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Supervisor’s Foreword

It rarely happens that a fundamental and important problem in physics is
recognized for half a century before it is finally solved. The theory of how
elementary particles acquire mass was suggested by Peter W. Higgs, Franois
Englert, and Robert Brout in 1964, but the so-called Higgs particle was
confirmed only in 2012 by the ATLAS and CMS experiments at CERNs
Large Hadron Collider. This breakthrough was highly acclaimed and quickly
rewarded by the Nobel Prize for these theorists.

As a matter of fact, the concept of mass generation by means of the Higgs
mechanism was strongly inspired by earlier works on the Meiner-Ochsenfeld
effect in superconductors by P.W. Anderson, N.N. Bogoljubov, J. Goldstone,
and Y. Nambu in the late 1950s and early 1960s. In quantum field theory, the
excitations of longitudinal components of the Higgs field manifest as massive
Higgs bosons. The analogous Higgs mode in superconductors is challenging
to observe due to its rapid decay into particlehole pairs. Triggered by the
correspondence to high-energy physics as well as by advances in experimen-
tal techniques, the problem of collective excitations of superconductors was
tackled again in recent years. It takes particular conditions to allow for ex-
perimental observations, such as the presence of a second broken symmetry
ground state, e.g. charge density wave in 2H-NbSe2, or quantum criticality.
In this doctoral project Uwe S. Pracht measured the optical properties of
ultrathin NbN films and studied the electrodynamic behavior close to the
superconductor-insulator quantum phase transition. Careful comparison of
the terahertz response to tunneling spectroscopy, which is only sensitive to
quasiparticle excitations, allowed him to explore the collective dynamics and
the Higgs mode of the superconducting condensate.

Pracht also considered superconducting granular aluminum films com-
posed of coupled nano-grains. Here, superconductivity shares a striking re-
semblance to the famous unconventional quantum critical superconductors:
a superconducting dome. In case of granular aluminum it uncovered as a con-
sequence of the interplay between quantum confinement and global supercon-
ducting phase incoherence due to nano-inhomogeneity; it will be interesting
to see whether these ideas also apply to the enigmatic high-temperature su-
perconductors. Besides being responsible for the enhancement of the critical
temperature with respect to bulk aluminum, this spatial inhomogeneity pro-
vides a mechanism for the optical visibility of the collective Goldstone mode
in superconductors. Related to the results presented by Pracht, it is now
rather well understood by theory.

Yet another material class addressed in this thesis is the non-Fermi liq-
uid state of the quantum critical heavy-fermion superconductor CeCoIn5.
Determining the optical response allowed Pracht to establish the frequency-
and temperature dependence of the quasiparticle relaxation rate and effective
mass, which then lead to the identification of CeCoIn5 being a hidden Fermi
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liquid composed of resilient quasiparticles.
This thesis is published by Springer not only because of the extensive

optical investigations leading to a large body of astonishing experimental
results. They are complemented by an in-depth review of theoretical works
necessary for the comprehension of the findings; finally the experimental tools
and methods used in this study are described in full detail. Uwe S. Pracht
is a devoted experimentalist but also loves to dive deep into theory. In close
interaction with various colleagues from theoretical physics, numerous dis-
cussions and insisting questions, he achieved a level rarely found within an
experimental group. He demonstrates his ability to explain the underlying
concepts without oversimplifying them. This exceptional thesis convincingly
covers a variety of topics in an unusual breadth and depth; it is written in
a concise style, original figures help explaining the ideas, side remarks and
references invite for deeper exploration. I have no doubt that future students
as well as advanced scientists will enjoy studying one or the other aspect and
profit from this outstanding work.

Stuttgart, Germany Professor Martin Dressel
July 2017
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Abstract

The stars are indifferent
to astronomy

Nada Surf

Any truly remarkable physical theory bears on simple concepts. Although
this conjecture naturally withdraws from strict mathematical approval, it has
become a working hypothesis, a mantra: If a solution isn’t simple enough,
one hasn’t got to the core of the problem yet. This claim may strike sur-
prising and the associated ambition even sound ridiculous given the shape
of modern physics; crowded with disparate models, intricate categories, toy
models, rules and even more exceptions on the one side, and overwhelmingly
complex mathematical models maybe not even linked to the real world on the
other side. Yet at the same time, in retrospect, most complicated problems
tend to unwind into miraculously simple concepts. Gravity is a property of
curved space time, wave and particle are just two manifestations of the same
entity, the negative-energy solutions of Dirac’s equation are antiparticles, or
- the conceptual framework of the presented work - spontaneous breaking of
symmetry gives rise to superconductivity and collective excitations.

In the most fundamental setting going back to Landau, we understand su-
perconductivity in terms of a complex function Ψ(x, t), the order parameter.
If Ψ is zero, the system is in the disordered normal state, if Ψ acquires finite
values, the system turns superconducting and evolves a long range order we
call phase lock. We determine Ψ by constructing a Lagrangian L[Ψ] suited
to meet our requirements for, e.g., the conservation of charge, and finding its
minimum. From here, it only took only a few of the brightest minds of the
20th century to understand the implications: Symmetry breaking causes the
superconducting energy gap (Nambu) and leads to angular excitation modes
within the degenerate ground-state manifold (Goldstone). Those modes may
disappear giving way to massive gauge bosons of electroweak interaction
(Glashow, Salam, Weinberg). The same mechanism applies to condensed
matter, where it renders photons massive, that is the Meissner effect of su-
perconductivity (Anderson). In the symmetry group of the Standard Model,
left-overs from gauge transformations are massive bosons we nowadays call
Higgs bosons (Englert, Brout, Higgs). In certain superconductors, Higgs-
and Goldstone-like excitations of Ψ become well-defined and visible (Varma,
Auerbach, Benfatto, and many more). Working out and scrutinizing the im-
plications of the above break-troughs, theoretical and experimental physicists
are kept busy to this very day with an end not in sight yet.

This PhD project is dedicated to the experimental study of materials
which, neglecting subtleties for a moment, share a similar phase diagram de-
spite being chemically and structurally different: disordered NbN, granular
Al, and the Heavy-Fermion metal CeCoIn5. In these compounds, supercon-
ductivity (Ψ > 0) can continuously be controlled, suppressed, and eventually



replaced by a new ground state (with Ψ = 0) by turning up a non-thermal pa-
rameter such as disorder or magnetic fields. This transition between ground
states may take place even at absolute zero temperature, where the quantum
nature of the electronic system is the only source of critical fluctuations thus
coining the term quantum phase transition. Residing at zero temperature,
the quantum phase transition naturally escapes from direct observation. The
emergent quantum-critical fluctuations, however, may affect the metallic-,
insulating-, or superconducting states at elevated temperatures quite drasti-
cally leading to new states of matter beyond our understanding of canonical
solid-state- or condensed-matter systems such as Cooper-pair insulators or
hidden Fermi liquids. Understanding the relation between these enigmatic
states of matter and quantum criticality and how it gives rise to exotic phe-
nomena and new states of matter is one of the prime intellectual and experi-
mental challenges of solid state physics at date. The experimental approach
employed within this work is conceptually very simple: We shine coherent
THz radiation on a thin film of the material to be studied, measure the am-
plitude and phase shift of the transmitted light, and calculate the dynamical
conductivity as function of the photons’ energy. Repeating this experiment at
different frequencies and temperatures we get a handle on how the electronic
state, its single-particle-, and collective excitations change when the systems
are tuned towards quantum criticality. Although the systems studied differ
when it comes to the details of superconductivity, quantum criticality, and
emerging phenomena, the insights we obtain contribute pieces to a puzzle
which, once completed, may lead to a unified - and maybe even stunningly
simple - picture of quantum-critical superconductors.

The first material studied are thin films of superconducting NbN with vari-
able degrees of homogeneously distributed disorder. Bearing on celebrated
works of Anderson, we know that moderate disorder does not significantly
affect superconductivity, while for extreme disorder, the electrons tend to lo-
calize forming an insulator. In between the antagonizing extrema, there must
be a region where the electrons cannot decide whether to pair up and super-
conduct or to localize. In spatial dimensions D < 3, this region is shrunk to
a quantum critical point (QCP), where Tc = 0 and the system undergoes a
superconductor-insulator transition (SIT). Although the microscopic mech-
anism leading to the eventual destruction of superconductivity remains the
central open problem, there is no doubt that with the gradual cease of Ψ,
fluctuations of its phase- and amplitude degrees-of-freedom are of growing
importance to understand the peculiar superconducting state in approach of
the QCP. By expanding previous tunneling spectroscopy measurements by
Chand et al. towards optical spectroscopy, we systematically compare the
superconducting energy gap 2Δ as it appears in the tunneling density of
states (DOS) with the spectral gap Ω in the dissipative conductivity σ1(ν).
Using an effective pair-breaking ansatz to fit the tunneling spectra, we de-

ABSTRACTX



termine the Green’s functions for a given degree of disorder and calculate
a prediction σ1(ν) based on the value of 2Δ from tunneling. Not unsur-
prisingly, for only little disorder the inferred prediction agrees well with the
optical measurement. However, as disorder increases we identify a growing
mismatch between the 2Δ-based prediction and the measured σ1(ν): The
spectral gap Ω is progressively suppressed below 2Δ and a growing amount
of spectral weight piles up on top of the anticipated σ1(ν) curve. We demon-
strate that this gap-edge absorption channel can quantitatively not be at-
tributed to disorder-induced broadening of the DOS, and instead suggest
an alternative explanation. Given its particular properties, we argue that
NbN in approach of quantum criticality can be understood within a rela-
tivistic bosonic O(2) 2d-field theory, for which Auerbach et al. envisioned
an optically active amplitude-excitation of Ψ called Higgs mode whose en-
ergy, the Higgs mass mH, vanishes critically at the QCP. By isolating the
sub-gap absorption from the measured σ1 spectra, we identify the twofold
nature of the spectral gap Ω. Far from criticality, Ω measures the super-
conducting gap 2Δ, whereas in approach of the SIT it is identified with
mH < 2Δ. Furthermore, we find qualitative agreement in the dispersion of
the isolated sub-gap mode with Quantum Monte Carlo simulations of the
Higgs-mode conductivity by Trivedi et al. substantiating the interpretation
that the anomalous low-energy electrodynamics on disordered NbN are due
to an amplitude-excitation of Ψ. For the sake of completeness, however, we
also address counter arguments calling the applicability of the O(2) model
into question and leaving space for future discussion.

The second material under study is granular Al, i.e. thin films com-
posed of nano-scaled Al grains coupled across thin insulating barriers into
macroscopic arrays. While bulk Al is a conventional superconductor with
Tc0 = 1.19K, the nature of granular Al is strikingly different: as function of
decoupling (measured by the normal-state resistivity), Tc is first enhanced up
to around 3Tco at a few 100μΩcm before it is suppressed at higher resistivities
until superconductivity eventually ceases shaping a superconducting dome in
the phase diagram. If this transition is a direct superconductor-insulating
quantum phase transition with a QCP as in homogeneously disordered thin
films or (given the 3d character of the films) crosses through an inter-metallic
phase, is an open question. In any case, the superconducting properties of
granular Al strikingly resemble those of prototypical quantum critical super-
conductors such as high-Tc cuprates and pnictides, low-dimensional organic
and heavy-fermion metals. Though being known for half a century, and de-
spite several theoretical proposals, the underlying mechanism enhancing Tc

in granular Al has not been identified yet. One prominent mechanism dis-
cussed, relies on the nano-scaled size of the grains: Similar to what happens
in atoms or nuclei in form of sharp energy levels, the electronic density of
states tends to discretize as the electrons are spatially confined. Indeed, this
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can boost the pairing interaction in isolated grains - but also in macroscopic
arrays thereof? To identify the origin of the superconducting dome in granu-
lar Al, we use optical spectroscopy to trace the evolution of the characteristic
energy scales, that is the pairing amplitude Δ and the superfluid stiffness J
measuring the strength of phase lock, as a function of grain coupling. We
show that, starting from well-coupled grains, Δ grows with progressive grain
decoupling, causing the increase of Tc. As the grain-coupling is suppressed
further, Δ saturates while Tc decreases, concomitantly with a sharp decline
of J . Measurements of the temperature evolution of σ1(ν) reveals a spectral
gap persisting in to the normal state on the phase-driven side of the dome
while absent on the other. Using a generalized Mattis-Bardeen theory we
show that this pseudogap smoothly evolves into the superconducting gap as
temperature falls below Tc. A second peculiar finding is a sub-gap absorption
similar to the one observed in disordered NbN situated at sub-gap energies.
Given the nature of granular Al, an interpretation in terms of the Higgs mode
is unlikely. Instead, bearing in mind the extremely low superfluid stiffness,
we suggest to interpret the excess absorption as optically-active Goldstone
modes of Ψ. We quantitatively substantiate this idea with realistic calcu-
lations of the temperature- and frequency dependence of Goldstone modes
within the disordered XY model. Our studies not only identify the mech-
anism shaping the superconducting dome in granular Al, open a route to
deterministically enhance bulk-superconductivity by nano engineering, and
reveal a pseudogap and Goldstone modes but also establish granular Al as
particular simple model to look at enigmatic phenomena in unconventional
superconductors from a new perspective.

The third material subject to investigation is the heavy-fermion super-
conductor CeCoIn5. Other than for NbN and granular Al, where the pecu-
liar superconducting properties arise from an inherently conventional pairing
mechanism, superconductivity in CeCoIn5 is unconventional and intimately
related to quantum criticality. The magnetic interaction and eventual hy-
bridization between conduction electrons and localized Ce3+ moments is the
heart of why electrons below ∼40K turn into heavy quasiparticles (QP),
i.e. keeping the electrons’ quantum numbers, but acquiring effective masses
exceeding the band mass drastically. While the experimental status quo
leaves little doubt, that the strongly interacting quantum liquid formed by
the heavy QP is not a canonical Fermi liquid, two natural questions remains
open: what kind of quantum liquid is it then, and how does it relate to
quantum criticality? Both are of great importance given that, at low tem-
peratures, those heavy QP are paired up via an mechanism that is essentially
unknown and condense into an unconventional d-wave superconducting state
with even more enigmatic antiferromagnetic Q-phase. No matter from which
side one wants to tackle the question of superconductivity and quantum crit-
icality in CeCoIn5, a thorough understanding of the non-FL heavy-fermion
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state is a prerequisite. In this work, we measured the dynamical conductivity
σ1 + iσ2 by dc-transport and phase-sensitive THz transmission spectroscopy
in the HF regime at equal energy scales kBT ∼ hν on a CeCoIn5 thin film of
unprecedented quality significantly advancing previous THz studies. Within
the generalized Drude formalism we calculate the effective mass enhancement
which approximately equals the inverse renormalization, m∗/mb ∼ Z−1, and
disentangle the transport and optical relaxation rates Γ(ν, T ) ∝ ρ1(ν, T ) from
the QP one. As expected for a non-FL, we find a strong and non-trivial T -
and ν-dependence of Z. At the same time, however, the extracted Γ∗ dis-
plays approximate T 2- and ν2 behavior - a typical characteristic of a FL.
As we demonstrate, this putative paradox unwinds in the context of hidden
FL, a special kind of non-FL: Behind the anomalous behavior of resistivity,
spin susceptibility, specific heat etc. at odds with canonical FL theory, one
has well-defined resilient QP obeying Γ∗ ∝ ν2, T 2 whose existence, however,
is hidden behind an energy-dependent renormalization. To solidify our in-
terpretation we revisit the previously reported anomalous T -dependencies of
the electronic specific heat, the magnetic susceptibility and spin-lattice re-
laxation time to our measurements of Z(T ), and prove them consistent with
the hidden FL scenario. Triggered by the strong temperature and frequency
dependence of m∗/mb at approximately equal energy scales, we furthermore
search for scaling behavior of this quantity as typical signature of quantum
criticality. Although a theory for quantum criticality from resilient QP has
not been worked out yet, we propose and experimentally verify an approxi-
mate ν/T scaling ansatz inspired from scaling analysis of the quantum-critical
HF metal CeCu6−xAux. Our results open a surprising new perspective on
the nature of the HF state in CeCoIn5, encourage a careful reconsideration
of other non-FL systems, and hopefully stimulate theorists to work out the
existing models of quantum criticality in HF systems towards m∗/mb scaling
and resilient QP.

This thesis is structured as follows. Chapter 1 discusses a model of super-
conductivity based on fieldtheoretical considerations to familiarize the reader
with the concept of Ψ, collective modes thereof, and the basic superconduct-
ing phenomenology from the perspective of Ψ. In addition, more on a techni-
cal account, the reader is introduced to the Usadel equation and the relevant
Green’s functions which, later on, are used to model the density of states and
dynamical conductivity of disordered superconductors. Although the theo-
retical background is dispensable for the experimental chapters, the author
strongly recommends not to skip it as a proper understanding of the field
theoretical concepts (and language) helps to cast the presented results into a
broader context. Each of the experimental chapters 2, 3, and 4 starts with a
short summary of the results, an introduction covering basic theoretical as-
pects of the physical background to acquaint the reader with the particular
system, a review of the essential experimental studies, and an embedding of
the presented research into the scientific status quo. Subsequently, details
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and the relevant aspects (or issues) concerning the measurements, sample
preparation and -handling are addressed briefly. (Detailed information con-
cerning the measurement techniques and -procedures, the characterization of
the low-temperature performance as well as the data treatment and analyses
is provided in the Appendix.) The main part of the experimental chapters
- discussion and interpretation - is prepended with introduction to partic-
ular theoretical framework beyond Ch. 1 in which the experimental data is
subsequently interpreted. In more detail, the Higgs mode in the context of
the bosonic O(2) mode in Sec. 2.4, pseudogap and Goldstone modes within
the disordered XY model in Sec. 3.4.2 and 3.5, and the theory of hidden
Fermi liquids in Sec. 4.4. The discussion is closed with an outlook on future
experimental studies and theoretical challenges. This structure may appear
somewhat cumbersome, yet it eases the understanding as it allows to follow
the sequence of arguments directly without the frequent back and forth of
the typical theory-materials-experiment-analysis-discussion structure.

Uwe S. Pracht, Winter 2016
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1. Field-theoretical basics

on superconductivity

Vor hundert Jahren ging es los, It’s started one
hundered years ago,
it’s been like a
revolution,
destination and
direction were
unknown,
and everything old
was burnt to the
ground.

Es war wie eine Revolution.
Ziel und Richtung unbekannt,

Alles Alte wurde niedergebrannt.

Die Toten Hosen

Starting with general considerations on field theories and
spontaneous symmetry breaking therein in Sec. 1.1 and
1.2, we will motivate a field-theoretical description of
electrically neutral and charged superfluids in Sec. 1.3
akin to the early ideas of Ginzburg and Landau. We will
set up field theory obeying global U(1) gauge symmetry,
whose breaking leads to the physics of superfluids. Turn-
ing to charged superfluids, we will promote the global
U(1) symmetry to a local one and examine the conse-
quences of a symmetry-breaking superconducting ground
state and associated collective excitations of the order
parameter field. Subsequently, we will make step-by-step
simplifications testing our field theory aiming for a low-
energy model reproducing some of the most crucial prop-
erties of superconductors: how gradients of the phase
field lead to currents, how the topology of the order pa-
rameter explains dissipation free dc-transport, and how
the Higgs mechanism at play in superconductors turns
photons massive leading to the Meissner-Ochsenfeld ef-
fect. In Sec. 1.5, we will introduce a Green’s-function
formalism to calculate experimentally accessible proper-
ties of superconductors. This will be done on basis of
the Usadel equation allowing for pair-breaking beyond
the canonical Bardeen-Cooper-Schrieffer theory. We will
discuss how to solve the equation and how to obtain the
quasiparticle density of states and the dynamical conduc-
tivity in Sec. 1.6.
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1.1 A preliminary outline

Before we consider symmetry breaking in gauge theories
and mainly the construction and study of Lagrangians
in greater detail, we will sketch how these steps are part
of the entire route that eventually leads to a particular
physical theory for superconductivity. We will do this
for bosonic superconductors. The justification for this
lies in the observation that granular and disordered su-
perconductors can often be described in terms of effec-
tively bosonic theories, that is neglecting the composite
character of Cooper pairs. The entire procedure follows
a six-point plan:

1. Decide, which energies, interactions, conservation
laws the eventual theory should properly account
for.

2. Based on that, write down1 the Lagrangian L in1 This is very sim-
ilar to assembling
the Hamiltonian in
quantum mechanics.

terms of bosonic2 fields ψ(x), where x = (t,x) de-

2 The Cooper pairs
are understood as
excitations of this
field.

notes a point in space-time.

3. Quantize the fields by mode expansion in creation
and annihilation operators

ψ̂(x) =
1

(2π)
3
2

ˆ
dp√
Ep

(
âpe

ipx + â†pe
−ipx
)

(1.1)

and postulate commutator relations.

4. Infer the normalized generating functional Z0[J ] =
Z[J ]/Z[0] by calculating the path integral (here
omitting the hat-symbol3)3 As bosonic fields

commute, we can
simplify the calcu-
lations by treating
the operator values
fields ψ̂ as classical
Heisenberg fields.
This is not possible
for anti-commuting
fermionic fields
where one has to
resort to Grassman-
nian fields.

Z[J ] =

ˆ
Dψe

i
2

´
d4xL[ψ(x)]+i

´
d4x Jψ(x) (1.2)

where Dψ integrates over all possible field config-
urations and J(x) is a auxiliary source function.

5. Infer the Green’s functions G by differentiating Z[J ]
with respect to J .

6. Use G to calculate the desired physical properties4.
4 e.g. the density of
states or the dynam-
ical conductivity.

We will focus on the first two and last step, while some
calculations are simplified and motivated with the in-
termediate ones at the back of our minds. The field-
theoretical approach to superconductivity we will sketchily
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1.2. SPONTANEOUS U(1) SYMMETRY BREAKING 3

review in this first Chapter is based on the excellent
introduction to quantum field theory by Lancaster and
Blundell [1].

1.2 Spontaneous U(1) symmetry
breaking

Symmetry is the property of a physical object to not
change itself under a symmetry transformation. The ob-
jects we will encounter and study regarding their sym-
metry retaining or breaking properties are ground-state
or vacuum expectation values (VEV) of quantum fields5 5 i.e. something we

will later on identify
as the superconduct-
ing order parameter.

quantum fields and Lagrangians. The study of symmetry
behavior turns out to be a versatile approach to describe
numerous physical systems using one and the same con-
cept despite their seeming difference. In greater detail,
we will consider continuous symmetries, that is the sym-
metry transformation is characterized by a variable with
continuous spectrum of real values that allows a smooth
transformation between initial and final states6. Accord- 6 In contrast to

e.g. the discrete mir-
ror, parity or time-
reversal symmetries.

ing to the Noether theorem, any continuous symmetry
of the Lagrangian implies the existence of a conserved
physical property7. Here, we will focus on the trans-

7 For instance, the
isotropy of time and
space leads to the
conservation of en-
ergy and momen-
tum, respectively.

formations that can be represented by the elements of
the unitary group U(1). These transformations can be
thought of rotating an object, e.g. a (quantum) field
ψ(x), in the complex plane by an angle α such that

ψ → eiαψ. (1.3)

If the object under consideration remains unchanged it is
said to preserve (or, otherwise, break) global U(1) sym-
metry as we apply the same change at all space-times.
Physically speaking8, global U(1) invariance implies the 8 An example is

the theory of elec-
tromagnetism which
is U(1) invariant and
conserves the elec-
tric charge q. More
exotic charges, e.g.
color, require global
symmetries beyond
U(1).

conservation of charge. Symmetry considerations and
the demand for certain conservation laws are important
guides to define a (quantum) field theory (QFT) for a
given system, that is, casting the essential interactions
and energies into the Lagrangian

The global symmetry is promoted to a local one, if
the U(1) transformation may be different for each space-
time point,

ψ → eiα(x)ψ, (1.4)
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leaving the transformed object invariant. In general, the
demand for local U(1) invariance imposes stronger con-
strictions to a field theory than its global version, and we
will see below, that it requires gauge fields to guarantee
the invariance9. In a sense, we can think of the gauge9 Accordingly, theo-

ries that are locally
U(N) invariant are
called gauge theo-
ries.

field as a device that repairs the damage caused by the
U(1) operation in order to preserve symmetry at each
space-time point x accordingly. A more physical role of
the gauge field is to mediate the interaction between the
particle excitations of the quantum fields carrying the
charge related to the global symmetry10. This offers an10 Note that local al-

ways implies global,
but not vice versa.

enlightening new perspective: if we want the particles to
interact by exchange of gauge bosons, then we have to set
up the Lagrangian such that it has a local symmetry. Be-
fore we come to the consequences of promoting global to
local symmetries, we will examine what happens, when
global U(1) symmetry is spontaneously11 broken.11 Symmetry break-

ing is spontaneous,
if broken and un-
broken phases are
connected smoothly.
This has to be con-
trasted with explic-
itly broken symme-
tries such as the
handedness of chiral
molecules.

We will start with the Lagrangian the problem of super-
fluidity in a gas of neutral bosons. Owing to their vanish-
ing charge, we can neglect electromagnetic interactions
and the coupling to external electromagnetic fields. The
Lagrangian is of the form kinetic energy minus potential
energy and reads12

12 In what follows,
we use the standard
notation

∂μ = (∂t,∇)

and

∂μ = (∂t,−∇)T.

Consequently,

∂μ∂
μ = ∂2 = ∂2

t −∇2.

L = ∂μψ†∂μψ − V (ψ, ψ†). (1.5)

We expressed L in terms of classical bosonic Heisenberg
fields ψ(x) rather than operator-valued fields ψ̂(x) of a
proper quantum-field description - a simplification ow-
ing to the commuting algebra of bosonic operators. To
get a handle on the potential V , we assume only small
variations of the system around its minimum so that we
can express V (ψ,ψ†) in a power series

V = γ2ψψ† +
1

2
λ(ψψ†)2 (1.6)

where λ > 0. This general form fulfills the symmetry
requirement, V (ψ) = V (−ψ), and it provides a stable
minimum for |ψ, ψ†| → ∞. Assembling kinetic and po-
tential energies we obtain a scalar complex field theory

L = ∂μψ†∂μψ − γ2ψψ† − 1

2
λ(ψψ†)2 (1.7)

with a self-interaction term governed by the coupling

FIELD-THEORETICAL BASICS ON SUPERCONDUCTIVITY



1.3. FIELD THEORY APPROACH TO NEUTRAL AND
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constant λ. For a positive mass term μ2 > 0 the po-
tential has a unique minimum at ψ = 0. For γ2 < 0 the
potential acquires a Mexican-hat shape, see Fig. 1.1, and
an infinite number of degenerate minima on a circle with
radius r. We can easily check the global U(1) invariance
by transforming the fields according to Eq. (1.3). The
phase factors are not affected by the derivatives and can-
cel when multiplied with their complex-conjugates. Note
that this holds true irrespective of the sign of the mass
term. The symmetry of L can be captured by the polar
representation ψ =

√
ρ(x)eiϑ(x) with a real longitudi-

nal scalar field ρ and a real angular scalar field ϑ. The

Figure 1.1: Potential
energy with symmet-
ric (top) and broken-
symmetry (bottom)
ground states. U(1)
operations can be vi-
sualized as rotations
around the V axis.

ground state of the field theory is found upon minimizing
the potential energy. For γ2 > 0 the system resides in
the unique minimum at the origin, so that the vacuum
expectation value (VEV) of ρ takes the value 〈ρ〉 = 0
at every point in space-time. Just as L itself, the VEV
is U(1) invariant. For μ2 < 0, the ground state has to
spontaneously pick a particular minimum on the circle
of minima, e.g. the one with 〈ϑ〉 = ϑ0. Once this has
happened, the symmetry is broken: a global U(1) trans-
formation shifts the angular field from one VEV ϑ0 to
another one ϑ0 + α. In the next section, we will study
the consequences of this spontaneous symmetry breaking
(SSB) in a superfluid.

1.3 Field theory approach to neu-
tral and charged superfluids

In condensed matter physics, we are usually in the non-
relativistic limit where the mass energy mc2 is by far
the biggest energy scale. In the time evolution, we can
factor out this fast oscillation by re-defining13 the field 13 We use natural

units in which h =
c = 1

ψ = 1√
2m

Ψeimt. Inserting this form in Eq. (1.7) and

performing the derivatives gives

L =
1

2m
∂tΨ

†∂tΨ+ iΨ†∂tΨ− 1

2m
∇Ψ†∇Ψ

−(γ2 −m2)Ψ†Ψ− λ

2

(
Ψ†Ψ
)2

. (1.8)
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Expressing Ψ as above in terms of polar coordinates,
Eq. (1.8) is rewritten to

L =
1

2m

(
(∂tρ)

2

4ρ
+ (∂tϑ)

2ρ

)
+

i

2
∂tρ− ρ∂tϑ

− 1

2m

(
(∇ρ̂)2

4ρ
+ ρ(∇ϑ)2

)
− μρ− λ

2
ρ2 (1.9)

where we have defined μ = γ2 −m2. This result can be
simplified. First we note that we explicitly separated out
the rapid oscillations and, thus, we can consider the re-
maining time dependence as weak. Thus, with the huge
1/m prefactor, the first term in Eq. (1.8) can be ne-
glected14. Furthermore, also the bare time derivative of14 Even the typi-

cally large energy
scales in condensed
matter such as the
Fermi energy are
still ∼ 105 times
smaller than the
electron rest mass.

ρ can be omitted, as it does not affect the particle dynam-
ics15. The Lagrangian we obtained is unstable towards

15 This can be un-
derstood when look-
ing at the action

S =

ˆ
dx

ˆ
dtL

where ∂tρ turns
out to be irrelevant
for the physics as
the fields vanish for
|x| → ∞.

symmetry breaking: For μ2 < 0 we have a Mexican-
hat potential with infinite number of minima along a
circle with radius 〈ρ〉 = μ2/λ ≡ n. For simplicity, we
chose the minimum with 〈ϑ〉 = 0. In order to study the
excitations of the fields from their mimimal values we
make a coordinate transform to the minimum defining√
ρeiϑ → (

√
n + h)eiϑ with a new longitudinal field h.

Up to bilinear terms and neglecting constant terms and
the total time derivative ∂tϑ, we arrive at a field theory
for superfluids reading

L = − 1

2m
(∇h)2 − 2λnh2 − (2

√
n∂tϑ)h− n

2m
(∇ϑ)2 + ...

(1.10)
The real scalar field h describes spin-zero bosons with
mass

√
2λn forming the superfluid (e.g. 4He atoms).

From the field-theory point of view, these bosons are
finite-energy longitudinal modes above the ground state.
This is reflected in the non-zero mass term of Eq. (1.10).
The excitations of the scalar field ϑ are Goldstone modes1616 The Goldstone

mode of the su-
perfluid is the
zero-sound mode.
Another (approx-
imate) solid-state
Goldstone mode are
magnons, i.e. collec-
tive spin-excitations
with vanishingly
small energy at long
wavelengths.

in angular direction not leaving the ground state man-
ifold. Consequently, these modes should be excited at
zero energy and, indeed, there is no term in Eq. (1.10)
proportional to ϑ2 - the modes are massless. Here we
can state another important finding: The Goldstone-
mode term is proportional to n being the radius of the
ground-state circle. If the ground state does not break
U(1) symmetry, then this manifold is a singular point at
n = 0 and the Goldstone mode disappears. Turning this

FIELD-THEORETICAL BASICS ON SUPERCONDUCTIVITY
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argument around captures the essence of the Goldstone
theorem: Breaking a continuous global U(1) symmetry
leads to the emergence of massless excitations.
A superconducting condensate is a superfluid of electrons
that are bound to bosonic pairs via an essentially elec-
tromagnetic interaction17 mediated by photons. We in- 17 In fact, the

interaction must
not necessarily be
electromagnetic:
quarks carrying
a color charge
may (at least in
theory) form color-
superconducting
pairs through the
exchange of gluons,
i.e. via a strong-
force interaction.

clude photons by gauging the field theory of the super-
fluid making it invariant under local U(1) transforma-
tions. This is done in two steps. First, we take Eq. (1.7)
and add the Lagrangian

L′ = −1

4
(∂μAν − ∂μAν)(∂

μAν − ∂μAν) (1.11)

describing the dynamics of the photon vector field Aμ =
(A0,A). Second, we include the interaction between Aμ

and the superconducting charge field ψ via minimal cou-
pling by replacing the derivatives by covariant deriva-
tives18 18 reading ∂t → ∂t+

iqA0 and ∇ → ∇ +
iqA when expanded.

∂μ → Dμ = ∂μ + iqAμ (1.12)

where the coupling strength between electrons and pho-
tons is given by the charge q. The full Lagrangian we
obtain is

L = (∂μ − iqAμ)ψ†(∂μ − iqAμ)ψ − γ2ψψ† − 1

2
λ(ψψ†)2

−1

4
(∂μAν − ∂μAν)(∂

μAν − ∂μAν)

= Dμψ†Dμψ − γ2ψψ† − 1

2
λ(ψψ†)2 − 1

4
FμνFμν

(1.13)

where we have introduced the electromagnetic field ten-
sor Fμν = ∂μAν−∂μAν . This field theory is invariant un-
der local U(1) transformation, Eq. (1.4), if we demand19 19 That this is a

meaningful transfor-
mation is due to the
freedom of gauge: If
we put the such-
transformed field A′

μ
into L′, the terms
with ∂μα add up to
zero and leave the
physics unaffected.

the field Aμ to transform as

Aμ → A′
μ = Aμ − 1

q
∂μα. (1.14)

We can always find a scalar field α such that it guarantees
gauge invariance and keeps the form of the resulting field
equations20. We can now resort to our result obtained

20 via the Euler-
Lagrange equation

for the neutral superfluid in Eq. (1.9), where we again
neglect the bilinear derivative, replace the derivations by
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covariant ones and add L′

L = iΨ†(∂t + iqA0)Ψ− 1

2m
(∇− iqA)Ψ†(∇+ iqA)Ψ

−μΨ†Ψ− λ

2

(
Ψ†Ψ
)2 − 1

4
FμνFμν . (1.15)

Here, the field Ψ can again be expressed in scalar lon-
gitudinal and angular fields, ρ and ϑ. When expand-
ing the derivatives, we encounter terms proportional to
A0 +

1
q∂tϑ and A+ 1

q∇ϑ. We use the freedom of gauge

according to Eq. (1.14) and define a new field Cμ =
Aμ + 1

q∂μϑ. Expansion leads to2121 Note that we
have chosen the
mass term for the ρ
field to be negative
(giving a positive
sign thereof in
Eq. (1.16)). This
means, that we
will have a broken-
symmetry ground
state.

L =
i

2
∂tρ− qρC0 −

1

2m

(
(∇ρ)2

4ρ
+ q2ρC2

)
+μρ− λ

2
ρ2 − 1

4
FμνFμν . (1.16)

The total time derivative can again be neglected. As in
the superfluid, we modify the longitudinal field by a small
perturbation from the ground state replacing

√
ρ(x) →√

n + h(x). After some simplifications22 we obtain the22 i.e. omitting con-
stant terms, neglect-
ing interaction terms
that are cubic (or
higher) in the fields,
and treating the per-
turbation h as much
smaller than

√
n .

Lagrangian for superconductors reading

L = − 1

2m
(∇h)2−2q

√
nC0h−2μh2− q2n

2m
C2− 1

4
FμνFμν .

(1.17)
If we compare this result to Eq. (1.10), we see that
the Goldstone mode of the superfluid has disappeared.
At the same time, the field Cμ has acquired a mass√

q2n/2m. The initially23 massless gauge field Aμ is said23 Note that before
symmetry breaking
there was no bilinear
term in Aμ.

to have absorbed the Goldstone mode to become mas-
sive when we gauged the theory going from Eq. (1.15) to
Eq. (1.16). This is the heart of the Higgs mechanism: the
freedom of gauge is used to let the angular component ϑ
of Ψ disappear giving mass to the photon field Aμ. It is to
be noted that the same mechanism works - up to mathe-
matical subtleties - identically for non-abelian gauge the-
ories such as the electroweak unification of Abdus and
Salam: The role of ψ is played by the four-component
Higgs field and we replace the simple U(1) symmetry by
the more complex SU(2)×U(1). Here, partial24 symme-24 that is, most of

the symmetry is bro-
ken, while a small
subgroup of symme-
try remains intact.

try breaking of the Higgs-field’s VEV and the vanishing
angular modes give rise to massive W± and Z0 gauge
bosons for the weak force while the photon (belonging to

FIELD-THEORETICAL BASICS ON SUPERCONDUCTIVITY
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the unbroken subgroup) for electromagnetism remains
massless. The transversal degrees of freedom (related to
the unbroken subgroup) of the Higgs field are massive
excitations, the celebrated Higgs bosons25. Though our 25 While the elec-

troweak unification
explains how gauge
bosons may become
massive, the other
particles of the Stan-
dard Model acquire
their masses by cou-
pling their fields to
the Higgs field.

treatment of the charged U(1) superfluid in 3+1d in-
cludes a stunning realization of the Higgs mechanism in
solid state physics, it does not herald a new massive exci-
tation mode. Under special circumstances, however, this
may change: In the context of, e.g., superconductivity in
quantum-critical NbN, see Chapter 2, we will reexamine
some of the above considerations and see that there is
a massive Higgs mode in the charged O(2) superfluid in
2+1d in the relativistic limit.
In the next part, we will derive some of the fundamental
and well-known properties of superconductors from our
field theoretical approach.

