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Foreword

This book is well equipped to serve as a nice introductory text to the application of
horizon thermodynamics in the context of Cosmology. The implications of modi-
fied and generalized Hawking temperatures in the formulation of cosmological
thermodynamics are carefully explained. The book also discusses various draw-
backs within this research field and lists some open issues for the readers to deal
with. I hope their endeavours will enrich this research field as well as open up new
frontiers for future generations to work with.

Kolkata, India
December 2017

Subenoy Chakraborty
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Preface

The study of cosmological horizons has gained much attention in recent literature.
Consequently, the thermodynamics of horizons or, more precisely, cosmological
thermodynamics (gravitational thermodynamics is also used sometimes) has
become a very popular research field and is emerging very rapidly. The apparent
reason for this popularity is the discovery of the intimate relationship between
gravity and the laws of thermodynamics which resulted in the establishment of the
laws of black hole thermodynamics. Attempts were then undertaken to generalize
these laws in the context of Cosmology. Nowadays, cosmological models, which,
in addition to passing the observational tests, are consistent with the laws of ther-
modynamics, particularly the first law, the generalized second law and thermody-
namic equilibrium, are more acceptable as compared to those which only pass the
observational tests.

This book in the SpringerBriefs Series in Physics serves as a concise intro-
duction to the vibrant research field of cosmological thermodynamics. The first two
chapters focus entirely on establishing the basic features of relativistic cosmology
and equilibrium thermodynamics respectively. The third chapter discusses the
origin and provides a brief history of cosmological thermodynamics and also
explains how this particular field of research was gradually developed from the
mathematical point of view. In this regard, the modified and generalized forms
of the Hawking temperature are introduced and their implications explained. The
next three chapters discuss its application in determining the thermodynamic via-
bility of certain well-known and widely accepted cosmological models, particularly,
the flat, homogeneous and isotropic Friedmann–Lemaitre–Robertson–Walker
model, the isotropic but inhomogeneous Lemaitre–Tolman–Bondi model, and the
gravitationally induced adiabatic particle creation model. The work described in this
book (in Chaps. 4–6) is the result of research undertaken while I was a Ph.D.
student under the able supervision of Prof. S. Chakraborty at the Department of
Mathematics of Jadavpur University and later a Postdoctoral Fellow under the
mentorship of Prof. N. Banerjee at the Department of Physical Sciences of Indian
Institute of Science Education and Research (IISER), Kolkata.
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The book is most suitable for graduate level students and researchers who have a
basic understanding of Differential Geometry. Some familiarity with General
Relativity will prove useful but is not necessary. A brief overview of the important
and relevant concepts of Cosmology and Thermodynamics in the first two chapters
of the book enables even the first year undergraduate students in Applied
Mathematics, Physics, as well as allied subjects to gain some insights into this field.
The final chapter of this book enlists few (of many) shortcomings in this field and
also outlines prospective open issues which may impart a sense of challenge into
the mind of the reader. I sincerely hope that the lucid language used throughout the
book and the rich bibliography at the end of each chapter will be identified as
important assets by the readers and at least a few of them will be inspired to find
new directions of research in this field.

This book has been checked several times with extreme care to free it from all
discrepancies and typos. Even then the vigilant readers may find mistakes and
several portions of this book may seem to be unwarranted or irrelevant. I take sole
responsibility for these errors which may have resulted from my inadequate
knowledge in the subject or escaped my notice. Any comments or suggestions for
improvement are welcome and should be directed to my email id
subhajit1729@gmail.com.

Kolkata, India Subhajit Saha
December 2017
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About the Book

Based on the author’s own work and results obtained by renowned cosmologists
across the globe, this short book provides a concise introduction to the relatively
new research field of cosmological thermodynamics. Starting with a brief overview
of basic cosmology and thermodynamics, this text gives an interesting account
of the application of horizon thermodynamics to the homogeneous and isotropic
Friedmann-Lemaitre-Robertson-Walker model, the inhomogeneous Lemaitre-
Tolman-Bondi model, and the gravitationally induced adiabatic particle creation
scenario. Both seasoned and new researchers in this field will appreciate the lucid
presentation and the rich bibliography.
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Chapter 1
Fundamentals of Relativistic Cosmology

Abstract This chapter provides a concise introduction to the basic notions of
Cosmology. Starting from the Cosmological Principle, the Weyl’s Postulate, and
the Einstein’s equations, this chapter goes on to explain the relevant concepts of
Cosmology required to gain the necessary insights into the subject of cosmologi-
cal thermodynamics. It gives a brief, yet an effective description of the Friedmann–
Lemaitre–Robertson–Walker metric, the observational parameters, the cosmological
horizons, particularly, the apparent, event, and particle horizons, and the inexplicable
dark energy.

Keywords Cosmology · Cosmological principle · Weyl’s postulate · Einstein’s
field equations · FLRW metric · Friedmann equation · Raychaudhuri equation
Hubble parameter · Dark energy · Cosmological constant

Cosmology is the scientific study of the dynamical and the large scale structure of
the Universe in its entirety. Most of the early civilizations have recorded scientific
observations related to Cosmology, and the thirst for understanding has continued for
over five millenniums. Cosmologists ask questions such as “Where did the Universe
come from? How and why did it begin? Will it come to an end some time in the
future? What are the matter/energy constituents of the Universe and how were they
made? Is it infinite in spatial extent or does it have boundaries? Was there a begin-
ning of time? Could time run backwards? What is the geometry of the Universe?”
Cosmology tries to answer these questions by describing the past, explaining the
present, and predicting the future of the Universe. It was only after Albert Einstein
discovered General Relativity (GR) in 1915 that Cosmology came into existence as
a separate scientific study. The subject has seen spectacular progress since the begin-
ning of the 1970s which commenced with a sudden development in understanding
the physical processes of the early Universe through theoretical means and aided
by a string of observational discoveries. Prior to the discovery of cosmic acceler-
ation, the standard cosmological model represented an almost universal consensus
amongst cosmologists as to the best description of the Universe. Also known as the
hot Big Bang model, it states that our Universe started with a small singularity, then
expanded over the last 14 billion years, and that the (decelerated) expansion is still
going on today. It is speculated that the Universe was initially very hot and dense,

© The Author(s), under exclusive licence to Switzerland AG, part of Springer Nature 2018
S. Saha, Elements of Cosmological Thermodynamics,
SpringerBriefs in Physics, https://doi.org/10.1007/978-3-319-74706-4_1
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2 1 Fundamentals of Relativistic Cosmology

and gradually, it evolved into a relatively cool and slender state. In this chapter, we
discuss the basic features (within the scope of this book) of the hot big bang model
as well as the presently observed acceleration of the Universe. Most of the discus-
sions in Sect. 1.1–1.4 have been inspired from the books by d’Inverno (1998), Ryden
(2002), Padmanabhan (2002), Liddle (2003), Carroll (2004), and Cheng (2005), and
the extensive review by Trodden and Carroll (2004).

1.1 Homogeneity and Isotropy: The FLRWMetric

The central theme of Cosmology is the fact that our place in this Universe is nothing
special. In 1952, Baade’s observation that theMilkyWay is a fairly typical galaxy, led
to the modern view, referred to as the cosmological principle which is believed to be
a generalization of the Copernican principle that our Earth does not lie at the center
of the solar system. The formal statement of the cosmological principle can be given
in the following manner — “over sufficiently large1 distance scales, the Universe
presents itself as a homogeneous and isotropic entity at every epoch.” Itmust be noted
that the cosmological principle is not exact but is an approximation which holds
better and better with larger distance scales. It is therefore a property associated
with the global Universe and it breaks down if one considers local phenomenon.
At this point, the reader may feel that the words “homogeneous” and “isotropic”
in the above statement need further clarification. Now, homogeneity is the claim
that there is no special point in the Universe, while isotropy is the claim that all
directions in the Universe are the same, i.e., there is no preferred direction. Note
that the concepts of homogeneity and isotropy are not equivalent at all. For instance,
a universe with a uniform magnetic field is homogeneous but not isotropic since
directions along the field lines are distinguishable from those perpendicular to it.
Alternatively, a spherically-symmetric distribution is isotropic but not necessarily
homogeneous when viewed from its central point. However, isotropy about every
point does enforce homogeneity. It is difficult to test homogeneity directly, although
the number counts of galaxies and the linearity of the Hubble law2 provide some
evidence. The greatest support for isotropy came in the year 1965 when the cosmic
microwave background (CMB) was discovered by Penzias andWilson. It is a bath of
thermal radiation pervading the Universe with a temperature of 2.7 K and is isotropic
to fractions of a percent as measured by theWMAP and the PLANCK satellites. This
radiation is presumed to be the thermal remnant of the hot big bang.

The cosmological principle paints a picture of the Universe as a physical system
of “cosmic fluid”. The galaxies move like fundamental particles in the fluid. Thus,
the motion of a cosmic fluid element is the smeared-out motion of the constituent
galaxies. In other words, each particle follows geodesic world lines. This leads to the

1Generally considering scales larger than 100Mpc.
2It states that the radial velocities of recession of galaxies are directly proportional to their distances
from us, i.e., v = H0d where H0 is the constant of proportionality known as the Hubble constant.
It was the first observational evidence that our Universe is expanding.



1.1 Homogeneity and Isotropy: The FLRWMetric 3

assumption that there is a privileged class of observers (called fundamental observers)
in the Universe, associated with such a special motion of these particles. This is
contained in theWeyl’s postulate (due toH.Weyl 1923)which states that the particles
of the cosmic fluid (or “substratum”) lie in spacetime on a congruence of timelike
geodesics diverging from a point in the finite or infinite past. Therefore, there is one
and only one geodesic passing through each point of spacetime (except at a singular
point in the past where they all intersect) and consequently, the matter at any point
possesses a unique velocity, thereby providing a hint that wemay consider the cosmic
fluid to be a perfect fluid.

Such a picture of the Universe allows us to pick a privileged coordinate frame —
the comoving coordinate system,where t denotes the proper timeof eachfluid element
and xi (i = 1, 2, 3) denote the spatial coordinates carried by each fluid element. The
comoving coordinate is also the cosmic rest frame since each fluid element’s (or each
fundamental observer’s) position coordinates are unchangedwith time. TheUniverse
will be anisotropic to any other observer who moves with a uniform velocity relative
to this fundamental class of observers. We can get the simplest description of the
laws of physics if we use the coordinate system appropriate to this fundamental class
of observers.

The form of the spacetime metric3 in such a coordinate system (ct , r , θ , φ), (c is
the velocity of light) which incorporates homogeneity and isotropy will be given by4

ds2 = −c2dt2 + a2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2θdφ2)

]
. (1.1)

Here, the factor5 a(t) determines the overall scale of the spatial metric and can
be identified as the scale factor6 of the Universe. This metric, which describes a
universe that is compatible with the cosmological principle, is called the Robertson–
Walker (RW) metric. The Universe, described by the above metric is known as
the Friedmann–Robertson–Walker (FRW) Universe or sometimes the Friedmann–
Lemaitre–Robertson–Walker (FLRW) Universe. The value of k sets the curvature,
and therefore the size of the spatial surfaces. It can take the values −1, 0 or +1 and
accordingly, the Universe is said to be open, flat or closed.

1.2 The Friedmann and the Acceleration Equations

The FLRW metric is obtained from the cosmological principle by purely kinematic
means.We now focus on the dynamics by analyzing differential equations governing

3The metric in Eq. (1.1) bears the signature (−,+,+,+) which is in fact the most widely used in the
literature. However, it can also be derived with the signature (+,−,−,−),
4For a simple proof, see p. 162 of T. Padmanabhan, Theoretical Astrophysics Volume III: Galaxies
and Cosmology, Cambridge University Press (2002).
5The proper distance or the true distance is determined by multiplying the scale factor a(t) to the
comoving distance.
6The redshift parameter z is connected to the scale factor by the relation a = 1

1+z .



4 1 Fundamentals of Relativistic Cosmology

the evolution of the scale factor a(t). Such equations of motion can be determined
by taking into account firstly, the Weyl’s postulate which requires the cosmic fluid
to be a perfect fluid having energy-momentum (EM) tensor

Tμν = (ρc2 + p)uμuν + pgμν, uμuμ = −1, (1.2)

where gμν is the metric tensor, uμ is the fluid four-velocity, and ρ and p are the
energy density and pressure in the rest frame of the fluid, and secondly, applying
Einstein’s equation (also known as Einstein field equations (EFE))

Gμν ≡ Rμν − 1

2
Rgμν = 8πG

c4
Tμν (1.3)

to the RWmetric. In Eq. (1.3), Gμν is the Einstein tensor, Rμν is the Ricci tensor and
R is the Ricci scalar, all of which are dependent on the metric and its derivatives.
G = 6.673 × 10−11 Nm2 kg−2 is theNewton’s universal gravitational constant. Now,
since the fluid elements are comoving, the normalized four-velocity in the coordinates
of (1.1) is

uμ = (1, 0, 0, 0). (1.4)

Thus, using Eqs. (1.1), (1.2), and (1.4), one obtains two independent equations from
Eq. (1.3) given by (choosing c = 1)

(
ȧ

a

)2

+ kc2

a2
= 8πG

3
ρ (1.5)

and

2
ä

a
+

(
ȧ

a

)2

+ kc2

a2
= −8πG

p

c2
, (1.6)

where the ‘dot’ denotes differentiation with respect to (w.r.t.) time t . It is often useful
to combine Eqs. (1.5) and (1.6) to obtain the acceleration equation7

ä

a
= −4πG

3

(
ρ + 3p

c2

)
. (1.7)

Equation (1.5) is known as the Friedmann equation.
The energy conservation equation is obtained by the vanishing of the covariant

divergence of the EM tensor, i.e.,

�μ T μν = 0, (1.8)

which yields

7This equation is also known in the literature as the Raychaudhuri equation.
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ρ̇ + 3
ȧ

a

(
ρ + p

c2

)
= 0. (1.9)

Note that the above conservation equation can also be obtained by differentiating
Eq. (1.5) w.r.t. t , then multiplying through by 1

8πG and adding the result to Eq. (1.7)
multiplied through by− 3

8πG

(
ȧ
a

)
. Thus, the field equations of the theory incorporates

the equation for the conservation of energy. Note that we shall frequently work with
natural units for G and the speed of light c, i.e., G = 1 = c or any other relevant
unit systems (mentioned at appropriate places) in order to simplify expressions or
calculations, without any loss of generality.

It is important to note that the EFE can be derived mathematically from the
Einstein–Hilbert action (R is the Ricci scalar and Smatter is the matter action)

S =
∫

R

16πG

√−gd4x + Smatter (1.10)

by using the principle of least action.

1.3 Observable Parameters

It is a standard practice to specify cosmological models via a few parameters, which
are then determined by analyzing observational data so as to identify the best model
of the Universe. We now define and discuss the implications of three most important
observable parameters of our Universe—Hubble parameter, deceleration parameter,
and density parameter.

The Hubble Parameter H

The rate at which the Universe expands is measured by the Hubble parameter H
which is defined as

H = ȧ(t)

a(t)
. (1.11)

The Hubble constant, denoted by H0, is interpreted as the value assumed by the
Hubble parameter at the present epoch a0. Observations show that H0 = 70 ± 10
km/sec/Mpc (Mpc stands for megaparsec and 1Mpc= 3.09×1024 cm). As the value
of H0 is still a bit uncertain, we often parameterize it as

H0 = 100 h km/s/Mpc (1.12)

so that h ≈ 0.7. It is an easy exercise to note that in terms of the Hubble param-
eter H and its first order time-derivative Ḣ , the Friedmann equation (1.5) and the
acceleration Eq. (1.7) can be written as (choosing c = 1)

H 2 + k

a2
= 8πG

3
ρ, (1.13)



6 1 Fundamentals of Relativistic Cosmology

and

Ḣ + H 2 = −4πG

3
(ρ + 3p) (1.14)

respectively, while the energy conservation Eq. (1.9) becomes

ρ̇ + 3H(ρ + p) = 0. (1.15)

The Deceleration Parameter q

Another important observable parameter of our Universe is the deceleration param-
eter q which is defined as

q = −aä

ȧ2
(1.16)

such that a positive q implies deceleration, while a negative q implies acceleration.
Thus, the deceleration parameter measures the rate of change of the rate of expansion
of the Universe.

The Density Parameter Ω

The density parameter Ω is a dimensionless quantity which is defined as (choosing
c = 1)

Ω = 8πG

3H 2
ρ = ρ

ρc
, (1.17)

where the critical density ρc is defined by

ρc = 3H 2

8πG
. (1.18)

The Friedmann equation (1.13) is expressed in terms of the density parameter as

Ω − 1 = k

H 2a2
. (1.19)

The sign of κ is therefore determined by Ω and we have

ρ < ρc ⇔ Ω < 1 ⇔ k < 0

ρ = ρc ⇔ Ω = 1 ⇔ k = 0

ρ > ρc ⇔ Ω > 1 ⇔ k > 0.

