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For Alice.
Follow the white rabbit.

“The Caterpillar took the hookah out of its
mouth and yawned once or twice, and shook
itself. Then it got down off the mushroom, and
crawled away into the grass, merely remarking
as it went, ‘One side will make you grow taller,
and the other side will make you grow shorter.’
‘One side of what? The other side of what?’
thought Alice to herself.
‘Of the mushroom,’ said the Caterpillar, just
as if she had asked it aloud; and in another
moment it was out of sight.”

Lewis Carrol (1916, p. 29)
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Foreword

Fuzzy methods were traditionally mainly used in the domain of system control.

Over the years they have proven their applicability in other domains, particularly in

the domain of management. In parallel to these developments, eBusiness became

one of the cornerstones of the activities for many firms. This evolution increased the

importance of the digital value chain and motivated many researchers to analyze the

applicability of fuzzy methods in this specific context. Especially, the key drivers of

these research activities included aspects of customer relationship management, the

personalization of products and services, and the satisfaction of individuals.

Some of the research activities in this field were conducted by Michael

Kaufmann from the University of Fribourg and member in the research group

supervised by Professor Andreas Meier. During his PhD studies Michael Kaufmann

was working on basic techniques for Inductive Fuzzy Classification with the

objective to use these ideas in the marketing context.

The basic framework chosen to conduct this research was the design science

methodology. The artifact developed in this work is a tool for prediction based on

multivariate, inductive, fuzzy classification. The domain of application motivating

this development is in particular marketing analytics, including customer analytics,

product analytics, and target selection. However, other applications in the same

domain but focusing on visualization and prediction can easily be envisioned as

well. In order to well understand the real capabilities of this approach, a number of

tests in a real marketing campaign were conducted. A Swiss financial institution

(PostFinance) compared the proposed approach with other, more traditional

methods, such as customer segmentation, during an online customer campaign.

The results of this case study clearly indicated that Michael Kaufmann’s approach

produces better response rates than the more traditional approaches.

Beside this very encouraging result, there is another point that contributes to the

strength of the work presented in this book, its completeness. The researchers

interested in possibilities of applying fuzzy methods in the domain of marketing

can find in this text a useful illustration of the whole process, starting from some

fundamental research considerations, passing by a development phase up to finally

applying the ideas to real data and commercial applications.

vii



The work is well structured, and it is presented in an easily understandable way,

making it accessible to people outside the research community. Furthermore, every

step is very well documented and easy to follow.

Another point worth mentioning is the presentations of the implementation part

based on real application environments. The database interactions were realized

using SQL and integrated into an Oracle database server environment. The data

analysis part, based on the ideas of inductive fuzzy classification, was implemented

in Java and in the WEKA data-mining environment. The practicability of the

proposed ideas is therefore well proved

To conclude, one can say that the work presented here by Michael Kaufmann is

an interesting illustration for the use of fuzzy technologies in the domain of

management, illustrating, on one hand, how this approach can contribute to funda-

mental research and, on the other hand, how these ideas can be brought into real

world application and improve the more traditional approaches.

Prof. Dr. Kilian Stoffel

Information Management Institute

University of Neuchâtel

Switzerland

viii Foreword



About the Author

Michael Kaufmann is a computer scientist with specialization in data analytics

and machine learning. He is a lecturer for database systems at the Lucerne Univer-

sity of Applied Sciences and Arts. He worked in the industry as business analyst at

FIVE Informatik, as data architect at Swiss Mobiliar Insurance Company, and as

data warehouse analyst at PostFinance. He received his degree of Doctor

Scientiarum Informaticarum (Dr. sc. inf.) in 2012, and his Master’s and Bachelor’s

degrees in Computer Science in 2004 and 2005, respectively, from the University of

Fribourg. His research has explored applications of fuzzy classification in data-

bases, information systems, and knowledge technologies.

ix



ThiS is a FM Blank Page



Abstract

“Inductive fuzzy classification” (IFC) is the process of assigning individuals to

fuzzy sets for which membership functions are based on inductive inferences. In

this thesis, different methods for membership function induction and multivariate

aggregation are analyzed. For univariate membership function induction, the cur-

rent thesis proposes the normalized comparisons (ratios and differences) of likeli-

hoods. For example, a normalized likelihood ratio can represent a membership

degree to an inductive fuzzy class. If the domain of the membership function is

numeric, continuous membership functions can be derived using piecewise affine

interpolation. If a target attribute is continuous, it can be mapped into the

“Zadehan” domain of numeric truth values between 0 and 1, and membership

degrees can be computed by a normalized ratio of likelihoods of fuzzy events.

A methodology for multivariate IFC for prediction has been developed as part of

this thesis: First, data is prepared into a matrix format. Second, the relevant

attributes are selected. Third, for each relevant attribute, a membership function

to the target class is induced. Fourth, transforming the attributes into membership

degrees in the inductive fuzzy target class fuzzifies these attributes. Fifth, for every

data record, the membership degrees of the single attribute values are aggregated

into a membership degree in the target class. Finally, the prediction accuracy of the

inductive membership degrees in comparison to the target variable is evaluated.

The proposed membership function induction method can be applied to analytics

for selection, visualization, and prediction. First, transformation of attributes into

inductive membership degrees in fuzzy target classes provides a way to test the

strength of target associations of categorical and numerical variables using the same

measure. Thus, relevant attributes with a high target correlation can be selected.

Second, the resulting membership functions can be visualized as a graph. This

provides an intuitive depiction of target associations for different values of relevant

attributes and allows human decision makers to recognize interesting parts of

attribute domains regarding the target. Third, transformation of attribute values

into membership degrees in inductive fuzzy classes can improve prediction of

statistical models because nonlinear associations can be represented in membership

functions.
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In marketing analytics, these methods can be applied in several domains.

Customer analytics on existing data using attribute selection and visualization of

inductive membership functions provide insights into different customer classes.

Product analytics can be improved by evaluating likelihood of product usage in the

data for different customer characteristics with inductive membership functions.

Transforming customer attributes into inductive membership degrees, which are

based on predictive models, can optimize target selection for individual marketing

and enhance the response rate of campaigns. This can be embedded in integrated

analytics for individual marketing.

A case study is presented, in which IFC was applied in online marketing of a

Swiss financial service provider. Fuzzy classification was compared to crisp clas-

sification and to random selection. The case study showed that, for individual

marketing, a scoring approach can lead to better response rates than a segmentation

approach because of compensation of threshold effects.

A prototype was implemented that supports all steps of the prediction method-

ology. It is based on a script interpreter that translates inductive fuzzy classification

language (IFCL) statements into corresponding SQL commands and executes them

on a database server. This software supports all steps of the proposed methodology,

including data preparation, membership function induction, attribute selection,

multivariate aggregation, data classification and prediction, and evaluation of

predictive models.

The software IFCL was applied in an experiment in order to evaluate the

properties of the proposed methods for membership function induction. These

algorithms were applied to 60 sets of real data, of which 30 had a binary target

variable and 30 had a gradual target variable, and they were compared to existing

methods. Different parameters were tested in order to induce an optimal configu-

ration of IFC. Experiments showed a significant improvement in average predictive

performance of logistic regression for binary targets and regression trees for gradual

targets when, prior to model computation, the attributes were inductively fuzzified

using normalized likelihood ratios or normalized likelihood differences,

respectively.

xii Abstract



Acknowledgments

A scientific thesis organically evolves from a primeval soup of ideas originating

from countless individuals past and present. I merely tamed and organized these

ideas and developed them further. In this light, I thank all fellow human beings who

made my thesis possible.

I thank my first advisor, Professor Andreas Meier, for teaching me how to

conduct scientific research. I will always remember those great doctoral seminars

we had all across Switzerland. Also, I thank my second and third advisors, Pro-
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Chapter 1

Gradual Concept of Truth

Would you describe a single grain of wheat as a heap? No. Would you describe two grains

of wheat as a heap? No. . . . You must admit the presence of a heap sooner or later, so where

do you draw the line? (Hyde, 2008)

How many grains does it take to constitute a heap? This question is known as the

sorites paradox (Hyde, 2008). It exemplifies that our semantic universe is essen-

tially vague, and with any luck, this vagueness is ordinal and gradual. This applies

to all kinds of statements. Especially in science, different propositions or hypoth-

eses can only be compared to each other with regard to their relative accuracy or

predictive power. Fuzziness is a term that describes vagueness in the form of

boundary imprecision. Fuzzy concepts are those that are not clearly delineated,

such as the concept of a “heap of grain.”

The classical notion of truth claims metaphysical dualism, and thus divides

thought into exactly two categories: true and false. A gradual concept of truth

leads our consciousness toward a metaphysical monism: all possible statements

belong to the same class; but there is a gradation of degree. The continuum of
propositions, ranging from completely false to completely true, contains all the

information that is in-between.

Fuzzy set theory provides a tool for mathematically precise definitions of fuzzy

concepts, if those concepts can be ordered: assigning gradual membership degrees

to their elements. This gradual concept of truth is the basis for fuzzy logic or

approximate reasoning, as proposed by Zadeh (1975a) and Bellmann and Zadeh

(1977). Fuzzy logic, based on the concept of fuzzy sets introduced by Zadeh (1965),

allows propositions with a gradual truth-value and, thus, supports approximate

reasoning, gradual and soft consolidation.

Fuzzy propositions define fuzzy classes, which allow gradual, fuzzy class bound-

aries. In data analysis, or “the search for structure in data” (Zimmermann, 1997),

fuzzy classification is a method for gradation in data consolidation, as presented by

Meier, Schindler, and Werro (2008) and Del Amo, Montero, and Cutello (1999).

The application of fuzzy classification to marketing analytics (Spais & Veloutsou,

2005) has the advantage of precisiation (sic; Zadeh, 2008) of fuzzy concepts in the
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context of decision support for direct customer contact, as proposed by Werro

(2008). This precisiation can be achieved by inducing membership functions to

fuzzy target classes (Setnes, Kaymak, & van Nauta Lemke, 1998).

Inductive, or probabilistic, inference and fuzzy, or gradual, logic have been seen

as incompatible, for example, by Elkan (1993). Whereas probabilistic induction can

amplify experience, membership functions can precisiate vagueness. Combined,

measured probabilities can be applied to precisely define the semantics of vague or

fuzzy concepts by membership function induction. This thesis, eventually, demon-

strates how probabilistic and fuzzy logics can be synthesized to constitute a method

of inductive gradual reasoning for classification.

1.1 Research Questions

Werro (2008) and Meier et al. (2008) proposed the application of Fuzzy classifica-

tion to customer relationship management (CRM). A suggestion for further

research by Werro (2008), namely the integration of data mining techniques into

fuzzy classification software, has inspired the present thesis. As illustrated in

Fig. 1.1, the motivation of the current research was to develop and evaluate

inductive methods for the automated derivation of membership functions for

fuzzy classification and to propose possible applications to marketing analytics.

The first motivation for research on “inductive fuzzy classification” (IFC) was

the development of methods for automated derivations of understandable and

interpretable membership functions to fuzzy classes. The aim was to develop and

evaluate algorithms and methods to induce functions that indicate inductively

inferred target class memberships.

The second motivation was to improve marketing analytics with IFC. Kaufmann

and Meier (2009) have presented a methodology and a case study for the applica-

tion of IFC to predictive product affinity scoring for target selection. This thesis

extends the application of this methodology to marketing in the field of integrated

customer and product analytics in order to provide means to deal with fuzziness in

marketing decisions and to enhance accountability by application of analytics to

precisiate fuzzy marketing concepts, as proposed by Spais and Veloutsou (2005).

The third motivation was to develop a prototype implementation of software for

computing IFCs, showing the feasibility of the proposed algorithms as a proof of

concept and allowing an evaluation of the proposed methodology.

Seven research questions were developed at the beginning of the current

research (Kaufmann, 2008). These questions guided the development of the thesis

from the beginning. The answers are presented in the subsequent document and

summarized in the conclusions of the thesis.

1. What is the theoretical basis of IFC and what is its relation to inductive logic?

2. How can membership functions be derived inductively from data?

3. How can a business enterprise apply IFC in practice?

2 1 Gradual Concept of Truth



4. How can the proposed methods be implemented in a computer program?

5. How is IFC optimally applied for prediction?

6. Which aggregation methods are optimal for the multivariate combination of

fuzzy classes for prediction?

7. Can it be statistically supported that the proposed method of IFC improves

predictive performance?

Following a constructive approach to business informatics and information

systems research (Oesterle, et al., 2010), this thesis presents a design of new

methods for IFC and proposes applications of these new methods to analytics in

marketing. Thus, the methodology for developing the thesis includes the following:

The theoretical background is analyzed prior to presentation of the constructive

design, a case study exemplifies the designed approach, software prototyping shows

technical feasibility and enables experimental evaluation, and empirical data col-

lection in combination with statistical inference is applied to draw conclusions

about the proposed method.

1.2 Thesis Structure

As shown in Fig. 1.2, this thesis has three thematic categories that are reflected in

the structure. First, the theoretical foundations of IFC are examined. This theory is

based on a synthesis of fuzzy (gradual) and inductive (probabilistic) logics. Second,

business applications of this approach are analyzed. A possible application is

studied for analytic quantitative decision support in marketing. Third, technological

aspects of the proposed method are examined by software prototypes for evaluation

of the proposed constructs.

The second chapter, which addresses theory, analyzes the theoretical founda-

tions of IFC by approaching it from the viewpoints of logic, fuzziness, and

induction. It presents proposals of likelihood-based methods for membership

Fig. 1.1 The motivation of

the current research was to

develop and evaluate

inductive methods for the

automated derivation of

membership functions for

fuzzy classification and to

propose possible

applications to marketing

analytics
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function induction. In Sect. 2.1, the basic concepts of logic and classification are

analyzed. In Sect. 2.2, cognitive and conceptual fuzziness are discussed and

approaches for resolution of conceptual fuzziness, fuzzy logic, and fuzzy classifi-

cation are outlined. In Sect. 2.3, inductive classification, and induction automation

are examined. In Sect. 2.4, the application of induction to fuzzy classification is

explained, and a methodology for membership function induction using normalized

ratios and differences of empirical conditional probabilities and likelihoods is

proposed.

The third chapter, which deals with designing applications of IFC, presents a

study of analytics and examines the application of membership function induction

to this discipline in marketing. In Sect. 3.1, the general methodology of logical data

analysis, called analytics, is analyzed, and applications of IFC to three

sub-disciplines, selection, visualization, and prediction, are proposed. In Sect. 3.2,

applications of IFC to analytic marketing decision support, or marketing analytics

(MA), are listed. A case study is presented, in which the proposed methods are

applied to individual online marketing.

The fourth chapter, which presents designs of technology for IFC, explains

prototype implementations of the proposed IFC methodology and shows evaluation

results. In Sect. 4.1, three prototype implementations of IFC are presented. The

prototype of an inductive fuzzy classification language (IFCL) is described. This

description encompasses the architecture of the software and its functionality. Two

additional prototypes that were developed in collaboration with master’s students

guided by the author, iFCQL (Mayer, 2010) and IFC-Filter (Graf, 2010), are briefly

discussed. In Sect. 4.2, a systematic experimental application of the IFCL prototype

Fig. 1.2 Thesis structure. This thesis has three thematic categories that are reflected in the

structure: theory, application, and technology
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is described and the empirical results of testing the predictive performance of

different parameters of the proposed methodology are statistically analyzed.

The fifth chapter, which concludes the thesis, summarizes the scientific contri-

butions of the current research, discusses the results, and proposes further research

topics for IFC. Literature references are indicated in the sixth chapter. Research

details can be found in Appendix A, at the end of the thesis.
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Chapter 2

Fuzziness and Induction

This chapter examines the foundations of IFC by analyzing the concepts of deduc-

tion, fuzziness, and induction. The first subsection explains the classical concepts of

sharp and deductive logic and classification; in this section, it is presupposed that all

terms are clearly defined. The second section explains what happens when those

definitions have fuzzy boundaries and provides the tools, fuzzy logic and fuzzy

classification, to reason about this. However, there are many terms that do not only

lack a sharp boundary of term definition but also lack a priori definitions. Therefore,

the third subsection discusses how such definitions can be inferred through induc-

tive logic and how such inferred propositional functions define inductive fuzzy

classes. Finally, this chapter proposes a method to derive precise definitions of

vague concepts—membership functions—from data. It develops a methodology for

membership function induction using normalized likelihood comparisons, which

can be applied to fuzzy classification of individuals.

2.1 Deduction

This subsection discusses deductive logic and classification, analyzes the classical

as well as the mathematical (Boolean) approaches to propositional logic, and shows

their application to classification. Deduction provides a set of tools for reasoning

about propositions with a priori truth-values—or inferences of such values. Thus, in

the first subsection, the concepts of classical two-valued logic and algebraic Bool-

ean logic are summarized. The second subsection explains how propositional

functions imply classes and, thus, provide the mechanism for classification.
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2.1.1 Logic

In the words of John Stuart Mill (1843), logic is “the science of reasoning, as well as

an art, founded on that science” (p. 18). He points out that the most central entity of

logic is the statement, called a proposition:

The answer to every question which it is possible to frame, is contained in a proposition, or

assertion. Whatever can be an object of belief, or even of disbelief, must, when put into

words, assume the form of a proposition. All truth and all error lie in propositions. What, by

a convenient misapplication of an abstract term, we call a truth, is simply a true proposition.

(p. 27)

The central role of propositions indicates the importance of linguistics in phi-

losophy. Propositions are evaluated for their truth, and thus, assigned a truth-value

because knowledge and insight is based on true statements.

Consider the universe of discourse in logic: The set of possible statements or

propositions, P. Logicians believe that there are different levels of truth, usually

two (true or false); in the general case, there is a set, T , of possible truth-values that

can be assigned to propositions. Thus, the proposition p∈P is a meaningful piece

of information to which a truth-value, τ pð Þ∈ T , can be assigned. The

corresponding mapping of τ : P ! T from propositions P to truth-values T is

called a truth function.
In general logic, operators can be applied to propositions. A unary operator,

O1 : P1 ! T , maps a single proposition into a set of transformed truth-values. Accord-

ingly, a binary operator,O2 : P1 � P2 ! T , assigns a truth-value to a combination of

two propositions, and an n-ary operator,On : P1 � � � � � Pn ! T , is a mapping of

a combination of n propositions to a new truth-value.

The logic of two-valued propositions is the science and art of reasoning about

statements that can be either true or false. In the case oftwo-valued logic, or

classical logic (CL), the set of possible truth values, T CL :¼ true; falsef g, contains
only two elements, which partitions the class of imaginable propositions P into

exactly two subclasses: the class of false propositions and the class of true ones.

With two truth-values, there are four (22) possible unary logical operators;

however, there is only one possible non-trivial unary operator other than identity,

truth, and falsehood: A proposition,p∈P, can be negated (not p), which inverts the
truth-value of the original proposition. Accordingly, for a combination of two

propositions, p and q, each with two truth-values, there are 16 (22
2

) possible binary

operators. The most common binary logical operators are disjunction, conjunction,

implication, and equivalence: A conjunction of two propositions, p and q, is true if
both propositions are true. A disjunction of two propositions, p or q, is true if one of
the propositions is true. An implication of q by p is true if, whenever p is true, q is true
as well. An equivalence of two propositions is true if p implies q and q implies p.

Classical logic is often formalized in the form of a propositional calculus. The

syntax of classical propositional calculus is described by the concept of variables,

unary and binary operators, formulae, and truth functions. Every proposition is

represented by a variable (e.g., p); every proposition and every negation of a

8 2 Fuzziness and Induction



proposition is a term; every combination of terms by logical operators is a formula;

terms and formulae are themselves propositions; negation of the proposition p is

represented by Øp; conjunction of the two propositions p and q is represented by

p ^ q; disjunction of the two propositions p and q is represented by p _ q;
implication of the proposition q by the proposition p is represented by p ) q;
equivalence between the two propositions p and q is represented by p � q; and

there is a truth function, τCL : P ! T CL, mapping from the set of propositions p into
the set of truth values T . The semantics of propositional calculus are defined by the

values of the truth function, as formalized in Formula (2.1) through Formula (2.5).

τCL Øpð Þ :¼ if τ pð Þ ¼ trueð Þ false

else true:

�
ð2:1Þ

τCL p ^ qð Þ :¼ if
�
τ pð Þ ¼ τ

�
q
� ¼ true

�
true

else false:

�
ð2:2Þ

τCL p _ qð Þ :¼ if
�
τ pð Þ ¼ τ

�
q
� ¼ false

�
false

else true:

�
ð2:3Þ

τCL p ) qð Þ :¼ τCL Øp _ qð Þ ð2:4Þ
τCL p � qð Þ :¼ τCL p ) q ^ q ) pð Þ ð2:5Þ

George Boole (1847) realized that logic can be calculated using the numbers

0 and 1 as truth values. His conclusion was that logic is mathematical in nature:

I am then compelled to assert, that according to this view of the nature of Philosophy, Logic

forms no part of it. On the principle of a true classification, we ought no longer to associate

Logic and Metaphysics, but Logic and Mathematics. (p. 13)

In Boole’s mathematical definition of logic, the numbers 1 and 0 represents the

truth-values and logical connectives are derived from arithmetic operations: sub-

traction from1 as negation and multiplication as conjunction. All other operators

can be derived from these two operators through application of the laws of logical

equivalence. Thus, in Boolean logic (BL), the corresponding propositional calculus
is called Boolean algebra, stressing the conceptual switch from metaphysics to

mathematics. Its syntax is defined in the same way as that of CL, except that the

Boolean truth function, τBL : P ! T BL, maps from the set of propositions into the set

of Boolean truth values, T BL :¼ 0; 1f g, that is, the set of the two numbers 0 and 1.

The Boolean truth function τBL defines the semantics of Boolean algebra. It is

calculated using multiplication as conjunction and subtraction from 1 as negation,

as formalized in Formula (2.6) through Formula (2.8). Implication and equivalence

can be derived from negation and disjunction in the same way as in classical

propositional calculus.
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τBL Øpð Þ :¼ 1� τBL pð Þ ð2:6Þ
τBL p ^ qð Þ :¼ τBL pð Þ � τBL qð Þ ð2:7Þ

τBL p _ qð Þ :¼ Ø
�
Øp ^ Øq

�
¼ 1� �

1� τBL pð Þ� � �1� τBL
�
q
�� ð2:8Þ

2.1.2 Classification

Class logic, as defined by Glubrecht, Oberschelp, and Todt (1983), is a logical

system that supports statements applying a classification operator. Classes of

objects can be defined according to logical propositional functions. According to

Oberschelp (1994), a class, C ¼ {i ∈ U | Π(i)}, is defined as a collection of

individuals, i, from a universe of discourse, U, satisfying a propositional function,

Π, called the classification predicate. The domain of the classification operator,

{. |.} : ℙ ! U*, is the class of propositional functions ℙ and its range is the

powerclass of the universe of discourseU*, which is the class of possible subclasses

of U. In other words, the class operator assigns subsets of the universe of discourse
to propositional functions. A universe of discourse is the set of all possible

individuals considered, and an individual is a real object of reference. In the

words of Bertrand Russell (1919), a propositional function is “an expression

containing one or more undetermined constituents, such that, when values are

assigned to these constituents, the expression becomes a proposition” (p. 155).

In contrast, classification is the process of grouping individuals who satisfy

the same predicate into a class. A (Boolean) classification corresponds to a mem-

bership function, μC : U ! {0, 1}, which indicates with a Boolean truth-value

whether an individual is a member of a class, given the individual’s classification

predicate. As shown by Formula (2.9), the membership μ of individual i in class

C ¼ {i ∈ U | Π(i)} is defined by the truth-value τ of the classification predicate

Π(i). In Boolean logic, the truth-values are assumed to be certain. Therefore,

classification is sharp because the truth values are either exactly 0 or exactly 1.

μC ið Þ :¼ τ Π ið Þð Þ∈ 0; 1f g ð2:9Þ

Usually, the classification predicate that defines classes refers to attributes of

individuals. For example, the class “tall people” is defined by the predicate “tall,”

which refers to the attribute “height.” An attribute, X, is a function that character-

izes individuals by mapping from the universe of discourse U to the set of possible

characteristics χ (Formula 2.10).

X : U ! χ ð2:10Þ

There are different types of values encoding characteristics. Categorical attri-
butes have a discrete range of symbolic values. Numerical attributes have a range of
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numbers, which can be natural or real. Boolean attributes have Boolean truth-values
{0, 1} as a range. Ordinal attributes have a range of categories that can be ordered.

On one hand, the distinction between univariate and multivariate classification,

the variety, depends on the number of attributes considered for the classification

predicate. The dimensionality of the classification, on the other hand, depends on

the number of dimensions, or linearly independent attributes, of the classification

predicate domain.

In a univariate classification (UC), the classification predicate Π refers to one

attribute, X, which is true for an individual, i, if the feature X(i) equals a certain

characteristic, c ∈ χ.

μUC ið Þ :¼ τBL X ið Þ ¼ cð Þ ð2:11Þ

In a multivariate classification (MVC), the classification predicate refers to

multiple element attributes. The classification predicate is true for an individual,

i, if an aggregation, a, of several characteristic constraints has a given value,

c ∈ χ.

μMVC ið Þ :¼ τBL a X1 ið Þ, � � �,Xn ið Þð Þ ¼ cð Þ ð2:12Þ

A multidimensional classification (MDC) is a special case of a multivariate

classification that refers to n -tuples of attributes, such that the resulting class is

functionally dependent on the combination of all n attributes.

μMDC ið Þ :¼ τBL
X1 ið Þ
⋮

Xn ið Þ

2
4

3
5 ¼

C1

⋮
Cm

2
4

3
5

0
@

1
A ð2:13Þ

This distinction between multivariate and multidimensional classification is

necessary for the construction of classification functions. Multivariate classifica-

tions can be derived as functional aggregates of one-dimensional membership

functions, in which the influence of one attribute to the resulting aggregate does

not depend on the other attributes. In contrast, in multidimensional classification,

the combination of all attributes determines the membership value, and thus, one

attribute has different influences on the membership degree for different combina-

tions with other attribute values. Therefore, multidimensional classifications need

multidimensional membership functions that are defined on n -tuples of possible

characteristics.

2.1 Deduction 11



2.2 Fuzziness

There are many misconceptions about fuzzy logic. Fuzzy logic is not fuzzy. Basically,

fuzzy logic is a precise logic of imprecision and approximate reasoning. (Zadeh, 2008,

p. 2051)

Fuzziness, or vagueness (Sorensen, 2008), is an uncertainty regarding concept

boundaries. In contrast to ambiguous terms, which have several meanings, vague

terms have one meaning, but the extent of it is not sharply distinguishable. For

example, the word tall can be ambiguous, because a tall cat is usually smaller than a

small horse. Nevertheless, the disambiguated predicate “tall for a cat” is vague,

because its linguistic concept does not imply a sharp border between tall and

small cats.