1.4 A low-energy Lagrangian for
superconductivity

To pull some superconducting phenomenology from our
so-far Lagrangian we need to simplify Eq. (1.17). This
can be done using a mathematical trick known as inte-
grating out the energetic field h. We do this following
the road map we set out at the beginning of this chapter
and insert L back into the action26 S and the generating 26 which is simply

the space-time inte-
gral S =

´
d4xL.

functional Z

Z =

˚
DCDC0 Dh e

i
2S[C,C0,h]

=

˚
DCDC0 Dh exp

[ i
2

ˆ
d4x(− 1

2m
(∇h)2

−2q
√
nC0h− 2μh2 − q2n

2m
C2 − 1

4
FμνFμν

]
(1.18)

where the path (functional) integral measure D[...] in-
tegrates the functional S over all configurations of the
respective fields it depends on - just as the ordinary inte-
gral measure dx integrates a function f(x) over all values
x. While the mathematical handling of path integrals is
often complicated, a tedious calculation shows that once
a Lagrangian can be cast into a Gaussian integral, the



path integral can be solved exactly27. Thus, we consider27 In short, this cal-
culation relies on the
solvable Gaussian in-
tegralˆ

dxe−
a
2
x2+bx

which evaluates to√
2π/a eb

2/2a. For
any bi-quadratic La-
grangian

L = ΦTK(x)Φ

+2bT(x)Φ,

where Φ and b
are N -component
vectors and K is a
symmetric N × N
matrix, the path
integralˆ

DΦ e
i
2

´
d4xL[Φ]

evaluates to

e−
i
2

´
d4xbTK−1b

× (2πi)N√
detK

the part of the action just containing h and find after
partial integration

S[h] =

ˆ
d4x
[
− 1

2m
(∇h)2 − 2q

√
nC0h− 2μh2

]
= − 1

2m

[
h∇h
]∞
−∞

+

ˆ
d4x
[ 1

2m
h∇2h− 2q

√
nC0h− 2μh2

]
=

ˆ
d4x
[
h

(
1

2m
∇2 − 2μ

)
h− 2q

√
nC0h

]
(1.19)

where we demanded the field h to vanish for |x| → ∞.
Inserting this action back in Eq. (1.18) and splitting S =
S[h] + S[C, C0] gives

Z =

¨
DCDC0

ˆ
Dh

exp

(
i

2

ˆ
d4x
{
h
[ 1

2m
∇2 − 2μ

]
h− 2q

√
nC0h

})
×exp

(
− i

2

ˆ
d4x
{q2n
2m

C2 +
1

4
FμνFμν

})
.

(1.20)

Assigning K → 1
2m∇2−2μ and b → −q

√
nC0 according

to scheme sketched sidenote (27), we obtain after inte-
gration

Z =
2πi√
detA

¨
DCDC0

exp

(
− i

2

ˆ
d4x q

√
nC0

1
1

2m∇2 − 2μ
q
√
nC0

)
×exp

(
− i

2

ˆ
d4x
{q2n
2m

C2 +
1

4
FμνFμν

})
(1.21)

with the Lagrangian

L =
q2n

2μ
C2

0 − q2n

2m
C2 − 1

4
FμνFμν (1.22)

10 FIELD-THEORETICAL BASICS ON SUPERCONDUCTIVITY
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where we have neglected 1
2m∇2 against 2μ. In the same

fashion we can also integrate-out the C0 field so that
we eventually end up with the low-energy Lagrangian
only containing the vector potential C and higher-order
derivatives thereof

L = −q2n

2m
C2 + derivatives. (1.23)

With this simple Lagrangian we can now turn to some
real-life implications. In more detail, we are interested
how the fundamental properties of superconductors can
be deduced from the field theory we have constructed.

Currents

In general, the current is obtained by performing a func-
tional derivative of the Lagrangian with respect to the
gauge field, i.e. we calculate

j =
δL
δC

. (1.24)

To account for the freedom of gauge, we unwind the
gauge we performed in Eq. (1.16) setting C → C− 1

q∇ϑ
and obtain

L = −q2n

2m
C2 − n

2m
(∇ϑ)2 +

qn

m
C∇ϑ. (1.25)

Performing the functional derivative28 yields 28 Alternatively, one
can also derive with
respect to ∇ϑ to
obtain the particle
current, which after
multiplication with
the charge q is the
electrical current.

j =
qn

m
(∇ϑ− qC) (1.26)

which is the London equation. The current in a super-
conductor can arise from coupling to a gauge field (i.e.
upon light irradiation) or as result of a phase gradient of
the superconducting order parameter. A close examina-
tion of the second mechanism explains the dissipation-
free nature of transport as we will see in the next para-
graph.

Dissipation-free transport

We can understand the vanishing transport resistance of
a superconductor as a consequence of the finite vacuum
expectation value of the order parameter Ψ and its topol-



ogy [1]. Remember, that in the superconducting state,
we can write the order parameter as Ψ =

√
neiϑ = const.

throughout the system. We can think of the condensate
to life inside a box of dimension L×L×L where we im-
pose periodic boundary conditions. In, e.g., x-direction,
this implies that Ψ(x = 0) = Ψ(x = L). A current in
x-direction is induced if we supply the charge carriers
in this direction with momentum p, that is, by apply-
ing a Lorentz-boost transformation Ψ → eipxΨ. At the
boundaries, we therefore obtain Ψ(x = 0) = eipLΨ(L)
and thus

√
neiϑ =

√
nei(ϑ+pL). In other words, as we

walk along the condensate in x-direction, the current im-
poses a twist t(x) = px to the ground state phase ϑ that
must fulfill pL = 2πk with k = 1, 2, 3, ... to ensure peri-
odic boundary conditions. A phase gradient, as shown
above, always leads to a current.

Demanding the carrier flow to slow down on the way
from x = 0 to x = L, i.e. to be resistive, is equal to
demanding the phase gradient to be zero. This, how-
ever, is problematic as the current itself necessitates a
phase twist of least 2π between x = 0 and L as shown
above. The only way to achieve ∇ϑ = 0 is by a rupture
of the condensate which is energetically extremely costly
and thus unlikely29 to happen: the current just keeps on29 The probability

can be estimated
by the width of
the zero-frequency
δ-function of the
dynamical conduc-
tivity σ1(ω) we will
deal with later on.

flowing. The creation of vortices, being topological local
defects in the phase field, may remove the phase twist
and vortex movement can dissipate current.

Meissner-Ochsenfeld effect

We have seen that after symmetry is broken, the vector
gauge field Aν has acquired a mass term. The relevant
part of the full Lagrangian Eq. (1.17) reads3030 remember that

Fμν = ∂μAν − ∂μAν

LA = −1

4
(∂μAν − ∂νAμ) (∂

μAν − ∂νAμ)− q2n

2m
AνA

ν .

(1.27)
We can find the dynamics of this field by applying the
Euler-Lagrange equation

∂μ
∂L

∂(∂μAν)
− ∂L

∂Aν
= 0 (1.28)

12 FIELD-THEORETICAL BASICS ON SUPERCONDUCTIVITY
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resulting in the differential equation of motion or Proca
equation

−1

4
∂μ (∂

μAν − ∂νAμ) +
q2n

2m
Aν = 0 (1.29)

which can be cast31 into 31 By usage of
the Lorenz gauge
∂μAμ = 0

(
∂μ∂

μ − 2q2n

m

)
Aν = 0. (1.30)

In the static limit, ∂0A0 = 0 we can concentrate on the
space-like components and rewrite this result using the
gradient operator

∇2A =
2q2n

m
A (1.31)

which is solved by an exponentially decaying vector po-
tential measured from the boundary of the superconduc-
tor and the very essence of the Meissner-Ochsenfeld ef-
fect32. In analogy with the massive W± and Z0 bosons 32 To make a closer

contact to the
usual notion of the
Meissner-Ochsenfeld
effect, one can
rewrite the left side
of Eq. (1.31) using
the identity ∇2A =
∇(∇A)−∇×∇×A,
the Lorenz gauge,
and Eq. (1.26) lead-
ing to ∇2B ∝ B.

of the short-range weak interaction, it is often said the
photons (i.e. the quanta of the field Aν) can penetrate
the superconductor only on very short distances as they
rapidly decay by virtue of their mass they acquire in the
interior of the superconductor [1].



1.5 Green’s functions and the Us-
adel equation

Once the Green’s functions of a given system are known,
basically any physical quantity may be derived from them.
For practical applications, the exact form of the Green’s
functions must be determined by solving equations which
contain the systems characteristics and account for ap-
propriate boundary conditions. The most fundamental
equation for the case of superconductivity was first de-
rived33 by Gor’kov [3, 4]. The Gor’kov equation, how-33 Other than

Bardeen, Cooper,
and Schrieffer, who
started with a
second-quantization
approach to su-
perconductivity,
Gor’kov worked
with quantum field
theoretical Green’s
function techniques
- a formalism very
popular among Rus-
sian theorists at this
time - and solved
the problem almost
at the same time.
Though credit usu-
ally is given to BCS,
major advances in
our understanding
of superconductivity
are based on the
work of Gor’kov [2].

ever, is too complicated to be used for practical appli-
cations. Eilenberger simplified the Gor’kov equation for
the case Δ � EF (or equivalently ξ � λF ), where the
highly oscillatory dynamics ∼ exp(iEF t/�) can be re-
moved from the equations and taking (quasi-classically)
averaged Green’s functions [5]. The resulting Eilenberger
equations were simplified even more by Usadel [6] when
applied to systems in the dirty limit where electron trans-
port is of rather diffusive than ballistic nature. Here,
pairing takes place between electrons traveling on dif-
fusive rather than ballistic trajectories so that, loosely
speaking, the constitutes of an Cooper pair are expected
to scatter multiple times before losing phase coherence
[7]. The particles’ momentum therefore may be aver-
aged over all directions rendering the problem essentially
isotropic. The obtained Usadel equation for the super-
conducting matrix Green’s function ǧ reads34 [8, 9, 10]

34 What follows is
mainly taken from
Ref. [8]. For a better
understanding, how-
ever, some of the cal-
culations of Ref. [8]
are carried out in
greater detail here.

iE[τ̂3 ⊗ σ̂0, ǧ]−Δ[τ̂1 ⊗ σ̂0, ǧ] + i[Σ̂, ǧ] = 0 (1.32)

where [·, ·] is a commutator, τ̂i and σ̂i are the Pauli ma-
trices of the 2 × 2 Nambu- and spin-spaces35 N and S,
and Δ is the pairing energy. The term [Σ̂, ǧ] is a self-
energy term to renormalize the spectrum due to, e.g.,
paramagnetic-impurity or spin-orbit scattering, where
time-reversal symmetry is not preserved. Still, this for-
malism can be applied to strong potential scattering off
non-magnetic impurities, where the Anderson theorem
breaks down, although potential scattering is fully time-
reversal symmetric [7]. The equivalence of strong po-
tential scattering and the (paramagnetic) pair-breaking
parameter is established in a two step procedure: First,
potential disorder is linked to fluctuations of the pairing

14 FIELD-THEORETICAL BASICS ON SUPERCONDUCTIVITY

and σ̂i are defined
on different Hilbert
spaces and the tenso-
rial product τ̂i⊗σ̂j is
a 4×4 matrix on the
product space N⊗S.

35 Note that as τ̂i
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field Δ(r) [11] and second these fluctuations are related
to an effective pair-breaking parameter [12].
The Usadel equation is formally solved by the matrix
Green’s function

ǧ =

(
ĝR ĝK

0 ĝA

)
(1.33)

that comprises different types of Green’s functions, i.e.
the retarded (R), advanced (A) and Keldysh (K) Green’s
functions, which can be transformed into each other

ĝR = τ̂3 ⊗ σ̂0G+ τ̂1 ⊗ σ̂0F (1.34)

ĝA = −τ̂3 ⊗ σ̂0ĝ
R†τ̂3 ⊗ σ̂0 (1.35)

ĝK =
(
ĝR − ĝA

)
× tanh(E/2kBT ) (1.36)

and eventually expressed in terms of the normal (quasi-
particle) and the anomalous (pair) Green’s functions, G
and F . These functions are one-particle propagators of
the type 〈ψ2ψ

†
1〉 or 〈ψ†

2ψ1〉 for G and 〈ψ2ψ1〉 or 〈ψ†
2ψ

†
1〉

for F . We see, that the normal propagator describes
creation (annihilation) and subsequent annihilation (cre-
ation) of a particle (hole) and gives non-zero contribu-
tions in any case, whereas the anomalous propagator
describes the creation (annihilation) of two particles or
holes which can only be non-zero in the case of pairing,
i.e. the superconducting state. Despite the complicated
structure of the full matrix Green’s function, it is effec-
tively just two kinds of Green’s functions, G and F , that
carry the physical information.
The retarded Green’s function obeys the normalization
constraint ĝRĝR = τ̂0 ⊗ σ̂0 = 1. Expressing ĝR in terms
of G and F yields

τ̂0 ⊗ σ̂0 = ĝRĝR

= τ̂20 ⊗ σ̂2
0G

2 + τ̂20 ⊗ σ̂2
0F

2

+(τ̂3τ̂1)⊗ σ̂2
0FG+ (τ̂1τ̂3)⊗ σ̂2

0GF

= τ̂0 ⊗ σ̂0G
2 + τ̂0 ⊗ σ̂0F

2

+iτ̂2 ⊗ σ̂0FG− iτ̂2 ⊗ σ̂0GF

= τ̂0 ⊗ σ̂0(G
2 + F 2) (1.37)

from which the common parametrization G = cos(θ) and
F = sin(θ) follows. The angle θ(E,Δ) is a complex
function termed proximity angle. The whole problem



of finding a set of Green’s functions solving the Usadel
equation is transferred to the determination of the func-
tion θ(E,Δ). Once θ(E,Δ) is found, all superconducting
properties (such as the density of quasiparticle or pair
states, the coherence functions, the current density, or
the dynamical conductivity) can be calculated following
standard procedures. The Usadel equation (1.32) may
now be simplified drastically. With the Green’s func-
tions G and F defined above, the quasiparticle commu-
tator becomes

iE[τ̂3 ⊗ σ̂0, ĝ] = iE[τ̂3 ⊗ σ̂0, τ̂3 ⊗ σ̂0G]

+iE[τ̂3 ⊗ σ̂0, τ̂1 ⊗ σ̂0F ]

= iE
(
(τ̂3 ⊗ σ̂0)(τ̂1 ⊗ σ̂0F )

−(τ̂1 ⊗ σ̂0F )(τ̂3 ⊗ σ̂0)
)

= iE (τ̂3τ̂1 ⊗ σ̂0F − τ̂1τ̂3 ⊗ σ̂0F )

= −2E(τ̂2 ⊗ σ̂0F )

= −2E(τ̂2 ⊗ σ̂0 sin θ) (1.38)

and the pair commutator gives in similar fashion

Δ[τ̂1 ⊗ σ̂0, ĝ] = −2iΔ(τ̂2 ⊗ σ̂0G)

= −2iΔ(τ̂2 ⊗ σ̂0 cos θ). (1.39)

The self-energy upon strong potential or spin-flip scat-
tering (with scattering time τs and ξ a dimensionless
parameter describing the ’strength’ of a single magnetic
impurity) is

Σ̂s =
i

2τs

1

τ̂0 ⊗ σ̂0 + ξ2τ̂3 ⊗ σ̂0ǧτ̂3 ⊗ σ̂0ǧ
τ̂3 ⊗ σ̂0ǧτ̂3 ⊗ σ̂0.

(1.40)
The entire calculation of the self-energy term in Eq. (1.32)
is lengthy, but straight forward36. Here, we will just state36 The central ma-

nipulations rely on
the series expansion

1

1− M̂
= 1−M̂+M̂2−...

where M̂ is a matrix
in N ⊗ S space.

the result

i[Σ̂, ǧ] = − i

τs
τ̂2 ⊗ σ̂0

sin 2θ

1 + ξ4 + 2ξ2 cos 2θ
. (1.41)

We are now equipped to rephrase the Usadel equation
(1.32) in terms of the complex proximity angle θ(E).
Note, that all commutators have the identical N ⊗ S
structure, so that each component of the actual 4 × 4

16 FIELD-THEORETICAL BASICS ON SUPERCONDUCTIVITY
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Figure 1.2: Complex solutions of Usadel equation
for various pair-breaking values τs. Purely real and
complex solutions correspond to a vanishing and finite
quasiparticle density of states (DOS), respectively. With
increasing pair-breaking scattering τs, the energy window
with purely real solutions shrinks leading to a reduction
of the band edge Ωg despite a constant pairing amplitude
Δ. Note that only the branch with Im(u) > 0 yields a
physically meaningful dynamical conductivity.

matrix equation (1.32) reads

iE sin θ +Δcos θ − 1

2τs

sin 2θ

1 + ξ4 + 2ξ2 cos 2θ
= 0. (1.42)

This version of the Usadel equation is solvable for θ, how-
ever, any solving procedure suffers from the periodicity
of trigonometric functions and hence is numerically cum-
bersome. A more straight representation of Eq. (1.42) is
found using renormalized energy and order parameter,

Ẽ = E +
i

2τs

cos θ

1 + ξ4 + 2ξ2 cos 2θ
(1.43)

Δ̃ = Δ− 1

2τs

sin θ

1 + ξ4 + 2ξ2 cos 2θ
(1.44)

so that Eq. (1.42) becomes

iẼ sin θ + Δ̃ cos θ = 0. (1.45)

The normal and anomalous Green’s functions G = cos θ
and F = sin θ can now be parametrized in terms of a



renormalized paramater u = Ẽ/Δ̃,

G =
u√

u2 − 1
(1.46)

F =
i√

u2 − 1
(1.47)

which is readily obtained by solving

u

⎛⎜⎝1 + 1

(1 + ξ2)2τsΔ

√
1− u2

u2 −
∣∣∣ 1−ξ2

1+ξ2

∣∣∣2
⎞⎟⎠− E

Δ
= 0. (1.48)

Finding a solution u of Eq. (1.48) is simpler than di-
rectly solving Eq. (1.42), but still some care must be
taken in order to filter the correct physical solution from
the mathematical solutions. The solutions to Eq. (1.48)
as function of E are plotted in Fig. 1.2 for various pair
breaking parameters τsΔ = 1.4− 55, while Δ = 3.7 and
ξ = 10−4 are kept constant. Common to all sets of so-
lutions for a given τs is that there are energy regimes,
where the solutions are either purely real or complex.
While all real solutions are unique, this does not hold
for complex ones: Fig. 1.2 displays how the solution
set splits into two branches once a τs-specific energy is
reached. Though being general solutions, only the ones
with Im(u) > 0 lead to physically meaningful Green’s
functions in the given context as discussed in the next
paragraph.

1.6 Density of states and
dynamical conductivity

On general grounds, the quasiparticle density of states
D is defined as

D ≡ 1

8
tr
(
(τ̂3 ⊗ σ̂0)[ĝ

R − ĝA]
)

(1.49)

We can use the above expressions (1.35) and (1.34) to
formulate D in terms of G and F in order to express

18 FIELD-THEORETICAL BASICS ON SUPERCONDUCTIVITY



1.6. DENSITY OF STATES AND
DYNAMICAL CONDUCTIVITY 19

Eq. (1.50) in terms of the proximity angle

8D = tr
{
(τ̂3 ⊗ σ̂0)[τ̂3 ⊗ σ̂0G+ τ̂1 ⊗ σ̂0F

+τ̂3 ⊗ σ̂0G
† − τ̂1 ⊗ σ̂0F

†]
}

= tr {(τ̂3 ⊗ σ̂0)[τ̂3 ⊗ σ̂02ReG+ τ̂1 ⊗ σ̂02iImF ]}
= tr

{
τ̂23 ⊗ σ̂2

02ReG+ τ̂3τ̂1 ⊗ σ̂02iImF
}

= tr {τ̂0 ⊗ σ̂02ReG+ (−i)τ̂2 ⊗ σ̂02iImF}
= 8ReG

D = Re (cos θ) (1.50)

In the second last step we have taken the partial trace
over the spin space (4ReG) and multiplied with the par-
tial space over the Nambu space (2). The second term
vanished due to the traceless Pauli matrix τ̂2. Appar-
ently, the quasiparticle DOS is simply the real part of
the normal Green’s function. Similarly, on finds the den-
sity of pairs, P, as the imaginary part of the anomalous
Green’s function upon replacing τ̂3 by τ̂1 in the calcula-

Figure 1.3: Quasiparticle density of states for var-
ious pair-breaking values τs. Although the order pa-
rameter Δ is constant for each curve, the band edge Ωg

decreases considerably below the BCS value Ωg = 2Δ
with increasing pair-breaking strength. At the same time,
the coherence peaks are smeared out. For the strongest
pair-breaking (τsΔ = 1.4) the coherence peaks are barely
present and the spectral gap is with 0.04 × 2Δ almost
closed.



tion leading to Eq. (1.50). Both play a crucial role in the
dynamical conductivity. The quasiparticle DOS for var-
ious pair-breaking parameters τs is shown in Fig. 1.3.
In the BCS limit (τsΔ = 103) the well-known sharp
band edge at Ωg = Δ and pronounced coherence peaks
are recovered. For moderate pair-breaking, τsΔ = 54,
the peaks are rounded off37 and Ωg shifts slightly below37 A widespread

approach to model
smeared coherence
peaks is the so-called
Dynes broadening,
i.e. making the
quasiparticle energy
complex E → E+iγ,
where γ is commonly
related to finite-
lifetime effects. It is
easy to use, however,
lacks a solid physical
justification [13].
Moreover, there is
no ’Dynes-extended’
version of σ̂.

Δ, and consequently, reduces the spectral gap below the
BCS value 2Δ. Further increase of pair breaking progres-
sively smears out the peaks and relocates states below Δ.
At extreme pair-breaking, τsΔ = 1.4, the spectral gap is
almost completely closed and the coherence peaks are
smeared entirely into the quasiparticle continuum. In
this limit, the dynamical conductivity is strongly modi-
fied compared to the BCS case, as we will see below.
The response kernel Q(ω), that links the supercurrent to
the electromagnetic vector potential reads [8]

Q(ω) = − iσ0

8

∞̂

−∞
dE tr [(τ̂3 ⊗ σ̂1)ǧ(E)(τ̂3 ⊗ σ̂0)ǧ(E − �ω)]

(1.51)
from which the conductivity follows directly as σ̂(ω) =
iQ/ω. After expressing the matrix Green’s function ǧ in
terms of the normal and anomalous ones and taking the
traces over Nambu- and spin spaces we arrive at3838 which is a result

to be acknowledged:
this integral func-
tion is the central
formula for most of

with supercondu-
tivity in this work.
This formula, and
its derivatives, will
be employed to,
e.g., fit conductivity
spectra, extract
superconducting
energy scales, iden-
tify the collective
Higgs and Goldstone
modes and the pseu-
dogap, and study
magnetic impurity
bands.

σ̂(ω) =
πe2ns

m
δ(ω)

− σ0

2ω

∞̂

0

dE
{
tanh

E − �ω
2

2kBT

[
G+G−

1 − iF+F−
2

]
− tanh

E + �ω
2

2kBT

[
(G−)∗G+

1 + i(F−)∗F+
2

]}
(1.52)

where we understand subscripts 1 and 2 to denote real
and imaginary parts and used the short-hand notation
{G,F}± = {G,F}(E ± �ω/2). Note also that we in-
cluded the delta-response of the superfluid manually.
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2. Experimental studies on

disordered NbN thin films

Now, what do you own the world?
How do you own disorder, disorder?

Somewhere between the sacred silence and sleep
Disorder, disorder, disorder

System of a Down

Content of this chapter are optical studies on NbN thin
films on approach of the superconductor-insulator quan-
tum phase transition (SIT) providing experimental evi-
dence for the existence of the Higgs mode. We will start
our discussion in Sec. 2.1 with some theoretical consider-
ations regarding superconductivity and disorder followed
by a review of hallmark tunneling-spectroscopy studies
on homogeneously disordered SIT materials in Sec. 2.2.

of the dynamical conductivity of a series of NbN films
covering the range from clean to strongly disordered and
compare the results with measurements of the (differen-
tial) tunneling conductance. We will see that the mu-
tual analysis within a model inspired by the paramagnetic
pair-breaking theory of Abrikosov and Gor’kov reveals a
discrepancy between both spectroscopies that cannot be
explained by pair-breaking effects only but rather calls for
for radically new ideas. Given the specific nature of short
coherence-length quasi-2d NbN near quantum criticality
we will in Sec. 2.4 present an explanation involving an ex-
citation of the superconducting order parameter namely
the Higgs mode - a condensed-matter realization of what
is best known as Higgs boson in particle physics yet shar-
ing the same origin: spontaneous symmetry breaking.
We will discuss experimental results justifying this in-
terpretation, yet also open questions concerning the visi-
bility of the Higgs mode in disordered systems, Sec. 2.5.
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Subsequently in Sec. 2.3, we will discuss measurements



2.1 The superconductor-insulator
quantum phase transition

A prototypical quantum phase transition in condensed
matter is the transition between superconducting and
insulating ground states of an electronic system at zero
temperature in two spatial dimensions (2d). This super-
conductor - insulator transition (SIT) can be tuned by
various parameters, most importantly lattice impurities
acting as source for weak localization effects or poten-
tial traps strongly localizing charge carriers. The special
appeal of the SIT and associated phenomena lies in its
intermediate position framed by two of the most funda-
mental paradigms of condensed matter physics, namely
the Anderson theorem for superconductivity and the An-
derson localization each of which breaks down at the SIT
giving rise to intriguing physics vivified by the interplay
of localization and condensation. In what follows, we will
briefly examine both paradigms and qualitatively intro-
duce the two fundamental scenarios possibly leading to
the cease of superconductivity at the quantum critical
point39.39 For an com-

prehensive review
of this topic the
interested reader
is referred to
the reviews of
Gantmakher and
Dolgopolov [14] and
Lin, Nelson and
Goldman [15]. Also,
the textbook by Do-
brosavljevic, Trivedi,
and Valles [16] pro-
vides a valuable
collection of articles
introducing theo-
retical approaches
and experimental
hallmarks.

2.1.1 The insulating side: scaling theory
of conductivity

Maybe the most stunning aspect of the SIT in 2d lies in
the direct transition between two ground states, which
could not be any more different. On the one side, a co-
herent many-body ground state composed of delocalized
Cooper pairs (a superconductor) and, on the other side,
a ground state with incoherent and localized quasiparti-
cles (an insulator) presumably without an intermediate
ground state of incoherent but delocalized quasiparticle
states (a metal). To understand the absence of this in-
termediate metallic state one can employ the single pa-
rameter scaling argument [17] suggested by Abrahams,
Anderson, Licciardello, and Ramakrishnan40 which is an40 also known as the

gang of four elegant application of the renormalization-group ideas:
Start with a cube of spatial dimension d = 1, 2, 3 and
side lengths L, then find expressions for the conductance,
define a scaling function thereof and study the general
implications by sending L → ∞. For a metal in the
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high-conductivity (σ) limit the conductance g is simply

gm = σLd−2 (2.1)

which is easily verified for the dimensions above. For
insulators in the low-conductivity localization limit, one
can expect a conductance which is exponentially damped
on a characteristic length scale ξ

gi = gce
−L/ξ. (2.2)

While at intermediate regimes the particular form of g
surely depends on details of electron transport and in-
cipient localization, we will see that the asymptotic lim-
its Eqs. (2.1) and (2.2) are sufficient to understand the
essential physics. For a renormalization treatment re-
moving the explicit dependence on L, Abrahams et al.
suggested the scaling function

β(g) ≡ d lng

dlnL
. (2.3)

Figure 2.1: single-parameter-scaling function β of a d-
dimensional cube Ld versus conductance interpolating be-
tween logarithmic decay (insulating limit) and saturation
(metallic limit) in 1,2, and 3 spatial dimensions. Arrows
indicate the renormalization flow in the limit L → ∞.
For d = 1 and 2 any amount of disorder will always
favor the insulating ground state over the metallic one,
whereas for d = 3 the system has a metal-to-insulator
transition at an repulsive fix point.



Inserting the explicit expressions Eq. (2.1,2.2) gives the
limits

lim
g→∞β(g) = d− 2, (2.4)

lim
g→0

β(g) = ln

(
g(L)

gc

)
. (2.5)

Figure 2.1 displays schematically β(g) for d =1,2, and 3
dimensions. In the insulating limit, all curves collapse ir-
respective of dimensionality, while in the metallic limit,
the asymptotes are different and only the 3d case fea-
tures a zero-crossing at a critical conductance gc. Now
we consider the renormalization flow upon coarse grain-
ing, indicated by the arrows in Fig. 2.1. For small dis-
order, we will obtain a conductance g0 > gc, and send-
ing L → ∞ for d = 3 will increase the conductance as
g = σL pushing the system towards the metallic limit,
whereas for g0 < gc at high disorder the conductance will
rather decrease dragging the system towards to insulat-
ing regime. The system is said to flow away from the
repulsive fix point at gc either towards metallic or insu-
lating ground states depending on the specific disorder.
This is the so-called metal-to-insulator quantum phase
transition (MIT) at the mobility edge gc purely driven
by disorder. In d = 1 and 2 the situation is distinctly
different. Here, increasing L will leave the conductance
unaffected g = σ (d = 2) or reduce it as g = σ/L (d = 1).
The drag towards the insulator cannot be compensated
by an attractive metallic limit so that even the smallest
amount of disorder will unavoidably cause a flow towards
the insulating ground state. In other words, in dimen-
sions d < 3 no metallic ground state is possible at T = 0.
Note that the above reasoning does not rely on specific
details of g(L). It can be shown, that quantum correc-
tions to transport will affect the specific functional forms,
but there is never a mobility edge in less than 3 spatial
dimensions [17].

2.1.2 The superconducting side: Ander-
son theorem

Although superconductivity as ground state of electronic
systems is limited to comparably low energy scales Tc ∼
10K, its ubiquitous appearance as favorable ground state
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of numerous materials ranging from single crystals to
amorphous films results from its insensitivity against dis-
order. While the above scaling arguments rules out a
2d metal, this insensitivity can qualitatively be seen as
reason for 2d superconductors - a celebrated result first
obtained by Anderson [18] and commonly referred to as
Anderson theorem. A comprehensive discussion of the
Anderson theorem is lengthy and beyond the scope of
this work. Instead, we will only sketch the succession of
arguments leading to the conclusion41. 41 What follows

is based on the
more comprehen-
sive discussion in
Ref. [19].

The electron-phonon interaction termH of the BCS Hamil-
tonian H0 for clean superconductors reads42

42 with the usual no-
tion of fermionic cre-
ation and annihila-
tion operators ĉ†, ĉ
and a constant inter-
action potential V

H = V
∑
k

ĉ†k↑ĉ
†
−k↓ĉ−k′↓ĉk′↑ (2.6)

pairing states with opposite momenta and spin, i.e. (k, ↑)
and (−k, ↓). The BCS mean-field approximation diag-
onalizes this Hamiltonian and leads to the well-known
energy spectrum Ek =

√
(εk − μ)2 + |Δ|2 with εk and μ

the band dispersion and chemical potential and the BCS
self-consistency equation

Δ = V N(0)

ˆ
dξ

Δ

2
√
(ξ − μ)2 + |Δ|2

. (2.7)

In disordered systems, the lattice translational symme-
try is lifted and scattering off impurities violates con-
servation of momentum such that k is no longer a good
quantum number and Cooper pairs do no longer result
from the above pairing scheme. Anderson showed, that
the BCS condition for pairing can be generalized beyond
|k, ↑〉 and | − k, ↓〉 to exact eigenstates |α〉 of the disor-
dered Hamiltonian H ′ and their time-reversed counter-
parts T̂ |α〉 yet restoring the energy spectrum and self-
consistency equation above. Starting point is the general
electron-phonon interaction operator

H = V
∑

k,k′,q

∑
σ,σ′

ĉ†k′+q,σ′ ĉ
†
k−q,σ ĉk,σ ĉk′,σ′ . (2.8)

Transformation43 of the k-space operators to real-space 43 via the Fourier in-
tegral

ĉk,σ =

ˆ
drψ̂(r)eikr

operators ψ̂(r), subsequent integration, and spin sum-



mation yields

H = 2V

ˆ
drψ̂†

↑(r)ψ̂
†
↓(r)ψ̂↓(r)ψ̂↑(r). (2.9)

In general, the orbitals ψ̂(r) will be complicated func-
tions of r for a randomly disordered lattice. For the
sake of the argument, however, the actual form is not re-
quired given the existence of a set of eigenstates |α〉 (and
corresponding orbitals φ̂α(r)) diagonalizing the Hamil-
tonian for the disordered problem. Transformation into
this new basis44, the Hamiltonian Eq. (2.9) can be cast44 via the spectral

representation

ψ̂σ(r) =
∑
α

φ̂α(r)ĉα,σ

into the BCS mean-field form with the only difference
that the operators create and annihilate (time-reversed)
eigenstates |α〉 instead of momentum eigenstates |k〉. Af-
ter diagonalization and Bogoliubov transformation45 one

45 that is, introduc-
ing new fermionic
operators creating
and annihilating
quasiparticles (in-
stead of electrons)
which allow to
transform the com-
plicated 4-operator
term in Eq. (2.8)
into a harmonic
oscillator.

finds a similar spectrum Eα =
√
(εα − μ)2 + |Δ|2 which

still contains information about the specific choice of
eigenstates in terms of the eigenvalues εα. To obtain
the self-consistency equation, however, any reference to
the basis is lost when the summation over eigenvalues εα
is replaced by an continuous integral so that the BCS
result Eq. (2.7) is exactly restored. Consequently, dis-
order has no impact on the superconducting properties.
In other words, if impurity scattering were to destroy a
Cooper pair it would need to lift the requirement of time-
reversal symmetry. Scattering off an potential, however,
preserves the spin orientation and hence no pair-braking
takes place, as long as the scatterer does not carry a
magnetic moment: in this case, time-reversal symmetry
is broken and superconductivity may be strongly sup-
pressed [20, 21, 22].

2.1.3 The quantum-critical regime

The Anderson theorem and the Anderson localization
sketched above determine the physics far from the SIT
at moderate and extreme amounts of disorder, respec-
tively. As both asymptotic regimes are continuously con-
nected, there must be a regime of disorder, where both
paradigms break down and where, pictorially speaking,
electrons cannot decide whether to pair up and condense
or to get localized.
How can we escape Anderson’s theorem? The important
assumption Anderson made was that the orbitals φ̂α(r)
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of the disordered system are extended in space. Only
then the mean-field approximation in accordance with
BCS works. Clearly, spatial extension and localization
tendencies antagonize compromising the prerequisites of
Anderson’s theorem. An important measure to put a
number on disorder is the Ioffe-Regel parameter kF �, i.e.
the product of the Fermi wave vector kF and the electron
mean free path �. For marginal disorder, kF � � 1 and
the Anderson theorem holds, while for extreme disor-
der46 kF � ≈ 1 and the system turns insulating signaling 46 In this case, elec-

trons scatter from
each lattice site, i.e.
the mean free path is
the lattice constant.

the ultimate break down of Anderson’s theorem. While
this explains the conceptual demand for an SIT, it does
not provide an answer to the question how superconduc-
tivity actually ceases. Over the past years, two models
have been put forward by theory, the so-called fermionic
and the bosonic scenarios we will now briefly discuss.

The amplitude-driven or fermionic SIT

In a seminal work [23] Finkelstein has shown that dis-
order tends to renormalize Coulomb interaction between
electrons such that the screening becomes less efficient:
the attractive Cooper interaction pairing up electrons is
challenged by the repulsive Coulomb interacting lower-
ing the energy gain upon condensation. At a critical
disorder, Coulomb repulsion is strong enough to over-
compensate the pairing interaction and the bound state
is no longer favorable. Using a diagrammatic renormal-
ization approach, Finkelstein demonstrated that the am-
plitude of the order parameter vanishes uniformly at the
SIT yet. At the same time, also the superfluid density
and -stiffness go to zero where the latter always remains
the greater energy scale, see Fig. 2.2. The insulating
side contains fermionic quasiparticles which in 2d im-
mediately localize forming a hard insulator whereas in
3d tend the insulating behavior may be weaker accord-
ing to the scaling of conductivity discussed above. The
fermionic scenario has been successfully applied to ex-
plain the suppression of Tc in homogeneously disordered
ultra-thin films of, e.g., amorphous MoGe [24] or poly-
crystalline TiN [25] and MoC [26, 27]. At the same time
- and not unsurprisingly - it fails to properly describe
experimental results in the very vicinity of the SIT as it
neglects quantum fluctuations relevant at low energies.



Figure 2.2: Energy scales at the SIT within the
fermionic (left) and the bosonic (right) scenario for the
SIT. In the first case, pairing amplitude and superfluid
density (or stiffness) go to zero at the QCP for critical
disorder gc and the insulator contains localized fermions.
In the bosonic scenario, the SIT is marked by a loss of su-
perfluid coherence while pairing remains robust into the
Cooper-pair (or Bose-) insulator.

The phase-driven or bosonic SIT

In the bosonic scenario global coherence necessary to
form a phase-locked macroscopic superfluid condensate
is lost at the SIT, see Fig. 2.2. In more detail, Fisher
et al. have shown in a pioneering work [28] that long-
range phase fluctuations among a charged (2e) bosonic
superfluid are enhanced in approach of the SIT reduc-
ing the superfluid stiffness and finally destroying super-
conductivity. As a natural consequence, the bosonic
model allows pairs to survive into the insulating side,
where they, however, have lost a global phase coherence
and become localized. This model features an intriguing
charge-vortex duality which predicts a universal resis-
tance Rc = h/4e2 right at the SIT. Indeed, early dc-
transport studies [29] of ultra-thin a−Bi films quench
condensed on Ge reveal a SIT at the predicted universal
resistance. Later on the prediction was found at odds
with other systems, e.g. ultra-thin MoGe films: Al-
though magneto-transport measurements confirmed the
localization trend of Cooper pairs at the field-induced
SIT, the importance of phase fluctuations and long-range
Coulomb interaction [30], the obtained critical resistance
seems sample-dependent and is scattered widely around
h/4e2. The discrepancy is commonly attributed to the
missing fermionic degrees of freedom which naturally
arises treating the Cooper pairs as hard-core charge-2e
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bosons without internal fermionic structure.
The limited applicability of both models calls for a uni-
fied amplitude-phase theory equally capturing Coulomb
interactions and phase fluctuations each of which are the
central aspects of the respective models. At the time of
writing this thesis, such a theory is yet to be developed.