The density parameter, then, determines which of the three RW geometries describes
our Universe. Thus, it is important to determine it observationally. Measurements of
theCMBanisotropybydeBernardis et al. (2000) in theBOOMERANGcollaboration
and Spergel et al. (2003) in the WMAP collaboration lead us to believe that Ω is
very close to unity and hence our Universe can be considered to be spatially flat (at
large scales).
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1.4 Solving the Equations

In order to solve the Eqs. (1.5), (1.7), and (1.9) i.e., to determine how the scale factor
a(t) evolves, it is necessary to know the relation between the pressure p and the
energy density ρ. The fluid approximation used here allows us to assume that p is
a single-valued function of ρ given by p = p(ρ) which is termed as the equation
of state (EoS). Consequently, an equation of state parameter w may be introduced
such that

p = wρ. (1.20)

Many useful cosmic fluids obey this relation with a constant w. In fact, a constant
w simplifies our equations to a great extent. We also observe that on employing the
energy conservation Eq. (1.9), the energy density ρ is found to be proportional to the
scale factor in a power law fashion as

ρ ∝ 1

a3(1+w)
. (1.21)

Now, assuming a flat universe and a constant EoS parameter w �= −1, the Friedmann
equation (1.5) can be solved exactly—

a(t) = a0

(
t

t0

) 2
3(1+w)

, (1.22)

where a0 = a(t0) is the scale factor at the present epoch. Note that for w = −1, one
obtains a(t) ∝ eHt . We shall conclude this section by considering two kinds of fluids
which have a constant EoS parameter w and determining how the energy density and
the scale factor evolve in each case.

Dust

Dust is non-relativistic matter which exerts a negligible pressure so that we can
assume p = 0 (which implies w = 0). A pressureless universe is a good approx-
imation for the atoms in the Universe once it has cooled down owing to the fact
that they are quite well-separated and rarely interact. It also provides a nice descrip-
tion of a collection of galaxies in the Universe as they are subjected to gravitational
interactions only. Therefore, in this case, Eqs. (1.21) and (1.22) respectively become

ρ ∝ 1

a3
and a(t) = a0

(
t

t0

) 2
3

. (1.23)

Radiation

Particles moving at highly relativistic speeds, such as neutrinos, fall in this category.
Their kinetic energy gives rise to a pressure force, known as the radiation pressure,



8 1 Fundamentals of Relativistic Cosmology

which can be shown to be p = ρ

3 using the standard theory of radiation. So, in this
case, w = 1

3 and we obtain

ρ ∝ 1

a4
and a(t) = a0

(
t

t0

) 1
2

(1.24)

from Eqs. (1.21) and (1.22) respectively.

1.5 Cosmological Horizons: Particle, Event, and Apparent

One of the most crucial feature of FLRW models is the existence of different cos-
mological horizons. There is a fundamental limit to our vision, since no particle
has velocity greater than the velocity of light. The finite speed of light leads to the
concept of horizons and limits our ability to comprehend the entire Universe. The
term “horizon” is used in different contexts in the literature, often without clear def-
inition, however in layman terms, a horizon is a one-sided membrane which blocks
information from a family of observers. The three most common cosmological hori-
zons found in the literature are particle horizon, event horizon, and apparent horizon
which we shall discuss in this section. For a diagrammatic representation of hori-
zons, the reader may see Chap.2 of V. Mukhanov (2005). For a comprehensive study
of horizons, the reader is referred to the book by V. Faraoni (2015), and references
therein.

Particle Horizon

A particle horizon is defined as themaximumproper distance over which a comoving
observer can have causal communication at any epoch t . Thus, the particle horizon
encompasses every signal accessible to a comoving observer at r = 0 between the
time of beginning of the Universe at t = 0 and the time t . The age of the Universe is
roughly 14 billion years which gives a naive estimate for the particle horizon to be
14 billion light years. Mathematically, the particle horizon at any time t as seen by a
comoving observer at r = 0 is the spherical surface with center at r = 0 and having
proper radius (considering radial null geodesics r = r(t) in a flat FLRW spacetime)

RP = a(t)
∫ t

0

dt ′

a(t ′)
. (1.25)

Thus, the particle horizon exists only when this improper integral converges. Note
that the particle horizon is physically relevant in the perspective of cosmic inflation,
a phenomenon of the early Universe first conceived by Guth (1981) with a view to
solve the horizon and flatness problems.
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Event Horizon

An event horizon is defined as the maximum proper distance over which a comoving
observer at any epoch t can have causal communication at a sufficiently large cosmic
time. In other words, it is the boundary of the spacetime region which comprises
all the events accessible to a comoving observer at r = 0 between the present time
t and the future infinity t = ∞. The proper radius of an event horizon is given by
(considering radial null geodesics r = r(t) in a flat FLRW spacetime)

RE = a(t)
∫ ∞

t

dt ′

a(t ′)
. (1.26)

In other words, RE is the proper distance to the most distant event the observer will
ever see. If the improper integral inEq. (1.26) is convergent, then the observer at r = 0
will be totally unawareof the events beyond RE ,whereas if it is divergent, the observer
will be aware of events arbitrarily far away from her (may be at a sufficiently large
time). Note that the cosmological event horizon is observer dependent in contrast to
BH event horizon which is absolute in nature.

Apparent Horizon

An apparent horizon8 is defined geometrically as an imaginary surface beyondwhich
null geodesic congruences9 recede from the observer. Note that the FLRW metric
can be locally expressed in the form

ds2 = hi j (xi )dxi dx j + R2dΩ2
2 , (1.27)

where i , j can take values 0 and 1. The two dimensional metric

dγ 2 = hi j (xi )dxi dx j , (1.28)

where

hi j = diag

(
−1,

a2

1 − kr2

)
(1.29)

is known as the normal metric, while R = ar is interpreted as the area radius. If we
construct another scalar associated with this normal space as

χ(t) = hi j (xi )∂i R∂ j R = 1 −
(

H 2 + k

a2

)
R2, (1.30)

8For an extensive discussion on its physical reality and its relevance in Cosmology, the readers may
see the recent paper by Melia (2018).
9I suggest the readers to go through the first three chapters of the book by E. Poisson (2004) to
have a basic understanding of Differential Geometry and related concepts which are relevant to this
book.



10 1 Fundamentals of Relativistic Cosmology

then the apparent horizon of a comoving observer is defined in mathematical terms
as a spherical surface located at the vanishing of this scalar, i.e., χ(t) = 0, and we
obtain

RA = 1√
H 2 + k

a2

, (1.31)

which reduces to

RA = 1

H
(1.32)

in a flat universe. It is also worthwhile to mention that for a flat universe. the apparent
horizon coincides with theHubble horizon, which roughlymeasures the distance that
lightwould travel if spacewere not expanding.Unlike the particle and event horizons,
the apparent horizon is not, in general, a null surface. For a universe filled with a
perfect fluid with a constant EoS p = wρ, the apparent horizon will be null if and
only if either p = −ρ (phantom fluid) or p = 1

3ρ (radiation) (for a proof, see p. 80
of the book by V. Faraoni).

1.6 The Present Universe: Dark Energy

The study of Cosmology has taken a new turn in recent years since the research
teams led by Riess et al. and Perlmutter et al. independently reported in 1998 that
our Universe is accelerating. The responsible factor behind this late-time cosmic
acceleration has been named10 “dark energy” (DE). It is a startling fact that DE is
distributed evenly throughout the Universe, not only in space but also in time. In
other words, the expansion of the Universe does not dilute its effect. Consequently,
DE does not have any local gravitational effects, but rather a global effect on the
Universe as a whole. This leads to a repulsive force which acts as a mechanism to
accelerate the expansion of theUniverse. However, in spite of extensive research over
the last two decades, its nature and origin has still been a mystery to cosmologists.
Independent observational data from sources such as Supernovae Type Ia (SNe Ia),
CMB, and Baryon Acoustic Oscillations (BAO) have shown that about 68% of the
present energy of the Universe consists of DE, the other ingredients being ordinary
matter or baryons (approximately 5%) and dark matter11 (DM) (about 27%). Thus,
we are aware of only 5% of the Universe, the rest 95% is invisible.

The acceleration Eq. (1.7) tells us that theUniverse consisting of only a single fluid
component will accelerate if ρ + 3p < 0, i.e., if w < − 1

3 . So it is evident that such

10The term “dark energy” was coined byMichael Turner in 1998 motivated by Fritz Zwicky’s “dark
matter” from the 1930s.
11Dark matter is an exotic, invisible substance which interacts neither with baryonic matter nor
with electromagnetic radiation, thereby making it impossible to detect with current instruments. Its
existence can be understood by the gravitational effects it appears to have on galaxies and galaxy
clusters and also by the effects of gravitational lensing.
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an acceleration requires the pressure to be sufficiently negative. Thus, the EoS for
DE can be written as p = wρ, where w is a constant and w < − 1

3 . Fluids constrained
by ρ + 3p ≥ 0 or w ≥ − 1

3 are said to satisfy the strong energy condition (SEC). We
therefore conclude that DE must violate the SEC in order to allow the Universe to
accelerate.

At this point, it is worth mentioning that there exist alternative approaches to
explain the cosmic acceleration. The most widely accepted one among them is by
modifying the geometric (i.e, l.h.s.) part of the Einstein equations (known as “modi-
fied gravity models” (MGMs)), however, in this book, we shall stick to Einstein grav-
ity (GR) only. Other interesting approaches include gravitationally induced particle
creation models (discussed in Chap. 5) and considering exact inhomogeneous cos-
mological models by abandoning the cosmological principle (discussed in Chap.6).
For the benefit of the readers, I wish to mention here that most of the discussions
in Sect. 1.6.1–1.6.5 have been inspired from the books by Amendola and Tsujikawa
(2010) andMatarrese et al. (eds.) (2011), and the extensive reviews byCarroll (2001),
Copeland et al. (2006), Frieman et al. (2008), and Sahni (2004).

1.6.1 The Simplest Candidate: The Cosmological Constant

The simplest candidate which can play the role of DE is the cosmological constant
Λ for which the EoS parameter w takes the value −1. It was originally introduced in
1917 by Einstein in his field equations with an aim to obtain a static universe. Real-
izing it to be the “biggest blunder” of his life, he dropped it in 1929, when Hubble
discovered that the Universe is expanding. There was nothing to regret after all as the
cosmological constant was revived again as an entity responsible for the late-time
acceleration of the Universe. The cosmological constant is sometimes physically
interpreted as the energy density of ‘empty’ space. This is related to the ‘zero-point
energy’ (in quantumphysics)which is relevant evenwithout the presence of particles.
Unfortunately, particle physics theories predict a much larger value for the cosmo-
logical constant than observations allow (its value as obtained from observations is
one divided by one followed by 123 zeroes!). This discrepancy is referred to as the
cosmological constant problem (CCP) and is one among many unsolved problems
in elementary particle physics. Then there is the cosmic coincidence problem which
deals with the intriguing question of “why the energy densities of pressureless matter
and DE are of the same order precisely at the present epoch although the individual
evolutionary properties of these fluid sources are quite different?” Several models
such as decaying vacuum models, interacting scalar field descriptions of DE, and a
single fluid model with an antifriction dynamics have been proposed with a view to
alleviate such problems.

The EFE (1.3), in presence of a positive Λ, become (choosing c = 1)

Gμν − Λgμν = 8πGTμν, (1.33)

so that the Friedmann equation (1.5) and the acceleration Eq. (1.7) take the forms
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(
ȧ

a

)2

+ k

a2
= 8πG

3
ρ + Λ

3
(1.34)

and
ä

a
= −4πG

3
(ρ + 3p) + Λ

3
(1.35)

respectively. Since w = −1 for cosmological constant, so we must have p = −ρ. In
that case, one can evaluate the scale factor as

a(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0 cosh
(√

Λ
3 t

)
, k = +1

a0 exp
(√

Λ
3 t

)
, k = 0

a0 sinh
(√

Λ
3 t

)
, k = −1

. (1.36)

All the solutions stated above expand exponentially in the limit t → ∞, indepen-
dently of the spatial curvature. In fact, all the solutions correspond to de Sitter12

spacetime, in different coordinate systems. It is interesting to note that, in a flat de
Sitter universe, the event and apparent horizons coincide. For an extensive study on
the cosmological constant, the readers may see the reviews by Padmanabhan (2003)
and Peebles and Ratra (2003).

The following subsections deal with alternative models of DE, assuming that
the CCP is resolved in a way such that Λ vanishes completely. We shall discuss
“modified matter models” (MMMs) in which the EM tensor Tμν on the r.h.s. of the
EFE contain an exotic matter source having a negative pressure. The most interesting
models under this classification include quintessence, K-essence, phantom (ghost)
field, coupled DE, and Chaplygin gas (and its variations).

1.6.2 Quintessence

A DE candidate described by a canonical scalar field φ is known as quintessence.
Unlike the cosmological constant, the EoS of quintessence is dynamic in nature. The
action for quintessence is described by

S =
∫

d4x
√−g

[
R

16πG
− 1

2
gμν∂μφ∂νφ − V (φ)

]
+ Smatter , (1.37)

where R is the Ricci scalar and φ is a scalar field with a potential V (φ), while Smatter

is the matter action. The energy density ρφ and the pressure pφ associated with the
field are given by

12A negative cosmological constant (Λ < 0) leads to anti de Sitter (AdS) spacetime. Such a space-
time is possible only for k = −1.
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ρφ = φ̇2

2
+ V (φ) and pφ = φ̇2

2
− V (φ), (1.38)

respectively. The conservation equation, ρ̇φ + 3H(ρφ + pφ) = 0 reduces to

φ̈ + 3H φ̇ + dV

dφ
= 0. (1.39)

The EoS of the scalar field is

wφ = pφ

ρφ

= φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (1.40)

The Friedmann equation (1.5) and the acceleration Eq. (1.7) become

H 2 = 8πG

3

[
φ̇2

2
+ V (φ) + ρmatter

]
(1.41)

and

Ḣ + H 2 = −8πG

3

[
φ̇2 − V (φ) + ρmatter

]
, (1.42)

respectively.
Note that at early times, ρmatter 
 ρφ , however, ρφ needs to dominate at late

times so as to explain the late-time cosmic acceleration. The latter happens if wφ <

− 1
3 , which from Eq. (1.40) implies φ̇2 < V (φ). Thus, the scalar potential should

be flat enough so that the scalar field evolves slowly. If the slowly rolling scalar
field satisfying the condition φ̇2 � V (φ) is the dominant contribution to the energy
density of the Universe, we obtain the approximate relations 3H φ̇ + dV

dφ
� 0 and

3H 2 � 8πGV (φ) from Eqs. (1.39) and (1.41) respectively. Therefore, the field EoS
in Eq. (1.40) can be approximated as

wφ � −1 + 2εs

3
, (1.43)

where εs = 1
16πG

(
dV/dφ

V

)2
is the slow-roll parameter. εs is much less than unity

during the accelerated expansion of the Universe because the potential is sufficiently
flat. Thus, −1 < wφ < − 1

3 .

1.6.3 Phantom Field

Current observational data, such as from the PLANCK satellite, reveal the possibility
of the DE EoS to be slightly below −1. These DE fluids are generally classified as
phantom fluids. Phantom DE is associated with a scalar field governed by a negative
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kinetic energy which rolls up the potential. The energy density of the scalar field
grows indefinitely if the potential is unbounded from above. Phantom scalar fields
were first introduced by Hoyle in his steady state theory.

The action of the phantom field minimally coupled to gravity is given by

S =
∫

d4x
√−g

[
R

16πG
+ 1

2
gμν∂μφ∂νφ − V (φ)

]
+ Smatter . (1.44)

Note that the kinetic term is opposite in sign as compared to the action (1.37) for
an ordinary scalar field. As the energy density and the pressure have the expressions
given by

ρφ = − φ̇2

2
+ V (φ) and pφ = − φ̇2

2
− V (φ) (1.45)

respectively, the EoS parameter becomes

wφ = pφ

ρφ

= φ̇2 + 2V (φ)

φ̇2 − 2V (φ)
. (1.46)

Then, one has wφ < −1 for φ̇2

2 < V (φ).

1.6.4 Holographic Dark Energy

As the energy densities of DE and DM are of the same order13 at the present epoch, it
may be expected that DE may have some relation (terms like interaction or coupling
can also be used) with DM. The most widely accepted approach is to introduce an
interaction term on the r.h.s. of the conservation equations for DE and DM. Such an
interaction term contains a dimensionless coupling parameter. Interaction between
the dark sectors is presumed to be a possible way to resolve the cosmic coincidence
problem. For instance, one may see the paper by del Campo et al. (2009).

