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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.

STUART A. RICE
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PREFACE

The study of chemical reactions covers a variety of phenomena, ranging from

the microscopic mechanisms of reaction processes through structural changes

involving macromolecules such as proteins, to biochemical networks within

cells. One common question concerning these seemingly diverse phenomena is

how we can understand the temporal development of the system based on its

dynamics.

At the microscopic level, chemical reactions are dynamical phenomena in

which nonlinear vibrational motions are strongly coupled with each other.

Therefore, deterministic chaos in dynamical systems plays a crucial role in

understanding chemical reactions. In particular, the dynamical origin of

statistical behavior and the possibility of controlling reactions require analyses

of chaotic behavior in multidimensional phase space.

In contrast, conventional reaction rate theory replaces the dynamics within

the potential well by fluctuations at equilibrium. This replacement is made

possible by the assumption of local equilibrium, in which the characteristic time

scale of vibrational relaxation is supposed to be much shorter than that of

reaction. Furthermore, it is supposed that the phase space within the potential

well is uniformly covered by chaotic motions. Thus, only information

concerning the saddle regions of the potential is taken into account in

considering the reaction dynamics. This approach is called the transition state

theory.

Recently, however, experimental studies have cast a doubt on this assumption

(see Ref. 1 for a review). For example, spectroscopic studies reveal hierarchical

structures in the spectra of vibrationally highly excited molecules [2]. Such

structures in the spectra imply the existence of bottlenecks to intramolecular

vibrational energy redistribution (IVR). Reactions involving radicals also

exhibit bottlenecks to IVR [3]. Moreover, time-resolved measurements of

highly excited molecules in the liquid phase show that some reactions take place

before the molecules relax to equilibrium [4]. Therefore, the assumption that

local equilibrium exists prior to reaction should be questioned. We seek

understanding of reaction processes where the assumption does not hold.

The problem requires analyses of phase-space structures in systems with

many degrees of freedom. In particular, appreciating the global structure of the

phase space becomes essential for our understanding of reactions under

nonequilibrium conditions. In order to make this point clear, we briefly

summarize the present status of the study.
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Since the 1980s, concepts and results from nonlinear physics have been

incorporated into studies of unimolecular reactions. (For a review, see Rice and

co-workers’ contribution in this volume.) In particular, concepts established for

systems with two degrees of freedom have played an important role in defining

the reaction rate based on dynamics [5]. The concept of transition state has been

examined from the standpoint of dynamical system theory, and reformulated

in terms of normally hyperbolic invariant manifolds (NHIMs). While transition

states in the conventional sense are situated in configuration space, NHIMs

corresponding to saddles are structures in phase space. In order to formulate

transition states as dividing surfaces, we have to resort to NHIMs and their

stable and unstable manifolds. These phase space structures enable us to avoid

the so-called recrossing problem. Moreover, Lie perturbation theory makes it

possible to calculate the dividing surfaces at least locally near the NHIMs (see

Ref. 6 for a review).

However, in systems with more than two degrees of freedom, the dividing

surfaces do not generally exist globally in phase space [7,8]. Thus, the attempt

to define the reaction rate based on dynamics has not been successful for systems

with many degrees of freedom. Instead, global features of the phase space, such

as the network of reaction paths, emerge as crucial ingredients in studying

reactions from the dynamical point of view.

The reason why the dividing surfaces do not generally exist globally

is because intersections between the stable and unstable manifolds of NHIMs

sometimes involve tangency. This tangency reveals that branching structures

exist in the network of reaction paths. Moreover, combining these branching

structures with the Arnold web in the potential well, the global aspects of the

phase space offer rich possibilities for nonergodic behavior for reactions in

systems with many degrees of freedom. Implications of this possibility are to be

sought in reactions under nonequilibrium conditions.

Thus, we shift our attention from quantities related to local equilibrium,

notably reaction rate constants, to nonequilibrium aspects of reaction processes.

In particular, we list the following three closely related questions as most

important.

First, do dynamical correlations exist in processes involving multiple

saddles, such as structural changes of macromolecules in clusters and proteins?

In the conventional theory, it is supposed that consecutive processes of going

over saddles take place independent of one another. In other words, the system

loses its memory of the past immediately, since the vibrational relaxation within

a well is assumed to be much faster than the escape from it and multistep

processes are conventionally assumed to be Markov processes. To the contrary,

when the characteristic time scale of IVR is comparable to that of the reaction,

the system can keep dynamical correlations as it goes over successive saddles.
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These correlations result in (a) acceleration of reactions for some initial

conditions and (b) deceleration for others. This approach will shed new light on

problems such as why reactions proceed on multibasin energy landscapes

without being trapped in deep minima [9], why proteins fold so effectively, how

enzymes help specific reactions to take place, and so on.

Second, how we can characterize nonequilibrium reactions using a

dynamical viewpoint? Since the conventional concepts are not sufficient here,

we need new ideas that relate measurable quantities to reaction dynamics. In

particular, for reactions involving structural changes of macromolecules,

collective variables will be necessary to describe processes, and the degrees

of freedom that compose collective variables will change as the reaction

proceeds over multiple saddles. Furthermore, dynamical correlations are likely

to play important roles. Then, we need methods that answer the following

questions: What degrees of freedom are necessary to describe reaction

dynamics, in what way do they evolve and vary during the processes, and

how we can extract information on their dynamics from measurements?

Third, what is the dynamical origin of Maxwell’s demon? As is well known

since the work of Maxwell, Szilard, and Brillouin, nonequilibrium conditions

are necessary for systems to do information processing. Therefore, in studying

biochemical reactions, we are interested in how nonequilibrium conditions are

maintained at the molecular level. From the viewpoint of dynamics, in

particular, the following problem stands out as crucial: Does any intrinsic

mechanism of dynamics exist which helps to maintain nonequilibrium

conditions in reaction processes? In other words, are there any reactions in

which nonergodicity plays an essential role for systems to exhibit functional

behavior?

Keeping these subjects in perspective, we organized a conference entitled

‘‘Geometrical Structures of Phase Space in Multidimensional Chaos—

Applications to Chemical Reaction Dynamics in Complex Systems’’ from

26th October to 1st November, 2003, at the Yukawa Institute for Theoretical

Physics, Kyoto University, Kyoto, Japan. A pre-conference was also held at

Kobe University from 20th to 25th October.

This conference was interdisciplinary, where researchers from physics

(including astrophysics), biophysics, physical chemistry, and nonlinear science

gathered to discuss a wide range of problems in reaction dynamics with the

common theme that chaos in dynamical systems plays a crucial role in studying

chemical reactions. Furthermore, we argue that reactions involving macro-

molecules such as clusters, liquids, and proteins are important examples of

dynamical systems with many degrees of freedom. Thus, we expect that studies

of these reactions from a dynamics point of view will shed new light on

phenomena such as phase transitions in clusters, slow relaxation in liquids, and
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the efficiency of protein folding, as well as in seeking the possibility of

manipulating these reactions.

In particular, in the Conference we focused our attention on the following

topics.

1. Transition state theory revisited from the dynamical point of view,

including a historical perspective of the study.

2. Phase-space structure of Hamiltonian systems with multiple degrees of

freedom—in particular, normally hyperbolic invariant manifolds

(NHIMs), intersections between their stable and unstable manifolds, and

the Arnold web.

3. Analyses of reaction processes based on the phase space structure of the

system.

4. Quantum aspects of chaos and how we can control them.

5. Nonstatistical properties, such as nonstationary behavior and multiple

scales of time and distance for evolution, in systems of many degrees of

freedom.

6. Dynamical understanding of reaction processes in macromolecules and

liquids, such as phase transitions, fast alloying, energy redistribution, and

structural changes in clusters and proteins.

7. Data mining to extract information on dynamics from time series data

from experiments and simulations of molecular dynamics.

8. Dynamical insights into reactions at the macroscopic level, including

chemical networks in cells and their evolution.

Here, in this volume, we have collected contributions from the invited speakers,

from poster presentations that received the best poster awards (Yanao, Honjo,

and Okushima), and from poster presentations chosen to cover topics that were

not treated by the invited speakers. The best poster awards were decided based

on a jury vote by the invited speakers and a popular vote by all the participants.

Note, however, that there were many other posters that also deserved inclusion

here.

In the following, we give a brief overview of the content of this volume. The

volume consists of the following three parts:

I. Phase-space geometry of multidimensional dynamical systems and

reaction processes.

II. Complex dynamical behavior in clusters and proteins, and data mining

to extract information on dynamics.

III. New directions in multidimensional chaos and evolutionary reactions.
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In the first part, our aim is to discuss how we can apply concepts drawn from

dynamical systems theory to reaction processes, especially unimolecular reac-

tions of few-body systems. In conventional reaction rate theory, dynamical

aspects are replaced by equilibrium statistical concepts. However, from the

standpoint of chaos, the applicability of statistical concepts itself is problematic.

The contribution of Rice’s group gives us detailed analyses of this problem from

the standpoint of chaos, and it presents a new approach toward unimolecular

reaction rate theory.

In statistical reaction rate theory, the concept of transition state plays a

key role. Transition states are supposed to be the boundaries between

reactants and products. However, the precise formulation of the transition

state as a dividing surface is only possible when we consider ‘‘transition states’’

in phase space. This is the place where the concepts of normally hyperbolic

invariant manifolds (NHIMs) and their stable and unstable manifolds come into

play.

The contributions of Komatsuzaki and Berry, and of Uzer’s group, discuss

these manifolds, and they present their calculations using Lie perturbation

theory methods. The contribution of Wiesenfeld discusses these manifolds in

reaction processes involving angular momenta, and the contribution by Joyeux

et al. shows applications of the perturbation theory method to reactions

involving Fermi resonance. The contribution of Sano discusses invariant

manifolds in the Coulomb three-body problem.

The importance of NHIMs, and their stable and unstable manifolds is shared

strikingly between chemical reactions and astrophysics. Therefore in the

conference at Kyoto, Koon, from Caltech, discussed controlling an orbiter in

astrophysics, and Uzer presented his study of asteroids near Jupiter, where

analyses of these manifolds were essential.

In reaction processes for which there is no local equilibrium within the

potential well, global aspects of the phase space structure become crucial. This

is the topic treated in the contribution of Toda. This work stresses the

consequences of a variety of intersections between the stable and unstable

manifolds of NHIMs in systems with many degrees of freedom. In particular,

‘‘tangency’’ of intersections is a feature newly recognized in the phase space

structure. It is a manifestation of the multidimensionality of the system, where

reaction paths form a network with branches.

Here, we also include the contributions related to quantum mechanics: The

chapter by Takami et al. discusses control of quantum chaos using coarse-

grained laser fields, and the contribution of Takahashi and Ikeda deals with

tunneling phenomena involving chaos. Both discuss how chaos in classical

behavior manifests itself in the quantum counterpart, and what role it will play

in reaction dynamics.
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In the second part, we collect contributions concerning dynamical processes

in complex systems such as clusters and proteins. Here, we also include those

ideas related to data mining, since this topic is an indispensable part of the

studies on dynamics of macromolecules.

The contribution of Berry presents an overview of the study of clusters as

vehicles for investigating complex systems. The study of clusters has given birth

to a variety of new ideas which turned out to be fruitful in other complex

systems such as proteins. The contribution of Takatsuka discusses dynamical

and statistical aspects of phase transitions in clusters, and the contribution

of Yanao and Takatsuka studies the gauge structure arising from the dynamics

of floppy molecules. Shida’s contribution presents an important issue related

to saddles of index of two or more, and shows their role in the phase transi-

tions of clusters. Another interesting phenomenon of clusters is fast alloying,

discussed in the contribution of Shimizu et al. from the standpoint of reaction

dynamics.

Liquids and proteins are complex systems for which the study of dynamical

systems has wide applicability. In the conference, relaxation in liquids (e-
entropy by Douglas at the National Institute of Standards and Technology,

nonlinear optics by Saito, and energy bottlenecks by Shudo and Saito), energy

redistribution in proteins (Leitner and Straub et al.), structural changes in

proteins (Kidera at Yokohama City University), and a new formulation of the

Nosé-Hoover chain (Ezra at Cornell University) were discussed. Kidera’s talk

discussed time series analyses in molecular dynamics, and it is closely related to

the problem of data mining. In the second part of the volume, we collect the

contributions by Leitner and by Straub’s group, and the one by Shudo and Saito

in the third part.

The contribution by Komatsuzaki’s group bridges the two research fields—

that is, dynamics in complex systems and data mining. They apply to a model of

proteins the methods of embedding and Allan variance, both of which have been

developed in dynamical system theory. Their results reveal, using the Allan

variance, nonstationary behavior in protein dynamics, and they show, by

embedding, how many degrees of freedom are necessary to describe this

dynamics. Thus, this contribution indicates a crucial role for the methods of data

mining in the study of processes involving macromolecules.

Therefore, contributions to methods of data mining are included here. It is

uncommon to discuss this topic in the context of reaction processes. However,

as we have already discussed, data mining becomes ever more important in

analyzing experiments and simulations. In conventional data analyses, the

concepts of equilibrium statistical physics have been routinely applied. To the

contrary, in situations in which local equilibrium breaks down, established

methods do not exist to analyze experiments and simulations. Thus, data mining
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to extract information on dynamics is crucial here. In the conference, several

methods were discussed (Broomhead at Manchester University on embedding,

Vulpiani on finite-size Lyapunov exponents, Taguchi on nonmetric methods,

and Hasegawa on inductive thermodynamics approach from time series). Here

we include the contributions by Taguchi and Oono and by Hasegawa and

Ohtaki.

In the third part, those contributions are collected which discuss nonergodic

and nonstationary behavior in systems with many degrees of freedom, and seek

new possibilities to describe complex reactions, including even the evolution of

living cells.

Conventional theory supposes that statistical ideas would be more applicable

to systems of many degrees of freedom than to few-body systems. To the

contrary, in these systems, new kinds of behavior such as multiergodicity,

nonstationarity, and an anomalous approach to equilibrium can emerge.

Consequently, their implications for reaction dynamics should be explored,

especially in those cases where biological functions are involved.

Thus, the contribution of Shudo and Saito starts by presenting the problem

concerning the relation between nonergodicity and 1=f noise. For systems with

two degrees of freedom, the dynamical origin of 1=f noise is attributed to the

hierarchical structures of resonant tori (Aizawa). However, for systems with

many degrees of freedom, this relationship is not well understood. This

discussion goes on to systems with a gap in the spectrum of characteristic time

scales and nonergodic behavior, based on the studies of the Italian group

(Benettin et al.). The contributions of Aizawa and of Yamaguchi also discuss

these problems in the context of cluster formation (Aizawa) and of an approach

to equilibrium (Yamaguchi). These features will become important in under-

standing reaction processes in complex systems such as protein folding and

slow relaxation in complex liquids.

Nonlinear resonances are important factors in reaction processes of systems

with many degrees of freedom. The contributions of Konishi and of Honjo and

Kaneko discuss this problem. Konishi analyzes, by elaborate numerical

calculations, the so-called Arnold diffusion, a slow movement along a single

resonance under the influence of other resonances. Here, he casts doubt on the

usage of the term ‘‘diffusion.’’ In other words, ‘‘Arnold diffusion’’ is a dynamics

completely different from random behavior in fully chaotic regions where most

of the invariant structures are lost. Hence, understanding ‘‘Arnold diffusion’’ is

essential when we go beyond the conventional statistical theory of reaction

dynamics. The contribution of Honjo and Kaneko discusses dynamics on

the network of nonlinear resonances (i.e., the Arnold web), and stresses

the importance of resonance intersections since they play the role of the hub

there.
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Here we also include the contribution of Okushima, in which the concept of

the Lyapunov exponents is extended to orbits of finite duration. The

mathematical definition of the Lyapunov exponents requires ergodicity to

ensure convergence of the definition. On the other hand, various attempts have

been made to extend this concept to finite time and space, to make it applicable

to nonergodic systems. Okushima’s idea is one of them, and it will find

applications in nonstationary reaction processes.

The contributions of Vulpiani’s group and of Kaneko deal with reactions at

the macroscopic level. The contribution of Vulpiani’s group discusses

asymptotic analyses to macroscopic reactions involving flows, by presenting

the mechanism of front formation in reactive systems. The contribution of

Kaneko deals with the network of reactions within a cell, and it discusses the

possibility of evolution and differentiation in terms of that network. In

particular, he points out that molecules that exist only in small numbers can play

the role of a switch in the network, and that these molecules control

evolutionary processes of the network. This point demonstrates a limitation of

the conventional statistical quantities such as density, which are obtained by

coarse-graining microscopic quantities. In other words, new concepts will be

required which go beyond the hierarchy in the levels of description such as

micro and macro.

We hope that the contributions collected in this volume convey the

stimulating and interdisciplinary atmosphere of the conference. We also expect

that the results and discussions in these contributions form a first and decisive

step toward understanding reaction processes from the standpoint of dynamics.
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é
(5
)
A
n
g
el
o
V
u
lp
ia
n
i
(6
)
Y
o
ji
A
iz
aw

a
(7
)
M
ik
it
o
T
o
d
a
(8
)
M
as
an
o
ri

S
h
im

o
n
o
(9
)
D
av
e
F
.
B
ro
o
m
h
ea
d
(1
0
)
S
h
in
ic
h
ir
o
G
o
to

(1
1
)
Y
o
sh
ih
ir
o
T
ag
u
ch
i
(1
2
)
S
h
in
ji
S
ai
to

(1
3
)
D
av
id

M
.
L
ei
tn
er

(1
4
)
L
au
re
n
t
W
ie
se
n
fe
ld

(1
5
)

K
o
ji
H
o
tt
a
(1
6
)
S
ei
ic
h
ir
o
H
o
n
jo

(1
7
)
W
an
g
S
an
g
K
o
o
n
(1
8
)
S
tu
ar
t
A
.
R
ic
e
(1
9
)
A
k
in
o
ri
K
id
er
a
(2
0
)
T
o
sh
iy
a
T
ak
am

i
(2
1
)
K
y
o
k
o
H
o
sh
in
o
(2
2
)

A
y
ak
o
N
o
za
k
i
(2
3
)
Y
o
k
o
K
.
U
en
o
(2
4
)
K
az
u
o
T
ak
at
su
k
a
(2
5
)
Y
as
u
sh
i
S
h
im

iz
u
(2
6
)
K
in
’y
a
T
ak
ah
as
h
i
(2
7
)
M
it
su
sa
d
a
M
.
S
an
o
(2
8
)
H
ir
o
sh
i
H
.

H
as
eg
aw

a
(2
9
)
K
o
ic
h
i
F
u
ji
m
o
to

(3
0
)
T
u
rg
ay

U
ze
r
(3
1
)
T
et
su
ro

K
o
n
is
h
i
(3
2
)
H
id
et
o
sh
i
M
o
ri
ta

(3
3
)
Y
o
sh
iy
u
k
i
Y
.
Y
am

ag
u
ch
i
(3
4
)
Jo
h
n
E
.
S
tr
au
b

(3
5
)
H
ir
o
sh
i
F
u
ji
sa
k
i
(3
6
)
M
it
su
n
o
ri
T
ak
an
o
(3
7
)
S
o
ta
ro

F
u
ch
ig
am

i
(3
8
)
Ja
ck

F
.
D
o
u
g
la
s
(3
9
)
K
az
u
o
K
u
w
at
a
(4
0
)
T
ak
u
M
iz
u
k
am

i
(4
1
)
T
er
u
ak
i

O
k
u
sh
im

a
(4
2
)
K
im

K
y
eo
n
-d
eu
k
(4
3
)
N
o
ri
h
ir
o
S
h
id
a
(4
4
)
A
k
ir
a
S
h
u
d
o
(4
5
)
T
ak
ef
u
m
i
Y
am

as
h
it
a
(4
6
)
K
u
n
ih
ik
o
K
an
ek
o
(4
7
)
Y
o
u
h
ei
K
o
y
am

a
(4
8
)

M
ar
c
Jo
y
eu
x
(4
9
)
L
in
ta
o
B
u
(5
0
)
S
ta
tu
e
o
f
H
id
ek
i
Y
u
k
aw

a
(N

o
b
el

P
ri
ze

L
au
re
at
e
(P
h
y
si
cs
)
1
9
4
9
)

xxi





CONTENTS PART A

PART I PHASE-SPACE GEOMETRY OF MULTIDIMENSIONAL

DYNAMICAL SYSTEMS AND REACTION PROCESSES 1

Chapter 1 Classical, Semiclassical, and Quantum Mechanical

Unimolecular Reaction Rate Theory 3

By Meishan Zhao, Jiangbin Gong, and Stuart A. Rice

Chapter 2 Regularity in Chaotic Transitions on Two-Basin

Landscapes 143

By Tamiki Komatsuzaki and R. Stephen Berry

Chapter 3 A New Look at the Transition State: Wigner’s

Dynamical Perspective Revisited 171
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I. INTRODUCTION

Studies of the rate of a unimolecular reaction have been central to the

development of our understanding of reaction dynamics for almost a century.

In the early 1900s such reactions appeared mysterious, since the source of the

energy required for reaction to occur was not immediately apparent. Indeed, it

took careful experimental work to demonstrate that thermal unimolecular

reactions were induced by collisions and not by absorption of ambient radiation

and that the observed unimolecular kinetics held in only a limited pressure range.

Once the phenomenological description of unimolecular reaction kinetics was

established, attention turned to the development of a molecular description of the

reaction rate. It was understood from the beginning of these studies that a

detailed description of the nonlinear dynamical evolution of an energized

molecule is extraordinarily difficult. A key breakthrough occurred when it was

4 meishan zhao et al.



realized that for many purposes a statistical description of the energy distribution

in the excited molecule suffices. Indeed, statistical theories of molecular energy

distribution have been central to our understanding of the kinetics and dynamics

of unimolecular reactions.

The beauty of statistical treatments of chemical reaction dynamics lies in

their simplicity and universality. Rice, Ramsberger, and Kassel (RRK) [1,2],

building on the earlier work of Lindemann and Hinshelwood, developed a

statistical theory of unimolecular reaction rate based on the assumption that

complete intramolecular energy transfer precedes reaction. Under this

assumption, detailed information regarding the excitation step of a unimolecular

reaction is irrelevant, and the reaction rate depends only upon the energy of a

molecule. The RRK theory is based on classical mechanics. Marcus recast and

further developed the RRK theory in the 1950s [3,4] by taking into account the

major elements of the energy state structure of the molecule imposed by

quantum mechanics. The resultant RRKM statistical theory of unimolecular

reaction rate is, by any measure, one of the great successes of chemical physics;

it is widely applicable and provides an excellent description of the experimental

data in the overwhelming majority of cases [5,6]. There are, however, some

instances in which the RRKM theory gives inaccurate or unphysical predictions.

In many of these instances the failure of the RRKM theory can be traced to a

breakdown of the assumption that the rate of intramolecular energy transfer is

greater than the rate of reaction and/or that all states of the molecule are

accessible for energy transfer. Typically, analysis of these cases has retained the

conceptual framework of the theory and merely modified some of the analysis

associated with the intramolecular energy transfer step.

The success of a statistical theory of the overall dynamical evolution of an

isolated molecule relies largely on the intrinsic stochasticity of the internal

motions—that is, on the existence of deterministic dynamical chaos. As such,

studies of the rate of a chemical reaction have become interdisciplinary, and

they involve significant overlap with the field of nonlinear dynamics and

deterministic chaos [7]. The renaissance in the development of classical

unimolecular reaction rate theory has been motivated by the recognition that

cantori, remnants of invariant phase space curves with highly irrational winding

numbers, constitute bottlenecks to chaotic transport between disjoint phase

space regions [8,9,10]. In particular, in treating model molecular systems with

two degrees of freedom (DOFs) Davis and Gray [11] replaced the RRKM

transition state, which is defined in configuration space, by an exact separatrix

that is defined in phase space. The separatrix defines the boundary in phase

space between products and reactants—for example, the boundary between

bounded motion and unbounded motion in a fragmentation reaction. Davis and

Gray also incorporated the bottlenecks to intramolecular energy transfer into

their reaction rate theory. This modified statistical theory accurately predicts, for

classical, semiclassical, and quantum mechanical rate theory 5



example, the decay rate of a simplified classical model of He-I2; that decay
rate is overestimated by conventional RRKM theory by at least an order

of magnitude. The work of Davis and Gray demonstrated the potential for

accurate prediction of unimolecular fragmentation rate constants inherent in

statistical theories that account for highly inhomogeneous energy transport. The

Davis–Gray theory was later simplified by Gray, Rice, and Davis [12] by

replacing the exact separatrix with an approximate phase-space dividing

surface, and it was further modified by Zhao and Rice [13–16] to account for

some effects of vibrational and rotational motion in both reactants and products

and to develop approximations for analytical treatments of intramolecular

energy flow. The several reported tests of the Zhao–Rice version of

unimolecular reaction rate theory (identified by the acronym MRRKM) are in

good, but not perfect, agreement with classical simulations and actual

experimental results.

Developing a reaction rate theory for realistic polyatomic systems requires

significant extensions of the Davis–Gray theory. One might intuitively expect

that the higher the system dimension, the better a statistical description. But this

is not the case, and a rigorous extension of the Davis–Gray theory to many-

dimensional systems is challenging. For example, identifying the bottlenecks to

energy flow in systems with three or more DOFs is far from trivial, since there

are no invariant phase-space structures that can separate the energy shell into

disjoint regions. Many of the extant approaches, including the MRRKM theory,

have either demonstrated or assumed the importance of pairwise frequency

ratios, and much work along this direction remains to be done. Furthermore,

because of so-called homoclinic tangency [17], a concept further discussed

below, the usefulness of a many-dimensional analog of the exact separatrix in

the Davis–Gray theory is unclear. Indeed, in a study of a model van der Waals

molecule fragmentation reaction, Gillilan and Ezra [18] observed that a two-

dimensional projection of a many-dimensional separatrix associated with the

fixed point at infinity may or may not resemble the separatrix of a two-

dimensional system, implying that this high-dimensional separatrix is

unsuitable for determining the flux that crosses from the molecular complex

region to the free fragments region of phase space. Of course, this result does

not preclude the existence of a well-behaved separatrix associated simulta-

neously with several fixed points.

In a study of the rate of isomerization of HCN to CNH, Rice and co-workers

[19] suggested exploiting a reaction path Hamiltonian as a device to permit

extension of classical statistical reaction rate theory from few-dimensional to

many-dimensional systems. In that approach the dynamics of the reacting

molecule is reduced to that of a system with a complicated but one-dimensional

reactive DOF coupled with other effective DOFs. Although their calculations

based on this approach yield an accurate description of the isomerization rate as

6 meishan zhao et al.



a function of energy, the reaction path treatment cannot be immediately

rationalized because the implicit coupling between the complicated reaction

coordinate and the other DOFs, via the definition of the reaction coordinate,

obscures the meaning of the two-dimensional mapping that is exploited. Recent

advances in chaotic transport in many-dimensional systems, and particularly the

Wiggins theory of normally hyperbolic invariant manifolds (NHIM) in

dynamical systems [20,21], offer new opportunities to refine classical reaction

rate theories. For example, instead of using a reaction path Hamiltonian,

Wiggins et al. [22] proposed to transform the system Hamiltonian by a sequence

of local and nonlinear canonical transformations to a particular form, which

then allows for explicit construction of an exact many-dimensional separatrix

and straightforward calculation of the flux across that separatrix. This novel

methodology, although based on a local picture of the reaction dynamics, is

expected to greatly deepen our understanding of the similarities and differences

between many-dimensional and few-dimensional reacting systems.

A successful reaction rate theory cannot completely ignore some of the

important features of the reaction dynamics. Reacting molecular systems cannot

be truly ergodic, and this ‘‘order in chaos’’ is precisely why statistical theories

must be rather sophisticated. The importance of this point can be appreciated,

for example, from examination of the reactive islands theory (RIT) [23–25] of

the rate of unimolecular isomerization. Incorporated into RIT is a high degree of

phase space structure associated with the chaotic dynamics of isomerization.

More significantly, Komatsuzaki and Berry [26] have presented a systematic

approach to identifying local regularities embedded in the chaotic dynamics of

many-dimensional systems. The key element in their approach is the use of Lie

canonical perturbation theory to rotate away the irregular behavior particularly

associated with the motion along the reaction coordinate, and then to identify

local constants of the motion. Since the frequency associated with the reactive

mode is imaginary, they show that at least one local approximate constant

of motion exists even when the dynamics of the transition state becomes

manifestly chaotic. This important result makes it possible to construct a local

multidimensional separatrix and has provided new perspectives into chemical

reaction dynamics.

With this brief overview of classical theories of unimolecular reaction rate,

one might wonder why classical mechanics is so useful in treating molecular

systems that are microscopic, and one might question when a classical statistical

theory should be replaced by a corresponding quantum theory. These general

questions bring up the important issue of quantum-classical correspondence in

general and the field of quantum chaos [27–29] (i.e., the quantum dynamics of

classically chaotic systems) in particular. For example, is it possible to translate

the above classical concepts (e.g., phase space separatrix, NHIM, reactive

islands) into quantum mechanics, and if yes, how? What is the consequence of

classical, semiclassical, and quantum mechanical rate theory 7



quantization for energy transport in chaotic systems? Anticipating its impor-

tance to chemical reaction rate theory, we shall also review some recent results

from the relatively young field of quantum chaos.

Recent years have also witnessed exciting developments in the active control

of unimolecular reactions [30,31]. Reactants can be prepared and their evolution

interfered with on very short time scales, and coherent light sources can be used

to imprint information on molecular systems so as to produce more or less of

specified products. Because a well-controlled unimolecular reaction is highly

nonstatistical and presents an excellent example in which any statistical theory

of the reaction dynamics would terribly fail, it is instructive to comment on how

to view the vast control possibilities, on the one hand, and various statistical

theories of reaction rate, on the other hand. Note first that a controlled

unimolecular reaction, most often subject to one or more external fields and

manipulated within a very short time scale, undergoes nonequilibrium processes

and is therefore not expected to be describable by any unimolecular reaction

rate theory that assumes the existence of an equilibrium distribution of the

internal energy of the molecule. Second, strong deviations from statistical

behavior in an uncontrolled unimolecular reaction can imply the existence of

‘‘order in chaos’’ and thus more possibilities for inexpensive active control of

product formation. Third, most control scenarios rely on quantum interference

effects that are neglected in classical reaction rate theory. Clearly, then, studies

of controlled reaction dynamics and studies of statistical reaction rate theory

complement each other.

This review chapter, intended to be self-contained and reasonably focused on

the work developed in our group, is organized as follows. We begin with

introducing some basic but important concepts in classical mechanics and

chaotic transport, including canonical transformations, the KAM theorem,

bottlenecks to chaotic transport in both few-dimensional and many-dimensional

systems, normally hyperbolic invariant manifolds, and more. These concepts are

strengthened, in Section III, by presenting some simple mapping models for

unimolecular fragmentation. Then, in Section IV, we review a number of

classical theories of unimolecular predissociation reaction rate, with detailed

comparisons between different theories and between theoretical and experi-

mental results. This is followed, in Section V, by a review of unimolecular

isomerization rate theories and their application to various model systems. In

Section VI we describe some standard quantum and semiclassical approaches to

unimolecular reaction rate theory, with emphasis placed on their connections to

classical approaches. Finally, Section VII contains a brief survey of some recent

results concerning quantum transport in classically chaotic systems; how these

results are expected to influence our understanding of quantum effects in

unimolecular reaction dynamics is also discussed. Section VIII contains some

concluding remarks and speculations.

8 meishan zhao et al.



II. PHASE-SPACE STRUCTURE OF MOLECULAR DYNAMICS

A. Canonical Transformation

In classical mechanics the state of a system with n DOFs is represented by a

vector ðq1; q2; . . . ; qn; p1; p2; . . . ; pnÞ � ðq; pÞ in a 2n-dimensional phase space,

whose evolution is governed by Hamilton’s equations of motion

dq

dt
¼ qH

qp
;

dp

dt
¼ � qH

qq
ð1Þ

where q represents the configuration coordinates, p represents the conjugate

momenta, and H ¼ Hðq; pÞ. Although time-dependent systems such as

periodically kicked systems will also be discussed in this review, here we

restrict ourselves to time-independent systems. Then the energy of the system,

denoted by E, is conserved, and the time-evolving trajectories are necessarily

restricted to a ð2n� 1Þ-dimensional hypersurface.

There exists a special type of coordinate transformation in phase space,

called a canonical transformation, which transforms the original system

variables ðq; pÞ to new system variables ðq0; p0Þ � ðq01; q02; . . . ; q0n; p01; p02; . . . ; p0nÞ
while retaining the structure of Hamilton’s equations of motion, that is,

dq0

dt
¼ qH0

qp0
;

dp0

dt
¼ � qH0

qq0
ð2Þ

where H0 ¼ H0ðq0; p0Þ ¼ Hðq; pÞ. A canonical transformation can be generated

by requiring p � dq� p0 � dq0 to be a complete differential dF. For example, if

F ¼ Fðq; q0Þ, then one needs

p ¼ qF1

qq
; p0 ¼ � qF1

qq0
ð3Þ

to realize the canonical transformation. Of particular importance is the case in

which F can be written as F2ðq; p0Þ � p0 � q0. One then obtains

p ¼ qF2

qq
; q0 ¼ qF2

qp0
ð4Þ

where q0 should be regarded as a function of q and p0. Due to energy

conservation, Eq. (4) directly leads to the Hamilton–Jacobi equation:

H q;
qF2

qq

� �
¼ E ð5Þ

classical, semiclassical, and quantum mechanical rate theory 9



Solving this partial differential equation, which is required to construct the

canonical transformation, is in general as difficult as solving Eq. (1). However,

Eq. (5) is very useful in obtaining approximate solutions using, for example,

perturbation theory.

An alternative procedure to generate a canonical transformation is to use

the Hamiltonian flow itself. Consider an arbitrary Hamiltonian system of the

same dimension as the original system. The associated functional dependence of

the final state at t ¼ tf on the initial state at t ¼ ti can be represented by

qðtiÞ ! qðtf Þ ¼ q½qðtiÞ; pðtiÞ�; pðtiÞ ! pðtf Þ ¼ p½qðtiÞ; pðtiÞ� ð6Þ

Since both initial and final states satisfy the same equations of motion, the

transformation of Eq. (6) is a natural canonical transformation. This kind of

canonical transformation is a basic tool in the so-called Lie canonical

perturbation theory for obtaining approximate constants of the motion.

B. Invariant Measure

A classical statistical theory is concerned with an ensemble of classical

trajectories. Denote the kth evolving trajectory in an ensemble by ½qkðtÞ; pkðtÞ�.
Then the ensemble average of a physical observable Aðq; pÞ is given by

�AAðtÞ ¼ lim
n!1

1

n

Xn
k¼1

A½qkðtÞ; pkðtÞ� ð7Þ

Consider now a trajectory density function Dðq; p;tÞ, defined by

Dðq; p;tÞ ¼ lim
n!1

1

n

Xn
k¼1

d½q� qkðtÞ�d½p�pkðtÞ� ð8Þ

Dðq; pÞ thus defined is evidently normalized, that is,ð
Dðq; p;tÞdqdp ¼ 1 ð9Þ

The ensemble average �AAðtÞ can be expressed as

�AAðtÞ ¼
ð
Aðq; pÞDðq; p;tÞ dq dp ð10Þ

Invariant measure on classical phase space is an important concept

in statistical theory. Suppose that there is an arbitrary phase space volume

VðtÞ at time t, which evolves to V 0ðt0Þ at time t0. An invariant measure,
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denoted by mi, has the property that it gives the same measure for VðtÞ and
V 0ðt0Þ. That is,

mi½VðtÞ� ¼ mi½V0ðt0Þ� ð11Þ

Because the transformation from ½qðtÞ; pðtÞ� to ½qðt0Þ; pðt0Þ� is canonical,

an almost trivial example of invariant measure in its differential form is given

by

dmi ¼ dq dp ð12Þ

The energy of a time-independent Hamiltonian system is a conserved

quantity. In this case an invariant measure can be constructed on the energy

shell Hðq; pÞ ¼ E, that is,

dmi ¼ Nd H � Eð Þdp dq ð13Þ

where N is a normalization constant. Similarly, if taking into account the total

angular momentum Jtotal that is conserved at J, an invariant measure can be

constructed through

dmi ¼ Nd H � Eð Þd Jtotal � Jð Þdp dq ð14Þ

C. Action and Angle Variables

For a completely separable Hamilton–Jacobi equation, one can always derive n

constants of motions for a system with n DOFs. It is illustrative to consider a

simple case in which H ¼Pj Hjðqj; pjÞ and therefore Hjðqj; pjÞ is conserved.

The corresponding Hamilton–Jacobi equation can be readily solved by requiring

F2 ¼
P

j gjðqj; aÞ, where a � ða1; a2; . . . ; anÞ, and

Hj qj;
qgj
qqj

� �
¼ aj; j ¼ 1; 2; . . . ; n ð15Þ

where the aj are constants of motion with
P

j aj ¼ E. Consider now n new

variables (I1; I2 ; . . . ; InÞ, each of which is defined by

Ij ¼ 1

2p

þ
pj dqj ¼ 1

2p

þ
qgjðqj;aÞ

qqj
dqj; j ¼ 1; 2; . . . ; n ð16Þ

where
Þ

denotes the integration over one period of the oscillation in qj.

Equation (16) defines the so-called action variables. These action variables can
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be regarded as new momentum variables, and they are new constants of motion

since they depend on a only:

Ij ¼ IjðaÞ; j ¼ 1; 2; . . . ; n ð17Þ

Inverting Eq. (17) yields aj as functions of I1, I2; . . . ; In, which further gives the

dependence of gj on I1; I2; . . . ; In:

gj ¼ gj½qj; aðI1; I2; . . . ; InÞ� ð18Þ

The new coordinate variables fj that are conjugate to Ij are called angle

variables. The transformation from (q; pÞ to (f1;f2; . . . ;fnÞ can be obtained

from

fj ¼
qgj½qj;aðI1; I2; . . . ; InÞ�

qIj
ð19Þ

Using the action and angle variables, Hamilton’s equations of motion take the

following simple form:

dfj

dt
¼ qaj

qIj
¼ ojðIjÞ; j ¼ 1; 2; . . . ; n ð20Þ

dIj

dt
¼ � qaj

qfj

¼ 0; j ¼ 1; 2; . . . ; n ð21Þ

Equation (20) indicates that fj assumes a linear time dependence. Furthermore,

using Eqs. (16) and (19), one finds that over one oscillation period, the change in

fj is given by

þ
dfj ¼

þ
d
qgj½qj;aðI1; I2; . . . ; InÞ�

qIj
¼ q

Þ
pj dqj

qIj
¼ 2p ð22Þ

Equation (21) makes it clear that the action-angle variable representation directly

addresses the oscillation frequencies without looking into the details of the

dynamics. Indeed, as shown below, the action-angle variable representation plays

a key role in understanding important qualitative features of Hamiltonian

dynamics.

D. KAM Theorem

Consider a two-DOF system with the following Hamiltonian:

H ¼ H0 J1; J2ð Þ þ EH1 J1; J2;f1;f2ð Þ ð23Þ
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Here J1; J2 and f1;f2 are action and angle variables, H0 J1; J2ð Þ is the zeroth-

order Hamiltonian, and EH1 J1; J2;f1;f2ð Þ represents a perturbing Hamiltonian

in a general form. The motion associated with H0 J1; J2ð Þ can be easily obtained;

it is

J1 ¼ constant; J2 ¼ constant ð24Þ
fi ¼ f0;i þ oi J1; J2ð Þt; oi � qH0=qJi; i ¼ 1; 2 ð25Þ

The corresponding trajectories can be best visualized as motion restricted to a

two-dimensional torus, as shown in Fig. 1. If the frequency ratio, or the winding

number o1=o2, is a rational number, the two DOFs are in resonance and an

individual trajectory will close on itself on the torus. By contrast, if o1=o2 is an

irrational number, then as time evolves a single trajectory will eventually cover

the torus. The motion in the latter case is called conditionally periodic.

Kolmogoroff, Arnold, and Moser (KAM) established a theorem regarding the

qualitative features of a perturbed Hamiltonian system. The KAM theorem

states that, under small perturbation and for an analytical H1 J1; J2;f1;f2ð Þ in a

Figure 1. (a) Angle-action variables f1;f2; J1; J2ð Þ and the invariant torus for a two-oscillator

system. (b) A periodic trajectory on the torus.
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certain domain, classical trajectories display two kinds of motion. One is

topologically the same as for H0 J1; J2ð Þ, while the other can be chaotic—that is,

extremely sensitive to slight changes in the initial condition. Specifically, the

KAM theorem demonstrates that (a) with ‘‘sufficiently small’’ E and

q o1;o2ð Þ
q J1; J2ð Þ 6¼ 0 ð26Þ

most of the unperturbed tori bearing conditionally periodic motion persist, but

slightly perturbed by EH1 J1; J2;f1;f2ð Þ; and (b) tori bearing motion with

rational or almost rational frequency ratios are either drastically deformed or

destroyed. Moreover, although the unperturbed tori with rational frequency

ratios are everywhere, the majority (in the sense of measure theory) of initial

conditions are shown to be restricted to deformed tori bearing conditionally

periodic motion.

Hence, for small perturbations the system is nearly integrable: Most classical

trajectories are restricted to two-dimensional phase-space structures that are

often called ‘‘KAM tori.’’ Since two classical trajectories cannot cross each

other, a torus such as shown in Fig. 1 is in fact an impenetrable phase-space

structure, dividing the three-dimensional energy shell into disjoint regions. With

stronger perturbations, more KAM tori are expected to be destroyed and

therefore more trajectories become chaotic.

E. Poincaré Surface of Section

The classical dynamics of a system can also be analyzed on the so-called

Poincaré surface of section (PSS). Hamiltonian flow in the entire phase space

then reduces to a Poincaré map on a surface of section. One important property

of the Poincaré map is that it is area-preserving for time-independent systems

with two DOFs. In such systems Poincaré showed that all dynamical information

can be inferred from the properties of trajectories when they cross a PSS. For

example, if a classical trajectory is restricted to a simple two-dimensional torus,

then the associated Poincaré map will generate closed KAM curves, an evident

result considering the intersection between the torus and the surface of section.

If a Poincaré map generates highly erratic points on a surface of section,

the trajectory under study should be chaotic. The Poincaré map has been a

powerful tool for understanding chemical reaction dynamics in few-dimensional

systems.

Here we show several examples of PSS using realistic molecular systems. In

particular, Fig. 2 shows a PSS of a model T-shaped HeI2 molecule undergoing

unimolecular dissociation, with a total energy of E ¼ �2662 cm�1. Figure 3

depicts the PSS of a model T-shaped HeBr2 molecule with the initial vibrational

energy of the Br–Br bond chosen to be the same as that of the 15th quantum
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Figure 2. Poincaré surface of section of the T-shaped HeI2 with a total energy �2662 cm�1.
Q ¼ R� R0, where R is the He–I2 bond length and R0 is its equilibrium value. P is the

momentum conjugate to R. [From S. K. Gray, S. A. Rice, and M. J. Davis, J. Phys. Chem. 90, 3470

(1986).]

1.667
P V = 15

−1.667

10.65.6

R

Figure 3. Poincaré surface of section of the T-shaped HeBr2 at the Br–Br vibrational

state v ¼ 15, showing a 4:1 resonance. [From A. A. Granovsky et al., J. Chem. Phys. 108, 6282

(1998).]

classical, semiclassical, and quantum mechanical rate theory 15



vibrational state. Shown in Fig. 4 is a PSS associated with the molecular

isomerization of cyclobutanone ðC4H6OÞ at a total reaction energy of E ¼ 0:01
a.u. The reaction coordinate of the isomerization reaction is given as s ¼ rf,
where r is the C����O bond distance and f is the C����O wagging angle.

These examples indicate that the PSS associated with reacting moecular

systems typically displays both regular and irregular structures. In particular, the

random looking splatter of points on the PSS is generated by a single trajectory,

and trajectories with initial conditions that are only slightly different would

yield similar patterns. In contrast, there are also smooth KAM curves that

occupy significant portions of the PSS. Clearly, trajectories associated with

regular structures give no contribution to reaction and only chaotic trajectories,

which wander over the entire PSS generate reaction. Also seen is that there

often exists a chain of islands between the regular and chaotic regions. For

example, in Fig. 2 there are four islands surrounding the closed curves at their

centers. Trajectories initiated from these islands cannot escape; they

consecutively revisit them. That is, a classical trajectory intersects the PSS

four times before visiting all the islands and thus completing a ‘‘rotation’’ on the

PSS. This suggests that this chain of islands is the new phase-space structure

associated with a zeroth-order torus of a 4 : 1 resonance. These important

features of the PSS can be found in virtually all two-DOF Hamiltonian systems

that are neither totally separable nor strongly chaotic.

Figure 4. Poincaré surface of section of molecular isomerization of cyclobutanone (C4H6O)

for the total reaction energy E ¼ 0:01a.u, showing a 3:1 resonance.
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F. Stability Analysis

Further insights into reaction dynamics can be obtained by analyzing the stability

of classical trajectories. Presumably, stable periodic orbits will be restricted to

KAM tori and therefore be nonreactive; and unstable periodic orbits will provide

information about the location of resonances and therefore some qualitative

features of the intramolecular energy flow.

As an example, consider a two-dimensional dynamical mapping with the

simplest periodic orbit—that is, a fixed point at ðq0; p0Þ. Suppose that the initial
condition ðq00; p00Þ is only infinitesimally shifted from ðq0; p0Þ with

q00 � q0 ¼ dq; p00 � p0 ¼ dp. With one iteration of the map, ðq0; p0Þ evolves
to ðq1; p1Þ, and the initial ‘‘errors’’ dq and dp are propagated to dq and dp,
which is given by

dq
dp

� �
¼M

dq

dp

� �
ð27Þ

where the Jacobi transformation matrix M, usually called the monodromy

matrix, is given by

M ¼
qq1
qq0

qq1
qp0

qp1
qq0

qp1
qp0

0
BB@

1
CCA � M11 M12

M21 M22

 !
ð28Þ

For an area-preserving map, such as the Poincaré map, one has

detðMÞ ¼ M11M22 �M12M21 ¼ 1 ð29Þ

This leads to a simple relationship between the two eigenvalues of theM matrix.

Indeed, directly solving

detðM� lIÞ ¼ 0 ð30Þ

one finds that the eigenvalues are given by

l� ¼ M11 þM22

2
� M11 þM22ð Þ2

4
� 1

" #1=2

¼ M11 þM22

2
� i

1

2
4� M11 þM22ð Þ2
h i1=2

ð31Þ

with lþl� ¼ 1.
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For stable periodic trajectories the two eigenvalues l� are complex numbers

conjugate to each other, and the corresponding eigenvectors correspond to a

simple rotation around the fixed point ðq0; p0Þ. By contrast, provided that

M11 þM22ð Þ2
4

> 1 ð32Þ

the eigenvalues l� are real and one of them (say lþÞmust be larger than 1. In this

case periodic orbits are unstable: A small error in initial conditions along the

direction of the lþ eigenvector will be amplified by a factor of lþ for each

iteration of the map, a clear example of the exponential sensitivity of chaotic

trajectories. The Lyapunov exponent, which is defined by the exponential

divergence rate of two nearby trajectories, is then given by lnlþ. Thus there is an
unstable manifold associated with the unstable fixed point. However, if dq and dp

are precisely along the direction of the l� eigenvector associated with the same

unstable fixed point, the displacement between two nearby trajectories

exponentially contracts rather than expands, as is clear from the fact

l� ¼ 1=lþ< 1. Hence there is also a stable manifold associated with an

unstable fixed point. This result holds for any area-preserving map. The marginal

case lþ ¼ l� ¼ 1 is indicative of the onset of chaos. A more detailed and

extensive discussion of stability analysis can be found in the excellent book

Regular and Chaotic Dynamics by Lichtenberg and Lieberman [7].

The basic picture discussed above is quite general in Hamiltonian systems.

Of particular importance is the concept of stable and unstable manifolds

associated with unstable periodic orbits. Trajectories along the stable manifold

will be mapped toward the periodic orbit, whereas trajectories along the

unstable manifold will be mapped away from the periodic orbit. It turns out that

the union of segments of the stable and unstable manifolds is very useful in

defining the reaction separatrix and calculating the flux crossing the separatrix

in few-dimensional systems.

G. Bottlenecks in Few-Dimensional Systems

The KAM theorem demonstrates the existence of KAM tori when the

perturbations to the motion are small. What happens when a nearly integrable

Hamiltonian is strongly perturbed? For example, with increasing perturbation

strength, what is the last KAM torus to be destroyed and how should we

characterize the phase space structures when all KAM tori are destroyed? Using

simple dynamical mapping systems, which can be regarded as Poincaré maps in

Hamiltonian systems with two DOFs, MacKay, Meiss, and Percival [8,9] and

Bensimon and Kadanoff [10] showed that the most robust KAM curve
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against perturbation has a winding number associated with the golden mean, that

is,

o1

o2

¼ ð1þ gÞ ð33Þ

where o1 and o2 are the frequencies, and

g ¼ 1

2
ð
ffiffiffi
5
p
� 1Þ ¼ 1

1þ 1
1þ 1

1þ���

¼ 0:61803398 . . . ð34Þ

More importantly, they showed that even after the most robust KAM curve is

destroyed, its remnants display highly fractal structures characteristic of a

cantorus, thereby constituting strong bottlenecks to phase space transport. That

is, although a classical trajectory is extremely sensitive to slight changes in its

initial condition, this trajectory may still find it difficult to go from one phase

space region to another through the cantorus. Qualitatively, this is because the

exponential sensitivity of chaotic motion is a local property, whereas transport

between disjoint phase space regions is a nonlocal phenomenon.

The existence of bottlenecks to Hamiltonian transport suggests that

intramolecular energy flow can be highly nonergodic. Thus, accounting for

the bottlenecks should greatly improve chemical reaction rate theories. For

example, for the 4 :1 resonance shown in Figs. 2 and 3, the intramolecular

bottleneck should be located at

o1

o2

¼ 4þ g ð35Þ

For the case in Fig. 4 the intramolecular bottleneck is expected to be associated

with

o1

o2

¼ 3þ g ð36Þ

H. Bottlenecks in Many-Dimensional Systems

In exact dynamics simulations the main difference between many-dimensional

and few-dimensional systems is the requirement for computational resources.

However, in the context of reaction rate theory the most relevant issue is how to

understand and describe the qualitative differences between a few-dimensional

topological structure and its many-dimensional analog. For example, given that

the PSS in few-dimensional systems provides a powerful tool with which to

analyze reaction dynamics, can we utilize the PSS in many-dimensional
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systems? The answer is no, because in many-dimensional systems a Poincaré

map on a surface of section is no longer an area-preserving map. Hence, it is

unclear how to visualize and effectively analyze classical trajectories in a system

with many DOFs.

It was shown above that KAM tori can separate a three-dimensional energy

surface into disjoint regions. Trajectories on one side of a torus can never reach

the other side. This simple picture does not hold in many-dimensional systems.

To see this more clearly, consider a nearly integrable system with n DOFs. Its

energy surface has dimension 2n� 1. Thus any phase space structure that can

separate this energy surface into two disconnected pieces must have a

dimension of 2n� 2. On the other hand, from the above-mentioned action-

angle variable analysis, one sees that each KAM torus is characterized by n

actions, so that they have dimension 2n� n ¼ n, far smaller than 2n� 2 if

n � 3. As such, KAM tori in many-dimensional systems no longer present

structural barriers that restrict chaotic trajectories from visiting almost the entire

energy surface. This phenomenon is called Arnold diffusion.

Arnold diffusion is typically slow if the system is not strongly chaotic, a case

relevant to many unimolecular reactions. In this sense, although KAM tori no

longer divide the energy surface into disjoint regions, their very existence still

generates effective bottlenecks to phase-space transport. Furthermore, recent

studies of many-dimensional reacting systems suggest that the golden mean

cantori (taken in the sense of pairwise frequency ratios) continue to be strong

bottlenecks to phase space transport. For example, Tersigni and Rice [32]

examined the robustness of cantori in a system with two DOFs perturbed by a

third DOF and found that the golden mean cantorus defined in terms of the first

two DOFs remains a significant bottleneck in the full system. With a local

frequency analysis approach, Martens, Davis, and Ezra [33] analyzed a three-

DOF model of the OCS molecule and noticed the importance of the ratio

between the O–C and C–S vibrational frequencies, shedding light on the slow

chaotic transport observed in the same molecule [34]. Assuming that the most

effective bottleneck is associated with a highly irrational pairwise frequency

ratio, Zhao and Rice also considered a three-dimensional system and obtained

fairly good results that will be reviewed later.

I. Normally Hyperbolic Invariant Manifold

An unstable periodic orbit is one-dimensional, being of dimension two less than

the energy surface in systems with two DOFs. In an n-DOF system the energy

surface is of dimension 2n� 1. In such systems, Wiggins showed that the analog

of unstable periodic orbits is the so-called ‘‘normally hyperbolic invariant

manifold’’ (NHIM) of dimension 2n� 3 [20,21]. Trajectories slightly displaced

from an NHIM can be analyzed using a many-dimensional stability analysis. The
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expansion and contraction rates normal to an NHIM will dominate those tangent

to it. Wiggins demonstrated that an NHIM, if it exists, is structurally stable—that

is, robust against perturbations. Wiggins further proved that there always

exist NHIMs associated with each individual many-dimensional resonance

condition, that is,

m � x ¼ m1o1 þ m1o2 þ � � � þ mnon ¼ 0 ð37Þ

where the mi are integers not all of which are zero, and oi is the frequency

associated with the ith DOF.

Similar to unstable periodic orbits, an NHIM has stable and unstable

manifolds that are of dimension 2n� 2 and are also structurally stable. Note

that a union of the segments of the stable and unstable manifolds is also of

dimension 2n� 2, which is only of dimension one less than the energy surface.

Hence, as far as dimensionality is concerned, it is possible for a combination of

the stable and unstable manifolds of an NHIM to divide the many-dimensional

energy surface so that reaction flux can be defined. However, unlike the few-

dimensional case in which a union of the stable and unstable manifolds

necessarily encloses a phase space region, a combination of the stable and

unstable manifolds of an NHIM may not do so in a many-dimensional system.

This phenomenon is called ‘‘homoclinic tangency,’’ and it is extensively

discussed in a recent review article by Toda [17].

To be more specific, consider a system with the following Hamiltonian:

H ¼
Xn�1
i¼1

oi

2
ðp2i þ q2i Þ þ lqnpn þ f1ðq1; q2; . . . ; qn�1; p1; p2; . . . ; pn�1; qnpnÞ

þ f2ðq1; q2; . . . ; qn�1; p1; p2; . . . ; pn�1Þ ð38Þ

where qi and pi are conjugate canonical variables, and

f1ðq1; q2; . . . ; qn�1; p1; p2; . . . ; pn�1; 0Þ ¼ 0 ð39Þ

Wiggins et al. [22] pointed out that one can always locally transform

a Hamiltonian to the form of Eq. (1.38) if there exists a certain type of

saddle point. Examination of the associated Hamilton’s equations of motion

shows that qn ¼ pn ¼ 0 is a fixed point that defines an invariant manifold of

dimension 2n� 2. This manifold intersects with the energy surface, creating a

(2n� 3Þ-dimensional invariant manifold. The latter invariant manifold of

dimension 2n� 3 is an excellent example of an NHIM. More interesting, in

this case the stable and unstable manifolds of the NHIM, denoted byWs andWu,
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respectively, can be explicitly constructed by a simple stability analysis. One

finds

Ws :
Xn�1
i¼1

oi

2
ðp2i þ q2i Þ þ f2 ¼ constant > 0; qn ¼ 0 ð40Þ

Wu :
Xn�1
i¼1

oi

2
ðp2i þ q2i Þ þ f2 ¼ constant > 0; pn ¼ 0 ð41Þ

It should always be remembered that this representation is a local picture of the

dynamics. A general way of constructing an NHIM is still unknown and may not

exist at all.

III. MAPPING MODELS OF UNIMOLECULAR

FRAGMENTATION

A. Two-Dimensional Free Particle in a Morse-like Kicking Field

Gaspard and Rice [35] were the first to use simple mapping models to simulate

the dynamics of molecular fragmentation. Consider first a model describing a

free particle periodically kicked by a Morse-like potential. The Hamiltonian is

given by

H ¼ P2

2m
þ TGðXÞ

X1
n¼�1

d t � nTð Þ ð42Þ

where the kicking potential is given by

GðXÞ ¼ D½1� expð�aXÞ2� ð43Þ

with

lim
X!1

dGðXÞ
dX

¼ 0 ð44Þ

This choice of GðXÞ is designed to mimic some aspects of a molecular process.

The classical phase space is two-dimensional. Let ðXn;PnÞ be the position and

momentum of the particle just before the nth kick. Then the kicking field induces

an area-preserving map

Pnþ1 ¼ Pn � T
dGðXnÞ
dXn

ð45Þ

Xnþ1 ¼ Xn þ T

m
Pnþ1 ð46Þ
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To simplify the matter, the scaling transformation

pn ¼ aT
m

Pn; qn ¼ aXn ð47Þ

is introduced, resulting in the difference equations

pnþ1 ¼ pn þ d½expð�2qnÞ � expð�qnÞ� ð48Þ
qnþ1 ¼ qn þ pnþ1 ð49Þ

It is seen that after the scaling the map from ðpn; qnÞ to ðpnþ1; qnþ1Þ depends on
only one parameter, d ¼ 2a2T2D=m. To be as realistic as possible, we assume

d > 0.

The map of Eqs. (48) and (49) has two fixed points: ðq; pÞ ¼ 0; 0ð Þ and
ðq; pÞ ¼ 1; 0ð Þ. Their stabilities are determined by the eigenvalues � of the

linearized mapping, which are given by

det J� �Ið Þ ¼ 0 ð50Þ

where J is the Jacobian of the mapping. At the fixed point ðq; pÞ ¼ 0; 0ð Þ the
eigenvalues are

�� ¼ 1

2
2� d �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d d � 4ð Þ

ph i
ð51Þ

When 0 < d < 4, these two eigenvalues can be written as

�� ¼ exp �i2prð Þ ð52Þ

with d ¼ 2� 2 cosð2prÞ. Suppose now r can be expressed as the ratio of two

integer numbers, say, m1=m2. Then after m2 iterations of this map one has

(��Þm2 ¼ 1. That is, after m2 rotations on the two-dimensional plane a small

change in the initial condition returns exactly to its starting value. As such, this

new expression for �� is indicative of resonances. These resonances are

arranged in the parameter space in a monotone sequence between r ¼ 1=1 and

r ¼ 1=2. Of particular importance are the low-order resonances associated with

d ¼ 2 and d ¼ 3.

In most cases of 0 < d < 4, there are a set of bounded trajectories

surrounding the stable fixed point and forming the main quasi-periodic islands.

These regular trajectories are bounded by the largest invariant island. Outside

the largest island there also exist smaller quasi-periodic islands, forming

an invariant set of positive Lebesgue measure in the two-dimensional phase

space. Besides, there exists a Cantor-like invariant set of unstable trajectories
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wandering between these small quasi-periodic islands. This latter set is the

repellor of the system that controls the escape dynamics.

By plotting only the trajectories that remain at a finite distance over long

times, the global invariant set can be constructed, as shown in Fig. 5 for

different values of d. Seen in Fig. 5a are large regular islands around p ¼ q ¼ 0

for d ¼ 1:8. Then, for the case of d ¼ 2 shown in Fig. 5b, there is a catastrophic

collapse of the global invariant set when the center p ¼ q ¼ 0 undergoes a low-

order resonance. A large island reappears as the value of d further increases, as

shown in Fig. 5c.

Also interesting is the dynamical behavior associated with the fixed point at

infinity, that is, ðq; pÞ ¼ ð1; 0Þ. Here we introduce the concept of homoclinic

orbit, which is a trajectory that goes to an unstable fixed point in the past as well

as in the future. A homoclinic orbit thus passes the intersection between the

unstable and stable manifolds of a particular fixed point. Indeed, as shown in

Fig. 6, these manifolds generate a so-called homoclinic web. In particular,

Fig. 6a displays a Smale horseshoe giving a two-symbol subdynamics,

indicating that the fixed point ð1; 0Þ is not a saddle. Nevertheless, it is still

unstable with distinct stable and unstable manifolds, with its dynamics much

slower than that for a saddle. Figure 6b shows an example of a numerical plot of

the stable and unstable manifolds.

Gaspard and Rice also considered a kicking field with several minima and

maxima such that the mapping has several bottlenecks, with each bottleneck

associated with particular fixed points. The existence of several bottlenecks

allows their model to better mimic some properties of intramolecular energy

flow. Specifically, they chose

dg

dq
¼ �de�qðe�q � rÞðe�q � sÞðe�q � wÞ ð53Þ

In this case, there are four fixed points, located at ð1; 0Þ, ð� ln r; 0Þ, ð� ln s; 0Þ,
ð� lnw; 0Þ, respectively. One example of such a map is given by

pnþ1 ¼ pn þ de�qnðe�qn � 1Þðe�qn � 1=2Þðe�qn � 1=4Þ ð54Þ
qnþ1 ¼ qn þ pnþ1 ð55Þ

with the two stable fixed points ð0; 0Þ and ðln 4; 0Þ and the intermediate saddle

point ðln 2; 0Þ. The number of fixed pointed can be reduced by one if we choose,

for example, w ¼ 0 instead of w ¼ 1=4. Then the following map is obtained:

pnþ1 ¼ pn þ de�2qnðe�qn � 1Þðe�qn � 1=2Þ ð56Þ
qnþ1 ¼ qn þ pnþ1 ð57Þ
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Figure 5. Phase portrait of the Gaspard–Rice two-dimensional mapping with the two fixed

points at ð0; 0Þ and 1; 0ð Þ. (a) The portrait is obtained with 54 trajectories and 400 iterations;

d ¼ 1:8: (b) Same as in (a) except for d ¼ 2 with 48 trajectories. (c) Same as in (a) except for

d ¼ 2:2 with 22 trajectories. [From P. Gaspard and S. A. Rice, J. Phys. Chem. 93, 6947 (1989).]
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with one stable fixed point at ð0; 0Þ and one saddle point at ðln 2; 0Þ for 0<d<8.

A standard homoclinic structure can be linked with this saddle, and it mimics

an intramolecular bottleneck. Also observed are resonances associated with

the center point ð0; 0Þ, catastrophic collapses of the invariant sets, and a

Figure 6. (a) Formation of a Smale horseshoe after six iterations starting from the domain

labeled 0 under the Gaspard–Rice two-dimensional mapping with d ¼ 1:8 and two fixed points at

ð0; 0Þ and 1; 0ð Þ. The curves are the stable and unstable manifolds forming the homoclinic web. (b)

The stable manifoldWs and the unstable manifoldWu. Their intersections a and b define two distinct

homoclinic orbits. Another homoclinic orbit is defined by the point t where Ws is tangent to Wu.

[From P. Gaspard and S. A. Rice, J. Phys. Chem. 93, 6947 (1989).]
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period-doubling bifurcation at d ¼ 8 that generates a period-2 orbit of the center

type. The phase space structures for the various cases are shown in Fig. 7.

B. Four-Dimensional Free Rotor in a Morse-like Kicking Field

Gaspard and Rice [35] also proposed a four-dimensional map in order to study

Hamiltonian systems with Arnold diffusion. The model Hamiltonian is a free

rotor in a Morse-like kicking field and takes the following form:

H ¼ L2

2I
þ P2

2m
þ TGðy;XÞ

X1
n¼�1

d t � nTð Þ ð58Þ

The kick amplitude Gðy;XÞ is assumed to vanish at large distance X. Note that

the rotor may escape from the kicking field. Gaspard and Rice studied a kicking

field defined by

Gðy;XÞ ¼ D ð1þ g cos yÞe�2aX � 2e�aX
� � ð59Þ

with D > 0 and jgj<1 in order for the motion be stable in the repulsive part of

the field. With a proper scaling one obtains

lnþ1 ¼ ln þ c sin yne�2qn ð60Þ
ynþ1 ¼ yn þ lnþ1 ð61Þ
pnþ1 ¼ pn þ d ð1þ g cos ynÞe�2qn � 2e�qn

� � ð62Þ
qnþ1 ¼ qn þ pnþ1 ð63Þ

as a four-dimensional map induced by Hamilton’s equations of motion. This map

is pseudosymplectic in the sense that

JtxJ ¼ x ð64Þ

where J is the Jacobian

J ¼ q lnþ1; pnþ1; ynþ1; qnþ1ð Þ
q ln; pn; yn; qnð Þ ð65Þ

and the x matrix is given by

x ¼
0 0 a 0

0 0 0 b
�a 0 0 0

0 �b 0 0

0
BB@

1
CCA ð66Þ
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Figure 7. Phase portrait of the Gaspard–Rice two-dimensional mapping model. (a) The

mapping has two stable fixed points at ð0; 0Þ and ðln 4; 0Þ and one intermediate saddle point at

ðln 2; 0Þ; d ¼ 2. (b) The mapping has one stable fixed point at ð0; 0Þ and one saddle point at ðln 2; 0Þ;
d ¼ 1. (c) The mapping has one stable fixed point at ð0; 0Þ and one saddle point at ðln 2; 0Þ; d ¼ 5.

[From P. Gaspard and S. A. Rice, J. Phys. Chem. 93, 6947 (1989).]
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with 2ca ¼ dgb. Of course, this map preserves the phase space volume, as is

evident from detðJÞ ¼ 1.

There are two fixed points at a finite distance. The first one is at l ¼ 0, y ¼ 0,

p ¼ 0, q ¼ lnð1þ gÞ, where the four stability eigenvalues are

�1;2 ¼ 1þ c

2 1þ gð Þ2 �
c

1þ gð Þ2 1þ c

4 1þ gð Þ2
" # !1=2

ð67Þ

�3;4 ¼ 1� d

2 1þ gð Þ �
d

1þ g

d

4 1þ gð Þ � 1

� �� �1=2

ð68Þ
with

�1�2 ¼ 1; �3�4 ¼ 1 ð69Þ

The second one is at l ¼ 0, y ¼ 0, p ¼ 0, q ¼ lnð1� gÞ, where the four stability
eigenvalues are

�1;2 ¼ 1� c

2 1þ gð Þ2 �
c

1� gð Þ2
c

4 1� gð Þ2 � 1

" # !1=2

ð70Þ

�3;4 ¼ 1� d

2 1þ gð Þ �
d

1� g

d

4 1� gð Þ � 1

� �� �1=2

ð71Þ

The decay dynamics of this map is intended to mimic the process of

molecular fragmentation. Gaspard and Rice calculated the decay of an ensemble

of particles for varying values of d. Figure 8 shows the escape time as a function

Figure 8. Escape time function as a function of l in the Gaspard–Rice four-dimensional

mapping for d ¼ 3, c ¼ g ¼ 0:1, with the initial condition p ¼ q ¼ 0 and y ¼ 1. [From P. Gaspard

and S. A. Rice, J. Phys. Chem. 93, 6947 (1989).]
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of l in the four-dimensional mapping for d ¼ 3. The decay is seen to be rather

fast and the escape time as a function of l displays regular peaks. However, for

some other values of d (e.g., d ¼ 2) the decay is much slower, and the escape

time is a highly irregular function of initial conditions. This can be explained

in terms of the slow depletion of the quasi-invariant set. Indeed, as shown in

Fig. 9 the decay dynamics was found to occur over two different time scales and

could be approximated by a bi-exponential curve for intermediate times. This

suggests the existence of long-time correlations in the dynamics of molecular

fragmentation. However, it is possible that long-time correlations do not play an

important role in a classical reaction rate theory because the subtle dynamical

behavior on the long-time scale will also be strongly affected by collisions,

emission of radiation, and probably quantum interference effects.

IV. THEORY OF UNIMOLECULAR PREDISSOCIATION

A. Davis–Gray Analysis

The most important element of the Davis–Gray theory of unimolecular reaction

rate is the identification of bottlenecks to intramolecular energy flow and the

intermolecular separatrix to molecular fragmentation. Davis and Gray’s work

was motivated by the discovery of bottlenecks in chaotic transport by MacKay,

Meiss, and Percival [8,9] and by Bensimon and Kadanoff [10].

Figure 9. Population decay of an ensemble of 50,000 particles under the four-dimensional

mapping with d ¼ 2 and c ¼ g ¼ 0:1. The initial ensemble is uniformly distributed in the rectangle

(y1 ¼ �1:0, y2 ¼ 1:0, l1 ¼ 0:0, l2 ¼ 2:0) of the q ¼ p ¼ 0 plane. [From P. Gaspard and S. A. Rice,

J. Phys. Chem. 93, 6947 (1989).]
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The first application of transport bottlenecks to a molecular system was in the

study of vibrational relaxation of a model OCS molecule with two DOFs. Davis

[36] found that the correct location of the bottleneck requires finding a set of

unstable orbits that have a set of resonance conditions

oCO

oCS

¼ 3

1
;
5

2
;
8

3
;
13

5
;
21

8
;
34

13
; . . . ð72Þ

This series of resonance conditions converges to 2:618 . . ., implying that the

most important bottleneck to intramolecular energy transfer is determined by a

golden mean cantorus, that is,

oCO ¼ ð2þ gÞoCS ¼ 2:618 . . .oCS ð73Þ

where oCO and oCS are the frequencies of the CO and CS stretches. The phase

space structure of this OCS bottleneck on a PSS is shown in Fig. 10.

The bottleneck effects can be better understood by visualizing the PSS at

different times, as shown in Fig. 11. Seen there are three disjoint regions

separated by closed curves. The middle curve is approximately the last KAM

curve separating two primary resonance zones. The randomly positioned dots

shown in Fig. 11a represent an ensemble of classical trajectories that are

completely located at the outermost region, called region I. At a later time the

trajectories pass a barrier separating region I and region II and enter region II.

Since the most inner part is associated with purely regular motion, the

trajectories will never get into that region.

Figure 10. Poincaré surface of section for collinear OCS relaxation at E ¼ 20,000 cm�1. It
shows three major quasi-periodic regions, the resonance islands, the location of the dividing surface

for intramolecular energy transfer, and a typical turnstile. [From M. J. Davis, J. Chem. Phys. 83,

1016 (1985).]
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After properly locating the exact dividing surface, Davis used the following

equations to describe the population transfer between the two regions:

dN1

dt
¼ �k1N1 þ k2N2 ð74Þ

dN2

dt
¼ k1N1 � k2N2 ð75Þ

where N1 and N2 refer to the populations in region I and region II, and k1 and k2
are given by the ratios

k1 ¼ At

A1

; k2 ¼ At

A2

ð76Þ

where At is the flux in or flux out, and A1 and A2 represent the areas of region I

and region II, respectively. The flux can be exactly calculated by examining the

area of the so-called turnstile, a phase space structure that will be explained in

detail below. The total population N is the sum of the populations in the two

regions

N ¼ N1 þ N2 ð77Þ

Equations (74) and (75) can be easily solved to yield

N1

N
¼ 1

k
k1e
�kt þ k2

� 	 ð78Þ
N2

N
¼ k1

k
1� e�kt
� 	 ð79Þ

Figure 11. Poincaré surfaces of section for collinear OCS relaxation at E ¼ 20,000 cm�1 at

two different times. [From M. J. Davis, J. Chem. Phys. 83, 1016 (1985).]
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where k1, k2, and k are

k1 ¼ k1
t1

; k2 ¼ k2
t2

; k ¼ k1 þ k2
t1 þ t2

ð80Þ

The time scales characterized by t1 and t2 give the mean passage time through

the dividing surface. Figure 12 shows the time-dependent populations of regions I

and II for OCS relaxation. The circles denote the numerical results and the solid

line is given by the above kinetics model. The initial population is assumed to be

in region II. The top panel is the population versus time in region I, and the lower

panel is the population versus time in region II. These comparisons demonstrate

that the Davis–Gray kinetics model is very successful.
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Figure 12. Population relaxation of linear OCS with energy E ¼ 20; 000 cm�1. The circles are
the results of numerical simulation and the solid line represents the results of the theoretical kinetics

model. The initial population is assumed to be in region II. The top panel is the population versus

time in region I, and the lower panel is the population versus time in region II. [From M. J. Davis,

J. Chem. Phys. 83, 1016 (1985).]
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The energy relaxation associated with each of the regions can also be

predicted, and the results are displayed in Fig. 13 in a comparison with

numerical experiments. Again, there is impressive agreement between the

numerical results and the theoretical calculations.

Davis and Gray then successfully extended Davis’s analysis to van der Waals

molecule predissociation reactions such as

HeI2ðvÞ ! Heþ I2ðv0<vÞ ð81Þ

As is typical for van der Waals molecules, there is a very large difference

between the I2 and He–I2 stretching frequencies. Depending upon the vibrational

energy associated with I2, the effective frequency of He–I2 stretching is about

four to five times smaller than that of I2. A discrepancy in vibrational frequencies

of this magnitude greatly inhibits intramolecular energy transfer and is expected

Figure 13. Energy relaxation of linear OCS at E ¼ 20,000 cm�1. The top panel is for region I,

and the lower panel is for region II. The smooth line is from the theoretical model calculation. [From

M. J. Davis, J. Chem. Phys. 83, 1016 (1985).]
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to lead to a breakdown of the RRKM assumption of fast energy randomization.

This is indeed the case for the predissociation of HeI2. To simplify the analysis of

the nonlinear dynamics, Davis and Gray [11] adopted a simple model of the

molecule. Specifically, they assumed that the equilibrium geometry of HeI2 is

T-shaped and that the I–I and He–I2 stretches describe all the vibrational motion.

The rotation of the molecule, along with its influence on the fragementation

kinetics, is neglected. Davis and Gray then located the dividing surface for

fragmentation and the bottlenecks to intramolecular energy flow, and they

calculated the fluxes across these surfaces using this model Hamiltonian. Both

the dividing surface for fragmentation and the bottleneck to energy transfer on a

PSS are shown in Fig. 14.

Davis and Gray also demonstrated the existence of a series of intramolecular

energy transfer bottlenecks, each corresponding to the breakup of a KAM torus.

For example, for I2 in the vibrational state v ¼ 20 they found intramolecular

bottlenecks associated with frequency ratios equal to ð3þ gÞ and up. However,

Davis and Gray found that the last ‘‘golden mean torus’’ to be broken up is

the most effective bottleneck to intramolecular energy transfer and is therefore
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Figure 14. An HeI2 surface of section for an unstable trajectory which forms a collision

complex. The total energy is �2661:6 cm�1. Also shown are the reaction separatrix and the

intramolecular bottleneck. (a) Graph showing the full dynamics of the trajectory. (b)–(f) Graphs

illustrating the trajectory over five consecutive time ranges. These graphs are arranged to

demonstrate the manner in which the trajectory moves with respect to the bottleneck and the

separatrix. [From M. J. Davis and S. K. Gray, J. Chem. Phys. 84, 5389 (1986).]
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the only one that needs to be considered to model intramolecular relaxation.

Figure 15 illustrates the most significant intramolecular bottleneck, the turnstile

used for calculating the flux, and a trajectory undergoing predissociation, with

the initial vibrational state of I2 given by v ¼ 20 and the total energy

E ¼ �2661:6 cm�1.
With only the most effective intramolecular energy transfer bottleneck

accounted for, a simple kinetics model describing the dynamics of He–I2
predissociation can be defined:

dN1

dt
¼ �k1N1 ð82Þ

dN2

dt
¼ k1N1 � k2N2 ð83Þ

Here N1 is the population of region I—that is, outside the regions of quasi-

periodic motion but inside the bottleneck to intramolecular energy transfer; k1 is

the rate constant for trajectories that leave region I; N2 is the population of region

II—that is, outside the bottleneck but inside the reaction separatrix; and k2 is the

corresponding escape rate constant. Integrating Eqs. (82) and (83) gives the time

dependence of the populations:

N1ðtÞ
NT

¼ f1e
�k1t þ fq ð84Þ

N2ðtÞ
NT

¼ 1

kd
k1 f1e

�k1t þ ðkd f2 þ k1 f1Þe�k2t
� � ð85Þ

Figure 15. A trajectory that undergoes predissociation with the total energy of the system

E ¼ �2661:6 cm�1. In (a) the trajectory is trapped inside an intramolecular bottleneck and escapes

in (b) and finally dissociates. [From M. J. Davis and S. K. Gray, J. Chem. Phys. 84, 5389 (1986).]
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where NT is the total number of trajectories, f1 is the fraction of phase space

points that start in region I at t ¼ 0, f2 is the fraction of phase space points that

start in region II at t ¼ 0, fq is the fraction of phase space points corresponding to

quasi-periodic motion, and

kd ¼ k2 � k1 ð86Þ

This kinetics model was tested against the numerically exact classical trajectory

calculations for two initial vibrational states of I2, namely, v ¼ 20 and v ¼ 30.

The results are shown in Fig. 16. In particular, in the case of v ¼ 20 the

theoretical result fits the numerical data extremely well.
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Figure 16. The T-shaped HeI2 vibrational predissociation time dependence with the initial

vibrational state of I2 given by v ¼ 20 and v ¼ 30. N ¼ N1 þ N2. The dashed lines represent results

from theoretical kinetics calculations, and the solid lines represent results from trajectory

calculations. [From M. J. Davis and S. K. Gray, J. Chem. Phys. 84, 5389 (1986).]
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It is worth mentioning that Davis and Gray also found that at low energy, for

example, when I2 is initially in a vibrational state with v < 5, no classical

dissociation occurs. Furthermore, if I2 is initially in a vibrational state with

20 > v > 5, the dynamics appears to be so complicated that including only one

intramolecular bottleneck does not suffice. Indeed, in the case of v ¼ 10 Davis

and Gray used two intramolecular bottlenecks to model the HeI2 fragmentation

reaction. The two bottlenecks on a PSS are illustrated in Fig. 17. It is seen that
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Figure 17. The Poincaré surface of section for T-shaped HeI2 with the initial vibrational state

of I2 given by v ¼ 10. Two bottlenecks to intramolecular energy transfer are shown, together with a

5:1 resonance zone and the dissociation dividing surface. From top to bottom the figures show how

trajectories escape the first and then the second intramolecular bottlenecks. The bottom panel shows

trajectories passing the separatrix for dissociation. [From M. J. Davis and S. K. Gray, J. Chem. Phys.

84, 5389 (1986).]
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trajectories have to escape the first and then the second intramolecular

bottleneck before passing the dividing surface for dissociation.

B. The Gray–Rice–Davis ARRKM Theory

The Davis–Gray theory teaches us that by retaining the most important elements

of the nonlinear reaction dynamics it is possible to accurately locate the

intramolecular bottlenecks and to have an exact phase space separatrix as the

transition state. Unfortunately, even for systems with only two DOFs, there may

be considerable technical difficulties associated with locating the exact bottle-

necks and the separatrix. Exact calculations of the fluxes across these phase

space structures present more problems. For these reasons, further development

of unimolecular reaction rate theory requires useful approximations.

Gray, Rice, and Davis [12] developed an alternative RRKM (ARRKM)

theory in an attempt to simplify the Davis–Gray theory for van der Waals

predissociation reactions. Specifically, they replaced the exact separatrix with an

approximate phase space dividing surface by dropping a number of small terms

in the system Hamiltonian, and they replaced the exact mapping that defines the

flux across the true separatrix with an analytic treatment of the flux across the

approximate separatrix. This simplification is schematically presented in Fig. 18.

In addition, the ARRKM theory is restricted to the energy regime in which

the initial energy of the diatom is large (corresponding to a high-lying

vibrational state). Hence, it can be assumed that the rates of crossing the cantori

are much greater than that of crossing the separatrix. This separation of time

scales being the case, the rate of fragmentation is solely determined by the rate

of crossing the separatrix.

Briefly, the ARRKM theory represents the microcanonical rate constant in

the form

kðEÞ ¼ 1

NS

ð
dq

ð
dp dðSÞ _SSyðSÞdðE � HÞ ð87Þ

where

NS ¼
ð
dq

ð
dp y½�Sðx; pÞ�dðE � HÞ ð88Þ

Here H is the full system Hamiltonian, E is the system energy, Sðq; pÞ ¼ 0

defines the separatrix, _SS denotes the time derivative on the separatrix, dðE � HÞ
defines the surface of constant energy, and yðSÞ is the Heaviside step function.

Note that in essence the ARRKM theory belongs to the class of generalized

variational transition state theories. Indeed, if the separatrix is chosen to be the

conventional dividing surface in the configuration space, then the ARRKM

theory reduces to RRKM theory. However, the phase space separatrix defined in
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the ARRKM theory does not necessarily pass through the conventional

configuration space transition state.

To be more specific, consider again the two-DOF, nonrotating, T-shaped

model van der Waals molecule HeI2 studied by Davis and Gray. The system

Hamiltonian is

H ¼ P2

2m
þ p2

2m
þ VðR; rÞ ð89Þ
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Figure 18. (a) A schematic composite surface of section for nonrotating T-shaped HeI2. (b)

Idealization of surface of section indicating flow out of various phase-space regions. The hatched

areas represent regions of quasi-periodic motion. [From S. K. Gray, S. A. Rice, and M. J. Davis,

J. Phys. Chem. 90, 3470 (1986).]
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with

VðR; rÞ ¼ 2VHe--IðRHe--IÞ þ VI--IðrÞ ð90Þ

and

RHe--I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 þ r2=4Þ

p
ð91Þ

where R is the van der Waals bond length (also the reaction coordinate), r is the

I–I bond length, VHe–IðRHe–IÞ is the potential for the He–I interaction, and VI--IðrÞ
is the I2 stretching potential, both taken to be Morse functions. The ARRKM

theory uses the following zeroth-order phase space separatrix

SðR;PÞ ¼ P2

2m
þ VRðRÞ ¼ 0 ð92Þ

With this simplification, Gray, Rice, and Davis obtained reasonably accurate

values for the predissociation rate constant as a function of initial vibrational

excitation. The rate constant thus obtained is larger than that from exact

trajectory calculations by about a factor of two. By contrast, the RRKM theory

would give a rate constant that is about three orders of magnitude larger than is

observed.

As expected, if the initial vibrational energy of I2 is not large, then the rates

at which trajectories cross intramolecular bottlenecks will be comparable to the

rate of crossing the separatrix. In these cases the accuracy of the ARRKM

predictions decreases. In addition, when applied to a similar system with three

DOFs to include the orbital angular momentum of the separating fragments,

the AKKRM theory does not yield satisfactory results. This should not be

discouraging, considering the previously mentioned fundamental differences

between few-dimensional and many-dimensional systems.

C. The Zhao–Rice Approximation (MRRKM)

In this subsection we describe the Zhao–Rice approximation [13,14] to the

Davis–Gray theory. The approximations introduced by Zhao and Rice concern

the calculation of the locations of, and the fluxes of phase-space points across, the

separatix to fragmentation and the bottlenecks to intramolecular energy transfer.

The dividing surface for fragment separation is represented by a vibration–

rotation state-dependent separatrix, whose approximation is similar to but

extends and improves the approximation for the separatrix introduced by Gray,

Rice, and Davis. The novel feature in Zhao and Rice’s theory is the

representation of the bottlenecks to intramolecular energy transfer as dividing

surfaces in phase space. The locations of these dividing surfaces are determined
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by the same conditions that are used to locate the remnants of robust tori with

frequency ratios related to the golden mean. The flux of phase-space points

across both the separatrix and the intramolecular bottlenecks is calculated with

an analytic representation instead of a stroboscopic mapping. The rate of

unimolecular reaction is identified with the net rate at which phase-space points

escape from the region of bounded motion to the region of free fragment motion

by consecutively crossing the dividing surfaces for intramolecular energy

exchange and the separatrix. The Zhao–Rice approximation to the intramole-

cular and intermolecular flow in systems with higher dimensionality has been

named the modified RRKM theory (MRRKM). The MRRKM theory gives

predictions of the rates of predissociation of van der Waals molecules that are in

very good agreement with available experimental data.

Zhao and Rice started their analysis by defining a Hamiltonian for a model

system designed to mimic a van der Waals complex of the diatom BC and the

atom X. The full classical Hamiltonian for that system can be represented, as a

function of the variables fP;p; l; j;R; r; ql; qjg, in the form

H ¼ P2

2m
þ p2

2m
þ l2

2mR2
þ j2

2mr2
þ VðR; r; gÞ ð93Þ

where the effective masses in the Hamiltonian are

m ¼ mBmC

mB þ mC

ð94Þ

and

m ¼ mXðmB þ mCÞ
mX þ mB þ mC

ð95Þ

r is the vector connecting the two atoms in the diatom BC, R is the vector from

the center of mass of BC to X, and P and p are the corresponding conjugate

momenta. Here l is the orbital angular momentum

l ¼ R� P ð96Þ

and j is the diatom rotational angular momentum

j ¼ r� p ð97Þ

Note that the total angular momentum J ¼ jþ l is conserved. For convenience

we denote jXj by X and adopt here the convention �h ¼ 1. The angle between the
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vectorsR and r is given by g, which can be written in terms of the angle variables

ql and qj as

cosðgÞ ¼ � cosðqlÞ cosðqjÞ þ ðl2 þ j2 � J2Þ=ð2ljÞ� �
sinðqlÞ sinðqjÞ ð98Þ

The potential function appearing in the Hamiltonian can only depend on the

magnitudes of R and r and the angle g. Zhao and Rice chose the potential energy
surface for the model van der Waals molecule to be a combination of Morse

functions such that

VðR; r; gÞ ¼ VðrÞ þWðR; r; gÞ ð99Þ

WðR; r; gÞ ¼
X2
i¼1

VðxiÞ ð100Þ

where

VðxÞ ¼ D exp½�2aðx� �xxÞ� � 2 exp½�aðx� �xxÞ�½ � ð101Þ

is a Morse potential with parameters D, a, and �xx. If the molecular fragment BC is

homonuclear then

x1 ¼ R2 þ r2=4þ Rr cosðgÞ� �1=2 ð102Þ

x2 ¼ R2 þ r2=4� Rr cosðgÞ� �1=2 ð103Þ

while for the heteronuclear case

x1 ¼ R2 þ r21=4þ Rr1 cosðgÞ
� �1=2 ð104Þ

x2 ¼ R2 þ r22=4� Rr2 cosðgÞ
� �1=2 ð105Þ

with

r1 ¼ mB

ðmB þ mCÞ r ð106Þ

r2 ¼ mC

ðmB þ mCÞ r ð107Þ

Note also that parity conservation can be used to decouple the Hamiltonian for

the model system into four equivalent parts. Indeed, either of the substitutions

ql ! ql þ p and qj ! qj þ p generates the exchanges x1 ! x2 and x2 ! x1.
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These substitutions leave the potential function, and therefore also the

Hamiltonian, unchanged. This property of the Hamiltonian simplifies the

integration over phase-space.

The system Hamiltonian can be approximated, as in the ARRKM theory, by

decoupling the diatom vibrational motion from overall rotational motion of the

molecule and from the van der Waals bond stretching. With this approximation,

H0 ¼ H1
0ðp; rÞ þ H2

0ðP; j; l;R; gÞ ð108Þ

where

H1
0ðp; rÞ ¼

p2

2m
þ VðrÞ ð109Þ

and

H2
0ðP; j; l;R; gÞ ¼

P2

2m
þ l2

2mR2
þ j2

2m�rr2
þWðR;�rr; gÞ ð110Þ

with �rr being the equilibrium internuclear separation in the diatom. Given this

approximate three-body Hamiltonian, the energy is well approximated to first

order in the vibrational anharmonicity by

E ¼ ED þ ErðvÞ þ ERðnÞ þ Egðj; lÞ ð111Þ

with
ED ¼ �ðDXB þ DXC þ DBCÞ ð112Þ

ErðvÞ ¼ vþ 1

2

� �
or � vþ 1

2

� �2

wr ð113Þ

ERðnÞ ¼ nþ 1

2

� �
oR � nþ 1

2

� �2

wR ð114Þ

and Egðj; lÞ given by

Egðj; lÞ ¼ jþ 1

2

� �
oj þ lþ 1

2

� �
o‘ � jþ 1

2

� �2

wj � lþ 1

2

� �2

wl ð115Þ

in the case of J > 0 and

Egðj; lÞ ¼ lþ 1

2

� �
og � lþ 1

2

� �2

wg ð116Þ

for J ¼ 0 and j ¼ l.
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Suppose that the system is prepared in a specified vibrational state of the

diatom with a vibrational quantum number v, while the van der Waals bond is

maintained in its ground vibrational state ðn ¼ 0Þ. The several frequencies

appeared in the preceding equations, corresponding to motion along the several

coordinates, are defined by

ox ¼ 1

Mx

d2H

dx2

� �1=2
x¼�xx

; wx ¼
o2
x

4Dx

ð117Þ

where x ¼ R; r; g; Mx ¼ m; m; Ið�RR;�rrÞ.
1. An Approximate Dividing Surface for the Separatrix

For a given diatom vibrational state with classical vibrational action v, Zhao and

Rice defined a vibrational-state-dependent separatrix function by

SSep ¼ P2

2m
þ l2

2mR2
þ j2

2m�rr2
þWðR;�rr; gÞ � eR;gð0Þ � eðvÞ ð118Þ

where eðvÞ is the energy that can be transferred from the diatom vibrational mode

to the van der Waals stretching and bending modes. The definition of SSep is

motivated by considerations based on the conservation of energy. The total

energy of the system is given by

P2

2m
þ l2

2mR2
þ j2

2m�rr2
þWðR;�rr; gÞ þ p2

2m
þ VðrÞ

� �

¼ P2

2m
þ l2

2mR2
þ j2

2m�rr2
þWðR;�rr; gÞ þ Erðv0 < vÞ

� eR;gð0Þ þ ErðvÞ ð119Þ

so that

SSep ¼ P2

2m
þ l2

2mR2
þ j2

2m�rr2
þWðR;�rr; gÞ � eR;gð0Þ � ErðvÞ � Erðv0 < vÞ½ �

� 0 ð120Þ

which is just the definition for SSep. For a T-shaped nonrotating model the

dependences of SSep on j; l, and g are eliminated.

The inclusion of eðvÞ in the definition of separatrix involves the assumption

that, as in adiabatic variational transition state theory, the diatom remains in the

same vibrational state throughout the slow van der Waals bond stretching and

breaking process. That is, the vibrational quantum number v of the diatom in the

classical, semiclassical, and quantum mechanical rate theory 45



van der Waals molecule is invariant throughout the bond-breaking process.

However, the frequency of the diatom vibration with quantum number v is a

function of the length of the van der Waals bond, and it is not constant

throughout the bond-breaking process. That frequency is obtained from

oðvÞ ¼ d

dv
ErðvÞ ð121Þ

which yields

oðvÞ ¼ or � ð2vþ 1Þwr ð122Þ

The active part of the vibrational energy is defined by the relation

eðvÞ ¼ ErðvÞ � Erðv0 < vÞ � v
d

dv
ErðvÞ � Erðv0 < vÞ½ � ð123Þ

which leads to

eðvÞ ¼ voðvÞ ð124Þ

and

SSep ¼ P2

2m
þ l2

2mR2
þ j2

2m�rr2
þWðR;�rr; gÞ � eR;gð0Þ � voðvÞ ð125Þ

In a classical treatment, any fraction of the energy deposited in the diatom

vibration can be transferred to the van der Waals stretching and bending modes.

However, there is a penalty associated with transferring energy in excess of that

needed to break the van der Waals bond, so one expects to find that the average

energy transferred is much less than the total diatom vibrational energy.

2. An Approximate Dividing Surface for Intramolecular Bottlenecks

Zhao and Rice then developed an approximation to locate the intramolecular

bottlenecks and calculate the associated flux. There are two principal motivations

for the development of such an approximation. These are, first, the need to

simplify the very complicated mapping-based calculation of the flux crossing a

cantorus so as to make the calculation practical in systems with many DOFs and,

second, the desirability of having a simple representation of the intramolecular

energy transfer barrier in terms of molecular properties.

Imagine that a dividing surface is drawn around the cantorus. Since the

cantorus lies entirely inside the separatrix, the dividing surface that just contains

it will correspond to a bound state of the molecule—that is, one with negative
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energy. In this region of phase-space the maximum kinetic energy that can

be accumulated in the van der Waals bond of the molecule can be estimated

from

oRðnÞ ¼ orðvÞ
ðN þ gÞ ð126Þ

with the local frequency oRðnÞ given by

oRðnÞ ¼ d

dn
ERðnÞ ¼ oR � ð2nþ 1ÞwR ð127Þ

A simple rearrangement yields

n ¼ � 1

2
þ oR � oRðnÞ½ �

2wR
ð128Þ

which gives

ERðnÞ ¼
o2
R � o2

RðnÞ
� �

4wR

¼ 1

4wR
o2
R �

o2
r ðvÞ

ðN þ gÞ2
" #

ð129Þ

This is the maximum kinetic energy accessible to the van der Waals bond when

motion is limited to the interior of the dividing surface that just contains the

contorus.

To locate the intramolecular bottleneck, it is assumed that there is no energy

transfer to the van der Waals stretching motion or to rotational motion, so the

energy in all other DOFs is conserved. This energy is negative, corresponding to

bounded motion, and is given by

P2

2m
þ l2

2mR2
þ j2

2m�rr2
þWðR;�rr; gÞ � �DXB � DXC þ ERðnÞ þ Egðj; lÞ ð130Þ

which leads to the following definition of the dividing surface that represents the

intramolecular bottleneck:

Sintra ¼ P2

2m
þ l2

2mR2
þ j2

2m�rr2
þWðR;�rr; gÞ

þ DXB þ DXC � ERðnÞ � Egð j; lÞ
� � ð131Þ
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Again, for a T-shaped nonrotating model molecule the dependence of Sintra on j, l,

and g can be eliminated and we find

Sintra ¼ P2

2m
þWðR;�rrÞ þ DXB þ DXC � 1

4wR
o2
R �

o2
r ðvÞ

ðN þ gÞ2
" #

ð132Þ

When applied to a particular case, N is chosen using the prescription introduced

by Davis and Gray. For example, in HeI2 the frequency of the van der Waals bond

is 26:4 cm�1 and the diatom vibrational state with v ¼ 20 has a local frequency

orðvÞ ¼ 93:81 cm�1, implying that 4 < N < 1.

As shown before, in a system with two DOFs the bottlenecks to

intramolecular energy transfer appear in those regions of phase-space where

the nonlinear oscillators have the most difficulty driving each other—that is,

regions where the ratio of frequencies is irrational. For the three-body system

here, Zhao and Rice selected for consideration only the pairwise resonances,

assuming that these dominate the system dynamics. This assumption is

consistent with the numerical results of the dynamics of model systems with

four DOFs studied by Gillilan and Ezra [18]. The most important of the pairwise

resonances is that involving coupling of the diatom vibration and the van der

Waals bond vibration. In this case the local frequencies associated with the other

degrees of freedom are not constrained. Let

orðvÞ=oRðnÞ ¼ Rf ð133Þ

and, for simplicity, we assume j ¼ 0 and l ¼ 0. Then

ERðnÞ ¼ 1

4wR
o2
R �

o2
r ðvÞ
R2
f

" #
ð134Þ

and the intramolecular bottleneck dividing surface takes the form

Sintra ¼ P2

2m
þWðR;�rr; gÞ þ DXB þ DXC � 1

4wR
o2
R �

o2
r ðvÞ
R2
f

" #
ð135Þ

3. A Zeroth-Order Calculation of the Rate Constant for Crossing

Intramolecular Bottlenecks

It is instructive to examine a zeroth-order calculation of intramolecular energy

transfer in a model molecule in which the energies of the vibrational and

rotational modes are conserved separately, in which the initial excitation of the

van der Waals stretching mode is zero ðn ¼ 0Þ, and in which the initial values of
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the molecular and orbital angular momenta are zero ðj ¼ l ¼ 0Þ. During the

intramolecular vibrational relaxation process the maximum kinetic energy in the

van der Waals mode cannot exceed the initial energy, so

P2

2m
	 ERðn ¼ 0Þ ð136Þ

and

j2

2

1

mR2
þ 1

mr2

� �
� Egðj ¼ l ¼ 0Þ ð137Þ

Given these constraints the intramolecular rate constant can be rewritten as

kintra ¼ 1

NA

ð
dP dp dR dr dg _SSyð _SSÞdðSÞdðE � HÞy ERð0Þ � P2

2m

� �
ð138Þ

Integration over the momenta yields

kintra ¼ m
NA

ð
dR dr dg

X2
i¼1

_SSyð _SSÞyð2mERð0Þ � P2
i Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
i ðA2 � P2

i Þ
p ð139Þ

with

A2 ¼ 2m E � Egðj ¼ l ¼ 0Þ � VðR; r; gÞ� � ð140Þ
P1 ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½ERðnÞ � DXB � DXC �WðR;�rr; gÞ�

p
ð141Þ

and

P2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½ERðnÞ � DXB � DXC �WðR;�rr; gÞ�

p
ð142Þ

To calculate the normalization constant NA in kintra Zhao and Rice proceeded

as follows. Assuming that the system is prepared in a state with all the phase-

space points inside the intramolecular bottleneck dividing surface, then the

density of these phase-space points can be written as

rðp; xÞ ¼ FSðp; xÞdðE � HÞ ð143Þ

One can also assume that after the intramolecular vibrational relaxation process

is completed the phase-space points are uniformly distributed inside the system
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separatrix. The zeroth-order approximation to that region then defines the

constraint

P2

2m
þWðR;�rr; gÞ < 0 ð144Þ

and

NA ¼
ð

dP dp dR dr dgyð�FÞdðE � HÞ ð145Þ

with

F ¼ P2

2m
þWðR;�rr; gÞ ð146Þ

After integration over momentum, one finds

NA ¼ 2

ð
dR dr dg arcsin

P

A

� �
min

ð147Þ

with

Pmin ¼ min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2mWðR;�rr; gÞ

p
;A

h i
ð148Þ

4. The Rate Constant for Crossing the Separatrix

One still has to carry out calculations for the rate constant kSep of crossing the

separatrix SSep defined above. According to the ARRKM theory, for particular

total angular momentum J one has

kSepðJÞ ¼ 1

NAðJÞ
ð
dP dp dj dl dr dqj dql _SSyð _SSÞdðSÞdðE � HÞ ð149Þ

where

NAðJÞ ¼
ð
dP dp dj dl dr dqj dqlyð�SÞdðE � HÞ ð150Þ

with the values for j and l constrained by angular momentum conservation.

