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Supervisor’s Foreword

Our universe is composed of atoms, which are made of a nucleus and electrons
circulating around the nucleus. The nucleus is further a composite object of ele-
mentary particles called hadrons. The most popular hadron is the proton, the
nucleus of the hydrogen atom. Heavier nuclei contain multiple protons and also
some neutrons, which are the neutral sibling of the proton. The last half of the
twentieth century was an era for discoveries of new particles beyond the electron,
proton, and neutron, which lead to the standard model of elementary particles.
There the quark and gluon are introduced to describe the structure and dynamics
of the hadrons (and thus the nucleus).

Analyzing the hadron structure in terms of quarks and gluons is one of the main
subjects in the hadron physics. The fundamental theory of their dynamics is known
as the quantum chromodynamics (QCD), which is a part of the standard model.
According to QCD, quarks and gluons interact with each other through
color-dependent force or the color–gauge interaction. Although QCD is as simple
as expressed by a single-line Lagrangian, its outcome has full of surprises. At low
energy, the color-coupling strength is so strong that the quark and the gluon cannot
be isolated, but instead are completely confined in color neutral (singlet) hadrons.
Furthermore, light quarks get dynamical masses due to the (chiral symmetry
breaking) quark condensate in the strongly correlated vacuum. These features of the
strong interaction make the analysis of QCD and comparison with experiment quite
complicated.

In this thesis work, the author, Kadir Utku Can, studies the hadron structure from
QCD, focusing on the baryons that contain at least one charm quark (charmed
baryons). Utku’s work was motivated by recent rapid developments of experimental
studies in the spectroscopy of heavy-quark (charm and bottom) hadrons at various
high-energy particle accelerators. In 2003, the Belle detector experimental group at
KEK, Japan, found a new resonance state in the region of the charmonium spec-
trum. This state happens to be quite exotic; i.e., it cannot simply be a charm–

anti-charm bound state, but it should contain more quarks. This was followed by
many other candidates of “exotic” hidden-charm multi-quark states. The theorists
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started to reconsider a simple picture of charmonium states and have developed new
ideas, such as di-quark correlation, hadron molecule, strong channel coupling.

What is special in heavy quarks? The intriguing aspect is that the inner dynamics
of charmed baryons is supposed to be distinguished from their light counterparts,
i.e., that of the nucleon. This is caused by the large mass of the charm quark and the
asymptotic freedom, the key property of QCD. In order to investigate such prop-
erties, Utku calculated the electromagnetic form factors of the lowest lying charmed
baryons. The form factors can represent, after the Fourier transform, the charge
densities coming from the quarks of each flavor.

As the hadrons are formed at the low-energy regime of QCD, the effective
coupling constant is significantly large and perturbative approaches are inapplica-
ble. Then, a state-of-the-art numerical method, called lattice QCD, was applied to
this study, which is the most powerful, ab initio, and non-perturbative method of
QCD. The lattice QCD is a method in which quarks and gluons are regarded as
dynamical variables defined on a discretized space-time lattice. They move around
on the lattice according to the dynamics of QCD and form bound states, i.e.,
hadrons. Their motion is described as a multi-dimensional path integral, which is
evaluated numerically by an importance sampling method. After 30 years of its
proposal, the technique has been advanced with the help of development of fast and
large supercomputers. Recent calculations have achieved good accuracy that can be
compared with available experimental data.

Utku has applied the lattice QCD technique to calculate the mass and form
factors of heavy baryons. The thesis is based on series of papers which Utku and his
collaborators published in these several years. The work required two important
developments, (1) to properly implement the charm quark on the lattice and (2) to
calculate three-point (vertex) functions with finite momenta. The combination
of these two components has been achieved for the first time in this thesis work. He
successfully obtained the form factors of the charmed baryons and estimated the
distribution and the radius (extension size) of each flavor of quarks. His analysis
shows a systematic behavior of the quark distributions for the charmed baryons.
Most notably, he shows that the expectations of the (naive) quark model and
effective field theory calculations of heavy systems are qualitatively consistent with
the first principle calculations. For instance, the spin-flavor correlation of quarks in
the baryon agrees qualitatively to simple (nonrelativistic) quark models. On the
other hand, the quantitative results often deviate from the model calculations. This
thesis contains the details of his analyses of the lattice QCD results. His results also
provide insights into the dynamics of yet unobserved charmed baryon systems.

This is the first step to investigate the charmed (and in future also bottomed)
hadron structure from the first principle. Utku plans to extend his calculation of the
form factors further for the so-called heavy exotic hadrons, which are regarded as
multi-quark resonance states.

Kadir Utku Can came from Turkey and became a graduate student at Tokyo
Institute of Technology (Tokyo Tech.) under my supervision. His former super-
visor, Güray Erkol, Professor at Ozyegin Univ., Istanbul, is also a long-term col-
laborator of mine, since he was a JSPS Postdoctoral Fellow at Tokyo Tech.
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Toru Takahashi, Professor at the National Institute of Technology, Gunma College,
is another key collaborator of this work. Utku’s study at Tokyo Tech. was based on
the collaboration between Turkey and Japan and has been very fruitful. We thank
all the collaborators of our work and hope to continue the fruitful collaboration in
future.

Tokai, Japan
November 2017

Prof. Makoto Oka
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Chapter 1
Introduction

Abstract In this chapter, we outline the basics of modern particle physics.We begin
with briefly discussing the elementary particles and their interactions in the context
of Standard model. A special attention is given to the strong force and its relation
to the hadron formation along with the intriguing questions it raises. We, then, shift
our attention to introducing some differing aspects of heavy-flavored hadrons with
respect to lighter hadron and review the theoretical tools that are mainly used to
study hadron phenomenology. At the close of the chapter, an outline of the thesis is
provided.

Keywords Standard model · Strong force · Hadrons and heavy-flavored hadrons
Theoretical methods

1.1 Mini Review of the Standard Model

Nature, according to humanity’s accumulated knowledge so far, is governed by four
forces: electromagnetic, weak, strong and gravitational force. First three of these
forces have well established quantum theories while the gravitation still remains as a
classical force in our toolbox of formulations. Modern understanding of the quantum
theories is that, forces are mediated by the particles associated with that particular
theory. For instance, photons transmit the electromagnetic force while gluons are
the transmitters of the strong force. The Standard Model (SM) of particle physics
combines the quantum theories for these three forces under a framework, usingwhich
we are able to calculate the interactions amongst the particles.

Elementary particle zoo of the standard model is categorised into fermions and
bosons with respect to the spins of the particles. Fermions have half-integer spins
(e.g. 1/2, 3/2 . . . ) and the bosons have integer spins (e.g. 0, 1, . . . ). Fermions are
further classified into leptons and quarks. Leptons consist of electrically charged
electron (e−), its two heavier cousins, muon (μ−) and tau (τ−) and their antiparti-
cles. In addition to these charged ones, leptons also consist of chargeless neutrinos
(and anti neutrinos) of electronic (νe), muonic (νμ) and tauic (ντ ) type. Quark sec-
tor is composed of six quarks with flavors [up (u), down (d), strange (s), charm

© Springer Nature Singapore Pte Ltd. 2018
K. U. Can, Electromagnetic Form Factors of Charmed Baryons in Lattice QCD,
Springer Theses, https://doi.org/10.1007/978-981-10-8995-4_1
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4 1 Introduction

Table 1.1 Elementary particles of the Standard Model. PDG mass averages, electric charges in
units of elementary charge e and spins are indicated

Fermions Bosons

u ∼ 2.2 MeV c ∼ 1.27 GeV t ∼ 173 GeV g 0 H ∼ 125 GeV

+2/3 +2/3 +2/3 0 0

1/2 1/2 1/2 1 0

d ∼ 4.7 MeV s ∼ 96 MeV b ∼ 4.18 GeV γ 0 Mass

−1/3 −1/3 −1/3 0 Charge

1/2 1/2 1/2 1 Spin

e 0.511 MeV μ 105.66 MeV τ 1.776 GeV Z 91.2 GeV

−1 −1 −1 0

1/2 1/2 1/2 1

νe < 2.2 eV νμ < 0.19 MeV ντ < 18.2 MeV W 80.4 GeV

0 0 0 ±1

1/2 1/2 1/2 1

(c), bottom (b), top (t)] and fractional charges of (2/3, -1/3, 2/3, -1/3, 2,3, -1/3)e,
respectively, all having three different colors. Quarks (and gluons) carry one more
quantum number, the color quantum number or, in analogy to the electric charge,
color charge, which is a distinctive feature of the strong interactions. Boson sector
consists of force carrier particles. Photon (γ) is the mediator of electromagnetic
interactions with a long interaction range. Any particle that has an electric charge
interacts with photon and vice versa. The W ± and Z bosons carry the weak force,
which is involved in the decays of radioactive particles with a short-range around the
size of a hadron. Gluon (g) is associated with the strong force, the force that binds
the (anti-)quarks into protons and neutrons, which in turn, are again held together
by the strong force to build up the nuclei of the atoms that populate the periodic
table. It has two color components. Finally, the Higgs (H ) boson is an integral part
of the mass generating mechanism of the SM via spontaneous symmetry breaking,
in which every massive elementary particle (fermion or boson and including itself)
gains its mass by interacting with it. Elementary particles are tabulated in Table1.1.

Each interaction is described by a gauge theory with its corresponding gauge
group. The total symmetry gauge group of the SM is SU (3)c × SU (2) × U (1)
associated with the strong, weak and electromagnetic interactions respectively. The
latter two interactions are unified into the electroweak theory [1–3],with its symmetry
group spontaneously broken to SU (2)L × U (1)Y by the Higgs mechanism [4, 5]
where the W ± and Z bosons acquire mass and the photon remains massless. W
and Z bosons have been discovered in the early eighties [6] and a long anticipated
discovery of a Higgs boson, which is highly associated with the SM Higgs [7],
came in 2012 by the ATLAS [8] and CMS Collaborations [9] at LHC. Electroweak
physics is a vast field of subject with current studies focusing on the precision tests
of theoretical predictions in the search of new physics (see Sect. 10 of Ref. [10] and
references therein).
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1.2 Strong Force and Hadrons

Strong sector of SM, associated with the SU (3)color gauge group and described by
Quantum Chromodynamics (QCD), has different characteristics such that the nature
of the interactions changes with the changing energy scale in a way unlike the elec-
tromagnetic or weak interactions. On one hand—at high-energy end—elementary
particles interact weakly (in strength), similar to what we are familiar with from other
interactions, while on the other—at low-energy end—interaction strength grows so
strong that they are bound into composite particles. While the high-energy interac-
tions can be calculated by perturbative methods, low-energy regime dynamics turns
out to be challenging, rendering a perturbative approach (in powers of the strong
coupling) ineffective.

Low-energy dynamics of QCD leads to the formation of hadrons—color neu-
tral combinations of quarks and gluons. In the simplest picture, depending on the
quark composition, they are divided into two categories: Mesons, composed of a
quark-anti quark pair and baryons, composed of three quarks. In addition to these
simple formations, hadrons might be composed of multi quarks and gluons, or form
molecular states. Such states are called exotic states and after decades of elusive
searches, recent experimental evidence on exotic mesons (see mini review on pen-
taquarks in Ref. [10]) and pentaquark candidates [11] looks promising to improve
our understanding of hadron formation.

Early era of hadron physics is involved in the classification of the emerging
hadrons, shaping our knowledge on the strong force to its current form. Concepts
of quarks, color quantum number and its association with the SU (3) group, fla-
vor symmetries for hadron categorisation and all emerged before a field theoretic
description of QCD paving the way for an enhanced understanding. A milestone is
the Eightfold Way classification. It is a classification scheme devised independently
byGell-Mann [12] andNe’emann [13] in 1961 based on representations of the SU (3)
group with an underlying flavor symmetry—note that the three stands for the three
flavors of quarks, namely u, d and s, not the color and assumes all have the same
mass—which classified the eight known baryons at that time. It has also provided
a mass formula between the baryons, Gell-Mann-Okubo relation [14], which was
satisfied by the experimental masses of the observed baryons but also has been used
to predict the mass of the, yet unobserved, �− particle. Observation of the �− par-
ticle close to its predicted mass [15] is a notable achievement of the classification
scheme. Classification based on flavor symmetries is a crucial part of hadron physics
in which the quantum numbers of unobserved hadrons or the undetermined ones
of known hadrons are usually assigned according to group theoretical foundations.
Flavor symmetries are not exact however. We know that the flavor SU (3) symmetry
is broken mildly and the flavor SU (4) symmetry, incorporating the charm quark, is
broken badly due to the heavy mass of the charm. Yet, there is satisfactory evidence
that expectations hold and they provide us with invaluable guidance in calculations.

Naturally, with so many around with rich spectra, we are interested in the masses
of hadrons. One intriguing aspect, for example, is how to calculate the mass of a
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hadron from QCD. Take proton for instance. It is situated at the core of the most
abundant element in the visible Universe and consists of two up and one down
valence quarks which have masses of only a few MeV compared to the almost 1
GeV mass of the proton. Remaining part is the binding energy due to the complex
quark-gluon dynamics. Higgs mechanism provides the masses of the quarks for sure,
but, strictly speaking, the mass of the visible Universe is dynamically generated via
strong interactions. Yet, even thoughwe have a description, we are unable to calculate
the mass of the proton—by a perturbative expansion in powers of the strong coupling
at least.

It is another challenge to understand the structure of the hadrons. Being composite
objects, we are interested in how the components are distributed inside or how they
combine to give the hadron properties. Following on, we can immediately come up
with questions like: how is the electric charge distributed? Does any charge-neutral
hadron have a charged core in analogy to an atom or is the charge distributed homoge-
neously?What about the magnetic structure? Does the magnetisation behave similar
to the electric charge density? Are there visible effects of the magnetic moments?
Can we resolve the spin structure of a hadron? and so on... For instance, consider the
electric charge radius of the proton: There is a ∼7σ discrepancy between its electron
based (e-p scattering andhydrogen spectroscopy)measuredvalue (Re

E = 0.8775(71)
fm) [16] and the one extracted viamuonic hydrogen experiments (Rμ

E = 0.84169(66)
fm) [17].We know that the baryons are composed of three quarks and a sea of quarks-
anti quarks and gluons. But consider for instance, how much of the spin do these
constituents share? Deep-Inelastic scattering experiments indicate that only 1/3 of
the proton’s spin is carried by quarks and anti-quarks [18, 19]. These two simple
examples show that there are still unresolved issues in our understanding of the inner
dynamics of the hadrons, which, in principle, can be addressed by QCD calculations.
Usually the examples and motivations are related to the nucleon due to the histori-
cal development and bulk of experimental results, however, the same questions and
motivations apply to all hadrons and heavier sectors come with their own questions.

1.3 Heavy-Flavored Hadrons

Heavy sector, in the general sense, corresponds to the hadrons that have at least one
charm or bottom quark as a valence quark but in the context of this thesis we will
restrict our attention to charmed hadrons only. Discovery of the charm quark dates
back to the observation of heavymeson resonances in e+e− annihilation experiments
conducted at the BNL [20] and SLAC [21] in the seventies. These resonances are
interpreted as bound states of a charm-anti charm pair, or charmonium in general,
and the ground state is now known as the J/ψ meson while the excited states are
named only as the ψ. There are now many identified charmed mesons, either char-
monium (cc̄) or open-charmed with one charm quark such as D(∗)+,0

(cd̄, cū) or
D(∗)

s
±

(cs̄, c̄s) mesons and their excited states.
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Fig. 1.1 Current experimental situation of the charmed baryons (left). SU (4) classification of spin-
1/2 (b, c) and spin-3/2 (a) baryons (right). Base levels contain the SU (3) multiplets. Both figures
are taken from Ref. [10]

Experimental information on the baryon sector is somewhat limited however. As
of today, there are only 18 observed and established charmed-baryon states all of
which contain only one charm quark and the spin-parity values of only a few has
been experimentally measured. Left panel of Fig. 1.1 depicts the current experimen-
tal situation with four species of singly-charmed baryons and their excited states.
Existence of the rest of the charmed baryons are inferred from the SU (4) flavor
symmetry arguments with assigned spin-parity values of some with respect to the-
ory calculations. SU (4) multiplets containing positive parity spin-1/2 and spin-3/2
baryons consisting of u, d, s and c quarks are shown in the right panel of Fig. 1.1
for reference. SELEX Collaboration claimed to have observed the doubly-charmed
�cc baryon [22, 23], however that has been the only instance so far and the searches
in the BaBar [24] and Belle [25] experiments did not confirm the claims of SELEX
although they had better statistics.

An interesting aspect of heavy quarks is the change of dynamics as m Q → ∞,
known as the heavy-quark symmetry (HQS). As a consequence, spin of the heavy
quark decouples from the system since it is proportional to 1/m Q and the system is
characterised by the light degrees of freedom. One therefore would expect the effects
of hyperfine splitting to diminish as m Q → ∞ such that the masses of the particles
with the same quark content but different total spins would get closer. Such a trend is
evident in the meson, m J=1 − m J=0, and baryon, m J=3/2 − m J=1/2, mass splittings
given below (evaluated using the PDG averages) for some illustrative hadrons,

mρ − mπ = 630MeV, m� − m N = 290MeV,

mK ∗ − mK = 390MeV, m�∗ − m� = 195MeV,

m D∗ − m D = 140MeV, m�∗
c
− m�c = 65MeV,

m B∗ − m B = 45MeV, m�∗
b
− m�b = 20MeV.
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Effects of the HQS can be identified in structural observables as well. For instance,
in Ref. [26], we investigate the electromagnetic structure of D-mesons with varying
light-quark masses. Electromagnetic observables tend to coincide as the light quark
gets heavier, which one would expect since the effect of the spin-spin interaction
component of the form

(�σQ · �σq/m Qmq
)
would decrease with increasing mq .

Forthcoming experiments with a heavy-hadron physics programme at major
experimental facilities, e.g. J-PARC, SuperKEKB, BES-III etc., are expected to pro-
vide awealth of informationwhich calls for a better understanding of the heavy-sector
dynamics from theoretical grounds. Exotic state candidates mainly observed in the
heavy sector also urges us to improve our understanding of the heavy quark dynamics.
However, since perturbative QCD breaks down at the typical hadronic energy scale,
we have to resort to methods that can incorporate the non-perturbative effects—be it
rather naive model-dependent approaches or state-of-the-art ab initio calculations.

1.4 Contents of the Toolbox

Preceding and following the formulation of QCD there have been and are several
methods to study its low-energy phenomenology such as quark models, where one
considers constituent quarks—an object that implicitly include the dynamical effects
of valence quarks, sea quarks and gluons—as interacting effective degrees of free-
dom of the hadrons to describe the interactions under a confining potential. There
are many quark models falling into different categories starting from simple, non-
relativistic formulations to more involved ones taking into consideration dynamics
like relativistic corrections, spin-spin or spin-orbit interactions etc.One then proceeds
by solving the Schrödinger equation with a choice of a proper confining potential
and extracts the hadron properties. Spectroscopy and electromagnetic properties of
charmed baryons, in particular, are studied inmany variants of quarkmodels [27–36],
which we compare our relevant results in the appropriate sections.

Effectivefield theory approach,which respects the underlying symmetries ofQCD
but replaces the elementary ((anti-)quark, gluon) degrees of freedomby effective ones
(mesons and baryons) and reformulates QCD to account for the non-perturbative
effects, provides a systematic framework to study low-energy QCD phenomena.
Chiral perturbation theory [37, 38], for instance, is one successful example where
one writes down themost general Lagrangian containing all the effective interactions
consistent with the underlying symmetry principles to study low-energy dynamics
by a perturbative expansion in the order parameter of the theory. Chiral symmetry,
which arises in the chiral,mq → 0, limit, and its spontaneous breaking, leading to the
emergence ofNambu-Goldstone bosons—pion being the lightest of them—underlies
the chiral perturbation theory. Being an effective theory, however, it has an applicable
energy range,mq � �QC D , and naturally breaks downwhen one goes out of bounds.
It has been successfully applied in the vicinity of light quark energies [39] although
their small mass breaks the chiral symmetry explicitly they are still small enough
to be neglected. Expansion already exhibits a poor convergence when one adds the
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strange quark the mass of which is close to �QC D , nevertheless there are remedies
to this situation (see Ref. [40]). Another limitation is related to the so-called low-
energy constants associated with each term in the expansion (interaction vertices),
which are input parameters in need of a determination by other methods, i.e. fitting to
experimental data or calculating via different methods. Such shortcomings, however,
do not diminish its importance as a useful tool where there is a close cooperation
between the chiral perturbation theory and lattice QCD since former provides amuch
insightful description for the quark-mass dependence of observables and systematic
effects such as the finite volume and discretisation [41–43] while the latter helps with
determining the low-energy constants needed for the chiral expansion.

On the other edge of the scale, namely in the mq → ∞ limit, one can exploit
the HQS and devise a scheme based on a combination of Heavy Quark Expan-
sion (HQE) and Operator Product Expansion (OPE) [44] to account for the non-
perturbative effects. HQE provides an order parameter of the form 1/m Q for the
expansion and OPE incorporates the short- and long-distance behaviour in terms of
the so-called Wilson coefficients (calculable perturbatively) and the expectation val-
ues of local operators of dimension d ≥ 4 constructed from quark bilinears, respec-
tively. Basically, the QCD Lagrangian is decomposed into two parts, LQCD(μ) =
Llight(μ)+LHeavy(μ), where the light part is the usual QCD Lagrangian but contains
the dynamics of the light quarks, mq � mc, only and treated perturbatively while the
heavy part is expressed in terms of non-relativistic quark fields and takes a general
form as LHeavy(μ) = O(4) + c(5)(μ)O(5)/m Q + c(6)(μ)O(6)/m2

Q +O(1/m3
Q), where

c(d) andO(d) areWilson coefficients and local operators of dimension d. Decompos-
ing essentially introduces an additional energy scale,μ, which defines an applicability
range for the prescription, �QC D � μ � m Q , where the short-distance effects can
be described perturbatively in powers of strong coupling constant, αs(μ), and the
long-distance dynamics exhibit non-perturbative effects. A typical choice is μ ∼ 1
GeVwhich is plausible for investigating b-hadron properties since μ ∼ 1GeV � mb

but the proximity of the mc = 1.2 GeV to the choice of μ ∼ 1 GeVmight make such
an approach tricky.

QCD Sum Rules [45, 46] is another example of a non-perturbative method but
differs from the previous ones in the sense that it is based on the elementary degrees of
freedomofQCD. It is awidely used, powerfulmethod providing valuable insight into
hadron properties [47, 48]. In this approach one calculates the vacuum expectation
values, correlation functions, of observables in question from two different scales
of the theory where an OPE in terms of quark and gluon condensates relates the
elementary d.o.f. to the hadronic observables defined in the correlation function.
There are, however, certain limitations stemming from approximations such as the
truncationof theOPEat someorder or introductionof artificial quantities,which leads
to an inherit uncertainty of ∼10–20%. QCDSR literature is very rich in content with
applications including spectroscopy of light, heavy and possible exotic hadrons, form
factor calculations, finite temperature and density investigations and so on. Previous
studies on charmed baryons had a focus on their spectrum [49, 50] and magnetic
moments [51, 52].
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Lattice approach has its roots in the seventies [53] and one might say it has sur-
passed its predecessors in its current state-of-the-art form in some aspects thanks
to the evolution of the computer technology and significant improvement efforts on
numerical algorithms. It, of course, has its own caveats. There are fields where a
lattice application suffers from technicalities, e.g. the sign problem in finite density
calculations, or the need to control the systematic uncertainties arising due to the
formulation itself. In principle, however, lattice approach is ab initio, free from any
assumptions or model-dependencies in the QCD Lagrangian level and a systematic
study is possible to control the errors with current calculations reaching percent, even
sub-percent, level accuracy challenging the predictions of the Standard Model [54–
56]. In a nutshell, one discretises the space-time continuum and reformulates the
QCD Lagrangian in a Euclidean setup to compute the correlation functions defined
in a Feynman path integral formalism via numerical Monte Carlo methods. There is
a close connection between the lattice approach and the ideas of statistical mechanics
where one obtains the observables by basically averaging over QCD vacuum config-
urations. Since its advent, lattice methods have been applied to many sub-fields of
QCD. Currently, it is possible to make fully dynamical simulations with physical or
almost-physical quark masses and controlled extrapolations to infinite-volume and
continuum limit. From a hadron physics point of view, most of the modern efforts
converge on the spectroscopy of light and heavy hadrons and hadron-hadron inter-
actions [57] and structure calculations of light pseudoscalar and vector mesons and
nucleon [58]. Form factors of low-lying octet [59–61] and decuplet [62–64] baryons
are also studied. Lattice QCD calculations in the charmed baryon sector however is
limited to spectroscopy calculations [42, 65–67] only. Results on charmed baryon
electromagnetic form factors and observables that we present here have the character-
istic of being the first calculations in a lattice QCD framework. It is worthmentioning
that, parallel to the calculations presented here, we have a continuing program on
electromagnetic and axial transitions of charmed baryons—results of which are out
of the scope of this work but already available in Refs. [68, 69].

1.5 Outline of the Thesis

We organise this thesis as follows: In Chap.2, we give the QCD formalism and dis-
cuss the hadron structure by a brief historical account. Chapter 3 focuses on the lattice
approach, where we investigate its implementation in detail. We discuss the discreti-
sation of the space-time and the QCD action and sketch its application. Chapter 4
consists of the technical details of our calculations.We showhow to extract themasses
and calculate the electromagnetic form factors of spin-1/2 and spin-3/2 baryons in
a general formalism followed by the details of our simulation setup. Our results on
the electromagnetic observables of charmed baryons are presented and discussed in
detail along with comparisons to the light sector and results of the other methods in
Chap.5. Conclusions and a summary of our work is given in Chap.6.
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Chapter 2
Quantum Chromodynamics

Abstract This chapter is devoted tomaking the reader familiar with the ideas under-
lying the QCD and its formalism. We briefly discuss the advent of the color quantum
number, which is a unique feature and centerpiece of strong interactions. In what
follows, QCD is presented formally as a quantum field theory, where we discuss
its energy scale-dependent characteristics and how it is related to the formation of
hadrons. Finally, by following the early experimental developments, we give a histor-
ical account of the evidence for the hadron structure and sketch the simple formalism
that is commonly used to study it in a theoretical approach.

