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Preface

This book addresses how to incorporate nonlinearity in one or more predictor

(or explanatory or independent) variables in regression models for different types

of outcome (or response or dependent) variables. Such nonlinear dependence is

often not considered in applied research. While relationships can reasonably be

treated as linear in some cases, it is not unusual for them to be distinctly nonlinear.

A standard linear analysis in the latter cases can produce misleading conclusions,

while a nonlinear analysis can provide novel insights into data not otherwise

possible. A variety of examples of the benefits to the modeling of nonlinear

relationships are presented throughout the book.

Methods are needed for deciding whether relationships are linear or nonlinear

and for fitting appropriate models when they are nonlinear. Methods for these

purposes are covered in this book using what are called fractional polynomials

based on power transformations of primary predictor variables with real valued

(and so possibly fractional) powers. An adaptive approach is used to construct

fractional polynomial models based on heuristic (or rule-based) searches through

power transforms of primary predictor variables. The book covers how to formulate

and conduct such adaptive fractional polynomial modeling in a variety of contexts

including adaptive regression of continuous outcomes, adaptive logistic regression

of discrete outcomes with two or more values, and adaptive Poisson regression of

count outcomes, possibly adjusted into rate outcomes with offsets. Power transfor-

mation of positive valued continuous outcomes is covered as well as modeling of

variances/dispersions with fractional polynomials. The book also covers alternative

approaches for modeling nonlinear relationships including standard polynomials,

generalized additive models computed using local regression (loess) and spline

smoothing approaches, and multivariate adaptive regression splines.

Part I covers modeling of nonlinear relationships for continuous outcomes using

adaptive regression modeling. Adaptive models of this type are linear in the

parameters for modeling the means, as are commonly used regression models

based on untransformed primary predictor variables. However, adaptive models

can depend on nonlinear transformations of available primary predictor variables.
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Chapters 2 and 3 address nonlinear modeling of means and variances of univariate

continuous outcomes using fractional polynomials. Chapters 4 and 5 extend this to

modeling of means and variances of multivariate continuous outcomes, including

marginal models based on either maximum likelihood estimation or generalized

estimating equations (GEE) and conditional models with current outcome values

depending on either prior outcome values (that is, transition models) or all other

outcome values. Chapters 6 and 7 cover transformation of positive valued contin-

uous outcomes as well as their predictors.

Part II extends fractional polynomial modeling to discrete outcomes, either

dichotomous with two values or polytomous with more than two values, using

adaptive logistic regression. Chapters 8 and 9 address modeling of means and

dispersions of univariate dichotomous and polytomous outcomes. Polytomous out-

comes are modeled both with adaptive ordinal regression using cumulative logits

under the proportional odds assumption and with adaptive multinomial regression

using generalized logits as needed for nominal outcomes. Chapters 10 and 11

extend this modeling to multivariate discrete outcomes.

Part III extends fractional polynomial modeling further to count outcomes using

adaptive Poisson regression, possibly adjusted to models of rate outcomes using

offsets. Chapters 12 and 13 address modeling of means and dispersions of univar-

iate count/rate outcomes. Chapters 14 and 15 extend this modeling to multivariate

count/rate outcomes.

Part IV covers modeling of nonlinear relationships for univariate continuous and

dichotomous outcomes using generalized additive models (GAMs) and multivari-

ate adaptive regression splines (MARS) models. It also compares GAMs as gener-

ated by SAS® PROC GAM and MARS models as generated by PROC

ADAPTIVEREG to associated adaptive regression models. Chapters 16 and 17

address modeling of nonlinear relationships using GAMs for means of univariate

continuous and dichotomous outcomes. Chapters 18 and 19 address modeling of

nonlinear relationships using MARS models for means of these two types of out-

comes. Modeling of variances/dispersions, correlated multivariate outcomes, and

polytomous discrete outcomes are not covered since PROC GAM and PROC

ADAPTIVEREG do not currently support such modeling. Modeling of count/rate

outcomes is also not considered for brevity.

Chapters 2–19 present a series of analyses of selected data sets. These analyses

demonstrate how to conduct adaptive regression modeling, generalized additive

modeling, and MARS modeling in the regression, logistic regression, and Poisson

regression contexts as well as the need for such nonlinear modeling. Overviews of

analysis results are provided in even-numbered chapters. Statistical formulations

for associated regression models are also provided in some of these chapters. Part V

(Chap. 20) provides a summary of these formulations and their extensions to

distributions in the exponential family. It also covers the heuristics underlying

the adaptive modeling process. Familiarity with vector and matrix notation and

calculus is needed to understand the formulations, but not the analyses and the

example code. An informal overview of the adaptive modeling process is provided

in Sect. 1.3.

vi Preface

http://dx.doi.org/10.1007/978-3-319-33946-7_2
http://dx.doi.org/10.1007/978-3-319-33946-7_3
http://dx.doi.org/10.1007/978-3-319-33946-7_4
http://dx.doi.org/10.1007/978-3-319-33946-7_5
http://dx.doi.org/10.1007/978-3-319-33946-7_6
http://dx.doi.org/10.1007/978-3-319-33946-7_7
http://dx.doi.org/10.1007/978-3-319-33946-7_8
http://dx.doi.org/10.1007/978-3-319-33946-7_9
http://dx.doi.org/10.1007/978-3-319-33946-7_10
http://dx.doi.org/10.1007/978-3-319-33946-7_11
http://dx.doi.org/10.1007/978-3-319-33946-7_12
http://dx.doi.org/10.1007/978-3-319-33946-7_13
http://dx.doi.org/10.1007/978-3-319-33946-7_14
http://dx.doi.org/10.1007/978-3-319-33946-7_15
http://dx.doi.org/10.1007/978-3-319-33946-7_16
http://dx.doi.org/10.1007/978-3-319-33946-7_17
http://dx.doi.org/10.1007/978-3-319-33946-7_18
http://dx.doi.org/10.1007/978-3-319-33946-7_19
http://dx.doi.org/10.1007/978-3-319-33946-7_2
http://dx.doi.org/10.1007/978-3-319-33946-7_19
http://dx.doi.org/10.1007/978-3-319-33946-7_20
http://dx.doi.org/10.1007/978-3-319-33946-7_1


Direct support for adaptive regression modeling based on fractional polynomials

is not currently available in standard statistical software tools like SAS version 9.4

(SAS Institute Inc., Cary, NC). Consequently, SAS macros have been developed for

these purposes. Detailed descriptions of how to use these macros and of their output

are provided in odd-numbered chapters (except for Chap. 1). A working knowledge

of SAS is assumed, so the book does not provide an introduction to the use of SAS.

The intended audience includes data analysts, both applied researchers

conducting analyses of their own data and statisticians conducting analyses for

applied researchers. Readers can choose to focus on a specific type of regression

analysis (for example, logistic regression of univariate dichotomous outcomes as

covered in Chaps. 8 and 9) but should review Chaps. 2 and 3 first for an introduction

to adaptive regression modeling and Sects. 4.5.3 and 4.5.4 on moderation analyses

using geometric combinations. Practice exercises are provided at the end of

odd-numbered chapters (except for Chap. 1) for readers to practice conducting

analyses like those in the related even-numbered chapters, and so the book can be

used as a text for a course or workshop on adaptive regression modeling. The

lectures can present the analyses in the text along with underlying formulations and

students can use the exercises to practice conducting adaptive regression analyses.

The data sets are primarily taken from the health sciences, but the methods apply

generally to all application areas.

References are provided at the end of each chapter. Supplementary materials are

available on the Internet (http://www.unc.edu/~gknafl/AdaptReg.html) including

Internet sources for data sets used in Chaps. 2–19, the SAS macros used in analyses

reported in Chaps. 2–19, detailed descriptions of those macros, and code for

conducting the analyses reported in Chaps. 2–19.

Chapel Hill, NC, USA George J. Knafl

Oklahoma City, OK, USA Kai Ding
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Chapter 1

Introduction

1.1 Purpose

Nonlinearity in one or more predictor (or explanatory or independent) variables in

regression models for different types of outcome (or response or dependent) vari-

ables is often not considered in applied research. While relationships can reason-

ably be treated as linear in some cases, it is not unusual for them to be distinctly

nonlinear. A standard linear analysis in the latter cases can produce misleading

conclusions while a nonlinear analysis can provide novel insights into data not

otherwise possible.

Methods are needed for deciding whether relationships are linear or nonlinear

and for fitting appropriate models when they are nonlinear. Methods for these

purposes are covered in this book using what are called fractional polynomials

(Royston and Altman 1994) based on power transformations of primary predictor

variables with real valued (and so possibly fractional) powers. An adaptive

approach is used to construct fractional polynomial models based on heuristic

(or rule-based) searches through power transforms of primary predictor variables

(see Sect. 1.3 for an overview and Chap. 20 for details).

As an example, analyses are presented in Chap. 2 of death rates in 60 metropol-

itan statistical areas. Figure 1.1 displays a portion of these data along with a fitted

nonlinear curve. The regression model for the death rates as a linear function of

associated nitric oxide pollution index values suggests that the mean death rate does

not depend on the nitric oxide pollution index (P¼ 0.557) as do the associated

quadratic and cubic polynomial models. Consideration of fractional polynomials is

required to identify that the mean death rate does distinctly nonlinearly depend on

the nitric oxide pollution index (the power used in Fig. 1.1 is �0.8). See Sect. 2.20

for a summary of analyses conducted in Chap. 2 of the death rate data.

As a second example, analyses are conducted in Chap. 4 of dental measurements

at 8, 10, 12, and 14 years old for 27 children, including 16 boys and 11 girls, as a

function of their age, gender, and the interaction (that is, the product) of age and
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gender, an issue called moderation or modification (see Sect. 4.5.3). The model

linear in these three terms under autoregressive correlations with constant variances

suggests that the dependence on age is reasonably treated as the same for boys and

girls (P¼ 0.116 for the interaction). Consideration of fractional polynomials is

required to identify that in fact the dependence on age is different for boys than it

is for girls. The estimated moderation relationship is displayed in Fig. 1.2. Mean

dental measurements increase for both girls and boys at lower levels for girls than
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for boys, at slower rates for girls as they age (the associated power for girl’s ages is
0.19), and nearly linearly for boys as they age. See Sect. 4.16 for a summary of

analyses conducted in Chap. 4 of the dental measurement data. Other examples of

benefits to consideration of nonlinear relationships are presented throughout the

book.

The book covers how to formulate and conduct adaptive fractional polynomial

modeling in a variety of contexts including adaptive regression of continuous

outcomes, adaptive logistic regression of dichotomous and polytomous outcomes

with two or more values, and adaptive Poisson regression of count outcomes,

possibly adjusted to rate outcomes using offsets. Power transformation of positive

valued continuous outcomes is covered as well as modeling of variances/disper-

sions with fractional polynomials. The book also covers alternative approaches for

modeling nonlinear relationships, including standard polynomials, generalized

additive models (GAMs) (Hastie and Tibshirani 1999) computed using local

regression (loess) (Cleveland et al. 1988) and spline (Ahlberg et al. 1967) smooth-

ing approaches (through SAS PROC GAM), and multivariate adaptive regression

splines (MARS) (Friedman 1991) models (through SAS PROC ADAPTIVEREG).

Direct support for adaptive regression modeling based on fractional polynomials

is not currently available in standard statistical software tools like SAS (version

9.4). Consequently, SAS macros have been developed for these purposes. These

macros are available on the Internet (http://www.unc.edu/~gknafl/AdaptReg.html)

as is code for loading in the data and for conducting the analyses reported in the

book. Base SAS is required as well as SAS/STAT and PROC IML. Detailed

descriptions of how to use these macros and of their output are provided, assuming

a working knowledge of SAS. See, for example, Der and Everitt (2006) for a

thorough description of SAS. SAS output displays are generated in listing format,

not in the default HTML format of SAS version 9.4. All reported analyses have

been generated with SAS version 9.4 under Windows 7 using an Intel Core

2 Duo CPU.

A series of analyses of selected data sets are presented to demonstrate how to

conduct adaptive regression modeling in a variety of contexts as well as the need for

consideration of nonlinear relationships. This includes the regression context (see

Part I) with continuous outcomes and models for their means linear in the coeffi-

cient parameters, the logistic regression context (see Part II) with either dichoto-

mous outcomes with two values or polytomous outcomes with more than two

values, and the Poisson regression context (see Part III) with count/rate outcomes.

In the special case of polytomous outcomes, the analyses address both ordinal

regression models using cumulative logits under the proportional odds assumption

as well as multinomial regression models using generalized logits as needed for

nominal outcomes. The analyses address both univariate and multivariate outcomes

of these three types. The analyses also include a comparison of generalized additive

modeling (Hastie and Tibshirani 1999) and MARS modeling (Friedman 1991),

well-established nonparametric regression methods, to adaptive modeling (see Part

IV). Statistical formulations for regression models of these types are provided. A

separate summary of these formulations and their extensions to distributions in the
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exponential family along with the heuristics underlying the adaptive modeling

process are also provided (see Part V). Familiarity with vector and matrix notation

and calculus is needed to understand the formulations, but not the analyses and the

example code.

1.2 Background

Regression models commonly assume that the mean of an outcome variable y, or

some transform of that mean, is linear in available predictor variables. Nonlinearity of

y in a primary predictor x can be addressed by inclusion of one or more transforms of

x as predictors. Most commonly, this is achieved through standard polynomial

models with powers limited to nonnegative integers. Usually, all nonnegative integer

powers less than a fixed value are included in the polynomial model, for example, the

fully specified cubic polynomial model with constant term x0, linear term x1,

quadratic term x2, and cubic term x3. Standard polynomials can effectively model

nonlinearity in x in some cases, but not in general (see Sect. 2.9). Moreover, fully

specified polynomial models can overfit the data, and fully specified polynomial

models of higher degree than the cubic model are infrequently used.

Royston and Altman (1994) proposed an alternative they called fractional

polynomial modeling allowing powers to be real valued. Their work has been

extended by Royston and Sauerbrei (2008). They recommended consideration of

only a few selected powers, for example, �2, �1, �0.5, 0.5, 1, 2, 3 and the natural

log transform as the 0 power case for degree 1 fractional polynomials with only one

power transform. One choice within the fixed set is used, not the complete set as in

fully specified standard polynomial models. Considering only powers from a fixed

set can effectively model nonlinearity in a predictor x in many cases and can

outperform standard polynomial modeling since that fixed set usually contains all

the powers of linear, quadratic, and cubic polynomials. However, a fixed set of

powers cannot address general nonlinearity in x (see Sects. 2.12 and 2.13 for an

example based on a simulated data set and Sect. 13.3 for an example based on a real,

non-simulated data set), and so unrestricted real valued powers are considered in the

analyses reported in this book. Royston and Sauerbrei (2008) only addressed fractional

polynomial modeling ofmeanswhile fractional polynomials are also used in this book

to model variances/dispersions as well as means. They also only considered modeling

of univariate outcomes (except for a brief treatment ofmulti-levelmodels in their Sect.

12.3.3) while both univariate and multivariate outcomes are addressed in this book.

Knafl et al. (2004) developed methods for adaptively selecting powers with

arbitrary real values, not limited to a fixed set. These methods use a heuristic

(that is, rule-based) approach to search through integer powers, then through single

decimal digit powers, followed by two decimal digit powers, and continuing until

there is no distinct benefit to changing the power (as defined in Sect. 20.4.3).

Models are evaluated and compared using cross-validation (see Sect. 2.5 for an

introduction to cross-validation) with the data randomly partitioned into k subsets
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called folds (Burman 1989). Cross-validation scores are adapted to the type of data

by basing them on an appropriate likelihood for those data or in general on some

kind of extended likelihood, for example, an extended quasi-likelihood (McCullagh

and Nelder 1999). These possibly extended likelihood cross-validation (LCV)

scores are used to control the adaptive modeling process. Penalized likelihood

criteria (PLCs) can also be used for that purpose (see Sect. 2.10).

Knafl et al. (2004) only addressed adaptive Poisson regression modeling of

univariate count/rate outcomes, but their approach extends to modeling means of

univariate outcomes under generalized linear models (McCullagh and Nelder

1999). Knafl et al. (2010) extended this work further to adaptive modeling of

variances/dispersions of univariate outcomes along with their means using

extended quasi-likelihood methods. Knafl et al. (2006) extended adaptive methods

to modeling of multivariate outcomes under the standard repeated measures

approach based on exchangeable correlations. Their approach generalizes to other

correlation structures for multivariate normal data. These are called marginal

models (Fitzmaurice et al. 2011).

Likelihoods for marginal models for correlated categorical outcomes are usually

difficult to compute, and so generalized estimating equations (GEE) methods

(Liang and Zeger 1986) are often used to model such outcomes that avoid compu-

tation of likelihoods, complicating the generalization of adaptive modeling based

on LCV to this context. However, it is possible to formulate appropriate extended

likelihoods for GEE-based models (see Sect. 10.7), with which to compute

extended LCV scores for adaptive GEE-based modeling. Conditional modeling

(Diggle et al. 2002), on the other hand, is based on pseudolikelihoods, which can be

used to compute pseudolikelihood cross-validation (PLCV) scores. Pseudoli-

kelihoods can also be combined with extended quasi-likelihood methods to model

variances/dispersions as well as means for conditional models. Moreover, since

dependence is addressed in conditional models by modeling individual outcome

measurements in terms of subsets of the other outcome measurements for subjects,

adaptive methods can be used to generate fractional polynomial models based on

primary predictors including averages of those subsets of other outcome measure-

ments as well as other available variables. Transition (or autoregressive or Markov)

models with dependence based on subsets of prior outcome measurements are

important special cases of conditional models. Both transition models and general

conditional models are considered in the example analyses (see Chaps. 4 and 5 for

multivariate continuous outcomes, Chaps. 10 and 11 for multivariate dichotomous/

polytomous outcomes, and Chaps. 14 and 15 for multivariate count/rate outcomes).

1.3 Overview of the Adaptive Modeling Process

The adaptive modeling process (as formalized in Sect. 20.4) is controlled by LCV

scores and by tolerance parameters, changing with the sample size and indicating

how much of a percent decrease in the LCV score can be tolerated at given stages of

the process. LCV scores can be replaced by some kind of extended LCV scores, for
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example, scores based on extended quasi-likelihoods rather than on likelihoods, or

by PLC scores adjusted so that larger scores indicate better models. The process

starts with an expansion phase analogous to the usual forward selection procedure,

systematically adding in transforms of primary predictors to a base model (usually

the constant model). The next transform to add to the model is the one generating

the best LCV score among transforms of primary predictors currently under con-

sideration for expanding the model. Primary predictors generating distinctly infe-

rior LCV scores (as determined by the associated tolerance parameter) at some

stage of the expansion are dropped from further consideration. The expansion stops

when the next transform to add to the model would reduce the LCV score by more

than a tolerable amount (as determined by the expansion stopping tolerance param-

eter) or when all primary predictors have been dropped from consideration for

expanding the model. The expansion can optionally also generate geometric com-

binations consisting of products of powers of primary predictors generalizing

standard interactions (see Sect. 4.5.4).

Expanded models often need simplification to be effective. This is addressed

through a contraction phase analogous to the usual backward elimination proce-

dure, removing extraneous transforms from the expanded model and

retransforming the remaining transforms in the model. The next transform to

remove from the model is the one whose removal, along with retransformation of

the remaining transforms, generates the best LCV score among transforms currently

under consideration for contracting the model. Transforms are removed from

consideration for contracting the model, and so included in the final model possibly

retransformed, when removing them at some stage of the contraction generates

distinctly inferior LCV scores (as determined by the associated tolerance parame-

ter). The contraction stops when the next transform to remove from the model

would reduce the LCV score by more than a tolerable amount (as determined by the

contraction stopping tolerance parameter) or when all model transforms have been

dropped from consideration for contracting the model.

When the contraction removes any transforms from the expanded model, all the

other transforms will be adjusted to improve the LCV score. However, when the

contraction leaves the expanded model unchanged, the expanded model might be

improved by transforming it. This is only needed for models with at least one

non-indicator transform (i.e., not a transform with just the two values 0 and 1) that

was added prior to the last step of the expansion. Under such conditions, the

expanded, uncontracted model is transformed. Section 10.4.1 provides an example

where such a conditional transformation distinctly improves an expanded,

uncontracted model.

The adaptive modeling process can be applied to only the expectation (or mean)

component of the model, to only the variance/dispersion component, or to both of

these components in combination. For example, it is possible to generate an

adaptive model for the means assuming constant variances/dispersions. Alternately,

it is possible to start with a theory-based model for the means and generate an

adaptive model for the variances/dispersions to test the theory-based model for the

means under an appropriate model for the variances/dispersions. Finally, it is
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possible to generate an adaptive model for the variances/dispersions together with

the means.

The transforms of an adaptively generated model typically have significantly

nonzero slopes. For example, the adaptive model described in Tables 3.4 and 3.6

has two transforms, both of which have highly significant slopes at P< 0.001.

These results support the effectiveness of the adaptive modeling process. However,

they also indicate that it is usually inappropriate to make inferences based on tests

for zero coefficients of adaptive models. An exception is a model with some of its

terms included on the basis of theoretical considerations and only the other terms of

the model adaptively generated. For example, in a study with an intervention group

and a control group, the indicator variable for being in the intervention group can be

included along with an intercept in the base model, expanded with transforms of

available covariates, and contracted with the restriction that the base model should

remain unchanged. The test for a zero slope for the intervention group indicator can

then be used to assess whether there is an intervention effect on the outcome after

controlling for an appropriate set of transformed covariates. Analyses like this

could be considered semi-adaptive modeling.

Alternative adaptive models are usually more appropriately compared using

χ2-based LCV ratio tests (Sects. 2.7 and 4.4.2) analogous to likelihood ratio

tests. Rather than use a P-value or a cutoff for a significant LCV ratio, LCV

ratio tests are expressed in this book in terms of a cutoff for a substantial

percent decrease in the LCV score. The value for this cutoff depends on the

sample size (see Sect. 4.4.2 for the formula) and is reported in the output of the

SAS macros developed to support adaptive modeling. A LCV ratio test is used

in determining the contraction stopping tolerance, thereby adjusting its value for

the sample size as are all of the tolerance parameters controlling the adaptive

modeling process (see Sect. 20.4.8). LCV ratio tests can be used in place of

tests for zero coefficients. For example, the adaptive modeling process can be

applied first with a set of covariates as the primary predictors and then to those

primary predictors together with the intervention group indicator. If the latter

model does not include the intervention group indicator, then the covariates

explain away its effect on the outcome. If the intervention group indicator is

included in the latter model, whether that effect is of substance can be assessed

by the LCV ratio test comparing the latter model to the former one computed

from only the covariates.

LCV ratio tests are more conservative than tests of zero coefficients, and so

similar in effect to multiple comparisons adjustments (Sect. 4.4.2 provides a partial

justification for why this holds). For example, Riegel and Knafl (2014) identified

21 baseline risk factors for heart failure patients that individually were significantly

(P< 0.05) related to hospitalization in the next 6 months. The associated LCV ratio

tests comparing the individual risk factor models to the constant model were

significant for only 16 (or 76.2 %) of these risk factors. As another example,

Knafl and Riegel (2014) identified 12 baseline risk factors for heart failure patients

that individually were significantly (P< 0.05) related to poor adherence in the next
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6 months. The associated LCV ratio tests comparing the individual risk factor

models to the constant model were significant only for 2 (or 16.7 %) of these risk

factors.

References

Ahlberg, J. H., Nilson, E. N., & Walsh, J. L. (1967). The theory of splines and their applications.
New York: Academic Press.

Burman, P. (1989). A comparative study of ordinary cross-validation, ν-fold cross-validation and

the repeated learning-testing methods. Biometrika, 76, 503–514.
Cleveland, W. S., Devlin, S. J., & Gross, E. (1988). Regression by local fitting. Journal of

Econometrics, 37, 87–114.
Der, G., & Everitt, B. S. (2006). Statistical analysis of medical data using SAS. Boca Raton, FL:

Chapman & Hall/CRC.

Diggle, P. J., Heagarty, P., Liang, K.-Y., & Zeger, S. L. (2002). Analysis of longitudinal data (2nd
ed.). Oxford: Oxford University Press.

Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2011). Applied longitudinal analysis (2nd ed.).

Hoboken, NJ: John Wiley & Sons.

Friedman, J. H. (1991). Multivariate adaptive regression splines. Annals of Statistics, 19, 1–67.
Hastie, T. J., & Tibshirani, R. J. (1999). Generalized additive models. Boca Raton, FL: Chapman

& Hall/CRC.

Knafl, G. J., Delucchi, K. L., Bova, C. A., Fennie, K. P., & Williams, A. B. (2010). A systematic

approach for analyzing electronically monitored adherence data. In B. Ekwall & M. Cronquist

(Eds.), Micro electro mechanical systems (MEMS) technology, fabrication processes and
applications, Chapter 1 (pp. 1–66). Hauppauge, NY: Nova. Retrieved from https://www.

novapublishers.com/catalog/product_info.php?products_id=19133

Knafl, G. J., Fennie, K. P., Bova, C., Dieckhaus, K., & Williams, A. B. (2004). Electronic

monitoring device event modeling on an individual-subject basis using adaptive Poisson

regression. Statistics in Medicine, 23, 783–801.
Knafl, G. J., Fennie, K. P., & O’Malley, J. P. (2006). Adaptive repeated measures modeling using

likelihood cross-validation. In B. Bovaruchuk (Ed.), Proceedings of the second IASTED
international conference on computational intelligence 2006 (pp. 422–427). Anaheim:

ACTA Press.

Knafl, G. J., & Riegel, B. (2014). What puts heart failure patients at risk for poor medication

adherence? Patient Preference and Adherence, 8, 1007–1018.
Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models.

Biometrika, 73, 13–22.
McCullagh, P., & Nelder, J. A. (1999). Generalized linear models (2nd ed.). Boca Raton, FL:

Chapman & Hall/CRC.

Riegel, B., & Knafl, G. J. (2014). Electronically monitored medication adherence predicts hospi-

talization in heart failure patients. Patient Preference and Adherence, 8, 1–13.
Royston, P., & Altman, D. G. (1994). Regression using fractional polynomials of continuous

covariates: Parsimonious parametric modeling. Applied Statistics, 43, 429–467.
Royston, P., & Sauerbrei, W. (2008). Multivariable model-building: A practical approach to

regression analysis based on fractional polynomials for modelling continuous variables.
Hoboken, NJ: John Wiley & Sons.

8 1 Introduction

https://www.novapublishers.com/catalog/product_info.php?products_id=19133
https://www.novapublishers.com/catalog/product_info.php?products_id=19133


Part I

Adaptive Regression Modeling



Chapter 2

Adaptive Regression Modeling of Univariate
Continuous Outcomes

2.1 Chapter Overview

This chapter formulates and demonstrates adaptive regression modeling of univar-

iate continuous outcomes treated as independent and normally distributed either

with constant variances, as is common for regression modeling, or with

non-constant variances. This type of regression is also called “linear” regression

because models for the means are linear in their intercept and slope parameters.

Adaptive regression models for means are linear in their intercept and slope

parameters as well, but can also be nonlinear in the primary predictors determining

those models due to the inclusion in the model of power transforms of those primary

predictors. Thus, they could be called adaptive “linear” regression models, but since

their purpose is to address nonlinear relationships, the “linear” part is dropped to

avoid confusion. Hence, this book refers to adaptive models for continuous out-

comes as adaptive regression models to distinguish them from adaptive logistic

regression models for discrete outcomes and from adaptive Poisson regression

models for count/rate outcomes. A description of how to generate adaptive regres-

sion models in SAS is provided in Chap. 3.

Section 2.2 describes the death rate data to be analyzed in this chapter. Sec-

tion 2.3 provides a formulation of the bivariate regression model to be used in initial

analyses and Sect. 2.17 extends this formulation to general multiple regression

models. Section 2.4 introduces fractional polynomial models based on power

transforms of primary predictor variables. Section 2.5 formulates cross-validation

(CV) scores for model selection including likelihood CV (LCV) scores computed

from likelihoods (in this case the normal density) with larger scores indicating

better models for the data. Section 2.10 addresses the use of penalized likelihood

criteria (PLCs) as alternatives to LCV for model selection, and Sect. 2.19 modeling

of variances along with means. Sections 2.6–2.16 and 2.18–2.19 provide a series of

adaptive regression analysis examples including model comparisons using LCV

ratio tests analogous to likelihood ratio tests in Sect. 2.7, choosing the number of
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folds in Sect. 2.8, and comparison of adaptive modeling to standard polynomial

modeling in Sect. 2.9 and to standard fractional polynomial modeling in Sect. 2.12.

Sections 2.20 and 2.21 provide overviews of the results of the analyses. Formula-

tion sections are not needed to understand analysis sections.

2.2 The Death Rate Data

A data set on death rates per 100,000 for 60 metropolitan statistical areas in the US

is available on the Internet (see Supplementary Materials). These data were ana-

lyzed by McDonald and Schwing (1973) and were published by McDonald and

Ayers (1978) and by Gunst and Mason (1980, pp. 368–371). They are reanalyzed

here to demonstrate how to conduct regression analyses that account for

nonlinearity in predictor variables. The variable deathrate (deaths per 100,000) is

the outcome for these analyses. The possible predictor variables are NOindex (the

nitric oxide pollution index), SO2index (the sulfur dioxide pollution index), and

rain (average annual precipitation in inches). There are 12 other predictors in the

original data set (see Table 16.5), but they are not considered here.

The predictor NOindex is considered first. The standard linear polynomial

regression model for deathrate as a function of NOindex produces a nonsignificant

(P ¼ 0:557) t test for zero slope for NOindex, suggesting that deathrate is constant

in NOindex. However, a regression analysis of deathrate as a function of the natural

logarithm log(NOindex) of NOindex produces a significant ( P ¼ 0:024 ) t test.

Consequently, using a standard linear polynomial regression model in NOindex

provides misleading information about the relationship between deathrate and

NOindex. It suggests that deathrate does not depend on NOindex, when in fact it

does if nonlinear relationships are considered.

2.3 The Bivariate Regression Model and Its Parameter
Estimates

This section provides a formulation (which can be skipped) of the standard bivariate

regression model for an outcome variable y as a function of a single predictor

variable x. As is standard, y is assumed to be normally distributed with variances

constant in x.

The observed data for the regression models of Sect. 2.2 consist of pairs of

values (ys, xs) for subjects (or observations) s 2 S ¼ s : 1 � s � nf g where the

outcome variable y ¼ deathrate, the predictor variable x ¼ NOindex or

x ¼ log NOindexð Þ, and the sample size n ¼ 60. The associated statistical model

assumes that
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ys ¼ β1 þ β2 � xs þ es

for s 2 Swhere the errors es are independent, normally distributed with means 0 and

variances having constant value σ2. The likelihood term Ls for the sth subject

satisfies

‘s ¼ log Lsð Þ ¼ �1

2
� es2=σ2 � 1

2
� log σ2

� �� 1

2
� log 2 � πð Þ

where π is the usual constant. Let β denote the 2� 1 column vector of coefficients,

that is, β ¼ ðβ1,β2ÞT where vT denotes the transpose of an arbitrary vector v. Let

θ ¼ ðβT,σ2ÞT denote the 3� 1 column vector of all model parameters. The

likelihood L(S; θ) is the product of the likelihood terms Ls over s 2 S satisfying

‘ðS; θÞ ¼ log L S; θð Þð Þ ¼
X
s2S

‘s:

The maximum likelihood estimate θðSÞ ¼ ðβðSÞT,σ2ðSÞÞT of θ is computed

by solving the estimating equations ∂‘ S; θð Þ=∂θ ¼ 0 obtained by differentiating

‘(S; θ) with respect to θ, where 0 denotes the zero vector, in this case a 3� 1 vector.

For simplicity of notation, parameter estimates θ(S) are denoted as functions of the

index set S for the data used in their computation without hat (^) symbols. With

es Sð Þ ¼ ys � β1 Sð Þ � β2 Sð Þ � xs

denoting the residuals estimating the errors es for s 2 S, the maximum likelihood

estimate σ2(S) of σ2 is given by

σ2ðSÞ ¼ 1

n

X
s2S

esðSÞ2:

Since this is a biased estimate of σ2, standard regression procedures use instead the

unbiased estimate (that is, on the average it equals σ2) obtained by replacing n in the
denominator by the degrees of freedom (DF), in this case, DF ¼ n� 2. The above

formulation also holds for any subset S0 of S.

2.4 Power Transformed Predictors

The predictor x ¼ NOindex is positive valued (with values ranging from 1 to 319),

and so power transforms xp are well-defined for all real valued powers p. These

power transforms can be used to account for nonlinear (or curvilinear) dependence

of deathrate on x ¼ NOindex. Standard polynomial models include only power

transforms with nonnegative integer powers and are usually fully specified
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including all nonnegative integer powers less than or equal to a fixed integer power.

For example, the fully specified quadratic polynomial in x includes the predictors x0

(the intercept or constant term), x1 (the linear term), and x2 (the quadratic term).

More general polynomial models allowing real valued powers are called fractional

polynomials (Royston and Altman 1994). Degree 1 fractional polynomials in x

include only one real valued power transform xp of the predictor x.

The zero power requires special treatment. Since x0 is identically equal to 1,

using it as a predictor would be redundant when the model already has an intercept.

When the model has an intercept and a slope for the power transform xp,

it converges, as the power p converges to 0, to the model based on log(x)

(see Sect. 2.13.2).

2.5 Cross-Validation

Alternate fractional power transform models for deathrate as a function of NOindex

have been considered so far, but not how to evaluate and compare those models, and

so make an informed choice between them. One way to accomplish this is through

cross-validation (CV). In CV, data are partitioned into disjoint subsets called folds,

the data in each fold are predicted using parameter estimates computed from the rest

of the data in the complement of the fold, and these deleted predictions are

combined over all folds into CV scores. Depending on the type of CV, either

smaller or larger scores indicate better models for the data. Formulations are

provided for several CV approaches in this section. The approach called likelihood

CV (LCV), with scores based on deleted likelihoods for folds, is used in analyses of

deathrate reported in this chapter. Larger LCV scores indicate better models. The

k-fold version uses k randomly selected folds to compute LCV scores. The leave-

one-out (LOO) version assigns each data point to its own fold. Details are provided

in Sects. 2.5.1 and 2.5.3, but can be skipped. Section 2.5.2 provides an example

analysis using the LOO type of CV called the prediction sum of squares (PRESS)

(Allen 1974). As formalized in Sect. 2.5.1, PRESS is the sum of squared deleted

residuals, each computed from the observed data values for an observation along

with parameter values estimated using data values for all the other observations.

Smaller PRESS scores indicate better models.

General LCV is not directly supported in SAS (using version 9.4). Also,

searching over the many alternative power transformations can be challenging.

For those reasons, a SAS macro called genreg (for general regression) has been

implemented for conducting such searches based on LCV. This macro uses heuris-

tic (that is, rule-based) search techniques to adaptively identify appropriate power

transforms of available predictors for outcomes (see Sect. 1.3 for an overview and

Chap. 20 for details). The searches use scores based on either k-fold LCV or

penalized likelihood criteria (PLCs) to evaluate and compare models. The genreg

macro is available on the Internet (see the Supplementary Materials). Reported

analyses are generated using this macro. See Chap. 3 for a description of its use in

generating results reported in this chapter.
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2.5.1 PRESS Formulation

One basic type of CV can be conducted using the PRESS score (Allen 1974; called

“predicted residual SS” in the SAS PROC REG output). Let S\{s} denote the subset

of the subject index set S consisting of indexes other than s. PRESS is defined as

PRESS ¼
X
s2S

esðS∖fsgÞ2:

In other words, it is the sum of squares of the deleted residuals computed for each

subject s with that subject’s data (ys, xs) and with coefficients β(S \ {s}) estimated

from the data for the other subjects with indexes in S \ {s}. Smaller PRESS scores

indicate better models.

2.5.2 PRESS Assessment of the Death Rate as a Function
of the Nitric Oxide Pollution Index

Table 2.1 contains PRESS scores for a selection of integer powers for modeling

deathrate as a function of NOindex. The best (lowest) PRESS score of Table 2.1 is

generated by the power �1. Consequently, a PRESS assessment indicates that

NOindex�1 is an effective predictor among integer power transforms. Improve-

ments may be possible by searching through fractional powers around �1, but that

issue is addressed later. In any case, these results suggest that the relationship

between deathrate and NOindex is nonlinear. This is further supported by a

significant (P ¼ 0:001) slope for NOindex�1 in the selected nonlinear model.

2.5.3 Formulation for Other Types of Cross-Validation

PRESS provides for a leave-one-out (LOO) type of CV, deleting one subject at a

time to compute deleted parameter estimates. Other types of CV approaches are

Table 2.1 Selection of an integer power transform of the nitric

oxide pollution index for predicting the death rate per 100,000

Power PRESS

�3 217,602

�2 212,477

�1 201,887

0 229,515

1 260,762

2 230,940

3 238,679

PRESS: prediction sums of squares
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possible. Splitting (or holdout or learning-testing) (Burman 1989) is the simplest

type of CV. The data are partitioned into two subsets: the training (or calibration or

learning) set with indexes S0 and the holdout (or validation or test) set with indexes

in the complement S\S0 of S0. The training set is used to estimate model parameters

and the holdout set to evaluate those estimates. In the regression context of

Sect. 2.3, the splitting CV score can be computed as

SPLIT ¼
X

s 2 S\ S
0
esðS0 Þ2:

A k-fold CV (Burman 1989) is intermediate between the splitting and LOO

cases. The index set S is partitioned into k > 1 disjoint sets F(h), called folds, for

h 2 H ¼ h : 1 � h � kf g. The CV score is then based on contributions for each

subject computed with the data for that subject and with parameter estimates based

on the data in the complement of the fold for the subject. In the regression context of

Sect. 2.3, the k-fold CV score can be computed as

CV ¼
X
h 2 H

X
s 2 FðhÞ

es S∖FðhÞð Þ2:

So far, CV scores have been computed as sums, but they could have been

computed as averages without affecting the conclusions. Also, scores have been

based on a least squares CV (LSCV) approach. This is a natural choice for

regression models based on normally distributed data. For general distributions,

on the other hand, it seems more appropriate to base CV scores on those distribu-

tions. This can be accomplished with likelihood CV (LCV), an idea that goes back

to Stone (1977) and Geisser and Eddy (1979). LCV scores are defined as

LCV ¼
Y
h 2H

L F hð Þ; θ S∖F hð Þð Þð Þ1=n,

where the likelihood function L �; θð Þ varies with the distribution for the data and

includes as a special case the normal likelihood for the regression problem consid-

ered in Sect. 2.3. In other words, deleted likelihoods are computed for each fold

F(h) using the data in that fold and deleted parameter estimates based on all the

other data (that is, the data in the fold complement S\F(h)). These deleted fold

likelihoods are normalized by the sample size n and multiplied up to generate the

LCV score. LCV scores are geometric averages of deleted fold likelihoods with

larger scores indicating better models for the data. Also, all model parameters are

used in computing LCV scores, including for regression models the variance

parameter σ2 and not just the vector β of parameters for the means as in the

LSCV formulation.

LOO LCV is the special case of k-fold LCV with k ¼ n folds, each consisting of

an index for a single subject. In that case, maximizing LOO LCV scores for

regression models is equivalent to minimizing
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�2 � logðLCVÞ � logð2 � πÞ ¼ 1

n
PRESSþ 1

n

X
s 2 S

log σ2 S∖fsgð Þ� �
:

Hence, LCV in the regression context generalizes PRESS, a type of LSCV, to

account for deleted estimates of the variances as well as deleted estimates of the

parameters for the means. Moreover, LOO LCV for regression models under the

normal distribution with known value for the variance parameter is equivalent to

CV using PRESS.

LCV scores are based on likelihoods, and so for consistency they are computed

in reported analyses with maximum likelihood estimates of all model parameters

including the variance parameter, even though that estimate is biased. Subjects are

randomly assigned to folds. Specifically, independent uniform random values us in

(0,1) are used to generate fold assignments with subjects s assigned to folds F(h(s))

where h sð Þ ¼ int k � usð Þ þ 1 for s 2 S, with int k � usð Þ denoting the integer part of

the positive real number k � us. This means that subjects are equally likely to be

assigned to each of the folds F(h) but that those folds can vary in size and can even

be empty (in which case they are not used in computing the LCV score). The same

initial seed is used to generate the random values us determining the folds with all

models for the same outcome so that LCV scores for different models for that

outcome are comparable to each other. The data should also always be in the same

order since otherwise observations would be assigned to different folds and then

LCV scores are different (but parameter estimates are not affected).

2.6 Death Rate as a Function of the Nitric Oxide Pollution
Index

As a starting point, set the number k of folds to 10 (and so the average fold size is

60=10 ¼ 6). The adaptively chosen model (using the genreg macro; see Chap. 3) for

deathrate constrained to have an intercept and a single power transform of NOindex

includes the transform NOindex�0:8 with 10-fold LCV score 0.0041051. When

multiple transforms of NOindex are allowed, the associated expanded model is

based on the three transforms: NOindex�0:8, NOindex1.1, and NOindex�6, together

with an intercept, and the LCV score improves to 0.0042534.

It is likely that some of the transforms of the above expanded model are

extraneous. Expanded models can often be improved further by contracting them,

removing extraneous transforms possibly including the unit transform

corresponding to the intercept, and adjusting the powers of the remaining trans-

forms. Removing transforms produces more parsimonious models, but not neces-

sarily always better LCV scores. However, if these scores are not too much smaller,

then the contracted model is preferable as a parsimonious, competitive alternative.

For the analysis of deathrate as a function of NOindex, the expanded model can be

contracted to the model with the two transforms NOindex�0:04 and NOindex�0:39
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(in that order) without an intercept and with reduced 10-fold LCV score 0.0042256.

An approach is needed to be able to decide whether this is a tolerable reduction in

the LCV score or not.

2.7 Model Comparisons

A larger LCV score does not always indicate a distinctly better model. A model

with a smaller score is a competitive alternative to a model with a larger score if that

smaller score is not too much smaller. If it is also simpler, as for the contracted

model in NOindex compared to the associated uncontracted model, then it is a

parsimonious, competitive alternative and so preferable. On the other hand, if the

smaller score is substantially smaller, then the model with the larger score provides

a distinct improvement over the model with the smaller score. A formal approach is

needed for making such assessments.

This is possible with LCV ratio tests analogous to likelihood ratio tests. Rather

than use a P-value or a cutoff for a significant LCV ratio, a LCV ratio test is

expressed as a function of a cutoff for a substantial percent decrease (PD) in the

LCV scores (see Sect. 4.4.2 for the formula for computing the cutoff). A PD is

treated as substantial when it is larger than the value at the cutoff given by the 95th

percentile 3.84146 of the χ2 distribution with DF ¼ 1 (but see Sect. 9.8 for an

exception when the cutoff is based on DF ¼ 2). Thus, a substantive PD exceeds

what would be a significant amount for nested models (that is, models with pre-

dictors a subset of another model’s predictors) differing by the smallest possible

nonzero integer number of parameters. This is called substantial (or distinct) rather

than significant since it might not involve nested models. The value for this cutoff

depends on the sample size n.

For example, the cutoff for a substantial PD for the death rate data with n ¼ 60 is

3.15 % (as reported in the genreg output). The PD for the contracted model in

NOindex compared to the uncontracted model using their 10-fold LCV scores and

rounded to two decimal digits is

100 % � 0:0042534� 0:0042256ð Þ=0:0042534 ¼ 0:67 %:

Since 0.67 % is smaller than the cutoff of 3.15 % for the data, the contracted model

is a competitive alternative to the uncontracted model with the larger LCV score,

and so preferable since it is also simpler. Had the PD been greater than 3.15 %, the

uncontracted model would have provided a distinct improvement (and so the

genreg macro would have produced a different contracted model). Figure 2.1

displays the predicted value curve generated by the preferable, contracted model

for deathrate as a function of NOindex and the raw data used to compute those

estimates. The estimated mean deathrate increases at a relatively fast rate for

relatively low NOindex values and then decreases gradually for higher NOindex

values.
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2.8 Choosing the Number of Cross-Validation Folds

A fixed value for the number of folds, like 10 folds as used so far, is unlikely to be

appropriate for all data sets. An assessment of the impact of the choice of the

number of folds on conclusions can be conducted by comparing results over

alternative fold counts for an important benchmark analysis for the data. For

example, for the deathrate data, generating an adaptive model for how deathrate

depends on NOindex is a reasonable choice for a benchmark analysis. If the number

of folds is set appropriately for this analysis, that choice can be expected to work

well for other analyses of deathrate.

This issue is addressed in Table 2.2. For numbers k of folds varying from 5 to

15 over multiples of 5, the associated adaptive models for deathrate as a function of

NOindex include two transforms of NOindex all without an intercept. The choice of

k ¼ 5 folds generates the largest Table 2.2 k-fold LCV score, and PDs for scores

generated for the other choices of k are smaller than the cutoff of 3.15 % for the
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Fig. 2.1 The death rate per 100,000 as a function of the nitric oxide pollution index

Table 2.2 Impact of the number of folds on the adaptive model for the death rate per 100,000 as a

function of the nitric oxide pollution index

Fold

count k

Selected

transforms

k-Fold

LCV score

Percent decrease

in k-fold

LCV scores

5-fold

LCV score

Percent decrease

in 5-fold

LCV scores (%)

5 NOindex�0:32,

NOindex�0:05

0.0042303 0.00 0.0042303 0.00

10 NOindex�0:04,

NOindex�0:39

0.0042256 0.11 0.0042193 0.26

15 NOindex�0:04,

NOindex�0:4

0.0041872 1.02 0.0042186 0.28

LCV: likelihood cross-validation
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data. However, that does not necessarily mean that the models generated using

those other values of k are reasonably close to each other. LCV ratio tests are best

conducted using scores computed with the same number of folds. Table 2.2 uses the

value of k ¼ 5 with the largest of the Table 2.2 k-fold LCV scores for this

comparison. The adaptive models based on values of k other than k ¼ 5 generate

the smaller 5-fold scores with PD at most the insubstantial value 0.28 %, indicating

that these models are competitive alternatives. These results suggest that adaptive

modeling is reasonably robust to the choice for k, at least for these data and most

likely more generally. Other regression modeling examples are provided in this

book where selected power transforms are not too different for alternative numbers

k of folds. Knafl and Grey (2007) and Knafl et al. (2012) provide further examples

in the factor analysis context. Also, Hastie et al. (2009, p. 243) recommend using

either k ¼ 5 or k ¼ 10 for non-likelihood CV in the statistical learning context.

For these data, fold sizes (as reported in the genreg output) for k ¼ 5 folds range

from 8 to 15 subjects with average 12, for k ¼ 10 from 3 to 10 subjects with average

6, and for k ¼ 15 from 1 to 8 subjects with average of 4. Larger values of k produce

relatively small fold sizes for data sets like this with n ¼ 60 subjects. The impact of

larger numbers of folds can be assessed by consideration of a leave-one-out (LOO)

LCV with each observation in its own fold. The adaptively generated model for that

case has the two transforms NOindex0.032 and NOindex0.9 without an intercept and

LOO LCV score 0.0042287. The 5-fold LCV score for this model is 0.0042634, and

so the LCV score for the adaptive 5-fold model generates an insubstantial PD of

0.78 % compared to the LCV score for the model selected with LOO LCV. This

suggests that large numbers k of folds relative to the sample size (for example, with

average fold size less than 4 as in this example) might generate somewhat better

models, but not distinctly better models than those generated by smaller k, and so

the extra computation they require does not seem warranted.

The recommended approach for setting the number k of folds in general is as

follows. First, select an important benchmark adaptive analysis for a data set. Then

vary the value of k starting at 5 folds over multiples of 5 folds until a local

maximum in the LCV score occurs (see Sect. 2.12 for an example where the first

local maximum is at k ¼ 10). Use that first local maximum in k for all subsequent

analyses of the data set. When the LCV score decreases from the first value at k ¼ 5

to the second one at k ¼ 10 as for the deathrate data, k ¼ 5 can be used, but it is not

necessarily a local maximum. In that case, it seems important to also consider

values of k larger than 10. If the LCV score is also smaller for k ¼ 15 as for the

deathrate data, it seems reasonable to use k ¼ 5 in subsequent analyses, and so all

subsequent analyses of deathrate use 5-fold LCV scores. However, if the LCV score

for k ¼ 15 is larger than the score for k ¼ 5, it seems reasonable to continue

searching and use the next local maximum (see Sect. 4.12 for an example). When

sample sizes are small (for example, the data set used in Chap. 12 with 15 observa-

tions), the k-fold approach can generate folds whose complements are relatively

small, and so estimates based on those complements might not be reliable. In such

cases, the LOO LCV approach seems more reliable since it maximizes the sizes of

the fold complements.
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2.9 Comparison to Standard Polynomial Models

Standard polynomials are often used to account for nonlinearity in predictors. These

are usually fully-specified, including terms for all nonnegative integer powers less

than or equal to a given integer power. Table 2.3 provides a comparison of fully-

specified standard polynomial models to the adaptive model for predicting

deathrate from NOindex. The most commonly used standard polynomial models

are considered, including the constant, linear, quadratic, and cubic polynomial

models of degrees 0–3. The constant polynomial model of degree 0 generates the

best LCV score for these polynomial models, but with a PD compared to the

adaptive model of 9.85 %, well above the cutoff of 3.15 % for the data. Conse-

quently, standard polynomial models are ineffective for identifying the form for the

nonlinearity of the relationship between deathrate and NOindex. Moreover, since

the constant model generates the best score for the standard polynomial models,

consideration of only those models suggests that deathrate does not depend on

NOindex when in fact it does. A nonlinear, fractional polynomial model is needed

to identify that deathrate does in fact distinctly depend on NOindex.

2.10 Penalized Likelihood Criteria for Model Selection

Section 2.10.1 provides a formulation (which can be skipped) for the two most

commonly used penalized likelihood criteria (PLCs): the Akaike information

criterion (AIC) with penalty based on the number of parameters and the Bayesian

information criterion (BIC) with penalty based on the sample size as well as the

number of parameters. The less commonly used Takeuchi information criterion

(TIC), also called the robust AIC, is also formulated. PLCs are usually formulated

so that smaller scores indicate better models, but they can be adjusted so that larger

scores indicate better models. These adjusted scores are denoted by adding a prime

Table 2.3 Comparison of standard polynomial models to the adaptive model for the death rate per

100,000 as a function of the nitric oxide pollution index

Model Transformsa
5-fold

LCV score

Percent

decrease (%)

Constant 1 0.0038136 9.85

Linear polynomial 1, NOindex 0.0036979 12.59

Quadratic polynomial 1, NOindex, NOindex2 0.0019677 53.49

Cubic polynomial 1, NOindex, NOindex2, NOindex3 2.253e�55 100.00

Adaptive NOindex�0:32, NOindex�0:05 0.0042303 0.00

LCV: likelihood cross-validation, NOindex: nitric oxide pollution index
aThe predictor 1 corresponds to including an intercept in the model
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(0) to the name, for example, the adjusted AIC score is denoted AIC0. Adjusted PLC
scores can be used in place of LCV scores to generate adaptive models. Sec-

tion 2.10.2 provides examples of such analyses.

2.10.1 Formulation

PLCs are commonly used in model selection (Sclove 1987). The AIC with penalty

based on the number of model parameters is the best known PLC. Formally,

AIC ¼ �2 � log L S; θ Sð Þð Þð Þ þ 2 � dimðθÞ,

where L(S; θ(S)) is the likelihood for observations with indexes in S and

model based on the estimate θ(S) of the parameter vector θ of dimension

dim θ Sð Þð Þ ¼ dim θð Þ. Smaller scores indicate better models. BIC is another

commonly used PLC and is also called the Schwarz criterion. It adjusts the weight

2 for the number dim(θ) of parameters in the AIC penalty to a function of the

sample size n, that is,

BIC ¼ �2 � log L S; θ Sð Þð Þð Þ þ log nð Þ � dim θð Þ;

also with smaller scores indicating better models. AIC and BIC scores are generated

for a variety of modeling situations in SAS.

The Takeuchi information criterion (TIC) is a third PLC (Takeuchi 1976), but is

not as widely used as AIC and BIC, nor is it directly supported in SAS. The number

of parameters dim(θ) of the AIC score is replaced by an estimate, that is,

TIC ¼ �2 � log L S; θ Sð Þð Þð Þ þ 2 � tr J θ Sð Þð Þ�1 � K θ Sð Þð Þ
� �

,

where

JðθÞ ¼ �1

n

X
s 2 S

∂‘s
2

∂θ∂θT

is computed from the second derivatives of the log likelihood terms ‘s (as defined in
Sect. 2.3),

KðθÞ ¼ 1

n

X
s 2 S

∂‘s=∂θ � ð∂‘s=∂θÞT

is computed from the first derivatives of the log likelihood terms ‘s, and tr(A)

denotes the trace of an arbitrary square matrix A, that is, the sum of its main
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diagonal entries. Once again, smaller scores indicate better models. TIC is also

called the robust AIC since it allows for the true likelihood to be different from the

assumed likelihood L used to generate estimates of θ. Moreover, when the true

likelihood is same as the assumed likelihood, TIC and AIC are asymptotically

equivalent. This holds since, in that case, J(θ(S)) and K(θ(S)) are asymptotically

equal (Claeskens and Hjort 2009) so that J θ Sð Þð Þ�1 � K θ Sð Þð Þ is asymptotically an

identity matrix of dimension dim(θ) with trace equal to dim(θ), and so the TIC

penalty term 2 � trðJ θ Sð Þð Þ�1 � K θ Sð Þð ÞÞ is asymptotically equal to the penalty term

2 � dim θð Þ of AIC. TIC is also asymptotically equivalent to LOO LCV (Eq. 2.30,

Claeskens and Hjort 2009).

PLCs can be used instead of LCV to select models using the adaptive modeling

process, but they need to be adjusted first. Specifically, a PLC score is adjusted to

PLC
0 ¼ exp � 1

2n
� PLC

� �

so that it represents a geometric average with larger scores indicating better models.

The advantage of using adjusted PLCs over LCV is the reduced computational

times, which is especially important for large sample sizes. However, competitive

models might not always be generated (see Sect. 4.8.4 for examples).

2.10.2 Adaptive Analyses Using Penalized Likelihood
Criteria

Table 2.4 describes models adaptively generated using AIC, BIC, and TIC scores

(as defined in Sect. 2.10.1) and the adaptive model based on 5-fold LCV scores. The

models are all based on two transforms of NOindex without an intercept. Table 2.4

also provides a comparison of 5-fold LCV scores. LCV scores for these three

models. BIC generates the model with BIC0 score 0.0040727 (not in Table 2.4)

and the best LCV score 0.0042503 of Table 2.4. LCV generates the next best LCV

Table 2.4 Comparison of penalized likelihood criteria to likelihood cross-validation for gener-

ating adaptive models for the death rate per 100,000 as a function of the nitric oxide pollution

index

Model selection criterion Model transforms

5-fold

LCV score

Percent

decrease (%)

AIC NOindex�0:38, NOindex�0:04 0.0042195 0.72

BIC NOindex0.037, NOindex0.9 0.0042503 0.00

TIC NOindex1.1, NOindex0.032 0.0041874 1.48

5-fold LCV NOindex�0:39, NOindex�0:04 0.0042303 0.47

AIC: Akaike information criterion, BIC: Bayesian information criterion

LCV: likelihood cross-validation, TIC: Takeuchi information criterion

NOindex: nitric oxide pollution index
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score 0.0042303 and insubstantial PD of 0.47 %. AIC generates a model with AIC0

score 0.0042009 (not in Table 2.4) and competitive LCV score 0.0042195 with PD

0.72 %. TIC generates a model with TIC0 score 0.0042607 (not in Table 2.4) and the
smallest LCV score 0.0041874 but with insubstantial PD 1.48 %. In this case, all the

PLC-based models and the LCV-based model are competitive alternatives.

Figure 2.2 displays estimated mean curves for adaptive models generated with

LCV and BIC. The AIC plot is almost the same as for LCV and the TIC plot almost

the same as for BIC. Compared to the estimated mean curves generated with LCV

and AIC, the estimated mean curves generated with BIC and TIC are more highly

influenced by the few extreme observations with very large NOindex values (see

Fig. 2.1). Thus, model selection based on some PLCs can be more highly influenced

by chance variation (like outliers) in the data than when based on k-fold LCV or on

other PLCs, and so it seems best to use LCV for model selection, as is further

supported by the analyses presented in Sect. 4.8.4, for which the LCV-based model

distinctly outperforms models based on AIC, BIC, and TIC.

2.11 Monotonic Models

The relationship depicted in Fig. 2.1 is counterintuitive, suggesting that death rates

per 100,000 decrease somewhat for very high levels of nitric oxide pollution levels.

A strictly increasing, monotonic relationship would have been expected instead. An

adaptive monotonic relationship can be generated by restricting the search to a

single transform of NOindex, possibly with or without an intercept. The associated
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Fig. 2.2 Comparison of estimated mean death rate per 100,000 as a function of the nitric oxide

pollution index for the adaptive fractional polynomial models based on LCV and on BIC
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monotonic model includes the single transform NOindex�0:8 with an intercept (and

the estimated slope is negative so that the estimated mean deathrate increases with

NOindex). The LCV score is smaller at 0.0041005, but the associated PD compared

to the fully adaptive, non-monotonic model is 3.07 %. Since this is smaller than the

cutoff of 3.15 % for the data, the monotonic model is a competitive alternative to

the non-monotonic model with the larger LCV score.

LCV ratio tests, like likelihood ratio tests, are based on χ2 distributions, and so

formally they only apply when the two models are nested. However, non-nested

models often need to be compared, as is the case for the above comparison of the

monotonic model with a single transform of NOindex with an intercept to the

non-monotonic, contracted model also with two terms, both transforms of

NOindex. To cover such cases, the cutoff for a substantial PD is computed from

the χ2 distribution with DF ¼ 1 set to its smallest possible nonzero integer value

(but see Sect. 9.8 for an exception). This is a conservative choice in the sense that if

the appropriate DF should be larger than 1, the cutoff for a substantial PD should be

smaller, and so the more complex model might be considered not to provide a

substantial improvement in cases where it has.

There are two distinctly outlying data points in Fig. 2.1 corresponding to the two

very large NOindex values of 171 and 319. In contrast, the other NOindex values

range from 1 to 66. These outlying values appear to have highly influenced the

results of the non-monotonic analysis of deathrate as a function of NOindex

(an assessment of this issue is left as an exercise; see Practice Exercise 3.4).

Their effect is to counterintuitively lower the estimated mean deathrate for very

high NOindex values. When such counterintuitive results occur, it is important to

assess whether or not they are distinct by comparing them to associated monotonic

models. In this case, a monotonic relationship, as would be expected for the

relationship of the death rate per 100,000 with a pollution index, provides a

competitive alternative. Predicted values for this monotonic relationship along

with the raw data are plotted in Fig. 2.3. These results suggest the intuitive

conclusion that the mean death rate increases at a very fast rate for low nitric

oxide pollution values and then levels off to a relatively constant level.

2.12 Comparison to Standard Fractional Polynomial
Modeling

Fractional polynomials, as considered in adaptive modeling, are commonly used

with powers limited to specific choices (Royston and Altman 1994). The

recommended set for first degree fractional polynomial models consists of the

eight powers �2, �1, �0.5, 0, 0.5, 1, 2, and 3, where the zero power corresponds

to the log transform (see Sect. 2.13.2 for the justification). These models also

always include intercepts. Results are given in Table 2.5 for the constant model,

the recommended degree 1 fractional polynomial models, and the adaptive
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monotonic model since it has degree 1 like the recommended models. The adaptive

model generates the best LCV score of Table 2.5. The recommended model based

on the �1 power transform generates the best LCV score of the recommended

degree 1 models with an insubstantial PD of 0.19 % compared to the adaptive

monotone model. Royston and Altman (1994) also recommend choices for pairs of

powers for degree 2 fractional polynomial models, but those are not considered here

(they are addressed in Sect. 2.13). They also recommend choosing the power from

the recommended set by maximizing the likelihood and not with LCV scores. This

approach is equivalent to using either AIC or BIC scores since all recommended

powers of a fixed degree generate models with the same number of parameters and

so with the same AIC and BIC penalties.
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Fig. 2.3 The death rate per 100,000 as a monotonic function of the nitric oxide pollution index

Table 2.5 Comparison of recommended degree 1 fractional polynomial models to the adaptive

monotonic model for the death rate per 100,000 as a function of the nitric oxide pollution index

Model Transformsa 5-fold LCV score Percent decrease (%)

Constant model 1 0.0038136 7.00

Power ¼ �2 1, NOindex�2 0.0039949 2.58

Power ¼ �1 1, NOindex�1 0.0040929 0.19

Power ¼ �0:5 1, NOindex�0:5 0.0040684 0.78

Power ¼ 0 1, log(NOindex) 0.0038741 5.52

Power ¼ 0:5 1, NOindex0.5 0.0036775 10.32

Power ¼ 1 1, NOindex1 0.0036979 9.82

Power ¼ 2 1, NOindex2 0.0038597 5.87

Power ¼ 3 1, NOindex3 0.0037732 7.98

Adaptive monotonic 1, NOindex�0:8 0.0041005 0.00

LCV: likelihood cross-validation, NOindex: nitric oxide pollution index
aThe predictor 1 corresponds to including an intercept in the model
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The expansion process used to generate adaptive models starts with a grid search

over a range of powers. The power generating the largest LCV score over these

powers is then used as the initial power for further heuristic search adjustments (see

Chap. 20). By default, the grid search uses the powers �3, �2.5, � � �, �0.5, 0.5,

1, � � �, 3. This includes all the recommended degree 1 fractional powers except the

log transform corresponding to the 0 power, and so adaptive modeling is likely to

generate an improved model compared to that recommended set, but not necessar-

ily a distinctly better model. When the grid search selects the lowest (highest) value,

�3 (3) in the default set, the adaptive search continues through smaller (larger)

integer values before searching over single decimal powers.

The results of Table 2.5 suggest that consideration of powers outside the

recommended set can provide improvements, but that the recommended set should

often provide a competitive alternative. Whether the adaptive model ever outper-

forms the recommended set is investigated using a simulated data set with 1,001

observations, an outcome variable ysim, and a predictor variable xsim. Equally-

spaced values are generated for xsim ranging from 0.5 to 1 over multiples of 0.0005

with associated ysim values satisfying ysim ¼ 25þ xsim�7 þ e where the errors e

are independent normal with mean 0 and standard deviation 5. The intercept was set

to 5 times the standard deviation so that ysim values would be positive with

probability essentially 1. The data are plotted in Fig. 2.4. The cutoff for a substantial

PD is 0.19 %.

The adaptive model for ysim as a function of xsim using 5-fold LCV has the

single power transform xsim�6:89 with an intercept and LCV score 0.047781. For

10 folds, the generated model has one power transform xsim�6:9 with an intercept

and increased LCV score 0.047782. For 15 folds, the generated model has the single

power transform xsim�6:89 with an intercept and decreased LCV score 0.047779.

So,k ¼ 10 is the first local maximum for this analysis, but there is little difference in

the scores with the largest PD of 0.01 % for k ¼ 15. The adaptively generated

model for k ¼ 10 has estimated intercept 25.02 and estimated slope 1.06 for the

transform with power �6.9, and so is quite close to the true function with intercept
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Fig. 2.4 Simulated fractional polynomial data
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25, slope 1, and power �7. Also, the estimated standard deviation is 5.05, close to

the true value of 5. The true model with an intercept and power transform xsim�7

has estimated intercept 25.28, slope 0.99, and standard deviation 5.05, also all close

to the true values. Moreover, its 10-fold LCV score is 0.047746 with insubstantial

PD of 0.08 % compared to the adaptively generated model, and so the true model is

a competitive alternative for these data. Also, the adaptive monotonic model is the

same as the unrestricted adaptive model. These results support the validity of the

adaptive model selection process.

Table 2.6 contains a comparison of the recommended set of power transforms to

the adaptive monotonic model, also with an intercept and a single power transform of

xsim. For these data, the adaptive monotonic model distinctly outperforms all the

recommended degree 1 power transforms with best PD of 55.8 %, very much larger

than the cutoff of 0.19 % for a substantial PD. These results indicate that the

recommended set of degree 1 powers can be very ineffective in cases like this with

the true power outside the range of that set. Consequently, adaptive selection of

powers is needed to generate effective models in general modeling situations. If only

recommended degree 1 powers are considered in an analysis and the selected power

is �2 (3), then it would be best to consider integer powers less (more) than �2 (3).

See Sect. 13.3 for another example where adaptive modeling distinctly outperforms

the recommended degree 1 powers, but using a real, non-simulated data set.

2.13 Log Transforms

The zero power transform is not considered in the adaptive modeling process to

avoid having to decide if it corresponds to the unit or log transform. Since small

powers are considered and these approximate the log transform when the model

contains an intercept, models generated using only nonzero power transforms

Table 2.6 Comparison of recommended degree 1 fractional polynomial models to the adaptive

monotonic model for the simulated data

Model Transforms* 10-fold LCV score Percent decrease (%)

Constant model 1 0.008297 82.6

Power ¼ �2 1, xsim�2 0.021106 55.8

Power ¼ �1 1, xsim�1 0.017911 62.5

Power ¼ �0:5 1, xsim�0:5 0.016663 65.1

Power ¼ 0 1, log(xsim) 0.015601 67.3

Power ¼ 0:5 1, xsim0.5 0.014695 69.2

Power ¼ 1 1, xsim1 0.013922 70.9

Power ¼ 2 1, xsim2 0.012694 73.4

Power ¼ 3 1, xsim3 0.011789 75.3

Adaptive monotonic 1, xsim�6:9 0.047782 0.0

LCV: likelihood cross-validation, xsim: simulated x value
aThe predictor 1 corresponds to including an intercept in the model
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without considering the log transform are likely to be competitive alternatives to

models generated from both nonzero power transforms and the log transform. As an

example, the adaptively generated model (that is, expanded and then contracted) for

deathrate as a function of NOindex and its log contains the transforms NOindex0.042

and (log(NOindex))3.6 without an intercept. Its LCV score is 0.0043239. The

adaptive model based on only nonzero power transforms of NOindex generates

an insubstantial PD of 2.18 %, suggesting that log transforms might not be needed

to generate effective adaptive models. Consideration of log transforms along with

power transforms can generate larger LCV scores but the improvements may not

justify the extra processing time.

2.13.1 Recommended Degree 2 Fractional Polynomials

Royston and Altman (1994) also recommend a finite set of degree 2 fractional

polynomial models in a predictor x to consider, all with intercepts and possibly

involving log transforms. These models are based on two powers p and p0 with
p � p0 for p and p0 one of the eight recommended degree 1 powers (and so 8 � 9=2
¼ 36 pairs of powers). When 0 < p < p0, the two transforms of the model are xp

and xp
0
. When 0 ¼ p < p0, the two transforms of the model are log(x) and xp

0
. When

p ¼ p0 6¼ 0, the two transforms are xp and xp �log(x) and when p ¼ p0 ¼ 0, the two

transforms are log(x) and (log(x))2. The p0 ¼ p models are limits of models based

on xp and xp
0
for p0 > p as p0 converges to p (see Sect. 2.13.2).

The model for deathrate as a function of NOindex with two powers p0 ¼ p ¼ 0
plus an intercept generates the best LCV score of 0.0043085 among all degree

2 recommended models. The comparable adaptive model based on NOindex and

log(NOindex) has larger LCV score 0.0043239 and is simpler with two transforms

and no intercept. The best recommended degree 2 model is competitive with

insubstantial PD of 0.36 %. These results suggest that recommended sets of

power transforms will often be competitive alternatives to adaptive models but

can also be more complex.

For the simulated data of Sect. 2.12, the model with powers p0 ¼ p ¼ �2
generates the best LCV score of 0.041544 among all recommended degree

2 models. This is a substantial improvement over the best degree 1 recommended

model with power p ¼ �2 and LCV score 0.021106 (see Table 2.6), and so a PD of

49.2 %. However, this best recommended degree 2 model generates a substantial

PD in the LCV scores of 13.1 % compared to the adaptive model in xsim, much

larger than the cutoff of 0.19 % for the data. These results indicate that, while

recommended degree 2 models can provide distinct improvements over degree

1 recommended models, they can still have substantially lower LCV scores than

adaptively generated models when true powers are outside the range of

recommended powers. See Sect. 13.3 for an example where adaptive modeling

distinctly outperforms the recommended degree 2 powers using a real,

non-simulated data set (and the recommended degree 1 powers too).
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2.13.2 Limits of Fractional Polynomials

This section provides a justification of the use of the natural log transform in the

recommended degree 1 and degree 2 fractional polynomials. It can be skipped to

focus on analyses.

For positive valued predictors x, power transforms xp are well-defined for all real

valued powers p. The zero power requires special treatment. Since x0 is identically

equal to 1, using it as a predictor would be redundant when the model already has an

intercept. When the model has an intercept β1 and a slope β2 for the power

transform xp, it converges, as the power p converges to 0, to the model based

on log(x). To see this in the simple case of a degree 1 fractional polynomial, let

β1
0 ¼ β1 þ β2 and β2

0 ¼ β2 ∙ p so that

y ¼ β1 þ β2 � xp þ e ¼ β1
0 þ β2

0 � x
p � 1

p
þ e,

which converges, for arbitrary fixed values of β10 and β20, as p converges to 0 to

y ¼ β1
0 þ β2

0 � logðxÞ þ e by L’Hôpital’s rule so that the maximum likelihood esti-

mates of β10 and β20 for the model with the predictor xp � 1ð Þ=p converge to the

maximum likelihood estimates of β10 and β20 for the model with the predictor log(x).

The case with two power transforms xp and xp
0
with p0 > p can be expressed as

y ¼ β1 þ β2 � xp þ β3 � xp
0 þ e ¼ β1 þ β2

0 � xp þ β3
0 � xp � x

p
0�p � 1

p0 � p
þ e

for appropriately defined β20, and β30, which converges for arbitrary fixed values of

β1, β20, and β30, as p0 converges to p, to y ¼ β1 þ β2
0 � xp þ β3

0 � xp � logðxÞ þ e:

2.14 Impact of the Intercept

Regression models commonly include an intercept. For example, an intercept is

included in the standard polynomial models considered in Sect. 2.9 and in the

recommended fractional polynomials considered in Sects. 2.12 and 2.13. Zero

intercept models are usually not considered. However, adaptively generated models

can have zero intercepts. If desired, such models can be constrained instead to

include an intercept. For the model of deathrate as a function of NOindex, the

associated constrained model includes the two transforms NOindex0.9 and

NOindex�0:6 with an intercept and LCV score 0.0042849. This score is larger

than the score of 0.0042303 for the associated zero intercept model, but the PD is

insubstantial at 1.27 %. In this case, considering only models with intercepts

provides an improvement, but the zero-intercept model is a parsimonious,
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competitive alternative. The adaptive modeling process allows for zero-intercept

models by default because that can generate at least competitive LCV scores (or the

intercept would not be removed), sometimes better scores (see Sect. 3.12), and even

substantially better (see Sect. 13.3) with fewer terms and so more parsimoniously.

2.15 Impact of Bounding the Nitric Oxide Pollution Index

The monotonic relationship of Fig. 2.3 suggests that mean deathrate is constant

once NOindex gets sufficiently large. Adaptive modeling can be used to assess

whether this is a reasonable conclusion and, if so, estimate the cutoff value for

NOindex at which its impact becomes constant. The plot for the monotonic model

restricted to NOindex � 40 is provided in Fig. 2.5 and suggests that this cutoff

occurs somewhere between 5 and 15. Models bounding the impact of NOindex can

be generated with predictors

NObnded ¼ min NOindex; bndð Þ

for different settings of bnd. These functions are simple cases of general splines

(Ahlberg et al. 1967). NObnded has one knot (or join point) at the value bnd and is

linear in NOindex below bnd and constant after that. Adaptively generated models

in NObnded are possibly nonlinear in NOindex for values below bnd and constant

after that.

Table 2.7 contains models and LCV scores for integer values of bnd ranging

from 5 to 15. All models consist of a single transform of NObnded without an
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Fig. 2.5 The death rate per 100,000 as a monotonic function of low values for the nitric oxide

pollution index

2.15 Impact of Bounding the Nitric Oxide Pollution Index 31

http://dx.doi.org/10.1007/978-3-319-33946-7_3
http://dx.doi.org/10.1007/978-3-319-33946-7_13


intercept. The best score of 0.0041968 is generated by a bound of 12, but all the

other bounds generate competitive models. This score is smaller than the LCV

score of 0.0042303 (see Table 2.2) generated by the non-monotonic model in

NOindex but with insubstantial PD of 0.79 %, indicating that the impact of nitric

oxide pollution on the death rate per 100,000 is reasonably considered to be

constant for NOindex values of 12 and larger.

The predicted values and raw data for the model with NOindex bounded at

bnd¼ 12 are plotted in Fig. 2.6. The estimated mean death rate per 100,000

increases nonlinearly, from 870.3 per 100,000 for the lowest nitric oxide pollution

index of 1 to 961.2 per 100,000 for a nitric oxide pollution index of 12. It then

Table 2.7 Alternate bounds for the death rate per 100,000 as a function of the bounded nitric

oxide pollution index

Bound Transform 5-fold LCV score Percent decrease (%)

5 NObnded0.07 0.0041085 2.10

6 NObnded0.06 0.0041374 1.42

7 NObnded0.05 0.0041437 1.27

8 NObnded0.05 0.0041690 0.66

9 NObnded0.05 0.0041884 0.20

10 NObnded0.047 0.0041948 0.05

11 NObnded0.041 0.0041940 0.07

12 NObnded0.04 0.0041968 0.00

13 NObnded0.04 0.0041931 0.09

14 NObnded0.039 0.0041879 0.21

15 NObnded0.037 0.0041833 0.32

LCV: likelihood cross-validation

NObnded: bounded nitric oxide pollution index
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Fig. 2.6 The death rate per 100,000 as a function of the bounded nitric oxide pollution index
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remains at this level for larger values of the nitric oxide pollution index. Variability

in the data at the NObnded value of 12 appears larger than for lower values

suggesting a possible need for non-constant variances models, but that issue is

not addressed here (see Sect. 2.19 for how to address that issue).

2.16 Death Rate as a Function of Other Predictors

So far, only NOindex and its bounded version NObnded has been used to predict

deathrate, but other primary predictors are available including SO2index and rain.

The adaptive model in SO2index is based on the single transform SO2index0.012

without an intercept and LCV score 0.0040239. Figure 2.7 displays predicted

values for deathrate as a function of SO2index and the raw data used to compute

those estimates. The relationship of Fig. 2.7 is similar to the relationship of Fig. 2.5

for NOindex, suggesting consideration of bounding the effect of SO2index, but that

issue is not addressed here. The expanded model generated for this analysis, prior to

contraction, is based on the single transform SO2index0.9 with an intercept

suggesting that deathrate might be close to linear in SO2index, as it is since the

linear polynomial model in SO2index has LCV score 0.0041100, larger than for the

adaptively generated model. Consequently, although the predicted values of

Fig. 2.7 appear curved for low values of SO2index, they are in fact reasonably

close to linear in SO2index. An inspection of Fig. 2.7 suggests the possibility that

mean deathrate might be constant in and not change with SO2index. This can be

assessed by comparing the adaptive model in SO2index for deathrate to the constant

model. This latter model has LCV score 0.0038136 and substantial PD compared to
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the adaptive model in SO2index of 5.23 %. Consequently, mean deathrate changes

distinctly with SO2index.

The LCV scores for the adaptive and linear models in SO2index are smaller than

the score for the adaptive model in NObnded (with bnd ¼ 12), and so NObnded is a

more effective singleton predictor of deathrate than SO2index. However, it is

possible that SO2index explains aspects of deathrate other than those explained

by NObnded. This can be investigated by considering adaptive multiple regression

models in NObnded and SO2index in combination. The adaptively generated model

contains no transforms of SO2index and is the model based on the transform

NObnded0.041 without an intercept, nearly the same as the model generated by

NObnded alone. This result suggests that, since no transforms of SO2index are in

the generated model, NObnded explains essentially all of the effect of SO2index on

deathrate. In other words, the dependence of the death rate per 100,000 within the

60 metropolitan statistical areas on the sulfur dioxide pollution index is effectively

all accounted for by its dependence on the nitric oxide pollution index bounded to at

most 12.

There is a third predictor rain that has not been considered yet. The adaptive

model in rain alone includes the single transform rain0.1 without an intercept. The

LCV score is 0.0044527. Figure 2.8 displays predicted values for deathrate as a

function of rain and the raw data used to compute those estimates. Mean deathrate

increases at a somewhat faster rate for relatively low values of rain than after that.

At first glance, the relationship of Fig. 2.8 does not appear highly curved,

suggesting that it might be close to linear. However, the linear polynomial model

in rain has LCV score 0.0042690 and substantial PD of 4.13 %, indicating that

deathrate is distinctly nonlinear in rain. A closer look indicates that a linear curve

over the range 10–20 in. close to the fitted curve of Fig. 2.8 would continue on to a

much higher level by 60 in. than the fitted curve.
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Fig. 2.8 The death rate per 100,000 as a function of the average annual precipitation
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The LCV score for the adaptive model in rain is larger than the scores for the

adaptive models in NObnded and SO2index, indicating that rain is the most

effective singleton predictor for deathrate among these three. As before, joint

effects for the predictors can be investigated by considering multiple predictors.

Given the earlier result that NObnded explains essentially all of the effect of

SO2index, only joint effects for rain and NObnded are considered. The adaptively

generated model contains the two predictors rain0.15 and NObnded0.3 without an

intercept, and with LCV score 0.0056386. In comparison, the PD for the adaptive

model in rain with the best LCV score of the singleton predictor models is very

substantial at 21.03 %, indicating that the two predictor model provides a distinct

improvement over the singleton predictor models. Thus, rain and NObnded in

combination explain aspects of deathrate distinct from each one separately. More-

over, the model linear in both rain and NObnded has LCV score 0.0053103 with

substantial PD of 5.82 %, and so the dependence of deathrate on both rain and

NObnded is distinctly nonlinear.

Figure 2.9 displays predicted values for deathrate as a function of rain at selected

values of NObnded. For fixed values of NObnded, mean deathrate increases with

rain as in the model of Fig. 2.8 for rain unadjusted for NObnded. Mean deathrate is

at higher levels for larger values of NObnded with the increases more pronounced

for increases in lower NObnded values. Figure 2.10 displays predicted values for

deathrate as a function of NObnded at selected values of rain. For fixed values of

rain, mean deathrate increases with NObnded as in the model of Fig. 2.6 for

NObnded unadjusted for rain. Mean deathrate is at higher levels for larger values

of rain with the increases more pronounced for increases in lower rain values.
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Fig. 2.9 The death rate per 100,000 as a function of the average annual precipitation (rain) at

selected values for the nitric oxide pollution index bounded at 12 (NObnded)
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Further analyses of the deathrate data are possible including analyses consider-

ing interactions between predictors. These are not considered here for brevity, but

are addressed in the practice exercises of Chap. 3.

2.17 The Multiple Regression Model

The formulation of Sect. 2.3 only addresses bivariate regression models based on a

single predictor, but it extends readily to handle multiple regression models as

considered in Sects. 2.6, 2.8–2.10, 2.13, 2.14, and 2.16. Using the notation of

Sect. 2.3, for s 2 S, let xs be a r� 1 column vector of r predictor values xsj
(including unit predictor values if an intercept is included in the model) with

indexes j 2 J ¼ j : 1 � j � rf g and β the associated r� 1 column vector of

coefficients. Setting ys ¼ xs
T � βþ es and es Sð Þ ¼ ys � xs

T � β Sð Þ for s2S where

β(S) is the maximum likelihood estimate of the parameter vector β, the rest of the
formulation of Sect. 2.3 then applies to this more general context. The CV formu-

lations of Sect. 2.5 apply as well. Standardized residuals are computed for these

models simply as stdes Sð Þ ¼ es Sð Þ=σ Sð Þ for s 2 S, that is, by standardizing the

residuals by the estimated standard deviation. Studentized residuals can be used

instead if desired.

700

800

900

1000

1100

1200

1 2 3 4 5 6 7 8 9 10 11 12

de
at

h 
ra

te
 p

er
 1

00
,0

00

min(nitric oxide pollu�on index,12)

rain=60 rain=35 rain=10

Fig. 2.10 The death rate per 100,000 as a function of the nitric oxide pollution index bounded at

12 (NObnded) at selected values for the average annual precipitation (rain)
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2.18 Residual Analysis

An adaptive regression model, like any other regression model, is based on

assumptions that need to be checked through a residual analysis. Standardized

residuals for the adaptive model in NObnded and rain are displayed in Fig. 2.11.

These are within �3 although there is one standardized residual (with associated

observed value 844.0 and predicted value 958.5) that is somewhat lower than the

others, but the standardized residual equals�2:87, and so is not distinctly outlying.
Also, there may be less variability in the standardized residuals for lower predicted

values than for higher ones, suggesting the possibility that the constant variances

assumption might not hold, but this issue is not addressed here (it is addressed in

Sect. 2.19.2). The normal (probability) plot generated by the standardized residuals

is displayed in Fig. 2.12 and is reasonably close to linear except somewhat for the

smallest residual. Normality is further supported by a nonsignificant (P ¼ 0:888)
Shapiro-Wilk test for normality of the standardized residuals.

2.19 Modeling Variances as well as Means

A formulation (which may be skipped) of regression models for variances along

with means of univariate continuous outcomes is provided in Sect. 2.19.1.

Section 2.19.2 provides an example analysis of means and variances for the death

rate data while Sect. 2.19.3 provides an example analysis of means and variances

for the simulated data described in Sect. 2.12.
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Fig. 2.11 Standardized residual plot for adaptive model of the death rate per 100,000 as a function

of the nitric oxide pollution index bounded at 12 (NObnded) and the annual average precipitation

(rain)
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2.19.1 Formulation

Regression models commonly assume that variances are the same for all subjects,

but this assumption needs to be assessed. One way to do that is through adaptive

modeling of the means and variances in combination. This section provides a

formulation (which can be skipped) of regression models for both the means and

logs of the variances.

The multiple regression model of Sect. 2.17 can be extended to assess this issue

as follows. Using the notation of Sects. 2.3 and 2.17, let the likelihood term Ls for

the sth subject satisfy

‘s ¼ logðLsÞ ¼ �1

2
� es

2

σs2
� 1

2
� logðσs2Þ � 1

2
� logð2 � πÞ

and model the log of the variance σs2 as a function of selected predictor variables

and associated coefficients. Specifically, let log σs2ð Þ ¼ vs
T � γ where, for s 2 S, vs

is a q� 1 column vector of q predictor values vsj (including unit predictor values

if an intercept is to be included) with indexes j 2 Q ¼ j : 1 � j � qf g and γ is the
associated q� 1 column vector of coefficients. The rþ qð Þ � 1 parameter vector

θ ¼ ðβT,γTÞT is estimated through maximum likelihood estimation. Alternative

models can be compared with LCV scores. The adaptive modeling process can be

extended to search through models for the means and variances in combination (see

Chap. 20).
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Fig. 2.12 Normal plot generated by the standardized residuals for the adaptive model of the death

rate per 100,000 as a function of the nitric oxide pollution index bounded at 12 (NObnded) and the

annual average precipitation (rain)
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2.19.2 Analysis of Death Rate Means and Variances

As indicated in Sect. 2.18, the residual analysis suggested the possibility of

non-constant variances for deathrate as a function of NObnded and rain. This can

be addressed by applying the extended adaptive modeling process to the means and

variances of deathrate, both as functions of NObnded and rain. The generated

model has means depending on the transforms rain0.14 and NObnded0.4 without

an intercept, variances depending on the transform NObnded�0:01 without an

intercept, and LCV score 0.056157. The model generated for the means assuming

constant variances described in Sect. 2.16 has larger LCV score 0.0056386. This

indicates that variances for deathrate are reasonably treated as constant in NObnded

and rain when means are modeled in terms of those same two variables.

When the LCV score for the non-constant variances model is larger than the

score for the constant variances model, a LCV ratio test can be used to assess

whether this is a substantial improvement. If the PD for the constant variances

model is smaller than the cutoff for a substantial PD, then the variances are

reasonably considered to be constant. On the other hand, if the PD is larger than

the cutoff, then the variances are distinctly non-constant.

2.19.3 Analysis of Means and Variances
for the Simulated Data

For the simulated data of Sect. 2.12, the adaptive model for means and variances

has means based the single transform: xsim�6:9 with an intercept and variances

depending on the one transform: xsim0.02 without an intercept. The transform for

the means is the same one as was generated for the constant variances model. The

LCV score is 0.047783, only slightly larger than the score 0.047782 for the adaptive

constant variances model and with insubstantial PD 0.002 %. Consequently, adap-

tive modeling results in the conclusion that the simulated data are reasonably

considered to have constant variances, as they were simulated. This result provides

support for the effectiveness of the adaptive modeling process for means and

variances in combination.

2.20 Overview of Analyses of Death Rates

1. For the death rate data (Sect. 2.2), analyses use k ¼ 5 folds (Sect. 2.8) as chosen

with the approach recommended at the end of Sect. 2.8.

2. Standard polynomials are ineffective for addressing nonlinearity in the death

rate data (Sect. 2.9).
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3. PLCs are effective for modeling the death rate data, but in some cases are more

highly influenced by outliers in the data (Sect. 2.10.2).

4. The selected model for the death rate as a function of the nitric oxide pollution

index is counterintuitively non-monotonic (Fig. 2.1). However, the adaptive

monotonic model is a competitive alternative (Sect. 2.11). As would be

expected, the effect on the death rate of the nitric oxide pollution index can

reasonably be considered to increase with increasing values of that index.

Moreover, that effect can reasonably be treated as being a constant for values

of 12 or larger (Sect. 2.15).

5. The adaptive monotonic model for the death rate as a function of the nitric

oxide pollution index generates a better LCV score than the recommended

degree 1 fractional polynomial models, but not a substantially better score,

indicating that consideration of only that limited set of powers can sometimes

be effective (Sect. 2.12).

6. The adaptive modeling process does not consider zero powers to avoid decid-

ing whether that corresponds to the constant model (when the model has a zero

intercept) or to the natural log transform (when the model has a nonzero

intercept). Further consideration of the natural log transform of the nitric

oxide pollution index does not substantially improve on the model not consid-

ering that transform (Sect. 2.13.1), suggesting that it is reasonable not to

consider the natural log transform in general.

7. Regression models commonly include intercepts, but the adaptive modeling

process considers models with zero intercepts. The model for the death rate as a

function of the nitric oxide pollution index constrained to include an intercept

does not substantially improve on the model allowing for a zero intercept

(Sect. 2.14), indicating that zero intercept models can be parsimonious, com-

petitive alternatives.

8. The dependence of the death rate on the nitric oxide pollution index is distinctly

nonlinear (Sect. 2.9) as is its dependence on the average annual precipitation

(Sect. 2.16). On the other hand, its dependence on the sulfur dioxide pollution

index is reasonably close to linear (Sect. 2.16).

9. The nitric oxide pollution index explains essentially all of the effect of the

sulfur dioxide pollution index on the death rate (Sect. 2.16). On the other hand,

the nitric oxide pollution index and the average annual precipitation explain

different aspects of the death rate (Sect. 2.16). Results for this model are

displayed in Figs. 2.9 and 2.10.

10. The adaptive model in the nitric oxide pollution index and the average annual

precipitation generate standardized residuals that are reasonably close to being

normally distributed and without distinct outliers (Sect. 2.18). Moreover, they

are also reasonably close to having constant variances (Sect. 2.19.2).
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2.21 Overview of Analyses of the Simulated Outcome

1. For the simulated data (Sect. 2.12), analyses use k ¼ 10 folds (Sect 2.12) as

chosen with the approach recommended at the end of Sect. 2.8.

2. The adaptive process is effective in analyzing this bivariate simulated data set

(Sect. 2.12). However, the recommended set of powers is ineffective because the

true power is outside of that set (Sect. 2.12). Thus, consideration of only the

recommended powers is not always sufficient. In cases where the best power

from the recommended set is the lowest (highest) of those powers, it would be

better to continue searching through lower (higher) powers.

3. Consideration of the degree 2 recommended set of fractional polynomials

distinctly improves on the degree 1 recommended set, but adaptive modeling

still generates a substantially better model (Sect. 2.13.1).

4. The simulated data are reasonably considered to have constant variances

(Sect. 2.19.3) as they have been simulated.

2.22 Chapter Summary

This chapter has presented a series of analyses of the death rate data, addressing

how the death rate per 100,000 depends on the nitric oxide pollution index, the

sulfur dioxide pollution index, and the average annual precipitation in inches for

60 metropolitan statistical areas. These analyses demonstrate adaptive regression

modeling of univariate continuous outcomes using fractional polynomials, includ-

ing how to set the number of folds for computing likelihood cross-validation (LCV)

scores, how to compare alternative models using LCV ratio tests, and how to model

variances as well as means.

The analyses demonstrate how to assess whether relationships are distinctly

nonlinear versus not using LCV ratio tests. For example, death rates per 100,000

are distinctly nonlinear in the nitric oxide pollution index. In this case, the slope for

the nitric oxide pollution index in the commonly used linear polynomial model is

nonsignificant, and so the dependence of the death rates on the nitric oxide pollution

index can only be identified through nonlinear relationships. Moreover, this depen-

dence cannot be identified with standard quadratic or cubic polynomial models as

well. Identification of that dependence requires consideration of fractional polyno-

mial models. On the other hand, the dependence of death rates on the sulfur dioxide

pollution index is reasonably treated as linear, but this conclusion requires a

comparison of the linear polynomial and adaptive models in the sulfur dioxide

pollution index. Similar assessments can be made to decide if the relationship of an

outcome y in terms of a predictor x is distinctly non-constant in x as opposed to not

depending on x at all by comparing the adaptive model for y in x to the constant

model for y.

Adaptive models and their LCV scores can be used to compare the effects of

predictor variables on an outcome variable. For example, the dependence of death
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rates per 100,000 on the average annual precipitation is stronger than their depen-

dence on the nitric dioxide pollution index. Adaptive models can be also used to

assess the dependence of outcome variables on multiple predictors. For example,

the nitric oxide pollution index explains essentially all of the effect of the sulfur

dioxide pollution index on death rates since the adaptive model in these two

predictors depends on only the nitric oxide pollution index. On the other hand,

each of the average annual precipitation and the nitric oxide pollution index

explains aspects of death rates the other does not since the adaptive model in

these two predictors generates a distinctly better LCV score than both of the

associated singleton predictor models.

Adaptive models can be used to assess whether relationships are reasonably

monotonic or not. For example, the adaptive model in the nitric oxide pollution

index counterintuitively suggests that its effect on death rates decreases for large

values. However, the adaptive monotonic model based on a single transform of the

nitric oxide pollution index provides a competitive alternative leading to the

intuitive conclusion that the mean death rate increases with the nitric oxide pollu-

tion index. Adaptive modeling further supports the conclusion that this effect is

reasonably treated as constant for large nitric oxide pollution index values.

The analyses also demonstrate that adaptive modeling can generate a better

degree 1 fractional polynomial model than those based on the pre-specified set of

powers recommended by Royston and Altman (1994), but the recommended degree

1 set in that case provides a competitive alternative. However, a simulated data set

is also analyzed in the chapter demonstrating that adaptive modeling can distinctly

outperform the recommended set of degree 1 transforms. Consideration of the

degree 2 transforms recommended by Royston and Altman (1994) provides a

distinct improvement for the simulated data over recommended degree 1 trans-

forms, but the adaptive model is still a distinctly better choice. Adaptively gener-

ated models for the simulated data, both with constant variances and allowing for

non-constant variances, are reasonably close to the true underlying model for these

data, providing support for the effectiveness of the adaptive modeling process.

Variances as well as means can be adaptively modeled. These models can be

used to assess the usual constant variances assumption by comparing associated

adaptive constant and non-constant variances models. For example, the analyses

demonstrate that variances for death rates per 100,000 are reasonably considered to

be constant in the average annual precipitation and the nitric oxide pollution index

when their means are modeled in terms of these two predictors.

The chapter has also provided a formulation for multiple regression models of

univariate continuous outcomes and for k-fold LCV scores. Other alternatives for

conducting cross-validation are defined as well. Penalized likelihood criteria

(PLCs), including the Akaike information criterion (AIC), Bayesian information

criterion (BIC), and Takeuchi information criterion (TIC), are defined and their use

in model selection compared to using LCV. For the example analyses, the models

generated with these three PLCs and with LCV are competitive alternatives.

However, the models selected with BIC and TIC scores are more highly influenced

by outliers than models selected with LCV and AIC scores.
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See Chap. 3 for details on conducting analyses in SAS like those presented in

this chapter. See Chaps. 6 and 7 for analyses involving power transformation of

outcomes as well as predictors. See Chaps. 4 and 5 for the extension of adaptive

modeling to multivariate continuous outcomes. See Chaps. 8 and 9 for the extension

of adaptive modeling to univariate discrete outcomes with two or more values and

Chaps. 12 and 13 for the extension of adaptive modeling to univariate count/rate

outcomes. See Chaps. 16 and 17 for a comparison of adaptive regression modeling

to generalized additive modeling for addressing nonlinearity and Chaps. 18 and 19

for a comparison to multivariate adaptive regression splines (MARS) modeling.
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Chapter 3

Adaptive Regression Modeling of Univariate
Continuous Outcomes in SAS

3.1 Chapter Overview

This chapter describes how to use the genreg macro for adaptive regression

modeling, with models for the means linear in their intercept and slope parameters,

and its generated output in the special case of univariate continuous outcomes. See

Supplementary Materials for a more complete description of the macro. See Freund

and Littell (2000) and Littell et al. (2002) for details on standard approaches for

regression modeling in SAS. See Carpenter (2004) for details on the SAS macro

language.

Code and output are provided for analyzing data on death rates per 100,000 as

reported in Chap. 2. Section 3.2 covers loading in the data, Sect. 3.3 modeling death

rates in terms of the nitric oxide pollution index, Sect. 3.4 setting the number k of

folds for computing k-fold likelihood cross-validation (LCV) scores, Sect. 3.5

standard polynomial modeling, Sect. 3.6 model selection using penalized likelihood

criteria (PLCs) rather than LCV, Sect. 3.7 restricting to monotonic models based on

a single transform of a primary predictor, Sect. 3.8 comparison of adaptive model-

ing to recommended fractional polynomial modeling, Sect. 3.9 incorporating log

transforms of primary predictors, Sect. 3.10 zero-intercept models, Sect. 3.11

bounding primary predictors, Sect. 3.12 adjusting for multiple primary predictors,

Sect. 3.13 residual analyses, and Sect. 3.14 adaptive modeling of variances as well

as means. Practice exercises are also provided for conducting analyses similar to

those presented in Chaps. 2 and 3.

© Springer International Publishing Switzerland 2016

G.J. Knafl, K. Ding, Adaptive Regression for Modeling Nonlinear Relationships,
Statistics for Biology and Health, DOI 10.1007/978-3-319-33946-7_3

45

http://dx.doi.org/10.1007/978-3-319-33946-7_2
http://dx.doi.org/10.1007/978-3-319-33946-7_2
http://dx.doi.org/10.1007/978-3-319-33946-7_3


3.2 Loading in the Death Rate Data

A data set on death rates for 60 metropolitan statistical areas in the US is analyzed

in Chap. 2 (see Sect. 2.2). Assume that this data set has been loaded into the default

(work or user) library (for example, by importing it from a spreadsheet file) under

the name deathrate. An output title line, selected system options, and labels for the

variables can be assigned with the following code.

title "Death Rate Data";

options linesize¼76 pagesize¼53 pageno¼1 nodate;

data deathrate;

set deathrate;

label id¼"Metropolitan Statistical Area ID"

deathrate¼"Death Rate (deaths/100,000)"

NOindex¼"Nitric Oxide Pollution Index"

SO2index¼"Sulfur Dioxide Pollution Index"

rain¼"Average Annual Precipitation (inches)";

run;

3.3 Adaptive Models Based on NOindex

Assuming the genreg macro has been loaded into SAS (see Supplementary

Materials), an adaptive model for deathrate as a function of a single trans-

form of NOindex can be requested as follows.

%genreg(modtype¼norml,datain¼deathrate,yvar¼deathrate,

expand¼y,expxvars¼NOindex,multtrns¼n);

As for all macros, genreg is invoked by prefixing its name with a percent symbol

(%) followed by a list of parameter settings in parentheses and separated by

commas. Any parameters not given a setting in the invocation have their default

settings as specified in the genreg interface code (see Supplementary Materials).

The parameter setting “modtype¼norml” requests a regression model based on

the normal distribution as considered in this chapter. This is the default modtype

setting and so it is not needed. The other supported settings are logis for logistic

regression (see Chaps. 8–11) and poiss for Poisson regression (see Chaps. 12–15).

The datain parameter specifies the input data set. It can be the name of a default

library data set as in this case or a two-level SAS data set name when it is in some

other library. The yvar parameter specifies the outcome variable, in this case the

variable named deathrate. The base model by default is the constant, intercept-only
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model, but this can be changed if needed. The parameter setting “expand¼y” (“y” is

short for “yes”) requests that the base model be expanded. The model for the

means is expanded by adding in transforms of variables listed in the setting for

the expxvars parameter. In this case, only NOindex is considered for expansion

and only a single transform of NOindex due to “multtrns¼n” (“n” is short for “no”

and means here that multiple transforms of expxvars variables should not be

considered in the expansion). The model for the variances can be expanded as

well (see Sect. 3.14).

The adaptive modeling process requested by the above genreg call is controlled

by LCV scores that are used to compare models. By default, these LCV scores are

based on 10 folds, but the number of folds can be adjusted using the foldcnt macro

parameter. For the above call, the selected model for the means is based on the

transform NOindex�0.8 with an intercept. The expansion process considers powers

with arbitrary numbers of decimal digits. In this case, since the selected power is not

an integer, there is a benefit (as defined in Chap. 20) to using fractional powers. The

10-fold LCV score for this model is 0.0041051. These analysis results are reported

in the genreg output as described in Sect. 3.12.

Consideration of multiple transforms of NOindex can be requested by changing

the setting of multtrns to “y”. This is the default setting for the multtrns parameter

so it can also be requested by just removing “multtrns¼n”. In this example, the

expanded model allowing for multiple transforms of NOindex has three transforms

added in the following order: NOindex�0.8, NOindex1.1, and NOindex�6, together

with an intercept. The LCV score is 0.0042534.

It is likely that some transforms of the above expanded model are extraneous.

Expanded models can often be improved further by contracting them, removing

extraneous transforms, and adjusting the powers of the remaining transforms. This

is requested by adding the setting “contract¼y”. Each term of the model including

the intercept is considered for removal. For the analysis of deathrate as a function

of NOindex, the expanded and then contracted model has the two transforms

NOindex�0.04 and NOindex�0.39 without an intercept and 10-fold LCV score

0.0042256.

In this case, the expanded model is changed by the contraction. Since the

remaining transforms have their powers adjusted, there is no need for further

transformation. However, when the contraction leaves the expanded model

unchanged, there may be a benefit to adjusting the transforms in the uncontracted

expanded model. For this reason, the adaptive process includes a conditional

transformation step after a contraction that leaves the expanded model unchanged.