The integrals in Eqs. (149) and (150) can be evaluated as follows. We slightly

deviate from a strictly classical analysis by quantizing the orbital angular

momentum l and the diatom rotational angular momentum j. That is, we assign
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j and l integer values, which procedure reduces the dimensionality of the

integrations by two and thereby reduces the difficulty of subsequent numerical

evaluation by the Monte Carlo method. For any given value of J, j and l are

related by

l ¼ jJ � jj; jJ � jþ 1j; . . . ; jJ þ j� 1j; jJ þ jj ð151Þ

so that kðJÞ and NAðJÞ reduce to

kSepðJÞ ¼ 1

NAðJÞ
Xjmax

j¼0

XjJþjj
l¼jJ�jj

ð
dP dp dR dr dqj dql _SSyð _SSÞdðSÞdðE � HÞ ð152Þ

NAðJÞ ¼
Xjmax

j¼0

XjJþjj
l¼jJ�jj

ð
dP dp dR dr dqj dqlyð�SÞdðE � HÞ ð153Þ

The integration over p yields

kinterðJÞ ¼
ffiffiffiffiffiffi
2m
p

NAðJÞ
Xjmax

j¼0

XjJþjj
l¼jJ�jj

ð
dP dR dr dqj dql _SSSepyð _SSSepÞdðSSepÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � P2

2m� l2

2mR2 � j2

2mr2
� VðR; r; gÞ

q ð154Þ

NAðJÞ ¼
Xjmax

j¼0

XjJþjj
l¼jJ�jj

ð
dP dR dr dqj

ffiffiffiffiffiffi
2m
p

yð�SSepÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � P2

2m� l2

2mR2 � j2

2mr2
� VðR; r; gÞ

q ð155Þ

The time derivative of the separatrix

_SSSep ¼ d

dt
SSep P;R; j; l; gð Þ ð156Þ

can be evaluated from its Poisson bracket with the Hamiltonian

_SSSep ¼ qSSep
qR

qH
qP
� qSSep

qP
qH
qR

þ qSSep
qql

qH
ql
� qSSep

ql
qH
qql
þ qSSep

qqj

qH
qj
� qSSep

qj
qH
qqj

ð157Þ

Then it is followed by integration over P, leading to

kSepðJÞ ¼
ffiffiffiffiffiffiffiffiffi
4mm
p
NAðJÞ

Xjmax

j¼0

XjJþjj
l¼jJ�jj

X2
i¼1

ð
dR dr dqj dql m _SSSepyð _SSSepÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
i ðA2 � P2

i Þ
p ð158Þ
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with

P1 ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m eR;gð0Þ þ voðvÞ � l2

2mR2
� j2

2m�rr2
� wðR;�rr; gÞ

� �s
ð159Þ

P2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m eR;gð0Þ þ voðvÞ � l2

2mR2
� j2

2m�rr2
� wðR;�rr; gÞ

� �s
ð160Þ

and

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m E � l2

2mR2
� j2

2m�rr2
� wðR;�rr; gÞ

� �s
ð161Þ

The step function sets the limit for the integration range of P, namely,

� j Piðl; j;R; ql; qjÞ j	 P 	j Piðl; j;R; ql; qjÞ j; i ¼ 1; 2 ð162Þ

After carrying out the integration over P, one finds

kSep ¼ 1

NAðJÞ
Xjmax

j¼0

XjJþjj
l¼jJ�jj

X2
i¼1

ð
dR dr dqj dqlm _SSSepyð _SSSepÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
i ðA2 � P2

i Þ
p ð163Þ

NAðJÞ ¼ 2
Xjmax

j¼0

XjJþjj
l¼jJ�jj

ð
dP dR dr dqj dql arcsin

Pminðl; j;R; r; ql; qjÞ
Aðl; j;R; r; ql; qjÞ

� �
ð164Þ

with

Pmin ¼ min Piðl; j;R; r; ql; qjÞ; Aðl; j;R; r; ql; qjÞ

 � ð165Þ

The total rate constant is determined by the sum over contributions from all

kinterðJÞ, that is,

kSep ¼ lim
Jmax!þ1

XJmax

J¼0
kSepðJÞ ð166Þ

The model of van der Waals fragmentation used by Zhao and Rice, like that

of Davis and Gray from which it is derived, assumes that the crossings of the

several bottlenecks in the phase-space of the molecule are independent. A
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schematic bottleneck on a PSS is shown in Fig. 19. Then the observed rate of

fragmentation is described by the set of kinetic equations

dN1

dt
¼ �kintraN1 ð167Þ

dN2

dt
¼ kintraN1 � kSepN2 ð168Þ

where N1 and N2 are the populations of phase-space points inside and outside the

intramolecular energy transfer dividing surface. The solution to this set of

equations is

N1ðtÞ ¼ N1ð0Þe�kintrat ð169Þ

N2ðtÞ ¼ N2ð0Þe�kSept þ N1ð0Þkintra
kSep � kintra

e�kintrat � e�kSept
� � ð170Þ

and the total number of points inside the separatrix is

NðtÞ ¼ N1ðtÞ þ N2ðtÞ

¼ N1ð0Þ
kSep � kintra

kSepe
�kintrat � kintrae

�kSept� �
þ N2ð0Þe�kSept ð171Þ

Figure 19. A schematic plot of the ideal bottlenecks on the Poincaré surface of section for van

der Waals molecule predissociation. R is the van der Waals bond length and P is the conjugate

momentum. S1 is the intramolecular bottleneck dividing surface and S2 is the intermoleculear

bottleneck dividing surface.
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The separation of the phase-space inside the separatrix into a region inside

and a region outside the intramolecular energy transfer dividing surface defines

the initial conditions N1ð0Þ and N2ð0Þ, and leads us to write

N1ð0Þ ¼ f1Nð0Þ ð172Þ
N2ð0Þ ¼ f2Nð0Þ ð173Þ
f1 þ f2 ¼ 1 ð174Þ

so that total population as a function of time is given by

NðtÞ
Nð0Þ ¼

f1

kSep � kintra
kSepe

�kintrat � kintrae
�kSept� �þ f2e

�kSept ð175Þ

Zhao and Rice have calculated the fragmentation rate constant k by fitting the

numerical simulation data from the time at which dissociation first starts to the

time when

ln
NðtÞ
Nð0Þ
� �

¼ �1 ð176Þ

This method of calculating the fragmentation rate constant gives good agreement

with the rate constants determined by trajectory calculations.

D. The Reaction Path Analysis

In this section we discuss the use of the Miller–Handy–Adams reaction path

formalism [37] so that the dynamics of a seemingly complicated system can be

better understood and analyzed. For example, if, with that formalism, the

dynamics of a system can be reasonably reduced to only two or three DOFs, then

it is expected that one can directly apply the above various statistical theories for

few-dimensional systems. In the reaction path formalism the reactive trajectory

is determined by the minimum energy path with small displacements from that

path.

The Hamiltonian for an N-particle molecular system is, in Cartesian

coordinates, given by

Hðp; xÞ ¼
X3N
i¼1

P2
i

2mi

þ VðxÞ ð177Þ

where x is the 3N-dimensional coordinate vector and Pi ði ¼ 1� 3NÞ are the

conjugate momenta. Let a ¼ ða1; . . . ; a3NÞ be a vector on the reaction path. Then

54 meishan zhao et al.



the potential energy function VðxÞ can be expanded near the reaction path in

powers of ðx� aÞ. To second-order, one has

VðxÞ � VðaÞ þ rVðaÞ � ðx� aÞ þ 1

2
ðx� aÞ � F � ðx� aÞ ð178Þ

where F is the force constant matrix. Because the displacement vector ðx� aÞ is
orthogonal to the reaction path in the 3N-dimensional space, the linear term in

the preceding equation vanishes. The motions associated with the overall rotation

and the translation of the center of mass are not of interest and can be removed by

use of the projected force constant matrix

FP ¼ ð1� PRTÞ � F � ð1� PRTÞ ð179Þ

where PRT is the projection operator for the overall translational and rotational

motion. Following the application of the projector PRT , a normal mode analysis

can be carried out for vibrational motion.

For a polyatomic reactant with many DOFs, the scale of numerical

calculations required to execute this approach can be prohibitively large. The

simplest approximation that reduces the scale of numerical calculations is to

neglect some subset of the internal molecular motions. However, this

approximation usually leads to considerable error. A more sophisticated and

intuitively reasonable approximation is to reduce the system dimensionality by

placing constraints on the values of the internal molecular coordinates (instead

of omitting them from the analysis). It is this approximation that we now

consider.

Assuming that most of the atomic displacements in the reactant molecule are

small, the most obvious choices for constraints on the internal coordinates not

directly participating in the reaction are fixed values of the bond lengths and

bond angles. To represent the fixed bond length between atoms A and B, denoted

by dAB, a unit vector is introduced, the components of which are

e
ðABÞ
Aa ¼

ðrAa � rBaÞffiffiffi
2
p

dAB
; e

ðABÞ
Ba ¼ �

ðrAa � rBaÞffiffiffi
2
p

dAB
; a ¼ x; y; z ð180Þ

These components are combined to form the vector

uTðABÞ ¼ 0; . . . ; 0; e
ðABÞ
Ax ; e

ðABÞ
Ay ; e

ðABÞ
Az ; 0; . . . ; 0; e

ðABÞ
Bx ; e

ðABÞ
By ; e

ðABÞ
Bz ; 0; . . . ; 0

� 
ð181Þ
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To represent the fixed angle between atoms M, O, and N, with O at the vertex

position, we introduce the following two unit vectors:

e
ðMONÞ
Na ¼ l

dNO sin yMON

ðrNa � rOaÞ
dNO

cos yMON � ðrMa � rOaÞ
dMO

� �
ð182Þ

e
ðMONÞ
Oa ¼ � e

ðMONÞ
Ma þ e

ðMONÞ
Na

� 
; a ¼ x; y; z ð183Þ

where l is a normalization constant, and the bond angle yMON is defined by

cos yMON ¼ ðrM � rOÞ � ðrN � rOÞ
dMO dNO

ð184Þ

These vector components are combined to form the unit vector

uTðMONÞ ¼
�
0; . . . ; 0; e

ðMONÞ
Mx ; e

ðMONÞ
My ; e

ðMONÞ
Mz

0; . . . ; 0; e
ðMONÞ
Ox ; e

ðMONÞ
Oy ; e

ðMONÞ
Oz

0; . . . ; 0; e
ðMONÞ
Nx ; e

ðMONÞ
Ny ; e

ðMONÞ
Nz ; 0; . . . ; 0

� ð185Þ

To construct the projection operators corresponding to the constraints, the

subspace unit vectors representing different constraints must be independent. As

shown by Miller et al., this can be affected by Gram–Schmidt orthogonalization

that yields a set of orthogonal unit vectors:

u0k ¼ Nk 1�
Xk�1
j¼1

uju
T
j

" #
uk ð186Þ

where Nk is the normalization constant. The projection operator is then given by

PC ¼
Xf
k¼1

u0ku
0T
k ð187Þ

where the prime indicates orthogonalized unit vectors and f is the total number of

constraints (the same as number of DOFs reduced). The use of PC yields

Ffinal ¼ ð1� PC � PRTÞ � F � ð1� PC � PRTÞ ð188Þ

A normal mode representation of the Hamiltonian for the reduced system

involves the diagonalization of the projected force constant matrix Ffinal, which
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in turn generates a reduced-dimension potential energy surface in terms of the

mass-weighted coordinates of the reaction path:

Vðs;Q1; . . . ;Q3N�f�7Þ ¼ VðsÞ þ
X3N�f�7
k¼1

1
2
o2
kðsÞQ2

k ð189Þ

The coordinates Qk; k ¼ 1; 2; . . . ; 3N � f � 7ð Þf g are the normal mode coordi-

nates and okðsÞ; k ¼ 1; 2; . . . ; ð3N � f � 7Þ, are the corresponding normal

mode frequencies. The kinetic energy is then given by

T ¼
X3N�f�7
k¼1

1
2
P2
k þ

ps �
P3N�f�7

k¼1;‘¼1 QkBk‘ðsÞP‘

h i2
2 1þP3N�f�7

k¼1 QkBk;3N�f�6
� 2 ð190Þ

where the Bk‘ðsÞ describe the Coriolis coupling between the normal modes and

the Bk;3N�f�6ðsÞ originate from the curvature of the reaction path.

Further reduction of the constrained reaction path model is possible. Here we

adopt a system-bath model in which the reaction path coordinate defines the

system and all other coordinates constitute the bath. The use of this

representation permits the elimination of the bath coordinates, which then

increases the efficiency of calculation of the motion along the reaction

coordinate. In particular, Miller showed that a canonical transformation of the

reaction path Hamiltonian ðT þ VÞ yields [38]

H ¼ 1
2

p2s

1þ
P3N�f�7

k¼1 Qk
~BBk;3N�f�6

� �2 þ VðsÞ

þ
X3N�f�7
k¼1

1
2
P2
k þ

X3N�f�7
k¼1

1
2
~oo2
kðsÞQ2

k þ
X3N�f�7

k;‘¼1 k 6¼‘
Qk

~BBk‘ðsÞQ‘ ð191Þ

where ~BBk‘ðsÞ and ~BBk;3N�f�6 are related to Bk‘ðsÞ and Bk;3N�f�6 via a unitary

transformation, and the ~ook are the normal mode frequencies in the new

representation. If we expand the first term of Eq. (191) such that

1

1þP3N�f�7
k¼1 Qk

~BBk;3N�f�6
h i2
¼ 1� 2

X3N�f�7
k¼1

Qk
~BBk;3N�f�6 þ 3

X3N�f�7
k¼1

Q2
k
~BB2
k;3N�f�6 þ � � � ð192Þ
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then

H ¼ p2s
2
þ VðsÞ � p2s

2
2
X3N�f�7
k¼1

Qk
~BBk;3N�f�6 � 3

X3N�f�7
k¼1

Q2
k
~BB2
k;3N�f�6 þ � � �

" #

þ
X3N�f�7
k¼1

1
2
P2
k þ

X3N�f�7
k¼1

1
2
~oo2
kðsÞQ2

k þ
X3N�f�7

k;‘¼1 k 6¼‘
Qk

~BBk‘ðsÞQ‘ ð193Þ

For consistency with the quadratic approximation used in the potential

expansion, the above expression for H has been truncated at the quadratic term;

the higher-order and off-diagonal terms in the expansion can be treated as

perturbations. Then, the approximate effective Hamiltonian for the reaction

dynamics can be written in the form

Heffðs; fQkgÞ ¼ p2s
2
þ

X3N�f�7
k¼1

1
2
P2
k þ VðsÞ þ

X3N�f�7
k¼1

1
2
�2

kðsÞQ2
k

� 2EaðsÞ
X3N�f�7
k¼1

Qk
~BBk;3N�f�6ðsÞ ð194Þ

where EaðsÞ � p2s=2 and �2
kðsÞ is given by

�2
kðsÞ ¼ ~oo2

kðsÞ þ 6EaðsÞ~BB2
k;3N�f�6ðsÞ ð195Þ

We note that this effective Hamiltonian Heffðs; fQkgÞ treats the bath as a set

of linearly shifted harmonic oscillators, that is,

Heffðs; fQkgÞ ¼ p2s
2
þ

X3N�f�7
k¼1

1
2
P2
k þ UðsÞ þ

X3N�f�7
k¼1

1
2
�2

kðsÞ

� Qk � 2EaðsÞk~BBk;3N�f�6ðsÞ
�kðsÞ

� �2
ð196Þ

where UðsÞ serves as the effective energy barrier and is given by

UðsÞ ¼ VðsÞ �
X3N�f�7
k¼1

2
EaðsÞk~BBk;3N�f�6ðsÞ

�kðsÞ
� �2

ð197Þ

One way of eliminating the harmonic bath coordinates is to use the vibrational

adiabatic approximation, which leads to

Had ¼ p2s
2
þ UðsÞ þ

X3N�f�7
k¼1

evibðnk; sÞ ð198Þ
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with

evibðnk; sÞ ¼ nk þ 1

2

� �
�h�kðsÞ ð199Þ

where the zero-point vibrational motion has been accounted for.

E. XI2 Predissociation

The van der Waals molecules XI2 ðX ¼ He, Ne, ArÞ are the primitive systems

for testing the various theories described in the preceding subsections. The

unimolecular reactions are

XI2ðvÞ ! Xþ I2ðv0 < vÞ ð200Þ

These reactions have played a significant role in understanding unimolecular

predissociation. The potential parameters relevant to the calculations reviewed

below are listed in Table I.

1. HeI2

The predissociation of HeI2 has been extensively studied, both experimentally

and theoretically. Davis and Gray [11] carried out a detailed analysis of the

classical mechanics of predissociation of a nonrotating T-shaped model of HeI2.

Gray, Rice, and Davis [12] evaluated the predissociation rate using their

ARRKM theory and explored the associated PSS for various initial vibrational

states. For the same system, Zhao and Rice studied both the intramolecular

bottleneck and intermolecular dividing surface using their MRRKM theory.

We consider first the simplest model of the HeI2 predissociation, namely the

one that restricts the geometry to a T-shape and that excludes rotation. The

calculated rate constant for crossing the separatrix from the MRRKM theory, as

TABLE I

Morse Potential Parameters for Triatomic van der Waals Molecules

Diatomic D cmð Þ aða�10 Þ �xxða�10 Þ
I–I 4911 0.9380 5.6994

Cl–Cl 3145 1.2450 4.5610

I–Cl 1270 2.0955 5.0267

I–Ar 122 0.7000 9.4500

I–Ne 26 0.9525 10.2045

I–He 18 0.6033 7.5589

Ne–Cl 39 0.9525 6.9920

He–Cl 14 0.8467 6.8030
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a function of initial vibrational excitation, is displayed in Table II along with the

exact calculations of the same rate constant by Davis and Gray [11] and the

approximate ARRKM calculations by Gray, Rice, and Davis [12]. It is seen that

the rate constants obtained from MRRKM theory are in satisfactory agreement

with the results of Davis and Gray over the range v ¼ 10–50. Also evident is

that the MRRKM rates are significantly better than those from ARRKM, which

is, after all, based upon a zeroth-order approximation to the phase space

separatrix. It should be stressed that thus far all these calculations omit the

effect of nonstatisitical intramolecular energy transfer, and hence give results

that are too large by more than a factor of 2 for v ¼ 20 and about a factor of 20

for v ¼ 10.

When the effect of intramolecular energy transfer is taken into account, more

accurate rate constants can be obtained. We first compare the rate constants

associated with the intramolecular bottleneck from the MRRKM theory with

those from the Davis–Gray turnstile approach. As seen in Table III, they are in

reasonable agreement. Hence, the Davis–Gray theory and the MRRKM theory

predict similar overall reaction rates. This is demonstrated in Table IV. Table IV

also shows that the predissociation rate constants would have been over-

estimated by a factor more than 100 if the RRKM theory were to be directly

applied.

TABLE II

Rate Constants (in cm�1) for Crossing the Separatrix in the Case

of a T-Shaped HeI2 Moleculea

v Davis–Gray MRRKM ARRKM

10 0.186 0.140 0.52

20 0.374 0.393 0.80

30 0.626 0.679 1.09

50 1.295 1.22 1.89

aThe initial vibrational state of I2 is represented by v.

TABLE III

Intramolecular Bottleneck Predissociation Rate

Constants (in cm�1) for the T-Shaped HeI2 Moleculea

v Davis–Gray MRRKM

10 0.121 0.16

20 0.216 0.27

30 0.273 0.43

50 — 0.60

aThe initial vibrational state of I2 is represented by v.
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A more complicated model of the van der Waals molecule allows for

considerations of diatom rotation and the orbital angular momentum of the

separating fragments, subject to the constraint that the total angular momentum

is zero ðJ ¼ 0; j ¼ lÞ. The theoretical rate constants for this model, with or

without considering intramolecular bottleneck effects, are compared to the

experimental data of Levy and co-workers [39,40] in Table V for v ¼ 5 to

v ¼ 35. As expected, the calculated fragmentation rate constants without

intramolecular bottleneck effects are larger than the observed fragmentation rate

constants by a considerable amount, namely a factor of 12 when v ¼ 5,

decreasing to a factor of 2 when v ¼ 20. However, the overall reaction rates

from the MRRKM theory are seen to be in rather good agreement with the

experimental data.

2. NeI2 and ArI2

Experimental results for the predissociation of NeI2 are available from the work

of Zewail and co-workers [41]. Since the frequency of the NeI2 van der Waals

TABLE IV

The Overall Predissociation Rate Constant (in cm�1) for the T-Shaped HeI2
Molecule, with Intramolecular Bottlenecks Considereda

v Davis–Gray MRRKM ARRKM RRKM

10 0.083 0.076 0.52 66.0

20 0.17 0.24 0.80 110.5

30 0.56 0.56 1.09 135.7

50 1.57 1.22 1.89 128.0

a The initial vibrational state of I2 is represented by v.

TABLE V

Predissociation Rate Constant of the MRRKM Theory (in cm�1) for a
Three-Dimensional Model of the HeI2 Molecule, Compared to the

Available Experiment Observationsa

v kSep kintra k Experiment

5 0.039 0.018 0.013 0.0032

10 0.068 0.034 0.028 0.015

15 0.10 0.044 0.047 0.034

20 0.13 0.086 0.086 0.070

25 0.15 0.15 0.13 0.12

30 0.22 0.34 0.22 0.19

35 0.25 — 0.25 —

aThe initial vibrational state of I2 is represented by v.
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bond is much larger than that in HeI2, we expect the contribution of flux across

the intramolecular energy transfer dividing surface to the rate of predissociation

to be smaller than in HeI2. The calculated kSep as a function of initial vibrational

excitation from v ¼ 10 to v ¼ 25 is compared with the experimental data in

Table VI. It is seen that the neglect of the influence of intramolecular vibrational

relaxation on the predissociation process does lead to an overestimate of the

fragmentation rate, but the discrepancy is much smaller than in the HeI2 case.

Indeed, for NeI2 we find reasonable agreement between the calculated kSep and

the observed rate constants for v > 18, and the error is less than a factor of 2 for

v<18. The MRRKM calculations of the rate of predissociation of NeI2, which

include the rate of intramolecular energy transfer and allow for nonzero diatom

and fragment orbital angular momenta (subject to the total angular momentum

being zero, J ¼ 0, j ¼ l) are also shown in Table VI. Comparison to

experimentally observed predissociation lifetimes for NeI2 shows that the

agreement between the MRRKM theory and experiment is satisfactory.

Zewail and co-workers [42] made a few measurements of the rate of

predissociation of ArI2 but only the ratios of the rate constants for different

initial vibrational excitation were reported. The predissociation of ArI2 was also

experimentally studied by Levy co-workers [39,40]. The experimental data—for

example, the ratio kðv ¼ 21Þ=kðv ¼ 18Þ—again support the MRRKM theory. In

this particular application, the MRRKM calculations were based on a three-

dimensional model in which both diatom and fragment orbital angular

TABLE VI

Predissociation Rate Constants of the MRRKM Theory (in cm�1) for a
Three-Dimensional Model of the NeI2 Molecule, Compared to the

Available Experiment Dataa

v kSep kintra k Experiment

10 0.019 0.016 0.011 —

13 0.046 0.0096 0.020 0.025

14 0.051 0.011 0.025 0.027

15 0.063 0.025 0.038 0.029

16 0.064 0.031 0.043 0.033

17 0.067 0.031 0.048 0.042

18 0.074 0.027 0.056 0.050

19 0.073 0.043 0.060 0.061

20 0.082 0.048 0.073 0.062

21 0.085 0.073 0.081 0.077

22 0.10 0.11 0.10 0.092

23 0.11 0.28 0.11 0.10

25 0.13 — 0.13 —

aThe initial vibrational state of I2 is represented by v.
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momentum are nonzero (again subject to the total angular momentum being

zero, J ¼ 0, j ¼ l). The corresponding MRRKM rates are shown in Table VII. A

comparison between the MRRKM result, the theoretical result of Beswick and

Jortner [43], and the observed data for the rate-constant ratio kðv ¼ 21Þ=
kðv ¼ 18Þ is shown in Table VIII. The agreement between calculated and

observed ratios of reaction rate constants is modestly good.

F. XCl2 and XICl Predissociation

1. HeCl2 and NeCl2

Cline and co-workers [44–46] carried out experiments on the rates of

predissociation of both HeCl2 and NeCl2, with the initial vibrational state of

Cl2 in a certain range. The calculated fragmentation rates of HeCl2 as a function

v are listed in Table IX along with the available experimental data. For the same

molecule, Table X displays a comparison of the MRRKM calculated lifetimes

and the experimental predissociation lifetimes by Cline and co-workers. Similar

comparsions are made for NeCl2 in Table XI and Table XII.

TABLE VII

Predissociation Rate Constant of the MRRKM Theory

(in cm�1) for the Three-Dimensional ArI2 Moleculea

v kSep kintra k

15 0.020 0.0048 0.0088

16 0.034 0.0082 0.016

17 0.047 0.0098 0.024

18 0.045 0.015 0.027

19 0.059 0.021 0.038

20 0.063 0.026 0.045

21 0.071 0.033 0.054

22 0.085 0.069 0.071

25 0.089 0.073 0.085

30 0.12 0.018 0.012

aThe initial vibrational state of I2 is represented by v.

TABLE VIII

The Rate Constant Ratio kðv ¼ 21Þ=kðv ¼ 18Þ for Three-Dimensional ArI2 Predissociation

Levy and co-workers Beswick and Jortner Zewail and co-workers MRRKM

2.2 2.5 2.9 2.0
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TABLE IX

Predissociation Rate Constants from the MRRKM Theory (in cm�1) for the
Three-Dimensional HeCl2 Molecule Compared to the Available

Experiment Observationsa

v kSep kintra k Experiment

6 0.123 0.0086 0.0080 —

7 0.135 0.012 0.011 —

8 0.150 0.023 0.020 0.011

9 0.172 0.032 0.027 0.019

10 0.183 0.016 0.033 0.030

11 0.187 0.038 0.065 0.055

12 0.216 0.070 0.099 0.101

13 0.277 0.088 0.14 —

14 0.284 0.056 0.17 —

15 0.295 0.069 0.18 —

aThe initial vibrational state of Cl2 is represented by v.

TABLE X

Predissociation Lifetime (in ps) for the Three-Dimensional HeCl2 Moleculea

v MRRKM Cline (QM) Cline (Expt.) Zhang Gray

8 271 311 506 245 240

9 198 231 275 180 —

10 160 131 179 180 —

11 82 75 97 100 —

12 53 71 52 66 —

13 — 44 — 33 —

aThe initial vibrational state of Cl2 is represented by v.

TABLE XI

Predissociation Rate Constant from the MRRKM Theory (in cm�1) for the
Three-Dimensional NeCl2 Molecule Compared to the Available

Experiment Observationsa

v kSep kintra k Experiment

6 0.096 0.0045 0.0043 —

7 0.125 0.0157 0.013 —

8 0.147 0.025 0.021 —

9 0.174 0.034 0.028 0.022

10 0.178 0.022 0.040 0.029

11 0.200 0.043 0.071 0.053

12 0.226 0.032 0.075 0.081

13 0.244 0.076 0.12 0.16

14 0.287 0.079 0.15 —

15 0.295 0.069 0.16 —

aThe initial vibrational state of Cl2 is represented by v.
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Wozny and Gray [47] reported classical trajectory calculations of the rate of

predissociation of NeCl2 for v ¼ 11; 13, and 20. Their results are also compared

with MRRKM calculations in Table XII. In particular, in the case of v ¼ 13,

Wozny and Gray’s trajectory calculation and MRRKM calculation give the

same lifetime of 44 ps. However, for v ¼ 11 and v ¼ 20 the MRRKM theory

gives lifetimes of 75 ps and 10 ps, respectively, whereas the classical trajectory

calculations yield the values 150 ps and 4:5 ps. These differences are, of course,

a measure of the accuracy of the approximations used in the MRRKM theory.

The excellent agreement between the MRRKM theory and the experimental

results shown above is not totally expected. After all, the MRRKM theory is an

approximate and classical statistical theory. As such, it is interesting to actually

compare the MRRKM results with fully quantum mechanical calculations for

the same systems using the same potential energy surface. Some such quantum

calculations are available. In particular, Cline et al. [48] carried out time-

independent quantum mechanical calculations of the rates of predissociation of

HeCl2 and NeCl2. For the same molecules, Gray and Wozny [49] also carried

out time-dependent wave packet dynamics calculations of the rates of

predissociation, and Zhang and Zhang [50] reported quantum mechanical

golden-rule-approximation calculations of the rates of predissociation of HeCl2
for v ¼ 8 to v ¼ 13. The results of these calculations have also been listed in

Table X and Table XII.

Clearly, quantum mechanical calculations in many cases yield better

agreement with experimental data than do the classical theory calculations.

Indeed, Gray, Rice, and Noid [51], and Davis and Gray [11] discussed the low-

energy limit for the rate of predissociation of HeI2 and demonstrated that for

initial energies lower than a certain value classical theories will predict a zero

rate constant while quantum mechanically the rate constant is never zero due to

tunneling. These observations indicate that, in some cases—for example, when

high accuracy of a theoretical prediction is needed or tunneling effects are

important—classical unimolecular reaction rate theory may have to be replaced

TABLE XII

Predissociation Lifetime (in ps) for the Three-Dimensional NeCl2 Moleculea

v MRRKM Cline (Expt.) Gray Gray (QM)

9 192 240 — 310

10 131 180 — —

11 75 100 150 120

12 71 66 — —

13 44 33 44 40

20 10 — 4.5 —

aThe initial vibrational state of Cl2 is represented by v.
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by a quantum theory. However, Table X also shows that for HeCl2 the

predictions of the MRRKM theory are rather close to the results of quantum

mechanical calculations, the deviation being, typically, less than 40 ps for all

the initially excited states in the energy range studied. It is also interesting to

note that even quantum mechanical calculations are not in perfect agreement

with the experimental data. This discrepancy could be linked to a number of

sources, amongst which are the accuracy of the potential energy surface, the

difference between reduced-dimension and full-dimension descriptions,

uncertainties in an experimental setup, and so on.

2. HeICl and NeICl

Experimental studies of the fragmentation of HeICl and NeICl by Skene and co-

workers [52–54] are restricted to the region of low-lying initial vibrational states

of ICl, that is, v ¼ 3–10. The classical trajectory calculations of Gray and Wozny

[49], the MRRKM calculations [16] and the experimental results are listed in

Table XIII for comparison. Once again there is reasonable agreement between

MRRKM, direct trajectory calculations, and experimental data.

V. THEORY OF ISOMERIZATION

A. Gray–Rice Theory

Gray and Rice [55] developed a theory of the rate of isomerization that differs in

several important aspects from the conventional RRKM theory. In addition to

applying the ideas introduced by Davis and Gray—that is, identifying the exact

phase-space separatrix for reaction—Gray and Rice proposed a three-state model

for the process of isomerization. This proposal was motivated by the observation

that as long as the molecule remains intact, there must be, in addition to the states

we identify with isomers A and B, a third state, denoted by C, with energy in

excess of the barrier to isomerization, which is neither A or B. The existence of

these three states can be clearly seen in trajectory studies of an isomerizing

molecule.

The original Gray–Rice theory of isomerization was developed from a two-

DOF model in which the potential energy surface displays a double well when

TABLE XIII

Predissociation Lifetime (in ps) for a Three-Dimensional HeICl or

NeICl Molecule

System MRRKM Experiment Gray

HeICl (v=3) 557 550 1000

NeICl (v=5) 116 — 160

NeICl (v=10) 43 50 —
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cut along the reaction coordinate. The model potential energy surface they used

is defined by the sum of a fourth-order polynomial in the y-coordinate (the

reaction coordinate), a Morse potential in the orthogonal coordinate x, and a

coupling potential between the two DOFs. The Hamiltonian has the form

Hðx; y; px; pyÞ ¼ p2x
2mx

þ p2y

2my

þ Vx þ Vy þWðx; yÞ ð201Þ

where

Vx ¼ D 1� e�axð Þ2 ð202Þ
Vy ¼ 4y2ðy2 � 1Þ þ eb ð203Þ

Wðx; yÞ ¼ 4y2ðy2 � 1Þ 1� e�zaxð Þ ð204Þ

Here eb is the barrier height of the potential energy surface; D, a, and z are

potential parameters, and mx ¼ my is the mass factor.

Clearly, the A and B isomer states should be inside the separatrix, and the

state C should be in the phase-space region outside of the separatrix but inside

the energy boundary. A schematic diagram of this three-state isomerization

model is presented in Fig. 20. From the results of previous analyses of

predissociation we expect that within the A and B domains there are, in general,

intramolecular bottlenecks to energy transfer. However, these bottlenecks are

Figure 20. Schematic surface of section in modeling the Gray–Rice theory of isomerization,

showing the separatrix and the phase regions A, B, and C, which are the generalized states of the

system.
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Figure 21. Construction of the exact separatrix on the surface of section for a symmetric

double-well model potential. (a) The unstable manifold; (b) Superposition of the stable (dashed) and

unstable (solid) manifolds. (c) The exact separatrix, which is a union of portions of the above

manifolds. (d) Turnstiles superimposed on the separatrix. [From S. K. Gray and S. A. Rice, J. Chem.

Phys. 86, 2020 (1987).]



not considered in the original Gray–Rice theory of isomerization because, for

the potential parameters and energies studied, the motion in their model system

is dominantly chaotic.

Gray and Rice extended the Davis–Gray method of locating a predissociation

separatrix to the case of isomerization. That is, they generated the stable and

unstable manifolds associated with the saddle point of isomerization and then

defined the separatrix as a union of the segments of the generated stable and

unstable manifolds. The flux crossing the separatrix can then be calculated by

one iteration of the separatrix on the PSS. This is illustrated in Fig. 21. In

particular, superimposing the iterated separatrix on the original separatrix yields

‘‘lobes,’’ and trajectories are seen to leave the inside of the separatrix only

through the small areas labeled ‘‘þ’’ and enter the separatrix through the areas

labeled ‘‘�’’. Each ‘‘þ’’ or ‘‘�’’ pair seen in Fig. 21 is called a turnstile.

The time dependences of the populations of the A;B, and C states are then

given by the three-state scheme

dA

dt
¼ �kACAþ kCAC ð205Þ

dB

dt
¼ �kBCBþ kCBC ð206Þ

dC

dt
¼ � kCA þ kCBð ÞC þ kACAþ kBCB ð207Þ

where A, B, and C represent the respective populations, kAC is the rate constant

associated with phase-space points that cross from A to C, kCB is the rate constant

associated with phase space points that cross from C to B, and so on. The

normalization condition is Aþ Bþ C ¼ 1. Furthermore, for a symmetric double

well potential one has kAC ¼ kBC; kCA ¼ kCB. With the initial condition

Að0Þ ¼ 1; Bð0Þ ¼ Cð0Þ ¼ 0 ð208Þ

the time dependences of the populations are given by

AðtÞ ¼ Ae þ 1
2
� Ae

� 	
e�l1t þ 1

2
e�l2t ð209Þ

BðtÞ ¼ Be þ 1
2
� Be

� 	
e�l1t � 1

2
e�l2t ð210Þ

CðtÞ ¼ 1� AðtÞ � BðtÞ ð211Þ

where l1 ¼ kAC þ 2kCA, l2 ¼ kAC, and

Ae ¼ Be ¼ kCA

kAC þ 2kCA
ð212Þ
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Gray and Rice also proposed an approximate analytical treatment for

locating the separatrix for isomerization, the use of which leads to an

overestimate of the rate constants by about a factor of two relative to the values

obtained from direct trajectory studies.

B. Zhao–Rice Approximation

Zhao and Rice extended the above-sketched Gray–Rice theory to include the

effects of intramolecular energy transfer, using analytical approximations for

various quantities [15]. Because this extension is in the same spirit as in the case

of unimolecular predissociation, the Zhao–Rice approximation presented here is

still called the MRRKM theory. Zhao and Rice employed a model double-well

potential similar to that used by Gray and Rice, but parameterized to have greater

flexibility. Specifically, the three terms in the potential of Eq. (201) are taken to

have the following form:

Vx ¼ D 1� e�axð Þ2 ð213Þ
Vy ¼ Ey2ðy� aÞðy� bÞ þ eb ð214Þ

Wðx; yÞ ¼ ZEy2y2ðy� aÞðy� bÞ 1� e�zaxð Þ ð215Þ
where a; b; E;mx;my;D; eb; z, and Z are parameters. When a ¼ b, the potential

function has a symmetric double well; when a 6¼ b, the potential function has an

asymmetric double well.

Zhao and Rice adopted the same three-state model for isomerization as

introduced by Gray and Rice. Assuming that there are no direct transitions from

A to B, the elementary rate constant in the three-state model is given by

kAC ¼ FAC=NA; kCA ¼ FCA=NC; where NA and NC are normalization factors, and

FAC ¼ FBC (for the symmetric double-well case) is the flux of phase space

points from region A to region C. According to the ARRKM theory one has

FAC ¼
ð
dx dy dpx dpyd SSep

� 	
_SSSepy _SSSep

� 	
dðE � HÞ ð216Þ

where SSep is the phase-space separatrix dividing region A from region C. Zhao

and Rice defined an approximate separatrix by

SSep ¼
p2y

2my

þ Vy þWð�xx; yÞ ��e ð217Þ

where �xx is a fixed value of the x-coordinate, and �e is given below. Use of SSep
and integrating over px and py yields

FAC ¼
ð

dx dy
ffiffiffiffiffiffiffiffi
2mx

p
yðyz � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E þ Vy þWð�xx; yÞ ��e� Vðx; yÞp q Wðx; yÞ �Wð�xx; yÞ½ �
qy

����
���� ð218Þ
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where yz ¼ 0 for the case of a symmetric potential energy surface and if the

dividing surface defined by SSep ¼ 0 is the exact separatrix. The normalization

constants for regions A and C are calculated from

NA ¼ 4
ffiffiffiffiffiffiffiffiffiffiffi
mxmy
p ð

dx dyyðyz � yÞ arcsin Pmin

G

� �
ð219Þ

NC ¼ 4
ffiffiffiffiffiffiffiffiffiffiffi
mxmy
p ð

dx dyyðyz � yÞy½E � Vðx; yÞ� p� 2 arcsin
Pmin

G

� �� �
ð220Þ

with

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � Vðx; yÞ

p
ð221Þ

Pmin ¼ min G;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�e� Vy �Wð�xx; yÞ

qh i
ð222Þ

The Zhao–Rice approximation for obtaining SSep is based on the following

considerations. First, there is a maximum kinetic energy (denoted by ebÞ
associated with the motion along the reaction coordinate y and within the

separatrix that defines one geometric isomer. They defined the dividing surface to

exclude the trajectories for which the kinetic energy along y exceeds this value

because such trajectories generate direct conversion of A to B, which is omitted

in the Gray–Rice three-state model of isomerization. Second, on the transition

state dividing surface the x-component of the energy is defined to be

p2x
2mx

þ Vx ¼ ex ð223Þ

Thus, by conservation of energy, one has

p2y

2my

þ Vy þWð�xx; yÞ ¼ �e ð224Þ

where �e ¼ E � ex. Equation (224) is identical to the above definition of SSep
since

SSep ¼
p2y

2my

þ Vy þWð�xx; yÞ ��e ¼ 0 ð225Þ

Thus, assuming �e ¼ eb, Zhao and Rice obtained an approximate separatrix,

denoted SASep and given by

SASep ¼
p2y

2my

þ Vy þWð�xx; yÞ � eb ð226Þ

classical, semiclassical, and quantum mechanical rate theory 71



To include some bottleneck effects in intramolecular energy flow, Zhao and

Rice defined a second dividing surface drawn around a region of quasi-periodic

motion of isomer A. This dividing surface lies inside the separatrix. To so do,

they considered the case when the initial state of the system has all of the energy

in the x-DOF and only zero-point energy Eyð0Þ in the y-DOF. By analogy with

the construction of SASep, they proposed the following intramolecular energy

transfer dividing surface

SAintra ¼
p2y

2my

þ Vy þWð�xx; yÞ � Eyð0Þ ð227Þ

Note that, although their analysis is based on classical mechanics, the zero-point

energy in the y-DOF was taken into account to better approximate the

partitioning of the energy between different DOFs. When the motion in the y-

DOF is confined to the vicinity of the isomer geometry minimum, the harmonic

approximation should be valid. Then

EyðnÞ ¼ nþ 1
2

� 	
�hoy ð228Þ

with

oy ¼ 1

my

q2Hðx; yÞ
qy2

� �1=2

x¼x0;y¼y0
ð229Þ

Inserting this expression into SAintra yields

SAintra ¼
p2y

2my

þ Vy þWð�xx; yÞ � 1
2
�hoy ð230Þ

The corresponding rate constant associated with SAintra can be calculated in the

same way as in the case of SASep.

A simple kinetics model of the three-state mechanism that takes into account

bottlenecks to intramolecular energy transfer can be developed by splitting the

phase space region A into the quasi-periodic motion region A1 and the highly

chaotic region A2, with A ¼ A1 þ A2. Such a kinetics model is presented in

Fig. 22. Let kA1A2
be the rate constant for flow of phase space points from A1 into
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A2; and let kA2A1
be the back flow rate from A2 to A1. Then, with obvious

notation one obtains

dA1

dt
¼ �kA1A2

A1 þ kA2A1
A2 ð231Þ

dA2

dt
¼ kA1A2

A1 � kA2A1
þ kA2Cð ÞA2 þ kCA2

C ð232Þ
dB1

dt
¼ �kB1B2

B1 þ kB2B1
B2 ð233Þ

dB2

dt
¼ kB1B2

B1 � kB2B1
þ kB2Cð ÞB2 þ kCB2

C ð234Þ
dC

dt
¼ kA2CA2 þ kB2CB2 � kCB2

þ kCA2
ð ÞC ð235Þ

This set of first-order linear differential equations can be formally solved to yield

the populations as functions of time for the various regions in phase space.

Based on the Gray–Rice assumption that dynamical chaos is fully developed

before the isomerization reaction occurs, crossing the intramolecular bottleneck

can be considered to be independent of crossing the intermolecular dividing

surface. Then the rate constant for the transfer of phase space points from region

A to C, as observed by Gray and Rice, can be described by only using Eqs. (231)

and (232) with kCA2
¼ 0. Hence

A1ðtÞ ¼ Q1e
�l1t þ Q2kA2A1

kA2A1
� l2

e�l2t ð236Þ

A2ðtÞ ¼ Q1kA1A2

kA2A1
þ kA2C � l1

e�l1t þ Q2e
�l2t ð237Þ

Figure 22. Schematic mechanism of reaction including intramolecular energy transfer. The

phase-space of state A is partitioned into A1 and A2. S1 is a representation of an intramolecular

energy transfer dividing surface, and S2 is the A-state separatrix.
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where

l1 ¼ 1
2
kt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2t � 4kA1A2

kA2C

p� � ð238Þ

l2 ¼ 1
2
kt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2t � 4kA1A2

kA2C

p� � ð239Þ
kt ¼ kA1A2

þ kA2A1
þ kA2C ð240Þ

Q1 ¼ A1ð0Þ � Q2kA2A1

kA1A2
� l2

ð241Þ

Q2 ¼ A2ð0Þ � A1ð0ÞkA1A2

kA2A1
þ kA2C � l1

� �

� 1� kA1A2
kA2A1

kA1A2
� l2ð Þ kA2A1

þ kA2C � l1ð Þ
� ��1

ð242Þ

The population inside the A-separatrix AðtÞ ¼ A1ðtÞ þ A2ðtÞ is given by

AðtÞ ¼ Q1 1þ kA1A2

kA2A1
þ kA2C � l1

� �
e�l1t

þ Q2 1þ kA2A1

kA2A1
� l2

� �
e�l2t ð243Þ

The above result can also rewritten as

AðtÞ
Að0Þ ¼

�QQ1 1þ kA1A2

kA2A1
þ kA2C � l1

� �
e�l1t

þ �QQ2 1þ kA2A1

kA2A1
� l2

� �
e�l2t ð244Þ

with

�QQ1 ¼ f1 �
�QQ2kA2A1

kA2A1
� l2

ð245Þ

�QQ2 ¼ f2 � f1kA1A2

kA2A1
þ kA2C � l1

� �

� 1� kA1A2
kA2A1

kA1A2
� l2ð Þ kA2A1

þ kA2C � l1ð Þ
� ��1

ð246Þ
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and

f1 ¼ A1ð0Þ
Að0Þ ; f2 ¼

A2ð0Þ
Að0Þ ð247Þ

Assuming that the effective rate constant kAC is equivalent to that determined

from trajectory studies and also assuming that

AðtÞ ¼ Að0Þe�kACt ð248Þ

for short time, Zhao and Rice evaluated kAC by fitting the numerical simulation

data. Specifically, this fitting was carried out by setting

ln
AðtACÞ
Að0Þ

� �
¼ �1 ð249Þ

with kAC ¼ 1=tAC. In essence, this procedure assumes that relaxation in region A

is fully developed before the transition from A to C occurs, and thus the

contribution from kA2A1
is negligible. The initial conditions are chosen so that f1

is approximated by the fraction of quasi-periodic region on the PSS within the

isomer A region. Once the rate constant kAC is known, kCA can be determined

from

kCA ¼ kACkCA2

kA2C

ð250Þ

If the A to C and C to B transitions are independent processes, then a simple

approximation to the effective isomerization lifetime t can be made:

t ¼ 1

k
¼ 1

kCA
þ 1

kAC
ð251Þ

C. Reactive Island Theory

A beautiful classical theory of unimolecular isomerization called the reactive

island theory (RIT) has been developed by DeLeon and Marston [23] and by

DeLeon and co-workers [24,25]. In RIT the classical phase-space structures are

analyzed in great detail. Indeed, the key observation in RIT is that different

cylindrical manifolds in phase space can act as mediators of unimolecular

conformational isomerization. Figure 23 illustrates homoclinic tangling of

motion near an unstable periodic orbit in a system of two DOFs with a fixed point

t, and it applies to a wide class of isomerization reaction with two stable isomer
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states (A and B), represented by two wells in the potential energy surface.

Furthermore, the existence of a homoclinic orbit guarantees that on a particular

surface of section the Poincaré map always has the structure shown in Fig. 23.

As is clear from the previously discussed properties of unstable periodic

orbits and NHIM, there are both stable (W�A ;W
�
B Þ and unstable manifolds

(WþA ;W
þ
B Þ associated with the unstable fixed point shown in Fig. 23. These

manifolds are called stable and unstable cylinders in RIT. The intersection of the

cylinders with a surface of section generates the so-called reactive islands (RI).

Specifically, RIs can be constructed for a given dynamical system by

propagating ensembles of trajectories along the stable and unstable branches

of a reactive periodic orbit, the propagation being in negative and positive time,

respectively. Figure 24 presents Poincaré maps for an isomerization system on

two different surfaces, showing Wþ and W� RI structures.

For a system with two DOFs, both the cylinder and the surface of section

(denoted �Þ are of dimension two and embedded within the three-dimensional

energy shell. Their intersection is therefore generically along lines. There are

three major possibilities: (i) The intersection is a line of infinite length; (ii) the

intersection is a reducible closed curve on the cylinder; and (iii) the intersection

is an irreducible closed curve on the cylinder. Figure 25 shows a schematic

drawing of a surface � intersecting a W� cylinder. In Fig. 25A (one orbit) and

Fig. 25B (several orbits) the surface intersects W� tangentially forming a

reducible curve. In Fig. 25C the surface intersects W� transversely, forming an

irreducible curve (which is identified to be an RI in RIT). Figure 26 shows a

schematic surface � intersecting a W� cylinder both transversely and

tangentially, demonstrating how a discontinuous Poincaré map can be obtained.

h2

h1

h2

h1

′

τ

WA
–

WB
–

WB
+

WA
+

Figure 23. Homoclinic tangling of motion near an unstable periodic orbit in a system of two

degrees of freedom at a fixed point t. [From A. M. O. De Almeida et al. , Physica D 46, 265 (1990).]
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The RIs display a number of interesting mathematical and physical

properties. To briefly introduce these properties, we define the RIs generated

from the same branch (either the stable or the unstable branch) to be of the same

family. We also denote by RIjþ1 the reactive island generated from a further

iteration of the reactive island RIj. That is, the area of RIj will, upon one positive

or negative time iteration, map onto RIjþ1 or RIj�1 within the same family. It

Figure 24. Reactive island structure for a two-well potential isomerization model, generated

from the stable and unstable branches of the transition state fixed point. (a) Stable branch structure.

(b) Unstable branch structure. [From A. M. O. De Almeida et al., Physica D 46, 265 (1990).]

Figure 25. Schematic drawing of a surface � intersecting a cylinder. (A, one orbit; B, several

orbits) � intersects the cylinder tangentially, forming a reducible curve. (C) � intersects the

cyclinder transversally, forming an irreducible curve—that is, a reactive island. [From A. M. O. De

Almeida, et al. , Physica D 46, 265 (1990).]
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can be shown that: (i) All reactive islands within a family have the same area.

(ii) The area of an RI is equal to the action over one period of motion of the

transition state periodic orbit. Consequently, the area of an RI from a stable

branch family will be equal to the area of an RI from an unstable branch family.

(iii) Reactive islands from the same family cannot intersect one another. (iv)

The intersection of two RIs from different families generates four lobes and an

overlap region. Four homoclinic points will be generated by the peripheries of

the two intersecting RIs. The four lobes pair into two sets of equal area lobes.

Those lobes generated from the stable branch bound reactive dynamics in

positive time, whereas those lobes generated from the unstable branch bound

reactive dynamics in negative time. The overlap region is reactive in both

positive and negative time. These properties of RIs make it clear that the

probabilities associated with isomerization reaction, trapping, and back reaction

are entirely determined by the overlap between stable and unstable branches of

RIs. (v) Reactive to trapped motion will proceed through the RIs generated from

the unstable branch, whereas trapped to reactive motion will proceed through

the RIs generated from the stable branch. The last member of a family of RIs

from the stable branch constitutes the bottleneck to reaction.

Figure 27 illustrates reactive motion through cylindrical manifolds and

construction of the manifolds. It shows that a trajectory initially trapped in

conformer A eventually enters the interior of the cylinder W�A . By going through

W�A , it reacts, and it goes to conformer B by entering manifoldWþB . The cylinder
W�A mediates all pre-reactive motion A! B, and the cylinder W�B mediates all

Figure 26. A schematic presentation of a surface � intersecting with a W� cylinder both

transversally and tangentially, and how a discontinuous Poincaré map is obtained. [From A. M. O.

De Almeida et al., Physica D 46, 265 (1990).]

78 meishan zhao et al.



pre-reactive motion B! A. Due to time-reversal symmetry, WþA and WþB
mediate all post-reactive motion. Therefore, the four cylinders, particularly their

overlaps in phase space, mediate all the details of the kinetics of isomeriza-

tion—for example, how flux moves back and forth between the two isomer

states.

A detailed discussion of RIT is beyond the scope of this chapter. Here we

confine ourselves to the first-order kinetics obtained from RIT. Since RIT shows

that all forward reactions must occur by passing through the interior of W�A , and
all backward reactions must occur by passing through the interior of W�B , the
simplest reaction mechanism predicted by RIT takes into account only direct

recrossing—that is, recrossing motion within one oscillation of the reaction

coordinate. The kinetics associated with this simplest case can be represented

by

A�!d W�A �!
g

WþB �!
b

B

B�!d W�B �!
g

WþA �!
b

A

ð252Þ

In addition, RIT introduces a common rate constant a associated with

the transitions WþA ! W�A and WþB ! W�B . Then the population dynamics is

Figure 27. An example of cylindrincal manifolds in a system with two DOFs. A trajectory is

initially trapped in conformer A and eventually enters the interior of the cylinder W�A . By going

through W�A , it reacts, and it goes to conformer B by entering the manifold WþB . [From N. De Leon,

M. A. Mehta, and R. Q. Topper, J. Chem. Phys. 94, 8310 (1991).]
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given by

dAðtÞ
dt
¼ bWþA ðtÞ � dAðtÞ ð253Þ

dWþA ðtÞ
dt

¼ gW�B ðtÞ � ðaþ bÞWþA ðtÞ ð254Þ
dW�A ðtÞ

dt
¼ aWþA ðtÞ þ dAðtÞ � gW�A ðtÞ ð255Þ

dBðtÞ
dt
¼ bWþB ðtÞ � dBðtÞ ð256Þ

dWþB ðtÞ
dt

¼ gW�A ðtÞ � aþ bð ÞWþB ðtÞ ð257Þ
dW�B ðtÞ

dt
¼ aWþB ðtÞ þ dBðtÞ � gW�B ðtÞ ð258Þ

Here AðtÞ, BðtÞ;WþA ðtÞ,W�A ðtÞ, BðtÞ,WþB ðtÞ, andW�B ðtÞ are the populations of the
respective phase space regions, and the rate constants a, b, g, and d are explicitly
given by RIT by calculating the areas of overlap regions and the density of states.

The overall isomerization rate constant can be obtained by solving the preceding

set of equations. Assuming a set of eigenvalues lf g associated with the kinetic

equations, RIT takes kRIT ¼ inf lð Þ to be the reaction rate constant of

isomerization.

As an application of RIT, consider the following Hamiltonian system

H ¼ 1

2m
p1 þ p2ð Þ þ D 1� exp �lq2ð Þ½ �

þ 4q21 q21 � 1
� 	

exp �zlq2ð Þ ð259Þ

where the parameters have the values m ¼ 8:0, D ¼ 10:0, z ¼ 2:3, and l ¼ 1:95.
The Hamiltonian is symmetric with respect to the reaction coordinate q1. The

dynamics of this specific system is classically chaotic, the potential energy

barrier is at E ¼ 0, and there exists a family of periodic orbits along q2 at q1 ¼ 0

for energies greater than zero. Figures 28 and 29 present reactive island structure

on a surface of section and kinetics data for this symmetric model Hamiltonian

with energies E ¼ 1:0 and 3:0, respectively, compared to the result from a purely

random model (PR) and to that of classical trajectory calculations.

D. Gray–Rice Theory Versus Reactive Island Theory

It is interesting and important to note that the conceptual structure of the lowest-

order application of RIT is similar to the Gray–Rice three-state model of
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isomerization. Let us first recall that the mechanism of the Gray–Rice three-state

model can be summarized in the form

A½ �! kAC
kCA

C½ � ! kBC
kCB

B½ � ð260Þ

where A and B are the stable isomer states, and C is the intermediate state. The

three state kinetics equations are

dA

dt
¼ �kACAþ kCAC ð261Þ

dB

dt
¼ �kBCBþ kCBC ð262Þ

dC

dt
¼ � kCA þ kCBð ÞC þ kACAþ kBCB ð263Þ

Figure 28. Reactive island structure on a surface of section and kinetics data for the symmetric

model Hamiltonian for E ¼ 1:0. (a) The reactive island structure. (b) The population decay of isomer

A from different calcualtions. [From A. M. O. De Almeida et al., Physica D 46, 265 (1990).]

Figure 29. Reactive island structure on a surface of section and kinetics data for the symmetric

model Hamiltonian for E ¼ 3:0. (a) The reactive island structure. (b) The population decay of isomer

A from different calcualtions. [From A. M. O. De Almeida et al., Physica D 46, 265 (1990).]
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A special solution with the initial conditions Að0Þ ¼ 1; Bð0Þ ¼ Cð0Þ ¼ 0 is

AðtÞ ¼ Ae þ 1
2
� Ae

� 	
e�l1t þ 1

2
e�l2t ð264Þ

BðtÞ ¼ Be þ 1
2
� Be

� 	
e�l1t � 1

2
e�l2t ð265Þ

CðtÞ ¼ 1� AðtÞ � BðtÞ ð266Þ

where

Ae ¼ Be ¼ kCA

kAC þ 2kCA
ð267Þ

and the two exponents are l1 ¼ kAC þ 2kCA, l2 ¼ kAC .

Consider first the case where all the three states are taken into account and

l2<l1. Then the isomerization rate from the Gray–Rice theory is characterized

by the decay rate constant l2 ¼ kAC. This is a general result from the three-state

mechanism. Consider a second case in which the third intermediate state C

vanishes from the mechanism by setting C ¼ 0. Then the reaction mechanism

becomes

A½ �! kAB
kBA

B½ � ð268Þ

for which the reaction rate constant must be kAB þ kBAð Þ ¼ 2kAB for the

symmetric double-well potential. This result can be derived from the Gray–

Rice theory by setting C ¼ 0. In doing so, the equilibrium concentrations of A

and B are Ae ¼ 1=2, and Be ¼ 1=2 for any symmetric double-well potential.

Then from Eq. (267) one has

Ae ¼ Be ¼ kCA

kAC þ 2kCA
¼ 1

2
ð269Þ

which gives

kAC þ 2kCA ¼ 2kCA ð270Þ

or

kAC ¼ 0 ð271Þ
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This is true, since the C state does not exist. Hence, if the system goes to the B

state from C, it must come from A, and vice versa. This implies that

kCB ! kAB; kCA ! kBA ð272Þ

and
l1 ¼ kAC þ 2kCA ¼ 2kBA ¼ 2kAB ð273Þ
l2 ¼ kAC ¼ 0 ð274Þ

Therefore, the reaction rate constant is now l1 ¼ 2kAB, which is exactly the

RRKM rate constant.

To consider the relationship between RIT and the Gray–Rice theory, we

reexpress the simplest reaction mechanism of RI T in the form

WAB

d% & b
A a m a B

b- . d
WBA

ð275Þ

where WAB is comprised of W�A and WþB and WBA is comprised of W�B and WþA .
Clearly, Eq. (275) indicates that between state A and state B there are the

intermediate states WAB and WBA. Identifying the intermediate states WAB and

WBA with the state C in the Gray–Rice theory, one sees that (first-order) RIT and

the Gray–Rice theory are based upon the same reaction mechanism. Specifically,

for the case of a symmetric double-well potential, RIT yields the rate constant

[56]

kRIT ¼ 4FðEÞ
NT

1� Z

1þ Z

� �
ð276Þ

where FðEÞ is the flux from A to B in the two-state mechanism (i.e., C ¼ 0), NT is

the population trapped in the whole phase space, and Z is the fraction of

recrossing motion. Assuming that NA is the population of the A state in the Gray–

Rice theory, we have

kRIT ¼ 2FðEÞ
NA

1� Z

1þ Z

� �
ð277Þ

Since the flux FGRðEÞ in the Gray–Rice theory is defined by the flux crossing the
separatrix from the trapped A state to state C ¼ CA þ CB, we have

2FðEÞ � FGRðEÞ ð278Þ
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and

kRIT ¼ FGRðEÞ
NA

1� Z

1þ Z

� �
ð279Þ

Equation (279) suggests that in the Z ¼ 0 limit,

kRIT ¼ FGRðEÞ
NA

¼ kGR ð280Þ

This important similarity between the first-order RIT and the Gray–Rice theory

was also analyzed by Deleon and Ling [56] with, however, different conclusions.

The difference between the Gray–Rice theory and RIT in its general form is

evident. In the Gray–Rice theory the chaotic dynamics of isomerization is

assumed to be fully developed. This is why the flux across the reaction separatix

can be calculated knowing only the properties of the separatrix and the density

of phase space points in the chaotic domain. By contrast, RIT shows that there is

substructure to the chaotic dynamics in that trajectories that lead to

isomerization pass through RIs which are distinct regions embedded in the

chaotic domain. Such substructure in phase space exposes the detailed dynamics

of isomerization which is not considered by the Gray–Rice theory. However,

since the area of reactive islands is preserved under the stroboscopic mapping

and the area of the PSS is finite, successive mappings of a reactive island will

eventually cover the surface of section. As such, the area of intersection of two

reactive islands from different branches decreases as the stage of mapping

increases, and the locations of intersections are apparently randomly distributed

on the PSS. This implies that contributions to the rate of isomerization come

from all over the surface of section, a fact that is consistent with the Gray–Rice

analysis.

E. Isomerization in Double-Well Systems

Consider the rate constants for isomerization in symmetric and asymmetric

double-well systems predicted by the several theories discussed above. The two-

well potential for coupled x and y DOFs is given by

Vðx; yÞ ¼ D 1� e�axð Þ2þ Ey2ðy� aÞðy� bÞ þ eb

þ ZEy2y2ðy� aÞðy� bÞ 1� e�zaxð Þ ð281Þ

where a; b; E;mx;my;D; eb; z, and Z are parameters. The potential is symmetric

for a ¼ b and asymmetric for a 6¼ b. In all the systems studied below

mx ¼ my ¼ 8:0, D ¼ 10:0, eb ¼ 1:0, E ¼ 4. Different choices of the other

parameters, listed in Table XIV, give rise to different systems. A schematic plot

of both the symmetric and the asymmetric potentials is given in Fig. 30.

84 meishan zhao et al.



System No. 1 describes a symmetric double-well potential that was studied

by Gray and Rice. A PSS for this system is displayed in Fig. 31. For this system

the MRRKM results [15] are presented in Table XV, compared to the exact

trajectory calculations by Gray and Rice [55]. It is seen that for all the energies

considered, the predicted rate constants are in good agreement with Gray and

Rice’s results except for E ¼ 3:00, for which the MRRKM theory overestimates

the rate constant by a factor of 1:25. It is plausible that a principal component of

this difference arises from uncertainty in the value of fQP—that is, the fraction of

quasi-periodic motion on the PSS. Indeed, a small change in that value will

bring the calculated and exact values into agreement to the same accuracy as for

the other energies considered. Clearly, the Zhao–Rice approximations to the

TABLE XIV

The System Parameters for a Number of Model Double-Well Potentialsa

System No. z a Energy (E) a b Z

1 1.0 1.50 1.25 1.0 1.0 1.0

2.00 1.0 1.0 1.0

3.00 1.0 1.0 1.0

6.00 1.0 1.0 1.0

2 2.3 2.10 1.05 1.0 1.0 �1.0
3 1.9 1.95 1.20 1.0 1.0 �1.0
4 2.3 1.95 2.00 1.0 1.0 �1.0
5 1.7 2.00 2.00 1.0 1.0 �1.0
6 1.8 2.10 2.50 1.0 1.0 �1.0
7 2.3 1.95 1.05 1.1 0.9 �1.0
8 2.3 1.95 1.50 1.1 0.9 �1.0

a Note that the potential is symmetric for a ¼ b and asymmetric for a 6¼ b.

Figure 30. A schematic presentation of the symmetric and asymmetric double-well potentials.
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Figure 31. Poincaré surfaces of section for a symmetric double-well potential with parameters

given in Table I. (a) E ¼ 1:02, (b) E ¼ 1:25, (c) E ¼ 2:0, (d) E ¼ 3:0, and (e) E ¼ 6:0. [From S. K.

Gray and S. A. Rice, J. Chem. Phys. 86, 2020 (1987).]
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separatrix and to the rate of intramolecular energy transfer yield a significant

improvement in the predicted isomerization rate constants relative to the

predictions of the earlier theory of Gray and Rice (which gives an error of a

factor around 2.0).

Systems No. 2 to No. 6 defined in Table XIV were studied by De Leon and co-

workers using RIT [23,57]. They reported that these systems are primarily

chaotic. Their theoretical results are compared, in Table XVI, to their trajectory

calculations, the RRKM results, the MRRKM calculations, and the results based

on a reaction path Hamiltonian analysis by Jang and Rice [58]. The entries in

Table XVI show that the MRRKM theory yields rate constants that are in

excellent agreement with direct trajectory calculations for almost all the cases.

By contrast, the RRKM results overestimate the isomerization rate constants by

a factor of around 4.0. The MRRKM theory does give an erroneous prediction

for system No. 2, which has a very low excess energy E ¼ 1:05. In such cases

one may have to consider more than one intramolecular bottleneck to make

more accurate calculations of the isomerization rate. Note that RIT seems to

give the best result. This is understandable because RIT takes into account more

information concerning the reaction dynamics. Note also that, at least for these

model systems, the reaction path approach of Jang and Rice is successful. This

suggests that although, as shown by Gray and Rice, a large fraction of the

trajectories that contribute to the isomerization process depart considerably

from the minimum energy path through the saddle region, the reaction path

TABLE XV

Comparison of Elementary Rate Constants Calculated from the MRRKM Theory to Those Obtained

by Gray and Rice’s Exact Trajectory Calculations [55] for System No. 1

E fQP kintra kSep kAC Gray–Rice

1.25 0.24 0.055 0.025 0.022 0.026

2.00 0.099 0.085 0.054 0.050 0.048

3.00 0.058 0.107 0.075 0.071 0.057

6.00 0.038 0.125 0.097 0.094 0.100

TABLE XVI

Isomerization Rate Constants for Symmetric Double-Well Potential Systems Defined in Table XIV

System No. RRKM MRRKM Trajectory Reaction-Path RIT

2 0.0084 0.0069 0.0023 0.011 0.0023

3 0.031 0.015 0.014 0.018 0.015

4 0.073 0.029 — 0.029 0.027

5 0.096 0.023 0.020 0.020 0.020

6 0.120 0.026 0.031 0.021 0.029
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formalism does capture some contributions from these trajectories via the self-

consistent inclusion of the averaged motion perpendicular to the reaction

coordinate.

Comparison between the MRRKM theory and RIT [59] in the case of

asymmetric double-well potentials—that is, systems No. 7 and No. 8—is made

in Table XVII. There the transition state theory TSTð Þ results reported by De

Leon et al. [59] are also given. The MRRKM results were obtained by ignoring

the effects of intramolecular energy transfer, and they are seen to be in good

agreement with those from RIT and from direct numerical simulations. It is also

seen that both the MRRKM theory and RIT considerably overestimate the rate

constant for system No. 7. Again this is possibly due to the presence of

intramolecular energy transfer bottlenecks.

F. Isomerization in a Triple-Well System

Jang, Zhao, and Rice [60] also examined the rate of isomerization in a model

system that supports three stable isomers, denoted by B, A and B0, and a bound

state denoted by C, which is distinct from all the isomeric states. A schematic

plot of the triple-well potential and a phase-space contour plot is presented in

Fig. 32.

For simplicity we assume that the following: (i) Isomers B and B0 have the

same energy, as displayed in Fig. 32. (ii) Isomer A has an energy that is higher

than that of B and B0. (iii) The bound state C corresponds to all system

conformations with energies in excess of the barrier energies separating B, A

and B0. (iv) The potential wells corresponding to the several isomers are linearly

distributed along the reaction coordinate in the sequence B0, A, B. While both

the direct conversion

B! C ! B0 ð282Þ

and the indirect conversion

B! C ! A! C ! B0 ð283Þ

TABLE XVII

Isomerization Rate Constants for Systems No. 7 and No. 8 Obtained from Trajectory

Calculations, RIT, the Transition State Theory (TST), and the MRRKM Theory

System No. Trajectory RIT TST MRRKM

7 0.04 0.0614 0.089 0.089

8 0.27 0.312 0.626 0.31
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are allowed in the considerations, we neglect conversions of the type B! A and

A! B. The main interest is with the extent to which the presence of the

intermediate isomeric state A modifies the flux from B to B0, hence also the rate

of that isomerization.

The model triple-well potential surface is defined by the sum of a sixth-order

polynomial in the displacement of y-coordinate, a Morse potential in the

orthogonal x-coordinate, and a potential describing the coupling between x and y:

Vðx; yÞ ¼ Vx þ Vy þWðx; yÞ ð284Þ

where

Vx ¼ D 1� e�axð Þ2 ð285Þ
Vy ¼ Ey2 y2 � a2

� 	
y2 � b2
� 	 ð286Þ

Wðx; yÞ ¼ ZEy2 y2 � a2
� 	

y2 � b2
� 	

1� e�zaxð Þ ð287Þ

Figure 32. A three-well potential modeling unimolecular isomerization between three isomers,

denoted by B;A, and B0.
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and the parameters mx;my;D; E; a; z;Z; a, b take the following values:

mx ¼ 8:0; my ¼ 8:0; D ¼ 5:00
E ¼ 10:00; a ¼ 1:95; Z ¼ �1:00
z ¼ 5:00; a ¼ 0:90; b ¼ 1:00

The saddle point between isomer B and isomer A is represented by y
z
1 ¼ q

z
AB, and

the saddle point between isomer B0 and isomer A is represented by y
z
2 ¼ q

z
AB0. As

in the case of double-well potentials, the MRRKM theory defines isomerization

separatrix surfaces for the three isomer states B;A and B0 by

SSep ¼
p2y

2my

þ Vy þWð�xx; yÞ � eb ¼
SB; y � y

z
1

SA; y
z
1 	 y 	 y

z
2

SB0 ; y 	 y
z
2

8><
>: ð288Þ

where �xx is a fixed point in x. Using this definition for the separatrix, the MRRKM

calculations can be carried out. We also define, solely for convenience of

discussion, the ‘‘isomerization rate constants’’ k ¼ 1=t, where t is the

‘‘relaxation lifetime.’’ The MRRKM results for this system, as a function of

energy, are displayed in Table XVIII.

A few of these cases were studied within the framework of RIT by DeLeon

et al. [59] for energy E ¼ 0:58, 0:75, and 1:00. The ‘‘isomerization rate

constants’’ calculated from the MRRKM theory are in very good agreement

with those obtained from trajectory calculations and with those calculated from

RIT. This comparison is given in Table XIX. Interestingly, both the MRRKM

theory and RIT more or less overestimate the rate of isomerization when

compared to the trajectory calculations.

TABLE XVIII

Elementary Rate Constants and Lifetimes from the MRRKM Theory for a Model

Triple-Well Potential

E kAC kBC kCA kCB k t

0.58 0.066 0.028 0.034 0.024 0.016 62

0.70 0.20 0.086 0.063 0.049 0.047 21

0.75 0.24 0.11 0.067 0.054 0.055 18

0.80 0.27 0.12 0.071 0.057 0.063 16

0.85 0.31 0.14 0.074 0.059 0.071 14

0.90 0.34 0.15 0.075 0.061 0.076 13

0.95 0.36 0.16 0.077 0.063 0.082 12

1.00 0.39 0.17 0.079 0.064 0.087 11
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G. Isomerization of 3-Phospholene

Isomerization of 3-phospholene is of considerable interest for two reasons. First,

the potential energy surface for the isomerization reaction coordinates is well

known due to the spectroscopic studies of Harthcock and Laane [61,62]. Second,

its Hamiltonian has important off-diagonal kinetic energy coupling terms, which

provide a different test of the accuracy of the approximations used in the

MRRKM theory than posed by previous applications.

Let x be the ring-puckering coordinate and y the PH inversion coordinate in

3-phospholene (see Fig. 33). The dynamics of isomerization in this molecule is

assumed to be adequately described by these coupled two DOF’s without need

for consideration of other DOFs. Under this assumption, the Harthcock–Laane

potential energy surface consists of a fourth-order polynomial in x, a fourth-

order polynomial in y, and a sixth-order polynomial coupling x and y. With

molecular rotation neglected, the model Hamiltonian for 3-phospholene is

given by

H ¼ 1
2
PT � G � Pþ Vðx; yÞ ð289Þ

where

Vx ¼ a1x
4 þ b1x

2 ð290Þ
Vy ¼ a2y

4 þ b2y
2 ð291Þ

Wðx; yÞ ¼
X5
m¼1

X5
n¼1

cmnx
myn ð292Þ

Vðx; yÞ ¼ Vx þ Vy þWðx; yÞ ð293Þ

Here PT is the transpose of the momentum vector P. As indicated above, the

kinetic energy is not diagonal in either x or y. The 2� 2 kinetic energy matrix,

TABLE XIX

The Isomerization Rate Constants in a Model Three-Well

Potential, Obtained from MRRKM, Trajectory Calculations,

and RIT

E Trajectory RIT MRRKM

0.58 0.015 0.019 0.016

0.75 0.047 0.049 0.055

1.00 0.085 0.091 0.087

classical, semiclassical, and quantum mechanical rate theory 91



denoted by Gðx; yÞ, is a slowly varying function of x and y with its matrix

elements given by

g11ðx; yÞ ¼
X6
m¼1

X6
n¼1

dxxðm; nÞxmyn ð294Þ

g12ðx; yÞ ¼
X6
m¼1

X6
n¼1

dxyðm; nÞxmyn ð295Þ

g22ðx; yÞ ¼
X6
m¼1

X6
n¼1

dyyðm; nÞxmyn ð296Þ

g21ðx; yÞ ¼ g12ðx; yÞ ð297Þ

Figure 33. The conformation interconversion of 3-phospholene, associated with the ring

pucking coordinate x and the PH inversion coordinate y. [From M. S. Zhao and S. A. Rice, J. Chem.

Phys. 98, 2837 (1993).]
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The contours of the potential function are shown in Fig. 34. Numerical values

of the parameters ai; bi; cij are given by (in a.u.)

a1 ¼ 1:22� 10�1; a2 ¼ 1:136� 10�4

b1 ¼ 3:317� 10�2; b2 ¼ �3:139� 10�3

and

c11 ¼ �7:043� 10�3; c13 ¼ 5:288� 10�4; c15 ¼ �1:541� 10�5

c22 ¼ �4:859� 10�3; c24 ¼ 1:681� 10�4; c31 ¼ 1:904� 10�2

c33 ¼ 3:502� 10�4; c42 ¼ �5:213� 10�4; c51 ¼ �1:291� 10�3

Figure 34. Contour plot of the potential energy surface for the isomerization of 3-phospholene.

x is the ring pucking coordinate and y is the PH inversion coordinate. [From C. C. Marston and N. De

Leon, J. Chem. Phys. 91, 3392 (1989).]
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All other cij are zero. The nonzero dði; jÞ coefficients are given by the following

(also in a.u.):

ði; jÞ dxði; jÞ dyði; jÞ dxyði; jÞ
(0,0) 5:74556� 10�6 �1:44334� 10�5 6:30483� 10�4

(0,2) �2:75898� 10�9 2:72180� 10�7 �3:97533� 10�6

(0,4) 1:10125� 10�10 7:62182� 10�8 9:79076� 10�8

(0,6) �1:20461� 10�12 2:40922� 10�12 �1:03596� 10�9

(1,1) 1:02878� 10�8 �1:47638� 10�6 3:37376� 10�6

(1,3) �4:85666� 10�10 2:33670� 10�8 �4:39208� 10�8

(2,0) �3:83084� 10�6 3:97712� 10�6 1:20922� 10�5

The 3-phospholene potential energy surface has an energy barrier between

isomers with height eb ¼ 5083 cm�1. Results from direct trajectory calculations

by De Leon and Marston [23,63] are available for one energy, namely,

5133 cm�1. The PSS for this energy is shown in Fig. 35. It is seen that although

overall the system displays characteristics of chaotic motion, a considerable

portion of the PSS supports quasi-periodic motion.

Figure 35. Poincaré surface of section of 3-phospholene at E ¼ 5133 cm�1, showing chaotic

motion and embedded regions of quasi-periodic motion. [From C. C. Marston and N. De Leon,

J. Chem. Phys. 91, 3392 (1989).]
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This same energy was assumed in an application of the MRRKM theory [64].

In doing so, one can adopt the separatrix

SSep ¼ 1
2
g22ð�xx; yÞp2y þ g12ð�xx; yÞpxpy þ Vy þWð�xx; yÞ ��e

¼
SASep; y 	 yz

SBSep; y � yz

(
ð298Þ

where �xx is a fixed point. To account for the periodic motion, the initial conditions

for the isomerization kinetics are determined by setting A1ð0Þ equal to the

fraction of the PSS for isomer A that supports quasi-periodic motion [see Eqs.

(231) and (232)]. To account for intramolecular bottleneck effects, Zhao and

Rice defined an intramolecular dividing surface that has the same form as the

intermolecular separatrix, but with negative energy appropriate to its location—

that is, with �e replaced by the local zero point energy of the PH inversion

motion, denoted by Eyð0Þ. Assuming that the small amplitude PH inversion

motion is harmonic, one has

Eyð0Þ ¼ 1
2
�hoy ð299Þ

with the local frequency

oy ¼ g22ðx; yÞ q
2Hðx; yÞ
qy2

� �1=2
x¼x0;y¼y0

ð300Þ

where x0 ¼ �0:209277 a.u., y0 ¼ �3:71661 a.u. are the coordinates of the local

minimum of the potential energy surface. Equation (300) also indicates that oy

depends on g22ðx; yÞ, which is a function of x and y. However, because g22ðx; yÞ is
a slowly varying function, it is approximated by a constant—that is, g22 ¼
1:1493 a.m.u.�1, where a.m.u. is the atomic mass unit. Then Eyð0Þ ¼ 307 cm�1.

Table XX displays a comparison of the rates of isomerization of 3-phospholene

with excess energy 50 cm�1 over the reaction barrier as calculated from the

TABLE XX

Isomerization Rate Constants of 3-Phospholene at E ¼ 5133 cm�1 a

Model No. Trajectory RI MRRKM RRKM

1 0.0083 0.0124 0.0078 0.0304

2 0.0083 0.0088 0.0064 —

a In model No. 1 only the intermolecular dividing surface is considered.

Model No. 2 includes bottleneck effects in intramolecular energy transfer.
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MRRKM theory, from RIT, from direct trajectory simulations, and, for

reference purposes, from the RRKM theory. In particular, a test of the effect

of the RRKM choice of transition state on the predicted rate of isomerization is

made by neglecting the contribution of intramolecular energy transfer (Model

No. 1). It is seen that the RRKM choice of transition state leads to considerable

error; the isomerization rate constant predicted is greater than those from the

MRRKM theory and RIT by as much as a factor of 4. With intramolecular

bottlenecks taken into account, both RIT and the MRRKM theory agree well

with trajectory calculations.

H. Isomerization of HCN! CNH

The potential energy surface for the isomerization reaction HCN ! CNH used

below was proposed by Murrell, Carter, and Halonen [65]. A contour plot of this

potential energy surface is presented in Fig. 36. The two local minima

correspond clearly to HCN and CNH. Although there are quantitative differences

between this potential energy surface and others, all of the surfaces are

sufficiently similar that the qualitative character of the classical dynamics that

each surface supports is the same.

The classical Hamiltonian of the HCN system is given by

HðP; p; l; j;R; rÞ ¼ P2

2m
þ p2

2m
þ l2

2mR2
þ j2

2mr2
þ VðR; r; gÞ ð301Þ

Figure 36. Contour plot of the potential surface for HCN isomerization with J ¼ 0. [From H.

Tang, S. M. Jang, M. S. Zhao, and S. A. Rice, J. Chem. Phys. 101, 8737 (1994).]
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where the effective masses are

m ¼ mH mC þ mNð Þ
mH þ mC þ mN

; m ¼ mCmN

mC þ mN

ð302Þ

r is the bond length vector for the diatom CN, R is the position vector from the

center of mass of CN to H, and p and P are the corresponding canonical

conjugate momenta. The angle between the vectors r and R is g: l is the orbital
angular momentum of H relative to CN; with its magnitude denoted by l, and j is

the rotational angular momentum of the diatom, with its magnitude denoted by j.

The total angular momentum is restricted to zero so that l ¼ j. Thus molecular

motion is confined to a plane fixed in configuration space, giving rising to a three-

DOF model. Although unnecessary when applying the MRRKM theory [19], a

two-DOF model of isomerization can be constructed by freezing the CN bond at

r ¼ r0, the equilibrium position. Specifically, the two-dimensional model

Hamiltonian is given by

H ¼ p2x
2m
þ p2y

2m
þ j2

2mr20
þ Vðx; yÞ ð303Þ

with the model potential energy surface Vðx; yÞ already shown in Fig. 36.

Figure 37 is a PSS associated with the HCN isomerization; it supports both

chaotic motion and quasi-periodic motion.

Figure 37. Poincaré surface of section for HCN isomerization, showing both chaotic motion

and quasi-periodic motion.
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The MRRKM theory defines the separatrix with respect to the reaction

coordinate g by the relation

SSep ¼ j2

2Ið�RR; r0Þ þ Vð�RR; r0; gÞ � eb ð304Þ

where

1

IðR; rÞ ¼
1

2mR2
þ 1

2mr2
ð305Þ

The vibrational-state-dependent intramolecular dividing surface can be defined

by

Sintra ¼ j2

2Ið�RR; r0Þ þ Vð�RR; r0; gÞ � egðnÞ ð306Þ

Furthermore, with the harmonic approximation one has

egðnÞ ¼ nþ 1
2

� 	
�hog ð307Þ

where

og ¼ 1

Ið�RR; r0Þ
q2Vð�RR; r0; gÞ

qg2

� �1=2
ð308Þ

The derivative is evaluated at the well minimum, where g ¼ 0 for HCN and

g ¼ p for CNH. The frozen CN bond length was chosen to be the average of the

CN bond lengths in HCN (1.153 ) and in CNH (1.165).

The HCN well depth is �13:589 eV, the CNH minimum lies 0:484 eV above

the HCN minimum, the isomerization barrier height energy is at �12:08 eV,

and the saddle point angle is at g ¼ 67
. For the two-DOF model, the values of
�RR for defining the separatrices [see Eq. (304)] were chosen to correspond to

the atomic configurations of the isomer equilibrium states, namely 1.690 for

HCN and 1.528 for CNH. For the three-DOF case the values of �RR and r0 in

Eq. (306) are �RR ¼ 1:687 and r0 ¼ 1:153 for HCN and �RR ¼ 1:532 and r0 ¼ 1:165
for CNH.

The rate constants calculated for the reactions HCN! CNH ðA! BÞ and
CNH! HCN ðB! AÞ from the MRRKM theory [19] are listed in Tables XXI

and XXII, for the two-DOF and three-DOF models, respectively. Interestingly,

the results in Table XXI are almost the same as those in Table XXII. This

supports the validity of the frozen bond approximation. That is, in applying
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statistical theories it is possible to first reduce the dimension of a reacting

system.

Table XXIII displays the rate constants obtained from the MRRKM theory

and the reaction path analysis. It is seen that the former are about a factor of two

smaller, and the latter about a factor of two larger, than those derived from

direct trajectory calculations. We infer that, since both the RRKM and the

MRRKM calculated rate constants are smaller than that calculated from

trajectory calculations, there is a nonstatistical contribution to the isomerization

rate that is not captured by the MRRKM theory.

The comparison between the MRRKM and reaction-path rate constants and

the rate constants obtained from trajectory calculations is subject to the

TABLE XXI

Rate Constants (10�3 a.u.) of HCNÐ CNH Isomerization Obtained from the

MRRKM Theory Using a two-DOF Model

EðeVÞ kAC kCA kBC kCB

�11 0.429 0.146 0.545 0.133

�10 0.647 0.157 0.768 0.143

�9 1.046 0.202 1.054 0.182

�8.5 1.018 0.188 0.911 0.170

TABLE XXII

Rate Constants (10�3 a.u.) of HCNÐ CNH Isomerization, Obtained from the

MRRKM Theory Using a Three-DOF Model

EðeVÞ kAC kCA kBC kCB

�11 0.197 0.139 0.310 0.147

�10 0.415 0.186 0.599 0.190

� 9 0.735 0.250 1.016 0.258

� 8.5 0.826 0.251 1.064 0.250

TABLE XXIII

Rate Constant (10�3 a.u.) of HCN! CNH Isomerization from

Various Theories

EðeVÞ Trajectory MRRKM Reaction Path

�11.5 0.146 — 0.207

�11.0 0.179 0.095 0.395

�10.5 0.216 — 0.461

�10.0 0.261 0.142 0.513
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uncertainty associated with the dynamical differences between a three-state

model (MRRKM and reaction path analyses) and a two-state model, the latter of

which was used to extract a rate constant from the trajectory studies.

Nevertheless, accepting the trajectory study rate constants as guideline values,

the agreement with the rate constants derived from the reaction path analysis is

quite good. We attribute the deviations to a breakdown of the harmonic

approximation used to define the reaction path Hamiltonian. It remains to

further apply the reaction path approach to other systems with more than two

DOFs, particularly in the energy range where the harmonic approximation is

valid.

I. Isomerization of Cyclobutanone (C4H6O)

The Hamiltonian for the model study of isomerization of cyclobutanone was

derived by Zhang, Chiang, and Laane [66], by fitting the experimental data

obtained from fluorescence excitation spectra. The structure of the cyclobutan-

one (C4H6O) molecule is shown in Fig. 38.

This molecule has a large number of DOFs, so that a reduction of the system

dimensionality is required. The model used here assumes that by ignoring the

minor corrections from other DOFs, the dynamics of the isomerization process

is dominated by the coupling between C����O ‘‘wagging’’ and ‘‘ring-puckering.’’

Let s be the coordinate representing the out-of-plane carbonyl C����O wagging,

and let x be the coordinate representing the ring-puckering motion. The system

Hamiltonian for the model cyclobutanone has the form

Hðx; sÞ ¼ 1

2
g1ðsÞp2s þ

1

2
g2ðxÞp2x þ Vðx; sÞ ð309Þ

where the kinetic energy coefficients can be expanded as

g1ðsÞ ¼ g
ð0Þ
1 þ g

ð2Þ
1 s2 þ g

ð4Þ
1 s4 þ g

ð6Þ
1 s6 ð310Þ

g2ðxÞ ¼ g
ð0Þ
2 þ g

ð2Þ
2 x2 þ g

ð4Þ
2 x4 þ g

ð6Þ
2 x6 ð311Þ

C
H2C

C
H2

CH2

O

Figure 38. The structure of the cyclobutanone C4H6O molecule.
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and ps and px are the conjugate momenta to the s and x coordinates. The potential

energy surface is given by

Vðx; sÞ ¼ V1ðsÞ þ V2ðxÞ þ Uðx; sÞ ð312Þ
with V1ðsÞ ¼ a1s

4 þ b1s
2; V2ðxÞ ¼ a2x

4 þ b2x
2, and Uðx; sÞ ¼ csx3. The values

of the parameters are chosen to be

g
ð0Þ
1 ¼ 135:00� 103 u�1; g

ð2Þ
1 ¼ �17:69� 103 u�1�2

g
ð4Þ
1 ¼ 2:562� 103 u�1�4; g

ð6Þ
1 ¼ �0:237� 103 u�1�6

g
ð0Þ
2 ¼ 5:24� 103 u�1; g

ð2Þ
2 ¼ �4:16� 103 u�1�2

g
ð4Þ
2 ¼ �27:76� 103 u�1�4; g

ð6Þ
2 ¼ 34:69� 103 u�1�6

and
a1 ¼ 3:34� 103 cm�1�4; a2 ¼ 1:3� 107 cm�1�4

b1 ¼ �5:26� 103 cm�1�2; b2 ¼ �2:65� 104 cm�1�2

c ¼ �5:0� 105cm�1�4

where u is the atomic mass unit. The potential function V1ðsÞ along the reaction

coordinate is plotted in Fig. 39. The barrier height energy is 0.00094 a.u.

Figure 40 shows the contours of the potential energy surface.

−2 −1 0 1 2

0.015

0.01

0.005

V
(s

)

S

0

−0.005

−0.01

Figure 39. The potential energy of isomerization of cyclobutanone C4H6O along the reaction

coordinate. [From H. Tang, S. M. Jang, M. S. Zhao, and S. A. Rice, Chem. Phys. Lett. 285, 143

(1998).]
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The phase space structures on a PSS are also shown in Fig. 41 for different

energies. Clearly, a considerable portion of the PSS is occupied by quasi-

periodic motion. The two elliptic fixed points are separated by the point

ðs ¼ 0; ps ¼ 0Þ. Trajectories started on any of the closed curves evolve forever

on KAM tori. The four cases are for (a) E ¼ 0:0025, (b) E ¼ 0:005, (c)

E ¼ 0:0075, and (d ) E ¼ 0:01, all in unit of a.u. Case (c) shows a 4 : 1
resonance, whereas case (d ) shows a 3 : 1 resonance. As stressed before, in the

neighborhoods of the resonance islands there are cantori, remnants of broken

KAM tori.

Gray and Rice used a zeroth-order analytic approximation to the separatrix

with respect to the reaction coordinate. For the model cyclobutanone it is

defined by

SSepðps; s;�xxÞ ¼ 1
2
g1ðsÞp2s þ VðsÞ þ Uð�xx; sÞ ð313Þ

where �xx is a fixed value of x and is normally chosen to be at the saddle point of the

potential energy surface. In an effort to further improve the Gray–Rice approach,

the MRRKM theory also considers additionally the nth intramolecular bottle-

neck

Sintraðps; s;�xxÞ ¼ 1
2
g1ðsÞp2s þ VðsÞ þ Uð�xx; sÞ � EsðnÞ ð314Þ

Figure 40. The potential energy contours of cyclobutanone C4H6O. [From J. Zhang,

W. Chiang, and J. Laane, J. Chem. Phys. 100, 3455 (1994).]
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As in other applications, the motion in s is assumed to be confined to the vicinity

of the isomer equilibrium value so that a harmonic approximation can be used.

This assumption yields

EsðnÞ ¼ nþ 1
2

� 	
�hos ð315Þ

with

os ¼ g1ðsÞ q
2Vðx; sÞ
qs2

� �1=2
s¼s0;x¼x0

ð316Þ

Figure 41. Poincaré surfaces of section associated with the isomerization of cyclobutanone for

energies (a) E ¼ 0:0025 a.u., (b) E ¼ 0:0050 a.u., (c) E ¼ 0:0075 a.u., and (d ) E ¼ 0:01 a.u.
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where the derivative is evaluated at the potential well minimum. For the model of

cyclobutanone considered, the potential minimum appears at s0 ¼ 1:68 a.u. and

x0 ¼ 0. The isomerization rate constants from the RRKM theory [67], Gray–Rice

theory, MRRKM theory, and trajectory calculations are presented in Table XXIV.

The entries in this table show that for this model system the RRKM theory gives

about an order of magnitude overestimate of the reaction rate constants. Both the

Gray–Rice and MRRKM theories predict rate constants with about the correct

magnitude but with an energy dependence that is too weak. Overall, the

MRRKM rate constants agree within a factor of three with those derived from the

trajectory calculations. This discrepancy is also subject to the uncertainty

associated with the difference between the rate constants extracted from the

three-state MRRKM model and the two-state model used to analyze the

trajectory studies.

VI. QUANTUM AND SEMICLASSICAL APPROACHES

A. The Wigner Function and Weyl’s Rule

The phase space structure of classical molecular dynamics is extensively used in

developing classical reaction rate theory. If the quantum reaction dynamics can

also be viewed from a phase-space perspective, then a quantum reaction rate

theory can use a significant amount of the classical language and the quantum-

classical correspondence in reaction rate theory can be closely examined. This is

indeed possible by use of, for example, the Wigner function approach. For

simplicity let us consider a Hamiltonian system with only one DOF. General-

ization to many–dimensional systems is straightforward. The Wigner function

associated with a density operator jcihcj is defined by

Wðq; pÞ ¼ 1

2p�h

ð
dx qþ x

2
jc

D E
cjq� x

2

D E
exp � ixp

�h

� �
ð317Þ

TABLE XXIV

The Classical Isomerization Rate Constants of Cyclobutanone from the

RRKM Theory, Gray–Rice theory, MRRKM Theory, and Trajectory

Calculations (in 10�4 a.u.)

E RRKM Gray–Rice MRRKM Trajectory

25 0.71 0.067 0.031 0.078

50 0.95 0.073 0.035 0.081

75 1.14 0.076 0.037 0.111

100 1.31 0.079 0.039 0.156

104 meishan zhao et al.



The Wigner function thus defined has the following property [68]:

Trace jcihcj expðiaq̂qþ ibp̂pÞ½ � ¼
ð
dq

ð
dpWðp; qÞ expðiaqþ ibpÞ ð318Þ

where ½q̂q; p̂p� ¼ �i�h. As seen from Eq. (318), the value of the quantum observable

expðiaq̂qþ ibp̂pÞ can be obtained by evaluating the average value of the phase-

space function expðiaqþ ibpÞ with the ‘‘weight function’’ Wðq; pÞ, without
dealing with the noncommuting operators q̂q and p̂p. Clearly then, the Wigner

function Wðq; pÞ is a quantum analog of the classical phase-space density

function.

Within the Wigner function framework the operator expðiaq̂qþ ibp̂pÞ is

associated with the phase-space function expðiaqþ ibpÞ. This particular

association between a phase-space function and a function of noncommuting

operators is an example of ‘‘Weyl’s rule’’ [69]. Indeed, by generalizing Eq.

(1.317) one obtains the Weyl transform AWðq; pÞ of an arbitrary operator

Aðq̂q; p̂pÞ,

AWðq; pÞ ¼
ð
dx qþ x

2

����Aðq̂q; p̂pÞ
����q� x

2

� �
exp � ixp

�h

� �
ð319Þ

with the desired property

Trace jcihcjAðq̂q; p̂pÞ½ � ¼
ð
dq

ð
dpWðp; qÞAWðq; pÞ ð320Þ

Furthermore, inverting Eq. (319) yields Weyl’s rule for quantizing a classical

phase-space function f ðq; pÞ, that is,

f ðq; pÞ ! f̂fWðq̂q; p̂pÞ ð321Þ
where

f̂fWðq̂q; p̂pÞ ¼ 1

8p3�h

ð
dq

ð
dp

ð
da

ð
db f ðq; pÞ expðiaqþ ibpÞ expð�iaq̂q� ibp̂pÞ

ð322Þ
The matrix elements of f̂fWðq̂q; p̂pÞ in the q-representation are given by

hqjf̂fWðq̂q; p̂pÞjq0i ¼ 1

2p�h

ð
dp exp

ipðq� q0Þ
�h

� �
f

q0 þ q

2
; p

� �
ð323Þ

For example, if f ðq; pÞ ¼ gðqÞ (independent of p), then f̂fWðq̂q; p̂pÞ ¼ gðq̂qÞ; if

f ðq; pÞ ¼ qp, then f̂fWðq̂q; p̂pÞ ¼ ðq̂qp̂pþ p̂pq̂qÞ=2. Weyl’s rule introduced above

classical, semiclassical, and quantum mechanical rate theory 105



provides a specific and convenient method of quantizing classical phase-space

functions.

The Wigner function has the valuable property that the time evolution

equation for the quantum dynamics in the Wigner representation resembles that

for the classical Liouville dynamics. Specifically, the Schrödinger equation can

be transformed to [70]

qWtðq; pÞ
qt

¼ 2

�h
sin

�h

2

q
qq1

q
qp2
� q
qq2

q
qp1

� �� �
q1¼q2¼q; p1¼p2¼p

HWðq1;p1ÞWtðq2;p2Þ

ð324Þ

where HW is the Weyl transform of the Hamiltonian and Wt is the Wigner

function associated with the time-evolving quantum state. If H ¼ p̂p2=2þ Vðq̂qÞ,
one has HW ¼ p2=2þ VðqÞ and Eq. (324) reduces to

qWtðq;pÞ
qt

¼ qVðqÞ
qq

qWtðq; pÞ
qp

� p
qWtðq; pÞ

qq

� �

þ
Xþ1
l¼1

�h

2i

� �2l
1

ð2lþ 1Þ!
qð2lþ1ÞVðqÞ
qqð2lþ1Þ

qð2lþ1ÞWtðq; pÞ
qpð2lþ1Þ

ð325Þ

Note that the right-hand side of Eq. (325) consists of the classical Poisson bracket

between HWðq; pÞ and Wtðq; pÞ, plus a series of additional terms that depend on

�h. This makes it clear that the time-evolving Wigner function is the quantum

analog of the time-evolving classical Liouville density function.

B. Quantum Scars in Phase-Space

Considerable effort has been devoted to examining the properties of the Wigner

function. Of particular relevance to unimolecular reaction rate theory is the

behavior of the Wigner function in classically chaotic systems. For example, the

‘‘semiclassical eigenfunction hypothesis’’ [71] asserts that if the underlying

classical dynamics is completely chaotic, then the Wigner function associated

with a quantum eigenstate can be approximated by a delta function concentrated

on the energy surface. That is, in this case the Wigner function collapses to

Wðq; pÞ � d E � Hðq; pÞ½ �, which is analogous to the classical microcanonical

density in phase-space. However, this enlightening qualitative picture has been

found to be oversimplified, because individual periodic trajectories, which are

invariant sets of measure zero, can also strongly influence the behavior of the

Wigner function in chaotic systems. In particular, the Wigner function can

display highly nonstatistical behavior by building up additional strength, called
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‘‘quantum scars’’ [72–74]. Thus, in the neighborhood of classical periodic

trajectories the Wigner function should be described by

Wðq; pÞ � d E � Hðq; pÞ½ � þWscarðq; pÞ ð326Þ

Note that the periodic trajectories embedded in a chaotic domain must have

neutral stability or be unstable.

Using semiclassical techniques Berry obtained the following representation

for Wscarðq; pÞ [73]:
Wscarðq; pÞ ¼

X
j

Wscar; jðx;E; eÞ ð327Þ

where each index j labels the contributing classical periodic trajectories and

Wscar; jðx;E; eÞ is given by

Wscar; jðx;E; eÞ ¼ 2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Mþ Ið Þj jp exp � eT

�h

� �

� cos
1

�h
SðEÞ � X

J M� Ið Þ
Mþ I

Xt

� �
þ gj

� �

� 2

�h2 €xx� _xxj j� 	1=3 Ai � 2 HðxÞ � E½ �
�h2 €xx� _xxj j� 	1=3

( )
ð328Þ

Here SðEÞ is the classical action at the energy E, x ¼ ðq; pÞ, X ¼ ðQ;PÞ
represent the coordinates transverse to the trajectory on a PSS,M is the mapping

matrix on the same PSS, I is a unit matrix, n is the dimensionality of the system, J

is the 2ðn� 1Þ by 2ðn� 1Þ unit matrix, e is a spectral parameter that will

eventually be set to zero, T is the period of the periodic trajectory, AiðxÞ is the
Airy function, and the phase factor gj is a multiple of p=4 determined by the

focusing behavior of classical trajectories close to the jth periodic orbit. Note that

on the closed periodic trajectory we have X ¼ 0. In the semiclassical limit i.e.,

ð�h! 0Þ, these scar terms reduce to

Wscar;jðx;E; eÞ ¼ 2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Mþ Ið Þj jp exp � eT

�h

� �

� cos
SðEÞ
�h
þ gj

� �
d E � HðxÞ½ �d Xð Þ ð329Þ

The properties of the unstable periodic trajectories can be described in terms of

Lyapunov exponents. That is,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Mþ Ið Þj jp � exp � 1

2

P
li>0

li

 !
ð330Þ
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where the li are Lyapunov exponents. With Eq. (330) one may further simplify

Eq. (329) and obtain

Wscar;jðx;E; eÞ ¼ 2�hn�1 exp � e
�h
þ 1

2

P
li>0

li

 !
T

" #

� cos
SðEÞ
�h
þ gj

� �
d E � HðxÞ½ �d Xð Þ ð331Þ

Three observations can be made from Eq. (331). First, the least unstable

trajectories—that is, the trajectories with the smallest positive Lyapunov

exponents—contribute most to Wscar;jðx;E; eÞ. Second, if

cos
S

�h
þ gj

� �
¼ 1 ð332Þ

then Wscar;jðx;E; eÞ is maximal, giving rise to the most significant scar

contributions. Third, if

cos
S

�h
þ gj

� �
¼ 0 ð333Þ

then Wscar;jðx;E; eÞ ¼ 0. In the third case there is no influence from the unstable

periodic trajectory and the associated Wigner function should display more

ergodic behavior.

