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Supervisor’s Foreword

Understanding the complex properties of strongly correlated electron materials
has been an outstanding problem at the forefront of research in condensed matter
physics for nearly 40 years. It was stimulated by the discovery of the heavy
fermion superconductors and the quest for identifying the microscopic mechanism
responsible for the emergence of their unconventional superconducting phase. The
similarity of the heavy fermion’s phase diagram with that of subsequently discov-
ered unconventional superconductors, such as the cuprate (high-temperature) or
iron-based superconductors, has raised the question of a common, universal pairing
mechanism. In particular, the proximity of the unconventional superconducting
phase to antiferromagnetism in the phase diagram of all of these materials has
given rise to the hypothesis of a pairing mechanism mediated by the exchange
of antiferromagnetic fluctuations. For the heavy fermion materials, whose salient
feature is a lattice of magnetic moments that are either Kondo screened by
conduction electrons or ordered antiferromagnetically, this hypothesis has remained
unproven despite an impressive body of theoretical and experimental studies. A
major obstacle in verifying the hypothesis has been a lack of insight into the complex
electronic and magnetic structure of these materials.

The work by Dr. John Van Dyke described in this book represents a major
breakthrough in exploring and confirming this 30-year-old hypothesis for the heavy
fermion material CeCoIn5, considered to be a prototype material for the entire
class of heavy fermion compounds. Dr. Van Dyke demonstrated—making use of
recent groundbreaking quasiparticle interference (QPI) experiments by the group
of Prof. J.C. Seamus Davis (Cornell University)—that characteristic signatures in
the QPI spectrum of CeCoIn5 can be employed to extract not only the momentum
form of its superconducting order parameter—exposing its unconventional dx2-y2-
symmetry—but also the multi-band electronic structure crucial for the emergence
of superconductivity. However, to quantitatively identify the microscopic pairing
mechanism, a second crucial, and so far missing, element was necessary—the
form of the superconducting pairing interaction that was proposed to arise from
the antiferromagnetic coupling between the localized moments. Dr. Van Dyke
showed that the momentum structure of this interaction can be extracted from the
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viii Supervisor’s Foreword

experimental QPI data, allowing him to develop a quantitative microscopic theory
for the unconventional superconducting state in CeCoIn5. This work resulted in
seven predictions for this material’s striking physical properties: the symmetry
and momentum structure of the multi-band superconducting order parameter, the
critical temperature, the momentum and energy dependence of the QPI as well
as the phase-sensitive QPI spectrum, the temperature dependence of the spin-
lattice relaxation rate, the energy position of the magnetic resonance peak, as
well as the spatial form of the differential conductance around defects. The good
quantitative agreement of these theoretical results with experimental measurements
provided strong and direct evidence for the proposed mechanism underlying the
unconventional superconducting state in heavy fermion materials.

Extending his work to investigate the nonequilibrium properties of heavy fermion
materials, Dr. Van Dyke showed that the onset of Kondo screening and the ensuing
changes in the electronic structure of the material significantly alter the spatial paths
of currents flowing through heavy fermion systems. The considerable experimental
advances in imaging the spatial flow of currents over the last few years have
therefore opened a new venue for exploring the out-of-equilibrium signatures of
strong correlation effects.

In the last part of his thesis, Dr. Van Dyke investigated the nonequilibrium
charge transport in a new topological state of matter, the topological insulators
(TIs), which are characterized by an insulating bulk, and gapless edge or surface
modes. The topological nature of these materials renders their properties robust
against many forms of disorder, making them of great interest for a whole range
of technological applications in quantum computation and spin-based electronics.
A major hurdle in the realization of these applications has been the lack of ability
to independently create and control spin and charge currents at the nanoscale. Dr.
Van Dyke showed that this obstacle can be overcome and that such control can be
established by breaking the time-reversal symmetry of nanoscopic TIs via magnetic
defects. This symmetry breaking does not only enable one to create nearly 100%
spin-polarized charge currents, but it also allows for the design of novel spin diodes.
The flow of spin and charge in these diodes can be controlled at the nanoscale by
changing the gate and bias voltages, which provides the missing link in the use of
TIs for technological applications. These results open unprecedented opportunities
to employ nanoscale TIs for applications in spintronics and quantum information.

The study of topological and strongly correlated materials will continue to
fascinate physicists for years to come, and Dr. Van Dyke’s thesis provides a nice
introduction into these exciting fields of research.

Chicago, IL, USA Dirk Morr
October 2017
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Chapter 1
Introduction

1.1 Correlations in Condensed Matter

The field of condensed matter physics is enormous in scope, extending from the
earliest developments in crystallography to cutting-edge applications of holographic
dualities (inspired by string theory) to high temperature superconductors. Despite
the profusion of material systems and theoretical methods, there are a number
of paradigms that serve to orient much of the work in the field. One such set
of principles is Landau’s Fermi liquid theory, which underlies the description of
ordinary metallic systems [1, 2]. Landau surmised, as was later proven by quantum
field theoretical techniques, that the low-lying excitations of a system of interacting
fermions can be described in terms of renormalized “quasiparticles” with the
same general behavior as the non-interacting system, but having an effective mass
different from that of the original particles. This approach provides a good treatment
of many simple metals, however, it can fail in systems where there are strong
correlations and/or reduced dimensionalities (as in the one-dimensional Luttinger
liquid, for example [3]).

Much of the present thesis concerns the description of strongly correlated
systems. This class of materials, which is of course smaller than condensed matter
as a whole, is still extremely broad. Among correlated systems, this work deals
exclusively with the particular subclass of heavy fermion systems, and a large part
is devoted to the specific material CeCoIn5. Before entering into details, it may be
helpful to briefly discuss strongly correlated electrons in general, following Ref. [4].
One characteristic feature of strongly correlated electron systems is the presence of
low energy scales that do not appear in non-interacting or weakly correlated systems
(where the energy scale is set by the Fermi energy). It is important to note that, in
different systems, the cause of these scales may be quite different. Thus, grouping
together systems on this basis is somewhat like classifying diseases according to

© Springer International Publishing AG, part of Springer Nature 2018
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2 1 Introduction

their symptoms. This can be a useful undertaking, but it does not necessarily lead to
a cure. A concrete example of generation of a new low energy scale is given by the
Kondo effect [4, 5].

The Kondo problem has a rich history, beginning with the observation of an
anomalous minimum in the temperature dependence of the electrical resistance of
some metals at low temperatures [6]. It was recognized early on that this minimum
could be due to the presence of residual impurities in the host, which was confirmed
by studies demonstrating the change in the location of the minimum under the
controlled addition of defects [7]. The theoretical explanation for the minimum was
pioneered by Jun Kondo [8], who calculated the scattering of conduction electrons
by a magnetic impurity to third order in perturbation theory, thereby showing a
log divergence of the scattering rate with the inverse temperature. This explained
the appearance of the resistance minimum (when the phonon contribution, which
decreases with temperature, is overcome by the magnetic scattering term), but left
open the question of what happens at still lower temperatures where the perturbation
expansion breaks down. This became known as the Kondo problem. Many groups
contributed to the understanding of the problem, but perhaps the most crucial
physical idea came from Anderson’s scaling theory [9, 10], which suggested that the
increased coupling between the conduction electrons in the metal and the localized
magnetic moment eventually leads to the formation of a singlet bound state between
the two. The temperature at which this crossover takes place is known as the Kondo
temperature, TK . Anderson’s ideas were confirmed by Wilson, using his numerical
renormalization group approach [11]. Later studies of the problem included an
effective local Fermi liquid approach [12], conformal field theories [13], large-N
expansions [14–16], and even exact solutions via the Bethe ansatz [17, 18].

In the course of this development, several different theoretical models were
proposed and studied to shed light on the experimental results in Kondo impurity
systems. The Hamiltonian studied by Kondo (now often called the Kondo model)
represents the antiferromagnetic interaction between the spins of the local moment
and the conduction electrons:

H = J
∑

k

sk · Simp (1.1)

Here sk and Simp represent the spin operators of the conduction electrons and
the local moment, respectively. This model, like many used in heavy fermion
physics, has a deceptive simplicity to it. In fact, the use of spin operators prevents
the straightforward application of quantum field theory techniques, since the
commutation relations imposed on spins do not admit a Wick theorem [5]. Although
alternative perturbation theories can be developed [19], the standard procedure is
to re-write the spin operators in terms of bosonic or fermionic operators and a
constraint. The choice of operators is typically a matter of convenience for whatever
problem is at hand. In magnetic phases, bosonic representations have been found
useful, whereas studies of Fermi liquid states have tended to use fermionic ones
[20]. In the Kondo problem, the constraint has the physical interpretation that the
magnetic moment arises from a localized (usually f or d) electron at the impurity
site; that is, charge fluctuations are neglected.
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Fig. 1.1 Schematic drawing of (a) layered heavy fermion system (b) Kondo screening of f -
electron spins by conduction electrons. The yellow and red spheres represent the f -electrons and
conduction electrons, respectively

Another widely used model for the single impurity problem is the eponymous
Anderson model, which is more general in that charge fluctuations are permitted.
The Hamiltonian in this case can be written as

H =
∑

k,σ

εc
kc

†
k,σ

ck,σ + E0

∑

σ

nf
σ + Un

f
↑n

f
↓ +

∑

k,σ

Vkf †
σ ck,σ + H.c. (1.2)

where c
†
k,σ

(ck,σ ) creates (annihilates) a conduction electron with momentum k and

spin σ , f †
σ (fσ ) creates (annihilates) a localized f -electron with spin σ , and the

operator n
f
σ = f †

σ fσ gives the number of f -electrons at the impurity site with
a given spin. Furthermore, the dispersion of the conduction electrons is given by
εc

k, E0 is an on-site energy for the f -electron on the impurity, U describes the
Coulomb repulsion between electrons at the impurity (Hubbard potential), and Vk
is the hybridization between the c- and f -electrons. This model is more complex
than the Kondo model, but a definite relation exists between the two, as follows.
Taking the Coulomb repulsion U → ∞, double occupation of the f -electron site is
forbidden and the original Hilbert space is projected down to the subspace of states
in which the site is either unoccupied or singly occupied. Requiring further that the
occupation n

f
↑ + n

f
↓ = 1, one can perform a Schrieffer-Wolff transformation to

recover the Kondo model [21].
The generalization of the Kondo effect to a lattice of local moments yields one

of the classic examples of strongly correlated systems, namely, a heavy fermion
system. These materials also provide an instance where Fermi liquid behavior
can survive in the presence of strong correlations. At high temperatures, a heavy
fermion system can be modeled as a lattice of localized magnetic f -electrons
(spins) interacting with a band of conduction electrons, as shown schematically in
Fig. 1.1a. As the temperature is lowered, there is a crossover to a new state where the
conduction electrons screen the local moments (Fig. 1.1b), producing a Fermi liquid
of residual non-magnetic quasiparticles. These quasiparticles can have very large
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Fig. 1.2 Schematic drawing
of the crystal structure of
CeCoIn5 [28]

effective masses, up to more than a thousand times the bare mass of the electron
(hence the name “heavy fermion”). The emergence of the low temperature Fermi
liquid is a surprising and beautiful example of universality in condensed matter
systems, wherein complicated microscopic physics gives rise to relatively simple
behavior at low energies. In general, heavy fermion materials have complex phase
diagrams which can also include magnetism and superconductivity in addition to
Fermi liquid physics. In some cases there are even regions—known as non-Fermi
liquid phases or strange metals—that are not well-described within any of the
traditional paradigms of condensed matter physics, but are instead believed to be
associated with a quantum phase transition at zero temperature [22, 23].

The first part of this thesis focuses on the unconventional superconducting state
of CeCoIn5, one of the most perplexing phenomena in heavy fermion materials.
Superconductivity was found in this compound at 2.3 K, giving it the highest transi-
tion temperature of the Ce-based materials. The discovery marked the beginning of a
concerted effort to understand its normal and superconducting states [24]. CeCoIn5
has a tetragonal crystal structure [24], as shown schematically in Fig. 1.2. There exist
two compounds related to CeCoIn5 which are isostructural to it: CeRhIn5 [25] and
CeIrIn5 [26]. The various similarities and differences between the three materials are
helpful for understanding each in its own light as well. The “Ce-115 compounds” are
also believed to be related to the cuprate and iron pnictide superconductors, due to
their similar quasi-2D structures, unconventional superconductivity, and proximity
to antiferromagnetic states [27]. A better understanding of superconductivity in
heavy fermions like CeCoIn5 will also likely shed light on the complex physical
properties of the high temperature superconductors, which have resisted a complete
description for nearly 30 years.

The significant advances discussed in the present work were made possible
by cutting-edge scanning tunneling microscopy experiments (STM) on CeCoIn5,
performed by the Davis group at Cornell University [28, 29]. These experiments
allowed for the extraction of the low-energy electronic structure by the method of
quasiparticle interference spectroscopy, which is crucial for developing a quanti-
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tative understanding of superconductivity in the material (Chap. 2). Together with
the detailed form of the magnetic interaction between f -electrons, also extracted
from the experiments, this information led to a series of predictions about the
superconducting state, including the determination of the gap symmetry and critical
temperature (Chap. 3). This was achieved primarily on the basis of experimental
input relevant for the normal, as opposed to the superconducting, state of the
material. Furthermore, the model developed in this work has found use in the study
of the local response in STM experiments to the presence of defects, as well as in the
analysis of recent neutron scattering experiments (Chap. 4). The results discussed so
far all deal with equilibrium properties of heavy fermion materials. Nonequilibrium
experiments also pose exciting challenges and opportunities for advancing the
theoretical understanding of correlated systems. To this end, a simplified model of
a nanoscale heavy fermion system is studied to determine the currents that flow
through the sample in the presence of an applied voltage. The effect of defects and
correlations on the current patterns are examined, as well as the role of the non-zero
bias on the correlations themselves (Chap. 5).

1.2 Topological Materials

Continuing with the study of current flow, the final chapter turns to the behavior
of nanoscale topological insulators (TIs). In many cases these materials can be
understood in terms of non-interacting physics, but they are nonetheless currently of
great interest due to the existence of certain topological invariants that can be used
to characterize distinct states of the system [30, 31]. The values of these invariants
are quantized, and cannot change between two regions of space without closing the
insulating gap at the Fermi level. Thus, if the material is in a state corresponding
to a nontrivial topological invariant, the fact that the vacuum is an insulator (with
trivial invariant) implies that the system possesses conducting surface or edge states.
Furthermore, the edge states are spin-momentum locked, in the sense that electrons
of a given spin are forced to travel in a particular direction around the edge, while
those of the opposite spin propagate in the opposite direction (Fig. 1.3). This is true
not only in a clean system, but even in the presence of nonmagnetic defects. In this

Fig. 1.3 Schematic drawing
of a topological insulator
illustrating spin-momentum
locking. Spin-↑ electrons
travel clockwise around the
edge, whereas spin-↓
electrons travel
counterclockwise
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case, time-reversal symmetry protects against backscattering—roughly speaking,
for any given backscattering trajectory, there is another related by time-reversal
symmetry which interferes destructively with the first [31].

However, by introducing magnetic impurities on the edge of a 2D TI, one explic-
itly breaks this symmetry and backscattering may occur. We demonstrate how one
can generate highly spin-polarized currents using magnetic defects appropriately
placed on the surface of a 2D TI. To bolster support for this claim, we show that
the results are robust against various perturbations of the model and that similar
effects can be achieved by interfacing at TI with a disordered ferromagnet or an
antiferromagnet. The generation of spin-polarized currents is an important goal
for the development of next-generation technology in the fields of spintronics and
quantum computing. Hence, we anticipate that the proposal outlined here will find
use in future applications.
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Chapter 2
Superconducting Gap in CeCoIn5

2.1 Superconducting Gap Symmetry

One of the central questions that can be asked about any bulk superconductor is the
symmetry of its superconducting gap, Δ(k). This gap in the excitation spectrum
of the superconductor is a consequence of the finite energy required to break
apart a Cooper pair [1]. Following the standard BCS theory, the gap is a function
of the momenta of the electrons forming the Cooper pair. While the elemental
superconductors and those composed of simple alloys invariably possess s-wave
symmetry (Δ(k) = const.), more complicated systems such as the cuprates, iron
pnictides, and heavy fermions can possess other symmetries of their gap functions
[2]. In the case of CeCoIn5, numerous experimental studies have been undertaken
to try to determine the symmetry of the gap. Early measurements of the angular
dependence of the thermal conductivity showed a fourfold symmetry indicative
of dx2−y2 pairing [3]. Some time later, the magnetic field angle dependence of
the specific heat was also found to have a fourfold symmetry, but one that was
suggestive of dxy instead [4]. Thus, although the superconductivity was likely to be
unconventional (i.e., allowing for a change in the phase of the gap as a function of
momentum), it was unclear exactly what was the symmetry of the gap. Furthermore,
these thermodynamic studies of the gap do not constitute direct observations of the
gap, but rather rely on theoretical interpretation, which is uncertain.

2.2 Basics of Scanning Tunneling and Quasiparticle
Interference Spectroscopy

A major advance came with the advent of scanning tunneling spectroscopy (STS)
experiments on CeCoIn5 [5, 6]. In these experiments, a scanning tunneling micro-
scope (STM) is used to probe the electronic structure at the surface of the material.
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Fig. 2.1 Schematic drawing
of an STM experiment,
illustrating how electrons
tunnel between the tip and
sample surface

While the STM was originally developed with the goal of imaging surfaces with
atomic resolution, thereby providing a topographic map of step edges, adsorbates,
and other surface phenomena, the STS mode of operation has become a powerful
method of directly studying the underlying electronic structure of materials as well
[7–9]. Briefly, in an STS experiment the STM tip is fixed above a given atomic
site and the voltage bias between the tip and sample is varied. Electrons are able
to tunnel between the tip and sample through the insulating barrier of the vacuum
(Fig. 2.1). One records the differential conductance (dI/dV ) as a function of bias
V , the former quantity being proportional to the local density of states (for a single
band in the weak tunneling limit) [10].

dI (r, E)

dV
= 2πe

h̄
Nt t

2Ns(r, E) (2.1)

Here Nt is the density of states of the STM tip, t is the hopping integral between
the tip and sample, and Ns(r, E) is the local density of states of the material at
position r. The measurement is repeated at every site in a two-dimensional field
of view on the sample surface. The tunneling data as a function of energy reveals
important information about the electronic structure of the material. One may detect
such features as van Hove singularities arising from the flatness of a given band, or
superconducting [11] or hybridization [12] gaps around the Fermi level.

The usefulness of the STS technique was extended further with the introduction
of quasiparticle interference (QPI) spectroscopy [13–15]. It is well-known that the
placement of a charged impurity in a homogeneous electron gas leads to oscillations
of the electron density, as the gas attempts to screen the perturbing charge [16].
These oscillations possess a characteristic wavevector of 2kF , due to the scattering
of the electrons across the Fermi surface (the Fermi sphere in the non-interacting
case). These effects has been observed in solids as well and are known as Friedel
oscillations [17], wherein the conduction electrons scatter off defects in the material,
resulting in ripple-like spatial patterns in the charge density (and correspondingly
in the local density of states) around the defect. The oscillations are often readily
observed in STM surface maps at fixed bias, and by Fourier transforming the 2D real
space image, one extracts the principal wavevectors q that occur in them. Since the
energy of the probed quasiparticle states is determined by the bias through E = eV ,
one obtains q(E), the transferred momentum as a function of quasiparticle energy.
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Under the further approximation of a spherical Fermi surface, q = 2k, the foregoing
relation can be inverted to give an experimental determination of the electronic band
structure, E(k) [13, 14].

