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Advertisement of Volume II of the Theory of the Top
(from the notices of the B. G. T e u b n e r publishing company in Leipzig).

As a continuation of the first volume of the Theory of the Top that
appeared in the summer of 1897, the second volume now follows. The
first volume established the general kinematic and kinetic foundations
of the theory; this volume poses, above all, the exercise of discussing
the motion of the symmetric top with a fixed support point, under
the influence of gravity, in all its details. Some related problems—the
motion of the general top under the influence of gravity and the Poinsot
motion of the force-free top for a general mass distribution—are more
considered in passing and used for comparison than treated exhaus-
tively.

The presentation is given a somewhat broader basis only for the
discussion of questions concerning the stability of motion, since this
currently developing theory may claim a special interest at the present
time. In this part of the work, the definitions and formulations retain
sufficient generality to encompass arbitrary mechanical systems. The
top appears here only as a particularly instructive example, or, if one
will, an “idea-forming motive.” Moreover, the concept of the stability
of motion is conceived here in an essentially different manner than in
the relevant textbooks (of T h o m s o n and T a i t or R o u t h), but
naturally in a way that subsumes the generally accepted concept of the
stability of equilibrium.

For what concerns the actual subject of the present volume, the
motion of the heavy symmetric top, the greatest possible comprehen-
siveness is sought in the treatment of the problem. It is therefore not
sufficient to present a general formal treatment of the problem; we also
seek—in the sense of the principles set out in the Introduction—to open
the way for full geometric and mechanical understanding of the motion,
which is, without question, a not less important goal for the treatment
of a mechanical problem than the analytic command of the subject.

On this basis, Chapter IV commences with a qualitative description
of the trajectory of the apex of the top, which only later is confirmed



x Advertisement.

through a precise quantitative discussion of the motion. The integra-
tion of the differential equations is first accomplished in a geometric
manner, whereby certain known first integrals of the motion are con-
structed as simple properties of the impulse vector. From the same
point of view, the unquestionably best analytic method for the calcu-
lation of the motion of the top, its representation by elliptic functions,
is reserved until the last chapter of this volume, in favor of the repre-
sentation by elliptic integrals, which indeed is less complete, but may
at first lie nearer to geometric intuition and mechanical interpretation.

On the other hand, it is necessary, if one can speak of a truly com-
plete treatment of the problem, to pursue the analytic developments to
an actual numerical calculation of the motion of the top. The conclu-
sion of the fourth chapter thus presents an introduction to numerical
calculation on the basis of the Legendre integral tables, as well as a
method for the derivation of approximation formulas by which one
can, in the practically most important cases, directly replace the exact
formulas. In Chapter VI, the question of numerical calculation is taken
up once again, and answered in the most satisfactory manner with the
help of the ϑ-series (including the estimation of the error bound).

Chapter V treats of some particular and particularly distinctive
types of motion. Two such motions are emphasized, which are des-
ignated as pseudoregular precession and the upright motion of the top.

Pseudoregular precession is the motion that occurs under the usual
experimental conditions of a sufficiently large eigenrotation. It hardly
differs, considered externally, from actual regular precession. The para-
dox that is associated with this motion is extensively discussed, and is
reduced to an imprecision of observation. Since most popular attempts
to explain the motion of the top view regular precession as the most
practically important phenomenon, there follows a short summary and
critique of the popular top literature.

The upright motion of the top is a uniform rotation about the ver-
tically positioned figure axis. This motion is well known as stable for a
sufficiently large rotational velocity, and as labile for a smaller velocity
(where the meaning of these words is still to be discussed). Among the

x



Advertisement. xi

motions that result from a disturbance of the labile state of motion, an
asymptotic case occurs that is of particular importance with respect to
the associated general stability considerations.

In the representation of the motion through elliptic functions in
Chapter VI, the fundamental meaning of the rotation parameters α, β,
γ, δ appears in full light. In these parameters, the representation of the
motion attains a simplicity and clarity that is not otherwise possible.

Moreover, all necessary developments from the theory of elliptic
functions are reproduced in the book with some completeness, so that
the relevant parts of the presentation can be directly regarded as an in-
troduction to this theory. It does not appear improper, from a didactic
point of view, to attach such an introduction to a specific example. The
present presentation differs from others in that the connection to the
general theory is brought out in a particularly clear manner through
the detailed use of geometric relations.

The concluding section of this volume may be of particular interest.
Here the integration problem of the motion of the top is taken up once
more, and indeed on the basis of the general Lagrange equations with α,
β, γ, δ themselves as the coordinates. It is shown that these equations
are the so-called Hermite–Lamé differential equations, and that their
integrals can be directly written in the form of elliptic functions without
any intermediate calculations worth mentioning. At the same time,
there follows from the form of these equations the remarkable fact that
the motion of the top can be identified with the motion of a spherical
pendulum in a space of four dimensions.

After the pure theory of the motion of the top has thus been brought
to a certain conclusion, it will be shown in the third and final volume of
the book to what extent this theory coincides with experience, or what
modifications must be made so that it can be applied to a series of
facts from physics and astronomy. Further, the point of view acquired
in the specific example of the top will be applied to the conception
of mechanics in general, and finally some detailed excursions into the
domain of modern theoretical physics will be undertaken.

xi
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Chapter IV.

The general motion of the heavy symmetric top.
Introduction to elliptic integrals.

§1. Intuitive discussion of the expected forms of motion;
preliminary agreements.

We turn in this chapter to the definitive treatment of the heavy sym-
metric top with three degrees of freedom, and thus assume throughout
that the center of gravity is different from the support point.

We have investigated until now only an entirely particular case of
the motion of the heavy top; namely, its regular precession (cf. §6 of
the previous chapter). We now treat, in contrast, of its general motion,
for arbitrary choice of the initial state. But before we enter into the
somewhat extensive quantitative discussion, which can be carried out
completely only with the help of elliptic integrals, we first wish to con-
ceive our problem qualitatively, and seek to acquire, in an intuitive way,
an initial overview of the expected forms of the motion. A correspond-
ing procedure is always necessary, especially for complicated problems
in mechanics, since one otherwise runs the danger of losing oneself in
details, and forgetting the subject itself in the formulas.*)

We first strike some simplifying agreements.
1. We always refer in the following to the spherical top. This is

all the more permitted, as we will soon learn to reduce the general
motion of the heavy symmetric top to that of the heavy spherical top.
The general existence of a heavy spherical top—that is, a body with
a spherical ellipsoid of inertia whose center of gravity is different from

∗) Cf. here the noteworthy remarks with which Mr. P o i n c a r é prefaces his
important “qualitative” investigations of differential equations, Journal de Liouville,
sér. III t. 7 and 8, 1881, 1882.108
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198 IV. The general motion of the heavy symmetric top.

the center of the sphere of inertia—has already been illustrated by an
example on page 106. We denote the common value of the moments of
inertia of our top by A.

2. We will assume that the center of gravity S lies beneath the
support point O (P < 0) for a vertically erected figure axis. This
assumption obviously signifies no restriction of generality, since it is
indeed in our hands to designate as the figure axis one or the other of
the half-lines into which the line OS is divided by the point O.

3. We must further choose the elements of the motion of the
top to which we will direct our primary attention. According to the
P o i n s o t theory of rotation, we are obliged to make clear, in the first
place, the locus of the rotation vector in the body and in space. The
forms of the polhode and herpolhode curves would then provide a com-
plete image of the motion. It is not easy, however, to envision the rolling
of these curves distinctly; moreover, the locus of the rotation vector is
poorly visible in experiments, and is brought to perception only with
special devices (cf. page 14). Much more evident, for the usual con-
struction of our models, is the locus of the figure axis in space. As a
consequence, we prefer to seek, instead of the polhode and herpolhode
curves, the curve described during the motion by some point on the
figure axis; the point, for example, that has distance 1 from O. In that
we imagine that the part of the figure axis endowed with mass (cf., for
example, the figure on page 1) has length 1, we will henceforth desig-
nate the named point as the a p e x o f t h e t o p. The curve that
this “apex of the top” traces on a unit sphere described about O then
provides an intuitively characteristic, if not entirely complete, image
of the course of the motion; the latter condition because our curve in-
deed expresses only the motion of the figure axis in space, but not the
rotation of the top about the figure axis.

In order to be able to reproduce the curve of the apex of the top
graphically, we must project the unit sphere on which it runs onto an
appropriate drawing plane. We choose for this plane the equatorial
plane of the sphere; that is, the horizontal plane passing through the
support point. As for the type of projection, it is perhaps most natural
to choose an orthogonal parallel projection (briefly called an “ortho-
graphic projection”), and thus to draw the curve as it would appear to
a viewer looking from an infinite distance above the sphere. This would,

198



§1. Intuitive discussion. 199

however, bring with it certain undesirable circumstances that will soon
be pointed out. It is better to employ a stereographic projection, in
which we use the lowest point of the sphere, the “south pole,” as the
center of projection. The drawing then gives the image of the curve
received by an eye at the south pole of the sphere. The equator of
the sphere appears in the drawing as the unit circle, whose midpoint
corresponds to the highest point of the sphere, the “north pole,” and
whose interior corresponds to the “northern hemisphere.”

Much more complete than the named orthographic projection, or
also the stereographic projection employed in the following, are, how-
ever, the stereoscopic images of the motion of the top that Mr. G r e e n -
h i l l and Mr. D e w a r*) have published. Here, two appropriate central
projections of the trajectory are presented, which, observed through the
stereoscope, bring out the complete impression of the spherical curve.
The typographic difficulty of giving an absolutely adequate image of
a space curve is therefore happily resolved by the employment of the
stereoscope. We abstain from this reproduction of the trajectory only
because we do not wish to assume that the reader is possessed of a
stereoscope.109

4. We can further simplify, without restricting the generality of our
problem, if we suitably choose the initial time from which we follow the
motion of the top. The initial time will always be chosen so that the
apex of the top is found at a highest or lowest point of its trajectory.
The curve of the apex of the top will thus have an initial horizontal
tangent, if it does not, in particular, form a vertically directed cusp. At
the same time, the initial position of the instantaneous rotation axis is
also predetermined by our choice of the initial time. The rotation axis
and the coinciding impulse axis then lie, evidently, in a vertical plane
passing through the initial position of the figure axis.

5. The initial state and the character of the resulting motion are now
essentially determined by three data: the initial inclination of the figure
axis with respect to the vertical, the initial inclination of the impulse
vector with respect to the vertical, and the length of this vector. The
other data that come into consideration—for example, the azimuth at
which our figure axis appears as seen from above—are inessential, and

∗) Proceedings of the London Math. Soc., Vol. 27, pp. 587 and ff., 1896, Engi-
neering, Vol. 64, p. 311, 1897.
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200 IV. The general motion of the heavy symmetric top.

have, in particular, no influence on the form of the figures to be drawn
in the following. We measure the initial inclination of the figure axis
with respect to the vertical, as usual, by the angle ϑ; the position and
length of the impulse vector are known if we give, for example, its per-
pendicular projections onto the vertical and the figure axis. Since we
denote the components of the impulse vector in the X, Y , Z frame by
L, M , N , the projection of the impulse vector onto the figure axis is
to be denoted by the letter N . If we further introduce the components
of the impulse vector in the x, y, z frame, whose z-axis, as agreed pre-
viously, should coincide with the vertical, then the projection of the
impulse onto the vertical is to be assigned the letter n. The impulse
component N determines the velocity r with which the top turns about
its own axis. Thus N will be designated concisely as the eigenimpulse,
and the velocity component r as the eigenrotation. On the other hand,
the impulse component n represents a turning-impact about the ver-
tical axis that is equivalent to a certain horizontally directed ordinary
impact exerted on the apex of the top. This impact determines the
velocity with which the apex of the top progresses laterally (that is, in
the horizontal direction) in its initial position. As a consequence, the
impulse component n will be designated concisely as the lateral impact.
In summary, we can say that the character of the general motion of the
top depends essentially on only three constants: the initial inclination
of the figure axis with respect to the vertical, the eigenimpulse, and the
lateral impulse at the beginning of the motion; that is, on the values
of the quantities ϑ, N , and n at the time t = 0. It will be shown in the
third section, moreover, that the impulse components n and N retain
their initial values for the entire course of the motion, so that we can
speak simply of the “constants” n and N instead of the “initial values”
of these quantities, which circumstance we will, for simplification of the
manner of expression, already make use of now.

6. While we will bestow on the constant n all possible values, we
wish to assume, in this section, that the constant N is positive; we will
thus assume that the rotation of the top about the figure axis occurs
in the clockwise sense. Further, we wish to fix the initial value of the
angle ϑ in a special manner from the outset. Namely, we specify that

the figure axis is initially horizontal, so that the angle ϑ is equal to
π

2
.
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§1. Intuitive discussion. 201

The curve of the apex of the top will thus proceed from the equator of
the unit sphere, having at the equator a highest or lowest point. The
extent to which the following considerations are specialized by these

stipulations
(
N > 0 and ϑ =

π

2

)
will be examined later. —

After these preliminary agreements, we can proceed to classify all
possible forms of motion of our spherical top that are given by arbitrary
values of the constants n and N between a few particularly simple
special cases, and avail ourselves, moreover, of a kind of continuity
principle, which we formulate thus: for continuous changes of the initial
state (the values of n and N), the motion of the top will also change
continuously; discontinuous transitions, which mechanically speaking
would be interpreted as unstable forms of motion, will first be regarded
by us as excluded. This principle demands an exact quantitative veri-
fication, as does our entire qualitative manner of deduction. In fact,
the following considerations are set forth not as absolutely rigorous,
but rather as only plausible; we will later have to supplement them in
various directions. However, the figures that are drawn for the curves
of the apex of the top are not only qualitatively, but also quantitatively
correct.

The totality of cases that we have to review are represented,
according to the infinitely many values that the constants N and n
may have, by a twofold infinite multiplicity. (Cf. here the schema in
Fig. 36 on page 215.) We must naturally be satisfied, in the follow-
ing, with extracting a series of individual characteristic types from this
multiplicity.

We consider first the special cases that we have indicated. These are,
on the one hand, regular precession, and, on the other hand, pendulum
motion.

According to pages 178 and 179, there are, for a given mass distri-
bution of the top and for given values of the (constant) angle ϑ and the
velocity component μ, two possible values of the corresponding velocity
component ν that give rise to a regular precession. In the case of the
spherical top, these values are both real, and are given by the equations

a) ν =
P

Aμ
, b) ν = ±∞.

It is easy, especially in the present case ϑ =
π

2
, to go over from

the precession constants ν and μ to our impulse components n and N .

201



202 IV. The general motion of the heavy symmetric top.

The quantities ν and μ signify (cf., for example, the figures of page 48)
the parallel projections of the rotation vector onto the vertical and the
figure axis, respectively. If the figure axis now stands perpendicular to
the vertical, these parallel projections are identical with the respective
normal projections of the rotation vector that we have previously de-
noted by 
 and r. From 
 and r, however, the impulse components n
and N for our spherical top are calculated by multiplication with the
value of the moment of inertia, which we denote by A. We therefore

replace, in a) and b), ν and μ by
n

A
and

N

A
, respectively. As a result,

the magnitude of the lateral impulse n that gives rise, together with

the eigenimpulse N , to a regular precession ϑ =
π

2
is

a) n =
AP

N
or b) n = ±∞.

Case a), the previously so-called “slow precession,” occurs for a
lateral impact that acts in the counterclockwise sense as seen from the
vertical (n < 0), since we assumed above that P < 0 and N > 0; in
case b), the so-called “fast precession,” the sense of the lateral impact
is undetermined (n = ±∞).

We have next to acquaint ourselves with the second of the above-
named special cases, the pendulum motion. The top moves as an or-
dinary pendulum if we impart to it, in the initial position, neither an
eigenimpulse nor a lateral impact (N = n = 0), and therefore, con-
cisely said, if the impulse vector initially has length zero. Although
this statement is self-evident, we nevertheless wish to prove it in detail
from our considerations of the impulse.

If, for a horizontally placed figure axis, the top is abandoned to the
influence of gravity, this influence generates, during the first moment of
time dt, an infinitesimal impulse vector of magnitude P sinϑ dt = P dt
that has the line of nodes OK (cf. Fig. 24) as its axis. The top there-
fore begins to turn about this axis, so that the angle ϑ is diminished.
The position of the line of nodes will not be changed by this rota-
tion. In the next moment, the additional impulse of gravity acts about
the same axis OK and is added to the previous impulse algebraically;
the rotational velocity of the top about this axis accelerates corre-
spondingly; the line of nodes retains its original position. Through
repetition of this consideration, one recognizes that the impulse of
the top continuously falls in the direction OK; the motion consists
at each instant of a rotation about this axis; the figure axis moves

202



§1. Intuitive discussion. 203

in a fixed vertical plane, and the curve of the apex of the top is a
vertically positioned circular arc. The velocity of the apex of the top
along the trajectory is calculated by the condition that the rate of
change of the impulse at any time must equal the exterior turning-force
P sinϑ, or, if we wish to avail ourselves of the manner of expression of
D’Alembert’s principle, that the turning-force must maintain equilib-
rium with the inertial resistance of our motion.

It remains only to show that the apex of the top descends, after over-
running the highest point of the sphere, just as much as it previously
ascended; that is, falls to a point of the equator and then reverses. Let
us conceive, for this purpose, that moment at which the apex of the top
passes the highest point of the sphere. If we were to reverse the sense of
the impulse vector present at this moment, and therefore the velocities
of the collected points of the top, the apex of the top would traverse,
according to a general fundamental theorem of mechanics, its previous
path in the reverse sense, therefore describing a circular quadrant. The
path that the apex of the top describes in the continuation of its origi-
nal motion results from this reversed path, however, by reflection in the
vertical plane OK, as follows from the symmetry of the force system
that influences the motion. The continuation of the path consequently
consists again of a circular quadrant that is descended until the equato-
rial point B diametrically opposed to the equatorial point A is reached.
Since the apex of the top arrives at B with velocity zero, we now have
exactly the same conditions as at the beginning of the motion at A.
As a result, the continuation of the trajectory consists of the semi-
circle AB traversed in the reverse
sense, and so forth. The motion is
thus characterized as a simple pendu-
lum motion.

In the stereographic projection,
our trajectory appears (cf. the adja-
cent figure) simply as a diameter (AB)
of the unit circle that is traversed al-
ternately in the sense of the upper or
lower arrow.

We begin with this first figure,

=N 0B

K

A

characterized by the values n = N = 0, in order to make clear the
more general cases of the motion. We will next give a series of figures

203



204 IV. The general motion of the heavy symmetric top.

in which the lateral impact is continually equal to zero (n = 0), while
the eigenimpulse (N) will successively increase.

§2. Intuitive discussion of the expected forms of motion;
continuation and conclusion.

As we now go over to the actual carrying out of our qualitative dis-
cussion, we first take, as agreed, n = 0, and moreover assume, in the
first figure to be developed (Fig. 25), that the eigenimpulse is relatively
small compared to the change in the length of the impulse vector that
the action of gravity produces during a unit time, so that continuity
with the preceding figure is preserved. In order to be able to assess the
resulting change of the trajectory, we wish beforehand to lead the top
artificially along the previous path with the previous velocity, and at
the same time take care that the eigenimpulseN retains its initial value.
This would be realized practically, for example, if one constructed a
groove with the form and position of the previously described trajec-
tory, in which the apex of the top could slide without friction.

In this enforced motion, the equilibrium between the force of gravity
and the inertial resistance that existed for the free pendulum motion
N = 0 is no longer present. In fact, only the changes in the horizontal
component of the impulse will be compensated by the force of gravity,
while the changes in the eigenimpulse, which, as we assume, retains

its length but changes its direction in
space simultaneously with the figure
axis, remain unbalanced. As a result,
there arises a resistance that we can
designate, since it stands perpendic-
ular to the instantaneous rotation
axis, as a deviation resistance (cf.
§5 of the preceding chapter). In our
example, this resistance would be
manifested as a lateral pressure on
the groove.

The sense of this pressure is
easy to see from the auxiliary figure above. The figure shows the
eigenimpulse in two neighboring positions OJ1, OJ2 during the first
phase of the motion; that is, while the apex of the top oscillates on the
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§2. Intuitive discussion. 205

vertical circle ANB fromA toB. The sense of the change of the impulse
is given by the arrow p. The deviation resistance, which is opposed to
the sense of the impulse change, acts about the axis of this arrow, or
the parallel arrow p′ extended through O, in the counterclockwise sense
as seen from p or p′. It therefore seeks to deflect the apex of the top
to the rear of our figure during the entire first phase of the motion.
One recognizes, in the same way, that during the second phase of the
motion—that is, while the apex of the top oscillates from B to A—a
deviation resistance appears that strives to overturn the apex of the
top to the fore of the figure. In general, we can say that the apex of
the top seeks, as a result of the deviation resistance, to deflect to the
right as calculated from its direction of progression; the right wall of
the groove would therefore have to bear, for the given sense of the
motion, a certain pressure. The magnitude of this pressure, which is
equal to the uncompensated part of the rate of change of the impulse,
is, as likewise follows from our latter figure, directly proportional to
the magnitude of the eigenimpulse.

We now set the figure axis free, in that we remove the guidance
of the apex of the top. The consequence is this: the apex of the
top will evade the corresponding deviation resistance of the trajectory
to the right. The straight line by which we represented the pendu-
lum oscillation in Fig. 24 will go over, using the previous graphi-
cal manner of presentation, into an arc that opens toward the side
to which the deflecting force of the deviation resistance acts. Since
we have assumed for the present that
the eigenimpulse is relatively small,
the deviation of our arc from the
straight line will also be relatively
small (cf. Fig. 25).

It is easy to see that the apex
of the top must progress from its
initial position A perpendicularly
with respect to the equator, both in
space and in our stereographic image.
We need only make clear, for this
purpose, the approximate position of
the impulse vector. The impulse vector initially lies, since we as-
sumed n = 0, horizontally. The following positions of our vector re-
sult from this initial position if we successively add the supplemental

205



206 IV. The general motion of the heavy symmetric top.

impulse of gravity geometrically. The axis of this supplemental impulse
likewise lies, however, always horizontally. The impulse vector must
therefore have a horizontal axis during the entire duration of the motion
(in contrast to the enforced motion represented in Fig. 24a, where the
impulse vector is gradually elevated). In this consideration already
lies, as we note in passing, the proof of our previous assertion that the
impulse component n always retains its initial value n = 0, to which
we will return in the next section under more general assumptions.
The rotation axis of our spherical top, however, coincides with the
impulse axis, and is therefore also horizontal. Since the apex of the
top progresses at each moment perpendicularly with respect to the
direction of the rotation axis, the apex of the top must progress from
its assumed initial position on the equator in the vertical direction. The
trajectory of the apex of the top is thus perpendicular to the equator
at the beginning of the motion, as claimed. Moreover, the velocity of
progression is zero at the first moment, since the rotation axis initially
passes through the apex of the top itself.

To survey the entire course of our trajectory, we must only further
consider its symmetry properties. We conceive, for this purpose, that
moment at which the apex of the top has attained its highest position
(H) on the sphere. According to our continuity principle, this highest
point deviates only slightly from the highest point that the apex of the
top attains in the pendulum motion, the north pole. The stereographic
image of this highest point will therefore be not far removed from the
midpoint of the figure. Through O and H we lay the vertical plane
E, whose intersection with the equator gives us the position of the
instantaneous impulse vector. We now argue just as above for the
simple pendulum.

If we were to reverse the sense of the impulse vector at the considered
moment, the apex of the top would traverse its previous path AH in
the reverse sense, and arrive at A with velocity zero. At the same
time, we consider that in each of the two positions of the top that are
symmetric with respect to the plane E, the turning-moment of gravity
is the same. It is thus to be concluded that the apex of the top will
describe, in the continuation of its original direction of motion from H,
the arc HB that is symmetric to AH with respect to the vertical plane
E, and that it will arrive at B with the velocity 0. The arc AB of our
trajectory thus consists of two equal mirror-image halves.

Arriving at B, the apex of the top finds itself under exactly the
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same conditions as at A. As a result, the further course of the trajectory
must be the same as at the beginning of the motion. A new arc BA′ is
therefore attached at point B, an arc that consists, in its turn, of two
symmetric halves, and is congruent to the arc AB. It can be generated
from the latter by a rotation about the vertical. A cusp evidently arises
in this manner at B. The same consideration is valid for point A′ as for
point B. The trajectory also forms a cusp at A′, and progresses with
an arc A′B′ that is congruent to the arc AB. All these arcs AB, BA′,
A′B′, . . . will, because of their congruent form and similar position,
be tangent at their respective highest points H to a certain parallel
circle on the sphere, which in our case narrowly encompasses the north
pole. In summary, we can describe the course of our trajectory in the
following manner.

The trajectory of the apex of the top represents, in our case, a zigzag
curve that circulates about the vertical in the counterclockwise sense,
without, in general, closing; it consists of a series of congruent arcs, or,
if we wish, a series of half-arcs that are alternately symmetrically equal
and congruent to each other. The curve is entirely contained within two
parallel circles; namely, in our case, the equator and a parallel circle in
the neighborhood of the north pole. Our curve is tangent to the latter
circle where it strikes it; it touches the former with cusps.

A word here about the advantage of our chosen method of projec-
tion. If we had used the orthographic projection instead of the stereo-
graphic projection, apparently regular arcs would appear instead of
cusps, as shown in the orthographic
projection of Fig. 25a. In fact, every
space curve that terminates in a cusp
presents, viewed from the tangent
direction of the cusp, an aspect that
in no way betrays to the eye the
presence of a singularity. Instead of
the cusps present in the original, we
have only a so-called “masked singu-
larity” in the image. It is thus clear
that the use of the orthographic projection would efface the character of
the trajectory. We will, therefore, always produce the following figures
in the stereographic projection.110
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208 IV. The general motion of the heavy symmetric top.

We now wish to let the magnitude of the eigenimpulse successively
increase, and at the same time take the lateral impact, as previously,
equal to zero. If we again make the orienting experiment of page 204,
in which we lead the apex of the top along the path of the pendulum
motion, then we will notice a now stronger deviation resistance that
strives to deflect the figure axis to the right of its direction of motion.
In fact, it follows from Fig. 24a that this resistance is proportional to
the magnitude of the eigenimpulse. If we go over from the enforced
pendulum motion to the unconstrained top motion, then the curvature
of the individual arcs of which the trajectory is composed will become
greater, and their span width smaller, as we increase the value of the
eigenimpulse N . At the same time, the highest point of the individual
arcs is successively removed from the north pole; the bounding par-
allel circle that contains the collected highest points of the arcs must
therefore broaden with increasing N .

The following figures express these phenomena in three steps. In Fig.
26, the eigenimpulse is chosen approximately three times as great as

in Fig. 25, and in Fig. 27 nine times as great. Fig. 28 represents the
limiting case of a very large N . While in Figs. 26 and 27 the rela-
tion with the figure of the pendulum may still be recognized clearly,
Fig. 28 shows a trajectory that differs only microscopically, so to speak,
from a continuously traversed circle. It has the smallest conceivable
similarity with the figure of the pendulum motion, sooner appear-
ing, on imprecise inspection, to coincide with the second of the previ-
ously mentioned special cases, the regular precession. This coincidence,
however, pertains, as we must emphasize, only to the location of the
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apex of the top, and not to its velocity and velocity direction. While in
regular precession the velocity of progression of the apex of the top is
constant along the entire circle, it varies for our case, in a very short
time interval, between the value zero
that occurs at the equator and a
maximum value that is attained at
the tangent point with the second
bounding parallel circle. We will be
able to fittingly designate this most
highly noteworthy form of motion as
a pseudoregular precession.

In experiments, this latter case
is even the rule, since the devices for
winding the top usually produce a
very strong eigenimpulse compared to the action of gravity. If one
thus investigates the motion of the top only experimentally, one easily
comes to the paradoxical conception that the apex of the top initially
moves perpendicularly to the direction of the acting force, a concep-
tion that naturally runs directly counter to the principles of mechanics,
but which is nonetheless frequently advocated in the literature.*) We
therefore emphasize expressly that under the previously assumed initial
conditions (n = 0), our trajectory is always a cusped curve; an actual
regular precession is completely impossible.

For the arrangement of experiments, we infer from our latter figure
the rule that we must choose the eigenimpulse of the top as small as
possible if we at all wish to observe an accurately confirmable trajec-
tory; it is thus recommended that the top be set into rotation by the
hand instead of with the cord, so that the strength of the impulse can
be conveniently regulated. —

While we have thus far allowed the eigenimpulse of the top to be
increased stepwise with the lateral impact constantly assumed to be
zero, we will now, conversely, vary the lateral impact and fix the eigen-
impulse. Thus an entire series of new figures develops from each of the
previous.

From the ordinary pendulum motion in Fig. 24, for example, there
always arises, with the addition of a lateral impact, a case of the
motion of the so-called spherical pendulum, in which the apex of the
top behaves just like a heavy mass particle that is fixed to the end

∗) Cf. our criticism of the popular top literature in the following chapter (§3).
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210 IV. The general motion of the heavy symmetric top.

of a rigid and massless rod pivoted at O, to which a horizontally di-
rected impulse is imparted in its initial position. We need not delay
ourselves here with this well-known and easily observed motion. We
only mention, for the sake of the following, that the reversion points
(cusps) that appear at the equator in our figure for the ordinary pen-
dulum motion are resolved into flattened arcs that are tangent to the
equator, and that the span width of the arcs, which originally amounted
to two right angles, is somewhat broadened. In fact, the apex of the top
must, since it is subject to the lateral impact n in its initial position and
in each of the following positions where it reaches the equator, progress
instantaneously in these positions in the direction of the equator, and
indeed, according to the sign of n, in the clockwise or counterclockwise
sense as seen from the vertical.

If we begin, on the other hand, from the pseudoregular precession
in Fig. 28, there then arises, with the addition of any lateral impact,
a motion that, observed coarsely, is not very different from the pre-
vious, and that (in a broadened sense) may again be designated as a
pseudoregular precession. Here our microscopic cusped arcs will resolve
into small loops or flattened arcs, according to whether we let the ini-
tial horizontal impulse act in the clockwise or counterclockwise sense
about the vertical. Observation naturally gives no clear account of this
modification of the trajectory.

Essentially new types result, in contrast, from Figs. 25–27. We
wish, in particular, to consider in detail the case of a relatively small
eigenimpulse, and therefore develop the series of figures that results
from Fig. 25 by variation of n. We first let n decrease from the value
zero in Fig. 25, therefore imparting to the apex of the top in the initial
position an impact that seeks to turn it in the counterclockwise sense.

We recall that for a certain negative value n =
AP

N
calculated above,

regular precession must occur. The trajectory of the apex of the top
simply becomes, in this case, the equator traversed in the counterclock-
wise sense (cf. Fig. 31 below). The comparison of Figs. 25 and 31 now
provides a clue that enables us to assess the form of the trajectory

for the intermediate values of n
[
0 > n >

AP

N

]
. We may presume

on the basis of our continuity principle, namely, that these trajectories
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must always be classified between Figs. 25 and 31. Relying on this
principle, or on our earlier deliberations, we will further assume that
the general symmetry relations of trajectory 25, the congruence of the
component arcs, etc., persist for the addition of a lateral impact.

In Fig. 25, the individual congruent arcs were contained between
the equator and a smaller parallel circle in the neighborhood of the
north pole; in Fig. 31, we can say, this second parallel circle coin-
cides with the equator, since the trajectory itself has gone over into
the equator. We thus conclude, for intermediate values of n, that the
second bounding parallel circle is always enlarged. As a result, the
component arcs of the trajectory will
bulge toward the equator, and at
the same time must be successively
stretched in length for decreasing
n. Moreover, it is clear, just as in
the passage from the ordinary to
the spherical pendulum, that the
cusps in Fig. 25 will be resolved
into flattened arcs, since indeed
wherever the apex of the top reaches
the equator, the impact n acts in
a direction tangent to the equator.

We thus draw the three Figs. 29, 30, and 31, of which the first
corresponds to a small value of the lateral impact, so that the conti-
nuity with Fig. 25 is evident (the particular value n = −N was chosen
in the figure), and the second to a greater value of n (and indeed a
value fivefold greater than in the previous case); the third figure is the
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212 IV. The general motion of the heavy symmetric top.

special case of slow regular precession n =
AP

N
(under the proportions

of the drawing, this case occurs for a value of n again fivefold greater
than that in Fig. 30.)

We can thus describe the collected character of the trajectories,
under the present conditions of a constant N and a value of n that

decreases from zero to
AP

N
, in the following manner:

The trajectory progresses in the counterclockwise sense about the
vertical without, in general, closing; it always consists of a series of
symmetrically equal or congruent half-arcs, whose span width succes-
sively increases with decreasing n, and which are pressed more and more
to the equator. The trajectory is entirely within two parallel circles, to
which it is always tangent where it strikes them; namely, at the equa-
tor, on the one hand, and, on the other hand, at a parallel circle that
is always enlarged with decreasing n.

We return once more to Fig. 25, and now let n increase in the pos-
itive sense for a fixed value of N ; we therefore impart to the apex of
the top, in its initial state, a lateral impact in the clockwise sense. The
result will thus be, to a certain degree, the reverse of the previous.
While the second bounding parallel circle broadens, as we saw, with
decreasing n, it will first diminish with increasing n; while the span
width of the individual component arcs was earlier increased, it now
initially decreases. Otherwise, the general character of the motion re-
mains similar to Fig. 25; in particular, the trajectory must circulate,
considered as a whole, in the counterclockwise sense about the vertical
for sufficiently small positive n. On the other hand, however, the apex
of the top moves, because of the positive sign of n, along the equator in
the clockwise sense in its initial position, and also at each later moment
when it reaches the equator. We thus conclude that there is a point
on each component arc where the apex of the top, proceeding in the
radial direction, changes its rotation sense about the vertical; we thus
recognize the necessity of the appearance of loops. The cusps of Fig.
25 that went over into flattened arcs in Fig. 29 now resolve into loops,
as is indeed a frequent phenomenon in geometry. All these remarks
will be confirmed by the following Fig. 32, which corresponds to a very
small positive value of n (we have chosen n = 0,4N).
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§2. Intuitive discussion. 213

If we let n increase further, we soon arrive at a value where the
inner parallel circle has contracted to the north pole of the unit sphere
(cf. Fig. 33). It is noted in passing that this case corresponds, as we
will later see, to the value n = N . The points in the previous figure at
which the rotation sense about the vertical changes now come together
in the north pole of the sphere.

To envision the configuration of the trajectories with progressively
increasing n, we finally draw upon the limiting case n = ∞, for which,
according to page 202, the motion again becomes a regular preces-
sion. While the inner parallel circle is reduced to a point in the case
n = N , it coincides in the case n = ∞ with the exterior bounding
circle. We will again presume, on
the basis of our continuity principle,
that the parallel circle in question
continuously widens with increas-
ing values of n (N < n < ∞).
While it was previously tangent to
the trajectory from the exterior,
it will now be enclosed by the
trajectory. The curve now runs
throughout in the clockwise sense,
and indeed with increasing velocity
about the vertical as n increases;
it will be pressed by the widening inner circle always more to the
equator; the span width of the congruent arcs of which it is com-
posed becomes larger and larger. An example of this form of the
trajectory is given in Fig. 34, in which, incidentally, n = 5N is as-
sumed. The limiting case n = ∞, the fast regular precession, may be
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214 IV. The general motion of the heavy symmetric top.

indicated schematically by Fig. 35. Corresponding to the twofold sense
of the running arrows, we can conceive the latter figure just as well as
the limiting case of the trajectory for infinitely increasing positive as
for infinitely decreasing negative n.

If we wish to summarily describe the behavior of the trajectory for
increasing positive n, we can
speak, for example, in the following
manner:

For positive n, the trajectory
always runs in the clockwise sense
in the neighborhood of the equator,
but twice reverses its rotation sense,
for not too large values of n, within
each of the congruent arcs of which
it is composed. The appearance of
loops is characteristic for these tra-
jectories. The inner bounding circle

is initially excluded from the trajectory, but is enclosed from the exte-
rior after the highest point of the sphere is once crossed. From then on,
the span width of the individual component arcs always increases, and
becomes infinitely large in the limiting case n = ∞.

It remains only to investigate the passage from the slow precession

n =
AP

N
in Fig. 31 to the fast precession n = ±∞ in Fig. 35. We saw

that the moving parallel circle successively nears the equator with de-

creasing n <
AP

N
, and coincides with the equator in the case of regular

precession. For further decrease in n, it will first retain its direction
of motion, and therefore again be removed from the equator, going
over into the southern half of the unit sphere or the exterior of the
unit circle in the stereographic projection. Correspondingly, the equa-
tor in the image would henceforth become the inner, and the moving
parallel circle the outer bounding circle. This tendency of the motion
does not, however, last long; there is, namely, a deepest (or in the im-
age, most exterior) position for our moving parallel circle. After this
position is attained for a certain value of n, the parallel circle again
tends, for further decrease of n, toward the equator, with which it
indeed must coincide in the case n = −∞. Under the assumed propor-
tions of our figures, however, the extreme position of our parallel circle
lies so near the equator that it would be completely indistinguishable
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§2. Intuitive discussion. 215

from the equator by eye. Correspondingly, the trajectory of the apex
of the top will also always remain extraordinarily near the equator, so
that we must forgo its graphical reproduction. In the stereographic
image, it would enclose the equator in nearly circular windings, which,
corresponding to the large negative value of n, would be traversed in
the counterclockwise sense with great velocity.

The circle of possibilities that are offered for fixed N and variable
n has thus been closed.

We could now develop, by adding a lateral impact, the correspond-
ing series of figures from Figs. 26 and 27, just as we have done for
Fig. 25. We must be content, however, to point out later (cf. §7) the
differences from the preceding series that would thus appear.

In conclusion, we wish to localize the preceding figures through the
entry of their numbers in a schema, in which n is assigned as the ab-
scissa and N as the ordinate.

Pendulum

Slow
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Pseudoregular

Spherical

cession

N-axis

recessionP

P
r
e
c
e
s
s
i
o
n

F
a
s
t
P
r
e
c
e
s
s
i
o
n

P re-

The ordinate axis of our schema contains Figs. 24 through 28; the
abscissa axis corresponds to the collected cases of the ordinary or spher-
ical pendulum motion. Figs. 29 through 35 lie on a line parallel to the
abscissa axis and slightly removed from it. If we go parallel to the or-
dinate axis to infinity, we always arrive in the domain of pseudoregular
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216 IV. The general motion of the heavy symmetric top.

precession; if we proceed in the direction of the abscissa to infinity, we
find the case of fast regular precession. The slow regular precession
determines, as follows from the formula nN = PA, an equilateral hy-
perbola in the drawn position. The doubly extended multiplicity that
is formed by the totality of all trajectories with a horizontal initial po-
sition of the figure axis and a positive value of the eigenimpulse thus
finds an intuitive representation in our schema.

§3. Quantitative treatment of the general motion of the
heavy symmetric top. Execution of the six required

integrations.

We now go over from the approximate qualitative discussion to an
exact quantitative treatment, in which we first remove the restriction
to the spherical top and consider an arbitrary symmetric top with mo-
ments of inertia A and C. The final goal is to integrate the system of
differential equations that governs the motion of the top.

We first employ some impulse considerations of a geometric charac-
ter that allow the execution of the intended integration to be, in part,
replaced. We rely essentially on the fundamental theorem IIa of page
115, according to which the rate of change of the impulse in space is
equal to the turning-force produced by the external forces; that is, in
our case, to the turning-moment of gravity. We seek above all to ex-
press, as on page 123 for the force-free top, the detailed form of the two
“impulse curves”; that is, the curves that the endpoint of the impulse
vector describes relative to space and relative to the body.

We first note that the turning-force of gravity, whose axis indeed
falls along the line of nodes, is constantly perpendicular to the vertical.
According to our impulse theorem, the endpoint of the impulse in space
therefore proceeds in a direction that is also constantly perpendicular
to the vertical. We thus see that

The endpoint of the impulse moves relative to space in a horizontal
plane; our first impulse curve is therefore a plane curve; the projection
of the impulse onto the vertical—that is, the quantity earlier designated
as the “lateral impulse”—has an invariable length.
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§3. Execution of the integrations. 217

If, as agreed on page 200, we denote the components of the impulse
(the coordinates of its endpoint) in the xyz frame by l, m, n, we then
have
(1) n = const.
This result was already mentioned in the previous section, and was
established for a special case in a similar manner.

Secondly, we consider the curve that the endpoint of the impulse
describes relative to the top. Here we begin, instead of from the impulse
theorem IIa, which determines the rate of change of the impulse in
space, from the impulse theorem IIb of page 145, which establishes
the change of the impulse with respect to the top. According to this
theorem, the rate of change of the impulse with respect to the top is
equal in direction and magnitude to the turning-force of the external
forces augmented by the so-called centrifugal turning-force. The latter
was found in the same place to be equal to the vector product of the
impulse and rotation vectors; its axis thus stands perpendicular to
these two vectors, and therefore stands, since for the symmetric top
these two vectors lie in a plane with the figure axis, perpendicular to
the figure axis. Since, moreover, the turning-force of gravity also stands
perpendicular to the figure axis, we see that the endpoint of the impulse
must constantly progress in the top perpendicularly to the figure axis.
We thus have the following theorem:

The endpoint of the impulse moves relative to the top in a plane
parallel to the equatorial plane; our second impulse curve is also a
plane curve; the projection of the impulse onto the figure axis—that
is, the quantity introduced above as the eigenimpulse—has an invari-
able length.

If we denote, as previously, the impulse components in the XY Z
system by L, M , N , then the equation
(2) N = const.
obtains. We have thus derived in general a result likewise already
mentioned in the previous section.

In addition to the impulse curves, we can consider the curves that
the endpoint of the rotation vector describes relative to space and rela-
tive to the top; that is, the herpolhode and polhode curves. Of these,
however, only the polhode curve behaves as simply as the impulse curve.
In fact, the polhode curve lies in a plane perpendicular to the figure axis;
its points have the fixed distance from the equatorial plane

r =
N

C
.
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218 IV. The general motion of the heavy symmetric top.

If we seek, in contrast, to make the corresponding passage from our
first impulse curve to the herpolhode curve, which consists, as we know,
in a deformation with respect to the axes X, Y , Z, then we obtain,
because of the changing spatial position of these axes, no such simple
result: the herpolhode curve is (disregarding the case of the spherical
top) not a plane curve, but rather, as we will soon show, a generally
spherical curve.

This remark can once again serve to place in the correct light the
advantage that the impulse vector offers over the rotation vector in
kinetic respects. It obviously leads to intractabilities if one places the
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==const.n

kinematically defined ro-
tation vector before the
impulse in kinetic ques-
tions. The impulse vector,
in kinetics, is the simplest
motion-regulating element.

While we have thus far
drawn our conclusions from
the direction of the impulse
change, we now wish to con-
sider its magnitude as well.
We will thus be led to a fur-
ther property of the general
motion of the top.

Consider the two neighboring positions i1 and i2 of the impulse
vector at the beginning and end of the time interval Δt. The endpoints
of i1 and i2 give a binding line Δi that is parallel, according to our
impulse theorem, to the line of nodes, and, for sufficiently small Δt,
has the length

(a) |Δi| = P sinϑΔt.

At the same time, according to the Pythagorean theorem (cf. the
figure),

|i2|2 − |i1|2 = |Δi|2 − 2|i1||Δi| cos(i1,Δi)(b)
= |Δi|2 + 2|i1||Δi| cos(i1,K).

Now |i1| cos(i1,K) signifies the projection of the impulse vector onto
the line of nodes, which coincides, up to the factor A, with the pro-
jection of the rotation vector onto this line. A rotation about the line
of nodes produces in the time interval Δt, however, a change in the
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angle ϑ of such value that Δϑ : Δt will equal the magnitude of the
named rotation. We thus have

|i1| cos(i1,K) = A
Δϑ

Δt
,

and, because of (a),

(c) |Δi||i1| cos(i1,K) = AP sinϑΔϑ.

If we pass to the limit Δt = 0 in equation (b), then the term of the
second order |Δi|2 falls away, and we obtain, with consideration of (c),

d(|i|2) = 2AP sinϑ dϑ = −d(2AP cos ϑ).

Thus the expression
|i|2 + 2AP cosϑ

retains its original magnitude during the motion. If we denote this
fixed quantity by k, we then have

(3) |i|2 + 2AP cos ϑ = k.

We could have written down this relation without further ado if we
had only invoked our general impulse theorem and the theorem of the
vis viva, which was indeed deduced, in its turn, from our impulse theo-
rem in the second chapter. In fact, we see immediately that equation
(3) goes over, with consideration of (2), into the theorem of the vis
viva. Instead of (3), namely, we can write

L2 +M2 +N2 + 2AP cos ϑ = k.

If we now divide by 2A and introduce on the right a new constant h
that is related to the previous constant k by the formula

(3a) h =
k

2A
+
N2

2

(
1
C
− 1
A

)
,

there follows

(3b)
1
2

(L2 +M2

A
+
N2

C

)
+ P cos ϑ = h.

The first term on the left-hand side of (3b) signifies the kinetic energy

T =
1
2

(L2 +M2

A
+
N2

C

)
=

1
2
(A(p2 + q2) + Cr2)

of the top; the second term represents the potential energy U in the
case of the action of gravity. According to the definition of pages 117
and 118, the second term is, namely, dU = −dA, where dA is the work
that the external forces perform on our system for an infinitesimal
displacement; that is, in our case,

dA = P sinϑ dϑ.

219



220 IV. The general motion of the heavy symmetric top.

There follows, in fact,
U = P cosϑ,

so that we can again write, instead of (3b),

(3′) T + U = h.

We must therefore conceive the preceding geometric consideration
as a new proof of the theorem of the vis viva for the heavy symmetric
top.

We now wish to make clear the analytic meaning of our results thus
far. We will see that we have found, in equations (1), (2), and (3), three
first integrals of the differential equations of the heavy symmetric top.

For this purpose, we will derive these equations anew by integration
of the differential equations. For greatest convenience, we pose the
latter in the form of the general Lagrange equations, as given on page
154. Here we must insert for T the expression

T =
A

2
(sin2 ϑ · ψ′2 + ϑ′2) +

C

2
(ϕ′ + cos ϑ · ψ′)2

of page 156, from which follow
∂T

∂ϕ
=
∂T

∂ψ
= 0.

On the other hand, the work that gravity performs in the infinitesimal
displacement dϕ, dψ, dϑ is, as was just used,

dA = Φ dϕ+ Ψ dψ + Θ dϑ = P sinϑ d θ.

The components Φ, Ψ, Θ of the external force in the directions of the
coordinates ϕ, ψ, ϑ are therefore

Φ = Ψ = 0, Θ = P sinϑ.

Thus the first two Lagrange equations become

d[Φ]
dt

=
d[Ψ]
dt

= 0;

we therefore have, for the entire duration of the motion,

[Φ] = const., [Ψ] = const.

Now according to page 109, however, the impulse components [Φ] and
[Ψ] are nothing other than the perpendicular projections of the impulse
vector onto the figure axis and the vertical, and are therefore equal, re-
spectively, to N and n. Our preceding equations are therefore identical
with (1) and (2). We will thus be able to designate the fixed values of
our two impulse components as two first integration constants.
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§3. Execution of the integrations. 221

We can, naturally, also derive these first integrals from the Euler
equations of pages 141 and 142. We must set A = B, and insert for Λ,
M, N the respective values

Λ = P sinϑ cos(K,X), M = P sinϑ cos(K,Y ), N = P sinϑ cos(K,Z).

First,
cos(K,Z) = 0,

since the line of nodes stands perpendicular to the figure axis; since we
further denote (cf. Fig. 3 on page 18) the angle that the line of nodes
forms with the positive X-axis by ϕ,

cos(K,X) = cosϕ, cos(K,Y ) = − sinϕ.

Thus there follow

Λ = P sinϑ cosϕ, M = −P sinϑ sinϕ, N = 0.

The third of equations (3′′) of page 142 is therefore simply

C
dr

dt
= 0, or

dN

dt
= 0,

so that equation (2) again follows.
The derivation of (1) from the Euler equations would require a some-

what longer calculation that we wish to suppress here.
We can find our equation (3), finally, according to the usual analytic

method of proof of the theorem of the vis viva from the Lagrange
equations or the Euler equations, in that we multiply these equations
by appropriate factors and add; here there appears as the third constant
of integration our above quantity h, the constant of the vis viva that is
equivalent to our above constant k.

In addition to the three integrals of the motion given by equations
(1) to (3), the complete integration of our problem demands the con-
struction of three further relations between the position coordinates of
the top and time, each with an arbitrary constant of integration. These
relations cannot, as can our first three integrals, be given in elementary
form; correspondingly, it is hardly possible to derive them through di-
rect geometric considerations. Their analytic character, nevertheless,
is very simple; they may be represented, namely, by mere quadratures.

We must now consider, in addition to the Euler equations, the
so-called kinematic equations (9) of page 45, or, more conveniently,
consider, in addition to the Lagrange equations (1) of page 154, the
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222 IV. The general motion of the heavy symmetric top.

equations (2),

[Φ] =
∂T

∂ϕ′ , [Ψ] =
∂T

∂ψ′ , [Θ] =
∂T

∂ϑ′
,

of the same page. In the first two of these equations, we insert the con-
stant values N and n on the left-hand sides; we calculate the right-hand
sides according to the expression for T given above. We thus find

C(ϕ′ + cos ϑ · ψ′) = N,

C cos ϑ · ϕ′ + (A sin2 ϑ+ C cos2 ϑ)ψ′ = n.

Through the combination of these two equations there first follows

(4) ψ′ =
n−N cos ϑ
A sin2 ϑ

;

there then follows from the first equation

(5) ϕ′ = N

(
1
C
− 1
A

)
+
N − n cosϑ
A sin2 ϑ

.

The integration with respect to t can naturally not yet be executed
in this form. But if we enter equation (3′) of the vis viva with the found
values of ϕ′ and ψ′, there follows

A

2

{
ϑ′2 +

(
N cos ϑ− n
A sinϑ

)2
}

+
C

2

{
N2

C2

}
+ P cos ϑ = h.

Here we introduce the important auxiliary variable
u = cos ϑ;

the previous equation is then written, after we have multiplied it by
2A sin2 ϑ, as

A2u′2 + (Nu− n)2 +
A

C
N2(1− u2) + 2APu(1 − u2) = 2Ah(1 − u2).

Thus

(6)
du

dt
=
√
U,

where U signifies an abbreviation for the somewhat complicated
expression

(7) U=
1
A2

[
2Ah(1−u2)− (Nu−n)2− A

C
N2(1−u2)− 2APu(1−u2)

]
.

We introduce in U our previous quantity k instead of the constant h;
since, according to equation (3a),

2Ah− A

C
N2 = k −N2,

there follows

(7′) U =
1
A2

[−(Nu− n)2 + (k −N2 − 2APu)(1 − u2)],
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§3. Execution of the integrations. 223

or, ordered according to powers of u,

(7′′) U =
1
A2

[2APu3 − ku2 + 2(nN −AP )u+ (k −N2 − n2)].

Since U depends solely on our auxiliary variable u, the integration
in (6) can be executed immediately. We have only to write

(6′) dt =
du√
U
.

If we insert this value of dt in (4) and (5), then the latter equations
become

(4′) dψ =
n−Nu
A(1− u2)

du√
U

and

(5′) dϕ = N
( 1
C
− 1
A

)
dt+

N − nu
A(1− u2)

du√
U
.

We now carry out the quadratures in (4′), (5′), and (6′) and obtain

(8)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t =
∫

du√
U
,

ψ =
∫

n−Nu
A(1− u2)

du√
U
,

ϕ =
∫

N − nu
A(1− u2)

du√
U

+N

(
1
C
− 1
A

)
t,

where U is defined by (7), (7′), or (7′′).
We have not written the three additive constants of integration,

since they are irrelevant for the geometric character of the correspond-
ing motion. These integration constants are, for example, the values
t0, ψ0, ϕ0 that we may assign to the value of u at the lower limits
of the integrals. They can be dispatched by a suitable choice of the
point of time from which we measure t and a suitable specification of
the axes x and X from which we measure ψ and ϕ. Nevertheless, we
state that we have obtained in the three essential constants n, N , and
k (or h), as well as in the three inessential constants t0, ψ0 and ϕ0,
the required number of six arbitrary quantities that correspond to the
general motion of a system with three degrees of freedom.

In this place we will regard the attainment of our goal by mere
quadratures as a stroke of luck; in the following, however, this will not
be an isolated occurrence. In fact, we will become acquainted in a later
chapter with a comprehensive class of important mechanical problems,
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224 IV. The general motion of the heavy symmetric top.

the motion of the so-called cyclic systems, that may be treated, exactly
as our top problem, in whole or in part by mere quadratures. The top
will appear there as an instructive example for the theory of cyclic
systems. At the same time, the integration method followed here will
receive a new illumination through the comparison with more general
problems.111

As a concluding historical remark, we note that the formation of
the above integral formulas is due to L a g r a n g e,*) who considered
the general problem of the heavy symmetric top for the first time.112

§4. General periodicity properties of the motion.
Preliminaries on the behavior of the elliptic integrals for a

circulation of the integration segment. Integral
representation of α, β, γ, δ.

One designates the integrals assembled in the previous section for t,
ψ, and ϕ as elliptic integrals, since they lead to the square root of an
expression of the third degree under the integral sign. As is well known,
such integrals may not be replaced, in general, by elementary functions.
They define, rather, a class of transcendental functions that has been
investigated by mathematicians with predilection for 100 years.

Our next exercise is to read the most general and most evident prop-
erties of the motion of the heavy top from the form of these functions.
In particular, we wish to demonstrate in an analytic manner that the
apex of the top progresses to and fro between two parallel circles of
the unit sphere, and that its trajectory consists purely of congruent or
symmetrically equal segments. These facts were already attained in the
first sections of this chapter in a mechanical-geometric manner. Dis-
regarding the more precise demonstration of the somewhat uncertain
earlier conclusions, we will, in the following, attain the possibility of
confirming the form of the trajectory in detail by numerical calculation.

We must therefore employ the same fundamental considerations that
have been developed elsewhere in the theory of elliptic functions. In
that we tie these considerations to our concrete example, we hope to
give a comfortable first introduction to this theory, which we will not
assume as known.

∗) In the Mécanique analytique sec. partie, sect. IX, Nr. 35. Ges. W. Bd. XII.

224



§4. Periodicity properties of the motion. 225

We place ourselves, at first, completely in the standpoint of the older
authors—for example, L e g e n d r e—and consider only real values
of the integration variable u, which we will represent on a line, the
“u-axis.” Because of the geometric meaning of u (u = cos ϑ), only the
portion of this axis between −1 and +1 comes directly into considera-
tion for mechanics.

In addition, this segment will be swept, in general, only in part for
the motion of the top. Since, namely, the increment of t must certainly
be a real quantity, u may take, because of the relation

dt =
du√
U
,

only values for which
√
U is real, and therefore U is positive. Now U ,

however, will in general be negative and never positive at the points
u = ±1. We have, according to equation (7′) of the preceding section,

for u = + 1 · · · · U = − 1
A2

(N − n)2,

for u = − 1 · · · · U = − 1
A2

(N + n)2;

that is, U < 0 except when N = ±n, and therefore U = 0. The
variable u is thus restricted to a certain interval between −1 and +1
in which U is positive. Such an interval must always be present; were
it not present, we would have to say that the integration constants n,
N , and k that appear in U were chosen impermissibly in the sense of
mechanics, since they correspond to no real motion. The boundaries
of our interval will be formed by two points at which U vanishes. Let
these points be u = e and u = e′.

In addition to these two roots, the equation U = 0 has a third root
that is necessarily real and lies outside the interval from −1 to +1. We
denote this root by e′′,*) and easily show that e′′ > +1 or e′′ < −1
according to whether P > 0 or P < 0. In fact, U takes the sign of the
highest term in u for infinitely large u, and therefore, according to equa-
tion (7′) of the preceding section, the sign of Pu3. This sign is positive
in the case P > 0 for u = +∞ and in the case P < 0 for u = −∞; U
therefore changes its sign in the former case between +∞ and +1, and

∗) We i e r s t r a s s consistently denotes the three roots of the expression of the
third degree under the integral sign by e1, e2, e3. We have chosen the different
notation above, since for us the Weierstrass normalization of the integral does not
come into consideration.
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226 IV. The general motion of the heavy symmetric top.

in the latter case between −∞ and −1. Thus the third root in question
certainly lies on our u-axis, and indeed to the right of u = +1 in the
case P > 0 and to the left of u = −1 in the case P < 0.

We must further distinguish well between the two signs of
√
U . It is

convenient to assume, instead of a simple u-axis, a double axis, or, as
we may also say, to imagine the u-axis to be doubly covered. Each two
overlying points of this double axis (cf. Fig. 38) then represent the same
values of u and U , but opposite values of

√
U . At the vanishing points

of U , these two opposite values are not different. The same holds for the
position u = ±∞, where

√
U takes the two values ±∞, which are not

different in function theory. We express this in the figure by allowing
the two coverings of the axis to come together in a point at these
positions. We also designate the four points e, e′, e′′, ∞, if we prepare
for the usual terminology of Riemann surfaces, as branch points. The
method of the double covering of our u-axis already belongs, in general,
to the circle of ideas introduced by R i e m a n n in function theory,
which we can approach more closely only in the sixth chapter.

From the standpoint of the real integration variable adopted here,
the distribution of positive and negative values of the square root to the
two coverings is, to a certain extent, at our pleasure. We will naturally
arrange the sequence of values of

√
U in the two coverings so that they

form a continuous sequence, and, therefore, so that a change of sign
occurs only at the branch points (U = 0 or U = ∞). The choice of sign
in each interval ee′, e′e′′, etc., remains arbitrary. Only later, when we
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§4. Periodicity properties of the motion. 227

speak of complex values of the quantity u, will a specific rule be given.
For the present, we will regard the specification of the signs in the
preceding figure as an arbitrary convention.

We now investigate the elliptic integral constructed for t, in its de-
pendence on u, in somewhat more detail. Here we use the evident fact
that in mechanics time signifies not only a real, but also a continuously
increasing quantity, and that dt must therefore be necessarily positive.

As the lower limit of the integral, we take the smaller of the two roots
of U = 0 between −1 and +1, which we denote (as in the figure) by e.
Starting from this point, we must let u occur only in the mechanically
useful interval between e and e′, and indeed, according to the previously
established principle, in the upper covering of this interval, so that we
obtain for

dt =
du√
U

a positive value. We must then let u increase, continuously remaining
in the upper covering, to the point u = e′. Arriving at this point, we
must reverse direction, since dt is real, and must pass into the lower
covering, so that dt remains positive. If we arrive back at e, we must,
on the same grounds, pass into the upper covering. The process then
repeats, progressing in the same fashion.

The path that we assign to the variable u must therefore consist of
the continuous circulation of the segment ee′ in the specified sense. (Cf.
the arrow in the preceding figure.)

This statement immediately yields a first important property of the
general motion of the top. It asserts, namely, that

The trajectory of the apex of the top continuously oscillates to and
fro between two parallel circles cos ϑ = e and cosϑ = e′ on the unit
sphere.

At the same time, we learn to calculate the position of the two
parallel circles. We are obliged, for this purpose, to solve the cubic
equation U = 0; its two roots between −1 and +1 provide the two
values in question of cos ϑ.

Further, we can now give the time that elapses while the apex of the
top goes over from its lowest to its next highest position. We designate
this time by ω, and have

(1) ω =
∫ e′

e

du√
U
.
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228 IV. The general motion of the heavy symmetric top.

Just as great is the time duration in which the apex of the top
returns back to its lowest position; this time duration is, because of the
stipulated negative sign of

√
U on the lower covering,∫ e

e′

du

−|√U | = ω.

An interval 2ω thus passes each time that u executes a complete circuit
of the integration segment ee′. This is the basis on which one designates
2ω as the period of the elliptic integral (πε
ı́oδoς = circuit).

We obtain the same time interval 2ω if we let u, beginning from any
value of the integration interval, circulate the segment ee′ and return
to the starting point. Conversely, to any two points of time that differ
by 2ω, or any multiple of this quantity, there corresponds the same
value of u; that is, the same vertical elevation of the apex of the top
above the equatorial plane of the unit sphere. The motion of the apex
of the top therefore represents, with respect to its vertical component,
a periodic process in time.

The same also holds, however, for the horizontal component of this
motion. The latter is determined by the changing value of the angle
ψ. The angle ψ originally denoted the angle measured from the x-axis
to the line of nodes. The line of nodes, however, always stands per-
pendicular to the figure axis and to its (orthographic or stereographic)
projection in the equatorial plane. Since the magnitude of ψ in our
integral representation of page 223 is defined, in any case, only up to
an additive constant of integration, we can, if we choose this constant
specifically, also conceive ψ directly as the angle that the projection of
the figure axis forms with the x-axis. The equation

ψ = ψ(u),

in which the function ψ signifies the elliptic integral given above, then
directly yields the equation of the trajectory in polar coordinates. We
need only express u in terms of the radius vector 
 from O to the image
of the apex of the top, and thus set, according to whether we use the
orthographic or the stereographic image,

u =
√

1− 
2 or u =
1− 
2

1 + 
2
.

It is now clear that the integral ψ = ψ(u) will exhibit periodic-
ity properties that are entirely similar to those of the just investigated
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§4. Periodicity properties of the motion. 229

integral for t. We must first determine, because of the factor
du√
U

and its meaning as the increment of time, the integration path of the
variable u in the same manner as above. If we begin, correspondingly,
from the lower limit e, then the integration, extended once to the point
e′, yields the characteristic increase of ψ during the time ω. We denote
this increase by ψω, and have

(2) ψω =
∫ e′

e

n−Nu
A(1− u2)

du√
U
.

We obtain the double of this increase if we integrate further beyond
the point e′ in the lower covering and return to the initial point. In
fact, because of the specified sign of

√
U for the lower covering,∫ e

e′

n−Nu
A(1− u2)

· du

−|√U | = ψω.

The same value 2ψω naturally results if, beginning at any point
of our segment, we let the integration variable circulate this segment
completely one time. The quantity 2ψω thus represents the increase
of the azimuth of the apex of the top while it returns, after crossing a
highest and a lowest position, from any point to a point lying at the
same height above the equatorial plane. This increase is thus the same
for all points of the trajectory. In other words,

The trajectory of the apex of the top coincides with itself if we rotate
it about the vertical through the angle 2ψω. It thus consists of a (gen-
erally infinite) series of congruent arcs, each of which is traversed in
the time 2ω. The motion of the apex of the top represents, considered
spatially as well as temporally, a periodic process.

We have already recognized geometrically the just stated congruence
of the individual arcs; our present analytical supplement now teaches
us, furthermore, to calculate the span width of the arcs by means of
equation (2).

We next wish to verify analytically what we likewise recognized
earlier; namely, that each arc of the trajectory is divided into two sym-
metrically equal half-arcs. We state, for this purpose, understanding
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230 IV. The general motion of the heavy symmetric top.

by u any value between e and e′, that the two integrals

∫ e′

u
dψ and

∫ u

e′
dψ,

of which we imagine the first carried out in the upper, and the second
in the lower covering, have the same value (say ψ0). On a specified
congruent arc, each value of u corresponds to two points that have the
respective azimuth values ψ1 and ψ2, where

ψ1 = ψω − ψ0, ψ2 = ψω + ψ0.

We thus see that each two successive points of our trajectory corre-
sponding to the same value of u are mirror images with respect to the
line ψ = ψω. Each of our individual congruent arcs is thus divided, as
claimed, into two mirror-formed half-arcs.

Finally, exactly the same conclusions are valid with respect to the
integral through which we have represented ϕ. We can directly say that
the ϕ-coordinate also increases, for a complete circuit of the variable
u about the integration segment, by a determined additive quantity
2ϕω. As a result, the motion of the top about the figure axis also has
a periodic character. This motion is repeated in the same tempo at
which the trajectory is periodically reproduced. The ϕ-coordinate is
indeed less important for the geometric character of the motion than
the ψ-coordinate; in particular, it is not at all expressed in our previous
graphical representation of the motion of the top.

We have associated our discussion thus far with the expressions for
the Euler angles ψ and ϕ, which, because of their intuitive meaning, are
in fact most convenient for geometric questions. We remark, however,
that for the purpose of a thorough analytic treatment, our parameters
α, β, γ, δ offer a decided advantage. This will be made clear in the
sixth chapter. Here we satisfy ourselves with deriving, from the above
expressions for t, ψ, and ϕ, the corresponding integral representations
for the logarithms of our parameters.

We begin from the original definitions of α, β, γ, δ in equations (8)
of page 21, where, for example,

α = cos
ϑ

2
· e

i(ϕ+ψ)
2
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§5. Relation between the motions of different tops. 231

was defined. We calculate lgα, replace cos
ϑ

2
by its value

√
u+ 1

2
in

terms of u, and obtain

lg α =
1
2

lg (u+ 1) +
i

2
(ϕ+ ψ)− 1

2
lg 2.

We now insert the integrals for ϕ and ψ of page 223, write lg (u+1)
as an integral, and permit ourselves to neglect the additive constant on
the right, in that we imagine it combined with the unwritten arbitrary
constant of integration. After reduction, there results for lgα the fol-
lowing expression, to which we immediately adjoin the representations
acquired in the corresponding manner for lg β, lg γ, lg δ:

(3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lgα =
∫ {

A
√
U + i(n+N)
2A(u + 1)

+
iN

2

(
1
C
− 1
A

)}
du√
U
,

lg β =
∫ {

A
√
U − i(n−N)
2A(u − 1)

− iN

2

(
1
C
− 1
A

)}
du√
U
,

lg γ =
∫ {

A
√
U + i(n−N)
2A(u − 1)

+
iN

2

(
1
C
− 1
A

)}
du√
U
,

lg δ =
∫ {

A
√
U − i(n+N)
2A(u + 1)

− iN

2

(
1
C
− 1
A

)}
du√
U
.

It may at first appear that these expressions are more complicated
than the integral representations for ϕ and ψ. In reality, however, they
exhibit a much simpler function-theoretic behavior. We will later see
that the quantities lgα, lg β, lg γ, lg δ are so-called normal integrals of
the third kind, while ψ and ϕ may only be composed additively from
such simplest elements.

§5. On the relation between the motions of different tops
that yield the same impulse curve, and on the motion of the

spherical top.

We will show in this section that we need henceforth consider, as
already mentioned previously in passing, only the motion of the spher-
ical top. For this purpose, we first employ a somewhat more general
deliberation.

We consider a specific “first” symmetric top, and consider the curve
that the endpoint of the impulse describes in space for an arbitrary
natural motion. We then ask ourselves whether we can conceive this
curve as an impulse curve in a multifold manner; that is, does this curve
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232 IV. The general motion of the heavy symmetric top.

correspond, as the locus of the endpoint of the impulse vector in space,
to the motion of a suitably chosen “second” symmetric top? We will
see that this question is to be affirmed.

The constants of the mass distribution and the motion of our first
and second tops may be distinguished by the indices 1 and 2, so that
A1, C1, P1 and A2, C2, P2 denote the moments of inertia and the grav-
itational moments of our first and second tops, respectively. We wish
to suppose, specifically, that the second top possesses the same equa-
torial principal moment of inertia and the same gravitational turning-
moment as the first, so that

A1 = A2, P1 = P2;

the moment of inertia about the figure axis can, in contrast, be different.
Further, we wish to specify the initial position of our second top so that
its figure axis coincides with that of the first top, and thus

ϑ1 = ϑ2

at the beginning of the motion. Finally, we must also specify the initial
position and magnitude of the impulse as equal in the two cases, since
we indeed wish that the two tops give rise to the same impulse curve.
We therefore set

n1 = n2, N1 = N2, k1 = k2,

and can omit, moreover, the indices of the assumed equal constants A,
P , n, N , k.

The question posed above may now be decided, if we refer to our
explicit integral formulas, very easily. We need only note that the
expression for U in equation (7′) of page 222, just as the formulas for
t and ψ in equations (8) of page 223, depend merely on the assumed
equal quantities n, N , k, A and P , and are independent, in contrast,
of the assumed unequal principal moment of inertia C. As a result,
t and ψ will be the same functions of u for the two tops; that is, the
trajectories of the apices of the two tops will be identical with respect to
their spatial form and temporal progression. That the impulse curves
will also be identical then follows directly from the equality of the
impulse components n and N , as well as the equality of the length of
the impulse, which for corresponding equal values of cosϑ is stated by
the theorem of the vis viva in the form of equation (3) of page 219.

Our question above is thus to be answered in the following sense: To
a specific possible impulse curve correspond the infinitely many motions
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of all those symmetric tops with the same initial impulse, the same ini-
tial position of the figure axis, the same gravitational turning-moment,
and the same equatorial principal moment of inertia. In addition to
the impulse curves, the trajectories of the apices of the tops will also be
identical for all such motions.

We can also, however, give an immediate geometric account of this
characteristic coincidence between the motions of the different tops.

We compare, for this purpose, the course of the impulse curves
of our first and second tops, in that we compose the initial impulse
successively with the infinitesimal turning-impact of gravity. There
follows, because of the equality of P and the equality of the initial
impulse and the initial position of the figure axis, the same change of
the impulse at the first moment for the two tops. In particular, we can
say that the difference |i1|2 − |i2|2 retains its initial value zero at the
first moment, or, more precisely, that the differential quotient of this
difference with respect to time is equal to zero in the initial position.

We consider, further, that the invariable relations (3) of page 219,

|i1|2 + 2AP cosϑ1 = k, |i2|2 + 2AP cos ϑ2 = k,

obtain between the length of the impulse and the inclination of the
figure axis for the motions of the two tops.

From these two equations, we conclude that the inclination of the
figure axis with respect to the vertical initially changes in the same
manner for the two cases. If we form, namely, the difference of the
preceding equations, there follows, by differentiation with respect to t,

2AP
d

dt
(cos ϑ1 − cos ϑ2) = − d

dt
(|i1|2 − |i2|2) = 0.

If we also add, in addition to the equality of the inclination angle ϑ
at the first moment, the equality of the projection N of the impulse
vector onto the figure axis, it follows with necessity that the initially
unified figure axes remain unified at the next moment.

We are thus led back to the same conditions that held at the be-
ginning of the two motions. Through repetition of our conclusion, we
see that each two symmetric tops that have the same initial position
of the figure axis and the same initial impulse must always have, for
equal values of A and P , the same impulse and the same position of
the figure axis. This is, however, again the theorem stated above.
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234 IV. The general motion of the heavy symmetric top.

Each two of the motions compared here are naturally not completely
identical. They differ, for example, in the form of the herpolhode curve,
as we will show in more detail below. The position and magnitude of
the rotation vectors will obviously be different for equal impulse curves
and equal trajectories of the apex of the top but unequal values of the
principal moments of inertia C. This difference of the instantaneous
rotation can be expressed, however, only in the respective motion of the
top about its figure axis—that is, in the value of the angle ϕ—since
indeed the motion of the figure axis itself, as we saw, must be the
same. In fact, C also enters explicitly in the integral formula for ϕ (see
equations (8) of page 223).

According to this same equation, however, we can say that

(1) ϕ−N
(

1
C
− 1
A

)
t

always has the same value for each two tops of our series. The rotation
components ϕ′ for two such tops therefore differ only by a constant,
whose magnitude depends on the moment of inertia C.

In particular, a spherical top is found among our series of tops with
equal impulse curves and trajectories. We will draw upon this spherical
top with predilection when any “first” symmetric top is given. Accord-
ing to the preceding, we must determine its moment of inertia, which
we denote by A, so that A = A1.

If we take, further, the quantities P , n, N , k and the initial posi-
tion of the figure axis equal to the corresponding quantities of the given
symmetric top, then we are certain that the trajectories of the spherical
top and the symmetric top become identical, while, at the same time,
the two angular velocities ϕ′ differ only by a constant. The spherical
and the symmetric tops are thus, for our purpose, not essentially dif-
ferent. If one has treated generally of the motion of the former, the
motion of the latter may be given immediately.

The possibility of the reduction of the general top problem to the
spherical top was first noted by Mr. D a r b o u x.*)

As a first application of this reduction, we may prove a theorem,
already mentioned on page 218, on the herpolhode curve of the sym-

∗) Mouvement d’un corps pesant de révolution, Journ. de Liouville, sér IV, t. 1,
1885.113

234



§5. Relation between the motions of different tops. 235

metric top. We wish to show that the herpolhode curve of the symmetric
top is a spherical curve.

We begin from the fact that the herpolhode curve of the corre-
sponding spherical top is planar. In fact, the herpolhode curve for the
spherical top is similar to the impulse curve; that is, the curve that the
impulse vector describes in space. That this latter is a plane curve was
shown explicitly on page 216.

We have represented the coordinates of the herpolhode curve, which
we denote, as previously, by π, κ, 
, in terms of the values of ϕ, ψ, ϑ
and their differential quotients with respect to time on page 45; in
particular, there was given for the third coordinate


 = ψ′ + cos ϑ · ϕ′.

Now 
 has, for the spherical top with moment of inertia A, the

constant value
n

A
. Further, the values of ψ and ϑ for the symmetric top

are, as we just saw, equal to the corresponding values for the spherical
top, while the angular velocity ϕ′ is calculated, according to (1), from
that of the corresponding quantity for the spherical top by the addition

of N
( 1
C
− 1
A

)
. We thus have, understanding by ϕ′ the value of this

angular velocity for the spherical top and by 
 the value of the third
herpolhode coordinate for the symmetric top,

n

A
= ψ′ + cos ϑ · ϕ′,


 = ψ′ + cos ϑ · ϕ′ +N

(
1
C
− 1
A

)
cos ϑ,

or

(2) 
 =
n

A
+N

(
1
C
− 1
A

)
cos ϑ.

We express, further, the length of the rotation vector for the motion
of the symmetric top once in terms of its coordinates π, κ, 
, and once

again in terms of the coordinates p, q, r, where we can also write
N

C
instead of r. We thus obtain

(3) π2 + κ2 + 
2 = p2 + q2 +
N2

C2
.

The theorem of the vis viva in the form of equation (3) of page 219
then permits us to calculate p2 + q2 in yet another manner. Namely, if
we place in the named equation

|i|2 = L2 +M2 +N2 = A2(p2 + q2) +N2,
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236 IV. The general motion of the heavy symmetric top.

then there follows

A2(p2 + q2) +N2 + 2AP cos ϑ = k,

or

p2 + q2 =
k −N2 − 2AP cosϑ

A2
.

Equation (3) thus becomes

(4) π2 + κ2 + 
2 =
k − 2AP cos ϑ

A2
+N2

(
1
C2
− 1
A2

)
.

Finally, we eliminate cosϑ from (2) and (4), and find an equation
in which, except for π, κ, 
, only constants appear; namely,

(5) π2 + κ2 + 
2 =
k

A2
− 2CP (A
− n)

AN(A− C)
+N2

(
1
C2
− 1
A2

)
,

or

π2 + κ2 +
(

+

CP

N(A− C)

)2
=

k

A2
+

2CPn
AN(A− C)

+
C2P 2

N2(A− C)2
(5′)

+ N2

(
1
C2
− 1
A2

)
.

This, however, is the equation of a sphere. Its midpoint lies on the

vertical at the distance
CP

N(A− C)
from the support point; its radius is

equal to the square root of the right-hand side of (5′). The herpolhode
curve is therefore, in fact, a spherical curve.

The difference between the herpolhode curves for the different tops
of our series also follows immediately from the dependence of the posi-
tion and size of the sphere on the moment of inertia C. In particular,
the radius of the spherical top in our series becomes, because of the
denominator A − C, infinitely large; at the same time, its midpoint is
removed to infinity. The spherical curve is thus transformed, for this
special case, into a plane curve, as it must be.

The introduction of the spherical top is particularly recommended
because of a characteristic reciprocity law that obtains for the motion
of the spherical top. We claim that

The inverse motion of the spherical top—that is, the rotation of
space with respect to the imagined fixed top—is again a top motion.

We see the correctness of this theorem geometrically if we ponder,
in detail, that the figure axis and the vertical play the same roles, for
the direct motion of the spherical top, as the vertical and the figure axis
play for the inverse motion, or, more precisely said, as the half-lines
diametrically opposed to the vertical and the figure axis.
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§5. Relation between the motions of different tops. 237

The analytic proof consists in the following. We set C = A in
equations (7′) and (8) of pages 222 and 223, and change n into −N
and N into −n, which corresponds to an interchange of the vertical
with the half-line diametrically opposed to the figure axis, and so forth,
while we leave our third integration constant k unchanged. Then the
expression U , and thus also the function t of u, remain unchanged. At
the same time, ψ goes over into −ϕ and ϕ into −ψ. We know from
the first chapter (see pages 30 and 31), however, that the change of ϑ,
ψ, ϕ into ϑ, −ϕ, −ψ corresponds to the passage from the direct to the
inverse rotation. The inverse motion is therefore, in fact, again a top
motion; it is characterized by the essential constants −N , −n, k if the
corresponding constants of the direct motion are n, N , k.

This reciprocity law is naturally limited by the special symmetry
relations of the spherical top. For more general systems, the inverse
motion has an entirely different kinetic character than the direct, as was
pointed out previously on page 12. Our reciprocity law already loses its
validity for the symmetric top, since, in this case, the figure axis and
the vertical do not appear with equal significance in the construction
of the rotation vector from the impulse vector. Analytically, this is
expressed by the fact that the term

N

(
1
C
− 1
A

)
t,

which does not remain unchanged with the interchange of n and N
with −N and −n, appears in the expression for ϕ in equations (8) of
page 223.

We will later draw a considerable advantage from the established
reciprocity law of the spherical top in the calculation of our impulse
curves or our polhode and herpolhode curves. When we have some-
how found, for example, the polhode curve, or, what is the same for
the spherical top, the “second impulse curve,” we can immediately
construct the equation of the herpolhode curve, or that of the “first
impulse curve.” Namely, the polhode curve of the direct motion lies
diametrically opposed with respect to the support point, as noted on
page 14, to the herpolhode curve of the inverse motion. From the her-
polhode curve of the inverse motion, however, the herpolhode curve of
the direct motion follows on the basis of our reciprocity law through
the interchange of n and N with −N and −n. Thus we can state
the following rule for the derivation of the herpolhode curve from the
assumed known polhode curve:
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238 IV. The general motion of the heavy symmetric top.

One reverses the signs of the coordinates p, q, r of the polhode curve,
which may be found as functions of time and the integration constants
n, N , k, and writes −N , −n in place of n, N . Then the coordinates
p, q, r of the polhode curve go over into the coordinates π, κ, 
 of the
herpolhode curve. The coordinates l, m, n of the first impulse curve
result in the same manner from the coordinates L, M , N of the second.

We place below, for easier use, the most important formulas acquired
thus far for the special case of the spherical top.

From equations (4) and (5) of page 222, there follow, for a spherical
top of moment of inertia A,

(6) ψ′ =
n−Nu
A(1− u2)

, ϕ′ =
N − nu
A(1− u2)

, u = cos ϑ;

equations (8) of page 223 become

(7)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t =
∫

du√
U
,

ψ =
∫

n−Nu
A(1− u2)

du√
U
,

ϕ =
∫

N − nu
A(1− u2)

du√
U
,

(7′) A2U = −(Nu− n)2 + (k −N2 − 2APu)(1 − u2);

the integral representations of α, β, γ, δ, now run, finally, according to
page 231,

(8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lgα =
∫

A
√
U + i(n +N)
2A(u+ 1)

du√
U
,

lg β =
∫

A
√
U − i(n −N)
2A(u− 1)

du√
U
,

lg γ =
∫

A
√
U + i(n −N)
2A(u− 1)

du√
U
,

lg δ =
∫

A
√
U − i(n +N)
2A(u+ 1)

du√
U
.

The passage to a symmetric top with moment of inertia C >
< A is

simply accomplished afterward if we add to the preceding value of ϕ or
lgα, lg β, lg γ, lg δ the term

(9) N

(
1
C
− 1
A

)
t or ± i

2
N

(
1
C
− 1
A

)
t,

respectively.
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§6. Confirmation of the figures of §2. 239

§6. Confirmation of the forms of motion of the spherical top
developed in the first sections; the characteristic curves of

the third order in the case e = 0.

After having established the general periodicity properties of the
motion in the fourth section, and thus having obtained a first confir-
mation of the intuitive developments of the first sections, we now seek
to acquire a more detailed insight into the form of the trajectories, in so
far as this is possible in an analytic-algebraic manner without further
entrance into the theory of elliptic integrals. We will investigate, for
this purpose, how the form of the trajectory depends on the constants
n, N , and k. We can restrict ourselves, according to the previous sec-
tion, to the case of a spherical top, whose moment of inertia we denote
by A.

We first wish to make a change in the choice of the integration con-
stants. We wish to introduce, instead of the constant k, which has no
sufficiently simple geometric meaning, and which, moreover, is subject
to certain rather complicated inequalities in order that the correspond-
ing motion be real, a new constant that indicates the initial position
of the figure axis with respect to the vertical. In particular, we choose
the initial time from which we follow the motion, as already agreed on
page 199, so that the apex of the top initially occupies a highest or
lowest point of its trajectory on the unit sphere. The initial inclination
(ϑ0) of the figure axis is then, according to page 227, determined by
one of the roots of the cubic equation U = 0 between −1 and +1. If
we denote this root by e, we then have cos ϑ0 = e.

We can now eliminate the constant k from U , and introduce e in-
stead. This is accomplished in the following manner. We have, accord-
ing to equation (7′) of the previous section,

A2U

1− u2
= −(Nu− n)2

1− u2
+ k −N2 − 2APu.

If we set u = e, then the left-hand side vanishes; thus the further
equation

0 = −(Ne− n)2

1− e2 + k −N2 − 2APe

obtains. We eliminate k by taking the difference of these two equations;
there follows

A2U = −(Nu− n)2 +
(Ne− n)2(1− u2)

1− e2 − 2AP (u− e)(1− u2).
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240 IV. The general motion of the heavy symmetric top.

Since the right-hand side must vanish for u = e, we can extract
u − e as a factor. We correspondingly set, if we introduce a common
denominator,

(1) U =
u− e

A2(1− e2)U1,

where U1, as one easily calculates, has the value

(2) U1 = −(u+ e)(n2 +N2) + 2Nn(1 + eu)− 2AP (1 − e2)(1 − u2).

Since we regard one of the roots of our cubic equation U = 0 as
prescribed (in that we adjudicate, as one expresses it, this root), the
determination of the remaining roots now depends only on a quadratic
equation U1 = 0. Of its two roots, the one that lies between −1 and +1
determines for us the second parallel circle u = e′ that bounds, together
with the known parallel circle u = e, the trajectory of the apex of the
top on the unit sphere.

The introduction of the constant e therefore brings a double advan-
tage: 1) the rather unintuitive constant k is replaced by a quantity
that is expressed immediately in the initial position of the figure axis
and the form of the trajectory; 2) the cubic equation U = 0 is replaced
by an easily solvable quadratic equation U1 = 0. We will thus, in the
following, regard n, N , and e as the essential elements of the motion
of the top, and occasionally refer to them as constants of integration.

As we now proceed to a more exact investigation of the form of
the trajectory, we wish to know, above all, how the position of the
second bounding circle u = e′ depends on the choice of the constants
of integration. Since our next object is to subject Figs. 24–35 to a
detailed confirmation, we assume throughout, as in the first sections,
that the figure axis stands initially horizontal, and correspondingly first
set e = 0.

In Figs. 24 to 28, n had the fixed value zero, while N varied. If we
therefore set e = n = 0 and, for example, N = v, then the equation
U1 = 0 represents for us the dependence in question between u and v;
that is, the position of the bounding circle u = e′ and the magnitude
of the eigenimpulse v = N . This equation now runs

(3) uv2 = −2AP (1− u2).

While this equation is of the second degree in u, its degree is again
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§6. Confirmation of the figures of §2. 241

raised to 3 as soon as we regard, as we now must, u and v as simulta-
neous variables. In order to be able to survey the dependence between
these quantities conveniently, we interpret them as rectangular coordi-
nates in a uv-plane, with u as the abscissa and v as the ordinate, and
thus obtain as the image of the equation U1 = 0 a curve of the third
order (“a C3”).

The form of this C3 is easy to see. To each abscissa u there corre-
sponds a pair of oppositely equal (not necessarily real) values ±v; the
line u = const. therefore cuts the curve in two points that are mirror
images with respect to the axis of the abscissa; the curve itself lies
symmetrically with respect to this axis. Two symmetric points can
move together only if ±v = 0 or ∞, in which case the considered line
u = const. is tangent to our C3. Now we have, according to equation
(3), v = 0 if u = ±1, and v = ∞ if u = 0 or u = ∞. Our curve thus
has a vertical tangent at each of the points u = ±1, v = 0, and has the
ordinate axis as an asymptote.

We further note that the left-hand side of our equation (3) is positive
to the right of the ordinate axis. The right-hand side, however, is pos-
positive only as long as
u < 1, since we wished
to assume P < 0 in §1.
As a result, there are no
real points of the curve
to the right of the line
u = +1. In a correspond-
ing manner, one sees that
no points of the curve can
lie inside the strip to the
left of the ordinate axis
and to the right of the line
u = −1. The curve must
therefore open (cf. Fig.
39) to the left at the po-
sition u = +1, v = 0, and
will then approach the
line u = 0 asymptotically.
The curve will likewise

u

v

u
=
-

u
=
+

open to the left at the position u = −1, v = 0, from which it runs like
a parabola to infinity. Our C3 therefore consists of two disconnected
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242 IV. The general motion of the heavy symmetric top.

branches that we distinguish as the “even” and the “odd” branch. The
odd branch is that contained in the strip 0 < u < 1, and the even
branch is our parabola-like branch.

On the basis of this figure, we can completely confirm our previous
conclusions about the change of the parallel circle u = e′ for increasing
N . Naturally, only such values of the abscissa u that are contained
between −1 and +1 come into consideration in mechanics. If we there-
fore disregard the isolated point u = −1, which, as we will see in the
following chapter, corresponds to an entirely particular type of motion,
then we must concern ourselves with the odd branch. We draw the
line v = N parallel to the u-axis and let N increase from zero. The
abscissa of the intersection point of this line with the odd branch gives
us the value of e′ that corresponds to N . The case N = 0 corresponds
to the ordinary pendulum motion, for which e′ = 1, and for which the
parallel circle e′ therefore reduces to the north pole of the unit sphere.
For increasing N , e′ successively decreases, as the figure shows, and
our parallel circle therefore widens and asymptotically approaches the
equator for N = ∞. The motion thus goes over, in conformity with
Fig. 28, into our pseudoregular precession.

It is also easy to verify the appearance of the cusps in Figs. 25–28.
According to equations (7) of the previous section, we have, in the case
n = 0,

dψ

du
=

−Nu
A2(1− u2)

1√
U
.

On the equator u = 0, the right-hand side becomes zero, since
√
U

vanishes to a lower order than u. The trajectory must therefore run
radially in the stereographic projection; but since it cannot cross over
the equator, it must also run back in the radial direction, so that, in
fact, a cusp is formed.

A few statements may be added regarding the numerical values that
form the basis of Figs. 25 through 28, in so far as they refer to the
position of the bounding parallel circles. We have assumed A = 1
and P = −1 for the production of these figures, values that may al-
ways be attained, moreover, by the choice of appropriate units for the
measurement of space and time. The numerical value of N and the cor-
responding value of e′ are given by the following table or by our curve
above, in which the numbers of the respective figures are inserted at
the representative positions (u, v) of the odd branch.
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Fig. 24 e′ = 1 N = 0

” 25
99
100

√
398
9900

= 0,20

” 26
9
10

√
19
45

= 0,65

” 27
1
2

√
3 = 1,73

” 28 0 ∞
For a negative value of N , there results, because of the symmetric

position of our C3 with respect to the axis of the abscissa, precisely the
same magnitude of the parallel circle and the same trajectory as for
positive N , which is, moreover, evident mechanically. The restriction
to positive values of N established in the first section was thus well
grounded.

Our considerations thus far give us, at the same time, information
on the motion of the spherical top in the case N = 0 and variable n.
According to equation (2), in fact, the position of the parallel circle
in this case is again determined—in conformity with the reciprocity
law of the previous section—by equation (3) or our Fig. 39, in which
v is interpreted as the impulse component n. We have designated the
trajectories of the spherical top characterized by N = 0 as trajectories
of the spherical pendulum. We can justify this designation after the
fact on the basis of the preceding section.

A pendulum is not, however, a spherical top, but rather a symmet-
ric top with a special property. Its moment of inertia about the figure
axis—that is, about the axis of the rod on whose end the mass par-
ticle is fixed—is equal to zero, while the moment of inertia about an
axis perpendicular to the rod is equal to ml2, where m is the mass of
the particle and l is the length of the rod. At the same time as the
moment of inertia about the figure axis, the eigenimpulse of the pen-
dulum is naturally necessarily equal to zero. We saw, however, that a
symmetric top describes the same trajectory as a spherical top of equal
gravitational moment and equatorial moment of inertia and equal im-
pulse constants N , n, k. As a result, the trajectory of our spherical
top is actually equal, in the case N = 0, to the trajectory of a certain
spherical pendulum.

We thus wish to regard the figures on the axes n = 0 and N = 0 in
the schema 36 as settled, and turn now to the cases in which neither
of our two impulse components n, N vanishes, and, in particular, to
Figs. 29–35.
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244 IV. The general motion of the heavy symmetric top.

In these figures we have fixed the value of N and varied that of n.
We wish, correspondingly, to set n = v in equation (2), and moreover
set, as previously, e = 0. The mutual dependence between the position
of the bounding circle u = e′ and the lateral impact v = n is then given
by the equation
(4) u(v2 +N2)− 2Nv + 2AP (1− u2) = 0,
which again represents a curve of the third order.

To determine its form, we seek, as above, its vertical tangents. Two
of these have the equation u = ±1; in fact, these lines intersect our C3

in two coinciding points, since for u = ±1 equation (4) reduces to
(v ∓N)2 = 0.

The tangent points thus lie at the positions u = ±1, v = ±N . In
addition to these two (coinciding) intersection points, however, the
lines u = ±1 must have a third intersection point with our C3, which
can only lie at infinity. The curve therefore extends to infinity in the
vertical direction. The line u = 0 will be an asymptote. Namely, if we
insert this value into (4), there results only one corresponding ordinate
value

v1 =
AP

N
.

The line u = 0 must therefore be tangent to the C3 at infinity.
We next ask whether there are still further vertical tangents in ad-

dition to the three found. The general criterion for the appearance of a
vertical tangent is that the equation U1 = 0, conceived as an equation
in v, give a double root when the abscissa value of a vertical tangent
is inserted for u. The equation U1 = 0 is quadratic in v. The con-
dition for the appearance of a double root in the quadratic equation
av2 + 2bv + c = 0 is obtained, however, by setting the discriminant
ac− b2 to zero. The explicit calculation of this condition gives, in our
case,

(1− u2)(N2 − 2APu) = 0.
We therefore see that in addition to the lines u = ±1,

u2 =
N2

2AP
is also a vertical tangent. Its tangent point has the ordinate

v2 = − b
a

=
N

u2
=

2AP
N

.

The position of this tangent with respect to those found previously
is now essential. Since we assume P < 0, the tangent u2 necessarily
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lies to the left of the asymptote u = 0. It is further asked, however,
whether it runs to the left or the right of the tangent u = −1. Since
it concerns us here only to confirm the figures of the first sections,
we assume the values A = −P = 1, N = 0,20 given on pages 242,
243, and reserve the investigation of the form of the C3 under more
general assumptions for the following section. The numerical value of
the abscissa of our fourth tangent then becomes

u2 = −0,02 > −1.