In the next section we will discuss some of the hall-
mark experiments elucidating the SIT to conceptually
outline what a successful theoretical treatment would
have to account for.

2.2 Tunneling spectroscopies on the
SIT

We will restrict our discussion to SIT systems relevant
for the scope of this thesis, namely TiN and NbN. These
materials can be produced in various ways as thin film
with a homogeneous amorphous or polycrystalline struc-
ture and random distribution of atomic-scale disorder.
The distance to the SIT can be tuned either by compo-
sition (i.e. varying N concentration) or thickness. The
arguably most striking result was obtained by measure-
ments of the local tunneling conductance. Far from crit-
icality, the energy gap Δ is uniform in space as expected
for ordinary s-wave superconductors. This changes dras-
tically in approach of the SIT where - despite struc-
tural homogeneity - measurements reveal a strongly in-
homogeneous superconducting state. For TiN, Sacepe
et al. resolved a spatially fluctuating energy gap Δ [25]
while for NbN inhomogeneities are identified by varia-
tions of the coherence-peak height and zero-bias anoma-
lies [31]. In both cases, the emergent superconduct-
ing domains exist on length scales comparable to a few
times the superconducting coherence length of ∼ 10 nm,
i.e. much larger than the atomic-scale disorder poten-
tial traps. The emergent electronic inhomogeneity tends
to localize the Cooper pairs into weakly coupled super-
conducting puddles. The global superconducting phase,
which, in the clean case, acquires its lock to a constant
value by virtue of perfect delocalization, is subject to
increasingly strong fluctuations, as decomposition into
weakly coupled puddles increases. The long-range phase



coherence is eventually destroyed when the charging en-
ergy47 of the puddles by far exceeds the Josephson en-47 which can be

thought of the en-
ergy to be paid for
hopping from puddle
to puddle.

ergy48. This peculiar inhomogeneity of the supercon-

48 which is a mea-
sure for the energy
pay off due to hop-
ping.

ducting state is in perfect agreement with calculations
within the Bogoliubov de-Gennes model [32, 33] and fa-
vors the bosonic scenario of the SIT. This view is strength-
ened by tracing the energy towards the SIT. Comparison
of Tc and tunneling gap Δ revealed a less strong decay
of the latter towards criticality leaving an anomalously
large gap for films where Tc was almost zero [25]. The
evolution of both quantities suggests Δ to survive across
the SIT forming a gapped Bose insulator. Similar mea-
surements using planar junctions and disordered 2d InO
films [34] compared nominally insulating and supercon-
ducting film in the very vicinity of the SIT characterized
by dc-transport down to mK temperatures. Surprisingly,
both the insulating and superconducting tunneling spec-
tra display a clear gap with almost the same amplitude.
The coherence peaks, however, only appear for the latter
which was viewed as evidence for robust pairing without
global phase coherence in agreement with the bosonic
models. In a subsequent publication [35] the insulat-
ing gap was conceptually explained by partial screen-
ing of electronic interactions due to the nearby metallic
tunneling electrode pushing the sample back on the su-
perconducting side to explain an alleged mismatch with
optical THz measurements. This argument, however, is
questioned by a screening length much smaller than the
tunneling barrier. Furthermore, if the electrode effec-
tively pushes an insulating sample superconducting, also
the coherence peaks should reappear what is, however,
not the case.49. Another consequence of strong phase49 The apparent dis-

crepancies between
the outcome of op-
tical and tunneling
measurements is
central part of this
thesis and compre-
hensively discussed
in remainder of this
chapter.

fluctuations manifests at the transition to the normal
state. Tunneling studies [36, 31] revealed a pseudogap
in the density of states surviving up to several times
Tc. The gap, however, is not flanked by coherence peaks
reminiscent of the superconducting gap. Their absence
is understood as result of the vanishing superconduct-
ing order, while pair correlations remain present. In
this sense, upon cooling preformed Cooper pairs exist
at temperatures much higher than Tc but form a glob-
ally coherent condensate only below Tc. While soon af-
ter this discovery, the analogy to the pseudogap in un-
conventional high-temperature superconductors such as
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2.3 Measurements of the
dynamical conductivity

We now turn to the optical spectroscopy measurements
performed on superconducting NbN thin films in ap-
praoch of the SIT. We performed comprehensive mea-
surements of the complex transmission amplitude in the
frequency range ν = 2−40 cm−1 (i.e. energies E = hν =
0.25−5meV), which is well suited to study the dynamics
of (strong-coupling) superconducting NbN films51 with 51 Information on

sample growth and
-characteristics are
found in Sec. A.1.1

critical temperatures ranging between Tc = 15−3K and
an estimated spectral gap of 4.2kBTc = 0.9 − 5.4meV.
Measurements were performed in the normal state slightly
above Tc and the regime of superconducting fluctuations
and in the superconducting states well below Tc/2, where
the mean-field BCS energy gap is at almost 100% of its
zero-temperature value. The spectra of the transmission
amplitude and phase were fitted to Fresnel equations via
real and imaginary parts of the complex dielectric func-
tion ε̂ without any particular microscopic model for the

the cuprates has been stressed, the comparison is deli-
cate as the driving forces - disorder and correlation - are
not quite the same. For instance, a recent study [37]
assembles experimental evidence that the pseudogap in
various cuprates is not restricted to the regime of the
phase diagram where phase fluctuations delimit super-
conductivity (e.g. LSCO) but also appears (in case of
e.g. Bi-2201) above amplitude-driven transitions50. Al- 50 This paradig-

matic view of
the Tc−dome in
unconventional
superconductors
emerging from an
amplitude-phase
crossover suggested
by Emery and Kivel-
son [38] is, however,
challenged by the
overwhelmingly
complex supercon-
ductivity in these
compounds.

though tunneling studies arguably yielded the most valu-
able insights how energy scales behave towards critical-
ity, the above mentioned discrepancy with optical mea-
surements in the THz frequency range is troubling. The
situation is even more alarming as also systematic stud-
ies [39, 40] bringing together resonant microwave and
tunneling measurements on disordered TiN and NbTiN
point towards the insufficiency of theories purely rely-
ing on the effects of pair-breaking. In what follows, we
present comprehensive measurements of the dynamical
conductivity at THz frequencies and compare them to
tunneling measurements and discuss a reasonable solu-
tion to the above problem on basis of a new kind of
excitation invisible to tunneling spectroscopy.



charge dynamics52. The complex dynamical conductiv-52 See Sec.A.3 for
more details of this
so-called single-peak
analysis.

ity follows directly via σ̂ = 2πiε0ν(ε̂ − 1). Prior to the
optical studies, similar NbN films with a thickness of
50nm have been fabricated as planar Ag/NbN tunneling
junctions. Comprehensive measurements of the (differ-
ential) tunneling conductance have been performed by
M. Chand and the tunneling spectra displayed below are
originally published in Ref. [41].

Before we discuss the experimental results, it is in-
structive to clarify, how superconducting energy scales
manifest in both the optical properties and the tunnel-
ing conductance G. At zero temperature, the charge
current I between the electrodes through the tunneling
barrier sets in as soon as the Fermi level of the Ag elec-
trode is biased by a voltage |V | ≥ Δ/e. As a conse-
quence of the diverging density of states right at ±Δ,
the slope of the conductance G = I/V is initially infi-
nite before it saturates to the tunneling barriers inverse
Ohmic resistance. The density of states which is propor-
tional to the differential conductance dI/dV displays a
gap of the width 2Δ and thus provides a clean access to
the superconducting pairing energy. While here, the am-
plitude of Δ is measured by shifting chemical potentials,
in optical spectroscopy it is probed by the quasiparti-
cle excitations across the gap: At zero temperature, the
finite-frequency response of a superconductor sets in at
ν = 2Δ/h where quasiparticles are lifted above the DOS
gap which manifests as an onset in the real part of the
dynamical conductivity σ̂(ν) = σ1(ν) + iσ2(ν). While in
the canonical BCS picture the onset of electromagnetic
absorption at the spectral gap Ω equals the supercon-
ducting energy gap 2Δ picture, additional excitations5353 provided that the

excitation process is
a scalar susceptibil-
ity and couples to σ̂
linearly.

may open absorption channels at frequencies ν < 2Δ/h
shifting Ω below 2Δ. Consequently, the combination of
both transport and optical spectroscopic techniques is a
promising route to identify excitations of the superfluid
beyond ordinary quasiparticle breaking.
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The comparison is done according to the scheme de-
scribed below.

1. Match an optical with a tunneling spectrum for
NbN with (approximately54) the identical Tc

54 Any NbN film
produced as elec-
trode within a
tunneling junction
cannot be used for
an optical mea-
surement. The
relation between the
structural properties
and the Tc, i.e. the
reproducibility, is
sufficiently high for
the given growth
procedure, such that
the comparison of
two NbN films linked
by Tc is justified [42]

2. Fit the dI/dV spectrum:

(a) Solve the Usadel equation (1.48) for a given
pair breaking parameter τ (with ξ = 0) and
coupling55 c = 2Δ/kBTc for energies |E| ≥ Eg

55 The temperature
dependence of Δ is
assumed to be of
BCS type

where

Eg

Δ(T )
=

[
1−
(

1

τΔ(T )

)2/3
]3/2

(2.10)

is the renormalized hard band gap [8] and T
is the temperature of the tunneling measure-
ment.

(b) Calculate the real part of the energy depen-
dent normal Green function G(E), i.e. the
density of states D(E) via Eq. (1.46).

(c) Include - if required - additional sub-gap states
Ntail(E)

Dtail(E) = exp

[(
Eg − E

Γ

)5/4
]

(2.11)

for |E| < Eg where Γ measures the width of
the tail accounting for local Δ inhomogeneities
due to random impurity configurations [11].

Figure 2.3: Sketch of
the disorder-smeared
density of states in-
cluding sub-gap tail
states. The dashed
line is the BCS solu-
tion. Note that the
tail states are actu-
ally much less signif-
icant than displayed
here.

(d) Connect D(|E| ≥ Eg) and Dtail(E < Eg)
smoothly by adjusting the relative weight to
generate a continuous function D̃(E), ∀E

(e) Calculate the functional form of dI/dV at fi-
nite temperatures by convoluting D̃(E) with
the Fermi function f(E, T )

dI

dV
∝ d

dV

∞̂

−∞
dED̃(E)

(
f(E + eV )− f(E)

)
(2.12)

where the integration range is chosen such,
that the result does not change any more within
standard numerical precision [43]



(f) Adjust τ, c, and Γ and iterate (a-e) to find the
optimal fit.

3. Use the obtained τ and c to solve the Usadel equa-
tion for Δ(T ′) with T ′ the temperature of the op-
tical measurement.

4. Calculate the complex normal and anomalous Green’s
functions G(E) and F (E) via Eqs. (1.46,1.47)

5. Calculate the complex conductivity σ̂(ν) via Eq. (1.52)

Within the canonical BCS picture, the parameters re-
quired to fit the tunneling measurement should also yield
a proper description of the optical measurement56.56 At the writing

of this thesis, we
are not aware of
a theory for the
electromagnetic
response including
the tail states Ntail.
Compared to ReG,
however, the con-
tribution of Ntail

to the overall den
sity of states is very
small here so that
negligence thereof
will not affect σ̂(ν)
substantially.

Figure 2.4 compares measurements of the real part of
the dynamical conductivity σ1(ν) + iσ2(ν) of a sample
with Tc = 15.14K with a measurement of the differ-
ential tunneling conductance dI/dV of a sample with
Tc = 15.6K. While the tunneling measurement is per-
formed at 1.9K well below Tc, the displayed σ1(ν) spec-
trum is taken at 12K much closer to Tc. The reason is
that the fully opened gap is located at frequencies above
the experimentally accessible range, while the elevated

�� �� �� �� �� ��

�

�

�

�

	� 	� 	� � � � �
�
�

�
�

�
�

�
�

�����

�����

�����	�
��
��
������

���

�
��
�
�
�

��
�
�

��
	

�
�����������
��
�

������
�
������� ��

��� ������
�
������!��



��


�
��

��
	

���"��

�����	�
��
��
�������	�#��$�%#�#�%

&��
������'�

Figure 2.4: Optical and tunneling spectroscopy on
clean NbN. (a) real part σ1(ν) of the dynamical conduc-
tivity in the normal (17K) and superconducting states
(12K). The arrow indicates the spectral gap estimated
from the minimum of σ1(ν). (b) Differential tunneling
conductance dI/dV as function energy at 1.9K. Solid
lines are based on Green’s functions calculated for the
same pair breaking τ and ratio Δ/kBTc. To fit the in-
gap part of dI/dV , exponentially decaying tail states have
been added, which are not taken into account for σ1.
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temperature allows a direct read-out of Ω and hence
comparison with 2Δ from the tunneling measurement.
Though being in the clean limit, the coherence peaks in
the dI/dV spectrum are smeared out substantially be-
yond thermal broadening. The optimal fit is obtained
for τΔ0 = 25.3 and a coupling of c = 2Δ0/kBTc = 4.15
and a minor Ntail contribution. The corresponding pre-
diction for σ1(ν) invoking the same τ and c is in very
good agreement with the actual experimental result. The
minimum in σ1(ν) lies at ∼ 31 cm−1 (denoted with the
arrow) which gives a coupling 2Δ0/kBTc = 4.1 with the
BCS temperature-dependence of Δ [41]. A similar re-
sult is found for another pair of clean-limit samples with
Tc = 14.3K and 14.9K for the optical and tunneling
measurement, respectively, shown in Fig. 2.5. The min-
imum in the predicted σ1(ν) curve is in good agreement
with the onset of optical absorption beyond quasi parti-
cle dynamics. At sub-gap frequencies, the experimental
dispersion matches the predicted one, while above the
spectral gap, the rise is stronger than expected. Compar-
ing samples with Tc = 10K and 9.5K for the optical and
tunneling measurement, respectively, reveals an absorp-
tion threshold Ω that is shifted below the predicted one
exceeding the range of experimental uncertainty, see the
top panel of Fig. 2.6. While again for sub-gap frequencies

Figure 2.5: Optical and tunneling spectroscopy on
clean NbN. (a) real part σ1(ν) of the dynamical con-
ductivity in the normal (17K) and superconducting state
(11K). The arrow indicates the spectral gap estimated
from the minimum of σ1(ν). (b) Differential tunneling
conductance dI/dV as function energy at 2.17K. Solid
lines are based on Green functions calculated for the same
pair breaking τ and ratio Δ/kBTc.



Figure 2.6: Optical and tunneling spectroscopy on
moderately disordered NbN. Panels (a) show real
part σ1(ν) of the dynamical conductivity in the normal
and superconducting state. The arrows indicate the spec-
tral gap estimated from the kink of σ1(ν). Panels (b)
display the differential tunneling conductance dI/dV as
function energy. Solid lines are based on Green func-
tions calculated for the same pair breaking τ and ratio
Δ/kBTc.

the experimental dispersion agrees with the predicted
form, an increasing excess absorption evolves around Ω
and at higher frequencies.
Both the suppression of Ω with respect to 2Δ pre-

dicted from the tunneling measurement and the accu-
mulation of additional spectral weight beyond the quasi-
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Figure 2.7: Optical and tunneling spectroscopy on
disordered NbN. Panels (a) show real part σ1(ν) of the
dynamical conductivity in the normal and superconduct-
ing state. The arrows indicate the spectral gap estimated
from the kink of σ1(ν). Panels (b) display the differ-
ential tunneling conductance dI/dV as function energy.
Solid lines are based on Green functions calculated for
the same pair breaking τ and ratio Δ/kBTc.

particle absorption, become increasingly pronounced as
Tc is reduced in approach of the SIT, as displayed in the
mid and bottom panels of Fig. 2.6 and Fig. 2.7. Down
to Tc = 7.5K the excess conductivity is concentrated
around frequencies corresponding to 2Δ and becomes
vanishingly small towards the low-frequency limit. As



for the Tc = 6.4K, sample, the additional conductivity
spans over the entire frequency range. The discrepancy
between the anticipated and the actual σ1(ν) becomes
increasingly worse as both functional form and absolute
values are concerned when going to the lowest-Tc sam-
ple, where σ1(ν) could meaningfully be calculated.

As mentioned above, the above fits of the dI/dV spec-
tra to quantify the pair breaking strength incorporated
exponential sub-gap tail states, which are not included
in the Green’s functions G and F from which σ1(ν) was
derived. Piecing together a continuous function D̃(E)
from both the hard-gapped continuum contribution and
the tail states to fit dI/dV is associated with a certain
degree of freedom as finite temperatures also smear out
a hard gap similar as tail states do. Consequently, the
lack of tail states in the calculation of σ1(ν) should care-
fully be examined in consideration of the presented dis-
crepancy. This can be done by inversion of the above
analysis: σ1(ν) is fitted to find a suited pair breaking
strength, which thereupon is used to calculate a predic-
tion for dI/dV . In Fig. 2.8(a) we exemplary re-plot the
experimental results on the samples with Tc = 4.2 and
4.3K together with a fit of σ1(ν). The required pair-
breaking is 10 times stronger than in the previous fit
of dI/dV displayed in Fig. 2.7(c). Except for the low-

Figure 2.8: Inverted analysis routine applied to a
strongly disordered sample with Tc =4.2 (a) and 4.3K
(b). The pair breaking parameter is chosen such that it
yields a fit of σ1(ν) at 2K. This strong pair breaking fails
to generate a satisfying description of dI/dV regarding
both the coherence peaks and the width of the gap.
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Figure 2.9: Curves from Gaussian distributed lo-
cal gaps Δ(r) applied to a strongly disordered sample
with Tc = 4.2 (a) and 4.3K (b). The fit of the dI/dV
measurement is the average of 81 D(E) curves calculated
from a Gaussian distribution of Δ(r) values. The corre-
sponding average of σ1(ν) curves cannot reproduce the
experimental result.

est frequencies, this choice of pair breaking reproduces
the experimental σ1(ν) very well. At the same time,
however, it completely fails to yield a satisfying descrip-
tion of dI/dV displayed in panel (b) regarding both the
height and shape of the coherence peaks and the width
of the gap. It is clear, that this discrepancy cannot be
accounted for by the missing tail states which could only
narrow the gap further, and consequently, the effect of
tail states on σ1(ν) can be ruled out as origin of the ex-
cess conductivity.
What is the influence of an emergent electronic inhomo-
geneity? The above dI/dV spectra are measured with
planar tunneling junctions. Local tunneling measure-
ments, however, revealed an emergent electronic inhomo-
geneity on a length scale of the coherence length much
greater than the lateral dimension of the planar junc-
tions. In that sense, the smeared dI/dV spectra could
also be modeled as an average of locally varying Δ(r) and
thus D(E, r) curves. In fact, assuming a Gaussian distri-
bution of Δ values gives a fairly good approximation of
the dI/dV spectrum, see Fig. 2.9, although after closer
examination it falls short compared to the pair-breaking
model. Employing the identical Δ(r) distribution for an
averaged σ1(ν) curve yields a curve completely at odds
with the actual measurement. Attributing the mismatch



between dI/dV and σ1(ν) measurements can thus not
be accounted for by a simple averaged response due to
electronic inhomogeneity.

The failure of both pair-breaking and an averaged re-
sponse due to a distribution of Δ(r) values as possible un-
derlying scenarios accounting for the apparent mismatch
between optical and tunneling spectroscopy calls for an
alternative effect at play. In the next section, we will see
that three specific properties of NbN - the short coher-
ence length of a few nanometer, the quasi-2d character
and the vicinity to quantum criticality - make this mate-
rial a promising candidate for an excitation best known
from the Standard Model of particle physics serving as
possible explanation for puzzling observation above.

2.4 The Higgs mode and the Higgs
mass

The striking resemblance of both the theory of the Higgs
boson in high-energy physics and superconductivity gives
rise to a natural question: is there a Higgs-boson like ex-
citation in superconductors? Clearly, on the one hand
an affirmative answer is challenged by half a century of
uncountable spectroscopic measurements not revealing
a superconducting Higgs mode. On the other hand, the
successful and elegant treatment of superconducting phe-
nomena by virtue of field theories and symmetry break-
ing is a strong pleading for a Higgs mode. Hence, a more
constructive approach is not to ask if but where there
is a Higgs mode, and how it can be detected experimen-
tally. In recent years, works of Auerbach et al. gave
a particular clear account to these questions as we will
review below.

An instructive way to understand the elusive nature
of the Higgs mode is to reconsider under which circum-
stances the particle analogue appears. The well-defined
Higgs boson as sharp resonance is predicted within a
relativistic and bosonic broken-symmetry field theory.
Although Cooper pairs as constituents of superconduct-
ing condensate can be viewed as composite bosons, the
fermionic nature of the underlying quasiparticles usu-
ally plays an important role. Qualitatively, this can be
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seen as consequence of the pairing taking place in k-
rather than real space. The coherence length ξ, as a mea-
sure for the quasiparticle’s real-space distance, is for con-
ventional superconductors usually much larger than the
inter-atomic distance so that bosonic treatments are not
applicable. While Bose-Einstein condensed (BEC) neu-
tral superfluids contain tightly bound pairs and bosonic
theories apply, they do not require local U(1) invariance
and gauge fields and thus the Higgs mechanism does not
occur.

Figure 2.10: Phase
diagram of lattice
bosons within the
Bose-Hubbard
model. The tips of
the lobes are points
with emergent rel-
ativistic dynamics.
Adopted from Ref.
[44].

The search for a suited system with a Higgs mode
therefore resorts to effectively bosonic charged superflu-
ids, i.e. short coherence-length superconductors. Thin
films of NbN are such candidates: For films of around
50 nm thickness, Hall- and magneto-resistance measure-
ments [45] revealed a coherence length of ξ ∼ 5 nm, which
is just around one order of magnitude larger than the
lattice constant of NbN and much smaller than the pen-
etration depth ∼ 200 nm rendering disordered NbN thin-
films a prototypical short-coherence superconductor and
ideal testbed for effectively bosonic theories.

BEC-like pairs can be treated as lattice bosons within
the Bose-Hubbard model (BHM)

H = −J
∑
i

(b†i bj + b†jbi)− μ
∑
i

ni − U
∑
i

ni(n1 − 1)

(2.13)
where b, b†, and n = b†b are bosonic annihilation, cre-
ation, and number operators, J and U are hopping and
onside-repulsion energies, and μ is the chemical poten-
tial. The phase diagram of this model features insulating
and superfluid phases depending on the filling (bosons
per lattice site) and the kinetic energy, see Fig. 2.10.
By means of a Hubbard-Stratonovich transformation the
BHM Hamiltonian can be cast into a field theory with
an imaginary-time action reading [46]

SBHM =

ˆ
dτddxLB (2.14)

with the Lagrangian

LBHM = K0ψ
†∂τψ+K1|∂τψ|2+K2|∇ψ|2+r|ψ|2+u|ψ|4

(2.15)
which is identical with the one we discussed in Sec. 1.3.



Clearly, (imaginary) time and space dependencies are not
treated on equal footings. It is the linear-time derivative
in the first term that spoils relativistic dynamics57. In57 The situa-

tion is similar to
non-relativistic
(Schrödinger) single-
particle quantum
mechanics

(2im∂t − ∂2
r )ψ = 0

compared to the rel-
ativistic (Dirac) ver-
sion

(iγμ∂μ −m)ψ = 0

a seminal work [47], however, Fisher et al. have demon-
strated that K0 can be related to r via K0 = − ∂r

∂μ , and
further, that K0 vanishes at the tips of the Mott lobes,
see Fig. 2.10. Consequently, the Lagrangian becomes
symmetric in space and time coordinates and henceforth
describes relativistic bosons. The superfluid-Mott insu-
lator quantum phase transition (QPT) within the BHM
has a prototypical condensed-matter realization in form
of the superconductor-insulator quantum phase transi-
tion (SIT) observed in granular and disordered super-
conductors such as NbN.

In recent years, the dynamics of the BHM in the rel-
ativistic limit have been studied intensively by Auerbach
et al. in terms of O(N) field theories58 with an action58 Note that the

description in terms
of a the U(1) com-
plex scalar model is
here equivalent to
the O(2) real vector
model [48]

[49]

S[φ] =
ˆ

dτd2x

{
1

2
(∂μφ)

2 +
μ

2
|φ|2 + g|φ|4

}
(2.16)

in 2+1 space-time where φ is an N−component real vec-
tor. This model has turned out to be a powerful ap-
proach to study dynamics and collective modes in quan-
tum critical condensed matter systems, in particular the
superfluid-Mott insulator transition [47] for N = 2 and
Neel-singlet transition of dimerized Heisenberg antifer-
romagnets [50] for N = 3. We will now review some of
the results [51, 52, 53, 44] obtained by Auerbach et al.
relevant for this work.

• Relativistic dynamics are essential for the appear-
ance of a long-lived Higgs mode. In the (Gross-
Pitaevskii) limit of non-relativistic dynamics, the
collective excitations of the order parameter are
coupled massless amplitude-phase phonons, wher-
eas for the relativistic case the O(2) model predicts
one massless phase mode and one massive ampli-
tude (Higgs) mode.

• The aforementioned visibility in the dynamical con-
ductivity does not apply to conventional weak cou-
pling superconductors, where the BCS Hamilto-
nian commutes with the (Cooper-pair) current op-
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erator leaving the spectral gap essentially open.
In the strong coupling limit, the coupling between
charges and photons happens by gauging the the-
ory as discussed in Sec. 1.3. Via minimal coupling
the gauge field A is introduced and one obtains

LO(2)[φ,A] =
1

2
(∂μφ)

2 − μ

2
|φ|2 + g|φ|4 +Lem[φ,A]

(2.17)
where59 59 Here, we

parametrize the
order parameter
field φ as

φ =

(〈φ〉0 + σ
π

)

where σ are the
longitudinal fluctu-
ations around the
ground state 〈φ〉0
and π is the phase
field. Note, that a
real two-component
vector is equivalent
to a complex scalar
order parameter de-
scription.

Lem = eA(∇π)
{
|〈φ〉0|2 + 2σ〈φ〉0 + ...

}
(2.18)

contains the electron-light interaction. Currents
are obtained by functional derivatives of Lem with
respect to A. To lowest order, this yields two di-
agrams: a phase mode e∇π and a coupled phase-
amplitude mode 2e∇πσ.

• The visibility of the Higgs mode is closely related
to the symmetry of the probe. The longitudinal
susceptibility of the O(N) field theory in two spa-
tial dimensions diverges at low energies so that the
spectral signature of the Higgs mode is washed out
into a broad shoulder. However, any scalar suscep-
tibility probing the square of the order parameter
rather than its direction, is finite at all frequencies
and displays a peak right at the Higgs mass mH

(an energy scale) which manifests as the onset of
electromagnetic absorption measured by the dissi-
pative conductivity.

• To understand the physical implications of the above
phase-amplitude diagram, we recall the result of
Sec. 1.4, i.e. gradients of the superconducting phase,
∇π, generate currents and hence cause density fluc-
tuations of the condensate. In 3+1 dimensions,
these are massive plasmons with a threshold en-
ergy given by plasma frequency ωp. In turn, while
being a sharp resonance in 3+1 dimensions, the
Higgs mass mH is shifted to energies �ωp + mH

where the Higgs modes are completely overshad-
owed by electronic interband excitations and ex-
perimental identification is a hopeless task. To the
contrary, the plasmons are not gapped in 2+1 di-
mensions due to the nature of Coulomb interaction



and can be excited at arbitrarily low energies. The
excitation threshold for the conductivity is here de-
termined60 by mH . With ξ ∼ 5 and d ∼ 20 nm, the60 Incorporation

of higher-order
diagrams shows,
that the threshold at
�ω = mH is actually
a soft gap closing as
ω5 in leading order
suppressed further
by a tiny numerical
prefactor.

NbN films under study are, strictly speaking, not
in the actual 2+1 limit, but with ξ and d being of
the same order, the dimensional crossover is close
such that traces of 2+1 physics are likely to be ob-
served.

In conclusion, the short-coherence superconductor NbN
allows an effective bosonic treatment within the BHM
model (and related field theories) and together with the
emergent relativistic dynamics in approach of a quan-
tum phase transition is a natural candidate to search for
the Higgs mode in a solid-state system. Furthermore,
being a scalar susceptibility, the optical conductivity is
expected to display an onset of finite σ1(ν) (for T = 0) or
a minimum (for T > 0) at mH and therefore is a suited
probe for the Higgs mode.

Coming back to the experimental results, we can as-
semble characteristic features of the σ1(ν) spectra as
function of Tc. We start with the energy gap Δ ob-
tained from tunneling and the spectral gap Ω being read
out from σ1(ν), see Fig. 2.11. The tunneling gap Δ is
reduced following the strong-coupling BCS prediction in-
dicated by the solid line with Δ/kBTc = 2.1 down to the
lowest Tc ≈ 3K. Starting with clean samples far from
criticality, corresponding61 spectral gap Ω/2 also follows61 Note that the

spectral gap for pair
excitations lies at
Ω = 2Δ.

the BCS strong-coupling behavior down to Tc ≈ 9K.
Further approach of criticality then pushes Ω/2 below
Δ. This relative suppression becomes stronger as Tc goes
down. At the lowest-Tc sample62 the deviation amounts62 Here, σ1(ν)

was measured by
means of microwave
Corbino spec-
troscopy. Taken
from Ref. [54].

to nearly one order of magnitude. This implies, that
while tunneling spectroscopy probes the superconduct-
ing energy gap Δ for all distances from criticality, below
a certain Tc, another energy scale appears in the optical
absorption spectrum. Far from criticality, this additional
scale is above Δ, so that Ω also measures Δ (or rather
2Δ). The reduction below the strong-coupling curve at
around 9K signals the appearance of a new energy scale
we interpret as the Higgs mass mH .

The Higgs mode is a critical mode of the QCP mean-
ing that mH vanishes as Tc → 0 at the SIT. Within a
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Figure 2.11: Superconducting energy scales to-
wards criticality Comparison between energy gap Δ ob-
tained from tunneling measurements and (half of) optical
absorption threshold Ω/2 taken as the minimum in σ1(ν)
for NbN films approaching the SIT. In the clean limit
(high Tc), both energy scales are approximately the same.
While the decrease of Δ follows Tc in agreement with the
strong-coupling BCS reduction (black line), the reduction
of Ω/2 speeds up towards criticality. The dashed line is
a guide to the eye.

bosonic scenario of the SIT63, the reduction of mH below 63 which seems
likely to be realized
in NbN, where
superconductivity at
small order parame-
ters is governed by
phase fluctuations
[55, 56].

Δ is a natural consequence, as the pairing energy remains
finite across the transition. The increasing reduction of
mH in approach of criticality is in qualitative agreement
with the theoretical prediction of the O(2) model, where
mH ∝ (δg)0.67 with δg being a dimensionless parameter
measuring the distance to the QCP. How δg relates to
Tc is not a priori clear, so that we can only qualitatively
confirm the predicted decay, while affirmation of the ex-
ponent remains an open problem.
So far, we have considered only the real part of the com-
plex conductivity. In what follows, we employ the in-
ductive response of the superfluid, σ2(ν), as a check for
internal consistency of the above interpretation.



For any system with a constant total carrier density ne,
the spectral weight defined as

s =

∞̂

0

dωσ1(ω) =
πnee

2

2m
(2.19)

is strictly conserved64 as it follows from the fundamental64 Given that
the bandmass m
also remains con-
stant which in
first approxima-
tion holds true
for non-correlated
metals.

Kramers-Kronig relations for causal response functions.
The opening of the superconducting gap in σ1(ν) goes
along with a redistribution of spectral weight such that
the ’missing’ spectral weight at finite frequencies, i.e. the
quasi particle contribution σ1,QP , is compensated by the
zero-frequency δ-response, namely the superfluid contri-
bution σ1,SF , thus

ne =
2m

πe2

∞̂

0

dωσ1,n(ω)

=
2m

πe2

∞̂

0

dω

{
e2πns

m
δ(ω) + σ0 × σ1,QP (ω)

}

= ns +
2mσ0

πe2

∞̂

0

dωσ1,QP (ω) (2.20)

where ns is the superfluid density, σ1,n the normal-state
conductivity, and σ1,QP the normalized quasiparticle con-
ductivity scaled with the normal-state dc-conductivity
σ0. Equation (2.20) holds true for any system where the
charge dynamics follows BCS theory. It further states
that if σ0 is reduced σ0 → ασ0 with |a| < 1, then both
ne and ns are reduced by the same factor α. In turn, the
appearance of superconducting excitations beyond BCS
theory associated with finite-frequency spectral weight
calls for a reduction of thereof in a disparate spectral
range. For the Higgs mode, being an excitation of the
superfluid condensate, a reduction of the superfluid spec-
tral weight is most likely. Indeed, by quantum Monte
Carlo (QMC) simulations of the disordered XY-model,
Trivedi et al. have shown a direct correspondence be-
tween the excess spectral weight arising from the Higgs
mode and the reduction of the superfluid weight [57].
The superfluid dominates σ1(ν ≈ 0) ≈ δ(ν) in the zero-
frequency limit and therefore, following Kramers-Kronig
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relations, also determines σ2 at small, but finite frequen-
cies ν < 2Δ/h. Considering the Kramers-Kronig trans-
form for the superfluid contribution

σ2(ω ≈ 0) = − 2

π
P

∞̂

0

dω′ω
ω′2 − ω2

πnse
2δ(ω′)
2m

(2.21)

one finds the relation

ns =
2πm

e2
νσ2(ν)

∣∣∣
ν=0

(2.22)

using ω = 2πν and δ(ω) = 1
2π δ(ν). In practice, we multi-

ply the measured σ2(ν) with frequency and extrapolate
to ν → 0 to estimate ns. This procedure is compara-
bly reliable as the dependence σ2(ν) ∝ 1/ν cancels the
ns ∝ ν dependency so that the right side of Eq. (2.22)
becomes constant in the low-ν limit. In Fig. 2.13 we dis-
play the product ∼ νσ2 for the NbN films studied in this
work. The zero-frequency extrapolation is taken as the
mean value of the two left-most data points and shown
as star symbols.

To account for the different relative temperatures T/Tc

of the various measurements, we correct to thus-obtained
value of ns(T ) by assuming the two-fluid approximation
[58]

ns(T )

ns(0)
≈ 1− t4 (2.23)

which only relies on the relative temperature t = T/Tc.
The applicability of this approximation is shown for a
representative sample with Tc = 6.4K in Fig. 2.12(a),
where a fit according to Eq. (2.23) yields a satisfying de-
scription of the temperature dependence65. 65 Note that the

zero-temperature ex-
trapolation of ns and
the value at the
lowest measurement
temperatures differs
by less than 5% so
that the actual form
of ns(T ) plays only a
minor role for ns(0).

Figure 2.12(b) compares ns(0) with the total carrier den-
sity ne obtained by Hall measurements in the normal
state [41]. As the resistivity of the films is increased
towards criticality, both Tc and ne are reduced. Ac-
cording to Eq. (2.20) the decline of ne should cause the
same reduction of ns. Experimentally, however, we find
ns to be reduced approximately 10 times stronger than
ne by nearly two orders of magnitude. The progressive
suppression of superfluid spectral weight is in agreement
with the redistribution thereof at finite frequencies due to
the emergence of the Higgs mode. Note that this finding



Figure 2.12: Superfluid and total carrier densities
(a) temperature dependence of the superfluid density nS

for a sample with Tc = 6.4K. The solid line is a fit to
the two-fluid approximation giving a zero-temperature ex-
trapolation of ns(0) = 2.07× 1025 m−3. (b) Comparison
between the total carrier density ne [41] from normal-
state Hall measurements and the zero-temperature su-
perfluid density obtained from σ2(ν). Note the stronger
decay of ns compared to ne in agreement with a redistri-
bution of spectral weight weakening the superfluid contri-
bution towards criticality. Lines are guides to the eye.

also proves the superconducting origin of the excessive
dynamical conductivity in σ1(ν) and rules out a redis-
tribution of spectral weight from higher energies due to,
e.g., a change in the plasma frequency.
Finally, we address the dispersion of the Higgs mode.

For this we subtract the predicted σ1(ν) curves based
on the tunneling pair-breaking strength from the ac-
tual measurements. The upper panel of Fig. 2.14 dis-
plays σHiggs(ν) extracted for four samples66 with Tc =66 Although traces

of excessive conduc-
tivity appear in sam-
ples with Tc up to
14.3K, a meaningful
isolation of σHiggs

only works for the
samples shown in
Fig. 2.14 due to the
finite data spacing.

7.5 − 4.2K. Although the studied spectral range allows
to capture the major part of the Higgs mode (displayed
as thick lines), its connection to the quasi particle curve
at high frequencies (thin lines) is not fully recovered for
all samples. To calculate the spectral weight of the Higgs
mode for a quantitative comparison with the reduction in
ns, an extrapolation is required, whose particular form,
however, strongly affects the resulting integral. Unfor-
tunately, the inaccessible high-frequency tail renders a
quantitative spectral weigh analysis impossible. Never-
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Figure 2.13: Determination of the superfluid den-
sity The figure assembles experimental results on the in-
ductive response of NbN samples under study multiplied
with frequency, νσ2 which according to Eq. (2.22) mea-
sures the superfluid density in the limit ν → 0 (shown as
stars)

theless, some important connections can be made to the-
ory. The lower panel of Fig. 2.14 displays the theoretical
prediction of the bare Higgs mode conductivity obtained
from QuantumMonte-Carlo studies of the disordered XY
Hamiltonian [57] at various distances from the SIT mea-
sured in terms of the disorder parameter p. To relate
the energy scale of the simulation, the Josephson en-
ergy EJ , to experiment, one can estimate EJ from the
clean-sample Tc as EJ = 2kBTc/π [59] yielding σHiggs/σ0

EJ ≈ 0.8meV. In experimental units, the energy scale in
the lower panel of Fig. 2.14 would then cover frequencies



0 − 64 cm−1 similar to the measurement range. Com-
paring the measured and simulated σHiggs reveals a fun-
damental resemblance: starting far from criticality, both
amplitude and width of the mode increase towards the
SIT. At the same time, a pronounced peak evolves that

Figure 2.14: Higgs conductivity in experiment and
theory. Top panel: excessive conductivity extracted by
subtraction of the quasiparticle contribution from the ex-
perimental σ1(ν) for various films towards criticality. As
Tc goes down, the mode grows in spectral weight and ac-
quires a maximum shifting towards lower energies. Bot-
tom panel: Higgs conductivity calculated from QMC sim-
ulations of the disordered XY Hamiltonian [57] at vari-
ous disorder values. Shaded curves are chosen for com-
parison based on line shape similarities to the experi-
ment.
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grows in amplitude and shifts towards lower energies.
A close examination, however, also reveals differences:
While the clean onset of absorption at mH of the O(2)
model is somewhat washed out by disorder, the mea-
sured σHiggs displays a clear onset at finite energies. This
points towards the important question of the interplay
between disorder, the SIT, and the Higgs mode we will
address in the next section.

