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Foreword

The term “cheminformatics” was only coined in 1998; nevertheless, in the last 15+ 
years this field has experienced a burgeoning growth with respect to the numbers of 
publications, conferences, specialized journals, and the diversity of research. The 
editorial published in the inaugural issue of the journal Cheminformatics in January 
of 2009 outlined major challenging problems facing cheminfomatics such as “over-
coming stalled drug discovery … advancing green chemistry … understanding life 
from chemical prospective, and … enabling the network of the world’s chemical 
and biological information to be accessible and interpretable”. This visionary edito-
rial emphasized that despite their breadth and complexity cheminformatics embod-
ies thenecessary concepts and tools to effectively tackle these vital problems.

Addressing challenges facing cheminformatics is exciting but it requires deep 
understanding of the cheminformatics theory as well as practical knowledge of the 
many important cheminformatics tools created by specialists working in the field. 
Practical Chemoinformatics by Karthikeyan and Vyas serves a critical purpose of 
bringing cheminformatics education and tools to researchers at all levels, from un-
dergraduate students to specialists. The book incorporates ten excellently written 
chapters that cover cheminformatics methods and applications from A to Z. Not 
only do the authors provide critical summary of major cheminformatics concepts 
but most importantly they incorporate many case studies illustrating how typical 
research problems can be addressed and solved using proprietary as well as open 
source databases and computational tools.

I am confident that the book will be of interest to all scientists working in chemi-
cal biology and drug discovery but it will be particularly valuable for beginners and 
undergraduate, graduate or post-graduate students specializing in chemistry, biol-
ogy and allied sciences.

Alexander Tropsha, PhD
UNC Eshelman School of Pharmacy

University of North Carolina at ChapelHill, USA
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Preface

Chemoinformatics is a key technology for today’s synthetic/medicinal chemist. 
People with extensive knowledge of chemistry and computer skills are immensely 
required by the industry. Database producers, chemical software developers, and 
chemical publishers offer attractive opportunities to the chemoinformaticians. The 
present book is intended to be a useful practical guide on chemoinformatics for the 
students at graduate, postgraduate, and Ph.D. levels. There are a couple of books 
on the theory of chemoinformatics and plenty of scattered information is available 
on the web but a well structured Do it yourself book is urgently required. The idea 
is that the reader of any background should be enthused to follow the book and 
start using the computer or a computer enthusiast can start learning the basics of 
computational chemistry. With this objective in mind, numerous step by step prac-
tice tutorials, source code snippets, and Do it yourself exercise have been given for 
quick grasp of the subject. The book intends to put the students in the driver’s seat 
to test drive the software, code snippets, and practice tutorials. Rules of thumb have 
been provided at the end of every chapter for specific practical guidance. The lan-
guage has been intentionally kept simple, technical jargon wherever used has been 
thoroughly explained. Adequate bibliography has been provided for readers seeking 
advanced knowledge on any of the given topics. The chapters in the book are linked 
to each other and at the same time are independent of each other.

The book begins with an elementary chapter on how to read and write molecules 
into a computer and basic file format conversions. The second chapter teaches how 
to compute properties of molecules and store them in a database. The third chapter 
delves into the use of computed property data to build models employing machine 
learning methods. The fourth and fifth chapters deal with protein active site pre-
diction and docking studies, both of which are essential for any successful drug 
design experiment. The sixth and seventh chapter focus on use of reaction and NMR 
chemical shift based fingerprints respectively, and their use of virtual screening— 
an important component in chemoinformatics. The eighth chapter deals with text 
mining and its role in chemoinformatics methods to discover a lead molecule. The 
ninth and tenth are technology focused chapters that demonstrate ways to handle 
big data using today’s state of art workflows, portals deployed in distributed, cloud 
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computing platforms, and Android-based app development. To sum up, the purpose 
behind bringing out this book is to demystify and master chemoinformatics through 
a practical approach and make students aware of the latest developments in this 
field. After comprehending the entire book the reader will be able to appreciate the 
power of chemoinformatics tools and apply them for practical use.
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Chapter 1
Open-Source Tools, Techniques, and Data in 
Chemoinformatics

M. Karthikeyan, R. Vyas, Practical Chemoinformatics,
DOI 10.1007/978-81-322-1780-0_1, © Springer India 2014

Abstract Chemicals are everywhere and they are essentially composed of atoms 
and bonds that support life and provide comfort. The numerous combinations of 
these entities lead to the complexity and diversity in the universe. Chemistry is 
a subject which analyzes and tries to explain this complexity at the atomic level. 
Advancement in this subject led to more data generation and information explo-
sion. Over a period of time, the observations were recorded in chemical documents 
that include journals, patents, and research reports. The vast amount of chemical 
literature covering more than two centuries demands the extensive use of infor-
mation technology to manage it. Today, the chemoinformatics tools and methods 
have grown powerful enough to handle and discover unexplored knowledge from 
this huge resource of chemical information. The role of chemoinformatics is to 
add value to every bit of chemical data. The underlying theme of this domain is 
how to develop efficient chemical with predicted physico-chemical and biological 
properties for economic, social, health, safety, and environment. In this chapter, 
we begin with a brief definition and role of open-source tools in chemoinformatics 
and extend the discussion on the need for basic computer knowledge required to 
understand this specialized and interdisciplinary subject. This is followed by an in-
depth analysis of traditional and advanced methods for handling chemical structures 
in computers which is an elementary but essential precursor for performing any 
chemoinformatics task. Practical guidance on step-by-step use of open-source, free, 
academic, and commercial structure representation tools is also provided. To gain a 
better understanding, it is highly recommended that the reader attempts the practice 
tutorials, Do it yourself exercises, and questions given in each chapter. The scope 
of this chapter is designed for experimental chemists, biologists, mathematicians, 
physicists, computer scientists, etc. to understand the subject in a practical way 
with relevant and easy-to-understand examples and also to encourage the readers to 
proceed further with advanced topics in the subsequent chapters.

Keywords Chemical structure · Molecular modelling · Chemical databases · Open-
source software · Drug discovery



2 1 Open-Source Tools, Techniques, and Data in Chemoinformatics

1.1 Chemoinformatics

Chemoinformatics has been defined in various ways [1], and the most popular one 
is by Greg Paris which states that “Chemoinformatics is a generic term which en-
compasses the design, creation, organization, management, retrieval, analysis, dis-
semination, visualization, and use of chemical information.” The basic core opera-
tions of a chemical information system include storing, retrieving, and searching 
information/data and their relationships [2, 3]. Chemoinformatics helps to harvest 
large-scale chemical data from publicly available sources and design materials with 
desired characteristics through prediction methods that include physical, chemical, 
or biological properties of compounds, spectra simulation, structure elucidation, 
reaction modelling, synthesis planning, and frequently used drug design and lead 
optimization process. It is applied “mostly” to a large number of “small” molecules 
where #N ~ (10…100…1,000…10,000…106…1060…).

The main applications of this subject are in the fields of medical science for 
developing novel and effective drugs and in material science to develop new and 
superior materials [4]. The other allied fields that benefit from the pursuit of che-
moinformatics are agrochemicals and biotechnology [5]. These operations differ 
from the classical storage of data in a computer because the data associated with the 
chemical information system are mostly structural that require special algorithms 
and methods to handle unlike textual data.

With the availability and access to modern high-performance computing infra-
structure, it is now possible to add value to the diverse field of chemoinformatics in 
terms of speed and efficiency. Open-source tools are now playing a pivotal role in 
revolutionizing the way chemoinformatics data can be handled in a high-through-
put manner, and experiments requiring intensive computational power can be per-
formed in an in-silico environment.

1.1.1 Open-Source Tools

Free Open-Source Software (FOSS) tools are defined as those programs which any-
one can download and change the source code, provided that they make the chang-
es publicly available again, according to the GNU Lesser General Public License 
(LGPL) [6]. Anyone is freely licensed to use, copy, study, and change the software 
in any way, and the source code is openly shared so that people are encouraged to 
voluntarily improve the design of the software. Some of the most popular open-
source tools are Linux and OpenBSD [7] and are widely utilized today, powering 
millions of servers, desktops, smart phones (e.g., Google Android), and other devic-
es. This is in contrast to proprietary software, where the software is under restrictive 
copyright and the source code is hidden from the users, so that the rights holders 
(the software publishers) can sell binary executables (Table 1.1).
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Why to use open-source tools in chemoinformatics? 
• Use them to “Handle” large-scale data through integration (linking multiple free 

tools, databases, etc.)
• Use through “Internet Access” to Web services (servers at various institutes)

1.1.2 Introduction to Programming Languages

It will be pertinent here to provide a brief discussion on the background computer 
knowledge required to master the subject of chemoinformatics. Though a number 
of software with graphical user interface (GUI) options are available, it is recom-
mended that the users train themselves in some of the programming languages and 
be aware of the ongoing developments so as to become proficient in harnessing 
the computing power of the existing software applications for specific individual 
needs. The computer is one of the most important tools for the new generation of 
chemoinformaticians and bioinformaticians. Along with the evolution of computer 
hardware, operating systems and computer programming languages also evolved 
with time. One of the earliest scientific programming languages was FORTRAN 
developed in 1953 [8].

Writing a software code is not difficult at all, and what is required to learn pro-
gramming is a bit of patience and perseverance. The choice of language for pro-
gramming is left to the user. Here, we highlight few lines of codes in different 
programming environments to demonstrate simple input–output tasks related to 
chemical information. This would encourage the readers to go ahead with the se-
lection of programming language and identification of tasks to be accomplished in 
chemoinformatics.

Choice of Operating Systems It is also important to be familiar with operating 
systems like Windows, Linux, and Mac OS. Students and faculties of chemoin-
formatics and bioinformatics should be able to execute commands in Linux/UNIX 
systems for computationally intensive tasks. Some of the most frequently used 

S. No. Tools and platforms Programming languages
1 Open Babel C++
2 CDK JAVA
3 RDKit Python
4 Joelib Perl
5 BlueDesc Ruby
6 ISIDA CUDA1

7 TEST
8 MOLD2
9 Bioeclipse
1 Compute Unified Device Architecture

Table 1.1  Open-source tools, 
languages, and resources 
available for performing che-
moinformatics experiments
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UNIX/Linux commands are: [9] cat (displays the contents of the file), cd (changes 
directory), cp (copies file to a specified directory or copies to another file), grep 
(searches the mentioned files for lines containing regular expression), head (dis-
plays specified number of lines from a file), ls (lists the content of a directory), man 
(displays the manual page for the given command), mkdir (makes directory), more 
(displays the contents of a file(s) page by page on the screen), mv (moves files or 
directories or renames files/directories, etc.), pwd (presents working directory/cur-
rent directory), rm (removes or deletes one or more files), rmdir (removes or deletes 
directories), tail (displays the last N lines of one or several files), telnet (establishes 
a connection to another computer via telnet protocol), and wc (counts the number 
of words/characters/lines in the file).

Internet and WWW Today, it is not necessary to introduce the Internet or World 
Wide Web (WWW) to a student of chemoinformatics or bioinformatics as they are 
already familiar with these resources for their day-to-day research or education. 
The Internet was originally designed by the US military in order to avoid total 
failure of the network. With the establishment of Transmission Control Protocol 
(TCP) and Internet Protocol (IP) also known as TCP/IP, the definition of the term 
Internet was born [10]. The WWW was developed by Tim Berners-Lee of CERN. 
File Transfer Protocol (FTP) is largely used in chemoinformatics and bioinformat-
ics to get the scientific data (small molecules and sequences, structures, properties, 
activities, toxicity, and literature) from the Internet. Microsoft’s Internet Explorer, 
open-source-based Mozilla, Opera, Google’s Chrome, Safari, etc. are usually used 
to access Internet web pages using Hyper Text Transmission Protocol (HTTP) and 
FTP. FileZilla (filezilla-project.org), an open-source FTP client available under 
many platforms including Windows, Linux, and Mac OS, is also worth mentioning.

Some of the most frequently used FTP commands are as follows: ascii (changes 
mode to ASCII), bin (changes mode to Binary transport), bye (terminates the FTP 
session), get (gets the file), put (uploads the file to the FTP server), pwd (shows the 
current directory), and quit (terminates the FTP session).

Some of the most popular Internet browsers are: Internet Explorer, Mozilla 
Firefox, Google Chrome, Safari, Opera, etc.

In addition to learning about operating systems, commands to handle files, use of 
Internet browsers to search the right information from a volume of data from public 
resources, there is a need to learn a bit of programming to accomplish simple, rou-
tine tasks required in chemoinformatics.
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Introduction to basics of programming Here, we will print the name of a small 
molecule of caffeine using the simplest code snippet in Fortran on a UNIX system. 
Caffeine is a stimulant and drug molecule from the alkaloid family (Fig. 1.1).

program hello Caffeine
print *, 'Hello Caffeine!'
end program hello 

Without doubt, the program which changed the world of computing and compiling 
was “C” [11]. The GUI compilers like Turbo C or Borland were used in early days 
of programming. A simple C program is written as

/* Hello Caffeine program
*/ 
#include<stdio.h> 
main() 
{ 
    printf("Hello 
Caffeine"); 
 

Later, the concept of object-oriented programming evolved with C++ for better re-
usability of the codes [12].

#include <iostream.h> 
main() 
{ 
    cout << "Hello 
Caffeine!"; 
    return 0; 

Fig. 1.1  Chemical struc-
ture of Caffeine
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Recently, another object-oriented language for web compatibility, namely Java 
[13], has been created and it revolutionized the WWW of the Internet age. Several 
specialized books and free Internet web resources in the area of computer program-
ming, languages, compilers, etc. are available for interested readers. Integrated De-
velopment Environments (IDEs) include NetBeans and Eclipse. The java program  
is compiled using javac in the command line. The JDK needs to be installed.

1.1.2.1 Other Important Programming Languages

Practical Extraction Report Language Practical Extraction Report Language 
(Perl) is a free interpreted language mainly developed for text handling [14]. A col-
lection of Perl code is available at the Comprehensive Perl Archive Network (CPAN; 
www.cpan.org). Bioperl provides many modules for sequences, data parsing, and 
databases very often used in bioinformatics. A perl code snippet is as follows:

Python Python is a free object-oriented, easy-to-learn programming language and 
is useful in application development [15]. It overcomes some of the drawbacks of 
Perl. It contains scalable, extendable scripting and can be embedded:

$ vim hellocaffeine.py 
#!/usr/bin/python 
# Hello caffeine python program 
print "Hello Caffeine!"; 
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R R is an open-source based powerful language that is very good for performing 
statistical operations on large datasets and runs on a wide variety of platforms [16]. 
It includes a subset of C language. It allows branching and looping as well as modu-
lar programming using functions. The bin/linux directory of the Comprehensive R 
Archive Network (CRAN) contains all the packages.

Introduction to compilers Compilers are required to write a computer program 
and to create the executable codes. The purpose of traditional and modern compil-
ers is to translate man-made computer programs into machine-readable codes. The 
sequence of operations involved in writing a source code, compiling them, and 
generating executable programs is depicted below:

Source Code Compilers Executable Programs

Hybrid computing Today, high-performance computing (HPC) platforms are 
reaching the home through cloud computing infrastructure. Like we access electric-
ity at home, now with the help of the Internet, one can access tremendous computing 
power on demand, based on need and available resources. Supercomputers and vir-
tual computers that are powered by both central processing units (CPUs) and graph-
ics processing units (GPUs) are accessible through the Internet. Several academic 
institutions are providing access to high-performance computing to researchers 
through the Internet, and students with their mobile devices are able to harness the 
computing power through authentications. Therefore, it is necessary to learn more 
about emerging computing platforms and special programming skills to achieve the 
tasks in the shortest period of time. It is worth mentioning emerging modern pro-
gramming languages like Cuda. GPUs usually used for high-end gaming are now 
being used for scientific computing including drug design, quantum chemistry, and 
weather forecasting. Today, simple GPU-based accessories with thousands of cores 
with high processing power are now accessible at moderate cost. There is a need to 
learn Cuda programming which is a parallel computing platform and is a boon for 
software developers and scientists [17]. Using Cuda, one gains access to specialized 
GPU processors-based computing to handle large data at extreme speed (teraflops) 
and carry out computer-intensive tasks. It supports programs written in languages 
like Java, C++ and Fortran, and there is no need for assembly language. Recent 
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scientific applications include the development of high-throughput sequence align-
ment tools [18].

>> parallel.gpu.GPUDevice.current() 
 
ans = 
 
  parallel.gpu.CUDADevice handle 
  Package: parallel.gpu 
 
  Properties: 
                      Name: 'Tesla K20c' 
                    Index: 1 
        ComputeCapability: '3.5' 

         SupportsDouble: 1 
            DriverVersion: 5.5000 
        MaxThreadsPerBlock: 1024 
          MaxShmemPerBlock: 49152 
        MaxThreadBlockSize: [1024 1024 64] 
              MaxGridSize: [2.1475e+09 65535] 
                SIMDWidth: 32 
              TotalMemory: 5.0330e+09 
                FreeMemory: 4.9250e+09 
      MultiprocessorCount: 13 
              ClockRateKHz: 705500 
              ComputeMode: 'Default' 
      GPUOverlapsTransfers: 1 
    KernelExecutionTimeout: 0 
          CanMapHostMemory: 1 
          DeviceSupported: 1 
            DeviceSelected: 1 

1.2 Chemical Structure Representation

Chemical structures are the international language of chemistry and their repre-
sentation, interpretation, automatic generation, storage, searching them efficiently 
using mathematical approaches and analyzing them with chemical context are the 
most critical steps in solving chemical problems [19]. The basic requirement for 
building a chemical information system is the representation of molecules in a spe-
cific and generic way for fast processing by computers and easy understanding by 
chemists [20, 21]. The most widely known open-source and free tool for draw-
ing chemical structures is JChemPaint (JCP) [22]. Currently, it is developed as a 
GitHub project which is the largest code hub in the world [23]. JCP can be used for 
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educational purposes due to its capability of handling chemical structures in stan-
dard file formats (Simplified Molecular-Input Line-Entry System, SMILES; MOL; 
structure data file, SDF; Chemical Markup Language, CML, etc.) for easy exchange 
between the programs and also for managing chemical information [24]. JCP is the 
editor and viewer for two-dimensional (2D) chemical structures developed using 
Chemistry Development Kit (CDK) [25]. It is implemented in several forms includ-
ing a Java application and two varieties of a Java applet. To use the JCP applet in 
web pages, one has to download the corresponding jar file and edit the HyperText 
Markup Language (html) page with the applet code including the dimension of ap-
plet, source of molecule file in the html document as shown below.

1.3 Code for Including the Editor Applet in JChemPaint

<applet 
  code="org.openscience.cdk.applications.jchempaint.applet.JChemPaintEditorApplet" 
  archive="jchempaint-applet-core.jar" 
  name="Editor" 
  width="600" height="500"> 
  <param name="load" value="a-pinene.mol"> 

1.4  Definition of Templates (Polygons, Benzene,  
Bond, Atom, etc.)

The GUI helps to draw the chemical structure rapidly. The most frequently used 
molecular fragments are defined in the program as templates and are shown as icons 
in the user interface. It is easy for the user to select the icon, and clicking on an 
empty drawing area or workspace would place them appropriately. Once a template 
or a fragment is drawn, it can be modified by adding additional bonds, changing the 
bond types such as double, triple, or stereo-chemical (wedged or broken), fusing 
the additional rings, etc. These tools facilitate easy and rapid drawing of chemical 
structures and store them for reusability and inventory management. Still, without 
the aid of these tools, one can generate chemical structures by creating plain text 
files containing atoms (coordinate tables) and bond (connection table) informa-
tion with some experience and expertise. However, drawing chemical structures 
using professionally designed software tools is encouraged to avoid inadvertent er-
rors in the chemical structures. The graphical user programs help to draw chemi-
cal structures rapidly and facilitate the storage and interconversion in the standard 
file formats. The advanced programs are smart enough to monitor the progress of 
drawing or input by the user and alert them when they make mistakes (with wrong 
connectivity, exceeding atomic valency, etc.) and also auto-correct the structures 
dynamically. Now, with advancement in chemoinformatics tools, one can generate 
chemical names from the structures and vice versa. Some of these tools also help 
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to compute some of the primitive molecular descriptors like LogP (octanol–water 
co-efficient), total polar surface area (TPSA), chemical composition (percentage of 
atomic composition) and also to change the chemical structures into 3D formats as 
and when required (Fig. 1.2).

MCDL available at http://mcdl.sourceforge.net/ is another free open-source small 
Java molecular viewer/editor for chemical structures, stored in Modular Chemical 
Descriptor Language linear notation only [26].

1.5 Free Tools

Unlike the JCP program discussed above, where the source code for the program 
is available, there are other chemical structure drawing tools that are freely distrib-
uted as executable without the source code. A suitable example is JME Molecular 
Editor—a lightweight Java applet for web browsers which allows users to draw/edit 
molecules and reactions (including the generation of substructure queries) and to 
depict molecules directly within an HTML page [27]. The editor can generate Day-
light SMILES or Molecular Design Limited (MDL) molfile of created structures 
[28]. The applet is widely known due to its ease of use in the input of molecules in 
the web servers to search the chemical structures or to predict the physicochemical 

Fig. 1.2  JChemPaint graphical user interface displaying aspirin structure
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properties. For example, molinspiration site provides space for the JME Home and 
helps with the installation and deployment of the JME [29]. The JME can be incor-
porated as an applet into an HTML page with the following code (Fig. 1.3):

<applet code=“JME.class” name=“JME” archive=“JME.jar” width=“360” 
height=“335”> <param name=“options”value=“listofkeywords”></applet>

1.6 Academic Programs

As these programs have different licensing options, there is a free version for aca-
demic users but a license fee is charged for corporate use.

1.6.1 Marvin Sketch

Marvin Sketch is a structure-editing tool, a component of java-based Marvin Tools 
provided via an academic license from the ChemAxon company [30] (Fig. 1.4).

Fig. 1.3  A structure drawn using JME editor
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1.6.2 ACD Labs

CD/ChemSketch is a freeware for drawing chemical structures including organics, 
organometallics, polymers, and Markush structures [31]. It has options for structure 
cleaning, viewing and naming, inch conversion, stereo descriptors etc. For free-
ware, no technical support is provided and the functionalities are less compared to 
the commercial version which has structure search capabilities (Fig. 1.5).

1.7 Commercial Tools

A number of proprietary software programs are available for 2D structure creation 
and manipulation. In fact, all commercial software programs in the field of che-
moinformatics and/or bioinformatics supply a drawing tool to the users.

1.7.1 ChemDraw

It is marketed by Cambridge soft as part of a suite of integrated tools called Che-
mOffice [32] (Fig. 1.6).

Fig. 1.4  The GUI of Marvin Sketch with advance options to display explicit atomic coordinates 
and connection table. It has all the features of a basic drawing tool and also some additional 
features like structure to name generation, prediction of few properties, and conversion to 3D 
structure
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Fig. 1.5  A molecule drawn in ACD ChemSketch

Fig. 1.6  GUI of ChemBioDraw Ultra with calculated data and options to select template structures
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1.7.2 Schrodinger

Maestro module of Schrodinger, a computational and molecular modelling plat-
form, can be used to generate 2D structure and render them into 3D structure for 
further studies [33] (Figs. 1.7 and 1.8).

1.7.3 MOE (CCG)

Molecular Operating Environment ( MOE) has a builder tool enabled with geometry 
and energy minimization [34].

1.7.4 Accelrys

Accelrys Draw 4.1 enables scientists to draw and edit complex molecules, chemi-
cal reactions, and biological sequences with ease, facilitating the collaborative 

Fig. 1.7  Cyclohexane molecule drawn using Build option in Schrodinger workspace
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searching, viewing, communicating, and archiving of scientific information [35] 
(Fig. 1.9).

Other chemical information service providers like Scifinder [36], ChemSpider 
[37], NIH [38], Beilstein [39], etc. provide their own drawing tools to the users.

1.8 A Practice Tutorial

1.8.1  Interconversion of Name/SMILES to Structure 
and Vice Versa

Chemical names are usually used for documentation and communication purposes. 
A molecule can have several valid chemical names including computer-generated 
International Union of Pure and Applied Chemistry (IUPAC) names, traditional 
name, common name, commercial name, company assigned identifiers, Chemical 
Abstracts Service (CAS) Registry number, and many other synonyms. It is chal-
lenging to generate chemical structures from the chemical names. In order to com-
municate effectively, line notations were developed for representing chemical struc-

Fig. 1.8  A structure drawn using Builder option on the right-hand side ( RHS) of the MOE GUI
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tures. SMILES are line notations used frequently in chemoinformatics especially for 
database operations. The SMILES format contains the details of connection table in 
a linear format. The details are described in the appropriate section of this chapter.

In this tutorial, the reader will learn how to get the SMILES/IUPAC name from the 
chemical structure and vice versa. Here, we selected two different software programs 
for demonstrating simple operations to handle chemical structures. ChemDraw from 
Perkinelmer informatics has been traditionally used by chemists for the past two 
decades especially for chemical documentation in particular for writing manuscript 
with chemical significance for the journals, patents, and PhD theses. ChemDraw 
is equipped with several templates to support these activities, for example, selec-
tion of templates suitable for organic chemistry journals, where the user will draw 
the reaction schemes and the dimensions would be automatically fixed according 
to the journal selected. In addition to this, ChemDraw programs were frequently 
used by organic chemists to generate IUPAC names, 1H and 13C predicted nuclear 
magnetic resonance (NMR) to assign particular peaks corresponding to the atomic 
environment in the molecule as a guideline and also to calculate primitive descrip-
tors like atomic composition, molecular mass, logP, etc. In recent times, ChemAxon 
tools are becoming the most popular among the academic communities due to their 

Fig. 1.9  Aspirin and its various line notations depicted in Accelrys 4.0
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flexibility in licensing policy and more features comparable and better than other 
commercial softwares. ChemAxon is the only software available today to handle 
millions of chemical structures in a database and enables to search them using exact 
structure-, substructure-, and similar structure-based queries in a relational database 
management system (RDBMS) environment. The number of chemical structures in 
the database is limited only by the hardware resources and database constraints. The 
512 bits fragments-based binary fingerprinting algorithm implemented in ChemAx-
on tools is powerful enough to facilitate rapid searching in a large-scale database of 
chemical structures. ChemAxon also provides Java application programming inter-
faces (APIs) to extend and enhance the functionality of the program as per the user’s 
needs. The details of advanced functionalities of open source and academic packages 
related to chemoinformatics are described in detail with practical do it yourself sec-
tions (Figs. 1.10, 1.11 and 1.12).

Do-it-yourself (*Requirement: ChemDraw software) 
Structure to SMILES

• Start ChemDraw
• Open the chemdraw tool panel and draw the structure with the following tool bar
• After drawing the structure, right click on the structure, then select Molecule  

copy as  SMILE  paste it where you want

Getting Structure from SMILES using ChemDraw

• Copy the SMILES from the source file
• Right click on the ChemDraw editor window
• Click on Paste SMILES

Fig. 1.10  ChemDraw GUI for copying chemical structures in SMILES format
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SMILES to Structure

•  Open ChemDraw  edit  paste special  paste the desired format (SMILES) 
to retrieve the structure

Getting structure from IUPAC name using ChemDraw

• Copy the IUPAC name from the source file
• Open ChemDraw  structure  convert name to structure
• The output is the structure with the IUPAC name
• Conversely, one can convert name to structure in ChemDraw

Do-it-yourself (*Requirement: ChemAxon software) 
Getting SMILES string from structure by MarvinSketch

• Draw the structure using the MarvinSketch window as shown in the figure
• After drawing the structure, select the structure and go to edit  Copy as 

SMILES as shown in Fig. 1.13

Similarly, one can insert the IUPAC name of the structure using the insert  IUPAC 
Name (Fig. 1.14)

Fig. 1.12  Name to 
structure conversion in 
ChemDrawUltra

Fig. 1.11  SMILES to struc-
ture conversion
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Getting SMILES/IUPAC name from structure by MarvinView Copy a valid 
SMILES string and paste into MarvinSketch or MarvinView panel to display the 
structure (Fig. 1.15).

• Start MarvinView
• Select Edit  Paste (Ctrl + V)
• To generate SMILES from the already drawn structure: Select Table  Select 

option Show SMILES

Fig. 1.13  GUI for copying a 
structure in SMILES format 
using Marvin Sketch

Fig. 1.14  Step to generate and insert IUPAC name using MarvinSketch
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Get IUPAC Name from structure in MarvinView 

• When a structure is there in the MarvinView panel, select IUPAC Name option 
from Tool menu as shown in Fig. 1.16.

1.9 Introduction to Chemical Structure Formats

1.9.1 Linear Format

To facilitate the ease of chemical communication through electronic medium, 
linear formats were developed over a period of time. These notations are use-
ful for compact storage; they are unique and can be interpreted rapidly by the 
chemically intelligent computer programs [40]. Alphanumeric string-based lin-
ear chemical structure encoding rules were developed by the pioneering contri-
butions of Wiswesser, Morgan, Weininger, Dyson, etc. and eventually applied 
in machine description [41]. Contemporarily, a new system of representing the 
molecular structural information in the form of connection tables was estab-
lished [42]. The invention of SMILES made a significant effect on the storage 

Fig. 1.16  IUPAC name to 
structure conversion in  
Marvin View

Fig. 1.15  MarvinView menu 
for generating SMILES to 
structure
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methodology in chemical information systems and it has led to the development 
of the modern form of representing chemical structures [43]. This line nota-
tion system has several advantages over the older systems in terms of its com-
pactness, simplicity, uniqueness, and human readability. A detailed description 
of many advanced versions of SMILES such as USMILES, SMILES Arbitrary 
Target Specification (SMARTS), STRAPS, and CHUCKLES can be found on 
the website www.daylightsmiles.com. SMARTS is basically an extension of 
SMILES used for describing molecular patterns and properties as well as for 
substructure searching [44]. In the early days of chemical structure representa-
tion, Sybyl Line Notation (SLN) was used extensively in American Standard 
Code for Information Interchange (ASCII) format which is almost similar to 
SMILES, the difference being mainly in the representation of explicit hydrogen 
atoms [45]. It can be used for substructure searching, Markush representation, 
database storage, and network communication, but the drawback is that it does 
not support reactions. An International Chemical Identifier (InChI) notation is a 
string of characters capable of uniquely representing a chemical substance. It is 
derived from a structural representation of that substance in a way designed to be 
independent of the way that the structure is drawn so that a single compound will 
generate the same identifier [46]. It provides a precise, robust, IUPAC-approved 
tag for representing a chemical substance. InChI is the latest and most modern 
of the line notations. It resolves many of the chemical ambiguities not addressed 
by SMILES, particularly with respect to stereo centers, tautomers, and other 
valence model problem. In modern-day chemical structure-based inventory man-
agement, canonical SMILES format is the most preferred due its uniqueness and 
compactness.

Sample line notations for Aspirin Molecule
[#6]OC(=O)Cl=CC=CC=ClC(O)=O (SMARTS)
InChIKey = FNJSWIPFHMKRAT-UHFFFAOYSA-N (InChI Key)
COC(=O)clccccclC(O)=O (SMILES)

1.9.2 Graph-based Representation (2D and 3D formats)

According to graph theory, a chemical structure is a undirectional, unweighted, and 
labeled graph with atoms as nodes and bonds as edges [47]. Molecular graphs can 
be augmented with rings and functional groups by inserting additional vertices with 
corresponding edges [48]. Matrix representation of graph was also used to denote 
chemical structure with n atoms as an array of n × n entries [49]. There are several 
types of matrix representation, such as adjacency matrix, distance matrix, atom con-
nectivity matrix, incidence matrix, bond matrix, and bond electron matrix, each 
with its own set of merits and demerits [50].
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1.9.2.1 Code for obtaining the distance between pairs of points in a matrix

public double[][] getDistanceWithConnectPoints(double[][] matrix) { 
        double[][] val = new double[50000][3]; 
        int cnt = 0; 
        for (int i = 0; i < matrix.length; i++) { 
            for (int j = i + 1; j < matrix.length; j++) { 
                Point3d p1 = new Point3d(matrix[i]); 
                Point3d p2 = new Point3d(matrix[j]); 
                val[cnt][0] = p1.distance(p2); 
                val[cnt][1] = (double) i; 
                val[cnt][2] = (double) j; 
                //     System.out.println(cnt + "\t" + p1.distance(p2)); 
                cnt++; 
            }//j 
        }//i 
        System.out.println(cnt); 
 
        double[][] val1 = new double[cnt][3]; 
        for (int i = 0; i < cnt; i++) { 
            for (int j = 0; j < 3; j++) { 
                val1[i][j] = val[i][j]; 
            } 
        } 
        return val1; 
    } 

1.9.3 Connection Tables

A connection table is a list of atoms and bonds in a molecule which tells us the 
indices of the atoms connected to the reference atom i [51]. The bond table in-
dexes between atom i and atom j. It enumerates the atoms and the bonds connecting 
specific atoms. The table provides the 3D (x, y, z) coordinates and the informa-
tion about the bonds connecting the atoms along with the type of bonds (1 = single; 
2 = double, etc.). Despite the size and format constraints, the connection tables are 
easily handled by the computers. However, the drawback is a lack of human inter-
pretability of the structural information. Owing to the constraints, the connection 
tables have been widely adopted by the storage media. The present day’s most im-
portant Chemical Abstract Service structure databases like Registry [52] contain the 
molecular information in connection table format only (MDL Mol).

1.9.4 FILE FORMATS

Chemical information can be downloaded, uploaded, and viewed as files or streams 
in multiple file formats with varying documentation difference. File formats are 
usually distinguished on the basis of three criteria [53]:

1. File extensions: They usually end in three letters, for example, .mol, .sdf, .xyz.
2. Self-describing file: The details of the file format are present in the file itself, for 

example, CML.
3. Chemical/MIME: They are provided by the server, “chemically-aware.”
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1.9.4.1 MOLFILE

Molfile was created by MDL (now Symyx). The Accelrys –Symyx merger has 
given its ownership to Accelrys. Molfile includes information on atoms, atomic 
bonds, connectivity, and the coordinates of the molecule. There are two versions of 
this file: V2000 and V3000, the former being the most accepted version. Most che-
moinformatics softwares like Marvin, ACD ChemSketch, even Mathematica [54] 
support this format.

The following are the contents of Molfile for the given structure of aspirin (ace-
tylsalicylic acid) (Fig. 1.17).

1.9.4.2 SDF FILE

SDF created by MDL is a chemical data file format and displays information on 
chemical structure [55]. SDF is an extension (additional information) of MDL

Molfile. The first portion of the SDF file is the same as the MDL Molfile, and 
the second half contains additional information related to some molecular prop-
erty. Delimiter is a set of specific characters used to segregate multiple compounds 
(Fig. 1.18).

Code for reading an sdf file

public String[] ReadSDF(String fname) { 
        System.out.println(fname); 
        int cnt = 0; 
        String t = ""; 
        int mcnt = 1; 
        double[][] dmatx = new double[mcnt][36]; 
        try { 
            BufferedReader br = new BufferedReader(new FileReader(new
File(fname))); 
            String s1 = ""; 
            int lcnt = 0; 
            int acnt = 0; 
            int bcnt = 0; 
            int[] v1 = new int[2]; 
            double[][] lcoord = new double[1000][3]; 
            double[][] bcon = new double[1000][3]; 
            int ac = 0; 
            int bc = 0; 
            while ((s1 = br.readLine()) != null && cnt < mcnt) { 
                lcnt++; 
                t += s1 + "\n"; 
                try { 
                    if (lcnt == 4) { 
                        String[] t1 = stringToArray(s1); 
 
                        acnt = Integer.valueOf(t1[0].trim()); 
                        bcnt = Integer.valueOf(t1[1].trim()); 
                    } 
                    v1[0] = 4 + acnt; 
                    if (lcnt > 4 && lcnt < v1[0]) { 
                        String[] t2 = stringToArray(s1); 
                        lcoord[ac][0] = Double.valueOf(t2[0]); 
                        lcoord[ac][1] = Double.valueOf(t2[1]); 
                        lcoord[ac][2] = Double.valueOf(t2[2]); 

ac++;
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                    } 
                    v1[1] = v1[0] + bcnt; 
                    if (lcnt > v1[0] && lcnt < v1[1]) { 
                        String[] t3 = stringToArray(s1); 
                        bcon[bc][0] = Double.valueOf(t3[0]); 
                        bcon[bc][1] = Double.valueOf(t3[1]); 
                        bcon[bc][2] = Double.valueOf(t3[1]); 
                        bc++; 
                    } 
                    if (s1.contains("$$$$")) { 
                        double[] maxv = getMaxValue3(lcoord); 
                        double[] minv = getMinValue3(lcoord); 
                        double[][] gbx = BuildGridBox(minv, maxv); 
                        dmatx[cnt] = getDistance(gbx); 
                        cnt++; 
                        t = ""; 
                        lcnt = 0; 
                        ac = 0; 
                        bc = 0; 
                    } 
                } catch (Exception e) { 
                    t = ""; 
                    lcnt = 0; 
                    ac = 0; 
                    bc = 0; 
                } 
            } 
            br.close(); 
        } catch (Exception e) { 
            System.out.println(e); 
        } 
 
        for (int i = 0; i < dmatx.length; i++) { 
            for (int j = 0; j < dmatx[0].length; j++) { 
                System.out.print(df.format(dmatx[i][j]) + " "); 
            } 
            System.out.println(); 
        } 
 
        String[] out = t.split("$$$$"); 
        return out; 
    } 

1.9.4.3 XYZ File

XYZ is a chemical file format that describes the geometry of the molecule [56]. 
This format is utilized in importing and exporting coordinates for chemical struc-
tures computationally. The units used in XYZ format are usually “angstroms.”

File name extension: .XYZ The following are contents of the XYZ file for the 
given structure (acetylsalicylic acid) (Fig. 1.19).

1.9.4.4 PDB File Format

A PDB file is a topology file which describes the geometry of a protein or chemical 
structure [57]. It gives the coordinates for every atom or residue in the structure. 
Almost all the letters, numbers, and special characters are allowed in this format. 
There are certain mandatory fields based on the structure.

Mandatory fields in PDB format: HEADER, TITLE, COMPND, SOURCE, 
KEYWDS, EXPDTA, AUTHOR, REVDAT, REMARK 2, REMARK 3, SEQRES, 
CRYST1, ORIGX1 ORIGX2 ORIGX3, SCALE1 SCALE2 SCALE3, MASTER, 
END.
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The following is a typical PDB text file (protein Lyase) (Fig. 1.20).

HEADER The HEADER record uniquely identifies a PDB entry through the 
idCode field.

Fig. 1.17  Depiction of a Molfile format
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Molfile information

SDF file information

SDF file information

Delimiter (Four $ characters)

(Additional Information)

Fig. 1.18  Depiction of an sdf file format
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    structure (Acetylsalicylic acid)                                                             XYZ file 

Description
1 Number of atoms
2 Molecule name/molecule 

ID
3-15 Atomic coordinates

Fig. 1.19  XYZ format

Fig. 1.20  Depiction of a PDB file format
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HET HET records are used to describe nonstandard residues, such as prosthetic 
groups, inhibitors, solvent molecules, and ions, for which coordinates are supplied.

HETNAM This record gives the chemical name of the compound with the given 
hetID.

HETSYN This record provides synonyms, if any, for the compound in the corre-
sponding (i.e., the same hetID) HETNAM record.

FORMUL The FORMUL record presents the chemical formula and charge of a 
nonstandard group.

The END record marks the end of the PDB file.

1.9.4.5 CML File Format

CML is an Extensible Markup Language (XML) format for chemical information 
[58]. CML reads multiple information elements from the structure file: molecule, 
atom, bond, name, formula, and the attribute: hydrogenCount, formalCharge, iso-
tope, isotopeNumber, spinMultiplicity, radical (from Marvin), atomRefs4 (for at-
omParity), atomID (<atom>: id), elementType, atomRefs, atomic bond (<Bond>). 
The CML file ends with “ < /cml >” (Fig. 1.21).

1.9.4.6 Topos MOL2 Format

A tripos mol2 file (.mol2) is a complete portable representation of a SYBYL mol-
ecule [59]. Mol2 is an ASCII file. Mol2 files are written in “free format.” The fol-
lowing are contents of the SDF file for the given structure (acetylsalicylic acid).

Line Description
1-5 Comments on the structure
6-19 RTI1
20-33 RTI2
34-35 RTI3

Comments: This includes the molecule ID/name, the number of atoms, etc.
Record Type Indicators (RTI): This divides the whole text into certain parts with 

relevant information about the structure (Fig. 1.22).
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<?xml version="1.0"?>
<cml xmlns="http://www.xml-cml.org/schema" xmlns:convention="http://www.xml-
cml.org/convention" convention="convention:molecular" 
xmlns:marvin="http://www.chemaxon.com/marvin/marvinDictRef" version="ChemAxon file 
format v5.9.0, generated by v5.10.1">
<molecule id="m1">

<atomArray>
<atom id="a1" elementType="O" x2="11.302358174514687" y2="6.324999655485152"/>
<atom id="a2" elementType="C" x2="9.968679052686651" y2="5.554999655485155"/>
<atom id="a3" elementType="O" x2="8.634999930858617" y2="6.324999655485158"/>
<atom id="a4" elementType="C" x2="9.968679052686650" y2="4.0149996554851555"/>
<atom id="a5" elementType="C" x2="8.634999930858614" y2="3.244999655485155"/>
<atom id="a6" elementType="C" x2="7.301320809030578" y2="4.0149996554851555"/>
<atom id="a7" elementType="O" x2="5.967641687202542" y2="3.244999655485156"/>
<atom id="a8" elementType="O" x2="7.301320809030580" y2="5.5549996554851555"/>
<atom id="a9" elementType="C" x2="5.967641687202544" y2="6.324999655485156"/>
<atom id="a10" elementType="C" x2="8.634999930858614" y2="1.704965774367074"/>
<atom id="a11" elementType="C" x2="9.968669271906872" y2="0.9349488338080336"/>
<atom id="a12" elementType="C" x2="11.302338612955129" y2="1.704965774367074"/>
<atom id="a13" elementType="C" x2="11.302338612955129" y2="3.244999655485155"/>

</atomArray>
<bondArray>
<bond atomRefs2="a1 a2" order="2"/>
<bond atomRefs2="a2 a3" order="1"/>
<bond atomRefs2="a2 a4" order="1"/>
<bond atomRefs2="a5 a6" order="1"/>
<bond atomRefs2="a6 a7" order="2"/>
<bond atomRefs2="a6 a8" order="1"/>
<bond atomRefs2="a8 a9" order="1"/>
<bond atomRefs2="a5 a10" order="2"/>
<bond atomRefs2="a4 a5" order="1"/>
<bond atomRefs2="a4 a13" order="2"/>
<bond atomRefs2="a10 a11" order="1"/>
<bond atomRefs2="a11 a12" order="2"/>
<bond atomRefs2="a12 a13" order="1"/>

</bondArray>
</molecule>
</cml>

Fig. 1.21  Depiction of CML file format of Aspirin

    

RTI 1

RTI2

RTI3

Fig. 1.22  Depiction of a mol2 format (lines are numbered for convenience and are not part of 
Mol2)
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1.10 2D and 3D Representation

Connections between the atoms specify the topology, but the relative spatial ar-
rangement of atom in the configuration should also be defined. There are molecules 
with the same connectivity patterns but different spatial arrangement termed as ste-
reoisomers which need to be distinguished. The spatial dimension of the building 
atoms defines the dimension of the molecule as:

0D all atoms are in [0, 0, 0]
2D z coordinates is 0, [x, y, 0]
3D all coordinates are defined [x, y, z]
The molecules in 2D format can be converted into corresponding 3D structures 

using molecular modelling approaches. MarvinView is capable of converting 2D 
structures into 3D structures rapidly. A good 3D structure is one that should be 
close enough to 3D structures obtained from X-ray crystallographic methods. 3D 
structures are usually used for drug discovery programs where the small molecule 
is docked against protein targets of interest in their active site. The 3D conformation 
of the structure in particular pose is responsible for binding and also the bioactivity 
of the molecule for that target. Generation of correct 3D structure that is close to 
the experimental conformation obtained through advanced molecular mechanics 
or density functional theory (DFT)-based quantum chemistry programs is there-
fore encouraged for drug discovery research. ChemAxon tools like MarvinSketch 
and MarvinView and other programs, such as Corina, MOE, Schrodinger Tools, 
Accelrys Tools, ACDLabs Tools, etc., are usually used for generation of the most 
refined 3D conformations from 2D structures and used further for advanced predic-
tion studies (Fig. 1.23).

Fig. 1.23  2D and 3D conversion using MarvinView
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In the 2D representation of a molecule, the values of the z coordinates of all the 
atoms are all set to “0,” whereas in the case of a 3D structure, the z coordinates 
are generated based on the lowest energy conformation generated by the program. 
Molsoft has an interactive 2D to 3D molecule converter which can also be viewed 
using mobile apps [60].

1.10.1 Code for 3D Structure Generation in ChemAxon

// read input molecule 
MolImporter mi = new MolImporter("test.mol"); 
Molecule mol = mi.read(); mi.close(); 
// create plugin 
ConformerPlugin plugin = new ConformerPlugin(); 
// set target molecule 
plugin.setInputMolecule(mol); 
// set parameters and run calculation 
plugin.setMaxNumberOfConformers(400); 
plugin.setTimelimit(900); 
plugin.run(); 
// get and process results 
Molecule[] conformers = plugin.getConformers(); 
for (int i = 0; i < plugin.getConformerCount(); ++i) { 
Molecule m = conformers[i]; 
// do something with the conformer ... 
} 
 
cxcalc conformers -m 250 -s true test.sdf 
 

The Corina program can generate 3D coordinates for 2D structures rapidly [61] 
With the help of a 3D structure, it is possible to calculate energy of the molecule, 
volume, interatomic charge distribution, and other 3D descriptors required for quan-
titative structure–activity relationship (QSAR)-based predictive studies (Fig. 1.24).

1.10.2 A Practice Tutorial

Interconversion of 2D to 3D optimization techniques
Using MarvinView:

• Create and open the molecule in MarvinView as discussed previously
• Then go to edit  clean  3D  clean in 3D
• The output will be the 3D structure of the molecule as shown in Fig. 1.25
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Using ChemDraw: 

• Create and open the molecule in ChemDraw as described above
• Then use edit  get 3D model
• The output will be the 3D structure of the molecule as shown in Fig. 1.26

1.11 Abstract Representation of Molecules

Sometimes, molecules are represented as Markush structures in a generic context to 
cover a family of molecular structures which can go beyond millions [62]. Markush 
structures are generic structures used in patent databases such as MARPAT main-

Fig. 1.24  Interactive 3D structure generation with CORINA (molecular networks)

Fig. 1.25  2D to 3D structure conversion in MarvinView
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tained by CAS for protecting intellectual chemical information in patents. An R 
group is a collection of possible substituent fragments that can be part of a molecule 
at a specific location. The complexity of such chemical structure representations 
cannot be captured by one single molecule object (Fig. 1.27).

Markush structures are used in patents, combinatorial library generation, depic-
tion of polymers, etc.

ChemAxon provides plugins for generating Markush structures from a given 
library of molecules (Fig. 1.28).

The Markush viewer is another module to view R group definitions of a mol-
ecule in a hierarchical graphical form. It classifies scaffolds and R groups in a given 
molecule file. The markush structure of aspirin molecules is shown here with R1 
and R2 group definitions (Fig. 1.29).

Markush structures can be enumerated efficiently using command line options. 
The command line syntax is >cxcalc randommarkushenumerations -f sdf -C 2:t5000 
filename.mol and the output can also be piped to MarvinView. In the current version 
of the program, Instant JChem can be used to determine the Markush space density 
of a patent molecule.

Fig. 1.26  2D to 3D conversion in ChemDrawUltra

Fig. 1.27  A Markush struc-
ture showing R groups
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Fig. 1.28  Markush structures generation using ChemAxon

Fig. 1.29  Markush Viewer program in ChemAxon
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1.12 File Format Exchange

A tool for the interoperability of native format for particular software to standard 
file formats is essential for reusability in chemoinformatics programs for property 
prediction, docking, QSAR model building, etc. Software programs like OpenBabel 
can interconvert molecules over 50 standard file formats required by several com-
putational chemistry- and chemoinformatics-oriented programs [63]. MolConverter 
is a command line program in Marvin Beans and JChem that converts between 
various file types [64].

molconvert [options] outformat[:exportoptions] [files…]
The outformat argument must be one of the following strings:

mrv (document formats)
mol, rgf, sdf, rdf, csmol, csrgf, cssdf, csrdf,
cml, smiles, cxsmiles, abbrevgroup, peptide,
sybyl, mol2, pdb, xyz, inchi, name, cdx, cdxml, skc

(molecule file formats)

jpeg, msbmp, png, pov, ppm, svg, emf (graphics formats)
gzip, base64 (compression and encoding)

molconvert [options] query-encoding [files…]
to query the automatically detected encodings of the specified molecule files. 

From files having doc, docx, ppt, pptx, xls, xls, odt, pdf, xml, html or txt format, 
molconvert is able to recognize the name of compounds and convert it to any of 
the above-mentioned output formats. Some common commands for molconvert are 
given below:

 1. molconvert smiles caffeine.mol (printing the SMILES string of a molecule in a 
molfile)

 2. molconvert smiles:-a -s “clcccccl” (dearomatizing an aromatic molecule)
 3. molconvert smiles:a -s “Cl=CC=CC=Cl” (aromatizing a molecule)
 4. molconvert smiles:a_bas -s “CNlC=NC2=ClC(=O)N(C)C(=O)N2C” (aroma-

tizing a molecule using the basic algorithm)
 5. molconvert mol caffeine.smiles -o caffeine.mol (converting a SMILES file to 

MDL Molfile)
 6. molconvert sdf *.mol -o molecules.sdf (making an SDF from molfiles)
 7. molconvert query-encoding *.sdf (printing the encodings of SDfiles in the 

working directory)
 8. molconvert -2:2e mol caffeine.smiles -o caffeine.mol (SMILES to Molfile with 

optimized 2D coordinate calculation, converting double bonds with unspeci-
fied cis/trans to “either”)

 9. 2D coordinate calculation with optimization and fixed atom coordinates for 
atoms 1, 5, 6:

10. molconvert -2:2:F1,5,6 mol caffeine.mol (import a file as XYZ; do not try to 
recognize the file format: molconvert smiles “foo.xyz{xyz:}”)
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11. molconvert smiles “foo.xyz{f1.4C4}” (import a file as XYZ, with bond length 
cut-off = 1.4, and maximum number of carbon connections = 4, export to 
SMILES)

12. molconvert smiles “foo.xyz.gz{gzip:xyz:f1.4C4}” (import a file as Gzipped 
XYZ)

13. molconvert smiles -c “ID < = 1000&logP > = -2&logP < = 4” -T ID:logP foo.sdf 
(import an SDF and export a table containing selected molecules with columns: 
SMILES, ID, and logP)

14. molconvert mrv in.mrv -R2:1 rdef.mrv (fuse R2 definition from file; filter frag-
ments with 1 attachment point)

15. molconvert mrv in.mrv -R frags.mrv (fuse fragments from file; note, that the 
input molecule, which the fragments are fused to, should also be specified)

16. molconvert “name:common, all” -s tylenol (generate all common names for a 
structure)

17. molconvert “name:common, all” -s tylenol (generate the most popular common 
name for a structure)

18. molconvert smiles foo.html (generate SMILES from those molecules whose 
names are mentioned in a file foo.html)

1.12.1 A Practice Tutorial

This tutorial deals with interconversion between various file formats using com-
mand prompt in ChemAxon tool molconvert and OpenBabel file conversion pro-
grams (Fig. 1.30).

In ChemAxon: Create a test file (testsmiles1.smi) containing SMILES (using text 
editor or MarvinSketch)

ClCCCCCl cyclohexane
ClCCCCCl benzene
Cl(Cl)C(C)CCCCl 1-chloro-2methylbenzene
Use molconvert to generate 2D coordinates for the SMILES.

Molconvert is a utility for molecule file conversion from ChemAxon Ltd; it pro-
vides several other options which are listed once you type “molconvert” in com-
mand prompt.
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Usage: molconvert [options] outformat[:export-opts] [files…]

SMILES to Molfile Syntax- molconvert −2:e mol foo.smiles -o foo.mol
So to convert our testsmiles1.smi into MOLfile, we need to type in the following 

in the command prompt.
molconvert −2:e mol testsmiles1.smi -o testmol.mol
Input SMILES: ClCCCCCl
Output MOL format:

The other two SMILES are also converted into MOLfile, which is not displayed 
here.

We can also create the 3D MOL file as shown in the following figure. We need 
to type the following to get the desired result.

 Verify the smiles using Marvinview 

Fig. 1.30  Validation of SMILES in MarvinView
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molconvert −3:e mol testsmiles1.smi -o testmol.mol

Create Image from molecules
molconvert “jpeg:w100,Q95,#ffffff” testmol1.mol -o nice.jpg
The above code creates a 100 × 100 Joint Photographic Expert Group (JPEG) 

image on a yellow background, with 95 % quality.
Open Babel is a chemical toolbox designed to speak the many languages of chemi-

cal data. It is an open, collaborative project allowing anyone to search, convert, analyze, 
or store data from molecular modelling, chemistry, solid-state materials, biochemistry, 
or related areas. It has ready-to-use programs and provides a complete programmer’s 
toolkit. It can read, write, and covert over 110 chemical file formats, besides filtering 
and searching molecular files using SMARTS and other methods.

1.12.2  Code for Reading a Molecule, checking the Number of 
Atoms, and Writing a SMILES String

 #include <iostream.h> 
 
      // Include Open Babel classes for OBMol and OBConversion 
      #include <openbabel/mol.h> 
      #include <openbabel/obconversion.h> 
 
      int main(int argc,char **argv) 
      { 
         // Read from STDIN (cin) and Write to STDOUT (cout) 
         OBConversion conv(&cin,&cout); 
 
         // Try to set input format to MDL SD file 
         // and output to SMILES 
         if(conv.SetInAndOutFormats("SDF","SMI")) 
         { 
            OBMol mol; 
            if(conv.Read(&mol)) 
            { 
               //  ...manipulate molecule 
               cerr << " Molecule has: " << mol.NumAtoms() 
                    << " atoms." << endl; 
            } 
 
            // Write SMILES to the standard output 
            conv->Write(&mol); 
         } 
         return 0; // exit with success 
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All of the main classes, including OBMol and OBConversion, include example 
code designed to facilitate using the Open Babel code in real-world chemistry 
(Fig. 1.31).

1.12.3 Code for Reading a SMILES String in Python

import openbabel as ob 
# Initialize the OBConversion object 
conv = ob.OBConversion() 
if not conv.SetInFormat('smi'): 
  print 'could not find smiles format' 
# Read the smiles string 
mol = ob.OBMol() 
if not conv.ReadString(mol, 'CCCC'): 
  print 'could not read the smiles string' 
# ... Use OBMol object ... 
 

After understanding and practicing the practical approaches and techniques de-
scribed in the above sections, the reader should be able to draw molecules on a 
computer and get the SMILES for them. One should also be able to view molecules 
in 3D for a better understanding of the molecules. In the next section, we describe 
some advanced techniques which allow us to draw molecular structures on a com-
puter and store them in reusable formats for various chemoinformatics applications.

1.13 Similarity and Fingerprint Analysis

Molecule A 1000100011100010100001000000100101 a = 11
Molecule B 0001100001000010010001000000100101 b = 9
Similarity (A and B) 0000100001000010000001000000100101 c = 7

It is a well-established fact that common sub-structural fragments often tend to 
share similar biological activity. Molecular similarity deals with finding molecules 
which have a comparable amount of structural similarity [65]. This is used to find 
structures that are similar to a molecule with less information. Molecular similarity 
is very handy in drug designing, because it reduces the amount of animal testing, as 
the recorded data can be extrapolated. In this chapter, we learn the basic concepts of 
molecular fingerprints, similarity measures, and the use of molecular fingerprints 
in similarity search.

Searching a molecule in a database involves matching it against all the molecules 
present in the database. It requires lots of time and highly expensive computational 
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facilities for its completion, making it impractical. In order to search a database or 
to find similar structures, the molecule (graph) is fragmented into various logical 
fragments (subgraphs), such as functional groups, rings, etc. From Fig. 1.32, we can 
create several subgraphs of fragments.

Consider the case of a text search where we combine several keywords to form 
a specific query to meet our requirements, and so is the case here; each fragment is 
like a keyword, which can be combined to perform a specific structure search. When 
we use a particular fragment as our query or as a part of our query, the retrieved 
structure must contain that fragment. The list of retrieved structures will include all 
those structures that contain the fragment in the specified manner in their structure.

1.13.1 Simple Fingerprints (Structural Keys)

Structural key is basically a string of values that describes the chemical composi-
tion and/or structural motifs that are present in the chosen substructure and each 
molecule in the database [66]. A structural key is usually represented as a boolean 
array, an array in which each element is TRUE or FALSE. A given bit is set to 1 
(True), if a particular structural feature is present and a given bit is set to 0 (False), 
if it is not as shown in the following figure. A structural key is a bitmap in which 
each bit represents the presence (TRUE) or absence (FALSE) of a specific structural 
feature (pattern). The I-th bit of this array, for example, can be used to represent any 
structural feature of the molecule. This list can include:

• Any number of occurrences of a particular element or a particular atom type
• Presence of a particular functional group
• Presence of other structural elements, etc.

One important point to emphasize in the use of a structural key is that the definition 
of a particular array element must be chosen initially. This has the disadvantage 
that this key can become extremely long and is inflexible. Conversely, it is possible 
to optimize this structural key for the class of compounds present in the database 
(Fig. 1.33).

-COOH 

-NH2 

-OH

-phenyl 

-path of connected atoms 

- rings 

- atom and its nearest neighbors along with the bonds between them 

Fig. 1.32  Molecule and its 
constituent fragments
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1.13.2 Hashed Fingerprints

Molecular “fingerprints” are composed of bits of molecular information (frag-
ments), such as types of rings, functional groups, and other types of molecular and 
atomic data. Comparing fingerprints will allow one to determine the similarity be-
tween two molecules, search databases, etc., but does not include full structural data 
(i.e., coordinates). A “fingerprint” is made up of a set of descriptors for a molecule. 
Each descriptor describes (usually the presence or absence of) a particular 2D struc-
tural feature in the concerned molecule. Most fingerprints are binary strings made 
up of zeros and ones. Each 0 or 1 can be represented as a single bit in the computer 
(a “bitstring”). The 0s represent the absence of the fragment in the molecule and the 
1s represent the presence of the fragment. Fingerprints are generally 150–2,500 bits 
long. The fingerprint characterizes the molecule, but does not uniquely describe it. 
It is useful in many applications we will come to later, e.g., similarity, clustering, 
diversity.

For example, the fingerprint of methane (CH4) is 
……….00000000000100000000000…….

The patterns for a molecule’s fingerprint are generated from the molecule itself. 
When we create fingerprints for a molecule, the fingerprinting algorithm generates 
the following after scrutinizing the concerned molecule:

• It creates a pattern for each and every molecule
• Each atom and its nearest neighbors, along with the bonds between them, are 

represented using specific patterns
• Each group of atoms and bonds connected by paths up to 2 bonds long are repre-

sented using a pattern
• Patterns are created for representing atoms and bonds connected by paths up to 

3 bonds long
• …continuing, with paths up to 4, 5, 6, and 7 bonds long.

Fig. 1.33  Fingerprint generation from a molecule
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For example, the molecule in Fig. 1.34 would generate the following patterns:
The number of fragments represented can be huge (100,000 for just the 2–7-length 

sequences for C, N, S, O, P, not considering bond types or generalizations). These 
are hashed onto a fixed number of bits (e.g., 1,024). Bits and fragment are not di-
rectly related and unlike structural keys, no predefined dictionary is required.

The amount of information conveyed by fingerprint is directly proportional to 
its information density; information density indicates the ratio of the “on” bits, i.e., 
1s to the total number of bits, i.e., all 1s and 0s. Fingerprints have a fixed size; this 
makes the representation of information of large molecules a difficulty, because 
if the fingerprint length is small, there will be maximum “on” bits, whereas if the 
fingerprints are large, they will contain mostly “off” bits and waste space. To avoid 
these problems, the concept of folding fingerprints/hashed fingerprints [67] was 
proposed, where the long fingerprints are folded to make them compact. The fin-
gerprints are folded when the size of the fingerprint becomes quite large. Then, the 
fingerprint is folded into two equal parts as shown above and then they are com-
bined using a logical OR operator. We can repeatedly fold the fingerprint until the 
desired information density (called the minimum density) is reached or exceeded 
(Fig. 1.35).

Advantages of hashed fingerprints:

• Hashed fingerprints do not need a preexisting dictionary or library—every frag-
ment/group present will be encoded in the fingerprint

• Novel substructures are not missed
• Easily calculated—their calculation does not require a substructure matching 

step

For example, the molecule in the figure would generate the following patterns:

0-bond paths (i.e. atoms): C, N, O 

1-bond paths: C-C, C-N, C=O, C-O 

2-bond paths: C-C-C, C-C-N, C-C=O, C-C-O, O-C=O 

3-bond paths: C-C-C-O, C-C-C=O, N-C-C-O, N-C-C=O 

        Etc. 
Fig. 1.34  All possible fragments in a compound (all sequences of atoms from 2–7 atoms, aug-
mented atoms, atom pairs)

Parent fingerprint  1000 1010 0001 0000 0100 0001 0000 1000 1100 0011 

Folded fingerprints     1000 1010 0001 0000 0100 

0001 0000 1000 1100 0011 

1001 1010 1001 1100 0111 

Fig. 1.35  Depiction of hashed fingerprints
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Disadvantages of hashed fingerprints:

• Mapping every substructure present has the potential to swamp the “useful” sub-
structures

• In reality, mapping of fragments overlaps and so
− Some information may be lost
− Interpretation of the fingerprint is not straightforward

• It is impossible to recover the structure from the fingerprint
− Also, multiple counts of the same path are not accounted for

Fingerprints are also used for reaction processing. Daylight provides two distinct 
types of fingerprints for this purpose, namely “normal” structural fingerprints and 
“difference” fingerprints [69]. Normal structural fingerprints are nothing but the 
combination (OR) of the normal hashed fingerprints of the reactants and the prod-
ucts. All the normal fingerprint operations like folding, similarity, etc. can be ap-
plied to the normal structural fingerprint once it is generated.

The difference fingerprint is specially made for reaction processing. Upon com-
pletion of a stoichiometric reaction, all the reactant atoms appear on the product 
side but the bonds between the atoms change during this process. The changes in 
bonds can be detected by a change in the fingerprint of the reactant molecules and 
the product molecules. Similar to the “normal structural fingerprints,” once the dif-
ferent fingerprints are created, all the fingerprint operations are applicable on it.

1.13.3 A Practice Tutorial

Creating molecular fingerprint using ChemAxon tools

• Using command prompt, enter the bin directory of JChem.
• Type “generfp—h,” this will display the options available as described below.

Usage: generfp [options]<inputfile>outputfile

Options: 
-h               display this help and exit 
-fl <length>     fingerprintlength length in bytes (default: 64) 

……….
-f<format>       format of the output 

-fb              binary 
-f1              ones and zeros (001011011...) (default) 

……….
-stat            generate statistics 

-s <separator>   separator between numbers in case of text output 
Separators:     'n'o separator 

                      'c'omma (default),  't'ab, ‘s'pace
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• To generate the fingerprint of the molecules stored in some file (e.g., fp.smi), 
type the following:

“generfp -f1 -s n<fp.smi>fpout.txt”
These fingerprints can be used to calculate similarity measures using various 

formulas as described in the previous sections (Fig. 1.36).

1.14 Molecular Similarity

At present, a large number of chemical databases are available that provide molecu-
lar structure. These databases are very important in modern chemical research, most 
importantly in drug discovery studies. The aim of using computational tools in drug 
discovery is to find compounds that possess drug-like properties as early as possible 
so that further studies, synthetic and biological, can be carried out. Similarity search 
methods and other computational methods have proved to be very useful in this re-
spect [68]. A query can be formed and the required database can be searched for the 
target structure. It is a proven fact that structurally similar molecules are expected 
to exhibit similar properties or biological activities; other than that, there are several 
other reasons for using similarity methods which include:

• Formulation of a query requires very little information; initially it is immaterial 
which part of the query molecule confers activity.

• Searching large databases can be easily performed because many implementa-
tions of similarity methods are computationally inexpensive.

• These methods help us find a particular molecule rank a set of molecules in the 
database based on our requirements.

Fig. 1.36  Molecular fingerprints generation in JChem
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• These methods also help us to know whether a new structure is unique or not, 
which is useful for patent issues.

• These methods make screening and clustering of a database easier.

Similarity is very subjective, as it depends on what are we looking for and from 
what point of view we are looking. For example, from a mathematical point of view, 
we would denote two molecules as similar if they have common features in three di-
mensions, whereas if we take a chemical approach, we would denote two molecules 
as similar if they had similar physical properties. Similarity-based methods have 
gained popularity due to the rapid technological progress and increased number 
of entries in chemical databases. This has made the application of computational 
search methods a necessity.

Similarity measures are generally based on the presence and/or absence of fea-
tures in two molecules. Similarity can be measured by numerical or distance mea-
sures. The former involves the expression of similarity by a numerical value in the 
range of 0–1, while the latter involves the expression of similarity in numerical 
value not less than 0. These measures are discussed in detail later in the chapter. In 
the next sections of this chapter, you will come to know about the various similari-
ty-searching techniques and similarity matrices.

1.14.1 Exact Structure Search

Exact structure search involves the searching of exactly the same structure in a 
database [69]. The retrieved structure is exactly similar to the query molecule. In 
a database with unique structures, exact structure returns either one (exactly same 
molecule) or it does not return any hits indicating the absence of such structures in 
the database. Figure 1.37 shows an exact structure search using ChemAxon applica-
tion JChem [70].

Query structure      Retrieved Hits 

Fig. 1.37  An exact structure search in JChem
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1.14.2 Substructure Search

Substructure searching is a method of retrieving chemical structure from a database 
based on the input query [71]. This approach retrieves all the structures from the da-
tabase that contains the query structure as a part of their structure. The substructure 
is normally a functional group or core structure representing a class of molecules. 
This approach is very helpful when we want target structures that contain fragments 
or a functional group of interest. Indexing of chemical fragments decreases the 
search time drastically. Substructure indexing is a precomputing process in which 
the stored contents are indexed according to some specific criteria so that the an-
swer for the expected question in a shorter duration of time can be obtained. For 
example, a famous search engine loads the screen with the search results within a 
minute for the given search term “formaldehyde.” This is so because the documents 
are already indexed by the provider (Fig. 1.38).

But, the same engine may give the search results for the same query within 1 or 
2 years in the absence of indexing. In chemoinformatics, we use the index of sub-
structures instead of indexing words; they decompose the molecule into smaller bits 
and index them appropriately as shown in the figure alongside. Substructure search 
can also be performed in 3D. 3D substructure search allows the user to find atoms 
in correct spatial orientation relative to each other.

Fig. 1.38  Substructures of a big molecule
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Daylight provides SMARTS for formulating queries to retrieve substructures 
from a database. For example, the query “[C, c] = ,#[C, c]” will retrieve all the struc-
tures from the database that have two carbons (aromatic/non-aromatic) connected 
by a double or triple bond. SMARTS have been discussed in detail in Chap.2. We 
can formulate complex patterns using either SMARTS or recursive SMARTS to 
retrieve complex substructures. For example, we can formulate the following query 
to find out structures containing “Atoms that are within molecules which contain a 
Carbonyl group ( either resonance structure)” as a part of their structure.

[$([CX3]=[OX1]),$([CX3+]–[OX1–])]

Some of the hits returned by this query are shown below:
clccccclC(=O)OC2CC(N3C)CCC3C2C(=O)OC
CCN(CC)C(=O)ClCN(C)C2CC3=CNc(ccc4)c3c4C2=Cl
CC[C+]([O-])C
CCCCC[C+]([O-])CCCC
CCCCCC(=O)CCCC
We can also draw the substructure and find the relevant structures from a data-

base as shown in Fig. 1.39. Here, the query structure is shown to be a part of the 
complete structure of the retrieved molecules.

Substructure searching has some inherent shortcomings that limit its applicabil-
ity. For substructure search, we need to formulate complex queries as shown above 
and the results obtained include all the molecules that have the query structure as 
a part of their complete structure. Sometimes, huge numbers of hits are obtained 
which reduce the efficiency of the search, whereas a highly specific query does the 
opposite, that is, it retrieves very less number of hits, again decreasing the efficien-
cy. Basically, the substructure search divides the database into two parts: one that 
contains the substructure query and the other that does not contain it. For example, 
if you want to search molecules that have similar properties to your query structure 
based on the presence of functional groups, you will retrieve a list of molecules 
that contain the specified functional groups, but there is no way to find out which 
molecule among the retrieved list is likely to have the closest resemblance with the 
query. In other terms, there is no mechanism to rank the retrieved hits in terms of 
similarity (Fig. 1.40).

Another problem associated with substructure search is that it will not enlist the 
structures (structure 2) with minor differences (presence of a single bond in place 
of a double bond) even if they are highly similar to the query structure and are ex-
pected to have properties similar to the query structure.

1.14.3 Similarity Search

Similarity search was developed as an effort to remove the limitations of substruc-
ture search [72]. A similarity search compares a set of characteristics describing the 
target structure with the corresponding structure with the set of characteristics of 
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the structures available in the database. Query of a similarity search is usually the 
full structure that the user wants to retrieve. However, the retrieved structures may 
be a substructure of another larger molecule. The measure of similarity between 
the target and the database structures is calculated based on the degree of resem-
blance of the two sets of characteristics. Measures based on 2D topology compare 

Query Structure      Retrieved Hits 

Disadvantages of Substructure search 

Fig. 1.39  Substructure searching using JChem

Fig. 1.40  Figure depicting 
the limitation of substructure 
searching

    

    



50 1 Open-Source Tools, Techniques, and Data in Chemoinformatics

the 2D topology considering only the atoms and bonds of the molecule without 
considering the shape of the molecule, whereas, the measures based on the 3D con-
figuration compare the electronic surfaces of two molecules based on the polarity 
of the surface. A good similarity search produces results which sometimes cannot 
be provided by the substructure search process as shown in the previous section. A 
similarity search will return both the structures shown in the figure as hits unlike the 
substructure search which does not consider the second structure as a match.