We can now insert the curve of the third order into the framework
formed by our four vertical tangents. We begin the drawing at the
point u = 1, v = N . The curve runs vertically here, and asymptotically
approaches the ordinate axis above. If we progress with it downward,
it crosses the ordinate axis at the point u = 0, v = v1, is tangent to the
line u = u2 at the point v = v2, and then asymptotically approaches the
negative ordinate axis. In addition, a second parabola-like branch of the
curve is attached at the point
u = −1, v = −N . The curve
therefore consists again of
an “even” and an “odd”
branch of vertical extent,
of which the latter alone
is mechanically important.
Moreover, we have had to
choose the unit of measure
in the drawing (cf. Fig. 40),
because of the rather small
value of N (N = 0,20), five
times as small on the vertical
as on the horizontal.

We now have before us,
in this C3, a complete image
of the variation of the sec-
ond bounding circle for the
variation of the lateral

u

v

v= v
u=u

u
=
+u

=
-

impact. If we draw, namely, the line v = n parallel to the u-axis, then
this line strikes the odd branch at a point whose abscissa gives the
magnitude of the circle u = e′. If we give the line v = n all pos-
sible positions between v = −∞ and v = +∞, then the intersection
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246 IV. The general motion of the heavy symmetric top.

point runs through the entire odd branch. We wish to consider this
process in the same order in which Figs. 29–35 follow one another.

We first let n decrease from the case n = 0 represented in Fig. 25,
therefore displacing our parallel to the u-axis downward. The value of
e′ is thus diminished; that is, the second bounding circle is widened,
until it coincides (for e′ = e = 0) with the equator. The motion then
goes over into the case of slow precession; the corresponding point of
our C3 is its intersection with the ordinate axis, which, as we saw above,
has the ordinate

v1 = n =
AP

N
;

the same value of n was already derived on page 202 for the slow
precession.

We now return again to the position v = 0 of our line, and displace
it upward, in that we let n increase. The value of e′ then increases for
a time (that is, our bounding circle diminishes) until it has contracted
to the north pole of the unit sphere. The corresponding value of n is,
as we infer from our C3,

n = N.

The value of e′ then decreases with further increasing n; the bounding
circle broadens and is transformed asymptotically into the equator for
n = ∞; the trajectory approaches more and more the fast regular
precession represented in Fig. 35.

There yet remain the cases that form the passage between the slow
and the fast precession for negative n. The second bounding circle
remains very near the equator for all these cases, and lies, as our C3

shows, in the southern hemisphere of the unit sphere (e′ < 0). It first
decreases slightly to the extremal value u2, which, under the propor-
tions of our figure, is equal to −0,02 and corresponds to the value
v2 = n = −10. It then decreases again, and is transformed into the
equator for v = −∞. In the circumstance that this entire portion of
the C3 lies extraordinarily near the ordinate axis, we recognize the rea-
son that we could not previously (cf. page 214) draw the trajectories
clearly for the corresponding cases of the motion of the top.

We assemble the numerical data that are the basis of Figs. 29–35 in
the following table; they are also to be seen in the positioning of the
respective numbers on our C3.
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§7. Characteristic curves of the 3rd order; strong and weak tops. 247

A = −P = 1, N = 0,20.

Fig. 29 e′ = 0,96 n = − 0,20

” 30 0,67 − 1

” 31 0 − 5 =
AP

N

” 32 0,9964 + 0,08

” 33 1 + 0,20 = N

” 34 0,87 + 1

” 35 0 ± ∞
Note well that our C3 corresponds only to an entirely determined

and indeed a small value of N , as do our Figs. 29–35. If one lets this
value increase, the form of the C3 and the series of the trajectories also
change. For increasingN , the portion of the C3 lying above the abscissa
axis will be stretched in length; the lower part will become rounder,

in that the vertical tangent u2 =
N2

2AP
wanders to the left and at the

same time its tangent point v2 =
2AP
N

moves nearer to the abscissa

axis. An essential qualitative change in the course of the trajectories
will first occur, however, when the named vertical tangent first moves
over the line u = −1 to the left; we will discuss this change in detail in
the following section.

We note here that for a sign reversal of N , the C3 is reflected in the
axis of the abscissa. In fact, the equation U1 = 0 remains unchanged if
we simultaneously changeN into −N and n into −n. As a consequence,
the same series of trajectories results for negative values of N as for
the corresponding positive values, only in the reverse sequence.

We mention, finally, that an approach to the geometric discussion
of the equation of the third degree U = 0 is also given in the previously
cited work of Routh.*)

§7. The characteristic curves of the third order for arbitrary
position of the initial circle e; distinction between strong and

weak tops.

We must now employ the deliberations of the previous section once
again in greater generality, and, in particular, see to what extent the
series of figures developed in the second section are specialized by the

∗) Rigid dynamics, advanced part, p. 114, art. 204.114
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248 IV. The general motion of the heavy symmetric top.

specific assumptions (for example, e = 0) adopted there. We therefore
let the initial circle e be arbitrary, and base our considerations, corre-
spondingly, on the equation U1 = 0 in the form of page 240. Since this
equation remains unchanged if we interchange n and N , we can restrict
ourselves to the examination of the dependence of the trajectories on
one of these quantities—for example, n—and regard N as a fixed pa-
rameter whose magnitude, however, is not inessential. We again set
n = v; the dependence between u and v is then represented by the
curve of the third order

(1) −(u+ e)(v2 +N2) + 2Nv(1 + eu)− 2AP (1 − e2)(1− u2) = 0.

If we again ask for the vertical tangents to the curve, we must employ
the deliberations of page 244 anew. Two of these tangents (I and II)
are given, as previously, by u = ±1; their tangent points are v = ±N .
Further, there is again a vertical line (III) that is tangent to the curve
at infinity. It has the equation u = −e, and intersects the curve at the
point

v =
AP

N
(1− e2).

A fourth vertical tangent (IV) follows, as on page 244, by setting to
zero the “discriminant,” which by a small calculation is given here in
the form

(N2 − 2AP (u+ e))(1 − e2)(1 − u2).

Our fourth vertical tangent is therefore the line

(2a) u = −e+
N2

2AP
,

with the tangent point

(2b) v = Ne+
2AP
N

(1− e2).
Because of (2a), this line always lies to the left of the asymptote

u = −e for negative P , and always lies to the right of the asymptote
u = −e for positive P . We must, however, distinguish two subcases,
according to whether this line for negative (positive) P also lies to the
left (right) of the line u = −1 (u = +1) or to the right (left) of that
line. The conditions thus run, respectively,

P < 0

⎧⎪⎪⎨
⎪⎪⎩
−e+

N2

2AP
< −1,

−e+
N2

2AP
> −1,

P > 0

⎧⎪⎪⎨
⎪⎪⎩
−e+

N2

2AP
> +1,

−e+
N2

2AP
< +1.
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Whether one or the other of these inequalities is fulfilled depends, for
a given mass distribution and a given initial position of the top, on the
strength of its eigenimpulse. We thus distinguish two kinds of tops that
are designated as s t r o n g and w e a k tops; these are defined, in the
cases P < 0 and P > 0, by the preceding inequalities

(3) P < 0

{
N2 > −2AP (1− e) . . . strong top,

N2 < −2AP (1− e) . . . weak top;

(3′) P > 0

{
N2 > +2AP (1 + e) . . . strong top,

N2 < +2AP (1 + e) . . . weak top.

It is noted that our distinction is not absolute, but rather depends on
the initial position e of the top. For example, every top is a strong top
for positive P in the case e = −1, where the trajectory begins at the
south pole of the unit sphere.

The form of the C3 is now different according to whether a strong or
a weak top is at hand. In both cases, the curve consists of an even and
an odd branch. For the strong top, however, the odd branch crosses
the entire vertical strip between u = −1 and u = +1; for the weak top,
the odd branch is restricted to the portion of this strip that is bounded
by the lines

u = − 1 and u = − e+
N2

2AP
(P < 0), or

u = + 1 and u = − e+
N2

2AP
(P > 0).

(Only in the boundary case between the strong and the weak top,
where the = sign appears in (3) and (3′) instead of the >

< signs, do the
two parts of our C3 merge into a single curve by means of a double point
at u = ∓1, v = ∓N . It will not be necessary to speak of this limiting
case explicitly in the following. It naturally mediates the continuous
passage between the motions of the strong and weak tops. Only in
the next chapter (cf., namely, §8) will we have to return to the special
motion of this limiting case that is characterized by the double point
in the C3, and which may claim a special interest with respect to the
theory of small oscillations.)

In order not to have too many different cases, we will assume, as
in the first section, that P < 0. Figs. 41 and 42 correspond to this
assumption. The case P > 0 may be reduced, according to page 198,

249



250 IV. The general motion of the heavy symmetric top.

to the case P < 0 if we carry over the designation “figure axis” from one
to the other of the two half-lines into which the symmetry axis is divided
by the support point. The signs of N and P then evidently change,
while the impulse component n remains unchanged. At the same time,

the angle ϑ goes over into π − ϑ. The quantities u, e, e′, e′′ will
therefore also be reversed in sign. Thus it is clear that we obtain the
characteristic curve of the third order in the case P > 0 from the case
drawn by reflecting the latter in the ordinate axis. We can reasonably
forgo this repetition.

We now make our construction for the determination of the bound-
ing circle u = e′, and thus displace the line v = n parallel to the u-axis
from v = −∞ to v = +∞ and seek the abscissa value of its intersection
point with the odd branch of the C3. Here the following characteris-
tic distinction between the strong and the weak top appears: for the
strong top, the projection of the intersection point onto the axis of the
abscissa sweeps through the entire interval between −1 and +1; for
the weak top, it runs only through the portion of this interval that

is bounded by u = +1 and u = −e+
N2

2AP
. In both cases, moreover,

the value that is attained is attained two times. This has the conse-
quence that the parallel circle e′ for the strong top can assume every
position on the sphere, and indeed does so for two different values of n;
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the parallel circle for the weak top, in contrast, is excluded from a cer-
tain spherical calotte that surrounds the south pole of the unit sphere

and is bounded by the circle u = −e+
N2

2AP
.

We thus see that Figs. 29–35 are based on the assumption of a weak
top, since for these figures the greatest part of the southern hemisphere
generally remains free of the trajectory curves. In fact, the second of
the two criteria (3) is fulfilled for the previously assumed values

N = 0,20, A = 1, P = −1, e = 0.

Our figures now allow a convenient further investigation of the
various previously drawn cases that can occur for the motion of the
top: the appearance of regular precession, cusp formation, etc. This is
done under the following enumeration.

1) We first see what our curves state about the possibility of regular
precession. Regular precession will occur when e′ = e. We thus draw
the line u = e; its intersection points with the curve of the third order, if
such points are at hand, give the values of n that are required for regular
precession. Thus the strong and the weak tops are again distinguished:

For the strong top, there are always two real intersection points with
the line u = e, and thus two (generally different) possible cases of
regular precession.

For the weak top, in contrast, the intersection points are real only

if the line u = e lies to the right of the tangent u = −e +
N2

2AP
, and

therefore if the inequality

4APe < N2

obtains.
For the weak top, there are either two cases of regular precession or

none, according to whether

(4) 4APe < N2 or 4APe > N2

obtains.
We note that for the horizontal initial position of the figure axis

(e = 0), the first of our inequalities is fulfilled identically, in the case
that N is not directly zero. Correspondingly, we always had two real
cases of precession in the second section of this chapter for N > 0, even
for a weak top.

The values of n that correspond to the two cases of regular precession
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252 IV. The general motion of the heavy symmetric top.

are naturally given by (1) if we set u = e and solve the resulting
quadratic equation

(5) (v −Ne)(N − ve) = AP (1 − e2)2;
we find

(6) v =
{
n1

n2

}
=

(1 + e2)N ± (1− e2)√N2 − 4APe
2e

.

(It will be well to relate this result to the developments of pages 178
and 179. We saw there that there are, for a given mass distribution, a
given value of cosϑ = e, and a given velocity component μ, two values
of the velocity component ν that give rise, in the case of a spherical
top, to a regular precession; namely,

(a) ν =
P

Aμ
, (b) ν = ±∞.

Our current result apparently differs from the previous in the following
manner: for a given mass distribution, a given value of the parallel
circle e, and a given impulse component N , a regular precession occurs
for the two values of the impulse component n that are given in (6). The
discrepancy obviously rests on the fact that we have fixed the velocity
component μ in one case and the impulse coordinate N in the other;
we cannot wonder that we obtain different values of the corresponding
precession constants ν and n in the two cases.

To pursue the connection between the roots n1, n2 and the previ-
ously distinguished cases (a) and (b) more precisely, we note that both
values n1 and n2 correspond to case (a). In fact, it is easily shown that
our equation (5) is identical with the equation P = Aμν, acquired from
the theory of the deviation resistance, that yields the root (a). If we
use, namely, the values of ψ′ and ϕ′ given in equation (6) on page 238
and consider that these values are equal for regular precession to the
constants ν and μ, respectively, then we have

(7) ν =
n−Ne
A(1− e2) , μ =

N − ne
A(1− e2) .

As a result, equation (5) is actually transformed into the relation
P = Aμν, which states that the turning-force of gravity is in equi-
librium with the inertial resistance of the spherical top.

We convince ourselves further that the precession case (b), for which
μ has a given finite value and ν is infinitely large, corresponds to an
infinitely large value of N that was disregarded by assumption. The
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adjacent figure is of service here. The endpoint of the rotation vector
is imagined to be at infinity on the parallel to the vertical through the
endpoint of the component μ. If we project this vector perpendicularly
onto the figure axis, then, understanding
by Ω the length of the rotation vector, the
length r of the orthogonal projection onto
the figure axis is r = Ω cos ϑ = ∞, so that
the impulse component N also becomes
infinitely large.

The indicated exceptional case is
the case e = 0, in which the roots (a)
and (b) are equal, respectively, to the
roots n1, n2 (divided by A). In fact, the
parallel components ν and μ are respectively equal, under the assump-
tion e = 0, to the orthogonal components with respect to the vertical
and the figure axis. We then find once again from (6) the roots (a) and
(b) through the passage to the limit e = 0; namely,

(a)
n1

A
= ν =

P

Aμ
, (b)

n2

A
= ν = ±∞.

Despite the recognized distinction, it is permissible to designate the
two cases of regular precession that are possible for a given value of
N , just as well as the two cases that correspond to a given value of
μ, as slow and fast precession. Since we will have no essential future
recourse to the precession constants μ and ν, no misunderstanding will
arise from this duplicity of nomenclature.)

2) We next wish to investigate the limiting case of the motion of the
top for infinitely increasing n. While we know that this limiting case
coincides, under the assumption e = 0, with fast regular precession,
which then, in turn, degenerates into an infinitely fast precession, it is
essentially different from regular precession for a more general initial
position.

For this limiting case n = ∞, we can first conclude from our curve
of the third order that the second bounding circle e′ coincides, for the
strong as well as the weak top, with the parallel circle −e; in fact, −e is
the abscissa of the infinitely distant point of the C3 on the odd branch.

In the limiting case n = ∞, the apex of the top therefore oscillates
about the equator as a mean position, in that the trajectory fluctuates
back and forth between the circles +e and −e.
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254 IV. The general motion of the heavy symmetric top.

The form of the trajectory thus becomes extremely simple. For
orientation, we consider in advance a top for which P = N = 0, a
weightless top without eigenimpulse. The considered motion corre-
sponds (because N = 0) to the motion of the spherical pendulum; this
is the special case (because P = 0) in which the action of gravity is
nullified. The trajectory must therefore be the same as that of a single
mass particle that is subjected to no external forces and is constrained
to remain on the surface of a sphere. This particle evidently describes,
however, a great circle on the sphere with constant velocity.

If P and N are now set unequal to zero, with, however, the lateral
impact n taken to be infinitely large, then the path of the apex of the
top remains the same as before. The influence of the initial impact,
namely, will completely overwhelm that of gravity and the eigenim-
pulse.

The result of calculation is in conformity with this deliberation.
Namely, if we let n become infinitely large, there follows from equations
(1) and (2) of page 240, in the first approximation,

U = −n
2

A2

u2 − e2
1− e2 .

The integral for t of page 238 simplifies to

(8) t =
A
√

1− e2
n

∫
du√
e2 − u2

=
A
√

1− e2
n

arc sin
u

e
;

thus
u = e sin

nt

A
√

1− e2 .
The rate of change of u therefore becomes infinitely large. At the same
time, the integral for ψ of page 238 is transformed, approximately, into

ψ =
√

1− e2
∫

du

(1− u2)
√
e2 − u2

;

the value of ψ becomes, as one easily verifies,

(8′) ψ = arc sin
(√1− e2

e

u√
1− u2

)
.

If we set u = cos ϑ and e = cos ϑ0, we can write this equation more
simply as

(9) sinψ tg ϑ = tg ϑ0;

interpreted correctly, this states that the apex of the top describes a
great circle.
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§7. Characteristic curves of the 3rd order; strong and weak tops. 255

The apex of the top, namely, has coordinates

X = Y = 0, Z = 1

in the XY Z frame; its coordinates in the xyz frame thus become,
according to the transformation formulas (5) of page 19,

x = sinϑ sinψ, y = − sinϑ cosψ, z = cosϑ.

Thus we can also write equation (9) of our trajectory as

x = tg ϑ0 z.

This, however, is the equation of a plane through O that intersects the
unit sphere in the previously named great circle.

If we place, in particular, the figure axis horizontally in the initial
position, then our great circle is transformed into the equator, and
we again have the infinitely fast regular precession of the first section,
which is now confounded with our limiting case.

The conditions of the first section were therefore chosen, to an ex-
tent, too particularly. For a more general initial position of the figure
axis, there is a sequence of transitions between the fast precession and
our limiting case that eluded us in the first section. The necessary
supplement, however, can easily be supplied.

We represent in Figs. 44 and 45 the stereographic projections of the
trajectories of the fast precession and the limiting case. The trajectory
of the former is the circle u = e,
and of the latter the more boldly
drawn circle tangent to the circles
u = +e and u = −e.

The transition curves be-
tween the two have the following
character. The bounding circle
e′, starting from its position in
Fig. 44, gradually widens with
increasing n, in that it crosses the
equator and asymptotically ap-
proaches the circle u = −e. In the

=e e=u =u

stereographic projection, the trajectory that must run to and fro be-
tween the circles e and e′ surrounds the former circle, while it is en-
closed by the latter. As the prototype of this trajectory we can re-
gard, for example, Fig. 30, where the inner circle would now be in-
terpreted as the fixed initial circle e, and the outer as the bounding
circle e′. The span width of the individual component arcs decreases
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256 IV. The general motion of the heavy symmetric top.

with increasing n, until it is reduced to zero for n = ∞, so that the
trajectory simply runs back into itself.

Next to the limiting case n = ∞ for finite N is placed the lim-
iting case N = ∞ for fixed n, which may be treated similarly. As
mentioned, the equation U1 = 0 remains unchanged by the inter-
change of n and N , so that we can bestow the interpretation n just as

=u u e=-u e=

well as N to the ordinate v in Figs. 41 and 42. It follows that for
increasing N and fixed n, the bounding circle e′ is also transformed
asymptotically into the position −e. The apex of the top therefore
also oscillates, in this limiting case, back and forth between the two
circles e and −e with infinite speed. The two circles coincide only for
a horizontal position of the figure axis; the amplitude of the oscilla-
tion in this limit becomes vanishingly small, and we have the type of
pseudoregular precession represented in Fig. 28. In all other cases, in
contrast, the trajectory in the limit N = ∞ will present an essentially
different image.

The circumstances under which the particularly interesting case of
pseudoregular precession occurs for a more general initial position of
the figure axis will be presented in detail in the next chapter.

3) We wish, finally, to investigate the possibility of cusp and loop
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formation. The trajectory can touch the parallel circle e or e′ with

cusps only when
dψ

du
= 0 for u = e or u = e′. We thus conclude, just

as on page 242, that the conditions for the appearance of cusps on the
circles e and e′ are, respectively,

n−Ne = 0, n−Ne′ = 0.

For the initial circle e, it thus appears that cusp formation will
always occur for a specific ratio n : N . In §2 only the special case
in which this ratio is zero was present, and cusp formation therefore
always occurred if the lateral impact was equal to zero, independent of
the value of the eigenimpulse.

In order to be able to conveniently envision the appearance of cusps
on the boundary circle e′, we again revert to our curve of the third order.
If we imagine N fixed and n variable (n = v), then our condition above
is represented in the uv-plane by the line

v −Nu = 0

that joins the tangent points of the tangents u = ±1 and is drawn
as a dotted line in Figs. 41 and 42. The question is whether this line
intersects the C3 inside the mechanically valid interval or not.

Two intersection points fall at the points u = ±1, v = ±N . They do
not correspond, however, to actual cusp formation, since the boundary
circle e′ has contracted in this case to a single point, the north or south
pole. As for the third intersection point, a glance at our curve shows
immediately that it lies on the odd branch in the case of the strong top
and on the even branch in the case of the weak top.

For the strong top, there is a specific parallel circle e′, for fixed N
and appropriately chosen n, that is touched by the trajectory with cusps,
and for the weak top there is no such circle.

As we saw, Figs. 29–35 in the second section correspond to a weak
top, so that cusp formation on the circle e′ cannot occur in these fig-
ures. It now appears, moreover, that the same occurrence is also ex-
cluded in the case of the weak top for an arbitrary position of the
initial circle e. The previous series of figures thus offers, for the weak
top, a sufficiently general image of the sequence of the trajectories.
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258 IV. The general motion of the heavy symmetric top.

The exercise still remains, however, to clarify the continuous ordering
of the cusped trajectory curves that were just found for the strong top.
This is done at the end of this section. In advance, we wish to extract
from our curve of the third order a criterion for the appearance of loops.

As we just saw, cusp formation occurs if the equation n−Nu = 0 is
fulfilled for u = e or e′. If, however, this equation is fulfilled for a value
of u between e and e′, then the stereographic image of the trajectory
runs in the radial direction each time it crosses the determined parallel
circle u. There follows, as on page 242, the existence of loops. We
thus recognize the appearance of loops geometrically in the following
manner: we draw our line v = n parallel to the abscissa axis and
intersect this line with the line v − Nu = 0. If the abscissa of the
intersection point lies between e and e′, then loops appear; if it lies
outside this interval, then loops are impossible.

If one applies this rule to the C3 of the weak top, one sees immedi-
ately that loop formation can appear only in the interval between the
curve that touches the initial circle e with cusps and the trajectory that
passes through the highest point of the sphere. An example is offered
in Fig. 32 of page 213.

The same interval is also distinguished by loop formation for the
strong top. Here, however, there is a second interval that extends from
the intersection point of the C3 with the line v−Nu = 0 to the tangent
point of the C3 with the line u = −1. An intersection point of v = n
with the line v −Nu = 0 is then found (cf. Fig. 41) to the right of the
C3; its projection onto the axis of the abscissa falls in the region ee′.
The corresponding looped curves are continuously joined on one side
to the trajectory that touches the circle e′ with cusps, and on the other
side to the curve that passes through the south pole of the unit sphere.

For the weak top we therefore have one, and for the strong top two
intervals with loop formation. —

In conclusion, we wish to supplement, as already proposed, the series
of trajectories of the first sections for the case of the strong top, in that
we follow the passage from the slow regular precession to the limiting
case n = ∞, through the cases of loop and cusp formation.
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We begin from the slow regular precession, give N a fixed positive
value, and let n decrease. The value e′ first decreases uniformly with
n, as is evident from Fig. 41.

The stereographic image of the trajectory is thus tangent to the
initial circle from the exterior, in that the trajectory encloses it, and is
tangent to the second bounding circle from the interior. For a certain
value of n constructed above, cusps replace the tangents to the circle e′.
For further decrease of n, the cusps resolve into loops. This character
of the trajectory persists until n has reached the value −N , where the
circle e′ contracts to the south pole, and its stereographic projection
correspondingly becomes infinitely large. From now on the circle e′

widens again (that is, it diminishes in the stereographic image) and
tends asymptotically to the parallel circle u = −e. The trajectory thus
assumes more and more the simple form of Fig. 45.

§8. On the numerical calculation of the elliptic integrals
for t and ψ.

In a problem with applications, as is present here, we may not be sat-
isfied with presenting the possibility of calculation in a general schema.
We must seek, rather, to advance to actual numerical implementation.
While the older mathematicians, to Gau s and Jacobi inclusive, always
strove to present their results through not only convergent, but also
well convergent and practical processes, the current development of
mathematics often neglects the duty of numerical execution. We wish,
in contrast, to regard the numerical implementation of a theory as the
capstone of the edifice, to which we attribute no smaller importance
and no smaller interest than any other part of the whole. In the par-
ticular problems that lead to elliptic functions, we are in the pleasant
position, thanks to the high development of this theory, of being able
to effect numerical evaluation without any difficulty, as will be shown
in this section.

We first consider an integral of the form of our

(1) t =
∫

du√
U
,

in which U signifies any polynomial of the third or fourth degree in u.
We assume only that the roots of U = 0 are real. Such an integral is
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260 IV. The general motion of the heavy symmetric top.

designated as an elliptic integral of the first kind, since it may always
be brought into the normal form that L e g e n d r e has introduced
as the “fonction de première espèce.” The designation “everywhere
finite integral,” which is associated with the behavior of t in the com-
plex plane and thus characterizes the integral of the first kind in
function-theoretic respects, can be explained only in the sixth chapter.

The Legendre normal form of the integral of the first kind is, in
Legendre’s notation,

(2) F (k, ϕ) =
∫ ϕ

0

dϕ√
1− k2 sin2 ϕ

;

here ϕ is called the amplitude and k the modulus of the integral; it is
assumed that 0 ≤ ϕ ≤ π/2, 0 < k < 1. If we set sin2 ϕ = x, then we
can also write

(2′) F (k, ϕ) =
1
2

∫ x

0

dx√
x(1− x)(1 − k2x)

.

Almost all methods for the evaluation of elliptic integrals of the first
kind require the transformation of the given integral to the Legendre
normal form. No exception is made even by those authors, such as
Schwarz∗) and Halphen,*) who begin from the Weierstrass theory and
translate the formulas of the older theory into the Weierstrass notation.
As important as the Weierstrass theory is in function-theoretic respects,
it appears to have made no actual advance over the older theory on
the numerical side. We thus prefer to revert directly to the Legendre
notation and conception for numerical questions, instead of rewriting
them each time in the Weierstrass notation.

In order to be able to carry out the transformation of the integral (1)
into the Legendre normal form, one must seek the roots of the equation
U = 0. If we restrict ourselves to the present case of the top, in which
U is a polynomial of the third degree, then we have only to solve a
cubic equation. This equation even reduces, since we regard the root e
as known (cf. page 239), to the quadratic equation U1 = 0 with roots e′

∗) Cf. H. A. S c h w a r z: Formeln und Lehrsätze zum Gebrauch der elliptischen
Funktionen, and H a l p h e n: Théorie des fonctions elliptiques, Bd. I. Kap. 8.
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§8. Numerical computation of elliptic integrals. 261

and e′′. To the thus determined roots e, e′, e′′, we must add, according
to page 226, the equally valid “fourth branch point” ∞.

We wish to assume, for example, P > 0, and choose the designation
of the roots e, e′, e′′ so that their order of succession, as in the schema
P > 0 of page 226, becomes

−1 < e < e′ < +1 < e′′ <∞.
The transference of the integral (1) into the form (2′) may now

always be effected by a linear transformation; that is, by setting the
new integration variable x equal to a linear function of the original
variable u. At the same time, it may always be attained that the
quantities x and k in (2′) will be real numbers between 0 and 1. The
transformation formulas are different according to whether the original
integration interval lies in the domain ee′, e′e′′, . . . .

To treat of an integral in the interval ee′ with lower limit e and
upper limit u, for example, we can arrange our transformation so that
the values e, e′, ∞ go over into the values 0, 1, ∞, respectively. The
point e′′ on the u-axis between e′ and ∞ is then transformed into a
point on the x-axis between 1 and ∞ that we call 1/k2, so that k2

signifies a positive proper fraction. At the same time, the upper limit
of the original integral between e and e′ is transformed into the upper
limit of the new integral between 0 and 1.

The required linear transformation is now evidently
u− e
e′ − e = x,

from which follows
e′′ − e
e′ − e =

1
k2
.

Our polynomial U , which we can give the form

U = c2(u− e)(e′ − u)(e′′ − u),

where c2 is the coefficient
2P
A

of u3, is transformed with the introduc-

tion of x into the expression

U = c2(e′ − e)3x(1− x)
(

1
k2
− x
)

=
c2(e′ − e)3

k2
x(1− x)(1− k2x).

The original integral

t =
∫ u

e

du√
U

=
1
c

∫ u

e

du√
(u− e)(e′ − u)(e′′ − u)
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262 IV. The general motion of the heavy symmetric top.

thus takes the form
(3)

t = ± k

c
√
e′ − e

∫ x

0

dx√
x(1− x)(1 − k2x)

= ±
√

2A
P (e′′ − e)F (k, ϕ),

where the amplitude ϕ and the modulus k have the meanings

(3′) ϕ = arc sin
√
u− e
e′ − e, k =

√
e′ − e
e′′ − e,

and F (k, ϕ) is the Legendre integral defined in (2). The sign of t
depends upon which of the schematically represented coverings in Fig.
38 of page 226 we wish to choose for the integration.

To treat, on the other hand, of an integral whose upper and lower
limits lie in the region (−∞ e), we arrange the transformation equation
between u and x so that the points −∞, e, e′′ will be transformed
into the points 0, 1, ∞, respectively. The point e′ between e and e′′

corresponds to a value of x between 1 and ∞ that we call 1/k′2, so that
k′2 also denotes a positive proper fraction.

The linear transformation that yields the desired transference is
obviously

e′′ − e
e′′ − u = x,

so that we obtain for k′2 the value
e′′ − e
e′′ − e′ =

1
k′2

.

If we now replace u in the expression for U by x, then

U = −c2(e− u)(e′ − u)(e′′ − u) = −c2(e′′ − e)3x(1− x)(1 − k
′2x)

x4
.

There follows, for example, if −∞ is the lower limit and u < e is the
upper limit of the original integral,

t =
±i

c
√
e′′ − e

∫ x

0

dx√
x(1− x)(1− k′2x) = ±i

√
2A

P (e′′ − e)F (k′, ϕ);

the amplitude ϕ and the modulus k′ are thus, according to the preced-
ing, determined as

ϕ = arc sin

√
e′′ − e
e′′ − u, k′ =

√
e′′ − e′
e′′ − e .

These two quantities again satisfy the above conditions

0 < ϕ <
π

2
, 0 < k′ < 1.
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§8. Numerical computation of elliptic integrals. 263

The modulus k′, which is related to the modulus k defined in (3′)
by the equation

k2 + k′2 = 1,

is called, moreover, the “complementary modulus to k.”
One always achieves the goal in a similar manner whenever the orig-

inal integration interval lies between the points e, e′, e′′, ∞, where we
assume only that the interval contains none of these points in its inte-
rior; in that case we must divide the interval into component intervals.
The general rule for the construction of the appropriate transformation
formula is the following:

One establishes a specific directional sense on the u-axis, and assigns
the two branch points inside which the original integration interval lies,
in the order that corresponds to this direction, to the points 0 and +1.
One then proceeds in the established sense beyond the integration region
on the u-axis, which one imagines to be closed at infinity, and assigns
the next-to-nearest branch point that one subsequently strikes as the
point ∞. Then there is always a linear transformation between u and
x that yields the named ordering. This ordering necessarily changes
the fourth branch point, whose ordering we can no longer choose, into
a point that lies on the x-axis between +1 and +∞; all points of the
original integration region correspond, at the same time, to values of x
that are contained between 0 and 1.

Moreover, the ordering of the u- and x-axes may always be con-
structed in two ways, in that the directional sense of the u-axis in our
rule indeed remains arbitrary.

We wish to write out the transformation to the Legendre normal
form for four particular integrals t that will play an essential role in
the sixth chapter. These are the integrals

ω =
∫ e′

e

du√
U
, iω′ =

∫ −∞

e

du√
U
, ia =

∫ e

−1

du√
U
, ib =

∫ +1

e′

du√
U
.

We have already considered the first of these integrals in the third
section; it gives the time that is required for the top to traverse a
half-arc of its trajectory. The remaining integrals have no mechanical
meaning in the elementary sense.

There now follow from equations (3) and (4), and from our general
rule, the following expressions for our four integrals:
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264 IV. The general motion of the heavy symmetric top.

(5) ω = MF
(
k,
π

2

)
, ω′ = MF

(
k′,

π

2

)
, a = MF (k′, ϕa),

b = MF (k′, ϕb),

where the symbols M , k, k′, ϕa, ϕb have the meanings
(5′) ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
M =

√
2A

P (e′′ − e) , k =

√
e′ − e
e′′ − e, k′ =

√
e′′ − e′
e′′ − e =

√
1− k2,

ϕa = arc sin
√

1 + e

1 + e′
, ϕb = arc sin

√
e′′ − e
e′′ − e′ ·

1− e′
1− e .

The exercise of numerically evaluating an arbitrary elliptic integral
of the first kind is thus reduced to the simpler exercise of finding the
value of the Legendre integral F (k, ϕ). The different paths that lead
to this end should be named briefly.

1. The most obvious path would be to transform the square root
under the integral sign into a series according to the binomial theorem,
and execute the integration term by term. The series that one then
obtains are not, however, sufficiently convenient when k is somewhat
different from zero. To improve their convergence, one must combine
this method with the immediately following second method, as has
been thoroughly done, in fact, by Schwarz.*)

2. A method of equal theoretical and practical beauty consists in
subjecting the integration variable to a quadratic transformation of
such a nature that the integral of the first kind is transformed into it-
self, only with a modified modulus and a transformed amplitude. The
so-called Landen transformation is to be cited in the first place here.
The transformed modulus k1 is simply equal to the ratio of the geomet-
ric to the arithmetic mean of the modulus k and the number 1; one thus
has k1 = 2

√
k/(1+k). Through an appropriately continued application

of this transformation, one is led to a series of moduli k1, k2, k3, . . .
(a “module ladder”), whose individual terms continuously increase and
approach the value 1. In the reverse sense, the Landen transformation
therefore yields a module ladder that decreases toward 0. If, however,
the modulus of the elliptic integral is made sufficiently small in this
manner, the integration becomes executable in the simplest way. In
fact, we directly have, understanding by kn a sufficiently small modulus

∗) Cf., for example, Art. 48 of the formula collection.

264



§8. Numerical computation of elliptic integrals. 265

and by ϕn the corresponding transformed value of the amplitude,
F (kn, ϕn) = ϕn. This method has been employed to great effect by
Legendre in the calculation of his tables.115

The so-called Gaus ian method of the arithmetic–geometric mean*)
does not differ essentially from the preceding; it is distinguished only
by formally greater elegance.

Instead of a quadratic, one can also exploit a higher-order trans-
formation for the numerical computation of elliptic integrals, as was
developed for the first time by J a c o b i.**)

3. A third method is based on the inversion of the elliptical integral
and the introduction of the ϑ-functions. It leads, just as the previous
method, very quickly to the goal, but cannot yet be discussed in this
place.***)

4. One can further think of evaluating elliptic integrals directly by
mechanical quadrature, with the possible aid of an integration appara-
tus. This procedure offers the advantage of being directly applicable
to an arbitrary elliptic integral, and makes the transformation to the
normal form superfluous. On the other hand, however, this method

requires the calculation or delineation of the quantity
1√

1− k2 sin2 ϕ
or

1√
U

for a large sequence of points of the integration interval. Thus

the named advantage will be amply offset, so that this method can
hardly compete with the others.

5. A last method that we wish to recommend most particularly con-
sists in not calculating at all, but rather using the Legendre tables.†)
In fact, we would dispense with this beautiful means of help no more
than we would find the logarithm of a number other than from the
logarithm tables. The use of the Legendre tables is very convenient.
One need only pass from the modulus k to an angle Θ by means of the
trigonometric table that is defined by the equation k = sinΘ. One then

∗) G a u s: Ges. Werke, Bd. III, pp. 361 and ff.116
∗∗) J a c o b i: Ges. Werke, Bd. I, p. 31;117 cf. also K l e i n–F r i c k e, Modul-

funktionen, II p. 111.
∗∗∗) Presented in detail by S c h e l l b a c h: Die Lehre von den elliptischen

Integralen und den Thetafunktionen, Berlin 1864, particularly 1. Abteilung, 4.
Abschnitt.118

†) Bd. II of the traité des fonctions elliptiques, Paris 1826, pp. 284–363 and pp.
222–245. It is much to be desired that this now rather rare table be made of easier
access through a new printing.119

265



266 IV. The general motion of the heavy symmetric top.

finds, for all full degrees of Θ and ϕ between 0 and 90, the value
of F (sin Θ, ϕ) with 9 decimal place precision in the tables. The
so-called complete integrals of the first kind—that is, the values of

F
(
sinΘ,

π

2

)
—are calculated even more precisely by Legendre. In ad-

dition to the integrals of the first kind, the tables give also the so-called
integral of the second kind E(k, ϕ), into whose definition we need not
enter here.

Thus one will be compelled to revert to one of the previous methods
only if one must evaluate an integral of the first kind with complex
limits or a complex modulus.

As an example, we calculate, in this sense, the time that the apex
of the top requires in Figs. 24–28 to arrive from a lowest point of its
trajectory to the next following highest point; that is, the value of the
half-period ω.

While we previously assumed P = −1 in those figures, we now take,
so as to be able to apply our latter formulas directly, P = +1, and
therefore must (according to page 250) reverse in sign the value of e′

given on page 243. Moreover, we will now denote this value, since it
represents the smallest of the roots of U = 0 under consideration, by
e. The second root corresponds to the equator that appears in all the
figures as the boundary circle, so that we have e′ = 0. The still wanting
root e′′ results from the quadratic equation U1 = 0, which in our case
(cf. page 240) takes the simple form

uN2 + 2AP (1 − u2) = 0.

If we set P = 1 and also, as previously, A = 1, there follows

u2 − 1
2
uN2 − 1 = 0.

This equation shows that e′′ simply becomes the reciprocal of the
root given on page 243. The quantity M that appears in equation
(5), as well as k and the corresponding angle Θ, are thus very easy to

compute. We take the value of lgF
(
k,
π

2

)
from Table I of Legendre,

and compute the desired quantity ω through equation (5). We place
the results in the following table.120
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A = 1, P = −1, n = 0, e′ = 0.

Fig. e′′ lg10M k Θ lg10F
(
k,
π

2

)
ω

24 1 0
√

1
2

45◦ 0,26813 1,854

25
100
99

0 (circa)
√

9801
19801

44,7 0,26709 1,848

26
10
9

0,99879 − 1
√

81
181

42,0 0,25820 1,807

27 2 0,95154 − 1
√

1
5

26,6 0,22007 1,484

28 ∞ −∞ undet. undet. undet. 0

We thus see that the transit time of the single half-arc decreases
with increasing N until it attains the value 0 in Fig. 28. If we agree
that the values of A, P , n, and N are to be interpreted in the absolute
system of measure, then the given value of ω signifies seconds.

Still more important for us than the relation between t and u is the
dependence between ψ and u, since this relation directly provides the
form of the trajectory. We must therefore orient ourselves further on
the calculation of the elliptic integral for ψ.

In order to be able to connect again with Legendre, we wish to
express ψ in terms of the so-called Legendre normal integral of the
third kind. Legendre defined his normal integral of the third kind as

(k, ϕ, p) =
∫ ϕ

0

1
1− p sin2 ϕ

dϕ√
1− k2 sin2 ϕ

.

The quantity p, which is assumed by Legendre as real and which fur-
thermore may not lie between +1 and +∞, so that the integral taken
on a real path is meaningful, is called the parameter of the integral.

We wish to show that ψ may be represented as a linear combination
of two normal integrals of the third kind.

For this purpose, we first separate the factor
n−Nu
A(1− u2)

under the

integral sign into partial fractions; that is, we set

n−Nu
A(1− u2)

=
1

2A

(
n+N

1 + u
+
n−N
1− u

)
,

so that we obtain
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268 IV. The general motion of the heavy symmetric top.

ψ =
n+N

2A

∫
1

1 + u

du√
U

+
n−N

2A

∫
1

1− u
du√
U
.

Further, we bring the quantity
du√
U

into the form
dx√

x(1− x)(1 − k2x)
through one of the transformations given above. We can restrict our-
selves here to the case in which the original integration variable runs
in the domain ee′. We must then apply the transformation that led to
equation (3); we thus define the new integration variable x as

u− e
e′ − e = x.

There follows
1± u = (1± e)± (e′ − e)x,

while the quantity
du√
U

is simultaneously transformed as in (3). The

expression for ψ thus becomes121

ψ =
n+N

A

√
A

2P (e′′ − e)
∫

1
1 + e+ (e′ − e)x

dx√
x(1− x)(1− k2x)

+
n−N
A

√
A

2P (e′′ − e)
∫

1
1− e− (e′ − e)x

dx√
x(1− x)(1− k2x)

.

In order to produce the Legendre normal form, we must only set
x = sin2 ϕ and extract 1 + e and 1 − e from the first and second
integrals, respectively. Then ψ follows directly as a linear combination
of two normal integrals in the form

ψ = C1 (k, ϕ, p1) + C2 (k, ϕ, p2),
where the quantities k, ϕ are defined by the previous equations (3′),
and C1, C2, p1, p2 have the meanings122

C1 =
n+N

1 + e

√
2

AP (e′′ − e) , C2 =
n−N
1− e

√
2

AP (e′′ − e) ,

p1 =
e′ − e
1 + e

, p2 = −e
′ − e

1− e .
It would be further necessary only to find the numerical values of

the Legendre normal integrals of the third kind in the simplest possible
way. Unfortunately, there are and can be no tables for this purpose.
Since the value of the integral (k, ϕ, p) depends on three different
quantities, the tables in question must be tables with a threefold entry.
Such tables, however, may be calculated only with disproportionate
labor, and are generally not printed.

268



§9. Approximate calculation of the top trajectories. 269

Nevertheless, we can also draw upon the Legendre tables here if we
restrict ourselves to the calculation of the so-called “complete integral

of the third kind”
(
k,
π

2
, p
)
, which for our trajectory would mean

that we ask only for the span width 2ψω of the individual component
arcs, and forswear the construction of the individual points of the curve.
As Legendre*) has shown, his complete integrals of the third kind may
always be reduced to integrals of the first and second kinds that con-
tain the parameter p in their upper limits and have as moduli partly
the modulus k of the integral and partly the complementary mod-
ulus. Since we can look up the values of the integrals of the first and
second kinds directly in the tables, these reduction formulas allow the
complete integral of the third kind, and thus also the magnitude of ψω,
upon which the form of the trajectory primarily depends, to be found
relatively quickly.123

The span widths of the component arcs in the figures of the first
sections were computed in this manner.**)125 We will not, however,
enter here into the execution of this computation or the true meaning
of the reduction formulas, since in the sixth chapter we will treat in
detail of the above method (3), which teaches us to find arbitrarily
many points of the trajectory in the shortest way.126

§9. On the approximate calculation of the top trajectories.

The contrast between approximate and exact calculation is gener-
ally not sharp. Every numerical calculation is carried out, in so far
as it does not by chance treat of rational numbers, only to a cer-
tain degree of precision. The contrast should not be called “exact
and approximate calculation,” but rather “calculation with arbitrary
and with bounded approximation.” While the calculation of elliptic in-
tegrals according to the methods of the previous section (in so far as
the Legendre tables are not directly used) can be driven to any arbi-
trary degree of precision, we will not carry the methods of this section

∗) Cf. the first volume of the Traité, Chap. 23, where three different reduction
formulas are constructed according to the value of the parameter, as well as the
previously cited book of S c h e l l b a c h, Abt. 1, Abschn. 10.

∗∗) I must mention with thanks that I have been extensively supported in this
calculation by the mathematics student Mr. B l u m e n t h a l.124

A. Sommerfeld.
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270 IV. The general motion of the heavy symmetric top.

so far that they allow, without further development, an arbitrary
sharpening—a procedure that very often occurs in practical applica-
tions.

If such methods of bounded precision are to have a true value, we
must require, above all, the ability to estimate the committed error.
We will satisfy this requirement in the following. If it is shown that the
error lies beneath the allowable error bound for the purpose at hand,
then our approximate calculation will provide the same service as one
formed with arbitrary precision. In fact, we will later treat of the most
interesting cases of the motion of the top directly through the method
of bounded precision to be considered now.

We begin with the elliptic integral of the first kind

t =
∫ u

e

du√
U
,

which we can give (cf. page 261) the form√
2P
A
t =
∫ u

e

du√
(u− e)(e′ − u)(e′′ − u) .

We assume, as in the preceding section, that

P > 0 and − 1 < e < e′ < +1 < e′′.

The variable u is restricted in the integration between the bounds
e and e′. We thus have, in every case,

e′′ − e′ < e′′ − u < e′′ − e.
The integrand is positive as long as u is in the upper covering of the
u-axis. If we now insert for e′′ − u the smaller value e′′ − e′ or the
larger value e′′ − e, the value of the integral becomes larger or smaller,
respectively. We thus have, as long as we do not let the integration
variable cross the branch point e′,
(1)
1√
e′′ − e

∫ u

e

du√
(u− e)(e′ − u) <

√
2P
A
t <

1√
e′′ − e′

∫ u

e

du√
(u− e)(e′ − u) .

These last integrals can easily be evaluated trigonometrically. We
set, for this purpose,

(2) e′ + e = 2u0, e′ − e = 2ε, u− u0 = δ.
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§9. Approximate calculation of the top trajectories. 271

Here ε signifies half the vertical distance between the two bounding
circles inside which the trajectory runs; u0 determines the parallel circle
whose plane lies midway between the planes of the bounding circles, or,
as we wish to say briefly, the “mean parallel circle of the trajectory.”
The quantity δ measures the distance of the apex of the top from the
plane of this mean parallel circle. We obtain

(3) u− e = ε+ δ, e′ − u = ε− δ,
and ∫ u

e

du√
(u− e)(e′ − u) =

∫ δ

−ε

dδ√
ε2 − δ2 = arc sin

(
δ

ε

)
+
π

2
.

Thus, according to (1),

1√
e′′ − e arc sin

δ

ε
<

√
2P
A

(t− t0) < 1√
e′′ − e′ arc sin

δ

ε
,

where t0 =
π

2

√
A

2P
. If we reckon time from the moment at which the

apex of the top passes through the mean parallel circle u0, then we can
simply write t instead of t− t0.

We have thus found two bounds between which the (so-reckoned)
time t must lie; namely, the lower bound√

A

2P (e′′ − e) arc sin
δ

ε

and the upper bound √
A

2P (e′′ − e′) arc sin
δ

ε
.

Our approximation formula is now obtained by simply substituting
for t a mean value between these two limits.

We replace, for example,
√
e′′ − e and

√
e′′ − e′ in the preceding

formulas by the mean value
√
e′′ − u0, and write

(4) t =

√
A

2P (e′′ − u0)
arc sin

δ

ε
.

We wish, above all, to estimate the error that we commit here. This
error is called τ , and will be calculated as a fraction of the entire value
of t. The error τ will certainly be, disregarding the sign, smaller than
the difference of our two bounding values divided by the smaller of
them. We thus have
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272 IV. The general motion of the heavy symmetric top.

|τ | <

√
1

e′′ − e′ −
√

1
e′′ − e√

1
e′′ − e

,

or

(5) |τ | <
√
e′′ − e
e′′ − e′ − 1.

This bound for the “relative” error |τ | found in this manner depends
intimately on the Legendre modulus k of the elliptic integral for t.
According to equation (5′) of the preceding section, namely,√

e′′ − e
e′′ − e′ =

1
k′

=

√
1

1− k2
;

thus
(6) |τ | < 1− k′

k′
.

By way of example, we can use our approximation formula to cal-
culate the time duration ω that the apex of the top requires to arrive
from the lower parallel circle u = e or δ = −ε to the upper circle u = e′
or δ = ε. There follows from (4) the approximate value

(7) ω =

√
A

2P (e′′ − u0)
π.

If we simultaneously wish to express the degree of accuracy of this
formula, we can write, understanding by ϑ an unknown proper fraction,

(7′)

√
A

2P (e′′ − u0)
π

{
1± ϑ

(√
e′′ − e
e′′ − e′ − 1

)}
.

We wish to familiarize ourselves here with a thought that will come
to full value only in the sixth chapter. It is obviously convenient, from
an analytic standpoint, to go over in equation (4) from the (infinitely
many-valued) arc-sine function to the (single-valued) sine function.
This also corresponds completely to the spirit of mechanical problems,
in which one will wish to calculate the position of the top as a function
of time instead of the time as a function of the position of the apex of
the top. We will thus invert equation (4), in that we express δ or u as
an explicit function of t. We obtain

(8) δ = ε sin
{√

2P (e′′ − u0)
A

t

}
,

or, according to (2),

(8′) u = u0 + δ = u0 + ε sin
{√

2P (e′′ − u0)
A

t

}
.
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We will later carry out the corresponding inversion from the origi-
nally acquired infinitely-many-valued integrals to our elliptic formulas.

Under particular circumstances, it can occur that the error τ de-
termined above will be very small. Our approximation formulas then
provide the same service as the previous exact equations. We read the
circumstances under which this occurs from the inequality (5): either e
must be approximately equal to e′, or e′′ must be very large. Summa-
rizing the two possibilities, we can say that either the first two or the
last two of the four branch points e, e′, e′′, ∞ must move very close to
each other.

The first possibility occurs if we go over from regular precession,
for which e′ exactly equals e, to a slightly different motion by a small
change of the integration constants. Such “neighboring motions to reg-
ular precession” are treated in the first section of the next chapter, and
will be represented by approximation formulas in the sense of this sec-
tion. The same also applies to the motion of the “upright top” in the
stable case for a sufficiently small external disturbance (cf. §4 and §5
of the following chapter).

In order to determine when the second case of a very large value of
e′′ occurs, we wish to express e′′ in terms of our integration constants
n, N , etc.

Since e′ and e′′ are determined as roots of the quadratic equation
U1 = 0, we obtain the value e′ + e′′ if we divide the negatively taken
coefficient of u in this equation by the coefficient of u2. We thus find,
from equation (2) of page 240,

(9) e′′ =
n2 +N2 − 2nNe

2AP (1 − e2) − e′.

This value increases, in general, with increasing n and N , as well
as with decreasing P . It may at first appear that e′′ also becomes
infinite or very large in the case that e is equal or approximately equal
to ±1. This is, however, not so, since the numerator then vanishes at
the same time as the denominator. Namely, the numerator signifies
geometrically the square of the length of the binding line between the
endpoint of the impulse component n and the impulse component N
in the initial position u = e. If e = ±1, the length of this binding line
is evidently zero.127

Thus e′′ will become very large only if one of the impulse components
n andN becomes very large, or, more precisely said, if the square of one
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274 IV. The general motion of the heavy symmetric top.

of these quantities represents a very considerable number in proportion
to the quantity AP . This was the case on page 253 and ff. for the
investigation of the limit cases n = ∞, N = ∞. We thus see the
basis on which we could dispense with the representation of the motion
through elliptic integrals in these limiting cases; it would now be easy
to estimate the error τ in the earlier approximation formulas more
precisely.

We can assign our designation “pseudoregular precession” to the
first as well as the second of the different possibilities on the previous
page. For this motion, which likewise will be investigated in the next
chapter, the application of our approximation formulas will therefore
also give only a very small error.

According to (5), all these individual cases are characterized, from
the standpoint of the elliptic integrals, by the complementary modulus
k′ being approximately equal to 1; that is, the Legendre modulus itself
being approximately zero. It is clear in advance from the previous
section that we may dispense with the theory of the elliptic integrals in
such cases, and can represent the motion with great accuracy in terms of
elementary functions. For vanishing modulus k, namely, the Legendre
normal integral F (k, ϕ) (see equation (2) of page 260) is transformed
directly into the value of the amplitude ϕ, where ϕ is expressed in
terms of the original variable u or δ as an arc sine. This corresponds
precisely to the approximate representation of the motion given in the
preceding. The advance of the current consideration consists merely in
our ability to now estimate, for nonvanishing k, the magnitude of the
error of our approximation formula, according to (6), in terms of the
magnitude of k.

We may recall once again the previously sketched calculation of the
elliptic integral according to the methods of Legendre or Gau s. As
mentioned, these methods rest on the repeated application of a certain
quadratic transformation that has the consequence of successively di-
minishing the modulus of the integral. In one of the cases where our
approximation formulas give only a small error, the application of this
transformation becomes superfluous, in that the modulus is so small
from the beginning that we can evaluate the integral directly in an
elementary way without considerable error.

In the above-named special cases of pseudoregular precession, the
upright top, etc., the limiting case that Gau s and Legendre strove to
attain through sufficiently frequent application of their transformation
methods is present in itself.
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§9. Approximate calculation of the top trajectories. 275

In addition to the approximation formula for u, we will have use of
such a formula for ψ. We begin from the expression

(10) ψ′ =
n−Nu
A(1− u2)

given by equation (6) of page 238. We separate the right-hand side into
partial fractions, as was already done on page 267, and obtain

(11) ψ′ =
n+N

2A(1 + u)
+

n−N
2A(1 − u) .

We set here, as in equation (2) of page 270, u = u0 + δ, and carry out
the identity transformations

1
1 + u

=
1

1 + u0
− δ

(1 + u0)2
+R+, R+ =

δ2

(1 + u0)2
1

1 + u
,

1
1− u =

1
1− u0

+
δ

(1− u0)2
+R−, R− =

δ2

(1− u0)2
1

1− u
on the expressions (1± (u0 + δ))−1. Equation (11) thus becomes

(12)
ψ′ =

n+N

2A(1+ u0)
+

n−N
2A(1− u0)

− δ
( n+N

2A(1+ u0)2
− n−N

2A(1− u0)2
)

+
(
n+N

2A
R+ +

n−N
2A

R−
)
.

We then introduce for δ the approximate value from equation (8).
We have, if we express the precision bound τ in our formula,

δ = ε sin
{√

2P (e′′ − u0)
A

(1± ϑτ)t
}
.

We thus write, on the basis of the mean value theorem or the Taylor
series truncated at the first term,

(13)
δ = ε sin

{√
2P (e′′ − u0)

A
t

}
+ r,

r = ε

√
2P (e′′ − u0)

A
ϑ · τ · t · cos

{√
2P (e′′ − u0)

A
(1± ϑ′τ)t

}
,

where ϑ′, just as the previous ϑ, signifies a proper fraction.
Equation (12) now takes the form, if we group the terms appropri-

ately,

(14)
ψ′ =

n−Nu0

A(1 − u2
0)

+
2nu0−N(1 + u2

0)
A(1− u2

0)2
ε sin

{√
2P (e′′− u0)

A
t

}
+R,

R =
n+N

2A
R+ +

n−N
2A

R− +
2nu0 −N(1 + u2

0)
A(1− u2

0)2
r.
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276 IV. The general motion of the heavy symmetric top.

We now carry out the integration with respect to t; we obtain, if
we disregard an inessential constant of integration that determines the
value of ψ at t = 0, a term that increases in proportion to t, a second
term that changes periodically, and finally a remainder term.

The approximate representation of ψ in question now follows simply
by suppressing the remainder term in the obtained equation and setting
(14′)

ψ =
n−Nu0

A(1− u2
0)
t+

N(1 + u2
0)− 2nu0

(1− u2
0)2
√

2AP (e′′− u0)
ε cos

{√
2P (e′′− u0)

A
t

}
.

We will have to establish the degree of the approximation afterward
through a discussion of the remainder term.

Equations (8′) and (14′), taken together, provide an approximate
representation for the trajectory of the apex of the top that will indeed
be burdened, in general, with a considerable error, but which may, under
certain circumstances, replace the exact formula with advantage.

This representation permits of a very intuitive interpretation. We
first wish to consider the two component motions individually; they are
represented, respectively, by the two first or the two second terms of
the named equations. The two first terms are

u1 = u0, ψ1 =
n−Nu0

A(1 − u2
0)
t.

They define a regular precession in which the mean parallel circle u0

is traversed with the constant angular velocity
n−Nu0

A(1− u2
0)

. The two

second terms

u2 = ε sin
{√

2P (e′′ − u0)
A

t

}
,

ψ2 =
N(1 + u2

0)− 2nu0

(1− u2
0)2
√

2AP (e′′ − u0)
ε cos

{√
2P (e′′ − u0)

A
t

}
are harmonically changing quantities of the same period and unequal
amplitude; they represent, considered in themselves, an elliptical os-
cillation. We also designate the latter, in that we adopt the usual
expression in astronomy, as the nutation of the apex of the top.

The complete motion, as it is described by our approximation for-
mulas, consists of the superposition of the just described component
motions. Our formulas thus represent the motion of the apex of the
top as the superposition of a regular precession and a periodically re-
peating nutation. We must imagine that the apex of the top is led along
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§9. Approximate calculation of the top trajectories. 277

the mean parallel circle u0 with constant angular velocity, and at the
same time executes its nutational oscillation relative to this motion.
One may reconsider the figures of §2 in this sense, and envisage the
nature of the required precession and nutation in each case. The rep-
resentation is particularly suggestive and fruitful for the pseudoregular
precession represented in Fig. 28.

The main question of the degree of precision of our approximate
formulas now remains to be discussed. The degree of precision of our
formula for u has been determined above in a completely satisfactory
manner. In every individually determined numerical case, there is also
no difficulty in the error determination for our formula for ψ. Under
general assumptions, however, this error is not so smoothly estimated.
We must distinguish, rather, a series of special cases according to the
signs of the quantities n, N , u0, etc. A few remarks are sufficient here.

For the error determination in (14′), we must begin with the value
of the remainder R in (14), in terms of which the error f is calculated
as

f =
∫
Rdt;

the quantity f thus signifies (in contrast to the above error τ) not the
relative, but rather the absolute error.

We will consider in detail the special case in which the two parallel
circles e and e′ lie sufficiently near to one another, so that 2ε = e′ − e
is a small quantity. In this case, the error τ in our error estimation
above is also very small, and in particular, according to (5), vanishes
to the first order for vanishing ε. Now of the three terms from which
R in equation (14) is composed, the two that are multiplied by R+

and R− contain the factor ε2, since δ contains the factor ε; the third
term (cf. the above expression for r) possesses the factor ετ . We can
therefore say that R vanishes to the second order for vanishing ε, while
the remaining terms in our approximation formula become zero to the
first order in ε. For sufficiently small ε, our error f thus represents an
arbitrarily small fraction of the right-hand side of (14′). In this case,
the bounded approximation of our formulas (8′) and (14′) goes over into
an arbitrary approximation.128

It is well to note an exception. The term 1 − u2
0 or 1 ± u0 is

present in the denominator of R. If one of these factors decreases in the
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278 IV. The general motion of the heavy symmetric top.

same measure that the parallel circles e and e′ come together, then the
smallness of the numerator in R will be balanced by that of the denom-
inator. The previous statement is therefore valid only if the trajectory
of the apex of the top does not run in the immediate neighborhood
of the north or south pole of the unit sphere. In such a case, our ap-
proximation formulas can yield, even for arbitrarily small ε, an entirely
false image of the motion. We will therefore undertake, in the following
chapter (cf. §5), a special consideration of the motions occurring in the
neighborhood of the poles.

In conclusion, a word on the relation of our current manner of cal-
culation of the elliptic integrals of the first kind to the methods in the
previous section.

If, in the derivation of formula (4), we replace the factor (e′′−u)− 1
2

by the constant quantity (e′′ − u0)−
1
2 , this is equivalent to expanding

this term in increasing powers of u−u0 and truncating the series at the
constant term. This now suggests the retention of more terms or the
entire series in the calculation of t. In the latter case, there results a
convergent infinite series that may be expressed in terms of cyclometric
functions. If we consider a sufficient number of these terms, then we
can improve, in complete generality, the degree of the approximation
at our pleasure. One thus sees that our approximation procedure of
bounded precision, formed in this manner, reverts to the series method
of arbitrary precision named on page 264 under (1).
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Chapter V.

On special forms of motion of the heavy symmetric top,
particularly pseudoregular precession, and on the

stability of motion.

§1. Regular precession and its neighboring forms of motion.

In this chapter we wish to investigate more precisely some special
motions of the top: regular precession, for example, and, in particular,
the motion designated by us as pseudoregular precession. The great
question of the stability of motion will stand in the foreground of our
interest, a question that has often been considered in recent times, but
which does not yet appear to have been formulated with the necessary
sharpness and clarity.

We begin with the investigation of regular precession for the spheri-
cal top with moment of inertia A. We obtain this motion as a limiting
case of the general motion of the top if we let the two parallel circles
u = e and u = e′ that enclose the trajectory of the apex of the top come
together. If we consider, further, that e and e′ are roots of the cubic
equation U = 0, then we can say that regular precession is characterized
analytically by a double root of the equation U = 0 between −1 and +1.

The differential quotient
dU

du
must therefore vanish as well as U for

u = e. If we form this equation according to equations (1) and (2) of
page 240, we obtain the condition

(1) A
n−Ne
A(1− e2)

N − ne
A(1− e2) = P,

which, as has already been remarked on page 252, is identical with
the equation Aμν = P that results from the theory of the deviation
resistance.

Our general method of integration fails in a characteristic manner
for this simplest case of the motion of the top. If e = e′, namely, the
integration path for u in the expressions for t, ψ, and ϕ contracts to a
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280 V. Particular forms of motion of the heavy symmetric top.

single point, and our integrals lose their meaning. We thus ascend to
the nonintegrated equations

(2)
du

dt
=
√
U,

dψ

dt
=

n−Nu
A(1− u2)

,
dϕ

dt
=

N − nu
A(1− u2)

,

and verify directly that they are satisfied if we let

(3) cos ϑ = u = e, ψ = νt, ϕ = μt.

In fact, the first equation is transformed, for u = e = const., into
0 = 0; the latter two equations will likewise be satisfied if we specify
the quantities ν and μ in terms of the integration constants n, N , and
e as

(4) ν =
n−Ne
A(1− e2) , μ =

N − ne
A(1− e2) .

Here we must call attention to a remarkable contradiction to our pre-
vious results that is, however, only of a formal nature. Our last consid-
eration shows that equations (2) are satisfied by a completely arbitrary
choice of the integration constants e, n, and N and the corresponding
determination of the constants ϑ, μ, and ν in equations (3) and (4). It
may thus appear that regular precession represents a possible motion
for arbitrary initial conditions, while it was claimed previously, and fol-
lows from our earlier developments, that regular precession is possible
only if the condition (1) among the integration constants obtains.

To confirm the necessity of the latter condition directly, we return
to the original differential equations of motion, which we pose in the
Lagrangian form. According to page 154, these equations are, if we
insert for the components Θ, Φ, Ψ of the external force the values
given on page 220 and use for T the expression (6) of page 156 with
C = A,

(5)

⎧⎨
⎩
d[Θ]
dt

= −Aϕ′ψ′ sinϑ+ P sinϑ,
d[Ψ]
dt

= 0,
d[Φ]
dt

= 0.

[Θ] = Aϑ′, [Ψ] = A(ψ′ + ϕ′ cos ϑ), [Φ] = A(ϕ′ + ψ′ cos ϑ).

If we insert the values ϑ′ = 0, ψ′ = ν, ϕ′ = μ corresponding to equations
(3), the second line gives [Θ] = 0, [Ψ] = const., [Φ] = const.; the latter
two equations of the first line are identically satisfied, while the first
equation yields our previous condition

Aμν = P.
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§1. Regular precession and neighboring forms of motion. 281

According to our original equations, consequently, only a certain
class of regular precession that is characterized by equation (1) can in
fact occur.

We wish, however, to pursue further the basis on which equations
(2) possess integrals that are not comprised by those of the general
differential equations (5). For this purpose, we must broaden the geo-
metric conception of the meaning of our differential equations.

It may thus be permitted, for brevity, to speak only of the differen-
tial equations for u and ψ.

The differential equations (2) determine, for each point (u, ψ) of the

trajectory, a certain direction of progression
(dψ
du

)
, or, if we wish, a

certain velocity
(du
dt
,
dψ

dt

)
. We wish to imagine the respective direction

of progression marked as a kind of signpost at each point of the stereo-
graphic image of the unit sphere. We designate the embodiment of the
individual point and the corresponding signpost, in association with a
currently common means of expression, as a line element.129

To integrate the differential equations now means to give a curve
that is purely composed of such line elements, or to describe a path that
always runs in the direction of the signposts.

On the basis of this definition, one
sees immediately that each regular pre-
cession (n,N, e) obtained by choosing
N , n arbitrarily and e so that the equa-
tion U = 0 is fulfilled must satisfy the
differential equations (2). We consider,
namely, the general trajectory that cor-
responds to the integration constants n,
N , and e. The character of this curve
was described in the previous chapter.
We construct, in addition, the entire ensemble of trajectories that re-
sult if we rotate each first curve about the midpoint (the image of the
north pole) of the figure (cf. Fig. 46). All these curves are naturally in-
tegral curves of (2); they are all tangent, moreover, to the parallel circle
u = e. As a result, each smallest segment of the parallel circle u = e
represents a line element that corresponds to our differential equation.
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282 V. Particular forms of motion of the heavy symmetric top.

The parallel circle itself is thus an integral curve of the equations (2),
whether the condition (1) between e, n, and N is fulfilled or not.

Our consideration may be generalized immediately to arbitrary dif-
ferential equations of the first order. If we know an ensemble of integral
curves of such equations and construct the envelope of the ensemble,
this envelope likewise satisfies the differential equations. One desig-
nates these particular types of integral curves as singular solutions,
since they do not result from the general solutions by specialization of
the constants.

With the use of this terminology, we can thus say that regular preces-
sion is indeed a solution of the differential equations (2) for an arbitrary
choice of the constants e, n, and N , but a singular solution.

One now easily grasps that the singular solutions of (2) are not
also to be used as solutions of the differential equations (5). If we
make, namely, the analogous consideration for equations (5), then we
must speak not simply of line elements, but rather, for example, of
line elements of the second order. After a point and a direction of
progression passing through it are chosen, the corresponding value of
the second differential quotient is now determined by the differential
equations. Our signposts are now, so to speak, conditional signposts;
they prescribe, if we go forward from a point in a certain direction,
that we should move further on the trajectory with a certain curvature.
To integrate the equations (5), we must therefore assemble these line
elements of the second order into a curve, or construct the curvature of
the trajectory as prescribed by our conditional signposts. The integral
curves that we thus attain must, in every case, be contained among
the integral curves of (2). The latter equations can possibly permit,
however, of other integrals. For we cannot conclude, from only the
fact that the directions of progression of a curve satisfy the equations
(2), that its curvatures are in conformity with the equations (5). For
singular solutions this is in fact, as we saw, not the case.

We can further claim, however, that all the general solutions of (2)
must also satisfy equations (5). For these solutions form a continu-
ous multiplicity of trajectories, and since some of them must certainly
be integral curves of (5), so must they all. The general solutions of
(2) therefore have the curvature prescribed by (5), but not the singular
solutions.130
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§1. Regular precession and neighboring forms of motion. 283

We see in this example how it is always necessary to return to the
true meaning of the formulas (here, to the consideration of the line
elements), and never to trust blindly in the formal correctness of cal-
culational operations. —

We now go over to a new type of motion of the top, the “neigh-
boring motions to regular precession” that were already mentioned on
page 273. To this end, we impart a small impact to the top while it
is conceived to be in a regular precession motion. The direction of the
impact may be arbitrary, but the magnitude will be chosen as arbitrar-
ily small. Our impact is composed with the impulse corresponding to
the regular precession according to the parallelogram rule. The com-
ponents of the original impulse at a certain point of time, which we
can call the “initial time,” will therefore be augmented by arbitrarily
small increments, the components of our impact. The question is, what
motion corresponds to the changed initial impulse?

We decompose the impulse most conveniently into its components
with respect to the three distinguished axes of our problem, the figure
axis, the vertical, and the line of nodes; that is, into the perpendicu-
lar projections [Ψ], [Φ], and [Θ] of the impulse vector onto these axes.
Of these projections, the first two are invariable during every natural
motion of the heavy top, and are identical with the integration con-
stants N and n. Let these letters specifically denote the characteristic
values of the components [Φ] and [Ψ] for the regular precession; the
increments of these components due to our impulse are called N ′ and
n′. The third impulse component [Θ] is, in general, variable during
the motion. Only for regular precession do we have the special case
[Θ] = 0, since, according to (5), [Θ] = Aϑ′ and ϑ′ = 0. The incre-
ment that is added through the impact thus signifies the total value of
the [Θ]-component at the beginning of the motion. We designate it as
[Θ0], to indicate that this value represents the [Θ]-component only at
the time t = 0.

In the following, we will investigate the effects of the impulse incre-
ments n′, N ′, and [Θ0] individually. In this spirit, we first ask for the
displacement of the two parallel circles e and e′ due to the exclusive
augmentation of the impulse component [Ψ] by n′.

It is first clear that one of the parallel circles e and e′ coincides with
the precession circle e. Since [Θ0] = 0, we have ϑ′ = 0 and therefore
also u′ = 0 at the beginning of the motion, where u = e. One root
of the equation U = 0 is therefore equal to e after the impact as well
as before. The second root e′, which in the case n′ = 0 coincides with e,
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284 V. Particular forms of motion of the heavy symmetric top.

will be changed by our impact. We designate the increment of e′ by
2ε, and therefore set, as on page 270, e′ − e = 2ε. The quantity ε is
therefore a number that vanishes with n′, as follows immediately from
the continuity of our C3 on page 250. If we take n′ sufficiently small,
then we can also make ε arbitrarily small.

The magnitude of e′, or that of 2ε, is calculated from the equation
U1 = 0 of page 240, or, as we wish to write in more detail,

U1(u, v) = 0.

This equation must be satisfied, on the one hand, in the case of reg-
ular precession (that is, for u = e, v = n), and, on the other hand,
for the neighboring motion to regular precession, and therefore for
u = e + 2ε, v = n + n′. If we expand U1(e + 2ε, n + n′) according
to Taylor’s theorem in the neighborhood of the pair of values (e, n),
there follows, since U1(e, n) = 0,

U1(e+ 2ε, u+ n′) = 2ε
∂U1

∂u
+ n′

∂U1

∂v
+ · · · ;

here the left-hand side vanishes; on the right-hand side, we neglect all
the unwritten higher powers because of the smallness of ε and n′. There
follows

2ε
∂U1

∂u
+ n′

∂U1

∂v
= 0,

or
2ε = −n′ ∂U1

∂v

/∂U1

∂u
,

where we must insert v = n, u = e on the right-hand side. Without
calculating the right-hand side more precisely, we are satisfied to have
shown that ε is determined in this manner as a quantity that vanishes
with n′ in every case.

The matter is no different if we increase N by N ′, but hold fixed
the original values [Ψ] = n, [Θ0] = 0. One parallel circle is again e; the
displacement 2ε of the other parallel circle is calculated as previously;
since, namely, the equation U1 = 0 is formed symmetrically in n and
N , we have only to interchange n and N in the final formula for ε, and
write N ′ instead of n′.

In the third case, where we add the impulse [Θ0] and take n′ = N ′ =
0, both parallel circles e and e′ change. Namely, ϑ′0 = 0 no longer ob-
tains at the beginning of the motion, but rather Aϑ′0 = [Θ0], and thus
the initial value of u, which we denote by u0, is no longer a root of U =
0. For the determination of e and e′ we must therefore begin from the
cubic equation and not from the quadratic U1 = 0. It will now be shown
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§1. Regular precession and neighboring forms of motion. 285

that the two parallel circles e and e′ are removed equally far, in the
first approximation, from the original precession circle u0, so that u0

signifies, as in the previous section, the mean parallel circle

u0 =
e+ e′

2
.

The original form of the expression U was given in equation (7′) of
page 238 as
(6) A2U = −(Nu− n)2 + (k −N2 − 2APu)(1 − u2).

At the beginning of the motion (u = u0 = cos ϑ0), the left-hand side
of this equation is known. Since, in general,

U =
(
du

dt

)2

= sin2 ϑ · ϑ′2,
A2U becomes, for u = u0,

A2U = sin2 ϑ0(Aϑ′0)
2 = (1− u2

0)[Θ0]2.
Thus follows the equation
(7) (1− u2

0)[Θ0]2 = −(Nu0 − n)2 + (k −N2 − 2APu0)(1 − u2
0).

We wish to eliminate k from (6) and (7) after we have set U = 0 in
(6). We thus find for the desired values u = e and u = e′ the equation

(1− u2)[Θ0]2 = (Nu− n)2 − (Nu0 − n)2
1− u2

1− u2
0

(8)

+ 2AP (u − u0)(1− u2).
The polynomial of the third degree on the right-hand side can easily

be resolved into linear factors. If we set, namely, the right-hand side
equal to zero, then we must again find the roots of the equation U = 0
in the case of regular precession, since [Θ0] = 0 for this motion. The
linear factors of the right-hand side are therefore u − u0, u − u0, and
u− e′′. The additionally occurring factor independent of u is equal to
the coefficient of u3 in equation (8), and the right-hand side of this
equation is equal to

−2AP (u− u0)2(u− e′′).
Thus we can write more simply, in place of (8),

(1− u2)[Θ0]2 = 2AP (u− u0)2(e′′ − u).
We may now assume [Θ0] to be arbitrarily small, so that the

right-hand side will also become extraordinarily small. The desired
roots e and e′ therefore lie extraordinarily close to u0. We set u = u0+ε,
and obtain for the determination of ε the equation

(9) ε2 =
(1− (u0 + ε)2)[Θ0]2

2AP (e′′ − u0 − ε) .
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286 V. Particular forms of motion of the heavy symmetric top.

We can expand the right-hand side in a convergent series in powers
of ε. Since we can assume, however, that ε as well as [Θ0] is arbitrarily
small, we need only the first term. From this there follow two oppositely
equal values for ε; namely,

ε = ±
√

1− u2
0

2AP (e′′ − u0)
[Θ0].

Thus the desired values become

e = u0 − ε and e′ = u0 + ε,

where ε vanishes with [Θ0].
The parallel circles e and e′ therefore stand, in the first approxima-

tion, equally far from the initial circle u0; this represents, as claimed,
the “mean parallel circle of the motion” in the sense of the previous
section.

We return, after this preparation, to our distinction on page 283 of
the three cases that were characterized, respectively, by the three values
of the additional impulses n′, N ′, [Θ0]. It is common for all three cases,
as we saw, that the parallel circles e and e′ lie ever nearer to each other
as the impact is chosen smaller. The trajectories in question therefore
run arbitrarily near to the original precession circle, as was already
expressed in our appellation.

We next recall the results of the previous section. The approxima-
tion formulas (8′) and (14′) there, which generally provide a bounded
approximation, directly give, in the present special case, an arbitrarily
good approximation; the error will be arbitrarily small for sufficiently
small ε in the formula for u as well as in that for ψ. We will therefore
apply those formulas without misgiving*) to the present three cases,
and may write

(10)

⎧⎪⎨
⎪⎩
u = u0 + ε sin

πt

ω
,

ψ = νt + ν1ε cos
πt

ω
;

the abbreviations used here have the meanings

(11) ω = π

√
A

2P (e′′ − u0)
, ν =

n−Nu0

A(1 − u2
0)
,

ν1 =
N(1 + u2

0)− 2nu0

πA(1− u2
0)2

ω,

∗) One notes, however, the condition of page 277 that u0 may not be equal, or
approximately equal, to ±1. Some remarks on this case of precession follow in §5.
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§1. Regular precession and neighboring forms of motion. 287

where n and N denote the total value of the impulse components [Ψ]
and [Φ]; that is, the values of these components for the original preces-
sion possibly augmented by n′ and N ′.

In order to obtain a clear representation of our neighboring trajec-
tory, we consider separately the component motions of regular preces-
sion and nutation into which the motion of the apex of the top appears
to be decomposed by (10).

The trajectory of the first component motion is the precession circle
u = u0. This coincides with the original precession circle only when the
axis of the impact is the line of nodes (n′ = N ′ = 0, [Θ0] �= 0). In the
two other cases, in contrast, it is displaced vertically, in comparison
with the original precession circle, by the small increment ε. More
precisely, we can say that for the impact [Θ0], the deviation between
the mean parallel circle u0 and the circle of the original precession
vanishes to an order higher than the first with vanishing magnitude of
the impact, and vanishes only to the first order, in contrast, for the
impacts n′ and N ′.

The precessional velocity of our first component motion is given,
in all cases, by the quantity ν in equation (11). This quantity again
coincides with the original precessional velocity only in the case of the
impact [Θ0], since the impulse components n and N then remain un-
changed, and the value of u0 then coincides, in the more precise sense
just discussed, with the original value of u for the regular precession. In
the two other cases, the value of the precessional velocity deviates from
the original value by quantities that are of the same order of magnitude
as n′ and N ′.

The second component of the motion, the nutation, is, according to
the preceding, a harmonic oscillation with unequal amplitudes in the
coordinates u and ψ, or, as we say more briefly, an elliptical oscillation
relative to the circle of the precession. The quantity ω determined by
(11) gives the half-period of the oscillation; that is, the time interval
during which the apex of the top passes from e to e′. The vertical oscil-
lation amplitude is measured by ε, and the horizontal by ν1ε. One sees
without further ado that the oscillation period generally remains finite
with vanishing impact, while the two oscillation amplitudes vanish. If
we express ω, namely, in terms of our usual integration constants n, N ,
etc., in that we insert for e′′ the value from equation (9) of page 273,
there follows, in the limit of vanishing magnitude of the impact,
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288 V. Particular forms of motion of the heavy symmetric top.

ω = π

√
A2(1− e2)

n2 +N2 − 2nNe− 4APe(1 − e2) ;
here n, N , e signify the constants of the original regular precession.
This limiting value of ω is obviously different from zero. The same
holds for the limiting value of the angle ψω by which the azimuth of
the apex of the top increases during a nutation. According to equation
(11), it simply becomes

ψω = νω.

It is now easy to complete the series of figures of the previous chapter
by inserting a figure in the immediate neighborhood of Fig. 31 (“slow
precession”). In Fig. 31, we assumed A = −P = 1, e = 0, N = 0,2,
n = −5. If we now give n, by way of example, a value somewhat
different from −5, then an oscillation of half-period

ω = π

√
1

n2 +N2
=
π

5
circa

is superposed on the regular precession; at the same time, the azimuthal
amplitude during the time ω becomes

ψω = nω = −π circa.
The figure to be inserted in the immediate neighborhood of Fig. 31

is thus drawn schematically in the following manner (cf. Fig. 47). One
notices the characteristic fact that our
nutation, which has, as we know, van-
ishing dimensions in itself, is extended
by the superposition with the finite pre-
cessional velocity into a nearly complete
revolution about the vertical.

Entirely the same figure can also
serve as a representation of the neigh-
boring trajectory to the infinitely fast
precession (Fig. 35). Only here, because

of the special value n = ∞, ω becomes equal to zero and ψω becomes
exactly equal to ±π. —

The essential purpose that we have pursued in the consideration
of the neighboring solutions to regular precession consists, however,
not so much in the knowledge of the motions themselves, but rather
in the fact that we can now make conclusions regarding the stability
of regular precession. We claim, on the basis of our investigation of
the neighboring motions, that regular precession is certainly a stable
motion of the top.
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§1. Regular precession and neighboring forms of motion. 289

We have already explained on page 129 what we wish to understand
by the word stability, if not with sufficient sharpness. We reserve a
thorough definition until the sixth section of the current chapter; for
the present case, our earlier explanation suffices. We therefore repeat:
a motion is called stable if, for the addition of a sufficiently small impact
of arbitrary direction, the character of the motion changes continuously.

If we wish to apply this criterion to our present case, then we must
complete the preceding considerations in two directions.

By “motion,” namely, we must understand not only the motion of
the apex of the top along its trajectory, but rather the totality of the
position of the top; that is, the embodiment of the values that, for
example, the coordinates ϕ, ψ, ϑ take during the course of time. But
we now know that the value of the ϕ-coordinate can be obtained from
that of the ψ-coordinate through the interchange of n and N with
−N and −n (cf. the reciprocity law of the spherical top in §5 of the
preceding chapter). We thus need not make a new development for
the ϕ-coordinate to fully command the “motion,” but rather can claim
that the ϕ-coordinate behaves qualitatively just like the ψ-coordinate.

Further, our definition of stability corresponds to an arbitrary im-
pact; that is, to a simultaneous augmentation of the impulse compo-
nents [Φ], [Ψ], [Θ] by small increments. But it is clear that the effect
of an arbitrary impact may be composed by the direct superposition
of the effects of the special impacts n′, N ′, [Θ0] considered above, if
only those increments are sufficiently small. The resulting formulas for
u, ψ, and ϕ are therefore of the same character as those for u and ψ
above.

Now a glance at equations (10) shows that these formulas are trans-
formed continuously into the equations of regular precession if we con-
tinuously diminish the magnitude of the impulse increments. The same
therefore holds for an entirely arbitrary disturbance with respect to the
total character of the motion. This is also transformed continuously
into regular precession if we let the disturbance diminish continuously
to zero.

Thus the stability of regular precession is ensured.
Our definition of stability used here is different from the com-

monly given definition (cf. §6 of this chapter). While we demand only
that the change of the motion be continuous (that is, ever smaller
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290 V. Particular forms of motion of the heavy symmetric top.

as the impact is taken smaller), a motion is often said to be stable else-
where only if the deviation for the disturbed motion remains always
very small (or arbitrarily small). We wish, in general, not to join in
this use of language, since it brings with it, as will later be shown, an
improper restriction of the concept of stability. We remark, however,
that regular precession is also to be considered as stable according to
this narrower concept of stability, in so far, namely, as we direct our
attention merely to the geometric form of the trajectory of the apex
of the top and disregard its temporal course. In fact, the trajectory
changed by an additional impact is entirely enclosed in a spherical zone
of breadth (measured in the vertical direction) 2ε, and can, through the
diminishment of ε, and thus through the diminishment of the distur-
bance, be brought arbitrarily near to the precession circle e in its entire
extent. That the analogue is not the case for every motion is shown,
among other examples, by the force-free motion of a single mass par-
ticle according to the Galilean law of inertia. With the addition of an
impact, the original linear path is transformed into another straight
line that is removed arbitrarily far from the original in the course of
time, however small the impact is chosen to be. We are therefore
obliged to speak, with respect to the trajectory of regular precession,
of a particularly high degree of stability.

The situation is already different if we take into consideration, in
addition to the form of the trajectory, its temporal course, or the entire
character of the motion with inclusion of the ϕ-coordinate.

We cannot generally claim, namely, that the distance from the apex
of the top in the motion altered by a small impact to its position at the
corresponding time in the original motion always remains small. In fact,
we saw that the mean value of the angular velocity ψ′ will be changed
by the addition of the impact n′ or N ′, so that the apex of the top will
traverse its path after the disturbance with a velocity different from
before. In the course of time, therefore, the positions of the apex of the
top in the compared motions will differ by an arbitrary finite amount.
The corresponding result obtains, according to our reciprocity law, for
the coordinate ϕ, in so far as the impact changes the values of n and
N .

The precessional velocity ψ′, and therefore also the value of ϕ′, retain
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§2. Pseudoregular precession. 291

their original values only for the special case in which the impact ef-
fects no change of [Φ] and [Ψ], and consists only of [Θ0]. The altered
trajectory then oscillates with equal amplitude above and below the
original precession circle. Only through the restriction to this special
impact will the deviation of the position of the apex of the top, and the
position of the top in general, always remain small; regular precession
is to be called stable in the usual sense only under this constraint. We
summarize the latter remarks once more as follows:

Under the usual definition of stability, regular precession must be
consistently designated as unstable. It can be called stable only if one
of two restrictions is added. Either one considers only the geometric
form of the trajectory, and not the motion on the trajectory or the
motion of the top in general, or one directs the disturbance so that it
merely effects a change of ϑ′, with ϕ′ and ψ′, in contrast, unchanged.
From the standpoint of our concept of stability, on the other hand, we
must declare regular precession as stable without restriction. We can
state that the geometric form of the trajectory, and, for the special
disturbances named above, the motion in general have a particularly
high degree of stability.

§2. Pseudoregular precession; resolution of the paradoxes of
the motion of the top.

We now come to the most important point of the entire theory of the
top. It has attracted, because of its paradoxical nature and frequency of
actual occurrence, the highest interest of theoretical and experimental
natural philosophers. We refer to the motion of the top that we have
designated as pseudoregular precession.

We will first depict the characteristic nature of this motion by com-
parison with regular precession.

As we have seen, regular precession occurs only under the special
circumstances that have been given in detail in the previous section
and in the sixth section of the third chapter. From the experimental
standpoint, however, one can easily come to the conception that regu-
lar precession is the general motion of the heavy top, and that it occurs
for an arbitrary choice of the initial conditions. In fact, if we wind the
top with a cord, as is usually done, and then abandon it to the influence

291



292 V. Particular forms of motion of the heavy symmetric top.

of gravity without the addition of a rather considerable impact, it ap-
pears that the figure axis describes a circular cone about the vertical
with uniform velocity. This result must naturally appear as paradox-
ical in the highest degree. For it is inconceivable that the vertically
acting weight should generally produce a motion in which, for exam-
ple, all points of the figure axis continuously progress in the horizontal
direction, and therefore exactly perpendicular to the direction of the
external force.

Against this conception, it is now to be noted first that the named
observational result is not exact. The motion has only an external
similarity with regular precession. If we examine it more precisely, we
note that the figure axis executes small periodic oscillations about the
circular cone of the regular precession, which for very large rotational
velocity are indeed hardly noticeable, and most likely manifest them-
selves in a periodic trembling of the support. It is on this basis that we
have bestowed upon the motion in question the name of pseudoregular
precession.

The illusion is further strengthened by the fact that the deviation
from regular precession is quickly absorbed by all sorts of secondary
circumstances that are usually not considered in abstract mechanics,
such as friction and the elasticity of the support. These secondary
circumstances, however, will presently remain out of consideration.

Second, the phenomena usually present in experiments are not gen-
eral, but rather are specialized in a certain manner. For the winding
always produces an impulse that falls precisely or approximately in
the direction of the figure axis, and has, moreover, a very considerable
length.

We are thus led, proceeding first from the experimental standpoint,
to formulate the conditions for the possibility of pseudoregular preces-
sion in the following manner:

The motion will be a pseudoregular precession if the impulse vector
initially falls in the approximate direction of the figure axis and has a
considerable length.

The words “approximate” and “considerable” must naturally be
made more precise. We wish to say, for example, that two directions
“approximately” coincide if we can no longer distinguish their intersec-
tion points on the unit sphere with the naked eye.

To attach an exact representation to the word “considerable,” we
must compare the length of the impulse vector with the magnitude of
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§2. Pseudoregular precession. 293

the force of gravity. A direct comparison of these two quantities is
doubtful, since they have different dimensions, and their quotient is

therefore not an absolute number. In fact, |i| has the dimension
[ml2
t

]
,

and P the dimension
[ml2
t2

]
(cf. pp. 88 and 84). In contrast, |i|2 and

AP , for example, are compatible quantities, in that both have the

dimension
[m2l4

t2

]
. As a result, we can directly compare these two

quantities numerically. We now wish to establish that the length of
the impulse should qualify as considerable if its square is at least 100
times (measured in equal units) the product AP . Since the primary
component of |i| is formed, according to the preceding stipulation, by
the eigenimpulse N , and since certainly |i| ≥ N , we can also conceive
our explanation of the word “considerable” as the following: the length
of the impulse vector qualifies as considerable if

N2 > 100AP.

This condition for the occurrence of pseudoregular precession obvi-
ously differs essentially from that given in the previous section for reg-
ular precession. While the condition for regular procession was a quan-
titative condition and required an entirely determined relation of the
integration constants, our present condition is of a qualitative nature;
it imposes only certain inequalities on the constants. Correspondingly,
pseudoregular precession is also only a qualitative concept; according
to whether we place the emphasis on the first or last syllables of the
word, we postulate a greater or lesser similarity with regular precession.

We note, moreover, that the conditions just given were fulfilled when
we spoke of pseudoregular precession in the previous chapter (cf. Fig.
28). The initial positions of the impulse and the figure axis were hor-
izontal (n = 0, e = 0), and the length of the impulse was assumed to
be infinite (N = ∞).

Because of the importance of our motion, it is well to make the
treatment as elementary as possible, as is often attempted in other
works to which we will return in the next section. Thus we will first
disregard our knowledge of the general forms of motion, and only later
relate our results to the representation of the motion of the top by
elliptic integrals.

A purely elementary treatment is naturally possible, in our case, only
on the basis of more or less plausible omissions that may be justified
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294 V. Particular forms of motion of the heavy symmetric top.

rigorously only by rigorous theory and analytic means. Such a treat-
ment is nevertheless instructive, since it forces us to return to the sim-
plest basis of explanation, which is contained only obscurely in the final
formulas.

We assume, for the moment, that gravity does not act at all. Our
top, which we assume to be a spherical top, then rotates, as we know,
with constant velocity about the impulse axis, which is fixed in space.
The figure axis describes a circular cone that will be very narrow, since,
by assumption, the initial difference in direction between the figure
axis and the impulse axis is very small for our motion. The apex
of the top progresses through a small circle on the unit sphere. We
assume, moreover, that the impulse axis does not coincide with and is
not near the vertical; the meridian plane through the figure axis will
then always deviate only slightly from the meridian plane through the
impulse axis during the motion, and the two planes can be treated, in
the first approximation, as coincident. Further, the angle ϑ between the
vertical and the figure axis will change only very little in our rotation
and can be taken, in the first approximation, as constant.

We now consider the action of gravity. Under its influence, the
impulse does not remain constant, but rather is composed, at each
moment, with the turning-impact of gravity P sinϑ. It must be our
next exercise to supply an image of the trajectory of the endpoint of
the impulse.

The motion of the top naturally consists, now as previously, of a
rotation about the (now no longer fixed) axis of the impulse. If we
consider only a sufficiently short interval of time—for example, that
of only one rotation of the figure axis about the impulse—then we can
make the same assumptions for our present motion that were just made
for the rotation about the fixed impulse axis. We can say, namely, that
the change of the impulse stands perpendicular to the meridian plane
through the impulse (instead of that through the figure axis). And,
the rate of change has the constant magnitude P sinϑ0 (instead of the
variable magnitude P sinϑ), where ϑ0 signifies any mean value of the
angle ϑ. Through these statements, however, the trajectory of the
endpoint of the impulse is determined in the simplest manner. It is
simply a circular arc about the vertical, and will be traversed with con-
stant velocity. The intersection point of the impulse vector with the
unit sphere, which we wish to denote by J , thus moves on a parallel

294



§2. Pseudoregular precession. 295

circle, or, if we consider only a sufficiently small part of the unit sphere
and replace the sphere at the considered location by its tangent plane,
on a straight line.

We can easily give the progressional velocity v of the point J . This is
evidently in the same proportion to the progressional velocity P sinϑ0

of the impulse endpoint as 1 is to |i|, where |i| is understood as the
length of the impulse vector. In this proportion we may simply replace
|i| by the projection N of the impulse vector onto the figure axis, since
this projection amounts, by assumption, to the primary component of
the impulse. We thus find for the velocity v the value

(1) v =
P sinϑ0

N
.

The motion of the figure axis and the trajectory of the apex of the
top are now easy to determine. The apex of the top F—that is, the
intersection point of the figure axis with the unit sphere—must always
progress, since the instantaneous motion consists of a rotation about
the impulse vector, perpendicularly to the binding line JF . Further,
the angular velocity w with which F turns about J is simply equal to
|i|
A

. If we replace, as above, |i| by the principal component N of the

impulse, then there results for w the constant value

(2) w =
N

A
.