Keywords Color charge · Quantum field theory · Strong coupling constant
Confinement · Hadron structure

2.1 Introduction

Quantum chromodynamics (QCD) is the theory governing the interactions of quarks,
antiquarks and gluons. In contrast to the electromagnetic interactions, elementary
particles of QCD carry one more quantum number, the color charge, which we
account responsible for the strong interactions. Postulation of the existence of such an
additional quantum number can be traced to the early stages of hadron spectroscopy
experiments, to a pre-QCD era, accounts of which are given in textbooks to a great
extent.

In Sect. 2.2, we give a brief discussion on the color quantum number for complete-
ness. It is followed by Sect. 2.3 where we sketch the field theory formalism of QCD
and discuss its two distinct phenomenon: Asymptotic freedom and confinement. An
outcome of the confinement is the formation of hadrons and since they are compos-
ite objects formed by quarks, anti-quarks and gluons they have an inner-structure
which can be probed by experiments or calculated by non-perturbative approaches.
In Sect. 2.4 we briefly discuss the experimental evidence and introduce the form
factors as well as presenting their physical interpretations.

© Springer Nature Singapore Pte Ltd. 2018
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2.2 Color Quantum Number

Necessity to introduce an additional quantum number arises due to the fact that
baryons have half-integer spins and therefore they are classified as fermions being
subject to the Pauli exclusion principle: Their wave functions must be antisymmet-
ric under interchange of two identical quarks. Non-relativistic quark-model wave
function of a baryon can be decomposed to its space, spin and flavor wave function
components as,

ψB = ψspaceψspinψflavor, (2.1)

ignoring our knowledge of color quantum number. Baryon spectroscopy experiments
in 1960s revealed the existence of�++ (J = 3

2 )baryonwhich is composedof three up
quarks, uuu, leading to questioning the decomposition given above. Combination of
three u-quarks is obviously flavor symmetric. Spatial wave function of a ground state
�++ is symmetric since its orbital angular momentum is zero, l = 0, and to satisfy
a spin-3/2 state spins of the quarks should be aligned with a symmetric spin wave
function configuration, | 32 3

2 〉 = (u ↑ u ↑ u ↑), rendering the total wave function
symmetric.

Introducing the additional color degree of freedom with an antisymmetric wave
function,

ψcolor = εijkψiψjψk , (2.2)

where i, j and k are color indices running from 1 to 3, resolves the problem. With the
addition of this extra quantum number, the wave function of a baryon in the simplest
way becomes,

ψB =
antisymmetric

︷ ︸︸ ︷

ψspaceψspinψflavor
︸ ︷︷ ︸

symmetric

ψcolor
︸ ︷︷ ︸

anti-symmetric

, (2.3)

satisfying the Pauli principle.
There are other experimental evidences for the existence of color as well such as

an analysis of the cross-section ratios of electron-positron annihilation into hadrons
andmuons [1] reveals that color should play a role and there should be three different
colors. Also, the consistency between the predicted and observed neutral pion decay
rate is achieved only if there are three distinct colors. Historically, color quantum
number is introduced by Greenberg [2] and later put into the context of a local
SU (3)color gauge group by Nambu [3] and Han and Nambu [4].
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2.3 Field Theory Formalism

Our modern understanding of the strong interactions of the elementary particles is
embedded in the formulation of QuantumChromodynamics (QCD) as a non-Abelian
gauge theorywith a local SU (3) color symmetry. The Lagrangian density of theQCD
holds the details of the interactions and is written as,

L[ψ, ψ̄,A] =
∑

q

ψ̄q
(

iDμγ
μ − mq

)

ψq − 1

4
Fa

μνF
μν
a , (2.4)

where the explicit sum over the quark flavors, q = u, d , s, c, b, t in the fermionic
part denotes the fact that the strong force acts similarly on the quarks independent
of their flavor. Quark fields ψq and ψ̄q carry two more indices, one denoting their
spin-1/2 nature, the so-called Dirac index, running from 1 to 4 and the other, color
index, running from 1 to 3 due to the fact that quarks carry color charge and come
in three colors [5]. mq is the mass of the quark q, and it is same for any of its colored
versions.

Dμ is the covariant derivative defined as

Dμ = ∂μ − igs
λa

2
Aa

μ, (2.5)

which follows from the invariance of the theory under local SU (3)c transformations
and holds the dynamics of the quark-gluon interactions where the coupling constant
gs is related to the strong coupling constant of QCD via gs = √

4παs and Aa
μ is the

gluon field. λa are 3 × 3 Gell-Mann matrices, the generators of the SU (3) group,
where a = 1, 2, . . . , 8. It is understood that the repeated indices are summed over.

The last term in Eq. (2.4) governs the dynamics of the gauge sector and written in
terms of the field strength tensor

Fa
μν = ∂μA

a
ν(x) − ∂νA

a
μ(x) − gsf

abcAb
μA

c
ν, (2.6)

where f abc are the structure constants of the SU (3) group. Last term survives because
of the non-Abelian nature of the theory and it is responsible for the gluon-gluon
interactions.

When quantizing the theory, two more terms corresponding to gauge fixing and
ghost fields are added to Eq. (2.4) (see, for example, Ref. [6]). We are, however,
omitting those terms in this prescription for the ease of discussion. In principle,
another term which has the same dimension as the former terms and leaving the
Lagrangian gauge invariant can be added but such a term breaks the CP-symmetry
and becomes significant if one discusses the instanton field effects [7, 8], which we
do not consider in this work.

QCD is now a well-established theory such that it is shown to be renormalisable,
a crucial feature for a quantum field theory, by t’Hooft [9, 10] and it has a plausible
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property which clarifies the empirical facts arising from deep inelastic scattering
experiments. In short, high energy e − p scattering experiments revealed that within
the proton there are point-like structures,whichwe nowcall quarks, and the scattering
process can be calculated by considering a tree-level elastic e − q interaction (see
Chap.9 of Ref. [11] for a detailed discussion). The physical implication is that these
quarks act as free particles as if the strong interaction among themselves is non-
existent. QCD (Yang-Mills theories in general) happens to have just the property,
called the Asymptotic Freedom [12–15], providing a dynamical explanation to the
weakness of the strong interactions in high-energy processes.

At this point, it is timely to shift our focus and discuss the renormalisation pro-
cedure briefly as it reveals the high and low energy nature of the QCD. Main idea
behind the renormalisation of a quantum field theory is to regularise the ultravio-
let divergences appearing when one considers the perturbative quantum corrections.
Along the procedure one redefines the parameters of the theory, such as the bare
coupling constant, bare mass and the bare fields, q and Aμ, to absorb the divergences.
Redefinition of the parameters are actually done on some energy-scale conventionally
denoted as μ. Fixing the value of μ depends on which energy scale we wish to inves-
tigate the theory therefore it introduces an arbitrariness but also allows to analyse the
scale dependence of the theory or alternatively its parameters. Scale dependence of a
parameter is probed by the method of renormalisation group founded by Gell-Mann
and Low [16] in the context of QED but the idea is perfectly applicable to the QCD
case. We will not, however, give a detailed account of the renormalisation procedure
and the renormalisation group since we are only interested in illustrating the basic
concept of the asymptotic freedom.

In order to see how the phenomenon of the asymptotic freedom appears we will
look into the μ dependence of the renormalised strong coupling constant in the limit
μ >> mq,

μ
d

dμ
gs(μ) = β(gμ) = −β0g

2
s (μ) − β1g

3
s (μ) − · · · (2.7)

where β(gμ) is the Beta-function and this renormalisation group equation (RGE) is
known as the Callan-Symanzik equation due to their work [17, 18]. Since we are
interested in the coupling constant, Eq. (2.7) has only the coupling constant part.
The total RGE has all the relevant terms related to the renormalised parameters that
depend on the scale μ. The Beta-function is known up to 4-loops [19, 20] but we
will restrict the discussion to lowest order which is enough for our purpose and omit
the β1 and higher-order terms. Equation (2.7) in the lowest order approximation is
then given by

μ
d

dμ
gs(μ) = −g2s (μ)

4π

33 − 2nf
12π

, (2.8)

and integrating with respect to μ we find,
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αs(μ) ≡ g2s (μ)

4π
= 12π

(

33 − 2nf
)

ln
(

μ2/�2
QCD

) , (2.9)

where nf is the number of active quark flavors at the chosen scale μ and �QCD is
an integration constant whose significance we will discuss below. There may be at
most nf = 6 different quark flavors at the practical energies so the overall sign of the
αs(μ) is positive (an indication of the asymptotic freedom) and it is evident that the
value of the strong coupling constant decreases as the energy (or the renormalisation)
scale μ increases. This is the manifestation of the asymptotic freedom property of the
QCD which, with its discovery, reinforced the belief that QCD is indeed the theory
of strong interactions and due to the weakness of the interaction strength at higher
energies, a perturbative approach is valid to investigate its physical implications.

In the discussion above, we have focused on the behaviour of the coupling con-
stant in the high-energy region but the RGE holds information about the low-energy
behaviour of the coupling as well. It is as we scale to the low-energy regime that the
strong nature of QCD reveals itself. First thing to notice is that the �QCD parameter
in Eq. (2.9) marks the threshold at which scale theαs(μ)will diverge to infinity while
along the way render the perturbative approach unusable since the strong interaction
will become strong! αs is found to exceed unity for μ ≤ O(0.1 − 1GeV) [21]. Value
of the �QCD, on the other hand, lies in between 0.2 − 0.3GeV which is (from the
grounds of dimensional analysis) close to (200MeV)−1 ∼ 1 fm—the typical size of
a hadron. In Fig. 2.1 we give the plot taken from the 2016 edition of the Review of
Particle Physics [1] showing the behaviour of the strong coupling constant.

We have now made contact with the low-energy regime and are aware that the
perturbative prescription breaks down. An important consequence of the low-energy
dynamics of QCD is yet to reveal itself. Experimental evidence of the existence
of quarks comes from the deep-inelastic scattering (DIS) experiments which can
be accounted as an indirect probing method since the actual experiment involves
a charged particle scattering from a composite object of quarks, anti-quarks and
gluons, i.e. proton. The fact that no free (colored) quark has been observed and

Fig. 2.1 Scale dependence
of the strong coupling
constant αs(μ ≡ Q2) as well
as various experimental
determinations of its value.
Curves are the
perturbative-QCD
predictions in the 4-loop
approximation. We refer the
reader to Ref. [1] and
references therein
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they are bound into colorless (color-singlet) composite objects suggests that the
quarks (and anti-quarks) are confined into suchobjects, collectively called as hadrons.
Confinement phenomenon is still a hypothesis waiting for a formal proof, however,
our empirical and numerical understanding suggests that the color-color interaction is
the reason. Phenomenologically the potential between a static quark-anti quark pair
is parametrised by a Coulomb + linear-type potential reflecting the short-distance
(high energy) and long-distance (low-energy) interactions. Experimental evidence
for the Coulomb term has its origins from p − p̄ collisions at CERN [22–24] and
the linear term is deduced from hadron spectroscopy analysis (see Ref. [25] for a
review). Numerical lattice calculations on the other hand provides a direct evidence
of linear behaviour from first principles [25]. Naively the linear term implies that,
strong-force lines are squeezed due to the self-interactions of the gluons and form
tube-like structures, called flux tubes. These flux tubes are broken if one supplies
the system with enough energy and a new quark-antiquark pair pops-up to form new
flux tubes keeping the system as a color-singlet bound system. Although a delicate
and interesting subject, we cut the confinement discussion short since rather than its
origins or proof, we are interested in the outcome—hadrons.

2.4 Hadron Structure

Discovery of the composite nature of the hadrons dates back to the measurement
of the magnetic moment of proton by Nobel laureate Stern in 1933 [26, 27]. The
measured value of μp ∼ 2.5μN showed a significant deviation from unit nuclear
magneton (μN = e/2MN ), providing a clear hint of an inner structure. Later elastic e-
p scattering experiments provided further evidence where, for example, the analyses
inRef. [28] indicate a clear discrepancybetween the experimental data and theoretical
cross-section calculations of a point-like particle. We show the cross-section plot
taken from Ref. [28] in Fig. 2.2 where the deviation from point-like expectations is
evident.

Pinpointing the existence of quarks is attributed to early deep-inelastic scattering
experiments in SLAC, CERN SPS and Fermilab Tevatron with high energy and large
momentum transfer (Q2) between a lepton (electron, muon and neutrino) and a pro-
ton (see Ref. [29] and references therein). Higher momentum transfer means that the
probe (a virtual photon in this case) has a finer resolution or a smaller wavelength
λ ∼ 1/

√
(Q2), which gives it the ability to probe smaller distances thus resolve the

substructure of the proton. Cross-section formula for a DIS differs from the elastic
case to incorporate the many hadron final states arising from the break up of the
nucleon. Rather than simple Q2-dependent form factors, it involves structure func-
tions with two variables W1,2(Q2, ν) where the additional parameter ν = P · q/M
is the energy transferred to nucleon by the scattering electron. In the deep-inelastic
energy limit, i.e.Q2 → ∞ and ν → ∞, however, it turns out that the structure func-

tions scale as lim
Q2→∞

W1(Q
2, ν) = F1(x) and lim

Q2→∞
ν

M
W2(Q

2, ν) = F2(x) where the
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Fig. 2.2 Cross section of elastic e-p scattering plotted with respect to the scattering angle [28].
Theoretical curves a, b and c assumes a point-like proton, where a is the Mott curve and b and c
uses Rosenbluth formalism. Experimental curve is a best fit to Rosenbluth formula with the form
factor interpretation

Bjorken scaling parameter is defined as x = Q2/2M ν [30]. Weak Q2-dependence
observed in early SLACDIS data was in accordance with the Bjorken scaling expec-
tations and has led to the development of the parton model by Feynman [31, 32]
which suggests elastic scattering of virtual photon from free point-like constituents
carrying some fraction of the total energy of the proton. Parton model calculations
combined with experiments pioneered the direct identification of the quarks which
were predicted earlier by Gell-Mann [33] and Zweig [34]. Data showed that nucleon
is indeed composed of three valence quarks but it has also revealed that there is
actually a sea of quarks, anti-quarks and gluons changing the simple picture into a
highly dynamical one.

It is instructive at this point to summarise how one forms a field theoretical frame-
work to understand the composite nature of the hadrons by studying the elastic e-p
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scattering. If proton was indeed a point particle, we would describe the interaction
cross-sections by the Mott formula,

(

dσ

d�

)

Mott

= (Zα)2E2

4k2sin4(θ/2)

(

1 − k2

E2
sin2(θ/2)

)

, (2.10)

where Z is the number of protons of the fixed target, α is the fine-structure constant
of QED andE and k are the energy andmomentum of the incoming electron. θ stands
for the scattering angle related to transferred momentum q2 and out-going electron
energy as q2 = −4EE′sin2(θ/2). However, it is clear that the point-like assumption
does not hold so we should include a term to incorporate the inner structure by
multiplying the Mott formula with a form factor term,

(

dσ

d�

)

=
(

dσ

d�

)

Mott

∣

∣F(q2)
∣

∣
2
. (2.11)

We have to estimate the form of the F(q2) term however, in order to make reliable
calculations. Since this is an electromagnetic interaction, we will use the perturbative
QED formalism and consider a tree-level one-photon exchange interaction. Note
that, two-photon exchange processes also have a significant role [35] and should
be included for rigorous analyses, however, we will not consider those higher-order
interactions since a tree-level approximation is adequate to make our point. We write
down the S-matrix of the tree-level interaction shown in Fig. 2.3 as,

S = (2π)4δ4(k + P − P′ − k ′)ū(k ′)(−ieγμ)u(k)
−i

q2
〈P′|(ie)J μ|P〉

= −i(2π)4δ4(k + P − P′ − k ′)M,

(2.12)

where the Dirac-delta functions ensure the energy-momentum conservation, ū(k ′)
and u(k) are the fermion spinor fields with four-momentum k and k ′, (−ieγμ) and
(−iq2) are the vertex factors of the electron and proton vertices and the last term in
brakets is the hadronic matrix element with the electromagnetic current inserted in

Fig. 2.3 Tree-level
Feynman diagram of an
elastic e-p scattering. Blob
indicates the unknown
structure of the proton

P P

k k

q

,

,
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between the states. We have introduced the invariant amplitude,

M = 1

q2
ū(k ′)(−ieγμ)u(k)〈P′|(ie)J μ|P〉, (2.13)

on the second line for the ease of further discussion and the external electromagnetic
current is given by,

J μ =
∑

i

eiψ̄iγ
μψi, (2.14)

where the index i sums over all valence- and sea-quark flavours that are within the
proton. Interaction cross-section in terms of the invariant amplitude M follows as,

dσ

d�
= E′

8π2EM 2

|M|2
1 + 2E

M sin2(θ/2)
, (2.15)

where the squared invariant amplitude is written in terms of leptonic and hadronic
tensors as,

|M|2 = e4

Q4

[

ū(k ′)γμu(k)
] [

ū(k)γνu(k ′)
]∗ 〈P|J ν |P′〉〈P′|J μ|P〉, (2.16)

with −q2 = Q2. Leptonic part can be calculated by perturbative means since it is
a QED process but since we do not know its exact form we have to parametrise
the hadronic piece while keeping the Lorentz-invariance intact. Focusing on one of
the matrix elements, we may form independent Lorentz-invariant structures using
the elements we have at hand, namely the four-vectors Pμ, P′μ, qμ and Dirac γ-
matrices (excluding γ5 due to parity conservation), and write down a widely used
parametrisation,

〈P′|J μ(q)|P〉 = ū(P′)
[

γμF1(q
2) + iσμν qν

2M
F2(q

2)
]

u(P), (2.17)

with σμν = 1
2 {γμ, γν} and M being the mass of the nucleon. F1 and F2 are known

as Dirac and Pauli form factors respectively and are associated with the charge and
anomalous magnetic moment of the nucleon. Linear combinations of Dirac and Pauli
form factors are used to define the Sachs electric and magnetic form factors,

GE(Q2) = F1(Q
2) − τF2(Q

2),

GM (Q2) = F1(Q
2) + F2(Q

2),
(2.18)

where τ = Q2/4M 2 and in terms of these form factors the elastic scattering cross-
section in the lab frame is given by,
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dσ

d�
= σMott

[

G2
E(Q2) + τG2

M (Q2)

1 + τ
+ 2τG2

M (Q2)tan2
θ

2

]

. (2.19)

Rewriting the cross-section in terms of the virtual photon’s longitudinal polarization
ε = (1 + (1 + τ )2tan2(θ/2))−1, we end up with the Rosenbluth formula [36],

dσ

d�
= σMott

1 + τ

[

G2
E(Q2) + τ

ε
G2

M (Q2)
]

. (2.20)

Experimental data can be analysed by the above formula such that the information
about electric and magnetic form factors can be accessed respectively from the slope
and intersect of a curve fitted to cross-section versus scattering angle data at a fixed
momentum transfer Q2. Such an analysis is known as the Rosenbluth seperation
technique. There aremany caveats and technicalities tomention froman experimental
point-of-view and the above account is by no means complete however very useful
in making contact with a crucial theoretical object which sits in the center of the
calculations that we are interested in for the rest of this work—the matrix element.

In Eq. (2.17) we have written down the parametrisation of the hadronic matrix ele-
ment (ME) for an electromagnetic spin−1/2 → spin−1/2 transition processes in a
general sense. Given that the MEs hold information about the hadron, we are already
in the non-perturbative regime of QCD so that perturbative calculations are unreli-
able, however, it is possible to calculate the MEs by non-perturbative approaches.
The most promising non-perturbative method we have at hand is lattice QCD which
we utilise to calculate the MEs and extract the form factors throughout this work. We
will summarise the lattice formulation of QCD in the next Chapter but, before that,
let us close this section by mentioning the physical meaning of the form factors.

In analogy to non-relativistic physics, a form factor can be considered as a three-
dimensional Fourier transform of the density distribution of a quantity of a hadron
under certain conditions. Considering a small momentum transfer, Q2, between the
baryon and the external current or a limit where the mass of the baryon is much larger
than the transferred momentum,Q2 
 M 2, we have the assumption that the internal
structure of the initial and final states remain the same. However, with increasingQ2,
recoil effects become significant so that the wave functions of the initial and final
states differ, rendering a density distribution interpretation questionable. In order
to have a rigorous definition, one considers the Breit frame where the magnitude
of the initial and final momentum of the hadron is equal, i.e. P′ = P. Breit frame
configuration helps us to recover the density-distribution interpretation of the form
factors. For an electromagnetic case as above, the Sachs form factors GE and GM

are related to the charge and magnetisation densities of the hadron [37] in the Breit
frame where for example the GE is given by the Fourier transformation of an electric
charge density as,

GE(Q2) =
∫

d3xeixqρ(x) � GE(0)

(

1 − 1

6
Q2〈r2E〉 + . . .

)

, (2.21)
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where the first term in parenthesis reduces to the total electric charge of the hadron
and the second term is the definition of the square of the electric root-mean square
radius. We sketch further details in Sect. 5.2.2 and interpretations of the quantities
extracted from form factors are discussed in Sects. 5.3 and 5.4.
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Chapter 3
Lattice Formulation of QCD

Abstract In this chapter, we provide a detailed formulation of the lattice field theory
in the context of QCD. Basic changes compared to the continuum formulation is
introduced. Then, we formulate the Euclidean QCD action starting from a naive
approach and improve it step-by-step until we have a suitable lattice action. We
discuss the gauge and fermion sectors individually with their respective challenges
and improvements. Steps of a typical application of the method are outlined in the
closing of the chapter.

Keywords Lattice field theory · Euclidean space-time · Discrete action
Fermion doubling · Improvement program

3.1 Euclidean Action

Quantisation ofQCD ismade via the Feynman’s path integral approach [1]. Formally,
expectation value of a physical observable is given by a functional integral,

〈Ô〉 = 1

Z

∫
D [ψ̄,ψ, A

]
eiSQCD [ψ̄,ψ,A]O [ψ̄,ψ, A

]
, (3.1)

where the LHS is in operator language and the RHS contains the classical action and
fields. QCD action in the Minkowski space is given by,

SM
QCD[ψ, ψ̄, A] =

∫
d4x

{∑
q

ψ̄q
(
iDμγ

μ − mq
)
ψq − 1

4
Fa

μνF
μν
a

}
, (3.2)

and the partition function is defined as,

Z =
∫

D [ψ̄,ψ, A
]
eiSQCD [ψ̄,ψ,A]. (3.3)
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In the lattice approach, one evaluates the integral in Eq. (3.1) numerically by
means of Monte Carlo methods. However, the sampling weight, eiSQCD [ψ̄,ψ,A], is
an imaginary function with a highly oscillatory behaviour which renders a reliable
numerical treatment rather challenging. In order to tame the oscillating function, we
perform aWick rotation, i.e. we rotate from a Minkowski-space to Euclidean one by
the, t → −i t , transformation and the action transforms as iS → −SE . This rotation
basically allows us to connect the lattice theory with statistical mechanics, which
we briefly discuss in Sect. 3.5. Corresponding Euclidean QCD action then takes the
form,

iSM
QCD → −SE

QCD[ψ, ψ̄, A] = −
∫

d4x

{∑
q

ψ̄q
(Dμγ

μ + mq
)
ψq + 1

4

(
Fa

μν

)2
}

.

(3.4)
One, of course, has to define the discrete form of the action for a numerical approach.
In the following sections we discretise the space-time continuum and derive the
discrete QCD action.

A final remark is on the Dirac index convention. It changes from μ = 0, 1, 2, 3 ≡
(t, x, y, z) to μ = 1, 2, 3, 4 ≡ (x, y, z, t) and we use a chiral basis for the gamma
matrices,

γ1 = −iγD
1 , γ2 = −iγD

2 , γ3 = −iγD
3 , γ4 = γD

0 , (3.5)

which satisfy,
{
γμ, γν

} = 2δμν . The usual Minkowski space Dirac gamma matrices
are,

γD
0 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ γD

1 =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎠

γD
2 =

⎛
⎜⎜⎝

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

⎞
⎟⎟⎠ γD

3 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ .

(3.6)

3.2 Discrete Space-Time

There are two main elements of the theory to discretise in the first place: Space-
time continuum itself and the fermion and gauge fields. We start by replacing the
continuous space-time by a 4D discrete lattice. A straightforward discretisation is to
set the lattice spacing equal on all dimensions, i.e. a = aS = aT , for a lattice of size
NS × NS × NS × NT . Any point on the discrete space-time is then given by,
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n = (n1, n2, n3, n4), | n1,2,3 = 0, 1, . . . , NS − 1, n4 = 0, 1, . . . , NT − 1,
(3.7)

where NS and NT are the number of spatial and temporal steps, respectively. Depend-
ing on the application or available resources, spatial and temporal lattice spacing
and/or extent may be taken different, e.g. aS �= aT and/or NT > NS . For example
modern-day spectroscopy calculations usually prefer longer temporal extent, some-
times with aS �= aT , to isolate a clear signal whereas NT < NS lattices are employed
in finite temperature studies.

Fermion fields are restricted to live on lattice sites, n, and allowed to move step
by step on straight lines only,

ψ(x) → a−3/2ψ(an) ψ̄(x) → a−3/2ψ̄(an), (3.8)

ψ(an′) = ψ(an ± aμ̂) ψ̄(an′) = ψ̄(an ± aμ̂) (3.9)

where x corresponds to the continuum coordinate and μ̂ denotes the unit vector in
the μ direction. We will drop the a from now on for simplicity.