The similarity calculated is used to display the hits in decreasing order; the struc-
ture that is most similar to the target structure is displayed first. The figure shown 
below explains the similarity searching. We can see that the first structure has zero 
dissimilarity (as indicated by DISS: 0.0) implying that is it 100 % similar to the 
query structure. The next structures become increasingly dissimilar to the query 
structure (as indicated by the increase in DISS value).

Query Structure     Retrieved hits  

1.14.4 Subsimilarity Search

Similarity search solves most of the problems associated with substructure search, 
but it does have certain drawbacks that limit its usage. Similarity search is use-
ful when we want to retrieve complete structures similar to the query structure, 
but it becomes less effective when we need to retrieve structures that contain a 
substructure which is similar to a target structure or target substructure as shown 
in the previous section. By contrast, substructure search helps us get a list of mol-
ecules that have the query structure as a part of its structure, but it does not rank 
the molecules, so there is no way to know which molecule is most similar to the 
query structure. As discussed in the previous section, substructure search does not 
enlist molecules with minor differences but highly similar. To attend to these kinds 
of search problems, a new searching approach was devised, termed as, subsimilar-
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ity searching. Subsimilarity searching or substructure similarity searching is a kind 
of local similarity search. It basically combines substructure search and similar 
structure search into a single search discipline. It involves a detailed similarity cal-
culation and takes into consideration the parts of the molecules that are being com-
pared. The similarity measure utilized is based on the number of bonds or atoms 
in the maximal common substructure (MCS) between the target structure and each 
database structure [67]. The largest substructure present in both the structures is the 
MCS for that particular pair of structures. Similar compounds are likely to share 
large MCS. Subsimilarity search uses a simple fragment-based similarity search 
to calculate the maximum size of the MCS and then uses it to rank the database 
structures. Using the same query structure as used in the similarity search, the hits 
retrieved using subsimilarity search are shown below. The query structure is pres-
ent as a substructure in most of the hits and the hits are ranked in descending order 
based on DISS values.

Query Structure     Retrieved Hits 

1.15 Search for Relationship

This involves the retrieval of physico-chemical and pharmacological properties with 
respect to a specific structure such as melting point, boiling point, log P, pka, QSAR, 
QSPR etc. The logP (o/w) of the following structure is retrieved as (Fig. 1.41):

      logP(o/w) = 2.62 Fig. 1.41  The log p value 
for a molecule possessing 
phenanthrene-3-one ring 
system
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1.16 Similarity Measures

Similarity or dissimilarity can be measured either in terms of numerical value or 
in terms of distance measures [73]. In other terms, we can measure similarity as 
similarity coefficient or distance coefficient. If we can measure similarity or dis-
similarity, then it will help us to

• Group structures
• Characteristics of each group can be easily analyzed once they are grouped
• Efficiently organize and retrieve information
• Classify new structures into a specific group
• Property of the new structure can be predicted based on the group it belongs to

Numerical similarity methods calculate the numerical similarity between the query 
molecule and the molecules in the database and return a list. The molecules are ar-
ranged in descending order of similarity based on the numerical value. The majority 
of numerical similarity coefficients display the value within the range of 0–1. Some 
display similarity whereas some display dissimilarity, in either case, the other as-
pect (dissimilarity or similarity) can be easily calculated as they are complementary 
to each other. For example, if a particular similarity coefficient reports the similarity 
value as 0.65, we can calculate the dissimilarity value from it by subtracting it from 
1, i.e., the dissimilarity value is 0.35. This kind of calculation requires the structures 
to have common structural features based on which the similarity is calculated. 
There are a large number of similarity and distance coefficients available. Some 
of them are basically the same but written in different formats and derived using 
different approaches, whereas others are complementary to each other, hence the 
value calculated by one can be predicted by the other. For example, the Tanimoto 
coefficient is the complement of the Soergel distance coefficient. The similarity is 
generally measured using structural fingerprints. The basis of this kind of calcula-
tion involves counting the number of bits that are “ON” in both the structures and 
then calculating the similarity using a distance metrics or similarity coefficient. 
Similarity coefficients are often referred to as association coefficients. Monotonic 
coefficients are those coefficients that rank the objects identically based on their 
similarity to a specified target. Distance coefficients correspond to the distances 
in multidimensional space, but they are not necessarily the same. A distance coef-
ficient is described as a metric, if it satisfies the following four criteria:

1.  Distance values must be zero or positive, and the distance from an object to itself 
must be zero

DistanceA, B ≥ 0 or DistanceA, A = DistanceB, B = 0

2. Distance values must be symmetric

DistanceA,B = DistanceB, A
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3. Distance values must obey the triangular inequality

DistanceA, B ≤ DistanceA,C + DistanceC, B

4. The distance between nonidentical objects must be greater than zero.

A ≠ B ↔ DistanceA, B > 0

The following table enlists the symbols used in the similarity coefficient and dis-
tance matrices in the following sections.

i, j attributes
A, B objects (or molecules)
n total number of attributes of an object (e.g., bits in a fingerprint)
XA attribute vector describing object A
xjA value of jth attribute in object A
a number of bits “on” in molecule A
b number of bits “on” in molecule B
c number of bits “on” in both molecules A and B
d number of bits “off” in both molecules A and B
χA set of “on” bits in binary vector XA
SA, B similarity between objects A and B
DA, B distance between objects A and B

As mentioned earlier, there are a number of similarity coefficients and distance ma-
trices. Most of the coefficients can be calculated by two different formulas; one is 
used for continuous variables, whereas the other one is used for binary variables or 
dichotomous variables. Similarity can be better defined when continuous variables 
are used as descriptors rather that the “ON” “OFF” bits of fingerprints. The descrip-
tors, on the other hand, are basically molecular properties, which have a wide range 
of values. So, they are normalized in the range of zero to one.

The Tanimoto coefficient or Jaccard similarity coefficient is a statistic used for 
comparing the similarity and dissimilarity of structures [74]. It is one of the most 
commonly used similarity coefficient used in chemoinformatics, because it allows 
rapid calculation due to its simple nature and absence of complex mathematical op-
erators. In general, the complement of the Tanimoto coefficient does not follow the 
triangular inequality. The Tanimoto coefficient is calculated as follows:

For dichotomous variables:

SA, B = c/[a + b – c]

Range = 0 to +1
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For continuous variables:

SA,B =




j=n∑

j=1

xjAxjB]/[
j=n∑

j=1

(xjA)2 +
j=n∑

j=1

(xjB)2 −
j=n∑

j=1

xjAxjB





As can be seen from the formula given above, Tanimoto coefficient takes into ac-
count only those bits that are “ON.” Note that the OFF bits do not determine the 
similarity. In other words, if some molecular features are absent in both molecules, 
then that is not taken as an indication of similarity between the two. If two mol-
ecules have Tanimoto coefficient equal to 1, it indicates that the molecules have 
identical fingerprint patterns, it however does not indicate the presence of identical 
molecules, because identical fingerprints do not always designate identical mol-
ecules. On the contrary, if the value is zero for dichotomous variables, it indicates 
complete dissimilarity. The following example will make it clearer:

Molecule A 1 000100011100010100001000000100101   a  11
Molecule B  0001100001000010010001000000100101   b  9
A and B       0000100001000010000001000000100101   c  7

=
=
=

[ ],  So tanimoto coefficient,    /          

                                         .

= + −

=
A BS 7 11 9 7
0 53

Hence, we can say that the structures A and B are 53 % similar. It should be noted 
that the complement of the Tanimoto coefficient is identical to the Soergel distance.

There are other coefficients like the Dice coefficient, Cosine coefficient, simple 
matching coefficient, and Tversky similarity coefficient.

Distance is complementary to similarity. A few lines have been discussed on 
distance coefficients in the previous sections. The complementary relationship be-
tween the similarity and distance coefficients allows the calculation of one from the 
value provided for the other by subtracting it form one, that is,

Distance 1 Similarity= − .

However, care should be taken that this expression is true for only those similarity 
coefficients that have their value within the range of zero–one. For example,

Soergel Distance 1 Tanimoto Coefficient= −

Distance coefficients are also called as distance matrices when they obey the crite-
ria discussed previously. Hamming distance and Soergel Distance are examples of 
metric distance coefficients.

Range  333 to 1= − +0.
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Euclidean distance The Euclidean distance or Euclidean metric is the “ordinary” 
distance between two points that one would measure with a ruler and is given by the 
Pythagorean formula. It can be calculated using the following formula:

[ ]1/2
A,BFor dichotomous variables:  D  a  b –  2c        

 Range  n to 0.

= +

=

1/2
2

,
1

For continuous variables: ( )

Range   to 0.

j n

A B jA jB
j

D x x
=

=

 
= − 

  
= ∞

∑

It follows all the four metric properties and is monotonic with Hamming distance. 
For dichotomous variables, (Euclidean distance)2 = Hamming Distance.

1.17 Molecular Diversity

We have seen in the previous sections that molecular similarity plays a major role in 
clustering sets of molecules together based on their degree of similarity. The same 
measures that are used to find the similarity can also be used to find the molecular 
dissimilarity. As already discussed, many similarity coefficients provide the dissim-
ilarity value when their complement is considered. Molecular dissimilarity provides 
an important means to study molecular diversity [75]. Consider a case where we 
study only similar molecules; in that case, the chemistry space will be very limited. 
By contrast, if we used molecular diversity to study dissimilar molecules, then we 
can span the entire chemistry space rather than limiting us to a cluster of molecules. 
Molecular diversity comes in very handy when dealing with a selection of new 
compounds. It also proves to be a great tool for designing combinatorial libraries. 
Compound selection using molecular diversity involves the selection or identifica-
tion of structurally dissimilar compounds or sets of compounds that can be tested 
for their bioactivity. Using a diverse set of compounds generates a greater amount of 
information related to the structure–activity relationship. Molecular diversity also 
helps find out the molecules of interest from a database on which a similarity search 
has been performed. These molecules are essentially dissimilar to the query struc-
ture, but, as mentioned earlier, are very useful in drug designing. A diverse subset 
can be generated from a library of molecules using MOE program. After importing 
the dataset in database viewer of MOE, one can proceed to compute the  diverse 
subset. There are three methods available by which diversity between two database 
entries can be assessed viz. descriptors, fingerprint data or conformation data.
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1.18 Advanced Structure-handling Tools

Due to the sophistication in techniques of combinatorial chemistry, availability of 
high-throughput screening data, and computational power, there is a need to de-
velop advanced structure-handling methods for fast processing of data [76]. Some 
of the efforts in this direction are highlighted below.

1.18.1 CCML

One of the major breakthroughs due to the progress of the WWW system was the 
evolution of content-based markup language based on XML syntax, the CML de-
veloped by Peter Murray-Rust. Currently, CML has become a valuable tool with 
the functionalities to describe atomic, molecular, and crystallographic information. 
CML captures the structural information through a concise set of tags with the as-
sociated semantics. CCML is a methodology for encoding chemical structures as 
compressed CML generated by popular chemical structure-generating programs 
like JME [77]. The CCML format consists of both SMILES and/or equivalent data 
along with coordinate information about the atom for generating chemical struc-
tures in plain text format. Each structure generated by JME in standalone or gen-
erated by virtual means can be stored in this format for efficient retrieval, as it 
requires about one-tenth or below of actual CML file format, since the SMILES 
describes the interconnectivity of the molecule. The CCML format is compatible 
for automated inventory application and is a commonly used technique in security 
and inventory management [78].

1.19 ChemXtreme

ChemXtreme is a java-based computer program to harvest chemical information 
from Internet web pages using Google search engine and applying distributed com-
puting environment [79]. ChemXtreme employs the “search the search engine” 
strategy, where the uniform resource locators (URLs) returned from the search en-
gines are analyzed further via textual pattern analysis. This process resembles the 
manual analysis of the hit list, where relevant data are captured and, by means of 
human intervention, are mined into a format suitable for further analysis. ChemX-
treme, transforms chemical information automatically into a structured format suit-
able for storage in databases and further analysis and also provides links to the 
original information source. The query data retrieved from the search engine by the 
server are encoded, encrypted, and compressed and then sent to all the participat-
ing, active clients in the network for parsing. Relevant information identified by the 
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clients on the retrieved websites is sent back to the server, verified, and added to the 
database for data mining and further analysis. The chemical names including global 
identifiers like InChI or corporate identifiers like CAS registry numbers, Beilstein 
registry number, etc. could be mapped to corresponding structural information in 
relational database systems.

1.19.1 Barcoding SMILES

Chemical structures can be encoded and read as 2D barcodes (PDF417 format) in 
a fully automated fashion [80]. A typical linear barcode consists of a set of black 
bars of varying width separated by white spaces, encoding alphanumeric characters. 
To reduce the amount of data that has to be encoded on the barcode, a template-
based chemical structure-encoding method was developed, the Automatic Chemical 
Structure (ACS) file format. This method is based on the Computer Generated Au-
tomatic Chemical Structure Database (CG-ACS-DB) originally developed to create 
a virtual library of molecules through enumeration from a selected set of scaffolds 
and functional groups. Scaffolds and groups are stored in ACS format as a plain 
text file. In this ACS format, the most commonly used chemical substructures are 
represented as templates (scaffolds or functional groups) through reduced graph 
algorithm along with their interconnectivity rather than atom-by-atom connectivity 
information. The barcoded chemical structures can be used for error-free chemical 
inventory management. One of the molecules containing over thousands of atoms 
can be easily represented as barcoded and can be decoded automatically and accu-
rately in seconds without manual intervention (Fig. 1.42).

1.19.2 Chem Robot

An open source-based computer program called Chem Robot is developed which can 
use digital video devices to capture and analyze rapidly hand-drawn or computer-

Fig. 1.42  A barcode representation of a molecule
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generated molecular structures from plain papers [81]. The computer program is 
capable of extracting molecular images from live streaming digital video signals 
and prerecorded chemistry-oriented educational videos. The images captured from 
these sources are further transformed into vector graphics for edge detection, node 
detection, Optical Character Recognition (OCR) and interpreted as bonds, atoms in 
the molecular context. The molecular information generated is further transformed 
into reusable data formats (MOL, SMILES, InCHI, SDF) for modelling and simula-
tion studies. The connection table and atomic coordinates (2D) generated through 
this automatic process can be further used for generation of IUPAC names of the 
molecules and also for searching the chemical data from public and commercial 
chemical databases. Applying this software, the digital webcams and camcorders 
can be used for recognition of molecular structure from hand-drawn or computer-
generated chemical images. The method and algorithms can be further used to har-
vest chemical structures from other digital documents or images, such as PDF and 
JPEG formats. Effective implementation of this program can be further used for 
automatic translation of chemical images into common names or IUPAC names for 
chemical education and research. The performance and efficiency of this workflow 
can be extended to mobile devices (smart phones) with Wi-Fi and camera.

1.19.3 Image to Structure Tools

Yet another upcoming technology based on Optical Character Recognition (OCR) 
can recognize molecular structures from scanned images of printed text that can 
recognize structures, reactions, and text from scanned images of printed chemistry 
literature. This can save users valuable time of redrawing structures from printed 
material, as it directly transforms the “images” into “real structures” that can then 
be saved into chemical databases. Programs such as CLiDE [82], OSRA [83], and 
ChemOCR [84] are the known relevant softwares that recognize structures, reac-
tions, and text from scanned images of printed chemistry literature. OSRA is a util-
ity designed to convert graphical representations of chemical structures, as they 
appear in journal articles, patent documents, textbooks, trade magazines, etc. into 
SMILES (see http://en.wikipedia.org/wiki/SMILES) or SD files—a computer rec-
ognizable molecular structure format. OSRA can read a document in any of the 
over 90 graphical formats parseable by ImageMagick—including GIF, JPEG, PNG, 
TIFF, PDF, PS, etc. and can generate the SMILES or SDF representation of the 
molecular structure images encountered within that document (http://cactus.nci.nih.
gov/cgi-bin/osra/index.cgi).

A Practice tutorial 

• Select the file one wants to process or enter a URL (http://…) pointing to an 
image and click the “Submit” button. Any of the over 90 image formats recog-
nized by ImageMagick including GIF, JPEG, PNG, PDF, PS, and TIFF can be 
processed.
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• Correct recognized structures using the JME Molecular Editor.
• Preview the 3D structure if necessary. Note—the generated 3D image is for dem-

onstration purposes only, e.g., to help disambiguate bridge bonds, etc. OSRA 
only generates the connection table, not the 3D coordinates.

• Click on the “Get SMILES” button to obtain the SMILES of the structure. One 
can then use the provided live links to convert SMILES to other chemical for-
mats or to locate the structure in Chemical Structure Lookup Service. “Get SD 
File” button will be active only after checking all the structures recognized in the 
document. Download the SD file containing all the recognized structures.

1.19.4 CLide

CLiDE is a chemistry intelligent equivalent of OCR software. Just as an OCR can 
recognize characters from scanned images of printed text, CLiDE can recognize 
structures, reactions, and text from scanned images of printed chemistry literature. 
The software saves users hours of redrawing structures from printed material, as it 
transforms the “images” into “real structures” that can then be input into databases. 
It is available at http://www.simbiosys.com/clide/.

1.19.5 Advanced Structure Computation Platforms

HPC/Cloud computing tools, which can handle millions of structure, are discussed 
in detail in the last chapter. An HPC script generator has been developed that can 
perform 100,000 per hour large-scale docking in an automated fashion. JAVA RMI-
based open-source methods have been employed to compute structural properties 
on a large scale [85].

1.20 Virtual Library Enumeration

In order to design a better lead molecule, one has to perform a sequence of several 
steps starting from collecting molecular data with known bioactivity, analysis of 
those chemical structures to extract significant features related to activity of inter-
est, and rebuild new molecules with promising and favorable bioactivity profiles. 
Virtual library of diverse molecules which are not yet synthesized can be enumerat-
ed from a set of scaffolds and functional groups by combinatorial means [86] Here, 
the scaffold represents a molecule containing at least one ring or several rings which 
are connected by linker atoms. Scaffolds can be generated from complex molecular 
structures by a systematic disconnection of functional groups connected by single 
bonds. The scaffolds and functional groups generated could be further enumerated 
to build virtual library of diverse organic molecules. An alternate approach namely 
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“lead hopping” is also available to replace common scaffold by chemically and 
spatially equivalent core fragments.

1.21 Clustering

Clustering is a process of finding the common features from a diverse class of com-
pounds that requires multivariate analysis methods [87]. It is a type of important 
unsupervised learning approach used in machine learning. One of the most suitable 
methods for this study is clustering where the consensus score and distance be-
tween set of compounds can be easily measured through mean/Euclidean distance 
measures. This score reflects the similarity or dissimilarity between classes of com-
pounds and helps identify potential active or toxic substances through predictive 
studies. Cluster 3.0 is an open-source program that was developed to analyze gene 
expression data that employs routines for hierarchical (pairwise simple, complete, 
average, and centroid linkage) clustering, k-means and k-medians clustering, and 
2D self-organizing maps [88]. The routines are available in the form of a C cluster-
ing library, an extension module to Python, a module to Perl, as well as an enhanced 
version of Cluster, which was originally developed by Michael Eisen of Berkeley 
Lab. The Jarvis Patrick algorithm is useful for clustering chemical structures on 
the basis of 2D fragment descriptors. The Lipinski rule of five is one such example 
where the similar characteristics of drug molecules can be derived by clustering a 
large number of drugs and lead molecules. Javatreeview is an open-source, cross-
platform rewrite that handles very large datasets well and supports extensions to the 
file format that allow the results of additional analysis to be visualized and compared 
[89]. An applet version is also available that can be used on any website with no 
special server-side setup. ChemAxon provides clustering tools to analyze hundreds 
and thousands of molecules (Library MCS) via maximum common substructures 
[90]. JKlustor provides many methods for clustering molecules. Molecule datasets 
can be clustered on the basis of similarity, descriptors, structure, diversity, scaffolds, 
etc. Using the command line option Compr[<options>], we can compare large da-
tabases with millions of entries to obtain their diversity and similarity statistics in 
batch mode (Fig. 1.43).

1.22 Databases

Database is a collection of information, usually, kept in a list or table(s) on a par-
ticular subject. It helps organize the data for easy retrieval through simple querying. 
Using a database storage, one can reduce the number of files in a computer by stor-
ing the information in database tables. Databases usually contain many tables. All 
the tables can be linked by a common identifier such as a primary key within the 
database or through foreign key association [91].
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Some of the most familiar terms used in databases are:

Entity: object, concept, or event (subject)
Attribute: a characteristic of an entity
Row or Record: the specific characteristics of one entity
Table: a collection of records
Database: a collection of tables

Parts of a database:
database contains fields, records, queries, and reports.

1. Fields: In the design of database table, information is stored under a particular 
field (for example, column names in a table). Field names should be unique in the 

Fig. 1.43  Clustering of 
molecules related to malaria 
(five clusters are visible) in 
JAVAtreeview
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database table. It is easy to retrieve a particular record by accessing information 
using field names in a database. Fields are database storage units, also called 
generic elements of content.

2. Records: The specific characteristics of one entity. Records are also called data 
entries.

3. Queries: Queries are the information retrieval requests you make to the database. 
Your queries are all about the information one is trying to gather from the stored 
information in a database. For example, retrieving all the details of a molecule 
from a corporate database using its name is also a querying procedure.

4. Reports: The retrieved results returned following a database query is called 
reports. Reports can be tailored to the needs of the data user, making the infor-
mation they extract much more useful.
a. Linking data in a database using keys

 –  Primary key: A primary key is a value that can be used to identify a unique 
row in a table.

 –  Foreign key: The primary key from another table, this is the only way joint 
relationships can be established. There may also be alternate or secondary 
keys within a table.

b. Relational database

In relational database, the information is stored in tables that are associated with 
shared attributes (keys). Any data element (or entity) can be found in the database 
through the name of the table, the attribute name, and the value of the primary key. 
Using database, one can create, read, update, or delete the database. The database 
operations occur at all levels: tables, records, and columns.

1.22.1 Database Server 

MySQL is a freely available Relational Database Management system [92]. The 
MySQL Database Server is cost effective, very fast, reliable, and easy to use. Its 
connectivity, speed, and security make MySQL Server highly suited for accessing 
databases on the Internet. The MySQL Database Software is a client/server system 
that consists of a multi-threaded SQL server that supports different backends, sev-
eral different client programs and libraries, administrative tools, and a wide range 
of application programming interfaces (APIs). A password system for MySQL is 
very flexible and secure and allows host-based verification. The WWW Links are 
MySQL, Oracle, Postgre SQL.
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1.22.2 Code for Connecting to a MySQL Database

public String[] ReadSDF(String fname) { 
        System.out.println(fname); 
        int cnt = 0; 
        String t = ""; 
        int mcnt = 1; 
        double[][] dmatx = new double[mcnt][36]; 
        try { 
            BufferedReader br = new BufferedReader(new FileReader(new
File(fname))); 
            String s1 = ""; 
            int lcnt = 0; 
            int acnt = 0; 
            int bcnt = 0; 
            int[] v1 = new int[2]; 
            double[][] lcoord = new double[1000][3]; 
            double[][] bcon = new double[1000][3]; 
            int ac = 0; 
            int bc = 0; 
            while ((s1 = br.readLine()) != null && cnt < mcnt) { 
                lcnt++; 
                t += s1 + "\n"; 
                try { 
                    if (lcnt == 4) { 
                        String[] t1 = stringToArray(s1); 
 
                        acnt = Integer.valueOf(t1[0].trim()); 
                        bcnt = Integer.valueOf(t1[1].trim()); 
                    } 
                    v1[0] = 4 + acnt; 
                    if (lcnt > 4 && lcnt < v1[0]) { 
                        String[] t2 = stringToArray(s1); 
                        lcoord[ac][0] = Double.valueOf(t2[0]); 
                        lcoord[ac][1] = Double.valueOf(t2[1]); 
                        lcoord[ac][2] = Double.valueOf(t2[2]); 

ac++;
                    } 
                    v1[1] = v1[0] + bcnt; 
                    if (lcnt > v1[0] && lcnt < v1[1]) { 
                        String[] t3 = stringToArray(s1); 
                        bcon[bc][0] = Double.valueOf(t3[0]); 
                        bcon[bc][1] = Double.valueOf(t3[1]); 
                        bcon[bc][2] = Double.valueOf(t3[1]); 
                        bc++; 
                    } 
                    if (s1.contains("$$$$")) { 
                        double[] maxv = getMaxValue3(lcoord); 
                        double[] minv = getMinValue3(lcoord); 
                        double[][] gbx = BuildGridBox(minv, maxv); 
                        dmatx[cnt] = getDistance(gbx); 
                        cnt++; 
                        t = ""; 
                        lcnt = 0; 
                        ac = 0; 
                        bc = 0; 
                    } 
                } catch (Exception e) { 
                    t = ""; 
                    lcnt = 0; 
                    ac = 0; 
                    bc = 0; 
                } 
            } 
            br.close(); 
        } catch (Exception e) { 
            System.out.println(e); 
        } 
 
        for (int i = 0; i < dmatx.length; i++) { 
            for (int j = 0; j < dmatx[0].length; j++) { 
                System.out.print(df.format(dmatx[i][j]) + " "); 
            } 
            System.out.println(); 
        } 
 
        String[] out = t.split("$$$$"); 
        return out; 
    } 
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1.22.3 A Practice Tutorial

1. Install MySQL locally in the computer (skip this step if already installed).
2. Create user with privileges (Admin/ User/ Guest).
3. Check the status of MySQL (if not active start the MySQL server).
4. Learn to use SQLYog as GUI for MySQL server.
5. One can explore existing databases, tables, data after authentication.
6. Simple GUI of SQLYog.
7. Next, click the databases to expand.
8. Sample query to Create Table in MySQL (Figs. 1.44, 1.45, 1.46, and 1.47).

To view the contents of table: click Tables >>Right mouse button>>select View 
Data

Fig. 1.44  Connecting to the MySQL server

Fig. 1.45  SQLYog interface
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Fig. 1.46  Opening a 
database

Fig. 1.47  Steps for creating and viewing a database table
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Query syntax to select few rows from a table: select * from ‘ncl’.‘nmrshiftdb’ 
limit 0, 500;

Select * from ‘ncl’.‘nmrshiftdb’ where cd_molweight >100 and cd_molweight 
<500 and length(cd_name) >5 order by cd_molweight asc

How to insert a data into a table?
Insert into ‘chembl’.‘compound_synonyms’ (molregno, synonyms)values (‘97’, 

‘CP-12299’);

Compound_ID SMILES Name Molecular formula
1 ClCCCCCl Cyclohexane C6H12
2 Cl=CC=CC=Cl Benzene C6H6

Example of a SQL Query to retrieve all the information from a database table where 
the word “cyclohexane” appeared in the Name field.

Syntax: 
Select * from ChemDB.Molecules where Name like “%cyclohexane%”;
Output of Query:
Compound_ID SMILES Name Molecular Formula

1. ClCCCCCl Cyclohexane C6H12

In the subsequent sections, we will learn how to connect to databases using java or 
web-based programming methods. For example, it is easy to list all the PDB ID, 
authors, title, and resolution of crystal structures from PDB database entries.
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Please follow the instructions from http://moltable.ncl.res.in/ to install MySQL and 
connect to database, define, and build user query (create table, insert/delete/update 
data, query tables, etc.) for chemoinformatics data.

1.22.4 Creating and Hosting Database

In this section, we will learn to create a database and host it over the Internet. We 
create huge amounts of data, but if they are not stored properly, they might be lost. 
We have learnt some of the basic computing skills in the previous section here, we 
will use them and some other tools to create databases. In this section, we will learn 
to create a database using SQL commands and SQLyog (a MySQl GUI).

Steps for creating database and tables using SQL are as follows:

Step 1: Determine the entities involved and create a separate table for each type of 
entity (thing, concept, event, and theme) and name it.
Step 2: Determine the Primary Key for each table.
Step 3: Determine the properties for each entity (the non-key attributes).
Step 4: Determine the relationships among the entities.

1.22.5 A Practice Tutorial

Creating database using SQL command prompt
In this tutorial, we will use MySQL database; some example syntax for creating 

tables in a database are given below (Table 1.2 and 1.3):

Syntax CREATE TABLE TableName(columnname1 datatype (size),……, column-
name4 datatype (size));

Rows (Rec1, Rec2, etc.)
Columns or Field Names (Field1–4)
An example of an SQL Query to retrieve all the information from a database 

table where the word “cyclohexane” appeared in the Name field.

Table 1.2  Example format
Field1 Field2 Field3 Field4
Rec1 Entry1 Entry2 Entry3
Rec2 Entry4 Entry5 Entry6

Table 1.3  Example of ChemDB molecules
Compound_ID SMILES Name Molecular formula
1 ClCCCCCl Cyclohexane C6H12
2 Cl=CC=CC=Cl Benzene C6H6

http://moltable.ncl.res.in/
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Syntax: Select * from ChemDB.Molecules where Name like “%cyclohexane%”;
Output of Query:

Compound_ID SMILES Name Molecular formula
1 ClCCCCCl Cyclohexane C6H12

Example for Alter Table ChemDB.Molecules for change field name “Name” to 
“CompoundName.”

Syntax: ALTER TABLE ‘ChemDB.Molecules’ CHANGE ‘Name’ ‘Compound-
Name’ varchar(255) NOT NULL

Output of Query: 

Compound_ID SMILES Compound name Molecular formula
1 ClCCCCCl Cyclohexane C6H12
2 Cl=CC=CC=Cl Benzene C6H6

Creating a database using MySQL, SQLyog, JChemManager

1. Download MySQL from the link provided below
 URL: http://dev.mysql.com/downloads/mysql/5.0.html#downloads

If you are using Windows, select the following link (or equivalent depending on the 
updates or your operating system) (Fig. 1.48)

2. Save the file and install it by following the instructions.
3. SQLyog:

Creating and managing databases using the SQL queries can be cumbersome some-
times; to avoid that and manage databases easily, one can use SQLyog. SQLyog is a 
MySQl GUI that helps us create and manipulate tables and databases using a user-
friendly easy-to-use interface. The Community Edition is Free and Open Source 
under GPL license. It can be downloaded free of cost from the following link:

URL: http://code.google.com/p/sqlyog/downloads/list
Once downloaded, it can be installed easily following the instructions.

Fig. 1.48  Windows option for downloading the MySQL program
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In the following sections, you will see the usefulness of this GUI tool.

• Creating the database “Chemical” in MySQL using SQLyog interface
− To create a database as shown in Fig. 1.49, right-click on the
−  root@localhost  create database  type the name of the database and click 

create.
− Creating table “chemicals” in the database “Chemical”

• Right-click on the tables icon within the newly created database
• Click on the create-table option.
• Fill in the required fields and other parameters and click on create table, then 

enter the table name and click OK (Fig. 1.50)
− Importing or adding data to the created table:

Using SQLyog, we can easily add data to the table one has created. One can also 
import data from any .csv file by clicking some buttons as shown in the following 
figures.

• Select the table and right-click
• Select import option as shown in Fig. 1.51.
• Browse and select the required file and import it.

a. To create a database as shown in the following figure right-click on the  

b.

c. root@localhost →create database → type 

the name of the database and click create. 

Fig. 1.49  Creating a new database

Fig. 1.50  Creating a new table
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4. Importing data using JChemManager

JChem is a product from ChemAxon and is free for academic purposes.

• Obtain files having structures of molecules. These can be files with extension 
*.pdb, *.mol, *.sdf, etc.

• Run JChem Manager from the JChem directory.

Following window pops up (Fig. 1.52):

• Enter the details as shown in Fig 1.52. Here, chemical is the database created in 
MySQL Server 5.0 using SQLyog.

• In JChem Manager, go to File→Create Table.
• Enter the name for your Table (QSAR). Leave rest of the columns as they are.

A table with the following attributes will be created:

CREATE TABLE qsar( 
 cd_id INTEGER AUTO_INCREMENT  NOT NULL PRIMARY KEY, 
 cd_structure MEDIUMBLOB NOT NULL, 
 cd_smiles TEXT, 

. . . . .
 cd_timestamp DATETIME NOT NULL, 
 cd_fp1 INTEGER NOT NULL, 

. . . . . 

. . . . .
 cd_fp16 INTEGER NOT NULL 
)

• Then click on the Import button. Select the database table you want to put the 
structures in and select the file containing structures.

Fig. 1.51  Data import
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A table named “qsar” will be created in the “chemical” database containing all the 
structures.

1.22.6 Hosting the Database

For hosting the database created over the web, you need the following tools. All 
the tools used here are freely available. So firstly, they need to be downloaded from 
their respective sites. Once downloaded, install them on to the system. The system 
needs to be preloaded with the Java Runtime Environment.

1. JAVA—http://www.java.com/en/download/
2. MySQL Server 5.0—http://dev.mysql.com/downloads/mysql/5.0.html#downloads
3. SQLyog—http://code.google.com/p/sqlyog/downloads/list
4. JChem—http://www.chemaxon.com/jchem/download.html
5. Marvin Beans—http://www.chemaxon.com/marvin/download.html
6. Apache Tomcat 4.1—http://tomcat.apache.org/
7. MySQL JDBC Drivers 5.0—http://dev.mysql.com/downloads/connector/j/

MySQL Server 5.0, SQLyog, JChemManager, and marvin have already been dealt 
in the previous section of this chapter. The rest of the tools will be dealt in detail in 
subsequent chapters. In this chapter, we will mainly focus on their use for hosting 
a database.

Download and set system variables. One needs to download Java and Tomcat 
from the links provided in the preceding section and install them following the 
simple instructions that the respective installers display. Then, you need to set the 
system variables as shown in the following section.

Fig. 1.52  JChemManager homepage
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a. For Tomcat
• Download and install following the instructions
• Set system variables

 – Log in as administrator
 – Right-click My Computer→Properties→Advanced→Environment 

Variables→System Variables→New
 – Variable name: CATALINA_HOME
 – Variable value: <address for location where Apache Tomcat 4.1 is 

installed>OK, e.g., C:\Program Files\Apache Tomcat 4.1
b. For Java

• Download and install following the instructions
• Set system variables

 – Log in as administrator
 – Right-click My Computer→Properties→Advanced→Environment 

Variables→System Variables→New
 – Variable name: JAVA_HOME
 – Variable value: <address for location where JDK directory is present>OK
 – e.g., C:\Program Files\Java\jdk1.6.0

Configuring JChem Manager and Creating a Database
Configure JChem Manager and Create a Database as shown in the previous sec-

tion.
Hosting the Database, Configuring Tomcat 4.1:

• Go to\Apache Tomcat 4.1\bin and start the service by double clicking startup
• Open Internet Explorer. Type the following in the address bar:
• http://localhost:7070/, where 7070 is the port set while installing Apache  

Tomcat 4.1

If the following Tomcat homepage is seen, it means that the setup has been done 
successfully (Fig. 1.53)

• Click on Tomcat administration tool. It leads you to the Tomcat Web Server Ad-
ministration Tool.

• Type in the User name and Password created while installing Apache Tomcat 
4.1.

• Once logged in, go to Tomcat Server→Service (Tomcat Standlone) →Host (loc-
alhost) →Host Actions.

• Select Create New Context.
• Document Base: <address for location where JChem is installed>
 e.g, C:\Program Files\BioInformatics\JChem

Path:/jchem

• Save the changes and Commit changes.
• Then, in your Internet Explorer type http://localhost:7070/jchem/index.html

If the following JChem homepage is seen, it means the setup has been done suc-
cessfully (Fig. 1.54).
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•  Then, in the Internet Explorer type http://localhost:7070/jchem/examples/
jsp1_x/setup.jsp

The following page will be displayed (Fig. 1.55)

• Enter the details as shown and done previously, and save the changes.
• Select the database Table (qsar), OK. The database has been hosted. The page 

displayed would look like this (Fig. 1.56):

An *.sdf file containing the structures was imported into the database.
All these structures can be viewed. More structures can be imported. The se-

lected structures can be exported to any of the following viz. MOLFILE, SDFILE, 
SMILES, JTF, RDF, Marvin Document. The structures can be modified as well. A 
query of 2D structure can also be placed to be searched within the database. For 
querying, MarvinSketch application from the JChem package is used.

This database can be hosted by anyone to use through a website.

Fig. 1.53  Apache Tomcat

Fig. 1.54  Installing the JChem homepage
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1.22.7 Chemical Databases

Chemistry is one of the first scientific disciplines that employed databases to store 
the chemical information. There are a wide variety of chemical databases available 
in chemistry. Here, we describe the list of available chemical databases which are 
very useful and frequently used for computational modelling and chemoinformat-
ics activities. Recently, National Institute of Health (NIH) took initiatives to col-
lect molecular structures from publicly available resources and organized them in 
a single database called PubChem Database containing over 30 millions of unique 
molecular entries and made it available for free to the public [93]. Due to the huge 
and continuously increasing amount of data related to chemical information, it is 

Fig. 1.55  JSP Database

Fig. 1.56  The JChem interface
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impossible to handle the data in file systems. Using database system and other ad-
ditional chemoinformatics methods, we can manage the contents of this large re-
source for research and educational purposes.

1.22.7.1 Literature (textual) Databases

This type includes mainly bibliographic and also full text database containing the 
individual publication from the primary literature as objects using character strings. 
Some such databases are listed below:

CAS: CAS is a division of the American Chemical Society. CAS database pro-
vides literature information from more than 10,000 journals and 60 patent authori-
ties related to chemistry, biomedical sciences, engineering, materials science, agri-
cultural science, and many more. It is updated daily and made accessible through 
state-of-the-art information services. CAS is a commercial database and is not 
available for free.

(URL: www.cas.org/)
Medline: MEDLINE (Medical Literature Analysis and Retrieval System Online) 

is a bibliographic database. It contains more than 16 million references to journal 
articles starting from 1949 till present. All the records in MEDLINE are indexed 
with Medical Subject Headings (MeSH). MEDLINE is a part of PubMed and cov-
ers the subjects of biomedicine and health, chemical sciences, bioengineering, etc. 
MEDLINE is the primary component of PubMed (http://pubmed.gov); a link to 
PubMed is found on the National Library of Medicine (NLM) home page at http://
www.nlm.nih.gov. The result of a MEDLINE/PubMed search is a list of citations 
(including authors, title, source, and often an abstract) to journal articles and an 
indication of free electronic full-text availability.

(URL: www.nlm.nih.gov/databases/databases_medline.html)

PubMed The US NLM at the NIH maintains PubMed as part of the Entrez infor-
mation retrieval system. It is a free search engine for searching citations in MED-
LINE. PubMed also provides access and links to the other Entrez molecular biology 
resources. PubMed also provides links to other sites providing full-text articles.

(URL: www.ncbi.nlm.nih.gov/pubmed/)

MeSH MeSH is a huge controlled vocabulary (or metadata system) for the purpose 
of indexing journal articles and books in the life sciences. Created and updated by 
the US NLM, it is used by the MEDLINE/PubMed article database and by NLM’s 
catalog of book holdings. MeSH can be browsed and downloaded free of charge on 
the Internet. The yearly printed version was discontinued in 2007.

(URL: http://www.nlm.nih.gov/mesh/)

NIOSHTIC-2 NIOSHTIC-2 is a searchable bibliographic database of occupa-
tional safety and health publications, supported in whole or in part by the National 
Institute for Occupational Safety and Health (NIOSH). NIOSHTIC-2 is updated 
continuously. At a minimum, each citation contains the author’s name or names, the 
title, and sufficient source information to facilitate retrieval, including the publica-
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tion name, publication date, publication number(s), and pagination. Abstracts, key 
terms, and links to full text are also provided when available. Additional citation 
information may be available under the “Full View” option. NIOSHTIC-2 contains 
44,568 occupational safety and health information resource citations. Each month, 
approximately 70 current citations are added with an annual yearly yield of more 
than 800 new current NIOSH-funded citations. Retrospective material is also added 
at about the same rate resulting in a total annual increase of approximately 1,600 
citations. A significant portion of the citations (39,000) dates from 1971 to the pres-
ent. An additional 13,800 resources in NIOSHTIC-2 are publications dating from 
the 1930s to the present from the NIOSH Mining Safety & Health Research Labo-
ratories (formerly the US Bureau of Mines). There are several valuable search tools 
encoded into NIOSHTIC-2 records. They are intended to make searching easier 
and more productive. They include Standard Industrial Classification (SIC) codes, 
North American Industry Classification System (NAICS) codes, and CAS registry 
numbers.

Other databases in this category include NLM, ACS Journals (paid-service), El-
sevier (paid-service), Science Direct (paid-service), etc.

(URL: http://www2a.cdc.gov/nioshtic-2/)

Factual (alphanumeric) Databases They provide the required textual or alphanu-
meric information such as physical properties, spectral data, description of research 
projects, legal information, etc. They also provide the literature references to the 
origin of the data represented so that the user need not go back to the primary litera-
ture as with bibliographic databases. Some such databases are listed below:

Cambridge Structural Database Cambridge Structural Database (CSD) is a 
repository for small organic and metal-organic molecule crystal structure. CSD 
contains structures that are mostly determined by X-ray diffraction or neutron dif-
fraction and deposited directly to CDS or are present in publications in the open 
literature. It provides bibliographic, chemical, and crystallographic information of 
small molecules and excludes polypeptides and polysaccharides having more than 
24 units, oligonucleotides and Metals and Alloys.

(URL: www.ccdc.cam.ac.uk/products/csd/)

Beilstein database The database covers the scientific literature from 1771 to the 
present and contains experimentally validated information on millions of chemical 
reactions and substances from original scientific publications. The electronic data-
base was based on Beilstein’s Handbook of Organic Chemistry. In this database, 
each compound is given a unique Beilstein Registry Number which helps in their 
easy identification. Each substance has up to 350 fields containing chemical and 
physical data. References to the literature in which the reaction or substance data 
appears are also given. The content is made available through the “CrossFire Beil-
stein” database.

(URL: http://info.crossfiredatabases.com/)
Some other examples of factual databases are Gmelin, SpecInfo, MDL, CHEM-

CATS, ChemSource, etc.
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Structural (topological) Databases The structural databases play a central role 
in chemistry because they contain information on chemical structures. Examples 
of this type are CAS registry, National Cancer Institute (NCI) database, Crystal-
lographic Structure Database (ICSD), CSD, Protein Data Bank (PDB), etc. The 
structure databases are usually designed to store chemical structural information 
representing the chemical bonds and atoms in such a way to use them for computa-
tional operations, such as structure search, data mining, etc.

There are two principal techniques for representing chemical structures in digi-
tal databases: as connection tables or adjacency matrices—MDL Molefile, PDB, 
CML—or as linear string notations—SMILES, SMARTS, WLN, InChI.

Some of the structural databases are listed below:

PubChem A chemical database is a database specifically designed to store chemi-
cal information. Chemical structures are traditionally represented using lines 
indicating chemical bonds between atoms and drawn on paper (2D structural for-
mulae). Various chemical databases are available on the Internet which are free for 
all. Large chemical databases are expected to handle the storage and searching of 
information on millions of molecules. PubChem is one of the free chemical data-
bases which is developed by the National Center for Biotechnology Information 
(NCBI). More than 24 millions of compound structures and descriptive datasets 
can be freely downloaded from PubChem. PubChem is a user-friendly database, 
we can search the compounds by compound name/keyword, and we can also search 
the compound by chemical properties. We can download the compounds in SDF 
format which is the standard one for various structural viewers. PubChem has three 
components, namely PubChem Compounds, PubChem Substances, and PubChem 
BioAssay described below.

(URL: http://pubchem.ncbi.nlm.nih.gov/)

PubChem Compounds The PubChem Compounds Database contains validated 
chemical depiction information provided to describe substances in PubChem 
Substance. Structures stored within PubChem Compounds are pre-clustered and 
cross-referenced by identity and similarity groups. We can search unique chemical 
structures using names, synonyms, or keywords. Links to available biological prop-
erty information are also provided for each compound.

PubChem Substances The PubChem substance database contains chemical struc-
tures, synonyms, registration IDs, description, related urls, and database cross-ref-
erence links to PubMed, protein 3D structures, and biological screening results. 
We can search deposited chemical substance records using names, synonyms, or 
keywords. Links are also provided to biological property information and depositor 
websites.

PubChem BioAssay The PubChem BioAssay Database contains BioActiv-
ity screens of chemical substances described in PubChem Substance. It provides 
searchable descriptions of each BioAssay, including descriptions of the condi-
tions and readouts. We can search bioassay records using terms from the bioassay 
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description, for example “cancer cell line.” Links are available to active compounds 
and bioassay results.

ChemIndustry ChemIndustry is a comprehensive directory and search engine for 
chemical and related industry professionals. It contains more than 45,000 chemical 
industry-related entities and contain the full text of millions of pages.

(URL: http://www.chemindustry.com)

ChemExper ChemExper is a company that joins together the areas of chemistry, 
computer science, and telecommunication. The ChemExper Chemical Directory is 
a free service that allows finding a chemical by its molecular formula, IUPAC name, 
common name, CAS number, catalog number, substructure or physical character-
istics, as well as chemical suppliers. This database contains currently more than 
500,000 chemicals, 16,000 material safety data sheet (MSDS), 10,000 infrared (IR) 
spectra, and more than 500 chemical suppliers.

(URL: http://www.chemexper.com/)

PDB The Protein Data Bank (PDB) is a repository for 3D structural data of pro-
teins and nucleic acids. These data, typically obtained by X-ray crystallography 
or NMR spectroscopy and submitted by biologists and biochemists from around 
the world, are released into the public domain and can be accessed for free (see 
also protein structure). As of 24 June 2008, the database contained 51,491 released 
atomic coordinate entries (or “structures”), 47,526 of those entries were proteins, 
the rest being nucleic acids, nucleic acid–protein complexes, and a few other mol-
ecules. About 5,000 new structures are released each year.

(URL: http://www.rcsb.org/pdb/home/home.do)
The databases described below are classified here according to their use.

Databases dedicated for QSAR/QSPR WOMBAT (Drug Target)
WOMBAT (World of Molecular BioAcTivity) is a flagship product of Sunset 

Molecular Discovery. WOMBAT-PK is the reference Database for Clinical Phar-
macokinetics and Drug Target Information. In this database, drugs are indexed from 
multiple literature sources. WOMBAT-PK 2009 contains over 13,000 clinical phar-
macokinetic measurements. Each drug is represented in neutral species. WOMBAT 
can calculate physico-chemical properties like % oral bioavailability, % urinary ex-
cretion, % plasma protein binding, systemic clearance, Cl (mL/min*kg), nonrenal 
clearance (fractional), volume of distribution, VDss (L/kg), half-life, T1/2 (hrs), 
MRTD (mM/kg- bw/day), in vitro binding data (from WOMBAT), LogD7.4 (mea-
sured), LogPoct (measured), pKa (measured), water solubility (measured), blood 
brain barrier permeability, cardiac toxicity (Torsades des Pointes), LD50 (mammal 
data), BDDCS annotation, phase 1 metabolizing enzymes, drugs target annotation, 
and drugs annotated with anti-targets. These properties are very important in com-
putational drug discovery.

(URL: http://www.sunsetmolecular.com)

ChemSpider ChemSpider is a chemistry search engine. ChemSpider is a free 
access service providing a structure-centric community for chemists. It provides 
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access to millions of chemical structures and integrates a multitude of other online 
services. ChemSpider is the richest single source of structure-based chemistry infor-
mation. It has been built with the intention of aggregating and indexing chemical 
structures and their associated information into a single searchable repository and 
makes it available to everybody, at no charge. ChemSpider is a value-added offer-
ing of publicly available chemical structures since many additional properties have 
been added to each of the chemical structures.

(URL: http://www.chemspider.com/)

DrugBank The DrugBank database is a unique bioinformatics and chemoinfor-
matics resource that combines detailed drug (i.e., chemical, pharmacological, and 
pharmaceutical) data with comprehensive drug target (i.e., sequence, structure, and 
pathway) information. The database contains nearly 4,800 drug entries including 
>1,350 Food and Drug Administration (FDA)-approved small molecule drugs, 123 
FDA-approved biotech (protein/peptide) drugs, 71 nutraceuticals, and around 3,243 
experimental drugs. Additionally, more than 2,500 non-redundant protein (i.e., drug 
target) sequences are linked to these FDA-approved drug entries. Each DrugCard 
entry contains more than 100 data fields with half of the information devoted to 
drug/chemical data and the other half devoted to drug target or protein data.

(URL: http://www.drugbank.ca/)

ZINC ZINC is a free database of commercially available compounds for virtual 
screening. ZINC contains over 21 million purchasable compounds in ready-to-
dock, 3D formats. ZINC is provided by the Shoichet Laboratory in the Depart-
ment of Pharmaceutical Chemistry at the University of California, San Francisco 
(UCSF), CA, USA.

Databases dedicated for QSTR DSSTox
Distributed Structure-Searchable Toxicity (DSSTox) Database Network is a 

freely available chemical database developed by EPA. It can be used for the struc-
ture–activity and predictive toxicology studies. The DSSTox provides a public 
forum for publishing downloadable, structure-searchable, standardized chemical 
structure files associated with toxicity data. We can search the molecule and its 
similar chemicals using compound-by-compound name/keyword/smile string or 
directly we can draw the structure on the screen of JME editor in the result we will 
get the number of hits and detail information of the compound. This database is 
very helpful for structure–activity and predictive toxicology; hence, it is useful for 
people who deal in QSAR/QSTR.

(URL: http://www.epa.gov/ncct/dsstox/index.html)
Registry of Toxic Effects of Chemical Substances (Toxicity Data)
The Registry of Toxic Effects of Chemical Substances (RTECS) is a comprehen-

sive database of basic toxicity information for over 150,000 chemical substances 
including prescription and nonprescription drugs, food additives, pesticides, fungi-
cides, herbicides, solvents, diluents, chemical wastes, reaction products of chemical 
waste, and substances used in both industrial and household situations. Reports of 
the toxic effects of each compound are cited. In addition to toxic effects and general 
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toxicology reviews, data on skin and/or eye irritation, mutation, reproductive con-
sequences, and tumorigenicity are provided.

Material Safety Data Sheet An MSDS is a form containing data regarding the 
properties of a particular substance. An important component of product steward-
ship and workplace safety, it is intended to provide information such as physical 
data (melting point, boiling point, flash point, etc.), toxicity, health effects, first aid, 
reactivity, storage, disposal, protective equipment, and spill-handling procedures. 
MSDS is a widely used system for cataloging information on chemicals, chemical 
compounds, and chemical mixtures. MSDS information may include instructions 
for the safe use and potential hazards associated with a particular material or prod-
uct. MSDS can be found anywhere chemicals are being used. There are several 
other databases that provide chemical structure and information useful for drug dis-
covery. Some of them are mentioned below

UMLS The Unified Medical Language System (UMLS) is a compendium of many 
controlled vocabularies in the biomedical sciences. It provides a mapping structure 
among these vocabularies and thus allows one to translate among the various ter-
minology systems; it may also be viewed as a comprehensive thesaurus and ontol-
ogy of biomedical concepts. UMLS further provides facilities for natural language 
processing. It is intended to be used mainly by developers of systems in medical 
informatics. UMLS consists of Metathesaurus as the core database of the UMLS, 
a collection of concepts and terms from the various controlled vocabularies and 
their relationships; Semantic Network is a set of categories and relationships that 
are being used to classify and relate the entries in the Metathesaurus. SPECIAL-
IST Lexicon is a database of lexicographic information for use in natural language 
processing.

(URL: http://www.nlm.nih.gov/research/umls/)

ChemBank ChemBank is a public, web-based informatics environment created 
by the Broad Institute’s Chemical Biology Program and funded in large part by 
the National Cancer Institute’s Initiative for Chemical Genetics (ICG). This knowl-
edge environment includes freely available data derived from small molecules and 
small-molecule screens, and resources for studying the data so that biological and 
medical insights can be gained. ChemBank is intended to guide chemists synthesiz-
ing novel compounds or libraries, to assist biologists searching for small molecules 
that perturb specific biological pathways, and to catalyze the process by which drug 
hunters discover new and effective medicines. ChemBank stores an increasingly 
varied set of cell measurements derived from, among other biological objects, cell 
lines treated with small molecules. Analysis tools are available and are being devel-
oped that allow the relationships between cell states, cell measurements, and small 
molecules to be determined.

(URL: http://chembank.broadinstitute.org/welcome.htm)
eMolecules (http://www.emolecules.com/)
eMolecules is a search engine for chemical molecules. The system was first 

launched in November 2005. The standard search allows querying for names, sub-
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structures, and suppliers. The expert search allows interactive searching using a 
molecular weight range, CAS numbers, suppliers, etc. Search by File upload (SD or 
MOL file, i.e., MDL format)

eMolecules Search page for Substructure Search Hits for Aspirin structure and 
the results after clicking on the first hit (Fig. 1.57). The eMolecules result for Aspi-
rin gives information on molecular weight, molecular formula, CAS number, Links 
to Focus synthesis and Activate Scientific, etc.

FDA The US FDA is an agency of the US Department of Health and Human Ser-
vices and is responsible for the safety regulation of most types of foods, dietary 
supplements, drugs, vaccines, biological medical products, blood products, medical 
devices, radiation-emitting devices, veterinary products, and cosmetics. The FDA 
also enforces section 361 of the Public Health Service Act and the associated regu-
lations, including sanitation requirements on interstate travel as well as specific 
rules for control of disease on products ranging from pet turtles to semen donations 
for assisted reproductive medicine techniques.

(URL: http://www.fda.gov/)

SPECS Specs, founded in 1987, provides chemistry and chemistry-related services 
that are required in drug discovery. Specs is one of the world’s leading provid-
ers of compound management services besides being a main supplier of screening 
compounds and building blocks to the life science industry. They have a diverse in-
house chemical collection, consisting of single synthesized, well-characterized, and 
drug-like small molecules; it has been built through global acquisition programs 
utilizing a network of more than 2,000 academic sources worldwide. In addition to 
providing compound-handling services and high-quality compounds, Specs offers 
a diverse and unique set of about 400 isolated or synthesized natural products and 
derivatives thereof from natural sources like plants, fungi, bacteria, sea organisms, 
etc. These compounds range from common to very complex and rare natural prod-
ucts. Specs’ selection of natural products consists of purely isolated or synthesized 
and well-characterized compounds. This means that no extracts are offered. All 
natural products offered have been checked by 1H NMR and/or LC/MS to ensure 
the integrity of the structure and a purity >80 %.

(URL: http://www.specs.net/snpage.php?snpageid = home)

MDDR MDDR is a database covering the patent literature, journals, meetings, 
and congresses. Produced by Symyx and Prous Science, the database contains 
over 180,000 biologically relevant compounds and well-defined derivatives, with 
updates adding about 10,000 a year to the database. The MDDR Finder allows you 
to search the database by structure or across relevant data fields. Symyx also offers 
MDDR-3D. It is basically a structural database for use with MDL Information Sys-
tems, Inc.’s MACCS-II and ISIS/Host software.

MOLTABLE Web Portal MOLTABLE has several databases of both chemical and 
pharmaceutical importance. MOLTABLE goals are now being redefined to extract 
and analyze molecular data from literature and patents to support chemical, pharma-
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ceutical, strategic, and other industrial research sectors. The MOLTABLE intends to 
discover drug candidates against potentially devastating infectious diseases through 
chemoinformatics research. Dynamic QSAR initiatives through “focused” virtual 
library design and the results will be made “open access” through MOLTABLE por-
tal. MOLTABLE hosts information on ChemXtreme, a program to harvest chemical 
information such as properties, activities, and toxicity of molecules from Internet 
web pages. ChemStar highlights the use of distributed computing environment for 
calculating molecular properties for large collection of PubChem. Every molecule 
in the collection is generated with molecular fingerprints for substructure, exact 
structure, and similar structure analysis. All the molecules are computed for both 
2D and 3D descriptors along with physico-chemical properties like solubility, molar 
refractive index, etc., which is essential for identifying drug-likeliness. The source 
code and data are freely accessible. MOLTABLE portal can be used for searching 
chemical information from published literature especially on drug design (8,000+ 
journals, 4 decades, 18 million articles) (Fig. 1.58)

(URL: http://moltable.ncl.res.in/)

Chemoinformatics.org This is a noncommercial website which compiles infor-
mation on chemoinformatics web resources and provides links to chemoinformat-
ics programs. It also provides datasets for QSAR, QSPR, BBB penetration, CaCO2 
permeability, etc. There are a total of 44 datasets, which are freely downloadable. 
It also provides links to molecular similarity search, online diversity assessment. 
The datasets are divided according to the use into binary (active/inactive) datasets, 
QSAR datasets, QSPR datasets, toxicity datasets, metabolism datasets, permeabil-
ity datasets, docking datasets, mechanistic datasets, and mixed/other datasets.

(URL: http://www.cheminformatics.org/menu.shtml)

Biological databases Biological databases are libraries of life sciences informa-
tion, collected from scientific experiments, published literature, high-throughput 
experiment technology, and computational analyses. They contain information 
from research areas including genomics, proteomics, metabolomics, microarray 
gene expression, and phylogenetics. PDB, DNA Data Bank of Japan (DDBJ), Euro-
pean Molecular Biology Laboratory (EMBL), and GenBank are some biological 
databases which are free on the Internet.

PROSITE PROSITE is a database of protein families and domains. It consists of 
entries describing the domains, families, and functional sites as well as amino acid 
patterns, signatures, and profiles in them. These are manually curated by a team 
of the Swiss Institute of Bioinformatics and tightly integrated into Swiss-Prot pro-
tein annotation. It provides additional information about functionally or structurally 
critical amino acids. The rules contain information about biologically meaningful 
residues, like active sites, substrate- or co-factor-binding sites, posttranslational 
modification sites, or disulfide bonds, to help function determination. These can 
automatically generate annotation based on PROSITE motifs.

(URL: http://www.expasy.ch/prosite/)
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EMBL The EMBL is a molecular biology research institution supported by 20 
European countries and Australia as an associate member state. It is Europe’s pri-
mary nucleotide source. We can find out nucleotide sequences and much more data 
from it. It is the main source for DNA and RNA sequences. The database is a result 
of the collaboration between GenBank (USA) and the DDBJ.

(URL: http://www.ebi.ac.uk/embl/)

OMIM The Mendelian Inheritance in Man project is a database that catalogs all 
the known diseases with a genetic component, and, when possible, links them to the 
relevant genes in the human genome and provides references for further research 
and tools for genomic analysis of a catalogued gene. OMIM is a comprehensive, 
authoritative, and timely compendium of human genes and genetic phenotypes. 
OMIM contains information on all known Mendelian disorders and over 12,000 
genes. OMIM focuses on the relationship between phenotype and genotype.

(URL: http://www.ncbi.nlm.nih.gov/omim/)

NCBI The NCBI is part of the USNLM, a branch of the NIH. The NCBI houses 
genome sequencing data in GenBank and an index of biomedical research articles 
in PubMed Central and PubMed, as well as other information relevant to biotech-
nology. All these databases are available online through the Entrez search engine. It 
contains more than 1,500,000 articles from more than 450 journals.

(URL: http://www.ncbi.nlm.nih.gov/)

1.22.8 Do It Yourself (DIY)

1. Determine the chemical structure using the Connection Tables given below:

SMI2MOL
2 1 0 0 0 0 0 0 0 0999 V2000
-0.5100 1.5300 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.5100 1.5300 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0
M END

9 8
1.0303 0.8847 0.9763 C 0 0 0 0 0 0 0 0 0 0 0 0
1.8847 1.9889 1.5717 C 0 0 0 0 0 0 0 0 0 0 0 0
3.1883 1.4807 1.7425 O 0 0 0 0 0 0 0 0 0 0 0 0
…
1.4753 2.3225 2.5456 H 0 0 0 0 0 0 0 0 0 0 0 0
3.7056 2.1820 2.1139 H 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0
1 4 1 0 0 0 0
1 5 1 0 0 0 0
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1 6 1 0 0 0 0
2 3 1 0 0 0 0
2 7 1 0 0 0 0
2 8 1 0 0 0 0
3 9 1 0 0 0 0
M END

APtclserve04110610582D 0 0.00000 0.00000NCI NS
10 10 0 0 0 0 0 0 0 0999 V2000
3.732 2.250 0.000 C 0 0 0 0 0 0 0 0 0 0 0 0
3.732 1.250 0.000 C 0 0 0 0 0 0 0 0 0 0 0 0
2.866 0.750 0.000 N 0 0 0 0 0 0 0 0 0 0 0 0
2.866 -0.250 0.000 C 0 0 0 0 0 0 0 0 0 0 0 0
…
3.732 -0.750 0.000 C 0 0 0 0 0 0 0 0 0 0 0 0
2.329 1.060 0.000 H 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0
2 3 1 0 0 0 0
3 4 1 0 0 0 0
4 5 2 0 0 0 0
5 6 1 0 0 0 0
6 7 2 0 0 0 0
7 8 1 0 0 0 0
8 9 2 0 0 0 0
4 9 1 0 0 0 0
3 10 1 0 0 0 0
M END

2. Draw the structures for the following SMILES strings:

1. CCO
2. CC(=O)O
3. CC(=O)OCC.O
4. C=CCBr
5. C#N
6. CCN(CC)CC
7. C(C(C(=O)O)N)O
8. OC(=O)C(Br)(Cl)N
9. ClC(Br)(N)C(=O)O

10. O=C(O)C(N)(Br)C
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3. Write the SMILES strings for the following structures:
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4. Draw the structures from the following CML code

<molecule title="?" id="m1"> 
 <atomArray> 
 <atom id="c1" elementType="C" hydrogenCount=”3” /> 
 <atom id="o1" elementType="O" hydrogenCount=”1” /> 
 </atomArray> 
 <bondArray> 
 <bond id=”b1”atomRefs2="c1 o1" order="S" /> 
 </bondArray> 
</molecule> 
 
<molecule title="?" id="m2"> 
  <atomArray> 
  <atom id="n1" elementType="N" hydrogenCount=”3” /> 
  </atomArray> 
 </molecule> 
 
<molecule title="?" id="m3"> 
  <atomArray> 
  <atom id="b1" elementType="B" hydrogenCount=”0” > 
   <lectron id=”e1” count=”2”/> 
  </atom> 
  <atom id="f1" elementType="F" hydrogenCount=”0” /> 
  <atom id="f2" elementType="F" hydrogenCount=”0” /> 
   <atom id="f3" elementType="F" hydrogenCount=”0” /> 
  </atomArray> 
  <bondArray> 
  <bond id=”b1f1”atomRefs2="b1 f1" order="S" /> 
  <bond id=”b1f2”atomRefs2="b1 f1" order="S" /> 
  <bond id=”b1f3”atomRefs2="b1 f1" order="S" /> 
  </bondArray> 
</molecule> 
 
<molecule title="? " id="m4"> 
   <atomArray> 
  <atom id="c1" elementType="C" hydrogenCount=”3” /> 
  <atom id="c2" elementType="C" hydrogenCount=”1” /> 
  <atom id="o1" elementType="O" hydrogenCount=”0” /> 
  <atom id="o2" elementType="O" hydrogenCount=”1” /> 
  </atomArray> 
  <bondArray> 
  <bond id=”b1”atomRefs2="c1 o1" order="S" /> 
  <bond id=”b2”atomRefs2="c2 o1" order="S" /> 
  <bond id=”b3”atomRefs2="c2 o2" order="D" /> 
  </bondArray> 
</molecule> 

5. Input SMILES of the top ten drugs in the field of medicine and generate 3D 
structures using Corina and ChemAxon tools; also perform similarity searching 
in PubChem and Scifinder.

1.22.8.1 Thumb Rules for Structure Representation

• Please take care while converting a structure from one file format to another in 
a software to make sure all the information is retained like hydrogens, charges, 
ionic state, etc., before proceeding to the next step.
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• Always save your chemical structures in the global formats like *.smi or *.sdf rath-
er than the software-specific format for easy interoperability and compatibility.

1.22.9 Questions

1. What are the known structure representation methods in computer?
2. Write short notes on the databases useful in drug designing experiments.
3. What are the structure-searching methods that you are aware of? Elaborate on 

any one.
4. Give a brief note on the file conversion programs generally used in 

chemoinformatics.
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Abstract It is challenging to handle a large volume of molecular data without 
appropriate tools. Here, we describe the need and the approaches for the develop-
ment of focussed virtual libraries to design efficient molecules and optimize them 
for lead generation. The experimental chemists and biologists are more interested 
in properties of chemicals and their response to biological system in both beneficial 
and adverse effects context rather than just their structures. In this chapter, the focus 
is to relate newly designed chemical structures to their predicted activity, property 
or toxicity. Property prediction tools save time, money and lives of experimental 
animals. They come in handy while taking informed decisions especially in cer-
tain cases involving pharmacodynamic studies of drug molecules in humans where 
there are inevitable ethical and safety concerns. Property prediction is an important 
component in virtual screening which is at the heart of drug design and the most 
important step where chemoinformatics plays a major role. The other fields where 
structure–activity relation-based principles hold good for virtual screening are agro-
chemicals and environmental science, specifically the toxicity and biodegradabil-
ity prediction of pollutant molecules. In this chapter, we will show how to design 
software tools to handle generation of focussed virtual libraries from a given set of 
molecules with common features, fragments or bioactivity spectrum.

Keywords Descriptors · Chemical properties · Chemoinformatics · Drug design

2.1  Introduction to Structure–Property Correlations

Chemists are mainly interested in the structure of chemicals to know those prop-
erties which can be of some use to us. Physico-chemical properties, bioactivities 
and toxicity-related data of chemicals available from scientific literature or from 
experimental results are used for building predictive models applying advanced 
mathematical methods or machine learning techniques based on the principle of 
‘similar structures possess similar property’ [1–3]. The quality of predictive models 
basically depends on the selection of relevant molecular descriptors and accuracy 
of experimental data [4]. Basically, molecular descriptors are the structural features 



2 Chemoinformatics Approach for the Design and Screening of Focused …94

encoding independent property of interest such as activity, property and toxicity 
[5]. The relation between structure and property is studied by computing binary fin-
gerprints and descriptors from the molecular graph and its three-dimensional (3D) 
chemical structure respectively [6].

2.1.1  Descriptors

Descriptors are properties that describe a molecule on the basis of either some 
physico-chemical property like melting point, boiling point or an algorithm like 
two-dimensional (2D) fingerprint [7]. There are several types of molecular descrip-
tors and features used for establishing structure–property links. Most commonly 
used molecular descriptors are constitutional, surface, molecular connectivity, elec-
trostatic, shape, geometry, quantum chemical, physico-chemical, hybrid, etc. which 
are all intimately related to each other [8]. The constitutional descriptors are the 
most simple and common ones that just provide information on the chemical com-
position of molecules [9]. The topological descriptors which encode the surface 
properties of a molecule are used to ascertain the solubility and permeability of a 
proposed drug. Electrostatic descriptors such as polarizability, dipole moment and 
ionization energy predict crystalline density [10]. Geometrical or 3D descriptors 
based on xyz coordinates provide rich information regarding a molecule’s orienta-
tion in space and are often more useful than others in predicting biological activ-
ity [11]. Quantum chemical descriptors in theory encompass all the electronic and 
geometrical features of a molecule compared to empirical ones, the only drawback 
being the computational overload [12]. Some of the quantum chemical descrip-
tors include lowest unoccupied molecular orbital (LUMO) energies, orbital electron 
density, delocalizability, etc. [13]. Hybrid descriptors such as BCUT [14] WHIM 
[15] were initially developed for chemical diversity but later found useful as inputs 
for building predictive models. Another class of descriptors include the binary bit 
string-based fingerprint descriptors which are employed for similarity searching in 
databases. The known literature fingerprints, viz. Molecular Design Limited Molec-
ular ACCess System (MDL MACCS) 166-bit keys [16], circular fingerprints[17], 
Extended Convective Forecast Product (ECFP) [18], FCF2 [19], Unity [20], Pub-
Chem fingerprints [21] and TPC [22], have been applied to a wide range of appli-
cations including prediction of absorption, distribution, metabolism, excretion and 
toxicity properties (Fig. 2.1).

From a drug discovery point of view, the most important descriptor among mo-
lecular properties is the solubility of a compound [23]. This in turn impacts the oral 
bioavailability of a drug—an important pharmacokinetic parameter [24]. Solubility 
is also found to be an important parameter for lipid-based formulation excipients in 
pharmacy [25]. Another equally relevant descriptor is logP, i.e. the water/octanol 
partition coefficient [26]. The prior knowledge of these descriptors is considered im-
portant during the preclinical trial stage in the drug discovery pipeline. Currently, de-
scriptors for target and ligand are computed simultaneously for predicting side effects 
in drugs and polypharmacology, an emerging concept in medicine, wherein other 
therapeutic options are explored for a known marketed drug [27]. Apart from drug de-
sign, another field where descriptors play an important role is material science where 
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the selection of a right descriptor can lead to improved energetic substances [28]. By 
evaluating molecular, microscopic and structural descriptors of an adsorbate–adsor-
bent system, single-component adsorption isotherms can be predicted [29].

In this section, we shall practically see how to compute descriptors using open-
source, free, commercial tools for a given set of molecules. The right choice of 
independent uncorrelated descriptors is the next important step. Genetic algorithm 
(GA)-based approaches are employed to select the optimal subset of descriptors 
[30]. Many linear and non-linear models to predict a physico-chemical property or 
bioactivity can be built using selected descriptors by employing machine learning 
methods like neural networks which are discussed in detail in the next chapter.

2.1.1.1  Open-Source Tools for Computing Descriptors

Chemistry Development Kit

SMILES notation of a molecule can be input to calculate properties/descriptors 
using open-source programs. The Chemistry Development Kit (CDK) is a scien-
tific, Lesser General Public License (LGPL)-ed library for bio- and cheminformat-
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path indices)
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Fig. 2.1  Commonly 
employed descriptors and fin-
gerprints in structure–prop-
erty correlation studies
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ics and computational chemistry written in Java [31]. A CDK descriptor calculator 
(v1.3.8) has been developed for cdk1.5 which calculates descriptors and finger-
prints given a .smi or .sdf input file [32]. The user can select only the type of de-
scriptor; the program currently uses a default parameter setting for each descriptor 
(Fig. 2.2).

