variables:

ϕ1 = e−iτ0

(
dU1

dτ0
+ i U1

)
ϕ∗

0 = eiτ0

(
dU1

dτ0
− i U1

)

ϕ2 = e−iτ0

(
dU2

dτ0
+ i U2

)
ϕ∗

2 = eiτ0

(
dU2

dτ0
− i U2

) (2.215)

and slow time τ1 = ετ0 (along with the fast time τ0), one can use the following
two-scale expansions

ϕj(τ0, τ1) =
∑

n

ϕj,n(τ0, τ1)εn, j = 1, 2. (2.216)
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After corresponding calculations that take into account (2.213–2.216) we arrive at
the equations of the principal asymptotic approximation:

df1
dτ1

+ iβf2 − 3iα | f1|2 f1 = 0,

df2
dτ1

+ iβf1 − 3iα | f2|2 f2 = 0,

(2.217)

ϕj = eiβτ1 fj, j = 1, 2, (2.218)

which describe a number of interesting model systems, including optic couplers
(Kosevitch and Kovalyov, 1989). This system is completely integrable and has two
independent integrals of motion:

H = β( f2 f ∗
1 + f1 f ∗

2 ) − 3

2
α(| f1|4 + | f2|4) (2.219)

N = | f1|2 + | f2|2 (2.220)

The best way to handle these integrals is to use (2.219) to use coordinates θ and �
defined below and to reduce system (2.217) to two real equations:

f1 = √
N cos θeiδ1 , f2 = √

N sin θeiδ2 ,� = δ1 − δ2
dθ

dτ1
= β sin� , sin 2θ

d�

dτ1
= 2β cos 2θ cos�+ 3

2
α N sin 4θ

(2.221)

Integral (2.219) is reduced to the form

H = (cos�+ k sin 2θ) sin 2θ , k = 3αN

4β
,α > 0 (2.222)

The latter condition is equivalent to the requirement of a hardening nonlinearity.
One should mention that system (2.221) is strongly nonlinear, even in the case of an
initially linear problem.

Before further analysis, let us present plots of the phase trajectories for different
values of k in Fig. 2.31. Because of the phase plane periodicity one only has to
consider the two lower quadrants.

We can see that two dynamic transitions are clearly distinguished when the non-
linearity parameter k increases. The first transition consists of the appearance of
two additional stationary points, corresponding to nonlinear normal modes (NNMs);
their number changes from 2 (if k < 1/2) to 4 (for k > 1/2). This transition is distinctly
seen in Fig. 2.31c. The second transition, which occurs when k = 1, is connected
to the behavior of the limiting phase trajectory (LPT) corresponding to a complete
energy transfer between the oscillators. Namely, this trajectory transforms into sep-
aratrix at this value of k (Fig. 2.31e). This means that the characteristic time for
complete energy transfer diverges. For k > 1 such a transfer becomes impossible
(see Fig. 2.31f). Simultaneously, energy localization on the excited particle becomes
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a) b) c)

d) e) f )

Fig. 2.31 Phase trajectories in the θ −� plane for: (a) k = 0.2, (b) k = 0.4, (c) k = 0.55, (d) k =
0.9, (e) k = 1, (f) k = 1.5

possible. It is easy to check that the values H = 1+ k2, H = −1+ k2 correspond to
the stationary points for in-phase and out-of-phase cooperative modes, respectively.
Regimes of this kind are synchronized motions that can be presented as straight
or curved lines in the configuration space of the initial variables (The existence of
such normal modes in strongly nonlinear systems was first shown in Rosenberg,
1966). Efficient techniques for their construction even in the case when they are not
straight may be developed by applying the principle of least action in Jacobi’s form
and the corresponding equations for the trajectories in the configuration space. Such
techniques allow one to find the NNMs using power expansions in the independent
variable (i.e., one of the unknowns in this case) in the framework of a nonlinear
boundary problem (Manevitch et al., 1989; Vakakis et al., 1996).

For the discussed problem there is no need for such expansions because the
NNMs are represented here by stationary points; this advantage is widely used in the
papers devoted to NNMs and their bifurcations, as well as when searching the close-
to-NNM regimes in damped and forced weakly coupled systems (Manevitch et al.,
1989; Vakakis et al., 1996). The regimes close to stationary points in the θ−� plane
in the conservative system under consideration are beats with weak energy transfer
between two oscillators. The equations of motions can be linearized in the vicinity
of the stable stationary points and the solutions present small-amplitude oscillations
of both θ and � around their values, corresponding to the NNMs. If one linearizes
the Eq. (2.221) after the transformation θ1 = θ − π/4, �1 = �− π (the latter for
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the case H = −1 + k2), one arrives at the equations of linear oscillators, which are
valid for initial conditions close to those for the normal modes themselves

d2θ1

dτ 2
1

+ α2
1 θ1 = 0,

d2θ1

dτ 2
1

+ α2
2 θ1 = 0, (2.223)

where α2
1 = 4β2 (1 + 2k) , α2

2 = 4β2 (1 − 2k), k = 3αN
/

4β.
These equations contain a contribution that depends on the nonlinear terms of

the initial system. Moreover, they lead to the conclusion that instability is possible if
k > 1/2, which corresponds to instability of the out-of-phase nonlinear normal mode
(if α > 0).

This transition, which leads to the appearance of two new out-of-phase modes,
does not noticeably influence the behavior of the LPT, which is far from the sta-
tionary points and describes a complete energy transfer between the oscillators.
Certainly, one can extend the range of validity of the Eq. (2.223) by taking into
account the nonlinear terms, which depend on θ1 and �1. However, one cannot
attain LPT in this way. Let us show that we can consider the LPT as another type of
fundamental solution (similarly to the NNMs) whose behavior determines the sec-
ond dynamic transition in the behavior of the oscillatory system. The LPT, which is
far from the stationary points, can then be used as a generating solution to construct
close trajectories with strong energy transfer.

The value of H in integral (2.222), corresponding to the LPT, is zero. Therefore
the variables θ and � in this case are connected by the equation

cos� = −k sin 2θ (2.224)

so that sin� = ±
√

1 − k2 sin2 2θ . Then the first of the Eq. (2.221) can be written
as:

dθ

dτ1
= ±β

√
1 − k2 sin2 2θ (2.225)

Solution of Eq. (2.225) for the plus sign is the Jacobi elliptic function
θ = (1

/
2) am (2βτ1, k). Because 0 ≤ θ ≤ π

/
2 by definition, one can use the

negative sign for (2n − 1) π < 2βτ2 < 2nπ , n = 1, 2, 3. . . Then, one obtains the
solution

θ = 1

2
|am (2βτ1, k)| ,� = ± arccos [ksn (2βτ1, k)] (2.226)

with period K(k), i.e., the complete elliptic integral of the first kind (for the in-phase
oscillations). The solution for the out-of-plane oscillations is

θ = 1

2
|am (2βτ1, k)| ,� = π ± arcsin [n (2βτ1, k)] (2.227)
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Fig. 2.32 The function 2θ = |am (2τ1, k)| for k=0.5

Fig. 2.33 The function
2θ = |am (2τ1, k)| for k=0.9

Periodic functions (2.226, 2.227) are not smooth; �(2βτ1) has discontinuities at
points 2βτ1 = (2n − 1) π , n = 0,1,. . . and θ (2βτ1) has a discontinuous derivative
at these points (in terms of distributions dθ

/
dτ1 = (2β

/
π )�). Plots of θ (2βτ1)

for two values of parameter k are presented in Figs. 2.32 and 2.33. The value
k = 0.5 corresponds exactly to the first dynamic transition. However, the solution
for the LPT (Fig. 2.32) is still close to that of the linear case, except for a small
change of period. Only for values of k that are close to the unit the deflections form
an exact saw-tooth profile and the change of period becomes noticeable.

The second dynamic transition occurs when k = 1. In this case one can find a
simple analytical solution corresponding to the LPT:

2βτ1 =
2θ∫

0

d (2θ)

cos 2θ
⇒ θ = 1

2
arcsin

1 − e−2βτ1

1 + e−2βτ1
(2.228)

One can see from (2.228) that the LPT actually coincides with a separatrix if
k →1:θ → π

/
4 when τ1 → ∞. Here it is also convenient to use two non-smooth

functions τ (τ1), e(τ1) (Fig. 2.7).
It is natural to apply these non-smooth basic functions when describing the beat-

ings (in terms of the variables θ and �) and closed trajectories with strong energy
transfer. Actually, in the case k = 0 (the linearized system) the definitions in System
(2.227) can be rewritten in the form θ = (π

/
2) τ ,� = (π

/
2) e, τ = τ

(
τ1
/

a
)
,
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e = e
(
τ1
/

a
)

where a = π
/

2β (exactly as in a vibro-impact process with velocity
� = π

/
2). After introducing the basic functions τ (τ1/a), e(τ1/a), we can present

the solution as

θ = X1(τ ) + Y1(τ ) e
(τ1

a

)
, � = X2(τ ) + Y2(τ ) e

(τ1

a

)
(2.229)

where the smooth functions Xi(τ ), Yi(τ ) satisfy Eq. (2.221):

∂

∂τ

{
X1
Y1

}
= 1

2
aβ[sin(X2 + Y2) sin(X2 − Y2)]

∂

∂τ

{
X2
Y2

}
= aβ[ctg2(X1 + Y1) cos(X2 + Y2)∓

∓ctg2(X1 − Y1) cos(X2 − Y2)]

+3a

2
αN[cos 2(X1 + Y1) ∓ cos 2(X1 − Y1)]

(2.230)

Then, we can search for the solution of Eq. (2.221) in the form of power expansions
in the independent variable τ:

Xi =
∞∑

l=0

Xi, l τ
l, Yi =

∞∑
l=0

Yi, l τ
l, i = 1, 2 (2.231)

where the generating solution is the linear beating:

X1,0 = 0, X1,1 = π

2
, Y1, 0 = 0, X2,0 = 0, Y2,0 = π

2
, (2.232)

satisfying exactly the θ −� equations for the case of the strongest beating. It can be
proven that the presentation (2.229), taking into account (2.231), actually recovers
the exact solution of the nonlinear problem for the most intensive energy transfer
between the oscillators. As this takes place, the expansions (2.231) restore the exact
local representation of the corresponding elliptic function (near τ = 0), but the
expressions (2.229) allow the prediction of the exact global behavior of the system.
It is important to note that, even for large enough values of k, the solution appears
close to that of linear beatings; the only differences are a minor curvature of the
lines that are straight for linear beatings, and a change of the period.

One can find corresponding corrections by considering the next order of approx-
imations, namely, X1,0 = 0, X1,1 = α β, X1,3 = −(2

/
3) (αβ)3 k2, Y2,0 = π

/
2,

Y2,1 = 2α β k which coincide with those in the expansions of the exact solution.
Contrary to previous applications of non-smooth transformations, in the con-

sidered case there is no need to formulate boundary problems to compensate for
singularities arising due to the substitution of non-smooth functions into the equa-
tions of motion (2.221) in order to derive these equations in terms of the smooth
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functions Xi and Yi. Singularities arising due to the substitution of non-smooth func-
tions into the second of the equations of motion (2.221) are exactly compensated for
LPT since sin2θ = 0 at the singular points.

The most important feature of the proposed technique is the unification of the
local and global approaches. The local approach is invoked using power expansions,
with unusually good results even in the lowest-order approximation. For global char-
acteristics such as the period of oscillations T = 2a, its expansion in the parameter
k can be found, separately after construction of the analytical form of the solution
(with the period still unknown). The key point for the solution of this problem is a
preliminary knowledge of the amplitude values of the θ and � functions (in partic-
ular, θ (a) = π

/
2). This is another important distinction from previous applications

of non-smooth transformations, in which the problem was solved step by step; in
the lowest-order approximation a = π/2β.

Here is the place to discuss the behavior of the arising power series. The zeroth
approximation turns out to be efficient even for large values of the nonlinearity
parameter (i.e., far from the first bifurcation point, which corresponds to a qualita-
tive change of the phase plane). However, the convergence of these expansions is
slow and practically does not depend on the magnitude of the nonlinearity param-
eter, that is, on the modulus of the elliptic integral of the first kind. This situation
resembles the behavior of asymptotic series where the first few terms normally give
a reliable representation. Then one can use these terms to construct the Pade approx-
imation, which yields the approximation with an extended applicability range. For
example, the /5, 2/ Pade approximation in the case k = 0.62, β = 0.58 yields the
value T = 6.18 for the period, which is close to the numerical value T = 6.14. When
keeping nine terms in the power expansion, one obtains T = 4.28.

This procedure may be applied if we study processes in systems with internal res-
onance, which are far from their stationary states and consequently close to a beat
with complete energy transfer. We underline that LPT in systems that are linearized
in terms of displacements but strongly nonlinear in terms of θ−� is a good approx-
imation for the LPT in nonlinear system. It is important that consideration of LPTs
enables one to recognize the second dynamic transition that occurs in a system when
the nonlinearity parameter N increases, caused by the transformation of the LPT into
a separatrix. This means that complete energy transfer from the first mass to the sec-
ond one becomes impossible, as mentioned above. When k > 1 the structure of the
phase plane changes drastically and unbounded trajectories appear. Simultaneously,
the role of the two stable asymmetric normal modes, which have appeared due to
the bifurcation of the initial out-of-phase mode, becomes more important. They
represent vibrations concentrated predominantly on one of the masses. The result
of direct numerical integration of the initial system confirms that complete energy
transfer does not exist when k > 1. When only the first particle is initially excited,
one can see that for k = 2 the system oscillates in the attractive region of the local-
ized nonlinear normal mode with energy concentrated predominantly on the first
particle (Fig. 2.34).

In the case of a linear system (k = 0) one can find an exact analytical solu-
tion using linear normal modes. However, the proposed description of the beating
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a) b)

c)

Fig. 2.34 Free oscillations with ( α = 0.125, β = 0.5, ε = 0.1 ) for: (a) k = 0.55, N = 2.933,
u1(0) = 1.7127, u1,t(0) = u2(0) = u2,t(0) = 0; (b) k = 1.1, N = 5.867, u1(0) = 2.422, u1,t(0) =
u2(0) = u2,t (0) = 0; (c) k = 2.0, N = 10.67, u1(0) = 3.266, u1,t(0) = u2(0) = u2,t (0) = 0

phenomena via non-smooth basic functions has the advantage of being physically
adequate in both linear and nonlinear cases. It is clear that both linear and nonlinear
beating close to the LPT can be more adequately described in terms of the basic
functions τ and e than in terms of trigonometric functions. We choose this rather
simple system to illustrate the main ideas. Now let us discuss briefly some exam-
ples that demonstrate the applicability of power-expansions techniques in problems
relating to trajectories close to LPTs in more-complicated conservative, dissipative
and forced 2 DOF systems as well as in weakly coupled oscillatory chains.
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Fig. 2.35 Numerical integration of the modulated equations (k = 0.4, various initial conditions),
(a) N = 2.133, θ(0)=0.02, �(0) = 0, (b) N = 2.133, θ(0)=0.1, �(0) = 0

The LPT may be considered as the generating solution for the construction of
close phase trajectories. If the trajectory is close to the LPT the initial condition,
θ = 0 for τ = 0 has to be replaced by the condition θ = θ0 for τ = 0. Therefore,
we can use the expansions (2.228) again, but X1,0 = θ0 is not equal to zero. The
corresponding solution is shown in Fig. 2.35 for k = 0.4 and two different values of
θ (0). In both cases �(0) = 0.

One can add the dissipative terms 2nε (dUj
/

dτ0) to the left part of the governing
equations of motion. The final complex equations of motion then have the form
(Manevitch, 2001):

∂�j,0

∂τ1
+ iβ �3−j,0 − iα e−2γ τ2

∣∣�j,0
∣∣2�j,0, j = 1, 2 (2.233)

where�j,0 = eγ τ1 f1,0, ε2γ = n
/√

c1m and the second integral (2.220) remain valid
if we replace f1,0 with �j,0; 2n is the coefficient of damping in the initial equations
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of motion. The final equations following from (2.233), which describe the phase
trajectories in the θ −� plane can be written as follows

∂θ

∂τ1
= β sin�

sin 2θ
∂�

∂τ1
= 2β cos 2θ cos�+ 3

2
αNe−2γ τ2 sin 4θ

(2.234)

One can again present the solution of (2.234) as (2.229) where the smooth functions
Xi(τ ), Yi(τ ) satisfy the equations

∂

∂τ

{
X1
Y1

}
= 1

2
aβ[sin(X2 + Y2) ∓ sin(X2 − Y2)]

∂

∂τ

{
X2
Y2

}
= aβ[ctg 2(X1 + Y1) cos(X2 + Y2)∓

∓ctg 2(X1 − Y1) cos(X2 − Y2)]

+3a

2
αNe−2γ τ [cos 2(X1 + Y1) ± cos 2(X1 − Y1)]

(2.235)

Using the procedure described above while taking into account (2.235) one can
find the following representation for θ and �:

θ = αβτ − 2

3
(αβ)3 k2τ 3 + · · · (2.236)

� = e

[
π

2
+ 2αβ kτ − 4

3
αβγ kτ 2 − 4

3
(αβ)3 kτ 3 + · · ·

]
(2.237)

So, in the given approximation we find not only the corrections to θ and � caused
by the nonlinearity, but also a correction to � due to damping; the corresponding
decrease in the amplitude is taken into account by multiplying the complex functions
f j,0 by e−2γ τ1 . This means that the trajectories in the phase plane (Fig. 2.31) will
preserve their form except for a small deformation caused by the damping.

The conditions for the LPT excitation are fulfilled in the important particular
case when one of two different masses is exposed to the action of an initial impulse.
If we take viscous friction into account, we can formulate the problem of almost
irreversible energy transfer from an initially excited mass to the second, smaller
one, known as the energy pumping problem discussed in the next section.

2.5.1 Exercise

Calculate the second-order correction to functions Xi, Yi describing the beatings
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2.6 2DOF Systems of Nonlinear Oscillators with Essential
Asymmetry Targeted Energy Transfer (TET)

2.6.1 Targeted Energy Transfer in an Unforced 2DOF System

We shall consider a system of two oscillators with essential asymmetry in the con-
text of a so-called “targeted energy transfer (TET)”, or “energy pumping”, dealing
with passive irreversible energy transfer from a linear system to a strongly non-
linear defending element (or nonlinear energy sink (NES). Detailed studies of this
complicated problem are presented in a recent book (Vakakis et al., 2008).

As a preliminary example of TET, we consider a two degree-of-freedom (DOF)
dissipative unforced system described by the following equations:

ÿ1 + λ1ẏ1 + y1 + λ2(ẏ1 − ẏ2) + k(y1 − y2)3 = 0

εÿ2 + λ2(ẏ2 − ẏ1) + k(y2 − y1)3 = 0
(2.238)

Physically, these equations describe a damped linear oscillator (LO) with mass and
natural frequency normalized to unity, and viscous damping coefficient λ1, and
an essentially nonlinear attachment with normalized mass ε, normalized nonlinear
stiffness coefficient k, and viscous damping coefficient λ2. Note that system (2.238)
can not be regarded as a small perturbation of a linear system due to the strongly
nonlinear coupling terms.

We simulate system (2.238) numerically for the parameter values
ε = 0.1, k = 0.1, λ1 = 0.01 and λ2 = 0.01. The selected initial conditions
correspond to the impulse F = A δ(t) applied to the linear oscillator (where
δ(t) is Dirac’s delta function – this impulsive forcing is equivalent to imposing
the initial velocity ẏ1(0+) = A) with the system being initially at rest, i.e.,
y1(0) = y2(0) = ẏ2(0) = 0 and ẏ1(0+) = A. Hence, the initial energy is stored
only in the LO. The instantaneous transfer of energy from the LO to the nonlinear
attachment can be monitored by computing the nondimensional energy ratio κ ,
which denotes the portion of instantaneous total energy stored in the nonlinear
attachment,

κ = E2

E1 + E2
, E1 = 1

2

(
y2

1 + ẏ2
1

)
, E2 = ε

2
ẏ2

2 + k

4
(y1 − y2)

4 (2.239)

where E1 and E2 are instantaneous energies of the LO and the attachment,
respectively. Of course, all quantities in relations (2.239) are time-dependent.

In Figs. 2.36 and 2.37 we depict the evolution of the energy ratio κ for impulse
strengths A = 0.5 and A = 0.7, respectively. From Fig. 2.36 it is clear that only a
small amount of energy (of order of 7%) is transferred from the LO to the nonlinear
attachment. However, for a slightly higher impulse the energy transferred climbs to
almost 95% (cf. Fig. 2.37), and within a rather short time (t~15, much less than char-
acteristic time of viscous energy dissipation in the LO) almost the entire impulsive
energy is passively transferred from the LO to the nonlinear attachment, which acts
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Fig. 2.36 Evolution of the
energy ratio κ for impulse
strength A = 0.5

Fig. 2.37 Evolution of the
energy ratio κ for impulse
strength A = 0.7

as nonlinear energy sink. It should be mentioned that the mass of the attachment in
this particular example is just 10% of the mass of the LO.

The phenomenon of TET in damped strongly nonlinear autonomous system
(Gendelman, 2001; Vakakis and Gendelman, 2001; Gendelman et al., 2001, 2005;
Gendelman, 2004) puts forward a series of problems of principal importance. One
of them is the possibility of optimization of energetic sink parameters. Efficient
analytical description of the TET process in a strongly non-homogeneous 2DOF
system proposed in (Manevitch et al., 2007) turned out to be appropriate for the
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statement and solution of the optimization problem in application to a “cubic” type
sink studied in previous papers (Gendelman, 2001; Gourdon and Lamarque, 2005).
Meanwhile, together with this type of sink, other strongly nonlinear sinks were also
discussed in the framework of the general TET problem. However, isolated numeri-
cal estimations and the absence of a general criterion of relative sink efficiency make
their comparison difficult. Such a general criterion follows from the viewpoint pro-
posed in (Manevitch et al., 2007) when considering energy pumping process as a
damped beating.

On this basis, we consider and compare the sinks which are systems with sev-
eral equilibrium states and the sinks close to vibro-impact systems. Some general
regularity determining the efficiency of an energy sink are discussed in detail.

The following system of coupled oscillators is considered:

M
d2x1

dt2
+ μ̃1

dx1

dt
+ η̃

(
dx1

dt
− dx2

dt

)
+ k1 x1+

+k3 (x1 − x2)
2n−1 ± D (x1 − x2) = 0

m
d2x2

dt2
− η̃

(
dx1

dt
− dx2

dt

)
− k3 (x1 − x2)

2n−1 ± D (x2 − x1) = 0

n ≥ 2

(2.240)

Nonlinear coupling with multiple states of equilibrium corresponds to the symbol
“–”. The linear primary structure is excited by an impulse, so we consider free
oscillations of structures with the following initial conditions:

t = 0 : x1 = x2 = 0,
dx2

dt
= 0,

dx1

dt
= CI .

System (2.240) can be analyzed by using the perturbation theory. The follow-
ing change of variables Ũ1=x1, Ũ2= x2–x1 is considered. Then system (2.240) is
reduced to the form

(M + m)
d2Ũ1

dt2
+ m

d2Ũ2

dt2
+ μ̃1

dŨ1

dt
+ k1 Ũ1 = 0

m
d2Ũ2

dt2
+ m

d2Ũ1

dt2
+ η̃dŨ2

dt
+ k3Ũ2n−1

2 + DŨ2 = 0
n ≥ 2 (2.241)

To clarify the equations, dimensionless coefficients and displacements are used, and
Eq. (2.241) and the initial conditions are rewritten as:

(1 + ε) d2U1

dτ 2
+ εd2U2

dτ 2
+ εμ1

dU1

dτ
+ U1 = 0

ε
d2U2

dτ 2
+ εd2U1

dτ 2
+ εηdU2

dτ
+ cU2n−1

2 + εαU2 = 0
n ≥ 2 (2.242)

τ = 0 : U1 = U2 = 0;
dU1

dτ
= −dU2

dτ
= CI

ω
,
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where

ω =
√

k1

M
, U1 = ω

CI
Ũ1, U2 = ω

CI
Ũ2, ε = m

M
, τ = ωt, εμ1 =

√
1

k1M
μ̃1, εη =

√
1

k1M
η̃, εα =

√
1

k1M
D,

c = C2n−2
I k3

ω2n−2k1
.

Here and below ε is a small parameter, representing a mass ratio which has to be
very small.

For small U1, U2, the contribution of nonlinear term in the second of Eq. (2.242)
is much lesser than the contribution of linear terms in the same equation. The follow-
ing change of variables: u1 = ε –1/(2n–2)U1, u2 = ε –1/(2n–2)U2 is introduced. Then
Eq. (2.242) and the initial conditions are transformed into the following system

(1 + ε) d2u1

dτ 2
+ (1 + ε) u1 + ε

(
d2u2

dτ 2
+ μ1

du1

dτ
− u1

)
= 0

d2u2

dτ 2
+ u2 +

[
−u2 + d2u1

dτ 2
+ ηdu2

dτ
+ c u2n−1

2 ± αu2

]
= 0

(2.243)

τ = 0 : u1 = u2 = 0;
du1

dτ
= −du2

dτ
= ε−1/(2n−2) CI

ω
.

We assume further that the oscillations occur near the resonance at frequency close
to unity. Then we should suppose that the sum of terms in the square brackets in the
second of Eq. (2.243) is a small quantity of O(ε). To accomplish this, let us enter
the “bookkeeping” factor δ = 1/ε which can be nominally taken as being equal
to 1 during the further asymptotic analysis (actually the sum of terms in square
brackets is assumed to be small). We shall take into account the true value of factor
δ in numerical calculations (such a procedure, as we can see, is fully justified by
detailed numerical analysis). Then Eq. (2.243) look as follows

(1 + ε) d2u1

dτ 2
+ (1 + ε) u1 + ε

(
d2u2

dτ 2
+ μ1

du1

dτ
− u1

)
= 0

d2u2

dτ 2
+ u2 + εδ

(
−u2 + d2u1

dτ 2
+ ηdu2

dτ
+ cu2n−1

2 ± αu2

)
= 0

(2.244)

Introducing the change of variables

ϕ1 = e−iτ
(

du1

dτ
+ i u1

)
ϕ∗

1 = eiτ
(

du1

dτ
− i u1

)

ϕ2 = e−iτ
(

du2

dτ
+ i u2

)
ϕ∗

2 = eiτ
(

du2

dτ
− i u2

) (2.245)

and performing multiple scale analysis:

τ0 = τ , τ1 = ετ , τ2 = ε2τ , . . . (2.246)
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ϕ1 = ϕ10 + εϕ11 + ε2ϕ12 + . . . (2.247)

ϕ2 = ϕ20 + εϕ21 + ε2ϕ22 + . . . (2.248)

one obtains the following equations

∂ϕ1

∂τ1
+ i

2
(ϕ1 + ϕ2) + μ1

2
ϕ1 = 0 (2.249)

and:

∂ϕ2

∂τ1
+ δ

[
i

2
(ϕ1 + ϕ2) + iη

2
ϕ2 |ϕ2|2n−1 ± iα

2
ϕ2

]
= 0 (2.250)

Multiplying Eqs. (2.249 and 2.250) by ϕ1
∗ and ϕ2

∗ respectively, and combining
these equations and the complex conjugate ones we get:

∂ |ϕ2|2
∂τ1

+ δ ∂ |ϕ1|2
∂τ1

+ ηδ |ϕ2|2 + δμ1 |ϕ1|2 = 0 (2.251)

If there is no damping in the system (2.240), i.e. η = μ1 = 0, then Eq. (2.251) is the
conservation law of quantity H =| ϕ2 + δ |ϕ1|2 relative to time τ 1. One can consider
relation (2.251) as an ordinary differential equation with respect to function |ϕ2|2
the term δ

∂|ϕ1|2
∂τ1

+ δμ1 |ϕ1|2 being the right-hand member. Directly applying the
Laplace transformation to Eq. (2.251), we obtain its solution in the form

�(s) = G(s) + |ϕ2|2 (0)

s + δη
where Ψ (s) is a Laplace representation of function |φ|2(τ1), G(s) is a Laplace rep-

resentation of function −δ ∂|ϕ1|2
∂τ1

− δμ1 |ϕ1|2. After the application of an inverse
Laplace transformation to this equation we can find the following representation for
function H(τ 1)

H(τ1) = exp(−δητ1)[H(0) + δ(δη − μ1)

τ1∫
0

exp(δηz) |ϕ1|2 (z)dz] (2.252)

To find a solution we expand the integral in the right-hand member of Eq. (2.252) in
a Taylor series in a vicinity of point τ 1 = 0. It allows us to calculate function H (τ 1)
avoiding the solution of Eqs. (2.250 and 2.251) or the initial Eq. (2.2400). Then Eq.
(2.252) looks like

H(τ1) = exp(−δητ1)[H(0)+
+δ(δη − μ1){τ1 |ϕ1|2 (0) + τ 2

1
2 (δη |ϕ1|2 (0) + ∂

∂τ1
(|ϕ1|2)(0)) + . . .}] (2.253)
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Fig. 2.38 Time dependence of function H(t). The solid line, taking into account the Taylor series
up to the terms of the fifth order on τ 1, inclusive, depicts solution (2.253). The dashed line depicts
the numerical solution of System (2.240)

Quantities H (0) and |ϕ1|2(0) are known from the initial conditions. The derivative
∂ |ϕ1| (0)

∂τ1
and higher-order derivatives of function |ϕ1| at the same point τ 1= 0 can

be found from the initial conditions and equations of motion (2.240).
When energy pumping occurs, the analytical approximation (2.253) is good as

shown in Fig. 2.38 where the analytical solution H of (2.253), taking into account the
Taylor series up to the terms of the fifth order on τ1 and the numerical integration
of System (2.240) have been compared (n = 2, ω =1, μ1=0, ε = 0.1, η = 0.2,
c = 0.8, α = 0.2, dx1

dt (t = 0)=0.3 and sign “–” is considered in Eq. (2.240).
In this case, energy pumping occurs as shown in Fig. 2.39 where the numerical

solutions of the System (2.240) have been plotted with and without coupling.
Not only is the analytical approximation (2.253) good, but the different ϕ1, ϕ2

introduced are also a good approximation as shown in Fig. 2.40, where those analyt-
ical approximations are compared with results of integrating initial system (2.240).
Initial conditions are:

dx1

dt
(t = 0) = 0.5,

dx2

dt
(t = 0) = x1(t = 0) = x2(t = 0) = 0

parameters of the system: n = 2, ω =1, μ1=0, ε = 0.1, η = 0.2, c = 0.8, α = 0.2
and sign “–” remain in Eq. (2.240).
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Fig. 2.39 Responses with numerical integration of (2.240) with and without coupling

If sign “+” is considered in Eq. (2.240), then the analytical expression (2.253)
also provides satisfactory accuracy, as shown in Fig. 2.41, where

dx1

dt
(t = 0) = 0.3,

dx2

dt
(t = 0) = x1(t = 0) = x2(t = 0) = 0,

parameters of the system: n = 2, ω =1, μ1=0, ε = 0.1, η = 0.5, c = 0.8, α = 0.2.
So it is now possible to try to design the optimal energy sink owing to the cal-

culation of H. Indeed, we can see that if sign “+” is considered in Eq. (2.240), then
energy pumping appears to be more efficient since the decrease of energy H is more
abrupt. The energy decreases faster with sign “+” in Eq. (2.240) than with sign “–”
(if all other parameters are fixed) as shown in Fig. 2.42 where

dx1

dt
(t = 0) = 0.3,

dx2

dt
(t = 0) = x1(t = 0) = x2(t = 0) = 0

and n = 2, ω =1, μ1=0, ε = 0.1, η = 0.5, c = 0.8, α = 0.2.
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Fig. 2.40 Function H(t), Imag ϕ1(t), Re ϕ1(t), Re ϕ2(t), compared with results of integrating initial
System (2.240)

Fig. 2.41 Function H(t). The solid line, taking into account the Taylor series up to the terms of the
fifth order on τ 1, inclusive, depicts solution (2.253). The dashed line depicts the numerical solution
of System (2.240)
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Fig. 2.42 Comparison of function H(t) with consideration of sign + or – in Eq. (2.240)

Thus, energy pumping is more efficient when sign “+” is considered in Eq.
(2.240) as shown in Fig. 2.43 with the numerical integration of System (2.240) with
the same values of parameters as previously. In this figure, it clearly appears that the
vibrations are almost completely suppressed at t = 20 s when sign “+” is considered
in Eq. (2.240).

Moreover, we can also consider the influence of the degree n of the nonlinearity
on the efficiency of the sink. Indeed, for a given set of parameters, there exists an
optimal value of n for which the efficiency of energy pumping is optimal. For this
study we now consider the case of sign “+” in Eq. (2.240) since the efficiency in this
case seems better. For example, if

dx1

dt
(t = 0) = 0.4,

dx2

dt
(t = 0) = 0, x1(t = 0) = x2(t = 0) = 0

and n = 2,3,4, ω =1, μ1=0, ε = 0.1, η = 0.2, c = 0.8, α = 0.2 and sign “+” in
Eq. (2.240), then the optimal value of n is 3 (the degree of the nonlinearity is 5)
as shown in Fig. 2.44. In this figure, we can also see that for n = 4 the analytical
approximation is less good after t = 30 s since after that the energy pumping does
not occur and there is no resonance anymore.

As we will see, important information about sink efficiency can be extracted from
the analysis of a corresponding conservative system. If η=μ1=0, the Eqs. (2.249
and 2.250) look like this:
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Fig. 2.43 Comparison of responses with numerical integration of (2.240) with consideration of
sign + or – in Eq. (2.240)

∂ϕ1

∂τ1
+ i

2
(ϕ1 + ϕ2) = 0 (2.254)

∂ϕ2

∂τ1
+ δ

[
i

2
(ϕ1 + ϕ2) − ic

2
Cn−1

2n−1ϕ2 |ϕ2|2n−1 ± iα

2ϕ
ϕ2

]
= 0 (2.255)

Introducing the change of variables:

ϕ1 = f1, ϕ2 = √
δf2 (2.256)

the equations of motion can be rewritten as follows

∂f1
∂τ1

+ i

2
(f1 + √

δf2) = 0 (2.257)

∂f2
∂τ1

+√
δ

[
i

2
(f1 + √

δf2) − ic

22n−1
δ

2n−1
2 Cn−1

2n−1f2 |f2|2n−1 ± iα

2ϕ

√
δf2

]
= 0 (2.258)
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Fig. 2.44 Comparison of H(t) for different values of n

The system is now completely integrable with the two first integrals of motion:

H = i

2
(|f1|2 + √

δ |f2|2) − i

2
(f1f ∗

2 + f2f ∗
1 ) + icδ

Cn−1
2n−1

22n−1
|f2|2n ± iα

2
δ |f2|2 (2.259)

N = |f1|2 + |f2|2 (2.260)

Now we can introduce the following changes of variables:

f1 = √
N cos θeiδ1 , f2 = √

N sin θeiδ2 (2.261)

� = δ1 − δ2 (2.262)

Finally we obtain:

∂θ

∂τ1
−

√
δ

2
sin� = 0 (2.263)

∂�

∂τ1
− δ − 1

2
± αδ

2

√
δ cos� cot 2θ + cδNn−1 Cn−1

2n−1

22n−1
sin2n−2 θ = 0 (2.264)
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Fig. 2.45 Nonlinear beating

Then, the following two cases can be distinguished:

• If − δ−1
2 ± αδ

2 > 0 then for all values of N there exist only 2 NNMs;
• If − δ−1

2 ± αδ
2 < 0 then under a certain value of N there exist 2 NNMs and above

a certain value of N, there exist 4 NNMs.

When all 4 NNMs appear, the energy pumping phenomenon occurs with the beat-
ing phenomenon. This nonlinear beating can also be seen in the two displacements
x1 and x2 as shown in Fig. 2.45 with the same values as previously.

2.6.2 Targeted Energy Transfer in Forced 2DOF System

In the previous section it was demonstrated that the addition of a relatively
lightweight strongly nonlinear attachment to a primary (discrete or continuous) lin-
ear structure under shock excitation can drastically modify its transient dynamic
response and bring about the TET phenomenon. Hence, it is not unreasonable to
expect that similar salient dynamical behavior will also be revealed for the case of
external periodic excitation. The transition from shock (broadband) to periodic (nar-
rowband) excitation, however, is not trivial, and the application of nonlinear energy
sinks (NESs) to structures under narrowband excitation deserves special consider-
ation. For, example, it is not obvious that the capacity for TET of an NES under
conditions of shock excitation of a primary structure can be extended to the case of
periodic excitation.

We aim to demonstrate that the steady state response of a primary system under
harmonic excitation with an attached NES exhibits not only common steady-state
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and weakly modulated responses, but also very special types of responses char-
acterized by large modulations of the resulting oscillations; this response type is
referred to as Strongly Modulated Response (SMR), and may be regarded as the
extension of the TET phenomenon to structures under periodic (narrowband) exci-
tation. Moreover, we demonstrate that SMRs are related to relaxation oscillations
of the corresponding averaged dynamical flows (the slow-flows of the dynamics),
and in fact, one can regard SMRs as a form of repetitive TETs under the action of
persisting periodic forcing.

The system considered here is comprised of a linear oscillator and strongly non
linear attachment (pure cubic nonlinearity) and is forced harmonically. The system
is described by the following equations:

ÿ1 + ελ(ẏ1 − ÿ2) + (1 + εσ )y1 + 4

3
ε(y1 − y2)3 = εA cos t

εÿ2 + ελ(ẏ2 − ẏ1) + 4

3
ε(y2 − y1)3 = 0

(2.265)

where y1 and y2 are the displacements of the linear oscillator and the attachment
respectively, ελ is the damping coefficient, εA is the amplitude of external force
and σ is the frequency detuning parameter. ε << 1 is a small parameter which
establishes the order of magnitude for coupling, damping, amplitude of the external
force, detuning and mass of the attachment.

Coefficients: A, λ, σ are adopted to be of order unity. Rigidity of the nonlinear
spring is adopted to be equal to 4

3ε and linear frequency of the primary oscillator –
close to unity. The latter adoption does not affect the treatment below, since it may
be changed independently by proper rescaling of the dependent variables.

We are interested in the motion of the system in the vicinity of a 1:1:1 reso-
nance manifold, where all variables oscillate with a frequency close to that of the
external force. Applicability and technicalities of the averaging procedure for this
kind of essentially nonlinear systems are discussed elsewhere (Gendelman, 2004;
Gendelman et al., 2008). Successive changes of variables:

v = y1 + εy2
w = y1 − y2

(2.266)

(transition to coordinates “center of mass-internal displacement”) and

ϕ1 exp(it) = v̇ + iv
ϕ2 exp(it) = ẇ + iw

(2.267)

where the complex variables ϕj, j = 1,2 describe a slow modulation of variables v
and w respectively, yield the following equations for the modulation amplitudes:

ϕ̇1 + iε

2(1 + ε) (ϕ1 − ϕ2)− iεσ (ϕ1 + εϕ2)

2(1 + ε) = εA

2

ϕ̇2 + λ(1 + ε)ϕ2

2
+ i

2(1 + ε) (ϕ2 − ϕ1)−
− iεσ (ϕ1 + εϕ2)

2(1 + ε) − i(1 + ε)
2

|ϕ2|2 ϕ2 = εA

2

(2.268)
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The fixed points of Eq. (2.268) correspond to periodic responses of the system
described by Eq. (2.265). For the case σ = 0, these were investigated in details in a
paper (Starosvetsky and Gendelman, 2008). The investigation of these fixed points
and their stability is beyond the scope of this paper – it can be performed by standard
methods and will be published elsewhere. System (2.268) has a somewhat special
form – the time derivative in the first equation is proportional to the small parameter
and thus the time evolution of variable ϕ1 can be considered as slow compared to
ϕ2. This peculiarity means that the dynamics of System (2.268) in a 4-dimensional
real state space may be presented in terms of two “slow” and 2 “super-slow” real
variables, thus giving a chance of a tractable global description. The term “fast” is
kept for the oscillations with close to unit frequency, which are averaged out. So,
the problem requires the analysis of three time-scales.

By simple manipulations, System (2.268) may be reduced to a single second-
order ODE:

d2ϕ2

dt2
+ d

dt

[
αϕ2 − i(1 + ε)

2
|ϕ2|2 ϕ2 + iε

2(1 + ε) (1 − σ )ϕ2

]
+

+ iε

2(1 + ε) (1 − σ)
[
αϕ2 − i(1 + ε)

2
|ϕ2|2 ϕ2 − εA

2

]
−

− iεβ

2(1 + ε) [1 + εσ ]ϕ2 = εAβ

2

(2.269)

where

α = λ(1 + ε)2 + i − iε2σ

2(1 + ε) ; β = i

2(1 + ε) (1 + εσ )

Multiple scale expansion of the differential operators is introduced as:

ϕ2 = ϕ2(τ0, τ1, . . .) ; d
dt = ∂

∂τ0
+ ε ∂

∂τ1
+ . . .

τk = εkt, k = 0, 1, . . .
(2.270)

Substituting (2.270) into (2.269) and equating the like powers of ε, one obtains
equations for zero and the first order approximations:

ε0 :
∂2ϕ2

∂τ 2
0

+ ∂

∂τ0

[
λϕ2

2
+ iϕ2

2
− i

2
|ϕ2|2 ϕ2

]
= 0

ε1 : 2
∂2ϕ2

∂τ0∂τ1
+ ∂

∂τ1

[
λϕ2

2
+ iϕ2

2
− i

2
|ϕ2|2 ϕ2

]
+

+ ∂

∂τ0

[
λϕ2

2
+ i(1 − σ )ϕ2

2
− i

2
|ϕ2|2 ϕ2

]
+

+1 − σ
4

|ϕ2|2 ϕ2 +
[
σ
4 + iλ(1 − σ )

4

]
ϕ2 − iA

4
= 0

(2.271)

The first equation of (2.271) describes a “slow” evolution of the averaged system. It
can be trivially integrated:
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∂

∂τ0
ϕ2 +

(
i

2
ϕ2 + λ

2
ϕ2 − i

2
|ϕ2|2 ϕ2

)
= C(τ1, . . .) (2.272)

where C is an arbitrary function of higher-order time scales. Approximations of
higher orders are not used in the current analysis. Then, for the sake of brevity, only
dependence on time scales τ0 and τ1 will be explicitly denoted below. The fixed
points �(τ1) of Eq. (2.272) depend only on time scale τ1 and obey the algebraic
equation:

i

2
�+ λ

2
�− i

2
|�|2� = C(τ1) (2.273)

Equation (2.273) is easily solved by taking �(τ1)=N(τ1) exp(iθ (τ1)) and perform-
ing trivial calculations:

λ2 N4 + (N2 − N4)2 = 4 |C(τ1)|2 N2

or, equivalently

λ2Z(τ1) + Z(τ1)(1 − Z(τ1))2 = 4 |C(τ1)|2
Z(τ1) = (N(τ1))2 (2.274)

The expression for the argument of the fixed point may be written as

θ (τ1) = arg C(τ1) − tan−1 1 − Z(τ1)

λ
(2.275)

where Z(τ1) is solution of Eq. (2.274).
The number of solutions of Eq. (2.274) depends on |C(τ1)| and λ. The function

on the left-hand side can be monotonous or have a maximum and a minimum. In
the first case, the change of |C(τ1)| has no effect on the number of solutions – Eq.
(2.274) will have one positive solution. In the latter case, the change of |C(τ1)| will
bring about a pair of saddle-node bifurcations. In order to distinguish between dif-
ferent cases we should check whether the derivative of the left-hand side of (2.274)
has roots:

1 + λ2 − 4Z + 3Z2 = 0 or Z1,2 = 2 ∓ √
1 − 3λ2

3
(2.276)

Therefore, two roots and pair of saddle-node bifurcations exist for λ < 1
/√

3 and

do not exist otherwise. At the critical value λ = 1
/√

3 two saddle-node bifurcation

points coalesce, thus forming the typical structure of a cusp catastrophe.
It is easy to see from Eq. (2.272) whether only one solution of (2.274) exists,

and whether it is stable with respect to time scale τ0. If there are three solutions,
two of them are stable (nodes) and one unstable (saddle). Therefore, at time scale
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Fig. 2.46 Projection of the slow invariant manifold of the system in accordance with Eq. (10), λ

= 0.2. The unstable branch is denoted by the dashed line. Arrows denote hypothetic “jumps” in
the regime of the relaxation oscillations. N1 and N2 denote the fold lines, Nu and Nd – final points
of the “jumps”

τ0 the phase point will be attracted to one of the nodes. In fact, Eq. (2.273) defines a

slow invariant manifold (SIM) of the problem. In the case λ < 1
/√

3 the fold lines

N1,2 : N(τ1) = Z1/2
1,2 , θ (τ1) ∈ (0, 2π ) divide stable and unstable branches of the

SIM. Figure 2.46 demonstrates the projection of the two-dimensional SIM on the
plane (N, C). The fold lines correspond to the points of maximum and minimum.