The fact that classical unstable periodic trajectories can manifest themselves

in the Wigner function implies that nonstatistical behavior in the quantum

dynamics can be intimately related to the phase-space structure of the classical

molecular dynamics. Consider, for example, the bottlenecks to intramolecular

energy flow. Since the intramolecular bottlenecks are caused by remnants of the

most robust tori, they are presumably related to the least unstable periodic

trajectories. Hence quantum scars, being most significant in the case of the least

unstable periodic trajectories, are expected to be more or less connected with

intramolecular bottlenecks. Indeed, this observation motivated a recent proposal

[75] to semiclassically locate quantum intramolecular bottlenecks. Specifically,

the most robust intramolecular bottlenecks are associated with the least unstable

periodic trajectories for which Eq. (332) holds, that is,

S ¼ �gj�hþ 2mp�h; m ¼ 1; 2; . . . ð334Þ

C. Quantizing the ARRKM Theory

The fundamental difference between the ARRKM theory and the traditional

RRKM theory is that the former utilizes a phase-space separatrix rather than a
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dividing surface in the configuration space. This suggests that in quantizing the

ARRKM theory the phase-space formulation of quantum molecular dynamics

will be an indispensable tool. By use of Weyl’s rule, we present below a simple

approach to the quantization of the ARRKM theory.

Let us first recall the following reaction rate expression from the ARRKM

theory:

kðEÞ ¼ 1

Ns

ð
dq

ð
dpd Sð Þ _SSyð _SSÞdðE � HÞ ð335Þ

where the normalization constant Ns is given by

Ns ¼
ð
dq

ð
dpy½�Sðq; pÞ�dðE � HÞ ð336Þ

Hðq; pÞ is the Hamiltonian, Sðq; pÞ ¼ 0 defines the phase space separatrix, and

the time derivative of the phase-space dividing surface _SS is given by

_SS ¼ qS
qq1

dq1

dt
þ qS
qq2

dq2

dt
þ � � � þ qS

qp1

dp1

dt
þ qS
qp2

dp2

dt
þ � � �

� =S � v ð337Þ

Note that, for an n-dimensional system, the 2n-dimensional ‘‘velocity vector’’ v
defined above is also a function of (q; pÞ since

v � dq1

dt
;
dq2

dt
; . . . ;

dp1

dt
;
dp2

dt
; . . .

� �

¼ qH
qp1

;
qH
qp2

; . . . ;� qH
qq1

;� qH
qq2

; . . .

� �
ð338Þ

With Eq. (337) the ARRKM rate constant can be written as

kðEÞ ¼ 1

Ns

ð
dq

ð
dpFðq; pÞyð=S � vÞdðE � HÞ ð339Þ

where

Fðq; pÞ � dðSÞ =S � vð Þ ð340Þ

The quantization of the ARRKM theory can be carried out with the following

two steps:

(a) Classical phase-space functions such as Fðq; pÞ, y =S � vð Þ; y �Sð Þ, and
Hðq; pÞ are transformed to operators F̂FW ; ŷyW =S � vð Þ; ŷyW �Sð Þ, and ĤHW using
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Weyl’s rule [Eq. (322)], with their matrix elements in the q-representation given

by

hqjF̂FW jq0i ¼ 1

ð2p�hÞn
ð
dp exp

ip � ðq� q0Þ
�h

� �
F

q0 þ q

2
; p

� �
ð341Þ

hqjŷyW =S � vð Þjq0i ¼ 1

ð2p�hÞn
ð
dp exp

ip � ðq� q0Þ
�h

� �

� y =S
q0 þ q

2
; p

� �
� v q0 þ q

2
; p

� �� �
ð342Þ

hqjŷyW �Sð Þjq0i ¼ 1

ð2p�hÞn
ð
dp exp

ip � ðq� q0Þ
�h

� �
y �S q0 þ q

2
; p

� �� �
ð343Þ

hqjĤHW jq0i ¼ 1

ð2p�hÞn
ð
dp exp

ip � ðq� q0Þ
�h

� �
H

q0 þ q

2
; p

� �
ð344Þ

(b) The classical phase-space average
Ð
dq
Ð
dp is tranformed to a quantum

mechanical trace operation, that is,ð
dq

ð
dp � � �f g ! Trace � � �f g ð345Þ

The resultant quantized ARRKM theory gives

kðEÞ ¼ 1

Ns

Trace F̂FWðq̂q; p̂pÞŷyW =S � vð ÞdðE � ĤHWÞ
h i

ð346Þ

with the normalization constant Ns given by

Ns ¼ Trace ŷyW �Sð ÞdðE � ĤHWÞ
h i

ð347Þ

It is also interesting to consider the thermally averaged rate constant kðTÞ,
which can be obtained from

kðTÞ ¼ 1

�r

ðþ1
0

exp
�E
kBT

� �
rðEÞkðEÞ dE ð348Þ

where �r, the reactant partition function per unit volume, is given by

�r ¼
ðþ1
0

exp
�E
kBT

� �
rðEÞ dE ð349Þ

110 meishan zhao et al.



and rðEÞ is the density of states per unit energy per volume. Substituting

Eqs. (346) and (347) into Eq. (348) one has

kðTÞ ¼
Ðþ1
0

dE exp �E
kBT

� 
Trace F̂FW ŷyW =S � vð ÞdðE � ĤHWÞ

h i
Ðþ1
0

dE exp �E
kBT

� 
Trace ŷyW �Sð ÞdðE � ĤHWÞ

h i

¼
Trace expð�bĤHWÞF̂FW ŷyW =S � vð Þ

h i
Trace expð�bĤHWÞŷyW �Sð Þ

h i ð350Þ

where b ¼ 1=kBT . Equation (350) can be rewritten as

kðTÞ ¼ 1

�r

Trace expð�bĤHWÞF̂FW ŷyW =S � vð Þ
h i

ð351Þ

where

�r ¼ Trace expð�bĤHWÞŷyW �Sð Þ
h i

ð352Þ

Just like other attempts to quantize the classical transition state theory

[70,77], quantizing the ARRKM theory is not free of all ambiguity. This is

largely because the result of quantizing the product of two classical phase-space

functions may differ from the product of the two operators quantized from the

same classical phase-space functions. For example, we propose to first obtain

d Sð Þ =S � vð Þ and y =S � vð Þ as two functions of q and p and then quantize these

individual phase-space functions using Weyl’s rule. However, using other

procedures, such as quantizing the product of d Sð Þ =S � vð Þ and y =S � vð Þ using
Weyl’s rule, may give slightly different results. Nevertheless, the quantization

procedure described above is the first attempt to directly quantize the ARRKM

theory that is formulated in terms of a phase-space dividing surface.

D. Rigorous Quantum Rate Theory Versus the Quantized

ARRKM Theory

The quantum flux–flux autocorrelation formalism, developed by Miller,

Schwartz, and Tromp [78] and by Yamamoto [79], represents an exact quantum

mechanical expression for a chemical reaction rate constant. According to the

flux–flux autocorrelation formalism, the thermally averaged rate constant kðTÞ is
given by

kðTÞ ¼ 1

�r

ðþ1
0

dtCf ðtÞ ð353Þ
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where �r again denotes the reactant partition function per unit volume, and the

thermally averaged flux–flux autocorrelation function Cf ðtÞ takes the following

form:

Cf ðtÞ ¼ Trace F̂F exp
iĤHt

�h

� �
exp

�bĤH
2

� �
F̂F exp

�bĤH
2

� �
exp � iĤHt

�h

� �� �
ð354Þ

Here ĤH is the Hamiltonian operator, and F̂F is defined by

F̂F ¼ i

�h
ĤH; y½SðqÞ�� � ð355Þ

and represents the operator associated with the quantum flux across the dividing

surface SðqÞ embedded in an n-dimensional configuration space. Also of interest

to unimolecular reaction rate theory is the microcanonical rate constant kðEÞ,
which is given by

kðEÞ ¼ p�h
rðEÞTrace½F̂FdðE � HÞF̂FdðE � HÞ� ð356Þ

To make connections to classical reaction rate theory and to the quantized

ARRKM theory discussed above, we turn to an alternative expression of the

flux–flux autocorrelation formalism. Defining the time-dependent projection

operator

P̂PðtÞ � exp
iĤHt

�h

� �
y½SðqÞ� exp � iĤHt

�h

� �
ð357Þ

and using

d

dt
P̂PðtÞ ¼ exp

iĤHt

�h

� �
F̂F exp � iĤHt

�h

� �
ð358Þ

one finds that the thermally averaged rate constant kðTÞ is given by [80]

kðTÞ ¼ 1

�r

lim
t!þ1Trace expð�bĤHÞF̂FP̂PðtÞ� � ð359Þ

If P̂PðtÞ is understood to be an operator in the Heisenberg representation, then in

the classical limit, Eq. (359) becomes [80]

kCLðTÞ ¼ 1

ð2p�hÞn�r

lim
t!þ1

ð
dq0

ð
dp0 exp½�bHðq0; p0Þ�Fðq0; p0Þy½SðqtÞ�

ð360Þ
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where Fðq0; p0Þ is the classical flux. Similarly, in the microcanonical case, one

has

kðEÞ ¼ 1

2p�hrðEÞ lim
t!þ1Trace F̂FP̂PðtÞdðE � ĤHÞ� � ð361Þ

whose classical limit is given by

kCLðEÞ ¼ 1

ð2p�hÞnþ1rðEÞ lim
t!þ1

ð
dq0

ð
dp0d½E � Hðq0; p0Þ�Fðq0;p0Þy½SðqtÞ�

ð362Þ

Equations (359) and (361) indicate that the reason that the flux–flux

autocorrelation formalism gives exact quantum reaction rate constants is simply

that all the dynamical information from time zero to time infinity has been

included. Indeed, as shown by Eqs. (360) and (362), in the classical limit the

flux–flux autocorrelation formalism requires us to follow all classical trajectories

until t ¼ þ1 so as to rigorously tell which trajectory is reactive and which

trajectory is nonreactive. Evidently, then, the flux–flux autocorrelation formalism

is not a statistical reaction rate theory insofar as no approximation to the reaction

dynamics is made.

To gain more insight into quantum reaction rate theory, we below make a

detailed comparison between the rigorous quantum rate theory and the

quantized ARRKM theory. It is significant that the rigorous quantum results

[Eqs. (359) and (361)] are very similar to the results from the quantized

ARRKM theory [Eqs. (346) and (351)]. In particular, with the three assumptions

ðaÞ ĤHW ! ĤH ð363Þ
ðbÞ F̂FW ! F̂F ð364Þ

ðcÞ ŷyWð=S � vÞ ! lim
t!þ1 P̂PðtÞ ð365Þ

Eq. (351) can be transformed to Eq. (359). Further identifying Ns with 2p�hrðEÞ,
Eq. (346) becomes identical with Eq. (361). Hence, under certain circumstances

the quantized ARRKM theory is equivalent to the rigorous quantum reaction rate

theory. A number of remarks are in order. First, assumption (a) is automatically

satisfied by definition. Second, assumption (b) implies that F̂FW in the quantized

ARRKM theory be the direct analog of the quantum flux operator in the flux–flux

autocorrelation formalism. Third, assumption (c) requires that the action of the

operator ŷyWð=S � vÞ at any particular time, say at time zero, is equivalent to the

action of the projector P̂PðtÞ at time infinity. Regarding ŷyWð=S � vÞ as the analog
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of P̂Pð0Þ, one sees that assumption (c) is equivalent to the requirement that the

zero time quantum dynamics already suffices to rigorously determine whether

the quantum flux leads to reactants or products. This is the case if the separatrix

for reaction is exact—that is, a true dividing surface with no return.

It should be stressed that the quantized ARRKM theory is a statistical

reaction rate theory while the flux–flux autocorrelation formalism is not. In

addition to this, there are other conceptual differences between the quantized

ARRKM theory and the rigorous quantum rate theory. Consider first the

microcanonical density assumption. In the former case the microcanonical

density dðE � ĤHWÞ can be rationalized by the fact that dynamical chaos is fully

developed before reaction occurs. This may not be true when, for example,

quantum scars or intramolecular bottleneck effects are significant. By contrast,

in the latter case the microcanonical density dðE � ĤHÞ is due to the existence of

thermal equilibrium. Note also that in a rigorous quantum rate theory there is no

need to construct a phase-space separatrix, whereas in the quantized ARRKM

theory a dividing surface defined in the phase-space (rather than in the

configuration space) is necessary in order to remove recrossing trajectories seen

in the configuration space. Thus, only in cases for which an appropriate phase-

space separatrix is defined can the approximation

lim
t!þ1 P̂PðtÞ � ŷyW =S � vð Þ ð366Þ

be made, and the quantized ARRKM theory is then expected to be a very useful

quantum statistical reaction rate theory.

E. A Semiclassical Approximation to the Rigorous Quantum Rate Theory

Since the flux–flux autocorrelation formalism requires extensive dynamical

calculations, it is of limited use in actually calculating exact quantum reaction

rate constants. Nevertheless, the rigorous quantum rate theory constitutes a firm

starting point from which a number of approximations can be made. For

example, one may treat some DOFs including the reaction coordinate rigorously

and the remaining DOFs approximately. One may also use a quantum-classical

hybrid approach—that is, treating the most important DOFs quantum mechani-

cally and other background DOFs classically. Here we do not aim to give a

complete list of all the useful approximations to the rigorous quantum rate theory

that have been suggested. Rather, we choose to introduce in detail one particular

approximate quantum reaction rate theory that treats all DOFs in the same

manner and allows for a closer examination of the quantum-classical

correspondence. The approximation is based on the so-called semiclassical

‘‘initial value representation’’ (IVR) approach [81–83].
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With the IVR approach the quantum mechanical propagator can be

semiclassically approximated by a phase-space average that involves all

possible initial conditions for the classical trajectories. Consider a simple

version of IVR—that is, the so-called coordinate space IVR. In this case the

quantum propagator is given by

exp
�iĤHt

�h

� �
¼
ð
dq0

ð
dp0Ctðq0; p0Þ exp

iStðq0; p0Þ
�h

� �
jqtihq0j ð367Þ

where qt denotes the coordinate at time t in an n-dimensional configuration space

with the initial condition given by ðq0;p0Þ, jqi represents the usual Dirac

coordinate eigenstate, Stðq0; p0Þ is the classical action integral (the time integral

of the Lagrangian) associated with the initial condition ðq0; p0Þ, and the prefactor
Ctðq0; p0Þ is given by

Ctðq0; p0Þ ¼
1

2pi�h

� �n qqtðq0; p0Þ
qp0

����
����

� �1=2
ð368Þ

Substituting the semiclassical propagator of Eq. (367) into Eq. (359), one obtains

the following semiclassical reaction rate constant [80]:

kSCðTÞ ¼ 1

�r

lim
t!þ1

ð
dq0

ð
dp0

ð
dp00y½Sðq0Þ�hqtjF̂FðbÞjq0tiCtðq0; p0Þ

� Ctðq0; p00Þ
� ��

exp
iStðq0; p0Þ

�h
� iStðq0; p00Þ

�h

� �
ð369Þ

where q0t is associated with the initial condition ðq0; p00Þ, and

F̂FðbÞ ¼ exp � bĤH
2

� �
F̂F exp � bĤH

2

� �
ð370Þ

Equation (369) indicates that to obtain the semiclassical reaction rate constant

kSCðTÞ one needs to carry out the multidimensional phase-space average for a

sufficiently long time. This is far from trivial, since the integrand in Eq. (369) is

highly oscillatory due to quantum interference effects between the sampling

classical trajectories. The use of some filtering methods to dampen the

oscillations in the integrand may improve the accuracy of the semiclassical

calculation.

A further analytical approximation to Eq. (369), proposed by Miller and co-

workers [84–86], demonstrates how the above semiclassical reaction rate theory

approaches a quasi-classical reaction rate theory. Specifically, consider the
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following drastic approximation:

Stðq0; p0Þ � Stðq0; p00Þ �
qStðq0; �pp0Þ

q�pp0
ðp0 � p00Þ ð371Þ

where �pp0 ¼ ðp0 þ p00Þ=2. With this approximation and some manipulation,

Miller and co-workers showed that Eq. (369) reduces to

kSCðTÞ � 1

ð2p�hÞn�r

lim
t!þ1

ð
dq0

ð
dp0y½SðqtÞ�FWðbÞðq0; p0Þ ð372Þ

where FWðbÞ is the Weyl transform of F̂FðbÞ. This expression is quasi-classical

insofar as it is very similar to the classical result of Eq. (360), the only difference

being that the product of the Boltzmann factor exp½�bHðq0; p0Þ� and the flux

function Fðq0; p0Þ in Eq. (360) is replaced by FWðbÞ.
Since kSCðTÞ given by Eq. (372) is essentially a classical result, it may be

well approximated by a statistical theory without referring to the detailed

dynamics of the system. That is, if an appropriate phase space separatrix Sðq; pÞ
can be constructed, then the approximation

lim
t!þ1 y½SðqtÞ� � y =S � vð Þ ð373Þ

can be made and we obtain

kSCðTÞ � 1

ð2p�hÞn�r

ð
dq0

ð
dp0y =S � vð ÞFWðbÞðq0; p0Þ ð374Þ

Equation (374) can be regarded as a quasi-classical extension of classical

reaction rate theory.

F. Effective Hamiltonian Approach to Unimolecular Dissociation

In an effort to understand the intramolecular dynamics in unimolecular

dissociation, Remacle and Levine [87] used an effective Hamiltonian approach

that can account for different time scales associated with unimolecular reaction.

In doing so, they assumed that a dense set of energy levels lies above the

dissociation barrier and that the barrier is sufficiently high that the number of

states from which dissociation occurs is small compared to the number of bound

states.

The full system Hamiltonian is given by

ĤH ¼ ĤH0 þ V̂V þ ÛU ð375Þ

where ĤH0 is the zeroth-order Hamiltonian of the bound states that cannot couple

to the continuum, and V̂V and ÛU are the bound–bound and bound–continuum
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coupling potentials. Let P̂P and Q̂Q ¼ 1� P̂P denote the projectors onto the open-

and bound-state subspaces, respectively. Then the effective Hamiltonian for the

bound-state subspace can be written as

ĤHeff ¼ Q̂QHQ̂Qþ Q̂QðV̂V þ ÛUÞP̂PðE � P̂PĤHP̂PÞ�1P̂PðV̂V þ ÛUÞQ̂Q ð376Þ

The coupling to the continuum is implicitly contained in the second term in

Eq. (376). The decay of the population in the bound state subspace is due to the

imaginary part of P̂PðE � P̂PĤHP̂PÞ�1P̂P. The contribution from the real part of

P̂PðE � P̂PĤHP̂PÞ�1P̂P, the so-called ‘‘level shift’’ due to the coupling to the

continuum, can be neglected, if the energy dependence of the coupling term

Q̂QĤHP̂P is weak. In this case the second term in Eq. (376) can be regarded as a

purely anti-Hermitian operator, and the effective Hamiltonian reduces to

ĤHeff ¼ Q̂QðĤH � i�̂�ÞQ̂Q ð377Þ

where �̂� is given by

�̂� ¼ pQ̂QĤHP̂PdðE � P̂PĤHP̂PÞP̂PĤHQ̂Q ð378Þ

The key element in the effective Hamiltonian approach is the determination

of the eigenvalues of the effective Hamiltonian ĤHeff . Consider first a limiting

case in which the bound states are not coupled by intramolecular interactions,

that is,

ĤHeff ¼ Q̂QðĤH0 � i�̂�ÞQ̂Q ð379Þ

where Q̂QĤH0Q̂Q and Q̂Q�̂�Q̂Q can be simultaneously diagonalized. Suppose that among

the N states under study there are K quasi-bound states ðK<NÞ and ðN � KÞ
purely bound states that will never decay. Then the eigenvalue equation for ĤHeff

gives

ĤHeff jj‘i ¼ E‘ � i�‘ð Þjj‘i; ‘ ¼ 1; 2; . . . ; K
E‘jj‘i; ‘ ¼ K þ 1; . . . ; N

ð380Þ

For an arbitrary initial superposition state jf0i ¼
PN

‘¼0 c
ð0Þ
‘ jj‘i, where the c

ð0Þ
‘

are the expansion coefficients, the time-evolving state can be described by

jfðtÞi ¼ exp � i

�h
ĤHeff t

� �
jf0i ¼

XK
‘¼1

c
ð0Þ
‘ exp � i

�h
E‘ � i�‘ð Þt

� �
jj‘i

þ
XN

‘¼Kþ1
c
ð0Þ
‘ exp � i

�h
E‘t

� �
jj‘i ð381Þ
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In the more general case that allows for intramolecular energy flow, the

effective Hamiltonian must include another perturbation term ĤH1 so that

ĤHeff ¼ Q̂QðĤH0 � i�̂�þ ĤH1ÞQ̂Q ð382Þ

One way of treating the ĤH1 term is to use perturbation theory to eliminate the

effect of intramolecular coupling in successive orders. Alternatively, one may

numerically diagonalize the matrix of the effective Hamiltonian in the

representation of jj‘if g. That is, with the expansion

j�mi ¼
XK
‘¼1

c
ðmÞ
‘ jj‘i þ

XN
‘¼Kþ1

c
ðmÞ
‘ jj‘i; m ¼ 1; 2; . . . ð383Þ

one solves the eigenvalue equation

Q̂QðĤH0 � i�̂�þ ĤH1ÞQ̂Qj�mi ¼ lmj�mi; m ¼ 1; 2; . . . ð384Þ

where the eigenvalue lm ¼ E0m � i�0m is complex in general.

For an arbitrary initial state that is a linear combination of the eigenstates

j�mif g, that is,
jcð0Þi ¼

XN
m¼1

amj�mi ð385Þ

the time evolution is given by

jcðtÞi ¼ exp � i

�h
ĤHeff t

� �
jcð0Þi

¼
XN
m¼1

amj�mi exp � i

�h
lmt

� �
ð386Þ

which leads to the time autocorrelation function

CðtÞ ¼ cð0ÞjcðtÞh i ¼
XN
m¼1

amj j2exp � i

�h
lmt

� �
ð387Þ

Note that CðtÞj j2 gives the ‘‘survival probability’’ of the initial state.

Furthermore, the probability of finding the system still in the bound-state

subspace is given by

PðtÞ ¼ cðtÞjcðtÞh i ¼
XN
n¼1

XN
m¼1

a�nam �nj�mh i exp � i

�h
lm � lnð Þt

� �
ð388Þ
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To examine the dynamics in more detail one can partition the bound-state

subspace by a set of projectors Q̂Qj


 �
such that

Q̂Q ¼
X
j

Q̂Qj ð389Þ

For example, one may choose

Q̂Qj ¼
X‘jþNj

‘¼‘jþ1
jj‘ihj‘j ð390Þ

where jj‘i is the zeroth-order eigenstate of ĤH0 � i�̂�, and Nj is the number of

states in the jth sub-subspace. The probability of finding the system in the bound-

state sub-subspace associated with Q̂Qj is given by

PjðtÞ ¼ cðtÞ Q̂Qj

�� ��cðtÞ� � ¼XN
n¼1

XN
m¼1

X‘jþNj

‘¼‘jþ1
�njj‘h i j‘j�mh i

2
4

3
5

� a�nam exp
i

�h
lm � lnð Þt

� �
ð391Þ

The effective Hamiltonian analysis makes evident the existence of different

time scales in unimolecular decay. Consider first the zeroth-order states jj‘i
with ‘ ¼ 1; 2; . . . ;K. Each of these states decays with a lifetime 1=�‘, even in

the absence of intramolecular coupling. These states are called ‘‘prompt’’ states.

Their average lifetime defines the average prompt lifetime htpi. The

intramolecular coupling will affect the decay behavior of the prompt states,

but only perturbatively. By contrast, the decay of the zeroth-order states jj‘i
with ‘ ¼ K;K þ 1; . . . ;N is induced entirely by the perturbation ĤH1.

Presumably, the weaker the perturbation is, the slower the decay will be. This

second class of states is defined as the set of ‘‘delayed’’ states. Their average

lifetime defines the average delayed lifetime tdh i.
Figure 42 displays a computational example of PðtÞ (solid line) and the

survival probability jCðtÞj2 (dashed line) as a function of the total number of

states N and the number of the prompt states K. The initial state is taken to have

uniform weights for either the K prompt states or the N � K delayed states. It is

seen that with fixed K and increasing N the decay of the initial delayed state is

shifted to much longer time, whereas the decay of the initial prompt state

changes little.
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Figure 42. A computational example of PðtÞ (solid line) and the survival probability jCðtÞj2
(dashed line) as a function of the total number of states N and the number of prompt states K. [From

F. Remacle and R. D. Levine, J. Phys. Chem. 100, 7962 (1996).]



Figure 43 shows a computational example of PðtÞ, PjðtÞ, and jCðtÞj2, for
three different initial states associated with three different sub-subspaces Q1;Q2

and Q3, The Q1 sub-subspace is made up of 20 prompt states, and the Q2 and Q3

sub-subspaces are made up of delayed states, being of dimension 100 and 1000,
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Figure 43. A computational example of PðtÞ, PjðtÞ, and jCðtÞj2, for three different initial states
taken to be uniformly weighted in three different sub-subspaces (denoted by Q1;Q2, and Q3) of the

bound-state subspace. Note that there is coupling between the three sub-subspaces. [From F.

Remacle and R. D. Levine, J. Phys. Chem. 100, 7962 (1996).]
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Figure 44. A computational example of the bifurcation of the decay lifetimes into a prompt

and a delayed branch as a function of the density of states r. The number of prompt states is denoted

by K, and the number of delayed states is denoted by N � Kð Þ. [From F. Remacle and R. D. Levine,

J. Phys. Chem. 100, 7962 (1996).]



respectively. Because the Q1 initial state is a prompt state, the major part of its

decay takes place in the prompt time regime. However, due to the coupling

between the three sub-subspaces, there is significant population transfer to the

Q2 and Q3 sub-subspaces, which results in different decay behavior at later

times. For the Q2 and Q3 initial states that are delayed states, the population

transfer is seen to be much less significant.

The dependence of htpi and tdh i on the density of states can also be

examined. The density of states can be obtained from

r ¼ 1

N � 1

XN�1
n¼1

Enþ1 � Enð Þ
" #�1

ð392Þ

where the Enf g are the real parts of the eigen-energies of the effective

Hamiltonian. In the case shown in Fig. 44, htpi is almost independent of r while

htdi decreases as 1=r.
The effective Hamiltonian approach clearly shows the important role of

intramolecular energy flow in the quantum dynamics of unimolecular

dissociation. It suggests that unless intramolecular energy flow is dominantly

rapid, there exist two drastically different time scales in the reaction dynamics.

This is consistent with the classical concept that nonstatistical behavior in

intramolecular energy flow, such as bottleneck effects, can dramatically alter the

kinetics of unimolecular reaction.

G. Wave Packet Dynamics Approach

In the wave packet dynamics approach to unimolecular predissociation, the

quantum dynamics is studied by directly propagating quantum wave packets.

After numerically propagating the quantum wave packets, all the detailed

information about the reaction dynamics can, in principle, be extracted from the

numerical results.

Consider the formal solution of the time-dependent Schrödinger equation

jcðtÞi ¼ exp � i

�h
ĤHt

� �
jcð0Þi ð393Þ

where jcð0Þi, the initial wave packet at t ¼ 0, is typically a combination of

quasi-bound states in the case of unimolecular predissociation. As is consistent

with the results from the effective Hamiltonian approach, the time-evolving

wave packet can be described by

jcðtÞi ¼
X
j

ajjfji exp �
i

�h
Ejt

� �
exp � �j

2�h
t

� �
ð394Þ
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where aj is an expansion coefficient, and jfji is the jth quasi-bound state with

resonance energy Ej and decay width �j. This general representation of jcðtÞi
suggests that the time autocorrelation function is given by

CðtÞ ¼ hcð0ÞjcðtÞi ¼
X
j

jajj2 exp � i

�h
Ejt

� �
exp � �j

2�h
t

� �
ð395Þ

and that its norm takes the following form:

NðtÞ ¼ hcðtÞjcðtÞi ¼
X
j

jajj2 exp ��j

�h
t

� �
ð396Þ

Given the formal time dependences of CðtÞ and NðtÞ shown in Eqs. (395) and

(396), one may fit the results from numerically propagated wave packets so as to

extract Ej and �j. The resonance lifetime tj and fragmentation rate constant kj
can then be determined from tj ¼ �h=�j and kj ¼ 1=tj.

One attractive feature of the wave packet dynamics approach is that it makes

it possible to visualize the quantum reaction dynamics in phase-space by

examining the time-evolving Wigner function. Consider a two-DOF system for

which the time-evolving quantum wave packet is a function of two coordinates

R and r, where R denotes the reaction coordinate. To focus on the R-coordinate,

one may construct the following ‘‘half’’ Wigner transformation:

WðR;P; r; tÞ ¼ 1

2p�h

ð
dxhRþ x

2
; r; tjcihcjR� x

2
; r; ti exp � ixP

�h

� �
ð397Þ

which leaves the r-DOF intact. The Wigner functionWðR;P; r; tÞ at a given time

t can then be visualized on a surface of section (i.e., for fixed r) and compared to

the classical phase-space distribution function.

To be specific, let us consider again the predissociation of the T-shaped HeI2
molecule [88]. The Hamiltonian operator is given by

ĤH ¼ � �h2

2m
q2

qR2
� �h2

2m

q2

qr2
þ VI�IðrÞ þ 2VHe�I RHe�IðR; rÞ½ � ð398Þ

where the potential terms are the same as in Eq. (90). The numerical propagation

of the quantum wave packet can be carried out, for example, in the standard

discrete variable representation (DVR) [89]. In the DVR approach the coordinate

space is discretized by defining the following grid points:

ri ¼ rmin þ i�r; i ¼ 1; 2; . . . ;Nr ð399Þ
Rj ¼ Rmin þ j�R; j ¼ 1; 2; . . . ;NR ð400Þ
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where

�r ¼ rmax � rmin

Nr þ 1
; �R ¼ Rmax � Rmin

NR þ 1
ð401Þ

and (rmin; rmax) and (Rmin;Rmax) obviously define the region that is occupied by

the grid points. The basis set for expanding the time-evolving quantum state is

chosen to be

jj1ðriÞijj2ðRjÞi ¼
XNr

nr¼1

XNR

nR¼1
jj1ðri; nrÞijj2ðRj; nRÞi ð402Þ

where

jj1ðri; nrÞi ¼
2

rmax � rmin

� �1=2

sin
ri � rmin

rmax � rmin

nrp
� �

ð403Þ

jj2ðRj; nRÞi ¼ 2

Rmax � Rmin

� �1=2

sin
Rj � Rmin

Rmax � Rmin

nRp
� �

ð404Þ

In the representation of jj1ðriÞijj2ðRjÞi, the matrix elements of VI-I and VHe-I
are automatically diagonalized, and the kinetic energy operator in Eq. (398) can

also be evaluated straightforwardly. Hence numerically propagating the quantum

wave packets reduces to a linear algebra routine. Figure 45 displays the

calculated quantum wave packets jcðR; r; tÞi at three different times. The initial

vibrational state of I2 is taken to be v ¼ 20.

To extract various decay rates from jc R; r; tð Þi, the time dependence of the

norm hcðR; r; tÞjcðR; r; tÞi is fit to three exponential terms such that

hcðR; r; tÞjcðR; r; tÞi ¼ N1 expð�k1tÞ þ N2 expð�k2tÞ þ N3 expð�k3tÞ ð405Þ

The results are as follows:

N1 ¼ 0:0057; k1 ¼ 2:8982� 10�4a:u:
N2 ¼ 0:2409; k2 ¼ 4:9849� 10�7a:u:
N3 ¼ 0:7549; k3 ¼ 4:7361� 10�7a:u:

with N1 þ N2 þ N3 ¼ 1. The very fast decay characterized by the rate constant k1
can be attributed to the dephasing of the initially prepared wave packet.

However, since the magnitude of N1 is small this fast decay does not contribute

significantly to the vibrational predissociation. The rate constants k2 and k3 are

almost equal in magnitude, but their corresponding coefficients N2 and N3

are different. The overall predissociation rate constant obtained from the wave
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packet dynamics approach is found to be 0.113 cm�1, which is about one-half of
the MRRKM result (see Table IV).

To visualize the time-evolving Wigner function associated with the reaction

coordinate, we choose r ¼ 5:70 a.u., which is close to the minimum of the I2
potential energy curve. The Wigner functions at four different times are

displayed in Fig. 46. From Fig. 46 it is seen that as time evolves, more and more

phase space flux flows out of the original support of the Wigner function. Also

Figure 45. Contour plot of the wavefunction for the T-shaped HeI2 molecule with the initial

vibrational state of I2 given by v ¼ 20. Shown from top to bottom panels are three wavefunctions at

t ¼ 0, t ¼ 9t, and t ¼ 10t, where t ¼ 14,700 a.u. is approximately the virbrational period of I2.
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Figure 46. The time-evolving Wigner functions for the T-shaped HeI2 molecule with the initial

state of I2 given by v ¼ 20. Shown from top to bottom panels are Wigner functions at t ¼ 0, t, 3t, 5t,
where t ¼ 14,700 a.u. is approximately the vibrational period of I2. The contours from innermost to

the outermost correspond to: at t ¼ 0, W ¼ 0:30, 0.25, 0.20, 0.18, 0.15, 0.10, 0.05, 0.04, 0.03, 0.02;

at t ¼ t, W ¼ 0:30, 0.25, 0.20, 0.18, 0.15, 0.10, 0.05, 0.04, 0.03, 0.02; at t ¼ 3t, W ¼ 0:18, 0.15,

0.10, 0.08, 0.06, 0.05, 0.02, 0.01, 0.007, 0.005; at t ¼ 5t, W ¼ 0:18, 0.15, 0.10, 0.08, 0.06, 0.05,

0.02, 0.01, 0.004, 0.003.



seen is a pattern of ‘‘finger formation,’’ with the number of fingers closely

related to the propagation time measured by the vibrational period of I2. The

finger patterns can be regarded as quantum mechanical realizations of the

underlying classical phase-space structure that evolves from the classical exact

separatrix. Indeed, further comparisons between the Wigner functions and the

classical phase-space density functions show that they are in agreement,

suggesting that in this case quantum-classical correspondence is excellent

As mentioned earlier, Gray and Wozny [97] studied the predissociation of

three-dimensional models of the molecules HeCl2 and NeCl2 using the wave

packet dynamics approach. Their results are close to classical results. Quéré and

Gray [90] further applied the wave packet dynamics approach to other three-

DOF model systems such as He2Cl2 and Ne2Cl2 and obtained results that are in

reasonable agreement with experiment. However, we do not expect the wave

packet dynamics approach to be generally feasible in many-dimensional

systems, primarily because the quantum calculations can be prohibitively

expensive if the number of DOFs is much larger than three.

VII. QUANTUM TRANSPORT IN CLASSICALLY

CHAOTIC SYSTEMS

As shown above, classical unimolecular reaction rate theory is based upon our

knowledge of the qualitative nature of the classical dynamics. For example, it is

essential to examine the rate of energy transport between different DOFs

compared with the rate of crossing the intermolecular separatrix. This is also the

case if one attempts to develop a quantum statistical theory of unimolecular

reaction rate to replace exact quantum dynamics calculations that are usually too

demanding, such as the quantum wave packet dynamics approach, the flux–flux

autocorrelation formalism, and others. As such, understanding quantum

dynamics in classically chaotic systems in general and quantization effects on

chaotic transport in particular is extremely important.

There have been numerous studies of quantization effects on chaotic

transport. For example, it has been long known that a cantorus in the classical

phase-space comprise a strong barrier to transport when p�h is larger than the

classical flux across the cantorus [91,92]. In this case, the fractal structure of

the cantorus, which slows down but still allows for classical transport, cannot be

resolved by quantum dynamics and therefore behaves more or less the same as a

closed phase-space curve in the quantized system. A second important example

is ‘‘dynamical localization’’ [28], which was first discovered in the so-called

‘‘standard map’’ (introduced below) generated by a one-dimensional kicked-

rotor system. There, although the classical system continuously diffuses in the

energy space as a manifestation of classical chaos, quantum interference effects

quickly saturate the energy diffusion.
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Here we review some recent results concerning quantum transport in

classically chaotic systems, including new results on suppressed quantum

transport through cantori, quantum suppression of Arnold diffusion, and faster-

than-classical quantum anomalous diffusion.

A. Quantum Transport Through Cantori

Recently, Maitra and Heller reexamined quantum transport through cantori [93],

including the cases in which p�h is actually smaller than the classical flux crossing

a particular cantorus. In doing so, they used theWhisker map, which can describe

the motion within a chaotic layer near a separatrix in a typical nonintegrable

system. The Whisker map is given by

Inþ1 ¼ In � k sinfn ð406Þ

fnþ1 ¼ fn þ l ln
c

Inþ1 � I0

����
���� ð407Þ

where ðIn;fnÞ are action and angle variables before the ðnþ 1Þth mapping, and

the parameters k and l determine the phase space structure. Typically, there are

several cantori within the chaotic layer, corresponding to irrational winding

numbers that are given by r � ð1� gÞ, where r is an integer and g is the golden

mean previously defined. The flux F across a cantorus can be estimated from

F � exp
0:7c exp �2p½r � ð1� gÞ�=lf g

l

� �
ðlkc exp 2p½r � ð1� gÞ�=lf g � kcÞ3:01

ð408Þ

where kc ¼ 0:9716.
Quantizing the action and angle variables, one obtains the following quantum

map:

U ¼ exp
�ilðÎI � I0Þðln j c

ÎI�I0 j þ 1Þ
�h

" #
exp

ik cosf
�h

� �
ð409Þ

where ÎI and f should be understood as operators in the Hilbert space. The

eigenstate of the action ÎI with eigenvalue I is denoted by jIi. The diffusion in

action space can be studied using the time-averaged probability PðIf , IiÞ of being
in the final state jIf i starting from the initial state jIii. PðIf , IiÞ is given by

PðIf ; IiÞ ¼ lim
N!1

1

N

XN
n¼0
jhIf jUnjIiij2 ð410Þ
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We consider below a case in which the cantorus is at I � 6:4, with the

winding number given by 2� g, and the classical flux F through the cantous

given by � 0:01p. Figure 47 shows ln½PðI; Ii ¼ 4Þ� versus I, with the initial state

at jIi ¼ 4i, and �h ¼ 0:005, 0.02 or 0.1. For all the cases shown it is seen that

PðI; Ii ¼ 4Þ decays exponentially, implying that the cantorus presents a strong

barrier to quantum transport. A linear fit of the results in the neighborhood of

the cantorus can be carried out, giving a slope S as a fitting parameter. The

inverse of the slope thus obtained (i.e., 1=S) is indicative of the extent to which

the quantum state can penetrate into the cantorus. Specifically, S is found to be

3.2, 18, and 6.5, for the three values of �h, respectively. Thus, as p�h increases

from below the classical flux, S increases; but then decreases as p�h gets larger

than the classical flux. This clearly demonstrates the existence of different

mechanisms that account for the suppressed quantum transport.

When p�h is larger than the classical flux, the mechanism of suppression is

well known; that is, the quantum state cannot get through the fractal structure of

the cantorus, and as a result the associated quantum transport is due entirely to

tunneling. What is most interesting is that quantum transport is still suppressed,

as seen in the decay behavior of PðIf ; IiÞ, even when p�h is considerably smaller

than the classical flux. To demonstrate that this suppression is uniquely related

Figure 47. Quantum transport suppressed by the cantorus. Shown here is the logarithm of PðI,
IiÞ versus I, with the initial state given by Ii ¼ 4. The winding number of the cantorus is given by

2� g. From top to bottom the dotted lines have the slopes 3.2, 18, and 6.5, respectively. [From N. T.

Maitra and E. J. Heller, Phys. Rev. E 61, 3620 (2000).]
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to the cantorus, Maitra and Heller further showed that S scales with �ha with

a � 0:5. This result is shown in Fig. 48. Note that in the case of quantum

suppression of chaotic transport due to dynamical localization, one has that S

scales with �h. As such, for sufficiently small �h the quantum suppression effect

on chaotic transport due to a cantorus is always much larger than that due to

dynamical localization.

This finding concerning quantum transport in classically chaotic systems

sheds new light on quantum effects in unimolecular reaction dynamics. For

example, one expects that intramolecular bottlenecks associated with cantori, if

treated quantum mechanically, would be more effective than in a classical

statistical theory even when p�h is smaller than the reaction flux crossing the

intramolecular dividing surface. Clearly, it would be interesting to examine

realistic molecular systems in a similar fashion.

B. Quantum Suppression of Arnold Diffusion

Given the important role of Arnold diffusion in understanding chaotic transport

in many-dimensional systems, it is quite surprising that a study of the

quantization effect on Arnold diffusion was not carried out until very recently

[94–96]. In particular, Izrailev and co-workers are the first to carefully examine

quantum manifestations of Arnold diffusion in a well-studied model system. The

model system is comprised of two coupled quartic oscillators, one of which

driven by a two-frequency field. Its Hamiltonian is given by

H ¼ H0
1 þ H0

2 � mxy� fx½cosðo1tÞ þ cosðo2tÞ� ð411Þ
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Figure 48. The dependence of ln S on ln �h. The dashed lines indicate that S scales with �h0:5 if
p�h is smaller than the classical flux and that S scales with �h�0:66 if p�h is larger than the classical flux.
[From N. T. Maitra and E. J. Heller, Phys. Rev. E 61, 3620 (2000).]
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where

H0
1 ¼

p2x
2
þ x4

4
ð412Þ

H0
2 ¼

p2y

2
þ y4

4
ð413Þ

with all variables in dimensionless units. In particular, px, py; x, and y are

momentum and position variables, m is the coupling constant between the two

DOFs, f is the amplitude of the driving field, and o1 and o2 are the two

frequencies of the driving field.

For nonzero f the separatrix associated with the main 1 : 1 resonance in the

undriven system is destroyed and a chaotic layer that allows for Arnold

diffusion can be induced. Note that using two driving frequencies is not

essential to induce Arnold diffusion. However, with two commensurate driving

frequencies the Arnold diffusion would be much more homogeneous, thus

simplifying the analytical considerations in obtaining the Arnold diffusion

coefficient. To quantize the system, one simply sets ½px; x� ¼ ½py; y� ¼ �i�h0,
where �h0 should be regarded as a dimensionless effective Planck constant of

the system, such as the ratio of �h to the characteristic action of the system. The

quantum dynamics can be examined by direct propagation of quantum wave

packets. For the results discussed below, the system parameters were chosen as

follows: f=m ¼ 0:01, �h0 � 1:77� 10�5, 10p=o1 ¼ 12p=o2 ¼ T ¼ 150.

Figure 49 shows the energy variance (denoted by �q and in unit of

½�h20ðo1 þ o2Þ2=4�) versus time (denoted by N and in units of T), for three

different initial states—that is, below, above, and within the chaotic layer that is

responsible for Arnold diffusion. Clearly, the quantum transport depends

strongly on the location of the initial quantum state. In particular, with the initial

state below or above the chaotic layer (curve 1 or curve 2),�q quickly saturates;

whereas with the initial state inside the chaotic layer, after a transient period �q

keeps increasing for a long time in a more or less linear fashion. The average

linear rate of increase of �q gives the quantum diffusion coefficient.

To further demonstrate that the quantum transport of curve 3 in Fig. 49 is

intrinsically related to Arnold diffusion, Izrailev and co-workers compared the

m-dependence of the quantum diffusion coefficient to that of the Arnold

diffusion coefficient. This comparison is shown in Fig. 50. It is seen that the

quantum result resembles the classical result. That is, roughly speaking, in

either case the logarithm of the diffusion coefficient decreases linearly with

increasing 1=
ffiffiffi
m
p

. This makes it clear that quantum manifestations of Arnold

diffusion are indeed observed.

Figure 50 also shows that quantum effects strongly suppress Arnold diffusion

(note the logarithmic scale). The suppression effect for very small m is
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understandable because the thin chaotic layer can only support very few

quantum eigenstates. However, as estimated by Izrailev and co-workers, for

m > 1:25� 10�4, which is true for most cases shown in Fig. 50, the number

of quantum states that can be supported by the chaotic layer should be larger
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101

100

10−1

10−2

10−3

N

∆ q

3

2

1

Figure 49. The energy variance �q (in units of ½�h20ðo1 þ o2Þ2=4�) versus the time variable N

(in units of T). The system parameters are chosen as f=m ¼ 0:01, �h0 � 1:77� 10�5,
10p=o1 ¼ 12p=o2 ¼ T ¼ 150. The three curves correspond to three initial states, i.e., below,

above, or within the separatrix associated the Arnold diffusion. [From V. Ya Demikhovskii, F. M.

Izrailev, and A. I. Malyshev, Phys. Rev. Lett. 88, 154101 (2002).]
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Figure 50. Quantum and classical Arnold diffusion constants versus 1=
ffiffiffi
m
p

. [From V. Ya

Demikhovskii, F. M. Izrailev, and A. I. Malyshev, Phys. Rev. Lett. 88, 154101 (2002).]
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than 10. This being the case, we see that quantum effects can strongly suppress

Arnold diffusion even when the system is not in the deep quantum regime.

It remains to examine whether or not the results of Izrailev and co-workers

are general. In particular, since the Gaspard–Rice four-dimensional mapping

model introduced above can mimic the Arnold diffusion in unimolecular

predissociation, the corresponding quantum dynamics is of considerable

interest.

C. Faster-than-Classical Quantum Anomalous Diffusion

As seen throughout this chapter, for most Hamiltonian systems regular regions

coexist with chaotic regions in phase-space. The boundary between a regular

region and a chaotic region is complicated, due to, for example, the fractal

structures of cantori. As such, in many cases there are strong correlations in the

dynamics, and chaotic diffusion in energy space is not a random walk. To see this

more clearly, consider the standard map (defined below) as an example.

Assuming that the system is strongly chaotic, one expects that the average energy

of a classical ensemble should increase linearly with time, with the chaotic

diffusion coefficient well-predicted by a statistical approach. However, in many

cases this is not true. Instead, the system may display anomalous diffusion: that

is, the average energy of the system may increase as � ta, where t is the time

variable, and 1 < a < 2. Note that in this case the average energy of the system

increases much faster than for the normal diffusion case in which a ¼ 1.

To date there are only a few studies of the quantum dynamics associated with

classical anomalous diffusion. We consider here a recent study by Brumer and

co-workers, who showed that quantum effects can further accelerate classical

anomalous diffusion [97]. This is highly counterintuitive, since people tend to

believe that in all cases quantum effects suppress classical chaotic transport.

The system they studied is a modified kicked rotor system, whose Hamiltonian

is given by

HðL̂L; y; tÞ ¼ L̂L2=2I þ l cosðyÞ
X
n

f ðnÞd t

T
� n

� 
ð414Þ

where f ðnÞ ¼ 1 if n ¼ 4jþ 1 or 4jþ 2, f ðnÞ ¼ �1 if n ¼ 4jþ 3 or 4jþ 4, L̂L is

the angular momentum operator, y is the conjugate angle, I is the moment of

inertia, l is the strength of the kicking field, and T is the time interval between

kicks. The basis states of the Hilbert space are given by jmi, with L̂Ljmi ¼ m�hjmi.
The quantum dynamics depends on the dimensionless parameters k ¼ lT=�h and
the effective Planck constant t ¼ �hT=I. The underlying classical dynamics

depends only on one parameter, k � kt, and takes the form

~LLnþ1 ¼ ~LLn þ kf ðnÞ sinðynÞ; ynþ1 ¼ yn þ ~LLnþ1 ð415Þ
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where ~LL � Lt=�h is the scaled c-number angular momentum and ð~LLn, ynÞ
represents the phase-space location of a classical trajectory at ðnþ 1� 0þÞT . If
f ðnÞ is replaced by a constant, then Eq. (415) defines the standard map. The

introduction of f ðnÞ is used to magnify the effects discussed below.

For k ¼ ð2l2 þ 1Þp, the classical map of Eq. (415) has the marginally stable

points ~LL ¼ ð2l1 þ 1Þp; y ¼ �p=2, where l1 and l2 are integers. These points

are shifted by a constant value (�ð2l2 þ 1Þp) in ~LL after each kick. Around these

stable points are regular phase-space structures, called ‘‘transporting regular

islands.’’ These islands are structurally stable insofar as they persist as long as

k is close to ð2l2 þ 1Þp. Any trajectory launched from the transporting regular

islands will consecutively jump to other similar islands located in adjacent

phase-space cells, resulting in an energy increase that is quadratic with time. For

trajectories initially outside the transporting regular islands, the stickiness of the

boundary between the transporting regular islands and the chaotic sea induces

classical anomalous diffusion. Figure 51 displays both the transporting regular

islands and the chaotic sea on the PSS for k ¼ 3:5.
Figure 52 displays a quantum-classical comparison of energy diffusion

k ¼ 3:5, in terms of the dimensionless scaled energy averaged over the quantum

and classical ensemble, denoted by ~EEq � hL̂L2it2=2�h2 and ~EEc � h~LL2i=2,
respectively. The effective Planck constant t is chosen to be 0.1, a value far

from the semiclassical limit but relatively small compared to the area of the

transporting islands shown in Fig. 51. Furthermore, this value of t ensures that

Figure 51. Classical phase-space structures of a modified kicked rotor system. Note that the

regular islands are transporting islands. [From J. B. Gong, H. J. Wörner, and P. Brumer, Phys. Rev. E.

68, 026209 (2003).]
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the nongeneric behavior associated with quantum resonances (i.e., t ¼ 2pl1=l2)
is avoided. The initial quantum state is chosen to be j0i, which does not overlap

with the transporting regular islands. The corresponding classical initial state is

given by ~LL ¼ 0 with y uniformly distributed in ½0; 2p�. It is seen that energy

increases nonlinearly with time in both quantum and classical cases. The

quantum-classical break time is at tb � 200T . An excellent log–log linear fit of

the results after tb gives ~EEq / N1:85 (solid line) and ~EEc / N1:36 (dashed line),

where N is the number of kicks. Hence, both quantum and classical dynamics

display characteristics of anomalous diffusion, and, more significantly, the

quantum anomalous diffusion is much faster than classical anomalous diffusion.

Brumer and co-workers also studied other cases with much smaller t and found

that quantum anomalous diffusion indeed approaches the underlying classical

anomalous diffusion from above rather than from below as the effective Planck

constant goes to zero. Note also that quantum anomalous diffusion will saturate

eventually, due to dynamical localization.

Brumer and co-workers qualitatively explained the observed faster-than-

classical quantum anomalous diffusion in terms of strong quantum tunneling

between the transporting regular islands and the chaotic sea. If this is correct,

then the notion that quantum states are primarily located on either chaotic or

regular regions does not apply to the case of transporting regular islands

embedded in a chaotic sea. This is consistent with a recent study by Hufnagel

Figure 52. Quantum and classical anomalous diffusion in a modified kicked rotor system.

Shown here is the time dependence of the average scaled rotational energy, denoted as ~EEq (solid line)

and ~EEc (dashed line) for the quantum and classical ensembles, respectively. Note that the quantum

result is well above the classical result. [From J. B. Gong, H. J. Wörner, and P. Brumer, Phys. Rev. E

68, 026209 (2003).]
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et al. [98], who observed that quantum states can indeed ignore regular or

chaotic phase-space structures.

VIII. CONCLUDING REMARKS

In this chapter we have reviewed the development of unimolecular reaction rate

theory for systems that exhibit deterministic chaos. Our attention is focused on a

number of classical statistical theories developed in our group. These theories,

applicable to two- or three-dimensional systems, have predicted reaction rate

constants that are in good agreement with experimental data. We have also

introduced some quantum and semiclassical approaches to unimolecular reaction

rate theory and presented some interesting results on the quantum-classical

difference in energy transport in classically chaotic systems. There exist

numerous other studies that are not considered in this chapter but are of general

interest to unimolecular reaction rate theory.

There are a number of open issues associated with statistical descriptions of

unimolecular reactions, particularly in many-dimensional systems. One

fundamental issue is to find a qualitative criterion for predicting if a reaction

in a many-dimensional system is statistical or nonstatistical. In a recent review

article, Toda [17] discussed different aspects of the ‘‘Arnold web’’—that is, the

network of nonlinear resonances in many-dimensional systems. Toda pointed

out the importance of analyzing the qualitative features of the Arnold web—for

example, how different resonance zones intersect and how the intersections

further overlap with one another. However, as pointed out earlier, even in the

case of fully developed global chaos it remains challenging to define a nonlocal

reaction separatrix and to calculate the flux crossing the separatrix in a many-

dimensional phase-space.

Recent studies of intramolecular energy transfer in organic molecules

[99,100] suggest that it is rare to see a dense Arnold web in many-dimensional

molecular systems. It is observed that even in large molecules, energy transport

may be still governed by local phase space structures. Thus, an initial

vibrational state typically undergoes relaxation on a manifold whose dimension

is much smaller than that predicted by global chaos. This is confirmed by recent

experimental results [100], which indicate that the slow energy transport in large

molecules could manifest itself as the reaction rate becomes larger—for

example, when the energy of the reacting system increases. The general

observation of slow energy transport in large molecule systems brings up two

new directions for investigation. First, the slow energy transport indicates that

the dynamics of intramolecular energy transport is weakly chaotic. Hence, as

pointed out by Gruebele [100], active control of molecular dynamics in large

molecular systems, such as reversing the intramolecular energy transport, is

very possible. Second, it is necessary to develop a new statistical reaction rate
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theory (classical and quantum mechanical) that can first model and then

incorporate slow energy transport in a many-dimensional system.

As mentioned earlier, Komatsuzaki and Berry [26] have recently developed a

promising approach to analyzing many-dimensional reacting systems. By

seeking appropriate canonical transformations that yield local approximate

constants of motion associated with the reactive mode, they were able to

transform the conventional dividing surface in configuration space to a many-

dimensional separatrix in phase-space. Specifically, suppose the original phase-

space variables are denoted by (q; pÞ ¼ðq1; q2; . . . ; qn; p1; p2; . . . ; pnÞ, the

conventional dividing surface is located at q1 ¼ 0, and the required approximate

canonical transformation to a certain order is given by

ðq; pÞ ! ½q0ðq;pÞ; p0ðq; pÞ� ð416Þ
where ðq0; p0Þ ¼ ðq01; q02; . . . ; q0n; p01; p02; . . . ; p0nÞ, and q01 ¼ q01ðq; pÞ is the new

reactive mode ‘‘dressed’’ by ðq2; . . . ; qn; p1; p2; . . . ; pnÞ. As is forced by the

construction of the canonical transformation, this dressed reactive mode q01ðq; pÞ
is approximately and locally separable from (q02; . . . ; q

0
n; p
0
2; . . . ; p

0
nÞ. Hence, the

approximate dividing surface

q01ðq; pÞ ¼ 0 ð417Þ

defined in the original phase-space, is in fact an approximate many-dimensional

phase-space separatrix and can be close to an exact separatrix insofar as

trajectories will not recross it, provided that the approximate constants of motion

persist long enough that the final state of the saddle crossings can be determined.

Recalling that the key element in the ARRKM theory is to seek an approximate

phase-space separatrix, one sees that the Komatsuzaki–Berry approach is, in

essence, a many-dimensional extension of the ARRKM theory by use of

canonical transformations. Indeed, identifying the q01ðq; pÞ in Eq. (417) with the

phase-space separatrix Sðq; pÞ in the ARRKM theory [see Eq. (87)], one obtains

the following microcanonical reaction rate constant:

kðEÞ ¼ 1

NS

ð
dq

ð
dpd½q01ðq; pÞ�p01ðq; pÞy½p01ðq; pÞ�dðE � HÞ ð418Þ

where NS is a normalization constant and H is the system Hamiltonian. However,

since such an extension of the ARRKM theory does not account for the

peculiarity of intramolecular energy transfer in many-dimensional systems, the

predicted rate constant kðEÞ is not expected to be very useful, particularly when

the initial state is far away from the dividing surface q01ðq; pÞ ¼ 0.

Having recognized a similarity between the ARRKM theory and the

Komatsuzaki–Berry approach, we now comment on the difference between
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them. First, Komatsuzaki and Berry have carefully investigated the dynamical

behavior of the classical trajectories that recross the conventional dividing

surface q1 ¼ 0. For example, they have vividly demonstrated that the

trajectories recrossing q1 ¼ 0 can indeed avoid recrossing the phase-space

separatrix q01ðq; pÞ ¼ 0. In contrast, in developing the ARRKM theory and its

various extensions in few-dimensional systems, Rice et al. focused their

attention on the reaction rate constant and did not examine in detail to what

extent the approximate phase-space separatrix can rotate away the recrossing

trajectories. The results of Rice et al. suggest that the calculation of the

approximate reaction rate constant within—for example, a factor of two or

three—is insensitive to the fine structure of the separatrix and therefore does not

need a more formal approach, such as the Lie canonical perturbation theory.

Second, there exists a natural many-dimensional extension of the ARRKM

theory based on the reaction path formalism. In particular, with Eqs. (189) and

(190), one may intuitively use (with somewhat different notation from above)

ps �
P3N�f�7

k¼1;‘¼1 QkBk‘ðsÞP‘

h i2
2 1þP3N�f�7

k¼1 QkBk;3N�f�6
� 2 þ VðsÞ � Es ¼ 0 ð419Þ

as an approximate phase-space separatrix, where s is the reaction coordinate, Es

is the saddle point energy, and Qk and P‘ represent the coordinates and momenta

of other DOFs. It would be of great interest to compare this approximate many-

dimensional phase-space separatrix, constructed by physical intuition, with that

obtained by the Komatsuzaki–Berry approach. It is plausible that they

are different in their capabilities for removing recrossing trajectories, but could

give similar reaction rate constants such as kðEÞ in Eq. (418). Note that in

the adiabatic limit—that is, when the motion associated with the DOFs other than

the reactive mode is much faster than the reaction—the dynamics of the reactive

mode is entirely determined by an effective potential [see Eq. (198)]. As such,

the constant of motion associated with the reactive mode—for example, the

adiabatic Hamiltonian itself [see Eq. (198)]—indeed exists. This suggests that

the difference between the many-dimensional extension of the ARRKM theory

based upon the reaction path formalism [see Eq. (419)] and the Komatsuzaki–

Berry result should diminish as the reaction becomes slower.

Throughout this chapter we have been concerned with statistical approaches

applied to isolated molecules. Since most (unimolecular) reactions occur in an

environment comprised of other molecules, it is important to examine the

effects of molecule–molecule interaction on the kinetics and dynamics of

unimolecular reactions. Take the difference between quantum and classical

transport as an example. Based on recent studies of quantum-classical
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correspondence in open systems [101–103], it is reasonable to expect that

molecule–molecule collisions may introduce decoherence to reacting systems to

such a degree that predictions from the quantum dynamics become even closer

to that from a classical theory. Of course, when molecule–molecule interactions

are no longer perturbative—for example, in a liquid—then a unimolecular

reaction rate theory that is based on phase-space structures of isolated molecular

systems does not apply, and the models that we have discussed need significant

extension.
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I. INTRODUCTION

Let us begin with a simple, but still unresolved question, that is, ‘‘Why can a

reacting system climb through the saddle from a basin to one another?’’ Figure 1

schematically shows representative reactive and nonreactive, saddle crossing

trajectories that were initiated from the reactant well. Although both trajectories

have sufficient total energy larger than the saddle point energy, one will climb
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through to the product well but the other will go back to the original, reactant

well. This implies for classical systems that the condition for the reacting

systems to possess a total energy larger than the saddle point energy is only

necessary and not sufficient. Then, what are the necessary and sufficient

conditions for a reacting system to climb through from one basin to another? This

is one of the central issues we want to focus on in the present chapter.

Dynamics on two-basin potential energy surfaces has been extensively

explored in the context of chemical reactions over the past several decades [1–

14]. Transition state theories (TST), first developed by Eyring [3] and Evans [4]

and by Wigner [5] in the 1930s, have had great success in elucidating absolute

reaction rates of chemical reactions. All the various forms of (classical) TST are

based on two fundamental assumptions:

No-Return Assumption. A dividing hypersurface—that is, the transition state

(TS)—exists (generally in phase space) through which a reacting species

should pass only once on the way from the reactants to the products before

being ‘‘captured’’ in the products. Note that this implicitly requires that

the hypersurface can decompose the space into two distinct regions,

reactant and product. This, in turn, implies that for Hamiltonian systems

with n degrees of freedom, the TS must be of co-dimension one—that is,

ð2n� 2Þ dimension—on the ð2n� 1Þ-dimensional equienergy hypersur-

face of the chosen 2n-dimensional phase space R2n [15].

Local Equilibrium Assumption. There exists a quasi-equilibrium between

the reactant and a system crossing the TS from the reactant to the product.

This precise representation was taken from an insightful article on the

observability of the invariant of motion in the transition state by Marcus

[16]: The motions along the reaction coordinate at the transition state was

Reactant

Product

Figure 1. Reactive and nonreactive saddle crossing trajectories on a potential energy surface.
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postulated in the original TST to be one-dimensional, translational

motions. This implies that the reactive degree of freedom is assumed to

be dynamically separable from the other degrees of freedom at the

transition state. Although many literatures have often described to assume

the quasi-equilibrium as ‘‘occurring between the reactant and the TS

itself,’’ rigorously speaking, there is no source to yield a quasi-equilibrium

between the reactant and a dynamically separable, elusive state. In the

other words, the reacting systems move about ‘‘ergodically’’ within the

reactant well more quickly than finding en route to the TS. (Readers will

see in this chapter that this is a generic consequence inherent to the

first-rank saddles up to moderately high energies if the TS is defined not

in the configurational space but in the phase space.)

However, few theories have clarified the physical conditions needed to

validate these fundamental assumptions—that is, the necessary and sufficient

conditions to use this description for a reacting species climbing through the

saddle from the reactant to the product well. This is one of the most elusive

aspects in justifying the application of TST to a multitude of reacting systems.

In practice, one has often defined the TS in configurational space with an ad hoc

correction factor, called the transmission coefficient k, to take into account that

the system of interest actually makes more than one crossing of the

surface presumed either to be the desired dividing surface or one that

the system finds en route to the TS without moving about ‘‘ergodically’’ in the

reactant well.

In the developments [17–24] of classical unimolecular reaction rate theories,

there has been a great improvement of our understanding of the definability of

such a general, no-return dividing hypersurface from the viewpoint of the

geometric structure of the phase space in chemical reactions. Davis and Gray

[17] first showed in the late 1980s that in Hamiltonian systems with two degrees

of freedom (DOFs), a TS always free from recrossings can be defined as the

separatrix in the Poincaré section formed by taking the union of segments of the

stable and unstable manifolds, and the transport across the TS is interpreted as

mediated through the turnstile lobes bounded by two homoclinic intersection

points. Gillilan and Ezra [20] analyzed the predissociation of van der Waals

complex He–I2 with three DOFs—that is, the four-dimensional Poincaré section.

They demonstrated, as predicted by Wiggins [21], that the occurrence of

homoclinic tangency inherent to higher-dimensional systems (> two) hampers

the construction of the hypersurface dividing the bound complex reactant region

from unbound trajectories. Toda [22–24] noticed that the homoclinic tangency

leads to a bifurcation of the phase-space reaction path with a transition between

two topologically distinct chaotic regimes. Thus, the Davis–Gray separatrix

transition state depends crucially on the Poincaré section having only two
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dimensions. No general, no-return dividing hypersurface has been found yet for

systems of higher dimensionality. In other words, it is still an unresolved open

problem to determine the circumstances in which such a hypersurface would

persist, if it exists, or would be ruined in the chaotic thermal bath of

multidimensional systems.

Focusing on regulation of trajectories in the vicinity of the saddle points on

potential energy surfaces, several theoretical and experimental developments

have shed light on mechanics of passage through the region of a potential saddle

for higher-dimensional systems. Indicative symptoms of local regularity near

the saddles appeared in theoretical studies of small atomic clusters by Berry and

co-workers [25–31] that compared local Liapunov functions and Kolmogorov

entropies in saddle regions with those in other regions of potential surfaces.

Evidence appeared also in experiments by Lovejoy and co-workers [32,33] on

decomposition of vibrationally excited ketene that showed rates with quantized

steps; Marcus suggested that this could be a signature of existence of

approximate invariants of motion in the TS [16].

De Leon and co-workers [34–37] established an elegant reaction theory for a

system with two DOFs, the so-called reactive island theory to mediate reactions

through cylindrical manifolds apart from the saddles. Their original algorithm

depends crucially on the existence of pure unstable periodic orbits in the

nonreactive DOFs in the region of the saddles and did not extend to systems

with many DOFs.

Recently, Komatsuzaki and Berry revealed [38–45] using classical isomeri-

zation of a 6-atom Lennard-Jones cluster that at least three distinct energy

regimes of dynamical behavior, so-called quasi-regular, semi-chaotic, and fully

developed chaotic regimes, exist in the region of a saddle of strongly coupled,

many particle Hamiltonian systems. These are distinguished by the extent of

regularity of their dynamics. Up to energies high enough to make the system

manifestly chaotic, approximate invariants of motion associated with a reaction

coordinate in the phase space imply a multidimensional dividing hypersurface

that is free from recrossings occurring in that regime even in a sea of chaos.

Their technique relies on the application of Lie canonical perturbation theory

[46,47] (with algebraic quantization [48–50], if necessary), a classical analog of

Van Vleck perturbation theory [51,52], for the region of potential saddles. This

provides us with the natural reformulation [38,39] of the conventional TST

based on that hypersurface in multidimensional phase space, which gives us

better classical reaction rates of multidimensional systems. They presented a

practical algorithm to visualize the dividing hypersurface in the multi-

dimensional phase space of a given system [40,41], illuminated a new type of

phase space bottleneck that emerges as the total energy and mode-coupling

increase, which keeps a reacting system increasingly trapped in the region of a

saddle [42,43], and established a strong propensity rule and corresponding
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formula for transitions of chemical reactions which enables us to predict a

priori whether the system climbs through the saddle to the product or returns to

its original state [45].

The earlier work of Wiggins [21,53] provides a firm mathematical

framework for many-dimensional phase space transport, based on the notion

of a normally hyperbolic invariant manifold (NHIM) and its stable and unstable

manifolds as the appropriate generalization of the concept of ‘‘saddle’’ and

‘‘separatrices’’ on a multidimensional phase space. However, the major

technical obstacle preventing its implementation has been the lack of

an algorithm for searching arbitrary NHIMs in realistic multidimensional

systems. As shown by Komatsuzaki and Berry, Lie transforms provide one

of the most powerful techniques to extract a NHIM at least in the region of

saddles from many-dimensional phase space. Recently, Uzer et al. [54] applied

the Lie transformation to the vicinity of a saddle for a hydrogen atom in

crossed electric and magnetic fields containing significant Coriolis interactions

(a 3-DOFs system) and provided a detailed description of the (local)

geometric structure of chemical reactions in multidimensional phase space.

Wiggins et al. [15] presented a mathematical foundation of the robust

persistence, in each order, of the invariant of motion along the phase-space

reaction coordinate.

In this chapter, we briefly survey our recent findings on the mechanism

for a reacting species to climb through the saddle and its relevance to the

underlying geometric structure of the phase space. We focus on describing

the concept, sacrificing mathematical rigor. (Readers can refer to our recent

review article [41] for the mathematical description and also the articles by

others [55–58] in this volume of Advances in Chemical Physics.) In another

article in this volume [59], one of the authors reviews several kinds of strange,

cooperative dynamical behavior observed through structural transitions on

multibasin landscapes for liquid water and proteins and discusses how such

a regulatory structure through a ‘‘reaction bottleneck’’ may be generic

irrespective of the size of the systems and ‘‘ruggedness’’ of potential energy

surfaces.

II. DYNAMICAL REGULARITY IN THE REGION OF SADDLES

Suppose that Hamiltonian Hðp; qÞ is expressed in a region around a saddle point
of interest as an expansion in a small parameter E, so that the zero-order

Hamiltonian H0 is regular in that region; specifically, it is written as a sum of

harmonic-oscillator Hamiltonians. Such a zero-order system is a function of

action variables J of H0 only, and it does not depend on the conjugate angle

variablesH. The higher-order terms of the Hamiltonian are expressed as sums of
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cubic, quartic, and so on, terms in the normal coordinates of the system, at its

saddle [9,38,39].

H ¼ H0 þ
X1
n¼1

EnHn ð1Þ

H0 ¼ 1
2

X
j

ðp2j þ o2
j q

2
j Þ ¼ H0ðJÞ ð2Þ

X1
n¼1

EnHn ¼ E
X
j;k;l

Cjklqjqkql

þ E2
X
j;k;l;m

Cjklmqjqkqlqm þ � � � ¼
X1
n¼1

EnHnðJ;HÞ ð3Þ

Here, qj and pj are the jth normal coordinate and its conjugate momentum,

respectively; oj and Cjkl, Cjklm; . . . are, respectively, the frequency of the jth

mode, the coupling coefficient among qj, qk, and ql and that among qj, qk, ql, and

qm, and so forth. We denote hereinafter a reactive DOF, ‘‘1’’, whose fundamental

frequency o1 is pure imaginary, while the frequencies xB of the other ‘‘bath’’

modes B are real. An early insight by Hernandez and Miller [60] in their

semiclassical theory based on Van Vleck perturbation theory and recent classical

chemical reaction theory based on Lie canonical perturbation theory by

Komatsuzaki and Berry [38–45] show that there robustly exists an invariant of

(classical) action associated with the phase-space reaction coordinate buried in a

sea of chaos for strongly coupled many-body systems in the region of the first-

rank saddles. This is due to the generic fact that an arbitrary combination of

modes cannot satisfy the resonance conditions if one mode has an imaginary

frequency, included in the combination, that is,

X
k¼1

nkok

�����
����� � jo1j > OðEnÞ ð4Þ

for arbitrary integers nk with n1 6¼ 0. This implies that one can generally find a

nonlinear, canonical transformations of the coordinates to transform noninteg-

rable Hamiltonian Hðp; qÞ into a new form:

�HHð�pp; �qqÞ ¼ �HH0ð�JJÞ þ
X
n¼1

En �HHnð�JJ1; �nnBÞ ð5Þ

in the vicinity of the saddles up to arbitrarily high order [15,44,45,54]. Here

ð�pp; �qqÞ are new canonical variables, ð�JJ; �HHÞ their action-angle variables, and �nnB
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represents those of bath modes ð�JJB; �HHBÞ, collectively. The phase-space reaction
coordinate �qq1 and momentum �pp1 obeys

€�qq�qq1ðp; qÞ þ �oo2
1�qq1ðp; qÞ ¼ �; �pp1ðp; qÞ ¼ o1

�oo1

_�qq�qq1ðp; qÞ ð6Þ

in the region of any first-rank saddle [44], where

� �
_�oo�oo1

�oo1

_�qq�qq1ðp; qÞ �oo1 ¼ �oo1ð�JJ1; �nnBÞ ¼
q�HHð�JJ1; �nnBÞ

q�JJ1
ð7Þ

ð _xx and €xx represent the first and second derivatives of x with respect to time t.) The
�oo1ð�JJ1; �nnBÞ depends on time t only through bath modes �nnBðtÞ because �JJ1 is

independent of t by Eq.(5). If all the actions �JJ approximately persist as invariants

of motion in the region of the saddles—that is, �HHð�pp; �qqÞ ¼ �HHð�JJÞ—then � ¼ 0.

Even while all or most of all the actions no longer retain their invariance, the

exception being the phase space reaction coordinate, i.e., �HHð�pp; �qqÞ ¼ �HHð�JJ1; �nnBÞ
[Eq. (5)], still � � OðE2Þ in the vicinity of the saddles. The former case generally

holds at an energy regime slightly above the threshold saddle point energy in the

region of (first-rank) saddles, where the saddle crossing process is fully

deterministic spanning all the degrees of freedom with a strong dynamical

correlation between incoming and outgoing trajectories to and from the saddle.

We referred to this energy regime as the quasi-regular region [38]. The latter

case holds up to moderately high energies above the threshold thanks to Eq. (4),

where the full dynamics of the saddle crossing process is unpredictably

‘‘stochastic,’’ but the motion along the phase space reaction coordinate can still

be predicted, with a weak (but nonzero!) dynamical correlation between the wells.

We referred to this energy regime as the intermediate, semi-chaotic region [38].

As shown in Figure 2, Eq. (6) tells us that even if reaction transition

processes look to be ‘‘diffusive stochastic’’ processes in the configurational

space, they can always be represented in the phase space as ballistic dynamical

processes decoupled from all the other parts of the bath space if the action

associated with (at least) the phase space reaction coordinate �qq1 maintains its

invariance long enough to determine the final state of the reactions [38]. From

the projection of a nonreactive ‘‘recrossing’’ trajectory onto the configurational

space and the phase space in Figure 3, one can deduce one very important clue

for what the necessary and sufficient conditions must be for the system to climb

through one basin to another. That is, all nonreactive recrossing trajectories

in the configurational space are transformed to nonreactive, nonrecrossing trajec-

tories over the phase-space dividing surface Sð�qq1ðp; qÞ ¼ 0Þ, if the invariants of
action persist locally, for the phase-space reaction coordinate �qq1. This is because
decoupling the motion along �qq1 removes all forces that would return the system

back across the dividing surface [38].
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Figure 2. The projections of a reactive, ‘‘recrossing’’ trajectory onto the configurational space

and the phase space (see text for details).

Figure 3. The projection of a nonreactive ‘‘recrossing’’ trajectory onto the configurational

space and the phase space (see text for details).



We derived a dynamical propensity rule for transitions as follows: From

Eq. (6), one can derive an approximate analytical form for �qq1ðp; qÞ [44,45];

�qq1ðpðtÞ; qðtÞÞ ¼ a
2
e

R t j�oo1ðt0Þjdt0 þ b
2
e
�
R t j�oo1ðt0Þjdt0 ð8Þ

’ a
2
ej�oo1jt þ b

2
e�j�oo1jt ð9Þ

a ¼ �qq1ðt0Þ þ �pp1ðt0Þ
jo1j ; b ¼ �qq1ðt0Þ � �pp1ðt0Þ

jo1j ð10Þ

where constant coefficients a and b can be estimated from �qq1ðpðt0Þ; qðt0ÞÞ and
�pp1ðpðt0Þ; qðt0ÞÞ at any arbitrary time t0 in the region of the saddle. This enables us

to predict a priori whether the system climbs through the saddle to the product,

or returns to its original state, and tell us the physical foundation of why and how

the system traverses the saddles from reactant to product states; if the trajectories

have crossed a configurational dividing surface Sðq1 ¼ 0Þ at time t0 with a > 0,

the final state has already been determined at ‘‘the time t0 when the system has

just left the Sðq1 ¼ 0Þ’’ to be a stable state directed by �qq1 > 0 (let us denote that

state as the product state). Similarly, from only the phase-space information at

t ¼ t0 (the sign of b), one can infer whether the system on Sðq1 ¼ 0Þ at time t0
has climbed from either stable state—that is, reactant or product.

The dynamical propensity rule for (forward) transitions is derived as

‘‘If �qq1ðt0Þ > � �pp1ðt0Þ
jo1j �qq1ðt0Þ < � �pp1ðt0Þ

jo1j
� �

ð11Þ

the system will go through to the product (return to the reactant)’’

III. GEOMETRIC ASPECTS OF THE PHASE SPACE

Figure 4 shows a schematic portrait of the phase space flows (denoted by arrows)

in the ð�qq1ðp; qÞ; �pp1ðp; qÞÞ plane and the caricature of the corresponding
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Figure 4. A schematic portrait of the stable and unstable invariant manifolds and the phase-

space flows on ð�qq1ðp;qÞ; �pp1ðp; qÞÞ.
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trajectories on the potential energy surfaces. Eq. (11) tells us that if one divides

the phase space into four domains using the stable and unstable invariant

manifolds to and from the unstable fixed point �qq1 ¼ �pp1 ¼ 0, all the system

trajectories classified at any time (e.g., t ¼ 0), into the domains 1 and 2 should

eventually go into the product state, and those classified into the domains 3 and 4

go into the reactant state. While the former and latter domains could be regarded,

respectively, as ‘‘reactive’’ and ‘‘nonreactive’’ in elucidating the fate of reactions

after the system leaves Sðq1 ¼ 0Þ, all the system trajectories classified in do-

main 2 or domain 4 never cross through the phase-space dividing hypersurface

Sð�qq1ðp; qÞ ¼ 0Þ; that is, these trajectories do not correspond to reactions.

Up to moderately high energy (�179%) of the activation barrier for reactant

! product in the Ar6 isomerization reaction, the fates of most trajectories can

be predicted more accurately by Eq. (11) as the order of perturbation calculation

increases, except just in the vicinity of the (approximate) stable invariant

manifolds (e.g., see Fig. 5), and that the transmission coefficient k observed in

the configurational space can also be reproduced by the dynamical propensity

rule without any elaborate trajectory calculation (see Fig. 6). Our findings

indicate that almost all observed deviations from unity of the conventional

transmission coefficient k may be due to the choice of the reaction coordinate

whenever the k arises from the recrossings, and most transitions in chemical

-0.1 0 0.1

2nd q1(p,q)q1(p,q)

p 1
(p

,q
)
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       0
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Figure 5. The distributions of the recrossing trajectories over configurational surface Sðq1 ¼ 0Þ
at time t ¼ 0 on the phase-space planes ð�ppith1 ðp;qÞ; �qqith1 ðp;qÞÞ at E ¼ 0:5e, where most modes are

strongly chaotic—except �qq1ðp;qÞ. (a) First and (b) second orders: The circle and triangle symbols

denote the system trajectories having negative and positive incident momenta p1ðt ¼ 0Þ on the

Sðq1 ¼ 0Þ, and the open and filled symbols denote those whose final states were predicted correctly

and falsely by Eq. (11), respectively [45].
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reactions must not take place in fully stochastic fashion but in some predictable,

dynamical fashion.

Then, how can one ‘‘capture’’ the global aspects of the phase-space geometry

from the geometric structure of the phase space in that local region? One can

find an essential clue from an insightful classical theory for isomerization

reactions composed of two DOFs, so-called reactive island theory (RIT)

developed by De Leon, Marston, Mehta, and Ozorio De Almeida [34–37] (see

also Ref. 55).

Let us begin with the following system with two DOFs, which we shall

henceforth call a 2-DOFs system, in this case with a Hamiltonian for a double-

well potential:

H ¼ 1
2
ðp21 þ p22Þ � q21 þ q41 þ q22 ð12Þ
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Figure 6. The transmission coefficients across the conventional dividing surface Sðq1 ¼ 0Þ, k,
at E ¼ 0:1; 0:5, and 1:0e above the saddle point energy. The activation barrier height is about 0:633e.
The fates of the reactions were estimated both by Eq. (11) and by direct molecular dynamics (MD)

simulations: if the system falls outside/inside a sensitive band defined vertical to the (approximate)

stable invariant manifolds on the ð�pp1; �qq1Þ plane, we estimated the final state by use of Eq. (11)/direct

MD simulations. In the figure, the sensitive band is set for each order by changing the size of the

band from 0 to a number so large that the estimated k’s converge to those evaluated by the full MD

estimation. Here, the abscissa gives the ratio of the number of those whose fates were estimated

correctly by MD calculations to the total number of trajectories; that is, 0% implies that the fates of

all the reactions were estimated solely by Eq. (11). The ratios of the trajectory calculations in

evaluating k to yield the convergence to the exact values are 2.4%(1), 0.6%(2) at 0:1e; 12.1%(1),

7.1%(2) at 0:5e; and 69.2%(1), 37.5%(2) at 1:0e. (The numbers in the parentheses are the orders of

the perturbative calculations we performed.) [Reprinted with permission from Ref. 45. Copyright

# 2002, American Chemical Society.]
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where there is no coupling between reactive DOF ðp1; q1Þ and the other bath

DOFs ðp2; q2Þ. Now, consider the following two Poincaré sections �þq2 and �þq1 .

�þq2 ¼ fðp; qÞjq2 ¼ q02; p2 > 0g ð13Þ
�þq1 ¼ fðp; qÞjq1 ¼ q01ð> qy ¼ 0Þ; p1 > 0g ð14Þ

Here, qy is the position of the saddle point in q1, and q01 and q02 are some fixed

values of q1 and q2, respectively. The geometrical structure of the stable and

unstable invariant manifoldsW�A ðEÞ andWþA ðEÞ is the direct product of the one-
dimensional circular space S1E composed of q2 and p2 on the three-dimensional

equienergy hypersurface embedded in the phase spaceR4 and the linear spaceR1

associated with the unbound, reactive degree of freedom q1—that is, two-

dimensional cylindrical topology. As interpreted from Fig. 7, all the ‘‘reactive’’

crossing trajectories occur through the interior of the cylinder whose boundary

consists of the stable and unstable invariant manifoldsW�A ðEÞ andWþA ðEÞ. (Note
that the system is bounded by an equienergy hypersurface in the phase space at

total energy E.) If the system resides on the boundary of the cylinder, it never

crosses the saddle although it approaches asymptotically to the unstable periodic

orbit at the unstable fixed point, referred as to tðEÞ hereinafter, in the infinite

future or past. If and only if the system resides interior of the cylinder, can it

cross through the saddle.

Figure 7. The two Poincaré sections. (a) �þq2 and (b) �þq1 at a total energy E for an uncoupled

bound two-mode system, Eq. (12). The region where q1 > qy is referred as to region A, and that

where q1 < qy as region B hereinafter. WþA ðEÞ ðW�A ðEÞÞ denotes unstable (stable) invariant cylinder
manifold asymptotically departing from (approaching toward) the unstable periodic orbit at the fixed

point q1 ¼ p1 ¼ 0 to (from) the region A at total energy E. �AB
J2 ðEÞ and �A

J2ðEÞ denote, respectively,
the invariant cylinder manifold on which all ‘‘reactive’’ rotational motions, both A! B and A B,

lie with a constant action J2 in the q2 mode, and that on which librational motions lie inside region

A. [Reprinted with permission from N. De Leon, M. A. Mehta, and R. Q. Topper, J. Chem. Phys. 94,

8310 (1991), Copyright # 1991, American Institute of Physics.]
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However, we lose the concept of reaction itself for systems being integrable

because all the ‘‘reactive’’ trajectories eternally rotate between regions A and B
and can never be ‘‘captured’’ by either A or B. Figure 8 shows the corresponding
Poincaré section structures when the two modes are weakly coupled each other.

Under the perturbation, it is well known that the unstable and stable invariant

manifolds WþA ðEÞ and W�A ðEÞ in the phase space no longer connect smoothly,

but generically intersect each other with a finite angle on �þq2 , resulting in a

tangled structure due to the infinite number of the intersections between WþA ðEÞ
and W�A ðEÞ at homoclinic points on that surface of section [47]. (This

intersection occurring between one-dimensional ‘‘curves’’ arising from the two-

dimensional invariant cylinders WþA ðEÞ and W�A ðEÞ on the two-dimensional

Poincaré section �þq2 is generically zero-dimensional (i.e., point) and referred to

as homoclinic point, because it connects outgoing and incoming ‘‘curves’’ of the

topologically same hyperbolic, unstable fixed point.) As WþA ðEÞ and W�A ðEÞ
extend away from the unstable periodic orbit at the unstable fixed point, their

initial intersections across the �þq1 may give rise to an overlap between them on

that section. Note that WþA ðEÞ and W�A ðEÞ never overlap themselves, and the

areas closed by them on �þq1 are conserved as the same because each reaches the

same unstable periodic orbit in the infinite past and future.

Invariant tori �A
J2ðEÞ and �AB

J2 ðEÞ may exist in the phase space, resulting in

librational motions within the potential well and rotational motions across the

saddle, respectively, although their measure of the phase space should depend

Figure 8. The two Poincaré sections. (a) �þq2 and (b) �þq1 at a total energy E same as Fig. 7

except the two modes are coupled. Note that W�A ðEÞ and WþA ðEÞ partially overlap on �þq1 ,
corresponding to the appearance of homoclinic tangle on �þq2 . [Reprinted with permission from N.

De Leon, M. A. Mehta, and R. Q. Topper, J. Chem. Phys. 94, 8310 (1991). Copyright # 1991,

American Institute of Physics.]
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on both the strength of nonlinear coupling among modes and total energy E.

The invariant cylinder manifolds WþA ðEÞ and W�A ðEÞ wander about in a sea of

chaos (between these invariant tori) in an indefinite complicated fashion.

However, the manner in which the cylinders overlap one another in the phase

space mediates the reactions: All the reactive trajectories from A to B are

mediated through the interior of the cylinder, the so-called reactive island (RI),

bounded by the stable invariant manifold W�A ðEÞ from the unstable periodic

orbit at the unstable fixed point, tðEÞ. Similarly, all the back reactions from B to A
are mediated through the interior of the RI bounded by the unstable invariant

manifold WþA ðEÞ.
A very insightful picture is shown in Fig. 9 of the RIs at a Poincaré surface of

section with the corresponding ‘‘semi-global’’ dynamics in region A. In the

figure, IIþA and II�A represent the regions that contain the set of all points ðp2; q2Þ
on the �þq1 within the RIs bounded by WþA and W�A , respectively. (Hereinafter,
for the sake of simplicity, we omit any notation of their E dependence, although

they all depend on total energy E.) The overlap ‘‘hatched’’ region is denoted by

Figure 9. Schematic picture of the reactive island structure on �þq1 and the corresponding

dynamics in the reaction coordinate q1. See text for detail discussions. [Reprinted with permission

from A. M. Ozorio de Almeida, N. De Leon, M. A. Mehta, and C. C. Marston, Physica D 46, 265

(1990). Copyright # 1990, Elsevier Science Publishers, North-Holland.]
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IIAð¼ IIþA \ II�AÞ. The consequent semi-global dynamics belonging to each

region on the Poincaré section �þq1 composed of overlapped two RIs can be well

interpreted as follows:

A: All B! A trajectories (passing from B to A) which will be ‘‘captured’’

in A (� at least more than one oscillation in q1) must go through the

interior of IIþA � IIA.

B: All B! A trajectories which will go back to B immediately (� in one

oscillation in q1) must go through the interior of IIA.

C: All A! B trajectories which had temporarily been ‘‘captured’’ in A (� at

least more than one oscillation in q1) must go through the interior of

II�A � IIA.

D: All A! B trajectories which were originally initiated from the unstable

periodic orbit tðEÞ as t! �1 without returning to A must lie along the

part of the boundary of IIþA within the interior of II�A.
E: All trajectories which had temporarily been ‘‘captured’’ in A (� at least

more than one oscillation in q1) and will be asymptotic to tðEÞ without
visiting B must lie along the part of the boundary of II�A exterior to IIþA.

F: Homoclinic trajectories asymptotic to tðEÞ as t! �1 lie on the

intersection of the boundary of IIþA and II�A.
G: B! A trajectories which will be asymptotic to tðEÞ as t!1 without

returning to B must lie along the part of the boundary of II�A within the

interior of IIþA.
H: All trajectories which will be ‘‘captured’’ in A (� at least more than one

oscillation in q1) which were initiated from tðEÞ as t! �1 without

visiting B must lie along the part of the boundary of IIþA exterior to II�A.
I: All trajectories temporarily captured in A that are neither pre-, post-

reactive to B nor asymptotic to tðEÞ must lie in a region exterior to both

IIþA and II�A, IAð¼ IIþA [ II�AÞ (of course, it is possible for the system

belonging to IA to enter the interior of II�A and go through to B).

The stable and unstable invariant cylinders intersect this section infinitely

often, preserving each area bounded by the closed curve of W�A and WþA ,
although it will become indefinitely deformed due to their homoclinic tangles.

However, one of the most striking consequences deduced from the analyses of

the initial intersection of the invariant cylinder manifolds at a certain Poincaré

section defined in region A is this: If and only if the system lies in the interior of

II�A � IIA, the system can climb through from A to B whenever wandering in the

region of A for at least more than one oscillation in q1.

Figure 10 shows a representative trajectory passing through the two Poincaré

sections �A and �B defined in both the regions of A and B, where �A ¼ �þA

regularity in chaotic transitions on two-basin landscapes 157



[Eq. (14)] and �B ¼ fðp; qÞjq1 ¼ q01ð< qy ¼ 0Þ; p1 < 0g. Note here that W�A
may intersect with WþA or WþB , but it never does with W�B and W�A itself, and all

the reactions will occur through the interior of the invariant cylinders. By

assuming that successive intersections of the reactive islands will eventually

cover both surfaces of section (faster than a characteristic time scale of the

reaction), a simple first-order kinetics can be formulated, taking into account the

direct back reaction (recrossing motion within one oscillation in q1):

I�B�!
aB

II�B�!
bA

I�A ; I�A�!
aA

II�A�!
bB

I�B ; II�A �! �
gB

gA
II�B ð15Þ

where I�A and I�B are the regions exterior to II�A and II�B , respectively, and each rate
constant a, b, g is, respectively,

aA ¼ AreaðII�A � IIAÞ
AreaðI�AÞ

ð16Þ

bA ¼
AreaðIIþA � IIAÞ

AreaðIIþAÞ
ð17Þ

gA ¼
AreaðIIAÞ
AreaðIIþAÞ

¼ 1� bA ð18Þ

Similar equations hold for aB, bB, and gB.

Figure 10. A representative reactive trajectory intersecting two Poincaré sections �A and �B

defined in both the regions of A and B through the reactive island at q1 ¼ 0. Note that the passing

through the interior of II�A � IIA will never occur in that direct back reaction on �þA after passing

through the interior of IIA, although it is depicted so for the sake of simplicity. [Reprinted with

permission from A. M. Ozorio de Almeida, N. De Leon, M. A. Mehta, and C. C. Marston, Physica D

46, 265 (1990). Copyright # 1990, Elsevier Science Publishers, North-Holland.]
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Then, the population kinetics can be written with respect to the ‘‘mapping

time’’ n;

II�AðnÞ ¼ aAI�Aðn� 1Þ þ gAII
�
B ðn� 1Þ

I�AðnÞ ¼ ð1� aAÞI�Aðn� 1Þ þ bAII
�
B ðn� 1Þ

II�B ðnÞ ¼ aBI�B ðn� 1Þ þ gBII
�
Aðn� 1Þ

I�B ðnÞ ¼ ð1� aBÞI�B ðn� 1Þ þ bBII
�
Aðn� 1Þ

The population of A can be obtained as NAðnÞ ¼ I�AðnÞ þ II�AðnÞ and the

asymptotic (exponential) decay rate of NAðnÞ, kRI, is given by

kRI ¼ � ln jlmaxj ð19Þ

Here lmax is the eigenvalue with the largest norm, which can be obtained by

diagonalization of the above discretized master equation (the corresponding,

continuous master equation formulation with respect to the real time domain can

be found in Ref. 36).

De Almeida et al. [34] applied the RIT to the following 2-DOFs

Hamiltonian:

H ¼ 1

m
ðp21 þ p22Þ þ 4q21ðq21 � 1Þ expð�zlq2Þ þ D½1� expð�lq2Þ�2 ð20Þ

where m ¼ 8:0, z ¼ 2:3, l ¼ 1:95, and D ¼ 10:0. The point q1 ¼ 0 corresponds

to the saddle point, and the potential energy surface is symmetric with respect to

the reaction coordinate q1. Figure 11 shows the RI structure on �þA at three

distinct energies above the saddle point energy. Note that, as the total energy

becomes higher above the barrier, the system undergoes more direct back

reactions (the area of the overlap region between IIþA and II�A increases) and the

population of A becomes more ‘‘oscillatory’’ in converging to an equilibrium

value. On the other hand, at a total energy just slightly above the barrier, there

exists no overlap region between the first intersections of the cylinder manifolds

bounded by WþA and W�A , resulting in no direct back reaction occurring in one

oscillation in q1 as Fig. 12A ! Fig. 12B.

These observations coincide with our naive intuition that we have had no

means to quantify so far; that is, the closer is the total energy to the energy

barrier, the more difficult it becomes for the system that had passed through the

saddle to go back to the original state due to the ‘‘dissipation’’ of the energy

accumulated for climbing in the reactive DOF ðp1; q1Þ to the ‘‘bath.’’ This

indicates that there exists one possible diagnosis to address the question, ‘‘What

is the condition that enables us to assume local equilibrium in the reactants, in
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Figure 11. Reactive island structures on the Poincaré section �A at q01 ¼ 1=
ffiffiffi
2
p

and the kinetic

data for the symmetrical Hamiltonian in Eq. (20) at an excess energy of �E ¼ 3:0 (upper),

�E ¼ 1:0 (middle), and �E ¼ 0:2 (bottom). (A) The reactive island structure. (B) The population

decay results of A using three different methods: trajectory calculation by preparing 4000 points

uniformly distributed above the barrier and mapping them numerically (bold line), RIT (dashed

line), and ‘‘purely random’’ (PR) model that does not explicitly take into account direct back

reaction—that is, ignoring the overlap region of the direct back route (dotted line). At �E ¼ 0:2,

IIIþA and III�A denote the next intersections of IIþA and II�A, respectively. IIIA ðIII0A) denotes the

overlap region between II�A and IIIþA (IIþA and III�A), resulting from the next intersection of III0A, and
IV0A denotes the overlap region between IIIþA and III�A. IIIA and IV0A yields two and three oscillations

in q1 prior to return to B after crossing the saddle from B to A. [Reprinted with permission from

A. M. Ozorio de Almeida, N. De Leon, M. A. Mehta, and C. C. Marston, Physica D 46, 265 (1990).

Copyright # 1990, Elsevier Science Publishers, North-Holland.]
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terms of the topological character of the reactive islands on the Poincaré surface

of section defined in the reactant domain?’’

If the coupling between the two modes is sufficiently strong, Wþ and W�

will be discontinuous on the Euclidean mapping plane �þq2 , because they can

wander away from the mapping plane before intersecting it again [34]. This

implies that the turnstile transition state developed by Davis and Gray in terms

of surface of section �þq2 for a 2-DOFs reacting system may be very difficult to

apply, in practise, for strongly coupled, 2-DOFs systems. On the other hand, the

RIT usually requires only the first few intersections of Wþ and W� from

the unstable periodic orbit tðEÞ at the Poincaré section ‘‘perpendicular to’’ the

reaction coordinate. These intersections will give rise to discontinuous island

structures, and hence RIT may be more applicable, in practice, at least for a

general class of systems with 2 DOFs.

Why has this elegant reaction theory not been applied to general reactive

systems with many DOFs? It was because their algorithm depends crucially on

finding pure unstable periodic orbits in the nonreactive degrees of freedom. As

pointed out previously [44], it is always possible to find this regulatory object in

Figure 12. Caricatures of the cylinders as they wind about the phase space volume. All the

surfaces and volumes are embedded in four-dimensional phase space R4. (A) The cylinders WþA and

W�A overlap one another at �þA , resulting in direct back reactions. (B) These two cylinders do not

overlap one another. [Reprinted with permission from N. De Leon, J. Chem. Phys. 96, 285 (1992).

Copyright # 1992, American Institute of Physics.]
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any 2-DOFs system irrespective of the kind of system and the value of total

energy the system possesses, because there is no source to yield resonance by a

single imaginary-frequency mode and a single real-frequency mode. Systems of

many DOFs are no longer integrable in the saddles except at energies just

slightly above the threshold energy because of resonances amongst the

nonreactive modes that spoil any unstable, regular, periodic orbits.

Readers may easily notice that the application of Lie transforms to the

vicinity of the first rank saddles [49] has a great potential for revisiting this

classic theory that enables us to capture the semi-global, multidimensional

substructure in a sea of chaos. Figure 13 shows the phase space portrait of an N

degrees of freedom (N-DOFs) Hamiltonian in the region of the first-rank saddles

at the quasi-regular regime where almost of all actions behave as approximate

invariants. In this energy regime, the geometric structure of the stable and

unstable invariant manifolds W�A and WþA is the direct product of the ð2N � 2Þ-
dimensional spherical space S2N�2 composed of the ðN � 1Þ-uncoupled bath

modes ð�ppkðp; qÞ; �qqkðp; qÞÞ ð1 < k � NÞ and the interval R1 associated with the

unbound, reactive DOF. As discussed by Uzer et al. [54], this leads to ð2N � 2Þ-
dimensional, stable and unstable, invariant spherical cylinder manifolds

S2N�3E 	 R1 on the ð2N � 1Þ-dimensional equienergy hypersurface at total

energy E in the 2N-dimensional phase space R2N .

The trajectories inside these spherical cylinders look like ‘‘regular flows,’’

and their projections onto a two-dimensional space spanned by any two bath

modes �qqkðp; qÞ result in a Lissajous figure as depicted in Fig. 2.6a in Ref. 44. As
the total energy increases, the bath DOFs no longer retain their invariants of

action and they become coupled with one another. However, as shown

previously [38–45] as far as belonging to the semi-chaotic energy regime, the

reactive DOF �qq1ðp; qÞ can be well uncoupled from all the other chaotic, bath

DOF. Here, one might regard W�A ðEÞ and WþA ðEÞ as ð2N � 2Þ-dimensional,

stable and unstable, invariant ‘‘deformed’’ spherical cylinders on the equienergy

hypersurface. The trajectories inside these ‘‘deformed’’ spherical cylinders look

like ‘‘chaotic flows,’’ and their projections onto a two-dimensional space

spanned by any two bath modes �qqkðp; qÞ result in a chaotic dynamics as

depicted in Fig. 2.6b in Ref. 44.

p2(p,q) pN (p,q)

0.00
q2(p,q)

0.00
qN

(p,q)
0.00

q1(p,q)

p1(p,q)

xx x...