This is controlled by the condtrns macro parameter with default setting

“condtrns¼y”. The conditional transformation can be turned off with the setting

“condtrns¼n”. This is not needed in the above code since the condtrns setting only

has an effect when a contraction is requested. Turning off the conditional transfor-

mation when a contraction has been requested is not recommended since it can

sometimes distinctly improve an uncontracted expanded model (see Sect. 10.4.1 for

an example).
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An output data set named dataout is created in the default library containing a

copy of the datain data set along with several generated variables. The dataout

macro parameter can be used to change the name of this data set. One of the

generated dataout variables is named yhat and is loaded with predicted values (that

is, estimated mean values) for subjects, computed with estimated parameters of the

final model selected by genreg. The macro parameter yhatvar can be used to change

the name of this variable. The dataout data set can be used to generate an internal

SAS plot of yhat versus NOindex to visualize the relationship between deathrate

and NOindex. Alternately, it can be exported to a graphics tool (like Excel if

working in Windows) and used to generate that plot. A third option is to compute

estimated means directly over a range of predictor values in a spreadsheet using

estimated coefficients and powers reported in the genreg output, and then use those

estimates to generate the plot. Figure 2.1 displays predicted values generated by the

adaptive model for deathrate as a function of NOindex (using an expansion

followed by a contraction) together with the raw data.

3.4 Setting the Number of Cross-Validation Folds

The Table 2.2 models for different numbers of folds can be generated with

the genreg foldcnt macro parameter, for example, by varying the setting of the

kfold macro variable in the following code.

%let kfold¼5;

%genreg(modtype¼norml,datain¼deathrate,yvar¼deathrate,

expand¼y,expxvars¼NOindex,contract¼y,

foldcnt¼&kfold);

The macro reference &kfold is translated to the current setting of this macro

variable, 5 in this case as set with the %let statement, prior to executing the

subsequent code containing that reference. Since k¼ 5 generates the largest LCV

score over multiples of 5-folds up to k¼ 15 (see Sect. 2.8), the kfold macro variable

is assumed to be set to 5 in what follows. The Table 2.2 LCV scores for k¼ 5 folds

can be generated by varying the setting of the xpwrs macro variable in the following

code.

%let xpwrs¼-0.04 -0.39;

%genreg(modtype¼norml,datain¼deathrate,yvar¼deathrate,

xintrcpt¼n,xvars¼NOindex NOindex,

xpowers¼&xpwrs,foldcnt¼&kfold);

The xpowers macro parameter is used along with the xvars macro parameter by

genreg to specify fractional polynomial base models. The “xintrpct¼n” option is

used to request a zero intercept (the default setting “xintrcpt¼y” requests the
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inclusion of an intercept in the base model). The above code generates the model for

deathrate in terms of NOindex�0.04 and NOindex�0.39 without an intercept as

adaptively generated with k¼10 along with its 5-fold LCV score. The 5-fold

score for the k¼15 solution can be obtained by changing to “%let

xpwrs¼�0.04 � 0.40”. A LOO LCV can be requested by setting “loo¼y” along

with an empty or missing foldcnt setting (i.e., “foldcnt¼” or “foldcnt¼.”) as

follows.

%genreg(modtype¼norml,datain¼deathrate,yvar¼deathrate,

expand¼y,expxvars¼NOindex,contract¼y,

foldcnt¼,loo¼y);

3.5 Standard Polynomial Models in NOindex

Standard polynomial models as in Table 2.3 are generated with the xvars and

xpowers macro parameters. For example, the fully-specified cubic polynomial

model in NOindex is generated as follows.

%genreg(modtype¼norml,datain¼deathrate,yvar¼deathrate,

xintrcpt¼y,xvars¼NOindex NOindex NOindex,

xpowers¼1 2 3,foldcnt¼&kfold);

3.6 Selecting Models in NOindex Using Penalized
Likelihood Criteria

An adaptive model for deathrate versus NOindex using adjusted AIC (AIC0;
see Sect. 2.10) scores (as defined in Sect. 2.10.1) is generated as follows.

%genreg(modtype¼norml,datain¼deathrate,yvar¼deathrate,

expand¼y,expxvars¼NOindex,contract¼y,

scretype¼AIC);

The scretype macro parameter is used to specify the type of scores to be used by

genreg to evaluate and compare models. The default setting is “scretype¼LCV” so

that models are evaluated and compared with LCV scores (or generalized LCV

scores when appropriate). Changing to “scretype¼AIC” requests that AIC0 scores
be used instead to control the adaptive modeling process. The same heuristics are

used to generate models, but the scores for those models change and so different
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models can be selected. BIC0 (TIC0) scores are requested by changing to

“scretype¼BIC” (“scretype¼TIC”). The setting of the foldcnt macro parameter is

ignored when scores are based on an adjusted PLC.

3.7 Monotonic Model in NOindex

An adaptive monotonic relationship for deathrate in terms of NOindex can

be generated as follows.

%genreg(modtype¼norml,datain¼deathrate,yvar¼deathrate,

expand¼y,expxvars¼NOindex,multtrns¼n,

contract¼y,foldcnt¼&kfold);

As before, “multtrns¼n” restricts the expansion to at most one transform

of NOindex, which adds in the single transform NOindex�0.8. The contraction

leaves the model unadjusted and the 5-fold LCV score for the final model is

0.0041005. Even though the default setting “condtrns¼y” is requested, further

transformation can have no effect in cases like this with only one transform in the

uncontracted expanded model, and so the conditional transformation step is not

executed.

3.8 Recommended Fractional Polynomials in NOindex

The following code can be used to assess the impact of restricting to the

recommended degree 1 set of powers (see Sect. 2.12) for modeling the relationship

of deathrate with NOindex. The power transforms t1–t3 and t5–t8 are computed

using the SAS exponentiation operator “**”. The macro variable trnsform can be

changed from t1 to t8 to generate LCV scores for each recommended degree

1 fractional polynomial.

data extended;

set deathrate;

t1¼NOindex**(-2); t2¼NOindex**(-1); t3¼NOindex**(-0.5);

t4¼log(NOindex); t5¼NOindex**(0.5); t6¼NOindex**(1);

t7¼NOindex**(2); t8¼NOindex**(3);

run;

%let trnsform¼t1;

%genreg(modtype¼norml,datain¼extended,yvar¼deathrate,

xvars¼&trnsform,foldcnt¼&kfold);
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Several support macros have been developed for iteratively invoking the genreg

macro (see Supplementary Materials). One of these is the RA1compare macro,

which invokes genreg to generate the adaptive degree 1 monotonic fractional

polynomial model for a single predictor and compare its LCV score to LCV scores

for the constant model and the Royston and Altman (1994) recommended set of

degree 1 fractional power transforms in that predictor. It can be used to generate

the complete results of Table 2.5 as follows.

%RA1compare(modtype¼norml,datain¼deathrate,yvar¼deathrate,

xvar¼NOindex,foldcnt¼&kfold,scorefmt¼9.7);

The modtype, datain, yvar, and foldcnt macro parameters have the same mean-

ing as for the genreg macro. The xvar macro parameter is like the xvars macro

parameter of genreg, but it can only specify a single predictor variable for the

means. The scorefmt macro parameter requests that LCV scores generated by

RA1compare be formatted with the SAS w.d format (where w is the width and d

is the number of decimal digits) with value 9.7, that is, with scores printed out in

9 character positions and rounded to 7 decimal digits. Generated results are

displayed in Table 3.1. The only differences from Table 2.5 are that powers are

ordered by LCV scores and the percent decrease (PD) for the 0.5 power is rounded

differently. The constant model is the one with power specified as “--”.

Table 3.1 Results generated by the RA1compare macro comparing the recommended degree

1 fractional polynomial models for the mean death rate per 100,000 in the nitric oxide pollution

index (NOindex) and the constant model (--) to the associated adaptive monotonic model (adapt)

using likelihood cross-validation (LCV) scores
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3.9 Impact of the Log Transform of NOindex

The impact of the log transform can be assessed by including both a predictor

xvar and its log transform log(xvar) in the expxvars list. For the analysis of

deathrate as a function of NOindex, the impact of the log transform of NOindex

can be addressed as follows.

%genreg(modtype¼norml,datain¼deathrate,yvar¼deathrate,

expand¼y,expxvars¼NOindex log_NOindex,

contract¼y,foldcnt¼& kfold);

It is not necessary to compute the log transform in the datain data set before

running genreg. Variable names of the form “log_xvar” starting with the prefix

“log_” followed by the name xvar of a variable in the datain data set are computed

by genreg as “log_xvar¼log(xvar)” and also loaded into the dataout data set. This

assumes that xvar is positive valued so that log(xvar) is well-defined. See Sect. 4.6

on how genreg computes log transforms for general real valued predictors xvar.

A macro called RA2compare is available for comparing adaptive models to the

recommended degree 2 fractional polynomial models (see Sect. 2.13). The adaptive

model that is generated is based on power transforms of both the predictors

NOindex and log(NOindex) since these two variables are also considered in the

recommended degree 2 models. However, it also considers products of powers of

these two predictors since such products are included in the recommended degree

2 set (these products generalize standard interactions; see Sect. 4.5.4 for details).

The following code generates LCV scores for all 36 recommended degree 2 models

for deathrate as a function of NOindex, comparing them to LCV scores for the

constant model and the associated adaptive model.

%RA2compare(modtype¼norml,datain¼deathrate,yvar¼deathrate,

xvar¼NOindex,foldcnt¼&kfold,scorefmt¼9.7);

The modtype, datain, yvar, xvar, foldcnt, and scorefmt macro parameter have

the same meaning as for RA1compare. The best LCV score for the recommended

degree 2 fractional polynomial models is 0.0043085 generated with p¼ p0 ¼ 0

(as defined in Sect. 2.13) corresponding to the model in log(NOindex) and

(log(NOindex))2.

3.10 Zero-Intercept Models in NOindex

The genreg macro considers zero-intercept models as part of its adaptive modeling

process. The base model has a zero intercept when “xintrcpt¼n”, but by default

“xintrcpt¼y” so that then the base model includes an intercept. Consequently, the
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expanded model in that case also includes an intercept. By default, the contraction

considers removal of the intercept as well as the other terms of the model so that a

zero-intercept model can be generated. It may be desirable to restrict to models with

intercepts and not consider zero-intercept alternatives. This is possible by adjusting

the contraction not to consider removing the intercept from the expanded model.

For the analysis of deathrate as a function of NOindex, this can be requested as

follows.

%genreg(modtype¼norml,datain¼deathrate,yvar¼deathrate,

expand¼y,expxvars¼NOindex,contract¼y,

nocnxint¼y,foldcnt¼ &kfold);

The setting “nocnxint¼y” in the above code means do not contract the intercept

parameter of the model for the means (corresponding to the “x” in “nocnxint¼y”)

while the default setting “nocnxint¼n” means allow the removal of that intercept.

The model for the variances is constant by default and so based on an intercept

term, but by default this is not changed (see Sect. 3.14 for how to model the

variances).

3.11 Models Bounding the Impact of NOindex

Models bounding the impact of NOindex can be generated with the following code.

%let bnd¼12;

data bounded;

set deathrate;

NObnded¼min(NOindex,&bnd);

label NObnded¼"NOindex Bounded to At Most &bnd";

run;

%genreg(modtype¼norml,datain¼bounded,yvar¼ deathrate,

expand¼y,expxvars¼NObnded,contract¼y,

foldcnt¼ &kfold);

The setting of the macro variable bnd is varied over selected values to generate

the variable NObnded equaling NOindex for values below &bnd and equaling

&bnd after that. The call to genreg generates an adaptive model based on trans-

forms of NObnded, which are nonlinear in NOindex for values below &bnd and

constant after that. The above label is enclosed in double quote marks (“”) rather

than single quote marks (00) since then the macro processor resolves macro refer-

ences in the label, in this case, the reference &bnd in the label for the variable

NObnded. The best LCV score over &bnd ranging from 5 to 15 occurs when

&bnd¼ 12. This setting is used in subsequent analyses.
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3.12 Models in Other Available Predictors

So far, only NOindex and its bounded version NObnded have been used to predict

deathrate, but other predictors are available. Alternate adaptive models can be

generated by changing the expxvars setting. An adaptive model in SO2index is

generated using “expxvars¼SO2index”. An adaptive model in NObnded and

SO2index is generated using “expxvars¼NObnded SO2index”. The order variables

are listed in expxvars has no effect on the results. The order they are entered into the

model in the expansion is determined by LCV scores. The estimates displayed in

Figs. 2.9 and 2.10 are generated as follows.

%genreg(modtype¼norml,datain¼bounded,yvar¼deathrate,

expand¼y,expxvars¼rain NObnded,contract¼y,

foldcnt¼&kfold);

The first two pages of the output generated by this code (not provided here)

document a variety of macro parameter settings like the version of the macro, the

model type, the name of the datain data set and names of variables generated in

the dataout data set. They also document the form of cross-validation requested

including the number of folds, range of sizes of the folds, and the cutoff for a

substantial PD in the LCV scores for the data. The third page documents the base

model. Table 3.2 contains part of the third page. The estimated constant mean is

940.3, the estimated constant variance parameter is 3804.6, and the LCV score is

0.0038136. Note that the LCV score is described in Table 3.2 as an mth root but is

defined in Sect. 2.5.3 as an nth root. The genreg macro uses the symbol m to

denote the number of total measurements, which is the same for univariate data as

the number n of subjects. However, this is not the case in the more general

repeated measurement case also supported by genreg (see Chaps. 4, 5, 10, 11,

14, and 15).

The fourth page of the output (not provided here) documents the parameter

settings controlling the expansion and the fifth page the expanded model. Table 3.3

Table 3.2 Estimates and likelihood cross-validation score for the base model for the mean death

rate per 100,000 in terms of only an intercept (XINTRCPT)
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contains part of the fifth page. The transform rain�0.2 is added to the constant model

first increasing the LCV score from 0.0038136 to 0.0044433. The transform

NObnded0.3 is added next increasing the LCV score to 0.0055678 and then the

expansion stops. The expansion allows the LCV score to decrease as long as the PD

is not larger than the amount controlled by the expansion stopping tolerance, but

that does not happen here (see Chap. 20 for details). Estimates for this model are

1264.9 for the intercept, �1051.8 for the slope of the rain transform, 105.4 for the

slope of the NObnded transform, and 1588.6 for the constant variance parameter.

New transforms are added without adjusting or removing transforms already in the

model, and so improvements are possible by adjusting the expanded model. This is

addressed by contraction.

The sixth page of the output (not provided here) documents the parameter

settings controlling the contraction and the seventh page the contracted model.

Table 3.4 contains part of the seventh page. The intercept is removed first, increas-

ing the LCV score from 0.0055678 to 0.0056386. This provides an example of a

zero intercept model improving on the associated model with an intercept, but the

PD for the expanded model of 1.26 % is insubstantial (since it is lower than the

cutoff of 3.15 % for a substantial PD for the data reported in Sect. 2.7). The

contraction then stops resulting in a final LCV score of 0.0056392. In this case,

the contraction produces an increased LCV score. In general, the contraction allows

removal of transforms that decrease the LCV score as long as the decrease is not too

large as controlled by the contraction stopping tolerance. By default, this tolerance

parameter is calculated so that the decision to continue or stop the contraction is

based on a LCV ratio test (see Sects. 2.7 and 4.4.2). In this case, the contraction

stops because removal of each of the two remaining transforms results in a PD (not

reported in the output) greater than the cutoff for the data. It also stops when there is

only one transform left in the model, but that does not happen in this case. With

each contraction of the model, the powers of remaining transforms are adjusted to

improve the LCV score. For the final contracted model, the power for the remaining

Table 3.3 Expansion steps, estimates, and likelihood cross-validation score for the expanded

model for the mean death rate per 100,000 in terms of an intercept (XINTRCPT) and transforms of

the average annual precipitation (rain) and the nitric oxide pollution index bounded at

12 (NObnded)
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rain transform is changed to 0.15 with estimated slope 440.0 and the power for

NObnded remains at 0.3 with estimated slope 103.1. The estimated constant

variance parameter is 1590.7 while the LCV score is 0.0056386.

The adaptive modeling process is not instantaneous and can take considerable

amounts of time for complex modeling situations and/or large data sets. The

amount of clock time in seconds can be requested by the macro parameter setting

“rprttime¼y”. However, the adaptive model in rain and NObnded requires only

about 4.9 s (the amount of time is not always the same for each execution of the

same code but is close and can be different for different computers and can be

affected by other processes running at the same time). The adaptive modeling process

can be monitored as it proceeds if the SAS log window is visible where details on

models generated at the various steps of the expansion and contraction are displayed.

In SAS version 9.3 or later, issue the output delivery system (ODS) command: “ods

listing;” first, otherwise these details do not appear in the log. As an example,

Table 3.5 contains reported progress for the expansion steps of the adaptive modeling

process for deathrate as a function of NObnded and rain. The contraction steps are

also reported in the SAS log window, but are not provided here.

3.13 Residual Analysis

Residual analysis is supported by the genreg macro and can be requested

for the final selected adaptive model depicted in Figs. 2.9 and 2.10 as follows.

Table 3.4 Contraction steps, estimates, and likelihood cross-validation score for the contracted

model for the mean death rate per 100,000 in terms of transforms of the average annual precip-

itation (rain) and the nitric oxide pollution index bounded at 12 (NObnded)
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%genreg(modtype¼norml,datain¼bounded,yvar¼deathrate,

xintrcpt ¼nxvars¼rain NObnded,

xpowers¼0.15 0.3,foldcnt¼&kfold,ranlysis¼y);

The setting “ranlysis¼y” requests a residual analysis (as opposed to the default

setting of “ranlysis¼n”). Standardized residuals are generated in the dataout data

set in a variable named stdres. This variable name can be changed with the stdrsvar

macro parameter. Normal scores for the standardized residuals are also produced in

a variable named nscore, which can be changed with the nscrevar macro parameter.

Standardized residual and normal (probability) plots are also generated by genreg

using PROC PLOT. These plots can be generated as well by exporting the dataout

data set to a graphics tool (as for Figs. 2.11 and 2.12). The P-value for the Shapiro-

Wilk test of normality of the standardized residuals is also generated. Normal

scores, the normal plot, and the test for normality are only generated for

“modtype¼norml” since they are not relevant for other settings of the modtype

macro parameter. The stdrsvar and nscore variables are generated whatever the

setting for ranlysis is.

If studentized residuals are desired instead, add the “procmod¼y” option to the

genreg code. The procmod macro parameter is used to have genreg invoke the

associated SAS PROC for the current analysis, PROC REG in this case. A data set

Table 3.5 Adaptive expansion progress reported in the SAS log window for models

for the mean death rate per 100,000 in terms of an intercept (XINTRCPT) and trans-

forms of the average annual precipitation (rain) and the nitric oxide pollution index

bounded at 12 (NObnded)
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named procmod is generated, inputted to PROC REG which adds two variables

using the SAS output statement with SAS-generated names predict and studres,

containing the predicted values and the studentized residuals, respectively. These

latter two variables can be used to generate studentized residual and normal plots

similar to Figs. 2.11 and 2.12. The procmod data set is always created. Its name can

be changed with the prmodout macro parameter. The predict and studres variables

are only added to this data set if “procmod¼y”, and only for “modtype¼norml”

with a univariate continuous outcome like deathrate. Currently, the names of these

latter two variables cannot be changed through genreg.

Untransformed predictors in the adaptive model are generated in the procmod

data set with their names in the datain data set. Transformed predictors in the

adaptive model need to be given new names. Transforms used to model the means

are included in both the procmod and dataout data sets with names starting with the

prefix XTR_ (short for x transform) followed by an index number (that is, 1, 2, . . .).
When “procmod¼y”, the genreg output includes a description of the variables

passed to PROC REG as well as the output generated by PROC REG. Table 3.6

displays part of this output for the adaptive model for deathrate as a function of

NObnded and rain. There are two predictors for the means named XTR_1 and

XTR_2 corresponding to rain0.15 and NObnded0.3, respectively (with “**” denoting

exponentiation as in SAS code). These are the predictor names listed in the PROC

REG output. Transforms used to model the variances are also generated in the

procmod data set, in this case just a constant predictor named VINTRCPT

corresponding to a variance intercept since the variances for this model are

Table 3.6 Results of the “procmod¼y” option for the adaptive model of the mean death rate per

100,000 as a function of the annual average precipitation (rain) and the nitric oxide pollution index

bounded at 12 (NObnded)
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constant. Note that slopes for XTR_1 and XTR_2 are highly significant at P< 0.001

(and with the same estimated values as generated by genreg in Table 3.4). Coeffi-

cients for adaptively generated models are usually all significant, and often highly

significant as in this case. Consequently, standard t tests for zero coefficients of

adaptive regression models are usually inappropriate. LCV ratio tests are in most

cases more appropriately used to compare adaptive models to alternative models

(see Sect. 1.3 for an example where it is reasonable to conduct t tests for some of an

adaptive model’s coefficients).

3.14 Modeling Variances as Well as Means

Both variances and means for deathrate can be modeled in terms of NObnded

and rain as follows.

%genreg(modtype¼norml,datain¼bounded,yvar¼ deathrate,

expand¼y,expxvars¼rain NObnded,

expvvars¼rain NObnded,contract¼y,

foldcnt¼&kfold,rprttime¼y);

The expvvars macro parameter provides a list of primary predictors to consider

for modeling variances. The list in this case is the same as for expxvars, but it can be

different. Other macros parameters are supported for modeling the variances

including vvars, vpowers, and vintrcpt, which work like xvars, xpowers, and

xintrcpt but address the logs of the variances rather than the means.

The expanded model (output not provided) for the above code has means based

on the same two transforms as the expanded constant variances model: rain�0.2 and

NObnded0.3 with an intercept and variances based on the two transforms: NObnded1.1

and rain5 also with an intercept. The LCV score is 0.0054405. Table 3.7 contains part

of the output for the contraction of this expanded model. The intercept for the

variances is removed first increasing the LCV score to 0.0056895. Next the intercept

for the means is removed followed by the rain transform for the variances, and then

the contraction stops. The final model has means based on the two transforms: rain0.14

and NObnded0.4 without an intercept and with estimated slopes 481.7 and 65.0 as

well as variances based on the single transform: NObnded�0.01 also without an

intercept and with estimated slope 7.5. The LCV score is 0.0056157 (as also reported

in Sect. 2.19.2). Since this is smaller than the score for the constant variances model

of Table 3.4, the variances for deathrate are reasonably considered to be constant.

The clock time for this non-constant variances model is about 39.7 s, or about

0.7 min, compared to about 4.9 s for the associated constant variances model as

reported in Sect. 3.12, or about 8.1 times as long. While the actual time for this

constant variances model is not very long at 0.7 min, in general non-constant

variances models can require substantially longer processing times than associated

constant variances models. However, non-constant variances models are important

to consider. They can provide substantial improvements over associated constant
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variances models. Constant variances models can be reasonable alternatives in

some cases (as for the death rate data), but that conclusion is only possible by

generating the non-constant variances model and comparing it to the constant

variances model.

3.15 Practice Exercises

For Practice Exercises 3.1–3.4, first create a data set called extended containing all

the variables of the deathrate data set as well as NObnded (computed as in

Sect. 3.11 with “%let bnd¼12”) and the three possible interactions NO_SO2,

NO_rain, and SO2_rain created as follows.

NO_SO2¼NObnded*SO2index;

NO_rain¼NObnded*rain;

SO2_rain¼SO2index*rain;

Table 3.7 Contraction steps, estimates, and likelihood cross-validation score for the contracted

model for both the means and variances of death rate per 100,000 in terms of transforms of the

average annual precipitation (rain) and the nitric oxide pollution index bounded at 12 (NObnded)
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Consideration of interaction terms addresses the issue called moderation (see

Sect. 4.5.3). Note that an adaptive model containing interaction terms does not

necessarily provide a distinct improvement over the associated additive model

without interactions. This is only the case if the LCV score for the additive model

generates a substantial PD in LCV scores compared to the interaction-based model.

3.1 In the analysis of deathrate in terms of NObnded and SO2index reported in

Sect. 2.16, the generated model depends only on NObnded. However, this is

an additive model and does not account for possible interaction between

NObnded and SO2index. Repeat the analysis also considering the interaction

NO_SO2 and assess the results. Use k¼ 5 folds as justified in Sect. 2.8.

3.2 In the analysis of deathrate in terms of NObnded and rain reported in Sect.

2.16, the generated model depends on both NObnded and rain. However, this

is an additive model and does not account for possible interaction between

NObnded and rain. Repeat the analysis also considering the interaction

NO_rain and assess the results. Use k¼ 5 folds as justified in Sect. 2.8.

3.3 In the analyses of deathrate reported in Sect. 2.16, the additive model in

NObnded and SO2index does not depend on SO2index, and so SO2index

has not been considered yet in analyses involving NObnded and rain. How-

ever, it is possible that SO2index has an effect when rain is also considered in

the analysis. First address this issue by generating the adaptive additive model

in the three predictors NObnded, SO2index, and rain and assess the results.

Then address this issue further by generating the adaptive model in these three

predictors along with the three possible interactions between them and assess

the results. Use k¼ 5 folds as justified in Sect. 2.8.

3.4 In Sect. 2.11, it is noted that there are two outlying observations with NOindex

values of 171 and 319 compared to NOindex values of 1–66 for the other

observations. Conduct a sensitivity analysis assessing whether these two

observations have a highly influential effect on modeling the full data. First

create a data set called reduced containing all the extended data except the

observations with the two highest NOindex values. Use the adaptive analysis

of death rates for these reduced data in terms of NOindex as a benchmark

analysis for setting the number k of folds. Using the reduced data and this

value for k, generate the model in NOindex selected adaptively for the full

data, the monotonic model in NOindex generated adaptively for the full data,

and the model in NObnded selected adaptively for the full data. Compare

these models to the adaptive model in NOindex generated adaptively for the

reduced data. Are the two outlying observations highly influential in the sense

that some of the models generated for the full data are substantially inferior to

the adaptively generated model for the reduced data? Note that the cutoff for a

substantial PD for these data with 58 observations is 3.26 %.

For Practice Exercises 3.5–3.8, use the body fat data set available on the

Internet (see Supplementary Materials). The outcome variable for this data set

is called bodyfat and contains body fat values in gm/cm3 for 252 men. The file
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contains several predictors. Practice Exercises 3.4–3.6 use only three of these

predictors, called weight, height, and BMI containing weights in pounds,

heights in inches, and body mass index values in kg/cm2, respectively.

3.5. Use the adaptive analysis of bodyfat in weight with constant variances as a

benchmark for determining an appropriate number of folds for computing LCV

scores. Use this number of folds in all subsequent analyses of the body fat data.

Assess whether the generated adaptive model is distinctly nonlinear in weight or

not. Generate an adaptive model for bodyfat as a function of height with constant

variances and assess if there is a substantial nonlinear relationship in height.

Generate an adaptive model in terms of BMI with constant variances and assess

if there is a substantial nonlinear relationship in BMI. Which of these three

singleton-predictor models is the best for predicting bodyfat?

3.6. Generate the adaptive model in the three predictors: weight, height, and BMI

with constant variances. Use the number of folds determined as part of Practice

Exercise 3.5. Compare this model to the best singleton predictor model of

Practice Exercise 3.4. Does consideration of weight, height, and BMI together

distinctly improve on results for each separately?

3.7. Generate the adaptive model for both means and variances in the three pre-

dictors: weight, height, and BMI. Use the number of folds determined as part of

Practice Exercise 3.5. Compare this model to the constant variances model with

the best LCV score generated for Practice Exercises 3.5 and 3.6. Does account-

ing for non-constant variances provide a substantial improvement or not?

3.8. Conduct a residual analysis for the model identified in Practice Exercise 3.7 as

preferable. Are there any outliers with standardized residuals outside the range

of �3? If so, conduct a sensitivity analysis as in Practice Exercise 3.5 to

determine if these outliers are highly influential on the conclusions for the

full data. If the adaptive reduced-data model provides a distinct improvement

over the full-data model, conduct a residual analysis for it and iterate this

process until no outliers are identified. Finally, for the full data, plot BMI on

the y-axis versus height on the x-axis. Are there any anomalous observations in

this plot that are not identified as outliers in the residual analysis?
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Chapter 4

Adaptive Regression Modeling
of Multivariate Continuous Outcomes

4.1 Chapter Overview

This chapter formulates and demonstrates adaptive regression modeling of means

and variances for repeatedly measured continuous outcomes treated as multivariate

normal. A description of how to generate these models in SAS is provided in

Chap. 5. Standard models for this context are addressed in several texts (e.g.,

Brown and Prescott 1999; Fitzmaurice et al. 2011; Verbeke and Molenberghs

2000).

Section 4.2 describes the dental measurement data to be used in analyses.

Section 4.3 formulates marginal modeling of means for multivariate continuous

outcomes using maximum likelihood (ML) to estimate parameters. Section 4.4

extends likelihood cross-validation (LCV) to marginal modeling (see Sect. 2.5.3 for

the univariate case) including LCV ratio tests in Sect. 4.4.2. Section 4.5 provides

example analyses of the dental measurement data using marginal ML-based model-

ing with order 1 autoregressive (AR1) correlations including adaptive moderation

analyses in Sect. 4.5.3 and analyses based on geometric combinations, generalizing

standard interactions, in Sect. 4.5.4. Section 4.6 provides a formulation for general

power transforms of possibly negative or zero valued predictors. Section 4.7 for-

mulates transition modeling for multivariate continuous outcomes in terms of prior

outcome measurements while Sect. 4.8 provides example analyses of the dental

measurement data using these models. Section 4.9 generalizes transition modeling

to general conditional modeling for multivariate continuous outcomes in terms of

the other outcome measurements, not just the prior measurements, while Sect. 4.10

provides example analyses of the dental measurement data using these models.

Section 4.11 formulates parameter estimation using generalized estimating equa-

tions (GEE) for marginal models of means of multivariate continuous outcomes and

provides example GEE analyses of the dental measurement data including a

comparison of LCV and the quasi-likelihood information criterion (QIC) specially

developed for GEE-based model selection. Section 4.12 provides a description of
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the exercise data and example analyses using marginal and transition modeling.

The dental measurement data have no missing outcomes but the exercise data

do. Section 4.13 formulates the extension to LCV scoring to account for missing

outcome measurements. Section 4.14 reanalyzes the exercise data using this alter-

native form of LCV. Section 4.15 extends marginal modeling of means to marginal

modeling of both means and variances and also provides example analyses of the

dental measurement and exercise data using these models. The extensions to

modeling of means and variances for transition and general conditional models

are straightforward and similar to the extension of Sect. 2.19.1 for the univariate

case. Sections 4.16 and 4.17 provide overviews of the results of the analyses of the

dental measurement and exercise data, respectively. The dental measurement and

exercise data are longitudinal, but analyses of clustered data can be conducted

similarly. Formulations can be skipped to focus on analyses.

4.2 The Dental Measurement Data

A data set on dental measurements for 27 children, including 16 boys and 11 girls,

over four ages is available on the Internet (see Supplementary Materials). These

data were analyzed by Potthoff and Roy (1964) in their classic growth curve

modeling paper. They are reanalyzed here to demonstrate how to conduct regres-

sion analyses that account for nonlinearity in predictor variables for means of

correlated continuous outcome measurements (in this case, longitudinal). The

variable dentmeas is the outcome for these analyses and contains values for each

child’s dental measurements, the distance in mm from the center of the pituitary to

the pterygomaxillary fissure. The possible predictor variables are age (with values

8, 10, 12, and 14 years), male (the indicator for the child being a boy), and their

interaction agemale¼ age∙male. There are 108 outcome measurements with four

measurements available for each child, and so none missing. The cutoff for a

substantial percent decrease (PD) in the LCV scores for these data with 108 mea-

surements is 1.76 % (see Sect. 4.4.2). Prior to analyzing these data in Sect. 4.5,

models are formulated in Sect. 4.3 for data like these along with LCV scoring for

such models in Sect. 4.4.

4.3 The Marginal Multivariate Regression Model and Its
Parameter Estimates

This section provides a formulation (which can be skipped) for models of outcome

variables for matched sets (for example, subjects or families) measured repeatedly

over specific conditions (e.g., time or family member), with outcomes possibly

measured over different subsets of conditions for different matched sets (for
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example, outcomes measured at different times for different subjects). For the

dental measurement data, the matched sets correspond to children and the condi-

tions to the ages at which those children are measured. A marginal approach

(Fitzmaurice et al. 2011) is considered with the outcome means depending only

on predictors of interest and not on random effects or other outcome values and with

the covariance structure (or, equivalently, the variances and correlations) for out-

comes within the same matched set modeled directly. For example, compound

symmetry is the covariance structure with the same variance for all conditions and

the same correlation for all pairs of distinct conditions. These are also called

covariance pattern models (Brown and Prescott 1999). Outcomes are considered

multivariate normally distributed. Only marginal models with constant variances

are considered here. See Sect. 4.15 for the generalization to non-constant variances.

Parameters are estimated with ML. See Sect. 4.11 for the formulation of GEE

parameter estimation for marginal models.

4.3.1 Complete Data

Let ys be a column vector of m outcome measurements ysc under alternative

conditions with indexes c 2 C ¼ c : 1 � c � mf g for n matched sets of measure-

ments with indexes s 2 S ¼ s : 1 � s � nf g. The indexes s are often considered to
represent different subjects, but the matched sets may contain outcome measure-

ments for clusters of subjects like multiple members of the same family and so are

more general. For s 2 S and c 2 C, let xsc be a column vector of r predictor values

xscj with indexes j 2 J ¼ j : 1 � j � rf g and Xs the m� r predictor matrix with

rows xsc
T. Note that sc denotes a pair of indexes s and c and does not involve

multiplication.

4.3.2 Incomplete Data

While data sets like the dental measurement data can be complete with outcome

measurements available for all possible conditions for all matched sets, multivariate

outcome data often consist of different sets of outcome measurements within the

matched sets, for example, due to missing data as for the exercise data of Sect. 4.12

or due to studying different sized clusters of subjects. Consequently, the formula-

tion considers this more general case.

Let y
s,C

0 denote the vector ys with its entries ysc restricted to the indexes c 2 C
0
,

an arbitrary, possibly empty subset of C. Also, letX
s,C

0 denote the matrix Xs with its

rows restricted to the indexes c 2 C
0
.

To account for different subsets of outcome measurements for matched

sets, let C(s) denote the subset of C consisting of the m sð Þ � m conditions
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for which ysc and xsc are actually measured for each matched set s 2 S. Let

Os,CðsÞ ¼ ðys,CðsÞ,Xs,CðsÞÞ denote the observed data for each s 2 S. Also, let

SC ¼ sc: c 2 C sð Þ, s 2 Sf g be the set of indexes sc for the observed measurements

and mðSCÞ ¼ P
s2SmðsÞ � n �m the total number of observed measurements.

4.3.3 Marginal Maximum Likelihood Modeling
of Dependence

For s 2 S, assume that conditioned on the values for the predictor matrices Xs,C(s),

the outcome vectors ys,C(s) are independent and multivariate normally distributed

with mean vectors μs,C(s) having entries μsc for c 2 C sð Þ and covariance matrices

Σs,C(s) having entries Σscc
0 for c, c

0 2 CðsÞ. Model the means as μs,C sð Þ ¼ Xs,C sð Þ � β
for a r� 1 vector β of fixed effects coefficients and the covariance matrices as

Σs,CðsÞ ¼ σ2 � Rs,CðsÞðρÞ for a constant variance parameter σ2 and a vector ρ of

parameters determining the correlation matrices Rs,C(s)(ρ) for ys,C(s). Let

θ ¼ ðβT,σ2,ρTÞT denote the vector of all the model parameters.

For each s 2 S, the likelihood term L(Os,C(s); θ) satisfies

‘ðOs,CðsÞ;θÞ¼ log L Os,CðsÞ;θ
� �� �¼�1

2
�es,CðsÞT �Σs,CðsÞ�1 �es,CðsÞ

�1

2
� logðjΣs,CðsÞjÞ�

1

2
�mðsÞ � logð2 �πÞ,

where es,C sð Þ ¼ ys,C sð Þ � μs,C sð Þ is the error vector, |Σs,C(s)| the determinant of

the covariance matrix Σs,C(s), and π the usual constant. The likelihood L(SC; θ)
is the product of the likelihood terms L(Os,C(s); θ) over s 2 S. The maximum

likelihood estimate θ(SC) of θ is obtained by maximizing the log-likelihood

‘ðSC; θÞ ¼ log LðSC; θÞð Þ over all possible parameter vectors θ. This is achieved

by solving the estimating equations ∂‘ SC; θð Þ=∂θ ¼ 0 obtained by differentiating

‘(SC; θ) with respect to θ. For simplicity of notation, parameter estimates θ(SC) are
denoted as functions of the index set SC for the observed data used in their

computation without hat (^) symbols.

For s 2 S, error vectors es,C(s) can be scaled (using the terminology of PROC

MIXED, SAS Institute 2004) as follows. Let Us,C(s) be the upper triangular matrix

satisfying Σs,CðsÞ ¼ Us,CðsÞT � Us,CðsÞ. In other words, Us,C(s) is the square root of the

covariance matrix Σs,C(s) determined by its Cholesky decomposition. The associ-

ated scaled errors are scldes,C sð Þ ¼ Us,C sð ÞT
� ��1 � es,C sð Þ. The covariance matrix for

scldes,C(s) is
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ðUs,CðsÞTÞ�1 �Σs,CðsÞ � ððUs,CðsÞTÞ�1ÞT ¼ðUs,CðsÞTÞ�1 � ðUs,CðsÞT �Us,CðsÞÞ
�Us,CðsÞ�1 ¼ ImðsÞ,

where Im(s) is them sð Þ �m sð Þ identity matrix. Hence scaled residual vectors can be

computed as

scldes,C sð Þ SCð Þ ¼ Us,C sð ÞT SCð Þ� ��1 � es,C sð Þ SCð Þ

from the unscaled residual vectors

es,CðsÞðSCÞ ¼ ys,CðsÞ � μs,CðsÞðSCÞ ¼ ys,CðsÞ � Xs,CðsÞ � βðSCÞ

and the estimate Us,C(s)(SC) of Us,C(s) computed from the estimate

Σs,CðsÞðSCÞ ¼ σ2ðSCÞ � Rs,CðsÞ ρðSCÞð Þ. Scaled residuals can be used similarly to

standardized residuals for univariate continuous outcomes.

4.4 LCV for Marginal Models

This section provides an extension of the LCV formulation of Sect. 2.5.3 to

marginal multivariate normal models (which can be skipped). LCV ratio tests as

described in Sect. 2.7 are also extended and formally defined including how to

compute the cutoff for a substantial PD in the LCV scores.

4.4.1 LCV Formulation

As in Sect. 2.5.2, randomly partition the index set SC into k disjoint folds F(h) for

h 2 H ¼ h : 1 � h � kf gwith all C(s) measurements for a matched set s assigned

to the same fold F(h(s)) where h sð Þ ¼ int k � usð Þ þ 1 for independent, uniform

random values us in (0, 1). LCV scores are defined as

LCV ¼
Y
h2H

Y
s2FðhÞ

L Os,CðsÞ; θ SC∖FðhÞð Þ� � 1
mðSCÞ:

The LCV score is normalized by the total number m(SC) of observed measurements

over all matched sets s 2 S rather than by the total number n of matched sets. For

the univariate outcome case of Chap. 2, m SCð Þ ¼ n, but this does not hold for the

more general multivariate case considered here.
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4.4.2 LCV Ratio Tests

Stone (1977) provided an argument supporting χ2-based LCV ratio tests in analogy

to likelihood ratio tests under leave-one-out (LOO) fold assignment. A similar

argument holds for k-fold LCV. This result depends on the fact that the computation

of LCV scores is consistent with how associated likelihoodsL �; θð Þ are calculated so
that LCVm(SC) equals L(SC; θ) when computed with parameter estimates

θ(SC) for the whole set of data with indexes in SC rather than with deleted

estimates θ(SC\F(h)). As long as the sizes of the complements SC\F(h) of the

index sets F(h) increase to infinity with the number m(SC) of measurements, the

deleted estimates θ(SC\F(h)) will converge to the same limit as the undeleted

estimates θ(SC) (assuming random fold assignment independent of the observed

data). Consequently, LCVm(SC) is asymptotically the same as the likelihood.

Thus, k-fold LCV ratio tests can be used to assess whether or not a change in the

LCV score is substantial. Specifically, if model M1 is nested within model M2, with

DF the difference in the number of parameters and with LCV scores LCV(M1) and

LCV(M2), respectively, then the difference

δ ¼ 2 � log LCV M2ð Þm SCð Þ
� �

� 2 � log LCV M1ð Þm SCð Þ
� �

is asymptotically χ2 distributed with DF degrees of freedom. The associated PD in

the LCV scores is

PD δ, mðSCÞð Þ ¼ LCVðM2Þ � LCVðM1Þ
LCVðM2Þ � 100% ¼ ð1� e�δ=ð2�mðSCÞÞÞ � 100%

and is significant when δ exceeds the cutoff determined by the 95th percentile δ(95
%, DF) of the χ2 distribution with DF degrees of freedom. The percent increase

(PI) can also be used, satisfying

PI δ, mðSCÞð Þ ¼ LCVðM2Þ � LCVðM1Þ
LCVðM1Þ � 100% ¼ eδ= 2�m SCð Þð Þ � 1

� �
� 100%:

For a penalized likelihood criterionPLC ¼ �2 � log L SC; θ SCð Þð Þð Þ þ PF, where

PF is the penalty factor, its adjusted score PLC
0 ¼ expð�1=2 � PLC=mðSCÞ

�
is used

in the adaptive modeling process. For associated adjusted PLC ratio tests, δ as defined
above for the LCV case becomes

δ ¼ 2 � logðPLC0ðM2ÞmðSCÞÞ � 2 � logðPLC0 ðM1ÞmðSCÞÞ
¼ �PLCðM2Þ þ PLCðM1Þ ¼ χ2ðM1,M2Þ � PFðM2Þ þ PFðM1Þ,

where χ2(M1,M2) is the usual likelihood ratio statistic with approximate χ2 distri-
bution with DF degrees of freedom. Consequently, δ exceeds the cutoff determined

by the 95th percentile δ(95 %,DF) when χ2(M1,M2) exceeds the cutoff
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δ 95 %, DFð Þ þ PF M2ð Þ � PF M1ð Þ. Since PF M2ð Þ � PF M1ð Þ > 0 (i.e., the penalty

is smaller for the nested model), PLC0 ratio tests use larger cutoffs for significance

than standard likelihood ratio tests and so are more conservative. A leave-one-out

(LOO) LCV is asymptotically equivalent (eq. 2.30, Claeskens and Hjort 2009) to

using the special PLC called the Takeuchi information criterion (TIC; eq. 2.20,

Claeskens and Hjort 2009), which is also asymptotically equivalent to using AIC

when the model is correctly specified. Consequently, a LOO LCV ratio test is also

more conservative than the associated likelihood ratio test. These results explain

prior observations that k-fold LCV ratio tests are similar in effect to multiple

comparisons procedures in sometimes not considering the effect of a term in a

model significant even though its coefficient is significantly nonzero using standard

tests for zero coefficients (for examples see Riegel and Knafl 2014; Knafl and

Riegel 2014).

Alternative models, however, are often not nested, but there is still a need to

compare their LCV scores. For example, a model with an untransformed predictor

can have a smaller LCV score than the model with the predictor replaced by its log

transform. How substantive a change this is can be assessed by the PD (or PI) in

the LCV scores. When the PD is substantive, the nonlinear, log transform model

with the higher score distinctly outperforms the linear model with the lower score.

Otherwise, the linear model is preferable as a simpler, competitive alternative.

A measure of what constitutes a substantive PD is needed to make such assess-

ments. A PD is treated as substantial when it is larger than the value at the

cutoff given by the 95th percentile δ 95 %, 1ð Þ ¼ 3:84146 of the χ2 distribution

withDF ¼ 1 (but see Sect. 9.8 for an exception when the cutoff is based onDF ¼ 2).

Thus, a substantive PD exceeds what would be a significant amount for nested

models differing by the smallest possible nonzero integer number of parameters.

This is called substantial (or distinct) rather than significant since it might not

involve nested models. For the dental measurement data with m SCð Þ ¼ 108,

the cutoff for a substantial PD is 1.76 % (computed as PD(3.84146, 108) with the

formula given above for PD(δ, m(SC)).

4.5 Marginal Order 1 Autoregressive Modeling
of the Dental Measurement Data

4.5.1 Order 1 Autoregressive Correlations

Since the dental measurement data are longitudinal, order 1 autoregressive (AR1)

correlations weakening the further apart outcome measurements are in time are

natural to start with to model their dependence. Specifically, for indexes c satisfying

1 � c � 4, the four ages (8, 10, 12, and 14) for each child are given by

t cð Þ ¼ 6þ 2 � c. Then, the correlations, depending on the single autocorrelation

parameter ρ, have values ρ t cð Þ�tðc0 Þj j where
��t� t

0 �� denotes the absolute value of t� t0

and hence the distance between t and t0. Since all t(c) are integers in this case,

4.5 Marginal Order 1 Autoregressive Modeling of the Dental Measurement Data 69

http://dx.doi.org/10.1007/978-3-319-33946-7_9


ρ t cð Þ�tðc0 Þj j is well-defined for �1 < ρ < 1. In other cases where the observed times

t(c) are not all integers,ρ t cð Þ�tðc0 Þj j can be guaranteed to be well-defined by restricting
to 0 � ρ < 1. Such a restriction can be removed (see p. 2728, SAS Institute 2004),

but that more general case is not considered here. Note that this is a spatial

autoregression with distance apart measured by the actual ages t(c) rather than

their indexes c as often used in autoregression. For equally spaced data like the

dental measurements, these two approaches are equivalent, but not for unequally

spaced data.

4.5.2 Setting the Number of Cross-Validation Folds

Modeling the mean dental measurements as a function of the child’s age under AR1
correlations is used as the benchmark analysis for setting the number k of folds for

LCV scores (see Sect. 2.8). With k ¼ 5 folds, the adaptively generated model

includes the transform age0.3 without an intercept and LCV score 0.10552. With

k ¼ 10 folds, the same model is generated with smaller LCV score 0.10534. This

result suggests using k ¼ 5 for subsequent analyses, but this choice may not always

be best in such cases. However, with k ¼ 15 folds, the same model is generated

again with even smaller LCV score 0.10434. Since k ¼ 5 generates the largest LCV

score over these three cases, it seems reasonable to use k ¼ 5 for subsequent

analyses of these data, and so k ¼ 5 is used in what follows. The number of

measurements in the 5 folds ranges from 12 to 32 with average 21.6 for 3–8

matched sets (children in this case) with average 5.4.

The linear polynomial model (i.e., the model based on untransformed age) for

the mean dental measurements has 5-fold LCV score 0.10539 and insubstantial PD

compared to the adaptively selected model of 0.12 % (that is, less than the cutoff of

1.76 % for the data). Thus, the mean dental measurements are reasonably close to

linear in the child’s age.

4.5.3 Moderation of the Effect of Age by Gender

It is possible that mean dental measurements change differently for boys than for

girls as they age. This can be addressed by adaptively modeling those means in

terms of the three predictors: age, male, and their interaction agemale. The gener-

ated model includes the two transforms agemale2.2 and age0.18 without an intercept

and LCV score 0.11465. The PD for the model in age by itself is substantial at 7.96

%, suggesting that mean dental measurements do change with age differently for

boys than for girls.

The fact that a power transform of the interaction agemale is included in the

model suggests that the pattern for the means for boys as they age is different from
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the associated pattern for girls. In other words, this supports the conclusion that

gender of the child moderates the effect of age on the mean dental measurements

(Baron and Kenny 1986). However, it is possible that the model with only a

covariate effect to gender, that is, with the pattern over ages the same for boys

and girls but shifted up or down by a constant amount, provides a competitive

alternative. If this is the case, the interaction effect is not substantial and moderation

(also called modification) has not really occurred. This is addressed by the adaptive

model with the mean dental measurements changing only with age and male but not

with agemale. The associated model has two terms: age0.31 and male without an

intercept, and has LCV score 0.11065 with substantial PD of 3.49 % compared to

the model accounting for an interaction effect. Consequently, gender distinctly

moderates the effect of age on the mean dental measurements.

Moderation in the continuous outcome context involves three variables: the

continuous outcome variable y, the predictor variable x, and the moderator variable

z. It is commonly addressed using the linear moderation model with the expected

outcome Ey satisfying

Ey ¼ β1 þ β2 � xþ β3 � zþ β4 � x � z:

A significant slope β4 for the interaction term x∙z in this model indicates that

moderation holds. Alternately, for the special case with y univariate, moderation

can be assessed by comparing R2 for the moderation model to R2 for the linear

covariate model with

Ey ¼ β1 þ β2 � xþ β3 � z:

A partial F-test (see, for example, Sect. 9.4, Kleinbaum et al. 1998) can then be used

to test for a significant change in R2. The assessment of nonlinear moderation

cannot be addressed by a test for a zero interaction coefficient. It can be assessed

instead with a LCV ratio test, as in the above example, comparing the adaptively

generated moderation model to the adaptively generated covariate model, and so is

analogous to testing in the univariate linear moderation context for a significant

change in R2.

When linear moderation analyses are based on continuous x and/or z, these

variables are sometimes first centered, usually by subtracting their observed means,

and the centered variables are used in the linear moderation model in place of

associated uncentered variables (e.g., Aiken and West 1991). Centering of the

variables of the linear moderation model generates an equivalent model and has

no effect on the coefficient β4 of the interaction term x�z for that model. Centering

does have an effect on the other coefficients of the linear moderation model, and so

its use can impact the interpretation of the estimates for that model. Nonlinear

moderation models can also be based on centered variables, but those are not

equivalent in general to models based on uncentered variables. For the dental

measurement data, the adaptively generated model based on male, the variable

centage¼ age� 11 with age centered at its mean value of 11, and their interaction
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cagemale¼ centage�male is based on the transforms: centage�0:07, cagemale�0:25,

and centage1.6 without an intercept. The LCV score is 0.11554. While the adaptive

uncentered model has smaller LCV score 0.11465, the PD is insubstantial at 0.77 %

and it is simpler based on two compared to three transforms both without an

intercept. The adaptively generated additive model in male and centage is based

on the two transforms centage0.7 and male with LCV score 0.11218 with substantial

PD 2.91 % compared to the model based also on cagemale. Consequently, moder-

ation is also established using centered age values. It is possible that improvements

can be obtained by centering at other values than the mean. LCV can be used to

choose the best centering value and to compare those results to uncentered results

(see Practice Exercise 5.3).

For the dental measurement data, the test for zero slope β4 for the interaction

term age∙male of the linear moderation model is nonsignificant ðP ¼ 0:116Þ.
Moreover, the LCV score for the linear covariate model is 0.11056 with insubstan-

tial PD of 0.77 % compared to the LCV score of 0.11142 for the linear moderation

model. Thus, the addition of the linear interaction term does not substantially

improve on the linear covariate model. Consequently, a linear moderation analysis

leads to the conclusion that gender does not moderate the effect of age on the mean

dental measurements. Furthermore, the linear moderation model generates a sub-

stantial PD of 2.82 % compared to the adaptive moderation model indicating that

the moderated effects of age on mean dental measurement by gender are distinctly

nonlinear. In this case, moderation can only be identified through an adaptive

nonlinear analysis.

4.5.4 Geometric Combinations

Using an interaction x∙x0, like agemale, as one of the primary predictors for an

adaptive analysis does not address the most general nonlinear interaction model.

Associated power transforms then have the form ðx � x0 Þp, and so each term of the

interaction is always raised to the same power. More general interactions with each

term of the interaction raised to its own power, for example, xp � x0p0
, can be

considered as part of the adaptive modeling process in possibly transformed form

ðxp � x0p0 Þp
00
. These are called geometric combinations (GCs) since their logs are

linear combinations, for example, logðxp � x0p
0
Þ ¼ p � logðxÞ þ p

0 � logðx0 Þ. There is

no difference for interactions like agemale between a general predictor and an

indicator variable since indicator variables are unaffected by power transforms, but

there is a difference for general interactions.

Prior analyses have used the directly specified interactions agemale or cagemale.

Alternately, adaptive models can be generated by only specifying non-interaction

primary predictors (for example, age and male but not agemale) and requesting that
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GCs between those predictors be generated as part of the adaptive modeling

process. For primary predictors age and male, the associated adaptive GC-based

model is based on age0.19 and the automatically generated transformed GC

male � age�14
� ��0:15 ¼ male � age2:1

without an intercept. The LCV score is 0.11467, a little larger than the LCV score

for the model based on agemale. This result supports the validity of the heuristics

for generating GCs (see Chap. 20). For this GC-based AR1 marginal model, the

estimated autocorrelation is 0.78 so that correlations decrease from 0.61 at 2 years

apart to 0.23 at 6 years apart. The estimated constant standard deviation is 2.2.

Estimated means are displayed in Fig. 4.1. They appear only mildly nonlinear, and

so a competitive linear model might exist. This can be assessed by generating an

adaptive model constrained to consider only the untransformed, linear terms in age,

male, and the simple GC age∙male. The generated model is based on age, age∙male,

and an intercept with LCV score 0.11246. The PD compared to the associated

adaptive nonlinear GC-based model is substantial at 1.93 %, indicating that the

moderation relationships of Fig. 4.1 are distinctly nonlinear (but perhaps more so

for girls than boys).

4.6 General Power Transforms

Power transforms for positive valued primary predictors, like age, are well-defined

for all real valued powers p, but primary predictors can have zero values, as for

indicator variables like male and interactions like agemale based on those
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Fig. 4.1 Estimated mean dental measurements based on adaptive marginal AR1 modeling
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indicators, or even negative values, as for centered variables like centage or log

transforms of variables with some values between 0 and 1. Section 4.6.1 provides a

formulation (which can be skipped) for defining power transforms of general

primary predictors with possible negative or zero values and for incorporating

those power transforms and GCs computed from them in fractional polynomial

models. Specifically, transformed zero values are left as zero, transformed positive

values are computed as usual, and transformed negative values are set equal to the

transform of their absolute values weighted by a cosine function to switch signs

between positive and negative values. Log transforms of real valued predictors are

defined similarly. Section 4.6.2 addresses the approach recommended by Royston

and Sauerbrei (2008) for handling negative predictors.

4.6.1 Formulation

So that power transforms are well defined in all cases, they are defined as f(u, p)

with value up when u > 0, 0 when u ¼ 0, and cos ðπ � pÞ � jujp when u < 0where u is

a primary predictor variable and |u| denotes its absolute value. Note that when

u < 0, the multiple cos π � pð Þ equals 1 for even integer powers p, �1 for odd

integer powers p, and oscillates between�1otherwise. The validity of this approach

for transforming negative values is supported by centered analyses reported in

Sect. 4.5.3 providing competitive results to uncentered analyses. A primary predic-

tor may be a log transform of another primary predictor u0 corresponding to the

power p ¼ 0. So that this log is well-defined, it is defined as log(u0) when u
0
> 0,

0 when u
0 ¼ 0, and cos π � 0ð Þ � log u

0�� ��� � ¼ log u
0�� ��� �

when u
0
< 0. Note that, for a

primary predictor u with some 0 values and otherwise positive valued, the trans-

form f(u, p) with a small value of p like 0.0001 approximates the indicator I u > 0ð Þ
for u being positive when I u > 0ð Þ is not already in the model and approximates the

log transform for positive values of u when I u > 0ð Þ is already in the model (the

argument is similar to those of Sect. 2.13.2).

Let ui for 1 � i � I be one of I primary predictors. Let usci be the observed values

for ui for c 2 C sð Þ and s 2 S and usc the I� 1 vectors with entries usci. The primary

predictors generate fractional polynomial models with associated r� 1 predictor

vectors xsc ¼ F uscð Þ with entries xscj ¼ Fj uscð Þ for j 2 J ¼ j : 1 � j � rf g where

Fj are r real valued functions of I� 1 vectors u. The choices for Fj
include simple power transforms f(u, p) of one of the primary predictors u as well

as GCs f u; pð Þ � f u
0
, p

0� � � . . ., that is, products of simple power transforms

of multiple distinct primary predictors using possibly different powers. Once a

GC f u; pð Þ � f u
0
; p

0� � � . . . is generated by the adaptive modeling process, it is

transformed as f f u; pð Þ � f u
0
; p

0� � � . . . , q� �
, adjusting all of its powers p, p

0
, � � � by

a common power q rather than adjusting each of those powers separately (thereby,

reducing the complexity of the heuristics of the adaptive modeling process).
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4.6.2 The Royston and Sauerbrei Approach

Royston and Sauerbrei (2008; Sect. 4.7) suggest adjusting a nonpositive valued

primary predictor u to the positive valued primary predictor u
0 ¼ u�min uð Þ þ η

where min(u) is the minimum observed value for u and η is a positive constant.

If a positive valued primary predictor u is adjusted to the centered variable

cent u; ucð Þ ¼ u� uc for some centering constant uc within the range of observed

values for u, it becomes nonpositive valued, and so would be adjusted under the

Royston and Sauerbrei approach to

cent u; ucð Þ0 ¼ u� uc � min uð Þ � ucð Þ þ η ¼ u�min uð Þ þ η;

and so there would then be no effect to the centering constant uc.

One suggested choice for η is the minimum distance between successive ordered

observed values for u. Using this choice, η ¼ 2 for the centered primary predictor

age � 11, so that

adjcage ¼ age� 11ð Þ0 ¼ age� 8þ 2 ¼ age� 6:

The adaptive model for dentmeas in terms of adjcage, male, and GCs is based on the

two transforms: male � adjcage1:5� �0:6
and adjcage0.07. The LCV score is 0.11378

with insubstantial PD 0.78 % compared to the associated adaptive model in the

uncentered primary predictor age. Consequently, a competitive model is generated,

but there is no need for considering this adjustment since age is positive valued to

start with. Another alternative for centering is to center a fractional polynomial

transform x ¼ up of a positive valued primary predictor u rather than u itself,

subtracting from x the average of its observed values (Royston and Sauerbrei 2008;

Sect. 4.11.1).

4.7 Transition Modeling of Dependence

This section provides a formulation (which can be skipped) of a conditional

approach of transition (or autoregressive or Markov) type for modeling the depen-

dence within outcomes of the same matched set (e.g., within dental measurements

at different ages for each child). For transition models of continuous outcomes,

conditioned on the values of available predictors and on values of prior outcome

measurements, current outcome measurements are considered to be univariate

normal with means a function of the available predictors and of the prior outcomes

measurements. The conditions for repeated outcome measurements need to be

ordered (e.g., time or age) to use such transition modeling. The formulation

incorporates prior outcome measurements into the model for the means by
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considering averages of fixed numbers (e.g., 1, 2, ���) of them as well as indicator

variables for when there are no prior outcome measurements to average (e.g., at the

youngest age of 8 years for the dental measurements). LCV scores for transition

models can be compared to LCV scores for marginal models to assess which are

more appropriate for the data.

4.7.1 Formulation Using Averages of Prior Outcome
Measurements

For s 2 S and c 2 C sð Þ, define PRE s;cð Þ ¼ c
0
: c

0 2 C sð Þ, c0
< c

� �
as the possibly

empty set of indexes in C(s) prior to the index c. The likelihood L(Os,C(s); θ) can be
written as the product of conditional likelihoods

LðOs,CðsÞ; θÞ ¼
Y

c2CðsÞ
LðOscjys,PREðs,cÞ; θÞ,

where Osc ¼ ysc; xscð Þ denotes the observed data corresponding to the cth measure-

ment for the matched set s. For the smallest index c� sð Þ ¼ min C sð Þð Þ in

C(s) and so also in PRE(s,c) when c > c� sð Þ, PRE s,c� sð Þð Þ ¼ ∅, and so

LðOsc� sð Þ
��ys,PRE s, c� sð Þð Þ; θÞ in the above product is set to the unconditional likelihood

L(Osc�(s); θ).
For complete data like the dental measurement data, the conditional distribution

LðOsc

��ys,PRE s;cð Þ; θÞ under AR1 correlations for c > c� sð Þ ¼ 1 is univariate

normal and depends only on the prior outcome measurement with index

prior s; cð Þ ¼ c� 1. This suggests consideration of transition models (Diggle

et al. 2002) with current outcome measurements depending on values of prior

outcome measurements, but in this case just the prior outcome measurement. Define

the dependence predictor variable PRE(y,1) as having valuesPRE y;1ð Þsc� sð Þ ¼ 0 and

PRE y;1ð Þsc ¼ ysprior s;cð Þ for c 2 C sð Þ, c > c� sð Þ where prior s;cð Þ ¼ max PRE s; cð Þð Þ
is the largest index in PRE(s,c). Extend the predictor vectors xsc to include values

for transforms of PRE(y,1) along with transforms for standard predictors as used

with marginal models as well as GCs in both kinds of primary predictors. For

sc 2 SC, let y#sc ¼ ysc
��ys,PRE s;cð Þ denote an outcome measurement conditioned on

the associated prior measurements where y#sc� sð Þ ¼ ysc� sð Þ is the unconditional initial
measurement for s. Model the associated observations O#

sc ¼ y#sc; xscð Þ as

independent and normally distributed with constant variances as in Chap. 2. Cases

sc�(s) can require special treatment. To cover the need for an adjustment in these

cases, adaptive models can also be based on the special transform of PRE(y,1) given

by the indicator variable PRE y;1;∅ð Þ for cases when the prior measurement has not

been measured, that is, when PRE s; cð Þ ¼∅ or, equivalently, when c ¼ c� sð Þ.
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In analogy to higher order autoregressive models, adaptive transition models can

also be based on primary predictors computed from subsets of the prior outcome

measurements, not just from the prior measurement. Let m(PRE(s,c)) be the

number of conditions in PRE(s,c). For 1 � i � m PRE s;cð Þð Þ, let PRIOR(s,c,i) be
the subset of PRE(s,c) containing just the ith largest index in PRE(s,c). For

example, for c > c� sð Þ, PRIOR s;c;1ð Þ ¼ prior s;cð Þf g. For i > m PRE s;cð Þð Þ, define
PRIOR s;c;ið Þ ¼ ∅. For i � j, let

PREðs,c,i,jÞ ¼
[

i�i
0�j

PRIORðs,c,i0 Þ:

In other words, PRE(s,c,i,j) is the subset of PRE(s,c) consisting of its ith to

jth largest indexes. Define the dependence predictors PRE(y,i,j) to have values

PRE(y,i,j)sc equal to the average of ysc0 over the indexes c
0 in PRE(s,c,i,j) and equal

to 0 when PRE s;c;i;jð Þ ¼∅. Also define the indicator variables PRE y;i;j;∅ð Þ for
cases when PRE s;c;i;jð Þ ¼∅. The variables PRE y;i;j;∅ð Þ are not all distinct. For

example, when there are no missing outcome measurements as for the dental

measurement data, PRE y;1;j;∅ð Þ ¼ PRE y;1;1;∅ð Þ for all j. PRE(y,1)¼
PRE(y,1,1) is the special case with i ¼ j ¼ 1.

For time-varying primary predictors u not based on the outcome variable y,

associated dependence predictors PRE(u,i,j) are also possible with values

PRE(u,i,j)sc equal to the average of prior values for u, as are the indicator variables

PRE u;i;j;∅ð Þ for cases with missing PRE(u,i,j) values. It can also be reasonable

to include the current value of u in averages. These are denoted by PRE(u,0,j) and

PRE u;0;j;∅ð Þwith i ¼ 0. For dependence predictors based on the outcome variable

y, i should be a positive integer so that the value of the current outcome measure-

ment is not used to predict that outcome measurement.

For sc 2 SC, y#sc are independent and normally distributed with means

μ#sc ¼ xsc
T � β with xsc possibly depending on dependence predictors for a r� 1

vector β of coefficients and variancesΣ#
sc ¼ σ2 assumed for now to be constant. Let

θ ¼ ðβT,σ2ÞT denote the vector of all the model parameters. The likelihood

L(SC; θ) is the product of the conditional likelihoods

LðOsc

��ys,PRE s;cð Þ; θÞ ¼ L O#
sc; θ

� �
over sc 2 SC. The maximum likelihood estimate

θ(SC) of θ is obtained by solving the estimating equations∂‘ SC; θð Þ=∂θ ¼ 0where

‘ SC; θð Þ ¼ log L SC; θð Þð Þ.
Transition models as formulated in this section are based on univariate normal

likelihoods for the conditional measurements y#sc. Consequently, adaptive models

can be generated for their means μ#sc using the adaptive regression modeling

methods of Chap. 2 extended to handle the dependence predictors PRE(y,i,j) and

PRE y;i;j;∅ð Þ (and other dependence predictors PRE(u,i,j) and PRE u;i;j;∅ð Þ as

well). Moreover, those conditional likelihoods multiply up to true marginal likeli-

hoods for the outcome vectors ys,C(s) so that LCV scores generated for transition

models are comparable to LCV scores for multivariate normal marginal models.
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4.7.2 Transition Model Induced by the Marginal AR1
Model with Constant Means

This section (which can be skipped) demonstrates that the marginal AR1 model

with constant means and variances induces a transition model with non-constant

variances, and so in general non-constant variances models may be needed in order

to make a full comparison of marginal and transition models.

For complete data like the dental measurement data, consider the simple case of

a marginal AR1 model with constant means μsc ¼ μ for sc 2 SC. Assume further

that outcome measurements are equally spaced so that the correlation ρscc�1 ¼ ρ0

between consecutive measurements for c > 1 is constant (for example, for the

dental measurement data with outcomes 2 years apart, ρ0 ¼ ρ2). For c > 1, the

outcome measurements satisfy

ysc ¼ μþ ρ
0 � ðysc�1 � μÞ þ esc ¼ ð1� ρ

0 Þ � μþ ρ
0 � ysc�1 þ esc,

where the errors esc are independent of ysc�1 and of each other and have

zero means and constant variances σe2. Since ysc have constant variances σ2,
σe2 ¼ ð1� ρ02Þ � σ2. Thus, the constant means marginal AR1 model induces the

conditional model

y#sc ¼ β1 þ β2 � PRE y;1ð Þsc þ e#sc,

where β1 ¼ 1� ρ0� � � μ and β2 ¼ ρ0
and the errors e#sc are independent and

normally distributed. However, y#s1 requires special treatment since y#s1 ¼ ys1
and so has mean μ. This can be accounted for with the model

y#sc ¼ β1 þ β2 � PREðy,1Þsc þ β3 � PREðy,1,∅Þsc þ e#sc,

where β3 ¼ μ� 1� ρ0� � � μ ¼ ρ0 � μ. Furthermore, y#s1 has variance σ2 and not

ρ02 � σ2 þ σe2 as for c > 1, and so the associated constant variances model is still not

equivalent. Thus, in general, non-constant variances transition models may be

needed to be competitive with AR1 marginal models (see Sects. 4.15.3–4.15.4).

4.7.3 Using Weighted Averages of Prior Outcome
Measurements

The transition models of Sect. 4.7.1 use simple averages of prior outcome mea-

surements, and so do not account for the distance between prior and current

outcome measurements. Prior outcome measurements closer to the current outcome

measurement may be more important for predicting current outcome measurements
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than farther ones. This can be addressed with weighted averages of prior outcome

measurements. Denote such weighted averages as WPRE(y,i,j). The weights used

in analyses equal expð�d c
0
,c

� �Þ, where c indexes the current outcome measure-

ment, c0 a prior outcome measurement, and d c
0
; c

� � ¼ ��c0 � c
�� the distance between

them. Note that WPREðy,i,j,∅Þ ¼ PREðy,i,j,∅Þ:

4.8 Transition Modeling of the Dental Measurement Data

4.8.1 Using the Prior Dental Measurement

An adaptive transition model for the mean dental measurements can be generated

by considering the standard primary predictors age and male, the dependence

predictors PRE(y,1) (set equal to the previous value for y when one exists and

0 otherwise) and PRE y;1;∅ð Þ (the indicator for the case when no previous value for
y exists) where y ¼ dentmeas, and automatically generated GCs between these four

primary predictors. The associated adaptive model is based on the three predictors:

ðmale � PREðy,1Þ�7Þ0:7, ðPREðy,1Þ3:4 � ageÞ2, and ðPREðy,1Þ3 � age0:1Þ�2
with an

intercept. The LCV score is 0.12813 and the PD for the GC-based AR1 marginal

model of Sect. 4.5.4 is a substantial 10.50 %. Consequently, for the dental mea-

surement data, an adaptive transition model with dependence based on the prior

outcome measurement distinctly outperforms the associated adaptive AR1 mar-

ginal model.

4.8.2 Comparison to the Marginal Model with Exchangeable
Correlations

Marginal models can also be based on exchangeable correlations (EC) as used in

standard repeated measures modeling. Under EC, all pairs of distinct outcome

measurements have the same correlation ρ. For the dental measurement data with

4 measurements per child, there are 4 � 3=2 ¼ 6 pairs of distinct measurements for

each child, all assumed to have the same correlation ρ. Using EC, the adaptive

model in age, male, and automatically generated GCs is based on two transforms,

age0.21 and age2 �maleð Þ0:903 without an intercept, correlation estimate 0.62, and

improved LCV score 0.12975. This model for the means is similar to the GC-based

model generated with AR1 correlations and the plot of estimated mean values

(not displayed) is very similar to the plot for the AR1 model of Fig. 4.1, but the

LCV score for that model has the very substantial PD of 11.62 %. In this case,

exchangeable correlations provide a very substantial improvement over order

1 autoregressive correlations even though the data are longitudinal. The linear
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moderation model using EC correlations has LCV score 0.12539 with substantial

PD of 6.82 % compared to the nonlinear moderation model. Hence, the conclusion

of substantial nonlinear moderation of the effect of age by gender still holds for the

EC case. However, the interaction term in the linear moderation model is now

significant (P ¼ 0:013) and the linear covariate model has LCV score 0.12175 with

substantial PD of 2.90 % compared to the linear moderation model, supporting

the conclusion of linear moderation in contrast to results for the AR1 case. For these

data, the conclusion of linear moderation changes with the correlation structure,

indicating the need in general to identify an appropriate correlation structure

before conducting tests for zero fixed effects. Since the LCV score for the linear

AR1-based moderation model has substantial PD of 11.14 % compared to the

linear EC-based moderation model, the EC-based model is more appropriate for

the data, and so there is substantial linear moderation of the effect of age by gender

of the child.

4.8.3 Using Multiple Prior Dental Measurements

The EC-based marginal model also has a larger LCV score than the transition

model based on PRE(y,1), but with insubstantial PD of 1.25 %. While this is a

competitive score, more general transition models can be generated with depen-

dence based on multiple prior outcome measurements, rather than on just the prior

outcome measurement, and with the potential for outperforming the EC-based

marginal model. The model based on the prior two dental measurements is deter-

mined by the primary predictors age, male, PRE(y,1,2) (set equal to the average

of the up to two previous values for y when at least one previous value exists

and 0 otherwise), and PRE y;1;2;∅ð Þ (the indicator for the case when there are

no values to average for PRE(y,1,2) and so the same as PRE y;1;∅ð Þ since there are
no missing dental measurements), and GCs based on these primary predictors. The

associated adaptive model includes the four transforms: ðage1:5 � PREðy,1,2Þ5Þ0:99,
ðmale � age2Þ1:2, ðPREðy,1, 2Þ�3 � age2Þ7, and ðmale � PREðy,1,2Þ�1 � age�1Þ�1:9

with an intercept and improved LCV score 0.13363. The adaptive marginal EC

model generates a substantial PD of 2.90 %. Consequently, this more general

transition model provides a distinct improvement over both types of marginal

models and over the simpler transition model. It uses simple averages of prior

outcome measurements, and so might be improved by consideration of weighted

prior measurements WPRE(y,1,2) with weights decreasing with the distance from

the current measurement (as defined in Sect. 4.7.3). However, the adaptive

weighted transition model for these data has smaller LCV score 0.12414, and so

simple averages are more effective in this case.

Improvements may also be possible by using PRE(y,1,3), based on the maximal

number three of prior outcome measurements. The adaptive model based on age,

male, PRE(y,1,3), PRE y;3;∅ð Þ, and GCs is based on the four transforms:
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ðPREðy,1, 3Þ5:6 � age1:7Þ0:9, ðmale � age2Þ1:2, ðmale � PREðy,1, 3Þ1:8 � age1:4Þ1:3, and
ðPREðy,1, 3Þ�2 � ageÞ5 with an intercept. It has smaller LCV score 0.13324, but

with insubstantial PD of 0.29 %. However, it is not less complex. Models can also

be generated considering all three of PRE(y,1), PRE(y,1,2), and PRE(y,1,3)

together, but these more general transition models are not considered here.

Under the adaptive transition model based on PRE(y,1,2), the estimated standard

deviation is 1.8mm. Estimated means are displayed in Fig. 4.2 for girls and boys at

ages 10, 12, and 14 years old as a function of the average PRE(y,1,2) of the prior

two outcome measurements. Mean outcome measurements for boys increase

nonlinearly with the average of the prior two outcome measurements, are shifted

up as they age, and are mainly larger than for girls at the same age. The patterns for

girls are similar but with less difference across ages except that they start out

counterintuitively at lower values for larger ages. Individual-child predicted dental

measurements at ages 10–14 years are displayed in Fig. 4.3 for each of the 11 girls

and in Fig. 4.4 for each of the 16 boys. With the exception of one girl, children’s
predicted values tend to increase with age following different patterns for different
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children and with more of an increase for boys than for all but the girl with the

largest predicted values. The one girl with the exceptional decreasing pattern in

Fig. 4.3 has predicted values lower than for all the other girls and decreasing with

age, resulting in the counterintuitive decrease with age in the lowest predicted

values for girls of Fig. 4.2.

4.8.4 Transition Model Selection with Penalized Likelihood
Criteria

Adaptive transition modeling can be conducted using penalized likelihood criteria

(PLCs; Sect. 2.10). In the multivariate outcome context, the sample size used in

computing the penalty for Bayesian information criterion (BIC) scores can be taken

to be the number of measurements, as used in SPSS1 (IBM, Armonk, NY), or the

number of matched sets, as used by SAS PROC MIXED. Table 4.1 provides a

comparison of results for the adaptive transition models in the primary predictors

age, male, PRE(y,1,2), PRE y;1;2;∅ð Þ, and GCs generated through LCV and

alternative PLCs, including BIC scores computed with the number of measure-

ments, BIC scores computed with the number of matched sets, Akaike information

criterion (AIC) scores with penalty based only on the number of parameters, and

Takeuchi information criterion (TIC) scores with a more complex penalty factor.

Adaptive models generated using all four of these PLCs generate LCV scores with

substantial PDs compared to the LCV-based model. This indicates that adaptive

modeling based on these PLCs can generate distinctly inferior models compared to

LCV-based models, and so adaptive modeling based on PLCs should usually be

avoided, at least for transition modeling of continuous outcomes, with possible

exception highly time-consuming analyses.
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4.9 General Conditional Modeling of Dependence

This section generalizes the special conditional modeling case of transition model-

ing formulated in Sect. 4.7 to general conditional modeling. Conditioned on the

values of available predictors and on the values of the other outcome measure-

ments,current outcome measurements are considered to be univariate normal with

means a function of the available predictors and of the other outcome measure-

ments. The conditions for repeated outcome measurements do not need to be

ordered to use general conditional modeling. However, it is more appropriately

used when conditions are not ordered (e.g., members of a family or patients of the

same health care provider) while transition modeling is more appropriate when the

conditions are naturally ordered as for the dental measurements. The formulation

incorporates prior, post, or both prior and post outcome measurements into the

model for the means by considering simple or weighted averages of fixed numbers

(e.g., 1, 2, � � �) of them as well as indicator variables for when there are no such

other outcome measurements to average. CV scores for general conditional models

Table 4.1 Comparison of penalized likelihood criteria to likelihood cross-validation for gener-

ating the adaptive transition model for dental measurements as a function of age, the indicator

male for being a male child, and the average of the prior two dental measurements

Model selection

criterion Model transformsa
5-fold

LCV score

Percent

decrease

(%)

AIC
1, PRE y,1,2ð Þ6 � age1:2

� �0:84

, male � age0:6� �2
,

male � PRE y,1,2ð Þ4
� �0:6

0.12934 3.21

BIC—number

of matched sets
1, PRE y,1,2ð Þ6 � age1:2

� �0:84

, male � age0:6� �2
,

male � PRE y,1,2ð Þ4
� �0:6

0.12934 3.21

BIC—number

of measurements
1, PRE y,1,2ð Þ6 � age1:2

� �0:91

, male � age0:6� �1:6 0.12295 7.99

TIC 1, age�4 �maleð Þ0:87, PRE(y,1,2)5.8919,
male � PRE y,1,2ð Þ�2:9 � age2

� �1:9196

,

age�4:1 � PRE y,1,2ð Þ�3:3
� �0:7001

0.02410 81.97

5-fold LCV
1, age1:5 � PRE y,1,2ð Þ5

� �0:99

, ðmale � age2Þ1:2,
PRE y,1,2ð Þ�3 � age2

� �7

,

ðmale � PRE y,1,2ð Þ�1 � age�1Þ1:1

0.13363 0.00

AIC: Akaike information criterion, BIC: Bayesian information criterion, LCV: likelihood cross-

validation, PRE (y,1,2): average of prior two dental measurements, TIC: Takeuchi information

criterion
aThe predictor 1 corresponds to including an intercept in the model
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are based on pseudolikelihoods (and so denoted as PLCV scores) rather than on true

likelihoods, and so these cannot be directly compared to LCV scores for marginal

models unless the model is a transition model (since the PLCV score is then actually

a LCV score). However, marginal models induce general conditional models whose

PLCV scores can be compared to those of other general conditional models, and a

formulation for such induced models is also provided in this section. The formula-

tions of Sects. 4.9.1 and 4.9.2 can be skipped to focus on analyses.

4.9.1 Formulation

Let O#
sc ¼ y#sc; xscð Þ be the observed data for measurement sc 2 SC where xsc is

determined as before by standard primary predictors,conditional primary predictors

based on subsets of the other outcome measurements not just the prior ones, and

GCs. Define POST s;cð Þ ¼ c
0
: c

0 2 C sð Þ, c0
> c

� �
as the possibly empty set of

indexes in C(s) subsequent to the index c. For the largest index c∗ðsÞ ¼ max C sð Þð Þ
in C(s), and so also in POST(s,c) when c < c∗ðsÞ, POSTðs, c∗ sð ÞÞ ¼ ∅.

Let m(POST(s,c)) be the number of conditions in POST(s,c). For 1 � i �
m(POST(s,c)), let NEXT(s,c,i) be the subset of POST(s,c) containing just the

ith smallest index in POST(s,c). For i > m POST s;cð Þð Þ, define

POST s;c;ið Þ ¼ ∅. For i � j, let

POSTðs, c, i, jÞ ¼
[

i�i
0 �j

NEXTðs, c, i0 Þ:

Define the primary conditional predictors POST(y,i,j) to have values POST(y,i,j)sc
equal to the average of ysc0 over the indexes c

0 in POST(s,c,i,j) and equal to 0 when

POST s;c;i;jð Þ ¼ ∅. Also define the indicator variables POST y;i;j;∅ð Þ for cases

when POST s;c;i;jð Þ ¼ ∅. Primary predictors can also include the conditional pre-

dictors OTHER(y,i,j) with values OTHER(y, i, j)sc equal to the average of ysc0 over

the indexes c0 in the set

OTHER s;c;i;jð Þ ¼ PRE s;c;i;jð Þ [ POST s;c;i;jð Þ

and as 0 when OTHER s;c;i;jð Þ ¼ ∅ as well as on the indicator variables

OTHER y;i;j;∅ð Þ for cases when OTHER s;c;i;jð Þ ¼ ∅. For complete data with

m > 1, like the dental measurement data, OTHER(s,c,i,j) are never empty when

i<m and so then OTHER y;s;c;i;j;∅ð Þ have all 0 values and are not needed.

Weighted averages can be used in place of simple averages (using the

weights of Sect. 4.7.3) generating the dependence predictors WPOST(y,i,j),

WPOST y;i;j;∅ð Þ, WOTHER(y,i,j), and WOTHER y;i;j;∅ð Þ.
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For time-varying primary predictors u not based on outcome variable y, associ-

ated primary predictors POST(u,i,j) are also possible with values POST(u,i,j)sc
equal to the average of subsequent values for u as are the indicator variables

POST u;i;j;∅ð Þ for cases with missing POST(u,i,j) values. Also possible are asso-

ciated primary predictors OTHER(u,i,j) with values OTHER(u,i,j)sc equal to the

average of other values for u and the indicator variables OTHER u,i,j,∅ð Þ for cases
with missing OTHER(u,i,j) values. It can also be reasonable to include the current

value of u giving POST(u,0,j), POST u;0;j;∅ð Þ, OTHER(u,0,j), and

OTHER u;0;j;∅ð Þ with i ¼ 0. For conditional predictors based on the outcome

variable y, i should be a positive integer so that the value of the current outcome

measurement is not used to predict that outcome measurement.

Exact likelihoods for general conditional models are often difficult to compute,

and so pseudolikelihoods are used instead. The pseudolikelihood PL(SC;θ) is the
product over sc 2 SC of the conditional likelihoods

L Osc

��ys,C sð Þ\ cf g; θ
� �

¼ L O#
sc; θ

� �

for the conditional measurements y#sc ¼ yscjys,CðsÞ∖fcg, treated as independent and

normally distributed with means μ#sc ¼ xsc
T � β for a r� 1 vector β of coefficients

and variances Σ#
sc ¼ σ2 assumed for now to be constant. Let θ ¼ ðβT,σ2ÞT denote

the vector of all the model parameters. The maximum pseudolikelihood estimate

θ(SC) is obtained by solving the estimating equations ∂‘ SC; θð Þ=∂θ ¼ 0 where

‘ SC; θð Þ ¼ log PL SC; θð Þð Þ.
As for LCV scores in Sect. 4.4.1, define k-fold pseudolikelihood CV (PLCV)

scores by randomly partitioning the index set S into k disjoint folds F(h) for h 2 H

¼ h : 1 � h � kf g with all C(s) measurements for a matched set s assigned to the

same fold F(h(s)) where h sð Þ ¼ int k � usð Þ þ 1 for independent, uniform random

values us in (0, 1). Then set

PLCV ¼
Y
h2H

Y
s2FðhÞ

Y
c2CðsÞ

L Osc; θ S∖FðhÞð Þð Þ1=mðSCÞ:

These scores can be used in PLCV ratio tests with the cutoff for a substantial PD

computed as in Sect. 4.4.2. The LCV score for a transition model equals its PLCV

score, and so transition models can be compared to general conditional models

using PLCV ratio tests.

4.9.2 Conditional Models Induced by Marginal Models

Suppose a model was estimated using likelihood terms L(Os,C(s); θ) based on the

multivariate normal likelihood of Sect. 4.3.3 with mean vectors μs,C(s) and covari-

ance matrices Σs,C(s) for s 2 Sdetermined by the vector of parameters θ. LCV scores
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for this model can be compared to PLCV scores for normally distributed transition

models since pseudolikelihoods for transition models are actual likelihoods, but not

to more general conditional models. However, marginal multivariate normal

models induce general conditional models whose PLCV scores can be compared

to those for other normally distributed conditional models.

Let Σ
s,C

0
,C

0 0 denote the submatrix of Σs,C(s) with row entries c
0 2 C

0
and column

entries c
00 2 C

00
. The conditional density for y#sc ¼ yscjys,CðsÞ∖fcg equals the

ratio of the density L(Os,C(s); θ) for ys,C(s) divided by the density L(Os,C(s)\{c}; θ)
for ys,C(s)\{c}. It is well-known (e.g., eq. 6, p. 88, Morrison 1967) that the log of this

ratio equals the univariate normal log-likelihood

log L O#
sc; θ

� �� � ¼ �1

2
� e#sc2=Σ#

sc � 1

2
� logðΣ#

scÞ � 1

2
� logð2 � πÞ,

where

e#sc ¼ ysc � μsc � Σs,fcg,CðsÞ∖fcg � Σs,CðsÞ∖fcg,CðsÞ∖fcg�1 � ðys,CðsÞ∖fcg � μs,CðsÞ∖fcgÞ and

Σ#
sc ¼ Σs,fcg,fcg � Σs,fcg,CðsÞ∖fcg � Σs,CðsÞ∖fcg,CðsÞ∖fcg�1 � Σs,CðsÞ∖fcg,fcg:

The associated conditional model then has variances Σ#
sc and means μ#sc chosen so

that e#sc ¼ ysc � μ#sc, that is, satisfying

μ#sc ¼ μsc þ Σs,fcg,CðsÞ∖fcg � Σs,CðsÞ∖fcg,CðsÞ∖fcg�1 � ðys,CðsÞ∖fcg � μs,CðsÞ∖fcgÞ:

PLCV scores computed using y#sc ¼ ysc, μ
#
sc, and Σ#

sc can be compared to PLCV

scores for other general conditional models to assess how well general conditional

models induced by marginal models perform compared to other general conditional

models.

4.10 General Conditional Modeling of the Dental
Measurement Data

The adaptively generated conditional model based on age, male, OTHER(y,1,2)

(set equal to the average of the up to two prior and post values for y), and GCs (the

indicator OTHER y;1;2;∅ð Þ for no other values to average in OTHER(y,1,2) is

always 0 in this case and so not used) is based on the two transforms:

ðOTHERðy,1, 3Þ�0:5 � age�0:19Þ�1:52
and ðage10 �male � OTHERðy,1, 3Þ�4Þ2:15 with-

out an intercept and with PLCV score 0.15347. The PD for the transition model

based on PRE(y,1,2) with PLCV ¼ LCV score 0.13363 (see Sect. 4.8.3) is very

substantial at 12.93 %. Consequently, present dental measurements can be much

better predicted from combined future and past values than with only past values.

As for transition models, the weighted model based on WOTHER(y,1,3) generates

a smaller LCV score (0.14347). The marginal EC model induces a general
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conditional model with PLCV ¼ 0:14782 and substantial PD of 3.68 %, and so the

induced general conditional model in this case is distinctly inferior to the model

based directly on PLCV.

The above analyses are included to demonstrate general conditional models. The

results indicate that such models with individual outcome measurements a function

of other outcome measurements can generate distinctly better PLCV scores than

transition models for the same data. However, general conditional models seem

inappropriate for use with longitudinal data like the dental measurement data. For

longitudinal data, transition models with individual outcome measurements a

function of only prior outcome measurements are more intuitive, providing useful

information on how the present depends on the past. Consequently, the transition

model depicted in Figs. 4.2–4.4 seems to provide the more appropriate description

of the mean dental measurements, and so results of the adaptive general conditional

model for these data have not been plotted. On the other hand, general conditional

models can be appropriately used to model clustered data without an inherent

ordering to the measurements within the matched sets (e.g., measurements for

members of the same family, nurses on the same unit, and mice born in the same

litter).

4.11 Adaptive GEE-Based Modeling of Multivariate
Continuous Outcomes

So far marginal models for multivariate continuous outcomes have been estimated

using maximum likelihood (ML). Alternately, estimation can be conducted using

generalized estimating equations (GEE) that circumvent the computation of the

likelihood (Liang and Zeger 1986). This is more important for general multivariate

outcomes, for which the computation of likelihoods can be overly complex (see

Chaps. 10 and 14 for multivariate discrete and count/rate outcomes, respectively).

In the multivariate normal context, likelihoods are readily computed, and so GEE

parameter estimation would often not be considered. However, LCV scores can also

be readily computed in this case and used to control the adaptive GEE-based

modeling process. Thus, comparison of the impact of ML and GEE parameter

estimation on the adaptive modeling process is possible in the multivariate normal

context, and so is addressed in this section. Section 4.11.1 provides a formulation

(which can be skipped) for GEE-based modeling of multivariate continuous out-

comes. Section 4.11.2 provides example adaptive GEE analyses of the dental

measurements. General GEE-based modeling of possibly non-continuous outcomes

requires alternative model selection approaches. For this reason, Pan (2001) pro-

posed the quasi-likelihood information (QIC) criterion for evaluating GEE-based

models with smaller scores indicating better models. The effectiveness of model

selection for the dental measurement data based on QIC compared to LCV is

assessed in Sect. 4.11.3.
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4.11.1 Formulation

Using the notation of Sects. 4.3.1, 4.3.2 and 4.3.3, the generalized estimating

equations, that is, generalized from the estimating equations for the independent

case to incorporate covariance without considering the likelihood, correspond to

HðSC; βÞ ¼
X
s2S

Ds,CðsÞT � Σs,CðsÞðβÞ�1 � es,CðsÞ

with Ds,C sð Þ ¼ ∂μs,C sð Þ=∂β and Σs,CðsÞðβÞ ¼ ϕðβÞ � Rs,CðsÞðρ βð ÞÞ where ϕ(β) is a

constant dispersion parameter, in this case the same as the constant variance

parameter σ2(β). The GEE estimate βGEE(SC) of β is obtained by solving

H SC; βð Þ ¼ 0.

In GEE modeling, the constant dispersion parameter ϕ(β) and the working

correlation matrices Rs,C(s)(ρ(β)) are estimated using the errors esc(β) with esti-

mates determined by the structure R for the matrices Rs,C(s)(ρ(β)). For

example, under exchangeable correlations R ¼ ECð Þ, all the off-diagonal entries

of Rs,C(s)(ρ(β)) are the same with common value ρ(β) (and so the vector ρ(β)
consists of the single entry ρ βð Þ�. Given a value β for the expectation parameter

vector, ρ(β) is estimated as

ρGEEðβÞ ¼
1

mðCCÞ � r

X
c
0
c2CC

stdesc0 ðβÞ � stdescðβÞ,

where CC ¼ c0c : c0 < c, c0, c 2 C Sð Þ, s 2 Sf g, m(CC) is the number of pairs c0c
of indexes in CC, and the errors stdesc0(β) and stdesc(β) are computed by standard-

izing the errors esc0 ðβÞ and esc(β), respectively, by the square root of the estimate

ϕGEE(β) of ϕ(β) given by

ϕGEEðβÞ ¼
1

mðSCÞ � r

X
sc2SC

escðβÞ2:

These are bias-corrected estimates since the denominators are adjusted for bias by

subtracting the number r of expectation parameters. Unadjusted estimates are also

possible by not subtracting r in the denominators. Similar estimates of the correla-

tion matrices can be obtained under other structures R like autoregressive

R ¼ ARð Þ and unstructured R ¼ UNð Þ correlations (for details, see SAS Institute

2004). The estimating equations are solved to obtain the estimate βGEE(SC) using a
Gauss-Newton-like iterative algorithm. The Hessian matrix used in this algorithm is

given by H
0 ðSC; βÞ ¼ P

s2SDs,CðsÞT � Σs,CðsÞðβÞ�1 � Ds,CðsÞ. Using the notation of

SAS Institute (2004, p. 1676), the model-based estimator, assuming the working

correlation matrix is the true correlation matrix, of the covariance matrix of the

estimate βGEE(SC) of β is ΣM βGEE SCð Þð Þ ¼ I0
�1 where I0 ¼ H

0
SC; βGEE SCð Þð Þ.
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The robust empirical estimator of that covariance matrix is ΣE βGEE SCð Þð Þ ¼
I0

�1 � I1 � I0�1 where I1 ¼
P

s2SH SC; βGEE SCð Þð Þ �H SC; βGEE SCð Þð ÞT. P-values
reported for GEE models are based on the empirical estimator.

The QIC score equals �2 times the log of the quasi-likelihood

QL
�
βGEE SCð Þ,ϕGEE SCð Þ� (that is, the likelihood adjusted to account for dis-

persion) computed under the independent correlation structure R ¼ IND with

estimates βGEE(SC) and ϕGEE(SC) determined using the actual working corre-

lation structure R penalized by two times the trace of the product of the inverse

of the model-based estimator ΣM βGEEðSCÞ; INDð Þ�1 ¼ I0ðINDÞ under the

independent working correlation structure R ¼ IND and the robust empirical

estimator ΣE βGEE SCð Þ;Rð Þ ¼ I0
�1ðRÞ � I1ðRÞ � I0ðRÞ�1

under the actual working

correlation matrix R. Formally,

QICðSC;RÞ ¼ � 2 � log QL βGEE SCð Þ,ϕGEE β SCð Þð Þð Þð Þ
þ 2 � tr I0 INDð Þ � I0�1 Rð Þ � I1 Rð Þ � I0 Rð Þ�1

� �

with smaller scores indicating better models, where tr(A) denotes the trace of a

square matrix A equal to the sum of its diagonal entries. The QIC score can be

converted to the larger is better score

QIC
0 ¼ exp � 1

2
� QIC=mðSCÞ

	 

:

4.11.2 Adaptive GEE-Based Modeling of the Dental
Measurement Data

Although general GEE-based modeling does not require computation of likeli-

hoods, likelihoods and LCV scores based on those likelihoods are readily computed

for GEE-based models in the multivariate normal context. Consequently, adaptive

GEE-based modeling of multivariate continuous outcomes can be conducted with

estimates based on GEE and model comparisons on LCV. GEE generates marginal

models with correlations and variances (the same as dispersions for this case)

estimated as functions of estimates of the means. In contrast, the marginal models

formulated in Sect. 4.3 use maximum likelihood (ML) estimation of all the param-

eters determining means, variances, and correlations. For these ML-based marginal

models, the EC correlation structure generates the adaptive model in age, male,

and GCs with LCV score of 0.12975 (as described in Sect. 4.8.2, which is also

better than the LCV score for the ML-based model with AR1 correlation structure).

Using this same EC correlation structure, the adaptive GEE-based model in

age, male, and GCs with constant variances has the two transforms age0.2 and

ðage7 �maleÞ0:4 ¼ age2:8 �male without an intercept, correlation estimate 0.61, and
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a plot of estimated mean values (not displayed) that is very similar to Fig. 4.1 (as is

the plot for the ML-based model using EC). The LCV score is 0.13124, and so the

ML-based marginal model is a competitive alternative with insubstantial PD of 1.14

%. Since both models are based on two transforms, the GEE approach for estimat-

ing the marginal model provides somewhat better results compared to the ML

approach. However, the PD of 1.79 % compared to the transition model based on

age, male, PRE(y,1,2), PRE y;1;2;∅ð Þ, and GCs of Sect. 4.8.3 with LCV score

0.13363 is substantial. Consequently, while adaptive marginal GEE-based model-

ing for these data provides a competitive alternative to adaptive ML-based model-

ing, it generates a distinctly inferior model compared to adaptive transition

modeling.

Adaptive GEE-based modeling supports the use of unstructured (UN) correla-

tion matrices with correlations between different outcome measurements all treated

as distinct parameters. There are 4 � 3=2 ¼ 6 different correlations for the dental

measurement data. The adaptive GEE-based model for the dental measurements

using UN correlations is the constant model with LCV score 0.02201 and very

substantial PD 83.23 % compared to the GEE-based adaptive model using EC

correlations. In this case, using six distinct correlation parameters appears to overfit

the data to the extent that it is not possible to identify a non-constant model for the

means. This result suggests that UN correlation structures may often be ineffective,

at least for GEE-based marginal modeling and most likely also for ML-based

marginal modeling, and are reasonably not considered in adaptive modeling of

multivariate outcomes.

4.11.3 Assessment of the Quasi-Likelihood Information
Criterion

Table 4.2 reports QIC0 scores (converting the QIC score from smaller is better to

larger is better) and LCV scores for alternative correlation structures for the linear

moderation model based on age, male, and the interaction age∙male and with

correlations estimated by GEE. There is very little difference between the QIC0

scores for the 4 correlation structures (all PDs are less than the cutoff of 1.76 % for

the data). The best QIC0 score is achieved for both the independent case with zero

correlation and the exchangeable case with estimated correlation 0.61 (value not

reported in Table 4.2), suggesting counterintuitively that this latter correlation

estimate, while quite large, is not of substance. In contrast, LCV scores indicate

that the EC correlation structure is the best choice and substantially better than the

other three correlation structures (with all PDs greater than the cutoff of 1.76 %).

The same QIC0 scores are generated for the independent and EC correlation

structures because GEE estimates of the mean parameters of the model are the

same for these two cases. However, these estimates are not the same for the

complements of the folds considered in the LCV computations so that the LCV
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scores indicate that the independent case is very inferior to the EC case with PD

22.53 %. In this case, QIC scores provide little discrimination between alternative

correlation structures in contrast to LCV scores. This may hold more generally

since QIC scores are based in part on the independent correlation structure even

when that is not the assumed correlation structure.

Table 4.3 reports QIC0 and LCV scores for alternative submodels of the linear

moderation model for the means based on subsets of the three predictors: age, male,

and their interaction age∙male, with EC correlations as suggested by Table 4.2

results. Under the full linear moderation model, the effects of age P < 0:001ð Þ and
age∙male P ¼ 0:009ð Þ are significant while the effect of male P ¼ 0:454ð Þ is

nonsignificant. The submodel of this linear moderation model with the best QIC0

score is the constant model with all three predictors removed from the model. On

the other hand, the best LCV score is achieved for the model based on age and

age∙male with male removed, and the constant model is distinctly inferior to this

submodel with PD in the LCV scores of 31.59 %. For the submodel based on age

and age∙male, both effects are highly significant at P < 0:001. The QIC0 analysis
counterintuitively suggests that the model based on these two highly significant

terms can be improved by removing both of them, which results in a substantial

improvement due to a PD in the QIC0 scores of 2.32 % for the model based on age

and age male. In contrast, the LCV analysis supports the intuitive conclusion that

the full model can be improved by removing its one nonsignificant term giving a

submodel whose two highly significant terms are best kept in the model.

As implemented in SAS by PROC GENMOD, the QIC score for a given model

is computed using the dispersion estimate for that model. Pan (2001, p. 122)

recommended instead that the dispersion estimate for the largest possible model

for the means be used in computing QIC scores for all models for the means under

consideration. The QIC0 scores of Table 4.3 are computed using the built-in SAS

approach, which may explain why they generate counterintuitive conclusions.

However, QIC scores as recommended by Pan are not generated directly by SAS

and require extra complex computations so that this is not a practical option for

most applied researchers. Moreover, while there is a largest possible model for the

Table 4.2 Comparison of QIC and LCV for assessing the correlation structure for the dental

measurement data using the linear moderation model for the meansa

Correlation structure

QIC 5-fold LCV

Adjusted scoreb
Percent decrease

from best (%) Score

Percent decrease

from best (%)

Independent 0.58229 0.00 0.09782 22.53

Autoregressive 0.58162 0.12 0.11405 9.68

Exchangeable 0.58229 0.00 0.12627 0.00

Unstructured 0.57729 0.86 0.00256 97.97

LCV: likelihood cross-validation, QIC: quasi-likelihood criterion
aWith means based on the three predictors age, male, and their interaction age∙male
bQIC0 ¼ exp(�½∙QIC/m(S)) where m Sð Þ ¼ 108, the number of measurements
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analyses of Table 4.3, this is not always the case, for example, when the models

under consideration include any number of any real valued powers of one or more

continuous predictors as in adaptive modeling.

4.12 Analysis of the Exercise Data

A data set on strength measurements for 37 subjects undergoing one of two

weightlifting programs is available on the Internet (see Supplementary Materials).

For 11 subjects, the number of repetitions increased over time while, for the

remaining 26 subjects, the weight increased over time. Strength measurements

are available at baseline and every 2 days after that up to 12 days for a total of

seven measurement times. The variable strength is the outcome for these analyses.

The possible predictor variables are time (with equally spaced values 0, 2, � � �,
12 days), incrwgts (the indicator for having the weights increase), and their

interaction time∙incrwgts. There are a total of 239 outcome measurements with an

average of 6.5 measurements per subject. Of the 37 subjects, 23 (62.2 %) had no

missing outcome measurements while eight (21.6 %) had one missing and six (16.2

%) had two missing. The cutoff for a substantial PD in the LCV scores for these data

with 239 measurements is 0.80 %.

