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About this Series

This book series, entitled “IHDP/Future Earth—Integrated Risk Governance Project Series”
for the International Human Dimensions Programme on Global Environmental Change—
Integrated Risk Governance Project (IHDP/Future Earth—IRG Project), is intended to present
in monograph form the most recent scientific achievements in the identification, evaluation
and management of emerging global large-scale risks. Future Earth is a flagship initiative of
the Science and Technology Alliance for Global Sustainability. It aims to provide critical
knowledge required for societies to understand and address challenges posed by global
environmental change (GEC) and to seize opportunities for transitions to global sustainability.
Future Earth identifies three research themes, i.e., Dynamic Planet, Global Development and
Transition toward Sustainability in its plan and adopts a new approach of “Co-designing
and co-producing” to incorporate GEC researchers with stakeholders in governments, industry
and business, international or intergovernmental organizations, and civil society.

Books published in this series are mainly collected research works on theories, methods,
models and modeling, and case analyses conducted by scientists from various disciplines and
practitioners from various sectors under the IHDP/Future Earth—IRG Project. It includes the
IRG Project Science Plan, research on social-ecological system responses, “Entry and Exit
Transition” mechanisms, models and modeling, early warning systems, understanding
regional dynamics of vulnerability, as well as case comparison studies of large-scale disasters
and paradigms for integrated risk governance around the world. This book series, therefore,
will be of interest not only to researchers, educators and students working in this field but also
to policy-makers and decision-makers in government, industry and civil society around the
world.

The series will be contributed by the international research teams working on the six
scientific themes identified by the IHDP/Future Earth—IRG Project science plan, i.e., Social-
Ecological Systems, Entry and Exit Transitions, Early Warning Systems, Models and Mod-
eling, Comparative Case Studies, and Governance and Paradigms, and by six regional offices
of the IRG Project around the world.
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Economic losses as a result of disasters continue to escalate. In each of the past 3 years direct
economic losses from disasters have surpassed $100 billion in the world. This trend is set to
worsen unless more private and public investment strategies start to reduce the vulnerability
and exposure of people and assets to natural hazards. This will require a shift from reactive
approaches that manage disasters to proactive ones that, instead, manage disaster risk.

I am pleased to say that this change is underway, and in many parts of the world is gathering
pace. Several countries have come a long way in reducing their disaster risk. Substantial
progress has been recorded in the implementation of the Hyogo Framework for Action
2005-2015 (HFA) in all regions. Yet despite this good news, effectively addressing the
underlying drivers of disaster risk, such as poverty, poor urban planning and enforcement of
regulations, and the destruction of natural protective eco-systems, remains a stubbornly difficult
challenge.

Understanding disaster risk and its potential impact on human lives and livelihoods as well
as social, economic, and environmental assets has been shown to be crucial to strengthening
resilience. Accurate, timely, and understandable information on disaster risk and losses should
be integral to both private and public investment planning decisions.

This “World Atlas of Natural Disaster Risk” is one major step forward in this effort to
increase understanding of hazard, vulnerability, exposure, and risk. The Atlas presents in detail
the distribution of disaster risk, which, if not addressed, will undermine sustainable develop-
ment in many parts of the world. The analysis of hazards such as earthquake, volcanic eruption,
landslide, typhoon, flood, drought, sand-dust storm, storm surge, wildfire, heat wave, and cold
wave provides countries with a greater understanding of prevailing risks.

The publication of this Atlas is timely. The world is moving towards a post-2015 inter-
national framework for disaster risk reduction that is set to highlight the importance of
policies, investment planning, and local actions that are all disaster risk-informed.

The result is a truly remarkable effort of Beijing Normal University and all other associated
institutions that will be very useful for disaster risk policymakers and practitioners at the
national and city level. Indeed, the subsequent development of more in-depth National Atlases
of Natural Disaster Risk could be appropriate for many countries.

I would like to express my sincere appreciation to all the international and Chinese experts
who are represented by the Disaster Risk Scientific Research Team of Beijing Normal
University, and extend my congratulation for their achievement in developing this publication.

Margareta Wahlstrom
United Nations Special Representative
of the Secretary-General for Disaster Risk Reduction



Nearly 25 years have elapsed since the initiation of International Natural Disasters Reduction
Activity proposed by the United Nations in the late 1980s. Though significant achievements
have been attained and this activity has received wide acclaim from countries and regions all
over the world, according to reports by related organizations of United Nations, the losses and
damages caused by various natural disasters still increase with fluctuation, especially those
caused by catastrophes. This has been witnessed by severe natural hazards happened during
recent years, such as the 2003 European heat wave, the 2004 Indian Ocean earthquake and
tsunami, the 2005 Hurricane Katrina in the United States, the 2008 typhoon disaster in Burma,
the 2008 Wenchuan earthquake in China, 2011 Tohoku earthquake and tsunami in Japan, as
well as 2013 typhoon and tsunami in Philippines, etc. Undoubtedly, the mission of reducing
worldwide natural disaster risk has been arduous.

Disasters risk reduction and adaptations to global climate change play an essential role in
enhancing global sustainable development. According to the IPCC-SREX report, the future
impacts on many countries and regions due to global climate change will continue unabated,
and weather extremes such as torrential rain, drought, typhoon, as well as heat wave will
apparently mount their damages on the world. Thus, enhancing the adaptation to global
climate change and improving the capacity building of comprehensive disaster prevention and
reduction remain the main tasks for every country and region in the process of sustainable
development.

Raising our awareness of the formation mechanism, changing pattern, and distribution of
worldwide natural disaster risk is not only crucial to improve related scientific research, but
also props up the implementation of natural disaster prevention and mitigation in every
country. By means of systemically collating existing relevant data and compiling disas-
ters—disaster risk atlases, we can demonstrate the regional distribution of main natural hazards
and disaster risks. This job will not only be beneficial for countries and regions all over the
world to plan scientific programs and schematize various projects on disaster prevention and
reduction, but will also facilitate increasing public awareness of both disaster prevention and
mitigation and disaster risk governance.

On the basis of systematic study of natural disaster risks in China, Beijing Normal Uni-
versity has organized multiple domestic and international scientific research institutions to
compile the “World Atlas of Natural Disaster Risk.” This atlas is aimed to illustrate the spatial
distribution of the main natural disasters in the world, which is especially commendable.
Employing cartographic language in geography, this World Atlas of Natural Disaster Risk
systemically depicts the global distribution of natural disasters such as earthquake, volcano
eruption, landslide, typhoon, flood, drought, sandstorm, storm surge, wildfire, heat wave, and
cold wave, and it clearly highlights the hot zones for these disaster risks, and thus provides
important information for both global disaster prevention and reduction and integrated risk
governance.

We hereby appeal to geoscience personnel, especially geographic scholars, to pay high
attention to the impacts of global environmental change on mankind’s social-economical
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system, to scientifically and objectively assess the risks to our social-economical systems
resulting from the global change, to attach great emphasis on the worldwide undertaking
science project “Future Earth,” to intensify the research on Earth System Science, Global
Development and Sustainable Development, to provide scientific and technological supports
for comprehensive disaster prevention and reduction, and eventually to make contribution to
global sustainable development. Let us advance the enhancement of capacity building for
global integrated risk governance, and meanwhile accelerate the development of related
subjects on disaster risk science, promote the further expansion of Earth System Science, and
strive together for the betterment of mankind and realization of the global sustainable
development.

Bt (g

Dahe Qin

Academician of Chinese Science Academy

Former Director of China Meteorological Administration
Director of State Commission of Future Earth in China

Vice President of China Science and Technology Association
Vice President of International Geographical Union

Co-Chair of Working Group I, IPCC

Foreword Il



The year 2015 will be the 25th year of the implementation of the International Decade for
Natural Disaster Reduction (IDNDR) and International Strategy for Disaster risk Reduction
(ISDR) proposed by the United Nations. Great achievements have been attained in the field of
global integrated disaster reduction. Disaster risk reduction, global climate adaptation, and
sustainable development have become the joint responsibilities of every country in economical,
social, cultural, political, and ecological construction. During these 25 years, UNIDNDR or
UNISDR has worked together with governments around the world, scientific and technological
groups, nongovernmental organizations, entrepreneur groups, media groups, and various rel-
evant regional organizations, gaining effective results in alleviating human casualties, property
loss, damage to resources and environment caused by natural hazards in the world, and earning
a great reputation at every stratum of society as well. However, the data released by UN
organizations demonstrate that the number of natural disasters is ascending in fluctuation.
Though some countries and regions have obtained remarkable results in natural disaster
reduction, and have reduced the impacts brought by natural hazards, the ability to cope with
large-scale disaster remains insufficient. The task of natural disaster risk reduction is still
arduous.

The decade-long IHDP/Future Earth—IRG international program proposed by CNC-IHDP/
Future Earth and organized by scientists around the world has been implemented for nearly 5
years. Meanwhile, the “Hazard and Risk Science Base” at Beijing Normal University sup-
ported by the Ministry of Education and the State Administration of Foreign Experts Affairs of
China (111 Project, No. BO8008), which is sponsored by Chinese government has also been
carried out for nearly 7 years since 2008. Funded by the Chinese government, a series of
scientific projects have attained enormous results and valuable references which laid a solid
foundation for the compilation of this atlas, including the phrasal results and findings from the
following ongoing projects: the “Relationship Between Global Change and Environmental
Risks and its Adaptation Paradigm” (No. 2012CB955400)—a project supported by the special
research plan of global change of the Ministry of Science and Technology of China (MOST),
the creative research group “Model and Simulation of Earth Surface Process” (No. 41321001),
the “Research on the Regional Agriculture Drought Adaptation Assessment Model and Risk
Reduction Paradigm” (No. 41171402), and the project “the Land-use and Integrated Erosion
of Soil by Wind and Water in the Eastern Ecotone of Agriculture and Animal Husbandry in
North China” (No. 41271286) sponsored by the National Natural Science Foundation of China
(NSFC). The atlas has also received help and data from the following completed projects: the
“Geographic Transaction Zone Study on Interaction Mechanism of Human-earth System on
Earth Surface” (No. 40425008)—distinguished young scientists projects, the “Integrated
Natural Disaster Risk Evaluation and Disaster Reduction Paradigm Study in Rapid Urbani-
zation Regions” (No. 40535024)—a key project of National Nature Science Foundation of
China, the major international joint research program “Integrated Risk Governance—case
study of IHDP—IRG Core Science Plan” (No. 40821140354), a key project of NSFC, “Global
Climate Change and Large-scale Disaster Governance” (No. 2008DFA20640)—an interna-
tional joint project of MOST, “the Key Technology Study and Demonstration of Integrated



Risk Prevention” (No. 2006BAD20B00)—a key science and technology pillar project of
MOST, and the “Technology for Evaluating Natural Disaster Risk in the Yangtze River Delta”
(No. 2008BAK50B07).

We organized all faculties and students of Beijing Normal University in the disaster risk
science, and international experts who participated in the IHDP/Future Earth—IRG and “111
Project”, as well as all the personnel involved in these two projects, throughout 10 years of
preparation, planning, and execution, to compile this atlas, aiming to reflect the spatial patterns
of major natural disaster risk all around the world. This atlas provides scientific evidence for
taking effective measures of world natural disaster risk reduction by demonstrating the spatial
variation from the following three spatial scales for the main natural disaster risk on the world:
the grid (1km x 1km, 0.1° x 0.1°, 0.25° x 0.25°, 0.5° x 0.5°, 0.75° x 0.75° and 1° x 1°), the
comparable-geographic unit (about 448334 km?/region), and the national or regional unit (245
nations and regions).

The “Natural Disaster Hotspots” program, jointly completed by the World Bank and
Columbia University (USA), has for the first time provided the major global natural disaster
risk maps in small scale, which enormously inspires us in compiling this atlas. Our job has
obtained desirable improvement in aspects like sorting natural disaster types, assessment
method and accuracy, data upgrading, spatial comparability, temporal and spatial resolution,
and results verification. Moreover, these improvements have wider and more effective
applicability.