In conclusion, by systematic comparison of tunneling
and optical measurements on a set of NbN films tuned
towards the SIT we unraveled an energy scale that shifts
below the superconducting energy gap Δ associated with
the emergence of an enhanced conductivity at energies
around 2Δ. Neither disorder enhanced pair-breaking
effects nor an inhomogeneous spatial gap distribution
could explain the evolution of the additional spectral
weight and shift of absorption threshold towards criti-
cality. Instead, we suggest that the vicinity to quantum
criticality and the short coherence length of the quasi-
2d films allow a treatment within the fully relativistic
bosonic O(2) field theory. Within this framework, we in-
terpret the additional absorption channel beyond quasi-
particle dynamics as the collective amplitude mode of
the superconducting order parameter, namely the Higgs
mode, and the new energy scale diving below Δ as the
Higgs mass mH . The appearance of the Higgs mode
goes hand in hand with an anomalous reduction of su-
perfluid density and is in good agreement with the line
shape predictions obtained from Quantum Monte Carlo
simulations of the disordered XY Hamiltonian. The ob-
servation of the softening Higgs mode is a direct proof
that the SIT is a quantum critical point in which a di-
verging timescale is detected [60]. Evidently, the vicin-
ity to the QPT offers a unique opportunity to study the
nature of the low energy collective excitations in super-
conductors. As a prototype of quantum criticality, the
findings presented here also have implications on broader
questions about the effects of interactions and disorder in
condensed matter, and to related questions in interacting
cold atoms and quantum statistical mechanics.



2.5 Some concluding remarks on
the Higgs mode in disordered
systems

In the previous sections we considered NbN films tuned
to quantum criticality by increasing disorder. Indeed,
disorder certainly increases as measured by the increas-
ing normal state resistivity and, e.g., the Ioffe-Regel pa-
rameter kF � [41]. Considering disorder, however, as the
underlying mechanism driving the thin films from su-
perconducting to insulating phases, may lead to trou-
blesome inconsistencies in the above interpretation that
deserve a closer examination. In what follows, we will
first argue, that disorder increases, but not necessarily
causes the SIT, and, by this, justify the applicability of
the disorder-free O(2) field theory on which the above
interpretation is essentially build on.
The experimentally detected Higgs modes, displayed in

Figure 2.15: Average
total kinetic energy
obtained from sim-
ulations of the XY
Hamiltonian as func-
tions of disorder p
and the Coulomb-to-
Josephson energy ra-
tio EC/EJ . The SIT
(dashed lines) can be
realized by tuning p
or EC/EJ . Adopted
from Ref. [57].

the upper panel of Fig. 2.14, were qualitatively mapped
to simulations of the disordered XY Hamiltonian. In
particular, the highlighted curves in the lower panel of
Fig. 2.14 correspond to disorder parameters p =0.025,
0.1, 0.15, and 0.2 which have to be compared to the value
at the SIT, pc = 0.337. While the assignment Tc− p was
done here considering similarities of experiment and the-
ory, establishing a direct relation between both param-
eters is delicate. A possible route includes the average
kinetic energy along the x-bonds in the disordered XY
square lattice, 〈−kx〉, given as [57]

〈−kx〉p =
1

π

∞̂

−∞
dω
{
nsδ(ω) + σHiggs(ω, p)

}
(2.24)

which relates to the experimentally accessible sheet re-
sistances R� of clean and disordered systems as [59]

R�(disordered)
R�(clean)

=
〈−kx〉p

〈−kx〉p=0
. (2.25)

The left-sided ratios of Eq. (2.25) for the samples
under study are approximately 1.45, 1,5, 1.66, and 2.43
in approach of the SIT. The corresponding p-value, see
Fig. 2.15 are approximately p =0.029, 0.033, 0.043, and
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0.092, i.e. systematically lower than the anticipated val-
ues above. This could, on the one hand, suggest that
with the critical disorder pc = 0.337, the samples under
study are still far from the SIT which appears rather un-
likely considering the massive suppression of Tc. Alterna-
tively, the SIT in thin films of NbN might not necessarily
be driven by disorder, but instead the competition be-
tween Coulomb and Josephson energies, i.e. localization
and mobility of charges. This second route envisions a
SIT even for zero disorder, when the system falls apart
into superconducting islands decoupled from each other,
so that Cooper pairs are localized. This scenario of an
emergent electronic inhomogeneity is supported by local
measurements of the order parameter amplitude Δ(r). In
addition, the sharpness of the SIT in NbN favors a tran-
sition driven by EC/EJ instead of pure disorder, which
would rather destroy the QCP and turn the direct SIT
into a blurred superconductor-metal-insulator transition
[48]. Unfortunately, we cannot directly compare our ex-
cess conductivity shown in Fig. 2.14 to simulations for a
EC/EJ driven SIT as these data have been made pub-
lic only in parts. The main difference [57] between the
predictions for σHiggs from the p and EC/EJ scenarios,
however, is a well-defined absorption threshold at the
Higgs mass all the way to the SIT in case of the latter in
agreement with both our experimental findings and the
results of the relativistic O(2) field theory. In the light
of these considerations, the SIT in thin films of NbN is
likely to be driven by a localization/delocalization mech-
anism, where Cooper pairs become trapped in emergent
superconducting islands towards the QCP. The subordi-
nate role of disorder is important also from another point
of view: As discussed previously, the Higgs mode appears
from a Lagrangian with relativistic dynamics, i.e. obey-
ing Lorentz invariance. The latter is characterized by a
dynamical critical exponent of z = 1. For the disordered
superfluid-Mott transition in bosonic systems, one finds
z = 1.65 [61] which consequently spoils relativistic dy-
namics and existence of a well-defined Higgs mode. In
addition, Benfatto et. al have shown that once disorder
is introduced, the amplitude and phase fluctuations of
the order parameters are mixed so that one can no longer
speak of separate dispersive amplitude and phase modes
[62, 63]. At the same time, the Higgs mode considered



here is a q = 0 mode and so it is not strongly affected by
the lattice and lattice disorder. Furthermore, near the
clean QCP, the Higgs mode provides the dominant con-
tribution to the spectral weight which cannot suddenly
disappear once weak disorder is introduced. At the time
of writing this thesis, there is no consensus on the relative
importance of amplitude and phase modes in weakly dis-
ordered systems. While calculations up to the random-
phase-approximation (RPA) level [62, 63] put emphasis
on the latter, the more fundamental QMC simulations
[57] favor the first67.67 Although only

the RPA analysis al-
lows to clearly dis-
entangle phase and
amplitude contribu-
tions, which is not
possible in the QMC
simulations.

Finally, we note similar THz time-domain measure-
ments as discussed in this chapter have been conducted
by Armitage et al. [64] shortly after we had published

Figure 2.16: Normal-state optical data for various
NbN films measured by (a) frequency domain THz spec-
troscopy (this work) and (b) time-domain THz spec-
troscopy (values taken from [64]). While the experi-
mental studies presented in this work reveal a frequency-
independent σ1,n, a growing rise with frequency is re-
ported in Ref. [64]. (c) Raw transmittivity spectra for
two films (this work) far and close to the SIT together fit-
ted by a frequency-independent Drude conductivity (light
gray) and a curve assuming a dispersion similar to the
Tc = 3.8K sample of panel (b).
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our main results. While the main experimental finding,
i.e. the impossibility to explain the optical results on
pure basis of pair-breaking induced from tunneling mea-
surements, is identical with what is presented in detail

normal state conductivity σ1,n(ν) differ significantly: In
this work, σ1,n(ν) reveals (within the experimental error
bars) a flat Drude response which is seemingly at odds
with the results of Ref. [64], where σ1,n(ν) grows with
frequency towards criticality, see Fig. 2.16(a,b). The au-
thors of Ref. [64] attribute this to the localization ten-
dencies of the charge carriers and restrict their analysis
to the normalized superconducting spectra to meet the
requirement for a dispersion less normal state withing
the standard BCS expression for σ1(ν). Such a nor-
malization is not required for the data presented and
discussed in this work. To rule out a systematic error
stemming from our σ̂(ν) analysis, we can directly com-
pare the raw transmittivity spectra, T (ν), of two films
far (Tc = 14.3K) and close (Tc = 4.2K) to the SIT,
see Fig. 2.16(c). Irrespective of Tc, the T (ν) spectra do
not feature any frequency dependence beyond the Fabry-
Perot pattern in favor of a frequency independent film
conductivity, which is supported by a perfect Drude fit
with a relaxation rate at eV energies or higher. For com-
parison, another T (ν) curve is shown based on a con-
ductivity rise similar of the Tc = 3.8K sample displayed
in Fig. 2.16(b) clearly at odds with our measurement.
Although the spectral range of Ref. [64] is greater by a
factor of two so that a frequency dependence can more
easily be traced, the different results and how they may
be related to an technical origin, remain an open prob-
lem.

At about the same time the results of this chapter
were published, another superconducting excitation also
termed Higgs mode has been reported by Matsunaga et
al. by measuring the dynamics of the energy gap Δ of the
BCS superconductor Nb1−xTixN in the non adiabatic
regime after an intense THz pulse [65]. These studies
revealed an oscillatory behavior of Δ(t) quickly leveling
off to the equilibrium value Δ0, which can be under-
stood using the BCS Hamiltonian expressed in terms
of pseudo-spins introduced by Anderson. This Higgs

in Sec. 2.3, the experimental outcomes concerning the



mode, however, is qualitatively distinct from the rela-
tivistic Higgs mode of the O(N) field theory. While the
mode reported in Ref. [65] resides exactly at 2Δ and is a
consequence of the single-particle DOS of weak-coupling
BCS superconductors68, the quantum-critical mode pre-68 Pictorially, the

weak-coupling mode
can be understood
as a coherent breath-
ing mode of Cooper
pairs oscillating
around their center
of mass [66].

sented in this work is a strong-coupling mode with an
energy solely determined by the distance to the QCP
not related to Δ at all [48]. The question, which of
both modes should meaningfully be interpreted as the
Higgs particle analogue, is not only of semantic nature.
The Higgs particle is a bosonic excitation of longitudinal
components of the Higgs field which obeys relativistic dy-
namics. The strong-coupling Higgs mode emerges from
the essentially identical Lagrangian with no fermionic
degrees of freedom and becomes well-defined only be-
low 2Δ towards criticality. Here, the composite nature
of Cooper pairs and the superconducting scale Δ be-
comes irrelevant, which is clearly not the case for the
weak-coupling mode residing exactly at 2Δ. Further-
more, the strong-coupling mode follows from the O(N)
model as an excitation of the order parameter field ψ,
while the weak-coupling mode is an oscillation of the en-
ergy gap Δ, which, strictly speaking, is not the same69.69 In fact, using

Δ as the supercon-
ducting order pa-
rameter is a rea-
sonable approxima-
tion for BCS super-
conductors, which,
however, may break
down in presence of
strong pair-breaking
as shown early after
BCS by Abrikosov
and Gor’kov, when
the energy gap van-
ishes, while super-
conductivity persists
[20, 21, 22].

In that sense, linking the strong coupling mode to the
Higgs particle is not only reasonable, but also allows a
fascinating view on the universe: When crossing from
insulator to superconductor within the O(N) model, the
ground state of the symmetric order-parameter field ψ
starts with an expectation value of 〈ψ〉0 = 0 and there
is no Higgs mode, while in the superconducting broken-
symmetry phase 〈ψ〉0 �= 0 and a Higgs mode emerges. In
the identical sense, the universe passed through a criti-
cal point shortly after the Big Bang, when the temper-
ature dropped below the electroweak unification scale of
about 250GeV. Today, the ground state of the Higgs field
breaks symmetry giving rise to massive Higgs bosons,
which are - so to speak - nothing else but critical modes
of the early-universe phase transition.
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3. Experimental studies on

granular Al thin films

Was auch immer wir jetzt wissen, Whatever we know,
is certainly not
correct,
whatever we do,
certainly doesn’ t
matter.

ist mit Sicherheit nicht richtig.
Was auch immer wir jetzt machen,

ist mit Sicherheit egal

Die Nerven

Content of this chapter are experimental studies on the
transport- and dynamical conductivity of superconduct-
ing granular Al, i.e. films composed of nanoscaled grains
of aluminum coupled into a macroscopic array. We will
start our discussion with a short introduction to super-
conductivity in confined geometries at the nanoscale gov-
erned by the interplay of phase-number uncertainty and
the shell effect. Section 3.2 will provide both an intro-
duction to the superconductivity of granular Al with em-
phasis on the well-known yet enigmatic superconducting
dome in the phase diagram and a broader context aim-
ing for a unified picture of granular and unconventional
superconductors by virtue of a common fundamental in-
terplay of superconducting energy scales. In Sec. 3.3 we
will start with a discussion of the resistive transitions
and -fluctuations of various samples with different re-
sistivity, and afterwards focus on dynamical conductivity
σ̂(ν) and, in Sec. 3.4, identify the energy gap Δ and the
superfluid stiffness J as underlying energy scales shap-
ing the superconducting dome in terms of an amplitude-
phase crossover with a pseudogap feature discussed as
natural consequence thereof in Sec. 3.4.2. In the follow-
ing Sec. 3.5 we will closely examine a low-energy absorp-
tion evident in several samples, which we identify as the
collectiive excitation of the phase field, the supeconduct-
ing Goldstone mode, within a nearly parameter free mi-
croscopic model.
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3.1 Some considerations on nano-
scale superconductivity

3.1.1 The number-phase uncertainty

The hallmark of a superconducting condensate is the
constant phase of the many-body wave function across
the system. For nanoscaled superconductors, however,
the phase-lock is not a priori prevailed due to the con-
finement of carriers. This is captured in the impor-
tant number-phase uncertainty which is a fundamental
property of coherent many-body states. In what fol-
lows, we will briefly introduce this uncertainty relation
and discuss the implications for superconductivity at the
nanoscale.
We start with the Lagrangian Eq. (1.16) for supercon-
ductivity as introduced in Sec. 1.3, where we maintain7070 i.e. we rewind

the gauge transfor-
mation applied to
Eq (1.22)

the phase field ϑ(x)

L =
i

2
∂tρ− qρ

(
A0 +

1

q
∂tϑ

)
− 1

2m

(
(∇ρ)2

4ρ
+ q2ρ

(
A− 1

q
∇ϑ

)2
)

+μρ− λ

2
ρ2 − 1

4
FμνFμν (3.1)

Note that this expression reflects the Ginzburg-Landau
functional for classical fields ρ(x) and ϑ(x). In order
to obtain an expression relating the uncertainties associ-
ated with the density field ρ and the phase ϑ, we must
replace the classical fields by operator-valued fields ρ̂(x)

and ϑ̂(x). This is formally done by imposing commutator
relations [1] reading7171 with the time-

like component of
the momentum den-
sity

Π̂μ

φ̂
≡ ∂μL

∂(∂μφ̂)
(3.2)

where φ̂ = ρ̂, ϑ̂

[
ρ̂(x, t), Π̂0

ρ(y, t)
]

= iδ(3)(x− y) (3.3)[
ϑ̂(x, t), Π̂0

ϑ(y, t)
]

= iδ(3)(x− y) (3.4)

Using the above definitions and the superfluid Lagrangian,
the momentum densities are easily calculated as Π̂0

ρ(y, t) =
i
2 and Π̂0

ϑ(y, t) = −ρ̂(y, t) and Eq. 3.4 reads

−
[
ϑ̂(x, t), ρ̂(y, t)

]
= iδ(3)(x− y) (3.5)
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We integrate this expression over positions y so that the
density field is converted into the number operator N̂
giving the commutator[

ϑ̂(x), N̂
]
= −i (3.6)

for all times t. Equation (3.6) states that the phase and
the particle number of the superconducting condensate
are conjugate variables, i.e. there is a uncertainty rela-
tion72 between both such that [1] 72 which, however,

is formally not a
quantum uncer-
tainty relation as
ϑ̂ is not Hermitian
and has no contin-
uous single-valued
eigenvalue spectrum
[1]. In a more rig-
orous way, treating

ŝin(ϑ) as operator-
valued gives a
proper yet less
insightful quantum-
uncertainty relation
[67].

ΔNΔϑ ≥ 1

2
(3.7)

This is an important result for many-body condensates
linking the number of condensed particles and the global
phase of the coherent wave function. In case of an ordi-
nary superconductor, the low-temperature BCS ground
state is macroscopically occupied so that ΔN is large
[1]. Consequently, the uncertainty in the phase, Δϑ is
vanishingly small. This has to be contrasted with the
extreme conditions of individual nanoscale grains, where
the number of electrons in, e.g., a 2 nm grain of Al is of
the order of a few hundred, which is many orders of mag-
nitude less than in bulk Al. Assembled to a macroscopic
yet electrically decoupled array, the particle number is
subject to negligible fluctuations and the ensemble av-
erage is ΔN ≈ 0. In turn, the uncertainty with the
phase, Δϑ must be large. Obviously, the requirement
for a phase lock on macroscopic scale cannot be met so
that a true superconducting condensate ceases to exist in
such a confined system. Surprisingly, this does not nec-
essarily imply the concomitant absence of a finite pairing
gap Δ as we will discuss below.

3.1.2 The shell effect

A single Al atom contains 13 electrons which are strongly
localized around the nucleus. This spatial confinement
allows only certain discrete energy eigenstates, which
are referred to as orbitals, or less precise, shells. If
assembled in lattices of macroscopic size, the spatially
more extended orbitals may overlap so that the occupy-
ing electrons move freely from atom to atom. The disper-
sion relation is approximately that of a free electron gas,



E = (�|k|)2/2m, and the density of states (DOS) D is a
smooth function D(E) ∝

√
E and essentially flat in the

vicinity of the Fermi energy EF , see Fig. (3.1). In indi-
vidual nanoscaled grains, the electrons delocalization is
naturally limited by the size of the grain. Consequently,

Figure 3.1:
(Schematic view)
For a bulk piece of
Al (e.g. major parts
of the author’s road
bike), the DOS is
that of a quasi-free
electron gas and
approximately con-
stant in the pairing
window EF ± ED.
For an Al nanograin
composed of a few
100 atoms, the DOS
is a series of (pos-
sibly degenerated)
sharp shell levels
and might be sub-
stantially enhanced
within EF ± ED

compared to the
bulk enhancing the
pairing efficiency.

the smooth and continuous DOS of the bulk stemming
from complete delocalization, is replaced by a set of dis-
crete (and maybe highly degenerate) energy levels, or, in
analogy with nuclear or atomic physics, shells, defined by
the size (and symmetry) of the grain. Stronger confine-
ment favors sharper discretization and higher symmetry
(e.g. for spherical grains) enhances level degeneracy. As
already done in the original work of BCS, the explicit
form of D(E) appearing in the self-consistency equation
for the pairing energy given by [68]

1 =
λ

2

EDˆ

−ED

dE√
E2 +Δ2

D(E)

Dbulk(EF )
tanh

(√
E2 +Δ2

2kBT

)
(3.8)

(where λ is the BCS coupling constant and ED is the De-
bye energy cut-off) is simplified such, that D(E) is taken
constant within the pairing window ±ED and removed
from the integral. While this approximation is valid in
most metallic superconductors, it is deemed to fail for
systems, where, e.g. as result of the shell effect, D(E) is
strongly influenced by the size and shape of nanograins.
Indeed, by combining the BCS self-consistency equation
with a semi classical expression for D(E) and the interac-
tion matrix elements, Garcia-Garcia et al. have shown,
that small changes in the electron density or shape of an
individual nanograin lead to substantial changes of Δ as
result of the shell effect [69]. Similar results for finite-
size pairing gap fluctuations where achieved by Olofsson
et al. [70] in the broader context of ultra-cold Fermi
gases.

First works [71, 72, 73] envisioning enhanced supercon-
ductivity in confined geometries date back to the 1960’s.
Yet only half a century later [74], the shell effect and the
size-dependent impact on Δ in individual nanograins was
confirmed experimentally by Bose et al. : The tip of a
scanning tunneling microscope (STM) was placed above
quench-condensed (semi-spherical) isolated grains of Sn
of different height h and the tunneling conductance was
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measured well below the bulk-Tc giving the amplitude
of Δ. While small modifications of h imposed to large
grains leave Δ approximately unchanged, small grains
experience tremendous fluctuations of Δ upon small vari-
ations of h. The increase in Δ-fluctuations with decreas-
ing h is explained by ever-sharper electronic shells shift-
ing in (enhancement) and out (suppression) the pair-
ing window around EF in perfect agreement with the-
ory. Surprisingly, the identical experiment performed
on Pb nanograins revealed no fluctuations but only a
gradual suppression of Δ. The absence is explained by
a stronger level broadening due to the short coherence
length and quasiparticle lifetime, so that no substantial
enhancement of D(EF ) is realized, yet confirming the in-
terpretation in terms of the shell effect. By virtue of

Figure 3.2: Upon
fine tuning the
Josephson coupling
EJ and Coulomb
blockade Ec of a
nanograin array, a
coherent superfluid
condensate may ex-
ist with similar local
phases ϕi, while
the shell effect still
enhance Δ in each
grain, so that Tc is
enhanced compared
to the bulk (i.e. the
strongly-coupled
limit)

the number-phase uncertainty Eq. (3.7) those Sn or Pb
nanoislands cannot sustain a macroscopically coherent
condensate as the number of charge carriers is fixed and
the phase of different grains is completely disordered.
Still, it envisions a possible route to controlled enhance-
ment of macroscopic superconductivity by engineering
arrays of nanograins sufficiently small to enhance the
pairing efficiency yet electronically coupled to let Cooper
pairs tunnel between grains. Obviously, two antagoniz-
ing effects have to be brought together: strong grain cou-
pling (i.e. the Josephson energy exceeds the Coulomb
blockade, EJ � EC) favor a rigid phase, which is mea-
sured in terms of the superfluid stiffness J , but weakens
the shell effect, whereas poor coupling (EJ � EC) en-
hances Δ but suppresses phase coherence. The situation
is sketched in Fig. 3.2 where the limit EJ � EC implies
ϕ1 ≈ ... ≈ ϕ3 while for EJ � EC the local phase fields
can be greatly different. It is not a priori clear if there is
a regime of coupling, where Tc can actually be increased
over the bulk value, or if the inter-grain coupling over-
compensates the shell effect. Based on their work on
isolated nanograins [69], Mayoh and Garcia-Garcia con-
sidered nanograins assembled in Josephson-coupled 3d
arrays of different geometry. By tuning down the grain
coupling, they could show, theoretically, that indeed Tc

is first enhanced, passes a maximum at optimal coupling,
and eventually dwindles to zero.

In the next section we will introduce the most well-



known system of this kind, granular Al thin films, and
see, if the above scenario sheds some light on a problem
that has withdrawn from solution for more than half a
century.

3.2 Superconductivity in granular
aluminum

3.2.1 The phenomenology

Bulk samples of Al become superconducting below a
critical temperature of Tc = 1.19K and are considered
prototypical superconductors, whose properties are well-
understood within the conventional BCS theory. It has
been realized in the late 1960’s that thin superconduct-
ing Al films can readily be produced with a wide range of
normal-state electrical transport resistivities ρdc, rang-
ing from metallic films with low resistivity (LR) and
superconducting low-temperature ground state to high-
resistivity (HR) films with activated resistivity behav-
ior and insulating low-temperature ground state73. For73 An excellent re-

view including the
arguably most com-
plete list of refer-
ences on supercon-
ductivity in granu-
lar Al is found in
Ref. [75].

disordered metallic thin films, a suppression of super-
conductivity due to pair breaking, e.g. resulting from
spin-flip or strong potential scattering due to disorder,
was already discussed soon after the introduction of BCS
theory [20, 21, 22]. However, thermally evaporated su-
perconducting thin Al films were found to act quite dif-
ferently: comparing films with increasing ρdc shows that
Tc first starts to rise above the bulk-value, passes a max-
imum with Tc = 2K at around ρdc = 1000μΩcm and
subsequently decreases and eventually vanishes, enclos-
ing a superconducting dome in the phase diagram, see
Fig. 3.3. The enhanced superconductivity is even more
pronounced when the substrate, onto which the Al film is
evaporated, is held at liquid-nitrogen temperatures dur-
ing growth. Here, at ρdc of a few 100μΩcm, a maxi-
mum Tc of 3.2K is found - almost three times the bulk
value! With the advent of methods visualizing the mor-
phological structure at the nanoscale it was possible to
identify the granular nature of the thin Al films, i.e.
macroscopic arrays of microscopic grains electrically cou-
pled through thin oxide barriers covering the grains [77,
78]. The thickness of the barrier naturally dictates the
macroscopic resistivity, which, in turn, can be under-
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stood as the degree of inter-grain coupling. Apparently,
the strength of coupling is the microscopic control pa-
rameter that tunes granular aluminum through the su-
perconducting dome. Furthermore, it was now possible
to attribute the differently shaped domes for room- and
liquid-nitrogen temperature growth to the average grain
size: the lower the substrate temperature, the smaller
the grains, i.e. 3 nm grains for growth at 300K and 2nm
at 77K, in particular.

Comprehensive transport measurements on 2 nm-grain
samples [75] show the rapid suppression of Tc on the HR
side of the superconducting dome. Films with a room-

Figure 3.3: Superconducting domes in granular Al
thin films composed of nanoscaled grains experience first
an enhancement of Tc as the inter-grain coupling (mea-
sured by ρdc) decreases and pass a maximum for opti-
mal coupling, before superconductivity eventually ceases
at high resistivities. For grains with average diameter
of 3 nm the maximum Tc is around twice the bulk value
of 1.19K, whereas for smaller grains (2 nm), Tc can be
pushed to 3.2K - a tremendous enhancement by around
300%. The shaded area marks the regime of temperature
and ρdc studied in this work. (Parts of the shown data
are taken from Ref. [75, 76]).



temperature resistivity74 ρrt exceeding ∼ 1.3×104 μΩcm74 Unfortunately,
the characterization
of films by means of
ρdc is handled incon-
sistently throughout
literature. Some
works refer to
ρdc(300K), while
others (e.g. this
work) use ρdc right
above Tc. As for
poorly coupled films
ρdc rises strongly
between 300K and
Tc, this ambiguity
should be considered
carefully.

display the onset of a resistive transition at around 1.8K,
yet also a pronounced resistive tail so that a true zero-
resistance state is not observed for temperature higher
than at least 500mK. For films with ρrt ≥ 2.1×104 μΩcm
this resistive tail turns into an exponential rise signaling
insulating behavior. By means of muon spin-rotation
(μSR) and magneto-resistance (MR) experiments, Bachar
et al. gathered evidence [79] that granular Al undergoes
a metal-to-(Mott)-insulator transition (MIT), when the
Coulomb blockade EC exceeds the (effective) Fermi en-
ergy EF . This transition is driven by the grain coupling
and so it will take place even at zero temperature by
virtue of the quantum nature of the transition. With
these insights on the nature of granular Al at very high
resistivity, one can propose a phase diagram, that, in a
broader context, suggests to put granular Al alongside a
few of the most fascinating correlated-electron systems
in the field of condensed matter.

3.2.2 The broader context:
superconducting domes and energy
scales

Figure 3.4:
Schematic (and
simplified) phase
diagrams of various
correlated-electron
superconductors.
Reproduced from
Refs. [80, 81, 82, 83]

A superconducting dome is commonly found in the phase
diagram of superconducting materials if their critical tem-
perature Tc depends on a control parameter such as elec-
tron or hole doping, external magnetic fields, pressure,
or chemical composition. The list of materials with a
dome-like appearance of superconductivity reads like the
who is who of contemporary correlated electron systems:
high-Tc cuprates, pnictides and chalcogenides tuned by
pressure or doping [80], heavy-fermion compounds such
as CePd2Se2 tuned by pressure [81], certain quasi-2d or-
ganic metals such as the κ-BEDT-TTF salts tuned by
interlacing ionic molecules [83], or the two-dimensional
LAO/STO interface tuned by electric gating [82]. Un-
derstanding the mechanisms that govern such phase dia-
grams is one of the major challenges in present solid state
physics. The question of the origin of the dome is even-
tually equivalent to the fundamental question: What is
the hidden mechanism that, upon tuning of a control
parameter, initially favors the strengthening of super-
conductivity up to some optimum and afterwards leads
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to its suppression?

Despite the obvious differences in composition and
structure, the phase diagrams of above systems share
certain commonalities. Fig. 3.4 schematically reproduces
the generic phase diagrams. Neglecting the details, all
superconducting domes appear in vicinity of a magnet-
ically ordered phase (expect for the LAO/STO inter-
face) which disappears with increasing control param-
eter. In many cases, the magnetic phase is believed
to be terminated by a T = 0 quantum critical point
(QCP) around which superconductivity evolves as favor-
able ground state. From the experimental point of

Figure 3.5: Generic
scheme for a su-
perconducting dome
emergent from com-
peting energy scales,
i.e. pairing ampli-
tude Δ and super-
fluid stiffness J , op-
positely affected by
an increasing control
parameter. Repro-
duced from Ref. [38].

view, any attempt to explain the particular shape of a
superconducting dome eventually needs to identify the
mechanism that destroys superconductivity at Tc. Be-
ing a phase-coherent condensate of pairs, this happens
by virtue of either the loss of pairing amplitude or the
loss of phase coherence - two mechanisms each of which
can be quantified by energy scales, namely the super-
conducting energy gap Δ and the superfluid stiffness J ,
respectively. While Δ simply measures the energy gain
associated with pairing up two quasi particles, the super-
fluid stiffness J measures the robustness of the global su-
perconducting phase field ϑ(r) against fluctuations. The
latter quantity is closely related to the density of coher-
ently condensed quasiparticles, the superfluid density ns.
Clearly, the superconducting state requires Δ and J to
be finite. It is, however, not a priori clear, which of both
vanishes and defines Tc for a given system. For BCS su-
perconductors, J ∼ EF � Δ and Tc equals the tempera-
ture Tpair, where pairing no longer becomes energetically
favorable, while the phase lock would, in principle, with-
stand up to much higher temperatures Tϑ. Emery and
Kivelson [38] have demonstrated that in a large class of
unconventional superconductors the situation is different
in a sense that J is comparable or even smaller than Δ
pointing towards a strong susceptibility for phase fluc-
tuations. In these materials, superconductivity ceases at
Tϑ as consequence of lost phase coherence, while pair-
ing remains energetically favorable up to temperatures
Tpair > Tc.

The vicinity to a magnetically ordered state is be-
lieved to play a key role in the non-phononic pairing
mechanism and Ψ(k)-symmetry other than plain s-wave



suggested for these unconventional superconductors. One
can, roughly speaking, think of the melting magnetic or-
der to enable long-range spin fluctuations which live on
all length scales at the QCP and may act as bosonic
pairing glue. This puts superconductivity in granular
Al in another light: Although bulk Al is not magnetic
and the overwhelming amount of experimental studies
give no reason to assume anything else than phonon-
mediated s−wave BCS superconductivity, the presence
of localized spins and spin-flip scattering channels is con-
firmed by μSR and MR experiments [84, 79, 75]. With
increasing decoupling, the spin-flip relaxation rate grows
and transport behavior reminiscent of Kondo systems as
well as an increase of the effective electron mass m∗ is
observed. In total, the dome-like appearance of super-
conductivity in presence of spin-flip scattering towards
a Mott-like state [79], see Fig. 3.6, opens an intriguing
new perspective on granular Al which serves as outline
for experimental studies presented and discussed in the
remainder of this chapter.Figure 3.6:

Schematic phase
diagram of granular
Al. Note the close
resemblance with
the generic dia-
grams of established
unconventional
superconductors.

3.3 Measurements of the transport
and dynamical conductivity

3.3.1 Resistive transition and paracon-
ductivity

Granular Al thin films of 40 nm thickness and ∼ 2 nm
grain diameter [75, 76, 78] were deposited via thermal
evaporation on cold substrates. The growth parameters
were adjusted to yield granular Al with a dc-transport
resistivity ρdc to cover the high- and low resistivity sides
of the superconducting dome75.75 Further infor-

mation on sample
growth and -
characteristics are
found in Sec. A.1.2

We start our discussion with the results of the dc-transport
measurements of the superconducting transition. The
measurements of the surface resistance R(T ) in the vicin-
ity of the crucial transition regime were carried out with
the sample and temperature sensor being immersed in
liquid helium to guarantee a perfect thermal coupling76.76 See the Appendix

for low-temperature
characteristics

The calculation of the resistivity from the surface resis-
tance was done at ∼ 6K well above Tc within the van-
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Figure 3.7: Resistive transitions for several repre-
sentative granular Al samples studied in this work
together with fits of the resistivity with the AL formula
(3.10) for LR samples and with the modified AL formula
(3.12) for the HR samples. The parameters of the fit
are shown in each panel. We define Tc as the temper-
ature, where ρdc becomes immeasurably small. The ver-
tical dashed line denotes the midpoint of the transition
as an alternative definition of Tc, being only marginally
higher than our definition. The gray area shows the range
in which ρdc is reduced by 10% to 90% from the value at
5K. (Reprinted from Ref. [85], c©American Physical So-
ciety)

der-Pauw analysis via

ρdc =
πd

ln2

(R1 +R2)

2
f (3.9)

with d = 20nm the film thickness and R1,2 the surface re-
sistances for different current-injection orientations, and
f a correction factor that varied between 1− 0.9 for the
studied samples. This value of ρdc was afterwards used



to scale the R(T ) curve to obtain ρdc(T ). Figure 3.7 dis-
plays ρdc(T ) for a set of granular Al films. Here, Tc is de-
fined as temperature where the measured film resistance
becomes vanishingly small. The transitions are compa-
rably sharp as shown by the gray areas in Fig. 3.7 delim-
iting the regime, in which ρdc is reduced to 90% and 10%
of the value well above the fluctuation regime at 5K. The
alternative definition of Tc as midpoint of the transition
leads to only marginally larger values than the above def-
inition: In case of the (LR) samples, the deviation δTc/Tc

amounts to less than 1% while it does not exceed 5% for
HR samples in agreement with previous works on similar
films [84, 86]. To analyze the effect of the superconduct-
ing fluctuations above Tc (the so-called paraconductivity)
we focus on the Aslamazov-Larkin (AL) contribution Δσ
[87], that is the most relevant near Tc. In agreement with
previous work [86], the paraconductivity has the temper-
ature dependence expected in 2d, so that [87]:

ΔσAL

σN
=

e2

16�dALσN

1

ε
=

R�
16Rc

1

ε
, (3.10)

where Rc = �/e2, R� = ρdc/dAL and dAL is a trans-
verse length scale, of the order of the film thickness, that
determines the effective 2d unit for superconducting fluc-
tuations. The parameter ε contains the temperature de-
pendence, and in the BCS limit it is given by

ε = ln
T

Tc
. (3.11)

All data is fitted with the 2d AL formula (3.10), using
dAL and Tc as a free parameters. As one can see in
Fig. 3.7 the agreement with the data in the LR regime
is remarkably good, with an effective thickness dAL �
14−17 nm as an adjustable fit parameter, that is within
a factor of 2-3 from the real film thickness. Given the
granular nature of the film this is a reasonable approxi-
mation, considering that the fit reproduces the data up
to temperatures as large as twice Tc without any other
adjustable parameter. On the other hand, when one an-
alyzes the HR films, two remarkable differences arise: (i)
the resistivity is not completely saturated up to tem-
peratures as large as twice Tc; (ii) the fit with the AL
formula fails around T � 1.2Tc, since the experimentally

68
EXPERIMENTAL STUDIES ON GRANULAR 

Al THIN FILMS



3.3. MEASUREMENTS OF THE TRANSPORT AND
DYNAMICAL CONDUCTIVITY 69

measured paraconductivity decays faster than predicted
by Eq. (3.10). Interestingly, the very same behavior has
been observed also in underdoped cuprates for samples
in the pseudogap regime. In this case, the phenomeno-
logical function [88]:

ΔσAL

σN
=

R�
16Rc

1

ε0 sinh(ε/ε0)
, ε0 = ln

T ∗

Tc
, (3.12)

turned out to be a very good model that reduces to the
usual one (3.10) when ε � ε0, so that sinh(ε/ε0) � ε/ε0,
but decays faster for ε � ε0. As it has been discussed
in the context of cuprates [88, 89], such a suppression of
paraconductivity with respect to the standard formula
(3.10) can be indeed explained assuming that a pseu-
dogap survives in the electronic Green’s function up to
a temperature T ∗ larger than Tc. In the case of gran-
ular Al the formula (3.12) works remarkably well for
the two most disordered films, see Fig. 3.7, where, as
discussed below, pseudogap signatures are evident also
from the analysis of the dynamical conductivity. Finally,
Fig. 3.8(a) unifies the results for all samples under study
and sketches the superconducting dome, whose origin we
will unravel in the next section by a systematic study of
the superconducting energy determining Tc by virtue of
the dynamical conductivity.