It is well-known (Arnold et al., 1994; Guckenheimer et al., 2005, 2006) that the
structure of the SIM may give rise to relaxation-type oscillations of the system – the
hypothetic “jumps” between the stable branches are denoted by arrows in Fig. 2.46.
Nu and Nd denote the final points of jumps on the upper and lower stable branches
of the SIM respectively. Still, such motion is possible only if the system can reach
the fold lines N1,2 while moving on the SIM with respect to the slow time scale.
In order to assess this possibility, one should investigate the behavior of �(τ1). For
this sake, we consider the ε1 term of multiple-scale expansion, namely the second
equation of (2.271). We are interested in the behavior of the solution on the stable
branches of the SIM �(τ1) = lim

τ0→+∞ϕ2(τ0, τ1). Taking the limit τ0 → ∞ into the

second equation of System (2.271) and taking into account the asymptotic stability
of the points of the stable branches with respect to time scale τ0, one obtains:

∂

∂τ1

[
λ�

2
+ i�

2
− i

2
|�|2�

]
+ 1 − σ

4
|�|2�+

[
σ

4
+ iλ(1 − σ )

4

]
�− iA

4
= 0

This equation can be written in the more convenient form:
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[
λ

2
− i

2
+ i |�|2

]
∂�

∂τ1
− i

2
�2 ∂�

∂τ1
= G

G = −1 − σ
4

|�|2�−
[
σ

4
+ iλ(1 − σ )

4

]
�+ iA

4

(2.277)

By taking a complex conjugate of (2.277), it is possible to extract the derivative
∂�

∂τ1
:

∂�

∂τ1
= 2

[(
λ− i + 2i |�|2)G + i�2G∗]
λ2 + 1 − 4 |�|2 + 3 |�|4 (2.278)

Splitting the variable � to modulus and argument �(τ1) = N(τ1) exp (iθ(τ1)), one
obtains the equations of the reduced flow in polar coordinates:

∂N

∂τ1
= −λN − AN2 cos θ + λA sin θ + A cos θ

2(λ2 + 1 − 4 N2 + 3 N4)

∂θ

∂τ1
=

[
(1 − 4σ )N2 + (σ − λ2(1 − σ ))−
−3(1 − σ )N4 + 3AN sin θ + A(λ cos θ − sin θ )/N

]

2(λ2 + 1 − 4 N2 + 3 N4)

(2.279)

Denoting the numerators and denominator of the right hand side of system (2.279)
by f1(N, θ ) for the first equation, f2(N, θ ) for the second equation and g(N) for the
denominator, system (15) is presented in the following form

∂N

∂τ1
= f1(N, θ )

g(N)
∂θ

∂τ1
= f2(N, θ )

g(N)

(2.280)

Rescaling the time by the function g(N) yields the equations for a “desingularized”
flow:

N′ = f1(N, θ )
θ ′ = f2(N, θ )

(2.281)

Regular points of the SIM are defined as those that satisfy the inequality g(N) �= 0.
The fold lines Ni, i = 1, 2 of the SIM are, by the definition above, the sets of points
(N, θ ) where g(N) = 0.

Let us start from the particular case A = 0. In this case, Eq. (2.279) are reduced to

∂N

∂τ1
= −λN

2(λ2 + 1 − 4 N2 + 3 N4)
∂θ

∂τ1
= (1 − 4σ )N2 + (σ − λ2(1 − σ )) − 3(1 − σ )N4

2(λ2 + 1 − 4 N2 + 3 N4)

(2.282)
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Fig. 2.47 Phase portrait of the slow invariant manifold for the case A = 0, λ = 0.2, σ = 0

Phase portrait of system (2.282) is presented in Fig. 2.47. The system parameters
are: λ = 0.2, σ = 0. Fold lines N1, N2 are marked on the phase portrait as dashed
lines. It is clear from the first equation of system (2.282) that the phase trajectories
on the upper stable branch are directed towards the fold line, whereas the trajectories
at the lower stable branch cannot bring the slow flow to the fold line. It means that
the trajectory can “jump” from the upper stable branch to the lower one, but cannot
jump back. It is trivial, since in the absence of forcing the system should be damped
out.

In order to allow the jumps from the lower stable branch (and, therefore, to pro-
vide the necessary condition for the relaxation oscillations) the slow flow in the
vicinity of the lower fold line should undergo some bifurcations. Namely, the N′
value for some points on the lower fold should change its sign from a negative to a
positive one. Consequently, we can state that for some point or points on the lower
fold the normal switching condition (Guckenheimer et al., 2005) should be violated
in the course of the bifurcation. In order to investigate this mechanism, we first
compute the fixed points of the slow-flow Eq. (2.281) for arbitrary A.

Before this, we proceed with the calculation of the equilibrium points of (2.281)
which let us define the two different types of these points. The first type is referred
to as ordinary fixed point. These are equilibrium points of slow flow (2.281) which
satisfy N′ = θ ′ = 0 and g(N) �= 0. The second type is referred to as folded sin-
gularities. Folded singularities satisfy both N′ = θ ′ = 0 and g(N) �= 0. They can
be classified as equilibrium points of the two dimensional flow (2.281) belonging to
the fold lines.

Equilibrium points of the slow-flow system are found from (2.281) by setting
both time derivatives equal to zero, thus providing
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f1(N, θ ) = 0
f2(N, θ ) = 0

(2.283)

System (2.283) can be presented in the following matrix form

(
α11 α12
α21 α22

)(
cos θ
sin θ

)
=
(
β1
β2

)
(2.284)

where

α11 = 1

4
λA; α12 = −1

4
A + 3

4
N2A; α21 = 1

4
A − 1

4
N2A; α22 = 1

4
λA

β1 = 1

4
Nσ + 1

4
N3 + 1

4
Nλ2σ − 3

4
N5 − N3σ − 1

4
Nλ2 + 3

4
N5σ ; β2 = −1

4
Nλ

System (2.284) has two different types of solutions. The first type is obtained
by solving (2.284) and assuming that the α matrix determinant does not vanish
(α11α22 − α21α12 �= 0). Thus the first type of solution is calculated from:

[
λ2 + σ 2

(1 − σ )2

]
N2

0 + 2σ

1 − σ N4
0 + N6

0 = A2

(1 − σ )2
;

θ0 = tan−1

(
σ

λ(1 − σ )
+ N2

0

λ

) (2.285)

It is easy to derive that

α11α22 − α21α12 = A2

16
(1 + λ2 − 4 N2 + 3 N4) = A2

32
g(N);

then, nullification of g(N) brings us to the simultaneous nullification of α11α22 −
α21α12. Therefore, solution (2.285) describes the ordinary fixed points. This solution
also coincides with the solution for fixed points of initial equation (2.269). This is
rather obvious since fixed points of the global flow quite naturally belong to the slow
invariant manifold.

The second type of solution obeys the following condition:

g(N) = 3N4 − 4N2 + 1 + λ2 = 0 ⇒ α11α22 − α12α21 = 0 (2.286)

Combination of (2.286) and (2.284) yields the following equality:

α11

α21
= α12

α22
= β1

β2
(2.287)

The second type of solution is generated by (2.286) and by one of the equations
of (2.284) since another equation is satisfied automatically due to (2.287). Thus,
picking the first equation of (2.284), one obtains the following solution for the folded
singularities:
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�1,2 = γ01 ± cos−1 λN1

A
√

(1 − N2
1 )2 + λ2

,

�3,4 = γ02 ± cos−1 λN2

A
√

(1 − N2
2 )2 + λ2

γ0 k = sin−1 λ√
(1 − N2

k )2 + λ2
, k = 1, 2

(2.288)

The first pair of the folded singularities exists on the lower fold and is given
by(N1,�1), (N1,�2). The second pair exists on the upper fold and is given by
(N2,�3), (N2,�4). The first pair of the folded singularities exists if the following
conditions hold:

∣∣∣∣∣∣
λ√

(1 − N2
k )2 + λ2

∣∣∣∣∣∣ ≤ 1 (2.289a)

∣∣∣∣∣∣
λN1

A
√

(1 − N2
1 )2 + λ2

∣∣∣∣∣∣ ≤ 1 (2.289b)

Condition (2.289a) holds for arbitrary values of λ. However, condition (2.289b)
holds only if

A ≥ A1crit = λN1√
(1 − N2

1 )2 + λ2
(2.290)

Similarly, for the second pair of folded singularities the solvability condition reads

A ≥ A2crit = λN2√
(1 − N2

2 )2 + λ2
(2.291)

Therefore, it is easy to see that if the external forcing is relatively small,

A < A1crit = λN1√
(1 − N2

1 )2 + λ2
(2.292)

there are no folded singularities at the SIM. Consequently, the slow flow in the
vicinity of both fold lines remains qualitatively similar to that in Fig. 2.47, providing
no possibility for the relaxation oscillations.

The bifurcation diagram of the periodic response regime is presented in Fig. 2.48
as the amplitude of the response vs. the amplitude of excitation. System parame-
ters are λ = 0.2, σ = 0. For this set of parameters only a single periodic response
exists.
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Fig. 2.48 Amplitude of excitation – system response, bifurcation diagram. Dashed lines refer to
the unstable region of the periodic solution when the solid lines refer to the stable one. Lower and
upper folds of the SIM are marked on the diagram with the thin dashed lines. System parameters:
λ = 0.2, σ = 0

If the amplitude of external excitation (A) is varied, one can see qualitative
changes (possible bifurcations) in the stability of the folded singularities. To track
the behavior of the folded singularities and regular fixed points with variation of A
parameter, we plot the positions of the ordinary fixed point and the folded singular-
ities vs. the forcing amplitude in a 3D diagram (Fig. 2.49a). The parameters of the
system are: λ = 0.2, σ = 0.

One observes transcritical bifurcations of the ordinary fixed point and folded
singularities. Both transcritical bifurcations (on the lower fold and on the upper fold
within large circles in Fig. 2.49a) are zoomed and presented in Fig. (2.49b, c) respec-
tively. These bifurcations predict a change of stability of the folded singularities
when the regular fixed point crosses the fold lines.

In order to illustrate the changes in the reduced flow dynamics for the various
forcing amplitudes, we construct several phase portraits for System (2.279). These
phase portraits are plotted only for the case of a single ordinary fixed point. It is con-
venient to pick zero frequency detuning σ = 0. Only the flow at two stable branches
of the SIM is presented. We start with the case 0 < A < A1crit (A = 0.1, λ = 0.2).

An ordinary fixed point is marked on the phase portrait (lower stable branch
of SIM) with a rectangle. As it comes from the phase portrait of Fig. 2.50 there
are no folded singularities for this case (0 < A < A1crit), therefore we can see
that all trajectories are finally attracted to the ordinary fixed point and there are no
possibilities for relaxation oscillation. However, as the forcing approaches the value
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Fig. 2.49 (a) Three dimensional bifurcation diagram “fs1” refers to the first pair of folded sin-
gularities (lower fold); “fs2” – to the second pair of folded singularities (upper fold); “rp” – to
the regular fixed point. The bifurcation regions bounded by the circles are zoomed (b) Zoom of
transcritical bifurcation on the lower fold projected on the N,θ plane. (c) Zoom of transcritical
bifurcation on the upper fold projected on the N,θ plane λ = 0.2, σ = 0

Fig. 2.50 Phase portrait of the slow invariant manifold for the case 0<A<A1crit (only stable
branches of the SIM are shown). System parameters: A = 0.1, λ = 0.2, σ = 0. Ordinary fixed
point is marked (on the lower stable branch of SIM) with rectangle
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Fig. 2.51 (a) Phase portrait of the slow invariant manifold for the case A1crit <A<A2crit (only
stable branches of the SIM are shown). System parameters: A = 0.18, λ = 0.2, σ = 0. Ordinary
fixed point is marked (on the lower stable branch of SIM) with rectangle. (b) Zoomed part of
the phase portrait (marked with a circle on Fig. 2.51a) which contains folded singularities (saddle
and node)

A = A1crit, the “saddle-node” bifurcation occurs at the lower fold line at θ = γ01. The
phase portrait of the SIM for the case A1crit < A < A2crit = λN2√

(1−N2
2 )2+λ2

, A = 0.18 is

presented in Fig. 2.51.
The phase portrait presented in Fig. 2.51 contains both an ordinary fixed point on

the lower branch of the SIM (marked with rectangle on the figure) and folded sin-
gularities (of saddle and node types). The region on the phase portrait (Fig. 2.51a)
bounded with a circle is zoomed and illustrated in Fig. 2.51b. Folded singulari-
ties marked with bold dots on the fold line are clearly observed in Fig. 2.51b. The
trajectory which comes close to the separatrix of the saddle point is marked with the
bold solid line.

The following phase portrait (Fig. 2.52) is drawn for the same region (A1crit <

A < A2crit, A = 0.5), but for the increased value of forcing.
As we can see in Fig. 2.52, the system dynamics undergoes some qualitative

changes. Before we list all the changes it is essential to note that by increasing the
value of forcing the folded singularities gradually become distant from another. It
is important to emphasize that the folded saddle propagates in the right direction
along the folded line and the folded node propagates in the left direction. Recalling
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Fig. 2.52 Phase portrait of the slow invariant manifold for the case 0<A<A1crit (only stable
branches of the SIM are shown). System parameters: A = 0.5, λ = 0.2, σ = 0. Ordinary fixed
point is absent on the stable branches of SIM. Folded singularities are marked with diamonds

that the θ coordinate is 2π periodic, then, if one of the folded singularities crosses
the interval [0,2π ] it will appear from the other side. Therefore, the folded node
crosses the left boundary of θ and appears from the right of the folded saddle when
folded saddle continues to move in the same direction. Thus we need to identify first
each one of the folded singularities in Fig. 2.52, namely to relate each one of them
to the previously illustrated folded saddle node pair. It is clear from the previous
discussion that the folded focus at the left side in Fig. 2.52 is related to the folded
saddle in Fig. 2.51 and the folded focus from the right is related to the folded node
in Fig. 2.51. Hence, two qualitative changes of the folded singularities are observed.

Bifurcation of the folded node to focus can be explained in terms of the eigen-
values of the linearized slow flow. Thus, for some critical value of forcing two real
negative eigenvalues (related to the folded node) hit each other on the left half plane.
Increasing the forcing value above the critical threshold leads to the symmetrical
divergence of the eigenvalues across imaginary axes still staying in the left half
plane; the fixed point becomes the stable focus.

The second folded focus in 2.2.51 requires one more step for its formation. At
the beginning, the stable folded node appears due to the transcritical bifurcation
described above. Then, this node turns to the folded focus as two negative real
eigenvalues turn to the conjugated pair with a negative real part.

Slightly increasing the value of the forcing amplitude above the value of A2crit

(A2crit < A = 0.987), we obtain the next phase portrait (Fig. 2.53). Observing the
zoomed area denoted by a circle in Fig. 2.53a (Fig. 2.53b) one can notice the creation
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Fig. 2.53 (a) Phase portrait of the slow invariant manifold for the case A2crit <A (only stable
branches of the SIM are shown). System parameters: A = 0.987, λ = 0.2, σ = 0. (b) Zoomed part
of the phase portrait (marked with a circle on (a)), which contains folded singularities (saddle and
node) marked with diamonds on the fold line

of an additional saddle-node pair on the upper fold N = N2. The regular fixed point
has not reached the upper stable branch of the SIM yet.

Further increase of the forcing amplitude (A2crit < A = 1) results in the passage
of the regular fixed point to the upper stable branch of SIM. The phase portrait for
that case is presented in Fig. 2.54.

Observing Fig. 2.54b related to the zoomed area bounded by the circle in
Fig. 2.54a, one can easily recognize the appearance of the stable focus on the upper
stable branch of SIM. This stable focus is situated within a rectangle in Fig. 2.54b;
besides, pair of folded saddles is present. One of these saddles is formed at the fold
when the regular stable point passes the fold line and additional transcritical bifur-
cation occurs. With further (very small) increase of the bifurcation parameter, the
regular fixed point switches from the stable node to the stable focus. This process is
partially demonstrated in Fig. 2.49c.

Summarizing the results of the present subsection, we would like to empha-
size the changes in the slow flow due to the increase in forcing amplitude. From
Figs. 2.51 and 2.52 it is easy to see that once the bifurcations occur, some phase
trajectories on the SIM will bring the flow to the lower fold line N = N1, thus pro-
viding a possibility for the jump to the upper stable branch. Then the flow can arrive
to the upper fold line and jump down, thus closing the loop of the relaxation oscil-
lation. It is interesting to note that the values of Acrit do not depend on the detuning
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Fig. 2.54 (a) Phase portrait of the slow invariant manifold for the case A2crit <A (only stable
branches of the SIM are shown). System parameters: A = 1, λ = 0.2, σ = 0. (b) Zoomed part of
the phase portrait (marked with a circle on (a)), which contains folded singularities (two saddles)
marked with diamonds on the fold line and stable focus bounded with rectangle

parameter σ. One should keep in mind that all the considered bifurcation diagrams
presented in the section are derived from the singular limit as it comes from the
asymptotic analysis brought above; therefore one should expect that the results will
be correct only for ε small enough.

From numerical simulations (Starosvetsky and Gendelman, 2008) it is known
that the SMR related to the relaxation oscillations exists only in comparatively nar-
row vicinity of an exact 1:1 resonance between the external force and the natural
frequency of the linear oscillator. It is therefore clear that the condition (2.290) is
necessary, but by no means sufficient to provide the relaxation oscillations. In order
to obtain the missing sufficient conditions, one should investigate more delicate
details of the system dynamics.

Observing the phase portrait presented in Fig. 2.52 we can see that there is an
interval of θ (on the lower fold line N1) to which all the phase trajectories can arrive
and jump from N1. This interval is bounded by the folded singularities (for the
case illustrated in Fig. 2.52 these folded singularities are stable foci). We denote
this interval by R = [�1,�2], where �1,�2 are the folded singularities which
constitute the boundaries of the interval of the possible jump. In the regime of the
relaxation oscillations, the phase trajectory jumps from a point of this interval to the
upper branch of the SIM, then it moves along the line of the slow flow to the upper
fold line, then jumps back to the lower branch and moves to the lower fold line,
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commencing within the interval R in order to enable the next jump. Therefore it is
natural to consider this regime as mapping of the interval R into itself – the regime of
the relaxation oscillations will correspond to the attractor of this one-dimensional
map. Existence of this attractor is therefore necessary and a precondition for the
existence of the SMR for System (2.268), or, equivalently, Eq. (2.269), when the
mass ratio ε is small enough.

In order to construct the relevant map, we should separately consider the “slow”
and the “fast” parts of the mapping cycle. As for the “slow” parts on the lower and
the upper branches of the SIM, we can use Eq. (2.283) and directly connect the
“entrance” and “exit” points. Due to the complexity of the equations, this part of the
mapping should be accomplished numerically. As for the “fast” parts, the function
φ2 should be continuous at the points of contact between the “fast” and the “slow”
parts. Therefore, for “fast” parts of the motion one obtains the complex invariant
C(τ1), defined by Eq. (2.273). If one knows its value at the point of “start”, it is
possible co compute N and θ for the point of “finish” unambiguously and thus to
complete the mapping. Denoting the point of finish by (Nu, θu) and the start point
as (N1, θ01) we are interested to provide the closed form formulae for the fast jump.
The value of Nu may be easily calculated from the polynomial (2.274) by exploiting
the invariance of C(τ1)

λ2Z1 + Z1(1 − Z1)2 = λ2Zu + Zu(1 − Zu)2 =
= 2

27
(1 +

√
1 − 3λ2) + 2λ2

9
(3 −

√
1 − 3λ2)

Zu = N2
u = 2

3
(1 + √

1 − 3λ2)

(2.293)

Then, from (2.273) and (2.293), one obtains the explicit expression for the phase
variable at the “landing” point:

θu = tan−1
(

(N2
u−N2

1 )λ

λ2−(1−N2
1 )(N2

u−1)

)
+ θ01 =

= θ01 + tan−1 9λ
√

1 − 3λ2

−1 + 15λ2 − √
1 − 3λ2

(2.294)

Then, the part of mapping which corresponds to the “jump” from the lower fold line
N1 to the upper stable branch of the SIM is very simple – the amplitude switches to
Nu and the phase rotates by a constant angle. Similarly, the jump from the point of
the upper fold line N2 with phase θ02 to the point Nd, θd is described by the following
map:

N2 → Nd =
√

2
3 (1 − √

1 − 3λ2)

θ02 → θd = tan−1
(

(N2
d−N2

2 )λ

λ2−(1−N2
d )(N2

2−1)

)
+ θ02 =

= θ02 − tan−1 9λ
√

1 − 3λ2

−1 + 15λ2 + √
1 − 3λ2

(2.295)
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The slow motion on the stable branches of the SIM should be simulated numeri-
cally. The procedure of numerical integration should be performed twice – for each
of the two branches of the SIM. It should be stressed that only one computation
cycle of the mapping for each point of the initial interval is required. This idea of
mapping is close to that used in (Guckenheimer and Wechselberger, 2006) for the
analysis of chaotic attractors of the relaxation oscillations in the state space of lower
dimensionality.

Not every trajectory which starts from the lower fold of the SIM will reach the
initial interval (R = [�1,�2]) since it can go to an alternative attractor at the upper
or the lower branch of the SIM, if the latter exists. Of course, only those points
which are mapped into the interval R can carry sustained relaxation oscillations.

To illustrate the construction of the return map we depict all four stages of its con-
struction separately in Fig. 2.55 for the system parameters A = 0.4, λ = 0.2, σ = 0,
A1crit < A < A2crit. At the first stage (Fig. 2.55a) the R interval defined earlier
is mapped to the upper stable branch of the SIM according to (2.294). The second
stage consists of the slow drift of the system on the upper stable branch until the
upper fold line (N2) is reached (Fig. 2.55b). The fast jumps from the upper fold N2
to the lower stable branch of SIM constitute the third stage of the mapping process
in accordance with (2.295) (Fig. 2.55c). The fourth stage contains the slow drift of
the system until the initial interval R is reached (Fig. 2.55d). Composition of these
four stages results in a single one-dimensional map of R into itself (Fig. 2.55e).

Fig. 2.55 Return map construction: (a) Mapping from the R interval to the upper stable branch of
SIM (Nu) (b) Mapping from the line Nu to the upper fold N2 (c) Mapping from the N2 to the lower
stable branch of SIM (Nd) (d) Mapping from Nd to R. (e) Complete return map. A = 0.4, λ =
0.2, σ = 0, A1crit < A < A2crit
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Fig. 2.56 Frequency response diagram. Bold lines refer to the unstable regions of the periodic
solutions when the thin lines refer to the stable regions. Lower and upper folds of the SIM are
marked on the diagram with the thin dashed lines. System parameters: A = 0.4, λ = 0.2, σ = 0

The frequency response described by Eq. (2.285) is plotted in Fig. 2.56 for the
system parameters: A = 0.4, λ = 0.2, ε = 0.01. The fold lines of the SIM are also
marked there. As one can expect from a cubic equation for the square of the response
amplitude (2.285), for some zones of the parameter values one or three fixed points
can exist. These fixed points undergo generic bifurcations (saddle-node and Hopf).
More details on the structure and properties of the regular fixed points of the flow
are presented in (Starosvetsky and Gendelman, 2008).

Observing the frequency response diagram presented in Fig. 2.56, one can notice
that for A = 0.4, λ = 0.2 there are no stable regular fixed points for zero detuning
value. Therefore, every point of R is mapped into R (it has no way out). The map
is obviously contracting; therefore one can expect the existence of a stable attractor
corresponding to the regime of the relaxation oscillations (or SMR). In this case it
is a single-period cycle originating at a point θ ≈ 0 (see Fig. 2.55).

By increasing the detuning parameter value to σ = 2 (the values of the forcing
amplitude and the damping parameters are the same, A = 0.4, λ = 0.2, A1crit <

A < A2crit) one can notice the changes the map undergoes (Fig. 2.57).
Revisiting the frequency response diagram in Fig. 2.56 one can notice that there

are two stable periodic responses for σ = 2. One of the attractors is on the lower
stable branch and the second one resides on the upper stable branch. We do not
illustrate the attractor of the upper stable branch in Fig. 2.57 since it does not affect
the trajectories of the return map as it comes from Fig. 2.57b. Namely all the fraction
of points mapped from R to the upper stable branch are successfully mapped (in the
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Fig. 2.57 Return map construction (a) Mapping from the R interval to the upper stable branch of
SIM (Nu) (b) Mapping from the line Nu to the upper fold N2 (c) Mapping from the N2 to the lower
stable branch of SIM (Nd) (d) Mapping from Nd to R. (e) Complete return map. A = 0.4, λ =
0.2, σ = 2, A1crit < A < A2crit

second stage) to the fold line N2 (Fig. 2.57b), this without being attracted to the
stable focus. However, by observing the final stage of the mapping (Fig. 2.57d)
one can notice how the attractor on the lower stable branch of SIM modifies the
return map. Several trajectories are attracted to the stable focus when the remaining
fraction returns back to the R interval as it is illustrated in Fig. 2.57d. This means
that only a certain subinterval of R is mapped into R.

Looking at the mapping diagram (Fig. 2.57e), one can see that all the mapping
lines tend to the right and there is also a region on the basin which does not contain
any lines. This region relates to the unaccomplished cycles, namely to the phase
trajectories which started from the region and have been attracted to the periodic
response attractor before they have reached the basin once more as it is demon-
strated in Fig. 2.57d. Thus, the empty regions of the basin in the diagrams will be
related to the trajectories which do not reach the basin once more. It is clear from
Fig. 2.57e that there is no stable attractor of the SMR and for every initial con-
dition on the basin the system finally (after sufficient number of cycles) leaves the
basin. Consequently, the relaxation oscillations will exist in transient response under
certain initial conditions, but not in the sustained response. Quite obviously, such a
situation requires the presence of an alternative attractor.

While changing the values of detuning σ (keeping the rest of the system param-
eters fixed) and for each step performing the mapping, one can track the value of
σ for which the attractor vanishes. Thus, one obtains a tool to determine the fre-
quency region where the SMR exists. For the following set of system parameters
(A = 0.4, λ = 0.2), the boundaries of the detuning parameter within which the
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SMR exists are σR = 1.597 > σ > σL = −1.275. Returning to the initial frequency
domain of Eq. (2.265), we can conclude that the SMR exists in O(ε) – vicinity of the
exact resonance. This finding confirms earlier results of direct numeric simulations.

Our next goal is to investigate the mechanism of “birth” of the limit cycle related
to the SMR when the detuning parameter passes its critical value. In Fig. 2.58, a
sequence of maps close to the upper critical value of the detuning parameter (σ =
σR) is presented for the following system parameters: A = 0.4, λ = 0.2.

For the critical value (σ = σR = 1.597) we can see undistinguishable stable and
unstable cycles; they split off as the detuning parameter decreases. This scenario
corresponds to a simple fold bifurcation of a 1D map – the creation of stable and
unstable fixed points. In the framework of the current problem, it corresponds to
the fold of stable and unstable limit cycles in 4D state space of the averaged prob-
lem (2.268). This global bifurcation is not related to the behavior of fixed points
or homoclinic orbits of the problem (the latter are absent in this generic case) and
cannot be addressed by local analysis within the initial framework. Still, presence
of the small parameter related to the mass ratio allows us to reduce the global flow
to the 1D nonlinear map and thus to demonstrate this bifurcation in terms of a local
bifurcation of the map.

Hence, we have depicted the mechanism of creation and annihilation of the stable
and unstable cycles near the right boundary (σR) of the SMR existence. It is essential
to check what happens about the left boundary (σL). For this reason we plot the

Fig. 2.58 Sequence of mapping diagrams in the region (1 < θ < �1); Horizontal bold lines refer
to the basin of jump. Stable cycle marked with bold blue solid line and unstable is marked with the
bold red solid line. A = 0.4, λ = 0.2



2.6 2DOF Systems of Nonlinear Oscillators 125

Fig. 2.59 Sequence of the one dimensional mapping diagrams for (σ = −1.2287, σ = −1.242).
The bold blue line refers to the stable one period cycle A = 0.4, λ = 0.2

diagrams for gradually decreasing values of the detuning parameter near the left
boundary (σL). The maps are presented in Fig. 2.59.

It is clear from the diagram that when the frequency detuning σ decreases, two
phenomena happen. Firstly, the stable cycle (marked with the bold line on the dia-
grams (Fig. 2.59)) moves towards the left boundary of the jump basin. Secondly, the
major fraction of the mapping trajectories vanishes. The second phenomenon points
out to the attraction of the SMR trajectories to the stable periodic regimes (by the
mechanism presented in Fig. 2.57). Unlike the saddle node bifurcation of the SMR
cycles observed in the vicinity of the right boundary σR we see that more and more
mapping trajectories are attracted to the stable periodic attractor with decrease of
the detuning value. Therefore, the SMR disappears due to the attraction of the entire
set of the mapping trajectories to the alternative periodic attractor (the map itself
disappears).

In order to provide an additional illustration of the SMR cycle, we have drawn
the cycle on the phase portrait plane. These cycles include the fast jumps (from one
stable branch of SIM to another) and slow evolution on the SIM (Fig. 2.60).

The behavior of the SMR is described by a 1D nonlinear map. Consequently,
generic bifurcations of the 1D maps are also expected to be observed for these
limit cycles in 4D state space. One of such generic bifurcations is period doubling,
which exists for certain values of parameters. For example, picking a set of system
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Fig. 2.60 The entire cycle of SMR; Horizontal bold line refers to the initial interval �1 <

θ < �2. Dashed lines refer to the fast jumps; solid line refers to the slow evolution on SIM,
A = 0.4, λ = 0.2, σ = 0.5

parameters A = 1, λ= 0.05, σ = 0 one obtains the double period cycle of the one
dimensional mapping (Fig. 2.61).

Additional period doubling bifurcations (e.g. from double period to 4-period
cycle) were not observed in the mappings, however, the period doublings are rater
ubiquitous. In Fig. 2.62, the zones with double period are depicted on the plane λ-A
for zero detuning.

It should be mentioned that the analytic approach developed above is valid for the
limit ε→0. The approximation for finite values of ε requires the computation of the
higher-order expansions for Eq. (2.271) and is a rather cumbersome task. Moreover,
the value of such enhancement is questionable, since the correction will be less than
the error due to the averaging procedure. Then, we restrict ourselves by comparison
of the analytic predictions with numeric simulations of the original system (2.265)
and of the averaged system (2.268).

Our next goal is to numerically verify an analytical prediction of the SMR attrac-
tor existence described in the previous section. We start from the validation of the
one-dimensional mapping procedure developed above by comparing it with the
averaged system (2.268). In Figs. 2.63, 2.64 and 2.65, the one-dimensional map-
ping procedure is compared to the numeric solutions of the averaged system (2.268)
for various values of the small parameter ε; the other system parameters are kept
fixed (A = 0.4, λ = 0.2, σ = 0.5).

“Fast” parts of the mapping cycle are computed from (2.294, 2.295) and are
therefore not related to the actual trajectory (it spins around the slow manifold due
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Fig. 2.61 Double period cycle of the one dimensional mapping: A = 1, λ = 0.05, σ = 0

Fig. 2.62 Zones of period doubling (σ = 0)
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Fig. 2.63 Comparison between prediction of the mapping approach (numbered, online – blue
line) and numeric simulation of the averaged system (2.268) (not numbered, online – green line).
The “fast” parts of the mapping trajectory are denoted by dashed lines. System parameters: A =
0.4, λ = 0.2, σ = 0.5, ε = 0.01

Fig. 2.64 Comparison between prediction of the mapping approach (numbered, online – blue
line) and numeric simulation of the averaged system (2.268) (not numbered, online – green line).
The “fast” parts of the mapping trajectory are denoted by dashed lines. System parameters: A =
0.4, λ = 0.2, σ = 0.5, ε = 0.005
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Fig. 2.65 Comparison between prediction of the mapping approach (numbered, online – blue
line) and numeric simulation of the averaged system (2.268) (not numbered, online – green line).
The “fast” parts of the mapping trajectory are denoted by dashed lines. System parameters: A =
0.4, λ = 0.2, σ = 0.5, ε = 0.001

to a pair of complex conjugate eigenvalues). Thus, only the “slow” parts of the
mapping cycle should be compared with the numeric simulation data. It is clear from
the plots that the “true” phase trajectory of the averaged system slightly deviates
from the one predicted by the mapping; the deviation grows with growth of ε, as
one should expect. For moderate values of ε, the method of mapping can be used at
least for qualitative predictions.

Then, we compare the numeric solution of the original system (2.265) with the
initial conditions constrained to the SIM (with the same parameters as used for the
plot in Fig. 2.55, A = 0.4, λ = 0.2, σ = 0.0, ε = 0.001) with the analytic predictions
(Fig. 2.66).

The frequency detuning interval obtained for the analytically predicted exis-
tence of the SMR attractor is σ ∈ [−1.275, 1.597] when the numerical simulation
demonstrates that for ε = 0.01 the SMR exists as σ ∈ [−1.3, 1.3]. Quite naturally,
the accuracy of the analytical prediction increases for smaller ε.

Additional use of one dimensional mapping discussed in the previous section is
the ability to predict peculiar transient behavior of the response – the system can
exhibit a few cycles of the relaxation oscillations before it is attracted to the stable
periodic response. In order to verify it we present the case for which there is no
stable SMR attractor. Thus, for the system parameters (A = 0.3, λ = 0.2, σ = 0.35)
by picking the initial value the of phase angle (θ0 = 0) and plotting the sequence of
mappings, we get the picture in Fig. 2.67.
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Fig. 2.66 Strongly modulated response compared to prediction of one dimensional mapping (the
modulation envelope). System parameters: A = 0.4, λ = 0.2, σ = 0.0, ε = 0.001

Fig. 2.67 The mapping diagram in the absence of stable SMR, (A = 0.3, λ = 0.2, σ = 1.1)
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Fig. 2.68 Time series of the original system with initial conditions constrained to the SIM and
similar to those of the one dimensional mapping (Fig. 2.62), A = 0.3, λ = 0.2, σ = 1.1, ε = 0.0005

The system parameters were specially chosen in order to obtain more than one
transient cycle on the mapping diagram. In the case presented in Fig. 2.67, the num-
ber of mapping cycles is 2. In order to check the prediction, we supply the similar
initial conditions to the original system as for the mapping and plot the time series
for the initial system (2.265). The result is plotted in Fig. 2.68.

It is clear from Fig. 2.68 that before a system is attracted to the periodic response
it exerts two cycles of relaxation type as it was predicted by the one-dimensional
map. It should be mentioned that in order to get such a coincidence, the parameter
ε is picked to be extremely small. The latter requirement reflects the fact that the
transient relaxation oscillations are observed in close vicinity of the bifurcation of
stable–unstable limit cycles and the flow structure is thus very sensitive to minor
changes of parameters.

The next simulation is related to period doubling, in accordance with the pre-
dictions in Fig. 2.62. We performed simulations (Poincare Section, Time Series) in
the zone of predicted period doubling (A = 0.8, λ = 0.053) and in the neighboring
zone of one period (A = 0.7, λ = 0.065) where the small parameter and detuning
are ε = 0.005, σ = 0. Poincare section and time series presented in Fig. 2.69 refer
to the first pair of parametersA = 0.8, λ = 0.053 in the zone of period doubling.
Poincare section and time series presented in Fig. 2.70 refer to the second pair of
parameters A = 0.8, λ = 0.065 in the zone of one period, very close to the period
doubling point.

It is interesting to see that the time series clearly reveal the period doubling. As
for Poincare sections, they demonstrate that in fact both responses are chaotic-like
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Fig. 2.69 Poincare section, time series response for system parameters in a zone of period
doubling. System parameters: (A = 0.8, λ = 0.053, ε = 0.005, σ = 0)

Fig. 2.70 Poincare section, time series response for system parameters in zone of one period.
System parameters: (A = 0.8, λ = 0.065, ε = 0.005, σ = 0)
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at time scale O (ε–2). Of course, the treatment presented above says nothing about
the behavior of the system at this time scale.

The approach developed is formally valid for ε→0 and care is required when
using it for the system having a finite mass ratio. Some effects are smashed due
to mixing between a fast and a slow time scale; some others, like chaotization, are
not captured by the analytic approach. Still, the mapping can be used at least for the
qualitative evaluation of possible response regimes. The treatment cannot be consid-
ered as mathematically rigorous: the averaging is performed beyond the conditions
of the averaging theorem; the mapping includes a numeric part and is valid only for
ε→0. Anyway, the predictive power of the approach is confirmed by comparison to
the results of direct numerical simulations.

In general, the responses similar to the SMR may be present in a variety of
systems having essential nonlinearity and mass (or modal mass) asymmetry, if
appropriate multiple scale decomposition provides the necessary geometry of invari-
ant manifolds to provide the possibility for the relaxation oscillations. In such cases,
the method presented above may be used in order to establish the zone in the space
of parameters where the SMR exists, as well as its domain of attraction.

2.7 Coupled Nonlinear Oscillators with Time Delays

2.7.1 Analytic Model

A concept of nonlinear normal mode (NNM) as analytic continuation of well-known
normal modes of linear system originates from the work of Lyapunov (1947). As
it was mentioned above, the concept has been refined by Rosenberg and other
researchers (Rosenberg, 1960, 1962; Kauderer, 1958); they have primarily consid-
ered the NNMs as particular solutions of nonlinear dynamical systems, which are
characterized by synchronous evolution of all variables. Recently, there was a plenty
of activity in the field of the NNMs, including successful analysis of multi-DOF sys-
tems, transient motions etc (Vakakis et al., 1996; Shaw and Pierre, 1991, 1993). See
also the Addendum at the end of this book.

Account of time delay is a necessary modification of many dynamical models
if one takes into account finite speed of the signal propagation, retarded waves etc.
Such models are widely studied in relation with cutting and milling processes, neu-
ral networks and other systems (Sen and Rand, 2003; Wirkus and Rand, 2002; Atay,
2003). Usually, the nonlinearities in these models are treated by means of asymptotic
expansions and averaging; these methods are very powerful but it is well-known that
they can miss some effects related to essential nonlinearity. In the dynamical sys-
tems without delays, the computation of the NNMs can help to reveal these solutions
(Vakakis et al., 1996).

Our present goal is to investigate whether the concept of the NNM may be useful
for investigation of an essentially nonlinear dynamical system with time delays. Of
course, one can rely on the linear normal modes no more – due to the time delay, the
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state space has an infinite dimension from the very beginning. Instead, it is proposed
to treat the NNMs as synchronous solutions of the system, i.e. to include the modes
which are described by closed continuous curves in the configuration space. The
study of in-phase and out-of-phase motions in a system of coupled Van-der-Pol
oscillators with time delays has been performed in (Sen and Rand, 2003). The phase-
locked solutions in the case of relaxation oscillations were studied in (Wirkus and
Rand, 2002). We adopt here a somewhat different approach – the dynamical system
is chosen in a form which allows exact computation of some modal shapes, with
subsequent numeric verification.

The system of two similar homogeneous coupled essentially nonlinear oscillators
is postulated to have the form

u1,tt + Cum
1 + G(u1 − u2(t − τ ))m = 0

u2,tt + Cum
2 + G(u2 − u1(t − τ ))m = 0

(2.296)

where ui ≡ ui(t), i = 1, 2, C is the nonlinear stiffness of the oscillator, G is the
coupling strength, τ is the time delay and m is an odd positive number. In every
equation, the time delay is introduced only to the coupling term related to the other
oscillator; such a choice of model is suggested to describe the retarded reaction of
the coupling spring. For τ = 0 system (2.296) is reduced to system (1.2.1) in the
book (Vakakis et al., 1996) without the linear part.

After simple rescaling

t = ξτ , ui = gyi, i = 1, 2, g = (τ 2C)−
1

m−1 , k = G/C (2.297)

system (2.296) is reduced to a dimensionless form

ÿ1 + ym
1 + k(y1 − y2(t − 1))m = 0

ÿ2 + ym
2 + k(y2 − y1(t − 1))m = 0

(2.298)

which is the basis for further analysis. The dot denotes the differentiation with
respect to ξ.

Periodic synchronous solutions of system (2.298) are searched in a form

y1 = cy2(ξ − T) (2.299)

where c is constant ratio of amplitudes and T – constant phase shift. Substitution of
(2.299) to (2.298) yields

cÿ2(ξ − T) + cmym
2 (ξ − T) + k(cy2(ξ − T) − y2(ξ − 1))m = 0

ÿ2 + ym
2 + k(y2 − cy2(ξ − 1 − T))m = 0

(2.300)

Shifting the first equation of System (2.300) by T, one obtains

ÿ2 + cm−1ym
2 + kc−1(cy2 − y2(ψ + T − 1))m = 0

ÿ2 + ym
2 + k(y2 − cy2(ξ − 1 − T))m = 0

(2.301)



2.7 Coupled Nonlinear Oscillators with Time Delays 135

In order to have a consistent solution, the first and the second equations of system
(2.301) should be equivalent. Periodic solutions are searched for; let us consider
that the solution of system (2.301) is periodic with minimal period �. Due to the
symmetry of initial equations, one can suggest

y2 = y2(ξ +�), y2 = −y2

(
ξ + �

2

)
(2.302)

System (2.301) will be consistent, if the following relationships hold:

T − 1 = n�

2
, T + 1 = l�

2
, n, l ∈ Z (2.303)

From (2.303) it is easy to obtain

� = 4

l − n
, T = (l + n)

�

4
= l + n

l − n
, l, n ∈ Z (2.304)

From (2.304) it follows that possible values of period are discrete and time shift T is
a multiple of�/4. The latter conclusion allows a description of the modal shapes on
configuration plane y1–y2: for l+n even the modal shapes will be straight lines and
for l+n odd-ovals. Solutions similar to the latter type of modes were described, for
instance, in (Manevich and Manevitch, 2005) for coupled conservative oscillators
with weak nonlinearity. There they were referred to as “elliptic” modes. Here this
term is not justified, since solutions of essentially nonlinear system (2.296) are very
different from sine and cosine functions and therefore the modal curves are not
ellipses. Therefore the term “oval modes” is used. Case l = n corresponds to the
trivial solution y1 = y2 =0.

Let us consider different possibilities for l and n, which will yield different con-
sistency conditions for system (2.301). Due to the symmetry of the system without
restriction of generality it is possible to adopt l>n.
A. Both l and n are even.

In this case � = 2/q, q = 1, 2, 3 . . . and T = 0 or �/2. The condition of
consistency for system (2.301) is written as

1 + k(1 − c)m = cm−1 + kc−1(c − 1)m (2.305)

Equation (2.305) always allows solutions c = ±1, corresponding to symmetric
and antisymmetric modes (due to conditions (2.299) and (2.301), transformation
c → –c, T → T+�/2 keeps the system unchanged). Besides the symmetric and the
antisymmetric modes, at a certain critical value of k, solutions of equation (2.305)
bifurcate, giving rise to localized modes. The bifurcation diagram for m = 3 is
presented in Fig. 2.71, the bifurcation point is k = 0.25, c = –1.

This figure is similar to Fig. (1.2.2b) in Vakakis et al. (1996), besides the issue
of stability which is discussed below. However, one should keep in mind that for
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Fig. 2.71 Solutions of Eq.
(2.305) – k versus c

the system with time delay both solutions with T = 0 and T = �/2 are possi-
ble, depending on values of l and n. Thus, in accordance with (4) for c < 0 one
will obtain both physically symmetric and antisymmetric solutions. Contrary to the
case of τ = 0, both symmetric and antisymmetric mode can bifurcate and yield the
localized solutions.
B. Both l and n are odd.

Also in this case, � = 2/q, q = 1, 2, 3 . . . and T = 0 or �/2. The condition of
consistency for system (2.301) is written as

1 + k(1 + c)m = cm−1 + kc−1(c + 1)m (2.306)

Transformation c → –c yields Eq. (2.305); therefore, this series of solutions is
equivalent to the previous case.
C. 1 is even, n is odd.

In this case, � = 4/(2q + 1), q = 0, 1, 2, 3 . . . and T = �/4 or 3�/4. In
other terms, these solutions correspond to the “oval modes” mentioned above. The
condition of consistency for system (2.301) is written as

1 + k(1 + c)m = cm−1 + kc−1(c − 1)m (2.307)

The structure of solutions for Eq. (2.307) is very different from that of (2.305). First
of all, the values c = ±1 do not satisfy the equation for every value of k, although
they may satisfy it for some particular coupling. Therefore, for almost all values
of the coupling coefficient the solutions are localized. Moreover, it is possible to
demonstrate that these solutions exist only if k is some bounded interval. Reshaping
Eq. (2.307), one obtains
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Fig. 2.72 Solutions of Eq.
(2.308) – k versus c

k = cm − c

c(1 + c)m + (1 − c)m
(2.308)

It is easy to demonstrate that the denominator in (2.308) never vanishes for any odd
positive m. For the case m = 3, the plot of function (2.308) is presented in Fig. 2.72
D. l is odd, n is even.

It is easy to demonstrate that the sign inversion of c brings this case to (2.307,
2.308).

Following this, one can conclude that system (2.301) possesses two families of
synchronous periodic solutions. The first family corresponds to the cases (A) and
(B) and can be presented by straight lines on the configuration plane. The second
one corresponds to the cases (C) and (D); on the configuration plane this is described
by ovals.

In order to complete the computation, one should determine the amplitude of y2
for each case. If two equations in system (2.301) are consistent, both of them are
reduced to the form

ÿ2 + Qym
2 = 0 (2.309)

where Q is a constant depending on the selected mode. This equation has a well-
known solution (see, e.g., Salenger et al., 1999):

y2(t) = Av

(√
2Q

m + 1
A

m−1
2 t + ϕ0

)
(2.310)
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where A and φ0 are determined by the initial conditions, and periodic function v(t)
with unit amplitude is determined by the quadrature

dt = dv√
1 − vm+1

(2.311)

The minimal period of solution (2.310) is determined as

T = 2A
1−m

2

√
2π

Q(m + 1)

"(1/m+1)

"(1/2 + 1/m+1)
(2.312)

Equations (2.305) and (2.307) allow presenting the coefficient Q in Eq. (2.309) as
an explicit function of c for every case. For “straight” modes (cases A and B) this
function will read

Qstraight = ±cm + 1

±c + 1
(2.313)

A positive sign corresponds to the case (A) and a negative one to (B)
For “oval” modes (cases C and D), a combination of System (2.301) and Eq.

(2.308) yields:

Qoval = ±cm(1 ± c)m + (1 ∓ c)m

±c(1 ± c)m + (1 ∓ c)m
(2.314)

The upper sign corresponds to C and the lower – to D).
A combination of the expression for period (2.312) with expression (2.313) or

(2.314) for the relevant mode (amplitude ratio c should be selected from the solu-
tions of Eqs. (2.306) or (2.308) respectively with the given value of coupling k yields
the condition for discrete values of amplitude):

Astraight = q
2

m−1

(
Qstraight(m + 1)

2π

"2(1/2 + 1/m+1)

"2(1/m+1)

)− 1
m−1

, q = 1, 2, . . . (2.315)

Aoval = (2q + 1)
2

m−1

(
2Qoval(m + 1)

π

"2(1/2 + 1/m+1)

"2(1/m+1)

)− 1
m−1

, q = 1, 2, . . . (2.316)

In the theory of nonlinear normal modes, it is common to investigate asymptotic and
orbital stability (Vakakis et al., 1996) – if the perturbation of the initial conditions
which determine the given mode is small enough, the distance between the perturbed
and the unperturbed orbit will vanish in the former case and remains bounded in the
latter. In the case of systems with time delay, the above standard definitions should
be changed, since in order to determine the orbit unambiguously one should also
define the pre-history of the motion at the delay time. So, the orbit yi(t), i = 1,2 of
Eq. (2.296) is a small perturbation of the orbit y0i(t), i = 1,2 if



2.7 Coupled Nonlinear Oscillators with Time Delays 139

max−τ≤t≤0

∥∥(yi(t) − y0i(t), ẏi(t) − ẏ0i(t))
T
∥∥ = ε << 1 (2.317)

The orbit y0i(t) is asymptotically stable, if for any yi(t) satisfying (2.317) for ε small
enough the distance between the unperturbed and the perturbed orbit vanishes

lim
t→∞ dist(yi(t), y0i(t)) = 0 (2.318)

and is orbitally stable, if for any δ small enough, for which condition (2.317) is
satisfied, there exists such ε that

max
0≤t<∞ dist(yi(t), y0i(t)) = δ(ε) (2.319)

and δ(ε) vanishes if ε vanishes. In the limit τ→0, both definitions are reduced to
standard ones for common NNMs.