The providers of the shared data online has made great scientific contribution to world
natural disaster risk reduction, which not only inspires us to make joint efforts to develop
disaster risk science and compile this atlas, but will also save numerous lives, property, and the
service capacity of the earth’s ecological system from damage by disasters. Hence, we express
our heartfelt appreciation and respect to those institutions and websites which provide related
shared global data, and to those scientific personnel who devoted themselves to this grand
cause.

Since 1989, BNU’s integrated disaster research efforts by all its involved faculty and
students have evolved in synchronization with the disaster reduction activities of the United
Nations. Initiated by the establishment of “China Natural Disaster Monitoring and Prevention
Research Laboratory” in 1989, a number of academic institutions and subjects have been set
up, such as the “Disaster Insurance Technology Center at BNU” in 1992, “Open Laboratory
for Environmental Change and Natural Disaster of Ministry of Education of China (MOE)” in
1994, “Catastrophe Insurance Technology Center at BNU” in 1998, “Key Laboratory of
Environmental Change and Natural Disaster, MOE, BNU” in 1998, “Beijing Desertification
and Blown-sand Control Technology Center” in 2002, the master and doctor programs of
“Natural Disaster Science” which has been granted to admit students in 2003, the “Deserti-
fication and Blown-sand Control Engineering Center of MOE” in 2006, “Academy of Disaster
Reduction and Emergency Management, Ministry of Civil Affairs of China (MOCA) and
MOE” in 2006, and the “State Key Laboratory of Earth Surface Processes and Resource
Ecology” in 2007. The BNU disaster and risk study group has enlarged from three faculties at
the very beginning to nearly 100 faculties, more than 100 master students, and over 200
doctoral students today, making itself a national professional team focusing on R&D projects
of natural disaster risk. Furthermore, it keeps close and excellent collaborative relationships
with many top research institutions all over the world, such as Disaster Prevention Research
Institute of Kyoto University in Japan, International Institute for Applied Systems Analysis in
Austria, Stockholm Environment Institute in Sweden, Hazard Research Center of Clark
University in the U.S., School of Sustainability Science at Arizona State University in the U.
S., as well as Potsdam Institute for Climate Impact Research in the Germany, etc. Now this
group is playing a significant role in integrated natural disaster risk research in the world.

In the process of compiling and publishing this atlas, as well as in the evolution of Disaster
Risk Science of BNU, we received strong support and help from many institutions at home
and abroad. We would like to express our gratitude to the following centers, academic
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institutions, and state-owned enterprises for their help in related references, data, and tech-
nological guidance and guarantee: National Climate Center of China Meteorological
Administration, National Remote Sensing Center of China Ministry of Science and Tech-
nology of the People’s Republic of China, National Disaster Reduction Center of China,
Ministry of Civil Affairs, Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Science (CAS), Cold and Arid Regions Environmental and Engineering
Research Institute, CAS, Research Center for Eco-Environmental Sciences, CAS, Institute of
Tibetan Plateau Research, CAS, Institute of Earth Environment, CAS, Institute of Mountain
Hazards and Environment, CAS, Institute of Atmospheric Physics, CAS, Institute of Geology
and Geophysics, CAS, College of Urban and Environmental Sciences of Beijing University,
School of Geography and Ocean Sciences of Nanjing University, College for Global Change
Studies of Tsinghua University, School of Geography and Planning of Sun Yat-Sen Uni-
versity, Faculty of Geo-Science of East China Normal University, College of Earth and
Environmental Sciences of Lanzhou University, School of Resource and Environmental
Sciences of Wuhan University, People’s Insurance Company of China, and China Reinsurance
Company. Many world-recognized universities and academic institutions, who keep close
academic collaborative relationship with us, have also supplied us with substantial data and
references, as well as the theoretical support regarding assessing methodology. They are
University of Maryland in the USA, Nanyang Technological University in Singapore, Uni-
versity Wien in Austria, Oxford University in the UK, University of Stuttgart in Germany,
University of California-Berkeley in the USA, Risk Management Solution (RMS), Swiss Re,
Munich Re, and Aon Benfield. UNISDR, UNISDR Asia-Pacific Office and UNISDR-Global
Assessment Report on Disaster Risk Reduction (GAR) have also offered us great supports and
detailed guidance. Star Map Press (Beijing) has provided great supports in editing the maps,
and Beijing Normal University Press and Springer-Verlag have jointly provided the ideal
conditions for the publishing of this atlas.

We also owe an incalculable debt of gratitude to the following notable scientists and
experts for their guidance to this atlas: Academician Guanhua Xu, Dahe Qin, Zhisheng An,
Changming Liu, Xueyu Lin, Xiaowen Li, Yong Chen, Zongjin Ma, Xinshi Zhang, Rixiang
Zhu, Tandong Yao, Bojie Fu, Prof. Yanhua Liu, Jun Chen, Ms. Margareta Wahlstrom,
Dr. Fenmin Kan, Sujit Mohanty and Pedro Basabe. Ms. Margareta Wahlstrom and Acade-
mician Dahe Qin also wrote prefaces for this atlas. Here, we would like to express our sincere
appreciation to all of the leaders and experts. At the same time, we are looking forward to a
greater achievement in worldwide disaster prevention and reduction, and a significant
improvement of integrated disaster risk governance capability in the near future. Restricted
from limited references and data, it is regrettable to give an incomplete evaluation to some
countries and regions. We wish that the insufficiency will be revised and perfected in our
further work. Comments and suggestions from peers and readers will be highly welcome and

appreciated.

Professor Peijun Shi

State Key Laboratory of Earth Surface Processes and Resource Ecology

Key Laboratory of Environmental Change and Natural Disaster, MOE

Academy of Disaster Reduction and Emergency Management, MOCA and MOE
Beijing Normal University
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Environments and Exposures



Fang Lian, Chungin Zhang, Hongmei Pan, Man Li, Wentao Yang,
Yongchang Meng, Jian Fang, Weihua Fang, Jing’ai Wang,

and Peijun Shi

1 Introduction

Disaster system, a dynamic system on the earth surface with
complex characteristics, is composed of natural hazards (H),
exposures (S), environments (E), and disaster losses (D) (Fig. 1).

Disaster system is a type of social-ecological system and
also an important part of the earth surface system. Since
hazards can be classified into three types by origin—natural,
natural-human (environmental or ecological), and human, a
disaster system can also be classified into three subsystems—
natural disaster system, environmental (ecological) disaster
system, and human ecological system. Disaster losses and
damages are consequences of the interactions of hazards (H),
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exposures (S), and the environmental system (E) in which
disasters occur (Shi 1991, 1996, 2002, 2005, 2009).

2 Environments

Environments (E) mainly refer to physical environments that
are cradles for physical hazards, namely geology, landform,
climate, hydrology, vegetation, and soil.

Land elevation, terrain slope and lithology have an
impact on the occurrence, development, and spatial distri-
bution of geological hazards, such as landslide, collapse, and
debris flow. Tectonic faults have an impact on the occur-
rence, development, and spatial distribution of earthquakes
and volcanic eruptions. Climate zones directly or indirectly
reflect the distribution of extreme climatic events. Soil, land
cover, and net primary products (NPP) directly or indirectly
influence floods, droughts, and geological hazards. River
systems determine the spatial pattern of floods.

3 Exposures

Exposures (S) mainly include social and economic elements.
Population and livestock density exposed to hazards may
influence the loss and damage of population and livestock.
Land use decides the total loss and loss structures of prop-
erty caused by natural disasters. Social wealth and gross
domestic products (GDP) influence the direct and indirect
economic losses. Urbanization level represented by night
light index (NLI) directly or indirectly influences the total
loss and loss structures of properties.

4 Mapping Environments and Exposures
of the World

There are two major data sources for these maps: reference
data and generated data.

DOI 10.1007/978-3-662-45430-5_1 © Springer-Verlag Berlin Heidelberg and Beijing Normal University Press 2015
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4.1 Maps Based on Reference Data

Maps based on reference data include Global Lithology
(2012), Global Tectonic Fault Density (2010), Global Land
Elevation (1997), Global Terrain Slope (2006), Global Per-
mafrost Zones (1997), Global Land Cover (2010), Global
Soil (2010), Global Climate Zone (2010), Global River
Systems (2010), Global Annual Average Net Primary Pro-
duction (NPP) (2001-2012), Land Use System of the World
(2010), Population of the World (2010), Social Wealth of the
World (2013), Gross Domestic Product (GDP) of the World
(2010), Livestock Density of the World (2010), and Night
Light Index of the World (2012). The data sources of these
maps have been noted in the right corner under each map. In
addition, the data of Global Lithology and Fault Density can
be purchased with downloaded data from given URLSs noted
in the maps.

4.2 Maps Based on Generated Data

These maps include the maps of Global Average Net

Primary Production and Economic-social Wealth of the
World.

Fig. 1 Disaster system

F. Lian et al.

4.2.1 Global Average Net Primary Production

The average NPP (NPP), which is an average of the annual
values from 2001 to 2012, is calculated by Eq. (1):

_ >t NPP;

NPP — (1)

n

where NPP; is the annual NPP of the ith year; n = 12.

4.2.2 Economic-Social Wealth of the World
Economic—social wealth (ESW) is the ratio of GDP and the
investment ratio of one country (Badal et al. 2005). Social
wealth per grid cell can be calculated by Eq. (2):

GDPcell

ESWeen = INV

x 100 % (2)

where ESW,; is the economic—social wealth per grid cell;
GDP_.; is the GDP per grid cell; INV, is the investment ratio of
a country, which is the ratio of total investment to GDP. The
value of total investment is based on the national accounting
statistics from International Monetary Fund (IMF).

5 Maps

E: Environment
H: Hazard

S: Exposure

D: Disaster
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Earthquake, Volcano and Landslide Disasters



Man Li, Zhenhua Zou, Guodong Xu, and Peijun Shi

1 Background

In the program of Global Natural Disaster Hotspots, jointly
conducted by Columbia University and the World Bank,
mortality rate and economic loss rate caused by earthquake
disaster are calculated as vulnerability coefficient based on
mortality and economic losses in the historical earthquake
records. Then the vulnerability coefficient is adjusted by
earthquake density which is measured by earthquake fre-
quency to estimate mortality risk and economic loss risk in the
world (Dilley et al. 2005). In the program of Global Risk and
Vulnerability Index Trends per Year (GRAVITY), hosted by
the United Nations Environment Programme (UNEP)/Euro-
pean Global Information Resource Database, the vulnerability
of earthquake is calculated based on hazard intensity, death
toll, and so on in the historical earthquake records and
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combined with other economic indicators to establish loss
function, to estimate annual average expected losses (Peduzzi
et al. 2009). These two programs are the most influential
natural disaster risk assessment projects. However, in the
Global Natural Disaster Hotspots, loss rate of all previous
earthquakes in the same region is used to represent both
hazard and vulnerability, which cannot reflect spatial differ-
ences of risk, caused by spatial distribution differences of
hazard and vulnerability. Therefore the programs are only be
used for risk assessment at national level. The assessment
results of GRAVITY are also at national level, which cannot
demonstrate the risk differences within the country and
region. Meanwhile, both programs take GDP as exposure for
the assessment of economic losses, which describes economic
flow. However, the earthquake imposes direct impact on
economic stocks, which is quite different from economic flow.

Therefore, building vulnerability table at national scale
and possibility of mortality caused by building collapse shall
be taken into consideration to construct population vulner-
ability table. Combined with population density data and
earthquake intensity, world earthquake mortality risk can be
assessed. Meanwhile, social wealth shall be taken as social
and economic exposure instead of GDP to assess world
earthquake economic loss risk. Based on the above con-
ceptions, the earthquake risk of the world is reassessed and
mapped in this study at grid, comparable-geographic unit
and national levels.
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Fig. 1 Technical flowchart for .

mapping earthquake risk of the Hazard Vulnerability Exposure

world I_________V_ ________ | mmmmmmmmmmmooo- Y oo o L 28 .
! Hi[ Building vulnerability " . i
' Global gridded |i} and inventory for ! Population density |
E Peak Ground ii typical countries Vulnerability ii |
i| Acceleration |!} table of |1 GDP i
| (PGA) 11| Country classifications population |1} i
! i foreach |:! ' i
| 1i[ Fatality rate caused by country  [1i| Investment rate for|;
: i1l building collapse for i1 eachcountry |
i v 1| each building type ii v |
i| Earthquake |1 il Social wealth of |!
E intensity i ! Economic-social wealth loss ratio ii the world i
Lo [-—————-- [y ——— [-o-——-——s——m——m——--- [ g - i

v v
Mortality risk at grid level Economic-social wealth loss risk
comparable-geographic unit at grid level, comparable-
and national level geographic unit and national level
level. The building vulnerability table includes two parts:
2 Method

Figure 1 shows the technical flowchart for mapping earth-
quake risk of the world.