Our brains seem to love boundaries. Perhaps, making sharp distinctions quickly

was a key cognitive ability in evolution. Our brains are so good at recognizing

limits, that they construct limits where there are none. This is what many optical

illusions are based on: for example, Kaniza’s (1976) Illusory Square (Fig. 2.1).

An ancient symbol of sharp distinction between classes is the yin and yang

symbol (Fig. 2.2). It symbolizes a dualistic worldview—the cosmos divided into

light and dark, day and night, and so on.

Nevertheless, in reality, the transition between light and dark is gradual during

the 24 h of a day. This idea of gradation of our perceptions can be visualized by a

fuzzy yin and yang symbol (Fig. 2.3). Sorensen (2008) explains that many-valued

logics have been proposed to solve the philosophical implications of vagueness.

One many-valued approach to logic is fuzzy logic, which allows infinite truth-

values in the interval between 0 and 1.

In the next section, introducing membership functions, fuzzy sets, and fuzzy

propositions are discussed; these are the bases for fuzzy logic, which in fact, is a

precise logic for fuzziness. Additionally, it is shown how fuzzy classifications are

derived from fuzzy propositional functions.

2.2.1 Fuzzy Logic

Lotfi Zadeh (2008) said, “Fuzzy logic is not fuzzy” (p. 2751). Indeed, it is a precise

mathematical concept for reasoning about fuzzy (vague) concepts. If the domain of

those concepts is ordinal, membership can be distinguished by its degree. In
classical set theory, an individual, i, of a universe of discourse, U, is either

completely a member of a set or not at all. As previously explained, according to

Boolean logic, the membership function μS : U ! {0, 1}, for a crisp set S, maps

from individuals to sharp truth-values. As illustrated in Fig. 2.4, a sharp set (the big

dark circle) has a clear boundary, and individuals (the small bright circles) are

either a member of it or not. However, one individual is not entirely covered by the

big dark circle, but is also not outside of it.
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In contrast, a set is called fuzzy by Zadeh (1965) if individuals can have a gradual
degree of membership to it. In a fuzzy set, as shown by Fig. 2.5, the limits of the set

are blurred. The degree of membership of the elements in the set is gradual,

illustrated by the fuzzy gray edge of the dark circle. The membership function,

μF : U ! [0, 1], for a fuzzy set, F, indicates the degree to which individual i is a
member of F in the interval between 0 and 1. In Fig. 2.4, the degree of membership

of the small circles i is defined by a normalization n of their distance d from the

center c of the big dark circle b, μb(i) ¼ n(d(i, c)). In the same way as in classical

set theory, set operators can construct complements of sets and combine two sets by

union and intersection. Those operators are defined by the fuzzy membership

function. In the original proposal of Zadeh (1965), the set operators are defined

by subtraction from 1, minimum and maximum. The complement,F, of a fuzzy set,
F, is derived by subtracting its membership function from 1; the union of two sets,

F [ G, is derived from the maximum of the membership degrees; and the inter-

section of two sets, F \ G, is derived from the minimum of the membership

degrees.

Accordingly, fuzzy subsets and fuzzy power sets can be constructed. Consider

the two fuzzy sets A and B on the universe of discourse U. In general, A is a fuzzy

subset of B if the membership degrees of all its elements are smaller or equal to the

membership degrees of elements in B (Formula 2.14). Thus, a fuzzy power set, B�e,
of a (potentially fuzzy) set B is the class of all its fuzzy subsets (Formula 2.15).

Fig. 2.1 There is no square.

Adapted from “Subjective

Contours” by G. Kaniza,

1976, Copyright 1976 by

Scientific American, Inc
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Ae�B :¼ 8x∈U : μA xð Þ � μB xð Þ ð2:14Þ

B�e :¼ Ae�U
�� Ae�B

� �
ð2:15Þ

With the tool of fuzzy set theory in hand, the sorites paradox cited in the

introduction (Chap. 1) can be tackled in a much more satisfying manner. A heap

of wheat grains can be defined as a fuzzy subset, Heap e� ℕ, of natural numbers ℕ
of wheat grains. A heap is defined in the English language as “a great number or

large quantity” (merriam-webster.com, 2012b). For instance, one could agree that

1,000 grains of wheat is a large quantity, and between 1 and 1,000, the “heapness”

of a grain collection grows logarithmically. Thus, the membership function of the

number of grains n ∈ ℕ in the fuzzy setHeap can be defined according to Formula

(2.16). The resulting membership function is plotted in Fig. 2.6.

Fig. 2.3 Shades of grey:
fuzzy yin and yang symbol

with a gradation between

opposites, representing

metaphysical monism

Fig. 2.2 Black or white:

conventional yin and yang

symbol with a sharp

distinction between

opposites, representing

metaphysical dualism.

Adapted from http://www.

texample.net/tikz/

examples/yin-and-yang/

(accessed 02.2012) with

permission (creative

commons license CC BY

2.5)
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μHeap nð Þ :¼
0 if n ¼ 0

1 if n > 1000

0:1448ln nð Þ else:

8<
: ð2:16Þ

Based on the concept of fuzzy sets, Zadeh (1975a) derived fuzzy propositions
(FP) for approximate reasoning: A fuzzy proposition has the form “x is L,” where

Fig. 2.5 A visualization of

a fuzzy set

Fig. 2.4 A visualization of

a classical set with sharp

boundaries
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x is an individual of a universe of discourse U and L is a linguistic term, defined as a
fuzzy set on U. As stated by Formula (2.17), the truth-value τFL of a fuzzy

proposition is defined by the degree of membership μL of x in the linguistic term L.

τFP x is Lð Þ :¼ μL xð Þ ð2:17Þ

If A is an attribute of x, a fuzzy proposition can also refer to the corresponding

attribute value, such as x is L :¼ A (x) is L. The fuzzy set L on U is equivalent to the

fuzzy set L on the domain of the attribute, or dom(A). In fact, the set can be defined
on arbitrarily deep-nested attribute hierarchies concerning the individual. As an

example, let us look at the fuzzy proposition, “Mary is blond.” In this sentence, the

linguistic term “blond” is a fuzzy set on the set of people, which is equivalent to a

fuzzy set blond on the color of people’s hair (Formula 2.18).

τFP “Mary is blond”ð Þ ¼ μblond Maryð Þ � μblond color hair Maryð Þð Þð Þ ð2:18Þ

Fuzzy propositions (FP) can be combined to construct fuzzy formulae using the

usual logic operators not (Ø), and (^), and or (_), for which the semantics are

defined by the fuzzy truth function τFP : F ! [0, 1], mapping from the class of

fuzzy propositions F into the set of Zadehan truth values in the interval between

1 and 0. Let “x is P” and “x is Q” be two fuzzy propositions on the same individual.

Then their combination to fuzzy formulae is defined as follows (Formula 2.19

through Formula 2.21): negation by the inverse of the corresponding fuzzy set,

conjunction by intersection of the corresponding fuzzy sets, and disjunction by

union of the corresponding fuzzy sets.

τFP Ø x is Pð Þð Þ :¼ μP xð Þ; ð2:19Þ

τFP x is P ^ x is Qð Þ :¼ μP\Q xð Þ; ð2:20Þ

τFP x is P _ x is Qð Þ :¼ μP[Q xð Þ ð2:21Þ

Zadeh’s fuzzy propositions are derived from statements of the form “X is Y.”

They are based on the representation operator is : U � U�e ! F mapping from the

Fig. 2.6 Fuzzy set theory

applied to the sorites

paradox
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universe U of discourse and its fuzzy powersetU�e to the class of fuzzy propositions
F . Consequently, fuzzy propositions in the sense of Zadeh are limited to statements

about degrees of membership in a fuzzy set.

Generally, logic with fuzzy propositions—or more precisely, a propositional

logic with Zadehan truth values in the interval between 0 and 1, a “Zadehan Logic”
(ZL)—can be viewed as a generalization of Boole’s mathematical analysis of logic

to a gradual concept of truth. In that sense, ZL is a simple generalization of Boolean

logic (BL), in which the truth value of any proposition is not only represented by

numbers, but also can be anywhere in the interval between 0 and 1.

According to the Stanford Encyclopedia of Philosophy (Hajek, 2006), fuzzy

logic, in the narrow sense, is a “symbolic logic with a comparative notion of truth

developed fully in the spirit of classical logic” (“Fuzzy Logic,” paragraph3). If ZL is

viewed as a generalization of BL, fuzzy propositions of the form “X is Y” are a

special case, and propositions and propositional functions of any form can have

gradual values of truth. Accordingly, ZL is defined by the truth function τZL : P
! T ZL mapping from the class of propositionsP to the set of Zadehan truth-values

T ZL ¼ 0; 1½ 	. Consequently, fuzzy set membership is a special case of fuzzy

proposition, and the degree of membership of individual x in another individual

y can be defined as the value of truth of the fuzzy proposition x ∈ y
(Formula 2.22).

μy xð Þ :¼ τZL x∈ yð Þ ð2:22Þ

The Zadehan truth function τZL defines the semantics of ZL. As in Boolean

algebra, its operators can be defined by subtraction from 1 as negation, and

multiplication as conjunction, as formalized in Formula (2.23) and Formula

(2.24). Disjunction, implication, and equivalence can be derived from negation

and conjunction in the same way as in Boolean logic.

τZL Øpð Þ :¼ 1� τZL pð Þ ð2:23Þ
τZL p ^ qð Þ :¼ τZL pð Þ � τZL qð Þ ð2:24Þ

In that light, any proposition with an uncertain truth-value smaller than 1 or

greater than 0 is a fuzzy proposition. Additionally, every function with the range

[0,1] can be thought of as a truth function for a propositional function. For example,

statistical likelihood L(y|x) can be seen as a truth function for the propositional

function, “y is likely if x,” as a function of x. This idea is the basis for IFC proposed

in the next section. The usefulness of this generalization is shown in the chapter on

applications, in which fuzzy propositions such as “customers with characteristic

X are likely to buy product Y” are assigned truth-values that are computed using

quantitative prediction modeling.

2.2 Fuzziness 17



2.2.2 Fuzzy Classification

A fuzzy class, eC :¼
 i∈U
�� eΠ ið Þ� �

, is defined as a fuzzy set eC of individuals i,

whose membership degree is defined by the Zadehan truth-value of the propositioneΠ ið Þ. The classification predicate, eΠ , is a propositional function interpreted in ZL.

The domain of the fuzzy class operator, 
 :
��:� �

: ℙ ! U�e, is the class of proposi-
tional functions, ℙ, and the range is the fuzzy power set, U�e (the set of fuzzy

subsets) of the universe of discourse, U. In other words, the fuzzy class operator

assigns fuzzy subsets of the universe of discourse to propositional functions.

Fuzzy classification is the process of assigning individuals a membership degree

to a fuzzy set, based on their degrees of truth of the classification predicate. It has

been discussed, for example, by Zimmermann (1997), Del Amo et al. (1999), and

Meier et al. (2008). A fuzzy classification is achieved by a membership function,

μeC : U ! 0; 1½ 	, that indicates the degree to which an individual is a member of a

fuzzy class, eC, given the corresponding fuzzy propositional function, eΠ . This

membership degree is defined by the Zadehan truth-value of the corresponding

proposition, eΠ ið Þ, as formalized in Formula (2.25).

μeC ið Þ :¼ τZL eΠ ið Þ� � ð2:25Þ

In the same way as in crisp classification, the fuzzy classification predicate refers

to attributes of individuals. Additionally, Zadehan logic introduces two new types

of characteristics. Zadehan attributes have a range of truth values represented by

T ZL :¼ 0; 1½ 	. Linguistic attributes have a range of linguistic terms (fuzzy sets)

together with the Zadehan truth-value of membership in those terms (Zadeh,

1975b).

In a univariate fuzzy classification (UF), the fuzzy classification predicate eΠ
refers to one attribute, X, and it corresponds to the membership degree of the

attribute characteristic X(i) in a given fuzzy restriction (Zadeh, 1975a), R∈ χe�,
which is a fuzzy subset of possible characteristics χ (Formula 2.26).

μUF ið Þ :¼ τZL X ið Þ is Rð Þ ð2:26Þ

In a multivariate fuzzy classification (MVF), eΠ refers to multiple attributes. The

truth function of the classification predicate for an individual, i, equals to an

aggregation, a, of several fuzzy restrictions of multiple attribute characteristics,

Xj(i), j ¼ 1 . . . n (Formula 2.27).

μMVF ið Þ :¼ a τZL X1 ið Þ is R1, . . . ,Xn ið Þ is Rnð Þ� � ð2:27Þ

In a multidimensional fuzzy classification (MDF), eΠ refers to n -tuples of

functionally independent attributes. The membership degree of individuals in a
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multidimensional class is based on an n -dimensional fuzzy restriction, Rn

(Formula 2.28), which is a multidimensional fuzzy set on the Cartesian product

of the attribute ranges with a multidimensional membership function of

μMDF : range (X1) � . . . � range (Xn) ! [0, 1].

μMDF ið Þ :¼ τZL
X1 ið Þ
⋮

Xn ið Þ

2
4

3
5is Rn

0
@

1
A ð2:28Þ

2.3 Induction

Given a set of certainly true statements, deduction works fine. The problem is that

the only certainty philosophy can offer is Descartes’ “I think therefore I am”

proposition; however, postmodern philosophers are not so sure about the

I anymore (Precht, 2007, p. 62 ff). Therefore, one should be given a tool to reason

under uncertainty, and this tool is induction. In this chapter, inductive logic is

analyzed, the application of induction to fuzzy classification is discussed, and a

methodology for membership function induction using normalized ratios and

differences of empirical conditional probabilities and likelihoods is proposed.

2.3.1 Inductive Logic

Traditionally, induction is defined as drawing general conclusions from particular

observations. Contemporary philosophy has shifted to a different view because, not

only are there inductions that lead to particular conclusions, but also there are

deductions that lead to general conclusions. According to Vickers (2009) in the

Stanford Encyclopedia of Philosophy (SEP), it is agreed that induction is a form of

inference that is contingent and ampliative (“The contemporary notion of induc-

tion”, paragraph 3), in contrast to deductive inference, which is necessary and

explicative. Induction is contingent, because inductively inferred propositions are

not necessarily true in all cases. And it is ampliative because, in Vickers words,

“induction can amplify and generalize our experience, broaden and deepen our

empirical knowledge”(“The contemporary notion of induction”, paragraph 3). In

another essay in the SEP, inductive logic is defined as “a system of evidential

support that extends deductive logic to less-than-certain inferences” (Hawthorne,

2008, “Inductive Logic,” paragraph 1). Hawthorne admits that there is a degree of

fuzziness in induction: In an inductive inference, “the premises should provide
some degree of support for the conclusion” (“Inductive Logic,” para. 1). The degree
of support for an inductive inference can thus be viewed as a fuzzy restriction of

possible inferences, in the sense of Zadeh (1975a). Vickers (2009) explains that the

problem of induction is two-fold: The epistemic problem is to define a method to

distinguish appropriate from inappropriate inductive inference. The metaphysical
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problem is to explain in what substance the difference between reliable and

unreliable induction actually exists.

Epistemologically, the question of induction is to find a suitable method to infer

propositions under uncertainty. State of the art methods rely on empirical proba-

bilities or likelihoods. There are many interpretations of probability (Hájek, 2009).

For the context of this thesis, one may agree that a mathematical probability, P(A)
numerically represents how probable it is that a specific proposition A is true:

P(A) � τZL(" A is probable "); and that the disjunction of all possible propositions,

the probability space Ω, is certain, i.e., P(Ω) ¼ 1.

In practice, probabilities can be estimated by relative frequencies, or sampled

empirical probabilities p in a sample of n observations, defined by the ratio between
the number of observations, i, in which the proposition Ai is true, and the total

number of observations (Formula 2.29).

P Að Þ � p Að Þ :¼
Xn

i¼1
τ Aið Þ

n
ð2:29Þ

A conditional probability (Weisstein, 2010a) is the probability for an outcome x,
given that y is the case, as formalized in Formula (2.30).

P x
�� y� � ¼ P x ^ yð Þ

P yð Þ ð2:30Þ

Empirical sampled conditional probabilities can be applied to compute likeli-

hoods. According to James Joyce, “in an unfortunate, but now unavoidable, choice

of terminology, statisticians refer to the inverse probability PH(E) as the ‘likeli-

hood’ of H on E” (Joyce, 2003, “Conditional Probabilities and Bayes’ Theorem,”

paragraph 5). The likelihood of the hypothesis H is an estimate of how probable the

evidence or known data E is, given that the hypothesis is true. Such a probability is

called a “posterior probability” (Hawthorne, 2008, “inductive Logic,” paragraph 5),

that is, a probability after measurement, shown by Formula (2.31).

L H
�� E� �

:¼ p E
�� H� � ð2:31Þ

In the sense of Hawthorne (2008), the general law of likelihood states that, for a

pair of incompatible hypotheses H1 and H2, the evidence E supports H1 over H2, if

and only if p(E |H1) > p(E |H2) The likelihood ratio (LR) measures the strength of

evidence for H1 over H2 (Formula 2.32). Thus, the “likelihoodist” (sic; Hawthorne,

2008, “Likelihood Ratios, Likelihoodism, and the Law of Likelihood,” paragraph

5) solution to the epistemological problem of induction is the likelihood ratio as

measure of support for inductive inference.
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LR H1 > H2

�� E� �
:¼ L H2

��E� �
L H1

��E� � ð2:32Þ

According to Hawthorne, the prior probability of a hypothesis, p0(H ), that is, an

estimated probability prior to measurement of evidence E, plays an important role

for inductive reasoning. Accordingly, Bayes’ theorem can be interpreted and

rewritten using measured posterior likelihood and prior probability in order to

apply it to the evaluation of scientific hypotheses. According to Hawthorne

(2008), the posterior probability of hypothesis H conditional to evidence E is

equal to the product of the posterior likelihood of H given E and the prior

probability of H, divided by the (measured) probability of E (Formula 2.33).

p H
�� E� � ¼ L H

�� E� � � p0 Hð Þ
p Eð Þ ð2:33Þ

What if there is fuzziness in the data, in the features of observations, or in the

theories? How is likelihood measured when the hypothesis or the evidence is fuzzy?

If this fuzziness is ordinal, that is, if the extent of membership in the fuzzy terms can

be ordered, a membership function can be defined, and an empirical probability of

fuzzy events can be calculated. Analogous to Dubois and Prade (1980), a fuzzy

event eA in a universe of discourse U is a fuzzy set on U with a membership function

μeA : U ! 0; 1½ 	. For categorical elements of U, the estimated probability after

n observations is defined as the average degree of membership of observations

i in eA, as formalized in Formula (2.34).

P eA� 	
� p eA� 	

¼
X n

i¼1
μeA ið Þ

n
ð2:34Þ

By application of Formula (2.34) to Formula (2.31), the likelihood of ordinal

fuzzy hypothesis eH , given ordinal fuzzy evidence eE, can be defined as a conditional
probability of fuzzy events, as shown in Formula (2.35).

L eH �� eE� 	
¼ p eE �� eH� 	

¼
Xn

i¼1
μeH\eE ið ÞXn

i¼1
μeH ið Þ

ð2:35Þ

The question of the metaphysical problem of induction is: what is the substance

of induction? In what kind of material does the difference between reliable and

unreliable inductive inference exist? The importance of this question cannot be

underestimated, since reliable induction enables prediction. A possible answer

could be that the substance of an induction is the amount of information contained

in the inference. This answer presupposes that information is a realist category, as

suggested by Chmielecki (1998). According to Shannon’s information theory
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(Shannon, 1948), the information contained in evidence x about hypothesis y is

equal to the difference between the uncertainty (entropy), H(y), about the hypoth-
esis y and the resulting uncertainty, Hx(y), after observation of the evidence x,
I(x, y) ¼ H(y) � Hx(y) ¼ ΣxΣyp(x ^ y)log2p(x ^ y)/( p(x)p(y)). Shannon’s quan-
tity of information is defined in terms of joint probabilities. However, by applica-

tion of Shannon’s theory, the metaphysical problem of induction is transferred to a

metaphysical problem of probabilities because, according to Shannon, the basic

substance of information is the probability of two signals occurring simultaneously

compared to the probability of occurring individually. (One could link this solution

to the concept of quantum physical particle probability waves [Greene, 2011], but

this would go beyond the scope of this thesis and would be highly speculative;

therefore, this link is not explored here. Suffice it to state that probability apparently

is a fundamental construct of matter and waves as well as of information and

induction.)

2.3.2 Inductive Classification

Inductive classification is the process of assigning individuals to a set based on a

classification predicate derived by an inductive inference. Inductive classification

can be automated as a form of supervised machine learning (Witten & Frank, 2005):

a class of processes (algorithms or heuristics) that learn from examples to decide

whether an individual, i, belongs to a given class, y, based on its attributes.

Generally, supervised machine learning processes induce a model from a dataset,

which generalizes associations in the data in order to provide support for inductive

inference. This model can be used for predicting the class membership of new data

elements. Induced classification models, called classifiers, are first trained using a

training set with known class membership. Then, they are applied to a test or

prediction set in order to derive class membership predictions. Examples of clas-

sification learning algorithms that result in classifications are decision trees, clas-

sification rules, and association rules. In those cases, the model consists of logical

formulae of attribute values, which predict a crisp class value.

Data are signs (signals) that represent knowledge such as numbers, characters, or

bits. The basis for automated data analysis is a systematic collection of data on

individuals. The most frequently used data structure for analytics is the matrix, in

which every individual, i (a customer, a transaction, a website, etc.), is represented

by a row, and every attribute, Xk, is represented by a column. Every characteristic,

Xk(i), of individual i for attribute Xk is represented by one scalar value within the

matrix.

A training dataset d is an m � (n + 1) matrix with m rows, n columns for

X1, . . ., Xn and a column Y indicating the actual class membership. The columns

Xk, 1 � k � n are called analytic variables, and Y is called the target variable,
which indicates membership in a target class y. In case of a binary classification, for
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each row index i, the label Y(i) is equal to 1 if and only if individual i is in class

y (Formula 2.36).

Y ið Þ :¼ 1 if i∈ y
0 else:

�
ð2:36Þ

A machine learning process for inductive sharp classification generates a model

My(i), mapping from the Cartesian product of the analytic variable ranges into the

set {0, 1}, indicating inductive support for the hypothesis that i ∈ y. As discussed
in the section on induction, the model should provide support for inductive infer-

ences about an individual’s class membership: Given My(i) ¼ 1, the likelihood of

i ∈ y should be greater than the likelihood of i =2 y.
The inductive model My can be applied for prediction to a new dataset with

unknown class indicator, which is either a test set for performance evaluation or a

prediction set, where the model is applied to forecast class membership of new data.

The test set or prediction set d0 has the same structure as the training set d, except
that the class membership is unknown, and thus, the target variable Y is empty. The

classifier My, derived from the training set, can be used for predicting the class

memberships of representations of individuals i ∈ d. The model output prediction

My(i) yields an inductive classification defined by {i | My(i) ¼ 1}.

In order to evaluate the quality of prediction of a crisp classifier model, several

measures can be computed. In this section, likelihood ratio and Pearson correlation

are mentioned. The greater the ratio between likelihood for target class member-

ship, given a positive prediction, and the likelihood for target class membership,

given a negative prediction, the better the inductive support of the model. Thus, the

predictive model can be evaluated by the likelihood ratio of target class member-

ship given the model output (Formula 2.37).

LR Y ið Þ ¼ 1
�� My ið Þ ¼ 1

� �
:¼ p My ið Þ ¼ 1

�� Y ið Þ ¼ 1
� �

p
�
My ið Þ ¼ 1

�� Y ið Þ ¼ 0
� ð2:37Þ

Working with binary or Boolean target indicators and model indicators allows

the evaluation of predictive quality by a measure of correlation of the two variables

My and Y (Formula 2.38). The correlation between two numerical variables can be

measured by the Pearson correlation coefficient as the ratio between the covariance

of the two variables and the square root of the product of individual variances

(Weisstein, 2010b).

corr My; Y
� � ¼ E My � avg My

� �� �
Y � avg Yð Þð Þ� �

stddev My

� � � stddev Yð Þ ð2:38Þ

The advantage of the correlation coefficient is its availability in database sys-

tems. Every standard SQL (structured query language) database has an implemen-

tation of correlation as an aggregate function. Thus, using the correlation
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coefficient, evaluating the predictive performance of a model in a database is fast

and simple. However, it is important to stress that evaluating predictions with a

measure of correlation is only meaningful if the target variable as well as the

predictive variable are Boolean, Zadehan, or numeric in nature. It will not work
for ordinal or categorical target classes, except if they are transformed into a set of

Boolean variables.

For example, in database marketing, the process of target group selection uses

classifiers to select customers who are likely to buy a certain product. In order to do

this, a classifier model can be computed in the following way: Given set of

customers C, we know whether they have bought product A or not. Let c be an

individual customer, and CA be the set of customers who bought product A. Then,
the value Y(c) of target variable Y for customer c is defined in Formula (2.39).

Y cð Þ ¼ 1 if c∈CA

0 else:

�
ð2:39Þ

The analytic variables for customers are selected from every known customer

attribute, such as age, location, transaction behavior, recency, frequency, and

monetary value of purchase. The aim of the classifier induction process is to learn

a model, MCA
, that provides a degree of support for the inductive inference that a

customer is interested in the target product A. This prediction, MCA
cð Þ∈ 0; 1f g,

should provide a better likelihood to identify potential buyers of product A, and it

should optimally correlate with the actual product usage of existing and future

customers.

2.4 Inductive Fuzzy Classification

The understanding of IFC in the proposed research approach is an inductive

gradation of the degree of membership of individuals in classes. In many interpre-

tations, the induction step consists of learning fuzzy rules (e.g., Dianhui, Dillon, &
Chang, 2001; Hu, Chen, & Tzeng, 2003; Roubos, Setnes, & Abonyi, 2003; Wang &

Mendel, 1992). In this thesis, IFC is understood more generally as inducing

membership functions to fuzzy classes and assigning individuals to those classes.

In general, a membership function can be any function mapping into the interval

between 1 and 0. Consequently, IFC is defined as the process of assigning individ-

uals to fuzzy sets for which membership functions are generated from data so that

the membership degrees are based on an inductive inference.

An inductive fuzzy class, y0, is defined by a predictive scoring model, My : U
! [0, 1] , for membership in a class, y. This model represents an inductive

membership function for y0, which maps from the universe of discourse U into

the interval between 0 and 1 (Formula 2.40).
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μy0 : U ! 0; 1½ 	 :¼ My ð2:40Þ

Consider the following fuzzy classification predicate P(i, y) :¼ “i is likely a

member of y.” This is a fuzzy proposition (Zadeh, 1975a) as a function of i and y,
which indicates that there is inductive support for the conclusion that individual

i belongs to class y. The truth function, τZL, of this fuzzy propositional function can
be defined by the membership function of an inductive fuzzy class, y0. Thus, P(i, y)
is a fuzzy restriction on U defined by μy0 (Formula 2.41).