We replace the gauge fields by Link Variables,

U (n, n ± μ̂) ≡ U±μ(n), U−μ(n) ≡ U †
μ(n − μ̂), (3.10)

which assume the role of connecting adjacent lattice sites to each other. They are
defined as 3 × 3 SU (3)color matrices,

Uμ =
⎛
⎜⎝

r g b

r Urr
μ Urg

μ Urb
μ

g U gr
μ U gg

μ U gb
μ

b Ubr
μ Ubg

μ Ubb
μ

⎞
⎟⎠, (3.11)

where each element of the matrix corresponds to probability density of a transition
from one color component to another. Link variables are related to the continuum
gauge fields by an exponent,

Uμ(n) = exp
(
iaAμ(n)

)
. (3.12)

Since we are defining a finite system, boundaries come into consideration.We can
impose either periodic, anti-periodic or fixed-boundary—Dirichlet or Neumann—
boundary conditions depending on the application. For most of the applications,
including ours, (anti-)periodic boundaries suffice while the Schrödinger functional
method [2–6] can be counted as an example to the use of Dirichlet boundary condi-
tions. Usually periodic boundaries are imposed on all directions for the gauge fields
while one direction, generally the temporal direction, is chosen to be anti-periodic
for fermions to account for Fermi-Dirac statistics. We can write the (anti-)periodic
boundary conditions (for a single dimension) in mathematical notation as,
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ψ(0, n2, n3, n4) = ψ(NS, n2, n3, n4) Uμ(NS, n2, n3, n4) = Uμ(0, n2, n3, n4),

ψ(n1, 0, n3, n4) = ψ(n1, NS, n3, n4) Uμ(n1, NS, n3, n4) = Uμ(n1, 0, n3, n4),

ψ(n1, n2, 0, n4) = ψ(n1, n2, NS, n4) Uμ(n1, n2, NS, n4) = Uμ(n1, n2, 0, n4),

ψ(n1, n2, n3, 0) = −ψ(n1, n2, n3, NT ) Uμ(n1, n2, n3, NT ) = Uμ(n1, n2, n3, 0).

An important implication of the discrete space-time is the quantisation of the
momentum on the lattice. The fact that the fields are restricted to lattice sites and can
only move in discrete steps, imposes the condition,

p = 2πn

NSa
, n = 1, . . . , NS (3.13)

on the lattice momentum. We immediately see that the largest allowed momenta is
p = 2π/a which implies that the lattice spacing acts an inverse UV cutoff, providing
a UV-regularisation of a field theory formulated on a lattice.

3.3 Gauge Action

3.3.1 Naive Discretisation

We want to form the simplest discrete gauge action that reduces to the continuum
gauge action in the a → 0 limit while maintaining the local SU (3) gauge invariance
of QCD. Gauge part is composed of gauge fields only and the corresponding lattice
objects we have at hand are link variables,Uμ(n). Under a local gauge transformation
V (n), link variables transform as,

Uμ(n) → U ′
μ(n) = V (n)Uμ(n)V †(n + μ̂), (3.14)

nn +μ̂

Uμ(n)

U−μ(n) ≡ Uμ(n− μ̂)†
nn− μ̂

n + μ̂n

n + μ̂ + ν̂n + ν̂

Uμ(n)

Uν(n + μ̂)

Uμ(n + ν̂)

Uν(n)

Fig. 3.1 Forward and backward link variables (left) and 1 × 1 Plaquette Uμν , constructed from
four link variables (right)
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which has the same geometrical interpretation of the continuum counterpart. Then
the simplest gauge-invariant object thatwe can define is a 1 × 1 loop of link variables,

Uμν(n) = Uμ(n)Uν(n + μ̂)U †
μ(n + ν̂)U †

ν (n), (3.15)

known as a plaquette. Forward and backward link variables and the plaquette object
are illustrated in Fig. 3.1.

In order to reveal the connection between the plaquette and the continuum field
strength tensor, we replace the link variables with Eq. (3.12),

Uμν(n) = Uμ(n)Uν(n + μ̂)U †
μ(n + ν̂)U †

ν (n)

= eiags Aμ(n)eiags Aν (n+μ̂)e−iags Aμ(n+ν̂)e−iags Aν (n)

= exp

{
iags Aμ(n) + iags Aν(n + μ̂) − iags Aμ(n + ν̂) − iags Aν(n)

− a2g2s
2

[Aμ(n), Aν(n + μ̂)] − a2g2s
2

[Aμ(n + ν̂), Aν(n)] (3.16)

+ a2g2s
2

[Aν(n + μ̂), Aμ(n + ν̂)] + a2g2s
2

[Aμ(n), Aν(n)]

+a2g2s
2

[Aμ(n), Aμ(n + ν̂)] + a2g2s
2

[Aν(n + μ̂), Aν(n)] + O(a3)

}

where we have used the Baker-Campbell-Hausdorff formula,

exp(A)exp(B) = exp

(
A + B + 1

2
[A, B] + . . .

)
, (3.17)

to work out the exponentials and included terms up toO(a2) only. Now by replacing
the displaced gauge fields by their Taylor expansions,

Aν(n + μ̂) = Aμ(n) + a∂μAν(n) + O(a2), (3.18)

we obtain,

Uμν = exp
{
ia2gs

(
∂μAν(n) − ∂ν Aμ(n) + igs

[
Aμ(n), Aν(n)

])+ O(a3)
}

= exp
{
ia2gs Fμν(n) + O(a3)

}

= 1 + ia2gs Fμν(n) − a4g2s
2

(Fμν(n))2 + O(a6).

(3.19)

Real part of the plaquette isolates the term that we are interested in,

ReTr
(
1 −Uμν

) = a4g2s
2

(Fμν(n))2 + higher orders in a, (3.20)
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where the trace acts on color indices and ensures the gauge invariance of the expres-
sion. Finally, summing over all lattice sites and plaquettes associated with each site,
and including the color factor, we define the Wilson gauge action as,

SG[U ] = β

3

∑
n

∑
μ<ν

ReTr
(
1 −Uμν(n)

) = a4
∑
n

∑
μ<ν

1

2
Tr
[
Fμν(n)2

]+ O(a2),

(3.21)

→
∫

d4x
∑
μ<ν

1

2
Tr
[
Fμν(n)2

]+ O(a2).

(3.22)

where the inverse coupling is given by β = 2Nc/g
2
s .

Naive discretisation matches the continuum gauge action at O(a2) level, or in
other words, has O(a2) discretisation errors. Since the action is not unique, we can
add higher dimensional terms to improve on the errors, or other properties, as long
as we recover the continuum action in the a → 0 limit.

3.3.2 Improved Action

Wewill summarise the improved gauge action used by the PACS-CSCollaboration to
generate the gauge configurations [7], relevant for this work. CP-PACSCollaboration
investigates the improved actions and they note that the Iwasaki gauge action leads to
a better rotational symmetry, beneficial for static quark potential studies, and reduces
the coefficients of the O(a2) errors [8].

In addition to the Wilson plaquette, we can form dimension-6 gauge-invariant
objects composed of six link variables as shown in Fig. 3.2. In principle, dimension-
5 objects are the next in terms of dimension counting, however those object, formed
only by link variables, are not gauge-invariant. Gauge action with the addition of
dimension-6 operators is written as,

Fig. 3.2 Dimension-6 rectangular (1 × 2), twisted and L-shaped Wilson loops
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SG[U ] = β

6

(
c0
∑
n,μ<ν

W (4)
μν (n) +

3∑
i

ci
∑
n,μ<ν

W (6)
μν (n)

)
, (3.23)

where the first term is the dimension-4 Wilson loop (plaquette) and the summation
over i includes the dimension-6 rectangular, twisted and L-shaped Wilson loops,
respectively. Iwasaki includes the rectangular term only in his approach and uses
an approximate block-spin renormalisation group analysis of Wilson loops to fix its
coefficient c1 = −0.331. Coefficient of the plaquette term follows from the normal-
isation condition, c0 = 1 − 8c1 = 3.648, so the Iwasaki action takes the form [9]:

SG[U ] = β

6

(
c0
∑
n,μ<ν

W 1×1
μν (n) + c1

∑
n,μ<ν

W 1×2
μν (n)

)
. (3.24)

Lüscher and Weisz show that in tree-level approximation coefficients of twisted
and L-shaped contributions can be taken c2 = c3 = 0. They study 1-loop correc-
tions and introduce the 1-loop improved action withO(g4a4) corrections which has
the coefficients c0(g2) = 5/3 + 0.2370g2, c1(g2) = −1/12 − 0.02521g2, c2(g2) =
−0.00441g2 and c3(g2) = 0 [10]. Small c3 coefficient suggests that improving the
action by adding only the rectangular terms already provides a good approximation
of the continuum action.

3.4 Fermion Action

Continuing on with the fermionic part of the QCD action, we introduce the Wilson’s
fermion action and its improved version, the Sheikholeslami-Wohlert (Clover) action
which we employ in this work.

3.4.1 Naive Discretisation

First, define the discrete partial derivative by the central-difference limiting proce-
dure,

∂μψ(n) = ψ(n + μ̂) − ψ(n − μ̂)

2a
, (3.25)

where μ̂ is the unit vector in the μ direction and a is the lattice spacing. Applying
the above formula to the Dirac equation for a single quark flavor, we have,

SF [ψ, ψ̄] = a4
∑
n

ψ̄(n)

⎡
⎣ 4∑

μ=1

γμ
ψ(n + μ̂) − ψ(n − μ̂)

2a
+ mqψ(n)

⎤
⎦ , (3.26)
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where four-dimensional integral is replaced by a sum over all lattice points, a4
∑

n,
as in the gauge action case. This description however is not gauge-invariant under
local SU (3)c transformations since fermion fields, ψ(n + μ̂) and ψ(n − μ̂), acquire
different phases under transformations defined by,

ψ(n) → ψ′(n) = V (n)ψ(n) ψ̄(n) → ψ̄′(n) = ψ̄(n)V †(n), (3.27)

whereV (n) is a local SU (3)c gauge transformation.Weare familiarwith this problem
from the continuum case and the remedy is to define a covariant derivative by using
the discrete version of the gauge fields—link variables. We insert them accordingly
to form a gauge-invariant action,

SF [ψ, ψ̄,U ] = a4
∑
n,m

ψ̄(n)

⎡
⎣mqδn,m + 1

2a

4∑
μ=1

γμ

(
Uμ(n)δn+μ̂,m −U†

μ(n − μ̂)δn−μ̂,m

)⎤⎦ψ(m)

= a4
∑
n,m

ψ̄(n)D(n,m)ψ(m), (3.28)

where we have defined the term in the square brackets as theDirac operator, D(n,m).
Using Eq. (3.14), this form can be shown to be gauge invariant.

In order to convince ourselves that this prescription corresponds to the continuum
action, consider the Taylor expansions of link variables and fields in the a → 0 limit
up to O(a),

Uμ(n) = 1 + iags Aμ(n) + O(a2), (3.29)

U †
μ(n − μ̂) = 1 − iags Aμ(n − μ̂) + O(a2), (3.30)

Aμ(n − μ̂) = Aμ(n) + O(a), (3.31)

ψ(n ± μ̂) = ψ(n) + O(a). (3.32)

Inserting the above expressions accordingly, we recover the continuum action,

SF [ψ, ψ̄,U ] = a4
∑
n

4∑
μ=1

ψ̄(n)
[
γμ∂μ + igsγμA

μ(n) + mq
]
ψ(n) + O(a2) (3.33)

→
∫

d4x ψ̄(x)
(Dμ + mq

)
ψ(x) + O(a2), (3.34)

where Dμ is the continuum covariant derivative.

Some properties of the naive fermion action are:

• Discretisation errors start at O(a2).
• It is invariant under the global symmetry:

ψ(n) → eiαψ(n) ψ̄(n) → ψ̄(n)e−iα, (3.35)
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whereα is just a continous parameter. This symmetry is related to the baryon number
conservation and leads to the conservation of the vector current.
• Considering massless fermions, i.e. mq = 0, naive action remains invariant under
chiral transformations,

ψ(n) → eiαγ5ψ(n) ψ̄n → ψ̄(n)e−iαγ5 , (3.36)

as well. It implies that the axial current is conserved, which is in conflict with the
continuum Adler-Bell-Jackwin anomaly [11, 12] where the divergence of the axial
current is nonzero. Unphysical fermion modes (doublers), turns out to be responsible
for the cancellation of the ABJ anomaly [13].
• Naive fermion action has unphysical fermion modes.

3.4.2 Fermion Doubling

Naive discretisation procedure leads to 2d=4 = 16 fermion species in the continuum
limit, 15 of which are extra or doublers. Analysing the quark propagator gives an
insight to the fermion doubling problem. Recall the Dirac operator in Eq. (3.28),

D(n,m) = mqδn,m + 1

2a

4∑
μ=1

γμ

(
Uμ(n)δn+μ̂,m −U †

μ(n)δn−μ̂,m
)
. (3.37)

Using the exponent definition of the Kronecker delta function,

δn,m = 1

|�|
∑
kμ

e−iakμ(n−m), (3.38)

where |�| = N 3
S NT is the total number of lattice sites, Fourier transform the Dirac

operator on a trivial gauge configuration, i.e. Uμ = 1,

D̃(n,m) = 1

|�|
∑
n,m

∑
kμ

⎧⎨
⎩mqe

−iakμ(n−m) + 1

2a

4∑
μ=1

γμ

(
e−iakμ(n+μ̂−m) − e−iakμ(n−μ̂−m)

)⎫⎬
⎭ .

(3.39)
Factoring out an e−iakμ(n−m) and using Eq. (3.38) once again, we get,

D̃(n,m; k) = δn,m

⎛
⎝mq + i

a

4∑
μ=1

sin(kμa)γμ

⎞
⎠ (3.40)

= δn,mD(k) (3.41)
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where we have also used the Euler’s formula for the sine function, dropped the unit
vector

∣∣μ̂∣∣ = 1 and defined the term in parentheses as D(k). Multiplyingwith D(k)−1

from right we find the relation,

D̃(k)D(k)−1 = δn,m, (3.42)

where the inverse of the D(k) is,

D(k)−1 = mq − ia−1∑
μ sin(kμa)γμ

m2
q + a−2

∑
μ sin

2(kμa)
, (3.43)

and by inverse Fourier transforming we obtain the quark propagator D(n,m)−1,

D(n,m)−1 = 1

|�|
∑
kμ

D−1(k)e−iakμ(n−m). (3.44)

Fermion doubling shows itself in the momentum space propagator in Eq. (3.43).
Written down for massless fermions,

D(k)−1 = −ia−1∑
μ sin(kμa)γμ

a−2
∑

μ sin
2(kμa)

, (3.45)

we see that the term in the denominator has a pole for kμ = (0, 0, 0, 0), corresponding
to physical fermions, along with 15 more due to the periodicity of the sine function.
Extra poles, or unphysical fermions, lie at kμ = π and 0, i.e. kμ = (π/a, 0, 0, 0),
(0,π/a, 0, 0), . . . , (π/a,π/a,π/a,π/a).

3.4.3 Wilson Fermions

It is necessary to remove the extra modes to have a reliable lattice theory. Solution, as
suggested by Wilson [14], is to add an extra operator to the naive action which does
not change its continuum limit. The relevant term is a dimension-5 Laplace operator,

ar�̂ = ar

2a2

4∑
μ=1

(
Uμ(n)δn+μ̂,m − 2δn,m +U †

μ(n − μ̂)δn−μ̂,m
)
, (3.46)

where the constant a ensures that the Wilson term vanishes as a → 0. With the
addition of this term, Dirac operator becomes,



3.4 Fermion Action 37

D(n,m) =
(
mq + 4r

a

)
δn,m − 1

2a

4∑
μ=1

[(
r − γμ

)
Uμ(n)δn+μ̂,m + (r + γμ

)
U†

μ(n)δn−μ̂,m

]

= δn,m − κ

4∑
μ=1

[(
r − γμ

)
Uμ(n)δn+μ̂,m + (r + γμ

)
U†

μ(n)δn−μ̂,m

]
, (3.47)

where we have introduced the κ parameter,

κ = 1

2(mqa + 4r)
, (3.48)

and by rescaling the fermion fields as,

ψ ≡ √mqa + 4r ψ = ψ/
√
2κ, (3.49)

doubler-free Wilson fermion action is written as,

SWF [ψ, ψ̄,U ] = a4
∑
n,m

ψ̄(n)D(n,m)ψ(m),

D(n,m) = δn,m − κ

4∑
μ=1

[(
r − γμ

)
Uμ(n)δn+μ̂,m + (r + γμ

)
U †

μ(n)δn−μ̂,m
]
.

(3.50)

We may follow a similar procedure to that of the previous section and analyse the
momentum-space propagator. Wilson term transforms into a cosine term,

D̃W (k)−1 = a−1

⎡
⎣1 − 2κ

⎛
⎝i

4∑
μ=1

γμsin(kμa) +
4∑

μ=1

r cos(kμa)

⎞
⎠
⎤
⎦ , (3.51)

lifting the doublers such that, they acquire masses of O(1/a) for each kμa = π
component, so, they get heavy and decouple in the continuum limit as a → 0.

Some properties of the Wilson fermions are:

• Doublers are removed by adding a higher dimensional term to the naive action.
They acquire a mass of O(1/a) and decouple in the continuum limit. ABJ anomaly
is restored [15].
• We have picked up a 4r/a term along the way which acts as a mass term (see
Eq. (3.47)) and breaks the chiral symmetry explicitly even in the mq → 0 limit.
As a consequence, for example, the axial Ward-Takahashi identity receives O(a)

corrections. Such quantities are used to improve the lattice actions and operators by
matching the lattice results with the continuum [16].

There is, unfortunately, no remedy for the explicit chiral symmetry breaking in
Wilson’s formulation. One has to consider other formulations, e.g. staggered [17],
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overlap [18] or domain-wall [19] fermions provide actions that preserve chiral sym-
metry and are doubler-free while, however, introducing other setbacks.
• Global

ψ(n) → eiαψ(n), ψ̄n → ψ̄ne−iα, (3.52)

symmetry is still preserved. One can derive the corresponding conserved non-local
vector current via Noether procedure as,

Vμ(x) = 1

2
[q̄(x + μ)U †

μ(r + γμ)q(x) − q̄(x)Uμ(r − γμ)q(x + μ)]. (3.53)

This current can be employed without renormalisation since it is conserved.
• There is a one-to-one correspondence between the continuum and lattice operators
one can form. We simply formulate the observables in continuum language in Sect.
4.1 and estimate their values by ensemble averages.
• O(a2) discretisation errors of the naive action is demoted to O(a) due to the
additional Wilson term, which calls for an improvement.

3.4.4 Improved Action

We summarise how anO(a)-improvement is achieved via Symanzik’s improvement
program [20–25]. We have mentioned a few times before that we can add higher
dimension terms to the lattice actionwhich serve to remove the discretisation artefacts
as long as the continuum form of the action is preserved. Formally, this statement
may be understood from an effective theory approach [22, 23] with the action,

SCont (x) =
∫

d4x
{LLat (x) + aL1(x) + a2L2(x) + . . .

}
, (3.54)

whereLLat (x) is the dimension-4 lattice Lagrangian density andLi (x) include 4 + i
dimensional local operators. For O(a)-improvement one should add counter terms
that cancel L1(x). Respecting the underlying symmetries, there appears to be five
dimension-5 operators,

Ô1 = ψ̄σμνFμνψ,

Ô2 = ψ̄DμDμψ + ψ̄
←−
D μ

←−
D μψ,

Ô3 = mqTr
[
FμνFμν

]
,

Ô4 = mq

(
ψ̄γμDμψ + ψ̄

←−
D μγμψ

)
,

Ô5 = m2
q ψ̄ψ,
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thatwould constructL1(x), where Ô2 and Ô4 gets eliminated by use of field equations
and Ô3 and Ô5 are absorbed into bare coupling andmass renormalisation factors [16].
So the counter term depends only on Ô1 and the improved action is written down
as [26],

SCF = SWF + aκqa
4
∑
n

∑
μ<ν

cSW ψ̄(n)
1

2
σμν F̂μν(n)ψ(n), (3.55)

where SWF is theWilson action in Eq. (3.50), cSW is the Sheikholeslami-Wohlert term
whose value should be tuned to eliminate the O(a) term and we have separated
the a4 term that is associated with the sum over n which is the discrete version of
the four-dimensional integral. Here, σμν = 1

2 [γμ, γν], κq is defined in Eq. (3.48) and

F̂μν(n) is the gluon field strength tensor shown in Fig. 3.3 and defined as,

Fμν(n) = 1

8i

(
Qμν(n) − Q†

μν(n)
)

(3.56)

Qμν(n) = Uμ,ν(n) +Uν,−μ(n) +U−μ,−ν(n) +U−ν,μ(n), (3.57)

where Uμ,ν are 1 × 1 plaquettes.
Improvement coefficient is cSW = 1, in the tree-level approximation and deter-

mined in 1-loop order [27, 28] as well. In order to fully remove the O(a) artefacts,
however, one needs a non-perturbative improvement which is usually done by tun-
ing cSW to reproduce the axial Ward-Takahashi identity up toO(a2) [16]. PACS-CS
Collaboration follows the non-perturbative method and determines the improvement
coefficient as cSW = 1.715 [29].

ν

μ

n

Fig. 3.3 The clover term. Sum of plaquettes in the μ-ν plane. Compare with Eq. (3.15) and Fig. 3.1
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3.5 Workflow

We sketch some aspects of a typical application of lattice QCD to the computation of
a generic zero-temperature, zero-density hadronic observable. Details are discussed
in length in Chap. 4. As a first glimpse on how to calculate physical quantities via
lattice simulations, let us consider a generic correlation function of the form,

〈Ô〉 = 1

Z

∫
D [U ] e−SG [U ]D [ψ̄,ψ

]
e−SF [ψ̄,ψ,U ]O [ψ̄,ψ

]
, (3.58)

written in Feynman path integral formalism in Euclidean space-time. LHS is in
operator language such that Ô is a combination of operators relevant to the desired
quantity and RHS is in functional form with the integral measures over gauge and
fermion fields defined by,

D [U ] = �n�
4
μ=1dUμ(n), D [ψ̄,ψ

] = �ndψ̄(n)dψ(n). (3.59)

SG and SF are Euclidean gauge and fermion actions as defined in Sects. 3.3 and 3.4
and the partition function is defined as,

Z =
∫

D [U ]D [ψ̄,ψ
]
e−(SG+SF ). (3.60)

Note that switching from a Minkowski description to Euclidean one by a Wick
rotation, i.e. t → −iτ is a crucial point and has two advantages: (i) We exploit a
connection to statistical mechanics and use methods such asMonte Carlo integration
and (ii) the exponents are now exponential decays, e.g. e−SG , in contrast to the
oscillating function of Minkowski formulation, e−i SG , which stabilises the Monte
Carlo simulations.

Fermion fields are represented by Grassmann numbers since they obey Fermi-
Dirac statistics. Following the integration rules of Grassmann numbers, integration
of the fermion action reduces to a fermion determinant form [30, 31],

IF =
∫

D [ψ̄,ψ
]
e
∫
d4xψ̄Dψ = det [D] , (3.61)

where D is the corresponding Dirac operator of the chosen action. Now, our descrip-
tion takes the form,

〈Ô〉 = 1

Z

∫
D [U ] e−SG [U ]det [D]O [ψ̄,ψ

]
, (3.62)

where there will be a fermion determinant for each quark flavor that one considers
in application, e.g. det [Du] det [Dd ] det [Ds] for three flavors. Fermion determinant
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plays a crucial role in including the sea-quark effects in simulations since, although
not immediately clear here, it represents the fermion loops in the vacuum.

Considering hadronic observables, for instance, operators of the correlation func-
tion depend on combinations of quark bilinears composed of quarks fields and
gamma matrices, �. Wick contraction translates quark fields into quark propaga-
tors, Sq(n,m) = D−1, which is calculated numerically by inverting the Dirac matrix
for each color and Dirac component of the quark. Hadronic correlation function then
assumes the form,

〈Ô〉 = 1

Z

∫
D [U ] e−SG [U ]det [D] Tr

[
�Sq1(n,m)�Sq2(n,m) . . .

]
. (3.63)

In order to evaluate the integral over the gauge fieldswe exploit the resemblance of
this form to the one in statistical mechanics systems: Consider a spin system whose
energy is given by a functional, E(s), of its spins. Broadly speaking, expectation
value of some observable, O , is then estimated by summing over its value obtained
on all possible configurations of the system,

〈O〉 = 1

Z

∑
s

e−βE(s)O(s), (3.64)

where Z is the partition function of the system, β = 1/kBT is defined in terms of
Boltzmann constant, kB and temperature, T , and e−βE(s) is the Boltzmann factor.
In our case, e−SG [U ]elog(det[D]) term assumes the role of the Boltzmann factor as a
weight function and the value of the observable is simply given by a sum over all
possible configurations of the QCD vacuum, so-called gauge ensembles. In practice,
however, there may be infinitely many QCD configurations so the observables are
estimated by averaging over a sufficient number of ensembles,

〈Ô〉 =
∫ D [U ] e−SG [U ]det [D]O [ψ̄,ψ

]
∫ D [U ] e−SG [U ]det [D]

= lim
N→∞

1

N

N∑
n=1

O [ψ̄,ψ
]
. (3.65)

Although the underlying idea is simple, generating reliable gauge configurations is
a formidable task usually tackled by collaborations with access to vast computational
resources. Gauge configurations are generated by Monte Carlo simulations with
several algorithms that are being employed. We do not cover the details but refer
the reader to other pedagogical sources such as the lecture notes by Gattringer and
Lang [32]. We do note, however, that gauge configuration generation is a highly
technical field, also from a computer science point of view, which challenges high-
performance computing centers, even with dedicated supercomputers to the task in
some cases [33].
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Historically, fermion determinant, hence the sea-quark effects, was ignored by
setting det [D] = 1, which is known as the quenched approximation. Proceeding
by this method is still used as a first means of exploratory calculations, however,
one needs full QCD calculations, which include the determinant, to draw realistic
conclusions from a lattice approach.

We may form a simple recipe to summarise the necessary steps to evaluate
hadronic observables on the lattice as:

• Generate gauge configurations: Note that we do not generate any for this work
but employ the publicly available ones. Details are given in Sect. 4.2.1.

• Construct the correlation functions via operators corresponding to the hadronic
observable in question and re-express it in terms of quark propagators: We cover
the details in Sects. 4.1.2.1 and 4.1.2.2 and some technical details about propagator
calculation are given in Sects. 4.2.3 and 4.2.5

• Evaluate the ensemble average and estimate the observable: We discuss an array
of results in Chap.5.
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Formalism and Results



Chapter 4
Theoretical Formalism and Simulation
Setup

Abstract This chapter consists of two parts where we, first, discuss the essential
theoretical formalism to investigate the observables we are interested in. Mainly, we
provide the formulations to extract the mass and the electromagnetic form factors
of spin-1/2 and spin-3/2 baryons. A brief account on data analysis is also given.
Second part focuses on the technical, computaional aspects of the lattice method
where we detail our setup. Information about the gauge configurations, parameter
tunings, propagator inversions and statistical improvements are all given in this part.