2.1 Mortality Risk

2.1.1 Population Vulnerability Table at National
Level

This study utilizes building vulnerability table (Appendix III,
Exposures data 3.6) and mortality probability due to building
collapse to establish population vulnerability at national

Table 1 Building construction vulnerability and inventory of the UK

Construction  Construction subtype
material
X
(0.65-1.
Masonry Unreinforced brick masonry 15
in mud mortar
Masonry Unreinforced brick masonry in 6
cement mortar with reinforced
concrete floor/roof slabs
Structural Concrete moment resisting frames 11
concrete designed for gravity loads only
Steel Steel moment resisting frame 1.5

with brick masonry partitions

Probability of collapse (%) of building type when
subjected to the specified shaking intensity

building types in each country and their collapse probabilities
caused by earthquake with intensity over V level; proportion
of resident population in buildings of each type, including
urban and rural population. Take the United Kingdom (UK)
as an example, as shown in Table 1, for unreinforced brick
masonry in mud mortar, the collapse probability by earth-
quakes with intensity of IX, VIII, VII, and VI are 15 %, 4 %,
0.6 %, and 0 %, respectively. Proportions of population in
such buildings in urban and rural areas are 35 % and 50 %,
respectively.

Fatality ratio caused by collapse of 8 types of common
buildings is the empirical data applied to prompt loss
assessment obtained by USGS (Appendix III, Exposures

Fraction of
population
who lives in
this building

type
VIII VII VI Urban  Rural
24g) (0.34-0.65g) (0.18-0.34g) (0.092-0.18¢g)
4 0.6 0 35 50
1 0.1 0 63 50
2 0.2 0 2 0
0.2 0 0 0 0
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Table 2 Population vulnerability of the UK
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Fatality ratio (%) when subjected to the specified shaking intensity

IX (0.65-1.24g)
0.771
0.819

0.167
0.183

In urban areas

In rural areas

data 3.7), representing population vulnerability due to col-
lapse of buildings of different types (Jaiswal et al. 2009).

The building vulnerability tables are jointed to mortality
probabilities caused by building collapse according to
building types. Population vulnerability in urban and rural
areas are calculated separately according to Eq. (1) to get
vulnerability function for each country.

4
FRU = Z an X an X CRm'j

n=1

(1)

where j refers to the jth nation, and FR;; refers to fatality ratio
due to earthquake with intensity i, i = 1, 2, 3, 4. V,;; repre-
sents mortality probability caused by collapse of n-type
building, n = 1, 2, 3, 4. R,; represents population proportion
in n-type building, and CR,,; refers to collapse probability of
n-type building in earthquake with intensity i.

Take UK as an example (Table 2), in urban areas, pop-
ulation mortalities in earthquake with VI, VII, VIII, and IX
magnitudes are 0, 0.021, 0.167, and 0.771 %, respectively;
while for rural areas, they are 0, 0.024, 0.183, and 0.819 %,
respectively.

Due to limited data, we divide the world into 28 regions
(UNDP 2010) according to economic development levels
and geographic positions, one country is selected to repre-
sent the whole region and its population vulnerability is
taken as representation of the other countries. If such data
are not available in one region, another country with data at
the same development level in adjacent region shall be
chosen. The following representative countries are selected:
Algeria, Argentina, Chile, China, Cyprus, Greece, India,
Indonesia, Japan, Macedonia, Mexico, Morocco, Nepal,
Pakistan, Peru, Romania, Slovenia, Sweden, Thailand, Tur-
key, and UK, and the representative countries in 7 regions
are replaced by suitable countries in adjacent regions.
Accordingly, population vulnerability table for all countries
and regions are established.

VIII (0.34-0.65g)

VII (0.18-0.34g) VI (0.092-0.182)
0.021 0
0.024 0

2.1.2 Seismic Intensity Map

Peak ground acceleration (PGA) (Appendix III, Hazards data
4.1) is widely used to earthquake disaster risk assessment
and mapping. Its probability of exceedance is 10 % in
50 years, i.e., once in 475 years. The PGA is converted into
intensity map according to Table 3. The grid layer with
seismic intensity information is vectorized and spatially
overlaid with country unit map, thus the state attributes are
generated. There are two kinds of resolution for the grid
layer: 0.1° x 0.1° for economic-social wealth (ESW) loss
risk assessment and 0.5° x 0.5° for mortality risk
assessment.

2.1.3 Mortality Risk
In combination with intensity vector layer with national
information and population vulnerability table of each
country, and based on intensity information of each vector
block patch (0.5° x 0.5°), mortality risk is calculated
according to Eq. (2), corresponding to earthquake mortality
probability of urban and rural areas of each country under
the intensity in vulnerability table.

FRJ = EFRjUrban X URJ + ZFRjRural X (l — UR]) (2)

where FR; refers to the mortality of vector block in country j;
FRjyrpan refers to the mortality probability in urban area of
country j; FRjryra refers to the mortality probability in the

Table 3 Transformation of PGA and intensity (g = 9.81 m/s?)

Intensity PGA (g) PGA (m/s%)
<VI <0.05 <0.491
VI 0.05-0.1 0.491-0.981
Vil 0.1-0.2 0.981-1.962
VIII 0.2-0.4 1.962-3.924
>IX >0.4 >3.924
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Fig. 2 Expected annual earthquake mortality risk of the world. 7 (0,
10 %] India, Indonesia, Pakistan, Bangladesh, China, Philippines,
Burma, Iran, Afghanistan, Uzbekistan, Nepal, and Ethiopia. 2 (10,
35 %] Egypt, Guatemala, Turkey, Kyrgyzstan, Tanzania, Japan, Syria,
Bolivia, Tajikistan, Kenya, Mexico, Congo (Democratic Republic of
the), Honduras, Uganda, Peru, Chile, Gaza Strip, Georgia, Vietnam,
Ecuador, Papua New Guinea, Colombia, Malawi, Nicaragua, United
States, Burundi, Algeria, and Moldova. 3 (35, 65 %] Venezuela,
Rwanda, Bhutan, Haiti, Kazakhstan, Russia, Laos, El Salvador,
Iraq, Azerbaijan, Romania, Costa Rica, Morocco, Turkmenistan,
Mozambique, Jordan, Mongolia, Dominican Republic, Albania, Italy,

rural area of country j; UR; represents the urbanization rate
of country j in 2010 from the World Bank.

By converting mortality to raster and overlaying it with
world population density map (Appendix III, Exposures data
3.1), the map of mortality risk of the world by earthquake in
0.5° x 0.5° grid could be generated.

2.2 Economic-social Wealth (ESW) Loss Risk
2.2.1 ESW Loss Rate

This study calculates the economic-social wealth loss rate
(Appendix III, Exposures data 3.8) using empirical relation
between earthquake intensity and economic-social wealth
loss. The empirical relation is provided by Munich Rein-
surance Company, as shown in Eq. (3) (Badalet al. 2005):

(3)

where [ represents the intensity value larger than V, ko, k;,
k,, and k; are empirical parameters, with two sets of
numerical values. When &k, = —10.28677, k; = 2.83516,
k, = —0.24213, and k; = 0.00793, the maximum social
wealth loss rate can be calculated. While ko = —11.29522,
ky = 2.72825, k, = —0.20344, and k3 = 0.00581, the mini-
mum social wealth loss rate can be calculated. The two sets
of parameters could describe the inherent uncertainty of

logf(I) = ko + ki1 + koI* + k3P

M. Li et al.

Armenia, Tunisia, Bosnia and Herzegovina, Eritrea, Lebanon, Serbia,
Libya, Argentina, Canada, Ukraine, Djibouti, Greece, Cuba, Croatia,
and Sudan. 4 (65, 90 %] Somalia, Jamaica, Panama, Gabon, Spain,
Zambia, New Zealand, Israel, Germany, United Arab Emirates,
Bulgaria, Thailand, Oman, Australia, Switzerland, Austria, Portugal,
Macedonia, Palestine, France, Slovenia, Solomon Islands, Iceland,
Belgium, Trinidad and Tobago, Congo, Montenegro, Czech Republic,
and Slovakia. 5 (90, 100 %] Fiji, Brazil, Cameroon, Cyprus, Central
African Republic, Kuwait, Saudi Arabia, Paraguay, Norway, New
Caledonia, and Sweden

social wealth loss caused by different building structures and
define the possible range of social wealth loss rate caused by
earthquake. This study calculates the social wealth loss rate
based on the average of the maximum and minimum values.

2.2.2 ESW Loss Risk

ESW loss value of each grid of the world is calculated by a
combination of world social wealth data, the loss rate of each
grid and earthquake intensity.

3 Results

3.1 Mortality Risk

The world earthquake mortality risk map in 0.5° x 0.5° grid
is produced based on spatial analysis, using the world PGA
data, building vulnerability data, mortality probability data
caused by building collapse, and population density data.
The spatial pattern of world earthquake mortality risk is
similar to that of tectonic fault zone; however, the pattern is
affected by the exposure.

The expected annual mortality risk of earthquake of the
world at national level is derived and ranked (Fig. 2) by adding
mortality risks of all grids confined by country boundary
and then dividing the sum by the return period (475 years).
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Fig. 3 Expected annul ESW loss risk of earthquake of the world.
1 (0, 10 %] Japan, United States, China, Turkey, Italy, Mexico, Chile,
Canada, Indonesia, Venezuela, Iran, Philippines, Colombia, Greece,
Peru, India, Puerto Rico, Germany, and United Arab Emirates. 2 (10,
35 %] New Zealand, Russia, Spain, Pakistan, Israel, Australia,
Kazakhstan, Costa Rica, United Kingdom, Romania, Guatemala,
Switzerland, Uzbekistan, Ecuador, Azerbaijan, Belgium, Egypt, Croa-
tia, Malaysia, El Salvador, Oman, Bulgaria, Gaza Strip, Thailand,
Syria, Trinidad and Tobago, Hungary, Afghanistan, the Netherlands,
Algeria, Brazil, Slovakia, Serbia, Saudi Arabia, Kuwait, Lebanon,
Cyprus, Nepal, and Panama. 3 (35, 65 %] Bolivia, Kyrgyzstan,
Slovenia, Poland, Tajikistan, Georgia, Honduras, Singapore, Iceland,
Jordan, Norway, Czech Republic, Jamaica, Bosnia and Herzegovina,
South Africa, Nicaragua, Tunisia, South Korea, Turkmenistan, Libya,
Papua New Guinea, Albania, Armenia, Ukraine, Morocco, Kenya,
Macedonia, Sweden, Montenegro, Nigeria, Vietnam, Ethiopia,

The top 1 % country with the highest expected annual
earthquake mortality risk is India, and the 10 % countries are
India, Indonesia, Pakistan, Bangladesh, China, Philippines,
Burma, Iran, Afghanistan, Uzbekistan, Nepal, and Ethiopia.

3.2 ESW Loss Risk

The earthquake ESW loss risk of the world in 0.1° x 0.1° grid is
acquired based on spatial analysis. Replacing GDP with the
calculated world social wealth data as the exposure of eco-
nomic and combining global PGA data and the calculated
social wealth loss rate, ESW loss risk is assessed. The spatial
pattern of world ESW loss risk is similar to that of tectonic fault
zone; however, the pattern is also affected by the exposure.