One might inquire as to the validity of the band structure extracted using the
above procedure, since the STM is sensitive only to states near the surface of the
material, and furthermore only determines the scattering wavevector in the plane
(whereas in the bulk the bands are generically dispersing in three dimensions). In
reply, it should be kept in mind that the systems to which this technique is applied,
including CeCoIn5, are quasi-2D in nature, with the important electronic bands
lying within the plane. Thus, there is good reason to believe that the electronic
structure at the surface is also indicative of the bulk physics, and so the QPI method
can provide insight into the general behavior of such materials.

2.3 Experimental Challenge of QPI for CeCoIn5

We now present the experimental results of Allan et al. [5] and show how they
can be successfully understood using the periodic Anderson model, one of the
theoretical cornerstones for describing the complex physics of heavy fermion
materials. Figure 2.2 shows three examples of QPI data obtained from a mea-
surement on a sample of CeCoIn5. As always found for QPI experiments, there
is a strong background of intensity near q = (0, 0) arising from large-scale
surface modulations. The relevant points in the data for extracting the quasiparticle
dispersions are the regions of high intensity located at larger wavevectors; these are
indicated in the figure by the numbered circles. As the bias is varied, it is possible
to reliably and reproducibly track the movement of these spots in the q-space. In
particular, one may focus on one-dimensional cuts along two of the high symmetry
directions in the Brillouin zone, (0, 0) → (0, 2π/a0) and (0, 0) → (2π/a0, 2π/a0).
The goal of the theorist is to employ the evolution of the QPI scattering maxima as
a function of energy to extract the material’s underlying electronic structure. The
experimental QPI cuts recorded at a temperature of 250 mK are shown in Fig. 2.3.

Fig. 2.2 Sample experimental data obtained from QPI analysis of STS measurements on CeCoIn5
[5]. Numbered circles indicate important scattering wavevectors (a) −40 meV, (b) −4.2 meV,
(c) 2.1 meV
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Fig. 2.3 One-dimensional cuts along the directions (a) (0, 0) → (0, 2π/a0) and (b) (0, 0) →
(2π/a0, 2π/a0) of QPI analysis on CoIn5 [5]. Numbered arrows indicate important scattering
wavevectors shown in Fig. 2.2

One immediately notices that it is possible to distinguish between scattering due
to the “light” and “heavy” parts of the bands. The scattering from the light bands is
highly dispersive, as indicated by the gray circles, and arises from the contribution of
the delocalized conduction electrons in the system (“light” refers to the fact that the
effective mass of the quasiparticles does not differ greatly from the bare mass of the
electron). On the other hand, the flat regions in the scattering plot, shown with blue
circles, come from the heavy portions of the hybridized quasiparticles bands. In this
region, the quasiparticles have very large effective masses due to the strong correla-
tions between the conduction electrons and localized f -electrons of the Ce atoms.

2.4 Theoretical Model for CeCoIn5 Band Structure

To try to reproduce the experimental findings presented above one would like to
develop a quantitative theoretical description of the electronic structure. The class
of models appropriate for heavy fermion systems like CeCoIn5 has a long history
dating back to the discovery of the first materials in the 1970s [18], up through their
continued theoretical elucidation today (see [5] of Chap. 1). These models are essen-
tially the extension to the lattice of the models designed to describe individual mag-
netic impurities in host metals, the Kondo problem discussed in the previous chapter.
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In heavy fermion systems with dense lattices of local moments, interactions
between neighboring moments invalidate the simple single-impurity models dis-
cussed previously. In this case, the natural generalizations of models (1.1) and (1.2)
are

H = J
∑

r

sr · Simp(r) (2.2)

and

H =
∑

k,σ

εc
kc

†
k,σ

ck,σ + E0

∑

r

n
f
r +

∑

r,r′
Ir,r′Sr · Sr′ +

∑

r,r′,σ
Vr,r′f †

r,σ cr′,σ + H.c.

(2.3)

We have further added a Heisenberg-like term HH = ∑
r,r′ Ir,r′Sr · Sr′ to allow

for interactions between neighboring magnetic moments. In the Kondo limit nf =
1, the Anderson lattice model can be mapped onto the Kondo lattice model.
Anticipating this possibility that nf may differ from one for CeCoIn5, we choose to
work with the periodic Anderson model in the following.

We now turn to the approximate solution of this model (in the infinite U limit).
The exclusion of double occupancy on the f site can be conveniently described in
the slave boson approach [19–22]. One introduces a set of new bosonic operators
br, b

†
r to label unoccupied sites. The hybridization terms, which transfer electrons

into or out of the f orbital, are changed via Vr,r′f †
r,σ cr′,σ → Vr,r′f †

r,σ brcr′,σ so that
the Hamiltonian in the slave boson method becomes

H =
∑

k,σ

εc
kc

†
k,σ

ck,σ + E0

∑

r

n
f
r +

∑

r,r′,σ
Vr,r′f †

r,σ brcr′,σ + H.c. +
∑

r,r′
Ir,r′Sr · Sr′

(2.4)

The constraint nf ≤ 1 can now be represented as b
†
rbr +∑σ f

†
r fr = 1, which is

to be enforced at each site r. An explicit form of the constraint and the decoupling
of the Heisenberg interaction term HH is conveniently done in a path integral
approach. First, the spin operators of the conduction and f electrons are replaced
with Abrikosov pseudofermions, Sr = 1

2Ψ
†
r σΨr, with spinor Ψ

†
r = (f

†
r↑ f

†
r↓),

and σ = (σ1, σ2, σ3) is a vector of the Pauli matrices. Next, we decouple the
interaction term between f -electrons using the standard Hubbard-Stratonovich
method, introducing a new field tf (r, r′, τ ). The static approximation substitutes for
this field its expectation value tf (r, r′), and similarly for the slave boson operators
br → r0(r). Furthermore, the f occupation constraint is enforced by a Lagrange
multiplier λ = εf − E0, also taken in the static approximation. By minimizing
the action with respect to εf and s(r, r′) = Vr,r′r0(r), one obtains a set of self-
consistency equations
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s(r, r′) = Jr,r′

π

∫ ∞

−∞
dωnF (ω)ImGf c(r, r′, ω) (2.5)

tf (r, r′) = −Ir,r′

π

∫ ∞

−∞
dωnF (ω)ImGff (r, r′, ω) (2.6)

nf (r) = −
∫ ∞

−∞
dω

π
nF (ω)ImGff (r, r, ω) (2.7)

with f occupation nf = 1 − r2
0 and Jr,r′ = Vr,r′/(εf − E0) > 0. The effective

hoppings s(r, r′) and tf (r, r′) encode the correlations between conduction and f -
electrons, and those among f -electrons, respectively. Finally, the Green’s functions
on the right-hand sides of Eqs. (2.5)–(2.7) are

Gcc(k, σ, ω) = w2
k

ω − Eα
k + iΓα

+ x2
k

ω − E
β

k + iΓβ

(2.8)

Gff (k, σ, ω) = x2
k

ω − Eα
k + iΓα

+ w2
k

ω − E
β

k + iΓβ

(2.9)

Gcf (k, σ, ω) = wkxk

[
1

ω − Eα
k + iΓα

− 1

ω − E
β

k + iΓβ

]
(2.10)

where the further assumption was made that s(r, r′) = s(r − r′) and tf (r, r′) =
tf (r − r′), which may then be Fourier transformed into momentum space along
with the Green’s functions. Furthermore, Γα,β is the inverse lifetime of the heavy
quasiparticles labeled by α, β and the coherence factors wk and xk are

w2
k =

⎡

⎢⎢⎢⎢⎣
1

2
+

(
εc

k−ε
f

k
2

)2

√(
εc

k−ε
f

k
2

)2

+ s2
k

⎤

⎥⎥⎥⎥⎦
(2.11)

x2
k =

⎡

⎢⎢⎢⎢⎣
1

2
−

(
εc

k−ε
f

k
2

)2

√(
εc

k−ε
f

k
2

)2

+ s2
k

⎤

⎥⎥⎥⎥⎦
(2.12)

wkxk = s2
k

2

√(
εc

k−ε
f

k
2

)2

+ s2
k

(2.13)
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the energies of the quasiparticle states are finally given by

E
α,β

k = εc
k + ε

f

k

2
±
√√√√
(

εc
k − ε

f

k

2

)2

+ s2
k (2.14)

These equations give the band structure for the heavy quasiparticles in the
hybridized Kondo lattice. Note that the f -electrons acquire a dispersion ε

f

k due
to the hopping induced by the Heisenberg term in the Hamiltonian (2.4).

An alternative and instructive way of viewing these results is in the Hamiltonian
language, wherein the static approximation amounts to the mean-field Hamiltonian

HMF =
∑

k,σ

εc
kc

†
k,σ

ck,σ +
∑

k,σ

ε
f

k f
†
k,σ

fk,σ +
∑

k,σ

skf
†
k,σ

ck,σ + H.c. (2.15)

This non-interacting Hamiltonian is diagonalized by the following canonical trans-
formation

c
†
k,σ

= wkα
†
k,σ

+ xkβ
†
k,σ

(2.16)

f
†
k,σ

= −xkα
†
k,σ

+ wkβ
†
k,σ

(2.17)

where wk, xk come from Eqs. (2.11) and (2.12), and the final diagonalized form of
the Hamiltonian is

HMF
K =

∑

k,σ

(
Eα

k α
†
k,σ

αk,σ + E
β

k β
†
k,σ

βk,σ

)
(2.18)

At this point we have a model for the excitations of the low temperature,
hybridized heavy Fermi liquid state, but without superconductivity. To study the
superconducting state, one may proceed in two different ways. The more theoretical
approach, developed in Chap. 3 is to introduce a superconducting pairing interaction
between the quasiparticles which could be used along with the band structure to
determine the properties of the superconducting state in a weak-coupling BCS
approach. However, this requires a definite proposal for the microscopic pairing
mechanism, for which there are multiple possibilities [23–26]. It may be that
several different mechanisms are capable of accounting for the observed QPI, so
in the present chapter we restrict ourselves to the issues that can be addressed
independently of the choice of mechanism.

No matter what the fundamental nature of the pairing mechanism, superconduc-
tivity can be incorporated in a model Hamiltonian at the mean-field (BCS) level by
the addition of pairing terms:

HMF
SC = −

∑′
p
(Δα

kαk,↓α−k,↑ + Δ
β

kβk,↓β−k,↑ + H.c.) (2.19)
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where the prime on the summation indicates a restriction to states within the Debye
energy of the Fermi energy

|Eα,β
k | ≤ ωD (2.20)

Then the total mean-field Hamiltonian in the superconducting state is

HMF
tot = HMF

K + HMF
SC (2.21)

The Hamiltonian is off-diagonal on account of the pairing terms, but can be
diagonalized with the canonical (Bogoliubov) transformations

αk,↑ = uα
kak + vα

k b
†
k (2.22)

α−k,↓ = vα
k a

†
k − uα

kbk (2.23)

for the α-band, while for the β-band one has

βk,↑ = u
β

kdk + v
β

k g
†
k (2.24)

β−k,↓ = v
β

k d
†
k − u

β

kgk (2.25)

The diagonalized mean-field Hamiltonian in the superconducting state is

H =
∑

p

′ [Ωα
k (a

†
kak + b

†
kbk) + Ω

β

k (d
†
kdk + g

†
kgk)

]
(2.26)

where the energies of the Bogoliubov quasiparticle excitations are given by

Ω
α,β

k =
√(

E
α,β

k

)2 +
(
Δ

α,β

k

)2
(2.27)

2.5 Theory of Heavy Fermion QPI

Now that the theoretical form of the electronic structure for the superconducting
state of a heavy fermion material has been determined, it remains to connect this
to the experimentally observed QPI, which describes the scattering between states
rather than the states themselves. This theory was developed for URu2Si2 in Ref.
[27], along the following lines. The QPI spectrum is the power spectrum determined
from the Fourier transform of the real space differential conductance, dI/dV . In
a heavy fermion material, the presence of the STM tip introduces a tunneling
Hamiltonian

HT = −
∑

r,σ

(
tcc

†
r,σ dσ + tf f †

r,σ dσ + H.c.
)

(2.28)
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with the operator dσ annihilating an electron in the lead with spin σ , tc is the hopping
between the tip and the conduction band, and tf = tf,0r0 is the hopping between
the tip and f-electrons, renormalized by the expectation value of the slave boson.
To account for the complexity of various tunneling processes between the tip and
the system it is helpful to introduce a matrix notation. The Green’s functions of
Eqs. (2.8)–(2.10) (now in real space) can be combined into compact matrix form:

Ĝσ (r, r, E) =
(

Gcc(r, r, σ, E) Gcf (r, r, σ, E)

Gf c(r, r, σ, E) Gff (r, r, σ, E)

)
(2.29)

with Gf c(r, r, σ, E) = Gcf (r, r, σ, E), as can be shown diagrammatically. The
most general expression for the tunneling current utilizes the Keldysh formalism
(employed in Chaps. 5 and 6). However, in the limit of weak tip-system coupling
(tc, tf ) dI/dV one may derive an expression that contains terms proportional to the
densities of states of the c and f -electrons, but also a quantum interference term:

dI (r, E)

dV
= πe

h̄
Nt

2∑

i,j=1

[t̂ ImĜ(r, r, E)t̂]ij

= 2πe

h̄
Nt

[
t2
c Nc(r, E) + t2

f Nf (r, E) + tctf Ncf (r, E) + tf tcNf c(r, E)
]

(2.30)

in this expression the tip-system hopping matrix is defined via

t̂ =
(−tc 0

0 −tf

)
(2.31)

and Nt is the tip density of states. Equation (2.30) can be understood pictorially
in terms of the multiple tunneling paths between the STM tip and the sample. For
instance, the term with i = j = 1 represents an electron hopping between the
tip and the conduction band, whereas i = j = 2 is the same for the f -band. The
off-diagonal terms, on the other hand, represent hopping from the tip to either the
c- or f -band and returning from the other one. As discussed above in Sect. 2.1, QPI
measures the oscillations in the density of states due to the scattering of electrons
off defects. To incorporate defect scattering we may introduce the Born (first-
order) scattering approximation, valid in the dilute limit of defect concentration.
Experimentally this will be accessible if the STM is positioned over a relatively
clean portion of the sample. The expression for the Fourier-transformed QPI signal
is given by

ḡ(q, e) ≡ dI (q, e)

dV
= πe

h̄
Nt

2∑

i,j=1

[t̂ N̂ (q, E)t̂]ij (2.32)

where the factor

N̂(q, E) = − 1

π
Im
∫

d2k

(2π)2
Ĝ(k, E)ÛĜ(k + q, E) (2.33)
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now contains the effect of impurity scattering as encoded in

Û =
(

Ucc Ucf

Uf c Uff

)
(2.34)

Here Ucc and Uff are the potentials for scattering in the c- and f -bands, respec-
tively, whereas Uf c and Ucf scatter electrons between the bands. Equations (2.32)–
(2.34) are the expressions ultimately needed to model the experimentally determined
scattering band structure of Fig. 2.3. The practical task then is to identify functional
forms of εc

k, ε
f

k , s
f

k , and the values of Ucc, Ucf , and Uff that can be used to
reproduce the experimental QPI results. We note that the previous work on QPI in
CeCoIn5 [28] considered only a single band, and thereby neglected the possibility
of interference between different tunneling paths.

Notice that the equations used here to model the overall features of the QPI do
not depend on the superconducting properties. It is to be expected that, given the
low critical temperature of Tc = 2.3 K, the magnitudes of the superconducting gaps
Δ

α,β

k will also be very small (as follows from the proportionality of Δ and Tc in
BCS theory). The superconductivity, therefore, will only modify the differential
conductance, and hence the QPI, very close to the Fermi energy. For data on the
scale of Fig. 2.3, the normal state properties (of the low temperature heavy Fermi
liquid phase) will suffice to explain the QPI. Later we will consider the QPI very
close to the Fermi level, and the additional effects of the superconducting gap will
need to be included.

2.6 CeCoIn5 QPI at Large Energies

To better understand the complex evolution of the heavy fermion electronic
structure, as revealed in the QPI experiments, we begin with a schematic picture
of the low-energy band dispersions. Figure 2.4a shows the situation at temperatures
above the crossover to the hybridized Kondo-screened state, TK . The conduction
electron band (black line in Fig. 2.4a) is highly dispersive, in contrast to the narrow
f -electron band (red line), which has a bandwidth less than 20 meV. Below TK , the
two bands hybridize due to the Kondo screening of the f -electron moments by the
conduction electrons, forming heavy quasiparticle bands α and β with an avoided
crossing (blue lines in Fig. 2.4b). At still lower temperatures, T < Tc, the system
becomes superconducting, with a gap opening at the Fermi surfaces of the α- and
β-bands. This phenomenon is indicated by the orange lines in Fig. 2.4b.

We now seek explicit functional forms for the conduction and f -electron
dispersions, εc

k and ε
f

k , respectively. To do this, we employ standard tight-binding
expressions for nearest-neighbor, next-nearest, etc. hopping of electrons between
sites. One determines the band structure by requiring that the theoretically calculated
QPI (using a given set of parameters) reproduce the experimentally observed
spectrum. The QPI data far away from the crossing point of the unhybridized bands
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Fig. 2.4 Schematic band structure for a heavy fermion system in the temperature regimes (a)
Tc < TK < T where the conduction and f -electrons are unhybridized and (b) Tc < T < TK , the
hybridized Kondo-screened state (blue line) and T < Tc < TK , the superconducting state (orange
line)

reflect the electronic structure at temperatures above TK . This allows one to fit the
individual dispersions εc

k and ε
f

k for the conduction and f -electrons, respectively.
It is found that nearest-neighbor hoppings alone do not suffice for obtaining good
agreement. Additional further-than-nearest hoppings were included to improve the
agreement, leading to the following dispersions [5, 29]:

εc
k = − 2tc1

[
cos(kx) + cos(ky)

]− 4tc2 cos(kx) cos(ky)

− 2tc3
[
cos(2kx) + cos(2ky)

]− μ (2.35)

ε
f

k = − 2tf 1
[
cos(kx) + cos(ky)

]− 4tf 2 cos(kx) cos(ky)

− 2tf 3
[
cos(2kx) + cos(2ky)

]

− 4tf 5 cos(2kx) cos(2ky) − 2tf 7
[
cos(3kx) + cos(3ky)

]+ εf (2.36)

with the parameters given in Table 2.1, where the spatial forms of the hoppings tr−r′
are identified in the second column by r − r′ = (rx − r ′

x, ry − r ′
y). Note that two

slightly different sets of parameters were used in Refs. [5] and [29]. In the former
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Table 2.1 Tight-binding parameters for c and f electron dispersions of CeCoIn5

Variable Distance Ref. [5] (meV) Ref. [29] (meV)

tc1 (±1, 0) or (0,±1) −50.0 −50.0

tc2 (±1,±1) −13.34 −13.36

tc3 (±2, 0) or (0,±2) 16.7 16.73

μc – 151.51 151.51

tf 1 (±1, 0) or (0,±1) −0.85 −0.85

tf 2 (±1,±1) −0.45 −0.35

tf 3 (±2, 0) or (0,±2) −0.7 −0.8

tf 5 (±2,±2) 0.125 0.1

tf 7 (±3, 0) or (0,±3) 0.15 0.09

εf – 0.5 0.5

case, the band structure was determined entirely on the basis of comparison with
the experimental QPI results. In the latter case, the set of parameters was slightly
adjusted in order to obtain good agreement with several other experiments as well
(Sect. 3.4.1).