The form of coupled DEwhich we shall discuss in this subsection under the name
of holographic DE (HDE). This model is motivated by the holographic principle
which states that the number of degrees of freedom of a bounded physical system is
proportional to the area of its boundary. In this context, Cohen et al. (1999) estab-
lished a relationship between a short distance (ultraviolet) cutoff14 and a long distance

13The matter era should have dominated for a sufficient amount of time so as to allow structure
formation which means that the DE could not have begun to dominate very early. The fact that it is
relevant exactly at the present time is what we have already referred to as the cosmic coincidence
problem (in Sect. 1.6.1) and is one of the greatest mysteries of contemporary Cosmology.
14Generally, a cutoff is referred to as a threshold value for a physical quantity such as energy,
momentum, or length. Cutoffs are introduced in order to prevent singularities from appearing during
calculations. Note that, in the context of HDE, the traditional terms “infrared” and “ultraviolet” do
not literally refer to specific regions of the spectrum.
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(infrared) cutoff in quantum field theory (QFT) based on the limit set by the forma-
tion of a black hole (BH). This leads to an upper bound on the zero-point energy
density. Subsequently, Hsu (2004) interpreted this energy density as the HDE density
satisfying ρd = 3c2

L2 , where c (the readers should be careful with this notation, which
is similar to that of the speed of light) is a dimensionless parameter which is deter-
minable from observational data and L is an infra-red (IR) cutoff in units M2

p = 1
(Mp is the Planck mass). It was demonstrated by Li (2004) that the precise EoS for
DE can be obtained and the late-time accelerating Universe can be incorporated into
the HDE only if L is assumed to be the radius of the future event horizon. Further,
Das et al. (2006) andAmendola et al. (2006) showed that, unlike noninteractionmod-
els, an interaction (between dust form of DM and HDE) model of the Universe is
consistent with the observationally measured phantom EoS. The interaction models
are also favored by a range of observational data, most importantly by the CMB and
matter distribution at large scales. Moreover, they incorporate the transition of DE
across the phantom barrier of wd = −1 as demonstrated by Wang et al. (2005). The
total energy density is ρ = ρm + ρd , where ρm and ρd are the energy densities of DM
and DE respectively. The total pressure is given by p = pm + pd , where pm and pd

are the pressures of DM and DE respectively. Now as DM is considered to be in the
form of dust, so we have p = pd . Since the IR cutoff is chosen as the radius of the
future event horizon, RE = a

∫ ∞
a

dx
H x2 , so we have ρd = 3c2R−2

E . The conservation
equations for DM and DE are written as

ρ̇m + 3Hρm = Q (1.47)

and
ρ̇d + 3H(1 + wd)ρd = −Q (1.48)

respectively, where wd is the EoS of DE and Q denotes the interaction term which is
usually assumed to be of the form 3b2Hρ with b2 as the coupling constant. Taking
y = ρm

ρd
as the ratio15 of the energy densities, from (1.47) and (1.48), we have

ẏ = 3b2H(1 + y)2 + 3H ywd . (1.49)

Now, choosing 8πG = 1 and κ = 0 (i.e., a flat universe), the Friedmann equation
(1.13) can be written as Ωm + Ωd = 1, where Ωm = ρm

3H 2 and Ωd = ρd

3H 2 . Then we

have y = 1−Ωd
Ωd

and ẏ = − Ω̇d

Ω2
d
. Comparing with (1.49), we get the EoS of DE as

wd = − Ω
′
d

3Ωd(1 − Ωd)
− b2

Ωd(1 − Ωd)
, (1.50)

where the ‘dot’ denotes the derivative with w.r.t. time t and the ‘prime’ denotes the
derivative w.r.t. lna. In this model, RE can also be expressed as RE = c√

Ωd H
. Taking

its derivative w.r.t. t and using the expressions for y and ẏ, as well as Eq. (1.49), we

15This ratio is a constant if Hubble radius is chosen as the IR cutoff.
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have
Ω

′
d

Ω2
d

= (1 − Ωd)

[
1

Ωd
+ 2

c
√

Ωd
− 3b2

Ωd(1 − Ωd)

]
. (1.51)

The EoS of DE now reduces to

wd = −1

3
− 2

3c

√
Ωd − b2

Ωd
. (1.52)

The effective EoS (wef f ) of HDE is given by

wef f = p

ρ
= pd

ρm + ρd
= wdΩd . (1.53)

The deceleration parameter in this model takes the form

q = 1

2
− 3b2

2
− Ωd

2
− Ω

3
2

d

c
. (1.54)

It must be noted that although the interacting HDE model successfully describes the
late-time accelerating Universe with the transition EoS of DE, it is inappropriate to
describe the past deceleration phase of the Universe.

1.6.5 Chaplygin Gas Models

There exist another interesting class of DE models associated with a fluid known
as the Chaplygin gas, named after the Russian scientist Sergey Chaplygin. Kamen-
shchik et al. (2001) were the first to investigate its role in understanding the late-time
acceleration of the Universe. The simplest form of its EoS is

p = − A

ρ
, (1.55)

where A is a positive constant. With this EoS, the conservation Eq. (1.15) can be
integrated to give

ρ =
√

A + D

a6
, (1.56)

where D is an arbitrary constant. Then for small values of a, ρ ∼
√

D
a3 and p ∼

− A√
D

a3 which implies that the gas behaves as a pressureless dust (DM) at early
times. For large values of a, ρ ∼ A and p ∼ −A, i.e., it acts as a cosmological
constant at late times which eventually leads to an accelerating Universe.

The advantages of the Chaplygin class of cosmological models is three-fold.
Firstly, they describe a smooth transition from the decelerating phase of the Universe



1.6 The Present Universe: Dark Energy 17

to the present phase of cosmic acceleration and such a transition is achieved with
only one fluid. Secondly, they provide an interesting possibility for the unification
of DE and DM. Finally, they represent the simplest deformations of the ΛCDM16

model. However it was shown by Amendola et al. that the Chaplygin gas models face
a huge challenge from observed CMB anisotropies. This problem can be overcome if
the generalized Chaplygin gas (GCG) proposed by Bento et al. (2002) is considered
which has the EoS

p = − A

ρα
, 0 < α < 1. (1.57)

Nevertheless, the parameter α is severely constrained (0 < α < 0.2) at the 95%
confidence level WMAP observational data as shown by Amendola et al. (2003).

The GCG model was later modified by Benaoum (2002) and named the modified
Chaplygin gas (MCG) model having EoS

p = γρ − B

ρn
, (1.58)

where γ ≤ 1, B and n are positive constants. The MCGmodel can be reduced to the
GCG model by a suitable choice of the parameters involved. Debnath et al. (2004)
have shown that in this model the Universe decelerates for small values of a and
accelerates for large values of a. Also, this model can describe the evolution of the
Universe starting from the radiation era (γ = 1

3 and ρ is very large) up to theΛCDM
era (ρ is a constant having a small magnitude). Thus, the MCG is able to explain
the evolution of the Universe to a larger extent than the Chaplygin gas or the GCG
models. Wu et al. (2007) studied the dynamics of the MCG model, while Bedran et
al. (2008) investigated the evolution of the temperature function in the presence of
a MCG. The model has also been found to be consistent with perturbative studies
(Costa et al. 2008) and the spherical collapse problem (Debnath and Chakraborty
2008). Various other modifications of Chaplygin gas have appeared in the literature
such as variable Chaplygin gas, holographic and interacting holographic Chaplygin
gas, viscous Chaplygin gas models mongst others, however, each one of them comes
with both merits and demerits as far as Cosmology is concerned. Chaplygin gas
models have also been considered in modified as well as higher-dimensional gravity
theories.

1.7 Final Remarks

Finally, it would be nice to mention that the term concordance model has been intro-
duced in Cosmology in order to identify the most widely accepted cosmological
model in present time. A concordance model is important because the measurement

16See Sect. 1.7 for explanation.
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of many astronomical quantities such as distance, radius, luminosity, and surface
brightness is dependent upon the cosmological model considered. Currently, the
concordance model is the ΛCDM model in which the Universe contains a cosmo-
logical constantΛ, associated with DE, and cold (i.e., pressureless) DM (abbreviated
CDM). DespiteΛ having serious problems as discussed earlier, recent observational
data prefers theΛCDMmodel over alternative cosmological models such asMMMs,
MGMs, and inhomogeneous cosmologies, which challenge the assumptions of the
ΛCDM model. Therefore, the general picture of evolution of the Universe can be
understood by the following flowchart: big bang −→ inflationary era (early acceler-
ating phase)−→ radiation dominated era (decelerating phase)−→matter dominated
era (decelerating phase)−→ ΛCDMera (late-time accelerating phase). The ultimate
fate of the Universe is determined by its density (or curvature) and its final state may
be big freeze (also known as heat death), big crunch, or big rip.
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Chapter 2
A Brief Overview of Equilibrium
Thermodynamics

Abstract In this chapter, the fundamentals of equilibrium thermodynamics are
briefly examined. The basic terminology is followed by the discussion of the ther-
modynamic concepts of temperature, internal energy, entropy, absolute entropy, and
enthalpy. Finally, the four laws of thermodynamics are explained in detail.

Keywords Thermodynamics · Isolated system · Thermodynamic equilibrium ·
Temperature · Entropy · Internal energy · Zeroth law · First law · Second law ·
Third law

Thermodynamics, in the narrow sense, means the physics of matter in equilibrium
(or nonequilibrium), with regard to changes in temperature, pressure, and chemical
composition. In other words, it is the study of energy and its transformations. Ther-
modynamics deals with the interaction of energy with matter and the transformation
of energy from one form to another. Its purely deductive conclusions about the nature
of the interactions of energy andmatter mimic the real energy andmatter interactions
in all physical and chemical phenomenon in which such interactions can be tested.
Thus, thermodynamics can be considered as a powerful tool to describe as well as
predict the course of real phenomenon. This field of study is extremely general in the
sense that no hypotheses are assumed regarding the nature and structure of matter to
be dealt with. Thermodynamics has unlimited practical uses such as in computation
of the maximum efficiency of engines, prediction of the amount of heat required to
carry out physical and chemical processes, estimation of the temperature of flames
and the heat effects of chemical reactions, calculation of the conditions of chemical
and phase equilibrium, establishment of relationships between properties of mate-
rials, and many more. In this chapter, a brief overview of the basic concepts and
the laws of (equilibrium) thermodynamics are presented. Most of the discussions
undertaken in this chapter are inspired from the extensive lecture notes by Prof. J.J.
Kelly, and to a lesser extent from the books by Callen (1960), Sussman (1972), and
Zemansky and Dittman (1997). Later, in Chap.5, nonequilibrium thermodynamics
in the context of matter creation will be discussed.
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2.1 Definitions and Basic Concepts

System, Boundary, and Surroundings

A closed surface which separates a restricted region of space or a finite portion of
matter from its surroundings is called the boundary. The region within the arbitrary
boundarywhich forms the center of our study, is called the system. Everything outside
the system that has a direct influence on the behavior of the system is called the
surroundings. The surroundingsmaybe considered as an environmentwhich imposes
certain conditions the system of interest (such as constant temperature, pressure,
chemical potential etc.).

Open and Closed Systems

A systemwhich has an interaction of bothmatter and energy1 with its surroundings is
said to be an open system. On the other hand, a closed system is one which allows an
exchange of energy but no exchange of matter with its surroundings. Closed systems,
therefore have a fixed mass and composition but variable energy levels.

Isolated System

A system which has absolutely no interaction (of either matter or energy) with its
surroundings is said to be an isolated system. These systems have rigid, perfectly
insulating walls or boundaries that are impermeable to matter. Their mass and energy
content, therefore remains constant over time.

After a system has been chosen, it must be described in terms of quantities (or
properties) related to the behavior of the system or its interactions with the sur-
roundings, or both. These properties are generally of two types which are defined
below.

Macroscopic and Microscopic Properties

The macroscopic properties refer to variables or parameters of a system at approxi-
mately the human scale, or larger, such as mass, composition, temperature, pressure,
and volume. They are few in number and can be directly measured. The microscopic
properties refer to variables or parameters of a system at approximately themolecular
scale, or smaller, like the structure of its constituent particles, their motions, their
energy states, their interactions, etc. Unlike macroscopic properties, they are many
in number and cannot be directly measured, but must be calculated.

Any physical system composed ofmatter or radiation large enough to be described
by macroscopic parameters without taking its microscopic constituents into con-
sideration is said to be a thermodynamic system. Such a system always includes
the notion of temperature, which distinguishes thermodynamics from other macro-
scopic branches of science, such as geometrical optics, mechanics, or electricity and
magnetism. Thermodynamic transformations can be either reversible or irreversible

1Here, energy generally refers to heat energy.
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depending upon whether the thermodynamic system returns or does not return to its
initial state when external constraints are applied to its surroundings.

Intensive and Extensive Properties

Intensive properties of a thermodynamic system (such as temperature) are those that
are independent of the mass of the system, while those properties (such as internal
energy2) that are proportional to the mass of the system are said to be extensive.

Homogeneous and Inhomogeneous Systems

A system within which the intensive thermodynamic properties are the same every-
where is said to be a homogeneous system, while an inhomogeneous system is one
which shows spatial variations in one or several of its intensive properties.

Thermodynamic Equilibrium

A system is said to be in a state of thermodynamic3 equilibrium if the conditions
for all three types of equilibrium, namely, mechanical, chemical, and thermal, are
satisfied. It is apparent that, in thermodynamic equilibrium, there will be no tendency
whatsoever, either of the system or of the surroundings to change their state. When
the conditions for any one of the three types of equilibrium (mentioned above) are
violated, the system is said to be in a nonequilibrium state.

Thermodynamic Equation of State and Equilibrium Surface

A functional relationship among the properties4 of an equilibrium system is said to
be its thermodynamic equation of state. If it is possible to describe completely the
state of a particular system by the three parameters, namely, pressure (p), volume
(V ), and temperature (T ), then the thermodynamics EoS becomes

f (p, V, T ) = 0, (2.1)

which reduces the number of independent variables by one. An equilibrium state can
be represented as a point on the surface described by the EoS which is known as the
equilibrium surface. Any point not a part of this surface is a nonequilibrium state of
the system.

However, it must be noted that it is not possible for a general theory like thermo-
dynamics, based on general laws of nature, to produce an EoS of a system. Such an
EoS is generally an experimental addition to thermodynamics.

2See Sect. 2.2.2 for explanation.
3This is different from thermal equilibrium which is a state achieved by two (or more) systems
which have been in communication with each other through a diathermic wall (a rigid wall which
allows the transmission of heat only).
4Terms like variables or parameters or coordinates can also be used.
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2.2 The Laws of Thermodynamics

As with all branches of science, experimental observation forms the basis of thermo-
dynamics too, and these observations have been incorporated into certain basic laws
which are known as the zeroth, the first, the second, and the third laws of thermody-
namics. The strength of this discipline lies in its ability to derive general relationships
with the help of these elementary laws (or axioms) and a relatively small amount of
empirical information without taking into account its microscopic structure.

2.2.1 Temperature: The Zeroth Law

Temperature can be regarded as an entity having equal magnitude in systems which
are in thermal equilibrium. In other words, the temperature of a system is a property
which determines whether a system is in thermal equilibrium with other systems or
not.

The concepts of temperature and thermal equilibrium now lead us to the zeroth
law of thermodynamics which states that “if system A is in thermal equilibrium with
system B and system B is in thermal equilibrium with system C , then systems A and C
are in thermal equilibrium with each other.”The law is equivalent to the fundamental
mathematical principle that “things equal to the same thing are equal to each other.”
R.H. Fowler, in 1931 realized that it was necessary to define thermal equilibrium
before the first law of thermodynamics (FLT) could be postulated. Consequently, he
was forced to adopt ‘zero’ as the number of his law.

2.2.2 Energy Conservation: The First Law

The first law of thermodynamics, which is basically an energy conservation law was
formulated in 1848 by H. Helmholtz and W. Thomson based on experimental data
collected by J. Joule and insight provided by J.Mayer. The law can be formally stated
as “the work required to change the state of an otherwise isolated system depends
solely upon the initial and final states involved and is independent of the method used
to accomplish this change.” The first law (FL) enables us to assign a property called
internal energy5 (E) to a system, which can be defined as the energy contained
within the system with the exception of the kinetic and potential energies of the
system as a whole due to motion of the system and external force fields respectively.