The benchmark analysis used to set the number of folds is adaptive modeling of

mean strength as a function of time under a ML-based marginal AR1 model. For

k ¼ 5 folds, the adaptively generated model includes an intercept and the transform

time0.5 with LCV score 0.18678. Fork ¼ 10 folds, the same model is generated with

LCV score 0.18627. Since this is a lower score, k ¼ 5 might be an appropriate

choice to use in subsequent analyses. However, for k ¼ 15 folds, the same model is

generated but with larger LCV score 0.18688 while, for k ¼ 20 folds, the same

Table 4.3 Comparison of QIC and LCV for assessing means for the dental measurement data

using submodels of the linear moderation model using the exchangeable correlation structure

Predictors for the means

QIC 5-fold LCV

Adjusted scorea
Percent decrease

from best (%) Score

Percent decrease

from best (%)

Age Male Age∙male 0.58229 2.44 0.12627 0.70

Age Male – 0.58143 2.58 0.12241 3.74

Age – Age∙male 0.58301 2.32 0.12716 0.00

– Male Age∙male 0.58316 2.29 0.11515 9.44

Age – – 0.59324 0.60 0.11893 6.47

– Male – 0.59042 1.08 0.08953 29.59

– – Age∙male 0.58229 2.44 0.12627 0.70

– – – 0.59685 0.00 0.08699 31.59

LCV: likelihood cross-validation, QIC: quasi-likelihood criterion
aQIC0 ¼ exp(�½∙QIC/m(S)) where m Sð Þ ¼ 108, the number of measurements
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model is generated once again with decreased LCV score 0.18649. Since the same

model is generated for all these choices of k, using k ¼ 5 may be a reasonable

choice. However, since k ¼ 15 is a local maximum with a larger LCV score than for

k ¼ 5, this seems like a better choice for these data and, consequently, k ¼ 15 is

used in all subsequent analyses. The number of measurements in the 15 folds ranges

from 6 to 33 for 1–5 matched sets (subjects in this case).

Using 15 folds, the marginal model under the EC correlation structure is similar

and based on an intercept and the transform time0.4. However, the LCV score for

the EC model is 0.15807 with very substantial PD of 15.42 %, and so AR1 provides

a much better depiction of the dependence over time and is used in subsequent

analyses of the exercise data. The linear polynomial model has LCV score 0.18373

with substantial PD of 1.69 %, and so mean strength changes distinctly nonlinearly

with time. The adaptive transition model based on time, PRE(y,1), PRE y;1;∅ð Þ,
and GCs has LCV score 0.14789 with very substantial PD of 20.86 %. In this case,

the marginal AR1 model very distinctly outperforms the associated transition

model, and so other transition models for the exercise data are not considered

here (but see Sects. 4.15.3, 4.15.4 for the impact of constant variances on this

result). The adaptive marginal AR1 moderation model based on incrwgts, time, and

GCs does not depend on incrwgts and is the same model as generated for time

alone, thereby indicating that mean strength does not change distinctly differently

for subjects on the two weightlifting programs.

The adaptive GEE-based model based on incrwgts, time, and GCs using the AR1

correlation structure generates a better LCV score of 0.18430 than the associated

GEE-based model using the EC correlation structure (with LCV score 0.15640). In

contrast to the adaptive AR1ML-based model, the adaptive AR1 GEE-based model

does depend on incrwgts. However, the PD 1.38 % is substantial compared to the

associated ML-based model, indicating that in this case ML estimation provides a

distinct improvement over GEE estimation and that the more appropriate conclu-

sion is that mean strength does not depend on incrwgts.

Under the final selected model for mean strength, the estimated constant stan-

dard deviation is 4.4. Estimated correlations decrease from 0.95 at 2 years apart to

0.74 at 12 years apart. Estimated means are plotted in Fig. 4.5; they are distinctly

nonlinear up to 4 weeks but appear quite linear after that.

Conclusions about the exercise data have been based so far on LCV scores

computed with all of a subject’s measurements assigned to the same fold. This

seems reasonable for complete data like the dental measurement data. For

incomplete data like the exercise data, it seems more appropriate to base LCV

scores on folds that reflect the possibility for missing outcome measurements.

This is achieved using measurement-wise deletion as formulated in the next

section.
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4.13 LCV with Measurement-Wise Deletion

So far, LCV scores have been computed using matched-set-wise deletion with all

measurements for a matched set assigned to the same fold. This seems reasonable

when all matched sets have no missing measurements. On the other hand, when

some matched sets have missing measurements, LCV scores seem more appropri-

ately computed in a way that accounts for such missingness. This can be achieved

through measurement-wise deletion with the measurements of each matched set

randomly spread out over the folds. Moreover, the effect of missingness on con-

clusions can be assessed by comparing results based on LCV scores computed using

matched-set-wise deletion to results based on LCV scores computed using

measurement-wise deletion. This section provides a formulation (which can be

skipped) for LCV scores extending them to the measurement-wise deletion context.

For a subset SC0 of SC, let Cðs, SC0 Þ ¼ fc : sc 2 SC
0 g, the set of condition

indexes c with sc in SC0, for each s 2 S. The associated observed data O
s,Cðs,SC0 Þ

have likelihood LðO
s,Cðs,SC0 Þ; θÞ which is defined equal to 1 when Cðs, SC0 Þ ¼ ∅.

Randomly partition the index set SC into k disjoint folds F(h) for

h 2 H ¼ h : 1 � h � kf g with measurement indexes sc assigned to the fold

F(h(sc)) where hðscÞ ¼ intðk � uscÞ þ 1 for independent, uniform random values

usc in (0, 1). Forh 2 H, letUðhÞ ¼ [
h
0 �h

Fðh0 Þ denote the union of the fold index sets
F(h0) for h

0 � h and U(0) the empty set. Define revised LCV terms using conditional

likelihoods as

LCVsh ¼ L Os,C s,F hð Þð Þ
��Os,C s,U h�1ð Þð Þ; θ SC\ F hð Þð Þ� �

¼ L Os,C s,U hð Þð Þ; θ SC\ F hð Þð Þ� �
=L Os,C s,U h�1ð Þð Þ; θ SC\ F hð Þð Þ� �

:
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Fig. 4.5 Estimated mean strength based on adaptive marginal AR1 modeling
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In other words, the contribution to the LCV score for measurements of the matched

set s within the hth fold F(h) is the conditional likelihood for those data given the

measurements for that matched set in prior folds evaluated at parameter

estimates based on data in the complement SC\F(h) of the hth fold. The associated

LCV score is

LCV ¼
Y
s2S

Y
h2H

LCVsh
1=mðSCÞ:

With this definition, LCVM(SC) equals L(SC; θ) when computed with parameter

estimates θ(SC) rather than with the deleted estimates θ(SC\F(h)) as needed to use

measurement-wise deletion LCV ratio tests (see Sect. 4.4.2). Note that when fold

assignment is matched-set-wise with all the measurements for matched set s in

the same fold F(h(s)) for all s 2 S, LCVshðsÞ ¼ LðOs,CðsÞ; θðSC∖F hð ÞÞÞ while

LCVsh ¼ 1 for h 6¼ hðsÞ so that the above definition of the LCV score for that case

agrees with the definition given in Sect. 4.4.1.

The above formulation addresses the extension of LCV scores for marginal

models to the measurement-wise deletion context using conditional likelihoods.

The extension of PLCV scores to that context does not require a special formulation

since they are based on conditional likelihoods to start with. However,

measurement-wise deletion for conditional models requires that conditional

predictors of PRE, POST, and OTHER types need to be recomputed for the

complements of all of the folds to obtain appropriate deleted parameter estimates.

This is not required for matched-set-wise deletion. An intermediate alternative

requiring less computation is to use a partial measurement-wise deletion approach,

computing deleted parameter estimates from conditional predictors based on the

complete data rather than on the data in the complements of folds.

4.14 Revised Analysis of the Exercise Data

Analyses reported in this section use LCV scores with measurement-wise deletion

to assess the effect of missingness on adaptive marginal modeling of the exercise

data. The first local maximum in the LCV score for the adaptive ML-based AR1

model in time occurs for 10 folds, and so 10-fold LCV is used in subsequent

analyses. The number of measurements in the 10 folds ranges from 15 to 34 for

12 to 23 matched sets (subjects in this case). The generated model has LCV score

0.18842 and includes an intercept and the transform time0.5 as do the models for

5 and 15 folds. The same adaptive model was generated using the EC correlation

structure, but the LCV score is 0.16059 with very substantial PD of 14.77 %.

The linear polynomial model with AR1 correlation structure has LCV score

0.18556 with substantial PD 1.52 % so that mean strength is distinctly nonlinear

in time. The adaptive transition model based on time, PRE(y,1), PRE y;1;∅ð Þ, and
GCs has LCV score 0.15147 with substantial PD 18.95 %. The adaptive AR1-based
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marginal model in time, incrwgts, and GCs depends only on time and is the same

model as generated for time by itself. The adaptive GEE-based model based on

incrwgts, time, and GCs using the AR1 correlation structure generates a better LCV

score of 0.17205 than the associated GEE-based model using the EC correlation

structure (with LCV score 0.16047). The means of this model depend on incrwgts

through the single predictor incrwgts∙ time1.9 together with an intercept, suggesting

the possibility of a dependence on incrwgts not identified through ML estimation.

However, the PD compared to the ML-based model is substantial at 7.94 %,

indicating as before that ML estimation provides a distinct improvement over

GEE estimation and that the more appropriate conclusion is that mean strength

does not depend on incrwgts. Thus, the same conclusions are reached using

measurement-wise deletion LCV as with matched-set-wise deletion LCV, indicat-

ing that missingness has not affected conclusions based on LCV.

However, missingness may have an effect on mean strength, which can be

assessed by investigating the impact of missingness predictor variables. For exam-

ple, this can be addressed using the adaptive ML-based AR1 model in time,

incrwgts, and the variable nmiss set to the number of missing outcome measure-

ments for subjects along with GCs of these three variables. The associated adaptive

model is the same model as generated without consideration of missingness,

suggesting that missingness has not affected the prior conclusion on how mean

strength depended on time and incrwgts. This analysis treats the number of missing

measurements as a continuous predictor. It can also be treated as a categorical

predictor by considering the two indicators nmiss1 and nmiss2 for having 1 and

2 missing measurements in place of the variable nmiss. The adaptively generated

model is again the model generated without consideration of missingness, further

supporting the conclusion of no impact to missingness on mean strength.

4.15 Modeling Variances as Well as Means

Variances are commonly assumed to be constant. As an alternative, PROC MIXED

allows in some cases for heterogeneous variances with variance estimates changing

with the repeated measurement conditions (e.g., ages of a child). The genreg macro

supports more general variance modeling as described for univariate continuous

outcomes in Sect. 2.19. This extends to multivariate continuous outcomes, and the

extension is formulated in Sect. 4.15.1 (which can be skipped) and demonstrated in

Sects. 4.15.2, 4.15.3 and 4.15.4.

4.15.1 Formulation

For marginal ML-based models, the covariance matrices Σs,C(s) are assumed to

satisfy
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Σs,CðsÞ ¼ Bs,CðsÞ � Rs,CðsÞðρÞ � Bs,CðsÞ,

where Bs,C(s) are the diagonal matrices with diagonal entries σsc denoting the

standard deviations of the outcome measurements ysc for c 2 C sð Þ and s 2 S. The

logs of the variances σsc2 are then modeled as functions of selected predictor

variables and associated coefficients. Specifically, let log σsc2ð Þ ¼ vsc
T � γ where,

for s 2 S and c 2 C sð Þ, vsc is a q� 1 column vector of q predictor values vscj
(including unit predictor values if an intercept is to be included) with indexes j 2 Q

¼ j : 1 � j � qf g and γ is the associated q� 1 column vector of coefficients.

The parameter vector θ ¼ ðβT,γT,ρTÞT is estimated through ML estimation. Define

Vs,C(s) to be the m sð Þ � q matrix with rows vsc
T for c 2 C sð Þ and s 2 S and let

Os,C sð Þ ¼ ys,C sð Þ;Xs,C sð Þ;Vs,C sð Þ
� �

denote the observed data for each s 2 S. With this notation, the formulations of

Sects. 4.3 and 4.4 extend to combined adaptive marginal ML-based modeling of

means and variances for multivariate continuous outcomes. A similar extension for

modeling of dispersions along with means can be formulated for GEE-based

models with the GEE equations for estimating mean parameters augmented with

ML equations for estimating variances. Since transition modeling (Sect. 4.7) and

general conditional modeling (Sect. 4.9) use pseudolikelihoods, equal to products

of pseudolikelihood terms for the conditional measurements y#sc, the associated

extensions are generated analogously to the extension for univariate outcomes

given in Sect. 2.19.1.

4.15.2 Analysis of Dental Measurement Means
and Variances

An adaptive marginal ML-based model can be generated for the dental measure-

ments with both means and variances functions of age, male, and associated GCs

under exchangeable correlations (EC). Order 1 autoregressive correlations (AR1)

are not considered since AR1-based constant variances models are not competitive

with EC-based constant variances models (Sect. 4.8.2). The generated EC model

has means depending on the transforms age0.23 and age2 �male without an intercept,

variances depending on the indicator male with an intercept, and LCV score

0.13570. In contrast, the marginal EC model generated for the means assuming

constant variances described in Sect. 4.8.2 has LCV score 0.12975 and substantial

PD of 4.38 %, indicating that the variances for dental measurements are distinctly

non-constant in male, under EC correlations. Means for the constant variances

model are based on a similar set of transforms: age0.21 and age2 �maleð Þ0:903 without
an intercept, suggesting that estimated means have not changed much after
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accounting for non-constant variances. This can be assessed by starting from the

model for the means generated with constant variances and generating the adaptive

model for the variances holding the model for the means fixed. The generated

model for the variances is based on the transforms: male and age0.1 without an

intercept. The LCV score is 0.13528 with insubstantial PD of 0.31 %, indicating

that the model for the means has not changed substantially by considering

non-constant variances.

An adaptive transition model can be generated with both means and variances

depending on the primary predictors age, male, PRE(y,1,2), and PREðy, 1, 2,∅Þ as
well as GCs based on these primary predictors. Models based on weighted averages

are not considered since they did not improve on simple averages for constant

variances analyses (Sect. 4.8). The generated model for means includes

ðage1:5 � PREðy,1,2Þ5Þ0:95, ðmale � age2Þ1:1, ðmale � PREðy,1, 2Þ1:7 � age1:6Þ1:1, and

ðPREðy,1,2Þ�3 � age2Þ4:3 with an intercept. The generated model for the variances

includes ðage2:5 � PREðy,1, 2ÞÞ0:9 and ðmale � age4 � PREðy,1, 2ÞÞ0:9 also with an

intercept. The LCV score is 0.14264. In contrast, the transition model generated

for the means assuming constant variances (see Sect. 4.8) has LCV score 0.13363

and substantial PD of 6.32 %, indicating that the variances for dental measurements

are distinctly non-constant in age, male, and the average of the previous two dental

measurements. Moreover, the adaptive marginal ML-based model with

non-constant variances and EC correlations generates a substantial PD in LCV

scores of 4.87 %, indicating that transition modeling outperforms marginal

ML-based modeling of means and variances of the dental measurements as it

did for modeling of means with constant variances. The adaptive transition

model for the variances holding the model for the means fixed at the adaptive

constant variances model is based on the transforms: PRE(y,1,2)0.6 and

ðmale � age3 � PREðy,1,2Þ2Þ2:04 with an intercept. The LCV score is 0.14215 with

insubstantial PD 0.34 %, indicating that the transition model for the means has not

changed substantially by considering non-constant variances.

An adaptive GEE-based model can be generated for the dental measurements

with both means and variances functions of age, male, and associated GCs under

marginal GEE-based models with EC correlations. The associated GEE-based

model has means depending on the transforms age0.22 and ðage7 �maleÞ0:5 without
an intercept, variances depending on the transform ðmale � ageÞ�1

with an intercept,

and LCV score 0.13670. In contrast, the marginal GEE-based model generated for

the means assuming constant variances and EC correlations described in

Sect. 4.11.2 has LCV score 0.13124 and substantial PD of 3.99 %, indicating as

for ML-based models that the variances for dental measurements are distinctly

non-constant in age and male. The adaptive ML-based model for both means and

variances has a smaller LCV score than the associated GEE-based model, but the

PD for the ML-based model is insubstantial at 0.73%. However, the non-constant

variances GEE-based model generates a substantial PD of 4.16 % compared to the

associated non-constant variances transition model, indicating that transition
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modeling outperforms marginal GEE-based modeling for these data as long as

variances are modeled along with means as it did for marginal ML-based modeling.

4.15.3 Transition Modeling of Strength Measurement
Means with Adjusted Variances

As demonstrated in Sect. 4.7.2, marginal models with constant variances and AR1

correlations have associated transition models with a different variance for the first

measurement of a matched set than for subsequent measurements. Thus, transition

models may require variances adjusted for this difference to be competitive with

marginal AR1 models. For the case of transition modeling of the means in terms of

time, PRE(y,1), and PRE y;1;∅ð Þ, and GCs with LCV scores based on

measurement-wise deletion as considered in Sect. 4.14, this issue can be addressed

by starting the adaptive modeling process with the log variance model based on an

intercept and the indicator PRE y;1;∅ð Þ and allowing contraction of these terms

as well as those of the expanded model for the means. The generated model for the

means is based on the three transforms: ðPREðy,1Þ6:1 � time�0:03Þ0:921, PREðy,1Þ�43
,

and PREðy,1Þ�9
with an intercept and variances depending on PRE y;1;∅ð Þwithout

an intercept. It has LCV score 0.18479, in contrast to 0.15147 for the constant

variances transition model as reported in Sect. 4.14. Thus, it can be very important

to adjust the log variance model to generate the best alternative transition model for

the means. However, this model generates a substantial PD of 2.03 % compared to

the associated marginal AR1 model with constant variances and larger LCV score

0.18842.

4.15.4 Analysis of Strength Measurement Means
and Variances

This section conducts a more complete assessment of means and variances for the

exercise data than the assessment of Sect. 4.15.3. Measurement-wise deletion is

used to compute reported LCV scores as in Sect. 4.14. The adaptive marginal

ML-based model for strength measurements with both means and variances func-

tions of time, incrwgts, and GCs and with AR1 correlations (since they

outperformed EC correlations in earlier analyses) is the same as the adaptive

constant variances model described in Sect. 4.14 with LCV score 0.18842,

suggesting that the strength measurements are reasonably treated as having constant

variances. The associated adaptive GEE-based model has means depending on time

and incrwgts, but with constant variances, reduced LCV score 0.17205, and sub-

stantial PD of 8.69 %, and so this marginal GEE-based model is distinctly

outperformed by the associated marginal ML-based model.
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The adaptive transition model for means and variances in time, incrwgts,

PRE(y,1), PRE y;1;∅ð Þ, and GCs has means based on the two transforms:

PRE(y,1)6.13 and time0:4 � PRE y;1ð Þ�6
with an intercept and variances based on

the three transforms: time�0:09, time�7, ðincrwgts � PREðy,1Þ6:2Þ1:01 with an inter-

cept. It has an improved LCV score of 0.19089, which is a substantial improve-

ment over the constant variances marginal ML-based model with the largest LCV

score so far and PD 1.29 %. Furthermore, the adaptive transition model for means

and variances in time, PRE(y,1), PRE y;1;∅ð Þ, and GCs, that is, without consid-

ering incrwgts, has LCV score 0.18905 with substantial PD 0.96 %. Thus,

transition models for the exercise data outperform marginal models as long as

both means and variances are modeled. Moreover, they are needed to identify

effects of incrwgts on the variances not identifiable with marginal models. The

means for this best model do not depend on incrwgts but the variances do. The

estimated slope for the one transform for the variances involving incrwgts is

negative, indicating that the strength variances are smaller for subjects with the

weight increasing over time at post-baseline times (when PRE y;1ð Þ > 0) than for

subjects with the number of repetitions increasing over time, with more of a

decrease with increasing prior strength measurements (since the power 6.2 � 1.01
for PRE(y,1) is positive).

While these analyses address missingness as it affects LCV scores for models of

means and variances, it is possible that the means and/or variances might change

with the amount of missing strength measurements. This can be addressed using

marginal ML-based modeling with AR1 correlations and means and variances

based on time, incrwgts, nmiss (the number of missing strength measurements),

and GCs. GEE-based marginal modeling is not considered since it is

outperformed by ML-based modeling in analyses not considering nmiss. The

generated model for the means is based on the two transforms: time0.5 and

ðincrwgts � time8 � nmiss�1:7Þ1:93 with an intercept while the model for the variances

is based on the two transform: ðnmiss1:5 � timeÞ0:8 and ðincrwgts � nmiss � time1:1Þ0:9
with an intercept. The LCV score is 0.19545, which is a substantial improvement

over the associated adaptive ML-based model not considering nmiss with PD

3.60 %, suggesting that missingness has an effect on the means and variances.

Moreover, the transition model generated without considering nmiss has substantial

PD of 2.33 %.

The transition model with means and variances based on time, incrwgts,

nmiss, PRE(y,1), PREðy,1,∅Þ, and GCs has means based on the three transforms:

ðtime0:04 �PREðy,1Þ�6Þ�0:3
, PREðy,1Þ�1:1

, and ðincrwgts � time�1 �PREðy,1Þ�11Þ�1:1

with an intercept and variances based on the four transform: time0.03,

ðnmiss0:6 � time1:2 �PREðy,1Þ2Þ0:8, ðnmiss�7 � incrwgtsÞ0:4, and time�6 with an inter-

cept. The LCV score is 0.20016, which is a substantial improvement over the

associated transition model not considering nmiss with PD 2.84 %, indicating that

missingness has a direct effect on the variances but only an indirect effect on the

means since they do not change with nmiss but now change with incrwgts. It is also
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a substantial improvement over the ML-based marginal model considering nmiss

with PD 2.35 %. This model includes an effect to incrwgts on the means and

variances. Whether this is substantial can be assessed by comparing results to the

model with means and variances depending on time, nmiss, PRE(y,1), PRE y;1;∅ð Þ,
and GCs, not including incrwgts. The generated model has LCV score 0.19313 with

substantial PD of 3.51 %, and so incrwgts has a substantial effect. These results

indicate that both the means and variances differ for the two weightlifting program.

Estimated post-baseline strength means for the increasing number of repetitions

group based on the adaptive transition model for means and variances are plotted in

Fig. 4.6. At each given prior strength measurement value, mean strength decreases

somewhat over time, but at higher levels for higher prior strength measurements.

For the increased number of weights group, the estimates are in all cases about 0.02

units larger (see Sect. 20.4.10 for an explanation of why this is a constant value).

While the effect of the increased number of groups may be substantial in terms of

LCV ratio tests, an increase of about 0.02 units may not be a substantively

meaningful improvement.

Estimated post-baseline strength standard deviations for the increasing number

of repetitions group based on this model are plotted in Fig. 4.7. The variability in

post-baseline strength measurements increases as prior strength measurements

increase but only for larger prior strength measurements. The variability also

increases over time but more so as the number of missing strength measurements

increases. For subjects in the increased weight group, the only differences occur

when they have missing strength measurements with a decrease in dispersion of

1.07 units when nmiss¼ 1 and of 0.15 units when nmiss ¼ 2.
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Fig. 4.6 Estimated post-baseline strength means for the increasing number of repetitions group

based on adaptive transition modeling of means and variances in terms of time and the prior

strength measurement (PRE(y,1))
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4.16 Overview of Analyses of Dental Measurements

1. For the dental measurement data (Sect. 4.2), analyses use k ¼ 5 folds

(Sect. 4.5.2).

2. Using AR1 correlations and constant variances, the mean dental measurements

are reasonably close to linear in the child’s age (Sect. 4.5.2).
3. Using AR1 correlations,constant variances, and the interaction agemale, the

dependence of the mean dental measurements on the child’s age is distinctly

nonlinearly moderated by the gender of the child (Sect. 4.5.3). A linear

moderation analysis in this case leads to the conclusion that moderation does

not occur (Sect. 4.5.3). Hence, moderation in this case can only be identified

through an adaptive nonlinear analysis.

4. Linear moderation analyses commonly start by centering variables like the

child’s age at their observed means. This has no effect on the significance of the

interaction effect. However, centering can have an effect for nonlinear models.

For the dental measurement data, the model based on centered age also leads to

the conclusion that moderation has occurred, but the model based on

uncentered age (Sect. 4.5.3) is a parsimonious,competitive alternative.

5. Adaptive modeling supports generation of geometric combinations (GCs), that

is, products of power transforms of different primary predictors possibly with

different powers, generalizing interactions and their power transforms. The

adaptive model in age, gender, and GCs has LCV score a little larger than the

one for the model based on age, gender, and the interaction agemale

(Sect. 4.5.4), supporting the validity of the heuristics for generating GCs (see

Sect. 18.4.6).

6. Adaptive modeling supports power transforms of primary predictors with

nonpositive values. Transformed zero values are left as zero, transformed

positive values are computed as usual, and transformed negative values are

set equal to the transform of their absolute values weighted by a cosine function
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Fig. 4.7 Estimated post-baseline strength standard deviations for the increasing number of

repetitions group based on adaptive transition modeling of means and variances in terms of

time, the prior strength measurement and the number of missing exercise measurements (nmiss)
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to switch signs between positive and negative values. The Royston and

Sauerbrei (2008) recommended approach is to add a value to nonpositive

valued predictors just large enough to make them positive valued. For centered

age, this generates a competitive model to using uncentered age, but it negates

the effect of centering (Sect. 4.6.2).

7. Assuming constant variances, the adaptive transition model in age, gender,

PRE(y,1) (the prior outcome measurement), PRE y; 1;∅ð Þ (the indicator for

there being no prior outcome measurement; in which case PRE(y, 1) is set to 0),

and GCs distinctly outperforms the adaptive AR1-based marginal model

(Sect. 4.8.1). The adaptive EC-based marginal model generates a larger LCV

score than this transition model, but not substantially larger (Sect. 4.8.3).

However, it does substantially improve on the AR1-based marginal model

(Sect. 4.8.2). The adaptive transition model in age, gender, PRE(y,1,2) (the

average of the up to two prior outcome measurements), PRE y; 1; 2;∅ð Þ, and
GCs distinctly outperforms the EC-based marginal model (Sect. 4.8.3). It also

generates a better LCV score than the model using PRE(y,1,3) (the average of

the up to three prior outcome measurements; Sect. 4.5.3). Results for this model

are displayed in Figs. 4.2–4.4.

8. Assuming constant variances, adaptive transition modeling based separately on

the four PLCs: AIC, BIC using the number of measurements, BIC using the

number of matched sets, and TIC generates substantially inferior models to

adaptive transition modeling based on LCV scores (Sect. 4.8.4). Adaptive

modeling based on PLCs should usually be avoided, at least for transition

modeling of continuous outcomes with possible exception highly time-

consuming analyses.

9. General condition modeling with current outcome measurements depending on

averages of other outcome measurements occurring either before or after the

current one distinctly outperforms transition modeling for the dental measure-

ment data (Sect. 4.10). However, general conditional modeling does not seem

appropriate for longitudinal data. It is more appropriately used with

clustered data.

10. Assuming constant variances and EC correlations, adaptive GEE-based mar-

ginal modeling generates a better LCV score than the associated ML-based

model, but not substantially better (Sect. 4.11.2). However, the GEE-based

model is distinctly inferior to the associated transition model (Sect. 4.11.2).

These results suggest that consideration of GEE-based models may not be

necessary in general, at least for modeling continuous outcomes.

11. The adaptive GEE-based model using unstructured (UN) correlations is the

constant model with distinctly smaller LCV score than the associated EC-based

model (Sect. 4.11.2). UN correlations can overfit the data.

12. Using the full factorial model in age, gender, and agemale, the quasi-likelihood

information criterion (QIC) score, commonly used in model selection for

GEE-based models, leads to the conclusion that the data may reasonably be

considered to be independent even though the EC-based correlation estimate

has the substantial value 0.61 (this and the following results reported in
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Sect. 4.11.3). Moreover, there is little difference in the QIC scores for alternate

correlation structures. Using LCV scores instead leads to the conclusion that

the EC correlation structure is the distinctly best choice for these data and that

the correlation of 0.61 is substantial. Furthermore, using EC correlations, the

QIC score is best for the model constant in age, gender, and agemale even

though age and agemale are highly significant ( P < 0:001 and P ¼ 0:009,
respectively) in the full factorial model while the LCV score selects the

submodel with these two terms included and the nonsignificant (P ¼ 0:454)
term gender removed. The QIC score can generate counterintuitive results.

13. The adaptive ML-based marginal model with AR1 correlations allowing for

non-constant variances distinctly outperforms the associated constant variances

model (this and the following results reported in Sect. 4.15.2). This also holds

for GEE-based marginal modeling and for transition modeling. As for constant

variances, the non-constant variances transition model distinctly outperforms

both the ML-based and GEE-based marginal models, which are competitive

alternatives to each other.

4.17 Overview of Analyses of Strength Measurements

1. For the exercise data (Sect. 4.12), using LCV scores based on matched set-wise

deletion (Sect. 4.4.1) and constant variances, k ¼ 15 folds are chosen for

analyses of those data (this and the following results reported in Sect. 4.12).

Using ML parameter estimation, the AR1-based marginal model for strength in

terms of time distinctly outperforms the associated EC-based marginal model

and the transition model based on PRE(y, 1). Mean strength is distinctly

nonlinear in time and is reasonably considered not to depend on the type of

exercise program. Using GEE parameter estimation, the AR1-based marginal

model for strength in terms of time once again distinctly outperforms the

associated EC-based marginal model. However, this GEE-based model is dis-

tinctly outperformed by the associated ML-based model.

2. Using LCV scores based on measurement-wise deletion (Sect. 4.13) and con-

stant variances, k ¼ 10 folds are chosen for analyses of the exercise data (this

and the following results reported in Sect. 4.14). The results using LCV with

matched set-wise deletion as reported above still hold using LCV scores based

on measurement-wise deletion. When a possible effect to missingness on the

means is addressed by also including predictors measuring the number of

missing values for each matched set, the generated models do not depend on

these missingness predictors. These results suggest that missingness has not

affected the conclusions for constant variances models.

3. The constant variances transition model in PRE(y, 1) is very inferior with PD

18.95 % (Sect. 4.14), but even simple AR1 models induce transition models with

variances that are non-constant depending on PRE y; 1;∅ð Þ (Sect. 4.7.2), which
explains the poor performance of transition modeling in this case (this and the
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following results reported in Sect. 4.15.3). Using LCV scores based on

measurement-wise deletion and variances based on a constant term and the

indicator PRE y; 1;∅ð Þ, the generated model has dramatically improved LCV

score. However, it is still distinctly inferior to the ML-based marginal model, but

now the PD is only 2.03 %.

4. Using LCV scores based on measurement-wise deletion, non-constant variances,

and AR1 correlations, the adaptive ML-based marginal model distinctly out-

performs the adaptive GEE-based marginal model and is the same as the

associated constant variances model (this and the following results reported in

Sect. 4.15.4). However, the adaptive transition model distinctly outperforms the

adaptive ML-based marginal model. Moreover, it also outperforms the associ-

ated constant variances transition model. Consequently, transition modeling is

needed to identify non-constant variances including an effect on the variances of

the type of exercise program. While transition models are distinctly inferior in

this case using constant variances, they become distinctly superior with consid-

eration of non-constant variances. When a possible effect to missingness on the

means is addressed by also including the number of missing values for each

matched set as a predictor, the generated model depends on this missingness

predictor and the model distinctly outperforms the transition model not consid-

ering that predictor. Moreover, effects to the exercise program on both the means

and variances can only be identified with non-constant transition modeling.

Results for this model are displayed in Figs. 4.6–4.7.

4.18 Chapter Summary

This chapter has presented analyses of the dental measurement data, addressing

how means and variances for the dental measurements change with the age and

gender of the child while accounting for dependence of dental measurements for the

same child. These analyses use marginal models based on order 1 autoregressive

(AR1) correlations and exchangeable correlations (EC), estimated with maximum

likelihood (ML) or generalized estimating equations (GEE), as well as transition

models and general conditional models. Analyses have also been presented of the

exercise data, addressing how mean strength changes with time and type of

weightlifting program. The EC-based marginal model outperforms the

AR1-based marginal model for the dental measurement data while AR1 outper-

forms EC for the exercise data, indicating the importance of considering alternative

correlation structures for marginal models. Transition models outperform marginal

models for the dental measurement data for both the constant and non-constant

variances cases. When variances are constant, marginal models outperform transi-

tion models for the exercise data, indicating the importance of considering both

types of models. With an appropriate adjustment to the log variance model, as

suggested by the transition model induced by the marginal AR1-based model with

constant means, transition models for the exercise data can be distinctly improved.
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Moreover, with consideration of general non-constant variances for the exercise

data, transition models can outperform marginal models. Adaptive marginal models

with more complex correlation structures (e.g., autoregressive moving average

models of arbitrary orders) might provide distinct improvements, but they have

not yet been implemented in the genreg macro. Adaptive modeling of means and

variances in combination is also considered and generates distinct improvements

over constant variances models for both the dental measurement and exercise data,

demonstrating the need in general to consider such models. Adaptive marginal

ML-based and GEE-based models are competitive alternatives for analyzing the

dental measurement data, but adaptive marginal ML-based models distinctly

outperform adaptive marginal GEE-based models for the exercise data. It seems

reasonable to consider only marginal ML-based models for continuous multivariate

outcomes.

General conditional models distinctly outperform transition models for the

dental measurement data, indicating that dental measurements at present times

can be better predicted using both past and future values than with just past values.

However, longitudinal data like the dental measurement and exercise data are more

appropriately modeled using transition models relating present time measurements

to past measurements. General conditional models are more appropriate for mea-

surements over clusters like members of the same family, patients of the same

provider, and mice in the same litter.

The example analyses demonstrate how to assess nonlinear moderation (modi-

fication) effects and compare them to linear moderation effects. These can be based

on interaction terms as primary predictors or more generally on geometric combi-

nations consisting of adaptively generated products of powers of distinct primary

predictors. For the dental measurement data under AR1 correlations, the linear

moderation analysis leads to the conclusion that mean dental measurements do not

change over child ages differently for boys and girls. However, the adaptive

moderation analysis identifies distinctly different patterns for mean dental mea-

surements over child ages for boy and girls. In this case, moderation can only be

identified using an adaptive, nonlinear analysis. EC correlations produce distinctly

better LCV scores than AR1 correlations, and the linear moderation effect becomes

significant. Thus, alternative correlation structures need to be considered when

testing linear moderation effects, or any other fixed effects, in order to draw

appropriate conclusions about those effects. However, as for AR1 correlations,

the adaptive moderation analysis under EC correlations provides a distinctly better

assessment of moderation effects than the linear moderation analysis. Thus, even

when linear moderation can be established, adaptive modeling can provide a

distinctly better assessment of moderation relationships.

The example analyses also demonstrate how to assess the impact ofmissingness for

incomplete data, including accounting for missingness in LCV scores as well as

assessing the effect of missingness predictors on means and variances. Assuming

constant variances, conclusions about mean strength for the exercise data are the

same when based on LCV scores computed using both matched-set-wise deletion,

with all of a subject’smeasurements allocated to the same fold, andmeasurement-wise
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deletion, with each subject’s measurements spread out over different folds, indicating

that those conclusions are not affected by the presence of missing outcome measure-

ments for some subjects. Furthermore, adaptive constant variances models for mean

strength allowing for dependence on how many missing outcome measurements a

subject has do not depend on these missingness predictors, further supporting the

conclusion that the presence of missing outcome measurements has not affected the

results. However, analyses addressing missingness effects on both means and vari-

ances identify distinct effects to the number of missing strength measurements not

identifiable with constant variances models.

This chapter has also provided formulations for marginal, transition, and general

conditional models of possibly incomplete data including likelihoods, ML and GEE

estimation, penalized likelihood criteria (PLCs), and likelihood cross-validation

(LCV) for marginal and transition models plus pseudolikelihoods, maximum

pseudolikelihood estimation, and pseudolikelihood cross-validation (PLCV) for

general conditional models. Formulations are provided for LCV and PLCV using

matched-set-wise deletion as is appropriate for complete data like the dental

measurement data. LCV using measurement-wise deletion, as is appropriate for

incomplete data like the exercise data, is also formulated for marginal models. The

extension of PLCV scores to measurement-wise deletion does not require a special

formulation. Formulations are provided as well for general power transforms of

primary predictors with zero or negative values and for cutoffs for a substantial

percent decrease (PD) in LCV and PLCV scores.

Adaptive model selection using PLCs can reduce computation times compared

to using LCV. However, examples are provided where model selection by LCV

distinctly outperforms model selection by AIC, BIC computed using the number of

measurements, BIC computed using the number of matched sets, and TIC. These

results suggest that the use of PLCs should be avoided except perhaps for large data

sets and/or large numbers of primary predictors when time requirements for adap-

tive modeling with LCV are prohibitive. A formulation is also provided for the PLC

called the quasi-likelihood information criterion (QIC) specially created for selec-

tion of GEE models. Example analyses using the dental measurements are provided

indicating that, in comparison to LCV, QIC does not discriminate well between

alternative correlation structures and can produce counterintuitive conclusions

about fixed effects. QIC for model selection should be avoided, at least for

continuous outcomes and maybe more generally.

See Chap. 5 for details on conducting analyses in SAS of multivariate continu-

ous outcomes as considered in this chapter. See Chaps. 6 and 7 for transformation of

outcomes as well as predictors. See Chaps. 10 and 11 for extensions to modeling

multivariate discrete outcomes with two or more values. See Chaps. 14 and 15 for

extensions to modeling multivariate count/rate outcomes.
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Chapter 5

Adaptive Regression Modeling
of Multivariate Continuous Outcomes in SAS

5.1 Chapter Overview

This chapter provides a description of how to use the genreg macro for adaptive

regression modeling in the case of multivariate continuous outcomes treated as

multivariate normally distributed. See Khattree and Naik (1999), Littell

et al. (2002), and Littell et al. (2006) for details on standard approaches for

multivariate normal modeling in SAS. Familiarity with adaptive modeling of

univariate continuous outcomes in SAS as described in Chap. 3 is assumed in this

chapter. Section 5.2 describes how to load the dental measurement data of Sect. 4.2.

Data in wide format are often used in multivariate outcome modeling with outcome

measurements under different conditions (for example, ages for the dental mea-

surement data analyzed in Chap. 4) in separate variables (columns) and with one

observation (row) per matched set of related outcome measurements (for example,

the matched sets of the dental measurement data correspond to dental measure-

ments for different children). However, mixed modeling as used in this chapter to

analyze multivariate outcome data requires that the data be converted to long

format with all outcome measurements in the same variable, an extra variable to

identify the measurement condition, and one observation for each outcome mea-

surement, and so an example of such a conversion is presented. Section 5.3

describes adaptive marginal modeling of means for the dental measurements with

parameter estimation based on either maximum likelihood (ML) or generalized

estimating equations (GEE) while Sect. 5.4 addresses conditional modeling of those

data, including transition and general conditional modeling. Both of these sections

provide example residual analyses as well, together with sensitivity analyses to

assess the impact of outlying observations. Section 5.5 addresses special issues

involved in modeling of the exercise data. Section 5.6 covers adaptive modeling of

variances as well as means.
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5.2 Loading the Dental Measurement Data

A data set with dental measurements for 27 children over four ages is analyzed in

Chap. 4 (see Sect. 4.2). Assume that this data set has been loaded into the default

library (for example, by importing it from a spreadsheet file) under the name dentin.

An output title line, selected system options, and labels and formats for the vari-

ables can be assigned as in the following code.

title "Dental Measurement Data";

options linesize¼76 pagesize¼53 pageno¼1 nodate;

proc format;

value $gndrfmt "F"¼"female" "M"¼"male";

value nyfmt 0¼"no" 1¼"yes";

run;

data dentin;

set dentin;

nmiss¼nmiss(of dmeas1-dmeas4);

somemiss¼(nmiss>0);

label subject¼"Subject Identifier"

gender¼"Gender"

dmeas1¼"Dental Measurement at Age 8"

dmeas2¼"Dental Measurement at Age 10"

dmeas3¼"Dental Measurement at Age 12"

dmeas4¼"Dental Measurement at Age 14"

nmiss¼"Number of Missing Measurements"

somemiss¼"Some Missing Measurements or Not";

format gender $gndrfmt. somemiss nyfmt.;

run;

A character format $gndrfmt is created and assigned to the character variable

gender translating its coded values of “F” and “M” to “female” and “male”,

respectively. These data are in what is called wide or broad format with one

observation per matched set, in this case corresponding to a child with identifier

in the variable subject, and the associated outcome measurements in separate

variables, in this case dmeas1–dmeas4 containing dental measurements at ages

8, 10, 12, and 14 years old. An assessment of missingness is simply accomplished

with data in this format including how many measurements are missing as loaded in

the variable nmiss using the SAS nmiss function, and whether or not there are any

missing measurements as loaded in the indicator variable somemiss. A numeric

format nyfmt is created and assigned to the numeric variable somemiss translating

its values of 0 and 1 to no and yes, respectively. However, the dental measurement

data are complete with no missing measurements for all the children, and so these

variables are not needed in this case. They are useful, though, for incomplete data

with matched sets having different numbers of associated measurements.
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To analyze these data with SAS PROCMIXED and with the genreg macro, they

need to be converted to what is called long format with one observation for each

measurement. The following code can be used for this purpose. The code creates an

array named dmeas from the variables dmeas1–dmeas4, which is used in a do loop

to generate variables in long format through the output statement. The outcome

variable is named dentmeas and contains dental measurements for each child at

each of four ages as specified in the variable age. The character variable gender is

replaced by the equivalent numeric indicator variable male for whether the child is

a boy or not and this indicator variable is assigned the numeric format nyfmt. The

variable agemale is the interaction between the variables age and male, that is, their

product. The keep statement is used to remove unneeded variables from the newly

created dentdata data set.

data dentdata;

set dentin;

male¼(gender¼"M");

array dmeas{4} dmeas1-dmeas4;

do i¼1 to 4;

age¼2*iþ6; agemale¼age*male; dentmeas¼dmeas{i}; output;

end;

label male¼"Male Child or Not"

age¼"Age"

dentmeas¼"Dental Measurement"

agemale¼"Age When the Child is a Male";

format male nyfmt.;

keep subject male age dentmeas nmiss somemiss;

run;

5.3 Marginal Modeling of Means for the Dental
Measurement Data

5.3.1 Marginal Models of Mean Dental Measurement in Age
of the Child

Assuming that the genreg macro has been loaded into SAS (see Supplementary

Materials), the number of folds can be set using the adaptive model for dentmeas as

a function of age under a marginal AR1 model with maximum likelihood

(ML) parameter estimates as generated with the following code by varying the

value of the macro variable kfold.
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%let kfold¼5;

%genreg(modtype¼NORML,datain¼dentdata,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,corrtype¼AR1,

foldcnt¼&kfold,expand¼y,expxvars¼age,

contract¼y);

The matchvar parameter specifies the variable whose unique values determine

the matched sets, in this case the variable named subject. The withinvr parameter

specifies the variable containing values for the repeated measurement conditions

within each matched set, in this case the variable named age. The corrtype param-

eter is used to set the correlation type. The setting “corrtype¼AR1” in this case

requests an order 1 autoregressive model. The default is “corrtype¼IND” for

independent data as used in Chap. 2. The option “corrtype¼EC” requests exchange-

able correlations. The above code is run with the value of the macro variable kfold

changed from 5 by multiples of 5 until a local maximum is achieved. This occurs in

this case for &kfold¼5 (see Sect. 4.5.2), and so subsequent analyses assume that

&kfold¼5 so that they use 5 folds to compute LCV scores.

As described in Sect. 3.6 for univariate outcomes, the adaptive modeling process

can use penalized likelihood criteria (PLCs) in place of LCV scores, which is

accomplished using the scretype parameter (with default setting “scretype¼LCV”).

When “scretype¼BIC”, Bayesian information criterion (BIC) scores are computed,

and by default these BIC scores use the number of measurements. This can be

changed to BIC scores using the number of matched sets with the “usenmeas¼n”

setting, thereby overriding the default setting of “usenmeas¼y”. Akaike information

criterion (AIC) and Takeuchi information criterion (TIC) scores can be requested with

the “scretype¼AIC” and “scretype¼TIC” settings. These PLCs are adjusted from

their usual smaller is better form to the larger is better form defined in Sect. 2.10.1.

By default, marginal models use ML parameter estimation. An adaptive AR1

model in age with GEE parameter estimation can be requested as follows.

%genreg(modtype¼NORML,datain¼dentdata,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,corrtype¼AR1,

foldcnt¼&kfold,GEE¼y,biasadj¼y,spatial¼n,

expand¼y,expxvars¼age,contract¼y);

The setting “GEE¼y” requests GEE parameter estimation while the default

setting “GEE¼n” requests ML parameter estimation. By default, correlation and

variance estimates are not adjusted for bias. The setting “biasadj¼y” requests that

correlation and variance estimates be adjusted for bias, as is standard for GEE

models. Also by default, AR1 correlations are spatial with distance apart based on

actual age values. The setting “spatial¼n” requests that standard AR1 correlations

be generated with distance apart based on indexes of age values, as is standard for

GEE models. Since the dental measurements are equally spaced, these two options

are equivalent, but this is not the case for unequally spaced outcome measurements.

The setting “corrtype¼UN” requests unstructured correlations, that is, with all pairs
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of distinct outcome measurements having distinct correlation parameters and esti-

mates. However, this option is currently supported only for GEE parameter esti-

mates and not for ML parameter estimates.

5.3.2 Marginal Moderation Models of Mean Dental
Measurement in Age and Gender of the Child

An adaptive moderation model for dentmeas in terms of age, male, and the

interaction agemale is requested as follows.

%genreg(modtype¼NORML,datain¼dentdata,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,corrtype¼AR1,

foldcnt¼&kfold,expand¼y,

expxvars¼age male agemale,contract¼y);

The associated adaptive main effect model is requested by removing agemale

from the expxvars list.

%genreg(modtype¼NORML,datain¼dentdata,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,corrtype¼AR1,

foldcnt¼&kfold,expand¼y,expxvars¼age male,

contract¼y);

An adaptive moderation model based on automatically generated geometric

combinations (GCs; defined in Sect. 4.5.4) is requested using the following code.

The setting “geomcmbn¼y” requests that GCs based on all the expxvars variables

be considered in the expansion. The default is “geomcmbn¼n”, which is why the

previous code considers male as having only a covariate effect on the relationship

of the mean dental measurements with age.

%genreg(modtype¼NORML,datain¼dentdata,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,corrtype¼AR1,

foldcnt¼&kfold,expand¼Y,geomcmbn¼y,

expxvars¼age male,contract¼y);

The first two pages of the output for the above code document a variety of

settings for the genreg macro parameters. Table 5.1 contains the part of that output

related to the computation of LCV scores. The type of cross-validation is controlled

by the measdlte macro parameter. The setting “measdlte¼y” requests that LCV

scores be computed with measurement-wise deletion (Sect. 4.13). By default,

“measdlte¼n”, as is requested in the above code, meaning that LCV scores are

computed with matched-set-wise deletion (Sect. 4.4.1). The requested fold count
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for this analysis is k¼ 5. Matched sets when “measdlte¼n” and measurements

when “measdlte¼y” are randomly assigned to folds. The initial seed for this

random assignment can be specified using the initseed macro parameter. Its default

value of 3 is used in the above code. In this case, there are no empty folds, with fold

sizes varying from 12 measurements for 3 children to 32 measurements for 8 chil-

dren (and so all 4 measurements for a child in the same fold). The cutoff for a

substantial percent decrease (PD) for these data is reported as well and rounds as

indicated in Sect. 4.2 to 1.76 %. It is computed using the smallest possible nonzero

integer degrees of freedom of DF¼ 1 (this holds in all cases except for multinomial

regression as discussed in Sect. 9.8).

The third page of the output describes the base model. Part of that output is

provided in Table 5.2. The requested correlation structure is indicated, in this case

AR1. A spatial type of autoregression has been requested with correlations deter-

mined by actual ages rather than by indexes of ages since the default setting of the

spatial macro parameter is “y”. The setting “spatial¼n” can be used to request a

standard autoregression using indexes of the withinvr variable values rather than

their actual values. An equivalent model would be generated in this case since the

measurements are equally spaced. By default the macro parameter GEE has value

“n”, meaning generate maximum likelihood (ML) estimates of model parameters as

used by PROC MIXED. The setting “GEE¼y” requests that model parameters be

estimated using generalized estimating equations (GEE) as used by PROC

GENMOD. Also provided are the number of matched sets, in this case 27 children,

the maximum number of values within the matched sets, in this case 4 for ages of

8, 10, 12, and 14 years, and the total number of observed measurements, in this case

108. The symbol m used in the genreg output denotes the total number of observed

measurements for all matched sets (the same as the symbol m(SC) used in the

formulations of Chap. 4 and not the same as the symbol m used in those formula-

tions). The lower limit on the correlation parameter in this case is �1 since age has

integer values. When the withinvr variable values include non-integer values, the

lower limit for AR1 models with “spatial¼y” is set to 0 rather than �1 so that

correlations are well defined (see Sect. 4.5.1). The base model has constant means

with estimated value 24.1 and constant variances with estimate 9.1 and so estimated

constant standard deviations 3.0. The estimated within-subject correlation is 0.82.

Table 5.1 Requested cross-validation settings for the adaptive moderation model for dental

measurements in terms of age and the indicator male for the child being a boy
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When “spatial¼y” as in this case, this is the correlation for measurements one unit

apart, 1 year in this case. The estimated correlation for these data under “spatial¼n”

would be for 1 index value apart or 2 years, and so its value would be the square of

the one reported for “spatial¼y”. Values are also reported for the log-likelihood

log(L),�2�log(L), the average log likelihood log(L)/m, and the mth root of the

likelihood exp(log(L)/m)¼L1/m. The LCV score for the base model rounds to

0.09391.

The fourth page of the output (not provided here) describes the macro parameter

settings controlling the expansion step. The fifth page describes the expanded

model. Table 5.4 contains part of that output. Informally, GCs are generated as

follows (see Chap. 20 for the formal process). First the best transforms are identified

for each of the variables in the expxvars list. For example, at the first step of the

expansion, the best power for age is age2.5. Each of these transforms is used as the

first term of a GC with the other terms being transforms of the other variables in the

expxvars list. For example, the GC generated for age is XGC_1¼ age2.5�male. As

terms are added to the GC, the powers for previously added terms like age2.5 are not

adjusted. However, the resulting GC may not be the best choice. Rather than

readjusting each of the powers of each of the terms of the generated GC, the

whole GC is transformed with a single power. In this case, age2.5�male is

raised to the power 1.3 so that is it is equivalent to using the GC (age2.5�male)1.3

¼ age3.25�male. If the LCV score for a generated transformed GC improves on the

LCV score for its initial single variable transform, then the GC replaces that single

Table 5.2 The base model for the adaptive moderation analysis of dental measurements in

terms of age and the indicator male for the child being a boy
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variable transform. The transform added to the model next at each step of the

expansion is the single variable power transform or transformed GC generating the

best LCV score over all variables. In this case, the transformed GC (age2.5�male)1.3

is added to the model first, followed by the transforms: age1.5, male�age6, and
male�age�14. The LCV score for the expanded model rounds to 0.11356.

Note that at the fourth step in the expansion, the addition of the transformed GC

male�age�14 causes the LCV score to decrease. The expansion allows the LCV

score to decrease as long as the decrease is not too large as controlled by the

expansion stopping tolerance parameter (see Sect. 20.4.5).

The sixth page of the output (not provided here) describes the macro

parameter settings controlling the contraction step. The seventh page

describes the contracted model. Table 5.3 contains part of that output. The trans-

forms XGC_11.3¼ (age2.5�male)1.3 and XGC_2¼male�age6 are removed in that

order and then the intercept. Transforms of age and XGC_3¼male�age�14 are left

in the model with powers adjusted to 0.19 and �0.15, respectively, so that the final

model is based on age0.19 and (male�age�14)�0.15¼male�age2.1 without an inter-

cept. The estimated slopes for these two transforms are 14.5 and 0.014. The

estimated autocorrelation is 0.78, the estimated standard deviation 2.2, and the

LCV score rounds to 0.11467, as reported in Sect. 4.5.4. This is a little larger

than the LCV score of 0.11464 for the model generated with the directly

specified interaction agemale, which is based on the similar transforms age0.18

and agemale2.2 without an intercept as reported in Sect. 4.5.3, supporting the

validity of the heuristics for generating GCs. Consequently, GCs are used in

subsequent moderation analyses.

Table 5.3 The expanded model for the adaptive moderation analysis of dental measurements in

terms of age and the indicator male for the child being a boy
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Models based on standard interactions (i.e., products of untransformed predic-

tors like age�male) can be generated as follows.

%genreg(modtype¼NORML,datain¼dentdata,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,corrtype¼AR1,

foldcnt¼&kfold,expand¼Y,geomcmbn¼y,

expxvars¼age male,exptrans¼n,multtrns¼n,

contract¼y,cnretrns¼n,condtrns¼n,

procmod¼y);

The setting “exptrans¼n” means do not transform variables in the expxvars list

and so also in generated GCs (as opposed to the default setting “exptrans¼y”

meaning transform variables in the expxvars list and associated GCs). This requires

the setting “multtrns¼n” indicating that at most one transform of an expxvars

variable is to be included in the expanded model (as opposed to the default setting

“multtrns¼y” meaning allow multiple transforms of variables in the expxvars list).

The setting “cnretrns¼n” means do not retransform remaining transforms in the

model with each contraction (as is done under the default setting “cnretrns¼y”). In

this case, the expansion first adds in the variable age, then the interaction male�age,
and stops. The contraction leaves the expanded model unchanged. Since this would

result in a conditional transformation step, possibly changing powers to non-unit

values under the default setting “condtrns¼y”, “condtrns¼n” is needed to skip that

conditional transformation step. The PROC REG output (generated since

“procmod¼y”; but not provided here) indicates that both terms of this model are

significant (P< 0.001).

5.3.3 Residual Analysis of the Adaptive Marginal
Moderation Model

Residual analyses can be conducted for marginal models like the model of Table 5.4

as follows.

%genreg(modtype¼NORML,datain¼dentdata,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,corrtype¼AR1,

foldcnt¼&kfold,xintrcpt¼n,xvars¼age,

xpowers¼0.19,xgcs¼male 1 age -14,

xgcpowrs¼-0.15,ranlysis¼y);

The xgcs macro parameter is used to generate base expectation (x) models with

GCs, in this case with the single GCmale∙age�14. The xgcpowrs macro parameter is

used to power transform these GCs, in this case the GC male∙age�14 is transformed

into (male∙age�14)�0.15¼male∙age2.1. Multiple GCs can be specified by separating
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them by colons (:). Each GC consists of pairs of variable names and associated

powers. For example, the following two macro parameter settings

xgcs¼male 1 age -14 : age 4 log_age 2 male,xgcpowrs¼-0.15 0.25

request the same GC and power as before along with (age4�(log(age))2�male)0.25

¼ age�(log(age))0.5�male. Adding in the setting “procmod¼y” to the above genreg

invocation requests generation of the equivalent model using PROC MIXED. Note

that the covariance structure of PROCMIXED is set with the “type¼” option of the

repeated statement. The choice “type¼AR(1)” supported by PROC MIXED uses

the indexes of the age values to compute correlations (as for “spatial¼n”), not the

actual age values as used above. That is the same as the PROC MIXED setting

“type¼SP(POW)(age)”, a spatial autoregression with correlations determined by

raising an autocorrelation parameter to powers given by absolute values of differ-

ences of age values.

As for the univariate outcome residual analysis reported in Sect. 2.18, scaled

residuals (as defined in Sect. 4.3.3) are loaded into the dataout data set under the

name stdres (containing standardized residuals for univariate outcomes and scaled

residuals for multivariate outcomes), which can be changed with the stdrsvar macro

parameter. The associated plot is given in Fig. 5.1. With one distinct exception, the

scaled residuals are reasonably close to symmetric, well within�3, and with similar

spread for each predicted value. The exception with scaled residual 4.24 corre-

sponds to the dental measurement for the male child with subject¼ 20 at 12 years

old with value 31 mm compared to much smaller values of 23, 20.5, and 26 mm at

Table 5.4 The contracted model for the adaptive moderation analysis of dental measurements in

terms of age and the indicator male for the child being a boy
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ages 8, 10, and 14 years old. This child’s dental measurements fluctuate more than

would be expected, resulting in this outlying measurement. EC correlations gener-

ate a substantially better model than this one, but the scaled residuals are similar

(not displayed here) with the same extreme outlier.

A sensitivity analysis assessing the effect of the extreme outlier on the conclu-

sions can be conducted using the following code.

data reduced;

set dentdata;

if subject¼20 & age¼12 then delete;

run;

* the adaptive model for the reduced data;

%genreg(modtype¼NORML,datain¼reduced,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,corrtype¼AR1,

foldcnt¼&kfold,measdlte¼y,expand¼Y,

geomcmbn¼y,expxvars¼age male,contract¼y,

ranalysis¼y);

* adaptive model generated with the full data using the reduced data;

%genreg(modtype¼NORML,datain¼reduced,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,corrtype¼AR1,

foldcnt¼&kfold,measdlte¼y,xintrcpt¼n,

xvars¼age,xpowers¼0.19,xgcs¼male1 age-14,

xgcpowrs¼-0.15);

First, the reduced data set is created by making a copy of the dentdata data set

and removing the outlier. Then, an adaptive model is generated for the reduced

data. It contains the two transforms: age0.18 and (male�age0.8)4 without an intercept.
The power for age has not changed, but the GC now includes age raised to the

power 0.8�4¼ 3.2 rather than to the power (�14)�(�0.15)¼ 2.1. Next, the model

generated for the full data is computed using the reduced data. Since there is now a

missing outcome measurement, the LCV scores for these two models are computed
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Fig. 5.1 Scaled residual plot for the adaptive marginal order 1 autoregressive model for the dental

measurement data
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with measurement-wise deletion (see Sect. 4.13). due to the setting “measdlte¼y”.

Whether the removal of the outlier has a substantive effect can be addressed with a

LCV ratio test. For data with 107 measurements, the cutoff for a substantive PD is

1.78 %. The first model has LCV score 0.14398 and the second 0.14381, and so the

PD for the adaptive model generated by the full data is insubstantial at 0.12 %. This

indicates that the full-data model is a competitive alternative for the reduced data

with the outlier removed, and so the outlier does not have a highly influential effect

on conclusions for the dental measurement data.

A residual analysis is requested in the above code (with the setting “ranlysis¼y”)

for the adaptive reduced-data model to assess whether this latter model produces

any new outliers. A second outlier is identified with standardized residual 3.30,

corresponding to the measurement of 24.5 mm at age 10 years old for the male child

with subject¼ 24 having much smaller prior measurement of 17.0 mm at 8 years

old and measurements of 26 and 29.5 mm at 12 and 14 years old. A second

sensitivity analysis also removing this second outlier generates an adaptive model

based on the three transforms: age0.27, (male�age)1.8, and (age11.1�male)�1 without

an intercept and no outliers. For data with 106 measurements, the cutoff for a

substantive PD is 1.80 %. The measurement-wise LCV score for the adaptive model

for the data with the two outliers removed is 0.15255 while the model generated for

the full data has LCV score 0.14865 with substantial PD of 2.56 % and the model

generated with only the first outlier removed has LCV score 0.14895 with substan-

tial PD 2.36 %. These results indicate that these two outliers combined have a

highly influential effect on conclusions for the full dental measurement data.

Under this revised model, the estimated autocorrelation increases to 0.88 (com-

pared to 0.78 for the full data as reported in Sect. 4.5.4) while the estimated variance

remains at 2.2. Estimated means are displayed in Fig. 5.2. Compared to Fig. 4.1, the

estimated means for male children appear more nonlinear while there is no apparent

difference for female children, which is to be expected since the two outliers were

for male children)
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Fig. 5.2 Estimated mean dental measurements based on adaptive marginal AR1 modeling
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This sensitivity analysis is based on removal of only outlying measurements. An

alternate approach is to remove all observations of matched sets containing any

outlying measurements. That seems more appropriate for larger data sets, for which

measurements for any matched set are a very small subset of all available

measurements.

5.4 Conditional Modeling of Means for the Dental
Measurement Data

5.4.1 Transition Models for Mean Dental Measurement

A transition model for mean dental measurements accounting for dependence in

terms of the previous measurement can be generated as follows.

%genreg(modtype¼NORML,datain¼dentdata,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,conditnl¼y,

corrtype¼IND,foldcnt¼&kfold,expand¼y,

expxvars¼age male pre_dentmeas_age_1

pre_dentmeas_age_1_miss,

geomcmbn¼y,contract¼y);

The macro parameter setting “conditnl¼y” requests a conditional model requir-

ing the independent correlation structure requested by “corrtype¼IND” (which is

the default setting and hence not needed). The variables PRE(y,1) and PRE(y,1,∅)

of Sects. 4.7 and 4.8 are called pre_dentmeas_age_1 and pre_dentmeas_age_1_miss

in the above code, and so this is the special case of a transition model. These

variables do not need to be computed prior to requesting the model; they are

generated automatically with their values determined by their names. The prefix

“pre_” denotes a prior dependence predictor. This is followed by the name of the

variable whose prior values are to be used in computing the variable, the variable

dentmeas in this case, then by the variable whose values are to be used to determine

which values are prior, the variable age in this case, and then the indexes for the prior

values to be averaged to generate the dependence predictor values, in this case just the

first prior value. The variable pre_dentmeas_age_2 has values equal to the second

most prior dentmeas value if anywhile pre_dentmeas_age_1_2 has values equal to the

average of the prior two dentmeas values (or just the prior one if that is the only prior

measurement). Adding the suffix “_miss” to any one of these variables generates the

indicator for that variable having a value of zero due to there being no prior measure-

ments to average. These names can get fairly long, and so it is possible to reduce the

length of these names. Assuming a copy of the dentmeas variable has been loaded into

the dentdata data set under the name y, the two variables used in the above code can be

changed to pre_y_age_1 and pre_y_age_1_m (with “_m” an abbreviation for

5.4 Conditional Modeling of Means for the Dental Measurement Data 121

http://dx.doi.org/10.1007/978-3-319-33946-7_4
http://dx.doi.org/10.1007/978-3-319-33946-7_4


“_miss”). These names will be used in what follows for brevity. The variables names,

like y and age, embedded in dependence predictors, like pre_y_age_1, must not

contain underscore (_) characters since these are used to break the dependence

predictor names into their components. Variables with names beginning with “pre_”

are computed using unweighted averages of prior values. Weighted averages are

obtained by using the prefix “wpre_”.

The expanded model for the above code has the seven transforms added in the

following order: (age1.5�pre_y_age_13.5)0.99, male�age2.2, (pre_y_age_1�4�age�1)0.9,

male�pre_y_age_1�7, (pre_y_age_13.4�age)2.017, pre_y_age_13�age0.1, and

male�pre_y_age_11.7�age1.2 with LCV score 0.12637. The contraction removes

four of these transforms, adjusts the powers generating the transforms

(male�pre_y_age_1�7)0.7, (pre_y_age_13.4�age)2, (pre_y_age_13�age0.1)�2, and

leaves in the intercept. The LCV score is 0.12813 as reported in Sect. 4.8.1.

A transition model for mean dental measurements accounting for dependence in

terms of the average of the up to two previous measurements can be generated as

follows.

%genreg(modtype¼NORML,datain¼dentdata,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,conditnl¼y,

corrtype¼IND,foldcnt¼&kfold,expand¼Y,

expxvars¼age male pre_y_age_1_2

pre_y_age_1_2_m,

geomcmbn¼y,contract¼Y);

The expanded model for the above code has the five transforms added in the

following order: (age1.5�pre_y_age_1_25)0.99, male�age2, (male�pre_y_age_1_21.7�
age1.6)1.1, (pre_y_age_1_2�3�age2)7, and (male�pre_y_age_1_2�1�age�1)�1. The

LCV score is 0.13186. The contraction removes the third transform and adjusts

the powers of some of the remaining transforms. The LCV score is 0.13363 as

reported in Sect. 4.8.3. This model is used to generate the estimates of Figs. 4.2–4.4.

5.4.2 Residual Analysis of the Adaptive Transition Model

A residual analysis can be generated for this latter transition model as follows.

%genreg(modtype¼NORML,datain¼dentdata,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,conditnl¼Y,

corrtype¼IND,foldcnt¼&kfold,

xgcs¼age 1.5 pre_y_age_1_2 5 :

male 1 age 2 :pre_y_age_1_2 -3 age 2 :

male 1 pre_y_age_1_2 -1 age -1,

xgcpowrs¼0.99 1.2 7 -1.9,ranlysis¼y,

procmod¼y);
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The setting “procmod¼y” requests that the results be generated for the model by

the associated SAS PROC, PROC REG in this case of a transition model. A residual

analysis is requested through the “ranlysis¼y” option as for marginal models. Since

“corrtype¼IND” for conditional models, standardized residuals are computed (as in

Chap. 2 analyses) rather than scaled residuals as computed for marginal models.

The associated standardized residual plot is displayed in Fig. 5.3. Now there are

two extreme outliers. The one with standardized residual greater than 3 corresponds

to the same extreme outlier of Fig. 5.1. The one with standardized residual less than

�3 corresponds to the measurement of 17.0 mm at age 8 years for the male child

with subject¼ 24 and much larger measurements of 24.5, 26, and 29.5 mm at

10, 12, and 14 years old (the same subject but a different measurement identified

in the sensitivity analysis as an outlier for the marginal AR1 model).

A sensitivity analysis can be conducted to assess the effect of outliers on

transition models, as is conducted for marginal models in Sect. 5.3. For the reduced

data with 106 measurements, the cutoff for a substantive PD is 1.80 %. The LCV

score (using measurement-wise deletion since now there are some missing mea-

surements) computed for the full-data model applied to these reduced data is

0.14974. The adaptive model generated for the reduced data has LCV score is

0.15795, and so the PD for the full-data model is substantial at 5.20 %. This

indicates that results for the full-data analysis are highly influenced by the two

outlying measurements. However, there are now no new outliers.

The adaptive model generated for the reduced data includes the four

transforms: (pre_y_age_1_26.2�age0.7)0.74, male�pre_y_age_1_2_m�age2.3,
(male�age2.1�pre_y_age_1_2�3)3, and (pre_y_age_1_2�5�age2,8)1.6 with an inter-

cept. The estimated standard deviation is 1.5. Estimated mean values are plotted

in Fig. 5.4. The estimates for boys still tend to increase with age at given averages of

the prior two dental measurements, but with less increase than in Fig. 4.2. There is

little difference with age for girls at given averages of the prior two dental

measurements.

Whether this relationship is distinctly nonlinear or not can be assessed by

comparison to the associated linear relationship model generated using the

“exptrans¼n”, “multtrns¼n”, “condtrns¼n”, and “cnretrns¼n” options as follows.
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Fig. 5.3 Standardized residual plot for the adaptive transition model for the dental measurement

data
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%genreg(modtype¼NORML,datain¼reduced,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,conditnl¼y,

corrtype¼IND,foldcnt¼&kfold,expand¼Y,

expxvars¼age male pre_y_age_1_2

pre_y_age_1_2_m,geomcmbn¼y,

exptrans¼n,multtrns¼n,contract¼Y,cnretrns¼n,

condtrns¼n);

The generated model is based on the untransformed predictors:

age�pre_y_age_1_2�male, pre_y_age_1_2, pre_y_age_1_2_m, agemale without an

intercept. The LCV score is 0.15288 with substantial PD of 3.21 % compared to the

adaptive transition model for these reduced data. Consequently, the patterns

described in Fig. 5.4 are distinctly nonlinear.

5.4.3 General Conditional Models for Mean Dental
Measurement

General conditional models can be generated similarly to transition models.

For example, the variables POST(y,1), POST(y,1,∅), POST(y,1,2), and

POST(y,1,2,∅) of Sect. 4.9 are named post_y_age_1, post_y_age_1_m,

post_y_age_1_2, and post_y_age_1_2_m. The variables OTHER(y,1), OTHER

(y,1,∅), OTHER (y,1,2), and OTHER (y,1,2,∅) of Sect. 4.9 are named

other_y_age_1, other_y_age_1_m, other_y_age_1_2, and other_y_age_1_2_m.

Pseudolikelihood CV (PLCV) scores for both the transition and general conditional

models induced by a marginal model can be generated in the output for marginal

models by adding the setting “condscrs¼y”. The induced transition model is

equivalent to the marginal model inducing it, and so its generated PLCV score is

the same as the LCV score for the marginal model. Variables with names beginning

with “post_” (“other_”) are computed using unweighted averages of subsequent
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Fig. 5.4 Estimated mean dental measurements based on transition modeling for the dental

measurement data with outlying measurements removed
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(prior and subsequent) values. Weighted averages are obtained by using the prefix

“wpost_” (“wother”).

5.5 Analyzing the Exercise Data

The exercise data are also available on the Internet (see Supplementary Materials)

in wide/broad format and so can be loaded in and converted to long format similarly

to the dental measurement data. Missing strength measurements should not be

outputted to the long format data set. These are deleted by PROC MIXED, but

the genreg macro generates an error message if the yvar variable has missing

values. Otherwise, analyses can be conducted using similar code to that presented

for analyzing the dental measurement data, except that analyses using

measurement-wise deletion are requested using the setting “measdlte¼y”. Thus,

example code for analyzing these data is not presented here. Code to load in and

analyze these data is available on the Internet (see Supplementary Materials). For

the special cases of transition and general conditional models, “measdlte¼y”

requires that deleted parameter estimates be computed using pre_, post_, and

other_ type predictors recomputed for each complement of each fold. The alterna-

tive setting “measdlte¼p” requests partial measurement-wise deletion using

“pre_”, “post_”, and “other_” type predictors as computed for the full data to

compute measurement-wise deletion parameter estimates to reduce the computa-

tions. Since measurements are assigned to the same folds under “measdlte¼y” and

“measdlte¼p”, associated LCV scores are comparable.

5.6 Modeling Variances as Well as Means

5.6.1 Marginal Models for Dental Measurements

An adaptive marginal ML-based model for means and variances of the dental

measurements using EC correlations can be generated by adding an expvvars list

of primary predictors as follows.

%genreg(modtype¼NORML,datain¼dentdata,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,corrtype¼EC,

foldcnt¼&kfold,expand¼Y,geomcmbn¼y,

expxvars¼age male,expvvars¼age male,

contract¼y);

The output includes estimated parameter values for the log variance model (not

displayed here; see Sect. 3.14 for an example of log variance model output). The
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generated model has LCV score 0.13570 (as reported in Sect. 4.15.2). The associ-

ated GEE-based model with standard bias-adjusted covariance estimates can be

generated as follows.

%genreg(modtype¼NORML,datain¼dentdata,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,corrtype¼EC,

GEE¼y,biasadj¼y,foldcnt¼&kfold,expand¼y,geomcmbn¼y,

expxvars¼age male,expvvars¼age male,

contract¼y);

An assessment of the effect of consideration of non-constant variances on the

model for the means can be conducted by starting with the model for the means

generated with constant variances and adaptively generating a non-constant vari-

ances model while holding the model for the means fixed. For the case of ML-based

marginal modeling with EC correlations, the model for the means under constant

variances is based on the transforms: age0.21 and (age2�male)0.903 without an

intercept. An adaptive model for the variances holding this model for the means

fixed can be generated as follows.

%genreg(modtype¼NORML,datain¼dentdata,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,corrtype¼EC,

foldcnt¼&kfold,xintrcpt¼n,xvars¼age,xpowers¼0.21,

xgcs¼age 2 male 1,xgcpowrs¼0.903,expand¼y,geomcmbn¼y,

expvvars¼age male,contract¼y,nocnxbas¼y,

notrxbas¼y);

The base model for the means is not changed in the expansion because the

expxvars parameter has its default empty setting, but the contraction might change

that model. By default, the contraction considers removing next a transform from

the model for the means or from the model for the variances. This process is adjusted

in the above code to hold the model for the means fixed with the settings

“nocnxbas¼y”, meaning do not contract the base model for the means, and

“notrxbas¼y”, meaning do not transform that base model. Alternately, the

“nocnxbas¼y” setting can be replaced by the setting “contordr¼v”, meaning change

from the default contraction order (with setting “contordr¼.”), considering both the

mean (or “x”) and variance (or “v”) components of the model in combination, to the

contraction order considering only the variance component of the model. The setting

“notrxbas¼y” is still needed in case a conditional transformation is invoked to limit its

effect to the variance component. As reported in Sect. 4.15.2, the LCV score for the

generated model is 0.13528 with insubstantial PD of 0.31 % compared to the model

generating means and variances in combination, indicating that the model for the

means has not changed substantially with consideration of non-constant variances.

The contraction order for both means and variances can also be changed to

contract the means before the variances with the setting “contordr¼xv” or to

contract the variances before the means with the setting “contordr¼vx”. The

expansion order for means and variances is controlled in the same way with the

126 5 Adaptive Regression Modeling of Multivariate Continuous Outcomes in SAS

http://dx.doi.org/10.1007/978-3-319-33946-7_4
http://dx.doi.org/10.1007/978-3-319-33946-7_4


expordr parameter with default setting “expordr¼.” as well as settings

“expordr¼xv” and “expordr¼vx” with the same meanings as for the contordr

parameter. A comparison of alternative combinations of these expansion and

contraction orders is provided in Table 5.5 for adaptive ML-based modeling with

EC correlations. While different models are generated for the cases of Table 5.5, all

models have competitive LCV scores. These results indicate that consideration of

alternative expansion and contraction orders is not needed for this case, suggesting

that this may hold more generally at least for modeling of multivariate continuous

outcomes. It also provides support for the effectiveness of the default expansion and

contraction orders used in the adaptive modeling process.

5.6.2 Transition Models for Dental Measurements

An adaptive transition model for means and variances can be generated by adding

an expvvars list of primary predictors as follows.

%genreg(modtype¼NORML,datain¼dentdata,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,corrtype¼IND,

conditnl¼y,foldcnt¼&kfold,expand¼Y,geomcmbn¼y,

expxvars¼age male pre_y_age_1_2 pre_y_age_1_2_m,

expvvars¼agemale pre_y_age_1_2 pre_y_age_1_2_m,

contract¼Y);

Table 5.5 Comparison of alternative expansion and contraction orders for adaptive modeling of

both means and variances for dental measurements in terms of age, the indicator male for the child

being a boy, and geometric combinations using marginal models with maximum likelihood

parameter estimation and exchangeable correlations

Expansion

order

Contraction

order

Predictors for

the means

Predictors for

the variancesa
LCV

score

Percent

decrease from

best LCV

score (%)

Means and

variances in

combination

Means and

variances in

combination

age0.23, age2

∙male

1, male 0.13570 0.14

Means then

variances

Means then

variances

age0.23, (age2

∙male)1.103
1, male 0.13567 0.16

Variances

then means

Means then

variances

age0.22, (age1.5

∙male)1.1
1, (male∙age11)2 0.13541 0.35

Means then

variances

Variances

then means

age0.23, age2∙

male

1, male 0.13570 0.14

Variances

then means

Variances

then means

age0.23, (age1.5

∙male)1.6
1, (age2.3

∙male)�0.3
0.13589 0.00

LCV: likelihood cross-validation
aThe predictor 1 corresponds to including an intercept in the model
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The generated transition model is shown in Sect. 4.15.2 to provide a distinct

improvement over the best constant variances transition model of Sect. 4.8.3.

Consequently, a residual analysis as conducted in Sect. 5.4 is needed, but will not

be addressed here for brevity (it is left as an exercise). The adaptive transition (and

general conditional) modeling process can be applied to a contiguous subset of the

withinvr values rather than to all of them. The first and last withinvr values to be

modeled are controlled by the winfst and winlst macro parameters. The default

values “.” for these parameters mean to use the first and last withinvr values,

respectively. For example, adding “winfst¼2” to the above code requests transition

modeling of dentmeas starting at the second withinvr value 10 up to the last value

14. The age 8 values are still used to compute dependence predictors and so affect

the results. This can speed up processing when there are many withinvr values.

As mentioned in Sect. 5.4.1, names of conditional variables can be fairly long

and so genreg output in some cases may take up more lines than usual. This can be

avoided using the condvars macro parameter to create conditional variables with

shorter names. For example, the above adaptive transition model for means and

variances can alternately be generated as follows.

%genreg(modtype¼NORML,datain¼dentdata,yvar¼dentmeas,

matchvar¼subject,withinvr¼age,corrtype¼IND,

conditnl¼y,foldcnt¼&kfold,

condvars¼pre y age 1 2 : pre y age 1 2 m,

expand¼Y,geomcmbn¼y,

expxvars¼age male pre_1 pre_2,

expvvars¼age male pre_1 pre_2,contract¼Y);

The setting for condvars contains one or more conditional variable specifications

separated by colons (:). Each specification contains the same components as used to

name conditional variables and in the same order, but separated by blanks rather

than by underscores (_). The generated names for these variables start with the type

(for example, “pre” in the above code), followed by an underscore, and then by an

index number starting at 1. For example, the two conditional variables generated by

the above code are called pre_1 and pre_2 with pre_1 the same as pre_y_age_1_2

and pre_2 the same as pre_y_age_1_2_m. These names can then be used in defining

models as they are used in the above code in the expxvars and expvvars parameter

settings. One of the advantages of defining conditional variables through condvars

is that the name of variables included in those specifications can contain under-

scores, which is not allowed with direct naming of conditional variables.

5.6.3 Clock Time Assessments

The adaptive modeling process is not instantaneous. For example, generating the

adaptive marginal EC-based model for means and variances requires about

11.7 min of clock time while the generating the adaptive transition model for the
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means and variances requires about 3.3 min. These are tolerable amounts of time,

but times can get much longer as the number of measurements and/or the number of

primary expansion predictors increases. The contraction step usually requires most

of the time since it involves retransforming remaining transforms with the removal

of each transform. For example, the expansion step for the EC-based marginal

model requires about 3.2 min or 27 % of the time compared to 1.5 min or 47 % of

the time for the transition model. The expanded EC model adds four terms for the

means and three terms for the variances (not counting intercepts) for a total of seven

terms while the expanded transition model adds five terms for the means and two

terms for the variances also for a total of seven. The transition model expansion is

more efficient requiring about 0.21 min per expansion transform compared to

0.46 min per expansion transform for the marginal EC model (due to the extra

computation to estimate correlations for marginal models not needed for transition

models). The contraction time can be reduced using the option “cnretrns¼n” to turn

off the retransformation (as opposed to the default setting “cnretrns¼y” meaning to

retransform remaining model transforms with each removal of a transform in the

contraction). However, retransformation usually produces distinctly superior

models.

In this case, the transition model is computed in about 28 % of the time needed to

compute the EC-based marginal model. So for complex analyses involving large

numbers of primary predictors and/or large number of measurements, it may be

practical to consider only transition models. Also, the clock time to compute the

GEE-based marginal model for the means and variances is about 24.7 min or about

2.1 times as long as computing the EC-based marginal model and about 7.5 times as

long for the transition model. These timing results together with the fact that in

reported analyses the ML-based marginal model has at least a competitive and

sometimes a distinctly better LCV score compared to the score of the GEE-based

marginal model while the transition model distinctly outperforms the GEE-based

marginal model suggest that GEE modeling can reasonably not be considered, at

least for multivariate continuous outcomes.

5.7 Practice Exercises

5.1 Using the extended data set of Practice Exercises 3.1–3.4, generate the adaptive

model for means in NObnded, SO2index, rain, and GCs in these three pre-

dictors with constant variances. Compare the results to those for the second part

of Exercise 3.3 to assess what benefits there are in using automatically gener-

ated GCs over standard interactions. Conduct a residual analysis for the better

of the selected models for the second part of Exercise 3.3 and for Exercise 5.1.

If there are any outliers with standardized residuals outside of �3, conduct a

sensitivity analysis using the reduced data with those outliers removed to

compare the model selected for the full data with the associated model selected
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for the outlier-reduced data. Conduct a residual analysis for the adaptive

reduced-data model and iterate this process until no outliers are identified.

5.2 Using the bodyfat data set of Practice Exercises 3.5–3.8, generate the adaptive

model for means in height, weight, and GCs in these two predictors with

constant variances. Compare the results to those for BMI generated as part of

Exercise 3.5. Does consideration of general GCs provide a distinct improve-

ment in predicting bodyfat over using BMI, the standard GC for combining

height and weight? Next generate the adaptive model for both means and

variances in height, weight, and GCs in these two predictors. Compare this

model to the one for means in height, weight, and GCs in these two predictors

with constant variances. Are variances distinctly non-constant in height,

weight, and GCs?

5.3 Using the dental measurement data, assess the impact of centering age on the

adaptive nonlinear moderation analysis for mean dental measurements as a

function of age, the indicator variable male, and GCs. Use LCV with matched-

set-wise deletion since there are no missing outcome measurements and with

5 folds (see Sect. 4.5.2). Generate models with age replaced by age centered at

each integer value between the lowest observed age of 8 and the largest

observed age of 14. Which choice generates the best LCV score? Is this a

competitive alternative to the nonlinear GC-based moderation model in

uncentered age? Does it matter how age is centered in the sense that all

centerings generate competitive alternatives or some are distinctly inferior?

5.4 Using the dental measurement data, conduct a residual analysis of the adaptive

transition model for the means and variances identified in Sect. 4.15.2 and

discussed in Sect. 5.6. Are there any outliers with scaled residuals outside the

range of �3? If so, conduct a sensitivity analysis to determine if these outliers

are highly influential on the conclusions for the full data, removing only any

outlying dental measurements. Conduct a residual analysis for the adaptive

reduced-data model and iterate this process until no outliers are identified. Use

LCV with matched-set-wise deletion when modeling the full data since there

are no missing outcome measurements and with 5 folds (see Sect. 4.5.2).

Change to measurement-wise deletion with 5 folds for modeling reduced data

with outliers removed. Compare results to those for the residual analysis of the

constant variances transition model reported in Sect. 5.4.2.

For Practice Exercises 5.5–5.7, use the Treatment of Lead-Exposed Children

(TLC) Study data available on the Internet (see Supplementary Materials). The

long format data set is called longtlc. The outcome variable for this data set is

called lead and contains blood lead levels in micrograms/dL. The two pre-

dictors are succimer, the indicator for being on the chelating agent succimer

versus on a placebo, and week with values 0, 1, 4, and 6 weeks into the study.

There are 100 subjects in this study, all with the complete set of 4 measure-

ments. Since there are no missing data values, use matched-set-wise deletion to

compute LCV scores for all analyses of the full TLC data.
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5.5. For the TLC data, use the adaptive model for the mean blood lead level in week

with AR1 correlations as a benchmark analysis to set the number of folds for

LCV scores. Use ML parameter estimation and constant variances for all

analyses of this exercise. Compare this AR1 adaptive model to the adaptive

model in week using EC correlations. Use the correlation structure generating

the better LCV score in all subsequent marginal models generated for this

practice exercise. Compare the adaptive model in week to the linear polyno-

mial model in week and assess whether mean blood lead levels change

distinctly nonlinearly or not. Generate the adaptive model in week, succimer,

and GCs and assess whether being on succimer vs. a placebo moderates the

effect of week on mean blood lead levels.

5.6. For the TLC data, use the number of folds selected in Practice Exercise 5.5 for

all analyses of this practice exercise. Also, consider only constant variances

models. First, generate the adaptive marginal model for the means using GEE

parameter estimation in terms of week, succimer, and GCs and with the

correlation structure selected in Practice Exercise 5.5. Compare this model to

the associated marginal model using ML parameter estimation generated in

Practice Exercise 5.5. Does GEE parameter estimation provide a distinct

improvement over ML parameter estimation for modeling the means of these

data? Next, generate the adaptive transition model for the means in week,

succimer, pre_lead_week_1 (equal to the prior blood lead value for a subject if

there is one and 0 if there is not a prior blood lead measurement),

pre_lead_week_1_m (the indicator for the prior blood lead measurement for

a subject being missing, which only occurs for baseline blood lead measure-

ments at 0 weeks since there are no missing blood lead measurements), and

GCs. Does transition modeling of means provide a distinct improvement over

marginal modeling of means for these data?

5.7. For the TLC data, use the number of folds selected in Practice Exercise 5.5 for

all analyses of this practice exercise. First, generate the adaptive marginal

model for both the means and variances in terms of week, succimer, and GCs

using ML parameter estimation and with the correlation structure selected in

Practice Exercise 5.5. Compare this model to the associated model of Practice

Exercise 5.5 to assess whether blood lead levels have distinctly non-constant

variances or not. Next, generate the adaptive marginal model for both the means

and variances in terms of week, succimer, and GCs using GEE parameter estima-

tion andwith the correlation structure selected in PracticeExercise 5.5.DoesGEE

parameter estimation provide a distinct improvement over ML parameter estima-

tion for these data? Finally, generate the adaptive transition model for both the

means and variances in week, succimer, pre_lead_week_1, pre_lead_week_1_m,

andGCs. Does transitionmodeling ofmeans provide a distinct improvement over

marginal modeling of means and variances for these data?
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Chapter 6

Adaptive Transformation of Positive Valued
Continuous Outcomes

6.1 Chapter Overview

This chapter formulates and demonstrates adaptive transformation of positive

valued univariate and multivariate continuous outcomes as well as their predictors.

A description of how to conduct adaptive analyses involving transformed outcomes

as well their predictors in SAS is provided in Chap. 7.

Section 6.2 provides an overview of outcome power transformation while

Sect. 6.3 formulates power transformation of outcomes as well as power-adjusted

likelihood cross-validation (LCV) scores for selecting an appropriate power trans-

form for an outcome variable. Sections 6.4–6.7 address the need for power trans-

formation of the previously analyzed univariate death rate outcome of Sect. 2.2, the

univariate simulated outcome of Sect. 2.12, the multivariate dental measurement

outcome of Sect. 4.2, and the multivariate strength outcome of Sect. 4.12, respec-

tively. Section 6.8 describes the plasma beta-carotene data not previously analyzed

to be used in further outcome transformation analyses. Section 6.9 conducts adap-

tive analyses of the untransformed univariate outcome plasma beta-carotene while

Sect. 6.10 addresses the need for transformation of this outcome. Sections 6.11–

6.15 provide overviews of the results of the analyses of the five data sets analyzed in

the chapter. Formulation sections are not needed to understand analysis sections.

6.2 Transformation of the Outcome Variable

This section addresses the use of Box-Tidwell power transforms yλ for λ 6¼ 0 and

log(y) for λ ¼ 0 (Box and Tidwell 1962; although they consider these for

transforming predictors not outcomes) of a positive valued continuous outcome

variable y for real valued powers λ in adaptive modeling of such a transformed

outcome in terms of possibly transformed predictors. Carroll and Ruppert (1984)
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also allow for transformation of outcomes and predictors, but with transformation

of the predictors that are partially based on theoretical considerations. They use

Box-Cox transforms yλ � 1
� �

=λ of the outcome y, which converge to log(y) as λ
converges to 0 (Box and Cox 1964). Box-Tidwell transformations are used instead

since the caseλ ¼ 1corresponds exactly to the untransformed outcome y rather than

to y� 1 as for Box-Cox transforms. Only positive valued outcomes are considered

for power transformation. Nonpositive valued outcomes could be shifted by a

positive constant to make them positive or an adjustment like the one used in

Sect. 4.6.1 for real valued predictors could be considered, but this issue is not

addressed here.

For fixed values of λ, means and possibly variances of yλ (or log(y) when λ ¼ 0)

are adaptively modeled as in prior analyses in terms of available primary predictors

using unadjusted LCV scores based on the normal density. Results for these models

are then used to compute power-adjusted LCV scores, denoted by LCV(λ), which
are maximized to choose an appropriate value for λ. Power-adjusted LCV scores

can also be computed for power transformed positive valued multivariate contin-

uous outcomes using marginal models with parameter estimation based on either

maximum likelihood (ML) or generalized estimating equations (GEE) or using

transition models. General conditional models with parameters estimation based on

maximum pseudolikelihood can have power transforms evaluated with power-

adjusted pseudolikelihood cross-validation (PLCV). Section 6.3 provides the for-

mulations, which can be skipped to focus on analyses.

6.3 Formulation for Power-Adjusted Likelihoods and LCV
Scores

6.3.1 Univariate Outcomes

Assume that y is a positive valued univariate outcome with yλ normally distributed

for some real valued power λ. For λ > 0, yλ has positive derivative λ � yλ�1 with

respect to y and so is increasing in y. Hence, the distribution function G(w; λ, θ) for
y satisfies

G w; λ; θð Þ ¼ P y � wð Þ ¼ Φ wλ; θ
� �

,

where Φ denotes the univariate normal distribution function with mean and vari-

ance determined by a vector of model parameters θ (and so Φ in general does not

correspond to the standard normal distribution function). Consequently, the power-

adjusted density function g(w; λ, θ) for y satisfies

gðw; λ, θÞ ¼ d

dw
Pðy � wÞ ¼ λ � wλ�1 � ϕðwλ; θÞ,
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where ϕ denotes the univariate normal density function (that is, the derivative ofΦ).

For λ < 0, yλ has negative derivative λ � yλ�1 with respect to y and so is

decreasing in y. Hence, the distribution function G(w; λ, θ) for y satisfies

G w; λ; θð Þ ¼ P y � wð Þ ¼ 1�Φ wλ; θ
� �

and so

gðw; λ, θÞ ¼ d

dw
Pðy � wÞ ¼ �λ � wλ�1 � ϕðwλ; θÞ:

Consequently, for λ 6¼ 0,

gðw; λ, θÞ ¼ d

dw
Pðy � wÞ ¼ jλj � wλ�1 � ϕðwλ; θÞ:

Similarly, for λ ¼ 0,

gðw; λ, θÞ ¼ d

dw
Pðy � wÞ ¼ w�1 � ϕ logðwÞ; θÞð Þ:

With the index set S ¼ s : 1 � s � nf g for n univariate subjects

(or observations) partitioned as in Sect. 2.5.3 into k> 1 disjoint folds F(h) for

h 2 H ¼ h : 1 � h � kf g, the power-adjusted LCV score is defined as

LCVðλÞ ¼
Y
h2H

Y
s2FðhÞ

g ys; λ,θðS∖FðhÞ; λÞð Þ1n,

where θ(S\F(h); λ) denotes the adaptive estimate of the parameter vector θ gener-

ated using the data in the complement S\F(h) of the fold F(h) and with the outcome

y transformed to yλ (or log(y) when λ ¼ 0). The power-adjusted LCV(λ) score is

maximized in λ using a grid search to choose an appropriate Box-Tidwell transfor-

mation for the outcomes ys for s 2 S.

6.3.2 Multivariate Outcomes

Using the complete data notation of Sect. 4.3.1 for brevity (the extension to

incomplete data is similar), assume subjects s have associated multivariate outcome

vectors ys with entries ysc for conditions c 2 C ¼ c : 1 � c � mf g. Assume also

that ysc > 0 for all c2C and s 2 S. Define ys
λ to be the vector with entries ysc

λ

(or log(ysc) when λ ¼ 0) for c 2 C and s 2 S and assume that ys
λ is multivariate

normally distributed for some real valued power λ for s 2 S.
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For λ> 0, the multivariate distribution function G(w; λ, θ) for ys satisfies

Gðw; λ, θÞ ¼ Pðys1 � w1, � � �, ysm � wmÞ ¼ Φðwλ; θÞ,

where wλ is the vector w with its entries power transformed and Φ denotes the

multivariate normal distribution function with mean vector and covariance matrix

determined by a vector of model parameters θ. Thus, the associated power-adjusted
density function g(w; λ, θ) for ys satisfies

gðw; λ, θÞ ¼ dmPðys1 � w1, ���, ysm � wmÞ=ðdw1� � �dwmÞ

¼
� Y

c2C

λ � wc
λ�1

�
� ϕðwλ; θÞ,

whereϕ denotes themultivariate normal density function (that is, the derivative ofΦ).

As for univariate outcomes, this extends for λ 6¼ 0 to

gðw; λ, θÞ ¼ dmPðys1 � w1, ���, ysm � wmÞ=ðdw1� � �dwmÞ

¼
� Y

c2C

jλj � wc
λ�1

�
� ϕðwλ; θÞ

and for λ ¼ 0 to

gðw; λ, θÞ ¼ dmPðys1 � w1, ���, ysm � wmÞ=ðdw1� � �dwmÞ

¼
� Y

c2C

wc
�1

�
� ϕðlogðwÞ; θÞ:

The power-adjusted LCV score is defined as

LCVðλÞ ¼
Y
h2H

Y
s2FðhÞ

gðys; λ,θðS∖FðhÞ; λÞÞ1=mðSÞ
,

where m Sð Þ ¼ m � n is the total number of measurements. The power-adjusted

LCV(λ) score is maximized in λ using a grid search to choose an appropriate

Box-Tidwell transformation for the outcomes ys for s 2 S. Parameters can be

estimated with maximum likelihood (ML) or generalized estimating equations

(GEE). This formulation is easily extended to allow for different powers λc for

c 2 C, but maximizing the power-adjusted LCV score requires a much more

complex search. LCV(λ) scores for transition models can be computed using the

above formula with the marginal densities ϕ(wλ; θ) replaced by the equivalent

product of conditional densities for y#sc (see Sect. 4.7.1) in terms of prior outcome

measurements. For general conditional models with parameters estimated with

maximum pseudolikelihood (see Sect. 4.9.1), power adjusted PLCV(λ) scores can
be computed with the marginal densities ϕ(wλ; θ) replaced by products of condi-

tional densities for y#sc in terms of other outcome measurements.
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6.4 Analyses of Transformed Death Rates

Table 6.1 contains power-adjusted LCV(λ) scores over λ varying from �2.5 to 2.5

by increments of 0.5 for death rate as a function of NObnded and rain. Constant

variances models are used as justified in Sect. 2.19.2. The maximum is achieved at

λ ¼ 0 with LCV 0ð Þ ¼ 0:0056594. A further search over increments of 0.1 around

λ ¼ 0 results in the choice for λ of �0.4 with LCV �0:4ð Þ ¼ 0:0056930. Under this

model, the means for y�0:4 depend on rain�0:22 and NObnded�0:024 without an

intercept. The LCV(1) score (the same as the power-unadjusted LCV score since

λ ¼ 1) is 0.0056386 (as also reported in Sect. 2.16 and Table 6.1) with insubstantial

percent decrease (PD) 0.96 % (that is, less than the cutoff 3.15 % for a substantial

PD as reported in Sect. 2.7), indicating that death rate is reasonably treated as

untransformed.

6.5 Analyses of the Transformed Simulated Outcome

Using k ¼ 10 folds as justified in Sect. 2.12 and constant variances as justified in

Sect. 2.19.3, the maximum value 0.047782 of the power-adjusted LCV(λ) scores
over increments of 0.5 for predicting Box-Tidwell transformed ysim of Sect. 2.12 as

a function of xsim is achieved at λ ¼ 1 (and so is the same as its power-unadjusted

LCV score reported in Sect. 2.12) as is also the maximum over increments of 0.1

around λ ¼ 1, as simulated. This result supports the validity of the power-adjusted

adaptive modeling process.

Table 6.1 Power-adjusted LCV scores over a grid of powers from

�2.5 to 2.5 by increments of 0.5 for adaptive modeling of death rates

in terms of the bounded nitric oxide pollution index and the annual

average precipitation with constant variances

Power λ 5-fold LCV(λ) score
�2.5 0.0000000

�2.0 0.0000010

�1.5 0.0000222

�1.0 0.0004523

�0.5 0.0053592

0.0 0.0056594

0.5 0.0056494

1.0 0.0056386

1.5 0.0055970

2.0 0.0054324

2.5 0.0037541
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6.6 Analyses of Transformed Dental Measurements

The need for transforming the dental measurement outcome dentmeas can be

assessed using constant variances (to reduce the computations) and adaptive

power-adjusted transition models of dentmeas as a function of age, male,

PRE(ytr(λ),1,2), PRE(ytr(λ),1,2,∅), and GCs (since that choice generates the best

untransformed constant variances model). Transformed dentmeas is denoted by

ytr(λ). The use of PRE(ytr(λ),1) is more appropriate than the use of PRE(y,1),

where y denotes untransformed dentmeas, since then dependence predictors for

transformed outcomes are based on prior values of those transformed outcomes and

not on prior values of the common untransformed outcome. Matched-set-wise

deletion is used since there are no missing measurements with k ¼ 5 folds

(Sect. 4.5.2).

Varying the powers λ from �2.5 to 2.5 by increments of 0.5, the best LCV(λ)
score of 0.13568 is achieved at λ ¼ 1:5. A further search over increments of 0.1

around λ ¼ 1:5 results in the choice for λ of 1.1 with LCV(1.1) score 0.13634. The

PD for the λ ¼ 1 model with LCV 1ð Þ ¼ 0:13363 (as also reported in Sect. 4.8.3) is

substantial at 1.98 % (that is, greater than the cutoff 1.76 % reported in Sect. 4.2),

indicating that transformation of dentmeas, even with a small change from the

power 1, can provide a distinct improvement at least under constant variances. The

model generated for λ ¼ 1 based on PRE(y,1) but with dentmeas transformed by

λ ¼ 1:1 has LCV(1.1) score 0.13367 with substantial PD 1.96 % compared the

model generated for λ ¼ 1:1. When PRE(y,1) is changed to PRE(try(1.1),1), the

LCV(1.1) score is even smaller at 0.13227. Consequently, even though the power

has changed from 1 by the small amount of 0.1, there is a substantial change in the

model for the means.

The associated adaptive non-constant variances model with λ ¼ 1:1 has LCV(1.1)
score 0.14830, which is a substantial improvement on the associated untransformed

model with LCV score 0.14264 (as reported in Sect. 4.15.2) with PD 3.82 %. This

power transformed transition model has means based on the four transforms:

ðmale � age2Þ1:2, male� PRE(ytr(1.1),1,2)1.7, ðPREðytrð1:1Þ, 1, 2Þ4� age0:3Þ1:03, and
PREðytrð1:1Þ, 1, 2Þ�3

with an intercept and variances based on the two transforms:

PRE(ytr(1.1), 1, 2)1.7 and ðmale � PREðytrð1:1,1, 2Þ � ageÞ0:1 also with an intercept.
Estimated means for this model are displayed in Fig. 6.1. Means increase with

increasing average of the prior two transformed dental measurements, they are at

higher levels as boys age, and there is not too much difference as girls age. A

comparison to Fig. 4.2 indicates that there are no longer any counterintuitive low

values for girls. Estimated standard deviations for this model are displayed in

Fig. 6.2. Standard deviations decrease with increasing average of the prior two

transformed dental measurements and at lower levels for girls than for boys. The

pattern for girls does not depend on age since age is only included in the model for

the variances interacting with the indicator male. However, the pattern for boys

suggests that it changes little with age for boys as well.

138 6 Adaptive Transformation of Positive Valued Continuous Outcomes

http://dx.doi.org/10.1007/978-3-319-33946-7_4
http://dx.doi.org/10.1007/978-3-319-33946-7_4
http://dx.doi.org/10.1007/978-3-319-33946-7_4
http://dx.doi.org/10.1007/978-3-319-33946-7_4
http://dx.doi.org/10.1007/978-3-319-33946-7_4


6.7 Analyses of Transformed Strength Measurements

Adaptive transition models for means and variances of strength outperform asso-

ciated non-constant variances marginal models, and so non-constant transition

models are a natural choice for assessing the need for transformation of the strength

measurements. Specifically, models with means and variances depending on time,

incrwgts, PRE(tr(y),1), and PRE(tr(y),1,∅) are considered. Measurement-wise

deletion is used to compute LCV(λ) scores since there are missing measurements

with k ¼ 15 folds (Sect. 4.12). However, generating adaptive models of this kind

can be time-consuming, so a search is used that reduces the number of powers λ to
be considered and that identifies a local maximum starting from λ ¼ 1.

As reported in Sect. 4.15.4, LCV(1) equals 0.19089. LCV(1.5) has the smaller

value 0.18810 while LCV(0.5) has the larger value 0.19165. LCV(0) equals

0.17257, and so λ ¼ 0:5 is a local maximum over �0:5. LCV(0.4) has the smaller
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transition modeling
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value 0.18862 while LCV(0.6) has the larger value 0.19348. LCV(0.7) equals

0.19078, and so λ ¼ 0:6 is a local maximum over �0:1 and is used in subsequent

analyses. The PD for the LCV(1) scores compared to the LCV(0.6) score is

substantial at 1.34 % (that is, greater than the cutoff 0.80 % reported in Sect.