Luxembourg, Yemen, Denmark, Ireland, Uganda, Moldova, Tanzania,
Liechtenstein, San Marino, Finland, Antigua and Barbuda, Haiti, Laos,
Mongolia, Andorra, Ghana, Rwanda, Angola, Gabon, Congo (Demo-
cratic Republic of the), Fiji, Baker Island, Bhutan, and Malawi. 4 (65,
90 %] Cameroon, Malta, South Sudan, Zambia, Grenada, Solomon
Islands, North Korea, Mozambique, Djibouti, Palestine, Qatar, Sudan,
Belize, Eritrea, Dominica, Lithuania, Uruguay, Samoa, Burundi,
Swaziland, Bahrain, Sri Lanka, Timor-Leste, Guinea, Paraguay,
Belarus, The Republic of Céte d’Ivoire, Saint Lucia, Congo, Cambodia,
Saint Vincent and the Grenadines, Latvia, Equatorial Guinea, Saint
Kitts and Nevis, Chad, Togo, Estonia, Central African Republic,
Zimbabwe, Benin, Barbados, Sierra Leone, Botswana, Namibia,
Federated States of Micronesia, Tonga, Kiribati. 5 (90, 100 %] Guyana,
Madagascar, Suriname, Senegal, Somalia, Niger, Lesotho, Liberia,
Mauritania, Mali, Bahamas, Western Sahara, Guinea-Bissau, Palau,
Comoros, Marshall Islands, Maldives, Gambia, and Niue

By zonal statistics of the expected risk result, the world
expected annual ESW loss risk of earthquake of the world at
national level is derived and ranked (Fig. 3) by adding ESW
loss risks of all grids confined by country boundary and then
dividing the sum by the recurrence interval (475 years). The
top 1 % countries with the highest expected annual ESW risk
of earthquake are Japan and United States, and the 10 %
countries are Japan, United States, China, Turkey, Italy,
Mexico, Chile, Canada, Indonesia, Venezuela, Iran, Philip-
pines, Colombia, Greece, Peru, India, Puerto Rico, Germany
and United Arab Emirates.

4 Maps
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=== Earthquake, Volcano and Landslide Disasters Earthquake @

Historical Event Locations of Global Earthquake (1900-2009, 5.50<Ms<6.00)
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=== Earthquake, Volcano and Landslide Disasters Earthquake @

Historical Event Locations of Global Earthquake (1900-2009, 6.50<Ms<7.00)
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== Earthquake, Volcano and Landslide Disasters Earthquake @

Mortality Rate of Earthquake Disaster (Intensity =VI) of the World
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Mortality Rate of Earthquake Disaster (Intensity=VIIl) of the World
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=== Earthquake, Volcano and Landslide Disasters Earthquake @

Expected Annual Mortality Risk of Earthquake of the World
(Comparable-geographic Unit)
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=== Earthquake, Volcano and Landslide Disasters Earthquake @

Expected Annual Ecnocmic-social Wealth (ESW) Loss Risk of Earthquake of the World
(Comparable-geographic Unit)
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Hongmei Pan and Peijun Shi

1 Background

Previous volcanic hazard assessment has typically explored
the hazard or risk from a single volcano (Pomonis et al. 1999;
Thouret et al. 2000) or to a particular site (Hoblitt et al. 1995;
Magill and Blong 2005). Volcanic risk analysis at the global
scale is limited by the availability and quality of data. Existing
data can only support semi-quantitative risk assessment and
derive relative risk level. The first global volcanic mortality
risk map was developed by the World Bank ‘Natural Disaster
Hotspots’ program (Dilley et al. 2005). It applied an empirical
method to depict global volcanic hazard and vulnerability
using the historical volcano record from EM-DAT
(1981-2000) and then integrated these two parts to rank the
risk level. It assessed the risks of mortality and economic
losses, with a spatial resolution of 2.5" x 2.5".

Compared to the Natural Disaster Hotspots results, the
present study considers both frequency and intensity of
historical volcanic eruption events. It also uses longer series
of volcano mortality data since 1700s, a certain time before
which the completeness of the data decreases remarkably as
suggested by an earlier study (Newhall and Self 1982).

Mapping Editors: Jing’ai Wang (Key Laboratory of Regional
Geography, Beijing Normal University, Beijing 100875, China) and
Chungin Zhang (School of Geography, Beijing Normal University,
Beijing 100875, China).

Language Editor: Tao Ye (State Key Laboratory of Earth Surface
Processes and Resource Ecology, Beijing Normal University, Beijing
100875, China).
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When identifying the exposure for each historical event,
buffer regions are generated instead of using administrative
regions, an attempt actually suggested by Dilley et al.
(2005). Therefore, this study intends to provide a more
integrated risk assessment than previous studies, including a
systematic analysis of hazard, exposure, vulnerability, and
mortality risk. Risk assessment results are provided at
comparable geographic unit and national level.

2 Method

Figure 1 shows the technical flow chart for mapping volcano
risk of the world.

2.1 Intensity
The volcanic explosivity index (VEI) is a general indicator
of the explosive character of an eruption (Newhall and Self
1982). It is a 0-8 index of increasing explosivity (the
maximum number of categories we could realistically dis-
tinguish). Each increase in number represents an increase
around a factor of ten. The VEI uses several factors to assign
a number, including volume of erupted pyroclastic material
(for example, ash fall, pyroclastic flows, and other ejecta),
height of eruption column, duration in hours, and qualitative
descriptive terms (United States Geological Survey 2014).
The historical eruptions of each volcano are derived from
the Volcanoes of the World database (Appendix III, Hazards
data 4.2). We assume that the eruption probability in the
future is consistent with that in the past. Eruption frequency
of VEI level of each volcano can be calculated by Eq. (1).
(1)

/lix == ix/Tix
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Fig. 1 Technical flowchart for

mapping volcano risk of the Hazard Vulnerability Exposure

world
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Mortality risk of volcano

where 4;, is the eruption frequency of volcano i with a VEI
of x; T;, is the record time period of VEI x of i volcano,
which is divided into 2 types: x = 0-3 and x = 4-7. Time
period is according to an earlier work on data completeness
carried out by (Jenkins et al. 2012); N;, is the number of
eruptions within T}, years.

Exceeding probability for each volcano is calculated
according to the eruption frequency of each VEI level.
Because the number of historical eruptions is inadequate, the
method of histogram estimation is used for estimating
exceeding probability (Huang 2012). Volcano intensity is
represented as the corresponding VEI level of 10-year, 20-
year, 50-year, and 100-year return period.

Population exposed to volcanic threats essentially decides
the mortality claimed. Pyroclastic flow, lahar, and tephra are
selected as volcanic threats to human lives. Influence area of
pyroclastic flow of different VEI levels can be calculated
according to the height of the volcanic eruption column
which is directly related to jet heat flow. Volcano eruption
column height is calculated with the maximum height record
of large magnitude explosive volcanic eruptions (LaMEVE)
database (Appendix III, Hazards data 4.3). A total of 943
maximum volcanic eruption column height records labeled
as High Quality are picked from LaMEVE database, and the
relationship between maximum volcanic eruption column
height (MCH) and VEI is fitted as Eq. (2):

MCH, = 8.5961 VEI, — 19.817,R* = 0.6456  (2)
where MCH, is the MCH for x = 3, 4, 5, 6, 7. It is set as
1 km when x < 3 since historical records are unavailable in
LaMEVE database. R* is the measure of goodness of fit.
Influence area of pyroclastic flows is roughly calculated by
the ratio of MCH and the farthest distance. The value range of
the ratio is usually 0.2-0.3 (Hayashi and Self 1992; Hoblitt
et al. 1995; Waythomas et al. 2003; Macias et al. 2008).

In this study, a mean value of 0.25 is used. The influence
radius of lahar (L) is also determined by H/L', the value range
of which is 0.1-0.3 (Huggel et al. 2008), and a mean value of
0.2 is used.

The influence area of tephra is closely related to ash
volume and volcanic eruption column height. A total of
1,174 tephra volume records labeled as high quality from
LaMEVE database are picked out. The relationship between
ash volume and VEI is fitted by Eq. (3).

1O96ISXVEL
V= W’R = 0.8899 (3)
where V is ash volume, x =3, 4, 5, 6, 7 and set as 0.001 km’®
when x < 3 since historical record is unavailable in LaMEVE
database. R? is the measure of goodness of fit.

The thickness of volcano ash is computed according to

Eq. (4) (Rhoades et al. 2002):

log t, = 3.13[£0.14] + 0.96[£0.07] log,, V

— 1.60[+0.11] log,, r (4)
where t,, is average thickness of volcanic ash; V is ash
volume; r is the radius.

A thickness of 12.5 cm of volcano ash is defined as the
triggering value causing population death (Pomonis et al.
1999).

The largest radius of the influence area of pyroclastic
flow, lahar, and tephra is determined as the lethal radius
(L) of each VEIL

The relationship between influence area L and VEI is fit
by Eq. (5):

L = 3.0408e"95VEl R? — (.9367 (5)

where R? is the measure of goodness of fit.
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Table 1 Statistics of death of each volcano VEI level

VEI Number of data Average mortality

0 7 15.4

1 26 45.9

2 128 194.4
3 105 4292
4 50 1,309.8
5 1,001

6 4 988

7 1 10,000
2.2 Vulnerability

Historical volcanic disaster mortality data (Appendix III,
Disasters data 5.1) are used to characterize vulnerability.
Since some of the mortality data are classified by grade
instead of absolute data, the median of the grade range is
chosen as mortality data.

The average death of each volcano VEI level is shown in
Table 1. The vulnerability curve (V') is fitted according to

Eq. (6):
V' =25.306e"7°VEL R? = 0.9508 (6)

where R is the measure of goodness of fit.

23 Mortality Risk

Using the world population density data as exposure
(Appendix III, Exposures data 3.1), the volcanic mortality
risk of each return period is calculated as Eq. (7):

Fig. 2 Expected annual mortality risk of volcano of the world.
1 (0, 10 %] Indonesia, Papua New Guinea, Japan, Philippines, Russia,
and Nicaragua. 2 (10, 35 %] New Zealand, Chile, Ecuador, United
States, Guatemala, Italy, Costa Rica, El Salvador, Palestine, Colombia,
Congo (Democratic Republic of the), Mexico, Tanzania, and Iceland. 3
(35, 65 %] Peru, Ethiopia, Tonga, Cameroon, Greece, India, Portugal,

43

Ry = Vi x i (7)
D DY

where R,; is the mortality risk of grid i (1 km x 1 km) of
volcano j with a return period of y; P; is the population of
grid 7 exposed to volcano j; V,; is the vulnerability corre-
sponding return period y of volcano j; n is the total number
of grids of volcano j.

The expected volcanic mortality is calculated as Eq. (8):

S
P;
E(Ry;) = ; 0 V(VEI),; x P(V—él)k x F(VEID),;, (8
= J

where V(VEI),,; is the vulnerability function shown in
Eq. (6); P(VEI); is the total population within the influence
area of volcano j with vulnerability k, and F(VEI); is the
frequency of volcano j with vulnerability k.

3 Results

By zonal statistics of the expected risk result, the expected
annual mortality risk of volcano of the world at national
level is derived and ranked (Fig. 2). The top 1 % country
with the highest expected annual mortality risk of volcano is
Indonesia, and the top 10 % countries are Indonesia, Papua
New Guinea, Japan, Philippines, Russia, and Nicaragua.