Keywords Hadron mass · Electromagnetic form factor
Spin-1/2 and spin-3/2 baryons · Lattice simulations · Parameter tuning

4.1 Theoretical Formalism

4.1.1 Hadron Masses

Mass of a hadron is one of the crucial properties that we use to identify a particular
hadron along with its quantum numbers. Hadron spectrum calculations have been
(and still are) central to our understanding of the strong interactions. In the continuum
quantum field theory language, the mass of a particle is encoded into its two-point
correlation function which describes the particle freely propagating along the time
direction. It is better to write the two-point correlation function as a spectral decom-
position to make the discussion more clear, so let us write down the correspondence
for a positive parity spin-1/2 baryon as an example and continue with the lattice
method to extract the mass.

4.1.1.1 Spectral Decomposition

We define the two-point correlation function of a spin-1/2 baryon projected to a
definite momentum as,

© Springer Nature Singapore Pte Ltd. 2018
K. U. Can, Electromagnetic Form Factors of Charmed Baryons in Lattice QCD,
Springer Theses, https://doi.org/10.1007/978-981-10-8995-4_4

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8995-4_4&domain=pdf


48 4 Theoretical Formalism and Simulation Setup

〈GBB(t;p;�)〉 =
∑

x

e−ip·x�βα〈0|T {χα
B(x, t)χ̄β

B(0)}|0〉, (4.1)

where χB is the interpolating field of the baryon and α and β are Dirac indices.
Inserting the identity operator as a complete set of states,

∑
B,s |B(p, s)〉〈B(p, s)|

we end upwith a sum over all possible states that correspond to the quantum numbers
defined by the χB interpolating field,

〈GBB(t;p;�)〉 =
∑

B,s

e−EB(p)t�βα〈0|χα
B(p)|B(p, s)〉〈B(p, s)|χ̄β

B(0)|0〉 (4.2)

= A0(p)e−E0(p)t + A1(p)e−E1(p)t + . . . , (4.3)

where we have factored out the time dependence of the fields, acted it upon the
states properly and have collected them into the functions An(p) for simplicity. En

corresponds to the energy of the respective state starting from the n = 0 ground
state. Since we are interested in the mass of the lowest-lying state we take the large
Euclidean time limit, t � a, so that the ground state B dominates and the correlation
function reduces to the first term of Eq. (4.3),

〈GBB(t;p;�)〉 =
∑

s

e−EB(p)t�βα〈0|χα
B(p)|B(p, s)〉〈B(p, s)|χ̄β

B(0)|0〉, (4.4)

where we have now written the spin sum explicitly and identified the ground state
with definitemomentum. The overlap between the interpolating field and the physical
state is defined as,

〈0|χα
B(0)|B(p, s)〉 = ZB

√
MB

EB(p)
u(p, s), (4.5)

where ZB is the overlap factor, MB is the mass of the baryon and u(p, s) is the Dirac
spinor. Using the Dirac spinor sum,

∑

s

u(p, s)ū(p, s) = γμ pμ + MB
2MB

, (4.6)

and inserting Eq. (4.5) into Eq. (4.4); the two-point function takes the form:

〈GBB(t;p;�)〉 = |ZB|2 MB
EB(p)

e−EB(p)tTr[� γμ pμ + MB
2MB

]. (4.7)
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Finally using the definitions of the � matrices as,

�i = 1

2

(
σi 0
0 0

)
, �4 = 1

2

(
I 0
0 0

)
, (4.8)

we find that only the �4 component survives and setting the three momentum to
p = (0, 0, 0) reduces the expression to,

〈GBB(t; 0;�4)〉 = |ZB|2 e−MB t . (4.9)

This quick derivation immediately gives us the functional form that we will use in
regression analysis (described in Sect. 4.1.3) of the two-point correlation function
and extract the mass of B.

4.1.1.2 Lattice Method

Once we compute the lattice two-point correlation function it is a simple procedure
to extract the mass of the baryon. However there is an important issue to be aware
of, which is evident if we take a closer look to the Eq. (4.2),

〈GBB(t;p;�)〉 = A0(p)e−E0(p)t + A1(p)e−E1(p)t + . . . . (4.10)

The sum over all possible states indicates that not only the ground state of the baryon
but also all the possible excited states or many-particle states that correspond to the
same quantum numbers are included in the correlation function. Exponential terms,
on the other hand, ensure that all the states decay with respect to the elapsed time.
Rearranging Eq. (4.10) for the ground state with zero-momentum we have,

〈GBB(t; 0;�)〉 = Ae−MB t (1 + O(e−�Et ) + . . . ), (4.11)

where �E is the energy gap between the ground state and the first excited state.
Notice that the contributions of the excited states fall off faster compared to the
ground state and ideally the larger time slices should contain the information from
the ground state only. This simple observation leads us to form a quantity called
effective mass,

meff(t + 1

2
) = GBB(t)

GBB(t + 1)
, (4.12)

which basically allows us to pinpoint the time slice that the ground state signal
saturates and guides our analysis of the lattice two-point correlation function. The
analysis has a few steps to follow:
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1. Calculate the effective mass and plot it with respect to time, t ,
2. Pinpoint the time slice, ti , where the curve starts to form a plateau,
3. Define the fit window [ti , t f ],
4. Fit GBB(t; 0;�) to Eq. (4.9) and extract the mass.

The crucial point is to identify the plateau region which is the key to a reliable mass
extraction. Usually one chooses the initial time slice by intuition or, more technically,
by shifting the initial choice by a few steps and picking the one having the best
response to a goodness of fit analysis. It is good practice to define the fit region until
the point where the signal is deemed to be lost [1]. The upper limit of the fit window
in our case is limited to the half of the temporal lattice extent Nt/2 since the backward
propagating (opposite parity) states interfere for the t > Nt/2 time slices on periodic
boundary lattices. Adding extra terms to account for backward propagating states is
a reasonable option however further complicating the fit function would decrease the
quality of the fit and is not necessary for our analysis.

4.1.2 Form Factors

Electromagnetic form factors of baryons can be calculated through their matrix ele-
ments of the electromagnetic vector current Vμ = ∑

q eq q̄(x)γμq(x), where q runs
over the quark content of the baryon in consideration. In the following sections we
write down the transition matrix elements for spin-1/2 → spin-1/2 and spin-3/2 →
spin-3/2 transitions and show how to identify and extract the form factors from lattice
QCD simulations.

4.1.2.1 Spin-1/2 Elastic Form Factors

We have written down the electromagnetic transition matrix element for the
spin−1/2 → spin−1/2 transition in Sect. 2.4 when we discussed the hadron struc-
ture but let us recall it again for completeness. Matrix element is written in the
following form

〈B(p′, s ′)|Vμ|B(p, s)〉 = ū(p′, s ′)
[
γμF1,B(q2) + i

σμνqν

2MB
F2,B(q2)

]
u(p, s),

(4.13)

where qμ = p′
μ − pμ is the transferred four-momentum and σμν = 1

2 {γμ, γν}. Here
u(p) denotes the Dirac spinor for the baryon with four-momentum pμ and mass
MB. The Dirac, F1,B(q2), and Pauli, F2,B(q2), form factors are related to the Sachs
electric and magnetic form factors by the relations,
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GE,B(q2) = F1,B(q2) + q2

4M2
B
F2,B(q2), (4.14)

GM,B(q2) = F1,B(q2) + F2,B(q2). (4.15)

We follow the method outlined in Ref. [2] which is employed to extract the nucleon
electromagnetic form factors via computing the matrix element in Eq.4.13 using the
following ratio,

R(t2, t1; p′,p; �; μ) = 〈GBVμB(t2, t1; p′,p; �)〉
〈GBB(t2; p′; �4)〉

×
[ 〈GBB(t2 − t1; p; �4)〉〈GBB(t1; p′; �4)〉〈GBB(t2; p′; �4)〉

〈GBB(t2 − t1; p′; �4)〉〈GBB(t1; p; �4)〉〈GBB(t2; p; �4)〉
]1/2

,

(4.16)

where the baryonic two-point and three-point correlation functions are respectively
defined as,

〈GBB(t;p;�4)〉 ≡
∑

x

e−ip·x�αα′
4 〈vac|T [χα

B(x)χ̄α′
B (0)]|vac〉, (4.17)

〈GBVμB(t2, t1;p′,p;�)〉 ≡ −i
∑

x2,x1

e−ip·x2eiq·x1�αα′

× 〈vac|T [χα
B(x2)Vμ(x1)χ̄

α′
B′(0)]|vac〉. (4.18)

Here, t1 is the time when the external electromagnetic field interacts with a quark
and t2 is the time when the final baryon state is annihilated. � functions are defined
in Eq. (4.8). We choose the baryon interpolating fields, similar to that of the proton,
but by replacing the quark fields accordingly as,

χ�c(x) = εi jk[�T i (x)Cγ5c
j (x)]�k(x),

χ�cc(x) = εi jk[cT i (x)Cγ5�
j (x)]ck(x),

χ�c(x) = εi jk[sT i (x)Cγ5c
j (x)]sk(x),

χ�cc(x) = εi jk[cT i (x)Cγ5s
j (x)]ck(x),

(4.19)

where � = u for the doubly charged �++
cc (ccu)/�++

c (cuu) and � = d for the singly
charged �+

cc(ccd)/�+
c (cdd) baryons. Here i , j , k denote the color indices and

C = γ4γ2. Inserting the interpolating fields into Eqs. (4.17) and (4.18) and perform-
ing theWick contractions, we write the correlation functions in terms of propagators.
Let us simplify the form of the above interpolating fields by replacing the specific
flavours by generic q1, q2 and q3 fields for the ease of discussion,
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χB(x) = εi jk[qT i
1 (x)Cγ5q

j
2 (x)]qk

3 (x), (4.20)

and write down the two-point and three-point correlation functions in terms of prop-
agators. We rewrite the two-point correlation function in Eq. (4.17) associated with
the χB field as,

〈GBB(t; p; �4)〉 =
∑

x

e−ip·x�αα′
4 〈vac|T [χα

B(x)χ̄α′
B (0)]|vac〉

=
∑

x

e−ip·x�αα′
4 εi jkεi

′ j ′k′
(C̃)βγ(C̃)γ′β′ 〈vac|qi1(x)αq j

2 (x)βq
k
3 (x)γ q̄

k′
3 (0)γ′ q̄ j ′

2 (0)β′ q̄ i
′
1 (0)α′ |vac〉

=
∑

x

e−ip·xεi jkεi ′ j ′k′ {
Tr

[
�4S

ii ′
q1 (x, 0)S j j ′

q2 (x, 0)Skk
′

q3 (x, 0)
]

+Tr
[
�4S

ii ′
q1 (x, 0)

]
Tr

[
S j j ′
q2 (x, 0)Skk

′
q3 (x, 0)

]}
, (4.21)

where Sii
′

qi (x |0) is the quark propagator of the ith quark field, α(′), β(′), γ(′) denote the
Dirac indices and we have defined C̃ ≡ Cγ5 and S ≡ (C̃ SC̃−1)T to make the forms
simpler. By inserting the interpolating field into Eq. (4.18), connected pieces of the
three-point correlation function becomes,

〈GBVμB(t2, t1;p′,p;�)〉 ≡ −i
∑

x2,x1

e−ip·x2 eiq·x1�αα′ 〈vac|T [χα
B(x2)Vμ(x1)χ̄

α′
B′ (0)]|vac〉

=
∑

x2,x1

e−ip·x2 eiq·x1εi jkεi ′ j ′k′ {
Tr

[
� Ŝi i

′
q1 (x2, x1, 0)S

j j ′
q2 (x2, 0)S

kk′
q3 (x2, 0)

]

+ Tr
[
� Ŝi i

′
q1 (x2, x1, 0)

]
Tr

[
S j j ′
q2 (x2, 0)S

kk′
q3 (x2, 0)

]

+ Tr
[
�Sii

′
q1 (x2, 0)S

j j ′
q2 (x2, 0)Ŝ

kk′
q3 (x2, x1, 0)

]

+ Tr
[
�Sii

′
q1 (x2, 0)

]
Tr

[
S j j ′
q2 (x, 0)Ŝkk

′
q3 (x2, x1, 0)

]

+ Tr

[
�Sii

′
q1 (x2, 0)Ŝ

j j ′
q2 (x2, x1, 0)S

kk′
q3 (x2, 0)

]

+ Tr
[
�Sii

′
q1 (x2, 0)

]
Tr

[
Ŝ
j j ′
q2 (x2, x1, 0)S

kk′
q3 (x2, 0)

]}
, (4.22)

where we have defined the current inserted propagator,

Ŝi i
′

q1−3
(x2, x1, 0) ≡ Sli

′
q1−3

(x2, x1)Vμ(x1)S
al ′
q1−3

(x1, 0), (4.23)

with Vμ denoting the conserved, point-split lattice electromagnetic current,

Vμ(x) = 1

2
[q̄(x + μ̂)U †

μ(1 + γμ)q(x) − q̄(x)Uμ(1 − γμ)q(x + μ̂)]. (4.24)
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Once we identify the quark fields, q1−3, according to the Eq. (4.19) we recover the
two- and three-point correlation functions of the respective baryons.

Written in terms of the hadron degrees of freedom, two-point correlation function
reduces to the Eq. (4.7) we have derived in Sect. 4.1.1.1. Inserting sets of complete
states to the left and right of the current, Vμ, and using the Eqs. (4.5) and (4.13),
three-point correlation function takes the form,

〈GBVμB(t2, t1; p′,p; �)〉 = ZB(p′)Z̄B(p)

√
MBMB

EB(p)EB(p′)
e−EB(p′)t2e[EB(p′)−EB(p)]t1�αα′

×
∑

s,s′
uα
B(p′, s′)ūβ

B(p′, s′)
[
γμF1,B(q2) + i

σμνqν

2MB
F2,B(q2)

]

ββ′
uβ′
B (p, s)ūα′

B (p, s)

= ZB(p′)Z̄B(p)

√
MBMB

EB(p)EB(p′)
e−EB(p′)t2e[EB(p′)−EB(p)]t1

× Tr

[
�

γμ p′μ + MB
2MB

(
γμF1,B(q2) + i

σμνqν

2MB
F2,B(q2)

)
γμ pμ + MB

2MB

]
. (4.25)

Sachs form factors, GE,B(q2) and GM,B(q2), are isolated when we take the large
Euclidean time limit, t2 − t1 and t1 � a, so that the ratio in Eq. (4.16) reduces to the
desired form

R(t2, t1;p′,p;�;μ)
t1�a−−−−→

t2−t1�a
�(p′,p;�;μ), (4.26)

and by choosing appropriate combinations of Lorentz direction μ and projection
matrices �, we extract the form factors as,

�(0,−q;�4;μ = 4) =
[
(EB + MB)

2EB

]1/2

GE,B(q2), (4.27)

�(0,−q;� j ;μ = i) =
[

1

2EB(EB + MB)

]1/2

εi jk qk GM,B(q2). (4.28)

Here, GE,B(0) gives the electric charge of the baryon. Similarly, the magnetic
moment can be obtained from the magnetic form factor GM,B at zero momentum
transfer.

4.1.2.2 Spin-3/2 Elastic Form Factors

For a spin−3/2 → spin−3/2 transition, matrix element of the electromagnetic cur-
rent is written as,

〈Bσ(p′, s ′)|V μ|Bτ (p, s)〉 =
√

MBMB
E(p)E(p′)

ūσ(p′, s ′)Oσμτuτ (p, s), (4.29)



54 4 Theoretical Formalism and Simulation Setup

where p(s) and p′(s ′) denote the four momentum (spin) of the initial and final
states, respectively. MB is the mass of the baryon, E(p) (E(p′)) is the energy of the
incoming (outgoing) baryon state and uα(p, s) is the baryon spinor in the Rarita-
Schwinger formalism [3]. The tensor, Oσμτ , in Eq. (4.29) has been derived in Ref.
[4] and here we summarise the relevant parts to our calculation. Oσμτ is given in a
Lorentz-covariant form as

Oσμτ = −gστ

{
a1γ

μ + a2
2MB

Pμ

}
− qσqτ

(2MB)2

{
c1γ

μ + c2
2MB

Pμ

}
, (4.30)

where P = p + p′ and q = p′ − p. The multipole form factors are then defined in
terms of the covariant vertex functions a1, a2, c1 and c2 as,

GE0(q
2) = (1 + 2

3
τ ) {a1 + (1 + τ )a2} − 1

3
τ (1 + τ ) {c1 + (1 + τ )c2} , (4.31)

GE2(q
2) = {a1 + (1 + τ )a2} − 1

2
(1 + τ ) {c1 + (1 + τ )c2} , (4.32)

GM1(q
2) = (1 + 4

3
τ )a1 − 2

3
τ (1 + τ )c1, (4.33)

GM3(q
2) = a1 − 1

2
(1 + τ )c1, (4.34)

with τ = −q2/(2MB)2. These multipole form factors are referred to as electric-
charge (E0), electric-quadrupole (E2),magnetic-dipole (M1) andmagnetic-octupole
(M3) multipole form factors.

The two- and three-point correlation functions for spin-3/2 baryons are defined
as,

〈GBB
στ (t;p;�4)〉 ≡

∑

x

e−ip·x�αα′
4 〈vac|T [χσ,α(x)χ̄τ ,α′(0)]|vac〉, (4.35)

〈GBV μB
στ (t2, t1;p′,p;�)〉 ≡ −i

∑

x2,x1

e−ip′ ·x2eiq·x1

× �αα′ 〈vac|T [χσ,α(x2)V
μ(x1)χ̄τ ,α′(0)]|vac〉, (4.36)

where the spin projection matrices � and �4 are the ones defined in Eq. (4.8). α, α′
denote the Dirac indices and σ, τ are the Lorentz indices of the spin-3/2 interpolating
fields. The baryon interpolating fields are chosen, similarly to those of the decuplet
�+ baryon as

χμ(x) = 1√
3
εi jk{2[qT i

1 (x)Cγμq
j
2 (x)]qk

3 (x) + [qT i
1 (x)Cγμq

j
3 (x)]qk

2 (x)}, (4.37)

where i , j , k denote the color indices and C = γ4γ2. q1, q2, q3 are the quark flavors
and chosen as (q1, q2, q3) ={(s, s, s), (s, s, c), (s, c, c), (c, c, c)} for �, �∗

c , �
∗
cc and
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�ccc baryons, respectively. In principle, the interpolating field in Eq. (4.37) couples
to spin-1/2 baryons also and a spin-3/2 projection might be desirable but, it has been
shown in Refs. [5, 6] that it has minimal overlap with spin-1/2 states and therefore
spin-3/2 projection is not necessary.

Inserting the interpolating field into the two- and three-point correlation functions
and performingWick contractions we derive the expressions of correlation functions
in terms of quark propagators as,

〈GBB
στ (t; p; �4)〉 ≡

∑

x

e−ip·x�αα′
4 〈vac|T [χσ,α(x)χ̄τ ,α′ (0)]|vac〉 (4.38)

= 1

3

∑

x

e−ip·xεi jkεi ′ j ′k′ {
4Tr

[
�4S

kk′
q2 (x, 0)γτCST ii

′
q3 (x, 0)CγσS

j j ′
q1 (x, 0)

]

+ 4Tr
[
�4S

kk′
q2 (x, 0)γτCST ii

′
q1 (x, 0)CγσS

j j ′
q3 (x, 0)

]

+ 4Tr
[
�4S

kk′
q3 (x, 0)γτCST ii

′
q1 (x, 0)CγσS

j j ′
q2 (x, 0)

]

+ 2
(
Tr

[
�4S

kk′
q2 (x, 0)

]
Tr

[
γτCST ii

′
q3 (x, 0)CγσS

j j ′
q1 (x, 0)

])

+ 2
(
Tr

[
�4S

kk′
q2 (x, 0)

]
Tr

[
γτCST ii

′
q1 (x, 0)CγσS

j j ′
q3 (x, 0)

])

+2
(
Tr

[
�4S

kk′
q3 (x, 0)

]
Tr

[
γτCST ii

′
q1 (x, 0)CγσS

j j ′
q2 (x, 0)

])}
, (4.39)

where, similar to the notation in the spin-1/2 case, Sii
′

qi (x, 0) is the quark propagator
of the ith quark field in the interpolator. We derive the connected contributions of the
three-point functionby inserting the electromagnetic current to eachquarkpropagator
in the above expression. There are 18 terms to consider,

〈GBVμB
στ (t2, t1;p′, p; �)〉 ≡ −i

∑

x2,x1

e−ip′ ·x2eiq·x1 × �αα′ 〈vac|T [χσ,α(x2)Vμ(x1)χ̄τ ,α′ (0)]|vac〉

= 1

3

∑

x2

e−ip·x2εi jkεi ′ j ′k′ {
4Tr

[
�Skk

′
q2 (x, 0)γτCST ii

′
q3 (x, 0)Cγσ Ŝ

j j ′
q1 (x2, x1, 0)

]

+ 4Tr
[
�Skk

′
q2 (x, 0)γτC ŜT ii

′
q1 (x2, x1, 0)CγσS

j j ′
q3 (x, 0)

]

+ 4Tr
[
�Skk

′
q3 (x, 0)γτC ŜT ii

′
q1 (x2, x1, 0)CγσS

j j ′
q2 (x, 0)

]

+ 4Tr
[
� Ŝkk

′
q2 (x2, x1, 0)γτCST ii

′
q3 (x, 0)CγσS

j j ′
q1 (x, 0)

]

+ 4Tr
[
� Ŝkk

′
q2 (x2, x1, 0)γτCST ii

′
q1 (x, 0)CγσS

j j ′
q3 (x, 0)

]

+ 4Tr
[
�Skk

′
q3 (x, 0)γτCST ii

′
q1 (x, 0)Cγσ Ŝ

j j ′
q2 (x2, x1, 0)

]

+ 4Tr
[
�Skk

′
q2 (x, 0)γτC ŜT ii

′
q3 (x2, x1, 0)CγσS

j j ′
q1 (x, 0)

]

+ 4Tr
[
�Skk

′
q2 (x, 0)γτCST ii

′
q1 (x, 0)Cγσ Ŝ

j j ′
q3 (x2, x1, 0)

]

+ 4Tr
[
� Ŝkk

′
q3 (x2, x1, 0)γτCST ii

′
q1 (x, 0)CγσS

j j ′
q2 (x, 0)

]
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+ 2
(
Tr

[
�Skk

′
q2 (x, 0)

]
Tr

[
γτCST ii

′
q3 (x, 0)Cγσ Ŝ

j j ′
q1 (x2, x1, 0)

])

+ 2
(
Tr

[
�Skk

′
q2 (x, 0)

]
Tr

[
γτC ŜT ii

′
q1 (x2, x1, 0)CγσS

j j ′
q3 (x, 0)

])

+ 2
(
Tr

[
�Skk

′
q3 (x, 0)

]
Tr

[
γτC ŜT ii

′
q1 (x2, x1, 0)CγσS

j j ′
q2 (x, 0)

])

+ 2
(
Tr

[
� Ŝkk

′
q2 (x2, x1, 0)

]
Tr

[
γτCST ii

′
q3 (x, 0)CγσS

j j ′
q1 (x, 0)

])

+ 2
(
Tr

[
� Ŝkk

′
q2 (x2, x1, 0)

]
Tr

[
γτCST ii

′
q1 (x, 0)CγσS

j j ′
q3 (x, 0)

])

+ 2
(
Tr

[
�Skk

′
q3 (x, 0)

]
Tr

[
γτCST ii

′
q1 (x, 0)Cγσ Ŝ

j j ′
q2 (x2, x1, 0)

])

+ 2
(
Tr

[
�Skk

′
q2 (x, 0)

]
Tr

[
γτC ŜT ii

′
q3 (x2, x1, 0)CγσS

j j ′
q1 (x, 0)

])

+ 2
(
Tr

[
�Skk

′
q2 (x, 0)

]
Tr

[
γτCST ii

′
q1 (x, 0)Cγσ Ŝ

j j ′
q3 (x2, x1, 0)

])

+2
(
Tr

[
� Ŝkk

′
q3 (x2, x1, 0)

]
Tr

[
γτCST ii

′
q1 (x, 0)CγσS

j j ′
q2 (x, 0)

])}
, (4.40)

where the current inserted propagator, Ŝqi (x2, x1, 0), is defined in Eq. (4.23). We
compute each propagator and perform the x1 summation by the use ofwall-smearing
method as described in Sect. 4.2.5 and calculate the correlation functions as dictated
by Eqs. (4.38) and (4.40).

At the hadronic level we derive the expressions for the two- and three-point
correlation functions by inserting sets of complete eigenstates

∑
s |(p, s)〉〈(p, s)|

into Eqs. (4.35) and (4.36), like we did for the spin-1/2 case,

〈GBB
στ (t;p;�4)〉 = ZB(p′)Z̄B(p)

MB
E(p)

e−E(p)tTr[�4	στ ], (4.41)

〈GBV μB
στ (t2, t1;p′,p;�)〉 = ZB(p′)Z̄B(p)

√
MBMB

E(p)E(p′)
e−EB(p′)(t2−t1)e−EB(p)t1

× Tr[�	σσ′(p′)Oσ′μτ ′
	τ ′τ (p)], (4.42)

where the trace acts in the Dirac space, the ZB(p) is the overlap factor of the interpo-
lating field to the corresponding baryon state and 	στ is the Rarita-Schwinger spin
sum for the spin-3/2 field in Euclidean space, defined as

∑

s

uσ(p, s)ūτ (p, s) = −iγ · p + MB
2MB

[
gστ − 1

3
γσγτ + 2pσ pτ

3M2
B

− i
pσγτ − pτ γσ

3MB

]

≡ 	στ (p).

(4.43)

To extract the multipole form factors we consider the large Euclidean time limit, t2 −
t1 and t1 � a, of the following ratio of the correlation functions given in Eqs. (4.35)
and (4.36),
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R μ
σ τ (t2, t1;p′,p;�) =

[ 〈GBVμB
στ (t2, t1;p′,p;�)〉〈GBVμB

στ (t2, t1;p,−p′;�)〉
〈GBB

στ (t2;p′;�4)〉〈GBB
στ (t2;−p;�4)〉

]1/2

t1�a−−−−→
t2−t1�a

(
EB(p) + MB

2EB(p)

)1/2 (
EB(p′) + MB

2EB(p′)

)1/2

� μ
σ τ (p

′,p;�).