4.12), indicating that transformation of the strength measurements provides a

substantial benefit.

Under the selected model for transformed strength, the means are based

on the five transforms: PRE(ytr(0.6), 1)4.21, ðtime0:04 � PREðytrð0:6Þ, 1Þ�11Þ16,
ðincrwgts � PREðytrð0:6Þ, 1Þ�38Þ1:1, PREðytrð0:6Þ, 1Þ�4

, and

ðtime�2:5 � PREðytrð0:6Þ, 1Þ10Þ1:1 with an intercept while the variances are based

on the three transforms: time�0:06, time�8, and ðincrwgts � PREðytrð0:6Þ, 1Þ10:1Þ1:02
with an intercept. The effect of incrwgts on the means as determined by the

transform ðincrwgts � PREðytrð0:6Þ, 1Þ�38Þ1:1 is to increase the mean transformed

strength by an estimated amount 0.056 for the small value 13.2 for PRE(ytr(0.6),1)

and by smaller amounts as PRE(ytr(0.6),1) increases up to essentially no increase

by the high value 15.0 for PRE(ytr(0.6),1). These results suggest that increasing the

weights over time has more of an impact when the prior strength measurement is

smaller (but increases of 0.056 or less may not be meaningful improvements).

The effect of incrwgts on the variances as determined by the transform

ðincrwgts � PREðytrð0:6Þ, 1Þ10:1Þ1:02 is to decrease the transformed strength

standard deviations by an estimated multiple of 0.91 for the small value 13.2 for

PRE(ytr(0.6),1) and by smaller multiples as PRE(ytr(0.6),1) increases up to a

multiple of 0.69 for the high value 15.0 for PRE(ytr(0.6),1). These results suggest

that increasing the weights over time decreases the transformed strength standard

deviations with more of a decrease for larger prior outcome measurements.

6.8 The Plasma Beta-Carotene Data

A data set on positive plasma levels of beta-carotene (Nierenberg et al. 1989) in

ng/ml and loaded into the variable betaplasma for 314 subjects is available on the

Internet (see Supplementary Materials). There is one other subject in the original

data set, but that subject’s beta-carotene plasma level equals 0 and has been

excluded so that the analyses address positive beta-carotene plasma levels. There

are a variety of predictors in the data set but the analyses only address the variable

fiber with values grams of fiber consumed in a day and the indicator variable

oftvituse for fairly often vitamin use versus not often or no vitamin use. The cutoff

for a substantial PD in the LCV scores is 0.61 %.
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6.9 Analyses of Untransformed Plasma Beta-Carotene
Levels

The adaptive analysis of the untransformed outcome variable betaplasma as a

function of fiber with constant variances is used to set the number k of folds

(Sect. 2.8). The first local maximum in the LCV scores is achieved at k ¼ 10 and

so that is used in subsequent analyses. The 10-fold LCV score, which equals the

10-fold LCV(1) score, is 0.0013355. The model for the means is based on the single

transform fiber3.9 with an intercept. The adaptive model for the means of

betaplasma in terms of fiber, oftvituse, and GCs with constant variances is based

on the three transforms: ðoftvituse � fiber3Þ1:6, oftvituse, and fiber0.27 without an

intercept and with LCV score 0.0013941. The adaptive additive model for the

means of betaplasma in terms of fiber and oftvituse with constant variances is

based on the two transforms: fiber3.9 and oftvituse with an intercept and LCV score

0.0013654. The PD in the LCV scores is substantial at 2.06 %, indicating that

oftvituse distinctly moderates the effect of fiber on betaplasma when the variances

are treated as constant.

Using non-constant variances models, the adaptive model for the means and

variances of betaplasma in terms of fiber, oftvituse, and GCs has means based on

the single transform: ðfiber�6 � oftvituseÞ�0:2
with an intercept, variances based on

the two transforms: ðfiber2 � oftvituseÞ0:6 and fiber�0:07 without an intercept, and

LCV score 0.0014988. The PD in the LCV scores for the associated constant

variances model is substantial at 6.94 %, indicating that the variances for

betaplasma are distinctly non-constant. The adaptive additive model for the

means and variances of betaplasma in terms of fiber and oftvituse has means

based on the two transforms:oftvituse and fiber0.1 without an intercept, variances

based on the two transforms:oftvituse and fiber7 with an intercept, and LCV score

0.0014214. The PD in the LCV scores is substantial at 5.16 %, indicating that

oftvituse also distinctly moderates the effect of fiber on betaplasma when the

variances are treated as non-constant.

Figure 6.3 displays the normal (probability) plot for the standardized residuals of

the GC-based non-constant variances model for untransformed betaplasma with the

best LCV score. It is distinctly nonlinear and the associated Shapiro-Wilk test for

normality is highly significant ðP < 0:001Þ. Consequently, the assumption of

normality is very questionable for these data, suggesting consideration of trans-

formations of betaplasma.
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6.10 Analyses of Transformed Plasma Beta-Carotene
Levels

A grid search using constant variances models based on fiber over powers λ varying
from �2.5 to 2.5 by increments of 0.5 has best 10-fold LCV(λ) score 0.0023326

achieved at λ ¼ 0. A further search over increments of 0.1 around λ ¼ 0 results

again in the choice for λ of 0. Under this model, the means for log(betaplasma)

depend on the two transforms: fiber3.9 and fiber0.03 without an intercept. The PD for

the LCV(1) scores compared to the LCV(0) score is very substantial at 42.75 %,

indicating that transforming betaplasma provides a very distinct improvement. The

model for log(betaplasma) linear in fiber has LCV(0) score 0.0023108 with sub-

stantial PD 0.93 %. Consequently, there is a distinct benefit to transforming both the

outcome betaplasma and the predictor fiber.

The adaptive model for the means of log(betaplasma) in terms of fiber,

oftvituse, and GCs with constant variances is based on the two transforms:

ðfiber2:9 � oftvituseÞ0:7 and fiber24.1 without an intercept and LCV(0) score

0.0023830. The adaptive additive model for the means of log(betaplasma) in

terms of fiber and oftvituse with constant variances is based on the three transforms:

fiber5.9, oftvituse, and fiber0.05 without an intercept and LCV(0) score 0.0023713.

The PD in the power-adjusted LCV scores is insubstantial at 0.49 %, indicating that

oftvituse does not distinctly moderate the effect of fiber on log(betaplasma).

However, the PD for the model based on only fiber compared to the additive

model in fiber and oftvituse is substantial at 1.63 %, indicating that there is a

distinct covariate effect to oftvituse on log(betaplasma). The adaptive model for the

means and variances of log(betaplasma) in terms of fiber, oftvituse, and GCs has

LCV(0) score 0.0023789. Since this is smaller than the score for the associated
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Fig. 6.3 Normal plot generated by the standardized residuals for the adaptive model of the

untransformed plasma beta-carotene levels as a function of grams of fiber in the diet, fairly

often vitamin use, and geometric combinations in these two predictors with non-constant variances
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constant variances model, log(betaplasma) is reasonably considered to have con-

stant variances.

The adaptive additive constant variances model is a competitive alternative to

the adaptive GC-based constant variances model. It can be considered simpler in

the sense that it has no interaction terms. However, it can also be considered more

complex since it is based on three transforms without an intercept compared to two

transforms without an intercept. Residual analyses for these models indicate that

under the additive model the Shapiro-Wilk test for normality of the standardized

residuals is significant (P ¼ 0:050) while it is nonsignificant (P ¼ 0:190) for the
GC-based model. Consequently, the latter model seems preferable. Figure 6.4

displays the normal plot for the standardized residuals of this GC-based model.

The nearly linear pattern of this plot, combined with a nonsignificant Shapiro-Wilk

test, indicate that the assumption of normality is reasonable for these data. These

results indicate that power transforming outcomes can resolve both non-normality

and non-constant variances for untransformed outcomes, at least in some cases, so

that standard assumptions of normality with constant variances are reasonable for

those transformed outcomes.

6.11 Overview of Analyses of Death Rates

Using constant variances models for death rate in terms of NObnded and rain, the

best power for transforming death rate is �0.4 (this and the following results

reported in Sect. 6.4). However, the associated model for untransformed death

rate is a competitive alternative, and so the univariate death rate outcome is

reasonably modeled without transformation.
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Fig. 6.4 Normal plot generated by the standardized residuals for the adaptive model of the natural

log transformed plasma beta-carotene levels as a function of grams of fiber in the diet, fairly often

vitamin use, and geometric combinations in these two predictors with constant variances
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6.12 Overview of Analyses of the Simulated Outcome

Using constant variances models for ysim in terms of xsim, the best power for

transforming ysim is 1, as simulated (Sect. 6.5). This result supports the validity of

the power-adjusted adaptive modeling process.

6.13 Overview of Analyses of Dental Measurements

Using constant variances transition models for dentmeas in terms of age and male,

the best power for transforming dentmeas is 1.1 (this and the following results

reported in Sect. 6.6). The associated model for untransformed dentmeas generates

a substantial PD in the power-adjusted LCV scores, and so there is a distinct benefit

to power transformation of this multivariate dental measurement outcome. Consid-

eration of non-constant variances transition models for power transformed

dentmeas provides a substantial improvement over constant variances transition

models. Estimated means and standard deviations for the selected non-constant

variances transition model are displayed in Figs. 6.1 and 6.2.

6.14 Overview of Analyses of Strength Measurements

Using transition models for strength means and variances in terms of time,

incrwgts, PRE(tr(y),1), and PRE(tr(y),1,∅), the best power for transforming

strength is 0.6 (this and the following results reported in Sect. 6.7). The associated

model for untransformed strength generates a substantial PD in the power-adjusted

LCV scores, and so there is a distinct benefit to power transformation of this

multivariate strength outcome. Under this power-adjusted model, increasing the

weights over time has more of an impact on mean strength when the prior strength

measurement is smaller, but estimated increases may not be meaningful improve-

ments. Increasing the weights over time also decreases the transformed strength

standard deviations with more of a decrease for larger prior outcome measurements.

6.15 Overview of Analyses of Plasma Beta-Carotene Levels

For the plasma beta-carotene data (Sect. 6.8), analyses usek ¼ 10 folds (this and the

following results reported in Sect. 6.9). The adaptive GC-based model for

untransformed betaplasma in fiber and oftvituse with constant variances outper-

forms the associated adaptive additive model. The adaptive GC-based model in

fiber and oftvituse with non-constant variances outperforms the associated adaptive
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constant variances model and the associated additive non-constant variances model.

The standardized residuals for this model are distinctly nonnormal; see Fig. 6.3 for

the normal plot.

Using constant variances models for transformed betaplasma in terms of fiber,

the best power for transforming betaplasma is 0 (corresponding to the natural log

transform; this and the following results reported in Sect. 6.10). The associated

model for untransformed betaplasma generates a substantial PD in the power-

adjusted LCV scores, and so there is a distinct benefit to power transformation of

this univariate plasma beta-carotene outcome. Moreover, log(betaplasma) is dis-

tinctly nonlinear in fiber. These results provide an example where there is a distinct

benefit to transforming both the outcome and its predictor.

The adaptive additive constant variances model in fiber and oftvituse is a

parsimonious, competitive alternative to the associated GC-based model and pro-

vides a substantial improvement over the model in fiber by itself (Sect. 6.10).

Consideration of transformed betaplasma changes the conclusion about moderation

of the effect of fiber by oftvituse compared to using untransformed betaplasma.

The adaptive GC-based non-constant variances model for log(betaplasma) gen-

erates a smaller LCV(0) score than the associated GC-based constant variances

model, indicating that log(betaplasma) is reasonably treated as having constant

variances (this and the following results reported in Sect. 6.10).The standardized

residuals for this latter model are reasonably close to normal; see Fig. 6.4 for the

normal plot. Consequently, power transforming outcomes can resolve both

non-normality and non-constant variances for the untransformed outcome, at least

in some cases, so that standard assumptions of normality with constant variances

are reasonable for those transformed outcomes.

6.16 Chapter Summary

This chapter has presented a series of analyses of the death rate and simulated data

with univariate outcomes analyzed in Chaps. 2–3, the dental measurement and

exercise data with multivariate outcomes analyzed in Chaps. 4–5, and the univariate

outcome of the plasma beta-carotene data not considered before. These analyses

demonstrate adaptive regression modeling involving transformation of positive

valued univariate and multivariate continuous outcomes as well as their predictors

using fractional polynomials. The chapter also provides the formulation for power-

adjusted LCV scores for selecting appropriate power transforms for such outcomes.

Analyzing an untransformed outcome can be a reasonable alternative to

transforming that outcome. For example, the univariate death rate and simulated

outcomes analyzed without transformation in Chaps. 2–3 are reasonably modeled

without transformation. The death rate outcome is best modeled after transforming

it with the power �0.4, but the power 1 provides a competitive alternative. The

simulated outcome is best modeled without transformation as simulated, supporting

the validity of the power-adjusted adaptive modeling process.
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On the other hand, transforming the outcome can provide a distinct improvement

over not transforming it. For example, transformation of the multivariate dental

measurement and strength outcomes analyzed without transformation in

Chaps. 4–5 provide distinct improvements over not transforming them. The dental

measurement outcome is best modeled after transforming it with the power 1.1,

indicating that even small changes from not transforming an outcome with associ-

ated power 1 can provide distinct improvements. The strength outcome is best

modeled after transforming it with the power 0.6, which provides a distinct

improvement over the power 1.

Analyses are also reported for the plasma beta-carotene data not analyzed

before. The univariate plasma beta-carotene outcome is best modeled in terms of

the grams of fiber per week after transforming it with the power 0, that is, with the

natural log transform, and this provides a distinct improvement over not

transforming it. This is an example of the benefit to outcome transformation for

univariate outcomes (the other two univariate outcomes considered in this chapter

do not require transformation). Moreover, the model for transformed plasma beta-

carotene is distinctly nonlinear in the predictor grams of fiber per week, providing

an example with benefits to nonlinear transformation of both the outcome and the

predictor. Using untransformed plasma beta-carotene, the indicator for fairly often

vitamin use, distinctly moderates the effect of grams of fiber per day. This conclusion

no longer holds for transformed plasma beta-carotene, indicating the need for con-

sideration of outcome transformation to correctly identify effects on outcomes. Using

untransformed plasma beta-carotene, the usual assumptions of normality and con-

stant variances do not hold, but transformed plasma beta-carotene is reasonably

considered to be close to normal and to having constant variances. Power

transforming outcomes can resolve both non-normality and non-constant variances

for the untransformed outcome, at least in some cases, so that standard assumptions

of normality with constant variances are reasonable for those transformed outcomes.

See Chap. 7 for details on conducting analyses in SAS like those presented in

this chapter. Power transformation is only considered for continuous outcomes.

Transformation of dichotomous and polytomous outcomes as addressed in Part II

would only change the labels for their values. Fractional polynomial transforms of

count outcomes as addressed in Part III would generate non-integer valued out-

comes in most cases, which cannot be modeled using Poisson regression. Only

integer valued powers would generate integer valued outcomes, and these do not

seem important enough to address.
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Chapter 7

Adaptive Transformation of Positive Valued
Continuous Outcomes in SAS

7.1 Chapter Overview

This chapter describes how to use the ypower macro for adaptive regression

modeling accounting for fractional polynomial transformation of positive valued

univariate and multivariate continuous outcomes as well as their predictors as also

covered in Chap. 6. See Supplementary Materials for a more complete description

of this macro. SAS supports Box-Cox (Box and Cox 1964) transformation of

outcome variables using PROC TRANSREG (SAS Institute 2004), but not

Box-Tidwell transforms.

Example code and output are provided for analyzing the univariate outcome

plasma beta-carotene levels for 314 subjects in terms of their fiber intake and

vitamin usage and the multivariate outcome dental measurements for 27 children

in terms of their age and gender. Section 7.2 covers loading in the plasma beta-

carotene data, Sect. 7.3 transformation of the univariate outcome plasma beta-

carotene levels, and Sect. 7.4 transformation of the multivariate outcome dental

measurements, including transition models in Sect. 7.4.1 and marginal models in

Sect. 7.4.2. Practice exercises are also provided for conducting analyses similar to

those presented in Chaps. 6 and 7.

7.2 Loading in the Plasma Beta-Carotene Data

A data set on plasma beta-carotene levels is analyzed in Chap. 6 (see Sects. 6.8–6.

10). Assume that the full plasma beta-carotene data have been loaded into the default

library (for example, by importing it from a spreadsheet file) under the name plasma.
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An output title line, selected system options, and labels for the variables can be

assigned with the following code.

title "Plasma Beta-Carotene Data";

options linesize¼76 pagesize¼53 pageno¼1 nodate;

proc format;

value vitfmt 1¼"often" 2¼"not often" 3¼"no";

value nyfmt 0¼"no" 1¼"yes";

run;

data plasma;

set plasma;

oftvituse¼(vituse¼1);

label fiber¼"Grams of Fiber Consumed per Day" vituse¼"Vitamin Use"

betaplasma¼"Plasma Beta-Carotene in ng/ml"

oftvituse¼"Often Vitamin Use vs. Not Often or No Vitamin Use"

format vituse vitfmt. oftvituse nyfmt.;

run;

The variable vituse contains vitamin usage coded into the three levels of the

vitfmt format. This is recoded into the indicator oftvituse for fairly often vitamin

use versus not often or no vitamin use. There are 315 observations in the plasma

data set, but one observation has a zero betaplasma value. Consequently, the

posplasma data set with this one observation excluded and created with the follow-

ing code is used in analyses.

data posplasma;

set plasma;

if betaplasma>0;

run;

7.3 Adaptive Transformation of Plasma Beta-Carotene
Levels

Assuming the ypower and genreg macros have been loaded, power-adjusted LCV

scores LVC(λ) (as defined in Sect. 6.3) for adaptive modeling of transformed

betaplasma as a function of fiber for powers λ ranging from �2.5 to 2.5 by steps

of size 0.5 are generated as follows using k¼ 10 folds (Sect. 6.9).
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%ypower(datain¼posplasma,yvar¼betaplasma,foldcnt¼10,yfst¼-2.5,ycnt¼11,

ystp¼0.5,expand¼y,expxvars¼fiber,contract¼y);

The datain, yvar, foldcnt, expand, expxvars, and contract macro parameters have

the same meanings as for the genreg macro. The yfst, ycnt, and ystp macro

parameters are used respectively to set the first power to consider, how many

powers to generate, and the step size or increment for consecutive powers. The

ypower macro invokes the genreg macro once for each of the requested transformed

outcomes betaplasmaλ (or log(betaplasma) when λ¼ 0) to generate a constant

variances fractional polynomial model for its means in terms of fiber, compute its

power-adjusted LCV(λ) score, store this score into a data set called scoreout, and

then print out all the requested scores. The name of the scoreout data set can be

changed with the ypower macro parameter scoreout.

Table 7.1 contains the output for the above call to ypower. The maximum

LCV(λ) score of 0.0023326 (as also reported in Sect. 6.10) is achieved at λ¼ 0,

corresponding to the transform log(betaplasma). The format for these LCV(λ)
scores is controlled by the ypower scorefmt parameter. Its value should be a valid

SAS w.d format where w is the width and d the number of decimal places. The

default value as used above is “10.7”.

Given that the maximum in this case is achieved at λ¼ 0, a grid search around

λ¼ 0 with increments of 0.1 can be requested by changing the above code to

include “yfst¼�0.4”, “ycnt¼9”, and “ystp¼0.1”. The best score is still achieved

at λ¼ 0. Once the power λ¼ 0 has been identified as generating the best LCV(λ)
score over multiples of 0.1, the fractional polynomial model for the selected natural

log transformation of betaplasma can be generated as follows.

Table 7.1 Power-adjusted LCV scores over a grid of powers from �2.5 to 2.5 by increments of

0.5 for adaptive modeling of plasma beta-carotene levels in terms of grams of fiber consumed per

day with constant variances
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%ypower(datain¼posplasma,yvar¼betaplasma,foldcnt¼10,yfst¼0,expand¼y,

expxvars¼fiber,contract¼y,noglog¼n,nogprint¼n);

There is no need for the ycnt parameter since its default setting is 1. By default,

the ypower macro turns off the log and print output of the genreg macro to limit the

amount of output. In the above code, the setting “noglog¼n” requests that ypower

have genreg display the analysis steps in the SAS log window while “nogprint¼n”

requests that ypower have genreg display results in the SAS output window. In

versions 9.3 and later, this requires that the SAS command “ods listing;” be

executed earlier. Usually, these settings would only be used when ypower generates

a single model.

The genreg output in this case indicates that the means of log(betaplasma) are

modeled in terms of the two transforms: fiber3.9 and fiber0.03 without an intercept. This

model and its LCV(λ) score can be generated directly using the following code.

%ypower(datain¼posplasma,yvar¼betaplasma,foldcnt¼10,yfst¼0,

xintrcpt¼n,xvars¼fiber fiber,xpowers¼3.9 0.03,

noglog¼n,nogprint¼n);

Most of the genreg parameters are supported by ypower (like the xintrcpt, xvars,

and xpowers parameters used in the above code) so that general adaptive modeling

of transformed outcomes is possible. These parameters usually have the same

meaning as for the genreg macro but there are exceptions. For example, the ypower

parameters yvar and ytransvr replace the genreg parameter yvar. The yvar variable

specifies the name of the variable in the datain data set loaded with the

untransformed outcome values. This is used to create the variable loaded with the

transformed outcome values having name specified by the ytransvr parameter with

default setting “ytr”. The ypower dataout parameter has the same meaning as the

genreg macro parameter but some of that data set’s variables are loaded by genreg

and some by ypower. For example, the ytransvr variable is loaded into the dataout

data set by ypower.

The ypower parameters yhatvar and ytrhatvr specify names for the variables to be

loaded in the dataout data set with predicted values for the untransformed and

transformed outcome, respectively. The genreg macro loads the ytrhatvr variable

through its yhatvar parameter. The ypower macro uses this variable to create and load

its yhatvar variable with the inverse transform of the ytrhatvr variable based on the

power 1/λ (or the exponential function for λ¼ 0). When λ 6¼ 0, even though the

transformed outcome has all positive values, predicted values for the transformed

outcome can sometimes be nonpositive. In such cases, the negative values are

replaced by the smallest positive predicted value (or set to missing if all predicted

values are nonpositive) before computing the inverse transform. This adjustment is

not needed for λ¼ 0.
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Unit lower and upper bounds on the transformed predicted values (that is, � one

estimated standard deviation) are loaded into the dataout data set using the names of

the ypower parameters loytrerrvr and upytrerrvr. These are loaded by genreg using its

loerrvar and uperrvar parameters. These lower and upper bound variables are used by

ypower to create lower and upper bounds on the untransformed predicted values

through the associated inverse transform. For λ 6¼ 0, when there are nonpositive

bounds on the transformed predicted values, these bounds are adjusted before inverse

transforming them as described above for nonpositive predicted values.

Some genreg parameters are not supported since they not needed. For example,

there is no need for a modtype parameter since outcome transformation requires

“modtype¼norml”.

Several data sets are created by ypower and/or genreg in the default library. The

dataout data set is created in part by genreg and in part by ypower. The scoreout

data set with LCV(λ) scores for all requested λ is created by ypower. Data sets

created by genreg include the xmodlout and vmodlout data sets describing the

generated transforms for the means and the variances, respectively, and the

xcmbnout and vcmbnout data sets describing any generated geometric combina-

tions (GCs) for the means and the variances, respectively. The data sets generated

by genreg are created for every requested power λ, but ypower only keeps the data

sets generated for the power λ with the best LCV(λ) score.
Once a choice for the power λ has been identified, further analysis can be

conducted with that power fixed. For example, the adaptive non-constant variances

model for log(betaplasma) in terms of fiber, oftvituse, and GCs can be generated as

follows using parameters with the same meanings as for genreg.

%ypower(datain¼posplasma,yvar¼betaplasma,foldcnt¼10,yfst¼0,expand¼y,

expxvars¼fibervituse,expvvars¼fibervituse,geomcmbn¼y,contract¼y,

noglog¼n,nogprint¼n);

7.4 Adaptive Transformation of Dental Measurements

7.4.1 Using Transition Models

Power-adjusted LCV(λ) scores for powers λ varying from �2.5 to 2.5 by incre-

ments of 0.5 for adaptive constant variances transition models for transformed

dentmeas, denoted ytr(λ), as a function of age, male, PRE(ytr(λ),1,2)
(pre_ytr_age_1_2 in the code), PRE(ytr(λ),1,2,∅) (pre_ytr_age_1_2_m in the

code), and GCs can be generated as follows with k¼ 5 folds (Sect. 4.5.2).
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%ypower(datain¼dentdata,yvar¼dentmeas,matchvar¼subject,withinvr¼age,

corrtype¼IND,conditnl¼y,foldcnt¼5,yfst¼-2.5,ycnt¼11,ystp¼0.5,

expand¼y,expxvars¼agemalepre_ytr_age_1_2pre_ytr_age_1_2_m,

geomcmbn¼y,contract¼y);

The matchvar, withinvr, corrtype, and conditnl macro parameters are used to

generate conditional models in the same way as for genreg. The ypower macro

creates the variable called ytr with the current transformation of the yvar variable.

The name of this variable can be changed using the ytransvr macro parameter.

These are transition models based on averages of the prior two transformed

outcome measurements. Note that since a copy of dentmeas named y is in the

datain data set, if the above code is changed to use the variables pre_y_age_1_2 and

pre_y_age_1_2_m, all transformed outcomes are modeled in terms of averages of

the untransformed outcome. It is more appropriate to use pre_ytr_age_1_2 and

pre_ytr_age_1_2_m so that these predictors are based on the current transformed

outcome. As reported in Sect. 6.6, the best LCV(λ) of 0.13568 is generated for

λ¼ 1.5. A grid search around λ¼ 1.5 with increments of 0.1 is requested by

changing the above code to include “yfst¼1.1”, “ycnt¼9”, and “ystp¼0.1”. As

reported in Sect. 6.6, this results in the selection of λ¼ 1.1 with LCV(1.1)¼
0.13634. Since LCV(1) is 0.13363, the percent (PD) for λ¼ 1 is substantial at

1.98 % (that is, larger than the cutoff 1.76 % for the data), indicating that

transforming dentmeas provides a distinct improvement over using ntransformed

dentmeas using constant variances transition models.

7.4.2 Using Marginal Models

Marginal models can have their outcomes transformed as well. The adaptive

constant variances marginal model with exchangeable correlation (EC) structure

(since it distinctly outperforms AR1 correlations; Sect. 4.8.2) and maximum like-

lihood (ML) parameter estimation for dentmeas transformed using λ¼ 1.1 as

chosen for transition models is generated as follows.

%ypower(datain¼dentdata,yvar¼dentmeas,matchvar¼subject,withinvr¼age,

corrtype¼EC,foldcnt¼5,yfst¼1.1,expand¼y,expxvars¼agemale,

geomcmbn¼y,contract¼y);

The LCV(1.1) score is 0.12965 with substantial PD 4.91 % compared to the

transition model of Sect. 7.4.1, indicating as for untransformed dentmeas that

transition modeling distinctly outperforms marginal modeling. However, there

might be a benefit to using a different power than the one identified for transition

modeling. Power-adjusted LCV(λ) scores for powers λ varying from �2.5 to 2.5 by

increments of 0.5 for adaptive constant variances marginal ML-based models with

EC correlations for dentmeas as a function of age, male, and GCs can be generated

as follows.
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%ypower(datain¼dentdata,yvar¼dentmeas,matchvar¼subject,withinvr¼age,

corrtype¼EC,foldcnt¼5,yfst¼-2.5,ycnt¼11,ystp¼0.5,expand¼y,

expxvars¼agemale,geomcmbn¼y,contract¼y);

The best LCV(λ) of 0.13414 is generated for λ¼ 0.5. A grid search around

λ¼ 0.5 with increments of 0.1 is requested by changing the above code to include

“yfst¼0.9”, “ycnt¼9”, and “ystp¼0.1”. This results in the selection of λ¼ 0.5. The

PD for λ¼ 1 with LCV(1)¼ 0.12975 is substantial at 7.15 %, indicating that there is

a distinct benefit to square root transformation of dentmeas using ML-based

marginal models with EC correlations and constant variances. Moreover, the

appropriate power for marginal modeling is different from the one for transition

modeling. In this case, the power-adjusted LCV score is improved sufficiently that

the marginal model becomes a competitive alternative with PD 1.61 % compared to

the transition model of Sect 7.4.1.

Using λ¼ 0.5, EC correlations, and ML parameter estimation, the adaptive

non-constant variances marginal model in age, male, and GCs is generated as

follows.

%ypower(datain¼dentdata,yvar¼dentmeas,matchvar¼subject,withinvr¼age,

corrtype¼EC,foldcnt¼5,yfst¼0.5,expand¼y,expxvars¼agemale,

expxvars¼age male,geomcmbn¼y,contract¼y,noglog¼n,nogprint¼n);

The LCV(0.5) score is 0.13925 with substantial PD 6.10 % compared to the

power-adjusted non-constant variances transition model with LCV(1.1) 0.14830 as

reported in Sect. 6.6. Consequently, transition modeling distinctly outperforms

marginal modeling as long as sufficiently general models are considered.

7.5 Practice Exercises

For Practice Exercise 7.1, use the body fat data set available on the Internet (see

Supplementary Materials) used in Practice Exercises 3.5–3.8 and 5.2. The outcome

variable for this data set is called bodyfat and contains body fat values in gm/cm3

for 252 men. One of the men has a zero body fat value, so the load code for these

data on the Internet also creates the data set posbodyfat with this observation

dropped. Use the posbodyfat data set for Practice Exercise 7.1. Only the predictor

BMI is considered in Practice Exercise 7.1.

7.1. Conduct an assessment of how possibly transformed positive valued body fat

depends on BMI. Use the number of folds determined for Practice Exercise

3.5. First, generate power-adjusted LCV scores for powers �2.5 to 2.5 by

increments of 0.5. Next, search over increments of 0.1 around the power with

the best power-adjusted LCV score in the first search. Generate the model for

the best power-adjusted LCV score for this second search. Is the model with
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power 1 a competitive alternative or is there a distinct benefit to transformation

of body fat? Note that the cutoff for a substantial PD in this case is 0.76 %

because there is one less observation.

For Practice Exercises 7.2–7.3, use the Treatment of Lead-Exposed Children

(TLC) Study data available on the Internet (see Supplementary Materials) used

in Practice Exercises 5.5–5.7. The long format data set is called longtlc. The

outcome variable for this data set is called lead and contains blood lead levels in

micrograms/dL. The two predictors are succimer, the indicator for being on the

chelating agent succimer versus on a placebo, and week with values 0, 1, 4, and

6 weeks into the study. There are 100 subjects in this study, all with the complete

set of 4 measurements. Since there are no missing data values, use matched-set-

wise deletion in these practice exercises to compute power-adjusted LCV scores

with the number of folds selected in Practice Exercise 5.5.

7.2. For the TLC data, conduct an assessment of the need for transformation of the

outcome variable lead. To limit the amount of computations, consider only

adaptive marginal models with ML parameter estimation; means depending on

week, succimer, and GCs; constant variances; and the correlation structure

selected in Practice Exercise 5.5. Use the ypower macro to generate such

models for Box-Tidwell transforms of lead for powers 0–2 by increments of

0.5. If the best score is achieved at 0 (2) generate models for smaller (larger)

multiples of 0.5 until a local maximum occurs, otherwise use the best score in

between these two values. Let λ* denote the local max over multiples of 0.5. If

LCV(λ*�0.5) is larger (smaller) than LCV(λ*þ0.5), search between λ*�0.4

and λ*�0.1 (λ*þ0.1 and λ*þ0.4) by increments of 0.1. If a local maximum is

achieved stop the search, otherwise continue the search on the other side of λ*.
Let λ** denote the local maximum within �0.1 identified by this search.

Compare the power-adjusted LCV(λ**) score to LCV(1) to assess the need

for power transformation of lead. Describe the model generated for λ**.
7.3. For the TLC data, use the power λ** selected in Practice Exercise 7.2 for

marginal models to generate the adaptive constant variances transition model

with means depending on week, succimer, pre_ytr_week_1,

pre_ytr_week_1_m, and GCs. Compare this model to the one identified in

Practice Exercise 7.2. Next assess whether improvements are possible using

powers around λ**. To do this, first compute transition models at λ**�0.1 and

λ**þ0.1. If LCV(λ**) is a local maximum, stop the search. Otherwise, if LCV

(λ**�0.1) is larger (smaller) than LCV(λ**þ0.1), compute LCV(λ**�0.2)

(LCV(λ**þ0.2)), then smaller (larger) multiples of 0.1 until a local maximum

λ*** is identified. Compare results for the transition model generated with

λ*** to the one generated with λ**. If the model for λ*** is better, compare it

to the marginal model based on λ**. Is constant variances marginal or transi-

tion modeling better for analyzing possibly transformed lead? Using the better

of these two modeling approaches with the associated best power, assess the

need for non-constant variances using the same predictors for the variances as

for the means.
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Part II

Adaptive Logistic Regression Modeling



Chapter 8

Adaptive Logistic Regression Modeling
of Univariate Dichotomous and Polytomous
Outcomes

8.1 Chapter Overview

This chapter formulates and demonstrates adaptive fractional polynomial modeling

of univariate dichotomous and polytomous outcomes with two or more values and

with either unit dispersions as in standard logistic regression modeling or with

non-unit (constant or non-constant) dispersions. A description of how to generate

these models in SAS is provided in Chap. 9. A familiarity with logistic regression

modeling is assumed, for example, as treated in Hosmer et al. (2013) or Kleinbaum

and Klein (2010). A data set with a univariate dichotomous outcome is described in

Sect. 8.2. The formulation for logistic regression modeling of dichotomous

outcomes is provided in Sect. 8.3 followed by unit dispersions analyses in

Sects. 8.4–8.6 of the dichotomous outcome of Sect. 8.2. Then, the formulation for

logistic regression modeling of univariate polytomous outcomes is provided in

Sect. 8.7 followed by a description of a data set with a polytomous outcome in

Sect. 8.8 and unit dispersions analyses of that outcome in Sects. 8.9–8.11. Sec-

tion 8.12 addresses the proportion of correct deleted predictions (PCDP), an

alternative cross-validation criterion for assessing logistic regression models. Sec-

tion 8.13 generalizes the formulations to modeling of dispersions as well as means

and conducts such analyses for the dichotomous outcome of Sect. 8.2 (see Sect.

9.12 for a polytomous outcome example). Sections 8.14–8.15 provide overviews of

the results of analysis of dichotomous and polytomous mercury levels, respectively.

Formulations can be skipped to focus on analyses.
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8.2 The Mercury Level Data

A data set on mercury levels for n ¼ 169 largemouth bass caught in one of two

rivers (Lumber and Waccamaw) in North Carolina is available on the Internet (see

Supplementary Materials). These data are analyzed here to demonstrate how to

conduct logistic regression analyses that account for nonlinearity in predictor vari-

ables. The variable mercury in ppm (parts per million) is used to compute dichot-

omous and polytomous outcomes for these analyses. As a start, the dichotomous

merchigh variable categorizes mercury levels into high (mercury level >1.0 ppm)

with value 1 and low (mercury level � 1:0 ppm ) with value 0. A total of 80

(or 47.3 %) of the fish have a high mercury level, and so the cutoff (1.0 ppm) for

this variable is close to the median mercury level. It is also the Federal Drug

Administration limit for human consumption (http://www.fda.gov/OHRMS/

DOCKETS/ac/02/briefing/3872_Advisory%207.pdf, accessed 6/18/16). The possi-

ble predictor variables are weight (in kg), length (in cm), and river (0 ¼ Lumber,

1 ¼ Waccamaw). The station along the river where the fish were caught is also

available in the original data set, but is not considered here. All reported logistic

regression analyses use nonzero intercept models, thereby always estimating the

logit or log odds when the predictor value is 0 rather than allowing that logit to

sometimes be treated as equal to 0. The cutoff for a substantial percent decrease

(PD) in LCV scores for these data with 169 measurements is 1.13 % (using the

formula of Sect. 4.4.2).

8.3 Multiple Logistic Regression Modeling of Dichotomous
Outcomes

8.3.1 Multiple Logistic Regression Model Formulation

The observed data for logistic (or binomial) regression models to be considered

in Sects. 8.4–8.6 consist of observations Os ¼ ys; xsð Þ for subjects

s2S ¼ s : 1 � s � nf g where each outcome measurement ys has two possible

values coded as 0 and 1 (as for merchigh) and xs is a r� 1 column vector of r

predictor values xsj (including unit predictor values if an intercept is included in the

model) with indexes j2 J ¼ j : 1 � j � rf g. The mean or expected value μs for ys
satisfiesμs ¼ Eys ¼ Pðys ¼ 1jxsÞ for s2 S. In other words, the conditional mean for

the dichotomous outcome ys is the probability that it takes on the value 1. With the

logit (or log odds) function defined as logit uð Þ ¼ log u= 1� uð Þð Þ for 0< u< 1,

model the logit of the mean as logit μsð Þ ¼ xs
T � β for a r� 1 vector β of coefficients.

Solving for μs gives μs ¼ expðxsT � βÞ=ð1þ expðxsT � βÞÞ. The odds ratio (OR) for

ys ¼ 1 under a unit change in a predictor value xsj and adjusted for the other

predictor values x
sj
0 for j

0 6¼ j (if any) is computed asOR ¼ expðβjÞ. The conditional
variance for ys is σs2 ¼ μs � 1� μsð Þ.
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The likelihood term Ls for the sth subject is based on the Bernoulli distribution

and satisfies

‘s ¼ log Lsð Þ ¼ ys � log μsð Þ þ 1� ysð Þ � log 1� μsð Þ:

The likelihood L(S; β) is the product of the individual likelihood terms Ls over s2 S

and satisfies

‘ S; βð Þ ¼ log L S; βð Þð Þ ¼
X
s2S

‘s:

The maximum likelihood estimate β(S) of β is computed by solving the

estimating equations ∂‘ S; βð Þ=∂β ¼ 0 obtained by differentiating ‘(S; β) with

respect to β, where 0 denotes the zero vector. For simplicity of notation, parameter

estimates β(S) are denoted as functions of indexes for the data used in their

computation without hat (^) symbols. With this notation, the LCV formulation of

Sect. 2.5.3 extends to the logistic regression context. For s2S, the estimated

value for the mean μs is μs Sð Þ ¼ exp xs
T � β Sð Þð Þ= 1þ exp xs

T � β Sð Þð Þð Þ and

the corresponding residual is es Sð Þ ¼ ys � μs Sð Þ (with only two possible values

of 1� μs Sð Þ when ys ¼ 1 and �μs Sð Þ when ys ¼ 0Þ. The estimated value for the

variance σs2 is σs2 Sð Þ ¼ μs Sð Þ � 1� μs Sð Þð Þ. The standardized or Pearson residual

stdes Sð Þ ¼ es Sð Þ=σs Sð Þ is obtained by standardizing the residual by dividing by the
estimated standard deviation.

The predictor vectors xs can be based on fractional polynomial transforms of

primary predictors as considered in analyses reported in Chaps. 2 and 4. Adaptive

fractional polynomial models can also be selected using the adaptive modeling

process controlled by LCV scores as in Chaps. 2 and 4, but with the LCV scores

computed for the logistic regression case.

8.3.2 Odds Ratio Function Formulation

When a predictor value xsj ¼ usj
p is a power transform of a primary predictor value

usj (assuming that usj
p is well-defined), the exponent exp(βj) of the associated slope

βj represents the OR for ys ¼ 1 under a unit change in the predictor value xsj
adjusted for the other predictor values x

sj
0 for j0 6¼ j (if any). However, there are

problems with this definition of the OR in general. First, if one of the other

predictors x
sj
0 ¼ u

sj
0 p

0
is a transform of the same primary predictor (for example,

two transforms of weight for the mercury level data) so that u
sj
0 ¼ usj, the values of

all the other transforms do not remain constant when the value of xsj changes by one

unit. Second, it seems more appropriate to account for effects on the odds of

changes in the primary predictor value usj, not changes in its transformed value.

For example, how the odds for a high mercury level over 1.0 ppm change with
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changes in weight of the fish seems more important than how the odds change with

unit changes in some power transform weightp of weight with p 6¼ 1 (for example,

p ¼ �0:5 as selected in Sect. 8.4). In the fractional polynomial context, the OR can

be generalized to account for changes in the primary predictor and for all transforms

of that primary predictor in the model.

For standard logistic regression with each predictor untransformed and none of

them transforms of the other predictors, the log(OR) for a predictor is its associated

slope. When the predictor is continuous, that slope is also the derivative of the logit

function with respect to the predictor and so is the instantaneous rate of change of

the log odds for ys ¼ 1 in that predictor as well as the change in the log odds due to a

unit change in the predictor. In the fractional polynomial context, the log(OR(u))

for a primary predictor u can be generalized to the first derivative function of the

logit function with respect to that primary predictor. Each transform of that primary

predictor in the fractional polynomial is simply differentiated (for example, the

derivative ofusj
p � βj with respect to usj is p � usjp�1 � βj; see Sect. 9.3 for an example).

The derivative function of the logit function is exponentiated to obtain the odds

ratio function OR(u) representing the exponentiated instantaneous rate of change in

the log odds for ys ¼ 1 at each value of the primary predictor u, adjusting for the

values of all the other distinct primary predictors for the model (if any). In the case

where there is a single primary predictor u, the odds under a change Δu in u can be

approximated using a Taylor expansion of logit(u) as

odds uþ Δuð Þ ¼ exp logit uþ Δuð Þð Þ � exp logit uð Þ þ ∂logit uð Þ=∂u � Δuð Þ
¼ odds uð Þ � OR uð ÞΔu:

Assuming this approximation holds for a unit increase Δu ¼ 1, the above relation-

ship means that under a unit increase from a given value u of the primary predictor,

the odds at uþ 1 are approximately equal to the odds ratio OR(u) at u multiplied by

the odds at u. A similar interpretation holds when adjusting for values of other

primary predictors. Reported analyses use this approach to simplify the interpreta-

tion of generated OR functions.

8.4 Dichotomous Mercury Level as a Function of Weight

The adaptive model for merchigh as a function of weight is used as a benchmark

analysis for setting the number k of folds (see Sect. 2.8). The first local maximum in

the LCV score is attained at k ¼ 15, and so this value is used in subsequent analyses

of this outcome. This adaptively chosen model is based on the single power transform

weight�0:5 (all models for means reported in this chapter have intercepts) with 15-fold

LCV score 0.56081. The estimated slope for this weight transform is negative so that

the logits and hence the probabilities for a high mercury level under this model

increase with weight as would be expected. The same model is selected at k ¼ 20
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while the model based on the single power transform weight�0:4 is selected at k ¼ 5

and k ¼ 10, and so the adaptive model in this case is relatively robust to the choice of

k. The model linear in weight has LCV score 0.54346 with PD of 3.09% compared to

the adaptive model and so substantial (that is, larger than the cutoff 1.13 % for the

data). Consequently, the logits for merchigh are distinctly nonlinear in weight.

How merchigh depends on weight might change with the river in which the fish

were caught (an issue called moderation or modification; see Sect. 4.5.3). This can

be addressed with the adaptive model based on weight, river, and geometric

combinations (GCs) in these two predictors (see Sect. 4.5.4 for the definition of

GCs). The generated model is based on the two transforms: weight�0:8 and

ðriver � weight�2Þ�0:8
with LCV score 0.57192. The model based on weight and

river without GCs is the same as the model based on weight alone with LCV score

0.56081 and substantial PD 1.94 %. Thus, the dependence of merchigh on weight is

different for the two rivers. Estimated probabilities generated by the GC-based

model are plotted in Fig. 8.1. The probability of a mercury level over 1.0 ppm

increases as the weight of the fish increases from approximately 0.2 kg to 4.5 kg,

starting at about the same near zero value for the two rivers, but to a distinctly

higher level for fish caught in the Waccamaw River.

8.5 Dichotomous Mercury Level as a Function of Length

The adaptive model for merchigh as a function of length is based on the single

power transform length0.5 with LCV score 0.59140. The model linear in length has

LCV score 0.59136 with insubstantial PD of 0.01 % compared to the adaptive

model. Thus, the logits for merchigh are reasonably close to linear in length. The

adaptive model based on length, river, and possible GCs in these two predictors
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Fig. 8.1 Estimated probability of a high mercury level over 1.0 ppm as a function of weight

moderated by river for fish caught in the Lumber andWaccamaw Rivers based on adaptive logistic

regression modeling
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depends only on length and is the same model as generated for length by itself.

Consequently, the dependence of the logits for merchigh on length is reasonably

treated as the same for the two rivers. Estimated probabilities generated by this

latter model for a high level of mercury are plotted in Fig. 8.2. The probability of

fish having a mercury level over 1.0 ppm increases in an s-shaped pattern as their

lengths increase from approximately 25 cm to 65 cm, and this is the same for fish

caught in the two rivers.

For the linear model in length, the odds ratio (OR), for a unit change in length, is

estimated by exponentiating the estimated slope for length. Since the relationship is

linear, the slope for length is also the derivative of the logit function with respect to

length at each of its values. For nonlinear models in length, the OR is no longer a

constant but is the function of length obtained by first differentiating the relation-

ship between the logits for merchigh and length with respect to length and then

exponentiating. The estimated OR function for the adaptive model in length is

plotted in Fig. 8.3. The OR decreases from about 1.25 at a length of 25 cm to about

1.15 at a length of 65 cm. The values of the function represent the exponentiated

instantaneous rates of change in the log odds for a high mercury level of over

1.0 ppm at different lengths and can be used to approximate the proportional change

in the odds with a unit increase in length (see Sect. 8.3). For example, under a unit

increase in length the odds for a high mercury level are approximately 1.25 units

larger than the odds at length 25 cm, approximately 1.2 units larger at length 38 cm,

and approximately 1.15 units at length 65 cm. For the linear model in length, the

estimated constant OR is 1.20 with 95 % confidence interval 1.13 to 1.27. The fact

that all the values of the estimated OR function of Fig. 8.3 lie within this confidence

interval provides support for the conclusion that the OR for merchigh is constant in

length, further supporting the earlier conclusion that the logits for merchigh are

close to linear in length.

0

0.2

0.4

0.6

0.8

1

25 30 35 40 45 50 55 60 65

pr
ob

ab
ili

ty
 o

f h
ig

h 
m

er
cu

ry
 le

ve
l

length in cm

Fig. 8.2 Estimated probability of a high mercury level over 1.0 ppm as a function of length for

fish caught in the Lumber and Waccamaw Rivers based on adaptive logistic regression modeling
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8.6 Dichotomous Mercury Level as a Function
of Weight and Length

The adaptive additive model in weight and length is based on two transforms:

length0.9 and weight0.3 with LCV score 0.60382. The best singleton predictor model

is the one for length with LCV score 0.59140 and substantial PD of 2.06 %, and so

weight explains aspects of merchigh not explained by length alone. The linear

model in weight and length has LCV score 0.60244 with insubstantial PD of

0.23 %. Thus, after controlling for the nearly linear effect to length, the distinct

nonlinear effect to weight by itself becomes reasonably close to linear. The adaptive

model in weight and length and possible GCs is based on the three transforms:

length1.5, ðweight0:3 � length�0:4Þ10, and weight2.5 along with an intercept and

improved LCV score 0.61585. The PD for the additive model is substantial at

1.95 % indicating that the logits for merchigh are reasonably considered to change

differently in weight (length) for different values of length (weight). The

adaptive model in weight, length, and river with GCs is based on the four trans-

forms: length0.5, ðriver � weight�2 � lengthÞ0:5, ðriver � weight0:7 � length�0:3Þ3:4, and
ðlength0:5 � weight�0:2Þ3 with improved LCV score 0.64474. This is a substantial

improvement over the GC-based model in weight and length with substantial PD

4.48 %. Consequently, the dependence of mean merchigh on weight and length in

combination is reasonably considered to be different for the two rivers.

Figure 8.4 displays estimated probabilities for the Lumber and Waccamaw

Rivers of a high mercury level over 1.0 ppm as a function of weight for the

relatively low length of 30 cm generated by the model based on river, weight,

length, and GCs with the best overall LCV score. The range of weight values is

based on observed weight values for fish close to 30 cm in length. The probability of

a high mercury level decreases with increasing weight of fish caught in the Lumber
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Fig. 8.3 Estimated odds ratio function for a high mercury level over 1.0 ppm as a function of

length for fish caught in the Lumber and Waccamaw Rivers based on adaptive logistic regression

modeling
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River to essentially zero by 0.5 kg and increases for fish caught in the Waccamaw

River and to essentially 1 by 0.5 kg. Figure 8.5 displays estimated probabilities of

the same kind, but for the relatively high length of 50 cm. As before, the range of

weight values is based on observed weight values for fish, but now when close to

50 cm in length. The probability of a high mercury level is relatively high for low

weights of fish caught in both rivers, but a little lower for fish caught in the

Waccamaw River. It then decreases with increasing weight of fish caught in the

Lumber River and increases somewhat for fish caught in the Waccamaw River.

For fish caught in the Wacammaw River having the relatively high length of 50 cm,
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Fig. 8.4 Estimated probability of a high mercury level over 1.0 ppm as a function of weight for

fish caught in the Lumber and Waccamaw Rivers for length 30 cm based on adaptive logistic

regression modeling
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Fig. 8.5 Estimated probability of a high mercury level over 1.0 ppm as a function of weight for

fish caught in the Lumber and Waccamaw Rivers for length 50 cm based on adaptive logistic

regression modeling
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the probability of having a high mercury level >1 ppm is quite high at 0.89 or

higher and this holds as well for larger lengths (not plotted in the figures).

8.7 Multiple Logistic Regression Modeling
of Polytomous Outcomes

Outcomes with more than two but a finite number of values are called polytomous

(or polychotomous). The outcome values are assumed here to be coded as numeric

values, but those values can be nominal (that is, numeric in name only) or ordinal

(that is, truly numeric and ordered). Outcomes with nominal values can only be

appropriately analyzed with multinomial regression using generalized logits rela-

tive to one reference outcome value for each of the other outcome values. Outcomes

with ordinal values can be appropriately analyzed with multinomial regression or

with ordinal regression using cumulative logits for the cumulative probabilities for

the outcome values in order (except for the last outcome value with cumulative

probability 1). For multinomial regression, each generalized logit has its own

separate set of coefficients for the predictors of the model including the intercepts

of the model corresponding to the unit predictor (that is, with constant value 1). For

ordinal regression, each cumulative logit has its own separate intercept coefficient

along with the same slope coefficients for the other predictors of the model. Since

these slope coefficients are the same, they generate a common proportional odds

ratio. Multinomial regression is formulated in Sect. 8.7.1 and ordinal regression in

Sect. 8.7.2 (but these can be skipped to focus on analyses).

8.7.1 Multinomial Regression

Extending the notation of Sect. 8.3, assume that the outcome measurements ys can

have integer values v ¼ 0, 1, � � �, K where K> 1 (the case K ¼ 1 is the same as the

dichotomous outcome case of Sect. 8.3). For 0 � v � K, let ysv be the indicator for

ys ¼ v. Conditioned on the observed predictor vector xs, the mean or expected

value μsv for ysv satisfies μsv ¼ Eysv ¼ Pðys ¼ vjxsÞ for s2 S. Using generalized

logits, model glogitðμsvÞ ¼ logðμsv=μs0Þ ¼ xs
T � βv for 1� v�K (and so with

v ¼ 0 as the reference value) and K r� 1 vectors βv of coefficients. The odds

ratio OR for ys ¼ v versus ys ¼ 0 under a unit change in a predictor value xsj
adjusted for the other predictor values x

sj
0 for j0 6¼ j (if any) is computed as

OR ¼ expðβvjÞ. Solving for μsv gives

μsv ¼
expðxsT � βvÞ

1þ expðxsT: β1Þ þ � � � þ expðxsT � βKÞ
for 1 � v � K and, for v ¼ 0, μs0 ¼ 1=ð1þ expðxsT � β1Þ þ � � � þ expðxsT � βKÞÞ.
The conditional variance for ysv is σsv2 ¼ μsv � ð1� μsvÞ.
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The likelihood term Ls for the sth subject is based on the categorical distribution

and satisfies

‘s ¼ logðLsÞ ¼ ys0 � logðμs0Þ þ � � � þ ysK � logðμsKÞ:

With θ ¼ ðβ1T, � � �,βKTÞT, the likelihood L(S;θ) is the product of the likelihood

terms Ls over s2 S and satisfies

‘ðS; θÞ ¼ log LðS; θÞð Þ ¼
X
s2S

‘s:

The maximum likelihood estimate θ(S) of θ is computed by solving the estimating

equations ∂‘ S; θð Þ=∂θ ¼ 0 obtained by differentiating ‘(S; θ) with respect to θ,
where 0 denotes the zero vector. For simplicity of notation, parameter estimates

θ(S) are denoted as functions of indexes for the data used in their computation

without hat (^) symbols. With this notation, the LCV formulation of Sect. 8.3

extends to the multinomial regression context.

For s2 S, the estimated value for the mean μsv for 1 � v � K is

μsvðSÞ ¼
exp

�
xs

T � βvðSÞ
�

1þ exp
�
xsT � β1ðSÞ

�
þ � � � þ exp

�
xsT � βKðSÞ

� ,

while for v ¼ 0, μs0ðSÞ ¼ 1=ð1þ expðxsT � β1ðSÞ þ � � � þ expðxsT � βKðSÞÞ.
The estimated values for the variances σsv2 are σsv2 Sð Þ ¼ μsv Sð Þ � 1� μsv Sð Þð Þ.

The residuals are esv Sð Þ ¼ ysv � μsv Sð Þ and are combined into the K-dimensional

vectors es(S). The covariance matrix Σs(S) for es(S) satisfies ΣsðSÞ ¼ diagðμsðSÞÞ
�μsðSÞ � μsðSÞT (see, for example, Eq. (A.13.15), Bickel and Doksum 1977) where

μs(S) is the K-dimensional vector with entries μsv(S) for 1 � v � K and diag(μs(S))

is the diagonal matrix with diagonal entries μsv(S). As in Sect. 4.3.3, scaled residual
vectors scldes(S) can then be computed as scldesðSÞ ¼ ðUs

TðSÞÞ�1 � esðSÞ where
Us(S) is the square root of the covariance matrix Σs(S) determined by its

Cholesky decomposition. The entries of scldes(S) can be combined over all s and

analyzed in combination as for independent data.

The predictor vectors xs can be based on fractional polynomial transforms of

primary predictors as considered in analyses reported in Sects. 8.4–8.6. Adaptive

fractional polynomial models can also be selected using the adaptive modeling

process controlled by LCV scores as used in Sects. 8.4–8.6, but with LCV scores

computed for the multinomial regression case. The normalizing constant used in the

LCV formulation of Sect. 2.5.3 for continuous univariate outcomes is the number n

of subjects, which is also appropriate to use for dichotomous outcomes. For

polytomous outcomes, each subject’s outcome value is determined by the K

indicators ysv for 1 � v � K, and so the normalizing constant is changed to the
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effective number n�K of measurements. As in Sect. 8.3, OR functions for fractional

polynomial models can be computed by exponentiating derivatives of generalized

logit functions in primary predictors. In this case, there are multiple OR functions

for 1 � v � K.

8.7.2 Ordinal Regression

The model of Sect. 8.7.1 applies to any polytomous outcome whether the values are

nominal or ordinal. When the outcome is ordinal, an alternate model can be

considered based on cumulative logits under the proportional odds assumption as

formulated in this section. Since the outcome values are ordinal, they can be

ordered either from lowest to highest or from highest to lowest.

Assume that unit predictor values are not included in the predictor vectors xs.

Conditioned on the random predictor vector having the observed value xs, denote
the cumulative probabilities as Psv ¼ Pðys � vjxsÞ for s2S. Using cumulative

logits, model logitðPsvÞ ¼ αv þ xs
T � β for 0 � v � K� 1 where the αv are K

intercept parameters and β is a r� 1 vector of coefficients. Solving for Psv gives

Psv ¼ expðαv þ xs
T � βÞ

1þ expðαv þ xsT � βÞ

for 0 � v � K� 1 while PsK ¼ 1. Since Psv are cumulative probabilities,

they must increase with v. It is straightforward to show that

expðαþ xs
T � βÞ=ð1þ expðαþ xs

T � βÞÞ is increasing in α, and so αv is constrained
to be strictly increasing in v (so Psv differ). The odds ratio (OR) for ys � v versus

ys > v under a unit change in a predictor value xsj and adjusted for the other

predictor values x
sj
0 for j

0 6¼ j (if any) is computed as OR ¼ expðβjÞ. Since these

ORs are constant in v, this is called proportional odds. With θ ¼ ðα0, � � �,αK�1,βTÞT,
the maximum likelihood and LCV formulations of Sect. 8.7.1 extend to the ordinal

regression context.

For s2 S, the estimated value for Psv with 0 � v � K� 1 is

PsvðSÞ ¼
exp

�
αvðSÞ þ xs

T � βðSÞ
�

1þ exp
�
αvðSÞ þ xsT � βðSÞ

� :

Since μs0 ¼ Ps0 and μsv ¼ Psv � Psv�1 for 1� v�K� 1, they are estimated as

μs0ðSÞ ¼ Ps0ðSÞ, μsvðSÞ ¼ PsvðSÞ � Psv�1ðSÞ for 1� v�K� 1 while μsKðSÞ ¼
1� ðμs0ðSÞ þ � � � þ μsK�1ðSÞÞ. The variances σsv2 are estimated as σsv2ðSÞ ¼
μsvðSÞ� 1� μsv Sð Þð Þ: The residuals are esvðSÞ ¼ ysv � μsvðSÞ and are combined

into the K-dimensional vectors es(S). As in Sect. 8.7.1, scaled residual vectors

scldes(S) can then be computed as scldesðSÞ ¼ ðUs
TðSÞÞ�1 � esðSÞ where Us(S) is
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the square root of the covariance matrix Σs Sð Þ ¼ diag μs Sð Þð Þ � μs Sð Þ � μs Sð ÞT. The
entries of scldes(S) can be combined over all s and analyzed in combination as for

independent data.

The predictor vectors xs can be based on fractional polynomial transforms of

primary predictors as considered in analyses of Sects. 8.4–8.6. Adaptive fractional

polynomial models can also be selected using the adaptive modeling process

controlled by LCV scores as in Sects. 8.4–8.6, but with LCV scores computed for

the ordinal regression case normalized by the n�K effective measurements. As in

Sect. 8.3, OR functions for fractional polynomial models can be computed by

exponentiating derivatives of cumulative logit functions in primary predictors,

but now there is only one OR function for all 0� v�K� 1.

8.8 Mercury Level Categorized into Three Ordinal Levels

A variable called merclevel exists in the mercury data set with values categorizing

mercury levels into the three levels of high (mercury> 1.3 ppm) with value

2, medium (0.72 ppm<mercury� 1.3 ppm) with value 1, and low (mercury� 0:72
ppm) with value 0. A total of 61 (or 36.1 %) of the fish had a high mercury level,

52 (or 30.8 %) had a medium mercury level, and 56 (33.1 %) had a low mercury

level, and so the cutoffs (0.72 and 1.3 ppm) for this variable are close to splitting the

mercury levels into tertiles. The cutoff for a substantial PD in the LCV scores for

these data with 169 � 2 ¼ 338 effective measurements is 0.57 %.

8.9 Polytomous Mercury Level as a Function of Weight

The adaptive ordinal regression model for merclevel as a function of weight is used

as a benchmark analysis for setting the number k of folds. For k ¼ 5, the generated

model is based on the single transform weight0.1 with LCV score 0.61864. The

model generated for k ¼ 10 is also based on weight0.1 while the model for k ¼ 15 is

based on weight0.2, but both with smaller LCV scores. Since k ¼ 5 generates the

largest LCV score, it is used in subsequent analyses of merclevel. The model linear

in weight has LCV score 0.61172 with substantial PD of 1.12 % compared to the

adaptive model, and so the logits for merclevel are distinctly nonlinear in weight.

The adaptive multinomial regression model for merclevel as a function of weight is

based on the single transformweight�0:1 but has smaller LCV score 0.61709, and so

there is no benefit to the more complex multinomial model over the simpler ordinal

regression model. Consequently, only ordinal regression models are considered in

subsequent analyses of merclevel.

It is possible that the dependence of merclevel on weight changes with the river

in which the fish were caught. This can be addressed with the adaptive model based
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on weight, river, and possible GCs in these two predictors. The generated model is

based on the three transforms weight0.4, ðriver � weight1:7Þ0:7, and river � weight�1:1.

The LCV score is 0.63458. The generated additive model for weight and river

without GCs is the same as the model based on weight alone with LCV score

0.61864 and substantial PD 2.51 %. Thus, the dependence of the logits for

merclevel on weight is different for the two rivers. Estimated probabilities, as

generated by the GC-based model, for a high level of mercury are plotted in

Fig. 8.6. The probability of fish having a mercury level over 1.3 ppm is somewhat

higher for fish caught in the Lumber River than in the Waccamaw River at a low

weight of about 0.2 kg for fish in the Lumber River, increases as weights increase to

4.5 kg, but to higher levels for fish caught in the Waccamaw River. Plots for

probabilities for a low and for a low or medium mercury level are not provided

but they decrease with increased weight, to lower levels for fish caught in the

Waccamaw River than in the Lumber River, and with lower values for a low than

for a low or medium mercury level.

8.10 Polytomous Mercury Level as a Function of Length

The adaptive model for merclevel as a function of length is based on the single

power transform length2.5 with LCV score 0.64103. The model linear in length has

LCV score 0.63993 with insubstantial PD of 0.17 % compared to the adaptive

model. Thus, cumulative logits for merclevel are reasonably close to linear in

length. The adaptive model based on length, river, and possible GCs in these two

predictors depends only on length, and so the dependence of the cumulative logits

for merclevel on length is reasonably treated as the same for the two rivers.
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Fig. 8.6 Estimated probability of a high mercury level over 1.3 ppm as a function of weight

moderated by river for fish caught in the Lumber and Waccamaw Rivers based on adaptive ordinal

regression modeling
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Estimated probabilities for the model in length for a high level of mercury are

plotted in Fig. 8.7. The probability of fish having a mercury level over 1.3 ppm

increases in an s-shaped pattern as their lengths increase from approximately 25 cm

to 65 cm and is the same for fish caught in the two rivers.

Using the adaptive model in length with mercury levels ordered from high to

low, the estimated proportional OR function is plotted in Fig. 8.8. The OR increases

nearly linearly from 1.08 at a length of 25 cm to 1.43 at a length of 65 cm. For this

model, the value of the proportional OR function at a given length represents the

approximate proportional change, with a unit increase in length, in the odds for a

higher mercury level (that is, a high level or a medium to high level) versus a lower

0

0.2

0.4

0.6

0.8

1

25 30 35 40 45 50 55 60 65

pr
ob

ab
ili

ty
 o

f l
ow

 m
er

cu
ry

 le
ve

l

length in cm

Fig. 8.7 Estimated probability of a high mercury level over 1.3 ppm as a function of length for

fish caught in the Lumber and Waccamaw Rivers based on adaptive ordinal regression modeling
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Fig. 8.8 Estimated proportional odds ratio function for cumulative mercury level of high over

1.3 ppm and of medium or high over 0.72 ppm as a function of length for fish caught in the Lumber

and Waccamaw Rivers based on adaptive ordinal regression modeling
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mercury level (that is, a low to medium level or a low level). In this case, the OR is

always greater than 1, and so the odds for a higher versus lower mercury level

increase with an increase in length. Since the OR function increases, the increase in

odds for a higher versus lower mercury level with an increase in length is greater

starting at larger lengths. For example, with a unit increase in length, the odds for a

higher versus lower mercury level are approximately 1.08 times what they are at

25 cm and approximately 1.43 times what they are at 65 cm.

8.11 Polytomous Mercury Level as a Function of Weight
and Length

The adaptive additive model in weight and length is based on the two transforms:

length3.1 and weight1.1 with LCV score 0.64583. The best singleton predictor model is

the one for length with LCV score 0.64103 and substantial PD of 0.74 %, and so

weight explains aspects of merclevel not explained by length alone. The linear model

in weight and length has LCV score 0.63981 with substantial PD of 0.93 %. Conse-

quently, the additive model in both length and weight is distinctly nonlinear, in

contrast to the analyses ofmerchigh reported inSect. 8.6. Theadaptivemodel inweight

and length and possible GCs is based on the three transform: ðweight6 � length�20Þ2:3,
ðweight � length�0:5Þ1:8, andðweight�11 � length3Þ1:56 with LCV score 0.66452. The

PD for the additive model is substantial at 2.81 %, indicating that the effects of these

two variables on merclevel distinctly interact with each other. The adaptive model in

weight, length, and river along with possible GCs is based on the six transforms:

ðlength2:5� weight�0:24Þ0:9, ðweight6 � length�20Þ3:1, ðriver � weight�1:2 � lengthÞ1:41,
ðlength2:5� river � weight0:8Þ�0:81

, ðlength1:5 � weight�0:6Þ2, and length1.26 with

improved LCV score 0.67602. The PD for the model not considering river is substan-

tial at 1.70%, and so the effects of length and weight are substantially different for the

two rivers.

Figure 8.9 displays estimated probabilities for the Lumber and Waccamaw

Rivers of a high mercury level over 1.3 ppm as a function of weight for the

relatively low length of 30 cm generated by the model based on river, weight,

length, and GCs with the best overall LCV score. The range of weight values is

based on observed weight values for fish close to 30 cm in length. The probability of

a high mercury level decreases with increasing weight of fish caught in the Lumber

River and increases for fish caught in the Waccamaw River. Figure 8.10 displays

estimated probabilities of the same kind, but for the relatively high length of 50 cm.

As before, the range of weight values is based on observed weight values for fish,

but now when close to 50 cm in length. The probability of a high mercury level

increases with increasing weight of fish caught in both rivers, but starting at a lower

level for fish caught in the Waccamaw River at lower weights and becoming

somewhat higher for weights larger than 1.9 kg.
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8.12 Proportion of Correct Deleted Predictions

Logistic regression models of all types (that is, for dichotomous outcomes and for

polytomous outcomes modeled with multinomial or ordinal regression) generate

estimates of the probability of an outcome having each of the possible outcome

values under alternative settings of predictor vectors. These in turn generate pre-

dictions of the outcome values for the observations. An observation’s predicted

outcome value (using maximum likelihood estimation) is the outcome value with

the largest estimated probability under the predictor vector for that observation.

This is a correct prediction when the predicted outcome value is the actual outcome
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Fig. 8.9 Estimated probability of a high mercury level over 1.3 ppm as a function of weight for

fish caught in the Lumber and Waccamaw Rivers for length 30 cm based on adaptive ordinal

regression modeling
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Fig. 8.10 Estimated probability of a high mercury level over 1.3 ppm as a function of weight for

fish caught in the Lumber and Waccamaw Rivers for length 50 cm based on adaptive ordinal

regression modeling
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value for the observation. For a given fold assignment, deleted predicted values can

be computed for observations in each fold using predicted probabilities computed

from the observations in the complement of the fold. The proportion of correct

deleted predictions (PCDP) over all folds can be used as a model selection score.

For example, Efron (1983) uses the leave-one-out (LOO) PCDP score for selecting

logistic regression models for dichotomous outcomes. The LOO PCDP score can be

computed from the estimated LOO predicted probabilities generated by PROC

LOGISTIC with the “predprobs¼ðcrossvalidateÞ” option of the output statement

(but only for dichotomous outcomes). More general k-fold PCDP scores are

computed by the genreg macro for logistic regression models of all types and can

be used in place of LCV scores to generate adaptive logistic regression model. A

formulation is provided in Sect. 8.12.1 (which can be skipped) and example

analyses of merchigh and merclevel using PCDP scores in Sects. 8.12.2 and 8.12.3.

8.12.1 Formulation

Let μsv(S) be the estimated probability for each subject (or observation) s2S ¼
s : 1 � s � nf g and for each outcome value v with 0 � v � K under any type of

logistic regression model for any number Kþ 1 � 2 of outcome values. Under

maximum likelihood estimation, the predicted value for each subject s2S is given

by ysðSÞ ¼ vðsÞ where μsvðsÞðSÞ ¼ max0�v
0 �Kðμsv0 ðSÞÞ, that is, ys(S) is the outcome

value with the largest predicted probability for the subject. When ties occur for the

largest predicted value, genreg uses the smallest such outcome value to simplify

computations compared to randomly selecting between ties. Partition S into k> 1

disjoint folds F(h), h2H ¼ h : 1 � h � kf g. The k-fold proportion of correct

deleted predictions is given by

PCDP ¼ 1

n

X
h2H

X
s2F hð Þ

δ ys, ys S∖F hð Þð Þð Þ,

where δ ys, ys S∖F hð Þð Þð Þ is the indicator for ys ¼ ysðS∖FðhÞÞ, that is, it equals
1 when ys ¼ ysðS∖Fðh, ÞÞ and 0 otherwise. LOO PCDP scores correspond to the

case where each subject s is in its own fold. Otherwise, random fold assignment is

used (as in Sect. 2.5.3). Since larger PCDP scores indicate better models, PCDP

scores can be used in place of LCV scores to control the adaptive modeling process.

8.12.2 Example Analyses of Dichotomous Mercury Level

The adaptive unit dispersions model for merchigh in terms of weight, length, river,

and GCs based on LCV scores is described in Sect. 8.6. It has the largest LCV score
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of 0.64474 for prior models of merchigh and PCDP score 0.79882 (135/169

correctly predicted merchigh values; both types of scores are generated by genreg

for logistic regression models). The associated adaptive model based on PCDP

scores includes the two transforms for the means: ðweight�1 � length�2:1Þ1:1 and

ðlength�2 � weight0:9Þ2 with lower PCDP score 0.78107 (132/169 correctly

predicted merchigh values) and LCV score 0.56584. The PD in the LCV scores

for the PCDP-based model is substantial at 12.24 %. In this case, the LCV-based

model outperforms the PCDP-based model on the basis of both PCDP and LCV

scores and leads to a different conclusion about the impact of river. These results

indicate that PCDP scores can generate distinctly inferior adaptive models for

dichotomous outcomes. The adaptive modeling process may not be appropriate

for use with PCDP scores for such outcomes. Also, since likelihoods are the basis

for parameter estimation in the logistic regression context, the use of LCV scores

for model selection reflects the parameter estimation more closely and so seems

more appropriate.

8.12.3 Example Analyses of Polytomous Mercury Level

The adaptive unit dispersions model for merclevel in terms of weight, length, river,

and GCs based on LCV scores is described in Sect. 8.11. It has the largest LCV

score of 0.67602 for prior models of merclevel and PCDP score 0.66272 (112/169

correctly predicted merclevel values). The associated adaptive model based on

PCDP scores has PCDP score 0.62722 (106/169 correctly predicted merclevel

values) and LCV score 0.64885. The PD in the LCV scores for the PCDP-based

model is substantial at 4.02 %. Once again, the LCV-based model outperforms the

PCDP-based model on the basis of both PCDP and LCV scores. These results

indicate that PCDP scores can generate distinctly inferior adaptive models for

polytomous outcomes. Since this also is the case for dichotomous outcomes

(Sect. 8.12.2), the use of PCDP scores is not recommended for adaptive modeling.

8.13 Modeling Dispersions as Well as Means

This section provides formulations (which can be skipped) and example analyses

for logistic regression modeling of dispersions along with means. Sections 8.13.1

and 8.13.2 provide formulations for the dichotomous and polytomous outcome

cases, respectively. Section 8.13.3 provides example adaptive analyses of means

and dispersions for the dichotomous merchigh outcome variable. See Sect. 9.12 for

an example analysis of means and dispersions for the polytomous outcome

merclevel.
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8.13.1 Formulation for Dichotomous Outcomes

For standard logistic regression models, outcome measurements ys are dichotomous

with values 0 and 1, means μs ¼ P ys ¼ 1ð Þ, and variances V μsð Þ ¼ μs � 1� μsð Þ.
Consequently, variances are functions of the means and not separate parameters as

for the normal distribution. The deviance terms are defined as (McCullagh and

Nelder 1999)

dðys; μsÞ ¼ 2 � ys � log
ys
μs

� �
þ ð1� ysÞ � log

1� ys
1� μs

� �� �
,

where 0�log(0) is set equal to 0. Dispersion parameters ϕs can be incorporated into

the logistic model through the extended quasi-likelihood terms QLs
þ (McCullagh

and Nelder 1999) satisfying

‘s
þ ¼ logðQLs

þÞ ¼ �1

2
� dðys; μsÞ=ϕs �

1

2
� logðϕsÞ:

Let θ denote the vector of all the parameters determining μs and ϕs for s2 S. Then,

the extended quasi-likelihood QLþðS; θÞ satisfies

‘þðS; θÞ ¼ log
�
QLþðS; θÞ

�
¼

X
s2S

‘s
þ ¼

X
s2S

‘s � asð Þ=ϕs �
1

2
� log ϕsð Þ

� �
,

where ‘s ¼ ys � log μsð Þ þ 1� ysð Þ � log 1� μsð Þ are the usual log likelihood terms

and

as ¼ ys � log ysð Þ þ 1� ysð Þ � log 1� ysð Þ ¼ 0

for s2S. Extended variances σs2 incorporating the dispersions can then be defined

as σs2 ¼ ϕs � VðμsÞ.
Assume as in Sect. 8.3 that logitðμsÞ ¼ xs

T � β. When ϕs ¼ ϕ are constant,

θ ¼ ðβT,ϕÞT, and maximizing ‘þ S; θð Þ in θ generates the same estimates β(S) as
maximum likelihood estimation of β under the unit dispersions logistic regression

model. The maximum extended quasi-likelihood estimate ϕ(S) of ϕ then satisfies

ϕðSÞ ¼ P
s2Sdðys; μsðSÞÞ=n where μs(S) are the estimates of μs determined by β(S).

More generally, model the log of the dispersions ϕs as a function of selected

predictor variables and associated coefficients (in the same way as variances are

modeled in Sect. 2.19.1). Specifically, let logðϕsÞ ¼ vs
T � γ where, for s2S, vs is a

q� 1 column vector of q predictor values vsj (including unit predictor values if an

intercept is to be included) with indexes j2Q ¼ j : 1 � j � qf g and γ is the

associated q� 1 column vector of coefficients. The rþ qð Þ � 1 parameter vector
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θ ¼ ðβT,γTÞT is estimated through maximum extended quasi-likelihood estimation.

Alternative models can be compared with extended quasi-likelihood cross-valida-

tion (QLCVþ) scores computed as LCV scores are computed in Sect. 8.3, but using

extended quasi-likelihoods rather than likelihoods and maximum extended quasi-

likelihood estimates of θ rather than maximum likelihood estimates. The adaptive

modeling process can be extended to search through models for the means and

dispersions in combination (see Chap. 20).

As in Sect. 8.3, for s2S, the estimated value for the mean μs is

μs Sð Þ ¼ expðxsT � β Sð ÞÞ
1þ expðxsT � β Sð ÞÞ

and the corresponding residual is es Sð Þ ¼ ys � μs Sð Þ. The estimated value of the

associated dispersion ϕs is ϕsðSÞ ¼ expðvsT � γ Sð ÞÞ, and the estimated value for the

extended variance σs2 is σs2 Sð Þ ¼ ϕs Sð Þ � Vðμs Sð ÞÞ. The standardized or Pearson

residual stdes Sð Þ ¼ es Sð Þ=σs Sð Þ is obtained by standardizing the residual by divid-

ing by the estimated extended standard deviation.

8.13.2 Formulation for Polytomous Outcomes

Using the notation of Sect. 8.7.1, for outcome measurements ys with integer values

v ¼ 0, 1, � � �, K, the deviance terms are defined as (McCullagh and Nelder 1999)

dðys; μs0, � � �, μsKÞ ¼ 2 � ys0 � log
ys0
μs0

� �
þ � � � þ ysK � log ysK

μsK

� �� �
:

Dispersion parameters ϕs (and so the same for all 1� v�K) can be incorporated

into the model through the extended quasi-likelihood terms QLs
þ satisfying

‘s
þ ¼ logðQLs

þÞ ¼ �1

2
� dðys; μs0, � � �, μsKÞ=ϕs �

1

2
� logðϕsÞ:

Let θ denote the vector of all the parameters determining μs0, � � �, μsK and ϕs for

s2S. Then, the extended quasi-likelihood QLþðS; θÞ satisfies

‘þðS; θÞ ¼ log
�
QLþðS; θÞ

�
¼

X
s2S

‘s
þ ¼

X
s2S

‘s � asð Þ=ϕs �
1

2
� log ϕsð Þ

� �
,

where ‘s ¼ ys0 � logðμs0Þ þ � � � þ ysK � logðμsKÞ are the log likelihood terms and

as ¼ ys0 � logðys0Þ þ � � � þ ysK � logðysKÞ ¼ 0 for s2 S. Extended variances σsv2

can be defined that incorporate the dispersions as σsv2 ¼ ϕs � VðμsvÞ.
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Assume as in Sect. 8.7.1 that glogit μsvð Þ ¼ log μsv=μs0ð Þ ¼ xs
T � βv for

1 � v � K. When ϕs ¼ ϕ are constant, θ ¼ ðβ1T, � � �,βKT
,ϕÞT, and maximizing

‘þðS; θÞ in θ generates the same estimates β1 Sð Þ, � � �,βK Sð Þ as generated by

maximum likelihood estimation of β1, � � �, βK under the unit dispersions multino-

mial regression model. The maximum extended quasi-likelihood estimate ϕ(S) of ϕ
then satisfies

ϕðSÞ ¼ 1

n

X
s2S

d
�
ys; μs0ðSÞ, � � �, μsKðSÞ

�
,

where μs0 Sð Þ, � � �, μsK Sð Þ are the estimates of μs0, � � �, μsK determined by

β1 Sð Þ, � � �, βK Sð Þ. More generally, model the log of the dispersions ϕs as a function

of selected predictor variables and associated coefficients (as in Sect. 8.13.1).

Specifically, let logðϕsÞ ¼ vs
T � γ where, for s2S, vs is a q� 1 column vector of

q predictor values vsj (including unit predictor values if an intercept is to be

included) with indexes j2Q ¼ j : 1 � j � qf g and γ is the associated q� 1

column vector of coefficients. The r � Kþ qð Þ � 1 parameter vector

θ ¼ ðβ1T, � � �,βKT
,γTÞT is estimated through maximum extended quasi-likelihood

estimation. Alternative models can be compared with QLCVþ scores computed as

LCV scores are computed in Sect. 8.3, but using extended quasi-likelihoods rather

than likelihoods and maximum extended quasi-likelihood estimates of θ rather than
maximum likelihood estimates. The adaptive modeling process can be extended to

search through models for the means and dispersions in combination (see

Chap. 20).

As in Sect. 8.7.1, for s2 S, the estimated value for the mean μsv is

μsvðSÞ ¼
exp

�
xs

T � βvðSÞ
�

1þ exp
�
xsT � β1ðSÞ

�
þ � � � þ exp

�
xsT � βKðSÞ

�

for 1�v�K while, for v¼0,

μs0 Sð Þ¼ 1�
1þ exp

�
xsT � β1 Sð Þþ� � � þ exp xsT �βK Sð Þð Þ

The corresponding residuals are esv Sð Þ ¼ ysv � μsv Sð Þ. The estimated value of

the associated dispersion ϕs is ϕsðSÞ ¼ expðvsT � γ Sð ÞÞ, and the estimated values

for the extended variances σsv2 are σsv2ðSÞ ¼ ϕsðSÞ � Vðμsv Sð ÞÞ. The extended

covariance matrix Σs(S) for es(S) satisfies

ΣsðSÞ ¼ ϕsðS Þ� ðdiagðμs Sð ÞÞ � μsðSÞ � μsðSÞTÞ

where μs(S) is the K-dimensional vector with entries μsv(S) for 1� v�K. As in

Sect. 8.7.1, scaled residual vectors scldes(S) can then be computed as

scldesðSÞ ¼ ðUs
TðSÞÞ�1 � esðSÞ where Us(S) is the square root of the covariance
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matrix Σs(S) determined by its Cholesky decomposition. The entries of

scldes(S) can be combined over all s and analyzed in combination as for

independent data.

The ordinal regression model of Sect. 8.7.2 can be extended using a similar

formulation. In that case, the parameter vector θ ¼ ðα0, � � �,αK�1,βT,γTÞT is

Kþ rþ qð Þ � 1. Residuals and scaled residuals can be defined that account for

extended variances but with0 � v � K� 1since the casev ¼ Kis determined from

the other values (instead of v ¼ 0 as for multinomial regression).

8.13.3 Analysis of Dichotomous Mercury Level Means
and Dispersions

The adaptive modeling process can be applied to model both the means and the

dispersions of merchigh in combination. As for other analyses, models for logits of

means are not allowed to have zero intercepts, but models for log dispersions are

allowed to have zero intercepts (since they correspond to unit dispersions). When

this process is applied using the singleton predictor length for both means and

dispersions (using length since it is the better singleton predictor for

merchigh means), the generated model has extended quasi-likelihood cross-

validation (QLCVþ) score 0.64457. The adaptive model with unit dispersions has

QLCVþ score 0.59140 (the same as its LCV score as reported in Sect. 8.5) and so

with substantial PD of 8.25 %. Consequently, non-unit dispersions models provide

a distinct improvement over unit dispersions models for merchigh as a function of

length. The means in this model are now based on the transform length4.2. The

dispersions of this model depend on the single transform length6.6 with an intercept.

The model with both means and dispersions based on untransformed length has

QLCVþ score 0.58575 with substantial PD of 9.13 %, indicating that log disper-

sions for merchigh are distinctly nonlinear in length in contrast to prior results for

the logits of the means. Also, after adjusting for non-unit dispersions, the means

now depend on the nonlinear transform length4.2 rather than on length0.5 as was

the case for unit dispersions. Whether this is a distinct change can be assessed using

the adaptive model for the dispersions in length with the model for the logits of the

means fixed and based on length0.5. The generated model for the dispersions is

again based on the single transform length6.6 with an intercept, but the QLCVþ

score is 0.61097 with substantial PD of 5.21 %, indicating that the dependence of

the logits of the means are distinctly changed by consideration of non-unit disper-

sions based on length.

Estimated probabilities for a high mercury level based on the adaptive model for

the means and dispersions in combination are plotted in Fig. 8.11. They increase in

an s-shaped pattern from about 0.13 at 25 cm to essentially 1 by 65 cm. Estimated

dispersions for this model are plotted in Fig. 8.12. They decrease in an inverse

s-shaped pattern from about 1.9 at 25 cm to essentially 0 by 65 cm. Similar analyses
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can be conducted accounting for non-unit dispersions for merchigh and for

merclevel in terms of river, weight, and length, either separately or in combination,

and with or without GCs. These are not considered here for brevity (but see Sect.

9.12 for an example merclevel analysis).

8.14 Overview of Analyses of Dichotomous Mercury Levels

1. For the dichotomous mercury levels (Sect. 8.2), analyses use k ¼ 15 folds

(Sect. 8.4).

2. Using unit dispersions, the log odds for merchigh are distinctly nonlinear in

weight of the fish and the effect of weight is moderated by the river, in which the
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Fig. 8.11 Estimated probabilities for a high mercury level over 1.0 ppm as a function of length for

fish caught in the Lumber and Waccamaw Rivers based on adaptive logistic regression modeling

of both means and dispersions
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Fig. 8.12 Estimated dispersions for a high mercury level over 1.0 ppm as a function of length for

fish caught in the Lumber and Waccamaw Rivers based on adaptive logistic regression modeling

of both means and dispersions
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fish were caught (Sect. 8.4). Probabilities of a high mercury level over 1.0 ppm

as a function of weight and river are plotted in Fig. 8.1.

3. Using unit dispersions, the log odds for merchigh are reasonably close to linear

in length of the fish and the effect of length is reasonably considered not to

change with the river, in which the fish were caught (Sect. 8.5). Probabilities of a

high mercury level over 1.0 ppm as a function of length are plotted in Fig. 8.2

and the associated OR function in Fig. 8.3. Consideration of dispersions as well

as means depending on length of the fish distinctly improved the model and

distinctly changed the dependence of the log odds on length (Sect. 8.13.3).

Revised probabilities as a function of length are plotted in Fig. 8.11 and the

associated dispersions in Fig. 8.12.

4. Using unit dispersions, the log odds for merchigh change in complex ways with

weight and length of the fish and the river, in which the fish were caught

(Sect. 8.6). Probabilities of a high mercury level over 1.0 ppm as a function of

weight and river for alternative length values are plotted in Figs. 8.4 and 8.5. The

model generated with LCV scores outperformed the associated model generated

with PCDP scores on the basis of both the LCV and PCDP scores (Sect. 8.12.2).

See Sect. 9.6 for an example residual analysis using merchigh.

8.15 Overview of Analyses of Polytomous Mercury Levels

1. For the polytomous mercury levels (Sect. 8.8), analyses use k ¼ 5 folds

(Sect. 8.9).

2. Ordinal regression is more appropriate for analyzing polytomous mercury levels

and so is used in subsequent analyses (this and the following results reported in

Sect. 8.9). Using unit dispersions, the log odds for merclevel are distinctly

nonlinear in weight of the fish and the effect of weight is moderated by the

river, in which the fish were caught. Probabilities as a function of weight and

river are plotted in Fig. 8.6.

3. Using unit dispersions, the log odds for merclevel are reasonably close to linear

in length of the fish and the effect of length is reasonably considered not to

change with the river, in which the fish were caught (Sect. 8.10). Probabilities of

a high mercury level over 1.3 ppm as a function of length are plotted in Fig. 8.7

and the associated proportional OR function in Fig. 8.8.

4. Using unit dispersions, the log odds for merclevel change in complex ways with

weight and length of the fish and the river, in which the fish were caught

(Sect. 8.11). Probabilities of a high mercury level over 1.3 ppm as a function

of weight and river for alternative length values are plotted in Figs. 8.9 and 8.10.

The model generated with LCV scores outperformed the associated model

generated with PCDP scores on the basis of both the LCV and PCDP scores

(Sect. 8.12.3). See Sect. 9.10 for an example residual analysis using merclevel.

See Sect. 9.12 for an analysis of dispersions as well as means for merclevel.
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8.16 Chapter Summary

This chapter presents a series of analyses of the mercury level data. These analyses

address how mercury level categorized as low and high (with cutoff 1.0 ppm near

its median) and as low, medium, and high (with cutoffs 0.72 ppm and 1.3 ppm near

its tertiles) for n ¼ 169 largemouth bass caught in the Lumber and Waccamaw

Rivers of North Carolina depend on weight, length, and river.

Using unit dispersions models for mercury in fish categorized into the two levels

of high and low, the log odds depend distinctly nonlinearly on the weight of the fish,

and this relationship changes with the river in which the fish were caught, a

moderation effect. On the other hand, the relationship with the length of the fish

is reasonably close to linear and reasonably considered not to change with river.

The log odds depend on both weight and length in combination using an additive

model. This relationship is reasonably close to linear in both variables, and so also

controlling for length alters the relationship in terms of weight from distinctly

nonlinear to reasonably close to linear. The model in weight, length, and geometric

combinations (GCs) in these two predictors provides a substantial improvement

over the additive model in weight and length, indicating that the effects of weight

and length distinctly interact. Moreover, river moderates this relationship in weight

and length. The adaptive model with both means and dispersions depending on

length provides a distinct improvement over the associated unit dispersions model.

Under this model, the log dispersions are distinctly nonlinear in the length of the

fish. Moreover, the dependence of the log odds on length identified with unit

dispersions is substantially changed by consideration of non-unit dispersions from

close to linear to distinctly nonlinear. Consequently, dispersion modeling can have

a substantial impact on the model for the means and so is important to consider.

Analyses allowing for means and dispersions to depend on combinations of weight,

length, river, and GCs are left as practice exercises (see Chap. 9).

Using unit dispersions models for mercury in fish categorized into the three

ordered levels of high, medium, and low, the log proportional odds (using ordinal

regression, which is preferable for these data to multinomial regression) depend

distinctly nonlinearly on the weight of the fish, and this relationship changes with

the river in which the fish were caught. On the other hand, the relationship with the

length of the fish is reasonably close to linear and reasonably considered not to

change with the river. The log proportional odds depend on both weight and length

in combination using an additive model. This relationship is distinctly nonlinear in

contrast to results for mercury categorized into two levels. The model in weight,

length, and geometric combinations (GCs) in these two predictors provides a

substantial improvement over the additive model in weight and length, indicating

that the effects of weight and length distinctly interact. Moreover, river moderates

this relationship in weight and length, indicating that the log proportional odds

change with weight and length differently for the two rivers. Adaptive modeling of

the means and dispersions for this ordinal outcome are not addressed in this chapter.

Chapter 9 provides an adaptive analysis of its means and dispersions in terms of the
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length, river and GCs. Analyses allowing for its means and dispersions to depend on

combinations of weight, length, river and GCs are left as practice exercises (see

Chap. 9).

The proportion of correct deleted predictions (PCDP) is an alternate criterion for

comparing and evaluating logistic regression models. However, adaptive modeling

based on LCV scores can outperform adaptive modeling based on PCDP scores on

the basis of both the LCV and PCDP scores. Consequently, adaptive modeling

based on PCDP scores is not recommended.

These analyses demonstrate adaptive logistic regression modeling using frac-

tional polynomials, including modeling of dichotomous outcomes, extensions to

adaptive multinomial and ordinal regression for polytomous outcomes, and how to

model dispersions as well as means. The chapter also provides formulations for

these alternative regression models; for associated k-fold LCV scores for unit

dispersions models; for the PCDP model selection criterion; for extended quasi-

likelihood cross-validation (QLCVþ) scores for non-unit dispersions models based

on extended quasi-likelihoods; for odds ratio (OR) functions generalizing the OR

used in standard logistic regression; and for residuals and standardized (or Pearson)

residuals. The example analyses demonstrate assessing whether the log odds for an

outcome are nonlinear in individual predictors, whether those relationships are

better addressed with multiple predictors in combination compared to using single-

ton predictors, whether those relationships are additive in predictors, whether the

predictors interact using GCs, whether ordinal polytomous outcomes are better

modeled with ordinal or multinomial regression, and whether there is a benefit to

considering non-unit dispersions. Example residual analyses are not reported in this

chapter. See Chap. 9 for a description of how to conduct analyses of univariate

dichotomous and polytomous outcomes in SAS including residual analyses.
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Chapter 9

Adaptive Logistic Regression Modeling
of Univariate Dichotomous and Polytomous
Outcomes in SAS

9.1 Chapter Overview

This chapter describes how to use the genreg macro for adaptive logistic regression

modeling as described in Chap. 8 and its generated output in the special case of

univariate dichotomous and polytomous outcomes. Familiarity with the use of the

genreg macro as presented in Chap. 3 is assumed. See Supplementary Materials for

a more complete description of this macro. See Allison (2012), SAS Institute

(1995), Stokes et al. (2012), and Zelterman (2002) for details on standard

approaches for logistic regression modeling in SAS. Section 9.2 provides a descrip-

tion of the mercury data analyzed in Chap. 8. Section 9.3 provides code for

modeling means for mercury in fish categorized into the two levels of high and

low in terms of weight of the fish, Sect. 9.3 in terms of length of the fish, and

Sect. 9.6 in terms of weight and length of the fish and river in which the fish were

caught. Residual analyses based on continuous predictors, like weight and length,

of dichotomous and polytomous outcomes are better conducted using grouped data.

Section 9.4 provides a formulation for grouped-data residual analyses based on

continuous predictors of dichotomous outcomes (which can be skipped) while

Sect. 9.5 provides an example grouped-data residual analysis. Section 9.7 provides

code for analyzing means for mercury categorized into the three levels of high,

medium, and low in terms of weight, length, and river. Section 9.8 provides a

formulation for grouped-data residual analyses based on continuous predictors of

polytomous outcomes (which can be skipped) while Sect. 9.9 provides an example

grouped-data residual analysis for the polytomous mercury level outcome. Sec-

tion 9.10 provides code for modeling means and dispersions of mercury in fish

categorized into the two levels of high and low while Sect. 9.11 provides code for

modeling means and dispersions of mercury in fish categorized into the three levels

of high, medium, and low.
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9.2 Loading in the Mercury Level Data

Analyses are conducted in Chap. 8 of categorized mercury levels for n ¼ 169

largemouth bass caught in one of two rivers (Lumber and Waccamaw) in North

Carolina (see Sects. 8.2 and 8.8). Assume that these mercury level data have been

loaded into the default library (for example, by importing them from a spreadsheet

file) under the name mercury. An output title line, selected system options, labels

for the variables, and formats for values of selected variables can be assigned as

follows.

title1 "Mercury Level Data";

options nodate pageno¼1 pagesize¼53 linesize¼76;

%let merccut¼1.0; %let mlocut¼0.72; %let mhicut¼1.3;

proc format;

value rvrfmt 0¼"0:Lumber" 1¼"1:Waccamaw";

value mlvl1fmt 0¼"0:low" 1¼"1:high";

value mlvl2fmt 0¼"0:low" 1¼"1:medium" 2¼"2:high";

run;

data mercury;

set mercury;

* convert from grams to kilograms;

weight¼weight/1000;

merchigh¼(mercury>&merccut);

if mercury<¼&mlocut then merclevel¼0;

else if mercury<¼&mhicut then merclevel¼1;

else merclevel¼2;

label river¼"River"

station¼"Station Number"

length¼"Length (cm)"

weight¼"Weight (kg)"

mercury¼"Mercury Concentration (ppm)"

merchigh¼"High Mercury Level > &merccut"

merclevel¼"Mercury Level";

format river rvrfmt. merchigh mlvl1fmt. merclevel mlvl2fmt.;

run;

The merccut macro variable is used to compute the dichotomous outcome

merchigh with values 0 (mercury � 1:0 ppm (parts per million)) and 1 (mercury

>1.0 ppm) while the macro variables mlocut and mhicut are used to compute the

polytomous outcome variable merclevel with the three ordered values low (mercury

� 0:72 ppm), medium (0.72 ppm<mercury � 1:0 ppm), and high (mercury � 1:3
ppm). The value for merccut is chosen to be close to the median for mercury levels

while the values for mlocut and mhicut are chosen to be close to the tertiles. These

are set with macro variables so that the values for these cutoffs can be simply
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changed if desired. Formats are created with PROC FORMAT for the values of the

river, merchigh, and merclevel variables and assigned with the format statement in

the data step. Weights in the input data file are in grams and are converted to

kilograms so that their range of values can be more simply displayed in generated

plots. The cutoff for a substantial percent decrease (PD) for analyses of merchigh

with 169 measurements is 1.13 % (as reported in Sect. 8.2) while it is 0.57 % for

analyses of merclevel with 169 � 2 ¼ 338 effective measurements (as reported in

Sect. 8.8).

9.3 Modeling Means for Merchigh Based on Weight

Assuming that the genreg macro has been loaded into SAS (see Supplementary

Materials), an adaptive model for merchigh as a function of weight can be gener-

ated as follows.

%genreg(modtype¼logis,datain¼mercury,yvar¼merchigh,

vintrcpt¼n,foldcnt¼15,expand¼y,expxvars¼weight,

contract¼y,nocnxint¼y);

The parameter setting “modtype¼logis” requests a logistic regression model.

The datain parameter specifies the input data set, in this case the mercury data set.

The yvar parameter specifies the dichotomous or polytomous outcome variable, in

this case the dichotomous outcome variable named merchigh. The yvar variable in

this case has numeric values, but it can have character values instead. The base

models for both the means and dispersions by default are both the constant,

intercept-only model. The option “vintrcpt¼n” requests a unit dispersions model

(more precisely, the equivalent zero log dispersions model is requested). The

parameter setting “foldcnt¼15” (as justified in Sect. 8.4) requests that 15-fold

LCV scores be computed for models. This setting generates the first local maximum

in LCV scores for this analysis, and so k ¼ 15 is used in all subsequent analyses of

merchigh. The parameter setting “expand¼y” requests that the base model be

expanded. The model for the means is expanded by adding in transforms of primary

predictor variables listed in the setting for the expxvars parameter. In this case, only

weight is considered for expansion. The model for the dispersions is not changed

since the expvvars macro parameter has its default empty setting. The parameter

setting “contract¼y” requests that the expanded model be contracted. The setting

“nocnxint¼y” requests that the contraction not remove the intercept for the model

for the means. The default setting “nocnxint¼n” is a reasonable option for

“modtype¼norml”, but is not considered in all reported analyses of Chaps. 8 and 9.

This way, the logit, or log odds, when a predictor variable has value 0 is always

estimated rather than allowing it sometimes to be zero. Parameters like xintrcpt, xvars,

expxvars, and nocnxint are used to control settings for the mean, expectation or “x”

component of the model while corresponding parameters like vintrcpt, vvars,
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expvvars, and nocnvint are used to control the variance/dispersion or “v” component

of the model (see Sects. 9.11 and 9.12).

The base model is generated first, in this case the model with constant means

(since the default settings of “xintrcpt¼y” and “xvars¼” are used), unit dispersions,
and LCV score 0.49732. This is expanded by adding in the single transform

weight�0:5 for the means with associated LCV score 0.56081, and the contraction

leaves this expanded model unchanged. Table 9.1 contains part of the output

describing the expanded model. The component of the model for the logits of the

expectations or means (called the logit expectation component in the output) is

described first. It is based on an intercept parameter (denoted as XINTRCPT) and

the transform of the primary predictor weight raised to the power �0.5. The order

that terms are added into the model is indicated in the output. The intercept has

order 0 indicating it was in the base model while the single transform for weight has

order 1 since it is the first and only term added into the model. By default, the

smaller of the two outcome values is used as the reference value. The larger value

can be used as the reference value by requesting “refyval¼max” (as opposed to the

default setting “refyval¼min”). Estimates of coefficients are reported for the

non-reference value, in this case merchigh ¼ 1 (that is, mercury >1.0 ppm), and

so the estimated relationship is

logit P merchigh ¼ 1
��weight� �� � ¼ 3:0746531� 2:860968 � weight�0:5:

Since the power and the slope are both negative, the logits, and so also the

probabilities for a high level of mercury >1.0 ppm, increase as expected with

weight. The component of the model for the log of the dispersions is described next.

Table 9.1 Expanded model for a high mercury level over 1.0 ppm (merchigh) as a function of the

weight of the fish
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It is based on a zero intercept parameter (denoted as VZERO) as requested by the

“vintrcpt¼n” option and no other transforms since the vvars and expvvars macro

parameters have their empty default settings. Its order is 0 since it is in the base

model. In general, transforms for the log of the dispersions can be added into the

model along with transforms for the logits of the expectations or means in

intermingled order. Several values describing the model are generated last. Of

these, only the proportion of correct deleted predictions (PCDP; see Sect. 8.12)

and the LCV score are included in Table 9.1, both rounded to 7 digits. The number

of character positions and hence digits for PCDP and LCV scores can be changed

with the screchrs macro parameter from its default value of 9.

The estimated slope for weight�0:5 generates the estimated OR ¼
exp �2:860968ð Þ ¼ 0:057, representing the proportional change in odds for

merchigh ¼ 1 with a unit change in weight�0:5. However, how the odds change

with weight rather than with the generated transform for weight seems more

meaningful. This can be estimated (see Sect. 8.3) by first differentiating the logit

function with respect to weight giving

∂logitðPðmerchigh ¼ 1jweightÞ
�
=∂ðweightÞ ¼ �0:5 � ð�2:860968Þ � weight�0:5�1

¼ 1:430484 � weight�1:5:

Exponentiating then gives the odds ratio function

OR weightð Þ ¼ exp 1:430484 � weight�1:5
� �

:

This function is plotted in Fig. 9.1. Starting at an arbitrary value w for weight, the

odds with a unit increase, and so to wþ 1, are approximately equal to the value of

the odds ratio function OR(w) at w times the odds at w. Alternately, the odds

change proportionally with unit increases by the amount of the OR function at any
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Fig. 9.1 Odds ratio function for a high mercury level over 1.0 ppm (merchigh) as a function of the

weight of the fish
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given value for weight. In this case, the OR function is always greater than

1, indicating that the odds for a high mercury level over 1.0 ppm increase propor-

tionally with increases in weight. However, they increase by lower proportional

amounts for larger weights. ORs for weights lower than 1 are not displayed in

Fig. 9.1 since the OR increases to essentially infinity as weights decrease to their

lowest observed value.