Fig. 2.2  Chemistry Develop-
ment Kit ( CDK) descriptors 
calculator
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JOElib

It is an integrated chemoinformatics package governed by the GNU general public 
license [33]. The Java libraries are available at its homepage site. The descriptors 
include simple atom group counts which are good enough to build primitive quan-
titative structure–property relationships (QSPR) models but for predicting complex 
biological properties transformed descriptors should be computed. One can also 
write their own descriptor and classes into the program.

Source Code for Computing JOELib Descriptors from Simplified Molecular-Input 
Line-Entry System format of Any Molecule

JOEMol mol = new JOEMol(IOTypeHolder.instance().getIOType("SMILES"), 
IOTypeHolder.instance().getIOType("SDF")); 
        String[] out = new String[2]; 
        try { 
            JOESmilesParser.smiToMol(mol, smi, "mol_name"); 
            double logP = 0; 
            int premiscuious = 0; 
            bd.computeDescriptors(mol, logP, premiscuious); 
            DecimalFormat df1 = new DecimalFormat("####.####"); 
            LogP lp = new LogP(); 
            bd.logP = lp.getDoubleValue(mol); 
            out[0] = ""; 
            out[0] += "HBD:" + bd.hbd + ";LogP:" + df1.format(bd.logP) + ";M.Wt:" + 
df1.format(bd.mw) + ";Promiscuous:" + bd.promiscuous + ";TPSA:" + 
df1.format(bd.tPSA) + ";Basic Score:" + bd.basicScore() + ";HBA:" + bd.hba + ";DL 
Failures:" + bd.drugLikeFailures() + ";LL Failures:"; 
            out[0] += bd.leadLikeFailures() + ";" + bd.basicScore() + ";PDL:" + 
df1.format(bd.PDL()) + ";PLL:" + df1.format(bd.PLL()) + ";CFMS Penalties:" + 
bd.CFMSpenalties() + "';"; 
            out[1] = bd.stringSSKey3DS; 
            out[0] += ";numberOfBadAtoms :" + bd.numberOfBadAtoms; 
            out[0] += ";numberOfCF3 :" + bd.numberOfCF3; 
            out[0] += ";numberOfN :" + bd.numberOfN; 
            out[0] += ";numberOfNO2 :" + bd.numberOfNO2; 
            out[0] += ";numberOfO :" + bd.numberOfO; 
            out[0] += ";numberOfS :" + bd.numberOfS; 
            out[0] += ";numberOfSO2 :" + bd.numberOfSO2; 
            out[0] += ";numberOfX: " + bd.numberOfX; 
            String[] rp = bd.reactivePatterns; 
            for (int i = 0; i < rp.length; i++) { 
                out[0] += ";numberOf RP" + i + ":" + rp[i]; 
            } 
            String[] wp = bd.warheadPatterns; 
            for (int i = 0; i < wp.length; i++) { 
                out[0] += ";numberOf WHP" + i + ":" + wp[i]; 
            } 
            getSMPatterns sm = new getSMPatterns(); 
            String[] out1 = sm.getToxicophoreFP(smi); //toxicophoreFingerprints 
            for (int i = 0; i < out1.length; i++) { 
                out[0] += ";toxph FP:" + i + ":" + out1[i]; 
            } 
            String[] out2 = sm.getChemClassFP(smi);  //ChemicalClassFP 
            for (int i = 0; i < out2.length; i++) { 
                out[0] += ";chem FP:" + i + ":" + out2[i]; 
            } 
        } catch (Exception e) { 
            System.out.println(e); 
        } 
 
        return out; 

public String[] getData(String smi) { 
        BasicDescriptors bd = new BasicDescriptors(); 
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PaDEL

It is an open-source program that computes 797 descriptors and 10 types of fin-
gerprints [34]. It uses the CDK library for computing descriptors; however, some 
new descriptors have been added, mainly electrotopological state descriptors [35]. 
Both graphical user interface (GUI) and command line options are available. The 
advantage of this software is the large number of file formats it supports, around 90 
in number. Further, it surpasses the CDK calculator with regard to its speed due to 
its multithreaded nature (Fig. 2.3).

2.1.1.2  Free Programs

PowerMV is a descriptor generation and compound annotation tool designed biolo-
gists and statisticians for quickly screening their assay results and gaining some 
knowledge regarding their potential biological mechanism [36]. Four descrip-
tor sets are used, four bit string and two continuous, which are used for nearest 
neighbour searching in annotated databases. The package is written in Visual C 
and C++and runs on a .NET framework unlike previous Java-based programs. The 
program provides users with two versions: basic and affiliate with greater graphics 
and better descriptors in the latter [37]. One can build classification and regression 
models through graphical interface to the R program.

Fig. 2.3  PaDEL descriptor calculator graphical user interface ( GUI)
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2.1.1.3  Tools Requiring An Academic License

Calculator plug-in in Marvin Beans from ChemAxon is used for calculating a num-
ber of descriptors and is available via an academic request [38]. It can be accessed 
from Marvin Sketch and Marvin view modules. For efficiency, it is advisable to 
run it using cxcalc command in batch mode from command prompt. A number of 
diverse descriptors can be computed in a short time.

A Practice Tutorial

Here, we compute some selected properties for a .smi file containing 100 molecules 
belonging to the well-known Ames data set [39]. Download this file and put in the 
Marvin Beans directory. We begin by calculating simple but powerful atomic de-
scriptors like atom counts and atomic composition. The cxcalc commands are avail-
able in the original directory where ChemAxon is installed and then go to the sub-
directory Marvin Beans docs users cxcalc-calculations.html. First, navigate to the 
directory containing Marvin Beans bin folder in command prompt and type cxcalc 
-h to list the commands. Then, type the commands cxcalc atomcount -z 7 Ames100.
smi and then cxcalc composition -S true Ames100.smi to compute the atom counts 
and atomic composition for all the 100 molecules in the data set. Similarly, type 
cxcalc atomicpolarizability test Ames100.smi to calculate the polarizability of each 
atom in all 100 molecules (Fig. 2.4).

We can also compute 3D descriptors using the ‘cxcalc’ option. Draw a structure 
of aspirin molecule (acetyl salicylic acid) in Marvin Sketch and save it as .smi in 
the Marvin Beans folder. In the command window, type cxcalc stereoisomers -v true 
aspirin.mol to generate the stereoisomer of the molecule. Similarly, the command 
cxcalc lowestenergyconformer -f mrv test aspirin.mol calculates the lowest energy 
conformer of aspirin (Fig. 2.5).

Molecular graph-based descriptors can also be calculated using the cxcalc com-
mand. Here, let us compute Randic index [40] and Wiener index [41] which are 
important molecular connectivity descriptors. Randic index, also called bond in-
dex, is the sum of bond contributions in a molecule and Wiener path is a topo-
logic index describing the shortest path between all pairs of vertices. The syntax of 
the commands is cxcalc randicindex test ames100.smi and cxcalc wienerindex test 
ames100.smi (Fig. 2.6).

Data processed in one program can be piped into another using the | vertical line 
command. Let us compute the logP values for 100 molecules in Ames data set and 
then pipe the output data to Marvin view to view the table alongside. The command 
to do so is cxcalc -S -t myLOGP logP -a 0.15 -k 0.05 test ames100.smi | mview—
(Fig. 2.7).

Log p is the water/octanol partition coefficient [42]; there is another descriptor 
called logD [43] which is a distribution coefficient especially useful for determining 
lipophilicity of ionizable compounds as it accounts for pH dependence of molecules 
in aqueous solution.
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Code for Reading a Molecule from a Structure Data File and Printing LogD 
Values in a Given pH Range

plugin.setMolecule(mol); 
plugin.run(); 
//get and print logD values 
double[ ] pHs = plugin.getpHs(); 
double[ ]logDs=plugin.getlogDs(); 
for( int i=0; i<logDs.length; i++) { 
double pH =pHs[i]; 
double logD = logDs[i]; 
System.out.println(pH+", "+logD); 

2.1.1.4  Commercial Software to Calculate Molecular Properties

OpenEye

OpenEye company provides software to the pharmaceutical industry for molecular 
modelling and chemoinformatics. Their Shape TK module facilitates the calcula-
tion of molecular descriptors for shape volume overlap between molecules and spa-
tial similarity of chemical groups [44].

Schrodinger

The QikProp module computes pharmaceutically relevant descriptors for a large 
data set containing million compounds in an hour in batch mode [45]. It is a quick, 

Fig. 2.4  Atomic polarizabilities for 100 molecules using the cxcalc program in Marvin Beans
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Fig. 2.5  Computed stereoisomer and lowest energy conformer of aspirin using cxcalc command

 

Fig. 2.6  Randic and Weiner index values computed for the data set
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accurate, easy-to-use absorption, distribution, metabolism and excretion (ADME) 
prediction program designed by Professor William L. Jorgensen [46]. It provides 
ranges for comparing a particular molecule’s properties with those of 95 % of 
known drugs. It can flag 30 types of reactive functional groups that may cause false 
positives in high-throughput screening (HTS) assays. QikProp input must be a file 
containing the 3D structure ( x, y, and z coordinates and atomic numbers) of one or 
more molecules.

A Practice Tutorial

Let us compute the ADME properties of the previous Ames100 data set. First, 
download the data set from www.chemoinformatics.org. It contains 100 molecules 
with the binary mutagenicity classification data. We will compute QikProp descrip-
tors for them. Before submitting to QikProp, it is advisable to prepare the molecules 
using the LigPrep module in Schrodinger. LigPrep automatically converts them to 
3D structures; also check for correct tautomeric and ionization variations. It per-
forms energy minimization to generate a customized ligand library [47]. The .mae 
output file from LigPrep is input into the QikProp module by clicking applications 
and submitting the job (Figs. 2.8 and 2.9).

The output from the QikProp is obtained in four files, viz. qikpropames100.
out, qikpropames100.mae, qikpropames100.qpsa and qikpropames100.csv. Apart 
from the usual physico-chemical properties, the comma-separated values (CSV) file 
shows the important descriptors like caco-2 and MDCK cell permeability, blood–
brain barrier (logBB), HERG, CNS which are important ADME predicted param-
eters for a molecule to qualify as drug (Fig. 2.10).

Alternatively, a simple python script can be downloaded from the Schrodinger 
Script Center for generating molecular descriptors like topological, Molecular Or-
bital PACkage (MOPAC) and QuikProp (Script name: molecular_descriptors.py

Fig. 2.7  LogP data for 100 molecules piped to Marvin View to visualize the tabulated results
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Fig. 2.8  LigPrep input screen 

Fig. 2.9  QikProp input screen
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Molecular Operating Environment

Molecular Operating Environment (MOE) from Chemical Computing Group 
(CCG) has many chemoinformatics modules; [48] 185 MOE 2D descriptors were 
calculated for the Ames data set as shown in the screen capture (Figs. 2.11 and 
2.12). These descriptors can be input into to build linear regression models.

Dragon

Dragon 6 is an application for the calculation of 4,885 molecular descriptors 
[49]. The latest version of Dragon includes new molecular descriptors such as 
CATS 2D, Klein TDB autocorrelations, atom-type E-state indices, extended to-
pochemical atom (ETA) descriptors, P_VSA descriptors, ring descriptors, several 
indices from different 2D and 3D matrices, drug-like and lead-like filters. These 
descriptors can be used to evaluate molecular structure–activity or structure–
property relationships, as well as for similarity analysis and HTS of molecule da-
tabases.

Accelerys

ADME and molecular mechanics descriptors can be calculated using Accelerys pro-
gram. Their TOPKAT module is an established in silico method for assessing toxic-
ity prediction of organic compounds [50]. TOPKAT can help assess environmental 
fate, ecotoxicity, toxicity, mutagenicity, and reproductive/developmental toxicity of 
chemicals. TOPKAT technology is currently used to optimize therapeutic ratios of 

Fig. 2.10  QikProp computed descriptors for the Ames100 data set in comma-separated values 
( CSV) format
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lead compounds, prioritise promising compounds for further development/invest-
ment, evaluate intermediates, metabolites and pollutants screen compounds gener-
ated via HTS systems, assess pharmaceutical, commercial, industrial and agricul-
tural chemical products for potential safety problems and set dose ranges for animal 
assays.

2.1.1.5  In-House-Developed Open-Source Tool

Large-scale distributed computing of chemical properties has been carried out us-
ing ChemStar, wherein the Topological Polar Surface Area (TPSA) property of 
18 million compounds was studied using Java Remote Method Invocation (JAVA 
RMI) [51].

Fig. 2.11  Descriptors list in Molecular Operating Environment (Chemical Computing Group) 
MOE( CCG)
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Fig. 2.12  Molecular Design Limited Molecular ACCess System ( MACCS) fingerprints computed 
for Ames data set
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Code for Distributed Computing Of Molecular Properties Using ChemStar1

Class: 
Read Input file(String fname){ 
 
Distribute the tasks to Clients 
 
Client Components (Parallel mode) 
 
-Get List of Calculator Plugins (ChemAxon / PADEL / CDK / JOELib) 
-LogP 
-TPSA 
-MWT 
-HBA 
-HBD 
-WeinerPath 
-Volume 
-ADMET 
-Toxicophores 
-Chemophores 
-Pharmacophores 
-MACCS Keys 
-nAtoms (C, H, N,S,O,Cl,Br,I,N,P) 
 
Send the results to Server 
 
}

class AppendFileStream extends OutputStream 
{ 
 
    public AppendFileStream(String s) 
        throws IOException 
    { 
        fd = new RandomAccessFile(s, "rw"); 
        fd.seek(fd.length()); 
    } 
 
    public void close() 
        throws IOException 
    { 
        fd.close(); 
    } 
 
    public void write(byte abyte0[]) 
        throws IOException 
    { 
        fd.write(abyte0); 
    } 
 
    public void write(byte abyte0[], int i, int j) 
        throws IOException 
    { 
        fd.write(abyte0, i, j); 
    } 
 
    public void write(int i) 
        throws IOException 
    { 
        fd.write(i); 
    } 
 
    RandomAccessFile fd; 
 

1 Interested readers are encouraged to download the supporting materials related to ChemStar ap-
plication (JCIM’ 2008, ACS).
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2.1.2  Online Property Prediction Tools

All of them mostly employ any of the machine learning-based quantity structure–
activity relationship (QSAR)/QSPR methods for property prediction.

2.1.2.1  Molinspiration

This site provides a range of tools for structure drawing, property prediction, etc. 
[52], Fig. 2.13.

2.1.2.2  Prediction of Activity Spectra for Substances

The acronym PASS stands for prediction of activity spectra for substances [53]. 
Upon entering a structural formula of a chemical substance, the program computes 
the potential biological activities of this compound. To execute the prediction, 
PASS requires a knowledge base about structure–activity relationships (SAR) for 
compounds with known biological activities. This is provided by SAR Base, con-
taining the analysis results obtained with an in-house training set of more than 
250,000 compounds with known biological activities. This training set is contin-
uously curated and expanded. SAR Base can also be replaced by an exclusive 
knowledge base, which can be created using in-house data. The knowledge base 
together with the user-defined constraints of biological activities of interest and 
relevant parameters provides PASS the starting point for the computational predic-
tion (Fig. 2.14).

Fig. 2.13  Home page of molinspiration server on the web
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2.1.2.3  AquaSol

A web-based predictor, AquaSol, is available online through the ChemDB portal 
that can be applied to the problem of predicting aqueous solubility [54]. Molpro, 
another module in the portal, predicts molecular properties other than 3D structures.

2.1.2.4  Molecular descriptor family prediction SAR

An algorithm for extracting useful information from the topological and geometri-
cal representation of chemical compounds was developed and integrated to calcu-
late molecular descriptor family (MDF) members [55]. The activity is predicted 
based on a learning set, a preciously obtained MDF SAR model and a molecule 
submitted as HIN file by the user.

2.1.2.5  preADMET

It is a commercial website used to compute 2,000 descriptors including absorption, 
distribution, metabolism, elimination and toxicity (ADMET)-relevant properties 
like caco-2 cell permeability, blood–brain barrier, human intestinal absorption, etc. 
[56]. It also comes with a drawing tool and library builder.

Fig. 2.14  Prediction of activity spectra for substances ( PASS) property prediction server

 



2 Chemoinformatics Approach for the Design and Screening of Focused …110

2.1.2.6  Distributed Structure-Searchable Toxicity Prediction Server

It is hosted by Environmental Protection Agency (EPA) USA to predict the toxicity 
of compounds [57]. It encourages and uses the structure data file (sdf) format. It has 
a browser developed from open-source tools to search its data files. The files can be 
downloaded into any chemical relational database for chemical analog searching to 
enable model building (Fig. 2.15).

2.1.2.7  Estimation Programs Interface Suite

The Estimation Programs Interface (EPI) suite is a free package to compute descrip-
tors specifically to predict the biodegradability of compounds [58], Fig. 2.16.

The EPI Suite developed by EPA is a physical/chemical property and environ-
mental fate estimation program. EPI Suite uses a set of several estimation programs 
like KOWWIN, AOPWIN, HENRYWIN, MPBPWIN, BIOWIN, BioHCwin, 
KOCWIN, WSKOWWIN, WATERNT, BCFBAF, HYDROWIN, KOAWIN and 
AEROWIN, WVOLWIN, STPWIN, LEV3EPI and ECOSAR. Every module in 
this program and similar programs has its own level of approximation and accuracy.

Fig. 2.15  Structure browser of Distributed Structure-Searchable Toxicity ( DSSTox)
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2.1.3  Virtual Library Generation (Enumeration)

The concept of designing virtual libraries to enhance the diversity of compounds for 
efficient lead generation is well known [59]. A virtual library is composed of scaf-
fold, linkers and functional groups. First, let us see what is a scaffold and what are 
the known scaffold generation tools.

2.1.3.1  Scaffold

The term ‘scaffold’ is used broadly in chemistry; the precise meaning of the word is 
context- and chemist-dependent. Bemis and Murcko outlined a popular method for 
computationally deriving scaffolds from molecules by removing side-chain atoms 
[60]. Atoms in ring systems or linking ring systems, and sp2 atoms directly bonded 
to these atoms, were preserved. Alternative scaffold definitions rely on abstraction 
or decomposing the framework into simpler substructural elements. For example, a 
molecular framework can be interpreted as a graph containing nodes and edges rep-
resenting atom and bond types, respectively. Removing atom and bond labels or ag-
glomerating nodes by chemotype yields a hierarchy of reduced graphs, or molecular 
equivalence classes, that represent sets of related molecules. Likewise, a framework 
can be further decomposed into individual rings (or the core ring assembly) using 
chemically intuitive rules; the rings can individually or jointly be considered as 
scaffolds derived from the original compound.

Fig. 2.16  EPI user interface
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Scaffolds are generally obtained by removing side-chain atoms from molecules 
with the definition of both ‘side chains’ and the equivalence of atoms and rings 
within the scaffolds being dependent on the particular implementation of the algo-
rithm. Scaffolds constitute the major ‘denominator’ in drug design, as evident from 
approaches such as ‘scaffold hopping’, their link to bioactivity patterns and the 
fact that scaffold enumerations (Markush structures) are routinely used for patent-
ing chemical series in the pharmaceutical context. From this, it becomes apparent 
that the scaffold is a truly relevant entity in synthetic organic as well as medicinal 
chemistry.

Open-Source Tools for Scaffold Generation

Scaffold Hunter

Scaffold Hunter is a Java-based open-source tool for the visual analysis of data sets 
with a focus on data from the life sciences, aiming at an intuitive access to large and 
complex data sets [61]. The tool offers a variety of views, e.g. graph, dendrogram 
and plot view, as well as analysis methods, e.g. for clustering and classification. 
Scaffold Hunter has its origin in drug discovery, which is still one of the main appli-
cation areas and is evolved into a reusable open-source platform for a wider range 
of applications. The tool offers flexible plug-in and data integration mechanisms 
to allow adaption to new fields and data sets, e.g. from medical image retrieval. 
Scaffold Hunter is used worldwide in research, both academic and commercial,  
(Fig. 2.17).

Fig. 2.17  Scaffold Hunter 
start-up screen
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OpenEye

BROOD is a software application designed to help project teams in drug discov-
ery explore chemical and property space around their hit or lead molecule [62]. 
BROOD generates analogs of the lead by replacing selected fragments in the mol-
ecule with fragments that have similar shape and electrostatics, yet with selectively 
modified molecular properties. BROOD fragment searching has multiple applica-
tions, including lead hopping, side-chain enumeration, patent breaking, fragment 
merging, property manipulation and patent protection by SAR expansion.

Code Optimized for Scaffold Generation Using Free And Open-Source Tools
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/

package cheminfbook;

import chemaxon.struc.Molecule;
import chemaxon.util.MolHandler;
import chemaxon.sss.search.MolSearch;
import chemaxon.formats.MolImporter;
import java.util.Vector;
import java.io.*;
import joelib.io.*;
import joelib.smiles.*;
import joelib.molecule.JOEMol;
import joelib.molecule.JOEAtom;
import joelib.util.iterator.AtomIterator;
import joelib.molecule.JOEBond;
import joelib.util.iterator.BondIterator;
import java.util.*;
import chemaxon.util.MolHandler;
import chemaxon.struc.Molecule;

/**
*
* @author M Karthikeyan and Renu Vyas
*/

public class Cheminfbook {

/**
* @param args the command line arguments
*/
Cheminfbook() {
}

public static void main(String[] args) {
// TODO code application logic here
Cheminfbook cb = new Cheminfbook();
try {

String smi = "C1C(Br)C(OC)CC(Cl)C1C2=C(C=C)C=CC=C2C3N(C)C3";
Molecule m = MolImporter.importMol(smi);
// m.clean(3, null);
// System.out.println(m.toFormat("
String[] out = cb.getScaffold(smi, true, true);
System.out.println(smi + ">>" + out[0]);

} catch (Exception e) {
System.out.println(e);
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    } 
 
    public static JOEMol ReadSMILES(String smiles, IOType inType, IOType outType) { 
        JOEMol mol = new JOEMol(inType, outType); 
        try { 
            JOESmilesParser.smiToMol(mol, smiles, "."); 
        } catch (Exception e) { 
            System.out.println(e); 
        } 
        mol.addHydrogens(); 
 
        return mol; 
    } 
 
    //== Module to generate scaffold from SMILES format ==// 
    public static String[] getScaffold(String smiles, boolean 
removeAtomAndBondTypes, boolean c_atom) { 
 
        String[] output = new String[5]; 
        output[0] = ""; 
        output[3] = ""; 
        int i = 0; 
        JOEMol mol = ReadSMILES(smiles, 
IOTypeHolder.instance().getIOType("SMILES"), 
IOTypeHolder.instance().getIOType("SDF")); 
        JOEMol framework = (JOEMol) mol.clone(); 
        JOEMol RGp = new JOEMol(); 
        int max = 100; 
        String[] del_bond = new String[max]; 
        framework.deleteHydrogens(); 
        JOEAtom atom; 
        JOEBond bond; 
        int a_cnt = framework.numAtoms(); 
        int b_cnt = framework.numBonds(); 
        String[] at_inf = new String[a_cnt]; 
        int db_cnt = 0; 
        int at_cnt = 0; 
        int[][] da_inf = new int[b_cnt][5]; 
        String[][] db_inf = new String[b_cnt][4]; 
        for (int z = 0; z < b_cnt; z++) { //b_cnt 
            bond = mol.getBond(z); 
            da_inf[z][0] = bond.getBeginAtomIdx(); 
            da_inf[z][1] = bond.getEndAtomIdx(); 
            da_inf[z][2] = bond.getBondOrder(); 
            db_inf[z][0] = bond.getBeginAtom().toString(); 
            db_inf[z][1] = bond.getEndAtom().toString(); 
        } 
        AtomIterator ait; 
        JOEAtom h_atom = new JOEAtom(); 
        h_atom.setAtomicNum(1); 
        boolean atomDeleted; 
        String s = ""; 
        int d = 0; 
        do { 
            atomDeleted = false; 
            ait = framework.atomIterator(); 
            while (ait.hasNext()) { 
                StringBuffer sb = new StringBuffer(); 
                atom = ait.nextAtom(); 
                boolean m = atom.isInRing(); 
                atom.getCIdx(); 
                Vector vectBonds = atom.getBonds(); 
                if (m) { 
                    JOEBond r_bond = (JOEBond) vectBonds.firstElement(); 
                    JOEAtom ra1 = r_bond.getBeginAtom(); 
                    JOEAtom ra2 = r_bond.getEndAtom(); 
                } else { 
                    JOEBond nr_bond = (JOEBond) vectBonds.firstElement(); 
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JOEAtom ra1 = nr_bond.getBeginAtom();
JOEAtom ra2 = 

}

if (vectBonds.size() == 1 && d == 0) {
bond = (JOEBond) vectBonds.firstElement();
if (!(!removeAtomAndBondTypes && atom.isOxygen() && 

bond.isCarbonyl())) {
atomDeleted = true;
JOEAtom a1 = bond.getBeginAtom();
JOEAtom a2 = bond.getEndAtom();
int t1 = a1.getIdx();
int t2 = a2.getIdx();
int c1 = a1.getCIdx();
int c2 = a2.getCIdx();
if (a2.isInRing()) {

da_inf[i][3] = t2;
da_inf[i][4] = t1;
db_inf[i][2] = a2.toString();
db_inf[i][3] = a1.toString();
at_inf[at_cnt] = a1.getType() + "_" + a2.getType();
joelib.util.types.IntInt a = new 

joelib.util.types.IntInt();
a.i1 = a1.getIdx();
a.i2 = a2.getIdx();
RGp.beginModify();
a1.setFormalCharge(0);
RGp.addAtom(a1);
a2.setFormalCharge(0);
RGp.addAtom(a2);
RGp.addBond(bond);
RGp.endModify();
d++;
System.out.println("a2 " + framework + " d " + d);

} else {
da_inf[i][3] = t2;
da_inf[i][4] = t1;
db_inf[i][2] = a2.toString();
db_inf[i][3] = a1.toString();
at_inf[at_cnt] = a1.getType() + "_" + a2.getType();
joelib.util.types.IntInt a = new 

joelib.util.types.IntInt();
a.i1 = a1.getIdx();
a.i2 = a2.getIdx();
RGp.beginModify();
a1.setFormalCharge(0);
RGp.addAtom(a1);
a2.setFormalCharge
RGp.addAtom(a2);
RGp.addBond(bond);
RGp.endModify();
framework.deleteBond(bond);
framework.deleteAtom(atom);

}
i++;

}
}

}
} while (atomDeleted && i < max);
JOEMol e_scaff = (JOEMol) framework.clone();
output[0] = e_scaff.toString(IOTypeHolder.instance().getIOType("SMILES"));
if (removeAtomAndBondTypes) {

BondIterator bit = framework.bondIterator();
JOEAtom atom1;
JOEAtom atom2;
int index;
while (bit.hasNext()) {

bond = bit.nextBond();
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atom1 = bond.getBeginAtom();
atom2 = bond.getEndAtom();
index = bond.getIdx();
bond.set(index, atom1, atom2, 1, 0);

}
ait = framework.atomIterator();
while (ait.hasNext()) {

atom = ait.nextAtom();
atom.setFormalCharge(0);
atom.unsetStereo();
if (!atom.isCarbon() && c_atom) {

atom.setAtomicNum(6);
boolean m = atom.isInRing();
atom.getIdx();

} else if (!atom.isCarbon() && !c_atom) {
JOEMol f_scaff = (JOEMol) framework.clone();

}
}
if (c_atom) {

output[1] = 
framework.toString(IOTypeHolder.instance().getIOType("SMILES"));

} else if (!c_atom) {
output[1] = 

framework.toString(IOTypeHolder.instance().getIOType("SMILES"));
}

}
framework.stripSalts();
mol.deleteHydrogens();
output[2] = "";
for (int l = 1; l < RGp.numAtoms() + 1; l += 2) {

int t1 = (l - 1) / 2;
output[2] += db_inf[t1][2] + "," + db_inf[t1][3] + "," + da_inf[t1][3] 

+ "," + da_inf[t1][4] + "\n";
}
output[3] = "";
for (int l = 0; l < mol.numBonds(); l++) {

output[3] += da_inf[l][0] + "," + da_inf[l][1] + "," + db_inf[l][0] + 
"," + db_inf[l][1] + "," + da_inf[l][2] + "\n";

}
output[4] = (String) 

RGp.toString(IOTypeHolder.instance().getIOType("SMILES"));
return output;

}
}

The above code was used to extract scaffold B from molecule A.

Commercial Tools

ReCore

ReCore replaces a given core: Given a predefined central unit of a molecule (the 
core), fragments are searched in a 3D database for the best-possible replacement—
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while keeping all connected residues, i.e. the rest of the query compound in place 
[63]. Additionally, user-defined ‘pharmacophore’ constraints can be employed to 
restrict solutions. For further details, the reader is encouraged to download the man-
ual from the website address http://www.biosolveit.de/ReCore/ (Fig. 2.18).

Molecular Operating Environment Chemical Computing Group

Scaffold Replacement (or scaffold hopping) is an approach used to discover new 
chemical classes by replacing a portion of a known compound (the scaffold), while 
preserving the remaining chemical groups [64]. This application is built upon 
MOE’s pharmacophore modelling tools. It generates novel structures from all or 
part of a ligand (possibly bound to a receptor). Three types of operations are sup-
ported:

1. Scaffold Replacement: replace a portion of the ligand with a linker
2. Link Multiple Fragments: connect separate fragments with a linker
3. Add Group to Ligand: extend the ligand with a linker

The user indicates the atoms or bonds to be replaced or extended and can specify 
QuaSAR Descriptor, Model file and/or pharmacophore query filters to limit the 
results. For example, a pharmacophore query can be used to enforce specific in-
teractions (or restrictions) on the generated structures when growing in a receptor 
pocket. Scaffold Replacement can be used as part of a ligand-based or structure-
based discovery methodology.

Fig. 2.18  Cutting points in a molecule defined using ReCore
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Using ‘Replace Scaffold (Select Scaffold)’ and selecting the atoms indicated in 
red results in two connection points (indicated by arrows). The R-groups are indi-
cated in black (Figs. 2.19 and 2.20).

Schrodinger

The steps for the two core hopping strategies are given below [65]:

• Start with template with attachment bonds
• … and with protocore with many possible attachments
• Find ways for protocore to align with template

− Two alignments are shown in Fig. 2.21
• Add template’s R groups to the new core

Fig. 2.19  Select red atoms for Replace Scaffold (Select Scaffold)

 

Fig. 2.20  Core hopping module of Schrodinger
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Show 1 linker (maximum) per attachment; default is 2

• All combinations of linkers in all attachment bonds are tested
− Example shows that two attachment points used linkers

• Suite 2012: a variety of linkers available (2011: methylene)

2.1.3.2  Open-Source Tools for Virtual Library Synthesis

SmiLib

SmiLib is a Java-based combinatorial library enumeration tool developed by An-
dreas Schuller [66]. SmiLib v2.0 offers the possibility to construct very large com-

Fig. 2.21  Core hopping methods
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binatorial libraries using the flexible and portable SMILES format. Libraries can be 
created at rates of approximately 8,700,000 molecules per minute. Combinatorial 
building blocks are attached to scaffolds by means of linkers to allow for creation of 
customized libraries using linkers of different sizes and chemical nature. Important 
features include platform independence, correct handling of stereo chemistry, flex-
ible reaction schemes, improved usability, a unique identifier for each molecule, the 
option to create libraries in SD format, a conformity check for SmiLib v2.0 SMILES 
notation restrictions and decreased library enumeration times. SmiLib v2.0 is avail-
able in both formats as interactive GUI application and command line tool. The 
main advantages of SmiLib are its simplicity to use, high flexibility in construct-
ing combinatorial libraries (exact subset of molecules for virtual synthesis can be 
specified) and high speed of library construction [67]. The SMILES format is used 
as both input and output format. SmiLib uses a special syntax for ring closures, i.e. 
any two-digit number preceded by a percentage sign. For example, ‘C%10.C%10’ 
≡ ‘C1.C1’ ≡ ‘CC’ (Ethane C2H6). In addition to normal SMILES, [R1], [R2], [R3], 
etc. are used as labels for sites of variability and [A] is used as a label for attach-
ment sites. An attachment site is part of the molecule, which is to be attached to a 
scaffold or a linker. It is a platform-independent program written in Java; SmiLib 
is run with help of the Java virtual machine with ‘java –jar SmiLib.jar’. It requires 
three American Standard Code for Information Interchange (ASCII) files contain-
ing all scaffold, linker and building block molecule fragments in SMILES format 
(command line parameters -s<scaffolds.smi>, -l<linkers.smi>, -b<buildingblocks.
smi>). A reaction scheme file for the enumeration of a combinatorial library can be 
specified with the option ‘-r<reaction_scheme>’ (Fig. 2.22).

Fig. 2.22  Graphical user interface ( GUI) of SmiLib showing 10,800 molecules created by using 
three scaffolds, six linkers and ten building blocks
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Molecular Operating Environment Chemical Computing Group

In MOE, a proprietary software is also supplied with a combinatorial library genera-
tion tool [68]. A combinatorial library is specified by:

• A database of scaffold molecules or a single scaffold molecule
• Databases of functional groups
• Connection information specifying where the functional groups attach on each 

scaffold

Attachment Points A single combinatorial product is constructed by attaching 
R-groups to a scaffold at marked attachment points, called ports. The entire combi-
natorial library is enumerated by exhaustively cycling through all combinations of 
R-groups at every attachment point on every scaffold. The virtual library is written 
to an output database. Attachment points are terminal atoms named ‘An’, where n is 
a positive integer. In the QuaSAR-CombiGen panel, n is limited to the range [0 … 9].  
When using the scientific vector language (SVL) command QuaSAR_CombiGen, 
however, n can be in the range [0 ... 999]. If the terminal atom is attached to the 
main molecule by a higher-order bond, substitution will be made through a bond of 
the same order. Note that the bond order at the scaffold attachment point must agree 
with that at the R-group attachment point: Either at least one of the bond orders 
must be 1 (single bond) or both must be of the same order. Fragment molecules are 
created by appropriately naming atoms at the desired points of substitution. One 
can use the Builder to perform this operation and the Clip R-Groups application in a 
database can be used to create fragments with named attachment points.

Attachment points must be specified on both the R-group and the scaffold mol-
ecule (Fig. 2.23).

2.1.4  Virtual Screening

Bio- and chemoinformatics are crucial for the success of virtual screening of com-
pound libraries which is an alternative and complementary approach to HTS in the 
lead discovery process [69]. A combination of drug-derived building blocks and a 
restricted set of reaction schemes is the key for the automatic development of novel, 
synthetically feasible structures that can be docked into the active site of a drug 
target for lead identification using computers which is the essence of virtual screen-
ing [70]. The virtual screening of combinatorial libraries is used to rationally select 
compounds for biological in vitro testing from databases of hundreds of thousands 
of compounds. In addition to structural descriptors, such as fingerprints and phar-
macophores, the application of relatively simple structural descriptors traditionally 
used in quantitative structure–activity studies offers speed and efficiency for rapidly 
measuring the molecular diversity of such collections capable of screening large 
data sets of organic compounds for potential ligands. The methods described in 
this section are used for computationally prioritising candidate molecular libraries 
for synthesis and screening by using certain filters. These statistical methods are 
powerful because they provide a simple way to estimate the properties of the overall 
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library without explicitly enumerating all of the possible products. Current virtual 
screening applications focus not only on biological activity but also on other rel-
evant properties of drug candidates, like ADME. In the first step of virtual screen-
ing, the prediction algorithm must be very fast because typically several millions 
of compounds have to be processed to generate hit lists of molecules which can be 
further subjected to actual experimental confirmation in laboratory.

A typical virtual screening workflow in a drug design experiment involves the 
following steps:

1. Scaffold extraction from a data set of molecules.
2. Use these scaffolds as seeds to enumerate a virtual library by supplying linkers 

and functional groups.
3. Apply any of the filters below either independently or in combination depend-

ing upon prior knowledge (Rule of five(RO5) Lipinski Pharmacophore model 
QSAR Docking Select Hits or no hits) (Fig. 2.24).

Fig. 2.23  Virtual library synthesis in Molecular Operating Environment ( MOE) using CombiGen
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2.1.4.1  Free Virtual Library Screening Platforms

Screening Assistant 2

Screening Assistant 2 (SA2) is a modular software dedicated to perform various 
simple and advanced chemoinformatics analysis around chemical libraries [69], 
Fig. 2.25.

SA2 is a free and open-source Java software dedicated to the storage and the 
analysis of small to very large chemical libraries. SA2 stores unique chemical 
structures using a MySQL database and associates to the molecules various stan-
dard precomputed descriptors as well as user-defined properties/descriptors that 
can be imported in a flexible way. Various standard and advanced chemoinfor-
matics methods have been implemented, including chemical space visualization/
creation, substructure and similarity searches, diverse subset extraction and diver-
sity indices calculation. Its modular architecture, based on the NetBeans Platform, 
eases the addition of new functionalities to the software. The program and source 
code are freely available (GPL), The system is programmed in Java and data are 
managed by a MySQL server. The software allows to calculate drug-like and lead-
like properties, as well as to study the libraries in terms of uniqueness, of internal 
duplicates, diversity and frameworks (http://www.univ-rleans.fr/icoa/screeningas-
sistant/). The software is available on Sourceforge: http://sourceforge.net/projects/
screenassistant.

Fig. 2.24  A general virtual screening protocol
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Fig. 2.26  A screenshot of PyRx platform

 

PyRx

PyRx is a free and open-source software for computer-aided drug design distrib-
uted under Simplified BSD License [70]. PyRx is a Virtual Screening software for 
Computational Drug Discovery that can be used to screen libraries of compounds 
against potential drug targets. PyRx enables medicinal chemists to run virtual 
screening from any platform and helps users in every step of this process—from 
data preparation to job submission and analysis of the results. PyRx includes a 
docking wizard with easy-to-use user interface which makes it a valuable tool for 
computer-aided drug design. PyRx also includes chemical spreadsheet-like func-
tionality and powerful visualization engine that are essential for rational drug de-
sign (Fig. 2.26).

A number of open-source software are used such as AutoDock 4 and AutoDock 
Vina for docking AutoDockTools to generate input files, Python as a programming/
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scripting language, wxPython for cross-platform GUI, the Visualization ToolKit 
(VTK) by Kitware Inc, Enthought Tool Suite, including Opal Toolkit for running 
AutoDock remotely using web services, Open Babel for importing SDF files, re-
moving salts and energy minimization and matplotlib for 2D plotting.

In-House-Developed Virtual Screening Platform

ChemScreener It is a Java-based platform developed to create diverse but focussed 
libraries. Tools like SmiLib do not take into account chemical or physico-chemical 
characteristics of products but rather simply concatenate scaffold molecules and 
building blocks with single bonds [71]. Often, the libraries created are huge but 
not chemically meaningful to develop a lead molecule. ChemScreener provides 
three main modules to use a scaffold extractor: library generator, a screener which 
screens the library for the presence of pharmacophoric, chemophoric and toxico-
phoric features.

The scaffold extractor generates scaffolds, extended scaffolds and frameworks. 
The extended scaffolds, unlike the conventional Bemis Murcko scaffold [72], retain 
connection information and are used in focussed library synthesis (Fig. 2.27).

In the medicinal chemistry literature, a number of substructures have been iden-
tified as toxicophores, such as some aromatic amines, azides, diazo structures, 
triazenes, aromatic azo moieties, aromatic hydroxylamines, aliphatic halides, etc. 
‘Chemophores’ refer to substructural groups which are too reactive or inert or syn-
thetically inaccessible, which would lead to practically irrelevant molecules. Me-
dicinal chemists design compounds on the basis of chemophoric features; for in-
stance, the presence of OMe group in a molecule is generally known to enhance its 
bioactivity, alkyl groups are introduced to increase selectivity, a fluoro group for 
metabolic stabilization whereas a nitro group will impact the activity in an adverse 
way which implies later side effects in drug efficacy. Toxicophores were collected 
from literature databases such as RTECS [73], NIOSHTIC [74], EPA and pharma-
cophores and chemophores were extracted from literature. This program provides 
an alert indicating the number of chemophore, toxicophore and pharmacophore 
matches to assist in fine-tuning the library generated. The virtual library can also be 
screened on the basis of binding affinity-based filters provided the target structure 

Fig. 2.27  A comparison of Bemis Murcko scaffold and ChemScreener scaffold
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Fig. 2.28  Homepage of in-house-developed ChemScreener virtual screening platform

 

or a good homology model is available as ChemScreener can be complemented 
with docking-based screening tools such as Autodock 4.0 (Fig. 2.28).

A virtual library of 150 million antipsychotic molecules of 2 GB file size was 
generated from four seed scaffolds using the ChemScreener program which is cur-
rently not possible with the existing software. It could also reveal significant bioac-
tivity data patterns from scaffold extraction in big databases like PubChem[75] and 
ChEMBL [76], (Fig. 2.29).
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2.1.5  Thumb Rules for Computing Molecular Properties

• Check the list of molecules for their proper connectivity
• Remove salts, multiple molecules (retain only the large molecule from a mixture 

of molecule)
• Avoid using too small or too big molecules in the collection (as input for auto-

matic focussed virtual library generation)
• Compute basic descriptors related to Lipinski’s rule of five in addition to TPSA, 

Volume, Weinerpath
• Do 2D and 3D PCA to evaluate diversity and similarity of molecules in the col-

lection
• Do not put too many hydrogen bond acceptor and donor atoms into a molecule, 

otherwise it will not be absorbed from the intestine to the blood and fail in the 
preclinical trials

• Apart from the usual Lipinski and Oprea criteria for selection of lead molecules, 
also search in natural and marine products databases which offer more chemical 
diversity and unexplored rich functional group variety

• Design molecules with NP scaffolds and functional groups for better bioactivity 
(based on early reports) and more scope for patenting

2.1.6  Do it Yourself

1. Use the relevant code given in the text to extract scaffolds from SMILES of top 
ten drugs in the market

2. Retrieve ten drug molecules from drug bank database and ten known pesticides, 
calculate Lipinski’s drug-like properties, ADMET and biodegradability param-
eters using any of the free online tools. Comment on the results

3. Generate a virtual library using SmiLib from molecules belonging to anti-angi-
nal compounds

Fig. 2.29  Flowchart to create a focussed and diverse library of antipsychotic molecules
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2.1.7  Questions

1. Write a brief essay on the known property prediction tools in chemoinformatics.
2. How is a virtual library constructed? What are the methods known to screen a 

virtual library?
3. How do you obtain a diverse but focussed virtual library for a class of therapeutic 

compounds?
4. Define scaffold hopping. Highlight the tools which can be used for scaffold 

hopping.
5. What is a scaffold? Elaborate on the known methods of scaffold extraction.

References

 1. Leo A, Hansch C, Church C (1969) Comparison of parameters currently used in the study of 
structure-activity relationships. J Med Chem 12:766–771

 2. Admason GW, Bawdon D (1976) An empirical method of structure-activity correlation for 
polysubstituted cyclic compounds using wiswesser line notation. J Chem Inf Comput Sci 
16(3):161–165

 3. Choplin, F (1990) Computers and the medicinal chemist. In: Hansch C, Sammes PG, Taylor 
JB (eds) Comprehensive Medicinal Chemistry Pergamon Press, UK 4:33–58

 4. Tropsha A, Gramatica P, Gombar V (2003) The importance of being earnest: validation is the 
absolute essential for successful application and interpretation of QSPR models. Mol Inform 
22(1):69–77

 5. http://www.moleculardescriptors.eu/
 6. Seybold PG, May M, Bagel UA (1987) Molecular structure property relationships. J Chem 

Educ 64(7):575
 7. Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics, vol 2. Wiley-

VCH
 8. Karelson M (2000) Molecular descriptors in QSAR/QSPR. Wiley
 9. http://www.vcclab.org/lab/indexhlp/consdes.html
10. http://www.codessa-ro.com/descriptors/electrostatic/index.htm
11. Balaban AT (1997) From chemical topology to three dimensional geometry. Plenum Press, 

New York, 1–24
12. Karelson M, Lobanov V, Katritzky AR (1996) Quantum chemical descriptors in QSAR/

QSPR studies. Chem Rev 96:1027–1043
13. Enoch SJ (2010)The use of quantum mechanics derived descriptors in computational toxicol-

ogy. In: Puzyn T et al (ed) Challenges and advances in computational chemistry and physics, 
vol 8. Springer Science pp 24–27

14. Stanton D (1999) Evaluation and use of BCUT descriptors in QSAR and QSPR studies. J 
Chem Inf Comput Sci 39(1):11–20

15. Ma SL, Joung JY, Lee S, Cho KH, No KT (2012) PXR ligand classification model with SFED 
weighted WHIM and CoMMA descriptors. SAR QSAR Environ Res 23(5–6):485–504

16. http://rdkit.org/docs/api/rdkit.Chem.MACCSkeys-pysrc.html
17. Todeschini R, Bettiol C, Giurin G, Gramatica P, Miana P, Argese E (1996) Modeling and 

prediction by using WHIM descriptors in QSAR studies: submitochondrial particles(SMP) 
as toxicity biosensors of chlorophenols. Chemosphere 33:71–79



2 Chemoinformatics Approach for the Design and Screening of Focused …130

18. Hinselmann G, Rosenbaum L, Jahn A, Fechner N, Zell AJ (2011) Compound Mapper: an 
open source JAVA library and command line tool for chemical fingerprints. J Chemoinfor-
matics 3:3

19. Rogers D, Mathew H(2010) Extended connectivity fingerprints. J Chem Inf Model 
50(5):742–754

20. Bender A, Hamse Y, Mussa HY, Glen C (2010) Similarity searching of chemical databases 
using atom environment descriptors (Molprint 2D) evaluation of performance. J Chem Inf 
Comput Sci 44:1708–1718

21. Deursen R, Blum Lorenz CB, Reymond JL (2010) A searchable map of PubChem. J Chem 
Inf Model 50(11):1924–1934

22. Chemscreener unpublished results
23. Jorgenson WL, Duffy EM (2002) Prediction of drug solubility from structure. Adv Drug 

Deliv Rev 54:355–366
24. Livingstone DJ, Waterbeemd VD, Han I (2009) In silico prediction of human oral bioavail-

ability. Method Prin Med Chem 40:433–451
25. Persson LC, Porter CJ, Charman WN, Bergstrom CA (2013) Computational prediction of 

drug solubility in lipid based formulation excipients. Pharm Res PMID:23771564
26. Faller B, Ertl P (2007) Computational approaches to determine drug solubility. Adv Drug 

Deliv Rev 59:533–545
27. Cortes-Cabrera A, Morris GM, Finn PW, Morreale A, Gago F (2013) Comparison of ultra fast 

2D and 3D descriptors for side effect prediction and network analysis in polypharmacology. 
Br J Pharmacol. doi:10.1111/bph.12294

28. Rice BM, Byrd EF (2013) Evaluation of electrostatic descriptors for crystalline density. 
Langmuir

29. Garcia EJ, Pellitero PJ, Jallut C, Pirngruber GD (2013) Modeling adsorption properties on the 
basis of microscopic, molecular structural descriptors for non polar adsorbents. J Chem Inf 
Model

30. Wegner JK, Zell A (2003) Prediction of aqueous solubility and partition coefficient opti-
mized by genetic algorithm based descriptors selection method. J Chem Inf Comput Sci 
43(3):1077–1084

31. Steinbeck C, Hoppe C, Kuhn S, Matteo F, Guha R, Willighagen EL (2006) Recent develop-
ment of the CDK (Chemistry Development Kit) an open source JAVA library for chemo and 
bioinformatics. Curr Pharm Design 12(17):2111–2120

32. http://www.rguha.net/code/java/cdkdesc.html
33. Steinbeck C (2008) Open toolkits and applications for chemoinformatics teaching Abstracts 

of Papers, 235th ACS National Meeting, New Orleans, LA, United States, April 6–10
34. http://padel.nus.edu.sg/software/padeldescriptor/
35. Yap CW (2011) Padel descriptor an open source software to calculate molecular descriptors 

and fingerprints. J Comput Chem 32(7):1466–1474
36. http://nisla05.niss.org/PowerMV/?q=PowerMV
37. Liu K, Feng J, Young SS (2005) A software environment for molecular viewing, descriptor 

generation, data analysis and hit evaluation. J Chem Inf Model 45(2):515–522
38. http://www.chemaxon.com/marvin/help/calculations/calculator-plugins.html
39. http://cheminformatics.org/datasets/
40. Xueliang L, Yongtang S, Wang L (2012) On a relation between randic index and algebraic 

connectivity. Match 68(3):843–839
41. Ivanciuc O, Ivanciuc T, Douglas KJ, William SA, Balaban T (2001) Wiener index extension 

by counting even/odd graph distances. J Chem Inf Model 41(3):536–549
42. Benet LZ, Broccatelli F, Oprea TI (2011) BDDCS applied to over 900 drugs. AAPS J 

13(4):519–547
43. Lu D, Chambers P, Wipf P, Xie X-Q, Englert D, Weber S (2012) Lipophilicity screening of 

novel drug like compounds and comparison to clogp. J Chromatogr A 1258:161–167
44. http://www.eyesopen.com/oechem-tk
45. QikProp (2012) version 3.5, Schrödinger, LLC, New York



References 131

46. Kerns E, Li D (2010) Drug like properties, concepts, structure design and methods. Academic 
Press

47. LigPrep (2012) version 2.5, Schrödinger, LLC, New York
48. Molecular Operating Environment (MOE) (2012)10; Chemical Computing Group Inc., 1010 

Montreal, QC, Canada, H3A 2R7, 2012
49. Gerardo CMM, Yovani MP, Khan MTH, Arjumand A, Khan KM, Torrens F, Rotondo R 

(2007) Dragon method for finding novel tyrosinase inhibitors biosilico identification and 
experimental in vitro assays. Eur J Med Chem 42(11–12):1370–1381

50. http://accelrys.com/products/discovery-studio/admet.html
51. Karthikeyan M, Krishnan S, Pandey AK, Bender A, Tropsha A (2008) Distributed chemical 

computing using ChemStar: An open source java remote method invocation architecture ap-
plied to large scale molecular data from pubchem. J Chem Inf Model 48(4):691–703

52. http://www.molinspiration.com/
53. http://www.pharmaexpert.ru/passonline/
54. Lusci A, Pollastri G, Baldi P (2013) Deep architectures and deep learning in Chemoin-

formatics: the prediction of aqueous solubility for drug like molecules. J Chem Inf Model 
53(7):1563–1575

55. Sorana BD, Lorentz J (2011) Predictivity approach for quantitative structure prediction mod-
els: application for blood barrier permeation for diverse drug like compounds. Int J Mol Sci 
12(7):4348–4386

56. www.preadmet.bmdrc.org/
57. http://www.epa.gov/ncct/dsstox/
58. http://www.epa.gov/opptintr/exposure/pubs/episuite.htm
59. Ulrich A, Koch C, Speitling M, Hansske FG (2002) Modern methods to produce natural-

product libraries. Curr Opin Chem Biol 6(4):453–458
60. Bemis GW, Murcko MA (1999) Properties of known drugs, 2: Side chains. J Med Chem 

42(25):5095–5099
61. Wetzel S, Karsten K, Renner S, Rauh D, Oprea TI, Mutzel P, Waldmann H (2009) Interactive 

exploration of chemical space with scaffold hunter. Nat Chem Biol 5(9):696
62. http://www.eyesopen.com/brood
63. Van Drie JH (2009) ReCore. J Am Chem Soc 131(4):1617
64. http://www.chemcomp.com/journal/newscaffold.htm
65. Core Hopping (2011), version 1.1, Schrödinger, LLC, New York
66. Schuller A, Hahnke V, Schneider G (2007) SmiLib v2.0: A Java-Based Tool for Rapid Com-

binatorial Library Enumeration. QSAR Comb Sci 3:407–410
67. http://gecco.org.chemie.uni-frankfurt.de/smilib/
68. http://www.chemcomp.com/MOE-Cheminformatics_and_QSAR.htm#CombinatorialLibrar

yDesign
69. Tropsha A (2008) Integrated chemo and bioinformatics approaches to virtual screening. In: 

Tropsha A, Varnek A (ed) Chemoinformatics approaches to virtual screening. SC Publishing, 
pp 295–325

70. Perola E, Xu K, Kollmeyer TM, Kaufmann SH, Prendergast FG, Pang Y-P (2000) Successful 
virtual screening of a chemical database for farnesyl transferase inhibitor leads. J Med Chem 
43(3):401–408

71. Oprea TI (2002) Virtual screening in lead discovery a viewpoint. Molecules 7:51–62
72. Unpublished results
73. http://www.cdc.gov/niosh/rtecs/default.html
74. http://www2a.cdc.gov/nioshtic-2/
75. http://pubchem.ncbi.nlm.nih.gov/
76. https://www.ebi.ac.uk/chembl/



133

Chapter 3
Machine Learning Methods in 
Chemoinformatics for Drug Discovery

M. Karthikeyan, R. Vyas, Practical Chemoinformatics, 
DOI 10.1007/978-81-322-1780-0_3, © Springer India 2014

Abstract It is well known that the structure of a molecule is responsible for its bio-
logical activity or physicochemical property. Here, we describe the role of machine 
learning (ML)/statistical methods for building reliable, predictive models in che-
moinformatics. The ML methods are broadly divided into clustering, classification 
and regression techniques. However, the statistical/mathematical techniques which 
are part of the ML tools, such as artificial neural networks, hidden Markov models, 
support vector machine, decision tree learning, Random Forest and Naive Bayes 
and belief networks, are best suited for drug discovery and play an important role 
in lead identification and lead optimization steps. This chapter provides stepwise 
procedures for building ML-based classification and regression models using state-
of-art open-source and proprietary tools. A few case studies using benchmark data 
sets have been carried out to demonstrate the efficacy of the ML-based classifica-
tion for drug designing.

Keywords Machine learning · Neural networks · SVM · SVR · Genetic programming ·  
Chemoinformatics · Drug design

3.1  Introduction

Statistical and machine learning (ML) methods have often been employed in che-
moinformatics especially for drug design studies. While there is some amount of 
overlap between both the domains, there are many subtle differences, the most im-
portant one being that while the former methods are used for drawing inference 
from the data the latter are used for building predictive models from the data [1]. A 
list of commonly used statistical and ML-based methods used in drug design con-
text is provided here (Fig. 3.1).

As statistics is a very vast domain, here in this chapter, we will focus mainly on 
the ML-based methods and tools with suitable worked-out examples using real data 
sets. Experimental chemists and biologists are interested in the properties of the 
chemicals and their response to biological systems in both beneficial and adverse 
effects contexts. Several research groups across the world have compared chemical 
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and drug databases to identify the molecular descriptors that can be used to classify 
molecules as drugs/nondrugs and toxins/nontoxins [2].

3.2  Machine Learning Models for Predictive Studies

In the context of drug design, biological activity is a function of the descriptor or 
property, so the general form of a ML model can be given as:

y f x d= ( , )

where x represents an N-dimensional vector ( X = [X1,X2……,Xn]
T) of descriptors 

(model inputs).
x refers to model parameters and y denotes model output describing activity/

property/toxicity (Fig. 3.2).
The main task of ML models in drug design context is to distinguish between 

active and inactive molecules in a given database. There are generally two types of 
models that can be developed, viz. continuous and binary, depending upon the type 

Fig. 3.1  Commonly 
employed statistical and 
machine learning methods in 
chemoinformatics
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of bioassay data available. In a continuous model, it is possible to predict the model 
output in a range using a regressor, whereas in a binary model built using a classi-
fier, the outcome would be either ‘yes’ or ‘no’.

The major ML-based predictive models in drug design comprise the following 
four categories:

1. Quantitative Structure–Activity Relationship (QSAR) Models

The bioactivities generally modelled are half maximal inhibitory concentration 
(IC50), minimum inhibitory concentration (MIC) and half maximal effective con-
centration (EC50) obtained in biological assays; statistical methods used in QSAR 
studies are principal component analysis, partial least squares, Kohonen neural net-
work, artificial neural network, etc. [3].

2. Quantitative Structure–Property Relationship (QSPR) Models

QSPR models are built generally for correlating some properties of the molecule 
like melting point, boiling point, λmax solubility, etc. [4].

3. Quantitative Structure–Toxicity Relationship (QSTR) Models

The LD50 and TD50 are, respectively, the lethal and toxic median dose parameters 
important for medicinal purposes, and hence many efforts have been devoted to 
build predictive models. Toxicity is another important parameter which needs to be 
assessed from molecular structures [5].

4. Quantitative Structure–Biodegradability Relationship (QSBR) Models

Structures are also correlated with the environmental biodegradability of a mol-
ecule. Thus, in view of increasing environmental legislation [6], QSBR models play 
an important role in predicting the biodegradability of a molecule.

The applicability domain is one of the most important factors which should be 
taken into consideration while building mathematical models or while applying the 
prebuilt models for predictive studies [7]. Explaining outliers in the training set, 
test set and predicted set is one of the requirements in modern structure–property–

Fig. 3.2  Machine learning for drug design experiments
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activity relationship studies [8]. The benchmarked data sets for binary (active, inac-
tive) and continuous outputs pertaining to QSAR and QSPR studies are available 
at http://www.chemoinformatics.org site and uci ML repository for downloading.

3.3  Machine Learning Methods

ML is a branch of artificial intelligence, which is concerned with the construction 
and study of computational systems that can learn from data [9]. A ML system could 
be trained based on properties and features and on the basis of that information, 
predictions can be done. The aim of ML is to teach a machine to learn from experi-
ences, i.e. to feed it with a set of example objects and, based on the information 
content thereof, to build a classifier or a predictive model [10] (Fig. 3.3).

The ML-based classifiers can be divided into the following types:

1. Supervised Learning Algorithms [11]

They mainly consist of a training data set and analyse this training data to learn 
relationships between data elements to produce an inferred function. They involve 
algorithms such as Bayesian statistics, decision tree (DT) learning, support vector 
machine (SVM), random forest (RF) and nearest neighbour algorithms.

2. Unsupervised Learning Algorithms [12]

In this type of algorithm, there is no ‘supervising’ (as in supervised learning) label 
data in the training set to figure out the hidden structure within the unlabelled data 

Fig. 3.3  Types of machine learning approaches and their methods
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set. This mainly involves clustering techniques like K-means, mixture model and 
hierarchical clustering.

3. Semi-supervised Algorithms [13]

This class of ML algorithms uses both labelled and unlabelled data sets and falls 
between supervised learning and unsupervised learning algorithms.

In drug discovery, new drugs are designed to interact with the disease/disorder-
related or disorder-related molecules and to avoid interaction with the other mol-
ecules vital for normal functioning in the human body. Computer-aided screening of 
drugs heavily relies on various filters, whose aim is to retain drug-like compounds 
and discard those unlikely to be the drugs. These stepwise filtering processes in-
crease the complexity and specificity of filters. Most of the algorithms behind these 
computer-aided filters are ANN based since ANNs are relatively easy to use, ef-
ficient and versatile tools. They also possess some drawbacks associated with this 
prediction method [14]. Among them are (1) the ‘black-box’ character of ANN, 
which may hamper the interpretation of derived models and fine-tuning; (2) the 
risk of overfitting (i.e. ability to fit to training data noise rather than to true data 
structure, thereby resulting in poor generalization); and (3) a relatively long train-
ing time.

ANNs, support vector regression (SVR) and genetic programming are exclusive-
ly data-driven modelling formalisms that enable a computing machine to capture 
(learn) relationships existing between input and output variables of an example data 
set [15]. The k-nearest neighbour (kNN) algorithm is a nonparametric supervised 
learning algorithm with the underlying principle that the data instances belonging 
to the same class should lie closer to the feature space [16]. The Naive Bayes (NB) 
classifier is a simple inductive-learning probabilistic classifier based on the Bayes’ 
theorem with strong (naive) independence assumptions based on conditional prob-
abilities [17]. DTs are simple predictive models generated by the algorithms that 
identify various ways of splitting a data set into branch-like structures which form 
an inverted DT originating from a root node at the top of the tree [18].

The strong ML classifiers such as SVM and RF can be used in drug designing 
[19]. The RF paradigm belongs to a class of methods known as ‘ensemble learning’ 
that generates a number of classifier models and aggregates their results [20].

It is another method for classification and regression which operates by con-
structing a DT. The framework of an RF method consists of several parts which 
can be mixed and matched to create a large number of specific models. It grows 
many DTs, to classify a new object from an input vector and to put the input vec-
tor in each of the trees in the forest. Each tree provides a classification and ‘votes’ 
are assigned to each class and RF finally chooses the classification possessing the 
maximum votes [21].

The support vector machine (SVM) is a statistical learning theory-based non-
probabilistic binary linear classifier and its analogue termed support vector regres-
sion (SVR) performs regression and density estimation [22]. Given an example 
set consisting of data belonging to two categories, the SVM’s supervised training 
algorithm learns the underlying binary classification, and, post training, the SVM 
is capable of assigning their correct classifications to the new data. Typically, SVM 
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(SVR) maximizes the prediction accuracy of the classifier (regression) model while 
simultaneously escaping from data overfitting. In SVM, the inputs are first nonlin-
early mapped into a high-dimensional feature space (Φ) wherein they are classified 
using a linear hyperplane (Fig. 3.4).

Thus, the SVM is a linear method in a high-dimensional feature space, which 
is nonlinearly related to the input space. Though the linear algorithm works in the 
high-dimensional feature space, in practice it does not involve any computations in 
that space, since through the usage of the ‘kernel trick’ all necessary computations 
are performed directly in the input space [23].

Consider a two-class data set that is linearly separable as shown in Fig. 3.5. The 
SVM constructs an N-dimensional hyperplane (or a set of hyperplanes in a high-
dimensional space), to optimally separate data into two categories. From among 
various alternatives, it locates the hyperplane in a manner such that a good separa-
tion is realized between the two classes. This is achieved by placing the hyperplane 
at the largest distance from the nearest training data point belonging to any class.

Fig. 3.4  Schematic showing SVM-based binary classification by mapping the original data into 
high-dimensional feature space

 

Fig. 3.5  a A schematic of possible hyperplanes for linearly separable data. b Optimum hyperplane 
located by SVM and the corresponding support vectors
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In effect, the maximum margin, i.e. optimal hyperplane, is the one that gives 
the greatest separation between the classes. The data points that are closest to the 
optimal hyperplane are called ‘support vectors (SV)’. In each class, there exists at 
least one SV; very often there are multiple SVs. The optimal hyperplane is uniquely 
defined by a set of SVs. As a result, all other training data points can be ignored.

The SVM formulation follows structural risk minimization (SRM) principle, as 
opposed to the empirical risk minimization (ERM) approach commonly employed 
within statistical ML methods and also in training ANNs. In SRM, an upper bound 
on the generalization error is minimized as opposed to the ERM, which minimizes 
the prediction error on the training data. This equips the SVM with a greater poten-
tial to generalize the classifier function learnt during its training phase for making 
good classification predictions for the new data. An in-depth discussion of SVM 
and SVR can be found in a number of important publications [24, 25].

The SVM possesses some desirable characteristics such as good generalization 
ability of the classifier function, robustness of the solution, sparseness of the classi-
fier and an automatic control of the solution complexity. Moreover, the formalism 
provides an explicit knowledge of the data points (termed ‘support vectors’), which 
are important in defining the classifier function. This feature allows an interpreta-
tion of the SVM-based classifier model in terms of the training data. Robustness of 
SVM is achieved by considering absolute, instead of quadratic, values of the errors. 
As a consequence, the influence of outliers is less pronounced [26].

3.4  Open-Source Tools for Building Models for Drug Design

There exist a number of software suites/packages to implement ML. The best part is 
many of them are available as open-source tools. Few of the important ML suites/
packages are discussed here.

3.4.1  Library for Support Vector Machines (LibSVM)

It is an integrated software for SVM classification, regression and distribution esti-
mation [27]. It also supports multi-classification. A LibSVM mainly includes:

• SVM formulation
• Efficient multi-classification
• Cross-validation for model selection
• Probability estimates
• Various kernels

A LibSVM package mainly includes the following:

1. Main directory: Core C/C++ programs and sample data. The files svm and cpp 
implement training and testing algorithms.
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2. Tool sub-directory: Includes tools for checking and selecting SVM parameters.
3. Other sub-directories contain pre-built binary files and interfaces to other 

languages.

There are some other useful utilities in the LibSVM package, which are as follows:
In the LibSVM package, svm-scale is a tool for scaling input data file and svm-

train comprises certain parameters depending on which the data are classified which 
mainly involve:

a. s svm_type: Set type of SVM (default 0), where 0 and 1 are for multi-class 
classification, 2 is for one-class SVM, 3 is for regression and 4 is for nu-SVR 
(regression).

b. t kernel_type: Set type of kernel function (default 2), where 0 is for linear, 1 for 
polynomial, 2 for radial basis, 3 for sigmoid and 4 for precomputed kernel.

c. d degree: Set degree in kernel function (default 3).
d. g gamma: Set gamma in kernel function.
e. b probability_estimates: Whether to train a support vector classification (SVC) 

or SVR model for probability estimates, 0 or 1.
f. wi weight: Set the parameter C of class i to weight *C, for C-SVC.
g. v n: n-fold cross-validation mode.
h. q quiet mode (no outputs)

The steps for building a radial basis function (RBF) kernel-based SVM model using 
LibSVM are enumerated here (Fig. 3.6).

When a data set contains a large (inputs) number of features in it, it is possible 
that many of those features are noisy or they do not contribute significantly towards 
the classification of the data. It thus becomes important to extract only the relevant 
features and remove the noisy ones. For example, in drug designing, many descrip-
tors (which are considered as features in SVM) may not contribute towards classi-
fiers’ ability to distinguish between drugs and nondrugs. Those descriptors can be 
removed from the data set.

For the extraction of influential features priority-wise, i.e. ranking of features ac-
cording to their contribution towards the classification, a technique called Informa-
tion Gain or Infogain is used for SVM [28]. InfoGain is a Waikato Environment for 
Knowledge Analysis (WeKa) [29] implementation, which is a measure of the con-
tribution of a particular feature to the model. To run a particular set of data in SVM, 
a particular file format is required, which is called as LibSVM format. This format 
can be obtained by converting a comma-separated value (CSV) file by implement-
ing a code in Matrix Laboratory (MATLAB). LibSVM is a format accepted by the 
LibSVM software, which numbers each feature for a particular sequence followed 
by a colon (:).

This is the input file format of SVM.
[label] [index1]:[value1] [index2]:[value2] ...
[label] [index1]:[value1] [index2]:[value2] ...
Before proceeding with SVM-based classification, label the data set, i.e. label 

the positive data as ‘1’ and negative data as ‘0’. Labelling can be done by assigning 
positive data as +1 and negative data as −1.
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Label: Sometimes referred to as ‘class’, the class (or set) of your classification, 
which we usually put as integers. Index: Ordered indexes, which are usually con-
tinuous integers. Value: The data for training which are usually lots of real (floating 
point) numbers.

3.4.2  Waikato Environment for Knowledge Analysis (WeKa)

The WeKa is a popular suite of a large number of feature selection, clustering, 
classification, association rule mining, regression, etc. [30]. It is best used for data 
exploration and comparing different ML techniques on the same platform. It has 
been written in Java and is a freely available software under GNU (General Public 
License). It contains a collection of tools and algorithms for data analysis. Data 
preprocessing, clustering, classification, regression, visualization and feature selec-
tion can be performed using WeKa. WeKa’s main user interface is ‘Explorer’ (see 
Fig. 3.7).

Fig. 3.6  Support vector machine ( SVM) model building steps in LibSVM
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WeKa uses a specific file format, Attribute Relationship File Format (ARFF).

• It is a text file format to store data in a database and has two sections: header and 
data section.

• The first line of the header represents the relation name.
• Below header is the list of the attributes (@attribute…) and each attribute is as-

sociated with a unique name and a type. It describes the kind of data present in 
the variable and what values it can have.

• The variables can be numeric, nominal, string and date.
• The header section can also have some comment lines, which is identified with a 

‘%’ sign at the beginning and can also describe the database content or give the 
reader information about the author.

Finally, there is the data itself (@data), each line stores the attribute of a single entry 
separated by a comma (Fig. 3.8).

WeKa also has its own implementation of Random Forest. It generates correctly 
classified instances (Features) and incorrectly classified instances along with a con-
fusion matrix.

Fig. 3.7  Waikato environment for knowledge analysis ( WeKa) user interface (Explorer)

 

Fig. 3.8  An Attribute Relationship File Format (ARFF)
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C-3.3.2.2 Code for building J48 and other classifier models in WeKa
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3.4.2.1  A Tutorial for Building Classification Models Using LibSVM 
and Weka

In this tutorial we are going to create a binary classification model using the fol-
lowing steps:

 1. Create a data set of drugs and nondrugs using available databases of drugs and 
pharmaceutical leads.

 2. Generate descriptors for the compounds using available software (refer to pre-
vious chapter).

 3. Store the information (molecules along with the descriptors) in an excel sheet 
or use MATLAB to convert the plain data into spreadsheet format.

 4. Convert the output file into CSV format.
 5. Convert the CSV file to the LibSVM format.
 6. Run the file in the LibSVM (before scaling).
 7. Scale the data.
 8. Run the scaled file in LibSVM and check the cross-validation accuracies.
 9. Create a model file using ‘c’ and ‘g’ parameters in LibSVM.
10. Rank the features in WeKa and extract the best features.
11. Convert the CSV file containing the best features to an ARFF file.
12. Run the ARFF file in the WeKa implementation of RF.
13. Check for the accuracy.

Building an SVM model using LibSVM for the Wisconsin Breast Cancer Data Set 
used for modelling studies [31]:

1. Data preparation for SVM implementation

In data-driven classification/regression applications, it is desirable to collect and 
utilize maximum data as possible. Data set should contain both positive drug and 
negative nondrug cases. We need to split the data set into two, one for training and 
other for testing.

The data set comprising SVM train using the input–output pairs was partitioned 
in training and test set.
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2. Convert the data into SVM format and perform svm-train with its parameters, 
since the SVM algorithm operates on numeric attributes.