3.3.2 The dynamical conductivity and su-
perconducting energy scales

We now turn to the experimental results on the real and
imaginary parts of the dynamical conductivity σ̂(ν) =
σ1(ν)+ iσ2(ν) obtained by virtue of phase-sensitive THz
spectroscopy77. Figure 3.8(b-d) displays conductivity 77 See the Appendix

for details on the
experimental tech-
nique and raw-data
treatment.

spectra for a set of three representative samples spanning
from the LR to the HR side of the dome at temperatures
T ≈ 0.6Tc. Note that here and later on we discuss the
conductivity normalized to the normal-state conductiv-
ity. The reason is that with a substrate thickness of 2mm
the Fabry-Perot peaks of the superconducting transmis-
sion are extremely sharp and, thus, easily affected by
standing waves possibly mimicking a too high or too low
conductivity. This effect can be removed by normaliza-
tion as the standing wave pattern does not substantially
change with temperature leaving a smooth curve we can



compare within the BCS predictions. In all three cases,
σ1(ν) is strongly suppressed for T < Tc. At the same
time, σ2(ν) displays a strong decay with increasing fre-
quency reflecting the response of the superfluid.

To make further progress on the data, we fit σ1(ν)
and σ2(ν) to the Mattis-Bardeen (MB) functional for
dirty-limit78 superconductors [90, 91]78 i.e. that the Δ/�

is much less than
the quasi particle
relaxation rate Γ.
Contrarily, in the
clean-limit there is
no dissipative con-
ductivity between
the δ-response of
the condensate at
ν = 0 (at T = 0)
and, if at all, high
energy interband
transitions.

σMB
1 (ν)

σn
=

πe2ns

m∗σn
δ(ν)

+
2

hν

∞̂

Δ

dε g(ε) [f(ε)− f(ε− hν)]

+
Θ

hν

−Δˆ

Δ−hν

dε g(ε)) [1− 2f(ε+ hν)]

(3.13)

σMB
2 (ν)

σn
=

1

hν

Δ̂

−Δ,Δ−hν

dε
(
g(ε) [1− 2f(ε+ hν)]

× ε(ε+ hν) + Δ2

√
Δ2 − ε2

√
(ε+ hν)2 −Δ2

)
, (3.14)

where σn is the normal-state conductivity, f(ε) the Fermi-
Dirac distribution, Θ = Θ(hν − 2Δ), and the function
g(ε) is defined as

g(ε) =
ε(ε+ hν) + Δ2

√
ε2 −Δ2

√
(ε+ hν)2 −Δ2

(3.15)

which is the explicit form of the general response function
(1.52) discussed in Sec. 1.5 for the case of BCS Green’s
functions. The accuracy of the MB fit of σ1(ν) and σ2(ν)
via Δ as the only free parameter is shown in Fig. 3.8(b-d).
Even though the fit captures well the increase of conduc-
tivity at ν > 2Δ/(hc) (where h is the Planck constant
and c is the speed of light), it underestimates σ1(ν) at low
frequencies. Such an excess conductivity resembles the
one observed, e.g., in disordered NbN79 and InO films79 see the pre-

vious chapter for
an comprehensive
discussion

[92, 60] and in cuprate films [93], and is attributed to
SC collective modes [93, 94, 63, 57, 60, 62], not included
in the MB theory. In the case of granular Al, where the
Josephson coupling between grains is expected to be spa-
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Figure 3.8: Superconducting dome and dynamical
conductivity.(a) Critical temperature Tc as a function
of the normal-state resistivity (measured at 5K) of gran-
ular Al films studied in this work. Light-colored sym-
bols refer to the samples displayed in panels below. Tc

encloses a dome-like superconducting phase with low-,
optimal- and high-resistivity regimes. (b-d) (Normalized)
spectra of σ1(ν) and σ2(ν) of samples located on the left
(sample 1), the right (sample 3), and at the maximum
(sample 2) of the SC dome. The solid lines are fits to the
Mattis-Bardeen theory. Note that the fit on σ1 disregards
the low-frequency range due to excessive conductivity be-
yond Mattis-Bardeen theory. (Reprinted from Ref. [85],
c©American Physical Society)



tially inhomogeneous, this excess conductivity may be
attributed to SC phase fluctuations, made optically ac-
tive by disorder [94, 63, 57]. A comprehensive discussion
of this anomalous absorption is found in Sec. 3.5, where
it is identified as the Goldstone mode. The first energy
scale of interest, the energy gap measuring the pairing
amplitude Δ is obtained from σ1(ν). To access the sec-
ond scale, the superfluid stiffness J , we first fit σ2(ν) to
MB, see Fig. 3.8(b-d), and construct the expression8080 See also Sec. 2.4

ns =
2πm∗

e2
lim
ν→0

νσMB
2 (ν), (3.16)

where m∗ and e are the electron effective mass81 and81 Studies [79] of
the magneto resis-
tance in granular
Al films showed,
that m∗/m0 =
(ρdc/ρ̄dc)

0.44 where
m0 is the free-
electron mass and
ρ̄dc ≈ 50μΩcm
is the resistivity,
above which a mass
enhancement sets
in. We used this for-
mula to estimate the
mass enhancement
for the samples of
this study.

charge. In a second step, we define [95]

J =
�2nsa

4m∗ = 0.62× a

λ2
[K] (3.17)

Here, a is a transverse length scale, expressed in Å, λ
is the penetration depth in μm and ns/m

∗ = 1/λ2μ0e
2.

In an isotropic 3d system, the length scale a in equa-
tion (3.17) is the SC coherence length ξ0, which is the
natural cut-off for phase fluctuations, while it is the film
thickness in the 2d limit. Measurements of the upper
critical field in similar samples [86, 96] gave an estimate
of ξ0 � 10 nm, while the analysis [96] of the paracon-
ductivity above Tc indicates a 2d character with an ef-
fective 2d thickness for superconducting fluctuations of
the order of � 15 nm throughout the phase diagram.
For the sake of simplicity, we assume a constant value
a = 10nm in (3.17) for all samples under study. While
most measurements were performed at the base temper-
ature T = 1.65K of the cryogenic system, the relative
temperature T/Tc is different across the dome. For a rea-
sonable comparison, we account for the different relative
temperatures by calculating the zero-temperature expec-
tations Δ(0), ns(0) (and J(0)) according to the BCS self-
consistency equation82 [97]82 where the ratio

Δ(0)/kBTc (with kB
the Boltzmann con-
stant) is not con-
strained to the weak-
coupling value 1.78

ln
Tc

T
= 2πkBT

∑
ωn

[
1

�ωn
− 1√

(�ωn)2 +Δ2

]
(3.18)

where ωn = πkBT (2n+1) with n ∈ N are the Matsubara
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Figure 3.9: Temperature dependence of the energy
gap and superfluid density for two samples on the
LR and HR sides of the dome. (a) Δ(T ) of both sam-
ples follows the BCS prediction closely, while, in case
of the HR sample, Δ(T ) decays weaker towards Tc and
tends to survive into the normal state (empty symbols).
The persistence of a finite pairing above Tc is in strik-
ing resemblance with the pseudogap phase of, e.g., the
cuprates. (b) ns of both samples is perfectly described by
the 2-fluid approximation and agrees with BCS theory.
(Reprinted from Ref. [85], c©American Physical Society)

frequencies and the two-fluid model

ns

ns(0)
≈ 1−

(
T

Tc

)4

, (3.19)

respectively. We checked the applicability of the models
(3.18) and (3.19) for two representative samples on the
LR and HR side, see Fig. 3.9, for which a temperature se-
ries was measured. The separate analysis of σ2(ν) to ob-
tain ns(0) is in principle redundant, since within the MB
theory we could use directly the value of Δ(0) extracted
from the σ1 fits to determine the zero-temperature induc-
tive response. Indeed, from Eq. (3.14) one immediately
sees that σ2(ν → 0, T = 0) = πΔ(0)σn/(hν). Since in
the dirty limit σn coincides with 1/ρdc in the THz fre-
quency range, we can estimate ns(0) as

nΔ
s (0) =

2πm∗

e2
πΔ(0)

�ρdc
(3.20)

so that the corresponding estimate JΔ of the stiffness
follows as

JΔ(0) =
Rc

R�

πΔ(0)

4
, (3.21)



where Rc = �/e2 and R� = ρdc/a with same scale a
as used in equation (3.17). However, since the devia-
tions of σ1(ν) from the MB behavior occurs exactly below
2Δ, we analyzed σ2(ν) independently of σ1(ν), and we
cross-check afterwards the consistency between the two
approaches, see Fig. 3.10. We note that the given esti-
mate of J(0) should be taken as an upper bound, since it
neglects the additional reduction due to inhomogeneous
phase fluctuations [63, 57, 68]. However, the compari-
son with previous SQUID measurements [98, 99] of the
penetration depth suggests that this effect is still quanti-
tatively small for the samples under consideration. Here
the extracted values of ns(0) and nΔ

s (0) are converted to
the penetration depth λ = 1/

√
μ0e2ns/m∗ (with μ0 the

vacuum permeability), in order to compare them with di-
rect measurements of λ done in previous works [98, 99],
see Fig. 3.10. Both estimates of λ are consistent with
each other and they are in very good agreement with
previous findings. This shows also that the quantitative
suppression of ns,0 due to the collective-mode contribu-
tion below 2Δ in σ2(ν) is relatively small, and it justifies
the use of the MB formula to extrapolate σ2 to zero fre-
quency. With knowledge of the crucial energy scales
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Figure 3.10: Pen-
etration depth λ
versus normal-state
resistance. The
present work re-
produces results
obtained in previous
works [98, 99] well
(empty and filled
squares), where the
inverse penetration
depth has been
directly measured.
In addition, we note
that the absolute
numbers of λ ob-
tained from the
inductive response
(stars) are nearly
identical with the
calculation of λ from
Δ (circles) within
MB theory.

Δ(0) and J(0) we can now attempt to explain the par-
ticular shape of the superconducting dome of granular
Al.

3.4 Enhanced pairing versus
suppressed coherence

3.4.1 Shaping the superconducting dome

We express Δ(0) and J(0) in units of Kelvin and plot
them together with Tc as a function of ρdc in one frame,
see Fig. 3.11(a). Starting on the LR side, we find Δ(0) <
J(0) as common for most superconductors and Tc =
Tpair, i.e. superconductivity is destroyed by the cease
of Cooper pairs. In terms of absolute numbers, how-
ever, J(0) is surprisingly small: For BCS superconduc-
tors, J(0) ∼ EF which, for Al, is of the order of a few
104 K which is orders of magnitude more than realized
in (even strongly coupled) granular Al. On a (simpli-
fying) square lattice of grains the situation can be il-
lustrated using local order parameters ψi for each lat-
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Figure 3.11: Superconducting energy scales and lo-
cal order parameters (a) Tc, Δ(0), J(0), JΔ(0) (ex-
pressed in units of temperature) and Δ(0)/kBTc as a
function of normal-state resistivity (measured at 5K) of
granular Al films. Δ(0) (olive stars) follows the increase
of Tc on the left side of the dome for LR samples while it
saturates in the HR regime. This is reflected in the ratio
Δ(0)/kBTc which increases from the weak-coupling value
1.78 (dotted line) to 2.25 when crossing from the left to
the right side of the dome. The calculation of super-
fluid stiffness from σ2(ν) and from Δ(0), i.e. J(0) and
JΔ(0), is subject to an uncertainty reflected by the shaded
area. Dashed lines are guides to the eye. See the text for
more details. (b-d) Illustration of the grain array for (b)
strong, (c) moderate, and (d) weak inter-grain coupling.
The arrows indicate the phase (direction) and amplitude
(thickness) of the local superconducting oder parameter.
(Reprinted from Ref. [85], c©American Physical Society)

tice site i. We schematically visualize the energy gap
Δi (pairing amplitude) and the superconducting phase
φi in the thickness and direction or the arrows in the
right panels of Fig. 3.11: The situation for strong cou-
pling on the LR side is sketched in Fig. 3.11(b) where
all local ψi’s point roughly in the same direction. Con-
sequently, the phase gradient between neighboring sites
is small and J(0) is large. Upon decoupling the grains
and tuning towards higher resistivity, the rise of Tc is



accompanied by an identically rising Δ(0), which can be
inferred from the constant ratio Δ(0)/kBTc ≈ 1.78 being
in perfect agreement with BCS theory for weak-coupling
superconductors. Microscopically, decoupling promotes
the individual character of each grain such that quan-
tum confinement becomes stronger and the shell effects
more efficient boosting the pairing amplitude (illustrated
by the thicker arrows in Fig. 3.11(c)). Up to intermedi-
ate resistivity, we also find Δ(0) < J(0) implying that
superconductivity remains limited by the pairing and
Tc = Tpair. At the same time, however, we observe a
remarkable decline of J(0) ∝ 1/ρdc, that can be viewed
as consequence of growing phase fluctuations across the
grain array, see Fig. 3.11(c). For even higher resistivity
on the HR side, inter-grain coupling becomes so weak
that phase fluctuations push J(0) to values comparably
to or, ultimately, even smaller than Δ(0). Even though
the shell effect remains at play keeping Δ(0) strongly
enhanced compared to the bulk83, see Fig. 3.11, Tc is re-83 where, according

to BCS, one can es-
timate
Δ(0) = 1.78Tbulk

c =
2.1K

duced again. In other words, superconductivity on the
HR side is limited not by the loss of Cooper pairs, but the
loss of the coherent superconducting phase, i.e. Tc = Tϑ.
Consistently, the ratio Δ(0)/kBTc increases up to 2.25
in case of the least-coupled sample under study. In sum-
mary, the superconducting dome of granular Al and the
underlying crossover from amplitude- to phase driven su-
perconductivity can completely be ascribed to the com-
peting interplay of pairing enhancement and suppressed
phase coherence originating from quantum confinement
and enhanced phase fluctuations, respectively.

3.4.2 The pseudogap for phase-driven
superconductivity

The above suggested scenario has an intriguing conse-
quence for the normal state entered via a phase-driven
transition, which, at the same time, serves as impor-
tant consistency check. When Tc is suppressed by an
overly small J , the non-zero Δ right above Tc should
imply a finite pairing amplitude up to some tempera-
ture Tpair > Tc even without a coherent condensate. Or,
from another perspective, when temperature is reduced
between Tpair > T > Tc, a quasiparticle excitation gap
should form, which equals the energy required to break

76
EXPERIMENTAL STUDIES ON GRANULAR 

Al THIN FILMS



3.4. ENHANCED PAIRING VERSUS
SUPPRESSED COHERENCE

preformed pairs. As soon as T = Tc, these pairs condense
and superconductivity appears. The notion of an exci-
tation gap above Tc due to preformed pairs has become
very popular with unconventional cuprate superconduc-
tors, commonly referred to as pseudogap84. While the 84 To which extent

this enigmatic phase
of the cuprates is
related to supercon-
ductivity has been
subject of numerous
works, yet no con-
sensus is achieved.
For instance, the
pseudogap phase
may live ’behind’
the superconducting
dome in a sense
that there are,
loosely speaking,
two kinds of Cooper
pairs of which
only one actually
condenses below Tc

[100, 101, 102, 103]

situation in the cuprates is immensely complicated by
correlation and competing phases, the nature of an pseu-
dogap in phase-driven granular Al would be comparably
clear. As discussed in Sec. 3.3.1, an indirect signature
of a pseudogap can be inferred from dc-transport mea-
surements: While on the LR side the paraconductivity
agrees with the 2d Azlamazov-Larkin (AL) model for su-
perconducting fluctuations, the paraconductivity on the
HR side requires a AL term which accounts for a pseu-
dogap (see Ref. [88] and references therein). However,
this phenomenological model was discussed in context of
unconventional cuprates, and its applicability to other
systems is not a priori given. A more direct verification
of the pseudogap would be given by an spectral gap in
the dissipative conductivity σ1(ν) similar as the super-
conducting gap 2Δ. In this sense, the depletion of states
around EF should suppress the electromagnetic absorp-
tion up to energies corresponding to excitations across
the pseudogap. Indeed, such a feature was found for a
HR sample. In Fig. 3.12(a,b) we compare σ1(ν) spec-
tra of amplitude- and phase-driven samples recorded at
various temperatures below and above Tc. For an ordi-
nary dirty-limit BCS superconductor, any superconduct-
ing correlation vanishes at85 Tc and the normal state 85 or, more pre-

cisely, vanish above
the fluctuation
regime, which for
the samples under
consideration is
limited to 1.02Tc

and can be neglected
here, see Fig. 3.7.

σ1(ν) is frequency independent. In fact, at tempera-
tures T > Tc the spectra of the amplitude-driven sample,
panel (b), are basically indistinguishable and flat within
the experimental resolution. This is contrasted with the
phase-driven sample, panel (a), where a strong suppres-
sion of σ1(ν) is observed up to temperatures substantially
higher than Tc and the fluctuation regime. The spectral
gap is of the same order as the superconducting gap and
we can try to estimate it from the absorption threshold.
Well below Tc, the fit of σ1(ν) within the MB theory
gives Δ(T ) closely following the universal BCS curve, see
Fig. 3.12(a). In approach of Tc, the obtained Δ exceeds
the BCS prediction. Taking the minimum of σ1(ν) at
T > Tc as upper estimate for the absorption threshold,
i.e. the pseudogap, a spectral gap seems to persist into
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Figure 3.12: Temperature evolution of spectral gap.
(a-b) Temperature dependence of normalized σ1(ν) of a
granular Al sample in the high- and optimal resistivity
regimes. In case of the HR sample, the suppression of
σ1(ν) below Tc = 2.55K (dashed lines) persists up to
T = 2.8K (solid lines), whereas the spectral gap closes
right at Tc in the LR regime. (c) Temperature depen-
dence of the spectral gap for samples from the optimal
(stars, sample 2) and high resistivity regimes (diamonds,
sample 3). ρdc(T ) of the HR sample is shown to the
right. For the HR sample, deviations from the BCS pre-
diction for Δ(T )/Δ(0) (black solid line) appear already
at T/Tc < 1, where Δ is anomalously large. The persis-
tence of a gap across Tc (empty diamonds) is in strik-
ing resemblance with strongly disordered or correlated su-
perconductors. (Reprinted from Ref. [85], c©American
Physical Society)
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the normal state, in contrast with the amplitude-driven
sample, where Δ(T ) closely follows the BCS prediction
all the way to zero at Tc . As depicted in Fig. 3.12(c)
both gaps below and above Tc seem to be smoothly con-
nected. To analyze the gapped structure of σ1(ν) in the
normal state, a generalization of the MB functional is
clearly required as for Δ = 0 Eq. 3.13 becomes

σ1(ν)

σ0
=

2

hν

∞̂

0

dε[f(ε)− f(ε+ hν)]

+
1

hν

0ˆ

−hν

dε[1− 2f(ε+ hν)] (3.22)

(where σ0 denotes the normal state conductivity above
any superconducting correlation), which after analytic
integration equals to 1 without any frequency depen-
dence. This can be understood as consequence of an
energy independent density of states D considered in
the standard MB theory. A more general treatment
should include variations of D(ε) on an energy scale com-
parable to Δ also in the normal state. Seibold et al.
re-derived the MB functional explicitly allowing for an
energy-dependent, yet symmetric density of states [104]

σ1(ν)

σn
=

2

hν

∞̂

Δ

dε
D [Λ1(ε)]D [Λ2(ε)]

Λ1(ε)Λ2(ε)

×
[
ε(ε+ hν) + Δ2

]
[f(ε)− f(ε+ hν)]

+
Θ(hν − 2Δ)

hν

−Δˆ

Δ−hν

dε
D [Λ1(ε)]D [Λ2(ε)]

Λ1(ε)Λ2(ε)

×
[
ε(ε+ hν) + Δ2

]
[1− 2f(ε+ hν)]

(3.23)

where

Λ1 =
√
ε2 −Δ2

Λ2 =
√
(ε+ hν)2 −Δ2. (3.24)
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In the normal state this expression simplifies to

σ1(ν)

σn
=

2

hν

∞̂

0

dεD(ε)D(ε+ hν) [f(ε)− f(ε+ hν)]

+
1

hν

0ˆ

−hν

dεD(ε)D(ε+ hν) [1− 2f(ε+ hν)]

(3.25)

Using the functional (3.25) we can now attempt to fit the
spectra above Tc. As a model, we employ the Altshuler-
Aronov type86 pseudogap [105]86 which is known to

model the tunneling
spectra of many dis-
ordered systems D(ε) = α+ (1− α) tanh2

( ε
Ω

)
(3.26)

with the depletion parameter α and Ω ∼ Δ the ampli-
tude of the pseudogap. Figure 3.13(a) displays σ1(ν) at
temperatures T > Tc together with a curve calculated
from Eq. (3.25) including Eq. (3.26) with Ω/hc = 1.66
and 1.45 cm−1 at 2.6 and 2.8K, respectively, and deple-
tion α = 0.1. Furthermore, the theory curves were scaled
by a factor 1.1. Although one cannot expect the simple
model DOS (3.26) to reproduce the experimental σ1(ν)
entirely, it serves as a fairly good general description cap-
turing the suppression at low frequencies and the rise
with increasing frequency. At the same time, the pro-
nounced feature at intermediate frequencies cannot be
modeled appropriately and hence was excluded from the
fit. We can now study two distinct models assuming (i) a
competing and (ii) common nature of the spectral gaps.
In the first scenario we assume, that the normal state gap
opens at T � Tc and acts as temperature independent
background upon which the superconducting gap opens.
This scenario resembles a model suggested87 for cuprate87 See the compre-

hensive review [106]
by Hashimoto et al.
on the competition
between supercon-
ducting order and
pseudogap in uncon-
ventional cuprate
superconductors.

superconductors, where the pseudogap characterizes an
electronic phase distinct from the superconducting order.
Here, for the sake of simplicity, we assume a temperature
independent pseudogap with Ω/hc = 1.66 cm−1 (and the
above depletion α = 0 and scaling factor 1.1), leading to
the curve displayed in Fig. 3.13(a). Below Tc, we let the
superconducting gap open in the weak-coupling mean-
field fashion according to Eq. (3.18). Without any fur-
ther free parameter, the generalized MB model (3.23) re-
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sults in the dot-dashed curves of the panels (b-f). Clearly,
the separate treatment of two distinct gaps, Δ and Ω,
leads to a too strong depletion of states and, in turn, a
too small absorption for all temperatures T < Tc.
For the second scenario, we assume that the spectral

gaps above and below Tc are smoothly connected, i.e.
there is no competition between superconducting order
and another electronic phase. This scenario is somewhat
more plausible than the above multi-phase model, as the
latter arises by virtue of strong electronic correlations

Figure 3.13: Evolution of spectral gaps below and
above Tc as apparent from (a-f) the dissipative conduc-
tivity σ1(ν) of high-resistivity granular Al. (g) Fits to the
standard and generalized Mattis-Bardeen functionals (see
the main text for more information) include hard-gapped
BCS-DOS and Aranov-Altshuler type pseudogap, respec-
tively. (h) temperature dependence of the spectral gaps
Δ and Ω for T < Tc and T > Tc, respectively, together
with the mean-field BCS prediction for the superconduct-
ing gap.
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which play a minor role in granular Al. This model,
however, leaves open the question, how Ω evolves into Δ
across Tc. For the sake of simplicity, we model the exper-
imental σ1(ν) above Tc with Eq. (3.25), while below Tc

we skip the energy dependence of D and use the standard
MB functional (3.13), where we treat Δ as fit parame-
ter. The resulting curves are displayed in Fig. 3.13(a-f).
The corresponding values of the spectral gaps are shown
in panel (h) together with the BCS T -dependence of Δ
for arbitrary coupling strength. Apparently, this sce-
nario of smoothly connected spectral gaps yields a much
better description of the experimental data. Although
the above treatment of spectral gaps right at Tc is an
oversimplication (which is reflected in the rather poor fit
at 2.4K), the agreement is remarkable. In this sense, all
Cooper pairs preformed in the pseudogap phase condense
into the superfluid condensate below Tc - in contrary to
the competing-order model, where only Cooper pairs of
a certain Fermi surface fraction actually condense. Far
below Tc, the system does not feature signatures of the
pseudogap anymore and Δ(T ) follows BCS theory.

3.4.3 Multi-fractal wave functions - an
alternative to enhance Tc?

To conclude this section we will briefly present an al-
ternative mechanism to enhance Tc based on the multi-
fractal nature of the electron wavefunctions near local-
ization. By a simple renormalization-group treatment
of the conductivity discussed in Sec. 2.1.2 we have seen
that in 3d a metal-insulator transition occurs at a crit-
ical conductance gc or, equivalently, a critical disorder
pc defining the mobility edge. Following the reasoning
of Aoki [107], for a system with pc + ε all electron wave-
functions are localized so that the state fills a vanishingly
small fraction of the total volume of the system. Above
the mobility edge, pc − ε, the electrons are completely
delocalized and the wavefunctions spread across the en-
tire system. Consequently, for a system right at the mo-
bility edge, both requirements have to be met which is
accomplished by a multi-fractal nature of the wave func-
tion. Indeed, models based on multi-fractality [108, 109]
have quite successfully been employed to explain the in-
homogeneous superconducting correlations, a pseudogap
at T > Tc, and a hard-gapped insulating state observed
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in systems close to the superconductor-insulator tran-
sition underlining the importance of multi-fractality on
superconductivity. In a recent work [110], Mayoh and
Garcia-Garcia analytically study the energy dependence
and spatial distribution of the order parameter for dif-
ferent degrees of multi-fractality. Using percolative tech-
niques, this enables the computation of the global Tc

defined as temperature, where a supercurrent starts to
flow. The central result is a strong suppression of Tc with
disorder compared to the case of a homogeneous order
parameter (i.e. in the clean limit), except for the case
of very weak-coupling superconductors, such as Al, lead-
ing to the highly counterintuitive prediction of modest
disorder actually enhancing Tc. This scenario allows an
alternative view on superconductivity in granular Al. At
low resistivity, the electrons may easily hop from grain
to grain so that the staying time within one grain is, pic-
torially speaking [111], too short to feel the confinement
and the shell effect. The grains simply act as scatterers,
as long as the staying time remains sufficiently small,
whereas the confinement-induced Tc enhancement takes
over only at higher resistivities. A clear separation be-
tween both effects and a determination of the relevant
time scales is an important problem left open for further
theoretical and experimental studies.
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3.5 Goldstone modes

In this section, we closely examine a peculiar deviation
from Mattis Bardeen theory apparent in Fig. 3.8 we en-
countered in our discussion of the low-frequency real con-
ductivity σ1(ν) of granular Al in Sec. 3.3.2. In greater
detail, we will show that the excessive conductivity can
be interpreted in terms of collective excitations of the
superconducting phase field or Goldstone modes - a fas-
cinating phenomenon if only because it bears on the na-
ture of spontaneous U(1) symmetry breaking.
As we have seen in Sec. 1.3, the topology of the super-
conducting order parameter can be used to link the zero-
resistance transport of a charged superfluid to the phase
rigidity, which itself is a direct consequence of the U(1)
symmetry breaking. The Goldstone theorem88 states88 originally formu-

lated in the con-
text of high energy
physics

that in any system with a spontaneously broken con-
tinuous symmetry a certain number (given by the rank
of the broken-symmetry group) of low-energy collective
excitations will appear. For a charged superfluid, we
consider breaking of U(1) symmetry and a single Gold-
stone mode89. Although the relationship between par-89 This is similar to

the case of ferromag-
netism, where the
spontaneous magne-
tization below the
Curie temperature
breaks rotational
symmetry giving
rise to Goldstone
modes termed
Magnons. Another
example is quantum
chromodynamics,
where the vac-
uum breaks chiral
SU(2)L × SU(2)R
symmetry causing
the emergence of the
light pions. Note
that in both cases
the symmetry of
the Lagrangian is
only approximate
and thus the Gold-
stone excitations
are light, but not
massless as for exact
symmetries.

ticle physics and superconductivity was recognized be-
fore the BCS milestone, the superconducting Goldstone
modes remained elusive and only a theoretical postu-
late. This is remarkable, as the gapped superconduc-
tor should enable an observation of low-energy modes
without contaminations of quasiparticle excitations. The
early work of Anderson [112] attributes the disappear-
ance to Coulomb interactions, which shift the Goldstone
modes to the plasma frequency ωp � Δ, where the de-
tection is a hopeless task. At the same time, this re-
striction defines a model system where the observation
of a Goldstone mode should become possible. First, An-
derson’s argument only holds for long-range Coulomb
interactions, but fails for short-range interactions com-
mon to disordered metals. Second, due to the nature of
Coulomb interaction in 2d, the ωp is shifted to zero such
that Goldstone modes should acquire spectral weight in-
side the superconducting gap. Finally, Anderson’s argu-
ment assumes a spatially uniform superconducting order
- a requirement clearly violated in disordered or granu-
lar superconductors as evident from STM measurements.
These considerations envision granular Al as prototypi-
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cal system, where a Goldstone mode might be detectable
by means of optical spectroscopy.
An instructive way to understand, how excitations of the
superconducting phase can contribute to the conductiv-
ity, is the London equation

j =
qn

m
∇ϑ (3.27)

(with charge q and mass m) we derived from the effec-
tive low-energy superconducting Lagrangian 1.23 after
integrating-out the energetic fields from 1.13. A gradi-
ent ∇ϑ of the phase field causes a current that - without
going into details - we can relate [57] to the conductiv-
ity90 90 here as the

response function
for co-linear cur-
rents and fields in
x-direction

σ(ω) ∼ −χxx(q = 0, ω + i0+)

i(ω + i0+)
(3.28)

obtained after analytic continuation of the current-current
correlation function on the lattice (with Matsubara fre-
quencies ωn = 2nπkBT )

χxx(q, iωn) =
∑
r

ˆ β

0

dτ〈jx(r, τ)jx(0, 0)〉eiqreiωnτ

(3.29)
in the limit q → 0. To obtain a deeper quantitative
understanding of how the Goldstone modes contribute
to the conductivity, it is important to start from a mi-

Figure 3.14: Excessive sub-gap conductivity σ+
1 (ν)

in granular Al for various temperatures below Tc for
samples on the LR and HR sides of the superconducting
dome.
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croscopic Hamiltonian for superconductivity. Cea et al.
[63] considered the fermionic attractive Hubbard model
on the square lattice with on-site energy U < 0, local
disorder Vi, and hopping t where they define

jα(q, ω) = −q2Kαβ(q, ω)Aβ(q, ω) (3.30)

linking the total current in α-direction to a gauge field
in β-direction. Clearly, the physics are contained in the
response kernel Kαβ which can further be split into dia-
magnetic and paramagnetic responses

Kαβ(q, ω) = Kdia
αβ (q, ω) +Kpara

αβ (q, ω)

= Dδαβ − χαβ(q, ω) (3.31)

with the diamagnetic term D being given by the spec-
tral weight. While the diamagnetic term accounts for the
response of the superfluid, the paramagnetic term gives
the quasiparticle conductivity (i.e. particle-hole excita-
tions) but allows to treat collective modes by inclusion
of higher-order vertex corrections of MB theory. The
authors of Ref. [63] supplemented the bare quasiparticle
excitation (χ(0)) with a higher order contribution where
an incoming photon couples to a particle-hole excita-
tions (the so-called BCS bare-bubble), then excites an
intermediate collective mode, another particle-hole exci-
tation, and eventually leaves. The possibility of such a
process, however, does not automatically imply its ob-
servability as the collective modes in clean superconduc-
tors only contribute to the finite-q longitudinal response
and the Goldstone mode cannot be excited by a photon
[63, 113]. In disordered and hence inhomogeneous thin
films, however, the coupling becomes non-zero even at
q = 0 and should lead to a finite absorption. Calcula-
tion of the real conductivity via

σ1(ω) = −q2Re
Kxx(0, ω)

i(ω + i0+)
(3.32)

reproduces the MB result on the bare-bubble level, while
the Goldstone mode indeed appears in σ1 by virtue of
vertex corrections. Depending on the strength of local-
ization/delocalization tendencies set by the relative en-
ergy scales U/t and V/t, a notable amount of spectral
weight amounts below the quasiparticle threshold 2Δ.
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Figure 3.15: Decomposition of σ1(ν) in terms of
a quasiparticle background following MB theory (solid
lines) and additional sub-gap contribution σ+

1 (ν) (bars)
for two samples measured during the second cool-down.
(Reprinted from Ref. [114], c©American Physical Soci-
ety)

In the light of these considerations, we can revisit the
experimental results on the low-frequency σ1 obtained
in the course of this work. For a number of samples, a
significant amount of excessive conductivity σ+

1 (ν) (nor-
malized to the σ1(ν) at 5K) is isolated by subtracting
the MB curve from the experimental data91, as displayed 91 see the previous

sections for plots and
how the fits were
performed

in Fig. 3.15. At the time of writing it remains unclear,
why some samples do and some do not display a notable
σ+
1 (ν). It is worthwhile noting that the strongest sub-

gap absorption was found for samples, which had been
cooled down before. Interestingly, when cooled to 4He
temperatures the first time, only a minor σ+

1 (ν) con-
tribution could be isolated (see Fig. 3.8b), while σ+

1 (ν)
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increased drastically as evident from a subsequent mea-
surement a few months later, see Fig. 3.14. At the same
time, the normal-state resistivity as measure of disorder
increased from 189 to 263μΩcm and a slight reduction
of Tc from 2.78 to 2.74K. As the spectral weight asso-
ciated with the Goldstone mode sensitively depends on
the amount of disorder (rendering the superconducting
state spatially inhomogeneous), the strong enhancement
of σ+

1 (ν) after the first cool down could possibility be
attributed to a higher level of disorder caused by the ex-
posure to humidity when removed from the cryostat in
the first place. A similar enhancement of σ+

1 is observed
for another sample, where ρdc increased from 1969 to
2110μΩcm with a concomitant drop of Tc 2.7 to 2.55K.
A systematic study is required to explain the selective
appearance of σ+

1 (ν) and left for future work92.92 Further insights
might be drawn
from the observation
of electron-glass
behavior and a
memory effect in
strongly disordered
insulting granular Al
[115, 116, 117, 118]

We will, in what follows, focus on one sample, where
the frequency and temperature dependencies of σ+

1 (ν) al-
lows a particularly comprehensive discussion within the
framework of optically active Goldstone modes calcu-
lated within an effective bosonic model.
A Hamiltonian, that is somewhat more applicable to real
systems such as granular Al is the disordered quantum
XY spin-1/2 model in a transverse random field. This
model is inspired from a Heisenberg 2d-lattice of classical
spins sj = |sj |eiθj on each lattice site j serving as simple
model for the phase degrees of freedom in a superconduc-
tor with local order parameters ψj = Δje

iθj . The anal-
ogy to a magnetic system is two-fold: First, the Heisen-
berg system has a non-zero expectation value of the net
magnetic moments (i.e. a finite magnetization M) below
the Curie-temperature, in correspondence with a non-
zero modulus |Δ| (i.e. the superconducting energy gap)
of the global order parameter Ψ = Δeiθ below the critical
temperature Tc. In both cases, a rotational U(1) symme-
try is spontaneously broken as soon as M become finite
and Ψ acquires a certain phase. Second, the strength ex-
change interaction between spins sisj ∼ cos(θi − θj) dic-
tates the robustness of the magnetization against phase
fluctuations similar as the superfluid stiffness J is gov-
erned by the gradient of the global phase field. In prac-
tice, the fermionic spin degrees-of-freedom of the classical
Heisenberg Hamiltonian are mapped to operators Sx, Sy,
and Sz leading to the quantum XY model on a N ×N
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lattice [63, 119]

H = −2
∑
i

ξiS
z
i − 2

∑
i,j

Jij

(
S+
i S−

j +
(
S−
j

)† (
S+
i

)†)
(3.33)

with the pseudospin operators defined as

S+
i = Sx

i + iSy
i = c†i↓c

†
i↑, S−

i =
(
S+
i

)†
(3.34)

and

Sz
i =

1

2

∑
σ

c†i,σciσ − 1

2
. (3.35)

We see that Sz
i = ±1/2 represents the site i being occu-

pied (+) or unoccupied (-) by a Cooper pair and a finite
in-plane magnetization 〈Sx

i 〉 �= 0 represents supercon-
ducting order. The transverse random field ξi takes the
form of an on-site localization energy and represents dis-
order, while Jij is the energy required for pair-hopping.
This model has proven its applicability to disordered su-
perconductors as it accurately reproduces the emergent
inhomogeneous superconducting order towards the SIT
[120]. More importantly, this modes allows to include
phase fluctuations above the mean-field level. In what
follows, we will retrace the succession of steps as done
by Cea et al., see Ref. [63]. By means of a Holstein-
Primakov (HP) transformation, the model (3.33) is cast
into a quadratic Hamiltonian HPS we can diagonalize
into a bi-linear Hamiltonian H′

PS in the usual Bogoli-
ubov scheme93. 93 that means an

interacting system
(four-operator term)
is mapped to a
non-interacting
(two-operator term)
by replacing the par-
ticles with energies
E by non-interacting
quasiparticles with
renormalized ener-
gies Eα that account
for the interaction.