4 Maps

Saint Vincent and the Grenadines, Kenya, Solomon Islands, China,
Spain, Turkey, Yemen, Fiji, Argentina, and Rwanda. 4 (65, 90 %]
Canada, Comoros, Eritrea, Saudi Arabia, Dominica, Sudan, North
Korea, South Korea, France, Djibouti, Saint Lucia, Saint Kitts and
Nevis, Honduras, and Zambia. 5 (90, 100 %] Bolivia, Armenia,
Australia, Pakistan, Malawi, and Iran
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=== Earthquake, Volcano and Landslide Disasters Volcano @

Historical Eruption Frequency of Global Volcano (4360 B.C.-2012 A.D.)
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Historical Mortality Record of Global Volcano (1900-2009)
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=== Earthquake, Volcano and Landslide Disasters Volcano @

Global Volcano Intensity by Return Period (10a)
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=== Earthquake, Volcano and Landslide Disasters Volcano @

Global Volcano Intensity by Return Period (50a)
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=== Earthquake, Volcano and Landslide Disasters Volcano @

Mortality Risk of Volcano of the World by Return Period (10a)
(Comparable-geographic Unit)
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=== Earthquake, Volcano and Landslide Disasters Volcano @

Mortality Risk of Volcano of the World by Return Period (50a)
(Comparable-geographic Unit)
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=== Earthquake, Volcano and Landslide Disasters Volcano @

Mortality Risk of Volcano of the World by Return Period (10a)
(Country and Region Unit)
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Wentao Yang, Lingling Shen, and Peijun Shi

1 Background

Landslide inventory, susceptibility, and hazard mapping are
different steps toward landslide risk mapping (Fell et al.
2008). Landslide inventory can be regarded as a simple form
of landslide susceptibility map by showing the location of
existing landslides. Besides, other kinds of landslide sus-
ceptibility map scan also show the location of potential
landslides by incorporating environmental factors, which
serve as the basis for hazard and risk mapping (Fell et al.
2008). Although susceptibility map shows the potential
location of landslides, it does not give the information of
temporal probability. For every location, landslide hazard
map shows the spatial and temporal probability of landslides
under given intensity (UNESCO 1985), whereas landslide
risk map denotes the annual probability of people or eco-
nomic loss expected. Risk is the interaction of hazard
intensity, the vulnerability of elements at risk, and the cor-
responding environment (Shi 2002).

There are many methods for landslide mapping and land-
slide disaster, hazard, and risk map are among those popular
landslide mappings. Durham Fatal Landslide Database
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(Petley 2012) and Landslide Disaster Database from NASA
Goddard Space Flight Center (GSFC) (Kirschbaum et al.
2010) are two landslide disaster databases at the global scale.
Both databases are collected from worldwide reports of
landslide disasters, while the latter has an expansion for other
losses except human casualty. Global landslide hazard was
mapped by Nadim et al. (2006), who considered global
lithology, slope, seismic activity, etc., and assigned hazard
probability based on expert judgment. Based on the Gridded
Population of the World (GPW), global landslide risk was
also estimated in the work carried out by Nadim et al. (2006).
Using 3-h resolution TRMM rainfall data, Hong et al. (2006)
developed a real-time global landslide warning system
based on global landslide susceptibility map. Based on sup-
port vector machines (SVM), Farahmand and AghaKouchak
(2013) developed a quasi-global landslide susceptibility
model using satellite precipitation data, land use and
cover change maps, and 250-m resolution topography
information.

Previous researches show that slope, altitude, lithology,
land use, and soil property can influence landslide suscep-
tibility (Nadim et al. 2006; Cui et al. 2008; Minder et al.
2009; Huang 2011). Coe et al. (2004) and Fabbri et al.
(2003) found that slope and altitude are two most important
contributing factors of landslide occurrence.

Although Hong et al. (2006) argued that it was possible to
map global-scale landslide susceptibility map based on
incomplete information layers, the lack of lithology and
seismicity layers in this model might impair the hazard
map. Compared to the global landslide risk map developed
by Nadim et al. (2006), factors including fine temporal
resolution rainfall data, tectonic faults, and land use type are
considered in this study. By using 15-year consecutive 3-h
resolution precipitation data, this study examined every
rainfall event over the rainfall threshold for the initiation of
landslide. Based on information diffusion theory, informa-
tion diffusion method was used to fit the 15-year samples to
get the expected annual numbers of landslide events.
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By combining these results, landslide hazard map with the
LandScan population and global landslide disaster database
(Kirschbaum et al. 2010), population vulnerability and
mortality risk of landslide of the world were calculated. In
this study, the environmental factors denote the background
of hazard formation, while the probability of hazard is
estimated from precipitation data. At global scale, vulnera-
bility of human is estimated from the ratio of casualties to
exposed population at national level.

2 Method
Figure 1 shows the technical flow chart for mapping land-
slide risk of the world.

2.1 Hazard

This study can be divided into three components: landslide
susceptibility, hazard, and mortality risk mapping. By
weighting layers such as slope, elevation, land use type,
lithology, fault, and semi-quantitative seismic hazard map,
landslide susceptibility map was developed. TRMM 3B42
3-h precipitation data (Appendix III, Hazards data 4.4) were
used to generate hazard map by integrating previously
developed landslide susceptibility map. Finally, LandScan
population data (Appendix III, Exposures data 3.1) and
global landslide casualty data (Appendix III, Disasters data
5.2) were used to calculate population vulnerabilities of each
country and landslide risk to population. Due to limited data
at the global scale, the global hazard mapping was validated
by the global landslide hotspot hazard map.

W. Yang et al.

2.1.1 Global Landslide Susceptibility

Landslide susceptibility map was calculated by weighting
different layers of preparatory or environmental layers,
including slope, elevation, lithology, active fault line den-
sity, and seismicity (Eq. 1). The weight of each layer is given
according to their importance to landslides referring to past
research (Nadim et al. 2006; Hong et al. 2007).

Sus = 0.25 x Slo + 0.15 x DEM + 0.15 x LUCC + 0.15
x Lith + 0.15 x Fault + 0.15 x Seis

(1)

where Sus denotes landslide susceptibility, Slo denotes
reclassed global slope percentage (Appendix III, Environ-
ments data 2.2), DEM denotes normalized global elevation
(Appendix I, Environments data 2.1), LUCC denotes
reclassed global land use data in 2012 (Appendix III,
Environments data 2.8), Lith denotes reclassed global
lithology data (Appendix III, Environments data 2.4), Fault
denotes reclassed global active fault line density (Appendix
II, Environments data 2.4), and Seis denotes seismicity
(PGA) (Appendix III, Hazards data 4.1).

2.1.2 Global Landslide Hazard

By considering the temporal occurrence of landslide triggers
such as precipitation, landslide hazard map can be made
based on susceptibility map (van Westen et al. 2008). Fine-
temporal resolution precipitation data are vital for estimating
the occurrence of rainfall-induced landslides. However, rain
gauge stations are unevenly distributed and cover very
limited areas around the world. Thus, the homogeneous
global coverage TRMM data are ideal for calculating the
occurrence of landslides.

Fig. 1 Technical flowchart for .
mapping landslide risk of the Environment
world Yy
! Land Fault Digital elevation . Qualitative ||
| Slope use density model (DEM) Lithology seismic hazard |i
______________ T
Global landslide Rainfall intensity-duration Information
susceptibility threshold for landslide diffusion theory
T ]
v
Validation .| Global landslide Global landslide
| hazard disaster database
Global landslide v
hazard from Vulnerable curve Population of the
“Hotspot Program’ ¢ world

Mapping landslide risk of the world
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The data used were TRMM 3B42. However, there are
some deviations between station-based precipitation and
TRMM-based data (Qi et al. 2013). Most existing station-
based precipitation threshold are not necessarily sufficient
for landslide hazard analysis. Based on global landslide
records and TRMM data, Hong et al. (2006) established a
global rainfall threshold for the initiation of landslides. This
study used Hong’s threshold to examine every rainfall event
in each pixel from the beginning of 1998 to the end of 2012
(Eq. 2).

[=1245D70% (2)
where [ is the precipitation intensity (mm/h) and D is the
rainfall duration (h).

After examining every rainfall event, we summed up the
number of events that exceed the threshold each year for
each pixel. So, there are 15 years data with the number of
landslide events from 1998 to 2012.

For the hazard factors with limited samples, it is a better
choice to apply information diffusion theory (Huang and
Moraga 2004). The normal diffusion model was the most
frequently used kind of information diffusion model. The
process of information diffusion was actually to diffuse the
information in single sample to the whole sample space,
which obeys the principle of conservation of the amount of
information.

The data scope of TRMM was among 50° latitude north
and south. For areas beyond this scope, the NCEP/NCAR
reanalysis data (Appendix III, Hazards data 4.5) were used.
The high-latitude areas had less landslide occurrences due to
relatively high vegetation cover, soil freezing, sparsely
populated, and subdued topography. Applying the methods
and processes mentioned above, with the same period as

TRMM (January 1, 1998—December 31, 2012), the
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Fig. 2 Landslide—casualties vulnerability curve
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cumulative value of global precipitation—landslide exceed-
ance threshold was calculated.

After getting global precipitation—landslide frequency,
according to the different weights of susceptibility map, the
global landslide hazard map can be estimated (Eq. 3):

H(pre) = Sus x Pre (3)
where H(pre) is the number of rainfall-induced landslides
(times/a/kmz), Sus is the landslide susceptibility, and Pre is
the annual expectation numbers of exceedance precipitation—
landslide threshold (times/a/km”).

2.2 Mortality Risk
Vulnerability typified the loss and damage of exposure by
hazard. Generally, the loss was estimated from statistical
history loss data. Population vulnerability of landslide is
estimated by the statistical casualties and population expo-
sure. NASA’s global landslide early warning system based
on TRMM data had collected the data of human death and
missing due to precipitation-induced landslide in 2003 and
2007-2011 (Appendix III, Disasters data 5.2). According to
corresponding year, the exposed population of each country
and region was calculated in the light of LandScan 2010 and
the hazard in the same site; the landslide—casualties vulner-
ability curve was made by combing casualties (Fig. 2).

There were 76 countries with available statistical mortality
data in 2003 and 2007-2011(Kirschbaum et al. 2010). To
supplement the inadequate data, similar vulnerability value
was assigned to countries with geographical proximity.

On the basis of global landslide hazard raster map
(0.25° x 0.25°) and global landslide—casualties vulnerability,
adding the layer of global population density raster map
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i

Fig. 3 Expected annual mortality risk levels of landslide of the world
1 (0, 10 %] China, Brazil, Iran, Uganda, Philippines, Indonesia, India,
Nepal, Paraguay, Bolivia, Burundi, Colombia. 2 (10, 35 %] Switzer-
land, Pakistan, Bangladesh, Afghanistan, Guatemala, Portugal, South
Korea, Peru, Sierra Leone, Cameroon, Vietnam, Central African
Republic, Guinea-Bissau, Kazakhstan, Congo (Democratic Republic
of the), Mexico, Angola, Nigeria, Syria, Dominican Republic, Ethiopia,
Tajikistan, Costa Rica, Sri Lanka, Jordan, Malaysia, El Salvador, North
Korea, Haiti, Tanzania, Senegal, 3 (35, 65 %] Spain, Guinea, Iraq,
Kyrgyzstan, Mali, Liberia, Uzbekistan, Thailand, Mozambique, Kenya,
Rwanda, Romania, Madagascar, Malawi, Italy, Sudan, Ecuador,

(1 km x 1 km) from American LandScan program, world
mortality risk of landslide was obtained (Eq. 4).

Rpop =V X H X Epgp 4)
where Rpo, is landslide-induced mortality risk, V is the
population vulnerability, H is landslide hazard, and E,,, is
global population density.

3 Results

Susceptibility represents the likelihood of landslide occur-
rence, that is, how easily landslide could occur under a
certain environment. From the aspect of disaster system
theory, susceptibility is subjected to the instability of land-
slide hazard-background environment. Global landslide
susceptibility is divided into 5 classes, from high to low,
expressing a stable progressive decrease. The highest class is
distributed mainly around the major structural mountains,
especially in the Alpine-Himalayan mountain tectonic belt,
the Pacific Rim, and the Great Rift Valley. The medium and
lower classes are scattered in plateaus, such as African
plateau, Chinese Loess plateau, Yunnan—Guizhou plateau,
Inner Mongolian plateau, India’s Deccan plateau, and the
edge of Brazil plateau.