Through the latter statements, however, the trajectory of the apex
of the top is characterized as a cycloid.

x axis-

�-axis�-axis

(� y axis)

In fact, if we generate a cycloid in the usual manner (cf. Fig. 48)
by rolling a wheel on a line, then each point fixed to the wheel turns
with constant angular velocity about the instantaneous tangent point of
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the wheel, and always proceeds perpendicularly to the binding line with
this tangent point, while the tangent point itself travels with constant
velocity on its line. We can thus directly identify the trajectory of the
apex of the top F with the trajectory of a point on a rolling wheel (that
is, with a cycloid), and the path of the impulse point J with the linear
path of the tangent point.

Thus the equation of the trajectory may be written down immedi-
ately. We use rectangular coordinates ξ, η, in that we take the line on
which our wheel rolls as the ξ-axis. Let r be the radius of the wheel,
a the distance from the point F that describes the cycloid to the mid-
point of the wheel, and w the angular velocity of the rolling, where we
must choose w corresponding to equation (2). We assume, for t = 0,
that the point F lies perpendicularly above the tangent point J of the
wheel and on the η-axis, so that its distance from this axis will be
η0 = r + a. Then the equations of the cycloid are

(3)
{
ξ = rwt + a sinwt,
η = r + a coswt.

The quantities r and a are determined in terms of the constants
of the top in the following manner. Since rw signifies the velocity
with which the tangent point J progresses on the ξ-axis, we must have
rw = v and therefore, with consideration of (1) and (2),

(4) r =
AP sinϑ0

N2
.

The quantity a is determined from the initial distance η0 of the
points J and F by the equation

a = η0 − r.
Now η0 measures the deviation of the impulse vector from the figure
axis in the initial position. If we denote the perpendicular from the
endpoint of the impulse vector to the figure axis by p and its projection
onto the vertical by n′, then we have (cf. Fig. 49)

(5) η0 =
p

N
=

n′

N sinϑ0
.

Further, as follows from the figure,

(5′) n′ = n−N cosϑ0.

The value of a follows from (4) and (5) as

(6) a =
n′

N sinϑ0
− AP sinϑ0

N2
.
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If we insert the found values of r and a into equation (3) and ex-
press w according to (2), we obtain the equation of the trajectory in the
definitive form

(7)

⎧⎪⎪⎨
⎪⎪⎩
ξ =

P sinϑ0

N
t +

( n′

N sinϑ0
− AP sinϑ0

N2

)
sin

N

A
t,

η =
AP sinϑ0

N2
+
( n′

N sinϑ0
− AP sinϑ0

N2

)
cos

N

A
t.

According to whether the distance a is larger, equal to, or smaller
than the radius r, we have a prolate, a common, or a curtate cycloid,
which three types are indicated in Fig. 48.

We must particularly emphasize a further point. In the determina-
tion of the impulse curve, we assumed that the figure axis was always
only slightly removed from the impulse axis.
The permissibility of this assumption is imme-
diately evident only for the beginning of the
motion; it follows at this time from the initial
conditions. It now follows generally from the
periodic behavior of our trajectory, however,
that the initially present conditions will be
exactly present again after each traversal of one
complete arc of the cycloid. As a result, our
deliberation is valid for the following phases of
the motion just as well as for the first.

We naturally obtain only an approximate
representation of the motion from the preceding
consideration. Strictly speaking, we must not

J
F

O

n

NNe

n
p

V

say that the trajectory of the apex of the top is a cycloid under the
given initial conditions, but rather that the trajectory always deviates
less from a cycloid as the initial impulse is larger and its direction
coincides more exactly with the figure axis.

It is easy to see the type of deviation that will occur. Since the
meridian plane through the impulse does not coincide exactly with the
meridian plane through the figure axis, the impulse curve will not be ex-
actly a parallel circle or a straight line; it will rather exhibit, according
to which side the one meridian plane is removed from the other during
the rotation of the figure axis, a small lateral buckling upward or down-
ward, as indicated by the dotted line in Fig. 48. The trajectory of the
apex of the top that corresponds to this undulating impulse curve will
also exhibit small periodically recurring distortions with respect to the
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cycloidal form. These deviations are not contained, however, in
the figure or our formulas; they would correspond, in the latter, to
neglected terms of higher order.

Moreover, we could extend our cycloid so that it also renders these
terms of second and higher order correctly. We must, for this purpose,
let another circle roll on the rolling circle, on this circle another, and so
forth. Through the free choice of the radii and the rotational velocities,
we obtain a schema that is sufficiently general to render an arbitrary
motion with arbitrary precision. Our approximate manner of represen-
tation of the trajectory above appears, from this point of view, as the
first term of an infinite series of approximations.*)

We must conceive Fig. 48 as an extraordinarily enlarged rendering
of the actual proportions. In experiments, the individual cycloidal arcs
will be so small and so rapidly successive that the eye cannot perceive
them, and the impression of an ordinary regular precession is obtained.
As witness to this we calculate, for example, the time of passage and
the span width of an individual cycloidal arc. The time during which
an individual arc will be traversed is called 2ω; it amounts, according
to our formula, to

2ω =
2π
w

= 2π
A

N
;

it will thus become zero with increasing N . The span width of the
cycloidal arc—that is, the segment through which the figure axis pro-
gresses in the horizontal direction during one period—is equal to

P sinϑ0

N
2ω =

AP

N2
sinϑ0 · 2π;

this quantity contains the factor
AP

N2
, which we assumed above as very

small
(
<

1
100

)
. Simultaneously with the span width, the height of

the cycloidal arc will also become vanishingly small for increasing N ,
corresponding to the formula

a =
n′

N sinϑ0
− AP sinϑ0

N2
.

The collected dimensions of the cycloid will therefore become, so to
speak, microscopically small. The eye perceives, of the entire play of the

∗) The “principle of cycloidal approximation” indicated in the text also provides
the mathematical foundation on which rests the conception of celestial mechanics in
the Ptolemaic system of the world. Cf. Möbius, Elemente der Mechanik des Himmels,
1843, Kap. III, Theorie der epicykloidischen Bewegung. Ges. W. Bd. IV.131

298



§2. Pseudoregular precession. 299

apex of the top, only an undetermined mean that consists of an apparent
regular precession.

A numerical example may illustrate this. We consider a rotor
whose mass forms a torus of square cross section. Let the side of
the cross-sectional square be 2 cm, and the distance of its midpoint
from the figure axis 5 cm. Let the support point have the distance
2,5 cm from the center of gravity of the rotor. For the calculation of
the moment of inertia, we permit ourselves to imagine the mass of an
individual cross section to be concentrated at the midpoint of the cross
section. One then easily finds, in the absolute system of measure,

C = 1000
π, A = 750
π, P = 100
πg,

understanding by 
 the density of the material.
The eigenrotation of the rotor amounts approximately (as on page

135) to 20 rotations per second. Its angular velocity about the figure
axis is then 40π; thus

N = 40000
π2 and
N2

AP
=

(40 000
π2)2

75 000(
π)2g
=

64000π2

3g
.

The fraction
π2

g
can be replaced approximately by

1
100

; then

N2

AP
=

640
3

> 200.

The top considered here is, to be sure, not a spherical top. We
know, however, that a top with unequal moments of inertia A and C
describes the same trajectory at the same tempo as a spherical top
with moment of inertia A and the same impulse constants n, N , etc.
As a result, the above formulas may be carried over to our case.

If the initial inclination ϑ0 of the figure axis with respect to the
vertical is now approximately 30◦ and we abandon our top to the in-
fluence of gravity without adding a considerable lateral impact, then
there results for the transit time of a single cycloidal arc, according to
the preceding,

2ω =
1500
π2

40000
π2
< 0,04 sec.

At the same time, the height of the arc will become, if we take, for
example, n′ directly equal to zero,

|2a| = 2
AP

N2
sinϑ0 =

AP

N2
< 0,05 mm.

It is clear that these small quantities will all but completely elude
observation.
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As we see, the explanation of pseudoregular precession presents no
difficulty at all on our adopted path. If one otherwise finds this mo-
tion astonishing and paradoxical, this rests, in good measure, on the
fact that one’s conception of mechanical processes usually begins from
particle mechanics, and thus one thinks exclusively, in our case, of the
downward effect of gravity on a freely moving mass particle. An ex-
planation of pseudoregular precession is naturally also possible on the
basis of particle mechanics, as we will discuss in more detail in the
following section. The path that leads from particle mechanics to the
understanding of our top motion is, however, naturally rather long. It
is essentially shortened if we operate from the outset with the concepts
of the moment of inertia, the instantaneous rotation, and, in particu-
lar, the concept of the impulse, and thus begin, as was done here, from
the conception of a rigid body as a unified mechanical system. These
concepts are naturally derived in the end from particle mechanics, but
this derivation is undertaken in advance, and need not be interjected
afterward.

Partly to confirm the preceding considerations, and partly to relate
them to the general representation of the motion of the top, we now
wish to conceive our problem once again analytically. We are in the
pleasant position of being able to manage with the approximation for-
mulas at the conclusion of the previous chapter, whose bounded pre-
cision goes over in the present limiting case to an arbitrary precision.
We must first estimate the magnitude of the error in the application of
those approximation formulas.

Under the assumption that the impulse vector falls nearly in the
direction of the figure axis, the impulse component n (cf. Fig. 49) will
be nearly equal to Ne. We denote the difference n−Ne, as in equation
(5′), by n′, so that n′ :N is assumed to be a small number. In addition,
we will have use of our assumption that AP :N2 is a small number.

We regard the initial parallel circle e, as previously, as known; the
second parallel circle e′ is then easily determined approximately from
the equation U1 = 0. If we set, namely, n = Ne + n′ in this equation
and neglect the square of n′ compared with that of N , then we obtain,
according to equation (2) of page 240,

U1 = N2(1− e2)(e− u) + 2n′N(1− e2)− 2AP (1 − e2)(1 − u2).
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We assume, just as in the geometric consideration above, that the
initial position of the figure axis does not coincide with and is not near
the vertical (e �= ±1), so that we can divide by N2(1 − e2) and obtain
for the determination of e′ the equation

(8) e− u+
2n′

N
− 2AP

N2
(1− u2) = 0.

Since the two latter terms of this equation are by assumption small
numbers, we already see that one root (e′) is approximately equal to e,
and the second (e′′) must become very large. We obtain a more precise
value of e′ if we replace u by e in the latter small terms, or, preferably,

by u0 =
e+ e′

2
; there then follows

(9) e′ = e+ 2ε, ε =
n′

N
− AP

N2
(1− u2

0).

On page 273, we distinguished two cases in which the approximation
formulas for the calculation of u give an arbitrarily small error. The
first case was that e and e′ differ sufficiently little, and the second
that e′′ becomes sufficiently large. The first case occurs, as we see,
for pseudoregular precession. In fact, the vertical distance between the
two bounding parallel circles e and e′ amounts only to the very small
quantity 2ε. For redundancy, however, the second criterion also obtains
in our case: e′′ is, as already mentioned, a very large number. In fact,
if we calculate e′′ according to equation (9) of page 273, there follows,
if we set n = Ne+ n′ and neglect n′2 compared with N2,

e′′ =
N2

2AP
− e′.

This value is, according to our assumption on the ratio N2 :AP , a very
large number; we will even be able to omit the proper fraction e′ in
relation to the first term. We thus set

e′′ =
N2

2AP
,

and, with the same degree of approximation,

(10)

⎧⎪⎪⎨
⎪⎪⎩
e′′ − u0 =

N2

2AP
,

2P (e′′ − u0)
A

=
N2

A2
.

A somewhat more precise value for the latter quantity would be

(10′)
2P (e′′ − u0)

A
=
N2 − 4APu0

A2
;
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302 V. Particular forms of motion of the heavy symmetric top.

we prefer to satisfy ourselves in the following, however, with the simpler
value from equation (10).

Because of both the smallness of ε and the bigness of e′′, the esti-
mated error τ on page 272 will be very small in our case, and indeed
always smaller as our conditions adopted as the basis of the motion
are more completely fulfilled. We can thus represent u with arbitrary
approximation through equation (8′) of page 272. With consideration
of equations (9) and (10) of the previous page, there follows

u = u0 +
(n′
N
− AP

N2
(1− u2

0)
)

sin
N

A
t.

The smallness of ε justifies us, further, in also representing ψ by the
approximation formula (14′) of page 276. We saw, namely, that the
error in this representation vanishes with vanishing ε.

The coefficients of that equation may be simplified in our case. If
we set n = Ne+ n′, then

n−Nu0 = N(e− u0) + n′ = N
e− e′

2
+ n′ = −Nε+ n′,

and therefore, with consideration of (9),
n−Nu0

A(1− u2
0)

=
P

N
.

The second coefficient
N(1 + u2

0)− 2nu0

(1− u2
0)2
√

2AP (e′′ − u0)
simplifies in a similar manner. According to (10), we can write

N(1− u2
0)− 2(n′ −Nε)u0

N(1− u2
0)2

;

since this expression appears in equation (14′) multiplied by the small
quantity ε, we can further simplify it, in that we neglect (n′ − Nε)
with respect to N ; the imprecision effected in the result is of the order
ε2, and would therefore influence only the form of the remainder term.
Our second coefficient can therefore be set equal to

1
1− u2

0

.

We thus obtain from the reduced equation the simple approximate
value

ψ =
P

N
t+

ε

1− u2
0

cos
N

A
t.

The trajectory of the apex of the top is now represented, if we set
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u = cos ϑ, u0 = cos ϑ0 and insert for ε the value from (9), by the two
equations

(11)

⎧⎪⎪⎨
⎪⎪⎩

cos ϑ = cos ϑ0 +
(n′
N
− AP

N2
sin2 ϑ0

)
sin

N

A
t,

ψ =
P

N
t +

( n′

N sin2 ϑ
− AP

N2

)
cos

N

A
t,

in precise agreement with the cycloid theory, as we will immediately
show in more detail.

The relation of these formulas to the general representation of the
motion of the top by elliptic integrals is, according to the discussion of
pages 274 and 277, clear. The smallness of the modulus k, or, equiva-
lently, that of the error τ , satisfactorily explains why the elliptic inte-
grals can be replaced with good approximation, in our case, by trigono-
metric functions.

These remarks become partially invalid if our original assumptions
are only partially fulfilled. If, for example, the initial impulse nearly
coincides with the figure axis and is extraordinarily large, but is not
large in comparison with the action of gravity—that is, if n′/N but
not AP/N2 is a small number—then the motion will differ essentially
from pseudoregular precession; the error in our approximation formulas
can be very considerable. In fact, a top with large N and P will
behave just like a top with correspondingly diminished values of N and
P ; it can thus describe the general motions depicted in the previous
chapter that can be represented with arbitrary precision only in terms
of elliptic integrals. If, on the other hand, the eigenimpulse is very large,
the gravity moment is not very large, and the impulse axis deviates
essentially from the figure axis in the initial position—that is, if AP/N2

but not n′/N is small—then the parallel circles e and e′ need no longer
be neighboring. Nevertheless, if the value of e′′ (see equation (9) of page
273) is still very large, the error in the trigonometric representation
will still be very small. This case, we can say, is the case of a top
that is neighboring to a force-free top (of moderate N and vanishing
P ). Just as the motion of the latter can be described approximately
by trigonometric terms, so can that of the former.

One recognizes that our equations (11) are identical with the ear-
lier formulas (7) in the following manner: we first replace the spherical
surface by its tangent plane at the considered point on the trajectory,
which is permitted because of the extraordinarily small dimensions of
the latter. We choose the mean direction of progression u = u0 of the

303



304 V. Particular forms of motion of the heavy symmetric top.

apex of the top as the x-axis of a rectangular coordinate system (xy)
whose origin coincides with the position of the apex of the top at the
time t = 0. Then the rectangular coordinates are easily expressed in
terms of the previous coordinates ψ, u. Since, namely, ψ is (disregard-
ing an additive constant) the azimuth to which the projection of the
figure axis has advanced in the equatorial plane from its initial position
in the time t, and since, on the other hand, x signifies the horizontal
displacement of the apex of the top on the spherical surface (or in its
tangent plane) during the same time, ψ is to x as the radius of the
equator is to the radius of the parallel circle passing through the apex
of the top; that is, approximately as 1 to sinϑ0. Therefore

x = ψ sinϑ0.

Further, u− u0 = cos ϑ− cos ϑ0 signifies the vertical projection of the
meridional deviation of the apex of the top from the mean parallel u0.
This meridional deviation itself is, however, our coordinate y. We thus
have

y =
u− u0

sinϑ0
=

cos ϑ− cos ϑ0

sinϑ0
.

As a result, equations (9) become

(12)

⎧⎪⎪⎨
⎪⎪⎩
x =

P sinϑ0

N
t +
( n′

N sinϑ0
− AP sinϑ0

N2

)
cos

N

A
t,

y =
( n′

N sinϑ0
− AP sinϑ0

N2

)
sin

N

A
t.

These formulas now differ from equations (7) only by a displacement
of the coordinate system. While our ξ-axis previously coincided with
the impulse curve and (cf. Fig. 48) lay asymmetrically with respect to
the trajectory of the apex of the top, we have chosen our x-axis so that
it is identical with the mean position u0 of the apex of the top. We
bring equations (7) and (12) into formal coincidence if we set

x = ξ, y = η − AP sinϑ0

N2

and shift, moreover, the origin of time by
πA

2N
.

We can thus generate our trajectory (12) again geometrically as
a cycloid by the rolling of a circle on a straight line, or also, as is
equivalent in the present case, conceive our motion as the superposition
of a regular precession and a nutation in the sense of page 276.
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We take the equations of the regular precession from the first terms
on the right-hand side of (11); they are

(13) cos ϑ = cos ϑ0, ψ =
P

N
t.

We best describe the nutation in terms of its equation in x, y coor-
dinates, which we take from the second terms on the right-hand sides
of (12). We have

(14) x = ε cos
Nt

A
, y = ε sin

Nt

A
, ε =

n′

N sinϑ0
− AP sinϑ0

N2
.

Under the special assumptions that form the basis of pseudoregular
precession, the nutation therefore becomes a circular oscillation; its
horizontal and its meridional amplitudes are both equal to ε. In con-
trast, we saw that under the general assumptions at the end of the
previous chapter, as well as for the trajectories neighboring to regu-
lar precession, the nutation was an elliptical oscillation. Further, the
nutation period

(15) 2ω =
2πA
N

,

or, if we assume instead of (10) the somewhat more precise equation

(15′) 2ω =
2πA√

N2 − 4APu0

in (10′), becomes infinitely small with increasing N for pseudoregular
precession, while it remains finite, for example, for the curves neigh-

boring to regular precession. Finally, the precessional velocity
P

N
now

also becomes infinitely small, while it likewise has, in general, a finite
value.

Of the two component motions into which we have divided the pseu-
doregular precession, the eye perceives clearly only the first. Indeed,
this motion is, as we just emphasized, exceedingly slow for sufficiently
large N . But the factor t explicitly enters its equation. In spite of the
exceedingly small value of the angular velocity, we will note, if only we
extend the observation time long enough, a distinct precession of the
figure axis. In the equations of our second component motion, in con-
trast, t appears only as the argument of trigonometric functions. These
rapidly changing terms of small absolute value thus escape observa-
tion. We can also formulate this difference using common astronomical
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306 V. Particular forms of motion of the heavy symmetric top.

terminology in the following manner:
Our first component motion represents a secular, and our second a

periodic perturbation of the stationary position.
While our first component motion is decisive for the description of

the trajectory or the depiction of observational results, the second term
is the more important for the mechanical explanation of the process.

The mechanical explanation is associated, according to the funda-
mental laws of dynamics, not so much with the position as with the
velocity and the acceleration of the mass elements. But if we differen-
tiate the equations of our trajectory with respect to t, then the relative
magnitudes of the individual terms are changed. The periodic term,

namely, is multiplied each time by the (very large) factor
N

A
, while the

secular term loses the factor t, or (by a second differentiation) vanishes
altogether. As a result, the explanation of the process of the motion
must also take essential account of the second component motion. If
we would consider, on the basis of an imprecise observation, the motion
as an actual regular precession, it must appear, in fact, as incompre-
hensible and paradoxical. In our case the mechanical explanation must
be based, rather, directly on the element of the motion that is all but
lost in observation.

In these developments we see the complete solution of the para-
doxes of the motion of the top. We recognize, in particular, why the
description of the motion of the top as regular precession indeed repro-
duces observations very well under the usual experimental conditions,
but can still be insufficient for the mechanical explanation.

As a final historical remark, we note that pseudoregular precession,
if not under this name, was first derived from the general differential
equations of the motion by Poisson.*) In Poisson, however, as well as
in the later analysts,**) the geometric and mechanical essentials are
not as explicitly pared from the formulas as here. The reader runs the
danger, in the study of these purely analytic presentations, of directly
overlooking or inadequately grasping the essential.132

∗) Cf. Traité de Mécanique, t. II, Nr. 432, p. 175 of the second edition.
∗∗) For example, Kirchhoff, Mechanik, 7 Vorlesung, §5.
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§3. Popular explanations of the phenomena of the top
in the literature.

Elementary presentations of the theory of the top are concerned
almost exclusively with regular precession, since this motion is of pri-
mary importance in experiments, and since the general motion of the
top may not at all be represented by elementary means. We give, in
this place, an overview of the more important popular explanations,
without making any claim of completeness. The overall picture that
emerges here is not very pleasant. We will meet many indefensible or
incomplete attempted explanations. This circumstance, moreover, was
directly the original motive for the composition of the present detailed
monograph.

1. A first category of presentations is satisfied with a plain depiction
of the processes. The following experiment is emphasized above all
others. If one sets the top into a strong rotation and then applies
a force to the figure axis—by pulling, for example, the apex of the
top to one side with an encircling thread—then the axis apparently
deflects perpendicularly to the direction of the thread. This and similar
things are vividly set forth in the previously cited*) interesting work of
P e r r y, where the top is compared directly to an obstinate beast that
is goaded in one direction and always runs in another.133

The named experiment can also serve to illustrate the behavior of
the figure axis under the influence of gravity. In fact, we can compare
gravity with a pull that strives to move the center of gravity, and there-
fore also the figure axis, downward at each moment. Corresponding to
the experiment, we will thus expect that the apex of the heavy top
apparently deflects perpendicularly with respect to the gravitational
force; that is, in the horizontal direction.

As a mere observational result, one must allow such a representation
of the phenomena as valid. Its validity, however, lies only within the
imprecise limits of the observation. In fact, we know that the initial
direction of the motion of the apex of the top, if we abandon it to the
pull of a thread or the influence of gravity without the addition of a
lateral impact, is not perpendicular to the pull, but in the direction

∗) p. 134.
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308 V. Particular forms of motion of the heavy symmetric top.

of the pull (cf. the adjacent lobed curve [common cycloid]), and that
only the smallness of the arcs of which the curve is composed produces
the impression of the experiment.

2. It is occasionally attempted to explain the described imprecise
observation by an incorrect conclusion from the principles of mechan-

ics in the following manner. The top initially rotates
about the figure axis, which is somehow inclined to the
vertical. The figure axis then represents, at the same
time, the rotation axis and the impulse axis. Now
the continuous pull of gravity comes into effect. This
corresponds to a turning-impulse that is directed per-
pendicularly to the meridian plane passing through the

figure axis and the vertical, and is composed with the original turning-
impulse according to the parallelogram of forces. One now says that
the diagonal of the parallelogram gives the changed position of the
“axis.” That is correct with respect to the impulse axis, and, for the
spherical top, also for the rotation axis. In the explanation that we
have in mind, however, the “axis” is further understood, tacitly, to in-
clude the figure axis, to which the statement regarding the diagonal of
the parallelogram in no way applies; it is therefore concluded that the
figure axis must always progress perpendicularly with respect to the
cited meridian plane; that is, on a circular cone about the vertical!—
In reality, the figure axis naturally moves on a circular cone about the
changing instantaneous rotation axis, which in its turn is determined
by the position of the impulse. The consequence is that the initial de-
flection of the figure axis is in no way perpendicular to the direction
of the pull, but rather is vertically downward. If, as assumed here,
the impulse axis and the figure axis initially coincide, an actual regular
precession is simply impossible. The condition for the latter consists,
as we have seen previously, in a certain separation of the impulse axis
and the figure axis; that is, that the apex of the top is given, in addition
to the pull of gravity, an entirely determined lateral impact.

The entire process that we have just discussed can serve as an ex-
cellent example of a “quaternio terminorum.”134 The error is simply
that the word “axis” is used with two different meanings; this is all
the more remarkable, since one must necessarily ask, what will become
of the motion if the velocity of the initial rotation is decreased, in
which case the observer may clearly recognize a departure from regular
precession?
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The named error befell no less than the famous French experimen-
talist F o u c a u l t and his competitor S i r e, and has since been com-
monly found in the literature. For more precise details, we refer to a
noteworthy work of G i l b e r t*): Etude historique et critique sur le
problème de la rotation.

3. We now proceed to the so-called Airy explanation, which is like-
wise doubtful in an essential point. As an astronomer, Airy**) is par-
ticularly interested in the problem of the precession and nutation of the
Earth; to this subject he prepends his elementary theory of the motion
of the top as an introduction.

Airy first derives the theorem of the parallelogram of rotation vec-
tors, but does not emphasize that this theorem has merely a kinematic
significance. Airy has not the concept of the impulse vector and the
parallelogram of impulse vectors, which is solely decisive in kinetic re-
spects, and regulates the course of the motion. The mass distribution
of the body allegedly remains entirely general.137

Airy then treats of a rotation problem that has only a distant sim-
ilarity with that of the heavy top. He assumes, namely, that a body
is subject to a force that continuously strives to turn it about an axis
OΔ perpendicular to the rotation axis OD and in a fixed plane ΔOD.
The magnitude of the force is invariable. (It is to be noted here that in
the actual rotation problem of the heavy top, the axis of the additional
turning (the line of nodes) stands perpendicular not to the rotation
axis, but rather to the figure axis, and is also generally not constant,
a circumstance of which Airy is obviously completely aware. Airy first
treats only of a fictitious problem.) Through successive application of
the theorem of the parallelogram of rotation vectors, Airy concludes
that the rotation vector remains constant in magnitude, and that its
direction rotates in the plane ΔOD with constant velocity.138

A fundamental error lies in this conclusion, however, even if we ac-
cept the fictitious law concerning the direction and magnitude of the
additional rotation. No consideration, namely, is given to the possibil-
ity of the “eigenmotion” of the rotation vector. Even if the external
turning-force that produces the rotation about the axis OΔ did not

∗) Annales de la société scientifique de Bruxelles, 1878.135 Mr. F r a n k e has
called attention to a similar error: Ztschr. f. d. mathem. u. naturw. Unterricht, Bd.
17, 1886.136

∗∗) A i r y, Mathematical Tracts, Cambridge, 1831. Cf. the chapter: Precession
of the equinoxes, no. 1–15.
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act, the rotation axis OD would generally change in the body and in
space. In fact, a force-free top does indeed generally describe a regular
precession in which the rotation vector is led on a circular cone around
the impulse axis. Airy, in contrast, tacitly assumes that the rotation
axis would remain in its instantaneous position if the external force
suddenly ceased to act.

The named assumption is fulfilled only in the special case of the
spherical top, for which, as we emphasized, each axis can be called
a permanent rotation axis. As a result, we must say that the Airy
theorems hold not for the general case of a rotating body, but rather, in
contrast, only for the most special case, the case of the spherical top.

We may take this occasion to warn of an overestimation of the
kinetic significance of the rotation vector.

The rotation vector fundamentally recognizes only the instantaneous
kinematic state of the motion. Kinetics depends not on the rotation vec-
tor, but rather on the impulse vector. The impulse vector is composed
with the turning-moment of the external forces in the simplest man-
ner (according to the parallelogram law) and thus determines, together
with the mass distribution of the body, the course of the motion. The
rotation vector then follows from the position of the impulse vector,
and moves exactly as prescribed by the position of the impulse vector
and the mass distribution of the body. The parallelogram of rotation
vectors is indeed correct kinematically, but is kinetically meaningless,
since the rotation vector can progress in the body and in space even
without the addition of an external rotation-causing force.

(A simple example to which Mr. K o p p e (cf. below) has drawn
attention may show how one can be led to false results, in kinetic
questions, by the parallelogram of rotations.

We ask for the turning-moment that is required to turn the figure
axis of a (symmetric) top. More precisely, we formulate the question
in the following manner. The top initially rotates about its figure axis
OF , and is free of the influence of external forces. Let its rotational
velocity be r, and its impulse be Cr = N . We then turn the figure axis
by force through the small angle dϑ, in such a way that if we release
the axis, the top rotates permanently with the original velocity r about
the altered and henceforth spatially stationary axis OF1 (cf. Fig. 51).
It is asked for the required turning-moment.
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According to the impulse theory, two things are necessary in order to
bring about the named state of affairs: (1) One must impart to the fig-
ure axis a rotational velocity about the axis OH that is perpendicular to
OF and OF1, and must annihilate this velocity when the position OF1

is attained. The corresponding impulses,
which likewise occur about the mutual per-
pendicular to OF and OF1, cancel oppositely
(OH = −OH1). (2) One must arrange, in
addition, for the change of position of the
impulse vector from the position OF to the
position OF1. If one does not do this, namely,
then the figure axis would begin, after having
reached its position OF1, a regular preces-
sion about the unchanged position OF of
the impulse vector instead of standing, as we

H

F

F

N

O

d
H

�

G

demanded, stationary in space. The required additional impulse for the
change of position is di = Ndϑ; its axis OG lies in the plane OFF1,
and is perpendicular to the infinitesimally differing axes OF and OF1.

The time rate of change of the impulse
di

dt
gives, in axis and magnitude,

the turning-moment that must be applied to turn the figure axis. The
correct answer to our question, as follows from the parallelogram of the
impulse vectors, is thus

Nϑ′ = Crϑ′.
The same question may now be answered according to the parallel-

ogram of the rotation vectors. The change of position and subsequent
fixing of the figure axis again requires, in total, no turning-moment. To
change the position of the rotation axis, one must, according to the par-
allelogram of rotations, add the rotation rϑ′ about the axis OG. One
finds the turning-moment corresponding to this rotation in a known
manner by multiplication of the named angular velocity by the mo-
ment of inertia A corresponding to the axis OG. The turning-moment
that is sought would thus be

Arϑ′.

The false and the correct values coincide, as one sees, only in the
case of the spherical top. In every other case, the application of the
parallelogram of rotations in kinetics can be delusive.139)

Correspondingly, the Airy consideration for the case of the general
or the symmetric top is thus to be amended by speaking throughout of
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the impulse vector instead of the rotation vector. This is done by
P o i n s o t in his Théorie des équinoxes.*) He considers, in addition, a
somewhat more general case than Airy, in that the additional impulse is
assumed to be perpendicular to the instantaneous impulse, and, more-
over, in a fixed plane that need not pass through the instantaneous
impulse (while Airy, as mentioned, assumes an additional rotation in a
plane passing through the instantaneous rotation axis). If one carries
out, in this case, the successive parallelogram constructions with the
impulse vector, one sees that the impulse vector describes a circular
cone about the normal to the fixed plane, and therefore, in particular,
a vertically positioned circular cone if one imagines the fixed plane as
horizontal. As Poinsot himself explicitly emphasizes, his problem does
not completely coincide, because of the given assumption on the di-
rection of the additional impulse, with the problem of the heavy top.
Correspondingly, the given result that the impulse cone is a circular
cone is only approximately correct for the heavy top.

Our own popular explanation of pseudoregular precession at the
beginning of the present chapter directly represents an extension of
the Poinsot presentation. We have there established, on the basis of
the Poinsot impulse principle, the successive positions of the figure
axis in space, and have also established the sense of the deviations
that the actual motion will exhibit in comparison to our always only
approximate construction.

The Airy explanation is completed in another direction (namely, by
the consideration of nutation) by Mr. A. S c h m i d t in his stimulating
work “Die elementare Behandlung des Kreiselproblems.”**) However,
one must also here add the restriction to the spherical top, since the au-
thor operates throughout with the parallelogram of rotations, instead,
as is generally irremissible in kinetic questions, of the parallelogram of
impulse vectors.

As emphasized, neither the Airy nor the Poinsot assumptions will
be realized for the general motion of the heavy top. The additional
impulse or the additional rotation for the top stands perpendicular
neither to the rotation axis nor to the impulse vector, but rather to the
figure axis. The assumptions of the Airy or the Poinsot considerations
are exactly fulfilled only for the specific mutual positions of the vertical,
the rotation axis, and the figure axis in an exact regular precession.

∗) Connaissance des temps, Paris 1857, Introduction, Nr. 1–10.140
∗∗) Mathem.-naturw.-Mitteilungen von Böklen, 1886, Heft III.141
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The practical application of the Airy consideration to the case of the
heavy top is sought in the Theoretical Physics of Mr. v. L a n g.*) In
order to have a problem corresponding to the Airy assumptions, v. Lang
assumes, as an initial state, a simple rotation about the figure axis, so
that the incremental rotation corresponding to gravity initially stands
perpendicular to the rotation axis. This state of affairs must, however,
be altered immediately by the action of gravity. If, nevertheless, it
is assumed that the additional rotation (better the rotation impulse)
always stands perpendicular to the instantaneous rotation axis (better
the impulse axis), then there again appears to be a duplicity in the use
of the word “axis.” Correspondingly, the result that v. Lang attains is
not correct. According to his derivation, the rotation axis must exactly
describe a circular cone about the vertical, which, as we know, is correct
for the assumed initial state only approximately, and this only for very
large rotational velocities. Moreover, one must, if one would maintain
the v. Lang use of the rotation vector, add the explicit restriction to
the spherical top.

A correct presentation in the style of Poinsot is given by D e J o n -
q u i è r e s**), who derives the appearance of the cusped curve.

4. The well-known Poggendorff explanation***) is based on essen-
tially different principles from the latterly named explanations or our
own elementary consideration at the beginning of the previous chapter.
While we treated the top as a unified mechanical system, P o g g e n -
d o r f f returns to the motion of the individual mass particles. Because
of the brevity and the completely elementary character of the demon-
stration, the Poggendorff explanation is in no way complete, and easily
gives occasion for errors. We reproduce the Poggendorff explanation
in a somewhat free manner, without being able to claim with certainty
that we exactly reproduce the meaning of the author, which, from his
words, is not completely clearly established.

We consider, with Poggendorff, a horizontally positioned rotor that
has been given a specific rotational velocity about its figure axis, and
which is free to turn about a point O of its axis.144 We imagine that the
free end of the axis moves downward in the vertical plane by a small

∗) §55.142
∗∗) Théorie élémentaire du mouvement de la toupie, Revue maritime et coloniale,

1886.143
∗∗∗) “Noch ein Wort über die Fesselsche Rotationsmaschine.” Poggendorffs An-

nalen, Bd. 90, p. 348.

313



314 V. Particular forms of motion of the heavy symmetric top.

amount, which corresponds to the semblance of the action of gravity on
the rotor. We designate this motion concisely as motion I. The veloc-
ity vectors of the individual mass particles will evidently be displaced
partly parallel to themselves and partly away from their directions. The
latter requires, for each particle, a force that is equal in magnitude and
direction to the time rate of change of the impulse of the respective
mass particle. If one composes all these forces into a turning-force, one
easily finds a turning-force with a vertical axis. We must exert this
turning-force if we wish to enforce motion I. If we do not exert it, but
nevertheless imagine that the rotor attains to motion I, then there re-
mains an equal and oppositely directed turning-force, which, if it alone
acted, would effect a motion of the figure axis in the horizontal direc-
tion. The latter is designated as motion II. The motion II would now,
in turn, cause a change of direction in the individual impulses of the
mass particles. The required forces are composed into a turning-force
with a horizontal axis. This must again be added externally if the
motion II should be possible. Otherwise, there remains an oppositely
directed equal horizontal turning-force about the horizontal axis, which
effects a motion III, in consequence of which the figure axis is turned
vertically upward, and therefore opposes the motion I. The appearance
of the motion III now explains why the motion tendency I given by
the action of gravity does not continue, but rather can be overcome
by the gradually increasing motion tendency III. The appearance of
motion II shows, at the same time, that the points of the figure axis
can meanwhile acquire a horizontal velocity component. The actual
motion, we must imagine, consists of a combination of the motions I,
II, and III (and indeed, as we can add according to the preceding, in
such a combination that the required turning-forces for the production
of these motions are composed at every instant into a turning-moment
exactly equal to the gravitational moment).

As one sees, only a very approximate image of the resulting motion
is acquired through this rather rough consideration. The strengths
with which the different motion components I, II, III occur remain
completely undetermined. Nothing more detailed regarding the form
of the trajectory that the apex of the top describes on the spherical
surface can be stated merely on the basis of the above consideration.

The Poggendorff manner of expression is, as said, somewhat differ-
ent from the preceding. It suggests the error that motions I and III
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could cancel one another, so that a purely horizontal motion of the
apex of the top would remain. This is naturally entirely impossible, in
so far as the rotor has, in its initial position, no horizontal component
of progression.

In the textbooks*) that repeat the Poggendorff explanation, the
named error is often committed explicitly.

The Poggendorff explanation is completed by Mr. K o p p e**) and
carried out to a quantitative determination of the motion. Koppe intro-
duces the concept of the Coriolis force for the single mass particle (cf.
Chap. III, §7), apparently encompassed by Poggendorff, and describes
the trajectory of the apex of the top in a thoroughly correct manner
as a cycloid. We emphasize, in particular, the worthy critical remarks
at the beginning of his work, which were very useful to us in the for-
mulation of the preceding, without, however, wishing to subscribe to
the censure raised by Mr. Koppe with respect to analytic treatment in
general.146 The latter may be made more precise by the remarks at the
conclusion of the previous section.

The essentially correct work of J o u f f r e t cited above***) likewise
operates with the Coriolis force.

F. H e i n e n also follows Poggendorff in the description of his ro-
tation apparatus.†) The Heinen presentation is, however, very much
more detailed than the Poggendorff, and also gives no more than a
general qualitative representation of the expected motion.147

All in all, we do not wish to recommend, for the reasons given on
page 300, the return to particle mechanics that is common to the last
group of explanations. (One may compare in this respect, for example,
Mr. K o p p e’s††) indeed correct but extremely detailed derivation of
the turning-moment Crϑ′ discussed above (p. 311) with our determi-
nation of this turning-moment, which in any case leaves nothing to be
desired in simplicity.148)

5. Explanations†††) that would derive the experimentally observed
elevation of the axis of the top from the principles of abstract dynamics

∗) For example, M ü l l e r-P o u i l l e t, Bd. I, §74.145
∗∗) Über die Bewegung des Kreisels. Ztschr. f. d. phys. u. chem. Unterricht, 4.

Jahrg., 1890.
∗∗∗) Page 190.

†) Braunschweig 1857.
††) Zur Kreiselbewegung, Ztschr. f. d. phys. u. chem. Unterricht, 9. Jahrg., 1896.

†††) Cf., for example, M u n t e r, Ztschr. f. d. mathem. u. phys. Unterricht, Bd.
26, p. 565.149
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316 V. Particular forms of motion of the heavy symmetric top.

must be held as particularly mistaken. We know that the presently
considered ideal, frictionless top can in no way elevate itself, but always
maintains the same mean inclination to the vertical. The elevation of
the axis results, if at all, only through friction at the support point,
which we will later cover in detail.

§4. On the stability of the upright top. Geometric
discussion.

A particular case of regular precession is that in which the trajectory
contracts to a single point, the highest or lowest point of the unit
sphere. The top then rotates with uniform velocity about the vertically
positioned figure axis. We wish to treat of this interesting motion in
detail in order to form our concept of the stability of motion, and thus
prepare the more general investigations of the sixth section.

The figure axis can be directed vertically upward as well as vertically
downward in this motion. We will restrict ourselves to the former case,
which can be done without loss of generality if only we interchange, if
necessary, the half-line designated as the figure axis with its opposite.

We will therefore reckon ϑ = 0, and have two subcases to distin-
guish, according to whether P < 0 or P > 0. We speak here of a
spherical top with moment of inertia A.

We designate the considered motion concisely as the motion of the
upright top.

We first note that our coordinates ϕ, ψ, ϑ are inappropriate for
the present case. Namely, the line of nodes in the equatorial plane is
obviously undetermined for the upright figure axis. The angles ϕ and ψ
(the angles of the X- and x-axes, respectively, with respect to the line
of nodes) thus have no independent meaning. The angle ϕ+ψ = χ that
directly represents the angle between the X- and x-axes, and therefore
measures the rotation of the top with respect to space, is, however,
well defined. With the use of this coordinate, our motion is simply
characterized by the two equations

(1) ϑ = 0, χ′ = const.

We now easily convince ourselves that the motion of the upright top
is possible and compatible with the fundamental impulse laws for an
arbitrary value of the rotational velocity χ′. For the motion represented

316



§4. The stability of the upright top. 317

by (1), namely, the impulse always coincides with the vertical and has
a constant length. The change of the impulse vector is therefore zero
at all times. In addition, the effect of gravity P sinϑ is always zero for
the vertically positioned figure axis. The equilibrium that is required
by our impulse theorem between the change of the impulse and the
additional impulse of the external force thus obtains. Equations (1),
in fact, represent a possible motion of the top, whatever value the
rotational velocity χ′ may have.

The relation

(2) n = N

is evidently valid for the upright top. Since, namely, the figure axis
and the vertical always coincide, the vertical projection of the impulse
is directly identical with the projection onto the figure axis, as well as
with the length of the impulse vector.

The condition (2), moreover, is characteristic not only for the uni-
form rotation of the upright top, but also, more generally, for each
trajectory that passes through the highest point of the sphere. In fact,
the projection of the impulse onto the figure axis will always be iden-
tical with the projection onto the vertical in a passage through the
north pole, since the two directions coincide at such a moment. Since,
moreover, the impulse components n and N are, as we know, constant,
the given relation must hold generally for such motions.

We now go over to the stability question, and impart, for this pur-
pose, an impact to the top during its rotation about the vertical. We
characterize the impact by the corresponding turning-impact with re-
spect to the support point, and represent it by a vector. It is assumed
that the length of this vector does not exceed an arbitrarily given quan-
tity. For the sake of generality, we might first assume nothing about the
direction of the turning-impact vector. However, it is apparent that we
may take this direction as horizontal. If, namely, an obliquely directed
turning-impact vector is present, we may decompose it into a vertical
and a horizontal component. The vertical component merely effects a
change of the rotational velocity of the top, and leaves the character of
the motion unchanged. We can thus disregard the vertical component
and assume a turning-impact about a horizontal axis.
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318 V. Particular forms of motion of the heavy symmetric top.

The originally present impulse is naturally composed with this
turning-impact according to the parallelogram law. We denote the
additional impulse by [Θ0], since it gives us, at the same time, the per-
pendicular components of the total impulse with respect to the figure
axis and the vertical at time t = 0. The relation between our impulse
component [Θ0] and the rotation component generated by it thus be-
comes, according to the general dependence between the impulse and
the rotation vectors,

(3) [Θ0] = Aϑ′0,

where ϑ′0 signifies the initial value of the angular velocity ϑ′. The length
|i| of the total impulse, which for the undisturbed motion was constant
and equal to N , now becomes variable. In particular, the initial value
|i0| is given, according to Pythagoras, by the equation

|i0|2 = N2 + [Θ0]2.

Finally, we calculate the impulse constant k by means of equation
(3) on page 219. Since ϑ = 0 for t = 0, there follows

(4) k = |i0|2 + 2AP = N2 + [Θ0]2 + 2AP.

In order to survey the character of the motion produced by our
impact, we ask, above all, how deeply the apex of the top descends on
the unit sphere. We seek, therefore, the manner in which the root e′ of
the equation U = 0 depends on [Θ0]. We must return to the original
form of this equation on page 238, since the derived equation U1 = 0
is now inutile because of the prefixed factor 1 : (1 − e2) that becomes
infinitely large in our case (e = 1). We have, according to the indicated
place, with consideration of the condition n = N ,

(5) A2U = −N2(1− u)2 + (k −N2 − 2APu)(1 − u2),

or, if we express k corresponding to equation (4),

(5′) A2U = −N2(1− u)2 + ([Θ0]2 + 2AP (1 − u))(1− u2).

The factor 1− u that corresponds to the known root e = 1 stands,
as it must, on the right-hand side. We detach this factor, and obtain
for the two remaining roots the quadratic equation

−N2(1− u) + ([Θ0]2 + 2AP (1− u))(1 + u) = 0.

Here we may set [Θ0] = v, and interpret the resulting equation

(6) v2(1 + u)− (1 − u)(N2 − 2AP (1 + u)) = 0

geometrically in the u, v plane.
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§4. The stability of the upright top. 319

The resulting curve is again of the third order. It lies symmetrically
with respect to the axis of the abscissa (u-axis), and consists of an even
and an odd branch. We seek the form of the curve on the basis of its
vertical tangents, which are particularly easy to determine here.

We summarize the equations of the vertical tangents, as well as the
positions of their tangent points, as follows:

Equation: u = + 1 Tangent point: v = 0

” u = − 1 ” v = ∞

” u = − 1 +
N2

2AP ” v = 0.

The second of these tangents is thus an asymptote. It is essential for us
how the third tangent lies with respect to the others. We distinguish,
in this respect, two cases, according to whether P < 0 or P > 0.

First case: P < 0.
The third tangent lies to the left of the asymptote. Real values of

v result for the domains

−1 < u < +1 and −∞ < u < −1 +
N2

2AP
.

The odd branch runs in the strip between u = −1 and u = +1, and

the even branch extends from the tangent u = −1 +
N2

2AP
toward

the left to infinity (cf. Fig. 52). We draw the parallel v = [Θ0] in
an arbitrary neighbor-
hood of the abscissa
axis, and note the inter-
section of the parallel
with the odd branch.
The abscissa of this
intersection point yields
the parallel circle u = e′.
As one sees, the quantity
e′ always comes nearer
to unity as we take [Θ0]
smaller. (Thus, as we
note for the sake of the
following, the difference
1 − e′ will be of the

P <

u
=
-
+
N A
P

u
=
-

u
=
+

= eu

=v

[

[O

order [Θ0]2; it represents “an infinitesimal quantity of the second or-
der” if we let the impact [Θ0] be “an infinitesimal of the first order.”)
As a result, we can attain, by the choice of [Θ0], that the trajectory
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320 V. Particular forms of motion of the heavy symmetric top.

of the originally upright top runs, after the addition of our impact, in
an arbitrarily small neighborhood of the original trajectory, the north
pole. With respect to the trajectory, there certainly exists, in the case
P < 0, a continuous passage from the original to the altered motion.

The trajectory of the apex of the top does not, as we know, com-
pletely express the motion, in that it gives no information concerning
the rotation of the top about the figure axis.

For the undisturbed motion, this rotation is measured by the angle
χ; since for the upright motion the angular velocity χ′ is expressed in
terms of the impulse N as

χ′ =
N

A
,

we have (for a special choice of the initial time)

χ =
N

A
t.

We wish to measure the rotation after the addition of the impact
[Θ0], in order to have a comparable quantity, by the corresponding
angle χ. We thus have, with consideration of (2),

χ′ = ϕ′ + ψ′ =
n−Nu
A(1− u2)

+
N − nu
A(1− u2)

=
2N

A(1 + u)
.

Now since u remains arbitrarily near 1, we expand in powers of u−1
and neglect all higher powers. There follows

χ′ =
N

A
− N

A

u− 1
2

.

The second term on the right-hand side is, as emphasized in one of
the remarks above, an infinitesimal of the second order in relation to
the impact [Θ0]. One is not required, however, to retain such quantities
according to the usual treatment of stability considerations in the lit-
erature. For the neighboring motions of regular precession in the first
section, we also have suppressed the terms of the second order (terms
with the factor ε2), in that we neglected the remainder R in the ex-
pression for ψ. If we also restrict ourselves now to terms of the first
order, then we will again be led back, if we carry out the integration
with respect to t, to the original formula

χ =
N

A
t.

(It is noted, moreover, that the not unobjectionable neglect of the
terms of the second order is only provisional, and that it does not at all
come into question in the definitive conception of the stability criterion
to be developed in §6.)
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§4. The stability of the upright top. 321

Our consideration shows that the angle χ of the changed motion
always remains, up to terms of the second order, in the neighborhood of
the angle χ of the original motion. This statement refers, however, only
to the case in which the added turning-impact has a purely horizontal
axis. For a general impact, in which not only a certain value of [Θ0]
is added but the original impulse component N is also changed, the
situation is naturally different.

We consider, for example, the simplest case in which [Θ0] = 0 is
assumed and N is increased by the small quantity N ′. The motion
then remains, after as before, that of the upright top. The angle χ for
the altered motion is determined by the equation

χ =
N +N ′

A
t.

As one sees, this deviates from the angle χ of the undisturbed motion
by a term that is proportional to the first power of the impact N ′.
We can nevertheless interpolate between the original and the altered
motions, by the diminishment of N ′, motions that mediate a continuous
passage from the angle χ of the one to the other motion.

After all this, we will without doubt, and indeed independently of
whether we allow the neglect of the terms of the second order or not,
be able to say that

The motion of the upright top in the case P < 0 is certainly a stable
motion.

This result is naturally in complete conformity with the well-known
fact that the equilibrium position of the unwound top (N = 0) is stable
if the center of gravity lies beneath the support point (P < 0).

Second case: P > 0.
Much more interesting is the second case P > 0. The third of

the vertical tangents given on page 319 now lies to the right of the
asymptote u = −1. According to whether this tangent lies to the right
or the left of the tangent u = +1, there arise two subcases a) and b).

The first subcase occurs if

(a) +1 < −1 +
N2

2AP
; that is, N2 > 4AP ;

the second if

(b) +1 > −1 +
N2

2AP
; that is, N2 < 4AP.

We compare these conditions to the previous distinction between
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322 V. Particular forms of motion of the heavy symmetric top.

the weak and the strong top. Since we have assumed P > 0, we must
draw upon the criterion (3′) of page 249.

If we insert there the value e = +1 corresponding to the upright
initial position, then the inequalities of that criterion are transformed
directly into the inequalities (a) and (b). The subcase (a) therefore
corresponds to a strong top, and the subcase (b) to a weak top. (It
is noted, in passing, that the case of a negative P is always to be
reckoned as a strong top, since the inequality (a) will then be satisfied
in a self-evident manner.)

We next display again our curves of the third order that correspond
to equation (5) for our two cases P > 0. For the strong top of case (a),
the odd branch passes through the strip −1 to +1, in that it is tangent
to u = −1 at infinity and to u = +1 on the axis of the abscissa. For
the weak top, in contrast, the odd branch is enclosed in the strip from

−1 to − 1 +
N2

2AP
. The even branch lies in both cases to the right of

the odd, and touches either the tangent − 1 +
N2

2AP
or the tangent +1

at its intersection point with the axis of the abscissa.

The character of the trajectory produced by a disturbance [Θ0] now
depends on the form of these curves.*) We again draw the line v = [Θ0]
parallel to the axis of the abscissa; the abscissa of the intersection point
of this line with the odd branch determines the size of the second

∗) Cf. F. Klein, On the stability of the sleeping top. American Bulletin, 1896.150
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§4. The stability of the upright top. 323

parallel circle. There now results a very interesting contrast between
the strong and the weak top.

In Fig. 53, namely, the cited intersection point lies in the immediate
neighborhood of the point u = 1, v = 0.

For the strong top, the parallel circle e′ always becomes smaller as
the impact [Θ0] is chosen smaller, and is transformed continuously,
for vanishing [Θ0], into the north pole e = 1. The trajectory of the
apex of the top remains in the immediate neighborhood of the original
point-shaped trajectory; its dimensions can, through the diminishment
of the impact, be arbitrarily diminished.

In Fig. 54, in contrast, the abscissa of the constructed intersection
point always differs from unity by a finite quantity that cannot be

suppressed below 1 + 1− N2

2AP
.

For the weak top, the position of the second parallel circle changes
in a discontinuous manner. For the smallest disturbance, this parallel
circle, which is reduced to the north pole for the undisturbed motion,

jumps immediately onto a circle for which e′ is smaller than −1+
N2

2AP
.

The dimensions of the trajectory cannot be arbitrarily diminished by the
diminishment of [Θ0]. The upright rotation of the weak top therefore
occupies an isolated position in the system of the trajectories.

The latter remarks already show that the weak top is unstable in the
upright position. For what concerns the strong top in the case P > 0,
we can employ the same deliberations as above in the case P < 0. We
thus state the following general theorem:

The strong top is stable in the upright position, the weak top labile.
We must evidently reckon the boundary case between the strong

and weak tops—that is, the top with N2 = 4AP—as a stable case. We
can directly measure, namely, the impact [Θ0] so small that e′ differs
arbitrarily little from

−1 +
N2

2AP
= −1 + 2 = +1.

We thus add:
The top that stands on the boundary between the strong and the weak

tops is likewise stable in the upright position.
Moreover, the trajectory in the stable as well as the unstable cases

has the form of a rosette that progresses at regular time intervals (be-
cause of the general periodicity property of the motion) through the
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324 V. Particular forms of motion of the heavy symmetric top.

north pole of the sphere and consists purely of congruent loops. The
difference between the two cases is revealed only in the magnitude of
the rosette, or, more precisely said, in the change of its magnitude
for a diminishment of the impact. The rosette in the labile case is
a no less regular, periodically recurring curve than that of the stable
case; it is indeed no different to the eye, under particular circumstances
to be indicated immediately, from the rosette of the stable case. We
particularly emphasize this point, since many false representations may
be promulgated here.

The English designate the upright motion of the top in the most
intuitive manner as the motion of the “sleeping top.” If, as we wish
to assume, not only mechanical but also geometric rotational symme-
try about the figure axis is present, then the top appears to the eye
to be at rest in the upright position. That this rest, however, is only
apparent, is shown if the top is awakened to a certain extent by an
impact. Its originally hidden motion will then become apparent ex-
ternally. We judge the stability or lability according to its behavior
in awakening. If the awakening is gentle, we call the upright motion
stable; if, in contrast, the least disturbance produces disproportionally
large elongations, the motion is called labile.

That stability is generally possible in the upright position for the
case P > 0 represents a fact of peculiar interest, which at first may
again appear paradoxical. While the nonrotating top in the upright
position is naturally entirely unstable in the case P > 0 and reacts to
the smallest impact with a full pendulum oscillation, it will, set into
sufficiently strong (N2 > 4AP ) rotation, be enabled to afford a certain
degree of resistance to the influence of gravity. The weak top thus
mediates the passage between the top with zero eigenrotation and the
strong top.

The position of the parallel circle e′ to which the figure axis most
deeply descends for any impact can be regarded as a measure of the
greater or lesser weakness of the top. The position of the parallel circle
e′ that corresponds to the impact [Θ0] = 0 is, as we saw, given by

e′ = −1 +
N2

2AP
.

For the top of zero eigenrotation, this value will equal −1; the figure
axis then describes, as just mentioned, a great circle starting from the
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§4. The stability of the upright top. 325

north pole that passes through the south pole. The generally appearing
rosette is degenerate here. For increasing N , the value of e′ increases
continuously and approaches, for N2 = 4AP , the value e = +1.

The passage between the labile and stable cases of the upright top
motion is itself, in this manner, continuous to a certain extent. If,
namely, N2 is smaller than 4AP but still differs very slightly from
4AP , the elongation of the trajectory for an arbitrarily small impact
will indeed be different from zero but still inconsiderable; it can even,
through the appropriate assumption of N , be reduced beneath any
given value. Nevertheless, there remains the characteristic property
of the labile case that, after we have once disposed of N , the dimen-
sions of the trajectory cannot be arbitrarily diminished through the
diminishment of [Θ0].

Theoretically, the motion in this case (where
4AP
N2

− 1 is a negative

number with a small absolute value) is always labile; experimentally, in
contrast, such a motion would not differ markedly from a theoretically
stable motion. In both cases we have a rosette of qualitatively similar
course and extraordinarily small dimensions. We may thus, for exam-
ple, speak of theoretical and practical lability and stability, and say that
in the case where N2 is only very little smaller than 4AP , the motion
is theoretically labile, but practically still always stable.

In the sixth section of this chapter we will become acquainted with
other simpler examples of theoretical lability and practical stability, as
well as theoretical stability and practical lability. —

We may ask in general, finally, for such motions of the heavy sym-
metric top that consist of a simple rotation about an axis fixed in space.

It follows on the basis of symmetry that such an axis can be none
other than the vertical, and that the rotation about this axis must
proceed uniformly. The motion then belongs to the class of regular
precession, and indeed is a regular precession for which the herpolhode
cone is infinitely thin, and for which, therefore, μ has the value zero.
The other precession constant ν, which here directly indicates the mag-
nitude of the angular velocity, is thus determined. The theory of the
deviation resistance, namely (see equation (3) of page 77), gives for ν
the equation

(15) P = (C −A)ν2 cos ϑ.
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326 V. Particular forms of motion of the heavy symmetric top.

Only in the case ϑ = 0 does this equation lose its validity, since we have
canceled the factor sinϑ from the equation that originally appears in
the indicated place, so that this equation is identically satisfied in the
case ϑ = 0. Thus the upright figure axis is the single line about which
the body can turn permanently with an arbitrary velocity. Every other
axis requires, in case it should appear as a permanent axis, a determined
(up to the sign) value of the angular velocity.

According to whether this value is real or imaginary, we will des-
ignate the corresponding axis as a “permissible” or an “impermissible
rotation axis.” To reach a decision here, we wish to divide the entire
bundle of the half-rays extended from O into two half-bundles by means
of the equatorial plane of the top. If we imagine that the figure axis
is chosen so that the center of gravity lies above the support point for
the vertically directed figure axis (P > 0), we designate the half-bundle
that contains the center of gravity as the upper, and the other as the
lower. Equation (15) then shows that

For the prolate top (C < A) all half-rays of the lower half-bundle,
and for the oblate top all half-rays of the upper, are permissible per-
manent rotation axes. Each of these axes receives two oppositely equal
values of the angular velocity. In particular, the angular velocities for
the spherical top are always ±∞.

§5. Continuation. Analytic treatment of the motion of the
upright top altered by an impact.—Formulas for

pseudoregular precession with small precession circle.

We will now supplement the qualitative discussion of the motion of
the upright top in the preceding section by a detailed quantitative dis-
cussion, with the view of acquiring a precise basis for our later criticism
of the method of small oscillations, a method that plays a well-known
important role in modern dynamics. We begin from the approximation
formulas of the ninth section of the preceding chapter. The approxi-
mation formulas there for u can be carried over directly to the present
case. In contrast, the formulas for ψ require a modification, since the
term 1 − u2

0 appears in the denominator in those formulas; this term
now vanishes, at least in the stable cases, for a vanishing impact.

We first write the approximation formula for u in the present case.
To remain in consonance with the notation of the named §9, we
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§5. Analytics of the upright motion of the top. 327

understand by e the lower, and by e′ the upper of the two bounding
parallel circles, so that e′ = 1. The quantity ε in our approximation
formula signifies half the vertical distance between the circles e and e′,
so that now

(1) ε =
1− e

2
;

the quantity u0 was formerly the “mean parallel circle” whose plane
had equal vertical distance ε from the planes of the parallel circles e
and e′, so that in the present case there follows

(2) u0 = 1− ε.
We can thus write equation (8′) of page 227, with the use of the

abbreviation introduced in (7) of page 272, as

(3) 1− u =
1− e

2

(
1− cos

πt

ω

)
; ω =

√
A

2P (e′′ − u0)
π.

We have adopted, at the same time, a convenient displacement of the
initial point of time, in that we have used the cosine instead of the
sine, which has the consequence that the figure axis is vertical at the
beginning of the motion (u = 1 for t = 0).

We introduce in (3), instead of u and e, the corresponding angles

u = cos ϑ, e = cos η,

and go over from the whole to the half-angles. There follows, if we take
the square root of the right- and left-hand sides,

(4) sin
ϑ

2
= sin

η

2
sin

πt

2ω
.

The uncertainty in this formula is determined by the magnitude τ
of the relative error in t. According to equation (5) of page 272,

(5) |τ | <
√
e′′ − e
e′′ − e′ − 1,

where, according to (1), we set e = 1−2ε, e′ = 1, and calculate e′′ from
equation (9) of page 273. Since n = N for the upright motion, we can
cancel the factor 2(1− e) from the numerator and denominator of the
named equation, and obtain

(6) e′′ =
N2

AP (1 + e)
− 1 =

N2 − 2AP (1 − ε)
2AP (1 − ε) .

As a result, there follows

(5′) |τ | <
√
N2 − 4AP (1 − ε)2
N2 − 4AP (1− ε) − 1.
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328 V. Particular forms of motion of the heavy symmetric top.

This estimation provides, in every case, a basis for the determination
of the degree of precision of equation (4).

We ask, in particular, for those cases in which the bounded precision
of equation (4) goes over into an arbitrary precision, and in which,
therefore, |τ | can be made arbitrarily small. This obviously occurs, to
speak generally, in the stable cases, where we can attain ε arbitrarily
small through the choice of the impact. The value of the square root
in (5′) then differs arbitrarily little from 1.

In the labile cases, in contrast, the magnitude of ε is not in our
power. The right-hand side of (5′) will then be, even for an arbitrarily
small impact, a quantity different from zero; there exists no basis for
the assumption that our representation (4) would also be arbitrarily
precise in this case.

We must next consider, in particular, the boundary case (N2 =
4AP ) between the stable and unstable cases. We saw that this case
must generally be ordered under the stable cases with respect to the
behavior of the trajectory, since the motion of the apex of the top runs,
for a sufficiently small impact, in the immediate vicinity of the north
pole. It now appears, in contrast, that this boundary case stands on
the side of the labile cases with respect to the degree of precision of our
approximation formulas. If we set, namely, N2 = 4AP in (5′), then the
right-hand side becomes √

2ε− ε2
ε

− 1;

that is, if we make ε sufficiently small,√
2− 1.

We therefore have, in spite of the stable character and in spite of
the possibility of an arbitrary diminishment of the trajectory, a case
before us in which we can expect only a bounded precision of our
approximation formula.

The situation is similar in the theoretically labile but practically sta-
ble cases, where N2− 4AP is indeed smaller than zero, but differs only
extremely little from zero, and where, at the same time, ε is also ex-
tremely small for a sufficiently small impact. In these cases as well,
the smallness of ε is not sufficient to reduce the magnitude of the error
arbitrarily.

It would be necessary, in the latter cases, that ε be not simply small,
but rather also small compared with (4AP − N2)/4AP , which is not
the case, since, as we saw on page 323, the difference 2ε of the values
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§5. Analytics of the upright motion of the top. 329

of e and e′ is at least equal to
4AP −N2

2AP
. Thus we must expect in

this case, just as in the theoretically a n d practically labile cases, only
bounded precision.

A related remark applies to those stable cases in which N2 − 4AP
is indeed greater than zero, but differs only very slightly from zero. In
these cases it is certainly possible to arbitrarily diminish the dimensions
of the trajectory and the value of ε by the choice of the impact; it
is therefore possible to make ε not only small, but also small with
respect to (N2 − 4AP )/4AP . Our approximation formula could be
held as arbitrarily precise for so small an impact. As soon, however,
as we take the impact only a little greater, so that ε is no longer small
compared with (N2 − 4AP )/4AP , the error can immediately increase
considerably. As a result, the precision of our formula for all not very
small impacts would still be only bounded. We will, in this case, speak
of a theoretically arbitrary, but practically bounded approximation.

We wish to formulate the latter somewhat subtle distinctions once
again in summary:

Our approximation formula possesses a theoretically and practically
bounded precision in all unstable cases, and in those stable cases that
are found on the boundary between stability and lability. It possesses
an arbitrary precision in theoretical and practical respects in those sta-
ble cases that are sufficiently far removed from the unstable cases. In
contrast, we have theoretically arbitrary, but practically bounded preci-
sion in those cases that are indeed stable, but lie near the boundary of
lability.

We next derive the approximation formula for ψ. We thus prefer,
instead of relying on the general formulas of page 275 and ff., to begin
the investigation anew, since it can be led further and formed more
simply in the present case than was possible in general.

We therefore begin from the equation

ψ′ =
n−Nu
A(1− u2)

.

Since n = N for the upright motion, we can cancel the factor 1− u on
the right-hand side. If we then apply an identity transformation on the
right-hand side, we obtain

ψ′ =
N

A

1
1 + u

=
N

2A

(
1 +

1− u
1 + u

)
.
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330 V. Particular forms of motion of the heavy symmetric top.

To go over to an approximate representation, we restrict ourselves to
the first term in the parentheses. The second term then provides the
required error estimation. Our approximate representation therefore
runs, if we immediately carry out the integration with respect to t and
set the inessential constant of integration equal to zero,

(7) ψ =
N

2A
t.

The error is given exactly by

f =
∫

N

2A
1− u
1 + u

dt.

We can assume N > 0, in which case the integrand is always posi-
tive. If we insert for u its smallest value e = 1− 2ε, we simultaneously
diminish the denominator and enlarge the numerator of the integrand.
As as result, there certainly follows

f <

∫
N

2A
2ε

2− 2ε
dt;

that is,

(8) f <
N

2A
ε

1− εt.
We have thus determined an upper bound for the absolute error of

the approximation formula (7). The relative error
f

ψ
will, correspond-

ingly, be smaller than

(8′)
ε

1− ε .
The discussion of the degree of precision of equation (7) is just as

simple as the error estimation. The precision will obviously be arbitrary
if we can attain that ε will be arbitrarily small; it will presumably
be bounded if we cannot arbitrarily diminish ε, or, equivalently, the
dimensions of the trajectory. We must therefore say:

Equation (7) gives an arbitrarily good approximation in all stable
cases (with inclusion of the boundary case between stability and labil-
ity), as well as in the practically stable and theoretically labile cases; it
gives, in contrast, only a bounded approximation in the cases of actual
(practical) lability.

One notes that the results here are essentially different from those
in the above investigation of the degree of precision of equation (4). —

After this preparatory discussion of the approximation formulas, we
investigate the character of the various motions, as given on the basis
of our approximation formulas. We first look more closely at the cases
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§5. Analytics of the upright motion of the top. 331

that are represented arbitrarily well by (4) and (7); that is, the stable
cases that are, for sufficient smallness of the impact [Θ0], sufficiently
far removed from the boundary of lability.

In these cases we can obviously replace, since the dimensions of the

trajectory are indeed vanishingly small, sin
η

2
and sin

ϑ

2
by

η

2
and

ϑ

2
in

(4). At the same time, we wish to simplify the value of ω in equation
(3), in that we set, in an approximate manner, ε = 0, u0 = 1. There
then follow from (6) and (3)

(9) e′′ =
N2 − 2AP

2AP
, ω =

Aπ√
N2 − 4AP

.

The equations for the trajectory then take the form

(10)

⎧⎪⎪⎨
⎪⎪⎩
ϑ = η sin

{√
N2 − 4AP

4A2
t

}
,

ψ =
N

2A
t.

For presentation and drawing, it is convenient to project the tra-
jectory onto the equatorial plane. Here we can use an orthogonal pro-
jection (the same image would result for the stereographic projection,
only in half scale). If x and y denote the rectangular coordinates of
the projection point with respect to a coordinate frame placed at the
midpoint of the unit sphere, then we have

(11)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x = sinϑ cosψ = η sin

{√
N2 − 4AP

4A2
t

}
· cos N

2A
t,

y = sinϑ sinψ = η sin
{√

N2 − 4AP
4A2

t

}
· sin N

2A
t.

We can describe the represented motion in words in the following
manner:

The motion of the horizontal projection of the apex of the top
consists of an ordinary harmonic oscillation (represented by the first
factors in x and y) with amplitude η and quarter oscillation period ω,
combined with a rotation of the oscillation direction (represented by the
second factors) with angular velocity N :2A.

The form of the trajectory is determined essentially by the angle
through which the azimuth ψ increases, for example, during the time
ω. We denote this angle, as earlier, by ψω, and have, according to (7)
and (9),

(12) ψω =
π

2
N√

N2 − 4AP
.
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332 V. Particular forms of motion of the heavy symmetric top.

Evidently,
ψω >

π

2
in the case P > 0,

ψω <
π

2
in the case P < 0.

In the boundary case P = 0, ψω will be directly equal to
π

2
. The

trajectory of the apex of the top then becomes simply a circle, the
precession circle of force-free motion; the axis of precession is that of the
initial impulse N altered by the impact [Θ0]. The latter determination
of the trajectory is also valid, moreover, for the case N = ∞, as follows
from the already repeatedly used principle that a top with an infinitely
large eigenimpulse and a finite gravity moment P behaves just as a
weightless top with a finite N .

The form of the trajectories is thus easy to envision in all the stable
cases for which our two approximation formulas are arbitrarily precise.
The following characteristic figures, which one will recover for all anal-
ogous oscillation processes, illustrate the three types P > 0, P = 0 or
N = ∞, and P < 0. The trajectory in Fig. 55 closes on itself, acciden-
tally, almost completely; Fig. 56 represents the passage between Figs.
55 and 57.

As we see, our oscillations in the stable case are tautochronous; that
is, their time duration is, in the first approximation, independent of the
magnitude of the impact [Θ0] and the resulting magnitude of the am-
plitude η, assuming that both quantities are taken as sufficiently small.
Our oscillations thus exhibit the same behavior that is well known for
the so-called small pendulum oscillations, and that is characteristic of
so-called “small oscillations” in general.

The small pendulum oscillations must naturally fall under the os-
cillations of the upright top as a special case, and indeed are classified
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§5. Analytics of the upright motion of the top. 333

under a top of vanishing moment of inertia C. Since the pendulum is
stable in the vertical position only if the mass particle lies beneath the
support point, we must assume, in the preceding, P < 0. And indeed
we have, understanding by m the oscillating mass and l the length of
the pendulum,

P = −mgl, A = ml2.

Formula (9) thus yields, since N = Cr = 0,

4ω = 2π

√
A

−P = 2π

√
l

g
;

that is, the well-known equation for the period of the complete pendu-
lum oscillation.

We now turn to the unstable cases and to the theoretically stable
but practically unstable cases. The preceding approximation formulas
can also be of use for the judgment of these cases; we must only bear
in mind that the precision of this representation is no longer arbitrary,
and must estimate the magnitude of the possible error according to the
inequalities (5′) and (8′) in each case. In any case, we may conclude
from this representation (although burdened with finite error) that the
qualitative character of the trajectory will be generally similar to that of
the stable cases; the dimensions, according to the degree of lability, are
only enlarged, and, in detail, quantitative deviations from the simple
sine law occur. By and large, the trajectories in the labile case will also
be, as already emphasized on page 324, rosettes of a form similar to the
preceding figures. If we wish, in contrast, to calculate the trajectories
in the labile cases with arbitrary precision, then we must obviously
revert to the elliptic integrals.

We must naturally consider not the simplified approximation for-
mula (10) for the stable top, but rather the general formula (4). In
particular, it would be a gross error if we were to take the oscillation
period ω from equation (9) instead of equation (3). The latter equation
will yield, in the labile cases, a reasonable result that is more usable
as the error τ becomes smaller. Equation (9), in contrast, yields an
entirely senseless result. It would give, namely, an imaginary value
of ω for a labile top, since N2 − 4AP < 0. It would obviously be
a violent distortion of the true state of affairs if one would conclude
from this calculation of ω that the motion of the unstable top proceeds
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334 V. Particular forms of motion of the heavy symmetric top.

aperiodically, and that the apex of the top is correspondingly removed
ever more from the north pole. Nevertheless, one often finds this en-
tirely false conclusion. What is still more remarkable, however, is to
elevate this distortion to a principle, a very fruitful instrument, as we
will later see, for acquiring a preliminary judgment of the stability of
motion; one calls this procedure the method of small oscillations!

The motion of the upright weak top in the limiting case [Θ0] = 0 may
claim an entirely special interest. We wish to imagine that we impart to
the initially upright figure axis a series of gradually decreasing impacts,
and wish to investigate the limit that the trajectory approaches for
[Θ0] = 0. This motion will play a principal role, as we already remark
now, in the general investigations of the following section.

We first wish to ask ourselves to what extent we can accurately
describe this motion through our approximation formulas. We therefore
determine the error τ for the present case, and must form, for this
purpose, a judgment of the positions of the roots e, e′, and e′′. The
smallest root e will be given by the parallel circle to which the apex
of the top most deeply descends in the limit of a vanishing additional
impact. This parallel circle is, according to Fig. 54 of page 332, the

circle u = e = −1+
N2

2AP
. The next largest root will be, because of the

upright position, e′ = 1. In order to find the third root e′′, we return to
the expression for U in equation (5′) (cf. page 318). If we set [Θ0] = 0,
there follows

(13)

{
A2U = −N2(1− u)2 + 2AP (1− u)(1 − u2)

= 2AP (u− e)(1 − u)2.

The third root therefore becomes identical with the second root in this
special case; we have

e′′ = e′ = 1.

The inequality (5) then yields, however, because of the vanishing
denominator, the value ∞ as the upper bound for the error τ ! In
this special case of the unstable top motion (but also not only in this
case), our approximate representation will be, in so far as it allows an
estimation of the error, entirely useless, in that the given upper bound
of the error can attain any arbitrarily large magnitude.

Fortunately, however, the exact representation in this special case is
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§5. Analytics of the upright motion of the top. 335

so simple that we can easily dispense with our approximation formu-
las. It happens, namely, that the elliptic integrals degenerate into
executable elementary integrals, corresponding to the circumstance
that two of our branch points e′ and e′′ coalesce. According to equation
(13), namely,

t =
∫

du√
U

=

√
A

2P

∫
1

1− u
du√
u− e ;

the integral on the right is expressed in terms of a logarithm as∫
1

1− u
du√
u− e =

1
1− e lg

√
1− e+

√
u− e√

1− e−√u− e.

There follows, with consideration of the value given above for e,

(14) t =
A√

4AP −N2
lg
√

1− e+
√
u− e√

1− e−√u− e .

The suppression of the constant of integration in this formula
amounts to a special stipulation of the initial time. Since the right-hand
side vanishes for u = e, the initial time t = 0 signifies the moment at
which the apex of the top passes its lowest point. The time in equation
(14) (and indeed with good reason) is therefore calculated not, as pre-
viously, from the occurrence of the disturbance in the upright position,
but rather from the lowest position.

The impact [Θ0] = 0 corresponds to the initial velocity ϑ′ = 0 of
the apex of the top at the north pole (we indeed have, in general,
[Θ] = Aϑ′). In conformity, the time during which the apex of the top
descends from the north pole to the parallel circle e becomes infinitely
large. We have previously denoted this time by ω. In fact, equation
(14) yields for this time, or for the time measured in the reversed sense
during which u increases from e to 1, the value

ω = ∞.
The explicit representation of the trajectory further demands the

calculation of the integral for ψ. We set, for this purpose, n = N in
the general formula

ψ =
∫

n−Nu
A(1− u2)

du√
U
,

and insert the value of U from equation (13). There follows

ψ =
N√
2AP

∫
1

1− u2

du√
u− e.
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The integration may once again be executed in an elementary way.
We have, namely,∫

1
1− u2

du√
u− e =

1
2

∫
1

1− u
du√
u− e +

1
2

∫
1

1 + u

du√
u− e.

The first integral on the right has already been given above; the second
yields ∫

1
1 + u

du√
u− e =

2√
1 + e

arctg
√
u− e√
1 + e

.

Thus

(15) ψ =
1
2

N√
4AP −N2

lg
√

1− e+
√
u− e√

1− e−√u− e + arctg
√
u− e√
1 + e

.

Since the entire right-hand side vanishes for u = e, our formula
directly gives the increase of the angle ψ as the apex of the top proceeds
from the lower parallel circle e to the general position u.

Equation (15) yields the desired representation of the trajectory.
We must direct our attention, in particular, to the first term of the
right-hand side. This term continuously increases as u approaches 1,
and becomes logarithmically infinite for u = 1. The second term is
essentially irrelevant in relation to the first, since it remains finite for
u = 1. The form of the trajectory is thus clear: our curve winds
continuously about the north pole, in that it always approaches the pole
without ever attaining it. We have before us, in essence, a logarithmic
spiral.

In the case of the weak top, the undisturbed upright motion thus
represents, as one says in association with P o i n c a r é’s investigations
of celestial mechanics, an asymptotic solution of the top problem, since
there is an ensemble of motions that approach it asymptotically.

If we follow the trajectory from the parallel circle e to the other
side, then we obtain a mirrored branch equal to that just described,
which likewise strives asymptotically to the north pole. In our case the
complete trajectory therefore consists not, as in general, of infinitely
many arcs, but rather of two equal mirror-image component arcs.

Nevertheless, our aperiodic spiral curve is continuously associated,
in a certain sense, with the periodic trajectory corresponding to an im-
pulse different from zero. We must imagine that for decreasing [Θ0]
the traversal time of the span width of each individual of the infinitely
many component arcs becomes larger and larger, and that the number
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§5. Analytics of the upright motion of the top. 337

of times that the component arcs circumscribe the north pole simulta-
neously increases without bound. From the other side—that is, from
the side of the upright top itself—the passage from our spiral boundary
curve to the unstable uniform rotation is naturally completely discon-
tinuous. In fact, the point-formed trajectory of the upright top motion
jumps abruptly to the limiting spiral curve if we first perturb with an
impact and then let this impact decrease to zero.

A special case of the usual pendulum motion is also included here.
If we apply an impact to an unwound (N = 0) top—that is, a
pendulum—with its center of gravity lying perpendicularly above the
support point, then the apex swings from the highest to the lowest point
of the sphere and describes a great circle. If we let the impact decrease
more and more toward zero, the trajectory itself remains unchanged.
The velocity at the highest point will only, in the limit, become zero,
and the oscillation period infinite. Correspondingly, our formulas yield,
in this case,

e = −1, ψ = const.

The following Fig. 58 is drawn in orthographic projection for the
particular values

A = P = 1, N =
√

2,

in which case e = 0 and the equation of the trajectory may be written
as

ψ =
1
2

lg
1 +

√
u

1−√u + arctg
√
u.

A corresponding asymptotic motion for the force-free three-axis
body has been known since the time of P o i n s o t (cf. the note on
page 132). That the heavy symmetric top is capable of such a motion,
however, appears not to have been noted in a characteristic manner
until now.151

In association with the motion of the upright strong top, we sup-
ply an addendum to the earlier treatment of pseudoregular precession
that remained unsettled for the case in which the trajectory of the
apex of the top runs in the immediate vicinity of the north pole. We
now take up this case; the parallel circles e and e′ (e < e′) thus differ
very little from one another and from 1. Furthermore, the characteris-
tic conditions for pseudoregular precession obtain, so that the impulse
falls nearly in the direction of the figure axis and has a considerable
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338 V. Particular forms of motion of the heavy symmetric top.

length (N2 large compared with AP ). We may presume that the
motion will be similar to the motion of the upright strong top for a
sufficiently small impact, which we will confirm analytically.

Since we again wish to apply our approximation formulas, we first
examine their degree of
precision. The formula for
u gives, as we know, an
arbitrary precision if the
bound√

e′′ − e
e′′ − e′ − 1

for the error τ becomes
arbitrarily small. Here it
is not sufficient that the
difference between e and
e′ be sufficiently small;
there is added the further
condition that e′′ may not
lie very near to the values
of e and e′. We must

therefore form a judgment of the magnitude of e′′.
According to equation (9) of page 273,

e′′ =
n2 +N2 − 2nNe

2AP (1 − e2) − e′;
as e approaches 1, the values n and N approach each other; the nu-
merator and denominator vanish simultaneously, so that a particular
investigation becomes necessary. We return to the original expression
for U (see equation (7′) of page 238). If we insert there u = e, then

(Ne− n)2 = (k −N2 − 2APe)(1 − e2),
or

n2 +N2 − 2nNe
1− e2 = k − 2APe.

The right-hand side of this equation has a simple mechanical mean-
ing. According to equation (3) of page 219,

k = |i|2 + 2AP cos ϑ;

the right-hand side in question is therefore directly equal to |i|2e; that is,
equal to the square of the length of the impulse in the initial position e.
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This quantity is, by assumption, a very large number in relation to AP ,
and differs very little from N2. It follows that e′′ likewise has a large
numerical value and that we can set in an approximate manner, just
as for the upright motion,

(16) e′′ =
N2 − 2AP

2AP
,

where |i|2e has been replaced by N2 and e′ by 1.
The approximation formula (8) of page 272 for u therefore possesses

an arbitrarily high degree of precision in this case of pseudoregular
precession. We write, correspondingly,

(17)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u = u0 + ε sin
πt

ω
= u0 + δ,

u0 =
e′+ e

2
, ε =

e′− e
2

, ω = π

√
A2

N2 − 4AP
, δ = ε sin

πt

ω
.

The construction of an appropriate approximation formula for ψ
causes greater complications. We have

ψ =
∫

n−Nu
A(1− u2)

dt =
∫

n−N
2A(1 − u) dt +

∫
n+N

2A(1 + u)
dt = ψ1 + ψ2.

The calculation of ψ2 causes no difficulty. If we use the identity

1
1 + u

=
1

1 + u0 + δ
=

1
1 + u0

− δ

(1 + u0)2
+

δ2

(1 + u0)2(1 + u)
,

then, approximately,

(18) ψ2 =
n+N

2A(1 + u0)
t+

(n +N)
2A(1 + u0)2

· ωε
π
· cos πt

ω
.

The omitted remainder term is, as one is easily convinced, always arbi-
trarily small in relation to the retained terms if ε is sufficiently small.

For the calculation of ψ1, the preceding expansion is of no use, since
the assumed small quantity 1 − u0 would appear in the denominator
and make the estimation of the error illusory. We are thus dependent
on the actual execution of the integration.

If we use for u the value from equation (17), ψ1 has the form

ψ1 = c

∫
dt

a− sinαt
, α =

π

ω
, a =

1− u0

ε
> 1, c =

n−N
2Aε

.

Integration yields, as one can verify,

(19) ψ1 =
−c

α
√
a2 − 1

arctg
1− a sinαt√
a2 − 1 cosαt

.
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340 V. Particular forms of motion of the heavy symmetric top.

We are led here, therefore, to a complicated dependence on t, which
is not immediately decomposed, as in the given formula for ψ2, into a
term proportional to time and a periodic term. For the sake of brevity,
we will not enter into the error estimation here.

We first wish to relate our latter formula to the earlier representation
of pseudoregular precession and to the motion of the upright top. For
pseudoregular precession with nonvanishing precession circle, 1 − u0

differs from zero, and a, because of the small denominator ε, is very
large. As a result, the argument of the arc tangent goes over into tgαt,
and the formula for ψ1 becomes

c√
a2 − 1

t =
n−N

2A(1 − u0)
t.

This term, together with the first term in equation (17), determines
the mean precessional velocity for pseudoregular precession in the pre-
viously (page 302) given manner.

We see, on the other hand, what equation (19) gives for the upright
motion, where the trajectory passes through the north pole of the unit
sphere. Here e′ = 1 and 1−u0 = ε. We thus have a = 1. The argument
of the arc tangent assumes, in this case, only the three values +∞, −∞,
and 0. In general, its value is ±∞, according to the sign of cosαt; at

those moments, however, when αt = (4n + 1)
π

2
—that is (cf. equation

(17)), when the apex of the top passes through the north pole—the
argument jumps from +∞ through 0 to −∞; the value of the arc tan-
gent thus increases jumpwise by −2π. (To see this, however, one must
consider not the limiting case a = 1 itself, but rather a > 1.) In equa-
tion (7) of page 330, through which we represented the ψ-coordinate
for the upright top, this jumpwise change was not expressed. Rather,
this formula gives only the single component ψ2 (and indeed, only the
first term of this component). On the other hand, a glance at Figs.
55–57 explains the meaning of the term in question. In passing the
north pole, ψ in fact necessarily increases instantaneously, and indeed
by π, since the trajectory progresses through the north pole with a con-
tinuous tangent. At the same time, we conclude that the (otherwise
not entirely easy to determine) limiting value of the factor

c

α
√
a2 − 1

=
(n−N)π

2πA
√

(1− u0)2 − ε2
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for 1 − u0 = ε and n = N is equal to
1
2
. We wish to use this limiting

value also in the case that the trajectory does not pass exactly through
the north pole, and for (19) write more simply

(19′) ψ1 =
1
2

arctg
ε− (1− u0) sin

π

ω
t√

(1− u0)2 − ε2 cos
π

ω
t
.

The definitive formulas for the description of pseudoregular preces-
sion with a very small precession circle thus become, according to (17),
(18), and (19′),

(20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = u0 + ε sin
πt

ω
,

ψ =
n+N

2A(1 + u0)
t+

n+N

2A(1 + u0)2
ωε

π
cos

πt

ω

+
1
2

arctg
ε− (1− u0) sin

π

ω
t√

(1− u0)2 − ε2 cos
π

ω
t
.

The comparison of our motion with that of the upright top motion
gives us a clear image of the origin of the term ψ1. The sudden jump
of the ψ-coordinate in the case of the upright top must be resolved
for our pseudoregular precession into a continuous but possibly very
rapid change that occurs each time the apex of the top approaches
the north pole. It is clear that this exceptional change of the azimuth
does not conform to the general schema of precession and nutation.
Correspondingly, we see that the general character of the equations
for the representation of pseudoregular precession is changed consider-
ably compared to the previous, and see, in particular, that we cannot
resolve, as we could previously, the motion into a regular precession
and a simple harmonic oscillation.152

A similar modification would naturally also be required for the equa-
tions with which we have represented the neighboring motions to reg-
ular precession in the case that the latter occurs in the immediate
vicinity of the north pole. Here again the motion may no longer be
smoothly divided into a mean precession and an overlying nutation.

Notwithstanding the formal difference in the structure of the equa-
tions, the essential properties of the general pseudoregular precession
are still retained.
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342 V. Particular forms of motion of the heavy symmetric top.

We already saw that the time duration ω of a passage from one to
the other boundary circle may be represented by the approximation
formula

ω =

√
A2

N2 − 4AP
π,

of equation (17), which is identical with equation (15′) of page 305.
We further calculate, according to (20), the quantity 2ψω; that is,

the change of the azimuth ψ during two successive passages. The arc
tangent increases during this interval by−2π; the angle ψ thus increases
by

2ψω =
n+N

2A(1 + u0)
2ω − π.

Here we pass to the limit u0 = 1, n = N , which corresponds to the
upright top, and obtain

2ψω =
N

A
ω − π.

If we insert for ω the just given value and expand, in that we retain

only the first power of
AP

N2
, as previously for pseudoregular precession,

then there results, finally,

2ψω =
{(

1− 4AP
N2

)− 1
2

− 1
}
π =

2AP
N2

π.

This value agrees precisely with that which we would calculate from
equation (11) of page 303 for the usual pseudoregular precession.

Pseudoregular precession with a very small precession circle has a
certain significance in applications (particularly in ballistics), for which
reason its belated settlement appeared necessary in this place.

§6. Generalities on the stability and lability of motion.

It is the exercise of this section to sharpen our already repeatedly
applied definition of stable and labile motions, and weigh it against
other definitions of this concept. The example of the top will provide
an appropriate starting point for more general considerations.

The concept of stability for moving systems first appeared in astro-
nomical mechanics. It already played a well-known important role for
L a p l a c e, who gave his specious proof of the stability of the planetary
system.*) And indeed one calls a system of particles stable, according

∗) Cf., for example, J a c o b i’s fourth lecture on Dynamik.153
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to Laplace, if, in the course of time, no particle can be removed to
infinity. As one sees, this stability concept is specifically tailored to the
requirements of astronomy and the phenomena of a nonrigid aggregate
of particles. It has very little to do with what we denote as stability in
the following.

The question of stability was first considered from the physical
standpoint by L o r d K e l v i n.*) There is, according to him, “scarcely
any question in dynamics more important for Natural Philosophy than
the stability or instability of motion.”**) Since then this subject has
been considered, in particular, by numerous English authors. We
take the usual definition of stability from the prize work of Mr. E.
J. R o u t h, On the stability of a given state of motion.***) According
to Routh, the motion of a system is called stable if, for an arbitrary
but small disturbance, the deviation between the position coordinates of
the system in the altered and the original motions at equal points of
time always remains small. (A “small” quantity is understood as one
“whose square can be neglected.”)

We must first make the word “disturbance” more precise. We ini-
tially understand by a disturbance the totality of the differences between
the initial values of the impulse coordinates of the original and the
altered motions. Here we must appeal, however, to later developments
with respect to what should be understood by the impulse coordinates
of an arbitrary mechanical system.

A modification required by the demands of modern rigor is now
suggested for the given definition. We prefer to speak of arbitrarily
small instead of small disturbances and deviations. We thus connect
with the well-grounded fundamental concepts of differential calculus,
especially the limit concept.

At the same time we separate, by this modification, the cases de-
noted on page 325 as practically stable from the theoretically stable
cases. For the practically stable, theoretically labile cases of the up-
right top motion, the deviation of the apex of the top from its initial
position was (as a result of the particular choice of the constants A, P ,
and N) always small; but it could not (through the diminishment of

∗) In the first edition of the Natural Philosophy, 1867.
∗∗) Cf. Thompson and Tait: Natural Philosophy, art. 346, Vol. I, p. 416.

∗∗∗) London 1877,154 cf. Chap. I, art. 1, as well as the textbook Rigid Dynamics of
the same author, Part II, art. 256 and 257.
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344 V. Particular forms of motion of the heavy symmetric top.

the disturbance) be made arbitrarily small. According to the given
definition of Routh, these cases would be stable; after the proposed
modification, however, they are to be reckoned as unstable. Whether
the latter or the former is to be preferred remains to be seen. In
any case, the precise treatment of the stability definition is facilitated
by the requirement of arbitrary smallness of the disturbance and the
deviation; that is, by the restriction to theoretical stability. We reserve
for the end of the section the return to the treatment of the practically
stable, theoretically labile cases.

We immediately mention a second modification that we wish to
propose. The above definition demands that the deviation between the
position coordinates of the system be small (or can be made arbitrarily
small). But the choice of the coordinate system is, from the standpoint
of general Lagrangian mechanics, entirely at our discretion. It is very
well possible that the deviation between the position coordinates for
a certain choice of the coordinate system remains small in the course
of the motion, and for another choice becomes arbitrarily large—in so
far as we do not subject the choice of the coordinate system to certain
restrictions, into which we cannot enter in this place. In the above
conception, the stability definition thus pertains, strictly speaking, to a
mechanically meaningless property of the motion that is not indepen-
dent of the coordinate system.

It is easy to correct this undesirable circumstance. We must speak
not of the deviation of the position coordinates, but rather of the devia-
tion of the position of the system. We call this deviation arbitrarily
small if the distances between the positions of each individual point of
the system for the one and the other motion are arbitrarily small at
the corresponding moments of time. The distance between two points,
however, is a concept that is independent of the choice of coordinates.

In order that the estimation of the magnitude of the disturbance be
also independent of the coordinate system, we can imagine the total
impulse of the system resolved into the corresponding impulse of each
individual mass particle, which can be determined at any time from the
mass and velocity of the particle. The disturbance will then be called
arbitrarily small if the deviations between the corresponding individual
impulses of the system at the beginning of the original and perturbed
motions lie beneath an arbitrarily prescribed bound.

We are thus able to make the Routh definition of stability more pre-
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cise in the following manner: A motion is called stable if the deviations
between the corresponding positions of the system that result from a
disturbance can always be suppressed beneath a given bound by choosing
the magnitude of the disturbance beneath an appropriately determined
bound.

We wish to examine the suitability of this definition in detail.
From a purely logical standpoint, any definition that is not in contra-

diction with itself and generally corresponds to some object in reality is
naturally permissible. From the standpoint of natural science, however,
we must demand more of a stability definition than its mere internal or
external want of contradiction. One generally associates, namely, the
word “unstable” with the conception of an exceptional and turbulent
process. We must therefore demand of our definition, in order for this
conception to be justified, that no generally regular and ordinary mo-
tion fall under the concept of the unstable processes, and no apparently
irregular motion fall under the stable processes.