The system under consideration is not conservative; therefore the solutions may
be asymptotically stable. As will be demonstrated below, linear analysis of the sta-
bility may be insufficient for this system and a complete nonlinear analysis is hardly
possible.

Still, one particular case may be easily investigated analytically. The trivial solu-
tion yi = 0, i = 1,2 clearly satisfies Eq. (2.298); let us consider its stability. One
should introduce the perturbation of the trivial solution as follows:

y1(t) = δ1(t), y2(t) = δ2(t), ‖δ1‖ ∼ ‖δ2‖ ∼ O(δ) << 1 (2.320)

Equations (2.298) are reduced to the form

δ̈1 + δm
1 + k(δ1 − δ2(t − 1))m = 0

δ̈2 + δm
2 + k(δ2 − δ1(t − 1))m = 0

(2.321)

This system is not easier than System (2.298). Still, the balance of orders of terms
yields the conclusion concerning the rate of time evolution of the variables:

d/dt ∼ O(δ
m−1/2) (2.322)

Then, time evolution is relatively slow and one can use a Taylor series expansion for
the delay terms:

δi(t − 1) = δi(t) − δ̇i(t) + 1

2! δ̈i(t) + . . . , i = 1, 2 (2.323)

If one keeps only the first term of (2.323) in both Eq. 2.316), the effect of delay is
not taken into account, the system is conservative and the origin is a neutrally stable
equilibrium point. That is why the second terms in (2.323) should be also kept. The
approximate equations are
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δ̈1 + δm
1 + k(δ1 − δ2)m + kmδ̇2(δ1 − δ2)m−1 = 0

δ̈2 + δm
2 + k(δ2 − δ1)m + kmδ̇1(δ2 − δ1)m−1 = 0

(2.324)

If one introduces function positively defined in the vicinity of the origin and
vanishing in the origin itself

E = 1

2
(δ̇2

1 + δ̇2
2) + 1

m + 1
(δm+1

1 + δm+1
2 + k(δ1 − δ2)m+1) (2.325)

then it is easy to conclude from (2.324) that

dE

dt
= −2 kmδ̇1δ̇2(δ1 − δ2)m−1 (2.326)

For antisymmetric perturbation δ1(t) = –δ2(t), one obtains dE/dt>0 if the pertur-
bations are not constant; therefore, the origin is unstable. Of course, E is the total
energy of the system in the absence of delay.

If one considers the stability of the set of periodic solutions of system (2.298)
(y01(t), y02(t)), where both functions are not zeros and y01(t) �=y02(t±1), then
the problem of stability may be treated by linear approximation (the particular
case y01(t)=y02(t±1) is addressed in the next section). Small perturbations are
introduced as follows:

yi = y0i + δi, ‖δi‖ << ‖yi‖ , i = 1, 2 (2.327)

In the linear approximation the following homogeneous system is obtained:

δ̈1 + mym−1
10 δ1 + km(y10 − y20(t − 1))m−1(δ1 − δ2(t − 1)) = 0

δ̈2 + mym−1
20 δ2 + km(y20 − y10(t − 1))m−1(δ2 − δ1(t − 1)) = 0

(2.328)

If periods of y10(t) and y20(t) are equal, as in the treatment above, or at least com-
mensurate, as it is the case for the phase-locked solution presented in the next
section, then the stability of orbits is determined by location of eigenvalues of
infinite monodromy matrix of system (2.328) (see, e.g. Saaty, 1981 for details).

Needless to say, even approximate computation of this matrix is a cumber-
some task, especially in the case of the strong nonlinearity treated in this paper.
Therefore, the stability of particular solutions for various modes described above
was investigated numerically.

All numeric simulations presented below were performed for system (2.298)
with m = 3 (unless otherwise stated explicitly), for different values of the coupling
parameter k and different initial functions y1(t) and y2(t), t<0.
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2.7.2 Numeric Verification – Straight Modes

The first series of simulations illustrates modes which are described by straight lines
on the configurational plane. Figure 2.73a, b, demonstrates the displacements y1 and
y2 respectively for the symmetric mode (c = 1, T = 0).

It is easy to see that the symmetric mode is realized with an amplitude close to
15. Substituting c = 1 and m = 3 to (2.313) and (2.315), one obtains:

Astraight ≈ 3.708q (2.329)

Figure (2.73a, b) demonstrate the solution with q = 4, the period being equal to 2/q
=0.5, in complete agreement with the analytic predictions above. Similar results
may be obtained for higher amplitudes as well (Fig. 2.74a, b).

It is easy to see that the solution now corresponds to q = 8. It should be men-
tioned that the initial conditions for both simulations above are symmetric, but do

a) b)

Fig. 2.73 Displacements for the symmetric mode, k = 0.1, y1(t) = y2(t) = 13, t ≤ 0; (a) y1(t); (b)
y2(t)

a) b)

Fig. 2.74 Displacements for the symmetric mode, k = 0.13, y1(t) = y2(t) = 17, t ≤ 0; (a) y1(t);
(b) y2(t)
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Fig. 2.75 Displacements for the antisymmetric mode, k = 0.15, y1(t) = –y2(t) = 1, t ≤ 0; (a)
y1(t); (b) y2(t)

not coincide with the simulated mode. Hence, the resulting steady-state mode is
selected in accordance with the condition of discreteness (2.315).

Similarly, the antisymmetric mode can be simulated. The results are presented in
Fig. 2.75a, b.

It is easy to see that this regime corresponds to q = 1. In fact, here c = 1 and
T=�/2.

Stability of the symmetric and the antisymmetric solutions mentioned above is
a rather subtle issue. From one side, direct simulation of the exact antisymmetric
response has not indicated any divergence; moreover, from Fig. 2.75 one can see
that the mode actually attracts the flow. At least, it seems that the numeric errors do
not bring about the divergence. Still, this is not sufficient to conclude on the stability
of this response regime. To illustrate the point, the simulation with a relatively small
initial deviation from ideal antisymmetry was performed (Fig. 2.76a, b).

In the beginning of the process, the responses are very similar to those presented
in Fig. 2.75a, b but finally the flow leaves the antisymmetric mode and diverges – the



2.7 Coupled Nonlinear Oscillators with Time Delays 143

a)

b)

Fig. 2.76 Displacements for the squeezed antisymmetric mode, k = 0.15, y1(t) = 1.2, y2(t) = –1,
t ≤ 0; (a) y1(t); (b) y2(t)

segment of the plot for t > 100 may be problematic with respect to numeric accuracy
but a trend towards divergence is obvious. Simulations with smaller deviation from
the exact antisymmetry also yielded the approximate capture to the antisymmetric
mode with subsequent divergence, but it took much more time. The behavior of the
symmetric mode is rather similar.
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It is possible to explain this phenomenon with a perturbation analysis of system
(2.298) by investigation of the vicinity of the exact solution with c = 1. For the sake
of simplicity, the analysis will be performed only for the symmetric mode with y1(t)
= y2(t–1):

y1(t) = Y0(t) + δ1(t)
y2(t) = Y0(t) + δ2(t)
Y0(t) = Y0(t − 1), δj << 1

(2.330)

Substituting (2.330) with (2.298), one obtains:

δ̈1 + {mYm−1
0 δ1 + . . .} + k(δ1 − δ2(t − 1))m = 0

δ̈2 + {mYm−1
0 δ2 + . . .} + k(δ2 − δ1(t − 1))m = 0

(2.331)

The terms in figured parentheses stem from the uncoupled system and cannot bring
about the divergence; the only reason for the instability can be related to the last
term. It means, first of all, that the stability of the symmetric and the antisym-
metric modes cannot be analyzed in linear approximation. Then, if the deviation
is extremely small (like in the case of numeric errors), it will not affect the stabil-
ity of the numeric solution – the corrections yielded by these deviations will not
be taken into account by a numeric scheme, since it has a finite accuracy. So, the
situation here is a bit paradoxical – the regime is in fact unstable, but the instability
cannot be captured in the linear approximation and does not reveal itself via numeric
errors.

The situation with the other modes where the linear coupling terms do not dis-
appear due to the symmetry (e.g. “straight” localized modes) is quite different – it
seems that they are unstable and cannot be revealed by direct numeric simulation.
Quite surprisingly, the only stable attractors revealed for the system under consider-
ation are those synchronous solutions which do not exist at all for the system with
zero delay – the “oval” modes.

2.7.3 Numeric Verification – “Oval” Modes and Phase – Locked
Solutions

A typical example of the “oval” mode is presented in Fig. 2.77.
It should be mentioned that the initial conditions are rather “far” from the mode

obtained; it demonstrates remarkable stability, unlike the “straight” modes. Stable
“oval” modes are ubiquitous in the system under consideration for relatively small
values of the coupling coefficient; for higher values of k they cease to exist (see
Fig. 2.72).

Another interesting phenomenon may be observed for the same value of the
coupling but for a somewhat higher amplitude of the initial function (Fig. 2.78).
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a) b)

c)

Fig. 2.77 Displacements for the “oval” mode, k = 0.06, y1(t) = 2, y2(t) = 0, t ≤ 0; (a) y1(t); (b)
y2(t); (c) configuration plane: y1 versus y2

One obtains a stable phase-locked solution with a period ratio of 2:3. Such
phase-locked solutions are also rather ubiquitous for the system; of course, the syn-
chronous solutions described above are a particular case of the phase locking with a
period ratio of 1:1.

The last simulation treats the case m = 7. It is easy to obtain the “oval” mode for
this case too (Fig. 2.79).

One can see that the modal shape is very different from an ellipse; this difference
is a manifestation of the extreme nonlinearity of the system.

The investigation presented above demonstrates that the concept of a nonlinear
normal mode makes sense for the essentially nonlinear system with time delay. For
such a system the NNM cannot be treated as an analytic continuation of the linear
normal mode; instead, one should refer to the definition of “synchronous motion”.
In this case, the NNM turns to be a particular case of phase locking. The NNMs
determined in this way may serve as stable attractors of the dynamical flow; such
situation is not possible in a conservative system.

The special structure of system (2.296) allows an exact investigation of the
synchronous solutions. For other systems this will not be the case. Vast literature
devoted to the NNMs describes many approximate methods of their computation. It
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Fig. 2.78 Displacements for the phase – locked mode, k = 0.06, y1(t) = 3, y2(t) = 0, t ≤ 0; (a)
y1(t); (b) y2(t); (c) configuration plane: y1 versus y2

Fig. 2.79 Displacements for
the “oval” mode, m = 7, k =
0.03, y1(t) = 1, y2(t) = 0, t ≤
0; configuration plane: y1
versus y2
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would be desirable to develop the methods to treat the NNMs in the systems with
time delays. It would allow one to find the solutions which are not available by
standard averaging or asymptotic schemes.

2.8 Low-DOF Discrete Nonlinear Systems

The problem of energy localization and energy transfer in discrete nonlinear systems
has a long history in physics, chemistry and the mechanical sciences. The discov-
ery of intrinsic localized modes (ILM) in an infinite oscillatory chain by Sievers
and Takeno (1988) gave rise to a very wide area of studies of periodic discrete sys-
tems. The intrinsic localized modes have been detected and studied experimentally
in such different systems as interacting Josephson junction ladders (Binder et al.,
2000), weakly coupled nonlinear optical waveguides (Eisenberg et al., 1998), lattice
vibrations in crystals (Swanson et al., 1999), antiferromagnetic structures (Shwarz
et al., 1999), micromechanical cantilever arrays (Sato et al., 2003, 2004), Bose–
Einstein condensates loaded on optical lattices (Eiermann et al., 2004), and layered
high-Tc superconductors (Machida and Koyama, 2004).

There are several universal models that take the regularities inherent to wide class
of nonlinear systems into account. The Fermi-Pasta-Ulam (FPU) chain is one of
these models because its potential energy contains the terms of third and fourth order
together with parabolic ones. Beginning from pioneer work (Fermi et al., 1955), pre-
dominant attention in the study of FPU chains was paid to large systems, which are
integrable only within the continuum limit. However, it turns out that even a dis-
crete FPU model with symmetric potential (β-FPU) can be integrable if the number
of particles is equal to 3 and the periodicity conditions are satisfied (Feng, 2006).

We consider a more general situation when the potential contains an asymmetric
part (αβ-FPU) and the number of particles N in the periodic chain is small enough
but can be more than 3 (N = 3,4,. . .). The common peculiarity of the systems
under consideration is the presence of doubly degenerate frequencies in the oscilla-
tory spectrum with wide gaps between the pairs. In such cases, the localization of
energy in one of the degenerate eigenmodes may be considered (in terms of nor-
mal coordinates) as the immobile ILM. The resonant energy exchange between two
degenerate modes in this situation corresponds to the ILM mobility in the periodic
FPU chain. When the number of particles increases, resonance relations between
different frequencies turn out to be possible and the present consideration is not
valid.

Let us consider a common FPU-system, the Hamiltonian which can be written as
follows:

H0 =
N∑
j

1

2
p2

j + 1

2
(qj+1 − qj)

2 + α 1

3
(qj+1 − qj)

3 + β

4
(qj+1 − qj)

4 (2.332)

where qj and pj are the coordinates and conjugate moments, respectively, and N
is the number of particles. As it is well known, the system (2.332) with periodic
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121 == ωω

343 == ωω

25=ω

Fig. 2.80 Normal modes of
6-particles FPU chain. Red
and blue arrows correspond
to positive and negative
displacements, respectively.
Left column contains
respective eigenvalues

boundary conditions has N eigenvalues ωj in the harmonic limit, the majority of
them are doubly degenerate (e.g., see Fig. 2.80 for N = 6).

If N is an even number, then the highest eigenvalue ωN–1 is not degenerate. The
equations of motion in the terms of linear normal modes

ξj =
N∑

k=1
ajkqk

ηj =
N∑

k=1
ajkpk

(2.333)

where ajk are components of the transitional matrix, can be written as

dξj
dt

− ηj = 0

dηj

dt
+ ω2

j ξj + Fj({ξ}) = 0
(2.334)

Here, the functions Fj contain the nonlinear terms depending on ξj and on the intera-
ction between different modes.

Introducing the complex combinations of ξj and ηj:

�j = 1√
2

(ηj + iωjξj) �̄j = 1√
2

(ηj − iωjξj) (2.335)

one can write the coupled nonlinear dispersionless Schrödinger equations:

i
d�j

dt
+ ωj�j + Fj({�, �̄}) = 0 (2.336)
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In the case of a small-amplitude motion we can represent the functions � as:

�j = eiωjt(εχj + ε2χj,2 + ε3χj,3 + . . .) (2.337)

We have extracted the mono-frequency motion in Eq. (2.6) by the factor exp(iωjt)
to focus attention on the nonlinear inter-mode coupling effects. To analyze them, we
have to introduce the time hierarchy:

τ0 = t, τ1 = εt, τ2 = ε2t

In such an expansion we can see that the amplitudes of main-order approximation χj
are independent of the “fast time” τ0. Indeed, for order zero of the small parameter
ε we get:

ε0 :
∂χj

∂τ0
= 0

It is easy to show that the equations in the next order of the small parameter ε have
the following form:

ε1 :
∂χj

∂τ1
= 0, χj,1 = f ({χj, χ̄j}) (2.338)

where f is some quadratic form of main-order amplitudes χj. The last relation in
(2.338) follows from the condition of the absence of secular terms. Then, one can
remove the first-order amplitudes χj,1 from the equations of second order of the
small parameter.

Let us consider the system with four particles, as an example. In this case the
eigenfrequencies are:

ω0 = 0; ω1 = ω2 = √
2; ω3 = 2

The matrix of transition to the normal modes is

A =

⎛
⎜⎜⎜⎝

− 1
2

1
2 − 1

2
1
2

0 − 1√
2

0 1√
2

− 1√
2

0 1√
2

0
1
2

1
2

1
2

1
2

⎞
⎟⎟⎟⎠ (2.339)

The reduced system with an immobile centre of mass has three degrees of freedom.
The Hamiltonian in terms of linear normal coordinates is

H0 =
4∑
j

1
2η

2
j + 2ζ 2

1 + ζ 2
2 + ζ 2

3 + 3βζ 2
1 (ζ 2

2 + ζ 2
3 ) + 3

2ζ
2
2 ζ

2
3 + 4αζ1ζ2ζ3+

+β(ζ 4
1 + ζ 4

2 + 1
4ζ

4
3 )

(2.340)



150 2 Discrete Finite Systems

After some manipulations, using Eqs. (2.335 and 2.338), we can obtain the
following modulation equations:

i
dχ1

dτ2
+ κ0|χ3|2χ1 + κ1|χ1|2χ1 + κ2|χ2|2χ1 + κ3χ

2
2 χ̄1 = 0

i
dχ2

dτ2
+ κ0|χ3|2χ2 + κ1|χ2|2χ2 + κ2|χ1|2χ2 + κ3χ

2
1 χ̄2 = 0

i
dχ3

dτ2
+ σ1|χ3|2χ3 + σ2(|χ1|2 + |χ2|2)χ3 = 0

(2.341)

In Eq. (2.341), the envelope functions χ1 and χ2 correspond to degenerate normal
modes with eigenvalues ω1=ω2 and function χ3 corresponds to eigenvalue ω3. The
coefficients in the Eq. (2.341) have a rather simple structure

σ1 = 3β; σ2 = 3β−2α2

4
√

2

κ0 = 3β−2α2

8 ; κ1 = 3β
8 ; κ2 = 3β

16 ; κ3 = 3β−4α2

16

(3.342)

In the invariant subspace χ3=0, Eq. (2.341) are reduced to a more simple system:

i
dχ1

dτ2
+ κ1|χ1|2χ1 + κ2|χ2|2χ1 + κ3χ

2
2 χ̄1 = 0

i
dχ2

dτ2
+ κ1|χ2|2χ2 + κ2|χ1|2χ2 + κ3χ

2
1 χ̄2 = 0

(2.343)

The corresponding Hamiltonian has the form:

Hχ = κ1

2
(|χ1|4 + |χ2|4) + κ2|χ1|2|χ2|2 + κ3

2
(χ̄2

1χ
2
2 + χ2

1 χ̄
2
2 ) (2.344)

It is easy to show that Eq. (2.343) have an additional integral of motion

N1 = |χ1|2 + |χ2|2 (2.345)

Taking into account the Eq. (2.345), we can rewrite expression (2.344) as

Hχ = κ1

2
N2

1 + (κ2 − κ1)|χ1|2|χ2|2 + κ3

2
(χ̄2

1χ
2
2 + χ2

1 χ̄
2
2 ) (2.346)

Let us note that despite a certain similarity of Hamilton function (2.344) to that for
the well-known DST model (Eilbeck et al., 1985), the system under consideration
has essential peculiarities which will be discussed below.

We derived Eq. (2.343) for partial case N = 4, however, it can be shown that their
structure is similar for any pair of resonant modes in the systems with an arbitrary
number of particles.
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As this takes place, there are three different cases for the coefficients relationship:

(i) κ1 − κ2 − κ3 = 0
(ii) κ1 − κ2 + κ3 = 0

(iii) κ1 − κ2 ± κ3 �= 0

(i) In this case, the value iG−
1 = (χ1χ̄2 − χ̄1χ2) is the integral of motion, as it is

easy to derive from Eq. (2.341). It allows us to linearize Eq. (2.343):

i
dx1

dτ2
+ k1N1x1 − ik3G−

1 x2 = 0

i
idx2

dτ2
+ k1N1x2 − ik3G−

1 x1 = 0
(2.347)

The partial solution of Eq. (2.347) is

χ1 =
√

N1
2 exp

[
i
(
 τ2 + δ0

2

)]

χ2 =
√

N1
2 exp

[
i
(
 τ2 − δ0

2

)] (2.348)

with

 = κ1N1 − κ3G−
1 , δ0 = π

/
2

and G1
– = –N1 or

 = κ1N1 + κ3G−
1 , δ0 = −π/2

and G1
– = N1

This solution corresponds to the elliptic mode (Manevich and Manevitch,
2005). The general solution can be presented in the form:

χ1 = √
N1eiκ1N1τ2 cos θeiδ/2

χ2 = √
N1eiκ1N1τ2 sin θe−iδ/2 (2.349)

The Eq. (2.347) have the following form in the terms of variables θ and δ:

sin 2θ

[
dθ

dτ2
+ κ3G−

1 cos δ

]
= 0

sin 2θ

[
dδ

dτ2
− 2κ3G−

1 ctg2θ sin δ

]
= 0

(2.350)

It is easy to show that the parameter G1
– is connected with the variables (δ, θ)

by this relation:

sin 2θ sin δ = C = G−
1 /N1

The behavior of the system can be analyzed efficiently on the reduced phase
plane (δ, θ) (see Fig. 2.81). There are two characteristic phase trajectories. The
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δ
π/2 π0−π/2−π

χ2 = 0

χ1 = 0

Elliptical modes

π/4

π/2

θ

0

Fig. 2.81 Phase plane of Eq. (2.351) in the terms (δ, θ). The stationary point (δ=±π/2, θ=π/4)
corresponds to elliptical mode (G1

– = N1). The rectangular trajectory corresponds to G1
– = 0.

Both presented quadrants are equivalent ones because of periodicity conditions

first of them is the central point (G1
–/N1=1, δ=π/2, θ=π/4) corresponding to

elliptical normal modes (2.348). The trajectories close to this point correspond
to weak intermode energy exchange. The second trajectory (G1

–/N1=0) is the
limiting phase trajectory (LPT) describing a complete energy transfer. Let us
note that the rate of energy exchange rises with increasing G1

– and is mini-
mal if G1

–/N1=0. So, both intensity and rate of energy transfer are controlled
by the parameter G1

–/N1. The most intensive energy transfer is attained for
the trajectories close to LPT (for LPT itself the rate is equal to zero, this is
strongly different from the case of two linearly coupled nonlinear oscillators
(Manevitch, 2007), where complete interparticle energy exchange occurs with
a finite rate).
Certain results for the computer simulation of the high frequency part of nor-
mal modes (Fig. 2.80, modes with ω3,4 = √

3) in the β–FPU chain with 6
particles are shown in Fig. 2.82.

(ii) In this case, G+
1 = (χ̄1χ2+χ1χ̄2) is the integral of motion. The linearized form

of Eq. (2.344) is:

i
dχ1

dτ2
+ κ1N1χ1 + κ3G+

1 χ2 = 0

i
dχ2

dτ2
+ κ1N1χ2 + κ3G+

1 χ1 = 0
(2.351)
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Fig. 2.82 Full energy exchange between high-frequency resonant modes leads to excitation mobil-
ity through the 6-particles FPU-chain. The initial excitation corresponds to G1

– <<N1, which leads
to a very long energy transfer

The stationary solutions have the following form:

χ1 =
√

N1
2 exp

[
i

(
 τ2 + δ0

2

)]

χ2 =
√

N1

2
exp

[
i
(
 τ2 − δ0

2

)] (2.352)

where  = κ1N1 + κ3G+
1 , δ0 = 0, G+

1 = N1 or otherwise  = κ1N1 −
κ3G+

1 , δ0 = π , G+
1 = −N1.
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Equations (2.352) in the terms of variables (δ, θ) are written as

sin 2θ

[
dθ

dτ2
+ κ3G+

1 sin δ

]
= 0

sin 2θ

[
dδ

dτ2
+ 2κ3G+

1 ctg2θ cos δ

]
= 0

(2.353)

The last equations determine a relation between the angle variables in the form:

sin 2θ cos δ = C = G+
1 /N

In this case, the central point G1
+/N1 =1 corresponds to a “supernormal mode”

which is the combination of both resonant modes with identical weights. As for
LPT (G1

+/N1 =0), it describes again a complete intermode transfer with zero
rate, so that actual slow energy transfer may be observed for trajectories close
to LPT. The data of a computer simulation study confirm the analytical results
(see Fig. 2.83).

(iii) This condition leads to a more complicated description than (i–ii). In such a
case, Eq. (2.343) cannot be linearized, but they are written in terms of angular
variables as above:

sin 2θ

[
dθ

dτ2
+ 1

2
κ3N1 sin 2θ sin 2δ

]
= 0

sin 2θ
{ dδ

dτ2
− N1 cos 2θ [(κ1 − κ2)− κ3 cos 2δ]

}
= 0

(2.354)

a b 

Fig. 2.83 (a) Phase plane for the case (ii). The stationary point (δ=0, θ=π/4) corresponds to the
“supernormal” mode (red points – computer simulation results), (b) displacements of particles
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The relation between the variables (δ,θ) following from Eq. (2.354) is:

sin 2θ

√
|κ1 − κ2

κ3
− cos 2δ| = C

Here, the phase plane has a structure depending on the relationship between the
constants κ1, κ2, κ3, which are controlled by the parameter α of the potential
asymmetry. The case α = 0 leads to relationship (ii) with the supernormal mode
as a stationary point (Fig. 2.83a). Any trajectory close to LPT corresponds to a
full energy exchange between modes χ1 and χ2 with large period. Otherwise,
occurrence of any asymmetry of the potential function leads to the creation of
a separatrix.

The singular (saddle) point for small values 0<κ3<κ1-κ2 (small α values) cor-
responds to unstable elliptical mode (δ=π/2, θ=π/4). As a result we get a phase
plane as shown in Fig. 2.84a. The separatrix passing through the point (δ = π/2,
θ = π/4) separates the domain of closed trajectories with partial energy exchange

Fig. 2.84 Transformation of the phase plane of Eq. (2.354) with a variation of potential’s
asymmetry parameter α (see text)
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from the transit-time trajectories for which an energy exchange is practically absent.
The domain of closed trajectories decreases while the parameter κ3 tends to zero at
α=0.866 (Fig. 2.84b). The two branches of the separatrix are reduced to straight
lines and the phase plane is filled with transit-time trajectories, which are mutu-
ally parallel ones. The supernormal mode (δ = 0, θ = π/4) appears as the saddle
point within the interval –(κ1–κ2) < κ3 <0 for 0.866 < α <1.2248 (Fig. 2.84c).
Additionally, there are two stationary points (δ = π/2, θ = π/4) and (δ = 0, θ =
π/4) if κ3<–(κ1–κ2) (α > 1.2248, Fig. 2.84d). In such a case, the trajectories circling
over both supernormal and elliptic stationary points and close to the LPT correspond
to a complete energy exchange between the resonant normal modes. In this way, the
dynamics of the particles drastically change with a variation of parameter κ3, which,
in turn, is determined by the asymmetry of potential.

To check the main analytical results we have performed the computer simulations
of dynamics of several FPU-chains with various number of particles (N = 3,. . .,8).
Some results of these simulations in the particular case N = 4 are shown in
Figs. 2.85, 2.86 and 2.87.

The nonlinear excitations discussed up to this point are similar to discrete q-
breathers of an extended discrete chain (Flach et al., 2006) in the case of small FPU-
systems. A small nonlinearity manifests itself in formation of q-breathers, which
correspond to the preservation of energy in the nonlinear normal mode (or in the
combination of several normal modes belonging to a certain integral manifold). This
behavior can be observed even in the case when the interaction with other integral
manifolds is taken into account.

If the number of particles grows, a new opportunity arises. Namely, the resonant
interaction between the modes having close linear frequencies becomes possible.
Two qualitatively different scenarios, related to various possible structures of the
integral manifolds, can be singled out. For small energies a simple superposition
of the normal vibrations occurs; it is qualitatively similar to linear approximation.
However, above a certain energy threshold the resonant interaction mentioned above

Fig. 2.85 The separatrix
curve creation in the FPU
chain with 4 particles at small
parameter of asymmetry of
potential function α=0.1. Red
points correspond to
computer simulation data
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(a) (b)

Fig. 2.86 Two phase trajectories for different initial conditions in the αβ-FPU chain with 4 par-
ticles. Parameter of asymmetry α=1.1. (a) Starting point is corresponding to supernormal mode
(separatrix), (b) starting point is in the area of partial energy exchange. Scattered, online – red
correspond to computer simulation data

(b)(a) (b)(a)

Fig. 2.87 Two phase trajectories for different starting points in the αβ-FPU chain (4 particles)
with large asymmetry α=1.5. Scattered, online – red correspond to computer simulation data

occurs and it leads to some localization of the excitation which can be moved along
the chain. This change in the behavior of the system can be interpreted as a transition
from q-breathers to conventional ones typical for a system with large number of the
particles and, consequently, with many almost resonant relations between different
linear frequencies.

Two types of the behavior discussed above are illustrated in the system compris-
ing 8 particles. For the case of very small energies one can observe the solution close
to superposition of given normal modes (Fig. 2.88). But with growth of amplitudes
the transition occurs to localized breather-like excitation (Figs. 2.89 and 2.90).
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Fig. 2.88 Energy distribution in the αβ-FPU system of 8 particles. The left picture is a 3D surface
of the energy. Right pictures exhibit the energy of different particles. The initial condition corre-
sponds to excitation of non-resonant mode in combination with one of the resonant modes. Total
occupation number n is 0.1, n is particle number, and the time t is measured in the periods of the
high-frequency resonant mode
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Fig. 2.89 The same as in Fig. 2.88 with the occupation number n is equal 0.5
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Fig. 2.90 3D-surface of normal modes in the case corresponding to Fig. 2.89 (the left half of the
picture). In spite of the initial condition consists only two modes, some other ones are excited
during the modeling time. Note that the scales of diagrams are different in the right pictures

2.9 Concluding Remarks

If one tries to summarize how to arrive at the tractable models for discrete system
with moderate number of degrees of freedom, one should first of all set the exactly
solvable systems aside. Some examples of such systems, linear and nonlinear, are
presented above, the others are beyond the scope of this book. Exactly solvable
models might qualify to be tractable. However, even simple examples of common
single or coupled linear oscillators demonstrate that by formulating relevant asymp-
totic approximation one can gain an essentially deeper understanding of the system
behavior in different limit cases, even if more general model is exactly solvable.
Moreover, these ideas of approximation often can be efficiently used for more com-
plicated systems, where the exact solutions are not available. If some asymptotic
limits are similar, one can speak of “generic behavior” for wide groups of dynami-
cal systems in a certain regime – no matter whether the systems belonging to these
groups are exactly solvable or not.

Many problems in this chapter were solved by means of different variations of
perturbation and averaging techniques. We do not analyze further mathematical
details of these methods here – the interested reader may refer to standard text-
books on these topics (Arnold, 1978; Arnold et al., 2006; Nayfeh, 2000). As it was
demonstrated above, the main difficulty in obtaining the tractable model is not the
application of particular mathematical technique of the perturbation analysis, but
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an efficient choice of basic paradigms (for instance, the LPTs alongside with the
NNMs) and of appropriate small parameters. The same problem can have different
small parameters, and very different tractable models are obtained this way.

The other important hint for obtaining a tractable model is a reduction of dimen-
sion. For instance, in Sect. 2.8, the general number of normal modes in the system
may be relatively large, far beyond the possibility of an exact solution. Still, in
some interesting dynamical regimes only few of these modes really participate and
interact. So, in terms of these participating modes, one can obtain the tractable
system with a low number of degrees of freedom.

Sometimes no analysis is available beyond the computing of some particular
solutions, for instance the nonlinear normal modes. In the absence of superposition,
such particular solutions do not allow a complete description of the system dynam-
ics. Still, they allow insight into particular regimes of behavior and sometimes even
turn out to be attractors of the dynamic flow, as in Sect. 2.7. In addition to that, the
approaches initially developed for computation of these periodic orbits, such as saw
– tooth time transforms, are useful for approximate solutions of general initial value
problems in rather complicated nonlinear systems (Sects. 2.3, 2.5).

If only some particular solutions are available, it is not clear whether one can
qualify such a model as tractable. We think that the answer is positive, at least
partially. If some solutions can be computed exactly or approximately, then one
has some independent information to interpret and verify the data of a full-scale
computer simulation.
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Chapter 3
Infinite Discrete Systems

Discrete systems comprising an infinite number of particles are rather challenging
for a formulation of tractable models. The simplifications related to a low number of
the degrees of freedom or normal modes cannot normally be implemented directly.
Transition to a continuum and to a description in terms of partial differential equa-
tions may be involved and normally requires a number of assumptions; each of them
should be carefully checked. In particular, for different regimes of motion of the
discrete system one can obtain rather different continuous approximations. On the
other side, such systems are extremely important both in mechanics (for modeling
arrays of structural elements etc.) and in physics. For the study of the relationship
between macroscopic properties and the microscopic structure in classical physics,
the models of this sort are the best possible.

3.1 Dynamics of Infinite Nonlinear Chains

The lowest possible level of complexity corresponds to an infinite single nonlinear
chain of particles. As it was mentioned above, this step is necessary for the transi-
tion from microscopic or discrete objects (such as individual molecules or lumped –
mass models of vibrating systems) to macroscopic objects characterized by a ther-
modynamically large number of degrees of freedom. The main challenge here is
to relate the common macroscopic continuum description of the bulk system to its
discrete structure. This section deals with this problem and demonstrates how the
discrete structure of the model reveals itself in different continuum limits.

3.1.1 Long-Wavelength Approximation. Equation of Supersonic
Extension Solitons in an Infinite FPU Chain

Let us begin from the simplest approach to long wavelength dynamics of an infi-
nite FPU chain with an asymmetric potential of a gradient type (Manevitch and
Smirnov, 2008)
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V(Uj) =
∞∑

j=−∞

[c1

2
(Uj+1 − Uj)

2 + c2

3
(Uj+1 − Uj)

3 + c3

4
(Uj+1 − Uj)

4
]

(3.1)

Here, Uj are the displacements of the particles (–∞ < j < +∞). Such simplified
consideration is justified because the real structure of chain is not important when
dealing with long-wavelength approximation. The values of parameters determining
the solution of the problem can be found in more realistic models that take the
structure of a particular chain into account.

When transformed to dimensionless variables and parameters, the system of
classical equations of motion takes the form

d2uj

dt2
+ (2uj − uj+1 − uj−1){1 + εα1(uj+1 − uj−1)+

+ε2α2[(uj+1 − uj−1)2 + (uj − uj+1)(uj − uj−1)]} = 0,

(3.2)

where τ =
√

c1

m
t, uj = Uj

εr0
, α1 = c2r0

c1
, α2 = c2r2

0

c1
, m – mass of the particle, ci

are the first coefficients of power expansion of potential (3.1), and r0 is the distance
between the particles. Small parameter ε reflects relative smallness of displacements
with respect to interparticle distance.

Measuring the distance between the atoms in units of ε–1r0 and introducing a con-
tinuous space coordinate ζ, we can reduce the system above in the long-wavelength
approximation to a Korteweg–de Vries equation. Expanding the differences in the
equation of motion in a Taylor series:

uj±1 = uj ± ε ∂u

∂ζ
− 1

2
ε2 ∂

2u

∂ζ 2
± 1

6
ε3 ∂

3u

∂ζ 3
+ 1

24
ε4 ∂

4u

∂ζ 4
+ ...

we obtain one nonlinear partial differential equation:

∂2u

∂τ 2
− ε2 ∂

2u

∂ζ 2

[
1 + ε2α1

∂u

∂ζ
+ ε4α2

(
∂u

∂ζ

)2
]

− ε4

12

∂4u

∂ζ 4
+ ... = 0,

where u = u(ζ,τ) and “. . .” denotes higher order terms in the parameter ε.
It is natural to take into account the smallness of ε by changing the space and

time variables: ξ = ζ – ετ and τ 1 = ε3τ.
Substituting these expressions into the equation of motion, we obtain

∂2u

∂τ1∂ξ
+ 1

2
α1
∂2u

∂ξ2

∂u

∂ξ
+ ∂4u

∂ξ4
+ ... = 0

The new space coordinate ξ is measured from the front of the linear (sound) wave,
whereas the new time variable is slow compared to τ.

Introducing the notation
∂u

∂ξ
= w and keeping only the principal approximation,

we obtain the Korteweg–deVries equation in the following form:
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∂w

∂τ1
+ 1

2
α1w

∂w

∂ξ
+ 1

24

∂3w

∂ξ3
= 0 (3.3)

In this equation, all terms have the same order of smallness with respect to ε.
This equation describes the nonlinear dynamics of a one-dimensional crystal in
long-wave approximation in the case of the asymmetric anharmonism. Along with
periodic solutions, the Korteweg–deVries equation has localized soliton solutions
(solitons and multisoliton waves). In particular, the soliton is a localized wave of
compression or extension (depending on the sign of α1), described by the equation

w = A/ cosh2 ξ − vτ

D
. (3.4)

The amplitude A and the soliton localization region size D are related to the velocity
or, more specifically, to the difference between the soliton velocity v and the sound

velocity v0 as A ~ (v2 − v2
0) and D ~(v2 − v2

0)−1/2.

3.1.2 Zigzag Chain and Long-Wave Solitons

Let us consider now the more realistic model of a zigzag chain, taking into account
its spatial structure (Manevitch and Savin, 1997, 2005; Manevitch and Smirnov,
1992, 2008). For this model system, every particle in the corner of a zigzag is con-
sidered as a “united atom” consisting of carbon and two hydrogen atoms interacting
due to the presence of the angular potential (if only the planar dynamics are consid-
ered and the valence bonds are supposed to be absolutely rigid) Of course, edges of
the trans-zigzag correspond to valence bonds. Thus, the Hamiltonian of a polymer
chain in a trans-zigzag conformation (if only the planar dynamics are considered
and the valence bonds are supposed to be absolutely rigid) without consideration
for the interchain interaction reads

H =
∑[

1

2
M

(
∂un

∂t

)2

+ 1

2
M

(
∂vn

∂t

)2

+ 1

2
K2(θn − θ0)2

]
, (3.5)

where un and vn are displacements of the CH2 group in the direction parallel to the
chain axis and in a perpendicular direction, θn are angles between neighbor C–C
bonds, and θ0 is their equilibrium value. The condition of rigidity of the valence
bonds in the continuum approximation takes the form

�ρ = ρ0 sin2 θ0

2
ux − 2 cos

θ0

2
v+

+ 1

2ρ0

(
ρ0 cos

θ0

2
sin
θ0

2
ux + 2 sin

θ0

2
v

)2

+ ... = 0

Here, ρ0 is the length of the non-deformed bond.
This condition suggests that the transverse displacement can be expressed

through the longitudinal displacement as
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v = 1

2

sin2 θ0
/
2

cos θ0
/
2
ρ0ux − 1

4

sin2 θ0
/
2

cos3 θ0
/
2
ρ0u2

x .

The change in the valence angle in the principal anharmonic approximation can be
presented as a nonlinear function of the derivatives of the transverse displacement:

�θ = a1ux + a2u2
x + a3uxx + ...

Substituting this expression into the Hamiltonian, we obtain the following equation
of motion:

∂2u

∂t2
− c0

∂2u

∂x2
− p1

∂u

∂x

∂2u

∂x2
− p2

∂4u

∂x4
− p3

∂4u

∂x2∂t2
= 0, (3.6)

where

p1 = 6a1a2K2/M = 12 sin4 θ0

2
K2/M cos2 θ0

2

p2 = 2a1a2K2/M = 2 sin4 θ0

2

(
2 + sin2 θ0

2

)
K2ρ

2
0/6 M cos2 θ0

2

p3 = ρ2
0 sin4 θ0

2
/4 cos2 θ0

2

Here, u(x, t) is the longitudinal displacement of the chain, and c0 is the sound
velocity in the harmonic approximation.

As in the case of the simplest polymer chain, the obtained nonlinear differential
equation in partial derivatives can be asymptotically reduced to the Korteweg–de
Vries equation.

After introduction of the new variable ξ = x– ct (where c is the velocity of
propagation of a stationary wave), the analysis of stationary excitations leads to
an ordinary nonlinear differential equation for the function w(ξ) = uξ (ξ)

(p2
2 + p3c3)w2

ξ + 1

3
p1w3 + (c2

0 − c2)w2 = 0 (3.7)

(the subscript at the variable denotes differentiation with respect to ξ). This equation
has a soliton-type spatially localized solution

w = A/cosh2 (ξ /L) (3.8)

or

u(x, t) = AL tanh

(
x − ct

L
+ x1

)
(3.9)

where A = 3(c2 - c2
0)/p1 is the amplitude of the soliton, L =

2
√

(p2 + p3c2)/(c2 − c2
0) is the soliton width, and c > c0 is the velocity of

the soliton.
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This solution corresponds to the soliton of the Korteweg–de Vries equation and
describes the supersonic propagation of an extension or compression wave in the
long-wave approximation. The type of the wave is determined by the sign of the
amplitude A, which, in turn, is determined by the sign of the coefficient p1 of the
nonlinear term in Eqs. (3.6) and (3.7). In the case of infinitely rigid bonds, the sign
of the coefficient p1 is positive and, therefore, only extension solitons propagate
over the chain (A > 0), the propagation velocity being limited only by the condi-
tions of validity of the long-wave (continuum) approximation. Indeed, as follows
from solution (3.9), the amplitude of the soliton is equal to zero at c = c0, while the
soliton width tends to infinity at c →c0 and decreases monotonically at c > c0 with
increasing c, which means that, at a certain value of c, the continuum approximation
becomes invalid.

A more precise analysis of the nonlinear dynamics of a polymer chain performed
on the basis of a numerical variational method (Savin et al., 1999) makes it pos-
sible to take the finite stiffness of the valence bonds into account and to use an
improved (periodic) form of the valence-angle potential. In this case, the periodic
character of the potential leads to restriction of the region of existence of soli-
tons even in the long-wave approximation. The type of the soliton depends on the
parameter characterizing the ratio of the valence angle stiffness to the valence bond
stiffness k2/(k1ρ

2
0 ). This ratio was estimated to be equal to 0.019 or 0.078 (Savin

et al., 1999; Manevitch, 2001). It reflects the relative contributions of the physi-
cal anharmonicity of the valence-bond potential and the geometric anharmonicity
associated with the nonlinear dependence of the valence angle on the longitu-
dinal displacement. At the ratio of 0.019, geometric anharmonicity dominates
(A > 0), and, therefore, the elementary excitations in a polymer chain are extension
solitons. At the ratio of 0.078, the physical anharmonicity dominates (A < 0), indi-
cating that compression solitons can propagate over the chain (Savin et al., 1999)
(Fig. 3.1).

If geometric anharmonicity dominates, in addition to the above-mentioned
extension soliton with a finite velocity spectrum, supersonic extension solitons
with unique characteristic widths and propagation velocities exist. However, such
solitons have considerably higher energies and amplitudes corresponding to the tran-
sition to a new ground state. Figure 3.1 presents typical profiles of a small-amplitude
extension soliton at the initial moment and upon traveling over distance equivalent
to 105 chain monomers, which practically coincide. Figure 3.2 presents the regions
of existence of extension and compression solitons, whereas Fig. 3.3 illustrates an
elastic collision of these two solitons.

3.1.3 Envelope Solitons

In the short-wavelength limit in the framework of the simplest approximation of a
one-dimensional chain, the situation differs markedly from that typical of the long-
wavelength approximation (Manevitch, 2001). The system of equations of motion
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Fig. 3.1 Profiles of
supersonic extension solitons
with respect to the
components (a) wn = un + 1 –
un, (b) vn, (c) θn, and (d) ρn
at the initial moment of time
(t = 0) and at t = 160.682 ps
after it begins to travel over a
chain composed of 105 united
atoms. The dimensionless
velocity is s = 0.94
(c=7,940.21 m/s)

(3.2) has an exact solution in the form of a nonlinear standing wave of minimum
length:

uj = w1(τ ), uj+1 = −w2(τ ),
uj+2 = w1(τ ), uj+3 = −w2(τ ), ...
(−∞ < j < +∞)

.

To analyze these short-wavelength modes, we switch to new variables:

uj = wj,1(τ ), uj+1 = −wj+1,2(τ ),
uj+2 = wj+2,1(τ ), uj+3 = −wj+3,2(τ ), ...

Then, the equations of motion take the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2wj,1

dτ 2
+ (2wj,1 + wj−1,2 + wj,2){1 + εα1(−wj,2 + wj−1,2)+

+ε2α2[(wj,2 − wj−1,2)2 + (wj,1 + wj,2)(wj,1 + wj−1,2)]} = 0

−d2wj,2

dτ 2
− (2wj,2 + wj,1 + wj+1,1){1 + εα1(−wj+1,1 + wj,1)+

+ε2α2[(wj+1,1 − wj,1)2 + (wj,2 + wj+1,1)(wj,2 + wj,1)]} = 0

(3.10)
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Fig. 3.2 (a) Energy E, (b)
width L, and (c) amplitude R
of the soliton as functions of
the dimensionless velocity s

Fig. 3.3 Elastic collision of
two extension solitons at a
dimensionless velocity of
s = 0.935

Let us introduce two functions of two variables that describe the dynamics of a
chain of atoms within the continuum limit under the assumption that the mod-
ulations of the nonlinear mode of minimum length are characterized by a size
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substantially higher than the interatomic distance, which equals ε in the accepted
units of measure. Thus,

wj±1,1 = w1(ζ , τ ) ± ε ∂w1

∂ζ
+ 1

2
ε2 ∂

2w1

∂ζ 2
+ ...,

where jε = ζ.
Based on this expression, we obtain the following continuum equations of

motion:⎧⎪⎪⎨
⎪⎪⎩

∂2w1

∂τ 2
+ 2(w1 + w2)

{
1 − ε2

[
2α1

∂w2

∂ζ
− α2(w1 + w2)2

]}
+ ε2 ∂w2

∂ζ 2
+ ... = 0

∂2w2

∂τ 2
+ 2(w1 + w2)

{
1 − ε2

[
2α1

∂w1

∂ζ
+ α2(w1 + w2)2

]}
− ε2 ∂w2

∂ζ 2
+ ... = 0

where “· · · ” denotes higher order terms in the parameter ε.
Combining these equations, we obtain the relatively simple system

∂2W̃1

∂τ 2
+ 4W̃1 + 4α1ε1W̃1

∂W̃2

∂ζ
+ 4α2ε1W̃3

1 + ε1
∂2W̃1

∂ζ 2
+ ... = 0

∂2W̃2

∂τ 2
− 2α1ε1

∂(W̃2
1 )

∂ζ
− ε1

∂2W̃2

∂ζ 2
+ ... = 0

. (3.11)

Here, W̃1 = w1 + w2, W̃2 = w1 − w2, and ε1 = ε2.
Note that the different terms of these equations are characterized by different

orders of smallness in the parameter ε, and, hence, the possible asymptotic reduction
is not complete yet. In contrast to the long-wave approximation, the equations of
motion in the short-wavelength approximation contain a nongradient term. As a
result, the interaction between the atoms, which is described by the gradient terms,
is comparatively weak. Thus, it is reasonable to use a complex presentation of the
variables for the displacement W̃1 only, because the nongradient term contains this
variable.