The linear polynomial model in weight can be generated as follows using the

xvars parameter.

%genreg(modtype¼logis,datain¼mercury,yvar¼merchigh,

xvars¼weight,foldcnt¼15,vintrcpt¼n,procmod¼y);

The setting “procmod¼y” requests that an equivalent model be generated

through the appropriate standard SAS PROC, PROC LOGISTIC in this case.

Using the PROC LOGISTIC output, the slope for weight is significant at

P< 0.001 with estimated value 1.2305 generating an estimated OR ¼ 3:4 with

95 % confidence interval 2.1–5.7. The LCV score is 0.54346 with substantial PD of

3.09 % (that is, greater than the cutoff of 1.13 % for the data) compared to the

adaptively generated model in weight (as also reported in Sect. 8.4). Consequently,

the estimated OR results for the linear model are misleading in this case. Propor-

tional changes (ORs) in the odds under the adaptive model can be distinctly larger

for small weights than the upper bound of 5.7 for the linear model and distinctly

lower for large weights than the lower bound of 2.1 for that model. This provides

further support for the distinct nonlinearity of the logits for merchigh in weight.

Since the adaptive model has an intercept and the transform of weight with

power �0.5, which is one of the recommended degree 1 powers (see Sect. 2.12),

there is no need for a comparison of the adaptive model to models based on

recommended degree 1 powers. However, such comparisons can be informative

in general and can be conducted using the RA1compare macro (see Sect. 3.8) and

the RA2compare macro (see Sect. 3.9). For example, a comparison of the adaptive

monotonic model in weight (in this case, the same model as the one generated without

restricting to a single transform) can be compared to the degree 1 recommended

fractional power transforms as follows.

%RA1compare(modtype¼logis,datain¼mercury,yvar¼merchigh,

xvar¼weight,vintrcpt¼n,foldcnt¼15,

scorefmt¼7.5,nocnxint¼y);

The “nocnxint¼y” setting is needed to guarantee that the adaptive model

generated by RA1compare has a non-zero intercept for its logit expectation com-

ponent. The scorefmt option requests that LCV scores be reported by RA1compare

formatted into 7 character positions and rounded to 5 decimal digits as reported in

Chaps. 8 and 9. The recommended degree 1 power generating the best score is�0.5

and so is the same as the adaptive monotonic model with LCV score 0.56018, as

also reported in Sect. 8.4.
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An assessment of the recommended degree 2 powers can be obtained by

changing “RA1compare” in the above code to “RA2compare” with the same

parameter settings. The two recommended powers �2 and �1 combine to generate

the best LCV score of 0.55775 among recommended degree 2 powers, which is

smaller than the LCV score for the recommended degree 1 power �0.5. Conse-

quently, recommended degree 2 models are not needed in this case.

An adaptive model in weight, river, and GCs in these two predictors can be

generated as follows.

%genreg(modtype¼logis,datain¼mercury,yvar¼merchigh,

vintrcpt¼n,foldcnt¼15,expand¼y,

expxvars¼weight river,geomcmbn¼y,contract¼y,

nocnxint¼y);

GCs are requested with the “geomcmbn¼y” setting. The default setting

“geomcmbn¼n” is used to generate an additive model in weight and river. The

expanded model (output not shown) is based on the four transforms: weight�0:5,

ðriver � weight2Þ0:8, river � weight�2, and river with LCV score 0.57179. This is

contracted to the model based on the two transforms: weight�0:8, and

ðriver � weight�2Þ�0:8
with improved LCV score 0.57192 (as reported in Sect. 8.4).

9.4 Modeling Means for Merchigh Based on Length

Analyses of merchigh as a function of length can be generated similarly to analyses

of weight as in Sect. 9.3 with the predictor weight changed to length. Results of

these analyses are reported in Sect. 8.5. The adaptively generated model is based on

length0.5. Estimated probabilities for this model are displayed in Fig. 8.2 and the

estimated OR function in Fig. 8.3. This relationship does not change with the type

of river, which is justified by the results generated by the follow code.

%genreg(modtype¼logis,datain¼mercury,yvar¼merchigh,

vintrcpt¼n,foldcnt¼15,expand¼y,

expxvars¼length river,geomcmbn¼y,contract¼y,

nocnxint¼y);

The expanded model for the means is based on three transforms: length0.5,

ðriver � length3Þ2, and river with LCV score 0.58903. The contraction removes the

last two transforms and leaves the first transform unchanged, and so results in the

same model as generated for length alone with larger LCV score of 0.59140.

Residual analyses can be conducted for adaptive logistic regression models. The

genreg macro generates standardized or Pearson residuals for these models as

defined in Sect. 8.3. These are loaded into a variable named stdres in a data set
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called dataout (along with a variety of other generated variables; see Supplementary

Materials). The name of the variable can be changed with the stdrsvar parameter

and the name of the data set with the dataout parameter. Using the adaptive model

in length, the plot of the standardized residuals versus length is displayed in

Fig. 9.2, distinguishing between observations with low and high observed values

for merchigh. For fish with low observed mercury levels at most 1.0 ppm, the

standardized residuals are all negative and decrease from�0.23 to�2.11 while, for

fish with high observed mercury levels over 1.0 ppm, the standardized residuals are

all positive and decrease from 3.05 to 0.14. A residual assessment based on the

residuals of Fig. 9.2 is not very meaningful. This is the case for models based on

ungrouped continuous predictor variables like length. The length variable values

need to be grouped in order to conduct a more meaningful residual assessment.

9.5 Grouped Residuals for Univariate Dichotomous
Outcomes

This section provides a formulation (which can be skipped) for conducting residual

analyses of grouped data for univariate dichotomous outcomes. This is similar to

what is called events/trials format by PROC LOGISTIC (SAS Institute 2004;

Stokes et al. 2012).

Using the notation of Sect. 8.3, suppose the indexes s2S for the n observations

have been partitioned into G nonempty, disjoint subsets Sg for 1 � g � G. For

1 � g � G, let xg denote the average of the predictor vectors xs over s2Sg, ngv the

number of observations with indexes s2Sg with ys ¼ v for v¼ 0 and 1, and ng
¼ ng0 þ ng1 the number of observations with indexes s2Sg. The grouped data
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Fig. 9.2 Standardized residuals versus lengths for the adaptive model of a high mercury level over

1.0 ppm as a function of the length of the fish with observed values of low at most 1.0 ppm and of

high over 1.0 ppm
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consist of observations Og ¼ ðng0, ng1, xgÞ for 1 � g � G. Let μg denote the

common mean for all observations ys with s2Sg, and model logitðμgÞ ¼ xg
T � β

for a r� 1 vector β of coefficients. The likelihood term Lg for the gth group satisfies

‘g ¼ logðLgÞ ¼ ng1 � logðμgÞ þ ng0 � logð1� μgÞ:

The likelihood L(S; β) is the product of the individual likelihood terms Lg over 1

� g � G and satisfies

‘ðS; βÞ ¼ logðL S; βð ÞÞ ¼
X

1�g�G

‘g:

The maximum likelihood estimate β(S) of β is computed by solving the estimating

equations ∂‘ S; βð Þ=∂β ¼ 0 obtained by differentiating ‘(S;β) with respect to

β, where 0 denotes the zero vector. For 1� g�G, the estimated value for the

mean μg is

μgðSÞ ¼
expðxgT � β Sð ÞÞ

1þ expðxgT � β Sð ÞÞ :

The random variable ng1 is binomially distributed with estimated mean ng � μg Sð Þ
and so its associated residual is naturally defined as eg Sð Þ ¼ ng1 � ng � μg Sð Þ, that is,
as the difference between its observed value and its estimated mean. The estimated

value for the variance σg2 is σg2ðSÞ ¼ ng � μgðSÞ � ð1� μgðSÞÞ. The standardized or

Pearson residual stdegðSÞ ¼ egðSÞ=σgðSÞ is obtained by standardizing the residual

by dividing by the estimated standard deviation. These are all the residuals generated

by PROC LOGISTIC for data in events/trials format. However, observations are

inputted to genreg in ungrouped format and only logically, not physically grouped,

and so residuals are assigned to each ungrouped observation as generated through

the grouping. Specifically, each observation ys with s2Sg is assigned the residual

esðSÞ ¼ egðSÞ and standardized residual stdesðSÞ ¼ stdegðSÞ. Note that for a group
of size 1, when the only ys ¼ 1, the associated residual is 1� μgðSÞ and, when the

only ys ¼ 0, the associated residual is �μsðSÞ, and these are the same as for

ungrouped data.

Each observation can also be assigned a likelihood term using estimated values

determined from the grouped data. These likelihood terms can then be evaluated at

parameter estimates generated from fold complements and used to generate LCV

scores for grouped data models. The observation index set S is partitioned into the

k> 1 disjoint folds F(h) for h2H ¼ h : 1 � h � kf g as usual. The groups used to

compute parameter estimates for a fold complement S\F(h) are the intersections

S\ F hð Þð Þ \ Sg for 1 � g � G. In other words, group assignments are not changed,

but only observations in each group that are also in a fold complement are used to

generate grouped estimates for that fold complement.
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Grouped modeling of univariate dichotomous outcomes extends readily to

include modeling of dispersions as well as means using extended quasi-likelihoods

based on binomial likelihoods. The extension is similar to the extension in Sect.

8.13.1 for ungrouped univariate dichotomous outcomes.

9.6 Grouped Residual Analysis of Merchigh as a Function
of Length

Adaptive grouping of length values can be requested as follows.

%let wndwval¼0.07;

%genreg(modtype¼logis,datain¼mercury,yvar¼merchigh,

vintrcpt¼n,foldcnt¼15,regroup¼y,

grpvars¼length,window¼&wndwval,expand¼y,

expxvars¼length,contract¼y,nocnxint¼y);

The setting “regroup¼y” requests that observed values of the grpvars variables,

only the length variable in this case, be grouped into subsets with relative distances

within the proportion designated by the window parameter setting, in this case 0.07.

The lowest length value is used to start the grouping, it is grouped with all other

length values having proportional distance within the window value of 0.07, then

the lowest remaining ungrouped value is used to generate the next group, and the

process continues until all length values are in a group. The grouping process can be

applied to more than one grouping variable. The model can be adaptively generated

using the current grouping, as in this case, or it can be fixed at the adaptive model

generated with the ungrouped data. The LCV score is computed for ungrouped

outcome values using estimates based on the generated grouping and so can be

compared to choose the setting of the window parameter. The choice of 0.07

maximizes the LCV score over window values with multiples of 0.01 from 0.01

to 0.10 generated by varying the value for the wndwval macro variable in the above

code. The LCV score is 0.60101. The PD for the adaptive model based on the

ungrouped data is substantial at 1.60 %, indicating that grouping has distinctly

improved the model. A total of 10 groups are generated with from 1 to 41 observa-

tions per group (as reported in the output). Regenerating the adaptive model for

each grouping can generate different power transforms than for the ungrouped data.

The model for the “window¼0.07” grouping is based on the single transform

length�0:5 compared to length0.5 for the ungrouped data. However, the linear

model in grouped lengths has LCV score 0.60031 with insubstantial PD of

0.12 %, indicating that, while the generated power is further from the power 1 for

the linear model, the adaptive model is still reasonably close to linear (as reported

for the ungrouped data in Sect. 8.5), but in grouped lengths.
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The plot of the standardized residuals versus lengths for the grouped data model

is displayed in Fig. 9.3, distinguishing between low and high observed values for

merchigh. These are all well within�3 (and actually within�2), and so there are no

outliers. They are also relatively symmetric about 0 except for observations with

relatively high lengths over 50 cm. All fish with such large lengths have high

mercury levels over 1.0 ppm, suggesting that the probability may be constant once

the length gets large enough. This also suggests considering models based on

lengths bounded above somewhere around 50 cm, but that is not considered here.

The benefit of conducting a grouped versus an ungrouped residual analysis can be

seen by comparing Fig. 9.3 with Fig. 9.2.

The dataout data set contains the variable grpindex with integer values indicat-

ing the assigned group for each observation. The name of this variable can be

changed with the gpindvar macro parameter. For large data sets and/or large

numbers of grouping variables, the grouping computations can take a long time

to complete. To speed up computations, a previously generated grouping can be

reused by setting “pregrpd¼y”, indicating that the data have been pregrouped. The

gpindvar variable must exist in the datain data set and be loaded with integer values

indicating the assigned group for each observation. This can be generated by a prior

call to the genreg macro. That prior call can request “grponly¼y” so that only the

groups are computed and not any models. Alternately, the groups can be generated

with other approaches like the clustering methods of PROC CLUSTER and PROC

FASTCLUS.
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Fig. 9.3 Standardized residuals versus lengths for the adaptive model of mercury level as a

function of grouped length values with observed values of low at most 1.0 ppm and of high over

1.0 ppm
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9.7 Modeling Means for Merchigh Based on Weight
and Length

An adaptive additive model in weight and length can be generated as follows.

%genreg(modtype¼logis,datain¼mercury,yvar¼merchigh,

vintrcpt¼n,foldcnt¼15,expand¼y,

expxvars¼weight length,contract¼y,

nocnxint¼y);

GCs based on weight and length are also considered when the “geomcmbn¼y”

setting is added the above code. The linear additive model in weight and length is

generated as follows.

%genreg(modtype¼logis,datain¼mercury,yvar¼merchigh,

vintrcpt¼n,foldcnt¼15,xvars¼weight length);

The adaptive model in weight, length, and river possibly with GCs based on any

two or all three of these variables is generated as follows.

%genreg(modtype¼logis,datain¼mercury,yvar¼merchigh,

vintrcpt¼n,foldcnt¼15,expand¼y,

expxvars¼weight length river,geomcmbn¼y,

contract¼y,nocnxint¼y);

Results for these analyses are reported in Sect. 8.6.

9.8 Modeling Means for Merclevel Based on Weight
and Length

The genreg macro can also be used to model means for polytomous outcomes.

When “modtype¼logis”, the number of unique values for the outcome variable, as

determined by the setting of the yvar macro parameter, determines how that

outcome is modeled. When there are exactly two unique outcome values, standard

logistic regression models are generated. Otherwise, multinomial regression

models based on generalized logits are generated. In both these cases, the reference

outcome value is the smallest such value, but this can be changed to the largest

outcome value by requesting “refyval¼max”. The macro parameter refyval can

also be set to an integer, for example, “refyval¼2” means use the second smallest

outcome value as the reference value. When there are more than two unique

outcome values and they are ordinal, an ordinal regression model based on cumu-

lative logits with proportional odds can be generated by requesting “propodds¼y”.
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By default, cumulative logits are generated in increasing order of the outcome

values with the probability for the largest outcome value computed from probabil-

ities for the other outcome values. This can be changed to cumulative logits in the

reverse, decreasing order with probabilities for the smallest outcome value com-

puted from probabilities for the other outcome values by requesting “rvrsordr¼y”.

For example, the OR function of Fig. 8.6 is based on the model with cumulative

logits in decreasing order.

An adaptive multinomial regression model for the means of merclevel as a

function of weight can be generated as follows using 5 folds as justified in Sect.

8.9 and the default setting “propodds¼n”.

%genreg(modtype¼logis,datain¼mercury,yvar¼merclevel,

vintrcpt¼n,foldcnt¼5,expand¼y,

expxvars¼weight,contract¼y,nocnxint¼y);

Since the removal of one term from a multinomial regression model for the

means of merclevel results in the removal of two parameters corresponding to

slopes for the generalized logits for a low level and for a low to medium level, LCV

ratio tests comparing multinomial regression models for mean merclevel are more

appropriately based on two degrees of freedom (DF) than on one DF (and in general,

on DF equal to 1 less than the number of unique outcome values), and so the adaptive

modeling process adjusts for this. On the other hand, removal of one term from the

dispersions model for multinomial regression results in removal of only one param-

eter, and so the adaptive modeling process uses DF ¼ 1 for those adjustments.

Since merclevel is ordinal, an alternative adaptive ordinal regression model (but

with LCV ratio tests based on DF ¼ 1) can be requested by adding in the setting

“propodds¼y” as follows.

%genreg(modtype¼logis,datain¼mercury,yvar¼merclevel,

vintrcpt¼n,propodds¼y,foldcnt¼5,expand¼y,

expxvars¼weight,contract¼y,nocnxint¼y);

The results of generating a model for an ordinal outcome using the two options

of “propodds¼y” and “propodds¼n” can be used to conduct an assessment of the

relative merits of ordinal versus multinomial regression for that outcome. In this

case, the simpler ordinal regression model generates the better LCV score 0.61864

(see Sect. 8.9), indicating that it is preferable to the more complex multinomial

regression model for these data. If the ordinal regression model generates a smaller

LCV score with an insubstantial PD (based on DF ¼ 1), then it is also preferable as

a more parsimonious, competitive alternative. Only when the PD is substantial is

the complexity of the multinomial regression model justifiable. Of course, if the

outcome variable is nominal and not ordinal, then the ordinal regression model

should not even be considered.

While all models of Chaps. 8 and 9 are constrained to have intercepts for

modeling means, zero intercepts for the means are supported by genreg for models
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of dichotomous and polytomous outcomes. Zero intercepts for base models for the

means are requested using the setting “xintrcpt¼n”. The option “nocnxint¼n”

means that the contraction considers removing the intercepts by setting them to

zero. For multinomial regression models, all the intercept parameters for the means

are set to zero. For ordinal regression models, only the initial intercept parameter

for the means is set equal to zero, since intercept parameters for these models must

be strictly increasing (see Sect. 8.7.2), otherwise probabilities for one or more of the

outcome values will be treated as zero.

Whichever type of polytomous outcome model is used, more general models for

the means can be adaptively generated by including multiple primary predictors in

the expxvars list, possibly along with “geomcmbn¼y” to generate GCs in the

expxvars variables. For example, the adaptive ordinal regression model for the

means of merclevel in weight, length, river, and GCs in these predictors can be

generated as follows.

%genreg(modtype¼logis,datain¼mercury,yvar¼merclevel,

vintrcpt¼n,propodds¼y,foldcnt¼5,expand¼y,

expxvars¼weight length river,geomcmbn¼y,

contract¼y,nocnxint¼y,rprttime¼y);

The generated model is described in Sect. 8.11. The “rprttime¼y” setting

requests that the elapsed clock time be reported in the genreg output. This analysis

takes about 179.2 s or about 3.0 min of clock time. If the model needs to be

regenerated for some reason, it is possible to avoid waiting for it to be adaptively

generated. The model can be directly generated in less time as follows.

%genreg(modtype¼logis,datain¼mercury,yvar¼merclevel,vintrcpt¼n,

xvars¼length,xpowers¼1.26,

xgcs¼length 2.5 weight -0.24 : weight 6 length -20 :

river 1 weight -1.2 length 1 :

length 2.5 river 1 weight 0.8 :

length 1.5 weight -0.6,

xgcpowrs¼0.93.11.41 -0.812,propodds¼y,foldcnt¼5,

rprttime¼y);

The xgcs parameter is used to define GCs for modeling the means. Each GC

consists of a list of primary predictors with associated powers. For example “length

2.5 weight �0.24” means length2:5 � weight�0:24. GCs are separated in the list by

colons (:). The xgcpowrs parameter is used to power transform the GCs of the xgcs

list. Powers are assigned in the same order as GCs are listed in the xgcs list. For

example, the first power of 0.9 combined with the first GC generates the transform

ðlength2:5 � weight�0:24Þ0:9. Due to the “rprttime¼y” setting, the elapsed time for

generating this model is reported, and it takes only about 2.4 s of clock time. While

about 3.0 min as required for the adaptive process in this case is not long to wait, in
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cases where computation of adaptive models takes substantial amounts of time,

regenerating that model in several second provides a distinct reduction in time.

The RA1compare and RA2compare macros (see Sects. 3.8, 3.9 and 9.3) can be

used to compare adaptive models for polytomous outcomes to models based on

recommended degree 1 and degree 2 sets of powers. The propodds parameter for

these macros controls whether the models are ordinal or multinomial as it does for

the genreg macro.

9.9 Grouped Residuals for Univariate Polytomous
Outcomes

This section provides a formulation (which can be skipped) for conducting residual

analyses of grouped data for univariate polytomous outcomes. Both grouped

multinomial regression and grouped ordinal regression models are addressed. For

polytomous outcomes, scaled residuals, as opposed to standardized residuals as

generated for dichotomous outcomes, are generated, which account for correlation

between the indicator variables for the outcome variable taking on alternate out-

come values.

9.9.1 Multinomial Regression

Using the notation of Sect. 8.7.1, suppose the indexes s2S for the n observations

have been partitioned into G nonempty, disjoint subsets Sg for 1 � g � G. For

1 � g � G, let xg denote the average of the predictor vectors xs over s2Sg, ngv the

number of observations with indexes s2Sg satisfying ysv ¼ 1 for 0 � v � K, and

ng ¼ ng0 þ � � � þ ngK the number of observations with indexes s2Sg. The grouped

data consist of the observations Og ¼ ng0; � � �; ngK; xg
� �

for 1 � g � G. For

1 � g � K, let μgv denote the common mean for all observations ysv with s2Sg,

and model glogitðμgvÞ ¼ xg
T � βv for K r� 1 vectors βv of coefficients, and let

μg0 ¼ 1� ðμg1 þ � � � þ μgKÞ. The likelihood term Lg for the g
th group satisfies

‘g ¼ logðLgÞ ¼ ng0 � logðμg0Þ þ � � � þ ngK � logðμgKÞ:

With θ ¼ ðβ1T, � � �,βKTÞT, the likelihood L(S;θ) is the product of the likelihood

terms Lg over 1� g�G satisfying

‘ðS; θÞ ¼ logðL S; θð ÞÞ ¼
X

1�g�G

‘g:
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The maximum likelihood estimate θ(S) of θ is computed by solving the estimating

equations ∂‘ S; θð Þ=∂θ ¼ 0 obtained by differentiating ‘(S; θ) with respect to

θ, where 0 denotes the zero vector. For 1� g�G, the estimated value for the

mean μgv is

μgvðSÞ ¼
expðxgT � βv Sð ÞÞ

1þ expðxgT � β1 Sð ÞÞ þ � � � þ expðxgT � βK Sð ÞÞ
for 1 � v � K while, for v ¼ 0,

μg0 Sð Þ ¼ 1�
1þ exp

�
xgT � β1 Sð Þ þ � � � þ exp xgT � βK Sð Þ� � :

For 1 � v � K, the random variables ngv equaling the number of ysv ¼ 1 with s

2Sg are binomially distributed with estimated means ng � μgv Sð Þ and estimated

variances σgv2ðSÞ ¼ ng � μgvðSÞ � ð1� μgvðSÞÞ. Associated residuals are defined as

egv Sð Þ ¼ ngv � ng � μgv Sð Þ and are combined into the K-dimensional vectors eg(S).

The covariance matrix Σg(S) for eg(S) satisfies

Σg(S)¼ ng � (diag(μg(S))�μg(S) �μg(S)
T)

where μg(S) is the K-dimensional vector with entries μgv(S) for 1 � v � K and

diag(μg(S)) is the diagonal matrix with diagonal entries μgv(S). As in Sect. 8.7.1,

scaled residual vectors scldeg(S) can then be computed as

scldegðSÞ ¼ ðUg
T Sð ÞÞ�1 � egðSÞ

where Ug(S) is the square root of the covariance matrix Σg(S)

determined by its Cholesky decomposition. Each ysv with s2 Sg is assigned the

residual esv Sð Þ ¼ egv Sð Þ and scaled residual scldesv Sð Þ ¼ scldegv Sð Þ. Each observa-

tion ys is thus assigned K different residuals and standardized residuals corresponding

to the K non-reference values 1 � v � K. The values of scldesv(S) can be combined

over all s and all v and analyzed in combination as for independent data. LCV scores

can be computed for grouped multinomial regression models using the approach

described in Sect. 9.5 for dichotomous outcomes.

Grouped modeling of univariate polytomous outcomes extends readily to

include modeling of dispersions as well as means using extended quasi-likelihoods

based on multinomial likelihoods. The extension is similar to the extension in Sect.

8.13.2 for ungrouped univariate polytomous outcomes.

9.9.2 Ordinal Regression

Ordinal regression models based on the parameter vectorsθ ¼ ðα0, � � �,αK�1,βTÞT as
defined in Sect. 8.7.2 can be extended to grouped data similarly to the extension for

multinomial regression models of Sect. 9.9.1. Grouped residuals and standardized

residuals can also be defined in the same way as for multinomial regression but
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using estimates of μgv for the K values 0 � v � K� 1 determined by the ordinal

regression model generalized to grouped data. LCV scores can be computed for

grouped ordinal regression models using the approach described in Sect. 9.5 for

dichotomous outcomes. Grouped modeling of univariate ordinal outcomes extends

readily to include modeling of dispersions as well as means using extended quasi-

likelihoods.

9.10 Grouped Residual Analysis of Merclevel
as a Function of Length

Adaptive grouping of lengths for modeling merclevel can be requested as follows.

%let wndwval¼0.07;

%genreg(modtype¼logis,datain¼mercury,yvar¼merclevel,

vintrcpt¼n,propodds¼y,foldcnt¼5,regroup¼y,

grpvars¼length,window¼&wndwval,expand¼y,

expxvars¼length,contract¼y,nocnxint¼y);

The choice of 0.07 maximizes the LCV score over multiples of 0.01 from 0.01

to 0.10 for the window parameter generated by varying the value for the wndwval

macro variable in the above code. Its LCV score is 0.64683. The PD for the

adaptive model based on the ungrouped data with LCV score 0.64103

(as reported in Sect. 8.10) is substantial at 0.90 %, indicating that grouping has

distinctly improved the model. The adaptive grouped model is based on the single

transform length1.5 compared to length2.5 for the ungrouped data. The linear model

in grouped lengths has LCV score 0.64661 with insubstantial PD of 0.03 %,

indicating that the adaptive grouped model is also reasonably close to linear. The

resvar and stdrsvar macro parameters determine the names of variables in the

dataout data set containing residuals and scaled residuals, respectively. For the

above code, these parameters have default settings of res and stdres. Two of each of

these types of variables are generated, named res_1 and stdres_1 for predicting a

low mercury level and res_2 and stdres_2 for predicting a medium mercury level.

Scaled residuals for estimating low and medium levels of mercury are plotted in

Fig. 9.4 versus lengths for the grouped data model, distinguishing between low,

medium, and high observed values for merclevel. The scaled residuals are all well

within �3 and even well within �2, and so there are no outliers. However, there is

asymmetry for large lengths. All fish with lengths greater than about 52 cm have

high levels of mercury and generate negative scaled residuals, suggesting consid-

eration of models with the effect of length constant for large lengths, but that issue

is not addressed here.
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9.11 Modeling Dispersions as Well as Means
for the Dichotomous Outcome Merchigh

Both the dispersions and means for merchigh can be modeled in terms of length as

follows.

%genreg(modtype¼logis,datain¼mercury,yvar¼merchigh,

foldcnt¼5,expand¼y,expxvars¼length,

expvvars¼length,contract¼y,nocnxint¼y,

cnvzero¼y);

The expvvars macro parameter provides a list of primary predictors to consider

for modeling variances for the normal distribution case and dispersions for other

cases like logistic regression. In the above code, the list is the same as for expxvars,

but it can be different. The genreg macro supports several other parameters for

controlling the variance/dispersion component of the model including vvars,

vpowers, vintrcpt, vgcs, and vgcpowrs which work like xvars, xpowers, xintrcpt,

xgcs, and xgcpowrs, but address the model for the log of the variances/dispersions

(the “v” part of the model) rather than the model for the logits of the means (or the

expectations or the “x” part of the model). The default setting “vintrcpt¼y” is

requested in the above code since it seems better to start the search at the constant

dispersions model rather than at the unit dispersions model. However, the default

setting “nocnvint¼n” is also requested, thereby allowing the intercept term for the

dispersions model to be removed during the contraction. Since standard logistic

regression models have zero intercepts for the dispersion model, it does not seem
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Fig. 9.4 Scaled residuals versus lengths of the fish for predicting low and medium mercury levels

using the adaptive ordinal regression model of mercury levels as a function of grouped length

values with observed values of low at most 0.72 ppm, medium over 0.72 but at most 1.3 ppm, and

high over 1.3 ppm
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necessary to restrict dispersion models to have non-zero intercepts as it does for the

model for the means. For the same reason, it seems reasonable for the contraction

to generate a model with unit dispersions based on no transforms at all (formally,

zero log dispersions). By default, models for the means and for the dispersions

are not contracted further once they are reduced to a single transform. The setting

“cnvzero¼y” means that the contraction should consider the zero log dispersions

model (and hence the unit dispersions model) when the dispersions are based on a

single transform and not stop. The macro parameter cvxzero has the same effect on

the model for the means, but it is unlikely for zero means to be an effective

alternative.

The generated model for the above code has extended quasi-likelihood cross-

validation (QLCVþ) score 0.64457 (as also reported in Sect. 8.13.3). This model is

based on one transform for the means: length4.2 with an intercept (as for all models

considered in this chapter) and on one transform for the dispersions: length6.6 also

with an intercept. In contrast, the unit dispersions model for length (see Sects. 8.5

and 9.4) has QLCVþ score 0.59140 (the same as its LCV score) with substantial

PD of 8.25 % (as also reported in Sect. 8.13.3), indicating that dispersion model-

ing has substantially improved the model for merchigh as a function of length.

Figure 8.12 displays the estimated dispersions as a function of length. Figure 8.11

displays the estimated probabilities (or means) as a function of length. Whether

there is distinct change to the logit expectation component can be assessed as

follows.

%genreg(modtype¼logis,datain¼mercury,yvar¼merchigh,

foldcnt¼15,xvars¼length,xpowers¼0.5,expand¼y,

expvvars¼length,contract¼y,contordr¼v,

cnvzero¼y,notrxbas¼y);

The base model for the means depends on length0.5 due to the settings of the

xvars and xpowers macro parameters and is not changed in the expansion since

expxvars has its default empty setting. However, by default the contraction con-

siders adjusting the logit expectation component. This is avoided in the above code

by the setting “contordr¼v” meaning to contract only the log dispersion component

of the model and not the logit expectation component. If the model is not

contracted, a conditional transformation is executed. This could change the model

for logits of the means, but that is avoided by the “notrxbas¼y” setting meaning do

not transform the “x” base model. The generated model has QLCVþ score 0.61097

and substantial PD 5.21 % compared to the nonlinear model for both means and

dispersions (as also reported in Sect. 8.13.3). This indicates that the logit expecta-

tion model has distinctly changed when the dispersions are also modeled in terms of

length.
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9.12 Modeling Dispersions as Well as Means for the
Polytomous Outcome Merclevel

Adaptive models for means and dispersions of polytomous outcomes can be

generated similarly to such models for dichotomous outcomes. As described in

Sect. 9.8, the type of model is controlled by the propodds macro parameter. Setting

“propodds¼y” requests a proportional odds or ordinal regression model based on

cumulative logits while the default setting “propodds¼n” requests a multinomial

regression model based on generalized logits. In any case, the estimated dispersion

coefficients are the same for all outcome values and do not change with the outcome

value as do intercepts for means of ordinal regression models and intercepts and

slopes for means of multinomial regression models. For example, an adaptive

ordinal regression model for the means and dispersions of merclevel as a function

of length, river, and GCs can be generated starting from the constant means

and constant dispersions model (using the default settings “xintrcpt¼y” and

“vintrcpt¼y”) as follows.

%genreg(modtype¼logis,datain¼mercury,yvar¼merclevel,

propodds¼y,foldcnt¼5,expand¼y,

expxvars¼length river,expvvars¼length river,

geomcmbn¼y,contract¼y,nocnxint¼y,cnvzero¼y);

The base model for the expansion has constant means and dispersions with

QLCVþ score 0.63873 (output not provided). This is expanded (see Table 9.2)

to include first the transform length2.5 added to the means, then the six transforms

length6.62, length3.01, VGC 1¼ river � length6:8, length�6, VGC 2¼ river � length5:2,
and VGC 31:1 ¼ðlength3 � riverÞ1:1 to the dispersions, in that order, and then the

expansion stops. The QLCVþ score rounds to 0.72749. It is described in the output

as based on a “quasiþ likelihood” since extended quasi-likelihoods are used to

generate estimates and QLCVþ scores to evaluate models.

The contraction (see Table 9.3) removes the intercept, followed by the trans-

forms length3.01 and VGC_31.1 from the model for the dispersions and then stops.

The power of the transform for the means is adjusted to: length6.69 while the

remaining transforms for the dispersions are adjusted to: length6.658, VGC_11.005,

length5.66, and VGC_21.22. The estimated model for the cumulative logits satisfies

logitðP merclevel ¼ 0jlengthð ÞÞ ¼ 0:651727� 2:2 � 10�11 � length6:69,

and

logit P merclevel � 1
��length� �� � ¼ 2:5236445� 2:2 � 10�11 � length6:69:

The estimated model for the dispersions satisfies
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log dispersionð Þ ¼ �9:39 � 10�11 � length6:658
�2 � 10�11 � river � length6:8� �1:005 þ 4:7049 � 10�9 � length5:66
þ 1:203 � 10�10 � river � length5:2� �1:1

:

The QLCVþ score rounds to 0.76997. This is a substantial improvement over the

unit dispersions model in length, river, and GCs with LCV score 0.64103 (reported

in Sect. 8.10) and PD 16.75 %.

An assessment of linearity for the logits in length can be conducted as follows.

%genreg(modtype¼logis,datain¼mercury,yvar¼merclevel,

propodds¼y,foldcnt¼5,xvars¼length,expand¼y,

expvvars¼length river,geomcmbn¼y,contract¼y,

nocnxbas¼y,notrxbas¼y,cnvzero¼y);

The macro parameter xpowers has its default empty value, meaning assign the

default power of 1 to the predictor length listed in the xvars setting so that the base

Table 9.2 Expanded model for mercury levels of low at most 0.72 ppm (merclevel ¼ 0), medium

over 0.72 but at most 1.3 ppm (merclevel ¼ 1), and high over 1.3 ppm (merclevel ¼ 2) as a

function of length of the fish and the indicator river for being caught in the Waccamaw River
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model for the logits is linear in length. The logits are not changed by the expansion

since expxvars has its default empty setting. It is also not changed by the contrac-

tion due to the setting “nocnxbas¼y”, meaning do not contract the base model for

the logit expectation (or x) component of the model and by “notrxbas¼y” meaning

do not transform that component as well. By default, the contraction removes

transforms adjusting powers for the remaining transforms from both the logit

expectation and log dispersion components. This is why the “nocnxbas¼y” and

Table 9.3 Contracted model for mercury levels of low at most 0.72 ppm (merclevel ¼ 0 ),

medium over 0.72 but at most 1.3 ppm (merclevel ¼ 1), and high over 1.3 ppm (merclevel ¼ 2)

as a function of length of the fish and the indicator river for being caught in the Waccamaw River
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“notrxbas¼y” are needed above. The setting “nocnxbas¼y” can be replaced by the

setting “contrord¼y” meaning contract only the log dispersion component

(as demonstrated in Sect. 9.11), but the setting “notrxbas¼y” is still needed to

avoid transformations in the case a conditional transformation is needed. The

generated model has LCV score 0.68728 with substantial PD 10.74 % compared

to the model of Table 9.3. Thus, after adjusting for possible non-unit dispersions,

the logits for merclevel are distinctly nonlinear in length in contrast to being

reasonable close to linear with unit dispersions as reported in Sect. 8.10.

An assessment of non-constant dispersions can be assessed as follows.

%genreg(modtype¼logis,datain¼mercury,yvar¼merclevel,

propodds¼y,foldcnt¼5,expand¼y,

expxvars¼length river,geomcmbn¼y,contract¼y,

nocnxint¼y);

The base model is a constant dispersions model due to using the default setting

“vintrcpt¼y”. This is not changed by the expectation since expvvars has its default

empty setting. It is also not changed by the contraction due to using the default

setting “nocnxint¼y”. The generated model has LCV score 0.67426 with substan-

tial PD 12.43 % compared to the model of Table 9.3. Thus, dispersions for

merclevel are distinctly non-constant in length.

Figures 9.5 and 9.6 display results for the model for merclevel with non-constant

means and dispersions of Table 9.3. The estimated probability of a high mercury

level over 1.3 ppm of Fig. 9.5 has an s-shaped pattern with estimated probabilities

changing slowly for low lengths � 40cm and for high lengths � 50 cm, and is the

same for both rivers. The estimated dispersions of Fig. 9.6 increase from about 1.2

units for length 25 cm with increased length of the fish for lower values and then

decrease to essentially zero by length 55 cm. The dispersions are about the same for

the two rivers for lengths up to about 40 cm, after that the dispersions decrease for
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Fig. 9.5 Estimated probability of a high mercury level over 1.3 ppm as a function of length of the

fish caught in the Lumber and Waccamaw Rivers
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fish caught in the Lumber River and continue to increase for fish caught in the

Waccamaw River up to about 45 cm. After that, the dispersions decrease for both

rivers with increased length, at a higher level for fish caught in the Waccamaw

River until the dispersions reach zero for both rivers at about 55 cm.

Logistic regression models can sometimes generate extreme, that is, very low or

very high, probability estimates close to 0 or to 1. The minprob macro parameter

determines the minimum estimated probability. Its default setting is 0.0001, mean-

ing that probabilities are considered too low when they are< 0.0001. They are

considered too high when they are > (1� 0.0001�K) where Kþ 1 is the number of

unique outcome values. Parameter estimates are adjusted if necessary to these

boundary values to avoid generating too low or too high probability estimates.

For example, the model of Table 9.3 has been adjusted in this way as indicated in

the output. This also occurs for the expanded model but the corresponding output

line is not included in Table 9.2.

As pointed out in Sect. 9.8, the cutoff for a substantial PD in the LCV scores for

multinomial regression models for outcomes with Kþ 1 unique values is based on

DF ¼ K rather than DF ¼ 1 as is used for ordinal regression models and for models

for continuous outcomes (Chaps. 2–5). This is also the case for QLCVþ scores. The

extra DF are needed because the removal or addition of one transform of the model

for the means involves the removal or addition of K parameters rather than only one

parameter as for other modeling cases. Each transform for the model for the

dispersions, though, only involves a single parameter even for multinomial regres-

sion models, and so the adaptive modeling process in that case bases the removal or

addition of such transforms on QLCVþ ratio tests determined by DF ¼ 1.
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9.13 Practice Exercises

9.1. The unit dispersions model for the means of merchigh in weight, length, and

GCs reported in Sect. 8.6 distinctly outperformed the additive model in weight

and length. Consideration of non-unit dispersions may provide improvements

as held for the analysis involving only length reported in Sect. 8.13.3. Assess this

issue by generating the adaptive model with both means and dispersions

depending on weight, length, and GCs. Compare this model to the associated

unit-dispersions model of Sect. 8.6. Next generate the adaptive model with both

means and dispersions depending additively on weight and length and assess

whether there is a benefit to considering GCs or not. For these analyses, start from

the constant model for both means and dispersions. Do not allow the contraction

to remove the intercept from the model for the means but allow the contraction to

consider unit dispersions models. Use 15 folds as justified in Sect. 8.4.

9.2. The unit dispersions model for the means of merchigh in weight, length, river

and GCs reported in Sect. 8.6 distinctly outperform the additive model in

weight, length, and river. Consideration of non-unit dispersions may provide

improvements. Assess this issue by generating the adaptive model with both

means and dispersions depending on weight, length, river, and GCs. Start from

the constant model for both means and dispersions. Do not allow the contrac-

tion to remove the intercept from the model for the means but allow the

contraction to consider unit dispersions models. Use 15 folds as justified in

Sect. 8.4. Does the generated model substantially improve on the models

generated for Practice Exercise 9.1? Is there a distinct effect to river on

means and/or dispersions?

9.3. The unit dispersions model for the means of merclevel in weight, length, and

GCs is reported in Sect. 8.11. Consideration of non-unit dispersions may

provide improvements as held for the analysis involving length and river

reported in Sect. 9.12. Assess this issue by generating the adaptive model

with both means and dispersions depending on weight, length, and GCs. Com-

pare this model to the associated unit-dispersions model of Sect. 8.11 to see if

similar results are produced. Next generate the adaptive model with both means

and dispersions depending additively on weight and length and assess whether

there is a benefit to considering GCs or not. For these analyses, use adaptive

ordinal regression modeling as justified in Sect. 8.9. Start from a constant model

for both the means and the dispersions. Do not allow the contraction to remove

the intercept from the model for the means but allow the contraction to consider

unit dispersions models. Use 5 folds as justified in Sect. 8.9.

9.4. For unit dispersions models in weight, length, and river, there is a distinct

effect to river on the means for merclevel (see Sect. 8.11). Consideration of

non-unit dispersions models may provide improvements. Assess this issue by

generating the adaptive model with both means and dispersions depending on

weight, length, river, and GCs. Use adaptive ordinal regression modeling as

justified in Sect. 8.9. Start from a constant model for both the means and the

dispersions. Do not allow the contraction to remove the intercept from the
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model for the means but allow the contraction to consider unit dispersions

models. Use 5 folds as justified in Sect. 8.9. Does the generated model

substantially improve on the model generated for Practice Exercise 9.3? Is

there a distinct effect to river on means and/or dispersions?

For Practice Exercises 9.5–9.6, use the Titantic survival data available on the

Internet (see Supplementary Materials). Data are available for 756 passengers

with no missing data. The outcome variable for this data set is called survived

and is the indicator for having survived the sinking of the Titantic. The

predictors to be considered are age and the indicator fstclass for the passenger

being in first class versus second or third class. The gender of the passenger is

also available in the data set but is not used in the practice exercises.

9.5. For the Titantic data, use the adaptive model for having survived as a function

of age as the benchmark analysis to set the number of folds for LCV scores. Do

not allow the contraction to remove the intercept from the model for the means

for all analyses for this practice exercise. Use unit dispersions for all analyses

of this practice exercise. Compare the adaptive model in age to the linear

polynomial model in age and assess whether the log odds for having survived

changes distinctly nonlinearly or not. Generate the adaptive additive model in

age and fstclass and the adaptive model in age, fstclass, and GCs. Assess

whether being in first class or not distinctly moderates (see Sect. 4.5.3) the

effect of age on the chance for surviving. Describe how means for surviving

change with the predictors of the most preferable unit dispersions model?

9.6. For the Titantic data, generate adaptive non-unit dispersions models. In these

analyses, start from a constant model for both the means and the dispersions, do

not allow the contraction to remove the intercept from the model for the means,

but allow the contraction to consider unit dispersions models. Use the number of

folds determined for Practice Exercise 9.5. First generate the adaptive additive

model for means and dispersions depending on age and fstclass. Does the

generated model substantially improve on the adaptive additive unit dispersions

model generated for Practice Exercise 9.5? Is there a substantial benefit to

considering non-unit dispersions? Then generate the adaptive model for means

and dispersions depending on age, fstclass, and GCs. Is there a substantial

benefit to also considering GCs? For the preferable non-unit dispersions

model, how do means and dispersions for having survived change with age for

first class passengers compared to second and third class passengers?
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Chapter 10

Adaptive Logistic Regression Modeling
of Multivariate Dichotomous and Polytomous
Outcomes

10.1 Chapter Overview

This chapter formulates and demonstrates adaptive fractional polynomial modeling

of means and dispersions for repeatedly measured dichotomous and polytomous

outcomes with two or more values. A description of how to generate these models

in SAS is provided in Chap. 11. Standard models for this context are addressed in

several texts (e.g., Fitzmaurice et al. 2011; Molenberghs and Verbeke 2006).

Marginal modeling extends from the multivariate normal outcome context (see

Sect. 4.3) to the multivariate dichotomous and polytomous outcome context.

However, due to the complexity in general of computing likelihoods and quasi-

likelihoods (as needed to account for non-unit dispersions) for general multivariate

marginal modeling, generalized estimating equations (GEE) techniques (Liang and

Zeger 1986) are often used instead, thereby avoiding computation of likelihoods

and quasi-likelihoods. This complicates the extension of adaptive modeling to the

GEE context since it is based on cross-validation (CV) scores computed from

likelihoods or likelihood-like functions (but see Sects. 10.7 and 10.8). Conditional

modeling also extends to the multivariate dichotomous and polytomous outcome

context, both transition modeling (see Sect. 4.7) and general conditional modeling

(see Sect. 4.9). In contrast to marginal GEE modeling, conditional modeling of

means for multivariate dichotomous and polytomous outcomes with unit disper-

sions is based on pseudolikelihoods that can be used to compute pseudolikelihood

CV (PLCV) scores on which to base adaptive modeling of multivariate dichoto-

mous and polytomous outcomes. For this reason, conditional modeling is consid-

ered first. PLCV scores are the same as LCV scores for transition models, but not in

general. Conditional modeling involving non-unit dispersions is based on extended

pseudolikelihoods and extended PLCV (PLCVþ ) scores. For transition models,

PLCVþ scores are the same as their extended quasi-likelihood CV (QLCVþ) scores
(see Sect. 8.13).

© Springer International Publishing Switzerland 2016

G.J. Knafl, K. Ding, Adaptive Regression for Modeling Nonlinear Relationships,
Statistics for Biology and Health, DOI 10.1007/978-3-319-33946-7_10

213

http://dx.doi.org/10.1007/978-3-319-33946-7_11
http://dx.doi.org/10.1007/978-3-319-33946-7_4
http://dx.doi.org/10.1007/978-3-319-33946-7_4
http://dx.doi.org/10.1007/978-3-319-33946-7_4
http://dx.doi.org/10.1007/978-3-319-33946-7_8


Section 10.2 describes a dataset with a longitudinal respiratory status outcome

that can be analyzed either as dichotomous or polytomous. Section 10.3 formulates

conditional modeling, including both transition and general conditional modeling,

for multivariate dichotomous outcomes. Section 10.4 then presents analyses of

dichotomous respiratory status, but using only transition modeling since that is

more appropriate for such longitudinal data than general conditional modeling.

Section 10.5 describes the formulation for conditional modeling of multivariate

polytomous outcomes. Section 10.6 then presents transition modeling analyses of

polytomous respiratory status. Section 10.7 formulates adaptive GEE modeling of

multivariate dichotomous and polytomous outcomes. Section 10.8 then presents

adaptive GEE analyses, but of only the dichotomous respiratory status outcome for

brevity. Sections 10.9 and 10.10 provide overviews of the results of analysis of

post-baseline dichotomous and polytomous respiratory status, respectively. Formu-

lation sections are not needed to understand analysis sections.

10.2 The Respiratory Status Data

A data set on respiratory status at baseline and at four post-baseline clinic visits for

n ¼ 111 patients with respiratory disorder is available on the Internet (see Supple-

mentary Materials). These data were analyzed and are also available in Koch

et al. (1989). For the post-baseline data, the variable status0_4 is the original

polytomous outcome and contains values for each patient’s respiratory status

categorized into 0 ¼ terrible, 1 ¼ poor, 2 ¼ fair, 3 ¼ good, and 4 ¼ excellent.

The possible predictor variables are visit (with post-baseline values 1–4),

status0_4_0 (the baseline respiratory status), and active (the indicator for the patient

being on an active as opposed to a placebo treatment). Miller et al. (1993) analyzed

the associated three-level polytomous outcome variable status0_2 with values

0 ¼ poor (original values 0–1), 1 ¼ good (original values 2–3), and

3 ¼ excellent (original value 4) with baseline value status0_2_0 (see their

Table 1). Stokes et al. (2012) analyzed the associated dichotomous outcome

variable status0_1 with values 0 ¼ poor (original values 0–2) and 1 ¼ good

(original values 3–4) with baseline value status0_1_0. Other predictors are avail-

able in the data set including age at baseline, gender, and center (1 or 2) where

treated, but these are not considered here. There are a total of 444 post-baseline

outcome measurements with four measurements available for each patient, and so

none missing. The dichotomous post-baseline outcome variable status0_1 is ana-

lyzed in Sect. 10.4 to demonstrate how to conduct logistic regression analyses using

transition models accounting for nonlinearity in predictor variables of means and

dispersions for repeatedly measured dichotomous outcomes and in Sect. 10.8 to

demonstrate adaptive GEE modeling of means and dispersions for such outcomes.

The three-level polytomous post-baseline outcome variable status0_2 is analyzed in

Sect. 10.7 to demonstrate how to conduct multinomial and ordinal regression

analyses using transition models accounting for nonlinearity in predictor variables

of means and dispersions for repeatedly measured polytomous outcomes. As for the
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logistic regression analyses of Chaps. 8–9, in all analyses reported in this chapter,

all models for means include an intercept. Also, all models have unit dispersions

unless otherwise stated.

10.3 Conditional Modeling of Multivariate Dichotomous
Outcomes

This section formulates conditional modeling in the multivariate dichotomous

outcome context, first with unit dispersions in Sect. 10.3.1 and then more general

dispersions in Sect. 10.3.2. It can be skipped to focus on analyses.

10.3.1 Conditional Modeling of Means Assuming Unit
Dispersions

Using the notation of Sects. 4.3.1–4.3.2, 4.7, and 4.9.1, for n matched sets of

measurements with indexes s2S ¼ s : 1 � s � nf g, observed data

Os,CðsÞ ¼ ðys,CðsÞ,Xs,CðsÞÞ are available for possibly different sets C(s) of measure-

ment conditions, subsets of the maximal set of possible conditions

C ¼ c : 1 � c � mf g, consisting of outcome vectors ys,C(s) with m(s) entries ysc
for c2C(s) and predictor matrices Xs,C(s) having m(s) rows xsc

T with entries xscj for

j2J ¼ j : 1 � j � rf g and for c2C(s). The observed conditional data then consist

of O#
sc ¼ y#sc; xscð Þ for the m(SC) measurements sc2SC ¼ sc : c2C sð Þ, s2Sf g

where ysc ¼ yscjys,CðsÞ∖fcg is the cth outcome measurement for matched set s

conditioned on the other outcome measurements for that matched set. The depen-

dence of y#sc on the other outcome measurements is modeled using averages

PRE(y,i,j) and associated missing indicators PREðy,i,j,∅Þ (see Sect. 4.7) of prior

outcome measurements, averages POST(y,i,j) and associated missing indicators

POSTðy,i,j,∅Þ (see Sect. 4.9.1) of subsequent outcome measurements, and aver-

ages OTHER(y,i,j) and associated missing indicators OTHERðy,i,j,∅Þ (see Sect.

4.9.1) of prior and subsequent outcome measurements, for 1 � i � j � m. For

dichotomous outcomes with values 0 and 1, these averages are also proportions

of cases with y ¼ 1. To simplify the notation, the predictor matrices Xs,C(s) are

assumed to include columns containing observed values for dependence predictors

as well as columns for non-dependence predictors. The special case of transition

modeling corresponds to cases with dependence based only on prior outcome

measurements. Note that dependence predictors can also be computed from prior

values of time-varying predictors.

For sc2SC, the mean or expected value μ#sc for y#sc satisfies

μ#sc ¼ Ey#sc ¼ Pðy#sc ¼ 1jxscÞ. With the logit (or log odds) function defined as

logit uð Þ ¼ log u= 1� uð Þð Þ for 0 < u < 1, model the logit of the mean as
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logit μ#sc
� � ¼ xsc

T � β

for a r� 1 vector β of coefficients. Solving for μ#sc gives μ#sc ¼
exp xsc

T � βð Þ= 1þ exp xsc
T � βð Þð Þ. The odds ratio OR for y#sc ¼ 1 under a unit

change in a predictor value xscj and adjusted for the other predictor values x
scj

0

for j0 6¼ j (if any) is computed as OR ¼ expðβjÞ. The conditional variance for y#sc is
σ#sc2 ¼ μ#sc � ð1� μ#scÞ.

The pseudolikelihood term PLsc for the scth measurement equals the conditional

likelihood L(O#
sc;β) for the conditional observation O#

sc and satisfies

‘sc ¼ log PLscð Þ ¼ y#sc � log μ#sc
� �þ 1� y#sc

� � � log 1� μ#sc
� �

:

The pseudolikelihood PL(SC; β) is the product of the pseudolikelihood terms PLsc

over sc2SC and satisfies

‘ðSC; βÞ ¼ logðPL SC; βð ÞÞ ¼
X
sc2SC

‘sc:

The maximum pseudolikelihood estimate β(SC) of β is computed by solving the

estimating equations ∂‘ SC; βð Þ=∂β ¼ 0 obtained by differentiating ‘(SC;β) with
respect to β, where 0 denotes the zero vector. For simplicity of notation, parameter

estimates β(SC) are denoted as functions of indexes for the data used in their

computation without hat (^) symbols. With this notation, the matched-set-wise

deletion PLCV formulation of Sect. 4.9.1 and the measurement-wise deletion

version of Sect. 4.13 both extend to the multivariate dichotomous outcome logistic

regression context. For transition models, the pseudolikelihood is a true likelihood

and PLCV scores are also LCV scores.

For sc2 SC, the estimated value for the mean μ#sc is

μ#scðSCÞ ¼
expðxscT � β SCð ÞÞ

1þ expðxscT � β SCð ÞÞ

and the corresponding residual is e#sc SCð Þ ¼ y#sc � μ#sc SCð Þ. The estimated value

for the variance σ#sc2 isσ#sc2ðSCÞ ¼ μ#scðSCÞ � ð1� μ#sc SCð ÞÞ. The standardized or
Pearson residual stde#scðSCÞ ¼ e#scðSCÞ=σ#scðSCÞ is obtained by standardizing the
residual by dividing by the estimated standard deviation.

The predictor vectors xsc can be based on fractional polynomial transforms of

primary predictors of non-dependence type as considered in analyses reported in

Chaps. 2, 4, 6, and 8 and of dependence type as considered in analyses of Chaps. 4

and 6. Adaptive fractional polynomial conditional models can be selected using the

adaptive modeling process controlled by PLCV scores as in Chap. 4, but with the

PLCV scores computed for the logistic regression case. For models based on

fractional polynomials, the odds ratio (OR) function for a primary predictor can

216 10 Adaptive Logistic Regression Modeling of Multivariate Dichotomous. . .

http://dx.doi.org/10.1007/978-3-319-33946-7_4
http://dx.doi.org/10.1007/978-3-319-33946-7_4
http://dx.doi.org/10.1007/978-3-319-33946-7_2
http://dx.doi.org/10.1007/978-3-319-33946-7_4
http://dx.doi.org/10.1007/978-3-319-33946-7_6
http://dx.doi.org/10.1007/978-3-319-33946-7_8
http://dx.doi.org/10.1007/978-3-319-33946-7_4
http://dx.doi.org/10.1007/978-3-319-33946-7_6
http://dx.doi.org/10.1007/978-3-319-33946-7_4


be generalized as in Sect. 8.3.2 to the exponentiation of the derivative of the logit

function with respect to that primary predictor.

10.3.2 Conditional Modeling of Dispersions as Well
as Means

Extending the notation of Sect. 8.13.1, dichotomous conditional outcome measure-

ments y#sc with values 0 and 1 have means μ#sc ¼ P y#sc ¼ 1ð Þ, and variances

V μ#scð Þ ¼ μ#sc � 1� μ#scð Þ. The deviance terms are defined as (McCullagh and

Nelder 1999)

dðy#sc; μ#scÞ ¼ 2 � y#sc � log
y#sc
μ#sc

� �
þ ð1� y#scÞ � log

1� y#sc
1� μ#sc

� �� �
,

where 0�log(0) is set equal to 0. Dispersion parameters ϕ#
sc can be incorporated into

the conditional logistic model through the extended quasi-pseudolikelihood terms

PLsc
þ satisfying

‘sc
þ ¼ logðPLsc

þÞ ¼ �1

2
� dðy#sc; μ#scÞ=ϕ#

sc �
1

2
� logðϕ#

scÞ:

Let θ denote the vector of all the parameters determining μ#sc and ϕ#
sc for sc2SC.

Then, the extended quasi-pseudolikelihood PLþ SC; θð Þ satisfies

‘þðSC; θÞ ¼ log
�
PLþðSC; θÞ

	
¼
X
s2SC

‘sc
þ

¼
X
sc2SC

 
ð‘sc � a#scÞ=ϕ#

sc �
1

2
� logðϕ#

scÞ
!
,

where ‘sc ¼ y#sc � log μ#scð Þ þ 1� y#scð Þ � log 1� μ#scð Þ are the usual log pseudoli-

kelihood terms and

a#sc ¼ y#sc � log y#sc
� �þ 1� y#sc

� � � log 1� y#sc
� � ¼ 0

for sc2 SC. Extended variances σ#sc2 can then be defined as σ#sc2 ¼ ϕ#
sc � Vðμ#scÞ.

Assume as in Sect. 10.3.1 that logit μ#scð Þ ¼ xsc
T � β. When ϕ#

sc ¼ ϕ# are

constant, θ ¼ ðβT,ϕ#ÞT, and maximizing ‘þ SC; θð Þ in θ generates the same

estimates β(SC) as maximum pseudolikelihood estimation of β under the unit-

dispersions conditional model. The maximum extended quasi-pseudolikelihood

estimate ϕ#(SC) of ϕ# then satisfies
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ϕ#ðSCÞ ¼ 1

mðSCÞ
X
sc2SC

dðy#sc; μ#scðSCÞÞ,

where μ#sc(SC) are the estimates of μ#sc determined by β(SC). More generally,

model the log of the dispersions ϕ#
sc as a function of selected dependence and/or

non-dependence primary predictors and associated coefficients (similarly to the

approach of Sect. 8.13.1). Specifically, let logðϕ#
scÞ ¼ vsc

T � γ where, for sc2SC,

vsc is a q� 1 column vector of q predictor values vscj (including unit predictor

values if an intercept is to be included) with indexes j2Q ¼ j : 1 � j � qf g and γ
is the associated q� 1 column vector of coefficients. The rþ qð Þ � 1 parameter

vector θ ¼ ðβT,γTÞT is estimated through maximum extended quasi-

pseudolikelihood estimation. Alternative models can be compared with extended

PLCV (PLCVþ ) scores computed as in Sect. 10.3.1 but using extended quasi-

pseudolikelihoods rather than pseudolikelihoods and maximum extended quasi-

pseudolikelihood estimates of θ rather than maximum pseudolikelihood estimates.

The adaptive modeling process can be extended to search through models for the

means and dispersions in combination (see Chap. 20).

As in Sect. 10.3.1, for sc2 SC, the estimated value for the mean μ#sc is

μ#scðSCÞ ¼
exp xsc

T � βðSCÞð Þ
1þ exp xscT � βðSCÞð Þ

and the corresponding residual is e#sc SCð Þ ¼ y#sc � μ#sc SCð Þ. The estimated value

of the associated dispersion ϕ#
sc is ϕ#

scðSCÞ ¼ expðvscT � γ SCð ÞÞ and of the

extended variance σ#sc2 is σ#sc2ðSCÞ ¼ ϕ#
scðSCÞ � Vðμ#sc SCð ÞÞ. The standardized

or Pearson residual stde#scðSCÞ ¼ e#sc SCð Þ=σ#scðSCÞ is obtained by standardizing

the residual by dividing by the estimated extended standard deviation.

10.4 Transition Modeling of Post-Baseline Dichotomous
Respiratory Status

The cutoff for a substantial percent decrease (PD) in the LCV scores (see Sect. 4.4.2

for the formula) for the 444 post-baseline dichotomous respiratory status measure-

ments is 0.43 %. Reported LCV scores are based on matched-set-wise deletion

(Sect. 4.4.1) since there are no missing outcome measurements. See Sect. 4.8 for

similar analyses of multivariate continuous outcomes.

10.4.1 Unit Dispersions Models

The adaptive model for post-baseline dichotomous outcome y ¼ status0 1 as a

function of PRE(y,1,3) (that is, the average of the up to three prior outcome values)
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and PREðy,1,3,∅Þ (that is, the indicator for there being no prior outcome values

with which to compute PRE(y,1,3), in which case PRE(y,1,3) is set to 0) is used as a

benchmark analysis for setting the number k of folds (see Sect. 2.8). Geometric

combinations (GCs; see Sect. 4.5.4) in these two predictors are not considered

because their product PREðy,1,3Þ � PREðy,1,3,∅Þ ¼ 0. The adaptively generated

model for k ¼ 5 is based on the two transforms: PRE(y,1,3)1.1 and PRE(y,1,3,∅)

with LCV score 0.57507, the same as its pseudolikelihood CV (PLCV) score since

it is a transition model. The adaptively generated models for k ¼ 10 and k ¼ 15 are

the same and are based on the two untransformed predictors: PRE(y,1,3) and

PREðy,1,3,∅Þ, with LCV scores 0.57359 and 0.57222. Since these scores are

smaller than the score for k ¼ 5, k ¼ 5 is used in subsequent analyses of this

outcome. In any case, the generated models do not differ much. This is also

supported by the 5-fold LCV score 0.57505 for the model linear in PRE(y,1,3)

and PREðy,1,3,∅Þ with insubstantial PD 0.003 % compared to the adaptive model

(that is, smaller than the cutoff 0.43 % for the data). Thus, the logits for post-

baseline status0_1 are reasonably close to linear in PRE(y,1,3) and PRE(y,1,3,∅).

The adaptive modeling process, using k ¼ 5, expands the constant base model

with LCV score 0.50235 to the model based on the two transforms: PRE(y,1,3)2 and

PREðy,1,3,∅Þ in that order, with LCV score 0.57164, and the contraction leaves the

model unchanged. However, since the transform PRE(y,1,3)2 is added to the

expanded model first and is not the only transform in the expanded model, it is

possible that the LCV score can be improved by adjusting the power of this

transform. For this reason, the adaptive modeling process also includes, in cases

like this, a conditional model transformation step that considers adjustments to the

powers of uncontracted, expanded models. There is no need for such adjustments

when terms are removed from the expanded model by the contraction, since

remaining terms have their powers adjusted as part of the contraction. In this

case, the power for PRE(y,1,3) is adjusted from 2 to 1.1 with improved LCV

score 0.57507 as reported earlier. The PD in the LCV scores for the expanded

model compared to its adjusted version is substantial at 0.60 %, and so these results

justify the inclusion of the conditional model transformation step in the adaptive

modeling process.

Basing the transition model on PRE(y,1,3) has the advantage of utilizing all prior

outcome values, but transition models based on fewer prior outcome values using

PRE(y,1,2) or PRE(y,1) (the same as PRE(y,1,1)) may be more effective. The

adaptive model based on PRE(y,1,2) and PREðy,1,2,∅Þ includes the two trans-

forms: PRE(y,1,2)0.9 and PREðy,1,2,∅Þ with smaller LCV score 0.57274 and

insubstantial PD 0.41 %. The adaptive model based on PRE(y,1) and PREðy,1,∅Þ
includes the two untransformed predictors: PRE(y,1) and PREðy,1,∅Þ with even

smaller LCV score 0.56642 and substantial PD 1.50 %. While the PD for the model

based on the prior two outcome values is insubstantial, that model has the same

number of terms as the model based on all prior outcome values, and so is not more

parsimonious. Consequently, subsequent models are based on PRE(y,1,3) and

PREðy,1,3,∅Þ:
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Models for the means have depended so far on only dependence predictors and

have been constant in the other available predictors visit, status0_1_0, and active. The

effects of the dependence predictors can be kept separate from the effects of the other

predictors by starting the adaptive modeling process at the adaptive model generated

for PRE(y,1,3) and PREðy,1,3,∅Þ, that is, with transforms PRE(y,1,3)1.1 and

PREðy,1,3,∅Þ, and expanding that base model in only the other predictors. The

dependence predictor transforms do not change during the expansion, but can change

in the contraction. The advantage of generating models this way is the separate

identification of effects on means for the other predictors conditioned on values of

the dependence predictors. For example, starting from the adaptive model in

PRE(y,1,3) and PREðy,1,3,∅Þ, the expanded model based on visit includes the

extra transform visit12 with LCV score 0.57430. The contraction removes this single

transform of visit and leaves the dependence predictor transforms unchanged. Con-

sequently, conditioned on the effects of the dependence predictors PRE(y,1,3) and

PREðy,1,3,∅Þ, mean status0_1 is reasonably considered to be constant over the four

post-baseline visits.

It is possible that there are effects on mean post-baseline status0_1 to

status0_1_0 and active and that there may be an effect to visit once these other

effects are addressed. This is addressed by starting from the adaptive model in the

dependence predictors PRE(y,1,3) and PREðy,1,3,∅Þ and adaptively generating an

additive model (that is, without GCs) in visit, status0_1_0, and active. The resulting

model is based on the four transforms: PRE(y,1,3)1.1, PREðy,1,3,∅Þ, status0_1_0,
and active with improved LCV score 0.59907. Transforms of dependence pre-

dictors are unchanged while effects to baseline status0_1 and active treatment are

added to the model. The PD for the model based on only dependence predictors is

substantial at 4.01 %, and so the effects to status0_1_0 and active are distinct. These

results indicate that the dependence predictors still account for all changes in post-

baseline status0_1 over clinic visits (since there are no visit transforms in the

model) but they do not account for the effects of baseline status0_1 and active.

The associated adaptive model adding in additive effects to only visit and sta-

tus0_1_0, but not active, has lower LCV score 0.59151 with substantial PD of

1.26 %, indicating that the effect of active on status0_1 is substantial. The estimated

slope for active in the prior model is positive indicating as expected that post-

baseline respiratory status0_1 improves under active treatment compared to pla-

cebo treatment. The estimated OR is 2.61 and is constant over time. However,

adjustments may be needed if the effect to active treatment interacts with

status0_1_0 and/or visit.

When this interaction issue is addressed by repeating the analysis with GCs

between visit, status0_1_0, and active also considered in the expansion, the adap-

tively generated model is based on four transforms: PRE(y,1,3)1.1, PREðy,1,3,∅Þ,
ðstatus0 1 0 � visit�0:7Þ0:7, and ðstatus0 1 0 � active � visit�9Þ2 with improved LCV

score 0.60406. The PD in the LCV scores for the model without GCs and with LCV

score 0.59907 (as reported above) is substantial at 0.83 %, indicating that, after

controlling for possible interactions with visit and status 0_1_0, the active treatment
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effect does change with visit. The associated adaptive model adding in effects to

only visit, status0_1_0, and GCs has lower LCV score 0.59587 with substantial PD

of 1.36 %, indicating that these effects of active on post-baseline status0_1 are

substantial.

So far, models have kept the effects of dependence predictors PRE(y,1,3) and

PREðy,1,3,∅Þ separate from the effects of visit, status0_1_0, and active. Consider-

ation of GCs in all of these five predictors might produce distinct improvements. The

adaptive model in these five predictors and possible GCs in them is based on

ðPREðy,1,3Þ2 � visit0:5Þ0:7, ðstatus0 1 0 � visit�1:4Þ0:8, and active � visit�1 with LCV

score 0.60500. The PD for the model with separate effects to dependence and

non-dependence predictors is insubstantial at 0.16 %, indicating that there is not a

distinct advantage to modeling dependence and non-dependence predictors jointly

rather than separately.

10.4.2 Non-Unit Dispersions Models

Constant dispersions models can be generated by including an intercept term in the

model for the log of the dispersions. The adaptive constant dispersions model for

the effect of the dependence predictors PRE(y,1,3) and PREðy,1,3,∅Þ on mean

status0_1 at post-baseline visits 1–4 is based on the two transforms: PRE(y,1,3)1.1

and PREðy,1,3,∅Þ with extended quasi-likelihood CV (QLCVþ ) score 0.57631.

The corresponding unit dispersions model (see Sect. 10.4.1) has QLCVþ score (the

same as its LCV score) 0.57507 with insubstantial PD of 0.22 %. Consequently, in

this case, the adaptive unit dispersions model is a parsimonious, competitive

alternative to the adaptive constant dispersions model.

Adaptive non-constant dispersions models can be generated by considering

models with both means and dispersions depending on transforms of primary

predictors. For example, the means and dispersions of post-baseline status0_1 can

both be adaptively modeled in terms of PRE(y,1,3) and PREðy,1,3,∅Þ, starting
from a constant model for both the means and dispersions, and allowing the

constant dispersions term to be removed in the contraction (thereby allowing for

unit dispersions models) but not the constant mean term (as for all other models

considered in this chapter). The adaptively generated model for the dispersions is

based on only the predictor PRE(y,1,3,∅) without an intercept while the model for

the means is based on the two transform: PRE(y,1,3)1.1 and PRE(y,1,3,∅) as

generated earlier. The QLCVþ score is 0.57887. The associated constant disper-

sions model has QLCVþ score 0.57631 with substantial PD of 0.44 %. Conse-

quently, accounting for an effect to PREðy,1,3,∅Þ provides a distinct improvement

over the constant dispersions model (and over the unit dispersions model as well

with even smaller QLCVþ score).

The adaptive model for means in terms of PRE(y,1,3), PREðy,1,3,∅Þ,
status0_1_0, visit, active, and GCs and for dispersions in terms of PRE(y,1,3),
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and PREðy,1,3,∅Þ, starting from constant means and constant dispersions and

allowing for unit dispersions is a unit dispersions model, indicating that unit

dispersions are reasonable for predicting mean status0_1 as long as enough pre-

dictors are considered. The adaptive model for both means and dispersions in terms

of PRE(y,1,3), PREðy,1,3,∅Þ, status0_1_0, visit, active, and GCs, starting from

constant means and constant dispersions and allowing for unit dispersions

has means depending on the four transforms: ðPREðy,1,3Þ2 � visit0:5Þ0:39,
ðstatus0 1 0 � visit�1:4Þ0:51, ðvisit�1:7 � active � status0 1 0Þ4:0011 and PREðy,1,3,∅Þ
with an intercept and dispersions depending on active∙status0_1_0 ∙PREðy,1,3,∅Þ,
visit0.511, and PRE y;1;3ð Þ�2

, also with an intercept. The QLCVþ score is

0.76753, which is a substantial improvement over the best unit dispersions model

with LCV=QLCVþ score 0.60500 and PD 21.18 %. Consequently, the extra

predictors: status0_1_0, visit, and active have a distinct effect on the dispersions.

The adaptive model with means and dispersions depending on PRE(y,1,3),

PREðy,1,3,∅Þ, status0_1_0, visit, andGCs, but not active, has substantially smaller

QLCVþ score 0.65710 with PD 14.39 %, and so active has a distinct effect on both

the means and dispersions.

Table 10.1 contains estimated probabilities of a good dichotomous respiratory

status based on the best transition model reported above. At any given visit, the

probability of good status increases with an increasing average of the prior three

dichotomous respiratory status values. There is no effect to being on the active

treatment for patients with poor baseline dichotomous respiratory status. Patients on

the placebo with good baseline dichotomous respiratory status have an increased

chance of having good post-baseline dichotomous respiratory status compared to

patients on the placebo or active treatment with poor baseline dichotomous respi-

ratory status. Patients on the active treatment with good baseline dichotomous

respiratory status have an increased chance of having good post-baseline dichoto-

mous respiratory status compared to patients with poor baseline dichotomous

respiratory status on either the placebo or active treatment at all visits and compared

to patients with good respiratory status but only at the first two visits.

Table 10.2 contains estimated dispersions for a good dichotomous respiratory

status based on the best transition model reported above for patients either on the

placebo treatment or with poor baseline respiratory status. The dispersion at visit

1 is larger than at the other visits except for the largest dispersion value at visit 4. At

later visits, the dispersion increases at first with larger averages of prior respiratory

status values and then for visits 3 and 4 it decreases. For patients on active treatment

and with good baseline respiratory status, the estimated dispersions are the same as

reported in Table 10.2 except at visit ¼ 1 since then there is not a prior respiratory

value to average and PREðy,1,3,∅Þ ¼ 1. In this case, the estimated dispersion is

essentially zero.
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10.5 Conditional Modeling of Multivariate Polytomous
Outcomes

The formulation of multinomial and ordinal regression of means for univariate

polytomous outcomes (see Sect. 8.7) extends to conditional modeling of means for

multivariate polytomous outcomes. The extension is straightforward and similar to

the extension of standard logistic regression modeling of means for univariate

dichotomous outcomes (see Sect. 8.3) to conditional modeling of means for mul-

tivariate dichotomous outcomes (see Sect. 10.3.1). The extension of modeling of

dispersions along with means for multivariate polytomous outcomes is also

straightforward and similar to the extension for multivariate dichotomous outcomes

Table 10.1 Probability estimates of good dichotomous respiratory status based on the non-unit

dispersions transition model

Visit PRE(y,1,3)

Treatment

Placebo Active

Poor baseline

status

Good baseline

status

Poor baseline

status

Good baseline

status

1 0 0.37 0.71 0.37 1.00

2 0 0.14 0.29 0.14 0.31

2 1 0.71 0.86 0.71 0.87

3 0 0.14 0.25 0.14 0.25

3 1/2 0.48 0.64 0.48 0.64

3 1 0.76 0.86 0.76 0.86

4 0 0.14 0.23 0.14 0.23

4 1/3 0.39 0.52 0.39 0.52

4 2/3 0.62 0.73 0.62 0.73

4 1 0.79 0.86 0.79 0.86

PRE(y,1,3): average of prior three dichotomous respiratory status values

Table 10.2 Dispersion estimates of good dichotomous respiratory status based on the non-unit

dispersions transition model for patients on the placebo treatment or with poor baseline respiratory

status

Visit PRE(y,1,3) Dispersion

1 0 1.30

2 0 1.01

2 1 1.10

3 0 0.83

3 1/2 1.17

3 1 0.91

4 0 0.70

4 1/3 1.53

4 2/3 0.86

4 1 0.77

PRE(y,1,3): average of prior three dichotomous respiratory status values
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(see Sect. 10.3.2). For this reason, a detailed formulation for multivariate

polytomous outcomes is not provided here. The crucial issue is the computation

of dependence predictors underlying conditional modeling of polytomous out-

comes y with values v ¼ 0, 1, � � �, K. When outcomes y are ordinal, averages

PRE(y,i,j), POST(y,i,j), and OTHER(y,i,j) of prior, subsequent, and other outcome

measurements and associated missing indicators PREðy,i,j,∅Þ, POSTðy,i,j,∅Þ, and
OTHERðy,i,j,∅Þ are reasonable to use as dependence predictors in either ordinal or
multinomial regression models of associated conditional outcomes. However, these

dependence predictors seem inappropriate to use to model multivariate nominal

outcomes y. The appropriate dependence predictors in that case are the averages

PRE y¼v,i,jð Þ, POST y¼v,i,jð Þ, and OTHER y¼v,i,jð Þ of the indicator variables for
prior, subsequent, or other outcome measurements having value v (or, equivalently,

proportions of such outcome measurements having value v) and associated missing

indicators PREðy¼v,i,j,∅Þ, POSTðy¼v,i,j,∅Þ, and OTHERðy¼v,i,j,∅Þ for

1 � v � K, assuming v ¼ 0 is the reference value. These can also be used as

dependence predictors for ordinal outcomes.

10.6 Transition Modeling of Post-Baseline Polytomous
Respiratory Status

Analyses are reported in this section of the post-baseline three-level polytomous

outcome y ¼ status0 2. The cutoff for a substantial percent decrease (PD) in the

LCV scores (see Sect. 4.4.2 for the formula) for the 444 � 2 ¼ 888 effective number

(computed similarly to the univariate case of Sect. 8.7.1) of post-baseline

polytomous respiratory status measurements is 0.22 %. Reported LCV scores are

based on matched-set-wise deletion since there are no missing outcome

measurements.

10.6.1 Unit Dispersions Models

Since status0_2 is an ordinal outcome, ordinal regression transition models are

considered first. The adaptive model for status0_2 as a function of PRE(y,1,3) and

PREðy,1,3,∅Þ (without GCs since the product of these two variables equals zero for
all observations) in these two predictors is used as a benchmark analysis for setting

the number k of folds. The adaptively chosen model for k ¼ 5 is based on the two

transforms: PRE(y,1,3)0.9 and PREðy,1,3,∅Þ with LCV score 0.65933 (the same as

its PLCV score). The adaptively generated models for k ¼ 10 and k ¼ 15 are the

same as for k ¼ 5 with LCV scores 0.65962 and 0.65874. Thus, k ¼ 10 generates

the first local maximum in LCV scores and so is used in subsequent analyses of this

outcome. The model linear in PRE(y,1,3) andPREðy,1,3,∅Þ has 10-fold LCV score
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0.65940 with insubstantial PD 0.03 % compared to the adaptive model, and so the

cumulative logits for post-baseline status0_2 are reasonably close to linear in

PRE(y,1,3) and PREðy,1,3,∅Þ.
Although status0_2 is an ordinal outcome, multinomial regression transition

models for status0_2 might provide improvements over ordinal regression

transition models. However, the adaptively generated multinomial regression tran-

sition model for status0_2 based on the dependence predictors PRE(y,1,3) and

PREðy,1,3,∅Þ has the smaller LCV score 0.65870. Furthermore, the adaptively

generated multinomial regression transition model for status0_2 based on the

dependence predictors PRE y¼1,1,3ð Þ (that is, the proportions of the up to three

prior outcome measurements with value 1), PRE y¼2,1,3ð Þ (that is, the proportions
of the up to three prior outcome measurements with value 2), and

PREðy¼1,1,3,∅Þ ðPREðy¼2,1,3,∅Þ ¼ PREðy ¼ 1,1,3,∅Þ since there are no

missing outcomes and so is not needed) has a little larger LCV score 0.65898, but

not larger than for the ordinal regression model. Thus, ordinal regression transition

models for status0_2 are somewhat more effective than multinomial regression

transition models and also simpler. For this reason, only ordinal regression transi-

tion models are used in subsequent analyses.

It is possible to base transition models on fewer prior outcome values using

PRE(y,1,2) or PRE(y,1,1). The adaptive model based on PRE(y,1,2) and

PREðy,1,2,∅Þ includes the two transforms: PRE(y,1,2)0.9 and PREðy,1,2,∅Þ,
with improved LCV score 0.66284. The adaptive model based on PRE(y,1) and

PREðy,1,∅Þ includes the two untransformed predictors: PRE(y,1)0.91 and

PREðy,1,∅Þ, with smaller LCV score 0.65968. Consequently, using dependence

predictors based on the prior two outcome measurements produces the best of these

three alternative models for post-baseline status0_2, and so subsequent analyses use

these dependence predictors. It is also possible to base conditional ordinal regres-

sion models on dependence predictorsPRE y¼v,1,jð Þ for v ¼ 1, 2 and j ¼ 1, 2, 3 and

associated missing indicators, but that issue is not addressed here.

Starting from the adaptive model in the dependence predictors PRE(y,1,2) and

PREðy,1,2,∅Þ and adaptively generating an additive model in visit, status0_2_0,

and active, the resulting model is based on the four transforms: PRE(y,1,2 )0.9,

PREðy,1,2,∅Þ, status0_2_01.2, and active with improved LCV score 0.67191. The

PD for the prior best model is substantial at 1.35 %, and so the extra effects to

status0_2_0 and active in this latter model are distinct. The associated model with

active no longer considered has LCV score 0.66902 and substantial PD of 0.43 %,

indicating that there is a distinct effect to being on active compared to placebo

treatment. Increasing order for the status0_2 values is used to generate the model

with the active effect, so the generated proportional OR is based on the odds for

lower values compared to higher values, that is, the odds for worse respiratory

status compared to better respiratory status. The estimated proportional OR is 0.54.

In other words, as expected the odds for worse respiratory status compared to better

respiratory status are smaller when on active compared to placebo treatment.

However, these results may need adjustment if the effect to active treatment

interacts with status0_2_0 and/or visit.
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When this interaction issue is addressed by repeating the analysis with GCs

between visit, status 0_2_0, and active also considered in the expansion, the

adaptive model is based on four transforms: PRE(y, 1, 2)0.83, PREðy,1,2,∅Þ,
ðactive � status0 2 01:9 � visit�0:6Þ0:7, and ðstatus0 2 00:8 � visit�7Þ1:6 with improved

LCV score 0.67609. The PD in LCV scores for the model without GCs is substantial

at 0.62 %, indicating that GCs provide a distinct improvement. Moreover, the

associated adaptive model without active has LCV score 0.67168 with substantial

PD of 0.65 %, indicating that, the effect to active is substantial. This effect changes

with status0_2_0 and visit and is limited to patients with good or excellent baseline

respiratory status0_2 since ðactive � status0 2 01:9 � visit�0:6Þ0:7 ¼ 0 when status0 2

¼ 0 whatever the values for active and visit are. For patients with good baseline

respiratory status ðstatus0 2 0 ¼ 1Þ, the estimated proportional OR for worse

compared to better respiratory status at visit ¼ 1 is 0.49 and increases to 0.62 at visit

¼ 2, 0:69 at visit ¼ 3, and 0.73 at visit ¼ 4. For patients with excellent baseline

respiratory status status0 2 0 ¼ 2ð Þ, the estimated proportional OR for worse

compared to better respiratory status at visit ¼ 1 is 0.07 and increases to 0.17 at visit

¼ 2, 0:25 at visit ¼ 3, and 0.31 at visit ¼ 4. Thus, the effect of active treatment is

weaker for later clinic visits.

10.6.2 Non-Unit Dispersions Models

The adaptive model for the means in the dependence predictors PRE(y,1,2) and

PRE(y,1,2,∅) with constant dispersions is based on the two transforms:

PRE(y,1,2)0.9 and PREðy,1,2,∅Þ with QLCVþ score 0.68749. The associated

unit dispersions model of Sect. 10.6.1 with QLCVþ score 0.66284 (the same as

its LCV score) generates a substantial PD of 3.59%. Consequently, the dispersions

for status0_2 are distinctly non-unit. The adaptive model for both means and

dispersions in terms of the dependence predictors PRE(y,1,2) and PREðy,1,2,∅Þ,
starting from a constant model for both the means and dispersions but allowing all

dispersions terms to be removed in the contraction so that unit dispersions

models are considered, has means based on the two transforms: PRE(y, 1, 2)0.9

and PREðy,1,2,∅Þ with an intercept and the dispersions based on the two trans-

form: PRE y;1;2ð Þ�0:5
and PREðy,1,2,∅Þ without an intercept, having improved

QLCVþ score 0.68906 (the same as its PLCVþ score). The associated adaptive

constant dispersions model generates a substantial PD 0.23%. Consequently, there

is a distinct non-constant effect to PRE(y,1,2) on the dispersions. Starting from this

revised dependence predictor model for the means and dispersions, the adaptive

model with both means and dispersions also depending on visit, status0_1_0,

active, and GCs in these three predictors is the model based on four transforms

for the means: PREðy,1,2,∅Þ, PRE(y,1,2)0.9, ðactive � status0 2 01:9 � visit�0:6Þ0:6,
and visit�10 � status0 2 01:2 (with an intercept as always) and the single transform
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for the dispersions: visit�0:3 without an intercept and improved QLCVþ score

0.69635. The base model withQLCVþ score 0.68906 has substantial PD of 1.05%,

and so also accounting for non-dependence predictors provides a distinct improve-

ment over only dependence predictors. The associated adaptive model not consid-

ering active as a predictor for the means or the dispersions has QLCVþ score

0.69349 and substantial PD of 0.41 %, indicating that the effect of active on the

means is substantial.

Under the model including the effect of active, that effect changes with

status0_2_0 and visit and is limited to patients with good or excellent baseline

respiratory status0_2. For patients with good baseline respiratory status

status0 2 0 ¼ 1ð Þ, the estimated proportional OR for worse compared to better

respiratory status at visit ¼ 1 is 0.47 and increases to 0.56 at visit ¼ 2, 0:60 at

visit ¼ 3, and 0.63 at visit ¼ 4. For patients with excellent baseline respiratory

status status0 2 0 ¼ 2ð Þ, the estimated proportional OR for worse compared to

better respiratory status at visit ¼ 1 is 0.19 and increases to 0.28 at visit ¼ 2, 0:33 at
visit ¼ 3, and 0.37 at visit ¼ 4. Dispersions decrease from 0.54 at visit 1 to 0.44 at

visit 2, 0.39 at visit 3, and 0.36 at visit 4.

10.7 Adaptive GEE-Based Modeling of Multivariate
Dichotomous and Polytomous Outcomes

This section generalizes adaptive modeling of multivariate dichotomous

and polytomous outcomes to allow for GEE parameter estimation. Extended LCV

(LCVþ) scores computed with multivariate normal likelihoods extended to address

dichotomous and polytomous outcomes are used to evaluate and compare models

as part of the adaptive modeling process. Section 10.7.1 provides the formulation

for multivariate dichotomous outcomes and Sect. 10.7.2 for multivariate

polytomous outcomes. LCVþ scores for GEE-based models are computed with

multivariate normal likelihoods while LCV and QLCVþ scores for transition and

general conditional models are computed with Bernoulli likelihoods for the dichot-

omous case and categorical likelihoods for the polytomous case, and so these are

not comparable. However, it is possible to compute LCVþ scores for marginal

models induced by transition models, which can be compared to LCVþ scores for

GEE-based models. The formulation is provided in Sect. 10.7.3.

10.7.1 Dichotomous Outcomes

Using the notation of Sect. 4.3, for n matched sets of measurements with indexes

s2S ¼ s : 1 � s � nf g, observed data Os,CðsÞ ¼ ðys,CðsÞ,Xs,CðsÞÞ are available for

possibly different sets C(s) of measurement conditions, subsets of the maximal set
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of possible conditions C ¼ c : 1 � c � mf g, consisting of outcome vectors ys,C(s)
with m(s) entries ysc having values 0 and 1 for c2C(s) and predictor matrices Xs,C(s)

having m(s) rows xsc
T with entries xscj for j2J ¼ j : 1 � j � rf g and for c2C(s).

The mean or expected value μsc for ysc satisfies μsc ¼ Eysc ¼ Pðysc ¼ 1jxscÞ for

c2C(s) and s2 S. With the logit (or log odds) function defined as

logit uð Þ ¼log u= 1� uð Þð Þ for 0< u< 1, model the logit of the mean as

logit μscð Þ ¼ xsc
T � β for a r� 1 vector β of coefficients. Solving for μsc gives

μsc ¼exp xsc
T � βð Þ= 1þ exp xsc

T � βð Þð Þ for c2C(s), which are combined into the

CðsÞ � 1 vector μs,C(s). The odds ratio (OR) for ys ¼ 1 under a unit change in a

predictor value xscj and adjusted for the other predictor values xscj0 for j
0 6¼ j (if any)

is computed as OR ¼ expðβjÞ. The variance for ysc is V μscð Þ ¼ μsc � 1� μscð Þ.
Assume for now that the dispersions ϕsc ¼ ϕ are constant for c2C sð Þ and s2S.

The errors are esc ¼ ysc � μsc and the standardized errors are

stdesc ¼ esc=ðϕ � VðμscÞÞ1=2.
For each s2 S, define the extended (multivariate normal) likelihood term

Lþ Os,C sð Þ; θ
� �

to satisfy

‘þðOs,CðsÞ; θÞ ¼ log
�
LþðOs,CðsÞ; θÞ

	
¼ �1

2
� es,CðsÞT � Σs,CðsÞ�1 � es,CðsÞ � 1

2
� logðjΣs,CðsÞjÞ � 1

2
�mðsÞ � logð2 � πÞ,

wherees,C sð Þ ¼ ys,C sð Þ � μs,C sð Þ is the C(s)� 1 vector of errors esc for c2C(s), jΣs,C(s)j
the determinant of the covariance matrix Σs,CðsÞ ¼ ϕ � As,CðsÞ � Rs,CðsÞðρÞ � As,CðsÞ,

As,C(s) the diagonal matrix with diagonal entries VðμscÞ1=2 for c2C(s), Rs,C(s)(ρ) a
m(s)�m(s) correlation matrix (called the working correlation matrix) determined

by a vector ρ of parameters, and π the usual constant. The extended likelihood

Lþ SC; θð Þ is the product of the extended likelihood terms LþðOs,CðsÞ; θÞ over s2S
where θ ¼ ðβT,ϕ,ρTÞT is the vector of all model parameters. Differentiating

‘þ SC; θð Þ ¼ log Lþ SC; θð Þð Þ with respect to β gives

∂‘þðSC; θÞ=∂β ¼ ∂1‘
þðSC; θÞ=∂1βþ ∂2‘

þðSC; θÞ=∂2β,

where ∂1‘
þ SC; θð Þ=∂1β is obtained by differentiating the error vectors es,C(s) in

‘þ SC; θð Þ with respect to β holding the other terms of ‘þ SC; θð Þ constant in β and

∂2‘
þ SC; θð Þ=∂2β is obtained by differentiating the other terms of ‘þ SC; θð Þ with

respect to β holding the error vectors es,C(s) in ‘þ SC; θð Þ constant in β. The first of
these derivative terms satisfies

∂1‘
þ SC; θð Þ=∂1β ¼

X
s2S

Ds,C sð Þ
T � Σs,C sð Þ�1 � es,C sð Þ

with Ds,C sð Þ ¼ ∂μs,C sð Þ=∂β. GEE estimates βGEE(SC) of β are obtained by solving

the generalized estimating equations ∂1‘
þ SC; θð Þ=∂1β ¼ 0, that is, generalized
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from the estimating equations for the independence case to incorporate covariance

(without considering the extended likelihood). Chaganty (1997) appears to be the

first to have recognized this justification of GEE estimates in terms of multivariate

normality (specifically, he uses es,C sð ÞT � Σs,C sð Þ�1 � es,C sð Þ to define what he calls

quasi-least squares estimates). For simplicity of notation, parameter estimates are

denoted as functions of the index set SC for the observed data used in their

computation without hat (^) symbols.

In GEE modeling, the dispersion parameter ϕ and the working correlation

matrices Rs,C(s)(ρ) are estimated using the standardized errors stdesc with estimates

determined by the structure for the matrices Rs,C(s)(ρ). For example, under

exchangeable correlations (EC), all the off-diagonal entries of Rs,C(s)(ρ) are the

same with common value ρ (and so ρ ¼ ðρÞ). Given a value β for the expectation

parameter vector, ρ is estimated as

ρGEEðβÞ ¼
1

mðCCÞ � r

X
c
0
c2CC

stdesc0 ðβÞ � stdescðβÞ,

where CC ¼ c
0
c : c

0
< c, c

0
, c2C Sð Þ, s2S


 �
and m(CC) is the number of pairs

c0c of indexes in CC and the standardized errors stdesc0 βð Þ and stdesc(β) are

computed using the estimate ϕGEE(β) of ϕ given by

ϕGEE βð Þ ¼
X
sc2SC

esc βð Þ2= V μscð Þ � m SCð Þ � rð Þð Þ:

These are bias-corrected estimates since the denominators are adjusted for bias by

subtracting the number r of expectation parameters. Unadjusted estimates are also

possible by not subtracting r in the denominators. The unadjusted estimate of the

dispersion ϕ is also the maximum extended likelihood estimate of ϕ given the value

of β for the expectation parameter vector and assuming independence. Similar

estimates of the correlation matrices can be obtained under other structures like

autoregressive (AR) and unstructured (UN) correlations (for details see SAS Insti-

tute 2004). The estimating equations are solved to obtain the estimate

βGEE(SC) using a Gauss-Newton-like iterative algorithm. The Hessian matrix for

the usual Gauss-Newton algorithm is replaced in this algorithm by

∂1
2
‘þðSC; θÞ=ð∂1β∂1βTÞ ¼

X
s2S

Ds,CðsÞ
T � Σs,CðsÞ�1 � Ds,CðsÞ,

where∂1
2
‘þðSC; θÞ=ð∂1β∂1βTÞ denotes the derivative with respect to β of the error

vectors es,C(s) in ∂1‘
þSC; θ

�
=∂1β holding the other terms constant in β. Using the

notation of SAS Institute (2004, p. 1676), the model-based estimator,

assuming the structure of the working correlation matrix is the true correlation

structure, of the covariance matrix of the estimate βGEE(SC) of β is Σm βGEE SCð Þð Þ
¼ I0

�1 where
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I0 ¼ ∂1
2
‘þðSC; θGEE SCð ÞÞ=ð∂1β∂1βTÞ

and

θGEEðSCÞ ¼
�
βGEE SCð ÞT,ϕGEEðβGEE SCð ÞÞ,ρGEEðβGEE SCð ÞÞT

	T
is the GEE estimate of the complete set of model parameters. The robust empirical

estimator of that covariance matrix is Σe βGEE SCð Þð Þ ¼ I0
�1 � I1 � I0�1 where

I1 ¼
X
s2S

∂1‘
þ
�
Os,CðsÞ; θGEEðSCÞ

	
=∂1β �

�
∂1‘

þ
�
Os,CðsÞ; θGEEðSCÞ

	
=∂1β

	T
:

While GEE was initially formulated to avoid computing likelihoods or quasi-

likelihoods, the above formulation indicates that it can be considered a kind of

“semi-likelihood” estimation method, using a part ∂1‘
þ SC; θð Þ=∂1β of the deriv-

ative ∂‘þ SC; θð Þ=∂β of the extended likelihood underlying the data, based on the

multivariate normal distribution extended to handle dichotomous data. Alternate

GEE-related estimates are also possible by maximizing the extended likelihood.

For example, the usual GEE estimates of the correlation matrices Rs,C(s)(ρ) and of

the dispersion ϕ can be combined with the maximum extended likelihood estimate

β(SC) of β obtained by maximizing the log-likelihood ‘ SC; θð Þ ¼ log L SC; θð Þð Þ in
β. This is achieved by solving the estimating equations ∂‘þ SC; θð Þ=∂β ¼ 0,

thereby incorporating ∂2‘
þ SC; θð Þ=∂2β in the estimates along with

∂1‘
þ SC; θð Þ=∂1β. Another alternative is to use the full maximum extended likeli-

hood estimate θ(SC) of θ obtained by maximizing the log-extended-likelihood

‘þ SC; θð Þ ¼ log Lþ SC; θð Þð Þ

over all possible parameter vectors θ, solving the estimating equations

∂‘þ SC; θð Þ=∂θ ¼ 0. However, these alternative estimates are not addressed any

further here.

An advantage of the formulation of the extended likelihood underlying

GEE estimation is that the extended likelihood can be used to compute extended

LCV ( LCVþ ) scores for evaluating and comparing GEE models, using either

matched-set-wise deletion as in Sect. 4.4.1 or measurement-wise deletion as in

Sect. 4.13. The adaptive modeling process then also extends to GEE modeling by

basing it on such LCVþ scores. It is also possible to compute extended penalized

likelihood criteria (see Sect. 2.10.1) adding the usual penalty factors to extended

likelihoods giving the extended AIC (AICþ), extended BIC (BICþ), and extended

TIC (TICþ), which are assumed to be adjusted to larger is better form for use in

adaptive model selection (see Sect. 2.10.1). These are alternatives to the quasi-

likelihood information criterion (QIC) of Pan (2001), which extends to the dichot-

omous and polytomous outcome context from the continuous outcome context of

Sect. 4.11.1. AICþ, BICþ, and TICþ are not based in part on results for independent

correlations as is QIC but are wholly based on the working correlation structure.
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The above formulation extends to modeling of dispersions as well as

means similarly to the extension of Sect. 4.15.1 for marginal models

of continuous outcomes. The covariance matrices Σs,C(s) are assumed to satisfy

Σs,CðsÞ ¼ Bs,CðsÞ � Rs,CðsÞðρÞ � Bs,CðsÞ,

where Bs,C(s) are the diagonal matrices with diagonal entries σsc ¼ ðϕsc � VðμscÞÞ1=2
representing extended standard deviations for the outcome measurements ysc
with associated dispersions ϕsc for c2C sð Þ and s2S. The logs of the dispersions

ϕsc are then modeled as functions of selected predictor variables and

associated coefficients. Specifically, let log ϕscð Þ ¼ vsc
T � γ where, for s2 S

and c2C(s), vsc is a q� 1 column vector of q predictor values vscj (including

unit predictor values if an intercept is to be included) with indexes j2Q¼
{j : 1� j� q} and γ is the associated q� 1 column vector of coefficients. The

parameter vector θ ¼ ðβT,γT,ρTÞT is estimated by jointly solving the GEE equa-

tions∂1‘
þ SC; θð Þ=∂1β ¼ 0 for β and the maximum extended likelihood equations

∂‘ SC; θð Þ=∂γ ¼ 0 for γ using the GEE estimate ρGEE(βGEE(SC)) of the correlation
parameter vector. These latter estimates are computed from estimates of the stan-

dardized errors stdesc ¼ esc=ðϕsc � VðμscÞÞ1=2. DefineVs,C(s) to be the m(s)� q matrix

with rowsvsc
T for, c2C sð Þand s2S, and letOs,CðsÞ ¼ ðys,CðsÞ,Xs,CðsÞ, Vs,CðsÞÞdenote

the observed data for each s2S. With this notation, the above formulation

extends tocombinedadaptiveGEE-basedmodelingofmeansanddispersions formulti-

variate dichotomous outcomes. As in Sect. 4.3.3, scaled residual vectors scldes(SC)

can be computed as scldesðSCÞ ¼ Us
TðSCÞ�1 � esðSCÞ where Us(SC) is the square

root of the covariance matrix ΣsðSCÞ determined by its Cholesky decomposition,

for either constant or non-constant dispersions models. The entries of scldes(SC)

canbecombinedover all s andanalyzed in combination as for independent data.

10.7.2 Polytomous Outcomes

Using notation like that of Sect. 8.7.1 for univariate multinomial regression, the

formulation of Sect. 10.7.1 for multivariate dichotomous logistic regression can be

extended to multivariate multinomial regression as follows (see also Lipsitz

et al. 1994; Miller et al. 1993). For 0 � v � K, let yscv be the indicator for

ysc ¼ v. Conditioned on the observed predictor vector value xsc, the mean or

expected value μscv for yscv is μscv ¼ Eyscv ¼ Pðysc ¼ vjxscÞ for c2C sð Þ and s2S.

Using generalized logits, model

glogitðμscvÞ ¼ log
μscv
μsc0

� �
¼ xsc

T � βv

for 1 � v � K (and so with v ¼ 0 as the reference value) and K r� 1 vectors βv of
coefficients. Solving for μscv gives
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μscv ¼
expðxscT � βvÞ

1þ expðxscT � β1Þ þ � � � þ expðxscT � βKÞ

for 1 � v � K and μsc0 ¼ 1=ð1þ expðxscT � β1Þ þ � � � þ expðxscT � βKÞÞ for v ¼ 0.