The QPI data near the avoided crossing of the heavy quasiparticle bands is
influenced by the hybridization, sk, between the conduction and f -electrons. Again
requiring that the theoretically calculated QPI reproduce the experimental results
leads to the good fit

sk = s0 + s1[sin(kx) sin(ky)]2 (2.37)

where s0 = 3.0 meV and s1 = 7.0 meV. The resulting dispersions and Fermi
surfaces (using the parameters of Ref. [5]) are shown in Fig. 2.5. When the QPI
is calculated theoretically using Eq. (2.32) and the intensity maxima are extracted
and compared with those determined experimentally, the results of Fig. 2.6 are
obtained. One notices that the theoretical model reproduces the major branches of
the experimental QPI maxima, largely within the experimental uncertainties. Thus,
our model allowed us to extract the complex electronic band structure of CeCoIn5
from the experimental QPI results.

2.7 CeCoIn5 QPI at Small Energies

We now turn to the energy range in the immediate vicinity of the Fermi surface,
in which the effects of superconductivity become important. An example of the
measured superconducting gap in the dI/dV is given in Fig. 2.7. By measuring
the magnitude of the gap (2Δ is the distance between the peaks) at each site in
a 2D field of view, the Davis group at Cornell produced the gap map shown in
Fig. 2.8. Notice the high degree of uniformity in the magnitude of the gap at sites
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Fig. 2.5 Dispersions of the heavy quasiparticle bands in the theoretical model of CeCoIn5 [5]
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Fig. 2.6 Comparison of theoretical and experimental maxima in the QPI spectrum for
one-dimensional cuts along the directions (a) (0, 0) → (0, 2π/a0) and (b) (0, 0) →
(2π/a0, 2π/a0) [5]
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Fig. 2.7 Example of the
superconducting gap
measured in the differential
conductance of CeCoIn5 at
T = 0.25 K [5]

Fig. 2.8 Superconducting
gap as a function of spatial
position in a 2D field of view
on the surface of CeCoIn5 [5]

away from the defects in the lattice, which is a consequence of the high purity
attainable in the growth of CeCoIn5. (This property has made CeCoIn5 intriguing
as a possible system to realize the long-sought Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) superconducting state at high magnetic fields [30–33]).

A more detailed analysis of the superconducting state can be performed using
QPI spectroscopy, which also allows for direct comparison with the theoretical
framework of BCS. To this end, we must first extend the theoretical expressions
for the QPI signal to include superconductivity. The general structure, Eqs. (2.32)
and (2.33), is the same as before, but with the replacements
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Û =

⎛

⎜⎜⎜⎜⎝

Ucc Ucf 0 0

Uf c Uff 0 0

0 0 −Ucc −Ucf

0 0 −Uf c −Uff

⎞

⎟⎟⎟⎟⎠
(2.38)

t̂ =

⎛

⎜⎜⎜⎜⎝

−tc 0 0 0

0 −tf 0 0

0 0 tc 0

0 0 0 tf

⎞

⎟⎟⎟⎟⎠
(2.39)

and

Ĝ(k, E) =

⎛

⎜⎜⎜⎜⎝

Gcc(k, σ, E) Gcf (k, σ, E) Fcc(k, E) Fcf (k, E)

Gf c(k, σ, E) Gff (k, σ, E) Ff c(k, E) Fff (k, E)

Fcc(k, E) Fcf (k, E) −Gcc(k, σ,−E) −Gcf (k, σ,−E)

Ff c(k, E) Fff (k, E) −Gf c(k, σ,−E) −Gff (k, σ,−E)

⎞

⎟⎟⎟⎟⎠

(2.40)

Furthermore, the forms of the normal Green’s functions (γ, ζ = c, f )

Gγ,ζ (r, r, σ, τ ) = −〈Tτ γr′,σ (τ )ζ †
r,σ (0)〉 (2.41)

are modified in the superconducting state, and new anomalous (or Gor’kov) Green’s
functions are also introduced according to

Fγ,ζ (r, r, σ, τ ) = −〈Tτ γ
†
r′,↑(τ )ζ

†
r,↓(0)〉 (2.42)

The explicit forms of these Green’s functions in the superconducting state of the
heavy Fermi liquid are

Gcc(k, σ, ω) = w2
k

ω + iΓ + Eα
k

(ω + iΓ )2 − (Ωα
k )2 + x2

k
ω + iΓ + E

β

k

(ω + iΓ )2 − (Ω
β

k )2
(2.43)

Gcf (k, σ, ω) = wkxk

[
ω + iΓ + Eα

k

(ω + iΓ )2 − (Ωα
k )2 − ω + iΓ + E

β

k

(ω + iΓ )2 − (Ω
β

k )2

]
(2.44)

Gff (k, σ, ω) = x2
k

ω + iΓ + Eα
k

(ω + iΓ )2 − (Ωα
k )2

+ w2
k

ω + iΓ + E
β

k

(ω + iΓ )2 − (Ω
β

k )2
(2.45)
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Fig. 2.9 Superconducting
gap along the Fermi surface
as determined by fitting the
QPI data. The magnitude is
indicated by the height of the
red line above the xy-plane.
The sign of the gap is given
by the background color of
the Brillouin zone, which for
the α-band is yellow for
positive and blue for negative
gap values (the convention is
reversed for the β-band) [5]
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b
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D

Fcc(k, ω) = w2
k

Δα
k

(ω + iΓ )2 − (Ωα
k )2

+ x2
k

Δ
β

k

(ω + iΓ )2 − (Ω
β

k )2
(2.46)

Fcf (k, ω) = wkxk

[
Δα

k

(ω + iΓ )2 − (Ωα
k )2 − Δ

β

k

(ω + iΓ )2 − (Ω
β

k )2

]
(2.47)

Fff (k, ω) = x2
k

Δα
k

(ω + iΓ )2 − (Ωα
k )2 + w2

k
Δ

β

k

(ω + iΓ )2 − (Ω
β

k )2
(2.48)

with the heavy fermion coherence factors defined in Eqs. (2.11) and (2.12). With
these equations, we may substitute proposed forms of the superconducting gap
functions Δ

α,β

k to calculate the QPI theoretically and compare with experiment.
First we note that the overall magnitude of the gap is constrained by the tunneling
data. We may consider three different scenarios to try to reproduce the experimental
results in a simple way. First, we can try dx2−y2 -symmetry gaps on both the α and
β bands, but with unequal magnitudes, that is

Δ
α,β

k = Δ
α,β
0

2
(cos(kx) − cos(ky)) (2.49)

with Δα
0 = 1.0 meV and Δ

β
0 = −0.2 meV as determined by comparison of

the theoretical and experimental QPI results. The gap is shown along the Fermi
surface in Fig. 2.9. One should note that with these parameters, the maximum gap
on the β-band is ≈ 50 μeV, which is smaller than the experimental resolution
of 75 μeV. This would then explain the lack of an easily visible feature in the
tunneling spectra associated with the β-band gap. However, the inclusion of this
gap can have consequences for the QPI spectra. Figure 2.10 presents the QPI for
the experimental (a–c) and theoretical (d–f) cases (the latter using unequal gaps
with dx2−y2 -symmetry). The colored circles indicate key scattering wavelengths in



2.7 CeCoIn5 QPI at Small Energies 25

Fig. 2.10 Experimental and theoretical QPI for several possible superconducting gap symmetries.
(a)–(c) Experimental QPI data for the energies −300, 0, and 300 μeV, respectively. (d)–(l)
Theoretical simulations of QPI for a dx2−y2 -symmetry gap [(d)–(f)], dxy -symmetry gap [(g)–(i)],
and a gap with dx2−y2 -symmetry of equal magnitude on the α- and β-bands [(j)–(l)]. The red
and brown circles indicate the strongest internodal scattering vectors and the blue circles show
the strongest β-band scattering vector. These vectors are shown on the Fermi surface in (m) and
overlaid on the E = 0 meV experimental data in (n). Note that only the case (d)–(f) with dx2−y2 and
unequal gaps reproduces all the important scattering vectors [5]

the spectra, which are well-reproduced by the theoretical model. The corresponding
scattering processes across the Fermi surface are shown in panel m using matching
colored arrows, and are illustrated on top of the experimental results in panel n
(note that the axes of the experimental q-space are rotated by 45◦ compared to
the theoretical Brillouin zone). While theoretical models of QPI spectra are known
to successfully reproduce the geometric information contained in experiment,
matching the observed intensities is more difficult (although some work has been
done in this direction [34]).

We can compare this result with the one obtained under the assumption of a
different d-wave symmetry, namely, dxy , for which a basis function is

Δ
α,β

k = Δ
α,β
0 (sin(kx) sin(ky)) (2.50)

Using the values Δα
0 = 1.0 meV and Δ

β
0 = −0.2 meV, the resulting QPI patterns are

shown in panels (g–i) of Fig. 2.10. As is readily apparent, this choice of symmetry
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fails to reproduce the correct QPI at zero energy, notably the features indicated by
the red and brown circles in the experimental data are absent in the calculations.
Under the assumption of dx2−y2 -symmetry, one might attempt to alter the relative
magnitudes of the gaps on the α and β-bands. In doing this, we found that it is
necessary that the magnitude of the β-band gap be considerably smaller than that of
the α-band. For example, if Δ

β
0 is adjusted such that the maximum gaps on the two

bands are equal (Δβ
0 = −2.6 meV), the results in Fig. 2.10j–l are obtained. Unlike

the dxy-symmetry, this reproduces the features of the red and brown circles, but it
fails to do so for the blue circle. Thus we conclude that unequal-magnitude dx2−y2 -
symmetry gaps are the best for reproducing the experimental results. This of course
does not preclude other more complicated symmetries but it does limit the space of
possibilities considerably.

To conclude, we have shown that it is possible to successfully and quantitatively
model the heavy-fermion band structure of CeCoIn5 in the superconducting state.
The relevant empirical input was extracted using the QPI measurement technique
of STM-STS experiments. The theory provided a concrete theoretical picture and a
rationalization of both the high-energy spectra (dominated by the normal state heavy
Fermi liquid) and at very low energies, where superconductivity is significant. This
paves the way for further joint experimental-theoretical studies on CeCoIn5 and
other heavy fermion materials.
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Chapter 3
Pairing Mechanism in CeCoIn5

3.1 Heavy Fermion Superconductivity

Although superconductivity was discovered in CeCu2Si2 as early as 1979 [1],
it took some time to overcome the conventional wisdom that magnetism was
necessarily detrimental to Cooper pairing. At present there are several dozen known
heavy fermion superconductors, which display a wide range of behaviors. UPt3
possesses multiple superconducting phases with different symmetries, whereas
CeMIn5 (M=Co,Ir,Rh), the so-called “115 materials,” have complex phase diagrams
that include superconductivity, antiferromagnetism, and non-Fermi liquid behavior
[2, 3].

A number of superconducting pairing mechanisms have been proposed to
provide the attractive force binding the Cooper pairs. The most widely accepted
mechanism is spin fluctuations between the heavy quasiparticles in the low tempera-
ture Fermi liquid state. A notable feature of this mechanism is its implications for the
superconducting gap symmetry. Assuming total rotational invariance of the system
(neglecting the underlying crystal structure of the lattice), spin fluctuations were
found to suppress both singlet and triplet pairing [4]. However, including the crystal
structure in the calculation reveals that the system can partially avoid the electron
repulsion by establishing an anisotropic superconducting gap (generally of d-wave
symmetry) [5–8]. Other more complex mechanisms have also been proposed [9, 10].
In particular, recent work suggests the possibility of composite pairing between
conduction electrons and local moments [11–14] as an explanation of fully gapped
superconductivity in Yb-doped CeCoIn5 [15].

The quantitative description of superconductivity in any system requires two key
pieces of information. First, one must obtain the detailed low energy band structure
in the normal state, out of which superconductivity emerges. Second, one needs the
microscopic form of the pairing interaction responsible for the formation of Cooper
pairs and the resulting well-known phenomena observed in the superconducting
state. The QPI experiments analyzed in the previous chapter provide us with
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precisely the information needed for a quantitative study of superconductivity in
CeCoIn5, which has never before been achieved. In the following we discuss
how the magnetic interaction f -electrons, which gives rise to the curvature of
the f -bands, may be determined from the QPI data relevant for the normal state.
Under the assumption that this same f -electron interaction also provides for the
Cooper pairing, we derive a series of predictions about the superconducting state of
CeCoIn5, in good agreement with experiment.

3.2 Extraction of the Magnetic Interaction

In the model proposed in Eq. (2.3) the interaction between the localized magnetic
f -electrons is captured in the Heisenberg term, Eq. (3.1).

HH =
∑

r,r′
Ir,r′Sr · Sr′ (3.1)

This term was decoupled in Chap. 2 to give a dispersion to the f -electrons, via
the self-consistency equation (2.6). In Chap. 2, this dispersion was obtained by
comparison with the experimental QPI and encoded in the hopping parameters
tf 1–tf 7 and εf of Table 2.1. The curvature of the f -band directly arises from
magnetic interaction I (r, r′) treated within the mean-field approximation. Inverting
the self-consistency equation to solve for I (r, r′) in terms of tf (r, r′) allows one to
quantitatively determine the form of the magnetic interaction:

Ir,r′ = − πtf (r, r′)∫∞
−∞ dωnF (ω)ImGff (r, r′, ω)

(3.2)

Ir,r′ will be non-zero only if tf (r, r′) is so, which for the band structure extracted
from experiment (Table 2.1) is true for tf 1–tf 3, tf 5, and tf 7. Using the Green’s
functions of Eq. (2.9) one may solve Eq. (3.2) for the corresponding values of I ,
thereby obtaining the form of the underlying magnetic interaction between the f -
electrons in Eq. (3.3).

I (q) =2I1[cos(qx) + cos(qy)] + 4I2[cos(qx) cos(qy)] + 2I3[cos(2qx) + cos(2qy)]
+ 4I5[cos(2qx) cos(2qy)] + 2I7[cos(3qx) + cos(3qy)] (3.3)

The numerical value of this interaction, employing the experimentally determined
parameters of [16], is shown in real space in Fig. 3.1. The numerical values of the
interactions (between nearest, next-nearest, etc. neighbors) are given in Table 3.1.
Positive values of I (r − r′) denote antiferromagnetic interactions, whereas negative
ones imply ferromagnetic correlations.
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Fig. 3.1 Real space form of
the magnetic interaction
between f -electrons as
extracted from the
bandstructure fit to the
experiment QPI data [16]

Table 3.1 f -electron
magnetic interaction
parameters extracted from
bandstructure fits to QPI
experiments on CeCoIn5

Variable Distance Value (meV)

I1 (±1, 0) or (0,±1) 6.44

I2 (±1,±1) −20.30

I3 (±2, 0) or (0,±2) 6.04

I5 (±2,±2) −9.65

I7 (±3, 0) or (0,±3) 2.58

We now explore the possibility that the same magnetic interaction that produces
the curvature of the f -electron band is also the superconducting pairing interaction.
We recall first that the experiments determining the dispersion were in fact done
in the superconducting state. By using the self-consistency equation in the normal
state, Eq. (2.6) to extract I (q), we in fact neglected the feedback effects of supercon-
ductivity on the interaction, an assumption which will be shown reasonable below.
The neglect of feedback is important for making the calculations computationally
manageable.

We proceed by considering the spin-flip part of the Heisenberg term of
model (2.3), written in terms of the Abrikosov pseudofermion representation as

Hsf = 1

2N

∑

k,p,q

I (q)f
†
k+q,↑fk,↓f

†
p−q,↓fp,↑ (3.4)

In the heavy Fermi liquid state, the appropriate degrees of freedom are not c and f -
electrons but the heavy α and β-band quasiparticles. Thus, we first transform Hsf

using the canonical transformations of Eqs. (2.16) and (2.17), followed by a decou-
pling in the singlet particle–particle channels 〈α†

k,↑α
†
−k,↓〉 and 〈β†

k,↑β
†
−k,↓〉, while

neglecting interband pairing. This is justified due to “Fermi surface mismatch”: it
is not possible to pair electrons between the α- and β-Fermi surfaces in such a way
that their total momentum is zero (the lowest energy state in equilibrium).

The superconducting gap functions Δ
α,β

k , which were determined phenomeno-
logically in Chap. 2, can now be explicitly computed since the microscopic form
of the pairing interaction is known. This is the first time such a calculation was
achieved for a heavy fermion superconductor. Following the standard BCS mean-
field theory, the gaps obey Eqs. (3.5) and (3.6).
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Fig. 3.2 Momentum space
form of the magnetic
interaction between
f -electrons as extracted from
the bandstructure fit to the
experiment QPI data [16]

Δα
k = −x2

k

N

∑′

p
VSC(p − k)(x2

p〈α†
p,↑α

†
−p,↓〉 + w2

p〈β†
p,↑β

†
−p,↓〉) (3.5)

Δ
β

k = −w2
k

N

∑′

p
VSC(p − k)(x2

p〈α†
p,↑α

†
−p,↓〉 + w2

p〈β†
p,↑β

†
−p,↓〉) (3.6)

in which N is the number of sites and the pairing interaction VSC(q) = −I (q)/2
is shown in Fig. 3.2. Note the appearance of the heavy fermion coherence factors
xk and wk as a result of the canonical transformation from c and f operators to
α and β operators. The form of the magnetic interaction I (q)/2, peaked as it is at
Q = (π, π), justifies the lack of interband pairing in Eq. (2.19). The mismatch of
the α- and β-Fermi surfaces (see Fig. 2.10) implies that scattering between the two
occurs only for momenta transfers away from Q where the pairing interaction is
weak.

We thus arrive at the same SC mean-field Hamiltonian as was introduced
phenomenologically in Eq. (2.19) and diagonalized using the Bogoliubov transfor-
mations (2.22)–(2.25) to yield (2.26). Now we apply these transformations to the
BCS gap equations as well, finding

Δα
k = −x2

k

N

∑′

p
VSC(p − k)

[
x2

p

Δα
p

2Ωα
p

tanh

(
Ωα

p

2kBT

)
+ w2

p
Δ

β
p

2Ω
β
p

tanh

(
Ω

β
p

2kBT

)]

(3.7)

Δ
β

k = −w2
k

N

∑′

p
VSC(p − k)

[
x2

p

Δα
p

2Ωα
p

tanh

(
Ωα

p

2kBT

)
+ w2

p
Δ

β
p

2Ω
β
p

tanh

(
Ω

β
p

2kBT

)]

(3.8)

The heavy fermion coherence factors remain in this form of the gap equation as
well, reflecting the fact that the underlying interaction arises from the magnetic f -
electrons alone.
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The determination of the gap symmetry may be performed with the linearized
form of the gap equation, which is valid at temperatures near the transition Tc where
Δα,β are small. This results in a simple eigenvalue-eigenvector equation which is
computationally more tractable than the full non-linear gap equation. Discretizing
the Brillouin zone for k-points with |Eα,β

k | ≤ ωD we have

Δ̂ = −V̂SCΔ̂ (3.9)

(V̂SC)ij = ξ2
i

N
VSC(kj − ki )

[
ξ2
j

2|Ej | tanh

( |Ej |
2kBT

)]
(3.10)

Δ̂ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δα
k1
...

Δα
kNα

Δ
β

k1
...