5The value of internal energy is dependent only on the present state of the system and not on the
path taken or the processes undergone to prepare it. Hence, it is considered as a state function of a
system.
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It is a measure of the amount of energy gained or lost by the system. In an adiabatic
process, δQ = 0, so the change in its internal energy equals thework (W ) done on the
system by its surroundings. However, for a closed system, the energy conservation
is expressed as

�E = Q − W, (2.2)

where Q and W are, respectively, the amount of heat transferred to the system
from its surroundings and that of work done by the system on its surroundings. The
sign convention is due to Clausius and is relevant in studying heat engines, which
perform useful work that is treated as positive. However, the IUPAC convention
(due to physicists such as Max Planck) is mostly followed in recent times which
formulates the FL in terms of the work done on the system. So, in this case, the FL
for a closed system is written as

�E = Q + W. (2.3)

This convention assumes all net energy transfers to and from the system as positive
and negative respectively, regardless of whether the system is used as an engine or
some other device. Now, in a quasistatic (or adiabatic)6 process, the work done by the
system on its surroundings is the product pdV , while the work done on the system
is −pdV . Either of the above two sign conventions show that the change in internal
energy of the system is7 given by

d E = δQ − pdV, (2.4)

where δQ denotes the infinitesimal increase in the heat transferred to the system by
its surroundings.

Another important quantity is the enthalpy H̄ defined by8

H̄ = E + pV (2.5)

and considered to be equivalent to the total heat content of a thermodynamic system.
The total derivative of (2.5) is given by

d H̄ = d E + pdV + V dp. (2.6)

Now, on substituting d E with the expression in Eq. (2.4), we obtain

6A quasistatic process occurs so slowly that the system can always be assumed to be arbitrarily
close to equilibrium. A reversible thermodynamic process should be necessarily quasistatic.
7In thermodynamics, d indicates a proper differential which is dependent only on the change of
state, whereas δ indicates an improper differential which is also dependent on the process used to
change the state.
8We shall use the notation H̄ instead of the standard notation H for enthalpy so that it does not get
mistaken for the Hubble parameter H .
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d H̄ = δQ + V dp (2.7)

for a quasistatic process.

2.2.3 Entropy: The Second Law

Although the FLT guarantees energy conservation, many processes occur in nature
which are inconsistent with this conservation law. For example, if an ice cube is
placed in a glass of warm water, then the FL allows some internal energy of the ice
to be transferred to the water such that the water is warmed while the ice cools, we
never see such an event to happen in reality. Similarly, if equal parts of two gases are
mixed, it is natural to see that the two gases will never separate spontaneously at a
later time. The fact that these types of transformations are never spontaneous9 forms
the basis of the second law of thermodynamics (SLT), There are several equivalent
statements of SLT. The statement due to Clausius is that “there exists no thermo-
dynamic process whose only effect is to extract heat from a colder reservoir and
transfer it to a hotter one”, whereas Kelvin stated that “there exists no thermody-
namic process whose only effect is to extract heat from a reservoir and to transform
it entirely into work.” Thus, although heat and work are equivalent forms, they are
not completely interconvertible. Other abstract statements of the second law, like
the one by Caratheodory, have also been formulated, although it has less obvious
connection to physical phenomena. The SLT leads us to the thermodynamic concept
of entropy10 (S), which is defined to be a state function of the extensive parameters
of a system such that A. their values maximize S consistent with certain external
constraints imposed on the system and B. the entropy of a composite system is addi-
tive over its constituent subsystems. The former is sometimes called the maximum
entropy principle and it can be shown to be equivalent to the Clausius and Kelvin
statements. Let us treat this principle to be the primary statement of the second law.
Mathematically, the second law can be expressed as

d S ≥ 0. (2.8)

If a system undergoes an infinitesimal reversible change of state, then we have

d S = δQ

T
. (2.9)

9A spontaneous process is onewhich can occur in an isolated system, or between interacting systems
at a finite rate without effects on, or help from, or interaction with, any other part of the Universe.
10In physical terms, entropy can be interpreted as the minimum number of bits needed to specify
completely the state of a physical system.
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Here, δQ is the quantity of heat received by the system and T is the absolute temper-
ature. Thus, the entropy of an adiabatic system can never decrease and is a constant
iff all processes are reversible.

2.2.4 Absolute Entropy: The Third Law

In 1906, W. Nernst proposed that “the entropy of a pure perfect crystal can be taken
to be zero at absolute zero temperature.” Later, this proposition was generalized
as Nernst–Simon statement of the third law of thermodynamics as “the change in
entropy that results from any isothermal11 reversible transformation of a condensed
system approaches zero as the temperature approaches zero.” Mathematically, the
Nernst–Simon statement is written as

lim
T →0

(�S)T = 0. (2.10)

Alternatively, the statement implies that, at absolute zero, the entropy of any sys-
tem in thermal equilibrium must approach a unique constant , called the absolute
entropy. This observation leads to the Planck statement of the third law—“As T → 0,
the entropy of any system in equilibrium approaches a constant value that is inde-
pendent of all other thermodynamic variables.” Further, the third law can also be
interpreted as unattainability theorem—“there exists no process, no matter how ide-
alized, capable of reducing the temperature of any system to absolute zero in a finite
number of steps.”

2.3 Final Remarks

This chapter provides a concise overviewof the relevant concepts aswell the four laws
of thermodynamics. The ability of thermodynamics in explaining real phenomenon
provides strong evidence that the “real Universe” can be considered to be as logical
and precise as the “thermodynamic Universe.” The importance of thermodynamics
can be understood by the following quote of Einstein in his Autobiographical Notes,
“It is the only physical theory of universal content, concerning which I am convinced
that within the framework of the applicability of its basic concepts, it will never be
overthrown.”

11An isothermal process is one which occurs at a constant temperature.
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Chapter 3
Cosmological Thermodynamics

Abstract This chapter starts with the origin and a brief history of the application
of the thermodynamic laws to (static) black holes and its subsequent generalization
to Cosmology. The concepts of the generalized second law of thermodynamics, sur-
face gravity and its connection with Hawking temperature, and Bekenstein entropy
are carefully explained. Finally, the implications of the modified and the general-
ized Hawking temperatures are discussed with reference to the cosmological event
horizon.

Keywords Generalized second law · Bekenstein entropy · Hawking temperature
Holographic principle · Surface gravity · Bekenstein system

3.1 Hawking Temperature and Bekenstein Entropy

The study of BHs during the last four decades has revealed evidence for an intimate
connection among the theories of quantum mechanics, gravitation, and thermody-
namics. This has led to the establishment of BH thermodynamics Bardeen et al.
(1973) which shows that, classically, certain laws of BH mechanics bear a remark-
able mathematical resemblance to the ordinary laws of thermodynamics applied to
a system containing a BH. Classically, BHs are perfect absorbers but they do not
emit anything. However, semiclassical description of BH physics indicates that a
BH behaves like a black body and emits thermal radiation.

Stephen Hawking (1972), used GR to deduce the horizon area theorem which
states that the total horizon area in a closed system containing BHs never decreases.
A year later, Jacob Bekenstein (1973) identified the striking equivalence between
Hawking’s area theorem and the SLT which states that the total entropy of a closed
system never decreases. He argued that the area of BHs strongly correlate with their
entropy. This resemblance as well as the idea of information loss when an object
falls into a BH led Bekenstein to propose that the entropy of a BH is proportional to
the area of its event horizon.1 Consequently, a generalized second law (GSL) should

1The event horizon of a BH is the boundary which marks the limits of the BH. Anything (even
light) that falls within the event horizon can never escape.
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hold which states that the entropy of matter located inside a BH plus a suitable
multiple of the area of the BH never decreases. However, Hawking was reluctant to
acknowledge that this observationwasmore than just amere coincidence. Hawking’s
argument was that a BH must have a temperature if it has entropy, and that implies
that it must radiate like a black body. But if nothing can escape from a BH, how can it
radiate? The Hawking–Bekenstein debate was finally settled when Hawking (1975)
discovered a mechanism by which BHs radiate. He found that the quantum nature
of particle creation allows a BH to radiate like a black body.

In mathematical terms, the entropy (henceforth Bekenstein entropy) and the tem-
perature (henceforth Hawking temperature) associated with the event horizon of a
BH are expressed as

SB H =
(

c3

G�

)
Ah

4
and TB H =

(
�c

kB

)
κh

2π
, (3.1)

where � is the reduced Planck’s constant and kB is the Boltzmann’s constant. κh

and Ah are the surface gravity2 on the horizon and the area bounded by the horizon
respectively. The first law of BH thermodynamics connects the Hawking tempera-
ture and the Bekenstein entropy with the mass of the BH. Since temperature and
entropy are manifestations of the spacetime geometry, i.e., the EFE, there could be a
speculation about some relationship between BH thermodynamics and the EFE. As
a matter of fact, Jacobson (1995) derived the Einstein equations from the first law of
BH thermodynamics for all local Rindler3 causal horizons, assuming the temperature
to be the Unruh temperature measured by an accelerated observer located just inside
the horizon. Subsequently, starting from the EFE, Padmanabhan (2002a, b) derived
the first law of BH thermodynamics on the horizon for a general static spherically
symmetric spacetime. For a detailed discussion on BH thermodynamics, interested
readers may see the article by R.M. Wald (2001) and the book by E. Poisson (2004).

3.2 Thermodynamics in Cosmology

Inspired by early proposals made by ’t Hooft (1993) and Susskind (1995), over
the last one and a half decades or so, cosmologists have attempted to generalize
this nice equivalence between the thermodynamic laws and the Einstein equations
in the context of Cosmology. Indeed, spacetimes admitting horizons exhibit a

2The surface gravity can be defined as the local gravitational field strength experienced by a test
particle at the surface of an astronomical body. This definition can be extended to include cosmo-
logical horizons as well. The surface gravity for a static or a stationary BH is a constant thanks
to the zeroth law of BH thermodynamics, while in the case of a dynamic horizon relevant in the
context of Cosmology, the surface gravity depends on the radius of the horizon as well as on its
time derivative.
3Rindler horizons and Unruh temperatures are generally associated with accelerated observers in
Minkowski spacetime of Special Theory of Relativity.
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resemblance to thermodynamic systems and the notions of temperature and entropy
can be associated with them, similar to the case of BHs. This analogy between ther-
modynamics and the gravitational dynamics of horizons is intriguing, nevertheless,
it is not understood very clearly yet. For a review, one may look into the articles by
T. Padmanabhan (2002a, 2005) published in Modern Physics Letters A (2002) and
Physics Reports (2005). A possible way to interpret these results is to hypothesize
that spacetime corresponds to an elastic solid and its equations of motion are anal-
ogous to those of elasticity. One would find a detailed discussion on this concept in
the first para of the paper by Paranjape et al. (2006).

The GSL was extended in the context of cosmological spacetimes by Davies
(1988) and Brustein (2000). Owing to the remarkable universality of the laws of
thermodynamics, it is generally presumed that those cosmological models which are
consistent with the laws of thermodynamics in addition to being supported by obser-
vational data, are more acceptable (physically realistic to be precise!) as compared to
those models which only pass the observational tests. Now, in a flat FLRW universe,
the apparent horizon always exists, while the event horizon is relevant only when
the cosmic fluid violates the SEC (i.e. when ρ + 3p < 0).4 Taking advantage of the
universal existence of the apparent horizon (and also due to a high degree of mathe-
matical simplicity!), its thermodynamic properties have been studied extensively in
the literature, including in a quasi-de Sitter geometry of inflationary universe (Frolov
and Kofman 2003).

Now, using the expressions in Eq. (3.1), the Bekenstein entropy and the Hawking
temperature on the apparent horizon RA of a FLRW universe can be evaluated as

SA = π R2
A and TA = |κA|

2π
= 1

2π RA
(3.2)

respectively, assuming � = kB = c = G = 1 without any loss of generality. In the
second equation above, the expression of surface gravity on the apparent horizon
given by

κA = −1

2

∂χ

∂ R

∣∣∣∣
R=RA

(3.3)

has been taken into account,which turns out to be− 1
RA

(
1 − ṘA

2H RA

)
. Note thatχ is the

scalar introduced in Eq. (1.30). This is basically the consequence of the formulation
of surface gravity by Hayward (1998) and Kodama (1980). Some remarks regarding
the Hawking temperature on the apparent horizon are in order. Recall that while
deriving the Friedman equation from the Clausius relation, one needs to evaluate
the amount of energy crossing the apparent horizon in an infinitesimal time interval.
The apparent horizon is assumed to be slowly evolving during the infinitesimal time
interval so that ṘA = 0. This leads to TA = 1

2π RA
. It is also worth noting that Cai

et al. (2009) established that the cosmological apparent horizon is associated with a

4A proof of this important fact can be found in Chap.3 of the book by V. Faraoni (2015).



32 3 Cosmological Thermodynamics

Hawking temperature having the same form as in Eq. (3.2) by applying the tunneling
approach proposed by Parikh and Wilczek.

Cai and Kim (2005) were the first to establish the equivalence of FLT and the
Friedmann equation on the apparent horizon in Einstein gravity as well as in the
Gauss–Bonnet and Lovelock gravity theories. Later, Akbar and Cai (2006) extended
the study to scalar-tensor gravity and f (R) gravity theories. Note that the entropy
of BHs does not obey the area formula in these higher order derivative gravity theo-
ries. Later, Gong and Wang (2007), by introducing a mass-like function having the
dimensions of energy and equal to the Misner–Sharp–Hernandez5 (MSH) mass on
the apparent horizon, the FLT was obtained from the Friedmann equation on the
apparent horizon in different theories of gravity, including in the Einstein, Lovelock,
nonlinear, and scalar-tensor theories.

The remaining portion of this chapterwill focus on the basic features of cosmologi-
cal thermodynamics (also goes by the names horizon thermodynamics and universal
thermodynamics) which are necessary for further investigations to be undertaken
within the scope of this book. Recall that, according to thermodynamics, an isolated
macroscopic physical system evolves toward thermodynamic equilibrium (TE) (con-
sistent with the constraints imposed on the system). Now if S be the total entropy of
the system, then the following restrictions should hold (‘dot’ denotes derivative w.r.t.
time)—(1) Ṡ ≥ 0 (i.e., the entropy function cannot decrease) and (2) S̈ < 0 (i.e., the
entropy function attains a maximum). Our task will be to test the validity of these
two laws for a local portion of the Universe assumed to be isolated by a cosmological
horizon6 and filled with some physically acceptable cosmic fluid. In order to meet
our purpose, the above two inequalities should be generalized as

Ṡh + Ṡ f h ≥ 0 (GSL), (3.4)

S̈h + S̈ f h < 0 (TE), (3.5)

where Sh and S f h , respectively, denote the entropy of the horizon and that of the fluid
inside it. Note that, while the former should be satisfied at every epoch of evolution,
the latter should hold at least during the final phases of evolution. Some researchers
prefer to evaluate the above derivatives with w.r.t. the parameter x = lna. The reader
may easily verify that the transformation from t-derivatives (‘dot’) to x-derivatives
(‘dash’) is described by the following equations:

S′ =
(
1

H

)
Ṡ and S′′ =

(
1

H

)
S̈ −

(
Ḣ

H 2

)
Ṡ. (3.6)

5The reader may go through Chap.3 of the book by V. Faraoni for a detailed account of the MSH
mass and its connection with the cosmological apparent horizon. This formalismwas extended from
BHs to the cosmological context by Bak and Rey (2000).
6We shallmostly consider the cosmological apparent and event horizons, however, arbitrary horizons
may also be considered whenever necessary or relevant.
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Now, the variations in the entropies of the horizon and the fluid inside it can be
determined by the Clausius relation

Thd Sh = δQh = −d Eh (3.7)

and the Gibbs relation
T f hd S f h = d E f + pdVh (3.8)

respectively. In Eqs. (3.7) and (3.8), d Eh is the amount of energy flowing across the
horizon, which, during the infinitesimal time interval dt , has the expression7

− d Eh = 4π R3
h(ρ + p)Hdt, (3.9)

E f = ρVh is the total energy of the fluid inside, Vh = 4
3π R3

h is the volume of the
fluid, and (Th , T f h) are the temperatures of the horizon and the fluid bounded by the
horizon, respectively. We shall assume that the temperature of the horizon is same
as that of the fluid inside it, i.e., Th = T f h . Finally, it should be noted that we shall
not deal with the zeroth and the third laws of thermodynamics because the former
is a trivial one and the latter is inconsistent with classical statistical mechanics and
require the prior establishment of quantum statistics in order that it could be properly
appreciated.