(4.44)

Note that there is no sum over the repeated indices. The multipole form factors are
extracted by using the following combinations of � μ

σ τ (p
′,p;�) [6]:

GE0(q
2) = 1

3

(
� 4

1 1(qi , 0; �4) + � 4
2 2(qi , 0; �4) + � 4

3 3(qi , 0; �4)
)

, (4.45)

GE2(q
2) = 2

M(E + M)

|qi |2
(
� 4

1 1(qi , 0; �4) + � 4
2 2(qi , 0; �4) − 2� 4

3 3(qi , 0; �4)
)

, (4.46)

GM1(q
2) = −3

5

E + M

|q1|2
(
� 3

1 1(q1, 0; �2) + � 3
2 2(q1, 0; �2) + � 3

3 3(q1, 0; �2)
)

, (4.47)

GM3(q
2) = −4

M(E + M)2

|q1|3
(

� 3
1 1(q1, 0; �2) + � 3

2 2(q1, 0; �2) − 3

2
� 3

3 3(q1, 0; �2)

)
,

(4.48)

where i = 1, 2, 3 and qi are the momentum vectors in three spatial directions. In
case of the E2 form factor, it is possible to exploit the symmetry,

� 4
2 2(qi , 0;�4) = � 4

3 3(qi , 0;�4), (4.49)

and define an average,

�4
avg(qi , 0;�4) = 1

2

[
� 4

2 2(qi , 0;�4) + � 4
3 3(qi , 0;�4)

]
, (4.50)

in order to decrease the statistical noise inGE2.With the above definitions,GE2 form
factor is rewritten as,

GE2(q
2) = 2

M(E + M)

|qi |2
(
� 4

1 1(qi , 0;�4) − �4
avg(qi , 0;�4)

)
. (4.51)

We consider an average over momentum directions for both E0 and E2 form
factors. In case of the M1 form factor, we make a redefinition to utilise all possible
index combinations in order to improve the signal. Sum of all correlation-function
ratios for M1 is written as,

GM1(q
2) = −3

5

(E + M)

|q|2
1

6

3∑

i, j,k=1
i 
= j 
=k

[
�

j
i i (qi , 0; �k) + �

j
i i (qk , 0; �i ) + � i

i i (q j , 0; �k)
]
.

(4.52)
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Compared to the dominant form factors E0 and M1 we have observed that the
data for the E2 and M3 form factor is much noisier. It turns out that with the limited
number of gauge configurations in ensemble N5, the data for M3 moments are too
noisy to allow a statistically significant value. Thus, we omit the M3 form factor in
this work and extract only the E0, M1 and E2 form factors for the lowest allowed
lattice momentum transfer.

It is possible that the higher order form factors in the expansion interfere with the
leading and sub-leading form factors that we consider. Although a dedicated study
would be needed to have a strong conclusion we note that the agreement between
the results obtained from different lattice formulations of Refs. [6, 7] suggest that
the interference effects are minimal.

4.1.3 Data Analysis

We briefly summarise our statistical analysis method rather than going into detail
since it can be found in any statistics textbook. For instance, Statistics for nuclear and
particle physicists by Louis Lyons [8] is a good pedagogical book with an emphasis
on nuclear and particle physics.

The quantities that we extract in this work, be it either the mass of the hadron or
a form factor value, are all fit results to data points that are varying with respect to
time t or four-momentum Q2 or m2

π. Let us call them as a generic parameter z and
the set of corresponding data points as {z}. We use least squares regression analysis
in order to estimate the observables. Considering an uncorrelated fit, we minimize
the function,

F(z) =
∑

{z}

(
f (z) − f ′(z)

σ(z)

)2

, (4.53)

with respect to the parameters of the function f ′(z), where f (z) is the value of the
data set (i.e. correlation function or the ratio) at point z and σ(z) is the standard
deviation associated with that point. The function f ′(z) might have a linear or non-
linear dependence to its free parameters depending on the observable we wish to
extract and its form is mentioned in each case we perform a regression analysis in
the respective sections.

We test the goodness of the fits by theχ2-method.Minimised function inEq. (4.53)
ismapped to aχ2 distributionwhen the data follows aGaussian distribution. Depend-
ing on the number of degrees of freedom, a χ2 distribution has a varying form with
the property χ2 = # d.o.f.. Goodness of fit is deduced by comparing the value of
the minimised function, F(z), to the χ2 value of the corresponding distribution. If
χ2 ≥ F(z), then we have a reliable fit and the parameters that we have extracted can
be trusted. χ2 values can be looked-up from relevant tables or we can simplify the
process by normalising the F(z) by the number of degrees of freedom and compar-
ing it to 1.0. Large deviations in F(z)/# d.o.f. compared to 1.0 or having exactly
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1.0 is an indication of something suspicious going-on with the fits and should be
investigated further, or, the data set can not be modelled by the function f ′(z) and
should be discarded.

We estimate all statistical errors by a single-elimination jackknife method
[9, 10]. An important issue to note about this method is that the resampling of the
data changes the definition of the standard deviation. Originally, standard deviation
of a sample is calculated by the formula,

σ =
√

1

N

N∑

n=1

(xn − x)2 , x = 1

N

N∑

n=1

xn, (4.54)

where N is the sample size and xn is the nth value of the data set. Definition changes
to,

σ =
√

N − 1

N

N∑

n=1

(xn − x)2 , (4.55)

for a resampled data set by a single-elimination jackknife method.
In principle, there may be correlations among the data points or samples which

should be accounted by a correlated fit. However, a correlated fit might be rather
unstable as pointed out in Refs. [11, 12] and unnecessary if the data sets are small.
Regarding that conclusion and personal trial and error, we analyse the data via uncor-
related fits.

4.2 Simulation Setup

In the following sections we go through the details of the gauge configurations and
methods that we employ in order to compute the matrix elements mentioned in
Sect. 4.1.2.

4.2.1 Gauge Configurations

We have run our lattice simulations on 323 × 64 lattices with 2 + 1 flavors of dynam-
ical quarks using the gauge configurations generated by the PACS-CS collabora-
tion [13] with the nonperturbatively O(a)-improved Wilson quark action (Clover
action) and the Iwasaki gauge action. Properties of the lattices are given in Table4.1.
A lattice spacing of a = 0.0907(13) fm, corresponds to a−1 = 2.176(31)GeV,which
we use in order to convert the lattice results into physical units. We utilize five dif-
ferent ensembles with hopping parameters for the sea and the u,d valence quarks,
κsea,κ

u,d
val = 0.13700, 0.13727, 0.13754, 0.13770 and 0.13781, which correspond to
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Table 4.1 Details of the gauge configurations used in this work.We list the number of flavors (N f ),
the lattice spacing (a), the lattice size (L), inverse gauge coupling (β), clover coefficient (cSW ) and
number of gauge configurations employed (Ngc). Corresponding pion masses (mπ) as calculated
by PACS-CS Collaboration (Table3 of Ref. [13]) are also given as a reference
ID N3

s × Nt N f a [fm] L [fm] β cu/d,s
SW κs

val ccSW κc
val κu,d

val mπ

[MeV]

N1 1.52617 0.13700 702(11)

N2 1.52493 0.13727 570(10)

N3 323 × 64 2 + 1 0.0907(13) 2.90 1.90 1.715 0.13640 1.52381 0.1246 0.13754 411(8)

N4 1.52326 0.13770 296(7)

N5 1.52264 0.13781 156(9)

pionmasses of∼700, 570, 410, 300 and 156MeV, respectively.We have assigned ID
numbers to the ensembles in order to ease further referrals. Strange quark hopping
parameter is fixed to κsea,κ

s
val = 0.13640 and we have determined the charm quark

parameter—as outlined in Sect. 4.2.2—to be κc
val = 0.1246.

4.2.2 κc tuning

It is necessary to compute the quark propagators when calculating the two- and
three-point correlation functions which are needed to extract the matrix elements.
Considering the light, u/d and s, quarks we use the PACS-CS determined values
of the hopping parameters on each ensemble as given in Table4.1. However, we
have to determine the charm quark hopping parameter to compute the charm quark
propagators.

We have employed the Clover action to compute the charm quark propagators
in order to be consistent with the dynamical quarks. However, one should keep in
mind that the Clover action has O(a mq) discretisation errors, whose effects must
be accounted for in case of the charm quark since its larger mass would enhance
the discretisation error. As a first precaution we apply the Fermilab method [14] in
the form employed by the Fermilab Lattice and MILC Collaborations [15, 16]. A
similar procedure has been used to study charmonium, heavy-lightmeson resonances
and their scattering with pion and kaon [17–19]. In the Fermilab method’s simplest
application one sets the Clover coefficients cE = cB = cSW to the tadpole-improved
value 1/u30, where u0 is the average link. We follow the approach used in Ref. [17] to
estimate the u0 as the fourth root of the average plaquette and determine the charm-
quark hopping parameter κc

val nonperturbatively. We have tuned the κc with respect
to the spin-averaged static masses of charmonium and open-charmed mesons. As a
first crude estimate of κc

val one can use the vector Ward identity,

a mq = 1

κ
− 1

κcri t.
, (4.56)
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Table 4.2 Charmed meson masses extracted on ensembles N1-N4, as well as linear and quadratic
fits to the physical quark-mass point. We also quote the experimental and PACS-CS results for
comparison. All values are given in GeV

ID mηc m J/
 mD mD∗ mDs mD∗
s

N1 3.019(3) 3.116(5) 2.027(5) 2.180(10) 2.075(5) 2.220(9)

N2 3.006(3) 3.097(4) 1.982(5) 2.112(12) 2.052(4) 2.179(8)

N3 2.992(3) 3.079(4) 1.934(8) 2.077(16) 2.033(5) 2.155(8)

N4 2.984(2) 3.071(3) 1.915(9) 2.045(16) 2.028(4) 2.156(7)

Lin. Fit 2.979(2) 3.063(3) 1.895(6) 2.021(13) 2.018(4) 2.138(7)

Quad. Fit 2.977(4) 3.064(5) 1.893(9) 2.035(22) 2.022(7) 2.156(13)

Exp. 2.980 3.097 1.865 2.007 1.968 2.112

PACS-CS
[21]

2.986(1)(13) 3.094(1)(14) 1.871(10)(8) 1.994(11)(9) 1.958(2)(9) 2.095(3)(10)

where mq is the mass of the quark, a the lattice spacing, κ the hopping parameter
of the quark q and κcri t. is the critical kappa value where the mq → 0. Before using
this formula however we should determine the κcri t. value. Considering the fit ansatz
given in the Eq.40 of Ref. [20] and simplifying it for our case, we can relate the
pseudoscalar meson mass, mπ , to the κcri t. as

m2
PS(κval) = bmVMI

val + c
(
mVMI

val

)2
. (4.57)

A fit to the mπ values of the ensembles N1-N4 yields the critical hopping parameter,
κcri t. = 0.13787, which we input to Eq. (4.56). A back-of-the-envelope calculation
using the experimental charm quark mass, mc = 1.27 GeV, and the κcri t. returns an
estimate for the charm quark hopping parameter as, κc

val = 0.12. Starting from this
simple estimatewe have calculated the staticmasses of the lowest-lying psuedoscalar
and vector charmonium states and open-charmed mesons with several κc

val values
on ensembles N1-N4 and determined the charm quark hopping parameter as κc

val =
0.1246. We show the effective mass plots of the mesons calculated on all ensembles
in Fig. 4.1. All the mass values we have extracted are compiled into Table4.2 along
with their extrapolated values to the physical light-quark mass point. A comparison
of the extrapolated and experimental results is illustrated in Fig. 4.2. We discuss the
details of the extrapolations in Sect. 5.1.

4.2.3 Source Smearing

In this work, we are interested in the ground-state observables. A common practice
to improve the ground state dominance of a given correlation function is to smear
the interpolating fields that are used to create/annihilate the hadrons. Interpolating



62 4 Theoretical Formalism and Simulation Setup

fields are transformed into propagators by the Wick contraction procedure, so, the
components of the actual computations are the propagators rather than the interpo-
lating fields. A propagator on the lattice is computed by inverting the Dirac operator
given in Eq. (3.47). Simply put, we need to solve the system of equations

DG = S, (4.58)

where D is the Dirac operator, S is a source vector andG is the propagator wewish to
compute.We are not going to discuss how to solve this system, for it is a research area
of its own and many lattice field theory textbooks or books on numerical methods
cover the issue, but focus on the source. We basically need to choose a starting point
for the propagator and place a quark source onto that point. Let us say we positioned
the source on the point x and the simplest form we can assign is a δ-function,

S(n) = δn,m, (4.59)

Fig. 4.1 Effective mass plots of the open-charm mesons and charmonium states calculated on
ensembles N1-N4 with κc = 0.1246. Open symbols indicate psuedoscalar (J P = 0−) states while
filled symbols are for vector (J P = 1+) states. Fit regions are chosen as [t ie f f , t fe f f ] = [10, 29] for
all mesons on all ensembles
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Fig. 4.2 Comparison of the masses to the experimental values. Sp.Avg. indicates the 1S spin
averaged values, i.e. m1S = (mPS + 3mV )/4

where we have suppressed the color and Dirac indices for simplicity. This choice of
a point quark source for the propagator is perfectly acceptable and usually used in
case of the sink-operators for connecting propagators but in practice a source operator
smeared by a Gaussian form has better ground-state dominance. Gaussian smearing
effectively extends the source to neighbouring spatial lattice sites and mimics the
extended nature of the hadron since it is not a point-like object. A gauge-invariant
method to smear the source is called the Jacobi smearing in which we act on the
point-source with a smearing operator, say M , and obtain the smeared source:

S′(n) = MS(n) , M =
N∑

i=0

αi H i , (4.60)

where α is a positive-real parameter, N is the number of smearing steps and H is the
spatial part of the Dirac operator,

H(n,m) =
3∑

μ=1

(
Uμ(n)δn+μ̂,m +U †

μ(n − μ)δn−μ̂,m
)
, (4.61)

By adjusting the smearing parametersα and N we can control the width of the source
and tune the signal according to our needs. Intuitively parameters are adjusted to
reproduce a root mean square radius of ∼1 fm.
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Fig. 4.3 Sketch of a 3-point
function. B is the baryon, t0,
t1 and t2 are source, current
insertion and sink time-slices
respectively

t1

t2t0

B B

S(t1,t0)

S(t2,t0)

S(t2,t0)

S (t1,t2)

4.2.4 Fixing the Sink

Form factor calculations involve computing the three-point correlation functions as
given in Eqs. (4.18) and (4.36), which encode the interaction with the hadron in
question. A closer look to the definitions reveals that one should choose a coordinate
for the annihilation operator—or a sink point—for the hadron on the discrete space-
time. Same is true for the creation operator however its coordinate can always be
shifted to the origin using the translational invariance principle. Considering that
we have chosen a sink point, we may visualise the connected piece of a three-point
correlation function as in Fig. 4.3, where the hadron (denoted by its quark propagator
lines) propagates from its source, t0, to sink point, t2,while it interactswith an external
current at varying t1.

Let us for a moment recall the two-point correlation function written in terms of
the hadron degrees of freedom,

〈O(t)O(0)〉t→∞ = Ae−Et (1 + O(e−�Et )), (4.62)

where A is a constant, E is the energy of the hadron and�E is the energy difference to
the first excited state. Given that the time is large enough, we know that the quantities
that we extract belong to the ground state of the hadron. It is an immediate concern
however if the number of time slices that the hadron can propagate is limited. In that
case the second term in the parenthesesmight have significant effects and the ground-
state observable we are interested in would actually have excited state contributions.
Such is a caveat one should be aware of when fixing the sink point to calculate the
three-point correlation functions. Time seperation between the source and the sink
point should be chosen to be large enough to ensure that the excited states die off so
that their effects are negligible.

In our simulations, the source-sink time separation is fixed to∼1.09 fm (t2 = 12a).
Statistics limit the upper value of t2 since the statistical errors grow rapidly as we
increase the separation. Therefore, we must choose the smallest possible sepera-
tion ensuring that the excited-state contaminations are avoided. As for the nucleon
axial and electromagnetic form factors, a separation of ∼1 fm has been found to be
sufficient [2, 22]. A similar conclusion has been made for the �− baryon’s elec-
tromagnetic form factors [7]. We make further checks in Sects. 5.3 and 5.4 to make
sure that the excited state contamination is indeed under control with a choice of
∼1.09 fm source-sink seperation.
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4.2.5 Sink Smearing

Let us turn our attention to Fig. 4.3 and take a closer look to the propagator con-
necting the t1 time slice to t2. Although all other propagator lines originate from t0,
which can be computed by a single inversion for one quark type, we need an extra
inversion to calculate the S(t1, t2) propagator and find a way to connect it to the other
propagator lines. Supposing we have computed S(t1, t2), one way to connect it to
other propagators is using the sequential source method [23]. This method is widely
used in the community but we have opted-out from employing this method because
it would have required us to consume more resources due to the following reason.
In a nutshell, there are two possibilities to compute the three-point function,

〈GBVμB(t2, t1; p′,p; �)〉 ≡ −i
∑

x2,x1

e−ip·x2eiq·x1�αα′ × 〈vac|T [χα
B(x2)Vμ(x1)χ̄

α′
B′ (0)]|vac〉.

(i) We can assign a source to simulate the external current which is associated with
the x1 sum and essentially fix the current operator and the spatial momentum transfer
q or (ii) create a source object containing the two non-interacting propagator lines,
which is associated with the x2 sum, which fixes the sink particle but leaving the
current operator free. While the first option is plausible to investigate a specific
form factor of various hadrons at fixed momentum, second choice is better suited
to study the momentum dependence of different form factors of a specific hadron.
What we wish to achieve in this work however, calls for a combination of the two
options. Insisting on employing sequential sources would have forced us to invert
extra propagators for each different baryon or momentum transfer that we consider,
which would increase our consumption of valuable and limited resources although
a workaround is available.

An approach that does not require to fix the current operator or the sink hadron
is the wall-smearing method, where we evaluate the x2 summation over the spatial
sites at the sink time point, before computing the propagator so that the propagator
(instead of the hadron state) is projected on to definite momentum. In practice, this
corresponds to choosing a wall-smeared source on the t2 time slice,

S(t2) =
NS−1∑

x=0

δn,mδt,t2 ,

to compute the S(t1, t2) propagator. S†(t1, t2) shown in Fig. 4.3 is defined as
S†(t1, t2) = γ5S(t1, t2)γ5. S(t2, t0) is computed with Gaussian smeared sources and
their sinks are wall smeared to match the S(t1, t2) propagator. S(t1, t0) is already a
part of the S(tany, t0) propagator hence there is no need for an extra inversion. Sinks
of the S(t1, t0) and S(t1, t2) are point smeared. In this way we avoid the necessity of
extra inversions for each momentum or hadron state since we are free to choose the
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current operator and momentum and the sink hadron as long as we have the quark
propagators corresponding to the constituents of the hadron we investigate.

4.2.6 Statistical Improvements

Now thatwehave the freedom to choose themomentum,we can use differentmomen-
tum components having an equivalent q2 value in order to increase the statistics.
We can also calculate all the spin projections and states corresponding to different
Lorentz indices and average over them accordingly. We have different approaches
for the spin-1/2 and spin-3/2 cases, so let us itemise the setups for clarity:

• Spin-1/2:We insertmomentum through the current up to nine units: (|qx |,|qy|,|qz|)
= (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 0, 0), (2, 1, 0), (2, 1, 1), (2, 2, 0),
(2, 2, 1) and average over all the possible combinations of the positive and nega-
tive momenta in case of the electric form factor. For the magnetic form factor we
average over all equivalent combinations of spin projection, Lorentz component
and momentum indices.

• Spin-3/2: We make our simulations with the lowest allowed lattice momentum
transfer q = 2π/(Nsa), where Ns is the spatial dimension of the lattice and a is the
lattice spacing. This corresponds to three-momentum squared value of q2 = 0.183
GeV2. We insert all possible momentum components, namely (|qx |, |qy |, |qz|)
= (−1, 0, 0), (0,−1, 0), (0, 0,−1), (1, 0, 0), (0, 1, 0), (0, 0, 1). We also consider
vector-current and spin projections along all spatial directions and take into account
all Lorentz components of the Rarita-Schwinger field.

In addition to averaging over equivalent combinations, we can exploit the transla-
tional invariance principle and shift the source-sink pair on the temporal direction
and increase the number of measurements. We have a seperation of 12a between the
source and the sink point so we shift the source-sink pairs by 12a units and increase
the number of measurements as necessary.
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Chapter 5
Results and Discussions

Abstract Having set up the necessary formalism to investigate the structural prop-
erties of the baryons in the previous chapter, we now apply them to various spin-1/2
and spin-3/2 charmed baryon systems.We first extract the ground-state masses of the
baryons in question, which play a role in calculating the form factors apart from their
spectroscopic interest. Some further technical details of data analysis crucial for form
factor analysis follows along with the interpretation to compute the electromagnetic
observables. Thereafter, we present a wealth of results on the form factors, observ-
ables such as charge radii and magnetic moments and discuss their implications on
the charmed baryons in question. Systematic effects mentioned and analysed along
the chapter are collected and summarized at the end of the chapter for clarity. This
chapter is essentially based on the following works: K.U. Can, G. Erkol, B. Isildak,
M. Oka, T.T. Takahashi, Physics Letters B726 (2013) 703-709, K.U. Can, G. Erkol,
B. Isildak, M. Oka, T.T. Takahashi, Journal of High Energy Physics (JHEP) 05, 125
(2014) and K.U. Can, G. Erkol, M. Oka, T.T. Takahashi, Physical Review D 92,
114515 (2015).

Keywords Low-lying charmed baryons
Spin-1/2 and spin-3/2 electromagnetic form factors · Chiral extrapolation
Systematic effects/errors · Charge radii and magnetic moments

Below,we give numerical results and discuss the findings of this work. In Sect. 5.1we
present the baryon masses and discuss possible systematic uncertainties that might
manifest themselves in spectroscopy analysis and how to account for them. We have
a brief discussion on how we evaluate the lattice data and extract the observables in
Sect. 5.2. Sections5.3 and 5.4 are dedicated to the electromagnetic properties of the
spin-1/2 and spin-3/2 baryons. Sources of systematic errors are compiled in Sect. 5.5.
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5.1 Baryon Masses

Hadron spectroscopy by itself is a hot topic among the latticeQCDpractitioners since
it is essential to understand the hadron zoo to understand the strong interactions
and being able to calculate the hadron masses from first principles is a powerful
alternative to the model calculations or experiments. A recent review on the lattice
QCD effort can be found in Ref. [1]. With the advent of progress in experimental
efforts and upcoming facilities, spectroscopy of charmed baryons have caught the
attention of several groups who have performed systematic analysis of charmed
baryon spectroscopy in detail [2–5].

In this work, rather than a precise spectroscopy calculation, we are concernedwith
the electromagnetic structure of the charmed baryons. From such a point of view,

Fig. 5.1 Effective mass plots of the spin-1/2 and spin-3/2 baryons. Note that we have shifted the
spin-1/2 data points for the ease of viewing

Fig. 5.2 Extrapolations to the physical-mass point using functions given in Eq. (5.1) for the masses
of �c, �cc, �c and �cc baryons
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Fig. 5.3 A comparison of the spin-1/2 baryon masses given in Table5.1

Fig. 5.4 Same as Fig. 5.3 but for spin-3/2 baryons
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baryon masses become input parameters via kinematical terms when we evaluate the
Eqs. (4.27), (4.28), (4.45), (4.46) and (4.47). We extract the masses of the baryons
from the relevant two-point correlation functions given in Eqs. (4.17) and (4.35)
as described in Sect. 4.1.1.2 on each ensemble. Correlators are calculated with a
Gaussian smeared source and a point sink for better ground state coupling. In case
of the spin-3/2 baryons, we extract the masses by a simultaneous fit to all spatial
Lorentz components. We show the effective mass plots of each baryon along with
the fit regions in Fig. 5.1.

Masses of the spin-3/2 baryons are calculated on the N5 ensemble, which has
almost physical light-quark masses, so we consider those values as final. For spin-
1/2 baryons, on the other hand, we extrapolate the values to the physical-mass point
by using the linear or quadratic functions in m2

π ,

flin = c1 + a1 m
2
π , (5.1)

fquad = c2 + a2 m
2
π + b1 (m2

π )2, (5.2)

where a1,2, b1, and c1,2 are free fit parameters. Extrapolations are shown in Fig. 5.2
and all the extractedmasses along with the extrapolated results are given in Table5.1.
Figures5.3 and 5.4 illustrate a comparison of our values to that of other lattice QCD
determinations and experimental masses where available.

Accounting the systematic errors: It is interesting to compare our results for the
baryon masses with those obtained by PACS-CS from the same lattices. It must,
however, be noted that PACS-CS uses a relativistic heavy-quark action for the c-
quark to keep theO(mQa) errors under control and extracts themasses at the physical
point without any chiral extrapolation. Such differences between two analyses need
to be taken into account as a source of systematic error. Yet, a mass determination,
of course, requires a more systematic chiral fit than linear or quadratic forms as
we perform here. Nevertheless, such a comparison is useful to see the effect of the
discretisation errors in our analysis. The extrapolations to the physical-mass point
in linear and quadratic forms are consistent with each other within their error bars.
For all baryons, we either see an agreement within error bars or only a few percent
discrepancy in baryon masses between PACS-CS and our results. This suggests that
the discretisation errors are relatively small.