τZL “i is likely a member of y”ð Þ :¼ My ið Þ ð2:41Þ

In practice, any function that assigns values between 0 and 1 to data records can

be used as a fuzzy restriction. The aim of IFC is to calculate a membership function

to a fuzzy set of likely members in the target class. Hence, any type of classifier

with a normalized numeric output can be viewed as an inductive membership

function to the target class, or as a truth function for the fuzzy proposition P(i, y).
State of the art methods for IFC in that sense include linear regression, logistic

regression, naı̈ve Bayesian classification, neural networks, fuzzy classification

trees, and fuzzy rules. These are classification methods yielding numerical pre-

dictions that can be normalized in order to serve as a membership function to the

inductive fuzzy class y0 (Formula 2.42).

y
0
:¼ i∈U

�� i is likely a member of y
� � ð2:42Þ

2.4.1 Univariate Membership Function Induction

This section describes methods to derive membership functions for one variable

based on inductive methods. First, unsupervised methods are described, which do

not require learning from a target class indicator. Second, supervised methods for

predictive membership functions are proposed.

Numerical attributes can be fuzzified in an unsupervised way, that is, without a

target variable, by calculating a membership function to a fuzzy class x is a large
number, denoted by the symbol ": the fuzzy set of attribute values that are large

relative to the available data. This membership function, μ" : dom(C) ! [0, 1],

maps from the attribute domain of the target variable into the set of Zadehan truth

values. This unsupervised fuzzification serves two purposes. First, it can be used to

automatically derive linguistic interpretations of numerical data, such as “large” or

“small.” Second, it can be used to transform numerical attributes into Zadehan

target variables in order to calculate likelihoods of fuzzy events. There are two

approaches proposed here to compute a membership function to this class: percen-

tile ranks and linear normalization based on minimum and maximum.

For a numeric or ordinal variable X with a value x E dom(X), the percentile rank
(PR) is equal to the sampled probability that the value of the variable X is smaller

than x. This sampled probability is calculated by the percentage of values in dom(X)
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that are smaller than or equal to x. This sampled probability can be transformed into

a degree of membership in a fuzzy set. Inductively, the sampled probability is taken

as an indicator for the support of the inductive inference that a certain value, Xi, is

large in comparison to the distribution of the other attribute values. The member-

ship degree of x in the fuzzy class “relatively large number”, symbolized by ", is
then defined as specified in Formula (2.43).

μ" xð Þ :¼ p X < xð Þ ð2:43Þ

For example, customers can be classified by their profitability. The percentile

rank of profitability can be viewed as a membership function of customers in the

fuzzy set " of customers with a high profitability. Figure 2.7 shows an example of an

IFC-PR of customer profitability for a financial service provider.

A simpler variant of unsupervised fuzzification for generating a membership

function for a relatively large number (") is linear normalization (IFC-LN). For a

numerical attribute C, it is defined as the relative distance to the minimal attribute

value, as specified in Formula (2.44).
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μ" C ið Þð Þ :¼ C ið Þ �min Cð Þ
max Cð Þ �min Cð Þ ð2:44Þ

For the membership function induction (MFI) methods in the following sections,

the target variable for supervised induction must be a Zadehan variable, Y : U
! [0, 1] mapping from the universe of discourse (the set of possible individuals)

into the interval of Zadehan truth values between 0 and 1. Thus, Yi) indicates the
degree of membership of individual i in the target class y. In the special case of a

Boolean target class, Yi) is equal to 1 if i ∈ y, and it is equal to 0 if i =2 y. In the

analytic training data, a target class indicator Y can be deduced from data attributes

in the following way:

• If an attribute, A, is Zadehan with a range between 0 and 1, it can be defined

directly as the target variable. In fact, if the variable is Boolean, this implies that

it is also Zadehan, because it is a special case (Formula 2.45).

Zadehan Að Þ ) μy ið Þ :¼ A ið Þ ð2:45Þ

• If an attribute, B, is categorical with a range of n categories, it can be

transformed into n Boolean variables μyk k ¼ 1, 2, . . . , nð Þ, where μyk ið Þ indicates
whether record i belongs to class k, as specified by Formula (2.46).

categorical Bð Þ ) μyk ið Þ∶ ¼ 1 if B ið Þ ¼ k
0 else:

�
ð2:46Þ

• If an attribute, C, is numeric, this thesis proposes application of an unsupervised

fuzzification, as previously specified, in order to derive a Zadehan target vari-

able, as formalized in Formula (2.47). This is called an inductive target
fuzzification (ITF).

numerical Cð Þ ) μy ið Þ :¼ μ" C ið Þð Þ ð2:47Þ

The second approach for univariate membership function induction is super-

vised induction based on a target variable. In order to derive membership functions

to inductive fuzzy classes for one variable based on the distribution of a second

variable, it is proposed to normalize comparisons (ratios and differences) of likeli-

hoods for membership function induction. For example, a normalized likelihood

ratio can represent a membership degree to an inductive fuzzy class.

The basic idea of inductive fuzzy classification based on normalized likelihood
ratios (IFC-NLR) is to transform inductive support of target class membership into

a membership function with the following properties: The higher the likelihood of

i ∈ y in relation to i =2 y, the greater the degree membership of i in y0. For an
attribute X, the NLR function calculates a membership degree of a value x E dom(X)
in the predictive class y0, based on the likelihood of target class membership. The
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resulting membership function is defined as a relation between all values in the

domain of the attribute X and their NLRs.

As discussed in Sect. 2.3.1, following the principle of likelihood (Hawthorne,

2008), the ratio between the two likelihoods is an indicator for the degree of support

for the inductive conclusion that i ∈ y, given the evidence that X(i) ¼ x In order to
transform the likelihood ratio into a fuzzy set membership function, it can be

normalized in the interval between 0 and 1. Luckily, for every ratio, R ¼ A/B,
there exists a normalization, N ¼ A/(A + B), having the following properties:

• N is close to 0 if R is close to 0.

• N is equal to 0.5 if and only if R is equal to 1.

• N is close to 1 if R is a large number.

This kind of normalization is applied to the aforementioned likelihood ratio in

order to derive the NLR function. Accordingly, the membership μ of an attribute

value x in the target class prediction y’ is defined by the corresponding NLR, as

formalized in Formula (2.48).

μy0 xð Þ :¼ NLR y xjð Þ ¼ L y xjð Þ
L y xjð Þ þ L Øy xjð Þ ð2:48Þ

In fact, one can demonstrate that the NLR function is equal to the posterior

probability of y, conditional to x, if both hypotheses y and Øy are assumed to be of

equal prior probability (Formula 2.52), by application of the second form of Bayes’

theorem (Joyce, 2003), as presented in Formula (2.50). The trick is to express the

probability of the evidence p(x) in terms of a sum of products of prior probabilities,

p0, and measured likelihoods, L, of the hypothesis and its alternative by application

of Formula (2.33).

Theorem
NLR y xjð Þ ¼ p y xjð Þ , p0 yð Þ ¼ p0 Øyð Þ ð2:49Þ

Proof

p y
�� x� � ¼ p0 yð ÞL y

�� x� �
p xð Þ

�
c:f: Formula 2:33

�

¼ p0 yð ÞL y
�� x� �

p0 yð ÞL y
�� x� �þ p0 Øyð ÞL Øy

�� x� �


if p xð Þ ¼ p

�
y
�
p
�
x
�� y�þ p

�
Øy

�
p
�
x
�� Øy�

and p yð Þ :¼ p0
�
y
�
and p

�
x
�� y� :¼ L

�
y
�� x��

¼ L y
�� x� �

L y
�� x� �þ L Øy

�� x� � 

if p0 yð Þ :¼: p0

�
Øy

��
¼: NLR y

�� x� �
, q:e:d:

ð2:50Þ

Alternatively, two likelihoods can be compared by a normalized difference, as

shown in Formula (2.51). In that case, the membership function is defined by a
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normalized likelihood difference (NLD), and its application for classification is

called inductive fuzzy classification by normalized likelihood difference
(IFC-NLD). In general, IFC methods based on normalized likelihood comparison
can be categorized by the abbreviation IFC-NLC.

μy0 xð Þ :¼ NLD y xjð Þ ¼ L y xjð Þ � L Øy xjð Þ þ 1

2
ð2:51Þ

If a target attribute is continuous, it can be mapped into the Zadehan domain of

numeric truth-values between 0 and 1, and membership degrees can be computed

by a normalized ratio of likelihoods of fuzzy events. If the target class is fuzzy, for

example because the target variable is gradual, the likelihoods are calculated by

fuzzy conditional relative frequencies based on fuzzy set cardinality (Dubois &

Prade, 1980). Therefore, the formula for calculating the likelihoods is generalized

in order to be suitable for both sharp and fuzzy characteristics. Thus, in the general

case of variables with fuzzy truth-values, the likelihoods are calculated as defined in

Formula (2.52).

L y xjð Þ :¼
Xn

i¼1
μx ið Þμy ið ÞXn

i¼1
μy ið Þ

L Øy xjð Þ :¼
Xn

i¼1
μx ið Þ 1� μy ið Þ� �

Xn

i¼1
1� μy ið Þ� �

ð2:52Þ

Accordingly, the calculation of membership degrees using the NLR function

(Formula 2.52) works for both categorical and fuzzy target classes and for categor-

ical and fuzzy analytic variables. For numerical attributes, the attribute values can

be discretized using quantiles, and a piecewise linear function can be approximated

to average values in the quantiles and the corresponding NLR. A membership

function for individuals based on their attribute values can be derived by aggrega-

tion, as explained in Sect. 2.4.2.

Following the different comparison methods for conditional probabilities

described by Joyce (2003), different methods for the induction of membership

degrees using conditional probabilities are proposed in Table 2.1. They have been

chosen in order to analytically test different Bayesian approaches listed by Joyce

(2003) for their predictive capabilities. Additionally, three experimental measures

were considered: logical equivalence, normalized correlation, and a measure based

on minimum and maximum. In those formulae, x and y are assumed to be Zadehan

with a domain of [0,1] or Boolean as a special case. These formulae are evaluated as

parameters in the meta-induction experiment described in Sect. 4.2.

A method for discretization of a numerical range is the calculation of quantiles

or n-tiles for the range of the analytical variable. A quantile discretization using n-
tiles partitions the variable range into n intervals having the same number of

individuals. The quantile QZ
n (i) for an attribute value Z(i), of a numeric attribute
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Z and an individual i, is calculated using Formula (2.53), where n is the number of

quantiles, m is the total number of individuals or data records, rankZ(i) is the

position of the individual in the list of individuals sorted by their values of attribute

Z, and trunc(r) is the closest integer that is smaller than the real value r.

QZ
n ið Þ :¼ trunc

n

m
rankZ ið Þ � 1ð Þ

� 	
ð2:53Þ

The rank of individual i relative to attribute Z, rankZ(i), in a dataset S is the

number of other individuals, h, that have higher values in attribute Z, calculated
using Formula (2.54).

rankZ ið Þ :¼ h∈ S
�� 8i∈ S : Z hð Þ > Z ið Þ� ��� �� ð2:54Þ

In order to approximate a linear function, the method of two-dimensional

piecewise linear function approximation (PLFA) is proposed. For a list of points

in ℝ2, ordered by the first coordinate, (hx1, y1i, hx2, y2i, . . ., hxn, yni), for every
point hx1, y1i except the last one (i ¼ 1, 2, . . ., n � 1), a linear function, fi(x) ¼
aix + bi, can be interpolated to its neighbor point, where ai is the slope (For-

mula 2.55) and bi is the intercept (Formula 2.56) of the straight line.

Table 2.1 Proposed formulae for induction of membership degrees

Method Formula

Likelihood of y given x (L) L(y|x) ¼ p(x|y)

Normalized likelihood ratio (NLR)
NLR y

�� x� � ¼ p x
�� y

� �
p x

�� y
� �

þp x
�� Øy

� �
Normalized likelihood ratio unconditional (NLRU)

NLRU y
�� x� � p x

�� y
� �

p x
�� y

� �
þp xð Þ

Normalized likelihood difference (NLD)
NLD y

�� x� � ¼ p x
�� y

� �
�p x

�� Øy
� �

þ1

2

Normalized likelihood difference unconditional

(NLDU) NLDU y
�� x� � ¼ p y

�� x
� �

�p xð Þþ1

2

Conditional probability of y given x (CP) p(y|x)

Normalized probability ratio (NPR)
NPR y

�� x� � ¼ p y
�� x

� �
p y

�� x
� �

þp y
�� Øx

� �
Normalized probability ratio unconditional (NPRU)

NPRU y
�� x� � ¼ p y

�� x
� �

p y
�� x

� �
þp yð Þ

Normalized probability difference (NPD)
NPD y

�� x� � ¼ p y
�� x

� �
�p y

�� Øx
� �

þ1

2

Normalized probability difference unconditional

(NPDU) NPDU y
�� x� � ¼ p y

�� x
� �

�p yð Þþ1

2

Equivalence—if and only if (IFF) avg

((1 � x � (1 � y)) � (1 � y � (1 � x)))

Minimum–maximum (MM) p y
�� x

� �
þminz∈ dom Xð Þ p y

�� z
� �� �

minz∈ dom Xð Þ p y
�� z

� �� �
þmaxz∈ dom Xð Þ p y

�� z
� �� �

Normalized correlation (NC) corr x;yð Þþ1

2
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ai :¼
yiþ1 � yi
� �
xiþ1 � xið Þ ð2:55Þ

bi :¼ yi � aixi ð2:56Þ

For the calculation of membership degrees for quantiles, the input is a list of

points with one point for every quantile k. The first coordinate is the average of the
attribute values in k. The second coordinate is the inductive degree of membership

μy0 in target class y, given Z(i) is in quantile k, for example derived using the NLR

function.

yk :¼ μy0 kð Þ
xk :¼ avg

�
Z ið Þ Qz

n

�� �
i
� ¼ k

� ð2:57Þ

Finally, a continuous, piecewise affine membership function can be calculated,

truncated below 0 and above 1, and is composed of straight lines for every quantile

k ¼ 1, . . ., n � 1; n � 2 of the numeric variable Z (Formula 2.58).

μy xð Þ :¼

0 a1xþ b1 � 0 _ an�1xþ bn�1 � 0j
a1xþ b1 x � x2j
⋮ ⋮
akxþ bk xk < x � xkþ1

⋮ ⋮
an�1xþ bn�1 x > xn�1j
1 a1xþ b1 � 1 _ an�1xþ bn�1 � 1

8>>>>>>>><
>>>>>>>>:

ð2:58Þ

The number of quantiles can be optimized, so that the correlation of the

membership function with the target variable is optimal, as illustrated in Fig. 2.8.

2.4.2 Multivariate Membership Function Induction

As shown in Fig. 2.9, the proposed process for inducing a multivariate inductive

fuzzy class consists of preparing the data, inducing univariate membership func-

tions for the attributes, transforming the attribute values into univariate target

membership degrees, classifying individuals by aggregating the fuzzified attributes

into a multivariate fuzzy classification, and evaluating the predictive performance

of the resulting model.

The idea of the process is to develop a fuzzy classification that ranks the

inductive membership of individuals, i, in the target class y gradually. This fuzzy

classification will assign individuals an inductive membership degree to the pre-

dictive inductive fuzzy class y0 using the multivariate model μy0 . The higher the
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inductive degree of membership μy0 ið Þ of an individual in y0, the greater the degree
of inductive support for class membership in the target class y.

In order to accomplish this, a training set is prepared from source data, and the

relevant attributes are selected using an interestingness measure. Then, for every

attribute Xk, a membership function, μ k
y0 : dom Xkð Þ ! 0; 1½ 	, is defined. Each μ k

y0 is

induced from the data such that the degree of membership of an attribute value Xk(i)
in the inductive fuzzy class y0 is proportional to the degree of support for the

inference that i ∈ y. After that, in the univariate classification step, each variable,

Xk, is fuzzified using μ k
y0 . The multivariate fuzzy classification step consists of

aggregating the fuzzified attributes into one multivariate model, μy0 , of data

elements that represents the membership function of individual i in y0. This induc-
tive fuzzy class corresponds to an IFC that can be used for predictive ranking of

data elements. The last step of the process is model evaluation through analyzing

the prediction performance of the ranking. Comparing the forecasts with the real

class memberships in a test set does this. In the following paragraphs, every step of

the IFC process is described in detail.

In order to analyze the data, combining data from various sources into a single

coherent matrix composes a training set and a test set. All possibly relevant

attributes are merged into one table structure. The class label Y for the target

variable has to be defined, calculated, and added to the dataset. The class label is

Fig. 2.8 Computation of membership functions for numerical variables

Fig. 2.9 Proposed method for multivariate IFC
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restricted to the Zadehan domain, as defined in the previous section. For multiclass

predictions, the proposed process can be applied iteratively.

Intuitively, the aim is to assign to every individual a membership degree in the

inductive fuzzy class y0. As explained in Sect. 2.3.1, this degree indicates support

for the inference that an individual is a member of the target class y. The member-

ship function for y0 will be derived as an aggregation of inductively fuzzified

attributes. In order to accomplish this, for each attribute, a univariate membership

function in the target class is computed, as described in the previous section.

Once the membership functions have been induced, the attributes can be

fuzzified by application of the membership function to the actual attribute values.

In order to do so, each variable, Xk, is transformed into an inductive degree of

membership in the target class. The process of mapping analytic variables into the

interval [0, 1] is an attribute fuzzification. The resulting values can be considered a

membership degree to a fuzzy set. If this membership function indicates a degree of

support for an inductive inference, it is called an inductive attribute fuzzification
(IAF), and this transformation is denoted by the symbol Î inFormula (2.59).

Xk ið ÞÎ μy0 Xk ið Þð Þ ð2:59Þ

The most relevant attributes are selected before the IFC core process takes place.

The proposed method for attribute selection is a ranking of the Pearson correlation

coefficients (Formula 2.38) between the inductively fuzzified analytic variables and

the (Zadehan) target class indicator Y. Thus, for every attribute, Xk, the relevance

regarding target y is defined as the correlation of its inductive fuzzification with the
target variable (see Sect. 3.1.1).

In order to obtain a multivariate membership function for individuals i derived
from their fuzzified attribute values μy0 Xk ið Þð Þ, their attribute value membership

degrees are aggregated. This corresponds to a multivariate fuzzy classification of

individuals. Consequently, the individual’s multivariate membership function μy0

: U ! 0; 1½ 	 to the inductive fuzzy target class y0 is defined as an aggregation, aggr,
of the membership degrees of n attributes, Xk, k ¼ 1, 2, . . ., n (Formula 2.60).

μy0 ið Þ :¼ aggr μy0 X1 ið Þð Þ, . . . , μy0 Xn ið Þð Þ
� 	

ð2:60Þ

By combining the inductively fuzzified attributes into a multivariate fuzzy class

of individuals, a multivariate predictive model,μy0 , is obtained from the training set.

This corresponds to a classification of individuals by the fuzzy proposition “i is
likely a member of y,” for which the truth value is defined by an aggregation of the

truth values of fuzzy propositions about the individual’s attributes, Xk(i) is y
0. This

model can be used for IFC of unlabeled data for predictive ranking. Applying an

alpha cutoff, i
�� μy0 ið Þ � α

n o
, an α ∈ [0, 1] leads to a binary classifier.

There are different possibilities for calculating the aggregation, aggr. Simpler

methods use an average of the attribute membership degrees, logical conjunction
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(minimum, algebraic product), or logical disjunction (maximum, algebraic sum).

More sophisticated methods involve the supervised calculation of a multivariate

model. In this thesis, normalized or cutoff linear regression, logistic regression, and

regression trees are considered. These different aggregation methods were tested as

a parameter in the meta-induction experiment described in Sect. 4.2 in order to find

an optimal configuration.

Finally, in order to evaluate predictive performance, the classifier is applied to a

hold-out test set, and the predictions μy0 ið Þ are compared with the actual target

variable (i). The correlation between the prediction and the target, corr μy0 ; Y
� �

, can

be used to compare the performance of different IFC models.
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Chapter 3

Analytics and Marketing

3.1 Analytics

Analytics is “the method of logical data analysis” (merriam-webster.com, 2012a).

According to Zimmermann (1997), data analysis is the “search for structure in

data”. The more data is available, the more complex it becomes to find relevant

information. Consequently, organizations and individuals analyze their data in

order to gain useful insights. Business analytics is defined as “a broad category of

applications and techniques for gathering, storing, analyzing and providing access

to data to help enterprise users make better business and strategic decisions”

(Turban, Aronson, Liang, & Sharda, 2007, p. 256).

The ability of enterprises to analyze the potentially infinite space of available

data—their capacity of business analytics—is a major competitive advantage.

Companies that use analytics as key strategies are called “analytics competitors”

by Davenport (2006, p. 3). They can differentiate themselves through a better

customer understanding in a time when products and technologies are becoming

more and more comparable. Analytics competitors apply predictive modeling to a

wide range of fields, such as customer relationship management, supply chain

management, pricing, and marketing. Their top management understands and

advocates that most business functions can benefit from quantitative optimization.

In fact, business analytics can be applied to almost any area that concerns an

enterprise:

• Customer relationship management (CRM): Prediction of the most appropriate

customer relationship activity.

• Web analytics: Optimization of the website according to click stream analysis.

• Compliance: Prediction of illegal behavior such as fraud or money laundering.

• Risk management: Prediction of credit worthiness.

• Strategic management: Visualization of customer profiles for product or market

strategies.

• Marketing: Prediction of customer product affinity.

M. Kaufmann, Inductive Fuzzy Classification in Marketing Analytics, Fuzzy
Management Methods, DOI 10.1007/978-3-319-05861-0_3,

© Springer International Publishing Switzerland 2014

35



Kohavi, Rothleder, and Simoudis (2002) identified comprehensibility and inte-

gration as the driving forces of emerging trends in business analytics. Today, good

business analytics is either comprehensible or integrated: Human decision makers

need interpretable, visual, or textual models in order to understand and apply

analytic insights in their daily business. Contrarily, information systems demand

machine readable, integrated automated interfaces from analytic applications to

operational systems in order to apply scorings or classifications in automated

processes.

In order to enhance the data basis for analytics, large data pools, such as data

warehouses, have been built. Today, the problem is no longer the lack of data, but

the abundance of it. Data mining (in the broader sense) is “the process of discov-

ering patterns in data”. In a more narrow sense, those “structural patterns” help not

only to explain the data but also to make “nontrivial predictions onnew data”

(Witten & Frank, 2005, p. 5). The common aspect of the two definitions is the

discovery of patterns in data. In contrast, the second definition emphasizes the

inductive aspect of data mining, namely prediction. Data mining, in its broader

sense, means any form of discovery of knowledge in data, whereas in the narrower

sense, it means model induction for prediction using statistics and machine learn-

ing. One aim of data mining is the induction of models for datasets. If applied

correctly, models not only describe the past, but also help to forecast the future.

Successful data mining is a practical demonstration of inductive logic. There are

two categories of machine learning: non-supervised and supervised learning. The

former extracts models such as clusters or association rules from data without

labels. The latter induces a model for labeled data, representing the relationship

between the data and the label. Continuous labels lead to regression models, and

categorical ones lead to classification models or classifiers.

Descriptive data analysis presents data as is, that is, it describes the data without

generalization or conclusion. It is completely deductive, because the numbers are

true without need for inductive support. In a business context, this is often called

reporting. A report is an understandable tabular or graphical representation of

relevant data. Usually, methods of classification and aggregation are applied to

consolidate data into meaningful information. Frequently applied techniques for

descriptive data analysis are deductive classification, aggregation, and grouping.

For deductive classification, data records are classified according to an a priori

predicate. Therefore, the class membership is known in advance. Aggregation is the

calculation of a scalar value from a vector or set, such as sums, averages, or

extrema. Often, these aggregations are grouped by one or more variables. In such

cases, the aggregated values are calculated for each combination of values in the

grouping variables For example, the average cost and benefit per customer segment

could be an interesting data description for many companies. An important part of

descriptive data analysis is the presentation of the results. The raw output of an

analysis is usually a matrix or table, but human decision makers are usually

managers that want to decide quickly and intuitively based on insights that can be

understood. Therefore, visualization of data descriptions can help increase the

understanding of analytic insights.
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Data descriptions might indicate certain conclusions or inferences that cannot be

directly deduced from the data. For example, if twice as many women than men

have bought a certain product, an inference could be that women are more likely to

buy this product in the future. The question, therefore, is, what kind of inductive

inferences can be made from the given data descriptions, and how high is the degree

of support in the data for this kind of inductive inference? There are two important

inductive techniques in data analysis: attribute selection and prediction. In data

abundance, not only the number of available records is incredibly large but also the

number of available attributes. Automated attribute selection applies statistical and

machine learning techniques for a ranking of association between attributes and a

prediction target, and thus filters out the most relevant attributes for inductive

inferences regarding a target class. Prediction means inference of an unknown

feature (a target variable) from known features (the analytic variables). This can

be accomplished to a certain degree of likelihood using a model induced by

methods from statistics or machine learning. There are two kinds of predictions:

inductive classification and regression. Inductive classification means predicting a

categorical target variable, and regression means predicting a numerical target

variable. Fuzzy classification is a special case in which the prediction consists of

a numeric value indicating the gradual membership in a category.

Insights from analytics are traditionally presented to human decision makers as

tables and graphics. Today, more and more analytic results are loaded automatically

from analytic systems into operational systems, a concept that is called integrated
analytics. Those systems can automate certain decision processes or display ana-

lytic insights to users of operational systems. Marketing decisions can be auto-

mated, such as choosing an individualized advertisement message in the online

channel (Kaufmann & Meier, 2009). The process of integrated analytics can be

described in five steps. First, analytic data is collected from different sources.

Second, a predictive model is induced from the data, either in a supervised form

using a target variable or in an unsupervised form of clustering or association

analysis. Third, a prediction, classification, or score is assigned to the original

data based on the induced model. Fourth, these predictions are transmitted to the

operational systems where they are applied to decision support. Finally, outcomes

of decision support—for example, sales decisions and actions—are fed back into

the analytic data pool for meta-analysis and iterative optimization.

Application of fuzzy logic techniques to analytics is called fuzzy data analysis.
This permits gradual relationships between data and predictions. The application of

fuzzy logic to analytics is appropriate when there is fuzziness in the data, the

prediction target, or in the association between the two (Zimmermann, 1997).

The advantage of fuzzy classification methods is that the class boundary is not

sharp: Patterns detected by fuzzy data mining provide soft partitions of the original

data. Furthermore, an object can belong to several classes with different degrees of

membership (Zimmermann, 2000). Two main advantages of fuzzy logic techniques

pointed out by Hüllermeier (2005) are the elimination of certain threshold effects

because of gradual soft data partitioning, and the comprehensibility and interpret-

ability of resulting models containing linguistic terms. Hüllermeier discusses
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possible fields of application of fuzzy set theory to data mining: Fuzzy cluster

analysis partitions a set of objects into several fuzzy sets with similar properties in

an unsupervised manner. Learning of fuzzy rules computes decision rules with

fuzzy propositions. Fuzzy decision trees are a special case of fuzzy rules in which

every node of the tree partitions the data into a fuzzy subset with an optimal

distinction criterion. Fuzzy association analysis computes association rules between

fuzzy restrictions on variables. Fuzzy classification partitions sharp data into fuzzy

sets according to a classification predicate (Meier, Schindler, & Werro, 2008). If

this predicate is inferred by induction, the process is called inductive fuzzy classi-

fication, or IFC (Kaufmann & Meier, 2009).