Figure 13. The phase-space portrait of N-DOF saddle Hamiltonian.
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Recently, Wiggins et al. [15] provided a firm mathematical foundation of

the robust persistence of the invariant of motion associated with the phase-space

reaction coordinate in a sea of chaos. The central component in RIT that is,

unstable periodic orbits, are naturally generalized in many DOFs systems

in terms of so-called normally hyperbolic invariant manifold (NHIM). The

fundamental theorem on NHIMs, denoted here by M, ensures [21,53] that

NHIMs, if they exist, survive under arbitrary perturbation with the property that

the stretching and contraction rates under the linearized dynamics transverse to

M dominate those tangent to M. Note that NHIM only requires that instability

in either a forward or backward direction in time transverse to M is much

stronger than those tangential directions of M, and hence the concept of NHIM

can be applied to any class of continuous dynamical systems. In the case of the

vicinity of saddles for Hamiltonian problems with many DOFs, the NHIM is

expressed by a set of all ðp; qÞ satisfying both �qq1 ¼ �pp1 ¼ 0 and
�HH0ð�JJBÞ þ

P
n¼1 E

n �HHn ð�JJB; �HHBÞ ¼ E, that is,

M ¼ fð�qq1; �pp1; . . . ; �qqN ; �ppNÞj�qq1ðp; qÞ ¼ �pp1ðp; qÞ ¼ 0;

�HH0ð�JJBÞ þ
X
n¼1

En �HHnð�JJB; �HHBÞ ¼ Eg ð21Þ

with ð2N � 3Þ dimensionality on the ð2N � 1Þ-dimensional equienergy hyper-

surface. One of the big differences between the unstable regular periodic orbits

RIT requires and NHIM is that the motions inside the NHIM can even be chaotic

(although a straightforward extension of the concept of unstable periodic orbits

to n degrees of freedom systems should possess n unstable, regular, periodic

orbits), and the NHIMs retain their invariance robustly against perturbation with

the stable and unstable invariantmanifolds. So, at a wide range of energies above

the barrier, the RIT can be generalized and applied, in principle, to a wide class

of chemical reaction systems with many DOFs; if one brings about the backward

calculations (to the reactant domain) initiated from the interior of the phase space

bounded by the NHIM at the saddle, one may reveal what kinds of initial

conditions one must prepare to obtain fast transitions from the reactant to the

product.

IV. KRAMERS–GROTE–HYNES THEORY REVISITED

Two approaches to overcome the recrossing problem have been variational TST

[8,10,61], which optimizes a configurational dividing surface by minimizing the

number of recrossings, or by (generalized) Langevin formalism of Kramers [6]

and Grote and Hynes [11], which regards the recrossings as arising from
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‘‘(molecular) friction’’ by the ‘‘bath’’ DOFs. Zwanzig [62] proved that the

following class of Hamiltonians, that is,

Hðp; qÞ ¼ p21
2m
þ Vðq1Þ þ

X
i¼1

p2Bi
2mi

þ mio2
1

2
qBi � ciq1

mio2
i

� �2
" #

ð22Þ

can be reformulated by a generalized Langevin formalism,

m €q1q1 ¼ � qV
qq1
� m

ðt
0

_qq1ðt0Þ�ðt � t0Þdt0 þ RðtÞ ð23Þ

hRð0ÞRðtÞi ¼ kBT�ðtÞ ð24Þ

where, for example

�ðtÞ ¼
X
i

c2i
mio2

i

cosoit ð25Þ

Here, q1; p1 are the ‘‘system’’ coordinate and momentum; and qBi; pBi are the

ith ‘‘bath’’ variables with mass mi and frequency oi. ci is the coupling constant

of the ith ‘‘bath’’ oscillator with the ‘‘system.’’ m is the mass of the ‘‘system’’

and kB Boltzmann constant, and the average hi is over the ‘‘thermal bath’’ at

temperature T .

van der Zwan and Hynes [63] and later Pollak [64] showed that the reaction

rate of the Grote–Hynes formulation with the reaction coordinate q1 is exactly

equivalent to that of the transition state theory if the reaction coordinate

is chosen as an unstable normal coordinate ~qq1 composed of the total system

(¼ ‘‘system q1’’ + ‘‘bath qB’’) (see also Fig. 14).

However, their arguments have been often criticized because of the

simplicity of its Hamiltonian class (it’s integrable!). Our recent findings suggest

that nevertheless their equivalence arguments may be made much more general

and applicable to a wider range of Hamiltonian classes, even when the system is

almost chaotic. This stimulates us to reconsider a fundamental question of what

constitutes the ‘‘thermal bath’’ for reacting systems. One may anticipate that

reactions take place along a ballistic path composed of the total system in the

thermal fluctuation, at least, in the region of saddles. The ‘‘thermal bath’’ for

reactions, simply defined thus far as all the rest of the atoms or molecules except

the reacting system, does not necessarily retard the reactive trajectories; rather,

such a ‘‘bath’’ might control and assist the reactants to climb and go through the

saddles. In the context of protein folding, Plotkin and Wolynes [65] addressed

how the inclusion of the other degrees of freedom into the reaction coordinate is

essential for obtaining the optimal dividing surface for protein folding. Still, the
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questions, ‘‘What is the dynamical role of water molecules surrounding

the protein system?’’ [66,67] and ‘‘What should be regarded as the system and

the thermal bath during the dynamical evolution of structural transitions?’’ have

been nontrivial, open subjects in many disciplinary fields in sciences.

V. STOCHASTICITY OF SADDLE CROSSINGS

The classical canonical perturbation calculation at the region of a saddle provides

us with interesting local information of the original system at a finite low order

up to which the series of the transformation are expected to be less affected by

the ultimate divergence arising from the characteristics of the whole phase space.

The local region in which the invariants of motion persist at least along the

reaction coordinate should cover an entire saddle region that the system explores

prior to being ‘‘captured’’ in either reactant or product state, in order to predict

the termini of the trajectories. In other terms, energy regimes in which all or most

of all the recrossing events occur within such a locality can be classified into

quasi-regular, or semi-chaotic regimes. The more the total energy increases, the

more the broadening of the excursion regime competes with the shrinkage of the

‘‘convergence radius’’ in which an approximate invariant of the action exists at

least for the phase-space reaction coordinate. It is expected that, in an extremely

high-energy regime, most recrossing events would take place outside of the

‘‘region of invariance’’ and the saddle crossing motions are entirely stochastic in

Figure 14. A schematic picture of how a reactive recrossing trajectory passing through a naive

TS, Sðq1 ¼ 0Þ, on a double-well Hamiltonian, Eq. (21), is rotated away to a single crossing through a

real TS, Sð~qq1ðq1; qBÞ ¼ 0Þ. The open circle denotes the point where the trajectory crosses the real TS
only once.
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nature, irrespective of any choice of reaction coordinate, and dynamical

correlation between outgoing and incoming trajectories to and from the saddle

is completely lost. Such an energy regime may be regarded as stochastic (¼ fully

developed chaotic) regime [38]. However, there is no mathematical framework

yet that shows how the breakup of the normal hyperbolicity for the NHIMs

affects the crossing trajectories over the region of the saddles. Komatsuzaki and

Berry found [42,43] that the approximant of the NHIM at a finite order implies

that a reacting system be substantially trapped as the total energy of the system

increases from the ‘‘semi-chaotic’’ regime. It may lead a conjecture that a

‘‘vague NHIM’’ makes a reacting system increasingly trapped as vague tori do

[68,69]. A new mathematical foundation is apparently required to inquire further

into the question. Note, in addition, that, especially at high energies, the system

may also pass over higher-rank saddles, and we encounter many new, untouched

subjects—for example, definability of transition state and the role of resonance in

the imaginary o-plane for the bifurcation.

VI. CONCLUDING REMARKS AND FUTURE PROSPECTS

The robust existence of a skeleton composed of a NHIM and its spherical

invariant cylinders in the phase space should play their essential roles not only to

help us understand the physical origin of observed nonstatistical, dynamical

behavior but also to provide us with a new scope to control chemical reaction

dynamics in terms of geometrical feature of the phase space. Here, let us

articulate some of the subjects we have to confront in the immediate future:

1. It is ensured that the NHIMs, M, if they exist, survive under arbitrary

perturbation to maintain the property that the stretching and contraction

rates under the linearized dynamics transverse to M dominate those

tangent to M. In practice, we could compute the M only approximately

with a finite-order perturbative calculation. Therefore, the robustness of

the NHIM against perturbation (referred as to structurally stable [21,53])

is expected to provide us with one of the most appropriate descriptions of

a ‘‘phase-space bottleneck’’ of reactions, if such an approximation of the

M due to a finite order of the perturbative calculation can be regarded as a

‘‘perturbation.’’ One of the questions arising is, ‘‘How can the NHIMs

composed of a reacting system in solutions survive under the influence of

solvent molecules?’’ (This is closely relevant to the subject of how the

‘‘system’’ and ‘‘bath’’ should be identified in many-body systems.)

2. In two-mode [17] and three-mode [20] systems it was shown that

dynamical bottlenecks exist to intramolecular energy transfer; that is,

cantori are buried in the reactant basin, which form partial barriers

between irregular regions of phase space. This brought about multiply
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exponential decay on a wide range of time scales of the reaction.

There exists no general algorithm for locating arbitrary NHIMs, while the

stable and unstable manifolds of some of them may represent the

multidimensional generalization of the partial barrier associated with a

periodic orbit approximant to a cantorus [70]. An analysis of pairwise

local frequency ratios would be useful to search the intramolecular

bottlenecks, at least, for 3-mode systems [71–73]. However, it would be a

very difficult task to deal with higher-dimensional systems.

3. One can visualize the NHIM and its stable and unstable invariant

manifolds by the projections of those objects onto the original space by

inverting all the transformed new coordinates and momenta into the

original ones in the quasi-regular region, in which all actions persist

approximately as the local invariants. However, although the motions

inside the NHIM and its invariant manifolds can be chaotic in the semi-

chaotic region, the inverse of ð�pp; �qqÞ into the original ðp; qÞ should become

rather problematic because of the divergence of most terms in the

generating functions. The partial normalization in which Lie transform

applies only to the reactive DOF is required to capture these abstract

invariant objects in the original coordinate space in the semi-chaotic

region.

4. There exists no mathematically rigorous framework for describing the

mechanism of the breakup of NHIM. There exists only a conjecture that a

‘‘vague NHIM’’ might act as a new bottleneck in the phase space transport

[42,43].

5. The computer algorithm for Lie canonical transformation technique has

not been improved essentially after Dragt and Finn [74,75]. It would be

almost impossible to apply this beyond a few tens DOFs even to a fairly

low order by using modern computational facilities. In this regard, the

development of a means for coarse-graining multimode systems to a

reduced set of DOFs is quite a challenge for further applications to

rugged, multibasin dynamics [76].

6. There are great potentialities to explore multibasin chemical reaction

theory based on the geometric structure of the phase space for multibasin

transitions: By identifying each first-rank (and higher-rank if necessary)

saddle linking the distinct energy minima (or lower-rank saddle), one can

apply a Lie transform to the regions in the vicinity of each fixed point and

extract the normally hyperbolic invariant manifolds (NHIM) and its stable

and unstable invariant manifolds from the state space. The intersection

phenomena between the stable cylinder approaching one NHIM

associated with one saddle and the unstable cylinder departing from

another NHIM with another saddle can tell us how a bundle of trajectories
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passing through different saddles are dynamically correlated. In the case

of gas-phase multibasin reactions, to elucidate the mechanism of the

intersection provides us with a clue to establish the control of sequential

chemical reactions. Consider a system of n DOFs. The NHIM is a

topologically ð2n� 3Þ-dimensional (‘‘deformed’’ in the semi-chaotic

regime) sphere, S2n�3E , and the stable and unstable invariant manifolds are

the ð2n� 2Þ-dimensional (‘‘deformed’’ in the semi-chaotic regime)

spherical cylinder topologies, S2n�3E 	 R1, on the ð2n� 1Þ-dimensional

equienergy hypersurface at total energy E in the phase space R2n. The

dimensionality of an intersection manifold (if it exists for n > 2) is

2n� 3. It is expected that there would be strong dependency on the initial

condition ‘‘interior of NHIM’’ to bring the system either to another NHIM

or back to the same NHIM. That is, to understand the skeleton of the

phase space composed of the cylinder invariant manifolds provides us

with not only a new insight to control the dynamical correlations but also

the rigorous reaction pathways of multibasin chemical reactions [77–79].

These are some of several challenging, but very fascinating, subjects for the

forthcoming future for two-basin chemical reactions.
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I. INTRODUCTION: WIGNER’S ‘‘THREE THREES’’

The proper departure point for a discussion of the transition state (TS) are the

proceedings of the lively 67th General Discussion of the Faraday Society [1]. In

his admirable summary of this Discussion, given during the Spiers Memorial

Lecture of the 110th Faraday Discussion of 1998 [2], W. H. Miller recounts how

two distinct points of view emerged on rates of chemical reaction from the

discussions of the 67th meeting: Eyring’s thermodynamic picture and Wigner’s

dynamical perspective, which, in the decades between the 1930s and 1970s was

buried by the enormous numbers of applications of the thermodynamic

picture [3]. In his perceptive article [4], Wigner gave a clear outline of the

subject in terms of his ‘‘Three Threes’’ [2]. First there were the three steps in the

theory of kinetics: (1) constructing the potential energy surface, (2) calculating

the rates of elementary reactions, and (3) combining many elementary reactions

into a complex reaction mechanism. Next came the three groups of elementary

reactions, and finally there were the three assumptions of Transition State Theory

(TST): (1) no electronically nonadiabatic transitions, (2) validity of classical

mechanics for the nuclear motion, and (3) the existence of a dividing surface,

separating the reactants and products, that no classical trajectory passes through

more than once. Wigner noted that the failure of the last assumption will lead, in
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general, to values of the reaction rate that are too large. Wigner’s formulation

quickly leads to the recognition that the TS is actually a general property of all

dynamical systems, provided that they evolve from ‘‘reactants’’ to ‘‘products.’’

The TS, therefore, is not confined to chemical reaction dynamics [2], but it also

controls rates in a multitude of interesting systems, including, for example, the

rearrangements of clusters [5], the ionization of atoms [6,7], conductance due to

ballistic electron transport through microjunctions [8], diffusion jumps in

solids [9], and statistical rates of asteroid capture [10]. With the reemergence of

Wigner’s dynamical approach to TST [4,11,12], the search for these no-

recrossing surfaces has been pursued vigorously, leading researchers to

dynamical systems theory [13,14] through the intermediate stages of variational

TST [15] and PODS [16,17]. Despite this effort, the no-recrossing rule has been

‘‘more honored in its breach than its observance.’’ The formalism presented here

addresses this issue by constructing the dynamically correct higher-dimensional

geometrical structures in phase space that regulate transport between qualita-

tively different states (‘‘reactants’’ and ‘‘products’’). The salient features of this

new formulation are as follows:

� It is a phase space rather than configuration space theory, so it can treat

Hamiltonian systems containing unconserved angular momenta like

Coriolis interactions which prevent the Hamiltonian from being written

as a sum of the kinetic and potential energies [6,18]. The resulting

hypersurfaces are dynamical in that they involve momenta as well as

coordinates.

� It is designed for multidimensional systems. This is a qualitative

difference from the existing formulations which attempt to extrapolate

to three or more degrees of freedom (DOF) geometrical methods that

work for systems with two DOFs.

� The TS it produces is locally a surface of no return.

� It identifies impenetrable barriers [19] which, by acting as phase-space

‘‘scissors’’ [20], cut phase space into hypervolumes of initial conditions

that are destined to react and those which cannot.

� It is a ‘‘top-down’’ approach in providing explicit recipes for all these

geometrical structures, and it is presumably equivalent to the ‘‘bottom-

up’’ approach of working through their manifestations in terms of

ensembles of trajectories [5].

Details of our approach, which is reviewed in Sections IV and V, can be

found in the original article [21]. Two of the most striking features of our

solution, namely the recrossing-free TS and the identification and construction

of the multidimensional separatrices, are illustrated in Figs. 1, 2, and 3.
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This account is organized as follows: After briefly reviewing the history of

TST, we present a pedagogical discussion of the geometry of the TS. This is

followed by the rigorous mathematical theory of the geometry of higher-

dimensional saddles and their associated separatrices in the context of the

theory of normally hyperbolic invariant manifolds (NHIMs) [22]. We begin by

showing that near an equilibrium point consisting of a reactive direction and

several nonreactive (‘‘bath’’) directions (technically of the saddle � center

� � � � � center stability type) the Hamiltonian can be transformed to a normal

form [13] from which the NHIM, its stable and unstable manifolds, and the TS

are straightforward to obtain analytically. Moreover, if the center (or bath)

vibrations are nonresonant, the normal form, truncated at any finite order, is

integrable. The theory leads to an algorithm for identifying the TS (and other

geometrical structures) analytically. Finally, we apply this formalism to the

isomerization of HCN. In this process we identify the center manifold as

the activated complex and demonstrate how it can be quantized to obtain the

quantized thresholds first discussed by Chatfield et al. [23] and subsequently

observed [24,25].

Figure 1. (The color version is available from the authors.) The trajectory of an electron

ionizing under the influence of crossed electric and magnetic fields [18,21]. The line passing through

the saddle point shows the projection of the conventional transition state, which is a vertical plane.

Of course the trajectory can cross this plane many times. We cannot display our true TS, which is a

complicated four-dimensional object, but we note that it is intersected only once, namely at the dot.

The right-hand panels show the same trajectory in the three normal-form coordinates (see Section F).
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Figure 2. (The color version is available from the authors.) Two-dimensional configuration-

space projection of the trajectory of the previous figure. The projection of the conventional TS in

configuration space is the vertical axis. The trajectory crosses it many times. Our new TS is

intersected only once, namely at the dot in the upper right-hand side of the ellipse.

Figure 3. (The color version is available from the authors.) Two electron trajectories, so close

in phase space that they appear as one, approach the ionization saddle [6] from the top right. After

some complex dynamics at the saddle point, one reacts (by crossing the TS at the dot in the upper

left-hand corner of the bundle) and goes off to the top left, and the nonreactive one returns to the

bottom right. We engineered this outcome by selecting their initial conditions on opposite sides of

the impenetrable phase-space barrier (one of the ‘‘scissors’’ [20]) between ionizing and nonionizing

hypervolumes.
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II. BRIEF HISTORY OF TRANSITION STATE THEORY

The idea of the existence of a boundary between ‘‘reactants’’ and ‘‘products’’ can

be traced to the scientific memoirs of Marcelin published in 1915 [26]. It was not

until 1931 that this idea began to percolate into the thinking of the chemistry

community. In that year Eyring and Polanyi published their seminal article on the

calculation of the absolute reaction rate for the collinear H þ H2 reaction [27]. It

was in this article, which must be viewed as the origin of the modern theory of

chemical reactions, that the concept of a TS separating reactants from products is

first quantified. They defined it in terms of the morphology of the potential

energy surface.

The impact of this idea was immense. Six years later, the 67th General

Discussion of the Faraday Society addressed this subject under the guise of

Reaction Kinetics [1]. This Discussion, which has been alluded to above, set the

stage for the further development of these ideas and the general acceptance of

them by the chemistry community at large. By this point, two distinct

approaches to TST had developed. The first one, primarily due to Eyring [3,28],

was based in thermodynamics. Here the idea was to develop the quantities of

interest from a thermodynamic perspective and then to evaluate the

thermodynamic quantities in terms of simple molecular models. The second

approach, advocated by Wigner [4,11,12,29], was to calculate quantities of

interest directly from the dynamics. When properly implemented, both

approaches are expected to be equivalent.

In the decades following this Discussion, the majority of the progress made

in the development and application of TST followed the thermodynamic

path [30,31]. To a large extent, this was due to the nature of the difficulties

encountered when following the dynamical path. The first of these was the fact

that the technology needed to numerically investigate the dynamics simply did

not exist. Furthermore, the theory of dynamical systems, despite the efforts of

Poincaré [32], was still in a primitive state. In the early 1970s, when interest in

the classical mechanics was rekindled by the quest for quantum chaos [33,34],

attention was again focused upon the dynamical version of TST. The variational

TST together with the identification of the ‘‘periodic orbit dividing surfaces’’ or

PODS (both singular and plural) [16,17,35–37] were just the initial steps in this

reawakening of interest.

The central idea in the variational treatment of TST [15,38,39] is to consider

all possible dividing surfaces that partition coordinate space into two separate

regions, one associated with reactants and the other with products. One then

considers the flux across each of these surfaces and chooses the surface with the

minimum flux as the TS. The logic is as follows: We are interested in the rate at

which states cross the TS. If, during the course of a reaction, the trajectory of

each initial reactant state only crosses the TS once, then the rate of reaction can
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be determined by simply counting the number of crossings of the TS—that is,

the flux across the TS. However, if there are recrossings of the TS, then simply

counting the number of crossings will overestimate the true rate.

Pechukas argued that there exists a set of periodic orbits whose projections

into coordinate space, which he calls PODS, are solutions to the variational

problem [35,36,40]. The projections of these orbits touch the equipotentials of

the potential energy at two different points. At each of these points the trajectory

is reflected and retraces its path in coordinate space. Pechukas recognized that

the principle of least action for such a periodic orbit implied that it was a

solution to the variational TS problem. Pechukas’ work is particularly

significant, despite shortcomings due to the formulation of the variational

principle in coordinate space, since it refocused attention on the dynamical

aspect of TST. The shortcomings of Pechukas’ approach are reflections of

problems with the formulation of variational principle. The most fundamental of

these is that the TS is defined in coordinate space and not in the state space, that

is, phase space. While this does not pose significant difficulties for systems

having just two DOFs, it has prevented the extension of Pechukas’ results to

higher-dimensional systems. Recently, Jaffé et al. [6,18] have shown how to

apply Pechukas’ approach to the ionization of hydrogen atom in crossed static

electric and magnetic fields. Due to the presence of the magnetic field, the

Hamiltonian of this system cannot be divided into the kinetic and potential

energy, and consequently it would appear that Pechukas’ formalism, which

requires the existence of a potential energy, will fail. However, Jaffé et al. [6,18]

show that in this case Pechukas’ approach works provided the dynamics are

projected into a different (two-dimensional) plane.

In the 1970s with the introduction of more sophisticated computer

technology, one of the primary difficulties facing the scientist wishing to

investigate the dynamics of realistic model systems vanished. It now became

possible not only to investigate numerically the dynamics of reactive systems,

but it also become possible to implement a number of important tools such as

Poincaré’s surface of section. This set the stage for the next development, that of

the advancement of the theory of dynamical systems. Many examples can be

cited. Of particular interest is the work of MacKay, Meiss, and Percival [41]

concerning the existence of cantori acting as space barriers in the vicinity of the

last surviving torus. Davis and co-workers applied these ideas to chemical

reactions [42–44]. Similarly, Tiyapan and Jaffé [45–47] demonstrated that in the

formation of complexes, the homoclinic tangle associated with the periodic

orbit defining the TS imposes an invariant fractal structure upon the energy shell

and that the asymptotic scaling laws of this fractal are related to the long time

behavior. Unfortunately, these, and many other efforts, rely heavily on

techniques only applicable to systems with two DOFs and consequently are

not readily extendable to systems with more DOFs.
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Despite these difficulties, significant progress was made. In particular, it was

observed that something remarkable happens to the dynamics near a saddle. No

matter how complicated the motion is leading up to the saddle, at the saddle it

becomes simpler only to become more complicated once more as the system

leaves the saddle region. The reason for this striking simplification has been

explained by Miller [48]: Simply put, at a saddle, the potential consists of

an inverted parabola in the reaction coordinate and ordinary parabolas in the

bath directions. Technically speaking, the frequency is imaginary in the

reactive direction and real in the bath directions, and since there cannot be a

resonance between imaginary and real frequencies, whatever couplings there

may be cannot be effective, thereby isolating the reactive direction from the

bath modes and, in simple cases, making the dynamics in the reaction direction

integrable [48–51].

The dynamics near the TS have been the subject of many theoretical [52–66]

and experimental [24,25] investigations. The experiments of Lovejoy and

co-workers [24,25] see the TS via the photofragment excitation spectra for

unimolecular dissociation of excited ketene. They have shown that, in the

vicinity of the barrier, the reaction rate is controlled by the flux through

quantized thresholds. The observability of quantized thresholds in the TS was

first discussed by Chatfield et al. [23]. Marcus pointed out that this indicates that

the transverse vibrational quantum numbers might indeed be approximate

constants of the motion in the saddle region [60].

During the same period, Berry and co-workers were exploring the

non-uniformity of the dynamical properties of Hamiltonian systems represent-

ing atomic clusters with up to 13 atoms. In particular, they explored how regular

and chaotic behavior may vary locally with the topography of the potential

energy surfaces (PES) [53,54,57,58,61–63,65,66]. By analyzing local Lyapunov

functions and Kolmogorov entropies, they showed that when systems have just

enough energy to go through the TS, the system’s trajectories become

collimated and regularized through the TS regions, developing approximate

local invariants of the motion different from those in the potential well. This

happens even though the dynamics in the potential well is fully chaotic under

these conditions. They also showed that at higher energies above the threshold,

intermode mixing wipes out these approximate invariants of the motion even in

the region of the TS [5].

Recently, Komatsuzaki and co-workers have investigated regularity observed

in the vicinity of the TS in many-body systems [5,67–74]. They used Lie

transformations [75,76] together with microcanonical molecular dynamics

simulations of the region near a potential energy saddle point. They construct a

nonlinear transformation that ‘‘rotates away’’ the recrossings and irregular

behavior. Using the intramolecular proton transfer reaction in malon-

aldehyde [67,68] and the isomerization of a simple cluster of six argon
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atoms [69–73], they showed that this separation of the dynamical modes persists

up to energies well above the onset of chaos in the TS. In other words, they

observed that the action associated with the reaction coordinate remains an

approximate invariant of the motion throughout the region of the TS. Moreover,

they demonstrated that it is possible to choose a multidimensional phase-space

dividing surface satisfying the dynamical requirement of TST [69]. They

‘‘visualized’’ the dividing surface in phase space by constructing the projections

onto smaller subspaces, revealing how the shape of the reaction bottleneck

depends on the energy of the system and the passage velocity through the TS

and how the complexity of the recrossings emerges over the saddle in the

configuration space [70,71]. Using this visualization, they further showed that

changing the energy of the dynamics results in the dividing surfaces

‘‘migrating’’ just as the PODS do.

We have taken the opposite, top-down approach by asking what the

structures based on a simple rank-one saddle look like for a general

Hamiltonian. Indeed, in the early 1990s the Wiggins group [14,22] investigated

the geometry associated with certain types of stationary points in phase space.

They proved the existence of NHIMs in the vicinity of these stationary points.

With these results and with the technology of Lie–Deprit transforms [75,76],

we have been able to reformulate the definition of the TS in terms of the

geometrical objects that lie in the vicinity of the phase-space barrier or saddle.

A consequence of the phase space geometry in the vicinity of the stationary

point is that the Hamiltonian can be transformed into a known normal form. It is

this normal form that is responsible for the separation between the dynamics in

the reactive mode from those in the internal modes. This is reflected in the

equations of motion when they transformed into the normal-form variables.

There are classical trajectories that remain in the vicinity of the stationary point

for all time. These trajectories lie on a ð2n� 2Þ-dimensional invariant manifold

called the center manifold. This manifold is of fundamental importance in the

phase-space formulation of TST because it corresponds to the activated

complex.

Moreover, the intersection of the center manifold with an energy shell yields

an NHIM. The NHIM, which is a ð2n� 3Þ-dimensional hypersphere, is the

higher-dimensional analog of Pechukas’ PODS. Because this manifold is

normally hyperbolic, it will possess stable and unstable manifolds. These

manifolds are the ð2n� 2Þ-dimensional analogs of the separatrices. The NHIM

is the edge of the TS, which is a ð2n� 2Þ-dimensional hemisphere.

In the next two sections we will review the mathematical foundations of the

phase space formalism. This is followed in Section V by a discussion of how the

Hamiltonian is transformed into normal form; finally in the last section, in order

to illustrate these concepts, we quantize semiclassically the TS for the iso-

merization of HCN.
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III. SADDLES IN ENERGY LANDSCAPES

Our intuition in the study of reaction dynamics is largely based upon our

understanding of the ‘‘geography’’ of simple two-dimensional potential energy

surfaces. While this basis has proven very useful, it also has produced a false

sense of security. The very simplicity of the geometry a two-dimensional

potential energy surface can lead one into difficulties that only arise in higher-

dimensional systems. Similar problems are encountered in 2-DOF systems. The

ionization of Rydberg atoms in the presence of external electromagnetic fields

provides an excellent example [6,18]. The complication that occurs is that in

the presence of the electromagnetic fields the Hamiltonian can no longer be

partitioned into the kinetic and potential energies. Consequently, it is not possible

to define the TS in terms of the morphology potential energy surfaces, but instead

must be defined in terms of the geometry of the total energy surface.

The difficulty is that we have trained ourselves to think of potential energy

surfaces defined on n-dimensional coordinate spaces. Instead we should be

thinking of the total energy defined on the 2n-dimensional phase space. The

method of analysis for the total energy is essentially the same as is used for

the potential energy surface. The first step is to identify the stationary points

(extrema) and their linear stabilities. Once these points are found and

characterized, the machinery of geometrical mechanics can be applied to

obtain the invariant manifolds and their stable and unstable manifolds

associated with the stationary points. Using these geometrical constructs, phase

space can be partitioned into reactive and nonreactive regions, and such

physically interesting properties as the rate of reaction or branching ratios can

be obtained from the geometry.

Finding and characterizing the stationary states of systems with more than

two DOFs is an unsolved problem. Isolated stationary points are the best known

of these manifolds. In systems with two DOFs, in addition to isolated stationary

points, it is also possible to find a closed loop of stationary points [77]. These

are associated with parabolic resonances. More complicated manifolds will

exist in systems having more than two DOFs. In the present discussion we will

focus on the consequences of the existence of isolated points of stationary flow

in phase space.

A. Phase Space Versus Coordinate Space

In the coordinate-space treatment of TST, certain assumptions must be made

concerning the nature of the Hamiltonian of the system. First, it must be assumed

that it can be partitioned into the sum of two terms, the kinetic and the potential

energy. Furthermore, one must also assume that the kinetic energy is positive

definite and is quadratic in the momenta. With these assumptions, then the point

of stationary flow in phase space and the saddle point of the potential energy
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coincide. That is, the conditions placed on the kinetic energy guarantee that the

momenta characterizing the point of stationary flow are equal to zero;

consequently, the coordinate space configuration of this point must be such

that the various forces are balanced. In other words, that it is extremum of the

potential energy.

A major difference between phase and coordinate space is that phase space is

a state space; that is, each point corresponds to a unique state of the system,

whereas a point in coordinate space determines only the physical configuration

of the system. Mathematical consequences of this seemingly small difference

are remarkable. First, the metric in phase space corresponds to a volume.

The physical interpretation of this volume as the number of states follows from

the fact that phase space is a state space. On the other hand, in the coordinate

space treatment, the metric provides us with a way of measuring the ‘‘distance’’

between two physical configurations. This difference in the metric results in a

significant difference in the nature of the questions that can be addressed. In the

phase-space treatment we construct probabilities that certain events occur by

considering ratios of phase-space volumes. The rates at which these events

occur are readily obtained as fluxes across boundaries between phase-space

volumes. And in coordinate space one focuses primarily on the rate at which the

coordinate space configuration changes.

The coordinate space approach to TST encounters a number of significant

problems. The most serious of these concerns the definition of the TS. A

‘‘rigorous’’ definition of the TS only exists for systems with two DOFs.

Efforts at extending this definition to systems with three or more DOFs have not

been successful. A similar difficulty occurs when the distinction between the

kinetic and potential energy is lost. Jaffé et al. [6,18] have shown that this

particular difficulty can be avoided by the judicious choice of a different

coordinate space. They argue that the TS must be defined in phase space and

that if this object is projected into the appropriate coordinate space, then the

coordinate space formalism can be applied. From this the origin of these

difficulties becomes apparent: The coordinate-space objects are shadows

(projections) of the phase-space objects. Seen from this point of view, it is

not surprising that difficulties are encountered when trying to extend the

coordinate space formalism to systems with more than two DOFs.

B. Stability

The analysis of the stability of isolated stationary points is different in the phase-

space treatment from that in the coordinate space treatment. In the coordinate

space treatment the slope of the potential energy surface gives the forces exerted

on the system. Stationary points occur at extrema of the potential energy. Their

stability is determined by the eigenvalues of the matrix of second derivatives

evaluated at the extremum. Assuming the system has n DOFs, it will possess n
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eigenvalues. The stability of the extremum is determined by the number of

eigenvalues greater than or less than zero. If all of the eigenvalues are positive,

then the extremum is a minimum and it is stable against all perturbations. In

contrast, when all of the eigenvalues are negative, then the extremum

corresponds to a maximum and all perturbations are unstable. Clearly, the

extremum can be characterized by the number of positive and negative

eigenvalues it possesses. If it possesses m negative eigenvalues, it is said to

be a rank-m saddle—that is, it is unstable in m DOFs and stable in the remaining

n� m DOFs.

In the analogous analysis in the phase-space treatment, one examines the

stability matrix

q _qq
qq

q _qq
qp

q _pp
qq

q _pp
qp

0
BBB@

1
CCCA ¼

q2H
qqqp

q2H

q2p

� q2H

q2q
� q2H
qqqp

0
BBBB@

1
CCCCA

evaluated at the point of stationary flow. The eigenvalues of this matrix occur in n

pairs of numbers being either real or imaginary. A pair of imaginary eigenvalues

corresponds to a stable DOF (elliptical), and a pair of real eigenvalues

corresponds to an unstable DOF (hyperbolic). When both treatments are both

valid, the eigenvalues of the coordinate treatment are equal to minus the square

of eigenvalues of the corresponding phase-space treatment (assuming mass

weighted coordinates).

The case when the eigenvalues are equal to zero is special and must be

treated separately. One is tempted to assume that such cases are rare. In fact

these cases occur when the manifolds of stationary flow are not isolated points.

The simplest of these cases give rise to parabolic resonances [77]; however, they

are beyond the scope of this review. These resonances have been observed in

some of the simplest reactive systems [78].

C. Energy Landscapes in Phase Space

In the coordinate space formulation, one investigates the geometry of the

potential energy surface, which is defined on the n-dimensional coordinate space.

On this surface the minima are called potential wells. In turn, each of these wells

are separated from each other by a rank-one saddle. The transport from one

potential well to the next must pass over the saddle that separates them. The rate

of a reaction is formulated in terms of the flux across the saddle. In systems with

more than two DOFs, higher rank saddles occur. These occur when the

boundaries of more than three or more potential wells coincide.
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In the phase-space treatment the situation is very similar. However, rather

than study the morphology of the potential energy surface, we must focus on the

total energy surface. The geometry of this surface, which is defined on phase

space instead of coordinate space, can also be characterized by its stationary

points and their stability. In this treatment, the rank-one saddles play a

fundamental result. They are, in essence, the traffic barriers in phase space. For

example, if two states approach such a point and one passes on one side and the

other passes on the other side, then one will be reactive and the other

nonreactive. Once the stationary points are identified, then the boundaries

between the reactive and nonreactive states can be constructed and the

dynamical structure of phase space has been determined. As in the case of

potential energy surfaces, saddles with rank greater than one occur, especially in

systems with high symmetry between outcomes, as in the dissociation of ozone.

In the next section we will review the mathematical foundations of the phase

space formalism.

IV. PHASE-SPACE STRUCTURE AROUND A SIMPLE

(RANK-ONE) SADDLE

In this section we will develop the phase-space structure for a broad class of n-

DOF Hamiltonian systems that are appropriate for the study of reaction

dynamics through a rank-one saddle. For this class of systems we will show

that on the energy surface there is always a higher-dimensional version of a

‘‘saddle’’ (an NHIM [22]) with codimension one (i.e., with dimensionality one

less than the energy surface) stable and unstable manifolds. Within a region

bounded by the stable and unstable manifolds of the NHIM, we can construct the

TS, which is a dynamical surface of no return for the trajectories. Our approach is

algorithmic in nature in the sense that we provide a series of steps that can be

carried out to locate the NHIM, its stable and unstable manifolds, and the TS, as

well as describe all possible trajectories near it.

A. Justification of the n-Degree-of-Freedom Hamiltonian

Consider a Hamiltonian of the following form:

H ¼
Xn�1

i¼1

oi

2
p2i þ q2i
� �þ lqnpn þ f1ðq1; . . . ; qn�1; p1; . . . ; pn�1;IÞ

þ f2ðq1; . . . ; qn�1; p1; . . . ; pn�1Þ;
ðq1; . . . ; qn; p1; . . . ; pnÞ 2 R2n ð1Þ

Here I � pnqn and f1, f2 are at least of third order; that is, they are responsible

for the nonlinear terms, and f1ðq1; . . . ; qn�1; p1; . . . ; pn�1; 0Þ ¼ 0. In the language
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of reaction dynamics, the coordinates ðqn; pnÞ are the reaction coordinates and

the remaining coordinates are referred to as the bath coordinates. The

corresponding Hamiltonian vector field is given by

_qqi ¼ qH
qpi

¼ oipi þ qf1
qpi

þ qf2
qpi

_ppi ¼ � qH
qqi

¼ �oiqi � qf1
qqi

� qf2
qqi

; i ¼ 1; . . . ; n� 1

_qqn ¼ qH
qpn

¼ lqn þ qf1
qI

qn

_ppn ¼ � qH
qqn

¼ �lpn � qf1
qI

pn

ð2Þ

Most realistic Hamiltonians with simple saddles do not appear in this form.

In what follows, we show how to transform such a Hamiltonian into this form

using Normal-Form theory [13]. The phase-space structures that form the

subject of this review will then be expressed in terms of the normal-form

coordinates ðq1; . . . ; qn; p1; . . . ; pnÞ. Therefore, before analyzing Eq. (2) we

show that any Hamiltonian vector field in the neighborhood of an equilibrium

point of saddle � center � � � � � center type can be transformed to the form of

Eq. (2).

B. Finding the ‘‘Apt’’ Coordinates Around a Saddle Using

a Normal Form

Finding a coordinate system that minimizes the coupling between the DOFs has

always been a natural aspiration in theoretical chemistry. The so-called reaction-

path formalism is just such a procedure, as is the use of Normal-Form theory [13],

which is our method of choice. Normal-Form theory gives us sufficient

conditions for a Hamiltonian to be transformed into the form of Eq. (1) in the

neighborhood of an equilibrium point of center � � � � � center� saddle type.

This result is well known (see, e.g., Ref. 13). To summarize, first we perform a

Taylor expansion of the Hamiltonian [Eq. (1)]:

H ¼ H2 þ H3 þ H4 þ � � � ð3Þ

where Hk is a homogeneous polynomial of degree k in q1- � � � -qn-p1- � � � -pn.
The quadratic part of the Hamiltonian, H2, is given by

H2 ¼
Xn�1

i¼1

oi

2
ðq2i þ p2i Þ þ lqnpn ð4Þ
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We then transform the nonhyperbolic part of H2 into complex coordinates:

zj ¼ qj þ ipj; �zzj ¼ qj � ipj; j ¼ 1; . . . ; n� 1

In these coordinates H2 becomes

H2 ¼
Xn�1

j¼1

oj

2
jzjj2 þ lqnpn ð5Þ

Moreover, Hk is made up of linear combinations of terms of the form

zk11 � � � zkn�1

n�1q
kn
n �zz

‘1
1 � � ��zz‘n�1

n�1p
‘n
n ð6Þ

where ki; ‘i � 0 and k1 þ � � � þ kn þ ‘1 þ � � � þ ‘n ¼ k:
The Poisson bracket between two scalar-valued functions, F and G, in these

variables is given by

F; Gf g � 2i
Xn�1

j¼1

qF
q�zzj

qG
qzj

� qF
qzj

qG
q�zzj

� �
þ qF
qqn

qG
qpn

� qF
qpn

qG
qqn

ð7Þ

Now the map

adH2
ð�Þ � � ; H2f g ð8Þ

is a linear map of the space of homogeneous polynomials of degree k into itself.

Normal-Form theory [13] tells us that the only terms that cannot be removed

from Eq. (3) at order k are those in the kernel of adH2
ð�Þ. A simple calculation

shows that

adH2
zk11 � � � zkn�1

n�1q
kn
n �zz

‘1
1 � � ��zz‘n�1

n�1p
‘n
n

� �

¼ i
Xn�1

j¼1

ojðkj � ‘jÞ þ lð‘n � knÞ
 !

zk11 � � � zkn�1

n�1q
kn
n �zz

‘1
1 � � ��zz‘n�1

n�1p
‘n
n ð9Þ

So we see that zk11 � � � zkn�1

n�1q
kn
n �zz

‘1
1 � � ��zz‘n�1

n�1p
‘n
n is an eigenvector for adH2

ð�Þ with

eigenvalue i
Pn�1

j¼1 ojðkj � ‘jÞ þ lð‘n � knÞ. Therefore terms of the form (6)

cannot be removed if

i
Xn�1

j¼1

ojðkj � ‘jÞ þ lð‘n � knÞ ¼ 0 ð10Þ
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That we have arrived at the desired coordinate system in which qn and pn appear

only as a product of each other in the Hamiltonian follows immediately from

Eq. (10) since if that quantity is zero, then both the real and imaginary parts must

be zero. The real part being zero implies that kn ¼ ‘n. Therefore, from Eq. (6),

the power on the qn and pn coordinates must be the same at any order. Note,

however, that this argument merely shows that such a coordinate system exists

which brings the Hamiltonian into the form of Eq. (1) order by order. Actually

computing this coordinate transformation, which would bring an arbitrary

Hamiltonian into the form of Eq. (1), is an additional technical problem that

needs to be solved on each problem at hand. Note also that this is a local result

valid in the neighborhood of the equilibrium point of center � � � � � center �
saddle type. However, once the phase-space structure is established locally, it can

be continued numerically outside of the local region.

It is well known (see, e.g., Ref. 13) that the normal form transformations do

not converge in the sense that normalization to all orders generally does not

yield a meaningful result. However, this is of no consequence for our purposes.

We view the technique more as the input to a numerical method for realizing

the NHIM, its stable and unstable manifolds, and the TS. In this sense the

limitations of machine precision make normalization beyond a certain

finite order meaningless. This is a local result valid in the neighborhood of

the equilibrium point of center� � � � � center� saddle type. However, once the

phase-space structure is established locally, it can be numerically continued

outside of the local region.

If the n� 1 frequencies oi are nonresonant, then the truncated normal form

(at any order) is integrable. That is, the quantities Ji ¼ 1
2
p2i þ q2i
� �

; i ¼
1; . . . ; n� 1, and I ¼ pnqn are integrals of the truncated normal form, and

the Hamiltonian can be written as a function of these integrals. In these

coordinates the quantity qf1=qI becomes a constant and the qn-pn component of

Hamilton’s equations becomes a simple, 2-DOF saddle. This implies that

actions remain constant while passing through the saddle region—a situation

that has been numerically observed in realistic examples [63,69].

C. Normally Hyperbolic Invariant Manifolds (NHIMs) and

Their Stable and Unstable Manifolds

In the 2-DOF case, it is well known that the motion in the direction transverse to

the reaction direction takes place on a periodic orbit, and this orbit forms the

boundary of the PODS [17]. Beyond 2 DOF, the periodic orbit does not have the

right dimensionality to be the boundary of the TS, and the NHIM takes its place.

Normal hyperbolicity means that, under the linearized dynamics, the growth and

decay rates of tangent vectors normal to the manifold (the ‘‘reaction’’) dominates

the growth and decay of tangent vectors tangent to the manifold. Hence, NHIMs

are higher-dimensional analogs of saddle points (‘‘saddle spheres’’).
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The dynamics occurs on the ð2n� 1Þ-dimensional energy surface given by

E2n�1
h ¼

(
ðq1; . . . ; qn; p1; . . . ; pnÞ

�����
Xn�1

i¼1

oi

2
p2i þ q2i
� �

þ lqnpn þ f1ðq1; . . . ; qn�1; p1; . . . ; pn�1;IÞ
þ f2ðq1; . . . ; qn�1; p1; . . . ; pn�1Þ

¼ h ¼ constant > 0

)
ð11Þ

When qn ¼ pn ¼ 0 in Eq. (2), _qqn ¼ _ppn ¼ 0. Therefore qn ¼ pn ¼ 0 is a

ð2n� 2Þ-dimensional invariant manifold for this problem. Its intersection with

the ð2n� 1Þ-dimensional energy surface, denoted M2n�3
h , is given by

M2n�3
h ¼

�
ðq1; . . . ; qn; p1; . . . ; pnÞ

���� qn ¼ pn ¼ 0;

Xn�1

i¼1

oi

2
p2i þ q2i
� �þ f2ðq1; . . . ; qn�1; p1; . . . ; pn�1Þ

¼ h ¼ constant > 0

	
ð12Þ

This is also the Hamiltonian of the activated complex. We will encounter it in

Eq. (23) with the customary symbol Hz. Regardless of its stability properties or

the size of the nonlinearity, Eq. (12) is always an invariant manifold. However,

we are interested in the case when it is of the saddle type with stable and unstable

manifolds. If the physical Hamiltonian is of the form of Eq. (1), then a

preliminary, local transformation is not required. The manifold (12) is invariant

regardless of the size of the nonlinearity. Moreover, it is also of saddle type with

respect to stability in the transverse directions. This can be seen by examining

Eq. (1). On qn ¼ pn ¼ 0 the transverse directions, (i.e., qn and pn), are still of

saddle type (more precisely, they grow and decay exponentially).

Normally, hyperbolic invariant manifolds persist under perturbation [22]. If

we are in the setting where the form of Eq. (1) must first be obtained by

applying Normal Form theory, then we are restricted to a sufficiently small

neighborhood of the equilibrium point. In this case the nonlinear terms are

much smaller than the linear terms. Therefore, the sphere present in the linear

problem becomes a deformed sphere for the nonlinear problem and still has

(2n� 2)-dimensional stable and unstable manifolds in the (2n� 1)-dimensional

energy surface since normal hyperbolicity is preserved under perturbations.

In the qn-pn phase portrait the trajectories that go from pn > qn > 0

(respectively pn < qn < 0) to qn > pn > 0 (respectively qn < pn < 0) are said to

be the trajectories that undergo reaction (see Fig. 4). [Keep in mind that for

nonlinear Hamiltonian systems this is a local picture valid near Eq. (12), that is,
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qn ¼ pn ¼ 0.] These are the trajectories with qnpn > 0 in Fig. 4. We can see

from Fig. 4 that there are two types of reactive trajectories: those with

qn; pn > 0, which are referred to as the forward reactive trajectories, and those

with qn; pn < 0, which are referred to as the backward reactive trajectories.

Notice that the qn and pn components of a reactive trajectory cannot change sign

during their evolution. The trajectories with qnpn < 0 are referred to as

nonreactive trajectories.

A key advantage of the normal form is that the stable and unstable manifolds

of M2n�3
h are known explicitly. These are the impenetrable barriers and act as

phase-space ‘‘scissors.’’ Their effect was illustrated in Fig. 3. They are given by

Ws M2n�3
h

� � ¼ �ðq1; . . . ; qn; p1; . . . ; pnÞ
���� qn ¼ 0;

Xn�1

i¼1

oi

2
p2i þ q2i
� �þ f2ðq1; . . . ; qn�1; p1; . . . ; pn�1Þ

¼ h ¼ constant > 0

	

Wu M2n�3
h

� � ¼ �ðq1; . . . ; qn; p1; . . . ; pnÞ
���� pn ¼ 0;

Xn�1

i¼1

oi

2
p2i þ q2i
� �þ f2ðq1; . . . ; qn�1; p1; . . . ; pn�1Þ

¼ h ¼ constant > 0

	
ð13Þ

Figure 4. (The color version is available from the authors.) The projection of the reactive and

nonreactive trajectories into the qn-pn plane near qn ¼ pn ¼ 0.
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Hence, the stable and unstable manifolds of the sphere have the structure of

M2n�3
h � R.

In the language of dynamical systems theory, both the stable and unstable

cylinders have two ‘‘branches’’ corresponding to pn > 0 and pn < 0, related to

the forward and backward reactions.

The forward stable manifold of M2n�3
h is given through

Ws
f M2n�3

h

� � ¼ �ðq1; . . . ; qn; p1; . . . ; pnÞ
���� qn ¼ 0; pn > 0;

Xn�1

i¼1

oi

2
p2i þ q2i
� �þ f2ðq1; . . . ; qn�1; p1; . . . ; pn�1Þ

¼ h ¼ constant > 0

	
ð14Þ

The backward stable manifold of M2n�3
h is defined by

Ws
b M2n�3

h

� � ¼ �ðq1; . . . ; qn; p1; . . . ; pnÞ
���� qn ¼ 0; pn < 0;

Xn�1

i¼1

oi

2
p2i þ q2i
� �þ f2ðq1; . . . ; qn�1; p1; . . . ; pn�1Þ

¼ h ¼ constant > 0

	
ð15Þ

The forward unstable manifold of M2n�3
h is

Wu
f M2n�3

h

� � ¼ �ðq1; . . . ; qn; p1; . . . ; pnÞ
���� qn > 0; pn ¼ 0;

Xn�1

i¼1

oi

2
p2i þ q2i
� �þ f2ðq1; . . . ; qn�1; p1; . . . ; pn�1Þ

¼ h ¼ constant > 0

	
ð16Þ

The backward unstable manifold of M2n�3
h is given by

Wu
b M2n�3

h

� � ¼ �ðq1; . . . ; qn; p1; . . . ; pnÞ
���� qn < 0; pn ¼ 0;

Xn�1

i¼1

oi

2
p2i þ q2i
� �þ f2ðq1; . . . ; qn�1; p1; . . . ; pn�1Þ

¼ h ¼ constant > 0

	
ð17Þ
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The stable and unstable manifolds of M2n�3
h are indeed the natural higher-

dimensional analogs of the 2-DOF ‘‘cylinder manifolds’’ described in Ref. 79.

D. The Transition State

There is some latitude in defining the TS. We obtain it by setting qn ¼ pn. On the

energy surface this gives

T2n�2
h ¼

�
ðq1; . . . ; qn; p1; . . . ; pnÞ

���� qn ¼ pn;

Xn�1

i¼1

oi

2
p2i þ q2i
� �þ lp2n þ f1ðq1; . . . ; qn�1; p1; . . . ; pn�1; p

2
nÞ

þ f2ðq1; . . . ; qn�1; p1; . . . ; pn�1Þ ¼ h ¼ constant

	
ð18Þ

This (2n� 2)-dimensional surface is divided into two halves (pn > 0 and pn < 0)

by pn ¼ 0, which corresponds to the invariant manifoldM2n�3
h . If we are close to

the equilibrium point so that the nonlinearity is small, then the transition state is a

deformed (2n� 2)-dimensional sphere. It can be proven that (18) is locally a

surface of no return for the trajectories of Hamilton’s equations given in Eq. (2).

‘‘Locally’’ it refers to a neighborhood of Eq. (18) such that trajectories starting

on Eq. (18) (except those starting on the (2n� 3)-dimensional invariant manifold

(12)) must leave before they can possibly re-intersect Eq. (18) because the

(2n� 2)-dimensional invariant manifold in the energy surface is defined by

qn ¼ pn. If we examine Hamilton’s equations (2), we see that the vector field is

not tangent to Eq. (18). Moreover, the vector field is not zero on Eq. (18).

Therefore trajectories starting on Eq. (18) always leave Eq. (18). By continuity of

solutions with respect to initial conditions, they must leave a neighborhood of

Eq. (18) before possibly returning.

The (2n� 2)-dimensional Ws M2n�3
h

� �
and Wu M2n�3

h

� �
bound a region in

the (2n� 1)-dimensional energy surface that is divided into two components

by the TS. All reacting trajectories start in one component, cross the TS, then

enter the other component. On a fixed energy surface with energy value

h ¼ constant > 0, the reactant segments of the forward reactive trajectories are

contained in the region

0 <
Xn�1

i¼1

oi

2
p2i þ q2i
� �þ f2ðq1; . . . ; qn�1; p1; . . . ; pn�1Þ < h; pn > qn > 0

ð19Þ
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and the reactant segments of the backward reactive trajectories are contained in

the region

0 <
Xn�1

i¼1

oi

2
p2i þ q2i
� �þ f2ðq1; . . . ; qn�1; p1; . . . ; pn�1Þ < h; pn < qn < 0

ð20Þ

In Fig. 5 we illustrate a forward and backward reacting trajectory. Besides, in

Fig. 6 we illustrate just the reactant segment of the forward and backward

reacting trajectory shown in Fig. 5, whereas in Fig. 7 we illustrate the product

segments of the forward and backward reacting trajectory shown in Fig. 5.

Now consider a forward reacting trajectory (i.e., pn > 0; qn > 0). It follows,

by examining the qn–pn phase portrait in Fig. 5, that the pn component of the

trajectory decreases. It touches the line qn ¼ pn, at which point it has reached

the TS as defined in Eq. 18. It then crosses the TS.

E. Searching for the Transition State and Other Phase-Space Structures

As mentioned above, we can obtain all these phase-space structures in explicit

form following these steps:

1. For a given Hamiltonian, find an equilibrium point for which the

linearization about the equilibrium point yields the form described in

Figure 5. (The color version is available from the authors.) The projection of a forward and

backward reactive and nonreactive trajectories into the qn–pn plane.
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Figure 6. (The color version is available from the authors.) The projection of the reactant

segment of the forward and backward reactive trajectory shown in Fig. 5 into the qn–pn plane.

Figure 7. (The color version is available from the authors.) The projection of the product

segment of the forward and backward reactive trajectories shown in Fig. 5 into the qn–pn plane.
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Eq. (4). We have not yet developed the theory for saddles higher than

rank one.

2. Transform the Hamiltonian to the normal form described above up to

the desired degree of accuracy using a symbolic manipulator. The

Hamiltonian is now in a new coordinate system that we will call the

‘‘normal form coordinates.’’

3. Identify the TS [Eq. (18)] and the higher-dimensional analogs of the

stable and unstable manifolds that describe the reaction in the normal-

form coordinates.

4. These structures can be visualized in the original coordinates by operating

the normal-form transformations in reverse.

5. Integrals of flux across the TS can be computed in the normal-form

coordinates since the transformation between the original coordinates and

the normal-form coordinates is symplectic, hence volume preserving.

F. Flux Through the Transition State

The flux through the TS is important in reaction dynamics since the reaction rate

can be obtained by dividing this flux by the appropriate partition function [35].

Specifically, the classical canonical reaction rate is given by [80]

kclðTÞ ¼ QrðTÞ�1ð2p�hÞ�n

ð
dp dq e�bHðp;qÞFðp; qÞPrðp; qÞ ð21Þ

where ðp; qÞ are the totality of the phase-space coordinates [i.e., q ¼ ðq1; . . . ; qnÞ
and p ¼ ðp1; . . . ; pnÞ], and Fðp; qÞ is the flux factor across TS—that is, the rate at

which trajectories cross the dividing surface [80], specified in our case by

sðp; qÞ ¼ pn þ qn. The term Prðp; qÞ selects the forward reactive trajectories. To

work on the energy surface, we rewrite the integral slightly to read

kclðTÞ ¼ QrðTÞ�1ð2p�hÞ�n

ð
dE e�bE

ð
dp dq dðHðp; qÞ � EÞFðp; qÞPrðp; qÞ

ð22Þ

where the inner integral is the flux of energy surface volume across the forward

TS. This flux through the TS turns out to be equal to the flux across its boundary

[81], which is the NHIM. In practical terms, this means that d function only

contributes when the Hamiltonian H is evaluated at I ¼ 0, namely when it

becomes the Hamiltonian [Eq. (12)] of the activated complex,H ¼ h ¼ constant.

If we use the symbol Hz for the Hamiltonian function of the activated complex,
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the partition function is

QzðTÞ ¼ ð2p�hÞ�ðn�1Þ
ð
dp0 dq0 e�bHzðp0;q0Þ ð23Þ

(where the primed quantities exclude the reaction coordinates pn; qn) and the

conventional TST result for the rate constant [35]

kclðTÞ ¼ kT

ð2p�hÞ
QzðTÞ
QrðTÞ ð24Þ

is recovered.

V. NORMALIZATION BY LIE TRANSFORMATIONS

A. Lie Transformations

Briefly, the aim of Lie transformations in Hamiltonian theory is to generate a

symplectic (that is, canonical) change of variables depending on a small

parameter as the general solution of a Hamiltonian system of differential

equations. The method was first proposed by Deprit [75] (we follow the

presentation in Ref. 76) and can be stated as follows.

We start with an analytic Hamiltonian function depending on a small

parameter e:

Hðx; eÞ ¼
X1
i¼ 0

ei

i!
HiðxÞ

where the HamiltoniansHiðxÞ are analytic functions in the variable x ¼ ðx1; . . . ;
xn; xnþ1; . . . ; x2nÞ. Here xi, 1 � i � n represent the coordinates whereas xi,

nþ 1 � i � 2n, are their conjugate momenta. Hamiltonian H is transformed

into another Hamiltonian

Kðy; eÞ ¼
X1
i¼ 0

ei

i!
KiðyÞ �

X1
i¼ 0

ei

i!
H

ðiÞ
0 ðyÞ

and y ¼ ð y1; . . . ; yn; ynþ1; . . . ; y2nÞ (where yi, 1 � i � n, refers to the trans-

formed coordinates and yi, nþ 1 � i � 2n, refers to the transformed conjugate

momenta), through a generating function

Wðx; eÞ ¼
X1
i¼0

ei

i!
Wiþ1ðxÞ
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according to the recursion formula

H
ðjÞ
i ¼ H

ðj�1Þ
iþ1 þ

Xi
k¼ 0

i

k

� �
H

ðj�1Þ
i�k ; Wkþ1

n o
ð25Þ

with i � 0, j � 1 and H
ð0Þ
i ¼ Hi and f �; � g denotes the Poisson bracket of two

scalar fields; for example, given P and Q the Poisson bracket is defined over an

open domain of R2n as the quantity

fP ; Q g ¼
Xn
i¼ 1

qP
qxi

qQ
qxnþi

� qP
qxnþi

qQ
qxi

� �

or equivalently in terms of the variables y1; . . . ; y2n. We emphasize that Wðx; eÞ
is conserved under the transformation, and thus it can also be expressed as

Wðy; eÞ. The recursion process can be summarized in the so-called Lie triangle

(see Fig. 8).

Hence, Eq. (25) yields now the partial differential identity

Ki � adH0
ðWiÞ ¼ ~HHi ð26Þ

where ~HHi collects all the terms known from order i� 1 and is computed using

the recursive formula (25). In identity (26), called the homology equation, Wi

and Ki must be determined according to the specific requirements of the Lie

transformation that one performs.

Figure 8. At each order i � 1 of the process, the diagonal H
ðkÞ
j with jþ k ¼ i is built starting

with H
ð1Þ
i�1 and finishing with H

ði�1Þ
1 . Note that H

ðiÞ
0 cannot be determined unless Wi is previously

known.
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The transformation x ¼ Xðy; eÞ relates the ‘‘old’’ variables x with the

‘‘new’’ ones y and is a near-identity change of variables. The direct change is

given by

x ¼ yþ
X1
i¼ 1

ei

i!
y
ðiÞ
0 ð27Þ

The coordinates y
ðiÞ
0 , i � 1 are calculated recursively with the aid of

y
ðjÞ
i ¼ y

ðj�1Þ
iþ1 þ

Xi
k¼ 0

i

k

� �
y
ðj�1Þ
k ; Wiþ1�k

n o
ð28Þ

with i � 0 , j � 1 and y
ð0Þ
i � 0 for i � 1 and y

ð0Þ
0 � y. Consequently, Eq. (27)

gives the set of coordinates x in terms of y with the use of the generating

function W.

Similar formulae can be used to obtain the inverse transformation

y ¼ Yðx; eÞ, which explicitly reads as

y ¼ xþ
X1
i¼ 1

ei

i!
x
ð0Þ
i ð29Þ

Now x
ð0Þ
0 � x and for i � 1 coordinates x

ð0Þ
i are calculated recursively by means

of

x
ðjÞ
i ¼ x

ðjþ1Þ
i�1 �

Xi�1

k¼ 0

i� 1

k

� �
x
ðjÞ
i�k�1 ; Wkþ1

n o
ð30Þ

with i � 1 , j � 0. This time x
ðiÞ
0 � 0 for i � 1 and the Jacobians appearing in

the operators of (30) are computed with respect to x, and Wkþ1 is also written

in x.

Note that Eq. (27) can be used to transform any function expressed in the old

variables x as a function of the new variables y. Similarly, Eq. (29) is used to

transform any function in y by a function of x. In this respect we can compute a

formal integral of the original system by going back to the departure system.

Specifically if the normal form calculations have been carried out to an order

M > 1, then we determine T�ðx; eÞ as

T�ðx; eÞ ¼ TðxÞ þ
XM
i¼ 1

ei

i!
TðxÞð0Þi ð31Þ
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where TðxÞð0Þi are calculated using

TðxÞðjÞi ¼ TðxÞðjþ1Þ
i�1 �

Xi�1

k¼ 0

i� 1

k

� �
TðxÞðjÞi�k�1 ; Wkþ1

n o
ð32Þ

with i � 1 and j � 0. Now TðxÞð0Þ0 � TðxÞ and for i � 1, TðxÞðiÞ0 � 0. Then

T�ðx; eÞ is an asymptotic integral of H in some domain, that is, fH ; T� g ¼
OðeMþ1Þ. Details can be found in Ref. 76.

The above method is formal in the sense that the convergence of the various

series is not discussed. Indeed, the series diverge for many applications.

However, the lower orders of the transformed system can give interesting

information, and the process can be stopped at a certain order M. This means

that these terms of the series are useful to construct both the transformed

Hamiltonian and the generating function, since they are unaffected by the

ultimately divergent character of the whole process.

Once W has been determined, we can calculate the new coordinates (or any

function of them) as functions of the old ones and vice versa.

B. Dynamics Near the Transition State Using the

Normal-Form Coordinates

Using normal-form coordinates helps in the understanding and description of the

motion near the saddle. If the n� 1 frequencies oi are nonresonant, then the

truncated normal form (at any order) is integrable. That is, the quantities

Ji ¼ 1
2
p2i þ q2i
� �

; i ¼ 1; . . . ; n� 1, and I ¼ pnqn are integrals of the truncated

normal form, and the truncated Hamiltonian can be written as a function of these

integrals. To illustrate it, take the simplest possible case, namely a 3-DOF system

with nonresonant frequencies:

K ¼ KðJ1; J2;IÞ ð33Þ

Working in the space of integrals, which is a three-dimensional space with

coordinates J1–J2–I, brings advantages to computation and visualization. Since

these integrals are constant on trajectories, a trajectory in this space corresponds

to a point.

� Energy Surface. This is given by:

KðJ1; J2;IÞ ¼ h ¼ constant ð34Þ
This will typically be a two-dimensional surface in the J1–J2–I space, for

each fixed h.

� The NHIM and Its Stable and Unstable Manifolds. In the normal-form

coordinates the NHIM is given by q3 ¼ p3 ¼ 0, the stable manifold of the
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NHIM is given by q3 ¼ 0, and the unstable manifold of the NHIM is given

by p3 ¼ 0. In the J1–J2–I space these are all given by I ¼ 0. In other

words, the NHIM and its stable and unstable manifolds are all identified

with

KðJ1; J2; 0Þ ¼ h ¼ constant

which is typically a curve in J1–J2–I space.

� The Transition State. In the normal-form coordinates this is given by

q3 ¼ p3; hence I � 0. Therefore the TS is given by

KðJ1; J2;I � 0Þ ¼ h ¼ constant

In this representation the TS is a portion of the energy surface.

In order to construct the change of coordinates back to the original

coordinates, we make use of the generating function W. Indeed we simply have

to evaluate Poisson brackets but without solving any partial differential

equations. Therefore the computational effort is much smaller than the one

corresponding to the calculation of the normal-form Hamiltonian and the

generating function.

Using (33) and the chain rule, Hamilton’s equations can be written in terms

of the integrals. It is important to note that qK=qJi, i ¼ 1; 2; 3, are constants on
trajectories. Hence, once the initial condition of a trajectory is chosen, evolution

of the trajectory is given by a linear system whose coefficients are constant, but

depend on the trajectory.

This simple form of Hamilton’s equations in the normal-form coordinates

near the TS enables us to construct trajectories showing any possible behavior

near the transition state. These trajectories can then be visualized in the original

coordinates (see Section VI.F). An example on the isomerization of HCN

follows.

VI. THE ISOMERIZATION OF HCN

This section presents a discussion of the treatment outlined above applied to a

realistic molecular reaction. For simplicity we have chosen the isomerization of

hydrogen cyanide (HCN) to form hydrogen isocyanide (HNC) because it is

commonly used as model system in the study of isomerization reactions. This

reaction, which has been the subject of innumerable studies, is excellent for our

purposes. While the system is small (only three atoms) it does possess sufficient

complexity to be an excellent test case. The importance of this system as a test

case, both experimentally and theoretically, is demonstrated by the size of the

literature [82,83–141]. This list is by no means exhaustive, nor particularly

representative.
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In the present work we use the potential of Murrell, Carter, and Halonen

(MCH) [142]. Despite the fact that it is known to be inaccurate at energies at

which the isomerization occurs, because the majority of previous investigations

of the classical dynamics of the isomerization of HCN/HNC have used this

potential. In the present study it is not our goal to calculate chemical rates for

comparison with experimental results but rather to illustrate a new approach to

the calculation of such rates.

A. The Model System

The hydrogen cyanide molecule is a linear triatomic molecule and, consequently,

is described by nine DOFs. Three of these represent the center of mass and can

immediately be separated. Of the remaining six DOFs, two can taken to be the

total angular momentum and the projection of the total angular momentum along

a space-fixed axis. The remaining four DOFs are the internal degrees of freedom.

Three of these we take to be the Jacobi coordinates that are shown in Fig. 9 and

discussed below. The fourth DOF will be taken to be the projection of the angular

momentum about the axis defined by the smallest moment of inertia. Taking this

quantity to be equal to zero allows the motion to be viewed as taking place in a

plane. Care must be taken in this reduction because the Hamiltonian is singular in

these coordinates when the three atoms are collinear.

We define the Jacobi coordinates r, R, and g as the interatomic CN distance,

the distance from the hydrogen atom to the center of mass of the CN bond,

and the angle between the hydrogen atom, the center of mass of the CN

Figure 9. The Jacobi coordinates for HCN. The potential energy is constructed as a sum of

three two-body interactions plus a three-body term. These terms are functions of the distances

between the bodies, RCN ;RCH ;RNH . RCN is taken to be r, and RCH and RNH are expressed as

functions of R and g.
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bond, and the carbon atom (see Fig. 9). In these variables the interatomic

distances are given by

RCN ¼ r

RCH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mN

mC þ mN

� �2

r2 þ R2 � 2
mN

mC þ mN

� �
rR cos g

s

RNH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mC

mC þ mN

� �2

r2 þ R2 þ 2
mC

mC þ mN

� �
rR cos g

s

where mC and mN are the masses of carbon and nitrogen, respectively.

Phase space is spanned by the Jacobi coordinates and their conjugate

momenta. The dimensionality of the various geometrical object that we are

interested in are as follows: Phase space is six-dimensional. The energy shell is

five-dimensional. The TS, which is a codimension-one surface that partitions

the energy shell, is four-dimensional. The boundary or edge of the four-

dimensional TS, which is an NHIM, will be three-dimensional. Our goal in this

section is to illustrate how to construct representations of these various

geometrical objects. We will accomplish this in the course of investigating the

flow of states in phase space.

B. The Hamiltonian

The Hamiltonian has the form

H ¼ T pr; pR; pg; r;R
� �þ V r;R; gð Þ

where T pr; pR; pg; r;R
� �

is the kinetic energy and V r;R; gð Þ is the MCH

potential [142]. The kinetic energy has the form

T pr; pR; pg; r;R
� � ¼ 1

2m
p2r þ

1

2m
p2R þ 1

2

1

mr2
þ 1

mR2

� �
p2g

where m is the reduced mass of the CN diatom, that is, m ¼ mCmN=ðmC þ mNÞ;
and m corresponds to the reduced mass of the full system, that is,

m ¼ mH mC þ mNð Þ=ðmH þ mC þ mNÞ. As before, mC and mN are the masses

of carbon and nitrogen, andmH is the mass of hydrogen. It is crucial to observe at

this junction that kinetic energy is positive definite. This has important

consequences that we will discuss shortly.

The MCH potential [142] is given as sum of four terms. The first three are

two-body interactions between the three atoms. Each of these take the form

V2 qð Þ ¼ �Dee
�a1ðq�q0ÞXn

k¼ 0

ak q� q0
� �k
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where q is one of the three distances between two atoms, namely q is either RCN,

RCH , or RNH. The constant q
0 is the distance between the atoms at equilibrium,

that is, it belongs to fR0
CN ;R

0
CH ; R

0
NHg. Moreover, De is the binding energy of the

two-body interactions, thus it is either DCN
e , DCH

e , or DNH
e . The coefficients ai are

also constant terms. These three two-body interactions are shown in Fig. 10.

Finally, in our simulations we have taken n ¼ 3 for the interactions between the

carbon and hydrogen and between the carbon and the nitrogen and n ¼ 1 for the

interaction between hydrogen and nitrogen.

The fourth term is a three-body interaction term. It is the product of three

terms

V3ðRCN ;RCH ;RNHÞ ¼ V0
I S RRð ÞP RRð Þ

Here, RR refers to the three interatomic distances collectively. The first factor in

of V3 is a constant and can be interpreted as the strength of the three-body

interaction. The second factor is a product of three switching functions

S RRð Þ ¼
Y

CN; CH; NH

1� tanh
�i Ri � Sið Þ

2

� �

where the constants Si and �i are to be interpreted as the range over which the

three-body interaction is felt and the range over which the interaction is

Figure 10. The potential energies for the three two-body potentials are shown in this figure. The

three-body potential is a minor perturbation. Note that the CN potential is much deeper and narrower

than the other two potentials. This DOF is often decoupled from the other two dynamical DOFs.
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switched. The last factor, P RRð Þ, is a polynomial of the form

P RRð Þ ¼ 1þ
X
i

cisi þ
X
j�i

cijsisj þ � � �

where

si ¼
X

j¼CN; CH; NH

eji Rj � Sj
� �

where ci, cij and eji are fixed parameters. The values of these constants can be

found in Murrell et al. [142]. In our simulations, P is truncated at degree five in

si. It should be noted that distances are given in units of angstroms, energies in

units of electron volts, and masses in units of atomic mass units. These are the

units in which the original potential was developed.

We have included this discussion of the functional form of the potential

energy in order to clearly illustrate complexity of the Hamiltonian function.

C. Points of Stationary Flow

As we noted above, the kinetic energy is positive definite. Furthermore, it is

quadratic in the momenta. As a consequence, we can reduce the search for points

of stationary flow in phase space to one of finding the stationary points of the

potential energy surface. To see how this comes about, consider the Hamilton’s

equations for the three velocities

_rr ¼ qH
qPr

_RR ¼ qH
qPR

_gg ¼ qH
qPg

Setting the velocities equal to zero and using the Hamiltonian given above to

evaluate the derivatives yields

1

m
pr ¼ 0

1

m
pR ¼ 0

1

mr2
þ 1

mR2

� �
pg ¼ 0
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From this we see that the only solution corresponds to the three momenta

equaling zero, pr ¼ pR ¼ pg ¼ 0. The remaining three equations of motion in

essence, require that the forces exerted on the system be equal to zero. This

occurs at the extremum, or equilibrium, points of the potential energy.

The MCH potential energy surface has five equilibrium points in the energy

regime of interest in the present study. These are given in Table I.

The conjugate momenta of these fixed points are given by pr ¼ 0, pR ¼ 0,

and pg ¼ 0. The energies of these equilibrium points appear in Table II.

The stability of the equilibrium points can be determined in either of two

ways. We can evaluate the eigenvalues of the matrix of second derivatives of the

potential energy surface, or we can evaluate the eigenvalues of the stability

matrix again evaluated. In either case we evaluate the matrices at the

equilibrium points. These eigenvalues are given, respectively, in Tables III

and IV.

The first two equilibrium points are stable in all three DOFs and occur at the

bottom of the two major potential wells. The first corresponds to the hydrogen

cyanide equilibrium configuration, while the second corresponds to the

TABLE I

The Positions of the Five Equilibrium Points of the Murrell, Carter, and Halonen Potential

Energy Surfacea

r R g

HCN 1.15321621033313359 1.6864160898153111 0.0

HNC 1.16451121001722257 1.53121204160717798 p
Saddle 1.1394029718182721 1.20844255384653775 1.16823395477807734

Barrier 2 1.14781465664160409 1.19699789318508864 2.15136248734495216

Well 2 1.13654692030783732 1.11615395989081878 1.99142694984300057

aThe first two are the minima of the HCN and HNC potential wells. The third is the saddle point

separating these two wells. The final two points are associated with a very shallow well within the

HNC well. There are included here for the sake of completeness. The distances are given in

angstroms.

TABLE II

The Energies of the Five Fixed Points

Energy Relative to HCN Relative to HNC

HCN �13.5914 0.0 �0.4849

HNC �13.1065 0.4849 0.0

Saddle �12.0827 1.5087 1.0238

Barrier 2 �12.7174 0.8739 0.3890

Well 2 �12.7217 0.8697 0.3848
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hydrogen isocyanide equilibrium configuration. The third equilibrium point is a

rank-one saddle; that is, it is stable in two DOFs and unstable in last DOF. It

corresponds to the saddle point that separates the two major wells. The fourth

and fifth equilibrium points are associated with a very shallow well that lies

within much larger and deeper hydrogen isocyanide well. These two points will

not play a role in our analysis and are mentioned here only for completeness

reasons.

The eigenvalues of the matrix of second derivative of the potential energy

surface are equal to the force (or spring) constants of the normal modes at the

equilibrium points. Examining the values of these constants, which are given in

Table III, we see that, in the neighborhood of the first and second equilibrium

points, the motion will be oscillatory in all three DOFs. The eigenvalues of the

stability matrix, which are given in Table IV, have a similar interpretation. They

TABLE III

The Force Constant for the Normal Modes at the Equilibrium Points of

the Potential Energy Surfacea

k1 k2 k3

HCN 134.43 33.9942 4.11204

HNC 125.485 41.3439 1.6211

Saddle 134.193 31.8395 �5.48101

Barrier 2 128.109 41.2462 �0.746732

Well 2 139.425 38.0718 0.844229

aObserve that, since all three force constants are positive, the motion

will be oscillatory in the neighborhood of the first two and fifth

equilibrium points.

TABLE IV

The Eigenvalues of the Stability Matrix at the Five Fixed Points in

Phase Spacea

l1 l2 l3

HCN 6.61679i 4.07866i 1.40293i

HNC 7.27826i 3.95081i 0.94732i

Saddle 5.99066i 4.28245i 2.1828

Barrier 2 6.95079i 4.14571i 0.881658

Well 2 6.76476i 4.32309i 0.865383i

aThe eigenvalues occur as complex conjugate pairs. The imaginary

eigenvalues correspond to stable modes, and the magnitude of the

eigenvalues are equal to the frequencies. Note that the frequencies of

the two stable modes at the saddle are not in resonance. Consequently,

good quantum numbers can be defined for the activated complex.
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are, in essence, rate constants. That is, they are a measure of the length of time

required for a system to escape from the neighborhood of the equilibrium point.

When these constants take imaginary values, it implies that the system is

oscillating in the neighborhood of the equilibrium point with a frequency equal

to the magnitude of the eigenvalue.

D. Preparation for Transformation to the Normal Form

Once the rank-one saddles in phase space have been identified, it is, in principle,

straightforward to prepare the Hamiltonian for transformation into normal form

(for a detailed example, see Ref. 21). This process involves three steps. First the

origin of phase space is transformed to the desired stationary point. In the present

case, a simple translation of the origin of coordinate space accomplishes this shift

of the origin of phase space to the location of the third point of stationary flow—

that is, to the saddle point lying between the two major potential wells. The

second step identifies the normal modes of the Hamiltonian and transforms to the

corresponding set of variables. This is accomplished by the symplectic

diagonalization on the quadratic part of the initial Hamiltonian. The third and

final step involves expanding the Hamiltonian into a Taylor series about the

desired saddle point. While this step is not conceptually difficult, in actual

practice accomplishing this step can be very time-consuming and can require

significant computer resources.

E. Transformation to the Normal Form

We apply the Lie transformation to the Hamiltonian H ¼P8
n¼2 Hn, where H2 is

given by

H2 ¼ l1x1x4 þ l2x2x5 þ l3x3x6

and the frequencies li are the ones corresponding to the saddle point (see

Table IV). Each Hn for 2 < n � 8 is a homogeneous polynomial of degree n in

the complex coordinates x obtained from the potential V after passing from the

coordinates ðr;R; gÞ to the variables x. Thus, we plan to carry out the calculations
up to polynomials of degree eight—i.e., up to sixth order in the normal-form

construction. In this way, we build a change of variables from the old ones

x ¼ ðx1; x2; x3; x4; x5; x6Þ to the new ones y ¼ ðy1; y2; y3; y4; y5; y6Þ.
We start by identifying H2 with H0 and each Hnþ2 with Hn=n!, 2 < n � 6.

Then, we must recall that terms belonging to ~HnHn are monomials in x of degree

nþ 2 with real or complex coefficients c.

As the operator adH2
is diagonal, we can proceed by examining if a simple

monomial will be included in the normal-form Hamiltonian or not. Specifically,

a monomial of degree nþ 2,

mn ¼ cx
j1
1 x

j2
2 x

j3
3 x

k1
1 x

k2
2 x

k3
3
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such that
P3

l¼1ðjl þ klÞ ¼ nþ 2, belongs to the kernel of adH2
(i.e., it satisfies

fmn ;H2 g ¼ 0), and therefore it must be incorporated to the new Hamiltonian if

and only if j1 ¼ k1, j2 ¼ k2 and j3 ¼ k3. Otherwise its contribution to the new

Hamiltonian K is zero, and the part corresponding to the generating functionWn

becomes

mn

l3 ðk3 � j3Þ þ l1 ðk1 � j1Þ þ l2 ðk2 � j2Þ

Note that this denominator does not vanish since the eigenvalues l2 and l3
correspond to nonresonant normal modes. This is the key point in solving the

homology equation (26) at each order n.

We rescale the coordinates, say x� ! e x, to introduce the small parameter e
and adopt then the formulae of Section V.A. Afterwards we set e ¼ 1 and drop

the star to simplify our notation further. We call the normal form K ¼P8
n¼2 Kn,

and in complex coordinates (the transformed ones y) it reads as follows:

KðyÞ ¼
X

0� iþ jþ k�4

�aaijkðy1y4Þiðy2y5Þjðy3y6Þk ð35Þ

where the sum goes over all i, j, and k with 0 � iþ j � 4 and the coefficients �aaijk
are real or complex. In particular,

K2 ¼ l1y1y4 þ l2y2y5 þ l3y3y6

The Hamiltonian K can be split into Hamiltonians Kn for 2 � n � 8. Each Kn

is a homogeneous polynomial of degree n. The generating function is also a

polynomial in x (or in y) of degree eight, but it is too long display here.

Specifically, W ¼P6
n¼1 Wn=n! is written as W ¼P8

n¼3 Wn where each Wn is

also a homogeneous polynomial in x of degree n.

Once W has been determined, we can calculate the new variables (or any

function of them) as functions of the old ones and vice versa, by means of

Eqs. (27) and (29). In particular, the use of the direct change which makes

explicitly x as polynomials of y of degree eight will be crucial to obtain the

expressions of the NHIM, the TS and the other structures in terms of the original

coordinates ðr;R; gÞ and momenta ðpr; pR; pgÞ.
Next, it is straightforward to use action-angle variables, with the aim of

writing K as the normal form

KðI1; I2; I3Þ ¼
X

0� iþ jþ k�4

aijkI
i
1I

j
2I

k
3
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where the sum goes over all i, j, and k such that 0 � iþ j � 4 and the first two

constants of the motion, I1 ¼ iy1y4 and I2 ¼ iy2y5, are the classical action

variables associated with the two nonreactive DOFs. The first I1 is associated

with the vibrational motion of the hydrogen atom, while the second is associated

with the CN stretching motion. The third constant of the motion, I3 ¼ y3y6 is the

action associated with the reactive coordinate. The coefficients in the above

Hamiltonian are given in Table V.

F. Visualization of the HCN Dynamics

It is possible to introduce a new set of normal-form variables, related to the

coordinates ðy1; y2; y3Þ and momenta ðy4; y5; y6Þ. We introduce Cartesian

variables ðq01; q02; q03; p01; p02; p03Þ through

y1 ¼ q03; y2 ¼ 1ffiffiffi
2

p ðq02 þ ip02Þ; y3 ¼ 1ffiffiffi
2

p ðq01 þ ip01Þ

y4 ¼ p03; y5 ¼ 1ffiffiffi
2

p ðiq02 þ p02Þ; y6 ¼ 1ffiffiffi
2

p ðiq01 þ p01Þ
ð36Þ

The variables ðq01; q02; q03; p01; p
0
2; p

0
3Þ can be mapped back to the Cartesian

coordinates previous to the normal-form process—that is, to the variables

ðq1; q2; q3, p1; p2; p3Þ by means of the direct change of the Lie transformation,

using the generating function W written in terms of the q0i and p0i.

TABLE V

Values of the Coefficients of the Normal-Form Hamiltonian

a000 �12.08270621909487

a100 0.954905129358249 a301 0.0005856303577910487

a200 �0.03806852708896476 a011 �0.003100813333260371

a300 0.0027310729862473205 a111 �0.003222234665742905

a400 0.000030342422691386055 a211 0.0013154465433325067

a010 0.6784357290530834 a021 �0.00029536597940468037

a110 �0.03634032763273621 a121 �0.00009307509500353229

a210 0.005010467124410658 a031 �0.00016681125684889185

a310 0.000521036141694136 a002 0.0167902092282642

a020 �0.015100569431461403 a102 �0.001920402152291333

a120 0.0007005897422981253 a202 0.00038444427179500226

a220 0.0018285195757281284 a012 �0.0006592352377808216

a030 �0.0007327257466574936 a112 0.000029430000778286972

a130 1.4149150136276378 a022 �0.0002881442069027329

a040 0.00003581710535858259 a003 �0.0013124004701446804

a001 0.34527320408687906 a103 0.00006355693478722243

a101 �0.01911783201950005 a013 �0.000023067584987807643

a201 0.0004324327528662697 a004 0.00026905971010348154
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Next we put into effect the visualization techniques we discussed in

Section V.B. Our purpose is to show how the complex dynamics of the pair

of trajectories in Figs. 11 and 12 is simplified by the normal-form trans-

formation.

In the following figures the reader can see the three uncoupled motions that

make up the complex motions depicted in the previous two figures—that is,

single trajectories in the saddle plane (see Fig. 13), in the center plane (see

Fig. 14), and in the other center plane (see Fig. 15), respectively, depicted in the

normal-form variables q0i; p
0
i. Note that the TS is denoted by the diagonal line,

q03 ¼ p03, in the saddle plane as it appears in Fig. 13. The NHIM is given

by q03 ¼ p03 ¼ 0, and the stable and unstable manifolds of the NHIM are given by

q03 ¼ 0 and p03 ¼ 0, respectively. Thus, a forward reactive trajectory requires

q03 > 0 and a forward nonreactive trajectory requires q03< 0. The rest of the

coordinates of the trajectory can be chosen arbitrarily (but respecting energy

conservation). In each figure, the ball indicates the point of passage through the

TS. The curves (outermost circles) indicate the boundary of the energy surface.

Once the two trajectories are chosen in the normal-form variables, they

Figure 11. (The color version is available from the authors.) A picture of the three-dimensional

PES of isomerizing HCN. At the saddle (the bottleneck of the large figure), we show a pair of close-

by trajectories, one reactive and one nonreactive, very much like in Fig. 3. The saddle region is

magnified in the inset. The gray ellipse around the saddle is the configuration-space projection of the

four-dimensional TS.
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Figure 12. (The color version is available from the authors.) Two trajectories, so close in phase

space that they appear as one, approach the saddle from the lower right, as in Fig. 3. After some

complex dynamics around the saddle point, one reacts (crosses the TS at the dot) and goes off to

the top left, and the nonreactive one returns to the lower right. We engineered this outcome by

selecting their initial conditions on opposite sides of the impenetrable phase-space barrier (one of the

‘‘scissors’’ [20]) between reacting and nonreacting hypervolumes.

Figure 13. (The color version is available from the authors.) The previous pair of trajectories

as seen in the normal-form coordinates in the hyperbolic direction. The complicated dynamics at the

saddle has been smoothed out. The two trajectories approach from the top. Note how the p3 axis acts

as a separatrix between them. The reactive one intersects the TS (the diagonal) at the dot. Compare

this with Figs. 5, 6, and 7. Primes on q03 and p03 (see the text) have been dropped.
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are mapped back into the original variables. Moreover, all of the other explicitly

known geometrical structures in normal-form coordinates relevant to the

reaction—the TS, the NHIM, and its stable and unstable manifolds (which

define the boundaries of the reaction channels)—can be mapped back into the

original variables.

Figure 14. (The color version is available from the authors.) The same pair of trajectories in

one of the bath mode normal-form variables. The outer circle is determined by the total energy.

Primes on q01 and p01 have been dropped.

Figure 15. (The color version is available from the authors.) The same pair of trajectories in

the other bath mode’s normal-form variables. Primes on q02 and p02 have been dropped.
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G. The Quantization of the Nonreactive Degrees of Freedom

Once the Hamiltonian has been transformed into normal form, the quantization

of the nonreactive DOFs is straightforward. While complications can occur, the

present example is free of the worst of these. The vibrational modes normal to the

reactive coordinate are not in resonance. Consequently, the quantization is

straightforward and accomplished by quantizing the classical action variables

I1 ¼ nr þ 1

2

� �
�h

I2 ¼ nR þ 1

2

� �
�h

for nr ¼ 0; 1; 2 . . . and nR ¼ 0; 1; 2 . . . . This results in an expression for the total
energy in terms of the quantum numbers for the internal DOFs and the action in

the reactive mode.

At the barrier height, the action in the reactive mode is equal to zero. Setting

it to zero yields an expression for the energies of the quantized states sitting

above the barrier. These are the ‘‘gateway’’ states. This expression is given by

ETS
nr ;nR

¼
X

0� iþ j� 4

bi j n
i
r n

j
R

where the sum goes over all i and j such that 0 � iþ j � 4 and the coefficients bij
are given in Table VI. The difference between the coefficients b00 and a000 gives

the zero-point energy associated with the lowest quantized TS, E0
TS ¼

0:79546447. The quantized energy levels are given in Table VII.

TABLE VI

Values of the Coefficients of the Normal Form Hamiltonian: �h ¼ 0:0646541478

b00 �11.287241748006593 b31 0.000521036141694136

b10 0.9041762942583398 b02 �0.014657625171057372

b20 0.030573263413148734 b12 0.0038908742325688573

b30 0.003052275902477161 b22 0.0018285195757281284

b40 0.000030342422691386055 b03 �0.00020716989775946035

b01 0.6470989723404712 b13 0.0009078432763617361

b11 �0.027729091626757386 b04 0.00003581710535858259

b21 0.007620540912679991

a new look at the transition state 211



VII. SUMMARY AND OUTLOOK

The Normal Form approach can give the researcher an analytical tool for finding

phase-space geometrical objects such as normally hyperbolic invariant manifolds

(NHIMs), and, of even greater interest to a chemist, the transition state (TS)

[19,21]. In this review, we illustrated the procedure on the isomerization of HCN.

Concretely, we showed how to determine the TS analytically. We constructed the

three asymptotic integrals of the original Hamiltonian by inverting the normal-

form transformations. The same procedure led to the NHIM and its stable and

unstable manifolds. We also computed trajectories that start on the NHIM on

the five-dimensional energy surface, as well as in the forward and backward

stable and unstable manifolds associated with the NHIM. It is straightforward to

choose and run these trajectories from the normal-form vector field. The normal-

form transformation then allows us to obtain them in the original coordinates. We

projected these phase-space objects into configuration space by computer

visualization. In short, we showed the degree of control and knowledge of the

exact dynamical trajectories near the TS in a system with three DOFs. The

procedure is designed to work similarly well in arbitrary numbers of dimensions.

We hope that the theory explained here will help in the solutions of problems

more complex than those in small isolated molecules.
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TABLE VII

The Energies of the Quantized Transition Statesa

nr nR E

0 0 �12.0300

0 1 �11.9863

1 0 �11.9687

0 2 �11.9428

1 1 �11.9251

2 0 �11.9076

aThe energy is given in units of electron volts (eV). These

energies correspond to the quantized threshold energies

discussed in Ref. 23.
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6. C. Jaffé, D. Farrelly, and T. Uzer, Phys. Rev. Lett. 84, 610 (2000).
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G stands for Geometry, the art of measuring things.

Anonymous, 18th century

CONTENTS

I. Introduction

II. Hamiltonian Dynamics

A. General Equations

B. Dimensions

III. Geometry in Simpler Cases

A. One Degree of Freedom

1. Linear Case, Linearization

2. Nonlinearities

3. Some Remarks on 1-DOF Hamiltonians

B. Two Degrees of Freedom: PODS and Beyond

1. Linear Theory

2. Periodic Orbit Dividing Surfaces

IV. General Transition States in n Degrees of Freedom

A. Dimensions and NHIM

1. Linear Regime

2. Description of the Geometry

B. Some Examples

1. A Three-Dimensional Version of Hénon–Heiles Potential
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I. INTRODUCTION

Transition State theory (TST) is an extremely successful theory for chemical

physics. It is simple to understand in its elementary versions and is appealing for

its intuitiveness. It has been developed over the years into a whole series of

theories or branches of theories, in order to make it more apt to calculate and

predict kinetic factors of various chemical reactions or half reactions. Very many

references appeared, dealing with transition state theories, in its many variants,

and some of the articles in this series of reviews contain many of those. In

particular, unimolecular decays are treated here in great detail by Rice [1]. A

general review, exhaustive at its time of appearance, is Ref. 2. Some particularly

stimulating references may be found in the work by Gaspard [3].

As stated earlier by Komatsuzaki and Berry [4], it is a common intuition that

there should exist somewhere in phase space a surface (a manifold) that would

separate the regions of reactants from the region of products. For obvious

reasons, this surface has been named a transition state, or dividing surface. It has

to be crossed by the system in order for it to be transported from reactants to

products. For many reasons, finding this surface proved to be much more elusive

than anticipated years ago. Also, it must be stated at once that such a concept is

essentially a classical one. Still, three problems make the definition of a

transition state far from obvious:

1. Quantum mechanics does not define easily a surface. There have been

many attempts to properly define a quantum transition state [5]. While a

purely quantum view is difficult, semiclassical insights are awaited [6,7].

2. Because of the prevalence of Hamiltonian chaos, trajectories may cross

the dividing surface and than cross it back and forth a certain amount

time, even an indefinite one. While this is impossible at the linear level,

one has to resort to perturbation theory to overcome this drawback.

3. The third problem is a problem of dimensionalities. While it is easy to

visualize dynamics with few degrees of freedom and/or zero angular

momentum, the situation may be far from obvious with angular

momentum and/or many dimensions. Some steps towards this under-

standing will be presented here.
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In this chapter, I do not wish to enter into a review of all those variants of TST,

nor into many actual chemical applications. My goal is more pedagogical. I wish

to try to describe how it is possible, in general, to define a classical transition

state for a n degrees of freedom system, which includes chemical reactions and/

or angular momentum. Because geometry is our main theme here, much of the

chapter is restricted to linear Hamiltonians. Indeed, those linear (or linearized)

Hamiltonians are a good base for discussion of the topological structure of phase

space near a transition state. The linearized Hamiltonian is easy to understand

and allows for exact calculations and representations, yet captures some of the

most important concepts. Furthermore, it serves as a basis for a perturbation

theory, which deals with the extremely serious problem of nonlinearities (the

recrossing problem, point 2 above). These canonical perturbation theories, in

their various variants, have been described in great detail recently [4,8–12] and I

do not wish do go into that subject. Rather, when presenting actual examples, I

will present purely numerical support for the generalization of linear analysis

toward the fully nonlinear case. It is hoped that this approach will help the reader

in devising another approach to the problem of nonlinearities in TST.

As this book shows, TST is becoming more and more of a multidisciplinary

endeavor. Some new applications may be found outside the realm of chemical

physics. In particular, Marsden and co-workers [13] applied those concepts to

celestial mechanics of small bodies, while the general theory of the Keplerian

three-body problem makes use of TST, even if in a highly singular case [14,15].

Much work remains to be done outside of chemical physics types of dynamics. I

come back to this question in the conclusion.

The outline of this chapter is as follows. We begin by putting forward some

elementary properties of Hamiltonian dynamics and defining linearization

processes (Section II). Then, we describe one and two degree of freedom

dynamics, having in mind our next generalization to n-degree-of-freedom

dynamics (Section III). All other necessary tools having been described, we

proceed to the two new cases, n degrees of freedom and nonzero angular

momentum. Examples are proposed in this part (Section IV). We end with a

short conclusion.

II. HAMILTONIAN DYNAMICS

A. General Equations

To begin with, it is useful to recall some elementary properties of dynamics in

phase space [16]. Let a classical Hamiltonian be written as

H ¼ Hðpi; qiÞ; i ¼ 1; . . . ; n ð1Þ
In Eq. (1), qi are the generalized coordinates, pi, their conjugate generalized

momenta and n is the number of coordinates necessary to fully describe the
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system; n is called the number of degrees of freedom (DOFs). In short we speak

of H (Eq. (1)) as an n-DOF Hamiltonian. Throughout this article we explicitly

exclude time dependent Hamiltonians, since very little is known in terms of time-

dependent transition state (TS).

Let us note in passing that we do not restrain to Hamiltonians of the form:

H ¼ TðpiÞ þ VðqiÞ ð2Þ

where T and V would be respectively kinetic and potential energies. While this

situation often occurs, it is not so realistic in molecular physics. Hamiltonians we

have to deal with become easily rather involved, all the more if angular

momentum comes into play. In particular, H involving both angular momentum

and deformation in molecular systems is by no means trivial [17–19].

Let us recall also the equation of motion (the dot denotes derivatives with

time, _aa � da=dt):

_qqi ¼ þ qH
qpi

_ppi ¼ � qH
qqi

ð3Þ

In more mathematical contexts, it is customary to write down these equations in a

more compact way, that readily extends towards n-DOF Hamiltonians. Let

x ¼ fqi; pig, where x is a vector. x denotes collectively all coordinates and

momenta, emphasizing their possible combination in canonical transformations.

Then H ¼ HðxÞ and equations (3) become

_xx ¼ JrHðxÞ ð4Þ

where rH � qH=qx and J is the so-called symplectic matrix:

J ¼ 0 I

�I 0

� �
; I ¼ dij; i; j ¼ 1; . . . ; n ð5Þ

I is the n� n identity matrix. Let us recall here that the classical equations of

motion, Eq. (4), is an ordinary differential equation (ODE), as opposed to the

Schrödinger equation, which is a partial differential equation. Being an ODE,

even if nonlinear, the solution of Eq. (4), xðtÞ, is uniquely defined by the initial

conditions xðt ¼ 0Þ.
An equilibrium point, in general, is defined as a point for which _xx ¼ 0

( _ppi ¼ _qqi ¼ 0). Looking at Eqs. (3 and 4), this amounts to stating that a certain

point P is an equilibrium point if the gradientrH ¼ 0. This definition is general
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for true (absolute) equilibrium points. It can be readily extended to relative

equilibria (see Section V). On the other hand, if we restrict the form of H to

H ¼
X
i

p2i
2m

þ VðqiÞ

where m is the mass of the system, then pi ¼ m _qiqi. The equilibrium points are

found at the usual conditions

_qqi ¼ 0;
qV
qqi

¼ 0 ð6Þ

Hamiltonian dynamical system theory is the mathematical framework on

which TST rests; many textbooks, of various mathematical sophistication,

describe this branch of pure/applied mathematics. Some of the various flavors

are [20–24]. Very little of this vast information will be needed here, and we shall

try to be as self-consistent as possible.

B. Dimensions

In order to understand the problem of finding TS with three or more DOFs, it is

useful to address the question of dimensionalities, in configuration and phase

space. In classical, Hamiltonian dynamics, transition states are grounded on the

idea that certain surfaces (more precisely, certain manifolds) act as barriers in

phase space. It is possible to devise barriers in phase space, since in phase space,

in contrast to configuration space, two trajectories never cross [uniqueness of

solutions of ODEs, see Eq. (4)]. In order to construct a barrier in phase space, the

first step is to construct a manifold W that is made of a set of trajectories [8].

1. W is said to be ‘‘invariant under the flow generated by the Hamiltonian

H.’’

2. W is codimension 1 in the phase space f or its restriction to a particular

energy, fðEÞ.
Point 2 means that (D is a dimension)

DðWÞ ¼ DðfÞ � 1 or DðWÞðEÞ ¼ DðfÞðEÞ � 1 ð7Þ

With these properties, W locally separates phase space, as illustrated in the

scheme (Figure 1). It is very important to note that even if W has codimension

1 and is locally a separatrix, it does mean in n DOFs that W neither has a

simple geometry, because it is subject to stretching and folding because of chaos

[24–26], nor separates globally (see Ref. 27). Let us now make a summary of the
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dimensionalities for several values of n (Table I). Examination of Table I shows

that three different types of dynamics occur.

1. n ¼ 1. The energy level is made of trajectories. Separatrices are identified

with some particular trajectories (see Section III.A).

2. n ¼ 2. Poincaré surface of section is of dimension 2, as are stable and

unstable manifolds of periodic orbits. Hence, the huge simplicity of n ¼ 2

is that:

(a) Poincaré sections may be drawn on a sheet of paper or on a computer

screen, allowing easy exploration of fðEÞ.
(b) Stable/unstable manifolds of periodic orbits are separatrices. This is

the departure point of many studies of transport in phase space, based

on lobe dynamics seen one way or another [28–33].

2
3

1

Figure 1. A scheme of separatrices. Ensemble of trajectories are schematized by gray sets. The

three sets of trajectories, 1,2,3, evolute but never cross the separatrices represented by dashed lines.

TABLE I

Dimensions of Various Objects of n-DOF Hamiltonian Systema

n 1 2 3 N

f, phase space 2 4 6 2N

fðEÞ, energy level 1 3 5 2N � 1

Trajectory 1 (0) 1 (2) 1 (4) 1 (2N � 2)

(Un)stable manifold of trajectory — 2 (1) 2 (3) 2 (2N � 3)

Poincaré section — 2 (1) 4 (1) 2N � 2 (1)

aWhen relevant, codimensions are mentioned in italics.
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3. n � 3. All the nice features disappear. It is impossible to draw Poincaré

sections easily because periodic orbits have large codimensions, as have

their stable/unstable manifolds.

Point 3 is developed fully in Section IV, especially in Section IV.A.

III. GEOMETRY IN SIMPLER CASES

A. One Degree of Freedom

While the one-dimensional case may seem too simple, even trivial, it presents a

good opportunity to put forward some very general concepts. These concepts,

like the existence of barriers in phase space and the stable/unstable manifolds

theorem, are best introduced here, having in mind that most interesting appli-

cations will come later on. Also, the one-dimensional case has been employed in

less trivial ways, by reducing all rapid DOFs to some adiabatic approximation

allowing nonlinear one-dimensional TST to be applied [34].