We perform an additional extrapolation via a Heavy Baryon Chiral Perturbation
Theory (HBχPT) inspired form [7] for the�c baryon. With the assumption of heavy
quark symmetry, such that �∗

c ≡ �c, the extrapolation function is given as

M� = M0 + ��� − σ�

4π fπ
m2

π − 2

3

g2π��

(4π fπ )2
F(mπ , −���,μ) + 4

3

g2π��

(4π fπ )2
F(mπ , 0, μ), (5.3)

where theM0, σ� , gπ�� and gπ�� are free fit parameters corresponding to baremass,
a low energy constant and π�c�c and π�c�c coupling constants, respectively. �c-
�c mass splitting is defined as ��� , fπ = 132 MeV and the chiral F(a, b, c) is [8],
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Fig. 5.5 Extrapolation to the physical-mass point using the function given in Eq. (5.3) for the mass
of �c baryon. Experimental result is converted to lattice units

F(a, b, c) = (b2 − a2)3/2 ln

(
b + √

b2 − a2

b − √
b2 − a2

)
− 3

2
b a2 ln

(
a2

c2

)
− b3 ln

(
4b2

a2

)
,

(5.4)

F(a, 0, c) = πa3, (5.5)

F(a,−b, c) =
{

−F(a, b, c) + 2iπ(b2 − a2)3/2, a < |b|
−F(a, b, c) + 2π(b2 − a2)3/2, a > |b| . (5.6)

Extrapolation is illustrated in Fig. 5.5. HBχPT form yieldsm�c = 2.487(31)GeV, in
good agreement with other lattice determinations and its experimental value. Com-
paring the mean value to the experimental one, a 32 MeV difference translates into
less than 2% systematic error on �c baryon masses extracted on ensembles N1–N5.

Effects of the possible mistuning of the mass of the charm quark or the use of
Clover action may be investigated by mildly changing the κc from its determined
value and as long as we confirm that the deviations do not affect the observables that
we extract, we can deem the systematic errors due to charm-quark as under control.

We have reasonable expectations that the systematic effects to be much smaller
in case of the form factors which are less sensitive to the charm-quark mass [9].
In order to confirm this statement we have explicitly checked the sensitivity of �cc

form factors on charm-quark hopping parameter for the N1 ensemble by changing
the κc so that �cc mass deviates approximately by 100 MeV. Electric charge radii
are affected by less than 2%, which is smaller compared to the statistical precision
of our electromagnetic observable results that we will present in Sect. 5.3.1.

Another cross-check for the aptness of the use of Clover action for charm quarks
is to compare the mass of the �ccc baryon to the masses determined by other col-
laborations which employ different actions to account for the O(mQa) errors and
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either perform continuum and mass extrapolations to the physical point or makes
calculations on the physical-mass point. Since �ccc consists of three charm valence
quarks, it is a good laboratory to observe the effects of the discretisation or tuning
errors. It is apparent in Fig. 5.4 that our �ccc mass has very good agreement with
other determinations indicating that the systematic errors associated with the c quark
is at a minimum.

Note that the differences may also arise from our choice of the strange quark
hopping parameter. In order to avoid the partial-quenching effects we have chosen
κs to be the same as that of the sea quark. On the other hand, our � mass is in good
agreement with the mass reported by the PACS-CS Collaboration [6]. A retuning of
κs so as to obtain the physical K mass would be desirable for precision calculations.
However we expect such a retuning to have a minimal effect on the conclusions of
this work.

It is safe to assume that any systematic uncertainty arising due to our choice of
the Clover action or κs or κc is well under control and negligible with respect to the
statistical precision of this work.

5.2 Evaluation of Form Factor Data

5.2.1 Form Factor and Excited-State Analysis

We extract the form factor values corresponding to each momentum insertion by
performing fits to Eqs. (4.16) and (4.44) as described in Sect. 4.1.3. We consider
three different fit procedures which we discuss in detail below.

5.2.1.1 Plateau Method

In the large Euclidean time limit, ratios are free from excited states however in the
actual simulations we should be aware of the possibility that the time separation
between the source and the sink particles may not be large enough to allow for the
excited states to diminish. Effects of the excited states can be reduced to a minimum
by choosing a large enough source-sink separation when computing the correlation
functions.When the separation is large enough, ratios inEqs. (4.16) and (4.44) exhibit
regions where their values remain constant with respect to the current insertion time.
These regions are identified as plateau regions and the value of the form factor is
extracted by fitting the data to a constant form,

R(t2, t1) = RG + O(e−�t1) + O(e−�′(t2−t1)), (5.7)

where the RG is the ground state value of the ratio and the actual fit function is fol-
lowed by the terms denoting the first excited state contributions which are suppressed
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proportional to the current insertion time, t1, and its difference from the sink time,
(t2 − t1). � and �′ are the energy gap between the ground and first excited state of
the source and sink baryons respectively. It is evident that an ill-identified fit window,
[ti , t f ], or plateau might be contaminated by excited states.

5.2.1.2 Phenomenological Fit Form

We can improve the plateau method by adding the higher-order terms to the fit form
which explicitly account for the excited states. By including the first excited state,
we write down the so-called phenomenological fit form,

R(t2, t1) = RG + b1e
−�1t1 + b2e

−�2(t2−t1), (5.8)

where the first term is the form factor value we wish to extract and the coefficients
b1, b2 and the mass gaps�1,�2 are regarded as free parameters. Regression analysis
is performed on the whole set of data, i.e. [ti , t f ] = [t0, t2] where t0 is the time slice
of the source point. In case of the nucleon form factors using the sequential-source
inversionmethod, this approach has proved to be useful in amore systematic analysis
accounting for the excited-state contaminations (e.g. Ref. [10] for a rigorous test).
More terms of the same order can be added to the above equation to account for
further fluctuations, however, keep in mind that there might not be enough degrees
of freedom. It is better to keep the number of free fit parameters low if the data
fluctuates mildly.

We utilize the phenomenological form as a cross check rather than the actual fit
procedure since regression analysis has a tendency to become unstablewith increased
number of free parameters. As long as the plateau fit results agree with that of the
phenomenological form fits, we deem the data as reliable, less prone to excited state
contamination and thus, trust the identified plateaux and adopt its values for form
factors.

5.2.1.3 Summed Operator Insertions (SOI)

Another strategy that is used to decrease the excited-state contaminations is to vary
the source-sink separation and extract the ground state matrix elements by using the
summed operator insertions method [11]. In the SOI method, one sums the ratio in
t1 up to t2 so that it assumes the form,

t2∑
t1=0

R(t2, t1;p′,p;�) = RG .t2 + c(�,�′) + O (
t2e

−�t2
) + O(t2e

−�′t2), (5.9)

where the c(�,�′) is a constant. First excited-state contributions are now suppressed
by t2, which is larger than t1 or (t2 − t1). It is possible to calculate the ratio with
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different source-sink separations and extract the ground state value RG from the
slope of a linear function in t2. This method has the advantage of computing matrix
elements with reduced excited-state contaminations, however it is computationally
more demanding as calculations with multiple source-sink separations are needed.

Rather than employing this approach as our primary analysis we make use of this
method as a cross-check in contrast to the results that we extract by the plateau and
phenomenological methods.

5.2.2 Charge Radii and Magnetic Moments

5.2.2.1 Charge Radii

We have argued in Sect. 2.4 that by working in the Breit frame we can expand the
Fourier transformation of the EM form factors as,

GE,M(Q2) =
∫

d3xeixqρ(x) � GE,M(0)

(
1 − 1

6
Q2〈r2E,M 〉 + . . .

)
, (5.10)

where ρ(x) is a spatial electric charge or magnetisation density distribution. Evalu-
ating the slope of the form factor at Q2 = 0 we can extract the charge radii of the
baryons via,

〈r2E,M〉 = − 6

GE,M(0)

d

dQ2
GE,M(Q2)

∣∣∣∣
Q2=0

. (5.11)

On the lattice we end up with discrete data points so it is evident that we need to
estimate the form factors by a functional form. We use the following ansatz known
as a dipole form to describe the Q2 dependence of the baryon form factors:

GE,M(Q2) = GE,M(0)

(1 + Q2/�2
E,M)2

. (5.12)

It is well known that the dipole approximation gives a good description of experi-
mental electric form factor data of the proton. To evaluate the charge radii with the
above formula, we insert the dipole form into Eq. (5.11), which yields,

〈r2E,M〉 = 12

�2
E,M

. (5.13)

Then the charge radii can be directly calculated using the values of dipole masses,
�E,M , as obtained from our simulations.
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5.2.2.2 Magnetic-Dipole Moment

In order to estimate the magnetic moment we need the Q2 = 0 value of the magnetic
form factorGM . However, due to its definition—Eq. (4.28)—we can not compute the
GM(0) value directly since it vanishes at zero momentum transfer. Hence, we obtain
its value by extrapolating the lattice data to Q2 = 0 via the dipole form given in
Eq. (5.12). In spin−3/2 → spin−3/2 transition, on the other hand, we estimate the
Q2 = 0 value differently since we have calculated only the GM1(Q2 = 2π/L) value
of the magnetic form factor. In this case, we assume that the momentum dependence
of the E0 and M1 form factors are similar in the low-Q2 region. For instance, the
scaling of GM1 is given by,

GM1(0) = GM1(Q
2)

GE0(0)

GE0(Q2)
, (5.14)

where we consider the scaling of quark sectors separately since each sector has a
different scaling property. GM1(0) is then constructed via Eq. (5.18). This procedure
has been utilised in Refs. [12–15] to study the magnetic form factors of octet and
decuplet baryons.

Once we determine the GM(0), we evaluate the magnetic moments in nuclear
magnetons using the relation,

μB = GM(0)

(
e

2mB

)
= GM(0)

(
mN

mB

)
μN , (5.15)

where mN is the physical nucleon mass and mB is the baryon mass as obtained on
the lattice.

5.2.2.3 Electric-Quadrupole Moment

Higher orders in the multipole expansion of the form factors can be evaluated given
that they are allowed by the angular momentum selection rule. Let us consider the
electromagnetic transition, 〈J ′|Jγ |J 〉, where J (′) = L(′) + S(′) is the total angular
momentum of the initial (final) state and Jγ is the total angular momentum of the
photon. The selection rule we have states,

|J − J ′| ≤ Jγ ≤ J + J ′. (5.16)

Considering the ground state spin−1/2 → spin−1/2 electromagnetic transition we
have at most two form factors, which we have identified as Dirac and Pauli or electric
andmagnetic Sachs form factors in Sect. 4.1.2.1. Higher order multipole form factors
vanish when L = 0.

In case of the spin−3/2 → spin−3/2 transition, selection rule allows us to have
four multipole form factors contributing to the interaction which we have given in
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Sect. 4.1.2.2. The electric-quadrupole form factors provide information about the
shape of the electric charge distribution of the baryon and a non-zero value is also
an indication of tensor force interactions. In the Breit frame, the quadrupole form
factor and the electric charge distribution are related as [12],

GE2(0) = M2
B

∫
d3rψ̄(r)(3z2 − r2)ψ(r), (5.17)

where 3z2−r is the quadrupolemoment operator. A non-zero value of the quadrupole
moment indicates a deviation from a spherically symmetric charge distribution and
the shape is determined by the sign of themoment where a positive (negative) value is
assigned to a prolate (oblate) shape for a positively charged baryon.We use Eq. (4.46)
to isolate the electric-quadrupole form factor and estimate the quadruple moment.

5.2.3 Quark Sectors

In our simulations we evaluate each quark sector separately and normalise to unit
charge contributions. Baryon properties, on the other hand, are determined by the
collective contribution of individual quarks so we estimate the baryon observables
by combining the appropriately weighted quark sector contributions as,

〈O〉 = Nu,deu,d〈Ou,d〉 + Nses〈Os〉 + Ncec〈Oc〉, (5.18)

where 〈O〉 is the observable, Nq is the number of quarks inside the baryon hav-
ing flavor q and eq is the electric charge of the quark. Difference in the analysis
might introduce systematical errors at this stage, but the considerations we make in
Sect. 5.5.3 shows that the case is the opposite.

5.3 Spin-1/2 Baryons

Wehave performed simulations and extracted the electromagnetic form factors of the
spin-1/2�c,�c,�cc and�cc baryons. Theoretical formalism is given in Sect. 4.1.2.1.
Electromagnetic form factors of the spin−1/2 → spin−1/2 transition are related to
the electric charge and magnetisation radii and the magnetic moments of the spin-
1/2 baryons. In the following sections we will give the numerical values of the form
factors, charge radii and magnetic moments and discuss the physical implications.
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5.3.1 Electric Properties

5.3.1.1 Plateau Analysis

We study the electric Sachs form factor, GE (Q2), given in Eq. (4.27) and extract the
electric charge radii of the baryons in question. We have evaluated the form factor
values corresponding to each momentum insertion that we consider by a plateau
method analysis as described in Sect. 5.2. Figure5.6 shows the ratio in Eq. (4.16)
as a function of the current insertion time, t1, for the electric form factors of �++

c
and �+

cc as normalized with their electric charges. We present the data solely for the
ensemble N1 and for the first nine four-momentum insertions. In order to illustrate
howplateau regions change aswe approach to the physical point, we show the electric
form factors of �++

cc in Fig. 5.7 for the ensembles N1–N4.
In determining a plateau region we vary the fit window [ti , t f ] and compare the

fits by their χ2 values. For instance we search for plateau regions of minimum three
time slices between the source and the sink, and choose the one that has the best χ2.
We rely on this method since the signal exhibits a different ground state approach
because we use an asymmetric (Gaussian smeared) source-(wall smeared) sink pair.
Wall smearing has a weak coupling to the ground state compared to the Gaussian
smearing, therefore making the data closer to the sink time slice more prone to
excited-state contamination. We prefer the regions closer to the smeared source as
we expect them to couple to the ground state with higher strength as compared to
the wall sink.

In our simulations, the source-sink time separation is fixed to∼1.09 fm (t2 = 12a).
The signal-to-noise ratio deteriorates as we increase the seperation. Increasing the
number of measurements as a means of increasing the statistics would improve the
signal, however, it would also increase the cost of the computations and enough

Fig. 5.6 The ratio in Eq. (4.16) as a function of the current insertion time, t1, for the electric form
factors of�++

c and�+
cc as normalized with their electric charges. We show the data of the ensemble

N1 only. Horizontal lines denote the plateau regions as determined by using a χ2 criterion (see text).
Figure taken from Ref. [16]
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Fig. 5.7 Same as Fig. 5.6 but for the electric form factors of �++
cc obtained on ensembles N1–N4.

Figure taken from Ref. [16]

resources (e.g. gauge configurations) might not always be available. Hence, effec-
tively, we have an upper limit for the value of t2. Therefore, we must choose the
smallest possible separation value ensuring that the excited-state contaminations are
avoided. There are works in the literature that finds a separation of ∼1 fm suffi-
cient for the nucleon axial and electromagnetic form factors [17, 18]. In case of the
strange sector a similar conclusion has also been made for the �− electromagnetic
form factors [19]. However, there has not been any work on the charmed baryon
electromagnetic form factors by the lattice community so we check that whether a
separation of t2 = 12a is sufficient for the charmed baryons.

We compute the same observables using a separation of t2 = 14a and compare
our results with those obtained using a separation of t2 = 12a. In Fig. 5.8 we show
the ratio in Eq. (4.16) to illustrate a test case for the electric form factor of �cc with
t2 = 12a and t2 = 14a. Data points clearly indicate the the plateau values obtained
from the two time separations are consistent with each other, implying that the shorter
source-sink time separation is sufficient. The error bars for t2 = 14a, however, are
at least twice as large compared to t2 = 12a. It would require us to at least double
the number of measurements to reach a similar precision of the t2 = 12a case. This
is unfortunately not possible since we already exploit the translational symmetry to
increase the number of source-sink pairs, hence the number of measurements, and
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Fig. 5.8 The ratio in Eq. (4.16) as a function of the current insertion time, t1, for the electric form
factor of �cc with t2 = 12a and t2 = 14a. We show measurements over 30 configurations for three
illustrative momentum-transfer values. The data for t2 = 12a are slightly shifted to left for clear
viewing. Figure taken from Ref. [16]

Fig. 5.9 A comparison of the electric form factor of�cc as obtained on ensemble N1 using a simple
plateau fit, the phenomenological fit form in Eq. (5.8) and the summation method. The small panel
depicts the summed operator insertions for three time separations and for the first four momentum
insertions with their linear fits. Figure taken from Ref. [16]
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Table 5.2 Parameter values of R(t2, t1) in case of the electric form factors of�cc for all momentum
transfers on ensemble N1

Q2 GE (Q2) � b1 b2

[ 2π
a Ns

] Plat. Pheno. [a]

1 0.913(7) 0.910(18) 0.220(100) 0.026(18) −0.087(18)

2 0.822(13) 0.839(42) 0.186(90) 0.045(34) −0.143(35)

3 0.750(15) 0.775(85) 0.169(110) 0.064(56) −0.174(71)

4 0.698(16) 0.703(27) 0.285(108) 0.082(33) −0.154(22)

5 0.671(15) 0.664(53) 0.212(122) 0.079(47) −0.171(41)

6 0.629(16) 0.634(202) 0.174(160) 0.078(113) −0.197(169)

8 0.560(19) 0.594(889) 0.145(251) 0.062(418) −0.210(672)

9 0.529(20) 0.552(908) 0.160(356) 0.066(466) −0.205(700)

Fig. 5.10 The electric form factors of �++
c ,�++

cc and �+
cc as normalised with their electric charges

as functions of Q2, for all the quark masses we consider. The dots mark the lattice data and the
curves show the best fit to the dipole form in Eq. (5.12). Figure taken from Ref. [16]

also since the number of gauge configurations available is limited. Other baryons
we study exhibit a similar behaviour, therefore we use the shorter separation i.e.
t2 = 12a, in all of our analyses.

Still, we have to ensure that the excited-state contamination is at a minimum in
the plateau regions that we have chosen.We perform fits using the phenomenological
fit form for the �cc baryon as a test case. In Fig. 5.9 we present a comparison of the
electric form factor of �cc as obtained by a plateau fit and the phenomenological fit
form in Eq. (5.8), for three illustrative momentum transfers and for the ensemble N1.
The two fit forms give completely consistent results although the error bars being
twice as large for the phenomenological fit form.We compile the parameter values of
R(t2, t1) for the electric form factors of �cc in Table5.2 for all momentum transfers.
The statistical error in the � values is quite large as expected since we regard it as a
free parameter. Note that even though the definition of � corresponds to the energy
gap between the ground state and the first excited state, we do not intend to interpret
� as the physical energy gap at this stage since this way of determining such a
parameter is not viable compared to the advanced methods utilised for spectroscopy.

Agreement between the plateau and phenomenological fit method is satisfactory
but to further check that we avoid excited-state contaminations, we can take onemore
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step and compute the ratio in Eq. (4.16) for t2 = 10a source-sink separation also.
Thiswould give us a data set containing ratio values for three source-sink separations,
namely for t2 = 10a, t2 = 12a and t2 = 14a (on ensemble N1 with 30 configura-
tions). We use the summed operator insertions method on this data set to extract the
form factors and compare the results to that of other methods. Figure5.9 also depicts
a comparison of the summationmethod with the other methods. In general, statistical
errors of the summation method are larger, however, data are consistent within the
errors leading us to conclude that the excited state contaminations are negligible.

5.3.1.2 Electric Charge Radii

Once we extract the form factor values, we estimate the electric charge radii of the
baryons by Eq. (5.13). First, we fit the form factor data by a dipole form given in
Eq. (5.12) to extract the dipole mass variable, �E . Figure5.10 displays the electric
form factors of�++

c ,�++
cc and�+

cc, normalised by their electric charges, as functions
of Q2. We show the lattice data and the fitted dipole forms obtained on the ensembles
N1–N4. The dipole form describes the lattice data for the charmed baryons quite
successfully also, with high-quality fits.

We, then, simply use the �E values to evaluate the Eq. (5.13) and estimate the
electric charge radii of the �++

c , �+
cc, �

++
cc and �+

cc baryons. Our numerical results
are given in Table5.3. We give the electric charge radii in fm2, as calculated on
ensembles N1–N4. These numerical values are illustrated in Fig. 5.11 with their
extrapolations to the physical-mass point for the electric radii. To obtain the values
of the observables at the physical point, we perform fits that are constant, linear and
quadratic in m2

π :

Table 5.3 The electric charge radii of �++
c , �+

cc, �
++
cc and �+

cc as obtained on ensembles N1–N4
and extrapolated values to the physical-mass point. Charge radii are given in units of fm2. χ2/dof
and p-values of the linear and quadratic fits are also given

ID 〈r2
E,�++

c
〉 〈r2

E,�+
cc

〉 〈r2
E,�++

cc
〉 〈r2

E,�+
cc

〉
N1 0.206(23) 0.035(6) 0.118(8) 0.038(8)

N2 0.170(19) 0.017(5) 0.107(6) 0.019(6)

N3 0.196(27) 0.018(6) 0.127(8) 0.040(6)

N4 0.195(34) 0.032(8) 0.142(9) 0.029(6)

Lin. Fit 0.192(22) 0.017(6) 0.136(8) 0.032(6)

χ2/dof 0.916 3.183 2.887 3.701

p-Val 0.40 0.04 0.06 0.025

Quad. Fit 0.234(37) 0.042(9) 0.165(12) 0.043(11)

χ2/dof 0.222 0.187 0.177 5.988

p-Val 0.64 0.66 0.67 0.014
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Fig. 5.11 Chiral extrapolations for electric charge radii of �++
c , �+

cc, �++
cc and �+

cc in (amπ )2.
We show the fits to constant, linear and quadratic forms. Shaded regions are the maximally allowed
error regions, which give the best fit to data. Figure taken from Ref. [16]

fcons. = c1, (5.19)

flin = a1 m
2
π + b1, (5.20)

fquad = a2 m
4
π + b2 m

2
π + c2, (5.21)

where a1,2, b1,2, c1,2 are the free fit parameters. Extrapolations with linear and
quadratic forms deviate from each other with their one to two standard deviations
in some cases, in particular for �c. We also give a goodness of fit analysis of our
extrapolations for different fit forms in Table5.3. A closer inspection with the χ2

per degree of freedom and the p-values taken into account reveals that the quadratic
form is favoured in case of the charge radii.

Shifting our attention to the charmed-strange baryon�+
cc, we expect the pion-mass

dependence to be solely due to sea-quark effects since�+
cc has no light valence quarks.

By a closer look to the lowest left panel of Fig. 5.11, we see that the dependence of
charge radii of the �cc fluctuate as we approach the chiral limit, in contrary to the
naive expectation. This fluctuation might just be a statistical fluctuation or may be
due to uncontrolled systematic errors as well. Since a functional form incorporating
the sea-quark dependence is not known we fit these data to a constant or a linear
form. Unfortunately, the fluctuating data results in a poor fit to a linear or quadratic
form for the charge radii of the �+

cc baryon. Note that the data in other cases can be
nicely fit to linear or quadratic forms.

We also account for the consistency between the properties of the baryons as
extrapolated to the quark-mass pointm2

π = m2
ηss

in order to assess the best fit function
to data.Wedonot compute themηss at the SU(3) symmetric point, however,we use the
PACS-CS determined value ofmηss = 0.39947 [6], to make an estimation. we expect
the charge radii of �+

cc(dcc) and �+
cc(scc) to coincide at this point since the mass of
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the light-quarkwould correspond to that of strange quarks. The properties of the�++
c

baryon as extrapolated to this region on the other hand, can be compared with those
of an unphysical baryon similar to �++

c but the s quarks are assigned with electric
charge 2/3—a state that can be easily created on our setup with trivial replacements.
This approach is rather advisory than being deterministic since it assumes that the
chiral limit and heavy quark limit behaviours to be similar, which may as well be
different.

Considering the quadratic fit values we can compare the electric charge radii of
the baryons that have the same electric charge. The charge radii of �+

cc and �+
cc are

about the same size, which is much smaller as compared to that of the proton (the
experimental value is 〈r2E,p〉 =0.770 fm2 [20]). The only internal difference between
�+

cc and �+
cc is that we change the light quark with the strange quark or vice versa,

yet the s quark in �+
cc seems to have no extra effect on charge radius with respect to

the light quark in �+
cc. Of all the four charged baryons (�

++
c , �+

cc, �
++
cc and �+

cc) we
have studied, �++

c appears to have the largest charge radius.
Since we compute the observables for each quark sector individually we can

examine their contributions to the electromagnetic form factors to gain a deeper
insight to the quark dynamics. Table5.4 displays the radii of light- (u/d, s) and c-
quark distributionswithin the baryons.Weclearly see that the light quark distributions
are systematically larger than those of the c quark. Smaller values of the c quark
suggests that it acts as a heavy core to shift the center of mass towards itself thus
reducing the size of the baryon. Comparing the c-quark distributions between the
singly and the doubly charmed baryons we see that the difference is small. Similarly,
the u/d- and s-quark distributions are roughly the same. In this case, much of the
difference arises due to the electric charges and the representation of the valence
quarks in the baryon. For instance we see that �+

cc and �+
cc have almost the same

sizes whereas the charge radius of �++
c is slightly larger than that of �++

cc since the
doubly represented u quark has larger contribution than the c quark.

Analysing the change in the light-quark mass exposes an interesting effect: As
the u/d quark in �c and �cc baryons becomes lighter the radius of the light quark
increases. This can be understood by the shift in the center of mass towards the
heavy c quark leading the light quark to have a larger distribution. An unexpected
behaviour, however, occurs when the mass of the u/d quark increases: Initially, the
charge radii decrease but they increase as we approach to the s-quark mass region,
a behaviour which is described nicely by a quadratic function. Unlike the nucleon,
it is interesting that the charge radii do not systematically decrease as the pion mass
increases. Although this seems to contradict with our findings stating that heavier
quarks have smaller charge radii, a modification of the confinement force in hadrons
might be responsible for this behaviour such that the two charm quarks assume a
compact nature in the �cc and the effect of the extra light quark modifies the string
tension between the two-charm component [21].

On the other hand, quark sectors of the �+
cc baryon shows a somewhat unstable

quark-mass dependence making it harder to give a firm statement. Remember that
the valence s-quark mass is fixed in our calculations so that the variation is solely
due to the effects of the u/d quarks in the sea. Fit analyses with linear and quadratic
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Table 5.5 Comparison of the electric charge radii of �+
cc and �++

cc determined with different κc.
Charge radii are given in units of fm2. Last two columns should be compared to each other for
reliability since the values are extracted with less measurements

ID 〈r2
E,�+

cc
〉 〈r2

E,�++
cc

〉
κc =
0.1224

κc =
0.1246

κc =
0.1224

κc =
0.1246

κc =
0.1224

κc =
0.1232

Nmeas = 30

N1 0.052(10) 0.035(6) 0.136(12) 0.118(8) 0.154(28) 0.156(28)

N2 0.027(8) 0.017(5) 0.113(8) 0.107(6) – –

N3 0.021(8) 0.018(6) 0.120(9) 0.127(8) – –

N4 0.037(10) 0.032(8) 0.144(13) 0.142(9) – –

Lin. Fit 0.020(7) 0.017(6) 0.135(11) 0.136(8) – –

Quad. Fit 0.049(12) 0.042(9) 0.164(18) 0.165(12) – –

functions reveal slight sea-quark mass dependences, suggesting possible sea-quark
effects.