H′
PS =

1

2

∑
i

∑
μ=x,y

Jμ
i [ΔμΦi]

2
+

1

2

∑
i,j

χ−1
i.j LiLj (3.36)

Here, Δμ is a discrete derivative in μ-direction and
the Bogoliubov quasiparticle operators γα, γ

†
α are made

explicit in the phase and number operators Φi and Li

Φi =
∑
α

φαi√
2

(
γ†
α − γα

)
(3.37)

Li =
∑
α

�αi√
2

(
γ†
α + γα

)
(3.38)

where φiα, �iα, and χ−1
i,j are determined from the Bo-

goliubov transformation and Jμ
i = J sin θi sin θi+μ is the



local superfluid stiffness. The quasiparticle excitations
of H′

PS introduced by the Bogoliubov transformation are
equivalent to phase excitations providing a route to cal-
culate the dispersion of the optically active Goldstone
modes. The coupling to the gauge field Aμ is done in the
minimal-coupling scheme replacing Δμ → Δμ − 2eAμ in
Eq. (3.36) and the conductivity eventually follows as

σ = e2πδ(ω)Ds + σreg(ω) (3.39)

consisting of the superfluid response and a regular part
including the effects of Goldstone modes. In more detail,
Ds = D − N−1

∑
α Zα is the non-disordered superfluid

density D reduced by the spectral weight of the phase
excitations each of which has an energy Eα and comes
with an effective dipole

Zα = E−1
α

[∑
i

2Jμ
i Δμφiα

]2
(3.40)

The regular contribution in Eq. (3.39) is given by the sum
of all individual phase excitations

σreg(ω) =
e2π

2N

∑
α

Zα (δ(ω + Eα) + δ(ω − Eα)) (3.41)

amounting to the Goldstone mode. As shown in Ref. [63],
the crucial ingredient that renders the Goldstone mode
optically active is the disorder-induced inhomogeneity of
Jμ
i , see Fig. 3.16. This can be understood by examina-

tion of Eq. (3.40): for a homogeneous superfluid stiffness,
Jμ
i = Jμ

j = J , the summation extends over all gradients
giving the total phase gradient, that equals to zero for
periodic boundary conditions, and hence Zα = 0.

To make a connection between the model and σ+
1 of

the experiment is essentially reduced to the problem of
finding the particular form of the inhomogeneity. A sim-
ple approach is the so-called diluted XY -model with a
binomial distribution P (Jij) = (1−p)δ(Jij−J)+pδ(Jij)
with J > 0, i.e. a for a given p ∈ [0, 1] we find (1 − p)
of the connections to have a coupling constant Jij = J ,
while p links are not superconducting as Jij = 0. For a
particular choice of disorder parts of the lattice will seg-
regate into superconducting islands disconnected from
the percolative superconducting path. If now a phase
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gradient occurs over such an island, a charge inbalance
will form94 between two ends of the islands effectively 94 Which becomes

clear by remember-
ing that the charge-
carrier number is the
conjugated variable
of the phase, see
Sec. 3.1.1

turning it into an optically active nano antenna.
In the simple binomial approach, the problem of meeting
experiment and theory is reduced to set the energy scale
of the model J and the value of disorder p. We will now
see, that we can infer a solid approximation of J from
the experimental data. The Hamiltonian under consid-
eration, Eq. (3.36), describes a phase-only system, which
can be described equivalently by a low-energy action95 95 This low-energy

action can be derived
from an interacting
Lagrangian by
integrating-out the
high-energy fields in
analogy to Sec. 1.3,
however, working
with Grassmannian
rather than simple
Heisenberg fields
[121].

for constant Jij = J [121]

SHP =
1

2

ˆ
dωdk

[
−Jk2 +

1

16Jξ20
ω2

]
|θ(k, ω)|2 (3.42)

Figure 3.16: Sketch of the optical response of an array of
Josephson junction, modeled as in Eq. (3.33). Here the
arrows represent the local spins on the array sites, con-
nected by springs representing the local stiffnesses Jij.
To visualise its inhomogeneity, we set the arrow length
proportional to the strength of the local stiffness and com-
pare the spin orientation before (dark) and after (light)
the photon irridation. In the clean case, panel (a), the
phase modes are decoupled from the transverse electro-
magnetic field, so the spins preserve their orientation
(i.e. the phase of the order parameter is unchanged)
and the radiation is not absorbed. On the other hand
in the disordered case, panel (b), the spins respond to
the incoming radiation with a local change of their rel-
ative direction that is larger when the system has lower
phase rigidity (i.e. lower local Jij). This leads to an in-
elastic response which absorbs part of the incoming radi-
ation. (Reprinted from Ref. [114], c©American Physical
Society)



Figure 3.17: Excessive sub-gap conductivities σ+
1 (ν)

(symbols) extracted from the optical data and σreg(ν)
(lines) calculated within the diluted XY model for J =
0.9 cm−1 and a dilution p = 0.17. The inset of (a) com-
pares temperature evolution of σreg(ν) shown in the other
panels in detail.

where ξ0 is the typical length scale over which the dis-
crete lattice-HHP is valid. The dispersion of the phase
field θ(k, ω) is obtained via the Euler-Lagrange formal-
ism as

ωk = 4Jξ0|k| (3.43)

which is an ordinary sound-wave like dispersion and sets
the typical energy scale of the Goldstone modes. In a
disordered system without translational invariance, the
modes will have a characteristic finite momentum ξ0 ¯|k| ∼
1 so that Eq. (3.43) simplifies to

ω̄ ∼ 4J (3.44)

The strongest absorption is found at the lowest temper-
ature at around 3.6 cm−1 so that we set J = 0.9 cm−1 as
starting point for the numerical calculations of σreg(ν).
Although this approximation appears somewhat crude,
it reproduces the experimental situation surprisingly well
as we will discuss below. Far from criticality p < pc the
temperature evolution of J can be computed within the
model Eq. 3.36. To compare σ+

1 (ν) and σreg(ν) for a
given temperature, σreg given in units of e2/�, is multi-
plied with a dimensionless factor α that defines an effec-
tive thickness d = e2/(�ασdc) required to convert the 2d
conductivity into a 3d one measured in the experiment.
For the sample under study, we have σdc = 3802 (Ωcm)−1

and d = 0.64/α nm which defines a length scale of the
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Figure 3.18: Probability distributions (not normal-
ized) of Δ and Jij calculated for a granular supercon-
ductor with a Gaussian distribution of grain diameters
and a resistance ratio RN/Rq = 0.01. Note that the dis-
tribution of couplings Jij resembles the simple binomial
distribution used to calculate the solid lines in Fig. 3.17.
(Reprinted from Ref. [114], c©American Physical Soci-
ety)

order of the lattice spacing as expected for a 2d→3d con-
version. The result is shown in Fig. 3.17. The best agree-
ment is obtained for a dilution p = 0.17 and α = 5.5. The
agreement between theory and experiment is remarkable:
both the temperature and frequency dependence of σ+

1

are accurately captured by the model. The agreement
between theory and experiment and hence the interpre-
tation in terms of the Goldstone mode can be justified
even further by an indirect use of the inductive response
σ2(ν) via the penetration depth λ. As done earlier in this
work, see Eq. (3.17), we can relate J and λ in appropriate
units via

J [K] = 0.62× d[Å]

λ2[(μm)2]
(3.45)

For J = 0.9 cm−1=̂1.29K and α = 5.5 we have an effec-
tive thickness of d = 1.6 Å leading to λ = 0.88μm. From
analysis of the inductive response, we find λ = 1.05μm
for this sample, see Fig. 3.10, in very good agreement
with the value predicted for the particular choice of α.
Consequently, p is the only remaining free parameter of
the entire model strongly speaking in favor of our inter-
pretation of σ+

1 in terms of Goldstone modes σreg.
What may strike surprising is the series of rather crude
approximations and assumptions, yet leading to a re-
markable agreement between theory and experiment. For



the sake of persuasiveness, the equivocally simple bino-
mial distribution P (Jij) should be examined in more
detail aiming for a justification within the particular
context of granular superconductors. The system that
comes closest to granular Al is a disordered 3d network
of coupled superconducting spheres with a distribution
of radii where global superconductivity emerges in a per-
colative manner studied in Ref. [68]. This model predicts
a broad distribution P (Δ/Δ0) with Δ0 the bulk value
and a shape depending on the number of broken links
measured by the normal-state resistance RN normalized
to the quantum resistance Rq = h/4e2. For the sam-
ple under study, we find RN/Rq = 0.01 and the corre-
sponding distribution P (Δ/Δ0) takes a form displayed
in Fig. 3.18(a) [122]. To translate P (Δ/Δ0) into the de-
sired P (Jij/J0) (with J0 being the stiffness of the bulk)
we assume Jij = (Δi +Δj)/2, see Fig. 3.18(b). Surpris-
ingly, the distribution is sharply peaked at Jij/J0 = 1
in close resemblance with the simple binomial distribu-
tion considered in our analysis. Understanding the tails
as subordinate corrections, what remains, is a profound
microscopic justification of our above simple model based
on the shell-effect in granular Al.

3.6 The effect of magnetic sub-gap
bands?

When we introduced superconductivity of granular Al we
highlighted the existence of localized spins in granular Al
as evident fromMR and μSR studies and, in striking sim-
ilarity to unconventional superconductors, pointed to-
wards the possibility of a nontrivial interplay of super-
conducting pairing and spin-flip scattering. Although
the appearance of the superconducting dome in granular
Al can be explained by competing mechanisms, namely
the shell effect and suppressed phase coherence, without
referring to unconventional pairing or nearby magnetic
ordering, for the sake of completeness, a possible mecha-
nism for the sub-gap absorption related to spin-flip scat-
tering should be carefully excluded.

Indeed, soon after BCS Abrikosov and Gor’kov (AG)
have shown in seminal works [20, 21, 22], that super-
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3.6. THE EFFECT OF MAGNETIC SUB-GAP BANDS? 95

conductivity is strongly affected by magnetic impurities.
Although the Anderson theorem guarantees a strong ro-
bustness of superconductivity against potential scatter-
ing, due to the time-reversal symmetry breaking nature
of spin-flip scattering the Anderson theorem is escaped.
AG realized that for a certain amount of magnetic im-
purities the threshold of absorption is pushed below 2Δ
and can vanish although superconductivity persists96. 96 At this point, we

again stress that the
superconducting or-
der parameter ψ is
not a priori the same
entity as the energy
gap Δ

In Sec. 1.5 we introduced a powerful Green’s function
approach to include pair-breaking effects resulting, e.g.,
from spin-flip scattering off paramagnetic impurities. We
can here use the versatile and straight formalism de-
veloped recently [8] to test various scenarios of sub-gap
bands that may develop in presence of impurities. The
basic idea is that transitions between sub-gap bands or
transitions into the quasiparticle continuum become pos-
sible at low energies, which, in contrast with the BCS
DOS, may enhance the low-energy conductivity. The
bare existence of a sub gap band, however, does not a pri-
ori guarantee additional absorption channels restricted
to sub-gap energies, which is obvious from the general
form of the conductivity Eq. (1.52) (see Sec. 1.5)

σ̂(ω) =
πe2ns

m
δ(ω)

− σ0

2ω

∞̂

0

dE
{
tanh

E − �ω
2

2kBT

[
G+G−

1 − iF+F−
2

]
− tanh

E + �ω
2

2kBT

[
(G−)∗G+

1 + i(F−)∗F+
2

]}
where the integrated DOS (G±

1 ) is relevant for σ̂.
To test the above idea, we infer the matrix Green’s func-
tion ǧ by solving the Usadel equation Eq. (1.42)

iE[τ̂3 ⊗ σ̂0, ǧ]−Δ[τ̂1 ⊗ σ̂0, ǧ] + i[Σ̂, ǧ] = 0

(see Sec. 1.5) with the self-energy term

i[Σ̂, ǧ] = − i

τs
τ̂2 ⊗ σ̂0

sin 2θ

1 + ξ4 + 2ξ2 cos 2θ

for various pair breaking parameters τs and explicitly
keeping ξ �= 0 to unlock the center of impurity band
from the continuum onset97. Figure 3.19(a,b) displays 97 where it resides in

the AG limit broad-
ening the coherence
peaks.



Figure 3.19: Various realizations and strengths of
sub-gap bands (a,b) and to corresponding σ1(ν) spec-
tra (c,d) together with experimental data (sample ρdc =
263μΩcm, Tc = 2.78K at 1.8K). No combination of pa-
rameters determining the position and size of the sub-gap
band can equally fit both the excessive absorption at low
energies and the BCS-like part of the experimental data.

the DOS for two realizations of a sub-gap band with
ξ = 0.5 and 0.9 and different values of pair breaking pa-
rameters τs. For ξ = 0.5 the band is located completely
inside the gap, grows as τsΔ is reduced and merges with
the continuum below τsΔ ≈ 6. In the other case, ξ = 0.9,
there is no hard gap and the DOS is finite even at 0 (or
more precisely E = EF ). The corresponding spectra
of (normalized) σ1(ν) are displayed in the panels (c,d)
together with the experimental data for a granular Al
sample with a pronounced sub-gap absorption. While,
indeed, the modified DOS gives rise to an enhancement
of σ1 at low energies, no combination of parameters can
properly fit the strong rise and, at the same time, main-
tain the BCS like shape at higher energies. Also in the
AG limit, these two requirements cannot be met simul-
taneously, as can be inferred from the plots of Sec. 2.3.
In conclusion, the spin-flip scattering found in granular
Al can certainly be ruled out as origin of the sub-gap
absorption discussed in this work.
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3.7 Outlook

The results of this work present a conclusive answer to
the longest-standing question associated with supercon-
ductivity in granular Al: what shapes the superconduct-
ing dome? Yet they also add new questions which, to-
gether with other open problems, hopefully trigger ex-
perimental continuation.
In this work we presented a conclusive and fully con-
sistent scenario, attributing the enhancement of Tc be-
yond the bulk value to quantum confinement and the
shell effect. An independent confirmation of the shell
effect could be done by means of scanning tunneling mi-
croscopy (STM) similar to what has been done on in-
dividual Sn and Pb nano islands [74]. The differential
conductance into single Al nanograin with various inter-
grain coupling strengths would provide valuable insights
in how the local pairing amplitude Δ is affected, espe-
cially on the HR side, where Tc is already suppressed
by phase fluctuations. In addition, STM measurements
could provide further insights to possible modifications
of the DOS caused by localized spins, e.g. sub-gap bands
or exotic so-called Yu-Shiba-Rusinov bound states [123,
124, 125] beyond the accessibility of optical probes.
In addition to the fundamental questions raised above

Figure 3.20: Pro-
posal for the
superconducting
domes of granular Al
with different grain
diameters. The two
domes in the front
(3 nm and 2 nm
grains, labeled ’SC’)
with a maximum
Tc of 2.2K and
3.K, respectively,
are experimentally
established. The
two domes in the
back (labeled ’?’)
with an even higher
Tc enhancement
are envisioned the-
oretically for grain
diameters less than
2 nm.

concerning the presently established phenomenology of
2 nm Al grains, another important open problem widens
this framework further: based on the nature of quantum
confinement, one should expect the shell effect to be even
more pronounced for grains which are smaller than the
ones studied so far. Following the route employed to
create 2 nm grains, Al evaporated on substrates held at
temperatures between 77 and 4.2K should consequently
yield yet smaller grains. Indeed it was shown [126, 127]
that for Al evaporated onto substrates held at 4.2K an
increase up to at least Tc =4.5K can be achieved. Al-
though Ref. [126, 127] neither give normal-state resistiv-
ity values nor grain sizes nor seek optimization thereof, it
can be seen as strong evidence for an even stronger Tc en-
hancement analogous to the one discussed above. Based
on Ref. [126], additional superconducting domes similar
to the ones sketched in Fig. 3.20 can be envisioned. On
the one hand, the smaller the grain, the stronger the
electronic quantum confinement becomes. On the other



hand, with decreasing diameter, the volume-to-surface
ratio decreases and the coupling between grains could be
reduced. Whether the resulting phase fluctuations im-
pede the enhancement of Tc by overcompensation of the
shell effect is an open question of fundamental interest
that experiments so far were not able to answer.
Another set of open questions worth dedicated stud-

Figure 3.21: A
possible extended
phase diagram based
on actual mea-
surements (faint)
discussed in this
work, see Fig. 3.11
and Sec. 3.4.

ies is related to the superconducting energy scales (and,
thus, the phase diagram) at resistivities higher than in
this work, see Fig. 3.21. The appearance of a pseudogap
on the HR side is a natural consequence of the phase-
driven nature of the transition, yet also deserves a closer
examination. This would include systematic studies with
samples far on the HR side with a resistivity of several
1000μΩcm in approach of the Mott insulating regime. In
particular interest are the questions whether the pseudo-
gap remains smoothly connected to the superconducting
gap, how the temperature T ∗, where it closes, evolves
and if it exists also in samples, which do not show a full
superconducting transition even in the T = 0 limit. A
related question is whether even weaker coupling pushes
Δ to higher and higher values or if limiting mechanisms
exist imposing a constraint on the shell-effect induced
growth.
Finally, another open question is whether similar effects
can be found in nanograins of conventional supercon-
ductors other than Al. A cryogenic STM study on in-
dividual Sn nano particles showed drastic variations of
the single-particle gap that were interpreted in terms of
the shell effect [74], but since these nano particles were
isolated, they did not involve a macroscopic supercon-
ducting condensate. However, previous work on Sn films
[126], though much less systematic than those on Al, sug-
gests that similar phenomena can also enhance Tc of Sn
substantially beyond the bulk value of 3.7K.
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4. Experimental studies on

the Heavy Fermion metal CeCoIn5

Bring den Vorschlaghammer mit Get a
sledgehammer,
when you step by
tonight, and
we’ll smash
everything to pieces.

Wenn du heute Abend kommst
Dann hauen wir alles kurz und klein

Element of Crime

In this chapter, we present measurements of the dynami-
cal and transport conductivity of the heavy fermion (HF)
metal CeCoIn5 at THz energies. We start the discussion
to the rich phenomenology of CeCoIn5 in Sec. 4.1 with
an introduction to the mid-T Kondo- and low-T Heavy-
Fermion regimes, focusing on the experimental search for
quantum-critical phenomena and the controversial dis-
cussion of their origin. Closing with a look at previous
IR studies, we then proceed to the discussion of the HF
electrodynamics at THz energies. In Sec. 4.3 we turn
to the dc resistivity ρdc(T ) and the dynamical response
σ1 + iσ2, we parametrize within the generalized Drude-
model (GDM), Sec. 4.2. The GDM analysis reveals a
strong T - and ν-dependence of the complex resistivity
ρ = σ−1, and hence identifies the typical energy scale of
the heavy quasiparticles (QP) at the studied hν and kBT
ranges. Section 4.4 provides the ground for discussing
the QP effective-mass enhancement m∗/mb and relax-
ation rate Γ∗ within Landau’s Fermi-liquid (FL) the-
ory, and makes a connection between the FL self-energy
Σ(ν, T ) and the QP renormalization function Z(ν, T ) on
the one side and the memory function M(ν, T ) of the
GDM on the other. We introduce the hidden FL model
which, as it turns out by close examination of Z−1 and
Γ∗ in Sec. 4.5, provides an interpretation of the optical
response and previously reported thermodynamic non-FL
properties. In Sec, 4.6, we study the scaling-behavior of
m∗(ν, T )/mb and finish with an outlook in Sec. 4.7.
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4.1 A walk-through introduction
to CeCoIn5

A list set out in attempt to characterize the physics of
CeCoIn5 reads like a who-is-who of condensed-matter
concepts whose importance to the field of modern solid
state physics can hardly be overestimated. What is more,
a notable amount of these concepts is essentially found
on the simple fact that each Ce3+ ion has a single 4f elec-
tron with unpaired spin. Depending on thermal energy,
the conduction electrons of CeCoIn5 behave as a simple
Drude metal, display the Kondo effect, hybridize with
local moments and forming a coherent Heavy-Fermion
(HF) state, and eventually condense into an unconven-
tional d-wave superfluid which, presumably, hides a quan-
tum critical point at T = 0 and contains enigmatic AFM-
like Q-Phase98 close to the upper critical fields [128]. Re-98 This magnetic

phase was until
recently believed to
be a realization of
the Fulde-Ferrell-
Larkin-Ovchinikov
phase, i.e. su-
perconductivity
with non-zero total
momentum Coopr
pairs and spatially
non-uniform order
parameter.

tracing the ρdc(T ) curve sketched in Fig. 4.1, in what fol-
lows we will focus on the normal-conducting states above
Tc = 2.3K and concentrate on the HF regime where en-
ergies kBT and hν are of the same order99 setting out

99 A convenient
(approximate) con-
version between
energies reads

1K =̂ 100μeV

=̂ 1.5 cm−1

=̂ 20GHz

the fa Fulde-Ferell-Larkin-Ovchinnikovield for the exper-
imental search for quantum critical behavior within this
work.

4.1.1 Metallic and Kondo regimes

Starting at room temperature, the dc transport resistiv-
ity of CeCoIn5 (see the sketch in Fig. 4.1) is reduced as
temperature decreases exhibiting ordinary metallic prop-
erties. Here, ρdc is mainly governed by phonon scatter-
ing. This changes drastically at intermediate tempera-
tures∼ 150K, where ρdc starts to rise again, i.e. a second
scattering with an opposite temperature dependence as
phonon appears. The anomalous behavior is attributed
to an interaction between uncompensated spins of elec-
trons localized to the Ce3+ 4f shells100 and the conduc-100 the notion of

an atomic shell in-
side of a metal may
irritate, yet it is a
valid approximation
due to the small vol-
ume of the atomic Ce
4f shell leaving them
basically intact even
in a solid.

tion electrons giving rise to a certain scattering process
contributing to ρdc. This mechanism was suggested by
Kondo [129] in attempt to describe the peculiar resis-
tivity minimum of simple metals doped with magnetic
ions. Using a diagrammatic approach, Kondo has shown
that, if one goes beyond 1. order perturbation theory,
the exchange scattering via an intermediate virtual state

EXPERIMENTAL STUDIES ON THE
HEAVY FERMION CeCoIn5



4.1. A WALK-THROUGH INTRODUCTION TO CeCoIn5 101

leads to a log-T growth of ρdc as temperature goes down.
While this picture captures the resistance minimum, it
also predicts a troublesome divergence in the T → 0
limit. However, there is an elegant escape to this caveat:
As temperature is reduced, the exchange interaction in-
creases and tends to the formation of Kondo-singlets, i.e.
a bound state of an conduction- and f electron with an-
tiparallel spins effectively removing the local moments
from the system. Somewhat surprisingly, Kondo’s ideas
can also be applied to the dense lattice of ’impurities’ in
inter-metallic rare-earth compounds with unpaired 4f or
5f electrons interacting via a RKKY-type101 interaction 101 originally formu-

lated by Ruderman,
Kittel, Kasuya, and
Yosida for nuclear-
spin exchange via
the conduction sea.

[130, 131]. In such systems, as for instance CeCoIn5,
the flattening crosses over to a massive reduction of re-
sistivity at even lower temperatures, as schematically
displayed in Fig. 4.1. The reason lies in the antiferro-
magnetic interaction between the spins that tends to
magnetic ordering at low temperatures. The emergent
translational symmetry of the spin lattice ensures mo-
mentum conservation and elastic scattering (while the
Kondo-scattering off disordered spin lattice or magnetic
impurities does not conserve momentum and hence en-
hances resistivity). The massive reduction of resistivity
due to coherent scattering is, however, challenged by a
strongly enhanced effective mass of the conduction elec-
trons coining the name heavy-fermion. The hybridiza-
tion between the f states and the conduction band leads
to a band- or hybridization gap which, depending on the
Fermi energy, leaves behind either a Kondo insulator or
heavy-fermion metal as low-T ground states. In case of
the latter, we can imagine the emergence of ’heaviness’
lying in the flatness of the band102 or, more from the 102 Remember that

the inverse curvature
of the band defines
the effective mass.

quantum mechanical point of view, in the indiscernibil-
ity of electrons: Before Kondo-singlet formation sets in,
we deal with f -electron states which are strongly local-
ized in space (and, from the transport perspective, can
be though of having an infinitely high mass), and delocal-
ized conduction states with a (light) band mass. Once
having formed a Kondo singlet, the constituents loose
their former identities to some extent, and, the f -electron
has a finite probability to find itself in a conduction state
and vice versa. Consequently, the f -electrons merge into
the Fermi sea, however, at the expense of a heavy (yet
not infinite) masses. Or, looking at the problem from the
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other side, the light conduction electrons acquire a finite
probability to occupy a f -state and become localized let-
ting them appear to slow down as due to an enhanced
effective mass.

Figure 4.1: Schematic phase diagram and dc re-
sistivity of CeCoIn5 as functions of temperature and
magnetic field. Starting at room temperature, the system
is a uncorrelated Drude-metal, crosses at ∼150K to the
regime of Kondo scattering, before it enters the coher-
ent heavy fermion state at Tcoh. ≈ 40K and eventually
becomes superconducting below Tc = 2.3K. As function
of magnetic field, superconductivity is suppressed mono-
tonically to zero at Hc2 = 5T and CeCoIn5 turns into
a FL at low temperatures. Above the SC dome and the
dashed line demarcating a dimensional crossover 3d →
2d the system is a non-FL. The location of the QCP
(contradicting proposals based on different experimental
techniques are depicted as stars) as well as the nature of
the non-FL state are under heavy debate at the time of
writing.

4.1.2 Heavy-Fermion state and quantum
criticality

The HF state in CeCoIn5 has a number of properties,
that cannot be explained within the framework of canon-
ical FL theory: The electrical resistivity is linear in tem-
perature [132], the electronic component of specific heat
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varies logarithmically as function of temperture [133],
fractional T -powerlaws of the spin susceptibility [134]
and nuclear spin-lattice relaxation time [135]. CeCoIn5
does not order magnetically down to lowest temperatures
in contrast with the closely related isovalent CeRhIn5
[132]. This compound has an antiferromagnetic ground
state below 3.8K which can be suppressed by pressure
terminated at a QCP separating the AFM state from
an pressure-induced superconducting one. Sidorov et al.
noted that applying pressure to the Rh-compound is sim-
ilar to replacing Rh by Co and, from the other perspec-
tive, CeCoIn5 is located near an AFM instability reached
by slightly negative pressure [132]. While applying neg-
ative pressure to suppress superconductivity is more of
a theoretical tuning knob, a more viable way are mag-
netic fields. At around Hc2 = 5T, superconductivity
ceases, however, not giving way to a magnetically or-
dered phase, but a FL at low and non-FL at elevated
temperatures as schematically shown in Fig. 4.1. From
scaling behavior of the specific heat at Hc2 and above
as well as resistivity measurements, Bianchi et al. con-
cluded a field-induced QCP near Hc2 [128]. They further
argued, that the anomalous non-FL properties are con-
sistent with theoretical predictions for AFM spin fluc-
tuations, yet a AFM ordering is less favorable than a
superconducting ground state. The picture of an AFM
QCP and the intimate relation between AFM fluctua-
tions and non-FL behavior was later on substantiated
by Ronning et al. observing a logarithmically diverg-
ing specific heat and T 2-coefficient of the resistivity near
Hc2 [136]. Donath et al. employed thermal-expansion
measurements to discriminate between the conventional
spin-density wave (SDW) and unconventional Kondo-
breakdown (local QCP) mechanisms characterized by 3d-
or 2d-type fluctuations, respectively [137]. The study re-
vealed a dimensional crossover 3d → 2d with increasing
temperature (dashed line in Fig. 4.1) signaling a pecu-
liar change in criticality, yet also supporting the view
of an SDW mechanism and AFM QCP. This scenario
for quantum criticality, however, is not free of contra-
dictions: Hall effect [138] and thermal-expansion studies
[139] located the QCP at fields inside the superconduct-
ing dome at around 4T, resistivity measurements with
the current applied along the c-axis at 1.5-3T [140] and,
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oddly enough, measurements of the Grüneisen ratio as
most precise probe for quantum criticality strongly sug-
gest a zero-field QCP [141]. In the same way the location
of the QCP is unclear, the reasoning concerning conven-
tional or unconventional criticality becomes questionable
and, as of yet, the nature of the quantum criticality in
CeCoIn5 remains an unsolved puzzle which to solve is
apparently an experimental and intellectual challenge.

4.1.3 A brief review of optical studies on
CeCoIn5

At the time of writing, comparably little is known about
the charge carrier dynamics of CeCoIn5 in the normal
state103 and how, if at all, the dynamical conductivity103 Previous GHz

and THz stud-
ies on CeCoIn5
have explicitly
addressed the su-
perconducting state
[142, 143, 144, 145].

at finite temperatures can elucidate the zero-temperature
QCP. Soon after the discovery of this compound, Singley
et al. measured the IR-reflectance between 30 and few
1000 cm−1 by means of IR-spectroscopy on single crys-
tals [146]. At room temperature, σ1(ν) shows the char-
acteristic behavior of an uncorrelated Drude metal with
a relaxation rate Γ/2π at a few 100 cm−1, see Fig. 4.2(a).
Below 100K, σ1(ν) starts to develop a notch situated in
the Drude roll-off that develops into a strong suppression
as T is reduced further. The appearence of the so-called
hybridization gap can be seen as direct consequence of
the hybridization between conduction and the 4f elec-
trons [147]. The essentially same result is found by Mena
et al. revisiting the IR-conductivity of CeCoIn5 in the
broader context of the CeM In5 family, where M is ei-
ther Co, Rh, or Ir [147]: A hybridization gap 2Δ(10K) ≈
600 cm−1 and signatures of heavy electrons as narrow tail
at low frequencies stemming from intraband transitions.
Problematic with both approaches is the low-frequency
limit of 30 cm−1. While Singley observes the tail of
the heavy-electrons response only marginally and recon-
struct its low-frequency extrapolation by spectral-weight
arguments, direct104 optical evidence of the heavy elec-104 The presumably

clearest demonstra-
tion of the narrow
Drude roll-off due to
slow heavy fermions
was measured on
U -based HF metals
[148, 149, 150, 58]
via microwave and
THz spectroscopy.

trons is completely missing from the spectra discussed
in Ref. [147]. By means of extended-Drude analysis and
spectral weight considerations, both works obtain the
frequency dependence of the effective-mass ratiom∗/mB ,
where mB is the (unknown) band mass, see Fig. 4.2(b).
Whilem∗ does not show any frequency dependence above
∼ 40K, it strongly increases below 100 cm−1 towards
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lower frequencies and temperatures inside the HF regime
reaching values of 15-20 times the band mass. In a sim-
ilar fashion, the electronic relaxation rate Γ acquires a
strong frequency dependence.
Regarding the open questions of quantum criticality and

Figure 4.2: IR properties of CeCoIn5 obtained from
single-crystal reflectance measurements. (a) σ1(ν) for
various temperatures. Below 50K a hybridization gap
opens reflecting the hybridization of conduction and f
electrons. (b) Mass enhancement m∗/mb as function of
frequency and temperature. Towards low energies, the
IR light probes the heavy electrons as evident from an
enhancement by an factor ∼ 20 at lowest temperature.
Data taken from Ref. [146].

non-Fermi-liquid behavior in CeCoIn5, the above works
and IR-spectroscopy in general can only contribute lit-
tle. With the HF state constrained between Tc ≈ 3K
and Tcoh ≈ 40K, the corresponding energy range to ju-
diciously search for signs of quantum criticality is 0.25 -
3.5meV, or in units of frequency, 2 - 30 cm−1 just below
the range of above IR studies. The lack of studies cover-
ing the quantum-critical regime may strike surprising, as
these ranges of a few ten Kelvin and the corresponding
thermal frequencies �ω ∼ kBT of a few ten wavenum-
bers can conveniently be covered with THz transmission
spectroscopy, which however essentially depends on the
availability of millimeter-sized high-quality films of not
more than a few ten nanometer thickness. Only with
the recent advances in the growth of large high-quality
thin-film samples with sufficient chemical stability com-
prehensive studies of CeCoIn5 in the quantum critical
energy regimes have become feasible substantially ad-
vancing previous attempts [151].
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4.2 Interludium I: Optics on cor-
related systems

The most paradigmatic approach to describe the response
of a free electron gas to an incident light field was worked
out by Paul Drude. Although the microscopic picture
Drude had in mind does not withstand thorough scrutiny
from the perspective of quantum mechanics, it serves as
valid approximation for many systems, where the elec-
trons are not correlated. In fact, it can be derived from
the quantum mechanical Kubo formula as free-electron
limit [152]. The original Drude model predicts the dy-
namical conductivity to follow

σD(ω) =
iω2

p

4π

1

ω − i/τD
. (4.1)

Using this model, we assume a unique time scale τD, on
which carriers scatter, and a constant mass m irrespec-
tive of the frequency they are probed with. Physically,
this implies that the response of the system (σ) to an
external perturbation at time t does not depend on the
systems history at times t′ < t. While this assump-
tion certainly is a valid model for the free-electron gas
in simple metals, omitting these constraints will lead to
a generalized Drude model (GDM), whose applicability
extends beyond those simple metals to the realm of corre-
lated ones. To construct a GDM, Götze and Wölfle [153]
suggested to introduce a relaxation- or memory function
defined as

M(ω) = M1(ω) + iM2(ω) =
ωχ(ω)

χ0 − χ(ω)
(4.2)

where χ0 = N/m and χ(ω) is a correlation function, here
explicitly for the current j(t)

χ(ω) = −i

∞̂

0

dteiωt〈[j(t), j(0)]〉 (4.3)

which is clearly non-local in time. Using the statistical-
mechanics framework of Kubo [154], the correlation func-
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tion is related to the conductivity via [153]

σ(ω, T ) = −i
e2

ω
χ(ω, T ) + i

ω2
p

4πω

=
iω2

p

4π

1

ω +M(ω, T )
(4.4)

where we have used Eq. (4.2) to link σ and M and ω2
p =

4πNe2/mb contains the ordinary electron band mass mb.
The resemblance to the original Drude model (4.1) is ob-
vious: introducing the memory functionM(ω, T ) amounts
to replacing the single-valued relaxation rate 1/τD by a
complex and frequency dependent one. ExpandingM(ω)
into real and imaginary parts, Eq.(4.4) can be cast into
the standard form of the GDM [152, 155]

σ(ω, T ) =
ω2
p

4π

1

−iωZ−1(ω, T ) + Γ(ω, T )
(4.5)

where we defined the renormalization Z−1(ω, T ) ≡ 1 +
M1(ω, T )/ω = m∗(ω, T )/mb [156] introducing the effec-
tive mass m∗ and the (GDM) relaxation rate Γ(ω, T ) =
M2(ω, T ). There are two remarkable things to note here.
First, it is the frequency dependence of these two quanti-
ties that constitutes the ’generalized’ description applica-
ble to correlated electron systems beyond a simple Drude
behavior. Second, the factor ω2

p/4π has not changed dur-
ing the above reasoning, i.e. it remains constant for a
temperature independent carrier density N and is in-
versely proportional to the band rather than the effec-
tive mass. To access the functions Z(ω, T ) and Γ(ω, T ),
we invert Eq. (4.5) and define the complex dynamical
resistivity ρ(ω) = ρ1(ω) + iρ2(ω) = σ−1(ω) leading to
[152, 155]

ρ1(ω, T ) =
σ1(ω, T )

|σ(ω, T )|2 =
4π

ω2
p

Γ(ω, T ) (4.6)

−ρ2(ω, T ) =
σ2(ω, T )

|σ(ω, T )|2 =
4πω

ω2
p

Z−1(ω, T ) (4.7)

Loosely speaking, the above identifications suggest to in-
terpret ρ1 as relaxation rate and ρ2/ω as effective mass.
The problem here is two-fold. First, without knowledge
of ωp these assignments are proportionalities instead of
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equalities. Second, it remains rather unclear, how these
quantities should be interpreted in a physical context. In
particular, it is not clear how to bring together the nor-
mal electrons in the Drude parameter ωp and the appar-
ently non-Drude frequency dependence. To unwind this
conceptual problem, we rearrange Eq. (4.5) such that we
obtain the same functional form of the original Drude
model [152, 155, 157]

σ(ω, T ) =
(ω∗

p)
2

4π

1

−iω + Γ∗(ω, T )
(4.8)

and define the starred quasiparticle plasma frequency
and relaxation rate

(ω∗
p)

2 = Z(ω, T )ω2
p (4.9)

Γ∗(ω, T ) = Z(ω, T )Γ(ω, T ) (4.10)

The ingenious concept of quasiparticles (QP) as con-
stituents of a conductor goes back to Landau’s theory of
Fermi-Liquids we will examine in more detail in Sec. 4.4.
To experimentally access the QP relaxation rate Γ∗ we
invert Eq. (4.8) as before and obtain

ρ1(ω, T ) =
σ1(ω, T )

|σ(ω, T )|2 =
4π

[ω∗
p(ω, T )]

2
Γ∗(ω, T )

=
4π

ω2
p

Z−1(ω, T )Γ∗(ω, T )

(4.11)

where we have explicitly isolated the nontrivial frequency-
and temperature dependence from ω∗

p . To remove ωp

from the right side of Eq. (4.11), we make usage of Eq. (4.7)
and obtain eventually

Γ∗(ω, T ) =
ωσ1(ω, T )

σ2(ω, T )
. (4.12)

The importance of the above reasoning, especially the
role of the renormalization Z, is hard to grasp at the
first sight. In words, the QP relaxation rate Γ∗ equals
to the one of the GDM-Γ scaled with the renormaliza-
tion factor. What rather appears as a semantic problem
arising from different physical pictures, plays a substan-
tial role for the question, whether or not we classify an
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electronic system as FL - a big deal for more elaborate
interpretations in the context of strongly-correlated elec-
tron theories, as we will examine later in this work.

4.3 Measurements of the transport
and dynamical conductivity

The samples under study are two 70 nm thick films of
CeCoIn5 deposited via molecular beam epitaxy (MBE)
[158] on a dielectric 10×5×0.5 mm3 MgF2 substrate both
grown and measured in 2013 and 2015, respectively105. 105 Further in-

formation on
sample growth and
-characteristics are
found in Sec. A.1.3

As the experimental outcome for both samples concern-
ing the temperature and frequency dependencies is very
similar, in what follows, we will discuss just one on be-
half of both. We start our discussion of the experimen-
tal results with the electrical transport resistivity ρdc(T )
displayed in Fig. 4.3(a). The overall shape resembles the
previously reported ones, see Panel (b) for a comparison
to a measurement of Malinowski [140], clearly displaying
the regimes of metallic behavior and incoherent Kondo-
scattering, the coherent HF state, and, eventually, super-
conductivity. Before we can concentrate on the ρdc(T ) of
the HF state and, subsequently, examine the relaxation
rate, we should quantify the phononic contribution to
the resistivity.