A series of examples will now show that the above definition of
stability is, from this point of view, inappropriate. We take the rele-
vant examples partly from the theory of the top, and partly from the
simplest problems of particle mechanics.

We first consider regular precession and its neighboring motions,
as in §1 of this chapter. We verify from the aspect of Fig. 47 that the
altered trajectory always runs in the vicinity of the original; and indeed
this state of affairs obtains for an arbitrary type of disturbance.

The situation is otherwise if we consider not only the spatial form
of the trajectory, but also, as the above stability definition demands,
the time in which the apex of the top traverses the trajectory. We saw
on page 287 that the mean angular velocity

n−Nu0

A(1 − u2
0)

of the altered motion generally differs from the precessional velocity

n−Ne
A(1− e2)

of the original motion whenever the impact has not the line of nodes
as its axis, although by always less as the impact is chosen smaller.
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346 V. Particular forms of motion of the heavy symmetric top.

This difference is sufficient, however, to effect a finite difference in the
two compared motions over the course of time. We can directly de-
termine a time interval t (that naturally increases with a decreasing
disturbance) after which the difference of the ψ-values for our two mo-
tions will be greater, for example, than

π

2
.

If we would avoid this, we must subject the character of the dis-
turbance to the special condition that merely the [Θ]-component of
the impulse is altered by the disturbance. This would be, however, an
arbitrary stipulation that is not provided in the definition thus far.*)
Moreover, the altered precessional velocity would still coincide with the
original (cf. page 320) only up to quantities that are proportional to the
second power of the disturbance [Θ0]. For a corresponding enlargement
of the time interval t, we can claim in this case as well an arbitrary
finite difference in the simultaneous values of the ψ-coordinates for the
original and the altered motions.

Thus it is clear, according to the wording of our above definition,
that the simplest motion of the top, regular precession, is to be desig-
nated as unstable.

The corresponding holds in elevated measure for the general mo-
tion of the top. Here the form of the trajectory of the apex of the
top never remains, for a sufficiently small impact, arbitrarily near the
original. In fact, both the span width of the component arcs and the
time in which the arcs are traversed are generally altered by a change
of the impulse (cf. Figs. 29–35 of the previous chapter). These changes
can indeed be made arbitrarily small if the impulse change is cho-
sen as sufficiently small. But if a sufficiently large time interval is
taken into consideration, arbitrary finite differences between the corre-
sponding positions of the apex of the top result from such arbitrarily
small changes. If we would adopt the above definition, then we must
simply declare the collected motions of the top to be unstable. This
also applies, in particular, to the upright motion of the strong top
if we consider the coordinate χ and allow a change of the impulse
component N , or in entire generality if we retain in the calculation

∗) In actuality, however, such a stipulation is generally introduced after the fact
by the English authors. Cf. the following paragraphs.
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such deviations that are proportional to the second power of the dis-
turbance (cf. page 320).

To cite an example from the mechanics of a single mass particle, we
consider, with Mr. A p p e l l,*) the circular motion of a mass particle
in a fixed plane under the influence of an applied central force with
the action law rn. It is shown that the altered trajectory due to a
disturbance always remains near the original circle for a sufficiently
small impact in the case n > −3. It is otherwise with the position of the
particle on the trajectory. This will obviously be slightly changed for
the duration of the motion only if the added impact has no component
in the direction of the original path, and therefore if the added impact
leaves the velocity of the particle unchanged. Mr. Appell thus sees
it necessary, on the basis of the above definition, to declare that the
motion of the particle is unstable also in the case n > −3.155

One can avoid the named difficulties, in part, if one allows only such
impulse changes that do not change the energy of the system. In the
work of Thomson and Tait, such a disturbance is designated as “conser-
vative,” and the restriction to conservative disturbances is immediately
adopted in the stability definition.**) With this modification of the
stability concept, the circular path in the last example is to be declared
as stable in the case n > −3;***) one will thus generally avoid the ap-
pearance of “secular disturbances,” as one can name deviations from
the original to the altered position that increase with time (at least in
so far as these secular terms are only of the order of the second power
of the impulse change).

But there remain enough other undesirable circumstances. We con-
sider, for example, the force-free motion of an individual mass particle
according to the Galilean law of inertia. Are we able to conclude that
this most regular, so to speak, of all motions is to be declared as unsta-
ble? According to the wording of the usual definition, we must do so.
For the altered motion of the particle due to an added impulse, which
for want of external forces is again linear and uniform, is removed from
the original path more and more, as small as we may measure the
disturbance.

∗) Mécanique rationelle, t. II, art. 458.
∗∗) Natural Philosophy, art. 346, 347.

∗∗∗) Natural Philosophy, art. 350.
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348 V. Particular forms of motion of the heavy symmetric top.

We further call upon the interesting example of geodesic lines; that
is, the force-free paths of an individual mass particle that is somehow
constrained to remain on a curved surface. Here we must distinguish
two cases, according to whether the curvature of the surface (in the
Gaussian sense) is positive or negative. If we let our mass particle run
on a surface of negative curvature (for example, on a hyperboloid of
one sheet) and impart to it a small impulse, then the disturbed tra-
jectory is removed more and more from the original; we can give no
bound beneath which the magnitude of the impulse must lie, so that the
distance from the particle in the altered motion to the corresponding
position in the original motion remains beneath a given bound. Thus
we must designate, with Thomson and Tait,*) all geodesic trajectories
on surfaces of negative curvature as unstable trajectories.156 On a sur-
face of positive curvature, on the other hand, geodesic trajectories that
are to be named as stable in the sense of the above definition are in
any case imaginable. It can be shown, namely, that if one constructs
from any point on such a surface two geodesic lines that differ infinites-
imally in their initial directions, these lines must continually intersect
one another at intervals that differ according to the magnitude of the
curvature. If we therefore consider one of these two lines as the original
trajectory of our mass particle and the other as that altered by a dis-
turbance, then the former will constantly oscillate about the latter. If
we can further demonstrate that the amplitude of the oscillation does
not increase systematically with increasing time, then we can, with the
restriction to conservative disturbances, declare the trajectory as stable
according to the above definition.**)

All in all, however, we must say that the above stability definition,
according to which a permanent smallness of the deviation is demanded,

∗) l. c. art. 355, where one may also refer to the extraordinarily simple proofs of
the theorems on geodesic lines cited in the text.

∗∗) T h o m s o n and Ta i t, l. c. art. 355. The conclusion regarding the stability
(in the intended sense of the authors) of the trajectory appears premature, however,
without an investigation of the oscillation amplitude. In fact, the meridians on the
ellipsoid of revolution, for example, are unstable trajectories in the Thomson sense:
with addition of a lateral impact they are transformed into unclosed curves that
are alternately tangent to a parallel circle in the vicinity of the north pole and a
parallel circle in the vicinity of the south pole, and wind around the ellipsoid with
a span-width that differs from 2π. If we follow such a curve sufficiently far, it is
removed more and more from the original meridian.157
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is t o o n a r r o w. It refers the simplest and most regular motion
(Galilean inertial motion!), among others, to the class of unstable mo-
tions, which contradicts the natural conception of the word.

One can seek to essentially retain the above definition, and change it
only by demanding the smallness of the deviation not for an arbitrary,
but rather for a bounded time duration. One would then define stability
by the following postulate:

It should be possible to choose the disturbance so small that the devi-
ations between corresponding positions of the system in the original and
the altered motions remain beneath a prescribed bound f o r a g i v e n
t i m e i n t e r v a l t < T .

On the basis of this definition, the Galilean inertial motion, the
geodesic trajectories on the hyperboloid, the general motion of the top,
etc., would be inserted immediately into the category of stable motions.
It would produce, however, an undesirable circumstance of another
type. It must declare as stable, namely, motions of such doubtlessly
irregular character as the upright rotation of the weak top.

We first recall the behavior of the weak top in the limiting case of an
infinitely decreasing impact (lim [Θ0] = 0). Our previous investigation
shows that in this limiting case the apex of the top does not remain in
an arbitrary neighborhood of the north pole, but that its velocity at
the north pole is equal to zero. And indeed, the time ω at which the
apex of the top in Fig. 53 arrives at the north pole, starting from an
arbitrary point of the spiral, becomes infinitely large.

One then considers the behavior of the apex of the top for a nonzero
but extraordinarily small impact [Θ0].

The trajectory is then no spiral, but will nevertheless encircle the
north pole a few times in its immediate vicinity; the velocity ϑ′ with
which it departs from the north pole is not equal to zero, but is always
extraordinarily small.

We can certainly now establish an upper bound for the impact [Θ0]
so that for each smaller impact and for each time t < T (T , for example,
equal to one year), the deviation between the position coordinates ϑ
in the altered and the original motions will be smaller than ε (ε, for
example, equal to one arc second).

In other words: the motion of the upright weak top, on the basis of
our current definition, would be stable!

Similar considerations may be employed for another case that is
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likewise generally recognized as unstable. In the rotation of the asym-
metric weightless top about its intermediate principal axis, the velocity
with which the rotation axis leaves the intermediate principal axis will
also be equal, in the limit, to zero for an impact that decreases to zero.
For a bounded time t < T , the altered motion therefore remains in an
arbitrary neighborhood of the original for an appropriate choice of the
impact.

We thus conclude that our current stability definition, according to
which the smallness of the deviation is demanded only for a bounded
time interval, is t o o b r o a d. It allows motions to pass as stable that
we must reasonably regard as entirely labile.

We have thus fallen into a characteristic dilemma, from which we
can escape only if we again take up the stability definition that we
have already applied many times. We wish to call a motion stable if a
continuous passage is possible between it and the altered motion due to
an arbitrary impact. It is then necessary only to make this somewhat
undetermined continuity concept more precise, and to characterize it
through an analytic criterion. We wish, for this purpose, to proceed
in the following manner. We alter the motion in question by means of
a finite impact of an arbitrary character. We then let the magnitude
of the impact decrease to zero, and seek the limit to which the altered
motion thus tends. If this limit exists and coincides with the given
motion, we call the passage between the original and the altered motions
continuous.

Our final stability definition, stated for an arbitrary mechanical sys-
tem, is thus the following:

A motion is called stable if it coincides with the limit to which the
motion tends as the result of an arbitrary impulse change, as the magni-
tude of this change decreases to zero. It will be called labile, in contrast,
if it is different from this limit, if different limits result for different
types of impulse change, or if a limit does not in general exist.

According to this definition, for example, regular precession, the
general motion of the top in which the trajectory runs to and fro be-
tween two parallel circles, the Galilean inertial trajectory, etc., are obvi-
ously to be reckoned as stable motions, while the upright motion of the
weak top, the rotation of the three-axis top about its intermediate prin-
cipal inertial axis, etc., are to be reckoned, as is fair, as labile motions.
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In fact, we saw for the upright weak top, for example, that as the
value of the impact [Θ0] decreases to zero, there remained an entirely
determined motion (a spiral trajectory) that was different from the
simple rotation about the vertical. As for the geodesic trajectories on
the hyperboloid of revolution, these would generally be stable, with
the exception of the throat-circle, which is unstable and represents an
asymptotic solution that we do not wish to develop in more detail.158

A further point in which our stability definition is evidently superior
to the otherwise common definition deserves to be especially empha-
sized. If one judges the stability of motion in the usual sense from the
smallness of the deviation that results from a small impact, and if one
represents this deviation by approximation formulas, then one usually
neglects (cf. page 320) all those terms that vanish as the second or
higher power of the disturbance. If this neglect, however, is applied to
a secular term (a term, for example, multiplied by t), then the impre-
cision of the approximation formula always increases with time; while
the approximation formula thus allows the conclusion of a permanently
small deviation, it can occur in reality that the deviation between the
perturbed and the original motions attains any arbitrary value. In this
case, a motion would appear as stable according to the usual method,
while a finite deviation still appears with time for a disturbance. Our
treatment of the stability definition, in contrast, is completely free of
such difficulties. For us it is a question not of deviations of the first or
second order, but rather the direct equality between the original motion
and the limit of the perturbed motion. This equality, compared with
the smallness of the deviation in the usual definition, allows a judgment
of not only greater sharpness, but also greater ease.

We can also recommend our new definition by showing that in the
case of equilibrium, where the concepts stable and labile have long been
established, it coincides with the generally accepted meaning of these
words. A simple example suffices in this respect. A heavy mass particle
on a spherical surface is in an unstable equilibrium at the highest point
(the north pole) of the sphere, and in a stable equilibrium at the lowest
point (the south pole). This follows from our definition of stability for
motion, of which the definition of stability for equilibrium is a special
case, and coincides with the usual conception. If we give, namely, an
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impact to the particle at the north pole, it describes a great circle on
the sphere; if we let the magnitude of the impact continuously decrease
to zero, then the trajectory of the particle remains the same, and only
the velocity decreases; the velocity at the north pole is zero in the limit,
and differs from zero at all other points of the great circle. The limit
here is therefore a specific well-defined motion that is different from
the original state of rest. Moreover, there is another limit for each
direction of the impact. If we let, in contrast, an impact act on the
particle resting at the south pole, then the particle oscillates to and
fro on a great circle; the magnitude of the amplitude depends on the
magnitude of the impact and decreases to zero with it. The limit of
which our definition speaks is therefore the original rest position itself.

We could consider, finally, a weightless particle resting on a sphere.
If we strike this particle, it describes a great circle with constant
velocity; if we let the magnitude of the impact become zero, then the
velocity at each point of the trajectory will also be zero. One can be
in doubt whether this limit should be designated as rest or as motion.
In any case, one must say that a determined limit does not exist, since
the position of the great circle depends on the direction of the impact.
For such cases, the otherwise applied designation of “indifferent equi-
librium” appears appropriate.

We would by no means deny that the stability concept posed at the
beginning of this section is also worthy of investigation, especially if it
is improved by the restriction to conservative impacts. We would only
speak, in that case, not simply of stability, but rather, for example, of
absolute stability. Therefore:

If a motion is of such a nature that it is transformed, for a sufficiently
small conservative change of the impulse coordinates, into a motion for
which the positions of the system a l w a y s remain arbitrarily near the
corresponding positions of the original motion, then we call the motion
absolutely stable. That such a motion also satisfies our definitive sta-
bility declaration is self-evident. The circular trajectory cited on page
347 is, under the condition n > −3, absolutely stable in this sense. We
must, however, remark again that the usually adopted method of inves-
tigation in the literature (for example, by Routh as well as by Thom-
son and Tait), according to which absolute stability is judged from the
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terms of the first order with the neglect of the higher powers, is, from
our standpoint, incomplete. According to the preceding definition, we
can call a motion absolutely stable only if the complete altered motion,
and not simply the terms of the first order, always remains arbitrarily
near to the original.

We can make a series of other distinctions. If we wish to empha-
size that an altered stable motion arrives at the same position as the
original after a certain time interval, then we can call the motion peri-
odically stable. The opposite would be divergingly stable. The geodesic
trajectories on surfaces of positive curvature are, in so far as they are
in general stable, always periodically stable, and those on negatively
curved surfaces divergingly stable. The Galilean inertial motion pro-
vides a further example of diverging stability. Absolute and periodic
stability need not coincide, as the example of the geodesic lines on the
ellipsoid can show (cf. the footnote on page 348).

We can further distinguish between partial and total stability. We
would speak of partial stability if our stability criterion is fulfilled only
for certain impacts, and of total stability if it is fulfilled entirely; that
is, for all possible impacts. Our stability definition thus far refers to
total stability. If, in contrast, we restrict with Thomson and Tait to
conservative impacts, then we ask for a type of partial stability. As
we will see in the following section, one is mostly interested in the
literature only in partial stability, especially in the case of so-called
cyclic systems.

Finally, we emphasize once more the contrast between theoretical
and practical stability and lability.159 Our developments thus far in this
section refer completely to theoretical stability. It can occur, however,
as we already saw in the previous section, that a motion does not satisfy
our stability criterion but is still, for practical purposes, as good as
stable. This will occur if the limit in question of the original motion
indeed differs from, but is only so little different that it nearly coincides
with, the original motion.

The opposite will be the case if the limit of the changed motion is
indeed identical with the original, but the changed motion differs es-
sentially from the undisturbed shortly before the passage to the limit;
that is, for very small values of the impulse coordinate changes. An
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example of a practically labile, theoretically stable equilibrium in this
sense is given by a mass particle in a very small frictionless cavity on
the summit of a mountain. A theoretically labile and practically stable
equilibrium is represented by a particle that lies on a slight elevation in
the bottom of a valley.

We wish to remark, in conclusion, that our stability definition can
also be modified, if desired, by considering small changes of the position
coordinates in addition to small changes of the impulse coordinates, or
small changes in the position and velocity coordinates instead of small
changes of the impulse coordinates, as is often done, in fact, for equilib-
rium investigations.160 This modification, however, appears to have no
important consequences. Moreover, our change of the impulse coordi-
nates may best correspond to the physical concept of a disturbance, and
may deserve preference over a change of the velocity coordinates, which
would indeed be equally worthy mathematically, but whose physical
sense would be less meaningful.

§7. Energy criteria for the stability of equilibrium and
motion.

The application of our stability definition of the previous section
assumes the general knowledge of the trajectories, and particularly the
knowledge of the limit to which the motion tends for a vanishing dis-
turbance. The judgment of whether a motion is stable or unstable is
thus rather troublesome. One will wish to simplify this judgment and
will seek, in particular, criteria that lead to the goal without the knowl-
edge of the general motion, and therefore without the integration of the
mechanical differential equations. We will, in this respect, hardly have
anything new to offer; our exercise is, rather, of an essentially critical
nature. We intend to show in the following section, namely, that the
most practical criterion, which follows from the so-called method of
small oscillations, gives occasion for many objections.

The first investigation to be employed must be modeled after the
well-known criterion for the stability of equilibrium that was first
stated by L a g r a n g e, and was formulated precisely and proven in
a short but meaningful work of D i r i c h l e t.*) Dirichlet considered
an arbitrary mechanical system whose constraints are independent of

∗) Crelle’s Journal, Bd. 32, pp. 85–88, 1846.
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time, and which is subject only to “conservative forces”; that is, forces
whose work can be represented by a function of the coordinates whose
negatively taken value is the potential energy V . For such a system,
the theorem of the vis viva obtains in the form

T + V = h.

The well-known result of the Dirichlet investigation now runs thus:
the equilibrium is certainly stable if V is an actual minimum in the
equilibrium position.

We conduct the proof, with consideration of the immediately follow-
ing generalization of the criterion, somewhat differently from Dirichlet
in the following manner.

In the equilibrium position, T = 0; the value of V can, since it
is defined only up to an additive constant, likewise be set to zero.
Thus h = 0 in the equilibrium position. If V is an actual minimum,
we can give limits for the coordinates that determine the position of
the system so that V is greater than a (sufficiently small) positive
quantity k as soon as one or more of the position coordinates are equal
to the given limit values, while, at the same time, the values of the
remaining position coordinates remain inside these limits. To enable
us to express this concisely, we wish to speak of the totality of the
values of our position coordinates that lie inside the given limits as
a “domain,” and wish to denote those coordinate values for which at
least one coordinate coincides with the established limit value for this
coordinate as the “boundary of the domain.” We then have, for the
boundary of our domain,

V > k.

All the more, therefore, since T is necessarily positive, is

(1) T + V > k,

and indeed independent of the values that we may assign to the velocity
coordinates in T .

We now impart a disturbance to the system. The theorem of the
vis viva again obtains for the resulting motion. We can measure the
disturbance so small that the constant h of the vis viva will be less than
k. Thus

(2) T + V < k

for the disturbed motion.
It is now clear that this motion runs entirely and always inside the
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previously given domain. In the opposite case, namely, it would occur
that one position coordinate (or possibly more simultaneously) would
attain the limit given above, while the remaining position coordi-
nates would still possess values that correspond to the interior of the
region. At this moment, however, the inequality (1) must hold, which
is incompatible with the simultaneously valid inequality (2).

The boundaries of the region can now be narrowed arbitrarily, and
the preceding conclusion, for a corresponding diminishment of the dis-
turbance, will be repeated.

Therefore the system always remains, for the altered motion, in
an arbitrarily small neighborhood of the original equilibrium position.
Thus the equilibrium is certainly, according to our and every other
definition of the word, stable.

The proven criterion therefore suffices to guarantee the stability of
the equilibrium. There arises, however, the further question of whether
the requirement of this criterion is also necessary, or, otherwise ex-
pressed, whether the Lagrange–Dirichlet theorem may be reversed, in
the sense that an equilibrium is certainly unstable for nonexistence of
a minimum (or perhaps only the presence of a maximum). There is
still no conclusive result here. At least, Mr. L y a p u n o v and Mr.
H a d a m a r d, in their relevant works,*) can state the converse of the
theorem in question only under special assumptions on the nature of
V (for example, under the assumption that the nonexistence of a mini-
mum in the quadratic terms of the power series of V can be recognized,
or the presence of a maximum to the terms of the lowest order.)161

We now come to an interesting transference of the preceding “energy
criterion” (“energy test of stability”) from the case of equilibrium to
that of motion. This transference has been accomplished by Routh.**)

We begin, with Routh, just as for the equilibrium criterion (under
the given assumptions on the nature of the constraints of the system
and the forces acting on the system), from the energy expression

∗) Cf. L y a p u n o v, Journal de Liouville, sér. V, t. 3 (Sur la stabilité de
l’équilibre), where further literature citations to the works of the author are to
be found, and H a d a m a r d, ibid., (Sur certaines trajectoires en dynamique); cf.
especially page 365.

∗∗) Cf. Rigid dynamics, Part II, Chap. III, art. 95 and ff. Stability of motion,
Chap. VI, art. 1–3.
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T + V = h.

The left-hand side, the total energy of the system, is a known function
of the position and velocity coordinates that has the constant known
numerical value h for all stages of the given motion. One can now show
that if the total energy is an extremum for the given motion (that is,
a maximum or a minimum) with respect to all the appearing position
and velocity coordinates, the given motion must be absolutely stable.

However, the situation can certainly not occur in the manner just
expressed. We consider, namely, the dependence of the total energy
on the velocity coordinates. Since the vis viva represents a positive
quadratic function of the velocity coordinates, it will in general increase
with increasing, and decrease with decreasing values of the velocity
coordinates. If, however, the total energy is to be an actual extremum,
then T must either only increase or only decrease for the increase or
decrease of the velocity coordinates.

As a result, one must necessarily, with Routh, pose the stability
question more particularly. One will ask, in order to be able to extract
an actual use from the energy criterion, not for total, but rather for
partial stability of some kind (cf. the conclusion of the previous section).
One will thus fix the initial values of individual impulse coordinates (we
wish to name them N , n, . . .) and arrange the impact so that it effects
only a change of the remaining impulse coordinates. Moreover, we
wish, for the sake of simplicity, to assume that the impulse coordinates
N , n, . . ., as in the case of the top, also remain constant in the course
of the motion, so that we will speak in the following of the “impulse
constants” N , n, . . . .

The impulse coordinates are, however, as will be shown later in
general, simple (and indeed linear) functions of the velocity coordinates,
where the position coordinates can enter in the coefficients. If we denote
the velocity coordinates by ϑ′, ϕ′, . . ., then we have equations of the
form

(3) f1(ϑ′, ϕ′, . . .) = N, f2(ϑ′, ϕ′, . . .) = n, . . .

which obtain for the altered motion just as for the original. (Routh
more generally considers, instead of such impulse equations, any “first
integral equations” of the problem, whose left-hand sides are an aggre-
gate of the position and velocity coordinates, and whose right-hand
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358 V. Particular forms of motion of the heavy symmetric top.

sides are constants. The impact must then be chosen so that it does
not change the constants of the right-hand sides.)

We are thus able to eliminate from the expression for the total en-
ergy as many velocity coordinates as we have constraint equations of
the given form, whereby the impulse constants N , n, . . . (or the inte-
gration constants N , n, . . .) will enter into the energy expression. The
demand, that the resulting energy expression represent an actual ex-
tremum with respect to the collected position and velocity coordinates
explicitly contained in it, evidently amounts to less than the earlier de-
mand that it be a simple extremum (with respect to all coordinates).
We will see immediately that our current demand is actually fulfilled,
for example, for certain motions of the top.

This arranged in advance, we state the Routh energy criterion as
follows:

The given motion is, in all the uneliminated position and velo-
city coordinates, absolutely stable if the energy expression is, after the
required elimination, an actual extremum with respect to just these po-
sition and velocity coordinates, and indeed partially stable with respect
to all disturbances that do not change the constants N , n, . . . in the
energy expression.

The proof is formed as in the case of equilibrium: if T + V is an
actual minimum for the given motion (the case of a maximum is treated
similarly), then we can give positive and negative increments for each
individual uneliminated position and velocity coordinate so that the
current value of T + V is increased as soon as we apply the respective
increment to at least one of the position and velocity coordinates, while
at the same time the remaining coordinates remain unchanged or are
changed only by less than the established increments. And indeed, the
resulting increase of T +V may, at each moment of the motion, become
greater than the positive (to be chosen as sufficiently small) quantity
k, so that

(1′) T + V > h+ k.

For the motion altered by a single disturbance, the theorem of the
vis viva likewise obtains. The disturbance can be chosen so small that
the original value of h will be increased less than k. We therefore have,
along the entire altered motion,

(2′) T + V < h+ k.
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Here we assume a partial disturbance that leaves the values of the
constants N , n, . . . unchanged.

From (1′) and (2′) one concludes, as above, that the differences
between the coordinates for the original and the altered motions can
never attain the magnitude of the previously given increments. Since
these increments, however, can be chosen as arbitrarily small, there
follows immediately the absolute stability of the given motion with
respect to all the uneliminated coordinates.

First, the requirement of the Routh criterion should be sharpened
somewhat more precisely. It is actually not enough to demand that
the energy function T + V be simply an extremum. It is assumed in
the proof, rather, that for all values of time, or, equivalently, for all
positions on the original trajectory, one and the same positive (or nega-
tive) number k may be given, above (or below) which lies the change in
the energy function for the increase of one or more of its arguments by
a certain nonzero increment. The latter requirement says more than
the requirement that T + V should be an extremum at each individual
position. It can very well be, for example, that we can give, for each
value of t, a number k of the named character, but that this value will
be always smaller (or larger) for increasing t, and in the limit t = ∞
will no longer differ from zero. We wish to call the type of extremum
that is assumed for the proof of the Routh theorem, in association with
the usual designation in function theory, a uniform extremum, where
the word “uniform” refers to the dependence of the energy function on
time, and signifies nothing other than that the nonzero value of k can
be fixed independently of the value of time. The Routh criterion would
thus be more precisely stated as the motion is certainly absolutely stable
if the energy function is an extremum with respect to all its uneliminated
arguments, the position and velocity coordinates, and indeed uniformly
for all values of t.

The relation of this motion criterion to the previous equilibrium cri-
terion is clear. If V is a minimum with respect to the collected position
coordinates, then T + V is also a minimum in the equilibrium posi-
tion T = 0 with respect to all the position and velocity coordinates.
If, conversely, T + V is a minimum with respect to all the position
and velocity coordinates, then one need only set all the velocity coordi-
nates equal to zero to see that V must be, at the same time, a minimum
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360 V. Particular forms of motion of the heavy symmetric top.

with respect to the collected position coordinates. In the case of equi-
librium, the Routh criterion, in so far as it refers to a minimum of
T + V , is therefore transformed into the Lagrange–Dirichlet criterion,
and vice versa. A specialization of the impact of the type considered
above by means of equation (3) thus becomes superfluous in this special
case.

The other statement of the Routh theorem, that a motion is also
absolutely stable if T + V represents a maximum for this motion, ob-
viously does not come into question in the case of equilibrium. Since,
namely, T is certainly a minimum in the case of equilibrium, T + V
cannot be a maximum. In fact, T and also T + V indeed increase, if,
for example, we fix the values of the position coordinates, but change
the velocity coordinates in any way.

The application of the Routh motion criterion is naturally less con-
venient, and its importance less encompassing, than that of the equi-
librium criterion, since we must assume for the former more about the
character of the motion than for the latter about the character of the
equilibrium, and since the occurrence of an extremal energy value for
motion can generally be attained, so to speak, only by a restriction of
the mobility of the system in the sense of equations (3). If we in fact
demand, with Routh, that the total energy should be an extremum
not only with respect to the position coordinates, but also with respect
to a number of (uneliminated) velocity coordinates, then we pose, in
contrast to the case of equilibrium, as many more conditions as the
number of uneliminated velocity coordinates. There remains, for the
more precise formulation of the motion criterion, the troublesome ad-
dition of the uniformity of the extremum for all values of t, an addition
that will evidently be superfluous for the equilibrium criterion.

Correspondingly, the domain of applicability of the Routh criterion
will be rather restricted. The examples that Routh gives in the cited
works do not essentially differ, after the required elimination, from
equilibrium problems. The motion whose stability is to be investigated
is generally chosen, namely, so that it can be characterized by equating
to zero all the velocity coordinates that explicitly enter into the energy
expression.*) In this case, the expression for the vis viva that concerns

∗) This corresponds, in particular, to the so-called cyclical motions, which we
will later cover in detail.
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the velocity coordinates is itself a minimum, directly as in the equi-
librium case. It remains only to investigate the extremal properties of
the energy expression with respect to the position coordinates, which
is then no more difficult than the investigation of the potential energy
in the case of equilibrium. The requirement of the uniformity of the
extremum also becomes superfluous for such cases of motion.

The following two examples, which we take from the theory of the
top, are of this special nature. They concern the repeatedly discussed
cases of upright motion and regular precession. We wish to assume
the top specifically as a spherical top with moment of inertia A. The
energy expression then runs

(4) T + V =
A

2
(ϑ′2 + sin2 ϑ · ψ′2 + (ϕ′ + cos ϑ · ψ′)2) + P cos ϑ.

The invariability of the impulse components n and N for the speci-
fied motion implies, according to page 222, the relations

(5) A(ψ′ + cos ϑϕ′) = n, A(ϕ′ + cos ϑψ′) = N.

The disturbance should be chosen in the partial sense, so that these
impulse constants are not altered. The impact should thus change
merely the [Θ]-component of the impulse; that is, have the line of
nodes as its axis.

By means of equations (5), we now eliminate ϕ′ and ψ′ from (4).
There follows, since the right-hand side of (4) and the coefficients in
(5) do not contain the position coordinates ϕ and ψ, an expression that
depends only on ϑ and ϑ′; namely,

(4′) T + V =
1

2A

[
A2ϑ′2 +

(n−N cos ϑ)2

sin2 ϑ
+N2 + 2AP cos ϑ

]
.

We must examine the extremal properties of this function of two
variables.

For the upright motion (ϑ = ϑ′ = 0), n = N . Since this relation
is not altered by the impact, the simplified energy expression for the
disturbed motion follows from (4′) as

2A(T + V ) = A2ϑ′2 +
N2

cos2 ϑ/2
+ 2AP cos ϑ.

Applying the well-known rule for seeking the maxima and min-
ima of a function of two variables, we expand the previous expression
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362 V. Particular forms of motion of the heavy symmetric top.

about the position ϑ = ϑ′ = 0 according to Taylor’s theorem, and
obtain

2A(T + V ) = N2 + 2AP +A2ϑ′2 +
1
4
(N2 − 4AP )ϑ2 + · · · .

The linear terms in ϑ and ϑ′ vanish; the quadratic terms form a
positive definite quadratic form if

(6) N2 − 4AP > 0.

In this case, therefore, T + V is an actual minimum for ϑ = ϑ′ = 0.
The motion of the upright top is therefore absolutely stable, under the
condition (6), with respect to partial disturbances that leave the values
of N and n unchanged.

We have thus rediscovered our earlier stability criterion, indeed in a
less sharp form, in that the symbol > appears instead of the symbol ≥.
That the value of ϑ in the altered motion always lies in the neighbor-
hood of the original value ϑ = 0 under the condition (6) is sufficiently
known to us from §§4 and 5. Our earlier considerations show, more-
over, that the upright motion in the case N2 − 4AP ≥ 0 is also to be
designated as stable, if not as absolutely stable, with respect to the co-
ordinates ϕ and ψ and for a change of N , and that the upright motion
is labile in the case N2−4AP < 0. Our current consideration naturally
gives no conclusion on the latter points.

We next consider the example of regular precession. This motion is
characterized by ϑ′ = 0 and ϑ equal to the constant value ϑ0 that is
determined from the equation Aμν = P , or (cf. page 279)

(7)
n−N cos ϑ0

sin2 ϑ0
· N − n cosϑ0

sin2 ϑ0
= AP.

We imagine this motion again disturbed by an impact that leaves the
impulse constants N and n unchanged, and merely influences the im-
pulse component [Θ] that does not explicitly appear in the energy func-
tion. We expand the expression 2A(T + V ) about the position ϑ = ϑ0,
ϑ′ = 0 according to Taylor’s theorem. The constant term, which sig-
nifies the amount of energy for the regular precession, is, according to
equation (4′),

a0 =
(
n−N cos ϑ0

sinϑ0

)2

+N2 + 2AP cos ϑ0;

this is inessential for the following. We next seek the terms of the first
order in ϑ− ϑ0 and ϑ′, which are of the form

a1(ϑ− ϑ0) + a2ϑ
′.
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The coefficient a2 obviously vanishes. The coefficient a1 is equal to the
value of ∂{2A(T + V )}

∂ϑ
for ϑ = ϑ0. If one calculates this differential quotient, one finds, without
trouble,

(8) 2 sinϑ
{
n−N cos ϑ

sin2 ϑ
· N − n cos ϑ

sin2 ϑ
−AP

}
.

This expression, however, vanishes because of equation (7). The terms
of the first order therefore vanish, as required for the occurrence of a
maximum or minimum.

The terms of the second order then have the form

a11(ϑ− ϑ0)2 + 2a12(ϑ − ϑ0)ϑ′ + a22ϑ
′2.

Here one sees immediately that a22 = A2 and a12 = 0. It remains,
therefore, only to calculate

a11 =
1
2

(∂2{2A(T + V )}
∂ϑ2

)
ϑ=ϑ0

.

If we carry out a repeated differentiation with respect to ϑ in (8) and
set ϑ = ϑ0, there follows

a11 = sinϑ0
d

dϑ0

(n−N cos ϑ0

sin2 ϑ0
· N − n cosϑ0

sin2 ϑ0

)

=
(N2 + n2 − 2Nn cos ϑ0)(1 + 3 cos2 ϑ0)

sin4 ϑ0
.

This expression is certainly positive. Namely, the first factor of the
numerator signifies the square of the line segment that we obtain if we
join the endpoint of the impulse component N with the endpoint of
the impulse component n; the remaining factors are obviously likewise
positive. Thus the terms of the second order

(N2 + n2 − 2Nn cos ϑ0)(1 + 3 cos2 ϑ0)
sin4 ϑ0

(ϑ− ϑ0)2 +A2ϑ′2

represent a positive quadratic form. The existence of a minimum
is therefore proven. It follows from the Routh criterion that regu-
lar precession is absolutely stable with respect to the coordinate ϑ
for all disturbances that leave the impulse components n and N
unchanged—in conformity with the results of §1. The behavior of the
trajectory for changes of n and N and with respect to the coordinates
ϕ and ψ escapes our last consideration; we have previously seen that
for such general disturbances the motion is indeed stable, but no longer
absolutely stable.
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364 V. Particular forms of motion of the heavy symmetric top.

The question of the converse of the Routh criterion again arises. Can
we claim, for example, that the motion cannot be absolutely stable in
the case that T + V is not an actual minimum or maximum? This is
presently not known with certainty. The comparison with the Dirichlet
criterion and the reported difficulties that confront the converse of the
latter make a possible converse of the Routh criterion appear as not
directly promising. —

§8. On the method of small oscillations.

We now enter into the best-known method of investigation for the
stability question, the so-called method of small oscillations. The pre-
ceding considerations for the top provide the means to understand the
inner value of these important expansions that continually recur in
the literature. The method of small oscillations developed historically
from the consideration of the pendulum, whose small oscillations have
long been studied, and have a wide-ranging theoretical and practical
significance.

We will, however, have to conceive the method of small oscillations
more broadly here than in its use for the pendulum. Pendulum oscil-
lations, namely, are oscillations about an equilibrium position; in con-
trast, we will generally speak, since the question for us is the stability
of motion, of oscillations about a state of motion.

First, a pair of words about the method in general.
If one regards the motion whose stability is to be examined as com-

pletely known, then one imagines the position coordinates for this mo-
tion as known functions of time. One now alters the motion by an
impact, and considers the differences between the position coordinates
of the original and the altered motions; one assumes that these differ-
ences, together with their differential quotients with respect to time,
are small quantities, since one asks for small oscillations of the system.
One then expands the differential equations for these coordinate dif-
ferences and simplifies the equations through the neglect of the higher
powers of the assumed small quantities. It occurs, in certain rather
general cases, that the simplified differential equations can easily be
integrated. From their solution one judges the character of the altered
motion, and thus draws a conclusion on the stability, or actually the
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absolute stability, of the originally given state of motion. To be more
precise, we wish to discuss this method for the previously treated prob-
lem of the upright top, which can indeed be regarded as a direct gene-
ralization of the usual pendulum problem.

We first remark, as on page 316, that the Euler angles ϕ, ψ, ϑ are
not very appropriate for the treatment of the upright top, since the
coordinates ϕ and ψ lose an obvious meaning in the original upright
position. We therefore again use the combination

(1) ϕ+ ψ = χ.

The quantities

(2)
{
x = sinϑ cosψ,
y = sinϑ sinψ

of page 331 may serve as further position coordinates; these quantities
signify the rectangular coordinates of the projection of the apex of the
top onto the equatorial plane. In these coordinates, the original motion
is characterized by the equations

x = y = 0, Cχ′ = N.

We now imagine that the motion is altered by a disturbance, where
we again wish (as on page 361) to disregard a change of the angular
velocity χ′. Then the values of x and y are themselves the differences
between the position coordinates of the original and the altered mo-
tions. It is now a matter, above all, of establishing the differential
equations for x and y; that is, for the altered motion. We use the
schema of the general Lagrange equations. It is thus required to know
the expression for the vis viva and the components of gravity in terms
of the coordinates x, y, and χ.

According to equation (6) of page 156, we have for the symmetric
top, which we prefer here over the spherical top so as to conveniently
comprise the pendulum in the calculation,

T =
A

2
(sin2 ϑ · ψ′2 + ϑ′2) +

C

2
(ϕ′ + cosϑ · ψ′)2.

From (1) and (2) now follow

sinϑ =
√
x2 + y2, tgψ =

y

x
,

ϑ′ =
xx′ + yy′√

(x2 + y2)(1 − x2 − y2)
, ψ′ =

xy′ − yx′
x2 + y2

, ϕ′ = χ′− xy′ − yx′
x2 + y2

.
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366 V. Particular forms of motion of the heavy symmetric top.

Thus

T =
A

2

((xy′ − yx′)2
x2 + y2

+
(xx′ + yy′)2

(x2 + y2)(1− x2 − y2)

)

+
C

2

(
χ′ − (1−

√
1− x2 − y2)

xy′ − yx′
x2 + y2

)2
.

On the other hand, we calculate the potential energy V in terms of
the new coordinates x and y. We have

V = P cos ϑ = P
√

1− x2 − y2.

The components of the gravitational force with respect to the coordi-
nates x and y are given in a well-known manner as partial differential
quotients of this value of V .

In the construction of the differential equations, we wish to neglect
all higher powers of the assumed small quantities x, y, and the differen-
tial quotients x′ and y′. This is equivalent to expanding the expressions
for T and V with respect to x, x′, y, and y′, and retaining only the
quadratic terms in the expansion. If we do this, then the denominators
cancel, and the expressions simplify to

(3)

⎧⎪⎨
⎪⎩
T =

A

2
(x′ 2 + y′ 2) +

C

2
(χ′ 2 + χ′(xy′ − yx′)),

V = P − P

2
(x2 + y2).

From these expressions we calculate the impulse components [X],
[Y ], [χ] and the gravity components X and Y . (The χ-component is
evidently equal to zero.) There follow

[X] =
∂T

∂x′
= Ax′ − C

2
χ′y,

[Y ] =
∂T

∂y′
= Ay′ +

C

2
χ′x,

[χ] =
∂T

∂χ′ = C(χ′ +
1
2
(xy′ − yx′)),

X = − ∂V

∂x
= Px,

Y = − ∂V

∂y
= Py,

where we will strike out, in the given value for [χ], the terms of the
second order in x and y compared to χ′ in a consistent manner.

The Lagrange equation for the χ-coordinate is now simply

(4)
d[χ]
dt

= 0, or Cχ′ = const. = N.
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If we further calculate

∂T

∂x
=
C

2
χ′y′ and

∂T

∂y
= −C

2
χ′x′,

then the other two Lagrange equations

d[X]
dt

− ∂T

∂x
= X,

d[Y ]
dt

− ∂T

∂y
= Y

take, with consideration of (4), the form

(5)
{
Ax′′ − Ny′ = Px,
Ay′′ + Nx′ = Py.

The differential equations have, as we see, an extremely simple struc-
ture; they are homogeneous linear differential equations with constant
coefficients.

We may first recall the special case of the pendulum. If we set
C = 0 and therefore also N = 0, and further set A = ml2, P = −mgl,
in that we imagine a pendulum of length l whose mass particle m is
perpendicularly beneath the support point in its rest position, there
follow from (5)

(5′)

⎧⎪⎪⎨
⎪⎪⎩
Ax′′ = Px, x′′ = − g

l
x,

or
Ay′′ = Py, y′′ = − g

l
y.

Integration immediately yields the well-known oscillation law of the
pendulum for sufficiently small amplitude.

Equations (5) differ from (5′), as one sees, through the appearance
of terms in x′ and y′. These terms, we can say, show us the existence
of a rotation (“gyration” about the axis of the top); they are thus
designated, in the work of Thomson and Tait, as “gyroscopic terms.”
We later intend to enter in detail into the interesting theory of these

terms. It is noted here that the coefficients in (5), namely
∣∣∣∣ 0 −N
+N 0

∣∣∣∣,
form a so-called skew determinant.

Our differential equations (5) are solved according to a well-known
rule in the following manner.*) One first combines the two equations

∗) The following calculations are typical for the integration of an arbitrary system
of linear differential equations with constant coefficients. The technique of such
integrations is very broadly developed in the second volume of the Rigid Dynamics
of R o u t h.
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(5) into one, in that one multiplies by 1 and i, respectively, and adds.
The complex combination x+ iy is called z. There follows
(6) Az′′ + iNz′ = Pz.

One now sets, by way of trial,
(7) z = aeiλt;
equation (6) then yields the condition
(8) Aλ2 +Nλ+ P = 0
for the quantity λ. There follow two values λ = μ and λ = μ′, where

(9) μ
μ′

}
=
−N ±√N2 − 4AP

2A
,

and two particular solutions
z = aeiμt and z = a′eiμ

′t

of (6), each with an arbitrary constant a or a′; the general solution
is composed from these two solutions by superposition. The general
solution of (6) thus runs, if we separate a and a′ into real and imaginary
parts (a = α− iβ, a′ = α′ − iβ′),
(10) z = (α− iβ)eiμt + (α′ − iβ′)eiμ′t.

One now has two principal cases to distinguish, according to whether
μ and μ′ are real or complex. The former occurs if N2− 4AP > 0, the
latter if N2 − 4AP < 0.

I) If N2 − 4AP > 0, we write instead of (10), in that we resolve z
into its real and imaginary parts,

(11)

{
x = α cosμt + β sinμt + α′ cosμ′t + β′ sinμ′t,
y = β cosμt − α sinμt + β′ cosμ′t − α′ sinμ′t.

As initial conditions we prescribe, for example,
x = y = y′ = 0.

There then follow from (11)
α+ α′ = 0, β + β′ = 0, μα+ μ′α′ = 0;

that is,
α = α′ = 0, β = −β′ =

η

2
.

The introduced and still disposable quantity η corresponds to the un-
determined magnitude of the initial velocity x′.

There now follow from (11)

(12)

⎧⎪⎨
⎪⎩
x =

η

2
(sinμt − sinμ′t) = η cos

μ+ μ′

2
t · sin μ− μ

′

2
t,

y =
η

2
(cosμt − cosμ′t) = − η sin

μ+ μ′

2
t · sin μ− μ

′

2
t.
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If we calculate, finally,
μ+ μ′

2
and

μ− μ′
2

from (9), then we can write
for (12)

(13)

⎧⎪⎪⎨
⎪⎪⎩
x = η cos

N

2A
t · sin

√
N2 − 4AP

2A
t,

y = η sin
N

2A
t · sin

√
N2 − 4AP

2A
t.

Thus we are led back exactly to equations (11) on page 331.
II) We consider now the second principal case N2−4AP < 0, where

μ and μ′ become complex. We set

μ = ν + iν ′, μ′ = ν − iν ′,
resolve (10) into real and imaginary parts, and obtain

(14)

{
x = + {αe−ν′t + α′e+ν′t} cos νt + {βe−ν′t + β′e+ν′t} sin νt,

y = − {βe−ν′t + β′e+ν′t} cos νt + {αe−ν′t + α′e+ν′t} sin νt.
From the initial conditions

x = y = y′ = 0

there follow
α+ α′ = β + β′ = −β + β′ = 0;

that is,
β = β′ = 0, α = −α′ =

η

2
.

Thus

(15)

⎧⎪⎪⎨
⎪⎪⎩
x = η

(e−ν′t − e+ν′t

2

)
cos νt,

y = η
(e−ν′t − e+ν′t

2

)
sin νt.

⎧⎪⎪⎨
⎪⎪⎩
ν = − N

2A
,

ν ′ =
√

4AP −N2

2A
.

III) Finally, we must also complete the calculation for the boundary
case N2 − 4AP = 0, in which μ and μ′ coincide. One must assume,
in this case, the complete solution of the differential equation (6) with
the required number of arbitrary constants in the form

z = (a+ a′t)eiμt.

For the real and imaginary parts of z there now result, if we again
set a = α− iβ, a′ = α′ − iβ′,

x = + (α+ α′t) cosμt + (β + β′t) sinμt,

y = − (β + β′t) cosμt + (α+ α′t) sinμt.
Under the previous initial conditions there follow, further,

α = β = β′ = 0,
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370 V. Particular forms of motion of the heavy symmetric top.

and, if we replace α′ by η,

(16)

{
x = ηt cos μt,

y = ηt sin μt,
μ = − N

2A
.

We now wish to discuss the results in equations (13), (15), and (16),
acquired in the spirit of the method of small oscillations.

The motion of the apex of the top represented by (13) is completely
periodic in its temporal course. It therefore represents an oscillation,
and indeed a small oscillation, since the maximum distance η of the
apex of the top from its original position is always smaller as we
choose the initial value of x′—that is, the initial disturbance—smaller.
According to (12), moreover, we can conceive this oscillatory process
as the superposition of two simple harmonic oscillations (“fundamental

oscillations”) of periods
2π
μ

and
2π
μ′

.

It is different with the motions given by (15) and (16). These
motions consist of a periodic and an aperiodic component. The latter
causes the distance

√
x2 + y2 = η

e−ν′t − e+ν′t

2
or = ηt, respectively,

of the point x, y from the stationary position to become larger and
larger with increasing time; more precisely said, this distance exceeds,
for sufficiently large t, any arbitrary bound, as small as the original
impact may be. The motion is then no oscillation, and certainly no
small oscillation. The trajectory has, rather, a spiral form. Equation
(15) represents, in essence, a logarithmic spiral, and equation (16) an
Archimedean spiral.

What conclusion is now to be drawn with respect to the stabil-
ity of the upright motion of the top? We first wish to take a fully
naive standpoint, from which the neglect of the higher powers, gener-
ally common in scientific calculations, is accepted without misgiving.
From this standpoint, we will pronounce equations (13), (15), and (16)
as approximate, if not exact, descriptions of the actual trajectories, and
will directly say that

In the first principal case N2 − 4AP > 0, the motion of the apex
of the top is stable, and indeed, in our terminology, absolutely stable.
In the second principal case N2 − 4AP < 0 and the boundary case
N2 − 4AP = 0, in contrast, the motion is unstable.
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We must now take a position with respect to this manner of con-
clusion.

If we first judge the manner of conclusion according to its results,
then we must say that the distinction between the stable and labile cases
is generally correct, but also only generally. In fact, the inequality
N2−4AP >

< 0 is indeed our well-known stability criterion. The bound-
ary case N2−4AP = 0, however, is falsely classified here; it appears to
belong to the labile cases, while it is to be reckoned by more rigorous
methods (cf. page 323) entirely in the stable cases.

We see, further, what form of the trajectory is given: in the first
principal case the motion of the apex of the top is given by our present
method correctly; that is, with ever greater approximation as the origi-
nal impulse is smaller. In the second principal case and in the boundary
case, in contrast, our present formulas provide an entirely false image
of the motion. In fact, for example, the qualitative character of the
trajectory for N2 − 4AP = 0 is not at all different in a more rigorous
treatment from the trajectory for N2 − 4AP > 0. Also, the trajecto-
ries in the case N2 − 4AP < 0 have, in general, the same periodicity
properties as the stable trajectories in the case N2− 4AP > 0; the spi-
ral character that these trajectories should in general have, according
to the present formulas, exists in actuality only in a particular special
case. One can also recall that the quantities x and y must certainly be,
according to their geometric meaning, smaller than 1, while they are
capable of arbitrary values as a result of the formulas (15) and (16).

The situation is still worse if we examine our procedure according
to its inner correctness. We consider first the alleged evidence, from
the method of small oscillations, that the upright motion of the top is
stable in the case N2 − 4AP > 0.

In that we allowed omissions in the differential equations of the
motion, or in the expressions for T and V , that are only (or at most)
correct in the stable case, we make from the outset the assumption that
the motion is stable. We then carry out the calculation given above,
and find that in the case N2 − 4AP > 0 the result of the calculation
does not directly contradict our original assumption. If we would now
conclude, in reverse, the correctness of that assumption, then we would
be guilty of an obvious “circulus vitiosus.” Nevertheless, this conclusion
is regularly made in the method of small oscillations.
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372 V. Particular forms of motion of the heavy symmetric top.

Our criticism formulated here is not something new. We wish to cite,
in this respect, a few words of D i r i c h l e t that occur at the begin-
ning of the previously cited work on the stability of equilibrium. The
equilibrium criterion discussed in the previous section was originally
based by L a g r a n g e directly on the method of small oscillations.
Dirichlet argues the indefensibility of this basis and remarks, amidst
other comments, that “It can be doubted, with justification, whether
quantities for which one finds small bounds under the assumption that
they always remain small—for only in this lies the authority to neglect
the higher terms—will actually be enclosed after an arbitrary time in
these bounds, or generally even in narrow bounds.”*) Exactly the
same objection may be raised against most modern works in which the
method of small oscillations is employed for the investigation of the
stability of motion.

One see in this example, moreover, how long it takes until the results
of rigorous mathematical research find entrance and consideration in
the applied sciences.

Apparently more favorable are the prospects for the alleged evidence
from our method that the motion is unstable in the case N2−4AP ≤ 0.
We make at the beginning of the calculation, by the neglect of the
higher terms, the explicit assumption that the values of x and y always
remain small, or, more correctly said, can be made arbitrarily small
through the choice of the impact. This assumption is now led in an
unambiguous manner ad absurdum by the result of the calculation in
the case N2 − 4AP ≤ 0. The conclusion thus appears justified that x
and y do not always remain small, and that the motion in this case is
unstable.

But strictly speaking, it is not the inadmissibility of the assumption
of small x and y that is shown, but rather the inadmissibility of the
omissions that were made. It can very well be that x and y, and there-
fore also the higher terms in the relevant expansions, always remain
arbitrarily small, but cannot be made arbitrarily small with respect to
the first retained terms, in so far as, namely, the latter vanish identically
for particular values of the constants. In this case, the neglect of the
higher terms would obviously be unjustified; the motion can appear as

∗) J a c o b i is extremely similar in the fourth Vorlesung über Dynamik. Cf. Ges.
W. Supplementb. p. 30.162
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unstable according to the method of small oscillations, while it can in
reality be stable.

Such a case is directly present in the boundary case N2− 4AP = 0,
for which the stability judgment, as it is provided by the method of
small oscillations, is indeed delusional.

Thus we will formulate our criticism of the method in the following
summary manner: Neither the cases appearing as stable in this method
are proven as stable, nor are the cases appearing as labile in actuality
always labile. The method therefore says, strictly speaking, nothing
about the stability and lability of motion.

The usefulness of the method, judged from this rigorous standpoint,
is merely that it provides a convenient path to approximation formulas
for many stable cases (in our example, the cases N2−4AP > 0), where,
however, the degree of approximation and the validity of the formulas
first remain unconfirmable.

From a more practical standpoint, however, one is admittedly
obliged to essentially modify this verdict. As long as one has no gen-
eral method that is free of exceptions, one must adopt a nonrigorous
method, especially for the problems of the greatest interest that have
until now been treated with the method of small oscillations, and can-
not be simply passed over.

Our criticism naturally applies only to the current state of the
method, and not to the method itself. This has, without question,
a valuable kernel of truth, which, freed of scoria, promises not only
provisional, but also reliable conclusions on the interesting questions of
modern mechanics. It will presumably only be necessary to add some
restriction and sharpening to the method.

The direction in which this sharpening is to be sought cannot be
doubtful after the preceding. One must derive the process of the motion
from the exact differential equations, at least in outline, and seek to
estimate, on the basis of such general knowledge of the motion, the
error that one commits in the method of small oscillations through the
neglect of the higher terms. We have acquired our formulas for the
approximate calculation of the motion of the top at the end of the
previous chapter in such a manner; these formulas indeed prove to be
identical with the approximation formulas following from the method
of small oscillations in all cases in which the latter are useful.
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374 V. Particular forms of motion of the heavy symmetric top.

Numerous efforts in the indicated direction are already present in
the literature. We mention the works of Mr. L y a p u n o v,*) and
particularly P o i n c a r é’s**) investigations of celestial mechanics, as
well as the modern contributions to perturbation calculations, in which,
for the most part, the expansions that occur in the method of small
oscillations are treated with mathematical precision. Starting points
for the mathematical sharpening of the method are also found in the
works of Mr. Routh,***) which are the richest repository for stability
questions.

§9. On the motion of the heavy asymmetric top.

We now wish to report on the sparse results that have been acquired
until now regarding the motion of the general heavy top.

The differential equations for the general top can be formed, for
example, according to the schema of the Euler equations (see page 141,
equation (3)). We do not wish to rewrite these equations, but only
repeat their mechanical meaning: they state that the impulse change
at each moment is equal to the infinitesimal turning-impact of gravity.
To determine the axis and the magnitude of this turning-impact, we
mark in the body the center of gravity S; it has, in the XY Z frame,
the coordinates ξ, η, ζ. We assume, for the sake of generality, that the
direction OS does not coincide with one of the principal axes, which
are chosen as the coordinate axes. The axis of the turning-moment of
gravity is then simultaneously perpendicular to OS and the vertical.
Its magnitude is equal to P sinϑ, where P = mgE is the product of the
weight of the top and the distance between the points O and S, and ϑ
is the angle between the vertical and the half-line OS.

As in the third section of the preceding chapter, we can immediately
make a statement regarding the behavior of the impulse that yields a

∗) Cf. p. 356.
∗∗) Méthodes nouvelles de la Mécanique céleste, cf., for example, Chap. IV, p. 177,

where, however, the definition of stability is still formulated entirely in the sense of
the method of small oscillations.163
∗∗∗) Rigid dynamics, Part II, Chap. VII, Stability of motion, Chap. VII. The devel-

opment given here already provides information about why the judgment of stability
on the basis of merely the linear expansion terms can be false in our example of the
boundary case N2−4AP = 0, where the periods of the two fundamental oscillations
coincide.
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§9. On the asymmetric top. 375

first integral of the equations of motion. Because the axis of the gravity
moment is horizontal, the endpoint of the impulse necessarily progresses
in the horizontal direction. The vertical component of the impulse is
therefore constant, and we again have

n = const.

In addition, the theorem of the vis viva

T + V = h,

which we have indeed derived in the second chapter for any rigid body
and any conservative force system, naturally obtains here as well.

If we wish to formulate this equation in words, then we must recall
the geometric meaning of the expression for the vis viva (cf. page 96),
and must further interpret the potential energy V = mg ·E cos ϑ in an
obvious manner. We can then say:

The half scalar product of the impulse vector and the rotation vector,
increased by the product of the weight and the vertical elevation of the
center of gravity, remains constant during the motion of the general
top.

In contrast, the well-known equation N = const. for the symmetric
top loses its validity in our case; this was, evidently, solely a conse-
quence of the symmetric mass distribution.

The complete analytic command of the motion of the asymmetric
top is, however, not yet possible on the basis of the two integrals above.
Before we speak of further investigation in this direction, it is well to
take the desired goal more sharply in view. The goal must obviously
be this: to acquire a clear representation of the process of the motion.
That way will be best, which leads most directly to this goal.

In contrast, the goal appears to be essentially displaced in many
works on mechanics (for example, those to be cited directly). One
acquires the impression that the most important exercise of analytic
mechanics consists in reducing a problem to quadratures, or in dis-
covering such problems that can be solved by quadratures. In reality,
however, the reduction to quadratures is but a means to the goal that
is applicable in the rarest cases, and which in itself, where it is applica-
ble, does not completely achieve its purpose if the obtained integrals
have a complicated manner of construction. The one-sided emphasis
on quadraturability or nonquadraturability corresponds, without ques-
tion, only to the scholastic habits of mathematicians, and is not based
on the matter itself.
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If it occurs, in a particular case, that a problem leads to quadratures,
or, more generally, to known functions, one will naturally be happy to
draw use from this circumstance. One must, however, bear in mind
that with the closed analytic representation of the integrals only the
first step has been taken, and that the primary exercise must consist in
attaining a complete geometric and mechanical understanding of the
motion on the basis of this representation.

In all other cases in which a reduction to known functions is not
possible, one must, in contrast, adopt another procedure—a procedure
that is generally required for the integration of differential equations:
one seeks, first of all, to form a representation of the qualitative course of
the trajectories defined by the differential equations, in that one stud-
ies, for example, the singular points of the differential equations, the
unstable cases of the motion, the possible periodic and asymptotic tra-
jectories, etc. Only then does one develop, from this preliminary knowl-
edge, appropriate convergent or nonconvergent approximation methods
that enable the quantitative calculation of the trajectories with arbi-
trary or bounded precision. The investigations of P o i n c a r é on the
three-body problem can serve here as a model; his great results are
due directly to the just sketched free and generalized conception of the
integration process.

In this sense, little has been accomplished for the treatment of the
asymmetric top. The first works to be cited begin, rather, exclusively
from cases of closed analytic representability.

Mrs. S. K o w a l e v s k i*) finds that in addition to the integrals
given above, a further integral can be given in a rather simple algebraic
form if the mass distribution of the top satisfies the following conditions:
the ellipsoid of inertia is again an ellipsoid of rotation (A = B), and the
center of gravity lies not on the figure axis, but rather in the equatorial
plane (ζ = 0); in addition,

2C = A (= B).

Under these assumptions, it is possible to treat of the general motion
completely.

Mrs. Kowalevski**) expresses the position and velocity coordinates
∗) Sur le probléme de la rotation d’un corps solide autour d’un point fixe, Acta

Mathematica, Bd. 12. 1888.164
∗∗) Cf. Mr. F. K ö t t e r: Sur le cas traité par Mme. Kowalevski etc. Acta

Mathem. 17, 1893.165
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of the top in terms of two auxiliary quantities, which, in turn, are
related to time through integrals in which the square root of an expres-
sion of the fifth degree appears. Such integrals, which represent the
nearest generalization of elliptic integrals, are designated as hyperellip-
tic. In the case of Mrs. Kowalevski, the general motion of an asymmet-
ric top with a special mass distribution may be completely represented
by hyperelliptic integrals.

The required geometric discussion was later added to this general
analytic schema by Mr. J o u k o w s k y.*) Mr. Joukowsky succeeds in
describing the process of the motion through a few simple geometric
theorems, and even illustrates it with a model.166

The general question regarding all cases of the heavy top in which
a third algebraic integral is present, in addition to the two given, has
recently been considered by Mr. R. L i o u v i l l e.**)167

The investigations of Mr. L e v i - C i v i t à***) and Mr. L i e b -
m a n n†) begin from another standpoint, that of the general Lie group
theory. These authors ask how the mass distribution (the kinetic en-
ergy) and the force distribution (the potential energy) must be consti-
tuted if two first integrals that are linear in the velocity coordinates
should be possible. In this case one is certain that the problem may be
dispatched by quadratures.

The posing of the problem is broader here than in the previously
cited cases, since the question concerns not only the heavy top, but
also the suitable determination of the law of the exterior force. The
investigation gives a total of 25 possible cases, of which, however, most
are imaginary (that is, correspond to a mechanically nonrealizable mass
distribution). That the question of the totality of the integrable cases is
not settled is already shown by the fact that the Liebmann tabulation
does not contain the case of Mrs. Kowalevski, where one reaches the
goal by means of quadratures without the presence of two integrals that
are linear in the velocity coordinates.

∗) Cf. Jahresbericht der deutschen Mathematikervereinigung, Bd. IV, 1895.
∗∗) Cf. Acta Mathematica, Bd. XX, 1897.

∗∗∗) Sul moto di un corpo rigido intorno ad un punto fisso. Accademia dei Lincei,
1896.

†) Cf. p. 161.
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As one already recognizes from the indications given here, the in-
vestigations of Levi-Cività and Liebmann proceed entirely from the
abstract mathematical side. —

While the question in the cases considered so far is to discover and
analytically represent the general motion of the asymmetric heavy top,
we now wish to report in somewhat more detail on two particular cases
of the motion of the top that one completely commands in analytic
and geometric respects. One of these cases was noted by Mr. W.
H e s;*) his study was later deepened by a number of Russian math-
ematicians.**) The other case is treated by Mr. O. S t a u d e.***) In
the He s case, the character of the induced motion is subject to a cer-
tain simple constraint; at the same time, a particular assumption is
made about the position of the center of gravity in the body. In the
motions investigated by Mr. S t a u d e, in contrast, the mass distrib-
ution remains entirely arbitrary, while the character of the motion is
specialized in a more extensive manner.

It is remarked in advance, moreover, that the degree of particular-
ization in these two cases is no higher than in the Kowalevski case, the
case of the weightless asymmetric top, or the case of the heavy symmet-
ric top. Namely, three restricting conditions are always posed; in the
three latter cases these conditions refer purely to the mass distribution,
in the case of He s partly to the mass distribution and partly to the
motion, and in the Staude case purely to the nature of the motion.169

To present the He s case of the motion of the top in a natural way,†)
we wish to ask for the circumstances under which it can occur for a
general top that the impulse is always contained in a plane that is fixed
in the body and passes through the support point O.††) Analytically

∗) Über die Eulerschen Bewegungsgleichungen u.s.w. Math. Ann. Bd. 37, 1890.168
∗∗) Cf., in analytic respects, P. N e k r a s s o f f: Recherches analytiques sur un

cas de rotation d’un solide pesant autor d’un point fixe, Math. Ann. Bd. 47, 1896,
where further literature citations are to be found, and, in geometric respects,
N. J o u k o w s k y, Jahresbericht der deutschen Mathematikervereinigung Bd. III
1892/93.
∗∗∗) Über permanente Rotationsaxen, Crelle’s Journal, Bd. 113, 1894. The same

subject is treated in a Russian work of Mr. B. M l o d z i e i e w s k i, Moskau 1894.
Cf. also R o u t h, Rigid dynamics, Bd. II, art. 214.

†) Cf. A. S o m m e r f e l d, Bemerkungen zum He s’schen Falle der Kreiselbewe-
gung. Göttinger Nachrichten 1898.170

††) We first exclude the case in which the impulse vector is absolutely fixed in the
body. We will treat of this case later. It leads directly to the rotations investigated
by Mr. S t a u d e.
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expressed, this signifies whether and when a linear homogeneous inte-
gral in the impulse coordinates L, M , N with constant coefficients is
possible.

The position of the impulse is given at any time if we compose
the currently present impulse with the infinitesimal turning-impact of
gravity. The axis of the latter stands perpendicular to the vertical
plane through the center of gravity S and the support point O. The
endpoint of the impulse therefore always progresses perpendicularly to
the axis OS, which we wish to name the “center of gravity axis.”

If the impulse is always to lie in a fixed plane of the body, this plane
can be none other than the normal plane to the center of gravity axis
through O. This plane will be denoted by e; its equation runs, if we
denote, as earlier, the coordinates of the center gravity in the principal
inertial frame XY Z by ξ, η, ζ,

ξL+ ηM + ζN = 0.

This is already the form of the particular integral found by Mr. He s.171

Not only, however, does the position of the impulse axis change
as a result of gravity, but the position of the body, and in particular
the position of the center of gravity axis, also changes as a result of
the instantaneous rotation corresponding to the impulse. If the angle
between the impulse axis and the center of gravity axis is always to
be a right angle, then not only must the impulse endpoint progress
perpendicularly to the center of gravity axis as a result of gravity,
but the center of gravity must also progress perpendicularly to the
impulse axis as a result of the instantaneous rotation. This occurs,
however, only if the rotation axis is continuously contained in the plane
determined by the impulse and the center of gravity axes.

Through our latter requirement, a condition will be imposed on the
mass distribution of the body, which we must now investigate further.
We recall, for this purpose, the geometric relation between the positions
of the impulse and the rotation vectors. According to page 102, we can
find the direction of the impulse vector from that of the rotation vector
if we construct the tangent plane to the ellipsoid of inertia

AX2 +BY 2 + CZ2 = 1

at one of the intersection points with the rotation axis, and drop the
perpendicular from this tangent plane; this perpendicular then gives the
direction of the impulse vector. In our case it is convenient, however,
to use instead of the ellipsoid of inertia, whose left-hand side gives the
expression for twice the vis viva in the velocity coordinates, an ellipsoid
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380 V. Particular forms of motion of the heavy symmetric top.

that one calls the “reciprocal ellipsoid of inertia,” whose left-hand side
represents the expression for twice the vis viva in the impulse coordi-
nates. The equation of this ellipsoid is

X2

A
+
Y 2

B
+
Z2

C
= 1.

One then recognizes, exactly as on pages 101 and 102, the correctness of
the following construction. To find the direction of the rotation vector
from that of the impulse vector, one marks on the reciprocal ellipsoid
of inertia the intersection point of the impulse axis, and constructs at
this point the tangent plane to our ellipsoid; the perpendicular to this
plane through O then yields the direction of the rotation vector.

We now imagine the center of gravity axis OS drawn in the recip-
rocal ellipsoid of inertia, and the normal plane e placed through O; the
impulse vector should be contained in this plane. The plane e intersects
the ellipsoid in a conical cut, which, as we will now show, must be a
circle.

Let, namely, P be any point of the conical cut and t its tangent at
P . Then OP gives a possible direction of the impulse axis. The tangent
plane e′ to the ellipsoid will lie through t, and the perpendicular OQ
that determines the direction of the rotation axis corresponding to the
impulse axis OP falls from O to this plane. According to the above
condition, the lines OP , OQ, and OS must always lie in a plane. Our
tangent t, however, stands perpendicular to OQ as well as OS, since
it represents the intersection line of the normal planes e′ and e erected
to OQ and OS at Q and O. Thus t stands also perpendicular to OP .
Our conical cut therefore has the property that the tangent at each of
its points stands perpendicular to the radius vector from the midpoint.
Our conical cut is therefore, in fact, a circle.172

The condition to be established for the mass distribution of the top
is thus found. If the impulse vector is always to be contained in the
normal plane e to the center of gravity axis, then this plane must cut
the reciprocal ellipsoid of inertia in a circle; or, the center of gravity
must lie on the perpendicular erected at O to a circular intersection
plane of the reciprocal ellipsoid of inertia.

This is the geometric formulation of the condition in question in the
form given by Mr. J o u k o w s k y (cf. the citation on page 378). Mr.
H e s expresses this fact in an analytic formulation. We arrive at the
latter if we note that the two circular intersection planes through O of
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the reciprocal ellipsoid of inertia (under the assumption A > B > C)
are given by the equation(

1
A
− 1
B

)
X2 =

(
1
B
− 1
C

)
Z2.

Since the center of gravity (ξ, η, ζ) should now lie on the normal to one
of these planes, there follows the proportion

ξ2 : η2 : ζ2 =
1
A
− 1
B

: 0 :
1
B
− 1
C

;

that is,

η = 0, ξ2
(

1
B
− 1
C

)
= ζ2

(
1
A
− 1
B

)
.

These are the analytical conditions given by Mr. H e s for the possi-
bility of his case of motion.

The mechanical character of the He s case of motion is quite simple.
We will see that it is a direct generalization of the well-known pendulum
motion of the symmetric top.

We imagine, for this purpose, that the body is initially in a stable
equilibrium position; the center of gravity axis is therefore directed
perpendicularly downward and the body is without rotation. We then
turn the center of gravity axis through any angle from the vertical
and abandon the body to the influence of gravity, taking care at the
beginning of the motion that either no rotation at all is present, or only
such a rotational impulse is added whose component about the center of
gravity axis is zero, and whose axis therefore lies in the normal plane e
to the center of gravity axis. Then, as we have seen, the impulse vector
always remains in the plane e if the condition is fulfilled that the center
of gravity lies on a normal to the circular cut of the reciprocal ellipsoid
of inertia.

If we now go over from the asymmetric to the symmetric top, then we
will be led through the just given procedure to the ordinary or spherical
pendulum motion. The condition for the occurrence of the pendulum
motion for the symmetric top (cf. page 215, Fig. 36) is that the compo-
nent N of the impulse in the direction of the figure axis (which for the
symmetric top is likewise the center of gravity axis) be initially equal
to zero. And indeed, the motion is the “ordinary” or the “spherical”
pendulum according to whether, for an arbitrary position of the figure
axis, the stationary top is abandoned to the influence of gravity with-
out an impact or with the addition of a purely lateral impact; that is, a
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382 V. Particular forms of motion of the heavy symmetric top.

turning-impulse whose axis is directed perpendicularly to the figure
axis, and therefore lies in the normal plane to the center of gravity
axis—that is, in the equatorial plane of the symmetric top. Then the
impulse always remains in the equatorial plane, since the impulse com-
ponent N always retains its initial value 0. At the same time, the
condition that we must add in the case of the asymmetric top with
respect to the position of the center of gravity is fulfilled of itself for
the symmetric top, since here the circular cut of the reciprocal ellip-
soid of inertia coincides with the equatorial plane, and the center of
gravity axis coincides with the figure axis that is perpendicular to the
equatorial plane.

We can thus say that the He s case of the motion of the top may
claim a special interest, since it represents the direct generalization of
the very well known pendulum motion. Correspondingly, we will hence-
forth designate this case concisely as the case of the He s pendulum.

A direct identity in a more quantitative respect also obtains, in
part, between the motion of the He s pendulum and the pendulum
motion of the symmetric top, or, equivalently, the pendulum motion of
an individual mass particle. We will show, namely, that the center of
gravity of the He s pendulum, generally speaking, moves exactly as the
mass particle of a spherical pendulum.

For the proof, we write the two generally valid theorems, the theo-
rem of the vis viva and the impulse theorem n = const., in an appro-
priate form.

We first express the vis viva T in a suitable manner in terms of the
impulse coordinates. We choose as coordinate axes X, Y , Z not, as
previously, the principal inertial axes, but rather the following three
lines: the Z-axis as the center of gravity axis, the Y -axis as coinciding
with the intermediate principal axis, and the X-axis as the line per-
pendicular to these two. In these coordinates, the expression for the
vis viva must take the form

2T =
L2 +M2

B
+ 2λLN +

N2

C ′ ,

where B, λ, and C ′ are given by the mass distribution of the body, and,
in particular, B denotes the magnitude of the intermediate principal
moment of inertia. In fact, the surface 2T = 1 is indeed our recipro-
cal ellipsoid of inertia; the equation of a circle must therefore follow
if we set N = 0 in the equation of this surface. On this basis, the
terms with L2 and M2 have the same coefficient, and the term with
LM falls away. Further, the term with MN also falls away, since the

382



§9. On the asymmetric top. 383

Y -axis is chosen as a principal axis, and thus the “products of inertia”
with respect to this axis must equal zero (cf. page 100).

The components of the rotation vector with respect to the axes X,
Y , Z, which should be denoted, according to the general rule of page
98, by p, q, r, follow from the expression for T as

p =
∂T

∂L
=
L

B
+ λN, q =

∂T

∂M
=
M

B
, r =

∂T

∂N
= λL+

N

C ′ .

For the He s pendulum (N = 0), we therefore have, in particular,

(1)

⎧⎪⎪⎨
⎪⎪⎩

2T =
L2 +M2

B
,

p =
L

B
, q =

M

B
, r = λL.

The theorem of the vis viva therefore takes, with the notation
introduced at the beginning of this section, the form

(2)
L2 +M2

B
+ 2P cos ϑ = 2h.

We further calculate the vertical projection n of the impulse. If we
denote, as on page 17, the direction cosines of the vertical with respect
to the coordinate axes by c, c′, c′′, then we have

(3) n = Lc+Mc′ +Nc′′,

where, according to page 19, c, c′, c′′ are expressed in terms of the
Euler angles ϕ, ψ, ϑ as

c = sinϑ sinϕ, c′ = sinϑ cosϕ, c′′ = cos ϑ.

Since, moreover, N = 0 for the He s pendulum, equation (3) becomes

(4) n = sinϑ(L sinϕ+M cosϕ).

This quantity is, according to our general impulse theorem, a constant.
We next draw upon the two kinematic equations (9) for ψ′ and ϑ′

on page 45. If we insert for p and q the values from (1), then those
equations become

(5)

{
Bψ′ sinϑ = L sinϕ + M cosϕ,
Bϑ′ = L cosϕ −M sinϕ.

The first of these equations yields, with consideration of (4),

(4′) Bψ′ sin2 ϑ = n.
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384 V. Particular forms of motion of the heavy symmetric top.

We further conclude from the two equations

L cosϕ −M sinϕ = Bϑ′,

L sinϕ + M cosϕ =
n

sinϑ
,

which are identical with (5), if we multiply them by 1 and −i and add,
that

(6) (L− iM)e−iϕ =
B sinϑϑ′ − in

sinϑ
,

and, if we square them and add, that

(7) L2 +M2 =
B sin2 ϑϑ′2 + n2

sin2 ϑ
.

With the latter values we enter equation (2) for the vis viva. If we use
the abbreviation u = cos ϑ, then we obtain

(8) (Bu′)2 = 2hB(1− u2)− 2Pu(1− u2)− n2.

At the same time, equation (6) becomes

(9) Bψ′ =
n

1− u2
.

The two equations (8) and (9) already contain the proof of our
previous claim. They are, namely, identical with the equations of the
pendulum motion that one obtains from the general integrals (4), (6),
(7) for the symmetric top on page 222, if one sets there N = 0 (and,
moreover, to bring the constants into conformity, changes A into B).

The motion of the center of gravity is completely determined by the
angles ψ and ϑ. This can therefore be regarded, according to equations
(8) and (9), as known. To completely command the motion of the He s
pendulum, we must still investigate the rotation of the body about the
center of gravity axis. This rotation is given, according to equation
(1), by r = λL. The following elegant path now presents itself for the
study of the quantity r.

We know that the impulse J is always contained in the plane e, the
normal plane to the center of gravity axis. In this plane we imagine
extending, in the Gau sian manner, the complex variable

J = L+ iM.

The behavior of this variable will be governed by the Euler equations,
which can be combined into a single differential equation for our com-
plex variable.
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Since our axes X, Y , Z are not principal axes, we use the form of the
Euler equations that is valid for arbitrary axes; that is, the equations

(10)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dL

dt
= rM − qN + Λ,

dM

dt
= − rL + pN + M,

dN

dt
= qL − pM + N

given by (3′) on page 141.
Here we must insert for Λ, M, N the components of the gravity

moment with respect to our coordinate axes X, Y , Z. The magnitude
of this moment is P sinϑ, and its direction falls on the line of nodes.
Since the latter encloses the angle ϕ with the X-axis and the angle
π

2
+ ϕ with the Y -axis (cf. Fig. 3 of page 18), we have

Λ = P sinϑ cosϕ = P
√

1− u2 cosϕ,

M = − P sinϑ sinϕ = − P
√

1− u2 sinϕ,

N = 0.
Equations (10) thus take, if we insert for p, q, r the values from (1)

and furthermore set N = 0, as corresponds to the He s case, the form

(11)

⎧⎪⎨
⎪⎩
dL

dt
= λLM + P

√
1− u2 cosϕ,

dM

dt
= − λL2 − P

√
1− u2 sinϕ,

while the third equation is fulfilled identically.
We now multiply equations (11) by 1 and i and add; there follows

(12)
dJ

dt
+ iλLJ − P

√
1− u2 e−iϕ = 0.

Here we write

L =
1
2
(L+ iM + L− iM) =

1
2

(
L+ iM +

L2 +M2

L+ iM

)
=

1
2

(
J +

L2 +M2

J

)
,

and replace L2 + M2, according to the theorem of the vis viva (eqn.
(2)) by 2B(h− Pu). In a similar manner, there results from (6)

e−iϕ =
−Bu′ − in√

1− u2

1
L− iM =

−Bu′ − in√
1− u2

J

L2 +M2

=
−Bu′ − in√

1− u2

J

2B(h− Pu) .
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Thus equation (12) goes over into the definitive form

(13)
dJ

dt
+
iλ

2
J2 +

P

2B
Bu′ + in

h− Pu J + iλB(h− Pu) = 0.

This is a so-called Riccati equation, a differential equation of the
first order and the second degree. The coefficients of this equation are

regarded as known functions of t. Through equation (8), namely,
du

dt
is represented as

du

dt
=
√
U,

where U is a polynomial of third degree in u. Thus t follows as the
elliptic integral

t =
∫

du√
U
.

In reverse, u and u′ are therefore also determined as functions of t, and
indeed, as we will see in the next chapter (cf. §3), as so-called doubly
periodic functions of t.

Finally, is is convenient to go over from our differential equation of
the first order and the second degree to a differential equation of the
second order and the first degree, as is usual in the treatment of Riccati
equations. This is accomplished in our case by the substitution

J =
iλ

2
d logw
dt

,

which is typical for the transformation in question. Written in terms
of the new complex variable w, our differential equation is

(14)
d2w

dt2
+

P

2B
Bu′ + in

h− Pu
dw

dt
+ iλB(h− Pu)w = 0.

We thus arrive at a so-called linear homogeneous differential equa-
tion of the second order with doubly periodic coefficients. A thorough
analytic investigation of this equation has been made. We cannot de-
velop this in detail, but rather refer, in this respect, to the previously
cited work of Mr. N e k r a s s o f f.

Without the use of equation (14), the He s case is studied very
thoroughly in a purely geometric manner and illustrated convincingly
by a model by Mr. J o u k o w s k y in the previously cited work.173 The
transmitted theorem on the motion of the center of gravity of the He s
pendulum, in addition to other beautiful results, is due to this author.

We now come to the second of the previously mentioned particu-
lar cases of motion, that treated by Mr. S t a u d e. Mr. Staude finds
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§9. On the asymmetric top. 387

that a heavy top of arbitrary mass distribution can always be given a
simple infinity of motions that consist of a uniform rotation about a
vertically placed axis fixed in the body.

We wish to derive the result of Mr. S t a u d e geometrically from
the impulse theory. The question is to determine which axes, vertically
directed, can act as permanent rotation axes for the generalized top.174

We direct our attention to the position of the impulse in the body. If
the rotation vector is to remain constant in direction and magnitude in
space and therefore also in the body, then the impulse must also retain
its magnitude as well as its position with respect to the top, since
indeed the vector of the impulse can be derived in an unambiguous
way from the rotation vector. The criterion for the possibility of the
simple rotation about a vertical axis will therefore be that the endpoint
of the impulse vector has a fixed position in the body. (In space this
point then describes, naturally, a circle about the vertical.)

The endpoint of the impulse vector is called J , and that of the
rotation vector R. The possible change of position of the point J with
respect to the body now depends, as already remarked for the He s
pendulum, on two circumstances: the action of gravity, on the one
hand, and the instantaneous rotation of the top on the other hand.
These two circumstances must cancel one another if the motion is to
have the assumed nature.

Because of the action of gravity, the displacement of the point J
in space is, as emphasized above, simultaneously perpendicular to the
center of gravity axis OS and the vertical, or, as we can also say in
the present case, simultaneously perpendicular to OS and OR. Be-
cause of the instantaneous rotation of the top, the point J would be
led, if it were fixed in space, relative to the body in a circle about the
vertical; the displacement of point J due to this circumstance is simul-
taneously perpendicular to OR and OJ . If the two displacements are
to cancel, then their directions, above all, must coincide. The three
lines OR, OS, and OJ must therefore have a common perpendicular;
that is, the three named directions must lie in a plane. We are thus led
to the same condition as in the case of the He s pendulum (cf. page
379). The conclusions that we now draw, however, are different, due
to the changed starting point compared to the previous. While the
requirement that the axes OR, OS, and OJ should lie in a plane for
the He s pendulum was to be fulfilled only through the specialization
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388 V. Particular forms of motion of the heavy symmetric top.

of the mass distribution, the same requirement now, since the points
R and J lie fixed in the body, is to be satisfied for an arbitrary mass
distribution by the appropriate choice of R.

If we denote, as usual, the coordinates of R and J in the princi-
pal coordinate frame by p, q, r and L, M , N , respectively, then our
condition states analytically that the equation

(15)

∣∣∣∣∣∣
p, q, r
L, M, N
ξ, η, ζ

∣∣∣∣∣∣ = 0

must obtain. We now conceive this equation as a condition for the
position of the rotation axis. If we express L, M , N in the well-known
manner in terms of p, q, r, then we see that the possible permanent
rotation axes are lines that lie on a cone of the second degree, whose
equation we can write as

(16) (A−B)ζpq + (B − C)ξqr + (C −A)ηrp = 0.

Geometrically, a cone of the second degree is determined if we know
five of its rays. Five such rays are easily found in our case. The three
directions OR, OJ , OS certainly lie in a plane if two of them coin-
cide. If OR and OJ coincide, then their common direction is a prin-
cipal axis. Thus the three principal axes lie on our cone of the second
degree. If OJ is identical with OS, then OR lies in an entirely deter-
mined direction OS′, which, with the help of the ellipsoid of inertia, can
be easily constructed, and passes through the point with coordinates
ξ

A
,
η

B
,
ζ

C
. Therefore this line also lies on our cone, as does, naturally,

the center of gravity axis itself. Our cone can therefore be constructed
from the three principal axes and the lines OS and OS′; it is known if
the mass distribution of the body is given.

In addition to the directions of the two previously named component
displacements of the point J , the magnitudes of these displacements
must also coincide, and their senses be opposite, if our rotation axis
is to be permanent. From this condition follows the magnitude of the
angular velocity with which the body can rotate about the axis in
question. Through the action of gravity, the point J will attain, as we
know, the displacement

(17) P sinϑ dt

in the time dt. As a consequence of the instantaneous rotation, which,
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§9. On the asymmetric top. 389

calculated in the clockwise sense, may have the angular velocity Ω, J
will progress with the velocity

−Ω|J | sinψ
with respect to the body, where ψ denotes the angle between the ro-
tation axis and the impulse axis, |J | the length of the impulse, and
thus |J | sinψ the distance of the point J from the vertical. From this
velocity there results, during the time dt, the displacement

(17′) −Ω|J | sinψ dt.
Through the comparison of expressions (17) and (17′) follows the

further constraint equation

(18) Ω|J | sinψ = P sinϑ.

If we have now chosen any generator of our cone as the rotation axis
and positioned it vertically upward, then the position of the correspond-
ing impulse J (that is, the angle ψ) is determined and is independent
of the rotational speed Ω imparted to the top. The magnitude of the
impulse, in contrast, depends, according to the construction described
on page 101, on the magnitude of the rotation, and indeed will sim-
ply be |J | = λΩ, where λ signifies a positive proportionality factor
independent of Ω. Equation (18) thus becomes

(18′) λΩ2 sinψ = P sinϑ.

From this equation, Ω2 is to be determined for any axis of our cone.
Thus Ω2 can have either a positive or a negative value; that is,

Ω can have a real or an imaginary value. The rays (or, more cor-
rectly, half-rays) of our cone are thus divided into two classes, the
“permissible” and “impermissible” rotation axes. Only the “permissi-
ble” half-rays, for which Ω is real, can, directed vertically upward, be
actual permanent rotation axes.

One easily sees that two opposing half-rays of our cone, taken as
rotation axes, give opposite signs of Ω2. In fact, the direction of the
impulse will also be changed to the opposite direction in the passage
from one half-ray to its opposite, Therefore sinψ remains unchanged,
while the effect of gravity P sinϑ will be reversed in sign. If one half-ray
is a permissible axis, then the opposite is an impermissible axis. (An
exception would occur only for the particular values Ω2 = 0 and ∞.)

We next imagine that the half-ray specified as the rotation axis is
led successively along one of the two half-cones. The sign of Ω2 changes
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390 V. Particular forms of motion of the heavy symmetric top.

only if sinϑ or sinψ reverses in sign. The former occurs if we let the
half-ray become the center of gravity axis OS, and the latter if we let
the half-ray become one of the three principal inertial axes. Thus one
and the other of the half-cones are divided into four domains by the
principal inertial axes and the center of gravity axis; these domains
alternately contain the permissible and impermissible rotation axes.

For what concerns the transition positions (ψ = 0 and ϑ = 0),
equation (18′) implies that Ω =∞ in the former case and Ω = 0 in the
latter. The zero rotation for the upright center of gravity axis naturally
signifies nothing other than the (stable or unstable) equilibrium position
of the body. The infinite velocities about the three principal inertial
axes are likewise evident.

The various degeneracies of the cone (16) will not be completely dis-
cussed here. We refer, in this respect, to the original work of Staude,
and moreover recall, for what concerns the symmetric top, the remarks
of page 335. We saw there that for the symmetric top not ∞1, but
rather ∞2 permanent rotation axes are possible, of which the permissi-
ble, according to whether a prolate or oblate top is at hand, fill the “up-
per” or the “lower half-bundle.” Correspondingly, our above equation
(16) is identically fulfilled in the case of the symmetric top (A = B, ξ =
η = 0). That the figure axis remains a permanent rotation axis for every
value of Ω follows, in particular, from (18), since this equation is iden-
tically satisfied (because ϑ = 0, ψ = 0) for the upright figure axis. —

In conclusion, we wish to indicate how one could advance, from
our point of view, from the presently solved special cases to a general
qualitative understanding of the motion of the asymmetric top.

Through the investigation of the named special cases, as well as
through the knowledge of the motion of the symmetric top, individual
paths are paved, so to speak, into the unknown territory of the gener-
alized top, paths that traverse it in various directions. One should now
seek to expand laterally from these passable roads, if only a short dis-
tance, by investigating a nearly symmetric top instead of a symmetric
top, a nearly Kowalevski top instead of a Kowalevski top, etc. These
neighboring cases may unquestionably be treated with arbitrary preci-
sion by appropriate approximation processes if the deviation from the
known cases is not too large and time is restricted to a bounded interval.
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It is by no means demanded that the approximation method be always
sought in a power series expansion (for example, in a power series ex-
pansion in the assumed small difference of the principal moments of
inertia A and B for the nearly symmetric top). Rather, an approxima-
tion method appropriate and adequate to the purpose is to be used in
each case.

If we have thus acquired a judgment of the sense in which a small
deviation from the solvable cases acts, it would be further necessary to
construct the connections between the different known motions or their
neighboring cases. Here one must undertake a type of interpolation;
one must insert intermediate cases of the motion under the generally
unquestionable assumption of a continuous passage between each two
motions. As a schema for this interpolation process, we can recommend
our intuitive treatment of the symmetric top at the beginning of the
preceding chapter.

391



Chapter VI.

Representation of the motion of the top by elliptic
functions.

§1. The Riemann surface (u,
√
U).

While our primary interest has been directed until now toward the
geometric and mechanical understanding of the motion of the top, the
tone of this chapter will be set by the analytical side of our problem. It
is inevitable that the corresponding developments will be abstract, and
will first appear to lie farther than the previous from the reality of the
mechanical processes, even if we renounce, as we must for the sake of
brevity, a thorough rigor and completeness in the function-theoretical
considerations. In the following, mathematics should not exclusively
serve the interest of mechanics, but rather mechanics should, at the
same time, be used for the illustration of a mathematical theory, the
theory of elliptic functions.

That this is possible, and that a mutual fructification between ap-
plication and theory in fact occurs, are very noteworthy circumstances
to which we first wish to turn our attention.

It is unquestionably natural, from a mechanical standpoint, to de-
scribe the motion of the top by representing its position coordinates—in
particular, the quantity u—as functions of time, instead of conceiving,
as until now, time and the remaining position coordinates as functions
of u. If we thus pose for ourselves, from the mechanical point of view,
the exercise of “inverting” the dependence between t and u, we will be
most highly astonished to see how this same exercise is also of the great-
est interest from the standpoint of pure mathematics. The older work
on the theory of elliptic integrals, particularly the work of L e g e n -
d r e, operates on our current level, where we calculate t as a function of
u. But the great advance that has been achieved in this field by A b e l
and J a c o b i depends essentially on the indicated concept of inversion,
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on the passage from elliptic integrals to the so-called elliptic functions.
We encounter here a remarkable concurrence of theory and practice, a
preordained harmony, so to speak, between pure and applied mathe-
matics that has continually worked to the welfare of both in the history
of our science.

Under the same point of the view, we next wish to emphasize the
significance of our rotation parameters α, β, γ, δ for the following de-
velopments. These quantities were originally introduced in the interest
of kinematics, in order to simplify as far as possible the formulas of the
rotation transformation. It will now be shown that the same quantities
bring at least as great a simplification to the analytic advancement of
the problem, and that it is directly these parameters that must, in the
theory of elliptic functions, be favored above all others.

On the other hand, the practical side of our problem will also be
advanced by elliptic functions, in so far as (cf. §6) the most complete
and simplest formulas for the numerical calculation of the trajectory
of the top will be taken from this theory; these formulas permit us to
manage, for not excessive precision, with a few trigonometric terms.

The first step toward the analytic deepening of our problem is the
assignment of generally complex values to the previous quantities. It
is true here, as in so many cases, that analytic relations which appear
obscure when restricted to real variables are immediately clarified if we
pass into the complex domain.

We thus set
u = u1 + iu2

and represent the value of u not on a line, but rather, after the example
of G a u s or A r g a n d), in a plane. Since one regards u =∞ as one
value in function theory, whether it represents an infinity of the real
part, of the imaginary part, or of both simultaneously, one also con-
ceives, as is well known, the infinite remoteness of the Gau sian plane as
a single point.*) One thus attains a single-valued invertible correspon-

∗) Cf., for example, H. B u r k h a r d t: Einführung in die Theorie der analyti-
schen Funktionen, Leipzig 1897. We refer the reader to this book with respect to
all those function-theoretical questions that cannot be explained in sufficient detail
in the text.175
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394 VI. Representation of the motion of the top by elliptic functions.

dence between the values of u and the points of the plane.
The representation of the Gau sian plane, however, does not yet

suffice for our purpose; we must broaden this representation to the
image of a so-called Riemann surface.

We must indeed always consider, in our integral expressions, the two
values of u and

√
U simultaneously. To each value of u correspond two

values of
√
U that differ in their signs. In order to keep these values well

separated, we imagine the Gau sian plane to be doubly covered, just as
we earlier considered the u-axis to be doubled. According to whether
we calculate

√
U with one or the other sign, we find ourselves at the

corresponding point of one or the other realization of the u-plane. We
distinguish the two realizations as the upper and the lower sheets.