Using the substitution τ0 = 2τ, we introduce the complex conjugate functions

ψ(ζ , τ ) = ∂W̃1

∂τ0
+ iW̃1, ψ∗(ζ , τ ) = ∂W̃1

∂τ0
− iW̃1

Considering only one of the two conjugated equations with respect to ϕ and ϕ∗, we
have

∂ϕ

∂τ0
− iε1

2
α1(ϕ − ϕ∗e−i2τ0 )

∂W

∂ζ
+ iε1

8
α2c(ϕeiτ0 − ϕ∗e−iτ0 )3e−iτ0−

− i

8
ε1

(
∂2ϕ

∂ζ 2
− ∂2ϕ∗

∂ζ 2
e−2iτ0

)
= 0,

∂2 W

∂τ 2
0

+ ε1

2
α2
∂

∂ζ
(ϕe−iτ0 − ϕ∗e−iτ0 )2 − 1

4
ε1
∂2 W

∂ζ 2
+ ... = 0

(3.12)

where

W = W̃2, ϕ = ψe−iτ0
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Introducing the slow characteristic times (along with the fast time)

τ1 = ε1τ0, τ2 = ε2
1τ0 . . . ,

and using power expansions of ϕ, ϕ∗, and W in the small parameter ε1

ϕ = ϕ0 + ε1ϕ1 + ε2
1ϕ2 + ...,

W = W0 + ε1W1 + ε2
1W2 + ...,

we obtain:
∂

∂τ0
(ϕ0 + ε1ϕ1 + ε2

1ϕ2 + ...) + ε1
∂

∂τ1
(ϕ0 + ε1ϕ1 + ε2

1ϕ2 + ...)−

−1

2
iε1α1[(ϕ0 + ε1ϕ1 + ε2

1ϕ2 + ...) − (ϕ∗
0 + ε1ϕ

∗
1 + ε2

1ϕ
∗
2 + ...)e−2iτ0 ]×

×
(
∂W0

∂ζ
+ ε1

∂W1

∂ζ
+ ...

)
+ 1

8
iε1α2[(ϕ0 + ε1ϕ1 + ε2

1ϕ2 + ...)eiτ0−

−(ϕ∗
0 + ε1ϕ

∗
1 + ε2

1ϕ
∗
2 + ...)e−iτ0 ]3e−iτ0+

+1

8
iε1

∂2

∂ζ 2
(ϕ0 − ϕ∗

0 e−2iτ0 + ε1ϕ1 − ε1ϕ
∗
1 e−2iτ0 + ...) = 0

∂2

∂τ 2
0

(W0 + ε1W1 + ...) + 2ε1
∂2

∂τ0∂τ1
(W0 + ε1W1 + ...)+

+1

8
α2ε1

∂

∂ζ
[(ϕ0 + ε1ϕ1 + ε2

1ϕ2 + ...)eiτ0 − (ϕ∗
0 + ε1ϕ

∗
1 + ε2

1ϕ
∗
2 + ...)e−iτ0 ]2−

−1

4
ε1
∂2

∂ζ 2
(W0 + ε1W1 + ...) = 0

Next, setting the coefficients at each power of ε1 to zero,

ε0
1 :

∂ϕ0

∂τ0
= 0,

∂2W0

∂τ 2
0

= 0.

As a result, ϕ0 can be presented as ϕ0 = ϕ0(ζ, τ1, τ2, . . .), W0 = W0(ζ, τ1, τ2,
. . .) (taking into account the fact that the equations above must not contain secular
terms):

ε1
1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ϕ1

∂τ0
+ ∂ϕ1

∂τ1
− i

2
α1(ϕ0 − ϕ0 ∗ e−2iτ0 )

∂W0

∂ζ
+

+ i

8
α2(ϕ3

0e2iτ0 − 3 |ϕ0|2 ϕ0 + 3 |ϕ0|2 ϕ0 ∗ e−2iτ0 − ϕ0 ∗ e−4iτ0 )−

− i

8

∂2

∂ζ 2
(ϕ0 − ϕ0 ∗ e−iτ0 ) = 0

∂2W1

∂τ2
0

+ 2
∂2W0

∂τ0∂τ1
+ 1

8
α1
∂2

∂ζ 2
(−2 |ϕ0|2 + ϕ2

0e2iτ0 + ϕ0 ∗2 e−2iτ0 ) − 1

4

∂2W0

∂ζ 2
= 0



176 3 Infinite Discrete Systems

The secular terms should vanish; then, we obtain the following equations:

∂φ0

∂τ1
+ i

2
α1φ0

∂W0

∂ζ
− 3i

8
α2 |φ0|2 φ0 − i

8

∂2φ0

∂ζ 2
= 0,

α1
∂ |φ0|2
∂ζ

+ ∂2W0

∂ζ 2
= 0

.

The second equation yields

∂W0

∂ζ
= −α1 |ϕ0|2 .

The substitution of this expression into the first equation yields a nonlinear PDE
describing the dynamics of the one-dimensional crystal in the principal short-wave
approximation:

∂ϕ0

∂τ1
− iα |ϕ0|2 ϕ0 − i

8

∂2ϕ0

∂ζ 2
= 0 (3.13)

where α=(3α2–4α1)/8. This equation is the nonlinear Schrödinger equation. At
α > 0, this equation has localized solutions in the form of envelope solitons:

ϕ0(ζ , τ1) =
(

2Sβ

α

)1/2
ei(kζ−ωτ1) sec h

[
S

1/2(ζ − vτ1)
]

.

Here k = v

2β
ω = v2

4β2
− S and β = 1

8
.

In this case, the amplitude S and the velocity of the soliton v are independent
parameters.

3.1.4 Optical Breathers in a Zigzag Chain

Now we would like to demonstrate a more realistic approach to the short-wavelength
planar dynamics of a zigzag chain, taking the connection between longitudinal
and transversal oscillations into account (Manevitch and Smirnov, 2007, 2008).
The geometry of the system under consideration requires using two- or three-
dimensional models; we would like to underline the role of geometric nonlinearity in
the dynamics of such complex systems. The geometric nonlinearity is significant in
very different zigzag systems-macromolecular chain, carbon monolayer, anisotropic
crystal or engineering structure. Contrary to simple one-dimensional models, even a
zigzag chain with equal masses demonstrates many peculiarities such as the optical
branch in the dispersion curve.

Let us consider a zigzag chain with first- and second-neighbor interactions along
the chain. The Hamilton function of the system is

H =
∑{

M
ṙij

2

2
+ U1(rj+1i − rji) + U2(rj+2i − rji) + U3(rji+1 − rji)

}
, (3.14)
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where rji is a coordinate of the j-th atom in the i-th chain. The potential functions
U1, U2, U3 are assumed to be quadratic in coordinates r,

Un(r, r′) = Kn

2

(∣∣r − r′∣∣− ∣∣r0 − r′
0

∣∣)2 ,

however, this leads to nonlinear expressions for force factors because of a nonlinear
dependence of the deformations on displacements. Here, r, r’ and r0, r0’ are cur-
rent and equilibrium coordinates of particles, respectively. If the constant K2 << K1,
a longitudinal motion results predominantly in the folding of zigzags. In this con-
text, one has to take a longitudinal as well as a transversal motion of atoms into
account. In the opposite case, when K2 >> K1, one can define two subchains and
describe their dynamics almost independently both for longitudinal and transversal
degrees of freedom. It is an appropriate field for a one-dimensional approach. An
influence of neighbor chains may be taken into account by on-site potential or a
direct interchain interaction with mobile neighbor zigzags (Fig. 3.4).

To consider the motion of particles on the plane, it is convenient to introduce the
longitudinal and transverse displacements with respect to zigzag axis:

rji = {xji,0 + wji, yji,0 + uji}

with the equilibrium coordinates

xji,0 = jl sin(θ ), yji,0 = i(L + l cos(θ )) + (−1) j+i+1l cos(θ )/2

where l is the equilibrium distance between the nearest atoms in the zigzag and
L+lcos(θ ) is the distances between the axes of neighbor zigzags, 2θ is the angle
between nearest bounds. For the dimensionless set of variables and parameters (we
keep their denotations to reduce the number of symbols)

wji− > wji/l, uji− > (−1) j+i+1uji/l

K1− > K1l2, K2− > K2l2, K3− > K3l2
,

we write the potentials in the forms:
for the nearest neighbours

U1 = K1

2

[√
(sin θ + wj+1i − wji)2 + (cos θ − uj+1i − uji)2 − 1

]2

,

for the second ones

U2 = K2

2

[√
(2 sin θ + wj+2i − wji)2 + (uj+2i − uji)2 − 2 sin θ

]2

,

and for interchain interaction

U3 = K3

2

[√
(wji+1 − wji)2 + (1 + uji+1 − uji)2 − 1

]2

.
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(a)

(b)

(c) (d)

(e)

Fig. 3.4 (continued)
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Let us briefly discuss the potential U3. The bonds with rigidities K1 and K3 are sim-
ilar for a carbon sheet (graphene) or carbon nanotube. If the nearest chains perform
pure “out of-phase” motion with respect to the selected chain, it is possible to sup-
pose K1 = K3. In the opposite case of “in-phase” motion we have to accept K3 = 0
because the bonds between nearest chains are not deformed. So, the choice of K3 is
caused by the system symmetry.

The linearized equations of motion can be written as follows:

d2wji

dt2
= K1{sin2 θ (wj+1i − 2wji + wj−1i) + sin θ cos θ (uj+1i − uj−1i)}+
+K2(wj+2i − 2wji + wj−2i)

d2uji

dt2
= −K1{cos2 θ (uj+1i + 2uji + uj−1i) − sin θ cos θ (wj+1i − wj−1i)}

−K3{(uji+1 − uji)λ1 − (uji − uj−1i)λ2}

(3.15)

where the constants λ1 and λ2 take into account the difference between odd and
even atoms in the chains (e.g., λ1 = 0 and λ2 = 1 for odd atoms and λ1 = 1 λ2 = 0
for even ones).

The dispersion relation for the system (3.15) is

ω2 =1

2
(ω2

0 ±
√
ω2

0 − δ2)

ω2
0 =2K1[1 + cos 2θ cos k] + 2K2(1 − cos 2 k) + K3)

δ2 =8K1K2 cos2 θ sin2 k(1 + cos k)+
+ 2K1K3 sin2 θ (1 − cos k) + 4K2K3 sin2 k

(3.16)

where k is a dimensionless wave number (k=0. . .π).
So, due to the geometric configuration of zigzag, there are two branches of the

dispersion curve – the acoustic branch and the optical one. The acoustic branch
describes a motion of two subchains of zigzag on the same plane (the left edge k = 0
corresponds to a longitudinal displacement of zigzag as a whole and the right edge
k =π – to a transversal one). The optical branch corresponds to relative motion of
the subchains of zigzag (their phases are opposite). It is easy to see that the left edge
of the optical branch corresponds to an anti-phase motion of the nearest atoms in the

�

Fig. 3.4 Zigzag configuration in the graphene mono layer (a). Geometry of zigzad chain with
geometrical nonlinearity (b), K1, K2, K3 – rigidities of first neighbour, second neighbour bond,
and interchain bond, l – interatomic distance, and 2q – the angle between interatomic bonds.
Transversal (c) and longitudinal (d) oscillations of zigzag atoms in the carbon nanotubes with
armchair configurations. (e) – Tranformation of dispersion relation for zigzag chain with change
of rigidity ratio
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direction perpendicular to the zigzag axis and the vector of displacements {wji = 0,
uji = (–1) j} is the corresponding solution of the equations of motion. The right edge
of the optical branch corresponds to the anti-phase motion of the nearest atoms in
the direction along the zigzag axis and the vector {wji = (–1) j, uji = 0} corresponds
to the normal mode describing the longitudinal motion. Such motions for the carbon
nanotube in armchair configuration are schematically shown in Fig. 3.4c, d. Further
we will be interested in the solution corresponding to the optical branch only. Let us
consider the dispersion law more accurately (Fig. 3.4e). As we can see, a change of
the K2/K1 relation leads to drastic changes in the behaviour of the dispersion curve.
The frequency wopt(k) is the monotonic function of wave number k for small K2/K1
ratio, but it has an extremum point when K2/K1 is large. The last circumstance is
very important for nonlinear dynamics near the right edge of the spectrum. The
presence of interchain interaction changes the gap magnitude, but does not change
the curve profile.

To consider the nonlinear dynamics of the particles, we introduce the continuum
variables:

hn+m = ε[cos(km)(H + εmHx + ε2m2Hxx/2 + ...)+
+ sin(km)(H̃ + εmH̃x + ε2m2H̃xx/2) + ...]

hn+1+m = ε[− sin(km)(H + εmHx + ε2m2Hxx/2 + ...)+
+ cos(km)(H̃ + εmH̃x + ε2m2H̃xx/2) + ...]

(3.17)

Here h denotes w or u and ε is a small parameter, that reflects a smallness of both
the amplitudes relative to interparticle distances and of those with respect to the
characteristic wavelength of modulation of k-th normal mode.

After substitution of Eq. (3.17) into the equation of motion we obtain (up to the
third order by ε)

εWtt + εXW + εZŨ − ε2X′W̃x + ε2Z′Ux−

−ε
3

2
X′′Wxx − ε3

2
Z′′Ũxx + εF(W, W̃, U, Ũ) = 0

εW̃tt + εXW̃ − εZU + ε2X′Wx + ε2Z′Ũx−

−ε
3

2
X′′W̃xx + ε3

2
Z′′Uxx + εF̃(W, W̃, U, Ũ) = 0

εUtt + εYU − εZW̃ − ε2Y ′Ũx − ε2Z′Wx−

−ε
3

2
Y ′′Uxx + ε3

2
Z′′W̃xx + εG(W, W̃, U, Ũ) = 0

εŨtt + εYŨ + εZW + ε2Y ′Ux − ε2Z′W̃x−

−ε
3

2
Y ′′Ũxx − ε3

2
Z′′Wxx + εG̃(W, W̃, U, Ũ) = 0

, (3.18)
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where

X = 2[K1 sin2 θ (1 − cos k) + K2(1 − cos 2 k)]

Y = 2K1 cos2 θ (1 + cos k) + K3

Z = K1 sin 2θ sin k

Subscript indexes and the apostrophe indicate the differentiation with respect to the
corresponding variables and the wave number k, and F, F̃, G, G̃ are the nonlinear
functions of variables W, W̃, U, Ũ and their derivatives.

To simplify the further analysis, we exclude one pair of variables. Near the left
edge of the dispersion curve the transversal motion is predominant. In the first
approximation one can get:

W = − Z′

ω2 − X
Ũ

W̃ = Z′

ω2 − X
U

(3.19)

where ω is a “nonlinear” frequency that is different from the “linear” one.
The next step of the reduction procedure is the substitution of Eq. (3.19) into

gradient and nonlinear terms of Eq. (3.17). As a result, we get the relations:

W = − 1

X − ω2

[
ZŨ − ε

( ZX′

X − ω2
− Z′)Ux+

+ ε2

2

(
X′′ Z

X − ω2
− Z′′)Ũxx + F(U, Ũ)

]

W̃ = 1

X − ω2

[
ZU − ε

( ZX′

X − ω2
− Z′)Ũx+

+ ε2

2
(X′′ Z

X − ω2
− Z′′)Uxx + F̃(U, Ũ)

]

. (3.20)

One should mention that

ω2U ∼= ω2
0U − εν dŨ

dx
+ ε2

2
μ

d2U

dx2

ω2Ũ ∼= ω2
0Ũ + εν dU

dx
+ ε2

2
μ

d2Ũ

dx2

(3.21)

where ν = dω0
/
dk, and μ = d2ω0

/
dk2.

Substituting (3.20) into (3.18), one obtains:
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Utt + ω2
0U + ενŨx − ε2

2
μUxx + ε(r11U2 + r12UŨ + r13Ũ2)+

ε2[q12UŨx + q14ŨŨx + p11U3 + p13UŨ2] = 0

Ũtt + ω2
0Ũ − ενUx − ε2

2
μŨxx + ε(r21Ũ2 + r22UŨ + r23Ũ2)+

ε2[q21UUx + q23ŨUx + p22U2Ũ + p24Ũ3] = 0

. (3.22)

where coefficients r, p, and q are the functions of the parameters of considered
system.

Now we can introduce the complex variables � = Ũτ + iŨand � = Uτ + iU
(τ=ω0t – dimensionless time). Then

i�τ +� + εν

2
(�x −�∗

x ) − ε2μ

4
(�xx −�∗

xx)−
−i
ε

4
[r11(� −�∗)2 + r12(� −�∗)(�−�∗) + r13(�−�∗)2]−

−i
ε2

4
[q12(� −�∗)(�x −�∗

x ) + q14(�−�∗)(�x −�∗
x )]−

−ε
2

8
[p11(� −�∗)3 + p13(� −�∗)(�−�∗)2] = 0

i�τ +�− εν

2
(�x −�∗

x ) − ε2μ

4
(�xx −�∗

xx)−
−i
ε

4
[r21(� −�∗)2 + r22(� −�∗)(�−�∗) + r23(�−�∗)2]−

−i
ε2

4
[q21(� −�∗)(�x −�∗

x ) + q23(�x −�∗
x )(�−�∗)]−

−ε
2

8
[p22(� −�∗)2(�−�∗) + p24(�−�∗)3] = 0

(3.23)

where �∗,�∗ are complex conjugate functions corresponding to � and ψ, respec-
tively.
To reduce the number of symbols used, we denote

rij/ω
2
0 → rij, qij/ω

2
0 → qij, pij/ω

2
0 → pij.

Using the multiple-scale approximation

� = φe−iωτ , φ = φ0 +εφ1 +ε2φ2 +· · · � = ψe−iωτ , ψ = ψ0 +εψ1 +ε2ψ2 +· · ·

and introducing the slow times τ 0=τ , τ 1=εt, τ 2=ε2τ ,. . . we obtain the next
equations for various orders of ε:

ε0 : i∂τ0ϕ0 = 0, i∂τ0ψ0 = 0,

so, φ0 and ψ0 do not depend on t0.
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In the order ε1, the condition of absence of secular terms leads to the equations:

i∂τ1φ0 + i∂τ0φ1 + ν

2
(∂xψ0 − ∂xψ

∗
0 e−2iτ0 ) = 0

i∂τ1ψ0 + i∂τ0ψ1 − ν

2
(∂xφ0 − ∂xφ

∗
0 e−2iτ0 ) = 0

(3.24)

It is easy to show that the pair of equations

i∂τ1ψ0 − ν

2
∂xφ0 = 0

i∂τ1φ0 + ν

2
∂xψ0 = 0

are equivalent to wave-type equations

∂2
τ1
ψ0 −

(ν
2

)2
∂2

xψ0 = 0

∂2
τ1
ϕ0 −

(ν
2

)2
∂2

x ϕ0 = 0

These equations are satisfied if ψ0 and φ0 depend on “wave” coordinate ξ = x ±
ν

2
τ1. Integrating the rest of relations (3.24) with τ 0, we obtain

φ1 = ν

2
∂ξψ

∗
0 e−2iτ0

ψ1 = −ν
2
∂ξφ

∗
0 e−2iτ0

(3.25)

In the order ε2 one obtains:

i∂τ2ψ0 + i∂τ0ψ2 + i∂τ1ψ1 + ν

2
∂xϕ1 − μ

4
∂2

xψ0 + 3

8
p11 |ψ0|2 ψ0+

+1

4
p12 |ψ0|2 ϕ0 − 1

8
p13ψ

2
0 ϕ̄0 + 1

4
p13 |ϕ0|2 ψ0 + 3

8
p14 |ϕ0|2 ϕ0 = 0

i∂τ2ϕ0 + i∂τ0ϕ2 + i∂τ1ϕ1 − ν

2
∂xψ1 − μ

4
∂2

x ϕ0 + 3

8
p21 |ψ0|2 ψ0+

+1

4
p22 |ψ0|2 ϕ0 − 1

8
p23ψ

2
0 ϕ̄0 + 1

4
p23 |ϕ0|2 ψ0 + 3

8
p24 |ϕ0|2 ϕ0 = 0

After substituting relations (3.25) into these equations with following integration
with respect to “fast” times τ0, τ1, the requirement of the absence of secular terms
leads to the equations:
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i∂τ2ψ0 − 1

4

(
μ− ν2

2

)
∂2
ξ ψ0 + 3

8
α |ψ0|2 ψ0 − 1

4
β |φ0|2 ψ0 = 0

i∂τ2φ0 − 1

4

(
μ− ν2

2

)
∂2

xφ0 + 3

8
α |φ0|2 φ0 − 1

4
β |ψ0|2 φ0 = 0

. (3.26)

In the common case, parameters a and β in the equations (3.26) depend on
wave number k and parameters of the chain in rather complicated manner. Some
simplification is possible for special cases only (see below).

System (3.26) allows three relationships between variables φ0 and ψ0:

(i) φ0 = κψ0, κ = ±1
(ii) ψ0 = 0;

(iii) φ0 = 0

One can find for the case (i):

i∂τ2ψ0 − 1

4

(
μ− ν2

/
2

)
∂2
ξ ψ0 + 1

4

(
3

2
α − β

)
|ψ0|2 ψ0 = 0 (3.27)

and for the cases (ii) and (iii):

i∂τ2ψ0 − 1

4

(
μ− ν2

/
2

)
∂2
ξ ψ0 + 3

8
α |ψ0|2 ψ0 = 0 (3.28)

Equations (3.27) and (3.28) are the nonlinear Scrödinger equations with localized
solutions:

ψ0(τ2, ξ ) = 4A√
γ

exp[i(Bξ − (A2 − B2)τ2 + C1)]×

× sec h[
2Aξ√
μ− ν2/

2

+ 2ABτ2 + C2]
(3.29)

where A, B, C1, C2 are free parameters and γ = |3α − 2β| for the case (i) and
γ = 3α for the cases (ii) and (iii). Let us note, that the solution (3.29) can exist,
if the dispersive and nonlinear terms in Eq 3.17 have the same signs. As it can
be shown in the system under consideration this condition corresponds the wave
number k<1.0 for the partial case K1=1.0, K2=0.05, K3=1.0 (Fig. 3.5).

If dealing with a localized mode near the right edge of the dispersion curve, one
can see from the shape of the dispersion curve at large value K2, that curvature of
ω(k) is positive near k = π. So, one can expect the existence of localized solutions.

Let us consider the limit case k = π to demonstrate some peculiarities of the
corresponding procedure. The expansion of the modulating function (3.17) is:

hn+m = ε(−1)m
(

H + εmHx + ε2m2

2
Hxx

)



3.1 Dynamics of Infinite Nonlinear Chains 185

0.2 0.4 0.6 0.8 1 1.2

-0.5

0.5

1

1.5

(μ – ν2
 / 2)4

1

(3α − 2β ) / 8

Fig. 3.5 Coefficients of Eq.
(3.27) versus the wave
number k for strong coupled
zigzag chains (K3=1.0)

After substituting this expansion into a discrete equation of motion, we get:

ε∂2
t W + εXW + ε2Z′∂xU − ε3

2
X′′∂2

x W + ε3F(W, U) = 0

ε∂2
t U + εYU − ε2Z′∂xW − ε3

2
Y ′′∂2

x U + ε3G(W, U) = 0

A longitudinal motion is the dominant one near the right edge of the dispersion
curve and the next relation between amplitudes W and U is valid:

U = ε
Z′

Y − ω2
∂xW.

In general, the following procedure of reduction is similar to the one presented
above. Thus, for the complex variable

� = Ẇ + iW, � = (ψ0 + εψ1 + ε2ψ2 + ...)eiτ

we can get the following equation:

−i∂τ2ψ0 + K1 cos 2θ + 4K2

2ω2
0

∂2
xψ0+

+3
K1 cos2 θ

ω2
0

(4 sin2 θ − cos2 θ ) |ψ0|2 ψ0 = 0
. (3.30)

Equation (3.30) has a localized solution in the form (3.29) under the condition that
the signs of nonlinear and dispersion items are the same. Thus we get the next
condition for it:

4K2/K1 > − cos 2θ .

Such an approach to the consideration of planar oscillations of a zigzag chain can
be used for a number of physical and mechanical problems. Recently, the study
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of optical oscillations localization has been made for PE macromolecules (Savin
and Manevitch, 2003; Manevitch et al., 2006, 2008). In the presence of a physical
nonlinearity of angle interaction, the localized solution (envelope soliton) has been
found near the minima of the dispersion curve. The results of the computer simula-
tion of optical breather both in isolated zigzag chain and in carbon monolayer and
PE macromolecules will be discussed below.

3.1.5 Torsional Solitons

We discussed the nonlinear dynamics of a polymer chain in crystalline PE because
most of the studies were carried out with this simplest polymer. However, the non-
linear dynamics of more complex polymers has been recently analyzed, first of all,
polytetrafluoroethylene (PTFE) (Savin and Manevitch, 2001, 2003).

In contrast to PE, the ground state of crystalline PTFE has a nonplanar conforma-
tion – a three-dimensional helix of type 1∗13/6. By applying a numerical variational
method, soliton-like excitations of two types were revealed in the PTFE helical chain
(Savin and Manevitch, 2000).

Localized excitations of the first type correspond to propagation of the torsional
solitary waves along the PTFE helical chain. Figure 3.6 shows typical solitons.
Solutions of the second type describe the propagation of a solitary longitudinal
compression wave. As can be seen, the deformation of the helix in the region of
localization of the first-type solitary wave is largely due to the compression of
the conformation angles, whereas second-type waves compress valence angles and
bonds (without noticeable variations in conformational angles). The interaction of
solitary waves in PTFE chain is inelastic, so that the amount of energy dissipated
can be substantial. It was shown that the localized excitation of end conformational
angles of the chain leads to the formation of torsional solitons and soliton-like high-
frequency packets (envelope solitons), whereas the excitation of end valence angles
results in the formation of a longitudinal compression soliton, torsional soliton, and
envelope soliton.

Soliton-like torsional excitations can also propagate in a poly(aniline) chain,
which has a repeating unit consisting of a nitrogen atom and a phenyl ring. Taking
only the energy gain due to the delocalization of the px electrons of phenyl rings into
account, we found that an idealized structure has a trans-zigzag shape. However,
this planar configuration is energetically unfavorable, because it is characterized by
a large lattice potential, which arises due to steric repulsion. Thus, the ground state
of a polyaniline chain has a configuration in which neighbor phenyl rings are rotated
in the opposite directions with respect to each other by equal angles of about 50◦.
In this case, the dihedral angles vary according to the equation ψn = (– 1)nϕn. This
structure provides for the existence of two degenerate ground states corresponding
to two different phases (rotations of odd and even rings change places) and the pos-
sibility of a transition between them according to the soliton mechanism. In this
case, a soliton (kink) is a perturbation of the chain that transfers the chain from one
ground state at x → –∞ to the other at x→∞. Because the state ψ is physically
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Fig. 3.6 Variations of the
valence bond lengths ρn,
angles θn, and conformation
angles δn in the region of
localization of (1–3)
compression solitons
traveling at velocity s = 1.02
and (4–6) torsion solitons at
s = 0.82

indistinguishable from the state ψ + nπ, in (MacKenzie et al., 1991), the transition
from –ψ0 + π to ψ0 is considered in addition to the transitions from –ψ to ψ. These
two different transitions correspond to the two types of kinks.

The effective potential energy of the lattice can be presented in the form

V =
∑

l

[V1,1(sinψl − sinψl−1)2 − V2,0 sin2 ψl + V4,0 sin4 ψl + const].

The corresponding kinetic energy is given by

Hkin =
∑

l

1

2
I

[
dψl

dt

]2

In the continuum limit, the Hamiltonian of the system reads

H =
∫ {

1

2
I

(
∂ψ

∂t

)2

+
[

V1,1

(
d sinψ

dx

)2

−V2,0 sin2 ψ + V4,0 sin4 ψ + const

]}
dx
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where x is a dimensionless space variable introduced by normalization to a lattice
constant of a = 4.9 Å.

The values of the three parameters in this expression can be determined by
quantum-mechanical calculations (MacKenzie et al., 1991): V1, 1 ~ 0.2, V2, 0 ~ 2,
and V4, 0 ~ 1.45 eV. The energy barriers corresponding to internal rotation angles of
0 and π/2 are equal to 0.68 and 0.14 eV per ring.

In the static case, it is unnecessary to consider the kinetic energy. In addition,
a significant simplification can be achieved by the introduction of the substitution
σ = sinψ (MacKenzie et al., 1991):

H = 2V1,1

∫ [
1

2

(
dσ

dx

)2

+ λ(σ 2 − v2)2

]
dx,

where λ = 2V4, 0/V1, 1 = 14.5 and n2 = V2, 0/2V4, 0 = 0.69; in this case, ψ0 =
arcsinν = 56◦, in close agreement with the available experimental data. The
continuum Hamiltonian gives the following equation of equilibrium:

d2σ

dx2
+ λσ (σ 2 − v2) = 0.

The system under study has two basic states ±ν, while the kink controlling the tran-
sition between them can be described as σ 1(x) = νtanh(x/ξ), where the characteristic
dimension of the kink is ξ = √2V1,1/V2,0. The energy of the soliton was estimated

E1 = 4v2

3
V1,1λ

1/2v2 = 0.82 eV. The soliton of the second type determines the tran-

sition from ψ = π – ψ0 to ψ = ψ0 via ψ = π/2 in terms of ψ and recovery from
σ = ν to σ = – ν via σ = 1 in terms of σ (which is a consequence of the multi-
valuedness of the function arcsin σ ): σ2(x) = νcoth[( ± x + x0)/ξ ] (the signs
± in front of x correspond to x > 0 and x < 0). The energy of this soliton is sub-

stantially lower, E2 = 2
2/3λ

1/2

3
V1,1(2v3 − 3v2 + 1) = 0.055 eV (MacKenzie et al.,

1991). Note, however, that, due to the sharp change of the profile of the kink at
x = 0, the criterion of applicability of the continuum approximation is not fulfilled;
therefore, the solution itself needs some refinement.

3.1.6 Approximation of Immobile Neighbour Chains

The approximation of an isolated chain does not take into account weak interchain
interactions and the topological restrictions imposed on the displacements in the
chain. The simplest way to consider these factors is to use the approximation of
immobile neighbor chains, according to which all the chains except the chosen one
are treated as “frozen”. This model makes it possible to study quasi-one-dimensional
processes that are mostly localized on the selected single chain. We noted that,
with allowance made for weak interchain interaction, substantial difference from
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the approximation of an isolated chain can be expected in the cases only when the
displacements corresponding to a localized excitation have a shape of a kink and the
chain can only be incorporated into the crystal at displacements that are multiples of
the chain period (i.e., the soliton has a topological charge). Therefore, topological
restrictions are most important.

First of all, it is natural to consider the transformation (due to interchain inter-
actions) of supersonic soliton-like elementary excitations in an isolated chain,
which have a kink-like shape (for displacements) and correspond to extension or
compression deformations localized in a fragment of the chain.

As was shown in (Zubova et al., 2005), quasi-one-dimensional supersonic exten-
sion solitons do not survive in the chain surrounded by immobile neighbors,
because, for the actual topological restrictions and inertia and rigidity character-
istics, the region of spatial localization of these solitons is so narrow that the
continuum approximation becomes invalid. However, as was found in (Balabaev
et al., 2001), even in the case of weak interchain interaction, localized elementary
excitations can form “soliton molecules” with an effective width large enough to
render them highly mobile. Such bound solitons were found by solving the nonlin-
ear differential equation in partial derivatives for the longitudinal displacement of
the chain which left-hand side L(u) coincides with the left part of Eq. (3.6), while
the right-hand side,

L(u) = − 1

m

∂U

∂u

takes into account the effect of interchain interaction. In this case, the validity of
the continuum approximation is justified by a sufficiently large spatial localization
region of bound solitons. The interchain interaction potential is a periodic func-
tion (due to the symmetry of a crystal), which can be obtained by summing up
the Lennard-Jones potentials describing weak van-der-Waals interchain interactions.
Since the supersonic propagation of a soliton is a consequence of intramolecular
anharmonicity, no detailed description of interchain anharmonicity is required in
this case.

The equation presented above is considerably more complicated than the equa-
tions of nonlinear dynamics for an isolated chain, because, in addition to gradient
terms (in the KdV equation), it contains a nongradient component (similar to the
sin-Gordon equation). Nevertheless, numerically solving three nonlinear algebraic
equations (obtained after analytical transformations) at actual values of the parame-
ters, we found two solitons in the supersonic region (for crystalline PE), which have
the velocities v= 1.385 vs (20 km/s) and 1.012 vs (14.89 km/s).

In contrast to the isolated-chain case, for which a continuum spectrum of exten-
sion soliton velocities exists in the supersonic region, we obtained solitons with
discrete propagation velocities and other parameters (Balabaev et al., 2001). The
first solution is close to the extension soliton in an isolated chain. In this case, how-
ever, the soliton width is small, the continuum approximation is invalid, and this
regime is not realized in the discrete model (the conclusion supported by a numeri-
cal analysis). On the contrary, the parameters of the second solution corresponding
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to a soliton molecule are consistent with the conditions of validity of the continuum
approximation. The results of a computer simulation (Balabaev et al., 2001) con-
firm this conclusion. The simulation was carried out using a simulation box in the
form of a rectangular parallelepiped. Periodic boundary conditions were imposed
in all three directions. The box contained 23 (–CH2–)300 chains and a chain shorter
by two repeating units. Because of the imposed periodic boundary conditions, the
molecules were formally infinite. Thus, any localized excitation in the designated
molecule could travel any distance along the chain.

The molecules had a trans-zigzag shape (Fig. 3.7), and CH2 groups were mod-
eled by compound atoms with a mass of 14 amu. The valence bond length was
l = 1.53 Å. The interatomic interaction was described by the potential

U(r) =
∑

U3(θi) +
∑

U4(ϕi) +
∑

Unb(
∣∣ri − rj

∣∣) (3.31)

Here, r = (r1, . . ., rN) are the position vectors of all the atoms in the simulation box.
The first term in Eq. (3.31) is the sum of all valence angles; the second term, of all
torsional angles; and the third term, of all pairs of particles not linked by valence
bonds and angles. The interactions between the particles in the simulation box and
with their images in the neighbor boxes were taken into account. The valence and
conformational angle potentials are given by

U3(θ ) = 1

2
Kθ (θ − θ0)2

U4(ϕ) = α cosϕ + β cos3 ϕ + γ

Fig. 3.7 Schematic
representation of crystalline
PE. The central trans-zigzag
(0) and the six nearest chains
(1,2,. . .,6) are shown. The
local coordinate systems are
shown for the central chain
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where θ0 = 113◦, Kθ = 331.4 kJ/(mol rad2), α = 18.41 kJ/mol, β= 26.79 kJ/mol,
and γ = 8.37 kJ/mol. Here, ϕ = 0 corresponds to the eclipsed conformation, and
ϕ = 180◦, to the unfolded conformation. All atoms separated by more than two
neighbors along the chain or belonging to different molecules interacted according
to the law

Unb(r) =
{

ULJ(r) − ULJ(R), r ≤ R
0, r ≥ R

}
(3.32)

where ULJ(r) = 4ε

[(σ
r

)12 −
(σ

r

)6
]

is the Lennard-Jones potential and R is the

radius of interaction. The values ε= 0.50 kJ/mol, σ= 3.2 Å, and R = 2.25σ were
used in the calculations.

In Cartesian coordinates, the equations of motion of the considered macromolec-
ular system with the account for geometric constraints imposed on the valence bond
lengths take the form of the Lagrangian equations of first kind

mi
d2ri

dt2
= −∂U

∂ri
+
∑

λυ
∂fυ
∂ri

, i = 1, . . . , N.

Along with the algebraic equations for the valence bonds

fυ (ri) = 0, i = 1, . . . , N

the Lagrangian equations fully determine the dynamic behavior of the system, pro-
vided that the initial coordinates and velocities of all particles are known. The
equations of motion were integrated numerically using the approach developed in
(Balabaev et al., 2001). The simulation box had the sizes 3a ×4b ×150c, where a,
b, and c are the crystallographic cell sizes corresponding to the minimum potential
energy of the system. At the initial moment of time, an extension defect correspond-
ing to an extension soliton was set on the shorter chain. For better perception, this
situation was illustrated by a two-dimensional picture (Fig. 3.8).

Fig. 3.8 An extension defect
– a monomeric unit vacancy
(without chain rupture) – in a
zigzaglike chain of a polymer
crystal: (a) a general view of
the defect (grotesque) and
(b) displacements of the
chain atoms from their
equilibrium positions u (1)
for a chain with defect and (2)
for the neighbor chains; n is
the number of the atom
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Fig. 3.9 Soliton motion along a chain surrounded by immobile neighbor chains: (a) evolution of
a solitary wave of deformation and (b) distribution of displacements u in the wave over the chain
length at various moments of time t =0 (1), 2.65 (2), 5.1 (3), and 7.65 ps (4)

In the approximation of immobile neighbors, all the molecules except that car-
rying the soliton were frozen in their equilibrium positions. In the soliton-carrying
molecule, which was shorter by two repeating units than the others, the initial dis-
placements of CH2 groups along the z axis were chosen in accordance with the
analytical solution. The displacements of the atoms in the perpendicular direction
(along the y axis) were set simultaneously to retain the values of the bond lengths.
The initial velocities of all the atoms were also chosen based on the analytical solu-
tion. The subsequent evolution of the system was fully determined by the equations
of motion. The motion of the extension defect is demonstrated in Fig. 3.9, where the
chain deformation d = ls–|u–ls| moving along the chain as a solitary wave (soliton)
is plotted along the vertical axis. When the interchain interactions are artificially
“switched off” at some moment of time, the soliton-like excitation breaks down
into a set of four solitons with parameters typical of solitons in an isolated chain.
Therefore, the supersonic localized excitations predicted theoretically and observed
in a computer experiment are the bound states of a set of solitons. In an isolated
chain, these bound states are impossible.

As for subsonic solitons of tension–torsion or compression-torsion, they are
studied, e.g., in (Savin and Manevitch, 1998a; Savin et al., 2005; Manevitch, 2001).

3.2 Dynamics of Essentially Nonlinear and Vibro-Impact Chains

In Chap. 2 we have demonstrated the simplifications one can achieve by using
the vibro-impact models and approximations. Here, we demonstrate the use of the
same ideas for the study of a mechanical system – chain with rigid barriers. Then
we demonstrate how one can obtain exact solutions for discrete breathers in the
framework of the vibro – impact models.
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3.2.1 Oscillatory Chain with Rigid Barriers

Oscillatory systems with essential nonlinearities occupy a very special niche in the
theory of vibrations. On one side, it is very important to understand their behavior,
both from an academic viewpoint and in view of numerous possible applications. On
the other hand, they can be very difficult for analysis. Besides an extremely narrow
class of integrable systems (Arnold, 1989; Arnold et al., 1997), these systems cannot
be described exactly. If one of these integrable cases is in a certain sense close to
the system under consideration, then often some kind of perturbation procedure
can be realized (Arnold et al., 1997; Kevorkian and Cole, 1996), yielding at least a
qualitative understanding of the global dynamics.

In many interesting cases, however, such options are not available. For these
cases, one is forced to restrict himself to a search for particular solutions of interest.
In absence of the general picture, these particular solutions convey valuable infor-
mation about the dynamics of the system and are also useful for testing the numeric
approaches. An important example of these particular solutions available in many
essentially nonlinear systems are nonlinear normal modes (NNMs), discussed in
Chapter 2 in more details.

Vibro-impact systems, which are described in detail in many studies (Babitsky,
1978; Manevitch and Gendelman, 2008), demonstrate the most severe nonlinearity –
in fact, the strongest possible one. These nonlinear interactions are concentrated
at the points of impact; therefore one can substitute computation of the complete
trajectory by matching of the parts via the impact conditions (Babitsky, 1978;
Zhuravlev and Klimov, 1988; Azeez et al., 1999). Thus, the extreme nonlinearity
is “pushed” to the boundary or matching conditions. This is an essential simplifica-
tion compared to the solution of the complete dynamic problem, especially if one is
interested in particular (e.g. periodic) solutions. Consequently, the extremity of the
nonlinear interaction may itself simplify the system.

Simplification arising from the extreme impact nonlinearity has inspired numer-
ous attempts to extend it for systems with less extreme behavior (Andrianov and
Awrejcewicz, 2003; Gendelman, 2006). These works try to construct special asymp-
totic approaches for different systems which are in some sense “close” to the
vibroimpact ones. In other cases, the situation turns out to be rather opposite – it
is convenient to substitute the impact potential by some smooth approximation and
then to solve the appropriate smooth problem (Gendelman, 2006).

To clarify the sense of simplification provided by the use of the vibro-impact
model, let us consider the chain of nonlinear oscillators with rigid barriers.
Corresponding equations of motion can be written as follows:

m
d2wj

dt2
+c1wj+c3w3

j +c(2wj−wj=1−wj−1)+P

(
wj,

dwj

dt

)
= 0,

∣∣wj
∣∣ ≤ � (3.33)

If
∣∣wj
∣∣ ≤ �, the system (3.33) has only a smooth potential of interaction. When∣∣∣w

j

∣∣∣=�, the impact interaction appears which can be replaced by periodic external

impulses.
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The specificity of the vibro- impact model is that if the conditions

∣∣wj
∣∣ < � (3.34)

are satisfied, the system is described by nonlinear smooth equations because

P

(
wj ,

dwj

dt

)
= 0 (3.35)

One can describe several important particular cases.
The first possibility is a “small” periodic or clamped chain in which differences

of the natural linear frequencies are comparable with the frequencies themselves.
In this case only, the system is an essentially discrete one. The particular case
c = 0, c3 = 0 (a weightless string with discrete masses between rigid limiters) for
the string with two and three uniformly situated particles (in the former case j = 1,2
and w0= w3= 0; in the latter one j = 1,2,3 and w0 = w4 =0) has been considered in
a paper (Vedenova et al., 1985).

The spatial transformation introduced by V. F. Zhuravlev (1976) was used in
this paper. This transformation reflecting the form of an exact solution for uncou-
pled particles interacting with rigid barriers mentioned above does not remove,
but changes a type of discontinuities (the equations of motion after transforma-
tion do not contain functions with discontinuities of the second kind). In the
case of intensive impact interaction the coupling is demonstrated to be relatively
small.

It means that the transformed system contains a small parameter that allows to
introduce a slow time and to use a procedure of averaging with respect to fast time.
On the basis of such an approach the existence of (3n−1)/2 nonlinear normal modes
that essentially exceed the number of degrees of freedom is revealed. This part of
them, including the symmetric one (all particles have similar displacements) and
normal modes localized on one or two neighboring particles, are stable with respect
to small perturbations. The rest of the nonlinear normal modes are unstable and this
is confirmed by computer simulation.

It is also shown how one can analyze a smooth but strongly nonlinear system on
the basis of a vibro-impact solution as a starting approximation. These results are
illustrated in Figs. 3.10 and 3.11

The system is schematically described in Fig. 3.10. The shapes of possible modes
are illustrated in Fig. 3.11. The in-phase mode is stable (denoted by “+” sign,

Fig. 3.10 General sketch of the system
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Fig. 3.11 Modal shapes for n=3

solution 6 in Fig. 3.11). The antiphase mode is unstable and denoted by “–” sign
(solution 7). Other modes, in which the displacements of two adjacent masses have
different signs (solutions 4, 8) and also the mode in which the fixed mass separates
two deformed springs (solution 2) that are unstable.

The question arises: what will happen when the coupling parameter grows? To
get an answer, it is reasonable to deal with the other tractable vibro-impact model
mentioned above and a sequence of impulses. This approach allows revealing much
more complicated types of periodic motions than those available for study in the
framework of the previous approach. Let us consider the simplest case of a 2DOF
system. If the energies are sufficiently small, the stable modes will be the in-
phase and antiphase normal modes. In the case of weak coupling with increased
energy “saddle-node” bifurcation of antiphase mode leads to formation of rather
attractive picture of the nonlinear normal modes presented above. This bifurca-
tion (Mikhlin et al., 1998) will give rise to two pairs of localized modes with
two-sided collisions of one of the masses. It turns out that in the case of stronger
coupling, increasing the energy parameter gives rise, first of all, to the formation
of stable (1a) and unstable (2a) modes with one-sided impacts of the masses on
“unlike” stopping devices (Fig. 3.12). Only a further increase in the energy param-
eter gives rise to two stable and two unstable modes of type b (only one pair
is shown in Figs. 3.13, 3.14 and 3.15: one stable and one unstable mode). As
to modes of type c with one-sided impacts on “like” stopping devices, these are
unstable.