In business analytics, scoring methods are used for ranking data records

according to desirable features. Multivariate methods based on multiple attributes,

for instance linear or logistic regression, can predict targets such as customer

profitability, product affinity, or credit worthiness. The scores are used in daily

decision making. Record scoring based on data in an information system is an

inference about unknown target variables, which is not deductive. Rather, it is a

form of inductive inference. This introduces fuzziness into decision support

because there is only some degree of support for the hypothesis that a given record

belongs to a certain class. In fact, statistical models can increase the likelihood of

correct inductive classification. Accordingly, for every scored record, there is

fuzziness in the membership to the target class. Consequently, fuzzy logic is the

appropriate tool for reasoning about those fuzzy target classes. The solution is to

compute a continuous membership function mapping from the data into the fuzzy

target class to which every record has a degree of membership. Ranking or scoring

models yield continuous predictions instead of crisp classifications. Those models

can serve as target membership functions. Thus, scoring methods correspond to

an IFC.

The proposed IFC method provides a means for computing inductive member-

ship functions for a target class. These membership functions can be visualized.

Furthermore, they can be used for inductive fuzzification of attributes, which can be

applied for attribute selection and for improving predictive models. Thus, the

proposed IFC methods can be applied in the following areas of data analysis:

• Selection: Attributes can be scored by the correlation of automatically generated

inductive membership degrees with a Boolean or Zadehan target class in order to

select relevant attributes.

• Visualization: Induced membership functions can serve as human-readable dia-

grams of association between analytic and target variables using a plot of

automatically generated membership functions.

• Prediction: Datasets used for prediction can be inductively fuzzified by

transforming the original data into inductive target membership degrees,

which can improve the correlation of predictions with the actual class member-

ship in existing statistical methods.
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3.1.1 Selection

In practice, there is an abundance of data available. The problem is to find relevant

attributes for a given data mining task. Often, thousands of variables or more are

available. Most machine learning algorithms are not suited for such a great number

of inputs. Also, human decision makers need to know which of those customer

attributes are relevant for their decisions. Therefore, the most relevant attributes

need to be selected before they can be used for visualization or prediction.

In order to find relevant attributes for predicting a target class y, an attribute

selection method can be derived from membership functions induced by IFC, using

the method proposed in Sect. 2.4. All possible analytic variables can be ranked by

the correlation coefficient of their NLR with the target variable. For every attribute,

Xk, the membership function in the predictive target class y0, denoted by μy0(Xk), is

computed. The membership in target y is indicated by a Zadehan variable Y, which
is a variable with a domain of gradual truth values in the interval between 0 and

1. Then, the Pearson sample correlation coefficients between the NLR-based

membership degrees and the Zadehan values of Y are calculated. Thus, the rele-

vance of attribute Xk regarding target y is defined as the correlation of its inductive

fuzzification with the target variable (Formula 3.1). The most relevant variables are

those with the highest correlations.

relevance Xkð Þ :¼ corr μy0 Xkð Þ,Y
� �

ð3:1Þ

The fuzzification of analytic variables prior to attribute relevance ranking has the

advantage that all types of analytic variables—linguistic, categorical, Boolean,

Zadehan, and numeric variables—can be ranked using the same measure. Choosing

correlation as a measure of association with the target has the advantage that it is a

standard aggregate in SQL, and thus readily available as a well-performing

precompiled function in major database systems.

To illustrate the proposed method, the attributes of the German credit data are

ranked regarding the target class of customers with a good credit rating (Table 3.1).

Those attributes have been inductively fuzzified with NLRs. The Pearson coeffi-

cient of correlation between the resulting membership degrees and the Boolean

target variable good credit rating has been calculated. One can see that, for a credit
rating, checking status, credit history, or duration of customer relationship are quite

correlated attributes, whereas for example, the number of existing credits is less

relevant.

This kind of attribute selection can be used as an input for visualization and

prediction. When a target class is defined, the relevant correlated variables can be

identified. A visualization of five to ten most relevant variables gives good insights

about associations in the data.
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3.1.2 Visualization

The IFC-NLR method can be applied to create visualizations of associations

between an analytic variable (a factor) and a class (a target). A visualization of

variable association is a human-readable presentation that allows the reader to see

the distribution of target likelihood in tabular form or as a graph.

Using IFC for visualization, the table consists of relations between factor values

and normalized target likelihood ratios, and the graph results in a plot of the

inductive membership function. For categorical factors, the graph is a bar chart.

For numerical factors, the membership function is plotted as a continuous line. The

advantage of this method is that the notion of membership of a factor X in a target

Y is semantically clear and intuitively understandable by readers. Furthermore, the

semantics of the NLR function is mathematically clearly defined.

As an example, for two variables from the German credit dataset, checking

status and duration, the inductive fuzzy membership function in the target class of

customers with a good credit rating can be visualized as shown in Fig. 3.1. This

graphic can be interpreted as follows: Customers without checking accounts or with

a balance of more than $200 are more likely to have good credit histories than not.

Customers with a negative balance are more likely to have bad credit ratings. For

the duration of the credit (in months), the shorter the duration is, the higher the

likelihood of good credit history. Credits with durations of more than 19 months

Table 3.1 Example of an

attribute ranking regarding

NLR/target correlation

Attribute Correlation of NLR with target

Checking status 0.379304635

Credit history 0.253024544

Duration 0.235924759

Purpose 0.190281416

Savings status 0.189813415

Credit amount 0.184522282

Housing 0.173987212

Property magnitude 0.157937117

Age 0.136176815

Employment 0.128605942

Personal status 0.093525855

Installment commitment 0.091375548

Other payment plans 0.079139824

Foreign worker 0.077735317

Job 0.061875096

Other parties 0.060046535

Own telephone 0.051481771

Existing credits 0.042703728

Residence since 0.034584104

Num. dependents 0.007769441

http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit

+Data)

40 3 Analytics and Marketing

http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)


have higher likelihoods of being associated with bad credit histories, and accord-

ingly, the NLR is less than 0.5.

3.1.3 Prediction

A method for the application of likelihood-based IFC to prediction has been

introduced by Kaufmann and Meier (2009). The basic idea is to create a multivar-

iate inductive model for target class membership with a combination of inductively

fuzzified attributes derived by membership function induction (see Sect. 2.4). The

proposed approach for application of likelihood-based IFC to prediction consists of

a univariate inductive fuzzification of analytic variables prior to a multivariate

aggregation. This has the advantage that non-linear associations between analytic

variables and target membership can be modeled by an appropriate membership

Fig. 3.1 Visualization of

relevant attributes and their

association with the target

as an inductive membership

function. Adapted from

“Fuzzy Target Groups in

Analytic Customer

Relationship Management,”

by M. Kaufmann and

C. Graf, 2012, In A. Meier

and L. Donzé (Eds.), Fuzzy

Methods for Customer

Relationship Management

and Marketing, p. 1731

Copyright 2012 by

Publisher
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function. As presented in Fig. 3.2, the following steps are applied in order to derive

an inductive membership degree of individual i in the prediction y0 for class y based
on the individual’s attributes:

• A: The raw data consists of sharp attribute values.

• B: An inductive definition of the membership function for the attribute values in

the predictive fuzzy class y0 is calculated using the previously described

IFC-NLC methods.

• C: The attribute values are fuzzified using the derived membership functions

from step B. This step is called inductive attribute fuzzification (IAF), defined as
supervised univariate fuzzy classification of attribute values.

• D: After that, the dataset consists of fuzzified attribute values in the interval

[0,1], indicating the inductive support for class membership.

• E: The several fuzzified analytic variables are aggregated into a membership

degree of individuals in the predictive class. This can be a simple conjunction or

disjunction, a fuzzy rule set, or a statistical model derived by supervised machine

learning algorithms such as logistic or linear regression.

• F: This results in a multivariate membership function that outputs an inductive

membership degree for individual i in class y, which represents the resulting

prediction.

It is proposed to preprocess analytic data with IFC methods in order to improve

prediction accuracy. More specifically, attributes used for data mining can be

transformed into inductive membership degrees in the target class, which can

improve the performance of existing data mining methods. The basic idea is to

Fig. 3.2 Proposed schema for multivariate IFC for prediction. Adapted from “Fuzzy Target

Groups in Analytic Customer Relationship Management,” by M. Kaufmann and C. Graf, 2012,

In A. Meier and L. Donzé (Eds.), Fuzzy Methods for Customer Relationship Management and

Marketing, p. 172. Copyright 2012 by Publisher
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create a multivariate model for a target variable with a combination of inductively

fuzzified attributes derived by membership function induction.

Empirical tests (Sect. 4.2) have shown that using the proposed method of IAF

significantly improves the average correlation between prediction and target. For

binary target variables, a combination of IAF with an NLR, and the subsequent

application of a logistic regression, turned out to be optimal. This configuration is

illustrated in Fig. 3.3.

For numerical targets, a linear fuzzification (LF) of the target, IAF using NLD,

and calculation of a regression tree have turned out to be optimal. This configura-

tion is illustrated in Fig. 3.4.

However, this improvement by IAF can be shown only in average prediction

correlation. There are instances of data in which the application of IAF lowers the

predictive performance. Therefore, an IAF is worth a try, but it has to be tested

whether it really improves the prediction or notin the given data domain. IAF

provides a tool for fine-tuning predictive modeling, but answering the question

about the best classification algorithm in a specific context takes place in the data

mining process in which the algorithm with the best results is selected (Küsters,

2001).

3.2 Marketing Analytics

Analytics competitors understand that most business functions—even those, like market-

ing, that have historically depended on art rather than science—can be improved with

sophisticated quantitative techniques. (Davenport, 2006, p. 4).

Fig. 3.3 IFC prediction with binary target classes based on categorical attributes
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The application of the method of data analysis to marketing is called marketing
analytics. This can optimize the marketing mix and individual marketing on

multiple channels. An important challenge in marketing is its financial account-

ability: making costs and benefits of marketing decisions explicit. Spais and

Veloutsou (2005) proposed that marketing analytics could increase the account-

ability of marketing decisions. They point out the need of incorporating marketing

analytics in daily marketing decision making, which is a conceptual shift for

marketers to work with mathematical tools. Furthermore, they suggest that the

problem of fuzziness in consumer information should be addressed by fuzzy logic

techniques.

Individual marketing is capable of accounting for all costs and benefits of a

marketing campaign to daily CRM decisions. Because all customers, advertise-

ments, and sales are recorded in information systems, the benefit of marketing

activities can be measured. For example, in an individual marketing campaign, the

sales ratio of targeted customers can be compared to average or random customers,

and the sales increase can be directly linked to the corresponding marketing

campaigns.

The application of IFC methods to data analysis can be used in marketing

analytics. Specifically, customer and product analytics, target selection, and inte-

grated analytics are proposed as possible applications for the methods that have

been developed in this thesis. Using IFC methods for selection, visualization, and

prediction can support these four fields in marketing analytics. The benefits of IFC

include automated generation of graphics with a linguistic interpretation, clear

model semantics for visualization by membership function induction, and a possi-

bly better target selection because of optimized predictive models using IAF. As

shown in Fig. 3.5, general application of IFC to the field of analytics for selection,

visualization, and prediction can be applied to marketing analytics, specifically.

Fig. 3.4 IFC prediction with Zadehan target classes based on numerical attributes
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Visualizations of induced membership functions of attributes in marketing targets

provide fuzzy customer and product profiles. Furthermore, MFI allows fuzzy

definitions of target groups based on customer characteristics. Finally, scoring

methods can represent membership functions to fuzzy target groups defined as

fuzzy sets of customers to which every individual customer has a degree of

membership. These can be integrated into automated analytics processes for indi-

vidual marketing.

3.2.1 Customer Analytics

The aim of customer analytics is to make associations between customer charac-

teristics and target classes of interesting customers with desirable features under-

standable to marketing decision makers. The question is, which customer features

are associated with the target? A customer report visualizes the likelihood of target

class membership given different values of an attribute in order to show relevant

features that distinguish the target class from the rest of the customers. In the

context of CRM, there are several target customer classes that are interesting for

profiling:

• Product affinity: Customers who have bought a given product.

• Profitability: Customers who are profitable to the enterprise.

• Recency: Customers who are active buyers because they have recently bought a

product.

• Frequency: Customers who buy frequently.

• Monetary value: Customers who generate a high turnover.

• Loyalty: Customers who have used products or services for a long period

of time.

A customer profile for the mentioned target customer classes should answer the

question, what distinguishes customers in this class from other customers? Thus,

the association between class membership and customer attributes is analyzed. The

Fig. 3.5 Proposed areas of

application of IFC to

marketing analytics
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customer attributes that can be evaluated for target likelihood include all of the

aforementioned characteristics, and additionally, socio-demographic data, geo-

graphic data, contract data, and transaction behavior recorded in operational com-

puter systems, such as CRM interactions and contacts in direct marketing channels.

If one looks more closely at the target customer classes, one can see that, often,

these classes are fuzzy. For example, to generate a “high turnover” is a fuzzy

proposition, and the corresponding customer class is not sharply defined. Of course,

one could discretize the class using a sharp boundary, but this does not reflect

reality in an appropriate manner. Therefore, it is proposed to visualize fuzzy

customer classes as fuzzy sets with membership functions.

In order to generate customer profiles based on a target class and the relevant

customer attributes, the method of MFI by NLRs presented in Sect. 2.4.1 can be

applied. It is proposed to select the relevant customer attributes first, using the

method previously described. After that, the relevant attributes are called profile
variables. For a profile variable X, the values xk ∈ dom (X) are called profile

characteristics. They are assigned an inductive membership degree for the predic-

tive target class y0 defined by μy0(xk): ¼ NLR(y | xk). A plot of the corresponding

membership function represents a visual fuzzy customer profile for variable X, as
illustrated by Fig. 3.6.

Two instances of a fuzzy customer profile using NLRs are shown in Fig. 3.6, in

which the customers of investment funds products of a financial service provider

are profiled by customer segment and customer age. Interpretation of the graphs

suggests that customers above the age of 50 and customers in the segments Gold
and Premium are more likely to buy investment funds than the average customer.

A fuzzy customer profile derived with the IFC-NLR method creates a visual

image of the customer class to be analyzed by showing degrees of membership of

customer features in the target characteristic. Marketing managers can easily

interpret the resulting reports.

3.2.2 Product Analytics

Marketing target groups can be defined by typical characteristics of existing

product users. This method is based on analysis of existing customer data in the

information systems of a company, which is an instance of secondary market

research. The data of customers that are product users (the test group) is compared

to the data of customers that do not use the product (the control group). The

attributes that separate test and control group most significantly are used for

defining the target group of potential customers. These attributes are the most

selective ones. Accordingly, the target group is derived inductively by similarity

to the set of existing product users. As an example, a customer profile could show

that customers between 30 and 40 years of age in urban areas are twice as likely to

be product users as other customers. In such a case, the target group for this

particular product could be defined accordingly.
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Analytic target group definitions are based on a set of customer characteristics.

However, these characteristics differ in relevance. Thus, the set of relevant cus-

tomer characteristics for a product target group is a fuzzy set because the boundary
between relevant and non-relevant characteristics is gradual. The corresponding

membership degree can be precisiated by a relevance or selectivity metric. It is

proposed that an NLR be used as a measure of selectivity.

The likelihood of product usage, UP (the notation is for product P), given that a

customer record, i, in the existing customer database d has characteristic c, can be

computed accurately as a sampled conditional probability, p(c | UP)d, defined as the
number of product users that have this feature divided by the total number of

product users (Formula 3.2). In this formula, c(i) andUP(i) are Boolean truth values
that indicate presence or absence of a customer characteristic and the usage of the

product.

Fig. 3.6 Schema of a fuzzy customer profile based on IFC-NLR, together with two examples of a

fuzzy customer profile. Adapted from “Fuzzy Target Groups in Analytic Customer Relationship

Management,” by M. Kaufmann and C. Graf, 2012, In A. Meier and L. Donzé (Eds.), Fuzzy

Methods for Customer Relationship Management and Marketing, p. 173. Copyright 2012 by

Publisher
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p c Up

��� �
d
:¼ i∈ d j c ið Þ ^ UP ið Þf gj j

i∈ d UP ið Þjf gj j ð3:2Þ

This product usage likelihood can be compared to the likelihood, p(c |ØUP)d, of
the opposite hypothesis that a customer is not a product user, given characteristic c,
calculated as the number of non-users of the product that have characteristic

c divided by the total number of non-users (Formula 3.3).

p c ØUp

��� �
d
:¼ i∈ d j c ið Þ ^ ØUP ið Þf gj j

i∈ d ØUP ið Þjf gj j ð3:3Þ

Thus, the selectivity of a customer characteristic c can be expressed by the ratio

between the likelihood of product usage, given c, and likelihood of product

non-usage, given c (Formula 3.4). This ratio can be normalized as formalized in

Formula (3.5).

LR UP cjð Þd :¼
p c UPjð Þd
p c ØUPjð Þd

ð3:4Þ

NLR UP cjð Þd :¼
p C UPjð Þd

p c UPjð Þd þ p c ØUPjð Þd
ð3:5Þ

Finally, the selectivity of characteristic c, expressed as an NLR, represents an

inductive degree of membership of this characteristic in the fuzzy target group

definition for product P. An inductive fuzzy target group definition, t, based on

analysis of database d is a fuzzy set of customer features and its membership

function is defined by the corresponding NLR (Formula 3.6).

μt cð Þd :¼ NLR UP cjð Þd ð3:6Þ

A customer characteristic may or may not be defined by a granular attribute

value. Characteristics can also be computed by functional combination of several

basic attribute values. Furthermore, the customer characteristic indicator c(i) can
indicate a fuzzy truth value in the interval [0,1] if the corresponding characteristic

c is a fuzzy proposition such as “high turnover.” In that case, the definition of the

NLR for fuzzy truth values from Sect. 2.4.1 can be applied. However, the aim of

analytic target group definition is to find or construct optimal defining target

customer characteristic indicators with the highest possible degree of membership

in the target group definition. These indicators can be constructed by logical

connections or functions of granular customer characteristics.

This kind of analytic target group definition is a conceptual one, suited for

presentation to human decision makers, because it is intuitively understandable. It

results in a ranking of customer characteristics that define typical product cus-

tomers. However, for integrated analytics in analytic CRM, a scoring approach is
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more promising because it yields better response rates, although the resulting

models may be less comprehensible.

3.2.3 Fuzzy Target Groups

Contemporary information technology provides the means to individualize mar-

keting campaigns. Each customer is targeted not only directly but also individually

with an advertisement message, decision, or activity. The behavior of an organiza-

tion toward an individual customer is analytically customized according to the

customer’s classification, and customers with different characteristics are targeted

with different behaviors. Individual customers are assigned a score for different

CRM targets based on a predictive multivariate model. IFC methods can be applied

to customer data for individual marketing in order to calculate a predictive scoring
model for product usage. This model can be applied on the data to score customers

for their product affinity, which corresponds to an IFC of customers in which the

predictive model is a multivariate membership function.

An aim of customer analytics is the application of prediction to the selection of a

target group with likelihood of belonging to a given class of customers. For

example, potential buyers or credit-worthy customers can be selected by applying

data analysis to the customer database. This is done either by segmentation or

scoring (Souse, Kaymak, &Madeora, 2002). By applying a segmentation approach,

sharp sets of customers with similar characteristics are calculated. Those segments

have a given size. For individual marketing, a scoring approach is more promising,

in which every customer is assigned a score predicting a likelihood of response. The

score is calculated by application of a predictive multivariate model with numeric

output, such as neural networks, linear regression, logistic regression, or regression

trees. When a numeric score can be normalized, it represents a membership

function to a fuzzy set of customers with a high response likelihood—a fuzzy target

group—to which every customer has a degree of membership. This scoring process

can be applied for every product. Thus, for every individual customer, the degree of

membership to all possible cross-selling target groups is known, and in direct

customer contact, the customer can be assigned the advertisement message with

the highest score.

There are different methods for fuzzy customer scoring. For example, fuzzy

clustering for product affinity scoring was presented by Setnes, Kaymak, and van

Nauta Lemke (1998), in which the reason for using fuzzy systems instead of neural

networks is declared as the comprehensibility of the model. Kaufmann and Meier

(2009) evaluated a supervised fuzzy classification approach for prediction using a

combination of NLRs with an algebraic disjunction. In this thesis, a synthesis of

probabilistic modeling and approximate reasoning applying fuzzy set theory is

proposed for prediction (as previously explained), using univariate inductive mem-

bership functions for improving the target correlations of logistic regressions or

regression trees. However, all inductive scoring methods that yield a numeric value
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representing response likelihood can be normalized in order to represent an induc-

tive membership function to a fuzzy set of customers, and can, therefore, be

categorized as IFC.

A classical sharp CRM target group T � C is a subset of all customers C defined

by a target group definition t: T:¼ {i ∈ C | t(i)}. In the case of scoring methods for

target selection, the output of the model application is numeric and can be normal-

ized in the interval [0,1] to represent a membership function. In that case, the target

group is a fuzzy set T0 and the (normalized) customer score is a membership

function, μT0:C ! [0,1]. This score is defined by a predictive model, M, as a

multivariate combination of n customer attributes, X1, . . ., Xn, as shown in Formula

(3.7).

μ
T
0 ið Þ :¼ M X1 ið Þ, . . . ,Xn ið Þð Þ ð3:7Þ

Because T0 is a fuzzy set, it has to be defuzzified when a campaign requires a

binary decision. For example, the decision about contacting a customer by mail has

to be sharp. An alpha cutoff of the fuzzy set allows the definition of individual

marketing target groups of optimal size regarding budget and response rate, and

leads to a sharp target group Tα, as formalized in Formula (3.8).

Tα :¼ i∈C μT0
�� ið Þ � α

� � ð3:8Þ

3.2.4 Integrated Analytics

For individual marketing, the fuzzy target group membership degrees are predictive

scores that are processed via the CRM system, which dispatches them to the

distribution channel systems for mapping customers to individualized advertise-

ment messages. In all computer supported channels with direct customer contact,

inbound or outbound, as soon as the customer is identified, a mapping can be

calculated to the product to which the customer has the highest score. Based on

that mapping, the advertisement message is chosen. In the online channel, logged-in

customers are displayed individual advertisement banners. Customers are sent

individual letters with product advertisement. In the call center and in personal

sales, if the customer can be identified, the agent can try cross-selling for the next

best product.

In analytic customer relationship management (aCRM), customer data is ana-

lyzed in order to improve customer interactions in multiple channels (Turban et al.,

2007). This can be applied to individual marketing. Target groups for aCRM

campaigns are derived analytically and individually by application of classification

and regression models to individual customer data records. The aim is to increase

campaign response rates with statistical methods. Cross-selling campaigns analyze

product affinity of customers given their features. Churn (change and turn) cam-

paigns target customers with a low loyalty prediction in order to re-gain their trust.
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Figure 3.7 illustrates a schematic information system that can enable aCRM

processes.

In contemporary enterprises, due to intensive application of computing machin-

ery and electronic databases in business processes, there exist large amounts of

possibly useful customer data in various software applications that can serve as data

sources for aCRM. The heterogeneity of data storage implies a necessity for data

integration before they can be analyzed. A system that automates this task is called

a customer data warehouse (Inmon, 2005). Based on this integrated data pool,

analytics provides inductions of predictive models for desirable customer classes,

such as product purchase, profitability, or loyalty. If these models output a gradual

degree of membership to the target classes, their application to the customer

database can be called an IFC. These membership degrees are defined by a

prediction of class membership for individual customers, sometimes called lead
detection. The corresponding fuzzy sets of customers can be called fuzzy target

groups. These analytic results, called leads by aCRMmanagers, are transferred into

the operational CRM application, where their presentation to human decision

makers provides decision support for direct customer contact. The utilization of

analytic data output (leads) takes place in individual marketing channels with direct

customer contact—for instance, web presence, mailing, call center, or personal

sales. The results of aCRM campaigns, such as sales, are electronically collected

and fed back into the customer data warehouse in order to improve future aCRM

campaigns by meta-analytics. This mechanism is called a closed loop. Generally,
aCRM is an instance of a business intelligence process (Gluchowski, Gluchowski,

Fig. 3.7 Inductive fuzzy

classification for individual

marketing. Adapted from

“Fuzzy Target Groups in

Analytic Customer

Relationship Management,”

by M. Kaufmann and

C. Graf, 2012, In A. Meier

and L. Donzé (Eds.), Fuzzy

Methods for Customer

Relationship Management

and Marketing, p. 170.

Copyright 2012 by

Publisher
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Gabriel, & Dittmar, 2008), which involves data sourcing, integration, analytics,

presentation, and utilization. Furthermore, it is also an instance of integrated

analytics, in which analytics are integrated into operational systems with feedback

mechanisms.

In comparison to mass marketing, in individual marketing, every customer is

provided with the advertisement that fits best. Especially when customer databases,

such as a data warehouse, are present, individual scoring is possible based on

available data: The customer’s target membership score is used to assign an

individual advertisement message to each customer. These messages are delivered

electronically via customer relationship management application to individual

marketing channels. Campaign target groups are individualized. All customers in

the target groups are known individually and are contacted directly.

3.2.5 Case Study: IFC in Online Marketing at PostFinance

The following case study shows the application of the proposed methods in

practice, from a point of view of information systems and methodology. Member-

ship function induction is applied to a real-world online marketing campaign. A

comparison with crisp classification and random selection is made.

PostFinance Inc.1 is a profitable business unit of Swiss Post. Its activities

contribute significantly to the financial services market in Switzerland. PostFinance

is an analytic enterprise feeding business processes with information gained from

predictive analytics.

The online channel of PostFinance supports individual advertisement banners

for logged-in customers. Based on the customer score, a customer is assigned the

advertisement message for the product with the highest response likelihood com-

puted for that particular customer. By clicking on the banner, the customer has the

opportunity to order the product directly.

The marketing process of PostFinance uses analytical target groups and predic-

tive scores on product affinity for individual marketing. Target groups for online

marketing campaigns are selected using inductive classification on the customer

data warehouse. Figure 3.8 shows the process from customer data to individualized

online marketing. Target groups are defined in the data warehouse. This is done

using a predictive model (e.g., logistic regression) or a crisp classification (e.g.,

customers above the age of 50 with a balance higher than CHF 10,000). A dataset is

generated that assigns an individual advertisement message to every single cus-

tomer based on his or her target group. This dataset is loaded into the online

platform, where it controls the online advertisements. In the online channel, for

every customer that logs in, the individual advertisement message is mapped

according to the previous target group selection.