The two opposite values of
√
U coincide only if U = 0 or U = ∞.

We have already learnt in the fourth chapter to recognize the positions
where this coincidence occurs. They are the points u = e, e′, e′′, and
∞ on the real axis. If we imagine that the two sheets are stitched
together at these four positions, then only one point of the double
plane is associated to each pair of corresponding values of u and

√
U ,

and vice versa. The points of the double plane and the pairs of values
(u,
√
U) are therefore related in the same one-to-one manner as the

points of the Gau sian plane and the values of u.
The type of connection between the upper and lower sheets at the

positions e, e′, e′′, and ∞ requires, however, a more particular investi-
gation. One may not, apparently, attach the two sheets to each other
at these four points and then simply let the two sheets run over one
another, at least not if one demands that the relation between the
points of the double plane and the pair of values (u,

√
U) should be

continuous.
We consider, for example, the point u = e, and proceed around it on

a small circle in the counterclockwise sense. The attachment of the two
sheets would produce the previously named continuous relation only if
we return, after beginning with a pair of values (u,

√
U) and traversing

the circle, to the same pair of values (u,
√
U). We will show through the

following consideration, however, that we will end with the opposing
pair of values (u,−√U).
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The traversal of our circle signifies analytically that we set

u− e = 
eiϕ

and let the angle ϕ increase by 2π for a fixed value of 
. Now we have

U = c(u− e)(u − e′)(u− e′′), c =
2P
A
,

and therefore

(1)
√
U =

√

 e

iϕ
2
√
c(u− e′)(u− e′′).

Here we can imagine 
 chosen as so small that the quantity under
the square root in the last equation changes arbitrarily little for the
traversal of the circle. In particular, our circle should naturally contain
neither of the points e′, e′′ in its interior. If we now let ϕ increase by
2π, then

√
U changes its sign. We therefore arrive, by means of our

circuit, from one sheet to the other.
In order to account for this fact, we must form the following repre-

sentation of the connection of the two sheets. We must imagine that a
line extends from the point u = e, and that in crossing this line one is
transported from one sheet to the other; the two sheets interpenetrate
along this line. The same holds for the points e′, e′′, ∞. Correspond-
ingly, we best describe the connection between the two sheets in the
following manner. We first imagine the two sheets laid simply over one
another, and then cut them both along the real axis, for example, from
e to e′ and from e′′ to ∞. We stitch the free edges together alternately,
so that an edge of the upper sheet will always be joined with the oppo-
sitely lying edge of the lower sheet. We then have, in fact, the desired
connection.

We must, however, take into the bargain the not entirely conve-
nient fact that the two realizations of the u-plane interpenetrate along
the segments ee′ and e′′∞. It is noted, however, that this imperfec-
tion of the geometric image is due only to the restrictiveness of our
three-dimensional space representation. Had we one more dimension
at our disposal, we could let the stitched sheets run next to one another
in the required way without interpenetration, so that they would have
only the branch points in common.

The interpenetration curves, whose form is not essential—in our
procedure they are segments of straight lines—are called branch lines,
just as their endpoints, the positions e, e′, e′′, ∞, were already desig-
nated previously as branch points. The complete image of our geometric
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396 VI. Representation of the motion of the top by elliptic functions.

representation is called, after its creator, a Riemann surface. We speak
concisely of the Riemann surface (u,

√
U).

We must now orient ourselves more precisely on our Riemann sur-
face. We first establish, concerning the positions of the points e, e′, e′′,
that

−1 < e < e′ < +1 < e′′ < +∞,
which corresponds, according to Fig. 38 of page 226, to the assump-
tion P > 0. We will then distinguish, just as one divides the Gau sian
plane into a positive and a negative half-plane according to the sign of

ee

upper,upper,Negative lower.lower.Negative

upper,upper,Positive lower,lower,Positive

the imaginary part of u, four such half-planes on our Riemann surface,
which we draw schematically and name in Fig. 59. The two positive
half-planes are made recognizable from the negative by hatching. The
arrows indicate how the individual segments of the real axis in our four
half-planes are connected to each other by the stitching.

We insert in this figure the values of
√
U along the real axis, where

we can choose the sign of
√
U at one point of the surface arbitrarily.

In the remaining positions,
√
U is then determined uniquely by the re-

quirement of continuity. We wish, for example, to establish that for any
one point between e and e′, where

√
U indeed signifies a real number,
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§2. Behavior of the elliptic integrals on the Riemann surface. 397

the positive value of the square root should correspond to the positive
upper half-plane. The same sign then obtains throughout between e
and e′ on the boundary of the positive upper half-plane. We there-
fore write here the value +|√U |. The negative lower half-plane bet-
ween e and e′ receives the same value, since this segment ee′ is indeed
connected to the positive upper half-plane. The value −|√U | is then
applied to the segment ee′ of the negative upper and the positive lower
half-planes.

In order to be able to make the corresponding assignments for the
other segments of the real axis, we proceed, for example, around the
point e in the positive upper half-plane on a half-circle in the coun-
terclockwise sense, so that we arrive, beginning from a point between
e and e′, at a point between −∞ and e. According to equation (1),
√
U then takes on the factor e

iπ
2 = +i. We therefore write the value

+i|√U | on the real axis between −∞ and e in the positive upper sheet,
as well as on the negative upper sheet connected to it. Proceeding in
such a manner, we complete the naming of the individual intervals.

A comparison with Fig. 38 (P > 0) shows that our previous as-
signments coincide with the current results for the boundaries of the
positive upper half-planes. The previous figure simply represents a
cut through the Riemann surface parallel to the real axis, displaced
slightly toward the side of the positive half-planes. The difference is
only that the values of

√
U previously appeared, for the restriction to

a real variable, as an arbitrary stipulation, while they now follow, after
the arbitrary stipulation of the sign at one point of the surface, for all
other points with necessity.

§2. Behavior of the elliptic integrals on the Riemann surface.

We must now examine the behavior of the elliptic integrals on our
Riemann surface. We will assume a general knowledge of the meaning
of an integral on a complex path; we will also be unable to dispense, on
occasion, with the C a u c h y theorem that states the circumstances
under which two different integration paths with the same initial and
final points give the same integral value.*

∗) Cf. H. B u r k h a r d t, l. c. §35.
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398 VI. Representation of the motion of the top by elliptic functions.

We first consider the “integral of the first kind”

t =
∫

du√
U
,

and wish to show that it befits R i e m a n n’s designation of an “every-
where finite integral.”

It is well known that an integral over an integration path of finite
length can be infinite only when the path is extended across a singu-
larity of the integrand and the order of the singularity is not smaller
than 1. In our case, the singular points of the integrand are identical
with the null values of U ; that is, with the branch points e, e′, e′′. The

order of the singularities of the integrand is 1
2
. As a result, our integral

remains finite even if we let its upper or lower limit coincide with one
of these points.

Further, it is well known from the integral calculus that an inte-
gration path can be extended to infinity without the integral losing its
finite sense if the integrand vanishes at infinity to an order higher than
the first. In our case, however,

√
U vanishes as u−3/2 for u = ∞. Thus

our integral also remains finite at infinity.
If we therefore choose any point on the Riemann surface as the lower

limit, any point as the upper limit, and join the two by any integration
path that may possibly encircle the branch points any (finite) number of
times, the resulting integral always has a finite value. The designation
“everywhere finite integral” is therefore justified.

In particular, we wish to consider the integral values that corre-
spond to a complete circuit around a pair of branch points. We des-
ignate these values concisely as the periods of the elliptic integral. We
somehow proceed, for example, around the branch points ee′ on the
upper sheet of the Riemann surface, and in such a sense that we keep
the branch line to the right. (Cf. here, and in the following, Fig. 60.)
According to C a u c h y’s theorem, all such circuits yield the same
value of the integral. In particular, we can contract the integration
path to the branch line ee′. If we do this, then we must first integrate
from e to e′ on the boundary of the positive upper half-plane, and
then integrate from e′ to e on the boundary of the negative upper half
plane, which leads both times to the same integral value; namely, the
value earlier known to us as ω. Each single complete circuit about the

398



§2. Behavior of the elliptic integrals on the Riemann surface. 399

branch points ee′, executed in the given sense on the upper sheet, thus
corresponds to an increase in t by “the first period” 2ω. It is clear that
for a reversal of the circulation sense or for an integration path on the
lower sheet, the resulting integral value will be −2ω.

Each integration path that encloses the points ee′ can, however, also
be conceived as a circuit about the two other branch points e′′∞. Each
such circuit (and therefore also, in particular, a contracted path on the
real axis from e′′ to ∞) thus corresponds, for the proper establishment
of the sense, to the same integral value 2ω.

We can further consider a circuit about the points∞e or e′e′′. Each
two such circuits likewise give, for the proper establishment of the sense
of progression, the same integration result. It is enough, for example,
to consider the circuit about the points ∞e, which we imagine taken
partly in the negative lower, and partly, after crossing the branch cut
ee′, in the positive upper half-plane, and in such a sense that the line
∞e always lies to the left. The value of this integral is evidently twice
the integral value that one obtains if one progresses from the branch
point e to −∞ on the boundary of the positive upper half-plane. This
value was designated on page 263 as iω′; its calculation may be effected
just as the calculation of ω. Thus the “second period” of our integral,
which corresponds to a circuit about the pair of points ∞e or e′e′′, is
equal to 2iω′.

In the following figure, we schematically represent the integration
paths and the corresponding integral values considered thus far. The

sense in each case is marked by an arrow; the integration paths are
dotted where they run on the lower, and solid where they run on the
upper sheet.

Integrals that correspond to arbitrary closed integration paths may
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400 VI. Representation of the motion of the top by elliptic functions.

be reduced to the two periods 2ω and 2iω′. The general value of such
integrals, which is also called “the general period” of t, is thus

2mω + 2im′ω′.

The (positive or negative) whole numbers m and m′ simply signify the
number of (right-traveling or left-traveling) circuits of the integration
path around the segments ee′ and e′′∞.

If we specify only the upper and lower limits of our integral as points
of the Riemann surface, in that we leave the form of the integration path
undetermined, then the value of t, corresponding to the given value of
the general period, is determined only up to multiples of 2ω and 2iω.
If we consider, in contrast, only points on one of our four half-planes
and add the restriction that the integration path should run entirely
in this half-plane, then the value of t is determined (according to the
Cauchy theorem) uniquely by the specification of the upper and lower
limits. —

We now go over to the function-theoretical investigation of the el-
liptic integrals that we encountered previously for the quantities ψ, ϕ,
and, in particular, α, β, γ, δ.

In contrast to t, one sees that ψ is not everywhere finite on the
Riemann surface. The branch points e, e′, e′′, ∞ indeed give also
here, on the same basis as above, no occasion for singularities. The
integrand for ψ will, however, further become infinite for u = ±1, and,
in particular, infinite to the first order. There follows, as we will see, a
logarithmic discontinuity of the integral.

We consider, for example, the value u = +1. In the integral

ψ =
∫

n−Nu
A(1− u2)

du√
U
,

we set u = 1 everywhere except in the singular factor 1− u. We must

use for U the value − 1
A2

(N − n)2 given on page 225; then

ψ = ± i
2

∫
du

1− u = ∓ i
2

log(1− u).

This equation gives an approximate representation for the behavior of
the quantity ψ in the vicinity of the two positions on the Riemann
surface where u = 1; it shows that ψ becomes, in fact, logarithmi-
cally infinite at these positions. The “multiplier of the singularity,” as
we wish to call the constant that multiplies the logarithm, will thus be
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§2. Behavior of the elliptic integrals on the Riemann surface. 401

equal to − i

2
on one sheet and to +

i

2
on the other.

Entirely the same deliberation shows that ψ also becomes logarith-

mically infinite at the two positions u = −1, with the multipliers ± i

2
.

If we consider, moreover, that the angle ϕ for the spherical top behaves,
according to page 237, just like the angle ψ, then we can say that

The Euler angles ϕ and ψ become logarithmically infinite at four
points on our Riemann surface; namely, at the positions u = ±1 on
the upper and lower sheets, and, in particular, with multipliers that
assume opposite signs for the points lying over one another on the two

sheets, and generally have the absolute value
1
2
.

The theory of elliptic integrals is acquainted, however, with still
simpler logarithmically infinite integrals; namely, integrals with only
two logarithmically singular points. One designates these as integrals
of the third kind, and uses them to linearly compose such integrals with
more singularities. We have, in fact, already represented our ψ on page
268 as a sum of two integrals of the third kind, the so-called Legendre
normal integral .

For further analytic treatment, the Euler angles are thus not, in any
case, the simplest analytic elements. It will be shown, however, that
our parameters α, β, γ, δ yield such elements in the simplest manner;
namely, that the quantities log α, log β, log γ, log δ are directly elliptic
integrals of the third kind.

We first consider the expression

log α =
∫
A
√
U + i(n +N)
2A(u+ 1)

du√
U

in equations (8) of page 238. Here the factor (u− 1) that appeared in
ψ has vanished in the denominator. Also, the factor (u + 1) causes a
singularity of logα on only one of the two sheets. As we saw above,
there follows, for u = −1,

A2U = −(N + n)2,

and therefore, according to the stipulation contained in Fig. 59,

A
√
U = + i|N + n| on the upper sheet,

A
√
U = − i|N + n| on the lower sheet.

For convenience, we wish to assume in the following that

N > n > 0.
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402 VI. Representation of the motion of the top by elliptic functions.

Then the absolute values |N + n| and |N − n| in the given values of
A
√
U are the same as (N+n) and (N−n), respectively. The numerator

of the integrand of logα thus becomes, for u = −1,
+ i(n +N) + i(n +N) = 2i(n +N) on the upper sheet,

− i(n +N) + i(n +N) = 0 on the lower sheet.
On the lower sheet, therefore, the vanishing of the numerator cancels
the simultaneous vanishing of the denominator, so that logα remains
finite here. On the upper sheet, in contrast, there follows approxi-
mately, if we set u = −1 throughout except in the factor (u+ 1),

logα =
∫

du

1 + u
= log(1 + u).

On the upper sheet, logα therefore possesses a logarithmic singular
point.

Since, according to a general rule for integrals of algebraic functions,
logarithmic singularities must always appear in pairs, we will seek yet
a second singular point of logα. This lies at u = ∞. If we make the

substitution v =
1
u

, as is usual for the investigation of infinity, then

there results for v = 0, approximately,

logα = −
∫
dv

2v
= − log

√
v = log

√
u.

The second logarithmic singular point of logα therefore lies at in-
finity. At the remaining branch points, in contrast, logα again remains
finite.

The same deliberations show that each of the quantities log β, log γ,
log δ also has only two logarithmic singular points, one at infinity, and

the second at u = ±1 in the upper or lower sheet. We represent
how the singular points are distributed at the four points u = ±1
by the schema of Fig. 61a, which again represents a cut of our Riemann
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§2. Behavior of the elliptic integrals on the Riemann surface. 403

surface, and which is drawn on the basis of the above agreement N >
n > 0. For a different assumption of the signs and relative magnitudes
of N and n, our four singular points are interchanged in an easily
assignable manner. The schema b corresponds, for example, to the
assumption 0 > N > n.

We have thus proven that
The logarithms of our parameters α, β, γ, δ are elliptic integrals that

become logarithmically infinite at only two positions of the Riemann
surface; namely, at one of the four points u = ±1 and the point ∞.
These logarithms are therefore directly elliptic integrals of the third
kind.

The characteristic advantages of our parameters, however, are still
not exhausted. We already directed our attention in the integral for
ψ to the multiplier with which the logarithmic term is burdened. The
increase by which the integral increases additively for a circuit about
the relevant singular point depends on this multiplier. Now among
integrals of the third kind, those integrals for which this increase, cal-
culated in a manner to be made more precise directly, is equal to ±2πi
possess a particularly simple function-theoretical character. It is thus
justified to distinguish such integrals by the special name of normal
integrals of the third kind.*) We note that L e g e n d r e reached the
normalization of his integrals of the third kind from another more for-
mal point of view, and that the Legendre normal integrals mentioned
on page 267 are therefore not normal integrals in our current sense.

In order to be able to give the definition of the normal integral of the
third kind precisely, we must first explain what we wish to understand
by a “positive” and by a “closed” circuit about a point on our Riemann
surface.

We set, according to whether we treat of a finite point u = a or

the infinitely distant point u = ∞, either u − a = 
eiϕ or u =
1
v

and

v = 
eiϕ. We then let, for fixed sufficiently small 
, the angle ϕ in-
crease in both cases from zero toward the positive side. There results in
the u-plane and on the Riemann surface a path that we say surrounds

∗) The importance of this normalization is argued by J a c o b i directly in the
example of the top. Cf. his Ausführungen über den Divisor des Integrals dritter
Gattung. Ges. W. B. II p. 477 and ff.176

403



404 VI. Representation of the motion of the top by elliptic functions.

the point u = a or u = ∞ in the positive sense. We continue this
positive circulation until the angle ϕ has attained the value 2π or 4π,
according to whether we treat of an ordinary point of the Riemann
surface or a branch point. We then encircle the relevant point in the
u-plane once in the first case, and twice in the second case. On the
Riemann surface, however, we encircle the point only once in both
cases, since for a branch point two circular paths in the u-plane first
lead back to the initial point on the Riemann surface. In both cases,
we thus speak of a single, closed circuit on the Riemann surface.

The precise definition of the normal integral of the third kind now
runs in the following manner.

By a normal integral of the third kind we understand an integral
with two logarithmic singular points that increases by 2πi for a single
closed circuit on the Riemann surface about one of the singular points;
for a corresponding circuit about the other singular point, it increases,
in consequence of a general rule, by −2πi.

We now show immediately that our integrals logα, log β, log γ, log δ
are normal integrals in this sense. We consider, for example, logα.

For the investigation of the singular point u = −1 of log α, we
set, according to the just given directive, u + 1 = 
eiϕ and let, for a
sufficiently small value of 
, the angle ϕ increase from 0 to 2π. Since,
according to the above, logα behaves in the neighborhood of the point
u = −1 as log(u+ 1), we have

log α = log(u+ 1) + · · · = log 
+ iϕ+ · · · .

We thus see that logα increases by 2πi for a positive, closed encir-
clement of the point u = −1. To treat of u = ∞, on the other hand,

we set v =
1
u

= 
eiϕ and let ϕ once again vary for sufficiently small


, and indeed now from 0 to 4π. Since logα goes over at infinity into
− log

√
v,

logα = − log
√
v + · · · = − log

√

− iϕ

2
+ · · · .

As one sees, log α increases for the just defined positive closed encir-
clement of the position u = ∞ directly by −2πi.

In the same manner, we convince ourselves that log β, log γ, log δ
also increase by ±2πi for circular passages about their singular points.
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§2. Behavior of the elliptic integrals on the Riemann surface. 405

We can thus state the noteworthy theorem that
The logarithms of our parameters are not only integrals of the third

kind, but are indeed normal integrals.
This circumstance will become of striking importance if we go over

from the logarithms to the values of our parameters themselves. The
latter quantities, namely, evidently remain completely unchanged for
a circular passage about the singular points of their logarithms. For
example, α behaves in the vicinity of the position u = −1 directly as

C(u+ 1).

If, in contrast, the increase for a circuit about the position u = −1
were not equal to 2πi, but rather equal to 2πiλ and, correspondingly,
the multiplier of the singularity were not equal to 1 but rather to λ,
then α would behave as

C(u+ 1)λ,

and therefore this position would be a branch point if λ were not a
whole number. We can thus say that

Thanks to the normality property of our integral of the third kind,
our parameters are completely u n b r a n c h e d on the Riemann sur-
face.

This is not to say that these parameters are also single-valued on
the Riemann surface. Their logarithms, corresponding to their repre-
sentation as integrals of the third kind, increase additively for a circuit
about a pair of branch points by certain characteristic increments, “the
periods of the integral of the third kind,” directly as we have depicted
for the integral of the first kind in Fig. 60. The value of the parameters
themselves will thus be multiplied by certain characteristic factors for a
circuit about the branch points. We need not enter here into the calcula-
tion of these increases or these factors from the integral representation,
since we will give an explicit representation of α, β, γ, δ in the fourth
section through which the named calculation will be accomplished of
itself.

In any case, all these remarks illuminate the superiority in function-
theoretical simplicity of our parameters α, β, γ, δ over the Euler angles.
It will be directly shown that the parameters α, β, γ, δ represent the
simplest analytic building stones from which the general formulas for
the motion of the top may be composed.
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406 VI. Representation of the motion of the top by elliptic functions.

§3. The image of the Riemann surface (u,
√
U) in the

t-plane.

In this section, we must carry out the inversion of the elliptic integral
of the first kind. While we have thus far conceived t as a function of its
upper limit u, or better yet as a function of the position (u,

√
U) on the

Riemann surface, we will later wish to regard the pair of values (u,
√
U)

as a function of t. In a preliminary stage, we first treat of (u,
√
U) and

the corresponding value of t as equally entitled variables. We thus
represent t = t1 + it2, in its turn, in a complex plane, the t-plane. We
lay off t1 as the abscissa and t2 as the ordinate, and ask what path or
what region t describes in its plane while the variable u sweeps through
an arbitrary path or an arbitrary region of the Riemann surface. One
designates this question function-theoretically as the question of the
image of the Riemann surface (u,

√
U) in the t-plane.

As the lower limit of the integral we take, as previously, the branch
point e, and thus consider

t =
∫ u

e

du√
U
.

We begin with the boundary of the positive upper half-plane of our
Riemann surface. What path does t describe as we let u run from left
to right on the real axis of the positive upper half-plane?

For the answer to this question, we rely essentially on Fig. 59, where
we have registered, according to reality and sign, the effectual values
of
√
U for the individual intervals of the real axis. The corresponding

increments of t—that is, the quantities dt =
du√
U

that correspond to

the positive increments du of u—are thus given according to reality
and sign. We summarize them in the following table:

If u moves the increment dt is
from e to e′ , positive real,
from e′ to e′′ , positive imaginary,
from e′′ to +∞ , negative real,
from −∞ to e , negative imaginary.
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§3. Image of the Riemann surface in the t-plane. 407

At our initial point e, the lower limit of the integral, t is naturally
equal to zero. The path that t describes therefore begins at the origin
of the t-plane. If u advances from e to e′, the corresponding point
t progresses, according to the preceding table, along the positive real
axis. If u attains the value e′, the path bends through a right angle
and first runs parallel to the positive imaginary t-axis.

If we come to e′′ on the Riemann surface, the path once again makes
a rectangular bend; it then runs again parallel to the real axis, but in
the negative sense. If we let u go to positive infinity and return from
negative infinity on the real axis, then we have another rectangular
bend in the t-plane; the motion of the representative point, which pre-
viously occurred in the sense of the negative real axis, now runs in the
sense of the negative imaginary axis. In total, t therefore describes a
rectangular path of straight lines as u runs through the real axis.

We easily find that this line path must close on itself, and calcu-
late, moreover, the lengths of its edges, if we consider the values of
the full period circuits given in Fig. 60. If we contract, namely, the
drawn integration paths to
the respective segments of the
real axis, then the full circuit
is divided into two congruent
straight line halves, each of
which yields as the integral
value of t half the entire period
2ω or 2iω′. It follows that
the rectangular line path in
the t-plane is the contour of an
ordinary rectangle (cf. Fig. 62); the length of the horizontal sides is ω,
and the length of the vertical sides is ω′. The corners of the rectangle
are, in correspondence with the sequence

u = e, e′, e′′, ∞

of the branch points, given by the values

t = 0, ω, ω + iω′, iω′.

We now enter with the variable u into the interior of the positive
upper half-plane, and convince ourselves that the variable t then passes
into the interior of our rectangle.
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408 VI. Representation of the motion of the top by elliptic functions.

Since, namely, we keep that half-plane to the left if we run through
the real u-axis from −∞ to +∞, the corresponding region in the t-plane
must also, as a consequence of a general function-theoretical principle,
be attached to the left of the rectangle traversed in the direction iω′,
0, ω, . . . . Further, we must make clear to ourselves that the image
in the t-plane has no vacancies, branch points, or foldings. We can,
for this purpose, use the integral formula to produce series expansions
that permit the value of t to be calculated as a convergent power series
from the value of u, and vice versa. If one carries out this suggestion in
more detail, one recognizes that points of the positive upper half-plane
can correspond only to points in the interior of our rectangle, and that
these points must cover the space between our rectangular borders
simply and without gaps. We will therefore be able to say that

The area of our rectangle represents the image in the t-plane of the
upper half-plane of the Riemann surface.

In order to conceive the imaging process as concretely as possible,
we can imagine, for example, that the considered half-plane is spanned
by an elastic membrane that is fixed to the real axis. We represent the
segments of the real axis between the branch points as connected to
each other by joints. We now rotate these segments with respect to each
other and deform them until they have gone over into the rectangular
borders of the t-plane. At the same time, the original membrane is de-
formed under the retention of continuity into a membrane that spans
the rectangle. The one membrane is thus represented as the strain
of the other. This procedure naturally gives, at first, only a very ap-
proximate qualitative representation of the mathematical dependence
between the variables t and u. We can, however, repeat our image with
quantitative correctness if we ascribe the property of actual elastic force
to our membrane, and permit only such strains that preserve the simi-
larity of the smallest elements, so that any two curves emanating from a
point enclose the same angle after the deformation as before. Through
this stipulation, the type of strain, as one can easily check, is com-
pletely specified, if only one adds the further condition, for example,
that the three points e, e′, e′′ of the half-plane should correspond to the
three successive corners 0, ω, ω+iω′ of our rectangular boundary. As is
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§3. Image of the Riemann surface in the t-plane. 409

well known, one calls such a mapping of two regions, similar in the
smallest elements, a conformal or angle-preserving mapping.

Without any formulas, the analytic dependence between the vari-
ables t and u may be stated purely geometrically in the following man-
ner:

The dependence corresponds to that of every two variables t and
u whose representative points are transformed into one another by
the conformal mapping of a half-plane onto the area of a rectan-
gle (under the assignment of the branch points to the corners of the
rectangle). —

A very beautiful apparatus that effects the conformality of the map-
ping automatically has recently been constructed by Mr. S. F i n s t e r -
w a l d e r.*) Mr. Finsterwalder constructs a network of flexible wires
in which he connects every three wires by a three-bored bushing, where
it is convenient in the construction to arrange the bores at angles that
are generally equal to one another. The bushing midpoints then form,
in our original position, the corners of a regular hexagonal tiling of the
plane. Since the wires can freely slide to and fro in their guides and can
moreover bend, our apparatus has a very high degree of mobility. The
number of degrees of freedom will even be infinitely large if we imag-
ine, as must actually be done in the present application to conformal
mapping, the collected dimensions of the network to be infinitesimal
and the bushings to be infinitely numerous and infinitely dense.

One is convinced by experiment alone that it is possible to give the
boundary of the network any arbitrary form; that is, to form any other
region from the region initially occupied by the network, where three
boundary points of one region will still be able to correspond arbitrarily
to three boundary points of the other. That this mapping is conformal
follows immediately, for the angles with which the wires come together,
from the rigidity of the bushings; if, however, three angles at each point
remain unchanged for a continuous mapping (or, more precisely said,
for a mapping provided by an analytic function), then the same holds,
according to general principles, for all angles.

Through the Finsterwalder apparatus we would therefore be able to
realize the mapping effected by our elliptic integral in a purely experi-
mental manner. —177

∗) Cf. Jahresbericht der deutschen Mathematiker-Vereinigung, Bd. 6, 1897.
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410 VI. Representation of the motion of the top by elliptic functions.

We can carry out the same consideration for the negative upper
half-plane as for the positive upper, and for the positive lower, etc.
These half-planes also map in the t-plane into rectangles of the just
depicted form.

The position of these rectangles with respect to the image of the
positive upper half-plane depends on the integration path, and, in par-
ticular, on the interval in which we cross over the real axis in order
to arrive from the positive upper to the other half-planes. The posi-
tive upper half-plane is connected, for example, to the negative upper
along the line −∞e. If, beginning from e, we cross over this segment
in the integration, then we come to values of t that correspond to the
negative upper half-plane. In the t-plane, these points fill a rectangle
that lies to the left of the side t = 0 to t = iω′ of the original rectan-
gle. If we step, on the other hand, through the branch line ee′ into
the negative lower sheet, then we arrive at the representative point of
the t-plane in the interior of a rectangle that represents an image of
the negative lower half-plane. This rectangle lies beneath the image
of the line ee′; that is, beneath the side t = 0 to t = ω of the rec-
tangle. If we then go on the Riemann surface from the negative lower
into the positive lower half-plane, in that we again cross over the line
from −∞ to e, there corresponds to this passage a new rectangle that
has the side from −iω′ to 0 in common with the image of the neg-
ative lower half-plane. In total, we thus have acquired an image of
our four half-planes; that is, an image of the entire Riemann surface.
This consists of a large rectangle that has the origin of the t-plane as

l.l.p.p. l.l.n.n.

u.u.p.p.u.u.n.n.

its midpoint, and is composed
of our four small rectangles.
We hatch the two rectangles
that correspond to the positive
half-planes, and arrive at the
following complete image of the
Riemann surface (cf. Fig. 63), in
which these rectangles appear
next to each other in the most
highly transparent manner.

We designate such a rectangle, whose sides are the periods of the elliptic
integral, as a “period rectangle.”

A few clarifications are still required regarding the boundary points
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§3. Image of the Riemann surface in the t-plane. 411

of our period rectangle. These correspond, as one has seen, to the
points of the two segments e′e′′ and e′′∞ in the four half-planes. In
these segments the continuity of our image is evidently interrupted.
While, for example, the segment e′e′′ of the positive upper sheet directly
coincides with the segment e′e′′ of the negative upper sheet on the
closed Riemann surface, according to the conventional connection of
the boundaries of our branch lines, the images of these segments in
the t-plane are on opposite vertical sides of the period rectangle; corre-
spondingly, the images of the coinciding segments e′′∞ on the Riemann
surface lie in the t-plane on the opposite horizontal sides. We must,
in order to have a completely continuous and completely single-valued
image of the Riemann surface, assume that the opposite boundaries
of the rectangle are assigned in such a manner that each two opposite
boundary points can be held as identical in the image. However, we
need not go into more detail here, since this defect of discontinuity in
the image will vanish of itself in the following if we further complete
our figure.

In fact, our image figure is not yet finished. We have previously gone
from the positive upper to the negative upper half-plane through the
segment −∞e. We can just as well arrive there, however, through e′e′′.
If we do the latter, then we obtain as the image of the negative upper
half-plane a rectangle that lies next to the image of the segment e′e′′;
that is, next to the side ω to ω+ iω′ of our initially drawn rectangle. In
general, there are two different passages on the Riemann surface from
each positive half-plane to each of the two negative half-planes, and
from each negative half-plane to each of the two positive half-planes.
Correspondingly, we must complete the figure so that a further rectan-
gle lies next to each free rectangle side, where each hatched rectangle
will be surrounded by four unhatched, and each unhatched surrounded
by four hatched. As the completed image figure we thus obtain a tes-
sellated pattern, as represented in Fig. 64. The individual horizontal
strips contain images of the half-planes of either only the upper or only
the lower sheet. A system of period rectangles is singled out from the
system of smaller rectangles by a somewhat stronger drawing of the
boundaries.

This rectangular partition, together with the representation of the
Riemann surface, gives the simplest and most complete conception of
the analytic relation between the quantities t and u or

√
U .
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412 VI. Representation of the motion of the top by elliptic functions.

We first consider t as a function of u, in that we imagine the upper
limit u given as a specified point of the Riemann surface; that is, we
imagine that the sign of

√
U is chosen in a specified manner in addi-

tion to the value of u. (The lower limit should, as previously, lie at
the branch point e.) We already saw on page 400 that the value of t

u.u.

u.u.

u.u.

u.u.

u.u.u.u.

l.l.

l.l.

l.l.

l.l.

l.l.

u.u. u.u.

l.l. l.l.

u.u.

l.l. l.l.

u.u.

l.l. l.l.

u.u.

u.u.

l.l.

is not completely deter-
mined by the specifica-
tion of the upper limit.
Depending on the form
of the integration path,
one obtains infinitely
many values of t that
differ by multiples of
the periods 2ω and 2iω′.
This state of affairs is ex-
pressed with particular
clarity by our rectan-
gular partition. Since,
namely, each half-plane
of the Riemann surface
is mapped into infinitely
many rectangles in the

t-plane, there are, for each point of the surface, infinitely many corre-
sponding points of the t-plane, and indeed one finds such a point in
each period rectangle. If we displace our entire figure parallel to itself
by 2ω in the direction of the real axis or by 2ω′ in the direction of the
imaginary axis, then it always comes into coincidence with itself; each
rectangle goes over into an identically designated rectangle, and each
point into a point that always corresponds to the same point on the
Riemann surface. We wish to designate all these points as equivalent
points. If t is any point in the t-plane that corresponds to the posi-
tion u,

√
U on the Riemann surface, then the equivalent points will be

represented by
t+ 2mω + 2m′iω′,

where m and m′ signify any positive or negative whole numbers. All
these values of t correspond to the same upper limit u,

√
U of the inte-

gral. In analytic respects, namely, we draw the conclusion that
Conceived as a function of the upper limit, t is an infinitely-many-

valued function.
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§3. Image of the Riemann surface in the t-plane. 413

We now give, conversely, the value of t, and ask for the correspond-
ing value of u. Each point in the t-plane corresponds, on the Riemann
surface and all the more so in the u-plane, to one and only one entirely
determined point. It follows immediately that

Conceived as a function of t, u is a single-valued function.
Now it is certainly more advantageous analytically to operate with

single-valued rather than multivalued functions. At the same time, we
remarked at the beginning of the previous section that it is desir-
able from the standpoint of mechanics to represent the direct time
dependence of the elements of the motion. Both grounds dispose us to
“invert” our elliptic integrals; that is, to regard t in the future as the
independent variable, and to represent the quantity u as a function of t.

Concerning the properties of the function u of t (we write concisely
u = u(t)), we can immediately add a still more precise determination.
If we increase, namely, the value of the argument by multiples of the
two periods 2ω and 2iω′, then we arrive at a point in the t-plane that
corresponds to the same position of the Riemann surface. Thus u
remains unchanged by the increase of its argument by one of the two
periods. We say that u is a doubly periodic function of t, or that u is
an elliptic function.

Actually, we must also prove explicitly that u is an analytic func-
tion, a function of the complex argument t. However, we wish in this
respect to call upon the theorem of general function theory that through
inversion of an analytic function there always results again an analytic
function. Since t is, through its integral representation, certainly a
function of the complex argument u, we conclude that the function
u(t) must also be an analytic function.

We need not enter in detail into the actual calculation of the function
u(t), since we again forsake this function in the following, and will be-
come acquainted with still simpler functions (the so-called ϑ-functions)
from which the doubly periodic function u, among others, may be com-
posed in the most convenient manner.

We now wish to show that the introduction of the everywhere finite
integral t as the independent variable will be of essential advantage
for a large class of further functions. We will see, namely, that many
functions that are multivalued in their dependence on u will be made
single-valued by the introduction of t, or, as we wish to say concisely,
will be “uniformized.”
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414 VI. Representation of the motion of the top by elliptic functions.

These are, in the first place, the single-valued functions on the Rie-
mann surface, and therefore, in particular, the rational functions of u
and

√
U . In fact, our rectangular partition shows that each point of the

t-plane corresponds not only to one and only one point of the u-plane,
but also to one and only one position on the Riemann surface. The lo-
cation on the Riemann surface and all singled-valued functions of this
location therefore depend on the position in the t-plane—that is, on
the value of the everywhere finite integral—in a single-valued manner.

As the simplest example, we consider the double-valued function√
U in the u-plane, which is single-valued on the Riemann surface.

That this function is also single-valued in the t-plane may be verified
immediately. Since, namely,

t =
∫

du√
U
,

there follows √
U =

du

dt
= u′(t);

through the introduction of the variable t, the double-valued function√
U will be uniformized.
The uniformizing effect of t reaches, however, still further: not only

will single-valued quantities on the Riemann surface be single-valued
functions of t, but also, rather, all multivalued quantities on the surface
whose multivaluedness is of the same nature as the multivaluedness
of the everywhere finite integral itself; that is, multivalued functions
that remain unchanged for all those circuits that leave the value of t
unchanged. (In particular, the quantities in question must naturally be
unbranched relative to the Riemann surface.)

As a proof, one considers that each circuit on the Riemann surface
for which the value of the function to be uniformized changes will also
change, by assumption, the value of the variable t, and will thus lead
into another region of the t-plane. The different values of the function in
question, which possibly correspond to the same point of the Riemann
surface, will therefore lie in truly different places in the t-plane.

This important principle finds an immediate application to our pa-
rameters α, β, γ, δ. We indeed saw on page 405 that α, β, γ, δ are
unbranched on the Riemann surface, and that they are changed only
for those circular passages (and then only by certain characteristic fac-
tors) that also change the value of the everywhere finite integral (and,
in particular, by the additive periods 2ω and 2iω′).

We can therefore say that
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§3. Image of the Riemann surface in the t-plane. 415

Our parameters α, β, γ, δ, infinitely-many-valued but unbranched
on the Riemann surface, become single-valued in the t-plane.

The resulting single-valued, and, as we can add, analytic functions
α(t), β(t), γ(t), δ(t) are, as said, not doubly periodic, since they each
change by a constant factor for a passage from one period rectangle
to another; we nevertheless likewise designate them, with H e r m i t e
(see below), as elliptic functions, and indeed more precisely as elliptic
functions of the second kind, in distinction to the purely doubly periodic
functions, which we call elliptic functions of the first kind.

We ask, furthermore, for the null and singular points of our elliptic
functions α(t), β(t), γ(t), δ(t) in the t-plane, since the later analytic
representation of our parameters is based on the locations of these
points. The null and singular points of the quantities α(t), β(t), γ(t),
δ(t) are naturally identical with the logarithmic singular points of logα,
log β, log γ, and log δ. We have clearly represented the distribution of
the latter in Fig. 61 under the assumption

N > n > 0.

This same assumption will be made in the following.
We investigate in particular, for example, the function α(t). Accord-

ing to Fig. 61a, logα becomes infinitely large for u = −1 and u = ∞,
and indeed logα behaves, according to page 402,

as log (u+ 1) for u = −1, and as log
√
u for u = ∞.

If we go over from the logarithm to the antilogarithm, we see that the
parameter α vanishes for u = −1, and becomes infinite for u = ∞.

In the t-plane, the value u = ∞ corresponds, according to Fig. 62,
to the point t = iω′, or to one of the equivalent points

(I) t = iω′ + 2mω + 2m′iω′.

Further, the position u = −1 of the upper sheet maps, as likewise
follows from Fig. 62, into a point that lies on the imaginary axis between
t = 0 and t = iω′, or into one of the equivalent points. We denote the
corresponding t-value by ia; a is then determined by the integral

ia =
∫ −1

e

du√
U

already given on page 263.
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416 VI. Representation of the motion of the top by elliptic functions.

The totality of the equivalent positions—that is, those points of the
t-plane that represent the position u = −1 on the upper sheet of the
Riemann surface—is thus given by

(II) t = ia+ 2mω + 2m′iω′.

We already know that α(t) becomes infinitely large at the points (I),
and vanishes at the positions (II). We wish, in addition, to establish the
order of the singularity and the order of the nullity. For this purpose,
we recall that logα changes by ±2πi for a single closed circuit on the
Riemann surface about the positions u = −1 and u = ∞ (cf. page 404).
Under the conformal mapping to the t-plane, however, a single closed
circuit on the Riemann surface is transformed into just such a circuit in
the t-plane, as follows from the concept of the conformal map. The null
and singular points of α are therefore constituted so that logα takes
on the same increase ±2πi for a single circuit. This directly signifies,
however, that the order of the nullity and the singularity is equal to 1.
Thus we can say that

The points (I) are simple singular points, and the points (II) are
simple null points of the function α(t). The function α has no other
null or singular points.

The null and singular points of β, γ, and δ in the t-plane follow in
a similar manner. We single out, for example, γ. On the Riemann sur-
face, log γ becomes logarithmically infinite for u = ∞ and (cf. Fig. 61)
u = +1 on the upper sheet. The singularities on the Riemann surface
correspond in the t-plane to the position t = iω′ and the equivalent
positions. The totality of these positions is again represented by

(I) t = iω′ + 2mω + 2m′iω′.

The point u = +1 of the upper sheet corresponds in the t-plane,
according to Fig. 62, to a point on the rectangle side between t = ω
and t = ω + iω′. The distance of this point from the real axis is called
b; one calculates b, as already given on page 263, if one extends, for
example, the everywhere finite integral

ib =
∫ 1

e′

du√
U

on the upper sheet from the branch point e′ to the point 1. The value
of t at the named point will then be t = ω + ib. In addition to this
point, we naturally have the collected equivalent points
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§4. Representation of α, β, γ, δ by ϑ-quotients. 417

(II) t = ω + ib+ 2mω + 2m′iω′

to consider. We conclude, just as above, that the points (I) are simple
singular points and the points (II) are simple null points, and indeed
the sole null and singular points of the function γ(t).

The still wanting null and singular points of β and δ follow from
the remark that α and δ, on the one hand, and β and −γ, on the other
hand, are conjugate imaginary quantities. This follows for real values
of t from the original definitions of our parameters (cf. page 21); it is
also valid, however, for complex conjugate values of time, as follows
immediately from the integral representation of the logarithms of α, β,
γ, δ. Thus the null points of β and δ will be conjugate to those of α and
γ; we obtain these null points from the values given under (II) if we
simply exchange +ia, +ib with −ia, −ib. Further, the singular points
of β and δ coincide directly with those of α and γ, since the points
given under (I) are in their totality conjugate to themselves. The com-
plete table of the null and singular points of our four parameters thus
appears as follows.

Null points. Singular points.

α + ia + 2mω + 2m′iω′ ⎫⎪⎪⎪⎬
⎪⎪⎪⎭

iω′ + 2mω + 2m′iω′.
β + ω − ib+ 2mω + 2m′iω′

γ − ω + ib+ 2mω + 2m′iω′

δ − ia + 2mω + 2m′iω′

We are now in a position to develop the explicit representations of
our parameters as functions of time. We base these representations on
the so-called ϑ-functions, which have played an entirely fundamental
role in the theory of elliptic transcendentals since the time of J a c o b i.

§4. Representation of α, β, γ, δ by ϑ-quotients.

The ϑ-functions are single-valued functions of their argument, which
we denote by t, that become infinite only at infinity. They have,
like α, β, γ, δ, a system of equivalent null points, of which one null
point falls in each period rectangle; for a passage from one period rec-
tangle to another, they are each multiplied by a characteristic fac-
tor, which, however, is not independent of t, as it is for α, β, γ, δ.
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418 VI. Representation of the motion of the top by elliptic functions.

A further property of the ϑ-functions that is particularly valuable for
our purpose is that they converge extraordinarily well, and enjoy suit-
able series representations for numerical calculation.*)

A great disparity unfortunately reigns among different authors for
the notation of the ϑ-functions. Here, we will retain none of the usual
notations precisely, which is harmless, in so far as our presentation is
understandable in itself.

While Jacobi considered four not essentially different ϑ-functions,
we will manage with only one. We denote it by ϑ(t), and arrange
the definition so that ϑ is an odd function of t, and that ϑ therefore
vanishes only at the origin and all the equivalent points of the t-plane.
Formally, our ϑ-function is given by the series

(1) ϑ(t) =
+∞∑
−∞

(n) e
−ω′

ω

(
2n−1

2

)2
π + t+ω

ω
2n−1

2 πi
.

With the use of the abbreviations

(2) q = e
−ω′

ω π, s =
tπ

2ω
,

we can, as will be convenient on occasion, also write178

(3) ϑ(t) = 2q1/4 sin s− 2q9/4 sin 3s+ 2q25/4 sin 5s− · · · .

The Jacobi notation for our function would be179

H(t).

The properties of the ϑ-function that were already mentioned in
general above may now be easily verified, on the basis of equation (1),
for our special choice of the function.

One first sees that our function is finite and single-valued for all
finite values of t. Namely, the series (1) converges, as one easily checks,
in the entire t-plane.

∗) Instead of the ϑ-function, the σ-function introduced by W e i e r s t r a s s is
now generally used in the literature. The σ-function differs from the ϑ-function
only by an exponential factor. We prefer the ϑ-function for our purpose, since its
employment requires less preparation, and the specific advantages of the σ-function
do not come into play here. Moreover, the ϑ-function is still indispensable afterward
for numerical calculation, which we must always keep in mind.
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We next determine the behavior of the ϑ-function for an increase
of its argument by multiples of the periods. An addition of the real
period 2ω obviously changes each individual term of the series (3) only
in sign. We therefore have
(4) ϑ(t+ 2ω) = −ϑ(t).
If we add the imaginary period 2iω′, and therefore write t+2iω′ instead
of t, the exponent of the general term in (1) becomes

−ω
′

ω

(
2n− 1

2

)2

π − ω′

ω
(2n − 1)π +

t+ ω

ω

2n− 1
2

πi =

−ω
′

ω

(
2n+ 1

2

)2

π +
ω′

ω
π +

t+ ω

ω

2n + 1
2

πi− t+ ω

ω
πi.

This exponent therefore has the n-independent increase
ω′

ω
π − t+ ω

ω
πi,

and, in addition, is increased in the index n by one. Through the latter
circumstance, however, the value of the series is not changed, since n
runs from −∞ to ∞. We thus find that

(5) ϑ(t+ 2iω′) = −e
ω′
ω π − tπi

ω ϑ(t).
Conversely, the functional properties (4) and (5) can serve, together

with the requirement that ϑ should be nowhere infinite, to define the
ϑ-function up to a constant factor, as we mention only historically.

In order to obtain the intended representation of our parameters,
we now consider the quotient

ϑ(t− ia)
ϑ(t− iω′)

.

This quotient becomes zero or infinitely large at the location t = ia
or t = iω′, respectively, and at the equivalent positions, and indeed
to the first order in both cases. This expression therefore has the
same null and singular points as our function α(t) (cf. the previous
section). It therefore differs from the latter only by a factor that neither
vanishes nor becomes infinitely large for any finite value of t, and whose
logarithm can therefore become infinitely large for no finite value of t.
Such a factor can always be given in the form

eG(t),

where G(t) is a function that is nowhere infinite in the finite domain,
a so-called entire transcendental function. We therefore have the equa-
tion

(6) α(t) = eG(t) ϑ(t− ia)
ϑ(t− iω′)

.
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420 VI. Representation of the motion of the top by elliptic functions.

In our case, it follows from the properties of the parameter α(t),
on the one hand, and of the ϑ-function, on the other hand, that the
transcendental entire function must reduce to a linear entire function.
According to the just proven functional equations for the ϑ-function,
the ϑ-quotient on the right-hand side is multiplied, for an increase of t
by one of the two periods, by a constant factor; namely, by

+1
for an addition of 2ω, and by

e
−a−ω′

ω π

for an addition of 2iω′. Further, we know (cf. page 414) that α(t) takes
on a factor that is independent of t for an increase of t by one of the two
periods. The factors on the right and left sides in equation (6) must
coincide; we therefore have, understanding by c and c′ two constants
that are composed from the named factors,

G(t+ 2ω) − G(t) = c,
G(t+ 2iω′) − G(t) = c′,

from which there follows, by differentiation with respect to t,
G′(t+ 2ω) = G′(t),
G′(t+ 2iω′) = G′(t).

Thus G′(t) is a doubly periodic function that becomes infinite nowhere
in the finite domain. It is shown in function theory, however, that such
a function is necessarily a constant. We therefore have

G′(t) = l,

and
(7) eG(t) = kelt,

where k and l are certain quantities that are independent of t, and that
will be given more precisely directly.

The explicit form of the function α(t) is now known on the basis
of equations (6) and (7). If we add the analogously constructed and
likewise derived expressions for β, γ, and δ, then we obtain

(8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α = k1 e
l1t ϑ(t− ia)

ϑ(t− iω′)
,

β = k2 e
l2t ϑ(t− ω + ib)

ϑ(t− iω′)
,

γ = k3 e
l3t ϑ(t+ ω − ib)

ϑ(t+ iω′)
,

δ = k4 e
l4t ϑ(t+ ia)

ϑ(t+ iω′)
.
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We have thus reached the following result: our parameters α, β, γ,
δ are represented by simple ϑ-quotients, to which are added an expo-
nential quantity and a constant as factors.

Moreover, it is necessary to calculate only two of these expressions,
say α and β, since the two other parameters are then determined as
conjugate imaginary quantities.

It is noted that the method adopted here corresponds quite properly
to the beautiful principle that R i e m a n n has emphasized in all his
investigations: first discuss the properties of the functions to be treated,
and suppress all formulaic matters to the conclusion, where they must,
so to speak, follow of themselves from the established properties. Thus
we have, in fact, acquired our representation (8) as a necessary con-
sequence of the preceding investigation of the single-valuedness of our
functions and the positions of their null and singular points.

In order to place the fundamental meaning of the expressions (8) in
the correct light, we add a few historical remarks with regard to elliptic
functions.

One originally understood by an elliptic function, since the time of
J a c o b i, only a function that remained completely unchanged for an
increase of its argument by multiples of the periods.

It was then shown*) that a so-defined elliptic function assumes every
value, and in particular the values zero and infinity, the same number
of times in the rectangle (or, more generally, the parallelogram) formed
by the two periods 2ω and 2iω′. This number (n) is called the degree
of the elliptic function. One can further prove that the relation

Σaν −Σbν = 2μω + 2iμ′ω′,

where μ and μ′ are two whole numbers, obtains between the arguments
of the null points (aν) and the arguments of the singular points (bν)
that lie in a single period rectangle. It is now always possible to express
an elliptic function in terms of a ϑ-quotient in the form

keltΠ
ν=1,..n

ϑ(t− aν)
ϑ(t− bν) .

In fact, this expression possesses, thanks to the functional properties
of the ϑ-function given above, the required periodicity if one chooses

∗) These general theorems were first recognized by L i o u v i l l e. Cf. his note
Sur les fonctions elliptiques. Liouville’s Journal, Bd. XX, 1855.180
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422 VI. Representation of the motion of the top by elliptic functions.

the quantity l equal to
iπμ′

ω
. In particular, we note that a pure

ϑ-quotient (l = 0) represents, in any case, a doubly periodic function if
the argument sum of the numerator is equal to that of the denominator.

H e r m i t e*) later noted that one is led, particularly in mechani-
cal applications, to more general ϑ-quotients, between whose null and
singular points the given relation does not hold, and that it is worth
the effort to introduce these quotients as independent elements of the
theory. He bestowed them with the name, already used on page 415,
of elliptic functions of the second kind, and distinguished the purely
periodic functions from them as elliptic functions of the first kind. An
elliptic function of the second kind changes, if one lets the argument
t increase by a period, by a constant factor; it behaves, as we say,
m u l t i p l i c a t i v e l y.

The number of the ϑ-functions in the numerator (or the denomi-
nator) always gives the degree of the function. Thus the following
distinction obtains between elliptic functions of the first and second
kinds: there are no elliptic functions of the first kind and of the first
degree; in contrast, elliptic functions of the second kind and first degree
are very well possible.

If, namely, n = 1 for an elliptic function of the first kind, then
we would have only one null point in the period parallelogram, and,
because of the relation between the aν and bν , one coinciding singular
point. One could then cancel the ϑ-function in the numerator against
that in the denominator, so that the function must reduce to a constant.

This remark finds no application to elliptic functions of the second
kind, since for them the relation between the aν and bν does not ob-
tain. Functions of the first degree are naturally the simplest and most
important among the elliptic functions of the second kind. We now see
that

Our parameters α, β, γ, δ are, in the Hermite terminology, such
elliptic functions of the second kind and the first degree. The simplest
elements of the motion of the top in kinematic respects are also as
simple as possible in the analytical representation.

Not as simple—and on this directly depends the preeminence of our
parameters—are the explicit representations of the Euler angles ϕ, ψ, ϑ,

∗) In the work cited on page 151.
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§4. Representation of α, β, γ, δ by ϑ-quotients. 423

or, more correctly, their trigonometric functions.
We have already considered the function cosϑ = u(t) in the previ-

ous section. This function is, since it remains entirely unchanged for
the increase of its argument by the periods, an elliptic function of the
first kind, not of the first degree (doubly periodic functions of the first
degree are indeed, according to the above, not possible), but rather of
the second degree. In fact, one sees immediately that u(t) becomes
infinite and zero at two (different or coinciding) positions of the period
rectangle. The point u = 0 of the u-plane corresponds, namely, to two
different positions on the Riemann surface, one in the lower and one
in the upper sheet, and thus also to two different points in each period
rectangle of the t-plane. The position u = ∞, on the other hand, is a
branch point; its image in the t-plane (t = iω′) is thus to be counted
twice. Correspondingly, four ϑ-functions will appear in the representa-
tion of the function u(t), two in the numerator and two (equal to each
other, with argument t− iω′) in the denominator.

The matter is similar for the angle ψ. We first prefer, since the mul-
tipliers of the logarithmic singularities of ψ are, according to page 400,

± i
2
, to consider 2iψ instead of ψ. Thus we return to the multipliers ±1.

If we now go over to the corresponding exponential function e2iψ, then
we can show, just as for α, β, γ, δ, that this function is unbranched on
the Riemann surface and is thus single-valued in the t-plane. Its null
and singular points are known from the preceding. Since ψ becomes
logarithmically infinite for u = ±1, e2iψ vanishes on the Riemann sur-
face at these two positions on one of the two sheets, and will become
infinite to the first order on the other sheet.

The corresponding positions of the t-plane are the points ±ia and
±ib (or the equivalent positions). The null and singular points of ψ
are therefore distributed at these positions. Correspondingly, the an-
alytic representation will be composed of the ϑ-functions ϑ(t + ia),
ϑ(t − ia), ϑ(t+ ib), ϑ(t − ib), in the sense that two of these functions
appear in the numerator and two in the denominator. We therefore
have, in every case, an elliptic function of the second degree. From
the properties of the elliptic integral for ψ, it further follows that e2iψ

does not remain unchanged for a passage to another period rectangle of
the t-plane, but rather is multiplied by a factor that is independent of t.
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424 VI. Representation of the motion of the top by elliptic functions.

The quantity e2iψ therefore again represents an elliptic function of the
second kind.

If we consider that the angle ϕ behaves similarly to ψ, then we can
say in summary that

The trigonometric functions
cos ϑ, cos 2ψ + i sin 2ψ, cos 2ϕ+ i sin 2ϕ

of the Euler angles are not, as are our parameters α, β, γ, δ, elliptic
functions of the first degree, but rather of the second degree (and indeed
partly of the first, and partly of the second kind).

Moreover, we can also directly reduce the representation of the
named trigonometric functions to the representations of α, β, γ, δ by
ϑ-quotients. We need only compare, for this purpose, the schemata (7)
and (9) of pages 20 and 21. From the last horizontal or vertical rows
there follow, namely,

(8′)

⎧⎪⎨
⎪⎩

cos ϑ = αδ + βγ, sinϑ =
√
−4αβγδ,

e2iψ =
αβ

γδ
, e2iϕ =

αγ

βδ
.

With consideration of (8), we have before us in these equations the
explicit representation of the Euler angles as functions of time.

To conclude these considerations, we must append the determina-
tion of the constants ki and li in equations (8).

We first show that these constants may be reduced to one another
pairwise; we have, namely,

(9)

{
l4 = − l1, l3 = − l2,

k4 = k1, k3 = k2.

The two latter relations result in the following manner. We set t = 0
in (8) and first obtain, understanding by α0, β0, γ0, δ0 the initial values
of α, β, γ, δ,

(10)

⎧⎪⎪⎨
⎪⎪⎩
k1 = α0

ϑ(−iω′)
ϑ(−ia) , k2 = β0

ϑ(−iω′)
ϑ(−ω + ib)

, k3 = γ0
ϑ(+iω′)

ϑ(+ω − ib) ,

k4 = δ0
ϑ(+iω′)
ϑ(+ia)

.

We can express α0, β0, γ0, δ0, according to the definitions (8) of
page 21, in terms of the initial values ϑ0, ϕ0, ψ0 of the Euler angles.
Of these values, however, the quantities ϕ0 and ψ0 that give the initial
position of the X- and x-axes with respect to the line of nodes are
entirely arbitrary. In fact, the character of the motion in no way de-
pends upon how we orient the X-axis in the equatorial plane of the top
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and the x-axis in the horizontal plane. Without restriction of generality,
we can therefore let, for example, the X- and x-axes initially coincide
with the line of nodes; that is, take ϕ0 = ψ0 = 0.*) The cited equations
of page 21 then show, however, that α0 = δ0 and β0 = γ0. At the
same time, according to (10), with consideration that the appearing
ϑ-quotients now become pairwise equal, there follow, as claimed,

k1 = k4, k2 = k3.

We deduce the two first relations (9) from the fact that the products
αδ and βγ are easily assignable doubly periodic functions. We have
(again according to equations (8) of page 21)

(11) αδ =
u+ 1

2
, βγ =

u− 1
2

.

The two quantities on the right-hand side are, however, just like u itself,
doubly periodic functions.

We wish to give their representations by ϑ-functions. The quantity
u+ 1

2
vanishes if u = −1; that is, if t = ±ia. Similarly,

u− 1
2

vanishes

if u = +1; that is, if t = ±(ω − ib). Further,
u+ 1

2
and

u− 1
2

become

infinite if u = ∞; that is, if t = ±iω′. We now form the ϑ-quotients

ϑ(t+ ia)ϑ(t− ia)
ϑ(t+ iω′)ϑ(t− iω′)

and
ϑ(t+ ω − ib)ϑ(t− ω + ib)

ϑ(t+ iω′)ϑ(t− iω′)
.

These quotients are (since in both cases the argument sum of the nu-
merator is equal to that of the denominator), directly doubly periodic

functions with the same null and singular points as
u+ 1

2
and

u− 1
2

.

Our ϑ-quotients can differ from these expressions only by a constant.
We thus write

(12)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u+ 1

2
= k2 ϑ(t+ ia)ϑ(t− ia)

ϑ(t+ iω′)ϑ(t− iω′)
,

u− 1
2

= k′2
ϑ(t+ ω − ib)ϑ(t− ω + ib)

ϑ(t+ iω′)ϑ(t− iω′)
.

∗) If we would not make this simplifying assumption, then α, β, γ, δ would each
be burdened in the final formulas by a factor of absolute value 1; namely, with

e
i(ϕ0+ψ0)

2 , e
i(−ϕ0+ψ0)

2 , e
i(ϕ0−ψ0)

2 , e
i(−ϕ0−ψ0)

2 ,

respectively, which necessarily remain undetermined, and are irrelevant for all that
follows.
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426 VI. Representation of the motion of the top by elliptic functions.

The constants k2 and k′2 introduced here follow easily if we set, for
example, t = ω+ib and correspondingly u = +1 in the first of equations
(12), and t = ia and u = −1 in the second. We then obtain, namely,

(13)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
k2 =

ϑ(ω + iω′ + ib)ϑ(ω − iω′ + ib)
ϑ(ω + ia+ ib)ϑ(ω − ia+ ib)

,

k′2 =
ϑ(ia+ iω′)ϑ(ia− iω′)

ϑ(ω + ia+ ib)ϑ(ω − ia+ ib)
.

We now enter these values of
u+ 1

2
and

u− 1
2

in (11) and insert,

at the same time, the expressions for αδ and βγ that result from (8).
The ϑ-quotients that depend on t then cancel, and we obtain

k1k4e
(l1+l4)t = k2,

k2k3e
(l2+l3)t = k′2.

Thus
l1 + l4 = 0, l2 + l3 = 0,

k1k4 = k2, k2k3 = k′2.

The first row yields the affirmation of the claim stated in equations
(9). The second row gives, with consideration of these same equations,

(14) k1 = k4 = k, k2 = k3 = k′.

The determination of the constants ki is thus accomplished; it remains
only to say a word about the signs with which the square roots in k
and k′ should be calculated. These signs follow from the initial values

of α, β, γ, δ. Since ϕ0 and ψ0 were taken as equal to zero and
ϑ0

2
signifies in every case an acute angle, cos

ϑ0

2
and sin

ϑ0

2
are positive

quantities; thus α0 becomes, according to the defining equations for α,
β, γ, δ on page 21, positive real, and β0 positive imaginary. The signs
of k and k′ are therefore to be chosen so that for t = 0 a positive value
of α and a positive imaginary value of β result from equations (8) on
page 420. If one now considers that, understanding by τ a positive
real number < 2ω′, ϑ(+iτ) is positive imaginary, ϑ(−iτ) is negative
imaginary, ϑ(ω± iτ) is positive real, and ϑ(−ω± iτ) is negative real, as
is easily concluded from the series (3), one recognizes that k and k′ are
both real, and that k is to be calculated with a positive sign and k′ with
a negative sign. One should keep this determination of sign in mind in
the following, where we will not explicitly return to it.
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§4. Representation of α, β, γ, δ by ϑ-quotients. 427

Finally, we have still to find the common values of the constants l1
and −l4, and l2 and −l3.

For this purpose, we differentiate the first of equations (8) logarith-
mically with respect to t and find

(15) l1 =
d log α
dt

− ϑ′(t− ia)
ϑ(t− ia) +

ϑ′(t− iω′)
ϑ(t− iω′)

.

We set here for t any particular value, say t = ia. Then the first two
terms on the right-hand side cancel, as we immediately verify, and there
follows

(16) l1 =
ϑ′(ia− iω′)
ϑ(ia− iω′)

.

For t = ia, namely, u = −1, and so we have, according to Taylor’s
theorem,

(17) u+ 1 = c(t− ia) + · · · , c =
(
du

dt

)
t=ia

.

We write, further,
d log α
dt

=
d log α
du

· du
dt
.

According to page 402, however,
d log α
du

=
1

u+ 1
for u = −1, up to terms that vanish with u + 1. We thus have, with
consideration of (17),(d log α

dt

)
t=ia

=
1

u+ 1

(du
dt

)
t=ia

=
c

u+ 1
=

1
t− ia .

At the same time, since the ϑ-function is an odd function of its argu-
ment that vanishes with its argument to the first order,(ϑ′(t− ia)

ϑ(t− ia)
)

t=ia
=

1
t− ia ,

once more up to terms that vanish with t−ia or u+1. The two singular
first terms in equation (15) therefore cancel, in fact, for t = ia, and
there results for l1 the simple value given in (16).

In an entirely corresponding manner one finds for l2 the value

(16′) l2 =
ϑ′(ω − ib− iω′)
ϑ(ω − ib− iω′)

.

The quantities li determined in this manner are, as one is easily
convinced, all purely imaginary. From the defining equation (3) of
the ϑ-function it follows, namely, that this function is itself purely
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428 VI. Representation of the motion of the top by elliptic functions.

imaginary for a purely imaginary argument, and that, at the same time,
its differential quotient becomes real. The same occurs, as is likewise
evident from equation (3), if the real part of the argument (as in the
expression for l2) is equal to −ω. We thus write, in that we understand
by l and l′ two real quantities, l1 = il, l2 = il′.

The complete tabulation of the constants li and ki, through which
our latter results are summarized, is now

(18)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 = k, k2 = k′, k3 = k′, k4 = k

l1 = il, l2 = il′, l3 = − il′, l4 = − il

k2 =
ϑ(ω+iω′+ib)ϑ(ω−iω′+ib)
ϑ(ω+ia+ib)ϑ(ω−ia+ib)

, k′2 =
ϑ(ia+iω′)ϑ(ia−iω′)

ϑ(ω+ia+ib)ϑ(ω−ia+ib)

l = i
ϑ′(iω′ − ia)
ϑ(iω′ − ia) , l′ = i

ϑ′(iω′ − ω + ib)
ϑ(iω′ − ω + ib)

.

If we insert these values of the constants into the formulas (8) of
page 420, then our parameters α, β, γ, δ are represented in a very
transparent manner as functions of t.

With respect to the constants of the problem, one can take a twofold
standpoint.

First, one can regard, as was always done in the previous develop-
ments, the quantities that give the initial position, initial motion, and
the mass distribution of the top as the fundamental constants of the
problem. These were the quantities e, n, N , P , and A, where, however,
as one easily recognizes, only the ratio n : N : P : A is of importance
for the latter four quantities. These four quantities therefore represent,
together with e, only four essential numerical data. We wish to call
these four data the “elementary constants of the problem.” From this
first standpoint one must, before one can apply our final formulas, cal-
culate from the elementary constants the values of the integral of the
first kind denoted by ω, ω′, a, and b, for which appropriate methods
are developed in the fourth chapter.

Second, however, one can also regard these four integral values as the
fundamental characteristic data of the spherical top, and can prescribe
these four quantities in an entirely arbitrary manner. We call these
four quantities concisely the “transcendental constants of the problem.”
From this second standpoint, the knowledge of the elementary con-
stants is superfluous for the command of the motion, since only the
given transcendental constants are present in the final formulas. More-
over, those constants may be calculated from these at any time with
the help of the ϑ-series.
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The elementary constants are indeed more natural in geometric and
mechanical respects. Nevertheless, the preference for the transcenden-
tal constants brings with it, in analytical respects, the advantages of
greater symmetry and simplicity, so that we would designate, of the two
named standpoints, the second as the higher and analytically more sat-
isfying. It will, in particular, be decisive for us in the later sections of
this chapter.

In conclusion, a few historical notes.
J a c o b i*) was the first to consider the representation of the motion

of the heavy top in terms of elliptic functions. It was not given to
him, however, to publish his results. In the literature, the subject
was treated for the first time after the manner of J a c o b i by L o t -
t n e r**), who also edited the relevant part of Jacobi’s posthumous
papers.181 Both authors begin by expressing the nine direction cosines
between the axes of the moving frame and axes of fixed frame in terms
of ϑ-functions.***) We have the representation of the nine direction
cosines, on the basis of our representation of the parameters α, β, γ, δ,
directly in hand. We need only insert the values of the latter into the
schema (9) of page 21, so that elliptic functions of the second kind and
the second degree would result, and separate the real and imaginary
parts. Since this procedure, however, would signify a passage from
the simpler to the more complex, we can with good reason forgo its
execution.

Mr. W. H e s†) comes quite close to the introduction of our para-
meters α, β, γ, δ in his work “Über das Gyroskop.” Toward the end of
this work is found, as a result of a rather extensive calculation associ-
ated with the Lottner representation, the remark that the “elements of
the Euler rotation,” which in our notation are the quaternion quantities

A =
β + γ

2i
, B =

−β + γ

2
, C =

α− δ
2i

, D =
α+ δ

2
,

∗) Nouvelle théorie de la rotation d’un corps de révolution grave etc. and Sur la
rotation d’un corp etc. Ges. W. Bd. II, pp. 477 and 493.

∗∗) Reduktion eines schweren, um einen festen Punkt rotierenden Revolutions-
körpers auf die elliptischen Transcendenten, Crelle’s Journ. Bd. 50, 1855.
∗∗∗) More precisely, Jacobi and Lottner considered two coordinate frames that ro-

tate relative to the named frames with uniform velocity about the Z- and z-axes,
respectively. The introduction of these coordinate frames corresponds partly to the
reduction of the heavy symmetric top to the spherical top, and partly to the sepa-
ration of a precessional component from the purely periodic nutational component
of the motion.

†) Math. Annalen Bd. 29, 1887, cf., in particular, the last two pages.
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430 VI. Representation of the motion of the top by elliptic functions.

exhibit a simpler aspect than the direction cosines considered by Ja-
cobi and Lottner, “in that the former each depend on only one con-
stant parameter, while the latter, in contrast, depend on two”; that is,
in our terminology, the former are in essence elliptic functions of the
first degree, while the latter are elliptic functions of the second degree.
However, the author draws no further consequences from this remark;
the quaternions appear there only incidentally, and in no way appear
as the basis of the theory.

§5. The trajectory of the apex of the top, the polhode and
herpolhode curves, etc., represented by ϑ-quotients.

The formulas given in the preceding section implicitly contain the
answers to all questions that concern the motion of the top. A further
treatment can only explicitly emphasize the consequences of the general
analytic representation with respect to a few particular points.

We have previously directed our main interest to the depiction of
the “trajectory.” We thus wish to ask again here for the trajectory
of the apex of the top. We will see that its equation emerges very
elegantly with the help of the ϑ-functions.

We must first reconsider the geometric function-theoretical methods
of the first chapter (cf. §3 of the same).

We considered there (cf. page 29) two commonly situated unit
spheres with centers at O, one fixed in space and one fixed in the top,
that were, in the Riemannian sense, bearers of the complex variables
λ and Λ. The variable λ that was assigned to the points of the unit
sphere fixed in space is associated with the rectangular coordinates xyz
of those points through the equation (cf. page 28, equation (11))

(1) λ =
x+ iy

1− z .
In the same manner, the relation between the variable Λ and the

rectangular coordinates XY Z of the points of the unit sphere fixed in
the top is

(1′) Λ =
X + iY

1− Z .

Finally, however, the simple relation

(2) λ =
αΛ + β

γΛ + δ
obtains between the variables λ and Λ that correspond to two mo-
mentarily coinciding points of the spheres. The coefficients α, β, γ, δ
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§5. The trajectory of the apex of the top, etc. 431

are the same quantities that we represented as functions of time in the
preceding section.

In order to obtain the trajectory of the apex of the top, we substitute

in (1′) the coordinates X = 0, Y = 0, Z = +
√

1−X2 − Y 2 of the apex
of the top, so that Λ = ∞. Because of this value, equation (2) becomes

λ =
α

γ
.

We insert here the values of α and γ from the previous section, and
first obtain

λ =
k

k′
ei(l+l′)t ϑ(t− ia)

ϑ(t+ ω − ib)
ϑ(t+ iω′)
ϑ(t− iω′)

.

If we consider the functional equations of the ϑ-function, then we can
set

(3)
ϑ(t+ iω′)
ϑ(t− iω′)

= −e−
iπt
ω ,

k2

k′2
=
ϑ2(ω − iω′ + ib)
ϑ2(ia− iω′)

e
− iπ

ω (ω+ib−ia)
.

Thus, for the correct determination of the signs (cf. page 426 above),

(4)

⎧⎪⎪⎨
⎪⎪⎩

λ = KeiLt ϑ(t− ia)
ϑ(t+ ω − ib) ;

K =
ϑ(ω − iω′ + ib)
ϑ(ia− iω′)

e
− iπ

2ω (ω+ib−ia)
, L = l + l′ − π

ω
.

This is the desired equation of the trajectory. As we see, the trajec-
tory of the apex of the top is again determined by an elliptic function
of the second kind and the first degree.

In order to understand the simple geometric meaning of our manner
of representation, we recall the geometric meaning of the complex vari-
able λ. We referred the unit sphere, whose points were distinguished
through the variable λ, to its equatorial plane by means of the stere-
ographic projection from the north pole. The quantity λ was then
the complex value that the stereographic image of an individual point
of the sphere receives according to the usual Gau sian interpretation
of complex quantities. We need only resolve λ into real and imaginary
parts in order to obtain the rectangular coordinates of the stereographic
image point in the equatorial plane.

Equation (4) thus directly provides the plane stereographic image
of the spatial trajectory; it can immediately serve as the basis for the
graphical representation of the trajectory in the stereographic projection.
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432 VI. Representation of the motion of the top by elliptic functions.

We further recall (cf. page 207) that the stereographic projection
has, for the purpose of depiction, certain advantages over the other-
wise common orthographic projection. It is pleasing that our analytic
representation of the trajectory conforms directly with the practical
requirements of depiction.

We next compare with the representation of the trajectory that
corresponds to the orthographic projection onto the equatorial plane.

We arrive at this representation if we ask for the rectangular coor-
dinates x, y, z of the apex of the top in space; if we disregard the third
coordinate z, the two remaining coordinates determine the desired or-
thographic projection. Moreover, it is recommended to go over from x
and y to the complex combination ξ = x + iy (or η = x − iy) in the
sense of page 20, and therefore establish the orthographic projection,
like the previous stereographic, in terms of a complex variable in the
equatorial plane.

Now the coordinates of the apex of the top in the XY Z frame
fixed in the top are X = Y = 0, Z = 1. The corresponding complex
combinations defined on page 20 therefore become Ξ = H = 0, Z = −1.
We extract the desired value of ξ, expressed in terms of our α, β, γ, δ,
from the schema (9) on page 21; it is

ξ = −2αβ.

If we insert here the values of α and β, then we obtain

(5) ξ = KeiLtϑ(t− ia)ϑ(t− ω + ib)
ϑ2(t− iω′)

, K = −2kk′, L = l + l′

as the equation of the trajectory in the orthographic projection. This
representation is evidently inferior to the previous in simplicity. The
trajectory in the orthographic projection is determined by an elliptic
function of the second kind and the second degree, while it is given in
the stereographic projection by an elliptic function of the first degree, a
simple ϑ-quotient.

That this circumstance is not to be undervalued will become clear
in the following section, when we turn to the numerical calculation of
the trajectory. Since we have need in (5) of four (or three different)
ϑ-values, and in (4) of only two such values, the calculation of the
orthographic projection of the trajectory requires nearly twice the work
of the calculation of the stereographic projection.

The representation (5) was chosen by H e r m i t e for the treatment
of the spherical pendulum in his work cited on page 151.
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§5. The trajectory of the apex of the top, etc. 433

Moreover, we chose not the north pole of the fixed unit sphere as the
center of projection for the stereographic images in the series of figures
in Chap. IV, but rather the south pole. This is always recommended if
the trajectory runs completely or primarily in the northern hemisphere,
since the stereographic image otherwise appears excessively enlarged
and distorted. We can, however, easily go over from one projection to
the other. We achieve this geometrically through a so-called inversion of
the unit circle in the xy-plane; this corresponds analytically to replacing
the value of the complex variable λ by the conjugate reciprocal value
1 : λ. If we make this transformation in equation (4), there results for
the stereographic projection from the south pole the representation

(4′)

⎧⎪⎪⎨
⎪⎪⎩

λ = KeiLtϑ(t+ ω + ib)
ϑ(t+ ia)

;

K =
ϑ(iω′ − ia)

ϑ(ω + iω′ − ib)e
− iπ

2ω (ω−ib+ia)
, L = l + l′ − π

ω
.

Without the least effort, we can now also give the trajectory that an
entirely arbitrary point of the top describes during the motion. We wish
to assume, for the sake of brevity, that the relevant point has distance
1 from O, so that it always coincides with a point of the moving sphere.
(In other cases, we need only multiply the formula to be given by the
distance of the point from O.) We then characterize the position of
our point on the moving sphere by the complex value Λ = Λ0 in the
previously described manner. The variable position of the point in
space—that is, the desired trajectory or its plane image obtained by
the stereographic projection from the north pole—will then be given,
according to equation (2), by

(6) λ =
αΛ0 + β

γΛ0 + δ
.

The expressions contained in (6) for arbitrary Λ0 are no longer direct
elliptic functions of the first or second kind, but only linear combina-
tions of such functions. —

The preceding developments are at first valid, as are all the results
of this chapter, only for the case of the spherical top. We can, however,
very easily go over, according to §5 of the fourth chapter, to a symmetric
top that has the same equatorial moment of inertia A as the spherical
top and an arbitrary moment of inertia C; this will actually be carried
out for the equations of the trajectory.
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434 VI. Representation of the motion of the top by elliptic functions.

For this purpose, we must increase, according to page 234, the ve-
locity coordinate ϕ′ of the spherical top by the constant quantity

N

(
1
C
− 1
A

)
,

which we wish to denote by c, while ϑ and ψ remain unchanged. The
corresponding changes of α, β, γ, δ (cf. the original definition of these
quantities on page 21) consist in multiplying

(7)

⎧⎪⎨
⎪⎩

α β γ δ

by e
+

ic
2 t

e
− ic

2 t
e
+

ic
2 t

e
− ic

2 t
.

As a result, the equation for the trajectory of a point Λ0 of the sym-
metric top is

λ =
αeictΛ0 + β

γeictΛ0 + δ
,

where α, β, γ, δ signify the values of these parameters for the spherical
top. In particular, exactly the same equation results for the trajectory
of the apex (Λ0 = ∞) of the symmetric top as for the spherical top—as
is self-evident according to §5 of the fourth chapter. —

We now proceed to derive, in a similar manner, the equations of the
polhode and herpolhode curves of the spherical top; that is, the curves
that the endpoint of the rotation vector describes in the body and in
space. We denote the coordinates of this point, as previously, by

p, q, r or π, κ, 
,

according to whether we refer it to the coordinate frame fixed in space
or in the top. The third coordinates r and 
 are naturally constant for
the spherical top, since they result from impulse components N and
n through division by the moment of inertia A. We join the first two
coordinates into the complex combinations p+iq, π+iκ; the expressions
for these quantities and for r and 
 in terms of α, β, γ, δ are, according
to equations (5) and (6) of pages 43 and 44,

(8)

⎧⎪⎨
⎪⎩
p+ iq = 2i

(
+β

dδ

dt
− δdβ

dt

)
,

−r = 2i
(
−αdδ

dt
+ γ

dβ

dt

)
.
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§5. The trajectory of the apex of the top, etc. 435

(8′)

⎧⎪⎨
⎪⎩
π + iκ = 2i

(
+β

dα

dt
− αdβ

dt

)
,

−
 = 2i
(
+ δ

dα

dt
− γ dβ

dt

)
.

If we insert here the values of α, β, γ, δ, then we have before us the
explicit representation of the coordinates of the polhode and herpolhode
curves. The first two equations, considered in themselves, yield the
orthographic projection of the polhode curve onto the equatorial plane
of the top or the orthographic projection of the herpolhode curve onto
the horizontal plane. The two last equations determine, at the same
time, the height at which our curves run above the equatorial plane or
the horizontal plane.

We wish to show that the preceding equations simplify in a very
noteworthy manner. We consider, for example, p+ iq.

We write

(9) p+ iq = 2iβδΘ,

and first convince ourselves that the quantity

Θ =
d log δ
dt

− d log β
dt

is a doubly periodic function of the second degree. We note in general,
namely, that the function

d log ϑ(t− t0)
dt

,

according to the functional equations of the ϑ-function, remains entirely

unchanged or is increased additively by − πi
ω

if we add 2ω or 2iω′ to its

argument. Thus the difference of two such functions is, in every case,
a doubly periodic function. From such differences and constant terms,
however, is composed our quantity Θ.

The explicit expression for Θ may, as a result of equations (8) and
(18) of the previous section, be written after a few easy reductions as

Θ = − ϑ′(ia− iω′)
ϑ(ia− iω′)

+
ϑ′(ω + ib− iω′)
ϑ(ω + ib− iω′)

+
ϑ′(t+ ia)
ϑ(t+ ia)

− ϑ′(t− ω + ib)
ϑ(t− ω + ib)

.

The singular points of Θ in the period rectangle are thus evidently
t = −ia and t = ω − ib. Further, the null points become

t = −iω′ and t = ω + iω′ − ia− ib;
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436 VI. Representation of the motion of the top by elliptic functions.

in the former case, namely, the first and second terms cancel the third
and fourth, and in the latter case the first and second terms cancel the
fourth and third.

Thus we can also give our quantity Θ the form

(10) Θ = C
ϑ(t+ iω′)ϑ(t− ω − iω′ + ia+ ib)

ϑ(t+ ia)ϑ(t− ω + ib)
;

the expression on the right-hand side is, since the argument sum of
the numerator is equal to that of the denominator, a doubly periodic
function with the same null and singular points as Θ. The additional
quantity C is a constant.

Equation (9) now takes the simple form

(11) p+ iq = Kei(l
′−l)t ϑ(t− ω − iω′ + ia+ ib)

ϑ(t− iω′)
.

In order to determine the constant K, in which the previously used and
still unknown quantity C enters, we compare the values of p+ iq from
(11) and (8) for an appropriately chosen point of time t. We have, for
example, for t = −ia,

δ = 0,
dδ

dt
= ke−la ϑ′(0)

ϑ(− ia+ iω′)
, β = k′el

′aϑ(ia+ ω − ib)
ϑ(ia+ iω′)

;

therefore, according to (8),

p+ iq = 2ikk′e(l
′−l)a ϑ′(0)ϑ(ia + ω − ib)

ϑ(− ia+ iω′)ϑ(ia+ iω′)
;

on the other hand, there follows from (11)

p+ iq = Ke(l
′−l)a ϑ(+ω + iω′ − ib)

ϑ(ia+ iω′)
;

thus

K = 2ikk′
ϑ′(0)ϑ(ia + ω − ib)

ϑ(− ia+ iω′)ϑ(ω + iω′ − ib) .
If we insert, finally, the values of k and k′ from equations (18) on page
428, then we obtain simply

(11′) K =
−2ϑ′(0)

ϑ(ω + ia+ ib)
e

π(a+b)
2ω .

The polhode curve is represented in orthographic projection by
equations (11) and (11′). We particularly emphasize the simplicity
of this representation;

The complex variable that determines the perpendicular projection of
the rotation vector onto the equatorial plane of the top is again directly
an elliptic function of the second kind and the first degree.

436



§5. The trajectory of the apex of the top, etc. 437

In order to express the constant third component r =
N

A
in terms of

our transcendental constants ω, ω′, a, and b, we can insert a particular
value of t in equation (8). We choose, for example, t = ω + ib, so that
γ = 0 and (because αδ − βγ = 1) αδ = 1. There follows

−r = −2iαδ
d log δ
dt

= −2i
d log δ
dt

= 2i
(
il − ϑ′(ω + ia+ ib)

ϑ(ω + ia+ ib)
+
ϑ′(ω + iω′ + ib)
ϑ(ω + iω′ + ib)

)
,

and therefore, if we insert the value of l,

(12) −r = 2i
(
−ϑ

′(iω′ − ia)
ϑ(iω′ − ia) +

ϑ′(ω + iω′ + ib)
ϑ(ω + iω′ + ib)

− ϑ′(ω + ia+ ib)
ϑ(ω + ia+ ib)

)
.

We can immediately extract the corresponding representation of the
herpolhode curve from the preceding equations for the polhode curve.
We obtain, according to page 44, the coordinates −π, −κ, −
 from the
coordinates p, q, r if we exchange α and δ and reverse the signs of β
and γ.

We can effect this exchange and change of sign, however, as a precise
inspection of equations (8) and (18) of the previous section shows,

simply by writing −a instead of +a, so that −l goes over into l − π

ω
.

We can thus write the equations of the herpolhode curve as

(13) π + iκ = K ′e
i(l+l′−π

ω )t ϑ(t− ω − iω′ − ia+ ib)
ϑ(t− iω′)

,

(13′) K ′ =
2ϑ′(0)

ϑ(ω − ia+ ib)
e

π(b−a)
2ω ,

(14) −
 = 2i
(ϑ′(iω′+ia)
ϑ(iω′+ia)

− ϑ′(ω+iω′+ib)
ϑ(ω+iω′+ib)

+
ϑ′(ω−ia+ib)
ϑ(ω−ia+ib)

)
.

We also arrive at the same equations from the principle developed
on page 238, according to which we need only replace, in order to go
over from the polhode curve to the herpolhode curve, the values of n
and N by −N and −n, and reverse the signs of the coordinates. If we
do this, then the inequality

N > n > 0,
that was assumed until now as the basis of the representation of α, β,
γ, δ by ϑ-quotients is changed, in the sense that for the values N = −n,
n = −N the condition is

0 > N > n.

The distribution of the logarithmic singular points of α, β, γ, δ at the

437



438 VI. Representation of the motion of the top by elliptic functions.

points ±1 of the Riemann surface in this case was represented in Fig.
61b. We see from this figure that the null points of β and γ are not
changed by the named exchange, but that those of α and δ—that is,
the positions ±ia of the t-plane—are interchanged. We therefore again
have the sign reversal of a, and thus the passage from (11), (12) to
(13), (14).

The preceding equations can also serve immediately for the repre-
sentation of the impulse curves; that is, the curves that the endpoint of
the impulse vector describes in space and in the body. Since, namely,
the latter curves for the spherical top are geometrically similar to the
curves of the polhode and the herpolhode, we need only multiply equa-
tions (11), (12), (13), and (14) on the right-hand sides by the value of
the moment of inertia A in order to obtain the representation of the im-
pulse coordinates L+iM , N , l+im, n. We thus state the summarizing
theorem that

The polhode, herpolhode, and impulse curves for the spherical top
may all be calculated in terms of elliptic functions of the second kind
and the first degree.

This result also remains valid for the passage to the symmetric top,
in so far as it refers to the impulse curve and the polhode curve.

We can, namely, derive the polhode curve of the symmetric top from
that of the spherical top if we multiply the parameters α, β, γ, δ in the
first of equations (8) by the factors given in (7). Correspondingly, we
must insert

e
− ic

2 t
(dβ
dt
− ic

2
β
)

and e
− ic

2 t
(dδ
dt
− ic

2
δ
)

for
dβ

dt
and

dδ

dt
, respectively, understanding by β, δ,

dβ

dt
,
dδ

dt
the values

of these quantities for the spherical top. Since the additional terms
− ic

2
β and − ic

2
δ cancel in the difference on the right-hand of (8), we

need only multiply the right-hand side of (11) by the factor e−ict to
obtain the quantity p + iq for the symmetric top. This quantity will
therefore likewise be given by an elliptic function of the first degree.

The coordinates of the impulse curve that represents the locus of the
impulse endpoint in the body differ from the coordinates of the polhode
curve only by the constant factors of the moments of inertia. This
curve will therefore be described, in essence, by the same equations as
the polhode curve.

438



§5. The trajectory of the apex of the top, etc. 439

As for the trajectory of the impulse endpoint in space, this curve for
the symmetric top is not at all different from the same curve for the
spherical top. In fact, we saw in Chap. IV, §5 that this curve is exactly
the same for all tops of the series considered there. Equations (13) and
(14) thus directly give (after multiplication by A) the impulse curve in
question for a symmetric top whose one moment of inertia A is equal
to that of our spherical top, and whose other moment of inertia C is
arbitrary.

Less simple is the representation of the herpolhode curve for the
symmetric top. In order to make use here of the preceding calculations,
we express, in the generally valid equation (8′), the parameters α, β, γ,
δ of the symmetric top in terms of those of the spherical top according
to the table (7), and obtain

π + iκ = 2i
(
α
dβ

dt
− βdα

dt

)
+ 2cαβ.

We have brought the first term on the right to its simplest form in
equation (13) above. In the second term, we insert the known values of
α and β, and denote the multiplicative constant concisely by K. Then

π+iκ = ei(l+l
′)t
(
K ′e

− iπtω ϑ(t−ω−iω′−ia+ib)
ϑ(t− iω′)

+K
ϑ(t−ia)ϑ(t−ω+ib)

ϑ2(t− iω′)

)
,

or

(15)

⎧⎨
⎩

π + iκ =

ei(l+l
′)t ϑ(t−ia)ϑ(t−ω+ib)

ϑ2(t−iω′)

(
K+K ′e

− iπtω ϑ(t−iω′)ϑ(t−ω−iω′−ia+ib)
ϑ(t−ia)(t−ω+ib)

)
.

We claim that this expression can once again be written as a
ϑ-quotient, where, however, two ϑ-functions appear in the numera-
tor and two in the denominator. There first follows from the functional
equations of the ϑ-function that the quantity in the parentheses is com-
pletely unchanged through the increase of t by one of the periods 2ω or
2iω′. This quantity is therefore an elliptic function of the first kind and
the second degree, with the singular points t = ia and t = ω− ib. Such
a function necessarily has, as mentioned on page 421, two null points
in the single period rectangle, which we denote by c1 and c2, and can
be represented by the ϑ-quotient

K1
ϑ(t− c1)ϑ(t− c2)

ϑ(t− ia)ϑ(t− ω + ib)
.

But if we insert this value into the parentheses of (15), there follows,
in fact,

(16) π + iκ = K1e
i(l+l′)t ϑ(t− c1)ϑ(t− c2)

ϑ2(t− iω′)
.
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440 VI. Representation of the motion of the top by elliptic functions.

We do not wish to enter into the precise determination of c1, c2,
and K1. We only state that

The horizontal projection of the herpolhode curve for the symmetric
top is given by an elliptic function of the second kind and the second
degree.*)

In a similar manner, we can determine, starting from the second
of equations (8), the vertical projection 
 of the herpolhode curve. We
find for this projection an elliptic function of the first kind and second
degree; namely, a linear function of the doubly periodic quantity cosϑ =
u(t), as already follows from equation (2) of page 235. —

In conclusion, a remark of more general content. We are repeat-
edly led, in the preceding, to elliptic curves of the second kind. Such
curves appear not only for the heavy symmetric top, but also for the
force-free asymmetric top (cf. §8 of this chapter) and for numerous
other geometric and mechanical problems (the spherical catenary, the
so-called elastic curves, etc., etc.). They form a large class among the
related transcendental curves, which, in geometric respects, and also
particularly with regard to applications, are not inferior in interest to
algebraic curves. It would thus be well worth the labor to construct a
geometric theory of these transcendental curves, from the same points
of view that are decisive for the theory of algebraic curves. One would
then have, for example, to investigate the possible singularities of such
curves, to explore the intersection point theorems, to discuss the form
relations, etc. Our elliptic curves of the first degree would naturally
play a particularly important role in this theory. Without question, this
geometric research would open a field with the promise of beautiful and
relatively easy results.

§6. Numerical calculation of the motion by ϑ-series.

One of the final goals that we must always bear in mind for every
problem in mechanics is this: to command the motion to the extent
that the position of the moving system can be determined numeri-
cally at each instant. It is shown in this section that this goal is

∗) Should it not also be possible to represent this curve, which indeed, according
to page 235, runs on a certain sphere, by an elliptic function of the first degree, in
that one projects it stereographically onto the equatorial plane of this sphere, and
asks for the equation for the complex variable of the stereographic image point?
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§6. Numerical calculation of the trajectory. 441

conveniently attained through the preceding theory. The procedure to
be pursued may first be sketched in general.

If any real top is given, the first step consists in seeking, by ex-
periment or calculation, to establish its mass distribution; that is, the
values of A, C, and P with respect to the support point.

We must then know the initial position and the initial motion of
the top. The initial position is sufficiently described by the inclination
angle ϑ0 of the figure axis with respect to the vertical; we will take
the initial values of the angles ϕ and ψ, which are irrelevant for the
character of the motion, directly equal to zero, as on page 425.

We best characterize the initial motion by the position and magni-
tude of the impulse vector. If we permit ourselves the agreed simplifica-
tion on page 199 sub 4 that the impulse initially lies in the same vertical
plane that contains the figure axis, then our vector is established by its
two components n and N . We then know, at the same time, that the
parallel circle u = cos ϑ0 = e must be one of the bounding circles for
the trajectory, and that the apex of the top must initially progress in
the horizontal direction.

With the constants n, N , and e, we form the quadratic equation
U1 = 0 of page 240, whose roots define the second bounding circle e′,
as well as the quantity e′′.

We are now in a position to exploit the Legendre theory of elliptic
integrals and the Legendre tables for our purpose. We calculate, above
all, the Legendre modulus k, the complementary modulus k′, and the
auxiliary quantities M , ϕa, and ϕb of page 264. We then look up the

values of F
(
k,
π

2

)
and F

(
k′,

π

2

)
in Table I of Legendre, and the values

of F (k′, ϕa) and F (k′, ϕb) in Table IX. The values of ω, ω′, a, and b
follow through multiplication by M . The motion of the apex of the
top and the motion of the impulse endpoint in space are just as com-
pletely determined by these latter transcendental constants as by the
original constants A, C, P , n, N , e. In fact, we by no means need,
for the calculation of the named trajectory and impulse curves, to at-
tend any longer to the mass distribution of the top, its initial motion,
or its initial position. Our entire exercise consists in the calculation
of certain ϑ-series, in whose coefficients the quantities ω and ω′ en-
ter, and in whose argument, moreover, the quantities a and b enter.
The schema according to which we must calculate is the same for all
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442 VI. Representation of the motion of the top by elliptic functions.

tops and for all motions of the top. The entire multiplicity of the
forms of motion depends solely on the variety of the values of the four
transcendental constants that are inserted into our schema.