The variance for yscv is VðμscvÞ ¼ μscv � ð1� μscvÞ.
Let ysc be the K� 1 vector with entries yscv for 1 � v � K and ys,C(s) the

m sð Þ � Kð Þ � 1 vector combining the vectors ysc over c2C sð Þ and s2S. Similarly

define the mean vectors μsc and μs,C(s) from the means μscv, the error vectors esc and
es,C(s) from the errors escv ¼ yscv � μscv, and the standardized error vectors stdesc

and stdes,C(s) from the standardized errors stdescv ¼ escv=ðϕ � VðμscvÞÞ1=2. With the

observed data Os,CðsÞ ¼ ðys,CðsÞ,Xs,CðsÞÞ, the constant dispersions formulation of

Sect. 10.7.1 extends to the multivariate multinomial case. The diagonal matrices

As,C(s) have diagonal entries VðμscvÞ1=2 over 1 � v � K and c2C sð Þ for s2S. For

each s2S, the ðmðsÞ � KÞ � ðmðsÞ � KÞ working correlation matrix Rs,C(s)(ρ) is

composed of blocks Rscc
0 representing correlation submatrices for ysc and ysc0

over c, c
0 2C sð Þ. Since ysc is multinomially distributed, the main diagonal

submatricesRscc ¼ As, c
�1=2 � ðdiagðμsðSÞÞ � μsðSÞ � μsðSÞTÞ � As, c

�1=2 (see Lipsitz

et al. 1994, p. 1154). The off-diagonal submatrices Rscc
0 for c

0
< c need to be

estimated. For c
0
> c, the submatrices Rsc

0
c ¼ Rscc

0 T.

For example, under exchangeability all Rscc
0 for c

0
< c are the same with K�K

common value R0. For a given parameter vector β, R0 can be estimated as

R0ðβÞ ¼ 1

mðCCÞ � r

X
c
0
c2CC

stdesc0 ðβÞ � stdescðβÞT,

whereCC ¼ c
0
c : c

0
< c, c

0
, c2C Sð Þ, s2S


 �
, m(CC) is the number of pairs c0c of

indexes in CC, and the standardized error vectors stdesc0 βð Þ and stdesc(β) are

computed using the estimate ϕGEE(β) of ϕ given by

ϕGEEðβÞ ¼
1

mðSCÞ � r

X
scv2SCV

escvðβÞ2
VðμscvÞ

,

where SCV ¼ scv : 1 � v � K, c2C Sð Þ, s2Sf g. These are bias-corrected esti-

mates since the denominators are adjusted for bias by subtracting the number r of

expectation parameters. Unadjusted estimates are also possible by not subtracting r

in the denominators. These are also dispersion-adjusted, that is, the estimate of the

dispersion is included in the estimate of the correlation submatrix R0, as for GEE

correlation estimates in the multivariate dichotomous case. Lipsitz et al. (1994), on

the other hand, use non-dispersion-adjusted correlation estimates (see, for example,

their Example 1 covering exchangeability). They define the standardized errors as

stde
0
scv ¼ escv=ðVðμscvÞÞ1=2 without including the dispersion ϕ and define the esti-

mate R0(β) for exchangeability as above using associated estimates stde
0
scv(β) of

these standard errors without including an estimate for the dispersion. An estimate
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βGEE(SC) of β can be obtained by solving the GEE equations and model-based and

robust empirical estimators of the covariance matrix of the estimate βGEE(SC) can
be obtained as in Sect. 10.7.1.

As in Sect. 10.7.1, extended LCV (LCVþ ) scores can be computed for GEE

models of polytomous outcomes, using either matched-set-wise deletion or

measurement-wise deletion. The adaptive modeling process then also extends to

GEE modeling of polytomous outcomes by basing it on suchLCVþ scores. It is also

possible to compute extended penalized likelihood criteria adding the usual

penalty factors to extended likelihoods giving the extended AIC ðAICþÞ, the
extended BIC ðBICþÞ, and the extended TIC ðTICþÞ. Modeling of dispersions

along with means is formulated similarly to the extension of Sect. 10.7.1 for

multivariate dichotomous outcomes. As for univariate polytomous outcomes (see

Sect. 8.13.2), dispersions are treated as the same for all values of the outcome rather

than changing with those values, as do the means. Scaled residual vectors

scldes(SC) can also be computed as scldesðSCÞ ¼ ðUs
TðSCÞÞ�1 � esðSCÞ where

Us(SC) is the square root of the covariance matrix Σs(SC) determined by its

Cholesky decomposition. The entries of scldes(SC) can be combined over all s

(and 1 � v � K since scldes(SC) has m(s)�K entries) and analyzed in combination

as for independent data.

The formulation for multivariate ordinal regression is similar to that of multi-

variate multinomial regression. The extensions to non-constant dispersions for both

of these cases are similar to the extension for multivariate dichotomous outcomes,

and so detailed formulations are not presented here.

10.7.3 Comparing Transition Models to Marginal
GEE-Based Models

Using the notation of Sects. 10.3.1 and 10.7.1, assume that a transition model for

a conditional dichotomous outcome with values y#sc has parameter vector θ, means

μ#sc, dispersions ϕ#
sc, and extended variancesσ#sc2 ¼ ϕ#

sc � Vðμ#scÞ for c2C(s) and

s2 S. The error vectors e#s,C(s) have entries e#sc ¼ y#sc � μ#sc while the standard-

ized error vectors stde#s,C(s) have entries stde#sc ¼ e#sc=σ#sc. Using the indepen-

dence correlation structure Rs,C sð Þ ρð Þ ¼ IC sð Þ for s2 S, the associated extended

likelihood terms LþðO#
s,CðsÞ; θÞ induced by the conditional model satisfy

‘þðO#
s,CðsÞ; θÞ ¼ log

�
LþðO#

s,CðsÞ; θÞ
	

¼ �1

2
� stde#s,CðsÞT � stde#s,CðsÞ � 1

2
�
X
c2 CðsÞ

logðσ#sc2Þ � 1

2
�mðsÞ � logð2 � πÞ

for s2 S. The associated extended likelihood Lþ SC; θð Þ is the product of these

extended likelihood terms LþðO#
s,CðsÞ; θÞ over s2 S. The formulation for

polytomous outcomes is similar except that the working correlation Rs,C(s)(ρ) has
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diagonal blocks Rscc ¼ As, c
�1=2 � ðdiagðμ#

sðSÞÞ � μ#
sðSÞ � μ#

sðSÞTÞ � As, c
�1=2

where μ#
s (S) is the vector with entries μ#sc (S) for c2C(s) as in Sect. 10.7.2 and

zero off-diagonal blocks Rsc
0
c ¼ 0 for c

0 6¼ c.

These conditional-model-induced extended likelihoods can be used in comput-

ing conditional-model-induced LCVþ scores using parameter vectors θ(S\F(h))
estimated with the conditional model over complements S\F(h) of folds F(h) for

h2H, either with matched-set-wise deletion (Sect. 4.4.1) or measurement-wise

deletion (Sect. 4.13). These LCVþ scores can be compared to LCVþ scores for

GEE-based models to assess the effectiveness of conditional modeling compared to

GEE-based modeling.

10.8 Adaptive GEE-Based Modeling of Post-Baseline
Respiratory Status

For brevity, only dichotomous respiratory status is analyzed and all models have

constant dispersions. Also all extended LCV (LCVþ ) scores are based on k ¼ 5

folds as for transition modeling of these data. The adaptive GEE-based model for

status0_1 in visit with EC correlation structure is the constant model with LCVþ

score 0.57059. The corresponding adaptive GEE-based model with AR1 correlation

structure is also the constant model with smaller LCVþ score 0.55526. Conse-

quently, EC is the more appropriate correlation structure for these data and is used

in subsequent analyses.

The adaptive GEE-based model in status0_1_0, visit, and GCs is based on the

single predictor: status0 1 0 � visit�0:14 with improved LCVþ score 0.58989. This is

a distinct improvement over the constant model generating a substantial PD of 3.27 %.

The associated adaptive constant dispersions transition model, starting from the

model based on PRE(y,1,3)1.1 and PREðy,1,3,∅Þ and allowing for the extra

primary predictors status0_1_0, visit, and GCs, is based on the three transforms:

PRE(y,1,3)1.1, PRE(y,1,3,∅), and status0 1 0 � visit�1. It induces a marginal model

withLCVþ score 0.58992, which is an improvement over the associated GEE-based

model, but the PD in the LCVþ scores of 0.01 % is insubstantial. The adaptive

constant dispersions transition model in PRE(y,1,3), PREðy,1,3,∅Þ, status0_1_0,
visit, and GCs in these four primary predictors is based on the three transforms:

ðPREðy,1,3Þ2 � visit0:5Þ0:6, ðstatus0 1 0 � visit�1:4Þ0:7, and visit�4:5. It induces a

marginal model with LCVþ score 0.59825, which is a distinct improvement over

the GEE-based model with the best LCVþ score 0.58989 and substantial PD of

1.40 %. Moreover, it requires only about 1.7 min of clock time to compute

compared to about 18.4 min for the associated GEE-based model. These results

indicate that transition models for multivariate dichotomous outcomes can induce

marginal models that distinctly outperform associated GEE-based marginal models

while requiring substantially less computation time.
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10.9 Overview of Analyses of Post-Baseline Dichotomous
Respiratory Status

1. For post-baseline dichotomous respiratory status (Sect. 10.2), analyses use k ¼ 5

folds (Sect. 10.4.1).

2. Using unit dispersions, post-baseline dichotomous respiratory status is best

modeled in terms of the average of the prior three outcome measurements

compared to averages of the prior one or two outcome measurements and so

this is used in subsequent analyses (this and the following results reported in

Sect. 10.4.1). Modeling post-baseline dichotomous respiratory status in the

average of the prior three outcome measurements and the associated indicator

of no prior outcome measurements separately from visit, baseline dichotomous

respiratory status, and being on active compared to placebo treatment generates

a competitive model compared to modeling post-baseline dichotomous respira-

tory status in both sets of these predictors in combination. Under the generated

model for the separate effects case, there is a distinct effect to being on active

compared to placebo treatment. Section 11.3 provides a residual analysis for the

separate effects model.

3. Using constant dispersions does not distinctly improve on using unit dispersions

(this and the following results reported in Sect. 10.4.2). However, using

non-constant dispersions does distinctly improve on using constant dispersions,

and so also on unit dispersions. For the best non-constant dispersions model,

being on active compared to placebo treatment has a distinct effect on the log

odds for post-baseline dichotomous respiratory status but only for patients with

good baseline respiratory status and only better than patients on placebo treat-

ment with good baseline respiratory status at early visits (see Table 10.1). The

dispersions for patients on the placebo treatment or with poor baseline respira-

tory status (see Table 10.2) change with visit and the average of the prior three

outcome measurements, but the only difference for patients on active treatment

is at the first visit when they also have good baseline respiratory status, in which

case the dispersion is almost zero.

4. Using constant dispersions and GEE parameter estimation, exchangeable corre-

lations are more appropriate to use than order 1 autoregressive correlations (this

and the following results reported in Sect. 10.8). The model for the log odds is

distinctly improved by consideration of visit, baseline respiratory status, and

GCs in these two predictors. However, this GEE-based model is distinctly

outperformed by the marginal model induced by the constant dispersions tran-

sition model in the average of the prior three outcome measurements, the

associated indicator of no prior outcome measurements, visit, baseline respira-

tory status, and GCs in these predictors.
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10.10 Overview of Analyses of Post-Baseline Polytomous
Respiratory Status

1. For post-baseline polytomous respiratory status (Sect. 10.2), analyses use k ¼
10 folds (Sect. 10.6.1).

2. Ordinal regression is more appropriate for analyzing post-baseline polytomous

respiratory status than multinomial regression, and so is used in subsequent

analyses (this and the following results reported in Sect. 10.6.1). Using unit

dispersions, post-baseline polytomous respiratory status is best modeled in terms

of the average of the prior two outcome measurements compared to averages of

the prior one or three outcome measurements and so this is used in subsequent

analyses. Modeling post-baseline polytomous respiratory status in the average of

the prior two outcome measurements and the associated indicator of no prior

outcome measurements separately from visit, baseline polytomous respiratory

status, and being on active compared to placebo treatment, there is a distinct

effect to being on active compared to placebo treatment. The proportional odds

for worse versus better polytomous respiratory status are lower for patients on

active compared to placebo treatment, but with less of an improvement at later

visits. There is no effect to being on active compared to placebo treatment for

patients with poor baseline polytomous respiratory status, but there is otherwise

with more of an improvement for patients with excellent baseline polytomous

respiratory status compared to patients with good baseline polytomous respira-

tory status.

3. Using constant dispersions distinctly improves on using unit dispersions (this

and the following results reported in Sect. 10.6.2). Using non-constant disper-

sions distinctly improve on using constant dispersions. Modeling means and

dispersions for post-baseline polytomous respiratory status in the average of the

prior two outcome measurements and the associated indicator of no prior

outcome measurements separately from visit, baseline polytomous respiratory

status, and being on active compared to placebo treatment, there is a distinct

effect to being on active compared to placebo treatment. The proportional odds

for worse versus better polytomous respiratory status are lower for patients on

active compared to placebo treatment, but with less of an improvement at later

visits. There is no effect to being on active compared to placebo treatment for

patients with poor baseline polytomous respiratory status, but there is otherwise

with more of an improvement for patients with excellent baseline polytomous

respiratory status compared to patients with good baseline polytomous respira-

tory status. Dispersions decrease with visit.
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10.11 Chapter Summary

This chapter presents a series of analyses of the respiratory status data, addressing

how respiratory status over four post-baseline clinic visits categorized as poor or good

and as poor, good, or excellent depends on visit, baseline respiratory status, and active

versus placebo treatment for n ¼ 111 patients with respiratory distress using both

adaptive transition models and adaptive marginal models with generalized estimating

equations (GEE) parameter estimation. These analyses demonstrate adaptive logistic

regression modeling of multivariate outcomes using fractional polynomials, including

modeling of dichotomous outcomes, extensions to adaptive multinomial and ordinal

regression for polytomous outcomes, and how to model dispersions as well as means.

The chapter has also provided formulations for these alternative regression models;

for associated k-fold likelihood cross-validation (LCV) scores for unit dispersions

transition models, extended quasi-likelihood cross-validation (QLCVþ ) scores for

non-unit dispersions transition models, pseudolikelihood cross-validation (PLCV)

and extended PLCV ( PLCVþ ) scores for general conditional models of means

and/or dispersions, and extended LCV (LCVþ ) scores for GEE models of means

and/or dispersions; for odds ratio (OR) functions generalizing the OR of standard

logistic regression; and for standardized or Pearson residuals and scaled residuals.

The example analyses demonstrate assessing whether the log odds of a dichot-

omous and polytomous outcome are nonlinear in individual predictors, whether

those relationships are better addressed with multiple predictors in combination

compared to using singleton predictors, whether those relationships interact using

geometric combinations (GCs), whether ordinal polytomous outcomes are better

modeled with ordinal or multinomial regression, and whether there is a benefit to

considering constant or non-constant dispersions over unit dispersions. The exam-

ple analyses also demonstrate how to compare GEE-based marginal models to

marginal models induced by transition models. The result of this comparison

indicate that transition models for multivariate dichotomous outcomes can induce

marginal models that distinctly outperform associated GEE-based marginal models

while requiring substantially less computation time. Thus, it seems reasonable not

to consider GEE-based marginal models when analyzing multivariate dichotomous

outcomes and most likely multivariate polytomous outcomes as well. Example

residual analyses are not reported in this chapter. See Chap. 11 for a description

of how to conduct analyses of multivariate dichotomous and polytomous outcomes

in SAS including an example residual analysis.
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Chapter 11

Adaptive Logistic Regression Modeling
of Multivariate Dichotomous and Polytomous
Outcomes in SAS

11.1 Chapter Overview

This chapter describes how to use the genreg macro for adaptive logistic regression

modeling of multivariate dichotomous and polytomous outcomes, as described in

Chap. 10, and its generated output. See Supplementary Materials for a more

complete description of the macro. See Allison (2012), SAS Institute (1995), Stokes

et al. (2012) for details on standard generalized estimating equations (GEE) model-

ing of multivariate dichotomous and polytomous outcomes in SAS. Familiarity

with adaptive modeling in SAS of univariate logistic outcomes as described in

Chap. 9 and of transition modeling in SAS as described in Chap. 5 is assumed in this

chapter.

Section 11.2 describes the respiratory status data (see Sect. 10.2) used in the

analyses of Chap. 10. Section 11.3 provides examples of transition modeling of

dichotomous respiratory status while Sect. 11.4 provides examples of GEE-based

marginal modeling of dichotomous respiratory status. Section 11.5 provides exam-

ples of both transition modeling and GEE-based marginal modeling of polytomous

respiratory status.

11.2 Loading in the Respiratory Status Data

Analyses are conducted in Chap. 10 of respiratory status for n¼ 111 patients with

respiratory disorder (see Sect. 10.2). Assume that these respiratory status data have

been loaded into the default library (for example, by importing them from a

spreadsheet file) in wide format (see Sect. 5.2) under the name wideresp. An output

title line, selected system options, labels for the variables, and formats for values of

selected variables can be assigned using the code that follows. Patients were cared

for in one of two centers with 56 patients at Center 1 and 55 at Center 2.
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Patient identifiers in the variable id start at 1 for both centers and so identifiers for

Center 2 are increased by 56 to make them unique. The respiratory status outcome

measurements at visits 0–4 are in the variables status0–status4. Formats are created

with PROC FORMAT for the values of the group, gender, and status0–status4

variables and assigned with the format statement in the data step. The five possible

values for status0–status4 are described in the stat0_4fmt format. Indicator vari-

ables active and male are created from the group and gender variables, respectively,

and assigned the nyfmt format. Formats are also created for the alternative simpli-

fied respiratory status outcome variables yet to be computed.

options nodate pageno¼1 pagesize¼53 linesize¼76;

title1 "Respiratory Status Data";

proc format;

value $grpfmt "P"¼"Placebo" "A"¼"Active";

value $gndrfmt "F"¼"Female" "M"¼"Male";

value stat0_4fmt 0¼"0:Terrible" 1¼"1:Poor" 2¼"2:Fair"

3¼"3:Good" 4¼"4:Excellent";

value stat0_2fmt 0¼"0:Poor" 1¼"1:Good" 2¼"2:Excellent";

value stat0_1fmt 0¼"0:Poor" 1¼"1:Good"; value nyfmt 0¼"no" 1¼"yes";

run;

data wideresp;

set wideresp;

if center¼2 then id¼idþ56; * so patient identifiers are unique;

active¼(group¼"A"); male¼(gender¼"M");

labelid¼"PatientIdentifier"center¼"Center"group¼"TreatmentGroup"

gender¼"Gender"age¼"AgeinYears"

status0¼"Respiratory StatusatVisit0"

status1¼"Respiratory StatusatVisit1"

status2¼"Respiratory StatusatVisit2"

status3¼"Respiratory StatusatVisit3"

status4¼"Respiratory StatusatVisit4"

active¼"ActiveorNot" male¼"Male or Not";

format group $grpfmt.gender$gndrfmt.status0-status4 stat0_4fmt.

activemalenyfmt.;

run;

The following code converts the data to long format and stores it in the longresp

data set.
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data longresp;

set wideresp;

array status{5} status0-status4;

do i¼1 to 5;

visit¼i-1; status0_4¼status{i}; status0_4_0¼status0; output;

end;

label visit¼"Visit" status0_4¼"Respiratory Status 0-4"

status0_4_0¼"Baseline Respiratory Status 0-4";

format status0_4 status0_4_0 stat0_4fmt.; drop i status0-status4;

run;

data longresp;

set longresp;

if status0_4<¼1 then status0_2¼0;

else if status0_4<¼3 then status0_2¼1; else status0_2¼2;

if status0_4_0<¼1 then status0_2_0¼0;

else if status0_4_0<¼3 then status0_2_0¼1; else status0_2_0¼2;

status0_1¼(status0_4>2); status0_1_0¼(status0_4_0>2);

label status0_2¼"Respiratory Status 0-2"

status0_1¼"Respiratory Status 0-1"

status0_2_0¼"Baseline Respiratory Status 0-2"

status0_1_0¼"Baseline Respiratory Status 0-1";

format status0_1 status0_1_0 stat0_1fmt. status0_2 status0_2_0

stat0_2fmt.;

run;

The five-valued respiratory status variable status0_4 is created from status0–

status4 and used to compute the reduced three valued variable status0_2 with values

described in stat0_2fmt and the further reduced two valued variable status0_1 with

values described in stat0_1fmt. The variables status0_4_0, status0_2_0, and

status0_1_0 are loaded with baseline values for the three alternative respiratory

status outcome variables. These are baseline values for modeling post-baseline

respiratory status using the postresp data set created as follows.

data postresp;

set longresp;

if visit¼0 then delete;

run;

The cutoff for a substantial percent decrease (PD) in the likelihood cross-

validation (LCV) scores for analyses of post-baseline status0_1 with 4 � 111¼ 444

measurements is 0.43 % (as reported in Sect. 10.4) while it is 0.22 % for analyses of

post-baseline status0_2 with 2 � 444¼ 888 effective measurements (as reported in

Sect. 10.6). Post-baseline status0_4 is not analyzed in Chap. 10, and so the

associated cutoff is not reported. Since there are no missing measurements, LCV

scores are computed with matched-set-wise deletion.
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11.3 Transition Modeling of Dichotomous Respiratory
Status

Assume that copies y and w of status0_1 and visit, respectively, have been loaded in

the longresp and postresp data sets. Assume also that genreg has been loaded into

SAS (see Supplementary Materials). An adaptive transition model for post-baseline

status0_1 can be generated as follows.

%genreg(modtype¼logis,datain¼postresp,yvar¼status0_1,

matchvar¼id,withinvr¼visit,conditnl¼y,

corrtype¼IND,vintrcpt¼n,foldcnt¼5,expand¼y,

expxvars¼pre_y_w_1_3 pre_y_w_1_3_m,contract¼y,

nocnxint¼y);

The parameter setting “modtype¼logis” requests a logistic regression model.

The datain parameter specifies the input data set, in this case the postresp data set.

The yvar parameter specifies the dichotomous or polytomous outcome variable, in

this case the dichotomous outcome variable status0_1. A conditional model is

requested since “conditnl¼y”. This requires an independent correlation structure

as requested with “corrtype¼IND”. It also requires that the matchvar and withinvr

parameters have nonempty settings specifying, respectively, the variable whose

unique values determine the matched sets, the variable id in this case, and the

variable whose values indicate the different conditions under which the outcome

variable has been measured, the variable visit in this case. The option “vintrcpt¼n”

requests a unit dispersions model (formally, a zero log dispersions model). The

parameter setting “foldcnt¼5” (as justified in Sect. 10.4.1) requests that 5-fold LCV

scores be computed for models and is used in all further analyses of status0_1. The

parameter setting “expand¼y” requests that the base model be expanded. Themodel

for the means is expanded by adding in transforms of primary predictor variables

listed in the setting for the expxvars parameter. The model for the dispersions is not

changed since the expvvars macro parameter has its default empty setting.

The parameter setting “contract¼y” requests that the expandedmodel be contracted.

The option “nocnxint¼y” requests that the contraction not remove the intercept from

the model for the means (as for all analyses of Chaps. 10–11). In this case, the two

dependence predictors pre_y_w_1_3 and pre_y_w_1_3_m (called PRE(y,1,3) and

PRE(y,1,3,∅), respectively, in Chap. 10) are considered in the expansion (see Sect.

5.4 for more on how dependence predictors are specified). Using the copies y and

w shortens the names of these predictors. Using the shorter name w for visit is

optional but not the shorter name y for status0_1. The variable names used in

specifying dependence predictors must not contain underscores (_). Underscores

are used by genreg to decompose a dependence predictor name into its components.

Using pre_status0_1_visit_1_3 would generate an error since genreg would treat the

outcome variable as being status0 and not status0_1 and the within variable as 1 and

242 11 Adaptive Logistic Regression Modeling of Multivariate Dichotomous. . .

http://dx.doi.org/10.1007/978-3-319-33946-7_10
http://dx.doi.org/10.1007/978-3-319-33946-7_10
http://dx.doi.org/10.1007/978-3-319-33946-7_11
http://dx.doi.org/10.1007/978-3-319-33946-7_10
http://dx.doi.org/10.1007/978-3-319-33946-7_5


not visit. The yvar variable can be character valued, but then it needs to be recoded as

numeric for use in dependence predictors since these currently can only be based on

numeric variables. Alternate transition models can be generated by changing the

expxvars list to depend on pre_y_w_1_2 or pre_y_w_1_1 (called PRE(y,1,2) and

PRE(y,1,1) in Chap. 10, respectively).

The default setting “measdlte¼n” is requested so that generated LCV scores are

based on matched-set-wise deletion with all measurements of a matched set

assigned to the same fold (see Sect. 4.4.1). Measurement-wise deletion (see Sect.

4.13) with individual measurements assigned to folds instead can be requested with

the setting “measdlte¼y”. For transition and general conditional models, partial

measurement-wise deletion (Sect. 4.13) can be requested with the setting

“measdlte¼p”.

The base model is generated first, in this case the model with constant means

(since the default settings of “xintrcpt¼y” and “xvars¼” are used), unit dispersions,

and LCV score 0.50235. This is expanded by adding in the two transforms for the

means: pre_y_w_1_32 and pre_y_w_1_3_m, in that order, with associated LCV

score 0.57164, and the contraction leaves this expanded model unchanged. How-

ever, the expanded model might be improved by adjusting the power of its first

transform, and so a conditional transformation step occurs (due to the default

setting “condtrns¼ y”; see Sect. 3.3). Table 11.1 contains part of the output

describing the conditionally transformed expanded model. The component of the

Table 11.1 Conditionally transformed expanded transition model for dichotomous respiratory

status
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model for the logits of the expectations or means (called the logit expectation

component in the output) is described first. It is based on an intercept parameter

(denoted as XINTRCPT), the transform of the primary predictor pre_y_w_1_3

raised to the power 1.1, and the untransformed primary predictor pre_y_w_1_3_m.

The order that terms have their powers adjusted is indicated in the output. The base

model for the transformation with order 0 has LCV score rounding to 0.57164. The

transform of pre_y_w_1_3 has its power changed from 2 to 1.1 first since that

change has order 1, and then the transformation stops. Estimates of coefficients are

interpreted in the same way as for univariate dichotomous outcomes and can also be

used to calculate odds ratio (OR) functions in the same way (see Sects. 8.3.2 and

10.3.1). The component of the model for the log of the dispersions is described next.

It is based on a zero intercept parameter (denoted as VZERO) as requested by the

“vintrcpt¼n” option. Several values describing the model are generated last. Of

these, only the LCV score is included in Table 11.1, rounded to seven digits. The

number of chararacter positions and hence digits for LCV scores can be changed

with the screchrs macro parameter with default value 9. The LCV score for the

transformed model rounds to 0.57507 (and provides a distinct improvement as

justified in Sect. 10.4.1). This is the same as its extended quasi-LCV (QLCVþ)
score as indicated in the output (by describing that score as based on a

“quasiþ likelihood”), and so can be compared to QLCVþ scores for non-unit

dispersions models.

An adaptive model in the baseline value status0_1_0, the within-patient variable

visit, the indicator variable active, and geometric combinations (GCs) in these three

predictors, starting from the model of Table 11.1 as the base model, can be

generated as follows.

%genreg(modtype¼logis,datain¼postresp,yvar¼status0_1,

matchvar¼id,withinvr¼visit,conditnl¼y,

corrtype¼IND,vintrcpt¼n,foldcnt¼5,

xvars¼pre_y_w_1_3 pre_y_w_1_3_m,xpowers¼1.1 1,

expand¼y,expxvars¼status0_1_0 visit active,

geomcmbn¼y,contract¼y,nocnxint¼y);

The base model is set using the xvars and xpowers settings. The primary

predictors for the expansion are set through the expxvars parameter. GCs are

requested as part of this expansion with the “geomcmbn¼y” setting. The default

setting “geomcmbn¼n” generates the associated additive model. The expansion

adds four transforms to the base model: active � status0_1_0 � visit�1.8,

status0_1_0 � visit�0.7, active � visit�0.4, and (status0_1_0 � active � visit�9)2 with

LCV score 0.60591. This is contracted to the model based on the four

transforms: pre_y_w_1_31.1, pre_y_w_1_3_m, (status0_1_0 � visit�0.7)0.7, and

(status0_1_0 � active � visit�9)2 with LCV score 0.60406. Odds ratios (ORs) associ-

ated with terms like (status0_1_0 � active � visit�9)2 are not generated by genreg but

can be simply computed (for example, in a spreadsheet tool) from the estimated

slope of 7.3846659 (as reported in the genreg output). Just multiply this estimate by
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status0_1_0 � visit�18 with status0_1_0 set to each of its two possible values 0–1 and

visit set to each of its four possible post-baseline values 1–4 and then exponentiate.

Confidence intervals would not be reported for these ORs since the significance of

this active effect is addressed instead with a LCV ratio test.

Residual analyses can be conducted for transition models for multivariate

dichotomous outcomes similarly to those for univariate dichotomous outcomes

(see Sects. 9.4 and 9.6). Since values for the predictors of the above model have

limited ranges, there is little benefit to grouping the data (as in Sect. 9.6). A residual

analysis for the above ungrouped model can be conducted using the stdres variable

in the dataout data set. Figure 11.1 displays these standardized residuals. They are

reasonably close to being symmetric. Furthermore, they are all within �3, and so

there are no outlying observations. This is a reasonable model for these data.

Effects for dependence and the other predictors do not have to be separate. An

adaptive model in all these predictors and GCs is generated using the following

code.

%genreg(modtype¼logis,datain¼postresp,yvar¼status0_1,

matchvar¼id,withinvr¼visit,conditnl¼y,

corrtype¼IND,vintrcpt¼n,foldcnt¼5,expand¼y,

geomcmbn¼y,expxvars¼pre_y_w_1_3 pre_y_w_1_3_m

status0_1_0 visit active,

contract¼y,nocnxint¼y);

The generated model has three transforms: (pre_y_w_1_32 � visit0.5)0.7,
(status0_1_0 � visit�1.4)0.8, and active � visit�1 with improved LCV score 0.60500,

but the PD for the prior best model is insubstantial at 0.16 %, as also reported in

Sect. 10.4.1.

Adaptive models for both the means and dispersions can also be generated. For

example, the following code generates a model with both means and dispersions a

function of the dependence predictors pre_y_w_1_3 and pre_y_w_1_3_m.
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Fig. 11.1 Standardized residuals versus post-baseline clinic visit by group (on placebo or active

treatment) for the adaptive model of dichotomous respiratory status
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%genreg(modtype¼logis,datain¼postresp,yvar¼status0_1,

matchvar¼id,withinvr¼visit,conditnl¼y,

corrtype¼IND,foldcnt¼5,expand¼y,geomcmbn¼y,

expxvars¼pre_y_w_1_3 pre_y_w_1_3_m,

expvvars¼pre_y_w_1_3 pre_y_w_1_3_m,contract¼y,

nocnxint¼y,cnvzero¼y);

The setting “cnvzero¼y” means consider zero log dispersions models (or,

equivalently, unit dispersions models) in the contraction. The default setting

“vintrcpt¼y” is requested, so the base model is a constant dispersions model. The

default setting “nocnvint¼n” is also requested, so the intercept for the log disper-

sions model is considered for removal in the contraction. The generated model for

the means has two transforms: pre_y_w_1_31.1 and pre_y_w_1_3_m with an

intercept and for the dispersions the single transform: pre_y_w_1_3_m without

an intercept. The QLCVþ score is 0.57887, which substantially improves on the

associated unit dispersions model (see Sect. 10.4.2).

11.4 Marginal GEE-Based Modeling of Dichotomous
Respiratory Status

An adaptive GEE-based model can be generated for post-baseline status0_1 in

terms of visit as follows.

%genreg(modtype¼logis,datain¼postresp,yvar¼status0_1,

matchvar¼id,withinvr¼visit,GEE¼y,corrtype¼EC,

biasadj¼y,foldcnt¼5,expand¼y,expxvars¼visit,

contract¼y,nocnxint¼y,rprttime¼y);

Only constant dispersions models are considered since the default settings

“vintrcpt¼y”, “expvvars¼” (that is, the empty setting), and “cnvzero¼n” are

requested. The setting “GEE¼y” requests a GEE-based model (see Sect. 10.7.1).

The default setting is “GEE¼n”, but that is only supported for marginal models

with “modtype¼norml”. The corrtype parameter has the same meaning as for

marginal models of continuous outcomes (see Sect. 5.3.1). Exchangeable correla-

tions (EC) are requested in this case. The setting “biasadj¼y” requests that corre-

lation and dispersions estimates be bias-corrected (see Sect. 10.7.1) adjusting the

number of measurements by subtracting the number of terms in the model for the

means as is standard for GEE-based modeling. The default setting “biasadj¼n”

means compute those estimates without adjusting for bias, dividing instead by the

unadjusted number of measurements.

The search starts at the constant means and dispersions model with extended

LCV (LCVþ) score 0.57059. The expansion adds in the single transform visit1.5
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with somewhat improved LCVþ score 0.57099 and then the contraction removes

this transform leaving the constant model as the selected model. The “rprttime¼y”

setting requests that clock time be generated. It takes about 200.0 s or about 3.3 min

of clock time to generate this model. In comparison, the adaptive transition model

in pre_y_w_1_3, pre_y_w_1_3_m, and visit with constant dispersions requires

about 18.5 s. The adaptive GEE-based model takes about 10.8 times as much

clock time as the comparable transition model. While the total time of 3.3 min

does not seem too long, the extra time to conduct a complete analysis with several

steps and considering multiple predictors and GCs can be considerable. For exam-

ple, as reported in Sect. 10.8 the adaptive GEE-based marginal model with EC

correlations and with means depending on status0_1_0, visit, and GCs requires

about 18.4 min of clock time. Moreover, as demonstrated in Sect. 10.8, adaptively

generated transition models can induce marginal models that distinctly outperform

GEE-based marginal models, and so consideration of just transition models can be a

reasonable strategy and this can substantially reduce computation times.

LCVþ scores for GEE-based models of dichotomous and polytomous outcomes

are computed with extended multivariate normal likelihoods while LCV and QLCVþ

scores for transition and general conditional models of dichotomous and polytomous

outcomes are computed with Bernoulli and categorical likelihoods, respectively, and

so these two types of scores are not comparable. However, transition and general

conditional models for dichotomous and polytomous outcomes induce marginal

models (see Sect. 10.7.3), whose LCVþ scores can be compared to those for

GEE-based marginal models. The induced score for a model is reported when

requested with the setting “GEEscore¼y”.

The use of penalized likelihood criteria (PLCs) has the potential to speed up

adaptive GEE computations. For example, an adaptive model in status0_1_0, visit,

and GCs with constant dispersions based on the extended Akaike information

criterion (AICþ) is generated as follows.

%genreg(modtype¼logis,datain¼postresp,yvar¼status0_1,

matchvar¼id,withinvr¼visit,GEE¼y,corrtype¼EC,

biasadj¼y,scretype¼AIC,expand¼y,

expxvars¼status0_1_0visit,geomcmbn¼y,contract¼y,

nocnxint¼y,rprttime¼y);

The scretype macro parameter controls the type of scores used by the adaptive

modeling process to evaluate and compare models. The default “scretype¼LCV”

requests the use of CV scores based on likelihoods or likelihood-like functions, in

particular LCVþ scores for GEE-based models. The setting “scretype¼AIC” for

GEE-based models requests the use of AICþ scores (assumed to be in larger is

better form; see Sect. 10.7.1). However, the expanded model is based on five

transforms with four removed in the contraction, and so the total clock time is

still fairly long at about 15.2 min compared to 18.4 min required using LCVþ scores

(as also reported in Sect. 10.8). Consequently, model selection based on PLCs can

sometimes require relatively long amounts of clock time. Furthermore, as
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demonstrated in Sect. 4.8.4, the use of PLCs can sometimes generate distinctly

inferior models to those generated by LCV scores. Also, as demonstrated in Sect.

2.10.2, when they generate competitive LCV scores, they can be more highly

influenced by outlying observations, and these results are likely to hold for models

based on extended PLC scores like AICþ, BICþ, and TICþ as well.

SAS PROC GENMOD generates quasi-likelihood information criterion (QIC)

scores for GEE-based model selection (see Sect. 10.7.1), but these are not supported

by the genreg macro for adaptive model selection. So consider the fixed GEE-based

model for status0_1 with means depending on regression effects to active, visit, and

their interaction, with unit dispersions, and EC correlation structure. The estimated

correlation for this model is 0.50, the QIC score is 595.2554, and the LCVþ score is

0.57150. When the correlation structure is changed to the independence structure

setting the correlation to zero, the QIC score improves (i.e., decreases) a little to

595.2542, suggesting that the apparently substantial correlation estimate of 0.50 is

actually insubstantial. However, the LCVþ score decreases to 0.49633 with very

substantial PD of 13.15 %. In this case, the QIC score provides a misleading

assessment of the correlation structure, most likely due to being computed in part

using the independence correlation structure and not completely based on the

current working correlation structure as is LCVþ. Similar results also hold for

extended PLCs. The EC-based model has AICþ score 0.57503, BICþ score using

the number of measurements 0.56452, BICþ score using the number of matched

sets 0.56805, TICþ score 0.57483, and these decrease for the model with indepen-

dent correlations to 0.49825, 0.48914, 0.49221, and 0.49594, respectively, all with

substantial PDs at least 13.35 %. While extended PLCs may be problematic for

generating adaptive models, these results indicate that they can be effective in

simpler model selection settings, like choosing an appropriate correlation structure

for a given fixed effects model.

11.5 Modeling of Polytomous Outcomes

Transition models for multivariate polytomous outcomes like status0_2 can be

generated similarly to transition models for multivariate dichotomous outcomes

like status0_1 as presented in Sect. 11.3. As for univariate polytomous outcomes

(see Sects. 9.8 and 9.12), the propodds macro parameter controls whether the model

is ordinal or multinomial. If the outcome values are loaded in the variable yy and

the values of the withinvr variable in w, prior dependence predictors like

pre_yy_w_1_3 (denoted as PRE(y,1,3) in Sect. 10.6) are based on averages of

prior outcome values. When the outcome values are nominal, such averages are not

meaningful. It is then better to create indicator variables yy1, yy2, � � � for yy

taking on its first, second, � � � value and using the prior dependence pre-

dictors pre_yy1_w_1_3, pre_yy2_w_1_3, � � � (denoted as PRE(y¼1,1,3),

PRE(y¼2,1,3), � � � in Sect. 10.6). These could also be considered for ordinal

polytomous outcomes, but dependence predictors like pre_yy_w_1_3 should be
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considered in any case for ordinal polytomous outcomes. Marginal GEE-based

models for polytomous outcomes like status0_2 can also be generated similarly to

marginal GEE-based models for dichotomous outcomes like status0_1 as presented

in Sect. 11.4. However, processing times for generating adaptive models can be

prohibitive.

11.6 Practice Exercises

11.1. A model is generated in Sect. 10.4.2 for status0_1 with both means and

dispersions depending on the two prior dependence predictors

pre_y_w_1_3 and pre_y_w_1_3_m (but called there PRE(y,1,3) and

PRE(y,1,3,∅)). However, the baseline status variable status0_1_0 also

represents an aspect of the prior measurements. Conduct an adaptive analysis

of both the means and dispersions of status0_1 in terms of status0_1_0,

pre_y_w_1_3, pre_y_w_1_3_m, and GCs. Start from a constant model for

both the means and the dispersions. Do not allow the contraction to remove

the intercept from the model for the means but allow the contraction to

consider the unit dispersions model. Use 5 folds as justified in Sect. 10.4.1.

Does this provide a distinct improvement over the model of Sect. 10.4.2?

11.2. Starting from the better of the two models considered in Practice Exercise

11.1, generate the adaptive model that adds in transforms of active, visit, and

GCs to both the means and dispersions for status0_1. Do not allow the

contraction to remove the intercept from the model for the means but allow

the contraction to consider the unit dispersions model. Use 5 folds as justified

in Sect. 10.4.1. Does the generated model improve on the base model for this

analysis? What is the effect of active and visit on the means and dispersions

of merchigh?

11.3. The gender of patients is also available in the data set and might have an

effect on status0_1. Starting from the better of the two models considered in

Practice Exercise 11.1, generate the adaptive model that adds in transforms of

male, active, visit, and GCs to both the means and dispersions for status0_1.

Do not allow the contraction to remove the intercept from the model for the

means but allow the contraction to consider the unit dispersions model. Use

5 folds as justified in Sect. 10.4.1. Does the generated model improve on the

model generated for Practice Exercise 11.2? What is the effect of gender on

the conclusions for Practice Exercise 11.2?

11.4. The baseline age of patients is also available in the data set and might have an

effect on status0_1. Age varies for patients from 11 to 68 years. To reduce the

complexity of assessing the effect of age, create a data set called extended

with a copy of the postresp data set with the following two indicator variables

added: “agelo¼ (age<¼25);” and “agelomid¼ (age<¼37);”. There are

32.4 % of the patients with age<¼25 and 65.8 % with age<¼37, and so

this is close to a tertile split of the data. Using the extended data and starting
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from the better of the two models considered in Practice Exercise 11.1,

generate the adaptive model that adds in transforms of agelo, agelomid,

active, visit, and GCs to both the means and dispersions for status0_1. Do

not allow the contraction to remove the intercept from the model for the

means but allow the contraction to consider the unit dispersions model. Use 5

folds as justified in Sect. 10.4.1. Does the generated model improve on the

model generated for Practice Exercise 11.2? What is the effect of agelo and

agelomid on the conclusions for Practice Exercise 11.3?

11.5. A model is generated in Sect. 10.6.2 for status0_2 with the dependence of

means and dispersions on the prior dependence predictors pre_yy_w_1_2 and

pre_yy_w_1_2_m (but called there PRE(y,1,2) and PRE(y,1,2,∅)) separate

from the predictors status0_2_0, visit, and active. Generate the adaptive

ordinal regression model with both means and dispersions depending on

pre_yy_w_1_2, pre_yy_w_1_2_m, status0_1_0, visit, active, and GCs. Start

from a constant model for both the means and the dispersions. Do not allow

the contraction to remove the intercept from the model for the means but

allow the contraction to consider the unit dispersions model. Use 10 folds as

justified in Sect. 10.6.1. Does this provide a distinct improvement over the

model of Sect. 10.6.2 with the best QLCVþ score? If so, generate the adaptive

model under the same conditions except without active in the primary pre-

dictors for the means and dispersions. Is there a distinct effect to active in this

context? Under the final selected model, which primary predictors have

effects on the means and which on the dispersions?

For Practice Exercises 11.6–11.7, use the toxicity data available on the

Internet (see Supplementary Materials) and initially analyzed in Price

et al. (1985). Data are available for 1,028 pups from 94 mice litters. The

outcome variable malform for this data set is the indicator for pups being

malformed or not. The predictors to be considered are dose (0, 750, 1,500,

and 3,000 mg/kg/day) of the toxin ethylene glycol and fetalwgt (the weight of

the pup). The matched sets are determined by the variable litterid while the

variable pup is the index for pups within these matched sets. Since these data

are clustered, use general conditional modeling to analyze them based on the

dependence predictor other_y_pup_1_end (that is, the average of malform

measurements for the other pups in the same litter or the proportion of those

pups that are malformed). There are 1–16 pups per litter. There is only one

litter with one pup, so there is no need for the missing indicator other_y_pu-

p_1_end_miss, which equals zero for all but this one pup. The analyses for

these practice exercises can be time-consuming (requiring up to about 1 h) so

non-constant dispersions modeling and GEE-based modeling have not been

addressed.

11.6. For the toxicity data, use the adaptive model for malform as a function of

other_y_pup_1_end as the benchmark analysis to set the number of folds for

QLCVþ scores. Do not allow the contraction to remove the intercept from the

model for the means, use constant dispersions, and measurement-wise dele-

tion (since the matched sets have varying sizes) for all analyses of this
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practice exercise. Starting from the selected model for other_y_pup_1_end,

generate the adaptive model in dose (treating it as a continuous predictor),

fetalwgt, and geometric combinations (GCs). Does this model distinctly

improve on the model in only other_y_pup_1_end? Next, rerun the prior

analysis but restricting to additive models. Assess whether fetal weight

distinctly moderates (see Sect. 4.5.3) the effect of dose of ethylene glycol

on the chance for malformation.

11.7. For the toxicity data, dose can be considered an analysis of variance factor

rather than as a continuous predictor. This can be addressed by using the

indicator variables over0, over750, and over1500 for dose >0, dose >750,

and dose >1,500 mg/kg/day, respectively. These variables are created by the

load code for the toxicity data available on the Internet. Do not allow the

contraction to remove the intercept from the model for the means, use

constant dispersions, and measurement-wise deletion (since the matched

sets have varying sizes) for all analyses of this practice exercise. Use the

number of folds determined in Practice Exercise 11.6. Starting from the

model for other_y_pup_1_end selected in Practice Exercise 11.6, generate

the adaptive model in over0, over750, over1500, fetalwgt, and geometric

combinations (GCs). Compare this model to the associated model of Practice

Exercise 11.6. Next, rerun the prior analysis but restricting to additive

models. Assess moderation of the effect of dose as an analysis factor by

fetalwgt. Is the conclusion about moderation of the effect of dose on malform

different when dose is treated as an analysis of variance factor or as a

continuous predictor?
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Part III

Adaptive Poisson Regression Modeling



Chapter 12

Adaptive Poisson Regression Modeling
of Univariate Count Outcomes

12.1 Chapter Overview

This chapter formulates and demonstrates adaptive fractional polynomial modeling

of univariate count outcomes with either unit, constant, or non-constant dispersions,

possibly adjusted to rate outcomes through offsets. A description of how to generate

these models in SAS is provided in Chap. 13. A familiarity with Poisson regression

modeling is assumed, for example, as treated in Stokes et al. (2012) or Zelterman

(2002). A data set with a univariate rate outcome is described in Sect. 12.2. The

formulation for Poisson regression modeling of count/rate outcomes is provided in

Sect. 12.3, both modeling of means alone and modeling of dispersions along with

means. Section 12.4 conducts analyses of the count/rate outcome of Sect. 12.2.

Section 12.5 provides an overview of the results of analysis of skin cancer rates.

Formulations can be skipped to focus on analyses.

12.2 The Skin Cancer Data

A data set on skin cancer incidence for women living in either St. Paul, Minnesota

or Fort Worth, Texas is available on the Internet (see Supplementary Materials).

These data are analyzed here to demonstrate how to conduct Poisson regression

analyses that account for nonlinearity in predictor variables. The variable cases,

containing numbers of women with skin cancer, is the outcome variable for this

data set. There are 15 observations corresponding to eight age groups (with

minimum ages of 15, 25, � � �, 85 years) for the two different cities (with no data

for the 75-year minimum age category for St. Paul). The predictors are agemin,

containing the minimum age corresponding to each count in the cases variable and

the indicator variable city for residing in Fort Worth. The variable population

contains the population size corresponding to each count in the cases variable
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with values ranging from 7,583 to 181,343. It is used as the offset variable, thereby

converting counts of skin cancer occurrences into skin cancer rates. The cutoff for a

substantial percent decrease (PD) in the LCV and QLCVþ scores for these data with

15 measurements is 12.0 % (using the formula of Sect. 4.4.2).

12.3 Multiple Poisson Regression Modeling of Count
Outcomes

This section contains formulations (which can be skipped) for Poisson regression

modeling of univariate count outcomes, possibly adjusted to rate outcomes using

offsets. Section 12.3.1 addresses the unit dispersions case while Sect. 12.3.2 the

non-unit dispersions case.

12.3.1 Unit Dispersions Formulation

The data for Poisson regressionmodels, as considered in the analyses of Sect. 12.4.1,

consist of observations Os¼ (ys,xs,oEs) for subjects s2S¼ {s : 1� s� n} where

each outcome measurement ys is a count with values 0, 1, � � �; xs is a r� 1 column

vector of r predictor values xsj (including unit predictor values if an intercept is

included in themodel) with indexes j2J¼ {j : 1� j� r}; and oEs is an offset value for

modeling the expectations (hence the subscript “E”) or means. The expected value

or mean μs for ys satisfies μs¼E(ys|xs,oEs) for s2S. Model the log of the mean as

log(μs)¼ xs
T�βþ oEs for a r� 1 vector β of coefficients. The conditional variance for

ys is σs2¼ μs.
The likelihood term Ls for the sth subject is based on the Poisson distribution and

satisfies

‘s ¼ logðLsÞ ¼ ys � logðμsÞ � μs � logðys!Þ,

where ys! is the usual factorial notation. The likelihood L(S;β) is the product of the
individual likelihood terms Ls over s2S and satisfies

‘ðS; βÞ ¼ log LðS; βÞð Þ ¼
X
s2S

‘s:

The maximum likelihood estimate β(S) of β is computed by solving the estimating

equations ∂‘(S;β)/∂β¼ 0 obtained by differentiating ‘(S;β) with respect to β,
where 0 denotes the zero vector. For simplicity of notation, parameter estimates

β(S) are denoted as functions of indexes for the data used in their computation

without hat (^) symbols. With this notation, the LCV formulation of Sect. 2.5.3

extends to the Poisson regression case. For s2S, the estimated value for the mean μs
of the counts ys are μs(S)¼ exp(xs

T�β(S)þ oEs). The associated estimated rates are
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μs(S)/exp(oEs)¼ exp(xs
T�β(S)). For incidence data like the skin cancer data,

these can be converted to rates per 100,000 by multiplying them by 100,000.

The corresponding residuals are es(S)¼ ys� μs(S). The estimated values for

the variances σs2 are σs2(S)¼ μs(S). The standardized or Pearson residuals

stdes(S)¼ es(S)/σs(S) are obtained by standardizing residuals by dividing by esti-

mated standard deviations.

The predictor vectors xs can be based on fractional polynomial transforms of

primary predictors as considered in analyses reported in Chaps. 2, 4, 6, 8, and 10.

Adaptive fractional polynomial models can also be selected using the adaptive

modeling process controlled by LCV scores as in those chapters, but with the LCV

scores computed for the Poisson regression case.

12.3.2 Non-Unit Dispersions Formulation

For standard Poisson regression models, outcome measurements ys have means μs
and variances V(μs)¼ μs equal to those means. Consequently, variances are func-

tions of the means and not separate parameters as for the normal distribution. The

deviance terms are defined as (McCullagh and Nelder 1999)

dðys; μsÞ ¼ 2 � ys � log
ys
μs

� �
� ðys � μsÞ

� �
,

where 0�log(0) is set equal to 0. Dispersion parameters ϕs can be incorporated into

the Poisson model through the extended quasi-likelihood terms QLs
þ (McCullagh

and Nelder 1999) satisfying

‘s
þ ¼ logðQLs

þÞ ¼ �1

2
� dðys; μsÞ

ϕs

� 1

2
� logðϕsÞ:

Let θ denote the vector of all the parameters determining μs and ϕs for s2S. Then,
the extended quasi-likelihood QLþ(S; θ) satisfies

‘þðS; θÞ ¼ log
�
QLþðS; θÞ

�
¼

X
s2S

‘s
þ ¼

X
s2S

‘s þ as

ϕs

� 1

2
� logðϕsÞ

� �
,

where ‘s are the log-likelihood terms defined in Sect. 12.3.1 and

as ¼ log ys!ð Þ þ ys � ys � log ysð Þ

for s2S. Extended variances σs2 incorporating the dispersions can then be defined as
σs2¼ϕs�V(μs).
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The data are now assumed to consist of observations Os¼ (ys,xs,oEs,oDs) for

subjects s2S where oDs is an offset value for modeling the dispersions (hence the

subscript “D”). While the offset for the dispersions is allowed to differ from the one

for the expectations in this formulation, they will usually be the same. Assume as in

Sect. 12.3.1 that log(μs)¼ xs
T�βþ oEs. Model the log of the dispersions ϕs as a

function of selected predictor variables and associated coefficients (similarly to the

way variances are modeled in Sect. 2.19.1 and dispersions are modeled in Sect.

8.13.1). Specifically, let log(ϕs)¼ vs
T∙γþ oDs where, for s2S, vs is a q� 1 column

vector of q predictor values vsj (including unit predictor values if an intercept is to

be included) with indexes j2Q¼ {j : 1� j� q} and γ is the associated q� 1

column vector of coefficients. When ϕs¼ϕ are constant, θ¼ (βT, ϕ)T, and maxi-

mizing ‘þ(S;θ) in θ generates the same estimates β(S) as maximum likelihood

estimation of β under the unit-dispersions Poisson regression model. The maximum

extended quasi-likelihood estimate ϕ(S) of ϕ then satisfies ϕ(S)¼ P
s2S

d(ys;μs(S))/n

where μs(S) are the estimates of μs determined by β(S). The general (rþ q)� 1

parameter vector θ¼ (βT, γT)T is estimated through maximum extended quasi-

likelihood estimation.

As in Sect. 12.3.1, for s2S, the estimated value for the mean μs is

μs(S)¼ exp(xs
T�β(S)þ oEs) with corresponding residual es(S)¼ ys� μs(S) while

the estimated value of the associated dispersions ϕs is ϕs(S)¼ exp(vs
T∙γ (S)þ oDs).

These can be converted to means and dispersions for rates in the same way as means

are converted to rates in Sect. 12.3.1. For incidence data like the skin cancer data

these means and dispersions for rates can be converted to means and dispersions for

rates per 100,000 by multiplying by 100,000. The estimated value for the extended

variance σs2 is σs2(S)¼ϕs(S)�V(μs(S)). The standardized or Pearson residual

stdes(S)¼ es(S)/σs(S) is obtained by standardizing the residual by dividing by the

estimated extended standard deviation.

Alternative models can be compared with extended quasi-likelihood cross-

validation (QLCVþ) scores computed as LCV scores are computed in

Sect. 12.3.1, but using extended quasi-likelihoods rather than likelihoods and

maximum extended quasi-likelihood estimates θ(S) of θ rather than maximum

likelihood estimates. The adaptive modeling process can be extended to search

through models for the means and dispersions in combination (see Chap. 20).

12.4 Skin Cancer Rates as a Function of the Minimum Age
and City of Residence

12.4.1 Modeling Means for Skin Cancer Rates with Constant
Dispersions Models

Unless otherwise stated, models considered in this section have constant dispersions,

in the sense that logs of dispersions are modeled as a constant, and use the log of the
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population size (in the variable population) as the offsets for both the models of the

means and the dispersions (so while the dispersions are based on a constant model,

they are actually not constant due to including offsets). Since the sample size 15 is

small, fold sizes can be relatively large. For example, for k¼ 5, fold sizes range from

1 to 5 so that the fold complement sizes can be as small as 10 or only 67 % of the

sample. Estimates generated by such small subsamples may not be reliable. For that

reason, leave-one-out (LOO) cross-validation is used in this chapter for model

evaluation and comparison. The adaptively chosen model for cases as a function of

agemin is based on the single power transform agemin�0.43 without an intercept with

LOO extended quasi-likelihood cross-validation (QLCVþ) score 0.11679. The model

linear in agemin has QLCVþ score 0.08161 with PD of 30.1 % compared to the

adaptive model and so is substantial (that is, larger than the cutoff 12.0 % for the

data). Consequently, the log of mean cases is distinctly nonlinear in agemin.

The adaptive constant dispersions model without offsets has the component for

the means constant in agemin (that is, based on only an intercept) and with

essentially zero QLCVþ score. Consequently, including offsets based on population

sizes in the dispersions model provides a very substantial improvement in this case.

The adaptive unit-dispersions model (and also without offsets) has component for

the means based on agemin�0.42 without an intercept and LCV score (the same as its

QLCVþ score) only 0.00004 with extremely substantial PD rounding to 100 %

compared to the constant dispersions model with offsets for the dispersions.

Consequently, dispersions are more appropriately treated as constant than as unit

in this case, suggesting that unit dispersions models should usually not be consid-

ered for count/rate outcomes.

How skin cancer rates depend on agemin might change with the city in which

the women live (an issue called moderation or modification; see Sect. 4.5.3).

This can be addressed with the adaptive model based on agemin, city, and geomet-

ric combinations (GCs) in these two predictors (see Sect. 4.6 for the definition of

GCs). The generated model is based on the two transforms: agemin�0.49 and

(city�agemin�0.98)0.85 without an intercept and has QLCVþ score 0.37479. This is

a substantial improvement over the model based on only agemin, whose QLCVþ

score generates a substantial PD of 68.8 %. Furthermore, the additive model based

on agemin and city without GCs is based on agemin�0.399 and city without an

intercept and with QLCVþ score 0.28586 and substantial PD 23.7 %. Thus, the

dependence of skin cancer rates on agemin is distinctly moderated by city, that is, it

changes differently with the minimum age for the two cities. Estimated skin cancer

rates per 100,000 women generated by the GC-based model are plotted in Fig. 12.1.

The estimated skin cancer rates increase with increasing minimum age as would be

expected and at a faster rate of change and to higher levels for women living in Fort

Worth with more chance for exposure to the sun than for women living in St. Paul.
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12.4.2 Modeling Dispersions as Well as Means for Skin
Cancer Rates

The adaptive modeling process can be applied to model both the means and the

dispersions of the outcome variable cases in combination. When this process is

applied using the singleton predictor agemin for both means and dispersions, the

generated model has QLCVþ score 0.16946. The adaptive model with only means

depending on agemin has QLCVþ score 0.11679 and so with substantial PD of

31.1 %. Consequently, the dispersions change distinctly with agemin. The means in

this model depend on agemin�0.46 without an intercept while the dispersions

depend on agemin�0.33 without an intercept.

The adaptive model with means and dispersions depending on agemin, city, and

GCs is a constant dispersions model and has the same model for the means as

generated with constant dispersions, suggesting that the dispersions do not depend

on agemin or city. The adaptive additive model with means and dispersions

depending on agemin and city, but not GCs, has means based on the two transforms:

agemin�0.4201 and city without an intercept and dispersions based on the single

transform: agemin�0.2 without an intercept. Its QLCVþ score is 0.49011 so that the

best constant dispersions model with QLCVþ score 0.37479 generates a substantial

PD of 23.5 %. Consequently, dispersions for skin cancer rates are distinctly

non-constant, depending on agemin but not city, and this can only be identified

by consideration of additive models. Furthermore, under this model the dependence

of the log of the means on agemin is not moderated by city, as suggested by

constant-dispersions modeling, but does change additively with city by the same

amount for all minimum ages.
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Fig. 12.1 Estimated skin cancer rates per 100,000 women as a function of minimum age in years

moderated by the city in which the women reside based on adaptive Poisson regression

modeling with constant dispersions
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Estimated cancer rates per 100,000 women generated by the additive

non-constant dispersions model are plotted in Fig. 12.2. As before the estimated

cancer rates increase with increasing minimum age and at a faster rate of change

and to higher levels for women living in Fort Worth than for women living in

St. Paul. Compared to the estimates in Fig. 12.1, the estimated cancer rates increase

to a higher rate at the oldest minimum age of 85 years for women in Fort Worth but

to a similar rate for women in St. Paul. Estimated dispersions for skin cancer rates

per 100,000 are plotted in Fig. 12.3. They change in the same way for both cities

and increase nonlinearly with the minimum age but at faster rates of change for

older minimum ages.

12.5 Overview of Analyses of Skin Cancer Rates

1. For the skin cancer rates (Sect. 12.2), analyses use LOO QLCVþ (Sect. 12.4.1).

2. Models for skin cancer rates based on constant dispersions with offsets are

distinctly better than models based on constant dispersions without offsets and

on unit dispersions without offsets (this and the following results reported in

Sect. 12.4.1). Using constant dispersions with offsets, the effect of minimum age

on skin cancer rates is distinctly moderated by city. Results are displayed in

Fig. 12.1.

3. Using non-constant dispersions with offsets, the effect of minimum age on skin

cancer rates is not distinctly moderated by city but city has a main effect.

Dispersions change with minimum age in the same way for both cities. Results

are displayed in Figs. 12.2 and 12.3. See Sect. 13.4 for a residual analysis for this

model .
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Fig. 12.2 Estimated skin cancer rates per 100,000 women as an additive function of minimum age

in years and the city in which the women live based on adaptive Poisson regression modeling with

non-constant dispersions
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12.6 Chapter Summary

This chapter presents a series of analyses of the skin cancer incidence data. These

analyses address how skin cancer rates for women in St. Paul, Minnesota and Fort

Worth, Texas depend on the their age and city of residence. Using constant

dispersions with offsets, the logs of the mean skin cancer rates depend distinctly

nonlinearly on the age of the women, and this relationship changes with the city in

which they reside (a moderation effect). Moreover, non-constant dispersions with

offsets are more appropriate for these data. The logs of the mean cancer rates still

change with the age of the women, but following the same pattern with age and

shifted up for Fort Worth compared to St. Paul, rather than following different

patterns for the two cities as suggested by constant dispersions modeling.

These analyses demonstrate adaptive Poisson regression modeling of univariate

count outcomes, possibly adjusted to rates using offsets, with fractional polyno-

mials, including modeling of only the means as well as modeling of dispersions as

well as means. The chapter also provides formulations for Poisson regression

models; for k-fold likelihood cross-validation (LCV) scores for unit dispersions

models; for extended quasi-likelihood cross-validation (QLCVþ) scores for

non-unit dispersions models based on extended quasi-likelihoods; and for residuals

and standardized (or Pearson) residuals. The example analyses demonstrate

assessing whether the logs of the means of an outcome are nonlinear in individual

predictors, whether the relationships are better addressed with multiple predictors

in combination compared to using singleton predictors, whether the relationships

are additive in predictors, whether the predictors interact using geometric combi-

nations, and whether there is a benefit to considering constant dispersions compared

to unit dispersions and non-constant dispersions compared to constant dispersions.

Example residual analyses are not reported in this chapter. See Chap. 13 for a

description of how to conduct analyses of univariate count/rate outcomes in SAS

including an example residual analysis.
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Fig. 12.3 Estimated dispersions for skin cancer rates per 100,000 as a function of minimum age in

years based on adaptive Poisson regression modeling
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Chapter 13

Adaptive Poisson Regression Modeling
of Univariate Count Outcomes in SAS

13.1 Chapter Overview

This chapter describes how to use the genreg macro for adaptive Poisson regression

modeling as described in Chap. 12 and its generated output in the special case of

univariate count/rate outcomes. Familiarity with the use of the genreg macro as

presented in Chap. 3 is assumed. See Supplementary Materials for a more complete

description of this macro. See Stokes et al. (2012) and Zelterman (2002) for details

on standard approaches for Poisson regression modeling in SAS. Section 13.2

provides a description of the skin cancer data analyzed in Chap. 12. Section 13.3

provides code for modeling means for skin cancer rates in terms of age and city of

residence of the women in the study while Sect. 13.4 provides code for modeling

both means and dispersions of these skin cancer rates.

13.2 Loading in the Skin Cancer Data

Analyses are conducted in Chap. 12 of skin cancer rates for n¼ 15 counts in the

variable cases of skin cancer occurrences for population groups of women of sizes

in the variable population categorized by the minimum age in the variable minage

and city of residence in the variable city (see Sect. 12.2). Assume that these skin

cancer data have been loaded into the default library (for example, by importing

them from a spreadsheet file) under the name skin. An output title line, selected

system options, labels for the variables, and formats for values of selected variables

can be assigned as follows.

options nodate pageno¼1 pagesize¼53 linesize¼76;

title1 "Skin Cancer Data";
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proc format;

value cityfmt 0¼"St Paul" 1¼"Forth Worth";

run;

data skin;

set skin;

xoffset¼log(population);

voffset¼log(population);

label

cases¼"Number of Skin Cancer Cases" city¼"City"

agemin¼"Minimum Age in Population" population¼"Population Size"

xoffset¼"Expectation Offset Variable"

voffset¼"Dispersion Offset Variable"

;

format city cityfmt.;

run;

A format is created with PROC FORMAT for the two values of the variable city

and assigned with the format statement in the data step. The offset variables xoffset

and voffset for the means (“x”) and dispersions (“v”), respectively, are both

computed as logs of population sizes in the variable population. This converts

Poisson regression models for skin cancer counts into models for the associated

skin cancer rates. The cutoff for a substantial percent decrease (PD) for analyses of

cases with 15 observations is 12.0 % (as reported in Sect. 12.2).

13.3 Modeling Means for Skin Cancer Rates

Assuming that the genreg macro has been loaded into SAS (see Supplementary

Materials), an adaptive model for cases as a function of agemin with a constant

dispersions model using a leave-one-out (LOO) extended quasi-likelihood cross-

validation (QLCVþ) can be generated as follows.

%genreg(modtype¼poiss,datain¼skin,yvar¼cases,

xoffstvr¼xoffset,voffstvr¼voffset,foldcnt¼,

LOO¼y,expand¼y,expxvars¼agemin,contract¼y);

The parameter setting “modtype¼poiss” requests a Poisson regression model.

The datain parameter specifies the input data set, in this case the skin data set. The

yvar parameter specifies the count outcome variable, in this case the variable cases.

The xoffset and voffset parameters specify the offset variables for the expectation

and dispersion models, respectively. The base models for both the means and

dispersions by default are both constant, intercept-only models plus associated

offsets. The parameter setting “LOO¼y” requests a LOO QLCVþ (because the

default setting “vintrcpt¼y” requests a constant dispersions model). It requires the
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empty setting “foldcnt¼” for the foldcnt parameter (or the setting “foldcnt¼.”).

This is used to maximize the sizes of the fold complements at 14 each to avoid

deleted parameter estimates based on even smaller subsets of the data. The param-

eter setting “expand¼y” requests that the base model be expanded. The model for

the means is expanded by adding in transforms of primary predictor variables listed

in the setting for the expxvars parameter. In this case, only agemin is considered for

expansion. The model for the dispersions is not changed since the expvvars macro

parameter has its default empty setting. The parameter setting “contract¼y”

requests that the expanded model be contracted. Parameters like xintrcpt, xvars,

xoffset, and expxvars are used to control settings for the mean, expectation or “x”

component of the model while corresponding parameters like vintrcpt, vvars,

voffset, and expvvars are used to control the variance/dispersion or “v” component

of the model (see Sect. 13.4).

The expanded model generated by the above code has means based on the single

transform agemin�0.5 with LOO QLCVþ score 0.10124. The contraction removes

the intercept for the means, adjusts the remaining transform to agemin�0.43 with

QLCVþ score 0.11679 (as also reported in Sect. 12.4.1), which is a substantial

improvement on the expanded model with PD 13.3 % (that is, larger than the cutoff

of 12.0 % for the data). This latter model is also the adaptive monotonic model for

these data since it is based on a single transform of agemin. Note that this is an

example of a zero-intercept adaptive model distinctly improving on a nonzero-

intercept adaptive model.

The RA1compare macro (see Sect. 3.8) can be used to compare adaptive models

for count/rate outcomes to models based on the recommended degree 1 set of

powers (Sect. 2.12) as follows.

%RA1compare(modtype¼poiss,datain¼skin,yvar¼cases,xvar¼agemin,

xoffstvr¼xoffset,voffstvr¼voffset,foldcnt¼,LOO¼y,

scorefmt¼9.7);

The modtype, datain, yvar, xoffset, voffset, foldcnt, and LOO macro parameters

have the same meaning as for the genreg macro. The xvar macro parameter is like

the xvars macro parameter of genreg, but it can only specify a single predictor

variable for the means. The scorefmt macro parameter requests that QLCVþ scores

generated by RA1compare be formatted with the SAS w.d format (where w is the

width and d is the number of decimal digits) with value 9.7, that is, with scores

printed out in 9 character positions and rounded to 7 decimal digits. The power

generating the best QLCVþ score among recommended degree 1 powers is �0.5,

and so the same as the adaptive expanded model based on agemin�0.5 with an

intercept. Consequently, the adaptive monotonic model provides a distinct

improvement over this best recommended degree 1 power.

The RA2compare macros (see Sect. 3.9) can be used to compare adaptive

models for count/rate outcomes to models based on the recommended degree

2 set of powers (Sect. 2.13). Just change “RA1” to “RA2” in the above code,

leaving everything else the same. The powers generating the best QLCVþ score
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among recommended degree 2 powers are �2 and �1 with QLCVþ score 0.09385

and even larger PD of 19.6 % over the adaptive monotonic model. Consequently,

the adaptive monotonic model also provides a distinct improvement over this best

pair of recommended degree 2 powers. Since the recommended degree 2 models

include products of power transforms of agemin and its log, the adaptive model

generated by RA2compare is based on agemin, log(agemin), and geometric com-

binations (GCs; see Sect. 4.5.4) between these two primary predictors. Since the

recommended degree 2 powers are based on products of at most 2 transforms,

RA2compare restricts the search to GCs based on products of only 2 transforms.

This is achieved by including the setting “maxterms¼2” in the RA2compare call to

genreg. By default, the maxterms parameter has an empty setting, meaning any

number of transforms can be included in GCs. The maxterms parameter can be used

in general to reduce the complexity of generated GCs and so improve the interpret-

ability of associated models. The generated model in this case has means based on

the single transform (log(agemin))�1.7 with QLCVþ score 0.11683. The adaptive

model in agemin, not considering its log transform, has competitive QLCVþ score

0.11679 with insubstantial PD 0.03 %.

The linear polynomial model in agemin can be generated as follows using the

xvars parameter.

%genreg(modtype¼poiss,datain¼skin,yvar¼cases,xoffstvr¼xoffset,

voffstvr¼voffset,foldcnt¼,LOO¼y,xvars¼agemin);

An adaptive model with constant dispersions but no offset variable for the

dispersions can be generated as follows by removing the setting “voffstvr¼voffset”

so that the voffstvr parameter has its default empty setting.

%genreg(modtype¼poiss,datain¼skin,yvar¼cases,xoffstvr¼xoffset,

foldcnt¼,LOO¼y,expand¼y,expxvars¼agemin,contract¼y);

An adaptive model for the means in agemin with unit dispersions can be

generated as follows by adding the setting “vintrcpt¼n”.

%genreg(modtype¼poiss,datain¼skin,yvar¼cases,

xoffstvr¼xoffset,vintrcpt¼n,foldcnt¼,LOO¼y,

expand¼y,expxvars¼agemin,contract¼y);

An adaptive model in agemin, city, and GCs in these two predictors with

constant dispersions plus offsets can be generated as follows.

%genreg(modtype¼poiss,datain¼skin,yvar¼cases,

xoffstvr¼xoffset,voffstvr¼voffset,foldcnt¼,

LOO¼y,expand¼y,expxvars¼agemin city,geomcmbn¼y,

contract¼y);
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GCs are requested with the “geomcmbn¼y” setting. The default setting

“geomcmbn¼n” is used to generate an additive model in agemin and city. The base

constant plus offsets model has LOO QLCVþ score 0.04052 (output not reported).

The expansion adds in the transforms: agemin�0.5, (city � agemin�0.98)0.89, and

city � agemin�2.9 in that order with final QLCVþ score 0.30490. The contraction first

removes city � agemin�2.9, then the intercept, and stops adjusting the powers for the

remaining transforms to agemin�0.49 and (city � agemin�0.98)0.85. This final model has

QLCVþ score 0.37479 as also reported in Sect. 12.4.1.

13.4 Modeling Dispersions as Well as Means for Skin
Cancer Rates

Both the dispersions and means for skin cancer rates can be modeled in terms of

agemin, city, and GCs as follows.

%genreg(modtype¼poiss,datain¼skin,yvar¼cases,

xoffstvr¼xoffset,voffstvr¼voffset,foldcnt¼,

LOO¼y,expand¼y,expxvars¼agemin city,

expvvars¼agemin city,geomcmbn¼y,contract¼y);

The expvvars macro parameter provides a list of primary predictors to consider

for modeling variances for the normal distribution case and dispersions for other

cases like Poisson regression. In the above code, the list is the same as for expxvars,

but it can be different. The genreg macro supports several other parameters for

controlling the variances/dispersions including vvars, vpowers, vintrcpt, vgcs, and

vgcpowrs which work like xvars, xpowers, xintrcpt, xgcs, and xgcpowrs, but

address the model for the log of the variances/dispersions (the “v” part of the

model) rather than the model for the log of the means (or the expectations or the

“x” part of the model). The default settings of “xintrcpt¼y” and “vintrcpt¼y” are

requested in the above code to start the search at the model with constant means and

dispersions, both with offsets.

The base model is generated first with constant means and dispersions plus

offsets and QLCVþ score 0.04052. Table 13.1 contains part of the output describing

the expanded model. The component of the model for the log of the expectations or

means is described first. It is based on an intercept parameter (denoted as

XINTRCPT) together with the transforms agemin�0.5, (city � agemin�0.98)0.89, and

city � agemin�2.9. The component of the model for the log of the dispersions is

described next. It is based on only an intercept parameter (denoted as VINTRCPT).

The order that terms are added into the model is indicated in the output. The two

intercept terms have order 0 indicating they were in the base model. The three

transforms for the log expectation component are the terms added to the model in

the order they are listed in the output and then the expansion stops. The QLCVþ

score for the expanded model rounds to 0.30490.
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The contraction (see Table 13.2) removes the transform city � agemin�2.9 from

the log expectation component, followed by the intercept (XINTRCPT), and then

stops. The log expectation component is based on the two transforms: agemin�0.49

and (city � agemin�0.98)0.85 with somewhat adjusted powers. The log dispersion

component remains unchanged. The QLCVþ score rounds to 0.37479. This is the

same model generated with constant dispersions modeling.

An adaptive additive model in agemin and city, that is, without GCs, can be

generated as follows using the default setting “geomcmbn¼n”.

%genreg(modtype¼poiss,datain¼skin,yvar¼cases,

xoffstvr¼xoffset,voffstvr¼voffset,foldcnt¼,

LOO¼y,expand¼y,expxvars¼agemin city,

expvvars¼agemin city,contract¼y);

The expanded model includes the two transforms for the means: agemin�0.5 and

city along with the one transform for the dispersions: agemin0.5. The QLCVþ score

is 0.36254. The contraction removes the intercept for the means, followed by the

intercept for the dispersions, and then stops. The contracted model is based on two

transforms for the means: agemin�0.4201 and city without an intercept and one

transform for the dispersions: agemin�0.2 also without an intercept The QLCVþ

score is 0.49011 so that the best constant dispersions model (the same as the one in

Table 13.2) generates a substantial PD 23.5 % as also reported in Sect. 12.4.2.

Table 13.1 Expanded model for skin cancer rates as a function of the minimum age, city of

residence, and geometric combinations
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Residual analyses can be conducted for adaptive Poisson regression models. The

genreg macro generates standardized or Pearson residuals for these models as

defined for unit dispersions models in Sect. 12.3.1 and for non-unit dispersions

models in Sect. 12.3.2. These are loaded into a variable named stdres in a data set

called dataout (along with a variety of other generated variables; see Supplementary

Materials). The name of the variable can be changed with the stdrsvar parameter

and the name of the data set with the dataout parameter.

A residual analysis can be requested for the adaptive additive model in agemin

city with the best overall QLCVþ score as follows.

%genreg(modtype¼poiss,datain¼skin,yvar¼cases,

xoffstvr¼xoffset,voffstvr¼voffset,foldcnt¼,LOO¼y,

xintrcpt¼n,xvars¼agemin city,xpowers¼-0.4301 1,

vintrcpt¼n,vvars¼agemin,vpowers¼-0.2,ranlysis¼y);

The plot for this model of the standardized residuals versus agemin is displayed

in Fig. 13.1, distinguishing between observations from the two cities. The stan-

dardized residuals are all with �2 except for a value of �3.08 for minimum age

15 years in St. Paul. A sensitivity analysis (see Sects. 5.3.3 and 5.4.2 for examples)

could be conducted to see if the inclusion of this observation has highly influenced

the results, but that is not addressed here for brevity.

Table 13.2 Contracted model for skin cancer rates as a function of the minimum age, city of

residence, and geometric combinations
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The dataout data set also contains a variable named yhat (whose name is

determined by the yhatvar macro parameter) containing, in the Poisson regression

context, estimated mean counts and a variable named vhat (whose name is deter-

mined by the vhatvar macro parameter) containing, in the Poisson regression

context, estimated dispersions for counts. When there are nonzero offsets, these

variables need adjustment to generate estimated means (as in Figs. 12.1 and 12.2)

and estimated dispersions (as in Fig. 12.3) for associated rates. For the skin cancer

data, this can be accomplished as follows.

data adjusted;

set dataout;

adjyhat¼yhat/population;

adjvhat¼vhat/population;

run;

proc plot data¼adjusted;

plot adjyhat*agemin¼city;

plot adjvhat*agemin¼city;

format city;

run;

The y-axes of the two plots generated in the above code are based on estimated

means and dispersions for skin cancer rates, respectively, while the x-axes are based

on minimum age values. The plotted points will be either 0 for observations from

St. Paul or 1 for observations from Fort Worth because the variable city is listed on

the right hand side of the equal sign (¼) in the two plot statements. Values of 0 and

1 are used because the format command turned off the format for the variable city

temporarily for the execution of the PROC PLOT step, meaning use actual values of

the city variable in the plots. If the format statement is removed, the first letters “S”

and “F” of the formatted values are used instead. The data used in these plots can be
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Fig. 13.1 Standardized residuals versus minimum age by city of residence for the adaptive

additive model of means and dispersions for skin cancer rates as a function of minimum age in

years and city of residence
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exported to a spreadsheet (like Excel if working in Windows) and used to generate a

more sophisticated plot (as were the plots of Figs. 12.1, 12.2, and 12.3). The plots

generated above are for rates per person while the plots of Figs. 12.1, 12.2, and 12.3

are for rates per 100,000. These latter rates can be obtained by multiplying the

above rates by 100,000.

13.5 Practice Exercises

13.1. Models for skin cancer rates considered in Chaps. 12 and 13 treat the

minimum age as a continuous predictor and so are regression models. It is

possible that minimum age might be more appropriately modeled as an

analysis of variance (ANOVA) factor. Assume that indicator variables

amin15, amin25, � � �, amin85 for agemin having respective values 15, 25,

� � �, 85 years exist in the skin cancer data set (for example, amin15 is created

with the command “amin15¼(agemin¼15);”). In all analyses, use LOO

QLCVþ starting from the model with constant means with offset variable

xoffset and constant dispersions with offset variable voffset. First, generate

the adaptive ANOVAmodel in minimum age for both means and dispersions.

Do this using as expansion variables the indicator variables amin15, amin25,

� � �, amin65, and amin85 thereby treating the reference category as a mini-

mum age of 75 years since it has a missing value for St. Paul. Next, generate

the adaptive additive ANOVAmodel for both means and dispersions using as

expansion variables the indicator variables amin15, amin25, � � �, amin65,

amin85, and city. Finally, generate the adaptive ANOVA model for both

means and dispersions using as expansion variables the indicator variables

amin15, amin25, � � �, amin65, amin85, city, and GCs. Which of these three

alternative adaptive ANOVAmodels generates the best QLCVþ score? Do any

of the other adaptive ANOVA models generate competitive QLCVþ scores?

Compare the adaptive ANOVA model with the best QLCVþ score to the

adaptive regression model in agemin with the best QLCVþ score of

Sect. 13.4. Does adaptive ANOVA modeling or adaptive regression modeling

generate distinctly more effective models for the skin cancer data or are they

equally effective (in the sense that the smaller of the best QLCVþ scores for the

two cases generates a competitive PD compared to the larger QLCVþ score)?

For Practice Exercises 13.2–13.3, use the lung cancer data available on the

Internet (see Supplementary Materials). There are 36 observations. The

outcome variable for this data set is called dead and contains counts of deaths

within population groups of sizes in the variable population. The predictors to

be considered are the minimum age for the groups with values 40, 45, � � �,
80 years in the variable agemin and the indicator smoker for individuals in the

groups being smokers or not. For all models use offsets for means and

dispersions set equal to the logs of population sizes so that the Poisson

regression models for lung cancer death counts are converted into models
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for lung cancer death rates. The data set created with the code available on the

Internet contains the variables xoffset and voffset loaded with these offset

values.

13.2. For the lung cancer data, use as the benchmark analysis to set the number of

folds for QLCVþ scores the adaptive model for the means of the lung cancer

death rates as a function of minimum age in the variable agemin. Use

constant dispersions with offsets for all analyses of this practice exercise.

Use the number of folds determined in this first analysis for all other analyses

of this practice exercise. Compare the adaptive model in minimum age to the

linear polynomial model for the means in age and assess whether logs of

mean lung cancer death rates change distinctly nonlinearly or not. Generate

the adaptive additive model for the means in agemin and smoker and the

adaptive moderation model for the means in agemin, smoker, and GCs.

Assess whether or not smoker distinctly moderates (see Sect. 4.5.3) the effect

of agemin on mean lung cancer death rates. Describe how means for lung

cancer death rates change with the predictors of the most preferable constant

dispersions with offsets model generated in this practice analysis.

13.3. For all analyses of this practice exercise, use the number of folds for QLCVþ

scores determined in Practice Exercise 13.2. Start all adaptive analyses using

the base model with constant means and constant dispersions, both with

offsets. Generate the adaptive model for the means and the dispersions in

agemin by itself, the adaptive additive model for the means and the disper-

sions in agemin and smoker, and the adaptive moderation model for the

means and the dispersions in agemin, smoker, and GCs. Compare these

three models for the means and dispersions to assess whether or not consid-

eration of smoker along with agemin provides a substantial improvement

over just using agemin and whether or not smoker distinctly moderates

(see Sect. 4.5.3) the effect of age on the lung cancer death rates. Compare

the model for this practice exercise having the largest QLCVþ score to the

model for the means with constant dispersions plus offsets having the largest

QLCVþ score of the models considered in Practice Exercise 13.2 to assess

whether dispersions for the lung cancer death rates have a distinct impact on

lung cancer rates.

References

Stokes, M. E., Davis, C. S., & Koch, G. G. (2012). Categorical data analysis using the SAS system
(3rd ed.). Cary, NC: SAS Institute.

Zelterman, D. (2002). Advanced log-linear models using SAS. Cary, NC: SAS Institute.

274 13 Adaptive Poisson Regression Modeling of Univariate Count Outcomes in SAS

http://dx.doi.org/10.1007/978-3-319-33946-7_4
http://dx.doi.org/10.1007/978-3-319-33946-7_4


Chapter 14

Adaptive Poisson Regression Modeling
of Multivariate Count Outcomes

14.1 Chapter Overview

This chapter formulates and demonstrates adaptive fractional polynomial modeling

of means and dispersions for repeatedly measured count outcomes, possibly

converted to rates using offsets. A description of how to generate these models in

SAS is provided in Chap. 15. Standard models for this context are addressed in

several texts (e.g., Fitzmaurice et al. 2011; Molenberghs and Verbeke 2006).

Marginal modeling extends from the multivariate normal outcome context (see

Sect. 4.3) to the multivariate count/rate outcome context. However, due to the

complexity in general of computing likelihoods and quasi-likelihoods (as needed to

account for non-unit dispersions) for general multivariate marginal modeling, gen-

eralized estimating equations (GEE) techniques (Liang and Zeger 1986) are often

used instead, thereby avoiding computation of likelihoods and quasi-likelihoods. This

complicates the extension of adaptive modeling to the GEE context since it is based

on cross-validation (CV) scores computed from likelihoods or likelihood-like func-

tions (but see Sect. 14.5). Conditional modeling also extends to the multivariate

count/rate outcome context, both transition modeling (see Sect. 4.7) and general

conditional modeling (see Sect. 4.9). In contrast to marginal GEE-based modeling,

conditional modeling of means for multivariate count/rate outcomes with unit dis-

persions is based on pseudolikelihoods that can be used to compute pseudolikelihood

CV (PLCV) scores on which to base adaptive modeling of multivariate count/rate

outcomes. For this reason, conditional modeling is considered first. PLCV scores are

the same as LCV scores for transition models, but not in general. Conditional

modeling involving non-unit dispersions is based on extended pseudolikelihoods

and extended PLCV (PLCVþ) scores. For transition models, PLCVþ scores are the

same as their extended quasi-likelihood CV (QLCVþ) scores (see Sect. 12.3.2).
Section 14.2 describes a dataset with longitudinal count outcome containing

seizure counts/rates for 59 epileptics over time. Section 14.3 formulates conditional

modeling, including both transition and general conditional modeling, for
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multivariate count/rate outcomes. Section 14.4 then presents analyses of the seizure

rates per week, but using only transition modeling since that is more appropriate for

such longitudinal data than general conditional modeling. Section 14.5 formulates

adaptive GEE-based modeling of multivariate count/rate outcomes. Section 14.6

then presents adaptive GEE analyses of seizure rates per week. Section 14.7 pro-

vides an overview of the results of analysis of post-baseline seizure rates. Formu-

lation sections are not needed to understand analysis sections.

14.2 The Epileptic Seizures Data

A data set on seizure counts at baseline and at four post-baseline clinic visits for

59 patients with epilepsy is available on the Internet (see Supplementary Materials).

These data were analyzed and first published by Thall and Vail (1990). The

outcome variable count contains numbers of seizures. The possible predictor vari-

ables for the post-baseline counts are visit (with values 1–4), rate0 (the baseline

seizure rate per week, based on a period of 8 weeks), and int (the indicator for the

patient being in the intervention group given the antiepileptic drug progabide as

opposed to the control group given a placebo). The associated numbers of weeks for

the seizure counts are loaded into the variable dltatime, but all post-baseline periods

are 2 weeks long. The offsets log(dltatime) are used to convert Poisson regression

models for seizure counts into models for seizure rates per week, but these are

equivalent since all post-baseline measurement periods have the same length. Age

at baseline is also available in the data set, but is not considered here. There are a

total of 236 post-baseline outcome measurements with four measurements avail-

able for each patient, and so none missing. The outcome variable post-baseline

seizure rate is analyzed in this chapter to demonstrate how to conduct Poisson

regression analyses using transition as well as adaptive GEE-based models account-

ing for nonlinearity in predictor variables for log-transformed means and

dispersions.

The cutoff for a substantial percent decrease (PD) in the LCV scores (see Sect.

4.4.2 for the formula) for the 236 post-baseline seizure rates per week is 0.81 %.

Reported CV scores are based on matched-set-wise deletion (Sect. 4.4.1) since

there are no missing outcome measurements.

14.3 Conditional Modeling of Multivariate Count
Outcomes

This section formulates conditional modeling in the multivariate count/rate out-

come context, first with unit dispersions in Sect. 14.3.1 and then more general

dispersions in Sect. 14.3.2. It can be skipped to focus on analyses.
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14.3.1 Conditional Modeling of Means Assuming Unit
Dispersions

Using the notation of Sects. 4.3, 4.7, and 4.9.1, for n matched sets of

measurements with indexes s2S ¼ s : 1 � s � nf g, observed data

Os,CðsÞ ¼ ðys,CðsÞ,Xs,CðsÞ, oEs,CðsÞÞ are available for possibly different sets C(s) of

measurement conditions, subsets of the maximal set of possible conditions

C ¼ c : 1 � c � mf g, consisting of outcome vectors ys,C(s) with m(s) count

entries ysc for c2C(s), predictor matrices Xs,C(s) having m(s) rows xsc
T

with entries xscj for j2J ¼ j : 1 � j � rf g and for c2C(s), and expectation offset

vectors oEs,C(s) with m(s) entries oEsc for c2C(s). The observed conditional

data then consist of O#
sc ¼ ðy#sc, xsc, oEscÞ for the m(SC) measurements sc2SC

¼ sc : c2C sð Þ, s2Sf g where y#sc ¼ yscjys,CðsÞ∖fcg is the cth outcome measure-

ment for matched set s conditioned on the other outcome measurements for that

matched set. The dependence of the rates y#sc/exp(oEsc) (or counts y
#
sc when oEsc

always equals 0) on the other outcome measurements is modeled using averages

PRE(y,i,j) and associated missing indicators PRE(y,i,j,∅) (see Sect. 4.7) of prior

outcome rate measurements, averages POST(y,i,j) and associated missing indica-

tors POST(y,i,j,∅) (see Sect. 4.9.1) of subsequent outcome rate measurements, and

averages OTHER(y,i,j) and associated missing indicators OTHER(y,i,j,∅) (see

Sect. 4.9.1) of prior and subsequent outcome rate measurements, for

1 � i � j � m. Note that outcome rates are used to compute these dependence

predictors to account for offset values and not the counts unless the offset values are

all zero. To simplify the notation, the predictor matrices Xs,C(s) are assumed to

include columns containing observed values for dependence predictors as well as

columns for non-dependence predictors. The special case of transition modeling

corresponds to cases with dependence based only on prior outcome measurements.

Note that dependence predictors can also be computed from prior values of time-

varying predictors.

For sc2 SC, the mean or expected value Ey#sc ¼ μ#sc for y#sc is modeled as

log μ#scð Þ ¼ xsc
T � βþ oEsc for a r� 1 vector β of coefficients. Solving for μ#sc gives

μ#sc ¼ expðxscT � βþ oEscÞ. The conditional variance for y#sc is σ#sc2 ¼ μ#sc.
The pseudolikelihood term PLsc for the scth measurement equals the conditional

likelihood L(O#
sc;β) for the conditional observation O#

sc and satisfies

‘sc ¼ logðPLscÞ ¼ y#sc � logðμ#scÞ � μ#sc � logðy#sc!Þ,

where y#sc ! is the usual factorial notation. The pseudolikelihood PL(SC; β) is the
product of the pseudolikelihood terms PLsc over sc2SC and satisfies

‘ðSC; βÞ ¼ log PLðSC; βÞð Þ ¼
X
sc2SC

‘sc:
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The maximum pseudolikelihood estimate β(SC) of β is computed by solving the

estimating equations ∂‘ SC; βð Þ=∂β ¼ 0 obtained by differentiating ‘(SC;β) with
respect to β, where 0 denotes the zero vector. For simplicity of notation, parameter

estimates β(SC) are denoted as functions of indexes for the data used in their

computation without hat (^) symbols. With this notation, the matched-set-wise

deletion PLCV formulation of Sect. 4.9.1 and the measurement-wise deletion

version of Sect. 4.13 both extend to the multivariate count/rate outcome Poisson

regression context. For transition models, the pseudolikelihood is a true likelihood

and PLCV scores are also LCV scores.

For sc2SC, the estimated value for the mean μ#sc is

μ#scðSCÞ ¼ exp xsc
T � βðSCÞ þ oEscð Þ and the corresponding residual is e#scðSCÞ ¼

y#sc � μ#scðSCÞ. The estimated value for the variance σ#sc2 is σ#sc2ðSCÞ ¼ μ#scðSCÞ.
The standardized or Pearson residual stde#scðSCÞ ¼ e#scðSCÞ=σ#scðSCÞ is obtained
by standardizing the residual by dividing by the estimated standard deviation.

The predictor vectors xsc can be based on fractional polynomial transforms of

primary predictors of non-dependence type as considered in analyses reported in

Chaps. 2, 4, 6, 8, 10, and 12 and of dependence type as considered in analyses of

Chaps. 4, 6, 10, and 12. Adaptive fractional polynomial conditional models can be

selected using the adaptive modeling process controlled by PLCV scores as in

Chap. 12, but with the PLCV scores computed for the Poisson regression case.

14.3.2 Conditional Modeling of Dispersions as Well
as Means

Extending the notation of Sect. 12.3.2, conditional count outcome measurements y#sc
with nonnegative integer values have means μ#sc and variances Vðμ#scÞ ¼ μ#sc. The
deviance terms are defined as (McCullagh and Nelder 1999)

dðy#sc; μ#scÞ ¼ 2 � y#sc � log
y#sc
μ#sc

� �
� ðy#sc � μ#scÞ

� �
,

where 0�log(0) is set equal to 0. Dispersion parameters ϕ#
sc can be incorporated into

the conditional Poisson model through the extended quasi-pseudolikelihood terms

PLsc
þ satisfying

‘sc
þ ¼ logðPLsc

þÞ ¼ �1

2
� dðy

#
sc; μ#scÞ
ϕ#

sc

� 1

2
� logðϕ#

scÞ:

Let θ denote the vector of all the parameters determining μ#sc and ϕ#
sc for sc2SC.

Then, the extended quasi-pseudolikelihood PLþ SC; θð Þ satisfies
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‘þðSC; θÞ ¼ log PLþðSC; θÞð Þ
¼

X
s2SC

‘sc
þ ¼

X
sc2SC

‘sc þ a#sc

ϕ#
sc

� 1

2
� logðϕ#

scÞ
� �

,

where ‘sc ¼ y#sc � logðμ#scÞ � μ#sc � logðy#sc!Þ are the usual log pseudolikelihood

terms and

a#sc ¼ log y#sc!
� �þ y#sc � y#sc � log y#sc

� �

for sc2 SC. Extended variances σ#sc2 can then be defined as σ#sc2 ¼ ϕ#
sc � Vðμ#scÞ.

Assume as in Sect. 14.3.1 that logðμ#scÞ ¼ xsc
T � βþ oEsc� When ϕ#

sc ¼ ϕ# are

constant θ ¼ ðβT,ϕ#ÞT, and maximizing ‘þ SC; θð Þ in θ generates the same estimates

β(SC) as maximum pseudolikelihood estimation of β under the unit-dispersions

conditional model. The maximum pseudolikelihood estimate ϕ#(SC) of ϕ# then

satisfies

ϕ#ðSCÞ ¼ 1

mðSCÞ
X
sc2SC

d
�
y#sc; μ

#
scðSCÞ

	
,

where μ#sc(SC) are the estimates of μ#sc determined by β(SC). More generally,

model the log of the dispersions ϕ#
sc as a function of selected dependence and/or

non-dependence primary predictors and associated coefficients (similarly to the

approach of Sect. 12.13.2) and offsets. Specifically, let logðϕ#
scÞ ¼ vsc

T � γþ oDsc
where, for sc2SC, vsc is a q� 1 column vector of q predictor values vscj (including

unit predictor values if an intercept is to be included) with indexes

j2Q ¼ j : 1 � j � qf g, γ is the associated q� 1 column vector of coefficients,

and oDsc is the associated offset value for dispersion modeling. The rþ qð Þ � 1

parameter vector θ ¼ ðβT,γTÞT is estimated through maximum extended quasi-

pseudolikelihood estimation. Alternative models can be compared with

extended PLCV (PLCVþ) scores computed as in Sect. 14.3.1 but using extended

quasi-pseudolikelihoods rather than pseudolikelihoods and maximum

extended quasi-pseudolikelihood estimates of θ rather than maximum pseudoli-

kelihood estimates. The adaptive modeling process can be extended to search

through models for the means and dispersions in combination (see Chap. 20).

As in Sect. 14.3.1, for sc2SC, the estimated value for the mean μ#sc is

μ#scðSCÞ ¼ expðxscT � βðSCÞ þ oEscÞ and the corresponding residual is

e#scðSCÞ ¼ y#sc� μ#scðSCÞ. The estimated value of the associated dispersion ϕ#
sc

is ϕ#
scðSCÞ ¼ exp vsc

T � γðSCÞ þ oDscð Þ and of the extended variance σ#sc2 is

σ#sc
2ðSCÞ ¼ ϕ#

sðSCÞ � V μ#scðSCð ÞÞ. The standardized or Pearson residual

stde#scðSCÞ ¼ e#scðSCÞ=σ#scðSCÞ is obtained by standardizing the residual by divid-
ing by the estimated extended standard deviation.
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14.4 Transition Modeling of Post-Baseline Seizure Rates

This section describes transition modeling of seizure rates, first using constant

dispersions models (with offsets) in Sect. 14.4.1 and then using non-constant

dispersions models in Sect. 14.4.2. See Sects. 4.8, 10.4, and 10.6 for similar

analyses of multivariate continuous, dichotomous, and polytomous outcomes,

respectively.

14.4.1 Constant Dispersions Models

All models for means have offsets log(dltatime). Unless otherwise stated, all models

for dispersions are constant with offsets log(dltatime). The adaptive model for the

post-baseline seizure rates corresponding to the count outcome variabley ¼count as

a function of PRE(y,1,4) is used as a benchmark analysis for setting the number k of

folds (see Sect. 2.8). Note that even though only the post-baseline rates are modeled,

the values of PRE(y,1,4) are computed as averages of the up to four prior outcome

values including the baseline value. Moreover, since an offset variable is included,

the values of PRE(y,1,4) are computed from prior rates rather than prior counts. This

would have no effect if the baseline values were not included since dltatime is

constant (2 weeks each) for post-baseline measurements, but there is a difference

since the baseline dltatime is different (8 weeks). The variable PRE(y,1,4,∅) (that is,

the indicator for there being no prior outcome values with which to compute

PRE(y,1,4), in which case PRE(y,1,4) is set to 0) is not needed since there is always

at least one prior outcome measurement, the baseline measurement, so that

PRE(y,1,4,∅) has all zero values. The adaptively generated model for k ¼ 5 is

based on the transform PRE(y,1,4)0.05 with an intercept and extended quasi-

likelihood CV (QLCVþ) score 0.31873, the same as its extended pseudolikelihood

CV (PLCVþ) score since it is a transition model. The adaptively generated model for

k ¼ 10is based on the two transformPRE y;1;4ð Þ�0:406
and PRE(y,1,4)0.27 without an

intercept and withQLCVþ score 0.31518 while the model for k ¼ 15 is based on the

transform PRE(y,1,4)0.089 with an intercept and with QLCVþ score 0.31565. Since

these latter two scores are smaller than the score for k ¼ 5, k ¼ 5 is used in

subsequent analyses of this outcome. The linear polynomial model in PRE(y,1,4)

has QLCVþ score 0.04233 with very substantial PD 86.72 % (that is, larger than the

cutoff of 0.81 % for the data) compared to the adaptive model. Thus, the log of mean

post-baseline seizure rate is distinctly nonlinear in PRE(y,1,4).

Using unit dispersions without offsets, the adaptive model considering the single

predictor PRE(y,1,4) is also based on a single transform: PRE(y,1,4)0.05 with an

intercept but with LCV score (the same as its QLCVþ score) 0.20400 and

substantial PD of 36.00 %. Using unit dispersions with offsets, the adaptive

model is based on the single transform PRE(y,1,4)0.05 with an intercept and the

QLCVþ score improves to 0.29256 but the PD is a substantial 8.21 %. Using
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constant dispersions without offsets, the adaptive model is based on the same

transform PRE(y,1,4)0.05 with an intercept, QLCVþ score 0.23178, and substantial

PD of 27.28 %. Note that PRE(y,1,4) is computed as the average of the prior seizure

counts in y without offsets and as the average of the prior seizure rates with offsets.

If the baseline values were not included as prior outcome variables, there would

have not been any difference since the post-baseline offset values are constant (at 2

weeks), but there is difference when baseline values are included since they have a

different offset value (8 weeks). These results indicate the importance of using

constant dispersions with offsets when modeling multivariate rate outcomes. While

the same model is generated in all cases, the QLCVþ score is substantially worse

with unit dispersions and/or no offsets.

Basing the transition model on PRE(y,1,4) has the advantage of utilizing all prior

outcome values, but transition models based on fewer prior outcome values using

PRE(y,1,3), PRE(y,1,2), or PRE(y,1) (the same as PRE(y,1,1)) may be more

effective. The adaptive model based on PRE(y,1,3) includes the transform:

PRE(y,1,3)0.06 with an intercept and smaller QLCVþ score 0.31546. For

PRE(y,1,2) and PRE(y,1,1) even smaller QLCVþ scores of 0.31190 and 0.28324

are generated. Consequently, subsequent models are based on PRE(y,1,4).

Models for the means have depended so far on only dependence predictors and not

on other available predictors. The adaptive additive model in PRE(y,1,4), rate0, and

visit is the same model as generated for PRE(y,1,4) alone, indicating that mean

seizure rates do not change distinctly with the baseline seizure rate or over

post-baseline clinic visit, when considered additively. The adaptive additive model

in PRE(y,1,4), rate0, visit, and int is the same model as generated not considering

int, indicating that treatment group does not have a constant effect over all clinic

visits. However, it may have an effect that changes with clinic visit (or with the

other predictors). This can be addressed with geometric combinations

(GCs; see Sect. 4.5.4). The adaptive model in PRE(y,1,4), visit, rate0, int,

and GCs in these four predictors is based on the four transforms: PRE(y,1,4)0.073,

ðPREðy,1,4Þ�0:8 � rate01:5 � visit�1Þ3:27, int � PRE y,1, 4ð Þ�0:7 � visit�0:7 � rate0�0:1,

and ðrate0�5 � PREðy,1,4Þ2:1 � visit1:2Þ2:92 with an intercept and QLCVþ score

0.33995. In comparison, the adaptive model in PRE(y,1,4), rate0, visit, and GCs,

not considering int, is based on the four transforms: PRE(y,1,4)0.055,

ðPREðy,1,4Þ�0:8 � rate01:5 � visit�1Þ3:4, rate0�9:5 � visit11 � PRE y,1,4ð Þ�1
, and

ðPREðy,1,4Þ�1 � rate02Þ1:97 with an intercept and QLCVþ score 0.33706. The PD

compared to the model also considering int is an insubstantial 0.59 %, indicating that

mean seizure rates are reasonably considered not to differ for the two treatments.