3.3 Modifications of Hawking Temperature

The FL on the cosmological apparent horizonwas first established by Bousso (2005).
Observe that from Eq. (3.9), we get,

− d E A = 4π R2
A(ρ + p)dt = ṘAdt, (3.10)

while the first order differential of SA is given by

d SA = (2π RA)ṘAdt. (3.11)

Noting that the term inside the parenthesis is the inverse of TA, we obtain the FL on
the apparent horizon

− d E A = TAd SA. (3.12)

In the following year, B. Wang, Y. Gong, and E. Abdalla published a paper (2006)
wherein they argued that the FL on the event horizon does not hold if one considers
the entropy and the temperature on it as

7The tensorial form of Eq. (3.9) is given by −d Eh = 4π R2
h Tabκ

aκbdt , where κμ is a null vector.
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SE = π R2
E and TE = 1

2π RE
(3.13)

respectively, in analogy to the expressions considered for the apparent horizon. In
other words, the only modification they did was to replace the subscript ′ A′ on the
thermodynamic quantities with ′E ′. Following the same analogy, they replaced the
first part of Eq. (3.10) with

− d EE = 4π R2
E (ρ + p)dt. (3.14)

Moreover, it was argued that the FL might only be applicable to variations between
nearby states of local TE, whereas the event horizon reflects the global properties of
spacetimes. Now, although the holographic principle might be speculated to support
the definition of SE proposed in Eq. (3.13), but one must keep in mind that the
Hawking temperature on a horizon is obtained by calculating the surface gravity on
that horizon. Consequently, the expression for TE can not be written in analogy with
the expression for TA. Rather, it should be obtained from the definition of theHawking
temperature in terms of the surface gravity on the horizon. This important rectification
was provided by Chakraborty (2012) and he later coined the term modified Hawking
temperature (MHT) to describe the modification to the original form of the Hawking
temperature (inverse of the horizon radius divided by 2π ) which is given by

TE = |κE |
2π

= RE

2π R2
A

(3.15)

with

κE = −1

2

∂χ

∂ R

∣∣∣∣
R=RE

. (3.16)

In a flat FLRW universe, Eq. (3.15) reduces to

TE = H 2RE

2π
. (3.17)

Moreover, in a flat FLRWuniverse, the ratio of the temperatures of event and apparent
horizons is equal the ratio of their radii, i.e.,

TE

TA
= RE

RA
. (3.18)

Now, despite this remarkable modification, it is surprising to learn that the FL does
not hold true on the cosmological event horizon except in a few cases as shown by
Chakraborty (2012). He demonstrated that the FL holds on the event horizon for
a perfect fluid with a constant EoS p = wρ (w < − 1

3 ), while it is violated in the
noninteracting HDEmodel with RE as the IR cutoff. The reason for this discrepancy
can be somewhat understood by the following arguments. Bousso (2002) showed that
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the apparent horizon forms the largest surface whose interior can be considered as
a Bekenstein system.8 The Bekenstein entropy-mass bound is satisfied in the region
lying outside the surface of the apparent horizon but the Bekenstein entropy-area
bound is violated in that region, thus rendering it to be a non-Bekenstein system.
In other words, the entropy-area bound is saturated at the apparent horizon and the
portion of the flat FLRW Universe bounded by the cosmological event horizon may
not always form a Bekenstein system owing to the fact the event horizon may not
always be contained within the apparent horizon. Consequently, the entropy on the
event horizon may not always equal π R2

E .
With a view to rescue the FLT on the event horizon, Chakraborty and Saha (2014)

further modified theMHT bymultiplying a time-dependent dimensionless parameter
α to it. This new formofHawking temperaturewill be called the generalized Hawking
temperature (GHT) and it can be mathematically represented as

T (g)

E = αTE = αRE

2π R2
A

. (3.19)

It is an easy exercise to verify that the FL will be satisfied on the cosmological event
horizon if the parameter α is interpreted as the ratio of the velocity of the apparent
horizon to that of the event horizon. Thus,

α =
(

ṘA
RA

)
(

ṘE
RE

) . (3.20)

Nevertheless, this approach to establish the FLT on the event horizon may not be
physically reasonable as such due to the uncertainty in identifying the Universe
bounded by an event horizon as a Bekenstein system. The correct approach would be
to redefine the entropy on the event horizon so that this new expression for entropy
together with the MHT satisfies the Clausius relation on the horizon. However, such
a redefined entropy is not available yet and we hope that future endeavours in this
field may provide us with such an expression, consistent with the thermodynamics
of the event horizon.

3.4 Final Remarks

This chapter underlines the basic elements of cosmological thermodynamics and
introduces the concepts of MHT and GHT. Chapters4–6, respectively, deal with
certain applications of the subject in studying the thermodynamic viability of some

8ABekenstein system is onewhich satisfies (in natural units) theBekenstein entropy-mass bound S ≤
2π RE as well as the Bekenstein entropy-area bound S ≤ A

4 , where S, R, E , and A are respectively
the entropy, radius, energy, and area of the system.
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well-known cosmological models, particularly, the flat, homogeneous and isotropic
FLRW model, the gravitationally induced particle creation model, and the isotropic
but inhomogeneous Lemaitre–Tolman–Bondi model. The final chapter enlists few
(of many) shortcomings and also discusses some prospective open issues within this
(rapidly) emerging research field.
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Chapter 4
Cosmological Thermodynamics
in FLRWModel

Abstract This chapter is concerned with a thermodynamic analysis on a flat FLRW
universe admitting both apparent and event horizons. As the physical system within
the cosmological apparent horizon forms a Bekenstein system, so we have consid-
ered the Bekenstein entropy and the Hawking temperature on the apparent horizon.
However, since the system bounded by the event horizon may not be a Bekenstein
system, we have assumed the Clausius relation on the event horizon to determine its
entropy variation.Moreover, we have assumed themodifiedHawking temperature on
the event horizon. Three types of dark energy cosmic fluids have been considered—a
perfect fluid with a constant equation of state, an interacting holographic dark energy,
and a Chaplygin gas.

Keywords Apparent horizon · Event horizon · Gibbs equation · Modified
Hawking temperature · Generalized Hawking temperature · Holographic dark
energy · Modified Chaplygin gas

This chapter undertakes a thorough investigation of the viability of cosmological
thermodynamics, more precisely, of the GSL and TE, in the flat FLRWmodel of the
Universe, admitting both apparent and event horizons. Three types of DE fluids are
considered for the purpose, a perfect DE fluid with a constant EoS, the interacting
HDE, and the MCG. The apparent horizon is endowed with the Bekenstein entropy
and the Hawking temperature. However, on the event horizon, we assume that the
Clausius relation is satisfied so that we can make use of Eqs. (3.7) and (3.9) to deter-
mine its entropy variation. The temperature on the horizon is considered to be the
MHT. As the thermodynamic system bounded by the event horizon may or may not
form a Bekenstein system, so we do not resort to the Bekenstein entropy-GHT for-
malism for studying cosmological thermodynamics on the event horizon. The reader
should note that we closely follow the approach adopted by Saha and Chakraborty
(2012, 2014), although, we write most of our equations in more convenient forms,
and consequently, our deductions seem to be much simpler and easy to anticipate.
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4.1 GSL and TE: General Formulation

In this section, we derive general expressions for the total entropy of our thermody-
namic system, namely, the (local) Universe bounded by a horizon (either an apparent
or an event horizon), and calculate their first and second order time derivatives in
order to test the validity of the GSL and TE respectively. TheMHTwill be employed
in the case of an event horizon. Moreover, we assume that the temperatures of the
horizon and the fluid inside are equal. We simplify our calculations by assuming
units where 8π , G, c are unity. The total entropy of the thermodynamic system on
the horizon Rh will be denoted by STh (i.e., STh = Sh + S f h), where h → A, E .

First of all, we evaluate the velocity and the acceleration of the apparent horizon
which are given by

ṘA = − Ḣ

H 2
= 3

2

(
1 + p

ρ

)
(4.1)

and

R̈A = 9H

2

(
1 + p

ρ

) (
p

ρ
− ṗ

ρ̇

)
(4.2)

respectively. Next, we evaluate the velocity1 and the acceleration of the event
horizon as

ṘE = HRE − 1 (4.3)

and

R̈E = −1

2
H 2RE

(
1 + 3

p

ρ

)
− H (4.4)

respectively.
Now, the first and the second order time derivatives of the entropy on the apparent

horizon are evaluated as

ṠA = 1

4
RA ṘA

= 3

8H

(
1 + p

ρ

)
(4.5)

and

S̈A = 1

4
(Ṙ2

A + RA R̈A)

= 9

16

(
1 + p

ρ

)[(
1 + p

ρ

)
+ 2

(
p

ρ
− ṗ

ρ̇

)]
(4.6)

1The velocity of the event horizon is obtained by applying the Leibniz’s rule for differentiation
under the integral sign to Eq. (1.26).



4.1 GSL and TE: General Formulation 41

respectively. The corresponding derivatives on the event horizon (the entropy
variation of the horizon being given by Eqs. (3.7) and (3.9)) are derived as

ṠE = 3

8
HR2

E

(
1 + p

ρ

)
(4.7)

and

S̈E = 3

8
H 2RE

(
1 + p

ρ

) [(
1 + p

ρ

)
− 3

(
1 + ṗ

ρ̇

)
+ 2

(
RE − 1

H

)]
(4.8)

respectively, where we have used the MHT given by Eq. (3.15).
Finally, from Eq. (3.8), the general expressions for the first and the second order

time derivatives of the entropy of the fluid bounded by a horizon Rh become

Ṡ f h = 3H 2R2
h

2T f h

(
1 + p

ρ

) (
Ṙh − HRh

)
(4.9)

and

S̈ f h = 3H 2Rh

2T f h

(
1 + p

ρ

) [(
2Ṙh − 3HRh

) (
Ṙh − HRh

)

+ Rh
{
R̈h − (

Rh Ḣ + Ṙh H
)}]

(4.10)

respectively, where we have used the energy conservation equation given by
Eq. (1.15).

Therefore, assuming TA = T f A, the first and the second time derivatives of the
total entropy on the apparent horizon RA are evaluated as

ṠT A = ṠA + Ṡ f A

= 9

16H

(
1 + p

ρ

)2

(4.11)

and

S̈T A = S̈A + S̈ f A

= 9

16

(
1 + p

ρ

) [(
1 + 6

p

ρ

)(
1 + p

ρ

)
−

(
5 + 3

p

ρ

)
ṗ

ρ̇

]
(4.12)

respectively. It is clear from Eq. (4.11) that the GSL holds on the apparent horizon
irrespective of the nature of the fluid.

Again, assuming that theMHT TE = T f E , the first and the second time derivatives
of the total entropy on the event horizon RE are obtained as



42 4 Cosmological Thermodynamics in FLRWModel

ṠT E = ṠE + Ṡ f E

= 3

8
RE (HRE − 1)

(
1 + p

ρ

)
(4.13)

and

S̈T E = S̈E + S̈ f E

= −3

8
HRE (HRE − 1)

(
1 + p

ρ

)[
1

HRE
+ 3

2

(
1 + p

ρ

HRE − 1

)

− 1

2

(
1 + 3

p

ρ
− 6

ṗ

ρ̇

)]
(4.14)

respectively.

4.2 GSL and TE: Model Specific Formulation

We now undertake a comparative study on the apparent and event horizons for three
well-known DE fluids, namely, a perfect fluid having a constant EoS w < − 1

3 , the
interacting HDE model with the event horizon as the IR cut-off and endowed with
the standard interaction term Q = 3b2Hρ, and the MCG, in the context of cosmo-
logical thermodynamics. Recall that the fluid of the first kind is further classified as
quintessence (−1 < w < − 1

3 ), phantom (w < −1), and the cosmological constant
(w = −1).

4.2.1 Perfect Fluid with a Constant EoS w, w < −1
3

Apparent Horizon

Equations (4.11) and (4.12) become

ṠT A = 9

16H
(1 + w)2 (4.15)

and

S̈T A = 9

16
(1 + w)[(1 + w)2 + 2w2] (4.16)

= 1

6
ṘA

[
Ṙ2
A + 2

(
ṘA − 3

2

)2
]

. (4.17)
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respectively. Thus, although the GSL holds true for all values of w, the TE is valid
only for a phantom fluid (w < −1) for which ṘA < 0.

Event Horizon

Equations (4.13) and (4.14) become

ṠT E = 3

8
RE (1 + w)(HRE − 1) (4.18)

= RE

4
ṘA ṘE , (4.19)

and

S̈T E = −3

8
HRE (1 + w)(HRE − 1)

[
1

HRE
+ 3

2

(
1 + w

HRE − 1

)

− 1

2
(1 − 3w)

]
(4.20)

= −1

4
ṘA ṘE

[
ṘA

ṘE
(1 + ṘE )2 − (1 + 2ṘE )

]
. (4.21)

respectively. It can be readily seen that the GSL is trivially true for a cosmological
constant because ṘA = 0 in that case.However, theGSL is satisfied for a quintessence
fluid (ṘA > 0) if ṘE ≥ 0 (i.e., RE ≥ RA) while it holds for a phantom fluid (ṘA < 0)
if ṘE ≤ 0 (i.e., RE ≤ RA). In other words, the GSL holds goodwhenever the product
of the two velocities are non-negative.

As far as the validity of TE is concerned, the above analysis suggests that the
expression inside the square bracket in Eq. (4.20) must be positive. Now, for a
quintessence fluid, ṘA > 0, so the GSL implies that ṘE must be positive,2 i.e.,
RE
RA

> 1. Hence, the TE holds in this case if3 1 < RE
RA

≤ 4
1−3w . For a phantom fluid,

ṘA < 0, so ṘE < 0 in accordance with the GSL which in turn implies that RE
RA

< 1.

So, in this case, the TE is valid if4 RE
RA

< min
{
1, 2

1−3w

}
. The reader must note that the

inequalities obtained here are merely sufficient conditions and are not at all neces-
sary for the attainment of TE. These inequalities can be easily realized from Fig. 4.1
where we show5 the variation of S̈T E against RE

RA
for w = −0.4, 0.9 (quintessence)

and w = −1.5 (phantom).

2Note that if either or both the horizons are static or if the fluid is equivalent to a cosmological
constant, then the GSL holds but the TE does not.
3The right inequality is obtained by taking into account the fact that the sum of the last two terms
inside the square bracket in Eq. (4.20) must be positive.
4The second inequality inside the braces is obtained by taking into account the fact that the sum of
the first and the last terms inside the square bracket in Eq. (4.20) must be positive.
5All the figures in this chapter have been plotted with the help of Maple plotting software.
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Fig. 4.1 The variation of
S̈T E against RE

RA
for

w = −0.4 (solid line),
w = −0.9 (dashed curve),
w = −1.5 (dotted curve).
The inequalities respectively
become 1 < RE

RA
≤ 1.8,

1 < RE
RA

≤ 1.08, and
RE
RA

< min{1, 0.36} = 0.36

4.2.2 Holographic Dark Energy

In an interacting HDE model with event horizon as the IR cut-off and an interaction
term Q = 3b2Hρ, the velocities of the apparent and the event horizons become

ṘA = 3

2

[
(1 − b2) − Ωd

3

(
1 + 2

c

√
Ωd

)]
(4.22)

and
ṘE = c√

Ωd
− 1 (4.23)

respectively.

Apparent Horizon

Equations (4.11) and (4.12) are evaluated as (recall that w = wdΩd here)

ṠT A = 9

16H

[
(1 − b2) − Ωd

3

(
1 + 2

c

√
Ωd

)]2

(4.24)

and

S̈T A = 1

4
ṘA

[
ṘA(4ṘA − 5) − 3(1 + ṘA)c

2
s

]
(4.25)

respectively. The reader should note that the r.h.s. of Eq. (4.25) is the general
form for S̈T A when expressed in terms of the horizon velocities and the adi-
abatic sound speed6 c2s . Now, as c2s is always positive, so the system will be

6At the level of inhomogeneities, the adiabatic sound speed of a cosmological fluid relates the
pressure and density perturbations as c2s = ∂p

∂ρ
, which, in our case, reduces to c2s = ṗ

ρ̇
. It is generally
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Fig. 4.2 The variation of
S̈T A against ṘA for
c2s = 0, 0.25, 0.5, 0.75, 1

in TE either if 0 < ṘA < 1.25 or if ṘA ≤ −1. Note that these inequalities con-
strain the parameter b2 as 1

6

[
1 − 2Ωd

(
1 + 2

c

√
Ωd

)]
< b2 < 1 − Ωd

3

(
1 + 2

c

√
Ωd

)
and b2 ≥ 1

3

[
5 − Ωd

(
1 + 2

c

√
Ωd

)]
respectively. Again, these are merely sufficient

conditions and are not at all necessary for the attainment of TE. To demonstrate this
fact, we show, in Fig. 4.2, the variation of S̈T A against ṘA for five different values of
c2s . Finally, we see that, if the apparent horizon is static, i.e., ṘA = 0, then the GSL
is satisfied but the TE is not.