(We need return to the values of the original constants only if we
wish to calculate further, for example, the direct values of α, β, γ, δ
for the symmetric top, the trajectory of a point different from the apex
of the top, or the polhode and herpolhode curves, in whose equations

the quantity N
( 1
C
− 1
A

)
is present.)

The consideration of the greatest possible convenience of the calcu-
lation can dispose us, however, to modify our procedure under certain
circumstances. We note that the ϑ-series

(1) ϑ(t) = 2q1/4 sin s− 2q9/4 sin 3s+ 2q25/4 sin 5s− · · · ,

(2) q = e
−ω′π

ω , s =
tπ

2ω

of page 418 converges faster as q is smaller, and therefore as the ra-

tio
ω′

ω
is larger. In particular, the calculation is more convenient in

a period rectangle of greater height than breadth (ω′ > ω) than in a
period rectangle of greater breadth than height (ω > ω′). It is there-
fore important to know a transformation of the ϑ-function that always
permits the reduction of the latter case to the former.

One is led to the intended transformation if one convinces oneself
that the ϑ-function ϑ(t, ω, ω′) takes on exactly the same factor, for an
increase of the argument t by multiples of the periods, as the prod-

uct of the ϑ-function ϑ(it, ω′, ω) and the exponential quantity e
− πt2

4ωω′ .
Since the ϑ-function, according to page 419, is determined up to a
t-independent factor by its behavior for the increase of its argument by
multiples of the periods, one concludes that the ϑ-function ϑ(t, ω, ω′)
must be equal to the named product up to a multiplicative constant.
We will not enter here into the determination of this constant, which
causes some complications. The definitive formula is

(3) ϑ(t, ω, ω′) = −i
√
ω

ω′ e
− πt2

4ωω′
ϑ(it, ω′, ω).

The ϑ-function on the right-hand side is evidently to be calculated
by the series
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(4) ϑ(it, ω′, ω) = 2q′1/4 sin s′ − 2q′9/4 sin 3s′ + 2q′25/4 sin 5s′ − · · · ,

(5) q′ = e
−ωπ

ω′
, s =

itπ

2ω′ .

The usefulness of formula (3) is evident. If we must calculate a
ϑ-function ϑ(t, ω, ω′) in which ω > ω′, and thus q is a relatively large
quantity, we will first calculate the series ϑ(it, ω′, ω), which, because
q′ < q, will converge better. Equation (3) then permits us to return to
the originally desired ϑ-function with light labor.

That the equation in question has, in addition to this practical in-
terest, a more general theoretical interest in the subject of the trans-
formations of ϑ-functions, may only be mentioned briefly here.

It can occur, however, that the depicted advantage that lies in the
diminishment of q will be partly offset by the possible enlargement
of the trigonometric functions in the ϑ-series. In fact, the factor i is
introduced into the argument of the sine function in the passage to
the function ϑ(it, ω′, ω), which can, especially for real t, degrade the
convergence considerably. The advantages and disadvantages of the
transformation (3) are thus to be weighed against one another in an
individual case.

Partly in order to illustrate the rapidity with which the ϑ-series
converge, and partly in order to prepare for the working through of an
example, we now wish to form a judgment of how many terms of the
ϑ-series we must consider for our purpose. This naturally depends on
the precision that we wish to achieve.

In our case, there would be no purpose in driving the precision as
far, for example, as is usual in the mechanical problems of astron-
omy. In fact, the execution of a numerical example can serve only
one of two goals: to enliven the geometric conception of the mechan-
ical processes through the drawing of a quantitatively correct figure,
or to compare the theoretically found process of the motion with ex-
periments. In the former case, a moderate precision obviously suffices,
since the drawing can be executed with only relatively little precision.
In the latter case, it is to be remarked that experimental phenomena
will be distorted by secondary circumstances—particularly by frictional
processes—to the extent that a precise agreement with the abstract
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444 VI. Representation of the motion of the top by elliptic functions.

theory is generally not to be expected. A precision of
1

1000
, for ex-

ample, will therefore suffice in our case; we will correspondingly allow
1

1000
of the total value as the permissible error bound; that is, we will

neglect quantities whose absolute value, divided by the absolute value

of the total, is smaller than
1

1000
.

After this agreement, we show once and for all that we need always
consider, for an appropriate disposition of the calculation, only the
first two terms of the ϑ-series. We thus assume 1) that ω′ ≥ ω and
2) that the argument of the ϑ-series belongs to the period rectangle
that encompasses the origin. Were ω′ < ω, namely, we could go over,
according to equation (3), to a series in which the values of the periods
are interchanged; further, if the argument of the representative point
lay in one of the other period rectangles, we could draw upon the
functional equations for the ϑ-function, in that we exclude appropriate
multiples of the periods to reduce the point to the initial rectangle.

For a proof of the preceding claim, we replace each term in equation
(1) by its absolute value. For the remainder R of the series beginning
with the third term, we obtain

(6) |R| < 2q25/4| sin 5s|+ 2q49/4| sin 7s|+ · · · .
We first show, in general, that

(7) | sin(a+ ib)| ≤ e|b|.
In fact, we have

| sin(a+ ib)|2 =
e−2b + e+2b − 2 cos 2a

4
≤
(
e−b + e+b

2

)2

,

and therefore

| sin(a+ ib)| ≤ e−b + e+b

2
≤ e|b|.

We can now restrict ourselves, according to the above, to values of
t whose imaginary part, taken in absolute value, is not larger than ω′.
If we denote the imaginary part of s by b, then, according to equation
(2),

|b| ≤ ω′π
2ω

,

and thus, because of (7),

| sin 5s| ≤ e
5
2

ω′
ω π, | sin 7s| ≤ e

7
2

ω′
ω π, . . . .

The right-hand sides of these inequalities can be denoted, according
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to (2), by q
−5

2 , q
−7

2 , . . . . The inequality (6) thus becomes

|R| < 2(q15/4 + q
35/4 + · · · ).

One easily convinces oneself that the terms on the right-hand side de-
crease more strongly than the terms of the geometric series

2(q15/4 + q
30/4 + q

45/4 + · · · ) =
2q15/4

1− q15/4
.

As a result,

(8) |R| < 2q15/4

1− q15/4
.

In order to obtain an upper bound for the relative error, we must
divide the absolute value of this remainder R, or the just established
upper bound of the same, by the absolute value of the entire value
ϑ(t), or by any lower bound of the same. It is to be considered that the
ϑ-function vanishes for vanishing t, so that we would evidently obtain
a very unfavorable result for our relative error for very small values of
|t|. We therefore add the explicit restriction, if we wish to apply our
procedure, that the value of |t| be not too small; say, for example, not

smaller than
2ω
100

. Under this assumption, |s| > π

100
; at the same time,

there obtains for all points in the interior of our period rectangle

(9) | sin s| > sin
π

100
> 0,03.

We must now establish, under the assumption |t| ≥ 2ω
100

, a lower

bound for the value of |ϑ(t)|.
We first write, with the use of the abbreviation R introduced above,

|ϑ(t)| = 2q1/4| sin s| ·
∣∣∣∣1− q2 sin 3s

sin s
+

R

2q1/4 sin s

∣∣∣∣ .
We next use the theorem that the absolute value of a sum is greater
than or equal to the difference of the absolute values of the summands.
Thus

(10) |ϑ(t)| ≥ 2q1/4| sin s|
{∣∣∣∣1− q2 sin 3s

sin s

∣∣∣∣−
∣∣∣∣ R

2q1/4 sin s

∣∣∣∣
}
.

We will now further diminish the quantity in the braces, in that we make
the first term smaller and the second term larger. If we set for |R| the
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value in (8) found as too large, and for | sin s| the value in (9) given as
too small, then ∣∣∣∣ R

2q1/4 sin s

∣∣∣∣ < q
14/4

1− q15/4

1
0,03

.

If we consider, further, that we wish to restrict ourselves to the case
ω′ ≥ ω (that is, q ≤ e−π), then we obtain, even in the most unfavorable
case ω′ = ω (q = e−π),

(11)
∣∣∣∣ R

2q1/4 sin s

∣∣∣∣ < 0,0006.

On the other hand, we wish to divide out the fraction sin 3s : sin s
in the first term of the braces of (10). If we once again replace the
absolute value of the resulting sum by the difference of the absolute
values, we find∣∣∣∣1− q2 sin 3s

sin s

∣∣∣∣ = |1− 3q2 + 4q2 sin2 s| > 1− 3q2 − 4q2| sin2 s|.
According to (7), however,

| sin2 s| < e
2ω′π
2ω , or | sin2 s| < q−1

for all points in our period rectangle. Thus we have∣∣∣∣1− q2 sin 3s
sin s

∣∣∣∣ > 1− 4q − 3q2,

or, if we once again go over to the most unfavorable case q = e−π,

(12)
∣∣∣∣1− q2 sin 3s

sin s

∣∣∣∣ > 1− 0,1724 − 0,0054; that is, > 0,8222.

From (10), (11), and (12), there follows for |ϑ(t)| the lower bound

|ϑ(t)| > 2q1/4| sin s| · 0,8214,
or, with consideration of (9),

(13) |ϑ(t)| > 2q1/4 · 0,0246.
With the help of the inequalities (8) and (13), the upper bound for

the relative error |R| : |ϑ(t)| can be calculated immediately. We have,
namely,

|R|
|ϑ(t)| <

q
14/4

1− q15/4

1
0,0246

;

if one evaluates this expression for the most unfavorable case q = e−π,
one finds that |R|

|ϑ(t)| <
1,68
2,46

10−3 <
1

1000
.
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§6. Numerical calculation of the trajectory. 447

We are thus able to say that

For the required precision
1

1000
, it always suffices to retain the first

two terms of the ϑ-series, unless the argument of the ϑ-series differs

very little from zero
(
|t| < 2ω

100

)
.

The latter exception, moreover, is due only to the steps of our cal-
culation, and not to the nature of the matter. Through more particular
deliberations, which we do not, however, wish to carry out here, the
exception may be eliminated, so that our theorem would obtain general
validity.

It is still to be noted that we have made quite rough approximations
in our estimation, so that the situation will be more favorable in actu-
ality. This circumstance may justify the subsequent calculation of the
series for the differential quotient ϑ′(t), which converges only slightly
more poorly than than the ϑ-series itself, without more than the second
term. Moreover, an error estimation for ϑ′(t) would not be difficult,
and could be carried out almost exactly as above. Further, we will
be justified on the same basis if each individual series is truncated at
the second term in quotients or products, even though the error bound
for a combination of n ϑ-series must at first be taken as n times the
previously established error bound. —

We now proceed to the actual execution of a numerical example.
We adopt as a basis, for example, the top considered on page 299,

which consists of a rotor with a square cross section. The side length
of the square cross section is 2 cm, the distance from its midpoint to

the figure axis is 5 cm, and the support point lies
5
2

cm beneath the

center of gravity. For the moment of inertia and the turning-moment
of gravity, we found in the same place, understanding by 
 the density
of the material, the values

C = 1000
π, A = 750
π, P = 100
πg

in the absolute measurement system.
Concerning the initial position of the top, we stipulate, for example,

that the angle ϑ0 between the figure axis and the vertical is equal to
60◦ at the beginning of the motion. We then have

e = cosϑ0 =
1
2
.
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448 VI. Representation of the motion of the top by elliptic functions.

We next establish the state of the initial motion in terms of the
impulse components N and n. We wish to choose N so that we have
a strong top. According to page 249, this requires, in the present case
P > 0,

N2 > 2AP (1 + e);
that is, for our top, since g is approximately 100π2,

N2 > 3 · 750 · (100)2
2π4.

We satisfy this inequality if we take, for example,

N = 4800
π2.

The corresponding value of the rotation component r will then be

r =
N

C
= 4,8π;

that is (cf. page 11), 2,4 rotations per second. Further, we wish to
prescribe the value of the impulse component n so that n will be smaller
than N and positive, in which case we can apply the results on the null
points of α, β, γ, δ (cf. page 402) and their associated representation
by ϑ-functions in exactly the previous form. We choose, for example,

n = 4200
π2.

We next calculate the values of e′ and e′′ from the equation U1 = 0
of page 240, which in our case runs

−
(
u+

1
2

)
(42002 + 48002)
2π4 + 2

(
1 +

u

2

)
4200 · 4800
2π4

−3
2
(1− u2)750 · 100
2π2g = 0.

If we again use for g the value 100π2, there follows

125u2 − 228u + 97 = 0,

or
u2 − 1,824u+ 0,776 = 0.

The roots of this equation are 0,6759 and 1,1481. We thus have, in the
sequence established on page 261,

(14) e = 0,5000, e′ = 0,6759, e′′ = 1,1481.

We now calculate the Legendre modulus

k =

√
e′ − e
e′′ − e = 0,5210,

and go over from this modulus to the angle

Θ = arc sin k = 31,40◦.
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§6. Numerical calculation of the trajectory. 449

The angle Θ′ associated with the complementary modulus k′ in the
corresponding manner is therefore

Θ′ = 90◦ −Θ = 58,60◦.

The auxiliary quantities M , ϕa, ϕb of page 264 become

logM = 0,1851 − 1, ϕa = 71,10◦, ϕb = 70,60◦.

We now find the values of logF
(
k,
π

2

)
and logF

(
k′,

π

2

)
in the

Legendre Table I. We find from page 228 and page 233 of this table

logF
(
k,
π

2

)
= 0,2298, logF

(
k′,

π

2

)
= 0,3263.

Thus we have

log F
(
k,
π

2

)
= 0,2298

log M = 0,1851 − 1

log ω = 0,4149 − 1
(15) ω = 0,2600

log F
(
k′,

π

2

)
= 0,3263

log M = 0,1851 − 1

log ω′ = 0,5114 − 1
ω′ = 0,3246.

The favorable case for the calculation of the ϑ-function is therefore
present in our example, since the height of the period rectangle is
greater than the breadth. We thus have no reason to take up the
transformation of the ϑ-series given in equation (3).

From log ω and log ω′ we form, according to equation (2), the quan-
tity q. There follows

log q = 0,2959 − 2, q = 0,0198.

We must further determine the quantities a and b from the Legen-
dre Table IX, where a small interpolation is necessary. There follows,
according to page 339 of this table,

F (k′, ϕa) = 1,5129, F (k′, ϕb) = 1,4988.

Thus

log F (k′, ϕa) = 0,1798
log M = 0,1851 − 1

log a = 0,3649 − 1
(16) a = 0,2317

log F (k′, ϕb) = 0,1757
log M = 0,1851 − 1

log b = 0,3608 − 1
b = 0,2295.

We immediately compile a few of the quantities often present in the
calculation of our ϑ-series in a small table:
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450 VI. Representation of the motion of the top by elliptic functions.

e
aπ
2ω = 4,0563, e

−aπ2ω = 0,2465, e
3aπ
2ω = 66,74, e

− 3aπ
2ω = 0,02,

−i sin iaπ
2ω

= 1,9049, cos
iaπ

2ω
= 2,1514,

−iq2 sin
3iaπ
2ω

= 0,0130, q2 cos
3iaπ
2ω

= 0,0130;

e
bπ
2ω = 4,0031, e

− bπ2ω = 0,2498, e
3bπ
2ω = 64,15, e

− 3bπ
2ω = 0,02,

−i sin ibπ
2ω

= 1,8766, cos
ibπ

2ω
= 2,1265,

−iq2 sin
3ibπ
2ω

= 0,0125, q2 cos
3ibπ
2ω

= 0,0125;

e
(ω′−a)π

2ω = 1,7531, e
− (ω′−a)π

2ω = 0,5704, e
3(ω′−a)π

2ω = 5,39, e
− 3(ω′−a)π

2ω = 0,19,

−i sin i(ω
′ − a)π
2ω

= 0,5913, cos
i(ω′ − a)π

2ω
= 1,1617,

−iq2 sin
3i(ω′ − a)π

2ω
= 0,0011, q2 cos

3i(ω′ − a)π
2ω

= 0,0011;

e
(ω′−b)π

2ω = 1,7766, e
− (ω′−b)π

2ω = 0,5629, e
3(ω′−b)π

2ω = 5,60, e
− 3(ω′−b)π

2ω = 0,18,

−i sin i(ω
′ − b)π
2ω

= 0,6068, cos
i(ω′ − b)π

2ω
= 1,1697,

−iq2 sin
3i(ω′ − b)π

2ω
= 0,0011, q2 cos

3i(ω′ − b)π
2ω

= 0,0011.

We can now proceed to the calculation of the trajectory that the
apex of the top describes on the unit sphere. Since e and e′ are both
positive, the trajectory runs entirely in the northern hemisphere, so
that we will draw the curve as it appears in the stereographic projection
from the south pole. Correspondingly, we select equation (4′) of page
433 as the analytic representation of the trajectory, and have

(17)

⎧⎪⎪⎨
⎪⎪⎩

λ = KeiLtϑ(t+ ω + ib)
ϑ(t+ ia)

;

K =
ϑ(iω′ − ia)

ϑ(ω + iω′ − ib)e
− iπ

2ω (ω−ib+ia)
, L = l + l′ − π

ω
.

The quantity λ then directly signifies, as we know, the complex
variable that corresponds in the usual Gau sian sense to the image
point of the apex of the top in the equatorial plane of the unit sphere
for the stereographic projection from the south pole.

Here the constants K and L are first to be found.
We have, if we use the ϑ-series truncated at the second term and

the values given in the preceding table,
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§6. Numerical calculation of the trajectory. 451

K =
−i sin i(ω

′ − a)π
2ω

+ iq2 sin
3i(ω′ − a)π

2ω

cos
i(ω′ − b)π

2ω
+ q2 cos

3i(ω′ − b)π
2ω

e
π
2ω (a−b)

=
0,5913 − 0,0011
1,1697 + 0,0011

4,0563
4,0031

= 0,511.

For the determination of L, we next calculate the quantities

l = i
ϑ′(iω′ − ia)
ϑ(iω′ − ia) , l′ = i

ϑ′(iω′ − ω + ib)
ϑ(iω′ − ω + ib)

according to equations (18) of page 428. Here we wish to transform l′

slightly, in that we write

l′ = i

(
ϑ′(− iω′ − ω + ib)
ϑ(− iω′ − ω + ib)

− iπ

ω

)
= −i ϑ

′(ω + iω′ − ib)
ϑ(ω + iω′ − ib) +

π

ω
;

therefore

l′ − π

ω
= −i ϑ

′(ω + iω′ − ib)
ϑ(ω + iω′ − ib) .

Since we also wish to truncate the series for ϑ′ at the second term,
there follow, with consideration of our table,

l =
π

2ω

cos
i(ω′ − a)π

2ω
− 3q2 cos

3i(ω′ − a)π
2ω

−i sin i(ω
′ − a)π
2ω

+ iq2 sin
3i(ω′ − a)π

2ω

=

=
π

2ω
1,1617 − 0,0033
0,5913 − 0,0011

=
π

2ω
1,963,

l′ − π

ω
=

π

2ω

−i sin i(ω
′ − b)π
2ω

− 3iq2 sin
3i(ω′ − b)π

2ω

cos
i(ω′ − b)π

2ω
+ q2 cos

3i(ω′ − b)π
2ω

=

= − π

2ω
0,6068 + 0,0033
1,1697 + 0,0011

= − π

2ω
0,521.

Thus
L =

π

2ω
(1,963 − 0,521) =

π

2ω
1,442.

We insert these value of the constants into equation (11), truncate
the ϑ-series once more at the second term, and resolve the trigono-
metric functions into real and imaginary parts. If we set as an ab-

breviation
tπ

2ω
= s and consult our table on page 450, there follows

(18) λ = 0,511e1,442 is (2,1265 cos s+0,0125 cos 3s)−i(1,8766 sin s+0,0125 sin 3s)
(2,1514 sin s−0,0130 sin 3s)+i(1,9049 cos s−0,0130 cos 3s)

.
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452 VI. Representation of the motion of the top by elliptic functions.

We wish to calculate ten points on the single half-arc between the
parallel circles e and e′ that correspond to the equally spaced time

values t = 0,
ω

9
,

2ω
9
, . . . ,

9ω
9

. The corresponding values of s are

s = 0,
π

18
,

2π
18
, . . . ,

π

2
, or s = 0, 10◦, 20◦, . . . , 90◦. The corresponding

values of λ may be denoted by λ0, λ1, λ2, . . . , λ9. One first calculates, in
a practical manner, the absolute values of these quantities; the ratio of
the real and imaginary parts then results by trigonometric means. The
result of the relatively convenient calculation is shown in the following
table:

λ0 = − 0,577 i
λ1 = 0,164 − 0,549 i
λ2 = 0,304 − 0,470 i
λ3 = 0,406 − 0,356 i
λ4 = 0,464 − 0,227 i
λ5 = 0,480 − 0,108 i
λ6 = 0,471 + 0,017 i
λ7 = 0,439 + 0,118 i
λ8 = 0,393 + 0,205 i
λ9 = 0,338 + 0,281 i.

The last value provides a desirable confirmation of our calculation;
its absolute value, namely, must equal the radius of the parallel cir-
cle e′ projected stereographically into the equatorial plane; that is,

tang
(

1
2

arc cos e′
)

. In fact,

log |λ9| = 0,6434 − 1 = log tang (23◦45′),

and in conformity with equation (14), up to an error that amounts to

less than
1

1000
of the total value,

cos(47◦30′) = 0,6756 = e′.
The preceding values of λ give us, for the drawing of the trajectory

in the stereographic projection, the rectangular coordinates of ten of
its points, which are marked in the following figure by the numbers
0, 1, 2, . . . . One has only to bear in mind that the positive real and
imaginary axes of the λ-plane result by stereographic projection from
the two meridians of the unit circle that pass through the positive x-
and y-axes, respectively. Since the former is transformed into the lat-
ter by a rotation in the clockwise sense as seen from the vertical (cf.
the stipulation contained in Fig. 4 of page 18), the corresponding holds
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§6. Numerical calculation of the trajectory. 453

for the positive real and imaginary axes of the λ-plane. If we reckon the
real axis positive toward the right, then we must reckon the imaginary
axis positive downward, and therefore opposite to its usual direction in
the Gau sian plane. The arrows in the figure are drawn correspondingly.

The trajectory be-
gins, as the figure shows,
from the negative imag-
inary axis, and encircles
the vertical in the clock-
wise sense. The differ-
ences in the lengths of
the arc segments 01, 12,
23, . . ., which are tra-
versed in the same time
interval

ω

9
, give us, at

the same time, an im-
age of the changing ve-
locity of the apex of
the top. The further
.course of the trajectory beyond point 9 has been completed in corre-
spondence with the symmetry property of the trajectory.

We note, in particular, that the span width ψω of the individual
half-arc of our curve, whose calculation was already discussed on page
269, is generally given by the value of the exponent Lt for t = ω. Our
trajectory equation now yields for ψω the value

ψω = Lω = (l + l′)ω − π.
In our example, this is, specifically,

ψω = 1,442
π

2
= 129◦ 46′ 48′′.

The calculation of the remaining elements of the motion of the
top—for example, the calculation of the horizontal projections of our
two impulse curves—now offers no difficulty at all. The similarity in the
analytic representation of these curves to the representation of our tra-
jectory will effect a qualitative similarity between the courses of these
curves and the curve just drawn.

In conclusion, we would like to point out most explicitly the re-
markable simplicity and the entirely elementary character of the ac-
quired manner of numerical calculation for the trajectory of the top.
The analytic apparatus of the elliptic functions not only provides us
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454 VI. Representation of the motion of the top by elliptic functions.

with the theoretically precise trajectory equation (17), but also, which
is no less remarkable, with a most highly elementary, practically suf-
ficient approximation formula (in our example, equation (18)) that is
far more complete and convenient than the approximate methods de-
veloped at the conclusion of the fourth chapter. The permissibility
of the approximation formula in question is naturally bound to the
condition that one reduces the argument of the ϑ-function in advance
to the period parallelogram surrounding the origin, and that one has
transformed, if necessary, a period rectangle of greater breadth than
height into one of greater height than breadth. The ease with which
this reduction (through the functional equations of the ϑ-function) or
this transformation (through the transformation equation (3)) can be
carried out for the ϑ-functions forms one of the advantages that dis-
tinguishes calculation with ϑ-functions over the direct evaluation of
elliptic integrals.

The presence of the transcendental constants ω, ω′, a, and b in
our approximation formula can impair the elementary character of the
approximation method just as little as the presence of exponential or
trigonometric quantities, since those quantities, just as these, can be
taken without trouble from the relevant tables. Thus if one desires an
elementary treatment of the motion of the top, this is to be sought di-
rectly in the domain of elliptic functions, and realized by the truncation
of the ϑ-series.182

One can even say, if we state the results of this section somewhat
more generally, that a ϑ-series practically signifies nothing other than a
sum of two trigonometric terms. Every formula with elliptic functions
may be replaced, for the purpose of numerical calculation, by one with
a few trigonometric functions.

§7. Representation of the motion of the force-free top by
elliptic functions.

In this section, we wish to investigate more thoroughly the motion of
the force-free top that was previously (cf. page 149 ff.) pursued only to
the formation of elliptic integrals, and represent this motion explicitly
by elliptic functions, according to the model of the theory of the heavy
top.

We may restrict ourselves here to the analytical side of the prob-
lem, since we have extensively discussed the geometric properties of this
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§7. On the Poinsot motion. 455

motion previously (Chap. III, §2) in association with P o i n s o t. We
wish to show, in the first place, how our parameters α, β, γ, δ effect
here also the simplest and most complete description of the process of
the motion.

In order to have a concise designation, we bestow upon the entire
class of motions to be considered here the previously used name of
Poinsot motion.

We first present the previously (pp. 148–150) acquired formulas that
are of primary importance in the following. There are, first, the two
algebraic integrals of the force-free motion of the top; namely, the the-
orems

(1)

{
Ap2 + Bq2 + Cr2 = 2h,
A2p2 + B2q2 + C2r2 = G2

of the conservation of the vis viva and the conservation of the length
of the impulse. If, further,

u = p2 + q2 + r2

denotes the square of the length of the rotation vector, then p2, q2, and
r2 are calculated as linear functions of u, where, in particular,

(2) r2 =
uAB − 2h(A +B) +G2

(C −A)(C −B)
;

the time t, however, is the elliptic integral

(3) t =
1
m

∫
du

pqr
,

in which the constant m (which was denoted by c on page 149) has the
value

(4) m = 2
(
B−C
A

+
C−A
B

+
A−B
C

)
= −2

(A−B)(B−C)(C−A)
ABC

.

We choose the spatially fixed impulse axis in a convenient manner as
the third coordinate axis of the spatially fixed coordinate frame x, y, z.
The direction cosines c, c′, c′′ of this axis with respect to the principal
inertial frame X, Y , Z fixed in the body are then expressed simply by
the equations

(5) c =
Ap

G
, c′ =

Bq

G
, c′′ =

Cr

G
.

In order to associate the treatment of the force-free top as closely as
possible with that of the heavy top, we now wish to introduce, instead
of the integration variable u, a new variable v that is equal to cos ϑ = c′′.
We then have, according to (5),

(6) v =
Cr

G
;
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456 VI. Representation of the motion of the top by elliptic functions.

the relation between u and v is, according to (2),

(7)
G2v2

C2
=
uAB − 2h(A +B) +G2

(C −A)(C −B)
.

In order to express t in terms of v, we calculate from (6) and (7)

(8)
du

r
=
G(C −A)(C −B)

ABC
dv.

It further follows from (1), by elimination of q2 or p2, that

A(B −A)p2 = (2hC −G2v2)
B

C
− G2 + G2v2,

B(A−B)q2 = (2hC −G2v2)
A

C
− G2 + G2v2,

so that

(9)

⎧⎪⎪⎨
⎪⎪⎩
p2 =

G2(B − C)
AC(B −A)

((2hB −G2)C
(B − C)G2

− v2
)
,

q2 =
G2(A− C)
BC(A−B)

((2hA −G2)C
(A− C)G2

− v2
)
.

If we introduce the abbreviations

(9′)

⎧⎪⎪⎨
⎪⎪⎩
e2 =

(2hA −G2)C
(A− C)G2

, e′2 =
(2hB −G2)C
(B − C)G2

,

V =
(A− C)(B − C)

AB

G2

C2
(e2 − v2)(v2 − e′2),

then we can write

(10) pq =
G

A−B
√
V .

Transformed into the new variable v, our integral (3) thus runs, with
consideration of (8) and (10) and the value of m given in (4),

t =
∫

dv√
V
.

The polynomial of the fourth degree V now stands beneath the square
root. Its null points v = ±e and v = ±e′ give the branch points of the
two-sheeted Riemann surface (v,

√
V ) with which we must operate in

the following. Each two overlying points of the Riemann surface are
characterized by equal values of v and opposite values of

√
V .

In order to be able to judge the relative positions of the branch
points, we first calculate from (9)

(10′) e′2 − e2 =
(2hC −G2)(A−B)C
(A− C)(B − C)G2

;

we further assume for the principal moments of inertia A, B, C that
A > B > C.
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The signs of e2, e′2, and e′2 − e2 will then be equal, according to (9′)
and (10′), to the signs of the quantities

2hA−G2, 2hB −G2, 2hC −G2.

The latter are given, however, if we successively eliminate p2, q2, and
r2 from equations (1). There follow, namely,

(11)

⎧⎪⎨
⎪⎩

2hA − G2 = B(A−B)q2 + C(A− C)r2,
2hB − G2 = A(B −A)p2 + C(B − C)r2,
2hC − G2 = A(C −A)p2 + B(C −B)q2.

The right-hand side of the first equation is always positive, since p2,
q2, r2 are real positive quantities for the actual motion of the top, and
because of the agreed inequality for the principal moments of inertia;
the right-hand side of the last equation is certainly negative. The
right-hand side of the second equation, in contrast, can (because B −
A < 0 and B − C > 0) be positive or negative. We thus separate the
motion of the force-free top into the separate classes 2hB−G2 > 0 and
2hB −G2 < 0; the unstable rotation about the intermediate principal
inertial axis with p = 0, r = 0 belongs, among other examples, to the
boundary cases 2hB − G2 = 0 that are common to both classes. We
wish, however, to consider for the time being only motions that belong
to the class 2hB −G2 > 0. We then have

2hA−G2 > 0, 2hB −G2 > 0, 2hC −G2 < 0,

and, correspondingly,

e2 > 0, e′2 > 0, e2 > e′2.

The four branch points ±e, ±e′ therefore lie on the real axis, and follow
one another in the sequence

−∞ < −e < −e′ < +e′ < e < +∞.
The following figure represents a cut of the Riemann surface (v,

√
V )

through the real axis. On the resulting double line, we distinguish

the four segments (−e,−e′), (−e′,+e′), (+e′,+e), and the segment
(+e,∞,−e) that is closed at infinity. According to equation (9′), V is
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458 VI. Representation of the motion of the top by elliptic functions.

positive in the first and third of these segments, and negative in the
second and fourth. In order that t be real, the integration variable v
is to be restricted to one of the first named segments, say the segment
(+e′,+e). In order that dt be positive, moreover, we progress in the
sense of the arrow in the figure. We place the lower limit of the integral
at the branch point v = e.

In the following, we denote by 2ω the increase of t for a complete
circuit about our integration segment ee′, and therefore set

(12) ω =
∫ e′

e

dv√
V
.

The same increase 2ω then results for a circuit about the segment
(−e,−e′) (directed in the appropriate sense). On the other hand, we
denote (for reasons that will later be evident) the increase of t for a
circuit about one of the other two segments (−e′, e′) or (e,∞,−e) by
4iω′, so that, for example,

(12′) 2iω′ =
∫ ∞

+e

dv√
V

+
∫ −e

−∞

dv√
V
.

The quantities 2ω and 4iω′ are called the periods of our everywhere
finite integral t.

We must now concern ourselves, above all, with our parameters α,
β, γ, δ. We first derive integral expressions for the logarithms of these
quantities from the equations (4) on page 43.

We have, according to the first of these equations,

(13)
d log α
dt

=
ir

2
+
q + ip

2
β

α
.

In order to express the quotient
β

α
in terms of known quantities, we

compare the third horizontal rows in the schemata (3) and (9) of pages
17 and 21. We then find

(14) αγ =
ic′ − c

2
, βδ =

ic′ + c

2
, αδ + βγ = c′′.

If one combines the last of these equations with the identity αδ−βγ = 1,
there follows

(14′) αδ =
c′′ + 1

2
, βγ =

c′′ − 1
2

.

From (14) and (14′) now follows, by division,

β

α
=
ic′ + c

c′′ + 1
=
c′′ − 1
ic′ − c.
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§7. On the Poinsot motion. 459

We insert here the values of c, c′, c′′ given in (5), and obtain

(15)
β

α
=
Ap+ iBq

Cr +G
=

G− Cr
Ap− iBq .

Thus equation (13) becomes

(16)
d logα
dt

=
ir

2
+
q + ip

2
Ap+ iBq

Cr +G
.

On the right-hand side, we wish to express p, q, r in terms of v. If
we introduce a common denominator, the right-hand side gives

i(Ap2 +Bq2 + Cr2) + iGr + (A−B)pq
2(Cr +G)

.

The first term in the numerator is, according to the theorem of the
vis viva, equal to the constant 2ih; the last term is equal, according to
equation (10), to G

√
V . Thus (16) takes the form, if we substitute for

r the value from equation (6),

(16′)
d log α
dt

=

2ih
G

+
iG

C
v +

√
V

2(v + 1)
.

If we replace, finally, the differentiation with respect to t by differ-
entiation with respect to v, there follows

(16′′)
d log α
dv

=

2ih
G

+
iG

C
v +

√
V

2(v + 1)
1√
V
.

The integral representation of log α thus runs, if we neglect the
inessential constant of integration,

(17) log α =

∫ 2ih
G

+
iG

C
v +

√
V

2(v + 1)
dv√
V

;

in a corresponding manner, one finds that

(17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log β =

∫ −2ih
G

+
iG

C
v +

√
V

2(v − 1)
dv√
V
,

log γ =

∫ 2ih
G
− iG

C
v +

√
V

2(v − 1)
dv√
V
,

log δ =

∫ −2ih
G
− iG

C
v +

√
V

2(v + 1)
dv√
V
.

We must now investigate the behavior of these integrals on our Rie-
mann surface (v,

√
V ), and, in particular, seek the positions of their

singularities.
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460 VI. Representation of the motion of the top by elliptic functions.

We consider, for example, log α. Among the singularities of the
integrand—that is, the positions v = ±e, ±e′; v = −1, v = ∞—the
branch points ±e and ±e′ do not come into consideration as singular-
ities of the integral, since the order of the infinity here is less than 1.
The two other positions v = −1 and v = ∞ each represent two overly-
ing points on the Riemann surface. We will now see that log α becomes
logarithmically infinite at the two overlying points v = ∞, but at only
one of the points v = −1.

For the investigation of the position v = ∞, we can neglect the
first two terms in the numerator of the integral representation (17) in
comparison to the third term

√
V , since the first terms become infinite

to a lower order than the third. If we also neglect 1 in the denominator
compared with v, then we obtain simply

(18) logα =
∫
dv

2v
=

1
2

log v.

This calculation is valid for both points v = ∞ of the Riemann
surface, and for all four parameters α, β, γ, δ. We therefore see that

For v = ∞, the logarithms of all four parameters will become loga-
rithmically infinite on both sheets of the surface.

We add, on the basis of the explanations of page 404 and on the
representation of log α in equation (18), that

For a positive, closed, single circuit about one of the positions v = ∞
on the Riemann surface, the logarithms of our four parameters increase
by −πi.

As we go over to the position v = −1, we first remark that if
v + 1 = 0—that is, Cr + G = 0—then, according to the latter of
equations (15), either Ap+ iBq or Ap− iBq vanishes at the same time.
One case occurs in one, and the other in the other sheet of the Riemann
surface.

On the sheet where Ap + iBq vanishes,
d logα
dt

and therefore also

log α remain, according to equation (16), finite, since here the null
value of the denominator will be canceled by that of the numerator.
We note, in particular, the value of

√
V , which is given from the just

proven vanishing of the numerator in equation (17) as
√
V = −

(
2ih
G

+
iG

C
v

)
.

On the other sheet, in contrast, where Ap − iBq vanishes, a sin-
gularity of logα occurs. The type of singularity is determined in the
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§7. On the Poinsot motion. 461

following manner. Since the values of
√
V at overlying points of the

Riemann surface differ only in sign, the value of
√
V at the point in

question will be opposite to that just given; we now have

√
V = +

(
2ih
G

+
iG

C
v

)
.

The numerator in equation (17) will therefore be simply equal to 2
√
V ,

so that

(18′) log α =
∫

dv

v + 1
= log(v + 1).

If one investigates, in a corresponding manner, the behavior of log β,
log γ, log δ at the positions v = ±1, one arrives at the summarizing
result that

The logarithms of our parameters α, β, γ, δ will each become log-
arithmically infinite at one of the four points of the Riemann surface
(v,
√
V ) that correspond to the values v = ±1. The increase of these

logarithms for a single positive circuit about the relevant singularity is
equal, as follows from equation (18′), to +2πi.

The distribution of the singularities on the two sheets of the Rie-
mann surface is indicated in Fig. 66 of page 457 by the annexation of
the letters α, β, γ, δ.

The behavior of our parameters on the Riemann surface in the
present case is thus not entirely as simple as in the case of the heavy
symmetric top. Their logarithms are now not, as they previously were,
normal integrals of the third kind, since they become infinite at three
positions of the Riemann surface; namely, at each of the two points
v = ∞ and one of the points v = ±1. This circumstance has important
consequences for the later representation by ϑ-functions.

We now go over from the logarithms to the parameters themselves.
The logarithmic discontinuity (18′) changes into a simple null point;
the discontinuity (18), however, changes into a singularity in whose
neighborhood α (and, correspondingly, β, γ, and δ) behaves as C

√
v.

It follows that our parameters are branched at infinity of the Riemann
surface; they change in sign, namely, for a closed circuit on the surface
about one of the two points v = ∞. They are, in general, otherwise un-
branched relative to the Riemann surface, and remain, correspondingly,
unchanged for all circuits that leave the value of t unchanged. For the
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462 VI. Representation of the motion of the top by elliptic functions.

“period circuits” in which t is increased by 2ω or 4iω′, they take on
certain characteristic factors whose logarithms can be calculated as the
periods of the integrals (17).

After this preparation, we take up the concept of inversion from
§3 of this chapter. We therefore consider t as the independent vari-
able and interpret it in a complex t-plane. In this plane, we draw the
previously described chessboard pattern (cf. Fig. 64) that separates
the plane into infinitely many rectangles, with the difference that the
lengths of the horizontal and vertical rectangle sides are now equal to
2ω and 4ω′. Each of these rectangles represents a conformal mapping
of our Riemann surface (v,

√
V ).

It is now enough (as previously) to pursue the distribution of the
values of the functions α(t), β(t), γ(t), δ(t) in one of these rectan-
gles, since the passage to the neighboring rectangles can be realized
through multiplication by the previously cited constants. We consider,
for example (cf. Fig. 67), the rectangle with the corners

ω + 2iω′, −ω + 2iω′, −ω − 2iω′, ω − 2iω′.

Since each parameter on the Riemann surface will be 0 at one position
and∞ at two positions, there must also be one null point and two singu-

lar points for each parameter in
our rectangle, which is indeed a
single-valued image of the sur-
face. Where do these positions
lie?

In order to discover the null
points, we calculate the value of
the integral of the first kind t
from e to 1. Since e signifies a
cosine (the cosine of the small-
est angle that the Z-axis forms
with the z-axis during the mo-
tion of the top), e ≤ 1 in every
case, and the value of the named
integral is imaginary. We set it
equal to is, and have, since

√
V

contains only the square of v,

(19) is =
∫ 1

e

dv√
V

= −
∫ −1

−e

dv√
V
.
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§7. On the Poinsot motion. 463

Thus the null points of γ and β are given directly by t = +is and
t = −is. In order to further obtain the null points of α and δ, we go,
on either the upper or lower sheet, from e to infinity through −e, and
from there to the point v = −1. The integral t thus assumes one of the
values ±2iω′ ± is. Of these values, the values 2iω′ − is and −2iω′ + is
lie, interpreted as points in the t-plane, in our period rectangle. One
of them yields the null point of α, and the other that of δ. It is not
difficult to decide how the null points of γ and β are distributed in
detail to the points ±is and the null points of δ and α to the points
±(2iω′ − is). We do not, however, enter into this, but rather refer to
Fig. 67.

The positions of the singular points, further, are characterized by
the integral ∫ ∞

e

dv√
V
.

Here we can also write, since V contains only even powers of v,

1
2

(∫ ∞

e

dv√
V

+
∫ −e

−∞

dv√
V

)
.

The value of this expression is known, however, from equation (12′);
it is equal, namely, to iω′. If we displace the integration path into the
other sheet, there results, evidently, −iω′ instead of +iω′. The points
t = ±iω′ in the t-plane therefore correspond to the two overlying points
v = ∞, the singular points of our parameters.

In addition to the points given and drawn in Fig. 67, the collected
equivalent points, which differ from those given by the period multiples
2mω+4m′iω′, are naturally likewise null and singular points. The order
of the nullities and infinities is the same as on the Riemann surface.
The order of the null points is always equal to 1, and the order of the

singular points is equal to
1
2
.

We now base the analytic representation of our parameters in terms
of ϑ-functions on the positions of the null and singular points. It
is well to remark that a small change is to be made to the defini-
tion of the ϑ-function (cf. page 418), since the periods of our inte-
gral of the first kind, which were previously called 2ω and 2iω′, are
now denoted by 2ω and 4iω′. Correspondingly, 2ω′ is to be replaced
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464 VI. Representation of the motion of the top by elliptic functions.

throughout by 4ω′ in the series representation, the functional equations
of the ϑ-function, etc. In order to avoid ambiguity, we wish to denote
this ϑ-function by Θ(t)—though very much in contradiction to the
meaning of this symbol introduced by Jacobi—while we will reserve
the notation ϑ(t) for the series formed with the quantities 2ω, 2iω′.
Written in detail, the definitions of the two functions ϑ(t) and Θ(t) to
be used in the following are183

ϑ(t) = ϑ(t, 2ω, 2iω′) = e
−ω′π

4ω sin
πt

2ω
− e
−9ω′π

4ω sin
3πt
2ω

+ · · · ,

Θ(t) = ϑ(t, 2ω, 4iω′) = e
−2ω′π

4ω sin
πt

2ω
− e
−18ω′π

4ω sin
3πt
2ω

+ · · · .
In order to arrive at the representation of α, we now consider the

quotient
Θ(t− 2iω′ + is)√

Θ(t− iω′)Θ(t+ iω′)
.

This quotient will be zero and infinite at the same positions and
to the same order as our parameter α. Moreover, it changes, just like
α, only by a constant factor for an increase of t by 2ω or 4iω′. If we
divide α by this quotient, we therefore obtain a single-valued function
that vanishes nowhere in the finite domain and is nowhere infinite, and
that is multiplied by a constant factor if t is increased by one of the
periods. One recognizes, however, exactly as on page 420, that such a
function must have the form kelt. There follows

(20) α = k1e
l1t Θ(t− 2iω′ + is)√

Θ(t− iω′) ·Θ(t+ iω′)
.

In a corresponding manner there follow

(20)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

β = k2e
l2t Θ(t+ is)√

Θ(t− iω′) ·Θ(t+ iω′)
,

γ = k3e
l3t Θ(t− is)√

Θ(t− iω′) ·Θ(t+ iω′)
,

δ = k4e
l4t Θ(t+ 2iω′ − is)√

Θ(t− iω′) ·Θ(t+ iω′)
.

Here the constants k and l are still to be determined.
With respect to the constants l, we first show that

(21) l4 = −l1 l3 = −l2.
From equations (14′), namely, it follows that the products
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§7. On the Poinsot motion. 465

αδ =
v + 1

2
, βγ =

v − 1
2

are, just like v itself, doubly periodic functions with periods 2ω and
4iω′. If we now increase t by 2ω, then αδ and βγ change by the factors

e(l1+l4)2ω and e(l2+l3)2ω,

respectively, since the Θ-functions in the quotients for αδ and βγ re-
main unchanged. On the other hand, these same quantities change, if
we increase t by 4iω′, by the respective factors

e(l1+l4)4iω′
and e(l2+l3)4iω′

.

All four of these factors are therefore to be set to 1, which is achieved
only if we take, as given above, l4 = −l1, l3 = −l2.

We further wish to show that

(22) l2 = l1 +
πi

2ω
.

For this purpose, we begin from one of the equations (14), which we
can write, with consideration of (5), as

(23) αγ =
iBq −Ap

2G
.

Now, however, the values for p2 and q2 computed in equation (9) show
that p and q change in sign for a single circuit about the branch points
v = e and v = e′, for which t increases by 2ω, but p and q remain
unchanged for a circuit about the points v = e and v = −e, for which
t is increased by 4iω′. On the other hand, according to equations (20)
and (21), αγ takes on, if t is increased by 2ω or 4iω′, the respective
factor

e(l1−l2)2ω or e(l1−l2)4iω′
e
−2πω′

ω .

The first of these factors is therefore to be set equal to −1, and the
second to +1. This leads with necessity to the given relation (22).

There remains the one quantity l1. By logarithmic differentiation
of (20), its value results as

l1 =
d log α
dt

− d log Θ(t− 2iω′ + is)
dt

(24)

+
1
2

{
d log Θ(t+ iω′)

dt
+
d log Θ(t− iω′)

dt

}
.

Here we can insert for t any special value for which the corresponding
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466 VI. Representation of the motion of the top by elliptic functions.

value of v and therefore also, according to (16′), the value of
d logα
dt

is

known. One can take, for example, t = is, whereby

v = +1,
√
V = −2ih

G
+
iG

C
,

d log α
dt

=
iG

2C
.

It then follows that

(24′) l1 =
iG

2C
+

Θ′(2iω′)
Θ(2iω′)

+
1
2

{
Θ′(iω′ − is)
Θ(iω′ − is) −

Θ′(iω′ + is)
Θ(iω′ + is)

}
.

One recognizes from this expression that l1 is purely imaginary, so
that we prefer to set l1 equal to il, where l is real.

One can easily simplify the expression for l1 or l; we place no value
on this, however, since we will regard the quantity l itself, in addition to
the quantities ω, ω′, and s that alone do not suffice for the specification
of the motion, as one of the characteristic constants of the Poinsot
motion.

The complete tabulation of our constants li is now

(25) l1 = il, l2 = i
(
l +

π

2ω

)
, l3 = −i

(
l +

π

2ω

)
, l4 = −il.

In order to determine the constants ki, we return to the initial values
of α, β, γ, δ at t = 0, and express these values, according to the original
definitions of page 21, in terms of the initial values of the Euler angles
ϕ, ψ, ϑ. We then have

α0 = cos
ϑ0

2
e

i(ϕ0+ψ0)
2 etc.

The initial time t = 0 is now chosen so that v = e at t = 0, and
therefore, according to equations (9), q = 0. From (5) it follows, how-
ever, that the direction cosine c′ between the Y -axis and the z-axis also
vanishes with q. The angle between these two axes is therefore a right
angle. We designated, however, the line of the XY -plane that stands
perpendicular to the z-axis as the line of nodes. The line of nodes and

the Y -axis therefore coincide at t = 0. Thus ϕ0 = −π
2

is to be assumed.

The angle ψ0, further, is completely at our pleasure. In fact, the course
of the motion can in no way depend on how we orient the xyz-frame
in space. We can, in particular, let the x-axis coincide with the line of
nodes in the initial position, and correspondingly choose ψ0 = 0. Then,
however, the cited equations of page 21 show that

(26) α0 = −δ0, β0 = −γ0.

If we set, on the other hand, t = 0 in equations (20), then we recognize
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§7. On the Poinsot motion. 467

that these equations would imply

(26′)
α0

k1
= − δ0

k4
,

β0

k2
= −γ0

k3
.

If the latter equations are to be compatible with the preceding, then
(27) k1 = k4, k2 = k3

must necessarily follow.
In order, finally, to determine the value of k1 and k4, on the one

hand, and of k2 and k3, on the other hand, we return to the products

(28) αδ =
v + 1

2
, βγ =

v − 1
2

in equations (14′). Here we wish to represent the doubly periodic func-
tions of t, v ± 1

2
,

in terms of t. Since v + 1 vanishes for t = ±(2iω′ − is) and becomes
infinite for t = ±iω′, the expression

Θ(t− 2iω′ + is)Θ(t+ 2iω′ − is)
Θ(t− iω′)Θ(t+ iω′)

has the same null and singular points in the t-plane as v + 1. It is,

moreover, a doubly periodic function, and can thus differ from
v + 1

2
only by a constant factor. We thus have

(29)
v + 1

2
= C

Θ(t− 2iω′ + is)Θ(t+ 2iω′ − is)
Θ(t− iω′)Θ(t+ iω′)

,

and, correspondingly,

(29′)
v − 1

2
= C ′ Θ(t− is)Θ(t+ is)

Θ(t− iω′)Θ(t+ iω′)
.

The values of the introduced constants C and C ′, which naturally
will not be confounded with the moment of inertia C, follow easily
if we insert, for example, t = is in (29) and t = 2iω′ − is in (29′).
Then the left-hand sides will become +1 and −1, respectively, and the
Θ-quotients on the right-hand sides will be equal to

Θ(2iω′ − 2is) ·Θ(2iω′)
Θ(iω′ − is) ·Θ(iω′ + is)

and
Θ(2iω′ − 2is) ·Θ(2iω′)

Θ(iω′ − is) ·Θ(3iω′ − is) =
Θ(2iω′ − 2is) ·Θ(2iω′)
Θ(iω′ − is) ·Θ(iω′ + is)

e
− (ω′−s)π

ω ,

respectively. We thus have

(30) C =
Θ(iω′ − is)Θ(iω′ + is)
Θ(2iω′ − 2is)Θ(2iω′)

, C ′ = −e
(ω′−s)π

ω C.
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468 VI. Representation of the motion of the top by elliptic functions.

If we now insert the values of α, β, γ, δ from (20) in the left-hand
sides of equations (28) and express the right-hand sides according to
(29), the t-dependent portions cancel, and we immediately obtain

k1k4 = C, k2k3 = C ′,

and therefore, with consideration of (27),

(31) k1 =
√
C, k2 =

√
C ′, k3 =

√
C ′, k4 =

√
C.

The signs of these square roots, as well as those appearing in (20),
are to be chosen so that values of α0, β0, γ0, δ0 arising from the latter
coincide with the previously discussed initial conditions.

Summarizing all the preceding, we can represent our parameters
through the elegant system of equations

(32)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α =
√
Ceilt

Θ(t− 2iω′ + is)√
Θ(t− iω′)Θ(t+ iω′)

,

β = i
√
Ceilte

iπ
2ω (t−iω′+is) Θ(t+ is)√

Θ(t− iω′)Θ(t+ iω′)
,

γ = i
√
Ce−ilte

− iπ
2ω (t+iω′−is) Θ(t− is)√

Θ(t− iω′)Θ(t+ iω′)
,

δ =
√
Ce−ilt Θ(t+ 2iω′ − is)√

Θ(t− iω′)Θ(t+ iω′)
;

C =
Θ(iω′ − is)Θ(iω′ + is)
Θ(2iω′ − 2is)Θ(2iω′)

.

Through these equations, the collected Poinsot motions are brought
into a unified analytic schema. If we insert for the four appearing con-
stants ω, ω′, s, and l all possible real values, all possible motions of
the force-free top must follow. One is easily convinced by an enumer-
ation that our four constants are actually independent of each other,
and that their number cannot be further reduced. All further theorems
that we will construct in the following are simple consequences of this
analytic schema.

We first direct our attention to the trajectory described by a point
of the top that has distance 1 from O. (The trajectories of all other
points of the top, whose distance from O is not equal to 1, are natu-
rally geometrically similar to these trajectories.) We characterize the
position of the relevant point with respect to the top, as previously, by
the complex quantity Λ, and the position with respect to space by λ.
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The previously known relation

(33) λ =
αΛ + β

γΛ + δ

then obtains between λ and Λ. If we insert here the found values of
α, β, γ, δ, then λ is known as a function of time. This function then
directly yields, in the previously described manner, the stereographic
projection of the trajectory onto the xy-plane.

The equations for the trajectories of the points on the Z-axis with
distance 1 from O will be particularly simple. We choose the point on
the positive Z-axis; for the point on the negative Z-axis, the following is
valid mutatis mutandis. This point corresponds, according to equation
(1′) on page 430, to the value Λ = ∞; the corresponding value of λ will
be denoted by λZ . The equation for the trajectory in the stereographic
projection then runs simply, according to (33),

λZ =
α

γ
,

or, if we substitute from (32),

(34) λZ = −ie2ilt+
iπ
2ω (t+iω′−is) Θ(t− 2iω′ + is)

Θ(t− is) .

It must be possible, however, to construct entirely corresponding rep-
resentations for the trajectories of points on the other principal axes,
since one can indeed interchange the designation of the axes. These
representations may also be derived directly from equation (33). We
insert for Λ the values of the points at distance 1 from O on the positive
Y - and X-axes. These are (see equation (1′) of page 430) the values
Λ = i and Λ = 1. The equations for the trajectories of these points
thus run

λY =
αi+ β

γi+ δ
, λX =

α+ β

γ + δ
.

One is now convinced, if one substitutes from (32), that these expres-
sions can also be written as simple Θ-quotients. The periods, however,
of the Θ-functions that occur here are not, as up to now, 2ω and 4iω′,
but rather 4ω and 2iω′ for λY , and 4ω and 2ω + 2iω′ for λX . The
basis for this dissimiltude of periods is obviously, as one can examine
in more detail, that we have used the relevant data for our three axes
XY Z (p, q, r, A, B, C, etc.) in an asymmetric manner in the choice
of the integration variable v and in the calculation of t.

The conversion of the preceding Θ-expressions into the new with
half or twice the period belongs to a theoretically important domain
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often cultivated by mathematicians, the so-called transformation the-
ory of elliptic functions. It is very interesting that this theory, which
was developed from a purely abstract point of view and which we will
encounter repeatedly in the following, finds a concrete application in
our treatment of the Poinsot motion, It is unfortunately not possible
for us to enter into this theory in detail here; we must restrict ourselves,
in so far as it is required for the present purpose, to convey and derive
it ad hoc.

Through the indicated deliberations, one now recognizes the cor-
rectness of the following summarizing statement:

The trajectory that is described in the Poinsot motion by a point
lying at the distance 1 from O on one of the three principal axes may
always be written in a remarkably simple form by an elliptic function of
the second kind and the first degree. The periods of the elliptic functions
are, according to whether we consider the Z-, Y -, or X-axis, 2ω and
4iω′, or 4ω and 2iω′, or, finally, 4ω and 2ω + 2iω′.

In contrast, the expressions for λ in equation (33) that correspond
to other points of the top are not purely multiplicative for an increase
of t by one of the periods 2ω or 4iω′; they are thus not to be designated
as elliptic functions.

We next consider, for the sake of completeness, the nine direction
cosines a, b, c, a′, b′, c′, a′′, b′′, c′′ that the axes of the moving XY Z
frame form with the axes of the fixed xyz frame. We wish to show,
with the help of conversions that once again belong to the transfor-
mation theory of elliptic functions, that these quantities may also be
represented in a very simple manner; namely, as elliptic functions of
the second kind and the first degree with periods 2ω and 2iω′. More
precisely said, this holds not for the direction cosines themselves, but
rather, on the one hand, for the complex combinations

a+ ib, a′ + ib′, a′′ + ib′′

(as well as the conjugate quantities), and, on the other hand, for the
cosines

c, c′, c′′.
We first write the expressions for these quantities in terms of α, β,

γ, δ, which follow immediately from comparison of the schemata (3)
and (9) of pages 17 and 21, and verify the correctness of the stated
result for the constructed expressions. The expressions in question are

(35)

{
a+ ib = α2 − β2, a′ + ib′ = i(α2 + β2), a′′ + ib′′ = −2αβ,

c = −αγ + βδ, c′ = − i(αγ + βδ), c′′ = αδ + βγ.
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We consider, for example, the first of these quantities, a + ib. Ac-
cording to equation (32), we have

(36) a+ ib = Ce2ilt Θ2(t− 2iω′ + is) + e
iπ
ω (t−iω′+is)

Θ2(t+ is)
Θ(t− iω′)Θ(t+ iω′)

.

The denominator vanishes for t = iω′ + 2mω + 4m′iω′ and for
t = −iω′ + 2mω + 4m′iω′. In their totality, therefore, the null points
of the denominator are given by

t = −iω′ + 2mω + 2m′iω′.
Further, the numerator vanishes, as one easily concludes from the

properties of the Θ-function, for t = ω + iω′ − is + 2mω + 4m′iω′ and
t = ω− iω′− is+ 2mω+ 4m′iω′. The totality of these t-values may be
written as

t = ω + iω′ − is+ 2mω + 2m′iω′.
For an increase of t by 2ω or 2iω′, moreover, the numerator and

the denominator change, after one has multiplied them by the common

factor e
− tπi

2ω , by the factors

−1, +e
πω′
ω − iπ

ω (t+is−iω′)
(numerator),

−1, −e
πω′
ω − iπ

ω (t+iω′)
(denominator),

respectively. These, however, are exactly the factors by which the
numerator and denominator of the ϑ-quotient

ϑ(t− ω + is − iω′)
ϑ(t+ iω′)

would change; the periods of this ϑ-quotient are 2ω and 2iω′, and its
null and singular points coincide with those of a+ ib.

This quotient can differ from the above combination of Θ-series only
by a constant factor. We thus obtain the following relation between
the Θ-functions of periods 2ω, 4iω′ and the ϑ-series of periods 2ω, 2iω′:

(37)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C

Θ2(t− 2iω′ + is) + e
iπ
ω (t−iω′+is)

Θ2(t+ is)
Θ(t− iω′)Θ(t+ iω′)

=

C1
ϑ(t− ω + is− iω′)

ϑ(t+ iω′)
.

For the determination of C1, we set t = −is, whereby the left-hand
side, because of the value of C given in (32), becomes

Θ(2iω′)
Θ(2is − 2iω′)

.
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472 VI. Representation of the motion of the top by elliptic functions.

We therefore first have

(37′) C1 =
Θ(2iω′)

Θ(2is − 2iω′)
· ϑ(is− iω′)
ϑ(ω + iω′)

.

This value may be simplified still further, and reduced entirely to
ϑ-functions. We prepend, for this purpose, the general relation*)

(38)
Θ(2t)
Θ(2t1)

=
ϑ(t)ϑ(t+ ω)
ϑ(t1)ϑ(t1 + ω)

.

In order to realize its correctness, one notes that the numerators of the
right- and left-hand sides change, for an increase of t by 2ω or 2iω′,
by exactly the same factor. The numerators are therefore equal to one
another up to a multiplicative constant. If one sets t = t1, one see that
this constant is correctly chosen.

We now wish to insert into equation (38) the particular values t =
iω′, t1 = is− iω′. Then

Θ(2iω′)
Θ(2is − 2iω′)

=
ϑ(iω′)ϑ(ω + iω′)

ϑ(is− iω′)ϑ(ω + is− iω′)
.

Thus we can write more simply, instead of (37′),

(39) C1 =
ϑ(iω′)

ϑ(ω + is− iω′)
.

Equation (36) for the desired quantity a+ ib thus takes, because of
(37) and (39), the definitive form

a+ ib =
ϑ(iω′)

ϑ(ω + is− iω′)
ϑ(t− ω + is− iω′)

ϑ(t+ iω′)
e2ilt.

One can convert all the expressions given in (35) in an entirely
corresponding manner, and reduce them to ϑ-functions of periods 2ω,
2iω′. We summarize the results in the following table:184

(40)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a + ib =
ϑ(iω′)ϑ(t− ω + is− iω′)
ϑ(is− iω′ + ω)ϑ(t+ iω′)

e2ilt,

a′ + ib′ = i
ϑ(ω + iω′)ϑ(t+ is− iω′)
ϑ(is− iω′ + ω)ϑ(t+ iω′)

e2ilt,

a′′ + ib′′ = i
ϑ(ω)ϑ(t+ is)

ϑ(is− iω′ + ω)ϑ(t+ iω′)
e2ilte

iπ
2ω (t−iω′+is)

,

c =
ϑ(is)ϑ(t− ω)

ϑ(is− iω′ + ω)ϑ(t+ iω′)
e
− iπ

2ω (t+iω′−is)
,

c′ = i
ϑ(ω + is)ϑ(t)

ϑ(is− iω′ + ω)ϑ(t+ iω′)
e
− iπ

2ω (t+iω′−is)
,

c′′ =
ϑ(is+ iω′)ϑ(t+ iω′ + ω)
ϑ(is− iω′ + ω)ϑ(t+ iω′)

e
−πs

ω .

∗) This formula, as well as equation (37), etc., are developed systematically in
the theory of the transformations of elliptic functions.
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§7. On the Poinsot motion. 473

We have derived, in these equations, the essential result of a famous
work of J a c o b i*) (Sur la rotation d’un corps etc.) in a new manner.
This result runs, in our terminology, in the following manner:

The nine direction cosines between the axes of the moving and the
fixed coordinate systems (or, more correctly, the given complex combi-
nations of these direction cosines) are all elliptic functions of the first
degree with periods 2ω and 2iω′.

We proceed, finally, to the consideration of the polhode and herpol-
hode curves**) of the Poinsot motion.

Concerning the polhode curve, only a few words for the present.
According to equation (5), the coordinates p, q, r of the polhode curve
are proportional to the direction cosines c, c′, c′′; they are thus repre-
sented, just like these direction cosines, by elliptic functions of the first
degree. The factors by which p, q, r are multiplied for an increase of t
by the periods 2ω, 2iω′ will be particularly simple; namely, ±1, as is
evident from equations (40). This also follows from the circumstance
that the quantities p2, q2, and r2 must be doubly periodic as entire
functions of v; that is, must have the factor +1 for period increases.
For the square roots p, q, r, only the factors ±1 can occur.

We enter in more detail into the herpolhode curve. We write its
equations in the form of page 44 as

π + iκ = 2i
(
β
dα

dt
− αdβ

dt

)
,

−
 = 2i
(
δ
dα

dt
− γ dβ

dt

)
.

If we insert the values of α and β from (32) into the first equation,
we obtain

π + iκ = 2iαβ
(d logα

dt
− d log β

dt

)

= −2C
Θ(t−2iω′ + is)Θ(t+is)

Θ(t−iω′)Θ(t+iω′)
e
2ilt+

iπ
2ω (t−iω′+is)·

{Θ′(t−2iω′+is)
Θ(t−2iω′+is)

−Θ′(t+is)
Θ(t+is)

− iπ

2ω

}
.

Here we wish to go over once again to ϑ-functions of periods 2ω and
2iω′. We first note that the expression in the braces changes by the
factor +1 or −1 for the increase of t by 2ω or 2iω′, respectively. The
same changes occur, however, for the quotient

∗) Cf. Ges. Werke Bd. 2 page 293 or Crelle’s Journal Bd. 39.
∗∗) The representation of the polhode curve, and also, in part, that of the herpol-

hode curve, were given in terms of elliptic functions for first time by R u e b in his
dissertation, Utrecht 1834.
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474 VI. Representation of the motion of the top by elliptic functions.

ϑ(t− ω + is)
ϑ(t+ is)

,

whose null and singular points also coincide with the null and singular
points of our braces. We therefore have

Θ′(t− 2iω′ + is)
Θ(t− 2iω′ + is)

− Θ′(t+ is)
Θ(t+ is)

− iπ

2ω
= C1

ϑ(t− ω′ + is)
ϑ(t+ is)

.

If we set t = −is, we determine the constant C1 as

C1 =
ϑ′(0)
ϑ(ω)

.

The Θ-quotient before the braces may likewise be converted to
ϑ-functions of periods 2ω and 2iω′. We have, obviously,

C
Θ(t− 2iω′ + is)Θ(t+ is)

Θ(t− iω′)Θ(t+ iω′)
= C2

ϑ(t+ is)
ϑ(t+ iω′)

.

We again determine the introduced constant C2 if we set t = −is. With
consideration of the value of C from (32), there first follows

C2 =
Θ′(0)ϑ(iω′ − is)

Θ(2iω′ − 2is)ϑ′(0)
.

For the further simplification of this quotient, we return to equation
(38). If we set there t = 0, t1 = iω′ − is, then we obtain

2Θ′(0)
Θ(2iω′ − 2is)

=
ϑ′(0)ϑ(ω)

ϑ(iω′ − is)ϑ(ω + iω′ − is) .
Therefore

C2 =
1
2

ϑ(ω)
ϑ(ω + iω′ − is) .

Thus there follows for π + iκ the definitive form

(41) π + iκ = − ϑ′(0)
ϑ(ω + iω′ − is)e

2ilt+
iπ
2ω (t−iω′+is) ϑ(t− ω + is)

ϑ(t+ iω′)
.

This expression exhibits the greatest analogy with the previous ex-
pression for the herpolhode curve of the heavy symmetric top (equa-
tions (13) and (13′) of page 437). It is not only likewise an elliptic
function of the first degree, but can also, if we make an appropriate
substitution for s, be directly transformed into that one. In the follow-
ing section, we will have important consequences to extract from this
remark.

We can form the expression for 
 in a corresponding manner. Ac-
cording to what has gone before (cf. page 124), we know that 
 is a con-

stant
(
=

2h
G

)
. We can therefore insert a special value of t (for example,

t = +is) in the general value of 
 given above. Then γ vanishes, and,
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at the same time, αδ = 1 (because αδ − βγ = 1). We thus obtain

−
 = 2iαδ
(
d log α
dt

)
= 2i

d log α
dt

;

that is,

−
 = 2i
(
il +

Θ′(2is − 2iω′)
Θ(2is− 2iω′)

− 1
2

{Θ′(is− iω′)
Θ(is− iω′)

+
Θ′(is+ iω′)
Θ(is+ iω′)

})
.

We wish to go over again from Θ- to ϑ-functions. We achieve this
by the substitutions

Θ′(2is − 2iω′)
Θ(2is− 2iω′)

=
1
2

{ϑ′(is − iω′)
ϑ(is− iω′)

+
ϑ′(ω + is− iω′)
ϑ(ω + is − iω′)

}
and

Θ′(is − iω′)
Θ(is− iω′)

+
Θ′(is + iω′)
Θ(is+ iω′)

=
ϑ′(is− iω′)
ϑ(is− iω′)

− iπ

2ω
.

The first of these equations follows from (38) by logarithmic differen-
tiation; one verifies the second if one compares the behaviors of the
right- and left-hand sides for period increases and correctly determines
an additive constant.

Instead of the original value of 
, we can now write

(42) −
 = i
(
2il +

3iπ
2ω

+
ϑ′(ω + is + iω′)
ϑ(ω + is+ iω′)

)
.

It follows as the collective result of this section that our parameters
α, β, γ, δ provide a very appropriate instrument for the treatment of
the Poinsot motion. If their expressions in terms of Θ-series are once
found, then we have in hand all the remaining elements of the motion.
These expressions are indeed not entirely as simple as in the theory
of the heavy spherical top; in addition, we could not avoid somewhat
detailed conversions for the passage from Θ-functions to ϑ-functions.
This is based, however, on the nature of the matter, and has a certain
interest in itself with respect to the transformation theory of elliptic
functions. If we had avoided the use of Θ-series altogether and had
begun, with Jacobi, directly from the expressions for the nine direction
cosines, then the completeness of the development would have suffered.
In particular, the beautiful result on the trajectories described by points
of the principal inertial axes would have escaped us.
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476 VI. Representation of the motion of the top by elliptic functions.

§8. Conjugate Poinsot motions. Jacobi’s theorem on the
relation between the motion of the force-free asymmetric

top and the heavy spherical top.

Having dispatched the treatment of the single Poinsot motion, we
now describe the relation of two such motions arranged in a specific
manner with respect to one another, the so-called “conjugate” Poinsot
motions. There will follow an often cited theorem of J a c o b i that
states a remarkable relation between the motion of the heavy spherical
top and the theory of the conjugate Poinsot motions.

For this purpose, we return once more to the polhode curve, and
show that one and the same polhode curve can always be conceived as
the polhode curve of a Poinsot motion in a twofold manner; it simul-
taneously represents, namely, the polhode curve for two different real
force-free tops.

A polhode curve always consists (cf. the figure of page 131) of two
symmetrically equal branches. If a point with the coordinates p, q, r
describes one branch, then the point −p, −q, −r traverses the other
branch in the opposite direction. For an individual Poinsot motion, the
endpoint of the rotation vector will naturally sweep through only one
branch.

We ask whether the other branch plays the same role for another
Poinsot motion.

The answer follows immediately from the Euler equations. By as-
sumption, the coordinates p, q, r satisfy the equations

dp

dt
=
B −C
A

qr,
dq

dt
=
C −A
B

rp,
dr

dt
=
A−B
C

pq.

The coordinates of the diametral point p′ = −p, q′ = −q, r′ = −r,
however, evidently satisfy the equations

(1)
dp′

dt
= −B − C

A
q′r′,

dq′

dt
= −C −A

B
r′p′,

dr′

dt
= −A−B

C
p′q′.

The quantities p′, q′, r′ therefore correspond as rotation components to
another top whose moments of inertia—we wish to denote them by A′,
B′, C ′—are related to the moments of inertia of the original top by the
equations

(2)
B′ − C ′

A′ = −B − C
A

,
C ′ −A′

B′ = −C −A
B

,
A′ −B′

C ′ = −A−B
C

.

We are first obliged to show that a real top is defined by these
equations; that is, that a mass distribution with the principal moments
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§8. On conjugate Poinsot motion; Jacobi’s theorem. 477

of inertia A′, B′, C ′ is possible. For this purpose, it is enough to
convince oneself I) that the quantities A′, B′, C ′ are all positive, and
II) that they satisfy the well-known inequalities of page 100 (the same
inequalities that also obtain between the sides of an ordinary triangle).

I) Equations (2) represent three linear, homogeneous equations for
the three unknowns A′, B′, C ′; naturally only the ratios A′ : B′ : C ′

are determined by these equations. And indeed, we easily find by the
solution of these equations

(3) A′ :B′ : C ′ = A(B + C −A) :B(C +A−B) :C(A+B − C).

The quantities on the right-hand side, however, are all positive, since A,
B, C indeed satisfy the required equations for the reality of the original
top. If we therefore choose, as is permitted, one of the quantities A′,
B′, C ′ as positive, then, according to the preceding proportion, both
of the other quantities must be positive.

II) If we had solved, conversely, equations (2) for A, B, C, then we
would obviously have obtained the proportion

(3′) A :B :C = A′(B′+C ′−A′) :B′(C ′+A′−B′) :C ′(A′+B′−C ′).

Thus the three quantities B′ +C ′−A′, C ′ +A′−B′, A′ +B′−C ′ also
behave as three positive numbers. Since at least one of these must be
positive, the other two are as well.

Thus our top A′, B′, C ′ is proven as real.
We wish, further, to relate the constants 2h′ and G′ of our second

top to the constants 2h and G of the first. That the three components
p′, q′, r′ satisfy two integrals of the form

A′p′2 + B′q′2 + C ′r′2 = 2h′,

A′2p′2 + B′2q′2 + C ′2r′2 = G′2

is clear from the outset, since these equations are a direct analytic
consequence of the Euler equations (1) (written in terms of A′, B′, C ′).
The relation in question is thus given immediately from equations (11)
of page 457. We write these equations in the form

(4)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2hA−G2

BC
=
A−B
C

q2 +
A− C
B

r2,

2hB −G2

CA
=
B −A
C

p2 +
B − C
A

r2,

2hC −G2

AB
=
C −A
B

p2 +
C −B
A

q2.
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(4′)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2h′A′ −G′2

B′C ′ =
A′ −B′

C ′ q′2 +
A′ −C ′

B′ r′2,

2h′B′ −G′2

C ′A′ =
B′ −A′

C ′ p′2 +
B′ − C ′

A′ r′2,

2h′C ′ −G′2

A′B′ =
C ′ −A′

B′ p′2 +
C ′ −B′

A′ q′2.

In these two triplets of equations, the right-hand sides are opposite
to each other. Thus follow the relations

(5)

⎧⎪⎪⎨
⎪⎪⎩

2h′A′ −G′2

B′C ′ = −2hA−G2

BC
,

2h′B′ −G′2

C ′A′ = −2hB −G2

CA
,

2h′C ′ −G′2

A′B′ = −2hC −G2

AB
,

of which the third, because of (2), is a consequence of the first two.
Two of them can thus be used for the determination of the relations of
h′ and G′ to the moments of inertia A′, B′, C ′. Thus the five constants
A′, B′, C ′, h′, G′ are known up to a factor of proportionality. The
motion, however, in no way depends on this factor, which necessarily
remains undetermined.

The Poinsot motion defined by the ratios A′ :B′ :C ′ : h′ :G′ is the
previously mentioned conjugate to the motion A : B : C : h : G. Con-
versely, the latter motion is, as follows immediately from the symmetry
of the equations, the conjugate to the former. One notes that if the
relation

A > B > C

obtains for one of the two conjugate tops, as we assume, then the
inequality

A′ < B′ < C ′

follows for the other top; further, if one of the two conjugate top mo-
tions, as we assume, belongs to the class

2hB −G2 > 0,
then the other belongs to the class

2h′B′ −G′2 < 0.

We must further establish the relation between the “transcendental”
constants ω, ω′, s, and l of the two conjugate tops, which are more
important for us than the “elementary” constants A :B :C :h :G.

One first sees that the constants ω and ω′ for the two tops are the
same. The equality of ω follows directly from the meaning of this
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§8. On conjugate Poinsot motion; Jacobi’s theorem. 479

quantity. The quantity ω, we can say, signifies the time during which
the rotation vector passes across the arc of the polhode curve that spans
the coordinate planes q = 0 and p = 0. In fact, according to equations
(9) of the previous paragraph, q = 0 for v = e (that is, for t = 0), and
p = 0 for v = e′ (that is, for t = ω). The two diametral branches of
the polhode curve, and, in particular, the just named arc (from which
the entire polhode curve is composed by congruent and symmetrically
equal repetition), will, however, be traversed by the rotation vectors
of the conjugate tops in the same time. Therefore ω must, in fact, be
equal for the two tops.

We can, further, similarly prove the equality of ω′ if we permit
the preceding conclusion for imaginary values of time. We can also,
however, proceed as follows. According to equations (6) and (10) of
pages 455 and 456,

(6) t =
∫

dv√
V

=
C

A−B
∫
dr

pq
=

C ′

A′ −B′

∫
dr′

p′q′
.

Now the value of iω′ results for the one and the other motion of the
top if we take as the lower limit of the relevant integral for t the value
of r or r′ for which q = 0 or q′ = 0, and as the upper limit the value
r = ∞ or r′ = ∞. The two resulting integrals are thus, according
to the previous equation, identical, since the named upper and lower
limits correspond due to the relations p′ = −p, q′ = −q, r′ = −r.

The situation is otherwise for the constants s of the two motions,
which we distinguish as s and s′. We had

is =
∫ 1

e

dv√
V
.

If we introduce, as in (6), the integration variable r, then

(7) is =
C

A−B
∫
dr

pq
,

where the lower limit is the value of r for which q vanishes, and the

upper limit is the value r =
G

C
. In the corresponding manner, is′ is

defined as

(7′) is′ =
C ′

A′ −B′

∫
dr′

p′q′
,

where the lower limit is imagined as the value of r′ for which q′ vanishes,

and the upper limit is the value r′ =
G′

C ′ . In the integrals (7) and (7′),
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therefore, only the lower limits are corresponding values. The upper
limits are generally different, and thus the constants s and s′ will also
be different.

We consider, finally, the constants l and l′. Since the individual
Poinsot motion depends on four arbitrary quantities, and since the
conjugate Poinsot motion is completely determined by the original, it
is possible to express the constants l and l′ individually in terms of ω,
ω′, s, and s′. We achieve this in the following manner. According to
equations (5) of page 43, we have

p+ iq = 2i
(
β
dδ

dt
− δdβ

dt

)
for one of the two conjugate motions. If α′, β′, γ′, δ′ denote the values
of α, β, γ, δ constructed according to the schema of equations (32) for
the other motion, there obtains, at the same time,

p′ + iq′ = 2i
(
β′
dδ′

dt
− δ′ dβ

′

dt

)
.

The relation between the two conjugate polhode curves thus yields(
β
dδ

dt
− δdβ

dt

)
= −
(
β′
dδ′

dt
− δ′ dβ

′

dt

)
,

or

βδ
(d log δ

dt
− d log β

dt

)
= −β′δ′

(d log δ′

dt
− d log β′

dt

)
.

In this equation, we insert for t the special values t = −is′ and
t = −is. In the first case l′, and in the second case l vanishes from our
equation, so that we obtain in the first case l, and in the second case
l′ individually. There follows for l the value
(8)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2il +
iπ

2ω
=

Θ′(− is − is′ + 2iω′)
Θ(− is− is′ + 2iω′)

− Θ′(is − is′)
Θ(is− is′)

−e−
iπ
2ω (is−is′) Θ′(0)Θ(2iω′−2is)

Θ(is−is′)Θ(− is−is′+2iω′)
Θ(iω′−is′)Θ(iω′+is′)
Θ(iω′−is)Θ(iω′+is)

.

The corresponding value of l′ follows by the interchange of s and s′.
In order to simplify the right-hand side, we temporarily imagine

the quantity −is′ as variable, and ask for the singular points of the
right-hand expression in this variable, which we wish to denote by t′.

The first term will evidently become infinitely large for the values
(I) t′ = is− 2iω′ + 2mω + 4m′iω′,
and indeed always with the residuum +1. In the same manner, the
second term will become infinite for
(II) t′ = −is+ 2mω + 4m′iω′,
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§8. On conjugate Poinsot motion; Jacobi’s theorem. 481

and indeed with the residuum −1. The third term will likewise be-
come infinite at all the named positions (I) and (II), and only at these
positions. In order the compute the residuum, we remark (1) that for
t′ = is − 2iω′ and for t′ = −is, the residuum is −1, and (2) that our
third term takes on the factor −1 or +1 for the increase of t′ by 2ω or
4iω′, respectively. Thus the residuum of this third term will generally
be equal to (−1)m+1 at the positions (I) and (II). The singularity of the
first term for even m, and that of the second term for odd m, will thus
be canceled by the third term. Thus there remain only the singular
points

t′ = is+ 2ω + 2iω′ + 4mω + 4m′iω′, (residuum +2),(I′)
t′ = − is + 4mω + 4m′iω′, (residuum −2).(II′)

This is a disposition of singular points that corresponds to a doubly
periodic function of t′ with periods 4ω and 4iω′. In fact, the right-hand
side of (8) also remains entirely unchanged for the increase of t′ by 4ω
and 4iω′.

We can now easily express the doubly periodic function in question
in terms of ϑ-functions of period 2ω and 2iω′. We consider, namely,

ϑ′
( t′ − is− 2ω − 2iω′

2

)

ϑ
(t′ − is− 2ω − 2iω′

2

) −
ϑ′
( t′ + is

2

)

ϑ
(t′ + is

2

) .
This quantity directly has, conceived as a function of t′, the singular
points (I′) and (II′) with the correct residua, and is doubly periodic
with periods 4ω and 4iω′. It can thus differ from the right-hand side
of equation (8) only by an additive constant c; that is, by a quantity
independent of t′ that is determined by insertion of a special value (for

example, t′ = −iω′); and indeed one finds, in this manner, c = − iπ
ω

.

If we further introduce the abbreviations

(9)
s′ − s

2
= ω′ − a, s′ + s

2
= b,

and therefore set

(9′) s = −ω′ + a+ b, s′ = ω′ − a+ b,

then we can write the latterly determined value of 2il as

(10) 2il +
3iπ
2ω

=
ϑ′(iω′ − ia)
ϑ(iω′ − ia) −

ϑ′(ω + iω′ + ib)
ϑ(ω + iω′ + ib)

.
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482 VI. Representation of the motion of the top by elliptic functions.

The corresponding value of l′ results, as mentioned, if we exchange
s and s′ in (8). One thus obtains

(10′) 2il′ +
3iπ
2ω

= −ϑ
′(iω′ − ia)
ϑ(iω′ − ia) −

ϑ′(ω + iω′ + ib)
ϑ(ω + iω′ + ib)

.

We further note the formulas

(11)

⎧⎪⎪⎨
⎪⎪⎩
i(l + l′) = − ϑ′(ω + iω′ + ib)

ϑ(ω + iω′ + ib)
− 3iπ

2ω
,

i(l − l′) =
ϑ′(iω′ − ia)
ϑ(iω′ − ia)

that follow from (10) and (10′).
The relation between the constants s, s′, l, l′ is thus found.
For the consideration of the conjugate Poinsot motion, we can now

adopt the point of view that it would be more practical, in part for rea-
sons of symmetry, to establish the individual Poinsot motion in terms
of the four quantities ω, ω′, s, and s′ or ω, ω′, a, and b instead of the
quantities ω, ω′, s, and l.

We wish, in particular, to rewrite the herpolhode curve equations
(41) and (42) of the previous section in terms of these constants. These
equations become, if we immediately apply some reductions,

π + iκ =
ϑ′(0)

ϑ(ω+ia+ib)
e
π(a+b)

2ω e

{
ϑ′(iω′−ia)
ϑ(iω′−ia) −ϑ

′(ω+iω′+ib)
ϑ(ω+iω′+ib)

}
t ϑ(t−ω−iω′+ia+ib)

ϑ(t−iω′)
,

−
 = i
(ϑ′(iω′ − ia)
ϑ(iω′ − ia) −

ϑ′(ω + iω′ + ib)
ϑ(ω + iω′ + ib)

+
ϑ′(ω + ia+ ib)
ϑ(ω + ia+ ib)

)
.

These are, however, precisely the formulas for the polhode curve of
the heavy spherical top, as we have constructed them on pages 436 and

437, with the single difference that the additional factor of −1
2

occurs
in our present formulas.

If we write the equations of the herpolhode curve of the conjugate
top in the same manner, then we obtain formulas that differ from the
preceding only by the exchange of +a with −a; this directly produces,
however, our earlier equations of the herpolhode curve of the heavy

spherical top, with the difference that now the factor +
1
2

occurs com-
pared to the previous.

We thus have the remarkable result that
The coordinates of the herpolhode curves of our two conjugate tops

with constants ω, ω′, a, and b are, at every moment, identical with the
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§8. On conjugate Poinsot motion; Jacobi’s theorem. 483

coordinates of the polhode or herpolhode curves of the heavy spherical
top with the same constants, divided by −2 or +2, respectively.

A deeper relation between our conjugate Poinsot motions and the
motion of the heavy spherical top obviously lies hidden here, a relation
that we propose to clarify through the following deliberations.

We imagine the two conjugate tops rotating about the common
point O with coinciding rotation axes and a common initial position,
and ask for the relative motion of the two corresponding inverse mo-
tions; that is, the two motions that the surrounding space appears to
execute to an observer who takes his standpoint once in one, and once
again in the other of the two conjugate tops.

The two original direct motions are illustrated to us, according to
the prescription of Poinsot, if we let the relevant polhode cones roll on
the herpolhode cones without sliding. We obtain the inverse (reversed)
motions, conversely, if we fix the polhode cones and roll the herpolhode
cones on the polhode cones without sliding. The relative motion of the
two herpolhode cones then represents to us the Poinsot image of the
relative motion of the inverse Poinsot motions.

Now the conjugate top possesses, by definition, a diametrically op-
posed polhode curve, and consequently a congruent polhode cone. In
our case, therefore, the two herpolhode cones roll on one and the same
polhode cone. And indeed these herpolhode cones are continually tan-
gent to one and the same generator, which is given by the instantaneous
values of the ratios p : q : r = p′ : q′ : r′, and turn about the generator
with one and the same angular velocity√

p2 + q2 + r2 =
√
p′2 + q′2 + r′2

in the opposite sense. (We are obliged to imagine that one herpolhode
cone is tangent to the polhode cone on the interior and the other on
the exterior, so that they can always remain in contact during their
rotations that occur in the opposite sense.) If, however, two cones roll
without sliding on a single third cone and always remain in contact,
then they also roll without sliding on one another. We can thus, in
order to obtain the relative motion in question, completely discard the
polhode cone, and roll the one herpolhode cone directly upon the other.
In this manner, we acquire, from the Poinsot image of the original
motions of the top, a simultaneous Poinsot image of the above named
relative motion.
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484 VI. Representation of the motion of the top by elliptic functions.

If we fix, at our pleasure, one of the two herpolhode cones, then this
fixed cone plays the role of the herpolhode cone for the relative motion,
while the other herpolhode cone would be designated as the polhode
cone of the relative motion. We thus see that

The herpolhode and polhode cones of our relative motion are iden-
tical with the two herpolhode cones of the original individual motions.

The situation is somewhat different if we take into consideration,
in addition to the cones, the herpolhode and polhode curves of the
relative motion that run on the cones. These curves are not directly
identical with the herpolhode curves of the conjugate Poinsot motions.
For, first of all, these latter curves indeed roll on the polhode curves of
the Poinsot motions that lie diametrically opposed with respect to O.
Thus the two points of the herpolhode curves that give the endpoints of
the rotation vectors at each moment in the Poinsot motions must also
be found on opposite sides of O. In order to have two curves rolling
on each other, we must replace one herpolhode curve by its diametral
image with respect to O. But even the resulting two curves, the herpol-
hode curve of one and the diametral image of the other Poinsot motion,
are not yet directly the polhode and herpolhode curves of the relative
motion. Namely, we easily convince ourselves that the rotational ve-
locity of the polhode cone in the relative motion is twice as great as the
rotational velocity in the original individual motions. In fact, we must
first rotate the cone posing as the polhode cone of the relative motion
into the position of the polhode cone for the Poinsot motion, which
is accomplished by the rotation (−p dt,−q dt,−r dt), and then rotate
it into the position of the cone serving as the herpolhode cone, which
requires the rotation (p′ dt, q′ dt, r′ dt) = (−p dt,−q dt,−r dt). The to-
tal rotation that occurs in the time dt for the relative motion therefore
amounts to (−2p dt,−2q dt,−2r dt); the angular velocity is thus, for
the correct choice of sign, 2

√
p2 + q2 + r2; that is, twice as great as for

the original Poinsot motions.
Now we obtain the herpolhode and polhode curves if we lay off the

magnitude of the angular velocity on the relevant cones in the direction
of the instantaneous rotation axis. We obtain, evidently, curves that
are geometrically similar to and twice the scale of the herpolhode curve
of the one and the diametral image of the herpolhode curve of the other
of our conjugate Poinsot motions. Thus it follows that
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§8. On conjugate Poinsot motion; Jacobi’s theorem. 485

The coordinates of the herpolhode and polhode curves of our relative
motion result from the coordinates of the herpolhode curves of the two
conjugate Poinsot motions if these coordinates are multiplied by +2 and
−2.

We have, however, calculated above that the coordinates of the her-
polhode curves for the Poinsot motions, multiplied by +2 and −2,
coincide exactly with the coordinates of the herpolhode and polhode
curves of the heavy spherical top. If we consider that a motion is en-
tirely determined by its herpolhode and polhode curves, we acquire the
remarkable result that

The motion of the heavy spherical top is identical with the rela-
tive motion of the two inverse motions corresponding to the conjugate
Poinsot motions.

This is the famous Jacobi theorem mentioned at the onset—although
in a formulation that deviates not inessentially from the original Ja-
cobi formulation. The relation that has been discussed here between
two different rotation problems is, in fact, an astonishing one, and lies
in no way on the surface of the matter.

In order to understand this relation still more clearly, we can ask, in
particular, what corresponds, in the Poinsot motions, to the figure axis
of the spherical top, and what to the vertical? The answer is simply this:
the impulse axis of one Poinsot motion gives the figure axis, and that
of the other the vertical. We remark, namely, that the transcendental
cones in question are all periodic, in the sense that they coincide with
themselves when turned by a certain angle about a certain axis. This
“periodicity axis” for the herpolhode cone of the Poinsot motions is
the spatially fixed impulse axis, and is the figure axis or the vertical,
respectively, for the polhode or the herpolhode cone of the spherical
top motion. Now since the cones coincide alternately, their “periodicity
axes” must also coincide. The axis of the impulse of one Poinsot motion
is therefore identical with the vertical, and that of the other identical
with the figure axis of the spherical top.

There follows from the Jacobi theorem, further, a remarkably simple
construction for the relative positions of the vertical and the figure axis
for the motion of the heavy spherical top. We imagine the ellipsoids of
inertia of the two conjugate tops constructed and placed so that their
principal axes coincide. If we project the intersection curve of these
two ellipsoids from O, then we obtain the common polhode cone of
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486 VI. Representation of the motion of the top by elliptic functions.

the conjugate tops. We then construct the impulse axes corresponding
to any one generator p :q :r of the cone in one and the other top—that
is, the lines Ap : Bq : Cr and A′p : B′q : C ′r. We find these lines
purely geometrically, in that we lay the tangent planes to the ellipsoids
of inertia at the intersection points of the generators, and drop the
perpendiculars from these planes to O. These two perpendiculars then
directly give the mutual positions of the vertical and the figure axis for
the motion of the spherical top. Their inclination cosine, as one sees,
is simply equal to

AA′p2 +BB′q2 + CC ′r2

GG′ . —

For supererogation, we wish to give yet a second proof. We now
wish, namely, to verify the Jacobi theorem again from the composition
formulas for α, β, γ, δ.185.

Let our two Poinsot motions be determined, as previously, by the
parameters α, β, γ, δ and α′, β′, γ′, δ′. The corresponding inverse
motions of space are then determined, according to page 30, by the
parameter values

δ,−β,−γ, α and δ′,−β′,−γ′, α′.

We obtain the relative motion of our two conjugate tops—that is, the
rotation that transforms one top from its position at time t into the
position of the other top—by (1) bringing back one of the two tops from
its position at time t to its original position, and (2) rotating from this
original position to the position of the other top. The relative motion
of the two inverse motions results in the same manner, in that we (1)
make in reverse one of the two inverted motions, say the one given by δ′,
−β′, −γ′, α′, which is accomplished by a rotation with the parameters
α′, β′, γ′, δ′, and then execute the other inverse motion δ, −β, −γ, α.
In order to obtain the relative motion of the inverse motions, we must,
therefore, sequentially execute the two rotations

(1) α′, β′, γ′, δ′ and (2) δ,−β,−γ, α.
According to the composition formulas of page 32, the resultant

rotation that is equal in its effect to the sequential rotations (1) and
(2) now has the parameters

α′′ = α′δ − β′γ, β′′ = −α′β + β′α,

γ′′ = γ′δ − δ′γ, δ′′ = −γ′β + δ′α.
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§8. On conjugate Poinsot motion; Jacobi’s theorem. 487

We wish to show that these are, in fact, the parameters of the
spherical top.

For this purpose, we must enter for α, β, γ, δ; α′, β′, γ′, δ′ their
expressions in terms of Θ-functions on the basis of the constants ω,
ω′, s, and s′ or ω, ω′, a, and b, and must once more go over from
Θ- to ϑ-functions. We need only calculate, for example, α′′ and β′′,
since the two other parameters may be derived from these through the
interchange of +i with −i.

We obtain for α′′, according to equations (32) of page 468, the rep-
resentation

α′′=
√
CC′ei(l

′−l)t

Θ(t−2iω′+is′)Θ(t+2iω′−is′) + e
iπ
2ω (−2iω′+is′+is)

Θ(t+is′)Θ(t−is)
Θ(t−iω′)Θ(t+iω′)

.