So we need to convert the data into the LibSVM format which contains only nu-
merical values. Open the command prompt and give path till the LibSVM folder 
(Windows).

svm-train—train one or more SVM instance(s) on a given data set to produce a 
model file. svm-train trains an SVM to learn the data indicated (Fig. 3.9).

Command: svm-train -s 0 -v 10 -q (filename)

3. Conduct simple scaling on the data

The original data ranges maybe too broad or narrow in range, and thus these need 
to be normalized. The main advantage of scaling is to avoid attributes in greater 
numeric ranges dominating those in smaller numeric ranges. Another advantage is 
to avoid numerical difficulties during the calculation. We recommend linearly scal-
ing each attribute, which is linearly scaled between [– 1; + 1] and [0; 1]. This scaling 
should be done before splitting the data into training and test sets. We have to use 
the same method to scale both training and testing data.

svm-scale is a tool for scaling input data file.
The syntax of svm-scale is:
svm-scale [options] data_filename.
The output of scaling is the filename.scale file, which is used for creating the 

model. Bys using the same scaling factors for training and testing sets, we obtain 
much better accuracy (Fig. 3.10).

Fig. 3.9  Computing accuracy in LibSVM
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4. Running the scale file to obtain the appropriate parameter for best accuracy

After the scale file is created, copy the scale file and paste it to the ‘Tools’ folder in 
LibSVM.

Change the path in command prompt, till Tools.
One needs to have Python installed in the tools folder to run the scale file and 

obtain the appropriate ‘c’ and ‘g’ parameters (Figs. 3.11 and 3.12).
Command:
Python grid.py scalefilename.scale

5. Obtaining the accuracy using the best ‘c’ and ‘g’ parameters

Before proceeding, change the path in command prompt by coming out of the tools 
and entering the windows folder.
Syntax: svm-train (c and g parameters) scalefilename

Ranking of Features in WeKa
In order to select the best features or descriptors and improve the model, we 

should rank the features using information gain as the ranking metric (Fig. 3.13).
Information gain is a measure of the contribution of a particular feature to the 

model. Ranking using information gain was done using WeKa (Figs. 3.14, 3.15 and 
3.16).

For obtaining the best features:

1. Open the Explorer interface in WeKa.
2. Select the Pre-process Tab above and Open an ARFF file and select All in the 

Attributes section.
3. Go to the Select Attributes Tab.
4. In the Attribute Evaluator Tab, Select Information Gain and Click Start.
5. Select the top-ranked features from the result.

After ranking, the top-ranked features are extracted from the feature set and passed 
to LibSVM. To obtain the best-ranked features, the ARFF format of the models is 

Fig. 3.10  The command to convert the libSVM file to a scale file
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Fig. 3.11  Running the scale file in python to obtain the best ‘c’ and ‘g’ parameters

 

Fig. 3.12  Final optimum of the ‘c’ and ‘g’ parameters

 

Fig. 3.13  Final cross-validation accuracy
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Fig. 3.14  WeKa explorer graphical user interface (GUI)

 

Fig. 3.15  InfoGain attribute Tab
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generated by converting the CSV file of the models into ARFF using R-program-
ming language. The ARFF files of the model are first edited to provide the class 
as first attribute and then opened in WeKa and all the attributes are imported. The 
selected attributes are then subjected to WeKa Infogain mode, which lists the fea-
tures in the order of their priority or on the basis of their contribution towards the 
classification of the model.

Obtaining CVA for Ranked Features The attributes generated are saved and set 
of topmost attributes or features were selected (top100, 200 and so on). These fea-
tures were arranged priority wise with the help of coding in MATLAB. Again the 
MATLAB worksheets of the ranked features are converted to CSV and LibSVM 
format. The cross-validation accuracies for the ranked features are hence obtained 
using LibSVM. Ranking of the features helps us to select the best set of features 
whose contribution towards the classification of the model is the best, which is on 
the basis of highest cross-validation accuracy.

3.4.2.2  Obtaining Accuracy Using Random Forest

To check the efficiency of our model and the features selected, we can use another 
classifier, RF, to classify our models. We can use the WeKa implementation of RF.

To classify using RF, the following steps are followed:

1. Open the ARFF file of the model in WeKa.
2. Select all the attributes in the ‘Preprocess’ window.
3. Select the ‘Classify’ Tab.
4. Choose ‘Trees’ from the classifier tab and open ‘Random Forest’ from the list.
5. Change the RF parameters, Numtrees and NumFeatures, to the required value.
6. Choose Nominal Class (Nom-Class).
7. Start RF (Fig. 3.17).

Top Ranked features

Fig. 3.16  The selected attributes listed are the ranked features
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This starts the classification in RF which takes few seconds or minutes to gener-
ate results. The result contains ‘Correctly classified instances’ which is considered 
as the accuracy of the model in RF. The result also generates ‘Confusion Matrix’ 
which can be utilized to calculate various parameters.

Confusion matrix is a specific table layout which contains information about 
actual and predicted classifications done by the classification system (Fig. 3.18).

The entries in the confusion matrix have the following meaning:

a is the number of correct predictions that an instance is negative (True Negative),
b  is the number of incorrect predictions that an instance is positive (False Positive),
c  is the number of incorrect predictions that an instance negative (False Negative), 

and
d is the number of correct predictions that an instance is positive (True Positive).

Specificity and Sensitivity are the two statistical measures to detect the performance 
of a binary classification system:

Fig. 3.18  Confusion matrix layout

 

Fig. 3.17  WeKa implementation of RF

 



3.4 Open-Source Tools for Building Models for Drug Design 151

a. Sensitivity relates to the ability of a test to correctly classify.

 Sensitivity = d/d + c
 = (True Positive/True Positive + False Negative)

b. Specificity relates to the ability of a test to identify negative results.

 Sensitivity = d/b + d
 = (True Positive/False Positive + True Negative)

3.4.3  R Program

R is an open-source tool. It has various packages for building ML models. R is an 
open source, highly used statistical package with a seamless support of various li-
braries available on CRAN [32]. This component allows user to input data sets and 
visualize them after processing for better interpretation and insight.

Jar files needed come with rJava Package, i.e. JRI.jar, JRIEngine.jar, REngine.
jar.

C-3.3.3.1 Code to initiate R and compute properties

The single-hidden-layer neural networks are implemented in the package nnet. [33] 
Tree-structured models for regression, classification and survival analysis, follow-
ing the ideas in the Classification and Regression Trees (CART) book, are imple-
mented in rpart and tree. The Cubist package fits rule-based models (similar to 
trees) with linear regression models in the terminal leaves, instance-based correc-
tions and boosting [34]. Two recursive partitioning are algorithms with unbiased 
variable selection and statistical stopping criterion. Graphical tools for the visual-
ization of trees are available in the package maptree. An approach to deal with the 
instability problem via extra splits is available in the package TWIX.

Trees for modelling longitudinal data by means of random effects are offered 
by the packages REEMtree and longRPart [35]. Partitioning of mixture models is 
performed by recursively partitioned mixture model (RPMM).
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Computational infrastructure for representing trees and unified methods for pre-
diction and visualization is implemented in partykit. This infrastructure is used by 
the package evtree to implement evolutionary learning of globally optimal trees.

The reference implementation of the RF algorithm for regression and classifica-
tion is available in the package RF. Variable selection through clone selection in 
SVMs in penalized models (SCAD or L1 penalties) is implemented in the package 
penalizedSVM. The function svm() from e1071 offers an interface to the LibSVM 
library and the package kernlab implements a flexible framework for kernel learn-
ing (including SVMs, RVMs and other kernel-learning algorithms) [36]. Bayesian 
additive regression trees (BART), where the final model is defined in terms of the 
sum over many weak learners (not unlike ensemble methods), are implemented in 
the package BayesTree. The packages rgp and rgenoud offer optimization routines 
based on genetic algorithms [37].

3.5  Free Tools for Machine Learning

3.5.1  An Example of SVR-based Machine Learning

The classical multiple regression has a well-known loss function that is quadrat-
ic in the prediction errors. However, the loss function employed in SVR is the ε-
insensitive loss function. Here, the ‘loss’ is interpreted as a penalty or error measure. 
Usage of ε-insensitive loss function has the following implications. If the absolute 
residual is off-target by ε or less, then there is no loss, that is, no penalty should be 
imposed. However, if the opposite is true, that is absolute residual is off-target by an 
amount greater than ε, then a certain amount of loss should be associated with the 
estimate. This loss rises linearly with the absolute residual above ε.

The SVR algorithm attempts to place a tube around the regression function 
as shown in Fig. 3.19, wherein the region enclosed by the tube is called as ‘ε-
insensitive’ zone where ε represents the radius of the tube. The diameter of the tube 
should ideally be the amount of noise in the data. The optimization criterion in SVR 
penalizes those data points, whose y values lie more than ε distance away from the 
fitted function (hyperplane).

Tanagra is a free suite of an ML software for research and academic purposes and 
it is developed by Ricco Rakotomalala at the Lumière University Lyon 2, France 
[38]. It is basically a free data mining software. Data mining is extracting infor-
mation from the data set and converting or transforming it into an understandable 
structure for further use in future. Tanagra proposes several data mining methods 
from artificial intelligence, exploratory data analysis, statistical learning, ML and 
database systems. Tanagra supports several standard data mining tasks such as Vi-
sualization (includes Correlation Scatter plot, Viewing data set, multiple scatter 
plot, exporting data set, etc.), Descriptive statistics (includes Univariate continuous 
statistics, one-way analysis of variance (ANOVA), one-way multivariate analysis 
of variance (MANOVA), Normality Test, Welch ANOVA, Paired T-test, Paired 
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V-test, Linear Correlation, etc.), Instance selection (includes rule-based selection, 
sampling, stratified sampling, continuous select examples, discrete select examples, 
etc.), Feature selection (includes Define status, CFS Filtering, Remove constant, 
Feature ranking, etc.), Feature construction (includes Trend, radial basis function 
(RBF), Binary binning, Standardize, etc.), Regression (includes Regression tree, 
Epsilon SVR, nu-SVR, Multiple Linear Regression, Outlier detection, Regres-
sion Assessment, etc.), Factorial analysis (includes Principal Component Analysis, 
Principal Factor Analysis, Correspondence Analysis, etc.), Clustering (includes 
K-means, Neighbourhood Graph, VarKmeans, EM-Clustering, etc.), Classifica-
tion/Spv Learning (includes NB Continous, C-SVC, contingent valuation method 
(CVM), ID3, C 4.5, Multilayer Perceptron, PLS LDA, etc.), Association rule learn-
ing (includes A priori, Spv Assoc rule, Spv Assoc tree, etc.) and Scoring (includes 
receiver operating characteristic (ROC) Curve, Precision-Recall Curve, Scoring, 
Lift Curve, etc.). Tanagra is an easy-to-use software for researchers and students 
and it also provides architecture for them to easily add their own data mining algo-
rithms/methods, and comparing their performances.

For installation just go to Google Search Engine and type ‘Tanagra download’. 
Click on ‘SetUp’ under ‘Reference’ Column of the table. Use the software for per-
forming various tasks.

The input file formats or data set formats which are accepted by Tanagra for 
performing different data mining tasks are .txt, .arff and .xls, and sparse formats 
include .dat and .data.

After performing the tasks on the data set, the results can be saved in two formats 
in Tanagra, *.tdm and *.bdm, i.e. text data mining diagram (tdm) and binary data 
mining diagram (bdm).

Fig. 3.19  A schematic of SVR using -sensitive loss function
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Here, we will use a melting point data set based on a diverse collection of mol-
ecules [39]. It is downloadable from a moltable site [40]. For the present tutorial we 
will select 100 diverse molecules (Fig. 3.20).

1. Open Tanagra, click on ‘File’ and select ‘New’ for choosing the data set of appro-
priate format and select the checkbox ‘Checking Missing Val’ and click OK and 
the downloaded information and data set description will appear on the right 
window.

2. Click on the ‘Data Visualization’ palette from the bottom ‘Components’ window 
and select ‘View Dataset’ tab and drag it to the left ‘default title’ window. Double 
click on ‘View Dataset1’ on left window, the whole data set will appear on the 
right window (Fig. 3.21).

3. Click on ‘Instance Selection’ palette from the bottom ‘Components’ window and 
select ‘Continuous Select Examples’ tab and drag it to the left ‘default title’ win-
dow. Right click on ‘Continuous Select Examples 1’ on the left ‘default title’ 
window, select ‘Parameters’ and set Attribute as ‘media transfer protocol (MTP)’, 
Operator as ‘<’, Value as ‘50’ and click on ‘OK’. Right click on ‘Continuous 

Fig. 3.20  Molecules of the training data set in Marvin view
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Select Examples 1’ on the left ‘default title’ window and select ‘View’ and the 
results for attribute selection will appear on the right window (Fig. 3.22).

We see that 51 examples are assigned for learning phase, and the other 49 examples 
will be used for assessment of models.

4. For defining attribute statuses, one can go to ‘Feature Selection’ palette from 
the bottom Component window and select ‘Define Status’ or else can click on 
the icon below the ‘Diagram’ tab on the menu bar at the top left of the Tanagra 
window (Fig. 3.23).

5. Set the attribute ‘Case’ in ‘Target’ tab and remaining attribute in ‘Input’ tab at 
the right window (except the ‘MTP’ attribute and ‘SMILES’) and click on OK. 

Fig. 3.21  Tanagra showing data set description with components window, below for data 
visualization

 

Fig. 3.22  Instance selection process with its result
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Double click on ‘Defined Status 1’ on left ‘default title’ window. The results will 
appear on the right window (Figs. 3.24 and 3.25).

6. For performing Epsilon SVR, select ‘Regression’ palette from the bottom ‘Com-
ponents’ window and select Epsilon SVR tab and drag it to the left ‘default title’ 
window. Double click on ‘Epsilon SVR 1’ on left ‘default title’ window and 
select ‘View’, the results will appear on the right window showing the following: 
Epsilon SVR parameters, SVM characteristics, ANOVA and Residual Analysis 
(Figs. 3.26 and 3.27).

The default kernel is linear. The number of SV is 47 and the Pseudo-R2 on training 
sample or selected sample is 0.9905. The regression seems very good.

Fig. 3.23  Defining attribute status process

 

Fig. 3.24  Defining attribute status window
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7. For evaluating the unselected samples at Step 3, again set the parameters for 
defining attribute statuses, for this click on the icon below the diagram tab at 
the top left of the Tanagra window. Set the attribute ‘Case’ in ‘Target’ tab and 
‘Pred_e_svr_1’ in ‘Input’ tab at the right window of ‘Define Attribute Statuses’ 
and click on OK. Double click on ‘Define status 2’ on the left ‘default title’ win-
dow, the results will appear on the right window (Figs. 3.28 and 3.29).

8. Click on ‘Regression’ palette from the bottom window and select the ‘Regres-
sion Assessment’ component and drag it to the left ‘default title’ window.

9. Right click on ‘Regression Assessment 1’ and click on parameters and set the 
parameter as ‘Unselected’ in the dialogue box which appears. Double click on 

Fig. 3.25  Defining attribute status result for selected examples

 

Fig. 3.26  Regression palette from component window showing epsilon support vector regression 
( SVR)
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‘Regression Assessment 1’ and select view to obtain the results of unselected 
samples on the right window (Fig. 3.30).

Result Interpretation We obtained Pseudo-R2 = 1–15.6636/47.0973 = 0.6674. 
This is the best result we have obtained on test samples or unselected data set after 
setting up different parameters and modifying the parameters for Epsilon SVR. The 

Fig. 3.27  Result of Epsilon support vector regression ( SVR) for selected examples

 

Fig. 3.28  Defined attribute status of test or unselected samples
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regression results obtained on training samples is quite good as compared to test 
samples, thus the test set is more dependent on the specificities of the training data 
set and the results obtained below are the best results obtained after setting up dif-
ferent parameters and using different kernels.

Data set Pseudo-R2

Training data set (selected samples) 0.9905
Test set (unselected samples) 0.6674

Fig. 3.29  Regression palette showing regression assessment tab from the Component window

 

Fig. 3.30  Result after regression assessment for unselected examples
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3.5.2  Rapid Miner

Rapid Miner is an open-source tool and has a collection of various ML and data 
mining tools with plug and play operators [41]. This demonstration can be proto-
typed for running Rapid Miner from within a Java project with an objective to use 
source code to work with Rapid Miner.

Code for Rapid Miner Classification
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3.5.2.1  Practice Tutorial for Building Machine Learning Models 
in Rapid Miner

We will use a dihydrofolate reductase (DHFR) inhibitor data set to build models 
using various classifiers implemented in rapid miner. The data set is available at a 
moltable site. The data set consists of 653 training set molecules and 400 test set 
molecules.

Import the training set file (Fig. 3.31).
Use the import data option to import any type of file. Select the file from the 

destination folder and click next.
Specify the column separation parameters (Fig. 3.32).
In this step, data types of the attributes are defined. Rapid Miner does the type 

detection automatically (Fig. 3.33).
In this step attributes can be assigned a special role like an identification (ID) or 

a label (Fig. 3.34).
Save the file in local repository and click on finish (Fig. 3.35).
Drag the saved file from repository and choose the New building block option 

from Edit option on the menu bar (Fig. 3.36).
Select the first option to specify the type of validation (Fig. 3.37).
After selecting the validation type, a window appears in which instead of DT 

other operators can be selected like SVM etc (Fig. 3.38).

Fig. 3.31  The rapid miner GUI
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Fig. 3.32  Importing comma-separated value ( CSV) file

 

Fig. 3.33  Attribute data-type detection window
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• Use the up arrow button to navigate between different processes.

Select the optimize parameter (grid) operator. Click on the blue window icon at the 
corner and paste the validation operator inside of it (Fig. 3.39).

Click on the optimize parameter operator and select the parameters to be opti-
mized and specify the value range (Fig. 3.40).

A nested window opens when the blue window icon is clicked. Add a log opera-
tor also (Fig. 3.41).

Select the log operator and define the path to store the log file. Edit the log file 
to select the parameters which are to be optimized (Fig. 3.42).

Click on the run button to start the process (Fig. 3.43).
Results Overview (Fig. 3.44)

• The result gives a set of optimized parameters, performance measure in terms of 
accuracy, precision, recall and area under the roc curve (AUC).

• A log file is also generated.
• Parameter set (Fig. 3.45).

The results show high accuracy, precision and recall values. The standard equations 
for calculating these three performance measures are provided below.

Fig. 3.34  Special role assigned to an attribute
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Precision = TP/TP + FP
Recall = TP/TP + FN
Accuracy = (TP + TN)/TP + TN + FP + FN
Apart from these values there are other validation metrics like receiver operating 

characteristic (ROC) and AUC. An ROC is a two-dimensional (2D) curve that de-
notes the relation between specificity and sensitivity. AUC is a better classification 
performance metric as it minimizes the loss of ranking a true negative at least as 
large as a true positive (Fig. 3.46).

An AUC value > 0.6 signifies a good model, anything below this indicates a 
random prediction. Since we obtained an AUC of 0.9, our model can be considered 
statistically good.

3.6  Commercial Tools for Building ML Models

3.6.1  Molecular Operating Environment (MOE)

Molecular Operating Environment (MOE) is a comprehensive software system for 
Life Science [42]. MOE is a combined Applications Environment and Methodol-

Fig. 3.35  Saving file in local repository

 



3.6 Commercial Tools for Building ML Models 165

ogy Development Platform that integrates visualization, simulation and applica-
tion development in one package. MOE contains a broad base of scientific applica-
tions for general modelling, drug design, homology modelling and library design. 
It provides a suite of applications for manipulating and analyzing large collections 
of compounds. It is a fully integrated suite of computational chemistry, molecular 
modelling and informatics software for life science applications. The suite’s appli-
cations are written in an embedded programming language, Scientific Vector Lan-
guage (SVL), and can be easily customized since the SVL source code is provided 
in the distribution [43]. The Molecular Database is a disk-based spreadsheet central 
to the manipulation and visualization of large collections of compounds. Compound 
collections can be ‘washed’ to remove salts and solvents and to adjust protonation 
state of acids and bases.

Steps required for QSAR modelling using MOE:

1. Calculating Molecular Descriptors
2. Fitting Experimental Descriptors
3. Cross-Validating Model
4. Performing Graphical Analysis

Fig. 3.36  Rapid miner design workspace
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Fig. 3.37  Validation window

 

Fig. 3.38  Training and testing window
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5. Estimating the Predicted activities for the test set
6. Pruning the Descriptors

The QSAR suite of applications in MOE is used to analyze experimental data and 
build numerical models of the data for prediction and interpretation purposes. Given 

Fig. 3.39  Optimize the parameter operator and the validation operator in the design workspace

 

Fig. 3.40  Select parameter: configure operator window

 



168 3 Machine Learning Methods in Chemoinformatics for Drug Discovery

a set of molecules whose activity in a particular experiment is known (referred to 
as a training set or a learning set), a QSAR model correlates these activities with 
properties inherent to each molecule in the set. These properties are evaluated using 
molecular descriptors available in MOE (Fig. 3.47).

Fig. 3.41  Log operator added

 

Fig. 3.42  Editing parameter list: log window
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Fig. 3.43  Initializing the grosses after parameter settings

 

Fig. 3.44  Result workspace of rapid miner showing accuracy and confusion matrix
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Fig. 3.45  Results window in rapid miner

 

Fig. 3.46  ROC curves obtained using rapid miner
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Basic Model Building Steps Performed in MOE:
Structure–activity relationship (SAR) and, more generally, structure–property re-

lationship (SPR) analysis are integral to the rational drug design cycle. Quantitative 
(QSAR, QSPR) methods assume that biological activity is correlated with chemi-
cal structures or properties and that as a consequence activity can be modelled as 
a function of calculable physiochemical attributes. Such a model for activity pre-
diction could then be used, for instance, to screen candidate lead compounds or to 
suggest directions for new lead molecules.

The QSAR/QSPR models can be built and applied by following a few steps 
(Fig. 3.48).

The components of the QuaSAR package are a combination of SVL descriptor 
modules and SVL programs to operate the fundamental MOE molecular services.

3.6.1.1  A Tutorial for QSAR Model Building of DHFR Inhibitors

We scanned the literature mainly to extract biological activity data for each unique 
compound in the data set containing total 653 entries. The data was collected in the 
SDF format and imported into MOE. All the 2D descriptors from MOE were com-
puted for the inhibitors (Fig. 3.49).

1. Prepare the training set.

Fig. 3.47  Steps to build a model in MOE
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Fig. 3.48  A general 
workflow of quantitative 
structure–activity relation-
ship/quantitative structure–
property relationship ( QSAR/
QSPR) modelling

 

Fig. 3.49  Inhibitors with their IC50 and their 2D descriptors
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A number of compounds whose activity is known constitute the training set. The 
project included 653 inhibitors whose IC50 values were known (Fig. 3.50).

1. The Descriptors reported in the literature were computed using MOE for the 
entire library.

2. Training set values were used to predict and evaluate the model.
3. Prepare the test set.

Fig. 3.50  Inhibitors with their descriptor values
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The test set included 400 inhibitors whose IC50 values were not known. We first 
identified 19 scaffolds from literature. These have been then searched using similar-
ity search methods (Fig. 3.51).

4. After collecting compounds, a MOE-fit file was used to predict the activities of 
the test set by using the model evaluate option.

The correlation plot between experimental and predicted values is shown in 
Fig. 3.52.

Observations: 653
Descriptors: 329
Root mean square error (RMSE): 0.49138
Correlation coefficient ( r2): 0.86270
There are several parameters for validating the model built which parameters 

include: RMSE, R2, Q2 and Leave One Out (LOO) validation method [44].
RMSE: The RMSE is a frequently used measure of the differences between val-

ues predicted by a model or an estimator and the values actually observed. These 

Fig. 3.51  The 19 Scaffolds identified from literature

 



3.6 Commercial Tools for Building ML Models 175

individual differences are called residuals when the calculations are performed over 
the data sample that was used for estimation, and are called prediction errors when 
computed out-of-sample.

R2 indicates how well data points fit a line or a curve. It is a statistics used in the 
context of statistical models whose main purpose is either the prediction of future 
outcomes or the testing of hypotheses, on the basis of other related information, i.e. 
is the proportion of the variance in the dependent variable that is explained by the 
regression equation (i.e. if R2 = 1.0, then all the actual points lie on the regression 
line; if R2 = 0.0, then the variance around the regression line is as high as the overall 
variance of the dependent variable). R2 is a statistic that will give some information 
about the goodness of fit of a model. In regression, the R2 coefficient of determina-
tion is a statistical measure of how well the regression line approximates the real 
data points. An R2 of 1 indicates that the regression line perfectly fits the data.

In R2 the same data that is used to build the equation is also used to evaluate it. 
This can be addressed using Q2 (sometimes called cross-validated R2). Here, we 
make n versions of the equation, each build leaving one of the original known val-
ues out (it is thus an example of leave-one-out validation); the Q2 is then the mean 
overall variance in using the equation to predict the values left out. Q2 is always 
thus less than R2.

Results The correlation plot obtained after plotting predicted vs. measured activi-
ties gave R2 value of 0.86. R2 measures the degree of correlation between activity 
values calculated by model and those measured experimentally. There were very 

Fig. 3.52  Scatter plots showing predicted versus measured activities, with training set compounds 
shown using dots
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few outliers. The data range and diversity was very good. The model was validated 
using Leave One Out (LOO) method (Fig. 3.53).

Model Evaluation: The model was evaluated using a test set of 400 compounds 
(Fig. 3.54).

3.6.2  IBM SPSS

IBM SPSS is a comprehensive, easy-to-use set of data and predictive analytics tools 
for business users, analysts and statistical programmers [45]. Its package has a neu-
ral network toolbox which includes both Multilayer Perceptron (MLP)-type [46] 
as well as RBF-type [47] models. Provisions for random number generation (seed) 
are also provided with this software under the ‘Transformations’ option. Any data 
set for neural network modelling purpose has to be partitioned into three partitions:

1. Training
2. Test
3. Validation (or Holdout in SPSS)

The default option in SPSS is to randomly assign cases to these three partitions ac-
cording to preset portions (e.g. Training 70 %, Test 15 %, Holdout 5 %, etc.) or the 
data can be manually partitioned with the help of a ‘partition variable’. This option 
can be selected by Analyze > Neural Network > Multilayer Perceptron > Partitions 
> Use Partitioning Variable (Fig. 3.55).

Fig. 3.53  Z-score plot for 653 entries is shown. The points with large distances between them are 
outliers

 



3.6 Commercial Tools for Building ML Models 177

Fig. 3.54  Models showing predicted activity from the test set using QSAR model built in MOE

 

Fig. 3.55  GUI of IBM SPSS showing architecture of an ANN model
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3.6.3  Matrix Laboratory (MATLAB)

MATLAB is a numerical computing environment and fourth-generation program-
ming language developed by MathWorks [48]. MATLAB allows matrix manipula-
tions, plotting of functions and data, implementation of algorithms, creation of user 
interfaces and interfacing with programs written in other languages, including C, 
C++, Java and Fortran. It provides statistics and neural network toolbox to build 
reliable predictive models (Figs. 3.56 and 3.57).

C-3.5.3.1 Code for creating ANN models in MATLAB
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3.7  Genetic Programming-Based ML Models

Genetic programming (GP) is an artificial intelligence-based exclusive data-driven 
formalism [49, 50]. The GP was originally proposed to automatically generating 
computer codes that execute prespecified tasks. Later, it was extended to perform 
symbolic regression (SR). Once the data is submitted in the form of pairs of mul-
tiple inputs and single output of a model, the GP-based SR searches and optimizes 
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Fig. 3.56  Editor window and the command window in Matrix Laboratory ( MATLAB)

 

Fig. 3.57  ANN result window in Matrix Laboratory (MATLAB)
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both the form (structure) and associated parameters of an appropriate linear/non-
linear data-fitting model. The GP does this without making any assumptions about 
the form of data-fitting function, thereby unravelling the input–output relationships 
[51]. It may be noted that the basic building block of an MLP or SVR-based model 
gets fixed depending upon the chosen transfer/basis function. Thus, MLP and SVR 
models do make certain assumptions pertaining to the data-fitting function. In con-
trast, the novelty of the GP lies in its ability to secure both the form and parameters 
of an appropriate linear or nonlinear data-fitting function. The GP has also been 
found to unravel the natural law that governs the physical phenomena. Other advan-
tages of the SR-based models include providing a human insight, easy interpretation 
of the models, identification of key variables and ease of deployment [52].

The genetic programming-based SR can be viewed as an extension of the genetic 
algorithm (GA) [53] wherein the members of the population are not fixed-length 
binary/real-valued strings encoding candidate solutions to a function maximization/
minimization problem, but are mathematical expressions that, when evaluated, rep-
resent the candidate solutions to the SR problem [54]. Both GP and GA are based 
on the Darwinian principles of natural selection and reproduction; however, un-
like the former, GAs have been extensively used in the field of drug designing. A 
number of optimization studies using GAs for QSAR, gene prediction, 3D structure 
alignment, pharmacophore modelling, combinatorial library generation, docking, 
etc. have been reported [55]. GAs have been found to significantly improve the 
prediction values by variable selection in QSAR and also in comparative molecular 
field analysis [56].

The general form of the model to be secured by the GP-based SR is given as:

 y = f (X, α) (3.1)

where y denotes the model’s output (dependent) variable; X refers to an N-dimen-
sional vector of model inputs (independent variables; X = [x1, x2,…, xN]T); f rep-
resents a linear/nonlinear function, and α (= [α1,α2,…,αM]T) represents a vector of 
function parameters. Given a multiple input–single output (MISO) example data 
set, {Xi, yi}, i = 1,2, …, K, consisting of K input–output patterns, the task of the 
GP-based SR is to obtain an appropriate linear/nonlinear functional form, f, and its 
parameter vector, α, that best fits the example data.

The implementation of GP-based SR begins by generating a random population 
of candidate solutions (models/expressions) to the SR problem defined in Eq. 3.1. 
The expressions are represented in the form of a tree structure. An illustration of a 
tree structure representing the given expression below:

x v v+





∗( )5
5

 
(3.2)

is shown in Fig. 3.58a. As can be seen, the tree comprises two types of nodes 
namely ‘operator’ (also termed ‘function’) and ‘operand’ (terminal) nodes. The 
first type of nodes represent operations such as addition, subtraction, multiplica-
tion, division, exponentiation, logarithm, sine, cosine, etc. while operands denote 
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the model’s input (independent) variables ( X) and parameters ( α). A single imple-
mentation of genetic programming is a competitive search among a diverse popu-
lation of mathematical expressions, which are coded using functions (operators) 
and terminals (operands).

Genetic programming procedure iteratively transforms a population of candidate 
solutions into a new generation of the solutions by employing principles of Dar-
winian evolution viz. survival of the fittest and genetic propagation of characteris-
tics. Accordingly, GP utilizes analogues of genetic operations such as ‘crossover’ 
and ‘mutation’ occurring in nature. These operations are applied to the candidate 

Fig. 3.58  Tree structure and various genetic implementation operations in GP
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solutions selected on the basis of their higher fitness (i.e. ability to better fit the 
training data). Execution of selection, crossover and mutation steps give rise to 
a new generation of candidate (offspring) solutions. These steps that bring about 
transformation in the population of candidate solutions are executed iteratively till 
convergence is achieved. Prior to implementing the GP procedure, certain prepara-
tory steps need to be executed as given below:

1. Choose a small set of operators (functions) from the large set of available opera-
tors that can appear in the candidate solutions. This is necessary to narrow 
down the solution search space as also avoid long execution times to achieve 
convergence.

2. Choose an appropriate fitness function for computing the fitness value score of 
each candidate solution (expression/model) in the population.

3. Choose an error measure, e.g. RMSE, mean absolute percentage error (MAPE), 
etc., for assessing the output prediction accuracy of the candidate solutions.

4. Partition the available MISO example data set into training and test sets. The test 
set data should be used to evaluate the generalization performance of the candi-
date solutions.

5. Choose values of various GP algorithm-specific parameters such as population 
size, probabilities of crossover and mutation, maximum number of generation 
over which the GP should evolve, etc.

6. Select an appropriate convergence criterion; the possible criteria are: (1) the GP 
has evolved over the prespecified maximum number of generations and (2) the fit-
ness value of the best candidate solution (expression/model) no longer increases 
significantly or remains constant over successive generations (Fig. 3.58).

A generic stepwise procedure for implementing GP-based SR is given below 
(Fig. 3.59):

1. Create randomly an initial population (Generation = 0) of candidate solutions 
composed of operators and operands using the tree structure.

2. Repeat.
3. Fitness computation and ranking: Evaluate each candidate expression in the 

population using training input–output data and determine its fitness score 
using the preselected fitness function; rank the expressions in the order of their 
decreasing fitness scores.

4. Selection: From the ranked population, create a parent pool of candidate solu-
tions with high fitness scores using selection methods such as ‘Roulette-wheel 
selection’, ‘tournament selection’, ‘elitist mutation’, etc.

5. Crossover: Form two offspring candidate solutions (trees) from each randomly 
selected pair of parent trees from the parent pool. Crossover can be performed 
multiple ways. For example, in the ‘single-point’ crossover shown in Fig. 3.59c, 
a location is selected randomly within the structure of each parent tree. Next, 
the respective trees are spliced at that location and offspring candidate solutions 
are created by mutually exchanging and combining the spliced segments of the 
parent trees.



184 3 Machine Learning Methods in Chemoinformatics for Drug Discovery

6. Mutation: Randomly modify contents of the randomly chosen operator and/or 
operand node(s) of the offspring trees. Mutation can be conducted two ways: 
‘node’ or ‘branch’ mutation. In the former, a randomly chosen tree element is 
replaced by another belonging to the same type. That is, an operator (operand) 
replaces another operator (operand) see panel d of Fig. 3.59; increment genera-
tion index by unity.

7. Until convergence condition is fulfilled.
8. Return the top ranking, i.e. best candidate expression in the current population 

(the ‘best-so-far’ solution) upon convergence as a result of the run.

Genetic programming methods have been applied successfully in the fields of bio-
process monitoring, fermentation models, classification of Raman spectra [57] and 
optimization of pharmaceutical formulations [58]. Despite its novelty the GP has 

Fig. 3.59  A flowchart 
depicting GP-based symbolic 
regression
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not been applied in the drug design field. In this section, we demonstrate the use of 
GP in Association of Destination Management Executives (ADME) modelling, an 
important component of drug designing.

3.7.1  A Practical Demonstration of GP-Based Software

There are very few readily available software packages for GP-based SR. There is a 
commercial software Discipulus which uses automatic induction of binary machine 
code for predictive modelling [59]. Another GP-based data mining tool is Eureqa 
Formulize, [60] which is freeware (for limited sue) for generating GP-based mod-
els and thereby revealing the input–output relationships hidden in the data. (The 
software’s current limit for free usage is 200 data points and five variables). Here, 
we illustrate the development of a GP model using Formulize for predicting the 
caco-2 cell permeability of molecules [61]. The data set used consists of 77 train-
ing set molecules and 23 test set molecules; each molecule is represented by four 
descriptor variables viz. logD, highly charged polar surface area (HCPSA), radius 
of gyration and fraction of rotatable bonds (fROTB). The GP-based model building 
process is briefly discussed below, the installation guide, help files and software 
tutorials can be found at the website of Eureqa Forumulize (Fig. 3.60).

Fig. 3.60  The Eureqa interface with the caco-2 training and test data loaded
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The Eureqa formulize homepage appears with a default example set. The spread-
sheet-like view is the space provided to enter, edit and inspect the data. The data 
can be imported in the software as .csv or .txt files. Alternatively, one can copy 
and paste the training and test data from an excel sheet or from any other source of 
tabular data or text file. The last column in the data represents the desired model 
output. The first row defines data labels. A number of data preprocessing options 
such as smoothing the data, handling missing values, removing outliers, normaliz-
ing scale and offset and applying filters, are available. In the variables window, all 
the variables are specified along with any modification required for better results. 
Several normalizing options are available in the drop-down menu. One can choose 
to normalize offset by subtracting the mean, median or interquartile mean or adjust 
the scale by dividing by the standard deviation, dividing by the interquartile range, 
or by 103, 106 or 109 (Fig. 3.61).

The software has facility to provide a prior target expression if user wishes to 
test a specific model as a candidate solution. In the absence of such expressions, the 
software generates the population of candidate solutions. Primary options provide 
a list of operators that the software can use to generate model equations. A large 
set of 54 building blocks (operators) comprising addition, subtraction, sine, cosine, 
exponential, factorial, Gaussian and if-then-else is available for the stated selec-
tion. These building blocks can also be combined in various ways to render the best 

Fig. 3.61  Setting target expression, choosing formula building blocks (Operators), base and prior 
solution and defining error metric in formulize
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solution. For the case study under consideration the basic four arithmetic (addition, 
subtraction, multiplication and division) and trigonometric operators were chosen. 
Owing to the limited number of operators, the solution search space became nar-
rower and more focused when compared with the usage of all possible operators. 
The operator set used in a GP-implementation typically depends upon the nature 
of the data-driven modelling problem being solved. If it is a simple data-fitting 
problem, the four basic mathematic operators will suffice but for a complex task 
like nonisothermal chemical reaction modelling, advanced operators such as expo-
nentiation need to be employed.

The error metric is a measure of a model’s prediction accuracy. The software 
provides a number of error metrics such as squared error, worst-case error, log-
arithm error, median error, interquartile absolute error and signed difference for 
minimization. Additionally, options to maximize the correlation coefficient or the 
R2 goodness of fit or experimental hybrid that considers both absolute error and 
correlation are also available. Data splitting is an important step which divides the 
data into a training set to generate solutions and a test set to check the accuracy of 
those solutions (Fig. 3.62).

The search is initialized by clicking on the run button; a log file is created si-
multaneously to monitor the performance and progress of the ongoing search. The 
results show the best solutions that have been obtained. The best solutions are 

Fig. 3.62  The results summary page showing a correlation coefficient of 0.96
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determined by two factors: their complexity (size) and their accuracy (fit) on the 
test (validation) data. The performance metrics for the solution such as correlation 
coefficient, absolute error and goodness fit are displayed. The best solutions with 
increasing model complexity can be viewed. Along with other parameters the mean 
square error is computed for each model. Reports can be generated in html, text or 
pdf files. The desired report or analysis tool can be changed in the ‘select task’ drop-
down menu. The options available are generate summary report, quick evaluate and 
predict values, evaluate model values from a data set, plot model values from a data 
set, print current results details, run benchmark on current project, calculate model 
statistics on a data set and make scatter plot from a data set (Fig. 3.63).

For the case study under consideration following expression was obtained:

 (3.3)

where x1 = logD, x2 = HCPSA, x3 = froTB, x4 = rgyr and y = caco 2 cell permeability.

y x x x x x x= − + + − −sin( . sin( . ) . sin( . . )) .1 75 7 23 2 35 1 21 2 97 5 421 2 1 3 4 2

Fig. 3.63  Report generation showing scatter plot of the observed versus model predicted values
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The parity plot of the desired and predicted values of y is shown in Fig. 3.64. 
The value of 0.96 for the coefficient of correlation between the desired and model-
predicted values of y (training and test sets) indicates good prediction accuracy of 
the model.

3.8  Thumb Rules for Machine Learning-Based Modelling

• Before utilizing the high-end ML-based methods, exclude the possibility that 
the problem at hand can be solved using conventional statistical and/or algebraic 
methods. For instance, first explore whether a simple multivariable linear regres-
sion is yielding good results before using an ANN or SVR.

• Use as much example data as possible for training the ML model since a model 
trained on a large data set is likely to possess better prediction and generalization 
ability. Note that data adequacy depends on various factors including the dimen-
sionality of the system being modelled.

• ANNs and SVR can handle qualitative inputs and/or outputs provided these are 
appropriately represented in numeric quantities.

Fig. 3.64  Plot of predicted versus experimental for training and test set molecules
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• Some training algorithms such as ‘error-back-propagation’ [62] for MLP neural 
network, are iterative in nature, and therefore training is time consuming. These 
algorithms though suitable for off-line training, are unsuitable when the training 
data are generated continuously by a running process and the training is con-
ducted online with these data. In such situations, methods such as generalized 
regression neural network (GRNN) that are trained in a single step should be 
employed.

• Employ ‘proper’ data representation methods. For instance, molecules can be 
represented various ways as discussed in Chap. 1. Choose a method to code the 
molecules that represent critical information using minimum number of descrip-
tors. Also choose a chemically diverse training data for model building.

• Never ‘throw’ nonanalyzed and nonprocessed data at an ML method, i.e. prepro-
cess the data before an ML-based model is built. The preprocessing comprises 
data normalization and/or outlier removal steps. Often, the inputs (predictors) 
vary by order of magnitudes and pose difficulties such as numerical overflows 
during training. To overcome these difficulties, and also speed up the training, 
magnitudes of individual predictors are normalized in [–1, + 1] or [0, 1] range 
using approaches such as simple and mean-centered normalization and Z-score 
method [63]. The normalization of model outputs (response variables) is essen-
tial when a nonlinear transfer function is used for computing the outputs of the 
output layer nodes in the MLP neural network. This becomes necessary since the 
usage of the logistic sigmoid (‘tanh’ sigmoid) constrains the output between 0 
and 1 (–1 and +1).

• Sometimes, predictor variables are linearly or nonlinearly correlated. This 
unnecessarily increases the dimensionality of the input space thereby enhancing 
the computational load in training the model. The issue of linearly correlated 
inputs can be addressed using principal component analysis (PCA) [64] which 
transforms correlated inputs into a new set of linearly uncorrelated inputs. Using 
PCA, it becomes possible to use fewer uncorrelated transformed inputs that cap-
ture maximum amount of variance in the original data. This feature can be used 
to effect reduction in the dimensionality of the input space thereby reducing the 
computational load in ML-based modelling. There also exist techniques such as 
kernel PCA to perform nonlinear PCA to transform nonlinearly correlated inputs 
and thereby effect dimensionality reduction of the model’s input space employ 
‘proper’ data representation methods [65].

• Avoid overtraining of an ML-based model: use ‘test’ set, which is different from 
the training set for assessing the generalization ability of the network. Also, 
ensure that the training set data are well-distributed and the test set is a true rep-
resentative of the training set.

• An MLP neural network is capable of performing multiple input–multiple output 
(MIMO) nonlinear mapping using a single neural network architecture. How-
ever, avoid mapping multiple functions using a single MIMO MLP neural net-
work. The reason being in an MIMO–MLP model, the same weights between 
the input and hidden layer nodes as also between multiple hidden layer nodes 
appear in the computation of all the outputs, which limits the flexibility of model 
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training. Accordingly, it is desirable to develop a separate MISO–MLP model 
for each output.

• Develop parsimonious models with low complexity (i.e. with fewer parameters 
and terms in the model) since such models tend to possess better generalization 
ability than their more complex counterparts. In ANNs, this can be achieved by 
using only one or two hidden layers and as few neurons as possible in them. 
While building an SVR model, complexity can be reduced by using as small as 
possible the number of SVs. In the GP, a model consisting of a small number of 
terms and parameters is selected while ensuring a good prediction and general-
ization performance by that model.

• No single paradigm of the various ML-based modelling methods, such as ANNs, 
SVR and GP, is capable of consistent out-performance in every modelling task. 
It is therefore at most important to utilize and compare the performance of all the 
ML methods for a particular modelling task to arrive at the best possible model. 
Within a class of methods such as ANNs, there exist multiple architectures (e.g. 
MLP and RBF networks) for performing nonlinear function approximation and 
supervised classification tasks. Accordingly, all such alternatives within a class 
of ML methods also need to be tested.

• Use validation parameters like ROC and AUC for reporting results of virtual 
screening experiments.

3.9  Do it Yourself (DIY)

• Build a neural network-based binary classification model for antibacterial and 
antiviral class of compounds using any of the free machine learning tools.

• Using WeKa program build a SVM model for the Wisconsin breast cancer data 
set.

3.10  Questions

1. What are the known supervised and unsupervised methods in machine learning?
2. How machine learning methods can be used in drug discovery studies?
3. Enumerate the steps involved in building a QSAR/QSPR model.
4. Briefly explain how genetic algorithms and genetic programming-based models 

can be applied in drug design efforts.
5. Define machine learning.
6. What are the various parameters which need to be assessed from the molecular 

structures?
7. Enlist the various machine learning methods.
8. Which is the most widely used computer aided filter?
9. What are the drawbacks of ANN, associated with prediction method?
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10. Explain in detail how SVM is different from RF?
11. Explain the kernel trick in SVM.
12. Enlist and explain the programs that involve the SVM’s open-source tool 

LibSVM.
13. What is the purpose of ranking the features in a particular data set? Explain the 

methods used for ranking the features.
14. Explain in detail the file format used in LibSVM and WeKa.
15. What is the purpose of scaling a data and how is that carried out in LibSVM?
16. How can the best c and g parameters be extracted for a particular data set?
17. What is Information Gain in WeKa?
18. Explain the various components of WeKa implementation of RF.
19. What is confusion matrix?
20. State the difference between GP and GAs.
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Abstract Protein and ligand molecules as two separate entities appear and behave 
differently, but what happens when they come together and interact with each other 
is one of the interesting facts in modern molecular biology and molecular recogni-
tion. This interaction can be well explained with the concept of docking which in 
a simple way can be described as the study of how a molecule can bind to another 
molecule to result in a stable entity. The two binding molecules can be either a 
protein and a ligand or a protein and a protein. Irrespective of which two molecules 
are interacting, a docking process invariably includes two steps—conformational 
search through various algorithms and scoring or ranking. Even though prolific 
research has been carried out in this field, yet it is still a topic of current interest as 
there is a scope for improvement to rationalize binding interactions with biological 
function using docking program. This chapter focuses on how to set up and perform 
docking runs using freeware and commercial software. Most of the known docking 
protocols like induced fit docking, protein–protein docking, and pharmacophore-
based docking have been discussed. The use of pharmacophore queries as filters in 
virtual screening is also demonstrated using suitable examples.

Keywords Docking · Conformation · Structure-based drug design · Pharmacophore

4.1 Introduction

Structure-based drug design approaches generally employ docking and pharmaco-
phore modelling techniques. Even though computationally intensive compared to 
the latter, docking is now routinely used by biologists, pharmacists, and medicinal 
chemists alike. Since protein interactions among themselves and with other molecu-
lar components drive the cellular machinery, docking studies play an important role 
in understanding cellular biology. It is the basis of rational drug design. There are 
three main objectives of docking—predict the correct conformation (pose) of the 
ligand, provide the binding affinity between a ligand and a protein, and apply it as 
an efficient filter for virtual screening [1]. Docking results help in improving bind-
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ing affinities by suggesting changes in the molecular structure as the key binding 
regions are identified. Ranking of compounds based on the docking score helps in 
the identification of lead compounds in drug design. Additionally, docking can also 
be used to predict the potential target of orphan compounds. This process is usually 
known as reverse docking. A compound of known bioactivity is docked against 
different protein targets and the protein hits are obtained. These hits are then cho-
sen for further experimental validation. A web-based tool known as Target Fishing 
Dock (TarFisDock) is available for this purpose where a compound given as input 
will be docked against the proteins present in potential drug target database (PDTD) 
and protein hits are given as output [2].

There are a number of excellent reviews on the theory of docking and its limi-
tations. In simple terms, docking denotes placing potential binders into the hydro-
phobic pockets of the tertiary structure of a protein and score their complementarity 
in three-dimensional (3D) space. Binders are generally small organic molecules, al-
though metal ions, cofactors, and water molecules are also often present in the crys-
tal structure of the protein. Docking programs predict the binders using shape, sur-
face, or chemistry complementarity features with the receptor. The predicted binders 
are given a score which reflects the strength of the binding, by employing any of the 
scoring schemes, viz. empirical scoring, force field scoring, knowledge, or consen-
sus-based scoring [3]. The poses of the binders is predicted by employing any of the 
search techniques like systematic search, molecular dynamics simulations, anneal-
ing, genetic algorithms, incremental construction, and rotamer libraries [4].

The main challenge in protein–ligand docking is the enormous number of de-
grees of freedom (translational, rotational, conformational). Covering such a huge 
search space is computationally demanding. Other difficulties include taking take 
of protein flexibility and conformational changes induced upon binding. Despite its 
drawbacks and challenges, docking has found tremendous use as a filter in virtual 
screening in drug design context. Hence, it is important that we should be able to 
set up and perform a docking experiment to generate the binding score of a library 
of compounds and prioritize them.

To perform the docking and other concepts in a computer, both commercial and 
open source programs are available. Every software has its own approach but the 
basic concept or method is the same in all of them (Fig. 4.1).

It is very well known that to perform docking we must have a known 3D protein 
structure (a crystallized protein will always give good results than a predicted one) 
and one or more bound ligands.

4.2  A Practice Tutorial: Docking Using a 
Commercial Tool

The docking run is performed by the Grid-based Ligand Docking with Energetics 
(GLIDE) module of Schrödinger [5]. This software has many modules which can 
perform a wide variety of tasks. As an example, we have taken an MTB protein 
1G3U (Protein Data Bank identification, PDB ID) and three first-line antitubercular 
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drugs ethambutol [6], isoniazid [7], and pyrazinamide [8]. Let us perform docking 
in a stepwise manner using GLIDE. The downloaded 3D protein structure must be 
processed or prepared so that it can be used in further steps. This is always required 
because a typical PDB structure can be multimeric and also consists of heavy at-
oms, cofactors, and metal ions, and it may have problems like its terminal amide 
group could be misaligned because X-ray crystallography [9] usually cannot distin-
guish between oxygen and NH2. Also, bond orders are not assigned and ionization 
and tautomeric states are not generated which when used as such for docking may 
produce inaccurate results. These are important because GLIDE uses all atom force 
fields for energy evaluations which require properly assigned bond orders and ion-
ization states. The protein preparation wizard in Schrödinger takes care of all these 
factors while processing the given protein structure. A brief outline of all the steps is 
given here; for a detailed account, readers are advised to refer to manuals available 
at the Schrödinger site. The first step essentially consists of opening a new project 
and creating a directory (Fig. 4.2).

Rank, Score or filter the
docked molecules

Ligands

Ligand selection(native,
actives, inactives, decoys)

Prepare ligands

Transform coordinates, Add
hydrogens, Add charges, Generate
stereoisomers, Set torsion angles

Analyze docking results

Perform docking

Grid generation

Prepare receptor

Transform coordinates, Delete
heteroatoms, Delete unwanted water
molecules, Add polar hydrogens and

charges

Receptor

Fig. 4.1  A general docking protocol
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Export the downloaded PDB structure (in.pdb format) from the respective folder 
into the workspace through the “import structures” option in the drop-down menu 
of “project” menu. We can view the sequence of the protein at the bottom of the 
workspace after clicking the “sequence viewer” option in “window” menu.

In “workflows,” click the protein preparation wizard [10] option in its drop-
down table (Fig. 4.3).

In this window, we can find different options which can be chosen according 
to the requirement like assigning bond orders, adding hydrogens as per valency, 
creating disulphide bonds, filling side chains and missing loops, creating zero-order 
bonds, and removing water molecules from a respective area which can be given by 
user in Å (default is 5 Å). For our study, we will use the default parameters. When 
we click the “preprocess” option, running of the job appears below the protein prep-
aration window (Figs. 4.4 and 4.5).

Now the next step is “review and modify”; on clicking this option, we can see the 
details of the protein-like number of chains, list of water molecules, heteroatoms, 
etc. We can view each water molecule and delete the unnecessary ones and also in-
spect the ionization states of the heteroatoms and choose the correct one (Fig. 4.6).

In our structure, we will remove all water molecules and heteroatoms except the 
substrate for simplicity. The final step “refine” includes H-bond assignment (opti-
mize) and restrained minimization (minimize) (Fig. 4.7).

The H-bond assignment step automatically optimizes and reorients the hydrox-
yl positions along with the flip positions of Asn, His, and Gln amino acids. The 

Fig. 4.2  Maestro interface and dropdown menu of project from main menus
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option “restrained minimization” adjusts the atom coordinates by using the force 
field OPLS-2005 (user can define the force field). We can minimize only hydrogens 
and we can define the root-mean-square deviation (RMSD). The job can be moni-
tored through “monitor jobs” present in the drop-down menu of “applications” in 
the main menu bar (Fig. 4.8).

After completion of the job, the output file is generated in .mae format. We can 
also save the output structure in .pdb format through the export option in the project 
table or workspace (Fig. 4.9).

Fig. 4.3  Protein preparation wizard panel along with 1G3U protein in workspace

Fig. 4.4  Screenshot showing the preprocess option



200 4 Docking and Pharmacophore Modelling for Virtual Screening

The receptor is now ready for docking. The second important step is preparing 
ligands in order to have the low-energy 3D structures for the study. For this step, 
LigPrep [11] module is used from Schrödinger. As mentioned earlier, the three li-
gands are ethambutol, isoniazid, and pyrazinamide. We can download the structures 
from PubChem [12] directly in .sdf or .mol2 format and import into the workspace. 
To initiate LigPrep, go to the “applications” in the main menu and choose “LigPrep” 
which opens the window (Fig. 4.10).

Fig. 4.5  Changes in the input protein after preprocessing

Fig. 4.6  Review and modify steps in protein preparation wizard
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In our example, we will choose the option “from Project Table (selected en-
tries).” The option “file” below it is also for input. If we already have the ligand file, 
we can directly browse it from the respective folder (it accepts different formats like 
.mae, .sdf, .smi, and .csv) (Fig. 4.11).

Fig. 4.7  Refine step in protein preparation wizard

Fig. 4.8  A monitor window
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We can use the filter criteria, where we can selectively choose the ligands by 
giving some criteria such as molecular weight, number of aromatic rings, etc. This 
will be useful when we have a huge set of compounds. The force field can also be 
chosen (OPLS_2005 is the default). Ionization states of the ligand are generated 
by choosing the required option. In our study, we use the default option “Epik” to 
generate the ionization states. We can also generate tautomers and stereoisomers 
according to our requirement. Upon completion of the job, the final output is gener-
ated in .maegz or .sdf format (Fig. 4.12).

After completion of the job, the output file is generated automatically in the 
folder job name-out.maegz. The output of the above steps will serve as input to the 
GLIDE module for docking. This includes two substeps: (a) receptor grid genera-
tion, and (b) ligand docking (Fig. 4.13).

We know that for a ligand to bind to the protein there must be a specific site 
which is known as active site. In order to specify this site, we will generate the 
grid box in the protein so that the program can appropriately place the ligand. In 
this, the first tab is receptor where we have to choose only receptor if our protein 
has co-crystallized ligand. Pick the ligand molecule which makes the program to 
exclude it while generating the grid. In the site tab, assign the values for the grid 
box (Fig. 4.14).

There are three methods to provide the coordinate values; the first is centroid of 
workspace ligand. We can visualize this in the workspace (Fig. 4.15).

This will automatically take the values of the co-crystallized ligand (as we picked 
the ligand molecule in the previous step). We can automatically see the X, Y, and Z 
coordinate values in the respective boxes. The second one, centroid of selected resi-
dues, is useful mainly for predicted models. If we have the details of the active site 
residues, we can give them here. The third is where we can give the coordinate values 
directly. This can be obtained from the literature or from the .pdb file (Fig. 4.16).

After this step, we can see the magenta coloured grid box around the ligand 
specifiying the active site where our molecule will go and bind in the workspace 
(Fig. 4.17).

There are a few other options in this grid generation step which are worth a men-
tion. They are constraints, rotatable groups, and excluded volumes tabs. These are 

Fig. 4.9  Project table with final structure along with its potential energy
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not used in our present example, but knowing about them will be useful. Through 
the literature, if we know that any specific interactions are important, we can set 
them as constraints through this tab which will screen the ligands based on these 
criteria. They can be positional constraints, metal constraints, and hydrophobic con-
straints. The rotatable groups allow the hydroxyl and thiol groups (serine, tyrosine, 
threonine, and cysteine) to be flexible during docking if we know that rendering 
flexibility provides better binding of ligand. If we want our ligand to not get bound 
at other sites (other than active site), we can pick those residues under excluded 
volumes so that those regions can be excluded from docking. After choosing the 

Fig. 4.10  Ligprep window
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required options, click on start which takes a few seconds and the result is generated 
in .maegz and.zip formats which is used in ligand docking step. Now, the second 
and final step in docking is the ligand docking (Fig. 4.18).

In this, first we have to give the grid file as input. We can browse it from the 
respective folder to the input box (Fig. 4.19).

Next is setting the docking parameters. First is precision, where we can find three 
options high-throughput virtual screening (HTVS), standard precision (SP), and ex-
tra precision (XP). HTVS rapidly screens very large number of compounds and 
cannot score in place. SP is the default step where we can screen a large unknown 

Fig. 4.11  Input ligand dialog box in LigPrep
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Fig. 4.12  Job submission in ligprep

Fig. 4.13  Grid generation for protein in GLIDE
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Fig. 4.14  The site tab in receptor generation

Fig. 4.15  Selected ligand in the receptor pocket after using the picking command
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Fig. 4.16  Receptor coordinate values

Fig. 4.17  The receptor grid box
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Fig. 4.18  The ligand docking tab

Fig. 4.19  Choosing the grid input file
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dataset. XP is a more powerful step which takes more time and gives more accurate 
results. Generally, it is recommended to first perform SP, then choose 10–30 % of 
the best results, and finally run XP to get better results (Fig. 4.20).

Ligand sampling provides us options to choose flexible (ligand conformations 
are used) or rigid docking (ligand is considered as rigid and no conformations are 
used) and flexible is the default one. The other default parameters are chosen and 
the next is ligands tab, in which the ligand file obtained after LigPrep is given as 
input and other scaling factors are taken as such (Fig. 4.21).

The core tab allows those ligands to dock that match the core of the reference 
ligand and excludes others. This is explained as ligand-based constraint. The con-
straints tab next to the core tab is relative to the constraints set during the grid gen-
eration step, if any. The constraints that are set in that step are displayed here, and 
to use them during docking, we have to select them here. The torsional constraints 
tab provides an option to constrain the torsional degrees of freedom in the ligand. 
The final and most important tab is the output tab where we can set the output pa-
rameters. The number of poses per docking and the number of poses per ligand can 
be fixed according to our requirements. It also performs post-docking minimization, 
calculate per residue interaction energy, and RMSD for input ligand. Once we de-
fine these parameters, the job begins, which may take a few minutes to hours based 
on the number of ligands and the parameters we gave (Fig. 4.22).

Fig. 4.20  The docking precision parameters
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Fig. 4.21  Ligands input for the docking run in GLIDE

Fig. 4.22  The output tab for the user to specify the number of poses and post-docking minimization
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The results of SP docking are shown in the project table. The table includes 
docking score, GLIDE score, and per residue interaction score for residues within 
12 Å of grid (as given in the output parameters).

The output is saved automatically in the destination folder in pv.maegz format.
This can be imported into the project table and workspace at any time using 

either of the options.
Applications → Glide → View Poses → Import Glide Results Or Project Ta-

ble → Entry → View Poses Setup.
We can visualize the docking of ligand into the protein in the workspace. For our 

example, among the three drugs ethambutol, isoniazid, and pyrazinamide, the order 
of binding to the protein is isoniazid > pyrazinamide > ethambutol (− 6.536, − 5.542, 
and − 4.273) based on the GLIDE score. The hydrogen bond contacts can be seen in 
the respective figures (Figs. 4.23, 4.24, 4.25, 4.26 and 4.27).

After SP docking, we can always perform XP docking where the steps are similar 
to SP docking except choosing the precision parameter as XP and choosing to write 
the descriptor file in the settings tab of ligand docking. The results will be generated 
in pv.maegz and .xpdes formats which can be seen through XP visualizer.

4.3 Docking Using Open Source Software

Autodock [13] is one of the most cited docking software. It has two main programs, 
AutoDock and AutoGrid, which perform docking of the ligand to a set of grids 
describing the target protein and pre-calculation of grids. Autodock Vina [14] is the 
improved version which can be performed in a batch mode and is also known to be 

Fig. 4.23  The docking results viewed in the project table
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more accurate than Autodock. Let us see the working steps of both the tools in the 
following sections.

4.3.1 Autodock Steps

1. Preparing the Grid Parameter File (.gpf)
i. Grid→Macromolecule→receptorH.pdb→Open
ii. This opens the .pdb structure of receptor and converts it into .pdbqt inside 

the same path, name it as receptor.pdbqt, and save
iii. Grid→Set Atom types→Directly
iv. This will open a new window where we need to specify the atoms in ligand; 

for generalizing the study, we can specify the atoms in window in Fig. 4.28 
which can be used.

 Accept A C H Cl Br I F S P HD N NA OA SA
v. Grid→Grid box
vi. This command opens a new window where we need to specify the 3D space 

for docking which is called GRID. To set the grid, we need to know the 

Fig. 4.24  The isoniazid molecule interacting with the protein (the dotted line indicates hydrogen 
bond)
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amino acids of receptor which commonly interact with known ligands. By 
taking the average of XYZ coordinates of interacting amino acids, we will 
enter the values in this window (Fig. 4.29).

 To obtain interacting amino acids,
vii.  Open PDBsum [15] and type the PDB code (of receptor having ligand in the 

cavity) in the search bar, e.g., 2ZD1 (Fig. 4.30).

A new window is displayed. Click on ligand name, a new window with ligand and 
interacting amino acid with receptor is opened, note down the names. You can save 
the ligPlot in .pdf format (Figs. 4.31 and 4.32).

To obtain XYZ co-ordinates, open receptor.pdb with WordPad and search for 
co-ordinate values of the heteroatom present in the receptor. Then copy the three 
coordinate columns of the heteroatom in to the excel sheet. Now calculate the aver-
age of each column and enter the respective values in the X, Y, and Z grid boxes.

For human immunodeficiency virus (HIV)-1 reverse transcriptase (1HMV), the 
grid is calculated as follows (Fig. 4.33):

i. The number of points in X, Y, and Z coordinates are set to 60 in most of the 
studies.

ii. In grid options window, Center→Pick an atom
 Will pick a center and adjust the grid accordingly.

Fig. 4.25  Pyrazinamide molecule interacting with the protein
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Fig. 4.27  The three ligands in the active site pocket

Fig. 4.26  Ethambutol molecule interacting with the protein
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Fig. 4.28  Atom specifica-
tions for any ligand

Fig. 4.29  Grid specifications 
for the receptor

Fig. 4.30  Interface of PDBsum
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iii.  In the same window, File→close, saving current closes the window and returns 
to the AutoDock window.

iv. Grid→output→Save GPF→receptor.gpf→Save
   Creates the receptor.gpf which is needed for docking.
v.   Grid→Edit GPF can be used to change grid center and coordinate values to 

integers. Click Ok.

2 Preparing Docking Parameter File (.dpf)

i. Docking→Macromolecules→set rigid filename→receptor.pdbqt
ii. Docking→Ligand→Open→ligand.pdbqt
iii. Docking→Search Parameters→Genetic Algorithm
iv. A window appears. Make sure to set the number of genetic algorithm (GA) 

runs to 10 and the population size to 150. Click Accept.
v. There are other Search parameters like Stimulated Annealing and Local 

Search parameters, but GA is most efficient of them all.
vi. Docking→Docking Parameters
vii. Set all the parameters to User Defaults and click Accept (Fig. 4.34)
viii. Docking→Output→Lamarckian GA→Ligand.dpf→Save
ix. Like Search Parameters, there are options in Output like Genetic Algo-

rithm, Stimulated Annealing, and Local Search, but Lamarckian GA is the 
most efficient of them.

x. This .dpf file contains parameters for Docking.

Fig. 4.31  Receptor–ligand 
interaction information 
obtained from PDBsum
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Fig. 4.32  PDBSum page
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Fig. 4.33  The X, Y, and Z coordinates of the receptor

Fig. 4.34  Setting options for a docking run
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Docking

i. All the required files (receptor.pdbqt, ligand.pdbqt, receptor.gpf, ligand.dpf) 
should be stored in one folder.

ii. Open command prompt and change directory to the above-mentioned folder.
iii. First, run the grid file by command.
 Autogrid4 –p receptor.gpf –l receptor.glg (Fig. 4.35)
iv. Then run Docking file by command.
 Autodock4 –p ligand.dpf –l ligand.dlg (Fig. 4.36)
v. This will create the ligand.glg file which can be visualized using AutoDock.

Active site identification:

3. Analyzing docking results (ligand.dlg)

i. Open AutoDock and click
 Analyze→Dockings→Open→ligand.dlg
ii. For better visualization
 Analyze→Macromolecules→Open→receptor.pdbqt
iii. To visualize best-interacting conformation
 Analyze→Conformations→Play
iv. The above command opens a new window, enter the exact number of confor-

mation and press enter to visualize it.
v. To know the best conformation, open ligand.dlg with WordPad and search 

the RMSD table. The conformation with least-binding energy is ranked first 
which is most of the times the best-fitting conformation.

vi. Use Commands like build current and write complex to obtain the PDB file 
of the best-docked conformation (Fig. 4.37).

Fig. 4.35  Command for running the grid file

Fig. 4.36  Command for running the dock file
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4.3.2 Docking Using AutoDock Vina

Let us try one example using the Autodock Vina program. It has an improved 
searching method and allows the use of multi-core setups. Autodock Vina calcu-
lates the grids internally and instantly which is done by autodock and autogrid in 
AutoDock4. Also in Vina, there is no need to prepare the grid (.gpf) and docking pa-
rameter (.dpf) files. There is availability of Autodock tools to visualize the results.

For our example, we will be using the following software:

1. Schrödinger for saving the ligand and protein in .pdb format.
2. Multiple granularity locking (MGL) tools for generating the coordinate files 

(required by Vina).
3. PyMOL for veiwing the results.

First, download the protein structure from PDB. Then separate the protein and li-
gand and save them separately in .pdb format. Save the ligand of interest, which 
we want to dock with our protein in .pdb format. This was done using Schrödinger, 
where we imported the pdb structure 1G3U to the workspace, separated the ligand, 
and saved it in .pdb format. Then remove the water molecules using the delete op-
tion from the menu and save the protein structure without ligand in .pdb format. 
Now these files can be used in MGL tools.

These files are converted into .pdbqt format (as they are needed by Autodock 
Vina) through MGL tools. Click on the autodock icon on your desktop to open the 
workspace. Go to File menu on the top and then to Read molecule and from there 
browse the protein .pdb file into the workspace (Fig. 4.38).

Fig. 4.37  Analyzing the docking results.
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Then we have to add polar hydrogens to that protein structure as most of the .pdb 
files do not contain hydrogens. This is done through edit menu where we have to 
choose “polar only” option (Figs. 4.39 and 4.40).

Then to save it in. pdbqt format, go to Grid Macromloecule Choose. This opens 
a window where our protein name is displayed; select it and save it in .pdbqt format 
in the respective folder (Fig. 4.41).

The next step is to generate grid, go to Grid Grid box (Fig. 4.42).
Choose the dimensions and spacing. Usually, the spacing is taken as 1 Å. Enter 

the X, Y, and Z coordinate values of the co-crystallized ligand (active site) which 
can be obtained from the text file of the pdb structure. These values are also needed 
while preparing the config file for Vina (discussed later).

Similarly for getting .pdbqt format of ligand, go to ligand input open (Fig. 4.43).
Browse the .pdb file of the respective ligand into the workspace. Autodock tools 

automatically add the polar hydrogens to the structure when we open the file. Here, 
we took isoniazid as the ligand which is the first line drug for tuberculosis (TB). 
We can visualize and change the rotatable bonds of the ligand structure by going 
to Ligand torsion tree choose torsions. Rotatable bonds are represented in green 

Fig. 4.38  The menu bar and read molecule option in AutoDock tools (ADT)
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color in the structure. Now save the structure by ligand output save as .pdbqt in the 
respective folder (Figs. 4.44, 4.45 and 4.46).

After preparing the .pdbqt files for target and ligand, we can use either Autodock 
or Autodock Vina.

We have to open the command prompt, from the start menu go to all programs, 
then to command prompt. Before running Vina in the command prompt, we have 
to create configuration file in a text document which includes the receptor name, 
ligand name, dimensions, and coordinates of the grid (active site) which we gave in 
the AutoDock tools (mentioned above). This is named as conf.txt file (Fig. 4.47).

Now change the directory to the respective folder where the input files are saved 
using the change directory (cd) command. Now run the following command.

vina –config conf.txt –out out.txt –log log.txt
or
vina –config conf.txt –receptor receptorname.pdbqt –ligand ligandname.pdbqt –

out out.txt –log log.txt and press the enter button to view the results in the command 
window (Fig. 4.48).

Fig. 4.39  The protein loaded in the AutoDock workspace
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It gives the protein-binding affinity in kilocalorie per mole (kcal/mol) for ev-
ery conformation and also the RMSD. Vina automatically detects the processors 
and displays it. The log files and output files can be seen in the folder. The outfile 
(out.pdbqt) can be visualized through PyMOL [16] or AutoDock tools (Figs. 4.49 
and 4.50).

In PyMOL, we can visualize all the conformations by clicking on the arrow but-
ton or the play button.

4.4 Other Docking Algorithms

Ludi Ludi [17] is a product of Accelrys (Insight II) which can be used in both struc-
ture-based drug design (protein structure is known) and ligand-based drug design 
(protein structure is not known). Based on this, it runs in two modes: receptor mode 
and active analog mode. This mainly follows the fragment approach where initially 

Fig. 4.40  The addition of polar hydrogens to the protein molecule
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small fragments are allowed to make hydrogen bond and hydrophobic interactions 
within the active site, and then these fragments are linked by spacer fragments to 
get a whole new compound.

FlexX FlexX [18], one of the most-cited method, is also a commercial tool for 
protein–ligand docking. Here, the protein is rigid and both flexible and rigid ligands 
can be docked. It follows the robust incremental construction algorithm. The ligand 
is decomposed into pieces and then flexibly built up in the active site, using a vari-
ety of placement strategies. The docking approach is like incremental construction 
where the ligand is placed incrementally in the active site rather than the whole 
ligand placed at one time [19].