Note on systematic errors: In Sect. 5.1 we have mentioned that systematic errors
due to the tuning of κc affects the electromagnetic observables minimally. Prior to
the results we are presenting here, we have studied the �cc baryon in detail with a
choice of κc = 0.1224, which we had determined by tuning the mass of the J/ψ on
the lattice to its experimental value. In the succeeding work (this work), however, we
have improved the tuning procedure and re-determined the hopping parameter of the
charm quark to be κc = 0.1246 as discussed in Sect. 4.2.2. We can take advantage of
this situation to compare the results of these two works to corroborate our statement.
Let us note that we will not present the middle steps of the work with κc = 0.1224
but only quote the charge radii results. Further details of that work is same as the ones
outlined in the previous sections and can be found in Ref. [22]. We recompile the
�cc results into Table5.5 for a convenient comparison. Results clearly indicate that
a mild change in κc has negligible effect on the final electromagnetic observables.

Findings for the electric charge radii

• General features:

– Charge radii of all the charmed baryons that we have studied are much smaller
compared to that of their lighter counterparts.

– �++
c has the largest charge radius followed by the �++

cc baryon.
– Charge radii of the �+

cc (scc) and �+
cc (dcc) are about the same size implying

that exchanging the light quark with the strange quark, or vice versa, has no
extreme effect.
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• Quark sectors:

– Charm-quark contributions to the charge radi is systematically smaller than
those of the light quark suggesting that the charm quark acts as a heavy core
and shifts the center of mass towards itself.

5.3.2 Magnetic Properties

Data analysis of this section closely resembles that of the electric sector given in the
previous section.

5.3.2.1 Plateau Analysis

In case of the magnetic sector, we study the magnetic Sachs form factor, GM(Q2),
given in Eq. (4.28) and extract the magnetisation radii and the magnetic moments of

Fig. 5.12 The ratio in Eq. (4.16) as a function of the current insertion time, t1, for the magnetic
form factors of�0

c ,�
++
c ,�0

c and�+
cc. We show the ensemble N1 data only. Horizontal lines denote

the plateau regions as determined by using a χ2 criterion, same as the electric sector. Figure taken
from Ref. [16]
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Fig. 5.13 Same as Fig. 5.6 but for the magnetic form factors of�+
cc obtained on ensembles N1–N4.

Figure taken from Ref. [16]

the baryons that we investigate. Similar to our analysis in the electric form factor
sector, we extract the form factor values by the plateau method approach. Figure5.12
shows the ratio in Eq. (4.16) for the magnetic form factors of the �0

c , �
++
c , �0

c and
�+

cc baryons as obtained on ensemble N1. Behaviour of the ratio as the quark mass
decreases is presented in Fig. 5.13 where we show the data from ensembles N1–N4.

Remember that the source-sink seperation is fixed to ∼ 1.09 fm (t2 = 12a) in
our simulations and we did check the electric form factor results by increasing the
seperation to ∼ 1.26 fm (t2 = 14a). We make a similar test for the magnetic form
factors also. In Fig. 5.14 we show the ratio in Eq. (4.16) to illustrate a test case for the
magnetic form factor of �cc with t2 = 12a and t2 = 14a seperations. Behaviour of
the data points on each time seperation is consistent so that we conclude the shorter
source-sink time separation is sufficient for the magnetic sector as well. This simple
check is satisfactory to confirm that the excited state contaminations are under control
in our plateau analysis.
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5.3.2.2 Magnetisation Radii and Magnetic Moment

We plot the magnetic form factors in Fig. 5.15 as functions of Q2 as obtained on
ensembles N1–N4. Magnetisation radii are estimated by evaluating the Eq. (5.13)
where the dipole mass parameter, �M , is extracted via performing dipole-form—
Eq. (5.12)—fits to the form factors.We compile themagnetisation radii intoTable5.6.
In Fig. 5.16, we show the charge radii and extrapolations to the physical-mass point.
Extrapolating functions are given in Eq. (5.19). A similar pattern to the electric sector
can be seen for the magnetisation radii of the charmed baryons also. Quadratic form
gives a better fit for all baryonmagnetisation radii.�++

c has the largest magnetisation
radii. �++

c and �0
c seem to have a similar magnetic radii to that of the proton, which

is 〈r2M,p〉 = 0.604 fm2 [20]. �cc has the smallest magnetisation radii.
Magnetic moments of the baryons are estimated via the Eq. (5.15). We obtain the

GM(0) by extrapolating the lattice data to Q2 = 0 via the dipole form in Eq. (5.12).
In Table5.7 we give the GM(0) values and the magnetic moments evaluated on the
ensembles N1–N4. Magnetic form factors and their extrapolations are illustrated

Fig. 5.14 The ratio in Eq. (4.16) as a function of the current insertion time, t1, for the magnetic
form factor of �cc with t2 = 12a and t2 = 14a. We show statistics over 30 configurations for three
illustrative momentum-transfer values. The data for t2 = 12a are slightly shifted to left for clear
viewing. Figure taken from Ref. [16]
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Fig. 5.15 The magnetic form factors of �
0,++
c , �+

cc, �+
c and �+

cc as functions of Q2, for the
ensembles N1–N4. The dots mark the lattice data and the curves show the best fit to the dipole form
in Eq. (5.12). Figure taken from Ref. [16]

Table 5.6 The magnetisation radii of �
0,++
c , �+

cc, �
0
c and �+

cc as obtained on ensembles N1–N4
and the extrapolated values to the physical-mass point. Charge radii are given in units of fm2.χ2/dof
and p-values of the linear and quadratic fits are also given

ID 〈r2
M,�0

c
〉 〈r2

M,�++
c

〉 〈r2
M,�+

cc
〉 〈r2

M,�0
c
〉 〈r2

M,�+
cc

〉
N1 0.379(47) 0.492(66) 0.141(9) 0.346(43) 0.122(12)

N2 0.287(44) 0.360(56) 0.127(10) 0.247(39) 0.109(12)

N3 0.391(87) 0.419(77) 0.136(12) 0.313(30) 0.138(11)

N4 0.507(111) 0.574(133) 0.141(13) 0.303(29) 0.130(13)

Lin. Fit 0.377(75) 0.410(81) 0.135(10) 0.297(33) 0.135(11)

χ2/dof 2.265 1.823 0.613 1.56 1.162

p-Val 0.1 0.27 0.54 0.16 0.31

Quad. Fit 0.650(126) 0.696(53) 0.154(19) 0.354(54) 0.148(21)

χ2/dof 0.003 0.065 0.091 1.624 1.804

p-Val 0.96 0.69 0.76 0.8 0.18

in Fig. 5.17. �++
c has the largest magnetic moment of all and the charmed-strange

baryons, �c and �cc, have somewhat smaller moments. An inspection of the �c

and �cc magnetic moments and their dependence on the pion mass, which is due to
only sea-quarks, reveals that the moments are almost independent of the sea quark
effects. Magnetic moments of all the baryons are smaller in magnitude compared to
the experimental magnetic moment of the proton, which is μp = 2.793 μN [20].

Table5.8 displays a comparison of our results for the magnetic moments with
those from various other models. While the signs of the magnetic moments are
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Fig. 5.16 Chiral
extrapolations for the
magnetisation radii of
�

0,++
c , �+

cc, �
0
c and �+

cc in
(amπ )2. We show the fits to
constant, linear and
quadratic forms. Shaded
regions are the maximally
allowed error regions, which
give the best fit to data.
Figure taken from Ref. [16]
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Fig. 5.17 Chiral
extrapolations for the
magnetic moments oftable
5.8 �

0,++
c , �+

cc, �
0
c and �+

cc.
We show the fits to constant,
linear and quadratic forms.
Shaded regions are the
maximally allowed error
regions, which give the best
fit to data. Figure taken from
Ref. [16]
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correctly determined, there is a large discrepancy among results. For all the baryons,
the moments seem to be underestimated with respect to other methods.

Assessing the individual quark sectors is once again instructive to understand
the internal dynamics of the baryons. In Table5.9 we give the contributions of the
quark sectors to the magnetic moments. A glance at the results show that, unlike
the charge radii, features of the singly and doubly charmed baryons differ. In case
of the singly charmed �c and �c baryons for instance, heavy quark contribution is
much less compared to that of the light quark suggesting that the light quark give
the dominant contribution to the magnetic moments of the baryons. Results are quite
different when we examine the doubly charmed �cc and �cc baryons: quark sector
contributions are similar in magnitude.

While the magnitude of the contributions gives us an idea about the significance
of the quark sector, their signs hold the information about the alignment of the spins
of the quarks. We can infer by the opposite signs of the magnetic moments that the
spins of the light and heavy quarks are anti-aligned in the baryon most of the time.
Since the most significant contribution to the magnetic moments of the �c and �c

comes from the doubly represented light sector, their spins are mainly determined
by the light quarks. In general, doubly represented quarks tend to form spin-1 di-
quark structures with their spins aligned with respect to each other. We observe this
tendency in the doubly charmed baryons as well where the heavy-quark has a larger
contribution to the total spin and magnetic moment.

Findings for the magnetic moments

• General features:

– Magnetic moments of the charmed baryons are smaller in magnitude compared
to their light counterparts.

– �++
c has the largest magnetic moment among the spin-1/2 baryons that we have

studied.

• Quark sectors:

– Contributions differ for singly- and doubly-charmed baryons. Light sector is
dominant in the singly-charmed while the sectors are comparable in the doubly-
charmed baryons.

– Opposite signs of the quark magnetic moments suggest their spins are anti-
aligned.

5.4 Spin-3/2 Baryons

We present the results of our simulations for the electromagnetic multipole form
factors of the spin-3/2 �, �∗

c , �∗
cc and �ccc baryons. Theoretical formalism has

been outlined in Sect. 4.1.2.2. Spin-3/2 → spin-3/2 transition allows us to extract
more information from the electromagnetic multipole form factors as compared to
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the spin−1/2 → spin−1/2 transition. In addition to the charge radii and magnetic
moments we have access to the electric-quadrupole moments of the baryons as well.
In the following sections we give the numerical values of the form factors, charge
radii and moments and discuss their physical implications.

5.4.1 Electric Properties

5.4.1.1 Plateau Analysis

We extract the E0 and E2 multipole form factor values by searching for plateau
regions of the ratio given in Eq. (4.44). Note that we were able to isolate a clear signal
for the E0 form factors although the E2 form factors are much noisier compared
to the dominant E0 form factor. Unfortunately the limited number of the gauge
configurations we have for the the lightest quark mass ensemble N5, prevents us to
reach a statistically significant value for the s-quark contributions of the E2moments
since its signal is too noisy.

There are some differences to note in contrast to the spin-1/2 analysis: First of all,
all the measurements are performed on the ensemble N5. The results we quote are
not extrapolated to the physical light-quark mass since the mass of the light quarks
on the gauge configurations of this ensemble is almost physical.We regard the results
as final. Secondly, we calculate the form factors only for the lowest allowed lattice
momentum transfer. We will show that this approach leads to consistent results with
the dipole-form fit that we have employed for the spin-1/2 case. In Figs. 5.18 and
5.19 we show the correlation-function ratios of the E0, and E2 form factors for the
strange and charm quark sectors and the plateau fit extracted values at the lowest
allowed three-momentum transfer (q2=0.183 GeV2) are given in Table5.10. Note
that E0 form factor reduces to the electric charge of the baryon as usual and the

Fig. 5.18 Strange (filled) and charm quark (empty) contributions to the E0 form factor at the lowest
allowed three-momentum transfer (q2=0.183 GeV2). Contributions are shown for a single quark
and normalised to unit charge. The fit regions are t1 = [4, 7] for the charm sector and t1 = [6, 9]
for the strange sector. Figure taken from Ref. [32]
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Fig. 5.19 Same as Fig. 5.18 but for the E2 form factor. Fit region is t1 = [4, 7] for all cases. Data
points are slightly shifted for a clear view. Figure taken from Ref. [32]

E2 form factor cannot be directly obtained at zero momentum transfer due to its
definition in Eq. (4.46).

Excited states are of concern in spin-3/2 analysis as well, however, we have shown
that a separation of ∼1.09 fm (12a) is sufficient to keep the contamination under
control in the spin-1/2 case. Despite that, we further check possible contaminations
by extracting the E0 form factor via summed operator insertionsmethod. In Fig. 5.20,
E0 form factors of the �∗

cc and �ccc baryons are given. We expect the excited state
contaminations to be severest for those baryons relying on the heavy-quark spin
symmetry, which suggests that the energy gap between the ground and excited states
decrease as the mass of the quarks increase. Yet, the values extracted by a plateau
and SOI method agree with each other very well indicating that the contamination
is under control.

Table 5.10 Values of the E0(Q2) and E2(Q2) form factors at q2=0.183 GeV2 for �, �∗
c , �

∗
cc and

�ccc . Results are given in lattice units for a single quark and normalised to unit charge

E0s(Q2) E0c(Q2) E2s(Q2) E2c(Q2)

� 0.789(12) – −0.228(773) –

�∗
c 0.778(9) 0.954(4) −0.630(915) −0.979(456)

�∗
cc 0.775(8) 0.942(2) −0.280(852) −0.787(266)

�ccc – 0.937(2) – −0.655(182)
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Fig. 5.20 E0 form factors of�∗
cc and�ccc baryons for two momentum insertions as obtained from

summed operator insertions method. Results are for 43 measurements. Values given in the table are
for Q2 = 1 and should be compared to Table5.10. Figure taken from Ref. [32]

Table 5.11 Electric charge radii of the�,�∗
c ,�

∗
cc and�ccc . Results are given in fm2. Quark sector

contributions are for single quark and normalised to unit charge. Electric charge radii of spin-1/2
baryons are estimated through form factor fits as in Sect. 5.3. Total electric charge radius of the
spin-1/2 �c is estimated by the Eq. (5.18) since its electric form factor vanishes due to its zero
electric charge

〈r2E 〉s 〈r2E 〉c 〈r2E 〉
�c 0.329(25) 0.064(11) −0.177(18)

�cc 0.313(16) 0.073(4) 0.026(4)

� 0.326(21) – −0.326(21)

�∗
c 0.345(17) 0.062(5) −0.189(12)

�∗
cc 0.348(16) 0.078(3) −0.012(6)

�ccc – 0.084(3) 0.168(5)

Table 5.12 Electric charge radius of �∗
cc and �ccc baryons extracted by the plateau and the SOI

method. Results are compared for 43 measurements. Charge radii are given in fm2

�∗
cc �ccc

Plateau SOI Plateau SOI

〈r2E 〉s 0.332(43) 0.359(113) – –

〈r2E 〉c 0.079(8) 0.086(31) 0.085(5) 0.089(21)

〈r2E 〉 −0.005(16) −0.006(53) 0.170(9) 0.179(42)
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5.4.1.2 Electric Charge Radii

Sincewe performour simulationswith a single value of the finitemomentum transfer,
a dipole-form fit is not possible. However, we assume that a dipole form ansätz holds
and extract the charge radii using the expression,

〈r2E 〉
GE0(0)

= 12

Q2
min

(√
GE0(0)

GE0(Q2
min)

− 1

)
, (5.22)

which can be readily derived by inserting Eq. (5.12) into Eq. (5.11). We compile the
electric charge radii of the baryons as well as the quark sector contributions extracted
by the above expression in Table5.11. In Fig. 5.20, we have shown the form factor
values extracted by the SOI method in comparison to plateau method results of
Table5.10 to make sure that the excited state contamination is under control. We
utilise those values to give a comparison of the electric charge radii estimated by
using the form factor values extracted via the plateau and SOI method in Table5.12.
Agreement between the results shows that we have good plateau signalswhich isolate
the ground state effectively.

For the ease of discussion, we plot the data of Table5.11 in Fig. 5.21. Contribution
of the s-quark to the electric charge radii in all baryons, shown in Fig. 5.21a, appears
to be similar to each other, implying that it is almost independent of the quark-flavor
composition of the baryon. Moving on to the c-quark contributions, we see that
although the contributions illustrated in Fig. 5.21b seems to increase slightly with
the increasing number of the valence c-quarks in the baryon, smallness of the scale
makes this change negligible compared to the s-quark sector.

Effects of the spin-vector alignment of the quark to the charge radii are observed
whenwe compare the spin-1/2 and spin-3/2 sectors to each other.Apparent agreement
between the contributions in spin-1/2 and spin-3/2 sectors shows that the effect of
the spin on the s- and c-quarks is almost non-existent. We can form ratios of the
individual quark-flavor contributions in spin-1/2 to that in the spin-3/2 sector as
〈r2E 〉qB/〈r2E 〉qB∗ , in order to study the spin-effect more systematically. In Fig. 5.21c we
show the ratios for the s- and c-quarks in singly- and doubly-charmed baryons. In the
singly-charmed�c baryonwe observe that the s- and c-quark charge distributions are
insensitive to the spin-flip of the c-quark while a deviation from one is an indication
of an increase in their contributions in case of the doubly-charmed �cc baryon.

Total electric charge radii of the baryons given in the final column of Table5.11
are evaluated via the Eq. (5.18) and illustrated in Fig. 5.21d. In magnitude, � baryon
has the largest electric charge radius among all baryons we study. We should note
that the electric charge radius of the� baryon, 〈r2E 〉�− = −0.326(21) fm2, is in quite
good agreement with the previous lattice determinations [15, 19]. �c, �∗

c and �ccc

seem to have similar charge radii while the charge radii of the �cc and �∗
cc almost

vanish.
We canmake a naive assumption based on the similarity of the quark contributions

to the charge radii and consider the quark sector contributions in the spin-3/2 sector
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Fig. 5.21 Individual quark sector contributions to the electric charge radii, ratios of those contri-
butions and the total electric charge radii of the spin-1/2 �c, �cc and spin-3/2 �, �∗

c , �∗
cc, �ccc

baryons. qB/B∗ in (c) is a shorthand notation for the ratio, 〈r2E 〉qB/〈r2E 〉qB∗ . Absolute values are shown
for a better comparison in (d). Data points denoted by a triangle indicate a negative value. Figures
taken from Ref. [32]

to be same so that, 〈r2E 〉s� = 〈r2E 〉s�∗
c

= 〈r2E 〉s�∗
cc

= R2
s and 〈r2E 〉c�∗

c
= 〈r2E 〉c�∗

cc
=

〈r2E 〉c�ccc
= R2

c . With the help of the Eq. (5.18) we can relate the electric charge radii
of the spin-3/2 baryons to each other as,

(〈r2E 〉�∗
c
+ 〈r2E 〉�ccc

)
/2 = 〈r2E 〉�∗

cc
. Inputting

our results, charge radius of �∗
cc evaluates to

(〈r2E 〉�∗
c
+ 〈r2E 〉�ccc

)
/2 = −0.011(8),

which we compare to the computed charge radius of �∗
cc, 〈r2E 〉�∗

cc
= −0.012(6).

Agreement shows that this relation holds nicely which implies that the contribution
to the charge radii from each flavor is similar for all baryons we consider here and
their radii differ due to different quark compositions they have.

In order to get a better idea about the interplay of the quark sectors within the
light and heavy baryons, it is instructive to compare the behaviour of the s-quark
contributions to the electric charge radii of the �∗

c (ssc), �∗
cc (scc) to that of �∗

(ssu), �∗ (suu) baryons. We quote the values of Ref. [15] in which the authors
have calculated the same observables for decuplet baryons. A comparison of s-quark
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Table 5.13 Single strange quark contribution to the electric charge radii of the �∗
c and �∗

cc (nor-
malised to unit charge) in comparison to that of the decuplet �∗ and �∗. Decuplet values are taken
from tables XI. and XII. of Ref. [15]

S�∗
c

S�∗ S�∗
cc

S�∗

〈r2E 〉 [fm2] 0.345(17) 0.308(17) 0.348(16) 0.321(22)

Table 5.14 Electric charge radii of �c extracted by a dipole fit to the electric form factor and by
use of Eq. (5.22)

Dipole fit Equation (5.22)

〈r2E 〉s [fm2] 0.329(25) 0.338(26)

〈r2E 〉c [fm2] 0.064(11) 0.067(11)

〈r2E 〉 [fm2] −0.177(18) −0.180(20)

electric charge radii in �∗
c - �∗ in Table5.13 reveals the effect of changing the single

u-quark by a c-quark: When the singly represented quark is heavier, the s-quark
charge radius increases. In case of the�∗

cc -�
∗ baryons, the doubly represented light

quarks are changed to c-quarks. While the current precision does not allow a clear
conclusion, such a comparison again suggests a slight increase in the charge radius.

Note on systematic errors: Unlike the analysis of the spin-1/2 baryons, where we
have performed dipole-form fits to a range of form factor values corresponding to
different momenta to extract the charge radii via Eq. (5.13), we estimate the charge
radii of the spin-3/2 baryons by evaluating the Eq. (5.22). That expression greatly
simplifies the simulations and allows us to extract the values more precisely since
we use only two sets of momentum values, namely [Q2 = 0, Q2 = 1], and avoid
the possible statistical fluctuation due to higher momenta. We derived Eq. (5.22) by
assuming the data is described by a dipole form, however, we need to check whether
our assumption holds or not. As an illustrative example, we compare the charge radii
evaluated via the procedure we have followed for the spin-1/2 baryons to the values
extracted via Eq. (5.22) for the spin-1/2 �c baryon. Results are given in Table5.14
where the middle column holds the dipole-fit extracted values and the charge radii
estimated via Eq. (5.22) are quoted in the rightmost column. Considering the current
precision, we conclude that both approaches agree and no systematic error arises due
to change of analysis.

Findings for the electric charge radii

• General features:

– �− baryon has the largest charge radius in magnitude among the baryons that
we study.

– Its value 〈r2E 〉�− = −0.326(21) fm2 is in good agreement with other determi-
nations [15, 19].

– �∗
c and �ccc have similar charge radii while �∗

cc has almost vanishing radius.
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• Quark sectors:

– Strange and charm quark charge radii are insensitive to the baryon quark-flavor
composition.

– For singly charmed baryons, s- and c-quark charge radii are not affected by the
spin-flip whereas the charge radii of doubly charmed baryons increase.

5.4.1.3 Electric-Quadrupole Moment

The electric-quadrupole moment gives a measure of the deviation of the electric
charge from a spherically symmetric distribution as we have discussed in Sect. 5.2.
It also hints to the tensor force interactions. Similar to the analysis of the E0 form
factor, we estimate the E2 form factor by the plateau approach. We compute and
extract the s- and c-quark sector contributions individually. We have shown the E2
form factors in Fig. 5.19 and given the numerical values in lattice units in Table5.10.
In Table5.15, we quote the values in physical units of [e/m2]. Note that the results are
obtained at the smallest three-momentum value of q2 = 0.183 GeV2. Rather than a
precise determination of the quadrupole moments we are interested in distinguishing
their signs so that we can estimate the deformation of the electric charge distribution.

The evident poor signal in Fig. 5.19 prevents us from isolating the sign of the
quadrupolemoments of the� and�∗

c baryons.Better statistical precision of the heavy
quarks, however, weights in when we consider the heavier �∗

cc and�ccc baryons and
we are able to isolate the sign of their moments. �∗

cc
+ and �++

ccc have negative E2
moments thus their charge distributions deform to an oblate shape.

Table 5.15 E2(Q2) results for �, �∗
c , �∗

cc and �ccc at q2 = 0.183 GeV2. Values are given in
units of [e/m2]. Quark sector contributions are for single quark and normalised to unit charge. Last
column is calculated by the Eq. (5.18)

E2(Q2)s E2(Q2)c E2(Q2)

� −0.337(1.142) – 0.337(1.142)

�∗
c −0.371(539) −0.577(269) −0.137(352)

�∗
cc −0.091(277) −0.255(87) −0.310(128)

�ccc – −0.136(38) −0.273(76)

Table 5.16 Values of M1(Q2) form factor at q2=0.183 GeV2 for �, �∗
c , �∗

cc and �ccc . Results
are given in lattice units for single quark and normalised to unit charge

M1s(Q2) M1c(Q2)

� 2.307(94) –

�∗
c 3.413(96) 1.032(25)

�∗
cc 4.442(110) 1.349(16)

�ccc – 1.609(12)
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Findings for the quadrupole moments

�∗
cc

+ and �++
ccc have oblate charge distribution.

5.4.2 Magnetic Properties

5.4.2.1 Plateau Analysis

In the magnetic sector we extract the M1multipole form factor only. Data for the M3
form factor is too noisy to isolate a statistically significant value. We omit the M3
form factor in this work since the limited number of gauge configurations prevents
us from increasing the quality of the signal. Similar to the electric sector we perform
simulations only on the ensemble N5 and with the lowest allowed lattice three-
momentum. In Fig. 5.22, we show the ratio in Eq. (4.44) for the M1 form factors
of the strange and charm quark sectors as well as the identified plateau regions.
Extracted values at the lowest allowed three-momentum transfer (q2=0.183 GeV2)
are compiled into Table5.16.

5.4.2.2 Magnetic Moments

We need the zero-momentum value, GM1(0), of the magnetic-dipole form factor in
order to calculate the magnetic moments of the baryons.We calculate the form factor
value via the Eq. (5.14) and simply evaluate the Eq. (5.15) to estimate the magnetic
moments. Our numerical values are listed in Table5.17 and illustrated in Fig. 5.23.