It is first apparent that the exponential factor here conforms to the
exponential factor that appears for the motion of the heavy spherical
top in the expression for α. In fact, we have, according to equation
(11),

ei(l
′−l)t = e

−ϑ′(iω′−ia)
ϑ(iω′−ia) t

.

Further, one easily checks that our Θ-quotient takes on, for the increase
of t by 2ω and 2iω′, the factors +1 and

e
− iπ

ω
is′−is

2 = e
− iπ

ω (iω′−ia)
,

respectively. These are, however, the same factors by which the
ϑ-quotient

ϑ(t− ia)
ϑ(t− iω′)

is multiplied for the same increases. Since the singular points in the
t-plane also coincide, our above expression must be equal, up to a con-
stant, to this ϑ-quotient. This same ϑ-quotient also occurred, however,
in the expression for the parameter α in the motion of the heavy spher-
ical top. That, finally, the multiplying constants in the two compared
expressions also coincide, we wish to mention without proof.

For what concerns β′′, we have

β′′ =
√
CC ′e

i
(
l+l′+ π

2ω

)
t

·−e
iπ
2ω (−iω′+is)

Θ(t−2iω′+is′)Θ(t+is) + e
iπ
2ω (−iω′+is′)

Θ(t+is′)Θ(t−2iω′+is)
Θ(t−iω′)Θ(t+iω′)

.
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488 VI. Representation of the motion of the top by elliptic functions.

The fraction on the right-hand side again changes only by a certain
constant factor if we add one of the periods to t; namely, by the factors
+1 and

−e−
iπ
ω

(
−iω′+ is+is′

2

)
= e

− iπ
ω (−ω+ib−iω′)

.

These same factors, however, are also taken on by the ϑ-quotient

ϑ(t− ω + ib)
ϑ(t+ iω′)

= −e
iπt
ω ϑ(t− ω + ib)

ϑ(t− iω′)
.

Thus β′′ will be proportional, with consideration of equations (11), to
the expression

e
i
(
l+l′+3π

2ω

)
t ϑ(t− ω + ib)

ϑ(t− iω′)
= e

−ϑ′(ω+iω′+ib)
ϑ(ω+iω′+ib)

t ϑ(t− ω + ib)
ϑ(t− iω′)

.

This is, however, the variable component of the value of β for the
motion of the heavy spherical top. Finally, the constant factor of pro-
portionality also coincides, which we do not wish, however, to prove
explicitly.

Thus the identity of the parameters α′′, β′′, γ′′, δ′′ of our relative
motion with the parameters α, β, γ, δ of the heavy spherical top is
shown, wherein lies a repeated and, indeed, the most direct conceivable
proof of the Jacobi theorem. —

The formulation of the Jacobi theorem given here is, as mentioned,
somewhat different from the original formulation of Jacobi.*) Jacobi,
namely, decomposes the individual Poinsot motion into a periodic and
an aperiodic component, or, as we may perhaps say in analogy with the
foregoing, into a nutation and a precession component. The precession
component, considered in itself, leads the body about the impulse axis
with uniform angular velocity, and is arranged so that the additional
nutation component represents a purely periodically recurring motion.
The precessional velocity will thus be given, in essence, by the constant
l, and the nutational motion by the ϑ-quotient appearing in the repre-
sentation of the Poinsot motion. Jacobi now imagines that the preces-
sional motion is extracted, in that he refers the motion to a spatially
moving frame xyz that rotates uniformly with the precessional veloc-
ity l about the z-axis that coincides with the impulse axis. Measured
in this frame, the motion is a pure, periodically recurring nutation.
Since Jacobi frees the conjugate Poinsot motion in the same manner
from its precessional component, he asks for the relative motion of the

∗) Ges. Werke Bd. II page 480.
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two conjugate nutations, and finds that this relative motion is identical
with the nutational motion of the heavy symmetric top. (Jacobi can
replace the spherical top here by the symmetric top, since the motions
of the two differ, as we know (cf. page 234), only by an exponential
factor; that is, only in their precessional components, while they are
equal, in contrast, in their nutational components.) Our formulation
of the Jacobi theorem is obviously simpler and more extensive than
Jacobi’s, since the nutation and precession are considered simultane-
ously. We wish to concisely name the theorem, as we have stated it,
the “completed Jacobi theorem.”

We have also deviated considerably from Jacobi in the proof. Jacobi
describes the position of the XY Z coordinate frame with respect to
the xyx frame in the two conjugate Poinsot motions in terms of the
nine direction cosines a, . . . , c′′; that is, in terms of the coefficients of
the ternary substitutions that transform the coordinates XY Z into
the coordinates xyz. For the investigation of the relative motion, he
must therefore compose two ternary substitutions, and calculate the
3 × 3 = 9 coefficients of the resultant substitution. In contrast, the
simplification in our proof is that we compose, instead of two ternary,
two binary substitutions, and had need only of the 2×2 = 4 coefficients
of the resultant rotation. Moreover, the proof of Jacobi himself is only
indicated in his posthumous papers; it was first executed after his death
by L o t t n e r.*)

The possibility of completing the Jacobi theorem in the sense in-
tended here—that is, of composing the Poinsot motions directly with-
out separating the precessional components in advance—was first noted
by H a l p h e n.**)

A very simple elementary proof of the Jacobi theorem is given by Mr.
D a r b o u x.***) Darboux asks directly for the force that is required
for the kinetic realization of our relative motion, and finds that this is
identical with the force of gravity. A similar train of thought is pursued
slightly later by Mr. R o u t h.†)

∗) Cf. Jacobi’s ges. Werke, Bd. II, pp. 510 and ff.
∗∗) Comptes Rendues, Bd. 100, pp. 1065–1068.

∗∗∗) Journ. de Liouville 1885 in the work cited on page 234; cf. also the Notes
XVIII and XIX to the Cours de Mécanique of Despeyrous-Darboux Bd. II.

†) Quarterly Journal of Mathem. vol. XXIII 1888. On a theorem of Jacobi in
dynamics. Cf. also Vol. II of the Rigid Dynamics by the same author, art. 174, 175
and 206.
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We cannot enter here into the other works (P a d o v a in the Atti
d. Acad. di Torino, vol. XIX 1884 and Atti d. R. Istit. di Veneto, vol.
III 1892; H a l p h e n, Fonctions Elliptiques, Bd. II, Cap. 2 and 3, A.
d e S a i n t-G e r m a i n in the monograph cited on page 115) that
are concerned with the Jacobi theorem.

In conclusion, a few remarks on the purpose and the meaning of the
Jacobi theorem.

We must emphasize above all, in this respect, that this theorem has
a purely kinematic character. In fact, the concept of relative motion is
merely a kinematic concept. We know nothing in advance of the kinetic
realization of a relative motion. The relative motion must, in general,
follow under conditions entirely different from those under which the
relevant individual motions proceed. Correspondingly, the Jacobi the-
orem depends directly on the kinematically defined polhode and her-
polhode curves, while the kinetically more important impulse curves
withdraw from our consideration. We must therefore say that the Ja-
cobi theorem states not a mechanical, but rather a geometric relation
between the Poinsot motion and the motion of the spherical top.186

Further, one can doubt whether the Poinsot motion is actually so
much simpler and more transparent than the motion of the heavy spher-
ical top that it is worth the trouble to reduce the latter motion to the
former. The Poinsot motion may indeed be described, to a certain
degree of completeness, by elementary means (by the rolling of an el-
lipsoid on a plane). One should not, however, overestimate the contrast
between elementary and transcendental dependence. It can very well
be that a motion given in transcendental form is not more complicated
for numerical calculation and for the intuition than an algebraically
represented motion.

But even if we assume that the individual Poinsot motion is fully
commanded in all its details, we still possess no clear representation of
the relative motion of two such motions, or of the corresponding inverse
motions. In fact, the image of a relative motion is very difficult to grasp
intuitively. It is hardly possible, without lengthy developments, to ad-
vance from the Jacobi theorem to a clear representation, for example,
of the trajectory of the apex or the polhode and herpolhode curves of
the heavy spherical top. We therefore prefer not to attach to the Jacobi
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point of view that one possesses, in the simultaneous consideration of
the conjugate Poinsot motions, a means to understand the actual basis
of the motion of the heavy top.

Nevertheless, the kinematic relation unlocked by Jacobi between
the Poinsot motion and the motion of the heavy spherical top is so
remarkable and interesting that we could not pass over it in silence
here.

§9. The Lagrange equations for α, β, γ, δ of the heavy
spherical top and their direct integration. Relation between
the motion of the spherical top and a problem in particle

mechanics.

After our parameters α, β, γ, δ have proven themselves so variously
distinguished in the preceding, we will ask, in this concluding section,
whether we cannot bestow upon them a still more central position in
the theory of the heavy spherical top, in that we adopt them from
the onset as a basis for the construction of the differential equations
and their integration. It is indeed somewhat dissatisfying that we have
used these parameters extensively only toward the end of the theory
(in this chapter), while we accomplished the original integration with
the Euler angles ϕ, ψ, ϑ. We now wish to show, in contrast, that the
differential equations of the motion of the heavy spherical top assume
an astonishingly simple form when written in terms of α, β, γ, δ. The
integration process is fashioned much more elegantly and concisely by
the consistent use of our parameters than by the previous method, and
leads with one blow to the definitive representation of the motion by
ϑ-quotients.

The circumstance that we only now present these developments, and
that we have been satisfied until now with clumsy analytical methods,
depends merely on the disposition of the material, and not on the
nature of the matter. The following considerations assume, namely,
some previous knowledge from the theory of elliptic functions that could
be prepared only in this chapter. Only for this reason have we until
now forsworn the consistent use of the parameters α, β, γ, δ.

The following developments are noteworthy in yet another direc-
tion. We will relate the motion of the heavy spherical top, namely,
with the motion of a single mass particle in a space of four dimen-
sions, just as we have compared it in the previous section with the
force-free motion of the asymmetric top. The relation proposed here
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492 VI. Representation of the motion of the top by elliptic functions.

is deeper, valid also in kinetic respects, while that discovered by Jacobi
was only of a kinematic nature.

At the same time, we will have occasion to take a glance at a charac-
teristic, possibly multidimensional conception of mechanical problems
in the sense of particle mechanics, for which our treatment of the spher-
ical top serves as an exquisitely simple example.

The general Lagrange equations of the heavy spherical top form
the starting point of our considerations. The wonderful fact that the
form of these equations remains the same for all possible coordinates
through which we may describe the position of a mechanical system
was already emphasized on page 155. The equations of motion are al-
ways derived from the expression T of the vis viva and the expression
dA of the work for an infinitesimal displacement (or from the poten-
tial energy V ) according to one and the same rule. As mentioned on
page 158, the Lagrange schema remains valid in essence even if one
establishes the position of the system in terms of supernumerary coor-
dinates; that is, in terms of quantities that are bound by one or more
relations F = const. or F1, F2, . . . = const. One then has only to use,
instead of T , the expression T + λF or T + λ1F1 + λ2F2 + · · · , where
the “Lagrange multipliers” λ are chosen so that the solutions of the
Lagrange equations will be compatible with the constraint equations.

We now wish to use this rule in order to write the equations of
motion of the heavy spherical top in terms of the parameters α, β, γ,
δ, which was already alluded to on page 158. If we understand by [A],
[B], [Γ], [Δ] the components of the impulse, and by A, B, Γ, Δ the
components of the external force that correspond to α, β, γ, δ, then
we have, without further ado,

(1)

⎧⎪⎪⎨
⎪⎪⎩

[A] =
∂(T+λF )

∂α′ , [B] =
∂(T+λF )

∂β′
, [Γ] =

∂(T+λF )
∂γ′

, [Δ] =
∂(T+λF )

∂δ′
,

A = −∂V
∂α

, B = −∂V
∂β

, Γ = −∂V
∂γ

, Δ = −∂V
∂δ

.

(2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[A]
dt

− ∂(T + λF )
∂α

= A,

d[B]
dt

− ∂(T + λF )
∂β

= B,

d[Γ]
dt

− ∂(T + λF )
∂γ

= Γ,

d[Δ]
dt

− ∂(T + λF )
∂δ

= Δ.
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The meaning of the quantities used here is the following. The con-
straint equation that binds α, β, γ, δ is, as we know,

(3) F = αδ − βγ = 1.

The potential energy is then V = P cos ϑ. Since, according to the
defining equations (8) of page 21, cosϑ = αδ+ βγ, we have, written in
terms of α, β, γ, δ,

(4) V = P (αδ + βγ).

For the calculation of the vis viva T of the spherical top, we begin
from the expression

T =
A

2
(p2 + q2 + r2),

but wish to write, in order to avoid duplicity of notation in the follow-

ing,
M

2
instead of A. If we use for p + iq, −p + iq, and r the values

from equations (5) of page 43, there follows

T = M{(βδ′ − δβ′)(αγ′ − γα′)− (γβ′ − αδ′)(δα′ − βγ′)},
= M{(αδ − βγ)(α′δ′ − β′γ′)}.

With consideration of the constraint equation F = 1, we therefore
acquire the extraordinarily simple value

(5) T = M(α′δ′ − β′γ′).
Because of the given values of F , V and T , equations (1) and (2)

become
(6)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[A] = Mδ′, [B] = −Mγ′, [Γ] = −Mβ′, [Δ] = Mα′,

A = −Pδ, B = −Pγ, Γ = −Pβ, Δ = −Pα,
d[A]
dt

− λδ = A,
d[B]
dt

+ λγ = B,
d[Γ]
dt

+ λβ = Γ,
d[Δ]
dt

− λα = Δ.

If we eliminate the impulse and force components from (6), then we
have, if we write the equations in the reverse sequence,

(7)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mα′′ − λα = − Pα,

Mβ′′ − λβ = + Pβ,

Mγ′′ − λγ = + Pγ,

Mδ′′ − λδ = − Pδ.

αδ − βγ = 1.

These are the exceedingly simple and symmetric equations of motion
of the heavy spherical top in terms of α, β, γ, δ.
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494 VI. Representation of the motion of the top by elliptic functions.

We will return to these differential equations in detail later. We
first wish to go a step further, and resolve the preceding equations into
their real and imaginary parts, in that we go over from α, β, γ, δ to
the quaternion quantities A, B, C, D. Since, according to page 21,

α = D + iC, β = − B + iA,

γ = B + iA, δ = D − iC,

there follow

(8)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

MA′′ − λA = + PA,

MB′′ − λB = + PB,

MC ′′ − λC = − PC,

MD′′ − λD = − PD,

A2 +B2 + C2 +D2 = 1.

These Lagrange differential equations of the heavy spherical top in
terms of A, B, C, D are, as one sees, not different in their manner
of construction from the preceding equations; only the form of the
constraint equation appears to be altered.

These equations now suggest an extraordinary interpretation of the
motion of the top in the sense of particle mechanics in four-dimensional
space.

We wish to conceive the quantities A, B, C, D, according to their
definition as real quantities, as the usual rectangular coordinates in a
space of four dimensions, and indeed imagine a four-dimensional space
that is the exact generalization of our usual Euclidean three-dimensional
space. We will, in particular, apply the Pythagorean theorem in our
four-dimensional space, and correspondingly measure the distance be-
tween the two points A1, B1, C1, D1; A2, B2, C2, D2 through the
expression√

(A2 −A1)2 + (B2 −B1)2 + (C2 − C1)2 + (D2 −D1)2.

The “motion” of a particle of mass M is now to be investigated
in this space. We will set the square of the velocity of this particle,
according to the just stated measure of distance, equal to

A′2 +B′2 + C ′2 +D′2;

its kinetic energy will thus be

(9) T =
M

2
(A′2 +B′2 +C ′2 +D′2).

We further wish to assume that our point is subject to a force whose
potential energy at the position A, B, C, D of the four-dimensional
space is equal to
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(10) V =
P

2
(−A2 −B2 + C2 +D2).

Finally, the point should be constrained to remain on the “unit sphere”
centered at the origin of the coordinates; that is, its distance from the
origin should be constantly equal to 1. This signifies, in consequence of
our above stipulation of the measure of distance in the four-dimensional
space, that the constraint equation

(11) F = A2 +B2 + C2 +D2 = 1

should constantly be fulfilled.
By the “motion” of a particle in a space of four dimensions, we

understand nothing other than the embodiment of such coordinate
changes that satisfy the differential equations of motion for a parti-
cle in a space of three dimensions, augmented by one row.

We can concisely designate the four-dimensional problem that is de-
fined here as the motion of a spherical pendulum in a space of four di-
mensions, under the influence of a force system characterized by (10).*)

If we now form the differential equations of this spherical pendulum
in analogy to the well-known Lagrange equations of the first kind in
the case of three-dimensional particle mechanics, there result precisely
the equations (8). We can therefore say that

The motion of the heavy spherical top is identical with the motion of
a spherical pendulum in a space of four dimensions under the influence
of the previously given force system.

In order to be able to express ourselves concisely, we wish to name
the particle on the four-dimensional sphere, whose coordinates at any
time are equal to the quaternion parameters of the spherical top, the
representative of the motion of the top, and seek to provide the clearest

∗) The precise analogue of the three-dimensional spherical pendulum in a space of
four dimensions would obviously be the motion of a mass particle on the unit sphere
in a force field whose potential energy is proportional to one of the coordinates A,
B, C, D, or, somewhat more generally, that depends on only one of these coordi-
nates. The level surfaces of this force field consist of a system of parallel (threefold
extended) “planes” of the four-dimensional space, just as the level surfaces of grav-
ity in a space of three dimensions consist of the system of the collected horizontal
planes, while the level surfaces of our force field (10) represent a system of surfaces
of the second degree.

The top analogous to the spherical pendulum in this narrower sense is naturally
integrable. It corresponds, in the given list of Mr. L i e b m a n n (Math. Ann. Bd.
50, p. 65), to case (5), emphasized as real, for which

V = f(β − γ) = f(2B)
is assumed.
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496 VI. Representation of the motion of the top by elliptic functions.

possible image of the motion of this representative. We thus consider,
in the first place, the interpretation of the previously known laws of
motion of the top, the impulse theorems n = const., N = const., and
the theorem of the vis viva, as properties of the motion of the repre-
sentative. These laws are now derived anew on the basis of equations
(8). And we will indeed proceed precisely as we would for the treat-
ment of the three-dimensional spherical pendulum on the basis of the
Lagrange equations of the first kind written in terms of the rectangular
coordinates x, y, z.

We first multiply equations (8) sequentially by B, A, D, C, and
take the difference of the first two and the last two equations. There
follow

M (A′′B −B′′A) = 0,

M (C ′′D −D′′C) = 0.

The left-hand sides are obviously perfect differential quotients with
respect to time. We can thus integrate, and obtain, if we denote the

constants of integration by
n+N

2
and

n−N
2

,

(12)

⎧⎪⎪⎨
⎪⎪⎩
M (A′B −B′A) =

n+N

2
,

M (C ′D −D′C) =
n−N

2
.

The choice of the notation for the constants indicates the manner in
which these equations are related to our previous integrals n = const.
and N = const. In order to conceive these equations in words, we
remark that the left-hand sides are proportional to the areas of certain
infinitesimal triangles. The area of the triangle with corners 0, 0, 0, 0;

A,B, 0, 0; A+ dA,B + dB, 0, 0, for example, is
1
2
(A′B −B′A) dt. One

is thus convinced of the correctness of the following statement:
The representative of the spherical top moves so that the radius vec-

tor from the coordinate origin to the projection point of the represen-
tative on the (twofold extended) planes C = D = 0 or A = B = 0
describes equal areas in equal times.

Our impulse theorems n = const. and N = const. are thus most
intimately related to the area theorems of the usual particle mechanics,
since the derivation of equations (12) runs precisely parallel to the usual
derivation of the area theorems.
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In order to acquire the theorem of the vis viva anew, we multiply
equations (8) sequentially by A′, B′, C ′, D′ and add.

If we consider, according to equation (11), that

(13) AA′ +BB′ + CC ′ +DD′ = 0,

there follows

M(A′A′′ +B′B′′ + C ′C ′′ +D′D′′) = P (AA′ +BB′ − CC ′ −DD′).

Perfect differential quotients again stand on the right- and left-hand
sides. We thus integrate, and find, understanding by h the constant of
integration,

(14)
M

2
(A′2 +B′2 + C ′2 +D′2) =

P

2
(A2 +B2 − C2 −D2) + h,

or, if we use the abbreviations in equations (9) and (10),

T + V = h.

We thus arrive at the theorem of the vis viva, and indeed exactly
through the process that one usually applies in the mechanics of sin-
gle particles when calculating with rectangular coordinates. In order
to interpret this theorem in the sense of four-dimensional particle me-
chanics, we consider that T is proportional to the square of the velocity
of the representative; we can thus say, for example, that

In its motion, our representative always passes the individual level
surfaces V = const. with the same velocity, which may be easily cal-
culated according to the latter formula in terms of the constant h, the
mass M , and the value of the potential V corresponding to the consid-
ered level surface.

Finally, we wish to calculate the magnitude of the Lagrange multi-
plier λ. This gives us a “pressure” that our mass particle exerts in the
radial direction on the spherical surface that guides it, or, if we wish, the
tension of the arm to whose end our mass particle is fixed. We multiply,
for this purpose, equations (8) sequentially by A, B, C, D and add.
There follows, because of the constraint equation A2+B2+C2+D2 = 1,

λ = M(AA′′ +BB′′ + CC ′′ +DD′′)− P (A2 +B2 − C2 −D2).

According to equation (13), however,

AA′′ +BB′′ + CC ′′ +DD′′ = −(A′2 +B′2 +C ′2 +D′2),

and therefore, with consideration of (14),

M(AA′′ +BB′′ + CC ′′ +DD′′) = −P (A2 +B2 − C2 −D2)− 2h.
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498 VI. Representation of the motion of the top by elliptic functions.

The given value of λ therefore reduces to

(15) λ = −2P (A2 +B2 − C2 −D2)− 2h = 4V − 2h.

We wish to state this result as a theorem in the following manner:
In the passage through a given level surface V = const., the rep-

resentative always presses perpendicularly against the spherical surface
that bears it with same strength λ = 4V − 2h.

We now give the previously promised revision of our earlier integra-
tion process. We will directly develop with the greatest brevity, in that
we begin from the differential equations for A, B, C, D or α, β, γ, δ,
a new and complete analytic theory of the motion of the top, without
assuming the earlier results as known.

The beginning of the integration process in terms of the quaternion
quantities A, B, C, D has already been made in equations (12)–(15).
For further execution, we use the auxiliary quantity

(16) u = −A2 −B2 + C2 +D2,

and seek to express this quantity as a function of t. This purpose is
served by the following calculations.

We form
u′ = 2(−AA′ −BB′ + CC ′ +DD′)

and combine this expression with equation (13), from which follow

(17)

⎧⎪⎪⎨
⎪⎪⎩
AA′ +BB′ = − u′

4
,

CC ′ +DD′ = +
u′

4
.

We then square and sum the first of these equations and equations (12),
and find

(18) (A2 +B2)(A′2 +B′2) =
M2u′2 + 4(n+N)2

16M2
.

In the same manner, there follows from the second of equations (17)
and equations (12)

(18′) (C2 +D2)(C ′2 +D′2) =
M2u′2 + 4(n −N)2

16M2
.

We further have, because of the definition of u and the constraint
equation A2 +B2 + C2 +D2 = 1,

(19)

⎧⎪⎨
⎪⎩
A2 +B2 =

1− u
2

,

C2 +D2 =
1 + u

2
,

so that instead of (18) we can also write

498



§9. The differential equations for α, β, γ, δ and their integration. 499

A′2 +B′2 =
M2u′2 + 4(n+N)2

8M2(1− u) ,

C ′2 +D′2 =
M2u′2 + 4(n−N)2

8M2(1 + u)
,

and

A′2 +B′2 + C ′2 +D′2 =
M2u′2 + 4(n2 +N2) + 8nNu

4M2(1− u2)
.

With this value, we enter the equation of the vis viva.
We then obtain

u′2 = U,

where U has the meaning

(20) U =
4
M2

{2Mh(1−u2)− (n2 +N2 +2nNu)−MPu(1−u2)};
thus t is determined by the elliptic integral

(21) t =
∫ u

e

du√
U
.

We imagine the lower limit e of the integral to be one of the roots of
U = 0. Let the other two roots be e′ and e′′. We immediately introduce
the following designations for a few characteristic values of t:
(21′)

ω =
∫ e′

e

du√
U
, iω′ =

∫ −∞

e

du√
U
, ia =

∫ −1

e

du√
U
, ib =

∫ +1

e′

du√
U
.

If we invert the relation between t and u in (21), then u results as a
doubly periodic function of t with periods 2ω and 2iω′. We have thus
adapted our previous developments to the new notation.

From now on we return to the original differential equations (7)
for α, β, γ, δ, which, as will later be shown, are more convenient for
the following than those written in equations (8) for the quaternion
quantities. We insert the value of λ from equation (15), and imagine u
calculated as a doubly periodic function of t. We thus obtain

(22)

⎧⎪⎪⎨
⎪⎪⎩
d2α

dt2
=
(

2P
M
u(t)− 2h− P

M

)
α,

d2β

dt2
=
(

2P
M
u(t)− 2h+ P

M

)
β.

The differential equations for the two other parameters γ and δ are
exactly equal to those given.
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500 VI. Representation of the motion of the top by elliptic functions.

Our problem thus depends on the solution of these linear differ-
ential equations of the second order with doubly periodic coefficients.
Concerning such equations, a place may first be found for a few histor-
ical notes.

The preceding differential equations belong to a class of equations
that has often been studied in the literature. We designate them as
Lamé equations, since they represent generalizations of the differen-
tial equations that were first treated by L a m é in a problem of heat
conduction. In contrast to the most general equations that bear the
name of Lamé, our differential equations are distinguished by the im-
portant property that their integrals are single-valued functions of t.
Such equations are particularly associated with H e r m i t e, and have
indeed been investigated directly in connection with rotation problems
(see below). It is thus justified to bestow on these equations the name
of Hermite, and to designate them as the Hermite case of the Lamé
equations.

From the form of the differential equation, one can determine the
occurrence of the Hermite case according to general rules in the fol-
lowing manner. One seeks—we first treat of the equation for α—the
singular points of the differential equation; that is, those points of the
t-plane at which nonintegral powers occur in the expansion of the inte-
gral. These singular points are, in our case, identical with the singular
points of the coefficient of α, which are none other than the singular
points of the function u(t); that is, the points

t = iω′ + 2mω + 2m′iω′.
A power series expansion is then developed at one of these positions.

At the position t = iω′, for example, one sets

α = α0(t− iω′)−n + α1(t− iω′)−n+1 + · · · ,
where the coefficients of the expansion and the exponent n are to be

determined by the differential equation. For
α′′

α
there results a series

that begins with the term
n(n+ 1)
(t− iω′)2

.

One likewise expands the coefficient of α in (22) in a series that pro-
gresses in powers of t − iω′, which will begin with the (−2)nd power.
The first term of this series will be written as

m

(t− iω′)2
,
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where m is the “multiplier of the singularity”. The quantity n is then
determined from the equation

(23) n(n+ 1) = m.

If the integral of our differential equation is to be a single-valued
function of t, n must obviously be a whole number. The preceding
equation thus gives us, read in reverse, a condition that the multiplier
m must satisfy in the Hermite case. We therefore see that

The occurrence of the Hermite case may be determined from the dif-
ferential equation by seeking the multiplier m with which the coefficient
of α becomes infinite at the position t = iω′ and the equivalent points.
This multiplier must have the form n(n + 1), understanding by n a
positive whole number.

This condition is derived here only as a necessary condition for the
single-valuedness of the integral; it is not difficult to see, although we
do not pursue this here, that it also represents, on the basis of the
parallelogram tiling of the t-plane, a sufficient condition.

We now easily convince ourselves that our criterion is fulfilled for
equations (22). We consider, for this purpose, the integral

t− iω′ =
∫ u

∞

du√
U

;

if we substitute u =
1
v

and expand U− 1
2 in ascending powers of v, there

follows in the first approximation, after the execution of the integration,

t− iω′ = −
√
Mv

P
= −
√
M

Pu
,

and therefore, in reverse,

(24) u =
M

P

1
(t− iω′)2

.

If one carries out the calculation one term further, one obtains in
the same manner, as we add for the sake of the following,

(24′) u =
M

P

1
(t− iω′)2

(
1 +

2
3
h

M
(t− iω′)2

)
.

The multiplier m that was discussed above is now determined im-
mediately from equation (24). We have simply

m =
2P
M
· M
P

= 2;
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502 VI. Representation of the motion of the top by elliptic functions.

from equation (23) there follows
n = 1.

We can therefore say that
The Hermite case of the Lamé equation is actually present in equa-

tions (22), and indeed in the simplest incidence of this case, the subcase
n = 1.

The integrals of the Hermite–Lamé equation are now, especially in
the simplest case n = 1, written down immediately. One is first con-
vinced, since the differential equation remains completely unchanged
for the increase of t by 2ω and 2iω′, that its integrals must also ex-
hibit a very simple behavior with respect to changes of the argument
by periods. If one designates, namely, two particular solutions of the
differential equation as z1(t) and z2(t), then z1(t+2ω) and z1(t+2iω′)
(as well as z2(t+2ω) and z2(t+2iω′)) must be composed linearly from
z1 and z2. Through a special choice of the particular solutions z1 and
z2, one can even attain that z1(t+ 2ω) and z1(t+ 2iω′) will be directly
proportional to z1(t), so that

z1(t+ 2ω) = 
z1(t), z1(t+ 2iω′) = σz1(t).
The other particular solution z2 may be chosen correspondingly. The
behavior of these particular solutions with respect to repeated period
increases is thus clear.

We generally designated single-valued functions of t that behave
“multiplicatively” in this manner for increases of the argument by pe-
riods as elliptic functions of the second kind. These functions can, as
we know, be represented as a product of an exponential factor and a
ϑ-quotient, where as many ϑ-functions appear in the numerator and
denominator as the degree of the function; that is, the number of the
singular points in an individual period rectangle. This number is, more-
over, known in advance in the case of the Hermite–Lamé equation. We
saw, namely, that if m = n(n + 1), one and only one n-fold singular
point was present at t = iω (and the equivalent points). The number
n determined from the multiplier m therefore directly gives the degree
of the elliptic function. We thus acquire the following result:

The Hermite–Lamé equation will generally be integrated by elliptic
functions of the second kind and nth degree. In the simplest case n = 1
present here, we manage with elliptic functions of the second kind and
the first degree.

We remark further that our differential equation remains completely
unchanged by the exchange of t with −t. It thus follows that z(t) and
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z(−t) are always simultaneous integrals of the differential equation.
If, in particular, z(t) is chosen as one of the multiplicative particular
solutions, then z(−t) is also a multiplicative solution that differs, in
general, from z(t). We can therefore set the previously named solutions
z1 and z2 equal to

z1 = z(t), z2 = z(−t).
Moreover, we add the self-evident remark that

The general solution follows from our particular solutions in the
form
(25) c1z(t) + c2z(−t),
where c1 and c2 are arbitrary constants of integration.

In our case n = 1, z(t) has the simple form

(26) z(t) = eλt ϑ(t− t1)
ϑ(t− iω′)

,

where the constants λ and t1 are to be determined from the differential
equation. The following calculation that serves for the determination of
these constants shows at the same time that z(t) actually satisfies the
differential equation in question for the correct choice of the constants,
and yields an explicit proof of all the preceding remarks.

We first consider the quantity

(27)

⎧⎪⎪⎨
⎪⎪⎩
z′′

z
=
d2 log z
dt2

+
(d log z

dt

)2

=

=
d2 logϑ(t−t1)

dt2
− d

2 logϑ(t−iω′)
dt2

+
(
λ+

d logϑ(t−t1)
dt

− d log ϑ(t−iω′)
dt

)2

.

This quantity will be infinite only at the positions t = t1 and t = iω′,
as well as the equivalent points, and, in particular, to the first order at

the former and the second order at the latter. If we expand
d log ϑ(t)

dt
according to Taylor’s theorem about t = 0, namely, there follows

(28)
d log ϑ(t)

dt
=

1
t

+
ϑ′′′(0)
3ϑ′(0)

t + · · · ,
and therefore

(28′)
d2 log ϑ(t)

dt2
= − 1

t2
+
ϑ′′′(0)
3ϑ′(0)

+ · · · .
Thus the expansions of our above expression at the positions t = t1
and t = iω′ run, if we write only the singular terms,
z′′

z
=

2
t− t1

(
λ− d log ϑ(t1 − iω′)

dt1

)
+ · · · (for t = t1),

z′′

z
=

2
(t− iω′)2

+
2

t− iω′
(
λ+

d log ϑ(iω′ − t1)
dt1

)
+ · · · (for t = iω′).
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We can now remove the singular point at t = t1 by the choice of λ;
we need only set

λ =
d log ϑ(t1 − iω′)

dt1
;

at the same time, the term with (t − iω′)−1 in our second expansion
also vanishes. This expansion now runs

(29)
z′′

z
=

2
(t− iω′)2

+ · · · ,

or, if we wish to include the constant term in the power series,

(29′)
z′′

z
=

2
(t− iω′)2

−
(d2 log ϑ(t− t1)

dt2

)
t=iω′

+
ϑ′′′(0)
3ϑ′(0)

+ · · · .

One immediately sees from the representation (27) that
z′′

z
is a dou-

bly periodic function with periods 2ω and 2iω′. Thus the expansions
(28) and (29) will also be valid for all the positions equivalent to t = t1
and t = iω′. The singular points at the positions equivalent to t = t1
will also be removed, and equation (29) will be valid not only at the
position t = iω′, but also at all the equivalent positions. We have thus
proven that

For our choice of λ,
z′′

z
is a doubly periodic function of t that be-

comes infinite to the second order with the multiplier 2 at the position
t = iω′ and the equivalent positions, and only at these positions.

Such a function, however, is, according to the above,

2P
M
u(t).

The difference of the two would therefore be a doubly periodic func-
tion that becomes infinite at no point of the t-plane. Such a function
necessarily reduces, however, to a constant c. We therefore have

(30)
z′′

z
− 2P
M
u(t) = c.

This is directly a Lamé equation. We thus see that
For the above choice of λ, our elliptic function of the first degree

z(t) satisfies the Hermite–Lamé equation

(30′) z′′ =
(

2P
M
u(t) + c

)
z.
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The quantity c in this equation depends on the still to be disposed
constant t1. Through the appropriate choice of this constant, it is pos-
sible to attain an arbitrary value for the constant c, and, in particular,
to arrange that the preceding equation goes over directly into the first
or second of equations (22).

To achieve this, we first express the quantity c in terms of t1 in a
manner that is convenient for the following. We set, for this purpose,
t = iω′ in (30) and write

(31) c =
{z′′
z
− 3P
M
u(t) +

P

M
u(t)
}

t=iω′
.

We then consider the expression

P

M
u(t) +

d2 log ϑ(t− iω′)
dt2

;

this is a doubly periodic function with periods 2ω and 2iω′ that becomes
infinite at no point of the t-plane. In fact, the singular points of the
first and second terms directly cancel, according to equations (24) and
(28′), for t = iω′ and the equivalent points. Our expression is therefore
a constant, so that we can write187

P

M
u(t) = −d

2 log ϑ(t− iω′)
dt2

+ c1.

We determine the value of c1 in a twofold manner, in that we once
set t = ia and u = −1, and once again set t = ω − ib and u = +1. We
thus obtain

c1 =
(d2 log ϑ(t− iω′)

dt2

)
t=ia

− P

M
and

c1 =
(d2 log ϑ(t− iω′)

dt2

)
t=ω−ib

+
P

M
.

Correspondingly, there follows for u(t) the twofold expression

P

M
u(t) = − d2 log ϑ(t− iω′)

dt2
+
(d2 log ϑ(t− iω′)

dt2

)
t=ia

− P

M
and

P

M
u(t) = − d2 log ϑ(t− iω′)

dt2
+
(d2 log ϑ(t− iω′)

dt2

)
t=ω−ib

+
P

M
.

We write, in particular, the resulting expansions at t = iω′, which
we calculate with the constant term; they run, according to (28′),
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P

M
u(t) =

1
(t− iω′)2

− ϑ′′′(0)
3ϑ′(0)

+
(d2 log ϑ(t− iω′)

dt2

)
t=ia

− P

M
and

P

M
u(t) =

1
(t− iω′)2

− ϑ′′′(0)
3ϑ′(0)

+
(d2 log ϑ(t− iω′)

dt2

)
t=ω−ib

+
P

M
.

We insert these expansions for the third term on the right-hand
side of equation (31). At the same time, we replace the first and sec-
ond terms by the expansions (29′) and (24′). Then for t = iω′ the
singular terms cancel, as they must, and we obtain

(32) c =−
(d2 log ϑ(t−t1)

dt2

)
t=iω′

+
(d2 log ϑ(t−iω′)

dt2

)
t=ia

− 2h+P
M

and

(32′) c =−
(d2 log ϑ(t−t1)

dt2

)
t=iω′

+
(d2 log ϑ(t−iω′)

dt2

)
t=ω−ib

− 2h−P
M

.

We have thus acquired two different representations for the constant
c in equation (30′). We use them to determine the quantity t1 in such
a way that equation (30′) goes over into the first or second of equations
(22). This is attained for the first of equations (22) if we set

(33) t1 = ia,

and for the second if we set

(33′) t1 = ω − ib,
so that, according to (32) and (32′), c will become, in fact,

c = −2h+ P

M

or
c = −2h− P

M
.

If we choose the disposable constant t1 in our elliptic function z(t) as in
equations (33) and (33′), the resulting functions are particular solutions
of the two equations (22).

It now remains only to show that our parameters α and β are equal,
up to a constant factor, to these particular solutions.

We must first assume the value of α, according to the schema of the
general solution (25), in the form

(34) α = c1z(t) + c2z(−t).
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The parameter δ that is conjugate to α then runs, since our solu-
tions z(t) and z(−t) are conjugate imaginary quantities because of the
particular form of z(t),

(34′) δ = c2z(t) + c1z(−t),
understanding by c1 and c2 the constants conjugate to c1 and c2.

We will now see that we must set either c2 (and therefore also c2)
or c1 (and therefore also c1) equal to zero.

We use, for this purpose, the equations

(35) αδ =
u+ 1

2
, βγ =

u− 1
2

,

which follow from the defining equations for α, β, γ, δ of page 21. The
first of these shows that the null positions of α and δ must coincide
with those of u+1; that is, with the positions t = ±ia+2mω+2m′iω′.
If we therefore set t = ia, then either α or δ must vanish. In equation
(34), we must therefore take either c2 = 0 or c1 = 0. If we set, on
the other hand, t = −ia, then it follows, in the same manner, that
we must take either c1 = 0 or c2 = 0. We therefore have, in fact, the
two possibilities identified above, that either c1 or c2 must equal zero.
Whether we choose one or the other makes no great difference. In each
case, it follows that our parameters α and δ are directly proportional
to the particular solutions z(t) and z(−t).

If we choose, for example, c2 = 0, then we obtain, if we insert the
found expressions for the constants that appear in z(t),

α = c1e
ϑ′(ia−iω′)
ϑ(ia−iω′) t ϑ(t− ia)

ϑ(t− iω′)
,

δ = c1e
−ϑ′(ia−iω′)

ϑ(ia−iω′) t ϑ(t+ ia)
ϑ(t+ iω′)

.

(If we had chosen the other possibility c1 = 0, the expressions for α
and δ would only have been interchanged.)

In an entirely similar manner, we find from the second of equations
(35), if we once set t = ω − ib and once again set t = −ω + ib, that
β and γ are also directly equal, up to a factor, to the multiplicative
particular solutions of our second equation (22). The expressions for β
and γ will be, in this manner,

β = c2e
ϑ′(ω−ib−iω′)
ϑ(ω−ib−iω′) t ϑ(t− ω + ib)

ϑ(t− iω′)
,

γ = c2e
−ϑ′(ω−ib−iω′)

ϑ(ω−ib−iω′) t ϑ(t+ ω − ib)
ϑ(t+ iω′)

.
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508 VI. Representation of the motion of the top by elliptic functions.

We have thus reacquired our previous values of α, β, γ, δ (cf. pages
420 and 428) in the shortest and most direct way. There remains only
the determination of the multiplicative constants c1 and c2, which may
be effected exactly in the manner given on pages 425 and 426. We need
not enter into this again here.

The differential equations for A, B, C, D, which are likewise Lamé
equations and do not at all differ from those for α, β, γ, δ, may naturally
be integrated in precisely the same manner. The simplification that α,
β, γ, δ provide compared to A, B, C, D is important only in the final
result, where it is shown that α, β, γ, δ are directly proportional to the
multiplicative particular solutions of our Lamé equation, while A, B,
C, D are composed from them linearly. —

The principal purpose that we have pursued in this supplement,
to show that our parameters α, β, γ, δ are of use not only for the
formulation of the final results, but also for the direct integration of
the problem of the top, is thus achieved.

We note that the integration procedure given here corresponds pre-
cisely to the intentions of H e r m i t e in his famous investigations on
the application of elliptic functions (the Applications des fonctions el-
liptiques cited on page 151). While Hermite considered for the prob-
lem of the heavy top only the special case of the ordinary spherical
pendulum, his method extends, thanks to the introduction of the pa-
rameters α, β, γ, δ, to the treatment of the heavy spherical top (our
four-dimensional spherical pendulum), from which the passage to an
arbitrary symmetric top is possible at any time according to the pre-
vious rule. And while Hermite finds elliptic functions of the second
kind and second degree for the rectangular coordinates x, y, z of the
ordinary spherical pendulum, or for their complex combinations x+ iy,
x− iy, there follow for the rectangular coordinates A, B, C, D of our
four-dimensional spherical pendulum, or rather for their complex com-
binations α, β, γ, δ, elliptic functions of the first degree, so that the
Hermite results themselves are simplified through the preceding. In
order to appreciate the complete parallelism of the Hermite and the
present developments, one compares, in particular, the cited work on
page 109 and ff.

At the same time, the preceding considerations contribute to still
another approach already present in the literature.
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In the work cited on page 142, namely, Mr. Tait poses the exercise of
treating the general problem of rotation on the basis of the quaternion
theory. His results in the kinematic part are particularly elegant; but
remarkable approaches that are intimately related to our latter con-
siderations are also found in the kinetic part. Tait composes our four
quaternion quantities A, B, C, D, as is usual in the quaternion theory,
into one complex quantity

q = iA+ jB + kC +D,

and forms the differential equation of the second order that this quan-
tity satisfies (cf., in particular, Art. 30 of the cited work), and in-
deed immediately for the most general case of an arbitrary asymmetric
mass distribution and an arbitrary external force system. He does
not, however, succeed in advancing to a general integration of this dif-
ferential equation, but rather he declares this exercise, as is hardly
otherwise possible for the attempted generality, to be “inextricably
complicated.”188

Our above considerations now show, in the indeed entirely special
case of the heavy spherical top, that the differential equation for the
quaternion q, or, equivalently, the four differential equations for the
quaternion components A, B, C, D, assume an extraordinarily simple
form and admit of a very elegant integration procedure. At the same
time, however, we recognize that it is practical for the analytic execu-
tion of the integration to go over again from the quaternion quantities
A, B, C, D to our parameters α, β, γ, δ, which are of unsurpassable
simplicity in analytic respects. In any case, we may regard our present
integration procedure as a special realization of the uncompleted ideal
of the advocates of the quaternion theory in the matter of the rotation
problem.

For what concerns the relation of the motion of the top to parti-
cle mechanics, we remark that the above arguments can be regarded
as a special example of a general mathematical method, according to
which one can conceive, in a certain sense, every arbitrarily compli-
cated mechanical problem as a problem of particle mechanics. Namely,
one assigns to the mechanical system, as done above, a single mass par-
ticle, a “representative,” in that one interprets the position coordinates
of the system as the coordinates of the representative. Thus one will
be led, corresponding to the number of position coordinates used, into
a space of possibly higher dimension. One further adopts in this space,
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in association with the expression for the vis viva, an appropriate de-
termination of the measure of distance; one calculates, namely, the dis-
tance between two infinitely near points, or, as one expresses it more
concisely, the line element of the relevant space, through the equation

ds2 = 2Tdt2,

where the right-hand side evidently becomes a definite quadratic form
of the infinitesimal coordinate differences of the two points, and again
defines, moreover, the motion of the mass particle through the state-
ment of the Lagrange equations.

The positions that the representative assumes in its so-defined mo-
tion then correspond sequentially to the positions of the original me-
chanical system. The motion of the representative will be a precise
image of the motion of the system.

It is clear that the multidimensional particle representation sketched
here is, fundamentally, only a reinterpretation of the original statement
of the problem. It imparts no actual new knowledge, but rather only
allows, in many cases, a convenient formulation of the same state of
affairs.

The usefulness of this particle mechanics conception is nevertheless
shown directly and most clearly in our example of the spherical top.
Here the analogy with a moving mass particle on a four-dimensional
unit sphere leads us to an essential simplification of the integration
process, and permits us to conceive and state the previously known
integral theorems of the motion of the top in a new and very intuitive
form.

The particle-mechanical interpretation does not, however, generally
turn out as simply as in the present case. One must, in general, adopt
an unusual determination of the measure of distance in the space of
the representative, and must correspondingly postulate a complicated
and arbitrary kind of geometry and mechanics. In contrast, the note-
worthiness of our developments above consists directly in the fact that
we manage here with the elementary Euclidean geometry, in that all
properties of real three-dimensional space carry over directly to the
four-dimensional space of our representative.

The multidimensional conception of mechanical problems has been
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familiar to mathematicians since the important works of B e l t r a m i*)
in the year 1869 and L i p s c h i t z**) in the year 1872. It may have
first found entrance into broader circles, however, through the beauti-
ful work of H e r t z on the Principles of Mechanics in the year 1894,
which depends completely and entirely on this multidimensional parti-
cle mechanics representation. —

We conclude this chapter by completing the historical notes of pages
429 and 430 through some new and very interesting information.

When the printing of this volume was essentially completed, we
were made aware by Mr. O. B o l z a of Chicago that Weierstrass had
already utilized, on the occasion of a lecture über die Anwendungen
der elliptischen Funktionen in the year 1879, our parameters α, β, γ,
δ to represent the motion of the heavy symmetric top. An elaboration
of this lecture has been placed at our disposal in the most amicable
manner by Mr. J. H ä n l e i n of Berlin. We wish to express in this
place our most sincere thanks to both of these gentlemen.189

In his lecture, Weierstrass first emphasizes that the consideration
of the nine direction cosines for the problem of the heavy symmet-
ric top entails calculational complications that are avoided if one
uses the three Euler symmetric rotation parameters λ, μ, ν (cf. the
footnote of page 60) for the specification of an individual rotation.
From these parameters, he goes over by means of the proportion
λ : μ : ν : 1 = A : B : C : D to our four quaternion quantities, which
are determined up to a common change of sign through the addition of
the constraint equation A2 +B2 + C2 +D2 = 1. The geometric inter-
pretation of A, B, C, D is illustrated by means of the rotation axis and
the rotation angle, in the sense of equations (14) of page 38. Finally,
Weierstrass forms the complex combinations A + iB, C + iD—that
is, in essence, two of our four parameters α, β, γ, δ—and determines
these as elliptic functions of the second kind and first degree by means
of certain formulas that coincide exactly, specialized to the case of the
spherical top, with our representation of pages 420 and 428. (A purely
superficial difference is that Weierstrass uses the σ-function instead of
the ϑ-function, and writes, moreover, λ, μ, ν, 
 instead of A, B, C, D.)

∗) Mem. dell’ Istituto di Bologna, ser. II, t. VIII, Teorica generale dei parametri
differenziali.

∗∗) Crelle’s Journal Bd. 74, Untersuchung eines Problems der Variationsrechnung,
in which the Problem der Mechanik is contained.
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On the other hand, Weierstrass lacks (disregarding the develop-
ments of the last section) the relation of the parameters α, β, γ, δ
to the complex variable that we imagined as extended on the Riemann
spherical surface, and the equation for the linear transformation

λ =
αΛ + β

γΛ + δ

of this variable for the execution of the rotation (α, β, γ, δ).
Specifically concerning this latter point, we are now able to furnish

a still older and much more interesting historical note. In the recent
review of the posthumous papers of Gau s, it has been shown, namely,
that this entire manner of representation was already completely famil-
iar to Gau s, and, further, that the foundations of the quaternion theory
are contained explicitly in the occasional notes of Gau s. We cite, with
respect to this astonishing discovery, a few sentences from a preliminary
notice “Über den Stand der Herausgabe von Gau s’ Werken,” Nachr.
der Kgl. Ges. der Wiss. zu Göttingen, Heft 1, 1898:190

“Gau s had already interpreted, exactly as Riemann did later, a
complex variable z = x+ iy on the sphere, and knew that the rotations
of the sphere about its midpoint are represented by a linear transforma-
tion of this z with a certain simple manner of construction! And what
is still more astonishing, in 1819 he represented the combination of a
spatial rotation about the origin and an arbitrary similarity transfor-
mation (a “mutation of space,” as he said) by means of the same four
parameters that the quaternion theory later used; he designated the
embodiment of these four parameters as a “mutation scale,” and gave
the explicit formula for the composition of two scales (and therefore
the multiplication of two quaternions), for which he used the symbolic
notation (a b c d) · (αβ γ δ) = (AB C D); he explicitly remarked that
this involved a noncommutative process!”

To return once again to the cited lecture of Weierstrass, we remark
that Weierstrass did not apply the parameters α, β, γ, δ to the force-free
top. Rather, he began here from the Jacobi direction cosines, which,
after the previous integration of the Euler equations, he was able to
write out rather directly as elliptic functions of the first degree. A
short account of this method is found in the Mathematical Dictionary
of H o f f m a n n –N a t a n i, Bd. VI, page 273, under “Rotation.”191

512



Appendix to Chapter VI.192

§10. The top on the horizontal plane.

As a complement to the theory of the top with a fixed support point,
this appendix will consider the motion of the top with a horizontally
mobile support point, and therefore the motion that adults and children
imagine, in the first place, by the words “top motion.” We do not intend
to go as far in analytic respects as in the previous problem, but rather
will be satisfied if we can formulate a clear image of the qualitative
character of the motion. This is achieved, with the circumvention of
all the analytic difficulties that would otherwise appear, if we calculate
with bounded precision, as has been recommended in Chap. IV, §9.
We wish to establish the motion only with the sharpness that would
be employed by the naked eye of an observer of an ordinary toy top,
without particular refinement of the means of observation and without
careful exclusion of causes of disturbance, so that we can actually be
content with a very low precision. From the mathematical standpoint,
a rough approximation is also satisfactory in so far as we can estimate
the allowed error in our calculation. We will place particular value on
this point in the following. In contrast, it would appear to us worthless,
on the basis of the just named criterion for the aspired accuracy, to
refine the degree of precision of the calculation further through the use
of higher analytic means.

We will assume that the plane that bears the top is perfectly smooth,
and therefore frictionless, since we will return to the effect of friction
in the next chapter. The counterpressure of the plane, the reaction
R against the top, is then perpendicular to the plane, and therefore
directed vertically. Since the support point O is no longer, as it was
in the previous problem, a geometrically distinguished point, we will
choose not this point, but rather the mechanically distinguished cen-
ter of gravity S as the reference point in the sense of Chap. II, §2.
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The line OS is called, as previously, the figure axis, and its angle with
respect to the vertical is called ϑ. The distance OS will be denoted
by E, and the total mass of the top by M . We set, for conciseness,
P = MgE, so that P , as previously, signifies the moment of gravity
about the horizontal axis through O that is perpendicular to the figure
axis when the figure axis is horizontal. We assume for brevity, with
no essential specialization, that the ellipsoid of inertia constructed at
the center of gravity is a sphere; the common value of the moments of
inertia about all axes through S is called A.

Since we neglect friction, the only external forces that come into
consideration are the weight Mg and the reaction force R, whose mag-
nitude will be determined in the following. The potential of gravity is,
up to an arbitrary constant,

(1) V = Mgz = P cos ϑ,

where z = E cos ϑ is the vertical coordinate of the center of gravity
in the fixed coordinate system indicated in Fig. 68. In contrast, the
reaction force R gives no contribution to the potential energy, since it

does no work, but rather is
perpendicular to the motion of
its application point. On the
other hand, gravity produces no
turning-moment at our reference
point S, while the reaction force
gives rise to a turning-moment
whose axis is the “line of nodes,”
and therefore the line that stands
perpendicular to the vertical as
well as the figure axis.

We compose, as usual, the external forces into a single-force and a
turning-force (force-pair) with respect to the reference point S. Ac-
cording to the preceding, the single-force is constantly vertical, and is
equal to R − mg. The axis of the turning-force is always horizontal
and perpendicular to the figure axis; it is equal, in magnitude, to the
moment of R about S.

The most important information about the course of the motion is
provided to us here, as generally, by our impulse theorem of Chap. II,
§5, which comprises the center of gravity and area theorems in an in-
tuitive manner. The impulse is decomposed here into two components,
the single-impulse (or pushing-impact) and the turning-impulse (or
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turning-impact). The components of the former with respect to the
spatially fixed coordinate axes x, y, z are denoted, as previously, by
[X], [Y ], [Z], and the components of the latter by l, m, n. We will
also have need of the components L, M , N of the turning-impulse with
respect to the coordinate system fixed in the top, whose origin is the
center of gravity and whose Z-axis is the figure axis.

According to the cited impulse theorem, the rate of change of each
component of the single-impulse and the turning-impulse is equal to the
instantaneous value of the corresponding component of the single-force
and the turning-force. From what we have noted about the direction
and axis of the latter, however, it follows that the horizontal component
of the single-impact and the vertical component of the turning-impact
remain constant during the motion; the external forces influence only
the vertical component of the pushing-impact and the horizontal com-
ponent of the turning-impact.

In symbols, this is
(2) [X] = const., [Y ] = const., n = const.
Since, according to page 102, [X], [Y ], [Z] are proportional to the
respective center of gravity velocities ([X] = Mx′, etc.), the first two
of equations (2) state that the horizontal projection of the center of
gravity progresses in a straight line with constant velocity. This result
naturally stands and falls with the supposition of a frictionless support
point.

If we add the impulse theorem for the third component of the
pushing-impact (or the corresponding center of gravity theorem), then
we obtain d[Z]

dt
= R−Mg.

We can conceive this equation as the determining equation for the re-
action force; if we insert for [Z] the value Mz′, there follows
(3) R = Mz′′ +Mg.

In addition to the equation n = const., the equation
(4) N = const.
also obtains here, as we conclude from the “modified impulse theo-
rem” IIb of page 145. According to this theorem, namely, the rate
of change of the turning-impact relative to the body is equal in axis
and magnitude to the turning-force of the external forces augmented
by the resultant centrifugal turning-force (cf. page 144). The latter
simply vanishes for the spherical top, and the axis of the former stands
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516 VI. Appendix. The top on the horizontal plane.

perpendicular not only to the vertical, but also to the figure axis. As
a result, the rate of change of the turning-impact component N in the
direction of the figure axis is equal to zero, and this component itself
is constant.

Finally, we add the theorem of the vis viva T+V = h. T is composed
here of two parts, the vis viva T1 of the turning motion and that of the
progressing motion T2. The latter is expressed in terms of the velocity
of the center of mass, and is

T2 =
M

2
(x′2 + y′2 + z′2).

We introduce, as for the top with a fixed point, the abbreviation

(5) cos ϑ = u,

and have, according to Fig. 68,

z = Eu, z′ = Eu′.

If we bear in mind that the velocity components x′ and y′ are constant,
then we can imagine that the first two terms of T2 are combined with
the constant h and suppress these terms. We thus write, more simply,

T2 =
ME2

2
u′2.

The vis viva T1 of the turning motion differs not from the vis viva
of the top with a fixed support point. The expression for T1 in terms
of the quantity u = cos ϑ has already been developed on page 222. It
runs, specialized to the spherical top,

T1 =
A

2

{
u′2

1− u2
+

(Nu− n)2

A2(1− u2)
+
N2

A2

}
.

If we use for V the expression V = Pu in (1), then we can write the
equation for the vis visa as

(6)
A

2

{
u′2

1− u2
+

(Nu− n)2

A2(1− u2)
+
N2

A2

}
+
M

2
E2u′2 + Pu = h.

Since, according to (2) and (4), n andN are constants, the preceding
equation provides a relation between u and u′; that is, between u and
t, from which the changing inclination of the figure axis with respect to
the vertical can be extracted as a function of time. We first calculate
u′2 by introducing a common denominator, and obtain u′2 = U , where

(7) U =
2Ah(1 − u2)− 2APu(1− u2) + 2nNu−N2 − n2

A2 +Aa(1− u2)
;

here a = ME2 signifies the moment of inertia of the total mass M ,
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imagined as concentrated at the center of gravity, about a line through
O perpendicular to the figure axis. There now follows

(8)

⎧⎪⎪⎨
⎪⎪⎩
du

dt
=
√
U, or dt =

du√
U
,

t =
∫

du√
U
.

We wish to immediately give a corresponding representation for the
angle ψ that the nodal line of the top forms with an arbitrary fixed
horizontal line. (We will not have explicit use in the following for the
third Euler angle ϕ.) The angle ψ is determined, according to equation
(4) of page 222, by

dψ

dt
=
n−N cos ϑ
A sin2 ϑ

,

and therefore, if we set cos ϑ = u, by

dψ

dt
=

n−Nu
A(1− u2)

.

We integrate, in that we express dt in terms of du through (8), and
obtain

(8′) ψ =
∫

n−Nu
A(1− u2)

du√
U
.

We first compare the integral representation of the motion in equa-
tions (8) and (8′), which are attributable to P o i s s o n,*) with the
corresponding representation that was developed previously (page 223)
for the top with a fixed point. There is, on the one hand, a strong anal-
ogy between the formulas, but we note, on the other hand, that the
expression for U is now somewhat more complicated than previously.

While the previous expression for U possessed three null points and
one singular point, our current U has three null points (the values of u
for which the numerator vanishes) and three singular points (namely,
the value u = ∞ and the values for which the denominator vanishes).

From the analogy of the current and previous formulas, it follows im-
mediately that part of our previous results remain unchanged. We can
immediately carry over to the present case, for example, the proof of
the “periodicity properties of the motion” of which we spoke previously,
in that we repeat word for word the conclusions of Chap. IV, §4. Thus
t and ψ are each changed by a specific increment, a so-called “period,”

∗) Cf. P o i s s o n, Traité de Mécanique II, Nr. 434 ff.193
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as the integration variable u is led to and fro between the two roots e0
and e1 of U that lie between −1 and +1.

This periodicity emerges particularly clearly in the trajectory that
the support point describes on the horizontal plane, which now appro-
priately takes the place of the trajectories considered in Chap. IV. We
can, without restriction of generality, assume that the projection S′

of the center of gravity S on the horizontal plane is fixed, and that
the constant horizontal velocity of the center of gravity therefore has,
in particular, the value zero. (In other cases, we need only adopt a
coordinate frame that progresses with the horizontal velocity of the
center of gravity; the figure to be drawn in the following would then be
stretched in the direction of this velocity in an easily evident manner.)
Under this assumption, the center of gravity wanders up and down on
the fixed vertical erected at the point S′, and the trajectory is pulled
to and fro between two concentric circles described about the point S′

that correspond to the two inclinations cosϑ = e0 and cos ϑ = e1 of the
figure axis. From the named periodicity properties, it then follows that
the sequential arcs of the trajectory between the circles e0 and e1 are
alternately symmetric and congruent. For the qualitative visualization
of the trajectory, the previous figures from Chap. IV, §1 and §2 can
serve with corresponding modifications; for a particular and particu-
larly important case, we will calculate the trajectory in the following
more precisely, and carry out the just indicated deliberations in detail.

On the other hand, the different manner of construction of our U in
the present and previous cases would also bring with it many differences
in a further analytic treatment. One designates the integrals in (8) and
(8′), since they are more complicated by a degree than the previous el-
liptic integrals, as hyperelliptic. The difference between the two is par-
ticularly apparent in the complex domain, if we would seek to represent
our quantities u and ψ as functions of time for all (also complex) values
of t.*) It is not our intention, however, to enter in any way into the
difficulties that appear here. For the numerical command of the motion

∗) u and ψ are, in the complex domain, no longer single-valued functions of t, but
u, ψ, and t may well be represented single-valuedly in the entire realm of complex
values through an auxiliary variable, as is shown in the theory of the so-called auto-
morphic functions. Cf. F. K l e i n: The mathematical theory of the Top. Princeton
Lectures. New York, 1897, particularly the last section.194
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of the top in the real domain, which can alone be our purpose, nothing
would be achieved in this manner for the present state of the theory.
We would sooner recommend a procedure that We i e r s t r a s*) has
devised along general lines for all similar problems, and that is aimed
at calculating u as function of t by a trigonometric series with arbi-
trary precision.195 However, we can also disregard the rather detailed
calculations entailed here, since we will be satisfied, as agreed above,
with a low precision.

We will be especially interested, for the analogy with the previously
treated cases, in pseudoregular precession, since this is realized, as a
rule, through the ordinary actuation devices. We will therefore assume
that the eigenimpulse N “is very large.” This should signify (cf. p. 293)
that the square of N is large compared with the compatible quantity
AP . We can assume, for example, that

N2 > 100AP.

We wish to assume, further, that the top receives no lateral impact
at the beginning of the motion (t = t0), and that its initial motion
therefore consists of a pure rotation about the figure axis. The initial
turning-impulse then lies in the direction of the figure axis and is to be
denoted by N . If the initial inclination of the figure axis with respect
to the vertical is ϑ0 and one sets cos ϑ0 = e0, then the projection of the
turning-impulse onto the vertical will be

(9) n = Ne0.

Moreover, one recognizes that u′ = 0 must necessarily obtain for t = t0.
The figure axis is, by assumption, the initial rotation axis, and therefore
cannot change its location in space instantaneously. From u′ = 0 there
follows, according to equation (8), U = 0; that is,

2Ah(1 − e20)− 2APe0(1− e20) + 2nNe0 −N2 − n2 = 0.

We thus extract the value of h for our motion if we express n in terms
of N through (9); we obtain, namely,

(10) 2Ah = 2APe0 +N2.

We next wish to separate U into its linear factors. The factor
e0 − u must be present in the numerator of U , since U indeed vanishes

∗) Über eine Gattung reell periodischer Funktionen. Monatsberichte der Berliner
Akademie 1866, p. 97.
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for u = e0. In fact, it follows from (7), (9), and (10), that

(11) U =
(e0 − u)(2AP (1 − u2)−N2(e0 − u))

A2 +Aa(1− u2)
.

The additional vanishing points of the numerator and denominator may
be called e1, e2, and ±e, respectively. If one sets the denominator equal
to zero, one finds

(12) e2 = 1 +
A

a
;

there follows, further, from setting the numerator to zero and solving
a quadratic equation,

(13)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e1 =

N2

4AP

(
1−
√

1− 8APe0
N2

+
16A2P 2

N4

)
,

e2 =
N2

4AP

(
1 +

√
1− 8APe0

N2
+

16A2P 2

N4

)
.

The quantity |e0|, according to its geometric meaning, is < 1, and |e|,
according to equation (12), is > 1. Since we assume that AP :N2 is a
small number, we can establish the order of magnitude of e1 and e2 if
we expand the square root in (13) in terms of this quantity and obtain

(14)

⎧⎪⎨
⎪⎩
e1 = e0 − 2AP

N2
(1− e20) + · · · ,

e2 =
N2

2AP
+ · · · .

The quantity e1 is therefore slightly smaller than e0, and e2 is very large.
The relative position of the five locations e0, e1, e2, ±e is illustrated in
Fig. 69.

Represented in terms of its linear factors, U thus takes the form

(15) U =
2P
a

(e0 − u)(u− e1)(e2 − u)
(e2 − u2)

;

the factor
2P
a

is calculated from the fact that U must behave, accord-

ing to the earlier representation (11), as −2P
a
u for u = ∞.

We now consider the integral (8). In this integral u must neces-
sarily lie between the bounds −1 and +1, and dt must be real and
positive. If we begin the integration with the initial value u = e0,
then u must first decrease until e1, then increase until e0, etc., since
undershooting e1 or overshooting e0 would correspond to an imaginary
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value of dt. (To ensure that dt is positive, it is only necessary to
reverse the undetermined sign of

√
U for each reversal of the integra-

tion variable.) The integration variable u is therefore restricted to the
narrow domain between e0 and e1. We thus conclude that the factor
e2 − u changes only very little during the integration, since its maxi-
mum e2 − e1 and its minimum e2 − e0 nearly coincide because of the
bigness of e2 and the smallness of e0 − e1. We could thus approximate
the factor e2 − u, for example, as the constant

e2 − u0, where u0 =
e0 + e1

2
.

According to (8) and (15), the exact time is given by

t− t0 =
√

a

2P

∫ u

e0

√
e2 − u2

(e0 − u)(u− e1)(e2 − u) du,
where t0 denotes the time that corresponds to the initial position u =
e0. We introduce, in addition, an approximate time t′, in that we
replace e2 − u by the given approximate value e2 − u0, and therefore
write

(16) t′ − t0 =
√

a

2P (e2 − e0)
∫ u

e0

√
e2 − u2

(e0 − u)(u− e1) du.

The two times t and t′ are always related to each other, as one easily
realizes, by

(17) (t′ − t0)
√
e2 − u0

e2 − e1 < t− t0 < (t′ − t0)
√
e2 − u0

e2 − e0 .
If we have determined the approximate value of time, the true value

is thus known within very narrow bounds. In order to establish these
bounds in still more detail, we write, according to (14),√

e2 − u0

e2 − e1 =
(
1− 1

2
u0

e2
+ · · ·

)(
1 +

1
2
e1
e2

+ · · ·
)

= 1− u0 − e1
2e2

+ · · ·

= 1− e0 − e1
4e2

+ · · · = 1− A2P 2

N4
(1− e20),√

e2 − u0

e2 − e0 =
(
1− 1

2
u0

e2
+ · · ·

)(
1 +

1
2
e0
e2

+ · · ·
)

= 1− u0 − e0
2e2

+ · · ·

= 1 +
e0 − e1

4e2
+ · · · = 1 +

A2P 2

N4
(1− e20).

If, as we assumed on page 519, N2 > 100AP , then these quantities
deviate from unity by less that 10−4 on one or the other side, and

our approximate time differs from the true time by less than
1

100
%.

For practical purposes, this deviation is generally of no importance.
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Through the introduction of our approximate time, however, the
problem is displaced from the domain of hyperelliptic integrals into the
domain of elliptic integrals. We could immediately apply the previous
methods to the integral (16), and represent u as an elliptic function
of the approximate time t′. The necessary error estimation may then
be taken from the inequalities (17). We wish, however, to go still one
step further, and reduce the calculation to elementary functions. We
note, for this purpose, that the factor e2 − u2 also changes very little,
because of the smallness of the integration interval e0− e1, and that it
can be set approximately equal to

e2 − u2
0.

Correspondingly, we introduce a second approximate time t′′, in that
we write

(18) t′′ − t0 =

√
a(e2 − u2

0)
2P (e2 − u0)

∫ u

e0

du√
(e0 − u)(u− e1)

.

The inequality

(19) (t′′ − t0)
√
e2 − u0

e2 − e1
e2 − e20
e2 − u2

0

< t− t0 < (t′′ − t0)
√
e2 − u0

e2 − e0
e2 − e21
e2 − u2

0

then obtains between t and t′′

The bounds for the true time value that result here are no longer
as narrow as the previous. One calculates from (14), namely, that√

e2 − e20
e2 − u2

0

=
(
1− 1

2
e20
e2

+ · · ·
)(

1 +
1
2
u2

0

e2
+ · · ·

)
= 1− e20 − u2

0

2e2
+ · · ·

= 1− (e0 − e1)e0
2e2

+ · · · = 1− AP

N2

e0(1− e20)
e2

+ · · · ,√
e2 − e21
e2 − u2

0

=
(
1− 1

2
e21
e2

+ · · ·
)(

1 +
1
2
u2

0

e2
+ · · ·

)
= 1 +

u2
0 − e21
2e2

+ · · ·

= 1 +
(e0 − e1)e0

2e2
+ · · · = 1 +

AP

N2

e0(1− e20)
e2

+ · · · .

These factors always deviate from unity by less than
AP

N2
= 10−2; since

the additional factors
√
e2 − u0

e2 − e1 and
√
e2 − u0

e2 − e0 in (19) were equal

to 1 to a higher order, the deviation of the true time t from the
approximate time t′′ is thus established. The deviation amounts to
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less than 1% of the true time; it is therefore no longer as small as
previously, but is sufficiently small for our purpose.

The integral (18) leads to cyclometric functions. If we introduce,
for the sake of convenience, the abbreviations ε, v, w defined by

(20)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ε =

e0 − e1
2

=
AP

N2
(1− e20) + · · · , v = u− u0,

ω = π

√
a

2P
e2 − u2

0

e2 − u0
,

then ∫ u

e0

du√
(e0 − u)(u− e1)

=
∫ v

ε

dv√
ε2 − v2

= arc sin
v

ε
− π

2
,

and therefore

(21) t′′ − t0 =
ω

π

(
arc sin

v

ε
− π

2

)
.

The quantity ω signifies the approximate time during which u traverses
the integration interval from e0 to e1, or during which v traverses the
corresponding domain from +ε to −ε. We call ω the “half period
of the motion of the top.” It is equal to the time during which the
figure axis returns from one of the extreme inclinations e0 to the other
extreme inclination e1, or from the mean inclination u0 to the very same
inclination along the shortest path. After the time 2ω, the inclination
of the figure axis is repeated periodically. If the yet undetermined point

of time t0 is taken, for the sake of convenience, to be equal to
ω

2
, then

the null point of the time t′′ coincides with the mean inclination of the
figure axis (v = 0 or u = u0). Equation (21) then becomes

(22) t′′ =
ω

π
arc sin

v

ε
.

It is now evident that we will prefer to “invert” this relation, and
write it in the form

(23) v = ε sin
πt′′

ω
or u = u0 + ε sin

πt′′

ω
.

The changing inclination of the figure axis is thus written in an explicit
manner as a function of the approximate time t′′. To estimate the al-
lowed error in this calculation—that is, to bound the value of u that cor-
responds to the value of the true time t—we need only return, in a cer-
tain manner, to the inequality (19). This inequality tells us the extent
to which the true and approximate times that correspond to the same
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value of u are most different from one another. We can therefore write√
e2 − e0
e2 − u0

e2 − u2
0

e2 − e21
(t− t0) < t′′ − t0 <

√
e2 − e1
e2 − u0

e2 − u2
0

e2 − e20
(t− t0).

The true value of u—that is, the value of u at the time t—must therefore
be equal to one of the values that are determined by the formula (23)
for the preceding interval of the approximate time. Since (disregarding
the vicinities of the integration limits e0 and e1) u always increases or
always decreases with increasing t, we can also say that the true value
of u is contained between the values that are calculated, according to
equation (23), for the approximate time points

(24)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
t′′ − t0 =

√
e2 − e0
e2 − u0

e2 − u2
0

e2 − e21
(t− t0) and

t′′ − t0 =

√
e2 − e1
e2 − u0

e2 − u2
0

e2 − e20
(t− t0).

The desired error estimation is thus achieved.
We proceed in a corresponding manner for the angle ψ in equation

(8′). If we insert for n and U the values from (9) and (15), then there
first follows

(25) ψ =
N

A

√
a

2P

∫
(e0 − u)
1− u2

√
e2 − u2

(e0 − u)(u− e1)(e2 − u) du.

We could again introduce an approximate azimuth ψ′ that may be
calculated by an elliptic integral, in that we replace the factor e2 − u
by e2 − u0. However, we prefer to take a step further and write

(26) ψ′′ =
N

A

1
1− u2

0

√
a

2P
e2 − u2

0

e2 − u0

∫
(e0 − u) du√

(e0 − u)(u− e1)
,

so that the further calculation passes into the trigonometric domain.
We substitute as the integration variable the approximate time t′′; we
have, according to equations (18) and (23),

dt′′ =

√
a

2P
e2 − u2

0

e2 − u0

du√
(e0 − u)(u− e1)

,

u = u0 + ε sin
πt′′

ω
, e0 − u = ε

(
1− sin

πt′′

ω

)
and therefore

(27)
ψ′′ =

N

A

ε

1− u2
0

∫ (
1− sin

πt′′

ω

)
dt′′

=
N

A

ε

1− u2
0

ω

π

(π
ω

(t′′ − t0) + cos
πt′′

ω

)
.
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The constant of integration has been chosen here so that ψ′′ vanishes
for t′′ = t0 = ω/2. The approximate value of ψ is again represented as
an explicit function of the approximate time t′′.

It follows by comparison of (26) and (25) that the relation

(28)
1− u2

0

1− e21

√
e2 − e20
e2 − u2

0

e2 − u0

e2 − e1 ψ
′′ < ψ <

1− u2
0

1− e20

√
e2 − e21
e2 − u2

0

e2 − u0

e2 − e0 ψ
′′

obtains between the true azimuth ψ and the approximate value ψ′′.
Since the two factors by which ψ′′ is multiplied differ only slightly from
1, the true value of ψ is thus enclosed in narrow bounds with the help
of the approximate value ψ′′.

The remaining quantities that refer to the motion of the top may
be represented in terms of ψ and u. We are particularly interested
in the trajectory of the support point in the horizontal plane, since
this element of the motion is most evident to the eye, and may also
be conveniently registered experimentally (cf. the following chapter,
§10). We extend a complex variable ξ in the horizontal plane, so that
the origin of this variable coincides with the point S′. The changing
positions of the support point O then correspond to a sequence of
ξ-values, and the trajectory of the support point, as well as the time
in which it is traversed, are completely known if we have represented
this ξ-value as a function of time in the form ξ = f(t).

First, the absolute value of ξ is easily given from Fig. 68; it is,
namely,

(29) |ξ| = OS′ = E sinϑ = E
√

1− u2.

The angle of the ray OS′ (the projection of the figure axis onto the
horizontal plane) with respect to an arbitrary fixed ray of this plane
is then equal, up to a constant, to the angle ψ that the line of nodes
forms with respect to an arbitrary fixed horizontal line.

The equation of the trajectory is therefore written in the form

(30) ξ = E
√

1− u2 eiψ,

where the calculation of u and ψ must follow from equations (23) and
(27), and the error determination from the inequalities (24) and (28).

We will illustrate the calculational procedure by a numerical exam-
ple. It is well to first proceed less precisely, in order to visualize the
character of the trajectory. We wish to start by neglecting the differ-
ence between the true and the approximate times, and also allow some
simplifications that follow from the expansion in the assumed small
quantity
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ε =
AP

N2
(1− e20) + · · · = AP

N2
(1− u2

0) + · · · .
We write, in this sense,

u = u0 + ε sin
πt

ω
,
√

1− u2 =
√

1− u2
0

(
1− εu0

1− u2
0

sin
πt

ω

)

=
√

1− u2
0

(
1− APu0

N2
sin

πt

ω

)
, ψ =

P

N

(
t− t0 +

ω

π
cos

πt

ω

)
.

The simplified equation of the trajectory thus becomes

(31) ξ = E
√

1− u2
0

(
1− APu0

N2
sin

πt

ω

)
e

iP
N

�
t−t0+

ω
π cos

πt
ω

�
.

This suggests the following interpretation: in the mean, the support

point moves about the fixed point S′ on a circle of radius E
√

1− u2
0

with constant angular velocity
P

N
. This component of the motion is to

be designated as a regular precession of the figure axis. The precession
is overlaid with an oscillation or nutation of the figure axis with period
2ω, due to which the radius S′O is changed periodically in magnitude
as well as in direction. The time duration and the magnitude of the
nutation are generally small, as is the angular velocity of the precession.
The trajectory of the support point thus consists of a finely scalloped
circle; the nutational oscillations, because of their smallness and the
rapidity with which they are traversed, escape gross observation, and
the motion appears, in the first place, as a regular precession. The
trajectory has entirely the same character as the previous pseudoregular
precession of the top with a fixed support point, and also conforms with

this motion in the magnitude
P

N
of the precessional velocity.

We now come to the precise execution of a numerical example. If
our top is a homogeneous cone of revolution with height h = 8 cm, its

center of gravity S lies at the distance E =
3
4
h = 6 cm from its vertex

O. If the ellipsoid of inertia constructed at the center of gravity is to
be a sphere, then the radius r of the circular base must be equal to
half the height. In fact, one finds without difficulty for the moments of
inertia C, A1, A about the figure axis, an axis through O perpendicular
to the figure axis, and such an axis through S, respectively, the values

C =
3
10
Mr2, A1 =

3
20
M(r2 + 4h2), A =

3
20
M

(
r2 +

1
4
h2

)
,
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where M is the total mass of the top. By equating the values of A and
C there follows

r =
1
2
h = 4 cm.

Thus
A = C =

48
10
M, a = ME2 = 36M,

and
A

a
=

4
30
, e2 = 1 +

A

a
= 1,133.

The initial rotation about the figure axis may be assumed to have the
value of 20 revolutions per second, so that the angular velocity amounts
to 2π · 20. Then

N2 = 4π2 · 400 · A2

and
N2

AP
=

4π2 · 40 · 48M
MgE

=
4π2 · 40 · 48

981,0 · 6 = 12,878.

We have therefore chosen this ratio to be considerably smaller than was
previously assumed, since otherwise the figure to be drawn would be
uncharacteristic, and the trajectory would hardly differ from a circle.
The degree of approximation, which is indeed essentially determined
by the magnitude of this ratio, will correspondingly be somewhat less
favorable in the following than for the general consideration. This
harms nothing, however, since not the smallness of the error, but rather
its estimation, is our primary interest in this place. We may let the
figure axis form the angle 45◦ with respect to the vertical in the initial
position (at time t0). Then

e0 =

√
1
2

= 0,707.

The quantities e1 and e2 result from equating the numerator of U to
zero, and therefore, according to (11), from the solution of the quadratic
equation

2AP (1 − u2) = N2(e0 − u).
If one inserts the given numerical values for

N2

AP
and e0, then one

obtains
u2 − 6,439u = −3,552, e1 = 0,609, e2 = 5,830.

Thus

ε =
e0 − e1

2
= 0,049, u0 =

e0 + e1
2

= 0,658, u2
0 = 0,433,

ω =

√
a(e2 − u2

0)
2P (e2 − u0)

π = 6,38 · 10−2 sec.,
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and
N

A

ε

1− u2
0

ω

π
= 0,220.

We next calculate the following factors, which, according to (24) and
(28), are essential for the estimation of the error:√
e2 − e0
e2 − u0

e2 − u2
0

e2 − e21
= 1− 4,6 · 10−2,

√
e2 − e1
e2 − u0

e2 − u2
0

e2 − e20
= 1+ 5,7 · 10−2,

1− u2
0

1− e21

√
e2 − e20
e2 − u2

0

e2 − u0

e2 − e1 = 1− 1,6 · 10−1,

1− u2
0

1− e20

√
e2 − e21
e2 − u2

0

e2 − u0

e2 − e0 = 1 + 1,9 · 10−1.

We now determine the trajectory, and, in particular, the segment of

the trajectory that is traversed from the initial time t = t0 =
ω

2
until

the time t = t6 =
3ω
2

. Between these two points of time we interpolate

five equally spaced times t1, t2, t3, t4, t5. The time interval between

the points is then
ω

6
. We assign to each of these “true” time points,

according to equation (24), two “approximate” time points.
There correspond to t1, for example, the two values

t′′ − t0 = (1− 4,6 · 10−2)
ω

6
and t′′ − t0 = (1 + 5,7 · 10−2)

ω

6
.

If we form the product
πt′′

ω
that appears in our formulas as the argu-

ment of the trigonometric functions and express this product in degree
measure, there follows

πt′′

ω
=
π

2
+ (1− 4,6 · 10−2)

π

6
= 90◦ + 28◦37′

and
πt′′

ω
=
π

2
+ (1 + 5,7 · 10−2)

π

6
= 90◦ + 31◦43′.

According to equation (23), the values of u that correspond to these
two approximate times are

u = 0,658 + 0,049 cos(28◦37′) = 0,701

and
u = 0,658 + 0,049 cos(31◦43′) = 0,699.

Thus the true value of u at the time t1 can be set equal to

u = 0,700 ± ϑ · 0,001,
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where ϑ (just as ϑ′, ϑ′′, . . . below) is an unknown proper fraction.

The bounds for the length of the vector S′O = E
√

1− u2 follow
from the bounds for u. If we express the former in mm, we find the
two extreme values 42,78 and 42,90 mm. We thus write, for t = t1,
E
√

1− u2 = 42,84 ± ϑ′ · 0,06 mm.
We next consider the direction of S′O at the time t1, and thus the

angle ψ. We first calculate the approximate values ψ′′ that correspond,
according to equation (27), to the given bounding values of t′′; namely,

πt′′

ω
= 90◦ + 28◦37′, ψ′′ = 0,220

(
28◦37′ − 180◦

π
sin 28◦37′

)
= 15′,

πt′′

ω
= 90◦ + 31◦43′, ψ′′ = 0,220

(
31◦43′ − 180◦

π
sin 31◦43′

)
= 21′.

The first of these values corresponds to the inclination u = 0,701 of
the figure axis; the uncertainty of this value follows from the inequality
(28), which states that the true value of ψ at the given inclination
satisfies

(1− 1,6 · 10−1) 15′ < ψ < (1 + 1,9 · 10−1) 15′,

or
13′ < ψ < 18′.

In the same manner, (28) gives

(1− 1,6 · 10−1) 21′ < ψ < (1 + 1,9 · 10−1) 21′,

or
18′ < ψ < 25′.

for the true value of ψ at the inclination u = 0,699. Since the quantity
u must lie between u = 0,701 and u = 0,609 at the time t = t1, the
angle ψ must lie between 13′ and 25′. We thus write, for t = t1,

ψ = 19′ ± ϑ′′ · 6′.

The quantities u, E
√

1− u2, and ψ are determined in the same manner
for the times t = t2, t3, . . . . (For the initial time t = t0 there obviously
follows, and indeed exactly, u = e0 = 0,707, E

√
1− u2 = 42,43 mm,

and ψ = 0.) The results of the calculation are contained in the table
of page 530.
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On the basis of these numbers, Fig. 70 is drawn. The figure shows
how the trajectory is pulled to and fro between the two bounding circles

of radii E
√

1− e20 = 42,4 mm and E
√

1− e21 = 47,6 mm. It is tan-
gent to the larger of the two circles, and touches the smaller with cusps.
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The bounded precision of our calculation is expressed by drawing the
trajectory not as a mathematical line, but rather as a strip of changing
width; further, the time points ti correspond not to a determined point
of the line, but rather to a certain band of the strip that is made
recognizable in the figure. This band will become always larger, and
the certainty of our calculation always smaller, as we move farther from
the initial time t = t0. The time points t−1, t−2, . . . precede the initial
time t0 at the same distances as the time points t1, t2, . . . follow it. The
trajectory for t < t0 results from that for t > t0 simply by a reflection
about the ray ψ = 0.

One will admit, after a glance at our figure, that our approximate
calculation satisfies all the requirements, with respect to the form of
the trajectory, that one can pose from the scientific standpoint for the
solution of the present exercise; with respect to the time in which our
trajectory is traversed, one can doubt whether our approximation is
satisfactory; at t = ±t5, for example, the band inside which the position
of the support point is uncertain becomes rather large. We could plead
in this respect, however, that the precision of our calculation may go
somewhat in parallel with the precision with which the position of the
support point may be determined at a given time by a not particularly
refined method of observation.

We must bear in mind, above all, that the actual course of the mo-
tion will be distorted to a high degree by friction at the support point,
which we have disregarded in this section. Thus if we would sharpen
the preceding calculation without taking friction into consideration,
this would signify dwelling on trifles and missing the main point.
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To Chap. V.

To p. 315. The moment Crϕ′, which we designate as the deviation
resistance in §5 of Chap. III and as the top-effect in later applications,
is called the “induced force” by Mr. K o p p e in the work cited in the
footnote ††) of p. 315, where the importance of this moment for the
elementary understanding of the phenomena of the top is indicated.
Koppe’s indication is in full consonance with our own conception (cf.
the heading of §1 of Chap. IX, where the formula in question is des-
ignated concisely as the most important in the theory of the top, as
well as all the following technical applications, where this formula, or
its generalization, is used throughout). In a review of the first two
volumes of our book (Ztschr. f. d. phys. u. chem. Unterricht, Nov.
1898) and in the Berichten der Berliner mathematischen Gesellschaft,
1, 1902, Mr. Koppe has given a newly simplified derivation of this mo-
ment that essentially coincides with ours, and with which we therefore
agree completely.197

To p. 337 It is stated that the asymptotic motion of the “upright”
top, which is essential for our subsequent stability criterion, appears
not to have been previously noted in a characteristic manner. On the
contrary, this motion is indicated in A. G. G r e e n h i l l, Applications
of elliptic functions, London, 1892, p. 243, §226 E; the possibility of
an elementary calculation of the relevant trajectory is presented there,
corresponding to the occurrence of a so-called pseudo-elliptic case. The
asymptotic character of the motion is not, however, discussed in detail.

To p. 341. As Mr. K o p p e notes in the cited review, and as also
follows from the equations (10) on p. 368 that are derived according to
the method of small oscillations, the trajectories represented in formula
(20) can also be conceived, in the stable cases N2−4AP > 0, as epi- or
hypocycloids (namely, as the superposition of two undamped circular
oscillations). They take this simple form, however, only if one neglects
a term of the order ε, which is equal to the order 1 − u, compared
to terms of the order

√
ε or

√
1− u. With this restriction, we can

therefore agree again with the remark of Mr. K o p p e. The velocities
of the precession and nutation are different from those that occur for
an arbitrary inclination of the figure axis.
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(The superposition may be recognized if the curve represented in (20) is
mapped by perpendicular projection (which, in the present case where the
curve runs entirely in the neighborhood of the north pole, coincides with the
stereographic projection from the south pole) onto the horizontal plane. In
the mapping,

r2 = sin2 ϑ = 1− u2 = (1 + u)(1− u),

or, neglecting the terms of higher order, since u is approximately equal to 1,

r2 = 2(1− u) = 2
(
1− u0 − ε sin

πt

ω

)
.

It is first evident that 1− u0 and ε are to be conceived as small quantities of
the second order in the linear dimensions. We thus write the second equation
of (20), with the suppression of all terms that are recognizable as of the second
order, as

2ψ =
n+N

2A
t+ arctg

w1

w2
,

where
w1 = ε− (1− u0) sin

πt

ω
,

w2 =
√

(1 − u0)2 − ε2 cos
πt

ω
.

We now form
(x+ iy)2 = r2e2iψ,

where x and y signify the coordinates of the apex of the top in the horizontal
projection, by means of the identity

e
i arctg

w1
w2 =

w2 + iw1√
w2

1 + w2
2

.

Here√
w2

1+w2
2 =
√
ε2−2ε(1−u0) sin

πt

ω
+(1−u0)2 sin2 πt

ω
+((1− u0)2−ε2) cos

πt

ω

=
√
ε2 sin2 πt

ω
− 2ε(1− u0) sin

πt

ω
+ (1− u0)2

= 1− u0 − ε sin
πt

ω
=
r2

2
.

Thus

r2e2iψ = 2e
i
n+N
2A t
[√

(1 − u0)2 − ε2 cos
πt

ω
+ i
(
ε− (1− u0) sin

πt

ω

)]
.

Through the introduction of the argument π/2−πt/ω and the passage to the
half of this argument, the bracket [ — ] in this equation is
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2
√

(1 − u0)2 − ε2 sin
π(ω − 2t)

4ω
cos

π(ω − 2t)
4ω

+ i
[
ε− (1 − u0)

(
cos2

π(ω − 2t)
4ω

− sin2 π(ω − 2t)
4ω

)]
= i
(√

1− u0 + ε sinπ
ω − 2t

4ω
− i√1− u0 − ε cosπ

ω − 2t
4ω

)2

.

Finally,

reiψ = 2
√
i e
i
n+N
4A t

(√
1− u0 + ε sinπ

2t− ω
4ω

+ i
√

1− u0 − ε cosπ
2t− ω

4ω

)
,

instead of which we may also write

x+ iy = (
√

1− u0 + ε+
√

1− u0 − ε ) e
i
(
n+N
4A +

π
2ω

)
t

+ (
√

1− u0 + ε−√1− u0 − ε ) e
i
(
n+N
4A − π

2ω

)
t
.

In the stable cases N2 − 4AP > 0, ω is real, according to equation (17)
of page 339, and thus the above equation for the trajectory of the apex of
the top represents, in fact, the superposition of two purely periodic circular
oscillations; that is, an epi- or hypocycloid.)

To §6. The concept of stability is treated in an important work of D.
J. K o r t e w e g: Über Stabilität periodisch ebener Bahnen, Sitzungs-
ber. d. Wiener Akad., May 1886, which the authors had, at the time
of writing, unfortunately overlooked.198

The K o r t e w e g definition coincides with that of Routh. K o r -
t e w e g makes the same objection to the definition of Thomson and
Tait that is raised here in the footnote of p. 348. The necessity of
considering the higher-order terms is likewise strongly emphasized by
K o r t e w e g, and, more importantly, these terms are actually consid-
ered, and the judgment of stability or instability is not based on the
terms of the first order alone. The concept of practical lability (for
theoretical stability) is also indicated by K o r t e w e g; cf. §24 of his
work.

To p. 350. We do not wish to give the impression that the judgment
of stability or lability is always natural and unambiguous if one accepts
our definition. Mr. K o r t e w e g has called attention to an example in
which one would speak of instability (or at least indifferent stability)
according to the geometric aspect of the perturbed trajectories, but
where the analytic test gives, according to our definition, stability. The
example treats of the central motion of a single mass particle for the
case n = −3 (cf. p. 347). The corresponding attractive force is −f/r3.
The motion of the mass particle is determined by the two equations
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(1) r2ϕ′ = c,

(2) r2ϕ′2 + r′2 − f

r2
= 2h,

where r and ϕ are polar coordinates with the pole at the center of
attraction, c is the constant of the area theorem, h is the constant of
the vis viva, and the mass of the particle is taken as 1. From (1) and
(2) there follows

(3) r′2 = 2h+
c2 − f
r2

.

Circular motion (r′ = 0) occurs as a special case. If the radius of
the circle is a, then the centrifugal force is aϕ′2 = c2/a3. This must
be canceled by the attractive force −f/a3. Therefore f = c2, and it
follows from (3) that h = 0. We now consider, for example, a perturbed
motion for which h is likewise zero (a conservative perturbation), but
f �= c2, and therefore f − c2 = ε2, say. Equation (3) then gives

(4) rr′ = ε.

By comparison with (1), one concludes that

(5)
1
r

dr

dϕ
=
ε

c
, or r = Ce

ε
cϕ
,

where the constant of integration C can be taken as equal to a. The tra-
jectories are then logarithmic spirals that begin from point O, intersect
the circle of radius a, and continue to infinity. The circle r = a is not at
all distinguished among these trajectories. This is true for every value
of ε, no matter how small; for decreasing ε, the spiral windings only
become increasingly tight. For ε = 0, however, there follows r = C,
and therefore a circular trajectory, and indeed the original circle, since
we naturally let the perturbation of the position of the particle also
decrease to zero.

The limit of the perturbed trajectory is thus analytically identical
with the original (the equality would also obtain for an arbitrary non-
conservative impact). Geometrically, however, one will hardly allow the
single circle as the limit of the successively tightening logarithmic spi-
rals; one is led to the circle only in the analytic limit process, since the
totality of the spirals no longer represents, in the limit, a single analytic
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curve. We must, nevertheless, designate the circular trajectory r = a
as stable if we adopt our definition literally.