Generally, the low-T behavior of ρdc(T ) is expected
to be governed by electronic scattering, yet it might
be flawed by other processes such as phonon-scattering.
Following Matthiessens rule106, it is sometimes possi- 106 stating that

impurity, phonon,
electro-electron etc.
relaxation rates
linearly add up

Γ = Γimp+ΓPh+Γee

ble to single out the electron-electron scattering by sub-
tracting the phononic background inferred from a re-
lated compound where the considered scattering does
not take place. In case of CeCoIn5, for instance, the
electronic scattering can be isolated by subtracting the
phononic background of the non-magnetic LaCoIn5 ana-
logue. Here, we follow the procedure of Malinkowski et
al. and make use of their transport measurements [140]:
Figure 4.3(b) shows ρdc(T ) of CeCoIn5 studied in this
work as well as of CeCoIn5 and metallic LaCoIn5 single
crystals. Although the shape of CeCoIn5 thin-film and
single-crystal ρdc curves is slightly different and Tc of the
former is reduced by a few 100mK, we can match the
high-temperature part, where phonon scattering is most
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dominant, by scaling of the single-crystal curve with a
factor 1.18. Figure 4.3(a) displays, again, the CeCoIn5
resistivity as measured and with the phononic contri-
bution, i.e. the scaled LaCoIn5 resistivity, subtracted.
Above the coherent HF regime, the contribution from
electron-electron scattering rapidly decays, while below
barely no change upon phonon removal is found. Al-
though comparing thin-film and single-crystal measure-
ments should always be done with care, here we can
safely regard the phonon-scattering contributions as sub-
ordinate in the T -range of interest and neglect them from
now on.

In a previous work, Sidorov and Nakatsuji studied
how the exponent α in ρdc(T ) ∝ ρ0 + ATα behaves as
function of pressure and Ce→ La substitution [132, 133].
For pure CeCoIn5 without applied pressure, ρdc follows

Figure 4.3: Decomposition of transport resistivity
in CeCoIn5 (a) total resistivity and magnetic contri-
bution obtained after subtraction of the phononic con-
tribution inferred from the non-magnetic metal LaCoIn5

(data taken from Ref. [140]) shown in panel (b). In order
to meet measurements on thin films and single crystals,
the resistivity of the latter were scaled with a factor 1.18.
In the coherent HF regime, phonon scattering barely con-
tributes to ρdc and thus can safely be neglected. The solid
line in (a) is a fit that interpolates between the critical
T−linear HF and the log−T single-ion Kondo regimes.
The dashed line is a simple power law ρdc ∝ Tα. (c)
Exponent α as function of the temperature, up to which
the simple power-law was fitted.
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a T -linear behavior up ∼20K which is viewed as man-
ifestation of NFL behavior and a first hint of a zero-
temperature QCP in this compound. Instead of the pre-
viously reported T -linear behavior the sample shown in
Fig. 4.3 displays sub-linear behavior with an exponent
∼ 0.75 up to around 20K. One problem of this analysis
is associated with the mid-T single-ion Kondo regime and
the dominant log-T behavior of ρdc. Depending on which
upper limit Tmax is imposed to the fit, the obtained expo-
nent α varies rather drastically. Figure 4.3(c) traces the
powerlaw exponent α for Tc < Tmax < 300K. Around
Tcoh we find α to be suppressed by the nearby Kondo
regime resulting in a low value of ∼0.5. Below ∼20K
the exponent tends to saturate to values between 0.7 and
0.75 before it drops again due to superconducting fluc-
tuations. Irrespective of Tmax we, on the one side, never
reach the previously reported T -linear behavior. On the
other side however, both the reduction of Tc compared
to the value found for single crystals, Tc = 2.3K, and the
anomalous sub-linear T dependence was observed previ-
ously upon gradually replacing magnetic Ce3+ with iso-
valent rare-earth (R) ions in CexR1−xCoIn5 [159]. This
effect was found to be strongest for non-magnetic Y3+

substitution. Likewise, we attribute the sub-linear be-
havior and reduced Tc to result from lattice defects which
are common by-products of epitactical thin-film growth.

A more elaborate way to cleanse the T -dependence of
the non-FL from the one of the Kondo regime is an inter-
polation model treating both regimes on equal footings.
Such an interpolation that crosses to marginal Fermi liq-
uid [160, 161] towards low temperatues has been sug-
gested by Wölfle [162] reading

ρdc(T ) = ρ0 + c0
Tα′

(T 2 − T 2
coh)

α′/2

[
ln

(
T 2 + T 2

coh

T 2
K

)]2
(4.13)

where TK is the Kondo temperature. A fit to this func-
tional form is shown in Fig. 4.3(a) giving α′ = 1.08 −
1.2 depending on Tmax nicely captures the resistivity
peak and comes close to the previous linear-T behavior
[132, 133]. Having demonstrated the subordinate role of
phonon-scattering in the relevant temperature range and
the consistency with previous works, we now re-examine
the commonly accepted NFL interpretation of CeCoIn5
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in the light of our optical measurements.

Figure 4.5: Spectra
of σ1 measured at
THz (this work)
and IR frequencies
taken from Ref. [163]
resolving the fre-
quency dependencies
over several orders
of magnitude. The
hybridization gap is
clearly resolved in
σ1(ν) at 8K.

We now turn to the optical properties and display real
and imaginary parts of the dynamical conductivity in
Fig. 4.4 at various temperatures (spectra for the second
sample are displayed in Fig. 4.6). At the highest temper-
ature 150K, the dissipative conductivity σ1(ν) does not
show any discernible frequency dependence as expected
for a normal metal with the relaxation rate Γ around
350 cm−1 at this temperature [163]. Consequently, we
also barely find a significant contribution to the out-of-
phase conductivity σ2(ν). Upon cooling to the maximum
of ρdc at around 35K, the flat metallic behavior of σ1(ν)
persists, the absolute values, however, shift to smaller
values. This reduction amounts to ∼ 15% which is in ex-
cellent agreement with the increase in ρdc. We attribute
this reduction in σ1 to the increased scattering between
the conduction electrons and localized f -electrons. The
values of σ2(ν) increase slightly, but remain close to zero
upon approaching Tp. Upon further reduction of temper-
ature, the system crosses over to the coherent HF state
which is accompanied by the opening of a hybridization
gap in the IR regime [146, 163] as displayed in Fig. 4.5.

Figure 4.4: Complex conductivity σ1(ν) + iσ2(ν) of
CeCoIn5 at various temperatures. (a) Between 150
and 30K, σ1(ν) is reduced slightly in agreement with
the behavior of ρdc and shows a flat metallic behavior,
which becomes strongly frequency-dependent below 30K.
(b) σ2(ν) acquires similar as σ1(ν) a discernible fre-
quency dependence only below 30K where the electrons
become heavy.
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At THz frequencies, this gap causes a suppression of
σ1(ν) in the high-frequency limit, while σ1(ν) tends to
increase in the low-frequency limit following the suppres-
sion of ρdc, phonon-, and electron-electron scattering. As
the hybridization gap deepens, the decrease of σ1(ν) with
increasing frequency becomes stronger and covers nearly
one order of magnitude at the lowest temperature (3K)
in the spectral range studied. At the same time, σ2(ν)
also rises and acquires a frequency dependence shaping
a broad peak that shifts towards lower frequencies and
becomes more pronounced as temperature is reduced to
3K.
Figure 4.7 shows the optical relaxation rate Γ as func-

Figure 4.6: Spectra
of σ1,2(ν) of a second
sample. The overall
behavior agrees with
the sample discussed
in the main text.

tions of temperature and frequency obtained from the
GDM model via Eq. (4.6). At 150K, Γ does not vary
with frequency within the studied spectral range, as ex-
pected for a simple metal without electron-electron in-
teractions. As temperature is reduced to around 30K,
Γ increases, but remains flat. This rise is attributed to
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Figure 4.7: Real part ρ1(ν) of the complex resis-
tivity at various temperatures as measure for the optical
relaxation rate Γ(ν). Between 150 and 30K, Γ is flat
and acquires a frequency dependence only at lower tem-
peratures in the HF state, where σ1(ν) evolves a strong
Drude peak.
.
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enhanced scattering between conduction and localized
f -electrons in the Kondo regime. At lower tempera-
tures, the HF state forms and we observe an emergent
frequency-dependence of Γ. This can directly be seen
as result of an increasing interaction between the carri-
ers. We observe an increase of the frequency-dependence
down to our lowest temperature. The overall trend is
consistent with the flat dynamical conductivity with the
Drude roll-off above the accessible THz range at high
temperatures, and the opening of the hybridization gap
and concomitant emergence of a narrow Drude peak of
the heavy charge carriers. Towards higher frequencies,
the THz data is smoothly connected to IR data [163], as
depicted in Fig. 4.8.

Figure 4.8: Spectra
of ρs ∝ Γ measured
at THz (rescaled,
this work) and IR
frequencies taken
from Ref. [163]
resolving the fre-
quency dependencies
over several orders
of magnitude.

4.4 Interludium II
FL, non-FL, and hidden FL

In his seminal work [164], Landau showed theoretically
that slowly turning on the interaction in an initially non-
interacting Fermi gas of electrons will transform the old
ground state adiabatically into the a new one of the
Fermi Liquid (FL) in the sense that the eigenstates of
the former system remain intact, yet now acquire differ-
ent energy. The occupied states will keep their quantum
numbers (charge, spin, etc.), while the dynamic proper-
ties (mass, relaxation rate, magnetic moment, etc.) are
renormalized. The great value of this one-to-one corre-
spondence is that one can maintain certain descriptions
valid in the non-interacting Fermi gas (such as the Drude
formula) also for interacting systems. This elegant treat-
ment, however, requires to abandon the notion of elec-
trons (and holes) as entities carrying, e.g., the electri-
cal current in favor of so-called Landau quasiparticles107107 Nature provides

only one type of elec-
tron. Hence, speak-
ing of electrons with
a mass different from
9.108... × 10−34 kg
can be misleading -
it’ s always an ordi-
nary electron that is
artificially set heav-
ier or lighter to sim-
plify the equations.

(QP). Due to the possibility of precise theoretical pre-
dictions for transport- and optical properties, FL theory
has become one of the experimentally most comprehen-
sively scrutinized models for the low temperature physics
of correlated fermionic systems ranging from electrons in
metals to 3He atoms above the superfluid phases. Op-
tical spectroscopy and studies of the dynamical conduc-
tivity σ(ω) have turned out a particularly fertile testing
ground for FL theory, as two of the central quantities of
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Landau QP, the renormalization Zqp and the relaxation
rate (inverse lifetime) Γ∗

qp, can be accessed via the effec-
tive mass enhancement parametrization of σ(ω) within
the GDM as we will see below.

Within FL theory, the energy contribution arising
from the electron-electron interaction can be introduced
in form of a self energy ΣFL, which at low energies and
for k = 0 can be written108 as [165, 166, 167] 108 in units � =

kB = 1

ΣFL(ω, T ) =

(
1− 1

Zqp

)
ω − i

ZqpπT ∗
[
ω2 + (πT )2

]
(4.14)

with Zqp = (1 − ∂ΣFL/∂ω)−1 the renormalization fac-
tor and the coherence temperature T ∗ ∼ ε∗F, which for
low energies uniquely sets energy scale for the physics of
the Landau QP and which relates to the bare-electron
Fermi energy εF = Z−1

qp ε∗F. On general grounds, the QP
relaxation rate is defined as

Γ∗
qp = −ZqpImΣFL. (4.15)

Using the explicit form of the self energy, we obtain Lan-
dau’s famous result109 109 Note that the

effect of impurity
scattering and
other scattering
channels needs to
be accounted for
separately.

Γ∗
qp(ω, T ) =

1

πT ∗
[
ω2 + (πT )2

]
(4.16)

This can be compared to the optical relaxation rate Γ∗

obtained from the dynamical conductivity (see Sec. 4.2)

Γ∗(ω, T ) =
M2(ω, T )

1 +M1(ω, T )/ω
(4.17)

=
2

3

1

πT ∗
[
ω2 + (2πT )2

]
(4.18)

based on the explicit form of the memory function for a
FL [165]

M(ω, T ) =

(
1

Z
− 1

)
ω +

2

3

i

ZπT ∗
[
ω2 + (2πT )2

]
.

(4.19)
displaying the same energy dependence as the QP re-
laxation rate Γ∗

qp. The connection between the GDM
quantities Γ∗ and Z−1 = 1 +M1(ω, T )/ω and the Lan-
dau QP quantities Γ∗

qp and Z−1
qp is only approximately

known. As discussed by P. Allen [168], one has
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σ(ω) =
iω2

p

4πω

∞̂

−∞

[
f(ω′)− f(ω′ + ω)

]
dω′

ω − Σtr(ω′ + ω + i0) + Σtr(ω′ − i0)

≈
ω2
p

4πω

1

−iω/Z(ω) + 2ImΣtr(ω + i0)
(4.20)

where Z−1(ω) = 1−Re[Σtr(ω)−Σtr(0)]/ω. Here Σtr dif-
fers from the single particle self-energy ΣFL(k, ω) in two
ways [162]: (1) it is an average over the Fermi surface;
(2) the internal momentum summations are weighted ac-
cording to the effectiveness of a collision process in relax-
ing momentum. This weight function is proportional to
|q|2 ∝ 1−cos θ, where q is the momentum transferred in
the process and θ is the scattering angle. It follows that
Γ∗ = 2r1Γ

∗
qp , and Z−1 = r2Z

−1
qp , where r1,2 ≈ 〈|q|2〉/k2F

are constants reflecting the fact that current dissipation
involves finite transfer of momentum q in QP scattering
processes. On general grounds, it can take values from
r1,2 � 1 (predominantly forward scattering) to r1,2 ≈ 2
(predominantly backward scattering). We will not dwell
on a model description of the angle dependence of QP
collisions, which would be required to estimate the pa-
rameter r1,2, but will assume that r1,2 ≈ 1 as one can
expect for a system with AFM fluctuations [162]. In
what follows, we will ignore the factor 2 when discussing
the energy dependence of Γ∗(ω, T ) (i.e. we set Γ∗

qp = Γ∗)
for the sake of simplicity. Also, we will henceforth make
no distinction between Z−1, Z−1

qp , and m∗/mb.
If scattering channels other than the one above can

be excluded, the quadratic T - and ω-dependence of Γ∗ is
arguably the most fundamental signature of a FL. The
conceptual simplicity of this criterion is contrasted with
the challenge to unambiguously verify Eq. (4.16) it in an
experiment. The main reason is that well-defined Lan-
dau QP exist only at temperatures extremely small com-
pared to other electronic scales such as the bandwidth.
Consequently, canonical FL behavior Eq. (4.16) appears
- if at all - typically just at the scale of a few Kelvin
and below. The demonstration of scattering according
to Eq. (4.16) is therefore not only limited to low energies
but also to clean metals (no impurities). Meeting these
requirements in an optical experiment, however, is very
challenging due to the high reflectivity of bulk samples
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or low transmittivity of thin films complicated by the
notorious problems of optical spectroscopy at cryogenic
conditions. Not surprisingly, it took almost 60 years to
unambiguously verify Eq. (4.16) for the case of Sr2RuO4

by means of IR spectroscopy [169]. Without doubt, mea-
suring the ω dependence of Γ∗ is significantly more com-
plicated than the T 2-dependence, which can be inferred
from a simple resistivity measurement as ρdc(T ) is given
by the imaginary part of the self energy [170]

ρdc(T ) ∝ −ImΣFL(0, T ) =
(πT )2

ZπT ∗ (4.21)

and with Eq. (4.16) fully reflecting the T - dependence
the QP relaxation rate

Γ∗(T ) ∝ Zρdc(T ) (4.22)

as Z does not depend on T (and ω) for a FL. Instead
of testing Eq. (4.16), a more accessible (yet less precise)
criterion reads

ρdc ∝
{
Tα with α = 2 ↔ FL

else ↔ non-FL
(4.23)

This criterion is actually so well-established, that linear-
T has become a set phrase to characterize, e.g., the
strange-metal phase of high-Tc cuprates [171]. HF sys-
tems often show deviations of the ρdc ∝ T 2 behavior,
although a consistent Fermi-liquid theory for HF sys-
tems can be derived from the Kondo-lattice model [172].
Similar as for cuprates, the non-FL is typically regarded
a finite temperature effect stemming from magnetic in-
stabilities at a zero-temperature QCP [173].

On the one side, it is clear that the quadratic growth
of Eq. (4.16) levels off once the mean free path falls be-
low the inter-atomic distance110. The crossover from 110 This criterion is

commonly expressed
in terms of the Mott-
Ioffe-Regel parame-
ter kF � = 1, whereas
conductors require a
value above unity.

a strange to a bad metal at a temperature TMIR ulti-
mately sets the seal on well-defined Landau QP [174],
and thus, signals the ultimate breakdown of FL behav-
ior. On the other side, however, the temperatures at
which the bad metal regime is entered are typically very
high [175, 176]: In case of Sr2RuO4, the aforementioned
prototypical FL system, TMIR ≈ 800K while FL behav-
ior according to (4.27) is observed up to TFL ≈ 20K
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[177]. Motivated by the huge discrepancy between TMIR

and TFL in Sr2RuO4 and similar compounds, Deng et
al. performed DMFT calculations on generic hole-doped
Mott insulators resolving clear QP excitations surviving
up to temperatures T ≈ TMIR [177]. Following this idea,
Xu et al. demonstrated that the relaxation rate of these
resilient QP obeys the T -square behavior up to temper-
atures much higher than TFL, whereas ρdc(T ) deviates
from a parabola above TFL [177]. This seemingly para-
dox situation unwinds as ρdc(T > TFL) no longer reflects
Γ∗(T ) according to Eq. (4.22), because Z becomes a func-
tion of T . Showing a FL-like relaxation rate yet anoma-
lous transport coefficients as due to the T -dependence
of Z, these resilient QP form a quantum liquid tellingly
referred to as hidden FL [178, 157, 179, 180]. Indeed, in
case of the prototypical correlated-electron system V2O3,
where the DMFT picture of the Mott insulator is known
to provide an accurate picture, such a hidden FL was un-
raveled from optical spectroscopy using the ω → 0 lim-
its in the quasiparticle-interpretation of the GDM [157].
Furthermore, also for the Hund’s metal CaRuO3 the QP
relaxation rate follows a T 2 behavior up to several 10K
well above TFL = 1.5K (see the Supplementary Material
of Ref. [157]) in support of the hidden FL scenario to hold
beyond the DMFT picture of the doped Mott insulator.
This offers a fascinating new perspective on interacting
electron systems and arises a far-reaching question: Can
we understand some the numerous non-FL systems as
hidden FL111? In the remainder of this chapter, we will111 To avoid confu-

sion we stress that a
hidden FL composed
from resilient QP
is actually a special
kind of non-FL and
should clearly be
distinguished from
the canonical low-T
FL composed from
Landau QP.

discuss the case of the HF metal CeCoIn5 and, based
on new measurements of the dynamical response and re-
consideration of earlier experimental studies, answer this
question affirmatively.

4.5 CeCoIn5 - a hidden
Fermi Liquid

The experimental status quo leaves little doubt that the
HF state of CeCoIn5 is not a canonical FL in zero and
moderate magnetic fields < 5T [133, 134, 135, 181, 128,
137, 136, 139, 132]. While the breakdown of canonical FL
behavior is often intimately related to the vicinity to a
quantum critical point, the experimental situation could,
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as of yet, not provide an answer to the fundamental ques-
tion: if it is apparently not a FL, what kind of quantum
liquid is it then? Despite several attempts to explain the
anomalous non-FL properties by quantum-critical fluctu-
ations, no consistent picture has been reached to date as
discussed in Sec. 4.1.2. Significantly, the questions con-
cerning the nature of the QCP as well as its location
in the phase diagram are just two pieces of the entire
CeCoIn5 puzzle. Following the reasoning we outlined
in Sec. 4.4, in what follows, we will examine the energy
dependence of renormalization in CeCoIn5 and demon-
strate that the experimental anomalies find an explana-
tion in terms of resilient QPs of a hidden FL.
Figure 4.9 displays −ρ2(ν, T )/ν which we interpret as
measure of the renormalization Z−1 = m∗/mb. The ab-
sence of frequency dependence of σ1(ν) at high tempera-
tures implies that the real part ofM(ν) is essentially zero
for ν � 350 cm−1 (compare also to Fig. 4.5) and there-

Figure 4.9: Effective mass enhancement m∗/mb =
Z−1 as measured by −ρ2/ν versus (a) temperature and
(b) frequency. Zero-frequency extrapolations Z−1(0)
(stars) are estimated from fits to A [ν0 − ν]

−γ
via A, ν0,

and γ (solid thin lines). The thick solid line in panel (a)
displays m∗/mb = Z−1 (rescaled) measured resonantly at
0.3 cm−1 using microwave spectroscopy [182] in excellent
agreement with the dc-extrapolation. A strong energy de-
pendence sets in at the crossover between Kondo and HF
regimes, while absent at higher temperatures.



120

fore Z = 1. We can extract an approximate value for the
plasma frequency ωp/2π = |2πcν/ε0ρ2(150K, ν)|1/2 ≈
900 ± 400THz (3.7 ± 1.6 eV). The approximate nature
of this value in mind, however, we restrict our discus-
sion to the energy dependence of the mass enhancement
rather than m∗(ν, T ) itself. With decreasing tempera-
ture and frequency, Z−1 rises strongly: at the lowest
temperature by a factor of ∼3 within the studied spectral
range, and by a factor of 12 at the lowest frequency be-
tween 3K and the Kondo regime. Using the phenomeno-
logical ansatz A [ν0 − ν]

−γ
with A, ν0, and γ being free

parameters to model −ρ2(ν)/ν we can extrapolate the
experimental data to the transport limit as shown in
Fig. 4.9(b). The obtained dc renormalization is added to
the finite frequency data in Fig. 4.9(b) where it is com-
pared to microwave measurement112 on CeCoIn5 single112 which is, com-

pared to the THz fre-
quencies, almost a
dc measurement

crystal at 0.3 cm−1 [182]. Up to a scaling factor of ∼13
both spectroscopic techniques yield a remarkably close
result which underlines the reliability of our analysis.
The first important conclusion we can draw is the af-
firmation of CeCoIn5 not being a canonical FL where
Z is a constant with respect to T and ν. The second
one is that Z(T, ν) will have a notable impact on the
renormalized relaxation rate Γ∗ = ZΓ, which may help
to elucidate the anomalous behavior of ρdc(T ).

Figure 4.10 displays the QP relaxation rate113 Γ∗(ν, T )113 We obtain ab-
solute numbers for
Γ∗ using Eq. (4.12)
as the (unknown) ωp

cancels out. This
also holds for the
transport limit (Z =
Zdc)

ρdc =
4π

ω2
p

Γdc

Zρdc =
4π

ω2
p

ZΓdc

ρdc
4π
ω2
p

m∗
mb

= Γ∗
dc

where we apparently
normalize ρdc to

(4π/ω2
p)

m∗
mb

(rather

than just m∗/mb)
- obtained via
σ2/(ω|σ|2)

(including the energy independent impurity-scattering
contribution) calculated using Eq. (4.12) at finite fre-
quencies and via ρdc(T )Z(ν → 0, T ) employing the dc-
extrapolations. Starting with the dc limit (panel (a)),
we observe a strong rise that due to the temperature de-
pendence of Z−1 does clearly not reflect the sub-linear
T -dependence of ρdc(T ). To the contrary, fitting a pow-
erlaw Γ∗(T < 25K) ∝ Tα yields an exponent α =
1.92 ± 0.09 close to the quadratic behavior of a genuine
FL. The powerlaw behavior of Γ∗(T ) is also observed at
finite frequencies ν ≤ 15 cm−1 (=̂ 22K), see panels (b-
d), with exponents slightly smaller than α = 2 as shown
in the inset of panel (a). At higher frequencies, panel (e),
the Kondo scattering adds a non-trivial contribution to
Γ∗ spoiling a simple powerlaw behavior. Looking at the
ν-dependence, see panels (f-j), we also observe powerlaw
behavior Γ∗(ν) ∝ νβ with exponents β slightly smaller
than 2, see the inset of panel (f), up to around 20K.
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Figure 4.10: QP relaxation rate Γ∗(ν, T ).Thick lines
are powerlaw fits, thin lines demarcate Γcrit. below which
well-defined QP exist. (a) While ρdc displays a non-FL
sub-linear T -dependence, Γ∗(< Γcrit.) of well-defined re-
silient QP approximately follows the T 2- powerlaw of a
hidden FL up to 25K. (b-d) Γ∗(T ) follows a powerlaw
with exponents α ≈ 2, see inset in (a), up to 25K, where
Γ∗ ≥ Γcrit.. (e) For ν > 15.2 cm−1, Γ∗(T ) is no longer a
powerlaw. (f-j) Γ∗(ν) at selected temperatures. Fits yield
exponents β ≈ 2, see inset of (f), up to T = 20K, above
which Γ∗ ≥ Γcrit, see panel (k), and QP vanish.
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At higher temperatures, see panel (k), fits do no longer
identify reasonable powerlaw behavior. This upper limit
is in good agreement with the temperature T = 25K
up to which Γ∗(T ) shows approximate T 2-behavior, see
panel (c).
While the experimentally obtained exponents are suffi-
ciently close to 2 for a reasonable interpretation within
the hidden FL scenario, Wölfle has demonstrated [183]
that values slightly smaller than 2 can actually be at-
tributed to the nature of resilient QP on a microscopic
level: On general grounds, the rate at which two QP scat-
ter from initial states with energies ω1,2 and momenta
k1,2 into states with ω3,4 and k3,4 reads114114 To put it in

words, the rate at
which this process
happens depends
on (in order of
appearence) the
spectral functions
A and the matrix
element U (some
kind of overlap in-
tegral) carrying the
many-body nature
of the process, the
delta functions δ(ω)
and δ(k) ensuring
the conservaton of
energy and mo-
mentum, and the
Fermi functions f
determining the oc-
cupation of involved
states.

Γ∗
qp(ω,k;T ) =

∑
k2,k3,k4

˚
dω2dω3dω4

(2π)3

{
|U1,2;3,4|2

×Ak2(ω2)Ak3(ω3)Ak4(ω4)

×πδ(ω1 + ω2 − ω3 − ω4)

×δ(k+ k2 − k3 − k4)

×[f2(1− f3)(1− f4) + (1− f2)f3f4]
}

(4.24)

where Ak(ω) = 2πδ(ω − ε∗k) is the QP spectral function,
ε∗k = Zqpεk is the renormalized Fermi energy, f2 = f(ω2),
etc. is the Fermi function, and U1,2;3,4 is the interaction
matrix element for scattering QP from 1, 2 into states
3, 4. After a sequence of simplifications the integrations
can be carried out and cast into [183]

Γ∗
qp(ω) ≈ c(ω)

ω2

εF
(4.25)

where N0 is the bare density of states at the Fermi level
and εF is the bare Fermi energy and

c(ω) ≈ 1

ω2

ˆ ω

0

dε∗2

ˆ ε∗2

0

dε∗3
εF
ε∗234

|N0U |2 (4.26)

where ε∗234 is a linear function of ε∗2, ε
∗
3, ε

∗
4. At finite tem-

peratures T > 0, the integrals over the Fermi functions
yield a slightly different result and we need to replace
ω2 → ω2 + (πT )2 in above equations. In the FL regime,
when Z−1 = m∗/m is independent of energy, we get
c(ω) = cFL ∝ εF /ε

∗
F ∝ m∗/m, where ε∗F is the renor-
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malized Fermi energy (see Refs. [184, 185]) and conse-
quently restore the exact quadratic energy dependence
of the relaxation rate. In the regime of resilient QP, the
interaction U remains a weak function of energy, wher-
eas integration over εF /ε

∗
234 is approximately constant.

In this way, Wölfle concluded c(ω) to be a slowly de-
creasing function of ω, T for resilient QP which serves as
correction suppressing the powerlaw exponents slightly
below 2 in agreement with the experimental observation.
The limited range where Γ varies approximately quadrat-
ically in energy can be attributed to the disappearance of
resilient QP. One can argue [183, 162] that the existence
of well-defined resilient QP is guaranteed as long as Γ∗

satisfies

�Γ∗ ≤ �Γcrit. = 2
√
(�ω)2 + (kBT )2 + �Γimp. (4.27)

(�, kB are Planck’s and Boltzmann’s constants) where
the factor 2 reflects our definition of the QP relaxation
rate Γ∗ as twice Γ∗

qp = −ZImΣ where Σ is the FL
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Figure 4.11: Renormalization factor Z−1(T ) measured
by optical spectroscopy (at 6.5 cm−1) and calculated from
electronic specific heat, - susceptibility (at 0.1T), and
nuclear spin-lattice relaxation (taken from Refs. [133],
[134], and [135] respectively). The NFL T -dependence
of Ce/T , χe and T1 agree remarkably well with the one
of Z−1 and the scenario of resilient QPs constituting a
hidden FL in CeCoIn5.
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self-energy and Γimp. = 2.7 cm−1 is the residual impu-
rity scattering estimated from Fig. 4.10(a). Imposing
the criterion Eq. (4.27) to the experimental data (thin
solid lines in Fig. 4.10(a-d) and (f-k)) leads to two con-
clusions: (i) The approximate ν2-behavior of Γ∗(ν) dis-
appears as Γ∗ exceeds Γcrit. above 20K. (ii) The tem-
perature, up to which Γ∗(0 < ν ≤ 15.2 cm−1, T ) varies
approximately as T 2 agrees roughly with the temper-
ature for which Γ∗(T ) < Γcrit holds, see panels (b-d).
Although Γ∗(T ) < Γcrit also holds at higher frequen-
cies, a T 2-behavior is absent. This may be attributed
to the vicinity to the Kondo regime at higher energies as
Γ∗ ∝ T 2 requires the QP interaction to be approximately
independent of energy. This condition is no longer sat-
isfied in the crossover regime to the high-temperature
Kondo-ion lattice, where the resilient QP no longer exist.
Hence, we conclude that the optical response of CeCoIn5
can be understood in terms of a hidden FL composed
from heavy resilient QP, that expands over a major part
of the HF state up to around 25− 30K.

In the above discussion, we silently assumed a con-
stant charge carrier density N as function of temper-
ature. For HF systems, this assumption is, generally,
not valid: When temperature falls below Tcoh, the previ-
ously localized f electrons hybridize with the conduction
electrons and, though heavy, become part of the Fermi
surface and increase N . From our optical measurements,
we cannot quantify the rise of N below Tcoh, however, it
will certainly affect the conductivity much less than the
mass enhancement. With a carrier number of 1.5 per
formula unit [163], the complete hybridization of one f
electron per unit would increase N by a factor of 1.67,
which is about one order of magnitude less than the mass
enhancement. In addition, the T, ν-square regime is re-
alized for temperatures lower than 25K, where a ma-
jor portion of the f electrons most likely has already
merged into the Fermi sea. In further support, ARPES
measurements [186] have shown only a partial localized-
itinerant transition of the f electrons, down to tempera-
tures ∼17K suggesting an even smaller change in N .

Having elucidated the anomalous ρdc(T ) of CeCoIn5
from the perspective of resilient QPs and the T - and ν-
dependent Z it is worthwhile to apply a similar reasoning
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to other observables to sharpen the non-FL classification
towards a hidden FL. Aside from the resistivity, previous
studies on the HF regime reported the electronic specific
heat Ce ∝ −T lnT [133, 134], the magnetic susceptibility
χe ∝ T−0.42 [134], and the nuclear spin-lattice relax-
ation time 1/T1 ∝ T 0.25 [135], whereas for a canonical
FL one expects ZCFL

e ∝ T , ZχFL
e =const. [187], and

the Korringa relation Z2/TFL
1 ∝ T . As for a FL Z(T )

is a constant, the above FL relations determine the en-
tire T -dependencies. On the one side, the framework
of hidden FL theory has yet not been worked out for
the electronic specific heat, magnetic susceptibility, and
spin-lattice relaxation time. On the other side, given
the clear case of resistivity and QP relaxation rate, we
can hypothesize a hidden FL-like T -dependence of these
quantities masked by Z(T ). To resolve the influence of
Z(T ), we rearrange the above FL predictions to read
Ce/T ∝ Z−1, χe ∝ Z−1, and (T1T )

−1/2 ∝ Z−1. Fig-
ure 4.11 compares Z−1(T ) at 6.5 cm−1 of this work to
the corresponding forms calculated from the Ce, χe and
1/T1 data [134, 133, 135]. By rescaling the y-axes, all
sets of Z−1(T ) can remarkably well be collapsed on a
mutual straight line over the relevant temperature ranges
of the alleged non-FL behavior. In analogy with the QP
relaxation rate above we come to the conclusion, that
inclusion of Z−1(T ) unveils FL-like behavior not only
of optical but also thermodynamic quantities caused by
resilient QPs.

4.6 Scaling behavior of the effec-
tive mass

As much as there is hardly any doubt that CeCoIn5 is a
quantum-critical material, the nature and even the very
localization of the QCP in the phase diagram poses a co-
nundrum as outlined in Sec. 4.1.2. Hence, how (if at all)
quantum criticality might serve as explanation for the
observed non-FL behavior in a wide range of the phase
diagram is an open question. The available experimental
studies based on the temperature and magnetic-field de-
pendence of resistivity, specific heat, thermal expansion,
Grüneisen parameter, Hall effect, nuclear spin-lattice re-
laxation, and magnetic susceptibility (to name the most
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important ones) document diverse and sophisticated ap-
proaches, yet at the same time do not constitute a co-
herent picture. A clear experimental access to quantum
criticality is often complicated or even completely spoiled
by non-critical contributions. This holds, in particular,
for scaling behavior which is a typical signature of quan-
tum critical regimes. Disorder and the temperature de-
pendent phonon scattering, for instance, may completely
overshadow electronic correlations effects in, e.g., the
real conductivity making a scaling analysis thereof pre-
carious. A quantity such as the effective mass, whose
temperature- and frequency dependence solely results
from electronic interactions, could be an alternative. The
search for scaling based on m∗ is therefore less ambigu-
ous, yet also barely employed approach due to the experi-
mental difficulties to measure m∗(ν, T ) over a sufficiently
large parameter range. Typically, de-Hass van-Alphen
(dHvA) or angle resolved photo emission spectroscopy
(ARPES) measurements are performed both known for
notorious difficulties at elevated temperatures and ox-
idized surfaces, respectively. Especially for CeCoIn5,
where, on the one side, degradation is a well-known prob-
lem due to the highly reactive Ce3+-ions, and on the
other side, the temperature range of interest extends
to several 10K. Consequently, experimental studies are
scarce: At the time of writing, the available dHvA stud-
ies concentrate on the superconducting state [188], the
influence of Cd substitution on the Fermi surface topol-
ogy, [189], high magnetic fields [134] or applied pressures
[190]. Similarly, ARPES studies focus on basic Fermi-
surface topology [191], f -orbital occupancy for Yb dop-
ing [192], hybridization effects in the normal [193] and
superconducting states [194] and do not explicitly ad-
dress m∗(T ) over a wide range of temperature.

On general grounds, one has to discriminate between two
main scenarios at the QCP. In the conventional spin-
density-wave (SDW) model realized, e.g., in CeNi2Ge2
[195] or CeIn3−xSnx [196], the Kondo temperature re-
mains finite at the QCP and the local moments are com-
pletely hybridized. SDW- or Hertz-Millis [197, 198] quan-
tum criticality is captured by a non-interacting Ginzburg-
Landau-Wilson type field theory where Gaussian AFM
fluctuations are the only relevant critical modes at play.
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In the unconventional case of local quantum criticality,
the destruction of AFM at the QCP goes hand in hand
with the breakdown of Kondo screening such that in the
vicinity of the QCP unscreened local moments persist
down to lowest temperatures [199, 156, 200, 201, 202].
Indeed, these local moments providing a second type of
critical modes appear to play a key role in the quan-
tum critical properties of certain antiferromagnetic HF
metals. In the paradigmatic case of CeCu6−xAux mea-
surements of the spin susceptibility [203] played a crucial
role in revealing the nature of the QCP by demonstrating
ω/T scaling in agreement with local quantum criticality
rather than the SDW picture, where scaling takes a dif-
ferent form. Consequently, measurements covering the
quantum critical regime in both temperature and fre-
quency allowing to search of scaling behavior can be of
great importance to discriminate between the two sce-
narios of quantum criticality.

At the time of writing, none of both models have
been worked out concerning scaling behavior of m∗(T ).
Hence, in what follows, we use a heuristic approach in-
spired from previous work of Schroeder et al. [203] and
conductivity studies on the layered Co-oxide [204] and
certain high-Tc cuprates [205], reading

m∗(ω, T ) = mbT
αg
( ω

T β

)
(4.28)

where α < 0, β > 0 and the universal scaling function g
is defined as

g
( ω

T β

)
=

(
y +

2πhcω

(kBT )β

)−1

(4.29)

with y a dimensionless parameter. Usually, the optimal
collapse is found by minimizing the distance between
data and a universal function115. Without knowledge 115 See, e.g.,

Ref. [169] for an in-
structive example of
FL scaling behavior
in SrRuO3

of such a universal function, identifying the optimal col-
lapse becomes a more delicate problem. Here, we em-
ploy an algorithm that optimizes a sufficiently good ini-
tial guess such as Eq. (4.29). Consider the right side of
Eq. (4.28) given as an analytic scaling function

χ = χ(ω, T, {αk}) (4.30)

with {αk} an arbitrary set of real scaling parameters.
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Further, consider indices i = 1, ... n labeling n discrete
frequencies and j = 1, ... N labeling N temperatures.
Suppose the experimental data to be arranged in sets

sj =
{
(xj

1,m
∗(T j , ω1)); (xj

2,m
∗(T j , ω2)); ...