However, this might change with consideration of non-constant dispersions.

14.4 Transition Modeling of Post-Baseline Seizure Rates 281

http://dx.doi.org/10.1007/978-3-319-33946-7_4


14.4.2 Non-Constant Dispersions Models

Adaptive non-constant dispersions models can be generated by considering

models with both means and dispersions depending on transforms of primary

predictors. For example, the means and dispersions of post-baseline seizure rates

can both be adaptively modeled in terms of PRE(y,1,4), visit, rate0, int, and GCs,

starting from constant means and dispersions models. In this case, the adaptively

generated model for the means is based on the one transform: PRE(y,1,4)0.056

with an intercept. The adaptively generated model for the dispersions is

based on the four transforms: PRE(y,1,4)0.3, ðvisit9 � PREðy,1,4ÞÞ1:001, and

ðvisit3 � int � PREðy,1,4ÞÞ1:1 without an intercept. The QLCVþ score is 0.36552,

which is a distinct improvement over the best constant dispersions model of

Sect. 14.4.1 with QLCVþ score 0.33995 and substantial PD of 7.00 %,

indicating that the seizure rates have distinctly non-constant dispersions.

For the adaptive model for means and dispersions in terms of PRE(y,1,4),

visit, rate0, and GCs, not considering int, the means are based on

the three transform: PRE(y,1,4)0.05, ðrate0�10 � visit2 � PREðy,1,4Þ�1:2Þ1:2, and

ðPREðy,1,4Þ�1:111 � visit�2 � rate02Þ�3:489
with an intercept while the dispersions are

based on the two transforms: PRE(y,1,4)0.75 and ðvisit9 � PREðy,1,4ÞÞ2:04 without an
intercept. The QLCVþ score is 0.35606 with substantial PD of 3.24 % compared to

the model also considering int. Consequently, non-constant dispersions modeling

supports the conclusion that the dispersions change with taking probagide compared

to a placebo but not the means (since none of those transforms depend on int). The

estimated slope for the transform ðvisit3 � int � PREðy,1,4ÞÞ1:1 is negative so that

taking the drug progabide decreases the dispersions for seizure rates. However,

only transition models have been considered so far. The conclusions might change

with consideration of GEE-based marginal models.

14.5 Adaptive GEE-Based Modeling of Multivariate Count
Outcomes

The formulation for adaptive modeling of multivariate count/rate outcomes using

GEE parameter estimation is similar to the formulation for the multivariate dichot-

omous logistic regression case given in Sect. 10.7.1. The outcome variable y has

count values rather than 0–1 values, its variance equals its mean μ so thatVðμÞ ¼ μ,
offsets are included in models for means and dispersions, and means are

log-transformed rather than logit-transformed, but otherwise the formulation is

the same and so is not provided. This formulation includes scaled residuals as

also used in the continuous case of Sect. 4.3.3 and the dichotomous outcome case of
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Sect. 10.7.1. Extended LCV ðLCVþÞ scores computed with multivariate normal

likelihoods extended to address count/rate outcomes, using either matched-set-wise

deletion as in Sect. 4.4.1 or measurement-wise deletion as in Sect. 4.13, are used to

evaluate and compare models as part of the adaptive modeling process. LCVþ

scores for GEE-based models are computed with multivariate normal likelihoods

while LCV and QLCVþ scores for transition and general conditional models are

computed with Poisson likelihoods for count/rate outcomes, and so these are not

comparable. However, it is possible to compute LCVþ scores for marginal models

induced by transition and general conditional models, which can be compared to

LCVþ scores for GEE-based models. The formulation is essentially the same as the

formulation of Sect. 14.7.3 for dichotomous discrete outcomes and so is not

provided. It is also possible to compute extended penalized likelihood criteria

(PLCs; see Sect. 2.10.1) adding the usual penalty factors to extended likelihoods

giving the extended AIC (AICþ), extended BIC (BICþ), and extended TIC (TICþ),
assumed to be in larger is better form. These are alternatives to the quasi-likelihood

information criterion (QIC) of Pan (2001), which extends readily to the count/rate

outcome context from the continuous outcome context of Sect. 4.11.1. In contrast to

QIC, the extended PLCs AICþ, BICþ, and TICþ are not based in part on results for

independent correlations but are wholly based on the working correlation structure.

14.6 Adaptive GEE-Based Modeling of Post-Baseline
Seizure Rates

For brevity, only constant dispersions models for seizure rates are considered in this

section. Also all extended LCV (LCVþ ) scores are based on k ¼ 5 folds as for

transition modeling of these data. The adaptive GEE-based additive model for

seizure rate means in terms of visit and rate0 with order 1 autoregressive (AR1)

correlation structure is based on the transform rate00.099 with an intercept and

LCVþ score 0.048238. The corresponding adaptive GEE-based model with

exchangeable correlation (EC) structure is the model based on the transforms

rate00.079 and visit19 with an intercept and larger LCVþ score 0.049804. Conse-

quently, EC is the more appropriate correlation structure for these data and is used

in subsequent analyses.

The adaptive GEE-based model in visit, rate0, int, and GCs is based on the two

predictors: rate00.139 and ðvisit�9 � rate0�11Þ�0:798
with an intercept and improved

LCVþ score 0.050294. Consequently, GEE-based modeling leads to the conclusion

that seizure rate means do not change distinctly with treatment as also held for

constant dispersions transition models. However, the associated transition model

induces a marginal model with LCVþ score 0.051199, which is a distinct improve-

ment over the associated GEE-based model with substantial PD in the LCVþ scores

of 1.77 %. In this case, transition modeling distinctly outperforms GEE-based
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modeling, suggesting that multivariate count/rate outcomes may be reasonable

analyzed using only transition models without considering GEE-based marginal

models. Moreover, the clock time to compute the above GEE-based marginal

model is about 62.6 min in comparison to 18.2 min to compute the associated

transition model or about 3.4 times as long.

14.7 Overview of Analyses of Post-Baseline Seizure Rates

1. For post-baseline seizure rates (Sect. 14.2), analyses use k ¼ 5 folds

(Sect. 14.4.1).

2. Models for post-baseline seizure rates based on constant dispersions with offsets

are distinctly better than models based on constant dispersions without offsets,

on unit dispersions without offsets, and on unit dispersions with offsets (this and

the following results reported in Sect. 14.4.1). Using constant dispersions with

offsets, mean post-baseline seizure rates are reasonably considered to change

with the average of the up to four prior seizure rates, the baseline seizure rate,

and visit, but not with treatment group.

3. Using constant dispersions with offsets and GEE-based marginal models, mean

post-baseline seizure rates are reasonably considered to change with the baseline

seizure rate and visit, but not with treatment group (this and the following results

reported in Sect. 14.6). The marginal model induced by the associated constant

dispersions transition model distinctly outperforms the GEE-based marginal

model.

4. Using non-constant dispersions with offsets, mean post-baseline seizure rates are

reasonably considered not to depend on treatment group (this and the following

results reported in Sect. 14.4.2). However, dispersions do change distinctly with

treatment group and are smaller when taking the drug progabide.

14.8 Chapter Summary

This chapter presents a series of analyses of the epileptic seizure data, addressing

how seizure rates per week over four post-baseline clinic visits depends on visit, the

baseline seizure rate, and treatment on progabide versus on a placebo for 59 epilep-

tic patients using both adaptive transition models and adaptive marginal models

with generalized estimating equations (GEE) parameter estimation. These analyses

demonstrate adaptive Poisson regression modeling of multivariate count/rate out-

comes using fractional polynomials, including how to model dispersions as well as

means. The chapter has also provided formulations for these alternative

regression models; for associated k-fold likelihood cross-validation (LCV)

scores for unit dispersions transition models, extended quasi-likelihood

cross-validation ðQLCVþÞ scores for non-unit dispersions transition models,
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pseudolikelihood cross-validation (PLCV) and extended PLCV (PLCVþ) scores for
general conditional models of means and/or dispersions, and extended LCV

ðLCVþÞ scores for GEE-based models of means and/or dispersions; and for

residuals, standardized or Pearson residuals and scaled residuals.

The example analyses demonstrate assessing whether log-transformed means of

a count/rate outcome are nonlinear in individual predictors, whether those relation-

ships are better addressed with multiple predictors in combination, whether those

relationships interact using geometric combinations (GCs), and whether there is a

benefit to considering non-constant dispersions. The example analyses also dem-

onstrate how to compare GEE-based marginal models to marginal models induced

by transition models. The results of these analyses demonstrate the need to consider

non-constant dispersions since taking progabide only affects dispersions for seizure

rates not the means. These results also indicate that transition models for multivar-

iate count/rate outcomes can induce marginal models that distinctly outperform

associated GEE-based marginal models and in much less time. Thus, it seems

reasonable not to consider GEE-based marginal models when analyzing multivar-

iate count/rate discrete outcomes. Example residual analyses are not reported in this

chapter for brevity. See Chap. 15 for a description of how to conduct analyses of

multivariate count/rate outcomes in SAS.
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Chapter 15

Adaptive Poisson Regression Modeling
of Multivariate Count Outcomes in SAS

15.1 Chapter Overview

This chapter describes how to use the genreg macro for adaptive Poisson regression

modeling of multivariate count outcomes, possibly converted to rates using offsets,

as described in Chap. 14, and its generated output. See Supplementary Materials for

a more complete description of the macro. See Stokes et al. (2012) for details on

standard generalized estimating equations (GEE) modeling of multivariate count/

rate outcomes in SAS. Familiarity with adaptive modeling in SAS of univariate

count/rate outcomes as described in Chap. 13 and of transition and GEE-based

modeling in SAS as described in Chaps. 5, 7, and 11 is assumed in this chapter.

Section 15.2 describes the epileptic seizure data (see Sect. 14.2) used in the analyses

of Chap. 14. Section 15.3 provides examples of transition modeling of seizure rates

while Sect. 15.4 provides examples of GEE-based marginal modeling of seizure

rates.

15.2 Loading in the Epileptic Seizures Data

Analyses are conducted in Chap. 14 of post-baseline seizure rates for 59 patients

with epilepsy (see Sect. 14.2). Assume that these epileptic seizure data have been

loaded into the default library (for example, by importing them from a spreadsheet

file) in wide format (see Sect. 5.2) under the name seizures. An output title line,

selected system options, labels for the variables, and formats for values of selected

variables can be assigned as follows.

options nodate pageno¼1 pagesize¼53 linesize¼76;

title1 "Epileptic Seizures Data";

proc format; value intfmt 0¼"Placebo" 1¼"Progabide"; run;
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data seizures;

set seizures;

int¼(treatment¼1);

rate0¼count0/8;

label id¼"Subject ID" int¼"Treatment Group" age¼"Age in Years"

count0¼"Seizure Count in Prior 8 Weeks at Time 0"

count1¼"Seizure Count in Prior 2 Weeks at Visit 1"

count2¼"Seizure Count in Prior 2 Weeks at Visit 2"

count3¼"Seizure Count in Prior 2 Weeks at Visit 3"

count4¼"Seizure Count in Prior 2 Weeks at Visit 4"

int¼"Progabide versus a Placebo"

rate0¼"Seizure Rate per Week in Prior 8 Weeks at Time 0";

format int intfmt.;

run;

Patient identifiers are stored in the variable id. Seizure count outcome measure-

ments at visits 0–4 are stored in the variables count0–count4, respectively. The

variable int indicates the treatment group with value 1 for patients on progabide and

0 for patients on a placebo. A format is created with PROC FORMAT for the values

of the variable int and assigned with the format statement in the data step. The

variable rate0 is loaded with baseline rates; the baseline period is 8 weeks long for

all patients.

The following code converts the data to long format, storing it in the longseiz

data set.

data longseiz;

set seizures;

array counts{5} count0-count4;

do i¼1 to 5;

visit¼i-1; count¼counts{i};

if i¼1 then dltatime¼8; else dltatime¼2;

output;

end;

label visit¼"Visit" count¼"Seizure Count"

dltatime¼"Prior # of Weeks for Count";

keep id int age visit rate0 count dltatime;

run;

data longseiz;

set longseiz;

xoffset¼log(dltatime); voffset¼log(dltatime);

y¼count; w¼visit;

label xoffset¼"Offset for Expectations"

voffset¼"Offset for Dispersions"

y¼"Seizure Count" w¼"Visit";

run;
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The variable count is created from count0 to count4. The variable visit is loaded

with indexes from 0 to 4 for clinic visits. The variable dltatime is loaded with the

length of associated periods in weeks. All post-baseline periods are 2 weeks long.

This variable is used to create the offset variables xoffset and voffset for means and

dispersions, respectively. Since these two variables have the same values, a single

variable could have been used instead. A copy y of the outcome variable count and

a copy w of the within-subject variable visit are created for use in shortening the

length of names for dependence predictors in the code of Sect. 15.3. The postseiz

data set containing only post-baseline data is created as follows.

data postseiz;

set longseiz;

if visit¼0 then delete;

run;

The cutoff for a substantial percent decrease (PD) in the QLCV+ and LCV+

scores (see Sect. 4.4.2 for the formula) for the 236 post-baseline seizure rates per

week is 0.81 %. Since there are no missing measurements, all these scores are

computed with matched-set-wise deletion (Sect. 4.4.1; using the default setting

“measdlte¼n” of the genreg macro parameter measdlte).

15.3 Transition Modeling of Post-Baseline Seizure Rates

Assume that genreg has been loaded into SAS (see Supplementary Materials). An

adaptive transition model for count can be generated as follows.

%genreg(modtype¼poiss,datain¼longseiz,yvar¼count,

xoffstvr¼xoffset,voffstvr¼voffset,conditnl¼y,

corrtype¼IND,matchvar¼id,withinvr¼visit,

winfst¼1,foldcnt¼5,expand¼y,expxvars¼pre_y_w_1_4,

contract¼y);

The parameter setting “modtype¼poiss” requests a Poisson regression model.

The datain parameter specifies the input data set, in this case the longseiz data set.

The yvar parameter specifies the count outcome variable, in this case the variable

count. The xoffstvr and voffstvr parameters specify the variables in the datain data

set containing offset values for the means and dispersions, respectively. A condi-

tional model is requested since “conditnl¼y”. This requires an independent corre-

lation structure as requested with “corrtype¼IND”. It also requires that the

matchvar and withinvr parameters have nonempty settings specifying, respectively,

the variable whose unique values determine the matched sets, the variable id in this

case, and the variable whose values indicate the different conditions under which

the outcome variable has been measured, the variable visit in this case.
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The parameter setting “foldcnt¼5” (as justified in Sect. 14.4.1) requests that 5-fold

QLCV+ scores be computed for models and is used in all further analyses of the

seizure rates. The parameter setting “expand¼y” requests that the base model be

expanded. The model for the means is expanded by adding in transforms of primary

predictor variables listed in the setting for the expxvars parameter. The model for

the dispersions is not changed since the expvvars macro parameter has its default

empty setting. The parameter setting “contract¼y” requests that the expanded

model be contracted. In this case, the one dependence predictor pre_y_w_1_4

(called PRE(y,1,4) in Chap. 14) is considered in the expansion (see Sect. 5.4.1 for

more on how dependence predictors are specified). Using the copies y and

w shortens the names of these predictors. Alternate transition models can be

generated by changing the expxvars list to depend on pre_y_w_1_3,

pre_y_w_1_2, or pre_y_w_1_1 (called PRE(y,1,3), PRE(y,1,2), and PRE(y,1,1)

in Chap. 14, respectively).

The winfst parameter specifies the first value of the withinvr variable to use in

the analysis, in this case the value of 1 for that variable is the first to be considered.

By default (with setting “winfst¼.”), the first value of that variable, in this case 0, is

used. There is also a winlst parameter controlling the last value of the withinvr

variable to use in the analysis. In this case, its default value (“winlst¼.”) is requested,

meaning that the last value 4 of the withinvr variable is to be used in the analysis.

Taken together, these settings of winfst and winlst request that the post-baseline

seizure rates from visit 1 to 4 be modeled. The advantage of modeling the post-

baseline outcome values from the longseiz data set over using the postseiz data set

with baseline values deleted is that the baseline counts can be used in computing

values for prior dependence predictors like pre_y_w_1_4. Since the baseline counts

are not missing for any of the patients, there is always at least one prior outcome value

available to use in computing all prior dependence predictors. That means that

indicators of no prior outcome values for computing dependence predictors like

pre_y_w_1_4 have all zero values and need not be considered in analyses. If a data

set with baseline values deleted is used instead (as in the analyses of Chaps. 10 and

11), this is no longer the case and these indicators are needed, for example,

pre_y_w_1_4_m is the missing indicator corresponding to pre_y_w_1_4. When

non-zero offset variables are specified and the base variable (the variable y in this

case) for a dependence predictor equals the outcome variable defined through the yvar

macro parameter, the values for the dependence predictor is based on averages of the

outcome variables divided by the exponent of the associated offset variable (defined

with xoffstvr for means and voffstvr for dispersions). In this way, the dependence

predictor is based on averages of associated rates rather than of the counts.

The default setting”measdlte¼n” is requested so that generated QLCV+ scores

are based on matched-set-wise deletion with all measurements of a matched set

assigned to the same fold (see Sect. 4.4.1). Measurement-wise deletion (see Sect.

4.13) with individual measurements assigned to folds instead can be requested with

the setting “measdlte¼y”. For transition and general conditional models, partial

measurement-wise deletion (Sect. 4.13) can be requested with the setting

“measdlte¼p”.
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The base model is generated first, in this case the model with constant means

(since the default settings of “xintrcpt¼y” and “xvars¼” are used) with offsets,

constant dispersions (since the default settings of “vintrcpt¼y” and “vvars¼” are

used) with offsets, and QLCV+ score 0.17268. This is expanded by adding in the

single transform for the means: pre_y_w_1_40.05 with associated LCV score

0.31873. The contraction leaves the model unchanged and there is no need for a

conditional transformation since there is only one transform in the model.

An adaptive model in pre_y_w_1_4, visit, rate0, int, and geometric combina-

tions (GCs; see Sect. 4.5.4) can be generated as follows.

%genreg(modtype¼poiss,datain¼longseiz,yvar¼count,

xoffstvr¼xoffset,voffstvr¼voffset,conditnl¼y,

corrtype¼IND,matchvar¼id,withinvr¼visit,

winfst¼1,foldcnt¼5,expand¼y,

expxvars¼pre_y_w_1_4 visit rate0 int,geomcmbn¼y,

contract¼y);

The primary predictors for the expansion are set through the expxvars

parameter. GCs are requested as part of this expansion with the “geomcmbn¼y”

setting. The default setting “geomcmbn¼n” generates the associated additive

model. The expansion adds six transforms to the base model: pre_y_w_1_40.05,

(pre_y_w_1_4�0.8 � rate01.5 � visit�1)3.4, int � pre_y_w_1_4�0.7 � visit�0.7 � rate0�0.1,

(rate0�5 � pre_y_w_1_42.1 � visit1.2)2, visit11 � pre_y_w_1_4�1.07, and (rate0�3

� pre_y_w_1_4�2)1.2 with QLCV+ score 0.34274. This is contracted to the model

based on the four transforms: pre_y_w_1_40.073, (pre_y_w_1_4�0.8 � rate01.5 � visit�1)3.27,

int � pre_y_w_1_4�0.7 � visit�0.7 � rate0�0.1, and (rate0�5 � pre_y_w_1_42.1 � visit1.2)2.92
with an intercept and QLCV+ score 0.33995 as also reported in Sect. 14.4.1.

Adaptive models for both the means and dispersions can be generated as follows.

For example, the following code generates a model with both means and disper-

sions a function of the primary predictors: pre_y_w_1_4, visit, rate0, int, and GCs.

%genreg(modtype¼poiss,datain¼longseiz,yvar¼count,

xoffstvr¼xoffset,voffstvr¼voffset,conditnl¼y,

corrtype¼IND,matchvar¼id,withinvr¼visit,

winfst¼1,foldcnt¼5,expand¼y,

expxvars¼pre_y_w_1_4 visit rate0 int,

expxvars¼pre_y_w_1_4 visit rate0 int,geomcmbn¼y,

contract¼y);

The generated model for the means has the one transform: PRE(y,1,4)0.056 with

an intercept. The adaptively generated model for the dispersions is based on the four

transforms: PRE(y,1,4)0.3, (visit9 � PRE(y,1,4))1.001, and (visit3 � int � PRE(y,1,4))1.1
without an intercept. The QLCV+ score is 0.36552, which substantially improves

on the associated constant dispersions model (see Sect. 14.4.2).
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This latter adaptive model can be generated directly as follows.

%genreg(modtype¼poiss,datain¼longseiz,yvar¼count,

xoffstvr¼xoffset,voffstvr¼voffset,conditnl¼y,

corrtype¼IND,matchvar¼id,withinvr¼visit,

winfst¼1,foldcnt¼5,xvars¼pre_y_w_1_4,

xpowers¼0.056,vvars¼pre_y_w_1_4 rate0,

vpowers¼0.3 -0.09,

vgcs¼visit 9 pre_y_w_1_4 1 :

visit 3 in. 1 pre_y_w_1_4 1,

vgcpowrs¼1.001 1.1);

The vgcs parameter is used to specify GCs for the dispersions with GCs

separated by colons (:) and the vgcpowrs parameter to specify powers for

transforming those GCs. For example, the GC visit9 � pre_y_w_1_4 is requested

with “visit 9 pre_y_w_1_4 1”. Since this is the first requested GC and

1.001 is the first power in the vgcpowrs list, together they request the transform

(visit9 � pre_y_w_1_4)1.001. The xgcs and xgcpowrs parameters are used in the same

way to generate transformed GCs for means, but those are not needed in this case.

Table 15.1 contains part of the output generated by this code. GCs generated for the

means (dispersions) have names starting with “XGC_” (“VGC_”) followed by an

index number. Lists are provided describing each of the GCs using the SAS

Table 15.1 The adaptive model for post-baseline seizure rates in terms of the average of the up to

four prior seizure rates (pre_y_w_1_4), clinic visit, the baseline seizure rate (rate0), the indicator

for being on probagide (int), and geometric combinations in these four primary predictors
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operators “*” for multiplication and “**” for exponentiation. Powers used to

transform these GCs and estimated slopes for those power transforms are also

provided in the output.

15.4 Marginal GEE-Based Modeling of Post-Baseline
Seizure Rates

An adaptive GEE-based model can be generated for post-baseline seizure rates in

terms of visit, rate0, int, and GCs as follows.

%genreg(modtype¼poiss,datain¼postseiz,yvar¼count,

xoffstvr¼xoffset,voffstvr¼voffset,GEE¼y,

corrtype¼EC,biasadj¼y,matchvar¼id,

withinvr¼visit,foldcnt¼5,expand¼y,

expxvars¼visit rate0 int,geomcmbn¼y,

contract¼y);

The winfst and winlst parameters are only supported for conditional modeling

(requested by “conditnl¼y”), and so the postseiz data set needs to be used to be able

to model only post-baseline values. If the longseiz data set is used instead, seizure

rates for all five visits are analyzed. Only constant dispersions models are consid-

ered since the default settings “vintrcpt¼y” and “expvvars¼” (that is, the empty

setting) are requested. The setting “GEE¼y” requests a GEE parameter estimation

(see Sect. 14.5). The default setting is “GEE¼n”, meaning use maximum likelihood

parameter estimation, but that is only supported for marginal models with

“modtype¼norml”. The corrtype parameter has the same meaning as for marginal

models of continuous outcomes (see Sect. 5.3.1). Exchangeable correlations

(EC) are requested in this case. The setting “biasadj¼y” requests that correlation

and dispersion estimates be bias-corrected (see Sect. 12.7.1) adjusting the number

of measurements by subtracting the number of terms in the model for the means as

is standard for GEE-based modeling. The default setting “biasadj¼n” means

compute those estimates without adjusting for bias, dividing instead by the

unadjusted number of measurements. The other choices are “corrtype¼AR1” for

order 1 autoregressive correlations and “corrtype¼UN” for unstructured correla-

tions. For the AR1 case, the spatial parameter determines the type of

autoregression. The default setting of “spatial¼y” requests a spatial autoregression

where the actual withinvr values are used in computing correlations while

“spatial¼n” requests a standard autoregression where the indexes for the withinvr

values are used in computing correlations. These are only equivalent when the

actual values are equally spaced.

The search starts at the constant means and dispersions model with extended

LCV (LCV+) score 0.025958. The expansion adds in the five transforms for the
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means: rate00.309, int � visit5 � rate00.1, int � rate0�2 � visit�0.3, visit18, and visit�9 � rate0�11

with improved LCV+ score 0.049973, and then the contraction removes three transforms

leaving the model based on rate00.139 and (visit�9 � rate0�11)�0.798 with an intercept and

further improved LCV+ score 0.050294 as also reported in Sect. 14.6.

LCV+ scores for GEE-based models of count/rate outcomes are computed with

extended multivariate normal likelihoods while QLCV+ scores for transition and

PLCV+ scores for general conditional models of those outcomes are computed with

Poisson likelihoods, and so these two types of scores are not comparable. However,

transition and general conditional models for count/rate outcomes induce marginal

models (see Sect. 14.5), whose LCV+ scores can be compared to those for

GEE-based marginal models. The induced LCV+ score for a transition and general

conditional model is reported in the genreg output when requested with the setting

“GEEscore¼y”.

15.5 Practice Exercises

15.1 Patients’ ages are also available in the epileptic seizure data set, stored in the

variable age. Assess the impact of also including age as a primary predictor

for post-baseline seizure rates. Use k¼ 5 folds as justified in Sect. 14.4.1.

First, generate the adaptive transition model for the post-baseline seizure rate

means in pre_y_w_1_4, rate0, visit, int, age, and GCs with constant disper-

sions. How does this model depend on int? Does also considering age as a

primary predictor provide a distinct improvement in predicting seizure rate

means when dispersions are constant? Next, generate the adaptive transition

model for the post-baseline seizure rate means and dispersions in

pre_y_w_1_4, rate0, visit, int, age, and GCs. How does this model depend

on int? Does also considering age as a primary predictor provide a distinct

improvement in predicting seizure rate means and dispersions in combination

in comparison to using constant dispersions modeling? Finally, generate the

adaptive transition model for the post-baseline seizure rate means and disper-

sions in pre_y_w_1_4, rate0, visit, age, and GCs without int to assess the

impact of int on seizure rates when age is also considered. Is this model a

competitive alternative to the one based also on int as for analyses conducted

without considering age? Or does consideration of age lead to the opposite

conclusion that there is a substantial effect to int?

For Practice Exercises 15.2 and 15.3, use the aspartame study data available

on the Internet (see Supplementary Materials). Aspartame is an artificial

sweetener used as a sugar substitute. The data are in long format. There are

122 measurements for 27 subjects over weeks 1–5 with an average of 4.5

measurements per subject. The outcome variable for this data set is called

headaches and contains counts of headaches within each week. The predictors

to be considered are called week and int, the indicator for being on aspartame

versus being on a placebo. The variable days contains the number of days of
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exposure for the associated week (not always the whole 7 days). For all

models use offsets for means and dispersions set equal to the logs of days so

that the Poisson regression models for headache counts are converted into

models for headache rates per day. The load code for this data set creates the

variables xoffset and voffset and loads them with these offset values. It also

creates copies called y and w of headaches and week, respectively, for use in

creating shorter names for dependence predictors.

15.2 For the aspartame data, use the adaptive additive transition model for the

means of headache rates per day in pre_y_w_1_4 and pre_y_w_1_4_m as a

benchmark analysis to set the number of folds for QLCV+ scores. Use

constant dispersions models in all analyses of this practice exercise. Next

generate the adaptive model for the means in pre_y_w_1_4, pre_y_w_1_4_m,

week, and GCs and assess whether consideration of week has a distinct effect

on the means for headache rates. Finally generate the adaptive model for the

means in pre_y_w_1_4, pre_y_w_1_4_m, week, int, and GCs and assess

whether consideration of int has a distinct effect on the means for headache

rates. Does being on aspartame have an effect on the means for headache rates

per day compared to being on a placebo?

15.3 For the aspartame data, use the number of folds selected in Practice Exercise

15.2 for all analyses of this practice exercise. First generate the adaptive

model for the means and dispersions in pre_y_w_1_4, pre_y_w_1_4_m,

week, and GCs and assess whether consideration of week has a distinct effect

on means and dispersions for headache rates. Next generate the adaptive

model for the means and dispersions in pre_y_w_1_4, pre_y_w_1_4_m,

week, int, and GCs and assess whether consideration of int has a distinct

effect on means and dispersions for headache rates. Does being on aspartame

have an effect on means and/or dispersions for headache rates per day

compared to being on a placebo?

Reference
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Chapter 16

Generalized Additive Modeling

16.1 Chapter Overview

This chapter formulates and demonstrates generalized additive models (GAMs)

(Hastie and Tibshirani 1999) for means of continuous outcomes treated as inde-

pendent and normally distributed with constant variances as in linear regression and

for logits (log odds) of means of dichotomous outcomes with unit dispersions as in

logistic regression. GAMs for these two cases are also compared to adaptive

fractional polynomial models. PROC GAM, which supports generation of GAMs

in SAS, currently supports GAMs for the logistic case only with unit dispersions,

and so constant dispersion models are not considered for that case. Poisson regres-

sion analyses are not conducted in this chapter for brevity. See Chap. 17 for a

description of how to conduct analyses like those described in this chapter in SAS.

GAMs provide an alternative to fractional polynomial models for modeling

nonlinear relationships between univariate outcomes and predictors. Since GAMs

are nonparametric regression alternatives to generalized linear models, they only

address univariate outcomes and not multivariate outcomes. GAMs can be used in

the regression context with univariate continuous outcomes as well as in other types

of regression contexts like logistic regression with dichotomous discrete outcomes.

GAMs can be generated in SAS using cubic splines (Ahlberg et al. 1967), local

regression (loess) (Cleveland et al. 1988), or thin plate splines (Meinguet 1979).

SAS macros are available (see Chap. 17) for computing GAMs and their likelihood

cross-validation (LCV) scores.

Section 16.2 formulates GAMs for continuous outcomes. Section 16.3

formulates likelihood cross-validation (LCV) for GAMs. Section 16.4 formulates

leave-one-out (LOO) least squares cross-validation (LSCV) and generalized cross-

validation (GCV) (Wahba 1990) commonly used with GAMs. Sections 16.5–16.7

provided example analyses using GAMS of the death rate data analyzed in

Chaps. 2, 3, 6, and 7 (see Sect. 2.2 for a description of these data). These data are

a subset of a larger data set described and analyzed in Sect. 16.8. Section 16.9

© Springer International Publishing Switzerland 2016
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formulates GAMs for dichotomous outcomes. Section 16.10 provides example

analyses using GAMs of the dichotomous outcome of the fish mercury data

analyzed in Chaps. 8 and 9 (see Sect. 8.2 for a description of these data).

Sections 16.11 and 16.12 provide overviews of the results of analysis of death

rates and dichotomous mercury levels, respectively. Formulations can be skipped to

focus on analyses.

16.2 Formulation of GAMs for Univariate Continuous
Outcomes

GAMs in the normal distribution case use a generalization of the multiple regres-

sion model of Sect. 2.17. For s2S ¼ s : 1 � s � nf g, decompose the r� 1vector xs

into xs ¼ ðx0
s

T
,x

0 0
s

TÞT where x
0
s has the r

0 entries x
0

sj
0 for j

0 2J
0 ¼ fj0 : 1 � j

0 � r
0 g and

x
00
s has the r

00 entries x
00

sj
00 for j

0 0 2J
0 0 ¼ fj0 0 : 1 � j

0 0 � r
0 0 g where r

0 þ r
00 ¼ r. Assume

that ys ¼ x
0
s

T � βþ f x
00
s

� �þ es for an arbitrary function f. This model is parametric in

the predictor vectors x
0
s and nonparametric in the predictor vectors x

00
s . The first

entry of x
0
s satisfies x

0
s1 ¼ 1 for 1 � s � n so that an intercept parameter β1 is always

included in the model. The function f decomposes into separate functions f
j
00 for

predicting the additive impact of each of the predictors x
00

sj
00 . These separate

functions can be estimated with either the loess or cubic spline smoothing

approaches. The effect of pairs of predictors can also be estimated using the thin

plate spline smoothing approach (for the formulation for thin plate splines, see the

documentation on PROC TPSPLINE in SAS Institute 2004).

Let y denote the n� 1 vector of outcome values ys. Under the cubic spline and

loess approaches applied to the predictor values x
00

sj
00 for 1 � s � n, the n� 1 vector

f
j
00 with entries f

j
0 0 ðx0 0

sj
0 0 Þ for 1 � s � n is estimated as a linear function K

j
00 � y for a

n� n matrix K
j
00 with entries Kss

0
j
00 . The matrices K

j
00 depend on smoothing

parameters and possibly also on x
00

sj
00 and y, but this dependence has been suppressed

to simplify the notation. When symmetric, the matrices K
j
00 are analogous to hat

matrices for regression models. For cubic spline GAMs, the matrices K
j
00 are

symmetric, and so the associated degrees of freedom (DF) are defined as the trace

trðK
j
0 0 Þ ¼ P

1�s�nKssj
0 0 of K

j
00 . For loess, associated DF values are defined as the

trace trðK
j
0 0 T �K

j
0 0 Þ since the matricesK

j
00 are not symmetric. Associated DF can be

similarly defined for thin plate splines in terms of pairs of predictor values within

the predictor vectors x
00
s . DF values represent effective numbers of slope parameters

used by alternative smoothing approaches to estimate the effects of predictors. They

are analogous to degrees for polynomial models and so can be compared to degrees
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for standard and fractional polynomial models. Note also that the matrices K
j
00 can

be combined over j
00 2J

00
together with a similar matrix K0 for the parametric part of

the model into the hat matrix K with entries Kss
0 generating predictions K � y of

means for all the observations based on the complete model in terms of all predictor

vectors xs for s2S.

Residuals are computed as esðSÞ ¼ ys � x
0
s

T � βðSÞ � fðSÞðx0 0
s Þ for s2S where

f(S) denotes the estimate of the function f. LCV scores are then computed using

deleted residuals es(S \ F(h)) for s2F hð Þ and h2H as defined in Sect. 2.5.3.

However, the associated deleted estimates f(S \ F(h))(x
00
s ) are not always comput-

able, in which case the LCV score is adjusted as described in Sect. 16.3.

16.3 Formulation of Likelihood Cross-Validation
for GAMs

To compute LCV scores for GAMs, an adjustment is needed since predictions

generated by PROC GAM can sometimes be missing when fold predictor values

are outside the range of predictor values for the complement of that fold. Let n(h)

denote the number of observations in fold F(h), miss(h) the possibly empty set of

observations in fold F(h) with missing predictions, and nmiss(h) the number of

observations in miss(h). Assumingnmiss hð Þ < n hð Þ, define LCV scores for GAMs as

LCV ¼
Y
h2H

L
0
FðhÞ; θ S∖FðhÞð Þð Þ1n,

where logðL0 ðFðhÞ; θÞÞ ¼ log LðFðhÞ∖missðhÞ; θÞð Þ � nðhÞ= nðhÞ � nmissðhÞð Þ and

θ¼ (β, f ) is the combination of the parameters and the nonparametric function

underlying a given GAM. This is equivalent to replacing the log-likelihood terms

for observations in fold F(h) with missing predictions with the average of the

log-likelihoods for the observations in fold F(h) with non-missing predictions,

and so is a common form of single imputation. In the normal distribution case,

the deleted log likelihood for observation ys0 ; xs0
� �

with s
0 2miss hð Þ is imputed as

�1

2
�

X
s2FðhÞ∖missðhÞ

ys�y xs;S∖FðhÞð Þð Þ2
nðhÞ�nmissðhÞð Þ �σ2 S∖FðhÞð Þ�

1

2
� log σ2 S∖FðhÞð Þ� ��1

2
� logð2 �πÞ,

where y(xs; S \ F(h)) denotes the predicted value for an observation (ys, xs) from the

observations with indexes in S\F(h). Thus, the imputed squared deleted error for

ðys0 , xs0 Þ is the average of the squared deleted errors for the observations in fold

F(h) with non-missing predictions. Consequently, predicted values for ðys0 , xs0 Þ with
s0 2miss(h) are likely not to be as extreme as if they had been obtained by extrap-

olation of the predicted values for the observations with indexes in S\F(h), and so this

imputation approach is likely to provide relatively favorable imputed LCV scores for
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GAMs. This adjusted LCV score cannot be computed when one or more folds have

all missing predictions (that is, nmiss hð Þ ¼ n hð Þ for some h), but that will not often

occur. If it does occur, reduce the number of folds until this is resolved.

16.4 Other Forms of Cross-Validation

A least squares form of leave-one-out (LOO) cross-validation (CV) is often used

with GAMs (see eq. 3.10, Hastie and Tibshirani 1999) with least squares CV scores

LSCV ¼ 1

n

X
1�s�n

�
esðS∖fsgÞ

�2

for the normal distribution case. Smaller LSCV scores indicate better models.

Using LSCV in the standard regression context is equivalent to using PRESS as

defined in Sect. 2.5.1 since LSCV ¼ PRESS=n and so is similar to LOO LCV

generalizing PRESS and LSCV to account for deleted variance estimates (as shown

in Sect. 2.5.3). It can be shown that the LSCV score satisfies

LSCV ¼ 1

n

X
1�s�n

esðSÞ
1� Kss

� �2

(eq. 3.19, Hastie and Tibshirani 1999) where Kss are the diagonal entries of the hat

matrixK as defined in Sect. 16.2. Generalized CV (GCV) uses the approximation to

this LSCV score given by

GCV ¼ 1

n

X
1�s�n

esðSÞ
1� trðKÞ=n

� �2

,

replacing the diagonal entries Kss by their average tr(K)/n. PROC GAM supports

GCV selection of GAMs.

16.5 GAM Analyses of Deathrate as a Function
of the Nitric Oxide Pollution Index

Models can be generated in PROC GAM using non-integer degrees of freedom

(DF) values, but analyses reported in this chapter are restricted to only integer

valued DF. The DF for such cubic spline GAMs equal the requested integer values.

The DF for such loess models, on the other hand, are non-integer values close to the

requested DF. For cubic spline and loess GAMs, predictors are also included as

linear terms in those predictors. This means that integer valued DF of at least 2 are

required for cubic splines to avoid degenerate cases, but DF ¼ 1 is a possible

alternative for loess GAMs. Thin plate spline GAMs do not generate linear terms
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for predictors, but since they involve two predictors, they require integer valued DF

of at least 2 (but requests for lower DF are changed by PROC GAM to DF ¼ 2).

The GAM for deathrate as a function of NOindex generated with the cubic

spline approach selected through GCV has DF ¼ 7:03 (including a linear term in

NOindex and DF ¼ 6:03 for the nonparametric component in NOindex) with

GCV ¼ 2929:960. In contrast, the GAM generated with the loess approach selected

through GCV has DF ¼ 2:86 (including a linear term in NOindex and DF ¼ 1:86
for the nonparametric component in NOindex) with smaller and so better

GCV ¼ 54:328. Predicted value curves for these two alternative GAMs are

displayed in Fig. 16.1 (see Fig. 2.1 for a plot of the data). Both approaches generate

similar predicted values for relatively small and relatively large NOindex values. In

between, the cubic spline GAM is more highly influenced by variability in the data

than the loess GAM due to its much larger DF, resulting in a much larger (worse)

GCV score. However, both are highly influenced by the two observations with very

large NOindex values (see the scatter plot of the data in Fig. 2.1).

Table 16.1 contains 5-fold (as justified in Sect. 2.8) LCV scores for GAMs for

deathrate as a function of the singleton predictor NOindex based on both the cubic

spline and loess approaches chosen either by GCV or with specified DF values

ranging from 2 to 4 for cubic spline GAMs and from 1 to 4 for loess GAMs. All

GAMs include a constant term not counted in reported DF values and a linear term

counted in reported DF values, and so the associated nonparametric components are

based on 1 less DF than reported in the table. Actual DF values for loess models are

only close to the requested values: actual DF values (not reported in Table 16.1) for

requested DF values of 1–4 are 1.30, 2.14, 3.03, and 3.75, respectively. Note that

DF ¼ 4 is an example where the actual DF is less than the requested integer

DF. Actual DFs when DF ¼ 1 is requested appear to be greater than 1 (as in this

case) so that such choices are reasonable to consider. The loess model with DF ¼ 2
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Fig. 16.1 Comparison of estimated mean death rate per 100,000 as a function of the nitric oxide

pollution index for generalized additive models based on the cubic spline and loess approaches

selected through generalized cross-validation
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generates the best LCV score of 0.0040161 for all the GAMs of Table 16.1. Among

all cubic spline GAMs, the model with DF ¼ 2 generates the best LCV score of

0.0039184 and a percent decrease (PD) in the LCV scores of 2.43 % compared to

the best loess model. This is an insubstantial PD since it is smaller than the cutoff of

3.15 % for the data (as reported in Chap. 2).

By default, PROC GAM uses the DF value of 4. The default DF ¼ 4 cubic spline

model has LCV score 0.0020098 with substantial PD of 48.71 % compared to the

cubic spline model with the best LCV score of 0.0039184. The defaultDF ¼ 4 loess

model has LCV score 0.0036823 with substantial PD of 8.31 % compared to the

loess model with the best LCV score of 0.0040161. Consequently, using the default

DF value can generate substantially inferior models.

The loess model generated with GCV has DF ¼ 2:86 and LCV score of

0.0039866 with insubstantial PD of 0.73 % compared to the best loess model

with specified DF ¼ 2, and so is a competitive alternative. On the other hand, the

cubic spline GAM generated with GCV has DF ¼ 7:03 and LCV score of

0.0019354 with very substantial PD of 50.61 % compared to the best cubic spline

model with specified DF ¼ 2. Thus, consideration of ranges of DF values is likely

to generate better LCV scores than GCV and sometimes substantially better, and so

GCV is not considered in subsequent analyses.

The LCV score 0.0040161 for the best overall GAM generates a substantial PD

of 5.06 % compared to the LCV score 0.0042303 for the adaptive fractional

polynomial model (see Sect. 2.8). Thus, adaptive fractional polynomial models

provide a distinctly better depiction of the nonlinearity of deathrate in NOindex

Table 16.1 Comparison of alternative generalized additive models to the adaptive fractional

polynomial model for death rate per 100,000 as a function of the nitric oxide pollution index

Modeling

approach DF

5-fold

LCV

score

Percent

decrease

(%)a

Percent

decrease

(%)b

Percent

decrease

(%)c

Percent

decrease

(%)d

Cubic

spline

GAM

2 0.0039184 0.00 2.43 7.37

3 0.0030058 23.29 25.16 28.95

4 0.0020098 48.71 49.96 52.49

7.03e 0.0019354 50.61 51.81 54.25

Loess

GAM

1 0.0039407 1.88 1.88 6.85

2 0.0040161 0.00 0.00 5.06

2.86e 0.0039866 0.73 0.73 5.76

3 0.0040119 0.10 0.10 5.16

4 0.0036823 8.31 8.31 12.95

Adaptive – 0.0042303 0.00

DF: degrees of freedom, GAM: generalized additive model, LCV: likelihood cross-validation
aAmong all cubic spline models
bAmong all loess models
cAmong all cubic spline and loess models
dAmong all cubic spline, loess, and adaptive models
eDF chosen through generalized cross-validation including 1 DF for the linear term
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than GAMs. Also, the generated adaptive model is based on two transforms without

an intercept (as reported in Sect. 2.6) and so is less complex than the best GAM

based on two DF plus an intercept. Figure 16.2 provides a comparison of estimated

mean curves for these two models (see Fig. 2.1 for a plot of the data). Compared to

the adaptive fractional polynomial model, the estimated mean deathrate for the best

GAM starts out larger for low NOindex levels, is smaller for a while, then larger,

and ends up much smaller for very large NOindex values. The GAM is more highly

influenced by the few extreme observations with very large NOindex values (see

Fig. 2.1) than the fractional polynomial model, thereby accounting for its substan-

tially inferior LCV score.

16.6 GAM Analyses of Deathrate as a Function of Other
Singleton Predictors

Table 16.2 contains a comparison of GAMs to adaptive models for deathrate in

terms of the three singleton predictors NObnded (that is, min(NOindex,12), see

Sect. 2.15), SO2index, and rain. The best LCV score for loess GAMs with DF

ranging from 1 to 4 is generated at DF ¼ 1 for all three predictors. The best LCV

score for cubic spline GAMs with DF ranging from 2 to 4 is generated atDF ¼ 4 for

rain and at DF ¼ 2 for the other two predictors. For NObnded, SO2index, and rain

the loess approach generates the better LCV score than the cubic spline approach, as

was also the case for NOindex as reported in Table 16.1. For NObnded and

SO2index, adaptive models generate larger LCV scores than the GAMs, and

substantially so for NObnded but not for SO2index. For rain, the best cubic spline

GAM generates a larger LCV score than the adaptive model, but the PD for the
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Fig. 16.2 Comparison of estimated mean death rate per 100,000 as a function of the nitric oxide

pollution index for the adaptive fractional polynomial model and the best generalized additive

model
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adaptive model is insubstantial at 1.52 %. Moreover, that model is based on a single

transform of rain without an intercept (as described in Sect. 2.16) while the cubic

spline is based onDF ¼ 4 plus an intercept, and so it is a parsimonious, competitive

alternative.

16.7 GAM Analyses of Deathrate as a Function of Two
Predictors

Table 16.3 contains a comparison of selected GAMs in NObnded and SO2index for

alternate DF values based on the cubic spline approach alone, the loess approach

alone, either the cubic spline or loess approaches, and the thin plate spline approach

alone. The best model based on either the cubic spline or the loess approaches is the

same as the best model based on the loess approach alone with DF ¼ 1 for both

predictors. GAMs based on combinations of cubic splines and loess are truly

additive models compared to thin plate spline models which also account for

possible interaction between NObnded and SO2index. The best thin plate spline

model is generated for DF ¼ 2 and has LCV score 0.0040743 while the best of the

GAMs combining cubic spline and/or loess models for individual predictors has

LCV score 0.0037297 with substantial PD of 8.46 %. The latter model avoids

consideration of the complexity of interactions between predictors. This has the

advantage of simplifying computations, but these results indicate that there will be

situations where ignoring interactions can impose a substantial penalty. On the

other hand, the GAM for NObnded by itself is the better of the two singleton

predictor GAMs with LCV score 0.0040471 (Table 16.2) and insubstantial PD of

0.67 %. This indicates that NObnded by itself provides a competitive, parsimonious

alternative and so explains essentially all of the effect of SO2index on death rate

Table 16.2 Comparison of adaptive and generalized additive models for death rate per 100,000 as

a function of singleton predictors

Predictor

5-fold LCV score Percent decrease

in LCV score

for best GAM

(%)

Percent decrease

in LCV score

for adaptive model (%)

Adaptive

model

GAM

Loessa
Cubic

splineb

NObnded 0.0042303 0.0040471 0.0040118 4.33 0.00

SO2index 0.0040239 0.0039902 0.0039730 0.84 0.00

rain 0.0044527 0.0045353 0.0045212 0.00 1.82

GAM: generalized additive model, LCV: likelihood cross-validation, NObnded: nitric oxide

pollution index bounded at 12, SO2index: sulfur dioxide pollution index, rain: annual average

precipitation
aBest LCV score for DF ¼ 1� 4 achieved at DF ¼ 1 for all three predictors
bBest LCV score for DF ¼ 2� 4 achieved at DF ¼ 2 for NObnded and SO2index and at DF ¼ 4

for rain
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(as also concluded in Sect. 2.16 through adaptive analyses). For this reason,

SO2index is not considered further in the analyses.

Table 16.4 contains a comparison of selected GAMs in NObnded and rain for

alternate DF values based on the cubic spline approach alone, the loess approach

alone, either the cubic spline or loess approaches, or the thin plate spline approach

alone. The best model for all cases is based on loess models for both NObnded and

rain, both with DF ¼ 1, and has LCV score 0.0055341. The best thin plate spline

model is generated forDF ¼ 2 and has LCV score 0.0053103. The associated PD of

4.04 % is substantial, indicating that thin plate models can be distinctly inferior and

suggesting that the effects of NObnded and rain on deathrate are truly additive and

do not interact. The best GAM for rain by itself is the better of the two singleton

predictor GAMs with LCV score 0.0045212 (Table 16.2) and substantial PD of

18.30 % compared to the best composite GAM of Table 16.4, indicating that rain

and NObnded explain distinct aspects of deathrate not explained by the other

(as also concluded in Sect. 2.16 through adaptive analyses). These analyses address

both additive models and models addressing interactions (through thin plate

splines). The analyses of the effects of NObnded and rain on deathrate of Chap. 2

only address the additive case since geometric combinations (GCs) are not intro-

duced until Chap. 4. The adaptive model in NObnded, rain, and GCs between these

two predictors is based on the single transform ðrain�0:2 � NObnded�0:09Þ�0:59

Table 16.3 Comparison of generalized additive models for death rate per 100,000 as a function of

the bounded nitric oxide pollution index and the sulfur dioxide pollution index in combination

Model

type Model

DF 5-fold

LCV

score

Percent

decrease in

LCV score (%)NObnded SO2index

Both cubic

spline

cubic spline

(NObnded) cubic

spline(SO2index)a

2 2 0.0035018 14.05

Both loess loess(NObnded)

loess(SO2index)b
1 1 0.0037297 8.46

Cubic

spline or

loess

loess(NObnded)

loess(SO2index)c
1 1 0.0037297 8.46

Thin plate

spline

thin plate spline

(NObnded,

SO2index)d

2 0.0040743 0.00

DF: degrees of freedom, LCV: likelihood cross-validation, NObnded: nitric oxide pollution index

bounded at 12, SO2index: sulfur dioxide pollution index
aWith best LCV score for all nine cubic spline models in both NObnded and SO2index with

DF ¼ 2� 4
bWith best LCV score for all 16 loess models in both NObnded and SO2index with DF ¼ 1� 4
cWith best LCV score for all 49 models in NObnded and SO2index, either as cubic spline with

DF ¼ 2� 4 or loess with DF ¼ 1� 4
dWith best LCV score for all three thin plate splines models in NObnded and SO2index with

DF ¼ 2� 4
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without an intercept and LCV score 0.0057296. This provides a substantial

improvement over the GAM with the best LCV score 0.0055341 in Table 16.4

with PD 3.41 %. The adaptive additive model (see Sect. 2.16) has LCV score

0.0056386 with insubstantial PD 1.59 % compared to the adaptive GC-based

model, indicating as for GAMs that the effects of NObnded and rain are reasonably

treated as additive. However, the additive model is based on two transforms without

an intercept and so is more complex.

16.8 GAM Analyses of the Full Deathrate Data

There are a total of 15 predictor variables available in the full death rate data

(Table 16.5). The predictor NOindex has been replaced by its bounded version

NObnded as justified in Sect. 2.15. Because they are additive and so do not consider

interactions, GAMs based on the cubic spline and/or loess smoothing approaches

can reduce the complexity of models for how deathrate changes with large numbers

of predictors as in this case. However, it is likely that not all of these predictors are

needed to generate an effective model for mean deathrate. Moreover, the number of

observations per predictor is only 60=15 ¼ 4, and so a model in all the predictors is

likely to be a poor choice for these data. An approach is needed to identify which

predictors to include in a composite model, which smoothing approach to use with

that predictor, and what DF value to use with that smoothing approach.

Table 16.6 presents results for an approach for systematically including pre-

dictors into a composite GAM for deathrate. Predictors based on GAMs are added

one at a time starting from the constant model. Among all predictors not currently in

Table 16.4 Comparison of generalized additive models for death rate per 100,000 as a function of

the bounded nitric oxide pollution index and the average annual precipitation in combination

Model type Model

DF 5-fold

LCV

score

Percent decrease in

LCV score (%)NObnded Rain

Both cubic

spline

cubic spline(NObnded)

cubic spline(rain)a
2 2 0.0054271 1.93

Both loess loess(NObnded)

loess(rain)b
1 1 0.0055341 0.00

Cubic spline

or loess

loess(NObnded)

loess(rain)c
1 1 0.0055341 0.00

Thin plate

spline

thin plate spline

(NObnded,rain)d
2 0.0053103 4.04

DF: degrees of freedom, LCV: likelihood cross-validation, NObnded: nitric oxide pollution index

bounded at 12, rain: average annual precipitation
aWith best LCV score for all nine cubic spline models in both NObnded and rain with DF ¼ 2� 4
bWith best LCV score for all 16 loess models in both NObnded and rain with DF ¼ 1� 4
cWith best LCV score for all 49 models in NObnded and rain, either as cubic spline with

DF ¼ 2� 4 or loess with DF ¼ 1� 4
dWith best LCV score for all three thin plate splines models in NObnded and rain with DF ¼ 2� 4
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the model, the next predictor added to the model is the one that maximizes the LCV

score generated by adding one predictor at a time to the current model. For each

predictor not yet included in the model, the parametric model as well as cubic spline

GAMs withDF ¼ 2� 4 and loess GAMs withDF ¼ 1� 4 are considered. The best

Table 16.5 Complete set of predictors for deathrate per 100,000

Predictor Description

educatn Number of years of schooling for persons over 22

HCindex Hydrocarbon pollution index

HHsize Number of members per household

JANtemp Average January temperature

JULtemp Average July temperature

kitchens Number of households with fully equipped kitchens

lowinc Number of families with income less than $3000

moisture Degree of atmospheric moisture

NObnded Nitrous oxide pollution index bounded by 12

nonwhite Size of non-White population

over65 Size of population older than 65

oworkers Number of office workers

pop Population per square mile

rain Average annual precipitation in inches

SO2index Sulfur dioxide pollution index

Table 16.6 Systematic inclusion of GAM predictors for deathrate per 100,000

Inclusion

order GAM terma 5-fold LCV score

Percent decrease in LCV

score

1 loess(nonwhite,DF¼1) 0.0049107 31.20

2 loess(rain,DF¼1) 0.0055887 21.70

3 param(NObnded) 0.0066243 7.14

4 loess(JANtemp,DF¼2) 0.0070116 1.72

5 param(SO2index) 0.0070922 0.59

6 param(HHsize) 0.0071340 0.00

7 param(oworkers) 0.0071181 0.22

8 param(pop) 0.0070122 1.71

9 param(lowinc) 0.0068106 4.53

10 loess(JULtemp,DF¼2) 0.0067206 5.79

11 loess(HCindex,DF¼1) 0.0065364 8.38

12 param(moisture) 0.0062490 12.40

13 param(over65) 0.0059502 16.60

14 param(kitchens) 0.0057244 19.80

15 loess(educatn,DF¼1) 0.0038808 45.60

DF: degrees of freedom, GAM: generalized additive model, LCV: likelihood cross-validation
aSee Table 16.5 for definitions of the predictors
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LCV score of 0.0071340 is generated with the inclusion of six predictors (nonwhite,

rain, NObnded, JANtemp, SO2index, and HHsize in that order) each either para-

metric or loess withDF ¼ 1orDF ¼ 2 for a totalDF ¼ 7plus an intercept. The LCV

score decreases after that. As expected, models based on large numbers of pre-

dictors are ineffective for modeling the death rate data with only 60 observations.

The simpler model with HHsize and SO2index removed generates LCV score of

0.0070116 and insubstantial PD of 1.72 %, and so is a competitive, parsimonious

alternative to the full six predictor GAM, but the further removal of JANtemp

generates a substantial PD of 7.14 %.

The adaptive modeling process used in Chap. 2 to analyze the limited deathrate

data can also be used to generate an additive fractional polynomial model in power

transforms of the predictors of Table 16.5. Since the models of Table 16.6 all have

an intercept, the adaptive modeling process is restricted not to remove the intercept

in the contraction step. The expanded model is based on the seven transforms:

nonwhite, educatn11.1, NObnded�0:1, rain�0:4, SO2index1.9, lowinc�9, and

kitchens�19. As in Table 16.6 up to step 6, the LCV score increases with each

additional term to the value 0.0073736. Consequently, this is the appropriate

adaptive model to compare to the best model of Table 16.6, which generates a

substantial PD of 3.35 % compared to the adaptive expanded model. The contrac-

tion reduces this to the model based on the following five transforms: nonwhite0.7,

NObnded�0:3, rain�0:4, SO2index1.9, and lowinc�7 and LCV score is 0.0072154.

The associated model of Table 16.6 is the one based on the first four terms with

LCV score 0.0070116. The PD in the LCV scores compared to the fully adaptive

model is insubstantial at 2.82 %, but the GAM is not simpler involvingDF ¼ 5 plus

an intercept compared to five terms with an intercept. Allowing the contraction to

also remove the intercept, the generated model is based on the four transforms:

nonwhite0.5, educatn10.1, NObnded�0:1, and rain0.05 without an intercept. The LCV

score is 0.0070948, larger that the score for the reduced GAM and simpler. In this

case, adaptive additive fractional polynomial modeling generates preferable models

compared to generalized additive modeling and sometimes distinctly so.

16.9 Formulation of GAMs for Dichotomous Outcomes

Using the logistic regression notation of Sect. 8.3 and the GAM notation of

Sect. 16.2, model the logits of the means as

logitðμsÞ ¼ x
0
s

T � βþ fðx0 0
s Þ

for s2S. Estimates f(S) of the nonparametric function f can be generated with the

cubic spline, loess, and thin plate spline approaches as for continuous outcomes.

Estimates of the means satisfy
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μsðSÞ ¼
exp x

0
s

T � βðSÞ þ fðSÞðx0 0
s Þ

� �

1þ exp x
0
s
T � βðSÞ þ fðSÞðx0 0

s Þ
� � :

These can be used to compute LCV scores using the adjustment of Sect. 16.3 for

missing predictions. Residuals are computed as esðSÞ ¼ ys � μsðSÞ. See Hastie and
Tibshirani (1999) for details on generalizations of degrees of freedom (DF), least

square cross-validation (LSCV), and generalized CV (GCV) to outcomes with

distribution in the exponential family including the case of dichotomous discrete

outcomes.

16.10 GAM Analyses of the Mercury Level Data

Among cubic spline GAMs for merchigh (a high mercury level over 1.0 ppm versus

low; see Chap. 8) as a function of the weight of fish with DF ¼ 2� 4, the DF ¼ 2

model generates the best LCV score of 0.54803 (using k ¼ 15 folds as justified in

Sect. 8.4). Among loess GAMs with DF ¼ 1� 4, the DF ¼ 3 model generates the

best LCV score of 0.54824. The best cubic spline GAM is a competitive alternative

with insubstantial PD of 0.04 % (that is, lower than the cutoff of 1.13 % for the data

as reported in Sect. 8.2). Moreover, it is simpler having DF ¼ 2 compared to

DF ¼ 3 for the loess GAM, and so is preferable as a parsimonious, competitive

alternative. On the other hand, the adaptive model for merchigh in weight is based

on the single transform weight�0:5 with an intercept (as do all adaptive models for

merchigh reported in this section) with improved LCV score of 0.56081

(as reported in Sect. 8.4). The loess GAM in weight with the best LCV score for

GAMs generates a substantial PD of 2.24 % and is more complex with DF ¼ 3 plus

an intercept (all GAMs have intercept). Consequently, the adaptive fractional

polynomial model distinctly outperforms GAMs in this case.

Among cubic spline GAMs for merchigh as a function of the length of fish with

DF ¼ 2� 4, theDF ¼ 3model generates the best LCV score 0.58795. Among loess

GAMs with DF ¼ 1� 4, the DF ¼ 1 model has the smaller LCV score of 0.56966

and substantial PD of 3.11 %. Consequently, the cubic spline model distinctly

outperforms the loess model in this case. The adaptive fractional polynomial

model for merchigh in length is based on the single transform length0.5 and has

LCV score of 0.59140 (as reported in Sect. 8.5). The PD for the cubic spline GAM

is insubstantial at 0.58 %, but this GAM is more complicated than the adaptive

model with DF ¼ 3 compared to one power transform. Consequently, the adaptive

fractional polynomial model is preferable to the best GAM in this case.

For modeling merchigh as a function of both weight and length, the best cubic

spline GAM in both predictors with combinations of DF ¼ 2� 4 for each is

achieved at DF ¼ 2 for weight and DF ¼ 3 for length with LCV score 0.60005.

The best loess GAM in both predictors with combinations ofDF ¼ 1� 4 for each is
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achieved at DF ¼ 1 for weight and DF ¼ 2 for length with improved LCV score

0.60103. Considering either cubic splines with DF ¼ 2� 4 or loess with

DF ¼ 1� 4, the best GAM is the same as the best GAM with loess for both

predictors. The adaptive additive model for merchigh in weight and length is

based on the two transforms length0.9 and weight0.3 with LCV score of 0.60382

(as reported in Sect. 8.6). The best GAM has a lower LCV score but with an

insubstantial PD of 0.46 %. However, it is more complex with DF ¼ 3 compared to

only two transforms for the adaptive model. The best thin plate spline GAM in both

predictors over DF ¼ 2� 4 has DF ¼ 4 and improved LCV score of 0.60637. The

PD for the best prior GAM is insubstantial at 0.88 % and is simpler with DF ¼ 3.

The PD for the adaptive additive model is also insubstantial at 0.42 % and is based

on only two transforms compared to DF ¼ 4, and so the adaptive additive model is

preferable to GAMs in this case as a parsimonious, competitive alternative. Fur-

thermore, the adaptive model allowing for geometric combinations (GCs) in weight

and length is based on three transforms plus an intercept with LCV score 0.61585

(as reported in Sect. 8.6). The PD for the thin plate spline model is substantial at

1.54 %. Consequently, adaptive models are more effective at identifying the effects

of weight and length on merchigh.

16.11 Overview of Analyses of Death Rates

1. For deathrates (Sect. 2.2), analyses use k ¼ 5 folds (Sect. 2.8).

2. The loess approach generates a better LCV score than the cubic spline approach

for modeling NOindex but not distinctly better (this and the following results

reported in Sect. 16.5). The cubic spline approach with DF based on GCV

produces distinctly inferior results. Both the loess and cubic spline approaches

with default DF setting of four produce distinctly inferior results. The adaptive

model in NOindex distinctly outperforms GAMs based on either the loess

approach with DF from 1 to 4 or the cubic spline approach with DF from 2 to 4.

3. The adaptive model in NObnded distinctly outperforms GAMs based on either

the loess approach with DF from 1 to 4 or the cubic spline approach with DF

from 2 to 4 (this and the following results reported in Sect. 16.6). The loess GAM

in SO2index with DF ¼ 1 is a competitive alternative to the associated adaptive

model but is more complex (since it also includes an intercept while the adaptive

model does not). The cubic spline GAM in rain with DF ¼ 4 generates a better

LCV score than the associated adaptive model but not substantially better and is

much more complex.

4. The thin plate spline in NObnded and SO2index distinctly outperforms models

in these two predictors using the loess approach with DF from 1 to 4 and/or the

cubic spline approach with DF from 2 to 4 (this and the following results

reported in Sect. 16.7). The thin plate spline in NObnded and rain is distinctly

outperformed by the loess GAMs with DF ¼ 1 for both of these predictors. The

adaptive model based on NObnded, rain, and GCs distinctly outperforms this
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GAM in NObnded and rain. The associated adaptive additive model generates a

competitive LCV score but is more complex.

5. Considering all 15 predictors available in the full death rate data set, a model

based on either the loess approach or as linear terms in six of these predictors for

a total DF ¼ 7 generates the best LCV score considering only GAMs and linear

terms (this and the following results reported in Sect. 16.8). The model based on

four of these predictors with DF ¼ 5 is a parsimonious, competitive alternative.

These first of these GAM-based models is distinctly outperformed by the

associated adaptive model. The associated adaptive model is preferable to the

second of these GAMs.

16.12 Overview of Analyses of Dichotomous Mercury
Levels

1. For dichotomous mercury levels (Sect. 8.2), analyses use k ¼ 15 folds (Sect.

8.4).

2. For models in weight, the loess approach generates a better LCV score than the

cubic spline approach, but the cubic spline approach is a parsimonious, compet-

itive alternative (this and the following results reported in Sect. 16.10). The

adaptive model in weight distinctly outperforms both of these GAMs.

3. For models in length, the cubic spline approach distinctly outperforms the loess

approach (this and the following results reported in Sect. 16.10). The adaptive

model in length generates a better LCV score than the cubic spline GAM but not

substantially better. However, the cubic spline GAM is more complex.

4. For models in weight and length, using the loess approach with DF from 1 to

4 and/or the cubic spline approach with DF from 2 to 4, the best choice is based

on a loess GAM with DF ¼ 1 for weight and a loess GAM with DF ¼ 2 for

length. The thin plate spline with DF ¼ 4 generates a better score but the first

GAM is a parsimonious, competitive alternative. The adaptive additive model in

weight and length is a parsimonious, competitive alternative to the thin plate

spline. The adaptive model in weight, length, and GCs distinctly outperforms the

thin plate spline.

16.13 Chapter Summary

This chapter presents a series of analyses of the full death rate data using general-

ized additive models (GAMs), addressing how the continuous outcome deathrate

per 100,000 depends on the 15 available predictors for 60 metropolitan statistical

areas. It also presents analyses of the mercury level data using GAMs, addressing

how the dichotomous outcome a high level of mercury over 1.0 ppm versus a lower
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level depends on the weight and length of 169 fish. These analyses demonstrate

generalized additive modeling in these two important contexts.

The chapter also provides a formulation extending linear regression and logistic

regression models to GAMs for univariate continuous and dichotomous outcomes,

respectively. Likelihood cross-validation (LCV) scores are extended to be able to

compare GAMs to adaptive models and to other GAMs. Other alternatives for

conducting cross-validation are also defined including the leave-one-out (LOO)

form of least squares cross-validation (LSCV) and generalized cross-validation

(GCV) commonly used to evaluate GAMs. Adaptive fractional polynomials often

generate better LCV scores than associated GAMs and sometimes substantially

better scores. In all reported analyses, adaptive models are less complex than

GAMs. They are also always preferable due to having either larger LCV scores

or competitive scores generating insubstantial percent decreases using more parsi-

monious models. Other data sets may exist for which GAMs generate substantially

better scores than adaptive models. The example analyses only considered rela-

tively smooth GAMs with degrees of freedom (DF) at most 4. GAMs based on

larger DF values may provide substantial improvements over adaptive models.

However, the results of reported analyses indicate that consideration of only

GAMs can sometimes produce either distinctly inferior results or more complex

models than needed, and so it is important to consider adaptive fractional polyno-

mial models in general to address nonlinearity. Other advantages of adaptive

fractional polynomial modeling include the ability to compute odds ratio functions

for dichotomous outcomes (see Sect. 8.3) and to model polytomous outcomes,

multivariate outcomes, and variances/dispersions in combination with means. See

Chap. 17 for details on conducting analyses in SAS like those presented in this

chapter.
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Chapter 17

Generalized Additive Modeling in SAS

17.1 Chapter Overview

This chapter provides a description of how to use PROC GAM for generating

generalized additive models (GAMs) (Hastie and Tibshirani 1999; SAS Institute

2004) for univariate continuous and dichotomous outcomes and available SAS

macros for computing their likelihood cross-validation (LCV) scores. Comparison

of GAMS to adaptive fractional polynomial models is also covered. Reported

output is produced using version 9.4. Sections 17.2–17.4 present code for modeling

the univariate continuous outcome death rate per 100,000 in terms of available

predictors (see Sects. 2.2 and 16.8) as well as models for predicting the univariate

dichotomous outcome a high mercury level in fish over 1.0 ppm versus a lower

level in terms of available predictors (see Sect. 8.2).

17.2 Invoking PROC GAM

A data set on death rates for n¼ 60 metropolitan statistical areas in the US is

analyzed in Chap. 16 as described in Sect. 16.8 (see Sect. 2.2 for description of the

part of these data analyzed in Chaps 2 and 3). Assuming this full data set has been

loaded into the SAS default library under the name fulldr, a GAM for deathrate as a

function of NOindex using the cubic spline (Ahlberg et al. 1967) approach with

DF¼ 3 and treating deathrate as normally (or Gaussian) distributed with identity

link function (PROC GAM only supports canonical link functions) can be requested

in SAS as follows.

proc gam data¼fulldr;

model deathrate¼spline(NOindex,DF¼3) / dist¼gaussian;

run;
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Part of the SAS output is displayed in Table 17.1. The model always includes an

intercept term (the PROC GAM model statement does not currently support a

“noint” option as do other SAS regression procedures). Note that a linear term in

NOindex is included in the model while the associated DF for the nonparametric

component in NOindex is 3� 1¼ 2. A χ2 test for a zero nonparametric component

is also generated but not included in Table 17.1. A linear model in NOindex

without a nonparametric NOindex component can be requested by changing

“spline(NOindex,DF¼3)” to “param(NOindex)”.

The loess (Cleveland et al. 1988) approach with DF¼ 3 can be requested by

changing “spline” to “loess” in the above code. Part of the SAS output is displayed

in Table 17.2. Note that the actual DF¼ 3.029048 only rounds to the requested

value of DF¼ 3 and is composed of DF¼ 1 for the linear term and DF¼ 2.029048

for the loess nonparametric component. Note also that a generalized cross-

validation (GCV) (Wahba 1990) score is reported in Table 17.2 (and also in

Table 17.1). The DF value can be chosen for that loess model through GCV

using the following code.

proc gam data¼fulldr;

model deathrate¼loess(NOindex) / dist¼gaussian method¼GCV;

run;

Table 17.1 Output generated by PROC GAM for the cubic spline generalized additive model

for the death rate per 100,000 in the nitric oxide pollution index (NOindex) with three degrees

of freedom
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The option “method¼GCV” in the PROC GAM model statement requests

selection of the DF through GCV scores as defined in Sect. 16.4. In this case, the

selected DF¼ 2.858578 (DF¼ 1 for the linear term and DF¼ 1.858578 for the

loess nonparametric component). When “method¼GCV” is requested in the model

statement, the GCV request is ignored if a DF value is also provided for a predictor

in that model statement. If neither a DF value nor method¼GCV is provided in the

model statement, the default value DF¼ 4 is used. Requesting a cubic spline with

DF¼ 1 generates a degenerate model with an essentially zero DF for the nonpara-

metric part of the model along with a warning message in the SAS log window that

the DF is outside the appropriate range, and so should be avoided. On the other

hand, the loess GAM with requested DF¼ 1 has actual DF¼ 1.30351 with DF¼ 1

for the linear term and DF¼ 0.30351 for the loess nonparametric component, and

so a requested DF¼ 1 is an acceptable alternative for loess GAMs (however, since

DF< 0.5 for the loess nonparametric component of the model, the p-value for the

associated χ2 test is not generated by PROC GAM).

17.3 Generating LCV Scores for GAMs

SAS PROC GAM does not currently support LCV as needed to compare GAMs to

adaptive fractional polynomial models (or to other GAMs), and so a SAS macro

called LCVGAM has been developed for computing LCV scores for GAMs.

Assuming that this macro has been loaded (and in what follows, all the other

Table 17.2 Output generated by PROC GAM for the local regression (loess) generalized additive

model for the death rate per 100,000 in the nitric oxide pollution index (NOindex) with three

degrees of freedom
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macros to be described as well), the model for deathrate as a function of NOindex

using the loess approach with DF¼ 3 and its 10-fold LCV score is generated as

follows.

%LCVGAM(datain¼fulldr,yvar¼deathrate,disttype¼gaussian,

xvars¼loess(NOindex,DF¼3),foldcnt¼5,scorefmt¼9.7,

procmod¼y);

The datain, yvar, and foldcnt macro parameters have the same meanings as for

the genreg macro (see Chap. 3). The xvars macro parameter has similar meaning as

for genreg but with its setting a list of model terms allowed by PROC GAM. The

above xvars setting requests a model in NOindex using the loess approach with DF

set to 3. The setting “xvars¼loess(NOindex)” requests the default value DF¼ 4.

Changing to “xvars¼spline(NOindex,DF¼3)” requests a model in NOindex using

the cubic spline approach with DF¼ 3. Changing to “xvars¼param(NOindex)”

requests a linear model in NOindex. The disttype macro parameter must be set to

a valid value for the “dist¼” option of the PROC GAM model statement. The

setting “disttype¼gaussian” (which is the default value) requests a model for the

untransformed means (that is, using the identity link function) of the outcome

variable under standard normality-based regression modeling as used to model

continuous outcomes like deathrate. The scorefmt macro variable is used to specify

the format for printing of the generated LCV score. It must be a valid SAS w.d

format. In this case, the width w equals nine characters with decimal digits d equal

to 7. The setting “procmod¼y” requests that PROC GAM output be generated for

the requested GAM. The LCV score for that model will also be outputted as long as

“noprint¼n”, which is the default setting. In this case, the actual DF¼ 3.02905,

rounding to the requested DF¼ 3, and the LCV score is 0.0040119 as also reported

in Table 16.1.

The following code requests a loess model in NOindex with DF chosen through

GCV. A DF value must not be included in the xvars setting. If it is, PROC GAM

will ignore the “method¼GCV” request. As reported in Table 16.1, the actual

DF¼ 2.85858, rounding to DF¼ 2.86, and the LCV score is 0.0039866.

%LCVGAM(datain¼fulldr,yvar¼deathrate,disttype¼gaussian,

xvars¼loess(NOindex),method¼GCV,foldcnt¼5,

scorefmt¼9.7, procmod¼y);

Several other SAS macros have been developed to systematically invoke the

LCVGAM macro to generate LCV scores for multiple GAMs. One of these is

called multGAM1 and is used to generate models using one smoothing

approach over ranges of DF values. The following code requests LCV scores

for cubic spline GAMs of deathrate as a function of NOindex with DF¼ 2–4 as

reported in Table 16.1.
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%multGAM1(datain¼fulldr,yvar¼death rate,disttype¼gaussian,

xvar1¼NOindex,GAMtype¼spline,DFfst¼2,DFlst¼4,

foldcnt¼5,scorefmt¼9.7);

The datain, yvar, disttype, foldcnt, and scorefmt macro parameters have the

same meaning as for LCVGAM. The xvar1 macro parameter should be set to the

name of a single predictor, in this case NOindex. The type of smoothing approach to

use with that predictor is set with the GAMtype macro parameter, in this case

“spline” to request cubic splines (as also used by PROC GAM to denote cubic

splines). DFfst and DFlst are set to the first and last DF values, respectively, to be

generated by multGAM1, in this case DF¼ 2–4. The default value for DFfst is

1, but multGAM1 will automatically adjust a request for a cubic spline with DF¼ 1

to DF¼ 2, and so DFfst is not needed. Neither is “DFlst¼4” since that is the default

value for DFlst. The output generated by multGAM1 is displayed in Table 17.3. To

generate the results for loess models reported in Table 16.1 change to

“GAMtype¼loess” and “DFfst¼1” (or drop the DFfst setting since 1 is the default

value).

17.4 Multiple Predictor GAMs

The GAM for deathrate as a function of NObnded and rain combining the best

singleton predictor GAMs for NObnded and rain of Table 16.2 (that is, using the

loess approach with DF¼ 1 for each of the predictors) is requested in SAS as

follows.

proc gam data¼fulldr;

model deathrate¼loess(NObnded,DF¼1) loess(rain,DF¼1)

/ dist¼gaussian;

run;

The LCV score of 0.0055341 (see Table 16.4) for this model can be generated as

follows.

Table 17.3 Output generated by multGAM1 for alternate cubic spline generalized additive

models for the death rate per 100,000 in the nitric oxide pollution index (NOindex)
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%LCVGAM(datain¼fulldr,yvar¼deathrate,disttype¼gaussian,

xvars¼loess(NObnded,DF¼1) loess(rain,DF¼1),

foldcnt¼5,scorefmt¼9.7);

Thin plate splines (Meinguet 1979) are denoted as “spline2” by PROC GAM,

and so a thin plate spline in NObnded and rain with DF¼ 2 is requested as follows.

proc gam data¼fulldr;

model deathrate¼spline2(NObnded,rain,DF¼2) / dist¼gaussian;

run;

Table 17.4 contains part of the generated output. Note that no linear terms are

added to the model for thin plate splines as they are for cubic splines and loess. The

LCV score of 0.0053103 (see Table 16.4) for this model can be generated as

follows.

%LCVGAM(datain¼fulldr,yvar¼deathrate,disttype¼gaussian,

xvars¼spline2(NObnded,rain,DF¼2),foldcnt¼5,

scorefmt¼9.7);

Composite cubic spline models for NObnded and rain with varying DF values

can be generated using multGAM1 as follows.

Table 17.4 Output generated by PROC GAM for the thin plate spline generalized additive model

for the death rate per 100,000 in the nitric oxide pollution index bounded at 12 (NObnded) and rain

with two degrees of freedom
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%multGAM1(datain¼fulldr,yvar¼deathrate,disttype¼gaussian,

xvar1¼NObnded,xvar2¼rain,GAMtype¼spline,

foldcnt¼5,scorefmt¼9.7);

The default DF range of 1–4 is requested, but is adjusted to DF¼ 2–4 for cubic

splines. All nine combinations of DF¼ 2–4 for each predictor are generated. The

best score of 0.0054271 occurs with DF¼ 2 for both predictors and is reported in

the first row of Table 16.4. Changing to “GAMtype¼loess” generates the 16 com-

binations of loess models with DF¼ 1–4 for each predictor. The best score of

0.0055341 occurs with DF¼ 1 for both predictors and is reported in Table 16.4.

Changing to “GAMtype¼spline2” generates the three thin plate spline models with

DF¼ 2–4. As for cubic splines, requests for DF¼ 1 with thin plate splines are

changed to DF¼ 2 to avoid degenerate cases. The best thin plate spline score of

0.0053103 occurs with DF¼ 2 and is also reported in Table 16.4.

The third row of Table 16.4 involves combinations of both cubic splines with

DF¼ 2–4 and loess with DF¼ 1–4, a total of 49 different models. These can be

requested using the multGAM2 macro as follows.

%multGAM2(datain¼fulldr,yvar¼deathrate,disttype¼gaussian,

xvar1¼NObnded,xvar2¼rain,foldcnt¼5,

scorefmt¼9.7);

The best cubic spline or loess term for one new predictor to add to a GAM based

on other predictors is generated with the add1GAM macro. Include the loess term

for nonwhite selected in the first step of Table 16.6 with alternative models in

NObnded as follows.

%add1GAM(datain¼fulldr,yvar¼deathrate,disttype¼gaussian,

fxdxvars¼loess(nonwhite,DF¼1),xtraxvar¼NObnded,

foldcnt¼5,scorefmt¼9.7);

The fxdxvars macro parameter setting is a list of smoothing requests for indi-

vidual predictors using the format required by PROC GAM. The xtraxvar macro

parameter setting is the name of an extra predictor. It should not be included in the

fxdxvars list. The default DFfst and DFlst values are requested, and so seven

models will be considered including models with extra cubic spline terms in

NObnded with DF¼ 2–4 and extra loess terms in NObnded with DF¼ 1–4, each

combined with the loess DF¼ 1 term for nonwhite. The output is displayed in

Table 17.5. The extra “spline(NObnded,DF¼2)” term generates the best LCV

score.

The addGAMmacro is used to iteratively call the add1GAMmacro to augment a

fixed GAM as determined by the fxdxvars macro parameter with an additional

predictor, one at a time from the list of predictors in the xtraxvars macro parameter

setting. The following code augments the loess term for nonwhite as selected in the

first step of Table 16.6 with each of the other 14 possible predictors.
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%addGAM(datain¼fulldr,yvar¼deathrate,disttype¼gaussian,

fxdxvars¼loess(nonwhite,DF¼1),

xtraxvars¼NObnded SO2index rain JANtemp JULtemp

over65 HHsize educatn kitchens pop

oworkers lowinc HCindex moisture,

foldcnt¼5,scorefmt¼9.7);

The addition of the loess term in rain with DF¼ 1 generates the best LCV score

of 0.0055887, and so is the result of the second step of Table 16.6. The complete

results of Table 16.6 can be generated by the addGAMs macro as follows.

%addGAMs(datain¼fulldr,yvar¼deathrate,disttype¼gaussian,

fxdxvars¼,

xtraxvars¼NObnded SO2index rain JANtemp JULtemp

over65 HHsize educatn kitchens pop

nonwhite oworkers lowinc HCindex moisture,

foldcnt¼5,scorefmt¼9.7);

The addGAMs macro first calls the addGAMmacro to find the best term in all of

the 15 predictors of xtraxvars to add to the constant model as requested by the

empty setting for fxdxvars. This term is added to the fxdxvars parameter setting and

the associated variable removed from the xtraxvars list. Then addGAM is called

with these revised parameter settings and the process continues until one term for

each of the xtraxvars variables is added to the fxdxvars model.

Table 17.5 Output generated by add1GAM augmenting the loess DF¼ 1 term for the indicator

for being non-White with alternate param, cubic spline, and loess terms for the nitric oxide

pollution index bounded at 12 (NObnded)
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17.5 GAMs for Dichotomous Outcomes

Analyses are conducted in Sect. 16.10 of categorized mercury levels for n¼ 169

largemouth bass caught in one of two rivers (Lumber and Wacamaw) in North

Carolina (see Sect. 8.2 for a description of these data). Assuming that these mercury

data have been loaded into the SAS default library under the name mercury, a GAM

for merchigh (a high mercury level of over 1.0 ppm versus low) as a function of the

weight of fish using the cubic spline approach with DF¼ 3 and treating merchigh as

binomially distributed with logit link function can be requested in SAS as follows.

proc gam data¼mercury;

model merchigh(descending)¼spline(weight,DF¼3)

/ dist¼ binomial;

run;

By default, PROC GAM models the first or lower value of a binomial outcome

like merchigh, and so the higher value is then treated as the reference value. This is

reversed in the above code by adding the descending option in parentheses after the

name of the outcome. In this way, models are generated for the chance of high

levels of mercury versus low levels as the reference value.

Part of the SAS output is displayed in Table 17.6. The link function used with

“dist¼binomial” is the canonical logit function. The note in the output is important

to check for “dist¼binomial” cases to correctly interpret predicted values. In this

case, it indicates that the larger outcome value of 1 is modeled so that the lower

value of 0 is the reference value. This is achieved in the above code with the

descending option. Another alternative is to use the “event¼last” option as in the

following model statement.

model merchigh(event¼last)¼spline(weight,DF¼3) / dist¼binomial;

The output suggests that using “event¼1” would also work, but that is only the

case if the outcome variable merchigh has not been assigned a format. If the

outcome variable is formatted, use the formatted value not the actual value. This

issue is avoided by designating the outcome value as the last one. The rest of the

output is similar to results for continuous outcomes except that estimates are for

logit transforms of the means rather than identity transformed (that is,

untransformed) means.

The 15-fold LCV score for this model is 0.54745 (reported LCV scores are based

on 15-folds as justified in Sect. 8.4) and can be generated for the cubic spline GAM

as follows, rounded to five decimal digits within seven character positions.

%LCVGAM(datain¼mercury,yvar¼merchigh,disttype¼binomial,

xvars¼spline(weight,DF¼3),foldcnt¼15,scorefmt¼7.5);

17.5 GAMs for Dichotomous Outcomes 323

http://dx.doi.org/10.1007/978-3-319-33946-7_16
http://dx.doi.org/10.1007/978-3-319-33946-7_8
http://dx.doi.org/10.1007/978-3-319-33946-7_8


LCV scores for cubic spline GAMs of merchigh as a function of weight with

DF¼ 2–4 can be generated as follows.

%multGAM1(datain¼mercury,yvar¼merchigh,disttype¼binomial,

xvar1¼weight,GAMtype¼spline,DFfst¼2,DFlst¼4,

foldcnt¼15,scorefmt¼7.5);

As reported in Sect. 16.10, the best such LCV score is 0.54803 and is achieved at

DF¼ 2. The multGAM1 macro can be used to generate LCV scores for GAMs of

dichotomous outcomes in terms of singleton predictors similar to those generated

for the continuous outcomes reported in Sect. 17.3. It can also be used to generate

LCV scores for GAMs of dichotomous outcomes in terms of two predictors similar

to those generated for the continuous outcomes reported in Sect. 17.4. For example,

Table 17.6 Output generated by PROC GAM for the cubic spline generalized additive model for

a high mercury level over 1.0 ppm (merchigh) in weight of the fish with three degrees of freedom
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LCV scores for thin plate spline GAMs in weight and length can be requested as

follows.

%multGAM1(datain¼mercury,yvar¼merchigh,disttype¼binomial,

xvar1¼weight,xvar2¼length,GAMtype¼spline2,

DFfst¼2,DFlst¼4,foldcnt¼15,scorefmt¼7.5);

The DFfst and DFlst options request scores for the choices DF¼ 2–4. The initial

DF value of 2 is requested using the DFfst macro parameter since DF¼ 1 is not

appropriate for thin plate splines. However, it is not needed since multGAM1 skips

requests for DF¼ 1 when “GAMtype¼spline2” (and also “GAMtype¼spline”).

The multGAM2 macro (see Sect. 17.4) can also be used to generate GAMs for

merchigh as a function of weight and length using combinations of cubic spline and

loess terms similarly to GAMs for continuous outcomes. The add1GAM, addGAM,

and addGAMs macros (see Sect. 17.4) can be used with dichotomous outcomes to

generate multiple predictor GAMs.

The variable river, indicating the river in which the fish were caught, is demon-

strated in Sect. 8.4 using adaptive fractional polynomial modeling to distinctly

moderate the effect of weight on merchigh, leading to the question of how this

variable can be incorporated into GAMs. One way is as a linear predictor using the

term “param(river)”. Use of the term “spline(river,DF¼2)” generates an error

message, and the model cannot be computed by PROC GAM. Hence, cubic spline

GAMs in indicator variables should not be requested. The model with the term

“loess(river,DF¼1)” does not generate an error message and the model can be

computed by PROC GAM. However, only the linear term is estimated while the

loess nonparametric term of the model has a missing DF value. The LCV score for

this model is the same as for the model in “param(river)”, and so loess GAMs in

indicator variables are degenerate and should also not be requested. On the other

hand, the model with the term “spline2(river,weight,DF¼2)” is not degenerate and

this term is significant (P< 0.001). In standard regression analyses, a main effect to

a moderator like river could also have an effect when its interaction with another

variable like weight is included in the model, but the LCV score of 0.54469 for the

thin plate GAM in river and weight without the term “param(river)” is the same as

with it, indicating there is no need for a linear term in an indicator variable that is

included in a thin plate term of the model. The multGAM1 macro can be used to

identify the best DF for the thin plate GAM in river and weight. A search over

DF¼ 2–4 identifies DF¼ 4 as the best choice with LCV score is 0.56025 while the

loess GAM in weight with DF¼ 3 with the best LCV score for GAMs in weight

alone is 0.54824 (see Sect. 16.10) with substantial PD of 2.14 %. Hence, a GAM

analysis indicates that river distinctly moderates the effect of weight on merchigh as

also holds for the adaptive analysis of Sect. 8.4. The adaptive moderation model in

river and weight has LCV score 0.57192 (see Sect. 8.4), which is a substantial

improvement over the best thin plate spline GAM with PD 2.04 % in the LCV

scores. Moreover, it is simpler having two terms besides an intercept in comparison

to the DF¼ 4 of the thin plate spline GAM plus an intercept.
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17.6 Practice Exercises

17.1 Assess the effectiveness of the first two steps of the adaptive process for

adding GAMs in individual predictors to a model described in Sect. 16.8.

With k¼ 5 folds as justified in Sect. 2.8, use the multGAM2macro to generate

all possible combinations of loess and cubic splines GAMs in the first two

predictors nonwhite and rain added to the model for deathrate (see

Table 16.6). What model is generated by multGAM2? Is the Step 2 model

of Table 16.6 either better than or a competitive alternative to the multGAM2

model, indicating that the first two steps of the adaptive process are effective?

Or is the multGAM2 model distinctly better, indicating that the adaptive

process is not effective and a more exhaustive search is required to effectively

identify GAMs in two predictors?

17.2 Compare GAMs and adaptive fractional polynomial models for the two pre-

dictors NObnded and nonwhite of the death rate data. First, with k¼ 5 as

justified in Sect. 2.8, use the multGAM2 macro to generate all possible

combinations of loess and cubic splines GAMs in these two predictors with

DF¼ 2–4 for spline terms and DF¼ 1–4 for loess terms. Next, generate the

adaptive additive fractional polynomial model in these two predictors. Which

of these two models is more preferable? Next, use the multGAM1 macro to

generate thin plate splines in these two predictors with DF¼ 2–4. Does this

improve on the results of multGAM2? Finally, generate the adaptive model in

these two predictors and GCs. Does this improve on the adaptive additive

fractional polynomial model? Compare the effectiveness of fractional poly-

nomial models for identifying interaction effects between these two predictors

through GCs to that of thin plate splines.

17.3 Assess moderation of the effect of length on merchigh by river using thin plate

splines. With k¼ 15 folds as justified in Sect. 8.4, use the multGAM1 macro

to generate thin plate spline GAMs in these two predictors with DF¼ 2–4.

Compare this best thin plate spline GAM to the best GAM in length alone

identified in Sect. 16.10. Does a GAM analysis indicate distinct moderation or

not? Compare the better of these two latter GAMs to the adaptive fractional

polynomial model in river, length, and geometric combinations identified in

Sect. 8.5. Which model has the better LCV score? Is the other model a

parsimonious, competitive alternative or not? Which of these models is the

more preferable one?

For Practice Exercise 17.4, use the body fat data set available on the

Internet (see Supplementary Materials). The outcome variable for this data

set is called bodyfat and contains body fat values in gm/cm3 for 252 men. The

file contains several predictors. Practice Exercises 17.4 uses only three of

these predictors, called weight, height, and BMI containing weights in

pounds, heights in inches, and body mass index values in kg/cm2,

respectively.
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17.4 Generate the spline GAMs for bodyfat in terms of BMI with DF¼ 2–4. Use

the number of folds for this practice exercise determined as part of Practice

Exercise 3.5. Then, generate the loess GAMs for bodyfat in terms of BMI with

DF¼ 1–4. Do loess or spline GAMs generate a better model. Compare the

better of these two types of GAMs to the adaptive model in BMI computed for

Practice Exercise 3.5. Next, generate the thin plate spline GAM in weight and

height and compare it to the GAM model in BMI.

For Practice Exercise 17.5, use the Titantic survival data available on the

Internet (see Supplementary Materials). Data are available for 756 passengers

with no missing data. The outcome variable for this data set is called survived

and is the indicator for having survived the sinking of the Titantic. The

predictors to be considered are age and the indicator fstclass for the passenger

being in first class versus second or third class. The gender of the passenger is

also available in the data set but is not used in the practice exercises.

17.5 Generate the spline GAMs for survived in terms of age with DF¼ 2–4. Use

the number of folds determined as part of Practice Exercise 9.5. Then,

generate the loess GAMs for survived in terms of age with DF¼ 1–4. Do

loess or spline GAMs generate a better model. Compare the better of these

two types of GAMs to the adaptive model in age computed for Practice

Exercise 9.5. Next, generate the thin plate spline GAM in age and fstclass;

compare it to the best GAM model in age.
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Chapter 18

Multivariate Adaptive Regression Spline
Modeling

18.1 Chapter Overview

This chapter demonstrates multivariate adaptive regression splines (MARS)

(Friedman 1991) for modeling means of continuous outcomes treated as independent

and normally distributed with constant variances as in linear regression and of logits

(log odds) of means of dichotomous outcomes with unit dispersions as in logistic

regression. MARS models for these two cases are compared to adaptive fractional

polynomial models. Poisson regression is not considered for brevity. See Chap. 19

for a description of how to conduct analyses like those described in this chapter

using SAS.

MARS models provide an alternative to fractional polynomial models for

modeling nonlinear relationships between univariate outcomes and predictors.

Since MARS models are nonparametric regression alternatives to standard gener-

alized linear models, they only address univariate outcomes and not multivariate

outcomes (the “multivariate” in the abbreviation MARS refers to the fact that the

models can be based on multiple variables but does not mean the outcome is

multivariate as that term has been used elsewhere in this book). MARS models

can be used in the regression context with univariate continuous outcomes as well

as in other types of regression contexts like logistic regression with dichotomous

discrete outcomes. Support for MARS models is provided in SAS through PROC

ADAPTIVEREG (starting with version 9.4). A SAS macro called MARSmodl is

available (see Chap. 19) for generating a data set containing the splines for a MARS

model that can be inputted to the genreg macro to compute its likelihood cross-

validation (LCV) score or to adaptively power transform its splines.

Section 18.2 describes MARS modeling. Section 18.3 provides example MARS

analyses of the death rate data analyzed in Chaps. 2, 3, 16 and 17 (see Sects. 2.2 and

16.8 for a description of these data). Section 18.4 provides example MARS analyses

of the dichotomous outcome of the fish mercury data analyzed in Chaps. 8, 9, 16

and 17 (see Sect. 8.2 for a description of these data). Sections 18.5–18.6 provide
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overviews of the results of MARS analyses of death rates and dichotomous mercury

levels, respectively.

18.2 Description of MARS Modeling

Only an informal description of the MARS modeling process is provided here; see

Friedman (1991) or the SAS version 9.4 documentation for the formulation. MARS

modeling first generates a maximal set of splines. Then, a forward selection process

selects a subset of this maximal set by systematically adding in splines to the model.

Finally a backward selection process systematically removes splines from the

forward selection model to obtain the final subset determining the MARS model.

Forward selection and backward selection serve similar purposes to the expansion

and contraction phases of the adaptive modeling process: first to grow the model

and then to prune it back to an effective model.

When a primary predictor u is a categorical variable, its associated basic

splines are indicator variables for subsets of the observed values for u. When

a primary predictor u is continuous, its associated basic splines have the forms

f(u)¼max(u� u0, 0) and f
0(u)¼max(u0� u, 0) where u0 is an observed value for u

called a knot. Note that f(u) is zero for u� u0 and linear for u� u0 while f
0(u) is zero

for u� u0 and linear for u� u0. Interactions between these basic splines are

considered as part of the default MARS modeling process, but this process can be

constrained to be additive in its primary predictors. General MARS models can

contain interactions of arbitrary order. By default, PROCADAPTIVEREG supports

only pairwise interactions, but this can be changed using the “maxorder¼” option

on the model statement. PROC ADAPTIVEREG only supports nonzero intercept

models; the model statement does not have a “noint” option.

Parameters of MARS models can be estimated using maximum likelihood esti-

mation, but an alternate approach is used by PROC ADAPTIVEREG to speed up

processing. See Buja et al. (1991) or the SAS version 9.4 documentation for details.

Splines based on continuous predictors are linear when nonzero but models based on

power transforms of these splines can be generated using adaptive modeling.

18.3 MARS Analyses of Death Rates

18.3.1 MARS Analyses Based on NObnded

The MARS model for deathrate (the death rate per 100,000) as a function of

NObnded (the nitric oxide pollution index bounded to be no more than 12 as

justified in Sect. 2.15) is generated using the pairs of splines for NObnded at the

10 knots 5, 7, 9, 11, 10, 6, 4, 8, 3, and 2 (generated in that order), a total of

20 splines. The forward selection model is based on 11 of these splines and is
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reduced by backward elimination to the single spline max(NObnded� 2, 0). Its

5-fold (as justified in Sect. 2.8) LCV score is 0.0041056. The corresponding

adaptive model has larger LCV score 0.0041968 (as reported in Sect. 2.15), but

the percent decrease (PD) for the MARS model is insubstantial at 2.17 % (that is,

smaller than the cutoff of 3.15 % as reported in Sect. 2.7). However, the adaptive

model is simpler with one transform and no intercept compared to the MARS

model with one spline and an intercept.

The adaptive modeling process using the spline of the MARS model is based on

the transform max(NObnded� 2, 0)0.3 with an intercept. Its LCV score is

0.0042039 and the untransformed MARS model has insubstantial PD 2.34 %.

Consequently, there is not a substantial benefit in this case to considering power

transformed splines. The adaptive model in NObnded has a lower LCV score and

insubstantial PD 0.17 %, is simpler, and so is preferable.

18.3.2 MARS Analyses Based on Rain

The MARS model for deathrate as a function of rain (the annual average precipi-

tation in inches) is generated using the pairs of splines for rain at the four knots

34, 31, 44, and 39 (generated in that order), a total of eight splines. The forward

selection model is based on five of these splines and is reduced by backward

elimination to the single spline max(34� rain, 0). Its LCV score is 0.0043796.

The corresponding adaptive model has larger LCV score 0.0044527 (as reported in

Sect. 2.16), but the PD for the MARS model is insubstantial at 1.64 %. However,

the adaptive model is simpler with one transform and no intercept compared to the

MARS model with one spline and an intercept.

The adaptive modeling process using the spline of the MARS model is based on

the transform max(34� rain, 0)0.7 with an intercept. Its LCV score is 0.0044095

and the untransformed MARS model has insubstantial PD 0.68 %. Consequently,

there is not a substantial benefit in this case to considering power transformed

splines. Also, the adaptive model has a better LCV score and is simpler than the

adaptive MARS model.

18.3.3 MARS Analyses Based on NObnded and Rain

The MARS model for death rate as an additive function of NObnded and rain is

generated using the pairs of splines for NObnded at the eight knots 4, 8, 7, 11,

6, 10, 2, and 5 and the pairs of splines for rain at the two knots 33 and 38, a total

of 20 splines. The forward selection model is based on 12 of these splines and

is reduced by backward elimination to the four splines max(33� rain, 0),

max(4�NObnded, 0), max(rain� 38, 0), and max(NObnded� 7, 0). Its LCV

score is 0.0052894. The corresponding adaptive additive model has larger LCV

score 0.0056386 (as reported in Sect. 2.16), which is a substantial improvement
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over the MARS model with PD 6.19 %. Moreover, the adaptive model is simpler

with two transforms and no intercept compared to the MARS model with four

splines and an intercept.

The adaptive modeling process using the splines of the additive MARS model is

based on the two transforms max(33� rain, 0)0.8 and max(NObnded� 7, 0)0.1 with

an intercept. Its LCV score is 0.0054876 and the untransformed MARS model has

substantial PD 3.61 %. Consequently, there is a substantial benefit in this case to

considering power transformed splines. Furthermore, the PD compared to the

corresponding adaptive model is now insubstantial at 2.68 %, but the adaptive

model is simpler.

The MARS model in NObnded and rain allowing for interactions is based on five

pairwise spline interactions and has improved LCV score 0.0056596. However, the

adaptive additive model is a parsimonious, competitive alternative with insubstan-

tial PD 0.37 %.

18.3.4 MARS Analyses Based on the Full Set of Available
Predictors

The MARS model for deathrate as an additive function of the 15 predictors

of Table 16.5 is based on the four splines max(nonwhite� 4.7, 0),

max(educatn� 10.7, 0), max(10�NObnded, 0), and max(35� rain, 0). Its LCV

score is 0.0071189. The corresponding adaptive additive model has larger LCV

score 0.0072154 (as reported in Sect. 16.8), but the PD for the MARS model is

insubstantial at 1.34 %. However, it is not simpler since it is based on four splines

with an intercept while the adaptive additive model is based on five transforms

without an intercept.

The adaptive additive MARS model using the splines of the additive

MARS model is based on the four transforms max(nonwhite� 4.7, 0)0.7,

max(educatn� 10.7, 0)2.1, max(10�NObnded, 0), and max(35� rain, 0)0.6 with

an intercept. The LCV score is 0.0074000 and the untransformed additive MARS

model has substantial PD 3.80 %. Consequently, there is a substantial benefit in this

case to considering power transformed splines. The PD for the adaptive additive

model compared to the corresponding adaptive additive MARS model is insubstan-

tial at 2.49 % but it is not simpler.