Δ
β

kNβ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.11)

ξ2
i =

{
x2

ki
, 1 ≤ i ≤ Nα

w2
ki

, Nα + 1 ≤ i ≤ Nα + Nβ

(3.12)

Ei =
{

Eα
ki

, 1 ≤ i ≤ Nα

E
β

ki
, Nα + 1 ≤ i ≤ Nα + Nβ

(3.13)

Solving this equation for the eigenvectors Δ̂ allows for the determination of the
gap symmetry by direct inspection. Performing the calculation, we find that the
SC gaps in both the α- and β-bands possess dx2−y2 -symmetry (shown in Fig. 3.3
for the T = 0 gap). Thus, rather than explicitly assuming the gap symmetry (as
is often done in theoretical work), we are able to reproduce the correct symmetry
of the superconducting gap using calculations based entirely on the normal state
band structure and the assumption of a magnetic f -electron pairing interaction. As
discussed in Chap. 2, the use of dx2−y2 -symmetry in the theoretical calculation of the
QPI uniquely reproduces the important features of the experiments. However, the
usual type of QPI experiment (as are the experiments of Chap. 2) is not sensitive to
the phase of the superconducting gap. In Sect. 3.3 we discuss a set of phase-sensitive
QPI experiments that allows one to distinguish a sign-changing dx2−y2 -symmetry
gap and a gap that has nodes but does not change sign along the Fermi surface.
Typically, the symmetry of the gap close to Tc does not change as the temperature is
lowered towards T = 0 (UPt3 is a notable exception). In subsequent calculations of
the full momentum dependence of the superconducting gap we assume the correct
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Fig. 3.3 Superconducting
gap structure shown along the
Fermi surface, as calculated
from magnetic f -electron
pairing interaction. The black
arrow shows points connected
by the antiferromagnetic
ordering vector Q = (π, π),
between which the gap
changes sign [16]

symmetry to reduce the complexity of the problem. That is, the gap equations (3.7)
and (3.8) at T = 0 are solved for momentum-space points along the Fermi surface
in only one eighth of the Brillouin zone, kx ≥ ky ≥ 0, since the gap everywhere
else is related to this gap by symmetry.

A simple argument for the dx2−y2 -wave pairing symmetry follows from the real
space structure of the pairing interaction, Fig. 3.1. Along the bond directions, the
antiferromagnetic couplings I1, I3, and I7 result in attractive pairing potentials
VSC(r = −I (r))/2 < 0, between two anti-parallel spins (we assume spin-singlet
Cooper pairing). On the other hand, the ferromagnetic I2 and I5 along the diagonals
are repulsive (VSC > 0). Thus, the electrons comprising the pairs can minimize
their energy by forming nodes in the Cooper pair wavefunction along the diagonal
directions in real space, where the repulsive interaction would otherwise raise
the pair’s total energy. Alternatively, one sees that in momentum-space the large
repulsive interaction near the antiferromagnetic wavevector Q = (π, π) implies
from the BCS gap equation that the gap changes sign between points on the Fermi
surface connected by Q, as shown by the black arrow in Fig. 3.3.

We may now solve the full non-linear gap equations (3.7) and (3.8) numerically,
so as to obtain the momentum space form of the superconducting gaps on the α

and β-bands. The summations are performed for all states with energies satisfying
|Eα,β

k | ≤ ωD , with ωD a cutoff energy for the spin-fluctuation pairing. The
maximum of the gap is proportional to ωD (as was checked numerically), and so
we adjust it to reproduce the experimentally observed maximum of ≈ 0.6 meV. The
calculation produces gaps on the α and β-bands with the momentum space structure
shown in Fig. 3.4.

We further note that these gap functions can be well fit using the parameteriza-
tions of Eqs. (3.14) and (3.15).

Δα
k =Δα

0

2
{[cos(kx) − cos(ky)] + α1[cos(2kx) − cos(2ky)]

+ α2[cos(3kx) − cos(3ky)]} (3.14)

Δ
β

k = Δ
β
0

2
[cos(kx) − cos(ky)]3 (3.15)
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Fig. 3.4 Superconducting
gap structure as a function of
Fermi surface angle
calculated from magnetic
f -electron pairing
interaction. Fermi surface
angle is defined in Fig. 3.3
[16]

with Δα
0 = 0.492 meV, α1 = −0.607, α2 = −0.082, Δ

β
0 = −1.040 meV, and

ωD = 0.66 meV was used.
One may also use the linearized gap equation for determining the transition

temperature by adjusting the temperature T in Eq. (3.10) such that the linearized
equation is satisfied with a maximum eigenvalue λ = 1. Performing this calculation,
we find that Tc = 2.96 K, assuming that the quasiparticle lifetimes are infinite (Γ =
0+). In real experiments, various sources of dephasing are present, such as scattering
from phonons or impurities, which will reduce the lifetime (or equivalently the mean
free path). For the experimentally determined mean free path of l = 81 nm [17], the
dephasing rate is Γ = 0.05 meV. One may derive alternate forms of the BCS gap
equations which allow for the inclusion of non-zero damping, as given in Eqs. (3.16)
and (3.17).

Δα
k = − x2

k

N

∑′

p
VSC(p − k)

{
−x2

p

Δα
p

2Ωα
p

∫ ∞

−∞
dω

π
ImGa(p, ω) tanh

(
ω

2kBT

)

−w2
p

Δ
β
p

2Ω
β
p

∫ ∞

−∞
dω

π
ImGd(p, ω) tanh

(
ω

2kBT

)}
(3.16)

Δ
β

k = − w2
k

N

∑′

p
VSC(p − k)

{
−x2

p

Δα
p

2Ωα
p

∫ ∞

−∞
dω

π
ImGa(p, ω) tanh

(
ω

2kBT

)

−w2
p

Δ
β
p

2Ω
β
p

∫ ∞

−∞
dω

π
ImGd(p, ω) tanh

(
ω

2kBT

)}
(3.17)

with

Ga(p, ω) = Gb(p, ω) = 1

ω − Ωα
p + iΓ

(3.18)

Gd(p, ω) = Gg(p, ω) = 1

ω − Ω
β
p + iΓ

(3.19)
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Solving these equations we find that the critical temperature is suppressed to
Tc = 2.55 K, remarkably close to the experimental value of Tc = 2.3 K. We may
emphasize that apart from the fixing of ωD based on the observed gap magnitude,
the critical temperature was calculated using only normal state properties of the
material.

A well-known result of the BCS theory is the universal relation between the gap
and the critical temperature [18] of an s-wave superconductor in the weak-coupling
limit:

2Δ0

kBTc

= 3.53 (3.20)

We can use this to try to understand the strength of the coupling in our model of
CeCoIn5. Using the theoretical results obtained above, we find that

2Δ0

kBTc

= 5.43 (3.21)

However, a straightforward comparison of these values is not possible, for it is
known that in multi-band superconductors the above ratio (with Δ0 the maximum
gap considering all the bands) can exceed the BCS value significantly, even in the
weak-coupling regime [19, 20]. Taking the single band d-wave result of 2Δ0

kBTc
= 4.3

as a lower bound, it is seen that CeCoIn5 is at most moderately coupled, so that the
extension of our BCS-level model to a full strong-coupling Eliashberg theory would
not be likely to introduce significant changes.

3.3 Phase-Sensitive QPI

The QPI measurements in the superconducting state discussed above in Chap. 2
allow for the determination of the gap magnitude, but not its sign. This prevents
them from distinguishing between the sign-changing dx2−y2 -symmetry and (for
instance) nodal s-wave symmetry. The method of phase-sensitive QPI (PQPI) was
developed to overcome this limitation [21, 22]. The assumption is made that in
the absence of an external magnetic field (B = 0), the Bogoliubov quasiparticle
scattering is dominated by purely potential defects. In the presence of a finite field
(B �= 0), additional magnetic scattering channels will open up, for instance, off
of polarized magnetic defects. As discussed below, the scattering from magnetic
defects is sensitive to a sign change in the superconducting gap Δk in a different
way than the scattering from potential defects. The effects of potential scattering
were encoded in the matrix of Eq. (2.38). Analogously, one may define for magnetic
scattering the matrix

Û =

⎛

⎜⎜⎝

Mcc Mcf 0 0
Mf c Mff 0 0

0 0 −Mcc −Mcf

0 0 −Mf c −Mff

⎞

⎟⎟⎠ (3.22)
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Fig. 3.5 Comparison of theoretical (top row) and experimental (bottom row) QPI spectra in a
magnetic field B = 3 T. For the theoretical results, a low pass filter was applied to simulate the
experimental resolution (right side of each panel) [16]

with Mcc and Mff = M
(0)
ff r2

0 the magnetic scattering potentials for intraband

scattering, whereas Mf c = Mcf = M
(0)
cf r0 describe interband scattering (recall

r0 is the expectation value of the slave boson). Here for simplicity the magnetic
scatterers are assumed to split the spin up and down states, but not introduce spin-
flip scattering. Thus, one has

ĝ(q, E,B �= 0) = ḡpot(q, E) + ḡmag(q, E,B) (3.23)

ĝ(q, E,B = 0) = ḡpot(q, E) (3.24)

The magnetic field dependence of ḡmag(q, E,B) is not known, but one may take
Mcf /Mcc = Ucf /Ucc, Mff /Mcc = Uff /Ucc, and Mcc ≈ −1.7Ucc to obtain
reasonable agreement with the observed QPI pattern in a B = 3 T field, as shown
in Fig. 3.5. The phase-sensitive QPI spectrum is defined by

Δg(q, E,B) ≡ |ḡ(q, E,B)| − |ḡ(q, E, 0)| (3.25)

Note that Eq. (2.33) for the QPI signal only includes terms which have either nor-
mal Green’s functions or have anomalous Green’s functions, but not combinations
of the two. The crucial point to recognize is that the latter terms contain phase-
sensitive information. To illustrate this, consider the contribution to the QPI signal
coming from scattering within the α-band, due to the anomalous Green’s functions,

ḡαα
F (q, E) = Im

[
1

N

∑

k

B(k, k + q)
Δα

k

(E + iΓ )2 − (Ωα
k )2

Δα
k+q

(E + iΓ )2 − (Ωα
k+q)2

]

(3.26)
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Fig. 3.6 Dominant PQPI
vectors at E = −0.5
meV [16]

In Eq. (3.26), the factor B(k, k + q) has a complicated form involving the tunneling
parameters tc, tf , heavy fermion coherence factors wk, xk, and scattering strengths
U and M . However, none of these factors are sensitive to the phase of the
superconducting gaps. The remaining part of (3.26) is sensitive to the phase, thanks
to the product of the two gap functions Δα

kΔα
k+q. For instance, at an energy of

E = −0.5 meV, the major scattering processes take place along the vectors q1,2
as shown in Fig. 3.6 (strictly speaking, the Umklapp vector q ′

1 = (2π, 2π) − q1 is
shown for convenience). Notice how q1 connects points of different phase of the
superconducting gap, whereas q2 connects points with the same phase. Thus, the
sign of the QPI contribution ḡαα

F (q1, E) is different than that of ḡαα
F (q2, E). On the

other hand, terms involving only the normal Green’s functions take the form

ḡαα
G (q, E) = Im

[
1

N

∑

k

A(k, k + q)
ω + iΓ + Eα

k

(ω + iΓ )2 − (Ωα
k )2

ω + iΓ + Eα
k+q

(ω + iΓ )2 − (Ωα
k+q)2

]

(3.27)

which does not contain any phase information, since it depends only on |Δα,β

k |2
(inside of the energies Ωα

k ). We next note that the form of the scattering matrices
implies that the anomalous components ḡαα

F (q, E) have opposite signs for potential
and magnetic scattering:

ḡpot(q, E) = Ucc[ḡG(q, E) − ḡF (q, E)] (3.28)

ḡmag(q, E) = Mcc[ḡG(q, E) + ḡF (q, E)] (3.29)

using the fact that Mcf /Mcc = Ucf /Ucc and Mff /Mcc = Uff /Ucc. Furthermore,
direct calculation shows that for Mcc = −2Ucc the terms in (3.25) have opposite
signs, and so

Δg(q, E,B) =sgn[ḡ(q, E,B)]{Ucc[ḡG(q, E) − ḡF (q, E)]
+ Mcc[ḡG(q, E) + ḡF (q̄, E)] + Ucc[ḡG(q, E) − ḡF (q, E)]}

=sgn[ḡ(q, E,B)][(2Ucc + Mcc)ḡG(q, E) + (Mcc − 2Ucc)ḡF (q, E)]
=2sgn[ḡ(q, E,B)]MccḡF (q, E) (3.30)



3.4 Spin Excitations in CeCoIn5 39

Fig. 3.7 Comparison of experimental and theoretical results for PQPI (assuming dx2−y2 symme-
try). For the theoretical results, a low pass filter was applied to simulate the experimental resolution
(right side of each panel) [16]

Thus for this case in particular Δg(q, E,B) is proportional to ḡF (q, E) alone and
so it is sensitive to the phase of the superconducting order parameter. For Mcc =
−1.7Ucc the calculated and experimental PQPI spectra are in good agreement,
as shown in Fig. 3.7. Since the ratio Mcc/Ucc used to obtain agreement with the
experiment is close to the value −2, the PQPI for these parameters is indeed
phase-sensitive (dominated by ḡF (q, E)). Analyzing the dominant wavevectors q1,2
introduced above, we see that Δg(q1, E,B) < 0 whereas Δg(q2, E,B) > 0.
This indicates that the gap function changes sign for scattering between k-points on
the Fermi surface connected by q1, while the sign remains the same for scattering
of q2. This is shown in Fig. 3.8 for the energy E = −0.5 meV where these q-
vectors dominate the scattering. Thus, the superconducting gap indeed exhibits
a sign-changing dx2−y2 symmetry. Another method of checking the symmetry is
to compare these results with the PQPI obtained from the assumption that the
symmetry is nodal s-wave (i.e., the same sign, but varying magnitude, across the
Fermi surface). The calculation of Δg(q, E,B) for this gap structure is given in
Fig. 3.9, and is clearly inconsistent with the experimental results, strengthening the
proposal that the gap changes sign along the Fermi surface. Finally, we note that the
details of the experimental analysis of the PQPI can be found in Ref. [16].

3.4 Spin Excitations in CeCoIn5

The study of spin excitations in the superconducting state has played an important
role in both conventional and unconventional superconductors. In the former, the
prediction and subsequent observation of the Hebel-Slichter peak in the spin-lattice
relaxation rate below the transition temperature served to garner support for the
BCS theory [23]. In unconventional superconductors, the existence of a “magnetic
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Fig. 3.8 Experiment and
theory for PQPI on CeCoIn5,
indicating the important
q-vectors at E = −0.5
meV [16] (a) theory
(b) experiment

Fig. 3.9 Theoretical PQPI on CeCoIn5, obtained by assuming s-wave symmetry of the supercon-
ducting gap. These results are clearly inconsistent with the experimental results in Fig. 3.7 [16]

resonance peak” in the neutron scattering data in the superconducting states of
cuprates, heavy fermions, and iron pnictides has led to the speculation that the
pairing mechanisms are related in each case [24]. In the following we discuss the
predictions for the magnetic resonance peak and NMR relaxation rate obtained with
the theoretical model developed for CeCoIn5.

3.4.1 Magnetic Resonance Peak

The observation of a peak in the inelastic neutron scattering data in the super-
conducting state of CeCoIn5 [25] has led to several proposed explanations of the
phenomenon. One possibility is that the peak is a spin exciton arising in an RPA
calculation of the spin susceptibility [26]. An alternative picture envisions the
resonance as a magnon that becomes undamped in the superconducting state [27].
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These two scenarios will be explored further in Chap. 4. For now, we consider the
description of the spin exciton with the model developed in Chap. 2 and the present
chapter. The localized f -electrons provide the largest contribution to the magnetic
susceptibility of CeCoIn5, and hence we neglect the explicit contributions from
the c-band or from interband terms in the following. The magnetic susceptibility
χ(r − r′, τ ) then is defined via

χ(r − r′, τ ) = 〈Tτ Sf
r (τ ) · Sf

r′(0)〉

= 1

2
〈TτS

+
r (τ )S−

r′ (0)〉 + 〈TτS
−
r (τ )S+

r′ (0)〉 + 〈TτS
z
r (τ )Sz

r′(0)〉
= χ±(r − r′, τ ) + χ∓(r − r′, τ ) + χzz(r − r′, τ ) (3.31)

where τ is the imaginary time in the Matsubara formalism for finite temperature
calculations, Sf are the spin operators for thef -electrons with z-components Sz and
transverse components S± = Sx ± iSy . For non-interacting, but hybridized, heavy
quasiparticles the retarded magnetic susceptibility in the superconducting state is
found to be
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with

ζ 2
k,i =

{
w2

k if i = α

x2
k if i = β

(3.33)

with δ = 0+. Including the spin-flip interaction (Eq. (3.4)) between the quasiparti-
cles and performing a standard RPA summation, one obtains the full susceptibility

χ±
SC,RPA(q, ω) = 1

2

χSC
0 (q, ω)

1 + Ī0(q)χSC
0 (q, ω)

(3.34)

where we defined Ī0(q) ≡ I0(q)/2. Here the important thing to notice is that
χ±

SC,RPA contains the bare, unrenormalized magnetic interaction, Ī0(q), whereas
the magnetic interaction extracted from the experiment is the full one. However, at
the level of the RPA approximation these can be related using

[Ī0(q)]−1 = [Ī (q)]−1 − ReχN
0 (q, ω = 0) (3.35)
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Fig. 3.10 Real part of
non-interacting susceptibility,
χN

0 (q, ω), calculated in the
normal state of CeCoIn5 [16]
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Fig. 3.11 Theoretical calculation and experimental results for the magnetic resonance peak
observed in neutron scattering experiments in the superconducting state of CeCoIn5 [16] (a) theo-
retical calculation (b) experimental results

Here the simplification of taking the normal state χN
0 (q, ω) at ω = 0 was made,

which is valid since the real part is only weakly dependent on frequency for small
ω, as shown in Fig. 3.10. Now computing the imaginary part of the susceptibility,
which is measurable in neutron scattering experiments, using Eqs. (3.34) and (3.35),
we find very good agreement between the experimental [25] and theoretical results.
In particular, we note that the location of the theoretical peak at Q = (π, π) in
energy is very close to the experimental observation. This is shown in Fig. 3.11. The
position of the resonance peak is determined by the pole of Eq. (3.34), that is, by the
equation

1 + Ī0(q)χSC
0 (q, ω) = 0 (3.36)

In this case, since the c-electrons enter only through the non-interacting suscepti-
bilities, and not through Ī (q), their effect on the resonance peak position is small
compared to that of the f -electrons, which determine the behavior of Ī (q).
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3.4.2 NMR Spin-Lattice Relaxation Rate

The spin-lattice relaxation rate measured in NMR experiments [28] can also be
directly related to the spin susceptibility of Eq. (3.34).

1

T1
= kBT

2h̄
(h̄2γnγe)

2 A(q)

N

∑

q

lim
ω→0

2Imχ±
SC(q, ω)

ω
(3.37)

where γn and γe are the nuclear and electronic gyromagnetic ratios and A(q) is the
hyperfine coupling. The microscopic form of A(q) is unknown, so that for simplicity
we take a direct hyperfine coupling only, which implies momentum independence
(A(q) = A0). For the calculation of the temperature dependence of 1/T1 we first
determined the temperature-dependent superconducting gap using the non-linear
gap equations (3.7) and (3.8) to determine χ±

SC,RPA(q, ω). Because of the large

temperature range involved, we now calculate the bare interaction [Ī0(q) using the
non-interacting susceptibility in the superconducting state,

[Ī0(q)]−1 = [Ī (q)]−1 − ReχSC
0 (q, ω = 0) (3.38)

while the full susceptibility is still given by Eq. (3.34). The calculated temperature
dependence of 1/T1 is given in Fig. 3.12 where it is compared with the experimental
results [28]. One notices the good agreement between the theory and experiment for
the relevant temperature range. Interestingly, the power-law exponent for 1/T1 is
found theoretically to be α ≈ 2.5, which is reduced from the value α = 3 expected
for a dx2−y2 -wave superconductor [29]. This is understood from the fact that at the
experimentally relevant temperatures, kBT exceeds the magnitude of the gap on the
β-band but is smaller than that of the α-band, leading to a superposition of the power
laws appropriate for the normal (α = 1) and the superconducting states (α = 3).