Event Horizon:

Equations (4.13) and (4.14) are evaluated as

ṠT E = 3

8

(
c

H
√

Ωd

) (
c√
Ωd

− 1

)
(1 + wdΩd) (4.26)

= RE

4
ṘA ṘE , (4.27)

and

S̈T E = −1

4
ṘA ṘE

[
ṘA

ṘE
(1 + ṘE )2 + (1 + ṘE )

{
3(1 + c2s ) − 2ṘA − 2

}
+ 1

]
(4.28)

respectively. Note that the r.h.s. of Eq. (4.28) is the general form for S̈T E when
expressed in terms of the horizon velocities and the adiabatic sound speed. This equa-
tion will reduce to Eq. (4.21) when the EoS parameter w is assumed to be constant.
Now, from Eq. (4.27), we find that the GSL holds if the product ṘA ṘE ≥ 0, i.e., if the
velocities of both the horizons are either non-negative or non-positive. The system
will attain TE if 0 < ṘA ≤ 3

2 (1 + c2s ) − 1 ≤ 2. This inequality is obtained by assum-

restricted as 0 ≤ c2s ≤ 1. The lower bound does not allow DE fluctuations to grow exponentially,
thus preventing unphysical situations, while the upper bound prevents propagation at superluminal
speeds.
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ing both ṘA and ṘE to be positive, which is one of the possibilities ensured by the
GSL. Consequently, the parameter b2 is constrained as− 1

3

[
1 + Ωd

(
1 + 2

c

√
Ωd

)] ≤
b2 < 1 − Ωd

3

(
1 + 2

c

√
Ωd

)
. The other case, where both the velocities are negative,

does not lead to any realistic physical restriction for the attainment of TE as far as
the form of Eq. (4.28) is concerned. Finally, note that if either or both the horizons
are static, then the GSL holds but the TE is not attained.

4.2.3 Modified Chaplygin Gas

In the MCG model, the energy conservation Eq. (1.9) gives

ρ =
[

B

1 + γ
+ C

aμ

] 1
1+n

, (4.29)

where μ = 3(1 + n)(1 + γ ). Then, the radius and the velocity of the apparent hori-
zon are evaluated as

RA = R0

[
aμ

Baμ + C(1 + γ )

] 1
2(1+n)

(4.30)

and

ṘA = 3

2
C(1 + γ )2

[
1

Baμ + C(1 + γ )

]
(4.31)

respectively, where a is the scale factor, C is the constant of integration, and
R0 = √

3(1 + γ )
1

2(1+n) . The radius and the velocity of the event horizon are eval-
uated in terms of the hypergeometric 2F1 function as

RE = R1 2F1

[
1

2(1 + n)
,
1

μ
, 1 + 1

μ
,

−C

Baμ

]
(4.32)

and

ṘE = R1
1

2(1 + n)(1 + 1
μ
)

(
C

B

) (
H

aμ

)
2F1

[
1 + 1

2(1 + n)
, 1 + 1

μ
, 2 + 1

μ
,

−C

Baμ

]

(4.33)
respectively, with R1 = R0

B
1

2(1+n)

. Also, the square of the adiabatic sound speed is given

by

c2s = ∂p

∂ρ
= γ0 − 2

3
n ṘA, (4.34)

where γ0 = γ + n(1 + γ ) > 0. It must be noted that the restriction 0 ≤ c2s ≤ 1 con-
strains ṘA as
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3

2n
{γ (1 + n) + n − 1} ≤ ṘA ≤ 3

2n
{γ (1 + n) + n}. (4.35)

Apparent Horizon:

Equations (4.11) and (4.12) reduce to

ṠT A = 9

16H

[
C(1 + γ )

Baμ + C

]2

(4.36)

and

S̈T A = 1

4
ṘA

[
ṘA{(4 + 2n)ṘA − (1 + n)(1 + 3γ ) − 4} − 3{γ + n(1 + γ )}] (4.37)

respectively. We find that the TE is attained either if 0 < ṘA ≤ 4+(1+n)(1+3γ )

4+2n and

γ > max
{
− 5+n

3(1+n)
,− n

1+n

}
or if ṘA < min

{
0,− 3n+3γ (1+n)

4+(1+n)(1+3γ )

}
for any value of γ .

These inequalities are illustrated in Fig. 4.3 where we show the variation of S̈T A

against ṘA for n = 9
2 .We have chosen the values of γ as 1

3 and− 1
2 in accordancewith

the constraint imposed by the second inequality obtained above. However, it is very
important to note that, the choices of γ and n should be such that these inequalities
are consistent with the admissible values of ṘA guaranteed by Eq. (4.35). Finally, if
the apparent horizon is static, then, although the GSL is satisfied, the TE does not
hold.

Event Horizon:

Equations (4.13) and (4.14) reduce to

ṠT E = 3

8

(
1 + γ − B

ρ1+n

)
RE (HRE − 1) (4.38)

= RE

4
ṘA ṘE , (4.39)

and

S̈T E = −1

4
ṘA ṘE

[
ṘA

ṘE
(1 + ṘE )2 + (1 + ṘE )

{
(1 + n)(3(1 + γ ) − 2ṘA) − 2

} + 1

]
.

(4.40)
respectively. As in the previous two cases, in this case also, the GSL holds when-
ever both the horizons have either non-negative velocities or non-positive velocities.
Furthermore, after careful observation, the reader should agree that the system is

consistent with TE either if ṘE > 0 and ṘA > max
{
0, 3(1+γ )(1+n)−2

2(1+n)

}
or if ṘE ≤

−1 and ṘA < min
{
0, 3(1+γ )(1+n)−2

2(1+n)

}
. The TE is also achieved for −1 < ṘE < 0
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Fig. 4.3 The variation of S̈T A against ṘA for n = 9
2 . This choice of n reduces the second inequality

to γ > max{−0.57,−0.81}, i.e., γ > −0.57. This justifies our choices of γ = 1
3 (solid curve) and

γ = − 1
2 (dashed curve). These choices of γ , respectively, lead to the inequalities 0 < ṘA ≤ 1.154

and 0 < ṘA ≤ 0.096 for which TE is attained. In order to illustrate the constraint imposed by the
third inequality, we consider γ = 1

3 (solid curve) and γ = −1 (dotted curve). These choices of γ

reduce the inequality to ṘA < −1.27 and ṘA < −0.43 respectively. The reader should, however,
always keep in mind that these constraints should be consistent with the bounds imposed on ṘA by
c2s as obtained in Eq. (4.35)

provided 3(1+γ )(1+n)−2
2(1+n)

is negative. However, it should again be noted that the con-

straints obtained on ṘA should be consistent with the bounds in Eq. (4.35). Finally,
if either or both the horizons are static, then the GSL holds but TE does not.

4.3 Chapter Summary

In this chapter, we considered a flat FLRW universe and examined the viability of
the GSL and the TE for the Universe admitting both apparent and event horizons. As
the physical system within the cosmological apparent horizon forms a Bekenstein
system, so we considered the Bekenstein entropy and the Hawking temperature on
the horizon. However, owing to the fact that the system bounded by the event horizon
may not be a Bekenstein system, we assumed the Clausius relation on the horizon to
determine its entropy variation. In other words, we assumed that the FLT is satisfied
on the event horizon. Note that we considered the MHT on the event horizon. Next,
for the cosmic fluid, we considered three well-known and extensively studied DE
fluids, namely, fluid 1: a perfect fluid having a constant EoS w (w < − 1

3 ), fluid 2: an
interacting HDE fluid (with the event horizon as the IR cut-off), and fluid 3: MCG.
We used the Gibbs relation to determine variation of the fluid entropy. Consequently,
we determined the differential of the total entropy of the system as well as the first
and second time derivatives of the total entropy. In doing so, we assumed that the
temperature of the horizon is equal to that of the fluid. Finally, wemade a comparative
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Table 4.1 Viability of GSL and TE for different fluid types in the case of an apparent horizon

Fluid type GSL Equilibrium

Fluid 1 Always holds If the fluid is of the phantom type, i.e., w < −1, ṘA < 0

Fluid 2 Always holds Either if 0 < ṘA < 1.25 or if ṘA ≤ −1
Alternatively, either if 1

6 (1 − 2m) < b2 < 1 − m
3 or if

b2 ≥ 1
3 (5 − m),

where m = Ωd

(
1 + 2

c

√
Ωd

)

Fluid 3 Always holds Either if 0 < ṘA ≤ 4+(1+n)(1+3γ )
4+2n and

γ > max
{
− 5+n

3(1+n)
,− n

1+n

}

or if ṘA < min
{
0,− 3n+3γ (1+n)

4+(1+n)(1+3γ )

}
for any γ

The above constraints should also be consistent with
3
2n {γ (1 + n) + n − 1} ≤ ṘA ≤ 3

2n {γ (1 + n) + n}

Table 4.2 Viability of GSL and TE for different fluid types in the case of an event horizon

Fluid type GSL Equilibrium

Fluid 1 If ṘA ṘE ≥ 0 Attained for a quintessence fluid if 1 < RE
RA

≤ 4
1−3w

Attained for a phantom fluid if RE
RA

< min

{
1, 2

1−3w

}

Fluid 2 If ṘA ṘE ≥ 0 Attained if 0 < ṘA ≤ 3
2 (1 + c2s ) − 1 ≤ 2

Alternatively, attained if − 1
3 (1 + m) ≤ b2 < 1 − m

3 ,

where m = Ωd

(
1 + 2

c

√
Ωd

)

Fluid 3 If ṘA ṘE ≥ 0 Attained either if ṘE > 0 and ṘA > max

{
0, 3(1+γ )(1+n)−2

2(1+n)

}

or if ṘE ≤ −1 and ṘA < min
{
0, 3(1+γ )(1+n)−2

2(1+n)

}
Also attained if −1 < ṘE < 0 provided 3(1+γ )(1+n)−2

2(1+n)
is

negative
The above constraints should also be consistent with
3
2n {γ (1 + n) + n − 1} ≤ ṘA ≤ 3

2n {γ (1 + n) + n}

study of cosmological thermodynamics on both the horizons and obtained several
physical restrictions either on the horizon velocities or on the model parameters so
that the GSL and TE are viable in each model. The reader should, however, note that
such constraints are sufficient only and are not at all necessary for the viability of the
GSL and the TE. In Tables4.1 and 4.2, respectively, we tabulate the results obtained
for the apparent and event horizons.
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Chapter 5
Cosmological Thermodynamics in the
Gravitationally Induced Particle
Creation Mechanism

Abstract This chapter deals with a thermodynamic analysis on the apparent horizon
of a spatially flat Friedmann–Lemaitre–Robertson–Walker universe endowed with
the gravitationally induced adiabatic particle creation described by an arbitrary par-
ticle creation rate. Assuming a perfect fluid with a (constrained) constant equation
of state, the validity of the first law, the generalized second law, and thermodynamic
equilibrium have been tested. It is evident that our analysis may help to constrain
various parameters of phenomenological particle creation models that have been
considered in recent literature.

Keywords Dissipative process · Nonequilibrium thermodynamics · Eckart
theory · Israel–Stewart theory · Bulk viscosity · Creation pressure · Specific
entropy · Isentropic particle creation

5.1 Dissipative Processes and Nonequilibrium
Thermodynamics

Most cosmological models can be described with the consideration of a perfect fluid
alone.However, real fluids are dissipative and there aremanyprocesses inCosmology
which require a relativistic theory of dissipativefluids. Examples include several early
universe processes such as Grand Unified Theory (GUT) phase transition, reheating
at the end of inflation, neutrino decoupling from the cosmic plasma, nucleosynthesis,
and decoupling of photons from matter during recombination. One needs to employ
nonequilibrium or irreversible thermodynamics in order to model such processes.
Perhaps the most satisfactory approach to irreversible thermodynamics is via non
equilibrium kinetic theory although it is quite complicated.

Schrodinger (1939) pioneered the microscopic description of the gravitationally
induced particle creationmechanism (PCM) in an expanding universe. Three decades
later, Parker (1968, 1969) discussed this issue in the context of QFT in curved space-
time. Later on, Prigogine et al. (1989) provided a macroscopic description of PCM
induced by the gravitational field. Eckart (1940) was the first to extend the concept of
standard (alternative terms include classical and quasi-stationary) irreversible
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thermodynamics from Newtonian to relativistic fluids. Then, a variation of this the-
ory was put forward by Landau and Lifshitz (1958). Nevertheless, this first order
theory, like its Newtonian version, suffers from serious shortcomings associated with
stability and causality which, respectively, imply that, the equilibrium states in the
theory are unstable and dissipative perturbations propagate at infinite speeds. These
problems can be overcome by considering extended irreversible thermodynamics
in which the set required to describe non equilibrium states is extended to contain
the dissipative variables as well. Consequently, causal and stable behaviour can be
assured under a wide range of conditions due to this feature.Müller (1967) developed
a non-relativistic version of this extended thermodynamic theory, and independently,
Israel (1976) and Israel and Stewart (1979a, b) developed a relativistic one. Extended
irreversible thermodynamics also goes by the names causal thermodynamics, second
order theory (because the entropy contains terms of second order in the dissipative
variables unlike the first order theory), and transient thermodynamics. For a nice and
concise review, one may go through the lectures by Maartens (1996). A covariant
description of irreversible thermodynamics has also been developed and investigated
by Pavón et al. (1982) and later by Calvao et al. (1992). In this chapter, we discuss
the horizon thermodynamics of a flat FLRW universe in the perspective of the gravi-
tationally induced PCM. It is important to note that we do not need to resort to either
the first order Eckart theory or the second order Israel-Stewart theory for undertaking
such a study as long as we deal with adiabatic matter creation.

5.2 Thermodynamics of Adiabatic Open Systems with
Particle Creation

In this section, following Balfagon (2015), we discuss the thermodynamics of adia-
batic open systems with a varying particle number. As we shall see, the assumption
of adiabaticity brings in rich insights into the study of irreversible thermodynamics
in the perspective of PCM.

We shall consider a volume V having N number of particles. Since N is constant
for a closed system, so the FLT (Gibbs equation) for closed systems is expressed as

dE = dQ − pdV, (5.1)

where dQ is the amount of heat received by the system during time dt . Equation
(5.1) can be written in an alternative form as

d
(ρ

n

)
= dq − pd

(
1

n

)
, (5.2)

with ρ = E
V , n = N

V , dq = dQ
N .
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Equation (5.2) is applicable to open systems ifwe consider N to be timedependent.
Defining h = H̄

V as the enthalpy density, the Gibbs equation for open systems is
written as

d(ρV ) = dQ − pdV + h

n
d(nV ). (5.3)

In adiabatic systems, where dQ = 0, Eq. (5.3) reduces to

d(ρV ) + pdV − h

n
d(nV ) = 0. (5.4)

The heat transferred to the system in such a scenario is solely due to the change in the
particle number. As suggested by Prigogine (1988), in cosmological perspective, this
change corresponds to energy transfer from gravitational field to the created matter
constituents. Thus, matter creation acts as a source of internal energy. Expanding Eq.
(5.4) and dividing the equation by Vdt , we obtain

ρ̇ = h

n
ṅ. (5.5)

We shall write Eq. (5.4) in a different way so as to determine the condition which
must be satisfied by an adiabatic FLRW universe with a varying particle number.
Defining a comoving volume V = ka3, where a is the scale factor of the FLRW
Universe and k is a constant, it is evident that

ṅ

n
= Ṅ

N
− 3H, (5.6)

where H is the Hubble parameter and Ṅ
N can be interpreted as the rate of change

of the number of particles, which we shall denote by Γ . Substituting Eq. (5.6) into
(5.4), we obtain

ρ̇ + 3H(ρ + p) − Ṅ

N
(ρ + p) = 0. (5.7)

Useful information can be extracted by studying the variation in the entropy of the
Universe. As a matter of fact, variation in the entropy is possible due to two reasons
— either due to the variation in the heat content of the system or due to the variation
in the particle number. Thus, using the definition of entropy, we have

TdS = dQ + T
S

N
dN , (5.8)

where T is the temperature of the system and the ratio S
N is the specific entropy (or the

entropy per particle) σ . Assuming the Universe to be adiabatic, Eq. (5.8) becomes

dS = σdN . (5.9)
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Equation (5.9) looks simple but encapsulates two very important properties of an
adiabatic FLRW universe with a varying particle number—

• The SLT inhibits the annihilation of particles in the Universe. Dividing Eq. (5.9)
by dt , we obtain Ṡ = σ Ṅ . As σ > 0, so SLT (Ṡ ≥ 0) implies Ṅ ≥ 0.
• Specific entropy is constant. Consider the expression that defines specific entropy,
S = σN . The total derivative is given by dS = σdN + Ndσ which on comparing
with Eq. (5.9), one gets dσ = 0 which implies that σ is constant. Note that if σ is
the same constant for every particle, then the fluid is said to be isentropic.