This figure presents the branches of the “total energy E – (w = e amplitude
w2(0)” plane for a value ε = 1 solution of the coupling parameter. Branches 1 and
2 represent stable periodic states (the solid curves) and unstable periodic states (the
dashed curves) with one side impacts of one of the masses with its left barrier, while
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Fig. 3.12 Branches of
solution on E – u2 plane
(ε=1)

Fig. 3.13 Modes of oscillation on configuration plane u1–u2 (ε=1)
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Fig. 3.14 Branches of solution on E – u2 plane (ε=10)

Fig. 3.15 Modes of oscillation on configuration plane u1–u2 (ε=10)
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the other mass collides with the right barrier (typea), that is, the collisions take
place with “unlike” stopping devices. The unstable branch 3 and stable branch 4
represent oscillations with two-sided collisions of the first mass (typeb), the second
mass experiencing no collisions. Finally, a solution 5 of typec (one-sided collisions
of each of the masses with “similar” stopping devices) is unstable. Some modes of
oscillation are shown in the configuration plane (w1,, w2) for ε = 1 in Fig. 3.13; sta-
ble modes are denoted by the solid curves and unstable modes by the dashed curves.
Comparison of the curves in Figs. 3.12 and 3.13 enables us to draw important con-
clusions as to the change in the order in which the different types of periodic states
are “born” as the energy parameter of the system is increased.

In order to demonstrate the increasingly complex behavior of the system at
large values of the coupled parameter, we present also the data for periodic vibro-
impact states at ε = 10 (Fig. 3.14 – in the “total energy E-amplitude w2(0)”
plane; Fig. 3.15 – in the configuration plane (w1,w2)). Here, the branches 1a and
2a (stable, shown in Fig. 3.11 by the solid curves), 3a–5a (unstable, shown by
the dashed curves) represent oscillations of type a (collisions with “unlike” stop-
ping devices). Figure 3.12 shows some of the stable and unstable modes of types
a,b,c that have been found. The numbers on the curves in Fig. 3.15 correspond
to the numbering of the modes in Fig. 3.14. Analysis of the results presented in
Figs. 3.14 and 3.15 indicates that the order in which the modes of different types
are “born” is changed. In particular, stable localized modes, which correspond to
two-sided collisions of one of the masses and are most important in the case of
small ε values, may be realized here at very large energies. However, modes with
one-sided collisions of the masses with “like” stopping devices arise even at small
energies.

3.2.2 Discrete Breathers in a Vibro-Impact Chain

Discrete breathers (DB), or spatially localized time – periodic solutions in
Hamiltonian classic nonlinear lattices were discovered in late 1960s and have
attracted a lot of attention (Ovchinnikov, 1969; Aubry, 1997, 2006; Flach and
Gorbach, 2008). These solutions appear both in Klein-Gordon (KG) lattices with
nonlinear on-site potential (Campbell and Peyrard, 1990) and in Fermi-Pasta-Ulam
(FPU) lattices with nonlinear interaction between the particles (Sievers and Takeno,
1988; Takeno and Sievers, 1988). For both types of models mentioned above, the
DB have a well-developed theory (Flach and Gorbach, 2008) and a wide range of
applications, including Josephson contacts, nanomechanical systems, Bose-Einstein
condensates, carbon nanotubes etc.

Despite all these developments, to the best knowledge of the authors, there exist
only two non-trivial models which allow an exact computation of the DB. The
first one is the well-known integrable Ablowitz-Ladik model (Ablowitz and Ladik,
1976), one of the discrete counterparts of the nonlinear Schrödinger equation. The
other model was suggested by Ovchinnikov and Flach (1999). This model explores
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the DB in the lattices with homogeneous potentials. It should be mentioned that
neither of these models belongs to the most common KG or FPU type.

We are here going to construct the exact solutions for discrete breathers in one-
dimensional chains with a nonlinearity of impact type (Gendelman and Manevitch,
2008).

3.2.2.1 System of Klein-Gordon (KG) Type

Let us consider a one-dimensional linear chain with every particle placed between
on-site impact barriers. The equations of motion are:

ün + c(2un − un−1 − un+1) = 0, |un| < �, n = 0, ± 1, ± 2,... (3.36)

Scalar un denotes the displacement of the n-th particle, the mass of each particle is
adopted to be a unit, c is the rigidity of the linear coupling. The distance between
the barriers on each site is equal to 2�. An interaction of every particle with the
barrier as the displacement achieves ±� is described as a purely elastic impact. It
means that if the impact occurs at time t0, then the following condition holds for
all n:

lim
t→t0−0

u̇n = − lim
t→t0+0

u̇n

∣∣∣∣
un=±�

(3.37)

System (3.36) can be considered as a particular case of discrete Klein-Gordon
lattices. It should be stressed that System (3.36) is homogeneous, i.e. the impact
barriers exist at every site. System (3.36) is obviously non-integrable; still, we are
going to demonstrate that, due to its simplicity, it is possible to obtain exact solutions
for the DB.

Let us look for the solution of (3.36 and 3.37) with only one particle subject to
periodic impacts with the barriers. Without loss of generality, we suggest that this
particle corresponds to n = 0. Such impacts are equivalent to the action of periodic
external δ- pulses on this particle. In other terms, particular solutions of System
(3.36 and 3.37) we are looking for are equivalent to the solutions of the following
equations:

ün + c(2un − un−1 − un+1) =
= 2pδn0

∞∑
k=−∞

[
δ

(
t − T

4
+ kT

)
− δ

(
t + T

4
+ kT

)]
(3.38)

where T is the period of the impacts, 2p is the unknown change of the particle
moment in the course of the impact, δij is the Kronecker symbol.

At this point, the crucial advantage of the vibro-impact model reveals itself – Eq.
(3.38) is linear and may be solved exactly. Once the solution is obtained, one should
check whether it satisfies the following conditions of self-consistence:
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• Maximal displacement of the particle n = 0 is equal to �;
• Maximal displacements of all particles with n �= 0 are less then � (no other

impacts occur).

If both these conditions will be satisfied, then the solution of forced linear
equation (3.38) is a genuine solution of the initial System (3.36).

It is convenient to rewrite the right-hand side of Eq. (3.38) as a Fourier series
(in the sense of distributions):

ün + c(2un − un−1 − un+1) = δn0
4pω

π

∞∑
j=1

(−1) j sin((2j − 1)ωt) (3.39)

Here ω = 2π/T . Thus, the conditions of the impact are equivalent to a local forcing
of the chain with multiple frequencies. The dispersion relation for traveling waves
in the linear chain is well-known:

 2 = 2c(1 − cos q) (3.40)

where  is the wave frequency, q is the wavenumber. Consequently, the frequency
spectrum of any periodic localized solution must be situated in the attenuation
zone – above the maximum frequency

 max = 2
√

c (3.41)

The forcing terms in Eq. (3.39) have frequencies ω, 3ω, 5ω etc. Consequently, the
forced solution of (3.39) will be localized if

ω >  max (3.42)

A stationary solution of Eq. (3.39) may be easily found with the help of Z transform.
It can be written down in the following form:

un(t) = (−1)npω

πc

∞∑
j=1

(−1) j g(μ)|n|√
μ2(2j − 1)4 − μ(2j − 1)2

sin((2j − 1)ωt)

μ = ω2

4c
, g(μ) = 2μ(2j − 1)2 − 1 − 2

√
μ2(2j − 1)4 − μ(2j − 1)2

(3.43)

Maximum displacement of the particle n = 0 should be equal to the impact
threshold �. It is achieved when t = T/4 + kT/2. In other terms:

|u0(T/4)| = pω

πc

∞∑
j=1

1√
μ2(2j − 1)4 − μ(2j − 1)2

= � (3.44)

From Eq. (3.44) one obtains the value of the unknown coefficient p. With account
of (3.44), Eq. (3.43) is reduced to the following form:
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un(t) = (−1)n�

∞∑
j=1

(−1) j g(μ)|n|√
μ2(2j − 1)4 − μ(2j − 1)2

sin((2j − 1)ωt)

∞∑
j=1

1√
μ2(2j − 1)4 − μ(2j − 1)2

(3.45)

Expression (3.45) is the exact solution for the DB in System (3.36 and 3.37). First
of all, it should be mentioned that the series converge both in the numerator and in
the denominator. In the numerator, the coefficients for the Fourier series decay like
(2j–1)–(n+2) for large j; in the same limit the series in the denominator behaves like
$(2j–1)–2.

Maximum displacement of the n-th particle is expressed as:

|un(T/4)| = �

∞∑
j=1

(
2μ(2j−1)2−1−2

√
μ2(2j−1)4−μ(2j−1)2

)|n|
√
μ2(2j−1)4−μ(2j−1)2

∞∑
j=1

1√
μ2(2j − 1)4 − μ(2j − 1)2

(3.46)

It is easy to demonstrate that function

F(x) = 2x − 1 − 2
√

x2 − x (3.47)

for x > 1 obeys 1 > F(x) > 0 and decreases monotonously when x grows. Thus, the
following inequalities hold:

|un(T/4)| = �

∞∑
j=1

(
2μ(2j − 1)2 − 1 − 2

√
μ2(2j − 1)4 − μ(2j − 1)2

)|n|

√
μ2(2j − 1)4 − μ(2j − 1)2

∞∑
j=1

1√
μ2(2j − 1)4 − μ(2j − 1)2

<

<
(

2μ− 1 − 2
√
μ2 − μ

)|n|
� =

(
2μ− 1 − 2

√
μ2 − μ

)|n| |u0(T/4)|
(3.48)

This inequality implies that if μ > 1 (i.e. the basic frequency of the impacts ω is
in the attenuation zone), then the solution (3.45) is exponentially localized, i.e. the
maximum amplitude of the particles decreases exponentially as one moves from the
central particle. Such behavior is exactly as one should expect for the DB. Besides,
for any n the maximum displacement of the particles is less than �, i.e. they are
not engaged in the impacts. This observation concludes the proof of consistency for
solution (3.45).

It seems not possible to compute closed expressions for a series in expression
(3.45). Still, the series converge fast enough, so no special computation difficulties
are encountered.



202 3 Infinite Discrete Systems

Fig. 3.16 Profile of the discrete breather (model of KG type). Maximum amplitudes of the
particles are plotted, (a) μ=3, (b) μ=1.05

In order to illustrate the solution (3.45), we plot the breather profile – maximum
displacement for each particle – for μ=3 (basic frequency far from the boundary of
the attenuation zone, Fig. 3.16) and μ=1.05 (basic frequency close to the bound-
ary of the attenuation zone, Fig. 3.16b). � is adopted to be unity. From obvious
symmetry considerations, it is enough to plot the particles with n ≥ 0 only.

One can see that, as expected, the breather with a basic frequency far from the
boundary of the propagation zone is strongly localized, whereas the DB relatively
close to this boundary is much wider. In order to assess the type of motion exhibited
by different particles, it is instructive to plot the time dependence of displacement
for n = 0 and n = 1 for the same values of � and μ as in Fig. 3.16a, b.

One can see that even for a moderately high basic frequency of the DB (the case
μ = 3 the frequency is only 1.73 of the gap value) the displacement of the particle
n = 0 resembles the triangular wave and its shape is very different from n=1. Quite
obviously, the continuum approximation would be completely unsuitable for this
case. Alternatively, close to the gap boundary, for μ = 1.05 the “impact” part reveals
itself only near the maximum (Fig. 3.17).

In this connection, let us investigate the limit cases of solution (3.45). For the
limit of high frequencies μ→∞ one obtains:

un(t) =
⎧⎨
⎩

0, n �= 0
8�

π2

∞∑
j=1

(−1) j sin((2j − 1)ωt)

(2j − 1)2
, n = 0 (3.49)

For n = 0 sum (3.49) indeed describes a triangle wave with frequency ω. This sit-
uation corresponds exactly to the “antiintegrability” limit well known in the theory
of the DB (MacKay and Aubry, 1994), where the oscillations are concentrated on a
single particle.
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Fig. 3.17 Time history of the particles in KG-type model, thin line – u0(t), thick line – u1(t),
(a) μ=3, (b) μ=1.05

The other limit, μ→1, physically corresponds to close vicinity of the boundary
of the attenuation zone. Let us consider the case:

μ = 1 + ε, 0 < ε << 1 (3.50)

For this case

1√
μ2(2j − 1)4 − μ(2j − 1)2

=

⎧⎪⎪⎨
⎪⎪⎩

1√
ε

+ O(
√
ε), j = 1

1

2(2j − 1)
√

j2 − j
+ O(ε), j > 1

(3.51)

From estimation (3.51) it is clear that in the lowest order of approximation only
the term with j = 1 should be kept in all sums of Eq. (3.10). Consequently, the
approximate solution will read

un(t) = −(−1)n�(1 − 2
√
ε)|n| sinωt + O(

√
ε), ε → 0 (3.52)

These solutions correspond to rather wide DBs and are usually obtained when
considering continuum approximations in terms of modulated variables.

3.2.2.2 System of Fermi-Pasta-Ulam (FPU) Type

The method for obtaining the exact DB solutions described above can be extended
for a model with gradient nonlinearity without the on-site potential – chain of the
FPU type. If the potential of interaction between the neighboring particles is V(un–
un–1) then the equations of motion will be
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ün + ∂V(un − un−1)

∂un
+ ∂V(un+1 − un)

∂un
= 0 (3.53)

In the symmetric vibro-impact model, the impacts occur when the displacement
between the neighboring particles achieves a certain limit value (from above and
from below). Thus, the potential V(x) is defined as:

V(x) = 1

2
cx2, |x| < D (3.54)

When the relative displacement achieves its limit value D at time t0, the impact
(actually, a pair of impacts) occurs and the relative velocity changes its sign.
Similarly to (3.37), one can formulate this condition as:

lim
t→t0−0

(u̇n − u̇n−1) = − lim
t→t0+0

(u̇n − u̇n−1)

∣∣∣∣
un−un−1=±D

, n = 0, ±1, ±2... (3.55)

The simplest situation which corresponds to the DB will occur if only one inter-
particle bond has elongations large enough to cause impacts. Without the loss of
generality, let us suppose that this bond is one between the particles n = 0 and n = 1.
The action of impacts may be substituted by the action of two series of δ-pulses,
acting in opposite directions at the particles 0 and 1. Consequently, this particular
solution will satisfy the following equations of the motion:

ün + c(2un − un−1 − un+1) =
= 2p(δn0 − δn1)

∞∑
k=−∞

[
δ(t − T/4 + kT) − δ(t + T/4 + kT)

] (3.56)

The left-hand side of Eq. (3.56) is linear and so there is no need to solve it once
more – the solution can be obtained by appropriate superposition. Based on (3.43),
the solution will be

un(t) = Q(n, t) − Q(n − 1, t)

Q(n, t) = (−1)npω

πc

∞∑
j=1

(−1) j g(μ)|n|√
μ2(2j − 1)4 − μ(2j − 1)2

sin((2j − 1)ωt) (3.57)

In order to determine the unknown coefficient p, one should normalize solu-
tion (3.57) according to the impact condition (3.55). By denoting the relative
displacement

wn = un+1 − un (3.58)

we get from (3.57):
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w0(t) = u1(t) − u0(t) = Q(−1, t) + Q(1, t) − 2Q(0, t) =

= −4pω

πc

∞∑
j=1

⎡
⎢⎣

(−1) j
(
μ(2j − 1)2 −√μ2(2j − 1)4 − μ(2j − 1)2

)
√
μ2(2j − 1)4 − μ(2j − 1)2

×
× sin((2j − 1)ωt)

⎤
⎥⎦ (3.59)

The normalization condition will then read

|w0(T/4)| = 4pω

πc

∞∑
j=1

(
μ(2j − 1)2 −√μ2(2j − 1)4 − μ(2j − 1)2

)
√
μ2(2j − 1)4 − μ(2j − 1)2

= D (3.60)

Finally, the solution for the DB in the FPU-type vibro-impact chain will be

un(t) = Z(n, t) − Z(n − 1, t)

Z(n, t) =
(−1)nD

∞∑
j=1

(−1) j g(μ)|n|√
μ2(2j − 1)4 − μ(2j − 1)2

sin((2j − 1)ωt)

4
∞∑

j=1

(
μ(2j − 1)2 −√μ2(2j − 1)4 − μ(2j − 1)2

)
√
μ2(2j − 1)4 − μ(2j − 1)2

(3.61)

Convergence of all series is easily established by considerations literally similar to
those presented above for solution (3.45). The only additional element for proof
of consistency is the fact that no other bond besides w0 is engaged in the impacts.
According to (3.61), the deformation of the n-th bond is expressed as:

wn(t) = Z(n + 1, t) + Z(n − 1, t) − 2Z(n, t) (3.62)

Functions Z(n,t) have opposite signs for the neighboring particles; consequently,
one obtains:

|wn(t)| = |Z(n + 1, t) + Z(n − 1, t) − 2Z(n, t)| =
=|Z(n + 1, t)| + |Z(n − 1, t)| + 2 |Z(n, t)| ≤
≤ |Z(n + 1, T/4)| + |Z(n − 1, T/4)| + 2 |Z(n, T/4)|

(3.63)

However,

D = max |w0(t)| = |w0(T/4)| =
=|Z(−1, T/4)| + |Z(1, T/4)| + 2 |Z(0, T/4)| (3.64)

By virtue of (3.48) and (3.61), quite obviously, for any n �= 0 and μ > 1 the sum
of terms in right-hand side of (3.64) is strictly larger than the last sum in (3.63).
Therefore

|wn| < D, n �= 0,μ > 1 (3.65)
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Fig. 3.18 Profile of the discrete breather (model of FPU type). Maximum amplitudes of the
particles are plotted, (a) μ=3, (b) μ=1.05

Inequality (3.65) proves the consistency of solution (3.61) for the DB in FPU-type
model. Interestingly, the consistency of this solution follows from the consistency
of solution (3.45) for the DB in a KG-type chain. Plots for maximum displacements
un(T/4) for two different values of μ according to solution (3.61) are presented in
Fig. 3.18a, b.

The solutions presented above can be significant as the benchmarks suitable
for testing the approximations in the theory of the DB. Besides, the impact
interaction is high-energy limit for common models of the nonlinear lattices,
such as the Toda lattice (Toda, 1989) or systems with Lennard-Jones or Morse
potentials.

The stability of solution (3.45) was verified by means of direct numeric simula-
tions with parameters used for the generation of Fig. 3.16. No detectable instability
was revealed within more than 10,000 periods of oscillations in both cases. Yet, such
simulation does not prove the stability rigorously. In order to analyze the stability in
a rigorous manner, one should check the spectral properties of the linear dynamics
around the DB. Such a problem seems to be rather complicated, due to both the
singular nature of the problem and the infinite number of harmonics involved in the
exact solution.

One can find exact analytic solutions for the discrete breathers both in the non-
integrable chains of Klein-Gordon and Fermi-Pasta-Ulam types with vibro-impact
potentials. These solutions are possible since the vibro-impact interaction can be
rigorously reduced to an action of periodic external force on the linear lattice. Thus,
these solutions can also be easily generalized for higher dimensions of the lattices,
provided that the linear lattice is combined with the appropriate impact interac-
tion. Moreover, the method described above can allow the construction of more
complicated solutions, like coupled DB or DB with internal oscillating modes.
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3.3 The Problem of Heat Conduction in Dielectrics

We would like to show that the vibroimpact model gives an unique possibility
to obtain analytical results in one of the “hot” problems of modern Solid State
Physics – substantiation of the phenomenological theory of heat conductivity.

Heat conductivity in one-dimensional (1D) lattices is a well known classical
problem related to the microscopic foundation of Fourier’s law. The problem started
from the famous work of Fermi, Pasta, and Ulam (FPU) (Fermi et al., 1955),
where an abnormal process of heat transfer was detected for the first time. Non-
integrability of a system is a necessary condition for normal heat conductivity. As
it was demonstrated recently (Lepri et al., 2003) for the FPU lattice, the disordered
harmonic chain, diatomic 1D gas of colliding particles, and the diatomic Toda lat-
tice, non-integrability is not sufficient in order to get normal heat conductivity. It
leads to a linear distribution of temperature along the chain for a small gradient, but
the value of heat flux is proportional to 1/Nα , where N is the number of particles
in the chain and the number exponent 0 < α < 1. Thus, the coefficient of heat
conductivity diverges in the thermodynamic limit N → ∞. Analytical estimations
have demonstrated that any chain possessing an acoustic phonon branch should have
infinite heat conductivity in the limit of low temperatures.

Probably the most interesting question related to heat conductivity of 1D models
(which actually inspired the first investigation of Fermi, Pasta and Ulam) is whether
small perturbation of an integrable model will lead to a convergent heat conduc-
tion coefficient. One supposes that for the one-dimensional chains with conserved
momentum the answer is negative (Lepri et al., 1997). Still, normal heat conduction
has been observed in some special systems with conserved momentum (Gendelman
and Savin, 2000; Giardina et al., 2000), but it may be clearly demonstrated only well
apart from the integrable limit. It means that mere non-integrability is insufficient to
ensure normal heat conduction if an additional integral is present.

It seems that computational difficulties of the investigation of heat conduction
in vicinity of integrable limit are not just an issue of weak computers or ineffec-
tive procedures. In systems with conserved momentum, divergent heat conduction
is fixed by power-like decrease of the heat flux autocorrelation function with power
less than unity. Still, for the systems with on-site potential exponential, decrease
is more typical (Savin and Gendelman, 2003). For any fixed value of the expo-
nent the heat conduction converges; if the exponent tends to zero with the value
of the perturbation of the integrable case, then for any finite value of the pertur-
bation the characteristic correlation time and length will be finite but may become
very large. Consequently, they will exceed any available computation time or size
of the system and still, no conclusion on the convergence of heat conduction will be
possible.

The way to overcome this difficulty is to construct a model (Gendelman and
Savin, 2004) which will be, at least to some extent, analytically tractable and will
allow one to predict some characteristic features of the heat transfer process and the
behavior of the heat conduction coefficient. Afterwards, the numerical simulation
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may be used to verify the assumptions made in the analytic treatment. To the best of
our knowledge, no models besides pure harmonic chains were treated in such a way
to date.

We are going to demonstrate that there exist models which have an integrable
system as their natural limit case, small perturbation of the integrability immedi-
ately leading to convergent heat conduction. The mechanism of energy scattering in
this kind of system is universal for any temperature and set for the model parame-
ters. The simplest example of such a model is a one-dimensional set of equal rigid
particles with nonzero diameter (d > 0) subjected to periodic on-site potential. This
system is completely integrable only if d = 0. It will be demonstrated that any d > 0
leads to effective mixing due to unequal exchange of energy between the particles
in each collision. This mixing leads to a diffusive mechanism of the heat transport
and, subsequently, to convergent heat conduction.

Let us consider the one-dimensional system of hard particles with equal masses
subject to periodic on-site potential. The Hamiltonian of this system will read

H =
∑

n

{
1

2
M ẋ2

n +V(xn+1 − xn) + U(xn)

}
, (3.66)

where M – mass of the particle, xn – coordinate of the center of the n-th particle,
ẋn – velocity of this particle, U(x) – periodic on-site potential with period a [U(x) ≡
U(x + a)]. Interaction of absolutely hard particles is described by the following
potential

V(r) = ∞ if r ≤ d and V(r) = 0 if r > d, (3.67)

where d is the diameter of the particle. This potential corresponds to a pure elastic
impact with unit recovery coefficient. A sketch of the model considered is presented
in Fig. 3.19.

It is well-known that the elastic collision of two equal particles with collinear
velocity vectors leads to the exchange of their velocities. An external potential
present does not change this fact, since the collision takes zero time and thus the
effect of the external force on the energy and momentum conservation is absent.

Fig. 3.19 Sketch of the hard-disk chain exposed to a periodic on-site potential U(x) (A is the
period of the potential, U0 – its height, d is the diameter of the disks). Piecewise-linear potential
(3.75) (a) and sinusoidal potential (3.85) (b) are plotted
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The one-dimensional chain of equivalent hard particles without external potential
is a paradigm of the integrable nonlinear chain, since all interactions are reduced to
an exchange of velocities. In other words, the individual values of velocities are
preserved and simply transferred from particle to particle. It is natural therefore to
introduce quasiparticles associated with these individual values of velocities. They
will be characterized by a pair of parameters (Ek, nk), where Ek = v2

k/2 is an energy
of the quasiparticle, nk is a unit vector in the direction of its motion. Every particle at
every moment “carries” one quasiparticle. The elastic collision between the particles
leads to a simple exchange of parameters of the associated quasiparticles, therefore
the quasiparticles themselves should be considered as non-interacting.

The situation changes if the external on-site potential is present. It is easy to
introduce similar quasiparticles (Ek will be a sum of kinetic and potential energy).
The unit vector n of each quasiparticle between subsequent interactions may be
either constant (motion in one direction) or periodically changing (vibration of the
particle in a potential well). In every collision the particles exchange their velocity
vectors, but do not change their positions. Consequently two quasiparticles interact
in a way described by the following relationships:

E′
1 = E1 + U(xc + d/2) − U(xc − d/2)

E′
2 = E2 − U(xc + d/2) + U(xc − d/2)

n′
1 = n1, n′

2 = n2

(3.68)

The values denoted by the apostrophe correspond to the state after the collision, xc

is a point of contact between the particles. It should be mentioned that in the case of
a nonzero diameter, the quasiparticles are associated with the centers of the carrying
particles.

If the diameter of the particles is zero, then the additives to the energies in the
first two equations of System (3.68) compensate each other and the energies of the
quasiparticles are preserved in the collision. Therefore, the interaction between the
quasiparticles effectively disappears and the chain of equal particles with zero size
subject to any on-site potential turns out to be a completely integrable system. Thus,
contrary to many previous statements, it is possible to construct an example of a
strongly nonlinear one-dimensional chain without momentum conservation, which
will have clearly divergent heat conductivity (even a linear temperature profile will
not be formed).

The situation differs if the size of the particles is not zero, as the energies of the
particles are not preserved in the collisions. In order to consider the effect of such
an interaction we propose a simplified semi-phenomenological analytical model.

After l collisions the energy of the quasiparticle will be

E(l) = E0 +
l∑

j=1

�Ej, �Ej = U(xj + d/2) − U(xj − d/2), (3.69)
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where j-th collision takes place in point xj, E0 is the initial energy of the
quasiparticle. Now we suppose that the coordinates of subsequent contact points
{..., xj−1, xj, xj+1, ...}, taken by modulus of the period of the on-site potential, are not
correlated. Such proposition is equivalent to fast phase mixing in a system close to
an integrable one and is well-known in various kinetic problems (Gendelman and
Savin, 2004). The consequences of this proposition will be verified below by direct
numerical simulation.

Average energy of the quasiparticle is equal to < E0 > over the ensemble of
the quasiparticles, as obviously <�Ej >= 0. Still, the second momentum will be
nonzero:

< (E(l) − E0)2 >= l < (U(x + d/2) − U(x − d/2))2 >x (3.70)

The right-hand side of this expression will depend only on the exact shape of the
potential function

< (E(l) − E0)2 >= lF(d),

F(d) = 1
a

∫ a
0 [U(x + d/2) − U(x − d/2)]2dx,

(3.71)

The last expression is only correct at the limit of high temperatures; it neglects the
fact that the quasiparticle spends more time near the top of the potential barrier due
to a lower velocity.

Let us consider the quasiparticle with initial energy E0 > U0, where U0 is the
height of the potential barrier. Therefore, vector n is constant. Equations (3.103) and
(3.104) describe random walks of the energy of the quasiparticle along the energy
scale axis. Therefore, after a certain number of steps (collisions), the energy of the
quasiparticle will enter the zone below the potential barrier E(l) < U0. In this case,
the behaviour of the quasiparticle will change, as constant vector n will become
oscillating, as described above. After some additional collisions the energy will
again exceed U0, but the direction of motion of the quasiparticle will be arbitrary.
It means that the only mechanism of energy transfer in the system under considera-
tion is associated with the diffusion of the quasiparticles, which are trapped by the
on-site potential and afterwards released in an arbitrary direction. Such traps-and-
releases resemble Umklapp processes of phonon-phonon interaction, but occur in a
purely classic system.

The diffusion of the quasiparticles in the chain is characterized by the mean free
path, which may be evaluated as

λ ∼ 2a < (U0 − E0)2 >

ncF(d)
∼ 2a[2(kBT)2 − 2U0kBT + U2

0]

ncF(d)
, (3.72)

where nc is a number of particles over one period of the on-site potential (con-
centration). Coefficient 2 appears due to the equivalent probability of a positive and
negative energy shift in any collision, T – temperature of the system, kB – Boltzmann
constant.
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The average absolute velocity of the quasiparticle may be estimated as

< |v| >∼ a

a − ncd

√
πkBT

2
(3.73)

Here, the first multiplier takes the nonzero value of d and the absolute rigidity of the
particles into account. The second one is due to the standard Maxwell distribution
function for a 1D case.

The heat capacity of the system over one particle is unity, as the number of
degrees of freedom (i.e. the number of quasiparticles) coincides with the number
of the particles and does not depend on the temperature and other parameters of the
system. Therefore, the coefficient of heat conductivity may be estimated as

κ ∼ λ < |v| >∼ 2a2

nc(a − ncd)

2(kBT)2 − 2U0kBT + U2
0

F(d)

√
πkBT/2 (3.74)

It is already possible to conclude that, according to (3.74) and regardless of the
concrete shape of potential U(x) in the limit d → 0, we have F(d) → 0 and therefore
κ → ∞, although for every nonzero value d the heat conductivity will be finite.
Therefore, unlike known models with conserved momentum the small perturbation
of the integrable case d = 0 immediately brings about convergent heat conductivity.

It is convenient for the following numerical simulation to introduce dimension-
less variables. Let us to set the mass of each particle M = 1, on-site potential period
a = 2, its height U0 = 1, and Boltzmann constant kB = 1 in all above relationships.
We suppose that the chain contains one particle per each period of the potential, i.e.
that nc = 1, and the particle diameter 0 < d < 2.

Let us consider the periodic piecewise linear on-site potential

U(x) = x, x ∈ [0, 1]
U(x) = 2 − x, x ∈ [1, 2]
U(x + 2 l) = U(x), x ∈ [0, 2] , l = 0, ±1, ±2, ...

(3.75)

(the shape of the potential is presented in Fig. 3.19). Then it follows from (3.72) that
the non-dimensional heat conduction coefficient is expressed as

κ = 8(2T2 − 2T + 1)

(2 − d)F(d)

√
πT/2, (3.76)

where function

F(d) = d2 − 2/3d3, for 0 < d ≤ 1

F(d) = −4/3 + 4d − 3d2 + 2/3d3, for 1 ≤ d < 2.
(3.77)

The dynamics of the system of particles with potential of the nearest-neighbor
interaction (3.67) and piecewise linear on-site potential (3.75) may be described
exactly. Between the collisions each particle moves under constant force with a
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sign dependent on the position of the particle. Therefore, the coordinate of each
particle depends on time t as a piecewise parabolic function which may be eas-
ily computed analytically. If the particle centers are situated at a distance equal
to d, elastic collision occurs. The particles exchange their momenta as described
above and afterwards, the particle motion is again described by piecewise parabolic
functions until the next collision.

Let us consider a finite chain of N particles with periodic boundary conditions.
Let one particle be at each potential minimum at the moment t = 0 and let us choose
Boltzmann’s distribution of the initial velocity. Solving the equations of motion, we
find a time t1 of the first collision between some pair of adjacent particles, next
a time t2 of the second collision, in general between another pair of the adjacent
particles, and so on. As a result, we obtain a sequence {ti, ni}∞i=1, where ti is the time
of the ith collision in the system, and ni and ni + 1 are the particles participating in
this collision. First, we incorporate the energy change of the nith particle during the
Ith collision as

�Eni = 1

2
(v′

ni
2 − vni

2) = 1

2
(vni+1

2 − vni
2).

Next, we introduce a time step �t, which is significantly less than the simulation
time, but satisfies the inequality�t � t0, where t0 = limi→∞(ti/i) is the mean time
between successive collisions. Then, for each k = 0, 1, ..., we define the local energy
flow as a piecewise constant (in time) function

jn(t) = a

�t

∑
i∈Ikn

�Eni , k�t ≤ t < (k + 1)�t, (3.78)

where the integer sets Ikn’s are defined by

Ikn = {i| k�t ≤ ti < (k + 1)�t, ni = n}.

The set Ikn takes those collisions into account that occur between particles n and
n+1 during the time interval k�t ≤ t < (k+1)�t. Equilibration times were typically
occurring in the system of the order 106. After these times have passed, we define
the time-averaged local thermal flow

Jn =< jn(t) >t≡ lim
t→∞

1

t

∫ t

0
jn(τ )dτ (3.79)

and the temperature distribution Tn =< v2
n(t)>t, where vn(t) is the velocity of par-

ticle n calculated at a time t. To find these averaged quantities, we have used times
up to 107.

To find the flow-flow correlation function C(t) numerically, we calculated the
time average < J(τ )J(τ − t) >τ /NT2, with J(t) = ∑

n jn(t) being the total heat
flow through the gas/chain system consisting of N = 500 particles and temperature
T =∑n Tn/N averaged over 104 realizations of initial thermalization.
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Numerical simulation of the dynamics demonstrates an exponential decrease of
the autocorrelation C(t) ∼ exp(−αt) for all values of the diameter 0 < d < 2 and
temperature T > 0 where the simulation time is plausible from a technical view-
point. For low temperatures however, the exponential decrease is accompanied by
oscillations with a period corresponding to the frequency of the vibrations near the
potential minima (Fig. 3.20). The reason for this is that when the temperatures are
low, the concentration of transient particles decreases exponentially and a majority
of the particles vibrates near the potential minima. It means that the 1D gas on the
on-site potential has a finite heat conductivity. The coefficient of the exponential
decrease of the autocorrelation function

α = − lim
t→∞

lnC(t)

t
(3.80)

and the coefficient of the heat conduction

κ =
∫ ∞

0
C(t)dt. (3.81)

are computed numerically.
Dependence of α and κ on the particle diameter d is presented in Fig. 3.21. The

minimum of α and the minimum of κ is attained at d = 1.4. As the temperature
grows, α decreases (Fig. 3.22a), and heat conduction κ increases.

Theoretical analysis of the heat conductivity presented above allows only approx-
imate [although rather reliable, see Fig. 3.22] prediction of the numerical value of
the heat conduction coefficient κ . Still, the other question of interest is the asymp-
totic dependence of the heat conduction on the parameters of the model. Formulae
(3.76 and 3.77) lead to the following estimations:

Fig. 3.20 Correlation functions of the system of particles with d = 0.5 under temperatures
T = 0.24, 0.45 and 0.75 (curves 1, 2 and 3)
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Fig. 3.21 Dependence of the
coefficient of the exponential
decrease on the
autocorrelation function α (a)
and the coefficient of the heat
conduction κ (b) on the
particle diameter d of 1D gas
at T=1. Curves 1 and 2
correspond to piecewise
linear on-site potential (3.75),
curve 3 represents theoretical
predictions according to
formula (3.76)

κ ∼ T5/2, for T → ∞, (3.82)

κ ∼ d−2, for d → +0, (3.83)

κ ∼ (2 − d)−3, for d → 2 − 0. (3.84)

These estimations should be compared to numerical results.
In order to check estimation (3.82), we consider the dependence of the logarithm

of the heat conduction lnκ on the logarithm of the temperature lnT. From Fig. 3.23 it
is clear that in accordance with (3.82) lnκ grows as 2.5lnT as T → ∞. Figure 3.24a
demonstrates that as d → +0, the logarithm lnκ grows as −2lnd, in accordance
with (3.83). Figure 3.24b demonstrates that as d → 2 − 0, the logarithm lnκ grows
as −3ln(2 − d), in accordance with (3.84). So, it is possible to conclude that ana-
lytical estimations (3.82, 3.83, and 3.84) correspond fairly well to the numerical
simulations data.

The analytical estimations above imply that the type of dependence of charac-
teristic exponent α and heat conductivity κ on diameter d and temperature T does
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Fig. 3.22 Temperature
dependence of exponent
coefficient α (a) and heat
conduction coefficient κ (b)
for particle diameter d = 0.5

not depend on the concrete shape of on-site potential U (x) – actually, only its finite-
ness and periodicity do matter. Piecewise linear periodic potential (3.75) was chosen
since it allowed essential simplification of the numerical procedure. In comparison,
we have also considered the smooth sinusoidal periodic potential

U(x) = [1 − cos(πu)]/2 (3.85)

with period 2 and amplitude U0 = 1, similarly to potential (3.75).
Potential (3.85) does not allow exact integration and requires standard numerical

procedures. Therefore it is also convenient to replace the rigid wall potential (100)
by the smooth Lennard-Jones potential

V(ε; r) = ε

(
1

r − d
− 1

2 − d

)2

. (3.86)

Parameter ε > 0 characterizes the rigidity of the potential, the hard-particle potential
being the limit case:
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Fig. 3.23 Dependence of heat conduction coefficient on the temperature. The markers correspond
to numerical results (lnκ versus lnT ), the straight line is lnκ = 2.5lnT + 3.45, corresponding to
(3.82). Particle diameter d = 0.5

V(r) = lim
ε→+0

V(ε; r).

Methods of computing the autocorrelation function C(t) and the heat conduction
coefficient κ in a 1D chain with analytic potentials of interaction are described in
(Gendelman and Savin, 2004). It should be mentioned that in order to get close to the
limit of the hard particles small values of ε should be used (at the temperature T = 1
value ε = 0.01 was used). It implies a rather small value of the integration step. (We
used the standard Runge-Kutta procedure of the fourth order with a constant inte-
gration step�t = 0.0001). Therefore, for the case of hard (or nearly hard) particles,
the simulation with smooth on-site potential (3.85) is far more time-consuming than
the simulation with piecewise linear potential (3.75).

In the case of hard particles with smooth on-site potential, the autocorrelation
function C(t) decreases exponentially as t → ∞ for all range 0 < d < 2, T > 0, i.e.
the heat conduction converges. Figure 3.25 demonstrates that the type of dependence
of and κ on parameters d and T is similar for a piecewise linear potential (3.75)
and a sinusoidal potential (3.85) (although numerical values α and κ vary slightly).
For this potential function F(d) = 1

2 sin2 (πd/2). It confirms that the type of heat
conduction does not depend on a concrete choice of an on-site potential function.

The results above mean that there exists a special class of universality of 1D chain
models with respect to their heat conductivity. The limit case of zero-size particles
is integrable, but the slightest perturbation of this integrable case by introducing
the nonzero size leads to a drastic change of the behavior – it becomes diffusive
and the heat conduction coefficient converges. It should be stressed that this class of
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Fig. 3.24 Dependence of the
heat conduction coefficient on
the particle diameter
(logarithmic coordinates, ln κ
versus ln d (a) and versus
ln(2 − d) (b), curves 1 and 3).
Lines ln κ = −2 ln d (curve
2) and ln κ = −3 ln (2 − d)
(curve 4) correspond to
relationships (3.83) and
(3.84). Temperature T = 1

universality, unlikely the systems with conserved momentum, cannot be revealed by
sole numerical simulation. The reason is that the correlation length (as well as the
heat conduction coefficient) diverges as the system approaches the integrable limit.
Therefore, any finite capacity of the numerical installation will be exceeded. That is
why the analytical approach is also necessary.

3.4 Solitons in Energetically Nondegenerate
Quasi-One-Dimensional Models

Beginning with the works of (Fermi et al., 1955) and (Krumhansl and Schriefer,
1975), the study of the soliton mechanisms of energy and state transfer became one
of the most relevant and intensely developed directions in many fields of physics,
chemical physics, and biophysics. However, in most of the works, it is assumed that
the system has either a single stationary state or several such states with the same
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Fig. 3.25 Dependence of the
coefficient of the exponential
decrease on the
autocorrelation function α (a)
and the coefficient of the heat
conduction κ (b) on the
particle diameter d of 1D gas
at T=1. Curves 1 and 2
correspond to smooth on-site
potential (3.85), curve 3
represent theoretical
predictions according to
formula (3.76)

energy. This assumption is made in almost all works on the dynamics and ther-
modynamics of structural transitions. This means that all chemical reactions with
nonzero thermal effects and all types of exo- and endo-thermal structural transi-
tions are excluded from consideration. This situation in the field is not coincidental,
because, until recently, no analytical models were developed for describing station-
ary processes with the consumption or release of energy on the atomic or molecular
level.

To perform a quantitative analysis, we considered a chain of bound bistable (i.e.,
having two equilibrium positions) oscillators (Manevitch et al., 1994; Manevitch
and Smirnov, 1995, 1998; Manevitch and Savin, 1995). Let us assume that the chain
is in a metastable state, that is, in the state with higher energy. A small thermal
perturbation cannot disrupt the initial state, and, therefore, this system is stable in the
linear approximation. Next, we assume that the transition of one of the oscillators
into the ground state occurs accidentally. In this case, the energy of reaction Q is
released, which is transferred to the energy of oscillations about the new equilibrium
position. At high barrier energy E, this will not lead to the transition of the other
oscillators to the ground state. Still, the energy Q will be distributed gradually over
the entire chain. As can be seen, in this case, no reaction front is formed.
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(b)(a)

Fig. 3.26 Comparison of the
(a) local-fluctuation and (b)
wave mechanisms of
propagation of the reaction.
The vertical orientation of the
blocks corresponds to the
reagents, whereas the
horizontal orientation
correponds to the reaction
products

If (under proper initial conditions) the transition from the metastable to the
ground state occurs in the form of a wave with a front, the situation is substan-
tially different. The stability of the front is provided by the stability of the nonlinear
modes comprising the front but not by the feedback mechanism, as in dissipative
systems on the macroscopic level. The energy of the wave front is spent only to
overcome the energy barrier between the two states and, after that, it is transferred to
the next oscillator, whereas the reacted one retains the energy Q and vibrates around
the new equilibrium position. Figure 3.26 schematically illustrates the difference
between the local-fluctuation and wave mechanisms of the propagation of the reac-
tion. In Fig. 3.26, the vertical orientation of rods corresponds to the metastable state
and the horizontal orientation to the ground state. This quantitative model allows an
explanation (on the atomic and molecular levels) why the reaction front exists and
propagates at a constant velocity. Below, we will show that this scenario can be real-
ized for the motion of the front of an exothermal reaction in a diatomic molecular
crystal.

The mathematical apparatus for modeling this process is complicated, because it
is unknown how to analyze the governing dynamic equations in order to obtain
a solution in the form of a stationary wave describing the transition from the
metastable state to a vibrationally excited ground state.

By now, a number of approaches to the analytical description of the propaga-
tion of endo- and exothermal processes have been proposed (Manevitch et al., 1994;
Manevitch and Smirnov, 1995, 1998; Manevitch and Savin, 1995) that treat ele-
mentary events of chemical reactions in solids in terms of nonlinear excitations of
arranged molecular systems.

3.4.1 Quasi-One-Dimensional Model of a Molecular Crystal:
Soliton Modes of Motion in a Bistable Nonlinear System

Before discussing experimental results, we will consider a simple quasi-one-
dimensional model of a diatomic molecular crystal with two uniform equilibrium
configurations. This model is schematically displayed in Fig. 3.29 and described in
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Fig. 3.27 Typical intramolecular potential for a model of diatomic molecular crystal; ϕ is the
reaction coordinate, corresponding to the intramolecular distance. For details, see the text

detail in oscillators (Manevitch et al., 1994; Manevitch and Smirnov, 1995, 1998;
Manevitch and Savin, 1995).

The intramolecular interaction is described by the potential U. Figure 3.27
presents some typical examples of this potential.

The potentials shown in Fig. 3.27 correspond to chemical processes of different
types. The potential in Fig. 3.27a describes the exothermal (the initial state cor-
responds to the left minimum of the potential U) or endothermal (the initial state
corresponds to the right minimum) processes (a chemical reaction or a structural
phase transition) that do not lead to the destruction of the initial system but results
in a change in its configuration or in the formation of new intra- and intermolec-
ular bonds. Processes of this type are true topochemical reactions, which occur
during solid-phase polymerization processes without the destruction of the sample
and formation of side reaction products.

The potential shown in Fig. 3.27b corresponds to reactions of the dissociation
type, in the course of which the products of reaction are separated far apart.

Consider the classical description of an elementary act within the framework of
the quasi-one-dimensional model presented in Fig. 3.28. The potential energy of a
molecular crystal is given by

%({u, w}) =
∑

j

{
1
2 [a(uj+1 − wj)2 + b(wj+1 − uj)2 + K(uj+1 − uj)2+

+k(wj+1 − wj)2] + U(uj − wj)
} . (3.87)

Here, u and w are the displacements of large and small particles from their equilib-
rium positions; a, b, K, and k are the parameters of the intermolecular interaction;
and U is the intramolecular potential.

It is convenient here to introduce new variables for the description of the defor-
mation of the crystal lattice and of the reaction coordinate. In the case studied, these
variables are the differences of the displacements of the centers of mass of neighbor
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Mj–1

mj–1 mj mj+1

Mj Mj+1

x

Fig. 3.28 Scheme of a quasi-one-dimensional diatomic molecular crystal. The filled ellipses repre-
sent the atoms (or atomic groups) united into molecules by intramolecular (reagent) bonds (double
zigzag lines). Single lines (both the straight and curved ones) correspond to intermolecular bonds.
The indices Mj and mj denote the atoms being the parts of the same molecule, and x is the direction
of propagation of the wave of chemical reaction

molecules εj = χj+1–χj=(Muj+1+mwj+1)/Mt–(Muj+mwj)/Mt (where M and m and
the masses of particles comprising the molecule, Mt = M+ m) and the intramolec-
ular distance ϕ j = wj – uj. The potential energy % expressed in terms of these
variables is divided into the inter- and intra-molecular energies and the interaction
energy of the inter- and intra-molecular degrees of freedom. In particular, the density
of energy for the uniform state of the crystal (εj = ε = const, ϕ j = ϕ = const)
reads

%(ε,ϕ)

N
=
[

1

2
Kε2 + U(ϕ) + εF(ϕ)

]
, (3.88)

where εF(ϕ) is the interaction energy and U is the effective intramolecular energy.
A dynamic system with this potential energy and a two-well potential U(ϕ) has two
uniform static states, with one of them corresponding to reagents (ϕ = 0, ε = 0) and
the other, to the reaction products (ϕ=ϕpr, ε=εpr). The transition between these
states is treated as the reaction.

In the continuum approximation (when the wave length is sufficiently large, as
compared to the crystal lattice parameter), the dynamics of this system is described
by the system of equations in partial derivatives (Manevitch and Smirnov, 1998):

χtt − χxx − ∂

∂x
F(ϕ,ϕx) = 0,

ϕtt − γ ϕxx + U′(ϕ) + Mt
μ

(αχ + βχx)
ε = χx.