To conclude, we have demonstrated that a number of important experimental
results on the superconducting gap of CeCoIn5 can be reproduced under the
assumption that spin fluctuations of the f -electrons are the pairing mechanism
that drive superconductivity in the material. These include the symmetry of the
gap, the critical temperature, the observed QPI spectra in the superconducting
state (including the phase-sensitive ones), and the spin excitations of the neutron
scattering and NMR experiments. This lends considerable support to the hypothesis
that spin fluctuations provide the pairing in CeCoIn5 and related materials, and to
the theories originally proposed for heavy fermions along these lines [5, 30].
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Fig. 3.12 Theoretical calculation and experimental results for the spin–lattice relaxation rate as
a function of temperature in the superconducting state of CeCoIn5 [16] (a) theoretical calculation
(b) experimental results
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Chapter 4
Real and Momentum Space Probes in
CeCoIn5: Defect States in Differential
Conductance and Neutron Scattering
Spin Resonance

4.1 Real-Space Study of Defects by STM

The development of scanning tunneling microscopy, specifically its spectroscopic
imaging mode of operation, has enabled detailed studies of the local electronic
structures of many superconductors. In particular, it is now possible to examine
the detailed changes in the electronic structure in the vicinity of defects, whether
point-like or extended. Defect physics has traditionally played an important role in
the study of superconductivity, but its experimentally accessible effects were limited
to the modification of bulk properties such as the critical temperature Tc. With STM
experiments, the ability to measure precise local densities of states provides new and
strong constraints on theoretical models of defects in superconductors. In particular,
the local response of unconventional superconductors to defects can be a signature
of the underlying superconducting gap symmetry [1]. The existence of sub-gap
impurity states is one consequence of defects in superconductors which has been
confirmed in a number of cases.

4.1.1 Model

To investigate the form of the differential conductance, dI/dV , in CeCoIn5 in
the normal and superconducting states, we start from the electronic band structure
extracted from QPI spectroscopy (Chap. 2), described by the mean-field Hamilto-
nian HMF

tot = HMF
K + HMF

SC as given in Eqs. (2.18) and (2.19).
Zhou et al. performed STM-STS measurements on CeCoIn5 in the normal state

at several different temperatures [2]. In particular, they found the development of
a feature at 5.3 K which they attributed to the possibility of a pseudogap regime in
the material, similar to the cuprates [3]. A similar structure was also observed when
superconductivity was suppressed by a magnetic field. These experimental results
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Fig. 4.1 (a) Experimental and (b) theoretical differential conductance dI/dV in the normal state
of CeCoIn5. (c), (d) Equal energy contours of the heavy quasiparticle bands indicating the van
Hove singularities (black arrows) at energies E1 and E2, respectively [4]

are shown in Fig. 4.1a. To test this interpretation, we calculated the expected dI/dV

in the normal state based on the electronic bandstructure extracted in Chap. 2,
as shown in Fig. 4.1b. We note that a similar two-peak structure is found in the
calculations as was observed experimentally. However, in this case the structure
does not arise from pseudogap physics, but simply reflects the existence of van Hove
singularities due to the flatness of the bands in the hybridized heavy Fermi liquid
state. These singularities are clearly visible in the equal energy contours of Fig. 4.1c
and d, as indicated by the arrows. Thus we propose that the signatures observed by
Zhou et al. in the normal state are not due to a pseudogap, but are consequences of
the hybridized band structure in this heavy fermion compound.

Next we discuss the form of dI/dV obtained in the superconducting state of
CeCoIn5. The Fermi surface of Chap. 2 and superconducting gap computed in
Chap. 3 are presented for reference in Fig. 4.2a,b, and will be used in the subsequent
discussion. Recall that there are gaps on three different sheets of the Fermi surface:
two corresponding to the α-band with Δ

α1
max = 0.6 meV and Δ

α2
max = 0.2 meV,
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Fig. 4.2 (a) Fermi surface, (b) superconducting gap, and (c) differential conductance in the
superconducting state of CeCoIn5 [4]

respectively, and one from the β-band with Δ
β
max = 0.1 meV. This leads to three

sets of coherence peaks in the tunneling data, as shown in Fig. 4.2c. There is also an
additional peak indicated at the energy Ē1, which is associated with the van Hove
singularity in the normal state at E = E1. One also notices a non-linear rise in the
differential conductance at the lowest energies, due to the higher-harmonic form of
the gap in the β-band (Eq. (3.15)).

A detailed comparison of the theoretical and experimental differential conduc-
tance is given in Fig. 4.3a, in which the calculations have been broadened by a
quasiparticle damping of Γ = 0.06 meV to mimic the experimental resolution.
This suppresses and smooths out the three sets of coherence peaks; in particular,
those due to the α2 and β gaps merge into a kink at E ≈ ±0.15 meV, as indicated
by the arrows in Fig. 4.3a. The appearance of the kink follows from the differing
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Fig. 4.3 Comparison of
theoretical and experimental
dI/dV in the
superconducting state in the
energy ranges (a) ±1.0 meV
and (b) ±0.4 meV [4]

energy scales of the α1 and β gaps, as indicated by the linear fits in Fig. 4.3b. For
0.2 meV < E < 0.6 meV, inside the α gap but outside the β gap, the slope of
dI/dV is controlled by Δ

α1
max. On the other hand at low energies, E < 0.1 meV,

the β-band dominates the behavior, leading to a steeper slope in the conductance.
The departures from linearity between E ≈ ±0.12 meV and E ≈ ±0.18 meV are
close to the predicted coherence peaks of the two smaller gaps, which suggests that
higher resolution experiments may be able to see peaks at these energies.

Having investigated the differential conductance, and thus the electronic struc-
ture, far away from strong local perturbations, we now ask how these are modified
in vicinity of defects. This can be addressed in the T -matrix formalism as follows.
First, define the non-interacting Green’s function matrix in real space for the c and
f electrons,

ĝ(r, r′, τ, τ ′, ) = −〈TτΨr(τ )Ψ
†
r′(τ ′)〉 (4.1)
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In this definition the spinor Ψ
†
r is given by

(
c

†
r,↑, cr,↓, f

†
r,↑, fr,↓

)
. For a single

defect at position R which is capable of scattering either the c- or f -electrons, the
dressed Matsubara Green’s function is obtained from a geometric series:

Ĝ(r, r′, iωn)=ĝ(r, r′, iωn) + ĝ(r, R, iωn)
[
1̂ − Û ĝ(R, R, iωn)

]−1
Û ĝ(R, r′, iωn)

(4.2)

with potential scattering matrix

Û =
(

Ucσz 0
0 Uf σz

)
. (4.3)

Here,

Û =
(

Ucσz 0
0 Uf σz

)
. (4.4)

where Uc and Uf are the potentials for scattering electrons in the c- and f -bands
and σz is a Pauli matrix. We then analytically continue from the Matsubara to the
retarded Green’s function, iωn → ω + iΓ , with the dephasing Γ determined by
comparison to the experimentally determined line widths.

Placing a defect that scatters only the f -electrons at the origin, we calculate the
resultant local density of states for a weak potential Uf = −5 meV and a vacancy
of the f -electron site, modeled by letting Uf → −∞. The two cases are shown in
Fig. 4.4a, b, respectively. Here the local density of states is shown for sites (1,0) and
(1,1), along with that of the unperturbed system. It is readily seen that the defect
induces sub-gap states at the nearest neighbor site for both scattering strengths. For
stronger potentials, the state is pulled down in energy towards E = 0, although even
in the Uf → −∞ limit the state remains at finite energies due to the particle-hole
asymmetry of the bandstructure.

In addition to examining the energy dependence of the states at a fixed position,
much can be learned by fixing the energy and looking at the spatial structure
around the defect [5]. In Fig. 4.5a, b we show the calculated spatial structure of
the density of states at E = ∓0.05 meV in the presence of a weak f -electron
scatterer (Uf = −5 meV). This is to be compared with the experimental results of
Zhou et al. reproduced in panels c and d of Fig. 4.5. At positive energies, both the
theory and experiment show high intensity along the directions 45◦ from the bond
directions, as well as at the origin. For negative energies, the calculations reproduce
the four lobes of high intensity at nearby sites along the bond directions, but fail
to generate the suppression of the density of states at the defect site which is seen
experimentally. There are a number of possible reasons for this discrepancy, such
as the use of point-like rather than extended defects in the calculations (whereas the
actual defects in experiment are clearly extended), or the lack of more complicated
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Fig. 4.4 Differential conductance in the superconducting state in the presence of a defect [4]

scattering involving the conduction electrons. Another possibility for improving
the agreement would be to include the Wannier wavefunctions of the appropriate
orbitals in the calculations, as was recently done with remarkable success for the
cuprates [6]. Both the experimental and theoretical results shown in Fig. 4.5 agree
with the expectations for dx2−y2 superconductors [5]. Cuprate superconductors have
also been found to agree with the dx2−y2 -symmetry expectations for the spatial
structure of dI/dV [7].

To conclude, we demonstrated how the band structure extracted in Chap. 2 along
with the superconducting gap calculated in Chap. 3 can be used to understand the
real space dI/dV spectra in CeCoIn5 in both the normal and superconducting states.
In the former case, the pseudo-gap-like features that develop around 5.3 K can in
fact be associated with the van Hove singularities of the heavy band structure. In
the superconducting state, the dI/dV far from impurities is seen to carry definite
signatures of the multiple gaps present in the system. Finally, the agreement between
the calculated and experimental dI/dV near point-like defects reveals the presence
of sub-gap impurity states, with the spatial patterns expected of dx2−y2 -symmetry
superconductors. Taken together, these results reinforce the conclusions of the
previous chapters about the band structure of CeCoIn5 and the underlying magnetic
f -electron pairing mechanism that produces superconductivity.

4.2 Neutron Scattering in CeCoIn5

Section 3.4.1 discussed the magnetic resonance peak in the superconducting state of
CeCoIn5 discovered by Stock et al. [8], along with its recovery in the calculations
within the model developed in Chaps. 2 and 3. Recent neutron scattering experi-
ments on Ce1−xYbxCoIn5 by Song et al. [9] show a dispersion of this resonance,
which presents an additional challenge to theorists to understand the behavior
away from the commensurate antiferromagnetic wavevector Q=(0.5,0.5,0.5). The
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Fig. 4.5 Spatial variation of the differential conductance in the superconducting state in the
presence of a defect. (a), (b) Theoretically calculated dI/dV at energies E < 0 and E > 0,
respectively. (c), (d) Experimentally determined dI/dV for E < 0 and E > 0 [4]. Panels (c) and
(d) are reprinted by permission from [2]

following section explores the possibility of describing the dispersing mode within
the theory already developed. It is found that the most straightforward extension of
the earlier work, the spin exciton scenario, fails to reproduce the correct dispersion.
We then model the resonance phenomenologically as a paramagnon (damped
remnant of a spin-wave from the nearby antiferromagnetic phase). Within this model
we show that the observed splitting of the resonance in a magnetic field can be
explained by an anisotropy of the magnetic f -electron interaction. The question
of the exciton versus magnon description mirrors a discussion about a similar
resonance observed in neutron scattering in the cuprates. The magnon scenario
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represents the strong coupling approach, in which spin-wave excitations of the
f -electrons—which are damped in the normal state—become undamped in the
superconducting state, leading to the resonance, as discussed below [10]. In practice,
the magnon is generated by adding a term of the form Ω2/EF to the bare spin
susceptibility. However, it was found that the weak coupling spin exciton approach
automatically generates a term ∼ Ω2/Δ, which overwhelms the former term [11].
In CeCoIn5 it appears the situation is reversed [12], as verified by the experiments
and analysis discussed below.

Neutron scattering results from Song et al. are presented in Fig. 4.6, where
the scattering wavevector is varied along the (H,H,0.5) direction in reciprocal
lattice units. The experimental data are taken at a discrete set of wavelengths and
energies, which are fit by the simple Gaussians shown in Fig. 4.6. Starting at the
low energy side, one notices that as the energy is increased, a strong peak emerges
which is centered at Q and has a maximum width at E = 0.55 meV. As the
energy is further increased, the peak narrows slightly before splitting into two
peaks dispersing away from Q. For momentum transfer fixed at Q, the scattering
intensity versus energy shows a strong dependence on temperature as transition is
made into the superconducting state (Fig. 4.7). This, along with the observation of
similar phenomena in related unconventional superconductors [13], suggests a close
tie between the resonance peak and the superconducting state. Theory developed
in Sect. 3.4.1 can be immediately applied to the question of the resonance peak
dispersion through the calculation of χ±

SC,RPA(q, ω) at wavevectors away from
Q. The RPA method has been very successfully applied to other unconventional
superconductors, such as the cuprates [14]. Within this approach the resonance is
interpreted as a spin exciton, a collective excitation arising from the pole in the
RPA susceptibility. Performing the calculation of Imχ±

SC,RPA over a wide range in
momentum and frequency leads to the color plots shown in Fig. 4.8a, b. It is seen
that the spin exciton theory predicts a resonance with a downward dispersion. This is
in marked contrast to the experimental results, overlaid with the blue line to indicate
the position of the peak maximum of the resonance. Thus it appears that the simple
spin exciton scenario using the dispersion and magnetic interaction extracted from
the QPI experiments, along with the calculated form of the superconducting gap, is
not able to reproduce the neutron scattering results away from Q.

In the absence of a microscopic theory of the spin resonance it is still possible to
model the behavior phenomenologically in the spin-fermion model [10]. The idea
is rooted in an analogy with the cuprate superconductors, where closeness to the
parent antiferromagnetic state was proposed to engender a paramagnon resonance.
CeCoIn5 is also believed to be close to an antiferromagnetic state. This is evidenced
by the observation of spin fluctuations in NMR and NQR measurements [15] and
by the existence of non-Fermi liquid behavior in the phase diagram, which is
expected in proximity to an antiferromagnetic quantum critical point [16–18]. In
the normal state, the resonance is not observed, due to damping from the particle-
hole continuum. However, the occurrence of superconductivity opens a gap, which
allows the resonance to become undamped if its energy is below the onset of the
particle-hole continuum. To study the resonance in the paramagnon framework we
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Fig. 4.6 Neutron scattering
intensity as a function of
wavevector (r.l.u.) and energy
(meV) obtained from
Gaussian fits to the
experimental data

Fig. 4.7 Temperature
dependence of the resonance
peak in neutron scattering at
the AFM wavevector
Q=(π ,π ,π ) as a function of
energy

begin with the assumption that the dispersion obeys

ω2
sw(q) = Δ2

sw + c2
sw(q − QAF )2 (4.5)

with Δsw equal to the spin-wave gap and csw the corresponding velocity. The
dressed spin propagator in the spin-fermion model can be written as

χ−1 = χ̄−1 − Π (4.6)

here χ̄ is the bare spin propagator and Π is the irreducible polarization operator.
Re χ−1 = χ̄−1 − Re Π is determined by the fermionic excitation spectrum at all
energies, and so it cannot be calculated within the low-energy model of Chaps. 2
and 3. Thus it is necessary to use a phenomenological form of the propagator,

Re χ−1 = χ̄−1 − Re Π = ω2
sw(q) − ω2

α
(4.7)
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Fig. 4.8 (a, b) Theoretical calculation of Imχ±
SC,RPA and comparison with the experimental

dispersion of the resonance peak. (c, d) Theoretical model of the resonance as a paramagnon from
fits to experiment

with the dispersion given in Eq. (4.5) with the parameters Δsw = 0.5498 meV and
csw = 3.2463 Å, to reproduce the experimental results. The parameter α reflects the
spectral weight of the paramagnon in the normal state. We assume in the following
that the form of Eq. (4.7) is unchanged upon entry into the superconducting state.
Rather, the primary effects come from Im Π , which reflects the damping of spin
excitations via decay into particle-hole pairs. The lowest order expression for Π in
the spin-fermion coupling g is given by

Π = g2χ0 (4.8)

with χ0 the non-interacting susceptibility of Eq. (3.32). In the following we use
g2 = 20.0 meV2, noting that only the width, and not the position, of the resonance is
affected by this choice. The key physics that leads to the appearance of the resonance
peak inside the superconducting state can be understood from Fig. 4.9.
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Fig. 4.9 (a) Imaginary part of the irreducible polarization Π calculated in the spin-fermion model.
(b) Calculation of the resonance peak modeled as a paramagnon. Inset: wavevector Q of scattering
processes determining Im Π and ωc

Here, Fig. 4.9a displays Im Π in the normal and superconducting states at q = Q
as a function of energy. One notices that in the normal state the imaginary part
of Π increases linearly from zero energy, i.e. damping from decay into particle-
hole excitations can occur at all finite frequencies. This prevents the formation
of a resonance peak at finite energy, since a spin excitation at that energy will
spontaneously decay into particle-hole pairs, for E > 0. On the other hand, the
transition to the superconducting state causes Im Π to vanish below an energy
ωc. This onset energy is determined from the fact that in the superconducting
state a minimum energy is required to produce a particle-hole pair (with momenta
k and k + Q): ωc(Q) = |Δk| + |Δk+Q|. This scattering process is shown on
the Fermi surface reproduced in Fig. 4.9b. Thus, in the superconducting state the
spin resonance can become undamped if its energy is below the onset ωc. This is
illustrated in the plot of Im χ reproduced in Fig. 4.9b. In particular, one notices the
sudden drop in spectral weight around E ≈ 0.75 meV, corresponding to the onset
of the particle-hole continuum in Fig. 4.9a.

Moving away from the antiferromagnetic wavevector Q along the [1,1,0] direc-
tion, one finds that multiple onset energies appear as a consequence of the increase in
the number of scattering channels connecting points on the Fermi surface separated
by momentum transfer q. This is shown for the particular case q = 0.95Q in
Fig. 4.10a. One can clearly identify the presence of four onset energies, as indicated
by the green arrows. The three high energy onsets ω

(2)
c –ω

(4)
c come from scattering

of 0.95Q between different parts of the α1 Fermi surface (Fig. 4.10c). These lead to
the sudden jumps in Im Π seen in Fig. 4.10a. The jump arises from the fact the gaps
at k and k+0.95Q have a phase difference of π , so that the pre-factor of the second
term of Eq. (3.32) does not vanish at the Fermi surface, as it would for gaps of the
same sign. On the other hand, ω

(1)
c marks the beginning of a gradual linear onset

of Im Π near E ≈ 0.4 meV. This occurs because q connects momentum points on
the α2 and β Fermi surfaces, for which the signs of the gap are the same and the
pre-factor of the second term vanishes on the Fermi surface.
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Fig. 4.10 (a) Imaginary part of Π in the superconducting state of CeCoIn5 at q = 0.955QAF .
Onset energies for particle-hole scattering in the superconducting state are indicated by the green
arrows. (b) Momentum dependence of the onset energies in ImΠ . Dashed vertical line corresponds
to the case shown in (a). (c) Scattering vectors corresponding to the onset energies in (a) shown on
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Fig. 4.11 The dispersion of
the resonance modeled as a
paramagnon, including the
energies of some onsets of the
particle-hole continuum.
Whenever an onset is crossed
there is a corresponding
reduction in the amplitude of
the mode

The evolution of the onset energies as a function of momentum transfer is shown
in Fig. 4.10b, with the vertical dashed line indicating the case of q = 0.95Q. One
sees that the original onset energy near E ≈ 0.75 meV for q = Q splits into three
separate onset energies away from this point, and that other previously unrealized
onsets emerge as new parts of the Fermi surface can be connected with a given
momentum vector. The effect of these onsets on the intensity of the paramagnon
resonance is demonstrated in Fig. 4.11. One notices that whenever the dispersion
crosses an onset energy for the particle-hole continuum at a given wavevector,
there is a subsequent loss of amplitude in the resonance mode, due to the damping
produced by Imχ±

SC,RPA.
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Fig. 4.12 (a) Schematic of magnetic easy plane and applied magnetic field. (b) Splitting of the
resonance mode due to applied field in the presence of easy-plane magnetic anisotropy

4.2.1 Magnetic Anisotropy and External Magnetic Field

Neutron scattering experiments by Stock et al. [19] discovered that the resonance
peak splits into two peaks when a magnetic field is applied in the [1,1̄,0] direction.
The splitting into two modes for the field in the ab-plane is unexpected, as
the nominally spin 1 exciton should split into three peaks upon application of
the external field, for a system with Heisenberg spin symmetry. However, the
observation of two modes can be explained if the system possesses a magnetic easy
plane perpendicular to the applied field (in this case the plane spanned by [1,1,0]
and [0,0,1]). Therefore we replace the previous magnetic interaction Hamiltonian,
Eq. (3.1), with one including anisotropy and coupling to the external field

HH =
∑

r,r′
Ir,r′Sr · Sr′ + A

∑

r

(Sz
r )

2 − gμBH
∑

r

Sz
r (4.9)

Here the choice A > 0 yields a hard magnetic axis along [1,1̄,0] and an easy plane
perpendicular to it (Fig. 4.12a). For convenience [1,1̄,0] is defined as the z-direction
in spin space.