1. Linear Case, Linearization

To begin our discussion of geometry, let us restrict ourselves to 1-DOF systems,

H ¼ Hðp; qÞ ð8Þ

This system is too simple to display a proper TS, but is good enough to begin

with and shows some interesting features. Let us simplify dynamics as much as

possible and write

H ¼ p2

2
þ VðqÞ ð9Þ

Mass is set to 1 without loss of generality, for all Hamiltonians definition, except

where explicitly needed.

Equation (6) tells us that an equilibrium point may be found for Hamiltonian

(9) at points such that dV=dq ¼ 0 (Fig. 2). The linear stability of the equilibrium

points is easily found by examining the sign of the second derivative:

Stable:
q2V
qq2

> 0 Unstable:
q2V
qq2

< 0 ð10Þ

Marginally stable equilibrium points are such that q2V=qq2 ¼ 0. The

stability is then determined by the nonlinearity of the force �qV=qq. In the 1-

DOF case, this is easily extended to the general Hamiltonian (8). An equilibrium

point is such that qH=qp ¼ qH=qq ¼ 0. The linear stability proceeds as follows,
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which is readily generalizable to more DOFs. Let the Hessian of Hamiltonian H

be defined as

HessðHÞ ¼
q2H
qp2

q2H
qpqq

q2H
qpqq

q2H
qq2

0
BBB@

1
CCCA ð11Þ

Since we are interested in motion nearby the equilibrium point, let us make the

following expansion. Let the coordinates of P be xP and define x ¼ xP þ dx.
Setting without loss of generality xP ¼ 0, we have in first order in dx the

following matrix equation:

_ddx ¼ JHessðHÞ dx ¼ M dx ð12Þ
Restricting to one DOF, equation (12) reads

_ddp
_ddq

 !
¼

q2H
qpqq

q2H
qq2

� q2H
qp2

� q2H
qpqq

0
BBB@

1
CCCA dp

dq

� �
ð13Þ

In order to find the linear stability of P, let us look at the eigenvalues of the matrix

in (13). We have

l1;2 ¼ � q2H
qpqq

� �2

þ q2H
qq2

q2H
qp2

" #1=2
ð14Þ

q

V(q)

P1 P0
P2

Figure 2. A one-dimensional potential, with three equilibrium points: P0;P1;P2.
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If the square root is real, it is possible to put Hamiltonian (8) in the following

linearized form in the vicinity of P:

Hlin ¼ 1

2
p2x �

1

2
l21;2x

2 ð15Þ

where ðpx; xÞ is the eigenvector of the matrix (14). This is the equation of an anti-

harmonic oscillator. Its well-known phase-space portrait is depicted Fig. 3. A

linearly unstable equilibrium point is called a hyperbolic equilibrium point. In

some contexts, the point P is called a critical point; an unstable equilibrium is a

saddle critical point; a stable equilibrium point is called a center critical point.

Coordinates x; px are called reaction coordinate and momentum. Likewise, if l1;2
is imaginary, we have

Hlin ¼ 1

2
p2y þ

1

2
l21;2y

2 ð16Þ

where ðpy; yÞ are the eigenvector of the matrix (14). This is the equation of a

harmonic oscillator, and its phase-space portrait is depicted in Fig. 4. In Fig. 2,

points P1 and P2 are elliptic and point P0 is hyperbolic.

Let us examine in some detail what Fig. 3 tell us about the different possible

motions. Since H, Eq. (15) is a 1-DOF H, each energy (except E ¼ 0) is

represented by only two trajectories. Let pxi < 0 be called the reactant region

and let x > 0 be called the product region.

1. E < 0, trajectories ð3Þ and ð30Þ. Only nonreactive trajectories are

possible, without change of xðtÞ.

pξ

ξ

(2)(1)

(3)

(1’)

(1")

(1’’’)

(3’)

(2’)

P

Figure 3. Phase portrait of a hyperbolic fixed point, for a 1-DOF linear Hamiltonian.
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2. E > 0, trajectories ð2Þ and ð20Þ. Only reactive trajectories are possible,

from product to reactants (px > 0) or from reactants to products (px < 0).

3. E ¼ 0, two types of solution:

(a) the unstable equilibrium point P

(b) the stable and unstable lines (called manifolds) that come from ð100Þ–
ð1000Þ or go to ð1Þ–ð10Þ point P.

Trajectories ð1Þ ! ð1000Þ are called separatrices. They separate reactive parts of

phase space from nonreactive parts, since trajectories never cross. Also, the

amount of time necessary to go from any point to/from P on the separatrices is

infinite. This is necessary because of the unicity of solution at point P (one can

also consider this infinite time as a consequence of continuity of classical

mechanics).

Trajectories ð1Þ ! ð3Þ may also be depicted in a more usual way, in the

energy/coordinate plane (Fig. 5). Note that some authors, drawing from Figs. 5

and 3, have long ago extended trajectories into the complex domain, thereby

allowing for tunneling. In this context, powerful methods were developed,

y

py

P

Figure 4. Phase portrait of an elliptic fixed point, for a 1-DOF linear Hamiltonian.

V(x)

(1)

(2)

(3)

(τ)

Figure 5. Energy/coordinate scheme of the trajectories of Fig. 3. Trajectory ðtÞ is a tunneling
trajectory.
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somehow outside of the scope of this review (see Ref. 35, Chapter 9 for

references). Considerable amount of work is performed on this topic, but mainly

with more than 1 DOFs (see Sections III.B to IV). Also, instanton-type of

approximation belongs to this topic. A recent reference is Ref. 36.

2. Nonlinearities

Extension toward the fully nonlinear case is straightforward for 1-DOF

Hamiltonians. The energy conservation relation Hðp; qÞ ¼ E allows us to define

(explicitly or implicitly) p ¼ pðq;EÞ, thereby reducing the ODE to a simple

quadrature. In this procedure there is no problem of principle (unlike the n � 2-

DOF case). It works in practice also, and it is possible to adapt Figs. 3–5 to the

nonlinear regime. It must be underlined that besides that simple procedure, we

present a theorem in dynamical system theory (containing Hamiltonian

dynamics as a particular case). This theorem is valid for n DOFs (hence for

n ¼ 1); it relates the full dynamics to the linearized dynamics, called tangent

dynamics in the mathematical literature.

The local and global stable/unstable manifold theorems (see, e.g., Ref. 24,

pp. 136–140) tell us the following (Wu;s are the (un)stable manifolds):

1. In the vicinity of P, Wu;s of the full dynamics are tangent to the Wu;s
L of

the linearized dynamics (Fig. 6).

2. The extension of Wu;s is infinite. Furthermore, they tend to P as

t ! þ1ðWuÞ or t ! �1ðWsÞ.
We see thus that our description of the dynamics in the linearized regime is very

general and is transferred readily to the nonlinear regime.

Wu
lin.

Wu
lin.

Wu
non lin

Wu
non linWs

lin.

Ws
lin.

P

s
non lin

Ws
non lin

W

Figure 6. The nonlinear stable/unstable manifolds are tangent to the linearized stable/unstable

manifolds.
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3. Some Remarks on 1-DOF Hamiltonians

While all that material presented in this section looks very elementary, the

structure presented thus far is the dynamical system theory basis of the reaction

path TS theory. If, in a complicated landscape with many dimensions, we reduce

dynamics to following a winding path, the above images are enough for all our

purposes. They are also a very good basis in the first approximation of 2-DOF

and even n-DOF, if we adiabatically decouple the reaction coordinate and all the

other coordinates, which are called bath coordinates.

As a last point, it must be underlined that if the approximation of

Hamiltonian dynamics is lifted—that is, if we include dissipation in one way or

another—very little is known outside of either strong dissipation or 1-DOF

systems. While this is outside of the scope of this review, the interested reader

should consult Refs. 37 and 38.

B. Two Degrees of Freedom: PODS and Beyond

While still not very realistic, since they can barely encompass angular

momentum, 2-DOF Hamiltonian models for chemical reaction or unimolecular

dissociation have a long and rich history. Several reviews exist that underline this

history [1,28]. Our purpose here is slightly different. We wish to describe TS in 2

DOFs as an intermediate in complexity between the oversimple 1-DOF TS and

the fully complicated story of n > 2 DOFs, including possibly angular

momentum. On a physical point of view, most of the early studies that appeared

up to the late 1970s and early 1980s dealt with the classical dynamics of collinear

collisions or dissociation [39], with the following scheme:

A B C

A + BC AB + C

x

On that system were exact TS discovered [39], the importance of mass mismatch

between atoms A;B;C underlined and chaos in reactive scattering described [3,

29,40–42]. It must be underlined that studies in atomic physics and celestial

dynamics were decisive in a definition of a TS, with less obvious Hamiltonians,

see the chapter by Jaffé et al. in this book.

To begin with, let us suppose that the Hamiltonian may be written as

H ¼ p21
2m1

þ p22
2m2

þ Vðq1; q2Þ ð17Þ

For three-body collinear systems, various types of coordinate systems allow for

this type of kinetic energy (Jacobi type of coordinates).
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1. Linear Theory

As before, we begin by organizing dynamics around an equilibrium point P.

Because of the form of H, Eq. (17), we have rVðq1; q2ÞjP ¼ 0. We look for the

linear stability of this point and find that the tangent flow (see Section II) has two

pairs of eigenvalues, l1;2 ¼ �io and l3;4 ¼ � k, with k;o > 0. The correspond-

ing eigenvectors pairs are respectively the bath coordinates, y; py, and the

reaction coordinates, x; px. Then, in the neighborhood of P and setting the origin

of energy at P, the linearized Hamiltonian reads, setting masses to unity:

H ¼ 1

2
p2y þ p2x

� �
þ o2

2
y2 � k2

2
x2 ð18Þ

This very simple Hamiltonian is at the basis of the whole TS approach. It

generalizes easily into many dimension (Section IV), is a good basis for

perturbation theory [4], and is also the basis for numerical schemes, classical and

semiclassical. The inclusion of angular momentum implies that some ingredients

must be added (see Section V). Let us thus describe how this very simple, linear

Hamiltonian supports normally hyperbolic invariant manifolds (NHIMs; see

Section IV for a proper discussion) separatrices and a transition state.

The first thing to note is that the linearized Hamiltonian is separable,

E ¼ H ¼ HðyÞ þ HðxÞ ¼ oyIy þ HðxÞ ð19Þ

Hence, the total energyH ¼ E is split into the energy of the oscillator, H(y), with

an action of the oscillator written as Iy and a reaction coordinate part, HðxÞ.
Furthermore, Iy � 0 butHðxÞ><0. In order to have trajectories that react (go from

the reactant side to the product side, or vice versa), we must haveHðxÞ > 0, since

at x ¼ 0, HðxÞ > 0 and HðxÞ ¼ ct. There are two important objects here:

The periodic orbit �: x ¼ px ¼ 0; E > 0 ð20aÞ
The transition state: x ¼ 0 ; E > 0 ð20bÞ

We see that, indeed, Eq. (20b) is a transition state, since

1. It is a dividing surface (codimension 1 in the energy level), its dimension

here being indeed 2.

2. It separates products from reactants.

3. Once a trajectory crosses it, it never comes back.

All these properties are more or less obvious in the linear case. However,

because of the essentially four-dimensional nature of phase space, it is

somewhat difficult to get an intuitive nature of the phase-space structure. This is
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especially true for the transition state, which is not made of trajectories, since it

crossed by trajectories and should be transverse to the flow. An image of the

transition state is given in Fig. 7.

2. Periodic Orbit Dividing Surfaces

Description. Among all physically relevant Hamiltonian dynamics, one case is

particularly important:

H ¼ Tðp1; p2Þ þ Vðq1; q2Þ ð21Þ

where Tðp1; p2Þ is a positive definite quadratic form. Without loss of generality,

we can write

H ¼ p21
2m1

þ p22
2m2

þ Vðq1; q2Þ ð22Þ

It is very fortunate that in this very important case, it was possible to devise an

exact theoretical form of a classical transition state. This theory was discovered

in the late 1970s by Pechukas, Child, and Pollak [39] and may be intuitively

understood. We wish to replace the linearized motion by an analysis of the full

Hamiltonian (21). Let us examine Fig. 8.

If we replace the x ¼ px ¼ 0 periodic orbit by the � periodic orbit, this p.o. is

named a periodic orbit dividing surface (PODS). It has the following properties:

� � connects the V ¼ E lines; hence � is a periodic orbit that is symmetric

under time reversal.

Figure 7. Linearized transition state. Left panel: The reaction coordinate part of phase space.

Right panel: x ¼ 0 surface of section. The shaded areas are forbidden by energy conservation.
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� Of all possible surface � drawn in phase space, whose projection onto

configuration space is a line connecting the two V ¼ 0 lines, the flux � is

minimum for � ¼ �, with

� ¼
ð
�þ

p dq ð23Þ

where the þ superscript indicates trajectories going from left to right.

� � is an unstable periodic orbit, whose linearization is direct hyperbolic.

Consequently, all trajectories crossing � in configuration space have to

leave its neighborhood before possibly returning to �. � was named a

repulsive PODS; we would now call it an NHIM. An image of the

situation is shown in Fig. 9.

Figure 8. Linear transition state (TS) and nonlinear periodic orbit dividing surface (PODs) �.

Figure 9. A repulsive pods �, with a possible trajectory t1 and two forbidden ones t2, t3. t3

exhibits recrossing of �.
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Being a repulsive PODS—a fully nonlinearly determined NHIM—the ubiqui-

tous problem of recrossings (trajectory t3 in Fig. 9; see Ref. 6) is totally

avoided.

Finding a PODS is a very easy task. Because the system has only two DOFs,

the V ¼ E manifolds are simply one-dimensional lines in configuration space,

Vðq1; q2Þ ¼ E. Momentum is zero on those points. Finding the self-retracing

p.o. amounts to a very easy one-dimensional search. Once a p.o. is found,

a linear stability determination is enough to determine the PODS character of a

particular p.o. These properties have been used many times in the literature, in a

classical or semiclassical, even quantum, context [6,39,43–45]. The reader is

referred to the rich literature for many actual examples. The series of articles by

Gaspard and Rice are particularly detailed [46].

Phase Space. The PODS structure is easily lifted into phase space and

described in a way very analogous to the linear case. We begin by finding the

equilibrium points of the original Hamiltonian. Let Pi be such points. In a

general case of chemical relevance, there will be a point P whose linear stability

will be of stable/unstable (center/saddle) character. That is,

EigðMÞjP ¼ �k;�io o;k > 0 ð24Þ

In the neighborhood of P, the Hamiltonian may be written as

H ¼ oI þ 1

2
p2x � k2x2
� �

þ hNLðI; px; xÞ ð25Þ

with oI the periodic orbit and px; x, coordinate normal to it. Now, we include the

nonlinear terms in the expression. Since I is the exact periodic orbit and px; x
determine the true nonlinear stable/unstable manifolds, we have that hNL ¼ 0 if

px ¼ x ¼ 0. The structure of the dynamics in the neighborhood of � is easily

approached with Poincaré surfaces of section. Numerous examples exist in the

literature; these are essentially equivalent to Fig. 7. However, identifying the

surface of section with the orbit � has not always been clear, since shadowing

problems (pruning) may occur [41,47].

Cylindrical Manifolds. There is one big advantage of looking at 2-DOF TS in

phase space: It puts emphasis on the existence of the tubes that determine the

transport of classical probability in phase space. Existence of those tubes has

been known for a long time [48]. These tubes are the set of trajectories that

constitute the stable/unstable manifolds of PODS. Locally, in the vicinity of P,

they immediatly generalize to higher dimensions. They are constructed as

follows:
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� Attach to each point of the PODS its stable/unstable directions.

� Integrate the trajectory along this direction; one finds the stable/unstable

manifold itself.

� Make a union of all those trajectories; they make up a tube extending in

phase space.

� These tubes, being made up of trajectories, must not be crossed by any

trajectory, hence by any density of probability.

An illustration is found in Fig. 10.

And finally, the TS itself is found at the intersection of tubes. More precisely,

the TS (which is two-dimensional in the three-dimensional energy level)

is found at the intersection of the interiors of the two tubes, constituted by

the stable/unstable manifolds, at each side of the � PODs. A rigorous

definition (valid for n DOF) is found in Ref. 9. An illustration may help the

intuition (Fig. 11).

P
H

ξ

Σ(Γ)
Σ1

Σ2

y

py

y

(b)

(a)

Figure 10. Two views of the tubes. (a) Left, a series of Poincaré sections, beginning with the

TS, �ð�Þ. Large arrows denote the sense of trajectories, and gray ellipses denote the density of

probability after and before crossing the TS. (b) A view of the dynamics in the x and y sectors. P is

the equilibrium point, and H the homoclinic point.
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IV. GENERAL TRANSITION STATES IN n DEGREES

OF FREEDOM

Several reviews and articles have appeared recently that deal with n-DOF

transition states [4,8,49,50]. These works come after several pioneering works on

the subject, published earlier, that began the generalzation of TS toward a full-

fledged phase space theory [13,51]. Since we described in some detail the 2-DOF

case in the preceding section, the generalization will come very easily, as far as

no angular momentum is involved. However, in Section V we deal with the

nonzero angular momentum case in great detail, since it offers new perspectives

in the geometry of phase space.

We shall make more use of the notion of normally hyperbolic invariant

manifold (NHIM). This invariant surface is the n-DOF generalization of the

periodic orbit dividing surface, even if originally defined in a much more

general framework (a bibliography may be found in Ref. 24). Its correct

definition is put forward in Section IV.A and is used in all examples coming

thereafter.

A. Dimensions and NHIM

The structures of n-DOF TS and their associated NHIM are interesting by

themselves, especially because many ideas are already present at the PODS level.

Figure 11. Schematic view of a TS (thick black line), with the same type of view as in Fig. 10.

The equilibrium point is in the middle with its stable manifold and unstable manifold extending as

straight lines. Trajectories in dot-dashed lines are reactive (inside the tubes) and cross TS;

trajectories in dashed lines are not reactive. The whole gray surface is the energy level. For a linear

motion, it takes the form of a parabolic hyperboloid.
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However, some points differ markedly, because of the higher dimensionality of

all the objects considered. We shall swiftly describe the overall geometric pro-

perties of the NHIM and the TS, and then we will proceed with some examples

that clarify the situation. Other examples may be found in Refs. 9 and 52.

1. Linear Regime

As in previous simpler cases with fewer DOFs, everything begins with

equilibrium points (critical points in mathematical language). We straightfor-

wardly generalize earlier results. Let H ¼ Hðp1; . . . ; pn; q1; . . . ; qnÞ ¼ HðxÞ be
the Hamiltonian and suppose that P is an equilibrium point, rHðxÞ jP ¼ 0. We

linearize motion around P, and we analyze the eigenvalues of the 2n� 2nmatrix

M, Eq. (4). If we have the following situation:

li;iþ1 ¼ �ioi; oi > 0 i ¼ 1; 3; . . . ; 2n� 3

l2n�1;2n ¼ �k; k > 0
ð26Þ

then we are able to build a NHIM and a TS in the neighborhood of P. We begin

by finding the n� 1 first eigenvector pairs corresponding to the imaginary

eigenvalues of M. Let us call those eigenvectors yi=pyi . These are the linear

normal modes of the transition states, as is well known in TST. This is always

possible if oi 6¼ oj; 8i 6¼ j. Otherwise, some special treatment is necessary for

resonances, if kioi ¼ kjoj, with ki; kj ¼ 1; 2; 3 in practice (any integer k in

theory). We call x; px the last two eigenvectors, which constitute the reaction

coordinate and associate momentum. As before, we may write a linear

Hamiltonian, in the vicinity of P:

H ¼
X

i¼1;n�1

1
2
p2yi þ o2

i y
2
i

� �
þ 1

2
p2x � k2x2
� �

ð27aÞ

In order to use earlier articles and facilitate contact with perturbation theory, it is

useful to make the following change of variables:

Z ¼ 1

2k
ðpx þ kxÞ

pZ ¼ 1

2k
ðpx � kxÞ

and the Hamiltonian is written as

H ¼
X

i¼1;n�1

1
2
ðp2yi þ o2

i y
2
i Þ þ k2 pZZ ð27bÞ
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Again, dynamics generated by Eqs. (27a and 27b) is that of an NHIM and a TS,

which are defined as follows:

Z ¼ pZ ¼ 0=x ¼ px ¼ 0 NHIM ð28aÞ
Z ¼ pZ 6¼ 0=x ¼ 0 Transition state ð28bÞ

The nature of the object (28a) is very interesting and new with respect to the 2-

DOF case. If we were 2-DOF only, Eq. (28a) would be the equation of a periodic

orbit, the PODs of Section III.B.2. This cannot be the case here because of

dimensionalities.

2. Description of the Geometry

Equation (28a) is in fact the equation of an S2n�3 sphere, which is the equivalent

for the n-DOF to the periodic orbit: 2n� 3 ¼ 1, if n ¼ 2. Its geometry is easier to

apprehend for n ¼ 3. The S3 sphere may be described as a union of T2 tori. This is

easily seen if we switch to action-angle variables:

HðI1;f1; I2;f2Þ ¼ o1I1 þ o2I2 ð29Þ
where Ii and fi are actions and associated angles. Each torus is the familiar

solution with both I1; I2 6¼ 0. By varying I1 and I2 we recover the S3 sphere,

recalling that the angle fi loses significance if Ii ¼ 0 [53]. An abstract image of

the NHIM is found in Fig. 12.

In the liner approximation, we see thus that the NHIM is made of periodic/

quasi-periodic orbits, organized in the usual tori characteristic of the integrable

systems. Because the NHIM is ‘‘normally hyperbolic,’’ each point of the sphere

has stable/unstable manifolds attached to it. This situation is exactly parallel to

the one described earlier for PODS. The equation for it is

H ¼ o1I1 þ o2I2 þ 1

2
ðp2x � k2x2Þ with I1 ¼ I1ðMÞ; I2 ¼ I2ðMÞ ð30Þ

I1
I2

I1

I2

T2

T2S3

Figure 12. A scheme of the S3 sphere, built with a foliation of tori. The straight line in the left

panel is the image of equation Eq. (29).
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where M is any point on the torus. Equation (30) thus defines a one-dimensional

motion (the anti-oscillator in x; px) and adds one dimension to S3, yielding four-

dimensional manifolds in the five-dimensional energy level of the phase space.

Everything falls thus rightly in place.

It is then possible to have a global picture [9,24,53,54] of what is happening

in the whole phase space neighborhood of the equilibrium point P, for

0 � E < �EE:

Center Sector. Corresponding to the n� 1 pairs of imaginary eigenvalues, it

is possible to build a center manifold spanned by the corresponding

eigenvectors, of dimension 2n� 2. Its intersection with the energy level

�ðEÞ is precisely the NHIM.

Hyperbolic Sector. Corresponding to the real pair of eigenvalues of the

linearized motion, there is a hyperbolic sector, consisting of stable and

unstable manifolds. These manifolds emanate from the equilibrium point

at E ¼ 0, with a dimension 1. For 0 < E < �EE, each point of the center

manifold (or at a given E, each point of the NHIM) has a pair of stable/

unstable manifolds. Their union makes up separatrices that have

codimension 1 in phase space � as well as in the energy level �ðEÞ.
The stable/unstable manifold theorem [23,24] guarantees that in the

nonlinear regime, the hyperbolic structure is preserved, tangent to the

linearized structure. Furthermore, the stable/unstable manifolds exist with

t ! �1.

The whole set is schematized in Fig. 13. It must be emphasized that these

manifolds may actually be calculated (see Sections IV.B and V.A.1).

It must be underlined that the central manifold theorem, extending the linear

center manifold into the nonlinear regime, is way less powerful than its stable/

unstable counterpart. There is no limit t ! �1 and even no unicity of

nonlinear center manifolds. Consequently, it is not well known how this whole

beautiful structure bifurcates and disappears as E � �EE. There has been virtually

no study of the bifurcation structure (see, however, Ref. 55), and the transition

from threshold behavior to far-above-threshold behavior is an open question, as

far as I am aware.

The only object that still lacks in Fig. 13 is the TS itself. It lies at the

intersection of the interiors of the stable/unstable high-dimensional manifolds.

A good numerical study is in Uzer et al. [9], final section.

B. Some Examples

1. A Three-Dimensional Version of Hénon-Heiles Potential

A Simple 3-DOF Hamiltonian. An example that illustrates in a nontrivial way

some of the statements above is the three-dimensional Hénon–Heiles potential

geometry of phase-space transition states 237



[56]. From a standard two-dimensional Hénon–Heiles Hamiltonian, Ferrer et al.

[57] derived some time ago a three-dimensional version. In Cartesian

coordinates, this Hamiltonian reads:

H ¼ 1
2
ðp2x þ p2y þ p2z Þ þ

o2

2
ðx2 þ y2 þ z2Þ þ Eo2 z x2 þ y2 � 1

3
z2

� � ð31Þ

Since this Hamiltonian conserves the axial symmetry around the Oz axis, it

may also be written in cylindrical coordinates with r2 ¼ x2 þ y2 and the angle

f. As usual, the conjugate momentum to f, � � pf is the angular momentum.

In these coordinates, defined for r > 0, the Hamiltonian reads

H ¼ 1
2
p2r þ p2z

� �
þ �2

2r2
þ o2

2
r2 þ z2
� �þ Eo2 z r2 � 1

3
z2

� � ð32Þ

with

� ¼ xpy � ypx pr ¼ xpx þ ypy

r

As is apparent from Eq. (32), besides the total energy E ¼ H, the dynamical

system has another conserved quantity, the total angular momentum �. The
angular momentum � plays definitely an important role here, but we do not deal

yet with relative equilibria, as in Section V. While derivation of the equation of

EE0

(ξ)

(q)

P CP

S/UP

nh
im

S/Unhim

Figure 13. The whole structure of the phase space in a nutshell. P is the equilibrium point, E is

the energy, ðqÞ are the collective bath coordinates, and ðxÞ is the collective transition coordinates.

The cental manifold of P is CP, and the stable and unstable manifolds are indicated by S/U.
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motion is trivial, it is still useful to state them explicitly, so that we can refer to

them in the sequel.

_qq ¼ pq; q ¼ x; y; z

_ppx ¼ �o2x� 2Eo2xz ð33aÞ
_ppy ¼ �o2y� 2Eo2yz ð33bÞ
_ppz ¼ �o2z� Eo2ðx2 þ y2 � z2Þ ð33cÞ

One notices that the E ¼ 0 case corresponds to the linear dynamics.

The potential energy surface associated with the 3-DOF Hamiltonian,

Eq. (31), resembles the usual 2-DOF one. In particular, a threshold energy may

be defined, Et ¼ o2=6E2, below which the motion is bound and above which the

motion becomes unbound. At E ¼ Et, configuration space is an equilateral

triangle for the 2-DOF version and a cone for the 3-DOF case (see Fig. 14).

As the equations of motion show and as is apparent from the configuration

space pictures, two sets of equilibrium points exist at E ¼ Et. The first

equilibrium point P1 is at the summit of the cone, with coordinates

P1: E ¼ o2

6E2
; px ¼ py ¼ pz ¼ 0; x ¼ 0; y ¼ 0; z ¼ 1

E

� �
ð34Þ

Another set exists at the bottom of the cone, but we shall not deal with it here.

–1.5 –1 –0.5 0 0.5 1 1.5
–1

–0.5

0

0.5

1

P
2

P
2

P
1

Λ=0

Figure 14. Potential energy surfaces, in two and three DOFs, for the Hénon–Heiles potential,

with o ¼ E ¼ 1.
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Linearization Around P1. Let us linearize the motion around the equilibrium

point P1, by means of the following change of coordinates:

H0 ¼ H � o2

6E2

z0 ¼ z� 1

E

Other coordinates do not change. The full Hamiltonian in the new coordinates

reads

H0 ¼ 1
2
p2x þ p2y þ p2z

� �
þ 3

2
o2 x2 þ y2
� �� o2

2
z02 þ Eo2z0 x2 þ y2 � 1

3
z02

� �
ð35Þ

This yields the following full equations of motion (which are linearized around

P1 setting E ¼ 0):

_qq ¼ pq; q ¼ x; y; z0

_ppx ¼ �3o2x� 2Eo2xz0 ð36aÞ
_ppy ¼ �3o2y� 2Eo2yz0 ð36bÞ
_ppz ¼ o2z0 � Eo;2 ðx2 þ y2 � z02Þ ð36cÞ

It is seen by simple inspection that the linearized equations of motion in the

vicinity of P1 have the remarkable property to leave invariant the manifold

defined by z0 ¼ pz ¼ 0. This manifold is a 3-sphere S3, whose equation is

S3ðP1Þ ¼ 1
2
ðp2x þ p2yÞ þ

3o2

2
ðx2 þ y2Þ ¼ constant > 0 ð37Þ

It must be underlined that the sphere exists only for H0 > 0. Evidently, S3ðP1Þ is
the NHIM that is supported by point P1, with the right geometry, announced in

Sections IV.A and IV.A.1.

The eigenvalue/eigenvector structure of the linear part is simple. It consists

of a saddle in the z0 pz plane, with eigenvalues �o and eigenvectors

z0 ¼ 1; pz ¼ �1=o. These directions are transverse to the sphere S3. The four

remaining eigenvalues are �io
ffiffiffi
3

p
, each twice degenerate. Their eigenvectors

span the central manifold CðP1Þ, passing through the equilibrium point P1, at

the origin. Intersecting CðP1Þ with the energy level E gives the sphere HS3 ¼ E.

On the sphere, the motion is harmonic, with all trajectories periodic, of period

o
ffiffiffi
3

p
.
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Drawing Linear and Nonlinear NHIM. The equilibrium point P1 is thus of

center/center/saddle type. The linearized motion in the vicinity lends itself to

several pictures worth describing here. Let us begin with configuration space.

The linearized potential energy may be written as

Vðx; y; z0Þ ¼ H0 � 1
2
ðp2x þ p2y þ p2z Þ ¼

o2

2
ð3x2 þ 3y2 � z02Þ ð38Þ

Depending on the sign of V , the surface described by Eq. (38) is a hyperboloid

with one (V > 0) or two sheets (V < 0). For V ¼ 0, it is a cone, whose apex is

precisely the equilibrium point. For V > 0, at the waist of the hyperboloid

(z0 ¼ 0) sits a disk invariant in configuration space, whose equation is

D2 : x
2 þ y2 ¼ Vðx; y; z ¼ 0Þ

An image of the disk is shown in Fig. 15.

Let us now lift this disk D2 into phase space. To do so, one must go back to

the sphere S3 equation, Eq. (37). There are several ways of depicting a 3-sphere;

one is particularly appropriate here [24]. The S3 sphere is dynamically

composed of two identical harmonic oscillators without explicit coupling, but

whose total energy is a constant, hS3 > 0. Let us thus transform the Hamiltonian

(37) in action angle variables, where Ix; Iy are the actions of the two oscillators

and yx; yy are the two associated angles. Since

hS3 ¼ oðIx þ IyÞ ¼ constant

D2
P1

Figure 15. Potential energy surface around the equilibrium point P1 for V > 0, with

o ¼ E ¼ 1. The disk D2 is shown at the waist of the hyperboloid.
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there is a linear relation between the two actions. The sphere is foliated by

a three-parameter family of orbits g (all periodic): gðIx; yx; yyÞ. Specifying these

three coordinates at time t ¼ t0 specifies a trajectory.

We can construct the representation of the sphere with this parameterization.

One must, however, be careful when Ix ¼ 0 (resp. Iy ¼ 0) since then the

corresponding angle yx (resp. yy) is not defined. The two angles 0 � yx;y < 2p
specify a 2-torus. To fully foliate the sphere, two distances Ix; Iy, with a linear

relation, may be specified. A one-parameter family of tori of varying radii

foliates the 3-sphere. Each trajectory is fully specified by a point on these tori.

However, there is another, more specific, yet more interesting, way to portray

the sphere. Recalling that not only energy but also angular momentum � is

conserved, the sphere S3 is also parameterized with the three quantities

gðIx;�;fÞ, with f the angle conjugated to �. This view is particularly useful for

the construction of the normally hyperbolic manifolds.

Since f does not appear explicitly in the Hamiltonian, we go one step

further, exploiting the other constant of the motion, � (rotational invariance of

the Hamiltonian). Let us define a torus T2 � S3 in the following way. Since � is

a conserved quantity, the � ¼ �0 surfaces foliate the S3ðP1; hS3Þ sphere in a

simple way. The two-dimensional manifold resulting in the intersection of

S3 \ f� ¼ �0g may now be characterized. One of its coordinates is the angle

0 � f < 2p, where f is, as before, the angle conjugate to �. The other

coordinate is also an angle, 0 � a < 2p, that may be obtained for example by

solving for r; pr in the linearization of Hamiltonian (32). The solution for r; pr
yields one closed S1ðP1; hS3 ;�0;fÞ line in the r; pr plane. The angle describing
this S1 manifold is a, which may be understood as the phase of the oscillator in

r; pr. Because the Hamiltonian is independent of f, the two angles are

independent from one another and we see that the figure so constructed is a T2
torus:

T2ðP1; hS3;�0Þ ¼ S3ðP1; hS3Þ \ f� ¼ �0g ð39Þ
¼ S1ðP1; hS3 ;�0;fÞ � f0 � f < 2pg ð40Þ

The actual trajectories cover this torus, while not following the iso-a or iso-f
lines. Another torus is generated for another value of �0; a singularity occurs for

�0 ¼ 0, since then any f ¼ f0 plane is invariant and the Oz � Oz0 axis is no
more inaccessible.

A representation of the S1 P1; hS3 ;�0;fð Þ circle is given in Fig. 16. The

linearized NHIM is also represented. Because of the independence of the z0=pz
motion with respect to the r=pr motion as well as the absence of pz motion, the

NHIM appears singularly in Fig. 16.

As explained in Section IV, it is possible to find a fully nonlinear NHIM in

the vicinity of the linear NHIM. Now, instead of treating analytically the
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linearized motion, we integrate numerically the full equations of motion. For

moderate energy and angular momentum (hS3 ¼ 0:01; � ¼ 0:001), we are able

to find the invariant surface

S1 P1; hS3 ;�0;fð Þ: r; z0; pr; pz 7! S1ðr; z0; pr; pzÞ ð41Þ

An image of S1, Eq. (41), is given in Fig. 16, together with its linear counterpart.

It must be noted that now there is no reason for any of the coordinates to be

independent of any other one, since the equations of motion couple them all.

Also, there is no symmetry in the full Hamiltonian with respect to z0 $ �z0.
It is interesting to have some representation of the T2ðP1; hS3;�0Þ torus, Eq.

(40). Only a partial representation is possible, since the embedding space is

four-dimensional. Two projections are given in Fig. 17. Also, a trajectory

originating in the NHIM is shown, numerically showing how the trajectory

remains in the invariant submanifold, even in the full, nonlinear case.
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Figure 16. The linear and nonlinear NHIM in the vicinity of the equilibrium point P1.

Cylindrical coordinates, with z0 ¼ z� 1=E. Numerical values: o ¼ E ¼ 1, H0 ¼ 0:01;� ¼ 0:001.

Note the degeneracy of the linear NHIM, which is reduced to a single point in the z0=pz plane and is

reduced to a line in the z0=Pr and r=z0 planes.
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2. Dynamics of Three Identical Atoms, Zero Angular Momentum

A problem of great practical importance is the three-body problem with non-

Keplerian forces and a repulsive core.1 The triatomic problem has widespread

applications in reactive scattering and triatomic isomerization. There are many

studies dealing with experiments and theory. The principal problem for reactive

scattering has always been the calculation of a reliable potential function on

which the triatomic dynamics takes place. However, quantum dynamics on those

00
3

3.5

4

× 10–3

× 10–3

xy

z′

00

–1

0

1

xy

p z

Figure 17. Two views of the nonlinear NHIM in gray. An actual trajectory is also shown

(heavy black). It remains inside the nonlinear NHIM. Parameters are in Fig. 16.

1Three body with Keplerian forces or other short-range attractive forces have singular configurations

when 2 and 3 bodies collide [14].
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surfaces are now more or less routine, at least for moderate angular momenta.

However, as always, classical dynamics is very useful for giving us guiding

principles or even insights over propensity rules [18,58]. Also, the full

understanding of the triatomic problem is the necessary gateway for the partial

understanding of four or five colliding bodies, including inelastic scattering [59].

In order to simplify here, we deal only with the very simple case of three

identical atoms:

A1A2 þ A3 Ð A1A3 þ A2A3 þ A1

Other cases, which lack symmetry, are also tractable but necessitate some

numerical and perturbational work to find the equilibrium points and the

associated NHIM. Only one such case has been analyzed, the dynamics of CO2

in the neighborhood of asymmetric dissociation [55]. However, dynamics in that

context reduced essentially to 2-DOF (the bending of CO2 is essentially a

spectator mode).

Hamiltonians adapted to zero and nonzero configurations have been known

for long [60,61]. In the case of zero angular momentum, they are particularly

simple, once the relevant hyperspherical coordinates have been defined. In order

not to burden the reader with unnecessary complications, all definitions are

taken from [58,61] and not repeated here.

In order to be specific, we deal here only with the Ar3 simple cluster, as

studied by Yanao and Takatsuka [18] and Kamatsuzaki and Berry [50]. Atoms

in the cluster interact via a Morse potential, of form

V ¼
X
i< j

exp�2ðrij � r0Þ � 2 exp�ðrij � r0Þ

 � ð42Þ

We take r0 ¼ 0:6.
It is possible to study stability of equilibrium points for this Hamiltonian

[62]. Because of symmetry, we know beforehand that the equilibrium point may

exist only at z ¼ 0 and either at x ¼ 0; y ¼ ye or at the two equivalent points

turned �120	 in the z ¼ 0 plane. These three equilibrium configurations

correspond to the three situations of Fig. 18.

The next step consists in studying the stability. The Hamiltonian at zero

angular momentum, incorporating all possible reductions, may be written in

many different ways [18]. We use the following expression, which is

generalizable to J 6¼ 0 [61]:

H ¼ 1

2m
ð4p2 � 3p2rÞ ð43Þ
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Figure 18. The Oxy plane of linear configurations (above) and the Oyz plane of isoceles

configurations in the A–1A2A3 problem. The potential function is deeper for darker gray. The lines

cross at the center and at the equilibrium points. The white dashed line is the ‘‘reaction path,’’ if

there were no inertial or nondiagonal kinetic energy effects.
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where

p2r ¼
xpx þ ypy þ zpz

x2 þ y2 þ z2

The equilibrium point P1 has coordinate x ¼ 0; y ¼ y0; z ¼ 0; px ¼ py ¼ pz ¼ 0,

with y0 found numerically fromrV ¼ 0. We have to calculate the eigenvalues of

theM matrix. With the relevant numbers (see above), we have the z; pz direction
unstable and the xpx; y; py directions stable. The NHIM is thus defined by

z ¼ pz ¼ 0. Because of symmetry, this case is rather simplified with respect to

the general case; it will be tested for the bifurcation of the NHIM [62]. Also, it

provides a very easy case to include angular momentum (see Section V).

V. ANGULAR MOMENTUM

Up to now, we have been concerned essentially with Hamiltonians possessing no

angular momentum. Yet, in real situations, the importance of angular momentum

is often paramount, dynamically and physically.

Physically first, any scattering experiments involves a nonzero J. Indeed, one

may think of the quantum mechanical picture of a scattering experiment as a

plane wave colliding with a center. The incoming conditions as well as the

outgoing conditions may be expanded in terms of partial waves with varying ‘,
the orbital angular momentum. It is well known that any actual simulations must

include high ‘ partial waves, hence nonzero J conditions. In a classical picture,

with an impact parameter b 6¼ 0, the nonzero ‘ value is recovered with

b ¼ b �PPAs, where �PPAs is the incoming asymptotic momentum.

Also, angular momentum is very important in experimental situations when

the centrifugal energy is an appreciable part of the total energy. In those

situations (generally, low masses and low temperatures), centrifugal barriers

may completely or partially block a reaction or an inelastic channel. Also,

unimolecular decomposition or chemidesorption from a surface may be very

different with varying J. It also may happen that quantum mechanics may have

some selection rules pertaining, for example, to odd or even j states, like the

familiar ortho- and para-hydrogen molecules. Occurrence of those rules

necessitates the inclusion of nonzero total and partial angular momenta.

In some instances, existence of a nonzero angular total angular momentum J

dramatically changes the very shape of phase space. For a triatomic molecule, if

J ¼ 0, the collinear configuration is always possible. If J 6¼ 0, only if J

is perpendicular to the plane of the three atoms (planar configurations) is

the collinear case still possible. In the spirit of Section IV.B.2, the space of

possible configurations is halved, with a z ¼ 0 plane that cannot be reached (infinite

centrifugal energy). On the other hand, the transition states P1;P2;P3 disappear,

since the ‘‘isomerization’’ may be obtained by a simple rotation of the molecule.
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This change of shapes also happens in other contexts. The three-dimensional

Henon–Heiles potential changes with nonzero J (called � in Wiesenfeld and

Wiggins [56]; see Section IV.B.1). Many nontrivial instances may be found in

Cushman [63].

There have been various studies concerning relative equilibria [58,64–66],

especiallys so for bound systems. Rotating scattering systems have been much

less studied except when the rotating frequency is imposed and constant. Many

gravitational N-body problems belong to this class. In particular, some versions

of the restricted three-body problem are treated in the rotating frame, where

equilibria are actually only relative equilibria. Drift of objects in the solar

system has been studied in a well-chosen rotating reference frame [22,67,68].

This approach is similar to ours but is restricted to few DOFs. It also uses the

determination of a TS in order to transport in phase-space rates, in way similar

to chemical theory. It must be emphasized here that the idea of a relative

equilibrium is simple only if the two objects are rigid. Otherwise, the full

rotation/vibration/deformation Hamiltonian is much more involved [17,69].

Before going into a detailed description, a mathematical definition of the

problem is useful. If we have conserved quantities, like the total angular

momentum J and its projection Jz, the eigenvalues of the linearized motion

matrix M has now the following eigenvalue structure. Let us have, as usual, n

degrees of freedom and k < n� 2 conserved quantities. Then we have

li;iþ1 ¼ �ioi; oi > 0; i ¼ 1; 3; . . . ; 2n� 2k � 3

l2n�1;2n ¼ �k; k > 0

li;iþ1 ¼ 0; i ¼ 2n� 2k � 1; 2n� 2k þ 1; . . . ; 2n� 3

ð44Þ

For example, if J is the only conserved quantity, we have one pair of zero

eigenvalue.

A. Dynamics in the Rotating Frame

The conservation of total angular momentum J encourages studying dynamics

in the rotating frame, thereby hoping to simplify dynamics. This step has been

taken a long time ago, in a process called mathematical reduction [22]. It is not at

all our purpose here to enter this mathematically active field, especially because

reduction is much more general, encompassing any type of continuous

symmetry, in the same vein as rotations.

Let us just state here that we wish to replace the static equilibria that were the

cornerstone of our previous study by equilibria in the rotating frame. In this

manner, we should recover the whole set of ideas we had on absolute stability,

NHIM and TST, and transport them onto relative stability, NHIM and TST.
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There have been various studies concerning relative equilibria [58,65,66,

70–72], especially so for bound systems. Rotating scattering systems have been

much less studied except when the rotating frequency is imposed and constant.

Many gravitational N-body problems belong to this class.

While relative equilibria and relative TS might occur in bound motion

(isomerization with nonzero J, we restrict ourselves to scattering situations in

all that follows. A generalization of the isomerization for the three-body system,

for instance, is still lacking. Also, the very important case of three-body (and

four-body) reactive scattering, with angular momentum, is only treated in the

literature without explicitly resorting to a TS concept [73–75].

1. Relative Equilibrium

Relative equilibria arise when the shape of the system does not change in time

while the object as a whole is rotating. A relative equilibrium (RE) point means

that:

1. There is no relative radial speed nor acceleration.

2. The composed body rotates as a whole, at uniform angular speed and zero

angular accelerations.

Let us first consider a radial Hamiltonian, with an angular momentum J, reduced

mass m, and radial potential V:

H ¼ p2r
2m

þ J2

2mr2
þ VðrÞ ð45Þ

An RE occurs when

dVðrÞ
dr

� J2

mr3
¼ 0

This RE is radially unstable if J2= 2mr2ð Þ þ VðrÞ is a maximum, radially stable if

it is a minimum. If an unstable RE occurs, the deflection function �f ¼ f ðbiÞ,
[41,76], displays rainbows (�f is the final angle of exit of the particle in the

inertial frame, bi is the initial impact parameter). The structure of these rainbows

is well known in the classical or quantum cases [77]. For such an integrable

Hamiltonian like equation (45), there are as many singularities (rainbows) of the

deflection function as integer numbers: each singularity is characterized by an

increase by 1 of k ¼ modð�f ; 2pÞ. There is one impact parameter b
 such that

geometry of phase-space transition states 249



k ! 1. It corresponds to the intersection of the asymptotic condition r ! 1
with the stable manifold of the unique RE point.

A general Hamiltonian is more like:

H ¼ p2r
2m

þ J2

2mr2
þ Vðr; yJÞ ð46Þ

with yJ conjugated to the total angular momentum J. Motion is vastly more

complicated, exhibiting generically regular and chaotic regions in phase space as

well as one or several RE points. The dynamically invariant objects in the relative

motion frame (RE, periodic orbits, and their high-dimensional analogues,

[8,48]) have stable/unstable manifolds. These manifolds create heteroclinic

and homoclinic tangles, in a way totally analogous to inertial periodic orbits

[26,78,79].

If one considers the whole Hamiltonian H, Eq. (46), including the rotation,

the RE point becomes a periodic orbit (p.o.). This periodic orbit has a trivial

equation:

x ¼ x0; x 6¼ yJ

yJ ¼ y0J þ ot
ð47Þ

where superscript 0 denotes initial conditions for the orbit. In the language of

linearized motion, the following eigenvalue structure appears for the p.o. [23]:

1. One eigenvalue pair l�1 ¼ 1, in the J; yJ plane, corresponding to the

conservation of total angular momentum, along the p.o.

2. K pairs of imaginary eigenvalues of modulus one, l�k ¼ e�iok .

3. K 0 pairs of real eigenvalues l0�k ¼ kk; 1=kk.

We have 1þ K þ K 0 ¼ N. Please note that this eigenvalue structure is that of a

p.o., not of a equilibrium point [24].

Returning to the relative frame, let H0 be the Hamiltonian restricted to the

relative motion. An RE will occur at points where rH0 ¼ 0. The linear stability

is now defined with respect to the Hessian of H0 and no more of H as in

Section II. For general relative Hamiltonians, with several rotation-like motions

[17], there are in general m � 1 DOFs that are frozen in the rotating frame. For

Hamiltonian (46) as well as for the planar, nondeformable bodies problem that

is dealt with in this study, we have m ¼ 1: The total angular momentum J and

its conjugated angle yJ . Then, if we have the following structure of eigenvalues

for the RE point P [see Eq. (26)]:

l�k ; k ¼ 2; . . .N � 1 pure imaginary; l�N real ð48Þ
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we define in a neighborhood of P a relative TS. The first eigenvalue pair does not

appear in the relative frame. In a manner totally comparable to the usual TS, we

have in relative coordinates and in the linear approximation [see Eq. (44)]

H0 ¼ 1
2

XN�1

k¼2

ðp2k þ o2
kq

2
kÞ þ 1

2
ðp2x � k2x2Þ ð49Þ

The dynamics across this linearized relative TS is exactly comparable to the

dynamics across the linearized usual TS. Like the usual TS, a relative TS defines

two regions in phase space: an outer region and an inner region with x > 0 and

x < 0, for the Hamiltonian equation, Eq. (49)]. However, the full dynamics may

be qualitatively different, precisely because of the relative nature of the

equilibrium and the occurrence of Coriolis terms in the relative frame.

2. An Example: A Rotating van der Waals Complex

Equilibria. As a worked out example, I wish to present here the dynamics and

relative TS associated with a very well known system of molecular physics, the

van der Waals molecule. Simply stated, a van der Waals molecule AB is bound

not by the creation of electronic orbitals extending over both fragments A and B

but rather by the attraction due to multipolar electric forces between the two

fragments A and B. In addition to this attraction, there also exists a chemical

repulsion, responsible for the nonreactivity of A and B. Since the bonding is

multipolar, it is weak, of the order of tens to hundreds cm�1 (1 atomic unit of

energy ’2:19� 105 cm�1). Because the bonding is so weak, it is to be expected

that centrifugal effects will be important, as has often been experimentally and

theoretically observed.

We use a very simple example, consisting of a dipolar and quadrupolar

molecule interacting with a polarizable atom. The molecule is of cylindrical

symmetry yet has the dimensions and the long-range electrical and inertial

properties of H2O; the atom is akin to atomic H. Because of the (supposed)

cylindrical symmetry and because of the great simplification it entails, we

restrict ourselves to a planar problem.

The (planar) Hamiltonian is written in fixed-frame coordinates as

H ¼ p2R
2m

þ ‘2

2mR2
þ j2a
2Ia

þ VðR; wÞ ð50Þ

where R is the distance from the H atom to the center of mass of the H2O

molecule, PR is the radial momentum, ‘ is the orbital angular momentum of H, ja
is the rotational angular momentum of H2O, Ia is its moment of inertia, and w is

the relative angle between the axis of symmetry of H2O and the direction of H.
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The construction of a meaningful potential VðR; wÞ is always a serious matter.

Let us, however, describe it cursorily.

1. The short-range potential is exponentially repulsive. The characteristics of

the exponential function are chosen to match the high-energy potential

calculated for the reaction Hþ H2O ! OHþ H2, in an averaged

isotropic way.

2. The long-range potential is electrostatic. It comprises an isotropic van der

Waals OðR�6Þ part, a dipole-induced dipole OðR�6Þ part, and a

quadrupole-induced dipole OðR�7Þ part.
3. The joining of the two parts is made by damping the electrostatic potential

with an ad hoc damping function dnðRÞ, which proved its usefulness in

many other instances; see Toennies et al. [80].

With all these considerations, the potential reads

VðR; wÞ ¼ C1 expð�bRÞ þ C2

R6
d6ðRÞ þ C3

2R6
ð3 cos2 wþ 1Þ d6ðRÞ

þ C4

3R7
ðcos3 wÞ d7ðRÞ ð51Þ

Equipped with this Hamiltonian, it is possible to look for relative equilibria

and their linear stability, as a function of total angular momentum J. The

full calculations are tedious and need not be reproduced here. In Fig. 19, we

plot the energy of the various RE as a function of total angular momentum. We

see that they undergo a saddle-node bifurcation for a different, even if similar,

value of J. The upper branch has at least one real eigenvalue, and the lower one

has at least one imaginary eigenvalue. The main couple, at w ¼ 0, has its

eigenvalues depicted in Fig. 20 (recall that eigenvalues come here in pairs l�).
Finally, the Hamiltonian function with zero momenta and J ¼ 8 is depicted in

Fig. 21.

Transport. We need now to construct the NHIM, its stable/unstable manifolds,

and the center manifold. Let P be the main relative equilibrium point. The first

task is to find the short periodic orbits lying above P in energy. These p.o. are

unstable. We did so by exploring phase space at energies 4, 10, and 14 cm�1

above E
 (1 atomic unit¼ 2:194746 � 105 cm�1). It is not possible to go much

higher in E, since the center manifold disappears shortly above E
 þ 14 cm�1,

because of the structure of the potential energy surface.

By joining corresponding points in the p.o. at successive energies, Fig. 22 is

obtained. Note that each p.o., which acts as a NHIM, is by no means plane and

its projection onto configuration space does not show its full structure.
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Figure 19. For the value w ¼ 0;p=2, p, energy of the relative equilibria as a function of J. Note
that the three families undergo a saddle-node bifurcation at different energy each.
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Figure 20. For the value w ¼ 0, eigenvalues of the relative equilibria as a function of J. Inner

point, circles; outer point, crosses. Only positive imaginary and negative real eigenvalues are shown.

Note that the equilibria undergo a saddle-node bifurcation at J ’ 13:5.
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Figure 21. Lines of equal value of the Hamilton function, for pR ¼ 0, J ¼ 8, dj ¼ dj� for the

equilibrium point at w ¼ 0, R ’ 9. Stability of the various REs of the J ¼ 8 foliation is denoted by

the following symbols: �, stable; 
, saddle; *, unstable. Two trajectories along the stable manifold of

the RE are also shown. The levels go up for the R!1, and are �1:e�3 . . . 5:e�5 . . . 1:e�4;

1:e�4 . . . 3:e�6 . . . 2:e�4 in atomic unit.
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Figure 22. Two views of the stable/unstable manifolds of P, for J ¼ 8. The inner part and outer

part of phase space are clearly seen. They cross at the TS.
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We go on by looking for the transport structure, the stable and unstable

manifolds. While in principle, one could look for stable/unstable manifolds for

any point of the center manifold of Fig. 22, in practice, it is easier to begin with

a p.o. and describe its stable/unstable manifolds. Figure 23 depicts those

manifolds. The light gray manifolds extend from the p.o. at the middle toward

the inner region. In the relative frame we are (recall that the coordinates are all

rotating with �, Eq. (50), these tubes are very much alike those of Ozorio et al.,

with hetero- and homoclinic intersections, responsible for the chaos appearing

in the inner region. On the outer side, the situation is different. The black tubes

extend readily into the asymptotic region, in a very straight way, undergoing no

Figure 23. The center manifold of P, for J ¼ 8. The thick lines are p. o., and the thin lines

serve as a guide for the eyes to visualize the center manifold.
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hetero- or homoclinic intersection. This may be readily understood by simple

inspection of Fig. 21. As soon as R > R
, the angular dependance of the

potential energy surface becomes very weak, making the Hamiltonian nearly

separable.

The relative TS itself lies in the intersection of the tubes. This TS

connects the two regions of the potential, the inner one, organized around the

stable van der Waals complex and the outer one, extending toward asymptotic

regions.

B. Some Results in Astrophysics

1. General Considerations

One of the incentives for studying transition states including angular momentum

comes from molecular astrophysics. Conditions prevailing in interstellar media

are such that very clean rotational effects are observed. Many reviews exist

describing molecular environments in interstellar media, as well as their

chemistry [81,82].

Two main parameters make astrochemistry different from usual laboratory

chemistry : low densities (r <� 106 cm�3) and low temperatures, depending on

the various interstellar media (10 K < T < 300K, usually). With these

energies and densities, it is understandable that (i) reactions usually considered

as negligible may acquire a special importance (like neutral–neutral radical

chemistry) and (ii) reactions with an appreciable activation energy are of no

importance. It must also be underlined that hydrogen is by far (90%) the most

abundant element and all hydrogen compounds (for example, H;H2;H
þ
2 ;H

þ
3 )

are of great importance for all chemical network of reaction.

Because of the low kinetic energy available, it is to be expected that

centrifugal forces should be of importance, especially so for neutral–neutral

reactions, without any charge/multipole force between the reactants. If ions are

present, the Langevin approximation/capture theory is more than enough to

calculate most chemical rates [83]. On the contrary, for neutral–neutral

reactions the situations are vastly different [84]. In particular, some reaction

rates diminish rapidly as temperature increases.

A preliminary study was undertaken without a precise knowledge of the

rotational TS [58]. The problem was as follows. We wish to look at the

temperature dependence of the reaction

CNþ O ! COþ N

at low temperatures. In order to keep everything as simple as possible,

elementary interatomic potentials (Lennard-Jones and Morse) were used, with
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the possible addition of a weak barrier in the entrance channel. Similar studies

have been performed in different context, for the O3 system [85].

Without an entrance barrier (or a ‘‘coral reef’’, which is a bump in the

potential below the threshold energy) the centrifugal barrier is not high enough,

at any energy, to induce any dynamical effect. However, including a barrier,

something new appears. Let us call ‘ the orbital angular momentum and j the

angular momentum of CN before reaction. A simple planar model is used, so

that the total angular momentum is J ¼ j� ‘. For low temperatures, only low j

states are populated and any effect is weak. If T � 300K, jjj < 11. Counter-

rotation is the very different from co-rotation, and evidence for a rotational

transition state appear (see Fig. 25). Evidently, more precise work is still needed

(see Section V.A).

2. Inelastic Scattering

A scheme for inelastic scattering is beginning to emerge mainly from model

studies. The inelastic collision

H2OðjÞ þ H2ðj ¼ 0Þ ! H2Oðj0Þ þ H2ðj00Þ
has been studied in the spirit of TST, in the relative equilibrium framework [59].

The full planar Hamiltonian for the collision is written in atomic units as

H ¼ p2R
2m

þ ‘2

2mR2
þ j2H2O

2IH2O

þ j2H2

2IH2

þ VðR; y; wH2O
; wH2

Þ ð52Þ

where Ia (a ¼ H2O; H2) denotes a constant of inertia.

0

V(r)

r

Figure 24. Potential of Lennard-Jones type (full line), with a coral reef (dash) and a entrance

barrier (dot-dash).
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It must be noticed that H is written in the center-of-mass, laboratory frame.

Consequently, the angle conjugated to ja are fa ¼ yþ wa. An image of the

collision is given in Fig. 26. The exact form of the multipolar potential may be

found in Ref. 59. It must be noticed that H is written in the center-of-mass,

laboratory frame. The number of DOFs of this rotating planar composed

Figure 25. Scheme of the CNþO reaction, co-rotating with an intermediate TS (stage (B)).
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χb
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Figure 26. Scheme of the a � H2O and b � H2 coordinates. x; x0; y are lab-fixed frames and

the dashed line is the intermolecular axis, with R being the intermolecular distance. The dipole of

H2O is along xa, and the H–H internuclear axis is oriented along xb. Angles as shown.
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system is 4, precluding any detailed image of the whole dynamics. The

concept of relative motion thus takes a particular importance for such a large

system.

Using Hamiltonian (52), it is possible to find REs, by differentiating

the Hamiltonian. Recalling the definition of the angles and imposing _yy ¼ �, the
overall angular speed (y is conjugated with the total angular momentum J),

we find various REs. The relative angles are wH2O
¼ Kp and wH2

¼ K 0p=2. The
radius is defined as Req. Looking for the stability matrix M, one position is a

good candidate for the relative TS (K ¼ 0;K 0 ¼ 0) (Fig. 27). A confirmation

is found by numerically integrating the equations of motion in its neighbor-

hood. The characteristic behavior of a saddle equilibrium point is recovered

(Fig. 28).

As a final illustration, it is possible in the context of this RE to have an image

of the actual opening of the TS as J decreases for a given energy (this is

equivalent in the context of inelastic scattering of varying E at constant J).

While in some analogous works, it was possible to devise surfaces of section

or even full representations of phase space; this is hardly thinkable here. Let us

recall that an on-shell (or constant energy H ¼ E ¼ 0:001 atomic units) Poincaré

section would be of dimension D� ¼ DðphasespaceÞ � 1� 1 ¼ 6. Instead we

J

H

O

H

H H

Figure 27. Schematic view of the relative equilibrium.
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depict the asymptotic conditions, on-shell, for which trajectories enter or do not

enter into the inner region. We set the following conditions:

1. The initial conditions for a trajectory are: R ! 1 ; jH2O ¼ jH2
¼ 0, in

accordance to the RE conditions; 0 � ‘ ¼ pR � b <� 27, where b is the

impact parameter and pR is found by energy conservation.

2. 0 � wH2O
< 2p, 0 � wH2

< p: The wH2O
, wH2

angles are scanned, since

they have no physical meaning. We thus have a two-dimensional set of

initial conditions.

3. Because the inner part of the potential (R  Req) is not very meaningful

and because the depth of the potential well in the inner part is not

controlled, we monitor only whether or not the trajectory enters the inner

region.

With help of all those conditions, we have the results presented in Fig. 29. We see

clearly three regimes.

i. For high-‘, (‘ > ‘eq), the centrifugal barrier is too high and all collisions

are quasi-elastic. This has been verified by monitoring the jH2O values

before and after collisions and by founding near-zero changes. In

chemical reactions, we would say that we are below threshold.

–0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6
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T
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T
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Figure 28. Numerically integrated dynamics around the main RE at E ¼ 0:001 atomic units.

R ¼ pR ¼ 0 is the RE. The dynamics is projected onto the R; pR plane. Thick lines represent the

stable and unstable manifolds of the RE; thin lines represent several trajectories. T1 and T2,

nonreactive and reactive trajectories, respectively.
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ii. Around ‘ <� ‘eq � 22, we open a valley into the inner region. This valley

has an image in the asymptotic conditions described above. The transport

in the outer region is regular and the valley has an image backwards in

time like a simply connected region, centered around the perpendicular

RE (wH2O
¼ 0, wH2

¼ p=2). This means also that during the approach part

of the trajectory (Rasymptotic ! Req), the relative positions of the two

molecules do not change and no angular momentum is transferred. This

is in agreement with the preceding case. In chemical reactions, we would

say that we are at and just above threshold.

iii. As ‘ diminishes, the valley opens and covers the whole wH2O
domain. For

low values of ‘ (0 � ‘ <� 17), the RE that lies very far in phase space

seems to have no influence anymore. The TS is absent and dynamics is

dominated by a complex (maybe chaotic) interplay between short-range

and long-range potentials. This is analogous to reaction paths far above

threshold, where details others than TS may determine the output.

It is thus possible to actually see the opening of a TS and its image onto the

asymptotic plane. This is a first step toward a theory using this opening of TS as

an alternative capture theory.

Figure 29. With varying ‘, at E ¼ 0:001 atomic units, sets of trajectories entering (black dot)

or not entering (white dot) the inner region.
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VI. CONCLUSION

The theory of the classical transition state (classical opposed to quantum)

presented thus far shows that the geometrical view gained in the last few years is

large. It is nearly complete for practical purposes on several levels:

� The number of DOFs is no longer a main difficulty. While the linear

theory is mainly tamed, geometrical representations are still difficult but

need not be focused on.

� Numerical definition of TS (or NHIM) seems within reach, at least for a

few DOFs. Analysis of the flow of classical density of probability, at least

locally, is possible and has been performed at several instances. It should

be by now possible to connect these numerical computations with

sophisticated classical tools, like Pollicot–Ruelle resonances, in order to

find a rate of transition across the TS.

� The classical perturbation theory, which was not discussed here, has made

tremendous practical progresses, allowing one to treat intricate Hamilto-

nians. The presence of complicated kinetic energies or resonances is no

longer a hindrance for perturbation theory.

� Angular momentum begins to be included in a meaningful way, yet not

complete. This is of particular importance for low-energy processes.

While, at least in this author’s opinion, the situation is very satisfactory on the

theoretical view, only few applications have up to now taken advantage of the

formalism of TS in many dimensions. It is, however, very noticeable that

applications that exist already draw from many different fields, as this and all the

other chapters of this book emphasize. The convergence between celestial

dynamics and atomic/molecular physics is particularly striking.

Several avenues remain for the moment either completely unknown or barely

touched upon. While inclusion of many DOFs is possible by now, it is still very

unclear how robust the concept of a NHIM is. In particular, inclusion of

dissipation might or might not disrupt the very existence of a NHIM. Most

probably, different regimes should exist and be explored theoretically and

numerically.

Today, it is also unclear as to what is the scenario for the bifurcations of

NHIMs as energy increases. In other words, the change from threshold regime

to above-threshold regimes remains very unclear. The same is true for the

importance of symmetries in the dynamics, especially so for the breaking of

some symmetries through bifurcations.

However, the most important drawback for chemical physics is of course the

classical nature of the theory. It is possible, however, that quantum or

semiclassical theories of reactions [86] might greatly take profit of the images
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presented here. The increased sophistication of semiclassical S-matrix

calculations, their ability to treat many DOFs make those methods good

candidates to make the bridge between the very different points of views

of classical and quantum mechanics.
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I. INTRODUCTION

The purpose of this chapter is to review some properties of isomerizing

ðABC $ BCAÞ and dissociating ðABC ! ABþ CÞ prototype triatomic mole-

cules, which are revealed by the analysis of their dynamics on precise ab initio

potential energy surfaces (PESs). The systems investigated will be con-

sidered from all possible viewpoints—quantum, classical, and semiclassical

mechanics—and several techniques will be applied to extract information from

the PES, such as Canonical Perturbation Theory, adiabatic separation of motions,

and Periodic Orbit Theory.

The key quantity in these studies is the strength of the coupling between

reactive coordinates and perpendicular ones, where a coordinate is called

reactive if it leads from reactants to products. The reactive coordinate is

essentially an angle in the case of an isomerizing system and a stretching

coordinate in the case of a dissociating system. The strength of the coupling

between different degrees of freedom obviously depends on the choice of

coordinates. When ‘‘natural’’ sets of coordinates, like valence or Jacobi ones,

are used, it is rather rare that the couplings remain negligible up to the reaction

threshold. In contrast, ‘‘optimized’’ sets of coordinates, which minimize the

couplings between the various degrees of freedom up to and above the reaction

threshold, can be derived rather straightforwardly for a certain number of

isomerizing systems, like HCN $ CNH or LiNC $ NCLi. Section II describes

in detail a procedure based on Canonical Perturbation Theory, which enables

near-separation of motions for such isomerizing systems. Section II furthermore

discusses vibrationally nonadiabatic tunneling in HCN $ CNH, that is, the

effect of remaining small couplings below the top of the adiabatic isomerization

barrier on the shape of the wavefunctions along the perpendicular degrees of

freedom.

For the nearly separable isomerizing systems studied in Section II, it is

sufficient to increase the energy in the reactive degree of freedom to let the

molecule explore the reaction pathway further and further and eventually react

when the deposited energy is larger than the energy of the adiabatic reaction

threshold. Recent studies dealing with the vibrational dynamics of small

molecules (HCP, HOCl, HOBr...) have shown that this is certainly not the case

for systems, which display a pronounced resonance between the reactive degree

of freedom and a perpendicular one. Section III is devoted to the description of

the subtle pattern of bifurcations, which the molecules mentioned above must
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undergo in order to reach the reaction threshold, due to the existence of a

2:1 Fermi coupling between the reactive degree of freedom and perpendicular

ones.

II. NEARLY SEPARABLE ISOMERIZING SYSTEMS

This section describes the dynamics of the isomerizing system HCN $ CNH,

for which near-separation of the various degrees of freedom can be achieved. It is

first shown in Section II.A how Canonical Perturbation Theory (CPT) can be

applied to this floppy molecule in order to find ‘‘optimized’’ sets of coordinates,

which minimize the couplings between the various degrees of freedom. Section

II.B further discusses the effects of the remaining small coupling terms on the

tunneling between states with different quantum numbers in the perpendicular

degrees of freedom.

A. Application of Canonical Perturbation Theory
to Floppy Molecules

The basic idea of this section, which collects information scattered in Refs. 1–3,

is to apply several unitary (or canonical) transformations to floppy systems

initially described by ab initio or fitted potential energy surfaces and exact

kinetic energy operators, in order to rewrite their Hamiltonian in terms of, as

complete as possible, a set of good quantum numbers (or classical constants of

the motion), plus some high-order small coupling terms that are eventually

neglected at the end of the procedure. For HCN $ CNH [1,2,4], LiNC $ LiCN

[5], and C3 [6], a complete separation of motions was actually achieved after the

high-order small coupling terms were neglected: As will be seen below, the final

(or perturbative) Hamiltonian is formally a one-dimensional Hamiltonian in the

bending angle, which is parameterized by the stretch quantum numbers.

The possibility of such a separation of motions is not obvious at all when

looking at the PES of an isomerizing molecule. Figure 1 (left) shows as an

example a two-dimensional cut in the (R, g) plane of the three-dimensional PES

for the HCN $ CNH system obtained by Tennyson and co-workers [7,8]. R is

the distance between H and the center of mass G of CN, while g is the HGC

angle (g ¼ 0 at the linear HCN configuration). For this figure, the third

coordinate—that is, the distance r between C and N—is fixed to the HCN

equilibrium value of 1.1528 Å. It is seen that the reaction pathway (or minimum

energy path, MEP), which connects the HCN absolute minimum (at g ¼ 0) to

the CNH relative one (at g ¼ 180�) through the saddle (at g � 80�), displays a
very strong curvature in the (R, g) plane. Consequently, if the Hamiltonian

matrix is built in the basis set constructed as the direct products of the one-

dimensional functions for each Jacobi coordinate, then the couplings between

the vectors of the basis are strong. The first step of the CPT procedure aimed at
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minimizing these couplings consists in developing the initial Hamiltonian in

Fourier series with respect to g along the MEP and in Taylor series with respect

to the stretch coordinates perpendicular to the MEP, in order to rewrite it in

terms of simple operators.

More precisely, let us suppose that the initial Hamiltonian of the system is

written in the form

H ¼ T þ VðR; r; gÞ

T ¼ 1

2mr
p2r þ

1

2mR
p2R þ

1

2mrr2
þ 1

2mRR2

� �
p2g

ð1Þ

where mr and mR stand for the reduced masses of C–N and H–CN, respectively, V

is the PES expressed in terms of the Jacobi coordinates, and T is the classical

expression of the kinetic energy of a triatomic molecule (we temporarily forget

the additional term, which arises from the fact that the molecule is linear at

equilibrium). Defining a grid gi ði ¼ 1; . . . ; imaxÞ of equally spaced points in g,
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Figure 1. (Left) Two-dimensional cut in the (R, g) plane of the three-dimensional PES for the

HCN $ CNH system obtained by Tennyson and co-workers [7,8]. R is the distance in Å between H

and the center of mass, G, of CN, while g is the HGC angle (g ¼ 0 at the linear HCN configuration,

g ¼ p at the linear CNH configuration). For this figure, the third coordinate (i.e., the distance r

between C and N) is fixed to the HCN equilibrium value of 1.1528 Å. (Right) Same plot, but for

coordinates ðZ; yÞ defined in Eq. (3).
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such that g1 ¼ 0 and gimax
¼ 180� (imax is usually taken in the range 100–200),

the MEP is first determined as the set of points ðRMEPðgiÞ; rMEPðgiÞ; giÞ, where
RMEPðgÞ and rMEPðgÞ are solutions of

qV
qR

� �
RMEP;rMEP;g

¼ qV
qr

� �
RMEP;rMEP;g

¼ 0 ð2Þ

One also calculates by the method of finite differences the vectors R
0
MEPðgiÞ and

r
0
MEPðgiÞ of the derivatives of RMEP and rMEP with respect to g. For each value gi,
the Hamiltonian is then rewritten in terms of the new set of conjugate variables

Z ¼ R� RMEPðgiÞ; pZ ¼ pR

z ¼ r � rMEPðgiÞ; pz ¼ pr

y ¼ g; py ¼ pg þ R
0
MEPðgiÞpR þ r0MEPðgiÞpr

ð3Þ

and expanded in Taylor series with respect to the coordinates Z and z. For each

value of gi one thus obtains a series of the form

Hðy ¼ giÞ ¼
X
m;n;N

h
ðiÞ
mnNZ

m1zm2pn1Z p
n2
z p

N
y ð4Þ

where m ¼ ðm1;m2Þ and n ¼ ðn1; n2Þ. By expanding each vector h
ðiÞ
mnN

ði ¼ 1; . . . ; imaxÞ in Fourier series with respect to y ¼ g and rewriting cosðnyÞ
in terms of ðcos yÞn, and likewise sinðnyÞ in terms of ðsin yÞðcos yÞn, the initial

Hamiltonian H is cast in the form

H ¼
X

m;n;M;P;N

hmnMPNZ
m1zm2ðcos yÞMpn1Z pn2z ðsinðyÞpyÞPp2Ny ð5Þ

where P ¼ 0 or P ¼ 1. A two-dimensional cut in the ðZ; yÞ plane of the potential
energy part of this expression is plotted in Fig. 1 (right) for m1 þ m2 � 12 and

M � 24. Wilson’s GF formalism [9] is then applied to Eq. (5), in order to rewrite

the Hamiltonian of the system in terms of the dimensionless normal coordinates

ðp1; q1Þ and ðp3; q3Þ for the stretch degrees of freedom (for HCN $ CNH,

indexes 1 and 3 stand for the H–CN and C–N stretches, respectively).

At last, a few steps are necessary to make the expansion of Eq. (5) amenable

to quantum CPT procedures: The dimensionless normal coordinates for the

stretch degrees of freedom are expressed in terms of the ladder operators

ak ¼ 1ffiffiffi
2

p ðqk þ ipkÞ; aþk ¼ 1ffiffiffi
2

p ðqk � ipkÞ ð6Þ
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where i2 ¼ �1 and k ¼ 1; 3 (the convention �h ¼ 1 is assumed throughout the

manuscript), while p2y is replaced by the operator J2, where

J2 ¼ � 1

sin y
q
qy

sin y
q
qy

� 1

ðsin yÞ2
q2

qj2
ð7Þ

and j describes the rotation of the molecule around the axis with the smallest

moment of inertia. One obtains

H ¼
X

m;n;M;P;N

HmnMPNðaþ1 Þm1ða1Þn1ðaþ3 Þm3ða3Þn3ðcos yÞMsPðJ2ÞN ð8Þ

where s stands for the differential operator sin yq=qy. Note that all of the

operators that appear in Eq. (8) have simple matrix elements in the bases of the

harmonic oscillator and of the spherical functions. Note also that symmetrization

of Eq. (8), which is made necessary by the canonical transformations of Eq. (3),

is postponed to an ulterior step (see below).

Following Van Vleck [10] Jordahl [11], and Kemble [12], the CPT procedure

itself consists of a series of unitary transformations of increasing order s

ðs ¼ 1; 2; 3; . . .Þ

K ¼ expðSÞH expð�SÞ ð9Þ

where the initial operator H at order s ¼ 1 is the expansion of Eq. (8) and the

transformed Hamiltonian K obtained at order s serves as the initial operator H at

order sþ 1. The operator S, which appears in this equation, is anti-Hermitian.

Reference to the current perturbation order s (in the form of subscripts or

superscripts) will not be used, in order to avoid too complex notations. For the

same reason, no artificial small parameter l is introduced. The basic idea of CPT

is to expand, at each order s, H, and K in the form

H ¼
X1
i¼0

HðiÞ

K ¼
X1
i¼0

KðiÞ
ð10Þ

where the HðiÞ and KðiÞ become smaller and smaller with increasing values of the

order i. Actually, the ordering of the successive operators H (at s > 1) and K (at

s � 1) is uniquely determined by the ordering of the initial operator H at order

s ¼ 1—that is, of Eq. (8). The choice of Hð0Þ is particularly important, because

the ability to solve the cohomology equation (see below) depends crucially on
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this choice. Moreover, the number of terms to handle, and therefore the size of

the required computer memory, depends on the ordering of the other HðiÞ’s
ði > 0Þ. The best choice consists in retaining in Hð0Þ, at first order of the

theory, only the sum of the harmonic oscillators for the stretch degrees of

freedom, that is,

Hð0Þ ¼
X
i¼1;3

oia
þ
i ai ð11Þ

while the terms with m1 þ m3 þ n1 þ n3 þ Pþ 2N ¼ k are retained in HðkÞ if
M 6¼ 0 and inHðk�2Þ ifM ¼ 0. An exception occurs for the pure bending terms in

J2 and ðcos yÞM , which are retained inHð1Þ rather thanHð0Þ, in order to satisfy Eq.
(11). Each term HðkÞ is then symmetrized independently.

If one further assumes that, at order s of the perturbation procedure, the

operator S is of the same order of magnitude as HðsÞ and KðsÞ, then the

relationship between the KðiÞ and the HðiÞ is simply obtained by expanding

the exponential operators in Eq. (9) and equating the terms of the same order.

One gets

If i < s; KðiÞ ¼ HðiÞ

If i ¼ s; KðsÞ ¼ HðsÞ þ ½S;Hð0Þ�

If i > s; KðiÞ ¼ HðiÞ þ
X
m

1

n!
½S; . . . ½S|fflfflffl{zfflfflffl}

n times

;HðmÞ� . . .�
ð12Þ

In the last equation, the summation runs over all integers m, for which there

exists another integer n larger than or equal to 1, such that mþ ns ¼ i. The

second equation of Eq. (12) is used to determine S by requiring that (at order s of

the perturbation procedure) KðsÞ contains only the ‘‘physically important’’ terms

of HðsÞ. In other words, if R contains the terms of HðsÞ, which are not wanted in

KðsÞ—that is, R ¼ HðsÞ � KðsÞ—then S is determined by solving the so-called

cohomology equation

½S;Hð0Þ� ¼ �R ð13Þ

Straightforward calculations show that the choice of Hð0Þ in Eq. (11) implies that

an operator R of the form

R ¼
X

m;n;M;P;N

RmnMPNðaþ1 Þm1ða1Þn1ðaþ3 Þm3ða3Þn3ðcos yÞMsPðJ2ÞN ð14Þ
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is canceled from KðsÞ if S is taken as

S ¼
X

m;n;M;P;N

RmnMPN

�mn
ðaþ1 Þm1ða1Þn1ðaþ3 Þm3ða3Þn3ðcos yÞMsPðJ2ÞN ð15Þ

where�mn ¼ ðm1 � n1Þo1 þ ðm3 � n3Þo3. The terms of K of order i higher than

s are finally obtained from the third equation of Eq. (12) (note that the terms of

order i smaller than s are not changed by the transformation at order s).

Practically, the only tedious point in setting up a computer program consists in

rewriting products of two terms ðaþ1 Þm1ða1Þn1ðaþ3 Þm3ða3Þn3ðcos yÞMsPðJ2ÞN as

linear combinations of terms of the same form. This is achieved by using Sibert’s

formula [see Eq. (11) of Ref. 13) for stretch operators and the recurrence

relations in Eq. (5) of Ref. 1 for bend operators.

The key of any CPT procedure is actually the choice, at each order s of the

theory, of the terms of HðsÞ to be kept in KðsÞ and of those to be put in R, so that

they are canceled by the unitary transformation at order s. The simplest

perturbative Hamiltonian is obtained when only the terms, which are diagonal

with respect to the stretch degrees of freedom, are kept in KðsÞ, while all the

other ones are assigned to R. In other words, all the terms of HðsÞ such that

m 6¼ n are canceled. When performing s unitary transformations with this

criterion for the definition of R and then neglecting the terms KðiÞ such that

i > s, one is left with a Hamiltonian of the form

K ¼
X

m;M;P;N

KmMPNðaþ1 Þm1ða1Þm1ðaþ3 Þm3ða3Þm3ðcos yÞMsPðJ2ÞN ð16Þ

which is called the ‘‘perturbative Hamiltonian of order s.’’ The most useful

expression for this Hamiltonian is obtained by expanding each product

ðaþi ÞmiðaiÞmi in terms of the ðaþi aiÞmi ¼ vmi

i , where the vi are the stretch quantum

numbers. One gets

K ¼
X

m;M;P;N

kmMPN vm1

1 vm3

3 ðcos yÞMsPðJ2ÞN ð17Þ

where the kmMPN are real coefficients. K is formally a one-dimensional

Hamiltonian in the bending angle y and its conjugate momentum. It depends

only parametrically on the good quantum numbers for the stretch degrees of

freedom.

Figure 2 shows the convergence of the CPT procedure described above, when

it is applied to the ab initio surface for HCN $ CNH computed by Tennyson

and co-workers [7,8]. This figure indicates, for each order s of the perturbation

procedure, the average arithmetic error between the energies of the lowest 101
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rotationless states reported in Tables VI and VII of Ref. 7 and the corresponding

energies computed with the perturbative Hamiltonian of order s [Eq. (17)]. The

states taken into account have up to 18 quanta of excitation in the bend degree

of freedom and 12,400 cm�1 of vibrational energy above the quantum

mechanical ground state. Practically, the PES and the kinetic energy operator

were initially Fourier expanded up to ðcos yÞMmax with Mmax ¼ 10, because

expansion to higher orders does not change significantly the results. Note,

however, that all the trigonometric terms of higher order, which appear upon

application of the CPT procedure, must be taken into account, so that the

successive Hamiltonians remain Hermitian [if one orders the initial expansion

of Eq. (8) as described in (and below) Eq. (11), then the trigonometric term with

highest power one has to consider at order s of the perturbation procedure is

ðcos yÞðs�2ÞMmax ]. It is well known that CPT leads to asymptotic series—that is,

to series that converge for a certain number of iterations and then fluctuate or

diverge. One therefore has to check somehow the convergence of the series of

0 2 4 6 8

perturbation order s

101

102

103

ar
ith

m
et

ic
 a

ve
ra

ge
 e

rr
or

 (
cm

-1
)

Figure 2. Plot, as a function of the order s of the perturbation procedure, of the average

arithmetic error between the energies of HCN $ CNH obtained for the ab initio surface of Refs. 7

and 8 and the perturbative Hamiltonian of Eq. (17). The lowest 101 rotationless states of the system

are taken into account (see Tables VI and VII of Ref. 7). These states have up to 18 quanta of

excitation in the bend degree of freedom and 12,400 cm�1 of vibrational energy above the quantum

mechanical ground state.
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perturbative Hamiltonians after each canonical transformation. It is seen in

Fig. 2 that the best agreement with variational calculations is obtained for the

sixth-order perturbative Hamiltonian, for which the average error is as low as

about 10 cm�1.

Pseudo-potential energy curves are extracted from the perturbative

Hamiltonian of Eq. (17) by retaining only the terms with P ¼ N ¼ 0—that is,

the terms without differential operator. One obtains a one-dimensional pseudo-

potential curve Vv1;v3ðyÞ for each pair of quantum numbers v1 (H–CN stretch)

and v3 (C–N stretch)

Vv1;v3ðyÞ ¼
X
m;M

kmM00v
m1

1 vm3

3 ðcos yÞM ð18Þ

The lowest 11 pseudo-potential curves are drawn in Fig. 3. These curves can be

used to determine, for example, if there is any chance to detect the system in the

CNH well following its excitation to a given ðv1; v2; v3Þ state of HCN [14]—that

is, if state ðv1; v2; v3Þ lies above or below the isomerization barrier for these

values of v1 and v3. Figure 3 shows that, for HCN $ CNH, an increase in the
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Figure 3. Plot of the lowest 11 pseudo-potential energy curves Vv1 ;v3 ðyÞ obtained by applying

sixth-order CPT to the HCN $ CNH surface of Refs. 7 and 8. The stretch quantum numbers v1
(H–CN stretch) and v3(C–N stretch) are indicated for each curve as ðv1; v3Þ.
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stretch quantum numbers essentially results in the shift of the energies of the

HCN and CNH minima, as well as the isomerization threshold, by the

corresponding linear combination of the fundamental frequencies. However, in

other systems, like C3 [6], variations of the stretch quantum numbers have a

much more dramatic influence on the pseudo-potential energy curves. Moreover,

the tunneling effect, which takes place slightly below the top of the isomerization

barrier, is clearly seen when plotting, on the same graph, the wave functions of

the states with given values of v1 and v3 and the corresponding pseudo-potential

energy curve (see Fig. 4). We shall come back to this point in more detail in

Section II.B.

Before concluding this section, let us just mention that, while all of the

equations above refer explicitly to the Van Vleck quantum procedure [10–

12,15], they are most straightforwardly adapted to the classical procedure

based on Lie algebra [16–18] by replacing quantum commutators with

Poisson brackets. Most of the concepts remain also valid for the classical
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Figure 4. Plot of the pseudo-potential and the probability density for the pure bending states

(v1 ¼ v3 ¼ 0) of the HCN $ CNH system versus bending angle y. These results were obtained by

applying sixth-order CPT to the ab initio surface of Tennyson and co-workers [7,8]. The vertical

scale is the same for all probability plots, and the baseline for each plot coincides with the energy of

the corresponding state.
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Birkhoff–Gustavson procedure [19–21], although Eq. (12) has a slightly

different form in this latter case [3].

B. Adiabatic Versus Nonadiabatic Delocalization in

Isomerizing Systems

The theory described in Section II.A applies to the progressions of quantum

mechanical ‘‘adiabatic’’ states. A state is adiabatic in the Ehrenfest sense, if the

two perpendicular stretch quantum numbers v1 and v3 remain unchanged as the

angle y varies between 0� and 180�. As is known from the quantum mechanical

calculations, all localized eigenstates of the non-rotating HCN and CNH

molecules, trapped below the barrier on their respective adiabatic pseudo-

potential curves (see Figs. 3 and 4), satisfy this definition. Moreover, many

delocalized states located above their respective adiabatic barriers Vþ
v1;v3

have the

same assignment v1 and v3 on both HCN and CNH sides. Thus, the adiabatic

approximation is realistic for a significant portion of the spectrum, including

many of the delocalized states. The states belonging to the HCN and CNH well

are usually assigned as ðv1; v2; v3ÞHCN and ðv1; v2; v3ÞCNH, respectively. Alter-
natively, one might organize these states into adiabatic progressions ðv1; v2; v3Þad,
by counting the bending quanta over the whole range of y between 0� and 180�.

In view of the hitherto unsuccessful experimental search for eigenstates

delocalized between the HCN and CNH isomers [14,22–28], the analysis of the

mechanisms and spectral signatures of delocalization becomes central to

theoretical studies. According to the adiabatic theory presented in Section II.A,

states with excitation ðv1; v3Þ in the perpendicular stretching coordinates are

expected to remain localized even above the lowest adiabatic pseudo-potential

barrier Vþ
0;0. Indeed, in the adiabatic picture, these states become delocalized

only if they are located close to or above the corresponding adiabatic potential

barrier Vþ
v1;v3

, which can be located far above Vþ
0;0 (see Fig. 3). This might

explain the fact that no delocalized states were detected in the experiments that

pumped energy in HCN through a combination of the bending and stretching

modes [14,23,24]. Figure 5 illustrates more quantitatively the correlation

between Vþ
v1;v3

and the extent of delocalization. Each eigenstate can be ascribed

probability densities in the HCN and CNH wells, PHCN and PCNH, respectively.

Delocalization Pdel of a normalized eigenstate is defined as the lesser of the two

probabilities

Pdel ¼ minðPHCN;PCNHÞ ð19Þ

Figure 5 shows Pdel for bending states in the pure and several combination

progressions as a function of energy. The vertical solid line in each frame marks

the position of the adiabatic barrier Vþ
v1;v3

. It is clear that full delocalization

Pdel ¼ 50% is reached only at and above the top of the adiabatic barrier,
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especially for low perpendicular excitations. Note that, due to couplings between

the bending mode and the H–CN stretch, the height of the adiabatic barriers Vþ
v1;0

decreases with growing v1. For example, the barrier Vþ
6;0 (measured relative to the

CNH minimum on the pseudo-potential curve) is only half as high as the barrier

Vþ
0;0. The higher the value of v1, the lower the amount of bending excitation

needed to achieve a certain degree of adiabatic delocalization.

At higher energies, it becomes increasingly difficult to organize delocalized

eigenstates in adiabatic progressions. Quantum calculations show that, for

many states, quantum numbers v1 and/or v3 are not conserved along y. The
stretching excitations instead change upon traversing the barrier separating

HCN from CNH. Figure 6 illustrates this point. In the left-hand frame, the
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Figure 5. Plot of delocalization Pdel (in %), defined in Eq. (19), as a function of the energy E

above the ground vibrational state, for six bending progressions ðv1; v2; v3Þad. The stretching

quantum numbers v1 and v3 remain constant within each frame. The vertical solid lines indicate the

position of the adiabatic barrier, Vþ
v1 ;v3

, for each progression. The energy of the PES’ saddle point,

close to g ¼ 80�, is marked with vertical dotted lines.
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three-dimensional (3D) wavefunction of an adiabatically delocalized state is

shown. It has one quantum of excitation in each perpendicular mode all the way

from HCN to CNH. The theory of Section II.A can be applied to it. In the right-

hand frame, another delocalized state is shown. On the HCN side, it has the

same nodal pattern as the adiabatically delocalized state shown in the left-hand

frame of Fig. 6. On the CNH side, the state has instead no node in the stretching

coordinates. This is an example of a ‘‘nonadiabatically’’ delocalized eigenstate.

Note that nonadiabatic delocalization is due to small terms belonging to one of

the KðiÞ ði > sÞ which, in Section II.A, were neglected after the desired number

s of transformations was performed. These small terms therefore do not appear

in the expression of the effective Hamiltonian of Eq. (17), so that this

Hamiltonian cannot reproduce the nonadiabatic delocalization effect.

In the remainder of this section, we consider the properties of the

nonadiabatically delocalized states of HCN $ CNH in more detail. We argue

that this type of delocalization becomes dominant and responsible for

HCN $ CNH isomerization above the top of the potential barrier. Our analysis

is based on numerically exact quantum mechanical calculations for the

HCN $ CNH system performed using the PES of Bowman et al. [29], which

reproduces the experimental vibration and vibration–rotation eigenenergies to

within 60 cm
1 or better even at high energies. For the present study, we

calculated the energies of the first 600 states of the nonrotating molecule—that

is, up to about 22,200 cm
1 above the vibrational ground state—using

successive truncation-diagonalization [30,31]. The eigenstates are converged

Figure 6. Wavefunctions of states 315 and 206 of the HCN $ CNH system, with respective

energies E ¼ 18; 069 cm
1 and E ¼ 15; 750 cm
1 above the quantum mechanical ground state. The

figures show one particular contour �ðR; r; gÞj j2¼ const, where ðR; r; gÞ are the Jacobi coordinates.

(Left) The adiabatically delocalized state 315, which is assigned as ð1; 40; 1Þad. (Right) The non-

adiabatically delocalized state 206, which can be assigned as ð1; 16; 1ÞHCN but displays the nodal

structure of ð0; 24; 0ÞCNH on the CNH side.
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to within 0.5 cm�1 or better. The first 455 eigenstates and some of the states at

higher energies were assigned using visual inspection of their wavefunctions, in

order to provide an as complete as possible characterization of the localized and

delocalized states.

The correlation between the height of the adiabatic barrier and the onset of

delocalization is clearest in the pure bending progression ð0; v2; 0Þ shown in

Fig. 5. Delocalization patterns in other progressions are more involved. An

example is provided by the progression ð1; v2; 0Þ, for which full delocalization,

Pdel ¼ 50%, is achieved only at E � Vþ
1;0. However, several states below this

barrier are also delocalized to some extent, with Pdel ranging from 1% to 10%.

A closer look indicates that the first weakly delocalized states (Pdel ¼ 1:2%)

appears near the top of the barrier of the lowest adiabatic curve Vþ
0;0. In other

words, weakly delocalized states in the progression ð1; v2; 0Þ appear in the

vicinity of the fully delocalized states of the progression ð0; v2; 0Þ. A similar

behavior is found for other progressions shown in Fig. 5. Visual inspection of

the three-dimensional eigenfunctions shows that the majority of the states

with Pdel � 10% are nonadiabatically delocalized. For these nonadiabatically

delocalized states, v1ðHCNÞ 6¼ v1ðCNHÞ and/or v3ðHCNÞ 6¼ v3ðCNHÞ. Their

assignment to pure progressions is based on the nodal structure of the strongest

component of the wavefunction.

Visual inspection of the wavefunctions reveals another feature of the

nonadiabatically delocalized states, which is crucial for rationalizing the effect

and building up a model. Namely, the perpendicular quantum numbers v1 and v3
of the weak component of these states systematically coincide with the

perpendicular quantum numbers of an adjacent adiabatically delocalized state.

This suggests that weak delocalization is induced by coupling between a certain

zero-order localized state fkj i and a neighboring adiabatically delocalized state

wvj i. Suppose that both fkj i and wvj i are known. Then, a nonadiabatically

delocalized state �kj i can be expressed as

�kj i � ak fkj i þ bk wvj i ð20Þ
where fkj i is assumed to be completely localized in one of the potential wells,

while wvj i is delocalized between the HCN and CNH isomers. By construction,

one has Pdel ¼ bkj j2PdelðwvÞ, where PdelðwvÞ is the probability density of wvj i in
the potential well where fkj i � 0. The wavefunctions fkj i and wvj i are nor-

malized, but they are in general not orthogonal. Their overlap Skv ¼ fk wvj ih
controls the coefficients ak and bk and, hence, the extent of delocalization Pdel:

ak ¼ ð1� S2kvÞ�1=2

bk ¼ �akSkv

Pdel ¼ PdelðwvÞS2kv=ð1� S2kvÞ
ð21Þ
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If the zero-order basis is properly chosen, the model of Eq. (20) is a sensi-

tive indicator of those couplings in the molecule that lead to delocalization.

This in turn can be used to describe the delocalization mechanisms in

HCN $ CNH.

The states fkj i and wvj i in Eq. (20) can be chosen in a variety of ways. For

example, the delocalized states calculated in Section II.A using the one-

dimensional pseudo-potential curves can in principle be used as functions wvj i.
The states fkj i localized in each potential well can also be determined using the

same pseudo-potential curves (eventual tunneling contributions should be

neglected). Unfortunately, the accuracy of the adiabatic pseudo-potentials of

Section II.A, although sufficient for predicting the positions of the energy levels

to within a few tens of reciprocal centimeters (compared to the variationally

calculated energies), is not high enough to describe the subtle effects of weak

delocalization. For this reason, it is more appropriate to construct the basis

states using three-dimensional quantum mechanical calculations. We define the

localized basis states fkj i as solutions of the ‘‘restricted’’ Schrödinger equation
in the isolated wells. The dividing surface between the HCN and CNH parts of

the PES is determined in molecular coordinates. The potential energy along the

dividing surface in the restricted calculations is set to some large number which

guarantees that wavefunctions are localized in one of the potential wells. Thus,

solutions in one well are independent of the solutions in the other and can be

used as fkj i. Next, this basis is augmented by the adiabatically delocalized

eigenstates wvj i of the original unrestricted Schrödinger equation: This is in

accord with our conjecture that adiabatically delocalized states are the main

perturbers causing weak delocalization.

The wavefunctions fkj i and wvj i solve different Schrödinger equations and

therefore are not orthogonal. Since the overlap integrals between them are the

measure of nonadiabatic delocalization, one first calculates Skv between all

localized and delocalized states. This identifies the most important couplings in

the system, as well as the states that can be nonadiabatically delocalized. Next,

the weakly delocalized eigenstates are reconstructed using Eq. (20) and

compared to the exact results. Note that this procedure is somewhat reminiscent

of the well-known tier model widely used in the investigations of intramolecular

energy redistribution [32]. State ð2; 16; 0ÞHCN provides a typical example (see

Fig. 7). Its nonadiabatic delocalization is entirely due to the coupling with the

adiabatically delocalized state ð0; 56; 0Þad, which lies only 11 cm�1 below

ð2; 16; 0ÞHCN. This is confirmed by reconstructing the weakly delocalized state

using Eq. (20) and comparing the obtained nodal structure with the exact one.

The extent of delocalization of the reconstructed wavefunction, Pdel ¼ 3:4%, is

in excellent agreement with the exact result, Pdel ¼ 3:6%. The eigenenergy and

the rotational constant of this state are also accurately reproduced within the

simple approximation of Eq. (20).
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Some of the localized basis functions couple to more than one adiabatically

delocalized states. In this case, the model of Eq. (20) should be generalized to

accommodate these couplings:

�kj i � ak fkj i þ
XNk

v¼1

bkv wvj i ð22Þ

where the coefficients ak and bkv, and the delocalization Pdel, are given by

ak ¼ 1�
XNk

v¼1

S2kv

 !�1=2

bkv ¼ �akSkv

Pdel ¼
XNk

v¼1

bkvj j2PdelðwvÞ

ð23Þ

Figure 7. Simple two-state coupling scheme in HCN $ CNH, according to Eq. (20). (Left)

Wavefunction of the adiabatically delocalized state 241 (E ¼ 16; 612 cm�1), which is assigned as

ð0; 56; 0Þad. This is state wvj i of Eq. (20). (Right) Wavefunction of the resulting nonadiabatically

delocalized state 242 (E ¼ 16; 623 cm�1), which can be assigned as ð2; 16; 0ÞHCN but displays the

nodal structure of ð0; 26; 0ÞCNH on the CNH side. This is state �kj i of Eq. (20). The various

assignments refer to the adiabatic description (upper) and to the nodal structures in the isolated wells

(lower). The value of the overlap integral Skv is indicated along the line connecting the two states.

The wavefunctions are shown in the same representation as in Fig. 6.
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This model can be used to uncover the complicated network of interstate

couplings leading to nonadiabatic delocalization. An example of such a coupling

scheme is presented in Fig. 8a. These states lie approximately 16,000 cm�1

above the ground vibrational state. The energy interval of about 900 cm�1

comprises 37 states, of which only three are adiabatically delocalized. They

belong to the progression ð0; v2; 0Þ and are collected in the left column of Fig. 8a.

The adiabatically delocalized states lie above the respective barrier Vþ
0;0. All

other states belong to progressions, which are adiabatically trapped below the

respective adiabatic barriers Vþ
v1;v3

. Nevertheless, all the trapped states are

nonadiabatically delocalized. This is clearly seen in Fig. 8b, which shows some

of the corresponding wavefunctions. Nonadiabatic delocalization of two states,

224 and 228, is particularly strong, with respective values Pdel ¼ 20:0% (224)

and Pdel ¼ 6:9% (228). These states are shown in the middle column of the

diagram in Fig. 8a. The states in the right column are more weakly delocalized

(Pdel ¼ 1:1%). Strong and weak couplings between eigenstates are indicated by

the solid and dotted lines, respectively. The numbers above the lines are the

values of the overlap integrals Skv for the pair of states in question. This scheme

can be considered as a pictorial guide to the choice of the coupling model for a

particular state. For example, states 205 and 206 are perturbed only by the

adiabatically delocalized state ð0; 52; 0Þad in the left column. For them, Eq. (20)

is appropriate. For most other states in the right and middle columns, the multiple

perturber model of Eq. (22) appears to be more adequate.

Figure 8 demonstrates how the delocalization, initially carried by three

adiabatically delocalized states, spreads over the adjacent eigenfunctions. Note

that one can distinguish between direct and indirect interactions of eigenstates.

Delocalization of states 205 and 206 is a result of the direct coupling with the

adiabatically delocalized state 209. More complicated is the example of state

229 (right column in Fig. 8). In the zeroth-order approximation, this state is

assigned as ð2; 12; 1ÞHCN. Its (weak) nodal structure in the CNH well coincides

with that of the adiabatically delocalized state 220 (left column), although the

direct overlap between these two states is vanishingly small. In fact, the nodal

structure of state 229 in the CNH well is due to its coupling to the neighboring

state 228 (middle column), which, in turn, is strongly coupled to the adiabatic

state 220. The coupling scheme in Fig. 8 contains even more complicated

coupling chains, which develop between the localized and delocalized states,

thus leading to spreading of the weak delocalization over the entire spectrum.