(3.89)

Here, α, β, and γ are determined by the intermolecular interaction parameters, and a
linear approximation is used for the function F (F=αϕ+βϕx). The subscripts denote
partial derivatives with respect to the corresponding independent variables, while the
prime symbol denotes the differentiation of the potential function U with respect to
its argument.

In consideration of the reaction front motion, we search for a solution in the
form of a wave with a stationary profile (i.e., a wave dependent only on the variable
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z = x–vt, where x is a spatial coordinate, v is the propagation velocity of the wave,
and t is time) describing the transition from the initial state (reagents) to the final
state (reaction products). However, as follows from the analysis of the phase pattern
of the system of equations (3.89), direct transitions between the stationary points
(ε = 0, ϕ = 0) and (ε = ε pr, ϕ =ϕpr) are impossible because of the difference in the
energies of the indicated uniform stationary states. Nevertheless, it is possible to
show that the system of equations (Eq. 3.89) has a stationary solution as a solitary
wave with the asymptotic values (ϕ = 0, ε = 0) at x–vt→ +∞ and (ϕ = ϕ∗, ε = ε∗) at
x–vt→ –∞ (the reaction front moves to the right). This solution describes the tran-
sition from the initial state (ϕ = 0, ε = 0) to an intermediate dynamic state in the
region of attraction of the final state (ϕ=ϕpr, ε = εpr). In the case where the poten-
tial U(ϕ) is closely approximated by a fourth-degree polynomial (Fig. 3.27a), the
solution can be expressed in elementary functions:

ϕ(x, t) = ϕk

2

[
1 − tanh

(
x − vkt

W

)]
, (3.90)

ε(x, t) = − ϕk

2(v2
k − s2

0)

[
α

(
1 − tanh

(
x − vkt

W

))
+ β

W
sec h2

(
x − vkt

W

)]
.

(3.91)
Consider a number of results important for a further discussion. First, the velocity
of propagation of the transition wave (soliton) is unambiguously determined by the
parameters of the system, and, in the case of an exothermal process, it exceeds the
sound velocity s0. Second, the asymptotic values of the reaction coordinate ϕ = ϕ∗
and lattice deformation ε∗=αϕ∗/(s0

2–vk
2) correspond to a uniform dynamic state

close to, but not coinciding with the final state (products of the reaction). The
energy of the intermediate state is higher than that of the final state (products of
the reaction). Therefore, it can be treated as a classical analog of an excited state
of a growing chain, accompanied by lattice deformation (Manevitch et al., 1994;
Manevitch and Smirnov, 1998). The transition from this excited state to the final
state is accompanied by a release of the reaction energy and occurs sufficiently far
from the wave front. However, a detailed description of this process is beyond the
scope of the considered model.

Another important feature of the obtained solution is that there is no principal dif-
ference between the potentials of the two-well type (Fig. 3.27a) and dissipative type
(Fig. 3.27b). This is due to the fact that dynamical renormalization of the energy
is of order ϕ2, whereas the potential decreasing at infinitely large ϕ (Fig. 3.27b)
exhibits the exponential (~exp(–kϕ)) or inverse-power (~ϕ–k, k>1) behavior. So, the
Lagrangian extremum corresponding to the intermediate state shifts by a finite dis-
tance along the reaction coordinate ϕ∗. Although the solution cannot be expressed
in terms of elementary functions, an analysis of the phase pattern of the system
shows that a solution of topological-soliton type exists for the front of the transition
to an intermediate state. The same is true for endothermic processes (Manevitch and
Savin, 1995). However, in this case, the velocity of the front is lower than the speed
of sound.
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Fig. 3.29 Evolution of a topological soliton in the first-type (a) and second-type (b) lattices (see
text for details); ϕ is the reaction coordinate

It is important to note the difference between the solution describing the reaction-
front dynamics on the atomic and molecular level and the wave propagation of
chemical reactions in dissipative media. In the latter case, the wave front is sta-
tionary due to the energy exchange between the system and the thermostat, a
process characterized by a sufficiently long time of thermalization. In the case
under consideration, the front moves at a constant velocity, because the energy of
the conservative system is subjected to dynamic renormalization. Equations (3.90)
and (3.91) describe the transition between two stationary points of the phase space
corresponding to uniform states with equal values of the Lagrangian.

Consider the computer simulation data briefly. Note that the stability and lifetime
of soliton solutions (3.90 and 3.91) are strongly dependent on the model lattice
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Fig. 3.30 Profile of a topological soliton with radiation. Insertions show the radiation “tail” in the
backside reaction front

parameters. We can distinguish two types of lattices principally different from the
point of view of the possibility of existence of a static interface. In the first-type
lattices (in the approximation of an isolated chain), the interface covers one or two
unit cells; it was found to be stable with respect to small perturbations (e.g., thermal
noise). Lattices of the second type have no interface (Manevitch and Smirnov, 1995,
1998). In particular, this means that the local-fluctuation mechanism of reaction
propagation, according to which an elementary act is a random event occurring at
a node of the lattice, cannot be realized. Therefore, the propagation of the reaction
over lattices of this type proceeds according to the wave (front) mechanism.

Figure 3.29 exhibits typical examples of motion of the reaction front in lattices
of the first and second types. As can be seen, the slowing down and stopping of the
soliton in the first case result in the formation of a narrow interface; in the second
case, the stopped reaction front is removed outside the sample. The lifetime of the
soliton solutions ranges typically from 10 to 200 time units (the unit of time was
taken equal to d/s0, where d is the lattice parameter).

For the reaction front under consideration, the particles behind the front are at
rest with respect to the frame bound to the front, because the heat of reaction is con-
verted into the energy of deformation of the lattice. Note, however, that, it is natural
to assume that a reaction front should exist behind the heat of reaction equilibrium
position. At the present time, no analytical solutions of this type are known.
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Fig. 3.31 Propagation of the reaction fronts in the second-type lattice at the initial temperature
T=0.2. The ends were heated to T=1.0: (a) the reaction coordinate ϕ; (b) the lattice deformation ε.
Two fronts propagating from the chain ends and the radiation formed behind them (dark rays
radiating outward) are clearly seen

However, numerical experiments show that, under certain constraints imposed on
the parameters of the system, the so-called; “radiating” topological soliton can be
initiated. This solution has a narrow front width (on the order of several lattice
periods) and predicts that the reaction front emits quasi-monochromatic radiation.
The motion of this front is stable and can be closely described by

ϕ(x, t) = ϕ

2

(
1 − tanh

(
x − vt

W

))
(1 + c sin(kx − ωt + δ)),

where W≤1 is the front width and the values ϕ ∗, v, k, ω, and δ depend on the
lattice parameters. The condition of stationarity ω

/
k = v relates the velocity of the

soliton motion with the phase velocity of the radiated wave and expresses constancy
of the phase shift of radiation relative to the soliton center. Figure 3.30 presents the
structure of the reaction front accompanied by radiation. Figure 3.31 illustrates a
birth of two fronts at the ends of a “heated” chain.

3.5 Dynamics of Ensembles of Interacting Nonlinear Chains

The model of coupled oscillatory chains is the next level of complexity. Besides
numerous possible applications, the reason for the interest in this model is a richness
of its dynamical properties, especially of those related to the beating phenomenon
(Khusnutdinova, 1992; Khusnutdinova and Pelinovsky, 2003; Manevitch, 2007;
Jensen, 1982; Uzunov et al., 1995; Akhmediev and Ankiewicz, 1993; Kosevich
et al., 2008).
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The complexity of the problem does not allow solving it exactly. For this reason,
we consider this problem in the framework of asymptotic analysis, that allows us
to distinguish two limiting regimes: the case of dominating coupling (over nonlin-
earity) – the weak coupling limit, and the case when the coupling and nonlinearity
have the same order – the limit of superweak coupling. In the first case, the local
approach turns out to be possible, while in the second one there is a necessity in
the consideration of integral quantities that allows a reduction to the system of two
coupled nonlinear oscillators.

Let us consider two non-linear oscillatory chains with a weak harmonic inter-
action. The equations of motion in the short-wave continuum limit are (Kosevich
et al., 2008):

∂2uj

∂τ 2
+ ∂2uj

∂x2
+ uj + 16βu3

j − εγ u3−j = 0

τ = ωt, ω2 = 4 + εγ
(3.92)

where uj is a modulation of local displacement of the j-th chain (j = 1,2), β – param-
eter of nonlinearity and γ – coupled constant. Small parameter ε characterizes a
weakness of inter-chain coupling, τ is the normalized time variable, x – dimension-
less space variable, ω – eigenfrequency with inter-chain coupling taken into account.
It is useful for further analysis to introduce the complex variables:

�j = 1√
2

(
∂uj

∂τ
+ iuj

)
, �̄j = 1√

2

(
∂uj

∂τ
− iuj

)
(3.93)

The line over the symbol means a complex conjugation. So, the starting point of our
analysis will be Eq. (3.94) for the complex amplitudes �:

i
∂

∂τ
�j +�j + 1

2
∂2

∂x2
(�j − �̄j)

−4β(�j − �̄j)3 − ε γ2 (�3−j − �̄3−j) = 0

(3.94)

Let us consider the case of small amplitude oscillation when the complex ampli-
tude |�|~ε. It means that the coupling forces (~ε2) in Eq. (3.94) are stronger than
nonlinear ones (~ε3). Now we can construct a series of � by parameter ε<<1:

�j = ε(ψj + εψj,1 + ε2ψj,2 + ...) (3.95)

and define, alongside with “fast” time, the “slow” time and space variables

τ0 = τ , τ1 = ετ , τ2 = ε2τ

ξ = εx
(3.96)

After substitution expressions (3.95) and (3.96) into Eq. (3.94), we get equations of
main approximation for various orders of ε:
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ε1:

i∂τ0ψj + ψj = 0

ψj = χjeiτ0
(3.97)

ε2:

i∂τ0ψj,1 + i∂τ1ψj + ψj − γ

2
(ψ3−j − ψ̄3−j) = 0

ψj,1 = χj,1eiτ0

i∂τ0χj,1 + i∂τ1χj − γ

2
(χ3−j − χ̄3−je

−2iτ0 ) = 0

(3.98)

The last of Eq. (3.98) lead to the following relations between main amplitude χj and
first correction amplitude χj,1:

χj,1 = γ

4
χ̄3−je

−2iτ0 (3.99)

The equations defining the dynamics in the time scale τ1 are following:

i∂τ1χj − γ

2
χ3−j = 0 (3.100)

Let us note that Eq. (3.100) are essentially local ones. We can write the solution of
Eq. (3.100) in the form:

χ1 = 1√
2

[X1 cos(
γ

2
τ1) − iX2 sin(

γ

2
τ1)]

χ2 = 1√
2

[X2 cos(
γ

2
τ1) − iX1 sin(

γ

2
τ1)]

(3.101)

where function X1, X2 depend on “slow” time τ2 and space variable ξ.
In the next order by small parameter ε, taking into account the relation (3.99), we

get the resulting equations for amplitudes χj:

i∂τ2χj + 1

2
∂2
ξ χj − γ 2

8
χj + 12β|χj|2χj = 0 (3.102)

First of all, we can see that Eq. (3.102) are localized on one chain only.
Unfortunately, the unknown functions χj depend on “fast” time τ1. To avoid this
problem, we have to integrate them with respect to the “fast” time τ1 over the period
T1=4π/γ. Then we get the resulting equations for the main approximation:

i∂τ2Xj + 1

2
∂2
ξ Xj − γ 2

8
Xj+

3β

8
(3|Xj|2Xj + 2|X3−j|2Xj − X2

3−jX̄j) = 0

(3.103)
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where functions Xj are defined by Eq. (3.99). It is a very splendid point, that
Eq. (3.103) allow the solutions, concentrated on one chain only. Taking Eq. (3.99)
into account, we get a full transition of the initial excitation (e.g., X1) from the
“parent” chain to another one and backwards. One should note that such a result is
correct for both localized soliton-like excitations (breathers) as well as for anhar-
monic plane waves. This conclusion is in good agreement with computer simulation
data, some examples being shown in Figs. 3.32 and 3.33.

Let us consider Eq. (3.94) under the condition that coupling and nonlinearity
forces have the same order of value. In such a case we have to assume that amplitude
�~ε1/2. The appropriate expansion of � can be written as

�j = ε
1/2(ψj + εψj,1 + ε2ψj,2 + ...) (3.104)

and slow time and space variables have following form:

τ0 = τ , τ1 = ετ , τ2 = ε2τ

ξ = √
εx

(3.105)

Substituting the expansion (3.104) to Eq. (3.94), after some standard manipulations
we get the resulting equations for the main approximation amplitude:

i∂τ1χj + 1

2
∂2
ξ χj − γ

2
χ3−j+

12β|χj|2χj = 0
(3.106)

Fig. 3.32 Energy map of small amplitude anharmonic waves in the system of two coupled chains.
Initial conditions correspond to a wave, located in the second chain. Light (red online) stripes
correspond to large value energy and dark (blue online) stripes to small one
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Fig. 3.33 Energy map of standing breather. Fragment of computer simulation. Bright circles
correspond to the breather location

Contrary to the previous case of weak coupling (see Eq. 3.102), the equations
obtained are bound up. This leads to competition between a process of energy
exchange and a process of excitation (localized or not) formation. Equation (3.106)
have two symmetric solutions:

χ1 = χ2, χ1 = −χ2 (3.107)

The first of them corresponds to the in-phase mode, and the second one to the anti-
phase mode. It is clear that there is no solution localized on one chain only.

Let us consider the solutions of Eq. (3.106) in the form:

χj(ξ , τ1) = Aj(ξ − vτ1) exp(i(ωτ1 − qξ )) (3.108)

The assumption Aj=aj=const leads to anharmonic “dispersion relations”:

− (2ω + q2)aj − γ a3−j + 24βa3
j = 0 (3.109)

that define the dependence between the frequency of plane wave ω and its ampli-
tudes aj. The amplitudes of the stationary points of the system when ω and q are
fixed are the solutions of Eq. (3.109).

To analyze a temporary evolution of the plane wave we assume that the ampli-
tudes Aj are the functions of time τ1 only: Aj=Aj(τ1). In this case, Eq. (3.106) take
the form:
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i
dAj

dτ1
−
(
ω + q2

2

)
Aj − γ

2
A3−j+

+12β|Aj|2Aj = 0

(3.110)

These equations are fully analogous to equations of two nonlinear oscillators
considered in (Manevitch, 2007) in detail.

Eq. (3.110) have two first integrals:

H = −γ
2

(A1Ā2 + Ā1A2) −
(
ω + q2

2

)
(|A1|2 + |A2|2)+

+6β(|A1|4 + |A2|4)

(3.111)

and

N = |A1|2 + |A2|2 (3.112)

The presence of the integral (3.112) – “occupation number” N – allows to write
amplitude Aj in the form:

A1 = √
N cos θeiδ1

A2 = √
N sin θeiδ2

(3.113)

The “angle” variables (θ, δ) are very useful to analyze the phase plane of the sys-
tem (Kosevich and Kovalyov, 1989). The parameter, controlling the structure of
the phase plane of the system is κ= 6βN/γ. Up to κ= 0.5, Eq. (3.110) have only
two symmetric stationary points (3.107) that correspond to the in-phase (A1 = A2
or θ = π/4; �= δ1–δ2 = 0) mode and the anti-phase mode (A1 = –A2 or θ = π/4;
�= π). The attractive area of each of the stationary points is circled by limiting
phase trajectories (LPTs). Trhe anti-phase mode becomes instable at κ=0.5, this
leads to the creation two new stationary points, located at �= π. These new asym-
metric stationary points are enclosed by a separatrix passing through the anti-phase
stationary point. The distance between the asymmetric points is increased while
parameter κ grows. The LPT surrounding the anti-phase stationary point coincides
with a separatrix when the parameter κ attains unity. The LPT is broken and the
transit-time trajectories appear. Figure 3.34 shows the typical structure of a phase
plane in the terms of (θ, �)-variables.

Let us discuss these pictures from the point of view of energy exchange. It is clear
that no energy exchange process exists in the stationary points of the phase plane.
As it follos from representation (3.113), the variable θ defines the amplitude of
oscillations of each chain. So any trajectory passing near θ = 0 and θ = π/2 describes
a process of full energy exchange. Such trajectories can exist near LPTs up to κ=1.
At κ = 1 the LPT surrounding the anti-phase stationary point is broken and full
energy exchange is forbidden. We name this process as confinement of excitation on
one chain. But there is an additional case of excitation confinement that is realized
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Fig. 3.34 Typical structures
of phase plane of Eq. (3.108)
at various values of κ:
(a) κ<0.5; (b) 0.5<κ<1; (c)
κ>1; (d) κ=1

before discontinuity of LPT occurs. If the initial conditions of chains excitation are
near one of asymmetric stationary points, the corresponding trajectory will be inside
the domain closed by the separatrix. In such a case only a small part of energy can
be transferred from one chain to another. At a large value of κ only this possibility of
energy exchange remains. It should be noted that in the in-phase attractive domain,
a large energy exchange is feasible at any values of κ.

What can we say about a localized solution exchange in this system? It is clear,
that Eq. (3.106) allow two symmetric soliton-like solutions in the form:

χ1(ξ , τ1) = 1

4

√
2ω + q2 ± γ

3β
×

×sech

⎛
⎝1

4

√
2ω + q2 ± γ

6β
(ξ + qτ1)

⎞
⎠ exp(i(ωτ1 − qξ )

(3.114)

where sign plus under the square root corresponds to the in-phase state
χ1(ξ,τ1)=χ2(ξ,τ1) and sign minus the anti-phase state χ1(ξ,τ1)=–χ2(ξ,τ1).
Because expression (3.114) describes a stationary point, no energy exchange exists.
To analyze the beating phenomenon in the presence of a localized solution like
(3.114), we assume the solution of Eq. (3.106) as following:

χ1 = A(ξ )X1(τ1), χ2 = A(ξ )X2(τ1) (3.115)
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Such an assumption is good enough near the stationary states of the system.
Integrating the Hamiltonian corresponding to Eq. (3.106) with respect to space
variables, we get the following:

H = −γ
2

N(X1X̄2 + X̄1X2) + 1

2
μN(|X1|2+

|X2|2) + 6βνN2(|X1|4 + |X2|4)
(3.116)

where new parameters are:

N = ∫ A2dξ , μ = ∫ (∂ξA)2dξ/
∫

A2dξ

ν = ∫ A4dξ/(
∫

A2dξ )2
(3.117)

In the framework of such an approach, the only requirement with respect to the space
profile A(ξ) is its square integrability. New dependent variables X1 and X2 are nor-
malized to unity and the occupation number N has a simple physical meaning. We
can see the total analogy between the expressions (3.111) and (3.117). Therefore, all
the conclusions made for plane wave solutions are correct for localized soliton-like
solutions with a change of the control parameter κ into κ‘=νκ.

The computer simulation data is in a good agreement with analytical considera-
tions. Figure 3.35 shows an example of confinement of the breather.

Fig. 3.35 Confinement of localized excitation (breather) on one of coupled chains. Light areas
show the breather location. n – number of particles, t – time in eigen periods of linear oscillations.
Initial condition corresponds to κ’~1.2
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3.6 Concluding Remarks

Only a handful of discrete infinite models can be analyzed exactly and completely
without any simplifying assumptions. This small family includes linear lattices
without defects, as well as a few exactly integrable nonlinear discrete models,
such as Toda or Ablowitz-Ladik lattices. For all other cases, simplifications and
approximations are required.

The discrete infinite models occupy an intermediate position, between the dis-
crete systems with a low number of degrees of freedom (DOF) and continuous
systems. Accordingly, the simplification for obtaining tractable models can proceed
in either of these two directions – the discrete infinite system is reduced either to a
continuous system or to a low-DOF discrete system.

The “continualization” approach to the tractable modes has been described in
Sects. 3.1 and 3.4. The simplification achieved by the transition to a continuum is
crucial – it is much easier to analyze partial differential equations (PDEs) than the
finite difference equations. In many cases the analytic solution is readily available
for the PDE, in other cases it is much easier to be analyzed qualitatively or at least to
interpret the numeric results. Of course, this simplification does not come for free:
the continuum tractable models represent the initial system only under some con-
ditions initially imposed on the solutions. Such conditions may include closeness
to a characteristic frequency of wavelength, smallness of the deformations or the
rotations etc. In addition, one discrete model can lead to a number of very differ-
ent continuous models under different assumptions. Such an ensemble of tractable
models is not easy to get, but it is worthwhile since it allows one to classify and
characterize possible dynamical regimes for the initial system.

As for the reduction to the low-DOF tractable systems, one can proceed if it is
possible to reduce the dynamics to a low number of interacting modes (Sect. 3.5)
or quasiparticles (Sects. 3.2 and 3.3). The simplification might be possible due to a
relatively low number of the significant interacting modes (thus, we obtain the low-
DOF system). Alternatively, the number of modes or quasiparticles can be large, but
their interaction will be weak. In this case, one can build the perturbation procedure
based on a single-DOF basic approximation. If the former simplifying assump-
tions are wrong, then the analytic insight into the dynamics is very limited-one can
build only particular solutions, such as the discrete breathers. Even such extremely
moderate simplification can help to interpret the results of numeric simulations and
thus to make system dynamics tractable.
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Chapter 4
Continuous Systems

Continuous models are, by definition, described by partial differential equations
(PDE). Historically, their simplification and reduction to tractable models were
accomplished in two different principal ways. The first way to the simplification
is to replace the original PDE by simpler PDEs (linear, of lower order, etc.). This
method is used in various exact or asymptotic factorization procedures including
linearization. The second possible simplification is based on a reduction of the PDE
to ordinary differential equations with relatively low number of degrees of free-
dom. This idea is realized in various versions of modal decomposition and analysis.
Sometimes these ideas are used in combination.

Relatively recently, the third approach to the analysis of continuous systems was
developed. Some nontrivial PDEs were found to be exactly integrable and thus
allowing complete analysis and understanding. Then, new perturbative approaches
were developed based on the closeness of particular models to these integrable cases
(Arnold, 1980). We have considered some such nonlinear models in Chap. 3; the
PDEs were obtained there as asymptotic approximations of discrete systems in vari-
ous limit cases. In this chapter we deal with the models based predominantly on the
linear theory of elasticity.

The continuous systems abound and prevail in science, and no systematic survey
of tractable models based on the PDEs seems to be possible within the framework
of one book. Instead, we would like to present some examples of reducing the ini-
tial complicated PDE model to a tractable one. Such reduction sometimes allows
approximate analytic solution of the problem, or at least a reasonable interpretation
of numeric results.

4.1 One-Dimensional Models

4.1.1 Bolotin Model

The problems of the linear theory of elasticity for infinite domains can be usually
considered as tractable ones due to their high symmetry. Such symmetry is also
preserved for finite domains, if boundary conditions of the particular problem allow

237L.I. Manevitch, O.V. Gendelman, Tractable Models of Solid Mechanics, Foundations
of Engineering Mechanics, DOI 10.1007/978-3-642-15372-3_4,
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continuation of the solution over the infinite domain. For other boundary conditions
an additional analysis is necessary. To illustrate this approach let us consider first
a simple dynamical problem for a linear beam with finite length described by the
following PDE:

EI
∂4w

∂x4
+ μ∂

2w

∂t2
= 0 (4.1)

where EI is the bending rigidity, μ is the linear mass density and w is the transversal
displacement.

In the case of a simply supported beam the boundary conditions can be written
as follows:

x = 0, L : w = 0;
∂2w

∂x2
= 0 (4.2)

and normal oscillations have the form

w(x, t) = Wm sin
mπx

L
eiωmt; m = 1, 2 . . . (4.3)

where

ωm =
√

EI

μ

(mπ

L

)2
(4.4)

It is easy to see that this solution may be continued on an infinite beam.
If boundary conditions are different from (4.2), it may be impossible to per-

form such simple modal reduction exactly. V.V. Bolotin has shown (Bolotin, 1961;
Andrianov et al., 2004) how it is possible to use solution (4.3) if the boundary
conditions are different from (4.2). For example, in the case of clamped edges the
boundary conditions are

x = 0, L : w = 0;
∂w

∂x
= 0 (4.5)

Then, the normal vibrations can be presented in the form

w(x, t) = W(x) eiωt (4.6)

and we get the following ordinary differential equation for the determination of
normal modes

d4 W

dx4
− a2 W = 0, a2 = μ

EI
ω2 (4.7)
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In the case of a simply supported beam considered above

W = Wm sin
mπx

L
; m = 1, 2 . . . (4.8)

Naturally, this solution is not compatible with boundary conditions (4.5). However,
the deflections from solution (4.8) are essential only in relatively narrow edge
domains. The range where these deflections are essential decreases with growth of
m and ωm. So, the normal modes in this case can be presented as superposition of

the sine-like function W0 = sin
π (x − x0)

λ
(with still unknown wavelength) and the

edge effects. To complete the treatment of the edge effects, the starting equation for
the function W(x) may be presented in the form of a combination of two factorized
equations

d2W0

dx2
+
(√

μ

EI
ω

)
W0 = 0, (4.9a)

d2We

dx2
−
(√

μ

EI
ω

)
We = 0, (4.9b)

The general solution can be written in the form W = W0 +We, where W0, We satisfy
Eqs. (4.9a, 4.9b) respectively. This is just a consequence of operator factorization of
Eq. (4.7):

d4 W

dx4
− a2 W =

(
d2

dx2
+ a

) (
d2

dx2
− a

)
W = 0 (4.10)

In turn,

(
d2

dx2
− a

)
W =

(
∂

∂x
+ √

a

)(
∂

∂x
− √

a

)
W = 0 (4.11)

and the general solution of (4.11) can be presented as

We = We,1 + We,2

where We,1 and We,2 satisfy the first order equations, correspondingly

dWe,1

dx
+ √

aWe,1 = 0

dWe,2

dx
− √

aWe,2 = 0
(4.12)

The second operator in (4.10) can be used for a more accurate analysis of the solu-

tion. If the frequencies are high enough

(
a =

√
μ

EI
ω >> 1

)
, the derivatives of W1

and W2 asymptotically exceed the functions themselves:
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dWe

dx
∼ √

aWe (4.13)

This circumstance allows separating the edge domains in which the functions We,1
or We,2 will dominate. One can present them as

We,1 ≈ c1e− πx
λ , We,2 ≈ c2e

π (x−L)
λ (4.14)

where We,1 and We,2 should satisfy Eq. (4.12).
The boundary conditions allow finding yet unknown quantities x0, λ and the

arbitrary constants c1 and c2:

– for x = 0 W0 + We,1 = 0,
d

dx

(
W0 + We,1

) = 0,

– for x = L W0 + We,2 = 0,
d

dx

(
W0 + We,2

) = 0.

Using the obtained expressions for W0, We,1, We,2 one can write

c1 − sin
π x0

λ
= 0, c1 − cos

π x0

λ
= 0,

c2 + sinπ
L − x0

λ
= 0, c2 + cosπ

L − x0

λ
= 0

(4.15)

with the following solution

λ = L

0.5 + m
; x0 = λ (k + 0.25); m = 1, 2 ...; k = 1, 2 ... (4.16)

and normal frequencies

ωm = π2
(

0.5 + m

al2

)
(4.17)

In this simple case, one can compare the result with an exact solution and the error
is of order 1% even for the first normal mode.

In the considered case the tractable model consists of the second order equation
d2W0

dx2
+
√
μ

EI
W0 = 0 (the second operator in (4.10)!) with boundary conditions cor-

responding to a simply supported beam of beforehand unknown length (“basic state”
solution of Eq. (4.9a)) and two independent first order equations for edge effects
with boundary conditions dependent on a “basic state” solution of the following
equations:

dWe,1,2

dx
±
√
μ

EI
We,1,2 = 0 (4.18)
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where signs “+” and “–” correspond to functions W1 and W2 respectively. The basic
state is connected with edge effects only via boundary conditions.

This idea is especially productive in nonlinear case when it is impossible to
obtain an exact solution for boundary conditions distinct from those for a simply
supported beam (Andrianov et al., 2004).

4.1.1.1 Exercises

With the help of the Bolotin method, calculate the eigenfrequencies and eigenfunc-
tions for the beam which is

1. simply supported at one end and clamped at the other end;
2. a cantilever beam;
3. stretched and clamped at both ends.

4.1.2 Simplification of the Timoshenko Beam

The equations of motion obtained by S.P. Timoshenko (1956) are commonly con-
sidered as necessary for an accurate analysis of the transversal beam’s vibrations
studied earlier exclusively in the framework of Euler–Bernoulli classical theory. But
a comparison with exact solutions obtained by use of the two-dimensional theory of
elasticity clearly demonstrates that the applicability domain of Timoshenko’s the-
ory turns out to be rather wide. It includes the cases when the classical theory does
not lead to even qualitatively correct results. For example, the results close to exact
ones may be obtained even for very large relative thicknesses of beam (h/l >> 1).
Explanation of this fact requires further studies in two directions. First, it is nec-
essary to analyze the accuracy from the viewpoint of a two-dimensional theory of
elasticity (see also Sect. 4.2). Then, it is desirable to perform an asymptotic analysis
of these equations themselves in order to classify the natural vibrations of the beam
for all possible geometric relations. This is the subject of this section.

The equations of motion of Timoshenko’s beam and physical relations connect-
ing the internal forces with displacements are expressed as:

∂M

∂x
− Q = ρ I

∂2ψ̃

∂ t2
(4.19)

∂Q

∂x
= ρ F

∂2W̃

∂ t2
(4.20)

Q = k′GFγ̃ ; M = EI
∂ψ̃

∂ x
. (4.21)

where Q is transversal force, M is the bending moment, k’GF and EJ are the shear
and bending stiffness coefficients respectively, I and F – moment of inertia and
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cross-section area respectively, k’ – shear coefficient, depending on the profile of
the cross-section, W̃ is the transversal displacement, ψ̃ is the bending angle and γ̃
is the shear angle. The slope of the neutral line is a sum of the bending angle and
the shear angle:

∂W̃

∂ x
= ψ̃ + γ̃ (4.22)

Equations (4.19), (4.20), (4.21), and (4.22) can be reduced to the following
governing equation

EI
∂4W̃

∂ x4
+ ρF

∂2W̃

∂ t2
−
(
ρ I + ρEI

k′G

)
∂4W̃

∂ x2∂ t2
+ ρ 2I

k′G
∂4W̃

∂ t4
= 0 (4.23)

This equation allows computing the natural vibrations, in which each normal mode
has only one node point in the “thickness” direction. The solution for the normal
vibrations can be presented as follows:

W̃ = W∗(x)eiω t, ψ̃ = ψ(x)eiω t, γ̃ = γ (x)eiω t

Then, (4.19), (4.21), (4.21), and (4.22) lead to ordinary differential equations (in the
case of rectangular transversal section):

1

12

E

G
ε2 ∂

2ψ

∂ ξ2
+ k′γ + 1

12
ε2ω∗2ψ = 0 (4.24)

dγ

dξ
+ 1

k′ω
∗2 W = 0 (4.25)

dW

dξ
= ψ + γ (4.26)

Here ξ = x/l, h, l are dimensionless longitudinal coordinate, thickness and char-
acteristic size (length, wavelength when analyzing the high-frequency modes)

respectively. We introduce also the parameters: ε = h/l, ω∗ =
√
ρω2 l2/

G.
Parameter ε characterizes relative beam thickness: ε <<1 for “thin” beams and
ε >>1 for relatively large h. Certainly, the relations between the functions ψ and
γ (i.e. relative role of the bending and shear deformation) as well as the magnitude
of the frequency depend on the parameter ε. Let us introduce parameters α, β which
quantify these relationships:

γ ∼ εαψ , ω∗ = εβ ,  ∼ 1

We first consider the thin beams. An asymptotic analysis of Eqs. (4.24), (4.25), and
(4.26) with respect to small parameter ε reveals the following possibilities:
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(1) α = 2, β = 1
The limiting equation:

1

12

E

G

d4 W

dξ4
+ 2 W = 0 (4.27)

is obtained from governing (4.19), if one neglects the terms related to the effect of
shear and rotational inertia. The equation describes the natural modes of a “thin”
beam with low frequencies and can be obtained within the framework of the com-
mon hypothesis of classical beam theory: γ → 0, G→ ∞. In this case, the physical
relations for transversal force can not be used. One should compute them from Eqs.
(4.19), (4.20), (4.21), and (4.21) as a reactive force.
(2) α = 0, β = –1

(
k′ − 1

12
 2
)
ψ = 0 (4.28)

−dψ

dξ
+ 1

k′ 
2 W = 0 (4.29)

ψ + γ = 0 (4.30)

The total rotation angle of the transversal section
∂W̃

∂x
turns out to be a “small dif-

ference of large quantities” ψ ≈ −γ . The frequency of the natural vibrations is
determined from Eq. (4.28). We can also find the relationship between the functions
ψ and W from expression (4.29). But these functions themselves are not determined
in a zero approximation and may be found in the next order of approximation.
Corresponding equations of motion are:

Q = ρ I
∂2ψ

∂ t2

∂Q

∂x
= ρ F

∂2 W

∂ t2

ψ + γ = 0

where Q = k’GFγ = – k’GFψ , M = – EIψ .
The final equation of motion can be written as follows

ρ I
∂2γ

∂ t2
+ k′GFγ = 0 (4.31)

and describes high-frequency vibrations of “thin” beam in which shear deformations
compensate the bending ones. We would like to add that existence of such mode was
first noted by (Downs, 1976).

Let us consider the “high” beams. In this case, the asymptotic analysis with
small parameter ε–1 yields two limiting systems.
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(3) α = –2, β = 0

1

12

E

G

d2ψ

dξ2
+ k′ε−2 dW

dξ
+ 1

12
ω2ψ = 0 (4.32)

k′ d2 W

dξ2
+ 2 W = 0 (4.33)

dW

dξ
− γ = 0 (4.34)

The bending is again a “small difference of large quantities” here and it may be cal-
culated from relation (4.31) after determination of the frequency and displacement
W from Eq. (4.33). The equations of motion in this case have the following form:

∂M

∂ξ
+ Q = ρI

∂2ψ

∂t2

∂Q

∂ξ
= ρF

∂2W

∂t2

∂W

∂ξ
− γ = 0

Q = κ ′GFγ

and, as it will be demonstrated below, they describe shear vibrations of a “high”
beam with low frequencies.
(4) α = 0, β = 0

E

G

d2ψ

dξ2
+ 2ψ = 0 (4.35)

k′
(

d2 W

dξ2
− dψ

dξ

)
+ 2 W = 0 (4.36)

Equation (4.35) provides a possibility to determine the frequency of vibrations and
the bending angle. The Eq. (4.36) allows to find the total displacement W. The
system Eqs. (4.35 and 4.36) is obtained from the equations of motion

∂M

∂x
= ρ I

∂2ψ

∂ t2

∂Q

∂x
= ρ F

∂2 W

∂ t2
∂W

∂x
= ψ + γ

and describes the vibrations of a “high” beam with high frequencies, as we will
see below. If it is necessary to calculate the corrections for the frequencies obtained
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from the limiting cases, the perturbation procedure can be used. The perturbation
problem is regular in the cases 1, 3, 4 and singular in the case 2.

Below, we have presented the expansions for the frequencies which were found
with taking the corrections of first and second order by parameter ε2 = ε1, ε−2 =
ε̄1 into account.

The case (1):

 2 = k′a2

12
k4ε1

[
1 − 1 + a2

12
(1 + F1) k2ε1 + 1

144
(1 + M1) k4ε2

1 + ...

]
(4.37)

The case (2):

 2 = 12 k′

ε1

[
1 − 1 + a2

12
m2π2ε1 − a2

144
(1 + M2) m4π4ε2

1 + ...

]
(4.38)

The case (3):

 2 = k′m2π2

⎡
⎢⎢⎢⎣

1 + 12

1 − a2 (1 + F3)
ε̄1

m2π2
+

+ 144a2

(
1 − a2

)3 (1 + M3)
ε̄2

1

m4π4
+ ...

⎤
⎥⎥⎥⎦ (4.39)

The case (4):

 2 = k′m2π2

b2

⎡
⎢⎢⎢⎢⎣

1 + 12 b2

b2 − 1
(1 + F4)

ε̄1

m2π2
+

+ 144b2

(
b2 − 1

)3 (1 + M4)
ε̄2

1

m4π4
+ ...

⎤
⎥⎥⎥⎥⎦ (4.40)

where a2 = E
k′G , b = a−1, m = 1, 2, .... The values of coefficients k, Fi, Mi are

presented in Table 4.1.
Let us note that the characteristic equations for different boundary conditions

were first derived on the basis of starting Eq. (4.23) in a paper (Huang, 1961).
The comparison of the frequencies calculated from the limiting systems (with

taking the presented corrections into account) with exact solutions of Timoshenko’s
equations is presented in Figs. 4.1 and 4.2 (it is supposed that k′ = 5/6 and ν = 0.3,
where ν – the Poisson coefficient). The dependence of the low frequencies on
the beam thickness is presented in Fig. 4.1, and this of the high frequencies – in
Fig. 4.2.

The thick lines correspond to the exact solution, and the dashed lines to approxi-
mate solutions which were obtained from the tractable models. As this takes place,
the curves obtained from limiting systems themselves, with taking one and two
orders of correction into account, are denoted by the numbers 0, 1, 2 respectively.
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Fig. 4.1 Thickness dependence of the low frequencies – Timoshenko beam

Fig. 4.2 Thickness dependence of the high frequencies – Timoshenko beam
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The domains in which the accuracy of the approximation grows with increase of the
number of corrections taken into account are distinctly seen.

It is interesting to note that the first approximations for high frequencies, con-
structed for small h/l (case 2) and large h/l (case 4) reasonably approximates
the exact solution in all ranges of relative thicknesses. If one takes more terms
into account, this property is violated. Such behavior is typical for asymptotic
expansions.

In the case of low frequency domains, there is an intermediate range of
h/l in which both approximations are unsatisfactory and the corrections cannot
improve their quality due to the reason mentioned above. In this range, the ini-
tial Timoshenko’s model is useful (in more complex situations, when a general
model is unknown, the natural mathematical tool for study of intermediate ranges
is the construction of the Pade-approximant that is the rational function having the
same power expansions at small and large magnitudes of parameter ε1 as asymptotic
solutions valid for corresponding ε1).

4.2 The Planar Dynamical Problem and Tractable
One-Dimensional Models of an Elastic Solid

The planar dynamical problem of elasticity for a rectangular domain is very impor-
tant for the substantiation of different approximate models. The latter statement is
especially significant for natural vibrations in the case when two opposite longi-
tudinal sides are free from stresses. This case can be considered as a test for the
examination of applied theories of bars and beams (Timoshenko, 1922; Guntze,
1969; Prescott, 1942).

We would like to show that even a relatively simple system can demonstrate rich
variety of possible qualitatively different dynamical behaviors. As this takes place,
every type of behavior may be described by a special tractable model.

The dynamical planar problem in elasticity theory (in the case of a planar stress
state) is described by the following equations (Nowacki, 1975):

�u − 1 + ν
2

∂2u

∂z2
+ 1 + ν

2

∂2w

∂x∂z
= ρ

(
1 − ν2

)
E

∂2u

∂t2

�w − 1 + ν
2

∂2w

∂x2
+ 1 + ν

2

∂2u

∂x∂z
= ρ

(
1 − ν2

)
E

∂2w

∂t2
,

(4.41)

where x, z – orthogonal Cartesian coordinates, t – time, � = ∂2
/
∂x2 + ∂2

/
∂z2,

ρ-density, E – elastic modulus, ν – Poisson ratio, u, w – components of the
displacements vector in the directions X and Z.

Let us consider natural vibrations of the rectangular domain 0 ≤ x ≤ l; −h

2
≤

z ≤ h

2
with the boundary conditions:
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w = 0, σx = 0, x = 0, l (4.42)

Similarly, one can consider other boundary conditions:

u = 0, τxz = 0, x = 0, l (4.43)

admitting exact solutions.
After transition to the dimensionless variables

ξ = x

l
; ζ = 2z

h
(4.44)

we look for a solution for natural vibrations as follows:

u = ū (ζ ) cos(mπ ξ )eiω t, w = w̄ (ζ ) sin(mπ ξ )eiω t (4.45)

Substituting expressions (4.45) into Eq. (4.41), one obtains the ordinary differential
equations with respect to functions ũ (ζ ) , w̃ (ζ )

[
1

ε2

d 2

dζ 2
−
(

2

1 − ν − δ
)]

ũ + 1 + ν
1 − ν

1

ε

d

dζ
w̃ = 0;

[
2

1 − ν
1

ε2

d 2

dζ 2
− (1 − δ)

]
w̃ − 1 + ν

1 − ν
1

ε

d

dζ
ũ = 0,

(4.46)

where ε = h
/

2lx; δ = ρ ω2l 2
x

/
G; lx = l

/
mπ ; G = E

/
2 (1 + ν) .

It is easy to obtain a general solution of the system (4.46). However, let us
consider identical boundary conditions for ζ = ±1. In this case, the general solu-
tion splits into two uncoupled components and we will restrict ourselves by that
corresponding to symmetric w̃ and antisymmetric ũ (with respect to ζ ) functions.

As it is known (Nowacki, 1975), the bulk deformation of two-dimensional media
is characterized by dilatation

θ = ∂u

∂x
+ ∂w

∂z
(4.47)

and the small rotation – by rotation vector with the essential component

 = ∂u

∂z
− ∂w

∂x
(4.48)

In the case of a infinite domain two waves exist: dilatational (θ �= 0;  = 0) and
shear (θ = 0;  �= 0). By analogy, let us refer to the natural vibrations as quasi-
dilatational, if | θ | >> | |, and quasi-shear, if | θ | << | |. Let us also determine
the dimensionless magnitudes σ̄x, σ̄z, τ̄xz, θ̄ ,  ̄ by the relations
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[
(1 + ν)/E

]
lxσs = σ̄s (ζ ) sin(mπ ξ )eiωt;

s = x, z, xz; θ = θ̄ lx;  =  lx
(4.49)

where σx, σz, τxz, are the stresses of the plane elastic problem. The general solution
of (4.46) with inclusion of the above assumptions can be written as follows:

ū = (c1
/
γ
)

sinh( ε γ ζ ) + c3
√

1 − δ sinh( ε
√

1 − δ ζ );

w̄ = c1 cosh( ε γ ζ ) + c3 cosh( ε
√

1 − δ ζ );

σ̄x = −c1
[
(2 + ν)/2

] (
δ
/
γ
)

cosh( ε γ ζ ) − c3
√

1 − δ sinh( ε
√

1 − δ ζ );

σ̄z = c1
[
(2 − δ)/γ ] sinh(ε γ ζ ) + c3

√
1 − δ sinh( ε

√
1 − δ ζ );

τ̄xz = −c1 cosh( ε γ ζ ) + c3
[
(2 − δ)/2

]
sinh( ε

√
1 − δ ζ );

θ̄ = [−c1(1 − ν) δ/2γ
]

cosh( ε γ ζ );  ̄ = −c3 δ sinh(ε
√

1 − δ ζ );

γ =
√

1 − (1 − ν) δ/2,
(4.50)

where c1 and c3 are arbitrary constants.
Keeping in mind some reference problems, we consider first the boundary

conditions

u = 0, σz = 0 for ζ = ±1 (4.51)

The corresponding characteristic equation has the form

(
δ
/

2
)
γ

√
1 − δ sinh( ε γ ) sinh( ε

√
1 − δ) = 0 (4.52)

This form of the general solution should be reconsidered in the degenerate cases
δ = 1, δ = 2

/
(1 − ν), δ = 0 – in this case the arguments of the hyperbolic

functions become purely imaginary and the latter are transformed to a trigonometric
form. In the non-degenerate cases the roots of the characteristic equation split into
two groups:

1) δ(1) = 1 + (kπ/ε)2 , k = 0, 1, 2, ...; θ̄(1) = 0,  ̄(1) �= 0

2) δ(2) = [2/(1 − ν)] [1 + (kπ/ε)2] ,

k = 1, 2, 3...; θ̄(2) = 0,  ̄(2) �= 0

(4.53)

A similar situation is observed for other types of boundary conditions, except for
the case of stressless longitudinal sides. For example under clamping (u = w = 0
for ζ = ±1), one can obtain the following transcendental equation

sinh(ε γ ) cosh( ε
√

1 − δ ) − γ
√

1 − δ sinh( ε
√

1 − δ) cosh( ε γ ) = 0 (4.54)

Contrary to the reference case above, the analytical representation of the roots is
not possible here. However, one can find asymptotic expansions of the roots for
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the first (corresponding to predominant dilatation) and the second (corresponding to
predominant shear) groups and for small and large ε respectively:

ε << 1

δ(1) ≈ (kπ/ε)2 , k = 1, 2, 3...;
∣∣ θ̄(1)

∣∣ << ∣∣  ̄(1)
∣∣ ,

δ(2) ≈ [2/(1 − ν)] [(2 k − 1) π
/

2ε
]2 ,

∣∣ θ̄(2)
∣∣ >> ∣∣∣ ¯̃ (2)

∣∣∣ ;
ε >> 1

δ(1) ≈ 1 + [(2 k − 1) π
/

2ε
]2 ,

∣∣ θ̄(1)
∣∣ << ∣∣  ̄(1)

∣∣ ,
δ(2) ≈ [2/(1 − ν)] [1 + (kπ/ε)2] ,

∣∣ θ̄(2)
∣∣ >> ∣∣  ̄(2)

∣∣ .

(4.55)

The most interesting case corresponds to free longitudinal sides (σ̄x = 0, τ̄xz = 0
for ζ = ±1), for which a new group of roots of the characteristic equations appears.
These roots are strongly connected with an approximate description of beam type
solutions. The characteristic equation in this case differs from the previous one by
these multipliers: (2–δ)2 in front of the first term and 4 in front of the second term.

The asymptotic representation of the root of the first and second groups for ε >>1
is analogous to the previous one. For ε <<1 it has the form

δ(1) ≈ [(2 k − 1) π
/

2ε
]2 , k = 1, 2, 3...;

∣∣ θ̄(1)
∣∣ << ∣∣  ̄(1)

∣∣ ,
δ(2) ≈ [2/(1 − ν)] [1 + (kπ/ε)2] ,

∣∣ θ̄(2)
∣∣ >> ∣∣  ̄(2)

∣∣ . (4.56)

However, apart from this group of roots, there exists an additional root in interval
[0,1]. It is easy to find its asymptotic expansion for small and large values of ε.