Based on the data collected from ensembles N1–N4, we have concluded in
Sect. 5.3.2 that a single quark’s contribution to the magnetic moment increases sig-
nificantly when it is doubly represented in spin-1/2 baryons. Results for the �c and
�cc baryons from the ensemble N5 confirms our conclusion.Whenwe contrast quark
sector contributions of the spin-1/2�c and�cc baryons to that of the spin-3/2�∗

c and

Fig. 5.22 Same as Fig. 5.18 but for the M1 form factor. Fit region is t1 = [4, 7] for all cases. Figure
taken from Ref. [32]
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Table 5.17 Magnetic moments of �, �∗
c , �∗

cc and �ccc . Results are given in units of nuclear
magnetons, μN . Quark sector contributions are for single quark and normalised to unit charge

μs μc μ

�c 0.979(47) −0.092(6) −0.688(31)

�cc −0.402(17) 0.216(3) 0.403(7)

� 1.533(55) – −1.533(55)

�∗
c 1.453(36) 0.358(8) −0.730(23)

�∗
cc 1.408(29) 0.352(4) 0.000(10)

�ccc – 0.338(2) 0.676(5)

Table 5.18 Strange quark contributions to the magnetic moments of the �∗
c , �∗

cc, �∗ and �∗.
Decuplet baryon results are calculated in Ref. [15] on a quenched configuration with mπ = 300
MeV. All contributions are for a single strange quark of unit charge

S�∗
c

S�∗ S�∗
cc

S�∗

μ [μN ] 1.453(36) 1.725(77) 1.408(29) 1.750(10)

�∗
cc baryons, we see that a sign change is evident due to the spin flip. Contributions in

the spin-3/2 sector are larger compared to the spin-1/2, which can be understood by
the change in the configuration of the baryons. In order to compose a spin-1/2 baryon,
one of the quark sectors should be anti-aligned with the spin vector of the baryon
causing an overall decrease in the contributions unlike the spin-3/2 baryons, where
the spin vectors of all the quarks are aligned both with themselves and the baryon
itself which enhances the contributions. Within the spin-3/2 baryons on the other
hand, s-quark contributions have a slight tendency to decrease with the decreasing
number of valence s-quarks. Contributions of the c-quark, however, tend to decrease
as the number of c-quarks increase.

We may investigate the differences occurring due to changes in the quark flavor
composition via comparing the light sector to the heavy sector in a similar fash-
ion to that in the electric sector. Considering the same baryons, �∗

c (ssc) and �∗
cc

(scc) in comparison to �∗ (ssu) and �∗ (suu), we contrast the magnetic moment of
the s-quark to search for the effects of changing a light quark by a charm quark.
Magnetic moments of light decuplet baryons have been calculated in Ref. [15] with
quenched lattice QCD. In Table5.18, we compile our results along with the results
of Ref. [15]. Although a quantitative comparison is impractical since the work in
Ref. [15] has been performed on quenched lattices with much heavier pion mass,
we can assert a qualitative comparison as follows: The s-quark contributions to the
magnetic moments of the charmed and light decuplet baryons are different. Charmed
baryons have smaller magnetic moments than light baryons.

We can study the effect of the quark spin configurations on the quark magnetic
moments further by forming the ratios of the quark-sector contributions to spin-1/2
and spin-3/2 baryons, μq

B/μ
q
B∗ , where q is the quark flavor and B is the baryon. We

compile the numerical values in Table5.19 together with the octet-decuplet ratios
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Fig. 5.23 Individual quark sector contributions to the magnetic moments, ratios of those contri-
butions and the total magnetic moments of the spin-1/2 �c, �cc and spin-3/2 �, �∗

c , �∗
cc, �ccc

baryons. Absolute values are shown for a better comparison. Data points denoted by a triangle
indicate negative values. Rightmost blue data points in (c) are octet/decuplet ratios calculated using
themπ = 300MeV quenched simulation results of Refs. [14, 15] and qB/B∗ is a shorthand notation
for μ

q
B/μ

q
B∗ where q is the quark flavor and B is the baryon. Figures taken from Ref. [32]

extracted from Refs. [14, 15] and illustrate the data in Fig. 5.23c for the ease of
discussion. It is evident that the contributions from both of the quark sectors are
enhanced in spin-3/2 baryons. Notice that the strange quark sector in the �c and
�∗

c and the charm quark sector in �cc and �∗
cc baryons are doubly represented and

the difference is that a strange quark is exchanged by a charm quark or vice versa.
A comparison of the ratios, S�c/�∗

c
and C�cc/�∗

cc
, would reveal the effect of such a

quark flavor exchange. Same exercise can be done for the singly strange and singly
charmed baryon ratios also. We observe that results of these ratios are respectively
consistent with each other suggesting that the flavor of the quark has almost no role
in the difference between the spin-1/2 and the spin-3/2 baryons.

Including the magnetic moment of the s-quark sectors of the octet and decuplet
baryons, namely for the �, �, �∗ and �∗, we may enhance our understanding of



5.4 Spin-3/2 Baryons 109

Table 5.19 Ratios of the quark magnetic moment contributions in 1/2+/3/2+. Octet/decuplet
ratios are extracted from the numerical results available in the Refs. [14, 15]. All values are ratios
of a single quark contribution of unit charge

S�c/�∗
c

C�cc/�∗
cc

S�/�∗∣∣μq
B/μ

q
B∗

∣∣ 0.674(34) 0.615(10) 0.703(50)

S�cc/�∗
cc

C�c/�∗
c

S�/�∗∣∣μq
B/μ

q
B∗

∣∣ 0.286(13) 0.258(18) 0.245(10)

the behaviour of strange sector with respect to its environment. In case of the dou-
bly strange baryons the ratios S�c/�∗

c
and S�/�∗ agree with each other within their

one-sigma errors suggesting that the strange quark is insensitive to its accompany-
ing quark—be it a light quark or a heavy charm quark. However, we see a slight
discrepancy in singly-strange baryons when we compare the S�cc/�∗

cc
ratio to S�/�∗ .

The smaller value of the S�/�∗ ratio suggests that going from spin-1/2 to spin-3/2
affects the s-quark more when its accompanying quarks are light flavored. Adding
the C�c/�∗

c
ratio into the comparison of the contributions of the singly-represented

quark sectors, we see that the effect of the environment is less pronounced for the
charm quark.

We combine the magnetic moments of the individual quark sectors via Eq. (5.18)
and estimate the totalmagneticmoments of the baryons.The last columnofTable5.17
holds the total magnetic moments and we illustrate a comparison in Fig. 5.23d. We
find themagneticmoment of the�− baryon to beμ�− = −1.533±0.055μN , smaller
compared to the current experimental value of, μexp

�− = −2.02 ± 0.05 μN [20]. One
of the reasons for the discrepancy is the mass of the � baryon as determined in
our simulations since magnetic moments are sensitive to the mass of the baryon by
definition. Our mass value, m� = 1.790(17) GeV, differs by 7% from the experi-
mental mass m� = 1.673(29) GeV. Another plausible possibility is that different
simulation methods might lead to different results. For instance, a determination in
Ref. [33] by a background field method findsμ�− = −1.93±0.08μN onmπ = 366
MeV lattices while our result is in agreement with other determinations using the
same method as ours: the quenched calculation of Boinepalli et.al [15] results in
μ�− = −1.697 ± 0.065 μN and the Alexandrou et.al finds μ�− = −1.875 ± 0.399
μN [19] via an extrapolation to the physical point.

Moving on to the charmed baryons, we see that the magnetic moments of the
spin-1/2 �c and spin-3/2 �∗

c baryons are almost the same, which indicates that the
spin flip of the charm quark has minimal effect, in agreement with the heavy-quark
spin symmetry expectations. From a quark-model perspective we would expect the
magneticmoments of the�c (�cc) and�∗

c (�
∗
cc) to be similar to each other andwe see

that such an expectation holds for the�c and�∗
c while there is a striking discrepancy

for the �cc and �∗
cc baryon where the latter has a vanishing magnetic moment. �c

and �∗
c has the same quark content but their spin configurations differ from each

other in a way that the spin vector of the single c-quark is anti-aligned with that of
the (ss) component in�c in contrast to the�∗

c where the spin vectors of all the quarks
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are aligned. When the quark sectors are combined relative to their electric charges,
they add constructively for the �c baryon but destructively for the �∗

c . Although the
behaviour is different, combination of the sectors happen in a balanced way leading
to similar magnetic moments for the �c and the �∗

c . The balance is broken in case
of the doubly-charmed �cc and �∗

cc and the interplay of the electric charge and the
number of the valence quarks ends up in a significant difference of the magnetic
moments of the baryons.

Findings for the magnetic moments

• General features:

– Magnetic moment of the �− baryon is found to be, μ�− = −1.533 ± 0.055
μN .

– �c, �∗
c have similar magnetic moments in magnitude.

– Magnetic moment of the �∗
cc vanishes unlike the �cc.

– As compared to the decuplet sector, strange-quark contributions to the magnetic
moments of spin-3/2 charmed baryons are smaller.

• Quark sectors:

– Contributions amongst the spin-3/2 baryons are similar to each other, consonant
with the quark-model expectations.

– Magneticmoments of the strange and charmquarks in spin-3/2 charmed baryons
are larger than spin-1/2 baryons having a similar quark-flavor composition.

5.5 Systematic Errors

Most of the estimates of systematic errors below are covered in their respective
discussions already, however, we find it convenient to summarise the systematic
uncertainties that we have encountered in the progress of this work, along with our
conclusions, in one place for better accessibility.

5.5.1 Excited-State Contamination

Excited state contamination is one of the notorious systematic effects one should be
worried of inmatrix element calculations.We have covered its origin and themethods
we use to determine the excited state effects in Sect. 5.2. Sections5.3.1.1, 5.3.2.1,
5.4.1.1 and 5.4.2.1 contain our through checks of the excited state contamination by
varying the source-sink time seperation and comparing the plateau extracted values
with that of the phenomenological fit or SOI methods.

Figures5.8 and 5.14 show the time dependence of the �cc form factors in case of
the t2 = 12a and the longer t2 = 14a seperation. Behaviour of the data is similar
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Fig. 5.24 Electric charge radius and magnetic moment of �c and �cc baryons on different mπ L
values. Since the�c baryon has zero net electric charge we give the strange and charm quark charge
radii. Figure taken from Ref. [32]

in both cases and plateau regions can be identified in the same fit windows. A com-
parison of the t2 = 12a plateau data with the data extracted via a phenomenological
fit is depicted in Table5.2 and plotted in Fig. 5.9 for the �cc baryon. We show the
values extracted by a SOI method in Fig. 5.9 also. Form factor values and dipole fits
of all three methods agree with each other within statistical errors with an increased
uncertainty on phenomenological and SOI values.

We perform a plateau-SOI comparison in case of the spin-3/2 �∗
cc and �ccc

baryons, which would exhibit the severest excited state contamination among the
spin-3/2 baryons. In Fig. 5.20 we show the E0 form factors of those baryons as
extracted by a SOI method. Results are in good agreement with the plateau val-
ues in Table5.10, e.g.

(
E0c(Q2)

)�ccc

plateau = 0.937(2) compared to
(
E0c(Q2)

)�ccc

SOI =
0.934(15). Furthermore, electric charge radii extracted from plateau and SOI val-
ues agree, as well. Comparison is given in Table5.12. For instance, a plateau
analysis yields

(〈r2E 〉s)�∗
cc

plateau = 0.332(43) fm2, in comparison to the SOI one,(〈r2E 〉s)�∗
cc

SOI = 0.359(113) fm2.
We conclude that a source-sink seperation of t2 = 12a ≈ 1.09 fm is adequate to

suppress the excited state contributions in case of spin-1/2 and spin-3/2 form factors
and observables.

5.5.2 Finite-Volume Effects

Finite-volume corrections has an exponential dependency to the typicalmass and spa-
tial extent of the system as, e−ML [34]. Studies put an empirical bound ofmπ L ≥ 4 to
ensure the finite-size effects are negligible. Below this value, corrections are expected
to be significant. The ensemble we use for spin-3/2 analysis, namely the N5, cor-
responds to mπ L = 2.3, which lies below the empirical one, thus, raises concerns
about the finite-size effects. In order to fully account for this systematic effect, cal-
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Table 5.20 Electric charge radius and magnetic moment of �c and �cc baryons on different mπ L
values

mπ L 2.3 4.3 6

�c 〈r2E 〉s [fm2] 0.329(24) 0.313(36) 0.320(28)

〈r2E 〉c [fm2] 0.064(11) 0.061(10) 0.076(13)

μ [μN ] −0.688(31) −0.640(55) −0.621(44)

�cc 〈r2E 〉 [fm2] 0.026(4) 0.029(6) 0.040(6)

μ [μN ] 0.403(7) 0.402(15) 0.400(11)

culation of the same quantities with different volumes is necessary, however, since
this approach is currently beyond our computational ability, we investigate the sig-
nificance of such effects by changing the mπ while keeping the spatial extent, L ,
constant.

We compare the results of spin-1/2 �c and �cc baryons obtained on ensemble N5
to the ones calculated on N4 and N3 for which mπ L = 4.3 and mπ L = 6, respec-
tively. We compile the numerical results into Table5.20 and plot them in Fig. 5.24
for a clear comparison. Agreement within 1σ error bars suggests that the finite size
effects are not severe for the charmed observables most probably due to small cor-
relation lengths (larger masses) of charmed baryons.

5.5.3 Fitting Procedures

In the spin-1/2 sector, we extract the electric charge radii via dipole fits to form
factors but change our approach for the spin-3/2 case. Rather than computing the
form factors up to Q2 ∼ 1.6 GeV, we use only the [Q2 = 0, Q2 = 1]momentum set
as outlined in Sect. 5.4.1.2. Underlying assumption is that the form factors are well
described by a dipole formhenceEq. (5.22) provides a reliable description.We check,
however, if this assumptions holds by comparing the charge radii of the spin-1/2 �c

baryon extracted via a dipole-fit procedure and by Eq. (5.22). Results are illustrated
in Table5.14. Based on the agreement between the results, we conclude that both
approaches agree and no systematic error arises due to the change of analysis.

Different courses of action in combining the data setsmight lead to varying results.
A good example is how one combines the data sets of individual quark sectors to
estimate the properties of the baryon. In one approach, say approach I, we can
extract the observables by first combining the data sets of the quark sectors which is
followed by a fit to that combined data set. In approach II, on the other hand, same
properties can be evaluated by performing fits to the data sets of individual quark
sectors beforehand and then by combining those values via Eq. (5.18). In principle,
both approaches should give the same value, however, statistical fluctuations may
cause deviations. Correlations amongst the data are usually considered problematic
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but in approach I, it would help to cancel the similar statistical fluctuations of different
observables, providing a better estimated value, especially if the value is close to zero
like in the case of 〈r2E 〉�cc . When possible, we always follow approach I, e.g. spin-1/2
values quoted in Tables5.3, 5.11 and 5.17. An exception is the electric charge radius
of zero electric-charge baryons since approach I naturally leads to an ill-defined form
factor in a sense that it can not be described by a dipole form. In such cases (e.g.
〈r2E 〉�0

c
) we utilise approach II.

Agreement between the two approaches is visible in our numerical results. For
example the magnetic moment of charged �cc is estimated as μ�cc = 0.403(7) μN

in approach I, while approach II results in μ�cc = 0.422(10) μN , and the neutral �c

is μ�c = −0.688(31) μN in approach I, while approach II gives μ�c = −0.714(35)
μN , suggesting minimal systematic errors.

5.5.4 Quark Action Related Uncertainties

Quantities computed by employing the Clover action has O(mqa) discretisation
errors which should be controlled when one calculates observables related to heavy
quarks, mq � �QCD . In this work, we have focused on charmed baryons composed
of one or more valence charm quarks thus we check for the systematic effects due to
Clover action. As discussed in Sect. 4.2.2, we set the improvement coefficient to its
tad-pole improved value, cSW = 1/u30, following the procedure outlined in Ref. [35].

Note that on a set of ensembles all having the same lattice spacing, we have
only indirect probes to discuss discretisation errors. A dedicated analysis with dif-
ferent lattice spacings is needed to quantify to which extent our results are prone to
such errors. We simply argue that the systematic uncertainty on the observables is
negligible compared to the current statistical precision.

5.5.4.1 Baryon Masses

We have presented and discussed our baryon masses in Sect. 5.1. Compared to the
masses reported by other groups (see Table5.1 and Figs. 5.3 and 5.4), we either see an
agreement within error bars or—for charmed baryons—at most ∼4% discrepancy.
Note that other determinations employ relativistic heavy-quark actions and either
make calculations on the physical point or perform chiral perturbation theory man-
dated fit forms to extrapolate their results to the physical point. A visible trend in
Fig. 5.4 shows the degree of agreement improves as the number of valence charm
quarks increase. The agreement in case of the �ccc baryon is a good indication that
the systematic errors associated with the c quark is at a minimum.

The small discrepancy might be attributed to our choosing κs
val = κs

sea = 0.13640,
which, compared to its experimental value, leads to an overestimation of the mass of
�(sss) baryon approximately by 100 MeV on ensemble N5 [6]. Retuning of κs so as
to obtain the physical K mass would be desirable for precision calculations, however,
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choosing κs
val �= κs

sea would lead to partial-quenching effects and furthermore a
retuning would have a minimal effect on the conclusions of this work.

5.5.4.2 Electromagnetic Observables

Basedon the open-charmedmeson form factor calculations [9],we expect the system-
atic effects to bemuch smaller for quantities that are less sensitive to the charm-quark
mass.Wemay investigate further bymildly changing the κc from its determined value
and check how the observables are effected. As long as we confirm that deviations
do not affect the observables, it is safe to assume that the systematic errors are under
control.

We first conduct a check in the spin-1/2 sector by comparing our results to a
prior work on the �cc baryon with κc = 0.1224 and present recalculation with
κc = 0.1232, both corresponding to approximately 100 MeV deviation in m�cc .
Results in Table5.5 show virtually no change in the extrapolated values.

We have performed a similar check in the spin-3/2 sector also. We have repeated
our simulations with κc = 0.1256, which leads to a decrease in the spin-3/2
charmed baryon masses by approximately 100 MeV from those given in Table5.1.
E0 and M1 form factor values are affected less than 1% and ∼3% by such a
change. Electric charge radii and magnetic moments are, in turn, effected by less
than 3%. We find, for instance, 〈r2E ,�ccc〉κc=0.1246 = 0.170(9) fm2 as compared to
〈r2E ,�ccc〉κc=0.1256 = 0.175(10) fm2 and μ

κc=0.1246
�∗

c
= −0.696(50) μN as compared

to μ
κc=0.1256
�∗

c
= −0.712(50) μN for 43 measurements on ensemble N5.
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Chapter 6
Summary, Conclusions and Prospects

Abstract We summarize the main findings of this work in this final chapter and
discuss the prospective future directions along with our on-going efforts.

Keywords Charmed baryons · Charge radii and magnetic moments
Baryon structure

6.1 Summary and Conclusions

Electromagnetic form factors is one of the pieces that play an important role in
describing the internal dynamics of hadrons. They reveal valuable information about
the size and the shape of the hadrons. Determining these form factors is an important
step in our understanding of the hadron properties in terms of quark-gluon degrees
of freedom. There have been enormous efforts to determine the electromagnetic
form factors of light hadrons. The theoretical challenge is to understand these quan-
tities from QCD. One intriguing question is how the structure of the hadrons gets
modified in the heavy-quark regime, like in the case of charm hadrons. While there
exist experimental results for the light baryons revealing their spectrum and elec-
tromagnetic properties, only the spectrum of the charmed baryons are accessible
by experiments for the time being. Future experimental efforts at facilities like e.g.
J-PARC, SuperKEKB, BES-III etc., are expected to provide a wealth of information,
which calls for a better understanding of the heavy-sector dynamics from theoretical
grounds. Combined with the available information on the light sector, insights on
the heavy-flavor hadrons would reveal differences in the quark-gluon dynamics of
heavy flavors.

In the framework of lattice QCD—the only known method that starts directly
fromQCDLagrangian—the electromagnetic form factors of light hadrons have been
extensively studied. Lattice computations have now reached an advanced level so that
the simulations with (almost) physical light quarks are possible. Main challenges for
the lattice QCD form factor calculations have been the pseudoscalar/vector-meson
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states and the nucleonwhile the octet and decuplet baryon structure had less attention.
Lattice literature on charmed baryon electromagnetic form factors have been non-
existent. Along this perspective, we have built upon our experience on open-charmed
meson sector to extend our calculations to charmed baryons. In this thesis, we have
presented the combined results of our works on baryons that contain at least one
charm quark.

After reviewing the QCD and relation of its elementary degrees of freedom to
the hadrons in Chap.2, we have covered the theoretical formalism to calculate the
electromagnetic form factors in Chap.4 and given the details of our lattice setup.
In a nutshell, we have calculated the electromagnetic form factors and related static
observables of the triply-strange �( 32

+
) baryon and the charmed �c ( 12

+
), �c ( 12

+
),

�cc ( 12
+
),�cc ( 12

+
),�∗

c ( 32
+
),�∗

cc ( 32
+
),�ccc ( 32

+
) baryons in the lattice QCD frame-

work. We have utilised five sets of gauge ensembles incorporating the dynamical
effects of u/d and s quarks with varying light-quark masses down to almost their
physical values. Strange and charm quark masses are fixed to their respective physi-
cal values.We have run our simulations on lattices of (32a)3 × 64a in size with a fine
enough lattice spacing of a = 0.0907(13) fm capable of resolving the inner structure
of charmed baryons and corresponding to a spacious enough volume of approxi-
mately (2.9 fm)3 × 5.9 fm to accommodate them while minimising the finite-size
effects to a negligible extent.

Masses, electromagnetic form factors and the related observables of the baryons
have been presented in Chap.5. We have extracted the masses of the baryons by
analysing the two-point lattice correlation functions. Masses of the baryons that con-
tain light quarks are studied on ensembles with different light-quark masses and
baryon masses are estimated by extrapolations to the physical light-quark mass.
Baryon masses obtained on the ensemble with almost physical light-quark mass are
observed to be almost identical to the extrapolated masses. Our masses lie approxi-
mately 100MeV above the experimentally measured masses of�c ( 12

+
),�( 32

+
) and

�∗
c ( 32

+
) baryons while the agreement between our and other lattice groups’ deter-

minations improve, as evident in Fig. 5.4, as the number of valence charm quarks
increase. Small discrepancies most likely arise from the simple extrapolation forms
that we have employed to estimate the masses on the physical light-quark mass
point in combination with the questionable strange quark-mass tuning of PACS-
CS. A HBχPT inspired extrapolation function for instance reproduces the mass of
the �c baryon in good agreement with its experimental value indicating that the
extracted charmed-light baryon masses have minimal systematic errors. Neverthe-
less, the significance of the masses of the baryons in form factor calculations lies in
the kinematical terms which have minimal effect on observables. We have indeed
studied the possible effects of the mass discrepancies on the form factors and our
tests indicate that the final electromagnetic observables are affected by less than 2%.

Electromagnetic form factors are related to the static properties, such as electric
charge radii, magnetisation densities and the magnetic and higher order moments of
the baryons, each providing an aspect of the internal structure. In general our results
indicate that the charmed baryons are compact—the magnitude of their observables
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is decreased—compared to their light-sector counterparts. We have extracted the
contributions of the individual quarks that build-up the baryon to the electromag-
netic observables and identified the reduced contribution of the charm quark as the
main source of the decrease. Electric charge radii results indicate that the distri-
bution of the light quark is larger than the charm quark indicating that the charm
quark acts as a hard core and shifts the center of mass of the system towards itself.
Negative charge radii values obtained for �(∗)

c are indicative of a positively charged
charm core covered with a negatively charged strange quark distribution. Electric
properties are mildly sensitive to the flavor of the quark and the spin composition of
the baryon which can be inferred from the similarity of the charge radii of�++

cc ( 12
+
),

�+
cc ( 12

+
) and �∗

cc
+ ( 32

+
) baryons. Magnetisation density follows a similar trend as

well but its spread is larger compared to the electrical distribution. We could access
the electric-quadrupole moments of spin-3/2 baryons only in our setup and were able
to isolate a clear signal for the�∗

cc
+ ( 32

+
) and�++

ccc ( 32
+
) baryons. Their negative val-

ues are indicative of an oblate distribution of the electric charge.
Magnetic moments are found to be smaller compared to that of their light coun-

terparts due to the charm quarks as well. Individual quark sector analyses reveal that
the doubly represented quarks have a significant effect on the magnetic moment of
the baryon. Alignment of the quark spins with respect to each other can be deduced
from the sign of their magnetic moments and we observe that the quark sectors are
anti-aligned in spin-1/2 but aligned in spin-3/2 baryons. Contribution of the charm
quark is systematically smaller than that of light quarks, once again, but itsmagnitude
changes in different spin configurations where it is enhanced in spin-3/2 baryons.
Contribution of the light quarks is enhanced as well. We have also identified the
effects of the environment on an individual quark by contrasting our results with
that of the octet and decuplet baryons. Strange quark seems to be more sensitive to
the changes to its accompanying quarks than the charm quark. In general, results
are found to be consonant with the qualitative expectations of quark model and
heavy-quark symmetry, although there are apparent quantitative differences.

Also in Chap.5, we have identified and analysed several sources of systematic
errors that might affect the final results. Excited state contamination has been deemed
as under control. We have checked the finite-volume effects that may arise in ensem-
ble N5 and by comparing the results of N5 to those obtained on N3 and N4, we have
confirmed that finite-volume effects are under control as well. We have run dedicated
tests to ensure that the discretisation errors associated with the charm quark is under
control and concluded that the systematic effect to the form factors is in a few percent
level—negligible with respect to the statistical errors. Possible inconsistencies that
might arise due to the different statistical analysis procedures are shown to be of no
concern.
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6.2 Future Prospects

This work has provided the first systematic lattice QCD study of the electromagnetic
form factors of charmed baryons as a part of our current wider program. It is natural
to extend such calculations to study the electromagnetic transition form factors from
which transition magnetic moments or (partial) decay widths of baryons can be
extracted. Considering the rather limited experimental results on charmed baryon
quantities, reliable first principle calculations have the potential to give accurate
predictions. Comparing the individual quark sector contributions to the observables
of baryons with different flavor structures and wave functions would provide further
insight to the flavor dynamics and symmetries. In addition to the electromagnetic
(vector-current) interaction, different currents probe different properties of hadrons.
Form factors corresponding to axial-vector or pseudoscalar currents for instance, can
be related to the spin structure or more interestingly to the pion interactions which
is an important ingredient of effective models and relevant to the singly-charmed
baryon phenomenology. Our current program progresses along these directions with
the hope that it will help improve our understanding of the structure and interactions
of heavy-flavored baryons from first principles.
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