Adiabatically delocalized eigenfunctions play the role of critical nuclei

necessary to initiate this process. The avalanche-like expansion of weak

delocalization, initiated by the adiabatically delocalized states, is the main

reason for the increase in the density of states with Pdel � 1% with growing

energy. This is illustrated in Fig. 9, where the total density of states is compared

with the density of delocalized states.
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III. RESONANTLY COUPLED ISOMERIZING AND

DISSOCIATING SYSTEMS

Section II dealt with the system HCN $ CNH, for which the various degrees of

freedom can be nearly separated. Section III is instead devoted to the description

of the dynamics of the isomerizing and dissociating systems HCP $ CPH,

HOCl ! HOþ Cl and HOBr ! HOþ Br, for which there exists a strong

coupling (namely, a 1:2 Fermi resonance) between the reactive degree of

freedom and a perpendicular one. A feature that is common to isomerization and

dissociation reactions is the large anharmonicity along the reaction pathway.

Based on the analysis of two integrable models—the Dunham expansion and the

Fermi resonance Hamiltonian—Section III.A describes how the folding of the

polyads (i.e., the closely spaced groups of states coupled by the Fermi resonance)

caused by these large anharmonicities combines with the Fermi nonlinear

coupling to produce a saddle-node bifurcation, where quantum states, which

stretch along the reaction pathway, are created. These saddle-node bifurcations

are, however, just the first step of the subtle pattern of bifurcations, which these

systems must undergo in order to reach the reaction threshold. Relying mostly on

the classical analysis of the ab initio PESs, Section III.B describes this pattern in

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

8000 12000 16000 20000 240006 22181410
E [10 cm ]

3 -1

ρ
[1

/c
m

]
-1

Figure 9. The density of states in the HCN $ CNH system as a function of energy above the

ground vibrational state. The upper curve shows the full density of states. The lower curve

corresponds to the density of delocalized states with Pdel > 1%.
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more detail, particularly emphasizing the correspondence between the quantum

mechanical and classical descriptions.

A. Polyad Folding and Saddle-Node Bifurcations

It has been shown recently that the vibrational spectra of HCP [33–36], HOCl

[36–39], and HOBr [40,41] obtained from quantum mechanical calculations on

global ab initio surfaces can be reproduced accurately in the low to intermediate

energy regime (75% of the isomerization threshold for HCP, 95% of the

dissociation threshold for HOCl and HOBr) with an integrable Fermi resonance

Hamiltonian. Based on the analysis of this Hamiltonian, this section proposes an

interpretation of the most salient feature of the dynamics of these molecules,

namely the first saddle-node bifurcation, which takes place in the intermediate

energy regime.

The Fermi resonance Hamiltonian consists of two terms. The first one, HD,

is the Dunham expansion, which characterizes the uncoupled system, while

the second term, HF , is the Fermi resonance coupling, which describes the

energy flow between the reactive mode and one perpendicular mode. For

the three systems, HCP $ CPH, HOCl ! HOþ Cl and HOBr ! HOþ Br, the

reactive degree of freedom is the slow component of the Fermi pair and will

therefore be labeled s, while the fast component will be labeled f. Thus, the

resonance condition writes of � 2os. More explicitly, for HCP the slow

reactive mode is the bend (mode 2) and the fast one is the CP stretch (mode 3),

while for HOCl and HOBr the slow mode is the OX stretch (X¼ Cl,Br)

(mode 3) and the fast one is the bend (mode 2). The third, uncoupled mode—

that is, the CH stretch (mode 1) for HCP and the OH stretch (mode 1) for HOCl

and HOBr—will be labeled u. With these notations, the Dunham expansion

writes in the form

HD ¼
X
i¼s;f ;u

oiIi þ
X
i;k

xikIiIk þ
X
i;k;m

yikmIiIkIm þ � � � ð24Þ

where

Ii ¼ 1

2
ðp2i þ q2i Þ ¼ aþi ai þ

di

2
¼ vi þ di

2
ð25Þ

In Eq. (25), ðpi; qiÞ is the set of conjugate dimensionless normal coordinates for

mode i, aþi and ai are the corresponding creation and annihilation operators, vi is

the quantum number for this degree of freedom, and di is its degeneracy (di is

equal to 2 for the bend in HCP and equal to 1 for all other degrees of freedom

considered here). Ii is the classical action integral for mode i and Eq. (25) just
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expresses the Einstein–Brillouin–Keller (EBK) quantization rule [42–45] for this

mode. Quantum mechanically, the Fermi resonance term is written as

HF ¼ ðasasaþf þ aþs a
þ
s af Þ k0 þ

X
i¼s; f ;u

kiIi þ � � �
 !

ð26Þ

while its classical expression involves the angles ji ¼ � tan�1ðpi=qiÞ conjugate
to the Ii’s, that is,

HF ¼ 2 cosðjf � 2jsÞIs
ffiffiffiffi
If

p
k0 þ

X
i¼s; f ;u

kiIi þ � � �
 !

ð27Þ

See Table I of Ref. 34, Table II of Ref. 39 and Table I of Ref. 41 for numerical

values of the coefficients oi, xik, yikm, ki; . . .. Note that there are two misprints

in Table II of Ref. 39: One should read y233 ¼ þ0:2503 cm�1 and y123 ¼
�0:4304 cm�1.

Let us first neglect the Fermi resonance and analyze the dynamics of the

uncoupled systems described by the Dunham expansion alone [Eq. (24)].

Because of the resonance condition of � 2os, quantum states are organized in

clumps, or ‘‘polyads.’’ Each polyad is defined by two quantum numbers, namely

the number vu of quanta in the uncoupled degree of freedom and the so-called

polyad number P:

P ¼ 2vf þ vs ð28Þ

A polyad with quantum numbers vu and P is labeled ½vu;P�. Polyads are

separated by large energy gaps at low energies but overlap more and more widely

as energy increases. It turns out that for the three molecules HCP, HOCl, and

HOBr, the difference 2os � of is small (resonance condition) and positive.

Therefore, at low P values, polyad ½vu;P� organizes as follows. The state with

lowest energy has quantum numbers ðvs; vf Þ ¼ ð0;P=2Þ (if P is even) or

ðvs; vf Þ ¼ ð1; ðP� 1Þ=2Þ (if P is odd). The state with highest energy has quantum

numbers ðvs; vf Þ ¼ ðP; 0Þ. In between, the energies of the intðP=2Þ þ 1 states of

the polyad increase monotonously with the number of quanta vs in the reactive

degree of freedom. Because of the large (negative) anharmonicity along the

reaction pathway, this description does not hold for large values of P. Indeed, if P

(and therefore vs) becomes sufficiently large, then the linear harmonic energy

gap 2os � of between two successive states of the polyad can become smaller

than the quadratic (or higher-order) anharmonic corrections. For these higher

values of P, the energies of the intðP=2Þ þ 1 states of the polyad are an increasing

function of vs up to a certain value of vs, and then a decreasing function of vs.
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Stated in other words, the polyad folds. The wavefunctions for the eight states

belonging to polyad ½vu;P� ¼ ½0; 14� of uncoupled HOBr (H ¼ HD) are plotted in

Fig. 10 as an example. It is seen that the energy of the states is an increasing

function of vs from vs ¼ 0 to vs ¼ 8, but a decreasing one from vs ¼ 8 to vs ¼ 14.

As a result, the polyad appears rather scrambled.
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Figure 10. Density probability in the ðq3; q2Þ plane for the eight states of ‘‘uncoupled’’ HOBr
belonging to polyad ½vu;P� ¼ ½0; 14�. The Hamiltonian is the Dunham expansion of Eq. (24) with

parameters from Table I of Ref. 41. q3 (OBr stretch) ranges from to �6.5 to 6.5, and q2 (bend) ranges

from �5.0 to 5.0. The energy (in cm�1) above the quantum mechanical ground state, as well as the

good quantum numbers ðvs; vf Þ ¼ ðv3; v2Þ, are indicated for each state.
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Numerically, this is most easily analyzed by rewriting the Dunham expansion

of Eq. (24) in terms of coordinates, which are adapted to the polyad structure of

the spectrum. One defines new sets ðJu;cuÞ, ðJP;cPÞ, and ðJ0;c0Þ of conjugate
action-angle-like coordinates, according to

ðJu;cuÞ ¼ ðIu;juÞ
ðJP;cPÞ ¼ ð2If þ Is;jsÞ
ðJ0;c0Þ ¼ ð2If ;js � jf =2Þ

ð29Þ

which are connected to the ðIi;jiÞ ði ¼ u; f ; sÞ ones by a linear canonical

transformation. In terms of these new variables, the Hamiltonian of Eqs. (24) and

(27) is rewritten in the form

HD ¼
X

i¼u;P;0

�iJi þ
X
i;k

XikJiJk þ
X
i;k;m

YikmJiJkJm þ � � �

HF ¼ cosð2c0ÞðI � J0Þ
ffiffiffiffiffi
J0

p ðK þ
X

i¼u;P;0

KiIi þ � � �Þ
ð30Þ

with trivial linear relationships between the spectroscopic coefficients of Eqs.

(24) and (27) and those of Eq. (30). According to Eq. (25), the quantized values

of Ju and JP associated with the quantum mechanical polyad ½vu;P� are

Ju ¼ vu þ du

2

JP ¼ Pþ df þ ds

2

ð31Þ

Clearly, polyad ½vu;P� of the uncoupled system H ¼ HD is folded if equation

qHD

qJ0
¼ 0 ð32Þ

has a real solution J0 ¼ JF , such that 0 � J0 � JP (JF is a function of Ju and JP).

The result is displayed in Fig. 11 (top) for the states of HOBr with no excitation

in the OH stretch (vu ¼ 0). This figure shows the energy of (i) the pure bending

trajectory [b], that is, HDðJ0 ¼ JPÞ, (ii) the pure stretching trajectory [s], that is,

HDðJ0 ¼ 0Þ, and (iii) the folding point [F], that is, HDðJ0 ¼ JFÞ, as a function of

P (more precisely, as a function of JP, but the abscissa scale is converted to

artificially continuous values of P according to Eq. (31)). The energies are

plotted relative to the energy of [b], because they are all nearly degenerate

(because of the resonance condition) and essentially linear functions of P. It is

290 marc joyeux et al.



seen that polyads are folded above P � 5 and that the energy of the pure

stretching trajectory [s] becomes smaller than the energy of the pure bending

trajectory [b] at P � 15. The energies of quantum states always occur between

the energies of the two outermost lines, that is, [b] and [s] up to P ¼ 5, [b] and [F]

from P ¼ 5 to P ¼ 15, and [s] and [F] above P ¼ 15. Therefore, pure stretching

states are located at the top of the polyads up to P ¼ 5; they then migrate from

the top to the bottom of the polyads between P ¼ 5 and P ¼ 15, and they finally

reach the bottom of the polyads above P ¼ 15. Conversely, pure bending states
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Figure 11. (Top) Plot, as a function of the polyad number P, of the energies of the pure

bending trajectory [b], the pure stretching trajectory [s], and the folding point [F] for the states of

‘‘uncoupled’’ HOBr with no excitation in the OH stretch (vu ¼ v1 ¼ 0). The Hamiltonian is the

Dunham expansion of Eq. (24) with parameters from Table I of Ref. 41. All energies are plotted

relative to the energy of the bending trajectory [b]. (Bottom) Plot, as a function of the polyad

number P, of the energies of the periodic orbits for the states of HOBr with no excitation in the OH

stretch (vu ¼ v1 ¼ 0). The Hamiltonian is the Fermi resonance model of Eqs. (24) and (27), with

parameters from Table I of Ref. 41. The small insert depicts the energies of the PDs relative to the

energy of the quantum mechanical ground state. In the main figure, the energies are plotted relative

to the energy of the pure bending periodic orbit [g]. The heavy dots marked SN1, SN2, and PD

indicate the two saddle-node and the period-doubling bifurcations, respectively. Stable periodic

orbits are indicated by solid lines, while unstable periodic orbits are represented by dashed curves.
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are located at the bottom of the polyads up to P ¼ 15 and then migrate inside the

polyad. It is also emphasized, as can be checked in Fig. 10, that the states located

at the top of the polyads above P ¼ 5 are not associated with any particular

motion, but are instead just combination states with P� JF þ 1 (or the integer

closest to this value) nodes along the slow reactive coordinate and ðJF � 1Þ=2
nodes along the fast one. Similar features are observed for HOCl and HCP (in the

later case, the CP stretch plays the role of the HOBr bend, and the HCP bend

plays that of the OBr stretch).

Let us now consider the dynamics of the coupled system with Hamiltonian

H ¼ HD þ HF . Ju and JP remain good quantum numbers for this Hamiltonian

and are quantized according to Eq. (31). It is known that the dynamics of the

coupled system is governed by the shape of its stable periodic orbits (POs) in the

subspace ðps; qs; pf ; qf Þ of the normal coordinates involved in the Fermi

resonance. The reason for this is that these POs act as the ‘‘backbones’’ (or

nodal lines) of the quantum mechanical wavefunctions. Moreover, it is not

necessary to consider the POs in the full six-dimensional space as long as the

third mode u remains decoupled from s and f. The four-dimensional POs are

most easily obtained in terms of the conjugate coordinates of Eq. (29). Indeed,

they consist of the line J0 ¼ JP, plus the fixed points in the ðJ0;c0Þ space. These
fixed points satisfy

dJ0

dt
¼ � qH

qc0

¼ 0

dc0

dt
¼ qH

qJ0
¼ qHD

qJ0
þ qHF

qJ0
¼ 0

ð33Þ

Note that the first equation has trivial solutions c0 ¼ 0 and c0 ¼ p=2 (sometimes

it also has less trivial solutions). Moreover, the derivative of HF , in the second

equation, is always much smaller than the derivative of HD, except in the

neighborhood of J0 ¼ 0, where qHF=qJ0 goes to infinity, and in the neighbour-

hood of J0 ¼ JF (if the polyad folds), where qHD=qJ0 goes to zero.

Consequently, the coupled system has at least one fixed point with J0 � 0 and

another one with J0 � JF . Since, as stated above, the J0 ¼ JP line also

corresponds to a PO in the ðps; qs; pf ; qf Þ subspace, one can conclude that the

coupled system H ¼ HD þ HF necessarily has periodic orbits, which remain

energetically close to the bend [b] and the stretch [s] trajectories, as well as the

folding line [F], of the uncoupled system, for all values of P (the coupled system

can have additional principal families of POs, see below). One therefore expects

the continuation/bifurcation (C/B) diagram [46–48] of the coupled system—that

is, the plot of the energies of the POs as a function of the polyad number P, not to

be too different from the plot of the energies of [s], [b], and [F] for the uncoupled

system. This point can be checked in the case of HOBr by comparing the top and
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bottom plots of Fig. 11. At first glance, they are indeed rather similar. There are,

however, important discrepancies that will now be discussed.

At low P values (P � 7:4), the coupled system H ¼ HD þ HF has two stable

POs, called [g] and [R], which coincide, respectively, with the bend [b] and

stretch [s] trajectories of the uncoupled system H ¼ HD. Since both [b] and [g]
satisfy J0 ¼ JP, their energies coincide through the whole range of P values. In

contrast, starting with the P value where the polyad first folds (i.e., P ¼ 5), the

[R] PO deviates from [s] and follows instead the folding line [F]. In agreement

with the conclusions of the preceding paragraph, a stable PO, which remains

close to the [s] line, that is which is essentially pure OBr stretch in the case of

HOBr, however appears at P ¼ 7:4. This PO, which is called [D] in the case

of HOBr and HOCl, is born at a saddle-node bifurcation, which is indicated in

Fig. 11 (bottom) as a black dot labeled SN1. Saddle-node bifurcations are

singularities of the phase space, where a stable and an unstable PO are created

simultaneously [45,49–51] (the unstable PO [D*] is indicated with a dashed line

in Fig. 11). From the preceding discussion it should be clear that the saddle-

node bifurcation SN1 represents the nonlinear response of the coupled system to

the folding of the polyads of the uncoupled system. Stated in other words, it is

the consequence of the coexistence of the Fermi resonance and the strong

anharmonicity along the reaction pathway.

Saddle-node bifurcations taking place for the reasons just described have

been observed for HOBr [41], HOCl [36,38,39], and HCP [34–36]. For HOBr

and HOCl, the stable PO born at the saddle-node bifurcations is called [D] for

‘‘dissociation,’’ because this PO stretches along the dissociation pathway and

scars OBr- or OCl-stretch quantum mechanical wavefunctions (see Fig. 11e of

Ref. 38, Figs. 3b and 3g of Ref. 41, or Section III.B). In the case of HCP, the

stable PO born at the bifurcation is better called [I], for ‘‘isomerization,’’

because this PO stretches along the isomerization pathway and scars bending

quantum mechanical wavefunctions (see Figs. 6b and 6d of Ref. 35 or Figs. 7b

and 7d of Ref. 36).

Despite the general resemblance of the energy curves in Fig. 11, the Fermi

resonance has a dramatic effect on the wavefunctions, as can be checked by

comparing Fig. 10 and Fig. 12, which show the wavefunctions of the eight states

of polyad ½vu;P� ¼ ½0; 14� for ‘‘uncoupled’’ (H ¼ HD) and ‘‘coupled’’ (H ¼
HD þ HF) HOBr, respectively. The principal reason for this striking difference

is that, in addition to the OH stretch, the uncoupled system has only two degrees

of freedom (the bend [b] and the OBr stretch [s]), while the coupled system has

three possible types of motion above the saddle-node bifurcation: the bend [g],
an almost pure OBr stretching motion along the [D] PO, and a resonant-type

motion along the [R] PO (the pronounced horseshoe shape of this later PO

reflects a strong energy transfer between the OBr stretch and the bend). As a

consequence, the polyads of the coupled system can no longer be described,
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belonging to polyad ½vu;P� ¼ ½0; 14�. The Hamiltonian is the Fermi resonance Hamiltonian of
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probabilities.
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above P ¼ 5, as the folding of regular sequences of states that evolve from a

pure bending state (along [b]) to a pure OBr stretching state (along [s]). They

are instead better described as sequences of states, which evolve from pure

bending states (scared by the [g] PO) to resonant-type states (scared by the [R]

PO) and are perturbed, above the saddle-node bifurcation, by the birth and

proliferation of OBr-stretching states (scared by the [D] PO).

The most detailed understanding of the evolution of the polyads of the

coupled system is obtained by plotting the third action integral of the system as

a function of energy E for given values of Ju and JP. This action integral is

expressed as

= ¼ = E; Ju; JPð Þ ¼ 1

2p

ð
c02½0;p�

J0dc0 ð34Þ

while the corresponding EBK quantization rule reads

= ¼ nþ 1
2

ð35Þ

where n is an integer, either positive or negative. Figure 13 provides examples of

such plots for polyads ½vu;P� ¼ ½0; 7�, [0, 14] and [0, 30] of HOBr. The plot for

polyad ½vu;P� ¼ ½0; 7�, which is located below the bifurcation, contains only one

branch, which extends from the energy of the [g] PO to the energy of the [R] PO

and is denoted by (a). According to Eq. (35), the semiclassical energies are the

values of E at which = is half-integer. These values are indicated with filled

circles in Fig. 13. It is emphasized that the quantum and semiclassical energies

are in very good agreement, with the difference between the two sets of values

never exceeding a few cm�1. Branch (a) contains members of the normal

progression of states, which evolve from a state aligned along [g] to a state

aligned along [R]. At the SN1 bifurcation, the branch (a) of the action integral

splits into two branches (a) and (b). These two branches again support quantum

states belonging to the normal progression. However, one state of this

progression disappears each time the energy gap between (a) and (b) becomes

sufficiently wide to encompass an additional half-integer value of =. For

example, it can be checked in Fig. 12 that the third state of the normal

progression (i.e., the state with four nodes along the [R] PO) is missing from the

normal progression, because the half-integer value = ¼ �11=2 lies in the gap

between (a) and (b) (see Fig. 13). Still, the number of states in polyad P remains

equal to intðP=2Þ þ 1, because each state, which disappears from the normal

progression, is replaced by a member of the new progression of ‘‘dissociation’’

states, which is supported by branch (c). This third branch also appears at the

saddle-node bifurcation SN1 and extends between the energies of the stable [D]
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and unstable [D*] POs born at the bifurcation (see P ¼ 14 in Fig. 13). One

additional dissociation state appears in the quantum spectrum each time branch

(c) widens sufficiently to encompass an additional half-integer value of =. For
example, it can be checked in Figs. 12 and 13 that the dissociation state of polyad

½vu;P� ¼ ½0; 14� (i.e., the second lowest state) corresponds to = ¼ 1=2 on branch
(c). It should be realized that the number of states in polyad P remains equal to

intðP=2Þ þ 1, because branches (b) and (c) are parallel in the energy interval

where they overlap (the classical frequency is the same for the two branches).

B. Bifurcations at Higher Energies

The saddle-node bifurcations discussed in Section III.A play a crucial role in the

dynamics of the molecules investigated, because the stable PO born at the

bifurcation follows the reaction pathway over a large energy range. Conse-

quently, the quantum states that are scarred by this PO stretch further and further

along the reaction pathway and can be considered as the precursors of the
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Figure 13. Plot of the action integral = as a function of the absolute energy E for polyads

½vu;P� ¼ ½0; 7�, ½0; 14�, and ½0; 30� of HOBr. The Hamiltonian is the Fermi resonance Hamiltonian of

Eqs. (24) and (27) with parameters from Table I of Ref. 41. The vertical lines indicate the energies of

the various periodic orbits. The quantum mechanical states belonging to the normal and the ‘‘new’’

progression are indicated by filled circles and open diamonds, respectively. Note that the horizontal

energy scale for polyads P ¼ 7 and P ¼ 14 is expanded twice compared to P ¼ 30.
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isomerization and dissociation reactions. Nonetheless, increasing the energy

deposited in the vibrational degrees of freedom of these molecules results in

additional bifurcations, which are discussed in this section.

Part of these additional bifurcations are reproduced by the Fermi resonance

Hamiltonian. For example, the C/B diagram of HOBr in Fig. 11 displays, in

addition to SN1, two further bifurcations, PD and SN2, which take place at

P ¼ 15:8 and P ¼ 21:4, respectively. PD is a period-doubling bifurcation,

where the bending-type PO [g], defined by J0 ¼ JP, becomes unstable, while the

double-period daughter PO remains stable. This stable PO with double period,

called [2g], is found in a rather restricted interval of P values, since it disappears

at the second saddle-node bifurcation SN2. In contrast with SN1, where the

stable [D] and the unstable [D*] POs were born simultaneously, SN2

corresponds to a discontinuity of the classical phase space, where the stable

[2g] and the unstable [D*] POs are destroyed simultaneously. At SN2, branch

(b) disappears from the plot of the action integral = as a function of energy E.

Therefore, for polyads ½vu ¼ 0;P� where P � 22, the accessible classical phase

space extends between the two remaining stable POs—that is, [D] and [R]—

with the unstable PO ½g	� playing the role of a separatrix between the two kinds

of motion (see Fig. 13, P ¼ 30). Quantum mechanically, all the members of the

new progression are located below ½g	�, on the (c) branch, while all the

remaining members of the normal progression are located above ½g	�, on the (a)

branch (see Fig. 13, P ¼ 30). The question regarding why polyads ½vu;P� with
22 � P � 35 look simpler than polyads at lower energies is explained by the

following facts: (i) There remain only two stable POs, and therefore two

possible backbones for quantum mechanical wavefunctions, and (ii) members of

the normal and new progression can no longer be interwoven. This point can be

checked in Fig. 5 of Ref. 41, which shows the wavefunctions for the 16 states

belonging to polyad ½vu;P� ¼ ½0; 30� of HOBr.
To conclude this analysis based on the Fermi resonance Hamiltonian, let us

mention that HOCl, behaves very much like HOBr. Indeed, Fig. 10b of Ref. 36

shows that for this molecule the saddle-node bifurcation SN1 takes place at

P ¼ 21:8, (for vu ¼ 0), the period-doubling bifurcation PD occurs at P ¼ 24:6,
and the second saddle-node bifurcation SN2 takes place at around P ¼ 38, very

close to the dissociation threshold. In contrast, the dynamics of HCP is

somewhat simpler, in the sense that the first saddle-node bifurcation SN1 is

indeed observed at P ¼ 14:3, but PD and SN2 do not take place (see Fig. 13 of

Ref. 35 or Fig. 10a of Ref. 36).

Most of the bifurcations, which take place in the high-energy regime, are

however not reproduced by the Fermi resonance Hamiltonian, essentially

because they result from the superposition of the 1:2 Fermi-resonance and

higher-order ones. In order to gain information on the dynamics close to the

reaction threshold, one therefore has to analyze the dynamics on the PES by
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classical mechanics. These studies have been performed for the three molecules

already discussed—that is, HOBr [41], HOCl [38], and HCP [35,36]. It turns out

that cascades of saddle-node bifurcations seem to be the rule when approaching

the reaction threshold. One can distinguish between two different types of

cascades, according to the types of motion involved in the bifurcations.

The first type of cascade has been observed for all three of the molecules,

HOBr, HOCl, and HCP. Figure 14 shows, for example, the classical C/B

diagram obtained for HOBr (see Fig. 5d of Ref. 38 for the classical C/B diagram

of HOCl and Fig. 9b of Ref. 35 or Fig. 8b of Ref. 36 for the classical C/B

diagram of HCP). Since there is no conserved quantity, except the energy E,

classical C/B diagrams necessarily represent the evolution with respect to E of a

given property of the POs, like, for example, their frequencies, as in Fig. 14. In

this diagram it is seen that the SN1 bifurcation and the smooth [D] curve of the

Fermi resonance model in Fig. 11 are replaced by a series of SNiA bifurcations

and corresponding [SNiA] curves ði ¼ 1; 2; 3; . . .Þ, which all exhibit the same

pattern, namely, a short segment with a relatively large anharmonicity and a

second segment for which the slope is very small. The nearly flat segment of

each curve is probably due to a resonance between motion along the successive

[SNiA] POs and the OH stretch [41]. Roughly speaking, the [D] line of the

Fermi resonance model in Fig. 11 is just the smooth interpolation between

successive segments with large anharmonicities. Since the POs that scar

dissociating quantum states (i.e., states stretching along the dissociation

pathway) all belong to the more anharmonic segments of the [SNiA] curves,

the more harmonic segments of the C/B diagram in Fig. 14 are not essential to
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understand the features of the quantum mechanical spectrum: The [D] line

joining the more anharmonic segments contains all the important information.

The successive [SNiA] POs follow closely the dissociation pathway up to

[SN7A], while they acquire a pronounced S-type shape and ultimately avoid the

dissociation pathway for i � 8, as is illustrated in Figs. 15b and 15f. This

happens in the same energy range where a second cascade of saddle-node

bifurcations SNiB and related stable POs [SNiB] are first observed (see Fig. 14).

This is not by chance. What one observes here is indeed just the repetition—

with a different ratio of the classical frequencies—of the scheme, which gives

rise to the SNiA family of saddle-node bifurcations at lower energies. More

precisely, in Section III.A it was seen that the 1:2 Fermi resonance between

motions along [R] (OBr stretch) and [g] (bend) is responsible for (i) the

pronounced U shape that [R] acquires with increasing energies (see Fig. 15c),

and (ii) the occurrence of the saddle-node bifurcations SN1 (or SNiA), where a

new motion along [D] (or [SNiA]) is born, which follows the reaction pathway

(see Fig. 15b). Because of the large anharmonicity along the reaction pathway,

the frequency of the motion along [SNiA] however steadily decreases with

increasing energies, so that at a certain point a 1:3 resonance with the motion

along the bending type PO [g] is established. As happened for the 1:2 resonance

between [R] and [g], the 1:3 resonance between [SNiA] and [g] is responsible
for (i) the pronounced S-shape that [SNiA] aquires above SN7A (see Fig. 15f)

and (ii) the occurrence of a second family of saddle-node bifurcations, SNiB,

where a new motion along the [SNiB] POs is born, which follows the reaction

pathway (see Fig. 15g). Note that because of resonances with the OH-stretch

degree of freedom, each [SNiB] curve has the same pattern as the [SNiA] ones,

namely, a short segment with a relatively large anharmonicity and a second

segment for which the slope is very small.

From the classical point of view, the high-energy bifurcation pattern of HOBr

thus consists of two nested cascades of saddle-node bifurcations. The principal

cascade, R ! SNiA ! SNiB ! . . ., results from the successive 1:2, 1:3, and

so on, resonances between the OBr stretch and the bend. Each member of the

principal family, in turn, consists of a cascade of bifurcations,

SN1A ! SN2A ! SN3A ! . . . and SN1B ! SN2B ! SN3B ! . . ., because
of resonances between the OBr stretch and the OH stretch. From the quantum

mechanical point of view, one observes, above the onset of the 1:3 resonance,

states that are scared by the three possible ‘‘stretching’’-type POs, that is, [R]

(U-shaped wavefunctions), [SNiA] (S-shaped wavefunctions), and [SNiB]

(wavefunctions stretching along the dissociation pathway).

Two points are worth noting before concluding. First, the ab initio PES for

HOBr [40,41] is the only realistic molecular model, for which such a subtle

pattern of bifurcations has been detected so far: For HOCl [38] and HCP [35],

the SNiB family of saddle-node bifurcations could not be found. Moreover, both
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Figure 15. Contour plots of wavefunctions for different types of quantum mechanical states as

functions of R and g. The OH-stretch coordinate r is integrated over. The solid lines represent

corresponding classical periodic orbits calculated at comparable energies.
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HOCl and HOBr display a couple of additional bifurcations, which were not

discussed here because they are not directly related to the dissociation reaction.

The interested reader is referred to Refs. 38 and 41 for more details.

IV. SUMMARY

The character of vibrational states of a polyatomic molecule is expected to

drastically change with increasing internal energy. This has been demonstrated in

this review for several triatomic molecules: HCN, HCP, HOCl, and HOBr. For

the first two examples, increasing the energy gradually ‘‘drives’’ the molecule

toward the isomerization barrier, while for the other two examples it pushes the

molecule toward the dissociation channel. In both cases, the types of vibrational

motion are very different from the motion at low energies. Exact quantum

mechanical, classical, and semiclassical methods have been utilized to discuss

this development from low to high energies.

For HCN, a molecule with no resonance between the three fundamental

frequencies, we have demonstrated that a sequence of canonical transformations

leads to a nearly separable Hamiltonian, the diagonalization of which quanti-

tatively predicts the eigenenergies. Moreover, this approximate Hamiltonian is

well suited to describe the localized as well as part of the delocalized states of

the system and leads to a consistent assignment of most of the states.

Nevertheless, the remaining couplings, which are ignored in the transformed

Hamiltonian, lead to interesting delocalized states, which require a full quantum

mechanical description. These states, which have different stretching excitations

in the HCN and the CNH wells, have been termed ‘‘nonadiabatically

delocalized’’ states, because they are due to couplings between states belonging

to different adiabatic channels.

The other three molecules are different in that they show already at low

energies a 1:2 Fermi resonance between the reaction (isomerization or

dissociation) coordinate and another coordinate. This resonance, together with

the polyad folding due to the strong anharmonicity in the isomerization or

dissociation mode, leads to saddle-node bifurcations, at which new types of

states come into existence and members of progressions characteristic for the

lower-energy regime disappear. The new family of states advances the molecule

toward the isomerization barrier or the dissociation channel. The existence of

saddle-node bifurcations usually makes the spectrum of eigenenergies and the

organization in terms of polyads quite complex. However, we have also shown

how a detailed analysis of the structure of the classical phase space in terms of

periodic orbits and continuation/bifurcation diagrams can be used to understand

the quantum mechanical spectrum. Saddle-node bifurcations seem to be

characteristic features of many molecules. However, up to now an experimental

example has only been observed for HCP [35].
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A detailed understanding of the intramolecular motion of highly excited

molecules is important for understanding the dissociation dynamics, because the

sequences of bound states just below the dissociation threshold continue as

resonances to energies above the threshold [52]. Whether the dynamics around

the threshold is chaotic or whether the eigenstates show characteristic features

will have consequences for the lifetime of the excited complex and therefore on

the dissociation rate. The same is true, of course, also for the inverse process—

that is, the stabilization of complexes in collisions with gas atoms.
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I. INTRODUCTION

The three-body problem appears in various physical and chemical systems—that

is, celestial systems (e.g., the sun, the earth, and the moon), atomic systems (e.g.,

two electrons and one nucleus), and molecular systems (e.g., Dþ H2 ! DH þ H

reaction). Due to historical reasons, the three-body problem in celestial

mechanics is the oldest. In order for our ancestors to make the calender, they

observed the motion of the sun and the moon for agricultural and fishery

purposes and also for daily life. After Copernicus, they knew that the earth itself

moves. But they did not know the law of the motion of stars and planets. By

Geometric Structures of Phase Space in Multidimensional Chaos: A Special Volume of Advances in
Chemical Physics, Part A, Volume 130, edited by M. Toda, T Komatsuzaki, T. Konishi,
R.S. Berry, and S.A. Rice. Series editor Stuart A. Rice.
ISBN 0-471-70527-6 Copyright # 2005 John Wiley & Sons, Inc.
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Newton’s work, they had the law of the motion of these three bodies—that is, the

equations of motion. The three-body problem of sun–earth–moon became

important in the sense that they could actually predict the motion of these three

bodies by using the equations of motion formally. For the sun–earth–moon

problem, see [1]. Although many mathematicians and astronomers contributed to

this problem, it was not solved analytically. Finally Poincaré has shown that for

three-body problem, one can not construct general solutions [2]. What Poincaré

found in final stage of his study is what we now call ‘‘chaos.’’ If we use

mathematical terminology of the present days, he found the existence of the

homoclinic or heteroclinic entanglement of the stable and unstable manifolds for

fix points on the Poincaré section. Entering the twentieth century, the innovation

of computers assisted physicists and astronomers to investigate various N-body

problems. Following Poincaré, mathematicians also continued to contribute

to this problem (see, for instance, Ref. 3). Some important mathematical

developments will be reviewed in the next section. However, our understanding

even about three-body problem is far from complete. The investigation is still

going on.

In the beginning of the twentieth century, a mechanics in small world was

constructed, namely quantum mechanics. In the early stage of making quantum

mechanics, Bohr found a rule to obtain some part of the energy spectrum of a

hydrogen atom (i.e., the two-body problem: one electron and one nucleus) [4].

He showed that the action integral of classical periodic orbit of electron should

be integer multiple of the Planck constant h. Now this rule is called the Bohr–

Sommerfeld (BS) quantization condition. With this success, many physicists

tried to apply the BS-quantization condition to helium atom (i.e., the three-body

problem: two electron and nucleus). But they failed. Einstein extended the BS

quantization condition to the higher-dimensional case (this new quantization

condition is now called the Einstein–Brillouin–Keller (EBK) quantization

condition) and warned that in the situation that Poincaré found, namely the

three-body problem, the EBK-quantization condition cannot work [5]. By the

works of Heisenberg, Schrödinger, and Dirac, a complete form of quantum

mechanics was constructed. Due to great success of quantum mechanics, the

problem on the spectrum of helium atom pointed out by Einstein was forgotten

by almost all physicists. But some physicists still considered this problem—for

example, Langmuir [6], van Vleck [7], Heisenberg and Sommerfeld (see the

corresponding section in Ref. 8).

About 50 years after Einstein, Gutzwiller applied the path integral method

with a semiclassical approximation and succeeded to derive an approximate

quantization condition for the system that has fully chaotic classical counter-

part. His formula expresses the density of states in terms of unstable periodic

orbits. It is now called the Gutzwiller trace formula [9,10]. In the last two

decades, several physicists tested the Gutzwiiler trace formula for various
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systems. As an application to the atomic three-body problem, semiclassical

quantization was carried out for the hydrogen negative ion [11] and the helium

atom [12] in the collinear eZe configuration.1 In these works, it was revealed

that their classical dynamics in the collinear eZe configuration is fully chaotic,

probably hyperbolic, and that the collinear eZe configuration gives the eige-

nenergies of nsms ðn;m � 1, n � mÞ with reasonable accuracy. For the former

result, we do not know why these systems exhibit full chaoticity. The first aim of

this chapter is to elucidate mechanism of strong chaoticity in two-electron

atoms and ions in the collinear eZe configuration. The latter result is in strong

contrast to the result of the CI calculation in quantum chemistry. This

apparently astonishing result implies that the semiclassical quantization using

the Gutzwiller trace formula precisely incorporates the correlations among two

electrons, although the energy levels obtained in their work are limited to

nsms ðn;m � 1, n � mÞ. For the correlations of two electrons in quantum

mechanics, see Ref. 13. In addition, for helium atom, the intermittency in

its classical dynamics is semiclassically quantized to yield the quantum

defects for nsms (n;m � 1; n � m) with reasonable accuracy [14]. The re-

gularity in chaos—that is, intermittency, gives the regularity in the quantum

defects. For classical dynamics and the quantum aspect of two-electron atoms,

mainly helium atom, see Ref. 8 for bound states and Ref. 15 for scattering

states.

The first systematic study on classical two-electron atoms and ions was done

by Wannier [16]. He calculated the ionization rate for two-electron atom and

ions near E ¼ 0 but E > 0. His result is sðEÞ � E1:12689 for Z ¼ 1(H�). This
threshold law was also calculated in quantum mechanical and semiclassical

treatments. The experimental result agrees with the classical result quite well

near E ¼ 0 but E > 0, but it deviates from the classical result when E becomes

large (see Figs. 8 and 9 in Ref. 15). The classical dynamics of two-electron

atoms and ions was mainly investigated for some restricted configurations—that

is, the collinear eZe configuration, the collinear eeZ configuration, and the

Wannier ridge configuration [17]. It is known that the collinear eZe con-

figuration is very unstable, that the collinear eeZ configuration is unstable

for Z ¼ 1, but relatively stable for Z � 2, and that the Wannier ridge

configuration is relatively stable. The Wannier ridge configuration includes

the Langmuir orbit (torus). The EBK quantization for the Langmuir orbit for

helium gives some energy levels [6]. Recently the Langmuir problem is

extended to the N electrons plus nucleus system [18].In addition, the dynamics

of the eeZ configuration has proved that it is nonintegrable, by using the Ziglin

analysis [19]. These restricted configurations mentioned above have zero

1‘‘eZe’’ stands for the order of electron(e)–nucleus(Z)–electron(e) on a line.
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angular momentum. In the two-dimensional (2D) case as a more general

situation, a few kinds of tori were found. One is planetary orbits that have

zero angular momentum [20]. The others are tori with nonzero angular

momentum [21].

The above investigations on classical dynamics of two-electron systems is

mainly based on numerical findings. We need some firm analytical tools to

explore the fine geometrical structure in the phase space. For this purpose, we

focus on some similarities between the gravitational systems and the Coulomb

systems—that is, their singular nature. In this direction, the McGehee’s blow-up

technique [22] was applied to the two-electron system having a nucleus with

infinite mass [23].2 The second aim of this chapter is to apply the McGehee’s

blow-up technique to our Coulomb systems—that is, the 2D case having

nucleus with infinite mass in Section III and the collinear eZe configuration with

finite masses in Section IV.

The organization of this chapter is as follows. In Section II, we review the

results on N-body problem, developed by several mathematicians in celestial

mechanics. One of them, namely the McGehee’s blow-up technique, will be

used in the later sections. In Section III, our attention is turned to the Coulomb

three-body problem. We treat the 2D system with zero total angular momentum,

that one of three particles has infinite mass. A set of regularized equations of

motion and the triple collision manifold (TCM) are derived by using the

hyperspherical coordinates. It is found that only two equilibrium points for the

total flow exist. These two equilibrium points are on the TCM. This finding

implies that triple collisions occur, asymptotically approaching the collinear eZe

configuration. Thus only homothetic solution of collinear eZe type exists. The

stability analysis for these two equilibrium points is done. The collinear eZe

configuration and the Wannier ridge configuration are mutually orthogonal in

the phase space. In these configurations, the stable and unstable manifold of two

equilibrium points are numerically calculated. Behavior of the whole dynamics

in this system is still unknown. But some aspects were elucidated by a

participant of this conference and his colleagues [24]. In Section IV, the system

of three particles with finite masses in the collinear eZe configuration is

considered. In particular, a series of atoms and ions (i.e., H�, He, Liþ, Be2þ,
etc.), in the collinear eZe configuration are extensively investigated. The main

result in this section is the following conjecture: Thanks to a large mass ratio
between nucleus and electron of these atom and ions, the classical dynamics

of these atoms and ions in the collinear eZe configuration is probably

hyperbolic. For the case of small mass ratio, the dynamics of such systems in

2According to Ref. 15, the first application of the McGehee’s method to the Coulomb systems was,

probably, done by B. Eckhardt in his habilitation thesis.
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the collinear eZe configuration is nonhyperbolic—that is, there exist tori. The

candidates for such systems are proton–antiproton–proton(p–p–p), positronium

negative ion(e–e–e, sometimes denoted by Pr�), and Hþ
2 in the collinear ZeZ

configuration. Experimental manifestation of this finding is suggested. In

Section V, in order to find tori in the 2D case with zero angular momentum (all

masses are finite), the free-fall problem is considered. The free-fall problem

treats the initial conditions with zero velocities. Thanks to the scaling property

of the Coulomb systems, the initial condition space is bounded and compact.

The results for H�, He, and Pr� are presented. In Section VI, the results of this

chapter and future perspective are summarized.

II. N-BODY PROBLEM IN CELESTIAL MECHANICS

In this section, mathematical results in celestial mechanics is reviewed. If the

reader need a complete historical review, see Ref. 25.3 One of these results—that

is, the McGehee’s blow-up technique—will be used in Sections III and IV.

In celestial mechanics, our attention focuses on the behavior of planets and/

or comets around the sun, which is described by the following Hamiltonian:

H ¼
XN
i¼1

p2i
2mi

�
X
i< j

Gmimj

jqi � qjj
ð1Þ

If we consider the sun and one planet, namely a two-body case, the equations of

motion for this case is solvable. We have the famous Kepler motion.It is well

known that there are four types of orbits, namely the circle (E ¼ 0), the elliptic

curve (0 < E < 1), the parabolic curve (E ¼ 1), and the hyperbolic curve

(E > 1), where E is the eccentricity.
If one more planet or comet is added to this system, the system becomes

three-body. For instance, consider the system having the sun, the earth, and the

moon. To investigate this system was indispensable for our ancestors, because it

was directly related to the calender. The calender is necessary for agriculture

and fishery and also for daily life. By such demand, many astronomers and

mathematicians investigated the three-body problem. In 1885–1986, it was

announced in Acta Mathematica that the King Oscar prize may be awarded

for a person who has solved general solutions for N-body problem. Many

mathematicians struggled with this problem. Many articles were written after

this announcement. Finally, Poincaré received this prize in 1889. If shortly

summarized, his answer is that the three-body problem is generally not solvable

3Reference 25 is written for general readers. But the list of references is substantial and useful for

graduate students and researchers who are interested in mathmematical development on this subject.
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or generally hard to solve it. He used qualitative and geometrical methods.Then

he found the homoclinic or heteroclinic tangle of the stable manifold and

unstable manifolds of the fixed points on the Poincaré section. Nowadays we

know that what he found was what we now call ‘‘chaos.’’ His results were

collected in Ref. 2.

After Poincaré, Painlev�e considered singularities of solutions of differential

equations in N-body problem. He found that if singularities exist, there are two

types of singularities in N-body problem. The first type of singularities is

collisional singularities. An obvious example is binary collisions. Consider the

Kepler motion, namely, the two-body problem. As a limiting case of three types

of orbits—namely, the elliptic, the parabolic, and the hyperbolic curves—there

exists a collisional orbit. Two planets are on a line. One planet collides with the

other planet successively. The elastic bounces continue endlessly.4 If we

consider three-body problem, there exist triple collisions. As we will see later,

binary collisions and triple collisions also exist in Coulomb system. The second

type of singularities is noncollisional singularities. Painlev�e has shown that in

the three-body problem there exist only collisional singularities. Thus Painlev�e
conjectured that noncollisional singularities may exist in the N-body problem

(N � 4).

A first attack to Painlevé’s conjecture was done by von Zeipel [26]. von

Zeipel considered how the ‘‘size’’ of an N-body system evolves in time. He

chose the moment of inertia I ¼Pi mijqij2 as the size of the N-body system. He

has shown that a necessary condition for a solution having noncollisional

singularity is that the motion of the system becomes unbounded in finite time.

Next for the three-body problem, McGehee has elucidated the behavior near

triple collisions in the collinear configuration [22]. If three bodies get closer, the

escaping one attains a higher velocity. This property is very important for

Painlevé’s conjecture, since high velocity can be gained by encountering near-

triple collisions, which is needed to noncollisional singularities. He focused on

the ‘‘size’’ of the three-body system, namely the moment of inertia I as done by

von Zeipel. He blew up the whole system by scaling the size ‘‘r ¼ ffiffi
I

p
’’ of the

system. After that, he removed singularities of binary collisions. For the

equations of motion and the energy relation obtained, setting r ¼ 0 (and/or

E ¼ 0), he obtained the energy surface with r ¼ 0, namely a set of points that

exhibit just triple collisions in the phase space. This energy surface is called the

triple collision manifold (TCM). Thanks to the TCM and the regularized

equations of motion that he derived, he has shown how the orbits near triple

collisions behave. His method was immediately applied to the isosceles

4The elastic bounce cannot occure in actual astronomical phenomena. A nonelastic collision must

occure. For instance, remember the comet Shoemaker–Levy collision with Jupiter in 1994.

310 mitsusada m. sano



configuration for the gravitational three-body problem by Devaney [27], which

corresponds to the Wannier ridge configuration for the Coulomb three-body

problem.

Finally using the McGehee’s blow-up technique to five-body system, Xia

proved Painlevé conjecture [28] (for review, see Ref. 25). Precisely he showed

an example of noncollisional singularity. For the collinear case, the bodies

necessarily exhibit binary collisions. Therefore, five bodies should be in higher-

dimensional space. He considered two sets of binary bodies and one body (say

m5) moving between two sets of binary bodies (see Fig. 1). The body m5

approaches one of binary bodies. Then encountering orbits near triple collision,

the body m5 is going back to other binary bodies gaining their velocities and

encountering orbits near another triple collision. In this process, two binary

bodies are moving away from each other. In this way, the body m5 is endlessly

going back and forth between two of binary bodies. In this process, the time

interval between triple collisions becomes shorter and shorter exponentially

(like Tn ’ C expð�nAÞ) even though two of binary bodies are going away. The

body m5 is accelerated very rapidly. Thus if we sum up all time intervals where

the sum is like a geometrical series, then we find that the total time is finite.

Therefore in finite time, the five-body system in this configuration becomes

unbounded without collisions.

The McGehee’s blow-up technique is essential to investigate the detailed

structure of N-body problem in celestial mechanics. If the particles have a

different sign of charge, such a Coulomb system has the same type of

m

m

m

m

m

1

2

3

4

5

Figure 1. Xia’s example of a noncollisional singularity.
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singularities—that is, binary collisions and triple collisions. Thus the

McGehee’s blow-up method is applicable to the Coulomb systems. It is natural

that someone have a question, ‘‘Are there noncollisional singularities in

Coulomb systems?’’ The answer is probably ‘‘No,’’ because the repulsive

interaction between the same charged particles prevents the Coulomb systems

from having noncollisional singularities. This may be easily guessed from

the result on the triple collision manifold for the Coulomb system (i.e., the

difference between the gravitational system and the Coulomb system) in the

next section.

In the next two sections, we shall apply the McGehee’s method to our

Coulomb three-body problem.

III. COULOMBTHREE-BODYPROBLEM: THE 2DCASEWITH

ZERO ANGULAR MOMENTUM

In this section we derive a set of regularized equations of motion and a triple

collision manifold (TCM) for the Coulomb three-body system. Three particles

(electron, nucleus, and electron) have masses m1 ¼ me, m2 ¼ mn and m3 ¼ me

and charges�e, Ze, and�e. We consider the Coulomb three-body system whose

Hamiltonian is

H ¼
X3
i¼1

p2i
2mi

� Ze2

jq1 � q2j
� Ze2

jq2 � q3j
þ e2

jq1 � q3j
ð2Þ

After certain scaling, we have the Hamiltonian in a dimensionless form

H ¼ p21
2
þ p22
2x

þ p23
2
� 1

jq1 � q2j
� 1

jq2 � q3j
þ 1

Zjq1 � q3j
ð3Þ

where x ¼ mn=me. There is an important property.

Property 1. Triple collision orbits have zero angular momentum.

Thus if we consider the case that the orbit exhibits triple collision, the system

should have zero angular momentum. In addition, if the system has zero angular

momentum, the orbit is confined in the 2D plane. So we have to consider the 2D

case with zero angular momentum. There are three distinct configurations:

1. The Collinear eZe Configuration. In this configuration, three particles are

arranged in the order of electron(e)–nucleus(Z)–electron(e) on a line.

2. The Collinear eeZ Configuration. In this configuration, three particles are

arranged in the order of electron(e)–electron(e)–nucleus(Z) on a line.
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3. The Wannier Ridge Configuration. In this configuration, the distance r1
between electron 1 and nucleus is equal to the distance r2 between

electron 2 and nucleus. In this case, three particles forms isosceles.

Our system consists of one nucleus and two electrons.We set the mass of the

nucleus to be infinite in this section, namely x ¼ 1. In the following section, we

shall consider the case that all masses are finite for the collinear eZe

configuration. The Hamiltonian in a dimensionless form in the hyperspherical

coordinates is given by

H ¼ 1
2

p2r þ
4

r2
p2w þ

4

r2 sin2ðwÞ ðp
2
a þ L0 2Þ þ 2

r2
1

cos2 1
2
w

� �� 1

sin2 1
2
w

� �
 !

paL
0

( )

� 1

r

1

cos 1
2
w

� �þ 1

sin 1
2
w

� �� 1

Zð1� sinðwÞ cosðaÞÞ1=2
 !

ð4Þ

where r1 ¼ r cosð1
2
wÞ (or r2 ¼ r sinð1

2
wÞ) represents the distances between

nucleus and electron 1 (or 2). r ¼ ðr21 þ r22Þ
1
2 is the hyperradius. w ¼

2 arctanðr2=r1Þ is the hyperangle that is valued as 0 � w � p. a is the angle

between two vectors that start from the nucleus to the electron 1 and from the

nucleus to the electron 2. Note that L ¼ 2L0 stands for the total angular

momentum. Since we are interested in the case L ¼ 0 by setting L ¼ 0 the

Hamiltonian is reduced to

H ¼ 1
2

p2r þ
4

r2
p2w þ

4p2a
r2 sin2ðwÞ

� �

� 1

r

1

cos 1
2
w

� �þ 1

sin 1
2
w

� �� 1

Zð1� sinðwÞ cosðaÞÞ1=2
( )

¼ T þ 1

r
Vðw; aÞ ð5Þ

where

Vðw; aÞ ¼ � 1

cos 1
2
w

� �� 1

sin 1
2
w

� �þ 1

Zð1� sinðwÞ cosðaÞÞ1=2
ð6Þ

The scaled potential surface of Vðw; aÞ is depicted in Fig. 2. In the hyperspherical
coordinates, the variables for the configuration are automatically separated into
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the ‘‘size’’ variable (i.e., the hyperradius r) and the ‘‘conformation’’ variables

(i.e., the variables w and a). The equations of motion are now given by

dr

dt
¼ pr ð7Þ

dw
dt

¼ 4pw

r2
ð8Þ

da
dt

¼ 4pa

r2 sin2ðwÞ ð9Þ

dpr

dt
¼ 4p2w

r3
þ 4p2a
r3 sin2ðwÞ þ

1

r2
Vðw; aÞ ð10Þ

dpw

dt
¼ 4p2a cosðwÞ

r2 sin3ðwÞ � 1

r

q
qw

Vðw; aÞ ð11Þ

dpa

dt
¼ � 1

r

q
qa

Vðw; aÞ ð12Þ

We employ the scaling transformation

u ¼ r1=2pr; v ¼ r�1=2pw; w ¼ r�1=2pa ð13Þ

Figure 2. The scaled potential surface of Vðw; aÞ: Z ¼ 2.
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and the time transformation dt ¼ r�3=2dt (i.e., the McGehee’s blow-up

transformation) [22]. Then we obtain the following energy relation:

1
2

u2 þ 4v2 þ 4w2

sin2ðwÞ

� �
þ Vðw; aÞ � rE ¼ 0 ð14Þ

where E represents the value of the Hamiltonian H. The equations of motion

become

dr

dt
¼ ru ð15Þ

dw
dt

¼ 4v ð16Þ

da
dt

¼ 4w

sin2ðwÞ ð17Þ

du

dt
¼ 1

2
u2 þ 4v2 þ 4w2

sin2ðwÞ

� �
þ Vðw; aÞ ð18Þ

dv

dt
¼ �1

2
uvþ 4w2 cosðwÞ

sin3ðwÞ � q
qw

Vðw; aÞ ð19Þ

dw

dt
¼ �1

2
uw� q

qa
Vðw; aÞ ð20Þ

What is rested is to regularize the binary collisions between electron and nucleus.

To do so, we first set

x ¼ sinðwÞv ð21Þ

After that, we employ the time transformation.

dt
dt

¼ sinðwÞ ð22Þ

Note that t is not one that is defined in the first equations of motion: Eqs. (7)–

(12). The energy relation finally becomes

sin2ðwÞu2 þ 4x2 þ 4w2 þ 2 sin2ðwÞVðw; aÞ � 2 sin2ðwÞrE ¼ 0 ð23Þ
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The equations of motion are given by

dr

dt
¼ sinðwÞru ð24Þ

dw
dt

¼ 4x ð25Þ
da
dt

¼ 4w

sinðwÞ ð26Þ

du

dt
¼ � sinðwÞ 1

2
u2 þ Vðw; aÞ � 2rE

� � ð27Þ
dx

dt
¼ � sinðwÞ cosðwÞðu2 þ 2Vðw; aÞ � 2rEÞ

� 1
2
sinðwÞux� sin2ðwÞ q

qw
Vðw; aÞ ð28Þ

dw

dt
¼ �1

2
sinðwÞuw� sinðwÞ q

qa
Vðw; aÞ ð29Þ

The TCM is obtained by setting r ¼ 0 and/or E ¼ 0 in Eq. (23):

sin2ðwÞu2 þ 4x2 þ 4w2 þ 2 sin2ðwÞVðw; aÞ ¼ 0 ð30Þ

The dimension of the TCM is four. The flow on the TCM is given by

dw
dt

¼ 4x ð31Þ
da
dt

¼ 4w

sinðwÞ ð32Þ

du

dt
¼ � sinðwÞ 1

2
u2 þ Vðw; aÞ� � ð33Þ

dx

dt
¼ � sinðwÞ cosðwÞðu2 þ 2Vðw; aÞÞ

� 1
2
sinðwÞux� sin2ðwÞ q

qw
Vðw; aÞ ð34Þ

dw

dt
¼ �1

2
sinðwÞuw� sinðwÞ q

qa
Vðw; aÞ ð35Þ

In the right-hand side of Eq. (32), one may think that there are still singularities

4w= sinðwÞ. This term is not singular. The reason is as follows. The total angular
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momentum is L ¼ py1 þ py2 , where py1 and py2 are the momenta for azimuthal

direction of the electron 1 and the electron 2. y1 and y2 are the azimuthal angles

of the electrons 1 and 2, respectively. Suppose that the electron 1 exhibits a

binary collision with the nucleus, that is, w ¼ p. At the moment of this binary

collision, py1 ¼ 0. Now the total angular momentum is L ¼ 0. Thus, at this

moment, it implies that py2 ¼ 0.On the other hand, the momentum pa is given by

py1 ¼ pa, py2 ¼ �pa. Then we have pa ¼ 0, equivalently w ¼ 0. Thus the term

4w= sinðwÞ in Eq. (32) is harmless. When the electron 2 exhibits a binary

collision, a similar discussion holds.

Property 2. For H ¼ E < 0, the orbits run inside of the TCM, that is,

sin2ðwÞu2 þ 4x2 þ 4w2 þ 2 sin2ðwÞVðw; aÞ � 0. For H ¼ E > 0, the orbits run

outside of the TCM, that is, sin2ðwÞu2 þ 4x2 þ 4w2 þ 2 sin2ðwÞVðw; aÞ � 0. For

H ¼ E ¼ 0, the orbits run just on the TCM, that is, sin2ðwÞu2 þ 4x2þ
4w2 þ 2 sin2ðwÞVðw; aÞ ¼ 0.

To analyze the behavior of the flow on the TCM, we check positions of

equilibrium points of the total flow [Eqs. (24)–(29)]. This is done by setting the

right-hand side of Eqs. (24–29) to be zero. It is easily shown that the total flow

has only two equilibrium points.

ðr; w; a; u; x;wÞ ¼ 0;
p
2
; p; uðþÞ; 0; 0

� 	
and 0;

p
2
; p; uð�Þ; 0; 0

� 	
ð36Þ

where uð�Þ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2Vðp
2
; pÞp

. We call the former equilibrium point A and the

latter B. This is in contrast to the case of the gravitational three-body problem.

For the planar isosceles gravitational three-body problem, there are six

equilibrium points on the TCM (in this case, its dimension is two) [27].

Two equilibrium points correspond to collinear-type triple collisions. The other

four equilibrium points correspond to equilateral-type triple collisions. Back to

the present Coulomb problem, the above-mentioned two equilibrium points

correspond to the collinear-type triple collision. Actually, there is a collinear

homothetic solution from the equilibrium point A to the equilibrium point B.

Therefore, for our Coulomb problem, it implies that only collinear-type triple

collisions, whose orbit asymptotically approach to(or leave from) the triple

collision in the collinear eZe configuration, occur. This is physically understood

as follows. For our Coulomb system, the interaction between electrons is

repulsive. Since the total energy is fixed, the electrons cannot be close each

other. Thus the equilateral-type triple collision cannot occur for our Coulomb

system.

What to do next is the stability analysis of two equilibrium points A and B.

Omitting the details of calculation, the stability exponents for the critical point
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A are given by

lðAÞ1 ¼ uðþÞ ð37Þ

lðAÞ2;3 ¼ uðþÞ

4
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Z � 9

4Z � 1

r !
ð38Þ

lðAÞ4;5 ¼ uðþÞ

4
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100Z � 9

4Z � 1

r !
ð39Þ

On the other hand, due to the symmetry relation, the stability exponents for the

critical point B have signs opposite to those for the critical points A.

lðBÞ1 ¼ �uðþÞ ð40Þ

lðBÞ2;3 ¼ uðþÞ

4
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Z � 9

4Z � 1

r !
ð41Þ

lðBÞ4;5 ¼ uðþÞ

4
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100Z � 9

4Z � 1

r !
ð42Þ

If we restrict the system to the collinear eZe configuration (i.e., a ¼ p), the
corresponding TCM is topologically equivalent to a spherical shell with four

holes.

sin2ðwÞu2 þ 4x2 þ 2 sin2ðwÞVðw; a ¼ pÞ ¼ 0 ð43Þ

This is identical to one obtained by Bai, Gu, and Yuan [23]. In Fig. 3a, the stable

and unstable manifolds of the critical points A and B on the TCM is depicted for

the collinear eZe configuration. If we restrict the system to the Wannier ridge

configuration (i.e., w ¼ p=2), the corresponding TCM is topologically equivalent

to a spherical shell.

u2 þ 4w2 þ 2Vðw ¼ p
2
; aÞ ¼ 0 ð44Þ

In Fig. 3b, the stable and unstable manifolds of the critical points A and B on the

TCM is depicted for the Wannier ridge configuration. The stability exponents

lðA;BÞ4;5 correspond to those for the case of the collinear eZe configruation(i.e.,

a ¼ p). On the other hand, the stability exponents lðA;BÞ2;3 correspond to those for

the case of the Wannier ridge configuration (i.e., w ¼ p=2).
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IV. THE COLLINEAR eZe CASE: MASS RATIO EFFECT

In this section, we consider the case that all three particles have finite

masses. The contents of this section is a short summary of Ref. 29. We consider

three particles 1, 2, and 3 whose masses are m1 ¼ me, m2 ¼ mn ¼ xme, and

m3 ¼ me and whose charges are �e, Ze, and �e, respectively. Suppose that three

particles are arranged on a line in the order 1, 2, and 3 from left to right—that

is, the collinear eZe configuration. The mass ratio x is given by x ¼ mn=me.
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Figure 3. The stable and unstable manifolds of the critical points A and B on the TCM for

Z ¼ 2. (a) The collinear eZe configuration (a ¼ p). The critical points A and B on the TCM are

hyperbolic fixed points. (b) The Wannier ridge configuration (w ¼ p=2). The critical points A and B

on the TCM are a stable focus and an unstable focus, respectively.
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After some scaling transformation, we have the following Hamiltonian H for

this system:

H ¼ p21
2
þ p22
2x

þ p23
2
� 1

jq1 � q2j �
1

jq2 � q3j þ
1

Zjq1 � q3j ð45Þ

The parameters of this system is the charge Z and the mass ratio x. For numerical

calculations in this section, we shall set H ¼ �1 for our convenience.

A. Triple Collision Manifold

As shown for the 2D case with infinite nucleus mass in Section III, in this

subsection we shall construct the TCM for the collinear eZe case with finite

masses and shall elucidate the behavior near triple collisions. We use the

McGehee’s original transformation [22].The derivation of the TCM is successive

application of tricky transformations to the equations of motion and the energy

conservation relation. We do not show all of the derivation. The readers are

strongly recommended to consult with Refs. 22 and 29 for details.

With the energy conservation and the zero total momentum, we transform

the variables as ðq1; q2; q3; p1; p2; p3Þ ! ðr; x;f;cÞ. r is the squre root of the

moment of inertia; that is, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 þ xq22 þ q23

p
. x is valued as jxj � 1. The

transformations consist of the McGehee’s blow-up transformation, the regulari-

zation of binary collisions, and the others. The energy relation is given as

2� 2c2

1� x2
¼ 2ð1� x2Þ

WðxÞ ðf2 � 2rEÞ ð46Þ

E is the value of the Hamilonian. The equations of motion is given by

dr

dt
¼ lð1� x2Þ

WðxÞ1=2
rf ð47Þ

df
dt

¼ l
2
WðxÞ1=2 1� 1� x2

WðxÞ ðf2 � 4rEÞ

 �

ð48Þ

dx

dt
¼ c ð49Þ

dc
dt

¼ �xþ 2xð1� x2Þ
WðxÞ ðf2 � 4rEÞ þ 1

2

W 0ðxÞ
WðxÞ ð1� x2 � c2Þ

� lð1� x2Þ
2WðxÞ1=2

fc ð50Þ
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where

WðxÞ ¼ 2ð1� x2Þ sinð2lÞ 1

ðb2 � b1Þ sinðlð1þ xÞÞ



þ 1

ða3 � a2Þ sinðlð1� xÞÞ

� 1

Zfðb2 � b1Þ sinðlð1þ xÞÞ þ ða3 � a2Þ sinðlð1� xÞÞg
�

ð51Þ

cosð2lÞ ¼ 1

xþ 1
ð52Þ

a ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ xÞð2þ xÞp ;� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ xÞð2þ xÞp ;
1þ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ xÞð2þ xÞp

 !
ð53Þ

b ¼ � 1þ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ xÞð2þ xÞp ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ xÞð2þ xÞp ;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ xÞð2þ xÞp
 !

ð54Þ

Here l is valued as 0 � l � p=4. In order to obtain the TCM , we set r ¼ 0 and/

or E ¼ 0. The energy relation becomes

c2 þ x2 þ ð1� x2Þ2WðxÞ�1f2 ¼ 1 ð55Þ

Equation (55) defines a surface in ðx;f;cÞ coordinates, that is, the TCM.The

TCM is topologically equivalent to a spherical shell with four holes. A schematic

picture for the TCM is depicted in Fig. 4a. The flow on the TCM is determined by

the following equations of motion:

df
dt

¼ l
2
WðxÞ1=2 1� 1� x2

WðxÞ f2


 �
ð56Þ

dx

dt
¼ c ð57Þ

dc
dt

¼ �xþ 2xð1� x2Þ
WðxÞ v2 þ 1

2

W 0ðxÞ
WðxÞ ð1� x2 � c2Þ

� l
2

1� x2

WðxÞ1=2
fc ð58Þ
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For the TCM, there are two critical points c ¼ ð0;�fc; 0Þ and d ¼ ð0;fc; 0Þ,
two infinite arms (a and b), and two infinite legs (e and f ), where fc ¼ Wð0Þ1=2.

Similar to Property 2, we have the following.

Property 3. ForH ¼ E < 0, the orbits runs inside of the TCM. ForH ¼ E > 0,

the orbits runs outside of the TCM. For H ¼ E ¼ 0, the orbits run just on

the TCM.

As shown in the previous section for the 2D case with infinite nucleus mass,

we also carry out stability analysis for the critical point c and d. The critical

points c and d are the equilibrium points of the flow [Eqs. (56)–(58)]. At the

same time, they are the equilibrium points of the total flow [Eqs. (47)–(50)]. The

stability analysis of the equilibrium points c and d gives that dimðWsðcÞÞ ¼
2; dimðWuðcÞÞ ¼ 1 and dimðWsðdÞÞ ¼ 1; dimðWuðdÞÞ ¼ 2, where WsðxÞ and
WuðxÞ are the stable and unstable manifolds of x, respectively. We investigate

the stable and unstable manifolds on the TCM numerically to show the global

topological property of the triple collision orbits. We call them WTCMðcÞ and
WTCMðdÞ. For later use, we call the part of the TCM between two critical

points c and d the body of the TCM: fðx;f;cÞ; jfj � fc;c
2 þ x2 þ ð1� x2Þ2W

ðxÞ�1f2 ¼ 1g.
We are interested in the actual two-electron atom and ions.Thus we need to

investigate the x-dependence of the flow on the TCM. Thanks to the similarity

between celestial problem and Coulomb problem, for our Coulomb systems, the

same argument is easily shown following the discussion of Ref. [22].

c
d

a b

e f

s

c

-1 1

φ

ψ

x

Figure 4. Schematic picture of the triple collision manifold (TCM). There are two critical

points c and d. [Reprinted with permission from M. M. Sano, Journal of Physics A: Mathematical

and General 37, 803 (2004). Copyright # 2004, IOP Publishing Ltd.]
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Property 4. When x ! 0, the orbits on the TCM wind around the body of the

TCM infinitely often.

However, this limit has some trouble as mentioned in Ref. [30]. For

numerical consideration, we do not take this limit. Only the behavior for small x
is needed.

In order to show the x-dependence of the flow on the TCM for large x, we
numerically calculate the stable and unstable manifolds on the TCM. Figure 5

depicts them for ðZ; xÞ ¼ ð1; 1Þ. We confirmed the following things. When x is

increased, the winding number N of the stable and unstable manifolds of c and

d on the TCM around the body of the TCM is monotonically decreased. From

numerical observation, N is saturated to certain value in the limit x ! 1. For

even relatively small value of x, N is almost saturated—for instance, x < 100

for Z ¼ 1; 2; 3; 4; 5.

B. Triple Collision Orbits

In this subsection, we consider triple collision orbits on a Poincar’e section. We

take the Poincaré surface of section at the plane x ¼ 0 in ðx;f;cÞ coordinates.
We define D ¼ fðx;f;cÞjx ¼ 0; c2 þWð0Þ�1f2 � 1 g. We divide D as D ¼
D1 [D2, where D1 ¼ fðx;f;cÞjx ¼ 0; c � 0; c2 þWð0Þ�1f2 � 1g and

D2 ¼ fðx;f;cÞjx ¼ 0; c � 0; c2 þWð0Þ�1f2 � 1g. We also define the

boundary of D, that is, qD ¼ fðx;f;cÞjx ¼ 0; c2 þWð0Þ�1f2 ¼ 1 g.
As done in Refs. [29,31,32], by using the symbolic dynamics, we can specify

the location of the triple collision orbits. We skip the detail of this method. The

triple collision orbits that experience a triple collision in the future will form

curves on the Poincaré section. Then we call them the triple collision curves.

-1.5 -1 -0.5 0 0.5 1 1.5x -1.5
-1 -0.5

0
0.5
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Figure 5. The stable and unstable manifolds of the critical points c and d on the TCM for

ðZ; xÞ ¼ ð1; 1Þ. Two circles indicate the positions of two critical points c and d. [Reprinted with

permission from M. M. Sano, Journal of Physics A: Mathematical and General 37, 803 (2004).

Copyright # 2004, IOP Publishing Ltd.]
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For later use, we denote them by CTC. Figures 6a and 7a depict the triple

collision curves CTC for the case of ðZ; xÞ ¼ ð1; 1Þ and the case of the helium,

respectively. For the case of ðZ; xÞ ¼ ð1; 1Þ (Fig. 6a), there are two tori in D1

and D2, namely the region around ðf;cÞ ¼ ð0;�0:35Þ. They are triangular-

shaped. The simple stable orbits (the torus) may correspond to the Schubart

orbits in the celestial problem [33]. In Fig. 6a, the region of these orbitsis shown

as a triangle area. On the other hand, for the case of the helium (Fig. 7a)—that

is, large x—there is no torus. In Figs. 6a and 7a, we plot CTC. In Figs. 6b and 7b,

Figure 6. The triple collision curves CTC and Ct
TC on the Poincaré section for ðZ; xÞ ¼ ð1; 1Þ.

(a) Only CTC is depicted. (b) Both CTC and Ct
TC are depicted. [Reprinted with permission from M.

M. Sano, Journal of Physics A: Mathematical and General 37, 803 (2004). Copyright # 2004, IOP

Publishing Ltd.]
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we also plot the triple collision curves whose orbits experienced the triple

collision in the past, we denote them by Ct
TC. By symmetry, CTC and Ct

TC are

symmetric against the line f ¼ 0.

In order to examine the hyperbolicity of the system, we investigate the

foliated structure of D. In Figs. 6b and 7b, we depict the triple collision curves

whose orbit is started and/or ended at a triple collision for the case of

ðZ; xÞ ¼ ð1; 1Þ and the case of the helium, respectively. It is clearly seen that for

Fig. 7b CTC and Ct
TC transversely cross each other, while for Fig. 6b CTC and

Figure 7. The triple collision curves CTC and Ct
TC on the Poincaré section for ðZ; xÞ ¼ ð1; 7Þ.

(a) Only CTC is depicted. (b) Both CTC and Ct
TC are depicted. [Reprinted with permission from M.

M. Sano, Journal of Physics A: Mathematical and General 37, 803 (2004). Copyright # 2004, IOP

Publishing Ltd.]
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Ct
TC transversely cross each other except near the torus. Since the dynamics of

our system is continuous, we expect that CTC and Ct
TC do not cross the stable

and unstable manifolds except on qD. In fact, it is numerically confirmed that

when x is sufficiently large, the triple collision curves CTC(C
t
TC) are parallel to

the stable (unstable) manifolds in the Poincaré section for the Poincaré map,

respectively. Therefore, Fig. 7b (sufficiently large x) manifests that the

dynamics of the helium in the collinear eZe configuration is hyperbolic. With

some parameter values when the torus exists (for small value of x), CTC and Ct
TC

do not foliate. In this case, the tangency of the CTC and Ct
TC is observed. This

may manifest the tangency of the stable and unstable manifolds.

Furthermore, we investigate the detailed structure of the Poincaré surface of

section for the case of ðZ; xÞ ¼ ð1; 1Þ. In this case, there are tori. These tori have
the periodic points with period 6 in their outermost part. Here we counted the

number of vertices of two triangle, namely 2� 3 ¼ 6. These periodic points is

associated to one orbit in the whole phase space, which is an antisymmetric

orbit in the configuration space. These periodic points have stable and unstable

manifolds. In Fig. 8a, we depict the stable manifolds of the these periodic

points. In Fig. 8b, we also depict the unstable manifolds by using the symmetry.

The stable and unstable manifolds of these periodic points go to qD. It should

be noted that the reached points of them on qD is the accumulation points of

CTC and Ct
TC. Comparing Figs. 6a and 6b with Fig. 8, it is confirmed that CTC in

Figs. 6a and 6b is nearly parallel to the stable manifolds and Ct
TC in Fig. 6b is

nearly parallel to the unstable manifolds. Therefore, it is understood that the

foliated structure of CTC and Ct
TC manifests the foliation of the stable and

unstable manifolds—that is, hyperbolic structure.

The connection between the observation in Fig. 5 and the observation in Figs.

6b and 7b is unknown here. Now we elucidate this connection. Figure 6b for

ðZ; xÞ ¼ ð1; 1Þ shows one branch of WTCMðcÞ and the triple collision orbits on

the Poincaré section. A remarkable point is that the triple collision curves CTC

and Ct
TC accumulate at 10 points on qD. As shown in Fig. 9a, these points are

the points at which WTCMðcÞ and WTCMðdÞ cross the plane x ¼ 0 and which

are, of course, just on qD. We denote these points by PTCM;r¼0. It is clear that the

number of points of PTCM;r¼0 is related to the existence of tori in the Poincaré

section D. If the tori exist, its outer most torus has periodic points. These

periodic points have the stable and unstable manifolds. Branches of these stable

and unstable manifolds run toward qD, precisely WTCMðcÞ and WTCMðdÞ on

qD. This situation was observed in Fig. 8. Therefore, the number of the points

of PTCM;r¼0 is related to the existence of the tori. At the same time, the number

of the points of PTCM;r¼0 just corresponds to the winding number N of

WTCMðcÞ or WTCMðdÞ around the body of the TCM as mentioned in the

previous subsection. In Figs. 7b and 9b, the case of ðZ; xÞ ¼ ð1; 7Þ is shown. As
the result of the previous subsection, when x is large enough, the winding
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number of WTCMðcÞ and WTCMðdÞ saturates to certain value. For Z ¼ 1, the

critical value xcðZ ¼ 1Þ is in the interval ð6:0; 7:0Þ. This is clearly shown in

Fig. 10 for ðZ; xÞ ¼ ð1; 6Þ and ð1; 7Þ. In other words,when x is large enough, the

number of the points of PTCM;r¼0 also saturates to a certain value that is, in fact,

6 (i.e., no torus case). Thus, the existence of tori in the Poincaré section x ¼ 0 is

monitored by the number of points of PTCM;r¼0. When x is large enough, the tori
disappear and the triple collision curves CTC transversely cross Ct

TC. This would

be a strong evidence of hyperbolicity of the system with large x, since it is

numerically confirmed that CTC(C
t
TC) is parallel to the stable (unstable)

Figure 8. The stable and unstable manifolds of the periodic points of the outermost tori for the

case of ðZ; xÞ ¼ ð1; 1Þ. (a) The stable manifolds. (b) The unstable manifolds are also added to (a).
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manifold for the Poincaré map, respectively. We also confirmed that this

scenario holds for the other Z cases (e.g., Z ¼ 1; 2; :::; 100). The critical value of
xcðZÞ at which the winding number N saturates is calculated. In Fig. 11, we

summarize the result. For Z ¼ 1; 2; 3; 4; 5, the critical value xcðZÞ is order of

Oð10Þ. This critical value is numerically obtained. The profile of Fig. 11 is

almost linear.

From the above numerical observation, we can state two conjectures. (1) For

the system Eq. (45) with ðZ; xÞ, Z � 1, there exists the critical value xcðZÞ

Figure 9. The triple collision curves CTC and Ct
TC on the Poincaré section and one branch of

the unstable manifold of the critical point c in ðx;f;cÞ coordinates. (a) For the case of

ðZ; xÞ ¼ ð1; 1Þ. (b) For the case of ðZ; xÞ ¼ ð1; 7Þ. The points where the unstable manifold of the

critical point c crosses the plane x ¼ 0, are indicated by squares. [Reprinted with permission from M.

M. Sano, Journal of Physics A: Mathematical and General 37, 803 (2004). Copyright # 2004, IOP

Publishing Ltd.]
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such that for x > xcðZÞ the system is hyperbolic. (2) For the system Eq. (45)
with ðZ; xcðZÞÞ, Z � 1, the stable (unstable) manifold of the critical points c

on the TCM degenerates the unstable (stable) manifold of the critical

points d, namely totally degenerate. Since for actual two-electron atom or ions

the mass ratio is large, (i.e., mp=me � 1840), this means that the classical

dynamics of H�, He, Liþ, Be2þ, and so on, in collinear eZe configuration is

hyperbolic.
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-1-0.5

0
0.5

1
1.5

ψ

-4
-2
0
2
4

φ

Figure 10. One branch of the unstable manifold of the critical point c for ðZ; xÞ ¼ ð1; 6Þ and
ð1; 7Þ. When ðZ; xÞ ¼ ð1; 6Þ, the unstable manifold winds around the left arm a. When

ðZ; xÞ ¼ ð1; 7Þ, the unstable manifold winds around the right arm b. When x is increased and

crosses the critical value xcðZ ¼ 1Þ, the unstable manifold changes the direction and winds around

the right arm b.
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Figure 11. The critical value xcðZÞ versus Z.
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C. Experimental Manifestation

Systems in the collinear eZe configuration which have tori would be the

antiproton–proton–antiproton (p–p–p) system, the positronium negative ion (Pr–

(e–e–e)), which corresponds to the case of Z ¼ 1; x ¼ 1, and Hþ
2 . If these

systems have bound states, we can see the effect of our finding in the Fourier

transform of the density of states for the spectrum. For a positronium negative

ion, the EBK quantization was done [34]. Stable antisymmetric orbits were

obtained and were quantized to explain some part of the energy spectrum. As

hyperbolic systems, H� and He have been already analyzed in Refs. 11 and 17,

respectively. Thus, Liþ is the next candidate. We might see the effect of the

intermittency for this system in quantum defect as shown for helium [14].

V. FREE-FALL PROBLEM

Finding tori in the 2D case is very difficult, because the dimension of the phase

space is 6. Some elaborate method to find tori is needed. In this section, we

consider the free-fall problem. We treat three particles with finite masses.

Since we are interested in the case with zero total angular momentum, we

have chosen such initial conditions for three particles. However, the phase space

of the entire initial conditions is too big—in fact, infinite. Therefore, for

numerical investigation, we have to restrict the initial conditions to some

subspace of the entire initial conditions. If three particles have zero velocity at

some moment, then the orbit associated to this initial condition has zero angular

momentum, since L ¼P3
i¼ 1 qi � pi. Thus we consider the initial conditions

with zero velocities of three particles at time zero. These are just the initial

conditions of the free-fall. So this problem is sometimes called the free-fall

problem. The free-fall problem in gravitational three-body problem was well

investigated [35–38].

The Coulomb system has the famous scaling relation. The positions, the

momenta, and the energy of three particles are easily scaled. In this study, we

set the total energy to be negative. If we consider the initial conditions for

the free-fall problem, only the conformation of three particles is important—

that is, the shape of the triangle formed by three particles. The scale of the

position does not matter. Now we consider three particles. Two particles are the

same (for instance, electrons), denoted by a1 and a2. One particle is different

from two (for instance, nucleus), denoted by b. Since the total angular

momentum is zero, the motion of three particles is confined in the 2D space. Set

the particle b at the origin ðx; yÞ ¼ ð0; 0Þ in the 2D plane. Set the particle a1 at
ðx; yÞ ¼ ð1; 0Þ. Another particle a2 can be set anywhere in the 2D plane. In order

to include all shapes of the triangle of three particles, where can we put another

particle a2? The answer is that the particle a2 can be set in the region
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D ¼ fðx; yÞ : x2 þ y2 � 1 and y � 0g, that is, inside of unit semicircle.

Fortunately the region D is compact! To explore this region is numerically

possible.

We numerically calculate the plot for three systems, namely H�, He, and Pr�
in the following way. Set three particles as in the above initial conditions. Start a

free fall. If after some time interval three particles are still staying near the

origin, then we regard the corresponding initial condition as a candidate for

torus and plot this initial condition. The results are depicted in Figs. 12, 13, and

Figure 12. Candidates of tori in the initial condition space for the free-fall problem: hydrogen

negative ion, H�. The painted region near the corner ðx; yÞ ¼ ð1; 0Þ represents the initial conditions
with positive total energy.

Figure 13. Candidates of tori in the initial condition space for the free-fall problem: helium

atom, He. The painted region near the corner ðx; yÞ ¼ ð1; 0Þ represents the initial conditions with

positive total energy.
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14. The painted region near ðx; yÞ ¼ ð1; 0Þ corresponds to the initial conditions

with positive total energy. We disregard this region. Figure 12 is the result for

H�. The thick lines on the semicircle correspond to the initial conditions for a

family of tori. For H�, there is no other possibilities for tori. Figure 13 is the

result for He. Compared to the case of H�, there are relative large region for

candidates of tori around 0 � x � 0:6; 0 � y � 0:6. The initial conditions in

this region corresponds to the planetary orbits (tori), which were first discovered

by Richter and Wintgen [20]. The thick line on the semicircle correspond to the

initial conditions for a family of tori in Wannier ridge configuration, which

probably includes a kind of Langmuir orbit. Near this thick line, there is some

small region which includes candidates of tori. Figure 14 is the result for Pr�.
The thick line on the semicircle correspond to the initial conditions for a family

of tori. In this case, one exceptional candidate is near ðx; yÞ ¼ ð�0:2; 0:65Þ. This
may not be torus because of finite time evolution in numerical calculation. A

reason why there is a difference between the Z ¼ 1 case (H� and Pr�) and the

Z ¼ 2 case (He), namely the existence of planetary orbits for He, is that the eeZ

configuration is stable for the Z ¼ 2 case and unstable for the Z ¼ 1. It is

numerically confirmed that the bending perturbation is generally stable. If the

eeZ configuration is stable, adding the bending perturbation, the perturbed orbits

are sometimes stable. Thus the planetary orbits exist for He.

VI. SUMMARY

In this chapter, we presented the geometry of the orbits near triple collisions in

the Coulomb three-body problem for the collinear eZe configuration and the 2D

case with zero angular momentum.

Figure 14. Candidates of tori in the initial condition space for the free-fall problem:

positronium negative ion, Pr�. The painted region near the corner ðx; yÞ ¼ ð1; 0Þ represents the

initial conditions with positive total energy.
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In Section III, for the 2D case with zero angular momentum, the TCM and a

set of regularized equations of motion were derived. The dimension of the TCM

for this case is four. The most remarkable point is that only two equilibrium

points exist for the total flow. Therefore, as homothetic solutions, only collinear-

type homothetic solution is allowed. This implies that all triple collisions occur

asymptotically approaching to the collinear eZe configuration. This is in sharp

contrast to the gravitational case that has more equilibrium points and allows the

equilateral-type homethetic solution. In this sense, the Coulomb three-body

problem is much simpler than the gravitational three-body problem. The

stability analysis for two equilibrium points was carried out. In the collinear eZe

configuration and the Wannier ridge configuration, the local property of the flow

on the TCM was revealed. However, at present, the whole dynamics for the 2D

case with zero angular momentum is not known very well. A partial result was

presented in this conference by Choi, Lee, and Tanner [24].

In Section IV, for the collinear eZe case, McGehee’s method was directly

applied to the system with finite masses. The mass ratio x plays an important

role in this problem. When the value of x is increased, the flow on the TCM is

changed, especially how many times W
ðuÞ
TCMðcÞ winds around the body of the

TCM, say N. When x goes to infinity, N is saturated to certain value. This

property is directly related to the existence of tori inside the TCM (the dynamics

with E � 0). Thanks to a large mass ratio x, H�, He, Liþ, Be2þ, and so on, in

the collinear eZe configuration are probably hyperbolic. This hyperbolicty and

the intermittency would reflect the behavior of the quantum defects of H�, He,
Liþ, Be2þ, and so on. Nonhyperbolic systems are also predicted by our finding,

that is e–e–e, p–p–p, and Hþ
2 .

In Section V, we presented the result on the free fall problem. It was shown

that the value of Z is very important for the existence of tori in the 2D plane.

For future problems, the TCM and a set of regularized equations of motion

derived in Section III will be used to investigate the whole dynamics of the 2D

case with zero angular momentum. This task would be hard both numerically

and theoretically. But fortunately the dynamics is relatively simpler than that of

the gravitational case. For theoretical aspect, the scheme of this conference,

namely normally hyperbolic invariant manifold (NHIM) [39] may be possibly

applied to our Coulomb three-body problem. See the scaled potential surface of

Vðw; aÞ in Fig. 2. The collinear eZe configuration (i.e., a ¼ p) and the Wannier

ridge configuration (i.e., w ¼ p=2) are mutually orthogonal. The intersection set

of the collinear eZe confguration and the Wannier ridge configuration includes

the collinear homothetic solution. If we neglect the ‘‘size’’ variable r, the scaled

potential Vðw; aÞ has the ridge, namely the Wannier ridge. In the direction to the

collinear eZe configuration, the dynamics is unstable, probably hyperbolic as

mentioned in the conjecture. On the other hand, in the direction to the Wannier

ridge configuration, the dynamics is relatively stable. This situation is very

similar to the setting up for an NHIM. Anyway the collinear homothetic
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solution may play a central role for the dynamics in the 2D case with L ¼ 0. If

we elucidate the whole dynamics in the 2D case with L ¼ 0, we will be able to

carry out semiclassical quantization to yield the full spectrum of 1Se and we will

know the correlations in two-electron atoms or ions both in classical-sense and

in quantum-sense through semiclassics.
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I. INTRODUCTION

In the conventional theory of chemical reactions, the assumption of local

equilibrium plays a crucial role. This assumption enables us to limit our attention

to local structures of the phase space—that is, transition states—and it replaces

Geometric Structures of Phase Space in Multidimensional Chaos: A Special Volume of Advances in
Chemical Physics, Part A, Volume 130, edited by M. Toda, T Komatsuzaki, T. Konishi,
R.S. Berry, and S.A. Rice. Series editor Stuart A. Rice.
ISBN 0-471-70527-6 Copyright # 2005 John Wiley & Sons, Inc.
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global aspects of the reaction dynamics with equilibrium properties. In this way,

we can estimate physical quantities such as reaction rates using only information

about the saddle regions of the potential function.

Recently, however, experimental studies of reaction processes have cast

doubt on the local equilibrium assumption. When that assumption is not valid,

understanding of reaction processes requires the study of global aspects of the

phase space in multidimensional chaotic dynamics [1].

In order to proceed, we propose the following three-stage strategy. First, we

simplify the description of the dynamics locally in the phase space. This is done

in an analogous and extended fashion similar to that used in the conventional

Transition State Theory. Second, we study how the local dynamics in different

regions of the phase space are related to each other. Thus, identification and

understanding of global structures of the phase space is our target for this stage.

(This will be the main focus of this review, since the first part is discussed in

detail by Refs. 2 and 3.) Third, we examine bifurcation in the global structures

of the phase space.

In the following, we explain these three stages in more detail.

A. Simplify Dynamics Using NHIMs

First, in order to simplify the description of the dynamics we separate the whole

system, locally in the phase space, into two parts based on a gap in characteristic

time scales. This is done using the concept of normally hyperbolic invariant

manifolds (NHIMs) [4–8]. Here, the characteristic time scales are estimated as

the inverses of the absolute values of the local Lyapunov exponents [5,6]. Then,

the Fenichel normal form offers a simplified description of the local dynamics

near a NHIM [7].

In constructing NHIMs, those degrees of freedom with smaller absolute

values of the local Lyapunov exponents correspond to the directions that are

tangent to the NHIM. Those with larger absolute values of the local Lyapunov

exponents describe movements that are normal to the NHIM. The gap between

smaller and larger absolute values of the local Lyapunov exponents is the key in

this construction.

The dynamics of approaching and leaving a NHIM are described by the

orbits on the stable and unstable manifolds of the NHIM.

In constructing the stable manifold of the NHIM we follow, backward in

time, the normal directions of the NHIM with negative local Lyapunov

exponents. For the unstable manifold we follow forward in time the normal

directions of the NHIM with positive local Lyapunov exponents.

In reaction dynamics, NHIMs and their stable and unstable manifolds exist in

the phase space above saddles of the potential function. In the first stage of our

strategy, these saddles are at the focus of our interest.
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Let N denote the number of the degrees of freedom of a system. We also use

the term ‘‘the index of the saddle’’ to indicate the number of negative

eigenvalues of the Hessian matrix of the potential function at the saddle.

Suppose we have a saddle with index 1. Then, a NHIM of 2N � 2

dimension exists above it in the phase space, with two directions that are normal

to it. Along these normal directions, with negative and positive Lyapunov

exponents, ð2N � 1Þ-dimensional stable and unstable manifolds exist, respec-

tively. The normal directions of the saddle correspond to the degree of freedom

that is the reaction coordinate near the saddle, and they describe how the

reaction proceeds locally near the NHIM.

These NHIMs are of the largest dimension in the phase space. In the

ð2N � 1Þ-dimensional equi-energy surface, the dimension of these NHIMs is

2N � 3, and that of their stable and unstable manifolds is 2N � 2. Therefore,

their stable and unstable manifolds separate the equi-energy surface locally into

two regions. This separation corresponds to separating the equi-energy surface

locally into the reactant and product sides.

Thus, based on NHIMs with saddles with index 1, we can construct a theory

that is a rigorous reformulation of the conventional Transition State Theory

[9,10]. Moreover, the use of the Lie perturbation brings the system locally into

the Birkhoff normal form with one inverse harmonic potential [2]. This form is

nothing but the Fenichel normal form.

As reactions proceed further, the system will go through multiple saddles of

the potential function. Thus, we are led to ask how dynamics near these saddles

are connected with each other. This is the problem we face in the second stage.

B. Connections Among NHIMs

Second in our strategy, we ask how the dynamics near NHIMs are connected with

each other. Here, intersections between the stable and unstable manifolds of the

NHIMs play a major role.

Suppose that the unstable manifold of a NHIM intersects with the stable

manifold of another NHIM (or the same NHIM); such intersections are called

heteroclinic (or homoclinic). This means that there exists a path that connects

these two NHIMs (or a path that leaves from and comes back to the NHIM).

Thus, their intersections offer the information on how the NHIMs are

connected.

In multidimensional systems, these intersections would exhibit much more

variety than they do in the lower-degrees-of-freedom systems that have been

traditionally studied in nonlinear physics. One of the new aspects is ‘‘tangency’’,

which was found in the predissociation of a van der Waals complex of three

bodies [11,12]. The tangency gives birth to transition in chaos [12], which is

called a crisis [13]. Then, the extention of the concept of reaction rates to

multidimensional chaos, which was first proposed in Ref. 9, breaks down [11,14].
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Thus, instead of trying to extend the concept of reaction rates, we follow a

different route.

We regard the intersections between stable and unstable manifolds as a

skeleton of reaction paths. The skeleton has the structure of a network, since one

NHIM can be connected with multiple NHIMs. Then, branching in the skeleton

will manifest itself as tangency [1]. This observation suggests the importance of

tangency in multidimensional reaction dynamics.

Moreover, the NHIM with a saddle with index 1 can be connected with

NHIMs with saddles with indexes larger than 1. To see this possibility, let us

count the dimension of the intersections. Suppose we have a saddle with index

L. Then, the NHIM of 2N � 2L dimension exists with (2N � LÞ-dimensional

stable and unstable manifolds. In the equi-energy surface, the dimension of the

NHIM is 2N � 2L� 1, and that of its stable and unstable manifolds is

2N � L� 1. Thus, the dimension of the intersection, if any, between its stable

manifold and the unstable manifold of the NHIM with a saddle with index 1 is

2N � L� 2. If its value is larger than 0, a path exists which connects these two

NHIMs. Therefore, the allowed values of L for systems of 3 degrees of freedom

(for example) are 1 and 2, when we also take into account the condition that

2N � 2L� 1 (i.e., the dimension of the NHIM with a saddle with index L in the

equi-energy surface) should not be negative.

In addition to the NHIMs with saddles, other kinds of NHIMs can also

become important when intramolecular vibrational energy redistribution (IVR)

comes into play. They are NHIMs with whiskered tori that are created by

nonlinear resonances within the potential well [5]. In the network of nonlinear

resonances,which is called theArnoldweb [16,17], theseNHIMswill be connected in

an interwoven way with each other and also with NHIMs with saddles.

Thus, orbits in the skeleton of reaction paths will wander around from one

NHIM to another, following the complicated structure of the network. Such

behavior reminds us of the dynamics called ‘‘chaotic itinerancy’’ [18–21].

To investigate this behavior, we have two methods available at present: One

is the Melnikov integral, which is used by Arnold in Ref. 15 to see if the stable

and unstable manifolds of whiskered tori intersect. The other is Lie perturbation

theory, which is used in astrophysics to control orbiters in the universe [22].

The Melnikov integral is more suitable for theoretical purposes to prove

theorems using model Hamiltonians. On the other hand, Lie perturbation theory

is applicable to realistic systems such as clusters. For an application of Lie

perturbation theory to clusters, see Ref. 23.

C. Bifurcation in the Skeleton

Up until now we have fixed the energy and parameters of the system in

considering the skeleton of reaction paths. In the third stage of our strategy we

vary these quantities to see what will happen in the skeleton.
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Here, we mention only two possibilities, though we could have other cases.

The first is that the condition of normal hyperbolicity breaks down for some

NHIMs. Then, what happens to those NHIMs? Do they bifurcate into other

NHIMs, or do they disappear at all? The second possibility is that intersections

between the stable and unstable manifolds of NHIMs change into tangency.

This could lead to bifurcation in the way NHIMs are connected by their stable

and unstable manifolds.

At present, study of this stage is very limited [7]. We expect that future

progress will reveal details of how the skeleton varies.

D. Purpose of the Chapter

In this chapter, we present the basic ideas that are necessary to carry out our

strategy. In particular, we focus attention on the tangency mentioned in the

second stage, since study of tangency will give a clue to understand the features

of branching in the skeleton of reaction paths. For this reason, we investigate a

simple model Hamiltonian both numerically and analytically using the Melnikov

integral.

We will also discuss the relevance, in the context of chemical reactions, of

the possibilities pointed out in the third program stage, which enables us to go

beyond the condition of normal hyperbolicity, and the need for the gap in the

characteristic time scales. Moreover, bifurcation in the skeleton can offer a

mechanism by which reaction processes evolve, thereby opening a new arena in

the study of chemical reactions.

In the following, we give an overview of the chapter.

The basic ideas that are necessary for the first program stage are explained in

Sections II, III, and IV. In Section II, we formulate the problem of how to

analyze a system that has a gap in characteristic time scales. Our method is to

use perturbation theory with respect to a parameter that is the ratio between a

long time scale and a short time scale, which is a version of singular

perturbation theory. The reason will be explained in Section II. In Section III,

the concept of NHIMs is introduced in the context of singular perturbation

theory. We will give an intuitive description of NHIMs and explain how the

description is implemented, leaving the precise formulation of the NHIM

concept to the literature in mathematics. In Section IV, we will show how Lie

perturbation theory can be used to transform the system into the Fenichel

normal form locally near a NHIM with a saddle with index 1. Our explanation is

brief, since a detailed exposition has already been published [2].

The Melnikov integral, which plays a key role in the second program stage,

is presented in Sections V, VI, and VII. In Section V, we derive the Melnikov

integral following the presentation in Ref. 24. We limit our explanation to a

simplified situation to avoid discussion of the convergence of the integral. In

Section VI, we discuss the Arnold model [15] to show, using the Melnikov
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integral, a sufficient condition for intersections to occur between the stable and

unstable manifolds of whiskered tori with different action values. In the

historical context, this argument implies the behavior called the Arnold

diffusion, though the term ‘‘diffusion’’ could be problematic [25]. The core of

this chapter is Section VII. Here, we investigate the Arnold model numerically

and analytically, using the Melnikov integral to reveal the tangency. We also

discuss the universality of the tangency in multidimensional chaos.

In Section VIII, we give a summary of the viewpoint obtained from the

second program stage—in particular, its resemblance to chaotic itinerancy. This

section bridges our argument from the second program stage to the third

program stage.

The third stage of our strategy is discussed in Sections IX and X. Our

discussion is speculative, since quantitative analysis is lacking at present. In

Section IX, we point out that, in reaction dynamics, breakdown of normal

hyperbolicity would also play an important role. Such cases would include

phase transitions in systems with a finite number of degrees of freedom.

In Section X, we will discuss the possibility of bifurcation in the skeleton

of reaction paths, and we point out that it corresponds to crisis in multi-

dimensional chaos. This approach offers an interesting mechanism for chemical

evolution.

In the Section XI, we summarize the major points of this chapter. We will

also propose future development of our strategy with application to systems

with many degrees of freedom—for example, the dynamics of protein folding.

We suggest that coarse graining of the phase-space structure may need to be

incorporated to tackle such a problem.

II. SINGULAR PERTURBATION THEORY

The existence of a gap in characteristic time scales of a dynamical system is the

key to this chapter. The meaning of ‘‘the characteristic time’’ scales will be made

clear in the following.

In the field of chemical reactions, separating the system into fast and slow

degrees of freedom is a standard method. It is based on the gap in characteristic

time scales for motion of electrons and nuclei. This is the Born–Oppenheimer

approximation, and it is used for constructing potential surfaces for the motion

of the nuclei.

In this chapter, focus attention on a different method to analyze those

systems that consist of fast and slow variables. It is called singular perturbation

theory, and is suitable for understanding chaotic behavior in systems with many

degrees of freedom. The reason for the term ‘‘singular’’ will be explained later.

In this and the next sections, we will present the basic ideas of singular

perturbation theory without going into mathematical rigor.
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Let us consider the following coupled ordinary differential equations:

e
dx

dt
¼ f ðx; yÞ

dy

dt
¼ gðx; yÞ

ð1Þ

where e is a small constant which satisfies 0 < e � 1. Here, x and y are vectors
on Euclidean spaces.

The constant e represents the gap in characteristic time scales between the

dynamics of x and that of y; suppose that the values of f (x, y) and g(x, y) are
of the same order. Then, the magnitude of dx/dt is e�1 times larger that that of

dy/dt. This means that x varies e�1 times faster than y does. Thus, x is a fast

variable and y is a slow one.

We will introduce a new time variable t � t=e which describes fast changes

of the coupled equations Eq. (1). Using the fast time variable t, the equations

Eq. (1) become

dx

dt
¼ f ðx; yÞ

dy

dt
¼ egðx; yÞ

ð2Þ

The coupled equations Eq. (1) and (2) are equivalent for a finite value of e.
However, they will reveal different asymptotic behavior in the limit e & 0.

Let us consider Eq. (2) first. When we set e ¼ 0 in Eq. (2), we obtain

dx

dt
¼ fðx; yÞ

dy

dt
¼ 0

ð3Þ

There is no time development of y in Eq. (3). Intuitively speaking, the slow

variable y looks like a constant in the asymptotic limit e & 0, when we view y
using the fast time variable t.

In Fig. 1, a schematic picture of the flow under Eq. (3) is shown. There, the

thick arrows indicate the directions of the flow. They are parallel to the x axis

since there is no time development of y. The thin curve shows the locations

where dx/dt ¼ 0; that is, both x and y do not vary.