W. Yang et al.

4

Zambia, Papua New Guinea, Yemen, Japan, Uruguay, France, Turkey,
Zimbabwe, Georgia, Venezuela, United States, Azerbaijan, Panama,
South Africa, Honduras, Poland, Niger, Laos, Chile, Cuba, New
Zealand. 4 (65, 90 %] Ghana, Burkina Faso, Algeria, Slovakia, Russia,
Nicaragua, Argentina, Armenia, Morocco, Serbia, Jamaica, Bhutan,
Palestine, Bosnia and Herzegovina, Trinidad and Tobago, Bulgaria,
Moldova, Ukraine, Australia, Tunisia, Isracl, Mauritania, Chad,
Germany, Togo, Hungary, Lebanon, Austria, Greece, Croatia, Albania
5 (90, 100 %] Macedonia, Saudi Arabia, Somalia, Eritrea, Lesotho,
Slovenia, Czech Republic, Montenegro, Cambodia, Turkmenistan,
Mongolia, Libya

Rainfall-induced landslide hazard indicates the estimation
of landslide numbers in different susceptibility classes under
different precipitation intensities. Global rainfall-induced
landslides are mainly scattered in humid areas with large
undulating terrain, such as windward slope of the southern
Himalayas, China Longmen Mountain area Mt. Alps, and
the Andes.

Global landslide mortality risk mainly distributes in
mountain areas with high population density, especially in the
developing countries. Countries with high landslide mortality
risk include China (southwestern area), India (northern part,
southern Himalayas), Nepal, Pakistan (northern area), Italy,
and countries in Central and South America.

By zonal statistics of the expected risk result, the
expected annual mortality risk of landslide of the world at
national level is derived and ranked (Fig. 3). The top 1 %
country with the highest mortality risk of landslide is China,
and the top 10 % countries are China, Brazil, Iran, Uganda,
Philippines, Indonesia, India, Nepal, Paraguay, Bolivia,
Burundi, and Colombia.

4 Maps
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Jian Fang, Mengjie Li, and Peijun Shi

1 Background

The flood risk assessment on regional and small/medium
watershed scales has been extensively carried out all around
the world, yielding various risk maps through both model
simulations and historical data analysis, to guide regional
flood risk management (Apel et al. 2004; Kim et al. 2012; Li
et al. 2012; Su et al. 2012; Wang et al. 2011). However, on a
global scale, much less relevant research is available due to
the limitation of data availability and the lack of large-scale
modeling methods.

On a global scale, the Identification of Global Natural
Disaster Risk Hotspots project, conducted by Columbia
University and the World Bank, studied the distribution and
frequency of global flood with historical flood event records
archived by Dartmouth Flood Observatory (DFO), evaluated
flood economic and population vulnerability for each
country using EM-DAT historical flood loss data and,
finally, assessed the risk of mortality and economic loss for
global floods (Dilley et al. 2005). Additionally, Winsemius
et al. (2012) proposed a framework for high-resolution
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global flood risk assessment in which global meteorological
datasets were coupled with a hydrological and river routing
model to simulate floods and then estimate the high-reso-
lution risk through a downscaling scheme with the simulated
floods and the overlay of the world economy and population
distribution. Herold and Mouton (2011) combined the sta-
tistical analysis of historical peak flow for major global
hydrological stations and GIS-based modeling to simulate
the inundation extent and depth for global floods with var-
ious return periods. UNISDR (2009) used the global inun-
dation datasets of flood hazard created by Herold and
Mouton (2011) to assess global flood economic and popu-
lation exposure risk in the Global Assessment Report on
Disaster Risk Reduction (GAR). Jongman et al. (2012) used
the same global inundation datasets (Herold and Mouton
2011) to estimate global exposure to river flooding.

From an overview of the existing literature, it can be
inferred that the assessment of flood risk on a global scale
has been very limited; the GAR and the Hotspots project
report are the most cited and influential ones. UNISDR
(2009) employed an analytical method to investigate the
potential loss of flood. But they focused on modeling flood
hazards and lacked vulnerability analysis. The Hotspots
project applied an empirical method to depict the hazard and
vulnerability and integrated these two parts to rank the risk
levels. However, it relied only on historical flood records yet
lacked consideration of various important factors in the flood
disaster system such as hazards and disaster environment;
therefore, its analysis on disaster systems was not compre-
hensive sufficiently.

Thus, this study combines both analytical and empirical
methods to provide more comprehensive risk assessment.
Both the aspect of estimation of potential flood loss and
mortality and the aspect of the comprehensive analysis of
flood hazard, stability of disaster environment, and vulner-
ability of exposure were addressed here. The global flood
risk was assessed at 4 levels: grid, comparable geographic
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unit, watershed unit, and country and region unit in order to
provide risk information from different scales for global
flood reduction.

2 Method

Figure 1 shows the technical flowchart for mapping flood
risk of the world.

2.1 Mapping Flood Risk at National Level

2.1.1 Economic Loss Risk

At national level, the method used by Jongman et al. (2012)

was adopted to calculate urban losses initially and then the

agriculture economic losses were added to obtain a more

accurate total loss estimation. The main steps are as follows:
Firstly, a global flood inundation-extent dataset (Appendix
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Exposures data 3.5) to calculate the average losses per
square meter of both urban and crop land for each country
using Eqgs. (1) and (2):

Damage, i, _ GDPppp,

(1)

Damageurbano o GDPrppp,
Damage,,  GDPppp, 2)
Damagecmpo GDPppp,

where Damage,,,,,. is the unit-area monetization loss (in US

is the
unit-area monetization loss (in US$) of inundated urban land
of the Netherlands, Damage_,,, is the unit-area monetization

$) of inundated urban land of country i, Damage,,p,

crop;
loss (in US$) of inundated crop land of country i,
Damage,,, is unit-area monetization loss (in US$) of
inundated crop land of the Netherlands, GDPppp, is the GDP
of country i in US$ at purchase power parity (PPP), GDPppp,
is the GDP of the Netherlands in US$ at PPP.
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Fig. 1 Technical flowchart for mapping flood risk of the world

III, Hazards data 4.6) was overlaid with the global land-use
data to extract the urban and crop land in the inundated area.

Secondly, based on the international boundary data, for
each country, the areas of inundated urban and crop land
were calculated.

Thirdly, for damage evaluation, the Dutch flood damage
calculation specifications (Kok et al. 2005) were applied to
all nations through the adjustment of GDP (Appendix III,

Fourthly, summing the total inundated area losses led to
an estimation of the potential total economic loss caused by
flood in each country, using Eq. (3), which indicates the
economic risk of flood

Economic_loss = Damage X Areayphan, + Damage

urban crop

X Areacrop

(3)
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2.1.2 Mortality Risk

The mortality risk at national level was assessed through a
combination of flood hazard modeling and flood mortality
rate estimation. It mainly consists of the following three
steps:

Firstly, the global flood inundation-extent dataset was
overlaid with gridded global population density data
(Appendix III, Exposures data 3.1) to calculate total popu-
lation in the inundated area for each country.

Secondly, flood mortality rate for each country was esti-
mated as the average ratio of annual flood mortality to total
population using the mortality data from EM-DAT (Appen-
dix III, Disasters data 5.4) and population data from World
Bank (Appendix III, Exposures data 3.2). It can be given in
Eq. (4) and indicates the vulnerability in each country.

1 <X Mortality,
V== —
; Total,,

(4)
where N is the number of years; Mortality; is the flood
mortality in year i; Total, is the total population of the
country in year i.

Thirdly, the number of exposed population in flood
inundated areas for each country was multiplied by the
mortality rate of the country, and as a result, the flood
mortality risk was obtained.

2.2 Mapping Flood Risk at Watershed Level
The risk assessment at watershed level can provide better
understanding of flooding process and benefit flood risk
management. Flood risk was assessed mainly by hazard,
exposure, and vulnerability, with the consideration of spe-
cific hydrological features within watersheds. The main steps
are as follows:

Firstly, representative hydrological stations were selected
for each of the global major basins according to the criteria
locating in the low reach of the main stream, and covering
over 30 years discharge observation.

Secondly, flood frequency analysis was conducted with
monthly discharge data of these representative stations
(Appendix III, Hazards data 4.8), and extreme value method
was used to fit the extreme discharge data considering the
statistical characteristic of hydrological phenomenon (Kid-
son and Richards 2005). According to the extreme value
theory, extreme events or samples on the tails are subject to
specific distributions. The extreme data sampled through the
annual maximum (AM) and peak over threshold (POT)
methods can be fitted to generalized extreme value
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distributions (GEV) and generalized Pareto distributions
(GPD), respectively (Coles et al. 2001). Here, we used the
generalized Pareto distribution to calculate extreme dis-
charge with various return periods and expected extreme
discharge. The probability density function of this distribu-
tion and the calculation of return period given a specific
amount of precipitation are described in Egs. (5) and (6):

flx; o, f)=1- (1+ﬁx—u)—1/ﬁ

[

(5)

1 1
T F(a<x) [ fde

p (6)

where f(x) is the probability density function (PDF); F(x) is
the cumulative distribution function (CDF); u is the location
parameter; o is the scale parameter; f is the shape parameter;
p denotes the return period of precipitation x,,. The param-
eters are estimated through the method of maximum-likeli-
hood, and the precipitation corresponding to return periods
of 10, 20, 50, and 100 years is calculated using the inverse
function of Eq. (6).

Thirdly, for each river basin, the flood hazard index
H was calculated by multiplying the extreme discharge with
historical flood frequency using Eq. (7).

H = Dis, x Freq, (7)
where H is the flood hazard index, Dis, is normalized
extreme discharge, and Freq, is normalized flood frequency.
All the normalization procedures in this study adopt the
Eq. (8) in which A is the variable to be normalized.

A— Amin

Ay =0
Amax - Amin

(8)
Fourthly, for each river basin, the average economic loss

and mortality of historic floods were evaluated to obtain the
vulnerability index using Egs. (9) and (10).

Loss — LoSSmin
LosSmax — LoSSmin

©)

Vecom =

Mortality — Mortality,
Mortality,,,, — Mortality,;,

(10)

Vinort =

Fifthly, the exposure index was calculated through the
normalization of population and GDP within each river
basin using Egs. (11) and (12)

_ POP — POPmin
pop —

(11)
POPmax — POPmin
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2dp — gdpyin

—_ 12
gdpmax - gdpmin ( )

Eogp =

Sixthly, flood risk was calculated by multiplying hazard
index, vulnerability index, and exposure index using
Eq. (13).

R=HXExV (13)

Finally, flood risk maps corresponding to hazard index
(H) containing extreme discharge with return periods of 10,
20, 50, and 100 years were obtained, and the results were
normalized using Eq. (8) and classified into various levels
for each basin.

23 Mapping Flood-Affected Risk at Grid Level

and Comparable Geographic Unit

For the grid level (1° x 1°), the global-gridded data of pre-
cipitation, digital elevation, slope, river network, GDP, and
population were mainly used to evaluate flood hazard and
exposure of population and economy. Then, through a
comprehensive analysis, the global flood-affected risk at the
grid level was evaluated.

In this study, from the Global Precipitation Climatology
Project (GPCP) daily dataset (Appendix III, Hazards data
4.7), the series of extreme precipitation defined as consec-
utive 3-day accumulative precipitation above the 95th per-
centile was firstly extracted and then fitted to the generalized
Pareto distribution. The least square method was used to
estimate the GPD parameters. Then, the precipitation with
return periods of 10, 20, 50, and 100 years and the expected
extreme precipitation were calculated.

In each grid, the hazard index is a function of precipita-
tion, slope, and elevation and its distance from the river, as
Eq. (14)

_ Pre,
~ Ele, + Slp, + Dis,

(14)

where Pre, is the normalized 3-day accumulative precipita-
tion index; Ele, is the normalized elevation index; Slp,, is the
normalized slope index; and Dis,, is the normalized distance
index.

The economy and population-affected risk for each grid
were calculated by multiplying hazard index and the expo-
sure index of population and GDP using Egs. (15) and (16)

POP — POPpin

Rpop:HXEpt)p:me
max min

(15)
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2dp — gdpy

— = 16
gdpmax - gdpmin ( )

Rgdp:HXEgdp:HX

After obtaining grid-level risks, through spatial statistical
analysis, the flood-affected population and economic risk at
the comparable geographic unit level were calculated by
aggregating the grid risks within each unit area.