4.4.1 Induced Fit Docking

The docking programs discussed or mentioned above follow the usual docking 
method, where the protein is rigid and the ligand is flexible to generate conforma-

Fig. 4.41  The protein structure is saved as .pdbqt
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tions and each conformation binds to that protein. But factually, proteins in our 
body when bound by a ligand undergo changes in their structure which, in turn, 
leads to adjustments in the binding site in order to generate a better binding mode. 
This is referred to as an induced fit docking [20], one of the emerging area of re-
search. Induced fit docking has two advantages over the general docking procedures 
as, first, it simulates the flexible protein as present in the body leading to more ac-
curacy in results. Second, it helps us in retaining even those molecules which are 
poor binders in one conformation of protein but may be good in another. For this, 
Schrödinger has a module named induced fit docking [21], which can be picked 
from workflows present in the main menu.

4.4.2 Flexible Protein Docking

As discussed above, side-chain movement or protein flexibility plays an impor-
tant role in a docking process. Usually, uncertainty in side-chain placement or loop 
modelling arises in protein structures predicted through homology modelling. Only 
a few docking tools consider these, like FlexE. This is a tool which considers the 
protein structure variations or flexibility to dock flexible ligands [22] (Fig. 4.51).

It has options like Receptor, Ligands, GLIDE Docking, Prime Refinement, and 
GLIDE Redocking. This process, however, takes high computation time for good 
results.

Fig. 4.42  The grid box and its dimensions in ADT
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4.4.3 Blind Docking

The importance of recognizing the active site for a given 3D structure of a protein 
cannot be overstated. Most of the docking tools use the already known functional 
site (active site) details to perform docking [23]. But literature reports prove that 
docking can also be used to locate the binding site. This is termed as blind docking, 
i.e., the docking algorithm is unable to see the binding site but still can find it where 
the protein–ligand interaction information can be known without the knowledge of 
the specific binding site. The search space includes limited region of protein if the 
active site is known, but in blind docking the search space includes the whole pro-
tein surface which requires more computational time. Therefore less feature points 
representing a rigid conformation of the ligand to be docked are considered. [24].

4.4.4 Cross Docking

In all the methods discussed above, the docking procedure involved docking of li-
gands to the native conformation of protein termed as self-docking. There is another 

Fig. 4.43  The ligand molecule imported into workspace
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Fig. 4.44  Choose torsions for the ligand

Fig. 4.45  The rotatable bonds and unrotatable bonds shown in different colors
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Fig. 4.46  The ligand in .pdbqt format

Fig. 4.47  The configuration text document
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method in which the ligands are docked into the protein targets whose structural 
determination was performed using different ligands. This is helpful in identifying 
ligands active against different set of proteins [25, 26]. The different algorithms that 
have been used in benchmarking studies are CDocker [27], Fred [28], Rocs [29], 
etc. In Schrödinger, the GLIDE module can be used for cross docking. Using the 
script file xglide-gui.py, ligand and protein preparation can be automated for cross-
docking ligands from complexes and analysis of results.

4.4.5 Docking and Site-Directed Mutagenesis

An important application of docking is in site-directed mutagenesis, wherein one 
can make specific changes in amino acid residues in the active site of a protein [30]. 
This generates a different set of modified proteins which can be docked to compare 
binding affinities with the original wild protein. Thus, the key amino acids impact-
ing the biological activity of a protein can be identified. In silico studies coupled 

Fig. 4.48  The docking results file in the command prompt showing binding affinities and RMSD 
values
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Fig. 4.49  The docked conformations of isoniazid in the active site in Autodock

Fig. 4.50  The best-docked ligand in the active site as viewed in PyMOL
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with experimental data enable protein screening, active-site structure elucidation, 
mapping binding modes, etc. [31].

4.5 Protein–Protein Docking

Protein–protein interactions are the mediators of several functions and are consid-
ered as vital for many biological processes, fundamental to understand cellular or-
ganization, signal transduction, metabolic control, gene regulation, etc. [32]. These 
protein–protein interactions have a major part in diseases like prion diseases, where 
host protein is converted to pathogenic protein through interactions. The protein–
protein interactions are at the core of the entire interatomic system of any living 
cell to express any biological function. Designing small molecule inhibitors against 
protein–protein interaction targets is gaining importance these days [33]. Pharma-
ceutically targeting these protein–protein interactions have shown to have greater 
significance in diseases like cancer and HIV [34]. Before designing the inhibitors, 
it is essential to have a good knowledge regarding the actual interactions occur-
ring between two proteins and this can be accomplished by protein–protein docking 
studies.

While genome-wide proteomics studies provide an increasing list of interacting 
proteins, only a small fraction of the potential complexes are amenable to direct ex-
perimental analysis. Thus, it is important to utilize protein–protein docking methods 
that can explain the details of specific interactions at the atomic level. Furthermore, 

Fig. 4.51  The induced fit docking window in Schrödinger
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the precise understanding of protein–protein interactions for disease-implicated tar-
gets is ever more critical for the rational design of biologic-based therapies [35]. 
Hence, understanding these inter-molecular interactions through protein–protein 
docking may provide us with novel therapeutic molecules. Many databases are 
available with the information regarding the protein–protein interactions like Da-
tabase of Interacting Protein (DIP) [36], STRING [37], BioGRID [38], etc. Gener-
ally, the molecular structure of these protein complexes is experimentally studied 
through techniques like principal component analysis (PCA), yeast two hybrid 
system, X-ray crystallography, and nuclear magnetic resonance (NMR) along with 
the emerging theoretical method of protein–protein docking. To demonstrate this 
approach, we selected two proteins which are known to interact from STRING da-
tabase [39], viz. thioredoxin reductase (2A87) and alkyl hydroperoxidase (2BMX), 
and submitted them in few protein–protein docking servers discussed below.

Hex Hex [40] is a free software used to study the docking modes of proteins and 
ligands, protein pairs, and DNA molecules. It is an interactive molecular graphics 
program which can be downloaded or performed online. It uses the spherical polar 
Fourier (SPF) correlations for the docking calculations (Fig. 4.52).

Docking is performed in two steps in this server. In the first step, we will upload 
the two proteins and choose the calculation type. In the second step, we have to give 
the details of origin residues and interface residues for both receptor and ligand, 
along with the required number of results. Now the job is submitted and the results 
are shown in the same page or sent to the given mail address.

Fig. 4.52  The Hex server interface with the two proteins given as input
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ZDOCK This is also a freely available automatic protein docking server [41]. It 
uses the fast Fourier transform (FFT) algorithm to search the binding modes of the 
protein [42]. Its evaluations are based on the shape complementarity, desolvation 
energy, and electrostatic parameters (Fig. 4.53).

As mentioned above, the two proteins were submitted to the server along with 
the e-mail address where the results are sent (Fig. 4.54).

The next step is to select any specific blocking residues which can be taken from 
the literature. For our example, we chose none. After completion of the job, output 
link is mailed which includes output file; pdb files of two proteins, where one is 
considered as receptor and the other as ligand; and tar file of top five predictions.

GRAMM-X
This is also another free sever for protein–protein docking which follows the 

FFT algorithm [43] (Fig. 4.55).
Other servers are also available for this purpose like Rosettadock [44], clusPro 

[45], etc.

MEGADOCK It is known that druggability of protein–protein interactions is 
an emerging area of research and studying a protein–protein interaction network 
requires huge computation. MEGADOCK [46] is a recently reported protein–pro-
tein docking engine which is shown to be efficient on a large number of protein 
pairs. It is a high-throughput and ultra-fast pixels per inch (PPI)-predicting system 
with hybrid parallelization technique which makes it work on parallel supercom-
puting systems. It follows the rigid body docking considering the tertiary structural 
data of the proteins.

Piper Piper [47] is a state-of-the-art protein–protein docking program based on a 
multistaged approach and advanced numerical methods that reliably generate accu-
rate structures of protein–protein complexes. Piper program has been used for pro-
tein–protein complexes prediction in previous CAPRI experiments [48].

Fig. 4.53  The ZDOCK server interface
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4.6 Pharmacophore

This is a familiar word in the field of lead molecule design or drug discovery. It is 
defined by International Union of Pure and Applied Chemistry (IUPAC) as “an en-
semble of steric and electronic features that is necessary to ensure the optimal supra 
molecular interactions with a specific biological target and to trigger (or block) its 

Fig. 4.54  The proteins submitted for docking studies in ZDOCK

Fig. 4.55  The GRAMM-X server interface
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biological response.” Although docking is the best method to understand the pro-
tein–ligand interactions and we can screen huge number of small molecules based 
on the score, yet the use of pharmacophore concept before docking and screening 
can lead to better compounds [49, 50]. A pharmacophore in a usual way is a feature 
of the compound responsible for a specific biological activity. So every compound 
which is known to be active will have some features accountable to its activity. 
Hence, knowledge of these features can be used as a filter to screen unknown da-
taset of molecules. This can be of different types like ligand based where a set of 
active and inactive ligands are analyzed and information about the receptor is not 
used. It can also be complex based where a protein–ligand complex is analyzed and, 
finally, target based where only the structural data of receptor is used [51].

The typical pharmacophores are listed below:

1. Hydrogen bond acceptor (A)
2. Hydrogen bond donor (D)
3. Hydrophobic group (H)
4. Aromatic ring (R)
5. Positively charged group (P)
6. Negatively charged group (N)

There are commercial software like Schrödinger, MOE, Discovery Studio, etc. to 
generate the pharmacophore query or model and use it as a filter to screen com-
pounds and for building a quantitative structure–activity relationship (QSAR) mod-
el. Catalyst is a commercial software by Accelrys [52]. It creates a hypothesis in 
terms of chemical features that are important to bind at active sites which can be 
used for further screening of databases. HipHop, a part of catalyst performs the fea-
ture-based alignment of given set of compounds without considering activity. Hy-
pogen is the algorithm which generates the activity-based pharmacophore model.

4.6.1 Pharmacophore Modelling in SCHRÖDINGER

The module which can be used for pharmacophore generation in this suite is Phase 
[53]. Any number of ligands with their activity value (half maximal inhibitory 
concentration, IC50) can be used for the generation of common pharmacophore, 
but always a set of compounds that are studied under similar experimental results 
will provide good results. For example, we have chosen few compounds which are 
known inhibitors of dihydroorotate dehydrogenase enzyme in Plasmodium falci-
parum [54]. This set of compounds contains active and inactive compounds (based 
on the IC50 values). Draw the molecules either in maestro workspace or in any tool 
like ChemSketch [55] or ChemDraw [56] and save them in .mol format. Now im-
port these molecules into the project table (Fig. 4.56).

When we import the structures into the project table, they can be visualized in 
the workspace. In the project table, choose and add the biological activity (IC50) 
values of the molecules obtained from the literature. Usually for the purpose of easy 
calculations, we convert the micromolar values into molar using formula through 
the project table calculator (Fig. 4.57).
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Fig. 4.56  The molecule viewed in project table and workspace

Fig. 4.57  The project table with molecules along with their IC50 values
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Phase provides a wide range of options like simplified pharmacophore model-
ling and screening (where we find pharmacophore features for a single ligand, edit 
them, manage them, and screen against a database of molecules), creating phar-
macophore hypotheses manually, managing the hypotheses, generating a database, 
shape screening, etc. For our study, we develop pharmacophore hypotheses where 
we can find a series of steps to follow along with building a QSAR model (optional).

Go to main menu Applications → Phase → Develop common pharmacophore 
hypotheses.

It opens a window with further options (Fig. 4.58).
The first step here is to prepare ligands. Import the molecules from either file or 

run or project table. In our example, we use “From Project” option which will show 
a table with the molecules and an option to choose the property. Choose the property 
(converted IC50 values) IC50 (M) (Fig. 4.59).

Fig. 4.58  The common pharmacophore hypotheses table
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This will show all the ligands with IC50 values and default “active” in the pharm 
set column (Fig. 4.60).

Now click on the activity thresholds button on the right down corner and define 
the values above 7 as active and below 5 as inactive. This will change the pharm 
set parameters accordingly as active and inactive. And the ligands with activity 
between 7 and 5 are considered as moderately active and the pharm set parameter 
will be empty (Fig. 4.61).

The clean structures option will convert the two-dimensional (2D) structures 
to 3D, remove counter ions and non-compliant structures, generate stereoisomers, 
and perform energy minimization. Default parameters were used (retained specified 
chiralities and original states) in this example (Fig. 4.62).

The generate conformers button generates all possible conformations using con-
fgen method and OPLS_2005 force field (default parameters). Here, rapid sampling 
method is used to generate the core conformations first and then the peripheral 
conformations are sampled one by one. We also have the option to choose con-
tinuum solvation methods for water namely distance-dependent dielectric (default) 
and GB/SA. The redundant conformers are eliminated by using cut-off RMSD of 
1 Å (Fig. 4.63).

Fig. 4.59  The addition of ligands to start pharmacophore modelling
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Fig. 4.60  The ligands with activity and the default “active” pharm set

Fig. 4.61  The activity 
thresholds
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Fig. 4.62  The clean struc-
tures options available in 
pharmacophore in phase

Fig. 4.63  Parameter setting 
for generation of conformers
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We can see the number of conformations generated for each ligand in the confor-
mations column (Fig. 4.64).

The next step is to create sites. In this step, for every conformation of the ligand, 
the sites of each feature are found among the pharmacophore features present (in-
built features mentioned above). There is an option of editing the features whose de-
tailed description is always available in the manual (http://www.schrödinger.com/
supportdocs/18/13/). We can visualize the features of every ligand before creating 
sites (Figs. 4.65 and 4.66).

We can see the features displayed in the ligands box after completion of the job. 
In the next step, we “Find Common Pharmacophores” through which we can find 
the common pharmacophores for selected variant list (Fig. 4.67).

The common pharmacophore hypothesis is the description of how the ligand 
binds to the receptor. And Phase follows a tree-based partitioning technique to find 
the common pharmacophores. Immediately after entering this step, we can see the 

Fig. 4.64  The number of conformations generated
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list of variants based on the default parameters. We can change them according to 
our requirement by defining the variant list. The table of feature frequencies dis-
plays the type of features and available number of features which cannot be edited. 
Besides this, there are the minimum and maximum columns which we can edit. It 
means we can define the number of features that should be present in a variant.

We can also define the minimum and maximum number of sites for a variant. 
It ranges from three to seven. Care must be taken while defining the number of 
site points because less number of sites may not contain all the features and more 
sites may result in no pharmacophores. Usually, default value 5 is considered. The 
must-match-at-least box will display the total number of actives present in our data 
by default. We can reduce the number in order to widen the search (less number of 
actives will give more number of variant lists). The completion of job displays the 
maximum number of hypotheses found for each variant (Fig. 4.68).

The next step is to score the hypotheses where we can choose the best hypoth-
esis based on the score analysis for further screening of database of molecules or to 
build a QSAR model out of that hypothesis. In this step, initially we have to calcu-
late the score for actives by clicking on the score actives button by using the default 
vector and site filtering options (Fig. 4.69).

Clicking on the start button runs the job and on completion gives the survival 
values. Next, click on the score inactives (use default parameters). It will give the 
inactive values along with the survival inactive values. If we want to re-analyze 

Fig. 4.65  All pharmacophore features of first ligand before creating sites
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the hypotheses, we can rescore it by clicking on the rescore button which will 
give the post hoc values according to the changes we have made in the parameters 
(Fig. 4.70).

After generating all the scores, we can examine them individually by clicking 
on the box in “In column.” When we click on the box of “In column,” it shows the 
alignment details for that single hypothesis with the fitness value. The fitness value 
shows how good the conformation of ligand matches the hypotheses. The perfectly 
matched will show a value of 3. The selection of the best hypotheses from the list 
requires keen analysis and visualization. Usually, the one with the highest survival 
inactive score is considered as good hypothesis, but it is not compulsory to choose 
that for further study (Figs. 4.71 and 4.72).

The fitness value usually differentiates the active and inactive ligands. All active 
ligands will have a fitness value nearing 3. And the inactive ligands will have less 

Fig. 4.66  The pharmacophore features for each ligand
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fitness score. As a default, the inactive ligands cannot be aligned on the hypothesis 
(Fig. 4.73).

But we have the alignments options button from where we can align and exam-
ine the inactive ligands (Fig. 4.74).

Check the box “align non-model” ligands which will enable the inactive ligands 
and by selecting them, we can superimpose them on the hypothesis (Fig. 4.75).

Now the final use of the selected hypothesis can be in developing a QSAR model 
which is the next step provided by Phase, and it can also be used directly as a filter 
in searching a 3D database to find similar matches as that of the hypothesis. This 
may result in novel compounds which can be further validated through docking 
(Fig. 4.76).

Fig. 4.67  The find pharmacophore step in phase
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Fig. 4.68  The maximum number of hypotheses found for each variant

Fig. 4.69  The default values for scoring the actives
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Fig. 4.70  The values after scoring the actives and inactives

Fig. 4.71  A hypothesis and its alignment details
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Fig. 4.72  All superimposed active ligands of the selected hypothesis

Disabled-
inac�ve 

Enabled-
ac�ve 

Fig. 4.73  The disabled inactive ligands

Fig. 4.74  The alignment 
options window
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4.6.2 Finding Pharmacophore Features Using MOE

Let us try using MOE for the generation of pharmacophore. A pharmacophore que-
ry in MOE consists of features, feature constraints, and volume constraints which 
should be matched while screening against any database of ligands. The perfor-
mance of MOE is as good as the catalyst module of Accelerys as cited in few litera-
ture reports [57]. In MOE, we can edit and modify a pharmacophore query for the 
ligand and use that query for further study. This also has different pharmacophore 
features defined in it which can be edited manually by the user.

Let us see an example. Go to the main menu File Open (Fig. 4.77).
Browse the selected molecules which are in .sdf format and import them to a 

database by clicking on import to database which opens a window. Browse the 
destination folder and specify the database name. This will create the database of 
molecules in .mdb format (Fig. 4.78).

Now open the. mdb file and click on the open in the database viewer button. This 
will open the molecules in a separate window and the molecules can be visualized 
in the workspace by clicking on each of them (Ctrl + click for multiple selection) 
(Fig. 4.79).

Fig. 4.75  The superimposed inactive ligands on the selected hypothesis



4.6 Pharmacophore 249

Now double click the first molecule in the database viewer table which will dis-
play the ligand in the workspace. Go to main menu compute pharmacophore query 
editor (Fig. 4.80).

Clicking on the query editor will automatically generate the pharmacophore fea-
tures along with the opening of the editor window (Fig. 4.81).

Clicking on the “info” button opens a window where we can choose the specific 
pharmacophore features as required for the study by selecting and deselecting the 
boxes. Each ligand can be visualized for analyzing its features (Figs. 4.82 and 4.83).

In this example, the pharmacophore query was generated using the most ac-
tive ligand. Features were created by selecting the respective feature in the work-
space ligand and then clicking on the feature button to create the pharmacophore 
(Fig. 4.84).

This query was saved in the respective folder by clicking on the save option. 
This query will be used to search any database for the hits. Now all windows can be 

Fig. 4.76  Build QSAR model or search for matches after the selection of hypotheses



250 4 Docking and Pharmacophore Modelling for Virtual Screening

closed by clicking on the close button present at the right side of the MOE window. 
The query is saved in .ph4 format. Next, we open the database which should be 
screened using this pharmacophore query as filter by going into file and open. In our 
example, we used the 3D database of Maybridge [58] which has more than 58,000 
entries of 3D conformations (Fig. 4.85).

Now in the database viewer window, go to compute and then to pharmacophore 
search option (Fig. 4.86).

It opens a window as shown in Fig. 4.87. This will have the input file by default. 
The query is then entered through browsing it from its respective folder. Finally, set 
the output path and click on the search button to start the job.

The search process takes few moments depending on the number of entries in 
the database. After completion of the search, it shows the number of hits found 
(Fig. 4.88).

Clicking on the report button present beside the search button will show the fol-
lowing window where we can see the details of the search process (Fig. 4.89).

Here, the numbers of hits are more. But a pharmacophore query can always be 
modified to focus the search and narrow the hits. Here, we tried to modify the query 
as shown in Fig. 4.90 which led us to three final hits (Fig. 4.91).

Pharmacophore always helps in choosing better hits as it contains the features 
that are known to be important for their activity. This pharmacophore query can be 

Fig. 4.77  Importing the ligand molecules in MOE
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used either before docking to screen a database (as explained above) or while dock-
ing to screen a set of ligand conformations.

For this, the prepared protein structure is imported into the MOE window.
Then go to compute → simulations → dock. This will open the window as 

shown in Fig. 4.92.
After setting the receptor and the site options, the pharmacophore option is set by 

browsing the pharmacophore query (PH4 file) and the ligand option is set for .mdb 
file which contains the set of ligands. After choosing the other parameters, click on 
run which performs the docking of ligands using the pharmacophore query we gave 
as the filter (Fig. 4.93).

Fig. 4.78  The creation of database of molecules for PH4 query generation
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Fig. 4.79  The molecules uploaded in the database viewer in MOE

Fig. 4.80  The ligand and the query editor option in MOE
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4.7 Open Source Tools for Pharmacophore Generation

PharmaGist [59, 60] is a freely available web server for detecting pharmacophore 
from a group of ligands known to bind to a particular target. The output is given as 
a list of pharmacophores (Fig. 4.94).

One can download structures from any database and open in Marvin view pro-
gram and convert .sdf file format to .mol2 format. Then click on save and upload the 
saved .mol2 file in PharmaGist. We can set the number of output Pharmacophores 
(2, 5, 10, 20) and manage advanced options to set weightage for aromatic ring, 
charge, hydrogen bond, and hydrophobic. If not specified, default values (0.3 for 
hydrophobic and 1 Å for rest) will be considered. User can also set a pivot mol-
ecule which will be considered as basic framework with which other structures are 
aligned and screened for similarity. Results are submitted to the specified e-mail ad-
dress. As an example, we chose few non-nucleoside reverse transcriptase (NNRT) 
inhibitors which act against the reverse transcriptase enzyme.

Pharmacophore generation from known ligands using PharmaGist (Figs. 4.95 
and 4.96):

Click on Jmol to obtain the Pharmacophore models which can be saved as .pdb 
(Fig. 4.97).

The downloaded file can be opened in WordPad. It displays the XYZ coordinates 
of the pharmacophore groups (Fig. 4.98).

Open ZINCPharmer (http://zincpharmer.csb.pitt.edu/) where the XYZ coordi-
nates of Pharmacophore groups can be used to screen ZINCDatabase. ZINCPharm-
er is the free and open source pharmacophore search software which can identify 

Fig. 4.81  The ligand with (default) pharmacophore features and editor window
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pharmacophores by itself or we can import the pharmacophore definitions from 
MOE or LigandScout (Fig. 4.99).

Use “Load feature” to load pharmacophore structure of PharmaGist (Fig. 4.100).
The given pharmacophore query is used to screen the molecules present in the 

ZINC database and gives the hits which can be downloaded. These screened com-
pounds can be further validated through docking against the respective enzyme 
(Fig. 4.101).

4.8 Rules of Thumb for Structure-Based Drug Design

• Study the structural details in the context of biochemical pathways, recognize 
role of solvent, and cofactors in the binding process while performing docking 
studies.

Fig. 4.82  The pharmaco-
phore features list
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Fig. 4.83  The selected features for the first ligand

Fig. 4.84  The creation of pharmacophore query
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Fig. 4.85  The database molecules in database viewer

• In the initial stages of any structure-based drug design project, always choose a 
well-validated target with known inhibitors and a good X-ray structure of resolu-
tion more than 2 Å and an R value of 0.2. Poorly resolved crystal structures may 
not have easily distinguishable isoelectronic groups in molecules.

• Always be careful while selecting the docked poses. Remember that the best-
docked conformation need not be the closest one to the native bioactive confor-
mation.

• The active site coordinates have to be supplied properly. In case of multi-domain 
proteins, extra caution needs to be exercised to define the active site.

• In the drug discovery scenario, it is important that receptor and ligand interaction 
is not viewed via the rigid lock and key mechanism. Protein flexibility although 
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Fig. 4.86  The pharmacophore search option in database viewer

Fig. 4.87  The pharmacophore search window
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computationally exhaustive should be considered; some software have provision 
for loop and gate-keeper amino acid movements [61].

• Take care of the correct ionization state of the ligand as well as the presence of 
explicit and implicit hydrogens.

• It has been recommended that sampling and scoring should be considered to-
gether; selection of training and decoy set should be carried out carefully as it 
affects the performance of the scoring function [62].

• Retain water molecules in the active site for sometimes they form important 
bridging bonds and play key role in catalysis in case of some receptors.

• In silico predicted binding affinity and in vitro obtained biological activity may 
or may not correlate in some cases.

• Structure-based drug design is possible for apo structures (no bound ligand) us-
ing information available on ligand and radius of gyration of the holo structure 
[63].

• Whenever possible, complement the docking results with multi-domain simula-
tions which provide better guidance on RMSDs and positional fluctuations.

Fig. 4.88  The number of pharmacophore hits obtained in Maybridge
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Fig. 4.89  The report of the search process

Fig. 4.90  The modified pharmacophore query
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Fig. 4.91  Hits obtained after modifying the query

4.9 Do it Yourself Exercises

Exercise 1
Download the protein panthothenate synthetase (PDB ID 3IUB) and perform the 

following tasks:

a. Protein preparation
b. Grid generation around the active site
c. Generate a pharmacophore query using the co-crystallized ligand (5-methoxy-

N-[(5-methylpyridin-2-yl)sulfonyl]-1H-indole-2-carboxamide)
d. Use this query as a filter to screen a public database like ZINC
e. Report top 15 hits obtained after screening.
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Fig. 4.92  The docking window in MOE

4.10 Questions

 1. Define docking. What are the steps involved in it?
 2. What is rigid docking and flexible docking?
 3. List a few online tools that are used for docking.
 4. How is Autodock program different from Autodock Vina?
 5. How is protein preparation helpful before docking?
 6. What is the LigPrep application used for?
 7. Distinguish between protein–ligand docking and protein–protein docking.
 8. Induced fit docking considers the flexibility of the protein. Discuss.
 9. Define pharmacophore. Enlist some pharmacophore features.
10. How does a pharmacophore hypothesis helps in better screening of ligand 

databases?
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Fig. 4.94  Interface of PharmaGist

Fig. 4.93  The pharmacophore and ligand option in dock window
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Fig. 4.95  Detected pharmacophore features for the set of input molecules

Fig. 4.96  List of pharmacophore models obtained

Fig. 4.97  Downloading pharmacophore structure from PharmaGist



264 4 Docking and Pharmacophore Modelling for Virtual Screening

XYZ co-ordinates of Pharmacophore

Fig. 4.98  XYZ coordinates of a pharmacophore
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Fig. 4.99  Loading the pharmacophore features obtained from PharmaGist in ZINCPharmer

Fig. 4.100  Loaded pharmacophore feature
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Fig. 4.101  Hits obtained 
after screening the ZINC 
database
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Chapter 5
Active Site-Directed Pose Prediction Programs 
for Efficient Filtering of Molecules

Abstract It is well known that the three-dimensional structure of a protein is a 
prerequisite in the field of structure-based drug discovery. Proteins are usually crys-
tallized along with substrates (small molecules) and the site of binding is used for 
further computational study and virtual screening. Homology is a method that helps 
in modelling when a protein structure lacks co-crystallized ligands and requires 
knowledge of the binding site or the sequences which are yet to be crystallized, 
that require some structural understanding to correlate with biological functions. 
Homology modelling and active site prediction steps are discussed in detail using 
standard state-of-the-art software. Knowing the exact sites on a particular protein 
structure where other molecules can bind and interact is of paramount importance 
for any drug design effort. Having learnt the basic elements of docking, in this chap-
ter we probe further into the binding sites and the specific properties that impart 
them the capability of getting bound by ligands. Active site-based features like 
topology, shape volume and amino acid composition all contribute to its preference 
for binding to a particular ligand molecule. Deducing this knowledge is the crux of 
an efficient active site-based screening of molecules. Active site information also 
helps in building a receptor-based pharmacophore query which can be applied as a 
constraint while screening molecular libraries. The later section therefore highlights 
some efforts towards active site-based virtual screening of molecules using an inter-
nally developed program which computes phi–psi-based fingerprints of proteins 
and binary fingerprints of ligands as a pre-filtering step for docking.

Keywords Active site · Homology modelling · Phi–psi fingerprints · Drug design

5.1  Introduction

There are several computational methods for the identification of binding sites. The 
different approaches discussed in the literature can be broadly classified as struc-
ture, sequence, knowledge or dynamics based. They can be further categorized as 
shown in Fig. 5.1:

M. Karthikeyan, R. Vyas, Practical Chemoinformatics,
DOI 10.1007/978-81-322-1780-0_5, © Springer India 2014
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Geometric methods detect cavities and pockets on a protein’s surface by em-
ploying a cubic grid strategy [1]. Energetic approaches are based on the interaction 
energy between protein and a van der Waals probe to identify energetically favour-
able binding sites.[2]. Homology-based methods primarily identify structures ho-
mologous to the target with a bound ligand [3]. Other methods in this category 
use sequence profiles, conserved features, motifs and descriptors to predict protein 
ligand binding site [4]. Using atomistic scale simulations, many active sites have 
been predicted especially for ion channel inhibitors [5]. Machine learning meth-
ods like the support vector machine (SVM) and artificial neural network (ANN) 
have been routinely used for predictive model building using amino acid features 
as inputs [6]. There are several free online software and tools that follow the above 
methods to find the active sites like LIGSITE [7], Pocket finder [8], Findsite [9], 
CASTp, etc. [10]. Commercial software such as Schrodinger [11], Molecular Oper-
ating Environment (MOE) [12], Discovery Studios [13], etc. also have binding site 
prediction modules in their toolkit. We will learn the use of some of these tools in 
the following sections.

5.2  A Practice Tutorial for Predicting Active Site  
Using SiteMap

Here, we predict the possible active sites for a three-dimensional (3D) protein using 
SiteMap module in Schrodinger. For our study, let us take a 3D protein from the 
Protein Data Bank (PDB) in its unbound state. The method used by the SiteMap 
is similar to the Goodfords’ GRID algorithm [14]. It uses the interaction energies 
to locate the energetically favourable regions. It is necessary to remove the water 
molecules, cofactors or ligands (if any) present in the protein. The protein in our 
example does not have a bound ligand and it consists of say four chains (A, B, C 
and D) among which we considered chain A for this study. In the first step, the water 
molecules and extra chains are removed and the structure is saved in .mae format. 
In the next step, select the SiteMap option which initially traces the sites that in-
clude a set of site points on a grid. Then it creates the contour maps which generate 

Structure Based 
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Energy  

Structure 
sequence 
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Homology  

Sequence 

Dynamics 
/simula�ons 

Knowledge 
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Sta�s�cal  

Machine 
Learning  

Fig. 5.1  Classification of known active site prediction methods

 



2735.2  A Practice Tutorial for Predicting Active Site Using SiteMap 

the hydrophilic and hydrophobic regions. Finally, each site is evaluated for various 
properties which are added to the project table (Fig. 5.2).

Evaluation of binding sites through SiteMap has two options. The first option 
is to identify top-ranked potential binding sites which cover the entire protein. The 
second is to find a single-binding site region where we can evaluate a single region 
for its hydrophilicity or hydrophobicity. To use this option, we have to select the 
active site residues or the co-crystallized ligand.

There is a facility of settings where the user can choose different options as per 
their requirement. The number of site points for a site (15 default) and the number 
of sites to be found (5 default) should be specified. Three types of grid are avail-
able—fine, standard and coarse—defined based on the distance between two points 
in the grid. Here, standard grid, the default option, is used. One can also choose 
between a more restrictive and less restrictive option for defining the hydrophobic 
regions. Two types of force fields are available of which Optimized Potentials for 
Liquid Simulations (OPLS) 2005 is the default one. In the given example, all de-
fault options are used (Fig. 5.3).

Fig. 5.2  The main SiteMap window
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Clicking on the start button launches the job, and it takes some time to calculate 
the score and the results are displayed in the project table (Fig. 5.4).

The site score value ranks the various binding sites. The sites are always placed 
in descending order of the site score values and hence the first site will be better 
than all other sites. It also gives the druggability score and volume of the active site.

The active site in the workspace appears in different colours and each colour 
represents a different property (Figs. 5.5 and 5.6).

Fig. 5.4  The results as viewed in project table

 

Fig. 5.3  A screenshot showing the example protein and the SiteMap window
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Hydrophobic map Yellow mesh
Hydrophilic map Green mesh
Hydrogen-bond donor map Blue mesh
Hydrogen-bond acceptor map Red mesh
Metal-binding map Pink mesh
Surface map Gray surface, 50 % transparency

Fig. 5.6  The second active site as predicted by SiteMap

 

Fig. 5.5  The first active site as predicted by SiteMap
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These can be visualized individually by clicking on the ‘S’ symbol in the project 
table.

It opens the manage surfaces window through which we can separately visualize 
the active site regions in workspace. The output file is generated in the folder we 
choose in .maegz format (Figs. 5.7 and 5.8).

Every active site predicted using any software should be validated through dock-
ing to know its binding efficiency.

5.3  A Practice Tutorial for Active Site Prediction  
Using MOE

This uses the geometric methods for searching the active sites different from the 
energy-based methods used by Schrodinger. In this, the relative positions and acces-
sibility of receptor atoms are considered. We use the same protein example as above 

Fig. 5.8  The surface image of first active site

 

Fig. 5.7  The manage surfaces window
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for this tutorial. Open the MOE and load the protein structure in to the workspace 
(Fig. 5.9).

Now go to the main menu compute site finder. It opens the window as shown in 
Fig. 5.10.

Fig. 5.9  The protein structure loaded in MOE workspace

 

Fig. 5.10  The site finder MOE window
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Using the default settings, clicking on the start button will give the results show-
ing the amino acid residue numbers in the window. For our example, it gave about 
21 sites in descending order (Fig. 5.11).

The size column shows the number of atoms forming that site, the Hyd column 
shows the number of hydrophobic atoms involved and the side column shows the 
number of side-chain atoms involved (Fig. 5.12).

Fig. 5.11  The site finder results showing 21 sites

 

Fig. 5.12  The first two predicted active sites in the protein
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5.4  Free Online Tools for Active Site Prediction

Pocket finder, an online tool, uses energy-based calculations to find the ligand-
binding regions. The interface of the server is shown in Fig. 5.13. It follows the 
LIGSITE algorithm [16]. We can either give the PDB ID or browse the protein of 
interest. A few seconds after the submission of the job, we can see the results in the 
same page. It gives the best ten predicted sites.

It requires the Maze.java applet to visualize the protein. The result page has 
different boxes. It contains the viewer box, a box of display sites showing the ten 
different sites represented by different colours, a site info box which gives the vol-
ume of the first predicted site, a binding box around selected sites which gives 
the minimum and maximum coordinate values and a residues box which gives 
the list of residues occupying and surrounding all the sites (Figs. 5.14, 5.15, 5.16 
and 5.17).

Q-SiteFinder [17], another tool, is similar to the pocket finder but the prediction 
accuracy is greater for Q-SiteFinder [18]. The tool has a simple interface. We can 
directly give PDB ID in the box or we can browse the protein of interest. Clicking 
on submit will give the result of top ten sites in a few seconds (Fig. 5.18).

We can see the results in the same page. Jmol [19] needs to be installed in the host 
computer to visualize the protein. The result page has different boxes (Fig. 5.19).

It contains the Jmol viewer box, a box to change the representation of the pro-
tein, a box of display sites showing the ten different sites represented by different 
colours, a site info box which gives the volume of the selected site, a binding box 
around selected sites which gives the minimum and maximum coordinate values 
and a residues box which gives the list of residues occupying and surrounding all 
the sites (Figs. 5.20, 5.21, 5.22 and 5.23).

Fig. 5.13  The user interface of pocket finder server
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The coordinate values in both pocket finder and Q-SiteFinder can be further used 
to generate the grid for docking. Also, we can download the output in .pdb format 
and can visualize them in other tools.

Fig. 5.14  A figure showing all the binding sites predicted
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Fig. 5.16  Volume and coor-
dinate details
 

Fig. 5.15  Top ten sites 
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5.5  Homology Modelling

Due to the improving experimental techniques, the protein structure deposits in the 
PDB are also increasing day by day. But the sequence structure gap is not reduced 
because of the fast sequencing techniques. Homology modelling helps to bridge 

Fig. 5.18  The user interface of Q-SiteFinder server

 

Fig. 5.17  Residue details 
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this gap [20]. Homology modelling is the procedure where we predict the 3D struc-
ture of the protein sequence computationally whose crystallized structure is not yet 
determined experimentally [21]. Though the accuracy rate of such models is still a 
matter of conflict, this is one of the wide research areas.

There are quite a good number of published papers about homology modelling of 
proteins [22–25]. For beginners, a brief view of homology modelling is provided. It 
basically includes the steps shown in Fig. 5.24 [26].

Even though every step is crucial in the generation of a better model, the first 
steps template recognition and initial alignment are considered as rate limiting. The 

Fig. 5.19  The results page of Q-SiteFinder server
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better the identity of the sequence with template the better will be the model [27]. 
Usually if the identity is less than 40 %, it is difficult to generate a good model. For 
such cases, high computation techniques like threading [28] and ab initio techniques 
[29] are used. Another more essential step is the model validation where the errors 

Fig. 5.21  The first predicted 
site
 

Fig. 5.20  All the predicted 
sites seen in different colours
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generated during the model generation are corrected. This is done by finding the 
model’s energy using a force field and also the normality indices which examine the 
bond lengths and bond angles and the distribution of polar and nonpolar residues to 
detect the misfolded regions [30].

5.6  A Practice Tutorial for Homology Modelling

There are many commercial and free software through which modelling can be 
done. Modeller is a free tool for comparative modelling including loop modelling; 
some commercial GUI-based versions are also available [31]. We demonstrate an 

Template recognition and
initial alignment

Alignment correction

Model optimization

Side-chain modelling

Loop modelling

Backbone generation

Model validation

Fig. 5.24  Steps in homology 
modelling
 

Fig. 5.23  Coordinates of the 
sites
 

Fig. 5.22  Volume of first site 
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example using the homology option in MOE [31]. The primary requirement for 
modelling is a protein sequence for which there is no crystallized structure. The se-
quence can be downloaded from databases like National Center for Biotechnology 
Information (NCBI; protein) [32], swiss-prot [33], uniprot [34], etc. In our example, 
the sequence was downloaded in fasta format from NCBI (Figs. 5.25 and 5.26).

Now, open the MOE window by double clicking the icon. Go to file open and 
browse the sequence in fasta format in to the sequence viewer. Click on the SEQ 
button present at the upside right corner of the MOE window as shown in figure. It 
opens the sequence viewer window (Fig. 5.27).

Then, go to the display option in the sequence editor window and check the 
compound name and single-letter residues boxes. This will display the name of the 
sequence and the single-letter representation of the sequence (Fig. 5.28).

Fig. 5.25  NCBI page from where sequence was obtained

 

Fig. 5.26  The fasta format of sequence
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It is known that the next step is to search for a similar sequence for which a 
crystallized structure is available. For this, we have the PDB search option in MOE 
(similar to performing Basic Local Alignment Search Tool (BLAST)). Go to homol-
ogy PDB search (Fig. 5.29).

This opens up the window that is shown in Fig. 5.30. Select the chain number 
one present at the upside right corner of the window. This will load the sequence in 
to the window as shown in Fig. 5.30.

Fig. 5.27  The sequence in sequence editor

 

Fig. 5.28  The name and single-letter representation of the protein sequence
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The search option will start the searching of the protein families for the sequence 
similarities and they are displayed in ascending order of Z score (the better the score 
the more identical the sequence will be) after completion of the search (Figs. 5.31 
and 5.32).

Next, we load the alignment as shown in Fig. 5.33.
This will open a window as shown in Fig. 5.34 with the list of PDB structures 

related to that protein family.
All the sequences arranged after the query sequence in the sequence editor are 

loaded in the window (Fig. 5.35).
We can visualize the secondary structure of the identical sequences in the sequence 

editor by clicking on display, the actual secondary structure button (Fig. 5.36).
We have to choose the template sequence using which the model can be built and 

to do this we have to align all the sequences with the query sequence.
We select the query sequence, go to selection and click on invert chains in the 

sequence editor window. Now go to homology and click on align which opens a 
window as shown in figure (Fig. 5.37).

It uses the pairwise alignment and blosum62 substitution matrix for alignment. 
The alignment is the freeze button in chain selection and click ok. We can see the 
changes in the sequences in the sequence editor window (Fig. 5.38).

The pairwise sequence identity matrix is shown in the SVL command window 
(Fig. 5.39).

From the percentage, we observe that the protein with the 1XFC code has the 
highest identity. We can see the conserved residues between the query sequence 
and the selected sequence by clicking on selection, conserved residues and residue 
identity in the sequence editor window (Fig. 5.40).

Fig. 5.29  The similarity search step
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Fig. 5.30  The PDB search of the sequence

 

Search 
process

Fig. 5.31  The window during the search process
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HIT 
found

Fig. 5.32  The hits obtained

 

Fig. 5.33  The load alignment option
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This will highlight the conserved residues as shown in Fig. 5.41 and the colour 
of those residues can be changed by clicking the right button of mouse, selected 
residues and colour.

The next step is to build the homology model. In our example, the first sequence 
(next to the query sequence) is taken as the template to build the model. Click on 
homology and homology model (Fig. 5.42).

This opens up the model-building window (Fig. 5.43).
The selected sequence and the query sequence can be seen in models and tem-

plates division by default. The template sequence can be changed by clicking the 
drop-down menu and multiple sequences can also be selected. Specify the path 
for the output model to be saved by clicking on browse. The rotamer library and 

Fig. 5.34  Sequences related to that family (have crystallized structures)

 

Fig. 5.35  Query sequence and the identical sequences found after PDB search.
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the loop library are selected by default in their respective divisions. In the model 
refinement division, choose the medium option for both intermediates and the final 
model. By default, the force field in the homology model of MOE is MMFF94 × 
(distance dependent) which is not good for protein modelling. To select the spe-
cific force field, click on the potential setup button which opens a new window 
(Fig. 5.44).

Choose AMBER99 from the list, the solvation option and R-field. Save these 
parameters.

Fig. 5.36  The secondary structures of the identical sequences found after search

 

Fig. 5.37  The alignment 
window dialog box
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The homology modelling process can be started now.
We can see the job running in the SVL command window as shown in Fig. 5.45.
MOE generates ten models in their ascending order of root-mean-square de-

viation (RMSD) value. Open the promodel.mdb file to visualize the models in the 
database viewer. The first model is displayed in Figs. 5.46 and 5.47.

To visualize the structure in a different format, go to render in MOE. Go to back 
bone and choose cartoon and then go to Render hide all (Figs. 5.48 and 5.49).

The next step is to evaluate the built homology model.
For this, we go to measure and then to protein geometry in the sequence editor 

window (Fig. 5.50).

Fig. 5.38  The aligned sequences

 

Fig. 5.39  The residue identity after alignment
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It will open the protein geometry window where we can see the Ramchandran 
plot for the respective model. We can see the outliers by clicking on the data button 
at the upside right corner of the protein geometry window (Figs. 5.51 and 5.52).

Fig. 5.40  The residue identity

 

Fig. 5.41  Figure showing the conserved residues in different template proteins
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We can visualize the geometry of bond lengths, bond angles, dihedrals, etc. 
by choosing the required option from the drop-down menu of the check option 
(Figs. 5.53 and 5.54).

The report for the Ramchandran plot can be generated by clicking on the report 
button (Fig. 5.55).

The best model among the generated models can be saved separately by choos-
ing the save option in the file menu of the MOE window. We can save the model in 
.pdb format.

This model can further be evaluated through the online available servers like 
procheck [35], what if [36], etc.

5.7  Model Validation Using Online Servers

Structural Analysis and Verification Server (SAVES) [37] is the widely used server 
for the validation of the protein models. It has options like ERRAT [38], VERIFY 
3D [39], PROCHECK, etc. which have specific evaluating methods described in the 
website itself (Fig. 5.56).

We can choose file and browse the model in .pdb format that is to be validated 
and view the listed options, for this example we select PROCHECK.

The results will be displayed after few seconds as shown in Fig. 5.57. We can 
see each parameter by selecting the portable document format (PDF) or JPG pres-
ent below each point. We can also see the Ramchandran plot by clicking the button 
present at the bottom of the page (Figs. 5.58 and 5.59).

Similarly, choose the pdb file and then ERRAT to view the results in the interface 
as shown in window (Figs. 5.60 and 5.61).

Fig. 5.42  The homology model option selection window
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5.8  Receptor-Based Pharmacophore

From the previous chapters, it is known that a pharmacophore is the group of fea-
tures that is essential for the biological activity of a molecule and we have discussed 
it in the context of analogue or ligand-based virtual screening [40]. We can also 
build a pharmacophore query in the absence of ligands based only on the recep-
tor information which is known as receptor-based pharmacophore modelling [41]. 

Fig. 5.43  The homology model window
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Usually, this is known as dynamic receptor-based pharmacophore as the pharmaco-
phore is generated by considering the dynamic (different conformations) nature of 
the protein [42].

This usually includes four steps:

1. Structure quality assessment
2. Phase space sampling
3. Negative image construction
4. Hit analysis

In the third step (negative image sampling), the chemical features in the active site 
are known by molecular interaction field analysis and identification of excluded 
volumes [43]. It has its application in designing novel inhibitors in the drug discov-
ery field [44].

Fig. 5.44  The force field options
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5.9  Studies on Active Site Structural Features

Identification, visualization and analysis of protein active site regions is the first 
and foremost mandatory step for any structure-based drug design program. Active 
site is the playing field where actual action takes place which could be either a 
catalytic activity of an enzyme or a drug action to modulate molecular processes. 
The residues at the catalytic active site are always conserved across families and 
even a small mutation at the active site can adversely impact the protein [45]. A 

Fig. 5.46  The model number 1 displayed in the MOE window

 

Fig. 5.45  The modelling process running in SVL window
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prerequisite for a bioactive molecule is that it should be able to locate and fit into 
the buried active site region of the target protein. The change in protein conforma-
tion upon ligand binding in the active site to effect a particular biological response 
gives important clues about the protein function [46]. Detecting and characteriz-
ing the active site therefore assumes tremendous importance in the arena of drug 
design. Active site features for example topology, electronic environment, energy, 
shape, size, volume, chirality, hydrophobicity, salt bridges, solvation, electrostatic 
potential, surface accessibility, secondary structural elements and chemical frag-
ment interactions, etc. enable a ligand to bind to a protein in a biological system 
[47]. The analysis of physiochemical properties of binding sites helps us in the 
design of high-affinity ligands. Computationally intensive density functional theory 
(DFT) methods have been employed to study active site structural features using 
first principles [48]. Machine learning algorithms have also been used to generate 
atom-based fingerprints of the ligand binding sites in a protein [49]. The algorithms 

Fig. 5.47  The saved models in the database viewer window of MOE
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used in these prediction programs are based on residue information and surface/
volume properties of the active site.

5.9.1  Application of Active Site Features in Chemoinformatics

Target active site identification is easy but predicting protein druggability is difficult 
[50]. Machine learning approaches such as random forest [51], SVM [52] have been 
attempted for discriminating druggable and non-druggable sites based on pocket 
attributes. Though several docking methods are available to score a large molecular 
database for complementarity to a protein active site, they usually yield hundreds of 
hits. So, there is a need to reduce the initial hit list without losing information about 
potential ligands by applying some efficient pre-docking filters. Moreover, docking 
protocols usually provide interaction energies between protein and ligand but do not 

Fig. 5.48  The rendering option available for the model
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directly facilitate the design of new ligands [53]. Molecular dynamics methods are 
increasingly being used in drug discovery approaches in identifying cryptic binding 
sites, active site dynamics and free energies but suffer from two limitations—force 
fields that need to be refined and high computation demand [54].

Fig. 5.49  The cartoon form of the built model

 

Fig. 5.50  The protein geometry option
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This section deals with an in-house-developed simple automated approach for 
active site-based virtual screening of lead molecules, built by analysis of the protein 
and ligand space of Pdb [55] and ScPdb [56] complexes and Structural Classifica-
tion of Proteins (SCOP) [57] database. High-performance computing (HPC) [58] 
methods were used to retrieve available active sites with their native ligands (mol-
2files) and coordinates from ScPDB. ScPDB is an annotated database of druggable 
binding sites and provides mol2 files of native ligands and the corresponding active 
site coordinates [59].

Fig. 5.51  The Ramchandran plot for the model
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5.9.1.1  Code for Getting the Protein Coordinates from PDB File Format  
(X, Y, Z values)

 public double[][] getProtCoord(String fname) { 
        String coord = ""; 
        int aid = 1; 
        int haid = 1; 
        int lacnt = 0; 
        int pacnt = 0; 
        int max = 200000; // at-least 200k atoms – Change here as per 
your needs 
        double[][] pcoor = new double[max][3]; 
        String pdbid = fname; 
        try { 
            FileInputStream fStream = new FileInputStream(fname); 
            BufferedReader in = new BufferedReader(new 
InputStreamReader(fStream)); 
            String b = ""; 
            int chk = 0; 
            while ((b = in.readLine()) != null && pacnt < max && lacnt 
< 999 && chk == 0) { 
                if (b.startsWith("ATOM    ")) //  
                { 
                    String[] e = stringToArray(b); 
                    if (e.length == 12) { 
                        pcoor[pacnt][0] = Double.valueOf(e[6]);//for 7 
column X 
                        pcoor[pacnt][1] = Double.valueOf(e[7]);//for 8 
column Y 
                        pcoor[pacnt][2] = Double.valueOf(e[8]);//for 9 
column Z 
                        String at = e[11];//for 11 column 
                    } else if (e.length != 12) { 
                        chk++; 
                    } 
                    pacnt++; 
                }    //atom                         
            }//while 
            in.close();//in object is close 
        } catch (IOException e) { 
            System.out.println("File input error"); 
        } 
        double[][] pcoor1 = new double[pacnt][3]; 
        for (int v = 0; v < pacnt; v++) { 
            pcoor1[v] = pcoor[v]; 
        } 
        return pcoor1; 
    } 
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Fig. 5.53  Different geometry parameters that can be measured for the model

 

Fig. 5.52  The outliers data of the model
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5.9.1.2  Code for Obtaining the Ligand Coordinates (X, Y, Z values) from 
PDB (Protein–Ligand complex)

public double[][] getLigCoord(String fname) { 
int aid = 1; 
int haid = 1; 
int lacnt = 0; 
double[][] lcoor = new double[1000][3]; 
String pdbid = fname; 
try { 

FileInputStream fStream = new FileInputStream(fname); 
BufferedReader in = new BufferedReader(new InputStreamReader(fStream));
String b = ""; 
int chk = 0; 
while ((b = in.readLine()) != null && lacnt < 999 && chk == 0) {

if (b.startsWith("HETATM  ")) { 
String[] e = stringToArray(b); 
if (e.length == 12) { 

lcoor[lacnt][0] = Double.valueOf(e[6]);//for 7 column
lcoor[lacnt][1] = Double.valueOf(e[7]);//for 8 column
lcoor[lacnt][2] = Double.valueOf(e[8]);//for 9 column
String at = e[11];//for 11 column 

} else if (e.length != 12) { 
chk++; 

} 
lacnt++; 

} 
} 

} catch (IOException e) { 
System.out.println("File input error"); 

} 
double[][] lcoor1 = new double[lacnt][3]; 
for (int v = 0; v < lacnt; v++) { 

lcoor1[v] = lcoor[v]; 
} 
return lcoor1; 

}

Fig. 5.54  The geometry of the bond lengths
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Fig. 5.55  Figure showing the protein geometry report of the model
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Get Coordinates (XYZ values) from MOL2 format
double[][] getCoordMol2(String fname) { 

double[][] out = new double[10000][3]; 
System.out.println(fname); 
String param = ""; 
int acnt = 0; 
try { 

BufferedReader br = new BufferedReader(new FileReader(new 
File(fname))); 

String s = ""; 
int start = 0; 
while ((s = br.readLine()) != null) { 

if (s.contains("@<TRIPOS>ATOM")) { 
start = 1; 

} 
if (start == 1 && s.length() > 50) { 

String[] a = stringToArray(s.substring(18, 
48).trim().replaceAll("  ", " ")); 

out[acnt][0] = Double.valueOf(a[0]); 
out[acnt][1] = Double.valueOf(a[1]); 
out[acnt][2] = Double.valueOf(a[2]); 
param += "  " + a[3] + "\t" + out[acnt][0] + "\t" + 

out[acnt][1] + "\t" + out[acnt][2] + "\n"; 
acnt++; 

} 
if (s.contains("@<TRIPOS>BOND")) { 

start = 0; 
} 

} 
br.close(); 

} catch (Exception e) { 
System.out.println(e); 

} 
double[][] d1 = new double[acnt][3]; 
for (int i = 0; i < acnt; i++) { 

d1[i] = out[i]; 
} 
return d1; 

}

Fig. 5.56  The SAVES server interface
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Each atom of every individual amino acid present in the complexes was processed 
to extract the associated sets of phi–psi angles to generate a statistically significant 
cumulative Ramchandran plot for chain A of all proteins [60] (Fig. 5.62).

For proteins without co-crystallized ligands, fingerprints corresponding to dis-
tinct protein classes were created by identifying distinguishing features. Ligand 
characterization in binding site is very important to understand the intermolecular 
interactions leading to the desired biological effect. At the time of molecular dock-
ing, the force field of proteins opposes the force field of ligands. The magnitude of 
this force field depends upon the active site environment and the ligand which has 
to displace water molecules in the active site. Calculating the force field is time con-
suming and requires more precision. However, if we understand the active site very 
well, then we know what molecular fragments to put therein and thus avoid inten-
sive force field computations. Once we know in advance the fragments to put, we 
can place the interacting residues and remaining linkers in the active site. This is the 
core concept of de novo drug design or fragment-based drug design (FBDD) [61].

Fig. 5.57  Processing by PROCHECK
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Ligands are generally computationally processed as fingerprints which are bi-
nary bit string representations of molecular structure and properties of a molecule 
and often employed in chemical similarity searching methods [62]. The in-house 
program generates ligand-based fingerprints by considering two important proper-
ties—the topology and charge present on each ligand. Structure data file (SDF) of 
ligands were input into the program named LIGBIT. The length (l), breadth (b) and 
height (h) dimensions of the ligands were used to obtain the centre of the active site 
grid box using a Java-based script. The size of the unit cell is complementary to 
active site dimension of the protein. The ligands were sorted based on fingerprints. 
The program can also calculate the volume of active site with volume of ligand 
for comparison. Rigid body transformations such as rotation and translation can 
be carried out to simulate actual molecular recognition in a biological system. The 
ligand molecule was rotated in the box by 5 in x, y and z directions and translated 
in the centre. This method was able to generate 216 poses for a small molecule. The 
pose, orientation and interaction of the 7,211-pdb ligands in active sites were simi-
larly studied and predicted. The program was applied for generating and screening 
poses of acquired immunodeficiency syndrome (AIDS) inhibitors available in the 
National Cancer Institute (NCI) [60] (Fig. 5.63).

Fig. 5.58  The PROCHECK results for the model
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Fig. 5.59  The pdf of the Ramchandran plot by PROCHECK

 



3115.9 Studies on Active Site Structural Features

Fig. 5.61  The results of ERRAT in PDF format

 

Fig. 5.60  Results for ERRAT
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5.10  Thumb Rules for Active Site Identification 
and Homology Modelling

• The initial target structure obtained from a crystallographic database always 
needs to be energy minimized to make it energetically reasonable.

• If the sequence similarity of the target and the template is below 30 %, then opt 
for other methods like threading and ab initio
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Fig. 5.62  Statistical analysis of Ramchandran plot fingerprints

 

Fig. 5.63  Active site ligand 
fingerprints developed 
by LIGBIT program for a 
molecule
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• The quality of the homology model has to be checked thoroughly before subject-
ing it to further modelling studies like docking

5.11  Do it Yourself Exercises

Perform the following tasks using the protein sequence of-galactopyranose mutase 
of Leishmania major organism.

a. Download the fasta sequence and perform BLAST.
b. Generate two good homology models using two different templates (use MOE 

software).
c. Validate the model and examine the structural differences between the two 

models.
d. Find the active sites in the two models (use SiteMap (Schrodinger) and Site-

Finder (MOE)).
e. Examine the differences between the active sites generated within the model and 

also between the two models (e.g. residues involved, volume of cavity, nature of 
residues, number of residues, etc.).

5.12  Questions

Q1. What is an active site? Discuss its importance in drug designing efforts.
Q2.  What are different methods used to find the active site in a protein structure? 

Give one example of each.
Q3.  What is sequence structure gap? Explain how homology modelling helps to 

bridge that gap?
Q4. Why is it always necessary to validate a homology model?
Q5. What information can be inferred from a Ramchandran plot of a protein?
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Chapter 6
Representation, Fingerprinting, and Modelling 
of Chemical Reactions
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DOI 10.1007/978-81-322-1780-0_6, © Springer India 2014

Abstract Designing a better molecule is just one aspect of computational research, 
but getting it synthesized for biological evaluation is the most significant com-
ponent in a drug discovery program. A molecule can be formed by a number of 
synthetic routes. Manually keeping track of all the available options for a prod-
uct formation in various reaction conditions is a herculean task. Chemoinformatics 
comes to the rescue by providing a number of computational tools for reaction 
modelling, albeit less in number than structure property prediction software. The 
current computational tools help us in modelling various aspects of a given organic 
reaction—synthetic feasibility, synthesis planning, transition state prediction, the 
kinetic and thermodynamic parameters, and finally mechanistic features. Several 
methods like empirical, semiempirical, quantum mechanical, quantum chemical, 
machine learning, etc. have been developed to model a reaction. The computational 
approaches are based on the concept of rational synthesis planning, retro-synthetic 
approaches, and logic in organic synthesis. In this chapter, we begin with reac-
tion representation in computers, reaction databases, free and commercial reaction 
prediction programs, followed by reaction searching methods based on ontologies 
and reaction fingerprints. The commonly employed quantum mechanics (QM) and 
quantum chemistry (QC)-based methods for intrinsic reaction coordinate (IRC) and 
transition state (TS) determination using the B3LYP/6–31G* scheme are described 
using simple name reactions. Most of the computational reaction prediction pro-
grams such as CHAOS/CAOS are based on the identification of the strategic bonds 
which are likely to be cleaved or formed during a certain chemical transformation. 
Accordingly, an algorithm has been developed to identify more than 300 types of 
unique bonds occurring in chemical reactions. The effect of implicit hydrogens on 
chemical reactivity modelling is discussed in the context of bioactivity spectrum 
for structure–activity relationship studies. Other parameters affecting reactivity 
such as solvent polarity, thermodynamics etc. are also briefly highlighted for fre-
quently used name reactions, hazardous high-energy reactions, as well as industri-
ally important reactions involving bulk chemicals.

Keywords Chemical reaction modelling · Chemoinformatics · Retro-synthesis · 
Artificial intelligence · Ontologies
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6.1  Introduction

Synthesis of new molecules involves general chemical reactions, for example, oxi-
dation, reduction, esterification, hydrolysis, etc., which constitute important bio-
chemical processes for sustaining life. Typically, there are nine trillion amazing 
reactions per cell per day taking place in the human body [1]. A simple process as 
breathing, in human aerobic respiration, requires a host of chemical reactions, the 
key reaction being succinic acid dehydrogenase (SDH) enzyme-catalyzed removal 
of hydrogen atoms from succinic acid, the substrate in the Krebs cycle [2]. Another 
important chemical reaction in nature is photosynthesis, the most critical reaction 
on the planet for production of chemical energy [3]. Today, a chemical biologist can 
design selective chemical coupling reactions that proceed in cells without affect-
ing cellular chemistry to understand the chemical mechanism in biological systems 
[4]. Knowledge about reactions in signaling pathways helps us in understanding 
cellular communication better [5]. A holistic study of all these reactions provides 
a broad perspective on many areas of active research at the interface of chemistry 
and biology, such as understanding the effects of drug administration on biological 
systems [6]. Chemical reactions are carried out essentially via functional groups at-
tached to the carbon backbone of organic molecules and their interconversions [7]. 
Functional groups are the reaction centers in a molecule and determine its character-
istics including chemical reactivity. The common biologically important functional 
groups are hydroxyl, carboxyl, carbonyl, amine, ester, amide, disulfide, and phenyl.

6.2  Reaction Representation in Computers

A reaction is a collection of reagents, products, and agents. It is represented by a 
reaction data file (RDF) or a reaction file (Rxn) [8]. The reagent, product and agent 
elements are molecule objects embedded into a reaction data file. The type of an 
element is defined by its relative position with regard to the reaction arrow. Here, 
let us take the example of Diels–Alder reaction which is a simple 4 + 2 cycloaddi-
tion reaction of an alkene and a conjugated diene to form a cyclohexene ring system 
([9]; Figs. 6.1, and 6.2).

6.3  Computational Methods in Reaction Modelling

Computational chemistry provides a host of methods for molecular modelling of 
reactions [10]. A brief overview of these methods is provided here for a clear under-
standing of their underlying basic differences. The references cited in this section 
should be referred to for obtaining an in-depth analysis.
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6.3.1  Empirical and Semiempirical Methods

Semiempirical calculations are set up with the same general structure as a Har-
tree–Fock calculation. Within this framework, certain pieces of information, such 
as two-electron integrals, are approximated or completely omitted. In order to cor-
rect the errors introduced by omitting these parts of the calculation, the method is 
parameterized, by curve fitting in a few parameters or numbers, in order to give 
the best possible agreement with experimental data. The semiempirical calculations 
are much faster than the ab initio calculations; however, the results can sometimes 
be erratic. If the molecule under study is similar to molecules in the database used 
to parameterize the method, then the results may be very good. If this molecule is 
significantly different from anything in the parameterization set, the answers may 
be poor. Semiempirical calculations have been very successful in computational or-
ganic chemistry, where only a few elements are used extensively and the molecules 
are of medium size (Fig. 6.3).

Reactants                                                                                                   Product 

Fig. 6.2  A 3D Diels–Alder reaction representation (view generated using Spartan)

 

Reactants                                       Product 

Fig. 6.1  A 2D reaction 
representation (Diels–Alder)
 

6.3 Computational Methods in Reaction Modelling
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6.3.2  Molecular Mechanics Methods

Molecular mechanics methods are good for modelling big molecule systems 
where it is computationally expensive to employ quantum mechanics. These 
methods employ a molecular force field which is   potential energy as a function 
of all atomic positions. It is used to study the molecular properties without any 

• Use large natural data to derive a conclusion
Empirical

•Make approximations , uses some parameters from empirical data, good 
for large molecules

Semi-
emprirical 

•Does not use empirical or semi empirical data ,eg abinito methods HF, 
DFT methods

Quantum Chemical 

•Employ a single classical expression for energy of a compound, uses force 
fields

Molecular 
Mechanics(MM) 

•Based on dual particle and wave nature of matter

Quantum 
Mechanics(QM) 

•Helps in optimizing both accuracy and speed by combining the above two 
approaches

QM/MM

•Probability based large population, study thermodynamic properties 

Statistical Mechanics 

•Based on Newton's laws of motion time dependent behaviour of molecules

Molecular Dynamics 

Fig. 6.3  Computation approaches for modelling of chemical reactions
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need for computing a wave function or total electron density [11]. The force field 
expression consists of simple classical equations, such as the harmonic oscillator 
equation to describe the energy associated with bond stretching, bending, rota-
tion, and intermolecular forces, such as van der Waals interactions and hydrogen 
bonding of a molecule. All the constants in these equations are obtained from 
experimental data or an ab initio calculation. In a molecular mechanics method, 
the database of compounds used to parameterize the method  is crucial to its 
success. A semiempirical method may be parameterized against a specific set of 
molecules but a molecular mechanics method is parameterized against a specific 
class of molecules, such as proteins [12]. As molecular mechanics can  model 
enormous molecules, such as proteins and segments of DNA, it is the primary 
tool of computational biochemists. However, there are many chemical properties 
that are not defined within the method, such as treatment of electronic excited 
states. Generally the molecular mechanics software packages have the  power-
ful and easy to use graphical interfaces. Because of this, mechanics is often used 
because it is easy, even though it may not be a good way to completely describe 
a system.

6.3.3  Molecular Dynamics Methods

Molecular dynamics consists of examining the time-dependent characteristics of a 
molecule, such as vibrational motion or Brownian motion within a classical me-
chanical description [13]. Molecular dynamics when applied to solvent/solute sys-
tems allow the computation of properties such as diffusion coefficients or radial 
distribution functions for use in statistical mechanical treatments. In this calcula-
tion a number of molecules are given some initial position and velocity. New 
positions are calculated a short time later based on this movement, and the process 
is iterated for thousands of steps in order to bring the system to an equilibrium. 
Next the data are Fourier transformed into the frequency domain. A given peak 
can be chosen and transformed back to the time domain, to see the motion at that 
frequency.

6.3.4  Statistical Mechanics and Thermodynamics

Statistical mechanics is the mathematical means to extrapolate thermodynamic 
properties of bulk materials from a molecular description of the material [14]. Sta-
tistical mechanics computations are often performed at the end of ab initio calcu-
lations for gas-phase properties. For condensed-phase properties, often molecular 
dynamics calculations are necessary in order to do a computational experiment. 
Thermodynamics is one of the best-developed physical theories and it gives a good 
theoretical starting point for the analysis of molecular systems.

6.3 Computational Methods in Reaction Modelling
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6.3.5  The Quantum Mechanical/molecular Mechanical 
Approach

Proper description of a chemical reaction requires a quantum mechanical (QM) 
treatment, as electronic rearrangements are involved. The basic idea of com-
bining QM and molecular mechanical (MM) potentials into a hybrid QM/MM 
description of enzymes was developed in the pioneering study of lysozyme by 
Warshel and Levitt in 1976 [15]. Warshel and Levitt recognized that QM calcu-
lations, especially at that time, were feasible only for small chemical systems, 
enzymatic reactions generally, represent a small fraction and thus an oversimpli-
fied model of the real enzyme–substrate system. The region further away from 
the reacting groups provides mainly conformational and nonbonded contribu-
tions. These contributions can be adequately described by (classical) molecular 
mechanics (MM) and the electrostatic interaction of classical particles with the 
reacting QM system. Therefore, the system can be divided into a small region 
around the active site to be described quantum mechanically, while the surround-
ing protein can be adequately represented by simpler molecular mechanics. Thus, 
the total energy of the whole system (i.e. the enzyme as well as surrounding sol-
vent) could be decomposed into

V C Q Q = lassical + uantum + uantum/classical,

where the first two terms describe the MM and QM regions and the latter term rep-
resents the interactions between the two. With the development of better computers, 
quantum chemical methods, and MM force fields for proteins, the usefulness of this 
principle became widely recognized and QM/MM methods were further developed. 
Singh and Kollman presented a QM/MM method in 1986, based on ab initio QC 
(Gaussian 03) [16].

6.3.6  Modelling the Transition State of Reactions

The transition state (TS) of a biological reaction or a chemical reaction is a particu-
lar configuration along the reaction coordinate (bond length or bond angle). It is 
defined as the state corresponding to the highest potential energy along the reaction 
coordinate. It is also referred to as saddle point. At this point, energy is higher and 
the reaction is perfectly irreversible (Fig. 6.4).

The activated complex of a reaction can refer to either the TS or other states 
along the reaction coordinate between reactants and products, especially those 
which are close to the TS. A collision between reactant molecules may or may not 
result in a successful reaction. The outcome depends on factors such as the rela-
tive kinetic energy, relative orientation, and internal energy of the molecules. Even 
if the collision partners form an activated complex, they are not bound to go on 
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and form products, and instead the complex may fall apart back to the reactants 
(Fig. 6.5).

TS structures can be determined by searching for first-order saddle points on 
the potential energy surface (PES). Such a saddle point is a point where there is a 
minimum in all dimensions but one. Almost all quantum chemical methods can be 
used to find TS. However, locating them is often difficult and there is no method 
guaranteed to find the right TS. There are many different methods of searching for 
TS and different QC program packages include different ones. Many methods of 
locating TS also aim to find the minimum energy pathway (MEP) along the PES. 
Each method has its advantages and disadvantages depending on the particular re-
action under investigation.

To characterize a reaction pathway on a potential energy surface, in principle, 
the reaction intermediates (minima) and the TS (saddle points) connecting those 
intermediates need to be identified. A common approach in gas-phase reaction mod-
elling is to optimize the relevant TS and perform a subsequent calculation of the 
intrinsic reaction coordinate (IRC) [17] towards the intermediates on both sides of 
the barrier. Vibrational analysis of the intermediates and TS can be used to derive 
thermodynamic contributions to the energetics of the reaction. However, for the 
larger QM/MM models, these methods are generally too expensive or impractical 
[18]. The TS optimization is based on the Hessian for the core degrees of freedom 
only while the “environment” is kept at its minimum at every TS optimization step. 
This method has successfully been applied to analyze enzyme reactions [19]. A very 
efficient, but more approximate, method to scan the potential energy surface for a 

Ac�va�on 
 energy 

Fig. 6.5  Transition state of a 
reaction
 

REACTANT TS PRODUCT

Fig. 6.4  First-order saddle point is transition state between two local minima (for example, reac-
tant and product of a chemical reaction)

 

6.3 Computational Methods in Reaction Modelling
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given reaction mechanism is the adiabatic mapping approach [20]. An approximate 
reaction coordinate (e.g., a combination of atomic distances) is restrained and used 
to drive the system stepwise from reactants to products. Simple geometry optimi-
zation is performed at every step. This method has proven to be very useful in 
calculations on enzymes. Other approximate methods have been developed which 
optimize an entire pathway as a whole, involving multiple intermediates and TS 
and without expensive calculations of second derivatives [21]. The methods listed 
above are very useful when a single protein conformation is expected to adequately 
represent the reacting enzyme. When more extensive conformational sampling is 
important or when activation free energies are to be calculated molecular dynamic 
simulations, in combination with free energy methods, are required. In theory, reac-
tions can occur within the QM region of a QM/MM MD simulation, but in practice, 
many reaction barriers are too high to be frequently crossed. Therefore, free energy 
simulation methods [22] are used for efficient sampling along an approximate reac-
tion coordinate, to yield a potential of mean force (PMF). These methods have been 
shown to be very powerful in the context of QM/MM simulations of reactions in 
solution as well as enzyme-catalyzed reactions and to yield free energy barriers that 
agree well with the experimental rate constants.