On the other hand, when we set e ¼ 0 in Eq. (1), we obtain the following

equations:

0 ¼ f ðx; yÞ
dy

dt
¼ gðx; yÞ

ð4Þ
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Note the following significant fact for Eq. (4). While the original coupled

equations (1) have a solution for an arbitrary initial condition (x, y), Eqs. (4) have
one only for an initial condition that satisfies 0 ¼ f ðx; yÞ. In other words, Eqs. (4)
have solutions only on the manifold where dx=dt ¼ 0 in the original

equations (1).

Let ðx ¼ x0ðyÞ; yÞ denote one of the graphs of the manifold 0 ¼ fðx; yÞ.
Then, substituting x ¼ x0ðyÞ in the second equation of Eq. (4)—that is,

dy=dt ¼ gðx; yÞ—we obtain a closed equation for y as follows:

dy

dt
¼ gðx0ðyÞ; yÞ ð5Þ

A schematic picture of a solution for Eq. (5) is shown in Fig. 2.

Here, we explain the origin of the term ‘‘singular.’’ It is used in contrast with

the expression ‘‘regular.’’ In general, regular perturbation theory presupposes

that the solution obtained by setting e ¼ 0 resembles the one for a small and

positive e. However, for Eq. (4), there exist no solutions at all for arbitrary initial
conditions when we set e ¼ 0.

The reason why such situations occur is that, when we set e ¼ 0, the degree

of the equations is reduced. The freedom of specifying conditions to determine

the unique solution depends on the degree of the differential equations. Thus,

reducing the degree of the equations results in decreasing our freedom to select

initial conditions, leading to the nonexistence of solutions for arbitrary initial

conditions. Then, we call such perturbation methods ‘‘singular.’’

y

x

Figure 1. A schematic picture of the flow for Eq. (3).
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A typical example is seen in hydrodynamics when we set the viscosity equal

to zero. Since the viscosity appears in the term of the highest differential degree

in the Navier–Stokes equation, setting the viscosity equal to zero reduces the

degree of the equation, leading to nonexistence of solutions for arbitrary

boundary conditions.

In our case, by combining both Fig. 1 and Fig. 2, we can display a schematic

picture of the flow for e ¼ 0 in Fig. 3. Here, in order to indicate that there exist

two time scales, we use double arrows for fast movement and use a single arrow

for slow movement.

Based on Fig. 3, we expect a flow for a small and positive e as shown in

Fig. 4. In Fig. 4, the behavior of the system consists of the two types of

movement: the fast one, which runs almost parallel to the x axis, and the slow

one on the manifold ðx0ðyÞ; yÞ.
Thus, the singular perturbation generates a hierarchical structure consisting

of fast and slow movements. Clearly, we must now ask under what criterion we

can justify, based on the flow in Fig. 3, that the flow for a small and positive e
would be the one in Fig. 4.

III. NORMALLY HYPERBOLIC INVARIANT MANIFOLDS

(NHIMs)

Normal hyperbolicity enables us to derive the flow for e > 0 from the singular

case with e ¼ 0. This criterion was presented by Fenichel in Refs. 4–6 and was

y

x

Figure 2. A schematic picture of the flow for Eq. (4).
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y

x

Figure 3. A schematic picture of the flow Eq. (1) for e ¼ 0, which is obtained by combining

the flows described by Eqs. (3) and (4).

y

x

Figure 4. A schematic picture of the flow Eq. (1) for a small and positive e which is expected

from Fig. 3.
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described independently by Hirsch et al. in Ref. 8. Readable accounts of their

works can be found in Refs. 26 and 27. See also Refs. 28 and 29 for more detailed

accounts. Here, we provide an intuitive representation of the ideas presented in

these articles and show how they work.

Let M0 denote the manifold that is defined by the graph ðx0ðyÞ; yÞ for e ¼ 0.

Roughly speaking, normal hyperbolicity of the manifold M0 means that the

absolute values of the Lyapunov exponents along the normal directions of M0

are much larger than those along the tangent directions of M0. In other words,

there exists a gap between them.

The normal directions of the manifold M0 would have negative and positive

Lyapunov exponents. By following, backward in time, the directions with the

negative Lyapunov exponents, we construct the stable manifold Ws
0 of M0. By

following, forward in time, the directions with the positive Lyapunov exponents,

we construct the unstable manifold Wu
0 of M0. In Fig. 3 where a schematic

picture of a NHIM M0 is displayed, we only show the stable manifold of M0. In

general, however, a NHIM M0 has both stable and unstable manifolds.

As for the term ‘‘invariant,’’ it means that orbits starting on a NHIM stay on it

at least locally in time for both forward and backward directions. However, due

attention must be paid to the following. In general, a NHIM will have

boundaries where orbits starting on it flow off the manifold. This is because the

flow on it could reach those locations where normal hyperbolicity breaks down.

Later in this chapter we will mention an example of this behavior.

For the case of normal hyperbolicity, the theorem proved by Fenichel and

independently by Hirsch et al. guarantees the following: For a small and positive

e, there exists a NHIM Me with stable and unstable manifolds, Ws
e and Wu

e ,

respectively. The NHIM Me varies smoothly with respect to the parameter e.
Moreover, Ws

e and Wu
e also vary smoothly with respect to the parameter e at

least locally near the NHIM Me.

In the following, we derive an explicit expression for Me using the facts that

Me is invariant and that it depends smoothly on e. Then, we will see that the

singular perturbation with respect to the parameter e becomes regular [7].

First, we derive the condition that Me is invariant under the flow of Eqs. (1).

Let ðx ¼ xeðyÞ; yÞ denote one of the graphs of the manifold Me. Then, its

invariance is expressed as follows.

Let us take a derivative of xeðyðtÞÞ with respect to t and multiply it by e, that
is,

e
dxe

dt
¼ e

dxe

dy
� dy
dt

ð6Þ

In order for the graph xeðyðtÞÞ to be invariant, the time development of x caused

by the time development of y should coincide with that of x under the flow of
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Eqs. (1). This means that the equation obtained by substituting the second of

Eqs. (1) for dy=dt in the right-hand side of Eq. (6) should be the same as the one

obtained by substituting the first of Eqs. (1) for the left-hand side of Eq. (6), that

is,

f ðxeðyÞ; yÞ ¼ e
dxe

dy
� gðxeð yÞ; yÞ ð7Þ

This is the condition that the manifold defined by x ¼ xeðyÞ is invariant under the
flow of Eqs. (1).

Second, because of the smooth dependence of Me on e, the graph xeðyÞ can
be expanded with respect to e as follows:

xeðyÞ ¼ x0ðyÞ þ e xð1Þ0 ðyÞ þ Oðe2Þ ð8Þ

Note that this expansion can be continued to higher orders, as far as the condition

for smoothness guarantees.

Now, let us combine Eqs. (7) and (8). Substitute the expansion Eq. (8) into

the condition for the invariance, Eq. (7), and use the Taylor expansion for f(x, y)
and g(x, y) with respect to x around x0ðyÞ. We then obtain the following:

f x0ðyÞ; yð Þ þ e
qf
qx

x0ðyÞ; yð Þ � xð1Þ0 ðyÞ þ Oðe2Þ

¼ e
dx0

dy
ðyÞ þ OðeÞ

� �
� g x0ðyÞ; yð Þ þ OðeÞð Þ ð9Þ

Here, note that f x0ðyÞ; yð Þ ¼ 0. Then, Eq. (9) can be solved successively with

respect to the order of e. In other words, the perturbation using Eq. (9) is regular.
For example, the equation for the lowest-order correction x

ð1Þ
0 ðyÞ is the

following:

qf
qx

x0ðyÞ; yð Þ � xð1Þ0 ðyÞ ¼ dx0

dy
ðyÞ � g x0ðyÞ; yð Þ ð10Þ

Thus, when the matrix A � qf=qx x0ðyÞ; yð Þ is invertible, xð1Þ0 ðyÞ is obtained using
Eq. (10) as follows:

x
ð1Þ
0 ðyÞ ¼ qf

qx
x0ðyÞ; yð Þ

� ��1

� dx0
dy

ðyÞ � g x0ðyÞ; yð Þ ð11Þ

The higher-order corrections with respect to e can be obtained similarly.
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The condition that the matrix A has an inverse plays a crucial role in the

above derivation. Here, we explain that this condition is satisfied when the

manifold M0 is normally hyperbolic. Let us study the time development of a

small deviation dx from the manifold M0 under the fast time variable t.
Substitute xðtÞ ¼ x0ðyÞ þ dxðtÞ into Eq. (3) and note that the slow variable y is
constant. Then, the linear equation for dx is

ddx
dt

¼ qf
qx

x0ðyÞ; yð Þ � dxðtÞ ð12Þ

Recall that normal hyperbolicity of M0 means that the movement along

directions normal to M0 is hyperbolic even when we use the fast time variable.

In other words, the matrix A has eigenvalues with nonzero real parts. Thus, A has

an inverse.

Based on the above, we see that the eigenvectors of the matrix A give us the

linear approximation to the stable and unstable manifolds ofM0. The coordinate

system which is based on these eigenvectors for M0 changes smoothly to

the coordinate system for the flow near ME. Using this coordinate system, the

flow near ME is expressed in the Fenichel normal form. Moreover, the Fenichel

normal form shows the remarkable property that the flow on the stable and

unstable manifolds of Me is ‘‘foliated’’ [7,26,27], as we now explain.

First, transform the variables to read ðx0; yÞ ¼ ðx� x0ðyÞ; yÞ, and let ðx; yÞ
denote ðx0; yÞ for simplicity. For the normal directions of the manifold M0, the

eigenvectors of the matrix A � qf
qx 0; yð Þ offer the linear approximation to the

stable and unstable manifolds of M0; the coordinates beyond the linear

approximation are obtained by following these eigenvectors in the backward

and forward directions in time, respectively. Let a and b denote the coordinates

thus obtained along the unstable and stable manifolds, respectively. Then, the

stable manifold Ws
0 is given by a ¼ 0, and the unstable manifold Wu

0 is given by

b ¼ 0 and x ¼ ða; bÞ. A schematic picture of these manifolds is shown in Fig. 5.

Using the coordinate system ða; b; yÞ and the fast time variable t, the flow

along the normal directions near the NHIM M0 is given by

da

dt
¼ faða; b; yÞ � a

db

dt
¼ fbða; b; yÞ � b

ð13Þ

where the vectors a and b are factored out of f(a; b; yÞ, leaving the matrices

denoted by fa and fb, respectively. This result comes from the invariance of the

manifolds Ws
0 and Wu

0 defined, respectively, by a ¼ 0 and b ¼ 0.
For a small and positive e, the stable and unstable manifolds Ws

e and Wu
e of

the NHIM Me also exist because of the theorem by Fenichel and Hirsch et al.
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Moreover, they smoothly depend on the parameter e. Then, we can transform

Eqs. (2) locally near Me into the following form:

da

dt
¼ faða; b; yÞ � a

db

dt
¼ fbða; b; yÞ � b

dy

dt
¼ e g0ðyÞ þ g1ða; b; yÞ � abð Þ

ð14Þ

Eqs. (14) are called the Fenichel normal form. Here, ða; bÞ represent the

coordinate system along the normal directions of Me obtained by a smooth

transformation from ða; bÞ of M0. We use the same notation for both of the

coordinate systems ofM0 andMe. In the third equation of Eqs. (14), ab represents
the tensor product between a and b. The kth element of g1ða; b; yÞ � ab stands forP

i; jfg1ða; b; yÞgk;i; jaibj.
A remarkable aspect of the Fenichel normal form is that, in the third equation

of Eqs. (14), the coupling term between the tangent directions and the normal

directions involves only the tensor product ab. This means that for a ¼ 0 (or

b ¼ 0) the time development along the normal directions does not affect the

movement of the base points, which are obtained by projecting points on Ws
e (or

Wu
e ) to Me. See Fig. 6 for a schematic picture of orbits on Ws

e and the movement

of their base points on Me.

a

b

M0

a

b

M0

a

b

(i) (ii)

Figure 5. The stable and unstable manifolds of M0.
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In Fig. 6, the dynamics on the three-dimensional stable manifold is shown

near the two-dimensional NHIM. Here, b denotes the coordinate along the

normal direction, and ðy; y0Þ denotes the coordinates on the NHIM.

In Fig. 6, the dynamics on Ws
e can be decomposed into the movement along

the normal directions and the flow on the manifold Me. Note that the time

development of b does not affect the movement of the base points. Suppose two

points P1 and P10 on Ws
e with the same base point y1. Then, the orbit from P1

through P2 reaching P3 and the one from P10 through P20 reaching P30 are
projected to the same movement of the base points on Me from y1 through y2

reaching y3. In other words, the three-dimensional invariant manifold Ws
e

consists of two-dimensional invariant manifolds that correspond to the

movements of the base points. Then, in mathematics, we say that the three-

dimensional stable manifold is ‘‘foliated’’ by two-dimensional leaves. This

structure is called ‘‘foliation’’ [28,30].

Thus, the Fenichel normal form provides us with foliation of the stable and

unstable manifolds of the NHIMMe. Moreover, their foliation smoothly depends on

the parameter e from e ¼ 0 to a small and positive e locally near the NHIM.

Points that are on neither Ws
e norW

u
e behave as follows near the manifoldMe.

First, they move almost parallel to the flow on the stable manifold Ws
e . After

coming close to Me, they move following the slow movement on Me. Finally,

they leave Me almost parallel to the flow on the unstable manifold Wu
e . We show

these features in Fig. 7.

b

y’

y1
y2 y3

P1

P2
P3

y

P1

P2
P3

’
’

’

Figure 6. Foliation of the stable manifold by the Fenichel normal form.
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IV. LIE PERTURBATION

Until now, we have discussed NHIMs in general dynamical systems. In this

section, we limit our argument to Hamiltonian systems and show how singular

perturbation theory works. In particular, we discuss NHIMs in the context of

reaction dynamics. First, we explain how NHIMs appear in conventional reaction

theory. Then, we will show that Lie perturbation theory applied to the

Hamiltonian near a saddle with index 1 actually transforms the equation of

motion near the saddle to the Fenichel normal form. This normal form can be

considered as an extension of the Birkhoff normal form from stable fixed points

to saddles with index 1 [2]. Finally, we discuss the transformation near saddles

with index larger than 1.

Let q ¼ ðq1; q2; . . . ; qNÞ and p ¼ ðp1; p2; . . . ; pNÞ denote the positions and

the momenta for a system of N degrees of freedom, respectively, where qm and

pmðm ¼ 1; 2; . . . ;NÞ are canonically conjugate. For a saddle with index 1, let q1
denote the coordinate along the eigenvector with the negative eigenvalue of the

Hessian matrix of the potential.

In the conventional theory, a saddle with index 1 corresponds to a transition

state. Near a saddle, the NHIMM0 exists above it in the phase space. The NHIM

M0 consists of those orbits with q1 ¼ 0 and p1 ¼ 0—that is, the vibrational

motions involving ðqn; pnÞ for n ¼ 2; . . . ;N above the saddle. Thus, its

M

b

b

a

a

ε

Figure 7. A schematic picture of the flow near Me.
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dimension is 2N � 2 in the phase space. See Fig. 8 for a schematic picture

showing the saddle X with index 1 and the NHIMM0 above it. Here, the direction

perpendicular to the q1 axis schematically indicates vibrational degrees of

freedom. Similarly for a saddle with index L, a NHIM with dimension 2N � 2L

exists above it in the phase space.

In the following, suppose that q ¼ 0 is a saddle of the potential. Then, using a

Taylor expansion around q ¼ 0, the Hamiltonian can be written in the form

Hðp; qÞ ¼
X1
j¼2

Hjðp; qÞ ð15Þ

where Hj consists of the terms of jth degree with respect to qm and

pmðm ¼ 1; 2; . . . ;NÞ. The lowest-order term, H2, is given by

H2ðp; qÞ ¼ 1
2
o1ðp21 � q21Þ þ 1

2

PN
n¼2

onðp2n þ q2nÞ ð16Þ

Since ðq1; p1Þ is the degree of freedom corresponding to the negative eigenvalue

of the Hessian matrix of the potential, the sign of its lowest potential term is

minus—that is, the inverse harmonic potential. For other degrees of freedom, the

lowest-order terms of their potentials describe harmonic oscillators. Therefore,

they are vibrational degrees of freedom. In Eq. (16), we normalize the

coefficients of the Hamiltonian so that they are written as om ðm ¼ 1; 2; . . . ;NÞ.

E

X

qk

q1

V(q1 )

M0

Figure 8. A saddle of the potential and the NHIM above it.
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Now, we apply Lie perturbation theory to the Hamiltonian (15) to derive the

Fenichel normal form. In the Lie transformation, we use the variables ðz;�zzÞ for
convenience. For the vibrational degrees of freedom, ðzn;�zznÞ are the following

complex conjugate variables:

zn ¼ pn þ iqn; �zzn ¼ pn � iqn ðn ¼ 2; . . . ;NÞ ð17Þ

and, for the reaction coordinate, the following pair of real variables,

z1 ¼ p1 þ q1; �zz1 ¼ p1 � q1 ð18Þ

Then, the Poisson bracket is expressed in ðz;�zzÞ as follows:

½ f ; g� ¼ 2
qf
qz1

qg
q�zz1

� qf
q�zz1

qg
qz1

� �
þ 2i

XN
n¼2

qf
qzn

qg
q�zzn

� qf
q�zzn

qg
qzn

� �
ð19Þ

Suppose that ðq; pÞ is transformed into ðq0; p0Þ, and the transformed

Hamiltonian is Kðq0; p0Þ. For ðq; pÞ we define ðz;�zzÞ, and for ðq0; p0Þ we use

ðz0, �zz0Þ, by Eqs. (17) and (18), respectively. Let eF denote the Lie transformation,

which transforms ðz0, �zz0Þ to ðz;�zzÞ:

z ¼ eFz0

�zz ¼ eF�zz0
ð20Þ

Then, the transformed Hamiltonian Kðz0;�zz0Þ is given by

Kðz0;�zz0Þ ¼ Hðzðz0;�zz0Þ;�zzðz0;�zz0ÞÞ
¼ HðeFz0; eF�zz0Þ
¼ eFHðz0;�zz0Þ ð21Þ

Here, we use the same notation for Hamiltonians in the variables ðz;�zzÞ as those in
ðq; pÞ. There will not be any confusion with this notation, since only the

expressions using ðz;�zzÞ will appear from now on.

In the last line of Eq. (21), only the variables ðz0;�zz0Þ appear. From now on, we

will use ðz;�zzÞ instead of ðz0;�zz0Þ for convenience.
We will use the Lie transformation where F in Eq. (20) is given by a

polynomial fk, which consists of kth-order terms as follows:

Fkg � ½g; fk� ð22Þ
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Using Fk for k which is greater than or equal to 3, we define a series of Lie

transformations as follows:

Kð2Þ ¼ H

KðkÞ ¼ eFkKðk�1Þ ðk � 3Þ
ð23Þ

When we use KðkÞ ¼ P1
j¼2 K

ðkÞ
j , where K

ðkÞ
j is a polynomial that consists of

jth-order terms, we have the following expressions:

K
ðkÞ
j ¼ K

ðk�1Þ
j ðk � 1 � j � 2Þ

K
ðkÞ
k ¼ K

ðk�1Þ
k þ FkK

ðk�1Þ
2 ¼ K

ðk�1Þ
k þ FkH2

ð24Þ

Note that in the variables ðz;�zzÞ the second-order terms are of the following form:

H2 ¼ 1
2

PN
m¼1

om�zzmzm ð25Þ

Therefore, the Lie transformation of the second-order terms is given by

FkH2 ¼ 1
2

PN
m¼1

½om�zzmzm; fk� ¼ o1
qfk
q�zz1

�zz1 � qfk
qz1

z1

� �
þ PN

n¼2

ion
qfk
q�zzn

�zzn � qfk
qzn

zn

� �
ð26Þ

Let us calculate FkH2 for polynomials fk that consist of kth-order terms. In

general, polynomials fkðk � 3Þ are given by

fk ¼
X

a1;...;aN
b1;...;bNP
amþ

P
bm¼k

Aa;bz
a1
1 � � � zaNN �zz

b1
1 � � ��zzbN :N ð27Þ

Here, Aa;b denote constant coefficients, and the sum runs over all the possible

a ¼ ða1; a2; . . . ; aNÞ and b ¼ ðb1; b2; . . . ; bNÞ, where am and bm ðm ¼ 1; 2; . . . ;
NÞ are nonnegative integers and they sum to k. Then, the Lie transformation

FkH2 defined by a polynomial fk is expressed as follows:

FkH2 ¼
X
a;b

Aa;b o1ðb1 � a1Þ þ
XN
n¼2

ionðbn � anÞ
( )

za11 � � � zaNN �zz
b1
1 � � ��zzbNN ð28Þ

The sum
P

a;b in Eq. (28) runs the same way as that in Eq. (27).
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From Eq. (28), we know that all the terms in K
ðk�1Þ
k except for those with

a1 ¼ b1 can be eliminated by the Lie transformation—that is, by suitably

choosing the coefficients Aa;b in the second equation of Eq. (24). This means

that the degree of freedom ðz1;�zz1Þ, which corresponds to the reaction

coordinate, only appears as a product of z1�zz1 in the transformed Hamiltonian

Kðz;�zzÞ as follows:

Kðz;�zzÞ ¼ z1�zz1vðz1�zz1; z2;�zz2; . . . ; zN ;�zzNÞ þ uðz2;�zz2; . . . ; zN ;�zzNÞ ð29Þ

Then, the equations of motion for z1 and �zz1 consist solely of those terms that are

at least of first order in z1 and �zz1, respectively. For vibrational degrees of freedom,

the coupling terms with ðz1;�zz1Þ, involve only products of z1�zz1 as follows:

dz1

dt
¼ z1v1ðz1�zz1; z2;�zz2; . . . ; zN ;�zzNÞ

d�zz1
dt

¼ �zz1�vv1ðz1�zz1; z2;�zz2; . . . ; zN ;�zzNÞ
dzn

dt
¼ unðz2;�zz2; . . . ; zN ;�zzNÞ þ z1�zz1vnðz1�zz1; z2;�zz2; . . . ; zN ;�zzNÞ

d�zzn
dt

¼ �uunðz2;�zz2; . . . ; zN ;�zzNÞ þ z1�zz1�vvnðz1�zz1; z2;�zz2; . . . ; zN ;�zzNÞ ðn ¼ 2; . . . ;NÞ
ð30Þ

Here, the functions um and vm for m ¼ 1; . . . ;N are derived from u and v using

Hamilton’s equations of motion, and �uum and �vvm are the complex conjugates of um
and vm, respectively. This set of equations Eq. (30) is the Fenichel normal form.

Note that, for those terms with a1 ¼ b1, the problem of eliminating higher-

order terms is the same as that in the Birkhoff normal form for stable fixed

points. Then, it is possible to eliminate higher-order terms as long as the set of

frequencies on ðn ¼ 2; . . . ;NÞ satisfies the nonresonance condition

XN
n¼2

onðan � bnÞ 6¼ 0 ð31Þ

for any sets of nonnegative integers an; bn ðn ¼ 2; . . . ;NÞ. In other words, as long
as frequencies on ðn ¼ 2; . . . ;NÞ are nonresonant, we can eliminate all of the

terms in K
ðk�1Þ
k except for those with an ¼ bn ð8n ¼ 2; . . . ;NÞ.

Thus, all the terms that cannot be eliminated by the Lie transformation are

products of the form jz2j2; . . . ; jzN j2. By noting the relation

jznj2 ¼ p2n þ q2n ¼ 2In ð32Þ
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where In denotes the action of the harmonic oscillator, we see that these terms are

represented by the action variables of the harmonic oscillators. Therefore, if the

limit converges, after multiplying the Lie transformations with successively

larger k—that is, if the expression

eFkeFk�1 � � � eF3 ð33Þ

converges as k ! 1—the transformed Hamiltonian is written solely with the

action variables of the vibrational motions and the reaction coordinate.

The above situation is the same as for the celebrated theorem of

Kolmogorov–Arnold–Moser (KAM)—that is, the problem of small denomi-

nators. The convergence can be proved for sufficiently nonresonant combina-

tions of the vibrational frequencies [31]. In other words, when tori of the

vibrational motions on the NHIM M0 are sufficiently nonresonant, they survive

under small perturbations.

Thus, the Lie transformation brings the Hamiltonian locally near a saddle

with index 1 into the Fenichel normal form. In addition, we find that, on the

NHIM, tori with sufficiently nonresonant frequencies survive.

For saddles with index L with L > 1, note the following point when we use

the Lie transformation. For these saddles, one may wonder whether

‘‘resonance’’ can occur among the normal directions in the following sense.

If a set of nonnegative integers nl0 ðl0 ¼ 1; . . . ; LÞ exists where all of its elements

are not zero, such that
PL

l0¼1 ol0nl0 ¼ 0 holds, then ‘‘resonance’’ occurs among

the normal directions of the NHIM of the saddle. Here, l0 ¼ 1; . . . ; L stand for

the degrees of freedom corresponding to the negative eigenvalues of the Hessian

matrix of the potential at the saddle. However, ‘‘resonance’’ does not matter in

transforming to the Fenichel normal form as we explain now.

For saddles with index L with L > 1, the Hamiltonian has L degrees of

freedom

zl ¼ pl þ ql; �zzl ¼ pl � ql ðl ¼ 1; . . . ; LÞ ð34Þ

which correspond to the negative eigenvalues of the Hessian matrix, and N � L

degrees of freedom

zn ¼ pn þ iqn; �zzn ¼ pn � iqn ðn ¼ Lþ 1; . . . ;NÞ ð35Þ

which correspond to the positive eigenvalues of the Hessian matrix. Here,

ðz1 ¼ 0; . . . ; zL ¼ 0Þ gives the linear approximation of the stable manifold and

ð�zz1 ¼ 0; . . . ;�zzL ¼ 0Þ gives that of the unstable manifold.

For saddles where ‘‘resonance’’ does not take place, we can use the Lie

transformation in a similar way to saddles with index 1. Then, only those terms
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with al0 ¼ bl0 ð8l0 ¼ 1; . . . ; LÞ remain in the transformed Hamiltonian—that is,

those terms where zl0 ;�zzl0 appear as products zl0�zzl0 ðl0 ¼ 1; . . . ; LÞ. On the other

hand, for saddles where ‘‘resonance’’ occurs, those terms with al0 6¼ bl0 ð9l0 ¼
1; . . . ; LÞ also remain in the transformed Hamiltonian. However, these terms

always involve coordinates of both the stable and unstable manifolds. In other

words, they have both zl0 and �zzl00 for some l0; l00 ðl0; l00 ¼ 1; . . . ; LÞ, because, in
order to satisfy the condition

PL
l0¼1 onðan � bnÞ ¼ 0, al0 and bl00 must be

nonzero for some l0; l00 ðl0; l00 ¼ 1; . . . ; LÞ. Thus, even when ‘‘resonance’’ takes

place, the transformed Hamiltonian takes the Fenichel normal form.

V. MELNIKOV INTEGRAL

Until now we have discussed local aspects of the dynamics near NHIMs with

saddles with index 1. In the second stage of our strategy, we are interested in how

the dynamics near these NHIMs are connected with each other. The information

on this feature of the dynamics is offered by the intersections between the stable

and unstable manifolds of NHIMs.

In this section, we will introduce the Melnikov integral, which estimates the

gaps between stable and unstable manifolds. Thus, if the Melnikov integral

attains the value zero, this signals the existence of intersections between stable

and unstable manifolds. If the intersection is transversal, it implies the existence

of horseshoe dynamics [32], that is, chaotic behavior. On the other hand, if

the intersection is tangent [11], it implies that the system is at a transition

between different kinds of dynamics [12]. Such transitions of chaotic behavior

are called crisis [13]. The tangency will be further analyzed in Section VII.

The Melnikov integral also offers a method to estimate the reaction rates for

systems with two degrees of freedom. This idea comes from the work of Davis

and Gray [9]. However, their idea breaks down for systems with more than two

degrees of freedom because of tangency [11,14]. This breakdown requires a new

conceptual structure to describe the reaction dynamics from the viewpoint of

multiple-dimensional chaos. What we propose for this new concept is the

skeleton of reaction paths, where the connections among NHIMs are the focus

of our study.

In this section we derive the Melnikov integral, following Ref. 24 with some

corrections.

We consider a model Hamiltonian that consists of a one-degree-of-freedom

reaction coordinate coupled with n degrees of freedom that are vibrational

modes. Thus, the total number, N, of the degrees of freedom is nþ 1. The

reaction coordinate is a degree of freedom that has an unstable fixed point.

The position of the fixed point corresponds to a saddle with index 1 of the whole

system—that is, a transition state in the conventional sense. The n-degrees-of-

freedom vibrational modes are, in general, nonlinear. Moreover, when the
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coupling between the vibrational modes and the reaction coordinate vanishes,

they are integrable.

The reaction processes result from interactions between the reaction

coordinate and the vibrational modes. The Melnikov integral estimates the

gap caused by these interactions. The integral also gives the reaction rate—that

is, the magnitude of the flow over the saddle when there exists no tangency.

Let x ¼ ðq; pÞ denote the one-degree-of-freedom reaction coordinate. For

n-degrees-of-freedom vibrational modes, I 2 Rn and h 2 Tn denote their action

and angle variables, respectively, where T ¼ ½0; 2p�. These action and angle

variables would be obtained by the Lie transformation, as we have discussed in

Section IV. In reaction dynamics, the variables ðI; hÞ describe the degrees of

freedom of the intramolecular and possibly the intermolecular vibrational

modes that couple with the reaction coordinate. In the conventional reaction rate

theory, these vibrational modes are supposed to play the role of a heat bath for

the reaction coordinate x.
Now, we introduce the model Hamiltonian. Let the Hamiltonian H consist

of two parts H0 and H1,

Hðx; I; hÞ ¼ H0ðx; IÞ þ eH1ðx; I; hÞ ð36Þ

Here, H0 is an unperturbed part of the total Hamiltonian H and is supposed to

describe the reaction coordinate and the vibrational modes when they are

decoupled. H1 consists of interactions between the reaction coordinate and the

vibrational modes, and is considered as a perturbation to H0. The constant e is

supposed to be small, that is, 0 < e � 1.

Furthermore, we suppose that H0 is of the following form,

H0ðx; IÞ ¼ Hr
0ðx; IÞ þ Hb

0ðIÞ ð37Þ

This means that the unperturbed motion of x may depend on the action variables

of the vibrational modes. Thus, we do not need a separable Hamiltonian as the

unperturbed part. The second term Hb
0 describes vibrational motions, which are

integrable and, in general, nonlinear.

As for the dynamics of x under the unperturbed Hamiltonian Hr
0ðx; IÞ, we

assume that the reaction coordinate x has a saddle XðIÞ ¼ ðQðIÞ;PðIÞÞ. Its
location, in general, depends on the action variables I. Suppose that the saddle

XðIÞ has a separatrix orbit x0ðt; IÞ connecting it with itself. See Fig. 9 for a

schematic picture of the phase space x ¼ ðq; pÞ under the unperturbed

Hamiltonian Hr
0ðx; IÞ. Here, we show the saddle X and the separatrix orbit on

the two-dimensional phase space x ¼ ðq; pÞ.
Nonseparable Hamiltonians will be necessary to describe reactions where the

potential function and the saddle vary as the vibrational motions are excited. See
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Fig. 10 for an example where the potential explicitly depends on I as Vðq1; IÞ.
Reaction processes involving enzymes can correspond to such cases. These

reactions take place within a specific range of temperature. This temperature

dependence results from the dependence of the saddle on I, where the height of
the saddle decreases for a specific range of the action values of the vibrational

modes. Then, the reaction proceeds at those temperatures where the action

variables are excited specifically to these values.

X

x 0 (t)

Figure 9. The fixed point and the separatrix of Hr
0.

E

q1

I

V(q1,I)

X(I)

Figure 10. Potential function that depends on I.
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Here, we limit our argument to a system with a homoclinic connection—that

is, a separatrix connecting a saddle with itself. The following argument can be

straightforwardly extended to a system with a heteroclinic connection—that is,

a separatrix connecting different saddles.

In the ð2nþ 2Þ-dimensional phase space ðx; I; hÞ, the saddle XðIÞ
corresponds to an n-dimensional torus T0ðIÞ ¼ ðXðIÞ; I; hÞjh 2 Tf g. It is a

hyperbolic torus with an ðnþ 1Þ-dimensional separatrix S0ðIÞ ¼ x0ðt; IÞ; I; hð Þjf
h 2 T; t 2 Rg. The set of these tori constitutes an 2n-dimensional NHIM

M0 ¼ ðXðIÞ; I; hÞjI 2 If ; h 2 T
� �

with W0 ¼ x0ðt; IÞ; I; hð ÞjI 2 If ; h
� 2 T; t 2

Rg as its ð2nþ 1Þ-dimensional separatrix. Here, If denotes the region in the

action space where the saddles XðIÞ exist. See Fig. 11 for a schematic picture of

these manifolds in the space ðx; IÞ. Since the locations of the tori T0ðIÞ and the

separatrices S0ðIÞ depend on the action variables, we show in this figure, their

dependence using the axis of action as the third direction. Note that the

dimension of the action variables can be greater than one.

Since the manifold M0 is a NHIM, it changes continuously, under a small

perturbation, into a new NHIM Me. Moreover, the separatrix W0 changes,

continuously and locally near Me, into the stable manifold Ws
e and the unstable

one Wu
e of the NHIM Me. Note, however, that, in general, Ws

e and Wu
e no longer

coincide with each other to form a single manifold globally. Then, the Lie

transformation method brings the total Hamiltonian Hðx:I; hÞ into the Fenichel

normal form locally near the manifold Me.

The Fenichel normal form offers a complete description of the dynamics at

least locally near the NHIM. However, it does not give a full understanding of

q

p

I

W0

M0

Figure 11. Invariant manifolds under the time development by H0.
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the global aspects of the system. For example, estimation of the gap between the

stable and unstable manifolds lies outside the scope of the Fenichel normal

form. This is the place where the Melnikov integral plays a role.

Now, we derive the Melnikov integral. The derivation of the Melnikov

integral is perturbative. We will expand the orbit ðxðtÞ, IðtÞ, hðtÞÞ under the total
Hamiltonian H in powers of the small parameter e.

Under the Hamiltonian H0, the equation of motion for x is written as

_xx ¼ JDxH0ðx; IÞ ð38Þ

where the matrix J is given by

J ¼ 0 1

�1 0

� �
ð39Þ

and Dx means the partial derivative with respect to x ¼ ðq; pÞ, that is,

Dx ¼ ðq=qq; q=qpÞ. In the following, DI and Dh are defined similarly.

Then, the time development under the total Hamiltonian H is given by

_xx ¼ JDxH0ðx; IÞ þ eJDxH1ðx; I; hÞ
_II ¼ �eDhH1ðx; I; hÞ
_hh ¼ DIH0ðx; IÞ þ eDIH1ðx; I; hÞ

ð40Þ

For simplicity, we assume in the following that, for points onM0—that is, for

ðx ¼ XðIÞ; I; hðtÞÞ—the following hold:

_xx ¼ 0

_II ¼ 0
ð41Þ

These assumptions imply that the perturbation does not change the location

of the manifold M0 and the dynamics on it. More specifically, they mean

that all of the tori S0ðIÞ on M0 survive under the perturbation caused by the

coupling between x and ðI; hÞ.
These assumptions simplify the derivation of the Melnikov integral.

Otherwise, the NHIM Me would shift from M0, and some tori on Me would

be destroyed due to perturbations, as discussed in Section IV. Then, a discussion

which is similar to the KAM theorem says that nonresonant tori remain on the

NHIM Me [31]. Using the stable and unstable manifolds of these tori, the

derivation of the Melnikov integral follows [24].

Under the perturbation, the separatrix orbit ðx0ðt; I0Þ; I0; h0ðtÞÞ will split into
the following two orbits: ðxsðtÞ; IsðtÞ; hsðtÞÞ on the stable manifold Ws

e , and
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ðxuðtÞ; IuðtÞ; huðtÞÞ on the unstable manifold Wu
e . The Melnikov integral

estimates the gap in the plane (q; p) between these two orbits up to the first

order in e. See Fig. 12 for a schematic picture of the gap.

Let us first expand, using e, the deviations of ðxs; Is; hsÞ and ðxu; Iu; huÞ from
ðx0; I0; h0Þ, respectively,

x ¼ x0 þ e x1
I ¼ I0 þ e I1
h ¼ h0 þ e h1

ð42Þ

In Eq. (42), xmeans either xu or xs. For I and h, similar notations are used. In the

following, we will use these simplified expressions unless we state otherwise.

One may wonder if this expansion is possible for chaotic orbits, since the

distance between the original orbit and the one under the perturbation increases

exponentially in time for chaotic evolution. We will present an intuitive answer

to this question. For example, the distance between x0ðtÞ and xuðtÞ increases

exponentially for t ! 1. Then, the perturbative analysis will break down for

this time interval. On the other hand, their distance shrinks exponentially for

t ! �1, since they go to the same saddle. Similar reasoning would also hold

for the stable orbit xsðtÞ. Thus, for some time t0, the perturbative analysis will be

applicable to xu for t 2 ½�1; t0� and to xs for t 2 ½t0;1�, respectively.
In the above reasoning, we have utilized the assumptions given in Eq. (41),

when we state that x0ðtÞ and xuðtÞ (or x0ðtÞ and xsðtÞ) go to the same fixed point.

For general perturbations, the shift of Me has to be taken into account with that

of tori on it. Moreover, only those orbits xuðtÞ (or xsðtÞ) that approach the

surviving tori on Me can be dealt with. Otherwise, slow movements caused by

the perturbation on the NHIM Me would tear apart the orbit under the

perturbation and the one x0ðtÞ without it.

X

xs (t)

xu (t)

d

Figure 12. The gap between xs and xu.

chemical reactions in multidimensional phase space 363



Expanding the orbits on the stable and unstable manifolds up to the first order in e,
respectively, we obtain the equations of motion for their first-order corrections,

_xx1 ¼ x1;Dxh iJDxH0ðx0; I0Þ þ I1;DIh iJDxH0ðx0; I0Þ
þ JDxH1ðx0; I0; h0Þ

_II1 ¼ �DhH1ðx0; I0; h0Þ
ð43Þ

where x1;Dxh i denotes the operator defined by the inner product between x1 and
Dx ¼ ðq=qq; q=qpÞ, and I1;DIh i denotes the operator defined by the inner

product between I1 and DI, respectively. In the following, <; > will denote the

inner product. We do not use the equation for h1 in the following, so we omit it.

To estimate the gap between ðxu; IuÞ and ðxs; IsÞ on the ð2N � 1Þ-
dimensional equi-energy surface in 2N-dimensional phase space, we need

N � 1 independent quantities [24]. We measure the gap using the energy of the

unperturbed Hamiltonian Hr
0ðx; IÞ, and the actions Il ðl ¼ 1; . . . ; n� 1Þ. In the

following, we derive the expression for the difference dðtÞ in terms of Hr
0ðx; IÞ.

For other quantities involving Il ðl ¼ 1; . . . ; n� 1Þ, expressions can be derived

using their equations of motion.

Now, we derive the difference dðtÞ in terms of Hr
0ðx; IÞ—that is, the values of

the unperturbed Hamiltonian for the reaction coordinate,

dðtÞ ¼ Hr
0ðxuðtÞ; IuðtÞÞ � Hr

0ðxsðtÞ; IsðtÞÞ
¼ e ðx1uðtÞ � x1sðtÞh Þ;Dxf iHr

0ðx0; I0Þ
þ ðI1uðtÞ � I1sðtÞh Þ;DIiHr

0ðx0; I0Þg
þ second and higher-order terms in e ð44Þ

Let d1ðtÞ denote the first-order term of the gap dðtÞ in Eq. (44) involving

ðxuðtÞ; IuðtÞÞ and ðxsðtÞ; IsðtÞÞ, respectively,
d1ðtÞ ¼ x1ðtÞ;DxH

r
0ðx0ðtÞ; I0ðtÞÞ

� �þ I1ðtÞ;DIH
r
0ðx0ðtÞ; I0ðtÞÞ

� � ð45Þ
Differentiating Eq. (45) with respect to t, and substituting Eq. (43) to _xx1 and _II1,
we find the equation of motion for d1ðtÞ to be

_dd1 ¼ x1;
d

dt
DxH

r
0ðx0; I0Þ

	 

þ _xx1;DxH

r
0ðx0; I0Þ

� �
þ I1;

d

dt
DIH

r
0ðx0; I0Þ

	 

þ _II1;DIH

r
0ðx0; I0Þ

� �
¼ x1; JDxH

r
0;Dx

� �
DxH

r
0

� �þ x1;Dxh iJDxH
r
0;DxH

r
0

� �
þ I1;DIh iJDxH

r
0;DxH

r
0

� �þ JDxH1;DxH
r
0

� �
þ I1; JDxH

r
0;Dx

� �
DIH

r
0

� �þ �DhH1;DIH
r
0

� � ð46Þ

where all of the variables in the second equation are ðx0ðt; I0Þ; I0; h0ðtÞÞ.
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In Eq. (46), we note that the first termþ the second term¼ 0 and the third

termþ the fifth term¼ 0, that is,

x1; JDxH
r
0;Dx

� �
DxH

r
0

� �þ x1;Dxh iJDxH
r
0;DxH

r
0

� � ¼ 0 ð47Þ

and

I1;DIh iJDxH
r
0;DxH

r
0

� �þ I1; JDxH
r
0;Dx

� �
DIH

r
0

� � ¼ 0 ð48Þ

for an arbitrary x1 and I1, respectively. They can be derived when we

differentiate the Poisson bracket ½Hr
0;H

r
0� ¼ DxH

r
0; JDxH

r
0

� � ¼ 0 with respect

to x and I, respectively, leading to the equations

DxiDxH
r
0; JDxH

r
0

� �þ DxH
r
0;DxiJDxH

r
0

� � ¼ 0 ði ¼ 1; 2Þ ð49Þ

and

DIlDxH
r
0; JDxH

r
0

� �þ DxH
r
0;DIlJDxH

r
0

� � ¼ 0 ðl ¼ 1; . . . ; nÞ ð50Þ

where x1 ¼ q and x2 ¼ p in Eq. (49).

Thus, we finally obtain a differential equation for d1ðtÞ,

_dd1 ¼ DxH
r
0; JDxH1

� �� DIH
r
0;DhH1

� �
¼ ½Hr

0;H1�ðx0ðt; I0Þ; I0; h0ðtÞÞ ð51Þ

where the Poisson bracket ½Hr
0;H1� is defined in terms of ðx; I; hÞ. The inner

product ;h i in the first term is defined in the space x ¼ ðq; pÞ, and the one in the

second term is in ðI; hÞ ¼ ðI1; . . . ; In; y1; . . . ; ynÞ.
One of the remarkable aspects of Eq. (51) is that its right-hand side is given

only using the unperturbed orbit ðx0ðt; I0Þ; I0; h0ðtÞÞ. Thus, in obtaining the

quantity d1ðtÞ, we do not need any information on perturbed orbits. This is one of

the merits of using the Melnikov integral to estimate the gap between the stable

and unstable manifolds.

In the following, d1s denotes the first-order term d1ðtÞ for the stable manifold

and denotes d1u for the unstable manifold. In order to obtain d1s and d1u, we

integrate Eq. (51). As already explained, for a time t0 the perturbation analysis

is applicable to xu for t 2 ½tu; t0� and applicable to xs for t 2 ½t0; ts� as tu ! �1
and ts ! 1. Therefore, we integrate Eq. (51) from �1 to t0 to obtain d1u, and

from t0 to 1 to obtain d1s, respectively. Strictly speaking, in order to achieve

convergence of the integral, the limiting processes tu ! �1 and ts ! 1 have

to be such that the orbits approach the same points on the whiskered tori,

respectively.
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Then, we are led to the equations

d1uðt0Þ ¼
ðt0
�1

½Hr
0;H1�ðx0ðt; I0Þ; I0; h0ðtÞÞ dt ð52Þ

and

d1sðt0Þ ¼
ðt0
1
½Hr

0;H1�ðx0ðt; I0Þ; I0; h0ðtÞÞ dt ð53Þ

respectively.

Thus, the gap between ðxuðtÞ; IuðtÞÞ and ðxsðtÞ; IsðtÞÞ at t ¼ t0 in terms of the

difference of the unperturbed energy Hr
0 is given by

d1ðt0Þ ¼ d1uðt0Þ � d1sðt0Þ
¼

ð1
�1

½Hr
0;H1�ðx0ðt; I0Þ; I0; h0ðtÞÞ dt ð54Þ

The integral in Eq. (54) is called the Melnikov integral. Note that the final

expression given in Eq. (54) does not explicitly involve any dependence on the

time t0.

It is instructive to examine the intuitive meaning of the Melnikov integral in

Eq. (54). The integrand ½Hr
0;H1� of the Melnikov integral gives the time

development of the unperturbed Hamiltonian Hr
0 under the influence of the total

Hamiltonian H ¼ Hr
0 þ Hb

0 þ eH1 because ½Hr
0;H

r
0 þ Hb

0 � ¼ 0. By integrating

the integrand, we obtain the net change of the value of Hr
0 under the

perturbation.

In order to estimate the gap on the equi-energy surface, we also need the

quantities involving Il ðl ¼ 1; . . . ; n� 1Þ. Thus, we construct the Melnikov

vector for the gap. In Section VI, we will use the Melnikov vector to study

intersections between the stable and unstable manifolds of whiskered tori with

different action values.

In the following, we consider two examples where the Melnikov integral

is explicitly calculable. The first example serves as a standard case for

the calculation of the integral. The results will be used in the later sections

where we study the Arnold model and tangency. The second one serves as a

prototype for molecular systems under time-dependent electric fields.

Example 1. The total Hamiltonian is given by

Hðq; p; I; yÞ ¼ p2

2
� cos qþ oI � e cos yðcos qþ 1Þ ð55Þ
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The unperturbed Hamiltonian H0 of the system

H0ðq; p; IÞ ¼ p2

2
� cos qþ oI ð56Þ

consists of the two parts Hr
0 and Hb

0 as follows:

Hr
0ðq; p; IÞ ¼

p2

2
� cos q ð57Þ

Hb
0ðIÞ ¼ oI ð58Þ

The perturbation H1 is as follows:

H1ðq; p; I; yÞ ¼ � cos yðcos qþ 1Þ ð59Þ

The equation of motion under the total Hamiltonian is then

_qq ¼ qH
qp

¼ p

_pp ¼ � qH
qq

¼ �ð1þ e cos yÞ sin q

_II ¼ � qH
qy

¼ �e sin yðcos qþ 1Þ

_yy ¼ qH
qI

¼ o

ð60Þ

In the interval q 2 ½�p; p�, hyperbolic fixed points of the unperturbed

Hamiltonian H0 are given by

p ¼ 0; q ¼ �p ð61Þ
There exist two kinds of separatrix orbits connecting ðq ¼ �p; p ¼ 0Þ and

ðq ¼ p; p ¼ 0Þ:

q�ðt � tÞ ¼ �2 sin�1ðtanhðt � tÞÞ
p�ðt � tÞ ¼ � 2

coshðt � tÞ
ð62Þ

where t is a constant showing dependence on initial conditions. The orbits with a
plus sign lie on the plane ðq; pÞwith p > 0, and the ones with a minus sign lie on

the plane ðq; pÞ with p < 0. A schematic picture of these orbits is shown in

Fig. 13.
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In this system, the unstable fixed points ðq ¼ �p; p ¼ 0Þ of the unperturbed

Hamiltonian survive the perturbation. Moreover, _II ¼ 0 holds for ðq ¼ �p; p ¼
0; I; yðtÞÞ. Thus, the assumptions given by Eq. (41) hold. Therefore, the

derivation of the Melnikov integral is applicable to this Hamiltonian.

Substituting the separatrix orbits ðqþðt � tÞ; pþðt � tÞ; I; yðtÞ ¼ ot þ aÞ
with a constant a into the integrand of the Melnikov integral,

½Hr
0;H1� ¼ qHr

0

qq
qH1

qp
� qHr

0

qp
qH1

qq
þ qHr

0

qy
qH1

qI
� qHr

0

qI
qH1

qy

¼ �p cos y sin q ð63Þ

and estimating the integral, we obtain

dðt; aÞ ¼ e
2po2

sinh p
2
o
sinðotþ aÞ ð64Þ

See Appendix A for details of the calculation.

Equation (64) shows that the distance dðt; aÞ exhibits an oscillatory

dependence as a function of t. In other words, dðt; aÞ changes between plus

and minus values as initial conditions shift on the separatrix. This means that the

stable and unstable manifolds have transverse intersections. See Fig. 14 showing

how the oscillatory change of the integral implies the occurrence of transverse

intersections. The existence of transverse intersections between stable and

unstable manifolds leads to horseshoe dynamics—that is, chaos. Thus, the

Melnikov integral given by Eq. (64) indicates that this system exhibits chaotic

behavior.

Figure 13. The flow of the pendulum in phase space.
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Following the idea of Davis and Gray, the reaction rate is related to the area

of those regions that are surrounded by pieces of the stable and unstable

manifolds. In Fig. 15, the shaded region indicates one of them. The reaction rate

is proportional to the net area of those regions that pass the saddle per unit time.

On the other hand, the net area of these regions is given by the amplitude

dðoÞ of the Melnikov integral as we show in the following.

The area of the region shadowed in Fig. 15 is given approximately by

the amplitude of dðt; aÞ � o�1 ð65Þ

because the area is the product of the gap between the stable and unstable

manifolds and the distance between successive intersections. While the gap is

measured by energy and is equal to dðoÞ—that is, the amplitude of the Melnikov

integral—the distance between successive intersections is measured by time and

is roughly equal to o�1. Then, the product of the two quantities has the unit of

area in phase space and equals dðoÞ � o�1. The number of those regions that

pass the saddle per unit time is proportional to o, since it is equal to the inverse of
the period of the external force.

Thus, the net area of those regions which pass the saddle per unit time is

proportional to the amplitude dðoÞ of the Melnikov integral. Therefore, the

reaction rate is proportional to the amplitude dðoÞ of the Melnikov integral.

Figure 14. An oscillatory change of the Melnikov integral.

1/ω

d(ω)

Figure 15. The area surrounded by stable and unstable manifolds.
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Figure 16 shows how the amplitude dðoÞ of the Melnikov integral depends

on the frequency o of the external force. Remember that the characteristic time

scale of the unperturbed Hamiltonian is 1. Then, the fact that dðoÞ attains a

maximum at o 	 1 implies that chaos is caused by resonance between the

unperturbed system and the external force.

Example 2. The total Hamiltonian is given by

H ¼ p2

2m
þ Dðe�2aq � 2e�aqÞ þ eq sinðot þ aÞ ð66Þ

This Hamiltonian models a molecule composed of two atoms acted on by an

oscillatory electric field. Thus, it is a prototype of diatomic molecules in laser

fields.

The unperturbed Hamiltonian H0 of the system is given by

H0 ¼ p2

2m
þ Dðe�2aq � 2e�aqÞ ð67Þ

and the perturbation H1 is

H1 ¼ q sinðot þ aÞ ð68Þ

The separatrix orbit of H0 is given by

eaq ¼ 1þ o2
0ðt � tÞ2
2

p ¼ m

a

2o2
0ðt � tÞ

1þ o2
0ðt � tÞ2

ð69Þ

Figure 16. The amplitude of dðoÞ versus o.
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where o0 ¼
ffiffiffiffiffiffiffiffiffiffi
2a2

m
D

q
is a frequency of the Morse oscillator in the harmonic

approximation. t is a constant representing the dependence on initial conditions.
This Hamiltonian has an unstable fixed point at ðp ¼ 0; q ¼ 1Þ. However, it

is not hyperbolic, since the rate of approaching the fixed point is not exponential

but polynomial as pðtÞ 	 t�1 ðt ! 1Þ shows in Eq. (69).

In spite of this, the Melnikov integral

d ¼ e
ð1
�1

½H0;H1� dt ð70Þ

can be estimated in the same way as in the previous section. Here the Poisson

bracket is defined in terms of ðx; pÞ,

½H0;H1� ¼ qH0

qx
qH1

qp
� qH0

qp
qH1

qx

¼ � p

m
sinðot þ aÞ ð71Þ

Estimating the integral, we obtain the following result:

dðt; aÞ ¼ �e
2p
a
e
� o

o0 cosðotþ aÞ ð72Þ

This results is wrong at o ¼ 0. Therefore, we have to be careful in using it

for those cases where the frequency of the external field is small compared to

the characteristic inverse time scale of the Morse Hamiltonian. See Appendix B

for details.

VI. ARNOLD MODEL

Chaos in systems with N degrees of freedom with N � 3 has characteristics that

are not shared by chaos in systems with two degrees of freedom. In this section,

we show that the Melnikov integral reveals one of these characteristics. They are

exhibited in the intersections between the stable and unstable manifolds of

whiskered tori with different action values.

In systems with two degrees of freedom, two-dimensional tori separate the

equi-energy surface into two disjoint parts. Thus, orbits on one part of the equi-

energy surface cannot go into the other. Therefore, the existence of two-

dimensional tori in systems of two degrees of freedom results in nonergodic

behavior of the system.

To the contrary, for systems of N degrees of freedom with N � 3, N-

dimensional tori no longer separate the equi-energy surface. This implies that

going around tori would be possible. One of the possible mechanisms for such

behavior is movement along nonlinear resonances.
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In his celebrated article, Arnold actually constructed a model where these

movements take place [15]. In this model, orbits move along a nonlinear

resonance under the influence of other resonances. From the results of this

study, it is found that the dynamics on the network of nonlinear resonances

is characteristic for systems of N degrees of freedom with N � 3. The network

is called the Arnold web [16,17].

The Arnold web is supposed to play an important role in intramolecular

vibrational energy redistribution (IVR) [1]. However, in order to reveal its role

for IVR, the following two problems must be investigated.

The first is that the diffusive dynamics on the web (the Arnold diffusion) is

very slow. Indeed, its time scale is so long that Arnold diffusion would be

irrelevant in IVR. The second is that a recent study shows that diffusive

behavior across nonlinear resonances is much more prominent than that along

resonances [28,33,34]. Then, movement along resonances would be surpassed

by movement across resonances.

Bearing these problems in mind, we will study the Arnold model as an

example of the Melnikov integral. This section will also serve as an introduction

leading to the argument on tangency in the next section.

The Arnold model is a time-dependent Hamiltonian with two degrees of

freedom,

H ¼ p2

2
� V cos qþ I2

2
� eðcos qþ 1Þ cos y� e cos q cosot ð73Þ

where e is a small parameter.

The unperturbed Hamiltonian is obtained by setting e ¼ 0 in the Hamiltonian

H,

H0 ¼ p2

2
� V cos qþ I2

2
ð74Þ

Thus, the unperturbed Hamiltonian H0 decouples into two subsystems ðq; pÞ and
ðI; yÞ. The perturbation H1 is given by

H1 ¼ �ðcos qþ 1Þ cos y� cos q cosot ð75Þ

The degree of freedom ðq; pÞ has a resonant term V cos q. There exist

unstable fixed points ðq ¼ �p; p ¼ 0Þ, and the separatrix orbits connecting

them. The separatrix orbits of the nonlinear resonance are given by the

following:

p�ðt � tÞ ¼ � 2
ffiffiffiffi
V

p

cosh
ffiffiffiffi
V

p ðt � tÞ
q�ðt � tÞ ¼ �2 sin�1 tanh

ffiffiffiffi
V

p
ðt � tÞ

� � ð76Þ
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The degree of freedom ðI; yÞ describes movements on tori,

I ¼ �; y ¼ �t þ a ð77Þ

where we assume � 6¼ 0. Removal of this assumption needs a different analysis

(see Xia [35]). Furthermore, in the next section, we will show that the case with

� ¼ 0 reveals another new phenomenon, which we will call ‘‘tangency.’’

The dynamics under the unperturbed Hamiltonian has a two-dimensional

NHIM

M0 ¼ ðq; p; I; yÞ �� q ¼ �p; p ¼ 0; I 2 If ; y 2 T
� � ð78Þ

Note that this model also satisfies the assumptions given by Eq. (41).

In the following, we are interested in the dynamics that result in transport

along the variable I. In order to see the behavior along the direction of I, orbits

on the stable and unstable manifolds will be studied, that is,

I1u ¼ I10 þ eIu; p1u ¼ pþ þ epu; q1u ¼ qþ þ equ
I2s ¼ I20 þ eIs; p2s ¼ pþ þ eps; q2s ¼ qþ þ eqs

ð79Þ

Then, how these manifolds intersect will be investigated using the Melnikov

integral. See Fig. 17 for a schematic picture of the stable and unstable manifolds

with a shift in the variable I.

The gap between the stable and unstable manifolds is estimated using the

following quantity, H10 ¼ p2

2
� V cos q and H20 ¼ I2

2
. See Fig. 18, which shows

the displacement of the unstable orbit ðqu; pu; IuÞ from the one without the

perturbation.

Figure 17. Dynamics under the unperturbed Hamiltonian of the Arnold model.
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In order to measure the displacement, we need two quantities H10 and H20,

since the system has a time-dependent two-degrees-of-freedom Hamiltonian,

that is,

d10 ¼ H10ðq1u; p1uÞ � H10ðq2s; p2sÞ
¼ e DqH10ðqþ; pþÞ � ðqu � qsÞ þ DpH10ðqþ; pþÞ � ðpu � psÞ

� �
þ second- and higher-order terms in e ð80Þ

d20 ¼ H20ðI1uÞ � H20ðI2sÞ
¼ H20ðI10Þ � H20ðI20Þ þ eDIH20ðI10Þ � ðIu � IsÞ
þ second- and higher-order terms in e ð81Þ

For the first-order terms in e,

d1 ¼ DqH10 � ðqu � qsÞ þ DpH10 � ðpu � psÞ ð82Þ
d2 ¼ DIH20 � ðIu � IsÞ ð83Þ

p

q

I

xu

x0

∆H01

∆H02

Figure 18. Displacement �H10 and �H20 in the space ðq; p; IÞ from X0 ¼ ðq0; p0; I0Þ to

Xu ¼ ðqu; pu; IuÞ.

374 mikito toda



an argument that is similar to the one in the previous section leads to the

expression

d1 ¼
ð1
�1

½H10;H1� dt ð84Þ

d2 ¼
ð1
�1

½H20;H1� dt ð85Þ

Here, the variables in H10 and H20 are the orbits under the unperturbed

Hamiltonian.

The vector ðd1; d2Þ is called the Melnikov vector. For systems of more than

two degrees of freedom, as well as for time-dependent systems of two degrees

of freedom, we need the Melnikov vectors to investigate intersections between

the stable and unstable manifolds of NHIMs.

Substituting the orbits under the unperturbed Hamiltonian into the Melnikov

vector, we obtain

d1 ¼ �
ð1
�1

qH10

qp
qH1

qq
dt

¼ �
ð1
�1

p sin qðcos yþ cosotÞ dt ð86Þ

d2 ¼ �
ð1
�1

qH20

qI
qH1

qy
dt

¼ �
ð1
�1

Iðcos qþ 1Þ sin y dt ð87Þ

Estimating these integrals, the final results are the following:

d1 ¼ 2po2=V

sinh po
2
ffiffiffi
V

p sinotþ 2p�2=V

sinh p�
2
ffiffiffi
V

p
sinð�tþ aÞ ð88Þ

d2 ¼ � 2p�2=V

sinh p�
2
ffiffiffi
V

p
sinð�tþ aÞ ð89Þ

In order for Arnold diffusion to take place, we need a transverse intersection

of the stable and unstable manifolds. In other words, there must be a ðt0; a0Þ
that satisfies the following conditions:

d10 ¼ ed1ðt0; a0Þ ¼ 0

d20 ¼ H20ðI10Þ � H20ðI20Þ þ ed2ðt0; a0Þ ¼ 0
ð90Þ
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and the matrix defined by

qd1
qt

qd2
qt

qd1
qa

qd2
qa

0
BB@

1
CCA ð91Þ

has the inverse at ðt0; a0Þ.
These conditions can be understood as follows. Since the system is time-

dependent, we consider the phase-space structure at a fixed time t. Then, the

stable and unstable manifolds are two-dimensional manifolds, and they are

parametrically represented using ðt; aÞ. Their intersections, if any, are points in
the four-dimensional phase space ðq; p; I; yÞ. (Note that the equi-energy surface

does not exist.) Let ðt0; a0Þ denote an intersection. In order to have transverse

intersections between the stable and unstable manifolds, there must be an

inverse function f : ðd1; d2Þ ! ðt; aÞ in the neighborhood of the intersection

ðt0;a0Þ. See Fig. 19 for the difference between transverse and tangent

intersections between two curves on the plane. The condition for the existence

of the inverse is that
qðd1;d2Þ
qðt;aÞ

���
t¼t0
a¼a0

is regular.

The sufficient condition for the existence of intersections is given by the

following:

H20ðI10Þ � H20ðI20Þj j 
 e min
2po2=V

sinh po
2
ffiffiffi
V

p ;
2p�2=V

sinh p�
2
ffiffiffi
V

p

( )
ð92Þ

When the inequality holds, we see that
qðd1;d2Þ
qðt;aÞ

���
t¼t0
a¼a0

is regular.

The above argument is only of first order in e. However, even with higher-

order terms in e the argument holds since transverse intersections do not

disappear under small perturbations. Thus, there exists a chain of tori I10; I20; . . .
such that transverse intersections between stable and unstable manifolds of

neighboring tori Ii0; Iiþ1;0ði ¼ 1; 2; . . .Þ result in the transport along the direction

Figure 19. (a) Two curves do not intersect transversally, (b) Two curves intersect transversally.
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of I. Such behavior is called Arnold diffusion. (However, see Ref. 25 showing

that Arnold diffusion is not diffusive.)

For generic cases where the assumptions Eq. (41) do not hold, there is a hole

in the above discussion. This hole comes from the fact that, under general

perturbations, some tori are destroyed creating gaps in the chain of tori

I10; I20; . . . . If the widths of these gaps do not satisfy the inequality (92), Arnold

diffusion would be impossible. This problem is called the gap problem. The gap

problem raises the question as towhetherArnold diffusion is generic or not. Recently,

Xia has made progress in studying this problem. See Ref. 36 for his results.

Also note that the inequality Eq. (92) implies that there would be no Arnold

diffusion for � ¼ 0. To the contrary, Xia proved that there still exists a diffusive

movement even for � ¼ 0. He called it pseudo-Arnold diffusion [35].

In the next section, we will also study the Arnold model with � ¼ 0 from a

different point of view. We show that the model exhibits tangency and that the

condition for tangency can be derived using the Melnikov integral.

VII. TANGENCY

Branching is one of the important features of the skeleton of paths. It is revealed

in the tangency of intersections between the stable and unstable manifolds of

NHIMs. This is understood as follows.

In systems of N degrees of freedom with N � 3, one NHIM would be

connected with multiple NHIMs. Figure 20 shows a schematic picture of a

Mc

Wa

Tac

Ma
u

Wc
s

Wb

Tab

Mb

s

P5

P4

P3

P2

P1

Figure 20. When branching exists, tangency takes place as initial conditions continuously vary

on the unstable manifold.
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NHIM Ma connected with two other NHIMs, Mb and Mc. There, the unstable

manifold Wu
a of the NHIM Ma has intersections with the stable manifolds Ws

b

and Wc
s of the NHIMs Mb and Mc, respectively. As initial conditions

continuously vary from P1 through P2, P3, and P4 to P5 on Wu
a , its intersections

with the stable manifolds change as follows. The transverse intersection with

Ws
b for P1 first changes into tangency with Ws

b at Tab for P2, then no intersection

for P3, tangency with Ws
c at Tac for P4, and finally transverse intersection with

Ws
c for P5. Thus, we expect that whenever branching exists, tangency occurs as

initial conditions continuously vary on the unstable manifolds.

This suggests that tangency is a universal phenomenon in the skeleton of

reaction paths for multiple dimensional chaos.

In this section, we study a model Hamiltonian where the condition for

tangency can be derived using the Melnikov integral. The Hamiltonian is the

Arnold model with � ¼ 0. We will show that the Arnold model with � ¼ 0

exhibits tangency when the strength of the perturbation exceeds a threshold.

Thus, this model offers a clue to understand the branching structure of the

skeleton.

The Arnold model with � ¼ 0 corresponds to scattering processes. In the

planar Coulomb three-body problem, the asymptotic limit where one of the

three bodies goes to infinity corresponds to the Arnold model with � ¼ 0 [35].

For three-body clusters interacting with van der Waals potential, the Arnold

model with � ¼ 0 also arises when one of the three bodies goes to infinity [37].

We can also regard the Arnold model with � ¼ 0 as a system with three

resonances. In other words, it models the dynamics around resonance inter-

sections. This is because the condition � ¼ 0 is regarded as a resonance

condition, where the movement y becomes slow. Then, the term cos y cannot be

averaged out but must be kept in the analyses. Thus, in addition to the term

V cos q, the model has another resonance term cos y. Therefore, the Arnold

model with � ¼ 0 can be regarded as a model of a resonance intersection.

Figure 21 shows the reason why branching is expected at resonance

intersections. There, three resonances are indicated by the thick lines on the

equi-energy surface E ¼ const in the action space ðI1; I2; I3Þ. The point P

indicates the location of a resonance intersection. An orbit starting form the

point A can go either to the point B or to the point C along resonance lines.

Thus, at the resonance intersection, two reaction paths exist: one from the point

A to B and the other from A to C. Therefore, branching of reaction paths is

expected at resonance intersections.

As is mentioned in the previous sections, the dynamics around resonance

intersections is more important than was supposed before [33,34]. As yet, however,

branching of reaction paths at resonance intersections has not been studied.

Thus, the Arnold model with � ¼ 0 belongs to a universal and important

class of dynamical systems.
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The model is a time-dependent Hamiltonian with two degrees of freedom,

H ¼ p2

2
� V cos qþ I2

2
� mðcos qþ 1Þ cos y� e cos q cosot ð93Þ

This model is the same as the Arnold model except that Eq. (93) has two small

parameters e and m. In the following analysis we will consider e and m separately.

First, we consider those orbits starting from the initial conditions with

ðI ¼ 0; y ¼ y0Þ and ðq; pÞ on the separatrix Eq. (76) near the unstable fixed

point ðq ¼ �p; p ¼ 0Þ. In other words, we will see how a piece of the unstable

manifold with a different initial value of y intersects with the stable manifold of

the NHIM with ðq ¼ p; p ¼ 0Þ. Here, the dimension of the pieces of the

unstable manifold is 1, since we fix the initial conditions of ðI; yÞ, and the

dimension of the stable manifold is 3.

In Fig. 22, projections to the plane ðq; pÞ are shown for the development of

these pieces of the unstable manifold (solid lines) and the stable manifold

(dotted lines). We choose V ¼ 1:0, o ¼ 1:0, e ¼ 0:1, and m ¼ 0:22, and the

initial values y0 for these pictures are the following: (a) y0 ¼ �0:9p, (b) y0 ¼
�0:8p, (c) y0 ¼ �0:78p, (d) y0 ¼ �0:77p, (e) y0 ¼ �0:76p, (f) y0 ¼ �0:74p.

In Figs. 22a–c, intersections are transverse. They become tangent in Fig. 22d,

and no intersections exist in Figs. 22e and 22f. The name ‘‘tangency’’ is based

on these pictures. Note that tangency here means that intersections become

tangent as we continuously vary initial conditions on the unstable manifold. It

I2

I3

I1

A

B

C

P

E=const.

Figure 21. Branching is expected at resonance intersections.
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Figure 22. How intersections between stable manifolds (dotted lines) and unstable manifolds

(solid lines) change as y0 varies. Tangency takes place at (d). We choose V ¼ 1:0, o ¼ 1:0, e ¼ 0:1,

and m ¼ 0:22, and the initial values y0 for these pictures are the following: (a) y0 ¼ �0:9p, (b)
y0 ¼ �0:8p, (c) y0 ¼ �0:78p, (d) y0 ¼ �0:77p, (e) y0 ¼ �0:76p, (f)y0 ¼ �0:74p.
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does not necessarily mean that the whole intersection between the three-

dimensional unstable and stable manifolds becomes tangent.

The above intersections take place in the four-dimensional phase space. It is

preferable to study them in a space of reduced dimensionality, which we

introduce so as to see the intersections in a lower-dimensional space [12].

Figure 23 indicates a schematic picture of our idea, and Fig. 24 shows the

results.

In Fig. 23a, an intersection between two-dimensional stable and unstable

manifolds is displayed in a three-dimensional phase space. In order to see the

intersection in a space of reduced dimensionality, only its location is indicated

on the unstable manifold in Fig. 23b. Thus, we can single out the information on

how they intersect, although we sacrifice the information on how these

manifolds are folded as they intersect. (How they are folded can be also studied

in a similar way using the Lagrangian singularity caused by folding. See the

details in Ref. 12.)

In Fig. 24, intersections take place between two-dimensional pieces of the

unstable manifold and the three-dimensional stable manifold in the four-

dimensional phase space. Here, two-dimensional pieces of the unstable

manifold are specified by the initial condition I ¼ 0. In other words, we

continuously vary initial conditions on the unstable manifold by changing

the values of y0 with I ¼ 0.

In Fig. 24, the abscissa is y0, and the ordinate indicates the direction of ðq; pÞ
along which the unstable manifold becomes stretched. We choose V ¼ 1:0,
o ¼ 1:5, and e ¼ 0:1, and we vary the value of m as follows: (a) m ¼ 0:19700,
(b) m ¼ 0:19750, (c) m ¼ 0:19810, (d) m ¼ 0:19834, (e) m ¼ 0:19900, (f) m ¼
0:19950.

We can see that in Fig. 24d a qualitative change takes place in the way

intersection lines are connected. In Figs. 24a–c, tangency does not occur and

u

u

s

(a) (b)

W
W

W

Figure 23. Schematic picture of intersections (a) shown in phase space and (b) displayed on

the unstable manifold.
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Figure 24. Intersection displayed on the unstable manifold. Qualitative change of intersections

takes place at (d). We choose V ¼ 1:0, o ¼ 1:5, and e ¼ 0:1 and vary the value of m as follows: (a)

m ¼ 0:19700, (b) m ¼ 0:19750, (c) m ¼ 0:19810, (d) m ¼ 0:19834, (e) m ¼ 0:19900, (f) m ¼ 0:19950.
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intersections are always transverse. On the other hand, in Figs. 24e and 24f,

tangency occurs as initial conditions y0 change. Thus, a topological transition

must be seen in the dynamical behavior of the system, as the value of m varies.

In the following, we estimate the value of m when the transition takes place.

Our method is based on the following idea concerning the large difference

among the characteristic time scales.

The characteristic time scale for ðq; pÞ is of the order of ð ffiffiffiffi
V

p Þ�1
, and that for

the external force is o�1. On the other hand, the characteristic time scale for

ðI; yÞ is ��1. Thus, in the asymptotic limit where � goes to zero, the behavior of

ðI; yÞ is supposed to be very slow in comparison to that of ðq; pÞ and the external
force. Therefore, we can consider the dynamics as composed of (a) the

interaction between ðq; pÞ and the external force and (b) the interaction between

ðq; pÞ and ðI; yÞ. Then, the energy balance for ðq; pÞ is estimated to see how

ðq; pÞ behaves with the above interactions combined.

To estimate the energy change of ðq; pÞ caused by the external force, we use

the Melnikov integral. To estimate the change caused by the coupling to ðI; yÞ,
we resort to the sudden approximation. By adding these two changes, we can

qualitatively see the dynamics of ðq; pÞ. This argument gives a reasoning for the

perturbation analysis using two small parameters e and m. In Figs. 25 and 26, we
show a schematic explanation of our idea.

In Fig. 25a, the energy change caused by the external force is shown as an

oscillatory feature of the unstable manifold (the solid line). There, the unstable

1/Ω

∆Hf

∆Hs

(a)

(b)

Figure 25. Energy changes (a) caused by external force and (b) caused by interaction with

ðI; yÞ.
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manifold intersects with the stable manifold (the dotted line). This feature is

estimated using the Melnikov integral, that is,

�Hf ¼ e
2po2=V

sinh po
2
ffiffiffi
V

p
� � sinðotÞ ð94Þ

Note that the frequency of the oscillatory feature of the manifold is given by

the frequency of the interaction. Therefore, if the frequency of the interaction

goes to zero, the feature of the manifold changes from the oscillation to a shift

shown in Fig. 25b as �Hs. To estimate this shift, we have to resort to a different

method.

Combining these two changes—that is, the oscillation and the shift—we can

understand the dynamics of ðq; pÞ. If the energy change caused by the external

force �Hf and the change �Hs caused by ðI; yÞ are equal, that is,

�Hf þ�Hs ¼ 0 ð95Þ

tangency takes place. We use Eq. (95) to estimate m when tangency takes place.

See Fig. 26 for a schematic explanation of how to estimate m when tangency

takes place.

In order to implement the above idea, we need to estimate �Hs. We use the

sudden approximation as follows. The equation of motion for I is given by the

following:

_II ¼ �m sin yðcos qþ 1Þ ð96Þ
where qðtÞ is the separatrix orbit. The behavior of ðq; pÞ is much faster than that

of ðI; yÞ. Therefore, we regard the influence of ðq; pÞ on the separatrix to ðI; yÞ as
an impact, that is,

cos qþ 1 ¼ 2

cosh2ð ffiffiffiffi
V

p
tÞ 	 4dð

ffiffiffiffi
V

p
tÞ ð97Þ

∆Hs

∆Hf

Figure 26. Schematic picture showing how to estimate tangency.
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Then, the variable I changes its value from the initial value I ¼ 0 by the

following amount:

�I ¼ � 4m sin y0ffiffiffiffi
V

p ð98Þ

where we regard the variable y as fixed in its initial condition y0.
The change �I of the variable I causes a decrease of the energy possessed in

ðq; pÞ by an amount �Hs:

�Hs ¼ �ð�IÞ2=2 ð99Þ

Substituting Eq. (98) to Eq. (94), we obtain �Hs in the form

�Hs ¼ � 8m2 sin2 y0
V

ð100Þ

In estimating m by Eq. (95), we use Eq. (94) and Eq. (100). When we omit

the dependence on y0 in Eq. (100), and the oscillatory dependence in Eq. (94),

the condition Eq. (95) for tangency becomes

e
2po2=V

sinh po
2
ffiffiffi
V

p
� � ¼ 8m2

V
ð101Þ

In Fig. 27, we compare the results of our numerical calculations (shown as

crosses) with those obtained in Eq. (101) shown as the solid line. We choose

V ¼ 1:0 and e ¼ 0:1 here. We can see that the two results coincide very well,

supporting the validity of our ideas for the analysis.

In this section, we have discussed the condition for tangency using the

Melnikov integral and the sudden approximation. The analyses in this section

needs to be further developed in the following directions: First, the sudden

approximation should be improved to take into account the movement of the

slow variable, that is, ðI; yÞ. Second, the assumptions Eq. (41) should be

removed so that the analyses can be applied to more generic cases. Third,

the condition that m is small must be removed so that intersections between

resonances of full strength can be analyzed. Fourth, realistic reactions should be

analyzed so that the content of this section has more direct relevance to reaction

processes.

VIII. CHAOTIC ITINERANCY

In this section, we discuss the branching structure of the skeleton of paths and

chaotic itinerancy, which are seen as orbits wander around among NHIMs.
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We will also show that the skeleton has a property called ‘‘structural stability.’’

We will then use this property to bridge our discussion from the second stage to

the third one.

As reactions proceed, the system goes through multiple saddles and potential

wells. Then, the reaction proceeds wandering around NHIMs of saddles with

index 1, those with index larger than 1, and also NHIMs of whiskered tori.

When leaving NHIMs, an orbit moves along their unstable manifolds, and when

approaching NHIMs, it goes along their stable manifolds. The intersection

between the stable and unstable manifolds works as a switch that determines

which NHIM is connected to which. Since one NHIM would be connected with

multiple NHIMs in chaos of multiple degrees of freedom, these connections

have the structure of a network. Thus, in these wandering processes,

intersections between the stable and unstable manifolds of NHIMs play the

role of the skeleton of reaction paths.

Based on this idea, we draw Figs. 28 and 29, which show how orbits in the

phase space would flow in the large.

In Fig. 28, we display multiple connections among NHIMs. Depending on

initial conditions near the NHIM, one orbit can approach one NHIM, another

can approach a different one. If we could choose initial conditions near the

0.1

0.2

0 1.0 2.0 3.0

µ

ω

Figure 27. Comparison between numerical calculations and analytical results Eq. (101). We

choose V ¼ 1:0 and e ¼ 0:1.
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starting NHIM, this would lead to control of the succeeding reaction processes,

showing the importance of knowing the condition of tangency.

In Fig. 29, orbits approach a NHIM flowing almost parallel to its stable

manifold. When coming near it, they move following the slow movement on it.

After that, they leave it almost parallel to its unstable manifold. Then, through

the intersections between its unstable manifold and the stable manifolds of other

NHIMs, they approach different NHIMs following their stable manifolds. They

would repeat such behavior forever.

Mb

Mc

Ma

Figure 28. One NHIM is connected with multiple NHIMs.

Mb

Md

McMa

Figure 29. Chaotic itinerancy where an orbit wanders around multiple saddles.
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This behavior reminds us of ‘‘chaotic itinerancy’’ found in dynamical

systems with many degrees of freedom [18,19,21,38]. Chaotic itinerancy is

the behavior where orbits repetitively approach and leave invariant structures of

the phase space. Such behavior has been found in coupled maps [19], turbulence

[18], neural networks [38], and Hamilton systems [21]. The mechanism of

chaotic itinerancy is not yet fully understood. The study of NHIMs and how

their stable and unstable manifolds intersect could offer some clues in revealing

its mechanism [20].

In chemical reactions, orbits on stable and unstable manifolds of NHIMs

describe movements of reaction coordinates. In some cases, these reaction

coordinates are those degrees of freedom describing the behavior of individual

nuclei such as a bond length between a pair of atoms. In other cases such as

protein folding, reaction coordinates describe collective behavior where

multiple nuclei participate. In either case, the processes of leaving a NHIM

and approaching another one involve reformulation of reaction coordinates. In

particular, when reaction coordinates are collective variables, reformulation

processes themselves are of interest. We think that the study of intersections is

crucial to understand how a certain collective movement is replaced by another

one.

Thus, while the system wanders around multiple NHIMs, those degrees of

freedom that constitute the reaction coordinates change as the reaction

proceeds. This is the viewpoint that we would like to establish in the second

stage of our strategy, where global aspects of the phase space is the target.

One of the important properties of this viewpoint is that it is ‘‘structurally

stable.’’ Structural stability means that characteristic features of the systems do

not change qualitatively as their parameters vary by sufficiently small amounts.

In mathematics, this means that the systems we consider constitute an open set

under a suitable topology [39].

In our study, NHIMs and their stable and unstable manifolds, at least locally

near the NHIM, smoothly depend on parameters of the system. This is

guaranteed by the theorem of Fenichel and Hirsch et al. Moreover, transverse

intersections between stable and unstable manifolds are structurally stable. This

is because their existence and characteristics do not change as the parameters

vary by sufficiently small amounts. Thus, all of the features except possibly for

tangency are structurally stable.

Structural stability implies that those features do not change qualitatively

even when the system is under the influence of other possibly random effects, as

far as their effects are sufficiently small. In this sense, we can single out robust

features of the system using the concepts of NHIMs, their stable and unstable

manifolds, and the intersections among them.

As we move on to the third stage, we pay attention to other features that are

not structurally stable. The first is breakdown of the condition of normal
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hyperbolicity, and the second is related to bifurcation in the connections among

NHIMs.

IX. BREAKDOWN OF NORMAL HYPERBOLICITY

Until now, our main interest has been in those aspects of the skeleton that are

structurally stable. However, in reaction processes of complex systems, other

features that are not structurally stable also play a crucial role. For example, in

the processes of evolution, life acquires new reaction mechanisms that emerge

from old ones. Other examples are phase transitions in systems with finite

degrees of freedom, such as clusters. Thus, qualitative jumps in reaction

mechanism are also of importance. Here and also in the next sections, we

consider how to incorporate those features that are not structurally stable into our

strategy. Since the study in this stage is premature, our argument will be intuitive.

We will also foresee future development in these two sections.

In this section, we consider the breakdown of the condition of normal

hyperbolicity. First, we explain a simple example where breakdown of normal

hyperbolicity leads to a bifurcation in reaction processes. In the Belousov–

Zhabotinsky (BZ) reaction [40], the bifurcation from the stable fixed point to the

limit cycle takes place through the breakdown of normal hyperbolicity. This is

the simplest case where mathematical analyses are in progress [41].

Second, we point out the possibility that normal hyperbolicity breaks down

for NHIMs with saddles as the energy of the vibrational modes increases at

saddles. These cases seem to be much more difficult than that in the BZ

reaction. At present, no attempt to analyze these cases has been made. However,

considering that we face these cases frequently in reactions, the study of the

breakdown of normal hyperbilicity is urgent.

Now, we explain the breakdown in the BZ reaction. The simplest equation

that models the reaction is given by

e
dx

dt
¼ f ðx; yÞ

dy

dt
¼ x� y

ð102Þ

where both x and y are one-dimensional variables and 0 < e � 1. In Eq. (102), x

is a fast variable and y is a slow one.

We do not give a concrete form of the function f ðx; yÞ for the BZ reaction,

because its expression is complicated [40]. Instead, we use the following

function:

f ðx; yÞ ¼ y� aðx� x1Þðx� x2Þðx� x3Þ � b ð103Þ
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since the essence of the following argument does not change. Here, the constants

of f ðx; yÞ satisfy a < 0; b > 0; 0 < x1 < x2 < x3.

In Figs. 30 and 31, the flow under Eq. (102) is displayed in the phase space

ðx; yÞ. Figure 30 shows a case where the reaction terminates at the fixed point,

and Fig. 31 shows a case where the limit cycle exists. In these figures, the

NHIMs M0 are graphs x ¼ xðyÞ that are obtained by solving f ðx; yÞ ¼ 0 for x,

x

y

P1

A1

B1

Figure 30. Flow of BZ reaction when stable fixed point exists.

x

y

P2

A2

B2

Figure 31. Flow of BZ reaction when limit cycle exists.
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and there we have dx=dt ¼ 0. There, we also display the locations where

dy=dt ¼ 0 holds, that is, x ¼ y.

Since x varies much faster than y does, in these figures the flow runs almost

parallel to the x axis. On the other hand, slower movements take place along

f ðx; yÞ ¼ 0. The slower movements change their directions at the point where

dy=dt ¼ 0 holds, that is, x ¼ y. The intersections between two curves

f ðx; yÞ ¼ 0 and x ¼ y—that is, the points P1 and P2—are fixed points. While

P1 is a stable fixed point, P2 is unstable.

Note in these figures that the manifold defined by f ðx; yÞ ¼ 0 does not

constitute a single NHIM. This is because the fast movement goes parallel to the

tangent direction of the manifold f ðx; yÞ ¼ 0 at the points A1 and B1 in Fig. 30,

and at the points A2 and B2 in Fig. 31, respectively. In other words, there exist

three NHIMs, which are separated from each other by these points where

dy=dx ¼ 0. Thus, normal hyperbolicity breaks down at these four points.

Therefore, the manifold f ðx; yÞ ¼ 0 consists of three NHIMs that are separated

at A1 and B1 in Fig. 30, and A2 and B2 in Fig. 31, respectively.

This indicates that NHIMs in general have boundaries, and orbits flow off

NHIMs at their boundaries.

Moreover, the breakdown of normal hyperbolicity leads to the bifurcation

from the fixed point to the limit cycle. Suppose that under a smooth variation of

parameters we change the flow from the one in Fig. 30 to the one in Fig. 31.

Then, in order for the fixed point P1 in Fig. 30 to shift to P2 in Fig. 31, it should

go through the point where normal hyperbolicity breaks down.

Thus, we speculate that, in the processes where qualitatively different flows

emerge, the system would experience the situation where normal hyperbolicity

breaks down. This speculation is based on the argument that, in order for the

flows along the normal directions of NHIMs to bifurcate, one of the Lyapunov

exponents of the normal directions must change its sign from plus to minus or from

minus to plus. In the middle of these changes, normal hyperbolicity breaks down.

In reaction dynamics, NHIMs with saddles would lose normal hyperbolicity

as the energy of the vibrational modes increases at saddles. This is shown

schematically in Fig. 32. Here, a saddle X of the potential function is displayed

with its NHIM above in the phase space. When the reaction takes place with

only a small amount of the energy in the vibrational modes, orbits go over the

saddle where the vibrational motions are quasi-periodic. In Fig. 32, this is

shown by the dotted arrow with tori on the NHIM. As the energy of the

vibrational modes increases, however, orbits go over the saddle where the

vibrational motions are chaotic because of the coupling among the vibrational

modes. In Fig. 32, this is shown by the solid arrow with chaos (shown by the

wavy line) on the NHIM. If the Lyapunov exponents of these chaotic motions

become larger than those of the normal directions, the condition of normal

hyperbolicity breaks down.

chemical reactions in multidimensional phase space 391



These situations take place when we raise the energy of clusters. Then,

clusters would frequently change their structures, crossing over multiple saddles

with considerable vibrational energy [42,43]. This leads to a phase transition of

the cluster from the solid to the liquid state. Thus, a phase transition in systems

with finite degrees of freedom belongs to the class of cases where the

breakdown of normal hyperbolicity plays a crucial role.

Contrary to the previous example where normal hyperbolicity breaks down at

points, here it would break down over a region where chaotic orbits move

around. In these cases, we do not know at all what could happen to the original

NHIM. Considering that we frequently face those cases shown in Fig. 32, we

definitely need to investigate them.

X. CRISIS IN MULTIDIMENSIONAL CHAOS

In the previous section, we explained the bifurcation on NHIMs which would

result from breakdown of normal hyperbolicity. Here, we speculate on

bifurcation in the connections among NHIMs. In Fig. 33, we schematically

display how the connections among NHIMs would change. As parameters of the

system vary, transverse intersections between the unstable manifold Wu
a of a

NHIM Ma and the stable manifold Ws
b of a NHIM Mb [see Fig. 33(i)] disappear.

Instead, transverse intersections between the unstable manifoldWu
a of the NHIM

Ma and the stable manifold Ws
c of another NHIM Mc [see Fig. 33(ii)] appear.

Figure 32. Breakdown of normal hyperbolicity at a saddle.
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When intersections disappear or new intersections appear, these intersections are

tangent. Thus, we suggest that tangency signals bifurcation in the connections

among NHIMs. Moreover, we expect that the tangency of intersections gives

birth to a transition of chaos.

This mechanism can be considered as crisis in multidimensional chaos.

Qualitative changes resulting from bifurcation of the skeleton would offer a clue

to understanding how reaction processes exhibit phase transitions and how they

evolve from older reaction processes.

Connections among NHIMs in multidimensional phase space is impossible

to visualize directly. Thus, we need methods to detect their connections

indirectly based on, for example, time series of orbits. We discuss this problem

briefly.

The conventional theory of reaction processes relies on equilibrium statistical

physics where the equi-energy surface is uniformly covered by orbits as shown

in Fig. 34. To the contrary, the phase space in multidimensional chaos has

various invariant structures, and orbits wander around these structures as shown

in Fig. 35. In these processes, those degrees of freedom that constitute the

movement along stable or unstable manifolds vary from NHIM to NHIM. Their

variance reveals how reaction coordinates change during successive processes in

reaction dynamics.

To characterize these invariant structures and the changes of reaction

coordinates, the concept of finite-time Lyapunov exponents can be useful [44].

The original definition of the Lyapunov exponents needs ergodicity (see, e.g.,

Ref. 45) to make sure that the time average of the exponents converges.

However, for chaotic itinerancy, the exponents would not converge. Moreover,

the finite-time Lyapunov exponents can be more useful to detect whether

(i) (ii)

Mb

Ma

Mb

Ma

McMc

Wb
s

Wc
s

Wa
u

Wc
s

Wb
s

Wa
u

Figure 33. Change of intersections between stable and unstable manifolds.
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(a) orbits are staying near NHIMs where slow movements are dominant or

(b) orbits are leaving or approaching NHIMs. Then, detailed investigation into

which degrees of freedom participate in the changes of the finite Lyapunov

vectors will be important for understanding chaotic initerancy in reaction

dynamics. Furthermore, bifurcation of the finite Lyapunov exponents and their

Figure 34. Dynamics on a uniformly ergodic equi-energy surface.

Figure 35. Wandering among invariant structures in the phase space.
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vectors will give crucial clues for realizing the mechanism of how new reaction

processes emerge from old ones. These ideas will provide us with concrete

methods to study connections among NHIMs.

XI. SUMMARY

In this chapter, we have proposed a strategy for studying the dynamical processes

associated with reactions from the standpoint of multidimensional chaos. Our

strategy consists of the following three stages. First, we analyze local structures

of the phase space based on the concepts of NHIMs and their stable and unstable

manifolds. Second, we pay attention to global aspects of the dynamics based on

the intersections of the stable and unstable manifolds. There, tangency will

reveal branching structure of the skeleton of reaction paths. Third, we focus

attention on bifurcation in the skeletons based on the breakdown of normal

hyperbolicity and crisis.

For further development of our strategy to more complex systems such as

protein folding, we need methods to coarse-grain the phase-space structure. For

example, a statistical approach to the skeleton of paths could be an interesting

idea. Closely related to this is the analyses of the rugged energy landscape, in

which many saddles and wells exist. Then, simply following the stable and

unstable manifolds of NHIMs would be cumbersome. Here also, we need

methods to coarse-grain the phase-space structure. These problems can be

tackled within our strategy, the results of which will be published in the future.

APPENDIX A. MELNIKOV INTEGRAL FOR EXAMPLE 1

Since the separatrix orbit is given by qðt � tÞ ¼ 2 sin�1ðtanhðt � tÞÞ, we have,

for �p 
 q 
 p, the following expression:

sin
q

2
¼ tanhðt � tÞ

cos
q

2
¼ 1

coshðt � tÞ ðA:1Þ

sin q ¼ 2 tanhðt � tÞ � 1

coshðt � tÞ ¼ 2
sinhðt � tÞ
cosh2ðt � tÞ ðA:2Þ

Then, the integrand of the Melnikov integral is given by the following:

½Hr
0; eH1� ¼ �ep cos y sin q

¼ �e
2

coshðt � tÞ cosðot þ aÞ 2 sinhðt � tÞ
cosh2ðt � tÞ

ðA:3Þ
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In integration, only the even functions contribute. Therefore, by setting

t0 ¼ t � t, we have the following expression:

d ¼ e
ð1
�1

4 sinh t0 � sinot0
cosh3 t0

dt0 sinðotþ aÞ

¼ �2e sinðotþ aÞ sinot

cosh2 t

 �1
�1

�
ð1
�1

o cosot

cosh2 t
dt

� �

¼ 2eo sinðotþ aÞ
ð1
�1

cosot

cosh2 t
dt ðA:4Þ

Thus, we have to estimate the following integral

d ¼ 2eo sinðotþ aÞ
ð1
�1

cosot

cosh2 t
dt ðA:5Þ

We estimate the integral in the complex t plane. See Fig. A.1 for the path for

integration and the poles. Notice that the integrand has poles of second order at

tn ¼ ipðnþ 1
2
Þ. Finally, we obtain the following:

Re

ð1
�1

eiot

cosh2 t
dt ¼ 2pi

X1
n¼0

Re �ioeiotn
� �

¼ 2poe�
p
2
o
X1
n¼0

e�npo

¼ po
sinh p

2
o

ðA:6Þ

Figure A.1. The path in the complex t plane for the Melnikov integral.
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Using these expressions, the gap d is given as follows:

; d ¼ e
2po2

sinh p
2
o
sinðotþ aÞ ðA:7Þ

APPENDIX B. MELNIKOV INTEGRAL FOR EXAMPLE 2

The gap is expressed as follows:

d ¼ � e
m

ð1
�1

p sinðot þ aÞ dt

¼ �e
2o2

0

a

ð1
�1

t � t

1þ o2
0ðt � tÞ2 sinðot þ aÞ dt ðB:1Þ

Only even functions contribute in the integral.

By setting t0 ¼ t � t, we have

d ¼ �e
2o2

0

a
cosðotþ aÞ

ð1
�1

t0 sinot

1þ ðo0t0Þ2
dt0 ðB:2Þ

where the integral is done in the complex t plane. See Fig. B.1 for the complex t

plane, the pole and the path for integration. Thus, we obtain the following:

ð1
�1

o2
0te

iot

1þ ðo0tÞ2
dt ¼ pie�

o
o0 ðB:3Þ

Figure B.1. The complex t plane for the Melnikov integral.
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Then, we finally obtain the following result:

; d ¼ �e
2p
a
e
� o

o0 cosðotþ aÞ ðB:4Þ

Note that this integral does not converge for o ¼ 0. This means that the Melnikov

integral loses its meaning in the limiting cases near o ¼ 0. This results from the

fact that the fixed point is not hyperbolic as pðtÞ 	 t�1 ðt ! 1Þ shows.
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Multidimensionality of systems significantly affects tunneling phenomena. In

particular, if a system under consideration is classically nonintegrable, then very

complicated tunneling phenomena, referred to as called chaotic tunneling, are

observed. The aim of this short review is to explain the underlying classical

mechanism of multidimensional barrier tunneling by using the semiclassical

method based on classical dynamics extended to the complex domain—that is,

the complex semiclassical method. The tunneling probability of multidimen-

sional barrier systems is still well reproduced by using the complex semiclassical

method even in the chaotic tunneling regime, in which a characteristic tunneling

phenomenon (i.e., the fringed tunneling) is observed. However, the classical

trajectories guided by complexified stable and unstable manifolds dominantly

contribute to the tunneling probability, which gives quite a different picture of the

tunneling from that given by the ordinary instanton mechanism.

I. INTRODUCTION: GLOBAL ASPECTS OF

MULTIDIMENSIONAL TUNNELING

The semiclassical method of multidimensional tunneling [1–3] is a long-standing

problem which seems to be far from completion. If one wishes to apply the

semiclassical method to the analysis of tunneling, he has to take into account

classical trajectories going into the complex domain in order to reach a

classically forbidden region where the tunneling wave is observed [4]. The

instanton, which is a trajectory evolving in imaginary time [5], is a good example

of such complexified trajectories used to explain the tunneling in terms of the

semiclassical method. Indeed, it well reproduces the tunneling phenomena in

one-dimensional (1D) systems as well as in multidimensional but classically

(nearly) integrable systems [6–8]. The great success of the instanton theory

seems to provide us with a good reason to expect that the tunneling of general

multidimensional systems is easily manageable with the semiclassical method

based on it.

However, a multidimensional system is generally classically nonintegrable,

and so the existence of classical chaos, which more or less appears in the

(complex) phase space, introduces some intrinsic difficulties to applying the

semiclassical method to multidimensional tunneling. Even if we restrict our-

selves to the real domain, which means that we don’t take into account tunnel-

ing phenomena, the existence of chaos is a real obstacle to endowing the

semiclassical method with the rigorously mathematical basis, while some

practical applications of the semiclassical method work well in prediction of

quantal quantities which are used to characterize the quantum chaotic nature of a

system under consideration [9,10]. The extension of the phase space to the

complex domain will introduce further complexities and difficulties, and there is
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almost nothing known about the complex-domain chaos of more than one-

dimensional systems.

Nevertheless, the manifestation of chaos in multidimensional tunneling

phenomena has been attracting much attention [11–13], and there have been

some successful attempts in application of the (complex-domain) semiclassical

method to multidimensional tunneling in classically nonintegrable systems

[14–17]. For example, it is well known as the chaos assisted tunneling that the

tunneling between quasi-degenerate doublets located on twin tori of KAM

islands for systems with a tori-chaos mixed phase-space structure becomes very

sensitive to the presence of the chaotic sea between them. Bohigas et al. [11]

applied some semiquantum approach based on the level spectrum analysis for

giving a phenomenological explanation of a mechanism of the chaos-assisted

tunneling. Recently, there have been some reports of experiments that suc-

ceeded in measurement of tunneling phenomena predicted by the theory of

chaos-assisted tunneling: microwave spectra in the superconducting cavity,

momentum distributions of cold atoms in an amplitude-modulated standing

wave of light, and so on [13].

More mathematically rigorous application of the semiclassical method to the

tunneling in classically chaotic systems was performed by Shudo and Ikeda

taking a kicked rotator as a model system of chaotic tunneling. Actually they

have investigated the tunneling probability penetrating from tori to a chaotic

sea, and they have demonstrated that the semiclassical method using the

complexified classical trajectories can well reproduce every detail of the compli-

cated features of the tunneling wavefunction penetrating into the chaotic region

[15]. Furthermore, it has been suggested that there are some deep connections

between the tunneling problem and key concepts of complex dynamical systems

such as Julia sets, Böttcher coordinates, and so on [18].

However, it is still unclear if their approach and results concerning with the

quantum maps could be applicable to the tunneling problem of ordinary

multidimensional systems that are evolved in time by the continuous-time

Schrödinger equation. This is because the underlying classical dynamics of

time-continuous systems is essentially different in the complex domain from

that of the map systems. In particular, the complexified classical trajectory

of time-continuous systems generally has movable singularities, whose posi-

tions on complex time plane move depending on its initial condition, while there

is no singularity of the trajectory in maps, since the discretized time has no

analytical extension to the complex domain. It should be noted that the exis-

tence of movable singularities is well known in the field of the Painlevé

analysis, and the analysis of movable singularities not only plays a key role in

the judgment of integrability of a given system [19], but also, if it is not

integrable, provides further information on the nature of chaotic motion inherent

in the system [19,20]. Therefore it is considered that the movable singularities
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probably play a key role of understanding chaotic tunneling phenomena with the

semiclassical method, but, at the same time, their existence may introduce some

difficulties in practical construction of the semiclassical method for time-

continuous systems.

To our knowledge, the first pioneering work that treated the multidimen-

sional tunneling for ordinary systems evolved in continuous time is a series of

works by Miller et al. They developed a semiclassical formula of the S matrix

[2], and they applied their formula to the case of collinear H þ H2 reaction. As a

result, they found an intrinsic multidimensional tunneling phenomenon repro-

duced by novel complex tunneling paths that were never predicted by the one-

dimensional approach based on the adiabatic approximation [1]. They have,

however, treated a rather regular case—that is, ground-state to ground-state

tunneling—then the tunneling trajectories they found seem not to be affected

by any classical chaos.