... (xj
n,m

∗(T j , ωn))
}

(4.31)

where xj
i = χ(ωi, Tj , {αk}) is the scaling variable and

xj
1 < xj

2 < ... < xj
n. For each set sj we construct a con-

tinuous (linear) interpolation function f j(x). To judge
the quality of the data collapse for a particular choice of
parameters {αk} we define the quantity

δj({αk}) =
1

Cj − cj

Cjˆ

cj

|f j(x)− f j+1(x)|dx (4.32)

measuring the area between two neighboring interpola-
tions f j and f j+1 in their overlap interval defined by
cj ≡ max[xj

1, x
j+1
1 ] and Cj ≡ min[xj

n, x
j+1
n ], weighted by

the length of the interval. The collapse between two ad-
jacent sets sj and sj+1 is best for minimal δj . Therefore,
the collapse between all sets is optimal for a particular
choice of {αk} minimizing the expression

Δ({αk}) =

N−1∑
j=1

1

Cj − cj

Cjˆ

cj

|f j(x)− f j+1(x)|dx

(4.33)

which can easily be implemented numerically. Impor-
tantly, this procedure does not require knowledge of the
universal function a priori. The applicability of the sug-
gested algorithm is restricted to sufficiently close data
sets with a finite overlap Cj − cj > 0 and care must be
taken to avoid negative-valued δj leading to an ill-defined
minimal Δ. Here, we include an inverse step-function
1/Θj(Cj−cj) to the sum in Eq. (4.33) returning Δ → ∞
in case of negative-valued δj . The best collapse of data
is displayed in Fig. 4.12 and achieved for α = −0.94,
β = 0.96 and y = 0.24 forming three distinct tempera-
ture regimes of scaling, see Fig. 4.12. First, at temper-
atures above 50K (high-temperature side of the ρdc(T )
peak), m∗ does not depend on energy and m∗/mb ∼ 1
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Figure 4.12: Scaling behavior of the effective mass
measured by ρ2/ν according to Eq. (4.28) and (4.29).
The optimal collapse is achieved for α = −0.94, β =
0.96, and y = 0.24 revealing an approximate ν/T scaling
of the effective mass.

scales trivially (triangles). Second, between 40 and 20K,
m∗ becomes energy dependent and the universal curve
bends upwards (squares). Third, down to 3K (full cir-
cles) we find m∗ to follow a straight line in the log-linear
plot and the data collapse to become sharper with de-
creasing temperature. The third range coincides with the
regime where the hidden FL state is revealed from the
approximate T 2 behavior of the QP relaxation rate. The
scaling of m∗, however, can be traced up to 40K, exceed-
ing the hidden-FL regime by nearly a factor of two. The
exponents α = −0.94 and β = 0.96 can be compared to
the two paradigmatic predictions for the susceptibility,
namely α = −1.5 and β = 1.5 for a SDW-QCP within
Hertz-Millis theory and local quantum criticality charac-
terized by β = 1. Although neither of both predictions is
exactly met in our experimental data, it is tempting to
interpret the approximate ν/T scaling as signature of lo-
cal quantum criticality in agreement with the aforemen-
tioned recent proposal of zero-field QCP and 2d critical
fluctuations.
The above scaling only expands over roughly one or-
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der of magnitude in energy. The search for scaling on
a larger parameter range, however, is deemed to fail.
Towards higher temperatures (and corresponding IR fre-
quencies) above the HF state, the energy dependence
of m∗ vanishes [163, 146] and scaling becomes obsolete.
At lower temperatures (and microwave frequencies), su-
perconducting fluctuations and superconductivity itself
strongly affect the charge dynamics [142, 143, 144, 145]
and make studies of m∗ difficult. Also the suppression
of superconductivity with magnetic fields is problematic,
as the resulting normal state is canonical FL [181] with
a different dimensionality [137]. Understanding the rela-
tion (if there is) between the observed scaling behavior,
quantum criticality, and the hidden-FL state in CeCoIn5
and beyond is a challenge for future theoretical work.

EXPERIMENTAL STUDIES ON THE
HEAVY FERMION CeCoIn5



4.7. OUTLOOK 131

4.7 Outlook

Figure 4.13:
m∗(T,B)/mb of
CeCoIn5 at a fixed
GHz frequency
measured with a
microwave res-
onator [182]. Note
flattening in the
high-field and low-T
FL regime. The
bright region is the
superconducting
phase.

In this work we have demonstrated how the dynami-
cal response at matching energy scales kBT ∼ hν yields
valuable information about the nature of the HF state in
CeCoIn5 advancing our current understanding not inly
incrementally, but providing a complete new perspective
on its enigmatic non-FL behavior. The identification of
a hidden FL over a substantial part of the HF state is
an important finding on its own, yet also unravels just
a small part of the entire phase diagram. Thinking in
terms of resilient QP of a hidden FL might be a fruit-
ful starting point to reconsider the quantum critical be-
havior, especially the anomalous transport coefficients
in approach of the conjectured field-tuned QCPs, as dis-
cussed in Sec. 4.1.2, although the hidden FL theory has
not been worked out for finite magnetic fields yet. Given
the high-field and low-T recovery of canonical FL and the
zero-field hidden FL, we hypothesize that, first, the non-
FL regime in between is also characterized by a strong
T, ν dependent renormalization and, second, considera-
tion thereof will reveal a parabolic QP relaxation rate
Γ∗(ν, T ). Indeed, Broun et al. measured the B- and
T -dependence of the effective mass at a fixed GHz fre-
quency using a microwave resonator approach revealing
a T -dependence of m∗/mb, see Fig. 4.13, that expands
over the entire phase diagram but levels off in the FL
state and, hence, hints the importance of renormaliza-
tion not only in zero-field but the entire non-FL regime.
Measuring the dynamical response at finite fields will
also help to clarify the relevance of the approximate ν/T
scaling of the effective mass. More desirably, however,
is a better understanding of the scaling behavior within
the different models for quantum criticality.

Figure 4.14: ρdc,
Γ∗, and m∗/mb ver-
sus T for the HF su-
perconductor UPt3.
Dashed lines are T 2

fits. Data taken
from [206].

After the Mott insulator V2O3 and the Hund’s metal
CaRuO3, we add the HF metal CeCoIn5 as third en-
try to the list of known hidden-FL materials. Although
formulated for the doped Mott insulators, the hidden
FL concept seems robust and might serve as model for
further non-FL systems that so far escaped solid under-
standing. In some cases we can test this hypothesis on
basis of earlier measurements. Referring to work [206]
of Tran et al., we suggest the U-based HF metal UPt3
to be a hidden FL: UPt3 displays a T -square rise of ρdc
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up to about TFL = 5K, just where m∗/mb acquires a
notable T -dependence, see Fig. 4.14. Taking the renor-
malization into account, one finds a T 2 law for Γ∗ up
to at least 17K� TFL, consistent with a hidden FL.
However, applying this analysis to measurements of the
almost quantum-critical HF metal CeFe2Ge2 by Bosse
et al. [207] does not uncover a quadratic Γ∗ behind
ρdc ∝ T 1.5. For most correlated electron systems, how-
ever, m∗(T )/mb has not been measured yet in the rel-
evant temperature range and the question of possible
hidden FL behavior remains open.

As silently hypothesized using Eq. (4.13) on ρdc(T ),
we note [162] that the crossover from linear to sub-linear
behavior of ρdc(T ) and weak to stronger logarithmic de-
cline of m∗(T )/mb ∼ Z−1 at 6.5 cm−1, see Fig. 4.15, at
around 10K could be interpreted as a crossover from
a hidden FL with resilient QP to a so-called marginal
FL with critical QP [160, 161]. Then, however, also
the quadratic behavior of Γ∗(ν, T ) should give way to
Γ∗ ∝ −|x|/ln(x) with x = ν, T [162]. Unfortunately, such
a small difference in functional form cannot be inferred
with certainty based on the available data. The question,
if a marginal FL serves as bridge between the (presum-
ably) non-critical hidden FL regime and the QCP there-
fore remains an experimental and intellectual challenge
for future research.
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Figure 4.15: Renor-
malization Z−1 ver-
sus T at 6.5 cm−1.
The solid lines
are guides to the
eyes demarcating a
crossover at around
10K with increasing
temperature - from
marginal FL to
hidden FL?

To put the behavior of CeCoIn5 in the broader con-
text, THz studies studies of the related HF compounds
CeRhIn5 and CeIrIn5 as well as the parent compound
CeIn3 are highly desirable. At the time of writing, thin-
film growth of these materials is still a major challenge
[158]. As for CeIn3, Matsuda et al. managed to grow
sufficiently thin films of a few ten nanometer on MgF2

substrates. First measurements of the THz response re-
veal a frequency dependent Γ in the HF regime similar
as for CeCoIn5, but inconclusive energy dependence of
m∗/mb. In addition, the films tend to rapid degradation
at room temperature even in He atmosphere. Although
from in-situ monitoring of ρdc(T ) we can rule out a degra-
dation at low temperatures on a measurement scale of
∼36 hours, the situation is apparently much more deli-
cate as for CeCoIn5. The growth of CeRhIn5 films with a

EXPERIMENTAL STUDIES ON THE
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thickness less than ∼120 nm and without a CeIn3 buffer
layer is still not possible. Due to their high conductiv-
ity, these films suppress the THz transmission amplitude
to 10−4 − 10−5 where a reliable data analysis is border-
line. With the recent advances in MBE growth of these
compounds, it can be hoped that the current obstacles
will be removed and reliable THz studies of the CeMeIn5
become feasible.



A. Experiment and

Analysis

A.1 Sample preparation

A.1.1 NbN thin films

The majority of superconducting NbN samples were sup-
plied by P. Raychaudhuri (Mumbai, India) and grown
via reactive magneto sputtering (Ar/N2 atmosphere at
5mTorr) as thin films between 20 and 30nm thickness
on dielectric sapphire or MgO substrates held at 600◦C.
By careful control of the Ar/N2 ratio (varying between
90/10 and 70/30) while sputtering, the number of atomic
defects (i.e. Nb vacancies) was adjusted producing NbN
films covering a wide range of disorder. Clean-limit sam-
ples with a low dc-transport resistivity ρdc have high
critical temperatures up to Tc ≈ 15K whereas Tc and
ρdc and Tc are rapidly increased and suppressed, respec-
tively, in the approach of quantum criticality. The most-
critical sample116 studied towards its THz and tunneling 116 Note that

the plot Fig. 2.12
comprises data
for an even more
critical sample with
Tc = 3.1K inferred
from microwave
spectroscopy done
by M. Mondal et al.,
see Ref. [54]

response has Tc = 4K. A minor number of supplemen-
tary clean-limit samples grown in the identical fashion
where supplied by M. Siegel and K. Illin (Karlsruhe, Ger-
many). Here, the film thickness is of the order of 5 nm
but values of ρdc and Tc are in line with the samples
of the aforementioned batch so that no separate treat-
ment is required. Accordingly, we will not distinguish
between the batches ans use the value of Tc as a straight-
forward quantity measuring the distance from quantum
criticality. More details of the growth process and trans-
port characterization can be found in [41] and references
therein.
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A.1.2 Granular Al

Thin films of granular Al were deposited using thermal
evaporation, see Ref. [75] for details. In order to obtain
high-quality transmission measurements, films of 40 nm
thickness were deposited on 2mm thick MgO substrates.
The substrates were kept at liquid nitrogen temperature
during growth. Clean Al pellets (purity of 99.999%) were
evaporated from alumina-coated Mb boat in O2 partial
pressure of about 10−5 Torr. Samples of different resis-
tivity ρdc ranging between a few 100 and 1000μΩcm at
300K were produced by carefully varying the evapora-
tion rate and the O2 partial pressure. While the grains
in the low-resistivity (LR) limit can be considered well-
coupled, the opposite case of completely decoupled grains
is realized in the high-resistivity limit (HR). The shape,
size, and size distribution of grains in granular Al has
been studied by Deutscher et al. [75, 76, 78] by means
of dark-field microscopy: Low-resistivity films deposited
on substrates held at room temperature display spheri-
cal grains with a broad distribution of diameter peaked
at around 5 nm that sharpens sightly and shifts towards
3 nm with increasing resistivity. Substrates kept at liquid
nitrogen temperatures while deposition favor the growth
of films with a narrow size distribution with a mean of
2 nm irrespective of resistivity within the scope of this
work [208]. The critical influence of O2 concentration
and substate temperature on the structural properties of
granular Al can be explained following the early ideas
of Shapira and Deutscher [77]. Starting from a nucle-
ation seed, grains grow spherically by accumulation of Al
atoms and dielectric Al2O3 molecules. As growth con-
tinues, Al2O3 is expelled to the grain’s surface where it
eventually terminates growth of the metallic bulk, when
forming a complete insulating oxide shell. Clearly, a high
concentration of O2 favors the formation of Al2O3 and
tends to thicken the insulating barriers between grains
lowering the electronic inter-grain coupling and increas-
ing the transport resistivity. The reduction of grain size
with decreasing substrate temperature results from the
suppression of coalescence, i.e. the formation of larger
structures from the ’melting’ of smaller ones.

EXPERIMENT AND ANALYSIS
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A.1.3 CeCoIn5

The samples under study are two 70 nm thick films of
CeCoIn5 deposited via molecular beam epitaxy (MBE)
[158] on a dielectric 10×5×0.5 mm3 MgF2 substrate both
grown and measured in 2013 and 2015, respectively. The
low growth rate of 0.01 - 0.02 nm/s allows a very precise
control of the layer thickness. The growth process and
high crystalline quality was monitored in situ via the re-
flection high-energy electron diffraction (RHEED) tech-
nique. MBE growth of Ce-based heavy fermion thin films
[209, 210, 211, 212, 213] has already been employed for
previous THz studies [151], however high-quality films
were obtained only with additional metallic buffer lay-
ers. Despite the advanced MBE growth THz transmis-
sion measurements nevertheless remain challenging for
several reasons. First, the film needs to be thin enough
to allow for a detectable transmission signal, while the
sample quality favors thick films. Here we have cho-
sen a thickness of 70 nm, which is a compromise be-
tween sample quality and suitability for our experimental
technique. Second, thin films of CeCoIn5 tend to rapid
degradation in ambient air conditions so that exposure
time must be cut to a minimum [151] Third, the aper-
ture, through which the focused THz radiation passes
before it is transmitted through the sample, needs to
have a diameter da smaller than the sample. We have
chosen da = 3mm which restricts our accessible spec-
tral range to wavelengths shorter than ∼ da/2 = 1.5mm
(∼ 6 cm−1) due to diffraction effects.

After deposition in Kyoto, each film was sealed in a
glass tube under vacuum conditions before it was shipped
to Stuttgart. Right after removal from the glass tube,
the samples were mounted onto the THz sample holder,
transferred to the cryostat, and rapidly cooled down in
He-gas atmosphere so that the exposure time to ambient
air was less than 5 minutes117. The entire optical mea- 117 After deposition,

the samples were im-
mediately sealed in
the glass tubes, so
that the overall ex-
posure time amunts
to ∼10 minutes.

surements were subsequently performed during a period
of about 36 hours. During this time, the samples were
always kept below 150K. Afterwards, they were removed
from the cryostat and contacted in standard 4-point ge-
ometry in order to measure the dc-sheet resistivity ρdc.

Containing highly reactive Ce3+ ions, thin films of
CeCoIn5 are notoriously susceptible for oxidation and
require a careful handling. While the first generation of
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thin films suffered from poor quality and rapid degrada-
tion even if kept at low temperatures and under vacuum
conditions [214], the advances in MBE growth have led to
a considerably enhanced crystalline quality and chemical

Figure A.1: Transmission-amplitude spectra for
different CeCoIn5 samples as function of time
(a,b) Spectra of samples M757 (examined in the remain-
der of this chapter) and SO34 do not show signs of degra-
dation (i.e. an enhanced transmission amplitude) after
77 and 4 days, respectively. (c) For comparison, sample
M756 displays a notable rise of t(ν) after only 2 days
even though being kept under high-vacuum conditions,
and thus, experimental data for this sample has not been
considered for further analyses.
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stability of the samples studied within this work. Nev-
ertheless, ruling out any effects degradation is a crucial
prerequisite for a reliable data interpretation. By com-
paring spectra of the transmission amplitude, in what
follows, we use a sensitive probe to measure the degree of
degradation over time. Starting with sample M757 (i,e,
the sample on which major parts of the discussion in this
work is based) Fig. A.1(a) displays t(ν) as measured right
after mounting the sample inside the cryostat at 225K
and at 300K after being kept at high-vacuum conditions
for 77 days. Although the frequency ranges are different,
the spectra connect smoothly and do not exhibit a jump
towards higher values as it would be expected for a (par-
tially) oxidized film. Consequently, we can rule out sam-
ple degradation during measurement time of ∼ 60 hours.
The same conclusion can be drawn for the second film
(SO34) discussed in this work, see panel (b). After a time
span of 4 days, during which the optical and transport
measurements were performed, no changes in t(ν) (as
measured at 120K) appear which would point towards
film degradation. Note that the spectra slightly differ,
which, however, has to be attributed to a marginally dif-
ferent optical alignment. The above exclusion of degra-
dation can be contrasted with a sample of poor quality.
Panel (c) compares t(ν) of sample M756 measured at
300K after removal from the glass tube and after being
stored in high-vacuum for 2 days. First, the low quality
can be inferred from the transmission amplitude being
about 50 times higher than for the samples shown in
panels (a-b) despite the nominally same film thickness
of 70 nm. Second, even if kept in high-vacuum, t(ν) rose
significantly over a time span of 2 days due to oxidation of
the film. Even though the processes during growth, that
eventually dictate the fate of the film, are unclear, the
above considerations allow a discussion where any spu-
rious contamination of degradation effects can certainly
be ruled out.

A.2 Frequency-domain THz spec-
troscopy

Our THz studies are based on the frequency-domain spec-
troscopy technique. Coherent, monochromatic and con-
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tinuous THz radiation is generated by frequency-tunable
backward-wave-oscillators (BWO) that provide frequen-
cies from 1 to 47 cm−1 [215]. This spectral range is cov-
ered by a number of different BWO radiation sources (in
the following just sources), see bottom of Fig. A.2. The
power of the radiation strongly depends on the frequency
and may be as large as 100mW for low-frequency and sig-
nificantly smaller (0.1mW) for high-frequency sources.
As a consequence, the low-frequency radiation power
might be too strong and requires use of attenuators to
avoid sample heating or detector overload. The great
benefit of FDS compared to time-domain spectroscopy
(TDS) is to process frequencies step by step with a sta-
bility and resolution exceeding Δω/ω = 10−6 depending
on the BWO power supply.

While TDS excites all available energies simultane-
ously and has to struggle with minor signal strength,
FDS can directly probe narrow-band excitations and re-
solve detailed line shapes. The high output power leads
to high signal-to-noise ratio that can reach values up to
106. Frequency doublers and triplers (Virginia Diodes)
that allow extending the frequency range of a separate
source can effectively be used. Loss of the radiation in-
tensity is easily compensated by use of a 4He bolometer.
After the radiation is generated by the BWO, it is col-
limated by a Teflon, quartz, or polyethylene lens and
guided by aluminum mirrors and wire grids, see top of
Fig. A.2, which act as beam splitters depending on po-
larization. Other lenses are used to focus the radiation
on the sample under study and the detector. Attenu-
ators, polarizer, chopper, and analyzer are tilted with
respect to the beam propagation axis to suppress stand-
ing waves between these parts. The quasi-optical part of
the experiment is a Mach-Zehnder interferometer which
allows us to measure both amplitude and phaseshift of
THz radiation passing through a sample.

The radiation is detected by either a Golay cell or a
4He-cooled bolometer (Infrared Laboratories), depend-
ing on signal strength. For transmission measurements,
the radiation is mechanically chopped to make it de-
tectable using a lock-in technique.

Determining the spectra of optical parameters of the
plane-parallel sample involves measurements of the trans-
mission and phaseshift spectra from which the spectra of
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real and imaginary parts of complex permittivity, con-
ductivity, etc., are calculated directly and without use of
any additional analysis (such as Kramers-Kronig analy-
sis).

Recording a transmission spectrum is performed with
the second arm of the interferometer blocked. It consists
of two separate steps. First, the signal intensity versus
frequency is recorded with no sample in the beam path.
This transmission spectrum is regarded 100% transmis-
sion and used as measurement calibration. Second, the
transmission spectrum is recorded with the sample in
the beam path and the absolute transmission spectrum

Figure A.2: Top: Simplified sketch of the utilized Mach-
Zehnder interferometer. Filter, polarizers, and chopper
are tilted with respect to the beam propagation axis to
suppress standing waves between these parts. Measur-
ing the phaseshift requires both arms of the interferome-
ter, whereas the second arm is blocked for transmission
measurements. Bottom: BWO output power of several
sources versus frequency. The range from 1 to 47 cm−1

is covered entirely. The low output power at high freuen-
cies requires the usage of a He-cooled bolometer, whereas
at low and intermediate frequencies a Golay cell is usu-
ally suficient.
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is obtained as a result of division of the two correspond-
ing data arrays. In this way we can account for the
frequency-dependent output power of the radiation pass-
ing through the measurement channel. To measure phase-
shift spectra, the second arm has to be unblocked. Again,
the measurement consists of two separate steps: calibra-
tion without and measurement with the sample in the
beam path. In order to obtain reliable data, one has to
guarantee optimal interference of the two beams at the
analyzer. This is provided by aligning the spectrometer
elements and achieving maximal ratio between minimal
(destructive interference) and maximal (constructive in-
terference) signal strength. The interference signal is de-
tected using a lock-in technique. However, the signal
is modulated not using the chopper (amplitude modula-
tion) but the oscillating mirror (phase modulation), as
shown in Fig. A.2. During a measurement process, the
movable mirror is automatically kept in a position corre-
sponding to zero-order destructive interference (minimal
signal) while the frequency range is swept. The mirror
position versus frequency is recorded when the sample is
out of (calibration scan) and in (measurement) the opti-
cal path, and the phaseshift spectrum is calculated from
the difference between the two spectra118118 the measured

quantity is phase-
shift φ (rad),
however, in this
paper we will always
refer to relative
phaseshift φ/ν
(rad/cm−1) with
ν = ω/(2πc) and c
the speed of light in
vacuum

Optical anisotropy is an issue that has to be taken
into account carefully. E.g., the Fabry-Pérot resonances
can become more complex [216]. Many common sub-
strates for thin-film deposition are birefringent such as
Al2O3 or NdGaO3. To align the polarization direction E
of the radiation to sample axes of interest, one can ad-
just either the sample or the polarization angle of the 1.
beam splitter (followed by corresponding turning of the
2. beam splitter, setting it to 90◦ relative to the 1. beam
splitter). In case of optical anisotropy of both substrate
and film and misaligned optical axes, the optical set-up
and analysis has to be customized [150].

A.3 Analysis of the complex trans-
mission data

Typical spectra of transmission amplitude t and phase
shift normalized to frequency φ/ν of a representative su-
perconductor (granular Al) and metallic (CeCoIn5) sam-
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ples are shown in Fig. A.3 and A.5. The pronounced
oscillation pattern stems from multiple reflections inside
the substrate, which acts as Fabry Perot (FP) resonator.
To model the particular behavior of t and φ/ν we use the
Fresnel equations for multiple reflections [152], where the
thickness d and dielectric function ε̂(ν) = ε1(ν) + iε2(ν)
of substrate (s) and thin film (f) directly enter

t = t(ds, ε
s
1(ν), ε

s
2(ν); df , ε

f
1(ν), ε

f
2(ν)) (A.1)

φ/ν = φ(ds, ε
s
1(ν), ε

s
2(ν); df , ε

f
1(ν), ε

f
2(ν))/ν(A.2)

Figure A.3: Raw (a) transmittance t and (b) rela-
tive phase shift φ/ν spectra of a granular Al sample
in the normal (filled symbols) and superconducting state
(empty). The pronounced oscillation pattern arises from
multiple reflections inside the substrate which acts as
a Fabry-Perot resonator. Insets (c) and (d) show the
same data in the superconducting state together with
a fit to Fresnel equations simultaneously performed on
t and φ/ν) via σ1,2 of the film. Note that each FP
transmittance peak is fitted separately in a narrow range
(gray box) to obtain the frequency dependence of σ1,2

in the most unbiased way. (Reprinted from Ref. [85],
c©American Physical Society)
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Figure A.4: Optical properties of the substrates
employed in this work The upper panel displays the
real part ε1 of the complex permittivity of Al2O3 (used
as substrate for granular Al and NbN), MgO (substrate
of some NbN films) and MgF2 (substrate for CeCoIn5).
The lower panel displays the imaginary part ε2 of MgF2

for various temperatures.

Equivalently, this can be expressed in terms of the dy-
namical conductivity σ̂(ν) = σ1(ν) + iσ2(ν), which is
directly related to ε̂ via

ε̂(ν) = 1 +
i

2π

σ̂(ν)

νε0
(A.3)

with ε0 the permittivity of the vacuum. With the thick-
nesses df and ds regarded as constant (i.e. we neglect
thermal contraction or expansion) this general formal-
ism leaves 4 parameters left to be determined. Substrate
materials employed in this work were Al2O3 (Sapphire)
for granular Al and NbN films, MgO for some NbN films,
and MgF2 for CeCoIn5, see Fig. A.4. In case of the super-
conducting materials, we are only interested in the low-T
properties of Al2O3 and MgO, covering the range up a
few K. Here, the loss in the substrate can be neglected.
In fact, the transmission amplitude of bare substrates is
so close to unity that any fit converges to ε2 = 0 irre-
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spective of frequency. The other part, ε1, turns out to
be finite, yet temperature independent in the relevant
regime. A slight increase with frequency is observed for
both Al2O3 and MgO which can be attributed to absorp-
tion processes, e.g. due to optically active IR phonons.
In case of the displayed Al2O3 curve a deviation from the
smooth dispersion is observed in the low-frequency limit.
This effect does not necessarily reflect an intrinsic prop-
erty of the material, but is more likely to stem from dis-
turbances in the optical transmission spectra, e.g. due to
standing waves or parasitic-radiation effects. Still, from
the viewpoint of a subsequent film analysis, these some-
what ’non-physical’ ε1 values are important as the inclu-
sion thereof in the film analysis can account for the above
mentioned optical disturbances leaving alone the desired
film properties. Consequently, the effective ε1 dispersion
has to be determined for each measurement and fed into
the corresponding film analysis. In case of MgF2, which
was used as substrate material of CeCoIn5, more caution
was required, as the measurements expanded over a vast
temperature range 3 - 150K, where the temperature de-
pendence of ε1,2 of the substrate may be non-trivial. In
fact, between roughly 250 - 80K we find ε1 to feature a
temperature dependence as shown in Fig.A.4. For lower
temperatures (which are more relevant to the physical
questions addressed in this work), this T -dependence lev-
els of and becomes negligible. What remains is a slight
increase with increasing frequency, which most likely can
be attributed to IR-processes similar as in the cases of
Al2O3 and MgO. At elevated temperatures, also a signifi-
cant dielectric loss is apparent, which is reduced continu-
ously towards low temperatures. The peculiar dispersion
of ε2 may strike surprising, yet it does not affect the film
analysis significantly as it becomes obvious when consid-
ering the thickness of substrate (ds) and film (df): with
a ratio of ds/df ≈ 5 × 104 one should expect equal con-
tributions to the overall optical response when ε2 of the
film is 5×104 higher than ε2 of MgO. At 150K, however,
the ratio ε2,f/ε2,s already exceeds 107 and becomes even
greater as temperature is reduced. Consequently, the di-
electric loss can safely be neglected in the analysis of the
film as it influences the absorption by less than 0.1%.
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Figure A.5: Raw (a) transmittance t and (b) relative
phase shift φ/ν spectra of a CeCoIn5 sample in the
normal-metal (filled symbols) and Heavy-Fermion states
(empty). Insets (c) and (d) show the same data in the
HF state state together with a fit to Fresnel equations
simultaneously performed on t and φ/ν via σ1,2 of the
film. The optical properties of the substrate for a given
temperature have been inferred from an additional mea-
surement of a bare MgF2 sample and were subsequently
fed into the film analysis.

Dirty-limit superconductors

To calculate the conductivity of a superconducting film,
see Fig. A.3, we process each FP peak separately: We
start with the normal state, where we fit each FP peak
(and the corresponding inflection range in φ/ν) in a nar-
row frequency window, see Fig. A.3(c-d), via σ1 of the
film and ε1 of the substrate. This is possible because the
relaxation rate is far above the THz frequency range so
that σ2 of the film is approximately zero, and the sub-
strate is perfectly transparent at THz frequencies (ε2 =
0) as we checked beforehand with a bare reference sub-
strate. Afterwards, we keep ε1 of the substrate constant,
proceed with the corresponding FP peak at lower tem-
peratures, and fit via σ1,2 of the film. This procedure
yields a pair of σ1,2 for the center frequency of each FP
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peak for each temperature. Note, that this analysis does
not incorporate any microscopic model and, thus, can be
regarded completely unbiased.

Heavy-Fermion metals

At elevated temperatures, the optical properties of the
substrate have to be included more carefully to account
for a possible frequency dependence. For a given tem-
perature, the complex transmission of a bare reference
substrate was fitted to ε1 and ε2 within each BWO spec-
tral range and afterwards set as constant substrate pa-
rameters in the single-peak fits of the film-on-substrate
analysis, see Fig. A.5. In case of MgF2 used as substrate
for the heavy-fermion thin-films discussed in this work,
no measurable changes with temperatures were observed
below ∼ 80K.
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A.4 Measurement protocols and
low-T characteristics

Many measurements discussed in this work are performed
at low temperatures, where the correct sensing of the ac-
tual sample temperature is a notoriously difficult task. In
case of THz spectroscopy as performed in this work, the
correct measurement of temperature is challenged by two
main issues: First, the set up for a transmission measure-
ment requires most of the sample to be uncovered such
that a sensor usually cannot be mounted directly on the
sample, and second, thermal coupling between the sam-
ple and the sensor (usually mounted on the solid brass
sample holder) is established by He gas with a pressure
of a few 100mbar. The comparably poor thermal cou-
pling becomes even weaker at temperatures below 4.2K,
where 4He liquefies leaving even less exchange gas. As
many of the measurements featured in this work have
been performed below 4.2K, in particular the ones on
granular Al, special care has been taken to characterize
the low-temperature performance and quantify the error
in T -sensing, as we will elucidate below.
First, we describe the protocol for R(T ) and THz mea-
surements at the base temperature T = 1.65K

1. Place the temperature sensor either on the sam-
ple or the sample holder at the z-position of the
aperture.

2. Align the sample under study horizontally with the
temperature sensor

3. Condense liquid He into the sample chamber (inner
vacuum chamber, IVC) up to ∼ 4 cm above the
sample.

4. After the condensation is terminated, the sample
quickly cools down to ∼ 2K across the supercon-
ducting transition. During this cool down, the
R(T ) measurement is performed.

5. Pumping on the IVC He bath reduces the tempera-
ture of the sample (and sensor) quickly to∼ 1.65K,
where the temperature stabilization is maintained
by careful control of the pumping speed. The sta-
bility reached is of the order of mK.
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The protocol for R(T ) and THz measurement at T =
1.65K and elevated temperatures is

1. Place the temperature sensor on the sample and
follow steps 2-4 of the above protocol.

2. To raise the temperature between 2 and 4.2K using
the PID feedback control.

3. Pump on the IVC He bath to lower the temper-
ature between 2 and 1.58K. Switch off the PID
control and stabilize at the desired temperature by
regulating the pumping speed. In this way of op-
eration, the temperature stability is of the order of
a few mK.

Placing the sensor on the film is only possible for suf-
ficiently large samples. Measurements between 2 and
4.2K with the sensor mounted on the sample holder are
still possible, yet subject to a greater uncertainty of the
temperature. The following quantification may serve as
guide to estimate the temperature uncertainty for metal-
lic thin films on insulating substrates (in what follows,
5 nm TiN on a silicon substrate).

The influence of the T -sensor position for the T -
measurement

To estimate the difference between actual sample tem-
perature and sensor readout, a R(T ) calibration of the
thin film was recorded between 2 and 4.2K with sample
and sensor being thermally coupled by liquid He. After
removal of the liquid He as contact medium, changes in
R can then directly be translated in changes in tempera-
ture. Figure A.6(a,b) displays R and the sensor read-out
as function of time. After the temperature read-out has
reached Tsensor = 2.11K, (set point 2.1K) the film sta-
bilizes at a resistance that translates to Tfilm = 2.18K,
i.e. too high by δT = 70mK, implying that the sample
is coupled more effectively to the heater than the sensor.
A vertical translation of the sample by ∼ 2 cm upwards
(i.e. moving the sample frame to calibration position)
leads to a sudden rise of δT = 620mK. The subsequent
back shift, however, causes an almost immediate ther-
malization to Tfilm = 2.26K whilst Tsensor = 2.15K leav-
ing a difference of δT = 110mK. Figure A.6(c,d) displays
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Figure A.6: (a) time-evolution of resistance R and in-
ferred temperature Tfilm of a metallic thin-film test sam-
ple and (b) the temperature read-out Tsensor = 2.11K
with the sensor mounted to the sample holder. The dis-
crepancy between Tfilm and Tsensor amounts to 100mK.
Vertical displacements lead to significant changes of the
sample temperature, however, almost no time lag is ob-
served. (c,d) For Tsensor = 2.5K the error in temperature
amounts to roughly δT = 60mK.
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the identical procedure at a set point temperature of
2.5K gives a similar deviation (however with the opposite
sign) Tsensor −Tfilm = 2.5K− 2.44K = 60mK. Also here
basically no thermal hysteresis is observed upon changing
the sample position. Furthermore, Fig. A.6(c) quanti-
fies heating by THz irradiation to δT = 40mK - how-
ever only for an intensity 10 times higher than used for
spectroscopy. For realistic intensities for spectroscopic
usage, the heating by THz radiation is of the order of
a few mK and negligible in this temperature range. We
note here again, that the crucial measurements on gran-
ular Al discussed in this work were performed with the
sensor mounted directly on the sample so that the above
considerations and errors in temperature do not apply.

Cooling efficiency and T -sensing accuracy at the
base temperature

We now prove that the temperature of a thin film sam-
ple actually follows the sensor read-out and estimate the
error in temperature at lowest temperatures. For val-
idation, a sensor was mounted directly on a metallic
thin-film sample and another sensor was mounted to the
sample holder at the same vertical position. The time
evolution of both sensor read-outs as well as the film re-
sistance is displayed in Fig.A.7. We can draw several
important conclusions

• Once the level of liquid He falls below the sam-
ple, a reduction in temperature is still observed,
despite the poor thermal coupling. This might be
attributed to a film of superfluid He thermally an-
choring the sample and sensor to the He IVC-bath

• The persistent cooling can also be approved for the
film itself as evident from the concomitant reduc-
tion of surface resistance (Note that here we are in
a regime, where R(T ) is reduced with decreasing
temperature)

• The difference in the temperature readout for the
sensors being positioned either on the sample holder
or on the thin-film sample amounts to less than
15mK when the level of liquid He has been re-
duced below the sample (i.e. to allow for the opti-
cal measurement. The same difference is observed
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Figure A.7: (a) time-evolution of resistance R and in-
ferred temperature Tfilm of a metallic thin-film test sam-
ple and temperature measured at the sample position
(sensor A) and on the sample holder (B). The total error
between actual sample temperature and T -measurement
at the sample holder is determined to be less than 23mK
at the lowest temperatures.

to the 4He normal-superfluid transition at Tλ (thin-
film sensor 2.198K, sample holder sensor 2.183K)
when both sensors are coupled perfectly well by
superfluid He.

• Taking the mean of both read-outs at the normal-
superfluid transition gives a calibration uncertainty
of 7.5mK. Together with the above mentioned read-
out difference of 15mK at the base temperature, we
estimate the maximum error to be less than 23mK
between the sensor mounted on the sample holder
and the thin film under study at the base temper-
ature of 1.65K.

• Down to the lowest temperatures, a change in T
leads to a simultaneously change in R implying a
good thermal coupling between sensor on the sam-
ple holder and the sample.

EXPERIMENT AND ANALYSIS
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G. Kotliar, and A. Georges, “How bad metals turn
good: Spectroscopic signatures of resilient quasi-
particles,” Phys. Rev. Lett., vol. 110, p. 086401,
Feb 2013.

[178] W. Xu, K. Haule, and G. Kotliar, “Hidden Fermi
Liquid, Scattering Rate Saturation, and Nernst Ef-
fect: A Dynamical Mean-Field Theory Perspec-
tive,” Phys. Rev. Lett., vol. 111, p. 036401, Jul
2013.

[179] P. W. Anderson, “Hidden Fermi liquid: The se-
cret of high-Tc cuprates,” Phys. Rev. B, vol. 78,
p. 174505, Nov 2008.

[180] P. A. Casey and P. W. Anderson, “Hidden fermi
liquid: Self-consistent theory for the normal state
of high-Tc superconductors,” Phys. Rev. Lett.,
vol. 106, p. 097002, Feb 2011.

[181] J. Paglione, M. A. Tanatar, D. G. Hawthorn,
E. Boaknin, R. W. Hill, F. Ronning, M. Suther-
land, L. Taillefer, C. Petrovic, and P. C. Can-
field, “Field-Induced Quantum Critical Point in
CeCoIn5,” Phys. Rev. Lett., vol. 91, p. 246405, Dec
2003.

[182] D. M. Broun private communication (2016).

[183] U. S. Pracht, M. Dressel, P. MravlScheffler,
M.”olfle, R. Endo, T. Watashige, Y. Hanoka,



M. Shimozawa, T. Terashima, T. Shibauchi,
Y. Matsuda, and M. Scheffler, “Resilient heavy
quasiparticles in CeCoIn5: Indications from dy-
namical response for a hidden Fermi liquid.” in
preparation (2017).

[184] G. Baym and C. Pethick, Landau Fermi-Liquid
Theory: Concepts and Applications. WILEY-VCH
Verlag, 2004.

[185] D. Vollhardt and P. Wölfle, The Superfluid Phases
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