5.3 PCM in Cosmology: A Natural Alternative for DE?

Having formulated the basic equations of nonequilibrium thermodynamics of an adi-
abatic open system with a varying particle number, we now discuss the implications
of PCM in the cosmological context. It is important to note that, in a homogeneous
and isotropic Universe, bulk viscous pressure1 is the sole dissipative phenomenon
that can occur. This kind of dissipation can arise if either the various components of
the cosmic substratum are coupled or the particle number is not conserved. As the
Universe expands, the cosmic subfluids cool at different rates since their internal EoS
are different. This phenomenon allows the cosmic system to depart from equilibrium.
As a consequence, a bulk viscous pressure of the whole cosmic medium is generated.
Various aspects of this phenomenon were investigated by Weinberg (1971), Strau-
mann (1976), Schweizer (1982), Udey and Israel (1982), and Zimdahl (1996). On
the other hand, nonconservation of particle number may be thought of as the effect of
quantum particle production from the gravitational field. As demonstrated later, this
bulk viscosity will be described by a backreaction term in the EFE whose negative
pressure may provide a self-sustained mechanism of cosmic acceleration. Indeed,
many phenomenological particle creation models exist in the literature and most, if
not all, can incorporate the late-time cosmic acceleration as well as provide a viable
alternative to the concordance ΛCDMmodel. Moreover, PCM is consistent with the
SLT.2 However, the exact form of the rate of particle creation (Γ ) is still unknown
and research in this particular area has largely been phenomenological. Fortunately,
there are certain guiding principles which provide us with a hint on the possible
forms of Γ during different evolutionary stages of the Universe. Gunzig et al. (1998)
argued that most of the particles were created when the Universe was very young.
To be precise, the following thermodynamic conditions can be imposed:

1The physical difference between particle creation and bulk viscosity was clarified in a paper by
Lima and Germano (1992).
2Balfagon (2015) verified that destruction of baryonic and/or DM particles is also consistent with
the SLT due to a particle exchange with DE.
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(a) The early inflation should begin with a maximal entropy production rate, thereby
implying a maximal particle creation rate. Thus, the Universe starts with a nonequi-
librium thermodynamic state and gradually transforms into an equilibrium state.
(b) A true3 vacuum for radiation should satisfy ρ → 0 as a → 0.
(c) The very early Universe should have Γ > H so that the created radiation behaves
as a thermalized heat bath. As the expansion proceeds, the rate of creation should
fall behind the rate of expansion.

The above conditions will be satisfied if the particle creation rate Γ is considered
to be proportional to the total energy density ρ (i.e., Γ ∝ H 2). For a clarification,
one may take a look at the paper by Gunzig et al. (1998).

A simple choice for Γ during the deceleration phase is Γ ∝ H . Finally, for the
late-time accelerating phase, the following thermodynamic requirements can be pre-
scribed:
(A) The late-time accelerated expansion should experience a minimal entropy pro-
duction rate, thereby implying a minimal particle creation rate. This allows the Uni-
verse to re-enter an era of nonequilibrium thermodynamics.
(B) The false vacuum at late-time should satisfy ρ → 0 as a → ∞.
(C) The rate of creation should be faster as compared to the rate of expansion.

One can easily verify that Γ ∝ 1
H will be consistent with the above requirements.

For a clarification, one may see the paper by Saha and Chakraborty (2015).
Although the above three choices for Γ are found to be consistent4 with the

evolutionary phases of the Universe, i.e., from inflation at early times to cosmic
acceleration at late times, these choices are not unique at all. In other words, the
choices of Γ , though thermodynamically motivated, are entirely phenomenological.
For instance, Γ ∝ Hk for several k > 2 (satisfying conditions (a), (b), and (c)) may
also explain the inflationary phase with better consistency as compared to Γ ∝ H 2.

5.4 PCM in Cosmology: Basic Equations

This section dealswith the basic equations that govern a flat FLRWuniverse endowed
with isentropic particle production.We start with the modified form of the EM tensor
Tμν of a relativistic fluid having bulk viscosity which is given by5

Tμν = (ρ + p + Π)uμuν + (p + Π)gμν, uμu
μ = −1, (5.10)

3QFT suggests that a false vacuum is one which exists at a local minimum of energy and hence it is
not truly stable, whereas a true vacuum exists at a global minimum and is stable. The readers may
see the books by Birrell and Davies (1982), Mukhanov and Winitzki (2007), and Parker and Toms
(2009) for further study on QFT.
4One may take a look at the paper by Chakraborty (2014) for an explicit demonstration.
5In this chapter, we assume without any loss of generality that the physical constants, namely, c,
G, �, and κB , as well as 8π are unity.
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where Π is the bulk viscous pressure6 associated with the creation of particles; all
other terms have their usual meanings. The Einstein’s equations Gμν = Tμν yield

3H 2 = ρ, (5.11)

Ḣ = −1

2
(ρ + p + Π). (5.12)

Here, the equilibrium pressure p and the energy density ρ are assumed to be related
by the EoS p = (γ − 1)ρ, with 2

3 ≤ γ ≤ 2. The lower bound on γ ensures that
the fluid does not become exotic, or equivalently, the SEC remains valid. The EM
conservation law becomes

ρ̇ + 3H(ρ + p + Π) = 0. (5.13)

We also have an equation accounting for the nonconservation of the number of
particles (given by Eq. (5.6))—

ṅ + 3Hn = nΓ. (5.14)

Now, using Eqs. (5.5), (5.13) and (5.14), we obtain

Π = − Γ

3H
(ρ + p), (5.15)

Note that this relation is valid only for an adiabatic (or isentropic) fluid. Thus, the
creation pressure Π is linearly related to the creation rate Γ under the condition of
adiabaticity. In other words, a dissipative fluid is equivalent to a perfect fluid with a
varying particle number. From Eqs. (5.11) and (5.12) and using Eq. (5.15), we get

Ḣ

H 2
= −3γ

2

(
1 − Γ

3H

)
(5.16)

The deceleration parameter q in this model takes the form

q = − Ḣ

H 2
− 1

= 3γ

2

(
1 − Γ

3H

)
− 1, (5.17)

and the effective EoS parameter for this model (denoted by wef f ) becomes

6Some authors prefer to use the notation pc interpreted as the creation pressure associated with the
creation of particles.
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wef f = p + Π

ρ

= γ

(
1 − Γ

3H

)
− 1, (5.18)

which, in a DE dominated universe, corresponds to quintessence era forΓ < 3H and
phantom era for Γ > 3H , while Γ = 3H corresponds to a cosmological constant.

5.5 PCM in Cosmology: Thermodynamic Analysis

In the subsections that follow, we study the validity of the FLT, the GSL, and TE
in the gravitationally induced particle creation scenario with an arbitrary particle
creation rateΓ , following theworkundertakenbySaha andMondal (2017, 2018).We
consider an apparent horizon as our thermodynamic boundary, since, unlike the event
horizon, a cosmic apparent horizon always exists. To be precise, thermodynamic
study of the gravitationally induced PCM scenario with other cosmological horizons
has not been undertaken yet. It is not even clear whether such studies will be viable.

Now, recall that the cosmological apparent horizon is located at RA = 1
H and its

first order derivative w.r.t. the cosmic time t can be evaluated as

ṘA = − Ḣ

H 2

= 3γ

2

(
1 − Γ

3H

)
. (5.19)

The (Bekenstein) entropy and (Hawking) temperature associated with the apparent
horizon are given by

SA =
(

c3

G�

)
4πR2

A

4
= 1

8
R2
A, (5.20)

and

TA =
(

�c

κB

)
1

2πRA
= 4

RA
(5.21)

respectively.
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5.5.1 First Law

Again, recall that the FLT on the apparent horizon is associated with the Clausius
relation

− dEA = TAdSA. (5.22)

The differential dEA of the amount of energy crossing the apparent horizon can be
evaluated as

− dEA = 1

2
R3
A(ρ + p + Π)Hdt

= 3γ

2

(
1 − Γ

3H

)
dt, (5.23)

while using the expressions of TA and SA given in Eqs. (5.20) and (5.21), the expres-
sion TAdSA becomes

TAdSA = 3γ

2

(
1 − Γ

3H

)
dt, (5.24)

where we have used relation (5.19).
We find that the FL holds on the apparent horizon. This provides us with a consis-

tency check for the applicability of horizon thermodynamics within the framework
of the gravitationally induced PCM in a flat FLRW universe.

5.5.2 Generalized Second Law: An Expression for Total
Entropy

The Gibbs equation for the fluid within the portion of the Universe bounded by the
apparent horizon can be written as

T f AdS f A = dE f + pdVA, (5.25)

where all the symbols have their usual meanings as discussed in Chap.3.
Now, the assumption of adiabaticity gives an evolution equation for the fluid

temperature T f A given by (see Eq. (11) and the second relation of Eq. (35) in the
paper by Zimdahl 2000)

Ṫ f A

T f A
= (Γ − 3H)

∂p

∂ρ
. (5.26)

Noting from Eq. (5.16) that Γ − 3H = 2
γ

(
Ḣ
H

)
, the above equation leads to the

integral

ln

(
T f A

T0

)
= 2(γ − 1)

γ

∫
dH

H
. (5.27)
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On integration, we obtain,

T f A = T0H
2(γ−1)

γ , (5.28)

where T0 is the constant of integration. Note that Γ does not appear explicitly in the
equation.

The first order time derivative of the fluid entropy can be obtained from
Eq. (5.25) as

Ṡ f A = 3γ

2

(
3γ

2
− 1

)
T−1
0

(
1 − Γ

3H

)
H

2(1−γ )

γ . (5.29)

Now, using Eqs. (5.21), (5.24), and (5.29), the time derivative of the total entropy
can be obtained as

ṠT A = 3γ

8H

(
1 − Γ

3H

) [
1 + 4

(
3γ

2
− 1

)
T−1
0 H

2
γ
−1

]
. (5.30)

It can be easily verified from the last equation that GSL holds if Γ ≤ 3H , or equiv-
alently, if Γ

3H ≤ 1. Therefore, the GSL is not consistent with the phantom fluid.
Furthermore, ST A is a constant of motion when Γ = 3H , i.e., when wef f = −1, a
cosmological constant.

Another remarkable fact is that Eq. (5.30) gives us an opportunity (by replacing
dt by dH

Ḣ
and using Eq. (5.16)) to derive an expression for the total entropy in terms

of the Hubble parameter H in the form

ST A = SA + S f A

= 1

8H 2

[
1 − 8

(
3γ
2 − 1
2
γ

− 1

)
T−1
0 H

2
γ

]
. (5.31)

The essence of Eq. (5.31) lies in the fact that the particle creation rate Γ does not
occur explicitly in the equation. Requiring that the total entropy be always positive,
we can, in principle, obtain a lower bound on T0 given by

T0 ≥ 8

(
3γ
2 − 1
2
γ

− 1

)
H

2
γ . (5.32)

Equation (5.32) implies that we can also impose a lower bound on the fluid temper-
ature T f A as

T f A ≥ 8

(
3γ
2 − 1
2
γ

− 1

)
H 2. (5.33)

For radiation era (i.e., γ = 4
3 ) and matter dominated era (i.e., γ = 1), the lower

bounds on T f A become T f A ≥ 16H 2 and T f A ≥ 4H 2 respectively.
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5.5.3 Thermodynamic Equilibrium

Case I: Γ is constant — If the particle creation rate Γ is assumed to be constant,
then the second order time derivative of the total entropy can be obtained from Eq.
(5.30) as

S̈T A = d2

dt2
(SA + S f A)

= 9γ 2

16

(
1 − Γ

3H

) (
1 − 2Γ

3H

) [
1 + 4

(
3γ

2
− 1

)
T−1
0 H

2
γ
−1

{
1 −

(
2

γ
− 1

)

×
(
1 − Γ

3H

1 − 2Γ
3H

)}]
. (5.34)

InTable 5.1,we have explored relevant subintervals ofΓ in order to test the validity of
TE. For our convenience, let us introduce the notations X and Y for the expressions(
1 − Γ

3H

) (
1 − 2Γ

3H

)
and

{
1 −

(
2
γ

− 1
) (

1− Γ
3H

1− 2Γ
3H

)}
respectively. From the table, it is

evident that TE holds unconditionally for 1
2 < Γ

3H < 1, while it never holds for
Γ
3H ≤ min

{
1
2 ,

2γ−2
3γ−2

}
and Γ

3H ≥ 1. Thus, in this case, TE is inconsistent with the

cosmological constant as well as the phantom fluid.
As discussed in Lima et al. (2014), from different observational sources, it has

beenwell established that the radiation phasewas followed by amatter dominated era
which eventually transited to a second de Sitter phase (or the late-time acceleration
phase). Accordingly, it can be expected that in the radiation dominated era, the
entropy increased but TE was not achieved. If this were not true, the Universe would
have attained a state of maximum entropy and would have stayed in it forever unless
acted upon by some “external agent.” However, it is a well known fact that the
production of particles was suppressed during the radiation phase, so in this model,
there would be no external agent to remove the system from TE. Therefore, our
present analysis leads us to conclude that during the radiation phase, if Γ is constant,
then Γ

3H ≤ 1
3 , or equivalently, Γ ≤ H .

Case II: Γ is not constant — For a variable Γ , Eq. (5.34) can be generalized as

Table 5.1 Equilibrium configuration for different subintervals of Γ

Subintervals of Γ Sign of X Sign of Y Equilibrium?

Γ ≤ 3H
2 Non-negative Non-negative for

Γ
3H <

2γ−2
3γ−2

Never for
Γ
3H ≤ min

{
1
2 ,

2γ−2
3γ−2

}

3H
2 < Γ < 3H Negative Positive Always

Γ ≥ 3H Non-negative Positive Never
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S̈T A = d2

dt2
(SA + S f A)

= 27γ 2

16

[{(
1 − Γ

3H

)2

−
(

4

27γ 2

)
Ḧ

H 3

}{
1 + 4

(
3γ

2
− 1

)
T−1
0 H

2
γ
−1

}

− 4

3

(
3γ

2
− 1

) (
2

γ
− 1

)
T−1
0 H

2
γ
−1

(
1 − Γ

3H

)2
]

, (5.35)

where we have substituted the value of Γ̇ evaluated as

Γ̇ = (6H − Γ )
Ḣ

H
+

(
2

γ

)
Ḧ

H
.

It is evident from Eq. (5.35) that it is quite difficult to perform an analysis similar to
the one that we have done in the previous case. The only definite conclusion which
can be made here is that TE holds if Ḧ ≥ 27

4 γ 2H 3
(
1 − Γ

3H

)2
.

5.6 Chapter Summary

This chapter dealt with a thermodynamic analysis on the apparent horizon of a
spatially flat FLRW universe with gravitationally induced adiabatic particle creation
described by an arbitrary particle creation rate Γ . Assuming a perfect fluid EoS
p = (γ − 1)ρ with 2

3 ≤ γ ≤ 2, the validity of the FL, the GSL, and TE have been
tested and the following results have been deduced:

• The FL holds on the apparent horizon without any restriction, i.e., irrespective of
Γ and γ .

• The GSL holds if Γ ≤ 3H , or equivalently, if Γ
3H ≤ 1, which implies that the GSL

is not consistent with the phantom fluid in a DE dominated universe.
• For a constant particle creation rate, TE always holds for 1

2 < Γ
3H < 1, while

it never holds for Γ
3H ≤ min

{
1
2 ,

2γ−2
3γ−2

}
and Γ

3H ≥ 1. Thus, in this case, TE is

inconsistent with the cosmological constant as well as the phantom fluid.
• When Γ is not constant, the only definite conclusion which can be made is that
TE holds if Ḧ ≥ 27

4 γ 2H 3
(
1 − Γ

3H

)2
, however, such a condition is by no means

necessary for the attainment of equilibrium.

Furthermore, an expression for the total entropy with no explicit dependence on Γ

has been found. Such an expression suggests that for Γ = 3H (corresponding to a
cosmological constant in a DE dominated universe), the total entropy is a constant
of motion. Also, imposing the condition that the total entropy is always positive,
a lower bound on the fluid temperature T f A has been obtained. It is evident that
T f A ≥ 16H 2 and T f A ≥ 4H 2 for radiation and matter dominated eras respectively.
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Our thermodynamic analysis also shows that if Γ is a constant, then Γ ≤ H during
the radiation phase.

Finally, it should be noted that our thermodynamic analysis may help to constrain
various parameters of phenomenological particle creation models that have been
considered in recent literature.7
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Chapter 6
Possible Applications in Inhomogeneous
Cosmological Models

Abstract This chapter deals with a speculative application of cosmological
thermodynamics in the inhomogeneous Lemaitre–Tolman–Bondi model. We have
assumed a (inhomogeneous) perfect fluid for the purpose. Starting from the basic
equations of themodel,we have defined the surface gravity at an arbitrary horizon and
obtained three equivalent expressions for it. Consequently, the Hawking temperature
has been obtained. Finally, by employing the Bekenstein entropy and the generalized
Hawking temperature at the horizon, we have undertaken a thermodynamic study of
the model.