18.4 MARS Analyses of the Mercury Level Data

As in Chaps. 8 and 9, all models of this section are constrained to include an

intercept.
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18.4.1 MARS Analyses Based on Weight of Fish

The MARS model for merchigh (the indicator for having a high mercury level

>1 ppm) as a function of the weight of the fish is generated using the pairs of

splines for weight at the ten knots 0.869, 2.541, 0.977, 0.844, 2.709, 0.6, 0.498,

0.38, 0.656, and 0.308 (generated in that order), a total of 20 splines. The forward

selection model is based on 11 of these splines and is reduced by backward

elimination to the two splines max(weight� 0.6, 0) and max(weight� 0.498, 0).

Its 15-fold (as justified in Sect. 8.4) LCV score is 0.56281. The corresponding

adaptive model has smaller LCV score 0.56081 (as reported in Sect. 8.4), but the

PD is insubstantial at 0.36 % (that is, smaller than the cutoff of 1.13 % as reported in

Sect. 8.2). Moreover, the adaptive model is simpler with one transform and an

intercept compared to the MARS model with two splines and an intercept.

The adaptive modeling process using the splines of the MARS model is based on

the transform max(weight� 0.498, 0)0.27 with an intercept. Its LCV score is

0.56565 and the untransformed MARS model has insubstantial PD 0.50 %. Con-

sequently, there is not a substantial benefit in this case to considering power

transformed splines, but the adaptive MARS model is simpler. The adaptive

model in weight has a lower LCV score but with insubstantial PD 0.86 %, but it

is also based on one transform and an intercept so that the adaptive MARS model is

preferable. Figure 18.1 provides a comparison of the estimated probability for a

high mercury level >1.0 ppm under the adaptive MARS and adaptive models. The

benefit for the adaptive MARS model is in treating the probability to be constant for

small weights less than or equal to 0.498 kg (or essentially 0.5 kg).

18.4.2 MARS Analyses Based on Length of Fish

The MARS model for merchigh as a function of the length of the fish is generated

using the pairs of splines for length at the ten knots 37.4, 45.4, 34.9, 36.2, 33.3, 43.4,

28.5, 29.5, 30.5, and 50 (generated in that order), a total of 20 splines. The forward

selection model is based on 11 of these splines and is reduced by backward

elimination to the three splines max(length� 45.4, 0), max(length� 34.9, 0), and

max(length� 36.2, 0). Its LCV score is 0.60701. The corresponding adaptive

model has smaller LCV score 0.59144 (as reported in Sect. 8.5) with substantial

PD 2.57 %. The adaptive modeling process using the splines of the MARS model is

based on the transforms max(length� 45.4, 0)4 and max(length� 34.9, 0)0.12 with

an intercept. Its LCV score is 0.60816 and the untransformed MARS model has

insubstantial PD 0.19 %. Consequently, there is not a substantial benefit in this case

to considering power transformed splines. However, the adaptive MARS model is

simpler based on two transforms plus an intercept compared to three splines plus an

intercept.
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Figure 18.2 provides a comparison of the estimated probability for a high

mercury level >1.0 ppm under the adaptive MARS and adaptive models. Under

the adaptive MARS model, the estimated probability of a high mercury

level> 1 ppm is constant up to 34.9 cm, increases nonlinearly from there to

45.4 cm, then close to linearly from there up to 55 cm after which it is constant at

1. In contrast, the estimated probability curve for the adaptive model is smoother,

which is not as effective in this case.

18.4.3 MARS Analyses Based on Weight and Length of Fish

The MARS model for merchigh as an additive function of weight and length of the

fish is generated using the pairs of splines for weight at the six knots 0.503, 0.362,

0.573, 0.313, 0.937, and 0.647 and the pairs of splines for rain at the four

knots 37, 45.2, 36, and 31.7, a total of 20 splines. The forward selection model is

based on 12 of these splines and is reduced by backward elimination to the six

splines max(weight� 0.503, 0), max(length� 45.2, 0), max(weight� 0.362, 0),

max(weight� 0.313, 0), max(length� 36, 0), and max(length� 31.7, 0). Its LCV

score is 0.62140. The corresponding adaptive additive model has smaller LCV

score 0.60382 (as reported in Sect. 8.6) with substantial PD 2.83 %. Consequently,

in this case, the MARS model distinctly outperforms the adaptive model.

The adaptive Model using the splines of the additive MARS model is based

on the four transforms max(length� 31.7, 0)0.7, max(weight� 0.362, 0)0.61,

max(length� 45.2, 0)4, and max(weight� 0.503, 0)0.4 with an intercept. Its LCV

score is 0.62259. The untransformed MARS model has insubstantial PD 0.19 %,

but it is more complex, based on six splines with an intercept compared to four

transforms plus an intercept.
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Fig. 18.1 Estimated probability of a high mercury level over 1.0 ppm as a function of weight of

fish under the adaptive MARS model compared to the adaptive model
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The MARS model in weight and length allowing for interactions is based on

15 terms with five involving splines and the other ten pairwise interactions of

splines. Its LCV score is the very low value 0.00027, indicating that this model

seriously overfits the data. A standard spline analysis in this case suggests that the

log odds for merchigh are reasonably considered to be additive in weigh and length

of the fish. In contrast, the adaptive analysis of Sect. 8.6 indicates that the model

considering geometric combinations (GCs) in weight and length provides a distinct

improvement over the adaptive additive model. Moreover, this model has LCV

score 0.61585 with insubstantial PD of 1.08 % compared to the adaptive additive

MARS model with the best score for MARS models and is simpler, based on three

transforms plus an intercept compared to four transforms plus an intercept. Conse-

quently, in this case adaptive modeling generates a parsimonious, competitive

alternative to MARS modeling as long as both additive models and models con-

sidering interactions or GCs are considered.

18.5 Overview of MARS Analyses of Death Rates

1. For death rates (Sect. 2.2), analyses use k¼ 5 folds (Sect. 2.8).

2. The adaptive model in NObnded generates a larger LCV score than the MARS

model in NObnded (this and the following results reported in Sect. 18.3.1). The

PD for the MARS model is insubstantial but the adaptive model is simpler.

The adaptive MARS model generates a larger LCV score than the MARS model.

The PD for the MARS model is insubstantial. The adaptive MARS model

generates a larger LCV score than the adaptive model. The PD for the adaptive

model is insubstantial and the adaptive model is simpler.
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Fig. 18.2 Estimated probability of a high mercury level over 1.0 ppm as a function of length of

fish under the adaptive MARS model compared to the adaptive model
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3. The adaptive model in rain generates a larger LCV score than the MARS model

in rain (this and the following results reported in Sect. 18.3.2). The PD for the

MARS model is insubstantial but the adaptive model is simpler. The adaptive

MARS model generates a larger LCV score than the MARS model. The PD for

the MARS model is insubstantial. The adaptive MARS model generates a larger

LCV score than the adaptive model. The PD for the adaptive model is insub-

stantial and the adaptive model is simpler.

4. The adaptive additive model in NObnded and rain generates a larger LCV score

than the additive MARS model in NObnded and rain (this and the following

results reported in Sect. 18.3.3). The PD for the additive MARS model is

substantial. The adaptive additive MARS model generates a larger LCV score

than the additive MARS model. The PD for the additive MARS model is

substantial and the adaptive additive MARS model is simpler. The adaptive

additive model generates a larger LCV score than the adaptive additive MARS

model. The PD for the adaptive additive MARS model is insubstantial but the

adaptive additive model is simpler. The MARS model allowing for interactions

generates a larger LCV score than the adaptive model. The PD for the adaptive

additive model is insubstantial and the model is simpler.

5. The adaptive additive model in the predictors of Table 16.5 generates a larger

LCV score than the additive MARS model in those predictors (this and the

following results reported in Sect. 18.3.4). The PD for the additive MARS model

is insubstantial but the model is not simpler. The adaptive additive MARS model

generates a larger LCV score than the additive MARS model. The PD for the

additive MARS model is substantial. The adaptive additive model generates a

smaller LCV score than the adaptive additive MARS model. The PD for the

adaptive additive model is insubstantial but the model is not simpler.

18.6 Overview of MARS Analyses of Dichotomous
Mercury Levels

1. For dichotomous mercury levels (Sect. 8.2), analyses use k¼ 15 folds

(Sect. 8.4).

2. The MARS model in weight generates a larger LCV score than the adaptive

model in weight (this and the following results reported in Sect. 18.4.1). The PD

for the adaptive model is insubstantial and the model is simpler. The adaptive

MARS model generates a larger LCV score than the MARS model. The PD for

the MARS model is insubstantial but the adaptive MARS model is simpler. The

adaptive MARS model generates a larger LCV score than the adaptive model.

The PD for the adaptive model is insubstantial but both models have the same

number of terms. Figure 18.1 provides a comparison of estimated probabilities

for the adaptive and adaptive MARSmodels. See Sect. 19.5 for an analysis of the

combined effect of weight and the river in which the fish were caught.
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3. The MARS model in length generates a larger LCV score than the adaptive

model in length (this and the following results reported in Sect. 18.4.2). The PD

for the adaptive model is substantial. The adaptive MARS model generates a

larger LCV score than the MARS model. The PD for the MARS model is

insubstantial but the adaptive MARS model is simpler. Figure 18.2 provides a

comparison of estimated probabilities for the adaptive and adaptive MARS

models.

4. The adaptive MARS model in weight and length generates a larger LCV score

than the adaptive additive model in weight and length (this and the following

results reported in Sect. 18.4.3). The PD for the adaptive additive model is

substantial. The adaptive additive MARS model generates a larger LCV score

than the additive MARS model. The PD for the additive MARS model is

insubstantial but the adaptive additive MARS model is simpler. The MARS

model allowing for interactions generates a very small LCV score. The adaptive

model in weight, length, and GCs generates a smaller LCV score than the

adaptive additive MARS model but with insubstantial PD and fewer terms.

18.7 Chapter Summary

This chapter presents a series of analyses of the full death rate data using multivar-

iate adaptive regression splines (MARS), addressing how the continuous outcome

death rate per 100,000 depends on the 15 available predictors for 60 metropolitan

statistical areas. It also presents analyses of the mercury level data using MARS,

addressing how the dichotomous outcome a high level of mercury over 1.0 ppm

versus a lower level depends on the weight and length of 169 fish. These analyses

demonstrate MARS in these two important contexts.

Comparisons are also conducted of MARS modeling to adaptive fractional

polynomial modeling. An example is provided where adaptive additive modeling

distinctly outperforms additive MARS modeling. However, adaptive adjustment in

that case improved the MARS model to be a competitive alternative. An example is

also provided where additive MARS modeling distinctly outperforms adaptive

additive modeling and adaptively adjusting the MARS model provides further

improvements. However, consideration of interactions generated a very poor

MARS model while consideration of geometric combinations improved the adap-

tive additive model to be a competitive alternative. Adaptively adjusting a MARS

model usually improves the LCV score and sometimes distinctly so while reducing

the number of terms in the model. Adaptive models usually have fewer or the same

number of terms than adaptive MARS models with competitive or better LCV

scores. The exceptions correspond to situations where a less smooth alternative is

required as in Fig. 18.2. See Chap. 19 for details on conducting analyses in SAS like

those presented in this chapter.
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Chapter 19

Multivariate Adaptive Regression Spline
Modeling in SAS

19.1 Chapter Overview

This chapter provides a description of how to use PROC ADAPTIVEREG for

generating multivariate adaptive regression splines (MARS) models (Friedman

1991) for univariate continuous and dichotomous outcomes and SAS macros for

computing their likelihood cross-validation (LCV) scores. Comparison of MARS

models to adaptive fractional polynomial models is also covered as well as adap-

tively transforming MARS models. PROC ADAPTIVEREG requires SAS version

9.4 or later. Sections 19.2, 19.3 and 19.4 present code for modeling the univariate

continuous outcome death rate per 100,000 in terms of available predictors (see

Sects. 2.2 and 16.8). Section 19.5 presents code for modeling the univariate

dichotomous outcome a high mercury level in fish over 1.0 ppm versus a lower

level in terms of available predictors (see Sect. 8.2).

19.2 Invoking PROC ADAPTIVEREG

A data set on death rates for n¼ 60 metropolitan statistical areas in the US is

analyzed in Chap. 18 as described in Sect. 16.8 (also see Sect. 2.2 for description of

the part of these data analyzed in Chaps 2, 3, 6 and 7). Assuming this full data set

has been loaded into the SAS default library under the name fulldr, a MARS model

for deathrate as a function of NObnded (the nitric oxide pollution index bounded by

12; Sect. 2.15) treating deathrate as normally distributed with identity link function

can be requested in SAS as follows.

proc adaptivereg data¼fulldr details¼bases;

model deathrate¼NObnded / dist¼normal link¼identity;

run;
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The normal distribution is requested with the “dist¼normal” option on the model

statement but this is not needed since it is the default distribution for continuous

outcome variables. The canonical identity link function is requested with the

“link¼identity” option but this is not needed since it is the default link function

for the normal distribution. Part of the SAS output is displayed in Table 19.1. Spline

predictors are given names with prefix “Basis” plus an index number. The model

Table 19.1 Output generated by PROC ADAPTIVEREG for the MARS model for the death rate

per 100,000 as a function of the bounded nitric oxide pollution index (NObnded)
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always includes an intercept term (the PROC ADAPTIVEREG model statement

does not currently support a “noint” option as do other SAS regression procedures)

denoted as “Basis0”. The “detail¼bases” option on the model statement requests a

description of the full set of basis splines. Note that these are created in pairs of the

form f(u)¼max(u� u0, 0) and f0(u)¼max(u0� u, 0) where in this case

u¼NObnded and u0 is a knot equal to an observed NObnded value. Ten pairs of

splines are generated for knots at the observed NObnded values of 5, 7, 9, 11,

10, 6, 4, 8, 3, and 2 in that order. The combination of forward and backward

elimination applied to these 20 splines generates the MARS model based on the

single spline Basis19¼max(NObnded � 2, 0). To find out which splines are

generated by the forward selection process change the details option on the

model statement to “details¼(bases fwdparams)”. In this case, the forward selection

model is based on the intercept Basis0 and the 11 splines Basis1, Basis2, Basis3,

Basis5, Basis7, Basis9, Basis11, Basis13, Basis15, Basis17, and Basis19.

PROC ADAPTIVEREG supports a class statement that serves a similar purpose

to the class statement of PROC GLM. Splines for predictors in the model statement

also listed in the class statement are based on indicators for subsets of that pre-

dictor’s values (an example is provided in Sect. 19.5).

19.3 Generating LCV Scores for MARS Models

PROC ADAPTIVEREG does not currently support LCV for comparing MARS

models to each other and to adaptive fractional polynomial models. Consequently,

a SAS macro called MARSmodl has been developed for generating data sets

containing the spline predictors for a given MARS model. Assuming that this

macro has been loaded (and also the genreg macro), the spline predictors for

the MARS model for deathrate as a function of NObnded are generated in the

data set data1 as follows.

%MARSmodl(datain¼fulldr,dataout¼data1,yvar¼deathrate,

xvars¼NObnded);

The datain, yvar, and xvars macro parameters have the same meanings as for the

genreg macro (see Chap. 3). The MARSmodl macro has a modtype parameter with

the same meaning as for the genreg macro, but that is not needed here since the

default setting is “modtype¼norml” as is also the case for the genreg macro. The

dataout macro parameter names the data set that is generated with the variables of

the datain data set along with all the MARS spline predictors with names Basis1 to

Basis20 as generated for this MARS model. The MARSmodl macro also generates

the global macro parameter bwdlist containing the list of names of the spline

predictors generated by the MARS backward selection process, in this case, its

value is “Basis19”. By default, the MARSmodl macro generates the output for

19.3 Generating LCV Scores for MARS Models 341

http://dx.doi.org/10.1007/978-3-319-33946-7_3


PROC ADAPTIVEREG, but this can be turned off with the setting

“noMARSprnt¼y”.

The 5-fold (as justified in Sect. 2.8) LCV score for this MARS model can be

generated as follows.

%genreg(datain¼data1,yvar¼deathrate,xvars¼&bwdlist,

foldcnt¼5);

The LCV score is 0.0041056 as is also reported in Sect. 18.3.1. Note that this

only works because the MARSmodl macro has previously been executed to gener-

ate the data1 data set containing the splines for the backward selection model and

the bwdlist macro parameter with the list of names for that backward selection

model. If the data1 data set has not been changed but the MARSmodl macro has

most recently been executed for a different model, the above model can be

generated by changing the xvars macro parameter setting in the above code to

“xvars¼basis19”.

An adaptively transformedMARSmodel for deathrate as a function of NObnded

can be generated as follows.

%genreg(datain¼data1,yvar¼deathrate,foldcnt¼5,expand¼y,

expxvars¼&bwdlist,contract¼y);

In this case, the expanded model is based on Basis190.3 with an intercept and

LCV score 0.0042039. The contraction leaves the model unchanged as does the

conditional transformation (Sect. 3.3).

The 5-fold LCV score for theMARSmodel for deathrate as function of rain can be

generated as follows.

%MARSmodl(datain¼fulldr,dataout¼data2,yvar¼deathrate,

xvars¼rain);

%genreg(datain¼data2,yvar¼ deathrate,xvars¼&bwdlist,

foldcnt¼5);

19.4 Multiple Predictor MARS Models

The MARS model for deathrate as an additive function of NObnded and rain is

directly requested in SAS as follows.

proc adaptivereg data¼fulldr details¼bases;

model deathrate¼NObnded rain

/ dist¼normal link¼identity additive;

run;
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The additive option is needed in the model statement to generate an additive

model. Without it, a model with individual predictor splines and pairwise interac-

tion splines is generated. The first and third pairs of splines are based on the

predictor rain and knots at values 33 and 38 in that order. The remaining eight

pairs of splines are based on the predictor NObnded and knots at values 4, 9, 7, 11,

6, 10, 2, and 5 in that order. The LCV score for this model can be generated as

follows.

%MARSmodl(datain¼fulldr,dataout¼data3,yvar¼deathrate,

xvars¼NObnded rain, additive¼y);

%genreg(datain¼data3,yvar¼deathrate,xvars¼&bwdlist,

foldcnt¼5);

The setting “additive¼y” requests an additive model in NObnded and rain. The

following code generates the MARS model for NObnded and rain allowing for

interactions and its LCV score.

%MARSmodl(datain¼fulldr,dataout¼data4,yvar¼deathrate,

xvars¼NObnded rain);

%genreg(datain¼data4,yvar¼deathrate,xvars¼&bwdlist,

foldcnt¼5);

The default setting of “additive¼n” is requested in the above code to generate a

MARS model with pairwise spline interactions. Table 19.2 contains some of the

PROC ADAPTIVEREG output for this above MARS model. A pair of splines for

rain with knot at the value 33 is generated first, then a pair of splines for NObnded with

knot at the value 4. This is followed by interactions of Basis3¼max(NObnded�4, 0)

with the pair of splines for rain with knot at value 38, interactions of Basis2¼
max(33�rain, 0) with the three pairs of splines for NObnded with knots at 5, 11,

and 2 in that order, interactions of Basis4¼max(4�NObnded, 0) with the pairs

of splines for rain with knot at 39, a pair of splines for NObnded with

knots at values 10 and 7 as well as finally a pair of splines for NObnded with

knot at 6. The backward selection model is based on the five pairwise interaction

splines: Basis5¼Basis3*max(rain�38, 0), Basis6¼Basis3*max(38�rain, 0),

Basis7¼Basis2*max(NObnded�5, 0), Basis9¼Basis2*max(NObnded�11, 0), and

Basis14¼Basis4*max(39�rain, 0). The LCV score is 0.0056596 as also reported in

Sect. 18.3.3.

19.5 MARS Models for Dichotomous Outcomes

Analyses are conducted in Sect. 18.4 of the dichotomous mercury level outcome for

n¼ 169 largemouth bass caught in one of two rivers (Lumber and Wacamaw) in

North Carolina (see Sect. 8.2 for a description of these data). Assuming that the

mercury data have been loaded into the SAS default library under the name
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Table 19.2 Output generated by PROC ADAPTIVEREG for the MARS model for the death rate

per 100,000 as a function of the nitric oxide pollution index (NObnded) and the annual average

precipitation (rain) allowing for spline interactions
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mercury, a MARS model for merchigh (the indicator for a high mercury level of

over 1.0 ppm versus low) as a function of the weight of fish and treating merchigh as

binomially distributed with logit link function can be requested in SAS as follows.

proc adaptivereg data¼mercury details¼bases;

model merchigh(descending)¼weight / dist¼binomial link¼logit;

run;

By default, PROC ADAPTIVEREGmodels the first or lower value of a binomial

outcome like merchigh, and so the higher value is then treated as the reference

value. This is reversed in the above code by adding the descending option in

parentheses after the name of the outcome. In this way, models are generated for

the chance of high levels of mercury versus low levels as the reference value. The

option “link¼logit” is not needed since that is the default link function for the

“dist¼binomial” option. The LCV score for this model can be generated as follows.

%MARSmodl(datain¼mercury,dataout¼data5,yvar¼merchigh,

xvars¼weight);

%genreg(datain¼data5,modtype¼logis,yvar¼merchigh,

xvars¼&bwdlist,foldcnt¼15);

By default, MARSmodl generates a MARS model for dichotomous outcomes in

descending order. Ascending order can be requested with the setting “descend¼n”.

The generated LCV score is 0.56281 as reported in Sect. 18.4.1.

The variable river, indicating the river in which the fish were caught, is available

in the mercury data set. A MARS model in weight and river, treating river as a

classification variable and allowing for spline interactions can be generated as

follows.

proc adaptivereg data¼mercury details¼bases;

class river;

model merchigh(descending)¼weight river / dist¼binomial link¼logit;

run;

Part of the output generated by this code is displayed in Table 19.3. For classi-

fication variables like river, pairs of splines are generated for the variable having a

subset of its values or not having those values. Since river has only two values, only

one pair of splines is needed. Note that PROC ADAPTIVEREG uses the formatted

values for river so that the pair of splines satisfy Basis3¼(river¼0:Lumber) and

Basis4¼NOT(river¼0:Lumber). However, these are used only once interacting with

the spline Basis1¼max(weight�0.869, 0).
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An LCV score for this model can be computed as follows.

%MARSmodl(datain¼mercury,dataout¼data6,yvar¼merchigh,

xvars¼weight river,classvrs¼river, modtype¼logis);

%genreg(datain¼data6,modtype¼logis,yvar¼deathrate,

xvars¼&bwdlist, foldcnt¼15);

Table 19.3 Output generated by PROC ADAPTIVEREG for the MARS model for a high

mercury level> 1 ppm versus lower as a function of the weight of the fish and the river in

which they were caught treated as a classification variable
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The classvrs macro parameter of the MARSmodl macro specifies which of the

xvars variables are to be treated as classification variables. The generated LCV

score is 0.57883, which is a substantial improvement over the MARS model in

weight alone with substantial PD 2.77 % (that is, greater than the cutoff of 1.13 % as

reported in Sect. 8.2).

An LCV score for the additive MARS model in weight and river can be

generated as follows.

%MARSmodl(datain¼mercury,dataout¼data7,yvar¼merchigh,

xvars¼weight river,classvrs¼river,

modtype¼logis,additive¼y);

%genreg(datain¼data7,modtype¼logis,yvar¼deathrate,

xvars¼&bwdlist,foldcnt¼15);

The generated MARS model is based on splines for weight only and not on

splines for river and is the same model as generated without consideration of river.

Hence, the generated LCV score is also 0.56281 with substantial PD 2.77 %

compared to the model allowing for interactions. Consequently, MARS modeling

leads to the conclusion that river distinctly moderates the effect of weight on

merchigh. This conclusion is also reached in Sect. 8.4 using adaptive modeling.

However, the LCV score for that moderation model is 0.57192 with substantial PD

1.19 %, and so is outperformed by the MARS model.

Figure 19.1 displays estimated probabilities for a high mercury level> 1 ppm at

unique weight values for the Lumber and Waccamaw Rivers generated by the

MARS model allowing for spline interactions. For low weights, estimated proba-

bilities are highly variable ranging from close to 0 to close to 1. However for weight

values exceeding 0.869 kg, the estimated probabilities follow regular increasing

patterns with the probabilities for the Waccamaw River increasing with increasing
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Fig. 19.1 Estimated probabilities for a high mercury level>1 ppm at unique weight values for the

Lumber and Waccamaw Rivers generated by the MARS model allowing for spline interactions
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weights to a distinctly higher level than for the Lumber River. This model suggests

that prediction of mercury levels is not reliable at relatively low weights for fish in

either river.

19.6 Practice Exercises

19.1 In Sect. 18.8.3, the MARS model for deathrate in NObnded and rain allowing

for interactions is addressed, but not the associated adaptive MARS model.

Using k¼ 5 folds as justified in Sect. 2.8, regenerate the MARS model in

NObnded and rain allowing for interactions. Then generate the associated

adaptive MARS model. Compare this adaptive MARSmodel to the associated

MARS model. Does consideration of transforms of interaction splines gener-

ate a distinct improvement or not?

19.2 Using the death rate data and k¼ 5 as justified in Sect. 2.8, generate the

additive MARS model for deathrate in terms of NObnded, SO2index, and

rain. Does this model depend on SO2index or not? Compare it to the additive

MARS model for deathrate in terms of only NObnded and rain of Sect. 18.3.3.

Next generate the adaptive additive MARS model for deathrate in terms of

NObnded, SO2index, and rain. Does consideration of power transformations

of splines provide a substantial improvement over using untransformed

splines? Does the adaptive MARS model in these three predictors substan-

tially improve on the adaptive MARS model generated using only NObnded

and rain described in Sect. 18.3.3? Compare the adaptive additive MARS

model in NObnded, SO2index, and rain to the adaptive additive model in

these three predictors generated as part of Practice Exercise 3.3. Is the

conclusion of any additive benefit to consideration of SO2index also control-

ling for additive effects to NObnded and rain the same when based on

adaptive MARS models and on adaptive models?

19.3 Assess moderation of the effect of length on merchigh by river using MARS

modeling. With k¼ 15 folds as justified in Sect. 8.4, generate the MARS

model for merchigh in length and river allowing for interactions. Treat river as

a classification variable. Compare this model to the MARS model in length of

Sect. 18.4.2. Is there a substantial interaction effect between length and river

and/or a substantial main effect to river using MARS modeling? Or is there no

distinct river effect after controlling for length as reported for adaptive models

in Sect. 8.5?

For Practice Exercise 19.4, use the body fat data set available on the

Internet (see Supplementary Materials). The outcome variable for this data

set is called bodyfat and contains body fat values in gm/cm3 for 252 men. The

file contains several predictors. Practice Exercises 19.4 uses only three of

these predictors, called weight, height, and BMI containing weights in

pounds, heights in inches, and body mass index values in kg/cm2,

respectively.
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19.4 Generate the MARS model for bodyfat in terms of BMI. Use the number of

folds determined as part of Practice Exercise 3.5. Compare this to the adaptive

model in BMI computed for Practice Exercise 3.5. Next, generate the adaptive

MARSmodel using the splines of the MARSmodel for BMI and compare it to

that MARS model. Next, generate the MARS model in weight and height

allowing for interactions and compare it to the MARS model in BMI. Finally,

generate the adaptive MARS model in weight and height allowing for inter-

actions and compare it to the adaptive MARS model in BMI.

For Practice Exercise 19.5, use the Titantic survival data available on the

Internet (see Supplementary Materials). Data are available for 756 passengers

with no missing data. The outcome variable for this data set is called survived

and is the indicator for having survived the sinking of the Titantic. The

predictors to be considered are age and the indicator fstclass for the passenger

being in first class versus second or third class. The gender of the passenger is

also available in the data set but is not used in the practice exercises.

19.5 Generate the MARS model for survived in terms of age. Use the number of

folds determined as part of Practice Exercise 9.5. Compare this to the adaptive

model in age computed for Practice Exercise 9.5. Next, generate the adaptive

MARS model using the splines of the MARS model for age and compare it to

that MARS model. Next, generate the MARS model for survived in terms of

age and fstclass allowing for interactions. Compare this to the MARS model

based on only age. Finally, generate the adaptive MARS model in age and

fstclass allowing for interactions and compare it to the MARS model in age

and fstclass allowing for interactions.
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Chapter 20

Adaptive Regression Modeling Formulation

20.1 Chapter Overview

This chapter provides a general formulation for adaptive regression modeling of

nonlinear relationships. Since formulations for special cases have been provided

earlier, only overviews are presented in Sect. 20.2 for alternative types of regression

models and in Sect. 20.3 for alternate cross-validation scoring approaches.

Section 20.4 then presents a detailed formulation for the adaptive regressionmodeling

process used by the genreg macro, which has only been generally described earlier.

20.2 Overview of General Regression Modeling
Formulation

Formulations for regression modeling of continuous outcomes have been provided

in Chaps. 2 and 4. Sections 2.3 and 2.17 address regression modeling of means for

univariate continuous outcomes using univariate normal likelihoods. This is

extended to modeling of variances along with means in Sect. 2.19.1. These formu-

lations are further extended for multivariate continuous outcomes using multivar-

iate normal likelihoods to marginal modeling of means using maximum likelihood

(ML) parameter estimation in Sect. 4.3 and generalized estimating equations (GEE)

parameter estimation in Sect. 4.11.1 as well as modeling of variances along with

means in Sect. 4.15.1. Section 4.7 provides a formulation for transition modeling of

means of multivariate continuous outcomes expressing multivariate normal likeli-

hoods as products of univariate conditional normal likelihoods, or equivalently in

terms of dependence predictors computed from prior outcome measurements.

Section 4.9 generalizes transition modeling of multivariate continuous outcomes

to general conditional modeling using pseudolikelihoods defined as products of

univariate conditional normal likelihoods, or equivalently in terms of dependence
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predictors computed from prior and/or subsequent outcome measurements. The

extension to transition and general conditional modeling of variances along with

means for multivariate continuous outcomes is similar to the extension in Sect.

2.19.1 for univariate continuous outcomes (as also noted in Sect. 4.15.1).

Formulations for regression modeling of discrete outcomes, either dichotomous

and polytomous, have been provided in Chaps. 8–10. Section 8.3 addresses logistic

regression modeling of means for univariate dichotomous outcomes using

Bernoulli likelihoods and Sect. 8.13.1 extends this to modeling of means and

dispersions using associated extended quasi-likelihoods. The extension to binomial

likelihoods for grouped data is addressed in Sect. 9.5. Section 8.7 addresses logistic

regression modeling of means for univariate polytomous outcomes using categor-

ical likelihoods and Sect. 8.13.2 extends this to modeling of means and dispersions

using associated extended quasi-likelihoods. The extension to multinomial likeli-

hoods for grouped data is addressed in Sect. 9.9. Nominal polytomous outcomes

can be modeled using multinomial regression based on generalized logits (Sect.

8.7.1). Ordinal polytomous outcomes can be modeled using ordinal regression

based on cumulative logits and proportional odds (Sect. 8.7.2) or using multinomial

regression. Section 10.3 provides a formulation for general conditional modeling,

including transition modeling as a special case, of multivariate dichotomous out-

comes using pseudolikelihoods defined as products of univariate conditional

Bernoulli likelihoods for modeling of means (Sect. 10.3.1) and also extended

quasi-pseudolikelihoods for modeling dispersions along with means (Sect.

10.3.2). The extension to grouped multivariate dichotomous outcomes using bino-

mial pseudolikelihoods and binomial extended quasi-pseudolikelihoods is similar

to the extension in Sect. 9.5 for univariate dichotomous outcomes (and so a detailed

formulation is not provided). Initial groups of measurements are computed in the

same way as for the univariate case but then partitioned into actual groups of

measurements with the same values of the variable specified by the withinvr

macro parameter. The extension of conditional modeling of means and dispersions

of multivariate polytomous outcomes using pseudolikelihoods defined as products

of univariate conditional categorical likelihoods and associated extended quasi-

pseudolikelihoods is addressed in Sect. 10.5. The extension to grouped multivariate

polytomous outcomes using multinomial pseudolikelihoods and multinomial

extended quasi-pseudolikelihoods is similar to the extension in Sect. 9.9 for uni-

variate polytomous outcomes (and so a detailed formulation is not provided).

Section 10.7 addresses marginal generalized estimating equations (GEE) modeling

of means and dispersions for multivariate dichotomous (Sect. 10.7.1) and

polytomous (Sect. 10.7.2) outcomes.

Formulations for modeling of count outcomes, possibly adjusted to rate out-

comes using offsets, have been provided in Chaps. 12 and 14. Section 12.3.1

addresses Poisson regression modeling of means for univariate count/rate outcomes

using Poisson likelihoods and Sect. 12.3.2 extends this to modeling of means and

dispersions using associated extended quasi-likelihoods. Section 14.3 provides a

formulation for general conditional modeling, including transition modeling as a

special case, of multivariate count/rate outcomes using pseudolikelihoods defined
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as products of univariate conditional Poisson likelihoods for modeling of means

(Sect. 14.3.1) and also extended quasi-pseudolikelihoods for modeling dispersions

along with means (Sect. 14.3.2). Section 14.5 addresses marginal generalized

estimating equations (GEE) modeling of means and dispersions for multivariate

count/rate outcomes.

The normal, Bernoulli, and Poisson distributions are members of the exponential

family of distributions. Modeling of means for univariate outcomes having any other

distribution in this family, for example, the gamma distribution, is formulated

similarly to the normal, Bernoulli, and Poisson cases, but with the likelihoods

appropriately adjusted. Extensions to modeling of dispersions along with means for

univariate outcomes having one of these other distributions is similar to the

extension for the Bernoulli and Poisson cases, but extended quasi-likelihoods

are computed with different deviance functions (see McCullagh and Nelder 1999).

For example, the deviance function for the gamma distribution is

d y; μð Þ ¼ 2 � �log y=μð Þ þ y� μð Þ=μð Þ. Transition and general conditional modeling

of means and dispersions for multivariate outcomes with each of its univariate

component outcome variables having a common distribution in the exponential

family are formulated similarly to the Bernoulli and Poisson cases but with pseudoli-

kelihoods and extended quasi-pseudolikelihoods appropriately adjusted. Marginal

GEE modeling of means and dispersions for such multivariate outcomes is formu-

lated similarly to the Bernoulli and Poisson cases. The variance function V(μ) for the
mean-value parameter μ needs to be adjusted. For example, the variance function for

the gamma distribution satisfies V μð Þ ¼ μ2.

20.3 Overview of Model Selection Approaches

20.3.1 Using Cross-Validation Based on Likelihood or
Likelihood-Like Functions

Likelihood cross-validation (LCV) scores are defined in Sect. 2.5.3. The k-fold

approach partitions the data into disjoint subsets called folds, computes the likeli-

hood for each fold from the data in that fold and parameters estimated using the data

in the other folds, and combines these deleted likelihoods into a score with larger

values indicating better models. The leave-one-out (LOO) approach assigns each

observation to its own fold.

LCV scores are used to evaluate and compare models for univariate continuous

outcomes using normal likelihoods in Chaps. 2, 3, 6, 7 and 16–19, for multivariate

continuous outcomes using marginal multivariate normal likelihoods in Chaps. 4–7,

univariate dichotomous outcomes using Bernoulli likelihoods in Chaps. 8, 9 and

16–19 as well as grouped binomial likelihoods in Chap. 9, univariate polytomous

outcomes using categorical likelihoods in Chaps. 8 and 9 as well as grouped

multinomial likelihoods in Chap. 9, and univariate count/rate outcomes using
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Poisson likelihoods in Chaps. 12 and 13. Extended quasi-likelihood cross-valida-

tion QLCVþð Þ scores are defined in Sect. 8.13 for modeling dispersions along with

means of dichotomous (Sect. 8.13.1) and polytomous (Sect. 8.13.2) outcomes using

associated deviance functions. QLCVþ scores for modeling dispersions along with

means of count/rate outcomes are addressed in Sect. 12.3.2. For the discrete

outcome cases, the deviance function is equivalent to the associated likelihood

and so LCV scores for unit dispersion models can be compared to QLCVþ scores

for non-unit dispersions models for the same data. In general, including the count/

rate outcome case, the deviance function equals the likelihood plus a term constant

in the model parameters, and so maximizing the deviance function with constant

dispersions generates the same estimates of the parameters for the means as

maximum likelihood estimation of those parameters under unit dispersions. The

constant equals zero for dichotomous and polytomous outcomes, but not in general.

Pseudolikelihood cross-validation (PLCV) scores for evaluating and comparing

general conditional models of means and variances for multivariate continuous

outcomes are defined in Sect. 4.9.1 using univariate conditional normal likelihoods.

This is extended to models for means of dichotomous outcomes in Sect. 10.3.1, of

polytomous outcomes in Sect. 10.5, and of count/rate outcomes in Sect. 14.3.1.

Extended PLCV PLCVþð Þ scores for models of dispersions along with means of

dichotomous outcomes are addressed in Sect. 10.3.2, of polytomous outcomes in

Sect. 10.5, and of count/rate outcomes in Sect. 14.3.2. Extended quasi-

pseudolikelihoods and associated PLCVþ scores are computed using extended

conditional quasi-likelihoods for outcome measurements conditioned on subsets

of other measurements. Transition models are the special case when the other

measurements are subsets of the prior measurements. PLCV=PLCVþ scores for

transition models equal their LCV=QLCVþ scores. Extended LCV scores LCVþð Þ
are defined in terms of multivariate normal likelihoods extended to address mar-

ginal GEE models for means and dispersions of dichotomous and polytomous

outcomes in Sect. 10.7 and of count/rate outcomes in Sect. 14.5.

For marginal multivariate cases, LCV and LCVþ scores can be based on

matched-set-wise deletion (Sect. 4.4.1) with all measurements for a matched set

randomly assigned to the same fold or on measurement-wise deletion (Sect. 4.13)

with measurements of each matched set randomly assigned to possibly different

folds. For conditional multivariate cases, PLCV and PLCVþ scores can be based on

matched-set-wise deletion, measurement-wise deletion, or partial measurement-

wise deletion. Measurement-wise deletion, in this case, requires that conditional

predictors based on averages of other measurements be recomputed for the data in

the complement of each fold while matched-set-wise deletion uses conditional

predictors computed for the complete data. Partial measurement-wise deletion is

intermediate between these two other alternatives with measurements of each

matched set randomly assigned to possibly different folds, but with conditional

predictors computed from the complete data to reduce the computations.

Cross-validation scores can be computed in any context with parameter estimation

computed by maximizing likelihoods or likelihood-like functions (e.g. extended
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quasi-likelihoods). LCV and PLCV scores can be computed in any context with

parameter estimates based on maximizing likelihoods and pseudolikelihoods, respec-

tively. QLCVþ and PLCVþ scores can be computed in any context with outcomes

having a common distribution in the exponential family using the associated deviance

function d(y;μ). LCVþ scores can be computed for multivariate outcomes with each

univariate component outcome having distribution in the exponential family using

the associated variance function V(μ). As an example, Knafl et al. (2010) use LCV

scores to evaluate and compare models for means for univariate count outcomes with

unit dispersions based on Poisson likelihoods and QLCVþ scores for both means and

dispersions of univariate count outcomes based on Poisson extended quasi-

likelihoods. They also evaluate and compare cluster analysis models using LCV

scores based on likelihoods for multivariate normal mixture distributions. Knafl and

Grey (2007) evaluate and compare exploratory and confirmatory factor analysis

models using LCV scores based on factor-analytic multivariate normal likelihoods.

20.3.2 Alternate Model Selection Approaches

Least square cross-validation (LSCV) scores are often used for model selection, for

example in the linear regression context (see Sect. 2.5.3) and in the generalized

additive modeling context (see Sect. 16.4). A simplified form of LSCV called

generalized cross-validation is also used in the latter context (Sect. 16.4), but can

have problems (Sect. 16.5). Penalized likelihood criteria (PLCs) are commonly

used as well, including among others the Akaike information criterion (AIC), the

Bayesian information criterion (BIC), and the Takeuchi information criterion (TIC)

(Sect. 2.10.1). These are usually formulated so that smaller scores indicate better

models. PLCs can be used to control the adaptive modeling process (as described in

Sect. 20.4) but need first to be adjusted so that larger scores indicate better models

(as defined in Sect. 2.10.1). However, their use in adaptive modeling can have

problems (Sects. 2.10.2 and 4.8.4). In the logistic regression context, the proportion

of correct deleted predictions (PCDP) can be used as an alternative for controlling

the adaptive modeling process for both dichotomous and polytomous discrete

outcomes, but its use in adaptive modeling can have problems (Sects. 8.12.2 and

8.12.3).

In the case of modeling multivariate outcomes, the computation of likelihoods

can be too complex for likelihood-based parameter estimation and model selection

to be practical in general. Consequently, GEE techniques have been developed that

circumvent the need to compute likelihoods. For that reason, the quasi-likelihood

criterion (QIC) has been formulated (Sect. 4.11) with the “likelihood” part of the

score based on the independent-data case and only the penalty factor accounting for

dependence. However, the use of the QIC score in model selection can have

problems (Sects. 4.11.3 and 11.4). Not being able to compute a likelihood function
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also complicates adaptive modeling since it requires a cross-validation score based

on a likelihood-like function. However, LCVþ scores based on extended multivar-

iate normal likelihoods can be used to control the adaptive modeling process for

such outcomes (as justified in Sect. 10.7.1) that fully accounts for the dependence.

The extended likelihood in these cases can also be penalized to obtain extended

PLCs that also fully account for the dependence (Sect. 10.7.1).

20.4 The Adaptive Modeling Process

This section describes the heuristic search process used by the genreg macro to

generate adaptive models. The process is controlled by rules indicating how much

of a percent decrease (PD) or percent increase (PI) in the cross-validation

(CV) scores can be tolerated at each of the steps of the process. CV scores of any

kind can be used as long as larger values indicate better models, including LCV,

QLCVþ, PLCV, PLCVþ, and LCVþ scores as well as adjusted penalized likelihood

criteria including adjusted versions of AIC, BIC, and TIC (see Sect. 2.10.1)

penalizing true likelihoods, adjusted versions of their extensions AICþ, BICþ,
and TICþ (see Sect. 10.7.1) penalizing extended likelihoods, and adjusted versions

for other extensions penalizing extended quasi-likelihoods, pseudolikelihoods, or

extended quasi-pseudolikelihoods (not addressed elsewhere but readily formu-

lated). The proportion of correct deleted predictions (PCDP; see Sect. 8.12.1) can

also be used in the logistic regression context.

20.4.1 Conditional Predictors

For an outcome variable y multiply measured over conditions c2C, let u be a

variable with values changing with the conditions c, either the outcome variable y

itself or some condition-varying predictor variable. Transition and general condi-

tional models use dependence predictors for the current value of y computed from

averages of subsets of the values for u. The prior predictors PRE(u,i,j) and associ-

ated missing indicators PREðu,i,j,∅Þ for integers 0 � i � j are used in transition

models (and defined in Sect. 4.7). Subsequent predictors POST(u,i,j) and combined

prior and subsequent predictors OTHER(u,i,j) along with associated missing indi-

cators POSTðu,i,j,∅Þ and OTHERðu,i,j,∅Þ are used in general conditional models

(and defined in Sect. 4.9.1) possibly with prior predictors. When u ¼ y, these

predictors specify the dependence of each outcome measurement on subsets of

the other outcome measurements, and so i should then be positive to avoid using the

current outcome measurement. For condition-varying variables u 6¼ y, the option

i ¼ 0 can be used to model the current outcome measurement in terms of averages

of the current as well as prior and/or subsequent values of u. Conditional models
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commonly use sums based on the other outcome values (e.g., Liang and Zeger

1989), but these are not comparable when the observed conditions sets C(s) for the

matched sets s vary with s2S. Using averages accounts for possible missing

outcome measurements, which can happen even when the available outcome

measurements C(s) is the full set C for all matched sets s2S in cases with CV

scores computed using measurement-wise deletion (Sect. 4.13). Conditional

models sometimes include predictors based on sums of products of other outcome

measurements (e.g., Eq. (2.2) of Liang and Zeger 1989). These are not directly

supported by the genreg macro, but geometric combinations based on products of

power transformations of the variables PRE(y,i,j), POST(y,i,j), and OTHER(y,i,j)

can be included in models to achieve similar effects.

20.4.2 Power Transforms

Power transforms up of primary predictors u, either dependence or non-dependence,

are not always well-defined for all real valued powers p. To avoid this,

power transforms are defined as f(u,p) with value up when u> 0, 0 when u ¼ 0,

and cos π � pð Þ � uj jp when u< 0 where juj is the absolute value of u and 0p is set to

0 even for negative powers p< 0 (see Sect. 4.6.1). The limit of f(u,p) as p ! 0

depends on the other predictors in the model. For example, for u> 0, if the constant

predictor u0 ¼ 1 (with associated intercept parameter) is not in the model, f(u,p)

converges to 1 as p ! 0. Otherwise, it converges to log(u) (see Sect. 2.13.2). To

avoid having to decide which case holds during the adaptive modeling process,

powers are restricted away from zero. Also, to avoid overly complex models,

powers are rounded to a fixed number of digits. Any number of digits can be

used, but four digits are recommended and then powers p are restricted away

from 0 so that pj j � 0:0001. This value is controlled by the pwrround macro

parameter with default value 0.0001. Note that when u> 0 and the model includes

an intercept term, models based on up with p ¼ �0:0001 approximate the model

based on log(u).

20.4.3 Selecting a Power for a Primary Predictor

Let M0 denote a base model consisting of a set of power transforms for modeling

the means and another set for modeling the variances/dispersions with each set

possibly empty but not both. Let u be a possible primary predictor. If u is constant,

two valued, or a three valued indicator with values �1, 0, and 1 or some fixed

positive multiple of this, power transformation of u has no effect on the model and

so the power p is set to 1 in such cases. Otherwise, let CV(M0, u, p) denote the

CV score (of type determined by the setting of the macro parameter scretype) for
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the base model M0 adjusted to include f(u,p) in its set of predictors for modeling

the means. The starting power p0 is chosen as the power generating the best score

CV(M0, u, p) in a grid search over a fixed set of powers. A grid search over powers

p¼�3, �2.5, ���, �0.5, 0.5, ���, 2.5, 3 has proven to be effective in practice while

limiting the computations and is recommended. The case p ¼ 0 is purposely

skipped as discussed in Sect. 20.4.2. The values in the grid search are controlled

by the expwrfst, expwrlst, and expwrstp (for first, last, and step for powers used to

start the power search) macro parameters with default values �3, 3, and 0.5,

respectively. The exskip0 macro parameter with default value y means skip the

0 power in this grid search. The choice exskip0¼n is not recommended.

Given the current power pi and the current change in power Δi, with Δ0 ¼ 1 as

set through the exdelpwr (for expansion power delta) macro parameter with default

value 1, if

CV M0, u, pi � Δið Þ � CV M0, u, pi þ Δið Þ;

set the direction di ¼ �1. Otherwise, set the direction di ¼ 1. Vary the multiplem
i
0 ,

starting from i
0 ¼ 0, by increments of 1 (i.e., m

i
0þ1

¼ m
i
0 þ 1 with m0 ¼ 1) until

CV M0, u, pi þ m
i
0 � 1

� � � di � Δi

� �
< CV M0, u, pi þm

i
0 � di � Δi

� �

� CV M0, u, pi þ m
i
0 þ 1

� � � di � Δi

� �
: ð20:1Þ

When Δi ¼ 1, the alternative multiples m
i
0 may be unbounded, but for Δi < 1, it is

only necessary to search throughm
i
0 < 10. Also, only continue the search as long as

there is a distinct PI > τ1 � 100 % in the CV scores for the multiple m
i
0 compared to

the previous multiple m
i
0 � 1. Besides reducing the computations, this can some-

times avoid the generation of powers with very large absolute values when Δi ¼ 1.

At the stopping value for m
i
0 , if there is a distinct PD < τ2 � 100 % for the smallest

of the three CV scores of Eq. (20.1) compared to the largest of those scores,

continue the search with piþ1 ¼ pi þm
i
0 � di � Δi and Δiþ1 ¼ Δi=10. Otherwise,

stop the search and the selected model is the base model M0 with its set of predictors

for the means augmented with the power transform f u, pþ uð Þð Þ where

pþ uð Þ ¼ pi þm
i
0 � di � Δi. The search also stops when the next value ofΔi is smaller

than the power rounding value given by the setting of the pwrround macro

parameter.

The recommended settings are τ1 ¼ 0:0001 and τ2 ¼ 0:005. The value of τ1 is
assigned with the tracctol (for transform accept tolerance) macro parameter with

default value 0.0001. By default, the value of τ1 is adjusted with the total number of

measurements m(SC) (using the notation of Sect. 4.3) as described in Sect. 20.4.8.

This is controlled by the trstptst (for transformation stopping test; that is, based on a

CV ratio test, see Sect. 4.4.2) macro parameter with default setting “trspttst¼y”,

meaning to adjust all transformation-related tolerance parameters. The setting

“trstptst¼n” means to use assigned values of all transformation-related tolerance

360 20 Adaptive Regression Modeling Formulation

http://dx.doi.org/10.1007/978-3-319-33946-7_4
http://dx.doi.org/10.1007/978-3-319-33946-7_4


parameters without adjustment. This is not recommended. Adjusting for the number

of measurements has been found to generate more effective models. The value of

τ2 is assigned with the trgrdtol (for transformation grid tolerance) macro parameter

with default value 0.005. Its value is also adjusted with the total number of

measurements m(SC) when“trstptst¼y”.

20.4.4 Adjusting the Transforms of a Base Model

Let M0 denote a base model consisting of some set of power transforms for the

means and another set for the variances/dispersions with each set possibly empty

but not both. The power transforms of this model can be adjusted to improve the CV

score through the following process.

For each transform f(u,p) for the means of the current base model Mi, let Mi
0

denote the model Mi with f(u,p) removed and use the process of Sect. 20.4.3 to add

to the set of transforms of Mi
0 for the means a power transform of u. Start this search

with p0 set equal to the current power p for u in Mi (rather than using the grid

search of Sect. 20.4.3) to generate a new power transform f u, pþ u; pð Þð Þ. Also
conduct similar searches for each transform f(u,p) for the variances/dispersions. Let

umax denote the primary predictor for either the means or the variances/dispersions

whose adjustment generates the best CV score, i.e.

CV Mi
0
,umax,p

þ umax;pð Þ
� �

¼max CV Mi
0
,u,pþ u;pð Þ

� �
: f u;pð Þapredictor ofMi

n o
:

If there is a distinct PI > τ3 � 100 % for the model Miþ1 given by Mi with the power

for umax adjusted to pþ umax; pð Þ compared to the model Mi, change the base model

to Miþ1. Otherwise, stop the search and select the current base model Mi as the

transform-adjusted model for M0. At each stage of this process, if the PI in CV

scores for the current base model Mi with one of its transform f(u,p) adjusted

compared to Mi is distinct, that is, if PI > τ4 � 100 %, keep it under consideration

for further adjustment. Otherwise, drop the transform f(u,p) from future consider-

ation for adjustment. This can reduce the computations.

Recommended settings are τ3 ¼ 0:001 and τ4 ¼ 0:0001. The value of τ3 is

assigned with the trstptol (for transformation stop tolerance) macro parameter with

default value 0.001 while the value of τ4 is assigned with the trkeptol (for

transformation keep tolerance) macro parameter with default value 0.0001. When

“trstptst¼y”, these transformation-related tolerance values are adjusted with the

total number of measurements m(SC) (along with the values of τ1 and τ2 of

Sect. 20.4.3).
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20.4.5 Expanding a Base Model

Let M0 denote a base model. Let U0 be a set of primary predictors for modeling the

means and U00 a set of primary predictors for modeling the variances/dispersions

with each set possibly empty but not both. M0 can be expanded to include trans-

forms f(u,p) of the predictors u of either U0 or U00 through the following process.

For each primary predictor u2U0 for the means, use the power selection

process of Sect. 20.4.3 to add to the currently expanded model Mi a power

transform f u, pþ uð Þð Þ for the means. Also, for each primary predictor u2U
00
for

the variances/dispersions, use the power selection process of Sect. 20.4.3 to add to

the currently expanded model Mi a power transform f u, pþ uð Þð Þ for the variances/
dispersions. Let umax denote the primary predictor for either the means or the

variances/dispersions whose adjustment generates the best CV score, i.e.

CV Mi, umax, p
þ umaxð Þð Þ ¼ max CV Mi, u, p

þ uð Þð Þ : u2U
0
or u2U

00
n o

:

Let Miþ1 be the model Mi with f umax, p
þ umaxð Þð Þ added to its predictors for the

means if umax2U
0
and to its predictors for the variances/dispersions if umax2U

00
. If

umax2U
0
and there is a distinct PD < τ5x � 100 % for Miþ1 compared to the

prior expanded model with the largest CV score, then stop expanding the means.

If umax2U
00
and there is a distinct PD < τ5v � 100 % for Miþ1 compared to the prior

expanded model with the largest CV score, then stop expanding the variances/

dispersions. Continue with Miþ1 as the current expanded model until the expansion

of the means and variance/dispersions have both been stopped.

At each stage of this process, if there is a distinct PD < τ6 � 100 % in CV scores

for model Mi expanded to include the transform f u, pþ uð Þð Þ compared to the prior

expanded model with the largest CV score, drop the primary predictor u from future

consideration for expanding the model. This adjustment can reduce the computa-

tions. Also, if the current expanded model Mi includes one or more other transforms

of the predictor u for modeling the means (variances/dispersions), then drop u

from future consideration for modeling the means (variances/dispersions) if the

addition of its next transform for modeling the means (variances/dispersions) gener-

ates a distinct PD < τ7 � 100 % for the model Mi expanded to include the transform

f u, pþ uð Þð Þ compared to the prior expanded model with the largest CV score.

The values of the stopping tolerances τ5x and τ5v decrease with the number of

non-unit transforms used to model the means and the variances/dispersions, respec-

tively. This reduces the number of ineffective transforms in the model. If there are

no non-unit transforms in the base model for the means (variances/dispersions), the

initial value for τ5x(τ5v) is the value τ5; otherwise the initial value for τ5x(τ5v) is τ5
minus Δτ5 times the number of non-unit transforms in the base model for the means

(variances/dispersions). As each transform is added to the model for the means

(variances/dispersions), τ5x(τ5v) is decreased by Δτ5. Note that τ5x and τ5v can

become negative. When they are positive, transforms can be added to the model that
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decrease the CV score; when negative, transforms need to increase the CV score to

be added to the model. A single expansion stopping tolerance for the mean and

variance/dispersion components of the model in combination is not used since that

can result in stopping the expansion before one of these components has been

effectively expanded in comparison to expanding each component separately.

Recommended settings are τ5 ¼ 0:05, Δτ5 ¼ 0:01, τ6 ¼ 0:05, and τ7 ¼ 0:001.
The value of τ5 is assigned with the exstptol (for expansion stop tolerance) macro

parameter with default value 0.05. The value of Δτ5 is assigned with the exstpdel

(for expansion stop delta) macro parameter with default value 0.01. The value of τ6
is assigned with the exdrptol (for expansion drop tolerance) macro parameter with

default value 0.05. The value of τ7 is assigned with the mlttrtol (for multiple

transform tolerance) macro parameter with default value 0.001. When invoked as

part of the expansion, the power selection process of Sect. 20.4.3 uses different

macro parameters to set its tolerances. The value of τ1 is assigned with the exacctol
(for expansion accept tolerance) macro parameter with default value 0.0001 and the

value of τ2 is assigned with the exgrdtol (for expansion grid tolerance) macro

parameter with default value 0.005. These are the same default values as for the

associated macro parameters tracctol and trgrdtol, but in general the settings for the

tolerance parameters τ1 and τ2 can be different when set directly by the transform

adjustment process of Sect. 20.4.4 or indirectly by the expansion process. When

exstptst (for expansion stop test) has its default setting “exstptst¼y”, all of the

expansion-related tolerance settings (as determined by exstptol, exstpdel, exdrptol,

mlttrtol, exacctol, and exgrdtol) are adjusted with the total number of measurements

m(SC) (as described in Sect. 20.4.8).

20.4.6 Considering Geometric Combinations

The expansion process of Sect. 20.4.5 only considers transforms of individual

primary predictors separate from the other primary predictors, but not interactions

between multiple primary predictors. One way to allow for interaction terms is to

include products of predictors in the sets U0 and U00. For example, if u1 and u2 are

two distinct primary predictors, the interaction term u3 ¼ u1 � u2 can be added as a

primary predictor. However, the expansion process of Sect. 20.4.5 then only

considers transforms f(u3, p) using a common power p for both u1 and u2. This is

reasonable if one of u1 or u2 is an indicator variable and so unaffected by power

transformation. In the general case, though, the more general transform

f u1; p1; u2; p2ð Þ ¼ f u1; p1ð Þ � f u2; p2ð Þ might be a more effective predictor. The

expansion process of Sect. 20.4.5 can be adjusted to consider such geometric

combinations (GCs) as follows.

For each u02U0, let f0 ¼ fðu0, pþðu0ÞÞ be the transform selected as part of the

power selection process of Sect. 20.4.3 invoked as part of the expansion process of

Sect. 20.4.5 as the best transform of u0 to add next to the means for the current
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expanded model Mi (the same process is also used for each u002U00). Let

U0 ¼ U0∖fu0g. The predictor u0 is not considered since it generates the first term

of the GC. Note that predictors are considered for use in GCs even if they have been

dropped from consideration as predictors by themselves as part of the expansion

process of Sect. 20.4.5. Even if a predictor cannot improve the model by itself, it

might still generate an effective GC term to complement other predictors.

Starting at i
0 ¼ 0, for each u2U

i
0 use a power selection process similar to that of

Sect. 20.4.3 to find the best GC fþ uð Þ ¼ f
i
0 � f u, pþ uð Þð Þ to include in the model for

the means in place of f
i
0 determined by transforms of u with associated score CV(u).

For simplicity, the search for each u is started at the initial power p0 ¼ 1 rather than

choosing this power through a grid search (as is done in the expansion process of

Sect. 20.4.5). This search for a power for u is controlled using an accept tolerance

parameter τ8 analogous to τ1 and a grid tolerance τ9 analogous to τ2. If there is a

distinct PD < τ10 � 100 % for the model with f
i
0 changed to fþ uð Þ for some u2U

i
0 ,

then drop u from future consideration for inclusion in the current GC (i.e., remove u

from U
i
0 þ1

as defined below). Let u
i
0 þ1

denote the primary predictor generating the

GC resulting in the best CV score for u2U
i
0 , that is,

CVðu
i
0 þ1

Þ ¼ maxfCVðuÞ : u2U
i
0 g:

LetM
i
0þ1

be the modelM
i
0 with f

i
0 changed to f

i
0 þ1

¼ fþðu
i
0þ1

Þ. If there is a distinct
PD < τ11 � 100 % for the model based on f

i
0 þ1

compared to the model based on f
i
0 ,

stop the search and select the current GC fþ ¼ f
i
0 generating the current model

Mþ ¼ M
i
0 . Otherwise continue the process using f

i
0þ1

and U
i
0 þ1

¼ Uj∖fui0þ1
g.

The recommended settings for τ8 and τ9 are the same as for τ1 and τ2, that is,
0.0001 and 0.005. The other recommended settings are τ10 ¼ 0:0001 and

τ11 ¼ 0:001. The value of τ8 is assigned with the cmacctol (for combination accept

tolerance) macro parameter with default value 0.0001. The value of τ9 is assigned
with the cmgrdtol (for combination grid tolerance) macro parameter with default

value 0.005. The value of τ10 is assigned with the cmdrptol (for combination drop

tolerance) macro parameter with default value 0.0001. The value of τ11 is assigned
with the cmstptol (for combination stop tolerance) macro parameter with default

value 0.001. When cmstptst (for combination stop test) has its default value “y”, all

four of these combination-related tolerance values are adjusted with the total

number of measurements m(SC) (as described in Sect. 20.4.8). By default, powers

p used in GCs are restricted away from 0 so that pj j � 0:0001. This value is

controlled by the wgtround macro parameter with default value 0.0001 (with the

same effect for controlling powers in GCs as the pwrround macro parameter has for

controlling power transforms).

Now with u00 ¼ fþ, apply the power selection process of Sect. 20.4.3, but with

initial power p0 ¼ 1, to select the power transform fðu00, pþðu00ÞÞ to replace fþ in

Mþ with CV score CV(u00). If CVðu00Þ � CVðuÞ, that is, if the CV score generated

by the transformed GC generated from the power transform f u, pþ uð Þð Þ of u does
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not improve on the CV score for f u, pþ uð Þð Þ, use f u, pþ uð Þð Þ instead in the

expansion search of Sect. 20.4.5. Also, If CV(u00) does not improve on the best

overall CV score generated in prior iterations of the expansion process of

Sect. 20.4.5, also use f u, pþ uð Þð Þ in the search of Sect. 20.4.5. Otherwise, replace

f u, pþ uð Þð Þ by fðu00, pþðu00ÞÞ in the expansion search of Sect. 20.4.5. These latter

adjustments mean only consider inclusion of the more complex GCs in models

when they provide improvements to the overall model.

20.4.7 Contracting a Base Model

Power transforms of primary predictors generating reduced CV scores can be added

to the model in the expansion as long as the reduction is tolerable (as measured by

τ5x and τ5v). These transforms may become more effective if other previously

included transforms are removed from the model. In any case, there is a need to

consider contracted models with some of the expanded terms removed and the

others possibly retransformed.

Let M0 denote a base model consisting of a set of power transforms of primary

predictors and/or of GCs for modeling the means and a set for modeling the

variances/dispersions with each set possibly empty but not both. It can be

contracted by removing transforms and adjusting the remaining transforms with

the following process.

For each transform f for either the means or the variances/dispersions of the

current base model Mi, let Mi
0
(f) denote the model Mi with f removed. Use

the transformation process of Sect. 20.4.4 to adjust the transforms of Mi
0
(f) into

the model Mi
00
(f). Transforms f can be power transforms of primary predictors as

generated in Sect. 20.4.3 or power transforms of GCs as generated in Sect. 20.4.6.

While the terms comprising the GCs can have different powers, whole GCs are

retransformed, not individual GC terms separately. Let fmax be the transform of Mi

whose removal generates the best CV score among all the transforms of Mi, that is,

CV M
00
i fmaxð Þ

� �
¼ max CV M

00
i fð Þ

� �
: f a transform of Mi

n o
:

If there is a distinct PD < τ13 � 100 % for the model Miþ1 ¼ M
00
i fmaxð Þ compared

to the model Mi, stop the search and select the current base model Mi as the

contracted model for M0. Otherwise, change the base model to Miþ1 and continue

the process. At each stage i, if there is a distinct PD < τ14 � 100 % in CV scores for

the model Mi
00(f) compared to the prior model Mi, drop the transform f from future

consideration for removal. The inclusion of this transform provides a strong enough

benefit at the current stage of the contraction that it is unlikely to be removed at later

stages. However, its power might be changed at later stages.
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By default, the contraction for the means (variance/dispersions) also stops when

there is only one remaining term in the model for the means (variance/dispersions).

This can be overridden to consider removal of this term creating a zero model for

the possibly transformed means (log transformed variances/dispersions) using the

setting “cnxzero¼y” (“cnvzero¼y”). However, this is unlikely to be beneficial

except when using “cnvzero¼y” with a dichotomous or polytomous outcome,

thereby creating a unit dispersions model.

Recommended settings areτ13 ¼ 0:02andτ14 ¼ 0:1. The value of τ13 is assigned
with the cnstptol (for contraction stop tolerance) macro parameter with default

value 0.02 while the value of τ14 is assigned with the cndrptol (for contraction drop
tolerance) macro parameter with default value 0.1. When “cnstptst¼y”, these

contraction-related tolerance values are adjusted with the total number of measure-

ments m(SC) as described in Sect. 20.4.8.

20.4.8 Tolerance Parameter Settings

Settings have been recommended in Sects. 20.4.3–20.4.7 for the tolerance param-

eters τ1 � τ14 and Δτ5 that control the adaptive model selection process. The

settings of these parameters usually need to be adjusted with the number of

measurements m(SC) for the process to be effective. For example, when the

contraction stopping tolerance τ13 is too large, the contraction continues for too

long and valuable transforms are removed from the model. On the other hand, when

it is too small, the contraction stops too soon and ineffective transforms are retained

in the model. The contraction stopping tolerance τ13 is set using a CV ratio test (see

Sect. 4.4.2) with τ13 set to

τ13 mðSCÞð Þ ¼ 1� e�δð95%,DFÞ= 2�mðSCÞð Þ,

where δ(95 %,DF) is the 95th percentile of the χ2 distribution with DF degrees of

freedom (see the formula for computing the cutoff for a substantial percent decrease

(PD) of Sect. 4.4.2). For multinomial regression models, DF is set to one less than

the number of unique outcome values since that is the number of regression

coefficient parameters removed when one transform is removed from the model

for the means. In all other cases, DF ¼ 1. When m(SC) is close to 95 and DF ¼ 1,

τ13(m(SC)) is close to the recommended setting of 0.02 for τ13; hence the need to

adjust the value of τ13 with m(SC). The other tolerances are adjusted similarly, but

proportionally to account for their recommended value. For example, the expansion

stopping tolerance τ5 is set to

τ5 m SCð Þð Þ ¼ 0:05 � τ13 m SCð Þð Þ=0:02

adjusting the recommended value 0.05 of the expansion stopping tolerance τ5 by
an amount proportional to the adjustment for the contraction stopping tolerance τ13
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from its recommended value of 0.02. If the recommended value of a tolerance

parameter is changed using the associated macro parameter (e.g., exstptol for the

expansion stopping tolerance or cnstptol for the contraction stopping tolerance),

that value is used in place of the recommended value in these computations.

These adjustments occur for contraction (transformation, expansion, combina-

tion) tolerances when “cnstptst¼y” (“trstptst¼y”, “exstptst¼y”, “cmstptst¼y”). If

the settings for any of these tolerances are changed from their default recommended

values, those values are adjusted rather than the recommended values. When

“cnstptst¼n” (“trstpst¼n”, “exstpst¼n”, “cmstpst¼y”), the settings for the con-

traction (transformation, expansion, combination) tolerances are used without

adjustment. This is not recommended since it does not adjust for the number of

measurements.

20.4.9 The Complete Adaptive Model Selection Process

The standard adaptive model selection process is as follows. Starting from a base

model M, use the expansion process of Sect. 20.4.5 to generate the expanded model

M0 (assuming “expand¼y”). Then use the contraction process of Sect. 20.4.7,

starting from the expanded model M0, to generate the contracted model M00 (assum-

ing “contract¼y”). If any terms are removed in the contraction, then the contracted

model M00 is the selected adaptive model. If the contraction leaves the expanded

model unchanged and if there might be a benefit to adjusting powers of the

expanded model (that is, it has at least one power transform of a non-indicator

predictor followed by at least one other transform possibly of an indicator

predictor), use the transformation process of Sect. 20.4.4 to adjust the powers of

the uncontracted expanded model M0 generating the model M000 (assuming

“condtrns¼y”). In this case, M000 is the final model. Otherwise, the final model is

the uncontracted expanded model M0. The base model M can be arbitrary,

but by default it is a constant model with constant means (assuming “xintrcpt¼y”

and “xvars¼”) and constant variances/dispersions (assuming “vintrcpt¼y” and

“vvars¼”).

A variety of adjustments to this standard process are possible. By default,

“geomcmbn¼n”, and so the GC-generating adjustments of Sect. 20.4.6 are

not considered in the expansion and additive models are generated. By

default, the number of power transforms in GCs is arbitrary, but can be

limited to a maximum number using the maxterms macro parameter. For

example, the setting “maxterms¼2” restricts to pairwise GCs, which can be

more readily comprehended. The expansion process of Sect. 20.4.5 is

adjusted to account for GCs when “geomcmbn¼y”.

Expansion steps can be restricted to models for only the means or for only the

variances/dispersions (using an empty setting for one of the expxvars and expvvars

macro parameters). The model for the means can be expanded before expanding the

model for the variances/dispersions or in the other order. The order of the expansion
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is controlled by the expordr macro parameter. The default setting “expordr¼.”

means to expand both the models for the means and the variances/dispersions in

combination. Setting “expordr¼xv” means first expand the model for the means

(“x”) and then expand the model for the variances/dispersions (“v”). This order can

be reversed using “expordr¼vx”. The contraction order can be similarly controlled

using the contord macro parameter as can the transformation order using the

trnsordr macro parameter, but transformations as part of the contraction process

use the order determined by contordr not by trnsordr.

Terms in the base model can be held fixed so they are not removed in the

contraction. For example, “nocnxbas¼y” means do not contract any of the terms

of the base model for the means and “nocnvbas¼y” has the same effect on the base

model for the variances/dispersions. Linear models in the primary predictors can be

generated by (1) restricting the expansion to consider only unit powers p ¼ 1 using

the “exptrans¼n” and “multtrns¼n” settings, meaning do not transform the primary

predictors in the expansion and do not allow multiple transforms of the same

primary predictor; (2) restricting the contraction not to adjust those powers using

the “cnretrns¼n” setting, meaning do not retransform the powers of any trans-

forms during the contraction, and (3) turning off the conditional transformation

using “condtrns¼n”, which would otherwise be executed if the contraction does

not change the expanded model. Models can also be expanded without being

contracted, using “expand¼y” and “contract¼n”, or contracted without being

expanded, using “expand¼n” and “contract¼y”. Transformation of the expanded

model can be requested with “trnsform¼y”. The transformed expanded model is

then the base model for the contraction, but this is unnecessary due to transforma-

tions generated as part of the contraction and conditional transformation processes.

20.4.10 Computing Transforms

SAS conducts its computations in double precision. However, the values of

power transforms of primary predictors can have more digits than can be

correctly represented in double precision. Moreover, they can be very large.

To avoid such irregularities, transformed values x are adjusted as follows. Rewrite

x as x ¼ sign xð Þ � a � 10d where 0� a� 1 and sign(x) is the usual sign

function with values �1, 0, and 1. Let a0 equal a rounded to δ digits. Replace x by

x
0 ¼ signðxÞ �minða0, bÞ � 10d in the associated design matrix for a bound b as

defined later. The recommended setting for the number δ of rounding digits is

12 and is set using the desgnrnd (for design matrix entry rounding) macro parameter

with default value “1e�12”. The upper bound b is used to guarantee that the

transformed value is not too large. Its recommended setting is “1e12” and is set

using the mxtrnval (for maximum transform value) macro parameter with default

value “1e12”.

Bounding transform values can have an effect on generated estimates. For

example, Sect. 4.15.4 reports on models for means and dispersions of strength
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measurements from the exercise data of Sect. 4.12. Figure 4.6 displays

post-baseline estimates for means generated by the best adaptive model for

subjects in the increasing number of repetitions group. The transform

ðincrwgts � time�1 � PREðy,1Þ�11Þ�1:1
accounts for how much of a change there is

for subjects in the increasing weights group. Since this transform is not constant in

time and PRE(y,1), it seems surprising that a constant change in the means of about

0.02 is reported in Sect. 4.15.4 for post-baseline times. However, the smallest

values for post-baseline time and PRE(y,1) are 2 and 74 so that the smallest value

for ðtime�1 � PREðy,1Þ�11Þ�1:1 ¼ time1:1 � PREðy,1Þ12:1 is 8.89e22. Consequently,

all the values for this transform exceed the upper bound “b¼1e12”, and so they are

changed to b, resulting in the reported constant change.

20.4.11 Avoiding Redundant Transforms

Transforms f(u,p) are considered for adjusting a base model as part of the power

selection process of Sect. 20.4.3, invoked as part of a request for the expansion

process of Sect. 20.4.5 (when “expand¼y” and “exptrans¼y”). These can be trans-

forms of either primary predictors or of GCs (when “geomcmbn¼y”). Transforms

are also considered as part of a request for the transformation process of Sect. 20.4.4,

either indirectly as part of the contraction process of Sect. 20.4.7 (when “contract¼y”

and “cnretrns¼y”) or directly through a conditional (when “condtrns¼y”) or uncon-

ditional (when “trnsform¼y”) transformation request. When GCs are requested, GCs

of the form f
i
0 � f u, p uð Þð Þ are also considered for adjusting a base model augmented

with a previously generated GC f
i
0 as part of the associated power selection process

(see Sect. 20.4.6) within the expansion process. These newly generated transforms

can be redundant in the sense that they are essentially equivalent to a linear combi-

nation of transforms already in the base model. The power selection processes of

Sects. 20.4.3 and 20.4.4 are adjusted to drop such redundant transforms from

consideration for adjusting the base model as follows.

Let D be a n� pþ 1ð Þ design matrix for the means or variances/dispersions with

the (pþ 1)th transform added to a base model determined by the first p columns of

D that has already been checked to have no redundant transforms. Let D0 be the

design matrix D with its columns reordered so that columns D0[, k] (using the

submatrix notation of SAS PROC IML; SAS Institute 2008) of D0 for 1� k� pþ 1

have their maximum absolute values maxk ¼ maxfjD0½i, k�j : 1 � i � ng in

increasing order, i.e., max1 � max2 � � � � � maxpþ1. Let D
00 denote the design

matrix with columns D
00
, k½ � ¼ D0 , k½ �=maxk (assuming maxk 6¼ 0 for all k or that

there are no identically zero columns in D). The transform used to generate the

(pþ 1)th column of D is considered to be redundant and skipped in the associated

power selection process if the kth column of the matrix D00 is close to a linear
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combination of the prior k� 1 columns of D00 for some k in the range

2 � k � pþ 1. This latter condition holds when

dk ¼ D00½, k� 0 � ðI� Xk � ðXk
0XkÞ�1 � Xk

0Þ � D00½, k� < ε,

whereXk ¼ D00 , 1 : k½ �, that is, the submatrix consisting of the first k columns of D00,
I the n� n identity matrix, and the back quote ( 0 ) denotes the transpose operator

(as for SAS PROC IML; previously denoted by a superscript “T”). The sweep

function of SAS PROC IML is used to compute dk. The recommended value for the

redundancy tolerance ε is 0.00001, which is set using the eqtrntol (for equal

transform tolerance) macro parameter with default value 0.00001.

Reordering of the columns of D guarantees that transforms are considered

redundant no matter what order they are included in the design matrix. When

models are generated adaptively, their transforms are included in design matrices

in the order determined by the base model and the expansion. The contraction can

remove some of these transforms and transformation can adjust the powers, but the

order of the remaining transforms is not changed. When the transforms of an

adaptively generated model are generated directly, transforms of primary predictors

are generated first followed by transforms of GCs. Without reordering in the

computation of dk, an adaptive model can be generated that is considered not to

have redundant transforms during the adaptive modeling process but considered to

have redundant transforms when generated directly; reordering avoids this. The

columns of D0 are bounded by maxk to avoid floating point overflow when com-

puting dk.

References

Knafl, G. J., Delucchi, K. L., Bova, C. A., Fennie, K. P., & Williams, A. B. (2010). Chapter 1: A

systematic approach for analyzing electronically monitored adherence data. In B. Ekwall &

M. Cronquist (Eds.), Micro electro mechanical systems (MEMS) technology, fabrication
processes and applications (pp. 1–66). Hauppauge, NY: Nova Science Publishers. Retrieved

from https://www.novapublishers.com/catalog/product_info.php?products_id¼19133

Knafl, G. J., & Grey, M. (2007). Factor analysis model evaluation through likelihood cross-

validation. Statistical Methods in Medical Research, 16, 77–102.
Liang, K.-Y., & Zeger, S. L. (1989). A class of logistic regression models for multivariate binary

time series. Journal of the American Statistical Association, 84, 447–451.
McCullagh, P., & Nelder, J. A. (1999). Generalized linear models (2nd ed.). Boca Raton, FL:

Chapman & Hall/CRC.

SAS Institute. (2008). SAS/IML 9.2 user’s guide. Cary, NC: SAS Institute.

370 20 Adaptive Regression Modeling Formulation

https://webmail5.isis.unc.edu/mail/services/go.php?url=https%3A%2F%2Fwww.novapublishers.com%2Fcatalog%2Fproduct_info.php%3Fproducts_id%3D19133#_blank
https://webmail5.isis.unc.edu/mail/services/go.php?url=https%3A%2F%2Fwww.novapublishers.com%2Fcatalog%2Fproduct_info.php%3Fproducts_id%3D19133#_blank


Index

C
Conditional

model of continuous outcomes, 83–86

model of count outcomes, 276–279

model of dichotomous outcomes, 215–218

model of polytomous outcomes, 223, 224

predictors, 75, 77, 78, 84, 85, 95, 356,

358, 359

transformation, 46–48, 117, 126,

367, 368

Contraction, 6, 7, 33, 47, 50, 53, 55, 56, 59, 60,

99, 117, 122, 126, 127, 129, 189, 193,

204–206, 208, 209, 219–221, 226, 242,

243, 246, 247, 270, 291, 294, 310, 330,

365–368

Cross-validation, 14, 16, 17

extended likelihood (LCV+), 227–234,

282–283, 357, 358

extended pseudolikelihood (PLCV+), 217,

218, 223, 224, 278–279

extended quasi-likelihood (QLCV+), 178,

257–258, 355–357

generalized, 302, 310, 311, 357, 358

k-fold, 15–17, 355–357

least square (LSCV), 16, 17, 302,

357, 358

leave-one-out (LOO), 16, 17, 302,

355–357

likelihood (LCV), 16, 17, 67, 94, 95,

256–258, 301, 355–357

likelihood ratio test, 18, 68, 69

power-adjusted likelihood, 134–136

PRESS, 15

pseudolikelihood (PLCV), 84, 85, 215, 216,

277–278, 355–357

D
Degree of freedom, 12, 13, 300, 301

Deletion

matched-set-wise, 67

measurement-wise, 94, 95

Deviance, 178, 217, 218, 257–258, 278–279,

353–355

Dispersion modeling, 178, 185, 205, 217, 218,

256–258, 278–279

E
Expansion, 6, 27, 47, 48, 50, 54–57, 113, 116,

117, 126, 127, 129, 164, 189, 206, 208,

220, 226, 242, 244, 246, 267, 269, 273,

290, 291, 293, 330, 360, 362–370

F
Fractional polynomials, 4, 5, 13, 14, 25,

27, 28

degree 2, 29

limits of, 30

G
Generalized additive models

for continuous outcomes, 300, 301

for dichotomous outcomes, 310, 311

Generalized estimating equations (GEE)

of multivariate continuous outcomes,

87–91

of multivariate count outcomes, 282–283

of multivariate dichotomous/polytomous

outcomes, 227–234

© Springer International Publishing Switzerland 2016

G.J. Knafl, K. Ding, Adaptive Regression for Modeling Nonlinear Relationships,
Statistics for Biology and Health, DOI 10.1007/978-3-319-33946-7

371



Geometric combinations, 6, 63, 72, 73, 102,

106, 113, 127, 142, 143, 153, 165, 185,

219, 237, 244, 259, 262, 268, 270, 281,

285, 291, 292, 307, 312, 335, 337, 359,

363–365

K
Knot, 330

L
Likelihood, 12, 13, 66, 67, 75, 77, 78, 162–164,

169, 170, 194, 195, 256–258

extended, 227–234, 282–283, 357, 358

extended quasi-, 179–182, 257–258

extended quasi-pseudo, 217, 218, 278–279

power-adjusted, 134, 135

pseudo, 84, 85, 215, 216, 277–278

Logistic regression, 11, 46

M
Marginal model, 65–67, 73, 76–80, 86, 87, 89,

93, 99, 103–105, 107, 117, 123–127,

129, 134, 139, 149, 154, 155, 227, 231,

234, 235, 237, 246, 247, 282–284, 293

Moderation, 2, 61, 63, 71–73, 79, 90–93, 102,

106, 113–121, 145, 165, 185, 259, 262,

325, 347

Monotonic model, 24–26, 28, 31, 40, 42, 45,

50, 51, 61, 192, 267

Multivariate adaptive regression splines

(MARS), 329–337, 339–349

N
Number of folds, 11, 19, 20, 41, 47, 48, 54, 92,

111, 302

O
Odds ratio, 162–164, 167, 169, 171, 174, 186,

191, 216, 228, 237, 244, 314

Offset, 256–258, 266, 273, 276–281, 289, 290

P
Penalized likelihood criteria

(extended) Akaike information criterion

(AIC), 22, 23

(extended) Bayesian information criterion

(BIC), 22, 23

(extended) Takeuchi information criterion

(TIC), 22, 23, 227–231, 357, 358

quasi-likelihood information criterion

(QIC), 88, 89, 357, 358

Percent decrease (PD), 5, 7, 18, 51, 64, 68,

69, 107, 114, 137, 162, 189, 218, 224,

241, 256, 266, 276, 289, 304, 314, 331,

358, 366

Power transformation, 3, 13, 14, 43, 73–75,

133, 144–146, 359, 363

Box-Cox, 133, 134

Box-Tidwell, 133, 134

Proportion of correct deleted predictions (PCDP,

161, 176–178, 186, 191, 357, 358

R
Regression

bivariate, 11–13, 36

logistic, 3, 161–237, 239–251, 282, 299,

310, 314, 329, 354, 357, 358

multinomial, 3, 114, 169, 170, 181, 182,

185, 186, 198, 199, 201, 202, 206, 210,

224, 225, 231, 233, 236, 237, 354, 366

multiple, 11, 34, 36, 38, 42, 300

ordinal, 3, 169, 171–174, 176, 181,

184–186, 198–201, 203, 206, 210, 214,

223–225, 233, 236, 237, 354

Poisson, 3, 5, 11, 46, 146, 255–262,

265–285, 287–295, 299, 329, 354

Residual, 12, 13, 36, 162–164, 179–182, 194,

195, 201, 202, 300

grouped, 194–197, 201–203

Pearson/standardized, 162–164, 178–182,

194, 195, 201, 202, 217, 218, 256–258,

276–279

scaled, 66, 67, 169–172, 180, 181, 227–234

unscaled, 66, 67, 169–172

S
Splines, 329–337, 339–349

Standard polynomial, 3, 4, 12, 13, 21, 30, 45, 49

T
Tolerance parameter, 5–7, 55, 116, 360, 363,

364, 366, 367

Transition model, 75, 77, 78, 215–218,

276–279, 356, 357

V
Variance

function, 353–355, 357

modeling, 38, 39, 59, 60, 96–101, 125–129,

204, 269

372 Index


	Preface
	Acknowledgments
	Contents
	Abbreviations
	About the Authors
	Chapter 1: Introduction
	1.1 Purpose
	1.2 Background
	1.3 Overview of the Adaptive Modeling Process
	References

	Part I: Adaptive Regression Modeling
	Chapter 2: Adaptive Regression Modeling of Univariate Continuous Outcomes
	2.1 Chapter Overview
	2.2 The Death Rate Data
	2.3 The Bivariate Regression Model and Its Parameter Estimates
	2.4 Power Transformed Predictors
	2.5 Cross-Validation
	2.5.1 PRESS Formulation
	2.5.2 PRESS Assessment of the Death Rate as a Function of the Nitric Oxide Pollution Index
	2.5.3 Formulation for Other Types of Cross-Validation

	2.6 Death Rate as a Function of the Nitric Oxide Pollution Index
	2.7 Model Comparisons
	2.8 Choosing the Number of Cross-Validation Folds
	2.9 Comparison to Standard Polynomial Models
	2.10 Penalized Likelihood Criteria for Model Selection
	2.10.1 Formulation
	2.10.2 Adaptive Analyses Using Penalized Likelihood Criteria

	2.11 Monotonic Models
	2.12 Comparison to Standard Fractional Polynomial Modeling
	2.13 Log Transforms
	2.13.1 Recommended Degree 2 Fractional Polynomials
	2.13.2 Limits of Fractional Polynomials

	2.14 Impact of the Intercept
	2.15 Impact of Bounding the Nitric Oxide Pollution Index
	2.16 Death Rate as a Function of Other Predictors
	2.17 The Multiple Regression Model
	2.18 Residual Analysis
	2.19 Modeling Variances as well as Means
	2.19.1 Formulation
	2.19.2 Analysis of Death Rate Means and Variances
	2.19.3 Analysis of Means and Variances for the Simulated Data

	2.20 Overview of Analyses of Death Rates
	2.21 Overview of Analyses of the Simulated Outcome
	2.22 Chapter Summary
	References

	Chapter 3: Adaptive Regression Modeling of Univariate Continuous Outcomes in SAS
	3.1 Chapter Overview
	3.2 Loading in the Death Rate Data
	3.3 Adaptive Models Based on NOindex
	3.4 Setting the Number of Cross-Validation Folds
	3.5 Standard Polynomial Models in NOindex
	3.6 Selecting Models in NOindex Using Penalized Likelihood Criteria
	3.7 Monotonic Model in NOindex
	3.8 Recommended Fractional Polynomials in NOindex
	3.9 Impact of the Log Transform of NOindex
	3.10 Zero-Intercept Models in NOindex
	3.11 Models Bounding the Impact of NOindex
	3.12 Models in Other Available Predictors
	3.13 Residual Analysis
	3.14 Modeling Variances as Well as Means
	3.15 Practice Exercises
	References

	Chapter 4: Adaptive Regression Modeling of Multivariate Continuous Outcomes
	4.1 Chapter Overview
	4.2 The Dental Measurement Data
	4.3 The Marginal Multivariate Regression Model and Its Parameter Estimates
	4.3.1 Complete Data
	4.3.2 Incomplete Data
	4.3.3 Marginal Maximum Likelihood Modeling of Dependence

	4.4 LCV for Marginal Models
	4.4.1 LCV Formulation
	4.4.2 LCV Ratio Tests

	4.5 Marginal Order 1 Autoregressive Modeling of the Dental Measurement Data
	4.5.1 Order 1 Autoregressive Correlations
	4.5.2 Setting the Number of Cross-Validation Folds
	4.5.3 Moderation of the Effect of Age by Gender
	4.5.4 Geometric Combinations

	4.6 General Power Transforms
	4.6.1 Formulation
	4.6.2 The Royston and Sauerbrei Approach

	4.7 Transition Modeling of Dependence
	4.7.1 Formulation Using Averages of Prior Outcome Measurements
	4.7.2 Transition Model Induced by the Marginal AR1 Model with Constant Means
	4.7.3 Using Weighted Averages of Prior Outcome Measurements

	4.8 Transition Modeling of the Dental Measurement Data
	4.8.1 Using the Prior Dental Measurement
	4.8.2 Comparison to the Marginal Model with Exchangeable Correlations
	4.8.3 Using Multiple Prior Dental Measurements
	4.8.4 Transition Model Selection with Penalized Likelihood Criteria

	4.9 General Conditional Modeling of Dependence
	4.9.1 Formulation
	4.9.2 Conditional Models Induced by Marginal Models

	4.10 General Conditional Modeling of the Dental Measurement Data
	4.11 Adaptive GEE-Based Modeling of Multivariate Continuous Outcomes
	4.11.1 Formulation
	4.11.2 Adaptive GEE-Based Modeling of the Dental Measurement Data
	4.11.3 Assessment of the Quasi-Likelihood Information Criterion

	4.12 Analysis of the Exercise Data
	4.13 LCV with Measurement-Wise Deletion
	4.14 Revised Analysis of the Exercise Data
	4.15 Modeling Variances as Well as Means
	4.15.1 Formulation
	4.15.2 Analysis of Dental Measurement Means and Variances
	4.15.3 Transition Modeling of Strength Measurement Means with Adjusted Variances
	4.15.4 Analysis of Strength Measurement Means and Variances

	4.16 Overview of Analyses of Dental Measurements
	4.17 Overview of Analyses of Strength Measurements
	4.18 Chapter Summary
	References

	Chapter 5: Adaptive Regression Modeling of Multivariate Continuous Outcomes in SAS
	5.1 Chapter Overview
	5.2 Loading the Dental Measurement Data
	5.3 Marginal Modeling of Means for the Dental Measurement Data
	5.3.1 Marginal Models of Mean Dental Measurement in Age of the Child
	5.3.2 Marginal Moderation Models of Mean Dental Measurement in Age and Gender of the Child
	5.3.3 Residual Analysis of the Adaptive Marginal Moderation Model

	5.4 Conditional Modeling of Means for the Dental Measurement Data
	5.4.1 Transition Models for Mean Dental Measurement
	5.4.2 Residual Analysis of the Adaptive Transition Model
	5.4.3 General Conditional Models for Mean Dental Measurement

	5.5 Analyzing the Exercise Data
	5.6 Modeling Variances as Well as Means
	5.6.1 Marginal Models for Dental Measurements
	5.6.2 Transition Models for Dental Measurements
	5.6.3 Clock Time Assessments

	5.7 Practice Exercises
	References

	Chapter 6: Adaptive Transformation of Positive Valued Continuous Outcomes
	6.1 Chapter Overview
	6.2 Transformation of the Outcome Variable
	6.3 Formulation for Power-Adjusted Likelihoods and LCV Scores
	6.3.1 Univariate Outcomes
	6.3.2 Multivariate Outcomes

	6.4 Analyses of Transformed Death Rates
	6.5 Analyses of the Transformed Simulated Outcome
	6.6 Analyses of Transformed Dental Measurements
	6.7 Analyses of Transformed Strength Measurements
	6.8 The Plasma Beta-Carotene Data
	6.9 Analyses of Untransformed Plasma Beta-Carotene Levels
	6.10 Analyses of Transformed Plasma Beta-Carotene Levels
	6.11 Overview of Analyses of Death Rates
	6.12 Overview of Analyses of the Simulated Outcome
	6.13 Overview of Analyses of Dental Measurements
	6.14 Overview of Analyses of Strength Measurements
	6.15 Overview of Analyses of Plasma Beta-Carotene Levels
	6.16 Chapter Summary
	References

	Chapter 7: Adaptive Transformation of Positive Valued Continuous Outcomes in SAS
	7.1 Chapter Overview
	7.2 Loading in the Plasma Beta-Carotene Data
	7.3 Adaptive Transformation of Plasma Beta-Carotene Levels
	7.4 Adaptive Transformation of Dental Measurements
	7.4.1 Using Transition Models
	7.4.2 Using Marginal Models

	7.5 Practice Exercises
	References


	Part II: Adaptive Logistic Regression Modeling
	Chapter 8: Adaptive Logistic Regression Modeling of Univariate Dichotomous and Polytomous Outcomes
	8.1 Chapter Overview
	8.2 The Mercury Level Data
	8.3 Multiple Logistic Regression Modeling of Dichotomous Outcomes
	8.3.1 Multiple Logistic Regression Model Formulation
	8.3.2 Odds Ratio Function Formulation

	8.4 Dichotomous Mercury Level as a Function of Weight
	8.5 Dichotomous Mercury Level as a Function of Length
	8.6 Dichotomous Mercury Level as a Function of Weight and Length
	8.7 Multiple Logistic Regression Modeling of Polytomous Outcomes
	8.7.1 Multinomial Regression
	8.7.2 Ordinal Regression

	8.8 Mercury Level Categorized into Three Ordinal Levels
	8.9 Polytomous Mercury Level as a Function of Weight
	8.10 Polytomous Mercury Level as a Function of Length
	8.11 Polytomous Mercury Level as a Function of Weight and Length
	8.12 Proportion of Correct Deleted Predictions
	8.12.1 Formulation
	8.12.2 Example Analyses of Dichotomous Mercury Level
	8.12.3 Example Analyses of Polytomous Mercury Level

	8.13 Modeling Dispersions as Well as Means
	8.13.1 Formulation for Dichotomous Outcomes
	8.13.2 Formulation for Polytomous Outcomes
	8.13.3 Analysis of Dichotomous Mercury Level Means and Dispersions

	8.14 Overview of Analyses of Dichotomous Mercury Levels
	8.15 Overview of Analyses of Polytomous Mercury Levels
	8.16 Chapter Summary
	References

	Chapter 9: Adaptive Logistic Regression Modeling of Univariate Dichotomous and Polytomous Outcomes in SAS
	9.1 Chapter Overview
	9.2 Loading in the Mercury Level Data
	9.3 Modeling Means for Merchigh Based on Weight
	9.4 Modeling Means for Merchigh Based on Length
	9.5 Grouped Residuals for Univariate Dichotomous Outcomes
	9.6 Grouped Residual Analysis of Merchigh as a Function of Length
	9.7 Modeling Means for Merchigh Based on Weight and Length
	9.8 Modeling Means for Merclevel Based on Weight and Length
	9.9 Grouped Residuals for Univariate Polytomous Outcomes
	9.9.1 Multinomial Regression
	9.9.2 Ordinal Regression

	9.10 Grouped Residual Analysis of Merclevel as a Function of Length
	9.11 Modeling Dispersions as Well as Means for the Dichotomous Outcome Merchigh
	9.12 Modeling Dispersions as Well as Means for the Polytomous Outcome Merclevel
	9.13 Practice Exercises
	References

	Chapter 10: Adaptive Logistic Regression Modeling of Multivariate Dichotomous and Polytomous Outcomes
	10.1 Chapter Overview
	10.2 The Respiratory Status Data
	10.3 Conditional Modeling of Multivariate Dichotomous Outcomes
	10.3.1 Conditional Modeling of Means Assuming Unit Dispersions
	10.3.2 Conditional Modeling of Dispersions as Well as Means

	10.4 Transition Modeling of Post-Baseline Dichotomous Respiratory Status
	10.4.1 Unit Dispersions Models
	10.4.2 Non-Unit Dispersions Models

	10.5 Conditional Modeling of Multivariate Polytomous Outcomes
	10.6 Transition Modeling of Post-Baseline Polytomous Respiratory Status
	10.6.1 Unit Dispersions Models
	10.6.2 Non-Unit Dispersions Models

	10.7 Adaptive GEE-Based Modeling of Multivariate Dichotomous and Polytomous Outcomes
	10.7.1 Dichotomous Outcomes
	10.7.2 Polytomous Outcomes
	10.7.3 Comparing Transition Models to Marginal GEE-Based Models

	10.8 Adaptive GEE-Based Modeling of Post-Baseline Respiratory Status
	10.9 Overview of Analyses of Post-Baseline Dichotomous Respiratory Status
	10.10 Overview of Analyses of Post-Baseline Polytomous Respiratory Status
	10.11 Chapter Summary
	References

	Chapter 11: Adaptive Logistic Regression Modeling of Multivariate Dichotomous and Polytomous Outcomes in SAS
	11.1 Chapter Overview
	11.2 Loading in the Respiratory Status Data
	11.3 Transition Modeling of Dichotomous Respiratory Status
	11.4 Marginal GEE-Based Modeling of Dichotomous Respiratory Status
	11.5 Modeling of Polytomous Outcomes
	11.6 Practice Exercises
	References


	Part III: Adaptive Poisson Regression Modeling
	Chapter 12: Adaptive Poisson Regression Modeling of Univariate Count Outcomes
	12.1 Chapter Overview
	12.2 The Skin Cancer Data
	12.3 Multiple Poisson Regression Modeling of Count Outcomes
	12.3.1 Unit Dispersions Formulation
	12.3.2 Non-Unit Dispersions Formulation

	12.4 Skin Cancer Rates as a Function of the Minimum Age and City of Residence
	12.4.1 Modeling Means for Skin Cancer Rates with Constant Dispersions Models
	12.4.2 Modeling Dispersions as Well as Means for Skin Cancer Rates

	12.5 Overview of Analyses of Skin Cancer Rates
	12.6 Chapter Summary
	References

	Chapter 13: Adaptive Poisson Regression Modeling of Univariate Count Outcomes in SAS
	13.1 Chapter Overview
	13.2 Loading in the Skin Cancer Data
	13.3 Modeling Means for Skin Cancer Rates
	13.4 Modeling Dispersions as Well as Means for Skin Cancer Rates
	13.5 Practice Exercises
	References

	Chapter 14: Adaptive Poisson Regression Modeling of Multivariate Count Outcomes
	14.1 Chapter Overview
	14.2 The Epileptic Seizures Data
	14.3 Conditional Modeling of Multivariate Count Outcomes
	14.3.1 Conditional Modeling of Means Assuming Unit Dispersions
	14.3.2 Conditional Modeling of Dispersions as Well as Means

	14.4 Transition Modeling of Post-Baseline Seizure Rates
	14.4.1 Constant Dispersions Models
	14.4.2 Non-Constant Dispersions Models

	14.5 Adaptive GEE-Based Modeling of Multivariate Count Outcomes
	14.6 Adaptive GEE-Based Modeling of Post-Baseline Seizure Rates
	14.7 Overview of Analyses of Post-Baseline Seizure Rates
	14.8 Chapter Summary
	References

	Chapter 15: Adaptive Poisson Regression Modeling of Multivariate Count Outcomes in SAS
	15.1 Chapter Overview
	15.2 Loading in the Epileptic Seizures Data
	15.3 Transition Modeling of Post-Baseline Seizure Rates
	15.4 Marginal GEE-Based Modeling of Post-Baseline Seizure Rates
	15.5 Practice Exercises
	Reference


	Part IV: Alternative Nonparametric Regression Modeling
	Chapter 16: Generalized Additive Modeling
	16.1 Chapter Overview
	16.2 Formulation of GAMs for Univariate Continuous Outcomes
	16.3 Formulation of Likelihood Cross-Validation for GAMs
	16.4 Other Forms of Cross-Validation
	16.5 GAM Analyses of Deathrate as a Function of the Nitric Oxide Pollution Index
	16.6 GAM Analyses of Deathrate as a Function of Other Singleton Predictors
	16.7 GAM Analyses of Deathrate as a Function of Two Predictors
	16.8 GAM Analyses of the Full Deathrate Data
	16.9 Formulation of GAMs for Dichotomous Outcomes
	16.10 GAM Analyses of the Mercury Level Data
	16.11 Overview of Analyses of Death Rates
	16.12 Overview of Analyses of Dichotomous Mercury Levels
	16.13 Chapter Summary
	References

	Chapter 17: Generalized Additive Modeling in SAS
	17.1 Chapter Overview
	17.2 Invoking PROC GAM
	17.3 Generating LCV Scores for GAMs
	17.4 Multiple Predictor GAMs
	17.5 GAMs for Dichotomous Outcomes
	17.6 Practice Exercises
	References

	Chapter 18: Multivariate Adaptive Regression Spline Modeling
	18.1 Chapter Overview
	18.2 Description of MARS Modeling
	18.3 MARS Analyses of Death Rates
	18.3.1 MARS Analyses Based on NObnded
	18.3.2 MARS Analyses Based on Rain
	18.3.3 MARS Analyses Based on NObnded and Rain
	18.3.4 MARS Analyses Based on the Full Set of Available Predictors

	18.4 MARS Analyses of the Mercury Level Data
	18.4.1 MARS Analyses Based on Weight of Fish
	18.4.2 MARS Analyses Based on Length of Fish
	18.4.3 MARS Analyses Based on Weight and Length of Fish

	18.5 Overview of MARS Analyses of Death Rates
	18.6 Overview of MARS Analyses of Dichotomous Mercury Levels
	18.7 Chapter Summary
	References

	Chapter 19: Multivariate Adaptive Regression Spline Modeling in SAS
	19.1 Chapter Overview
	19.2 Invoking PROC ADAPTIVEREG
	19.3 Generating LCV Scores for MARS Models
	19.4 Multiple Predictor MARS Models
	19.5 MARS Models for Dichotomous Outcomes
	19.6 Practice Exercises
	Reference


	Part V: The Adaptive Regression Modeling Process
	Chapter 20: Adaptive Regression Modeling Formulation
	20.1 Chapter Overview
	20.2 Overview of General Regression Modeling Formulation
	20.3 Overview of Model Selection Approaches
	20.3.1 Using Cross-Validation Based on Likelihood or Likelihood-Like Functions
	20.3.2 Alternate Model Selection Approaches

	20.4 The Adaptive Modeling Process
	20.4.1 Conditional Predictors
	20.4.2 Power Transforms
	20.4.3 Selecting a Power for a Primary Predictor
	20.4.4 Adjusting the Transforms of a Base Model
	20.4.5 Expanding a Base Model
	20.4.6 Considering Geometric Combinations
	20.4.7 Contracting a Base Model
	20.4.8 Tolerance Parameter Settings
	20.4.9 The Complete Adaptive Model Selection Process
	20.4.10 Computing Transforms
	20.4.11 Avoiding Redundant Transforms

	References


	Index