ε << 1 : δ(0) ≈ 2 (1 + ν)
3

ε2 − 2 (1 + ν) (17 + 10ν)

45
ε4 + ...,

ε >> 1 : δ(0) ≈ δ0 + 2 (1 − 0.5 δ0)5 e−2
√

1−δ0ε+...[
(1 + ν)/4+ (5 + ν) δ0

/
8 + (1 − ν) δ2

0

/
4
]

(4.57)

where δ0 is real positive root of equation

δ3
0 − 8δ2

0 + 8 (2 + ν) δ0 − 8 (1 + ν) = 0 (4.58)

Depending on the magnitude of ν, δ0 changes in the interval [0.76, 0.87].
The analysis of a dynamic planar problem in rectangular domain gives us a pos-

sibility to characterize a complete vibration spectrum possible in this geometry.
Namely, there exist two parts of the spectrum which may be described as quasi-
dilatation and quasi-shear ones. Generally speaking, for ε~1

∣∣ θ̄ ∣∣ ∣∣  ̄ ∣∣ in both parts.
However, when ε changes, it turns out that for both ε >> 1 and ε <<1 (δ1)

∣∣ θ̄ ∣∣ <<∣∣  ̄ ∣∣, but for the quasi-dilatation (δ2)
∣∣ θ̄ ∣∣ > ∣∣  ̄ ∣∣. Asymptotic expansion of the exact
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solution leads to the conclusion that one of the components (u or w) is dominant for
both classes of vibrations. The main term of this component expansion by parameter
ε describes shear (dilatation) vibrations and it satisfies the corresponding wave equa-
tion if one integrates the initial boundary problem asymptotically. The other compo-
nent is relatively small; in the first approximation it is a superposition of shear and
dilatation components which are in fact main and accompanying standing waves.

Only for boundary conditions that correspond exactly to the periodic solution for
a infinite plane, the accompanying standing waves are absent (e.g., for conditions
w = 0, σx = 0 ( x = 0) and u = 0, τxz = 0

(
z = ±h

/
2
)
).

The main standing wave is periodic with respect to ζ , and the accompanying one
is periodic or an exponentially decreasing function in this direction respectively. A
small component of displacement is not present in the boundary conditions in the
first approximation and therefore does not influence the main term of the natural
frequency expansion. In the case of free longitudinal boundary sides (ζ = ±1), a
qualitatively new component of the spectrum

(
δ(0)
)

appears. As this takes place,
δ(0) → 0 for ε→ 0, and δ(0) tends to a finite value for ε → ∞. Corresponding
solutions are close to beam modes for ε <<1, and to standing surface Rayleigh waves
for ε >> 1.

Comparison of the obtained results with Timoshenko’s theory, giving a spectrum
naturally separated into two parts (see the previous section), shows that the first
(lower) part of the Timoshenko beam spectrum corresponds to δ(0) for ε <<1 and
δ(1) for ε >> 1. As for the second (higher) part, this corresponds to δ(1) for ε <<1
and δ(2) for. ε >> 1.

The asymptotics of quasi-dilatations and quasi-shear vibrations can be also found
for more complicated boundary conditions (clamping on all sides, for example, or a
stressless boundary). The exact solutions of the characteristic equation are not acces-
sible here; the expansions of unknown eigenfunctions by parameter ε or ε–1 lead to
recurrent relations for the coefficients of these expansions. As this takes place, if the
main components of displacement are satisfying, in the first approximation the wave
equation may also be revealed. Using these equations, one can find the main terms
of the expansions of the eigenfrequencies. In the case of a quasi-beam model, the
complicated boundary conditions can be taken into account within the framework
of classical theory or the Timoshenko theory.

Similarly, one can study the solutions of the starting system with symmetric u
and symmetric w functions (with respect to variable ξ ). Here, it is also possible
to reveal the quasi-dilatational and quasi-shear vibrations. In the case of stressless
sides ζ = ±1 a new component of the spectrum appears, which corresponds to
longitudinal vibrations of the bar (for ε <<1) and to standing surface Rayleigh waves
(for ε >> 1).

The discussed regularities of the vibration spectrum of planar elasticity problem
turn out to be significant not only for the substantiation of applied engineering the-
ories, but also for the construction of correct applied theories in the cases when
commonly used approaches are not valid (e.g. for vibrations of bars, beams and
plates with relatively large thickness or a large number of waves, for the case of
impact loading, etc.).
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4.2.1 Exercises

1. Find quasi-dilatation and quasi-shear vibrations with symmetric u and W func-
tions (with respect to the ξ -variable) for the accepted boundary conditions.

2. Find surface (Rayleigh) waves for ε >> 1 and stressless sides ξ = ±1.
3. Find quasi-dilatation and quasi-shear vibrations in the case when

(a) all sides are clamped;
(b) the boundary is stressless.

4. Solve the planar problem in the case of two identical opposite periodic nor-
mal forces applied to opposite sides of a rectangular infinite strip using initial
equations and a tractable model. Compare the results.

5. Perform the same procedure for the case of periodic shear force.
6. Solve the planar problem for two identical concentrated normal forces applied at

opposite sides of a rectangular infinite strip.
7. Solve the same problem for concentrated shear forces.

4.3 The Two-Dimensional Orthotropic Model and Its
Application to a Complex Contact Problem

The next nontrivial complication is a consideration of a non-isotropic elastic
medium. The exact governing equations are linear, but still too complex to yield an
exact solution of boundary value problems except the simplest ones. We are going
to demonstrate that asymptotic factorization based on an essential anisotropy of
the medium leads to the construction of tractable models. Then, many complicated
boundary problems may be solved with satisfactory accuracy. Thus, the anisotropy
may be rather advantageous for the formulation of tractable models. The derivation
of such models can be a nontrivial problem but having succeeded here, an efficient
analytical solution turns out to be possible (Manevitch et al., 1982).

4.3.1 Basic Asymptotic Decomposition of the Orthotropic Plate
Problem

Let us consider the planar stress state of an orthotropic plate for which the main
lines of orthotropy are collinear to the coordinate axes. The solution of boundary
problems for such a plate can be reduced to the integration of the equations of
equilibrium of the planar orthotropic media in displacements

B1
∂2u

∂x2
+ G

∂2u

∂y2
+ eG

∂2v

∂x∂y
= 0,

B2
∂2v

∂y2
+ G

∂2v

∂x2
+ eG

∂2v

∂x∂y
= 0.

(4.59)
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under given boundary conditions. Here

Bj = Ejh

1 − ν12ν21
, j = 1, 2, G = G12h, e = 1 + ν21

B1

G
, (4.60)

E1, E2 and G are elastic moduli in the directions x, y and shear modulus; ν12, ν21 –
Poisson coefficients, where ν12E2 = ν21E1; h – thickness of the plate.

The normal and shear reduced forces in the plane of the plate are determined by
the expressions

T1 = B1
∂u

∂x
+ G (e − 1)

∂u

∂y
,

T2 = B2
∂v

∂y
+ G (e − 1)

∂u

∂x
,

S = G

(
∂u

∂y
+ ∂v

∂x

)
.

(4.61)

In order to complete the formulation of the boundary problem for Eq. (4.59), the
boundary conditions have to be added and in the case of the third main problem for
the orthotropic strip (0 ≤ x ≤ H, −∞ < y < ∞) they have to be formulated as
follows: the boundary of the plate is separated into the parts with different boundary
conditions, e.g.

T1 = F(y), S = φ(y),
(
y ∈ L′) ,

u = u∗(y), v = v∗(y),
(
y ∈ L′′) .

(4.62)

Let us suppose that B1 ~ B2 >> G, then the quantity ε = G2/B1B2 may considered as
a small parameter. This condition explicitly defines the essential anisotropy of the
medium in the considered problem – for common isotropic medium the Young mod-
ulus and the shear modulus should be of the same order, provided that the Poisson
ratio will not be too close to its maximum value.

We introduce the affine transformations of the coordinates and the unknown
functions

x = ε−1/4q−1/4x1, y = y1, u = U(1), v = ε−1/4q−1/4V (1), (4.63)

x = ε−1/4q−1/4x2, y = y2, u = εq−1/4U(2), v = ε1/4V (2) (4.64)

where q = B2/B1 ~ 1.
Substitution of the transformations (4.63) and then (4.64) into Eq. (4.59) leads to

systems (4.65) and (4.66) respectively

U(1)
xx + U(1)

yy + eε V (1)
xy = 0,

V (1)
yy + eU(1)

xy + ε V (1)
xx = 0,

(4.65)



4.3 The Two-Dimensional Orthotropic Model 255

U(2)
xx + eV (2)

xy + εU(2)
yy = 0,

V (2)
xx + V (2)

yy + eεU(2)
xy = 0.

(4.66)

Here and below, the following notations are accepted for brevity:

∂φi

∂xi
= φi

x,
∂φi

∂yi
= φi

y

Evidently, in the case of the planar deformation the corresponding equations are
similar.

As it is seen from the transformations (4.63) and (4.64), the solution, obtained
by asymptotic integration of the system (4.65), varies along x axis slower than the
similar solution of system (4.66) (in the former case ∂/∂x = ε1/4q1/4∂/∂x1, in the
latter ∂/∂x = ε−1/4q1/4∂/∂x2).

The components of the displacement vector may be presented by superposition
of the solutions of both types

u = u1 + u2, v = v1 + v2 (4.67)

We will look for the functions U (n), V (n) as series by small parameter ε1/4:

U(n) =
∞∑

m=0

3∑
j=0

εm+j/4Un,4m+j,

V (n) =
∞∑

m=0

3∑
j=0

εm+j/4Vn,4m+j (n = 1, 2) .

(4.68)

It is convenient to introduce additional transformations of the coordinates

ξ1 = x1

∞∑
m=0

εmαm, η1 = y1, (4.69)

ξ2 = x2

∞∑
m=0

εmβm, η2 = y2 (4.70)

Here the coefficients α0, β0 are equal to unity, because the equations of the zeroth
approximation have to coincide with the limiting systems which can be obtained
from Eq. (4.65) and (4.66) when ε → 0. The coefficients αm, βm (m = 1, 2, . . .)
which are calculated in the course of the solution are used for simplification of the
equations for higher approximations. Substituting series Eqs. (4.68 and 4.69) for
n = 1 into the system (4.65) we obtain
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∞∑
m=0

3∑
j=0

εm+j/4
(

m∑
ν=0

U1,4ν+j
ξξ cm−ν + U1,4m+j

ηη + eε
m∑
ν=0

V1,4ν+j
ξη αm−ν

)
= 0,

∞∑
m=0

3∑
j=0

εm+j/4
(

V1,4m+j
ηη + ε

m∑
ν=0

U1,4ν+j
ξη αm−ν + ε

m∑
ν=0

V1,4ν+j
ξξ cm−ν

)
= 0.

(4.71)

where

cp =
p∑

s=0

αsαp−s

Similarly, after substitution of the series (4.68) and (4.70) (for n=2) into system
(4.66) one can find

∞∑
m=0

3∑
j=0

εm+j/4
(

m∑
ν=0

U2,4ν+j
ξξ dm−ν + e

m∑
ν=0

V2,4ν+j
ξη βm−ν + εU2,4m+j

ηη

)
= 0,

∞∑
m=0

3∑
j=0

εm+j/4
(

m∑
ν=0

V2,4ν+j
ξξ dm−ν + V2,4m+j

ηη + eε
m∑
ν=0

U2,4ν+j
ξη βm−ν

)
= 0.

(4.72)
where

dp =
p∑

s=0

βsβp−s

Splitting of Eqs. (4.71) and (4.72) by parameter ε1/4 leads to two infinite systems of
equations with respect to the functions U2,4m+j, V2,4m+j (m = 0, 1, . . .; j = 0, 1, 2, 3)

U1,4m+j
ξξ c0 + U1,4m+j

ηη = −
m−1∑
ν=0

(
U1,4ν+j
ξξ cm−ν + eU1,4ν+j

ξη αm−η−1

)
, (4.73)

V1,4m+j
ηη = eU1,4m+j

ξη α0 −
m−1∑
ν=0

(
eU1,4ν+j
ξη αm−ν + V1,4ν+j

ξξ cm−η−1

)
(4.74)

for the stress state of the first type and

U2,4m+j
ξξ = −eV2,4m+j

ξη β0 − U2,4(m−1)+j
ηη −

−
m−1∑
ν=0

(
U2,4ν+j
ξξ dm−ν + eV2,4ν+j

ξη βm−η
)

,
(4.75)
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V2,4m+j
ξξ d0 + V2,4m+j

ηη = −
m−1∑
ν=0

(
V2,4ν+j
ξξ dm−ν + eU2,4ν+j

ξη βm−η
)

(4.76)

for the stress state of the second type.
It should be mentioned that if the upper summation limit for a certain sum is

lesser than the lower one, this sum is considered to be zero. Similarly, every one of
the functions Un,4m+j, Vn,4m+j (n = 1, 2) with the negative second index is supposed
to be zero.

So, one can write from Eqs. (4.73), (4.74), (4.75), and (4.76) for m = 0

U1,j
ξξ + U1,j

ηη = 0,

V1,j
ηη = −eU1,j

ξη

(4.77)

for the state of the first type and

U2,j
ξξ = −eV2,j

ξη ,

V2,j
ξξ + V1,j

ηη = 0
(4.78)

for the state of the second type.
As it is shown in our book (Manevitch et al., 1982) (a corresponding technique

is demonstrated below, in Sect. 4.4.3), the coefficients αm, βm (m = 1, 2, . . .) can
be determined in a way that Eqs. (4.73), (4.74), (4.75), and (4.76) will be written as
follows

U1,4m+j
ξξ + U1,4m+j

ηη = 0 (4.79)

V1,4m+j
ηη = eU1,4m+j

ξη −
m−1∑
ν=0

(
eU1,4ν+j
ξη αm−ν + V1,4ν+j

ξξ cm−η−1

)
(4.80)

for the state of the first type and

U2,4m+j
ξξ = −eV2,4m+j

ξη − U2,4m+j
ηη −

m−1∑
ν=0

(
U2,4ν+j
ξξ dm−η + eV2,4ν+j

ξη βm−ν
)

, (4.81)

V2,4m+j
ξξ + V2,4m+j

ηη = 0 (4.82)

for the states of the second type.
Therefore the functions U1,4m+j, V2,4m+j turn out to be harmonic. Needless to say,

it is huge simplification with respect to the initial problem.
Substituting the sums (4.67) and corresponding transformations (4.63, 4.67, 4.68,

4.69, and 4.70) in the expressions for the reduced forces T1, T2, S and displacements
u, v, we obtain
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T1 = B1
(
ux + ν21vy

) = B1ε
1/4q1/4

∞∑
m=0

3∑
j=0

εm+j/4×

×
⎡
⎣

m∑
ν=0

(
U1,4ν+j
ξ αm−ν + ε1/2q1/4U2,4ν+j

ξ βm−ν
)

+
+ε1/2q1/4 (e − 1)V2,4m+j

η + ε (e − 1) V1,4m+j
η

⎤
⎦ = 0,

(4.83)

T2 = B2
(
uy + ν12vx

) = B2ε
1/4

∞∑
m=0

3∑
j=0
εm+j/4×

×
⎡
⎢⎣V2,4m+j

η + ε1/2q−1/4
(

V1,4m+j
η + (e − 1)

m∑
ν=0

U1,4ν+j
ξ αm−ν

)
+

+ε (e − 1)U2,4ν+j
ξ βm−ν

⎤
⎥⎦ = 0,

(4.84)

S = G
(
uy + vx

) = G
∞∑

m=0

3∑
j=0
εm+j/4

[
U1,4m+j
η + q1/4

m∑
ν=0

V2,4ν+j
ξ βm−ν+

ε

(
q1/4U2,4ν+j

η βm−ν +
m∑
ν=0

V1,4ν+j
ξ αm−ν

)]
,

(4.85)

u = U(1) + εq1/4U(2) =
∞∑

m=0

3∑
j=0

εm+j/4
(

U1,4m+j + εq1/4U2,4m+j
)

= 0, (4.86)

u = ε3/4 q−1/4V (1) + ε 1/4V (2) =
=

∞∑
m=0

3∑
j=0
εm+ j+1

4
(
V2,4m+j + ε1/2 q−1/4V1,4m+j

) = 0
(4.87)

Substitution of the series (4.84, 4.85, 4.86, and 4.87) for the reduced forces and dis-
placements into boundary conditions (4.62) and following the splitting by parameter
ε1/4 allows one to find the boundary conditions corresponding to the boundary prob-
lems for the harmonic functions U1,4m+j, V2,4m+j. The functions V1,4m+j and U2,4m+j

may be calculated by simple integration of the expressions (4.80 and 4.81) and also
turn out to be harmonic. One can see from (4.79, 4.80, 4.81, 4.82, 4.83, 4.84, 4.85,
4.86, and 4.87) that the stress states of both types are coupled only via the boundary
conditions.

The displacement u has the dominant effect on the stress-strain state of the first
type (basic state) as well as on a corresponding reduced force T1 and component
of the shear stress S1 depending on u; the latter can be determined in the basic
approximation from the following equations (in initial variables)

B1uxx + Guyy = 0, T1 = B1ux, S1 = uy (4.88)

As for the dominant components of the second type stress-strain state, they are (in
the initial variables) displacement v, reduced force T2 and component of the shear
stress S2, which can be found in the basic approximation from the equations

B2vyy + Gvxx = 0, T2 = B2vy, S2 = Gvx (4.89)
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The full shear force is expressed as:

S = S1 + S2

When solving Eq. (4.88), the boundary conditions involving the displacement u or
normal force T1 can be satisfied, but not those involving the displacement v and
shear force; the latter are satisfied by the solution of Eq. (4.89). In this case, the
boundary conditions with respect to normal displacement u and normal reduced
force are not satisfied. But they have a higher order with respect to the small param-
eter and can be satisfied by the solution of the next approximation for the basic state
etc. Indeed, the obtained model is tractable – anyway, much more tractable than the
initial exact equations of the orthotropic plane. At every step scalar Laplace equa-
tions should be solved exclusively. Therefore, it turns out to be possible to consider
very complicated boundary problems analytically.

4.3.2 The Contact Problem for a Planar Orthotropic Strip

As the next example, we would like to present the solution of the contact problem for
a planar orthotropic layer (0 ≤ x ≤ H, −∞ < y < ∞) which is compressed by two
symmetric stamps with corner points; sliding, friction and possible stick are taken
into account. The stamps are pulled into the layer by compressive forces P acting
along the symmetry of the stamps’ axis. It is assumed that there are two sliding
regions in every contact area close to the end points of the contact (the conditions
|S| = k |T1| are satisfied at these regions), and the stick region is situated between
them, at which the displacement of the layer is equal to the displacement of the
stamp. As this takes place, the shear stresses in the sliding zones have opposite
directions. Due to the symmetry, the boundary points of the sliding zones (which are
unknown and have to be found while solving the problem) are placed symmetrically
with respect to the x-axis and the sliding zones have the same length in both contact
regions.

The problem can be reduced to the integration of equilibrium Eq. (4.59) under
the following boundary conditions:

T1 = S = 0 (x = 0, |y| > l) ,

T1 = S = 0 (x = H, |y| > l)
(4.90)

at free boundary regions;

u = f (y) + c1 (x = 0, |y| > l) ,

u = −f (y) − c1 (x = H, |y| > l)
(4.91)

at the contact zones;

S = sign (y)kT1 (x = H, b < |y| < l) ,

S = −sign (y)kT1 (x = H, b < |y| < l)
(4.92)
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at the sliding regions;

v = 0 (x = 0, |y| < b) ,

v = 0 (x = H, |y| < b)
(4.93)

at the stick regions. The boundary |y| = b between the connection and sliding zones
will be determined further.

Besides, the equations of equilibrium for the stamp and the condition that the
displacement vanishes at infinity should be satisfied.

We use the procedure described above for the solution of the problem. Let us
suppose that k = k0ε

1/4, k01. Then, the problem can be reduced to the subse-
quent integration of the equations of the first and the second type (4.79, 4.80, 4.81,
and 4.82) under corresponding boundary conditions. Let us note that the following
relations are valid

U1,4m+j = V1,4m+j = U2,4m+j = V2,4m+j = 0 ( j = 1, 3)

The solution of this problem is equivalent to the solution of boundary problems for
the analytical functions F1,4m+j (z1) and F2,4m+j (z2), which may be defined by the
following relations

�1,4m+j (z1) = π

2H
ε−1/4q−1/4α−1

(
U1,4m+j
η − iU1,4m+j

ξ

)
,

�2,4m+j (z2) = π

2H
ε1/4q−1/4β−1

(
V2,4m+j
η − iV2,4m+j

ξ

)
,

(4.94)

where

z1 = η∗
1 + iξ∗

1 , z2 = η∗
2 + iξ∗

2 ,

η∗
1 = π

2H
ε−1/4q−1/4η1, ξ∗

1 = π

2H
ε−1/4q−1/4ξ1,

η∗
2 = π

2H
ε−1/4q−1/4η2, ξ∗

2 = π

2H
ε−1/4q−1/4ξ2

(
0 ≤ ξ∗

1 , ξ∗
2 ≤ π

2

)
.

These functions can be found using the Keldysh-Sedov formula (Sedov, 1980).
Because the latter one is presented for the strip with width π /2, there is a need
for additional coordinate transformations.

ξ1 = 2H

π
ε1/4q1/4αξ∗

1 , η1 = 2H

π
ε1/4q1/4αη∗

1,

ξ2 = 2H

π
ε−1/4q1/4βξ∗

2 , η2 = 2H

π
ε−1/4q1/4βη∗

2,

α =
∞∑

m=0
αmε

m, β =
∞∑

m=0
βmε

m.

(4.95)

The width of the strip on the new coordinates is equal to ξ∗
2 , η∗

2 (n = 1, 2). The
equations of equilibrium (4.79, 4.80, 4.81, and 4.82) for functions Un,4m+j, Vn,4m+j
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(n = 1, 2; m = 0, 1, 2, . . .; j = 0, 2) are invariant with respect to transformations
(4.95). The boundary conditions in this case will be:

(a) for functions U1,4m+j

U1,0 = θ
[
c1 + f1

(
η∗

1

)]
,

U1,4m+j = −q−1/4U2,4(m−1)+j ( 4m + j �= 0 )
(4.96)

at contact regions
(
ξ∗

1 = 0, π2 ;
⌊
η∗

1

⌋
< l∗1

)
;

U1,4m+j
ξ∗ = q1/4ε1/2αβ−1

m∑
ν=0

U2,4ν+j−2
ξ∗ βm−ν −

m∑
ν=0

U1,4ν+j
ξ∗ αm−ν −

− (e − 1) V1,4(m−1)+j
η∗ − q1/4ε1/2αβ−1(e − 1)V2,4m+j−2

η∗

(4.97)

out of contact regions
(
ξ∗

1 = 0, π2 ;
⌊
η∗

1

⌋
< l∗1

)
(b) for functions V2,4m+j

V2,4m+j = −q−1/4V1,4m+j−2 (4.98)

out of connection regions
(
ξ∗

2 = 0, π2 ;
⌊
η∗

2

⌋
< b∗

2

)
;

V2,4m+j
ξ∗ = θ sign

(
η∗2
)

k0×

×
⎡
⎢⎣

m∑
ν=0

(
q−1/2ε−1/2β α−1U1,4ν+j

ξ∗ αm−ν + q−1/4U2,4ν+j−2
ξ∗ βm−ν

)
+

+q−1/2ε−1/2(e − 1)β α−1V1,4(m−1)+j
η∗ + q−1/4(e − 1) V2,4(m−1)+j

η∗

⎤
⎥⎦−

−
⎡
⎢⎣

q−1/4ε−1/2β α−1U1,4m+j
η∗ + U2,4(m−1)+j

η∗ +
+

m∑
ν=0

(
q−1/4ε−1/2β α−1V1,4ν+j

ξ∗ αm−ν + V2,4ν+j−2
ξ∗ βm−ν

)
⎤
⎥⎦

(4.99)
out of connection regions

(
ξ∗

2 = 0, π2 ;
⌊
η∗

2

⌋
< b∗

2

)
.

Here

b∗
1 = π

2H
ε−1/4q−1/4α−1l, b∗

2 = π

2H
ε−1/4q−1/4β−1b, θ =

{
1
(
ζ ∗

n = 0
)

−1
(
ζ ∗

n = π
2

)

relations (4.96, 4.97, 4.98, and 4.99) and (4.94) lead to the conclusion that in the
contact region the real parts of the functions F1,4m+j(z1) are given, and at the rest of
the boundary the imaginary ones. Similarly, at the stick regions, the real parts of the
functions F2,4m+j(z2) and from them the imaginary ones are given.
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The coordinates of the points dividing the regions of sliding and stick are not
known a priori and have to be determined while solving the problem. All forces
must be continuous in these points and tend to zero for |y| → ∞.

In the case of an orthotropic strip compressed by two rigid stamps with the planar
foundations (f (y) = 0), one can find (in the principal asymptotic approximation)

�1,0 (z1) = A
(

sinh2(2z1) − sinh2(2l∗1)
) −1/2 (4.100)

�2,0 (z2) = 2A

π
ε−1/2q−1/4

(
sinh2(2z2) − sinh2(2b∗

2)
)

1/2×

×
⎡
⎢⎣

−l∗1
√
ε∫

−∞

f (t) dt

sinh( 2 (t − z2))
+

∞∫

l∗1
√
ε

f (t) dt

sinh( 2 (t − z2))
−

− q−1/4k0

⎛
⎜⎝

−b∗
2∫

−l∗1
√
ε

f (t) dt

sinh( 2 (t − z2))
+

l∗1
√
ε∫

b∗
2

f (t) dt

sinh(2 (t − z2))

⎞
⎟⎠
⎤
⎥⎦ ,

(4.101)
where

f (t) =
[(

sinh2(2t) − sinh2(2b∗
2)
) ∣∣∣sinh2(2l∗1) − sinh2(2ε−1/2t)

∣∣∣]−1/2

The constant A is determined from the condition of the stamp equilibrium

A = −Pq−1/4ε−1/4 cosh 2l∗1
B1K tanh 2l∗1

(4.102)

Here, K(k) is the full elliptic integral of the first kind. The axial reduced force under
the stamp will be

T1 = −Pq−1/4ε−1/4π cosh 2l∗1
2HK tanh 2l∗1

1√
sinh2 2l∗1 − sinh2 2η∗

1

(4.103)

The contact forces T1 in the main approximation are similar to those in the case of
a smooth stamp because the friction coefficient does not affect the function U1,0.
After transition of H → ∞ in Eq. (4.103), one can find the solution for a smooth
planar stamp pressing into the semi-plane:

T1 = − P

π

1√
l2 − y2

(4.104)

If H → 0, the stress state under the stamp transforms into a homogeneous one
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T1 = − P

2 l
(4.105)

In the case of the strip, the condition at infinity leads to the following equation:

∞∫

l∗1
√
ε

f (t) cosh( 2t) dt = q−1/4k0

l∗1
√
ε∫

b∗
2

f (t) cosh( 2t) dt (4.106)

If H → ∞, we obtain the corresponding relation for a semi-plane

K
(
b
/

l
) = q−1/4k0K′ (b/l

)
(4.107)

The considered problem in this limiting case can be also solved by the approximate
method proposed by L.A. Galin (1953). The corresponding relation for determi-
nation of the connection region was presented as a series by parameterε1/4. In the
principal approximation it coincides with Eq. (4.107).

In the case of a strip, the shear forces at the sliding region can be calculated by
the formula

S = ∓sign (η∗
2)kT1 (4.108)

where T1 is a function of η∗
1. At the connection region:

S = GA

H
ε−1/2q−1/4

√
sinh2 2b∗

2 − sinh2 2η∗
2 ×

×
⎡
⎢⎣

−l∗1
√
ε∫

−∞

f (t) dt

sinh(2
(
t − η∗

2

)
)

+
∞∫

l∗1
√
ε

f (t) dt

sinh(2
(
t − η∗

2

)
)
−

−q−1/4k0

⎛
⎜⎝

−b∗
2∫

−l∗1
√
ε

f (t) dt

sinh( 2
(
t − η∗

2

)
)

+
l∗1

√
ε∫

b∗
2

f (t) dt

sinh( 2
(
t − η∗

2

)
)

⎞
⎟⎠
⎤
⎥⎦

(4.109)

(“–” in (4.51 and 4.52) corresponds to ξ∗
2 = 0, “+” – to ξ∗

2 = π
2 ).

The friction dependence of the dimensionless prolongation of the connection
region for ε1/2 = 0.5 is shown in Fig. 4.3. Curve 2 was obtained in (Sedov, 1980),
the curves 1, 3, 4, and 5 correspond to a semi-plane and 2l/H = 1, 2, 5 respectively.
It is seen, that the connection region decreases with a decrease of the friction coeffi-
cient k (and disappears when k = 0), and increases with decreasing strip width. The
distribution of dimensionless shear force S∗ = 2lS/P under the stamp is shown in
Fig. 4.4 for ε1/2 = 0.5, k = 0.3, q = 0.9.
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Fig. 4.3 Dependence of the
dimensionless length of the
connection region on the
friction coefficient

Fig. 4.4 The distribution of
dimensionless shear force S∗
= 2lS/P under the stamp

4.4 Models of Elastic Foundation

4.4.1 General Equations and Asymptotic Analysis

There are different contemporary models of elastic foundation, which are used for
the calculation of elastically supported beams and plates (Vlasov and Leontyev,
1960; Korenev, 1969; Lekhnitsky, 1960; Muravsky, 1967). All these models suggest
a certain distribution of stresses (depending on the assumptions made) and can be
considered as approximations of a 3D elastic body. But even the most advanced
model (Muravsky, 1967) describing elastic foundation directly on the basis of scalar
of elasticity (without the very restrictive hypotheses of the Winkler type) does not
allow one to describe the stress-strain state near the boundary of elastic semi-space
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correctly and to satisfy the tangential boundary conditions. We here present the
approach based on the asymptotic analysis of the static 3D equations which allows
satisfying not only the normal, but also the tangential boundary conditions.

Equilibrium equations for a transversally isotropic elastic body in the case of
axisymmetric surface loading have the form:

∂2u

∂r2
+ kε

2

(
∂2u

∂z2
+ ∂2w

∂r∂z

)
+ 1

r

(
∂u

∂r
− u

r

)
= 0,

k

2

(
∂2u

∂r∂z
+ ∂2w

∂r2

)
+ ∂2w

∂z2
+ k

2r

(
∂u

∂z
+ ∂w

∂r

)
= 0.

(4.110)

where r, z – the cylindrical coordinates, u, w – the components of the displacement

vectors, ε = E′
E , E, E′, G, G′ – Young and shear moduli in the plane of isotropy and

in the transversal direction; G = E
2 , G′ = E′

2 ; Poisson coefficients are supposed to
be equal to zero.

Let us introduce the affine coordinate transformations

(a) r = r1, z = z1, u = εU1, w = W1. (4.111)

(b) r = r2, z = ε1/2z2, u = ε1/2 U2, w = εW2 (4.112)

Substitution of (4.111) and then (4.112) into (4.110) leads to two systems of
equations

∂2U1

∂r2
1

+ k

2

(
ε
∂2U1

∂z2
1

+ ∂2W1

∂r1∂z1

)
+ 1

r1

(
∂U1

∂r1
− U1

r1

)
= 0,

k

2

(
∂2U1

∂r1∂z1
+ ∂2W1

∂r2
1

)
+ ∂2W1

∂z2
1

+ k

2r1

(
ε
∂U1

∂z1
+ ∂W1

∂r1

)
= 0,

(4.113)

∂2U2

∂r2
2

+ k

2

(
∂2U2

∂z2
2

+ ε ∂
2W2

∂r2∂z2

)
+ 1

r2

(
∂U2

∂r2
− U2

r2

)
= 0,

k

2

(
∂2U2

∂r2∂z2
+ ∂2W2

∂r2
2

)
+ ∂2W2

∂z2
2

+ k

2r2

(
∂U2

∂z2
+ ε ∂W2

∂r2

)
= 0

(4.114)

We suggest that E >> E′, in this case ε can be considered a small parameter. One
should mention that, in this case, the definition of essential anisotropy is different
from the one used in Sect. 4.3 – the Young moduli are very different there.

In the case of a semi-space, the solution of (4.113) corresponds to a slow varying
stress state along the z-axis. This state is realized far enough from the boundary of
the semi-space. As for the solutions of system (4.114), these correspond to the stress
state, quickly changing along the z-axis, which is localized near the boundary of the
semi-space.
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The components of the displacement vector can be presented as a sum of these
two types of solutions

r = u + u2, w = w1 + w2 (4.115)

Let us substitute (4.115) into Eqs. (4.110) and into the boundary conditions after
transformations (4.111) and (4.112).

Functions Ui, Wi are searched for as an asymptotic series by parameter ε1/2

Ui = Ui0 + ε1/2Ui1 + εUi2 + . . . , Wi = Wi0 + ε1/2Wi1 + εWi2 + . . .
i = 1, 2

(4.116)

Here, it is convenient to introduce the preliminary coordinate transformation

ζ 1 = α z1, ζ 2 = β z2 (4.117)

and to present the values α and β by the following expansions by ε

α = α0 + α1ε + α2ε
2 + . . . , β = β0 + β1ε + β2ε

2 + . . . (4.118)

Selecting the terms with a similar power of ε, one can find the systems of equations
with respect to the functions Uim, Wim (m = 0, 1, 2, . . .) and the corresponding
boundary conditions. Coefficients α0 and β0 have to be equated to unity because
the equations of the main approximations have to coincide with the limiting sys-
tems obtained from (4.113) for ε → 0. As we have shown above, the coefficient
αk, βk (k = 1, 2, . . .) can also provide a coincidence of all independent equations
in the following approximations with the corresponding limiting systems.

As a result, we receive:

(1) for the stress state of the first type

k

2

∂2W1m

∂r2
1

+ k

2r1

∂W1m

∂r1
+ ∂2W1m

∂ζ 2
1

= 0,

∂2U1m

∂r2
1

+ 1

r1

(
∂U1m

∂r1
+ U1m

r1

)
+ k

2

∂2W1m

∂r1∂ζ1
= f1m,

(4.119)

(2) for the stress state of the second type

∂2U2m

∂r2
2

+ 1

r2

(
∂U2m

∂r2
− U2m

r2

)
+ k

2

∂2U2m

∂ζ 2
2

= 0,

k

2

∂2U2m

∂r2∂ζ2
+ k

2

∂2U2m

∂ζ 2
2

+ ∂2W2m

∂ζ 2
2

= f2m.

(4.120)
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The right hand parts f1m and f2m depend on the functions Uin, Win and the quantities
αn, βn determined in the lower orders of approximation (n = 0, 1, 2, . . . , m − 1),
i.e. they are the known functions of the coordinates. The boundary conditions for
each approximation can be formulated after a selection of the corresponding terms
in the expansions of boundary conditions. As this takes place, it is necessary to take
the series for stresses together with the expressions (4.116) into account

σz = E′
[
∂W10

∂ζ1
+ ε 1

2

(
∂W11

∂ζ1
+ ∂W20

∂ζ2

)
+ ε

(
∂W10

∂ζ1
α1 + ∂W12

∂ζ1
+ ∂W21

∂ζ2

)
+ . . .

]
,

τr2 = E′

2

⎡
⎢⎢⎢⎣
∂U20

∂ζ2
+ ∂W10

∂r1
+ ε 1

2

(
∂U21

∂ζ2
+ ∂W11

∂r1

)
+

+ε
(
∂U22

∂ζ2
+ ∂U10

∂ζ1
+ ∂U20

∂ζ2
β1 + ∂W12

∂r1
+ ∂W20

∂r2

)
+ . . .

⎤
⎥⎥⎥⎦ .

Thus, the solution of the system (4.110) is reduced to the subsequent integration
of the equations for the functions Wim, Uim under corresponding boundary condi-
tions. The integration of the second type equations for every approximation is
made after integration of first type equations. Coupling between them is determined
by the boundary conditions. Yet, the main constituents of the normal and radial
displacements W10 and U20 are accurate enough for many applications

k

2

∂2W10

∂ r 2
1

+ k

2r1

∂W10

∂ r1
+ ∂2W10

∂ζ 2
1

= 0, (4.121)

∂2U20

∂ r2
2

+ 1

r2

(
∂ U20

∂ r2
+ U20

r2

)
+ k

2

∂2U20

∂ζ 2
2

= 0. (4.122)

Suggesting U20 = 0, one finds the model of elastic foundation proposed in
(Muravsky, 1967). The subsequent suggestion

W10 (r1, ζ1) = ϕ (r1) ψ (ζ1)

ψ (ζ1) =
{

1 when ζ1 = 0,
0 when ζ1 = H

leads to a two-parametric model (Vlasov and Leontyev, 1960) after application of
the procedure, corresponding to the Galerkin method applied to Eq. (4.121).

Equations (4.121) and (4.122), which describe the reduced model of elastic
foundation, are essentially simpler than the initial system (4.110). Each of them
contains only one unknown function. At the same time, they satisfy both normal
and tangential boundary conditions on lateral surfaces. It follows from asymptotic
analysis that the boundary problem for Eq. (4.121) should be formulated at the
beginning. After its solution, the tangential boundary conditions for Eq. (4.122)
have to be determined. Naturally, the solution can be corrected by higher-order
approximations.
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4.4.2 Example – Dynamical Problem

Let us consider, on the basis of the presented approach, a vibration of an infinite
plane on the transversally isotropic elastic semi-space subjected to a concentrated
impact (Manevitch and Vorob’eva, 1972). This problem was considered in (Vlasov
and Leontyev, 1960) using a two-parametric model; the latter does not allow to take
the tangential boundary conditions at the contact plane into account.

The equation of motion at cylindrical coordinates looks like

D∇2
r ∇2

r v(r, t) = −q(r, t) − m1
∂2v(r, t)

∂t2
(4.123)

where ∇2
r ∇2

r – double Laplace operator, D – the cylindrical stiffness of the plane,
m1 – the mass of square surface unity of the plate, v(r,t) – transversal displacement
of the plane, q(r,t) – reactive pressure acting on the plane from an elastic foundation
(complete adhesion is suggested).

Considering the elastic foundation as a weightless one we describe it by the
approximate Eqs. (4.121) and (4.122). The friction between the plate and foundation
is not taken into account.

If the plate stiffness is relatively small in comparison to that for the elastic
foundation, the initial conditions can be written as follows:

v|t=0 = 0,
∂v

∂t

∣∣∣∣
t=0, r=0

= V0,

where V0 is the velocity of impacting mass at the point of collision.
Then we consider Eq. (4.121) with boundary conditions

∂W10

∂ζ1

∣∣∣∣
ζ1=0

= −q(r1, t)

E′ , W10|ζ1→∞ = 0, W10|r1→∞ = 0

for computing the function W10. If one presents the solution of (4.121) as

W10 = ϕ (r1, t) ψ (ζ1) (4.124)

and then uses the Galerkin method, the equation for function ϕ (r1, t) obtains the
following form:

kl1

[
∂2ϕ (r1, t)

∂r2
1

+ 1

r1

∂ϕ (r1, t)

∂r1

]
− n1ϕ (r1, t) = −q (r1, t) (4.125)

Here

l1 = E′

2

∞∫
0

ψ2 (ζ1) dζ1, n1 = E′
∞∫

0

(
dψ (ζ1)

dζ1
dζ1

)
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and ψ (ζ1) characterizes the displacement as the function of the dimensionless
“thickness” coordinate of the foundation.

Taking the coincidence of the normal displacements of the plate (at point
z = 0) and the displacements of the elastic foundation into account and exclud-
ing the reactive pressure q(r,t) from (4.123) and (4.126), one can find the equation

∇2
r1

∇2
r1

v(r1, t) − 2m2∇2
r1

v(r1, t) + s4v(r1, t) = −m∗ ∂2v(r1, t)

∂t2
(4.126)

where

m2 = kl1
2D

, s4 = n1

D
, m∗ = m1

D
.

This equation is similar to that of the case of a two-parametric model and has the
following solution

v(r1, t) = V0

ω
J0(br1) sinω t,

with ω2 = s4 + λ4

m∗ , b =
√√

λ4 + λ4 − m2, λ4 may be found in accordance

with (Vlasov and Leontyev, 1960).
Then, normal displacements in the semi-space (in initial variables) are deter-

mined by the formula

w(r, z, t) = V0

ω
J0(br)ψ(z) sinω t

where ψ(z)=1 at z =0 and ψ(z) → 0 when z → ∞, Jn is the Bessel function of the
first kind of order n. We do not discuss the higher-order corrections of presentation
(4.124) (it may be significant for estimation of the stresses in the semi-space) but
will discuss the effect of tangential boundary conditions.

Let us consider Eq. (4.122) in order to compute the shear stresses. Since
τ rz| z=0 = 0, the corresponding boundary condition has the following form:

∂U20

∂ζ2

∣∣∣∣
ζ2=0

= − ∂W10

∂r1

∣∣∣∣
ζ1=0

= −V0

ω
J1(br2) sinω t.

Besides, U20|ζ2→∞ = 0, U20|r2→∞ = 0.
After application of the Hankel transformation to Eq. (4.122), the solution

under the given boundary conditions and inverse transform lead to the following
relationship:

U20 = −V0
√

k√
2ω

J1(br2) exp

(
−b

√
2

k
ζ2 sinω t

)
(4.127)
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This solution characterizes the tangential displacements of the semi-space which are
not taken into account in the two-parametric model of elastic foundation. The corre-
sponding shear stresses, which decrease quickly apart from the boundary, have the
same order of magnitude as the shear stresses dependent on normal z-displacement.
Here, the main components of normal stresses σ r and σθ are expressed via function
U20.

The next approximations allow to find the corrected values for contact pres-
sure, i.e. estimation of the effect of shear stresses on the main characteristics of
the system.

For this, let us consider the second equation of the system (4.120) for m = 1.
Taking into account (4.127), one can find

W20 = −V0k2b

4ω
J0(br2) exp

(
−b

√
2

k
ζ2 sinω t

)
.

Then, one can write the boundary conditions for the first equation of (4.119) for
m = 1.

∂W11

∂ζ1

∣∣∣∣
ζ1=0

= − ∂W20

∂ζ2

∣∣∣∣
ζ2=0

= −V0k3/2

2
√

2ω
J2(br2) sinω t,

W11|ζ1→∞ = 0, W11|r1→∞ = 0.
(4.128)

After application of the Hankel transformation to Eq. (4.119) and boundary
conditions, we have the following solution:

W11 = V0k

2ω
J0(br1) exp

(
−b

√
2

k
ζ1 sinω t

)

The displacement under the plate with account of two approximations is expressed
as:

w = w1 + w2 = Wi0 + ε1/2W11 = V0

ω

(
1 + ε1/2 k

2

)
J0(br) sinω t.

The second term determines the correction to the solution for a corresponding two-
parametric model, so that

q(r, t) = E′V0b

ω

(
1 − ε1/2

√
k

2

)
J0(br) sinω t.

4.4.3 Example – An Axisymmetric Stamp

Let a stamp in the shape of a body of revolution be impressed in a transversely-
isotropic half-space (Vorobiova et al., 1979). The contact domain consists of the
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friction part abutting on the boundary of the contact domain, and the adhesion part.
Because of the symmetry, the contact domain and the adhesion part are concentric
circles with a common center on the stamp axis. The radius of the circle separating
the friction and the adhesion parts are not known beforehand and should be deter-
mined during the solution of the problem. It is also required to determine the normal
and tangential forces in the contact domain.

The problem is reduced to solving the equilibrium equations for a transversely-
isotropic medium

∂2w

∂r2
+ 1

r

∂w

∂r
+ 1

k

∂2w

∂z2
+
(
∂u

∂r
+ u

r

)
= 0,

∂2u

∂r2
+ 1

r

∂u

∂r
− u

r2
+ kε

∂2u

∂z2
+ kε

∂2w

∂r∂z
= 0, k = G′

E′ , ε = E′

E
.

(4.129)

These equations are more general than (4.110), since they admit an arbitrary Poisson
ratio. This system should be solved under the following boundary conditions outside
the contact domain (r > a), in the whole contact domain (r < a), on the adhesion part
(0< r < b) and on the slip part (b < r < a):

σz = τrz = 0, r > a, w = −C + f (r), r < a,
u = 0, o < r < b, τrz = −ρσz, b < r < a

(4.130)

In addition

w → 0, u → 0 when
√

r2 + z2 → ∞.

Here, a. is the radius of the contact domain, b is the radius of the adhesion section,
f (r) is a function describing the shape of the stamp, E and E’ are the tension-
compression elastic moduli in the plane of isotropy and in the normal direction,
G’ is the shear modulus in a plane normal to the plane of isotropy, w and u are dis-
placement vector components in the directions of the z and r axes, respectively, and
σ is the friction coefficient. The Poisson ratio is taken equal to zero.

Let us introduce the transformations of the variables

r = r1, z = k−1/2z1, w = W1, u = εU1 (4.131)

r = r2, z = ε1/2k1/2z2, w = εW2, u = ε 1/2U2 (4.132)

Substituting (4.131) and (4.132) into (4.129), we obtain, respectively

W1
rs + W1

zz + ε k1/2U1
sz = 0, U1

sr + ε k2U1
zz + k3/2W1

rz = 0 (4.133)

ε k2W2
rs + W2

zz + k3/2U2
sz = 0, U2

sr + U2
zz + ε k1/2W2

rz = 0 (4.134)
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Here

ϕl
s = ∂ϕl

∂rl
+ ϕl

rl
, ϕl

sz = ∂

∂zl

(
∂ϕl

∂rl
+ ϕl

rl

)
, ϕl

sz = ∂

∂zl

(
ϕl

s

)
,

ϕl
rs =

(
∂ϕl

∂rl

)
s
= ∂2ϕl

∂r2
l

+ 1

rl

∂ϕl

∂rl
(l = 1, 2)

Let us assume that E > E’ ~ G’, then ε can be considered as a small parameter in
an asymptotic analysis of (4. 133) and (4.134). The solution obtained by asymptotic
integration of the system of the first kind (4.133) corresponds to a stress-strain vary-
ing relatively slowly along the z axis as compared with the corresponding solution
of the system of the second kind (4.134), which is of a boundary layer nature.