6.4  TS Modelling of Organic Transformations

Some organic transformations are frequently used in chemical synthesis in both 
laboratory and industry. These are termed as name reactions [23]. Here, we will 
discuss a few important name reactions and provide detailed reaction modelling 
steps for the Diels–Alder reaction which is a typical carbon–carbon bond-forming 
cycloaddition transformation that proceeds with high stereocontrol.

6.4.1  Name Reactions

Aldol Reaction (Condensation) [24] Traditionally, it is the acid- or base-catalyzed 
condensation of one carbonyl compound with the enolate/enol of another, which 
may or may not be the same, to generate a β-hydroxy carbonyl compound—an 
aldol. The method is composed of self-condensation, polycondensation, generation 
of regioisomeric enols/enolates, and dehydration of the aldol followed by Michael 
addition, q.v. The development of methods for the preparation and use of preformed 
enolates or enol derivatives that dictate specific carbon–carbon bond formation 
have revolutionized the coupling of carbonyl compounds (Fig. 6.6):

Cope rearrangement [25] The highly stereoselective [3, 3] sigmatropic rearrange-
ment of 1,5 dienes is called as Cope rearrangement. When the R group is an alcohol, 
it is called as oxy-Cope rearrangement (Fig. 6.7).
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Claisen Condensation (Acetoacetic Ester Condensation) [26] Base-catalyzed 
condensation of an ester containing an α-hydrogen atom with a molecule of the 
same ester or a different one to give β-keto esters (Fig. 6.8):

CH COOC H CH COOC H CH COCH COOC H C H OH3 2 5 3 2 5
C H O

3 2 2 5 2 5
2 5+  → +

−

Chugaev elimination [27] This reaction involves the formation of alkenes through 
pyrolysis of the corresponding xanthates via cis elimination:

There is no rearrangement of the carbon skeleton of the substrate molecules. Mech-
anistic studies have revealed a concerted cyclic mechanism. It is considered a very 
useful reaction for transformation of alcohols to olefins (Fig. 6.9).

Markovnikov addition reaction [28] This reaction involves addition of a protic 
acid HX to an olefin wherein the acidic hydrogen adds to the carbon with fewer 
alkyl substituents and the halide becomes attached to the carbon with more alkyl 
substituents, the mechanistic reason being the formation of a stable carbocation dur-
ing the addition process (Fig. 6.10):

Fig. 6.6  Aldol condensation: transition state of two butanone determined using C1_AM1 method

 

6.4 TS Modelling of Organic Transformations
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6.4.2  A Practice Tutorial for Transition State and Intrinsic 
Reaction Coordinate Modelling

Here, we will demonstrate the steps for modelling the Diels–Alder reaction using 
the Gaussian software.

Fig. 6.7  Cope rearrangement: transition state of Cope rearrangement of cis-dipropenyl cyclopro-
pane generated with AM1 method
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Fig. 6.9  Chugaev elimina-
tion: transition state of xan-
thate ester generated using 
the AM1 method

 

Fig. 6.8  Claisen condensation: transition state of ethyl acetate generated using AM1 method in 
Spartan
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Gaussian is a general purpose ab initio electronic structure package that is capa-
ble of computing energies, geometries, vibrational frequencies, TS, reaction paths, 
excited states, and a variety of properties based on various uncorrelated and corre-
lated wave functions. Gaussian 09 is a series of electronic structure programs used 
by chemists, chemical engineers, biochemists, and physicists in emerging areas of 
chemical interest [29].

Steps in reaction modelling involve the stages depicted in the flowchart in 
Fig. 6.11.

Each step is briefly outlined here.

Geometry optimization Geometry of reactant and product is optimized to get 
equilibrium geometry. The energy is obtained at minima, that is, minimum energy 

Fig. 6.10  Markovnikov addition: TS of Markovnikov addition of HCl with 2-methyl propene 
AM1
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conformation. This is done to adjust the bond length and angles according to the 
standards mentioned. This is then used for TS calculation.

TS reaction modelling TS corresponds to the saddle point on the potential energy 
surface. Like minima, saddle points are stationary points with all forces zero. Unlike 
minima, one of the second derivatives in the saddle point is negative. The negative 
eigen value corresponds to the reaction coordinate. TS search thus locates points 
having one negative eigen value. The first thing in TS search is to identify the reac-
tion mode and maximize energy along this mode, while minimizing energy in all 
other directions. (Fig. 6.12).

TS is a state in the course of reaction when one bond breaks and a new bond 
forms. This state is imaginary which cannot be isolated. TS cannot be found in 
an experiment as it is short lived, so it is not possible to view how the TS looks 
like experimentally. In quantum chemical reaction modelling detailed information 
about the geometry of TS and other physical properties associated with the TS can 
be found and also activation energy and activation entropy can be calculated which 
tells us that the energy of TS is more than the reactant.

Calculation of TS geometry and optimization Here are some approaches to 
locate TS structures for chemical reactions:

Geometry Op�miza�on 

Transi�on state modelling 

Determine the transi�on state 
geometry and op�mize 

Calculate Intrinsic reac�on coordinate  

Vibra�onal frequency calcula�on 

Verify  
TS 

Fig. 6.11  General steps for 
reaction modelling
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First, manual building of a guess structure for the TS and optimization is done 
using first and second derivatives. Starting with a guess TS structure is often suc-
cessful for simple reactions for which chemical intuition provides reasonable TS 
guesses. Then, the structures of the reactant and the product were built and opti-
mized and a synchronous transit-guided quasi-Newton approach (QST2) was used 
to locate the TS between these two structures. Again, structures of the reactant com-
plex, the product complex, and a guess for the TS were built, and a synchronous 
transit-guided quasi-Newton approach (QST3) was used to optimize the TS. Then, 
reaction path was scanned to identify saddle points.

The scanning approach is effective when there is only one reaction coordinate, as 
in the case of transitions between conformational isomers.

Verifying calculated TS geometry There are two ways to verify that a particu-
lar geometry corresponds to a saddle point (TS) and further this saddle point con-
nects potential energy minima corresponding to reactant and product. We should 
verify that the Hessian matrix (matrix of second-energy derivatives with respect to 
coordinates) yields one and only one imaginary frequency. For this, it is required 
that vibrational frequency be obtained for the proposed TS. Frequency calculation 
should be carried out using the same method that was used to find TS. The imaginary 
frequency will be in the range of 400–2,000 cm− 1. We should verify that a normal 
coordinate corresponding to imaginary frequency connects reactant and product; 
this can be done by animating the normal coordinate corresponding to imaginary 
frequency. Optimization subject to fixed position on the reaction coordinate can be 
done by IRC; this is the pathway linking reactant, TS, and product together.

IRC calculation TS geometry may be connected to the ground state geometry by 
IRC calculation. In this path followed moving from TS towards product in the for-
ward direction and from TS towards reactant in the reverse direction.

Fig. 6.12  Transition state of 
the Diels–Alder cycloaddi-
tion reaction
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TS and reactant structures from AM1, 3–21G, and 6–31G* calculations have 
been used for activation energy calculations.

Vibrational frequency calculation This is done to verify if the TS structure is cor-
rectly modeled or not as TS is found at negative imaginary frequency and negative 
eigen value.

6.4.2.1  IRC Calculation Using Gaussian Program

Gaussian basically takes “.gjf” files as input which mainly has the structures of the 
compounds. The structure of a typical gif file is highlighted in Fig. 6.13 (Figs. 6.14, 
and 6.15).

If we open the “.gjf” file in Notepad/WordPad, then the details of the structure 
along with the connectivity table and coordinates appear.

chk=opt_r.chk                             checkfile name      
%mem=6MW 
%nproc=1 
# opt pm3 geom=connectivity                   command section 
 
Title Card Required 
 Charge and spin 
0 1 
 C 
 O                  1              B1 
 H                  2              B2    1              A1 
 C                  1              B3    2              A2    3              D1 
 H                  4              B4    1              A3    2              D2 
 H                  4              B5    1              A4    2              D3 
 O                  4              B6    1              A5    2              D4 
 H                  7              B7    4              A6    1              D5 
 O                  1              B8    2              A7    4              D6 
 
   B1             1.43000000 
   B2             0.96000000 
   B3             1.54000000 
   B4             1.07000000 
   B5             1.07000000 
   B6             1.43000000                geometry specification
   B7             0.96000000 
   B8             1.25840000 
   A1           109.50000006 
   A2           119.88652694 
   A3           109.47120255 
   A4           109.47120255 
   A5           109.47123134 
   A6           109.50000006 
   A7           120.22694612 
   D1            -0.11110000 
   D2            -0.00460740 
   D3           119.99540740 
    
 
 1 2 1.0 4 1.0 9 2.0 
 2 3 1.0 
 3 
 4 5 1.0 6 1.0 7 1.0 
 5 

Fig. 6.13  Format of a gif file showing details of the molecular structure and the connectivity
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Fig. 6.15  Representation of a 
compound in the “.gif” file in 
Gauss View

 

Fig. 6.14  A snapshot of reactant optimization calculation
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Following are some Gaussian keywords which are used during the calculation 
of TS:

1. Opt = TS: This is used for optimization to a TS rather than a local minimum 
using the Berny’s optimization method.

2. QST2: This requires the reactant and product structures as input, specified in 
two consecutive groups. This mainly generates a guess for the transition struc-
ture that is something midway between the reactants and products.

3. QST3: This searches for a transition structure using the synchronous transit-
guided quasi Newton method, which is used for locating the transition structure. 
This mainly requires three molecules: reactants, products, and an initial structure 
for the TS.

Steps for calculating the TS for the Diels–Alder reaction with QST2:

1. Geometry optimization:

Gauss View program has to be used in order to perform geometry optimization of 
the reactants and products (1,3-butadiene, ethene, cyclohexane).

We perform three separate calculations for each molecule to carry out the geom-
etry optimization:

 a.  First, create the structures of all the three compounds involved in the reaction, 
in the Gauss View program with the help of the toolbar in the Gauss View 
program.

 b.  To carry out geometry optimization, open any of the molecules drawn in 
the Gauss View program, go to the Calculate tab in the program, and select 
Gaussian (Fig. 6.16).

Fig. 6.16  Gaussian calculation is carried out from the Calculate tab
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 c.  Select the Gaussian tab, a window appears in which we are supposed to set the 
parameters. In Job type, select optimization to a: TS (Berny) and force con-
stants = Once; in method, select the appropriate method with the appropriate 
basis set, and click on the submit button (Figs. 6.17 and 6.18).

When the job is submitted, a window appears which monitors the job.

2. After the geometry optimization is done, further calculations can be carried out 
in Gauss View itself. To carry out the calculations, one should create a file which 
has two sheets. In the first sheet, one should have the reactants with appropriate 
distance and the other should have the product/s.

a. Open the optimized structure of 1,3-butadiene in Gauss View, press Edit, and 
select Copy

b. Press the File button, press the Edit button, and select Paste and Append Mol-
ecule and name it as QST2.

c. Open the optimized structure of ethane, press Edit, and select Copy.
d. Open the QST2 file, press Edit, and select Paste and Append Molecule.
e. Both the reactants are now in one sheet. Maintain a distance of 3A between 

the reactants.
f. Open the optimized cyclohexane structure along with the QST2 file. High-

light the cyclohexane structure, press Edit, and select Copy.

Fig. 6.17  A screen capture showing the Gaussian calculation setup
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g. Highlight the QST2 structure, press Edit, select Paste, and Add to Molecular 
group

h. Make sure that the order of the atoms in reactants and the products are the 
same. (Press the Atom List Editor button. A table displaying the Atom order 
appears). (Figs. 6.19 and 6.20)

Fig. 6.18  The Gaussian process window
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Fig. 6.19  The callout showing the Atom List Editor
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Fig. 6.20  Atom List Editor window

 

When the atom order is set and the reactants and products are brought together in 
one file having two sheets, then the reactants and the products can be viewed to-
gether in one file itself in two different sheets (Fig. 6.21).

3. QST2 calculations:

a. Highlight the QST2 file having both reactants and products, press Calculate, 
and select Gaussian.

b. In the Job type, select Optimization to TS (QST2) (Fig. 6.22).
c. In the method box, select Ground State, Restricted Hartree–Fock, with Basis 

set being set to 6-31G, Charge to 0, and spin multiplicity to Singlet (Fig. 6.23).
d. Submit the calculation.
e. Open the output file in Notepad and verify that the calculation terminated suc-

cessfully and that convergence was accomplished.
f. Open the output file in Gauss View in order to observe the TS of the reaction.

Fig. 6.21  Reactants and 
products brought together in 
one file in two separate sheets
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Fig. 6.22  Optimization using TS (QST2)

 

Fig. 6.23  Method dialog box
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In this case, the optimum bond distance are-
Energy profile of bond-
Bond length of reactant = 2.23 armstrong
Bond length of TS = 2.18 armstrong
Bond length of product = 1.51 armstrong
Energy of reactant = − 231.643 hartree
Energy of product = − 231.723 hartree
Energy of TS = − 231.604 hartree
Activation energy = ∆E(Ets − Er) = 0.039 hartree

6.4.3  A Practice Tutorial Using Maestro–Jaguar

This requires a valid license for macromodel and jaguar in Schrodinger [30]. Diels–
Alder reaction modelling in jaguar involves the following steps:

1. Minimization of product
2. Optimization of product
3. Conversion of product to reactant
4. Minimization of reactant
5. Optimization of product
6. TS searching
7. Frequency calculation
8. IRC calculation

The first step is to draw the product on workspace and give entry name product:

1. Minimization of product

Select application → macromodel → minimization (Fig. 6.24).

2. Optimization of product 

Select application → jaguar → optimization, then select theory BLYP 6–31++ 
(Fig. 6.25).

For optimization it will take time, after finished.

3. Conversion of product into reactant

Select product from project table—click right button of mouse, select duplicate, 
then ungrouped. Create new entry reactant and then click delete button, and select 
bond and delete it (Fig. 6.26).

4. Minimization of reactant

Select application → macromodel → minimization.

5. Optimization of reactant

Select application → jaguar → optimization.
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Select application   -  macromodel—minimization

Fig. 6.24  A screen shot of the Jaguar module in Schrodinger

 

Fig. 6.25  Basis set selection in Jaguar
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It will also take time, whenever it is finished, start TS search; TS searching is 
very difficult and time consuming.

Before starting TS search, select optimized reactant and product from the project 
table (Fig. 6.27).

6. TS searching

Select application → jaguar → transition state searching.
First select transition state, then click LST, then choose both reactant and product 

from project and click the box. Give entry name trans_state (Fig. 6.28).
The job will take time approximately half an hour depending on your system.
When it is done, calculate frequency.

7. Frequency calculation

Select application → jaguar-single point calculation→properties→vibrational fre-
quencies. Give entry name trans_freq (Fig. 6.29).

8. IRC calculation

Click read button on the bottom of the jaguar panel and select trans-freq 01.in, open 
it and unselect the vibrational frequency from the properties (Fig. 6.30).

Then, select trans-state, reactant, and product from the project table (Fig. 6.31).
Now
Select application → reaction coordinate → IRC and choose all three TS, reac-

tant, and product. Here, there is no need to click on the box (Fig. 6.32).
When it is done, open the project table and see the reaction coordinate and en-

ergy and make a reaction plot.

Fig. 6.26  Product selection in Jaguar
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Fig. 6.28  The initiation of transition state search job

 

Fig. 6.27  Step showing selection of the optimized product and reactant from the project table in 
Jaguar

 

6.4 TS Modelling of Organic Transformations



6 Representation, Fingerprinting, and Modelling of Chemical Reactions342

Fig. 6.29  Property calculation option in Jaguar, here vibrational frequencies will be computed

 

Fig. 6.30  Selection of the transition state-frequency input file
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Fig. 6.31  The project table showing transition state, reactant and product

 

Fig. 6.32  Screen shot showing selection of the IRC (Intrinsic reaction coordinate)
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6.4.4  A Practice Tutorial Using Spartan

Spartan is a commercial software modelling kit having an easy-to-use graphical 
user interface (GUI) [31]. It provides a range of Hartree–Fock and post-Hartree–
Fock methods including density functional theory. The latest version is Spartan14. 
It can be easily used for conformational analysis, spectral analysis, and reaction 
analysis. The suite is accompanied with properties and spectral databases. We will 
model the Diels–Alder reaction using Spartan 08:

1. Draw the reactant on the workspace (Fig. 6.33).

Select 25th number transition state button and then click on the first double bond 
on the 1,3-butadiene and then click on the single bond; it will form an arrow, then 
click on the second double bond, and press the sift button and click on the carbon 
atom of ethylene; it will form an arrow, then click on the double bond of ethylene, 
press sift button, and click on the first carbon atom of 1,3-butadiene; it will form an 
arrow, then click on transition state button on the bottom of right-hand side. It will 
fix the TS (Fig. 6.34).

2. Now, select constraint distance (Fig. 6.35).
3. Select newly formed bond, then click on lock button from the bottom of right-

hand side. Likewise, select another newly formed bond (Fig. 6.36).
4. Now, click on selected bond; it will form a brown color arrow. Likewise, select 

second arrow (Fig. 6.37).

Fig. 6.33  The Spartan homepage
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5. Click on display button and select properties, then click on dynamic box, then 
change the value from 1.3 to 3.5 and steps 30. Do not forget to press enter button 
after putting each value (Fig. 6.38).

6. Next select calculation from setup, with energy profile on the ground state and 
semiempirical method PM3, and then click submit (Fig. 6.39).

Fig. 6.34  Transition state Diels–Alder reaction

 

Fig. 6.35  Constraint distance specification in Spartan

 

6.4 TS Modelling of Organic Transformations



6 Representation, Fingerprinting, and Modelling of Chemical Reactions346

7. When it will complete, form prof file, click display, select spreadsheet, click add 
button, select energy, then click ok (Fig. 6.40).

8. click constraint distance button, then click on bond, and then click p on the bot-
tom of right-hand side. It will add another column (Fig. 6.41).

9. Using display button, select plot, then select constraint on x-axis and energy on 
y-axis, then click ok. It will form a plot for reaction (Fig. 6.42).

Reaction path (Fig. 6.43)

Fig. 6.36  The newly formed bonds are selected

 

Fig. 6.37  The strategic bond selection
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6.5  Reaction-Searching Approaches and Tools

Simplified Molecular-Input Line-Entry System (SMILES) that are used to represent 
chemical reactions digitally are called reaction SMILES. SMIRKS [32] is a hybrid 
language of SMILES and SMARTS [33] and is also used for reaction expressions.

Reaction SMILES representation contains three parts: Reactant, Agent, and 
Product which are separated by “>” that represents the arrow “→” in a reaction.

Fig. 6.38  Constraint property value selection in Spartan

 

Fig. 6.39  The options provided in the calculation setup menu
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Reactant: A substance participating in a chemical reaction, especially a directly 
reacting substance present at the initiation of the reaction and participates in it by 
contributing one or more atoms to the products. This can be a compound or multiple 
compounds or molecules.

SMILES are used for representing reactants in reaction SMILES.

Fig. 6.40  Select the energy option in columns tab

 

Fig. 6.41  Adding a new column using the post button provided in properties dialog box
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Agent: They are substances that act as catalysts or solvents and do not directly 
participate in contributing or accepting atoms during the reaction. They are repre-
sented as SMILES between two “>.”

Product: Molecules which are the final results of the reaction are called products. 
They are also represented as SMILES.

Reaction SMILES: C = CC = C.C = C ≫ Cl = CCCCCl

Fig. 6.42  Step for generating the reaction plot in Spartan

 

Fig. 6.43  The reaction path plot showing constraint on x axis and energy on y -axis
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Syntax SMILES(Reactant 1).SMILES(Reactant 2) ≫ SMILES(Product 1).
SMILES(Product 2)

SMILES(Reactant 1).SMILES(Reactant 2) > SMILES(Agent1) > 
SMILES(Product 1).SMILES(Product 2)

In the above example, the entities before “>” are the reactants. There are two 
reactants in the reaction given and are added by a “.” in the Reaction SMILES.

Entities between “>” and “>” are the agents and are added by “.”
Entities after “>” is the product.
SMIRKS have been recently used for searching chemical reactions in electronic 

laboratory notebooks [34]. Another identifier used is RInchi which creates a unique 
data string to describe a reaction based on Inchi software and a rxn input file [35]. 
For instance, the RInchi output generated by submitting the rxn file for the Diels–
Alder reaction at the RInchi project server [36] shows the RAuxInfo and long and 
short RInChiKeys (Fig. 6.44).

RInChI = 0.02.1S/C2H4/c1-2/h1-2H2//C4H6/c1-3-4-2/h3-4H,1-2H2///C6H10/
c1-2-4-6-5-3-1/h1-2H,3-6H2/d+

RAuxInfo = 0.02.1/0/N:1,2/E:(1,2)/rA:2nCC/rB:d1;/rC:-2.2393,-.6777,0;-1.5248,-
.2652,0;//0/N:2,4,1,3/E:(1,2)(3,4)/rA:4nCCCC/rB:d1;s1;d3;/rC:-5.9148,0,0;-
5.2003,.4125,0;-5.9148,-.825,0;-5.2003,-1.2375,0;///0/N:1,2,3,5,4,6/E:(1,2)
(3,4)(5,6)/rA:6nCCCCCC/rB:d1;s1;s3;s2;s4s5;/rC:2.9464,0,0;2.9464,-
.825,0;3.6609,.4125,0;4.3754,0,0;3.6609,-1.2375,0;4.3754,-.825,0;

Long-RInChIKey = bSA-FEANN-VGGSQFUCUMXWEO-UHFFFAOY-N-
KAKZBPTYRLMSJV-UHFFFAOY-N–HGCIXCUEYOPUTN-UHFFFAOY-N

Short-RInChIKey = bSA-FEANN-EAILMCWWNJ-CCFCLFGEWB-EANNAT-
PGMB-NEANN-NEANN-NEANN

A set of components (CMLReact) for managing chemical and biochemical reac-
tions have been added to Chemical Markup Language (CML) which can be com-
bined to support most of the strategies for the formal representation of reactions 

Fig. 6.44  The RInchi Project homepage
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[37]. Reaction signatures consisting of a simple linear string of letters suitable to 
index every reaction in a reaction database for computer access have also been 
developed [38].

6.5.1  Chemical Ontologies Approach for Reaction Searching

Ontology is defined as “basic terms and relations comprising the vocabulary of a 
topic area as well as the rules for combining terms and relations to define extensions 
to the vocabulary” [39]. Though ontologies are proposed mainly for the purpose of 
knowledge sharing historically, in the modern information age, the term ontology 
is viewed from the perspective of artificial intelligence (AI) with an objective to 
achieve better information organization and effective retrieval of useful information 
knowledge sharing across community. In the domain of computer science, ontol-
ogy refers to an engineering artifact, constituted by a specific vocabulary used to 
describe a certain reality, plus a set of explicit assumptions captures domain knowl-
edge in a generic way. It also provides common vocabulary and agreed understand-
ing of a domain and makes the domain knowledge to be reused and shared across 
applications and groups. Accordingly, a chemical ontology tries to conceptualize 
the chemical knowledge in a narrow or broader perspective, depending on the gran-
ularity level of formalization [40, 41]. It is used to describe chemical objects and 
relationships for enabling the search across multiple data sources bridging some of 
the graphical and linguistic representations (Fig. 6.45).

Generally, the domain knowledge can be formalized in an ontology with three 
fundamental components, namelyclass/concept, relation/property, and instance/in-
dividual. The concepts identified in the domain are classes of ontology and they 
are usually organized in taxonomies. A concept/class can be anything about which 
something is said; it can be a material, nonmaterial, strategy, process, reasoning 
process, etc. The interaction between the concepts in taxonomy is relation and the 
instances are specific examples of concepts. Apart from these three fundamental 

n-Heptane

C7H16

hasFormula hasStructure

Fig. 6.45  Some simple chemical concepts and their relationships
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components, ontologies are often organized with two more components, namely 
function and axiom. Function is a special case of relation between more than two 
concepts. The axioms are used to model sentences that are always true. For exam-
ple, a substrate with a halogen atom attached on primary carbon is expected to react 
with a strong nucleophile in nonpolar condition preferring SN2 mechanism. This 
condition can be modeled as an axiom and conveniently attached to an appropriate 
concept in the taxonomy in the ontology (Fig. 6.46).

Identifying the type of relationship between the concepts within the same ontol-
ogy is an important task. A subclassOf [42] relation is used to relate the concepts 
having parent–child relationship and it is traditionally named as isA relationship. In 
Fig. 6.47, the concepts substitutionReaction and additionReaction are subclasses 
of organic reaction and can be related with isA relationship. A subclassPartitionOf 
relates a parent concept with a set of child concepts which are mutually disjoint. 
The concepts nucleophilicSubstitutionAtSaturatedCarbon, nucleophilicSubstitutio-
nAtAromaticCarbon and nucleophilicSubstitutionAtCarboxylCarbon are mutually 
disjoint and subclasses of nucleophilicSubstitutionReaction. An exhaustiveSubclas-
sOf relation relates a parent concept with a set of mutually disjointed subclasses 
covering the entire parent concept. The concepts nucleophilicSubstitutionReaction, 
electrophilicSubstitutionReaction, and radicalSubstitutionReaction may be consid-
ered as examples of having exhaustiveSubclassOf.

Transformation of the conceptual model into an implemented one involves the 
transformation of ontological representations into formal machine-readable speci-
fications using ontology representation language. For this purpose, selection of a 

Fig. 6.46  Components of ontology in concept taxonomy
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knowledge representation language is important. At present, Extensible Markup 
Language (XML) [43] is the state-of-the-art ontology specification technology. 
OWL [44] is W3C standard which is an XML-based ontology specification lan-
guage. A part of reaction ontology specified in XML is shown in Fig. 6.48.

Ontology specification in XML
The taxonomies of different ontologies can also be related with specific rela-

tions. Such relations play a crucial role when the ontologies are integrated with 
some applications. For example, a concept of “aliphatic nucleophilic substitution 
reaction” can be related with a concept of “nucleophilic reagent” using hasReagent-
Class in one direction and also with a reverse relation as reagentClassIn relation. 
In a general reaction like A + B → C + D, if formalized along with the plus symbols, 

organicReaction
substitutionReaction

nucleophilicSubstitutionReaction

nucleophilicSubstitutionAtSaturatedCarbon
nucleophilicSubstitutionAtAromaticCarbon
nucleophilicSubstitutionAtCarboxylCarbon

electrophilicSubstitutionReaction
electrophilicSubstitutionAtSaturatedCarbon
electrophilicSubstitutionAtAromaticCarbon

radicalSubstitutionReaction
radicalSubstitutionAtAlkane

subclassPartitionOf 

 

subclassOf 

 

exhaustiveSubclassOf 

Fig. 6.47  Classification showing types of relationships
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<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE organicReaction SYSTEM "rxnontoDTD.dtd" > 
<organicReaction xmlns = "" id="orc" title="Reaction"> 

<substitutionReaction id="sub" title="substitution"> 
<nucleophilicSubstitutionReaction id="sub/nuc" title=""> 

<nucleophilicSubstitutionAtSaturatedCarbon id="sub/nuc/saC-ind“ 
title="Nucleophilic Substitution Reaction at Saturated Carbon 

Atom"> 
<reactionInstance id="sub/nuc/saC-ind001"  

title="reaction of alkyl halide with aqueous 
potassium hydroxide"/> 

<reactionInstance id="sub/nuc/saC-ind002"  
     title="reaction of alkyl halide with moist silver 
oxide"/> 

</nucleophilicSubstitutionAtSaturatedCarbon> 
</nucleophilicSubstitutionReaction> 

</substitutionReaction> 
…  
</organicReaction>  

Fig. 6.48  Part of reaction ontology specified in XML
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the fundamental meaning of reactant combines and the product forms may become 
ambiguous. This can be handled with appropriate relations, like the reactant mol-
ecules A and B can be related using combinesWith relation and for product side, a 
relation like formsWith can be used. Using this formalist approach through chemi-
cal ontologies, a chemical ontological support system (COSS) has been developed, 
and the models of reaction representation as well as retrieval models are reported. 
Subsequently, the support of chemical ontologies to model organic reaction mecha-
nisms can also be demonstrated. Some of the final rendering outputs of COSS for 
acid- and base-catalyzed addition mechanism is shown in Fig. 6.49a, b, respectively 
(Fig. 6.50).

Ontology is becoming a medium to represent chemical knowledge in a semantic 
format and making them reusable for intelligent applications. A chemical ontology 
described along with specific instances can be considered as a chemical knowledge 
base and can be used for precise search and retrieval process. A knowledge base 
differs from a database in the respect of providing a semantically structured domain 
knowledge-supporting software agents to retrieve precise and perfect information. 
An exhaustive or elaborate chemical ontology provides a fine granular chemical 
knowledge enabling deeper semantics, whereas the reverse results in a descrip-
tion with shallow semantics. In recent years, reaction-specific chemical ontologies 
have started evolving. However, the reaction representation and its description, in 
a more meaningful way, can be achieved through the development of appropriate 
ontologies developed on the components of reaction, starting from atoms, groups, 
functional groups, etc. [45, 46] and associating them intermediately with chemical 
transformation and then ultimately with reaction.

6.5.2  Reaction Searching Using Fingerprints-Based Approach

In the previous chapter, we learnt the use of fingerprints for searching chemical 
structures. Of equal importance is the need for searching chemical reactions to es-
timate their similarity using computational tools. In this section, we will therefore 
learn how to use reaction fingerprints for searching in databases and online servers. 
Similar techniques are employed in both cases. Structural properties that are pres-
ent in the reaction are used for estimation of reaction similarity. Two reactions can 
be considered similar if their product side and/or reactant side are similar. With this 
consideration, reaction similarity is reduced to molecular or structural similarity.

An alternative approach is to characterize the reaction transformation carried 
out by identifying the changing atoms and the changing bonds in the reaction with 
respect to the reactants and the product structures. An atom is changing if either of 
the conditions is met:

1. One or more of its bond is changed (i.e., the bond is different on the left side 
compared to the right side) or

2. It is present only on one side of the reaction and it has a non-changing atom 
neighbor.
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Fig. 6.49  Rendering of acid-catalyzed addition reaction mechanism (a) and base–catalyzed (b) 
with the support of chemical ontological support system (COSS)
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Changing atoms and changing bonds define the “reacting center” of the reaction. 
The reacting center is specific to a particular type of reaction. Nevertheless, another 
type of reaction similarity can be introduced by focusing on the reacting center of 
the reaction. This transformational similarity is less influenced by the particular 

Fig. 6.50  The concept of reaction fingerprints to compute RLS and PLS for molecules
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reactant and product present in a reaction, but it is dominated by the reaction mecha-
nism. Both of these types of reaction similarity are found to be useful in comparing 
and matching reactions.

6.5.2.1  Tools Available with an Academic License

In the ChemAxon reaction module, similarity-searching program [47] reaction fin-
gerprints are used. The structure of the reaction fingerprint is composed of eight 
segments including chemical fingerprint (CFp) of the reactant or reactants and re-
agent, the product, the reactant side of the reaction center, the product side of the re-
action center, the reactant side of the reaction center including its 1 bond neighbor-
hood, the product side of the reaction center including its first bond neighborhood, 
the reactant side of the reaction center including its 2 bond neighborhood, and the 
product side of the reaction center including its second bond neighborhood.

The total length of the reaction fingerprint is 2,048 bits. The above-defined eight 
segments of the reaction fingerprint are laid out in the schema below (segment sizes 
given in number of bits):

512 512 128 128 128 128 256 256

This reaction fingerprint enables both types of reaction similarity calculations, and 
with the expense of some extra storage space, it makes the transformational similar-
ity calculation efficient in all three predefined levels of coarseness.

Two types of reaction similarity calculations have been introduced: structural 
and transformational. Structural distinguishes the reactant and the product sides, 
while transformational relates to three levels of coarseness. With these consider-
ations, five metrics need to be introduced to efficiently estimate the five different 
categories of reaction similarity. These metrics are as follows:

• ReactantTanimoto
• ProductTanimoto
• StrictReactionTanimoto
• MediumReactionTanimoto
• CoarseReactionTanimoto

All of these metrics are based on the Tanimoto metric; consequently, the degree 
of similarity is expressed from 0 to − 1. ReactantTanimoto considers only the first 
quarter of the reaction fingerprint that represents the reactants in the reaction and 
ignores the rest of the reaction fingerprint. Therefore, it estimates the structural 
similarity of the reactants only. ProductTanimoto takes the second quarter of the 
fingerprint that is associated with the products. StrictReactionTanimoto takes the 
last two segments of the reaction fingerprint that represents the reacting center of 
both the reactant and the product side of the reaction with the broadest neighbor-
hood and ignores the first 3/4 of the reaction fingerprint. Similarly, MediumReac-
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tionTanimoto applies the Tanimoto metric to the fifth and sixth segments, while 
CoarseReactionTanimoto takes the third and the fourth segments that encode the 
reacting center of the reactant and the product side, respectively.

6.5.2.2  In-House Developed Fingerprint-Generating Program

In the traditional fragment-based fingerprint approaches based on a pattern of say 
five atoms or four atoms, the algorithm will search around the molecule in all pos-
sible ways traversed through the molecules to detect presence or absence of pat-
terns in that molecule, and the reaction similarity is based on a Tanimoto metric as 
discussed above. In our method, a chemical structure is stored using 16 fingerprints. 
Sixteen numbers of 4 bytes each are optimum for screening 16 integers with a ca-
pacity of 4 bytes each. Thus, in total, we allocate 64 bytes per structure. To store one 
reaction fingerprint, 512 bytes are required. Although there are a number of named 
organic reactions reported in chemistry, yet for the present work, we restricted our-
selves to 150 name reactions having 150 reactants and 150 products. Their binary 
reaction fingerprints were computed and the complete data with reactant-like scores 
(RLS) and product-like scores (PLS) are available at the moltable server [48]. From 
this, the most frequently used reaction fingerprints and distinct species involved in 
these reactions, i.e., during conversion from reactant to product were identified. Out 
of 1,000 species, 450 distinct species were found to occur frequently. Each species 
was mapped to name reactions to confirm whether it occurred as a reactant or prod-
uct molecule. On this basis, we computed 305 binary reaction fingerprints for each 
molecule search (hit = 1, no hit = 0).

We took a functional class of compounds and obtained the cumulative fin-
gerprints based on reactant/product likeliness. For example, given ethyl alcohol 
CH3CH2OH as a query molecule the algorithm will check whether it is a reactant or 
a product. The OH functional group can be reactant in an esterification step or act 
as a product in a hydrolysis step. Likewise, an ester group is a product but can be a 
reactant in hydrolysis process. Alcohol functional group can be converted to alde-
hyde, acid, or ester; the aldehyde group can further undergo oxidation, reduction, or 
condensation process. So, it is impossible for a chemist to manually look at all pos-
sible options. Using our methodology, we can provide a fragment-based alert as to 
what reactions it is likely to undergo and what are the anticipated products, whether 
a new molecule can be formed. This prior knowledge will aid decision making in 
synthesis design. As the total number of products and reactants are fixed, an RLS 
and a PLS can be given to the query molecules submitted by user to determine the 
percentage of reactive functional groups of reactants or products present in it. Since 
we are considering the reaction as a whole, the solvent, catalyst, and reaction con-
ditions present therein are integrated inherently in the reaction information itself 
(Fig. 6.50).
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6.5.2.3  Code to Obtain Reactions

     for (int i = 0; i < fp.length(); i++) { 
     if(fp.charAt(i)==a){ 
      temp[cnt]=Integer.parseInt(smartsData[totelReact+i][2]);
      cnt++; 
     } 
    } 
    int[] out=new int[cnt]; 
    for(int i=0;i<cnt;i++){ 
     out[i]=temp[i]; 
     //System.out.println("pro "+out[i]); 
    } 
     return out; 
    } 

public int[] getReactReactionId(String[][] smartsData,String fp,char a){ 
     int[] temp=new int[250]; 
     int cnt=0; 
     for (int i = 0; i < fp.length(); i++) { 
     if(fp.charAt(i)==a){ 
      temp[cnt]=Integer.parseInt(smartsData[i][2]); 
      cnt++; 
     } 
    } 
    int[] out=new int[cnt]; 
    for(int i=0;i<cnt;i++){ 
     out[i]=temp[i]; 
     //System.out.println("react "+out[i]); 
    } 
     return out; 
    } 
     
    public int[] getProReactionId(int totelReact,String[][] smartsData,String 
fp,char a){ 
     int[] temp=new int[250]; 
     int cnt=0; 

We built a matrix of 29 × 305 reaction fingerprints for molecules belonging to 29 
therapeutic categories; the objective was to deduce the difference in selectivity pat-
tern within the class of drugs or leads and identify distinct fingerprints representa-
tive of the classes. A cumulative reaction fingerprints spectrum of 4,000 molecules 
present in 29 drug classes can be used for annotating a query molecule with any of 
the distinct 29 classes of drugs/leads. Given any molecule, one can predict whether 
that molecule falls in any of the 29 therapeutic classes based on the availability of 
diverse patterns/fingerprints and PLS and RLS (Table 6.1).

6.5.3  Tools for Reaction Searching

Scifinder is a commercial tool provided by Chemical Abstracts Service (CAS) [49]. 
It is enabled with advanced reaction-searching feature that includes assigning roles 
for reaction participants, substructure drawing features, and filtering results using 
any of the desired attributes. After logging into Scifinder in the Explore Reactions 
screen, the user can specify sites where bonds are changed, include functional 
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S.No. Drug name RLS PLS Reaction binary fingerprints
1 Lipitol 41 28 000000000010100000000000110011100100000100

0000
001000000000000000000000100000000001000010

1000
101000100001010000000010110010100000100010

0000
111100101100001000000100100000010100100000

0110
011010000000000101101000011000000001000000

0000
000100000011000000001100101000100100000001

0001
000000100001101001000000000011

2 Levobunalol 45 28 010000000000101000000000100011100100001101
000

100100000000000000010000010100000010110001
010

000010001000000100100000101100101010001000
100

000101000101100001000000100100000010100000
000

011000100000001100010010100001100011000000
000

000000001010000010000100011011001001000000
000

010100000000000011110001000000000001
3 Sildenafil 38 27 000000000000100000100000100011100100000100

100
000000000000000000000000010000000000100001

000
001010001000010000100000101100100000001000

011
010110100101100001000000101100000000000100

000
011001100000001000010010100001100000000100

000
000000001000000010000000011000010001001010

100
010000000000100001111001000000000011

4 Ibuprofen 25 16 000000000000100000100000000011100100000100
000

000000000000000000000000010000000000000000
000

001010001000010000000000101000100000001000
000

000110100001100000000000100000000000000100
000

Table 6.1  Binary reaction fingerprints of common drugs 
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groups, map atoms, assign roles, etc. The reaction structure drawing tool can be 
used to create a reaction query or upload a formerly saved query in the .cxf format.

Both exact structure- and substructure-searching options are available. Func-
tional groups or atoms can be locked to prevent substitution or ring fusion. The 
answer sets are determined by the Tanimoto similarity metric. A reaction search 
for a typical Diels–Alder reaction between a diene and a dienophile having a cyano 
functional group yielded 253 reactions (Fig. 6.51).

The results can be sorted by relevance, accession number, product yield, etc. To 
further narrow the search results, advanced search options can be specified such 
as number of steps, source, publication years, solvents, and nonparticipating func-
tional groups (Fig. 6.52).

As seen in Fig. 6.53 by restricting the publication years to the past 5 years, the 
search results retrieved 36 reactions. The results can be further refined by additional 
criteria like reaction structure, product yield, reaction classification, etc. Moreover, 
one can also analyze by catalyst, available detailed experimental procedure, journal 
name, etc. All entries in the reaction results are connected to the CAS substance 
database records, which is highlighted by placing the cursor over the structure, and 
substance information regarding commercial source, synthetic procedure and regu-
latory information is revealed. Stepwise tutorials for reaction searching in Scifinder 

S.No. Drug name RLS PLS Reaction binary fingerprints
011001100000000000000000100001100000000100

000
000000000000000000000000010000010001001000

000
010000000000000001100001000000000011

5 Aspirin 26 20 000000000000100000000000000011000100000100
000

000000000000000000000000010000000000000001
010

000010001000010000000000101000100000001000
000

000111100101100000000000100000000000000100
000

011001100000000000000010100001100000000100
000

000000001000000000000000010001010001001000
000

010000000000000001110001000000000011

Table 6.1 (continued)

6.5 Reaction-Searching Approaches and Tools
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Fig. 6.51  Scifinder substructure search for the Diels–Alder reaction reaction-based query

 

Fig. 6.52  Advanced search option specifying the publication years to the past 5 years
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are available at https://scifinder.cas.org/help/scifinder/R18/index.htm#reactions/
search_by_reaction_structure.htm.

6.6  Reaction Databases

For knowledge-based approach, there exist a host of chemical reaction databases 
free as well as proprietary. The Beilstein Information System is the worldʼs larg-
est collection of chemical properties of organic compounds [50]. CASREACT, an 
online database, provides access to chemical reactions reported in the journal lit-
erature, maintained by CAS with substructure-based reaction-retrieval capabilities 
[51]. ChemInform Reaction Library (CIRX) is another source of information that 
enables chemists to predict the suitability of synthetic methods for the design of 
novel molecules focusing on the latest novel reactions and methods for organic syn-
thesis [52]. Database information on chemo- and regio-selective reactions makes it 
especially useful in identifying viable routes to novel compounds. ChemReact68 
contains essential information on 68,000 reactions referenced in literature published 
from 1974 to 2001 [53]. While the above-discussed databases are proprietary, there 
are some good online sources also available, such as Chemogenesis, Organic Syn-
theses (ORGSYN), SyntheticPages, Synthesis Protocols, chemical methodology 
and library development (CMLD), The Chemical Thesaurus, and web reactions 
[54].

BioPath is a database of biochemical pathways that provides access to metabolic 
transformations and cellular regulations derived from the Roche Applied Science 
“Biochemical Pathways” wall chart [55]. In the current version, BioPath also pro-
vides access to biological transformations reported in the primary literature. The 
BioPath database is available in Symyx MOL/RDF format for integration into ex-

Fig. 6.53  The hits narrow down to 36 using advanced search options
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isting retrieval systems or, optionally, fully integrated into the web-based retrieval 
system BioPath.Explore.

6.6.1  Tools for Reaction Library Enumeration

The virtual enumeration of chemical reactions is a powerful tool in systematic com-
pound library design or combinatorial chemistry. Reactor is the virtual reaction enu-
meration engine of ChemAxonʼs JChem technology that supports generic reaction 
equations combined with reaction rules; therefore, it is capable of generating chemi-
cally feasible products without preselection of reagents [56]. Reactor is able to carry 
out highly automated reaction enumeration as well as support the manual selection 
of main products for a given chemical reaction.

Reactor is a high-performance, integratable reaction enumeration engine [57]. It 
works with generic reaction equations that can be defined and imported in various 
formats, including among others SMIRKS/SMARTS strings, RDF, RXN, and MRV 
files, or be drawn in MarvinSketch.

Reagent(s) are processed according to the given reaction schema; if the reaction 
is in RDF or MRV format, reaction rules, reactant standardization, and some addi-
tional properties are also possible to set in RDF/MRV tags.

Reaction schemes can include stereochemical information. Reactor is capable 
of handling both tetrahedral and double bond stereochemistry flexibly; inversion 
and retention centers as well as cis–trans configuration changes can be determined 
within Reactorʼs smart reaction schemes. Prochiral reaction schemes are also sup-
ported since version 5.5, allowing the user to manage syn/anti additions.

Reactor can be set up to carry out simple sequential enumeration, combinatorial 
enumeration, generating combinatorial virtual synthetic libraries. Users also have 
the option to exclude unwanted products from the enumeration results manually, 
restricting the outcome of the reaction enumeration process to the desired main 
products only. Reactor supports the generation of product or reaction libraries in a 
large variety of different output formats.

It has the option to copy arbitrary property fields from the input reactant files 
to the results. These can include, e.g., solubility or availability information of the 
reactants. Also, Reactor can generate synthesis codes for each reaction in the enu-
meration process containing selected information from the reaction scheme and the 
reactants. The stand-alone version of Reactor has a GUI for configuring the reaction 
enumeration process. The Reactor GUI leads users step by step through the whole 
configuration process of the virtual chemical reaction. Reactor has also been inte-
grated into Instant JChem and JChem for Excel. It is also available in the workflow 
management tools KNIME and Pipeline Pilot. In its stand-alone version, it can be 
used through the GUI, as a command line application and also through a full fea-
tured Java API. Reactor offers full platform independence; it is equally available for 
Microsoft Windows, Mac OS, and Linux platforms.

Reactor has an integrated reaction sketcher and editor tool. Users can create 
their own reaction schemes and add corresponding reaction rules to them using 
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the Chemical Terms language. The prepared reaction schemes can be tested and 
the reaction rules can be validated using the integrated reaction-testing tool of 
Reactor.

6.6.2  A Practice Tutorial

The Reactor package includes a large and constantly increasing library of organic 
chemical reactions that can be used directly without any further configuration. The 
list of available reactions of ChemAxonʼs reaction library is provided on their web-
site [58]. Here, we are selecting the Diels–Alder cycloaddition reaction mentioned 
in the previous section (Fig. 6.54).

Using the generic reaction equations, virtual synthetic compound libraries can be 
generated under full manual control. When doing so, users have the opportunity to 
draw and edit reactants directly and to select chemically meaningful products from 
the output of the enumeration process by using their chemical intuition on the fly. 
This approach is particularly advantageous for enumerating small, focused librar-
ies. We define reactants 1 and 2 of the Diels–Alder reaction (Fig. 6.55).

Fig. 6.54  Next step is to define the reactants
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The next step is to get the synthesizable molecules by proper reaction rules de-
fined in Chemical Terms, ChemAxonʼs scripting language that is designed to add 
chemical intelligence to chemoinformatics applications. Through Chemical Terms, 
a large number of calculated properties can be included in the reaction rules to pro-
duce valid compound libraries. Besides calculating physicochemical properties on 
the fly, Chemical Terms language also supports importing of arbitrary fields from 
the input reactant files to be used for the evaluation of the reaction rules (Figs. 6.56, 
6.57 and 6.58).

6.7  Artificial Intelligence in Chemical Synthesis

To assist rational synthetic planning by a chemist, a number of computer programs 
to suggest viable chemical routes have been developed. The known general compu-
tational approaches are empirical, semiempirical, and knowledge based, all of them 
drawing their inspiration from the well-established reactions and certain principles 
of organic synthesis [59]. Empirical approaches can theoretically provide millions 
of reactions, but they may or may not be synthetically possible in the laboratory 
[60]. Quantum chemical approaches involve studying the ground state of individual 
atoms and molecules, the excited states, and the TS that occur during chemical reac-
tions [61]. Quantum to molecular mechanics (Q2MM) methods allow application 

Fig. 6.55  Reactant 2 is specified
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Fig. 6.56  Reaction processing parameters setup screen

 

Fig. 6.57  Summary page
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of molecular mechanics to deduce TS in chemical reactions [62]. The disconnec-
tion approach involves exploding the molecule into smaller starting materials and 
combining by chemical reactions and identifying strategic bonds/facile bonds [63]. 
Semiempirical methods have been mainly used to survey energetics of reactions 
like hydrogen abstraction [64].

The first attempt to predict reactions computationally was made by Corey and 
Wipke, when they developed a program called LHASA based on the synthon ap-
proach [65]. This was followed by MAPOS, another synthon-based synthesis 
design program [66]. A didactic tool using a heuristic approach for designing or-
ganic synthesis using disconnections defined by users, CHAOS employed both 
semiempirical and empirical approaches [67]. It found rings, core bonds, and stra-
tegic bonds, but it did not recognize stereochemical features and could not take 
into account aromatic electrophilic substitutions [68]. Computer-Assisted Organic 
Synthesis (COMPASS) was developed based on the combination of pure combi-
natorial methods with empirical rules of retro-synthetic analysis [69]. The CAESA 
approach included an opportunistic synthetic analysis of all the compounds in the 
starting materials databases, which is only performed once and stored in a relational 
database of virtual starting materials [70]. A computational program to predict or-
ganic reactions, ROBIA, performs reaction prediction on the basis of coded rules 
and molecular modelling calculations, generating possible TS, intermediates and 

Fig. 6.58  The final results step retrieves various products of Diels–Alder reaction
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products given the starting material and reaction conditions [71]. Recent reaction 
prediction programs include Reaxys which has over 400 indexed fields of experi-
mentally validated data extracted from journals and patents, important chemistry-
related literature, and patent sources [72]. SYLVIA, a commercial program, rapidly 
evaluates the synthetic accessibility score of organic compounds on a scale of 1 for 
straightforward synthesis to 10 for complex and challenging synthesis by employ-
ing various structure- and reaction-based parameters ([73]; Table 6.2).

To build intelligence into the reaction prediction programs, the strategic bonds 
which are cleaved or formed during a reaction are identified. A disconnection ap-
proach is used to reveal the synthon and retron for a reaction which helps the user 
in designing synthetic routes for a molecule of interest.

6.8  Modelling Enzymatic Reactions

An important range of drug–host interactions involves covalent binding or chemi-
cal reactions, which are often catalyzed by enzymes. Prediction of these metabolic 
processes requires detailed insight into the mechanisms of the reactions involved, 
as well as computational methods that account for the reactivates of the compounds 
and proteins involved. Theoretical models of enzyme reactions are becoming in-
creasingly important in applied areas for making predictions of biochemical con-
versions or designing bioactive compounds with desired chemical properties [75].

The most important class of enzymes is the family of cytochrome P450s, which 
is capable of catalyzing a variety of reactions, mainly oxidations, of a broad range 
of compounds [76]. Their catalytic flexibility is based on the heme cofactor that is 
present in the active site and has exceptional catalytic properties. Other enzymes 
include flavin-dependent monooxygenases, dehydrogenases, esterases, and pepti-
dases. Many reactions are catalyzed by several enzyme families, e.g., epoxide hy-
drolases, glutathione S-transferases, glucuronyl transferases, etc. [77]. Resistance 
against antibiotics involves the occurrence of enzymes in the target microorganism 
that specifically convert the antibiotic to a non-antibiotic metabolite [78]. In some 
drug design strategies, prodrugs are metabolized to the active drug specifically in 
the target tissue, e.g., tumor tissue only [79]. In the future, a number of techniques 
for enzyme reaction modelling need to be developed for applications in studies of 
drug metabolism.

6.9  Thumb Rules for Performing Reaction 
Representation, Fingerprints, and Modelling

•  The TS observed in a modelling process should be checked for correct geometry, 
calculated bond orders, and vibrational frequencies.

6.9 Thumb Rules for Performing Reaction Representation, Fingerprints, and Modelling
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Table 6.2  Strategic key bond formation in few examples of name reactions [74]
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6.10  Do it Yourself

1. Search esterification reaction in the various online reaction sources
2. Model any name reaction of your choice using Gaussian program and interpret 

the results

6.11  Questions

 i.  What are the ways of representing reactions in computers?
 ii.  Write a short note on reaction file formats.
iii.  Highlight the various methods used in reaction modelling.
 iv.   What do you understand by the term artificial intelligence in organic synthesis? 

Elaborate giving examples.
 v.  What are the challenges in modelling enzymatic reactions?
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Chapter 7
Predictive Methods for Organic Spectral  
Data Simulation
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Abstract New chemical entities (NCE) with potential bioactivity are synthesized, 
isolated, and thoroughly characterized for structure elucidation and purity before 
being subjected to further research. Spectroscopy is one of the most powerful 
means to deduce the correct structure and configuration of a compound or a frag-
ment. In organic synthesis, the compounds are usually characterized by the spec-
tral techniques such as ultraviolet–visible (UV–Vis), nuclear magnetic resonance 
(NMR), infrared (IR), mass spectrometry (MS), X-ray, etc. NMR and MS methods 
are employed in fragment-based drug discovery approaches to identify compounds 
from a high-throughput screen or a proteomics experiment. However, it is not pos-
sible to manually interpret the complex spectral data that require sophisticated 
computational tools for characterization. These tools aid in spectra analysis, peaks 
assignment, intensity, etc. and thereby annotate the compound with the appropri-
ate functional group and fragments. The prediction algorithms are developed based 
on principles of quantum chemistry, machine learning, or simple database/pattern 
match-based methods. Some of the methods using quantum chemistry are accurate; 
however, they require more computational time; on the other hand, the machine 
learning methods such as neural network are faster but require more experimental 
data for improving their prediction capability. So, there is a trade-off between speed 
and accuracy, and the user has to decide his/her preference. A number of spectra 
prediction tools, commercial as well as open source, are discussed in this chapter 
accompanied with detailed tutorials on the use of some of them. To manage the data, 
many online servers and spectral databases are available today and a brief introduc-
tion to them is also provided. Here, we also describe an in-house-developed carbon 
and proton NMR chemical shift-based binary fingerprints and their use in virtual 
screening.

Keywords NMR spectral data · Binary fingerprints · Chemical shift prediction · 
Classification · Virtual screening
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7.1  Introduction

The electromagnetic spectrum consists of radio waves, microwaves, infrared (IR) 
rays, visible light, ultraviolet (UV) light, X-rays, gamma rays, etc. and are classi-
fied based on their range of frequencies [1]. Here, we are interested in the frequency 
regions which provide the diagnostic power to organic chemists for structure deter-
mination (Fig. 7.1).

Organic spectroscopy aids chemists immensely to elucidate the structure of com-
plex molecules using a combination of IR, ultraviolet–visible (UV–Vis), nuclear 
magnetic resonance (NMR), mass spectrometry (MS), and X-ray crystallographic 
techniques [2]. NMR detects the carbon and hydrogen environment in a molecule 
[3]. IR spectroscopy helps in detection of functional groups especially the finger-
print regions consisting of hydroxyl and carbonyl groups [4], UV aids in identify-
ing conjugation, if present, between double bonds [5], MS confirms the molecular 
weight of the molecules along with fragmentation pattern [6], and X-rays give the 
final crystal structural composition, conformation, and configuration of a molecule 
[7]. A brief discussion on each of these techniques is given in this section for readers 
unfamiliar with spectroscopy; however, for the detailed theory, interested readers 
are encouraged to refer excellent textbooks and reviews on this topic [8–10].

UV spectroscopy is very effective in detecting extended conjugation in mol-
ecules like dienes and aromatic dyes. The principle underlying UV–Vis spectros-
copy is the Lambert–Beer law which states that absorbance is directly proportional 
to path length “b” and concentration “c” [11].

Fig. 7.1  The electromagnetic spectrum. (Source: http://9-4fordham.wikispaces.com/)
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The Lambert–Beer law can be stated in the form of Eq. (1) as

A bc= (1)

where A is the absorbance, ɛ is the absorbtivity in L mol−1 cm−1, b is the path length 
in cm, and c is the concentration of the compound in solution, in mol/L.

Different molecules absorb at different wavelengths and hence it can be used as 
a spectroscopic method. The visible region in the spectrum where human eyes can 
perceive lies in the range of 380–760 nm and the UV region ~ 300–380 nm. The 
energy corresponding to this region can promote an electron to a higher-energy 
orbital. There are a number of electronic excitations possible, such as n – π*, n – σ*, 
π – π*, π – σ*, and n – σ*, each associated with a different energy level. When a 
sample compound is subjected to light radiation with energy corresponding to any 
of these transitions, some energy is absorbed. The light-absorbing groups present 
in a molecule are called chromophores. A UV spectrometer can detect the charac-
teristic wavelength (lambda max, λmax) at which a molecule is absorbed, thereby 
helping to identify the chromophores. We have predicted the maximum absorption 
wavelength λmax values for a large set of 374 organic dyes for dye-sensitized solar 
cells based on extensive structure–property correlation studies [12].

IR spectroscopy is one of the most often used techniques applied in detecting 
functional groups, and the instrument is known as IR spectrometer. The IR fre-
quency region in the electromagnetic spectrum of interest to organic molecules lies 
between 11.9 × 1013 and 1.2 × 1014 cm−1. The energy in this region is just sufficient 
to cause vibrational excitation of covalently bound atoms or groups [13]. The bonds 
are considered as springs and show bending and stretching movements; there are 
others like rocking, scissoring, and twisting. The extent of the movement is deter-
mined by bond strength and mass of atoms present in the molecular fragment [14]. 
The absorption spectra show presence of functional groups as they absorb in differ-
ent regions. For example, the IR spectrum of a molecule with carbonyl functional 
group shows a distinct sharp peak at 1,720 cm−1. The region from 500 to 1,500 cm−1 
is termed as the fingerprint region which is characteristic of a compound.

In NMR spectroscopy, the structure of a molecule as well as its purity is deter-
mined. A nucleus in a molecule is charged and when it spins, it generates a mag-
netic field. However, when the spins are not paired in a molecule, it generates a 
magnetic field dipole [15]. If an external magnetic field is applied, the spin can 
align with or against the external field creating two energy levels, the difference of 
which corresponds to the radio frequency region of the electromagnetic spectrum. 
When the spin returns to the ground level, energy is given out at the same frequency 
which is then recorded as a signal in the NMR spectrometer [16]. The first step in 
NMR spectral analysis is the detection of characteristic structural fragments from 
the chemical shift (δ) values. Chemical shift provides NMR its diagnostic power 
that reveals conformation and stereochemistry at the functional-group level. It also 
enables identification of the environment of a proton and the steric, electronic, and 
spatial arrangement of the neighboring atoms [17]. The chemical shift value of each 
fragment in a molecule gives rise to a peak in the spectrum as shown in Table 8.2. 
[18]. The principle behind identification of an atomic environment in carbon 13 and 
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proton 1H are the same, where both nuclei have spin 1/2 but the isotopic abundance 
of the hydrogen nuclei is 99 % whereas carbon is 1 % [19]. Proton NMR is recorded 
in the range 0–10 ppm, whereas the range is 20–200 ppm for carbon spectrum. 
Carbon spectra are proton decoupled to avoid large J couplings between carbon and 
hydrogen, and couplings between carbons are ignored [20].

Mass Spectroscopy is used to obtain the molecular weight of a sample [21]. 
When a charged particle passes through a magnetic field, it is deflected along a 
circular path on a radius which is proportional to the charge to mass ratio (m/e), for 
example, when an organic molecule is placed in the path of a high-energy beam, 
then an electron is knocked off to give a radical cation (molecular ion) which can 
further fragment, and the resulting ions are detected and recorded in a mass spec-
trometer [22].

7.2  Fragment-Based Drug Discovery

Fragment-based drug discovery (FBDD) methods are gaining precedence in lead 
identification and optimization phases of drug discovery processes [23]. Virtual 
drug-like molecules can be generated combinatorially from a fixed number of pos-
sible chemical structural fragments, and therefore prescreening fragments instead 
of fully enumerated libraries seems a more efficient approach. Although fragments 
sample most of the relevant chemical space, yet they leave scope for ligand opti-
mization in terms of hydrophilicity, hydrophobicity, steric features, etc. to enhance 
their druglikeness [24]. Apart from structural elucidation of organic molecules, 
NMR also finds extended application in functional characterization of fragments 
in biological systems. Each fragment component in a compound makes some con-
tribution to the overall biological activity; specific absorption rate (SAR) by NMR 
is a prevalent technique in drug discovery to understand ligand interactions with a 
target using chemical shift mapping to screen low-binding ligands [25]. The frag-
ment libraries are characterized by biophysical analytical techniques like IR, NMR, 
and MS. The spectral values of common functional groups are given in Table 7.1 
for ready reference.

Traditionally, complete structure elucidation of a new organic compound, ei-
ther synthesized or naturally occurring, is assisted by a combination of elemental 
analysis, 1H NMR, 13C NMR, and MS techniques [26]. To explain this concept, let 
us take the example of two molecules 1 and 2 synthesized in our laboratory whose 
experimentally determined spectra are available [27]; Fig. 7.2.

Compound 1 is the structure containing an aromatic fragment fused with an eight-
membered ring related to the class of alkaloids, for example, molecules isolated 
from autumn crocus [28]. This class of compounds has been studied extensively for 
their chemical, biological, and medicinal properties. They are effective in the treat-
ment of gout and cancer [29]. Compound 2 shows a spirocyclic structure. Benzo 
spiroannulation is an important synthetic strategy in organic chemistry. Spirocyclic 
compounds like 2 either represent an integral part of some biologically active natu-
ral product or are utilized as intermediates for the synthesis of some biologically 
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Table 7.1  Spectral values of commonly occurring functional groups
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significant compounds. In this chapter, we will subject them to various spectra pre-
diction tools and compare the results with experimental spectra (Fig. 7.3).

1H NMR spectrum of 1 showed two singlets at δ 6.65 (1H) and 6.70 (1H) for 
the protons attached to aromatic carbons C1 and C4, respectively. The other two 
singlets observed at δ 3.90 and 3.85, integrating for three protons each, are as-
signed to –OMe groups. A sharp singlet appearing at δ 3.70 (2H) corresponds to 
methylene protons (C5-CH2) confirming the cyclization reaction. Methylene group 
protons attached to C7 and C10 appeared as triplets at δ 2.35 ( J = 6.94 Hz) and 2.80 
( J = 6.94 Hz), respectively. A multiplet at δ 1.80 (4H) corresponds to C8 and C9 
methylene protons (Fig. 7.4).

Fig. 7.3  Experimentally determined proton nuclear magnetic resonance ( NMR) spectrum of com-
pound 1

 

Fig. 7.2  Structure of the 
compounds used for spectral 
data interpretation
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In the 1H NMR spectrum of 2, C7-H appeared as a double doublet at δ 6.70 
( J1 = 8.78, J2 = 1.95), C5-H appeared as a broad singlet at δ 6.65, and C8-H aro-
matic proton appeared as a doublet at δ 6.50 ( J = 8.78). The OMe group protons 
appeared at δ 3.80 as a singlet. A multiplet observed at δ 2.97 is assigned to the 
protons attached to C4 and a multiplet appearing between δ 2.50 and 2.20 (6H) is 
characterized for the methylene protons attached to C2, C3’, and C5’, respectively. 
Another multiplet appearing between δ 1.85 and 1.70 (4H) corresponds to methy-
lene protons attached to C3 and C4 (Fig. 7.5).

The 13C NMR spectrum of 1 showed 13 signals and the characterizations of each 
carbon signal are suggested by the insensitive nuclei enhanced by polarization trans-
fer (INEPT) experiment which are as follows: The signal appearing at δ 211.76 cor-
responds to C6 keto carbon. The aromatic carbons C2 and C3, bearing –OMe groups, 
appeared at δ 148.68 and 147.69, respectively. Two aromatic quaternary carbons C4a 
and C10a, fused with a cyclooctanone moiety, appeared at δ 133.13 and 125.63, 
respectively. C1 and C4 methine carbon signals appeared at δ 113.38 and 113.15, 
respectively. Both the methoxy carbons appeared at δ 56.03. The characteristic C5 
methylene carbon signal appeared at δ 48.19. Other four methylene carbons (C10, 
C9, C8, and C7) appeared at δ 32.94, 31.33, 24.71, and 41.12, respectively (Fig. 7.6).

The 13C NMR spectrum showed 14 signals. The carbonyl group carbon sig-
nals appeared at δ 209.85. The aromatic signal corresponding to C6 appeared at 
δ 158.38. The other two quaternary carbons C4a and C8a appeared at δ 139.64 
and 125.31, respectively. Methine carbon signals for C8, C7, and C5 appeared at δ 
131.30, 113.41, and 112.59, respectively. The characteristic quaternary spiro carbon 
C1 appeared at δ 70.66. The methoxy group carbon appeared at δ 55.04. All other 

Fig. 7.4  Proton nuclear magnetic resonance ( NMR) of compound 2
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six methylene carbons such as C3’, C5’ (2C), C4, C2, C3, and C4’ appeared at δ 
38.06 (2C), 34.14, 29.47, 18.88, and 17.55, respectively (Fig. 7.7).

Mass spectrum of 1 showed molecular ion peak (m/z) at 234, along with other 
fragmentation peaks at 206, 191, 175, 165, 121, 107, and 91 (Fig. 7.8).

The mass spectrum of the compound 2 showed molecular ion peak at 258 and 
base peak at 174.

Fig. 7.6  Carbon NMR of compound 2

 

Fig. 7.5  Carbon spectrum of compound 1
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Fig. 7.7  Mass spectrum of compound 1

 

Fig. 7.8  Mass spectrum of compound 2
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7.3  Spectra Prediction Methods

Spectral prediction is required especially in the case of characterization and struc-
ture elucidation of large complex molecules, such as natural products [30]. A com-
plete one-to-one correspondence for the assignment of the peaks in the spectra is 
not possible from the experimental spectra. Prediction is also required in the case 
of mechanistic understanding for synthetic organic chemistry. Many methods have 
been developed to predict spectrum, given structural information.

1. Empirical methods employ additive rules usually called as incremental methods 
[31].

2. Semiempirical methods are based on the classical concepts of inductive and res-
onance contributions and employ molecular mechanics force fields [32].

3. Quantum chemical methods rely on accurate molecular geometries B3LYP den-
sity functinal theory (DFT) with 6–31 G(d) basis set for geometry optimization. 
Ab initio molecular orbital-based methods in which nuclear shielding tensor is 
calculated are especially useful in calculating chemical shifts of heavy atoms 
using a variety of basis sets 6–31G*, 6–31G** with HF, B3LYP, and B3PW91 
[33]. These methods are more accurate but computationally expensive.

4. Database-based methods
 It is the most widely employed approach in most software, for instance, Advanced 

Chemistry Development, Inc. (ACD/Labs). It is faster because three-dimensional 
(3D) geometries are not determined only matching with stored chemical shifts is 
involved [34].

5. Machine learning approach
 Machine learning methods such as artificial neural networks are employed for 

both small molecules and protein structure prediction [35].

7.4  Spectra Prediction Tools

Spectra prediction tools have evolved from the earlier program 13CNMR [36] used 
for prediction of the carbon shift of individual atoms of the structure using an open 
set of additivity rules to the TopSpin 3.2 program [37] of today that employs the 
latest 64-bit features for NMR data analysis and acquisition of NMR spectra from 
advanced Fourier spectrometers. In this chapter, the discussion is restricted to tools 
in the small-molecule spectra prediction domain only, though current state-of-art 
techniques can predict quite fairly the spectra of large biomolecules like proteins 
and nucleic acids. For biological NMR prediction from chemical shift values, there 
are programs like Rosetta [38] and tensor 2 [39] for protein structure prediction. The 
well-established, known qualitative chemical shift prediction studied for 1H and 13C 
are ChemDraw [40] ChemAxon [41], ACD [42], MestReNova [43], Gaussian [44], 
Abbott Prediction program [45], and CHARGE [46].
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7.5  Open-Source Tools

7.5.1  GAMESS

GAMESS is a program for ab initio molecular quantum chemistry which can com-
pute self-consistent field (SCF) wave functions ranging from restricted Hartree–
Fock (RHF), ROHF, UHF, GVB, and MCSCF [47]. Computation of the Hessian 
energy permits prediction of vibrational frequencies with IR or Raman intensities. 
Solvent effects may be modeled by the discrete Effective Fragment potentials or 
continuum models such as the polarizable continuum model [48]. Numerous rela-
tivistic computations are available, including infinite order two component scalar 
corrections, with various spin–orbit coupling options [49].

7.6  Proprietary Tools

7.6.1  ACD/NMR Predictors

The program includes predictions for the following nuclei—1H, 13C, 15N, 19F, and 
31P—for 1D spectra, and 1H and 13C (and 15N) for 2D spectrum prediction [50]. All 
predictors use both Hierarchical Organisation of Spherical Environments (HOSE) 
code and neural net algorithms to provide the most accurate chemical shifts in the 
prediction of spectra also taking into account stereochemistry. The main advantage 
of the program is that it includes full processing functionality and the ability to train 
predictions with users’ own experimental data [51].

7.6.2  Cambridgesoft Chem3D

This program provides an interface to multiple computational tools like Gaussian, 
GAMESS, and Jaguar. ChemBio3D provides an interface for Gaussian calculations 
for computing 1H, NMR, IR, and Raman spectra [52]. Its 2D drawing tool Chem-
BioDraw Ultra has provisions to predict NMR spectra [53]. The predicted spec-
tra of compounds 1 and 2 are shown along with the predicted shifts of each atom 
(Figs. 7.9 and 7.10).

7.6.3  Jaguar

Jaguar is a high-performance ab initio electronic structure package for both gas- and 
solution-phase simulations, with ability to treat metal-containing systems; Jaguar 
computes a comprehensive array of molecular properties including NMR, IR, and 
UV-Vis [54].
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Fig. 7.9  Predicted hydrogen and carbon spectra of compound 1 using ChemBioDraw Ultra
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Fig. 7.9 (continued)
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Fig. 7.10  Predicted hydrogen and carbon spectra of compound 2 using ChemBioDraw Ultra
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Fig. 7.10  (continued)
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Computing NMR Shielding Tensors
Usually in solids, the value of chemical shift changes depending on the orienta-

tion of a molecule with respect to the external magnetic fields. This phenomenon 
is termed chemical shift anisotropy, mathematically represented as chemical shift 
tensor matrix [55]. The chemical shift tensor is generally described by three diago-
nal elements or principal components δ11, δ22, and δ33 [56]. Gas-phase and solu-
tion-phase NMR shielding constants are available for closed-shell and unrestricted 
open-shell wave functions in Jaguar [57]. To calculate chemical shifts, one should 
calculate NMR shielding constants for the reference molecules for each element of 
interest, in the same basis set and with the same method as for the molecule of inter-
est. Shielding constants are returned as atom-level properties in the maestro output 
file. One can use these values for atom selection, for example, or can display them 
in labels. Shieldings are calculated for all atoms, including those with effective core 
potentials (ECPs). Shielding constants for atoms whose core is represented by an 
ECP should be treated with caution because the main contributions come from the 
core tail of the valence orbitals, which is largely absent at ECP centers. Chemical 
shifts derived from these shielding constants might display the correct trends, but 
are likely to have the wrong magnitude. Here, we have computed tensors for com-
pounds 1 and 2. First, we need to build the structures in Schrodinger workspace and 
click applications to go to Jaguar (Figs. 7.11 and 7.12).

The next step is to calculate the NMR spectrum of the reference, say tetra methyl 
silane (TMS) molecule using the same method and basis set in Jaguar. The isotropic 
parts of the magnetic shielding tensors are extracted for both the reference and the 
sample molecule. The chemical shift can be calculated by subtracting the isotropic 
part of the magnetic shielding tensor from the calculated value for the correspond-
ing nucleus in the reference molecule.