Keywords Backreaction · LTB metric · Mass function · Unified first law
Bekenstein-Hawking formalism

6.1 Inhomogeneous Cosmological Models

Several observations suggest that there are inhomogeneities on scales less than 150
Mpc. The impact of these inhomogeneities on the expansion of the Universe can
be understood by studying other solutions of Einstein’s equations which do not
assume homogeneity. As stated in Bolejko et al. (2011), Inhomogeneous cosmolog-
ical models are defined as those exact solutions of the EFE that contain at least a
subclass of nonvacuum and nonstatic FLRW solutions as a limit. In short, they are
generalizations (or perturbations) of the homogeneous and isotropic FLRW mod-
els of the Universe. Contrary to the FLRW models, the physical quantities in these
inhomogeneous models vary from point to point in space. The assumption of homo-
geneity based on the philosophically motivated “Cosmological Principle” is simply
an approximation employed with a view to simplify equations. This approxima-
tion has worked very well so far but inhomogeneities should be taken into account
in order to analyze future and more precise observations. Further, local inhomo-
geneities have been anticipated as a reason for the observed accelerated expansion of
the Universe due to their so-called backreaction1 on the metric. The Universe can be

1For a discussion on backreaction in LTB model, one may take a look at the paper by Räsänen
(2004).
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effectively described by averaging out the inhomogeneities in order to obtain effec-
tive EFE which contain new terms together with the ones found in the homogeneous
case. It is also worthwhile to note that inhomogeneities as an alternative to DE was
first discussed by Pascual-Sanchez (1999). There exists many exact inhomogeneous
solutions to the Einstein equations, however, only Lemaitre–Tolman–Bondi (LTB)
models which are credited to Lemaitre (1933), Tolman (1934), and Bondi (1947),
Szekeres–Szafron models, and Stephani-Barnes models have been studied in the
context of Cosmology. Interested readers may go through the nice review by Bolejko
et al. (2011) in order to have a brief overview on these inhomogeneous cosmological
models. In this chapter, we devote our attention solely to the LTB model since it
provides an exact toy model for an inhomogeneous universe. It may not be realistic
as such due to its high degree of symmetry, however, it is interesting due to two rea-
sons, as pointed out by Enqvist (2008). Firstly, it can be easily tested for the effects
of inhomogeneities when fitting observational data without DE and secondly, due
to unambiguity in data fitting, the nature of the effective acceleration in the models
can be understood by comparing the averaged and exact models, after averaging out
the spatial degrees of freedom. Section6.2 chalks out the basic equations involved
in the LTB model, while the subsequent sections explore the possible applications
of horizon thermodynamics in such a model.

6.2 The Lemaitre–Tolman–Bondi Model: Basic Equations

We consider a spherically symmetric universe having radial inhomogeneities viewed
from our location at the center. Choosing comoving spatial coordinates with the
spatial origin as the symmetry center, the line element ormetric for theLTB spacetime
can be written as2

ds2 = −dt2 + R′2

1 + f (r)
dr2 + R2(dθ2 + sin2θdφ2), (6.1)

Here, R ≡ R(r, t) is the area radius and R′(r, t) = ∂R
∂r , while the curvature scalar

f (r) (corresponding to κ in FLRW model) determines whether the spacetime is
bounded, marginally bounded, unbounded according as −1 < f (r) < 0, f (r) = 0,
f (r) > 0 respectively. Note that the transformations

R(r, t) → a(t)r, f (r) → −kr2 (6.2)

gives us back the metric associated with the homogeneous FLRW Universe.

2Overdot and overdash refer to partial derivatives w.r.t. t and r respectively.
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If the Universe is assumed to contain a perfect fluid3 having EM tensor

Tμν = (ρ + p)uμuν + pgμν, (6.3)

whereρ(r, t) and p(r, t) are respectively the energydensity andpressure, and thefluid
4-velocity uμ is normalized by uμuν = −1, then by introducing the mass function
F(r, t) (related to the mass within the comoving radius r ) as

F(r, t) = R(Ṙ2 − f (r)), (6.4)

the EFE read (assuming G and c to be unity)

F ′(r,t)
R2R′ = 8πρ,

Ḟ(r,t)
R2 Ṙ

= −8πp.

}
(6.5)

Differentiating Eq. (6.4) w.r.t. t and using the second relation in Eq. (6.5), the evolu-
tion equation for R can be obtained as

2RR̈ + Ṙ2 + 8πpR2 = f (r). (6.6)

Further, the EM conservation relation, T ν
μ ;ν = 0, gives

ρ̇ + 3H(ρ + p) = 0
p′ = 0

}
(6.7)

where H = 1
3

(
Ṙ′
R′ + 2 Ṙ

R

)
is the (averaged) Hubble parameter in the LTB model.

At this point, the reader may note that the physical interpretation of perfect fluid
LTBmodels is quite difficult owing to the fact that p = p(t), but ρ = ρ(r, t), making
thesemodels very restrictive. This difficulty can be alleviated if the fluid is understood
to be an inhomogeneous dust (assumed as CDM) interacting with a homogeneous
DE fluid. Indeed, this approach proves to be useful to fit observations as demon-
strated by Sussman et al. (2005). On the contrary, dust sources with the LTB metric
are physically well motivated and are well suited to fit observations. Clarkson and
Maartens (2010) have provided a justification for these models using perturbative
analysis. However, Mishra and Singh (2014) showed that special types of density
voids constructed with these models are not consistent with the Bekenstein-Hawking

3Here, fluid is assumed to consist of successive shells leveled by r having a time-dependent local
density ρ. Also R(r, t) is interpreted as the location of the shell leveled by r at time t with initial
condition (by proper rescaling) R(r, 0) = r . Furthermore, the proper area of the mass shells is
determined by the quantity 4πR2(t, r).
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formalism. In the rest of this chapter, following the work of Saha and Chakraborty
(2015), we determine whether a perfect fluid LTB model endowed with Bekenstein
entropy and GHT at an arbitrary horizon Rh can be considered as a Bekenstein-
Hawking thermodynamic system or not.

6.3 Surface Gravity and Hawking Temperature in the LTB
Model

Let us recall the scalar quantity χ(r, t), which in the LTB model, becomes

χ(r, t) = hab∂a R∂b R

= 1 − F

R
. (6.8)

The surface gravity κh at an arbitrary horizon Rh is written as (h = det(hab))

κh = 1

2
√−h

∂a

(√−hhab∂b R
) ∣∣∣∣

R=Rh

, (6.9)

which for the present LTB model, can be evaluated as4

κh = −1

2

(
R̈ + Ṙ′ Ṙ

R′ − f ′

2R′

) ∣∣∣∣
R=Rh

. (6.10)

κh can also be written in terms of the mass function F and its partial derivatives in
the following equivalent forms:

κh = − 1

4R

(
Ḟ

Ṙ
+ F ′

R′ − 2F

R

) ∣∣∣∣
R=Rh

(6.11)

= − 1

4R

{
8πR2(ρ − p) − 2F

R

} ∣∣∣∣
R=Rh

. (6.12)

Then, the Hawking temperature on the horizon Rh given by

Th = |κh|
2π

. (6.13)

4We assume that (Ṙ)′ = (R′)..
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6.4 Thermodynamic Analysis with GHT

Since we are dealing with an inhomogeneous model of the Universe where physical
quantities are functions of both r and t , the definitions of the cosmological horizons
and the study of thermodynamics with them may not be as straightforward as we
have done in the homogeneous FLRWmodel. In other words, thermodynamic study
in the LTB model is much speculative. Keeping this in mind, we do not resort to
any particular horizon but choose an arbitrary horizon located at R = Rh which is
assumed to be endowed with the Bekenstein entropy and the GHT (introduced in
Eq. (3.19)). Thus, on the horizon Rh ,

Sh = πR2
h and T (g)

h = βTh (6.14)

with Th obtained from Eq. (6.13). Note that the (positive) dimensionless parameter
β is a function of both r and t . These are the most generalized expressions which
one may consider in horizon thermodynamics as far as our study is concerned.

In order to test the validity of the Clausius relation −dEh = T (g)
h dSh on the

horizon Rh , we need to determine the infinitesimal amount of energy flow across the
horizon, dEh , for which we employ the unified first law of thermodynamics (UFLT5)
given by

dEh = AhΨ + WdVh, (6.15)

where Ah = 4πR2
h , Vh = 4

3πR3
h are respectively the area and volume bounded by

the horizon,Ψ = ψadxa withψa = Ta
b∂b R + W∂a R as the energy flux, whileW =

− 1
2Trace(T ) is the work function. The trace is taken over the 2D space normal to

the spheres of symmetry. In our model, Ψ = − 1
2 (ρ + p)(Ṙdt − R′dr) and W =

1
2 (ρ − p), so,

dEh = 4πR2(ρR′dr − pṘdt)

∣∣∣∣
R=Rh

= 1

2
dFh . (6.16)

Note that we have used the EFE (in Eq. (6.5)) to obtain the last equality. Thus, in
order for the Clausius relation to hold on Rh , we must have

F ′

R′ = −β

2

{
8πR2(ρ − p) − 2F

R

}
(6.17)

Ḟ

Ṙ
= −β

2

{
8πR2(ρ − p) − 2F

R

}
(6.18)

5The UFLT is equivalent to the EFE at any spherical surface of symmetry. For a detailed discussion
on UFLT, one may see the papers by Cai and Cao (2006) and Chakraborty et al. (2010).
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It is easy to see that the above pair of equations imply

F ′

R′ = Ḟ

Ṙ
. (6.19)

which reduces to6

ρ + p = 0. (6.20)

Thus, irrespective of β, the FL holds on Rh whenever Eq. (6.20) is satisfied. In other
words, the FL does not hold true for general perfect fluid LTB models.

Our next task is to test the validity of the GSL. To that effect, let us recall that the
entropy variation of the fluid inside the horizon is determined by the Gibbs equation
which is expressed as

T f hdS f h = 4πR3
h(ρ + p)

[{
R

′
h

Rh
− w′

3w(1 + w)

}
dr +

{
Ṙh

Rh
− H

}
dt

]
, (6.21)

where w(r, t) = p(t)
ρ(r,t) can be interpreted as the EoS of the fluid distribution. Again,

the FL on the horizon gives

T (g)
h dSh = 4πR3

hρ

{
− R

′
h

Rh
dr + w

Ṙh

Rh
dt

}
. (6.22)

Now, assuming T (g)
h = T f h , we obtain7

T (g)
h dSTh = 4πR3

hρ

[{
w
R

′
h

Rh
− w

′

3w

}
dr +

{
(1 + 2w)

Ṙh

Rh
− (1 + w)H

}
dt

]
,

(6.23)
by taking the sum of the last two equations. STh = Sh + S f h is the total entropy of

the thermodynamic system. We find that the GSL will hold, provided (1 + 2w) Ṙh
Rh

≥
(1 + w)H and w R

′
h

Rh
≥ w′

3w . Applying the condition obtained in Eq. (6.20), these
inequalities reduce to dRh ≤ 0. Thus,GSLwill hold if the horizon radius is a decreas-
ing function of both the radial as well as the temporal coordinate. However, this con-
clusion is true only when the condition ρ + p = 0 holds. In other words, for general
perfect fluid LTBmodels, the GSL may not always hold even with appropriate phys-
ical restrictions. Thus, such models may not be considered as Bekenstein-Hawking
systems.

6Note that Eq. (6.20) is valid for any smooth function Ω(r, t) such that the one-form dΩ = RdF
is integrable. The integrability of the one-form is ensured by Eq. (6.19).
7We assume that Eq. (6.23) is integrable, i.e., ∂2ST A

∂r∂t = ∂2ST A
∂t∂r .
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6.5 Chapter Summary

This chapter dealt with a speculative application of cosmological thermodynamics in
the inhomogeneous LTBmodel. We have assumed a perfect fluid with EoSw(r, t) =
p(t)

ρ(r,t) . Starting from the basic equations of the model, we have defined the surface
gravity at an arbitrary horizon Rh and obtained three equivalent expressions for it.
Consequently, the Hawking temperature has been obtained. Finally, by employing
the Bekenstein entropy and the GHT at Rh , we have undertaken a thermodynamic
study of the model. Note that the variation of the fluid entropy has been derived from
the UFLT at Rh . We have deduced the following:

• The FL, or equivalently, the Clausius relation at the horizon Rh holds true if
ρ + p = 0, irrespective of the form of the parameter β in GHT.

• The GSL holds true if the inequalities (1 + 2w) Ṙh
Rh

≥ (1 + w)H andw R
′
h

Rh
≥ w′

3w are
satisfied. Applying the condition ρ + p = 0, these inequalities reduce to dRh ≤ 0.
Thus, the GSL requires the horizon radius to be decreasing in both the radial as
well as the temporal coordinate.

In a nutshell, thermodynamic analysis in the LTBmodel suggests that general perfect
fluid LTB models may not be consistent with the Bekenstein-Hawking formulation.
Only certain specific models such as those governed by an EoS w = −1 may behave
as Bekenstein-Hawking systems as far as the FL and the GSL are concerned.
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Chapter 7
Controversies and Open Issues
in Cosmological Thermodynamics

Abstract This chapter serves as an epilogue to this book. It enlists several
shortcomings as well as certain open issues in the research field of cosmological
thermodynamics. These problems are quite intriguing and are far from being settled.
Among them, the problem due to dynamic cosmological horizons is quite serious
and as a result, many Cosmologists still remain sceptical about the thermodynamic
formulation of our Universe based on cosmic horizons.

Keywords Dynamic cosmological horizons · Flat FLRW universe · Cosmic fluid

As promised, this chapter enlists fewof themost intriguing (inmyopinion!) problems
within this interesting research field which are yet to be settled.

1. The problem due to dynamic cosmological horizons: Early proposals by ’t
Hooft (2003) and Susskind (1995) hinted at a striking similarity between the
dynamics of our Universe and that of the BHs. However, it must be noted that
the laws of BH mechanics as well as their thermodynamics apply to static BHs
only, but the horizons of our Universe (in other words, cosmological horizons) are
dynamic in nature. It is not evident if equilibrium thermodynamics should play
a role in such highly dynamical situations. In spite of this uncertainty, we for-
mulated such a thermodynamic study by (customarily) assuming that the cosmo-
logical apparent horizon is slowly evolving, i.e., ṘA = 0, during an infinitesimal
time interval. Extensive research is needed to address this important issue and the
correct concept of surface gravity (and hence, horizon temperature) in dynami-
cal1 situations should be established. In these regard, the advancements made by
Binétruy and Helou (2015), Helou (2015), and Viaggiu (2015) are noteworthy.

2. Assumption of a flat FLRW universe: Recall that the apparent horizon in a
FLRW universe has a radius RA = 1√

H 2+ κ

a2

for an arbitrary spatial curvature κ .

However, owing to strong observational evidences, we assumed a flat universe,
i.e., κ = 0, and the above equation reduced to a much simpler one, RA = 1

H .
Of course, this simplified our calculations to a great extent. However, based on
the most recent observational evidence obtained with the PLANCK satellite,

1For an interesting account of dynamical horizons, one may see the paper by Nielsen and Visser
(2006).
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Ade et al. (2016) determined that |�| < 0.0005. The curvature is indeed very
much close to zero, nevertheless, it may not be identically zero. So, in future,
it would not harm to study the effects of a non-zero spatial curvature κ on the
cosmological thermodynamics of a FLRW universe. Binétruy and Helou (2015)
have made some progress in that direction.

3. Temperature of the cosmic fluid bounded by the horizon, S f h : While studying
the cosmological thermodynamics of the FLRW (Chap.4) and LTB (Chap.6)
models, we assumed that the temperatures of the horizon and the fluid inside
are equal. The main reason behind this assumption is our apparent ignorance
regarding the temperature of the fluid inside the horizon, T f h , in these models.
Mimoso and Pavón (2016) tried to determine upto what extent this customary
assumption is justified and they found a startling result that relativistic matter
or radiation can never achieve TE with the horizon, while non-relativistic matter
and DE might achieve the same, although approximately. Assuming that the
corresponding scalar field of DE is not in a pure quantum state, they established
that the horizon and DE temperatures will remain almost the same for most part
of the evolutionary history of the Universe provided they are equal or sufficiently
close at some point of expansion of the Universe. They, therefore, argued that the
assumption that the horizon and the DE temperatures are equal, is not unjustified.
Since we considered DE fluids for the thermodynamic analysis, our assumption
in this regard is fine. However, for non-DE type fluids, the equality of the two
temperatures should not be taken for granted.

I conclude this book with the hope that although the research field related to the
study of dynamical horizons is far from being settled and cosmologists are sceptical
about many of its aspects, yet the simple presentation and the extensive bibliography
presented in this book will allow the readers to grasp the basic concepts of the subject
without much difficulty. Upon reading this book, the readers also become aware of
the various shortcomings within this field. I am certain that most of them will feel
the urge to deal with these open questions themselves which will not only make this
subject more transparent and physically concrete but also unfurl new directions of
research.
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