1 http://www.postfinance.ch
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A case study was conducted with PostFinance in 2008 in order to test IFC in a

real online marketing campaign. Inductive fuzzy classification was applied in a

PostFinance online marketing campaign promoting investment funds. The aim of

the prediction was to forecast customers with an enhanced likelihood of buying

investments funds. The resulting fuzzy classification yielded a fuzzy target group

for an individual marketing campaign in which every customer had a gradual

degree of membership.

The same advertisement message was shown to three groups of customers: a test

group of 5,000 customers with the highest degree of membership to a fuzzy target

group, a control group of 5,000 customers selected by classical crisp target group

definition, and a second control group with randomly selected customers. The

hypothesis was that a gradual scoring approach (an inductive fuzzy customer

classification) would provide better response rates than a crisp Boolean target

selection (a segmentation approach), and that a fuzzy target group selection using

typical characteristics of product users would classify customers more softly and

eliminate certain threshold effects of Boolean classification because attributes can

be compensated for with a multivariate gradual approach. It was tested whether

customers in a fuzzy target group selected with a scoring approach had a higher

response rate than customers in a crisp target group selected with a classical

segmentation approach. Furthermore, the two groups were compared with a random

selection of customers. In the following, it is shown how the data mining

Fig. 3.8 Analytics applied to individual marketing in the online channel at PostFinance. Adapted

from “ An Inductive Fuzzy Classification Approach applied to Individual Marketing.,” by

M. Kaufmann and A. Meier, 2009, In Proceedings of the 28th North American Fuzzy Information
Processing Society Annual Conference, p. 4. Copyright 2009 by Publisher
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methodology presented in Sect. 2.4 has been applied to a real-world direct market-

ing campaign.

In order to prepare a test set for model induction, a sample customer dataset was

selected from the customer data warehouse. Because of the excellent quality of the

cleaned and integrated data in the data warehouse, the data preparation step was

accomplished by a simple database query. The dataset contained anonymous

customer numbers associated with customer specific attributes. As the target var-

iable, the class label was set to 1 if the customer had investment funds in his product

portfolio and to 0 if else. Mutual information of the dependent variables with the

target variable was chosen as a ranking method. The following attributes were

selected as relevant:

• Customer segment (CS; 0.047 bit),

• Number of products (NP; 0.036 bit),

• Overall balance (OB; 0.035 bit),

• Loyalty (L; 0.021 bit),

• Customer group (CG; 0.016 bit),

• Balance on private account (BP; 0.014 bit), and

• Age (A; 0.013 bit).

Using the method presented in Sect. 2.4, for each of the relevant attributes, the

fuzzy restriction corresponding to the likelihood of having investment funds was

induced. In the following section, the induction processes for a categorical and a

continuous attribute are described in detail.

As the first example, in the domain of the categorical attribute customer segment
(X1), there are four values: Basis, SMB, Gold, and Premium. For customers who

have not yet bought investment funds, the aim is to define a degree of membership

in a fuzzy restriction on the customer segment domain in order to classify them for

their likelihood to buy that product in the future.

The frequencies and conditional probabilities are presented in Table 3.2. The

first column indicates the customer segment. Column Y ¼ 1 contains the number of

customers of each segment who have bought investment funds. Column Y ¼ 0

contains the number of customers of each segment who have not bought that

product. According to Formula (3.9), the membership degree of segment Basis in
the fuzzy restriction y1 was induced as follows:

μyi “Basis”ð Þ ¼ p X1 ¼ “Basis” Y ¼ 1jð Þ
p X1 ¼ “Basis” Y ¼ 1jð Þ þ p X1 ¼ “Basis” Y ¼ 0jð Þ

¼ 0:38

0:38þ 0:82
¼ 0:32 ¼ NLRY¼1 “Basis”ð Þ

ð3:9Þ

The other degrees of the membership were induced analogically. The resulting

values are shown in column NLR of Table 3.2. The corresponding membership

function is illustrated in Fig. 3.9.
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As a second example, for the continuous attribute overall balance, the member-

ship function was induced in the following way: First, the NLR for deciles of the

attribute’s domain was calculated analogically to the previous example, represented

by grey squares in Fig. 3.10. Then, a function, A/(1 + exp(B–C ln(x + 1))) + D,
was fitted by optimizing the parameters A to D using the method of John (1998).

The resulting membership function for the customer overall balance is shown as a

line in Fig. 3.10.

Every relevant attribute of the original dataset was transformed to a fuzzy

membership degree using SQL directly in the database. Categorical variables

were transformed using a case differentiation statement. For example, the attribute

customer segment was transformed using the following SQL command:

select case 

when customer_segment = 'Basis' then 0.32

when customer_segment = 'SMB' then 0.52 

when customer_segment = 'Gold' then 0.75

when customer_segment = 'Premium' then 0.86 

end as fuzzy_customer_segment

from ads_funds

Continuous variables were transformed using a function expression. For exam-

ple, the attribute overall balance was fuzzified using the following SQL expression:

Table 3.2 Conditional probabilities and NLRs for a categorical attribute

X1: customer segment Y ¼ 1 Y ¼ 0 p(X1 |Y ¼ 1) p(X1 |Y ¼ 0) NLRY¼1(X)

Basis 11,455 308,406 0.38 0.82 0.32

SMB 249 2,917 0.01 0.01 0.52

Gold 12,666 54,173 0.43 0.14 0.75

Premium 5,432 10,843 0.18 0.03 0.86

Total 29,802 376,339

Fig. 3.9 Membership

function induction for a

categorical attribute.

Adapted from “ An

Inductive Fuzzy

Classification Approach

applied to Individual

Marketing.,” by

M. Kaufmann and A. Meier,

2009, In Proceedings of the
28th North American Fuzzy
Information Processing
Society Annual Conference,
p. 4. Copyright 2009 by

Publisher
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select 

0.71/(1+EXP(7.1-0.8*LN(overall_balance + 1)))+0.09 

as fuzzy_overall_balance 

from ads_funds

The individual fuzzy attribute domain restrictions were then aggregated to a

multivariate fuzzy class of customers. This was done using an SQL statement

implementing the gamma operator(Zimmermann & Zisno, 1980) defined in For-

mula (3.10).

Γγ

�
μy1 ej
� �

, . . . , μyn
�
ej
��

:¼ μ[
i
yi ej
� �γ � μ[

i
yi

�
ej
�
1�γ

:¼ �1�Y
i

1� μyi xij
� ��

γ �
Y
i

μyi xij
� � !1�γ ð3:10Þ

In order to define the gamma parameter, different performance measures were

calculated. As shown in Table 3.3, a gamma of 1, corresponding to an algebraic

disjunction or full compensation, was most successful. Thus, the multivariate fuzzy

classification was performed using the following SQL statement:

Fig. 3.10 Membership

function induction for a

continuous attribute.

Adapted from “An

Inductive Fuzzy

Classification Approach

applied to Individual

Marketing.,” by

M. Kaufmann and A. Meier,

2009, In Proceedings of the
28th North American Fuzzy
Information Processing
Society Annual Conference,
p. 5. Copyright 2009 by

Publisher
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Select 

(1-

(1-fuzzy_number_of_products)

* (1-fuzzy_customer_segment)

* (1-fuzzy_overall_balance)

* (1-fuzzy_loyalty)

* (1-fuzzy_age)

* (1-fuzzy_balance_on_private_account)

* (1-fuzzy_customer_group)

) as multivariate_fuzzy_classification

from f_ads_funds

As a result, a fuzzy class of customers was calculated, for whom the degree of

membership indicates the product affinity for investment funds and represents a

product affinity score. This can be used in individual marketing for defining target

groups for different products.

In order to test the resulting fuzzy classifier, a pilot marketing campaign was

performed using the resulting fuzzy target group. First, a target group of 5,000

customers with the highest membership degree was selected from the fuzzy class

using an alpha cutoff (Test Group 1). Second, as a comparison, 5,000 other

customers were selected using a crisp classification (Test Group 2), using the

following crisp constraints:

Select case when 

Customer segment in (‘Gold’, ‘Premium’, ‘SMB’)

And Customer_group = 50 Plus

And Loyalty > 14

And Number_of_products > 1

And Age between 35 and 75

And Balance on private account > 3000

And Overall_balance > 20000

Then 1 else 0 end as multivariate_crisp_classification

From ads_funds

This conventional target group selection used the same seven customer attributes

as the fuzzy classification, but the classification was done using a crisp constraints

Table 3.3 Optimization of

the gamma parameter for

multivariate fuzzy

aggregation

I(Y;Y0) I(Y;Y0 ¼ 1) LR(Y0 ¼ 1)

Gamma ¼ 0 0.018486 0.4357629 6.7459743

Gamma ¼ 0.5 0.0185358 0.4359879 6.7488694

Gamma ¼ 1 0.0209042 0.4787567 7.2359172
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predicate. Third, 5,000 customers were selected randomly (Test Group 3) in order

to compare inductive classification to random selection.

To each of those 15,000 customers, an online advertisement for investment

funds was shown. After the marketing campaign, the product selling ratio during

3 months was measured. The results are shown in Table 3.4. The column Y ¼ 1

indicates the number of customers who have bought the product. The product

selling ratio for the target group selected by IFC was the most effective. This

individual marketing campaign using inductive fuzzy target group selection

showed that fuzzy classification can lead to a higher product selling ratio than

crisp classification or random selection. In the case study, IFC predictions of

product affinity were more accurate than those of the crisp classification rules on

exactly the same attributes. The conclusion is that, in comparison to crisp classifi-

cation, fuzzy classification has an advantageous feature that leads to better response

rates because it eliminates certain threshold effects by compensation between

attributes.

Table 3.4 Resulting product

selling ratios per target group
Test group Y ¼ 1 Y ¼ 0 Sales rate

1. Fuzzy classification 31 4,939 0.63 %

2. Crisp classification 15 5,037 0.30 %

3. Random selection 10 5,016 0.20 %
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Chapter 4

Prototyping and Evaluation

Three software prototypes were programmed as proofs of concept of the techno-

logical aspects of the proposed methods for automated MFI in fuzzy data analysis.

Master’s students developed two of them, iFCQL and IFC-Filter for Weka. The

author developed the inductive fuzzy classification language IFCL. This imple-

mentation also allows experiments on the implemented methods for experimental

evaluation. Using a meta-induction approach, the designed method was applied for

prediction in several real-world datasets in order to analyze characteristics and

optimal parameters of the constructed methodology and to compare it to conven-

tional predictive approaches. Classical inductive statistical methods were applied to

gain insights about induction by IFC.

4.1 Software Prototypes

4.1.1 IFCQL

The first attempt of prototyping software for IFC was developed in a master’s thesis

by Mayer (2010). The basic idea was an extension of the existing fuzzy classifica-

tion and query language FCQL, for which a prototype interpreter was built by

Werro (2008).

In order to derive fuzzy membership functions directly from the underlying data,

the FCQL language was extended with commands to induce membership functions

in order to classify data based on them. For example, it was intended to describe

MFI using the syntax “induce fuzzy membership of <dependent variable> in

<target variable> from <relation>.” For more detail on the iFCQL syntax, see

the report by Mayer (2010).

As shown in Fig. 4.1, the architecture of iFCQL reflects the language-oriented

design approach. The user can enter commands in iFCQL, which are translated into

SQL, or he or she can enter SQL in the command shell, which is transmitted directly

M. Kaufmann, Inductive Fuzzy Classification in Marketing Analytics, Fuzzy
Management Methods, DOI 10.1007/978-3-319-05861-0_4,

© Springer International Publishing Switzerland 2014
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to the database by a database connector. Using language instead of a graphical user

interface, it is possible to save and reload scripts for data mining processes—this

was the intention. Nevertheless, the implementation of the iFCQL language inter-

preter, consisting of lexer, parser, evaluator, and SQL generator, turned out to be a

complex task that is not directly associated with IFC.

The original idea was to develop a tool to support the proposed data mining

methodology of this thesis (Sect. 2.4). Thus, there was one statement class for each

of the six steps: data preparation (audit), MFI, fuzzification of attribute values,

attribute selection, fuzzy classification of data records, and model evaluation.

Eventually, only three syntax elements for the main tasks were implemented,

namely MFI, univariate classification of attributes, and multivariate classification

of records.

4.1.2 IFCL

This section presents an implementation by the author of a tool that enables the

computation of inductive membership functions based on the methodology pro-

posed in Sect. 2.4. The inductive fuzzy classification language (IFCL) is a research

prototype. Its goal is to show the feasibility of implementing the data mining

Fig. 4.1 Architecture of the

iFCQL interpreter. Adapted

from “Implementation of an

Inductive Fuzzy

Classification Interpreter,”

(master’s thesis), by

P. Mayer, 2010, p. 59.

Copyright 2010 by Mayer,

University of Fribourg,

Switzerland
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methodology based on IFC. It is a markup language designed for simplicity of

description and parsing; therefore, the development of the language interpreter was

kept simple. In addition to supporting the basic steps of the proposed method, the

scope is to support automated experiments for benchmarking the predictive perfor-

mance of the proposed methodology. This meta-induction experiment and its

results are presented in Sect. 4.2.

As shown in Fig. 4.2, the system architecture of IFCL consists of an IFCL file, a

command line shell, the IFCL program itself, Weka regression algorithms, a

relational database, and a data file. In the IFCL file, the data mining process steps

are described in the IFCL language. In a command line shell, the IFCL program is

invoked, and the corresponding IFCL file is passed to the program. There is no

graphical user interface because the research concentrated on evaluating automated

inductive inferences. The IFCL actions representing steps of the data mining

process are interpreted by the IFCL program, which translates them into SQL

queries to the relational database. For the supervised multivariate aggregation

functions linear regression, logistic regression and M5P regression trees, open

source implementations of mining algorithms from the Weka machine learning

workbench (Hall et al., 2009) are accessed by the IFCL program. The IFC process

steps that have been translated to SQL are executed on a database server. Analytic

data is loaded into the database via a data file in comma-separated value format

(CSV). The IFCL language supports a simple load functionality that creates the

necessary database tables based on a data description and loads records from a file

into database tables. The data file contains the data to be analyzed, and the IFCL

program provides the means to compute predictive models based on the data in the

form of membership functions.

The functionality of the software encompasses all steps of the proposed data

mining process for IFC as presented in Sect. 2.4.2. This includes data preparation,

univariate MFI, fuzzification of attribute values, attribute selection, multivariate

aggregation, data classification, prediction, and evaluation of predictions. This

prototype provides the possibility

• To prepare data using arbitrary SQL statements,

• To induce membership functions with all thirteen methods proposed in

Table 2.1,

• To fuzzify attribute values using the induced membership functions directly in

the database,

• To rank attribute relevance by sorting correlation between membership degrees

and target class indicators,

• To aggregate many inductively fuzzified attributes into a fuzzy class member-

ship for data records using eight different aggregation methods shown in

Table 4.1,

• To assign membership degrees by fuzzy classification to data records in the

database,

• And to evaluate predictive models with correlation analysis.
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All of these steps can be programmed in IFCL-syntax. IFCL is fully automatable

using scripting files. All models are displayed and stored in SQL syntax. Therefore,

it provides repeatability of experiments and comprehensibility of models with

respect to their database implementation as queries. Details on the syntax and

application of IFCL can be found in the appendix (Sect. A.4). To summarize, the

functionality of IFCL encompasses the following points:

• Executing IFCL script files in batch mode,

• Connecting to the database,

• Dropping a database table,

• Executing an SQL script,

• Loading data into the database,

• Inducing a membership function,

• Classification of data,

• Aggregating multiple variables,

• Evaluating predictions,

• Data preparation, and

• Attribute selection.

Steps of the data mining process in Sect. 2.4.2 are invoked in so called IFCL

actions. A sequence of actions is listed in IFCL files. IFC-processes can be

described in a tree-like structure of IFCL files. There are nodes and leaves of the

IFCL tree. An IFCL file is either a node as a list of calls to other IFCL files or a leaf

containing actual execution sequences. IFCL leaves consist of a database connec-

tion followed by a sequence of IFCL actions. An IFCL file can call the execution of

several other predefined IFCL files in batch mode using the action execifcl. In order

Fig. 4.2 Inductive fuzzy classification language (IFCL) system architecture

Table 4.1 Different

aggregation methods used for

prediction experiments

Abbreviation Description

logreg Logistic regression

regtree Regression trees

linreg Linear regression

avg Average membership degree

min Minimum membership degree

ap Algebraic product

as Algebraic sum

max Maximum membership degree
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to do so, one needs to indicate the correct operation system file path of the

corresponding IFCL file, either as an absolute path, or a path relative to the location

of the process that invoked the IFCL program.

IFCL can connect to a database with the action connect. This is necessary for

operation and has to be done at the beginning of an IFCL file leaf. One needs to

know the hostname of the database server, the service identifier, the port number, a

valid username, and a password. The user must be granted the rights to read tables.

For data classifications, the user needs grants to create tables. The action drop
allows the deletion of an existing database table. The IFCL program tests whether

the indicated table exists, and executes a drop command to the database if and only

if the table exists in the database. This is useful in preventing an exception because

of an attempt to drop a non-existing table. IFCL allows executing SQL statements

in the database with the action execsql. A single SQL command can be indicated

directly within the IFCL syntax. Scripts (statement sequences) can be called from a

separate SQL script file. The file system path has to be indicated in order to call an

execution of an SQL file.

In order to load analytic data into the database server, there are two possibilities.

First, the SQL*Loader can be called, which is highly parameterized. Second, a

simpler load mechanism can be invoked involving less code. The SQL*Loader has

the advantage that it is extremely configurable by a control file. The drawback is

that there is a large amount of code that needs to be written for simpler load tasks.

Therefore, for simpler loads that do not involve transformation, the IFCL load

utility is a faster method to load data into the database. The call to the SQL*Loader

can be made from an IFCL file using the action sqlldr. In order to load data, one

needs a data file containing the analytic data and an SQL*Loader control file for the

configuration of the load process. Furthermore, one can indicate two SQL*Loader

parameters, namely skip and errors. (For more details, consult the SQL*Loader

documentation.) For simpler data loads, the IFCL program provides a data loading

utility with the action load. The advantage is that the load action automatically

creates or recreates a table for the data load based on an enumeration of attributes

and their type, where the type is either n (numerical) or c (categorical). In the

enumerations, the number of the attribute and the number of its corresponding type

must be equal: Type 3 corresponds to Attribute 3. The attribute names will

correspond to table columns, so their syntax is syntactically restricted to valid

column names. The load action must also be provided a path to a file containing

the load data, and a delimiter that separates data cells in the text file. White spaces

and semicolons cannot be used as delimiters because they are syntactical elements

of the IFCL language, and an escape mechanism has not been implemented.

In order to induce a univariate membership function for a single attribute to the

target class, the IFCL action inducemf can be used. A database table is indicated on

which the MFI will be based. One specific table column is defined as a target

variable. As analytic variables, a specific table column can be defined, a list of

columns can be enumerated, or all columns can be chosen for MFI. One of several

different methods for MFI can be chosen (see Sect. 2.4.1). The output containing
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the induced membership function in SQL syntax is written to the indicated output

file. This SQL classification template will be used later for univariate fuzzification

of input variables. When more than one column is chosen as analytic variables,

some of those variables can be skipped. The IFCL action will skip columns if they

are enumerated in the corresponding action parameter. This means that those

columns are not considered for MFI and they are also not copied into the fuzzified

table. Alternatively, some columns can be left out by indicating the IFCL action to

leave columns in the corresponding action parameters the way they are. This means

that, for those columns, no membership function is induced, but those columns are

copied into the fuzzified table in their original state. This can be useful to incorpo-

rate original key columns in a fuzzified table.

In order to fuzzify the input variables using the membership functions obtained,

the action classify can be invoked using the previously generated SQL classification

template file. The classification action can also apply multivariate fuzzy classifica-

tion templates obtained by the IFCL action aggregatemv, which aggregates multi-

ple variables into a multivariate fuzzy class. Template files generated by the IFCL

actions inducemf and aggregatemv contain an SQL query in which the input and

output tables are parameterized. A data classification applies these two parameters

(classified table and output table) to this query template stored in the template file.

Data is read from an existing table, the classified table, and transformed using the

induced membership functions, and the resulting transformation is written into the

output table.

In order to aggregate multiple variables into a multivariate fuzzy classification,

the corresponding aggregation function can be computed using the IFCL action

aggregatemv. A base table is indicated on which the aggregation takes place. This is

usually a transformed table containing inductively fuzzified attributes derived with

the actions inducemf and classify, but for Weka regression algorithms (linreg,

logreg, regtree) the aggregatemv action can also be applied to the original data.

Again, the analytic variables and the target variable are indicated, which usually

correspond to those variables used for MFI. As aggregation operator, either an

unsupervised aggregation, such as a minimum (min), maximum (max), algebraic

product (ap), algebraic sum (as), or average (avg), can be chosen or a supervised

aggregation, such as a linear regression (linreg), a logistic regression (logreg), or a

regression tree (regtree), can be calculated. The column that contains the aggre-

gated membership value for each row must be given a column alias. The resulting

aggregation function is written as a query template to an output file for which the

path is defined in the action definition. This query template represents the multi-

variate model as a membership function in the target class. It can be used for data

classification and prediction with the classify action.

In order to evaluate correlations between columns, the IFCL action evaluate can
be applied. This is useful to evaluate predictive performance, but also for attribute

ranking and selection. Using IFCL, an attribute selection can be accomplished by

ranking the inductively fuzzified analytic variables by their correlations with the

target variable. In order to do this, for all columns of the table, a membership
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function to the target is induced in a training set with the inducemf action and the

columns are transformed into a membership degree with the classify action. Then,
the correlations of all fuzzified variables and the target variable can be evaluated

with the evaluate action.

4.1.3 IFC-Filter for Weka

The IFC-NLR data mining methodology introduced by Kaufmann and Meier

(2009) has been implemented by Graf (2010) as a supervised attribute filter in the

Weka machine learning workbench (Hall et al., 2009). The aim of this implemen-

tation is the application of IFC-NLR in a typical data mining process. This

IFC-Filter allows the evaluation of the algorithm.

Weka can be used for data mining in order to create predictive models based on

customer data. The IFC-Filter can facilitate visualization of the association between

customer characteristics and the target class, and it can improve predictive perfor-

mance of customer scoring by transforming attribute values into inductive fuzzy

membership degrees, as previously explained. Thus, it can perform MFI and IAF.

As shown in Fig. 4.3, the Weka software provides data access to relational data-

bases (RDB), comma separated values (CSV), and attribute relation file format

(ARFF); classification and regression; and predictions. The IFC-Filter implements

the functionality for MFI, IAF, and visualizations based on the calculated mem-

bership functions.

The IFC-Filter transforms sharp input data into membership degrees that indi-

cate the inductive support for the conclusion that the data record belongs to the

target class. In order to do so, first, membership functions are induced from data and

optionally displayed to the screen. Then, these functions are applied to fuzzify the

original attributes. Visualization and prediction based on the concepts of MFI and

IAF are two main uses for the IFC-Filter software in the data mining process.

In order to visualize associations between variables, inductive membership

functions can be plotted with the method IFC-NLR described earlier. Thus, for

every analytic variable, a function mapping from the variable’s domain into a

degree of membership in the inductive fuzzy target class is displayed graphically.

This plot gives intuitive insights about associations between attribute values and the

target class.

For prediction, the transformation of crisp attribute values from a data source

into inductive membership degrees can enhance the performance of existing clas-

sification algorithms. The IFC-Filter transforms the original attribute values into

inductive membership indicating target class likelihood based on the original value.

After that, a classical prediction algorithm, such as logistic regression, can be

applied to the transformed data and to the original data in order to compare the

performance of IAF. It is possible and likely that IAF improves prediction. When

that is the case, IAF data transformation can be applied to huge data volumes in

relational databases using the SQL code generated by the IFC-Filter. The software
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is available for download1 in source and binary format for researchers and practi-

tioners for experimenting and practicing IFC.

As proposed in the section on application of IFC to analytics (Sect. 3.1) the

IFC-Filter can visualize membership functions that indicate target membership

likelihoods. Figure 4.4 shows two screenshots of the membership function plots

for the variablesDuration and Checking status from the German Credit dataset. The

IFC-Filter has the possibility to activate a frame containing a graphical illustration

of the resulting membership functions. Each analytical variable is represented by a

tab in this frame. The presentation of numerical analytical variables differs slightly

from that of categorical analytical variables, because it presents a continuous

membership function.

As shown in Fig. 4.5, the illustration of numerical analytical variables consists of

four fields. The first field is a table containing the NLRs with the corresponding

quantiles and average quantile values (AQVs). The second field shows a histogram

containing the NLRs and their corresponding AQVs. The third field shows the

membership function of the analytical variable. The fourth field shows the mem-

bership function in SQL syntax for this particular analytical variable, which can be

used directly in a relational database for fuzzy classification of variables.

The illustration of categorical analytical variables can be reduced to three fields.

The first field is a table containing the NLR with the corresponding quantile and

average value of the quantile. The second field shows a histogram containing the

Fig. 4.3 Software architecture of the IFC-Filter. Adapted from “Fuzzy Target Groups in Analytic

Customer Relationship Management,” by M. Kaufmann and C. Graf, 2012, In A. Meier and

L. Donzé (Eds.), Fuzzy Methods for Customer Relationship Management and Marketing, p. 184.

Copyright 2012 by Publisher

1 http://diuf.unifr.ch/is/ifc (accessed 11.2010).
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NLRs corresponding to the categorical values. The third field shows the member-

ship function in SQL syntax.

An additional tab, the SQL panel, contains the membership functions of all

analytic variables in SQL. It displays a concatenation of the membership functions

in SQL syntax for all analytical variables that have been input for MFI by the

IFC-Filter. This database script can be applied in a database in order to transform

large database tables into inductive degrees of membership in a target class. This

can improve the predictive quality of multivariate models.

4.2 Empirical Tests

This section describes the experiments that have been conducted using the IFCL

prototype (Sect. 4.1.2). Sixty real-world datasets (see the appendix in Sect. A.1) with

categorical and numerical target attributes have been used to build predictive models

with different parameters. The results of these experiments allow the answering of the

following research questions: Which is a suitable MFI method for the application of

fuzzy classification for prediction? Which aggregation operators are suitable for the

multivariate combination of fuzzy classes? Can it be statistically supported that this

method of IFC leads to higher predictive performance?

In order to find the answers to these research questions, the aim is to inductively

infer conclusions about inductive methods, which is called a meta-induction scheme.

Thus, quantitative statistical methods are applied to the data on the performance of IFC

using different parameters gained by running the automated prediction experiments.