7.6.4  Gaussian

Gaussian 98 includes a facility for predicting magnetic properties, including NMR 
shielding tensors and chemical shifts [58]. These calculations compute magnetic 
properties from first principles, as the mixed second derivative of the energy with 
respect to an applied magnetic field and the nuclear magnetic moment [59]. As a 
result, they can produce high-accuracy results for the entire range of molecular 
systems studied experimentally via NMR techniques. Gaussian can also be used for 
predicting IR spectrum as it can compute vibrational frequencies of molecules in 
their ground and excited states. It can also predict the intensity of the spectral lines. 
The available methods are Hartree–Fock (HF), DFT, MP2, and CASSF.

7.6.4.1  A Practice Tutorial

Now let us compute the spectra of compound 2 using Gaussian program. The struc-
ture is built using the drawing templates provided in the program and energy mini-
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mized and saved as a Gaussian input file (gif). The NMR option is selected under job 
type tab and the method chosen is the Gauge Independent Atomic Orbital (GIAO) 
method. The basis set and method used are specified in the calculation setup screen. 
We will use 6–31G, a split valence basis set, and HF method to compute the spectra 
(Figs. 7.13, 7.14, 7.15 and 7.16).

7.6.5  ADF

Amsterdam Density Functional (ADF) is an accurate, parallelized, and powerful com-
putational chemistry program used to understand and predict chemical structure and 
reactivity with DFT [60]. It is a popular tool to predict and understand magnetic, elec-
tric, optical, and vibrational spectra [61]. Heavy elements and transition metals can be 
modeled with ADFʼs relativistic zeroth order regular approximation (ZORA) approach 
and all-electron basis sets for the whole periodic table. It can be used to compute IR 
frequencies and intensities, vibrational circular dichroism (VCD), mobile block Hes-

Fig. 7.11  NMR shielding constants calculation for compounds 1 and 2 using the Jaguar module 
of Schrodinger suite
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sian (MBH), Franck–Condon factors and (resonance) Raman, vibrational Raman opti-
cal activity (VROA), UV/Vis spectra, etc. NMR spectroscopy parameters like chemi-
cal shift, spin–spin coupling, paramagnetic NMR, electron paramagnetic resonance 
(EPR) g-tensor, hyperfine interaction (A-tensor), and ZFS can also be obtained.

7.6.6  MestreNova

In MestreNova (Mnova), a raw, unprocessed spectrum (free induction decay, FID) 
can be opened to obtain the fully processed spectrum instantaneously [62]. This 
involves two fundamental steps—automatic file format recognition and automatic 
processing of the FID using the concept of real-time frequency domain processing.

Additionally, it provides users with their own choice of processing parameters, 
changing or adjusting the window function, the Fourier transform (FT), the phasing 
and baseline correction. Mnova can detect spectra acquired in the arrayed mode (or 

Fig. 7.12  Part of Jaguar output file showing the computed tensors
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Fig. 7.13  The Gaussian calculation setup screen to select the basis set and the methods for the 
computation of spectra

 

Fig. 7.14  The results sum-
mary page
 



394 7 Predictive Methods for Organic Spectral Data Simulation

Fig. 7.16  Carbon 13 computed spectrum of compound 2

 

Fig. 7.15  The computed proton spectrum of compound 2 with tetramethyl silane ( TMS) as the 
reference compound
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pseudo 2D), typically used in relaxation, kinetics, or diffusion experiments and, by 
default, will display the spectrum as a stacked plot. Mnova integrates a fast simula-
tion module of 1H and 13C NMR spectra, called Modgraph NMRPredict Desktop. 
NMRPredict Desktop uses a neural network system for the prediction of 13C NMR 
spectra as well as the CHARGE program which offers 1H NMR prediction based on 
partial atomic charges and steric interactions. The CHARGE and the Increment al-
gorithms included in NMRPredict Desktop are the same as used in the server-based 
version to predict 1H NMR spectra. For the prediction of 13C NMR spectra, it uses 
a neural network system, but not the HOSE database methodology implemented 
additionally in the server-based application. The neural network algorithm is much 
more general and error tolerant than the HOSE code approach (based on a reference 
spectra database) and is much more accurate at predicting shifts not found in the 
database [63]. The best algorithm is the combined approach between the Increments 
and the Conformers algorithm that is capable of producing significantly improved 
proton NMR predictions [64]. The 4,000,000-assigned chemical shift values of the 
available 345,000 reference spectra can be predicted with an average deviation be-
tween experimental versus calculated of below 2.00 ppm.

Now let us familiarize with the Mnova tool, we shall use it to predict the spec-
trum of the two compounds 1 and 2. The initial welcome screen of Mnova Lite is 
shown in Fig. 7.17. With a molecular structure highlighted in the active page of 
Mnova, we just go to the “Molecule” menu and select “Prediction Options”.

One can either import a predrawn structure or draw a molecule here and predict 
the spectra (Fig. 7.18).

Fig. 7.17  The welcome screen of Mnova Lite

 



396 7 Predictive Methods for Organic Spectral Data Simulation

7.6.7  Spartan

Spartan can compute proton, carbon-13, DEPT and COSY spectra. Additionally it 
can also be used for large biomolecules like proteins [65].

SPARTA is a database system for empirical prediction of backbone chemical 
shifts (N, HN, HA, CA, CB, CO) using a combination of backbone phi, psi torsion 
angles, and side chain chi1 angles from a given protein with known Protein Data 
Bank (PDB) coordinates [66].

7.6.7.1  A Practice Tutorial

This section will describe how to predict NMR spectrum using the Spartan pro-
gram. We will predict NMR of the spiro compound 2 using the HF method with 
6–31G* basis set. First, the software performs the job of geometry optimization and 
then calculates the NMR parameters. The structure is initially built using the build 
option (Fig. 7.19).

An example input file is given here:

Fig. 7.18  Proton nuclear magnetic resonance (NMR) spectrum of compound 2 predicted using 
the Mnova program
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Fig. 7.19  Structure input in Spartan
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38 -386.843732 0.001170 0.052026 
39 -386.843772 0.000849 0.046999 
40 -386.843798 0.000369 0.025808 
41 -386.843801 0.000068 0.003419 
42 -386.843802 0.000027 0.000805 
 <step 2> 
Job type: Single point. 
Method: RHF 
Basis set: 6-31G(D) 
SCF total energy: -386.8438016 hartrees 
NMR shifts (ppm) 
Atom Isotropic Rel. Shift  
--------------------------------------------------- 
1 H1 25.4238 7.48 
2 C1 75.4701 126.25 
3 C4 75.0684 126.65 
4 C2 62.4297 139.29 
5 C6 74.5722 127.15 
6 C5 78.1008 123.62 
7 C3 74.3070 127.41 
8 H6 25.3281 7.57 
9 H5 25.4933 7.41 
10 H3 25.5653 7.34 
11 H4 25.4020 7.50 
12 C7 161.8341 39.89 
13 H2 30.9525 1.95 
14 H7 30.1867 2.72 
15 C8 173.9551 27.77 
16 H10 31.2758 1.63 
17 C9 178.6904 23.03 
18 H9 32.0148 0.89 
19 H11 31.6720 1.23 
20 H12 31.7307 1.17 

22 -386.838087 0.001819 0.157145 
23 -386.838341 0.002085 0.175730 
24 -386.838647 0.001906 0.229830 
25 -386.838938 0.002454 0.172126 
26 -386.839405 0.002223 0.204335 
27 -386.839919 0.002714 0.160672 
28 -386.840524 0.002916 0.208574 
29 -386.841076 0.002545 0.174013 
30 -386.841743 0.001362 0.218336 
31 -386.842246 0.001513 0.169910 
32 -386.842779 0.001132 0.175853 
33 -386.843135 0.001326 0.096142 
34 -386.843399 0.001687 0.155910 
35 -386.843509 0.001670 0.032018 
36 -386.843598 0.001049 0.100642 
37 -386.843642 0.001629 0.057971 
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When the structure input file is saved, the calculation is set up and submitted to 
the program (Fig. 7.20).

Once the job is completed, the display spectra option shows the calculated car-
bon and proton spectra (Fig. 7.21).

Spartan can also compute advanced NMR spectra like Correlated Spectros-
copy (COSY) [67] and Nuclear Overhauser Effect Spectroscopy (NOESY) ([68]; 
Figs. 7.22 and 7.23).

The IR frequencies can also be calculated using Spartan for the same molecule 
(Fig. 7.24).

The UV/Vis spectrum is similarly obtained (Fig. 7.25).

7.6.8  Spectral Databases

7.6.8.1  NMRshiftdb2

The NMRshiftdb2 software is open source; the data are published under an open-
content license [69].

It has an NMR database (web database) for organic structures and their NMR 
spectra. It allows for spectrum prediction (13C, 1H, and other nuclei) as well as for 
searching spectra, structures, and other properties. It also has a collection of peer-
reviewed datasets by its users.
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7.6.8.2  MassBank

MassBank is the first public repository of mass spectral data for sharing them 
among the scientific research community [70]. MassBank data are useful for the 
chemical identification and structure elucidation of chemical compounds detected 
by MS spectroscopy. The spectra can be searched by exact m/z using a browsing in-
terface. One can also perform spectrum, substructure, and peak searches for a given 
compound. It does substructure searching of chemical compounds. One can retrieve 

Fig. 7.21  The displayed hydrogen and carbon nuclear magnetic resonance ( NMR) of compound 
2 after computation

 

Fig. 7.20  Spartan calculation setup
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spectra similar to the user’s spectrum in terms of molecular formulas. This search is 
helpful to predict the chemical structure of unknown metabolites (Fig. 7.26).

The Spectrum Search feature in MassBank retrieves the chemical compound(s) 
specified by chemical name or molecular formula and displays its spectra. We gave 
spiro keyword as a query using the quick search option in the browser and retrieved 
56 hits, many of which were drug molecules. One can refine results by specifying 
the instrument and ionization mode (Fig. 7.27).

The MassBank records have one-to-one relation to a specific mass spectrum. 
Each record has specific information like accession number, record file, license, 
and author apart from information on the chemical compound regarding its for-
mula, mass, smiles, InChI identifier etc. The analytical information available is the 
instrument type and make, Msn type data. A typical MassBank record is shown here 
(Fig. 7.28).

One can also get chemical structures of unknown metabolites from the query 
compound (Fig. 7.29).

Fig. 7.22  A computed Correlated Spectroscopy ( COSY) spectrum
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7.6.8.3  SWGDRUG Mass Spectral Library

SWGDRUG has compiled a mass spectral library from a variety of sources contain-
ing drugs and drug-related compounds [71]. All spectra were collected using elec-
tron-impact MS systems. This library is available for download from its website.

7.6.8.4  SDBS

Spectral Database for Organic Compounds (SDBS) is an integrated spectral data-
base system for organic compounds, which includes six different types of spectra, 
an electron-impact mass spectrum (EI-MS), a Fourier transform infrared spectrum 
(FT-IR), a 1H NMR spectrum, a 13C NMR spectrum, a laser Raman spectrum, and 
an electron spin resonance (ESR) spectrum [72]. SDBS is maintained by the Na-
tional Metrology Institute of Japan (NMIJ) under the National Institute of Advanced 
Industrial Science and technology (AIST). Currently, EI-MS spectrum, 1H NMR 
spectrum, 13C NMR spectrum, FT-IR spectrum, and the compound dictionary are 

Fig. 7.23  Nuclear Overhauser Effect Spectroscopy ( NOESY) spectrum of compound 2
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active for correcting and maintenance of the data. Since 1997, SDBS is free to the 
public through Tsukuba Advanced Computing Center (TACC) as Research Infor-
mation Data Base (RIO-DB). A compound name search using spiro keyword gave 
183 hits of NMR spectrum one of which is shown here. 1H NMR was measured 
with a JEOL FX-90Q (89.56 MHz), a JEOL GX-400 (399.65 MHz), or a JEOL AL-
400 (399.65 MHz) (Fig. 7.30).

7.6.8.5  Spectral Libraries

Sigma Aldrich libraries having text- and data-searching capabilities for FT-NMR, 
FT-IR, and attenuated total reflectance-infrared (ATR-IR) spectra are available as 

Fig. 7.24  The infrared ( IR) frequencies and the displayed spectrum of compound 2
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good reference sources [73]. Scifinder, the search engine of CAS, has 59.2 million 
carbon and 59.1 million proton NMR spectra stored in its registry database [74].

7.7  Spectra Viewer Programs

JSpecView is a viewer for spectral data in the JCAMP-DX and AnIML/CML for-
mat [75]. The program was initially developed at the Department of Chemistry of 
the University of the West Indies, Mona, Jamaica, West Indies and is available via 
sourceforge net under the GNU Lesser General Public License. It is an open-source 
viewer and converter for multiple spectra (Fig. 7.31).

7.8  In-House Tools for Spectra Prediction

40,000 compounds stored in NMRshiftDB and an in-house NMR data archive 
for computing binary fingerprints from chemical shift data were processed [76]. 
From this dataset of original NMR spectra, we used reported chemical shift val-

Fig. 7.25  The computed ultraviolet ( UV) spectrum
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ues to generate the binary fingerprints. Conventionally, the area of the peak at 
specific positions represents the number of atoms with similar environment. In 
our approach, if there was a peak in the region, the bit was allocated to the high-
est peak; peak intensity analysis was performed via atom count with the same 
chemical shifts (Fig. 7.32). Next, we statistically analyzed the bins based on 
frequency of occurrence of particular peaks in the NMR spectra. We were able to 
calculate NMR shift-based binary fingerprints of entire PubChem [77], ChEMBL 
[78], and HMDB [79] database molecules using high-performance computing 
(HPC) tools.

Fig. 7.26  MassBank home page displaying the various search options in the database
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7.9  Code to Generate Proton and Carbon NMR Spectrum
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The chemical shift-based binary fingerprints were applied to map the entire drug 
space. “Cumulative” NMR spectra of proton and carbon nuclei of 1,200 compounds 
deposited in the Food and Drug Administration (FDA) database were generated 
[80] (Fig. 7.33). Statistically significant regions of corresponding fingerprints of 
these reference spectra were used for virtual screening library of compounds. A 
molecule whose predicted NMR matched either with other molecules in the dataset 
or with the cumulative NMR model qualified as a hit.

The binary fingerprints were used to discriminate between various bioactivity 
classes for the purpose of virtual screening of huge libraries. Here, one of the ex-
amples of cumulative carbon NMR of an antifungal class of molecules is shown. 
The three representative molecules highlighted are the ones having the maximum 
bit occupancy for certain preferred fragments. The bit position at 192 corresponding 
to 48 ppm on the carbon NMR scale encodes for the methyl carbon attached to oxy-
gen, bit position 498 corresponding to 125 δ in carbon NMR encodes for the naph-
thyl region in second representative compound, and bit position at 568 (142 ppm) 
possesses the fragment with a triazole ring system (Fig. 7.34).

Fig. 7.27  Hits for the keyword query spiro in MassBank
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Fig. 7.29  Metabolite prediction option in MassBank

 

Fig. 7.28  A MassBank record of a spiro compound
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7.10  Thumb Rules for Spectral Data Handling and 
Prediction

• Choose the spectra prediction program tailored to your needs. There is always a 
trade-off between speed and accuracy. Quantum chemistry programs based on 
first principles show less deviations in their predicted chemical shifts from the 
experimental values but are computationally expensive and time consuming

Fig. 7.30  NMR spectrum of a spiro compound retrieved from Spectral Database for Organic 
Compounds (SDBS) by chemical name search

 

Fig. 7.31  NMR spectrum of aspirin molecule as visualized in JSpecView program
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• Recheck and make sure the experimental values of the NMR parameters viz. 
chemical shifts, shielding tensors, coupling constants, etc. used in modelling 
studies are correct

• Place special emphasis on the spectra-recording method while using values from 
a database

• In case of ab initio and density function-based modelling, first perform geometry 
optimization of the compound and then calculate parameters of that geometry. 
The right combination of theory levels is important. Preferably use the GIAO 
method as it is less sensitive to the basis set used [81]

7.11  Do it Yourself

1. Predict NMR, IR, UV, and mass spectra of the top ten drug compounds using any 
of the available spectra prediction programs and online tools

2. Using Gaussian program, predict the carbon and hydrogen NMR spectra of the 
eight-membered ring compound 1 in the text and compare the output data with 
experimental shift values

Fig. 7.32  Flowchart for generating nuclear magnetic resonance ( NMR) fingerprints from chemical 
shift data
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7.12  Questions

1. Write a brief essay on known spectra prediction methods. Highlight the advan-
tages and disadvantages of each method.

2. How are vibrational frequencies computed? Explain with the help of an example.
3. Write a short note on databases used in spectra prediction programs.
4. Give a stepwise account of how NMR tensor values can be computed in Guas-

sian3W program.
5. Using Mnova program, predict the carbon NMR spectra of example compounds 

1 and 2 discussed in the chapter.

7.12  Questions

Fig. 7.33  Cumulative spectrum generated using the nuclear magnetic resonance ( NMR) finger-
prints of Food and Drug Administration (FDA) drugs

 

Fig. 7.34  The cumulative specturm of 30 antifungal compounds
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Chapter 8
Chemical Text Mining for Lead Discovery

Abstract With the growth of the Internet, the information disseminated and avail-
able in public resources has expanded enormously. There is a need for the devel-
opment of new tools to navigate through each and every document automatically, 
word by word to extract useful patterns, concepts, knowledge, or discover some-
thing which is not explicitly mentioned in a document to derive useful conclu-
sions. Recently, computational linguistics developers and scientists have devised 
several text-mining tools and techniques for converting the natural language and 
processing the information content into facts and data for interpretation, analysis, 
and predictions. Text mining comprises data mining, information retrieval, natu-
ral language processing (NLP), and machine learning (ML) methods. Text mining 
provides researchers with metadata to ascertain meaningful associations of terms 
prevalent in their respective domains. Thus, it aids in finding meaning, context, 
semantics, identifying hidden concepts, trends, and discovering hitherto unknown 
relationships and correlations from heaps of largely fragmented, unstructured, and 
scattered information lying in public realm. In this chapter, we highlight the general 
concept of text mining followed by its features and tools especially for handling 
biomedical and chemical literature data for drug/lead discovery available in over 
22.9 million abstracts in PubMed. The emphasis is on building and using simple 
text-mining tools in a practical way by harnessing the power of open source and 
commercially available tools and comprehending the overall strategic challenges 
in this field. An open-source-based tool for text mining literature with chemical 
significance that can be effectively used for solving chemoinformatics problems 
related to lead discovery has been developed. MegaMiner can directly predict lead 
molecules for a target disease of interest by submitting a text-based query in a dis-
tributed computing platform.

Keywords Text-mining · Clustering · Stemming · Chemoinformatics · Lead 
discovery · MegaMiner · Open-source tools
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8.1  What is Text Mining?

Information is widely dispersed across numerous articles, publications, patents, books, 
blogs, discussion forums, and scientific literature databases [1]. Just plain textual data 
as such is a large resource of information. The most important accessible resource for 
this freely available information is the Internet [2]. But one major problem with such 
large data is that the information is mostly unstructured and not available in ready-to-
query databases. Hence, computer-based processing and analysis of such information 
is a tedious task. Such data need to be explored for keywords to discover knowledge 
and only a small portion will actually be of use to a given user. Judicious selection of 
this bit of information can be performed by a text-mining protocol. Text mining deals 
with scanning text data for patterns, connections, profiles, and trends. In fact, text 
mining automates finding, reading, storing, understanding, and consolidating data [3]. 
The researcher has to only make sense out of it and derive his/her own inferences. 
For instance, if one is interested in studying gene–protein, protein–protein, or tar-
get–ligand interactions involved in a biological pathway, one can collect all available 
textual data and use appropriate text-mining tools. The tool will facilitate annotating 
terms and look for co-occurring entities. Further, terms can be visualized with their 
relations in a network to derive information to validate a hypothesis. Another text-
mining application is for automated biocuration [4]. Manual curation for data straight 
into databases is very helpful but very time consuming. A mixed approach where 
manual curation is used with automated text mining is beneficial. With the emergence 
of the first publicly funded text-mining center in the world, NacTem, newer tools and 
techniques have gained more importance and acceptance [5].

In essence, text mining can be defined as extracting high-quality information 
from plain text. It is a derived discipline which takes help from information retriev-
al, data mining, web mining, statistical modelling, computational linguistics, and 
natural language processing (NLP). Text mining has been defined vividly but the 
most apt definition is “the process of recognizing pattern from a wealth of informa-
tion hidden latent in unstructured text and deducing explicit relationship among data 
entities by using data mining tools.” [6]. It is a highly data-intensive process which 
enables a user to find meaning from heaps of largely fragmented, unstructured, and 
scattered information available in a public domain using a suite of text analysis 
tools. This field provides methods and techniques to find patterns and trends across 
textual data, sort, and rank documents according to importance and relevance and 
compare documents.

8.1.1  Text Mining vis-a-vis Data Mining

Text mining is akin to data-mining systems in that it shares similar architectural 
features as well as robust browsing capabilities to draw logical inferences [7]. Text 
mining can be considered as a subset of data mining which is a process of extract-
ing useful information, as per the user requirements, from large amounts of datasets 
[8]. Both are provided with visualization tools for facilitating user interactivity to 
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identify patterns in the data but differ in the presence of feature extraction and 
feature selection steps in the former. Data mining deals with databases containing 
tables linked through certain relationships (relational database management system; 
RDBMS) which is straightforward as the data are represented in proper formats (int, 
float, text, char, blob, binary, etc.), and applying mathematical and statistical tools 
to identify the trends and patterns [9]. For example, when we search the Web or any 
database with a query, we get the results in seconds. This is not so in text mining 
where it is not possible to dynamically search for the keyword and display results 
in a fraction of a second. The main challenge in text mining is that as the number 
of words in any text increases, its dimensionality increases [10]. Moreover, all the 
relevant information that we are looking for is a complex combination of words and 
phrases and so there is always a possibility of word ambiguity or semantic ambigu-
ity. For example, there can be two words with the same meaning or one sentence 
can have multiple meanings. Added to this, there is a presence of noisy data which 
can be spelling mistakes, stop words, abbreviations, etc. Next, the most important 
challenge in text mining is to identify relevant data and classify them properly as 
numeric or text [11]. This becomes even more difficult while handling scientific 
documents where there are several mathematical expressions and scientific terms 
which are not usually classified by conventional NLP programs [12, 13].

Text mining is thus different from data mining and is carried out in a series of 
steps. A typical text-mining work flow involves text categorization, text clustering, 
concept/entity extraction, production of granular taxonomies, sentiment analysis, 
document summarization, and entity relation modelling [14]. The core text-mining 
operations that focus on query creation algorithms are distributions, frequent and 
near-frequent sets and associations which enable the user to explore the data in 
collected volumes [15]. Named entity recognition (NER) and NLP, ML are the text 
analytical tools [16]. The input for text-mining procedure is raw text, i.e., text with-
out label/classification which usually comes from a data source like PubMed hosted 
by the National Library of Medicine which is expanding daily and contains the 
most important published biomedical research literature. PubMed is a large reposi-
tory of citation entries of scientific articles. It is the most commonly used source 
for biomedical information [17]. It is a service provided by the National Library 
of Medicine and National Institutes of Health. Presently, it contains approximately 
23 million citations. It hosts articles and reviews from ~ 36,000 journals. It includes 
links to full-text articles and other related sources. The search interface for National 
Center for Biotechnology Information (NCBI) is Entrez. Entrez is an integrated, 
text-based search-and-retrieval system at NCBI used for all the major databases 
[18]. Annotating PubMed data is a huge task. It requires a lot of computing power. 
But annotation of PubMed will help researchers to find trends and patterns in simi-
lar fields of research. The information from the abstracts can be converted to knowl-
edge. One can manually search PubMed by directing the browser to the follow-
ing link: http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed. There are filters to 
search by authors, journals, dates, languages, and article type. The results can be 
retrieved as Extensible Markup Language (XML), citations, abstracts, summary, 
etc. and can be accessed as text or downloaded as files. To do the same, program-
matically, NCBI provides Entrez Programming Utilities or E-utilities. Entrez Pro-
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gramming Utilities are tools that provide access to Entrez data outside of the regular 
Web query interface and may be helpful in retrieving search results for future use in 
another environment ([19]; Fig. 8.1).

For example, to search for pmids related to kinases:
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=kinases
To retrieve only seven results, the uniform resource locator (URL) would be 

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&retmax=7&
id=19232228

The results can be returned as Abstract/Citation/Medline/Full:
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&rettype=ab

stract&id=19232228
To retrieve results as XML/Text/HTML:
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&retmode=x

ml&id=19232228
For example, to fetch results for swine flu on PubMed, the URL would be 

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term= 
swine+flu

8.1.2  A Snippet of Java Code Using the Above URL

URL url = 
“http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=swine+flu&re
tmax=1&retmode=xml&rettype=abstract” 
URLConnection con = url.openConnection();
InputStream in = url.openStream();
BufferedReader br = new BufferedReader (
new InputStreamReader (con.getInputStream())); 

Fig. 8.1  A PubMed search results page displaying the current abstract entries
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http://http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&retmax=7&id=19232228
http://http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&rettype=abstract&id=19232228
http://http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&rettype=abstract&id=19232228
http://http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&retmode=xml&id=19232228
http://http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&retmode=xml&id=19232228
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=swine+flu
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=swine+flu
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The PMID returned is: 19232228. This PMID is used to fetch the entry
URL url = 
“http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&retmode=xml&rettyp
e=abstract&id=19232228” 

The search result for the above entry is
 <PubmedArticle> 
 <MedlineCitation Owner="NLM" Status="In-Process"> 
 <PMID>19232228</PMID> 
 <DateCreated> 
 <Year>2009</Year> 
 <Month>02</Month> 
 <Day>23</Day> 
 </DateCreated> 
 <Article PubModel="Electronic"> 
 <Journal> 
 <ISSN IssnType="Electronic">1560-7917</ISSN> 
 <JournalIssue CitedMedium="Internet"> 
 <Volume>14</Volume> 
 <Issue>7</Issue> 
 <PubDate> 
 <Year>2009</Year> 
 </PubDate> 
 </JournalIssue> 
<Title>Euro surveillance: bulletin européen sur les maladies transmissibles = European 
communicable disease bulletin</Title> 

 <ISOAbbreviation>Euro Surveill.</ISOAbbreviation> 

 </Journal>  

 <ArticleTitle>Human case of swine influenza A (H1N1), Aragon, Spain, November  
2008.</ArticleTitle> 

<ELocationID EIdType="pii" ValidYN="Y">19120</ELocationID>
<Abstract>
<AbstractText>A human case of swine influenza A (H1N1) in a 50-year-old woman from a 
village near Teruel (Aragon, in the north-east of Spain), with a population of about 
200 inhabitants, has been reported in November 2008.</AbstractText>
</Abstract>
<Affiliation>Direccion General de Salud Publica (Directorate General of Public 

Health), Zaragoza, Spain. mbadiego@aragon.es</Affiliation>
………………………………………

All the keywords are indexed. They are linked to relevant web pages and databases. 
The keywords are ranked according to the number of times they are searched. Sta-
tistical data are generated for the number of occurrences of the terms and also for 
their occurrences with other terms. All this facilitates faster searches.

8.2  What are the Components of Text Mining?

Usually, the tasks involved are text preprocessing or tokenization, part-of-speech 
(POS) tagging, stemming, text transformation, attribute generation and attribute se-
lection, NER, data mining, or pattern discovery and evaluation [20]. There are other 
steps involved in information retrieval like linguistic preprocessing, removing stop 
words, stemming and finding synonyms. Let us elaborate on some of them in detail 
(Fig. 8.2).
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Tokenization: Text preprocessing is important because data may contain spe-
cial characters like punctuations and stop words which are not usually scientific 
entities. Data may contain other symbols, formats like number, date, e-mail, etc. 
Token is an unclassified word from the text. Tokenization is a compilation of all 
words in a given document or dataset with the help of a parser [21]. Relevant text 
is identified from the abstracts which contain largely unstructured free textual data 
and subjected to tokenization to break up the text into constituent sentences and 
words. The raw text is divided into sentences and the sentences are further divided 
into tokens. Processing tokens is easier than considering the whole text every time. 
Stop words are generally prepositions, articles, pronouns, and other user-defined 
keywords which are often eliminated for better system performance and the further 
menace of irrelevant data handling.

Stemming: It is a process to find the root of a word to achieve reduction in 
the word space. For example, the root for keywords connection, connections, 
connective, connected, and connecting all relate to “connect.” Stemming allows 
reduction in data dimension and data overload [22].

Fig. 8.2  Flowchart depicting steps for a general text-mining process
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POS tagging: The process of assigning the best part of speech to a word in proper 
context is POS tagging [23]. Noun, adjective, verb, adverb, etc. are POS tags. This 
step takes a stream of words as inputs and the output is the best POS tag for ev-
ery word. Thus, POS tagging assigns a POS-like noun, verb, pronoun, preposition, 
adverb, adjective, or other lexical class markers to each word in a sentence. The 
input to a tagging algorithm is a string of words of a natural language sentence and 
a specified tag set. The output is a single best POS tag for each word. POS tagging 
is harder than just having a list of words and their parts of speech, because some 
words can represent more than one part of speech at different times. Stop words 
can be identified from this step. Stop words are most unlikely to help text mining 
[24]. The words that appear in documents often have many morphological variants. 
Therefore, each word that is not a stop word is reduced to its corresponding stem 
word (term), i.e., the words are stemmed to obtain their root form by removing com-
mon prefixes and suffixes [25]. In this way, we can identify groups of correspond-
ing words where the words in the group are syntactical variants of each other and 
can collect only one word per group. This reduces the dimensionality in the data. 
For instance, the words disease, diseases, and diseased share a common stem term 
disease, and can be treated as different occurrences of this word. POS tagging may 
be rule based, most often grammatical rules, or based on statistical models like dif-
ferent word order probabilities or simply corpus based, for instance, Brown corpus 
which is a compilation of one million pre-tagged English words [26].

NER: The next phase is the NER phase, an information extraction step wherein 
the text-mining engine identifies all mentions of proper names, dates, and time in 
the text [27]. NER is the recognition of the entities relevant to the domain. It is 
information linking where a term is assigned to a predefined category, e.g., protein, 
gene, disease. In the biomedical domain, these entities would be genes, proteins, 
diseases, chemicals, and so on. Other domains will naturally have different entities, 
for example, the typical entities in the financial news domain are companies, per-
sons, products, and so forth. The last steps are categorization and clustering which 
are standard supervised and unsupervised learning techniques, respectively [28]. 
The interested reader is referred to excellent reviews and books on the text-mining 
processes for an in-depth understanding of all the basic processes especially in the 
context of biology [29–31].

8.3  Text-mining Methods

Text-mining methods employ algorithms that use similarity-based functions in 
order to obtain k nearest neighbors for novel query objects [32]. Term weighting is 
performed to measure the importance of a term in representing the information con-
tained in the document [33]. For mining literature, the two most common approach-
es are ML-based and the rule-based approaches, though in practice a combination 
of approaches works best [34].
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8.3.1  Statistics/ML-based Approach

In this approach, systems work by building classifiers that may operate on any level, 
from labeling POS to choosing syntactic parse trees to classifying full sentences or 
documents [35]. Statistical systems typically require large amounts of expensive-to-
get labeled training data. Generally, in this approach dictionaries are used. Some of 
the few popular ones are GENIA corpus from the GENIA project [36], BioCreative 
corpus [37]. These are dictionaries containing labeled and structured data. They can 
be used to extract biological keywords from text. Generally, binary versions of these 
dictionaries are compiled and these binary files are used, with the help of specific 
taggers to label tokens in plain text. If one does not want to use these dictionaries, 
one can create their own dictionaries with the help of statistical NLP tools [38]. 
Building a nonredundant dictionary is a difficult task. The initial task to building a 
dictionary is gathering the data to be added to the dictionary. The data should be in 
the form of tokens and can be chemical terms, IDs, registration numbers, etc. and 
every token should be labeled [39]. However, the labeling can be in any format; just 
the code should be modified accordingly. For example,

Acetaminophen|Chemical, 
p53|Gene, 
Influenza|Disease,
1-Benzyl-5-Methoxy-2-Methyl-1h-Indol-3-Yl)-Acetic Acid|Chemical

A complete list with all the entries should be created. A snippet of creating a diction-
ary is given below:

MapDictionary dictionary = new MapDictionary(); 
 dictionary.addEntry (new DictionaryEntry  
 (token, label, CHUNK_SCORE)); 
 AbstractExternalizable.compileTo (dictionary, <filename>); 

The tokens and the labels are represented as feature vectors, n-dimensional vectors 
of numerical features. It is the statistical representation of the input text [40]. The 
dictionary file can be compiled to binary or hexadecimal formats. This makes it 
difficult to interpret the file without proper readers. Such compiled files facilitate 
faster tagging of text. For reading a dictionary and using it to tag text, here is a snip-
pet of code:

MapDictionary dictionary = (MapDictionary) 
 AbstractExternalizable.readObject (modelFile); 
 ExactDictionaryChunker dictionaryChunker = 
   new ExactDictionaryChunker  
 (dictionary, IndoEuropeanTokenizerFactory.FACTORY, true, false); 
  

String[][] result = chunk (dictionaryChunker, <testData>); 

One can obtain the labels and offsets of every term from the text. There are various 
statistical models that can be used in this process. Hidden Markov model (HMM) 
is the simplest of dynamic Bayesian model. HMM is a finite set of states, each 
of which is associated with a (generally multidimensional) probability distribu-
tion [41]. HMMs are a form of generative models that define a joint probability 
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distribution p(X, Y) where X and Y are random variables, respectively, ranging over 
observation sequences and their corresponding label sequences [42]. In contrast to 
HMMs, in which the current observation only depends on the current state, the cur-
rent observation in a maximum entropy Markov model may also depend on the pre-
vious state [43]. Conditional random fields (CRFs) are a probabilistic framework 
for labeling and segmenting sequential data, based on the conditional approach 
[44]. A CRF is a form of undirected statistical graphical model that defines a single 
log-linear distribution over label sequences given a particular observation sequence. 
They have demonstrated state-of-the-art accuracy on a wide variety of sequence-
labeling tasks.

8.3.2  Rule-based Approach

Rule-based methods are based on rules written by human developers that capture 
syntactical, lexical, and semantic knowledge required for identifying the entities 
and the relationships, e.g., Java Annotation Pattern Engine (JAPE) [45, 46]. Rule-
based systems make use of some sort of knowledge. The knowledge can be related 
to general language structure or domain-specific literature [47]. It is worth noting 
that useful systems have been built using technologies at both ends of the spectrum, 
and at many points in between [48]. The rules are set by the developers depending 
upon the data. The idea is to look for patterns in text. For example,

1. Chemical: 1,2,3,4-tetrahydroisoquinoline 
 Pattern: ^[1-9]{1}[,][1-9]{1}[,][1-9]{1}[,][1-9]{1}[-][A- Z]{1,10} 
2. Chemical: 1-(Isopropylthio)-Beta-Galactopyranside 
 Pattern: ^[1-9]{1}[-][(][A-Z]{1,15} 
3. CASRN: 2889-31-8 
 Pattern: ^[1-9]{1,5}[-][1-9]{1,3}[-][1-9]{1,3} 
4. String: Adinazolam is a benzodiazepine derivative 
 Pattern: <Drug>…...<Drug property> 

If following is the test data(PMID: 172459),

“Mouse 3T3, Simian virus 40 transformed 3T3 cells (SV3T3) and two SV3T3 
lines showing reversion of their transformed phenotype (Rev 3 and Rev 5) 
have been studied with respect to electrophoretic mobilities and colloidal iron 
hydroxide (CIH) binding density visible by electron microscopy, before and 
after incubation with neuraminidase or ribonuclease. The results show that, 
in general, the marked changes in both sets of surface parameters associated 
with transformation are largely reversed in the Rev 5 revertant, and only par-
tially reversed in the Rev 3 line. It was also observed that, in common with 
Ehrlich ascites tumor (EAT) cells examined previously, the densities of CIH-
particles bound over the microvilli of all the cell types was 1.5–2.7 times 
higher than those bound to the spaces between them. In contrast to the EAT 
cells, the higher density of CIH particles bound over the microvilli was not 
due to neuraminidase-sensitive binding sites.”
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Results will be, depending upon how good the dictionary is,

“Mouse|ORGANISM 3T3|O Simian virus|ORGANISM 40|O transformed|O 
3T3|O cells|O SV3T3|O and|O two|O SV3T3|O lines|O showing|O reversion|O 
of|O their|O transformed|O phenotype|O Rev|O 3|O and|O Rev|O 5|O have|O 
been|O studied|O with|O respect|O to|O electrophoretic|O mobilities|O 
and|O colloidal|O iron hydroxide|CHEMICAL CIH|O binding|O density|O 
visible|O by|O electron|O microscopy|O before|O and|O after|O incubation|O 
with|O neuraminidase|PROTEIN or|O ribonuclease|O The|O results|O 
show|O that|O in|O general|O the|O marked|O changes|O in|O both|O sets|O 
of|O surface|O parameters|O associated|O with|O transformation|O are|O 
largely|O reversed|O in|O the|O Rev|O 5|O revertant|O and|O only|O partially|O 
reversed|O in|O the|O Rev|O 3|O line|O It|O was|O also|O observed|O that|O 
in|O common|O with|O Ehrlich ascites tumor|DISEASE EAT|O cells|O 
examined|O previously|O the|O densities|O of|O CIH|O particles|O bound|O 
over|O the|O microvilli|O of|O all|O the|O cell|O types|O was|O 15|O to|O 
27|O times|O higher|O than|O those|O bound|O to|O the|O spaces|O between|O 
them|O In|O contrast|O to|Othe|O EAT|O cells|O the|O higher|O density|O 
of|O CIH|O particles|O bound|O over|O the|O microvilli|O was|O not|O due|O 
to|O neuraminidase|PROTEIN sensitive|O binding|O sites|O”

8.4  Why Text Mining

Almost 80 % of the biochemical data are available in text format, excluding audio, 
images, and videos which is a lot of information to be handled manually. Gen-
erally, while looking for information, we normally use search engines. It returns 
ranked hits which are just URLs. The daunting task is how to look for information 
from millions of hits returned if a user is looking for certain patterns, such as re-
ported side effects of a certain drug from clinical outcome data or hits. This is when 
automated text mining becomes very important. The applications of text-mining 
techniques are wide from extracting protein–protein interaction (PPIs) networks, 
drug repurposing, side effect profiling, and bridging hidden information through 
a network of biological entities [49]. Finding new uses for existing drugs is more 
feasible from an academic perspective and thus more promising. Text mining gives 
more insight into digging out novel uses for existing drugs while profiling side 
effects on the systems considered for study.

8.5  General Text-mining Tools

There are a number of general text-mining tools available to choose from. Only a 
brief introduction is given here. Mallet is a collection of tools in Java for statistical 
NLP, text classification, and clustering [50]. GATE is a toolkit for text mining and 
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information extraction provided with a graphical user interface (GUI) [51]. The 
natural language toolkit (NLTK) is a tool for teaching and researching classifica-
tion, clustering tagging, and speech parsing [52]. LingPipe [53] and OpenNLP [54] 
are among the important open-source NLP tools. The OpenNLP site hosts a variety 
of Java-based NLP tools which perform sentence detection, tokenization, POS tag-
ging, chunking and parsing, named-entity detection, and co-reference analysis us-
ing the Maxent ML package [55].

Stanford Parser is a Java package for sentence parsing from the Stanford NLP group. 
It has implementations of probabilistic natural language parsers, both highly optimized 
probabilistic context-free grammar (PCFG) and lexicalized dependency parsers, and 
a lexicalized PCFG parser [56]. OpenEphyra is a full-featured, end-to-end system for 
QA written in Java and developed at Carnegie Mellon University’s (CMU’s) Lan-
guage Technologies Institute (LTI) department [57]. Other tools worth mentioning are 
GENIA Tagger [58], MetaMap [59], and Yamcha [60]. Comparative studies have been 
done to highlight their chunking capability. In one such study, OpenNLP outperformed 
all of the above-mentioned tools to give F score values of 89.7 and 95.7 % for noun-
phrase chunking and verb-phrase chunking, respectively [61].

Carrot2 is another open-source search result clustering software written in Java 
[62]. There are some string-similarity-matching tools like Simmetrics maintained 
by Sheffield University [63]. Weka is a collection of ML algorithms for data min-
ing. It is probably the most widely used text classification framework [64]. It has 
implemented a wide variety of algorithms including Naive Bayes and Support Vec-
tor Machine (SVM). Alias-I’s LingPipe is a Java tool for information extraction and 
data mining including entity extraction, speech tagging, clustering, classification, 
string similarity, etc. It is one of the most mature and widely used open-source Inter-
net Explorer (IE) toolkits in industry. LingPipe, royalty version, is a freely available 
text-mining tool from Alias-i that has been used for classification [65]. The GENIA 
corpus for biomedical data, which is a part of the LingPipe package, has been used 
to cluster textual data [66].

8.5.1  A Practice Tutorial with an Open-source Tool

LingPipe is a toolkit for processing text using computational linguistics. LingPipe 
is used to do tasks like finding the names of people, organizations, or locations in 
news, and automatically classifying search results into categories and suggesting 
correct spellings of queries [67]. LingPipe’s architecture is designed to be efficient, 
scalable, reusable, and robust with features like Java application programming in-
terface (API) with source code and unit tests.

In the following section, we will explore a practical way to text mining bio-
medical literature from MEDLINE. For demonstration, we used LingPipe, a free 
tool available for downloading from the Internet. In order to use LingPipe effec-
tively, the interested readers are encouraged to visit the website and download the 
“jar” file or “zip” file containing all the detailed instructions. Here, we will de-
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scribe how to integrate the power of LingPipe with custom-designed programs to 
achieve chemically intelligent text mining. The first step is to design a database 
containing tables to hold the plain text data retrieved from PubMed or any other 
Internet resource. After loading the data to the database, the LingPipe will retrieve 
the data from database or XML files to annotate each and every term into any one 
of the 36 classes from GENIA corpus. In order to recognize a chemical term, the 
user has to build a dictionary containing a list of chemical terms. The same strat-
egy is applicable for building protein, species, gene, bioactivity, diseases of inter-
est, or any other class of terms. Once the dictionary is built for the selected classes 
of interest, it is necessary to compile them to make them compatible for any text-
mining tool to seek the terms and annotate with the name of the class. Once the 
terms are correctly recognized, the next step is to identify the frequency of occur-
rence of those terms with class details to build the network of information con-
necting molecule to disease or molecule to species, etc. The stepwise procedure 
and code snippets are discussed below:

Step 1: Fetch URL/PMID based on query to public databases (Internet/PubMed)
Step 2: Retrieve the document or abstracts (URL/PMID)
Step 3: Load the document to database (remove redundancy)
Step 4: Retrieve document contents (plain text) sequentially/distributed way from 

database
Step 5: Apply text-mining tools (LingPipe, OSCAR, Abner, etc.) to annotate the text 

to class (chemical, protein, disease, gene)
Step 6: Write the output annotation to comma-separated value (CSV) or database 

tables
Step 7: Frequency analysis (to identify relevant terms) to prioritize the contents
Step 8: Build the network based on relationships (ML applied to remove false posi-

tives*). Optimize the ML tools to build the models to automatically alert the 
relationships between terms (molecule–disease, molecule–target, molecule–
activity) with confidence score

Step 9: Network analysis and interpretation
Step 10: Extract Scaffolds from chemicals (ring compounds) and functional groups, 

Linkers
Step 11: Build virtual library enumeration (to get new molecules that are not used 

for training)
Step 12: Random selection or complete scanning of the virtual library (VL) to select 

molecules of interest
Step 13: Compute molecular descriptors for screening by evaluating the scores 

DrugLike, Lead Like, Progressive DrugLike, Progressive LeadLike (DL, LL, 
PDL, PLL), toxicophore-based scores, pharmacophore-based scores, etc. as 
filters

Step 14: Compile the new hits and convert them in a three-dimensional (3D) format 
for further studies (docking, pharmacophore search)

To implement the security features (encoding, decoding, compression, un-compres-
sion) are required for efficient text mining in a distributed computing environment.
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Encoding:

sun.misc.BASE64Encoder encoder = new sun.misc.BASE64Encoder();
String encodedUserPwd 
=encoder.encode("<proxyUsername>:<proxyPassword>".getBytes());
con.setRequestProperty("Proxy-Authorization", "Basic " + encodedUserPwd);

Parse XML:

DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory.newInstance();
DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder();
Document doc = docBuilder.parse(file);
Normalizing text representation and pulling out pubmed id (pmid) from xml 
structure. 
doc.getDocumentElement ().normalize ();

Passing pmid (str1) to fetch XML:
String 
pmidString="http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id="
+str1+"&retmode=xml&rettype=abstract";
fetchXml(pmidString);

LoadMedLineDb:

LoadMedlineDb.MedlineDbLoader dbLoader = new 
LoadMedlineDb.MedlineDbLoader("db.properties"); 
dbLoader.openDb(); 
loadXML(dbLoader, new File(fileNme)); 
 dbLoader.closeDb(); 

AnnotateMedlineDb:
 
 AnnotateMedlineDb amd = new AnnotateMedlineDb("db.properties"); 
 Integer[] ids = amd.getCitationIds(); 
 amd.annotateCitation(ids[i].intValue()); 

AnnotateMedlineDb Class
Instantiate chunkers
tokenizerFactory = IndoEuropeanTokenizerFactory.INSTANCE;
sentenceModel = new IndoEuropeanSentenceModel();
sentenceChunker = new SentenceChunker(tokenizerFactory,sentenceModel);
genomicsModelfile = new File("ne-en-bio-genia.TokenShapeChunker");
neChunker = (Chunker)AbstractExternalizable .readObject(genomicsModelfile);

*..getCitationIds
*..annotateCitation (Title and Abstracts, Full text if available)
annotateSentences(citationId,"Title",title);
annotateSentences(citationId,"Abstr",abstr);
annotateSentences(citationId,"FullText",fulltext);

Chunking chunking = sentenceChunker.chunk(text.toCharArray(),0,text.length());
for (Chunk sentence : chunking.chunkSet()) {
int start = sentence.start();
int end = sentence.end();
int sentenceId = storeSentence(citationId,start,end-start,type);
annotateMentions(sentenceId,text.substring(start,end));
}
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Method annotateMentions (Linking “Word” to “class” based on GENIA)
 
Chunking chunking = neChunker.chunk(text.toCharArray(),0,text.length()); 
 for (Chunk mention : chunking.chunkSet()) { 
 int start = mention.start(); 
 int end = mention.end(); 
 storeMention(sentenceId,start,mention.type(),text.substring(start,end)); 
 } 

Once we have understood the functioning of the code with a snippet-by-snippet 
explanation, let us use malaria dataset downloaded from PubMed to perform text-
mining operations. The steps for downloading the data are provided here (Figs. 8.3, 
8.4, and 8.5).

Fig. 8.3  PubMed advanced query builder

 

Fig. 8.4  Search results
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Use Core 3 functions, once you have PubMed XML file with all records searched 
for malaria keyword (pubmed.xml) to load data into “citation” table of “medline” 
database programmatically.

The output in JAVA Netbeans output console is shown below:

After the citation table has been populated, run use Core 4 functions to annotate all 
the abstracts in 36 classes and populate “sentence” and “mention” tables.

The output from Netbeans output console would look like this:

Fig. 8.5  Add all results to a XML file for download
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8.5.2  R Program for Text Mining

R is an open-source toolkit which can be used for performing some of the text-
mining tasks [68]. The packages available in R for text mining are tm RCurl XML 
SnowballC. Using an example, we will demonstrate the usage.

Install the packages by using the following command install.packages (“packa-
geName”).

Step 1. Retrieve PMIDs (PMID XML) from PubMed query and save them to a file

library(XML)
query='Tuberculosis[Title/Abstract]'
query=gsub('\\s+','+',query)
url = "http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?retmax=5000"
url = paste(url, "&db=pubmed&term=", query,sep = "")
datafile = tempfile(pattern = "pub")
try(download.file(url, destfile = datafile, method = "internal", mode =
"wb", quiet = TRUE), silent = TRUE)
xml <- xmlTreeParse(datafile, asTree = TRUE)
nid = xmlValue(xmlElementsByTagName(xmlRoot(xml), "Count")[[1]])
lid = xmlElementsByTagName(xmlRoot(xml), "IdList", recursive = TRUE)[[1]]
write.table(as.data.frame(unlist(lapply(xmlElementsByTagName(lid, "Id"), 
xmlValue))), quote=FALSE, file = "pmid.txt")
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Fig. 8.7  Sentence table data

 

Fig. 8.6  Citation table data
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Visualizing data using HeidiSQL user interface (Figs. 8.6, 8.7, and 8.8)

Step 2. Generate data frame to iterate over the PMID data returned for user-speci-
fied query (insert column names, replace spaces and tabs with commas in the file 
generated in Step 1 before going any further)

pmiddata<-read.csv(file='pmid.txt', header=T, sep=",")
pmiddataframe<-as.data.frame(pmiddata)
dim(pmiddataframe)

#Check col names, count number of rows and columns
colnames(pmiddata)
nrow(pmiddata)
ncol(pmiddata)

or

colnames(pmiddataframe)
nrow(pmiddataframe)
ncol(pmiddataframe)

# PMIDs stored in second column of data frame named "pmiddataframe"
To access them, type
pmiddataframe[1,2]
pmiddataframe[2,2] and so on..

Step 3. Take each PMID and get PubMed abstract XML file

Fig. 8.8  Table data
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# Iterate over pmids in data frame and fetching abstracts from corresponding Pubmed 
XML data.
# Fetching xml data from each pmid
# Parse xml and store abstracts in a file
require(RCurl)
get_pubmed <- function(query){
url="http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed"
url=paste(url,"&id=",query,"&retmode=xml&rettype=abstract",sep="")
datafile = tempfile(pattern = "pub")
try(download.file(url, destfile = datafile, method ="internal", mode="wb", quiet = 
TRUE), silent = TRUE)
xml <- xmlTreeParse(datafile, asTree = TRUE)
lid = xmlElementsByTagName(xmlRoot(xml), "Abstract", recursive = TRUE)[[1]]
write.table(as.data.frame(unlist(lapply(xmlElementsByTagName(lid, "AbstractText"), 
xmlValue))), quote=FALSE, file = "xml_from_pmid.txt", append=TRUE)
}

for (i in 1:5000){
df<-data.frame()
df<-get_pubmed(pmiddataframe[i,2])
}

Step 4. Build corpus from the data

library(tm) 
a <- Corpus(DirSource("pubmedR"), readerControl = list(language="lat"))
summary(a) 

Step 5. Remove numbers and punctuation from corpus data
a <- tm_map(a, removeNumbers)
a <- tm_map(a, removePunctuation)

Step 6. Remove white spaces and stop words from corpus data

a <- tm_map(a , stripWhitespace) 
a <- tm_map(a, tolower) 
a <- tm_map(a, removeWords, stopwords("english"))# this stopword file is at
C:\Users\[username]\Documents\R\win-library\2.13\tm\stopwords  

Step 7. Stem words
a <- tm_map(a, stemDocument, language = "english")

Step 8. Build a document term matrix using refined corpus
adtm <-DocumentTermMatrix(a) 
adtm <- removeSparseTerms(adtm, 0.75)

#Inspect the matrix 
inspect(adtm[1,1:10]) # first document in directory “pubmedR” with 10 frequent
terms 

Step 9. Find frequent terms
findFreqTerms(adtm, lowfreq=20)
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Further one can do classification, clustering, associations, word cloud with these 
data in R.

8.6  Free Tools for Text Mining

RapidMiner, formerly known as YALE (Yet Another Learning Environment), is an 
environment for ML and data-mining experiments [69]. It allows experiments to be 
made up of a large number of arbitrarily nestable operators, described in XML files 
which are created with RapidMiner’s graphical user interface. For text mining, one 
needs to install the text-mining extensions available at their site [70]. The broad 
general steps are briefly outlined as follows; for further details, there are a number 
of video tutorials elucidating each and every component of the text-mining process 
(Fig. 8.9).

8.7  Biomedical Text Mining

Biomedical text mining deals with mining biologically or chemically relevant enti-
ties from an unstructured source of literature data. The trouble with the ever-grow-
ing literature data is the increasing complexity and ambiguity if the same data need 
to be browsed for entity or relation mining. It has been reported that more than 80 % 
of biomedical data are embedded in plain text form which accounts for the high 
degree of “unstructuredness” of biomedical data [71]. The very first step in text 
mining will be to convert these data to semi-structured formats like XML or more 
structured forms like relational databases. Most of the publicly available biomedical 
data are in the form of abstracts and are semi-structured, i.e., neither structured nor 
unstructured [72]. There are structured fields like authors, references, keywords, 
title, date, and also some unstructured fields like abstract, text, or concepts. Also, 
an important problem with the biomedical data is that a single term is linked to 
structures, sub-structures, Ids, or pathways. Because of the ambiguity in gene and 

Load text into 
RapidMiner

Process text
(tokenization and 

stemming)

Word vectorization and 
association rules with text

Calculate the similarity between 
documents, Clustering

Automatic classification 
of documents

Determination of 
important words

Fig. 8.9  Steps for text mining in rapid miner program
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protein nomenclature, it is often difficult to predict the use of hyphen, period, and 
triplet contextually. Thus, there is a need for specialized parsers in tokenization. 
Moreover, the biomedical literature is a complex set of information which makes 
use of heavy domain-specific terminologies. Word sense disambiguation is another 
issue one faces, as the meanings are not singled out. Also, the important data that 
occur are sparse as the words have very low frequency. New terms and names are 
created. One can also witness typographical variants and different writing styles de-
pending upon the origin of the information. The best solution to this problem would 
be to build a standard protocol that can be easily followed and which will be easy for 
the computers to interpret. But this will not solve the problem for already published 
information. And extraction of useful information while maintaining all the links 
and relevance is quite a challenge. The real challenge is to overcome ambiguity of 
context in the biological science literature. But the field of text mining has evolved 
to solve such problems. Text-mining techniques have been extensively applied in 
annotating the biomedical literature to reveal interesting patterns and relationships 
between organisms, proteins, genes, disease, metabolism, therapeutic categories, 
etc. A number of biomedical text-mining tools have been reported; however, a few 
significant ones are briefly highlighted here. FACTA+ mines associations between 
biomedical entities such as drug, diseases, symptoms, enzymes, etc. [73]. KLEIO 
has many methods for acronym recognition and disambiguation, gene/protein name 
recognition [74]. @Note built on top of AI bench, a Java application development 
framework, provides a work bench environment to process abstracts, full-text infor-
mation retrieval, tokenization, stop word removal etc [75]. A collaborative text an-
notation tool Bionotate [76] was developed for disease-centered relation extraction 
from biomedical text. BioRAT [77] covers the full journal articles for text mining 
instead of just PubMed abstracts. Another program MedKit [78] solved many of the 
downloading and parsing limitations encountered while mining PubMed literature. 
GIFT [79] was specially developed to find gene interactions in text and applied to 
a fly database. IdMap [80] was created to infer relationships between targets and 
chemicals using text mining and chemical structure information. PathTexts [81] 
consisting of a pathway visualizer, text-mining algorithms, and annotation tools 
is available for systems biologists. Other important text-mining tools specifically 
built for medical informatics are Biocontrast [82] and BioText Quest [83]. AbNER 
[84], an open-source software tool for biomedical text mining, provides a GUI for 
tagging genes, proteins, and other entity names in the given text.

8.8  Chemically Intelligent Text-mining Tools

In this section, we will discuss the manipulation of text-mining tools for che-
moinformatics. Text mining of chemical synthesis literature is fraught with many 
problems, the foremost being the number of synonyms possible for a compound. 
A chemical can be present in the text as International Union of Pure and Applied 
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Chemistry (IUPAC) name, common name, Chemical Abstracts Service (CAS) num-
ber, or corporate ID (Pfizer, Bayer), etc. Apparently the lack of a global standard 
like gene id or protein id in bioinformatics impedes the efficient application of text-
mining tools (Fig. 8.10).

Much effort has been devoted toward efficient chemical text mining. A chemi-
cally intelligent tool is OSCAR4 (Open Source Chemical Analysis Routine), de-
signed for chemistry-specific NLP [85]. It performs chemical NLP, chemical entity 
recognition (CER), chemical name recognition by direct lookup or ML. Its parsers 

Fig. 8.10  A PubChem search results for chloroquine retrieves 222 synonyms
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can identify words and phrases representing chemical concepts. For example, acetyl 
salicylic acid is a single word and should not be interpreted as acetyl or salicylic.

It integrates name to structure parsing using OPSIN [86] and ChEBI (Chemical 
Entities of Biological Interest) identifiers [87]. OPSIN converts an IUPAC name to 
SMILES or INChI to structure. OSCAR performs all the important tasks such as 
identifying chemical names, reaction name, and small compound and enzyme pre-
fix, suffix, and adjectives. It comes with an extensive API for developing extensions 
with other tools such as Taverna [88] Mendeley [89] and U-Compare [90].

To get started with OSCAR4, we use the following code to search for NER from 
the given “text”:
Oscar oscar = new Oscar();
List < NamedEntity >namedEntities
= oscar.findNamedEntities(text);

Return hits only if named entity is resolved to a structure
Oscar oscar = newOscar();
List < ResolvedNamedEntity >entities
= oscar.findAndResolveNamedEntities(s);
for (ResolvedNamedEntity entity : entities) {
ChemicalStructure structure = entity.get-
FirstChemicalStructure (FormatType.INCHI));
}

Make the system use different classifiers
ChemicalEntityRecogniser myRecogniser = new-
PatternRecogniser()
Oscar oscar = newOscar();
oscar.setRecogniser(myRecogniser);
oscar.setDictionaryRegistry
(myDictionaryRegistry);
List < ResolvedNamedEntity >entities = oscar.
findResolvableEntities(s);

A combination of rule-based chemical text and formal grammar parser has been 
developed known as ChemicalTAgger [91]. It is a freely available open-source 
Java-based software which uses both OSCAR and open NLP programs (Fig. 8.11).

8.9  In-house Tools for Text-mining Applications for 
Chemoinformatics

When it comes to processing millions of biomedical-related documents, one com-
puter may not be sufficient. This is where distributed platforms for text mining 
can be applied. Distributed text mining is text mining in a distributed computing 

8.9  In-house Tools for Text-mining Applications for Chemoinformatics 
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environment [92]. The technology has been demonstrated for chemical computing 
in ChemStar [93] for property prediction. A similar architecture can be applied for 
text mining. A text-mining portal termed MegaMiner has been developed for apply-
ing text-mining techniques to solve chemoinformatics problems [94]. MegaMiner 
supports many data input types and file formats from the user via the portlet. There 
is a provision to input data or upload files, and the number of distributed nodes can 
be specified. MegaMiner segregates massive data in parallel to build entity network 
in a biomedical context after intensive treatment with text-mining algorithms like 
NER in a cloud environment. The search engine, upon receiving a query, gener-
ates an equivalent XML which is parsed using LingPipe and MegaMiner libraries. 
The obtained datasets are ranked according to the frequency, co-occurrence, and 
uniqueness to filter out the most relevant one. A PubMed search for malaria with 
“All Fields” retrieved more than 60,000 articles denoting the significant amount of 
research work in this field, and 31,403 of these articles can be safely assumed to 

Fig. 8.11  ChemicalTagger used for parsing experimental chemical literature

 



4398.9  In-house Tools for Text-mining Applications for Chemoinformatics 

be the most relevant hits as the keyword malaria appeared in the title of the article. 
A query keyword malaria in the portlet retrieved the text-mining results shown in 
Table 8.1.

From these data, a list of most frequently occurring proteins, terms, and drugs 
could be extracted (Tables 8.2, 8.3, and 8.4).

The relational database was queried to separate out the unique terms and find 
out the number of times they occurred. A total of 4.3 million biomedical terms 
were identified and put in an internal dictionary. These terms were classified into 
five major groups of proteins, genes, chemicals, diseases, and organisms. The co-
occurrence, in the abstracts, of each of the terms with the others was calculated. 
This co-occurrence is just considering the keywords, the noise words will help to 
understand whether the co-occurrence is positive or negative.

As the system handles an array of complex tasks like those mentioned above, it 
has to be designed for crash handling and be a self-sufficient secure system. This 
has been specifically addressed by the use of a portal system, which uses industry-
standard encryption technologies including DES, MD5, and RSA, load balancing, 
and portlet and code performance monitoring [95].

Table 8.1  Text-mining results for query term “malaria”
Protein 1 Protein 2 PMID Relevant text
IFN gamma IL2 26226 In some rodent malaria models, Th1 cells producing pri-

marily “IL2 and IFN gamma” give rise to protection 
in early infection while Th2 cells producing IL4 are 
essential for parasite clearance in late infection

Protein Frequency
IFN-gamma 819
MSP-1 599
CD36 489
MSP1 441
TNF-alpha 435
IL-10 424
TNF 421

Table 8.2  A list of top-rank-
ing protein names

S. No. Term Frequency of occurrence
1 Plasmodium falciparum 25,926
2 Chloroquine 5,995
3 Plasmodium vivax 3,747
4 Plasmodium berghei 2,436
5 Drug resistance 1,120
6 Mefloquine 1,049
7 Quinine 1,031

Table 8.3  List of top-
occurring terms found by text 
mining
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The data security and system stability issues are also taken care of by using 
MySQL Cluster, enabled clustering of in-memory databases in a shared-nothing 
system [96]. The architecture is built such that one can use inexpensive hardware 
with minimum specific requirements of both software and hardware. It is designed 
not to have a single point of failure and integrated standard MySQL server with an 
in-memory clustered storage engine called Network DataBase (NDB) [97]. A typi-
cal MySQL cluster consists of a set of computers called as nodes, MySQL servers 
for access to NDB data, data nodes for storage of the data, and management nodes 
for managing and monitoring (Fig. 8.12).

The in-house-built tool MegaMiner was used to find antihypertensive lead mol-
ecules and apicoplast inhibitors (antimalarials) from simple text queries. In a fully 
automated system, the text-mining module extracted 50 organic compounds and 
drugs from PubMed abstracts followed by conversion of textual chemical names to 
Simplified Molecular Input Line Entry Specification (SMILES) format after which 
Scaffold, Linkers, and Building-blocks were generated. Text-mining application in 
the MegaMiner server was used to obtain lead molecules for hypertension. The 
PubMed records were queried using the text hypertension to retrieve 346,017 hits. 
The XML file containing 500 top citations related to hypertension was downloaded. 
LingPipe was used to load the titles and abstracts of the citations in a database in 
MySQL. 36 classes were obtained by annotating the data and classifying the text. 
Top 500 proteins and genes were identified. The table selected_terms_20 (which 
contained the text terms which have occurred with a frequency greater than 100 
in the citations and their corresponding class) from the hypertension database was 
exported as a text file. This text file was imported into Cytoscape [98] and a con-

Table 8.4  Co-occurring proteins and drugs/organic compounds related to malaria
S. No. Proteins Drugs/organic compounds
1 Cytochrome chain Atovaquone
2 Human serum albumin Cationomycin
3 Mouse TNF receptor R75 Liposome encapsulated
4 NOS Aminoguanidine
5 NOS inhibitor Aminoguanidine
6 Pf155/RESA PD
7 PfTrxR Natural substrates
8 Purine salvage enzyme Hypoxanthine–guanine–xanthine 

phosphoribosyltransferase
9 Purine salvage enzyme HGXPRT
10 rhTNF-alpha Liposome encapsulated
11 Staphylococcus aureus protein A PD
12 Staphylococcus aureus protein A SpA
13 Stereospecific transporter Cytochalasin B
14 Thioredoxin reductase 5,5’-Dithiobis(2-nitrobenzamides)
15 Trypanothione reductase 5,5’-Dithiobis(2-nitrobenzamides)
16 Xanthine 5-Phospho-alpha-D-ribosyl-1-pyrophosphate
17 Xanthine Naturally occurring 6-oxopurine
18 Xanthine Allopurinol
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nectivity map for hypertension was obtained. This connectivity map revealed vari-
ous relationships such as organism–drugs, organism–proteins, drugs–proteins, etc. 
which were obtained using a text-mining approach. The results generated through 
text mining were validated using DrugBank database ([99]; Fig. 8.13).

8.9.1  Java Code Snippet for Data Distribution

Array list named ip and lookup stores the node selection made by the user

Fig. 8.12  MegaMiner homepage
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List<String> ip = new ArrayList<String>();
List<String> lookup = new ArrayList<String>();

int totalNodes=0;
//get the total number of nodes chosen

if(request.getParameter("ip50") != null) {
totalNodes++;
ip.add("172.16.8.50");
lookup.add("rmiServer50");
}
else {
}
if(request.getParameter("ip51") != null) {
totalNodes++;
ip.add("172.16.8.51");
lookup.add("rmiServer51");
}

and so on till the last node.
Variable “ip” stores the ip address and “lookup” stores which client to look up 

for getting work done in Java Remote Method Invocation (RMI) server/client ar-
chitecture.

1. Array “text” is used for storing total nodes selected by the user and its size is 
initialized accordingly.

String[] text=new String[ip.size()]; 

2. Array text is populated with values read from a file which stores smiles input 
from the user.

Fig. 8.13  Connectivity map of antihypertensive drugs and proteins
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text=distributeData(fname); //fname is the file location 
 
public static String[] distributeData(String fname) throws FileNotFoundException, 
IOException{ 
 FileReader fileReader = new FileReader(fname); 
 BufferedReader bufferedReader = new BufferedReader(fileReader); 
 List<String> lines = new ArrayList<String>(); 
 String line = null; 
 while ((line = bufferedReader.readLine()) != null) { 
 lines.add(line); 
 } 
 bufferedReader.close(); 
 return lines.toArray(new String[lines.size()]); 
 }

3. Data are distributed evenly between available clients using Rmiclient.

RmiClient rc= new RmiClient(); 
for (int i = 0; i < ip.size(); i++) { 
 System.out.println(ip.get(i)+"->"+lookup.get(i)); 
 rc.rmiClient(ip.get(i), text[i], lookup.get(i)); 
 }

Complete source code and Javadocs are available at http://172.16.8.69:8080/web/
guest/text-mining.

MegaMiner Virtual Library (MVL) is generated from extended scaffolds, linkers, 
and building blocks using the previously discussed ChemScreener program [100]. 
Progressive Druglike and leadlike scores are calculated for every compound in the 
MVL to rank them in order of priority ([101]; Fig. 8.14) .

To demonstrate text to lead prototype, a PubMed query was constructed with 
keywords “malaria” in conjunction with “drugs” filtered by title category in the 
MegaMiner portal. The limit on abstracts to be returned as hits was set to 15. This 

Fig. 8.14  MegaMiner virtual library synthesis

 

http://172.16.8.69:8080/web/guest/text-mining
http://172.16.8.69:8080/web/guest/text-mining
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returned top ten ranking proteins, genes, organic compounds/drugs, general terms, 
and co-occurring proteins based on frequency count. Finally, MegaMiner mined 
five leads from ChEMBL and MVL with their PDL and PLL scores and docked 
with validated malaria targets 1LDG, 3Q43, 3UJ9, and 4B1B to further validate it 
(Fig. 8.15; Table 8.5).

S. 
No.

Target ID Mol_ID PDLa PLLb Docking scorec

1 1LDG RV_16 0.998 1.629 − 7.5
2 3Q43 RV_138 − 8.5
3 3UG9 RV_635 − 8.5
4 4B1B RV_989 − 7.5
5 1LDG RV_16 1 1 − 5.8
6 3Q43 RV_138 − 6.9
7 3UG9 RV_635 − 6.5
8 4B1B RV_989 − 6.7
9 1LDG RV_16 1 1 − 5.2
10 3Q43 RV_138 − 5.9
11 3UG9 RV_635 − 7.2
12 4B1B RV_989 − 5.3
13 1LDG RV_16 1.055 1.729 − 6.6
14 3Q43 RV_138 − 7.8
15 3UG9 RV_635 − 6.5
16 4B1B RV_989 − 6.7
17 1LDG RV_16 1.222 1.982 − 59
18 3Q43 RV_138 − 7.3
19 3UG9 RV_635 − 6.8
20 4B1B RV_989 − 6.5
a Progressive drug-like score
b Progressive lead-like score
c Using Autodock Vina

Table 8.5  Docking scores of 
top five drug-like molecules 
screened from MVL against 
four malarial targets

Fig. 8.15  Depicting the workflow from MegaMiner text query submission to lead molecule 
generation
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8.10  Thumb Rules While Performing and Using  
Text-mining Results

• Do not use the early biomedical text-mining systems which give co-occurrence 
as output, as mere co-occurrence of two terms cannot be indicative of a definitive 
relationship between any two entities, say a gene and a disease.

• Clearly define the inputs and outputs, whether they are terms or identifiers or 
database entries or plain text prior to building your text-mining system

• Chemical name ambiguity has to be dealt with carefully while text mining syn-
thesis literature.s

8.11  Do it Yourself

1. Give a text query kinase in PubMed and search for relevant genes and proteins 
using a text-mining program of your choice

2. Using text-mining methods, retrieve the drugs associated with cancer

8.12  Questions

1. Highlight the major steps required in a general text-mining process.
2. What are the open-source tools available for text-mining process? Highlight any 

one.
3. What are the applications of text mining in chemoinformatics?
4. Briefly discuss the visualization programs used for biomedical text-mining 

results.
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Chapter 9
Integration of Automated Workflow in 
Chemoinformatics for Drug Discovery

Abstract The ever-increasing data and restricted execution time require automated 
computational workflow systems to handle it. Several tools are emerging to support 
this activity. Automated workflow systems require scripting to define the repetitive 
tasks on new data to generate desired output. They help in focussing on what a par-
ticular virtual experiment will achieve rather than how the process is executed. The 
theme of this chapter is identification of the repetitive tasks which can be automated 
to employ workflows for streamlining a series of computational tasks efficiently. 
A brief introduction to workflows and their components is followed by in-depth 
tutorials using today’s state-of-art workflow-based applications in the field of che-
moinformatics for drug discovery research. An in-house-developed stand-alone 
application for chemo-bioinformatics workflow for performing protein–ligand net-
works J-ProLINE is also presented.