With the Abrikosov pseudofermion representation also used in Chap. 2,

Sr = 1

2

∑

α,β

f †
r,ασαβfr,β (4.10)

we may re-write Eq. (4.9) as

H = 1

4N

∑

k,l,q

{
Izz(q)

(
f

†
k+q↑fk↑ − f

†
k+q↓fk↓

) (
f

†
l−q↑fkl↑ − f

†
l−q↓fl↓

)
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+ I±(q)
(
f

†
k+q↑fk↓f

†
l−q↓fl↑ + f

†
k+q↓fk↑f

†
l−q↑fl↓

)

− gμBH
∑

k

(
f

†
k↑fk↑ − f

†
k↓fk↓

) }
(4.11)

where we have defined

Izz(q) = Iq + A (4.12)

I±(q) = Iq (4.13)

near the commensurate antiferromagnetic wavevector Q, one has I (Q) < 0, so that

|Izz(Q)| < |I±(Q)| (4.14)

Calculating the transverse susceptibility in the RPA approximation yields

χγ (q, ω) = χ
γ

0 (q, ω)

1 + I±χ
γ

0 (q, ω)
(4.15)

where γ = ±,∓ and the non-interacting transverse susceptibility is given by [20]

χ
±,∓
0 (q, ω) = − 1

N

∑

k

∑

i,j=α,β

{
C+

ij

f
i,±
k+q − f

j,∓
k

ω + iδ + ξ
i,±
k+q − ξ

j,±
k

+ C−
ij

2

1 − f
i,∓
k+q − f

j,∓
k

ω + iδ − ξ
i,∓
k+q − ξ

j,∓
k

− C−
ij

2

1 − f
i,±
k+q − f

j,±
k

ω + iδ + ξ
i,±
k+q + ξ

j,±
k

}

(4.16)

where ξ
i,±
k = Ωi

k ± H , f
i,±
k = nF (ξ

i,±
k ), and

C±
ij = 1

2

⎛

⎝1 ± Ei
k+qE

j

k + Δi
k+qΔ

j

k

Ωi
k+qΩ

j

k

⎞

⎠ (4.17)

Note that χ±
0 is given by the right-hand side with the upper signs, whereas χ∓

0 is
given by the lower signs. Thus, the magnetic field is treated as a Zeeman splitting
of the two spin directions. We can now see how magnetic anisotropy can lead to the
observed two-peak structure in applied field. For large enough A, one has Izz(q) =
Iq + A > 0, and the longitudinal mode can be located above the onset energy
of the particle-hole continuum, ωc(Q). Thus, it will be strongly damped and not
observable in the neutron scattering. For H = 0, the two transverse modes χ

±,∓
0

will be degenerate and hence produce a single peak in the spectrum, as seen in the
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Fig. 4.13 (a) Schematic of magnetic easy-axis and applied magnetic field. (b) Splitting of the
resonance mode due to applied field in the presence of easy-axis magnetic anisotropy

original experiments [8]. The applied field will then split the peak into two with
energy separation increasing linearly with H , as seen in the calculation shown in
Fig. 4.12b, and also observed experimentally [19].

One may contrast the behavior in the presence of a magnetic easy-plane with that
in the case of an easy-axis. Assuming that the magnetic field is still along [1,1̄,0], let
the easy-axis be the magnetic x-axis (crystallographic c-axis), shown in Fig. 4.13.
Then the second term in (4.9) is replaced by A

∑
r(S

x
r )2 where now A < 0.

In this case the transverse susceptibilities can be written as

χxx(q, ω) = 1

4

χ±
0 + χ∓

0 + 2χ±
0 χ∓

0 (I+
q − I−

q )

(1 + I+
q χ±

0 )(1 + I+
q χ∓

0 ) − χ±
0 χ∓

0 (I−
q )2

(4.18)

χyy(q, ω) = 1

4

χ±
0 + χ∓

0 + 2χ±
0 χ∓

0 (I+
q + I−

q )

(1 + I+
q χ±

0 )(1 + I+
q χ∓

0 ) − χ±
0 χ∓

0 (I−
q )2

(4.19)

and here I±
q = (I x

q ± I
y
q )/2, I x

q = Iq + A, and I
y
q = I z

q = Iq. Since Iq < 0 for
q ≈ Q, we have |I x

q | > |I y,z
q | and the resonance peak occurs at a lower energy

for χxx than for χyy = χzz (in zero field). As a qualitative demonstration of the
behavior with an easy-axis, we set A = −0.3 meV and I x

q such that the resonance
in χxx occurs at ω = 0.6 meV. One sees in Fig. 4.13b that for H = 0, χxx has the
expected behavior, whereas χyy = χzz possesses a small peak near the edge of the
particle-hole continuum. Application of a finite field H = 0.2 meV then pushes the
χxx resonance to lower energy, leaves χzz unaffected (not shown), and pushes χyy

up into the particle-hole continuum where it is damped away. Thus, in this scenario
there is no splitting of the resonance peak by a field applied in the [1,1̄,0] direction,
in clear contradiction with the experiments.

To conclude, in this chapter we investigated further developments of the model
of CeCoIn5 introduced in Chaps. 2 and 3. It was found that the model was able to
quantitatively account for the real space differential conductance in the normal and
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superconducting states, both on clean parts of the surface and in the immediate
vicinity of defects. This lent further support to the proposed low-energy band
structure and microscopic pairing mechanism. We then turned to recent neutron
scattering experiments on Ce1−xYbxCoIn5 and investigated the dispersion of the
magnetic resonance peak in the superconducting state. It was found that the most
straightforward extension of the model of Chaps. 2 and 3, the spin exciton scenario,
was not able to account for the dispersion. We then modeled the resonance as a
paramagnon and showed how its appearance can be understood through the opening
of a gap in the particle-hole continuum below Tc. Finally, we addressed how the
unexpected observation of the resonance splitting into two peaks in a magnetic field
applied in the [1,1̄,0] direction can be explained as a consequence of magnetic easy-
plane anisotropy.
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Chapter 5
Transport in Nanoscale Kondo Lattices

The previous chapters have thoroughly studied an archetypal heavy fermion mate-
rial, CeCoIn5, in the normal and superconducting states. The response to several
different probes, primarily scanning tunneling spectroscopy and neutron scattering
was examined and modeled within a mean-field slave boson large-N theory. A
common feature of these experimental techniques is that they study the properties of
the system in equilibrium. Indeed, much of the work on strongly correlated systems
has focused on equilibrium behavior. The reason for this is two-fold. First, the theory
of equilibrium statistical mechanics is much further developed than nonequilibrium
theory, which makes it easier to calculate observables in this framework. In cases
where nonequilibrium results are desired, such as the response to a time-dependent
external field, the traditional approach has been to use linear response theory
and the fluctuation-dissipation theorem, which allows one to obtain the first-order
response by calculating only equilibrium quantities [1]. Second, because strongly
correlated systems have proven difficult to understand even in the equilibrium case,
it has perhaps been thought that one should not attempt a harder problem before
the easier one is solved sufficiently. To this one may reply that nonequilibrium
experiments present fundamentally new phenomena that can help further constrain
theoretical models and lead to a more comprehensive understanding of correlated
electron systems. Furthermore, while nonequilibrium calculations are generally
more challenging than equilibrium ones, the rapid growth of computing power has
made them less prohibitive. It seems appropriate therefore to investigate correlated
systems out of equilibrium, in order to further the development of the field.

Picking up the thread of the earlier chapters, we may consider a heavy fermion
system connected to metallic leads with an applied voltage bias. This will produce
a charge current through the system, which can be calculated in a spatially
resolved way [2]. Given the early stage of development, we do not attempt to
utilize a quantitatively accurate band structure (as was done for CeCoIn5 in the
preceding chapters), but instead use simplified Kondo lattice model to understand
general features.
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Recently, the Keldysh Green function approach was applied in real space to
model nanoscale simple metallic systems [2]. Even for systems free of atomic disor-
der, a wide variety of current flow patterns are obtained that depend on the detailed
spatial structures of the electronic wavefunctions. Here we extend such calculations
to heavy fermion systems at the nanoscale, which are computationally tractable
relative to macroscopic systems. It is found that the presence of correlations between
the conduction and localized f -electrons, encoded in the hybridization s, has a
profound effect on the current patterns through a Kondo lattice, even when the
currents are constrained to flow through the c-electron subsystem.

In the following we study a nanoscale heavy fermion system consisting of a
square lattice of conduction electron sites coupled to a lattice of f -electrons of the
same size. This system is then connected to two metallic leads, each with a constant
density of states. Working in the large-N slave boson mean field theory as in earlier
chapters, the Hamiltonian is

H = − μ
∑

i

c
†
i ci − t

∑

<i,j>

c
†
i cj +

∑

i

sif
†
i ci +

∑

i

εif
†
i fi

+ Hlead − tl
∑

i

c
†
i di + h.c. (5.1)

where ci, fi(c
†
i , f

†
i ) annihilate (create) conduction and f -electrons at site i in the

system, respectively, and di(d
†
i ) annihilates (creates) an electron in the lead at the

site connected to the c-electron site i of the system. The current is calculated in the
non-equilibrium Keldysh Green’s function formalism in real space [3, 4] according
to the expression

Irr ′ = −2
e

h̄
t

∫ ∞

−∞
dω

2π
Re
[
Ĝ<

rr ′(ω)
]

(5.2)

where Ĝ< is the full lesser Green’s function matrix including the leads and the
heavy fermion system. This formalism is explained in more detail in Appendix A.

5.1 Transport in a Clean System

We start with a clean (defect-free) system with unhybridized and hybridized
Fermi surfaces for an infinitely large system shown in Fig. 5.1. The hybridization
si and f -electron chemical potential εi are determined from the self-consistent
equations of the equilibrium mean field theory [5]. For a finite size system, the
lack of periodic boundary conditions causes si and εi to vary spatially, even in
the absence of defects (Fig. 5.2). Notably, the hybridization is zero along the
edge of the system. With narrow leads (width of one site) attached to the middle
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Fig. 5.1 Unhybridized and
hybridized Fermi surfaces for
a simplified Kondo lattice
model with μ = −3.618,
t = 1.0, and bulk
hybridization and f -electron
chemical potentials s = 0.31
and ε = 0.025, respectively
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Fig. 5.2 Self-consistently determined spatial variation of the mean-field (a) hybridization, s, and
(b) f -electron chemical potential, εf , for a 61 × 61 Kondo lattice

of the left and right edges of a 61 × 61 system, we calculate the resulting
spatially-resolved current pattern. This is presented in Fig. 5.3. For the system
with correlations, that is, non-zero hybridization between c-electron and f -electron
states (Fig. 5.3a), the current pattern displays a characteristic diamond shape.
This is due to the velocity of the hybridized heavy quasiparticle states. At low
temperatures, the transport will be dominated by the low energy excitations
of electrons near the hybridized Fermi surface of Fig. 5.1. Since the electron
velocity is given by v(k) = (1/h̄)∇kE(k), one sees that the typical velocities
of the quasiparticles obey |kx | ≈ |ky |, explaining the diagonal trajectories of
the currents in Fig. 5.3a. At temperatures above the coherence temperature, Tcoh,
of the Kondo lattice, the magnetic moments are not screened by the conduc-
tion electrons. We model this situation by setting the hybridization s = 0,
i.e. decoupling the c- and f -electron subsystems completely. In this case, the
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Fig. 5.3 Charge currents through a clean Kondo lattice (Nx = 61) attached to narrow leads for (a)
si �= 0 and (b) si = 0. Lead-system coupling is tl = 1.0t

c-electron system behaves as a simple metal. As shown in Fig. 5.3b, the resulting
current pattern is very different when the correlations are absent. In particular,
the current path is less sharply defined, and largely goes through the center of
the system. Though experimentally challenging, current patterns have been imaged
using SQUIDs [6] (an alternative method using an STM has also been proposed
[7]), and so the transition between the correlated Kondo lattice state and high
temperature uncorrelated state may be observable in the modification of current
flow in the system.

5.2 Transport with Defects

It is natural to ask how the current flow is modified by defects that are invariably
present in real systems. In particular, the effect of non-zero hybridization on the
response of the system to defects provides interesting signatures of the correlations
in the system. To consider this, we introduce an f -electron vacancy (a Kondo hole)
directly in the path of the current through the lower branch, at the site indicated
by the purple star in Fig. 5.4. The resulting current pattern is presented in Fig. 5.4,
which shows the dramatic modification caused by the vacancy (Fig. 5.4b) compared
to the clean case (Fig. 5.4a). In interpreting these results it is important to note that
because the f -electrons lack an inter-site hopping term in Eq. (5.1), the current is
forced to flow entirely through the c-electron subsystem. The only effect of the f -
electron vacancy is to locally modify the hybridization, but nevertheless this is found
to induce strong changes in the resulting current pattern. On the other hand, the total
current through the system remains almost the same, changing from 0.0011t in the
clean case to 0.00109t with the defect.

To understand the qualitative differences that arise by varying the width of
the attached leads, in the following we make the leads the same width as the
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Fig. 5.4 Comparison of the currents in a hybridized Kondo lattice (si �= 0) for (a) the clean system
(b) a system with a defect at the site indicated by the purple star
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Fig. 5.5 Currents in a 41 × 41 site system with wide leads and periodic boundary conditions in
the y-direction. Current patterns are shown for (a) a clean system, (b) a Kondo hole at the center
of the system (s = 0), and (c) a Kondo hole with phonon coupling γ = 10−5t

system itself. We keep the leads attached to the left and right edges of the system.
Furthermore, we apply periodic boundary conditions in the y direction, since we are
less interested in the modification of the current near the edge of the sample than
we are in the change in current flow around a defect. In the absence of a defect, the
current flows uniformly across the sample, as expected from symmetry (Fig. 5.5a).
By introducing an f -electron vacancy at the center of the system, we obtain the
current patterns shown in Fig. 5.5b,c. In these panels, the defect is modeled as a
Kondo hole, by setting s = 0 at the central site. In Fig. 5.5b one notices that
the defect induces changes in the current pattern out to the edge of the system.
In Fig. 5.5c we coupled the system to a set of local phonon modes at each site,
using the high temperature approximation developed in Ref. [8] (see Appendix A).
The scattering of the electrons by phonons introduces a finite mean free path,
randomizing the phase of the electronic wavefunctions over distances greater than
this length. This suppresses the long-range effects of coherent scattering off of the
defect, as seen in Fig. 5.5c.
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Fig. 5.6 Currents for a system with wide leads and a c-electron scatterer (u0 = 5.0t) with (a)
si �= 0 and (b) si = 0

The behavior of a system with defects may also be sensitive to the presence
of correlations. To study this, we consider replacing an f -electron site with a
non-magnetic c-electron scatterer. In the Kondo-screened state, there is a localized
c-electron potential in addition to there being zero hybridization at the site of the
defect. While the changes due to the defect still extend to the edge of the system
(Fig. 5.6a), the current patterns are considerably more uniform than in the state
where correlations are absent (s = 0), shown in Fig. 5.6b. In the latter case the
hybridization is everywhere zero, but the translational symmetry of the current
pattern is still broken due to the c-electron scattering potential. The wavelength of
the current oscillations in the vertical direction is approximately 10 lattice spacings,
corresponding to the de Broglie wavelength of the c-electrons at the Fermi surface.
An experimental determination of the current pattern as a function of temperature
may therefore be able to sense the development of a coherent Kondo lattice.

5.3 Multiple Defects

The real-space approach adopted here easily allows for the examination of systems
with multiple defects. For concreteness, consider the current through a system
attached to wide leads with 1% of the f -electron sites replaced by non-magnetic
conduction electron scatterers. Figure 5.7 shows the result of calculations for
this case, which reveal complicated current patterns in both the correlated and
uncorrelated states. The purple circles indicate the locations of the defects. In
Fig. 5.7b, the correlated state, one notices the presence of gaps in the current pattern,
in addition to various “hot spots” where the current is large. In contrast, the system
without correlations in Fig. 5.7a does not show changes quite as drastic, except for
a nearly complete suppression of the current flowing through the defect sites.
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Fig. 5.7 Currents for a defect system, with wide leads and multiple defects in the (a) correlated
and (b) uncorrelated states

5.4 Hopping Within the f -Band

Up until this point we have restricted our consideration to systems in which a
completely localized f -electron level hybridizes with the conduction band. How-
ever, it is also conceivable that the f-band could have a narrow dispersion allowing
for direct hopping between f -electron sites. We introduce an additional term
−tf

∑
<i,j> f

†
i fj into the Hamiltonian equation (5.1) to couple the neighboring

f -electrons, but keep the leads coupled to the c-electrons only. Figure 5.8a,b shows
the currents flowing in both the c- and f -electron subsystems, respectively. One
notices that the current pattern is sharper and its magnitude larger in the f -electron
subsystem than for the c-electrons (after entering the system through the left lead
attached to the c-electron site, the majority of the current immediately flows into the
f -system through the hybridization at that site).

5.5 Self-Consistency with Finite Bias

In the above results, the local hybridizations and f -electron chemical potentials
were determined self-consistently in equilibrium. These parameters were then fixed
while the bias was applied and the current patterns calculated. While this procedure
may be justified in the limit of small biases, in general the hybridization and
chemical potential will change in the non-equilibrium state. To study this effect, we
have also performed fully self-consistent calculations on a smaller system, using
narrow leads. We first discuss the self-consistency equations out of equilibrium
and then the numerical results in this case. In equilibrium it suffices to consider
the imaginary time Matsubara Green’s functions to develop a self-consistent large-
N mean-field theory at finite temperatures. These are then analytically continued
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Fig. 5.8 Currents for a clean system with tf = 0.1 and V = 0.008. (a) Currents in the c-electron
subsystem and (b) Currents in the f -electron subsystem. The calculations were performed with
spatially uniform mean-field parameters εi = 0.025t , s = 0.3t , and separate phonon couplings in
the two bands equal to γc = 10−7t and γf = 10−10t

to the retarded and advanced Green’s functions for comparison with experimental
quantities. Out of equilibrium, the lesser Green’s function must be specified in
addition to the retarded one, leading to a more complicated set of self-consistency
relations [9].