Finally, flood-affected risk maps corresponding to hazard
index (H) containing extreme discharge with return periods
of 10, 20, 50, and 100 years at grid level and comparable
geographic unit level were obtained and the results were
normalized using Eq. (8), respectively.

3 Results

3.1 Mortality and Affected Population Risk
Countries with high-mortality risk are mainly located in
tropical and subtropical areas, especially in the Indian pen-
insula, the southern and eastern China, the Indo-China
peninsula, Western Europe, and part of eastern America.
These regions are densely populated and usually have
abundant rainfall and surface water.

By zonal statistics of the expected risk result, the
expected annual mortality risk of flood at national level is
derived and ranked. The top 1 % country with the highest
mortality risk of flood is Bangladesh, and the top 10 %
countries are Bangladesh, China, India, Cambodia, Pakistan,
Brazil, Nepal, the Netherlands, Indonesia, United States,
Vietnam, Burma, Thailand, Nigeria, and Japan (Fig. 2).

3.2 Economic Loss and Damage Risk

From the world economic loss risk map of a 100-year flood
at national level, countries with high risk are mainly dis-
tributed in areas along rivers, lakes, or the coasts of Asia,
Europe, and North America. With flat landscapes and
abundant water resources, these regions are also often more
economically developed; therefore, these regions suffer in
higher GDP losses per square meter and have greater eco-
nomic risk when flood occurs. The difference in GDP leads
to different potential losses per square meter for various
nations. The more developed a country is, the higher its
potential loss per square meter is.

By zonal statistics of the expected risk result, the
expected annual economic loss risk of flood at national level
is derived and ranked (Fig. 3). The top 1 % country with the
highest economic loss risk of flood is United States, and the
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Fig. 2 Expected annual mortality risk of flood of the world. 7 (0,
10 %] Bangladesh, China, India, Cambodia, Pakistan, Brazil, Nepal,
the Netherlands, Indonesia, United States, Vietnam, Burma, Thailand,
Nigeria, Japan. 2 (10, 35 %] Iraq, Argentina, Russia, Mexico, Germany,
Mozambique, Egypt, South Korea, Ukraine, France, Democratic
Republic of the Congo, Paraguay, Iran, Senegal, Poland, Venezuela,
Ghana, Ecuador, United Kingdom, Colombia, Philippines, Canada,
Laos, Italy, Guatemala, Tanzania, The Republic of Coéte d’Ivoire,
Hungary, Sudan, Belgium, Togo, Burkina Faso, Mali, Romania, Niger,
Malaysia, Kenya, Syria. 3 (35, 65 %] Somalia, Ethiopia, Turkey, Peru,
Chile, Cameroon, Sri Lanka, Azerbaijan, Madagascar, North Korea,
Malawi, Serbia, Angola, South Africa, Belarus, Uganda, Chad,
Uzbekistan, Spain, Kazakhstan, Uruguay, Mauritania, Australia,

Fig. 3 Expected annual economic loss risk of flood of the world. 7 (0,
10 %] United States, China, Japan, the Netherlands, India, Germany,
France, Argentina, Bangladesh, Brazil, United Kingdom, Thailand,
Myanmar, Cambodia, Canada. 2 (10, 35 %] Iraq, Belgium, Mexico,
Italy, South Korea, Russia, Indonesia, Spain, Pakistan, Australia,
Paraguay, Nigeria, Nepal, Poland, Finland, Hungary, Venezuela,
Serbia, Colombia, Vietnam, Iran, Chile, Philippines, Malaysia, Uk-
raine, Romania, Egypt, Ireland, Saudi Arabia, Austria, Laos, North
Korea, South Africa, Belarus, Czech Republic, Ecuador, Portugal,
Ghana. 3 (35, 65 %] Switzerland, Senegal, Kazakhstan, Sweden, The
Republic of Coéte d’Ivoire, Norway, Turkey, Cameroon, Gabon, Cuba,
Papua New Guinea, Libya, Guatemala, Slovakia, Uzbekistan, Algeria,
Democratic Republic of the Congo, Azerbaijan, Togo, Sudan, Greece,

top 10 % countries are United States, China, Japan, the
Netherlands, India, Germany, France, Argentina, Bangla-
desh, Brazil, United Kingdom, Thailand, Myanmar, Cam-
bodia, and Canada.

Guinea, Algeria, Jordan, South Sudan, Benin, Bulgaria, Gambia,
Morocco, Bosnia and Herzegovina, Slovakia, Papua New Guinea,
Bolivia, Croatia, Nicaragua, Zambia, Zimbabwe, Gabon, Cuba,
Afghanistan, Czech Republic, Moldova, Sierra Leone, Portugal. 4
(65, 90 %] Turkmenistan, Latvia, Liberia, Austria, Sweden, Central
African Republic, Honduras, Tajikistan, Finland, Lithuania, Tunisia,
Panama, Yemen, Greece, Haiti, Congo, Estonia, Saudi Arabia, Libya,
Switzerland, Dominican Republic, Eritrea, Israel, Costa Rica, Norway,
Burundi, Kyrgyzstan, Rwanda, Ireland, Macedonia, Armenia, Guinea-
Bissau, Namibia, Denmark, Botswana, Swaziland, Georgia, Slovenia. 5
(90, 100 %] Oman, Belize, Guyana, Lesotho, Albania, Mongolia,
Suriname, Equatorial Guinea, United Arab, Emirates, Djibouti, Bhutan,
New Zealand, Montenegro, Western Sahara, Kuwait, Iceland

Angola, Syria, Morocco, Turkmenistan, Latvia, Niger, Peru, Tunisia,
Bulgaria, Yemen, Panama, Lithuania, Burkina Faso, Somalia, Mozam-
bique, Mauritania, Macedonia, Uruguay, Oman, Slovenia, Zimbabwe,
Tanzania, Denmark, Uganda. 4 (65, 90 %] Israel, Guinea, Zambia,
Benin, Kenya, Estonia, Sri Lanka, Georgia, Mali, Jordan, Malawi,
Chad, Madagascar, Congo, Ethiopia, Bosnia and Herzegovina, Mol-
dova, Bolivia, Albania, South Sudan, Nicaragua, Haiti, United Arab
Emirates, Croatia, Honduras, Tajikistan, Armenia, Kyrgyzstan, Liberia,
Guyana, Central African Republic, Namibia, Gambia, Afghanistan,
Suriname, Botswana, Sierra Leone, Montenegro. 5 (90, 100 %] New
Zealand, Costa Rica, Mongolia, FEritrea, Guinea-Bissau, Belize,
Djibouti, Lesotho, Swaziland, Burundi, Rwanda, Equatorial Guinea,
Bhutan, Western Sahara, Iceland

4 Maps
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=== Flood and Storm Surge Disasters Flood @

Global Expected Annual Accumulated 3-day Extreme Precipitation
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Flood @

=== Flood and Storm Surge Disasters

Global Accumulated 3-day Extreme Precipitation by Return Period (10a)
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=== Flood and Storm Surge Disasters Flood @

Global Accumulated 3-day Extreme Precipitation by Return Period (50a)
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=== Flood and Storm Surge Disasters Flood @

Extreme Discharge of Global Main Watersheds by Return Period (10a)
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== Flood and Storm Surge Disasters

Extreme Discharge of Global Main Watersheds by Return Period (50a)
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=== Flood and Storm Surge Disasters Flood @

Population of Main Watersheds of the World (2010)
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=== Flood and Storm Surge Disasters Flood @

Annual Mortality in Historical Flood Disaster of the World (1950-2012)
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=== Flood and Storm Surge Disasters Flood @

Affected Population Risk of Flood of the World by Return Period (10a)
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== Flood and Storm Surge Disasters

Affected Population Risk of Flood of the World by Return Period (50a)
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=== Flood and Storm Surge Disasters Flood @

Affected GDP Risk of Flood of the World by Return Period (10a)
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=== Flood and Storm Surge Disasters Flood @

Affected GDP Risk of Flood of the World by Return Period (50a)
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Flood @

== Flood and Storm Surge Disasters

Affected Population Risk of Flood of the World by Return Period (10a)
(Comparable-geographic Unit)
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=== Flood and Storm Surge Disasters Flood @

Affected Population Risk of Flood of the World by Return Period (50a)
(Comparable-geographic Unit)
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=== Flood and Storm Surge Disasters Flood @

Affected GDP Risk of Flood of the World by Return Period(10a)
(Comparable-geographic Unit)
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=== Flood and Storm Surge Disasters Flood @

Affected GDP Risk of Flood of the World by Return Period(50a)
(Comparable-geographic Unit)
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Flood @

== Flood and Storm Surge Disasters

Affected Population Risk of Flood of the World by Return Period (10a)
(Watershed Unit)
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=== Flood and Storm Surge Disasters Flood @

Affected Population Risk of Flood of the World by Return Period (50a)
(Watershed Unit)
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== Flood and Storm Surge Disasters Flood @

Affected GDP Risk of Flood of the World by Return Period (10a)
(Watershed Unit)
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== Flood and Storm Surge Disasters Flood @

Affected GDP Risk of Flood of the World by Return Period (50a)
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Shao Sun, Jiayi Fang, and Peijun Shi

1 Background

Storm surge can be ranked as the most serious disaster
among the marine disasters. Most of the serious disasters
that occurred along the coastal zones are associated with
storm surges induced by extreme weather systems. Storm
surge is primarily caused by wind pushing on the water
surface, causing the water to pile up above ordinary levels
(Feng 1982). Severe storm surge hazard with destructive
power could occur when abnormal weather system, astro-
nomical tide period, and suitable geographic environment
conditions meet coincidently (Le 1998). The Intergovern-
mental Panel on Climate Change (IPCC) has reported that
global climate change will lead to sea-level rise which
further increase occurrences of typhoon and storm surge
(IPCC 2013).

At the regional scale, coastal countries and regions
around the world have developed a wide range of storm
surge risk assessment. The existing models can accurately
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simulate storm surge processes in local coastal areas, for
instance, SLOSH, DELFT3D, MIKE 12, ADCIRC, GCOM
2D/3D, and TAOS storm surge assessment models (Shi
et al. 2013), but they are not applicable to a larger extent,
or even the global scope. Hinkel et al. (2014) emphasized
coastal flood damage and adaptation costs on a global scale
under a range of sea-level rise scenarios in twenty-first
century. Thus, it can be inferred that systematic assessment
and mapping of storm surge risk at a global scale is very
limited, and the related risk was usually assessed from the
aspects of sea-level rise, flood, tropical cyclones, and so
on. However, systematic assessment of storm surge risk
should not only be associated with the intensity and the
frequency of the hazard, but also with the vulnerability of
exposure.

According to the basic theory framework of natural
disaster system, we initially mapped the population and GDP
risk affected by storm surge at the global scale. The historical
water level records observed (Appendix III, Hazards data
4.9) were used to analyze the intensity of storm surge
through the information diffusion theory.

2 Method
Figure 1 shows the technical flowchart for mapping affected

population and GDP risk from storm surge of the world.

2.1 Intensity

As the available dataset was too short to analyze by the

traditional method for extreme value fitting, the information
diffusion theory (Huang 2012; Qi et al. 2010) was
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Fig. 1 Technical flowchart for
mapping affected population and

S. Sun et al.
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introduced to solve this problem. The study assumes that the
storm surge system is a stochastic Markov chain process, and
its state changes according to a transition rule that only
depends on the known past N years’ state. We used the
expected relative maximum value of sea-level rise as the
indicator of hazard intensity for each tide gauge station, which
can be obtained by fitting the probability distribution curve
based on the annual maximum dataset of the relative
increasing sea level (Heaive) USing fuzzy mathematic method
(Huang 2012). Heaiive can be calculated according to Eq. (1).

(1)

where H,,,, is the annual maximum water level and H .., 1S
the annual mean of water level.

The global expected relative maximum value of sea-level
rise for coastal areas was obtained by interpolating through
spatial interpolation method in ArcGIS.