Keywords Workflow · Chemoinformatics · Drug design · Pipeline

9.1  What is a Workflow?

A workflow consists of a sequence of connected steps or modules (as nodes) where 
each step follows without delay or gap and ends just before the subsequent step 
may begin [1]. It is a depiction of a sequence of operations and an abstract virtual 
representation of actual work. It is related to many fields like artificial intelligence 
and operations research [2]. Workflows indicate any systematic pattern of any ac-
tivity wherein different components interact to provide a function or a service. A 
workflow is composed of essentially three parameters, the input, the algorithms 
and the output description. It is described using flow diagramming techniques and 
in mathematical form using Petri nets. There are huge scientific workflow systems 
for instance in domains of earth science and astronomy [3]. In chemoinformatics 
context the workflow can be illustrated as a set of three steps involving three differ-
ent modules for evaluation of pre-built quantitative structure–activity relationship 
(QSAR) models (Fig. 9.1).
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In the first step, the molecules are read by module-1 (recognizing different file 
formats like Simplified Molecular-Input Line-Entry System, SMILES; MOL; struc-
ture data file, SDF etc.) which verifies the entities for errors if any. Once all the 
molecules are processed, they are automatically passed to module-2 in the second 
step to generate a selected set of molecular descriptors (two-dimensional (2D) or 
3D options as desired) and subjected to QSAR model evaluation in step 3 using 
module-3. In the final step, the model will evaluate the molecule as a hit or no-
hit. Once the user completes the cycle with one data set, he can again reuse the 
modules in sequence with other data sets with minimum or no-manual interven-
tion. Here, each step consists of only one input and one output components and in 
complex workflow system, each node (or module/step) might contain several input 
and output components. It is at the discretion of the user to choose the modules in 
sequence to accomplish the desired tasks by selecting appropriate steps, modules 
and methods available in the workflow-enabled tools for chemoinformatics. Kon-
stanz Information Miner (KNIME) and Pipeline Pilot programs are the ones used 
for lead identification and lead optimization process in the drug discovery research.

9.2  Need for Workflows

The workflow management software systems are required to automate redundant 
tasks and make sure the task is completed before moving to the next one. Workflow-
based engines provide rational, adaptive and responsive environment to the users 
clearly pointing out the dependencies for each task [4]. They can import data, per-
form statistical tests and generate reports efficiently. Workflows have become indis-
pensable in scientific disciplines of biology and chemistry where there is a dire need 
for multiple interconnected tools and multiple data formats. They help users to per-
form executable processing without knowledge of programming with the assistance 
of a visual front end. One of the greatest advantages of workflows is analysis and 
control of dataflow [5]. Before proceeding to the next step, they check whether the 
output of one process is the correct input of next one, thus requiring no manual in-
tervention. The user need not be concerned with the intricacies of the data process-
ing which goes on in some remote component. Workflows allow for independent 
development and easy modification of each of its constituent components. KNIME 

Fig. 9.1  A basic workflow 
with three modules
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allows development of individual components by defining the tasks and compiling 
them for distribution.

9.3  General Workflows in Bioinformatics

The bioinformatics-based workflow applications can deal with heterogeneous data 
types and provide a number of in-built functionalities, and some of them even allow 
users to add new components into a process. There are many popular tools like Gal-
axy [6] initially developed for genomics but can be used for any integrated work-
flow in bioinformatics. BioBIKE is an open-source cloud-based program that uses 
artificial intelligence for biocomputing [7]. Chipster is an advanced bioinformatics 
platform for performing next-generation sequencing (NGS) analysis and handling 
proteomics and microarray data [8]. Anduril is another open-source workflow-
based framework which can be used for single-nucleotide polymorphism (SNP), 
next generation sequencing (NGS) flow cytometry and cell imaging analysis [9]. 
VisTrails combines workflow and visualization tasks mainly developed for explor-
atory computational tasks [10].

9.4  General Workflows in Chemistry Domain

Workflow is the connection of sequential steps for data management and analysis 
in chemistry. There are several tools for creating a workflow or pipelines: Accelrys 
ipeline Pilot [11], IDBS Chemsense (Inforsense suite) [12], chemistry development 
kit (CDK) Taverna [13], KNIME [14] etc.

9.4.1  Accelrys Pipeline Pilot

It is a scientific visual and dataflow programming language, used in various sci-
entific domains, such as cheminformatics and QSAR, NGS, image analysis, text 
analytics, etc.

The graphical user interface (GUI), called the Pipeline Pilot Professional Client, 
allows users to drag and drop components, connect them together in pipelines and 
save the application developed as a protocol [15].

There are several nodes that have specific tasks on the data. Predefined compo-
nents can be chosen from the library, configured, redesigned or even created from 
scratch and documented. When a new component is made by collapsing a few com-
ponents together, it is called subprotocol. Many custom script components are avail-
able in Pipeline Pilot that allows to include the code directly into the pipelines and 
maintain a library of components based on a preferred language, such as Perl, Java, 
VBScript, .NET, JavaScript, Python, Matlab etc.

Figure 9.2 shows a typical workflow for importing CAP sample in Pipeline Pilot.
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9.4.2  IDBS Chemsense (Inforsense Suite)

IDBS Chemsense in the Inforsense suite can be used to build chemical workflows 
as it adds a chemistry domain to Inforsense. It can be used for importing and export-
ing to chemical formats like SMILES, MOL, Chemical Markup Language (CML), 
reaction file (RXN), reaction data file (RDF), SDF, IUPAC International Chemical 
Identifier (InChI), etc. Common chemical structure-drawing tools like Accelrys, 
Perkin Elmer and ChemAxon can be used in Chemsense to render chemical struc-
tures and reactions. It can be used to interact with Oracle chemistry data cartridges 
to search and insert chemical structures and reactions. It has provision to integrate 
chemoinformatics functionalities from ChemAxon [16]. It is also used to build data-
base solutions to hold chemical information (chemical reagent database), automate 
and publish complex cheminformatics workflows, integrate data from multiple 
sources and visualize chemical data from the Web. Figure 9.3 shows a workflow on 
Chemsense (Markush).

Fig. 9.2  A screenshot of Pipeline Pilot program
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9.4.3  CDK Taverna

CDK Taverna is an open-source tool. CDK Taverna can be used to create chemi-
cal workflows. Recurring tasks can be automated using CDK Taverna. This can be 
applied for chemical data filtering, transformation, curation, migrating workflows, 
chemical documentation and information retrieval-related workflows (structures, 
reactions, pharmacophores, object relational data etc.), data analysis workflows 
(statistics and clustering/machine learning for QSAR, diversity analysis etc.) [17] 
(Fig. 9.4).

9.4.4  KNIME

KNIME stands for the Konstanz Information Miner and is a visualization plat-
form for creating and editing data evaluation pipelines and workflows using 
certain features called as ‘Node Repository’. It is an open-source tool for creat-
ing chemical workflows and was developed by Prof. Michael Berthold [18]. 
KNIME is downloadable from www.knime.org. CDK chemistry project was 
incorporated in KNIME and was written in Java. It can work in integration with 
chemoinformatics software.

Fig. 9.3  IDBS Chemsense

 



456 9 Integration of Automated Workflow in Chemoinformatics for Drug Discovery

9.4.4.1  KNIME A practice tutorial

Downloading and Installation Instructions for KNIME

1. Go to www.knime.org
2. Go to the ‘Download KNIME’ option under ‘Getting Started’ tab
3. Select ‘KNIME Desktop’ and you can select one of the two options (with reg-

istration or without registration)
4. Choose the version for your platform
5. Accept the terms and conditions before downloading
6. After the download is complete, extract the zip file into a desired destination.
7. Open the KNIME executable file
8. Select the destination for the workflow and click ‘OK’
9. Go to the ‘File’ menu in the KNIME interface

10. Click on INSTALL ‘KNIME EXTENSION’

Chemical Workflow Development Pipeline of analysis process is ‘Reading Data’, 
‘Cleaning Data’, ‘Filtering Data’ and ‘Training a Model’. KNIME implements its 
workflow graphically. Each step of the data analysis is executed by a box called 
‘node’. A node is a single processing unit of a workflow. It takes data as input, 
processes it and makes it available on the output port, where another node of the 
corresponding output is attached. The ‘processing’ action of a node ranges from 
modelling, like an artificial neural network learner node, to data manipulation, like 
transposing.

Fig. 9.4  The Taverna workbench

 



4579.4  General Workflows in Chemistry Domain 

Every node in KNIME has three stages.

1. Inactive and not yet configured (red traffic light)
2. Configured but not yet executed (yellow traffic light)
3. Executed successfully (green traffic light)

If the node is executed with errors (unsuccessfully), its status stays at the yellow 
traffic light. Nodes containing other nodes are called meta nodes.

The KNIME Workbench After accepting the path of the workspace, KNIME 
opens the KNIME workbench. The KNIME workbench includes a workflow editor 
where the user can create the workflows. The KNIME workbench was developed as 
an Eclipse Plug-in and many of its features are inherited from the Eclipse environ-
ment. The ‘KNIME Workbench’ consists of a top menu, a tool bar and a few panels. 
Panels can be closed and moved around (Figs. 9.5 and 9.6).

Import/Export KNIME Workflow ‘File’ → ‘Import KNIME workflow’ is a link 
function for workflows. It links a workflow.

Import workflows from another workspace to the local workspace. It also works 
from zipped files. If flag ‘Copy projects into workspace’ is enabled, the workflow 
files are copied as well and not only linked into the local workspace. Changing the 
linked workflows changes the original workflows.

OUTLINE

CONSOLE

NODE DESCRIPTION

NODE 
REPOSITOR
Y

KNIME SERVER

WORK FLOW 
EDITOR

LIST OF WORKFLOW 
PROJECTS

Fig. 9.5  KNIME application GUI
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Fig. 9.6  The KNIME workbench
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Fig. 9.7  Workflow import 
selection in Knime
 

Fig. 9.6  (continued)
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‘File’ → ‘Export KNIME workflow’ writes the selected local workflow to a 
zipped file. The option ‘Exclude data from export’ enables the export of only the 
nodes without the intermediate data. This generates considerably smaller export 
files (Figs. 9.7 and 9.8).

In the ‘Node Repository’ panel, there is a search box. If you type a keyword in 
the search box and then hit ‘Enter’, a list of nodes with that keyword in the name 
is obtained. Press the ‘Esc’ key to view all nodes again. For example, all the nodes 
with the keyword ‘Filter’ in their name are searched.

Workflow Operations

Creating a new workflow Right-click Local (Local Workspace) in the KNIME 
Explorer panel and click ‘New KNIME Workflow’. Type a name for the workflow 
and click ‘Finish’. (Destination can be changed if desired) (Fig. 9.9).

Fig. 9.8  KNIME node 
repository
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Fig. 9.10  Saving a workflow

 

Fig. 9.9  A new workflow creation in KNIME
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Saving Workflow After creating a workflow, it can be saved for future reference 
and editing. Find a floppy disk button above the KNIME Explorer panel. Click on 
this floppy disk button to save the workflow (Fig. 9.10).

Delete a Workflow Right-click on the newly created workflow (Here: KNIME_
workflow1) and then click ‘Delete’ to delete the workflow (Fig. 9.11).

Creating and Connecting Nodes Nodes can be created from the ‘Node Reposi-
tory’. They have to be dragged and dropped into the workflow editor. This will 
place a small node on the editor panel. When a node is imported, it shows the red 
traffic light status. To connect a node to another node, firstly drag a second node 
to the editor. Secondly, click on the output triangle (on the right of each node) and 
release the mouse at the input triangle (on the left of each node) on the second node. 
This will draw an arrow connecting both the nodes. Node description can be found 
on the right of the KNIME window when a node is clicked (or the description of the 
node, selected by default, is displayed) (Fig. 9.12).

Configuring a Node This step is performed to load entities to the node or to accept 
input from a previous node. Double-click on the node to open the menu or right-
click the node to open the menu. Click on the configure menu. Every node has dif-
ferent configure dialog box and can be used to fill the configuration settings. When 
the configuration is successful, the node turns to the yellow traffic signal (means, it 
is ready to be run).

Fig. 9.11  Workflow deletion in KNIME
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Note: Input ports of the node must be connected to a previous node (which is at 
green traffic signal) (Fig. 9.13).

Executing a Node When a node is configured (yellow traffic signal), right-click 
on the node and select ‘Execute’ on the menu. This will run the function of the 
node and it turns to green traffic light (if successful). Sometimes, the process can 

Fig. 9.13  Node configuration in KNIME

 

Fig. 9.12  Creating and connecting nodes in KNIME
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be lengthy and will happen only after the queue is complete, which will show the 
status (Fig. 9.14).

Node Name and Description Node can be given a name and a description. Rename 
the node by double-clicking on node name (‘node 1’). Right-click on the node and 
then select ‘Edit description’. In the dialog box, enter a desired description.

Note the difference between the node names as shown in Figs. 9.14 and 9.15 
(node name is changed).

Fig. 9.15  Naming a node in KNIME

 

Fig. 9.14  Node execution in KNIME
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View Processed Data (Result) If the execution was successful, the traffic signal 
turns to green. To view the processed data, right-click on the node and select the 
final menu. This gives the result table (Fig. 9.16).

Fig. 9.17  Element filter data in KNIME

 

Fig. 9.16  Result visualization in KNIME
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Fig. 9.19  Workflow for calculating XLogP

 

Fig. 9.18  Element filter data for a given structure data file ( SDF)
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9.4.5  Workflow Examples

1. Workflow for filtering compounds using element filter (Figs. 9.17 and 9.18)
2. Workflow for calculating XLogP (Fig. 9.19)
3. Workflow for filtering molecule (Lipinski’s rule of five) (Fig. 9.20)
4. Workflow for calculating molecular property (Fig. 9.21)
5. Workflow for calculating fingerprint similarity (Fig. 9.22)
6. Workflow for substructure search (Fig. 9.23)
NOTE: Sample workflows can be downloaded from the following links

Fig. 9.21  Workflow for calculation of molecular property

 

Fig. 9.20  Workflow for filtering molecules
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https://docs.google.com/file/d/0B2heHCCmonQQTWNibXFJdC1yNDg/
edit?usp=sharing

https://docs.google.com/file/d/0B2heHCCmonQQbTFfckVjbFl4Vlk/
edit?usp=sharing

https://docs.google.com/file/d/0B2heHCCmonQQZjFRMjlBU19RWU0/
edit?usp=sharing

https://docs.google.com/file/d/0B2heHCCmonQQZ3VZaW9jejJOVjg/
edit?usp=sharing

https://docs.google.com/file/d/0B2heHCCmonQQSFpHNm5NazJENlk/
edit?usp=sharing

Fig. 9.23  Workflow for substructure searching of molecules in KNIME

 

Fig. 9.22  Workflow for computing fingerprint similarity

 

https://docs.google.com/file/d/0B2heHCCmonQQTWNibXFJdC1yNDg/edit?usp=sharing
https://docs.google.com/file/d/0B2heHCCmonQQTWNibXFJdC1yNDg/edit?usp=sharing
https://docs.google.com/file/d/0B2heHCCmonQQbTFfckVjbFl4Vlk/edit?usp=sharing
https://docs.google.com/file/d/0B2heHCCmonQQbTFfckVjbFl4Vlk/edit?usp=sharing
https://docs.google.com/file/d/0B2heHCCmonQQZjFRMjlBU19RWU0/edit?usp=sharing
https://docs.google.com/file/d/0B2heHCCmonQQZjFRMjlBU19RWU0/edit?usp=sharing
https://docs.google.com/file/d/0B2heHCCmonQQZ3VZaW9jejJOVjg/edit?usp=sharing
https://docs.google.com/file/d/0B2heHCCmonQQZ3VZaW9jejJOVjg/edit?usp=sharing
https://docs.google.com/file/d/0B2heHCCmonQQSFpHNm5NazJENlk/edit?usp=sharing
https://docs.google.com/file/d/0B2heHCCmonQQSFpHNm5NazJENlk/edit?usp=sharing
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https://docs.google.com/file/d/0B2heHCCmonQQcFI2V1Fkd09MQkE/
edit?usp=sharing

https://docs.google.com/file/d/0B2heHCCmonQQOEtsVnRIS2JHdEk/
edit?usp=sharing

https://docs.google.com/file/d/0B2heHCCmonQQVnBIaFdYc0xRM0k/
edit?usp=sharing

https://docs.google.com/file/d/0B2heHCCmonQQVVpObXQ0emlBX3c/
edit?usp=sharing

https://docs.google.com/file/d/0B2heHCCmonQQMlFGVFR5QVhTajQ/
edit?usp=sharing

9.4.6  Workflow for QSAR (Anti-cancer)

Quantitative structure–activity relationships (QSARs)
QSAR is an important technique in ligand–structure-based drug design [19]. Po-

tency or toxicity of a set of similar drugs is correlated with a variety of molecular 
descriptors with the help of QSAR. Empirical formula is used to rapidly calculate 
multiple descriptors based on the structure and the connectivity of atoms in the mol-
ecule. For example, descriptors such as the molecular weight and the number of H-
bond acceptors are easily concluded. Some descriptors, such as logP and molecular 
polarizability, can be approximated from atomic or group contributions.
Steps for a QSAR Model Generation:

1. Preparation of input data (structures, known biological activities)
2. 3D Geometry optimization (conformation generation, alignment)

Fig. 9.24  Workflow for QSAR model building
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https://docs.google.com/file/d/0B2heHCCmonQQOEtsVnRIS2JHdEk/edit?usp=sharing
https://docs.google.com/file/d/0B2heHCCmonQQOEtsVnRIS2JHdEk/edit?usp=sharing
https://docs.google.com/file/d/0B2heHCCmonQQVnBIaFdYc0xRM0k/edit?usp=sharing
https://docs.google.com/file/d/0B2heHCCmonQQVnBIaFdYc0xRM0k/edit?usp=sharing
https://docs.google.com/file/d/0B2heHCCmonQQVVpObXQ0emlBX3c/edit?usp=sharing
https://docs.google.com/file/d/0B2heHCCmonQQVVpObXQ0emlBX3c/edit?usp=sharing
https://docs.google.com/file/d/0B2heHCCmonQQMlFGVFR5QVhTajQ/edit?usp=sharing
https://docs.google.com/file/d/0B2heHCCmonQQMlFGVFR5QVhTajQ/edit?usp=sharing
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3. Calculation of descriptors
4. Statistical analysis (feature selection, regression)
5. QSAR model building
6. Interpretation, validation and prediction

Descriptors Molecular descriptors are mathematical values that explain the struc-
ture of molecules and help to predict properties and activity of molecules in com-
plex experiments (Fig. 9.24).

9.5  Schrodinger KNIME Extensions

Schrodinger uses KNIME as the foundation for its pipelining capabilities [20]. The 
Schrodinger KNIME extensions provide a large collection of chemistry-related 
tools that interface with Schrodinger applications and utilities. With the KNIME 
extensions, one can make use of the full spectrum of Schrodinger applications from 
within KNIME workflows. The version of KNIME that the Schrodinger exten-
sions are built on is a freely available core KNIME distribution. One can of course 
develop their own extensions that make use of Schrödinger software. To develop 
custom nodes, at least a basic understanding of Java and the KNIME application 
programming interface (API) is required.

When one installs KNIME and the Schrödinger KNIME extensions from the 
Schrödinger distribution, they are installed into $SCHRODINGER/knime-vversion, 
and a script is installed with which KNIME can be run. To start KNIME, use this 
command: %SCHRODINGER\knime.bat [options]

Some of the important features that are available through the KNIME extensions 
are:

• Ability to assemble, edit and execute workflows using a graphical tool
• Access to most of Schrödinger’s modelling and cheminformatics tools
• Ability to integrate existing command-line tools and scripts
• Interoperability with third-party applications
• Web services integration
• Support for distributed and high-throughput computing and compute-intensive 

modelling tasks
• Ability to visualize and interact with data at every step of a workflow
• Ability to share workflows

The Schrödinger KNIME extensions can be downloaded or updated from the 
Schrödinger website, through the KNIME interface. Readers are referred to the 
Schrodinger manual for details. A collection of entire workflows is also available 
for download from the Schrödinger website, at http://www.schrodinger.com/knime-
workflows.

Select Workflows available at the site.
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Listed below are example KNIME workflows that utilize many of the Schröding-
er KNIME extensions (nodes) as well as many other built-in tools.

� Chemoinformatics  

� Docking/Docking Post-processing

� General Tools  

� Labs  

� Library Design  

� Molecular Dynamics  

� Molecular Mechanics  

� Pharmacophore Modelling

� Protein Modelling

� Quantum Mechanics  

� Real World Examples  

� Workbench  

Cluster by fingerprint

Database analysis

Maximum Common Substructure Search

Select Diverse Molecules

Similarity 

Substructure search

Fig. 9.25  Initial screen of KNIME Schrodinger
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Fig. 9.26  Creating a new KNIME project

 

Fig. 9.27  Node configuration
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9.5.1  A Practice Tutorial

In this tutorial, we will learn how to use LigPrep and QikProp modules of Schro-
dinger to calculate properties of molecules in the KNIME workbench.

Fig. 9.28  Reading SMILES of a molecular data set
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Fig. 9.29  Connecting the LigPrep module of Schrodinger

 

Fig. 9.30  QikProp node addition
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Fig. 9.31  The QikProp dialog box

 

Fig. 9.32  Node execution
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Fig. 9.34  Extracting MAE properties

 

Fig. 9.33  Workflow creation
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Launch KNIME in windows by double-clicking the icon in Linux, the command 
$SCHRODINGER/knime is used (Fig. 9.25).

To create a new KNIME project, click file new then select new KNIME project 
from the wizards list. In the next step, the project name can be entered by the user, 
say structural properties. A new tab by that name is created in the main window 
(Fig. 9.26).

Go to the node repository under Schrodinger and click to open readers/writers 
category; drag the smiles reader into workspace. The red light under it indicates that 
the node needs to be configured (Fig. 9.27).

To configure it, right-click on the node and in the dialog box that opens select the 
file where the molecular structures are available; here, we will choose the example 
molecules already loaded in directory at $SCHRODINGER/macromodel-ligprep/
samples/examples/1S_smiles.smi.

The file gets added to the properties table as shown in Fig. 9.28.
The users have a choice to import all structures or select a range. On click-

ing OK, the red light turns yellow. Next, we will add the LigPrep node by typing 

Fig. 9.35  Extract MAE dialog box

 



478 9 Integration of Automated Workflow in Chemoinformatics for Drug Discovery

LigPrep into the text search box and drag it into the workspace to connect with the 
smiles reader node as shown in Fig. 9.29

Similarly connect the QikProp node to the LigPrep upper node to create a work-
flow (Fig. 9.30).

Select the QikProp node and right-click to configure it; in the configure window, 
select output only option (Fig. 9.31).

Fig. 9.36  Properties table

 

Fig. 9.37  Select compounds which obey Lipinski’s rule
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Now the workflow is ready to be executed. Right-click on QikProp and choose 
execute (Fig. 9.32).

The nodes are executed in sequence beginning from the smiles reader. The green 
colour indicates that the task is done, while a blue bar indicates that the job is run-
ning (Fig. 9.33).

To extract the properties calculated by QikProp, drag the extract MAE properties 
node into the workspace and connect to QikProp node (Fig. 9.34).

The extract MAE properties node is configured. The user can select the proper-
ties to be calculated. By default, all the properties are selected for extraction. Here, 
we will select only four properties s_m_title, i_qp_RuleofFive, r_qp_SASA and 
r_qp_mol_MW (Fig. 9.35).

Select the output-only option and click OK and execute the extract MAE proper-
ties node. Then right-click on this node to choose 0 properties to display a table with 
extracted properties (Fig. 9.36).

Alternatively, an interactive table node can be used to display the same results. 
The data can be written to an excel file using xls writer node.

To visualize the obtained data, we can use column filter node to study compounds 
violating Lipinski’s rule of five. Drag the node to the workspace and right-click to 
configure it. Only Lipinski’s property is to be kept in the include list (Fig. 9.37).

Next, a histogram node is added to the column filter node (Fig. 9.38).

Fig. 9.38  Histogram node creation
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Right-click histogram node, choose configure in the options and select rule of 
five; when it is added to aggregation list, click on ok (Fig. 9.39).

Next, right-click on the histogram node and choose execute and view. The 
histogram is displayed. Label all the elements and put the orientation horizontal 
(Fig. 9.40).

We can add another column filter node to extract MAE properties node and con-
figure it by sending remaining three properties other than SASA to the exclude list. 
Further add a scatter plot node to the output of the column filter node. Right-click 
without configuring to execute and view the scatter plot between molecular weight 
and SASA property (Fig. 9.41).

Fig. 9.39  The histogram dialog box
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9.6  Other KNIME Extensions (Fig. 9.42)

9.6.1 MOE(CCG)

Using a chemistry-aware embedded language like Scientific Vector Language 
(SVL), the Molecular Operating Environment (MOE) engine is not dependent on 
hardware and operating system [21]. More than 80 MOE nodes are included, for 
example, node for retrosynthetic accessibility, protonation, Murcko framework 
generation, Shannon entropy model creation, InChl calculation, pharmacophore 

Fig. 9.40  Histogram generated for comparing properties data
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Fig. 9.42  MOE(CCG) KNIME nodes

 

Fig. 9.41  Scatter plot of two properties, molecular weight and SASA
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generation etc. The MOE model ports can connect to other generic KNIME ports. 
Some optional ports are also supported by MOE extensions. Many chart types can 
be supported for the data. It also provides extensions to Chemical Computing Group 
(CCG) bioinformatics nodes.

9.6.2 ChemAxon

JChem Marvin KNIME extensions are also available [22]. The modules allow re-
searchers to handle chemical structure data using ChemAxon’s software tools such 
as Marvin, JChem and Standardizer within the open-source KNIME workflow en-
vironment. The KNIME platform provides a modular environment to visually cre-
ate data flows, analyse and build predictive models. The JChem Extensions contain 
some nodes that are free of charge for general use. These nodes are called ‘Mar-
vin Family Nodes’ which include a set of nodes for structure conversion, ‘Marvin 
Sketch’, ‘Marvin View’ and ‘Marvin Space’ which offer sophisticated rendering 
capabilities for chemical structures.

9.7  Protein–Ligand Analysis-Based Workflows for  
Drug Discovery

Target–ligand association data are growing rapidly thanks to increasing sophistica-
tion in experimental techniques like nuclear magnetic resonance (NMR) and X-ray 
on one hand and computational methods for homology modelling and compound 
library generation on the other. These enormous data are ideal for knowledge-
based drug design approaches [23]. In fact, the emerging field in drug design, viz. 
chemogenomics, specifically investigates compound classes against families of 
functionally related proteins [24]. Proteins that have highly flexible binding sites or 
belong to large and diverse protein families can bind structurally dissimilar ligands 
[25]. Ligands that bind specifically to certain proteins can lead to enzyme inhibition 
or modulation of signal transduction and thus can be used as drugs [26]. By use of 
the properties of the ligand-binding site along with the assumption of the ‘lock-
and-key’ and ‘induced fit’ principle [27], many computational techniques can be 
employed to identify and/or design a potential drug molecule.

The structure-based design of active compounds is based on the folding of the 
polypeptide backbone of the protein into the characteristic 3D structure which gives 
it its functional form [28]. Sequences of α helical proteins are reported to bind with 
ligands of similar structures which may be attributed to divergent evolution or mod-
erate binding specificity of some proteins or experimentalists’ tendency to employ 
only native ligand analogues for solving crystal structures [29]. On the other hand, 
there are examples where proteins with sequence similarity do not bind to similar 
ligands probably due to convergent evolution where a common fold is reinvented 
to perform a related function [30]. About 10 K of the biomolecular complexes in 
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the Protein Data Bank (PDB; ~ 80 K entries) [31] consist of proteins with bound 
ligands. The diversity or similarity of ligands binding to the same protein can reflect 
the potential for making different interactions within the binding site. The majority 
of these structures provide valuable information on how the true substrates, cofac-
tors, inhibitors or ligands bind to their cognate targets. Moreover, the structures 
provide some degree of comparative information, where, for example, different 
ligands bind to the same protein of a different species or the same ligand binds to 
structurally different proteins.

Analysis of protein–ligand complexes is therefore likely to reveal patterns and 
relationships and provide insight into the biochemical functions of proteins related 
to important human diseases to serve as guidelines for virtual screening. There are 
many instances of application of protein–ligand knowledge in fingerprint search-
ing for ligands of corresponding targets in virtual screening as a constraint prior 
to docking [32]. From interacting fragments, interacting fingerprints (IF-FP) were 
calculated for similarity searching even for targets for which no 3D structures were 
available or only a few validated screening hits were known. Another important de-
velopment in protein–ligand complex analysis was the use of interaction fingerprints 
approach—structural interaction fingerprint (SiFT) [33], profile-structural interac-
tion fingerprint (pSIFt) [34] and weighted protein–ligand interaction fingerprint 
(wSIFT) [35] to translate desirable target–ligand-binding interactions into library 
filtering constraints [36]. There are other existing tools to analyse protein–ligand 
interactions but they very often involve receptor–ligand programming and the ob-
tained interaction fingerprints are not generic for all proteins belonging to different 
families. G protein-coupled receptor (GPCR)-based interactions fingerprints cannot 
be used for drug development of kinases and vice versa.

The Protein–ligand Interaction Fingerprinting (PLIF) tool is a method for sum-
marizing the interactions between ligands and proteins using a fingerprint scheme 
available in the MOE site [37]. Interactions such as hydrogen bonds, ionic interac-
tions and surface contacts are classified according to the residue of origin and built 
into a fingerprint scheme which is representative of a given database of protein–li-
gand complexes.

The input data for PLIF can be from a variety of sources, which most commonly 
include X-ray crystal structures and docking results. Using fingerprints to collec-
tively represent protein–ligand interactions for a large database is an effective way 
of dealing with databases which are noisy and error-prone due to the many difficul-
ties involved in modelling ligands bound to proteins.

Fingerprints generated using PLIF are compatible with other fingerprint tools 
found in MOE. Standard fingerprint tools such as clustering and diverse subsets can 
be applied to fingerprints generated by PLIF. There is a specialized visualization 
interface which is designed to take into account the specific structural meaning of 
each fingerprint bit.

There are six types of interactions in which a residue may participate: side-chain 
hydrogen bonds (donor or acceptor), backbone hydrogen bonds (donor or acceptor), 
ionic interactions and surface interactions. The most potent of each of these interac-
tions in each category, if any, is considered.

If no interactions of a particular category are found, or none pass the thresholds, 
no bits are set for that category. If the strongest interaction passes the lower interac-
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tion threshold, the low-order fingerprint bit is set. If the strongest interaction passes 
the higher interaction threshold, then the low-order and high-order bits are both 
set. Therefore, the bit patterns for each category can take on values of 00, 10 or 11, 
correspondingly.

Hydrogen bonds between polar atoms are calculated using a method based on 
protein contact statistics, whereby a pair of atoms is scored by distance and orienta-
tion. The score is expressed as a percentage probability of being a good hydrogen 
bond. Ionic interactions are scored by calculating the inverse square of the dis-
tance between atoms with opposite formal charge (e.g. a carboxylate oxygen atom 
and a protonated amine) and expressed as a percentage (100 % corresponds to 1 Å 
distance). Surface contact interactions are determined by calculating the solvent-
exposed surface area of the residue, first in the absence of the ligand, then in the 
presence of the ligand. The difference between the two values is the extent to which 
the ligand has shielded the residue from exposure to solvent, which is potentially 

Fig. 9.43  The protein–ligand complexes loaded in DBV in MOE
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indicative of a hydrophobic interaction. The solvent-exposed surface area is deter-
mined by adding 1.4 Å to the van der Waals radii of each heavy atom, and comput-
ing the fraction of this total surface which does not lie within the radius of any other.

9.7.1  A Practice Tutorial for Protein–Ligand  
Fingerprint Generation

To use PLIF, it is necessary to assemble one or more proteins to serve as the recep-
tor species and some number of ligands with bound conformations. Here, we will 
take example of a data set of Aurora kinase A complexes having a bound ligand 

Fig. 9.44  Computing protein–ligand fingerprints of complexes using PLIF
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(PDB ids: 1OL7, 2DWB, 2WIC, 2WIF, 2WIG, 2WTW, 3DAJ, 3QBN, 4BOG, 
4JBO). The data set is loaded into Database Viewer (DBV) in MOE. Both the re-
ceptor and the ligand are saved together as a single molecule field (Fig. 9.43).

In the DBV panel, go to Compute PLIF (Fig. 9.44).
In MOE there are 8 fingerprints and the maximum allocated are 250 (Figs. 9.45 

and 9.46).
The computed fingerprints are written to the database field FP:PLIF. Next, they 

are analysed (Fig. 9.47).
The results are opened to show bar-code mode of fingerprints; the display mode 

can also be changed to population mode where the residues are shown in their three 
letter codes and can be analysed to understand key interactions. This also shows 
residue corresponding to fingerprint bits (Fig. 9.48).

Population display shows the frequency of occurrence of residues. The show 
ligand option displays all the bound ligands in a 2D depict form. Here, it shows in 
nine out of ten complexes, the alanine residue is interacting with the aurora kinase 
protein (Fig. 9.49).

The tools tab in this window has many options like bit selector, pharmacophore 
query generator and similarity calculator for further segregating the data (Fig. 9.50).

Fig. 9.45  The PLIF setup box

 



488 9 Integration of Automated Workflow in Chemoinformatics for Drug Discovery

Fig. 9.46  Screenshot depicting the PLIF fingerprints computed for the complexes

 

Fig. 9.47  Analysis of the PLIF fingerprints
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The PLIF data can be used in various ways. It can be used to generate a phar-
macophore query, if activity data are available for ligands and if docked complexes 
are being analysed.

9.8  Prolix

A tool for rapid data mining of protein–ligand interactions in large crystal databases 
has been developed, PROLIX [38]. It is a workflow to mine protein–ligand interac-
tions using fingerprint representation pattern for quick searches. The front end has a 
query sketcher for the user to communicate with the back-end matching algorithms 
through xml files.

9.9  J-ProLINE: An In-house-developed Chem-
Bioinformatics Workflow Application

J-ProLINE (Java-based Protein–ligand Network) is an interactive tool that detects 
relationships between ligand, scaffolds, protein sequence and structures which are 
finally validated through biomedical literature-based text mining [39]. Its func-

Fig. 9.48  Population option display of PLIF
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tion is to connect proteins, ligands and corresponding molecular scaffolds based 
on similarity scores among sequences and ligands. It provides the user with five 
major chem-bioinformatics functionalities, viz. pairwise sequence alignment, mul-
tiple sequence alignment, molecular similarity score, molecular mechanics descrip-
tors and computing docking scores. The well-developed but simple GUI portlet 
enables the user to effectively communicate the queries and obtain results. It sup-
ports model building for any given set of query molecules, is capable of handling 
large data sets and integrates data from diverse background. The ligand similarities 
are identified using fingerprint-based scores. The similarity scores generated for 
proteins and ligands can be used for classification, network and tree building. To 
handle vast protein and molecular data, J-ProLINE programs were deployed on an 
in-house-developed Distributed Computing Environment (DCE), previously used 
in ChemXtreme (harvesting chemical data from Internet) [40] and ChemStar (Com-
puting molecular properties for millions of publicly available molecules) applica-
tions [41]. The links established between the proteins and ligands were used for 
identification of common scaffolds and their occurrences in several databases, the 
results of which are presented in the subsequent sections. For this study, more than 
9,000 protein complexes from Mother of All Databases (MOAD) and PDB having 
chain A and a co-crystallized ligand were identified. All PDB–ligand complexes 
from Binding MOAD (pdb id) were collected from http://www.BindingMOAD.org.

Fig. 9.49  The 2D structures of the native ligands in complexes
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The J-ProLINE architecture consists of three major components viz., General, 
Computing and Visualization. The program was developed using Java platform 
connected to RDBMS for storage of primary sequence data and other computed 
similarity score data. We also used several conventional similarity analysis and 
clustering tools in distributed computing environment (DCE) to handle the massive 
computational load. The GUI consists of two parts, one is a computing part and the 
other is a browsing/visualizing part. The home page of J-ProLINE was built using 
Liferay [42]. MPJ Express is an open-source Java implementation of Message Pass-
ing Interface that allows developers to write and deploy parallel applications using 
Java as a programming language (Fig. 9.51).

Figure 9.52 highlights the theoretical concept of J-ProLINE program (Fig. 9.53).
To understand the relationships between a class of compounds and target fami-

lies, a heatmap using Tanimoto coefficient [43] for ligand similarities and sequence 
alignment score for protein similarities for protein–ligand complexes of six protein 
families was built. The heatmap was generated using R statistical package [44].

Fig. 9.50  The bit data in PLIF
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Fig. 9.52  The computational 
steps in J-ProLINE

 

Fig. 9.51  Components of J-ProLINE
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R Input File
id1,id2,alnscore,
1CKE,1FF4,-39.0,
1CKE,1LG2,197.0,
1CKE,1QF1,207.0,
1CKE,1YST,252.0,
1CKE,2CMK,1022.0,
1FF4,1LG2,-120.0,
1FF4,1QF1,-110.0,
1FF4,1YST,-44.0,
1FF4,2CMK,-39.0,
1LG2,1QF1,348.0,
1LG2,1YST,267.0,
1LG2,2CMK,197.0,
1QF1,1YST,244.0,
1QF1,2CMK,206.0,
1YST,2CMK,247.0,

Fig. 9.53  Home page of J-ProLINE
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A heatmap is a convenient means of graphically depicting a 2D data matrix. J-Pro-
LINE helps in generating heatmaps of proteins and ligands on the basis of sequence 
similarity and Tanimoto coefficient, respectively.

R commands file to get heatmap (Fig. 9.54).

Fig. 9.54  Heatmap of 500 proteins belonging to six protein families
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9.10  Targetlikeness Score

In bioassay screening, several molecules are studied on different targets. The bioas-
say data generated can be compiled to build the mathematical models to identify 
the sensitivity of diverse molecules towards single target and performance of single 
molecule on multiple targets (promiscuity studies) that would help to evaluate or 
rationalize the side effects due to multiple-binding nature of molecules.

On the basis of the previous experimental studies, target affinity of a class of 
compounds towards certain targets could be used to build models to generate target-
likeness scores (TLS) [45]. In this process, a set of 500 targets were identified with 
thousands of bioactivity values measured experimentally, and the data were used to 
build multiple target selectivity score models. Given a molecule to this model will 
result in the output as a score or binary fingerprint (0 = inactive, 1 = active) for each 
target as shown in Fig. 9.55 where a plot of TLS (20 targets) for a molecule and sen-
sitivity of target to a set of molecules (20 molecules) is depicted. This module can 
be plugged into any workflow system that requires an alert to filter-out undesired 
molecules for the selected set of targets. Thus, this workflow can help in virtual 
screening of compounds by ranking them for several potential targets simultane-
ously.

9.11  Databases and Tools

A number of databases like PDBbind [46] and BindingDB [47] can be used for 
studying protein–ligand complexes. Protein–protein complex data and interactions 
are available in a number of databases, some of them with advanced annotation 
features like Human Proteome Organisation, HUPO [48]; String [49]; Biogrid [50]; 
Human Protein Reference Database, HPRD [51]; a Molecular INTeraction data-
base, MINT [52]; Database of Interacting Proteins, DIP [53] and Agile Protein In-
teraction DataAnalyzer, APID [54]. The visualization tools for these complexes are 
cytoscape [55] and Pajek [56].

9.12  Thumb Rules for Generating and Applying 
Workflows

• Understand the input/output of each module instead of connecting them ran-
domly.

• Use loops when you have to make a number of iterations in a workflow, for ex-
ample Schrodinger KNIME has docking and post-processing loops.
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9.13  Do it Yourself

1. Download KNIME
2. Understand the available modules for chemoinformatics (statistics: Weka, 

Molecular data: CDK, ChemAxon, Schrodinger (jaguar, glide) Database: 
MySQL, Oracle, postgresql)

3. Compute the chemoinformatics properties in any workflow program
4. Build a QSAR model in Knime

9.14  Questions

1. What is a workflow? Explain highlighting the need for workflow development.
2. What are the available workflows in chemistry and biology domain?
3. Explain the working of the Knime bench.
4. How can you make use of the protein–ligand analysis data for drug designing?
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Cloud Computing Infrastructure Development 
for Chemoinformatics
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Abstract Chemical research is progressing exponentially, thus fuelling the need 
to integrate data and applications and develop workflows. To support proper exe-
cution of workflows with multiple teams working on collaborative projects, we 
need robust portals powered by cloud computing infrastructure. A cloud computing 
portal provides customization configurability to users on a secured, unified and 
integrated platform with extensive computational power. The sheer magnitude and 
diversity of the chemical data require customized system-based solutions utilizing 
available mass storage, CPUs, GPUs and hybrid processors. Porting existing appli-
cations to a common portal to provide a single framework which can be deployed 
on a high-performance computing distributed computing platform for automated 
programmatic access to workflows. A portal enables efficient scanning, searching 
and annotating of the data for the users and resource monitoring for the enterprise. 
They also provide additional features like security, scalability, quality, data consis-
tency and error checks. Portal development has a bright future as they can perform 
large-scale quantum chemical studies of molecules and become decision support 
tools to mine functional relationships in chemical biology. In this chapter, we first 
focus on the essentials of portal development with stepwise tutorials using relevant 
examples. Mobile computing has transformed the information technology scenario 
in recent times; consequently, a section is devoted to android, its open-source oper-
ating system. Few chemoinformatics-based apps are also discussed.

Keywords Portals · Mobile computing · Chemoinformatics drug design · High-
performance computing · GPU computing · Cloud computing

10.1  What is a Portal?

A portal usually connotes a gateway or a door [1]. It is generally defined as a soft-
ware platform for building websites and web applications [2]. Modern portals have 
added multiple features that make them the best choice for a wide array of web ap-
plications. Portals may be used as an integrated platform for problem solving or as 
a content management system.
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10.2  Need for Development of Scientific Portals

Ever-increasing publicly available chemical structure and bioactivity data have 
created challenges in data handling and curation [3–4]. This can be mitigated by 
building and using web-based portal systems for easy access, search, analysis and 
discovery. Portals let us integrate various data and compute applications that run 
together in a coordinated way. For example, ChEMBL [5] bioactivity data can be 
stored and bioactivity data can be exposed to users through portlets. Further, these 
data can be subjected to descriptor calculation or quantitative structure–activity re-
lationship (QSAR) via portlet-to-portlet communication, thus aggregating various 
chemistry-specific data resources and applications that are compiled together for 
knowledge discovery within a unified user interface.

A portal integrates data and applications together using layout management 
for maintaining several applications, with drag-and-drop features which makes 
it more intuitive for users [6]. Portlets can communicate with each other; thus, 
the output of one portlet goes as an input for the other, a very important consid-
eration for designing pipeline workflows especially in chemoinformatics. Other 
value-added features such as Structure Search, Chemical Data management, Re-
search Document management, blogs or wiki for adding to the chemical knowl-
edge space in collaboration, Community and Discussions to solve certain prob-
lems, etc. can be added [7]. This also allows researchers to focus more on the 
domain logic rather than the computing processes beneath. However, one should 
proceed with caution and not resort to deploying all applications on the portal 
without a proper requirement analysis as the complexity of setting up and config-
uration can complicate the tasks. Other considerations to be borne in mind while 
developing a portlet such as events and action, render phase, etc.

10.3  Components of a Portal

A software, good database management system, front-end user interface and algo-
rithms comprise a portal [8]. Liferay Community Edition is one such Lesser Gen-
eral Public License (LGPL) open-source portlet container and portal server [9]. 
GateIn Portal, formerly known as JBoss Portal, and Drupal are other examples of 
open-source portal and content management systems [10–11]. Portlets are mini ap-
plications which make up a portal page [12]. They share many similarities with 
servlets as they are managed by specialized container and interact with web client 
via request and response action classes. So, a novice need not worry about other 
technicalities and can focus on developing logic in portlet code, which runs at the 
application level. In molecular informatics, portlets can be categorized into two 
categories, i.e. data portlets and compute portlets. Data portlets essentially deal 
with input, storage, distribution and display of molecular data, while compute 
portlets involve exact/substructure searching for hits, molecular descriptor calcula-
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tion, statistical model building, data mining, target–ligand docking, fingerprinting 
to name a few.

10.4  Examples of Portal Systems

Recently many portals have been created like the enzyme portal, which performs 
data mining related to enzymes, biological pathways, small molecules and diseases 
[13]. A protein and structure analysis workbench Expasy is the most well-known 
portal for proteomics with several software tools and databases [14]. Wolf2Pack 
portal has been deployed with force-field optimization package to enable users to 
integrate force fields from different research areas [15]. MolClass portal helps users 
to develop computational models from given data sets based on structural feature 
identification [16]. The drug discovery portal [17] enables virtual screening in a 
collaborative manner. ChemDB portal [18] has integrated several OpenEye [19] 
and ChemAxon tools [20] to provide chemoinformatics functionalities like search-
ing chemical, virtual library generation, three-dimensional (3D) molecular structure 
generation, predicting properties, reactions etc (Fig. 10.1).

Fig. 10.1  Homepage of chemDB portal
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10.5  A Practice Tutorial for Portal Creation

In this tutorial, we will learn how to develop a portlet using Liferay, Liferay Plugins 
software development kit (SDK)/Netbeans and Portal Pack, MySQL, Ant.

We will need the following downloads:
Liferay Community Edition bundled with Apache Tomcat web server: http://

www.liferay.com/downloads/liferay-portal/available-releases
Liferay Plugins SDK for development: http://www.liferay.com/downloads/lifer-

ay-portal/additional-files
Mysql Community Server: http://dev.mysql.com/downloads/mysql/
Apache Ant: http://ant.apache.org/bindownload.cgi
Download and unzip Liferay Tomcat Installation zip to <path to liferay>; go to 

bin\startup.sh to test it at http://localhost:8080. This will open Liferay Portal with 
default Liferay page. To login as admin, click on ‘Login as Bruno Admin’ link. For 
user-defined portlets, various development tools like Liferay Plugins SDK and inte-
grated development environment (IDE) such as Eclipse or Netbeans are available. 
Using Netbeans for portlet development, download and install Netbeans IDE 7.2.1 
(with Java EE, Tomcat support) roughly around 204 MB in size and Netbeans Portal 
Pack 3.0.5 Beta available at http://netbeans.org/downloads and https://contrib.net-
beans.org/portalpack/pp30/download305.html, respectively. After IDE installation, 
follow the following screenshots to add Liferay Portal Plugins, configure and add 
server, create a web application with Portlet Support and start server from within 
IDE (Figs. 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8 and 10.9).

We will use Liferay Plugins SDK [19] for portlet development. Unzip Liferay 
Plugins SDK in a similar way as liferay portal to <path to plugins>. To point it 
to correct installation folder, i.e. Liferay Portal, we need to change uncommented 
property ‘app.server.dir’ at <path to plugins\build.properties> to <path to liferay/
tomcat>. While doing this, include forward slashes (/) to define path in Unix style 
instead of Windows-specific back slash (\). To get started, navigate to <path to pl-
ugins\portlets> and type

Fig. 10.2  Importing portal pack plugins in Netbeans IDE

 



10.5 A Practice Tutorial for Portal Creation 505

This will create a portlet folder named ‘firstPortlet-portlet’. It should have the fol-
lowing files

docroot: root of portlet and web application
docroot/WEB-INF: standard folder with configuration files
docroot/WEB-INF/portlet.xml; liferay-portlet.xml: description of portlet 

properties

Fig. 10.4  Configuring Tomcat 6 and setting path to its home folder

 

Fig. 10.3  Adding liferay portal server in Netbeans IDE
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docroot/WEB-INF/liferay-display.xml: display of portlet in applications menu 
of portal.

docroot/WEB-INF/liferay-plugin-package.properties: file containing packaging 
options for the project

docroot/WEB-INF/src: java source files
docroot/WEB-INF/view.jsp: defines the user interface and interacts with the un-

derlying java code
Sample view.jsp

Fig. 10.6  Creating new web application

 

Fig. 10.5  Server addition completed
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Sample JSPPortlet.java processAction method

public void processAction(ActionRequest actionRequest, ActionResponse 
actionResponse) throws IOException, PortletException { 
//User defined code goes here 

Fig. 10.8  Server and settings set to Liferay portal server

 

Fig. 10.7  Specifying project name as ‘WebApplication2’
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The default database connection will be to HSQL (Hypersonic Structured Query 
Language). To change it to MySQL, edit file portal-ext.properties at <path to lif-
eray\tomcat-6.0.18\webapps\ROOT\WEB-INF\classes> and add the following con-
tent for MySQL database properties.

jdbc.default.driverClassName=com.mysql.jdbc.Driver 
jdbc.default.url=jdbc:mysql://localhost/lportal?useUnicode=true&characterEncoding=U
TF-8&useFastDateParsing=false 
jdbc.default.username=<db_username> 

To start portal, run startup.bat at <path to liferay\tomcat-6.0.18\bin>. The first time 
when the portal runs it will create database ‘lportal’ with all the default tables. It 
takes on an average 2–3 min for the server to start up. The portal can be accessed at 
http://localhost:8080 or http://<ip-address:8080>.

The deployment process involves Ant and so we need Apache Ant; download it 
and unzip to <path to ant>. Environment variables are created with both user and 
system variables as variable name ANT_HOME and added in PATH as %ANT_
HOME%\bin.

Finally, we deploy the application in portal environment

<path to plugins>\portlet\firstPortlet-portlet# ant deploy

The firstPortlet we created will be deployed in a few seconds and to add it to the 
portal, we can create a page ‘First Portlet’ by clicking on Add Page in the right top 
corner as shown in Fig. 10.10. Now, we can add the first application to the page we 
just created (Fig. 10.11).

Fig. 10.9  Adding portlet support and creating required JavaServer pages ( JSP) and Java source 
files

 

http://<ip-address:8080>
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10.5.1  Custom Database connection and Display Table with 
Paginator via portlet in Liferay Portal

For example, ChEMBL table in lportal database is created with bioactivity data and 
needs to be accessed via portlet.

<chembl table structure>

Fig. 10.10  Single sign In and adding page to portal

 

Fig. 10.11  Adding deployed application to portal page
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Primarily for working connection, simply we can start by setting context.xml 
at <path to liferay\tomcat-6.0.18\conf> with appropriate resource properties men-
tioned as below.

<Context> 
<Resource name="jdbc/lportal” 
     auth="Container” 
     type="javax.sql.DataSource” 
     maxActive="100” 
     maxIdle="30” 
     maxWait="10000” 
     username="<db_username>” 
     password="<db_password>” 
 
     driverClassName="com.mysql.jdbc.Driver” 
     url="jdbc:mysql://localhost:3306/lportal?autoReconnect=true”/> 
      

Before going any further, we need to build database entities and services related to 
them for its working by using Service Builder, a special tool provided by Liferay. 
To define our entity based on the ChEMBL table structure, we create a service.xml 
file at <path to plugins/portlets/chembl-portlet/docroot/WEB-INF/> with the fol-
lowing content.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE service-builder PUBLIC "-//Liferay//DTD Service Builder 5.1.0//EN" 
"http://www.liferay.com/dtd/liferay-service-builder_5_1_0.dtd">

<service-builder package-path="chembl">
<namespace>CHEMBL</namespace>
<!-- Project -->
<entity name="Item" table="chembl" local-service="true" remote-

service="false">
<!-- PK fields -->
<column name="bid" type="int" primary="true"></column>
<column name="bioactivity" type="String"></column>
<column name="operator" type="String"></column>
<column name="value" type="String"></column>
<column name="units" type="String"></column>
<column name="compoundname" type="String"></column>
<column name="canonicalsmiles" type="String"></column>
<column name="assaychemblid" type="String"></column>
<column name="assaysource" type="String"></column>
<column name="assaytype" type="String"></column>
<column name="description" type="String"></column>
<column name="chembltargetid" type="String"></column>
<column name="targetname" type="String"></column>
<column name="organism" type="String"></column>
<column name="reference" type="String"></column>

</entity>

Edit view.jsp as
// Declarations and Imports
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<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %> 
<%@ taglib uri="http://liferay.com/tld/ui" prefix="liferay-ui" %> 
 
<%@ page import="java.util.ArrayList" %> 
<%@ page import="java.util.List" %> 
 
<%@ page import="javax.portlet.PortletURL" %> 
<%@ page import="javax.portlet.PortletPreferences" %> 
<%@ page import="javax.portlet.WindowState" %> 
 
<%@ page import="com.liferay.portal.kernel.dao.search.ResultRow" %> 
<%@ page import="com.liferay.portal.kernel.dao.search.SearchContainer" %> 
<%@ page import="com.liferay.portal.kernel.dao.search.SearchEntry" %> 
 
<%@ page import="chembl_14.model.Item" %> 
 
<%@page import="chembl_14.service.ItemLocalServiceUtil"%><portlet:defineObjects /> 
 
<% 
    PortletURL portletURL = renderResponse.createRenderURL(); 

// Define list of ChEMBL table headers

// Creating search container, used to display table

// Get count of total records and list of records to display on current page

 int totalChemblRecordCount = ItemLocalServiceUtil.getItemsCount(); 
    List<Item> chemblRecordList = 
ItemLocalServiceUtil.getItems(searchContainer.getStart(), 
                                                    searchContainer.getEnd());

// Set count into search container per page
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searchContainer.setTotal(totalChemblRecordCount);

// Fill table

    List<ResultRow> resultRows = searchContainer.getResultRows(); 
for (int i=0; i < chemblRecordList.size(); i++) { 

            Item chemblRecord= chemblRecordList.get(i); 
            ResultRow row = new ResultRow(chemblRecord, chemblRecord.getBid(), i); 
     
            row.addText(chemblRecord.getBioactivity(), ""); 
            row.addText(chemblRecord.getOperator(), ""); 
     row.addText(chemblRecord.getValue(), "");         
            row.addText(chemblRecord.getUnits(), ""); 
            row.addText(chemblRecord.getCompoundname(), ""); 
            row.addText(chemblRecord.getCanonicalsmiles(), "");   
            row.addText(chemblRecord.getAssaychemblid(), "");        
            row.addText(chemblRecord.getAssaysource(), "");        
            row.addText(chemblRecord.getAssaytype(), "");  
            row.addText(chemblRecord.getDescription(), ""); 
 row.addText(chemblRecord.getChembltargetid(), "");         
 row.addText(chemblRecord.getTargetname(), ""); 
 row.addText(chemblRecord.getOrganism(), "");                
 row.addText(chemblRecord.getReference(), "");  
            resultRows.add(row); 
    }     
     

// and finally display it 

%>
<liferay-ui:search-iterator searchContainer="<%= searchContainer %>" />

The above code is adapted from Pet Catalog tutorial available at the following link. 
Refer for a detailed understanding:

http://www.emforge.net/web/liferay-petstore-portlet/wiki/-/wiki/Main/Step1%3
A+From+DB+to+simple+UI;jsessionid=AEE788CF2575EFA63F452A081BAA3
8B6

10.6  A Practice Tutorial for Development of Portlets for 
Chemoinformatics

10.6.1  Marvin Sketch Portlet

Marvin Sketch is an advanced chemical editor used for drawing structures, queries 
and reactions [20]. This tool can be integrated into the portlet by using javascript 
as follows:

Before using the following javascript code, we should download Marvin for Ja-
vaScript available at chemaxon.com and point src attribute to the desired location.

http://www.emforge.net/web/liferay-petstore-portlet/wiki/-/wiki/Main/Step1%3A+From+DB+to+simple+UI;jsessionid=AEE788CF2575EFA63F452A081BAA38B6
http://www.emforge.net/web/liferay-petstore-portlet/wiki/-/wiki/Main/Step1%3A+From+DB+to+simple+UI;jsessionid=AEE788CF2575EFA63F452A081BAA38B6
http://www.emforge.net/web/liferay-petstore-portlet/wiki/-/wiki/Main/Step1%3A+From+DB+to+simple+UI;jsessionid=AEE788CF2575EFA63F452A081BAA38B6
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<script languge="JavaScript1.1" src="http://localhost:8080/clouddesc-
portlet/marvin/marvin.js"> 
</script> 
<script languge="JavaScript1.1"> 
msketch_name = "MSketch"; 
msketch_begin("http://localhost:8080/clouddesc-portlet/marvin/", 600, 480); 
if(window.opener.document.all.smiles.value!=''){ 

msketch_param("molFormat", "smiles"); 
 msketch_param("mol", window.opener.document.all.smiles.value); 
 } 
else{ 
 msketch_param("mol", ""); 
 } 
msketch_param("preload", "MolExport"); 
msketch_end(); 

Steps for using Marvin Sketch Portlet available at http://moltable.ncl.res.in
Step 1: Click ‘Draw Molecule’ to start MSketch Molecule Editor (Fig. 10.12)
Step 2: If you are working behind a proxy server, use login details to load web 

application (Fig. 10.13)
Step 3: Click ‘Run’ to run MSketch application in your browser (Fig. 10.14)
Step 4: Click ‘No’ to avoid blocking the application from running (Fig. 10.15)
Step 4: Finally, draw molecule of interest and click ‘Submit’ to get smiles in the 

text input box of MSketch portlet (Fig. 10.16)

Fig. 10.12  Click ‘Later’ to skip Java update

 

Fig. 10.13  Enter proxy details
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Fig. 10.15  Click ‘No’ to continue

 

Fig. 10.16  Final application ID loaded and ready for use

 

Fig. 10.14  Click ‘Run’ to authorize application to run in browser environment
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10.6.2  JME Portlet

JME Molecule Editor is a Java applet to draw/edit structures and reactions [21]. It 
also displays molecules on screen in display panel and generates output formats like 
Simplified Molecular-Input Line-Entry System (SMILES) and MDL molfile. To 
use JME in your portlet, use the following applet code. Include the JME distribution 
containing JME.jar for referencing.

<applet code="JME.class" name="JME" archive="jme/JME.jar" width="360" height="335"> 
<param name="options" value="list of keywords">  
Enable Java in your browser !  
</applet>  
<font face="arial,helvetica,sans-serif"><small><a 
href="http://www.molinspiration.com/jme/index.html">JME Editor</a> courtesy of 

Steps for using JME Portlet available at http://moltable.ncl.res.in
Step 1: Click ‘Draw Molecule in JME’ to run JME applet in your web browser 

(Fig. 10.17)
Step 2: Draw molecule and click Smiley in top left corner to generate SMILES 

automatically

10.6.3  Jchempaint Portlet

Jchempaint is a free, open-source and platform independent chemical editor writ-
ten in Java [22]. Following is the applet code to embed Jchempaint into portlet. 

Fig. 10.17  JME molecular 
editor loading with smiles 
window
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Make sure the archive points to the desired location where jchempaint-applet-core.
jar resides.

<applet 
code="org.openscience.jchempaint.applet.JChemPaintEditorApplet" 
name="JME" archive="jchempaint/EditorApplet_files/jchempaint-applet-core.jar" 
width="360" 
height="335"> 
<param name="options" value="list of keywords"> 
Enable Java  in your browser ! 
</applet>

Steps for using Jchempaint Portlet available at http://moltable.ncl.res.in
Step 1: Click ‘Draw Molecule in Jchempaint’ to run Jchempaint applet in your 

web browser (Fig. 10.18)
Step 2: Edit→Copy As Smiles to get smiles format of the molecule drawn

10.7  Mobile Computing

Mobile computing has been defined as ‘the ability to use computing capability 
without a predefined location and/or connection to a network to publish and/or sub-
scribe to information’ [23]. It is a technique which has revolutionized the world of 
hand-held devices like personal digital assistants (PDAs), tablet PCs and smart-
phones [24]. The standard mobile phone application environment is supplied by 
Android [25]. The Android operating system released by Google in 2007 is an open 
catalogue of applications which users can download over the air or directly load via 

Fig. 10.18  Jchempaint applet in action
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a USB connection to their phone [26]. The users can create their own creative appli-
cations from the existing ones; the operating system takes care of which application 
to use for a specific task (Figs. 10.19 and 10.20).

There are certain limitations of mobile computing, for instance the comput-
ing resources are restrained by the battery size and can handle only few GB of 
data [27]. However, these limitations are likely to be overcome in the near fu-
ture. Another consideration is security as personal data are generally stored on 
smartphones and are susceptible to attack. Internet speed is slower on a mobile 
compared to a direct Internet connection. Of course there are other general con-
cerns as usual associated with the effect of radiations in human vicinity.

10.7.1  Android Applications for Chemoinformatics

Any android application in general requires the installation of four components, 
Java Development Kit (JDK), Eclipse (Integrated development environment for 
JAVA), android SDK and Android development tool (ADT) [28]. An emulator is 
required for testing and debugging the software. The executable code for android is 
termed as Activity which corresponds to display screens.

Fig. 10.19  Components of a mobile computing platform
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10.7.1.1  iMolview a Mobile App for iPhone/iPad and Android

iMolview is an app for browsing protein, DNA and drug molecules in 3D via direct 
links to Drug Bank and Protein Data Bank (PDB) database [29]. One can toggle the 
molecules for better visualization using a touch screen rather than the conventional 
keyboard–mouse combination. The app can be downloaded from Apple App store 
or into any android device. It is still in developmental stages with new features be-
ing added like surface representation, colour selection, 2D labels, electron density 
maps, etc.

10.7.1.2  In-house-developed ChemInfo App

An app has been developed using android for computing properties of biologically 
important molecules using a mobile [30] (Figs. 10.21 and 10.22).

Fig. 10.20  Computer clusters with 480 CPUs
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Fig. 10.21  Mobile app interface for property prediction of molecules
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Fig. 10.22  Cheminfo project table
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package com.ncl.cheminfo;

import java.security.interfaces.RSAKey;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.io.*;
import java.util.*;

import com.mysql.jdbc.PreparedStatement;

import android.os.Bundle;
import android.app.Activity;
import android.app.AlertDialog;
import android.content.DialogInterface;
import android.view.Menu;
import android.view.View;

import android.widget.Button;
import android.widget.EditText;

public class MainActivity extends Activity {

String sql_add="";
String sql_browse="";
static int cnt=1, total_records=0,first_id=0;

public static int countRows()  {

Connection conn = null;
Statement st = null;
String driver ="com.mysql.jdbc.Driver";
String ip=""; //get dynamically 
if(ip.length()==0){

ip="localhost";
}

String url = "jdbc:mysql://"+ip+":3306/test";
String user = "root";
String password = "*****";

try {

Class.forName(driver).newInstance();

conn = DriverManager.getConnection(url, user, password);

// select the number of rows in the table
Statement stmt = null;
ResultSet rs = null;
int rowCount = -1;
try {
stmt = conn.createStatement();
rs = stmt.executeQuery("SELECT COUNT(*) FROM cheminfo.bioactivity" );
// get the number of rows from the result set
rs.next();
rowCount = rs.getInt(1);

} finally {

10.7.1.3  Code for Android Application Development
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stmt.close();
}
total_records = rowCount;
return rowCount;

} catch (Exception e) {

} 

return -1;

}

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
cnt=1;
countRows();

Button ff = (Button) findViewById(R.id.button1);
ff.setOnClickListener(new OnClickListener()
{

public void onClick(View v)
{

cnt=1;
connect_browse(cnt);

}
});
Button fn = (Button) findViewById(R.id.Button01);
fn.setOnClickListener(new OnClickListener()
{

public void onClick(View v)
{
if(cnt < total_records)

cnt++;
else

cnt=total_records;
connect_browse(cnt);
}

});
Button fp = (Button) findViewById(R.id.Button02);
fp.setOnClickListener(new OnClickListener()
{

public void onClick(View v)
{

if(cnt > 1)
cnt--;

else
cnt=1;

connect_browse(cnt);
}

});
Button fl = (Button) findViewById(R.id.Button03);
fl.setOnClickListener(new OnClickListener()
{

public void onClick(View v)
{

cnt=total_records;
connect_browse(cnt);

}
});
Button fa = (Button) findViewById(R.id.button2); //add
fa.setOnClickListener(new OnClickListener()
{
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public void onClick(View v)
{

connect_mysql();
countRows();

}
});
Button fb = (Button) findViewById(R.id.Button04); //browse
//fb.setVisibility(1);
fb.setOnClickListener(new OnClickListener()
{

public void onClick(View v)
{

}
});

}

@Override
public boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.activity_main, menu);
return true;

}

public void show_message_box(String title,String msg)
{

AlertDialog alertDialog;
alertDialog = new AlertDialog.Builder(this).create();
alertDialog.setTitle(title);
alertDialog.setMessage(msg);
alertDialog.setButton("OK", new DialogInterface.OnClickListener() {  

public void onClick(DialogInterface dialog, int id) {  
dialog.cancel(); 

}  
}); 

alertDialog.show();

}

public void connect_browse(int id)
{

Connection con = null;
Statement st = null;
String driver ="com.mysql.jdbc.Driver";
ResultSet rs = null;

String url = "jdbc:mysql://localhost:3306/test";
String user = "root";
String password = "*****";
int id_cnt= 1 ;

try {

Class.forName(driver).newInstance();

con = DriverManager.getConnection(url, user, password);

st = con.createStatement();

//show_message_box("Connect","Connected=" + count);

String select_query = "Select * from cheminfo.bioactivity";

rs = st.executeQuery(select_query);

rs.first();
first_id =  rs.getInt("id");
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select_query = "Select * from cheminfo.bioactivity" ;

while (rs.next())
{
if(id == id_cnt)
{

//show_message_box("Connect","Connected=" + select_query + " \n"
+ rs.getString(1));

EditText citation = (EditText)findViewById(R.id.editText1);
EditText smiles = (EditText)findViewById(R.id.EditText01);
EditText protein = (EditText)findViewById(R.id.EditText02);
EditText ActivityType = 

(EditText)findViewById(R.id.EditText03);
EditText ActivityValue = 

(EditText)findViewById(R.id.EditText04);
citation.setText(rs.getString(1));
smiles.setText(rs.getString(2));
protein.setText(rs.getString(3));
ActivityType.setText(rs.getString(4));
ActivityValue.setText(rs.getString(5));

break;
}

id_cnt++;
}

//rs.

/*

String insert_qry = "insert into cheminfo.bioactivity 
(citation,SMILES,Protein,ActivityType,ActivityValue) values ('" + 
citation.getText().toString() + "','" + smiles.getText().toString()  + "','" + 
protein.getText().toString()  + "','" + ActivityType.getText().toString()  + "','" 
+ ActivityValue.getText().toString()  + "')";

st.executeUpdate(insert_qry);
show_message_box("Recor d","Inserted Record");
//if (rs.next()) {
//    System.out.println(rs.getString(1));

// }
* 
*/

} catch (Exception e) {
show_message_box("Connect Error","" + e);

} 
}

public void connect_mysql()
{

Connection con = null;
Statement st = null;
String driver ="com.mysql.jdbc.Driver";
ResultSet rs = null;
String ip="";
if(ip.length()==0){

ip="localhost";
}
String url = "jdbc:mysql://"+ip+":3306/test";
String user = "root";
String password = "*****";

try {

Class.forName(driver).newInstance();

con = DriverManager.getConnection(url, user, password);
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st = con.createStatement();

//show_message_box("Connect","Connected");

EditText citation = (EditText)findViewById(R.id.editText1);
EditText smiles = (EditText)findViewById(R.id.EditText01);
EditText protein = (EditText)findViewById(R.id.EditText02);
EditText ActivityType = (EditText)findViewById(R.id.EditText03);
EditText ActivityValue = (EditText)findViewById(R.id.EditText04);

String insert_qry = "insert into cheminfo.bioactivity 
(citation,SMILES,Protein,ActivityType,ActivityValue) values ('" + 
citation.getText().toString() + "','" + smiles.getText().toString()  + "','" + 
protein.getText().toString()  + "','" + ActivityType.getText().toString()  + "','" 
+ ActivityValue.getText().toString()  + "')";

st.executeUpdate(insert_qry);
show_message_box("Record","Inserted Record");
//if (rs.next()) {
//    System.out.println(rs.getString(1));
// }

} catch (Exception e) {
show_message_box("Connect Error","" + e);

} 

}
}

====

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.ncl.cheminfo"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk
android:minSdkVersion="8"
android:targetSdkVersion="15" />

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity

android:name=".MainActivity"
android:label="@string/title_activity_main" >
<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>
</application>

</manifest>
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10.8  Need of High-Performance Computing in 
Chemoinformatics

Harnessing high-end technology for solving problems in biology and chemistry 
is one of the recent emerging trends in modelling. Building efficient platforms to 
perform large-scale data modelling of the large data being produced by high-per-
formance computing (HPC) assumes high importance in view of the tremendous 
applications, some of which are mentioned below.

• Evaluation of Virtual Library
• Prediction of spectral data
• Text mining medical literature
• Harvesting chemical data from Internet
• Structure–activity relationship studies
• Lead identification and optimization
• Linking species (AYURVEDA) to modern medicine
• Image analysis
• Statistical machine learning
• Quantum mechanics/quantum chemistry (QM/QC) methods (reaction modelling)

A multicomponent platform ChemInfoCloud for enabling rapid virtual screening by 
integrating new and existing molecular informatics applications has been built [31]. 
It is provided with many bioinformatics and chemoinformatics functionalities and 
computational flexibility for automated workflows (Fig. 10.23).

10.9  Thumb Rules for Developing and Using Scientific 
Portals and Mobile Devices for Computing

• Build basic infrastructure compatible for open-source tools and computing re-
sources

• Get access to publicly available molecular data and preprocess them for reus-
ability

• Always think of the utility and developmental efforts required for building a 
portal before just pressing on anything technology has to offer. A portal need not 
be built for each and every computational task

• Follow good software engineering practices (security, version control)

10.10  Do it Yourself Exercises

• Build a portlet for computing molecular properties using Liferay
• Get access to cloud computing infrastructure (free or paid services)
• Build open-source tools for evaluation of virtual libraries
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Fig. 10.23  The functionalities deployed on the ChemInfoCloud engine

10.11  Questions

• What is a portal? Give some examples of portals in chemoinformatics domain.
• What do you understand by the term mobile computing?
• Enumerate the steps required for building an android application.
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