The retarded and advanced Green’s functions take the same form as in equilib-
rium (the Dyson equation):

Ĝ
R,A
f (ω) =

{
[ĝR,A

f (ω)]−1 − ŝĝR,A
c (ω)ŝ

}−1
(5.3)

Here ĝ, Ĝ, and ŝ are matrices in the site indices of the square lattice. The condition
on the f -electron occupation nf is enforced through the calculation of the lesser
Green’s function, Ĝ<

ff (ω), given by

Ĝ<
ff (ω) =ĝ<

f (ω) + ĝR
f (ω)ŝĝR

c (ω)ŝĜ<
f (ω) + ĝR

f (ω)ŝĝ<
c (ω)ŝĜA

f (ω)

+ ĝ<
f (ω)ŝĝA

c (ω)ŝĜA
f (ω) (5.4)

After some algebra, one obtains

Ĝ<
ff (ω) = ĜR

f (ω)ŝĝ<
c (ω)ŝĜA

f (ω) + ĜR
f (ω)[ĝR

f (ω)]−1ĝ<
f (ω)[ĝA

f (ω)]−1ĜA
f (ω)

(5.5)

Then self-consistency requires

nf (r) = 1 =
∫ ∞

−∞
dω

π
ImG<

ff (r, r, ω)nF (ω) (5.6)
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Fig. 5.9 Self-consistently calculated currents in the presence of finite bias, for (a) V = 0.004t

and (b) 0.3t

We also have a self-consistency condition to determine the hybridization, s,

s(r) = J

2

∫ ∞

−∞
dω

π
ImG<

f c(r, r, ω)nF (ω) (5.7)

where nF (ω) is the Fermi distribution function. Here the dressed lesser cf Green’s
function is given by

Ĝ<
f c(ω) = −ĝr

cc(ω)ŝĜ<
ff (ω) − ĝ<

ccŝĜ
a
ff (ω) (5.8)

Results for the self-consistently calculated current patterns at V = 0.004t and
0.3t are shown in Fig. 5.9. As expected, for small bias the results reproduce those of
the non-self-consistent limit. However, with larger bias, the resulting current pattern
is highly damped. We also plot the difference in the hybridizations between the non-
equilibrium and equilibrium states, with V = 0.1t, 0.2t , respectively. This is shown
in Fig. 5.10. We find clear indications of oscillatory behavior in the magnitude of the
hybridization, emanating from the points where the leads are attached. In particular,
some sites in the nanostructure actually have larger hybridization. Such behavior
could potentially be confirmed in scanning tunneling spectroscopy experiments on
heavy fermion systems, and if realized, would provide a dramatic example of the
complex interplay of strongly correlated and non-equilibrium physics.

The correlation between increased voltage bias and the suppression of hybridiza-
tion can be seen in a spatial plot of the difference in the hybridization at each
site, obtained by subtracting from two high bias self-consistent solutions the
hybridizations of one of the low bias cases. In Fig. 5.11a we show the difference
in hybridization from the V = 0.001t to the V = 0.025t case, while Fig. 5.11b
shows the same for V = 0.075t as the upper value. The results are uniform in the y-
direction due to the use of wide leads and periodic boundary conditions. While some
sites experience an increase in hybridization, the majority have their hybridization
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Fig. 5.10 Difference in the hybridization between the non-equilibrium and equilibrium states for
(a) V = 0.1t and (b) V = 0.2t
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Fig. 5.11 Difference in hybridization, where values for the V = 0.001t case were subtracted from
the (a) V = 0.025t and (b) V = 0.075t cases

value suppressed, especially for those sites close to the leads. Thus, increasing the
bias has the overall effect of decreasing the hybridization in the system.

To conclude, this chapter has examined the behavior of a nanoscale heavy
fermion system out of equilibrium. In particular, we have shown how the presence of
correlations between the conduction and localized f -electrons has a drastic impact
on the pattern of charge currents flowing through the system. The changes on
the current pattern induced by defects were also found to be influenced strongly
by correlations. In particular, correlations appear to smooth out some of the
modifications of the current in the vicinity of a defect, apart from the cross-like
features that extend as far as 20 or more unit cells from the impurity. The addition
of hopping in the f -band allows for an even greater range of behavior, and taking



References 75

this step reveals the dominance of the f -electron states in the low energy dynamics.
Finally, calculating the mean-field parameters self-consistently in the presence of
a finite applied bias shows oscillations in the hybridization originating from where
the leads are attached. Overall, as the bias (and therefore the current) increases, the
average hybridization in the system is suppressed.
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Chapter 6
Charge and Spin Currents in Nanoscale
Topological Insulators

6.1 Introduction

Topological insulators (TIs) have generated sustained interest for nearly a decade.
These materials are characterized by the presence of topological invariants: global
properties of the system that are quantized and therefore cannot be changed under
smooth deformations of the underlying Hamiltonian without closing the gap at the
Fermi level. An example is the Berry phase obtained by integrating the gradient
of the Bloch wavefunction of a crystalline insulator around a closed loop in the
Brillouin zone [1, 2]. The vacuum is trivially an insulator, with a Berry phase of
zero. If the system possesses a non-zero Berry phase (say equal to one), then its
edge must be conducting. This is because the quantized Berry phase is forced to
take integer values, and thus it cannot go from a value of one inside the material to
zero in the vacuum while remaining an insulator. Over the years, much theoretical
work has been done on the classification of the different topological states and their
possible realization in experiment [3, 4]. Experiments, on the other hand, have
naturally focused on confirming the various theoretical predictions. Throughout
this process, a partial justification for the work in this field has been found in
proposed applications, such as spintronics and quantum computing. As work shifts
away from basic questions and toward applications, new questions arise about the
various models of topological insulators and their realizations in materials. As an
example, consider the use of TIs in spintronics, where the generation of spin-
polarized currents is a central concern. To spur development in this direction, it
is necessary to suggest concrete procedures by which spin-polarized currents can
be realized.
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6.2 Model

Although several different models of topological insulators exist, for the sake of
definiteness consider the one due to Kane and Mele [5] on the two-dimensional
honeycomb lattice (the crystal structure of graphene).

H = − t
∑

<r,r′>,α

c†
r,αcr′,α + iΛSO

∑

<<r,r′>>,α,β

νr,r′c†
r,ασ z

αβcr′,β

− tl
∑

r,r′,α
(d†

r,αcr′,α + h.c.) + Hl (6.1)

The first term gives the ordinary hopping amplitude for electrons between
nearest-neighbor sites, while the second describes the nearest-nearest-neighbor
hopping due to spin-orbit coupling. Here, νr,r′ = −νr′,r = ±1 and σz

αβ is a
Pauli matrix. The sign of νr,r′ is determined by the direction of the hopping around
the honeycomb: positive for counterclockwise and negative for clockwise motion.
This term is essential for producing the non-trivial topological behavior. The third
term gives the coupling between the leads and the system, whereas the fourth term
describes the Hamiltonian of the leads. In the following, the leads are modeled via
a continuous and flat density of states, as appropriate for a macroscopic metallic
system. Note that Eq. (6.1) differs from that considered by Kane and Mele, in that it
neglects the Rashba coupling for simplicity.

In the following, the spatially-resolved currents through the nanoscale TI are
calculated using the Keldysh Green’s function method [6, 7], which was briefly
introduced in Chap. 5 and is discussed in detail in Appendix A. Apart from the
different Hamiltonian in the case of the Kondo lattice as opposed to the TI, the
method for computing the currents is the same in both systems.

6.3 Polarized Spin Currents

We now turn to the demonstration of highly spin-polarized currents in nanoscale TIs
using magnetic defects. This is in fact the first theoretical proposal showing the cre-
ation of highly spin-polarized currents in these systems. The possibility of creating
such currents is found to be robust against variations in the model parameters, such
as size and shape of the TI, the width of the leads, and the strengths of the spin-orbit
couplings and impurity magnetic scatterers. This will be demonstrated in Sect. 6.8.
For now, consider a nanoscale TI whose dimensions along the armchair and zigzag
edges are Na = 9 and Nz = 15, respectively. The TI is connected to two narrow,
metallic leads at L and R, as shown schematically in Fig. 6.1.

The finite size of the system under consideration implies the discreteness of its
energy levels, which appear as sharp peaks in the density of states, broadened by an
electronic dephasing due to the coupling to the leads. The numerically calculated
local density of states at the site of the TI connected to the left lead, Nσ (r = L,E),
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Fig. 6.1 Schematic drawing
of the spin-resolved current
patterns in a two-dimensional
topological insulator on the
honeycomb lattice [8]
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Fig. 6.2 Energy dependence of the local density of states(LDOS), N↑,↓, at the site L attached
to the left lead, for two different values of the coupling tl . The purple background indicates edge
states, while green indicates bulk states. Without magnetic defects, the system is particle-hole
symmetric, and the LDOS is therefore presented for E > 0 only. The states are broadened by an
electron dephasing of δ = 10−5t and the electronic hoppings are t = 1.0 and tl = ΛSO = 0.1t .
For visualization purposes, the LDOS for tl = 0.1t has been multiplied by 0.1

is shown in Fig. 6.2. The states with a purple background below the spin-orbit gap
are edge states, as evidenced by their associated current patterns (see below). Those
with the green background above the spin-orbit gap are higher energy edge states
that exist outside of the spin-orbit gap of magnitude ΔSO = 3

√
3ΛSO . Similar

results were also found in a cylindrical geometry [9].
One may choose a particular state to carry the current by gating the system

capacitively (Fig. 6.3). For a state at energy Ei , applying a gate voltage Vg = Ei/e



80 6 Charge and Spin Currents in Nanoscale Topological Insulators

Fig. 6.3 Schematic drawing of a TI illustrating the capacitive gating of the system to select states
for transport

Fig. 6.4 Spatial pattern of
the spin-↑ current, I

↑
rr′ ,

carried by the lowest energy
edge state at E1 = 0.0342t

(see blue dashed arrow in
Fig. 6.2) for coupling
tl = 0.1t . This state is
accessed by applying a gate
voltage Vg = E1/e to the TI.
Note the existence of a
quantum mechanical
backflow branch along the
TI’s lower edge where a
current flows opposite to the
applied voltage bias

brings it to the Fermi level, allowing the current to flow. For a system free of
defects and impurities, the resultant spin-↑ current pattern for the state at E1 =
0.0342t (indicated by the blue dashed arrow in Fig. 6.2) is shown in Fig. 6.4. As
expected for an edge state, the current is strongly confined to the perimeter of
the sample. In addition to the ordinary flow along the top edge from source to
sink, there is quantum-mechanical backflow along the bottom edge [10]. This leads
to a circulating current pattern with a much greater magnitude than the outgoing
current. As the gate voltage Vg is increased, it is found that the edge states penetrate
further into the bulk along the zigzag edge [11], as shown in Fig. 6.5. Since the
system-lead coupling destroys the electronic phase coherence and thus breaks the
macroscopic time-reversal symmetry [2], the current pattern is dependent on the
coupling strength. In particular, for a large coupling of tl = 0.5t , the backflow is
suppressed and the current for spin-↑ and spin-↓ electrons is confined to the upper
and lower branches, respectively, as shown in Fig. 6.6.
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Fig. 6.5 Decay of edge states into the bulk, where (a) shows the local density of states at the
site attached to the left lead and (b)–(d) show the spatial pattern of the edge states at the energies
E1–E3 indicated in (a). The high energy edge states decay further into the bulk along the zigzag
edge

Fig. 6.6 Spatial pattern of the spin-↑ current, I↑
rr′ , and the spin-↓ current, I↓

rr′ , respectively, carried
by the edge state at E1 = 0.0335t for coupling tl = 0.5t . Color (see legend) and thickness of the
arrows represent the magnitude of the normalized current Iσ

rr′/Iσ
max (the same normalization is used

for both subplots)
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Fig. 6.7 Schematic drawing
of potential scattering in a TI.
Electrons are not
backscattered due to
spin-momentum locking and
the absence of a mechanism
for transitions between the
spin bands

6.4 Non-magnetic Defects

When non-magnetic defects (such as localized potential scatterers) are added to
the system, the energies of the edge states are subject to modification. This also
leads to local changes in the resulting current pattern, since a strong repulsive
potential at a site leads to a suppression of the current through it. However, potential
scatterers are not spin-dependent, thus maintaining the time-reversal symmetry of
the TI and preventing backscattering from one spin channel to the other. That is, the
potential scatterer does not introduce any terms into the Hamiltonian that allow for
transitions between the spin-↑ and spin-↓ bands (Fig. 6.7). Thus, the spin projection
and the momentum direction remain locked in this scenario, so that backscattering is
impossible. These results are demonstrated in Fig. 6.8 and reveal the marked contrast
between impurities in topological materials and, for instance, the correlated but non-
topological Kondo lattice discussed in Chap. 5.

6.5 Magnetic Defects

In order to obtain a net spin-polarization of the current through the TI, it is necessary
to introduce magnetic defects that break the time-reversal symmetry inside the
system. Here we introduce the impurities as static, spin-dependent scatterers. Such
an approach will be justified if the magnetic moment is not Kondo screened.
However, it is known that the Kondo temperature [12, 13] can be suppressed in
various ways, for instance, by a lack of edge states near the Fermi energy [14],
by using large-spin defects, or by local magnetic fields [15]. On the other hand, the
topological properties of the system can survive all the way up to room temperatures
[16]. Hence, there will be experimentally accessible regimes in which the magnetic
impurities can be treated as static [17].
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Fig. 6.8 Spatial pattern of
the spin-↑ current, I

↑
rr′ ,

carried by the lowest energy
edge state at E1 = 0.031t in
the presence of two potential
defects (locations indicated
by red dots) with scattering
strength U0 = 10t and
tl = 0.1t

In light of this, the Hamiltonian for the point-like magnetic impurities can be
written as

HM =
∑

R

JzS
z
R(c

†
R,↑cR,↑ − c

†
R,↓cR,↓) + J±(S+

R c
†
R,↓cR,↑ + S−

R c
†
R,↑cR,↓)

(6.2)

This Hamiltonian includes two distinct types of magnetic scattering. The first
term with coupling constant Jz represents an Ising-type defect and is akin to the
Zeeman effect of an external magnetic field in that it splits the spin degeneracy
by raising (lowering) the energy of the spin-↑ (spin-↓) state (for Jz > 0). The
second term with coupling constant J± produces a spin-flip scatterer which allows
the electrons to hop between the two spin bands. We proceed to discuss the two
cases in turn.

6.5.1 Ising-Type Magnetic Defects

The separation of the spin-↑ and spin-↓ bands by an Ising-type defect (Jz �=
0, J± = 0) placed at the edge of the sample is clearly revealed in a numerical
calculation of the spin-resolved local density of states at site L (Fig. 6.9). By gating
the system, as discussed above, one may select a particular state for transport, which
now only contains electrons of one spin projection. Consider, for instance, the state
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Fig. 6.9 Local density of
states, Nσ (L,E), in a TI
without (black line) and with
(red line for spin-↑, green for
spin-↓) a magnetic defect
(red dot in Fig. 6.10) with
Ising-type symmetry:
JzS = 5t and tl = 0.1t . The
blue arrow indicates state
used for transport in Fig. 6.10

Fig. 6.10 Spatial pattern of
the charge current, I c

rr′ ,
carried by the lowest energy
edge state at E1 = 0.0142t

[see blue dashed arrow in
Fig. 6.9] for a system with an
Ising-type defect

E1 = 0.0142t , indicated by the blue arrow in Fig. 6.9. For the weak lead-system
coupling limit, where the width of the states is much smaller than their separation in
energy, calculating the current through the system that is carried by this state yields
the current pattern shown in Fig. 6.10. Similar to the case of potential scatterers,
the current pattern is locally modified near the defect (indicated by the red dot in
Fig. 6.10). However, a calculation of the spin-polarization η↓ reveals that the outgo-
ing current is 98% spin-↓polarized. Thus, Ising-type defects are highly efficient at
creating spin-polarized currents in the presence of weak coupling to the leads.
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6.5.2 Spin-Flip-Type Magnetic Defects

For the case of strong lead-system coupling, spin-flip scatterers (J± �= 0, Jz = 0)
provide a mechanism for achieving large spin-polarizations. When an electron of
a given spin projection scatters against a spin-flip defect, it is transferred to the
opposite spin band. This has striking consequences for the case of a topological
insulator, in which the spin is correlated with the direction of motion of the electron
around the edge. An electron that encounters a spin-flip defect is scattered, reversing
its direction—the defect effectively blocks current flow through the branch in which
it is located. This is shown in Fig. 6.11, where the particular state chosen is indicated
by the blue arrow in Fig. 6.12. With the spin-flip defect located in the top branch,
the spin-↑ current that would naturally flow along that path is scattered into spin-↓
current, which travels the opposite direction around the edge. This combines with
the spin-↓ current that enters from the left lead, and exits the system through the
right lead. The behavior can be partially understood from the local density of states,
shown for this case in Fig. 6.12. Here the states for spin-↑ and spin-↓ are strongly
overlapping, so that electrons can be scattered between the spin bands. On the other
hand, if the density of states of the spin-↑ (spin-↓) band vanished at the specified
gate voltage, there would be no states for the electrons to scatter out of (into). Since
the spin-↑ current is blocked from reaching the right lead, the net current is spin-
↓ polarized with η↓ = 96.5%. Because of the overlapping of the edge states, this
result is relatively insensitive to variations in the gate voltage Vg . Examining the
total charge current I c

out =∑α Iα
out, one notices that the counter-propagating spin-↑

and spin-↓ currents in the upper branch cancel, leaving a charge current only along
the bottom branch, as shown in Fig. 6.13.

Fig. 6.11 I
↑
rr′ , and I

↓
rr′ carried by the edge state at E1 = 0.0175t [see blue dashed arrow

in Fig. 6.12] for tl = 0.5t
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Fig. 6.12 Local density of
states, Nσ (L,E), for a TI
containing two magnetic
defects [red dots in Fig. 6.11]
with xy symmetry, J±S = 5t

and tl = 0.5t

Fig. 6.13 Spatial pattern of
I c

rr′ carried by the edge state
at E1 = 0.0175t (see blue
dashed arrow in Fig. 6.12) for
tl = 0.5t

6.6 Heisenberg Defects and Spin Diodes

Sections 6.5.1 and 6.5.2 considered the cases in which the magnetic impurity
had either Ising or xy symmetry. However, if Jz = J±, the resulting defect is
isotropic in spin space and can be represented by JS · σ , where σ is a vector of the
Pauli matrices. Such Heisenberg symmetry defects can be effective for generating
spin-polarizations over a broad range of lead-system couplings, since one or the
other of the mechanisms discussed above is active in a given regime. Furthermore,
this situation allows for the creation of “spin diodes” in the following manner.
Consider a system with Jz = J± = 5.0t and tl = 2.5t and two Heisenberg
symmetry defects in the upper branch (as shown in Fig. 6.14). The corresponding
spin-polarizations η↑,↓ are shown in Fig. 6.15. When the gate voltage is set to Vg,1,
one finds that for forward bias ΔV the spin-↓ polarization η↓ is large, whereas
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Fig. 6.14 Spatial pattern of I c
rr′ with a Heisenberg-type defect for forward bias ΔV and backward

bias −ΔV at Vg,1

η↑ is small. This occurs because spin-flip scattering off the defects in the upper
branch suppresses the outgoing spin-↑ current. However, when the bias is reversed
the two polarizations become nearly equal (Fig. 6.15). In this case, since the current
now flows in the opposite direction, the spin-↓ current is blocked by the defect
and η↓ is correspondingly reduced. However, this reduction is partially offset by
the fact that the density of states for spin-↓ electrons is greater at the energy Vg,1,
in consequence of the Ising component of the defect, which is responsible for the
splitting of the spin-polarized states. Note that the current is larger because there
are more states available for transport at this energy. While the spin-polarization
is therefore changed due to a bias reversal, the magnitude of the charge current is
unaffected. Thus, the system behaves as a spin diode, with a polarization that can be
turned on and off by switching the bias direction.