Fig. 4.4 Knowledge flow with IFC-Filters. Adapted from “Fuzzy Target Groups in Analytic

Customer Relationship Management,” by M. Kaufmann and C. Graf, 2012, In A. Meier and

L. Donzé (Eds.), Fuzzy Methods for Customer Relationship Management and Marketing, p. 186.

Copyright 2012 by Publisher
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4.2.1 Experiment Design

The aim of these experiments was to determine the optimal parameters for a

maximal predictive performance in order to gain insights about IFC. Using the

Fig. 4.5 Visualization of membership functions with the IFC-Filter. Adapted from “Fuzzy Target

Groups in Analytic Customer Relationship Management,” by M. Kaufmann and C. Graf, 2012, In

A. Meier and L. Donzé (Eds.), Fuzzy Methods for Customer Relationship Management and

Marketing, p. 188. Copyright 2012 by Publisher
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scripting functionality of the IFCL prototype, a systematic benchmarking of pre-

dictive performance of different IFC algorithms was conducted. From the UCI

Machine Learning Repository,2 Weka numeric datasets archive,3 and Weka UCI

datasets archive,4 60 statistical datasets were used for systematic automated pre-

diction experiments using different parameters. These datasets are listed in

Table A.1 and Table A.2 in Sect. A.1. They contain real-world data from different

processes that can be used for testing machine learning algorithms. They have been

chosen by their tabular structure and by the type of the prediction target. Apart from

that, they were chosen randomly.

For categorical target classes, a Boolean target variable was extracted with a

simple predicate (see Table A.1, column Target). For numerical target classes, a

Zadehan target variable was generated using inductive target fuzzification using

both linear and percentile fuzzification (see Table A.2).

The experimental parameters included 13 methods for IAF (Table 2.1), two

types of base target classes (numerical or categorical), two types of inductive target

fuzzification for numerical target variables [ITF; Formulas (2.43) and (2.44)], and

eight methods for multivariate aggregation (Table 4.1). As benchmarks, three state

of the art prediction methods (regression trees, linear and logistic regression) were

applied for prediction without prior IAF.

In order to test predictive performance, for every combination of dataset, IAF

method, ITF method, and aggregation method, the correlation of the prediction with

the actual class value was computed. This has been done using a repeated hold-out

cross-validation method: For every parameter combination, the correlation result

was calculated ten times with different random splits of 66.7 % training data versus

33.3 % test data, and the results were averaged.

Prediction quality of model instances was measured with the Pearson correlation

coefficient (Weisstein, 2010b) between the (Boolean or Zadehan) predictive and

target variables in order to measure the proximity of predictions and targets in

two-dimensional space. Significance of prediction correlation for experiment

parameters θ1 and θ2 was estimated with a non-parametric statistical test, the

one-sided Wilcoxon Signed-Rank (WSR) test (Weisstein, 2012a), where the null

hypothesis, H0, supposes that the average prediction correlation, γ(θ1): ¼ avg(corr

(Y0,Y )|θ1), of experiments with parameter θ1, is smaller or equal to γ(θ2), where Y is

the target variable, Y0 is the predictive model output, and both Y and Y0 are Boolean
or Zadehan variables with a range of truth values within [0,1]. The statistical test

hypothesis is formalized by H0: γ(θ1) � γ(θ2). If the corresponding p-value

returned by WSR is significantly small, it is likely that θ1 performs better than θ2.

2 http://archive.ics.uci.edu/ml/ (accessed 03.2010).
3 http://sourceforge.net/projects/WEKA/files/datasets/datasets-numeric.jar/datasets-numeric.jar/

download (accessed 08.2010).
4 http://sourceforge.net/projects/WEKA/files/datasets/datasets-UCI.jar/datasets-UCI.jar/download

(accessed 08.2010).
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In addition to their statistical meaningfulness, the reason for using these mea-

sures, Pearson correlation and WSR, is that both are precompiled functions in

certain database systems, and thus computed very efficiently for large numbers of

experiments.

4.2.2 Results

This subsection describes the results of the meta-inductive prediction experiments.

It describes the findings about the best performing methods for MFI and multivar-

iate class aggregation. Additionally, it evaluates which dataset parameters correlate

with the performance improvement gained by IAF.

In order to evaluate the best performing aggregation method, the average

correlation between prediction and actual value of the target variable has been

calculated for every aggregation method for categorical as well as numerical targets

over all datasets and MFI methods. In Fig. 4.6, the result of this evaluation for

categorical variables is shown. Clearly, logistic regression is the best aggregation

method for binary targets with an average correlation of 0.71.5

A Wilcoxon Signed Rank (WSR)6 test returned a p-value of 0.0115 for the

hypothesis that the average correlation between prediction and target for logistic

regression is smaller than or equal to that of regression trees. This means that, with a

high probability, the predictive performance of logistic regression is higher than

that of regression tree. The p-value for the difference in performance between

logistic and linear regression is even smaller: 0.00105. Therefore, logistic regres-

sion performs significantly better as an aggregation method for prediction than the

other methods.

As illustrated by Fig. 4.7, the best performing method of multivariate class

aggregation for numerical targets is regression trees with an average correlation

of 0.66.7 The WSR significance test8 showed, with a p-value of 1.30152E-06, that

the average correlation of regression trees is smaller than or equal to the average

correlation of linear regression. Again, this result is, statistically, very significant.

In order to determine the best performing combination of membership induction

method for IAF and multivariate aggregation method, the average correlation

between prediction and actual value of the target variable has been calculated for

every combination. As shown in Fig. 4.8, the best combination for binary target

variables is logistic regression, with an NLR as MFI method for IAF, with an

average prediction correlation of 0.71.9 The best benchmark method without IAF is

5 See Query 2 in Appendix A.
6 See Query 3 and data in Table A.3 in Appendix A.
7 See Query 7 in Appendix A.
8 See Query 8 and data in Table A.4 in Appendix A.
9 See Query 4 in Appendix A.
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regression trees on rank 24 of 107 with an average prediction correlation of 0.699.

The top 23 combinations all involved a form of IAF. The best performing method

was to combine an IAF using NLR with a logistic regression.

logreg regtree linreg avg min ap as max
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Fig. 4.6 Average prediction correlation for different aggregation methods for binary targets
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Fig. 4.7 Average prediction correlation for different aggregation methods for fuzzified numerical

targets
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Fig. 4.8 Average prediction correlation for combinations of membership function induction and

aggregation methods for binary targets
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The WSR significance test returned a p-value of 0.180010 for the hypothesis that

the average correlation between prediction and target for logistic regression with

NLR is smaller than or equal to that of logistic regression with IAF using NLD. This

means that, for logistic regression with IAF, NLR does not perform significantly

better than NLD. However, the WSR showed, with a p-value of 0.04888, that a

logistic regression with IAF using NLR performs equally or less well compared to

regression trees without IAF. Consequently, a significant performance improve-

ment of logistic regression models can be achieved, on average, with IAF.

In order to apply MFI methods from Sect. 2.4, numerical target variables need to

be fuzzified. As proposed in this section, two approaches for inductive target

fuzzification (ITF) have been proposed. Both were tested and compared in the

experiments. In Fig. 4.9, one can see that the average correlation between predic-

tion and target was much higher for linear ITF.11 The WSR significance test12

returned a p-value of 0.0000289. Thus, linear target fuzzification performs signif-

icantly better for predicting fuzzy classes than percentile target fuzzification.

In Fig. 4.10, the results for experiments with combinations of different IAF and

aggregation methods for data with numerical targets13 are shown, given linear ITF

of numerical target variables. In this case, IAF with NLD, together with a super-

vised aggregation using Weka M5P regression trees (regtree), is the best method

with an average correlation of 0.697. The difference between this combination and

the benchmark prediction using regression trees without IAF is significant with a

WSR p-value14 of 0.0026.

There are several parameters that distinguish datasets. These include number of

variables, number and percentage of categorical or numerical variables, number of

rows, ratio between number of rows and number of columns, and the linearity of the

prediction target. This linearity was measured by the average correlation of the

Linear Percentile
Average Correlation 0.69 0.64
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0.64
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Fig. 4.9 Average prediction correlation of predictions with linear versus percentile ITF, given

regression trees as the aggregation method

10 See Query 5 and data in Table A.6 in Appendix A.
11 See Query 9 in Appendix A.
12 See Query 10 and data in Table A.5 in Appendix A.
13 See Query 11 in Appendix A.
14 See Query 12 and data in Table A.7 in Appendix A.
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predictions of a linear regression benchmark model, YLR, with the target variable Y:
Linearity:¼ avg(corr(YLR,Y)). The question is whether any of these parameters

correlate significantly with the improvement of predictive performance of regres-

sion models with IAF.

In order to answer this question for binary target predictions, correlation and

level of significance of correlation were calculated, using a non-parametric corre-

lation test, between the parameters and the relative improvement of the predictive

performance of logistic regression if the analytic variables are fuzzified using NLR

versus logistic regression without IAF.15 As the statistical test, Spearman’s rho

(Weisstein, 2012b), with a z-score significance test was applied, which exists as a

precompiled function in the database.16

As shown in Table 4.2, the correlation between target linearity and improvement

by NLR fuzzification is negative and significant (p < 0.005). This means that the

less linear the connection between the analytic variables and the target variable is,

the more a Boolean prediction using logistic regression can be improved with an

IAF using NLRs. In Fig. 4.11, this association is visualized in a scatter plot.17

For fuzzified numerical prediction targets, Table 4.3 shows similar results.18 The

improvement of regression trees with IAF NLD correlates negatively and signifi-

cantly with the linearity of association between analytic and target variables. The

lower the performance of linear regression, the more a predictive regression tree

model can benefit from IAF using NLD. This association is illustrated19 in

Fig. 4.12.
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Fig. 4.10 Average prediction correlation for combinations of membership function induction and

aggregation methods for fuzzified numerical targets

15 See Query 14 in Appendix A.
16 http://docs.oracle.com/cd/B28359_01/server.111/b28286/functions029.htm(6/2012)
17 See Query 15 and data in Table A.8 in Appendix A.
18 See Query 14 in Appendix A.
19 See Query 15 and data in Table A.9 in Appendix A.
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Table 4.2 Correlation and p-value of dataset parameters and improvement of logistic regression

with IAF for binary target variables

Parameter

Correlation with Improvement

with IAF p-value

Number of categorical variables 0.335516011 0.069899788

Number of numeric variables �0.097871137 0.60688689

Percentage of categorical variables 0.206624854 0.273290146

Percentage of numeric variables �0.206624854 0.273290146

Number of columns 0.228400654 0.224758897

Average correlation of the prediction of linear
regression

�0.50567297 0.004362976

Number of rows (n) 0.089665147 0.637498617

Ratio number of rows/number of columns �0.001557286 0.993483625
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Fig. 4.11 Relationship

between target linearity and

IAF benefit for binary target

variables

Table 4.3 Correlation and p-value of dataset parameters and improvement of regression trees

with IAF for Zadean target variables

Parameter

Correlation w/Improvement by

IAF p-value

Number of categorical variables 0.121461217 0.522578264

Number of numeric variables 0.03610839 0.84975457

Percentage of categorical variables 0.036497846 0.848152597

Percentage of numeric variables �0.036497846 0.848152597

Number of columns 0.195910119 0.299481536

Average correlation of the prediction of linear
regression

�0.583537264 0.000712151

Number of rows (n) 0.081432863 0.668807278

Ratio number of rows/number of columns �0.043381535 0.81994093
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Chapter 5

Precisiating Fuzziness by Induction

Every species is vague, every term goes cloudy at its edges, and so in my way of

thinking, relentless logic is only another name for stupidity—for a sort of intellectual

pigheadedness. If you push a philosophical or metaphysical enquiry through a series of

valid syllogisms—never committing any generally recognized fallacy—you nevertheless

leave behind you at each step a certain rubbing and marginal loss of objective truth and you

get deflections that are difficult to trace, at each phase in the process. Every species waggles

about in its definition, every tool is a little loose in its handle, every scale has its individual.

(Wells, 1908)

5.1 Summary of Contribution

A methodology for IFC has been introduced. This method allows automated

derivation of membership functions from data. The idea is to translate sampled

probabilities into fuzzy restrictions. Thus, a conceptual switch from the probabilis-

tic to the possibilistic view is applied in order to reason about the data in terms of

M. Kaufmann, Inductive Fuzzy Classification in Marketing Analytics, Fuzzy
Management Methods, DOI 10.1007/978-3-319-05861-0_5,

© Springer International Publishing Switzerland 2014
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fuzzy logic. Business applications of MFI have been proposed in the area of

marketing analytics in the fields of customer and product analytics, fuzzy target

groups, and integrated analytics for individual marketing. A prototype inductive

fuzzy classification language (IFCL) has been implemented and applied in exper-

iments with 60 datasets with categorical and numerical target variables in order to

evaluate performance improvements by application of the proposed methodology.

Seven questions (Sect. 1.1) have guided the research conducted for this thesis. The

following list summarizes the answers that this thesis proposes:

• What is the theoretical basis of inductive fuzzy classification (IFC) and what is

its relation to inductive logic?

Inductive logic is defined as “a system of evidential support that extends

deductive logic to less-than-certain inferences” (Hawthorne, 2008, “Inductive

Logic,” paragraph 1). Fuzzy classes are fuzzy sets (Zadeh, 1965) defined by

propositional functions (Russell, 1919) with a gradual truth-value (i.e., mapping

to fuzzy propositions; Zadeh, 1975a, 1975b). Their membership functions are

thus inductive if their defining propositional functions are based on less-than-

certain inferences (Sect. 2.4). The inductive fuzzy class y0 ¼ {i ∈U | i is likely a
member of y} is defined by a predictive model, μ, for membership in class y,

where “likely” is a fuzzy set of hypotheses. The truth function of the fuzzy

propositional function L(i,y) :¼ “i is likely a member of y” is a fuzzy restriction

(Zadeh, 1975a) on U defined by μy0.
• How can membership functions be derived inductively from data?

Membership functions can be derived using ratios or differences of sampled

conditional probabilities. Different formulas have been proposed in Sect. 2.4.1

and tested in Sect. 4.2 Normalized differences and ratios of likelihoods have

shown to provide optimal membership degrees. For numeric variables, a con-

tinuous membership function can be defined by piecewise linear function

approximation. The numeric variable is discretized using quantiles and a linear

function is approximated to the average values and the membership degrees for

every adjacent pair of quantiles. For numerical target variables, normalization

leads to a linear fuzzification with a membership degree to a fuzzy set that can be

used to calculate likelihoods of fuzzy hypotheses.

• How can a business enterprise apply IFC in practice?

Inductive fuzzy classes can support marketing analytics by providing selec-

tion, visualization, and prediction in the fields of customer analytics, product

analytics, fuzzy target selection, and integrated analytics for individual market-

ing. These techniques improve decision support for marketing by generating

visual, intuitive profiles and improved predictive models, which can enhance

sales (Sect. 3.2). A case study shows a real-world application with a financial

service provider (Sect. 3.2.5).

• How can the proposed methods be implemented in a computer program?

The IFCL prototype uses a database server for data storage, access, and

computation (Sect. 4.1.2). The analytic process is configured in a text file

using a synthetic language called IFCL. This language allows definition of all
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computations necessary for MFI, IAF, target fuzzification, attribute selection,

supervised multivariate aggregation, fuzzy classification of data using predictive

models, and model evaluation. Additionally, the IFCL prototype allows exper-

iments on the proposed methods for MFI in batch mode. Furthermore, student

works have shown implementations of IFC with graphical user interfaces.

• How is IFC optimally applied for prediction?

First, data is prepared and relevant attributes are selected. Then, each attribute

is inductively fuzzified, so that the membership degree indicates the degree of

membership in the target class. Finally, those multiple membership degrees are

aggregated into a single membership degree with a multivariate regression,

which represents the inductive class prediction. Optimally, for binary targets,

attributes are fuzzified with NLRs and aggregated using logistic regression. For

numerical targets, the target attribute is fuzzified using a linear normalization,

the dependent attributes are fuzzified using NLD and then aggregated using

regression trees (Sect. 3.1.3).

• Which aggregation methods are optimal for the multivariate combination of

fuzzy classes for prediction?

In the experimental phase, product, algebraic sum, minimum, maximum,

average, logistic regression, linear regression, and regression trees have been

tested for their predictive performance using the prototype software IFCL. For

the aggregation of fuzzified attributes into a single prediction value for data

records, the experiments showed that, on average, a supervised aggregation

using multivariate regression models (logistic regression for Boolean targets

and regression trees for Zadehan targets) are optimal (Sect. 4.2.2).

• Can it be statistically supported that the proposed method of IFC improves

predictive performance?

Inductive attribute fuzzification using NLRs significantly improved average

prediction results of classical regression models (Sect. 4.2.2). In fact, this

improvement significantly and negatively correlated with the linearity of asso-

ciation between the data and the target class. Thus, the less linear this association

is, demonstrated by a smaller correlation of the predictions of a linear regression

model with the actual values, the more a multivariate model can be improved by

transforming attributes into an inductive membership degree using the methods

proposed in this thesis.

5.2 Discussion of Results

Human perception and cognition is blurred by uncertainty and fuzziness. Concepts in

our minds cluster perceptions into categories that cannot always be sharply distin-

guished. In some cases, binary classifications are feasible, such as detecting the

presence or absence of light. Nevertheless, in many cases, our classification relies

on fuzzy terms such as bright. Some concepts are gradual and can be ordered by their

degree. In our previous example, brightness is a perception that is ordinal because
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some visions are brighter than others. By mapping an ordinal scale to Zadehan truth

values, a membership function can be defined in order to clearly precisiate the

semantics of fuzzy words, concepts, or terms, in the sense of Zadeh (2008). In fact,

fuzzy set theory has not yet been recognized enough for itsmost valuable contribution:

It provides a tool for assigning precise definitions to fuzzy statements! In Sect. 2.2.1,

the sorites paradox, an age-old philosophical puzzle, was easily resolved by applica-

tion of fuzzy set theory; such is the power of Zadehan logic.

Conditioned by fuzziness of cognition, the human mind infers and reasons based

on fuzzy ideas, and often, successfully so. Induction is an uncertain type of

reasoning, and thus classifies inferences into a fuzzy set: the fuzzy class of induc-

tively supported conclusions. On one hand, induction is always uncertain, and even

the most unlikely event can actually happen, even if induction indicates the

contrary, such as the observation of a black swan (Taleb, 2007). On the other

hand, how can we learn if not from past experience? Good inductive inferences

are reliable more often than not. Furthermore, gaining insights by evaluating

likelihoods of hypotheses using objective data is a cornerstone of empiricism.

Thus, induction and its support measure, the likelihood ratio, can amplify past

experience by leading to better and more reliable inductive inferences. While many

concepts are fuzzy, induction provides a tool for precisiation.

The transformation of likelihood ratios into membership functions to fuzzy sets

by normalization is a tool for reasoning about uncertainty by amplification of past

experience, where the fuzziness of class membership is precisiated by likelihood in

the data. Accordingly, MFI with NLRs applies the law of likelihood and fuzzy set

theory to make inductive inferences and to represent them as membership functions

to fuzzy classes.

There are three main advantages of applying likelihood-based MFI in analytics.

First, a membership function makes hidden meaningful associations between attri-

butes in the data explicit. It allows visualizing these associations in order to provide

insight into automated inductive inferences. Second, a two-dimensional plot of these

membership functions is easily interpretable by humans. Those visualizations are

precisiations of inductive associations. Third, these membership functions are models

that allow for a better quality of predictions and thus more accurate decisions.

Likelihood-based precisiation of fuzziness can be applied to marketing analyt-

ics. Data analysis on customers, products, and transactions can be applied for

customer relationship management (CRM) and individual marketing. This kind of

analytic CRM provides decision support to company representatives in marketing

channels with direct customer contact for offers, underwriting, sales, communica-

tions, gifts, and benefits.

For the analytics process, it is proposed to classify customers inductively and

fuzzily in order to target individual customers with the right relationship activities.

First, the customers are classified by assigning them to different targets (classes),

such as product offers or promotional gifts. Second, this classification is done

inductively by analyzing present data as evidence for or against target membership

based on customer characteristics. Third, the assignment of individual customers to

targets is fuzzy if the resulting classes have a gradual membership function. Finally,

80 5 Precisiating Fuzziness by Induction

http://dx.doi.org/10.1007/978-3-319-05861-0_2#Sec5


those inductive membership degrees to fuzzy targets provide decision support by

indicating the likelihood of desired response in customer activities based on

customer characteristics. These membership functions can be used in analytics to

select the most important characteristics regarding a target, visualize the relation-

ship between characteristics and a target, and predict target membership for indi-

vidual customers.

The proposed method for MFI is based on calculating likelihoods of target

membership in existing data. These likelihoods are turned into a fuzzy setmembership

function by comparison and normalization using an NLR or an NLD. This algorithm

has been implemented in the Weka machine learning workbench as a supervised

attribute filter, which inductively fuzzifies sharp data and visualizes the induced

membership functions. This software can be downloaded for experimental purposes.

Sharp binary classification and segmentation lead to anomalies of threshold, and

fuzzy classification provides a solutionwith gradual distinctions that can be applied to

CRM, as pointed out by Werro (2008). Gradual customer partitioning has the advan-

tage that the size of target groups can be varied by choosing a threshold according to

conditions such as budget or profitability. Of course, scoring methods for CRM are

state of the art; additionally, the present approach suggests that fuzzy logic is the

appropriate tool for reasoning about CRM targets because they are essentially fuzzy

concepts. Scoring provides a means for precisiation of this fuzziness, which provides

numerical membership degrees of customers in fuzzy target groups.

The advantages of MFI for fuzzy classification of customers are efficiency and

precision. First, membership functions to CRM targets can be derived automati-

cally, which is an efficient way of definition. And second, those inferred member-

ship functions are precise because they indicate an objective, measurable degree of

likelihood for target membership. Thus, the semantics of the membership function

is clearly grounded.

5.3 Outlook and Further Research

The first point of further research is further development of the IFCL software. This

prototype has fulfilled its purpose in answering the research questions of this thesis,

but it lacks many features to make it suitable for productive use. Further develop-

ment of this software could address the following points:

• refactoring of the source code with a clear object oriented design methodology,

• adding a graphical user interface,

• redesign of certain syntactical elements that have turned out to be inconvenient,

• adding a syntax checker for the IFCL language,

• adding support for all databases with a JDBC interface,

• handling null values in the data,

• and allowing multiclass predictions.

As a second research direction, the field of application of IFC will be diversified.

So far, applications have been proposed and evaluated in the area of marketing.
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Providing applications for web semantics analytics and biomedical analytics is

envisioned.

Third, the logical framework of fuzzy classification by induction is intended to be

generalized. “Inductive approximate reasoning” can be defined as a methodology for

the application of logic with gradual truth-values using less-than-certain inferences.

Also, the epistemological problem of induction will be tackled, because the likelihood

ratio as a measure of support is distorted for large values ofp H \ E
� �

=P Hð Þ, which is
exemplified by the paradox of the raven (Vickers, 2009): Is the conclusion that a

Raven (E) is black (H) truly supported by countless observations of white clouds

H \ E
� �

? At least, it increases the likelihood ratio by decreasing p E
��H� �

; perhaps,

there might be other useful measures of inductive support.

The most important suggestion for further research is the investigation of

multidimensional MFI. This thesis is concentrated on induction of membership

functions for single variables and their multivariate combination. As such, not all

possible combinations of all variables are evaluated (see Sect. 2.2.2). In a multi-

variate model, a given attribute value can be assigned the same weight for every

combination with values of other variables, for example, in a linear regression. In a

multidimensional model, the same attribute value has different weights in different

contexts, because every vector of a possible attribute value combination is assigned

an individual weight or membership degree. Therefore, it might be interesting for

future research to investigate the properties of multidimensional MFI. Instead of a

multivariate combination of univariate membership functions, a multidimensional

membership function assigns a membership degree to vectors of attribute value

combinations, and the influence of an attribute value is not only dependent on itself,

but also on the context of the other attribute’s values. Thus, predictive performance

could be improved because the interdependency of attributes can be modeled. This

could resolve the “watermelon paradox” stated by Elkan (1993, p. 703), because the

inductive membership function to the concept of watermelon is measured in two

dimensions, with “red inside” as a first coordinate and “green outside” as a second.

The following research questions can be of interest: How are multidimensional

membership functions induced from data? How are multidimensional membership

degrees computed for vectors of categorical values, for vectors of numerical values,

and for vectors of numerical and categorical values? How are continuous functions

derived from those discrete degrees? Can multidimensional membership functions

improve prediction? In what cases is it advisable to work with multidimensional

membership functions?