The situation is different in the case n < −3; here asymptotic tra-
jectories occur (spirals whose windings, beginning from the origin or
from infinity, approach the circle r = a from both sides; in the case
n = −3 the corresponding spiral trajectories were not to be designated
as asymptotic, since they were no longer analytic curves in the limit,
and did not have a fixed circle as a limit). The limit passage for n < −3
can be arranged so that the limit of the perturbed path also becomes,
in analytic respects, not the original trajectory, but rather such an
asymptotic trajectory.

In the domain of equilibrium problems, the concept of “indifferent
equilibrium” is generally common, while it has not, until now, been
usual in the domain of motion problems. It is possible to designate, in
a corresponding manner, the above case of central motion for n = −3,
and similar cases in general, as “indifferent states of motion.” In fact,
this case coincides in many respects with the case of the force-free
stationary particle, if one refers the motion to a coordinate system
that rotates with a uniform velocity ϕ′.

If we consider our developments in §§6–8 together with the above
example, we come to the conclusion that the multiplicity of possible
trajectories and states of motion is much too large to be classified
without force into specific categories such as stable, labile, or indiffer-
ent. Each such classification will contradict the natural conception in
certain cases; we would not exempt our own stability criterion in §6.

To page 353. The expression “practical instability” was first used
by W. Gibbs in 1876; cf. the German edition of some originally separate
treatises in Thermodynamische Studien, Leipzig 1892, p. 94.

To page 376. In the discussion of the particular cases of the heavy
asymmetric top for which full analytic treatment is available, our pre-
sentation of the case of Mrs. K o w a l e v s k i is somewhat too brief (as
Mr. F. K ö t t e r emphasizes in his work Bermerkungen zu F. Kleins
und A. Sommerfelds Buch über die Theorie des Kreisels, Berlin 1899,
Mayer & Müller199). This is not only because we had not given a
proper development for this case, but also because the execution of the
integration cannot, it appears, be realized through simple geometric de-
liberations, as in the other cases considered. The complete treatment
of the case would have required too lengthy an analytic development.
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In work of F. K ö t t e r cited in the footnote, it is particularly
emphasized that the author has recognized, after a correct presenta-
tion of the Kowalevski formulas, the composition of the motion of the
Kowalevski top from two simple rotations: a rotation of a new coordi-
nate frame with a constant vertical component of rotational velocity,
and a rotation about an axis of the introduced frame.

To page 377 ff. A large series of works has recently been published
on the integration problem for the heavy asymmetric top, as well as
on the motion of the asymmetric top for a generalized law of force, in
which integrable exceptional cases are treated. With respect to all these
works, we refer to the recent summary report of S t ä c k e l: Rotation
starrer Körper und Verwandtes, Encyklopädie der math. Wiss. IV, 13.

An investigation of S c h i f f (Moscow, math. Sammlung, Bd. 24,
1903), which asks for all motions in which the impulse vector retains a
constant length, appears to be more closely associated with the type of
problem formulation in §9. Its contention, however, that such motions
exist in greater generality, has proven to be erroneous; as S t ä c k e l
has shown (Die reduzierten Differentialgleichung der Bewegung des
schweren unsymmetrischen Kreisels, Math. Annalen 7, pp. 399, 1909),
the named question leads only to the Staude permanent rotations, for
which not only the length of the impulse vector, but also its position
relative to the body, are preserved. Thus these permanent rotations re-
main as the single known motions of the general heavy asymmetric top.

On the other hand, however, the question of special cases of the
mass distribution that admit of a third algebraic integral, in addition
to the two expressed by the conservation of energy and the conserva-
tion of the vertical component of the impulse, has been carried further.
While the investigations of R. L i o u v i l l e (cf. p. 377) were still in-
complete, E. H u s s o n (Annales de Toulouse 2e série, VIII, 1906:
Recherches des intégrales algébriques . . . and Acta math. XXXI, 1908:
Sur un théorème de M. Poincaré . . .) proved that in addition to the
already known cases, no further cases exist in which a third integral is
possible. Thus there remain, in fact, the Euler case (center of gravity
at the point of suspension), the Lagrange case (symmetric top) and the
case of Mrs. Kowalevski as the only cases that are thus far available for
complete treatment. While the proof of H u s s o n uses transcendental
methods similar to those that Poincaré has developed for celestial me-
chanics, P. B u r g a t t i has recently given an elementary proof of the
theorem with only algebraic means (Dimostrazione della non esistenza
d’integrali . . ., Rend. del circolo matem. di Palermo, t. XXIX, 1910).
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The two proofs, moreover, rely on a previously established theorem of
Poincaré (Les nouvelles méthodes de la mécanique céleste, t. I), which,
applied to the case of the force-free top, gives the equality of two prin-
cipal moments of inertia as the condition for the existence of the third
algebraic integral.

Since there is thus no prospect of advancing deeper into the un-
known domain of the motion of the heavy top through the integration
of exceptional cases, the pursuit of the qualitative discussion that is rec-
ommended on p. 391 is all the more important. The present approaches
in this direction are restricted to the treatment of small oscillations,
which, generated by a disturbance, are superposed on known motions.
The small oscillations of an asymmetric body about its equilibrium po-
sition (for a vertically downward directed center of gravity axis), which
can naturally be treated without difficulty with the restriction to terms
of the first order, are investigated by M. L e c o r n u (Sur les petits
mouvements d’un corps pesant, Bull. de la Soc. math. de France, 30,
1902). We mention this investigation because the author also attains
(independently of the Staude work) a formulation of the condition for a
permanent upright rotation, and indeed in the following differing con-
ception: an axis through the support point can be a permanent rotation
axis if it can be a principal axis with respect to one of its points. The
equivalence of this condition with the Staude condition is easily verified.

Motions of a nearly symmetric top are treated by M. W i n k e l -
m a n n (Zur Theorie des Maxwell’schen Kreisels, Diss. Göttingen 1904)
through the formation of “perturbations of the first order” (in the astro-
nomical terminology), where the motion of the symmetric top is taken
as the undisturbed motion. Winkelmann does not, however, advance
to an error estimation or an investigation of the duration of validity of
the constructed equations. We wish to point out, finally, the thorough
numerical treatment of the top problem in the astronomical literature,
where particular approaches to the approximate treatment of the heavy
asymmetric top are also found (for example, C h a r l i e r, Eine neue
Methode zur Behandlung des Rotationsproblems, Arkiv för Matematik,
Kopenhagen, IV, 1908).

To page 379. Our formulation of the Hess case (namely, the ques-
tion of the conditions under which is it possible that the impulse vector
is always perpendicular to the center of gravity vector) contains, as Mr.
Stäckel remarks (Math. Annalen 67, p. 423), the simple pendulum-like
oscillations of bodies with a suitably chosen mass distribution that
M l o d z j e j e w s k i j (cf. the footnote of p. 378) has mentioned. A
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pendulum-like oscillation is understood here as a case in which the
body oscillates as a physical pendulum about a horizontal axis, while,
however, only one point of this axis is supported. It is evident on the
basis of symmetry that this motion always occurs if the center of grav-
ity lies in a principal plane of the body and the body is initially given
only a rotation about the horizontal axis perpendicular to this plane.
The motion therefore requires one condition for the mass distribution
(the center of gravity in one of the principal planes), and three condi-
tions for the constants of the motion. The impulse vector in this case
lies on the principal axis perpendicular to the center of gravity but has
a variable length, while for the Staude permanent rotation axes the im-
pulse vector lies on a fixed axis of the body and also retains a constant
length. In the derivation of the Hess condition this case was excluded,
since it was assumed there that the impulse vector is actually distrib-
uted during the motion on an arbitrary ray of the body-fixed plane
normal to the center of gravity vector, while here the impulse vector
always remains on a distinguished line of this plane.

To Chap. VI.

To p. 429. The mathematical side of the theory of the symmetric
top has been pursued further, from the standpoint of the theory of ellip-
tic functions, by G r e e n h i l l through the investigation of particular
cases in which the top curves represented by ϑ-quotients (the trajecto-
ries of the apex of the top, or the herpolhode or polhode curves) become
algebraic curves (for example, Annals of Mathematics, 5, 1904).

To p. 472. In the work cited in the note to p. 376, Mr. F. K ö t t e r
remarks that formulas (40), which represent the nine direction cosines
for the motion of the force-free top in terms of ϑ-functions, contain
transpositions. The factor −i must appear in the second equation
of the system before the fraction instead of i, and, in addition, the
formulas given for c and c′ are to be interchanged, and therefore to be
replaced by

c = i
ϑ(ω + is)ϑ(t)

ϑ(is − iω′ + ω)ϑ(t+ iω′)
e
− iπ

2ω (t+iω′−is)
,

c′ =
ϑ(is)ϑ(t− ω)

ϑ(is− iω′ + ω)ϑ(t+ iω′)
e
− iπ

2ω (t+iω′−is)
.

In order to orient the corrected system with respect to the Jacobi
formulas (cf. the footnote on page 473), we give the following tabular
summary:
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Jacobi’s notation Our notation

H(t) ϑ(t)

K, K ′ ω, ω′

a ω′ − s
α+ iα′ (a′ + ib′)e

−i
(
2l+

π
2ω

)
t

β + iβ′ (a+ ib)e
−i
(
2l+

π
2ω

)
t

γ + iγ′ (a′′ + ib′′)e
−i
(
2l+

π
2ω

)
t

α′′, β′′, γ′′ c′, c, c′′.

The Jacobi formulas have a still simpler form through the use of the
function symbols Θ, H1, and Θ1, which are related to H by

Θ(t) = −ie
iπ
4ω (2t+iω′)

H(t+ iω′),

H1(t) = H(t+ ω), Θ1(t) = Θ(t+ ω).

To p. 486. The second proof of the Jacobi theorem that begins
here had already been given previously by F. C a s p a r y. Cf. Darboux
Bulletin (2) 13, 1899: Sur les expressions des angles d’Euler, de leurs
fonctions trigonométriques et des neuf coefficients d’une substitution
orthogonal au moyen des fonctions thêta. (See also the note to p. 511
below.)

To p. 490. Concerning our view of the kinematic character of the
Jacobi theorem, compare the opposing conception of Mr. F. K ö t t e r
in his repeatedly cited work.

To p. 505. It is to be noted that c1 is used here with a different
meaning than on p. 503 and on p. 506 below, and on the following
pages.

To p. 511. Since the Weierstrass lecture (1879) was not published,
the first application in the literature of the parameters α, β, γ, δ to the
analytic treatment of the top was made by F. C a s p a r y, for both the
force-free top and the heavy spherical top. Caspary was led in an ana-
lytic way to consider certain theta-quotients that correspond to our α,
β, γ, δ, and are composed bilinearly in such a manner that the resulting
expressions identically satisfy both the orthogonality conditions for the
direction cosines and the Euler equations for the direction cosines and
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the rotation components. In addition to the work cited on page 486, we
mention Comptes Rendus, 107 (1888), p. 859, 901, 937; 112 (1891), p.
1120; cf. also E. J a h n k e, ibid. 126 (1898), p. 1126. Concerning the
relation of the parameters α, β, γ, δ to the complex variables extended
on the unit sphere, which was already known to G a u s (cf. p. 512),
was found anew by Riemann (cf. p. 30), and was applied in 1872 by
S c h w a r z in the theory of hypergeometric functions (Crelle’s Journal
75) and by K l e i n for the transformations of the icosahedron (cf. p.
30), the necessary references are to be found in the given places in the
text itself. Klein then applied the parameters to the theory of the top
(cf. Göttinger Nachrichten 1896, p. 3 and the Princeton Lectures cited
on p. 518, where the parameters are also applied to the theory of the
top on the horizontal plane, and lead to simple results in the context
of the theory of automorphic functions, into which we could not enter
in our presentation).
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108. (page 197) The title of Poincaré’s two-part paper, in which he
is styled as Ingénieur des Mines, is Mémoire sur les courbes définies
par une équation différentielle [Poincaré 1881/82]. In the introduction
to the paper, Poincaré compares the solution of a differential equation
to the solution of an algebraic equation and the construction of an
algebraic curve:

The complete study of a function comprises two parts:
1◦ The qualitative part (so to speak), or the geometric

study of the curve defined by the function;
2◦ The quantitative part, or the numerical calculation

of the values of the function.
Thus, for example, one begins the study of an algebraic

equation by seeking, with the aid of Sturm’s theorem, the
number of real roots. This is the qualitative part. One then
calculates the numerical value of the roots, which consti-
tutes the quantitative study of the equation. In the same
manner, one begins the study of an algebraic curve by con-
structing this curve, as one says in the course of special
mathematics; that is to say, one seeks the closed branches
of the curve, the infinite branches, etc. After this qualita-
tive study of the curve, one can determine a certain number
of points exactly.

One must naturally begin the theory of any function
with the qualitative part, and that is why the problem that
presents itself in the first place is the following:

To construct the curves defined by differential equations.

Poincaré restricts himself in this paper to the particular differential
equation dx

X
=
dy

Y
,

whereX(x, y) and Y (x, y) are polynomials in x and y. He maps the x, y
plane onto a sphere by a gnomic projection, and studies the resulting
geometry of the solution curves.



Note 109. Translators’ Notes.

Roland K. W. Roeder has written a detailed commentary on Poin-
caré’s paper, including an interesting discussion of several errors in the
examples that Poincaré uses to illustrate his theory [Roeder 2003].

109. (page 199) In 1898, Greenhill wrote to Sommerfeld to thank
him for a copy of Vol. II of the Theorie des Kreisels. Greenhill wrote
that he “felt much flattered at the kind way in which you mention,
on p. 199, the stereoscopic views drawn by Mr. Dewar. But I think it
ought to be mentioned that, after a little practice, it is soon possible
to dispense with the stereoscope and to obtain the solid effect with the
unassisted eyes” [Greenhill 1898].

Greenhill’s claim may be tested on the stereoscopic representations
reproduced in Fig. 164. Fig. 164(a) shows trajectories of the apex of the
top for three special cases in which the trajectory curves are closed. Fig.
164(b) is more complicated. It contains two closed trajectory curves,
an upper curve that passes through the north pole and a lower curve
that passes through the south pole. Greenhill describes the two curves
as follows [Greenhill 1897]:

The upper curve has an apsidal angle of 144 deg., with a
tenfold rosette, and closes in on itself after three revolutions
in azimuth; the lower curve has an apsidal angle of 72 deg.,
similarly with a tenfold rosette, and closes in on itself after
one revolution in azimuth. If the two curves were drawn
complete from the point of view chosen (the zenith), the
parts in the neighbourhood of the upper and lower poles
would overlap and obscure each other, and for this reason
the polar part of the upper curve has been omitted, giving
the appearance of a hole cut in a transparent spherical shell
which rests on a tesselated pavement. The point of the top
is supposed to be fixed at the centre of the sphere. It is
easy to follow the lower rosette through a complete course
of its convolutions, but the upper curve is not so easily
traced, because it crosses the circle of maximum angular
diameter, the bounding circle of the diagram, and makes
its way indistinguishably for some distance beyond that.

The stereographic representations in Greenhill’s papers were made
by T. I. Dewar, about whom we have found no biographical informa-
tion. It seems, however, that Dewar had a personal interest in stereo-
scopic images. In 1894, he published an article in Nature that describes
his recovery from a railway accident that left him with double vision
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(a)

(b)

Fig. 164. Stereoscopic images of the trajectory of the apex of the top.
(a): [Greenhill 1914, Fig. 80]; (b): [Greenhill 1897, p. 311].

for a period of several years [Dewar 1894]. Some of Dewar’s stereoscopic
drawings were exhibited at the Soirée of the Royal Society of London
in June of 1895.

In 1914, Greenhill published a Report on Gyroscopic Theory, a com-
prehensive work that “is intended to have the same scope” as the “The-
orie des Kreisels of Klein and Sommerfeld, where no mathematical dif-
ficulty is passed over or ignored” [Greenhill 1914, p. ii]. Reading Klein
and Sommerfeld or Greenhill, one feels transported to a time when in-
tellectual giants walked the Earth. May we be worthy bearers of the
treasures that have been handed down to us!
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110. (page 207) Fig. 165 shows three representations of the trajec-
tory corresponding to Fig. 25. The curves in Fig. 165 were computed
with the ϑ-quotient formulas given by Klein and Sommerfeld in Chap-
ter VI. The rounding of the cusps at the equator in the orthographic
projection onto the equatorial plane is exaggerated in Fig. 25a on page
207, but the remarkable qualitative difference between the orthographic
and stereographic projections onto the equatorial plane is clearly visible
in Fig. 165.

(a)

(b) (c)

A

B

Fig. 165. Representations of the trajectory of the apex of the top
for A = 1, P = −1, n = 0, N = 0.20, e = 0.

(a) orthographic projection onto a nonequatorial plane;
(b) stereographic projection from the south pole

onto the equatorial plane;
(c) orthographic projection onto the equatorial plane.
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A conceptual mechanical realization of the motion corresponding to
Fig. 165 in shown in Fig. 166 (see the following two pages). The top in
Fig. 166 consists of two rotors that are rigidly fixed to a single shaft;
the dimensions are chosen so that the top is approximately spherical
with respect to its fixed point at the center of the larger rotor. The con-
figurations in Fig. 166 correspond to equal time increments along the
trajectory from A to B in Fig. 165(b), with Fig. 166(a) corresponding
to point A and Fig. 166(g) corresponding to point B.

It is difficult to build a mechanical device that can execute the
motion represented in Figs. 165 and 166. As the apex of the top passes
near the vertical in Figs. 166(c)–(e), the fork that carries the circular
ring must rotate relatively quickly through an angle of almost 180◦.
Since the rotational velocity of the top about its figure axis is assumed
to be small, the inertia of the fork and ring can have a significant
dynamic effect that is not included in the analysis corresponding to Fig.
165. The Rozé top (Vol. I, p. 2) and the Maxwell top (Vol. I, note 27)
behave more ideally, but their range of motion is limited; they cannot
take the initial position ϑ =

π

2
assumed by Klein and Sommerfeld in

sections 1 and 2 of Chap. IV.
A description of some experiments with a mechanical device similar

to that shown in Fig. 166 is given by Kurt Magnus (1912–2003) in his
very fine book Der Kreisel [Magnus 1945].

111. (page 224) Sadly, Klein and Sommerfeld never return to the
discussion of cyclic systems.

112. (page 224) The cited section of the Mécanique Analytique is in
the second volume of the second edition [Lagrange 1815]. After deriving
the equations for dt, dψ, and dϕ in terms of u and du, Lagrange remarks
only that the variables in these equations are separated, and that their
integration “depends, in general, on the rectification of conic sections.”
He then proceeds to the consideration of small oscillations of a heavy
rigid body that is suspended at a point and may spin arbitrarily about
the line through the suspension point and the center of gravity.

113. (page 234) The stated purpose of Darboux’s paper [Darboux
1885] is to give a “direct and elementary” demonstration of the Jacobi
theorem that is discussed by Klein and Sommerfeld in Chap. VI, §8.
The relation between the motions of the symmetric and the spherical
tops and the reciprocity theorem for the inverse motion of the spherical
top are stated as preliminary results in the first section of the paper.
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Fig. 166. Conceptual mechanical
realization of the motion

of the top along the trajectory
from to in Fig. 165

(clockwise from the upper left).
A B

(a) (b)

(g)
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(c) (d)

(e)(f)
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114. (page 247) Routh’s geometric construction for the determina-
tion of the parallel circles that bound the trajectory of the top may
be summarized as follows. In Fig. 167, O is the support point of the
top, OV is the vertical, and OQ is a line segment on the figure axis.
The length OQ is called l, and is defined, in the notation of Klein and
Sommerfeld, as l = A/ME. Point Q is then the center of oscillation of
the top. Routh defines the lengths OG and OH as

OG = a =
A

ME

n

N
, OH = b =

A

ME

( h
P
− N2

2CP

)
.

An x, y coordinate system is defined at G, with the x-axis downward
and the y-axis to the right. The coordinates of the point Q are then

x = a− l cos ϑ, y = l sinϑ,

and the equation U = 0, where U is given by equation (7) page 222,
can be written as
(1)

N2

2PME
x2 = y2(x+ c),

where
c = b− a =

A

ME

( h
P
− N2

2CP
− n

N

)
.

The angle ϑ between the vertical and the figure axis therefore oscillates
between the two values for which the point Q lies on the cubic curve
(1).

The form of the cubic (1) is shown by the dashed curves in Fig.
167(a) for the case c > 0. For c < 0, the curve consists of an isolated
point at the origin and two separated branches, as shown in Fig. 167(b).
The case c = 0 corresponds to a top with initial conditions ϑ̇ = ψ̇ = 0.
In this case, the cubic curve reduces to the line x = 0 and the parabola
N2x = 2PMEy2.

Routh does not give a systematic discussion of how the initial con-
ditions of the top influence the shape of the cubic (1) or the positions
of the bounding parallel circles.

115. (page 265) A pleasantly direct account of the transformation
theory for elliptic integrals is given by Cayley [Cayley 1876]. A form
of the Landen transformation that applies to the algebraic integral∫

dx√
x(1− x)(1− k2x)

may be based on the quadratic change of variables

y =
(1 + k)2x
(1 + kx)2

.
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Q

G

x

H

V

(a)

(b)

�

y

O

Q

H

x

G

V

�

y

O

Fig. 167. Routh’s geometric construction for determining the
bounding positions of the figure axis of the top.

(a) c > 0; (b) c < 0. “To avoid confusion in
the figure, the body, which is represented by a top, is drawn

smaller than it should be” [Routh 1884, pp. 113–115].
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If

k1 =
2
√
k

1 + k
,

then
dy = (1 + k)2

1− kx
(1 + kx)3

dx,

1− y =
(1− x)(1 − k2x)

(1 + kx)2
,

1− k2
1y =

(1− kx)2
(1 + kx)2

,

so that∫
dy√

y(1− y)(1− k2
1y)

= (1 + k)
∫

dx√
x(1− x)(1− k2x)

.

The reverse transformation for the trigonometric integral

F (k, ϕ) =
∫

dϕ√
1− k2 sin2 ϕ

is accomplished by the change of variables(1− k′
1 + k′

)
sinϕ1 = sin(2ϕ − ϕ1),

or, equivalently,

sinϕ1 =
(1 + k′) sin 2ϕ

2
√

1− k2 sin2 ϕ
.

For 0 < ϕ <
π

2
, the angle ϕ1 should be chosen so that

0 < ϕ1 <
π

2
if 0 < ϕ < tan−1

√
1
k′

and
π

2
< ϕ1 < π if tan−1

√
1
k′
< ϕ <

π

2
,

where
π

4
< tan−1

√
1
k′
<
π

2
.

With this change of variables,

F (k, ϕ) =
1

1 + k′
F (k1, ϕ1),
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where

k1 =
1− k′
1 + k′

.

The English mathematician John Landen (1719–1790) developed
his transformation while studying integral expressions for the lengths
of elliptic and hyperbolic arcs. George Neville Watson (1886–1965) has
written an interesting historical account of Landen’s work and its role
in the development of the theory of elliptic functions [Watson 1933].

116. (page 265) The cited place in the complete works of Gauss is
the beginning of two posthumous papers [Gauss 1866] in which Gauss
investigates the iterative equations

an+1 =
1
2
(an + bn), bn+1 =

√
anbn.

For given initial values a1 and b1, Gauss proves that an and bn approach
a common limit as n → ∞; this limit is denoted by M(a, b), and is
called the arithmetic–geometric mean of a and b. The convergence to
the limit M(a, b) is generally very rapid. For a1 =

√
2 and b1 = 1, for

example, Gauss gives the numerical values

a1 = 1.41421 35623 73095 04880 2 b1 = 1.00000 00000 00000 00000 0
a2 = 1.20710 67811 86547 52440 1 b2 = 1.18920 71150 02721 06671 7
a3 = 1.19815 69480 94634 29555 9 b3 = 1.19812 35214 93120 12260 7
a4 = 1.19814 02347 93877 20908 3 b4 = 1.19814 02346 77307 20579 8
a5 = 1.19814 02347 35592 20744 1 b5 = 1.19814 02347 35592 20743 9.

By applying the sequential changes of variables

sinϕ1 =
(1 + k′) sin 2ϕ

2
√

1− k2 sin2 ϕ
,

sinϕ2 =
(1 + k′1) sin 2ϕ1

2
√

1− k2
1 sin2 ϕ1

, k1 =
1− k′
1 + k′

,

sinϕ3 =
(1 + k′2) sin 2ϕ2

2
√

1− k2
2 sin2 ϕ2

, k2 =
1− k′1
1 + k′1

, etc.

to the elliptic integral

F (k, ϕ) =
∫ ϕ

0

dϕ√
1− k2 sin2 ϕ

,

it can be shown [Cayley 1876, pp. 324–332] that
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F (k, ϕ) =
1

M(1, k′)
Φ, where Φ = lim

n→∞
ϕn

2n
.

The angle ϕn+1 should be chosen so that the pair of values (ϕn+1, ϕn)
lies in one of the hatched regions of Fig. 168. The value of kn rapidly ap-
proaches 0; even for k = 0.9999, k4 = 0.0037. When kn ≈ 0 (and there-
fore k′n ≈ 1), the iteration equation for ϕ is very nearly ϕn+1 = 2ϕn.
Cayley repeats a calculation of Legendre [Legendre 1825, p. 91] for the

case k = sin 75◦, k′ = cos 75◦, tanϕ =
√

2
4
√

3
. Cayley presents his results

in the following table [Cayley 1876, p. 335]:

a b k k′ ϕ

(0) 1.000 0000 0.258 8190 0.965 9258 0.258 8190 47◦ 3′ 31′′

(1) 0.629 4095 0.508 7426 0.588 7908 0.808 2856 62◦ 36′ 3′′

(2) 0.569 0761 0.565 8688 0.106 0200 0.994 3636 119◦ 55′ 48′′

(3) 0.567 4724 0.567 4701 0.002 8260 0.999 9959 240◦ 0′ 0′′

(4) 0.567 4713 0.567 4713 0.000 0020 0.999 9999 480◦ 0′ 0′′

Thus Cayley concludes that

F (k, ϕ) ≈ ϕ4

a424
= 0.9226877,

which agrees with Legendre’s value to seven decimal places.

Fig. 168. Allowable regions for the pair of values (ϕn, ϕn+1)
in the Landen transformation.
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Gauss compiled a seven-decimal-place table of M(1, sin θ) (and
log10M(1, sin θ) + 10) for values of θ from 0◦ to 90◦ at intervals of
30′ [Gauss 1866, p. 403]. Since Φ = π/2 for ϕ = π/2, the complete
elliptic integral of the first kind is given simply by

F (k,
π

2
) =
∫ π/2

0

dϕ√
1− k2 sin2 ϕ

=
π

2M(1, k′)
.

117. (page 265) Jacobi’s paper [Jacobi 1881, pp. 31–36] is an extract
from a letter written to Heinrich Christian Schumacher (1780–1850),
the founder of the still active journal Astronomische Nachrichten.
Jacobi begins with the elliptic integral of the first kind in the trigono-
metric form ∫

dϕ√
1− cc sin2 ϕ

.

For any prime number n, he considers the change of variables

sinϕ =
U

V
,

where U is a linear combination of odd powers of sinψ up to the nth

degree, and V is a linear combination of even powers of sinψ up the
(n− 1)st degree. Jacobi poses the problem of finding the coefficients in
U and V so that∫

dϕ√
1− cc sin2 ϕ

= m

∫
dψ√

1− kk sin2 ψ
,

and gives explicit results for the cases n = 3 and n = 5. Jacobi, who
at the time had not seen Legendre’s tables, also gives a method for
determining the incomplete function F (k, ϕ) in terms of the complete

function F
(
k,
π

2

)
and certain angles that divide the complete function

evenly. Jacobi denotes these angles by ϕ′, ϕ′′, . . .; they satisfy the
equations

F (k, ϕ(m)) =
m

p
F (k, 90◦), m = 1, 2, . . . , p− 1,

where p is any odd number. Legendre shows how these angles can be
computed in a simple way [Legendre, 1825, pp. 19–31]. Jacobi then
defines the angle ψ by the equation

tg (45◦−1
2ψ) =

tg 1
2(ϕ′−ϕ)

tg 1
2(ϕ′+ϕ)

·tg
1
2 (ϕ′′′+ϕ)

tg 1
2 (ϕ′′′−ϕ)

· · · tg
1
2(ϕ(p−2)±ϕ)

tg 1
2(ϕ(p−2)∓ϕ)

·tg (45◦∓1
2ϕ),
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and states (Jacobi’s papers seem to be full of such astounding state-
ments) that

F (k, ϕ) = μF (λ,ψ),

where

μ =
1

2(cosecϕ′ − cosecϕ′′′ + · · · ∓ cosecϕ(p−2) ± 1
2)
,

λ = 2kμ(sinϕ′ − sinϕ′′′ + · · · ∓ sinϕ(p−2) ± 1
2 ).

The upper signs in the equations for ψ, μ, and λ should be chosen if p
is of the form 4n+1, and the lower signs if p is of the form 4n−1. The

angle ψ should be taken between
mπ

2
and

(m+ 1)π
2

if ϕ lies between

ϕ(m) and ϕ(m+1). The modulus λ is always very small compared to k,
so that

F (k, ϕ) ≈ μψ,

and the constant μ can be approximated by μ =
2
pπ
F (k, 90◦), with

the correction
μλλ

8
sin 2ψ. Expressing ψ in seconds and putting μ′ =

F (k, 90◦)
324000 · p , the formula for the calculation of F (k, ϕ) becomes

F (k, ϕ) ≈ μ′ψ.

For the case k = sin 45◦ and p = 5, Jacobi quotes Legendre’s values

ϕ′ = 21◦ 0′ 36′′, 02754 43

ϕ′′′ = 58◦ 38′ 10′′, 31402 70

F (k, 90◦) = 1,85407 46773 01,

and uses these values to derive the formulas

μ′ = 0,00000 11444 90541 544

tg 1
2(90◦−ψ) =

tg (10◦30′18′′, 01− 1
2ϕ)

tg (10◦30′18′′, 01+ 1
2ϕ)

· tg (29◦19′5′′, 16+ 1
2ϕ)

tg (29◦19′5′′, 16− 1
2ϕ)

·tg (45◦− 1
2ϕ)

F (k, ϕ) = 0,00000 11444 90541 · ψ
correction = −0,00000 007 · sin 2ψ.
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Jacobi then completes the calculation for ϕ = 30◦ in the following
manner:

log tg 4◦ 29′ 41,′′ 99 = 8,89549 90 n
log tg 44◦ 19′ 5,′′ 16 = 9,98966 16

Compl. log tg 25◦ 30′ 18,′′ 01 = 0,32140 63
Compl. log tg 14◦ 19′ 5,′′ 16 = 0,59306 27

log tg 30◦ 0′ 0,′′ 00 = 9,76143 94
log tg (45◦ − 1

2
ψ) = 9,56106 90 n

45◦ − 1
2
ψ = −20◦0′0,′′ 47
ψ = 468000,′′ 95

μ′ψ = 0,53562 266
Correction +7
F (k, ϕ) = 0,53562 273

M. L e g e n d r e finds 0,53562 27328 22
Working through the detailed calculations of Gauss, Legendre, Cay-

ley, and Jacobi, one obtains a sense of the awe-inspiring intellectual
tradition that could make possible a book such as the Theorie des
Kreisels.

118. (page 265) Karl Heinrich Schellbach (1805–1892) was pro-
fessor of mathematics in the Friedrich-Wilhelm-Gymnasium and the
Kriegsakademie in Berlin, and was a founder, with Ernst Werner
von Siemens (1816–1892) and Hermann von Helmholtz (1821–1894),
of the Physikalisch-Technischen Reichsanstalt, the German national
standards laboratory now called the Physikalisch-Technischen Bun-
desanstalt. In his Lehre von den Elliptischen Integralen und den
Theta-Functionen, Schellbach writes the elliptic integral of the first
kind as

u =
∫ ϕ

0

dϕ√
1− k2 sin2 ϕ

,

and derives expressions for ϕ as a function of u in terms of the Jacobi
theta-functions. One of his results, written in terms of the ϑ-function
used by Klein and Sommerfeld in Chap. VI, is [Schellbach 1864, p. 63]√

1− k2 sin2 ϕ√
k′

= −iϑ(u+K −K ′i)
ϑ(u−K ′i)

=
1 + 2q cos 2x+ 2q4 cos 4x+ 2q9 cos 6x+ · · ·
1− 2q cos 2x+ 2q4 cos 4x− 2q9 cos 6x+ · · · ,

where

q = e
−K ′

K π
, x =

πu

2K
,
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K =
∫ π/2

0

dϕ√
1− k2 sin2 ϕ

, K ′ =
∫ π/2

0

dϕ√
1− k′2 sin2 ϕ

.

By truncating the series expansions of the ϑ-functions at the q9 terms
and performing a series of algebraic and trigonometric transformations,
Schellbach derives the remarkably simple approximation formula

(2) cos
πu

K
=

1
2λ

tg ( 1
4
π − δ) − 2(λ3 + 5λ7)tg ( 1

4
π − δ) sin2 πu

K
,

where
λ = 1

2
tg2 1

2
β, k = sinα,

√
k′ = cos β, sinα sinϕ = sin γ,

cos β
cos γ

= tg δ.

Retaining only the first term on the right-hand side of equation (2)
gives six-decimal-place accuracy for u if k is less than about 0.7. For
larger values of k, Schellbach gives an improved solution of equation
(2) in the form

u = u1 +
2K
π

(λ3 + 5λ7)tg ( 1
4
π − δ) sin

πu1

K
,

where u1 is the value obtained by retaining only the first term on the
right-hand side of (2). We have verified that this improved approxima-
tion gives six-decimal-place accuracy for u when k is as large as 0.97.
Schellbach also develops specific alternative methods to calculate u for
values of k near 1.

119. (page 265) The Legendre tables were not reprinted until 1931
[Emde 1931] and 1934 [Pearson 1934]. A review of tables of elliptic
integrals and elliptic functions that appeared before the year 1948 is
given by Alan Fletcher [Fletcher 1948].

120. (page 266) Since the values of e′′ in the table on p. 267 are
greater than or equal to 1, the table should, according to Fig. 38 on
page 226, be labeled P = +1.

121. (page 268) Factors of two are missing in the denominators of
the two terms on the right-hand side of the following equation for ψ.
These factors of two should also be included in the definitions of C1

and C2 below.

122. (page 268) According to the definition of the normal integral of
the third kind on page 267, the quantities p1 and p2 should be reversed
in sign.
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123. (page 269) Legendre defines his elliptic integrals of the first,
second, and third kinds as

F (c, ϕ) =
∫

dϕ√
1− c2 sin2 ϕ

,

E(c, ϕ) =
∫ √

1− c2 sin2 ϕ dϕ

(n, c, ϕ) =
∫

dϕ

(1 + n sin2 ϕ)
√

1− c2 sin2 ϕ
.

The corresponding complete integrals (the integrals with lower limit 0
and upper limit

π

2
) are denoted by F 1(c), E1(c), and 1(n, c). Legendre

also uses the abbreviations b =
√

1− c2 and Δ(c, ϕ) =
√

1− c2 sin2 ϕ.
Legendre derives the following expressions for the complete integral of
the third kind in terms of the integrals of the first and second kind
[Legendre 1825, Chap. XXIII]:

First case: n > 0.

If n > 0, let n = cot2 θ, 0 < θ < π/2. Then

Δ(b, θ)
sin θ cos θ

1(n, c) =
π

2
+

sin θ
cos θ

Δ(b, θ)F 1(c) + F 1(c)F (b, θ)

− F 1(c)E(b, θ) − E1(c)F (b, θ).

Second case: −1 < n < −c2.
If −1 < n < −c2, let n = −1 + b2 sin2 θ, 0 < θ < π/2. Then

b2 sin θ cos θ
Δ(b, θ)

[ 1(n, c)− F 1(c)] =
π

2
+ F 1(c)F (b, θ)

− E1(c)F (b, θ)− F 1(c)E(b, θ).

Third case: −c2 < n < 0.

If −c2 < n < 0, let n = −c2 sin2 θ, 0 < θ < π/2. Then

1(n, c) = F 1(c) +
tan θ

Δ(c, θ)
[F 1(c)E(c, θ) −E1(c)F (c, θ)].

We are not sure that these formulas would allow us to find the
azimuth angle ψω “relatively quickly.”
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124. (page 269) It is likely that “Herr stud. math. Blumenthal,” as
he is called in the original, is Ludwig Otto Blumenthal (1876–1944),
who studied mathematics in Göttingen under Hilbert, Klein, and Som-
merfeld from 1894 to 1898. Blumenthal was professor of mathematics
in Aachen from 1905 until his expulsion in 1933. He died in the con-
centration camp at Theresienstadt in 1944. In 1951, Sommerfeld wrote
a memorial in which he describes, in very warm terms, his associa-
tion with Blumenthal in Göttingen and Aachen [Sommerfeld 1951].
The Aachen mathematicians Paul Butzer and Lutz Volkmann have re-
cently published a detailed review of Blumenthal’s mathematical work
[Butzer 2006].

125. (page 269) The trajectories in Sections 1 and 2 of Chap. IV
were apparently constructed in the following manner. After setting
e = 0 and finding the roots e′ and e′′ of the quadratic U1, a unit
circle is first drawn to represent the equator of the unit sphere, and a
concentric circle with radius

r′ = tan
(1

2
cos−1 e′

)
=

√
1− e′
1 + e′

is then drawn to represent the second bounding parallel circle of the
apex of the top. The angle ψω is next calculated from the formula

ψω =
∫ e′

0

n−Nu
A(1− u2)

du√
U

= C1

(
k,
π

2
, p1

)
+ C2

(
k,
π

2
, p2

)
,

where C1, C2, p1, p2 are defined (see the corrections in notes 121 and
122) on page 268. Having calculated the angle ψω, one can plot the
initial equatorial pointA, the first pointH on the inner bounding circle,
and the second equatorial point B, as in Fig. 169. The first segment
AHB of the trajectory curve can then be sketched in. The segment
AHB should be tangent to the inner circle at H and symmetric with
respect to the line ψ = ψω. The character of the curve at the points A
and B depends on the values of n and N . In Fig. 169, which is drawn
for the numerical values corresponding to Fig. 27, the curve has cusps
that are perpendicular to the outer circle at A and B. The continuation
arcs BA′, A′B′, and B′A′′ are all congruent to the initial arc AB.
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Fig. 169. Construction of the trajectory of the apex of the top.

The construction for the trajectory of the apex of the top is a good
example of the ingenious graphical procedures that are often found in
nineteenth-century works on mechanics.

126. (page 269) We have used the ϑ-quotient formulas given in
Chap. VI, together with the numerical data on pages 243 and 247,
to check the figures of Sections 1 and 2 in detail. The figures are gen-
erally quite accurate. The largest error occurs in Fig. 26 on page 208,
in which the span width angle ψω is noticeably too small. A small
discrepancy in the angle ψω can also be seen in the comparison of Fig.
25 on page 205 and our recomputation in Fig. 165(b).

127. (page 273) The value of the fraction

n2 +N2 − 2nNe
2AP (1 − e2)

in the limit e→ ±1 is discussed further on pp. 338–339.
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128. (page 277) As an illustration of Klein and Sommerfeld’s ap-
proximate solution for the trajectory of the apex of the top, we show
in Fig. 170 the exact (computed from the ϑ-function representation in
Chap. VI) and the approximate (computed from equation (8′) on p. 272
and equation (14′) on p. 276) trajectories for the case A = 1, P = 1,
n = −0.1, N = 3.5, and e′ = 0. The trajectories are shown in the
stereographic projection from the north pole of the unit sphere. The
initial time is chosen so that the apex of the top is at the equator at
t = 0. For the given numerical values,

e = −0.2128, ε =
e′ − e

2
= 0.1064.

The locations of the bounding circles and the qualitative form of the
trajectory are captured accurately by the approximate solution. The
fractional error in the azimuth angle ψ is proportional to ε, but the ab-
solute error grows linearly with time due to the approximate coefficient
of t in equation (14′).

t �=

Fig. 170. Exact and approximate trajectories of the apex
of the top for the case A = 1, P = 1, n = −0.1, N = 3.5, and e′ = 0.

—— : exact; – – – : approximate.
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129. (page 281) The theory of line elements, which is derived from
Hermann Grassmann’s Ausdehnungslehre [Grassmann 1844] and which
contributed to the development of modern vector analysis, is discussed
by Klein in the second volume of his Elementarmathematik vom höheren
Standpunkte aus [Klein 1914, Chaps. I–III].

130. (page 282) Singular solutions also exist for the energy equation

(3) ẋ2 + x2 = 2E,

which corresponds to the linear oscillator equation

(4) ẍ+ x = 0.

Equation (3) has the constant solutions x = ±√2E that are not solu-
tions of (4). These constant solutions are the envelopes of the contin-
uous family of sinusoidal solutions of (3) and (4) that have energy E;
that is, the solutions

x =
√

2E sin(t+ φ),

where φ is an arbitrary phase angle. In fact, the energy equation (3)
also has singular solutions of the type illustrated in Fig. 171, in which
constant segments x = ±√2E are joined to the sinusoidal solutions of
(3) and (4). The possibility of these composite singular solutions was
pointed out to one of the translators (GS) by Sommerfeld’s student
Werner Heisenberg (1901–1976).

x

t

Fig. 171. Singular solution of the energy equation ẋ2 + x2 = 2E.

131. (page 298) Möbius considers the following class of epicycloidal
motions [Möbius 1887, pp. 60–74]. A point A moves on a circle of
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radius a about the fixed point O with constant angular velocity n. In
the plane of this circle, a second point A1 moves on a circle of radius
a1 about the moving point A with constant angular velocity n1. A
third point A2 moves in the same plane on a circle of radius a2 about
the moving point A1 with constant angular velocity n2, etc. Möbius
considers the trajectory of the point An, and shows, for example, that
it is easy to choose the parameters of the motion so that the point
A2 moves on an ellipse. He then considers small higher-order terms in
the epicycloidal series, and later uses these terms to analyze the small
orbital perturbations caused by the gravitational interactions among
the planets.

132. (page 306) After deriving the differential equations for the
Euler angles ϑ, ψ, and ϕ in the case of the heavy symmetric top, Pois-
son simplifies and solves these differential equations for the two special
cases in which (1) the angle ϑ is assumed to be always very small; and
(2) the angle ϑ is assumed to be always very close to its initial value. As
an illustration of the second case, Poisson mentions the Bohnenberger
machine (cf. Vol. I, p. 2), which, as Poisson says, “faithfully represents
all circumstances of this rotational motion” [Poisson 1833, p. 178].

Kirchhoff solves the differential equations for the top for the special
case in which the initial angular velocity consists only of the component
r about the figure axis, and then derives approximate expressions for
the Euler angles ψ, ϑ, and ϕ by letting the initial value of r become
infinitely large [Kirchhoff 1883, pp. 72–74].

No attempt at an error estimation is made by either Poisson or
Kirchhoff. Klein and Sommerfeld’s criticism of purely analytic presen-
tations seems particularly applicable, in this case, to Kirchhoff. He
derives his results systematically, but with no discussion or interpreta-
tion.

133. (page 307) Perry compares the top to both a pig and a crab:
“If I try to make a very quickly spinning body change the direction
of its axis, the direction of the axis will change, but not in the way I
intended. It is even more curious than my countryman’s pig, for when
he wanted the pig to go to Cork, he had to pretend he was driving the
pig home. His rule was a very simple one, and we must find a rule for
our spinning body, which is rather like a crab, that will only go along
the road when you push it sidewise” [Perry 1957, pp. 17–18].

134. (page 308) A quaternio terminorum is a logical error in which
four terms (instead of the required three) are used in a categorical
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syllogism [Howard 1970, p. 98]. The error often depends, as in this
case, on the equivocal use of a word.

135. (page 309) Louis-Philippe Gilbert (1832–1892) was professor
of mathematics and mechanics in the Catholic University of Leu-
ven. His ninety-five page paper [Gilbert 1878] is a delightful ac-
count of theoretical and experimental investigations of rigid-body ro-
tation, beginning with D’Alembert and ending with a reference to Her-
mite. Gilbert describes the experiments of Foucault and the horologist
Etienne-Georges Sire (1826–1906), and discusses the papers in which
Foucault and Sire are guilty of a “grave confusion” between the rota-
tion axis and the figure axis. Gilbert’s own instrument, the baryscope,
is described by Klein and Sommerfeld in Chap. VIII, §9.

136. (page 309) The note by Oberlehrer Dr. Franke of Schleusingen
(possibly Hermann Franke (1847–1932)) in the Zeitschrift für math-
ematischen und naturwissenschaftlichen Unterricht [Franke 1886] was
written in response to a previous paper [Hauck 1886a] by Privy Council-
lor Prof. Dr. Guido Hauck (1845–1905), professor of descriptive geom-
etry and eventual rector of the Technische Hochschule in Berlin. After
deriving the conical motion of the figure axis of the top by a specious
application of the parallelogram law, Hauck places his false result into
the context of a duality between the motion of the top and the circular
motion of a particle in a central force field. This duality, in turn, is
cited as an example of a more general “reciprocity law of space.”

In a reply to Franke’s note, Hauck admits his error, but states that
his treatment of the motion of the top is sufficiently accurate under
the usual conditions [Hauck 1886b]. He does not tell us how the usual
conditions affect his general reciprocity law of space.

Hauck’s more successful works include a study of subjective per-
spective in ancient Greek architecture [Hauck 1879] and the editing of
a posthumously published theory of scientific knowledge by Paul du
Bois-Reymond [du Bois-Reymond 1890].

137. (page 309) In the fourth (1858) edition of Airy’s Mathematical
Tracts, a restriction to a mechanically spherical or symmetric body
is added. Klein and Sommerfeld refer to the (then sixty-six-year-old)
second edition [Airy 1831].

138. (page 309) Airy poses and (correctly) solves the equation that
would be written in modern notation as

dω

dt
= a× ω,
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where a is a constant vector that is perpendicular to the angular ve-
locity ω. But this equation has no basis in the kinetics of the top.

139. (page 311) The problem of turning the axis of the symmetric
top was originally posed and solved incorrectly by J. Wanka of Fiume
(now Rijeka, Croatia). The correct result was given by Max Koppe
(1853–??), a teacher in the Andreas-Gymnasium in Berlin [Wanka 1896;
Koppe 1896].

A detailed derivation of the solution described in words by Klein and
Sommerfeld may be carried out as follows. In Fig. 172, the xyz-axes
are fixed in space, and the XY Z-axes are the principal inertial axes
of the top. The Z-axis coincides with the figure axis OF . The Euler
angles ψ, ϑ, ϕ define the orientation of the XY Z-axes with respect
to the xyz-axes. For the given problem, ψ and ϕ̇ are constant. The
angular velocity ω of the top is then (cf. Vol. I, p. 45)

ω = ϑ̇ cosϕu
X
− ϑ̇ sinϕu

Y
+ ϕ̇u

Z
,

and the angular momentum H of the top is

H = Aϑ̇ cosϕu
X
−Aϑ̇ sinϕu

Y
+ Cϕ̇u

Z
.

The moment M that is necessary to produce the motion is therefore

M =
dH
dt

=
(dH
dt

)
XY Z

+ ω ×H

= Aϑ̈(cosϕu
X
− sinϕu

Y
) + Cϕ̇ϑ̇(− sinϕu

X
− cosϕu

Y
)

= Aϑ̈u
OH1

+Cϕ̇ϑ̇u
OG
.

The two terms in this expression for M correspond to the two items
listed by Klein and Sommerfeld at the top of page 311. If, beginning
and ending at rest, the angle ϑ changes by dϑ in the time interval dt,
then the time integral of ϑ̈ over the interval dt vanishes, and there is
no net moment about the axis OH1. The second term in the direction
of OG is then the required moment.

140. (page 312) The Connaissance des Temps was first published
in 1679 by the French priest and astronomer Jean Picard (1620–1682),
who measured the arc length of one degree of the Earth meridian
through Paris to an accuracy of 100 feet. In the nineteenth century,
the Connaissance des Temps was primarily an ephemeris, a table of the
positions of the heavenly bodies in the sky at specified times. Poinsot’s
long article on the precession of the rotation axis of the Earth [Poinsot
1858] was published in the Additions à la Connaissance des Temps for
the year 1858.
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Fig. 172. Euler angles ψ, ϑ, ϕ for the specification of the orientation
of the body axes XY Z with respect to the spatial axes xyz.

141. (page 312) Carl August von Schmidt (1840–1929) was profes-
sor of physics in the Realgymnasium in Stuttgart. The purpose of his
paper [Schmidt 1886] is to develop a presentation of the motion of the
top that is accessible to students of elementary physics. Schmidt dis-
cusses the alleged reciprocity law of his “very esteemed friend” Guido
Hauck, and concludes that the circular motion of a particle under a
central force and the regular precession of a top under the action of
gravity are not actually reciprocal, but only analogous.

142. (page 313) Viktor von Lang (1838–1921) was professor of phys-
ics in the University of Vienna. He cites and closely follows the Airy
explanation, and gives a very brief qualitative discussion of its appli-
cation to the Bohnenberger (cf. Vol. I, p. 2) and the Fessel (cf. note
144 below) machines. In a remarkable act of conscious or unconscious
self-contradiction, he then states the evident experimental fact that
“the rotation axis begins to describe a wavy surface only if the rota-
tion [presumably the rotation about the figure axis] becomes very slow,
or the gravitational imbalance very large” [von Lang 1867, p. 65].
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143. (page 313) Ernest Jean Philippe de Fauque de Jonquières
(1820–1901) was a student of Chasles who became a vice-admiral in
the French navy. He spent several years as part of the French colo-
nial occupation force in Vietnam. His paper [de Jonquières 1886] uses
Poinsot’s concept of the couple d’impulsion to give a clear, correct, and
primarily qualitative description of the motion of the top.

144. (page 313) The mechanical device considered by Johann Chris-
tian Poggendorff (1796–1877) is called the Fessel machine. Its original
form is shown in Fig. 173. When the disk A does not rotate and the
ring C is released from a stationary position in which the axis B is hor-
izontal, the ring C rotates downward about a horizontal axis through
the hinge D. When the disk A is given a rapid rotation, however, the
axis B remains essentially horizontal when the ring C is released, and
the ring C begins to rotate about the vertical axis EG. If the disk A
spins rapidly but the axis B is fixed in a horizontal position by locking
the hinge D, the released ring C does not rotate about the vertical axis
EG.

Friedrich Fessel (1821–??) was once an assistant in the physical lab-
oratory of Julius Plücker in Bonn [Schubring 1989, p. 79]. In a paper
that appeared shortly before Poggendorff’s, Plücker writes that Fessel
“was formerly a teacher in the provincial technical school, but is now,
through the favor or disfavor of circumstances, wholly dependent on
his art as a mechanic” [Plücker 1853].

Plücker suggested some improvements to the Fessel machine; the
new configuration, which quickly became a common instrument for
demonstrating the properties of rigid-body motion, is shown in Fig.
174. Plücker also quotes a letter in which Fessel describes the original
development and subsequent modification of his machine:

I have let the new apparatus rotate, according to your
advice, on a fixed point. The experiment succeeded most
magnificently. Should you wish to say something about the
origin of the device in the notice for the Poggendorff jour-
nal, please use the following suggestions. Two years ago, I
let the 24-inch-diameter flywheel of a steam engine rotate
between my hands, in order to see whether the assistant
had fashioned the wheel correctly.

I then felt that the plane of the wheel was fixed during
the rotation, and that one could remove one hand with-
out the wheel (now supported only on a pivot) falling. I
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Fig. 173. Original form of the Fessel machine
[Poggendorff 1853, Taf. II].

Fig. 174. Plücker’s modification of the Fessel machine
[Heinen 1857, p. 5].
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ascribed the apparent rotation in a horizontal plane to the
elevation of the wooden axle in the palm of my hand. To
prevent this elevation, I let an ellipsoid rotate in the ring
of a precisely constructed apparatus, and supported the el-
lipsoid alternately by two projecting pins that formed an
elongation of its axis, and therefore did not themselves ro-
tate. But it soon became apparent that the rotation in a
horizontal plane was not incidental, but rather essential.
Various accidents that the apparatus suffered in these ex-
periments caused it to be set aside until I very recently as-
signed to a momentarily unoccupied worker its renovation
and simultaneous alteration, which succeeded completely.

145. (page 315) Claude Servais Mathias Pouillet (1791–1868) pub-
lished his Éléments de physique expérimentale et de météorologie in
1827. A German edition by Johann Heinrich Jacob Müller (1809–1875)
was published in 1842, and a five-volume eleventh edition of the
Müller–Pouillet Lehrbuch der Physik appeared as late as 1929.

146. (page 315) Koppe’s comments on Von Lang, Poggendorff, and
Poinsot are very similar to those of Klein and Sommerfeld. He mentions
the solution of the differential equations of the top in terms of elliptic
functions, and states that “a clear insight into the basis of the motion
cannot be obtained in this way, for even if the differential equations
permit of a brief interpretation, the passage to their integrals, which
depends on all possible properties of elliptic functions, cannot be fol-
lowed intuitively. It is indeed possible, through apparently allowable
operations, to arrive at analytic results that impede the mechanical
comprehension” [Koppe 1890].

147. (page 315) Franz Heinen (1807–1870) was director of the Re-
alschule in Düsseldorf. The most interesting parts of his attractive
little book [Heinen 1857] are the descriptions of experiments with the
Bohnenberger and Fessel machines. Heinen added a rotational degree
of freedom to the rotor of the Fessel machine, as illustrated in Fig. 175.
A similarly modified Fessel machine was presented to the Royal Soci-
ety of London in 1854 by Charles Wheatstone (1802–1875) [Wheatstone
1855].

148. (page 315) See the supplementary note by Klein and Sommer-
feld on p. 533.

570



Translators’ Notes. Note 152.

Fig. 175. Heinen’s modification of the Fessel machine
[Heinen 1857, p. 7].

149. (page 315) The creative explanation by Dr. Munter of Herford,
in which the rigidity of the top is blatantly disregarded, was immedi-
ately criticized by Franke and Schmidt [Munter 1895; Franke 1895;
Schmidt 1895].

150. (page 322) Klein’s paper on the stability of the sleeping top
[Klein 1897] was presented in an address to a meeting of the American
Mathematical Society in Princeton, New Jersey, on Saturday, October
17, 1896. Earlier in the same week, Klein had delivered four lectures
on the theory of the top as part of the sesquicentennial celebration of
Princeton University (cf. note 194 below).

151. (page 337) See the supplementary note by Klein and Sommer-
feld on p. 533.

152. (page 341) See the supplementary note by Klein and Sommer-
feld on p. 533.
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153. (page 342) The fourth lecture of Jacobi’s Dynamik is devoted
to the principle of the conservation of energy for a system of particles.
Jacobi shows how the principle may be used to deduce some general
properties of the motion of the planets in the solar system, and then
discusses the stability analysis of Laplace [Jacobi 1884, pp. 29–31]:

In this and similar considerations lies the kernel of the
famous investigations of Laplace, Lagrange, and Poisson
on the stability of the system of the world. There exists,
namely, the theorem that if one assumes the elements of
one planetary trajectory to be variable and expands the
major axis in terms of the time, then the time appears
only as the argument of periodic functions; there are no
terms proportional to the time. Laplace first proved this
theorem only for small eccentricities and the first power
of the [planetary] masses. Lagrange extended it [Lagrange
1808] with a stroke of the pen to arbitrary eccentricities.
Poisson, finally, proved that it is also valid if the second
power of the masses is considered [Poisson 1809]; this work
is one of his most beautiful. With consideration of the third
power of the masses, the time already appears outside the
periodic functions, but is still multiplied by these functions;
if the fourth power is considered, then t actually appears
without being multiplied by periodic functions. The result
for the third power therefore gives oscillations about a mean
value, but oscillations that become infinitely large for t =
∞; with the consideration of the fourth power, however,
such oscillations are no longer present. One arrives at a
similar result for small vibrations; with consideration of
the higher powers of the displacements, one reaches the
conclusion that a small impulse leads, with increasing t, to
always larger oscillations.

Strictly speaking, however, all these results prove ab-
solutely nothing. For if one neglects the higher powers
of the displacements, one assumes that the time is small,
and cannot make any conclusion for large values of t. One
should therefore not wonder if the time were also to ap-
pear outside the periodic functions for the first and second
powers of the masses; for the justification of the expansion
and the neglect of the higher powers of the masses lies only
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in the assumption that t does not exceed a certain bound.
Thus one moves in a circle.

An illustrative example is given by the pendulum. The
position in which the bob is perpendicularly above the sus-
pension point is a labile equilibrium of the pendulum. Here
one obtains the time outside the sine and cosine, and thus
concludes, with validity, that an infinitesimal impulse gives
a finite motion; but it would be very false to conclude,
from the circumstance that the time appears outside the
periodic functions, that the motion of the pendulum is not
periodic, for in this case the bob rotates periodically about
its suspension point. It would be just as false to conclude,
from the result that is given by the consideration of the
higher powers of the masses in the solar system, that it is
not stable.

154. (page 343) Routh’s work on the stability of motion was the
winner of the 1877 Adams Prize, an award endowed in 1848 by the
members of St. John’s College, Cambridge, in order to commem-
orate the discovery of the planet Neptune by John Couch Adams
(1819–1892). The preface of Routh’s work gives an excerpt from the
1877 prize notice [Routh 1877]:

The University having accepted a Fund raised by several
members of St. John’s College for the purpose of founding
a Prize to be called the Adams Prize, for the best essay
on some subject of Pure Mathematics, Astronomy or other
branch of Natural Philosophy, the Prize to be given once in
two years, and to be open to the competition of all persons
who have at any time been admitted to a degree in this
University—

The Examiners give notice that the following is the sub-
ject of the Prize to be adjudged in 1877: The Criterion of
Dynamical Stability.

To illustrate the meaning of the question imagine a par-
ticle to slide down inside a smooth inclined cylinder along
the lowest generating line, or to slide down outside along
the highest generating line. In the former case a slight de-
rangement of the motion would merely cause the particle
to oscillate about the generating line, while in the latter
case the particle would depart from the generating line al-
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together. The motion in the former case would be, in the
sense of the question, stable, in the latter unstable.

The criterion of the stability of equilibrium of a system
is, that its potential energy should be a minimum; what is
desired is, a corresponding condition enabling us to decide
when a dynamically possible motion of a system is such,
that if slightly deranged the motion shall continue to be
only slightly departed from.

The essays must be sent in to the Vice-Chancellor on or
before the 16th December 1876, &c., &c.

S. G. PHEAR, Vice-Chancellor.
J. CHALLIS.
G. G. STOKES.
J. CLERK MAXWELL.

The Adams Prize is now awarded annually, and is open to any res-
ident of the United Kingdom under the age of 40. The 2009 prize
(£13,000) was awarded to Raphaël Rouquier for achievements in re-
search on representation theory.

155. (page 347) In both the first (1896) and second (1904) editions
of his Traité de mécanique rationelle, Appell gives the following de-
finition of a stable motion. Let a particular motion of a system be
described by the generalized coordinates q1(t), q2(t), . . ., qk(t), with cor-
responding initial conditions q1(0), q2(0), . . ., qk(0) and q̇1(0), q̇2(0), . . .,
q̇k(0). “One says,” according to Appell, “that this motion is stable if,
when given arbitrary initial conditions that are infinitely close to the
preceding, the motion of the system is infinitely close to the particular
motion considered” [Appell 1896, p. 371].

After his example of the circular orbit, which is treated only by
the method of small oscillations, Appell writes that the scope of his
(five-volume) work does not permit of further discussion of the stability
question, and refers the reader to Routh.

156. (page 348) Some geodesic curves on a hyperboloid of one sheet
are shown in Fig. 176. The curves were obtained by integrating the
equations of motion of a particle that moves freely on the surface of
the hyperboloid. Since the only force on such a particle is the constraint
force normal to the surface, the osculating plane of the trajectory con-
tains the normal to the surface at every point, and the trajectory is
thus a geodesic curve [Struik 1988, p. 131].
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Fig. 176. Geodesic trajectories on a hyperboloid of one sheet.

To derive the differential equations for the particle trajectories
on the hyperboloid, we may use the three-dimensional Cartesian co-
ordinates x, y, z of the particle, and proceed as in Chap. VI, §9.
The Lagrangian for the motion of the particle on the hyperboloid
x2 + y2 − z2 = 1 is

L =
m

2
(ẋ2 + ẏ2 + ż2)−mλ(x2 + y2 − z2 − 1),

where m is the mass of the particle and λ is a Lagrange multiplier. The
Lagrange equations

ẍ+ 2λx = 0, ÿ + 2λy = 0, z̈ − 2λz = 0

and the constraint x2 + y2 − z2 = 1 imply the conservation laws

ẋ2 + ẏ2 + ż2 = 2T = const., (xẏ − ẋy) = H3 = const.

The coordinate z satisfies the differential equation

(5) ż2 =
2Tz2 + (2T −H2

3 )
(1 + 2z2)

,
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and the Lagrange multiplier λ can be expressed as

λ =
H2

3 − T
(1 + 2z2)2

.

The special case H2
3 = T (λ = 0) corresponds to the straight-line

geodesics on the hyperboloid.

157. (page 348) The ellipsoidal geodesic described by Klein and
Sommerfeld is illustrated in Fig. 177. It begins at point E on the
equator, and its initial direction is nearly the direction of the meridian
through E. The geodesic was obtained by integrating the equations of
motion of a constrained particle on the ellipsoid, as described in note
156 for the hyperboloid.

Geodesics on the ellipsoid have been studied in great detail. The
method of using constrained Cartesian coordinates to derive and solve
the differential equations for the geodesics has been generalized by
Askold Perelomov to an ellipsoid of dimension n−1 in an n-dimensional
Euclidean space [Perelomov 2000]. Perelomov’s paper contains refer-
ences to early work on the case n = 3 by Jacobi and Weierstrass.

E

Fig. 177. Geodesic trajectory on an ellipsoid of revolution.
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158. (page 351) If a particle moving on the throat-circle of the hy-
perboloid of one sheet is given a small vertical impact, it begins to
spiral upward. If one diminishes the magnitude of the impact to zero,
one obtains a trajectory that, in the reverse direction, approaches the
throat-circle asymptotically, as shown in Fig. 178. This trajectory may
be obtained by integrating the differential equations in note 156 for
the special case 2T = H2

3 and z(0) > 0. In this case, the differential
equation (5) for z(t) can be integrated in terms of elementary func-
tions. The geodesic trajectory in Fig. 178 is the analogue of Klein and
Sommerfeld’s top trajectory in Fig. 58 on page 338.

Fig. 178. Geodesic trajectory on a hyperboloid of one sheet
that asymptotically approaches the throat-circle.

159. (page 353) See the supplementary notes by Klein and Som-
merfeld on p. 535 and p. 537.

160. (page 354) The stability property defined by Klein and Som-
merfeld is now referred to more narrowly as continuous dependence on
initial conditions. It seems impossible to formulate a general definition
of stability that can be reasonably applied to an arbitrary motion of
an arbitrary mechanical system; Klein and Sommerfeld come to this
conclusion at the end of their supplementary note on pp. 535–537.
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161. (page 356) According to V. I. Arnold (b. 1937), “It seems
likely that in an analytic system with n degrees of freedom, an equilib-
rium position which is not a minimum point is unstable, but this has
never been proved for n > 2” [Arnold 1989, p. 100].

162. (page 372) The comments of Jacobi are included in the quo-
tation of note 153.

163. (page 374) In the fourth chapter of the first volume of Les
méthodes nouvelles de la mécanique céleste, Poincaré considers the sys-
tem of differential equations [Poincaré 1892, p. 176]

(6)
dxi

dt
= Xi (i = 1, 2, . . . , n),

where the quantities Xi are given functions of the variables xi, and are
either independent of the time t or periodic in t. Poincaré supposes
that the system (6) admits of a periodic solution

xi = ϕi(t).

He then considers a variation of this solution in the form

xi = ϕi(t) + ξi,

where ξi are assumed to be small quantities whose squares may be
neglected. The differential equations for ξi are then

dξi
dt

=
dXi

dx1
ξ1 +

dXi

dx2
ξ2 + · · ·+ dXi

dxn
ξn.

The coefficients
dXi

dxk
in these linear differential equations are, when

one has replaced xi by ϕi(t), periodic in t. Poincaré states that the
differential equations for ξi therefore have particular solutions of the
form ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ξ1 = eα1tS11, ξ2 = eα1tS21, ξn = eα1tSn1,

ξ1 = eα2tS12, ξ2 = eα2tS22, ξn = eα2tSn2,

. . . . . . . . . . . . , . . . . . . . . . . . . , . . . . . . . . . . . . ,
ξ1 = eαntS1n, ξ2 = eαntS2n, ξn = eαntSnn,

where αi are constants and Sik are periodic functions of time. The
constants αi are called the characteristic exponents of the periodic so-
lution. If the squares of αi are all real and negative, then the quantities
ξi remain finite for all values of t from −∞ to ∞. In this case, Poincaré
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calls the original solution xi = ϕi(t) stable; otherwise, he calls this so-
lution unstable.

164. (page 376) Sophie Kowalevski (1850–1891) writes the differen-
tial equations for the general heavy top in the form [Kowalevski 1889]

(7)

A
dp

dt
= (B − C)qr + Mg(y0γ

′′ − z0γ′), dγ

dt
= rγ′ − qγ′′,

B
dq

dt
= (C −A)rp + Mg(z0γ − x0γ

′′),
dγ′

dt
= pγ′′ − rγ,

C
dr

dt
= (A−B)pq + Mg(x0γ

′ − y0γ),
dγ′′

dt
= qγ − pγ′,

where p, q, r are the components of the angular velocity with respect
to the principal inertial frame xyz at the fixed support point, A, B,
C are the moments of inertia with respect to the xyz frame, M is the
mass of the top, g is the acceleration of gravity, x0, y0, z0 are the
coordinates of the center of gravity of the top in the xyz frame, and
γ, γ′, γ′′ are the cosines of the angles between the vertical and the x,
y, and z axes, respectively. Kowalevski notes that in the two known
cases for which these equations can be integrated (the torque-free case
x0 = y0 = z0 = 0 and the symmetric case A = B, x0 = y0 = 0), the
quantities p(t), q(t), r(t), γ(t), γ′(t), γ′′(t) are uniform functions that
have no singularities other than poles for all finite values of (complex)
time. To seek new solutions with this property, she assumes the series

(8)

p = t−n1 (p0 + p1t + p2t
2 + · · · ),

q = t−n2 (q0 + q1t + q2t
2 + · · · ),

r = t−n3 (r0 + r1t + r2t
2 + · · · ),

γ = t−m1(f0 + f1t + f2t
2 + · · · ),

γ′ = t−m2(g0 + g1t + g2t
2 + · · · ),

γ′′ = t−m3(h0 + h1t + h2t
2 + · · · ),

where n1, n2, n3, m1, m2, m3 are integers. She finds that a new solution
of this form with a sufficient number of arbitrary constants is possible
if

n1 = n2 = n3 = 1, m1 = m2 = m3 = 2,

and
A = B = 2C, z0 = 0.
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For this new case, she chooses the xyz coordinate system so that y0 = 0,
and derives the first integral

{(p + qi)2 + c0(γ + iγ′)}{(p − qi)2 + c0(γ − iγ′)} = k2,

where k is a constant, c0 = Mgx0, and the unit of length has been
chosen so that C = 1. This first integral, together with the known
integrals corresponding to the conservation of energy and the conser-
vation of angular momentum about the vertical, allow her to solve the
original system of differential equations by quadratures.

In a second paper [Kowalevski 1890], Kowalevski shows that the
series solution (8) with integer values of ni and mi can represent the
general solution of equations (7) only in one of the following four
cases:

(i) A = B = C,

(ii) x0 = y0 = z0 = 0,

(iii) A = B, x0 = y0 = 0,

(iv) A = B = 2C, z0 = 0.

It is not obvious that the series solutions (8) with integer values
of ni and mi will necessarily lead to a new algebraic first integral of
(7) and a solution by quadratures. This coincidence “still seems to be
rather mysterious” [Audin 1996, p. 21].

165. (page 376) See the supplementary note of Klein and Sommer-
feld on p. 537.

166. (page 377) In the cited paper [Joukowksy 1894–95], Nikolai
Egorovich Joukowsky (1847–1921) gives a rather involved geometric
construction for the motion of the Kowalevski top. No description or
discussion of a physical model is given .

167. (page 377) Roger Liouville (1856–??) showed that the differ-
ential equations of the heavy asymmetric top have a third algebraic
integral (the first two being the conservation of energy and the con-
servation of angular momentum about the vertical) only when the el-
lipsoid of inertia with respect to the fixed point O is an ellipsoid of
revolution, the center of gravity is in the equatorial plane of the el-
lipsoid of inertia, and the principal moments of inertia of the top are
A, B = A, and C = mA/2, where m is an arbitrary integer [Liouville
1897]. In an interesting paper on particular motions of the asymmetric
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top, the American mathematician John J. Corliss (1896–??) adds that
the physical constraint C ≤ A + B implies that m cannot exceed 4
[Corliss 1932]. In the case m = 4, a third algebraic integral exists only
when the (constant) angular momentum about the vertical axis van-
ishes [Whittaker 1904, p. 163]. Some further references to the problem
of finding algebraic integrals for the motion of the asymmetric top are
given in the supplementary note by Klein and Sommerfeld on p. 538.

168. (page 378) Hess writes the six differential equations of the
heavy asymmetric top in the form given at the beginning of note 164
[Hess 1890]. He then introduces the three new variables ν, 
, and μ,
where ν is the square of the magnitude of the angular momentum, 

is the projection of the angular momentum onto the figure axis, and μ
is the cosine of the angle between figure axis and the vertical. (Stäckel
later used the related variables T , U , and S, where T is the kinetic
energy of the top, U is half the square of the magnitude of the angular
momentum, and S is the dot product of the angular momentum vector
and the vector from the support point to the center of gravity [Stäckel
1908; Stäckel 1909].) Hess shows that the original six differential equa-
tions may be reduced to three. The new system of three differential
equations has singular solutions if (1) the magnitude of the angular
momentum is constant during the entire motion, or (2) the projection
of the angular momentum onto the figure axis is constant during the
entire motion. For a general mass distribution, these two singular solu-
tions do not lead to solutions of the original six differential equations.
Hess shows that the singular solution (2) does lead to a solution of the
original six differential equations in a special case; this is the Hess case
that is described geometrically by Klein and Sommerfeld.

169. (page 378) In the list of corrections that were published in Vol.
IV of the Theorie des Kreisels in 1910, Klein and Sommerfeld state that
the degree of particularization is one higher in the Staude case than in
the other cases mentioned. In the Staude case, four requirements are
imposed: a ray of the Staude cone defined on p. 388 must be initially
vertical (one condition for the initial orientation of the body), and the
angular velocity vector must be initially vertical with its magnitude
determined according to pp. 388 and 389 (three conditions for the initial
angular velocity of the body).

170. (page 378) Sommerfeld’s paper is available in his Gesammelte
Schriften [Sommerfeld 1968, Vol. I, pp. 417–420]. At the end of this
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paper, Sommerfeld states that his discussion of the Hess case can be
extended with small modifications to the top whose support point is
free to move on a horizontal plane.

171. (page 379) See the supplementary note by Klein and Sommer-
feld on p. 539.

172. (page 380) The geometric configuration discussed by Klein and
Sommerfeld is illustrated in Fig. 179. The plane e′ is tangent to the
reciprocal ellipsoid of inertia at the point P , which lies on the circular
planar cut e through the ellipsoid. The point Q lies in the plane e′,
and the line OQ is perpendicular to e′. The impulse vector is in the
direction OP , and the angular velocity vector is in the direction OQ.

Q

P

S

O

t

e
e

Fig. 179. Geometric configuration of the ellipsoid of inertia for
the Hess case of the motion of the asymmetric top.

173. (page 386) Joukowsky’s model of the Hess pendulum is shown
in Fig. 180. The pendulum is represented by the disk ABA′B′ that is
fixed to the axis OC. The disk is supported by a sharp point O on the
underside of the disk. Four posts are attached to the disk at the points
A, B, A′, B′. The disk diameters AA′ and BB′ are perpendicular,
and the points A, B, A′, B′ are equally distant from the center O of
the disk. The posts carry the weights P , P ′, Q, Q′. By bringing the
weights P ′, Q, Q′ to the lower surface of the disk and displacing the
weight P downward by an appropriate distance, the lower surface of
the disk can be made to represent the circular intersection plane (plane
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e in Fig. 179) of the ellipsoid of inertia of the top with respect to the
point O. With this arrangement of the weights, the disk will move as a
Hess top if the disk is set into motion by an instantaneous force whose
moment about O lies in the plane of the disk. For the special cases in
which this instantaneous force is either zero or horizontally directed,
the motion will proceed in such a manner that the edge of the disk
always passes through a fixed point g, conveniently indicated by the
bracket F . These special initial conditions, Joukowsky says, can be
used to find the correct location of the weight P .

Fig. 180. Joukowsky’s model of the Hess top
[Joukowsky 1892–93, p. 63].

174. (page 387) Otto Staude (1857–1928) studied mathematics un-
der Felix Klein at the University of Leipzig. He taught at Dorpat (now
Tartu, Estonia) and Rostock, and was rector of the University of Ros-
tock in 1901–02 and 1918–19. Staude begins by writing the differential
equations of the top in the form of note 164, and seeks solutions in
which γ, γ′, γ′′ are constant [Staude 1894].

175. (page 393) Heinrich Friedrich Karl Ludwig Burkhardt (1861–
1914) wrote his textbook on complex variables [Burkhardt 1897] while
he was professor of mathematics in the University of Zurich. In 1905,
Burkhardt was one of the reviewers of Albert Einstein’s doctoral the-
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sis on the dimensions of molecules. The fourth (1912) edition of
Burkhardt’s text was translated into English by Samuel Eugene Rasor
(1873–1950), professor of mathematics in the Ohio State University.

176. (page 403) Jacobi’s discussion of the elliptic integral of the
third kind is a posthumously published fragment of an uncompleted
work on the rotation of a symmetric rigid body about a fixed point
[Jacobi 1882, pp. 477–492].

177. (page 409) Sebastian Finsterwalder (1862–1951) was professor
of mathematics in the Technische Hochschule in Munich. He worked
in many fields of application, including geodesy and photogrammetry.
Finsterwalder’s three-bored bushing for the mechanical realization of
a plane conformal map is shown in Fig. 181, and the conformal map
between the Riemann surface (u,

√
U) and the t-plane is illustrated in

Fig. 182. Special bushings are required at the branch points u = e,
u = e′, and u = e′′, where the angles in the t-plane are half the corre-
sponding angles in the Riemann surface.

Fig. 181. Finsterwalder’s three-bored bushing for the mechanical
realization of a conformal map.

Finsterwalder’s remarkable paper [Finsterwalder 1897] also describes
mechanical models for surfaces defined by many other types of two- and
three-dimensional mappings.

One may reflect on the fact the entire theory of elliptic functions
behind Fig. 182 is motivated by a mechanical problem in which the
variable u is restricted to the segment of the real axis between 0 and 1.
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Fig. 182. Illustration of the conformal map between the
Riemann surface (u,

√
U) and a period rectangle in the t-plane.
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178. (page 418) If equation (1) on p. 418 is taken as the definition
of the ϑ-function, then the right-hand side of equation (3) on the same
page should be multiplied by −1. All expressions involving ϑ-quotients
are unaffected by this change.

179. (page 418) We have corrected the argument of the H-function
according to the list of corrections that appeared in Vol. IV in 1910. A
further discussion of the theta-functions used by Jacobi is given in the
supplementary note by Klein and Sommerfeld on pp. 540–541.

180. (page 421) The theorems of Joseph Liouville (1809–1882) are
proved in the Theory of functions of a complex variable by Andrew R.
Forsyth [Forsyth 1893, §115 and ff.].

181. (page 429) Jacobi died of smallpox in 1851 at the age of 47.
Karl Leopold Eduard Lottner (1826–1887) was professor and prorector
in the Realschule in Lippstadt, and was an assistant to Weierstrass in
the editing and publication of the complete works of Jacobi. Lottner
was the editor of the fragmentary and unpublished manuscript Sur la
rotation d’un corps that Jacobi wrote during the last two years of his
life [Jacobi 1882, pp. 425–512, 525]. Lottner found that the results in
his own 1855 paper on the representation of the motion of the heavy
top by elliptic functions [Lottner 1855] had been anticipated by Jacobi,
and that Jacobi had further used these results to state the theorem
discussed by Klein and Sommerfeld in Chap. VI, §8.

In the list of corrections that were published in Vol. IV of the The-
orie des Kreisels in 1910, Klein and Sommerfeld state that Jacobi’s
representation of the motion of the heavy top by elliptic functions was
anticipated in 1834 by Adolf Stephanus Rueb (1806–1854) in his doc-
toral thesis cited in the footnote of page 473 [Rueb 1834].

182. (page 454) Klein and Sommerfeld seem to have convinced no
one of the utility and elementary character of their ϑ-quotients for the
representation of the motion of the top. In 1917, for example, Edwin
Bidwell Wilson, professor of mathematics in the Massachusetts Insti-
tute of Technology (alma mater floreat!), wrote a review of Greenhill’s
Report on Gyroscopic Theory (cf. note 109 above). Wilson makes a
comparison of Greenhill with Klein and Sommerfeld [Wilson 1917]:

We are indeed fortunate that the Committee got Green-
hill to prepare the report. His long-continued investigations
on the top have made him a world-recognized authority
on the subject. The fact that we have available for study
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the great work of Klein and Sommerfeld on the same sub-
ject does not in the slightest detract from the value of the
present work. The merest glance will convince any reader
that the two treatises are conceived in very different ways
and that they rather supplement than overlap one another.
Besides Greenhill’s is decidely shorter and more concerned
with apparatus. It will be of more interest to the student
of mechanics and engineering, though of less to the student
of the theory of functions of a complex variable. And here
we might remark that a beautiful theory and a practical
analysis susceptible to ready calculation are unfortunately
not always to be combined. The theta function is a thing of
beauty, but I have always found the solution of the problem
of the motion of the top by theta functions with complex ar-
guments anything but satisfactory from the point of view of
calculation. Perhaps after all Legendre knew what he was
about when he introduced his third elliptic integral,—at
any rate we judge that Greenhill thinks so.

Could Wilson have been completely insensible to the magnificent
numerical example of Klein and Sommerfeld? But perhaps Wilson’s
case is explained by the last sentence of his review: “We have now
in English a great reference book on the top, a worthy companion and
counterpart to that of Klein and Sommerfeld in German, one decidedly
more compact and cheaper in price.”

183. (page 464) According to equation (3) on page 418, the right-
hand sides of the following equations for ϑ(t) and Θ(t) should be mul-
tiplied by 2. All Θ-quotients, and the expressions for α, β, γ, δ on page
464, are unaffected by this change.

184. (page 472) Corrections to equations (40) on p. 472 are given
in the supplementary note of Klein and Sommerfeld on p. 540.

185. (page 486) See the supplementary note by Klein and Sommer-
feld on p. 541.

186. (page 490) See the supplementary note by Klein and Sommer-
feld on p. 541.

187. (page 505) See the supplementary note by Klein and Sommer-
feld on p. 541.
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188. (page 509) Tait’s quaternion equation for the motion of a gen-
eral rigid body with a fixed point is [Tait 1898, p. 110]

(9) ψ = 4V. q̇φ(q−1q̇)q−1 + 2qφ(V. q−1q̈)q−1.

In this equation, q(t) is the quaternion that corresponds to the rota-
tion of the body from its initial position to its position at time t, and
ψ(t) is the net (vector) moment on the body with respect to the fixed
point. The symbol V denotes an operator that extracts the vector
part of the quaternion that follows. The lower point after V is Tait’s
peculiar form of parenthesization; equation (9) might also be written as

ψ = 4V (q̇φ(q−1q̇)q−1) + 2qφ(V (q−1q̈))q−1.

The symbol φ denotes an operator whose action on any vector 
 is de-
fined by

φ(
) = Σ .m(αSα
 − α2
),

where α represents the position vector of the mass element m of the
body in the initial position, Σ denotes the sum over all the mass ele-
ments of the body, and S is an operator that extracts the scalar part
of the quaternion that follows.

Tait says that though his quaternion equation is “remarkably sim-
ple,” it must, “in the present state of the development of quaternions,
be looked upon as intractable, except in certain very particular cases.”

189. (page 511) Oskar Bolza (1857–1942) studied mathematics un-
der Felix Klein in Göttingen, where he received the doctoral degree in
1886. He spent several years in the United States, teaching at Johns
Hopkins University, Clark University, and the University of Chicago.
A memoriam to Bolza was published in the Bulletin of the American
Mathematical Society in 1944 [Bliss 1944]. J. Hänlein may be Jakob
Hänlein, who was a candidate for the doctoral degree in the University
of Berlin in 1881.

The reaction of Sommerfeld to the discovery of the Weierstrass lec-
ture is described by Sommerfeld’s biographer Michael Eckert as follows
[Eckert 2000, p. 88]:

When the printing of the second volume of the Theo-
rie des Kreisels was almost completed, Klein received the
notes of a lecture by Weierstrass on the “Applications of
elliptic functions,” and sent them to Sommerfeld for exam-
ination. “What is to be done? I am in favor of writing
an appendix at the end of volume 2: ‘Weierstrass knew all
this,’ ” answered Sommerfeld. A few days later he sent the
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lecture back to Klein, together with an appendix in which
the merits of the Weierstrass theory were acknowledged.

Some additional references to the history of the Cayley–Klein pa-
rameters α, β, γ, δ are given in the supplementary note of Klein and
Sommerfeld on p. 541.

190. (page 512) The quotation from the Nachrichten der Königliche
Gesellschaft der Wissenschaften zu Göttingen, Geschäftliche Mittheilun-
gen is taken from a report by Klein that was also published in the
Mathematische Annalen [Klein 1898]. Gauss’s notes on the mutations
of space are printed in Vol. 8 of his Werke [Gauss 1900].

191. (page 513) The Mathematisches Wörterbuch of Ludwig Hoff-
mann (described on the title page as “former building-master in Berlin”)
and Leopold Natani (1819–1905) was published in seven volumes be-
tween 1858 and 1867. The entry “Rotation of a body about a fixed
point” in Vol. VI begins with the parallelogram law for angular veloc-
ity vectors and ends with the solution for the motion of a force-free
body in terms of elliptic functions [Hoffmann 1867, pp. 364–381].

192. (page 513) This masterful appendix originally appeared at the
beginning of Vol. III of the Theorie des Kriesels in 1903.

193. (page 517) In Chap. VI of Vol. II of the second edition of the
Traité de Mécanique, Poisson derives the differential equations for the
motion of a rigid body that remains in contact at one point with a given
plane [Poisson 1833]. The contact point may vary both in the plane and
in the body, and the plane may have an arbitrarily prescribed motion.
The special case treated by Sommerfeld is considered only very briefly
by Poisson, who merely writes the differential equations for the angles
ϑ and ψ with the comment that they may be solved by means of elliptic
functions.

194. (page 518) Klein’s Princeton lectures on the theory of the top
were published in 1897, and reprinted in 2004 [Klein 1897/2004]. The
lectures were part of the sesquicentennial celebration of Princeton Uni-
versity, and were given on October 12–15, 1896, at 11:00 a.m. At 9:00
a.m. on the same days, Joseph John Thomson (1856–1940), Cavendish
Professor of Physics in the University of Cambridge, spoke on “The Dis-
charge of Electricity in Gases” [Thomson 1903]. The celebration also
included a torchlight procession, speeches by President Grover Cleve-
land and then Princeton University Professor Woodrow Wilson, and a
football game in which Princeton defeated the University of Virginia,
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48–0. The football game was attended by many of the European guests;
it is not known whether Klein was present. It is recorded, however,
that the toast to Mathematics at the Farewell Dinner on October 22
was answered by Professor Felix Klein of the University of Göttingen
[Princeton University 1898, p. 174].

195. (page 519) Weierstrass considers the real periodic functions
x(t) that satisfy the differential equation [Weierstrass 1866](dx

dt

)2
= F (x),

where

(1) F (x) vanishes for two real values a and b of x;

(2) the quotient
(x− a)(x− b)

F (x)
does not change in sign and

does not become infinite in the interval from a to b;

(3) for any specified value of t, the corresponding value of x is
contained in this interval.

“Geometric and mechanical problems,” writes Weierstrass, “not seldom
lead to such a differential equation.”

196. (page 533) These addenda and supplements by Klein and Som-
merfeld were added when Vol. IV appeared in 1910.

197. (page 533) Like many other reviewers, Koppe uses his review
of the first two volumes of the Theorie des Kreisels as an opportunity to
cite and promote his own work, especially his concept of the “induced
force” supposedly created by the motion of the top. He even makes the
astounding statement that “I am happy to have received, through the
present book, the stimulus to develop this [induced] force once again in
a shorter form from a somewhat different point of view” [Koppe 1898,
p. 300].

Klein and Sommerfeld always refer to Koppe respectfully, but Som-
merfeld’s opinion of Koppe is more honestly expressed in an 1898 letter
to Klein [Eckert 2000, pp. 95–96]:

I have just written, according to your wishes, a few po-
lite and insignificant words to Ball, and many significant
but still polite words to Koppe. I find what Koppe says
to be noteworthy only in point of arrogance, and other-
wise, with a few exceptions, superficial or erroneous. To-
day I found his works, as I again looked through them
for the composition of the letter, to be much weaker than
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previously. The “induced force” that Koppe praises to the
heavens is useful only for pseudoregular precession, and is
self-evident from the standpoint of the impulse theory. I
have naturally restrained myself greatly in the letter to
him, so as not to become involved in a tiresome literary
feud. I attach the letter and ask you to take note of it, if
possible, and then send it.

I would like to keep the works of Koppe here for the
time being; I attach the letter (I apologize for the mar-
ginal notes, which are only for orientation). The letters
of Koppe’s opponents (Schmidt, etc.) will be much more
impolite; at least they have a reason for it. The correct
answer to K.[oppe] would be from you according to the fa-
mous example: “Furthermore, I have tolerated the tone of
your letter for the last time.”

The concluding quotation may be a reference to a telegram from
Kaiser Wilhelm II to Graf-Regenten Ernst zu Lippe-Biesterfeld [Röhl
2001, p. 938].

198. (page 535) Diederik Johannes Korteweg (1848–1941) was pro-
fessor of mathematics in the University of Amsterdam. In addition
to his original research in applied mathematics, he worked for sixteen
years on the editing of the complete works of his countryman Christiaan
Huygens (1629–1695).

199. (page 537) Fritz Wilhelm Ferdinand Kötter (1857–1912) was
professor of mechanics in the Bergakademie in Berlin and the Techni-
sche Hochschule in Charlottenburg. He was an unsuccessful competitor
of Sommerfeld for a professorial chair in Aachen. In his twenty-six page
booklet Remarks on F. Klein’s and A. Sommerfeld’s book on the the-
ory of the top [Kötter 1899], Kötter criticizes Klein and Sommerfeld’s
treatment of the Kowalevski top, and takes personal offense to their
comments about quadratures and the scholastic habits of mathemati-
cians:

As already said, the book is concerned almost exclu-
sively with the theory of the symmetric top. The motion of
the asymmetric top is treated only incidentally. Except for
the rather complete treatment of the force-free top, only the
Hess case and the von Staude case of permanent rotation
about a vertical axis of the body are discussed in detail. In
contrast, the integrable case, through whose discovery Mrs.
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von Kowalevksi has enriched science in such a high degree,
is touched only in passing.

In a comparatively large space, the occasion is taken to
pronounce a judgment on the efforts of some mathemati-
cians, which I cannot regard as correct. If it were merely
a question of the opinions of Mr. Sommerfeld, one could
pass over the matter in silence, leaving the final judgment
confidently to time and one’s colleagues. But since a third
party may not separate what is to be ascribed to one or the
other of the two authors, the well-deserved great prestige
of Mr. Privy Councillor Klein makes it necessary for me to
stand up against these deprecatory statements of opinion,
and to reduce their content to its true value.

Kötter goes on at some length about the importance of particular in-
tegrable cases in mechanics, and about his own work on the Kowalevski
top. He also objects to Klein and Sommerfeld’s treatment of the Ja-
cobi theorem in Chap. VI, §8, in which he finds a kinetic as well as a
kinematic significance. Kötter ends his remarks with great pathos:

I am at the conclusion of my discussion. Its purpose is
unmistakable to all: the affirmation of the true scientific
standpoint against the oppressive weight of authority. It is
human nature to wish that goals which are finally acquired
by long and wearisome labor will also be regarded by others
as valuable. And it is unpleasant to see the results of one’s
own activity rejected offhand by those whose judgment one
is inclined to value. Thus, however, it is only with difficulty
that one acquires an impartial opinion of one’s own affairs;
a harsh judgment will be felt as unjustified, when it is in fact
justified. If we are to arrive at an impartial estimation of
the value of a judgment of our own affairs, there is often no
choice but to examine the manner of forming a judgment in
affairs to which we personally stand distant. It was on this
basis that I was obliged to go so far into the estimation
of efforts to which I have no other connection than the
admiration with which I regard them.

It is instructive to note Klein and Sommerfeld’s public response to
Koppe and Kötter. Their minor contributions are generously acknowl-
edged, and their petty criticisms are completely ignored.
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gen und über eine neue particuläre Lösung des Problems der Bewegung
eines starren Körpers um eine festen Punkt,” Mathematische Annalen,
Vol. 37, pp. 153–181, 1890; available at http://gdz.sub.uni-goettin-
gen.de.

[Hoffmann 1867] Ludwig Hoffmann and Leopold Natani, Mathematis-
ches Wörterbuch, Wiegandt and Hempel, Berlin, 1867; available at
http://books.google.com.

[Howard 1970] Delton T. Howard, Analytical Syllogistics, AMS Press,
New York, 1970.

[Jacobi 1881]. Carl G. J. Jacobi, Gesammelte Werke, Bd. 1, G. Reimer,
Berlin, 1881; available at http://gallica.bnf.fr.

[Jacobi 1882]. Carl G. J. Jacobi, Gesammelte Werke, Bd. 2, G. Reimer,
Berlin, 1882; available at http://gallica.bnf.fr.

[Jacobi 1884]. Carl G. J. Jacobi, Vorlesungen über Dynamik, in Gesam-
melte Werke, Bd. 8, G. Reimer, Berlin, 1884; available at http://gal-
lica.bnf.fr.

[de Jonquières 1886]. Ernest de Jonquières, “Théorie élémentaire
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Plücker’s modification, 568

Fessel, F., 568
Finsterwalder, S., 409, 584, 594
Fletcher, A., 558, 594
Forsyth, A., 586, 594
Foucault, J., 309, 565
Franke, H., 309, 565, 571, 595
Fricke, R., 265

Galilean inertial motion, 290, 347,
350

Gauss, C., 259, 274, 393, 512, 542,
553, 589, 595

Gaussian curvature, 348
Geodesic trajectory, 348

on the ellipsoid of revolution, 348,
576

on the hyperboloid of one sheet,
348, 574

throat-circle of the hyperboloid of
one sheet, 351, 577

604



Index.

Gibbs, J., 537
Gilbert, P., 309, 565, 595
Grassmann, H., 563, 595
Greenhill, G., 199, 533, 540, 544,

586, 595
Gyroscopic terms, 367

Hadamard, J., 356
Hänlein, J., 588
Halphen, G., 260, 489, 490
Harte, H., 600
Hauck, G., 565, 567, 596
Heinen, F., 315, 570, 596
Heisenberg, W., 563
von Helmholtz, H., 557
Hermite case of the Lamé equation,
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