Although the magnitude of the charge current stays the same, the spatial pattern
is notably different between the forward and backward bias cases. In the former, the
charge current travels predominantly along the bottom edge of the TI, reminiscent
of the xy symmetry defect. With the backward bias (−ΔV ), the current travels
equally in both the upper and lower branches (which is also reflected in the fact that
η↑ = η↓). Thus there is a correlation between the presence of a net spin-polarization
(which exists for forward, but not for backward, bias) and the spatial pattern of the
charge current. This implies that a net spin-polarization can be detected by imaging
the charge currents in the system [18] (see [7] of Chap. 5).

At other energies than Vg,1 the behavior of the system under bias reversal is
different. For instance, at Vg,2 the density of states is equal for spin-↑ and spin-↓
electrons, and for forward bias η↓ > η↑. Upon bias reversal we find η↓ < η↑,
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Fig. 6.15 TI containing two magnetic defects of Heisenberg symmetry with JzS = J±S = 5t and
tl = 0.275t . (Top panel) η↑,↓ as a function of Vg for forward, ΔV (η↑: black line, η↓: red line), and
backward bias, −ΔV (η↑): blue dashed line, η↓: green dashed line). (Center panel) Nσ (E = eVg)
at L. (Bottom panel) Total normalized charge current I c

out(Vg)/I c
max with I c

max = maxVg (I
c
out)

so that spin current has opposite polarization. The magnitude of the difference
|η↑ − η↓|, however, remains unchanged, although the direction of the current flow
is now reversed. As before, the magnitude of the charge current remains the same,
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but unlike the previous case, the spatial pattern of the charge current is not sensitive
to the bias reversal—larger current always flows along the bottom branch. Since
the charge current pattern no longer reflects the spin-polarization, a spin-polarized
experimental probe would be needed to detect this effect.

6.7 Interface with Ferro- and Antiferromagnets

Another possibility for realizing highly spin-polarized currents is to interface the
TI on the nano- or mesoscale with a ferro- or antiferromagnet. Suppose a magnet
is placed in contact with the TI along the top edge. Assuming the magnet is in
a topologically trivial insulating state (Chern number equal to zero), a conducting
surface state will still exist along the upper edge of the TI. However, the electrons
in the TI will experience the influence of the adjoining magnet through a proximity
effect. If we interface the TI along the top edge with a ferromagnet with an easy-
plane parallel to the surface, this can be modeled as a row of xy-symmetry magnetic
impurities that scatter electrons at the relevant sites.

In experiment one would expect some amount of disorder to exist along the
interface, which would scatter the electrons traveling along the edge. This can be
modeled by introducing random vacancies in the ferromagnet, i.e. sites where the
coupling J± = 0. Performing the calculations for this scenario, we find that the
spin-↑ current travels along the upper edge until it encounters the first vacancy,
whereupon it is strongly scattered, as seen in Fig. 6.16. The spatial pattern strongly
resembles the case of a single xy symmetry defect, Fig. 6.11, with the magnetic
impurity in that case being replaced by the hole in the ferromagnet in the present
situation. The resulting spin-polarization is still very high, with η↓ = 0.99. One
can model the Interface of the TI with an antiferromagnet by changing the sign
of the scattering potential between neighboring sites. This also yields a strong
spin-polarization of η↓ = 0.90, along with the current patterns of Fig. 6.17. One
notices that the decay length of the spin-↑ current along the top edge is much

Fig. 6.16 Spatial pattern of (a) I
↑
rr′ and (b) I

↓
rr′ for a TI interfaced with a disordered ferromagnet

(J±S = 5t ; white circles indicate vacancies with J±S = 0). For this system, Na = 14, Nz = 15,
tl = 0.5t
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Fig. 6.17 Spatial pattern of (a) I
↑
rr′ and (b) I

↓
rr′ for a TI interfaced with a antiferromagnet (J±S =

±5t ; sign of J±S varies between neighboring sites). For this system, Na = 14, Nz = 15, tl = 0.5t

greater than for the ferromagnet or the single magnetic defect cases. The slow decay
of the current indicates that each pair of neighboring anti-aligned spins produces a
small amount of the total spin-polarization. This is confirmed by examining systems
of increasing length along the armchair edge. While the Na = 14 system has
η↓ = 0.90, increasing the length results in η↓ = 0.96 for Na = 18 and η↓ = 0.99
for Na = 25. The fact that the spin-polarization of these hybrid nanostructures
remains very high with increasing size suggests the effects will persist in the meso-
and macroscales as well.

6.8 Robustness of the Spin-Polarized Currents

For proposed applications, it is crucial that the phenomenon of spin-polarization
explored in this chapter be robust in the variety of conditions that are likely to be
realized in experiments. If the results found above depended heavily on the fine-
tuning of model parameters, it would be difficult to obtain them in realistic systems
where it is challenging, if not impossible, to control various system parameters.
Hence, it is important to examine the robustness of the proposed spin-polarization
effects under the variation of model parameters, as done in the following section for
edge disorder, the system size and geometry, the spin-orbit coupling, the width of
the leads, and the strength of magnetic scattering.

Beginning with possibility of disorder along the edge of the system, consider
a TI in which 30% of edge sites are randomly removed (Fig. 6.18) containing
two magnetic defects of xy symmetry. While in such a TI, the spatial patterns
of the spin-↑ and spin-↓ currents are more disordered (Fig. 6.19); the maximum
spin-polarization (as a function of Vg) of η↓ = 0.975 is similar to that of the non-
disordered TI where η↓ = 0.965.

To show that the spin-polarization does not rely on a specific system size or
geometry, consider a system with Na = 14, Nz = 13, which leads to an aspect
ratio Na/Nz that is considerably different than the case considered previously.
The importance of considering different aspect ratios lies in the fact that, for
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Fig. 6.18 Schematic of
nanoscale TI with disordered
edges

Fig. 6.19 Spin up and down currents through a TI with disordered edges and an xy defect

non-topologically-protected nanoscale networks, the aspect ratio has been found to
have a profound influence on the resultant current patterns [10]. As to be expected,
the electronic structure of this finite-size system is changed relative to the previous
case—the states have moved in energy, consistent with the different number of sites
and changed geometry. Placing an Ising-symmetry defect of magnitude JzS = 5t in
the upper branch, as done above, and gating the system to select the spin-↓ polarized
state at E = 0.0125t for transport, one finds a current pattern very similar to the one
discussed above in Sect. 6.5. The density of states and current pattern are shown
in Fig. 6.20a,b. More importantly, the spin-polarization of the outgoing current is
98.9%, almost identical to what was found above (Sect. 6.5.1). The same conclusion
is also found to hold for defects with xy symmetry, as displayed in Fig. 6.20c–f. In
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Fig. 6.20 For a TI with Na = 14, Nz = 13, (a) local density of states and (b) charge current
pattern in the presence of a defect with Ising symmetry (JzS = 5t). (c) Local density of states,
(d) charge current, (e) spin-↑ current, and (f) spin-↓ current in the presence of a defect with xy

symmetry (J±S = 5t)

this case, the edge states are broad enough that the gate voltage need not be changed
relative to the earlier system geometry. Selecting again the state at E = 0.0175t ,
one finds similar current patterns as in Sect. 6.5, as well as a very similar overall
spin-polarization of 96.2%.

The fascinating properties of topological insulators depend crucially on the
presence of spin-orbit coupling in those systems [1]. Any proposal to generate spin-
polarization from a topological insulator will require some amount of spin-orbit
coupling for its realization, but ideally it should not rely on coupling strengths which
are excessively large, as these will be difficult to obtain in practice. It is therefore
important to check that the polarization can be produced with weaker values of
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charge current

Fig. 6.21 (a) Local density of states, (b) charge currents, (c) spin-↑ currents, and (d) spin-↓
currents for a TI with Na = 14, Nz = 13 and a magnetic defect [red dot] with xy symmetry,
J±S = 5t , tl = 0.1t , and ΛSO = 0.05t

the spin-orbit coupling than were employed above. Indeed, if one uses a coupling
strength of ΛSO = 0.05t (half the original value), one finds only a slight reduction
in the outgoing spin-polarization from 96.3% to 94.6%. As expected, the resulting
spin-orbit gap shrinks as well. However, the spatial patterns of the current remain
similar to those found with the large coupling strength, though the currents penetrate
further into the bulk of the system, as seen in Fig. 6.21.

The result of high spin-polarization ought to be insensitive not only to the details
of the TI, but to those of the leads as well. It may be possible to fabricate atomically-
sharp leads using STM tips, but other experimental setups will have difficulty
achieving the same level of precision. For instance, typical quantum point contacts
possess diameters on the order of 10 nm [19]. To investigate the possibility that the
lead geometry could influence the net spin-polarization, we attach wide leads to the
TI and calculate the current. This is shown in Fig. 6.22. In Fig. 6.22a,b,c the spin-↑,
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Fig. 6.22 (a) Spin-↑ current, (b) spin-↓ current, and (c) charge current in a clean TI with wide
leads. (d) Spin-↑ current, (e) spin-↓ current, and (f) charge current in a TI with wide leads and two
defects of xy-symmetry

spin-↓, and charge currents are shown for the case of a clean system. A somewhat
surprising result is that the spin currents predominantly enter the system through a
single site (the bottom left in the case of spin-↑). This leads to a cancellation in the
charge current along the left edge, ensuring that the currents travel the shortest path
possible from the source to the sink.

As a final check of the robustness of the spin-polarization, we consider variations
in the magnetic scattering strength. The spin-polarization obtained using two defects
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Fig. 6.23 Dependence of spin-polarization on magnetic scattering strength for defect of xy

symmetry. (a) spin-polarization η↓ as a function of J±S for different numbers of defects along
the top edge of the system. (b) Spin-↑ and (c) Spin-↓ current patterns for a system with 7 defects

of xy symmetry is shown in Fig. 6.23 as a function of scattering strength. The blue
arrow in Fig. 6.23a shows the case investigated earlier in Figs. 6.11, 6.12, and 6.13.
The polarization η↓ only begins to decrease appreciably for J±S <≈ 1.5t . For
J±S = 0.5t , the system with two defects has a polarization of only η↓ = 0.625,
close to the unpolarized limit of η↓ = 0.5. However, one can restore the high spin-
polarization in this case simply by adding additional defects, as shown in Fig. 6.23a.
For a system with 7 defects (red arrow in Fig. 6.23a), one obtains η↓ = 0.962, close
to the two defect case with large J±S. The spin-resolved current patterns in this case
are shown in Fig. 6.23b,c, which is qualitatively similar to the results of Fig. 6.11,
but with a larger decay length of the spin-↑ current along the top edge.
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Chapter 7
Conclusion

This work has explored aspects of the complex behavior that arises in correlated
and topological systems. A detailed quantitative study of heavy fermion super-
conductivity in CeCoIn5 was developed on the basis of cutting-edge scanning
tunneling spectroscopy experiments [1, 2]. The low-energy heavy quasiparticle band
structure and magnetic f -electron interaction were extracted from the quasiparticle
interference data and used to calculate important properties of the superconduct-
ing state, including the gap symmetry and momentum dependence, the critical
temperature, the spin-lattice relaxation rate, and the resonance peak observed in
neutron scattering experiments. The strong agreement between experiment and
theory demonstrates that a quantitative understanding of heavy fermion supercon-
ductivity is achievable in practice. This bolsters the case for similar combined
experimental/theoretical studies in the future.

The model was also used to explain the features of the differential conductance
both in the normal and superconducting states. In the former case, the observation
of a purported pseudogap was explained in terms of van Hove singularities due
to the flatness of the hybridized quasiparticle bands. In the latter, the gap seen
in the dI/dV was shown to reflect the presence of the multiple superconducting
gaps in the system. The local changes of the dI/dV in response to defects were
also calculated in the model, in good agreement with experiment [3]. Next, the
calculations of the resonance peak were extended to model its dispersion away
from the commensurate antiferromagnetic wavevector [4]. These suggested that the
peak was due to a magnon arising from the nearby antiferromagnetic phase, unlike
the spin exciton observed in cuprate superconductors. It was also shown that the
observed splitting of the resonance into two peaks under applied magnetic field can
be understood in terms of magnetic anisotropy in the system.

The nonequilibrium behavior of a model nanoscale heavy fermion system was
explored using the Keldysh Green’s function approach. The charge current flow in
the presence of an applied voltage bias was found to be sensitive to the Kondo-
screening correlations between conduction and localized f -electrons, both in clean
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systems and those with defects. Coupling to phonons introduces a finite mean free
path which limits the spatial extent of the modifications of the current pattern due
to defects. The self-consistent calculation of the hybridization in the presence of a
finite bias reveals the overall suppression of the correlations with increasing bias.
However, the spatial structure of the hybridization does not show a monotonic
decrease throughout the system, but rather some sites experience an increase
in their hybridization. This could potentially be observed in scanning tunneling
spectroscopy experiments.

Current flow in 2D topological insulators was also studied using the Keldysh
technique [5]. Breaking the time-reversal symmetry in the system by introducing
magnetic defects, we show that the edge states can be used to generate highly spin-
polarized currents and design tunable spin diodes. The results are robust against
various perturbations of the model and also found in systems in which TIs are
interfaced with disordered ferromagnets or antiferromagnets. As such, they may
find application in the developing fields of spintronics and quantum computation.
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Appendix A
Keldysh Formalism for Transport

Various formalisms exist for the calculation of charge or spin currents in solids,
ranging from semi-classical approaches to fully quantum mechanical ones [1]. Here
the Keldysh Green’s function method is used to determine the current flow in real
space [2, 3]. Within this approach, the spin-resolved current between two sites is

Iα
rr′ = −2

e

h̄

∫ ∞

∞
dω

2π
Re[tαrr′G<

α (r, r′, ω)] (A.1)

where α =↑,↓, tαrr′ is the electron hopping connecting the two sites (nearest or
next-nearest), and G<

α (r, r′, ω) is the non-local dressed lesser Green’s function.
This is the Fourier transform to frequency space of the time domain lesser Green’s
function defined by G<

α (r, r′, t, t) = 〈c†
r′(t)cr(t)〉. The total charge current through

the system is thus I c
out =∑α Iα

out and the spin-α polarization of the outgoing current
is given by ηα = Iα

out/I
c
out. One induces a current through the system by applying

a chemical potential difference, μL,R = ±eV/2, in the left (L) and right (R) leads
(corresponding to a voltage bias V across the sample). G<

α (r, r′, ω) is determined
via the following Dyson equations

Ĝ< = Ĝr
[(

ĝr
)−1

ĝ<
(
ĝa
)−1 + Σ̂<

ph

]
Ĝa (A.2)

Ĝr = ĝr + ĝr
[
t̂ + Σ̂r

ph

]
Ĝr (A.3)

Here Ĝr and Ĝa are the dressed retarded and advanced Green’s functions, respec-
tively. These arise from the non-interacting retarded (ĝr ) and advanced (ĝa) Green’s
functions, which represent a lattice of completely decoupled sites. Explicitly,

ĝr,a =
(

ĝ
r,a
leads 0
0 ĝ

r,a
sys

)
(A.4)
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where ĝr
sys is the diagonal matrix with elements

gr
sys(ω) = 1

ω + iδ − eVg

(A.5)

and ĝa
sys = (ĝr

sys)
∗. Here e is the electron charge and Vg the gate voltage applied to

select states at energy E = eVg for transport. On the other hand, the metallic leads
are modeled using a constant density of states equal to unity,

gr
leads(ω) = −iπ (A.6)

The matrix t̂ contains all the hopping elements connecting the various sites in
the system and the system to the leads. Depending on the particular case under
consideration, it will also include the effects of nonmagnetic and magnetic defects.
The matrix Σ̂r

ph describes the coupling of the system to phonons (discussed in more
detail below). The non-interacting lesser Green’s function has a similar form to the
retarded and advanced ones:

ĝ< =
(

ĝ<
leads 0

0 ĝ<
sys

)
(A.7)

Its components are again diagonal matrices, now with elements given by

g<
sys(ω) = −2inF (ω)Imgr

sys(ω) (A.8)

g<
leads(ω) = −2inF (ω + μL,R) Imgr

leads(ω) (A.9)

To study the effect of coupling the system sites to local phonon modes, one
introduces an electron-phonon term into the Hamiltonian

He−ph = g
∑

r,σ

c†
r,σ cr,σ

(
a†

r + ar

)
+
∑

r

ω0a
†
r ar , (A.10)

Here g is the electron-phonon coupling strength, a
†
r (ar) creates (annihilates) a

phonon at site r in the system, and ω0 is the phonon frequency. The summation runs
over whatever sites are connected to local phonon modes. To simplify the calculation
of the part of the electron self-energy arising from phonon interactions, we consider
the high-temperature approximation in which kbT � ω0 [4]. In this approximation
one has nB(ω0) � 1 so that only terms in Σ̂r

ph containing nB(ω0) are kept. In the
self-consistent Born approximation (i.e. using the dressed Green’s function) one has

Σr,<
rr (ω) = ig2

∫
dν

2π
D<(ν)Gr,<

rr (ω − ν) , (A.11)
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with phonon Green’s functions

D<
0 (ω) =2inB(ω)ImDr

0(ω) (A.12)

Dr
0(ω) = 1

ω − ω0 + iδ
− 1

ω + ω0 + iδ
(A.13)

which are assumed to not be modified by the applied bias. To obtain an analytical
expression for Σ

r,<
rr (ω) it is useful to further take the limit ω0 → 0, in which case

one has to leading order in kbT /ω0 that

Σr,<
rr (ω) = 2g2 kBT

ω0
Gr,<

rr (ω) ≡ γGr,<
rr (ω) (A.14)

This is conveniently expressed by the introduction of a superoperator D̃, which
acting on a matrix returns a new matrix with all elements equal to zero except those
on the diagonal assigned to sites coupled to phonon modes,

[
D̃Ĝr,<

]

rr′ =
⎧
⎨

⎩
G

r,<
rr′ δrr′ if g �= 0 at site r

0 otherwise
(A.15)

With this notation one may write

Σr,<(ω) = γ D̃Ĝr,< (A.16)

It is also useful to define the superoperator Û acting on a matrix X̂ by

Û X̂ = Ĝr X̂Ĝa (A.17)

Together these superoperators permit the solutions of the Dyson equations to be
concisely written as

Ĝ< = Û
[
1 − γ D̃Û

]−1
Λ̂ (A.18)

Ĝr =
[
1 − ĝr

(
t̂ + γ D̃Ĝr

)]−1
ĝr (A.19)

where Λ̂ = ĝ−1
r ĝ<ĝ−1

a is a diagonal matrix. The only non-zero elements of Λ̂rr are
those for which r is a site in one of the leads. Expanding Eq. (A.18) yields

Ĝ<
rr′ =

∑

l

Ĝr
rl

[
Λ̂ll + γ

∑

m

Q̂lmΛ̂mm + γ 2
∑

m,p

Q̂lmQ̂mpΛ̂pp + . . .

]
Ĝa

lr′

(A.20)
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with

Q̂lm =
⎧
⎨

⎩
|Gr

lm|2 if g �= 0 at site l

0 otherwise
(A.21)

This may be further simplified by defining the vector λl ≡ Λ̂ll so that

Ĝ<
rr′ =

∑

l

Ĝr
rl

[(
1 − γ Q̂

)−1
λ

]

l
Ĝa

lr′ (A.22)

Now defining the diagonal matrix

Σ̃ll =
[(

1 − γ Q̂
)−1

λ

]

l
(A.23)

the final expression for the lesser Green’s function in the presence of phonons takes
the simple form

Ĝ< = ĜrΣ̃Ĝa (A.24)
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