A possibility is to use n-linear interpolation using n-simplexes (Danielsson &

Malmquist, 1992), which are hyper-triangles or generalizations of triangles in

multidimensional space. Using simplexes, for every n-tuple of possible dimension

value combinations, a corresponding likelihood measure (such as an NLR) could be

sampled. Then, n different membership degree samples would represent the edges

of a simplex. This hyper-triangle would represent a piece of the continuous

multidimensional membership function, which could be approximated by combin-

ing simplexes to piecewise linear hyper surfaces.
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Appendix A

A.1. Datasets Used in the Experiments

Table A.1 Data sets with categorical target variable, transformed into a binary target

Name Target Filter Records Link (accessed 08.2010)

Abalone rings <¼ 9 No 2,743 http://archive.ics.uci.edu/ml/

datasets/Abalone

Adult class ¼ ‘ >50K’ No 21,623 http://archive.ics.uci.edu/ml/

datasets/Adult

Anneal class <> ‘3’ yes 597 http://archive.ics.uci.edu/ml/

datasets/Annealing

Balance class ¼ ‘L’ No 404 http://archive.ics.uci.edu/ml/

datasets/Balance+Scale

Bands band_type ¼ ‘band’ Yes 237 http://archive.ics.uci.edu/ml/

datasets/Cylinder+Bands

Breastw class ¼ ‘benign’ No 437 http://archive.ics.uci.edu/ml/

datasets/Breast+Cancer

+Wisconsin+(Diagnostic)

Car acceptable <> ‘unacc’ No 1,145 http://archive.ics.uci.edu/ml/

datasets/Car+Evaluation

Cmc contraceptive_method <> ‘1’ No 1,002 http://archive.ics.uci.edu/ml/

datasets/Contraceptive

+Method+Choice

Credit a16 ¼ ‘+’ No 431 http://archive.ics.uci.edu/ml/

datasets/Credit+Approval

Creditg class ¼ ‘good’ No 679 http://archive.ics.uci.edu/ml/

datasets/Statlog+(German

+Credit+Data)

Diabetes class <> ‘tested_positive’ No 489 http://archive.ics.uci.edu/ml/

datasets/Pima+Indians

+Diabetes

Diagnosis inflammation ¼ ‘yes’ No 87 http://archive.ics.uci.edu/ml/

datasets/Acute

+Inflammation
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Table A.1 (continued)

Name Target Filter Records Link (accessed 08.2010)

Glass type in ( “build wind float”,

“build wind non-float”, “vehic

wind float”, “vehic wind

non-float”)

No 157 http://archive.ics.uci.edu/ml/

datasets/Glass

+Identification

Heart y¼ ‘2’ No 188 http://archive.ics.uci.edu/ml/

datasets/Statlog+(Heart)

Hepatitis class ¼ ‘LIVE’ No 59 http://archive.ics.uci.edu/ml/

datasets/Hepatitis

Horse outcome ¼ ‘1’ Yes 124 http://archive.ics.uci.edu/ml/

datasets/Horse+Colic

Hypothyroid class <> ‘negative’ Yes 1,800 http://archive.ics.uci.edu/ml/

datasets/Thyroid+Disease

Internetads y¼1 No 2,153 http://archive.ics.uci.edu/ml/

datasets/Internet

+Advertisements

Ionosphere class ¼ ‘g’ No 230 http://archive.ics.uci.edu/ml/

datasets/Ionosphere

Iris class ¼ ‘Iris-setosa’ No 99 http://archive.ics.uci.edu/ml/

datasets/Iris

Letter class ¼ ‘F’ No 13,221 http://archive.ics.uci.edu/ml/

datasets/Letter

+Recognition

Lymph class ¼ ‘metastases’ No 99 http://archive.ics.uci.edu/ml/

datasets/Lymphography

Segment class ¼ ‘sky’ No 1,490 http://archive.ics.uci.edu/ml/

datasets/Statlog+(Image

+Segmentation)

Sonar class ¼ ‘Mine’ No 143 http://archive.ics.uci.edu/ml/

datasets/Connectionist

+Bench+(Sonar,+Mines

+vs.+Rocks)

Spectf y¼1 Yes 177 http://archive.ics.uci.edu/ml/

datasets/SPECTF+Heart

Vehicle class ¼ ‘saab’ No 552 http://archive.ics.uci.edu/ml/

datasets/Statlog+(Vehicle

+Silhouettes)

Waveform class <> 1 No 3,342 http://archive.ics.uci.edu/ml/

datasets/Waveform+Data

base+Generator+(Version

+2)

Wine class ¼ 2 No 110 http://archive.ics.uci.edu/ml/

datasets/Wine

Wisconsin diagnosis ¼ ‘B’ Yes 391 http://archive.ics.uci.edu/ml/

datasets/Breast+Cancer

+Wisconsin+(Diagnostic)

Yeast cls ¼ ‘CYT’ Yes 973 http://archive.ics.uci.edu/ml/

datasets/Yeast

See Sect. A.1.1 and A.1.2
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Table A.2 Data sets with numerical target variable, transformed into a fuzzy proposition μ" (see
Formula 43 and Formula 44)

Name Target Filter Records Link (accessed 08.2010)

Auto93 μ"(price) Yes 138 http://www.amstat.org/publications/

jse/v1n1/datasets.lock.html

Autohorse μ"(horsepower) No 65 http://archive.ics.uci.edu/ml/datasets/

Automobile

Baskball μ"(points_per_minute) No 62 http://lib.stat.cmu.edu/datasets/

smoothmeth

Bodyfat μ"(bodyfat) No 163 http://lib.stat.cmu.edu/datasets/

bodyfat

Bolts μ"(t20bolt) No 30 http://lib.stat.cmu.edu/datasets/bolts

Breasttumor μ"(tumor_size) No 181 http://archive.ics.uci.edu/ml/

machine-learning-databases/

breast-cancer/

Cholestrol μ" (chol) No 203 http://archive.ics.uci.edu/ml/datasets/

Heart+Disease

Cloud μ"(te) No 68 http://lib.stat.cmu.edu/datasets/cloud

Communities μ"
(violentcrimesperpop)

Yes 1,363 http://archive.ics.uci.edu/ml/datasets/

Communities+and+Crime

Cpu μ"(prp) No 135 http://archive.ics.uci.edu/ml/

machine-learning-databases/cpu-

performance/

Elusage μ"(average_
electricity_usage)

No 35 http://lib.stat.cmu.edu/datasets/

smoothmeth

Fishcatch μ"(wheight) No 97 http://www.amstat.org/publications/

jse/datasets/fishcatch.dat

http://www.amstat.org/publica

tions/jse/datasets/fishcatch.txt

Forestfires μ"(area) No 346 http://archive.ics.uci.edu/ml/datasets/

Forest+Fires

Fruitfly μ"(longevity) No 79 http://www.amstat.org/publications/

jse/datasets/fruitfly.dat

http://www.amstat.org/publica

tions/jse/datasets/fruitfly.txt

Housing μ"(price) No 348 http://archive.ics.uci.edu/ml/datasets/

Housing

Lowbwt μ"(bwt) No 124 http://www.umass.edu/statdata/

statdata/data/lowbwt.txt

http://www.umass.edu/statdata/

statdata/data/lowbwt.dat

Meta μ"(error_rate) No 348 http://archive.ics.uci.edu/ml/datasets/

Meta-data

(continued)
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Table A.2 (continued)

Name Target Filter Records Link (accessed 08.2010)

Parkinsons μ" (motor_UPDRS) Yes 1,172 http://archive.ics.uci.edu/ml/datasets/

Parkinsons

Pbc μ" (survival_time) Yes 114 http://lib.stat.cmu.edu/datasets/pbc

Pharynx μ"(days_survived) Yes 117 http://www.umass.edu/statdata/

statdata/data/pharynx.txt

http://www.umass.edu/statdata/

statdata/data/pharynx.dat

Pollution μ"(mort) No 39 http://lib.stat.cmu.edu/datasets/

pollution

Quake μ"(richter) No 1,463 http://lib.stat.cmu.edu/datasets/

smoothmeth

Sensory μ"(score) No 391 http://lib.stat.cmu.edu/datasets/

sensory

Servo μ"(servo_rise_time ) No 108 http://archive.ics.uci.edu/ml/datasets/

Servo

Sleep μ"(total_sleep) No 41 http://lib.stat.cmu.edu/datasets/sleep

Slump μ"(slump_cm) Yes 75 http://archive.ics.uci.edu/ml/datasets/

Concrete+Slump+Test

Strike μ" (volume) No 416 http://lib.stat.cmu.edu/datasets/

strikes

Veteran μ(survival) No 88 http://lib.stat.cmu.edu/datasets/

veteran

Wineqred μ"(quality) No 1,058 http://archive.ics.uci.edu/ml/datasets/

Wine+Quality

Wineqwhite μ"(quality) No 3,247 http://archive.ics.uci.edu/ml/datasets/

Wine+Quality

See Sect. A.1.1 and A.1.2

A.1.1. Attribute Selection Filters

Data set Selected attributes in prediction experiments

Anneal surface_quality, family, ferro, thick, formability, chrom, condition, steel,

non_ageing, phos, surface_finish, bf, enamelability, width, blue_bright_

varn_clean, strength, carbon, shape, cbond, bw_me, exptl, lustre, bl

(continued)
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Data set Selected attributes in prediction experiments

Auto93 Type, City_MPG, Highway_MPG, Air_Bags_standard, Drive_train_type,

Number_of_cylinders, Engine_size, RPM, Engine_revolutions_per_mile,

Manual_transmission_available, Fuel_tank_capacity, Passenger_capacity,

Length, Wheelbase, Width, U_turn_space, Rear_seat_room,

Luggage_capacity, Weight, Domestic

Bands grain_screened, ink_color, proof_on_ctd_ink, blade_mfg, cylinder_division ,

paper_type, ink_type, direct_steam, solvent_type, type_on_cylinder ,

press_type, press , unit_number , cylinder_size, paper_mill_location,

plating_tank, proof_cut, viscosity, caliper, ink_temperature, humifity, rough-

ness, blade_pressure, varnish_pct, press_speed, ink_pct, solvent_pct,

ESA_Voltage, ESA_Amperage , wax, hardener, roller_durometer,

current_density_num , anode_space_ratio, chrome_content

Communities pctilleg, pctkids2par, pctfam2par, racepctwhite, numilleg, pctyoungkids2par,

pctteen2par, racepctblack, pctwinvinc, pctwpubasst, numunderpov,

pctpopunderpov, femalepctdiv, pctpersdensehous, totalpctdiv,

pctpersownoccup, pctunemployed, malepctdivorce, pcthousnophone,

pctvacantboarded, pctnothsgrad, medfaminc, pcthousownocc, housvacant,

pcthousless3br, pctless9thgrade, medincome, blackpercap, pctlarghousefam,

numinshelters, numstreet, percapinc, agepct16t24, population, numburban,

pctwofullplumb, pcthousoccup, lemaspctofficdrugun, pctemploy, mednumbr,

pctoccupmgmtprof, pctimmigrec10, numimmig, pctbsormore,

medrentpcthousinc, pctoccupmanu, pctimmigrec8, pctwwage, agepct12t29,

pctlarghouseoccup, hisppercap, popdens, pctimmigrecent, pctimmigrec5

Horse Age, surgery, mucous_membranes, to_number(pulse) as pulse, capillary_

refill_time, to_number(packed_cell_volume) as packed_cell_volume,

peristalsis, pain, abdominal_distension, temperature_of_extremities,

to_number(rectal_temperature)

Hypothyroid on_thyroxine, query_on_thyroxine, on_antithyroid_medication, sick, pregnant,

thyroid_surgery, I131_treatment, query_hypothyroid, query_hyperthyroid,

lithium, goitre, tumor, hypopituitary, psych, to_number(replace(TSH, ’?’,

null)) as TSH, to_number(replace(T3, ’?’, null)) as T3, to_number(replace

(TT4, ’?’, null)) as TT4, to_number(replace(T4U, ’?’, null)) as T4U, to_number

(replace(FTI, ’?’, null)) as FTI, referral_source

Parkinsons subject_no, age, sex, test_time, Jitter_prc, Jitter_abs, Jitter_rap, Jitter_PPQ5,

Jitter_DDP, Shimmer, Shimmer_dB, Shimmer_APQ3, Shimmer_APQ5,

Shimmer_APQ11, Shimmer_DDA, NHR, HNR, RPDE, DFA, PPE

Pbc Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, Z12, Z13, Z14, Z15, Z16, Z17

Pharynx Inst, sex, Treatment, Grade, Age, Condition, Site, T, N, Status

Slump Cement, Slag, Fly_ash, Water, SP, Coarse_Aggr, Fine_Agg

(continued)
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Data set Selected attributes in prediction experiments

Spectf f12s, f22r, f10s, f9s, f16s, f3s, f5s, f8s, f5r, f19s, f2s, f13s, f15s, f20s

Wisconsin radius, texture, perimeter, area, smoothness, compactness, concavity,

concave_points, symmetry, fractal_dimension

Yeast mcg, gvh, alm, mit, erl, pox, vac, nuc

A.1.2. Record Selection Filters

Data set Selection criteria

Horse surgery <> ’?’ and mucous_membranes <> ’?’ and pulse <> ’?’ and

capillary_refill_time <> ’?’ and packed_cell_volume <> ’?’ and peristalsis

<> ’?’ and pain <> ’?’ and abdominal_distension <> ’?’ and temperature_-

of_extremities <> ’?’ and rectal_temperature <> ’?’

Hypothyroid TSH <> ’?’ and T3 <> ’?’ and TT4 <> ’?’ and T4U <> ’?’ and FTI <> ’?’
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A.2. Database Queries

A.2.1. Database Queries for Experiments with Sharp Target
Variables

Query 1: View for evaluation of experiment base data.

create table evaluation_basis3 as 

select

dataset, method_tmp as aggregation, ifc,

holdout_no,

correlation,

auc,mae,rmse,

c_s, c_s_sig, c_k, c_k_sig

from

(

select 

ifcl_file,dataset,case when ifc is null then 'noifc' else ifc 

end as ifc, 

correlation,

percent_rank() over(partition by dataset order by correlation) 

as r,

--correlation as r,

auc,mae,rmse,

replace(

replace(regexp_replace(replace(ifcl_file, 

'./metainduction/'||dataset||'/'||ifc||'/', ''), '[[:digit:]]+_', 

''),'.ifcl')

,  './metainduction/'||dataset||'/', '') as method_tmp,

holdout_no,

c_s, c_s_sig, c_k, c_k_sig

from
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'./metainduction/([[:alnum:]]+)/([[:alpha:]])+/')  as 

ifc_method_tmp,

holdout_no, c_s, c_s_sig, c_k, c_k_sig

from evaluations_repeated

)

)

)

where method_tmp not like '%numeric%'

and method_tmp not like '%ct%'

create index ix1 on evaluation_basis3(dataset)

create index ix2 on evaluation_basis3(ifc)

(

select

ifcl_file,dataset,correlation,auc,mae,rmse,

replace(replace(ifc_method_tmp, 

'./metainduction/'||dataset||'/', ''), '/', '') as ifc,

holdout_no, c_s, c_s_sig, c_k, c_k_sig

from

(

SELECT 

ifcl_file,correlation,auc,mae,rmse,

replace(replace(REGEXP_SUBSTR(ifcl_file, 

'./metainduction/[[:alnum:]]+/'), 

'./metainduction/', ''), '/', '') as dataset,

REGEXP_SUBSTR(ifcl_file, 

Query 2: Average correlation per aggregation method.

select aggregation, avg(correlation) 

from evaluation_basis3

where ifc <> 'noifc' 

group by aggregation 

order by avg(correlation) desc
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Query 3: Test of significance in difference between logistic regression, linear

regression and regression tree as aggregation methods.

select stats_wsr_test(corr_logreg, corr_regtree, 'ONE_SIDED_SIG'),  

stats_wsr_test(corr_logreg, corr_linreg, 'ONE_SIDED_SIG')

from 

(

select 

dataset,

sum(case when aggregation = 'logreg' then correlation else 0 

end) /

sum(case when aggregation = 'logreg' then 1 else 0 end) as 

corr_logreg,

sum(case when aggregation = 'regtree' then correlation else 0 

end) /

sum(case when aggregation = 'regtree' then 1 else 0 end) as 

corr_regtree,

sum(case when aggregation = 'linreg' then correlation else 0 

end) /

sum(case when aggregation = 'linreg' then 1 else 0 end) as 

corr_linreg

from evaluation_basis3

where ifc <> 'noifc'

group by dataset

)

Query 4: Average correlation per induction and aggregation method.

select 

ifc, aggregation, avg(correlation) 

from evaluation_basis3

group by ifc, aggregation

order by avg(correlation) desc
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Query 5: Test of significance of difference between logistic regression using

NLR-IAF, NLD-IAF and regression trees without IAF.

select 

stats_wsr_test(corr_logreg_nlr, corr_regtree_no_iaf, 

'ONE_SIDED_SIG'),

stats_wsr_test(corr_logreg_nlr, corr_logreg_nld, 'ONE_SIDED_SIG')

from

(

select 

dataset, 

sum(case when ifc||'.'||aggregation = 'nlr.logreg' then 

correlation 

else 0 end) 

/ sum(case when ifc||'.'||aggregation = 'nlr.logreg' then 1 else 0 

end) 

as corr_logreg_nlr,

sum(case when ifc||'.'||aggregation = 'nld.logreg' then 

correlation 

else 0 end) 

/ sum(case when ifc||'.'||aggregation = 'nld.logreg' then 1 else 0 

end) 

as corr_logreg_nld,

sum(case when ifc||'.'||aggregation = 'noifc.regtree' then 

correlation 

else 0 end) 

/ sum(case when ifc||'.'||aggregation = 'noifc.regtree' then 1 

else 0 end) 

as corr_regtree_no_iaf

from evaluation_basis3

where dataset is not null

group by dataset )
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A.2.2. Database Queries for Experiments with Numerical
Target Variables

Query 6: View for evaluation of experiment base data.

create table evaluation_basis_num as 

select

dataset, method_tmp as aggregation, ifc, fuzzification,

holdout_no,

correlation,

auc,mae,rmse,

c_s, c_s_sig, c_k, c_k_sig

from

(

select 

ifcl_file,dataset,

nvl(replace(substr(ifc, 1, regexp_instr(ifc, '._l|_p')),'_', 

''), 'noifc') as ifc,

replace(substr(ifc, regexp_instr(ifc, '._l|_p')+1, length(ifc)), 

'_', '') as fuzzification, 

correlation,

percent_rank() over(partition by dataset order by correlation) 

as r,

--correlation as r,

auc,mae,rmse,

replace(

replace(regexp_replace(replace(ifcl_file, 

'./metainduction_num/'||dataset||'/'||ifc||'/', ''), 

'[[:digit:]]+_', ''),'.ifcl')

,  './metainduction_num/'||dataset||'/', '') as method_tmp,

holdout_no,

c_s, c_s_sig, c_k, c_k_sig

from

(

select

ifcl_file,dataset,correlation,auc,mae,rmse,

replace(replace(ifc_method_tmp, 

'./metainduction_num/'||dataset||'/', ''), '/', '') as ifc,

holdout_no, c_s, c_s_sig, c_k, c_k_sig

from

(

SELECT 

ifcl_file,correlation,auc,mae,rmse,

replace(replace(REGEXP_SUBSTR(ifcl_file, 
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'./metainduction_num/[[:alnum:]]+/'), 

'./metainduction_num/', ''), '/', '') as dataset,

REGEXP_SUBSTR(ifcl_file, 

'./metainduction_num/([[:alnum:]]+)/([[:print:]])+/')  as 

ifc_method_tmp,

holdout_no, c_s, c_s_sig, c_k, c_k_sig

from evaluations_repeated_num

)

)

)

create index ix3 on evaluation_basis_num(dataset)

create index ix4 on evaluation_basis_num(ifc)

create index ix5 on evaluation_basis_num(fuzzification)

Query 7: Average correlation per aggregation method, given linear ITF.

select aggregation, avg(correlation) 

from evaluation_basis_num

where ifc <> 'noifc' 

group by aggregation 

order by avg(correlation) desc
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Query 8: Test of significance in difference between regression tree, linear regres-

sion and average.

select 

stats_wsr_test(corr_regtree, corr_avg, 'ONE_SIDED_SIG'),  

stats_wsr_test(corr_regtree, corr_linreg, 'ONE_SIDED_SIG')

from 

(

select 

dataset,

sum(case when aggregation = 'avg' then correlation else 0 

end) /

sum(case when aggregation = 'avg' then 1 else 0 end) as 

corr_avg,

sum(case when aggregation = 'regtree' then correlation else 0 

end) /

sum(case when aggregation = 'regtree' then 1 else 0 end) as 

corr_regtree,

sum(case when aggregation = 'linreg' then correlation else 0 

end) /

sum(case when aggregation = 'linreg' then 1 else 0 end) as 

corr_linreg

from evaluation_basis_num

where ifc <> 'noifc'

group by dataset

)

Query 9: Average correlation per target fuzzification method.

select 

fuzzification, avg(correlation) 

from evaluation_basis_num

where aggregation = 'regtree'

group by fuzzification

order by avg(correlation) desc
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Query 10: Test of significance between target fuzzification methods.

select 

stats_wsr_test(corr_l, corr_p, 'ONE_SIDED_SIG')

from 

(

select 

dataset,

sum(case when fuzzification = 'l' then correlation else 0 

end) /

sum(case when fuzzification = 'l' then 1 else 0 end) as 

corr_l,

sum(case when fuzzification = 'p' then correlation else 0 

end) /

sum(case when fuzzification = 'p' then 1 else 0 end) as 

corr_p

from evaluation_basis_num

where aggregation = 'regtree'

and ifc <> 'noifc'

group by dataset

)

Query 11: Average correlation per induction and aggregation method (given linear

target fuzzification).

select 

ifc, aggregation, avg(correlation) 

from evaluation_basis_num

where (fuzzification = 'l' or fuzzification is null)

and aggregation <> 'logreg_p'

group by ifc, aggregation

order by avg(correlation) desc

96 Appendix A



Query 12: Test of significance of difference between regression trees using

NLD-IAF , NLDU-IAF and regression trees without IAF.

select 

stats_wsr_test(corr_regtree_nld, corr_regtree_no_iaf, 

'ONE_SIDED_SIG'),

stats_wsr_test(corr_regtree_nld, corr_regtree_nldu, 

'ONE_SIDED_SIG'),

stats_wsr_test(corr_regtree_nld, corr_regtree_nlr, 

'ONE_SIDED_SIG')

from

(

select 

dataset, 

sum(case when ifc||'.'||aggregation = 'nld.regtree' then 

correlation 

else 0 end) 

/ sum(case when ifc||'.'||aggregation = 'nld.regtree' then 1 else 

0 end) 

as corr_regtree_nld,

sum(case when ifc||'.'||aggregation = 'nldu.regtree' then 

correlation 

else 0 end) 

/ sum(case when ifc||'.'||aggregation = 'nldu.regtree' then 1 else 

0 end) 

as corr_regtree_nldu,

sum(case when ifc||'.'||aggregation = 'npr.regtree' then 

correlation 

else 0 end) 

/ sum(case when ifc||'.'||aggregation = 'npr.regtree' then 1 else 

0 end) 

as corr_regtree_nlr,

sum(case when ifc||'.'||aggregation = 'noifc.regtree' then 

correlation 

else 0 end) 

/ sum(case when ifc||'.'||aggregation = 'noifc.regtree' then 1 

else 0 end) 

as corr_regtree_no_iaf

from evaluation_basis_num

where dataset is not null

group by dataset

)
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A.2.3. Database Queries for Both Types of Experiments

Query 13: Table with data parameters for each dataset.

-- Execute 00_load_all.bat first

create or replace view data_params as

select * from

( -- improvement

select dataset, (corr_logreg_nlr-

corr_logreg_no_iaf)/corr_logreg_no_iaf as improvement_by_iaf

from

(

select 

dataset, 

sum(case when ifc||'.'||aggregation = 'nlr.logreg' then

correlation 

else 0 end) 

/ sum(case when ifc||'.'||aggregation = 'nlr.logreg' then 1 

else 0 end) 

as corr_logreg_nlr,

sum(case when ifc||'.'||aggregation = 'noifc.regtree' then 

correlation 

else 0 end) 

/ sum(case when ifc||'.'||aggregation = 'noifc.regtree' then 1 

else 0 end) 

as corr_regtree_no_iaf,

sum(case when ifc||'.'||aggregation = 'noifc.logreg' then 

correlation 

else 0 end) 

/ sum(case when ifc||'.'||aggregation = 'noifc.logreg' then 1 

else 0 end) 

as corr_logreg_no_iaf

from evaluation_basis3

where dataset is not null

group by dataset

)

union

select 

dataset, (corr_regtree_nld -

corr_regtree_no_iaf)/corr_regtree_no_iaf as improvement_by_iaf

from

(

select 
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dataset, 

sum(case when ifc||'.'||aggregation = 'nld.regtree' then 

correlation 

else 0 end) 

/ sum(case when ifc||'.'||aggregation = 'nld.regtree' then 1 

else 0 end) 

as corr_regtree_nld,

sum(case when ifc||'.'||aggregation = 'noifc.regtree' then 

correlation 

else 0 end) 

/ sum(case when ifc||'.'||aggregation = 'noifc.regtree' then 1 

else 0 end) 

as corr_regtree_no_iaf

from evaluation_basis_num

where dataset is not null

group by dataset

)

)

join

( -- column count

select 

replace(lower(table_name), '_tr', '') as dataset,

sum(case when data_type in ('CHAR', 'VARCHAR2') then 1 else 0 

end) as ncatcols,

sum(case when data_type in ('NUMBER', 'FLOAT') then 1 else 0 

end) as nnumcols,

sum(case when data_type in ('CHAR', 'VARCHAR2') then 1 else 0 

end)/count(*) as pcatcols,

sum(case when data_type in ('NUMBER', 'FLOAT') then 1 else 0 

end)/count(*) as pnumcols,

count(*) as ncols

from 

sys.all_tab_columns

where table_name in

('ABALONE_TR', 'ADULT_TR', 'ANNEAL_TR', 'BALANCE_TR', 

'BANDS_TR', 'BREASTW_TR', 'CAR_TR', 'CMC_TR', 'CREDIT_TR', 

'CREDITG_TR', 'DIABETES_TR', 'DIAGNOSIS_TR', 'GLASS_TR', 

'HEART_TR', 'HEPATITIS_TR', 'HORSE_TR', 'HYPOTHYROID_TR', 

'INTERNETADS_TR', 'IONOSPHERE_TR', 'IRIS_TR', 'LETTER_TR', 
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'LYMPH_TR', 'SEGMENT_TR', 'SONAR_TR', 'SPECTF_TR', 'VEHICLE_TR', 

'WAVEFORM_TR', 'WINE_TR', 'WISCONSIN_TR', 'YEAST_TR', 'AUTO93_TR', 

'AUTOHORSE_TR', 'BASKBALL_TR', 'BODYFAT_TR', 'BOLTS_TR', 

'BREASTTUMOR_TR', 'CHOLESTROL_TR', 'CLOUD_TR', 'COMMUNITIES_TR', 

'CPU_TR', 'ELUSAGE_TR', 'FISHCATCH_TR', 'FORESTFIRES_TR', 

'FRUITFLY_TR', 'HOUSING_TR', 'LOWBWT_TR', 'META_TR', 

'PARKINSONS_TR', 'PBC_TR', 'PHARYNX_TR', 'POLLUTION_TR', 

'QUAKE_TR', 'SENSORY_TR', 'SERVO_TR', 'SLEEP_TR', 'SLUMP_TR', 

'STRIKE_TR', 'VETERAN_TR', 'WINEQRED_TR', 'WINEQWHITE_TR')

and column_name <> 'IS_TRAINING'

and column_name <> 'Y'

group by table_name

)

using (dataset)

join

( -- correlation of linear regression

select dataset, avg(correlation) as avg_corr_linreg from 

evaluation_basis3

where ifc = 'noifc'

and aggregation = 'linreg'

group by dataset

union

select dataset, avg(correlation) from evaluation_basis_num

where ifc = 'noifc'

and aggregation = 'linreg'

group by dataset

) 

using (dataset) join

( -- row count

select 'abalone' as dataset, 'c' as target_type, count(*) as 

nrows from abalone_tr

union select 'abalone', 'c', count(*) from abalone_tr

union select 'adult', 'c', count(*) from adult_tr

union select 'anneal', 'c', count(*) from anneal_tr

union select 'balance', 'c', count(*) from balance_tr

union select 'bands', 'c', count(*) from bands_tr

union select 'breastw', 'c', count(*) from breastw_tr

union select 'car', 'c', count(*) from car_tr

union select 'cmc', 'c', count(*) from cmc_tr
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union select 'credit', 'c', count(*) from credit_tr

union select 'creditg', 'c', count(*) from creditg_tr

union select 'diabetes', 'c', count(*) from diabetes_tr

union select 'diagnosis', 'c', count(*) from diagnosis_tr

union select 'glass', 'c', count(*) from glass_tr

union select 'heart', 'c', count(*) from heart_tr

union select 'hepatitis', 'c', count(*) from hepatitis_tr

union select 'horse', 'c', count(*) from horse_tr

union select 'hypothyroid', 'c', count(*) from hypothyroid_tr

union select 'internetads', 'c', count(*) from internetads_tr

union select 'ionosphere', 'c', count(*) from ionosphere_tr

union select 'iris', 'c', count(*) from iris_tr

union select 'letter', 'c', count(*) from letter_tr

union select 'lymph', 'c', count(*) from lymph_tr

union select 'segment', 'c', count(*) from segment_tr

union select 'sonar', 'c', count(*) from sonar_tr

union select 'spectf', 'c', count(*) from spectf_tr

union select 'vehicle', 'c', count(*) from vehicle_tr

union select 'waveform', 'c', count(*) from waveform_tr

union select 'wine', 'c', count(*) from wine_tr

union select 'wisconsin', 'c', count(*) from wisconsin_tr

union select 'yeast', 'c', count(*) from yeast_tr

union select 'auto93', 'n', count(*) from auto93_tr

union select 'autohorse', 'n', count(*) from autohorse_tr

union select 'baskball', 'n', count(*) from baskball_tr

union select 'bodyfat', 'n', count(*) from bodyfat_tr

union select 'bolts', 'n', count(*) from bolts_tr

union select 'breasttumor', 'n', count(*) from breasttumor_tr

union select 'cholestrol', 'n', count(*) from cholestrol_tr

union select 'cloud', 'n', count(*) from cloud_tr

union select 'communities', 'n', count(*) from communities_tr

union select 'cpu', 'n', count(*) from cpu_tr

union select 'elusage', 'n', count(*) from elusage_tr

union select 'fishcatch', 'n', count(*) from fishcatch_tr

union select 'forestfires', 'n', count(*) from forestfires_tr

union select 'fruitfly', 'n', count(*) from fruitfly_tr

union select 'housing', 'n', count(*) from housing_tr

union select 'lowbwt', 'n', count(*) from lowbwt_tr

union select 'meta', 'n', count(*) from meta_tr
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union select 'parkinsons', 'n', count(*) from parkinsons_tr

union select 'pbc', 'n', count(*) from pbc_tr

union select 'pharynx', 'n', count(*) from pharynx_tr

union select 'pollution', 'n', count(*) from pollution_tr

union select 'quake', 'n', count(*) from quake_tr

union select 'sensory', 'n', count(*) from sensory_tr

union select 'servo', 'n', count(*) from servo_tr

union select 'sleep', 'n', count(*) from sleep_tr

union select 'slump', 'n', count(*) from slump_tr

union select 'strike', 'n', count(*) from strike_tr

union select 'veteran', 'n', count(*) from veteran_tr

union select 'wineqred', 'n', count(*) from wineqred_tr

union select 'wineqwhite', 'n', count(*) from wineqwhite_tr

)

using (dataset)