Let us represent the displacement vector components in the form of the sum of
solutions of both kinds

u = u1 + u2, w = w1 + w2 (4.135)

We seek the functions W l and Ul (l = 1, 2) in the form of an asymptotic series by
the parameter ε

1/2

Wl =
∞∑

n=0

ε n/2Wl,n =
∞∑

i=0

1∑
j=0

ε i+j/2Wl,2i+j

Ul =
∞∑

n=0

ε n/2Ul,n =
∞∑

i=0

1∑
j=0

ε i+j/2Ul,2i+j

(4.136)

An additional coordinate transformation is introduced as

ζ1 = z1

∞∑
i=0

ε iαi, ζ2 = z2

∞∑
i=0

ε iβi (4.137)

with undetermined coefficients ai and β i (i = 0, 1,. . .).
Substituting (4.136) and (4.137) into (4.133) and (4.134) and into the boundary

conditions, and splitting the expressions obtained in powers of ε
1/2, we obtain the

following equations and boundary conditions for the functions Wl,2i+j and Ul,2i+j.
The stress-strain state of the first kind is described as:

W1,2i+j
rs + W1,2i+j

ζ ζ b0 = −
i−1∑
ν=0

(
W1,2ν+j
ζ ζ bi−ν + k

1/2U1,2ν+j
sζ αi−1−ν

)

U1,2i+j
sr = −k 2

i−1∑
ν=0

U1,2ν+j
ζ ζ −k 1/2

i∑
ν=0

W1,2ν+j
rζ αi−ν

bp =
p∑

i=0

αiαp−i (i = 0, 1, . . .)

(4.138)
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The boundary conditions are:
for i = 0, j =0

W1,0 = −C + f (r), r < a, W1,0
ζ = 0, r > a (4.139)

for all the remaining i, j

W1,2i+j = −W2, 2(i−1)+j, r < a

W1,2i+j
ζ α0 = −

i−1∑
ν=0

W1,2ν+j
ζ αi−ν − k −1

i∑
ν=0

W2,2ν+j−1
ζ βi−ν , r > a

(4.140)

The stress-strain state of the second kind is described as:

W2,2i+j
ζ ζ c0 = −

i−1∑
ν=0

W2,2ν+j
ζ ζ ci−ν − k 3/2

i∑
ν=0

U2,2ν+j
ζ βi−ν − k 2W2,2(i−1)+j

rs

U2,2i+j
sr + U2,2i+j

ζ ζ c0 = −
i−1∑
ν=0

U2,2i+j
ζ ζ ci−ν−k 3/2W2,2ν+j

rζ βi−1−ν

cp =
p∑

i=0

βiβp−i

(4.141)
The boundary conditions are

U2,2i+j = −U1, 2i+j−1, r < b

U2,2i+j
ζ β0 = −

i−1∑
ν=0

(
U2,2ν+j
ζ βi−ν + kU1,2ν+j

ζ αi−1−ν
)

− k 1/2
(

W2,2i+j
r + W2,2(i−1)+j

rs

)

− ρ
i∑
ν=0

W1,2ν+j
ζ αi−ν + k −1W2,2i+j−1

ζ βi−ν , r > b

(4.142)

It should be taken into account that if any upper limit of the summation in (4.138)
and (4.140, 4.141, and 142) is negative, then this sum equals zero. Compared, if any
function of the second superscript (denoting the number of the approximation) is
negative, then this function is zero. For instance, for i = 0 we obtain from (4.138)
and (4.141):

W1,j
rs + W1,j

ζ ζ b0 = 0, U1,j
sr = −k 3/2W1,j

rζ

W2,j
ζ ζ c0 = −k 3/2U2,j

sζ β0, U2,j
sr + U2,j

ζ ζ c0 = 0
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The first equations (for the functions W1,2i+j) in system (4.138), as well as the second
equations (for the functions U2,2i+j) in system (4.141) will be referred to as basic
equations.

The following theorem is valid for the basic equations: if the coefficients αi and
β i are determined by the formulas

α0 = 1, 2αp+1 = k2γp +
p∑

m=1

(
k2γp−m − αp+1−m

)
αm,

β0 = 1, 2βp+1 = −k2δp −
p∑

m=1

(
k2δp−m + βp+1−m

)
βm,

γ0 = δ0 = 1, γn = αn + k2
n−1∑
j=0

bj γn−1−j,

δn = αn + k2δn−1 −
n−1∑
j=0

δj cn−j

(4.143)

then the fundamental equations have the form

W1,2i+j
rs + W1,2i+j

ζ ζ = 0, U2,2i+j
sr + U2,2i+j

ζ ζ = 0

i = 0, 1, . . . ; j = 0, 1, . . .
(4.144)

The proof of this statement will be presented below.
We shall henceforth consider the coefficients αi, β i to be defined by (4.143). It

is seen from the expansions presented that the boundary conditions for the func-
tions Wl,2i+j are satisfied in the solution of the first equations of the system (4.138)
describing the stress-strain state of the first kind. The functions Ul,2i+j are defined as
particular solutions of the second equations of this system.

The boundary conditions for the system (4.141), describing the stress-strain state
of the second kind, are determined after the appropriate equations of the first kind
have been solved. These boundary conditions are satisfied in the solution of the
second equations of the system (4.141). The functions W2,2i+j are found as particular
solutions of the first equations of this system.

The problem therefore is reduced to a successive integration of (4.144) for the
functions Wl,2i+j and the functions U2,2i+j. Finding the functions U1,2i+j and W2,2i+j

is not difficult.
The exact solution of (4.144) can be obtained by using integral transformations

(Korenev, 1971). It can be shown that the functions Wl,2i+j and U2,2i+j are continuous
in the whole domain of definition, and their derivatives are continuous everywhere
except at the points r = b, z = 0 and r = a, z = 0, where they have integrable sin-
gularities. It hence follows that the solution is asymptotic in nature everywhere with
the exception of arbitrarily small neighborhoods of the above- mentioned points.

After the functions Wl,2i+j+j and Ul,2i+j (l = 1, 2; i = 0, 1,. . .; j = 0, 1) have been
determined, the stresses σ z and τ rz are found from the formulas
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σz = E′
∞∑

i=0

1∑
j=0

ε i+j/2
i∑
ν=0

(
k 1/2W1,2ν+j

ζ αi−ν + k−1/2ε 1/2W2,2ν+j
ζ βi−ν

)
,

τrz = G′
∞∑

i=0

1∑
j=0

ε i+j/2
i∑
ν=0

(
k 1/2εU1,2ν+j

ζ αi−ν + k−1/2U2,2ν+j
ζ βi−ν

)
+

+ W1,2i+j
r + εW2,2i+j

r

The unknown boundary of the adhesion and friction parts are found from the
condition of continuity of the tangential stresses on this boundary.

The constant C in (4.139) (the settlement of the stamp) is determined from the
stamp equilibrium condition (P is the magnitude of the clamping force)

P + 2π

a∫
0

σzrdr = 0 (4.145)

As an illustration, let us solve the problem for a stamp with a flat base (f (r) ≡ 0).
The solution (taking account of one approximation) is reduced by integrating
(4.146) with the boundary conditions (4.147).

W1,0
rs + W1,0

ζ ζ = 0, U2,0
sr + U2,0

ζ ζ = 0 (4.146)

ζ1 = 0, W1,0 = −C, r < a, W1,0
ζ = 0, r > a,

ζ2 = 0, U2,0 = 0, r < b, U2,0
ζ =

{ −ρW1,0
ζ , b < r < a

−k
1/2W1,0

r , r > a

(4.147)

The function W l,0 has the form (the constant C is determined from the condition
(4.145))

W1,0 = −2Cπ−1 arcsin

[
2a

(√
ζ 2

1 + (r + a)2 +
√
ζ 2

1 + (a − r)2

)−1
]

C = P
k1/2

4aE′

(4.148)

We seek the solution of (4.146) in the form (J1(x) is the first order Bessel function)

U2,0 =
∞∫

0

A(p) exp (pζ2) J1(pr) dp

Substituting this expression into the second pair of boundary conditions (4.147)
and taking into account (4.148), we obtain a system of dual integral equations to
determine the function A(p)
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∞∫
0

A(p) J1(pr) dp = 0, r > b

∞∫
0

A(p) J1(pr)p dp =
{

2Cρπ−1
(
a2 − r2

)−1/2
, b < r < a

−2Cak−1/2 (π r)−1 (r2 − a2
)−1/2

, r > a

The solution of these equations has the form K(x) which is the complete elliptic
integral of the first kind (Korenev, 1971):

A(p) = 2Cρ

π2

[
−k−1/2π sin(px) + B(p)

]

B(p) = 2ρ

a
p

a∫
b

K
( x

a

)
x sin(px) + pk1/2

a∫
b

ln

(
a + x

a − x

)
sin(px) dx

The normal contact stresses and the tangential stresses under the flat stamp are
determined by the formulas

σz = − (2π a)−1 P
(

a2 − r2
)−1/2

, τrz = G′k−1/2U2,0
ζ

It is clear from physical considerations that the tangential stresses should be contin-
uous on the interface of the adhesion and slip zones, therefore, the derivative U2,0

ζ

should be continuous on this boundary. We have

ζ2 = 0, U2,0
ζ = 2Cρ π

(
a2 − r2

)−1/2
, b ≤ r ≤ a

U2,0
ζ = 2Ck 1/2

π2

∞∫
0

sin(ap) J1(rp)dp

+ 2C

π

∞∫
0

B(p) J1(rp)dp, 0 ≤ r < b

(4.149)

Integrating the inner integral by parts twice, we reduce the last formula to

ζ2 = 0, U2,0
ζ = 2C π−1 (G1 + G2 + I1 + I2) ,

G1 = ρπ r

a
√

a2 − r2
+ r

[
k 1/2

a2 − b2
− 2ρ

a

d

ab

(
bK′ b

a

)] [
b +

(
b2 − r2

)−1/2
]−1

,

G2 =
[

k 1/2 ln
a + b

a − b
− 2ρ

a

d

ab

(
bK′ b

a

)]
r
(

b2 − r2
)−1/2

[
b +

(
b2 − r2

)−1/2
]−1

,
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I1 =
N∫

0

j1(pr) dp, I2 =
∞∫

N

f 1 (pr) dp (N > 0),

j1(pr) = 2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ

a

a∫
b

d2

dx2

[
xK
( x

a

)]
sin(px) dx+

+a k1/2
a∫

b

x sin(px)(
a2 − x2

)2 dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

J1(pr)

p

The function G1 is continuous in r in the interval 0 ≤ r ≤ b < a. The integral I1 is
also continuous in this interval (as a definite integral of the continuous function f1).
The improper integral I2 converges uniformly (for large p the function j1 admits
the estimate f1 < B/p2 (Erdelyi, 1956)), and therefore converges to a continuous
function. The function G2 undergoes a discontinuity at r = b. Hence, G2 ≡ 0 is
necessary for the continuity of the derivative U2,0

ζ . Consequently

k3/2 ln
1 + b/a

1 − b/a
= 2ρ

b

a
K

(
b

a

)
(4.150)

Relationship (4.150) determines the boundary of the adhesion and friction parts not
known earlier.

After simple, but awkward manipulations, we obtain the following formula for
the tangential stresses on the adhesion part (P1 (n, x) is the complete elliptic integral
of the third kind):

τrz = 1

2
P

k3/2

π2a2t

(
1 − t2

)−1/2

×

⎡
⎢⎢⎢⎢⎢⎢⎣

ρπ k−1/2t + (β2∗ − t2
)1/2

×
[
β−1∗ ln

(1+/β∗)

1 − β∗
− 2

ρ k−1/2t2%1
(
t2−1, β∗

)
(1−t2)

] (
1 − t2

)−1/2

− ln

(
1 − t2

)−1/2 + (β2∗ − t2
)1/2

(
1 − t2

)1/2 − (β2∗ − t2
)1/2

⎤
⎥⎥⎥⎥⎥⎥⎦

t = r/a, β∗ = b/a
(
0 ≤ t ≤ β∗

)

On the slip part

τ r z = 1

2
P

(
1 − t2

)−1/2

π2a2t

(
β∗ ≤ t < 1

)

The dependence of the quantity b/a (the ratio of the adhesion part radius to the stamp
radius) on the friction coefficient p for k = 1/3 is shown in Fig. 4.5 (curve 1) and the
distribution of the dimensionless tangential stresses T1 = τ r z 2π a

/
P in the contact
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domain is presented in Fig. 4.6 for k = 1/3, ρ = 0.3, The point β∗ = b/a separates
the adhesion and friction parts.

It should be noted that in the solution obtained (taking just one approximation
into account), the singularity in the contact stresses on the boundary or the contact

domain has the form (a − r)−1/2 ., while the exact solution of the problem in the pres-

ence of Coulomb friction should contain the singularity (a − r)−1/2+θ(ρ,ε) exactly
as for the plane problem (this follows from the fact that the equations of three-
dimensional elasticity theory reduce the plane problem and complex shear in the
neighborhood of the singular line (Cherepanov, 1974)). Therefore, the expression
for θ is known (Galin, 1953). The series expansion in ε has the form

Fig. 4.5 Dependence of the
ratio of the adhesion part
radius to the stamp radius on
the friction coefficient

Fig. 4.6 Distribution of the
dimensionless tangential
stresses in the contact domain
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(a − r)−1/2+θ = (a − r)−1/2

×
{

1 + ε−1/2ρ k−1/2 ln (a − r)
+ε [ρ k3/2 ln (a − r)+ 1/2ρ 2 k (a − r)

]
. . .

}
(4.151)

The singularity above is obtained with the first term of the expansion. Subsequent
approximations will evidently contain appropriate corrections.

The relative error of any partial sum of series (4.151) becomes arbitrarily large as
r → a. Meanwhile, uniform accuracy in the whole contact domain can be achieved
by a “matching” of the approximate and “singular” solutions, which has the form

σ ∗
z = A (a − r)−1/2+θ

The constant factor A is determined from the matching conditions which are given
as follows: both the approximate and singular solutions and their derivatives with
respect to r should agree in a certain neighborhood of r = r0 i. e., for r = r0, z = 0

σz = σ ∗
z , ∂σz

/
∂r = ∂σ ∗

z

/
∂r (4.152)

Conditions (4.152) permit the determination of the radius r0, and the constants of
the approximate and singular solutions, in combination with the integral equilib-
rium condition for the stamp. The dependence of the position of the matching line
on the coefficient p is shown in Fig. 4.5 for k = 1/3 and ε = 1 (curve 2) and ε = l/3
(curve 3). To obtain the solution which is uniformly suitable in the whole domain,
the singular solution must be used for r0 ≤ r ≤ a. Incidence of the matching points
in the adhesion zone (r0 < b) indicates the need to take account of higher approx-
imations. It follows from Fig. 4.5 that this holds for large ρ (ρ >0.4), and for real
friction coefficients (ρ < 0.3) the zones in which the use of the singular solution is
necessary are small and occupy less than 20% (on the radius) of the contact domain
even when taking just one approximation into account.

Let us show that if the coefficients αi and β i are determined from (4.143), then the
fundamental equations have the form (4.144). We prove this for the system (1.138).
The proof is by induction.

For i = 0 we have

W1, j
rs + W1, j

ζ ζ b0 = 0, U1, j
sr = −k 3/2W1, j

rζ α0 (4.153)

In order for the first equation of the system (4.153) to have the form (4.144), it is
sufficient to set α0 = 1 (hence b0 = 1).

For i = 1

W1,2+j
rs + W1,2+j

ζ ζ = −W1,j
ζ ζ b1 − k 1/2U1,j

sζ α0

U1,2+j
sr = −k2U1,j

ζ ζ − k 3/2W1,j
rs αi − k 3/2W1,2j

rζ α0

(4.154)

Let us integrate the second equation of (4.153) with respect to r and differentiate
with respect to ζ. We obtain

U1, j
sr = −k 3/2W1, j

ζ ζ α0 (4.155)
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With account of the condition at infinity, we set the arbitrary function, which appears
in the integration, equal to zero. After substituting (4.155) into the first equation of
(4.154), we find

W1,2+j
rs + W1,2+j

ζ ζ = W1, j
ζ ζ

(
b1 − k 2α2

0

)

Equating coefficients of W1, j
ζ ζ to zero (and taking into account that α0 = 1 and

bl = 2 α1), we obtain α1 = k2/ 2.
Therefore, the theorem is valid for i = 0,1. Let us assume the theorem to be valid

for i ≤ p, and let us prove it for i = p + 1.
We show that if the functions W l,2i+j(i = 0, 1,. . ., p) satisfy the first equation

in (4.144), then the functions U1,2i+j (i = 0, 1, . . ., p), determined from the second
equations of the system (4.138), will satisfy the following equation

U1,2i+j
rs + U1,2i+j

ζ ζ = 0 (4.156)

If the functions U1,2i+j are found from the equation

U1,2i+j
rs = f2

where f2 satisfies (4.156), then U1,2i+j is the solution of this equation. Indeed,

U1,2i+j = r−1
∫ (

r
∫

j2dr
)

dr

U1,2i+j
rs + U1,2i+j

ζ ζ = r−1
∫ (

r
∫

jsr + j2ζ ζdr
)

dr = 0

It therefore remains to show that the right sides of the second set of equations of
system (4.138) satisfy (4.156) for i ≤ p.

If the function W l,2i+j satisfies (4.144), then its derivative W1,2i+j
r satisfies

(4.156). The right side of the second equation of (4.138) now evidently satisfies
(4.156) for i = 0, and this is proved by induction for i = 1, 2,. . ., p.

In accordance with (4.156), we substitute the quantity U1,2i+j
rs into the second set

of (4.138) instead of U1,2i+j
ζ ζ , and then we integrate the relationships obtained with

respect to r and differentiate with respect to ζ. We obtain

U1,2i+j
sζ = k 2

i−1∑
ν=0

U1,2ν+j
sζ bi−1−ν − k 3/2

i∑
ν=0

W1,2ν+j
ζ ζ αi−ν (i = 0, 1, . . . , p)

(4.157)
System (4.157) can be considered as a system of linear algebraic equations in
U1,2i+j

sζ . This system has a triangular matrix of coefficients with nonzero elements
along the principal diagonal, and is therefore solvable everywhere. The solution of
the system (4.157) has the form
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U1,2i+j
sζ = −k 3/2

i∑
ν=0

W1,2ν+j
ζ ζ γi−ν (i = 0, 1, . . . , p) (4.158)

where the quantities γn, n = 0, 1, . . . are determined by the recursion formulas n
(4.143).

Substituting (4.158) into the (p + 1)-th fundamental equation of the system
(4.138), we obtain

W1,2(p+1)+j
rs + W1,2(p+1)+j

ζ ζ = −
p∑
ν=0

W1,2ν+j
ζ ζ

(
bp+1−ν − k 2

p−ν∑
m=0

αm γp−ν−m

)

(4.159)
Because of the selection of the coefficients αi mentioned in (4.143), all the coeffi-
cients on the right side of (4.158) vanish. Indeed, from the relationship for αp+1−ν
it follows according to (4.143)

p+1−ν∑
m=0

αm αp+1−ν−m−
p−ν∑
m=0

k 2αm γp−ν−m = 0

i.e., the expression in the parentheses in (4.159) vanishes.
Therefore, the basic equations of the system (4.138) have the form of the first

relationship of (4.144). The proof for system (4.141) is similar.

4.5 On the Concept of Solids

As it was mentioned in the Chap. 1, the concept of the elastic body has been initially
formed in the beginning of nineteenth century on the basis of discrete molecular
models and following the transition to the elastic continuum in spite of the vague
understanding of atoms and molecules at that time. Afterwards, this approach has
been replaced by a purely continuous description well coordinated with our intuitive
macroscopic concept of solids. The corresponding field theory is specific to solids
namely because it requires a possibility to introduce a rigid reference state and the
existence of a static shear modulus (contrary to liquids). The latter property can be
considered as a consequence of the former one, and, in turn, may be acceptable
as a macroscopic definition of solids. Such a definition includes all types of solids
(crystals, glasses, rubbers).

However, the observed macroscopic properties of the mentioned solids are
strongly different. From the first view, the behavior of glasses is very similar to
that of polycrystals except for the transition to the liquid state (melting for crys-
tals or polycrystals with an abrupt change of density and symmetry seems strongly
different from glass-liquid transition without similar phenomena). But, as it is well-
known, glasses possess also a series of low-temperature anomalies (Anderson,
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1984), such as a linear temperature dependence of the heat capacity for low tem-
peratures, which are absent for crystals or polycrystals. As for rubbers, their most
pronounced and evident features are very low Young and shear moduli compared to
crystals and glasses. It is clear that transition to the microscopic level is necessary
to explain and understand the specific behavior of different types of solids.

It seems that the most natural starting point for microidentification of a glass
as a solid is the interpretation of a rigid reference frame as the rigid reference
configuration of the constituent particles (Alexander, 1998).

In the case of a crystalline solid such an interpretation turns out to be valid
if the constituent particles are atoms. Then, one can write the potential energy of
crystal (and corresponding equations of motion), taking interatomic interaction into
account. The continuum theory of elasticity is just a long wavelength and low fre-
quency limit of discrete atomic theory. It is not surprising that such a program
reflected in a clear and complete form in (Born and Huang, 1954) has been actu-
ally realized a short time after the reliable ascertainment of the atomic nature of
matter (Born and von Karman, 1912).

However, this approach is not applicable for other types of solids (e.g. rubbers
or gels) which are not rigid and are fluid-like at microscopic (molecular) level.
Therefore, the approach mentioned above cannot be directly used, and the under-
standing of rubber elasticity has been achieved in a totally different way, using the
methods of statistical physics for macromolecules (Flory, 1953).

As for glasses, it seems that the only principal structural difference from crystal
is the randomness of a microscopic reference frame. But from this viewpoint it is
impossible to understand the reasons of the low-temperature anomalies mentioned
above. From the other side, the commonly accepted understanding of glasses as
high-viscous liquids contradicts to an intuitively clear apprehension of both glasses
and crystals as solids.

So, a very complicated problem arises: how to coordinate all these contradictive
facts and ideas?

In spite of the evident importance of this problem for the understanding of one
of the key scientific notions, it seems that the most general and deep analysis which
takes into account the main previous achievements was undertaken by Alexander
(1998)

First of all, the unification of crystals and glasses as solids is underlined by the
realization of the role of permutation as the real active symmetry of liquids, which is
destroyed by solidification. Therefore, the solid is described as a unique state which
realizes one special permutation of the constituent atoms on the lattice sites – out of
N! possible ones. Namely, this uniqueness allows labeling the particles in the solid
by their respective equilibrium positions (i.e. to efficiently introduce the Lagrange
variables). It also allows to avoid “the complex averaging between different con-
figurations which is essential in the theory of real fluids – and the corresponding
complex entropy considerations” (Alexander, 1998). In particular, this difference
between solids and liquids “is illustrated by the dramatic difference in the descrip-
tion of the phase transition between the two phases. Melting, the solid–to-liquid
transition is predicted quite accurately and almost quantitatively by the simple and
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very intuitive Lindemann criterion. On the other hand, even the best microscopic
descriptions of freezing, the liquid-to-solid transition, are complicated, controversial
and inaccurate” (Alexander, 1998).

One can add that a melting crystalline solid can be identified as an instability of
the lattice (if one excludes the role of boundaries and spatial inhomogenities). In
Lagrange variables, the solid is characterized by the labeled positional correlation
functions

Sij(τ ) =< ri(t) ∗ rj(t + τ ) >= Ri ∗ Rj+ < ui(t) ∗ uj(t + τ ) > (4.160)

where Sij(τ ) are the correlation functions between the particles labeled by their equi-
librium positions; the ui(t)-deviation of ith particle from its equilibrium position.

Such a presentation is meaningless for a liquid because of the active permutation
of the particles. It is the main reason for the introduction of Euler’s variables instead
of Lagrange’s which are adequate for solids.

Naturally, this means that the processes in which permutation of the particles is
manifested (such as diffusion) are not taken into account.

So, if one deals with a crystalline solid, there are no problems in the development
of the lattice theory of elasticity with further transition to a corresponding continuum
theory in the long wavelength and small-frequency approximation. Such a procedure
is a direct generalization of that for a one-dimensional oscillatory chain which was
demonstrated above. In addition, if it is necessary, the alternative long wavelength
and high-frequency as well as short wavelength continuum approximations may be
taken into account.

In the case of such disordered media as polymer networks the situation is quite
different. The reason is that contrary to the crystalline solid it is impossible to intro-
duce a rigid microscopic reference frame at the atomic level because the polymer
network as well as gel is not solid but liquid at this level. The possibility to jus-
tify our intuitive perception of rubber as solid is provided by existence of the nets
leading to the formation not only of the volume but also of the shear rigidity. It is
rather clear in common theory of rubber elasticity, but such a theory in its contin-
uum limit is strongly different from the classical theory of elasticity. However, as it
is shown in (Alexander, 1998), the theory of elasticity of polymer networks can be
combined with the theory of elasticity if one considers the initial state as a stressed
one. Initial stresses, which are usually small enough in crystals or polycrystals,
have to be taken into account if dealing with such complicated solids as polymer
networks. Namely, initial stresses (e.g. a negative pressure) provide a mechanism
of shear stiffness formation strongly different from the usual one caused by angle
deformation. The negative pressure providing shear stiffness is only a “network”
part of the full pressure. The latter also includes a “liquid” part, so that their sum is
equal to zero (Alexander, 1998).

The statement about the role of initial stresses is universal for all disordered
solids, although the manifestations of their influence are rather different. If we
deal, e.g., with glasses which are intuitively grasped as solids, the effect of inter-
nal stresses can be traced in the solidification process. It is a rather complicated
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relaxation process in a quenched liquid leading to formation of “composite” media
consisting of compressed (more dense) regions and tensed (less dense, “soft”)
regions. From an energetic viewpoint the relaxation process may be considered as
wandering at the surface of constant energy in a state space, between saddles to a
local minimum. The presence of these “soft” domains allows describing the univer-
sal low temperature anomalies in the physical properties of glasses (Anderson et al.,
1972).

4.6 Models of Non-Fourier Heat Conduction

Some systems and processes are described by continuous models so complicated
that even if direct numeric simulation of the microscopic dynamics is possible, it
is still difficult to validate the macroscopic model. The reason is that it is not clear
which results of the simulation can be compared with the predictions of the model.
The following example of non-Fourier heat conduction models demonstrates how
the modal reduction of the continuous equations can allow a direct comparison with
the numeric simulation data.

It is well-known that the Fourier law of heat conduction implies an infinite
speed of signal propagation and is thus inconsistent with causality (Cattaneo,
1958; Vernotte, 1958; Chandrasekharaiah, 1986, 1998; Christov and Jordan, 2005).
Numerous modifications were suggested to recover the hyperbolic character of the
heat transport equation (Chandrasekharaiah, 1986, 1998). Perhaps, the most well-
known is the lowest-order approximation known as the Cattaneo-Vernotte (CV) law
(Cattaneo, 1958; Vernotte, 1958). In its one-dimensional version it is written as

(
1 + τ ∂

∂t

)
�q = −κ∇T (4.161)

where κ is the standard heat conduction coefficient and τ is the characteristic relax-
ation time of the system. The latter can be of macroscopic order (Christov and
Jordan, 2005). Importance of the hyperbolic heat conduction models for descrip-
tion of a nanoscale heat transfer has been recognized in (Heino, 2007; Shiomi and
Maruyama, 2006).

Only a few papers dealt with the numeric verification of such laws from the first
principles (Volz et al., 1996). As it is well-known now from numerous numeric sim-
ulations and few analytic results, the relationship between the microscopic structure
and applicability of the Fourier law is highly nontrivial and depends both on size
and number of dimensions of the model in question (Lepri et al., 2003). To the best
of our knowledge, no similar analysis has been performed to test the hyperbolic
models of heat conduction.

Here we will concentrate on the study of size and temperature effects on the non-
stationary heat conduction in two simple one-dimensional models with a conserved
momentum – Fermi-Pasta-Ulam (FPU) chain and a chain of rotators (CR). From the
perspective of stationary heat conduction, these two systems are known to belong to
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different universality classes. Namely, in the FPU chain the heat conduction coef-
ficient diverges with the size of the system (Lepri et al., 1997), whereas in the CR
model it converges on a finite value (Gendelman and Savin, 2000; Giardina, 2000;
Savin and Gendelman, 2001). So, it is interesting to check whether and how this
difference between the models reveals itself in the problem of non-stationary heat
conduction.

In order to investigate this process, one should choose the parameters to measure.
This question is not easy, since the simplest CV law already has two independent
coefficients, whereas more elaborate approximations can include even more con-
stants. Besides, we would not want to restrict ourselves to a particular approximate
equation. Instead, it seems reasonable to look for some quantity which will char-
acterize the process of non-stationary conduction and can be measured from the
simulations without relying on a particular approximate equation. For this sake,
we choose the characteristic length which characterizes the scale at which the
non-stationarity effects are significant.

In order to explain the appearance of this scale, let us refer to a 1D version of the
CV equation for temperature:

τ
∂2T

∂t2
+ ∂T

∂t
= α

∂2T

∂x2
(4.162)

where α is the temperature conduction coefficient.
Let us consider the problem of non-stationary heat conduction in a one-

dimensional specimen with periodic boundary conditions T(L, t) = T(0, t), where
T(x,t) is the temperature distribution, L is the length of the specimen, t>0. If this is
the case, one can expand the temperature distribution to Fourier series:

T(x, t) =
∞∑

n=−∞
an(t) exp

(
2π inx

L

)
(4.163)

with an(t) = a∗−n(t), since T(x,t) is a real function.
Substituting (4.163) with (4.162), one obtains the equations for the time evolution

of the modal amplitudes:

τ än + ȧn + 4π2n2α

L2
an = 0 (4.164)

The solutions of Eq. (4.164) are written as:

an(t) = C1n exp(λ1t) + C2n(λ2t)

λ1,2 = 1

2τ

(
−1 ±

√
1 − 16π2n2ατ

L2

)
(4.165)

where C1n and C2n are constants determined by the initial distribution.
From (4.165) it immediately follows that for sufficiently short modes the

temperature profile will relax in an oscillatory manner:
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n >
L

4π
√
ατ

an(t) ∼ exp
(
− t

2τ

)
exp(iωnt), ωn = 1

2τ

√
16π2n2ατ

L2
− 1

(4.166)

If the specimen is rather long (L >> 4π
√
ατ ), then for small wavenumbers

(acoustic modes):

λ1 ≈ − 1

τ

λ2 ≈ −4π2n2α

L2

(4.167)

The first eigenvalue describes a fast initial transient relaxation, and the second one
corresponds to a stationary slow diffusion and, quite naturally, does not depend on τ.
So, we can conclude that there exists a critical length of the mode

l∗ = 4π
√
ατ (4.168)

which separates between two different types of the relaxation: oscillatory and diffu-
sive. The oscillatory behavior is naturally related to the hyperbolicity of the system.
Existence of this critical scale characterizes the deviance of the system from the
proper Fourier law and does not depend on a particular choice of the model.

In order to measure l∗ without relying on any particular empiric equation of the
non-stationary heat conduction, the numeric experiment should be designed in order
to simulate the relaxation of thermal profile to its equilibrium value for different
spatial modes of the initial temperature distribution. For this sake, we simulate the
chain of particles with conserved momentum with the Hamiltonian

H =
∑

n

1

2
u̇2

n + V(un+1 − un) (4.169)

for n=1. . .N and with periodic boundary conditions. In order to obtain the initial
nonequilibrium temperature distribution, all particles in the chain were embedded
in the Langevin thermostat. For this sake, the following system of equations was
simulated:

ün = V ′(un+1 − un) − V ′(un − un−1) − γnu̇n + ξn
n = 1 . . .N

(4.170)

where γn is the relaxation coefficient of the nth particle and the white noise ξn is
normalized by the following conditions:

〈ξn〉 = 0, 〈ξn(t1)ξk(t2)〉 = 2
√
γnγkTnδnk(t1 − t2) (4.171)
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where Tn is the prescribed temperature of the nth particle. The numeric integration
has been performed for γn=0.1 for every n and within the time interval t=250.
After that, the Langevin thermostat was disabled and relaxation of the system to a
stationary temperature profile was studied for various initial distributions Tn for two
particular choices of the nearest – neighbor interaction described above (FPU and
chain of rotators):

V1(x) = 1

2
x2 + 1

4
x4 (4.172)

V2(x) = 1 − cos x (4.173)

In order to study the relaxation of different spatial modes of the initial temperature
distribution, its profile has been prescribed as

Tn = T0 + A cos
2π (n − 1)

Z
(4.174)

where T0 is he average temperature, A – amplitude of the perturbation, Z – the
length of the mode (number of particles). The overall length of the chain L has to
be a multiple of Z in order to ensure the periodic boundary conditions. The results
were averaged over 106 realizations of the initial profile in order to reduce the effect
of fluctuations.

A typical result of the simulation is presented in Fig. 4.7a, b. The chain of rotators
of the same length N = 1,024 and the same modal wavelength Z = 64 demonstrates
a qualitatively different relaxation behavior for different temperatures – the oscilla-
tory one for lower temperature and the smooth decay for higher temperature. This
observation suggests that the critical wavelength, if it exists, should decrease with
the temperature increase. However, its existence should be checked for constant
temperature and varying wavelength.

Such simulations are presented in Fig. 4.8 (for the chain of rotators) and Fig. 4.9
(for the FPU chain). In both models, one observes oscillatory decay for the short
wavelengths and smooth exponential decay for relatively long waves. It means
that for both models there exists some critical wavelength l∗ which separates two
types of the decay and thus the effect of the non-stationary heat conduction is
revealed.

The results presented in Fig. 4.9 allow one to conclude that the critical wave-
length for the FPU chain for a given temperature may be estimated as 512<l∗<1024.
The interpretation of Fig. 4.8 is not that straightforward. It is clear that 32<l∗<128,
but for Z = 64 the result is not clear. Within the accuracy of the simulation, it
seems that only a finite number of the oscillations is observed. Such behavior
is not consistent with the CV equation, since expressions (4.166 and 4.167) sug-
gest either an infinite number of the oscillations (4.166), or single crossing of the
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Fig. 4.7 Relaxation of the initial periodic thermal profile in the chain of rotators, Z=64, L=1024,
(a) T0=0.2, A=0.05 (oscillatory decay) and (b) T0=0.5, A=0.15 (smooth decay of the initial
thermal profile)

Fig. 4.8 Evolution of the relaxation profile in the chain of rotators with change of the mode length
Z. Time dependence of the mode maximum T(1+Z/2) (lines starting from above, red online) and
minimum T(1) (lines starting from below, blue online) are depicted with average temperature
T0=0.4 and Z=2k+3, k=1,. . .,5, scaling time tk=2k–1. For all simulations the length of chain is
L=1,024
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Fig. 4.9 Evolution of the relaxation profile in the FPU chain with change of the mode length Z.
Time dependence of the mode maximum T(1+Z/2) (lines starting from above, red online) and min-
imum T(1) (lines starting from below, blue online) are depicted with average temperature T0=20
and Z=2k+3, k=1,. . .,7, scaling time tk=2k+1, length L=1,024

average – temperature level, or no such crossing at all (4.167). A possible explana-
tion is that if the modal wavelength is close enough to the critical, the low-order
CV model is not sufficient and more nonlocal effects should be taken into
account.

The latter observation has motivated us to inspect another prediction of the CV
model – the independence of the amplitude decrement of the relaxation profile on
the wavelength in the oscillatory regime (4.166). The results of simulation are pre-
sented in Fig. 4.10 (chain of rotators) and Fig. 4.11 (FPU). One can see that for the
chain of rotators the above prediction more or less corresponds to the simulation
results. For the FPU chain the decrement is strongly dependent on the wavelength,
and at odds with the CV model.

So, the effects of the non-stationary heat conduction can be easily revealed
in simple one-dimensional models of dielectrics. There exists a critical modal
wavelength l∗ which separates between oscillating and diffusive relaxation of the
temperature field; existence of such a critical scale is inconsistent with the Fourier
law. If the size of the system is close to this critical scale, more exact models should
be used for the computation of the non-stationary heat flow. In both models stud-
ied the critical size decreases with the temperature increase. As for the CV model
itself, it seems in the chain of rotators it is inconsistent with the simulations in the
vicinity of the critical wavelength. In the FPU chain, this model is also wrong in the
oscillatory regime. One can speculate that this difference between the two models is
related to their difference with respect to the stationary heat conduction – saturating
versus size dependent (Lepri et al., 2003).
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Fig. 4.10 Exponential decay of the normalized oscillation amplitude in the chain of rotators
A(t)=(T(1+Z/2)(t)–T0)/A) for the average temperature T0=0.3, initial amplitude A=0.05 and dif-
ferent periods of the thermal profile Z=2k+3, k=1, 2, 3. The straight lines illustrate the decay
of the maximum envelope according to A=exp(–λt) with universal value λ=0.015 for all three
simulations

Fig. 4.11 Exponential decay of the normalized oscillation amplitude in the FPU chain
A(t)=(T(1+Z/2)(t)–T0)/A for the average temperature T0=10, initial amplitude A=0.05 and dif-
ferent periods of the thermal profile Z=2k+3, k=1,. . .,5. The straight lines illustrate the decay of
the maximum envelope according to A=exp(–λt) with values λ=0.0015$, 0.003, 0.008, 0.024 and
0.06 for k=1, 2, 3, 4 and 5
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4.7 Concluding Remarks

Different parts of this chapter comprise a series of problems from simple enough
(classical and Timoshenko’s beams) to those of moderate complexity, and finally
to very complicated contact problems. We would like to demonstrate that even
in relatively simple cases, the genuine understanding requires a deeper analysis
leading to the construction of tractable models. This way, one can understand the
nature of transversal vibrations in the elastic beam. Contrary to longitudinal and
torsional vibrations, the transversal vibrations contain both a “periodic” component
(the only present in the infinite beam and under simple support conditions) and two
boundary layers which can be approximately separated in accordance with Bolotin’s
idea.

As for the Timoshenko beam, it becomes clear that this model contains several
limiting cases and cannot be considered simply as a generalization of the classical
beam theory. The latter is approximately valid for thin beams only; however, even
in this case, one can obtain the high frequency (shear type) limit, which does not
exist in the classical theory. So, four different tractable models “pop up” and make
the Timoshenko model completely understandable.

While considering the elastic planar dynamical problem, essentially more com-
plex than the dynamics of one-dimensional systems, the tractable models describe
different types of dynamic behavior close to pure dilatation or pure shear. Such an
approach allows clarifying the physical nature of corresponding mathematical sim-
plifications. Besides, close connection is established between the dynamics of the
classical beam and Raleigh waves which are commonly considered as completely
different phenomena. At last, the substantiation of one-dimensional tractable models
is obtained.

In the case of the contact problem, we deal with a situation in which an analytical
solution is impossible if one directly treats the initial formulation of the boundary
problem. We show that, although the preliminary derivation of the tractable models
is rather complicated, the final boundary problems have a clear physical meaning
and admit an efficient analytical study.

The last section of this chapter is devoted to a very significant problem of another
kind involving the relationship between the dynamical (continuum) and the thermo-
dynamical description of the energy transfer in an oscillatory chain. It is shown that
dynamical analysis substantiates the modification of the common equation of heat
conduction if fast transient processes are involved.
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Afterword

Difficulties mastered are opportunities won.
Winston Churchill

There is no reason to repeat in the afterword what this book is about – the authors
made their best efforts to say that in the body of the monograph. There is also no
reason to explain once more why the tractable models are desirable, interesting, or
useful. We hope that the reader is more or less convinced at this point. So, perhaps,
here is a good opportunity to say a few words about some important issues which
were almost completely omitted in the book – intentionally or not.

It seems that, after all, the most important and controversial issue of this sort is a
problem of mathematical rigor. As it was mentioned above a few times, there are two
basic ways to get the tractable model – to make simplifying physical assumptions
from the beginning and to get the model immediately or to simplify an already exist-
ing mathematical model by means of some asymptotic procedure. The former way
poses no problem for mathematical rigor – the “mathematics” starts from already
tractable equations. In this case, the lack of mathematical rigor is buried in physical
assumptions.

In the case where the asymptotic reduction appears, one could be interested in
the accuracy of the approximation obtained. For instance, one can enquire whether
the series obtained will converge and how many terms should be kept in order to
obtain the required accuracy. If the series is asymptotic, one can enquire how many
terms should be kept in the expansion in order to achieve optimal accuracy. In the
book, these enquiries remain almost completely unanswered, except the problem of
asymptotic decomposition of the anisotropic elastic problem in Chap. 4, and few
exact solutions presented in other places.

This lack of answer is, of course, not occasional. For nonlinear problems, explicit
computation of high-order corrections is extremely complicated, if at all possible;
clarification of the asymptotic nature of the expansion obtained may be even more
difficult. In nonlinear dynamics there are only a handful of nontrivial problems
where the convergence of the perturbation series can be rigorously proven. Even if
this is the case, the estimations of the convergence radius are sometimes extremely
pessimistic. For instance, in some particular examples based on the Kolmogorov-
Arnold-Moser theorem, the convergence is proven for ε ~10−50 – hardly of any
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physical significance. Still, even in these marginal examples, it turns out that the
asymptotic expansions yield reasonable results – even if the small parameter is of
order unity. The only way to establish that is to compare the approximate formula
with the results of some experiment – physical and/or numeric. From a mathemati-
cal viewpoint, such comparison, of course, proves nothing: the “coincidence” with
the numeric simulation can easily blow up if the higher-order terms are taken into
account.

In addition, there exists a well-known principle in experimental physics – the
accuracy of computations should not exceed the accuracy of measurements, in order
not to create a false impression of high accuracy. There exist some problems in
physics, where exceptional experimental accuracy can be achieved – for instance, a
measurement of the anomalous magnetic moment of an electron. The relative error
of these measurements can be substantially less than 10−10; needless to say, sim-
ilar accuracy is required from the theory which describes this phenomenon. That
is why the laborious calculations of high-order approximations in quantum elec-
trodynamics are absolutely necessary. Unfortunately, in mechanics such a level of
experimental accuracy is far beyond the achievable limits. That is why sometimes
the computation of high – order corrections may be even harmful – it can cause the
false impression of an improved overall accuracy, whereas the accuracy of the under-
lying physical assumptions or available experimental techniques does not allow such
improvement at all. To conclude, the authors believe that the tractable model, which
is based on clear physical assumptions, allows computations in explicit or at least
comprehensible form and demonstrates reasonable agreement with available exper-
imental data, has the right to exist in science despite the lack of mathematical rigor –
especially if there is no other alternative.

According to popular saying, as there are no grains without straw, there is no
book without mistakes. The authors will be very grateful to any reader who will let
them know about the mistakes, misprints or who would like to share with them any
other comments. Please send such correspondence to Professor Oleg Gendelman,
Faculty of Mechanical Engineering, Technion – Israel Institute of Technology,
Haifa, 32000, Israel, e-mail: ovgend@tx.technion.ac.il
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Soliton molecules, 189–190
Sound theory, 7
Spatial inhomogenities, 283
Spatial transformation, 194
Square well potential, 41
Stability zones, 72–73
Stamp equilibrium condition, 262
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Steady-state responses, 68
Stiffnesses ratio, 31
Stopping devices, 195, 198
Stress-strain state, 258, 264, 272–274
Strong energy dissipation, 16–19
Strongly coupled oscillators, 31–34
Strongly different frequencies, 24–27
Strongly modulated response (SMR), 106,

119–120, 122–126, 129–130, 133
Superposition, 4, 10, 18, 29, 84, 156–157, 161,

204, 239, 252, 255
Supersonic extension solitons equation,

167–169
Supersonic soliton-like excitations, 189
Synchronization, 64–83
Synchronous motion, 145

T
Tangential stresses, 275–278
Targeted energy transfer (TET), 94–133

forced 2DOF, 105–133
unforced 2DOF, 94–105

Taylor series, 98–99, 101, 139, 168
T–constant phase shift, 134
Tc superconductors, 147
Tension–torsion, 192
Theory of oscillations, 13
Theory of stability, 3
Thermalization, 212, 223
Thermal perturbation, 218
Three degrees of freedom, 149
Time hierarchy, 149
Timoshenko beam, 241–248, 252, 291
Timoshenko’s equations, 245
Timoshenko’s theory (model), 241, 248, 252
Toda lattice, 206–207, 233
Tool-conformal mapping, 10
Torsional excitations, 186
Torsional solitons, 186–188
Tractable models, 248–253
Transcendental equation, 250
Transcritical bifurcations, 114
Transient relaxation, 131, 286
Transitional matrix, 148
Transversal deflections, 3
Transversal displacement, 4–5, 238, 242, 268
Transversal loading, 2

Transversal vibrations, 9, 291
Trans-zigzag conformation, 169
Two coupled oscillators, 24–34
Two degrees of freedom (2 DOF) nonlinear

oscillators, 94–133
forced system, 105–133
unforced system, 94–105

Two-dimensional orthotropic model, 253–264
contact problem, 259–264
orthotropic plate problem, 253–259

Two-dimensional theory of elasticity, 241

U
Umklapp processes, 210
Unification of crystals, 282

V
Van-der-Pol equation, 72, 74–75
Van-der-Pol oscillator, 68–75, 134
Van-der-Waals interchain interaction, 189
Vibration spectrum, 251–252
Vibrations theory, 1, 24, 33, 193
Vibro-impact approximation, 39–45, 56
Vibro-impact chain, 192–206
Vibro-impact model, 41–42, 65, 192–195, 199,

204
Viscoelastic elements, 43
Viscous damping, 21–23, 36, 67, 78, 81, 94

W
Wave-type equations, 183
Weak energy dissipation, 19–21
Weakly coupled oscillators, 24–27
Weakly damped oscillator, 53–61
Winkler type hypotheses, 264

Y
Young moduli, 254, 265, 282

Z
Zero order of approximation, 18
Zeroth approximation equations, 255
Zigzag chain, 169–171, 176–186
Zones of multiplicity, 71
Zones of period doubling, 127
Zones of phase locking, 76
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