The energy barrier tunneling problem in multidimensional autonomous sys-

tems has attracted several author’s attentions [3,14]. In particular, the tunneling

in 2D double well potentials has been investigated along the line of trace

formula by Creagh and Whelan [14]. They studied the case in which the energy

is sufficiently less than the potential saddle, then classical trajectories are

localized in one well or other, but exhibit ergodic behavior in each well. They

found that the major statistical behavior, namely mean behavior of the tunneling

splitting induced by quasi-doublet states, is well described by the complex orbit

penetrating through the energy potential barrier in pure imaginary time evolu-

tion, which gives the minimum imaginary action. It seems that the tunneling

picture based on a single instanton orbit still works effectively in the energy

barrier tunneling of multi-dimensions. However, in order to reproduce more

detail statistical behavior in energy splitting sequence—that is, an characteristic

oscillatory component observed in the sequence due to the chaos in both

potential well—they had to take into account the contributions not only from a

major instanton but from many other instanton-like orbits. Such instanton-like

orbits are running very close the original instanton path in imaginary time and

are connected with orbits homoclinic to the real orbit extended from the original

instanton. It means that a single instanton orbit as well as a bunch of instanton-

like orbits running under the potential barrier simultaneously contribute to the

semiclassical formula.

The other important scenario in multidimensional tunneling is of the dyna-

mical tunneling that is observed in 1.5D and 2D systems [21]. In this case, the

classical phase space is separated not by the energy barrier but by the invariant

surface (e.g., KAM tori). Such a situation is realized, for example, in periodi-

cally perturbed one-dimensional (1.5D) barrier potentials and also in 2D barrier

systems when the total energy is taken over the potential saddle. In a series of

recent articles [22–25], we have found a new class of tunneling phenomena
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seeming to be influenced by classical instability in 1.5D scattering barrier

systems. The tunneling component penetrating through the oscillating barrier is

still described by the standard instanton theory (or its modified version) in a

weak perturbation regime, but it becomes accompanied by a remarkable fringed

pattern as the perturbation strength exceeds a certain characteristic value; that is,

the so-called fringed tunneling is observed. It should be noted that similar

fringed patterns are also observed in the tunneling component in a certain class

of 2D barrier systems with a suitable choice of the total energy and the input

channel [24,26,27]. Thus the appearance of fringed pattern on the tunneling

component is quite generic for multidimensional barrier systems.

The aim of this chapter is to provide a short review of our recent studies

based on the complex domain semiclassical method, in which we have eluci-

dated the underlying classical mechanisms of the fringed tunneling [23,24,25].

We will demonstrate that the feature of complex trajectories contributing via the

semiclassical method to the fringed tunneling observed in the strong pertur-

bation regime is essentially different from that of the instanton picture which

well works in unperturbed or weakly perturbed systems. This point should be

extremely stressed.

A set of complex trajectories satisfying the classical initial condition form an

invariant manifold in the complex phase space, which is a classical counterpart

of the incident plane wave. Some of those trajectories that satisfy the output

boundary condition at the observatory point become contributing to the

tunneling. Under the influence of the perturbation, the incoming wave manifold

is entangled with the complexified stable manifold of the unstable periodic orbit

at the top of the barrier, making heteroclinic-like entanglement. Such an

entanglement always occurs in the complex domain for any nonzero strength of

perturbation, even if it disappears in the real domain for a sufficiently weak

perturbation. However, when the strength of perturbation is weak enough, the

heteroclinic-like entanglement occurs in a much deeper side of the complex

domain, and trajectories with smaller imaginary parts making major contribu-

tions to the tunneling obey the instanton scenario being saved from any

significant influence of the complex entanglement. As the perturbation becomes

stronger, the entanglement gets closer to the real axis, and thereby major

contributing trajectories become subject to it. Such trajectories always start in

the neighborhood of the heteroclinic-like point and are traveling in the complex

phase space being guided by the complexified stable and unstable manifolds,

which are the fundamental objects generating complexity of chaos in classically

nonintegrable systems. As a result, the feature of trajectories contributing to the

fringed tunneling observed in the strong perturbation regime is essentially

different from that of the instanton picture that well works in unperturbed or

weakly perturbed systems. Such trajectories are regarded as the simplest case of

the complex trajectories contributing to chaotic tunneling appearing in general
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multidimensional systems. Surprisingly enough, the entanglement among

complexified invariant manifolds, which is a key to understanding the classical

mechanism of the chaotic tunneling, is accompanied by singular behavior

exhibited by singularities of the complexified trajectory, namely a singular

dependence of singularities on its initial condition induces a topological switch-

ing of the integration path with change of the initial condition and plays a

crucial rule in construction of the heteroclinic-like entanglement.

Some theoretical tools developed in Ref. 25—that is, the adiabatic classical

solution in the low-frequency limit and the Melnikov method extended into the

complex domain—allow us to prove almost every facts needed of theoretically

understanding the underlying classical mechanism of the fringed tunneling. In

particular, Section V is devoted to the theoretical analyses by using the adiabatic

solution together with the Melnikov method. In Section VI we briefly discuss

similarity and difference between maps and time-continuous systems in chaotic

tunneling regimes [17]. Consequently, it is suggested that there exists a com-

prehensive story that gives a global aspect on the multidimensional tunneling

independent of map and time-continuous systems.

II. FRINGED TUNNELING AND SEMICLASSICAL METHOD

A. Model System and Fringed Tunneling

First of all, we will briefly introduce the fringed tunneling and the complex-

domain semiclassical method applied to it.

We take a periodically perturbed Eckart type-potential [28] as a model sys-

tem of the fringed tunneling. The Hamiltonian of the model system is given as

follows:

HðQ; P̂P;otÞ ¼ 1
2
P̂P2 þ VðQ;otÞ

¼ 1
2
P̂P2 þ V0ðQÞ þ EvðQ;otÞ

ð1Þ

where Q is the coordinate and P̂P ¼ �i�h q
qQ is the momentum operator. The

potentials V0ðQÞ and vðQ;otÞ are defined by

V0ðQÞ ¼ sech2ðQÞ; vðQ;otÞ ¼ sinðotÞsech2ðQÞ ð2Þ

where V0 denotes a nonperturbed potential independent of time and v is a perio-

dic function of time that acts as a perturbation. The parameter E indicates the

strength of perturbation.

The incident wave is coming from the right-hand side with a constant

momentum P1ð<0Þ. If the incident energy E1ð¼ 1
2
P2
1Þ is taken small enough,
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then the quantum probability observed in the transmissive side is due to the

tunneling effect.

The stationary solution is given by the Floquet solution [29],

�P1
ðQ2; t2Þ ¼ e�iE1t2=�h hQ2j�̂�þ

1 ðot2ÞjP1i ð3Þ

and the periodic part of the Floquet solution hQ2j�̂�þ
1 ðot2ÞjP1i is the wave matrix

for periodically perturbed systems [22,30]. Its convenience representation is

obtained as follows [22]:

hQ2j�̂�þ
1 ðot2ÞjP1i ¼ lim

jQ1j!1

ffiffiffiffiffiffiffiffi
jP1j
2p�h

r
eiP1Q1=�h

�
ð1
0

dshQ2jÛUðot2 : ot2 � osÞjQ1i exp i
E1s

�h

� � ð4Þ

where ÛU denotes the time propagator of the system defined by

ÛUðyþ ot : yÞ ¼ T exp � i

�h

ðt
0

dsĤHðyþ osÞ
� �

ð5Þ

where T is a time ordering operator. Then, the wave operator is nothing more

than the time-dependent analogue of the energy domain Green function.

Let’s see the numerical results (see Fig. 1). The tunneling wave changes

depending on the strength of the perturbation E. The result of the week pertur-

bation regime, E ¼ 0:05, is shown in Fig. 1a, in which the quantum probability

is drawn as a function of the coordinate Q. The potential is localized near the

origin, and its width is very small in this scale. Then the probability for negative

Q indicates the tunneling component. There is a regular spatial oscillation in

the tunneling component. On the other hand, in the strong perturbation regime

(E ¼ 0:2) in Fig. 1b, we find the complicated fringes superposed on the simple

spatial oscillation in the tunneling component, namely the fringed tunneling.

Appearance of such complicated patterns is a manifestation of the multidimen-

sionality of the system in the tunneling phenomenon. As shown in Appendix A,

similar fringed patterns are observed in a certain class of 2D autonomous sys-

tems [24,26,27]. Hereafter, we concentrate on the strong perturbation regime—

that is, the fringed tunneling.

B. Semiclassical Method

The main tool attacking such complicated tunneling phenomena is the complex-

domain semiclassical method, and the appearance of fringed patterns in the
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tunneling component should be explained in terms of complexified semiclassical

method.

By applying the saddle point approximation to its formula, the semiclassical

expression of the wave matrix is given as follows [22]:

hQ2j�̂�þ
1 ðt2ÞjP1i �

X
c:t:

lim
Q1!1

ffiffiffiffiffiffiffiffi
jP1j
2p�h

r
eiP1Q1=�h

1

P1

q2S�
qE1qQ2

� �1=2

� exp
i

�h
S�ðQ2; t2;Q1;E1Þ

� �
ð6Þ

where the classical action is defined by

S�ðQ2; t2;Q1;E1Þ �
ðt2
t1

½PðtÞ2=2� VðQ;otÞ� dt

þ E1ðt2 � t1ðQ2; t2;Q1;E1ÞÞ ð7Þ

The classical action is a function of the initial coordinate Q1, initial energy E1,

end time t2, and end coordinate Q2; thus the initial time t1 is not an independent

variable.

The notation
P

c:t: in Eq. (6) means to sum over all the classical trajectories

satisfying the boundary condition which is decided by the independent variables

Figure 1. Snapshots of quantum probabilities. (a) Weak perturbation regime: E ¼ 0:05.

(b) Strong perturbation regime: E ¼ 0:2. The other parameters are set as follows: E1 ¼ 0:75;o ¼
0:3, �h ¼ 1000=ð3p� 210Þ � 0:1036, and ot2 ¼ 0ðmod2pÞ.
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of the classical action [Eq. (7)]. In particular, in order to calculate the tunneling

probability by the semiclassical method, we should take into account the

classical trajectories going into the complex domain of the phase space, with the

classical equation of motion,

d2Q

dt2
¼ � qVðQ;otÞ

qQ
ð8Þ

The initial and final sets of dynamical variables deciding the classical action,

namely ðQ1;E1Þ and ðQ2; t2Þ in this case, are the quantum observables specifying

the initial and final states. Then we should assign real numbers to them. Since t1
is canonically conjugate to E1 and cannot be observed quantum mechanically,

we can choose any complex number for it and the lapse times s ¼ t2 � t1 may

take a complex number. To our knowledge, such prescription for complexifying

canonically paired observables was first presented by Miller [2].

A convenient way to find the trajectory satisfying the boundary condition is to

take t1 as a complex search parameter. In order to obtain the quantum

probability as a function of Q2, we should change the end coordinate Q2 in

the real line with fixed t2 real, then the search parameter t1 will trace a 1D set

on the complex plane—that is, 1D curves. According to Shudo and Ikeda [15],

we call such a set on the complex initial time plane t1 the M-set, which is

defined by [22]

M ¼ ft1 ¼ xþ iZj ðx;ZÞ 2 R2; ImQðt2 � t1; t1;P1;Q1Þ ¼ 0g ð9Þ

where x and Z denote the real and imaginary parts of t1; thus the t2 � ðx� iZÞ is
the lapse time. TheM-set is in general composed of disconnected curves and we

call each piece of disconnected components the complex branch. A single branch

is not always enough to reconstruct the quantum probability; two or more branches

and sometimes an infinite number of branches may simultaneously contribute to

it, as will be shown later. The M-set enables us to visualize the structure of the

set of initial conditions of contributing trajectories on the search plane.

We also introduce the L-set [22]:

L ¼fðQ2;P2ÞjQ2 ¼ Qðt2 � t1; t1;P1;Q1Þ;
P2 ¼ Pðt2 � t1; t1;P1;Q1Þ; t1 2 Mg

ð10Þ

which is the set of the end point ðQ2;P2Þ at a given time t2 of the trajectories

satisfying the initial condition given by the M-set.

There are two problems peculiar to the complex domain semiclassical

method which introduce some difficulties in handling of the semiclassical wave

matrix.
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One is the Stokes phenomenon [31–35]. The Stokes phenomenon is a very

important subject of semiclassical method, but we won’t describe it in detail in

this chapter (for details see Ref. [22,35]).

The other is of the singularities of the complex classical trajectories [19],

which is peculiar to time-continuous systems and plays an important role to

understand tunneling phenomena of barrier potentials [25]. First, we briefly

explain the role of singularities of classical trajectory by taking the static Eckart

barrier as a simple example.

III. STATIC BARRIER

A. A Classical Solution of the Static Barrier

In the limit of E ¼ 0, the classical equation of motion given by Eq. (8) can be

integrated [28], and for the case in which the incident energy E1 is less than the

potential barrier (i.e., 0 < E1 < 1) the solution with the incident condition,

Q ¼ Q1 � 1;P ¼ P1 < 0 at t ¼ t1, is given by

Qðt � t1; t1;Q1;P1Þ ¼ sinh�1ðlcoshð
ffiffiffiffiffiffiffiffi
2E1

p
ðt � t0ÞÞÞ ð11Þ

where the parameter l is defined by

l �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=E1 � 1

p
ð12Þ

At t ¼ t0 the trajectory hits the turning point given by

Qturn ¼ Qðt0 � t1Þ ¼ log½lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
� ð13Þ

The lapse time t0 � t1, which is the time for the trajectory to spend until the

turning point, is represented by

t0 � t1 ¼ ðQ1 � log lÞ=
ffiffiffiffiffiffiffiffi
2E1

p
� t01 ð14Þ

B. Singularities and Integration Paths of Classical Trajectories

The solution has singularities whose position on the complexified lapse time

plane (i.e., s-plane) is decided by

Sg�n ¼ Q1 � log l� sinh�1ð1=lÞ� 	
=

ffiffiffiffiffiffiffiffi
2E1

p
þ ið�nþ 1=2Þ�tI=2 ð15Þ

where �tI is defined by �tI � 2p=
ffiffiffiffiffiffiffiffi
2E1

p
. Note that the singularities Sg�n are just

lapse times at which Qsg ¼ ipðmþ 1=2Þ, where the potential V0 diverges. It can

easily be checked that the branch point of the type ðs� Sg�n Þ1=2 appears when the
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trajectory hits Q ¼ Qsg, because the classical equation of motion is asympto-

tically given by d2Q=dt2 / ðQ� QsgÞ�3
close to Qsg. Also note that if the initial

position Q1 and momentum P1 are fixed, the singularities on the s-plane are

independent of t1, because of the time-translational symmetry in autonomous

systems.

As shown in Fig. 2a, the singularities are categorized into two groups,

namely, Sg�n and Sgþn . Sg
�
n and Sgþn are located periodically with the interval

�tI=2 on the two lines parallel to the Imfsg axis, respectively. The interval of

the two lines—that is, the distance between Sgþn and Sg�n —is decided by the
2ffiffiffiffiffiffi
2E1

p sinh�1ð1=lÞ. The point t01, at which the trajectory hits the turning point, is

located at the middle of the two lines.

Figure 2a also shows how the physically significant integration paths are

going among the singularities in topologically different ways. In a practical

calculation, we can take a path homotopic to one of such representative

integration paths fC�
n g. In Fig. 2b, we see the complex trajectories ðQðtÞ;PðtÞÞ

Figure 2. Relation between the integration paths and the complexified trajectories of the

unperturbed barrier system. (a) Singularities and representative integration paths on the s-plane.

(b) Complex trajectories obtained along various integration paths depicted in (a) for the case of

E1 < 1. The instanton trajectory in the classically forbidden region in (b), as well as the

corresponding integration path in (a), is indicated by a hatched halo around it.
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which are obtained along various integration paths in Fig. 2a for the case of

E1 < 1.

Each path C�
n defines a branch of the solution. The trajectory starting at the

initial point ðQ1;P1Þ hits the classical turning point at s ¼ t01; after that, it

rotates along a complex elliptic orbit, in the classically forbidden region of the

potential barrier. Such a complex bouncing trajectory is often celled an

instanton. After rotating along the ellipse n=2 times, the trajectory is reflected

back to Q ¼ þ1 for even integration paths, Cþ
n ðn ¼ 2mÞ, and tunnels toward

Q ¼ �1 for odd integration paths, Cþ
n ðn ¼ 2m� 1Þ.

Therefore, the existence of singularities leads to an infinite number of

Riemann sheets on the complex lapse time plane, half of which contribute to

the reflection and the other half of which yield transmissive components. The

destination of the trajectory—that is, which side is it ending up, transmissive

side or the reflective side?—changes depending on a choice of integration paths.

It should be noted that all the trajectories with odd integration paths contri-

bute to the tunneling component, but the major contribution to it comes from the

trajectory with the path Cþ
1 , because more round trips along the complex ellipse

result in a larger imaginary part of the classical action. Thus, contributions of the

other integration paths Cþ
2m�1ðm > 1Þ are extremely small and negli-

gible. It should be also noted that the trajectories with the integration paths

C�
n disagree with the causality and make unphysical contributions, but such

contributions are removed by the proper treatment of the Stokes phenomenon

(for details, see Ref. 22).

IV. SEMICLASSICAL RESULTS

A. Effects of the Periodic Perturbation

We would like to return to the oscillating Eckart barrier. With simple intuitive

consideration, we can predict what happens, if a periodically perturbation is

applied to the system. In the following argument, we assume that the perturbation

is sufficiently slow, namely the low-frequency limit, in which the fringed

tunneling is typically observed.

Let’s consider the effect of perturbation on classical trajectories in the complex

domain. Since the perturbation changes periodically in the real-time domain,

namely a sinusoidal function, the effective perturbation strength in the complex-

time domain is amplified exponentially; that is, E ! EeojImtj (see Fig. 3b).

Even when the input energy E1 is small enough so that the particle cannot go

through the barrier by a real trajectory, we can always find a particular initial

time t1c, taking suitable choice of its imaginary depth and real initial phase, at

which the trajectory hits the top of barrier. Therefore, the trajectory starting at

t1c is a trajectory on the complexified stable manifold of the unstable periodic
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orbit at the top of the barrier. It means that the initial search plane t1 intersects

with the stable manifold in the complex domain, even if the intersection

disappears in the real domain. Let’s call t1c ‘‘the critical point’’ [24, 25]. It is

found numerically that the critical point t1c is always found in the initial time

plane t1 independent of the strength of the perturbation E.
As the perturbation strength becomes smaller, the ‘‘critical point’’ t1c goes

into the deeper imaginary side. Therefore, if the strength of perturbation is taken

small enough, a trajectory with the major integration path Cþ
1 is not affected by

the critical point. Let’s call such a situation ‘‘weak perturbation regime.’’ In the

weak perturbation regime, the tunneling trajectory is well approximated by the

instanton (see the middle figure of Fig. 3c).

However, if E is large enough, then the critical point t1c moves toward the real

axis and may drastically disturb the original nature of the trajectories defined

along the major integration path Cþ
1 (see the bottom of Fig. 3c). This is a typical

Figure 3. Effects of the periodic perturbation. (a) Integration path on the complex time plane.

(b) Deformation of the potential by the periodical perturbation. In the case where Im t ¼ Im t1 6¼ 0—

that is, the part of integration path indicated by the same broken line in (a)—the oscillation of

complexified potential is amplified exponentially as shown by the broken lines. (c) Change of the

tunneling trajectory with increase of the perturbation strength. In the bottom figure, a trajectory

stating at t1 in the close neighborhood of t1c is drawn.
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situation generically observed in the strong perturbation regime, in which the

fringed patterns on the tunneling component are observed.

B. Local Structure of M-Set Near the Critical Point

When the observatory time t2 is fixed, we can decide the M-set defined by

Eq. (9). Concerning the M-set, there exists a remarkable fact that the critical

point t1c is always accompanied by a characteristic part of the branch passing

very close to it, sayMc, which plays an important role in the construction of the

fringed wave pattern on the tunneling component with the semiclassical formula.

Let’s see a numerical example. Figure 4a gives a blown-up picture of M-set

near a certain critical point. We can find anMc running very close to the critical

point t1c.

A remarkable feature of the critical point is that the singularities Sgþn as

functions of t1 logarithmically diverge at the critical point t1 ¼ t1c. Figure 4b

shows the movement of singularities on the lapse time plane together with the

integration path Cþ
1 . When the initial time t1 is at the point 1, the topology of the

integration path is essentially the same as the case of E1 < 1 in the static limit,

Figure 4. Switching of the path topology induced by the divergence movement of the

singularities Sgþn at a critical point under a strong perturbation. The parameters are the same as in

Fig. 1. (a) Blow-up picture of the vicinity of the critical point t1c, which corresponds to the first

critical point in Fig. 5a. The characteristic subsetMc (branch 1 in Fig. 5a) exists passing close to the

critical point t1c. (b) The singularities Sgþn simultaneously shift down as 1 ! 2 ! 3 detouring the

integration path Cþ
1 on the lapse time plane, when t1 varies as 1 ! 2 ! 3 along Mc on the t1-plane

in (a).
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and the trajectory reaches the transmissive side at t ¼ t2. Moving the initial time

t1 along Mc from point 1 to point 3, the singularities Sgþn simultaneously shift

down avoiding the integration path because of their own divergence behavior. It

means that although the integration path Cþ
1 is fixed, its topological nature with

respect to the singularities changes from transmissive one to reflective one

during that process, thereby inducing the drastic change in the destination of

the trajectory. Therefore, the end of the trajectory traverses the phase space

from the transmissive quadrant (P2 < 0;Q2 < 0) to the reflective one (P2 > 0;
Q2 > 0), as t1 passes close to t1c along Mc. The corresponding L-set, namely

the set of end points of the trajectories with their initial points on Mc, should

form a merged object composed of the tunneling and reflective branches, which

are defined along the topologically different paths Cþ
1 and Cþ

2 in the unperturbed

limit, respectively. It should be remarked that in the rigorous sense the end point

of the integration path moves with t1, namely s ¼ t2 � t1ðt2 fixedÞ, but its
movement is negligible, because the distance between points 1 and 3 is

negligibly small.

C. Global Structure of Branches Contributing to the Fringed Tunneling

In order to understand the relation between the critical point and fringed tun-

neling in terms of the semiclassical method, we have to see the global picture of

the M-set and L-set. Figure 5a shows a typical example of the M-set obtained

in the strong perturbation regime, and Fig. 5b is the correspondingL-set. On the

t1-plane in Fig. 5a, three critical points each indicated by an X appear perio-

dically at the period of the perturbation Tð¼ 2p=oÞ due to the periodicity of the

perturbation. Let’s call them the first, second, and third critical points in order

from right to left. The structure of anM-set is very complicated, but we can find

that branch 1 is passing very close to the first critical point. The first critical point

and branch 1, respectively, correspond to t1c and Mc in Fig. 4a. Branches 2 and

5 are also running very close to the second and third critical points, respectively.

Branch 5 is too small in this scale to identify, but it is confirmed in a blown-up

picture that it exists very close to the third critical point, which is not, however,

shown here.

In the L-set, all these branches, 1, 2, and 5, stretch over the reflective

quadrant ðP > 0;Q > 0Þ and the transmissive quadrant ðP < 0;Q < 0Þ, pass-
ing close to the origin. Then, as discussed above, they can be interpreted as the

merged object composed of the tunneling and reflective branches of the

unperturbed system. Furthermore, a part of such a characteristic branch follows,

to some extent, the real unstable manifold of the unstable periodic orbit at the

origin going into both transmissive and reflective sides. The length in which

each branch extends along the real unstable manifold becomes longer and

longer while increasing the lapse time—that is, with increase of the branch

number.
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It should be noted that the parts of branches drawn by broken lines indicate

noncontributing parts that make unphysical contributions, and they can be re-

moved by the proper treatment of the Stokes phenomenon. After such a

procedure, we can sum up all the contributions from the physically legal parts of

the branches in the M-set. We find the probabilistic weights of the branches

together with the total probability obtained by the sum formula [Eq. (6)] in

Fig. 5c. In Fig. 5d, the tunneling probability obtained by the sum formula is

Figure 5. Results of the semiclassical calculation in the strong perturbation regime. The

parameters are the same as in Fig. 1. (a) M-set. The critical points are indicated by �. (b) L-set

projected onto the real plane. The characteristic branches 1, 2, and 5 are drawn by thick lines. (c)

The semiclassical probability amplitude (thick line) and weights of the branches (thin lines). All the

probabilistic weights are multiplied by 10�4 for convenience of comparison with the total

probability. (d) The semiclassical probability amplitude (thick line) compared with the fully

quantum probability amplitude (broken line).
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compared with the result of the purely quantum computation. The semiclassical

method reproduces well the tunneling wave including the complicated fringed

patterns in the ranges indicated by A and B.

The appearance of fringes on the tunneling component is the result of a

simultaneous contribution of multiple tunneling trajectories to the sum formula.

Indeed, in theL-set (Fig. 5b), we can find that two or more branches exist in the

ranges of the fringed tunneling (e.g., 1, 2 for A and 3, 4, 5 for B), and these

groups of branches have nearly equal weights in the regions A and B, res-

pectively(see Fig. 5c). The additional branches 3 and 4 contributing to the fringe

are considered as ones bifurcated from the branch 2 in time evolution, and form

a chain structure with 2 and 5.

Therefore, the series of branches 1, 2, 5 respectively associated with the first,

second, and third critical points seems to play an important role in the cons-

truction of interference fringes on the tunneling component. In the L-set, they

traverse the phase space and thus contribute simultaneously to the wave matrix

forming the remarkable fringe pattern on the tunneling wavefunction.

V. THEORETICAL ANALYSES

A. Brief Sketch of Our Analyses

In order to clarify the underlying classical mechanism of the fringed tunneling,

we developed theoretical analyses in the low-frequency regime based on a

complex adiabatic solution [25], together with the Melnikov method extended to

the complex domain [25].

Some important facts about the critical point and the branch associated with

it, which are numerically observed, can be proven with the Melnikov method

and the adiabatic solution in the low-frequency regime. They are summarized as

follows [25]:

1. The intersection between the complexified stable manifold and the inci-

dent beam set I—that is, fQ;P; t1jQ ¼ Q1;P ¼ P1; t1 2 Cg—exists at

an arbitrary perturbation strength, and if t1c is the intersection, then t1cþ
T is also intersection because of the periodic nature of the perturbation.

2a. The intersection t1c becomes the critical point of the singularities Sgþn in

the sense that in the limit of t1 ! t1c the singularity diverges as

Sgþn � �logðt1 � t1cÞ=
ffiffiffi
2

p
.

2b. A branch of the M-set passing close to a critical point, say Mc,

always exists.

3. As t1 is moved along Mc, the end point of the trajectory ðQðt2 � t1; t1Þ;
Pðt2 � t1; t1ÞÞ traverses continuously but abruptly from the transmissive

side to reflective side (and vice versa) passing close to the origin O.

classical mechanism of multidimensional barrier tunneling 417



As shown in Appendix B, item 1 is proven by using the Melnikov method. It

means that the heteroclinic-like entanglement between the complexified stable

manifold and the initial time plane t1 occurs.

Items 2a and 2b are justified by using the adiabatic solution [25]. Indeed, the

adiabatic solution enables us to prove the anomalous behavior of the singu-

larities Sgþn at the critical point (i.e., item 2a), as well as the local structure of

the characteristic branch Mc near the critical point (i.e., item 2b).

Furthermore, by using the adiabatic solution with the items 2a and 2b proven,

we can explain the remarkable feature of the characteristic branches in the

L-set, (i.e., item 3), which is observed numerically [25]. Especially the topo-

logical switching of the integration path induced by the divergence behavior of

the singularities Sgþn at the critical point (i.e., item 2a) is the key to under-

standing why and how the characteristic branches dominantly contributing to

the fringed tunneling are generated in the strong perturbation regime.

Therefore, all the important properties concerning with the critical point and

the associated branch, which are numerically observed, can be explained

analytically. However, we won’t show details of the proofs of items 2a,2b and 3,

since they are rather technically complicated and understanding them requires

readers to make an additional effort. For one who wants to see the details, refer

to Ref. 25.

In the following subsections, we instead concentrate on explaining, by using

the adiabatic solution, geometrical features of the complex trajectories contri-

buting to the fringed tunneling, which clarifies what is the chaotic tunneling

trajectory.

B. Low-Frequency Approximation

First we briefly introduce the adiabatic solution in the low-frequency limit, which

was developed in our previous work [25]. The classical equation of the motion is

given by

€QQ ¼ 2aðtÞ sinhQ

cosh3 Q
ð16Þ

and the equation of the energy is also obtained as follows:

_EE ¼ qH
qt

¼ _aaðtÞ
cosh2 Q

¼ _aaðtÞhðtÞ ð17Þ

where the function aðtÞ and hðtÞ are, respectively, defined by

aðtÞ � 1þ E sinot; hðtÞ � 1

cosh2 Q
ð18Þ
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In order that the formal solution

sinhQ ¼ YðtÞ ¼ rðtÞ coshfðtÞ ð19Þ

becomes the solution of Eq. (16), fðtÞ and rðtÞ should satisfy the following

equation:

d

dt
fr2 _ffg sinhðfÞ � ½2EðtÞ � _ff2�r2 coshðfÞ þ r€rr coshðfÞ ¼ 0 ð20Þ

If we take aðtÞ constant, the energy becomes constant and the solution satisfying

Eq. (20) gives a solution of the static barrier.

In the low-frequency limit ðo � 1 and d2rðtÞ=dt2 � 0Þ, the relation given

by Eq. (20) can be reduced to two equations:

_ffðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2EðtÞ

p
ð21Þ

d

dt
frðtÞ2 _ffðtÞg ¼ 0; namely rðtÞ ¼ a

f2EðtÞg1=4
ð22Þ

where a is a certain constant of motion, which plays an important role in analyses

in the following.

We put the initial time of the adiabatic solution t0 in the scattering region, so

that fðt0Þ ¼ 0. For the unperturbed system, t0 indicates the time at which the

classical trajectory reaches the turning point. At t ¼ t0, the energy E0 ¼ Eðt0Þ
satisfies the relation

E0 ¼ aðt0Þ=f1þ a2=
ffiffiffiffiffiffiffiffi
2E0

p
g ð23Þ

From the numerical results in Section IV, it is considered that the complex

trajectories contributing to the fringed tunneling pass close to the unstable

periodic orbit at the origin and so the energy varies near the origin as

EðtÞ � aðt0Þ þ small correction. Then, it is quite natural to assume that a is a

smallness parameter.

To clarify the physical meaning of the parameter a and to provide explicit

forms of EðtÞ and fðtÞ, it is convenient to introduce the characteristic times

called ‘‘gates’’ m	. As shown in Fig. 6, the gates m	 are put at the middle points

of two adjacent singularities, tsg ¼ Sg	n þ t1 and t0sg ¼ Sg	nþ1 þ t1, respectively.

Thus, m	 respectively play the entrance and exit gates of the scattering region.

We can assume that the integration path always passes through the gates m	 as

shown in Fig. 6a. Roughly speaking, the function hðtÞ takes nonzero value only

between the two gates, and the particle travels freely at a constant momentum

outside the gates (see Fig. 6b).
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From the feature of hðtÞ, the positions of gates m� should be defined by

d2hðtÞ=df2jt¼m�
¼ 0 ð24Þ

and fðm�Þ are respectively related to rðm�Þ as follows:

e�fðm�Þ ¼ 2ein�p½1þ rðm�Þ2=4þ Oðjaj4Þ�=rðm�Þ ð25Þ

where n� are integers decided by the choice of the integration path—that is, the

imaginary depths of the gates mþ and m�.
Integrating the energy gain equation (17) by using the lowest-order approxi-

mation, which is essentially the same as the Melnikov method, gives the

Figure 6. Behavior of the function hðtÞ near the gate m	. (a) Positions of the gates m	 on

the complex t plane. An integration path Cþ
n passing through the gates m	 is also drawn.

(b) Re hðtÞ along the path Cþ
n . Note that if jaj � 1, then jRe hðtÞj � jIm hðtÞj (c) Re _hhðtÞ along the

path Cþ
n .
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expression of the time-dependent energy,

EðtÞ ¼
aðm�Þhðt0Þ ¼ E1 ðif Re t � Re m�Þ
aðtÞhðt0Þ ðif Re m� � Re t � Re mþÞ
aðmþÞhðt0Þ ¼ E2 ðif Re t � Re mþÞ

8><
>: ð26Þ

From the initial condition (Q ¼ Q1ð� 1Þ;P ¼ P1 ¼ � ffiffiffiffiffiffiffiffi
2E1

p
< 0, at t ¼ t1),

we can obtain the following relations:

E1 ¼ P2
1=2 ¼ aðm�Þhðt0Þ ¼ Eðm�Þ � aðm�Þ½1� a2=

ffiffiffi
2

p
� ð27Þ

Q1 ¼ log 2þ a2 4
ffiffiffiffiffiffiffiffi
2E1

pn o�1

�
ffiffiffiffiffiffiffiffi
2E1

p
ðt1 � m�Þ ð28Þ

Then the initial energy E1 is decided as a function of the input gate m� together

with the parameter a, and the initial coordinate Q1 is defined from m�, t1 and a.
Since the observables E1 and Q1 are fixed at real values, Eqs. (27) and

(28) are reduced into a relation that represents the parameter a as a function of

m� or t1:

a2 ¼ A1ðt1 � t1cÞ ¼ A2ðm� � m�cÞ ð29Þ

where t1c and m�c respectively denote t1 and m� at a ¼ 0, and

A1 � A2 ¼
ffiffiffi
2

p
aðm�cÞf g�1daðm�Þ

dm�
jm�¼m�c

ð30Þ

As will be shown in the following, the solution at a ¼ 0 gives a trajectory on the

complexified stable manifold, and t1c is nothing more than the critical point.

Then, the significance of the smallness parameter a2 is clarified in terms of the

boundary condition.

For convenience of the following arguments, we introduce a different phase

function j defined by

jðtÞ ¼ fðtÞ þ log 2� log að2EðtÞÞ�1=4
n o

ð31Þ

It is important that j takes, at t ¼ m�, an almost zero value,

jðm�Þ ¼ �a2 4
ffiffiffiffiffiffiffiffi
2E1

pn o�1

þOðEoÞ � 0 ð32Þ

which makes the following analyses easier.

classical mechanism of multidimensional barrier tunneling 421



Applying the input-boundary condition for the formal solution, we can

derive, after some tedious calculations, an explicit expression of j:

jðtÞ ¼

ffiffiffiffiffiffiffiffi
2E1

p ðt � t1Þ � Q1 þ log 2þ OðEoÞ
ðif Re t 
 Re m�ÞÐ t

m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aðsÞhðt0Þ

p
dsþ 1

4
log

EðtÞ
Eðm�Þ


 �
þ jðm�Þ þ OðEoÞ

ðif Re m� 
 Re t 
 Re mþÞffiffiffiffiffiffiffiffi
2E2

p ðt � mþÞ þ 1
4
log

EðtÞ
EðmþÞ


 �
þ jðmþÞ þ OðEoÞ

ðif Re t � Re mþÞ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð33Þ

By using jðtÞ and EðtÞ obtained above with the parameter a, the adiabatic

solution is given by

sinhQðtÞ ¼ a2ejðtÞ=ð4
ffiffiffiffiffiffiffiffiffiffiffi
2EðtÞ

p
Þ þ e�jðtÞ ð34Þ

PðtÞ ¼ sechQðtÞ½a2ejðtÞ=4�
ffiffiffiffiffiffiffiffiffiffiffi
2EðtÞ

p
e�jðtÞ� ð35Þ

where the first term on the right-hand side of both equations indicates an

unstable part with order a2 and the second term is a stable part. Then, a ¼ 0

gives a solution for the stable manifold of the unstable periodic orbit at the

origin.

As mentioned in the previous subsection, the adiabatic solution (34) together

with the Melnikov method enables us to prove items 1, 2a, 2b, and 3. Then the

significant properties of tunneling trajectories and of the branches consisting of

them, which are numerically observed, can be explained in terms of the adia-

batic approximation associated with the Melnikov method.

C. Contributions of Multiple Characteristic Trajectories

to the Fringed Tunneling

Let’s consider the geometrical feature of the solution obtained. Since f ¼ 0 and

j � �log a at t ¼ t0, then the unstable term balances, in order, with the stable

term in both Eqs. (34) and (35). As a result, the stable term overcomes the

unstable term in the region Re t � Re t0, although the unstable term dominates

over the other in the region Re t � Re t0.

Therefore, we can summarize the feature of the solution as follows.
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4a. In the first stage of time evolution, the trajectory with t1 in a small

neighborhood of t1c traces the particular trajectory on the complexified

stable manifold, which starts at ðQ ¼ Q1;P ¼ P1; t ¼ t1cða ¼ 0ÞÞ:

ðQðtÞ;PðtÞÞ ¼ ðsinh�1fe�jðtÞg; �sechQðtÞ
ffiffiffiffiffiffiffiffiffiffiffi
2EðtÞ

p
e�jðtÞÞ ð36Þ

4b. In the next stage, the trajectory swings across the scattering region

guided by the stable and unstable manifolds.

4c. In the final stage, the trajectory is scattered along the complexified

unstable manifold.

4d. The tunneling trajectories selected to satisfy the output boundary

condition, (i.e., t1 2 Mc) move close to the real plane sticking to the

unstable manifold.

The last item coming from the output boundary condition can actually be

proven by putting the output boundary condition to the adiabatic solution [25].

From item 2b, the characteristic M-set (i.e., Mc) passes very close to the

critical point and items 3 and 4d signify that the corresponding L-set

transverses the phase space from the transmissive quadrant to the reflective

quadrant along the real unstable manifold.

Now, we should remember that the critical points appear periodically on

the initial time plane t1 due to the periodicity of the perturbation (see Fig. 7a).

In Fig. 7a, the critical points are assigned by a integer n such that t
ðnÞ
1c ¼

t
ð0Þ
1c � nT ðn 2 NÞ, where t

ð0Þ
1c is a properly chosen critical point. Each critical

point t
ðnÞ
1c is accompanied by a characteristic branch MðnÞ

c . The lapse time of the

trajectory stating at a point on MðnÞ
c is estimated by

s � t2 � t
ðnÞ
1c ¼ t2 � t

ð0Þ
1c þ nT ð37Þ

It should be noted that the effective length of the branch in the L-set, in

which it is well extended along the unstable manifold, becomes longer and

longer as increasing the lapse time, namely with increase of the branch number

n. As a result, an infinite number of branches of the L-set each corresponding

to a different MðnÞ
c with a sufficiently large number n are passing through the

region of the fringed tunneling.

The imaginary part of the classical action defined by Eq. (7)—that is,

Im S�—is the primary factor controlling the weight of the contributing

trajectory, and it is almost the same for any choice of the initial point, t1 2 MðnÞ
c ,

where n is arbitrary. This is because every trajectory traces the same orbit in the

phase space, ðQ;P; tðmod TÞÞ, guided by the complexified stable manifold,

until it approaches to the real plane; thus Im S� gained in this process is almost
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the same. It indicates a possibility that for given t2 and Q2, an infinite number of

trajectories may simultaneously contribute to the semiclassical wave matrix (6).

However, the numerical result shows that only a few of branches practically

contributes to the tunneling probability in each region of fringed tunneling. It

means that there is an additional factor making difference in weights of the

contributing branches.

Indeed, the difference in weights comes from the amplitude factor of the

semiclassical wave matrix, which is given from Eqs. (6) and (7) by

jq2S�=qE1qQ2j1=2 ¼ jqQ2ðt2; t1;P1;Q1Þ=qt1j�1=2

¼ j4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eðt2Þ

p
coshðQ2Þe�jðt2Þ=A1j1=2 ð38Þ

The lapse time increases with n as shown in Eq. (37); thus from its expres-

sion given by Eq. (33), j is roughly proportional to the lapse time. Therefore,

Figure 7. A sketch: How do multiple branches contribute to the interference fringe. (a)

Periodicity of critical points in t1 plane, each of which is accompanied by a branches passing close to

it. (b) The branches in theL-set. The fringed patterns are created by the interference of the branches

in the hatched regions.
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for a large n, namely for the trajectory with a long lapse time, the amplitude

factor decays exponentially as jq2S�=qE1qQ2j1=2 / e�nT=2. Consequently,

among an infinite number of the possibly contributing tunneling trajectories,

only the finite number of MðnÞ
c with a relatively small n, namely a short lapse

time, actually contribute to the tunneling probability at the observatory

coordinate Q2.

As shown in the numerical calculation, the interference of the characteristic

branches 1 and 2 makes the fringed pattern in the region A, while branch 5

together with branches 3 and 4, which are bifurcated from branch 2 in time

evolution, contributes in region B. Hence, it is confirmed that the branches

associated with the critical points have a significant effect on the construction of

the fringed pattern, and we come to a whole understanding of underlying

mechanism of the fringed tunneling.

D. Characteristic Perturbation Strength

From the above argument it is clarified that the tunneling mechanism in the

strong perturbation regime, which yields the fringes on the tunneling component,

is quite different from the (perturbed) instanton mechanism of the tunneling in

the weak perturbation regime [22,23]. It is worthwhile to discuss how the

transition of the tunneling mechanism occurs as the perturbation strength is

increased.

As was stressed in Sections IV.A and V.A, there always exist the critical

points t1c, even if the strength of the perturbation is arbitrarily small. Such

critical points, however, have a large imaginary component and are located so

deeply in the imaginary domain of the complex plane that they do not affect the

dominating instanton branches with the integration path Cþ
1 . As the perturbation

increases, the imaginary part of the critical points decreases, thereby finally

going across the dominant branches with the path Cþ
1 . This is the case that

the structure of the branches are broken up and reconstructed by the influence

of the critical points.

Using the above criterion, it is possible to estimate the characteristic value

of the perturbation strength, above which the critical point significantly influ-

ences the dominant branches resulting in the fringed tunneling. The imaginary

depth of the dominant branches of the M-set is roughly estimated as

jImðt2 � t1Þj � p=
ffiffiffi
2

p
. Therefore, the characteristic value E ¼ Ec is the value

at which the critical point t1c passing through the border of the Riemann

sheets of the dominant and next order branches, whose imaginary depth is esti-

mated as � 3p=2
ffiffiffi
2

p
:

jIm t1cj � 3p=2
ffiffiffi
2

p
ð39Þ
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Substituting the estimation of Im t1c by the Melnikov method [Eq. (B.11)] into

Eq. (39), we get the characteristic perturbation strength

Ec � ð1� E1Þ=fð1� wðoÞÞ coshð3op=2
ffiffiffi
2

p
Þg ð40Þ

above which the fringed tunneling may be observed. In other words, if E is given,
the fringed tunneling is observed above the characteristic energy

E1c ¼ 1� Efð1� wðoÞÞ coshð3op=2
ffiffiffi
2

p
Þg ð41Þ

Sufficiently below it the one-dimensional instanton picture works well.

Finally we compare in Fig. 8 the above theoretical value of Ec with the

numerical Ec, above which the tunneling component exhibits a definite fringed

pattern. The numerical Ec is given at three relatively small os. The agreement of

the theory with the numerical data seems to be satisfactory.

VI. SUMMARY

In the present chapter, we have pursued the underlying classical mechanism of

the multidimensional (dynamical) tunneling in classically nonintegrable systems

by taking the periodically perturbed Eckart potential as a simple example [36]. In

the strong perturbation regime, the remarkable tunneling phenomenon, referred

to as fringed tunneling, is observed, and we have elucidated its classical

Figure 8. The characteristic strength E versus o. The full line indicates the theoretical estimate

of the characteristic strength Ec as a function of o, while the values of Ec that are numerically decided

at three relatively small os are marked by �.

426 kin’ya takahashi and kensuke s. ikeda



mechanism by using some analytical tools—that is, the adiabatic solution of

classical equation of motion in the low-frequency limit as well as the Melnikov

method extended into the complex domain.

The remarkable fact that we found through the numerical and theoretical

analyses is that the nature of trajectories contributing to the fringed tunneling is

essentially different from that of instanton, which still provides a good tunneling

picture as long as the system of multidimensions is integrable or extremely

nearly integrable. For integrable or very nearly integrable systems, which

correspond to the weak perturbation regime in our case, the tunneling trajectory

is well approximated by the instanton. However, the trajectories contributing

to the fringed tunneling in the strong perturbation regime no longer obey the

instanton picture.

Indeed they are trajectories guided by the complexified stable and unstable

manifolds: The trajectories that have their initial points in a very short distance

to the complexified stable manifold make major contributions to the fringed

tunneling; then they are approaching, in time evolution, the unstable periodic

orbit at the top of the barrier, and they are finally scattered toward an asymptotic

region along the (real) unstable manifold. In other words, the property of

such trajectories is subject to the complexified heteroclinic-like entanglement

between the complexified stable manifold and the incident wave manifold that

is formed by the trajectories satisfying the input boundary condition of the

semiclassical wave matrix. In this sense, the trajectories contributing to the

fringed tunneling are regarded as the simplest case of chaotic tunneling trajec-

tories in general multidimensional systems.

The heteroclinic point appears as a critical point t1c on the initial time plane

t1. For the periodicity of the perturbation, the critical points t1c actually appear

periodically at the period of perturbation T . The initial points of trajectories

making major contributions to the fringed tunneling form the characteristic

branches, say Mc, which repeatedly appear in the M-set, each passing very

close to an individually different critical point t1c. Simultaneous contributions of

such periodically appearing branches make the remarkable fringed patterns on

the tunneling component. The weight of each contributing branch is appro-

priately calculated with the semiclassical formula.

In time-continuous systems extended to complex domain, the classical

trajectory becomes a function of complex time and generally has singularities.

The divergence behavior of the singularities is the important nature associated

with the tunneling trajectories contributing to the fringed tunneling. In the

present chapter, we have briefly explained how important a role the critical

behavior of singularities of trajectories on the stable (and unstable) manifold(s)

does play in creation of the geometrically merged object—that is, the

characteristic branch embodied in the L-set, which is composed of the

topologically different branches in the unperturbed limit (i.e., tunneling and
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reflective branches). Unfortunately, we did not fully discuss this problem in the

present chapter. For one who wishes to understand more detail mechanism, we

refer to Ref. 25, which provides a whole understanding of underlying

mechanism of the fringed tunneling.

It is very important to point out that similar tunneling phenomena are quite

commonly observed not only for periodically perturbed 1D-barrier systems but

also for 2D-barrier systems with a harmonic channel. Thus, we can naturally

expect that a similar complexified heteroclinic-like entanglement between the

incident beam set and the complexified stable manifold generally occurs for

1.5D and 2D barrier systems [37,38] and it changes the nature of tunneling

trajectories, from instanton to chaotic tunneling trajectory, thereby yielding to

the fringed tunneling.

It is worthwhile to mention the characteristic dynamical process commonly

observed in chaotic tunneling phenomena of quantum maps [16,18]. That is, the

physical interpretation of the tunneling process in map systems seems to provide

a common picture similar to that of multidimensional barrier systems at least on

the phenomenological level: The major contributing tunneling trajectories obey

the stable and unstable manifolds in the complex phase space. However, the

mathematical structure of the tunneling mechanism is quite different in the

quantum map models, because the quantum map has no continuous time and

thus has no counterparts of the time singularities and of the multiple-Riemann

sheets associated with them. Such a difference in the mathematical structure is a

real obstacle to discussing in terms of semiclassical method the correspondence

in the tunneling phenomena between time-continuous and map systems. For

example, the presence of a complex-domain chaos (i.e., homoclinic tangle in

complex phase space) and its relationship to the predominant tunneling

trajectories are remarkable facts clarified just by using the Gaussian map

[16,17]. Such a fully chaotic dynamical structure underlying the new tunnel-

ing mechanism is the issue that still remains inaccessible by the time-continuous

system. It is strongly desired to clarify the similarities and differences

between time-continuous systems and maps, as well as to construct a compre-

hensive story that gives a global aspect on the problems of multidimensional

tunneling.

APPENDIX A: FRINGED TUNNELING

IN A 2D BARRIER SYSTEM

An example of 2D systems for which fringed tunneling similar to that of the

periodically perturbed 1D barrier is observed is given by [24,26]

HtotðQ;P; q; pÞ ¼ 1
2
P2 þ V0ðQÞ þ bv2ðQ; qÞ þ Hchðq; pÞ ðA:1Þ
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where Hch is the channel Hamiltonian,

Hchðq; pÞ ¼ p2=2þ o2q2=2 ðA:2Þ

and the potential terms are given by

V0ðQÞ ¼ sech2Q; v2ðQ; qÞ ¼ q sech2Q ðA:3Þ

The incident plane wave coming from Q ¼ þ1 with a constant momentum

P ¼ P1 < 0 along the reaction path and with a given quantum number n1 of the

channel eigenstate is given by

Incident wave / expðiP1Q=�hÞwn1ðqÞ ðQ ! 1Þ ðA:4Þ

where wn1 is an eigenstate of Hch with the quantum number n1. For such a

incident condition, a scattering eigenstate �P1;n1ðQ; qÞ specified by P1 and n1 is

obtained. Introducing the classical action and angle of the harmonic oscillator

(I; y), the Hamiltonian may be written by

HtotðQ;P; y; IÞ ¼ 1
2
P2 þ V0ðQÞ þ bv2ðQ; y; IÞ þ oI ðA:5Þ

The numerical results of the pure quantum calculation are shown in Fig. A.1,

which gives the quantum probability in the phase-represented scattering

eigenstate that is defined by

hQ; yj�P1;n1i ¼
ð
dqhqj yi��P1;n1ðQ; qÞ ðA:6Þ

where hqjyi denotes the phase eigenstate [24,26,39],

hqjyi ¼ lim
M!1

XM
n¼ 0

einywnðqÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 1

p ðA:7Þ

The effective strength of the interaction between the reaction and channel

coordinates increases with the quantum number n1 of the input channel, because

the strength of interaction is proportional to the channel coordinate q. At a small

quantum number n1 ¼ 4, namely when the effective strength of the interaction is

small, the tunneling wave component drawn by broken line forms a regular

spatial oscillation. On the other hand, at an strong coupling case with n1 ¼ 71, it

is observed that the complicated fringes are superposed on the simple spatial

oscillation in the tunneling component. It is nothing more than the fringed
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tunneling. Therefore, the tunneling phenomena observed in the 2D system are, in

both weak and strong perturbation regimes, very similar to those of the

periodically perturbed 1D barrier system (see Fig. A.1). Why are similar

tunneling phenomena observed for 1.5D and 2D barrier systems? The answer is

as follows.

In the case that n1 is large, the corresponding classical motion of the channel

coordinate q is well approximated by a periodic motion q � E sin y (y � ot);
thus the Hamiltonian may be approximated as follows:

HtotðQ;P; y; IÞ � 1
2
P2 þ V0ðQÞ þ E sin y sech2Qþ oI ðA:8Þ

where E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1�h=o

p
b. As well known in Floquet theory [29], this approximated

Hamiltonian is equivalent to the periodically perturbed 1D barrier system whose

Hamiltonian is the same one given by Eq. (1) [24], namely,

HðQ;P;otÞ ¼ 1
2
P2 þ V0ðQÞ þ EvðQ;otÞ ðA:9Þ

where vðQ;otÞ ¼ sinot sech2Q corresponds to v2 in the 2D system.

Finally, it should be noted that the fringed tunneling in 2D systems is

observed only when the total energy beyond the potential saddle. Then real

Figure A.1. The tunneling component (Q < 0) of the phase-represented scattering eigen-

function jhQ; yj�P1 ;n1 ij2. Broken line: n1 ¼ 4. Solid line: n1 ¼ 71. o ¼ 0:3, b ¼ 0:0289, �h ¼
1000=ð3p� 210Þ, and y ¼ 0.
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classical trajectories satisfying the input condition are not restricted by the

energy potential barrier but by the invariant surface formed in phase space,

which is specified by the total energy and the quantum number of the initial

channel. Therefore it induces the dynamical tunneling.

APPENDIX B: MELNIKOV METHOD

Item 1 in Section V.A is proved by using Melnikov method which is extended

into the complex domain [25]. Suppose that the Hamiltonian is written by

HðQ;P;otÞ ¼ 1
2
P2 þ V0ðQÞ þ EvðQ;otÞ ¼ H0ðQ;PÞ þ H1ðQ; tÞ ðB:1Þ

where H0ð¼ 1
2
P2 þ V0Þ and H1ð¼ EvÞ denote the unperturbed and perturbed

parts, respectively, and also suppose that the unperturbed system has a unstable

fixed point; then it usually changes to an unstable periodic orbit when the

periodic perturbation is applied.

The energy of a trajectory on the stable manifold of the unstable periodic

orbit is given by

HðQsðt1Þ;Psðt1Þ; t1Þ ¼ HðQupsðt1Þ;Pupsðt1Þ; t1Þ þ�HM ðB:2Þ

where

�HM ¼
ðt1
1

qH1

qt
ðQs; tÞ � qH1

qt
ðQupsðtÞ;PupsðtÞ; tÞ

� �
dt ðB:3Þ

Here, ðQups;PupsÞ denotes the unstable periodic orbit, and ðQs;PsÞ also denotes

a trajectory on the stable manifold. In the limit of t going to infinity, the energy

of the trajectory ðQs;PsÞ converges to that of the unstable periodic orbit

ðQups;PupsÞ.
Under the lowest-order approximation, a trajectory on the unperturbed

stable manifold denoted by ðQs 0;Ps 0Þ takes place of ðQs;PsÞ. Actually Qs0 is

given by

Qs 0ðtÞ ¼ sinh�1ðe�
ffiffi
2

p ðt�mÞÞ ðB:4Þ

where m is a parameter defined by the initial condition, that is,

m � t1 þ ðQ1 � log 2Þ=
ffiffiffi
2

p
ðB:5Þ
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Equation (B.3) in which ðQs;PsÞ are replaced by ðQs0;Ps0Þ is nothing more than

the Melnikov function [40].

The evaluation of the Melnikov function for our system in Eq. (1), is carried

out immediately. As a result, the energy at the initial time t ¼ t1 is given as

follows:

Hðt1Þ � 1þ Eð1� wðoÞÞ sinom ðB:6Þ

where

wðoÞ � 2o
ð1
0

sinos

1þ e2
ffiffi
2

p
s
ds ðB:7Þ

Since the initial energy E1ð¼ P2
1=2Þ takes a real value, the intersection between

the stable manifold and the incident beam surface is given by

E1 ¼ P2
1=2 ¼ Re f1þ Eð1� wðoÞÞ sinomg ðB:8Þ
0 ¼ Im f1þ Eð1� wðoÞÞ sinomg ðB:9Þ

Using the definition of the parameter m given by Eq. (B.5), the intersection t1c is

decided by the above relations, (B.8) and (B.9). When E1 is considerably less

than 1, the real intersections (i.e., Im t1c ¼ Im mc ¼ 0) exist only for a sufficiently

strong perturbation strength such that E � Eth � jð1� E1Þ=ð1� wðoÞÞj, but if the
intersection is allowed to be complex, it may exist at an arbitrarily weak

perturbation strength. Indeed, the complex intersections

Re t1c ¼ Re mc � ðQ1 � log 2Þ=
ffiffiffi
2

p

¼ ð3=2þ 2nÞp=o� ðQ1 � log 2Þ=
ffiffiffi
2

p
ðB:10Þ

Im t1c ¼ Im mc ¼ o�1cosh�1 E�1ð1� E1Þ=ð1� wðoÞÞ�  ðB:11Þ

exist periodically at the interval T ¼ 2p=o, even if the real intersections

disappear in the weaker range of perturbation such that E < Eth. We comment

that the evaluation of Eq. (B.11) agrees nicely with the numerical estimation

of Im t1c.
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I. INTRODUCTION

Controlling quantum systems is one of hot topics in physics and chemistry as

illustrated in the fields of quantum information processings [1–3] and laser

control of atomic and molecular processes [4]. As for the latter, there have been

devised various control schemes: A p pulse is a simple example to induce a

transition between two eigenstates [5]. As a generalization of the p pulse or

adiabatic rapid passage [6], we can utilize the nonadiabatic transitions induced

by laser fields [7]. For more than three-level systems, the STIRAP scheme uses a

counterintuitive pulse sequence to achieve a perfect population transfer between

two eigenstates [8]. When more than two electronic states are involved in the

controlled system, we can use a pulse-timing control (Tannor–Rice) scheme to

selectively break a chemical bond on a desired potential surface by using a pump

and dump pulses with an appropriate time interval [9]. When the controlled

system has more than two pathways from an initial state to a target state,

quantummechanical interference between them can be utilized to modify the ratio

of products, which is called a coherent control (Shapiro–Brumer) scheme [10].

These control schemes are very effective for a certain class of processes but

are not versatile and ineffective for, for example, multilevel–multilevel

transitions we shall consider in this chapter. There exist several mathematical

studies that investigate controllability of general quantum mechanical systems

[11,12]. The theorem of controllability says that quantum mechanical systems

with a discrete spectrum under certain conditions have complete controllability

in the sense that an initial state can be guided to a chosen target state after some

time. Although the theorem guarantees the existence of optimal fields, it does

not tell us how to construct such a field for a given problem.

One of the method to practically design an optimal field is optimal control

theory (OCT) [12,13] or genetic algorithms [4,14]. In this chapter we focus on

the former as a theoretical vehicle. The equations derived from OCT are highly

nonlinear (and coupled), so we must solve them using some iterative

procedures. There exist some effective algorithms to carry out this procedure

numerically; however, the field thus obtained is so complicated that it is difficult

to analyze the results: What kinds of dynamical processes are involved in the

controlled dynamics? In addition, the cost of the computation becomes larger if

we want to apply OCT to realistic problems with many degrees of freedom.

Several efforts have been made to reduce computational costs; Zhu and Rabitz

[15] have introduced a noniterative algorithm for the optimal field.

On the other hand, we know that some chemical reaction systems, especially

when highly excited, exhibit quantum chaotic features [16]; that is, statistical

properties of eigenenergies and eigenvectors are very similar to those of random

matrix systems [17]. We call such systems quantum chaos systems. Researchers

have also studied how these quantum chaos systems behave under some external
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parameters [18–20]. These statistical properties of quantum chaos systems stem

from multilevel–multilevel interactions of eigenstates, which are related to the

existence of many avoided crossings [21]. Hence it is necessary to consider the

interaction between many eigenstates when we study dynamics in such a

system. Furthermore, if our purpose is to control a Gaussian wavepacket in a

quantum chaos system, the process also becomes a multilevel–multilevel

transition because a Gaussian wavepacket in such a system contains many

eigenstates. These are our motivations why we treat multilevel–multilevel

transitions and want to control them.

This chapter is organized as follows. In Section II, we show how quantum

chaos systems can be controlled under the optimal fields obtained by OCT. The

examples are a random matrix system and a quantum kicked rotor. (The former

is considered as a strong-chaos-limit case, and the latter is considered as mixed

regular-chaotic cases.) In Section III, a ‘‘coarse-grained’’ Rabi state is intro-

duced to analyze the controlled dynamics in quantum chaos systems. We

numerically obtain a smooth transition between time-dependent states, which

justifies the use of such a picture. In Section IV, we derive an analytic

expression for the optimal field under the assumption of the CG Rabi state, and

we numerically show that the field can really steer an initial state to a target state

in random matrix systems. Finally, we summarize the chapter and discuss

further aspects of controlling quantum chaos.

II. OPTIMAL CONTROL OF QUANTUM CHAOS

We study optimal control problems of quantum chaos systems. Our goal of

control is to obtain an optimal field eðtÞ that guides a quantum chaos system from

an initial state jjii at t ¼ 0 to a given target state jjf i at some specific time

t ¼ T . One such method is optimal control theory (OCT), which has been

successfully applied to atomic and molecular systems [4].

OCT is usually formulated as a variational problem under constraints as

follows: We start from the following functional used by Zhu–Botina–Rabitz [13]:

J ¼ J0 � a
ðT
0

½eðtÞ�2 dt

� 2Re hfðTÞjjf i
ðT
0

hwðtÞj q
qt

� H½eðtÞ�
i�h

jfðtÞi dt
� �

ð1Þ

The first term on the right-hand side is the squared absolute value of the final

overlap,

J0 ¼ jhfðTÞjjf ij2 ð2Þ
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The second term is the penalty term with respect to an amplitude of the external

field eðtÞ. The factor hfðTÞjjf i in the last term is introduced to decouple the

conditions for the state jfðtÞi and the inversely evolving state jwðtÞi, both of

which evolve under the Hamiltonian H½eðtÞ� [4,13]. The variation of J with

respect to jfðtÞi and jwðtÞi gives Schrödinger’s equations,

i�h
d

dt
jfðtÞi ¼ H½eðtÞ�jfðtÞi; i�h

d

dt
jwðtÞi ¼ H½eðtÞ�jwðtÞi ð3Þ

Here we impose the following boundary conditions:

jfð0Þi ¼ jjii; jwðTÞi ¼ jjf i ð4Þ

Another variation of J with respect to eðtÞ gives an expression for the external

field

eðtÞ ¼ 1

a�h
Im hfðtÞjwðtÞihwðtÞj qH½eðtÞ�

qeðtÞ jfðtÞi
� �

ð5Þ

In actual numerical calculations, we usually solve these equations with some

iteration procedure [13] because they are nonlinear with respect to jfðtÞi and
jwðtÞi. The optimal field, Eq. (5), is finally given after a local maximum of the

functional is reached.

In the following subsections, we numerically demonstrate to control

multilevel–multilevel transition problems in quantum chaos systems: One is a

random matrix system, and the other is a quantum kicked rotor.

A. Controlled Random Matrix System

The random matrix was first introduced by E. P. Wigner as a model to mimic

unknown interactions in nuclei, and it has been studied to describe statistical

natures of spectral fluctuations in quantum chaos systems [17]. Here, we

introduce a random matrix system driven by a time-dependent external field eðtÞ,
which is considered as a model of highly excited atoms or molecules under an

electromagnetic field. We write the Hamiltonian

H½eðtÞ� ¼ H0 þ eðtÞV ð6Þ

where H0 and V are N � N random matrices subject to the Gaussian Orthogonal

Ensemble (GOE), which represent generic quantum systems with time-reversal

symmetry. The matrix elements of H0 and V are scaled so that both the nearest-

neighbor spacing of eigenvalues of H0 and the variance of the off-diagonal

elements of V become unity.
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Once we fix the initial state jjii and the final state jjf i, the optimal field eðtÞ
is obtained by some numerical procedures for appropriate values of the target

time T and the penalty factor a. Though there should be many situations

corresponding to the choice of jjii and jjf i, we only consider the case where

they are Gaussian random vectors. It is defined by

jji ¼
X
j

cjjfji ð7Þ

where cj are complex numbers determined from the following Gaussian

distribution,

PðcjÞ / exp �jcjj2
� �

ð8Þ

and jfji is an orthonormal basis.1 We take this state because it is typical in a

random matrix system.

We show two numerical examples for a 64� 64 random matrix Hamiltonian:

One is the relatively short-time case with T ¼ 20 and a ¼ 1 shown in Fig. 1, and

the other is the case with T ¼ 200 and a ¼ 10 shown in Fig. 2. In both cases, we

obtain the optimal field eðtÞ after 100 iterations using the Zhu–Botina–Rabitz

(ZBR) scheme [13] with eðtÞ ¼ 0 as an initial guess of the field. The initial and

the target state is chosen as Gaussian random vectors as mentioned above. The

final overlaps are J0 ¼ 0:971 and 0:982, respectively.
One sees that the ZBR scheme is effective enough for random matrix

systems; that is, the optimal fields can be obtained even for this type of

complicated problem of multilevel–multilevel transitions. However, it seems

that the further analysis is difficult because the power spectra for the optimal

fields, Figs. 1b and 2b, are very ‘‘complex’’; that is, they contain many

frequency components.2

B. Controlled Quantum Kicked Rotor

The kicked rotor (or the standard map) is one of famous models in chaotic

dynamical systems, and it has been studied in various situations [17]. One feature

of its chaotic dynamics is the deterministic diffusion along the momentum

direction. It is also well known that if we quantize this system, this diffusion is

1In numerical studies below, we obtain such vectors with normalization after generating random

complex elements subject to the distribution.
2In the insets of Figs. 1c and 2c, we show the overlaps jhfðtÞjjf ij2 near t ¼ T in a magnified scale.

They exhibit almost the same curves in spite of the different optimal fields. This is because the

optimal field is small enough so that the dynamics is not affected in this time scale.
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Figure 1. Optimal control between

Gaussian random vectors in a 64� 64

random matrix system by the Zhu–

Botina–Rabitz scheme with T ¼ 20

and a ¼ 1. (a) The optimal field after

100 iterations; (b) its power spectrum;

(c) the optimal evolution of the squared

overlap with the target hfðtÞjjf i
�� ��2 as

well as its magnified values near the

target time in the inset; (d) the conver-

gence behavior of the overlap J0 (solid

curve) and the functional J (dashed

curve) versus the number of iteration

steps.
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Figure 2. Optimal control be-

tween Gaussian random vectors in a

64� 64 random matrix system by the

Zhu–Botina–Rabitz scheme with

T ¼ 200 and a ¼ 10. (a) The optimal

field after 100 iterations; (b) its power

spectrum; (c) the optimal evolution of

the squared overlap with the target,

hfðtÞjjf i
�� ��2 as well as its magnified

values near the target time in the inset;

(d) the convergence behavior of the

overlap J0 (solid curve) and the func-

tional J (dashed curve) versus the

number of iteration steps.

coarse-grained picture for controlling quantum chaos 441



suppressed by the effects of the wavefunction localization in momentum

space [16].

Here we employ the quantum kicked rotor as a simple model of quantum

chaos systems. The Hamiltonian of a kicked rotor is written as

HKRðtÞ ¼ p2

2
þ K

t
cos y

X1
n¼�1

dðt � ntÞ ð9Þ

where y is an angle (mod 2p), p momentum, K a kick strength, and t a

period between kicks. An external field eðtÞ is applied through the coupling

Hamiltonian

HI½eðtÞ� ¼ �mðyÞeðtÞ ð10Þ

where the dipole moment is assumed to be

mðyÞ ¼ � cosðyþ dy0Þ ð11Þ

The extra phase dy0 is introduced to break symmetry of the system. We take

dy0 ¼ p=3 in the numerical calculations throughout this chapter. The total

Hamiltonian is given by

H½eðtÞ� ¼ HKRðtÞ þ HI½eðtÞ� ð12Þ

For easiness of computation, we impose a periodic boundary condition for p

as well as y; the phase space of the corresponding classical system becomes a

two-dimensional torus [22,23]. In this case, Planck’s constant is given by

�h ¼ 2pM=tN, where p ¼ � Mp defines the periodic boundaries in the

momentum space, and N is the number of discrete points describing y and p.

In the actual calculations, we set t ¼ 1.

The kicked rotor is often described only at discrete time immediately after/

before the periodic kicks. In our control problem, however, we must represent

dynamics driven by eðtÞ between those kicks. Then, we can apply the Zhu–

Botina–Rabitz scheme as usual. According to Eq. (5), the optimal external field

is given by

eðtÞ ¼ � 1

a�h
Im hfðtÞjwðtÞihwðtÞjmðyÞjfðtÞi½ � ð13Þ

Note that because mðyÞ commutes with the unitary operator e�iK cos y=�h of a kick,

eðtÞ is obtained as a continuous function of time even at the moment of the delta

kicks.
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In Figs. 3 and 4, we show numerical results for the quantum kicked rotor3 as

in Section II.A. The system parameters are chosen to pick up a regular dynamics

(Fig. 3) and a chaotic dynamics (Fig. 4), and the others are T ¼ 400 and a ¼ 1.

The optimal field after 100 iterations for the regular case (Fig. 3a) is much

simpler than that for the chaotic case (Fig. 4a). (See also Figs. 3b and 4b.) This

is because more states are involved in the latter chaotic process.

Next we investigate the wavepacket dynamics in phase space using the

Husimi representation [24]. The initial and final states, jjii and jjf i, are chosen
as minimum uncertainty (Gaussian) packets centered at ðyi; piÞ and ðyf ; pf Þ,
respectively. In Fig. 5a, we show the result for the regular case corresponding to

Fig. 3. Optimal control is achieved for a wavepacket motion within a torus

with J0 ¼ 0:989.4 Figure 5b shows the controlled dynamics for the chaotic

case corresponding to Fig. 4. In this case, the wavepacket once spreads all over

the phase space due to the chaotic nature of the system, but it gets together at the

target time T with J0 ¼ 0:969. In both regular and chaotic cases, the ZBR–OCT

scheme works well for the quantum kicked rotor [25].

III. COARSE-GRAINED PICTURE

If we apply a resonant external field to a two-level system, we can observe a Rabi

oscillation. In such a case, the quantum state is well described by

jfðtÞi ¼ eE1t=i�hjf1i cos½j�jt� � ie�iyeE2t=i�hjf2i sin½j�jt� ð14Þ

where jf1i and jf2i (E1 and E2) are two eigenstates (eigenenergies) of the

system, j�j � je0m12j=�h is the Rabi frequency, m12 � hf1jm̂mjf2i is a matrix

element of a dipole operator m̂m, e0 is an amplitude of the field, and y is a certain

phase parameter.

In this section, we study the controlled dynamics from an initial state jjii at
t ¼ 0 to a target state jjf i at t ¼ T in a multistate quantum mechanical system

described by Eq. (6). By introducing a ‘‘coarse-grained’’ picture, which means

neglecting highly oscillating terms as the case of rotating-wave approximation

(RWA) [5] and assuming that jjii and jjf i contain many eigenstates without

any correlation between them, we show that the controlled dynamics can be

represented as a transition between a pair of time-dependent states [26].

3We use the parameters N ¼ 128 and M ¼ 7. Thus the quantum states are represented by 128

discrete points, and the range of momentum is from �7p to 7p. The value of �h ¼ 2pM=N is 0.3436.
4When the control purpose is to steer a wavepacket in a torus to another place in another torus, OCT

fails. This is because the wavepacket is trapped in one torus, and it is very hard to escape from the

torus with a weak external field.
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Figure 3. Optimal control in a

regular kicked rotor with K ¼ 1 and

�h ¼ 0:3436 by the Zhu–Botina–Rabitz

scheme with T ¼ 400 and a ¼ 1. (a) the

optimal field after 100 iterations; (b) its

power spectrum; (c) the optimal evolu-

tion of the squared overlap with the

target hfðtÞjjf i
�� ��2 as well as its magni-

fied values near the target time in the

inset; (d) the convergence behavior of

the overlap J0 (solid curve) and the

functional J (dashed curve) versus the

number of iteration steps.
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Figure 4. Optimal control in a

chaotic kicked rotor with K ¼ 7 and

�h ¼ 0:3436 by the Zhu–Botina–Rabitz

scheme with T ¼ 400 and a ¼ 1. (a)

The optimal field after 100 iterations;

(b) its power spectrum; (c) the optimal

evolution of the squared overlap with

the target, hfðtÞjjf i
�� ��2 as well as its

magnified values near the target time in

the inset; (d) the convergence behavior

of the overlap J0 (solid curve) and the

functional J (dashed curve) versus the

number of iteration steps.
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A. Coarse-Grained Rabi State and Frequency

As shown in Section II.A, the overlap in the controlled dynamics rapidly

oscillates because the system contains many states. To analyze this complicated

behavior more easily, we introduce the following two time-dependent states,

jf0ðtÞi ¼ ÛU0ðt; 0Þjjii; jw0ðtÞi ¼ ÛU0ðt; TÞjjf i ð15Þ

Figure 5. Time evolution of the Husimi distribution for quantum kicked rotors with

�h ¼ 0:3436 under an optimal field after 100 iterations. The Zhu–Botina–Rabitz scheme was used

with the penalty factor a ¼ 1 and the target time T ¼ 400. From left to right, quantum states

immediately after the kick at t ¼ 0, 1, 2, 10, 100, 200, 300, 398, 399, and 400 are depicted. (a) The

parameters are K ¼ 1 (regular case), ðyi; piÞ ¼ ð1:0; 1:0Þ and ðyf ; pf Þ ¼ ð1:0;�1:0Þ; (b) K ¼ 7

(chaotic case), ðyi; piÞ ¼ ð1:0; 1:0Þ and ðyf ; pf Þ ¼ ð1:0;�10:0Þ.
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where

ÛU0ðt2; t1Þ ¼ e�iH0ðt2�t1Þ=�h ð16Þ

is a ‘‘free’’ propagator with H0 from t ¼ t1 to t2, and T is a target time. These

states are an analogue of eigenstates in the usual Rabi state (1.14), and we try to

describe the controlled dynamics as a transition from jf0ðtÞi to jw0ðtÞi.
We introduce another quantum state by a linear combination of the two time-

dependent states,

jfðtÞi ¼ jf0ðtÞicðtÞ þ jw0ðtÞisðtÞ ð17Þ

where cðtÞ and sðtÞ are functions satisfying a normalization condition:

jcðtÞj2 þ jsðtÞj2 ¼ 1 ð18Þ

If we require jfðtÞi to satisfy Schrödinger’s equation, we obtain

i�h jf0ðtÞi
d

dt
cðtÞ þ jw0ðtÞi

d

dt
sðtÞ

� �
¼ eðtÞV jf0ðtÞicðtÞ þ jw0ðtÞisðtÞ½ � ð19Þ

Multiplying f0ðtÞh j and w0ðtÞh j from the left gives the following equations for

cðtÞ and sðtÞ

i�h
d

dt

cðtÞ
sðtÞ

� �
¼ hf0ðtÞjeðtÞV jf0ðtÞi hf0ðtÞjeðtÞVjw0ðtÞi

hw0ðtÞjeðtÞV jf0ðtÞi hw0ðtÞjeðtÞVjw0ðtÞi
� �

cðtÞ
sðtÞ

� �
ð20Þ

where we have used

jhf0ðtÞjw0ðtÞij � 1 ð21Þ

which is satisfied when jjii and jjf i are random vectors with a large number of

elements.

Our aim is not to solve Eq. (20) exactly, but to find a coarse-grained

(CG) solution by ignoring rapidly oscillating terms when the target time T is

large enough. If we use the well-optimized field eðtÞ, we expect that the

conditions

hf0ðtÞjeðtÞV jf0ðtÞij j; hw0ðtÞjeðtÞVjw0ðtÞij j � hf0ðtÞjeðtÞV jw0ðtÞij j ð22Þ

are satisfied for T ! 1 under the coarse-grained picture. The validity of this

condition will be checked in Section III.B.
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Under this condition, we obtain the following simple equations:

i�h
d

dt

cðtÞ
sðtÞ

� �
¼ 0 �h�

�h�� 0

� �
cðtÞ
sðtÞ

� �
ð23Þ

where

� � hf0ðtÞjeðtÞVjw0ðtÞi
�h

� 	
CG

ð24Þ

is a frequency defined by ignoring rapidly oscillating terms. We also

expect that � has a constant (time-independent) value, which will be

justified below. Then, the boundary conditions cð0Þ ¼ 1 and sð0Þ ¼ 0 gives a

solution

cðtÞ ¼ cos½j�jt�; sðtÞ ¼ �ie�iy sin½j�jt� ð25Þ

where eiy ¼ �=j�j. The final expression of the controlled dynamics is

jfðtÞi ¼ jf0ðtÞi cos½j�jt� � ie�iyjw0ðtÞi sin½j�jt� ð26Þ

Note that this state is interpreted to represent a transition between jf0ðtÞi and
jw0ðtÞi or that between jjii and jjf i. Since this is very similar to the usual Rabi

state, Eq. (14), we call this state, Eq. (26), ‘‘CG Rabi state’’ and call the

frequency, Eq. (24), ‘‘CG Rabi frequency.’’

B. Actual Coarse-Graining Procedure

In the previous subsection, we have introduced the concept ‘‘coarse-graining’’

(CG) to define the CG Rabi frequency �, Eq. (24). In the actual calculations, we

carry out this procedure by averaging over a certain time interval,

AðtÞh iCG�
1

t2 � t1

ðt2
t1

Aðt0Þ dt0 ð27Þ

Though this result depends on the choice of t1; t2 in general, we consider that

there exists a natural time scale where the time averaging is meaningful. In

optimal control problems, if we choose the target time T large enough, we can

substitute the range of the integration into above expression, i.e., t1 ¼ 0 to

t2 ¼ T .

To check when the condition, Eq. (22), is fulfilled, and when the CG

Rabi frequency � defined in Eq. (24) becomes constant, we introduce the
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following integrals:

FðtÞ ¼
ðt
0

hf0ðt0Þjeðt0ÞVjw0ðt0Þi dt0 ð28Þ

gfðtÞ ¼
ðt
0

hf0ðt0Þjeðt0ÞVjf0ðt0Þi dt0 ð29Þ

gwðtÞ ¼
ðt
0

hw0ðt0Þjeðt0ÞVjw0ðt0Þi dt0 ð30Þ

Though the integrands are rapidly oscillating, a certain smoothness can be

observed in those integrals, especially for FðtÞ. In such a case, we judge that

‘‘coarse-graining’’ (CG) is appropriate. Note that FðtÞ is a linear function of t

when the CG Rabi frequency � is constant.

Figure 6 shows jFðtÞj, jgfðtÞj, and jgwðtÞj obtained from the numerical results

in Section II.A. For the case of T ¼ 20 in Fig. 6a, the values of gfðtÞ and gwðtÞ
are small compared to FðtÞ, but FðtÞ cannot be considered as a linear function of
t. Thus, CG is not appropriate in this case. On the other hand, examining the

case of T ¼ 200 in Fig. 6b, we realize that the condition, Eq. (22), is satisfied,

and FðtÞ is regarded as a linear function of t. Hence we conclude that CG for

random matrix systems is appropriate for a rather large target time T , and in

such a case the CG Rabi frequency becomes constant.

C. Smooth Transition Between Random Vectors

In Section II.A, we have already obtained the optimal field eðtÞ by the numerical

calculation for the random matrix systems, Eq. (6). However, only the overlap

between the time-evolving controlled state jfðtÞi and the target state jjf i was
shown there. In this section, we show the overlaps between the time-dependent

states defined by Eq. (15) and jfðtÞi, and we find a smooth transition picture.

In Fig. 7a, we show the overlap jhf0ðtÞjfðtÞij2 and jhw0ðtÞjfðtÞij2 that are

obtained from the dynamics driven by the same external field shown in Fig. 1a.

Those curves in the figure are not smooth, and it seems to be difficult to

approximate them by the CG Rabi state, Eq. (26), with a constant �. In Fig. 7b,

on the other hand, we see a smooth transition from jf0ðtÞi to jw0ðtÞi, which is

induced by the optimal field shown in Fig. 2a. In this case, the dynamics can be

well represented by the CG Rabi state with a constant �.

IV. ANALYTIC EXPRESSION FOR THE OPTIMAL FIELD

In the previous sections, we have studied the controlled dynamics when an

optimal field is first given by the ZBR–OCT scheme. In this section, in turn, we
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first assume that the dynamics is well approximated by the CG Rabi state and

then try to derive an analytic optimal field by using OCT [26].

A. Coarse-Grained Transition Element

We start from an assumption that optimally controlled quantum states are

represented by the CG Rabi states; that is, the forwardly evolving state jfðtÞi and
the inversely evolving state jwðtÞi are assumed to be

jfðtÞi ¼ jf0ðtÞi cos½j�jt� � ie�iyjw0ðtÞi sin½j�jt� ð31Þ
jwðtÞi ¼ �ieiyjf0ðtÞi sin½j�jðt � TÞ� þ jw0ðtÞi cos½j�jðt � TÞ� ð32Þ

Figure 6. Absolute values of the functions FðtÞ, gfðtÞ, and gwðtÞ (see the main text) are shown.

(a) T ¼ 20 and a ¼ 1; (b) T ¼ 200 and a ¼ 10. The external fields used in these calculations are

already shown in Fig. 1a and Fig. 2a, respectively.
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As we have seen numerically in Section III.C, the optimal field induces a smooth

transition between jf0ðtÞi and jw0ðtÞi. In this section, we employ OCT to study

an analytic formulation of the optimal field. Substituting Eqs. (31) and (32) into

the expression of the optimal field, Eq. (5), and after some manipulations, we

obtain

eðtÞ ¼ sin 2½j�jT �
2a�h

Re e�iyhf0ðtÞjVjw0ðtÞi

 � ð33Þ

where jhf0ðtÞjw0ðtÞij � 1 has been used as before. This is an analytic expression

for the optimal field while the value of the CG Rabi frequency � and the phase

parameter y have not been determined yet.

Figure 7. The overlaps jhf0ðtÞjfðtÞij2 - - - and jhw0ðtÞjfðtÞij2 —— are shown. (a) T ¼ 20 and

a ¼ 1; (b) T ¼ 200 and a ¼ 10. The external fields used in these calculations are already shown in

Figs. 1a and 2a, respectively.
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The definition of the CG Rabi frequency, Eq. (24), is used to determine j�j.
Substituting Eq. (33) and using the relation � ¼ eiyj�j, we obtain

j�j ¼
�VV
2
sin½2j�jT �
4a�h2

ð34Þ

where

�VV
2 � hf0ðtÞjV jw0ðtÞij j2þ e�iyhf0ðtÞjV jw0ðtÞi


 �2D E
CG

ð35Þ

is a CG transition element. This equation gives j�j when the penalty factor a and

the target time T are fixed. For a large T , the second term in the right-hand side is

considered small compared to the first term. In order to see this, we represent the

initial and final state using the eigenstates jfki of H0 as

jjii ¼
X
j

cjjfji; jjf i ¼
X
k

dkjfki ð36Þ

with the coefficients cj and dj. For a large T , we can ignore oscillating terms to

obtain

hf0ðtÞjVjw0ðtÞij j2 ¼
X
j;k

jcjj2jVjkj2jdkj2 þ RðTÞj j2 ð37Þ

hf0ðtÞjVjw0ðtÞi½ �2 ¼ RðTÞð Þ2 ð38Þ

where

RðTÞ �
X
j

c�j Vjjdje
�EjT=i�h ð39Þ

becomes small for N ! 1 when jjii and jjf i are random vectors (without any

special correlation). Thus Eq. (35) is simplified as

�VV
2 �

X
j;k

jcjj2jVjkj2jdkj2 ð40Þ

If the condition

�VV
2
T

2a�h2
> 1 ð41Þ

452 toshiya takami et al.



is satisfied, at least one j�j (� 6¼ 0) is obtained from Eq. (34). Using this j�j, the
final overlap J0 is given by

J0 ¼ sin2½j�jT� ð42Þ
and the averaged amplitude �ee of the external field (1.33) is calculated as

�ee �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

ðT
0

jeðtÞj2dt
s

�
ffiffiffi
2

p
�hj�j
�VV

ð43Þ

In Fig. 8, we compare the predicted values, Eqs. (42) and (43), with the

numerical results for the random matrix system. Those results agree well each

other especially for a large T; that is, the CG picture is valid and useful

especially for a large target time T .5

B. Analytic Solution for Perfect Control

In the ZBR scheme, we must choose a small penalty factor a to make the final

overlap large enough. In our analytical results, if we take the limit a ! 0, we find

that

j�j ¼ ð2k � 1Þp
2T

ðk ¼ 1; 2; . . .Þ ð44Þ

satisfies Eq. (34), and then J0 ¼ 1; that is, perfect control is achieved. Using

Eqs. (33) and (34), the optimal field for the perfect control in the small a limit is

obtained as

eðtÞ ¼ ð2k � 1Þp�h
�VV
2
T

Re e�iyhf0ðtÞjVjw0ðtÞi

 � ð45Þ

where y can be determined by a normalization condition as

e2iy ¼ hf0ðTÞjjf i
hjf jf0ðTÞi

ð46Þ

This field is expected to be the optimal field that steers the quantum state jjii at
t ¼ 0 to jjf i at t ¼ T , and it also induces a CG Rabi oscillation beween jf0ðtÞi

5Note that there exists a threshold Tc ¼ 2a�h2=�VV2
, the smallest target time satisfying the condition,

Eq. (41). If we choose a smaller T than Tc, there is no external field that induces the smooth

transition described by the CG Rabi state. On the other hand, the numerical method can give finite

solutions for such cases because there is no assumption (restriction) about the dynamics except that

it obeys the Schrödinger equation.
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and jw0ðtÞi. Note that the penalty factor a does not appear in Eq. (45), so this is

different from other non-iterative optimal fields discussed in Ref. 15.

We next examine when and how the analytic optimal field works for a

random matrix system (256� 256 GOE random matrix). Figure 9 demonstrates

the coarse-grained Rabi oscillation induced by the analytic field, Eq. (45), with

k ¼ 3, where smooth oscillations of jhf0ðtÞjfðtÞij2 and jhw0ðtÞjfðtÞij2 are

observed. The initial and the target states are both Gaussian random vectors

with 256 elements. This result shows that the field actually produces the CG

Rabi oscillation in the random matrix system.

Finally, in Fig. 10, we show the performance of the analytic field, Eq. (45),

for the same type of control problem with various matrix sizes. The abscissa and

the ordinate are the target time T and the residual probability 1� J0,

Figure 8. (a) The final overlap J0 ¼ hfðTÞjjf i
�� ��2 and (b) the averaged field amplitude �ee for a

64� 64 random matrix system are shown as a function of the target time T . Crosses (�) represent

the numerical results by the Zhu–Botina–Rabitz scheme. Solid curves represent our analytic results

under the assumption of the CG Rabi state.
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Figure 9. The coarse-grained Rabi oscillation induced by the analytical external field for

perfect control is shown for the case k ¼ 3 in Eq. (45). The solid curve represents jhw0ðtÞjfðtÞij2,
and the dashed curve represents jhf0ðtÞjfðtÞij2. The initial and the target states are Gaussian random
vectors in a 256� 256 GOE random matrix system.

Figure 10. The target-time dependence of the final overlap J0 by the analytic optimal field with

k ¼ 1 is shown. The residual probability 1� J0 from perfect control J0 ¼ 1 is depicted for various

matrix sizes N of GOE random matrices. The initial and the final states are Gaussian random vectors.
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respectively. This result shows that the final overlap J0 approaches unity; that

is, perfect control is achieved as the target time and the matrix size become

both large.

V. SUMMARY AND DISCUSSION

We have studied optimal control of random matrix systems and a quantum

kicked rotor as examples of quantum chaos systems. Using the ZBR-OCT

scheme, we numerically achieved almost perfect control for the above systems

where the initial state jjii and the target state jjf i are random vectors (except the

case of a quantum kicked rotor with K ¼ 1). However, the optimal fields and the

overlap jhfðtÞjjf ij2 thus obtained are too complicated to be analyzed as shown

in Figs. 1, 2, 3, and 4. On the other hand, as shown in Fig. 7, the overlaps

jhf0ðtÞjfðtÞij2 and jhw0ðtÞjfðtÞij2 are rather smooth where jf0ðtÞi (jw0ðtÞi)
represents a free forward (backward) evolution of the system, so we can

introduce coarse grained concepts: a CG Rabi state and a CG Rabi frequency.

The CG Rabi state is an analogue of a usual Rabi state, but it describes a

transition between jf0ðtÞi and jw0ðtÞi as in Eq. (26). The CG Rabi frequency

is defined by ignoring rapidly oscillating terms as in Eq. (24). We applied

this picture to OCT and obtained an analytic expression for the optimal field,

Eq. (45). We also numerically confirmed that the analytic field actually works in

controlling random vectors when the target time and the matrix size are both

large enough.

In closing, we discuss future directions of this study: (a) We mainly studied

strong-chaos limit cases as random matrix systems, and we applied the coarse

grained ideas to them. Thus, the next problem should be addressed on less

chaotic cases as banded random matrix systems. A quantum kicked rotor with a

small K will be a good example for that purpose [27]. (b) The other interesting

problem is the semiclassical limit of the controlled dynamics. Though we have

shown that quantum chaos systems can be controlled, we don’t know its

semiclassical behavior since there are many difficulties in taking the

semiclassical limit �h ! 0. There are, on the other hand, many works studying

chaos control in classical mechanics, and there are some examples utilizing

stochastic features of phase space in ‘‘targeting’’ problems [28,29]. In this

respect, it is strongly desirable to study chaos control from semiclassical points

of view [30,31]. (c) In connection with quantum information processings,

control of quantum entanglement in quantum chaos systems [32] will be another

interesting subject to be pursued.
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potential, A:238–244

vibrational energy relaxation, cytochrome c,

CD stretching mode, coupling constants,

B:193–195

Wigner’s transition state dynamics,

hydrogen cyanide isomerization,

A:207–210

Cascading saddlebacks, resonantly coupled

isomerizing/dissociating systems, high

energy bifurcations, A:298–301

Catalytic reaction network, recursive cell

production and evolution:

autocatalytic network, B:573–595

core hypercycle minority, B:582–583

evolution models, B:585–588

intermingled hypercycle network

stabilization, B:581–582

molecular models, B:574–575

phase states, B:575–581

random network localization, B:583

statistical law, B:588–595

deviation from universal statistics,

B:593–595

universal statistics, B:593

switching mechanism, B:584–585

constructive biology, B:550–557

chemical reaction networks modeling,

B:553–557

diverse chemicals, B:546–547

Dyson’s loose reproduction system,

B:549–550

Eigen’s hypercycle, B:547–549

heredity origins, B:544–546

minority control hypothesis, B:557–573

evolvability, B:566–567

experimental protocol, B:567–571

growth speed, B:565

intermingled hypercycle network

production, B:595–596

itinerant dynamics, B:596

kinetic theory, heredity and, B:571–572

model parameters, B:557–561

molecule chemical composition,

B:565–566

molecule preservation, B:565

stochastic results, B:561–564

universal statistics and fluctuation control,

B:596–597

Cayley tree topology, unimolecular reaction

kinetics, quantum energy flow, local

random matrix theory, B:212–214

CD stretching mode, vibrational energy

relaxation:

basic principles, B:180–181

cytochrome c, B:190–200

carbon monoxide myoglobin (MbCO),

B:200

classical calculation, B:197

coupling constants calculation, B:192–195

full width at half maximum spectra,

B:199–200

lifetime parameter assignment, B:195–196

quantum calculation, B:197–199

system and bath characteristics,

B:190–192

force-force-correlation function

approximations, B:187–190

Celestial mechanics, n-body problem in,

A:309–312

Cell-cell interaction, recursive cell production

and evolution, catalytic reaction

networks, B:597

Cell partition, onset dynamics, argon clusters,

potential energy surfaces, B:133–134

Cellular flow fronts, chaotic transitions, inert and

reactive substances, B:531–532

Center manifold:

phase-space transition state geometry, n

degrees of freedom structures, A:237

Wigner’s transition state dynamics, stationary

points, A:179

Centrifugal forces, phase-space transition state

geometry, angular momentum,

astrophysics applications, A:256–261

Chain rule, Wigner’s transition state dynamics,

Lie transformation, normal-form

coordinates, A:198

492 subject index



Chaotic itinerancy, phase-space transition states,

A:385–389

Melnikov integral, A:363–371

normally hyperbolic invariant manifold

connections, A:340

Chaotic transitions. See also Quantum chaos

atomic clusters, local characteristics,

B:11–20

inert substances:

standard and anomalous diffusion,

B:523–527

strong anomalous diffusion, B:527–530

multibasin landscapes, regularity in:

Berendsen algorithm, constant-temperature

molecular dynamics, B:309–310

embedded techniques:

basic principles, B:302–309

phase-space reconstruction,

B:285–288

energy nonstationarity, protein landscapes,

B:270–285

bending energy fluctuation, B:278–282

bond energy flucation, B:277–278

torsional angle energy fluctuation,

B:282–285

folding dynamic dimensionality,

temperature dependency, B:294–299

global/local collective coordinates,

B:261–262

liquid water, B:262–263

minimalistic 46-bead protein models,

B:266–270

phase space transport geometry,

B:260–261

proteins, B:263–266

state-space structure, B:285–299

average mutual information,

B:292–294

false nearest neighbors, B:288–292

phase-space reconstruction, embedding

of, B:285–288

multidimensional barrier tunneling:

global dynamics, A:402–406

quantum mapping, A:428

multidimensional phase space slow dynamics,

global motion, B:425–427

phase-space transition states:

angular momentum, astrophysics

applications, A:261

Arnold model, A:371–377

Melnikov integral, A:368–371

multidimensional chaos crisis, A:392–395

normally hyperbolic invariant manifold

connections, A:339–340

reacting substances:

front propagation, B:537–540

fronts in cellular flows, B:531–532

geometric optics limit, B:534–537

slow and fast reaction regimes, B:532–534

regularity, in two-basin landscapes:

Kramers-Grote-Hynes theory, A:163–165

phase space geometrics, A:151–163

reactive island theory, A:153–163

saddle crossing stochasticity, A:165–166

saddle regions, dynamical regularity,

A:147–151

three-body problem, A:306–309

unimolecular reaction rate, A:128–137

Arnold diffusion suppression, A:131–134

Cantori model, A:129–131

faster-than-classical anomalous diffusion,

A:134–137

CHARMM potential, vibrational energy

relaxation:

cytochrome c, CD stretching mode,

B:190–192

coupling constants, B:193–195

Chemical molecules, catalytic reaction network,

recursive cell production and evolution,

B:546–547

autocatalytic phases, B:575–581

modeling strategy, B:553–557

Chirikov-Taylor map, finite-time Lyapunov

exponents, multidimensional

Hamiltonian dynamical systems, B:508

Christoffel symbols, molecular internal space,

Eckart subspace dynamics, B:109

Clade techniques, nonmetric multidimensional

scaling algorithm and, molecular

taxonomy, B:326–329

Classical autocorrelation function, vibrational

energy relaxation:

cytochrome c, CD stretching mode, B:197

quantum correction factor and, B:185–186

Clusters

heat transfer, quantum energy flow,

B:221–248

unimolecular reaction kinetics:

energy diffusion, B:222–223

proteins, B:241–248

subject index 493



Clusters (Continued)

protein vibrational energy:

anharmonic decay, B:237–241

anomalous subdiffusion,

B:227–237

water clusters, B:223–227

nonmetric multidimensional scaling

algorithm, B:318–320

protein family, B:342–343

survival time distribution, Hamiltonian

system multiergodicity, B:471–474

Coarse-grained representation:

optimal control theory, Zhu-Botina-Rabitz

formula, A:450–453

quantum chaos systems:

Rabi state and frequency, A:446–448

random vector transition, A:449

rotating-wave approximation, A:440–449

transition element, A:450–453

Coexisting phase, rapid alloying, binary clusters,

B:156–157

Coherent control, quantum chaos, A:436

Cohomology equation, intramolecular

dynamics, floppy molecules, canonical

perturbation theory, A:272–278

Collective coordinates:

molecular internal space, four-body systems

isomerization, B:118–121

multibasin landscapes, chaotic transition,

regularity, local-global postulation,

B:260–266

Collinear electron-electron-nucleus (eeZ)

configuration, Coulomb three-body

problem, zero angular momentum,

A:312–319

Collinear electron-nucleus-electron (eZe)

configuration:

Coulomb three-body problem:

mass ratio effect, A:319–330

antiproton-proton-antiproton system,

A:330

triple collision manifold, A:320–323

triple collision orbits, A:323–329

zero angular momentum, A:312–319

Collinear transition state, molecular internal

space, democratic centrifugal force,

B:104–106

Compact clusters, rapid alloying, microcluster

dynamics, reaction path enumeration,

B:172–173

Configuration entropy, onset dynamics, argon

clusters, B:140

Conjugate action-angle-like coordinates,

resonantly coupled isomerizing/

dissociating systems, polyad folding and

saddle-node bifurcation, A:290–296

Constrained dynamics, molecular internal space,

gauge field reaction rates, B:109–110

Constructive biology, recursive cell production

and evolution, catalytic reaction

network, B:550–557

chemical reaction networks modeling,

B:553–557

Controlled random matrix, optimal control

theory, quantum chaos systems,

A:438–439

Control property, recursive cell production and

evolution, catalytic reaction network,

heredity kinetics, B:571–573

Control schemes, quantum chaos, A:436–437

Core hypercycle network, recursive cell

production and evolution:

catalytic reaction networks, B:581–583

statistical laws, B:591–595

evolution models, B:586–588

minority molecules, B:582–583

Coriolis coupling, unimolecular reaction rate

theory, reaction path analysis, A:57–59

Correction factor, atomic clusters, nonlinear

canonical transformation, B:21–22

Correlation dimension, atomic clusters, power

spectra and phase-space, B:7–11

Correlation function:

globally coupled Hamiltonian systems,

relaxation and diffusion:

equilibrium diffusion, B:489–490

quasi-stationary state, B:491–493

multichannel isomerization, inter-basin

mixing, B:52–53

Coulomb three-body problem:

Arnold web model, A:378

celestial mechanics, A:309–312

collinear eZe case, mass ratio effect,A:319–330

antiproton-proton-antiproton system,

A:330

triple collision manifold, A:319–323

triple collision orbits, A:323–329

free-fall case, A:330–332

two-dimensional case, zero angular

momentum, A:312–319

494 subject index



Coupling coefficients, vibrational energy

relaxation, cytochrome c, CD stretching

mode, B:192–195

Coupling states:

intramolecular dynamics, adiabatic vs.

nonadiabatic delocalization, A:284–286

resonantly coupled isomerizing/dissociating

systems, polyad folding and saddle-node

bifurcation, A:287–296

Cþþ programming, multidimensional phase

space, slow dynamics, multi-precision

numerical method, B:431–435

Critical point:

fringed tunneling models:

global structure of branches, A:415–417

multiple trajectories, A:423–425

perturbation strength, A:425–426

multidimensional barrier tunneling:

Melnikov method, A:417–418

M-set local structure, A:414–415

periodic perturbation effects,

A:413–414

Curvilinear reaction coordinates, multichannel

isomerization, linear surprisal theory,

B:74–76

Cyclobutanone, unimolecular reaction,

isomerization, A:100–104

Cyclohexane ring inversion, unimolecular

reaction kinetics, B:216–221

Cylindrical manifolds:

chaotic transition, regularity, two-basin

landscapes, reactive island theory,

A:154–163

multibasin landscapes, chaotic transition,

regularity, phase-space transition states,

B:259–260

phase-space transition state geometry, two

degrees of freedom, A:232–234

unimolecular reaction rate, reactive island

theory (RIT), A:76–80

Wigner’s transition state dynamics, rank-one

saddle phase-space structure, normally

hyperbolic invariant manifolds,

A:188–190

Cytochrome c, CD stretching mode, vibrational

energy relaxation, B:190–200

carbon monoxide myoglobin (MbCO),

B:200

classical calculation, B:197

coupling constants calculation, B:192–195

full width at half maximum spectra,

B:199–200

lifetime parameter assignment, B:195–196

quantum calculation, B:197–199

system and bath characteristics,

B:190–192
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