Query 14: Correlation of parameters with the performance improvement by IFC.

select 

target_type,

CORR_S(improvement_by_iaf, ncatcols) c_ncatcols,

CORR_S(improvement_by_iaf, ncatcols, 'TWO_SIDED_SIG') p_ncatcols,

CORR_S(improvement_by_iaf, nnumcols) c_nnumcols,

CORR_S(improvement_by_iaf, nnumcols, 'TWO_SIDED_SIG') p_nnumcols,

CORR_S(improvement_by_iaf, pcatcols) c_pcatcols,

CORR_S(improvement_by_iaf, pcatcols, 'TWO_SIDED_SIG') p_pcatcols,

CORR_S(improvement_by_iaf, pnumcols) c_pnumcols,

CORR_S(improvement_by_iaf, pnumcols, 'TWO_SIDED_SIG') p_pnumcols,

CORR_S(improvement_by_iaf, ncols) c_ncols,

CORR_S(improvement_by_iaf, ncols, 'TWO_SIDED_SIG') p_ncols,

CORR_S(improvement_by_iaf, avg_corr_linreg) c_avg_corr_linreg,

CORR_S(improvement_by_iaf, avg_corr_linreg, 'TWO_SIDED_SIG') 

p_avg_corr_linreg,

CORR_S(improvement_by_iaf, nrows) c_nrows,

CORR_S(improvement_by_iaf, nrows, 'TWO_SIDED_SIG') p_nrows,

CORR_S(improvement_by_iaf, nrows/ncols) c_nrowscols,

CORR_S(improvement_by_iaf, nrows/ncols, 'TWO_SIDED_SIG') 

p_nrowscols

from data_params

group by target_type
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Query 15: Table for scatter plot visualization of association between linearity of

data and improvement by IAF.

select dataset, target_type, avg_corr_linreg, improvement_by_iaf 

from data_params order by target_type, dataset

A.3. Experimental Results Tables

Table A.3 Average prediction correlations per dataset/aggregation method for binary targets

Dataset Avg. Corr. Log. Reg. Avg. Corr. Reg. Tree Avg. Corr. Lin. Reg.

Abalone 0.638687626 0.651733317 0.636539418

Adult 0.659169773 0.651350849 0.636197273

Anneal 0.823367865 0.846689248 0.797382729

Balance 0.920732292 0.791055945 0.840604813

Bands 0.454571882 0.351967704 0.426261177

Breastw 0.939085094 0.927238012 0.931453636

Car 0.914349826 0.933901714 0.811581886

Cmc 0.425228906 0.421732164 0.418979581

Credit 0.76498662 0.757839955 0.767073216

Creditg 0.457163162 0.426897568 0.437699783

Diabetes 0.54510302 0.533295481 0.546568895

Diagnosis 1 0.868887353 0.965967697

Glass 0.794456151 0.774937317 0.802028743

Heart 0.695053211 0.643374806 0.684389592

Hepatitis 0.291646106 0.383819768 0.388031234

Horse 0.572088107 0.529928212 0.555148535

Hypothyroid 0.792125757 0.892843929 0.79338345

Internetads 0.805987731 0.753679747 0.78294501

Ionosphere 0.819557055 0.799538551 0.798060482

Iris 1 0.999193202 0.991252264

Letter 0.626368894 0.798441855 0.480644051

Lymph 0.695768921 0.672304979 0.726334152

Segment 0.99999997 0.997855955 0.992554443

Sonar 0.558775153 0.554680801 0.578090696

spectf 0.501761759 0.447468223 0.463867849

Vehicle 0.475892051 0.460322532 0.437534698

Waveform 0.82107583 0.785686835 0.74716555

Wine 0.918745813 0.861574492 0.914019581

Wisconsin 0.908323537 0.872676408 0.88191778

Yeast 0.421658925 0.424627552 0.423187415
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Table A.4 Average prediction correlations per dataset and aggregation method for numerical

target variables

Dataset Avg. Corr. Avg. Avg. Corr. Reg. Tree Avg. Corr. Lin. Reg.

Auto93 0.691201303 0.857445115 0.738746817

Autohorse 0.892653343 0.926796658 0.930059659

Baskball 0.536398611 0.638183226 0.539943795

Bodyfat 0.744776961 0.980938537 0.977226072

Bolts 0.79763048 0.894265558 0.905782285

Breasttumor 0.231971819 0.380396489 0.258283305

Cholestrol 0.176404133 0.345649097 0.163348437

Cloud 0.8020314 0.891982414 0.865600118

Communities 0.731280609 0.79667882 0.780258252

Cpu 0.788972056 0.814152614 0.794450568

Elusage 0.865618561 0.897333607 0.872277672

Fishcatch 0.845272306 0.918434123 0.894956413

Forestfires 0.018454772 0.167736369 0.014733488

Fruitfly �0.131668697 0.165425495 �0.067547186

Housing 0.687542408 0.908550517 0.86615543

Lowbwt 0.741678073 0.810166446 0.788121932

Meta 0.27658433 0.448502931 0.353513754

Parkinsons 0.326735958 0.881670195 0.605425938

Pbc 0.475841958 0.67048775 0.487261393

Pharynx 0.606093213 0.775843245 0.683939249

Pollution 0.656915329 0.811606345 0.655832652

Quake 0.057471089 0.081629626 0.058700741

Sensory 0.290356213 0.400912946 0.337693928

Servo 0.703894008 0.828999856 0.780728183

Sleep 0.713524339 0.753362622 0.601491837

Slump 0.422059811 0.668746482 0.500413959

Strike 0.382845386 0.485543157 0.418259534

Veteran 0.358292594 0.483294002 0.413181002

Wineqred 0.544798097 0.615254318 0.595187199

Wineqwhite 0.507972143 0.577186397 0.543279329

Table A.5 Average prediction correlations for IAF on data with numerical target variables using

linear versus percentile ITF

Dataset Linear ITF Percentile ITF

Auto93 0.88105593 0.833834299

Autohorse 0.946780795 0.90681252

Baskball 0.635879956 0.640486496

Bodyfat 0.984034462 0.977842612

Bolts 0.921790457 0.866740659

Breasttumor 0.385000153 0.375792824

Cholestrol 0.365144244 0.32615395

Cloud 0.926867976 0.857096852

(continued)
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Table A.5 (continued)

Dataset Linear ITF Percentile ITF

Communities 0.82334782 0.770009819

Cpu 0.937630747 0.690674481

Elusage 0.905249904 0.88941731

Fishcatch 0.94873926 0.888128986

Forestfires 0.210580299 0.124892439

Fruitfly 0.157932749 0.172918241

Housing 0.940547453 0.87655358

Lowbwt 0.814805887 0.805527006

Meta 0.577117175 0.319888686

Parkinsons 0.880604806 0.882735584

Pbc 0.666064677 0.674910823

Pharynx 0.785763664 0.765922825

Pollution 0.807044092 0.816168598

Quake 0.078567569 0.084691683

Sensory 0.399599899 0.402225994

Servo 0.872101166 0.785898546

Sleep 0.783933708 0.722791535

Slump 0.708012949 0.629480015

Strike 0.522569102 0.448517211

Veteran 0.515124253 0.45146375

Wineqred 0.619064343 0.611444293

Wineqwhite 0.58210665 0.572266143

Table A.6 Average prediction correlations per dataset and three different combinations of

supervised aggregation and IAF for binary target variables

Dataset

Avg. Corr. Log. Reg.

+ IAF NLR

Avg. Corr. Log. Reg.

+ IAF NLD

Avg. Corr. Reg.

Tr w/o IAF

Abalone 0.633651826 0.636990551 0.64867844

Adult 0.662989858 0.656921233 0.608645742

Anneal 0.826555309 0.823932942 0.853821973

Balance 0.923393427 0.924777928 0.79058825

Bands 0.461862401 0.450021541 0.343296921

Breastw 0.939701709 0.939464426 0.930009743

Car 0.91660187 0.913644582 0.948927087

Cmc 0.42385694 0.423400481 0.455736376

Credit 0.768277547 0.763557368 0.751852807

Creditg 0.464104961 0.469843758 0.393045324

Diabetes 0.556749014 0.545362638 0.50644607

Diagnosis 1 1 0.944533837

Glass 0.802605598 0.804760434 0.824622632

Heart 0.694785041 0.70493683 0.657426735

Hepatitis 0.374975313 0.311577565 0.339608818

Horse 0.569485166 0.55213211 0.541218353

(continued)

Appendix A 105



Table A.6 (continued)

Dataset

Avg. Corr. Log. Reg.

+ IAF NLR

Avg. Corr. Log. Reg.

+ IAF NLD

Avg. Corr. Reg.

Tr w/o IAF

Hypothyroid 0.80477987 0.800429276 0.898883448

Internetads 0.807436554 0.808116466 0.798458728

Ionosphere 0.809199099 0.819279121 0.764848148

Iris 1 1 0.996991022

Letter 0.6349395 0.62902598 0.727029396

Lymph 0.68823764 0.690663197 0.727999682

Segment 0.999999995 0.999999953 0.997593306

Sonar 0.559774797 0.557996241 0.496422658

Spectf 0.505452116 0.510651243 0.473619771

Vehicle 0.46898602 0.496373681 0.559857093

Waveform 0.826959479 0.821165897 0.783760649

Wine 0.912450784 0.923247357 0.90726124

Wisconsin 0.912735058 0.907890135 0.873368639

Yeast 0.420860794 0.420696658 0.412990274

Table A.7 Average prediction correlations per dataset and three different combinations of

supervised aggregation and IAF for numerical target variables

Dataset

Avg. Corr. Reg. Tr.

+ IAF NLD

Avg. Corr. Reg. Tr.

+ IAF NLDU

Avg. Corr. Reg. Tr.

w/o IAF

Auto93 0.851949884 0.854702482 0.783694291

Autohorse 0.934671172 0.932528555 0.939116035

Baskball 0.651189815 0.65121036 0.623578896

Bodyfat 0.989455545 0.990353116 0.991221665

Bolts 0.899445255 0.90182103 0.921987087

Breasttumor 0.379942005 0.37994241 0.252316629

Cholestrol 0.354768905 0.346985441 0.193892889

Cloud 0.901964456 0.89860454 0.913436117

Communities 0.798599026 0.796617813 0.791015749

Cpu 0.843304898 0.842528113 0.97677025

Elusage 0.905475647 0.905995831 0.881926102

Fishcatch 0.932313534 0.933532791 0.985895292

Forestfires 0.175728178 0.169928128 0.014991533

Fruitfly 0.212102028 0.212108602 �0.064702557

Housing 0.918270044 0.917557553 0.900012141

Lowbwt 0.813006747 0.812914092 0.783555356

Meta 0.462534319 0.454644049 0.368499477

Parkinsons 0.887066413 0.881144444 0.941203949

Pbc 0.66081537 0.660799138 0.534079402

Pharynx 0.773127351 0.773127987 0.708101866

Pollution 0.829522663 0.831729118 0.60923147

Quake 0.082057392 0.08047578 0.073515546

Sensory 0.404010864 0.404010206 0.386991775

(continued)
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Table A.7 (continued)

Dataset

Avg. Corr. Reg. Tr.

+ IAF NLD

Avg. Corr. Reg. Tr.

+ IAF NLDU

Avg. Corr. Reg. Tr.

w/o IAF

Servo 0.82787911 0.827815554 0.912721346

Sleep 0.77696476 0.764053467 0.730795112

Slump 0.690106281 0.689333045 0.493530846

Strike 0.496745411 0.496578249 0.415429314

Veteran 0.471382971 0.471232266 0.437471553

Wineqred 0.611102154 0.615205884 0.580172859

Wineqwhite 0.572707345 0.573805738 0.563459737

Table A.8 Relationship between target linearity and improvement of logistic regression by IAF

NLR for binary target variables

Dataset Target linearity Improvement by IAF NLR

Abalone 0.632486147 �0.015038624

Adult 0.601697632 0.003616993

Anneal 0.847487701 0.265333889

Balance 0.839927779 0.010051891

Bands 0.397808335 0.101084917

Breastw 0.92253246 �0.001225938

Car 0.814076541 �0.001610122

Cmc 0.351769834 0.17744701

Credit 0.733383933 0.063102998

Creditg 0.425527893 0.040954514

Diabetes 0.527451425 0.044424251

Diagnosis 0.972462485 �5.2E-16

Glass 0.817993073 �0.003667589

Heart 0.6866888 0.030462835

Hepatitis 0.381693585 0.098467765

Horse 0.552106327 0.111811784

Hypothyroid 0.584747606 0.080805492

Internetads 0.784842676 0.00291351

Ionosphere 0.681485184 0.15769256

Iris 0.97214843 2.97338E-06

Letter 0.45185967 0.10947387

Lymph 0.723280478 0.033367981

Segment 0.956800746 �4.89814E-09

Sonar 0.512394902 0.043510527

Spectf 0.452480291 �0.002580917

Vehicle 0.57214217 �0.206318239

Waveform 0.724956824 0.075158502

Wine 0.910709707 �0.029160901
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Table A.9 Relationship between target linearity and improvement of regression trees by IAF

NLD for numerical target variables

Dataset Target linearity Improvement by IAF NLD

Autohorse 0.946606415 �0.004733029

Auto93 0.736992093 0.087094666

Baskball 0.623578896 0.044278148

Bodyfat 0.990358409 �0.001781761

Bolts 0.85950705 �0.024449184

Breasttumor 0.236969021 0.505814364

Cholestrol 0.170467119 0.82971591

Cloud 0.912861146 �0.0125588

Communities 0.797109195 0.009586759

Cpu 0.930542139 �0.136639452

Elusage 0.845600615 0.026702402

Fishcatch 0.963623075 �0.054348325

Forestfires 0.073146275 10.72182832

Fruitfly �0.064702557 �4.278108926

Housing 0.854820529 0.020286285

Lowbwt 0.778262746 0.037586867

Meta 0.383398892 0.25518311

Parkinsons 0.459022397 �0.057519453

Pbc 0.530953313 0.237297988

Pharynx 0.699754036 0.091830693

Pollution 0.679583809 0.361588664

Quake 0.066085663 0.116191016

Sensory 0.336532333 0.043977907

Servo 0.836899785 �0.092955244

Sleep 0.709322872 0.063177281

Slump 0.436362228 0.398304251

Strike 0.42286715 0.195739913

Veteran 0.397186311 0.077516853

Wineqred 0.583219599 0.053310483

Wineqwhite 0.52352684 0.01641219

A.4. IFCL Syntax and Application

A.4.1. Grammar Notation

The syntax will be described with the aid of meta-linguistic formulae in the Backus-

Naur Form (BNF) as proposed by Backus, et al. (1960):

<. . .> Meta-linguistic variables: nodes of the grammar tree

::¼ Definition of syntax element placeholders

. . . | . . . Alternative choice of syntax elements
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<character> A symbol

<string> Any sequence of symbols

<integer> A sequence of digits (0–9)

<decimal> A sequence of digits (0–9) containing one decimal point

<empty> An empty set of symbols: no symbol at all

All symbols that are not inside of less than / greater than signs ( <. . .> ) except

the symbols ::¼ and | are used literally in the IFCL language. Different meta-

linguistic variable declarations are separated by an empty line. Comments can be

made in IFCL files as a sequence of symbols enclosed by the character #. In fact,

comments are filtered out before parsing, so they are not part of the language itself.

A.4.2. IFCL File Structure

<IFCL file> ::= 

<IFCL file node> <IFCL file leaf>

<IFCL file node> ::= 

<IFCL file execution call> <IFCL file node> 

| <empty>

<IFCL file leaf> ::= 

<connect to database>  <IFCL leaf action sequence> 

<IFCL leaf action sequence> ::=  

<IFCL leaf action> <IFCL action sequence> | <empty> 

<IFCL leaf action> ::=  

| <drop database table> 

| <execute sql> 

| <load database> 

| <induce membership function> 

| <aggregate multiple variables>

| <data classification> 

| <evaluate correlations>
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A.4.3. Executing IFCL Files in Batch Mode

• Syntax

<IFCL file execution call> ::= @execifcl: file == <ifcl file 

path>;

<ifcl file path> ::= <string>

• Example

@execifcl: file ¼¼ ./metainduction/abalone/load.ifcl;

A.4.4. Connecting to the Database

• Syntax

<connect to database> ::= 

@connect: 

hostname == <database host name>  ;

SID  == <database service identifier> ;

port  == <database server port number> ;

username  == <user name> ;

password  == <password> ;

<database host name> ::= <string>

<database service identifier>::= <string>

<database server port number> ::= <integer>

<user name> ::= <string>

<password> ::= <string>
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• Example

@connect:

HostName   == localhost;

SID        == XE;

Port       == 1521;

UserName   == ME;

Password   == passwort;

A.4.5. Droping a Database Table

• Syntax

<drop database table> ::= @drop: table == <table name>;

<table name>::= <string>

• Example

@drop: table ¼¼ abalone_te_nlr_regtree

A.4.6. Executing an SQL Script

• Syntax

<execute sql> ::= @execsql: <sql>

<sql> ::=

file == <sql script file path> ;

| command == <sql statement> ;

<sql script file path> ::= <string>

<sql statement> ::= <string>
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• Example

@execsql: file ¼¼ metainduction/abalone/01_sql/
table_split.sql;

A.4.7. Loading Data into the Database

• Syntax

<load database> ::= <SQL*Loader> | <IFCL loader>

<SQL*Loader>::= 

@sqlldr:

data == <path to data file> ;

control == <path to sqlldr control file> ;

skip == <number of rows to skip>;

errors == <number of errors to accept>;

<path to data file> ::= <string>

<path to sqlldr control file> ::= <string>

<number of rows to skip> ::= <integer>

<number of errors to accept> ::= <integer>

• Example

@sqlldr:

data == metainduction/abalone/00_data/data.csv;

control == metainduction/abalone/00_data/sqlldr.ctl;

skip == 0;

errors == 10000;
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• Syntax

<IFCL loader> ::=

@load:

file ==  <path to data file> ;

table == <table to be created and loaded> ;

delimiter == <data delimiting character> ;

attributes == <attribute list> ;

types == <type list>;

<path to data file> ::= <string>

<data delimiting character> ::= <character>

<attribute list> ::= <attribute> <attribute list> | <empty>

<attribute> ::= <string>

<type list> ::= <type> <type list> | <empty>

<type> ::= n | c

• Example

@load:

file == ./metainduction/balance/00_data/00_data.csv;

table == balance_load;

delimiter == ,;

attributes == left_weight, left_distance, right_weight, 

right_distance, class;

types == n, n, n, n, c;
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A.4.8. Inducing a Membership Function

• Syntax

<induce membership function> ::=

@inducemf:

table == <table for membership function induction> ;

target variable == <table column> ;

analytic variables == <column> | <column list> | <all columns>

induction == <induction type> ;

output file == <path to output file for sql classification 

template> ;

<optional skipped columns>

<optional left out columns>

<table for membership function induction> ::= <string>

<column> ::= <string>

<all columns> ::= *

<column list> ::=  <column> <column list or empty> 

<column list or empty> = <column>  <column list or empty> | 

<empty>

<induction type> ::= l | nlr | nlru | nld | nldu | cp | npr | npru 

| npd | npdu | iff | nc | mm

<path to output file for sql classification template> ::= <string>

<optional skipped columns> ::= 

skip columns == <column list> ;

<optional left out columns> ::=

let columns == <column list> ;
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• Example

@inducemf:

table == abalone_tr;

target variable == y;

analytic variables == *;

induction == cp;

output file == ./metainduction/abalone/02_output/cp.sql.template;

A.4.9. Classification of Data

• Syntax

<data classification> ::=

@classify:

classified table == <table to be classified> ;

template file == <path to sql classification template file> ;

output table == <table for storing resulting classification> ;

<table to be classified> ::= <string>

<path to sql classification template file> ::= <string>

<table for storing resulting classification> ::= <string>

• Example

@classify:

classified table == abalone_te;

template file == ./metainduction/regtree.sql.template;

output table == abalone_te_rt;
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A.4.10. Aggregating Multiple Variables

• Syntax

<aggregate multiple variables> ::=

@aggregatemv:

table == <table to be aggregated> ;

analytic variables == <column> | <column list> | <all columns> ;

aggregation operator == <aggretation operator>;

target variable == <table column>;

output file == <path to output file>;

column alias == <name of column containing aggregated membership 

value>;

<table to be aggregated> ::= <string>

<aggretation operator> ::= linreg | logreg | regtree | min | max | 

ap | as | avg

<name of column containing aggregated membership value> ::= 

<string>

• Example

@aggregatemv:

table == abalone_tr_s;

analytic variables == *;

aggregation operator == linreg;

target variable == y;

output file == 

./metainduction/abalone/02_output/linreg.sql.template;

column alias == mfc;
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A.4.11. Evaluating Predictions

• Syntax

<evaluate correlations> ::= 

@evaluate:

table == <table containing resulting prediction> ;

<analytic variables> ::= <column> | <column list> | <all columns> 

;

target variable == <table column>;

<optional result table>

<optional output file>

<optional result table> ::= 

result table == <table for storing evaluation results> | <empty> ;

<table for storing evaluation results> ::= <string>

<optional output file> ::= 

output file == <file for storing evaluation results> | <empty> ;

<file for storing evaluation results> ::= <string>

• Example

@evaluate:

table == abalone_te_rt;

target variable == y;

analytic variable == mfc;

result table == evaluations;

output file == metainduction/anneal/attreval.csv;

A.4.12. Data Preparation

The following example IFCL code shows how to prepare datasets for training and

evaluation using the IFCL load action. It shows also how to split training and test

data randomly.
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• Example

@connect:

HostName   == localhost;

SID        == XE;

Port == 1521;

UserName   == ME;

Password   == passwort;

@load:

file == ./metainduction_num/sensory/00_data/00_data.csv;

table == sensory_load;

delimiter == ,;

attributes == 

Occasion,Judges,Interval,Sittings,Position,Squares,Rows_,Columns, 

Halfplot,Trellis,Method,Score;

types == c,c,c,c,c,c,c,c,c,c,c,n;

null == ?;

@drop: table == sensory_split;

@execsql: command ==

create table sensory_split as

select 

Occasion,Judges,Interval,Sittings,Position,Squares,Rows_,Columns,

Halfplot,Trellis,Method,Score as y,

# percent rank fuzzification #

percent_rank() over (order by score) as y_p, 

# linear fuzzification #

(score - min(score) over()) / (max(score) over()-min(score) 

over()) as y_l,

case when dbms_random.value <= 0.667 then 1 else 0 end as 

is_training

# random split of data for training and test sets #

from sensory_load;

@drop: table == sensory_tr;

# create table with training set #

@execsql: command ==

create table sensory_tr as
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select * from sensory_split where is_training = 1;

@drop: table == sensory_te;

# create table with test set #

@execsql: command ==

create table sensory_te as

select * from sensory_split where is_training = 0;
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A.4.13. Attribute Selection

The following example IFCL code shows how to select relevant attributes from a

relation regarding a target attribute.

• Example

@connect:

HostName   == localhost;

SID        == XE;

Port       == 1521;

UserName   == ME;

Password   == passwort;

@inducemf: # membership function induction #

table == sensory_tr;

target variable == y;

analytic variables == *;

induction == nlr;

output file == 

./metainduction_num/sensory/02_output/nlr.sql.template;

@classify: # inductive attribute fuzzification #

classified table == sensory_tr;

template file == 

./metainduction_num/sensory/02_output/nlr.sql.template;

output table == sensory_tr_nlr;

@drop: table == attribute_selection;

@evaluate: # ranking of correlation of fuzzified attribute values 

and target #

table == sensory_tr_nlr;

target variable == y;

analytic variables == *;

output file == metainduction_num/sensory/attreval.csv;

result table == attribute_selection;
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A.5. Key Terms and Definitions

IFC Inductive fuzzy classification: Assigning individuals to fuzzy sets for which

membership function is generated from data so that the membership degrees

provide support for an inductive inference

ITF Inductive target fuzzification: Transformation of a numerical target variable into a

membership degree to a fuzzy class

MFI Membership function induction: Derivation of an inductive mapping from attri-

bute values to membership degrees based on available data

IFCL Inductive fuzzy classification language: Software prototype implementing IFC

NLR Normalized likelihood ratio: A proposed formula for MFI

NLD Normalized likelihood difference: Another proposed formula for MFI

IAF Inductive attribute fuzzification: Transformation of attribute values into mem-

bership degrees using induced membership functions

Zadehan

variable

A variable with a range of [0,1] representing truth values, analogous to Boolean

variables with a range of {0,1}

Zadehan logic A framework for reasoning with gradual truth values in the interval between 0 and 1
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