H:elative = Hmax — Hmean

2.2 Affected Population and GDP Risk

Geo-environment has a significant influence on the damages
induced by different magnitude of storm surge. The geo-
environment in coastal zone can be classified into bedrock
coast and plain coast (Diirr et al. 2011; Appendix III,
Environments data 2.12). The storm surge reaches bedrock
coast after a shorter distance than those to plain coast.
However, topographical environment in loose sedimentary
coast is usually flat, especially for the silty mud coast which
is characterized by broadness and flat with a slope less than
0.5 %. Taking into account of the historical path records of
tropical cyclones (Appendix III, Disasters data 5.5), we
divided global coastline into plain-storm, plain-no-storm,
bedrock-storm, and bedrock-no-storm coastal areas. Storm
coastal area is referred to the area affected seriously by
cyclones, while no storm area not affected. The assessment
processes are as follows: Firstly, the maximum inundation
distance expected (Djpundated) €an be calculated from the
slope dataset (Appendix III, Environments data 2.2). Then,

the maximum inundation area expected at the global scale
can be marked using altitude-area method and geo-statistics
method. After superimposing the global GDP distribution
data (Appendix III, Exposures data 3.4) and the global
population density data (Appendix III, Exposures data 3.1),
the global population and GDP risk affected by storm surge
can be calculated, respectively.

3 Results

3.1 Intensity Map

The maximum inundation areas expected are concentrated
on the areas which are frequently hit by strong tropical
cyclones with plain-storm coastal environment. These areas
are mainly located in the coasts of the East Asia, West
Europe, northern Australia, and eastern and western North
America. Due to the high intensity of tropical cyclones,
storm surges can generally bring dramatic changes in the
water level. Although the inundation area is not so wide,
some coastal area could experience a severe damage due to
an extreme increase in maximum relative water level since it
is located in a bedrock environment. West coast in Canada is
a great example for this.

By zonal statistics of the expected inundation area, the
expected annual inundation area of storm surge of the world
at national level is derived and ranked. The top 1 % country
with the highest inundation area of storm surge is Australia,
and the top 10 % countries are Australia, USA, Mexico,
Bangladesh, Cuba, and India.

3.2 Affected Population Risk

A large variability for the affected population exists due to
the huge differences of population density at grid level
among countries. High risk areas for the population exposure
to storm surge are located in the Caribbean region, the Bay
of Bengal, East Asia, etc. Although some areas were shown
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Fig. 2 Expected annual affected population risk of storm surge of the
world. 7 (0, 10 %] Bangladesh, India, China, and Vietnam. 2 (10, 35 %]
USA, Sri Lanka, Japan, Australia, Mozambique, Thailand, Philippines,
Burma, Mexico, and Tonga. 3 (35, 65 %] Fiji, North Korea, New
Zealand, Palestine, Canada, Belize, Madagascar, Marshall Islands,

Fig. 3 Expected annual affected GDP risk of storm surge of the world.
1 (0, 10 %] USA, China, and Japan. 2 (10, 35 %] Australia, Ireland,
Bangladesh, India, Thailand, Vietnam, Sri Lanka, and Mexico. 3 (35,
65 %] New Zealand, Mozambique, Canada, Philippines, Fiji, Antigua

with a high value of inundation area, the risk is still low due
to its sparse population along the coastline. In this case,
Australia is a good example.

By zonal statistics of the expected risk result, the
expected annual affected population risk of storm surge of
the world at national level is derived and ranked (Fig. 2).
The top 1 % country with the highest affected population
risk of storm surge is Bangladesh, and the top 10 % coun-
tries are Bangladesh, India, China, and Vietnam.

3.3  Affected GDP Risk

A large variability for the affected GDP exists due to the
huge differences of GDP at grid level among countries. It is
found that higher economic loss risk will be encountered
following with the rapid economic development of a

S

Saint Kitts and Nevis, Antigua and Barbuda, Honduras, Dominica, and
Palau. 4 (65, 90 %] Federated States of Micronesia, Haiti, South Korea,
Cuba, Bahamas, Pakistan, Cook Islands, Samoa, Saint Vincent and the
Grenadines, and Grenada. 5 (90, 100 %] Seychelles, Venezuela,
Nicaragua, and Mauritius

|

and Barbuda, South Korea, Tonga, Cuba, and Saint Kitts and Nevis. 4
(65, 90 %] Palestine, Dominican Republic, Honduras, Burma, Belize,
Bahamas, Dominica, and Federated States of Micronesia. 5 (90, 100 %]
Madagascar, Palau, Marshall Islands, and Mauritius

country. Areas with high economic loss risk are mainly
distributed in some coastal parts of England, other developed
countries in Europe, the Yangtze River Delta in China, the
eastern coast of America, the Gulf of Mexico, etc. As for the
Bay of Bengal, even though it is characterized by a high risk
of population exposure, the economic risk is not such
remarkable because of its underdeveloped economic.

By zonal statistics of the expected risk result, the
expected annual affected GDP risk of storm surge of the
world at national level is derived and ranked (Fig. 3). The
top 1 % country with the highest expected annual affected
GDP risk of storm surge is USA, and the top 10 % countries
are USA, China, and Japan.

4 Maps
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Historical Event Locations of Global Storm Surge (1975-2007)
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Part IV

Sand-dust Storm and Tropical Cyclone Disasters



Huimin Yang, Xingming Zhang, Fangyuan Zhao, Jing’ai Wang,
Peijun Shi, and Lianyou Liu

1 Background

Sand-dust storm (SDS) refers to extreme events in which
great quantities of ground sand and dust particles are blown
around by strong winds, air becomes extremely turbid, and
the horizontal visibility is less than 1 km (CMA 2006). SDS
can be classified into SDS, strong SDS, and extremely strong
SDS. SDS disaster causes massive losses and damages to the
socioeconomic and ecological systems.

Global SDS-prone areas are located in North Africa, the
Middle East, Central Asia, North America, Australia, and
other places (Kalderon-Asael et al. 2009; Formenti et al.
2011). The global spatial distribution reported by
Engelstaedter et al. (2003) shows that regions with high SDS
frequency are distributed in North Africa, the Middle East,
and the Iberian Peninsula, and regions with moderate and
low frequencies are distributed in Australia, northern China,
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and southern and southwestern America. Scholars from
different countries have studied on the temporal and spatial
pattern of SDS from a regional perspective, such as Central
Asia (Indoitu et al. 2012), Turkmenistan (Orlovsky et al.
2005), and China (Qiu et al. 2001; Wang et al. 2001; Kang
and Wang 2005; Liu et al. 2012).

Many studies have focused on the spatial-temporal dis-
tribution, causes, source regions, and disaster characteristics
of SDS. SDS disaster risk assessment is important for SDS
disaster reduction, especially from regional perspective to a
global scale. In this study, the global SDS risk is evaluated in
terms of disaster system theory (Shi 1996). Using kinetic
energy as the SDS indicator, regional aridity as the environ-
ment indicator, and GDP, population, and livestock as expo-
sure indicators, this study is intended to provide an initiative
approach for mapping SDS disaster risk potential of the world.

2 Method

Figure 1 shows the technical flowchart for mapping SDS risk
of the world.

2.1 Environments

Desertification mainly occurs in the land degradation areas
of extremely arid, arid, semiarid, and dry subhumid regions
(UNCCD 1994; Wang et al. 2011), and SDS rarely occurs in
continuous permafrost regions (Appendix III, Environments
data 2.9). In this study, areas prone to SDS were taken as
mapping area. Aridity (Appendix III, Environments data
2.13) is used as a factor of the environments. In order to
make the data comparable, the aridity index data were nor-
malized by Eq. (1):

max — x

L=—— (1)

max — min
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Fig. 1 Technical flowchart for Envi ¢ H 4 E
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where I, is the normalized aridity value, x is the original
data, and min and max are the minimum and maximum of
the original value, respectively.

2.2 Intensity

Wind speed and visibility of SDS events were obtained from
the global surface synoptic timing data set with 9,435 sta-
tions (Appendix III, Hazards data 4.13). During typical SDS
events, PMy accounts for the majority of the particulate
matter in atmosphere (Zhuang et al. 2001; Jayaratne et al.
2011). In sand desert areas, PM;, has negative power
functions with visibility (Yang et al. 2006; Wang et al.
2008). Using data monitored by Tazhong weather Station,
which is located in the hinterland of the Taklimakan desert
in Xinjiang, relationship between PM;, and visibility is
revealed in Eq. (2) (Yang et al. 2006).

PM;y = 5 x 10 x v 1977 (2)

where V,; is visibility and PMj is in pg/m’.

With the classical kinetic energy formula, the kinetic
energy per cubic meter of dust-laden airflow in SDS (E,) can
be expressed by Eq. (3).

1

_ —1.5977 2
Ep = Z X VViS XV

(3)
where v is the maximum wind velocity (m/s) at 10 m high.
Using method of information diffusion (Huang 2012),
expected value and different return periods (10a, 20a, 50a,
and 100a) of kinetic energy were calculated.
Using the inverse distance-weighted method, maps of
SDS expected value and different return periods (10a, 20a,

50a, and 100a) were generated. For comparability, the SDS
kinetic energy is normalized with Eq. (4).
X — min

Li=——
max — min

(4)

where [, is normalized dimensionless data, x is the original
data, and min and max are the minimum and maximum of
the original data, respectively.

23 Exposures

World population (Appendix III, Exposures data 3.1), world
GDP (Appendix III, Exposures data 3.3), and world live-
stock (Appendix III, Exposures data 3.10) data of exposures
were normalized with Eq. (4).

24 Affected Population Risk
Based on the formula R = H x E x V (Shi 1996, 2002, 2005;
UNDP 2004; Blaikie et al. 2003), we assessed and mapped
affected population, GDP, and livestock risks of SDS. Finally,
the affected exposure risk of SDS was normalized with Eq. (4).
At grid level (0.5° x 0.5°), extremely high and high
values of population risk are mainly distributed in the
southeastern, southwestern, and northwestern regions of the
Sahara desert, northern and southeastern regions of Rub Al
Khali Desert, the areas surrounding the Thar desert in wes-
tern India, Iran and Turkey’s desert areas, the Taklimakan
deserts, the farming-pastoral regions in China and the
Mongolian Gobi desert, the scattered areas of southeastern
Australia, wide areas in the southwestern American deserts,
the central Great Plains and the northern regions of Mexico,
west coast of South America, and northeastern Brazil.
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Fig. 2 Expected annual affected population risk of SDS of the world.
1 (0, 10 %] Pakistan, USA, India, Saudi Arabia, Sudan, Mali, Burkina
Faso, Ethiopia, Yemen, China. 2 (10, 35 %] Niger, Mexico, Russia,
Uzbekistan, Iraq, Tunisia, Iran, Kenya, South Sudan, Syria, Algeria,
Nigeria, Tanzania, Afghanistan, Mauritania, Senegal, Eritrea, Kazakh-
stan, Ghana, Azerbaijan, Turkey, Morocco, Brazil, Mongolia, Spain,
Somalia, Benin. 3 (35, 65 %] Uganda, Myanmar, Chad, Romania,
Georgia, Argentina, Ecuador, Columbia, Libya, South Africa, Tajiki-
stan, Angola, The Democratic Republic of Congo, Peru, Israel, Chile,

By zonal statistics of the expected risk result, the
expected annual affected population risk of SDS of the world
at national level is derived and ranked (Fig. 2). The top 1 %
country with the highest expected annual affected population
risk of SDS is Pakistan, and the top 10 % countries are
Pakistan, USA, India, Sudan, Saudi Arabia, Mali, Burkina
Faso, Ethiopia, Egypt, Yemen, and China.

25 Affected GDP Risk

By zonal statistics of the expected risk result, the expected
annual affected GDP risk of SDS of the world at national
level is derived and ranked (Fig. 3). The top 1 % country
with the highest expected annual affected GDP risk of SDS

Fig. 3 Expected annual affected GDP risk of SDS of the world. 7 (0,
10 %] USA, Saudi Arabia, Pakistan, India, Spain, Iran, Sudan, Iraq,
Algeria, China, Egypt. 2 (10, 35 %] Mexico, Russia, Syria, Turkey,
Kuwait, Libya, Yemen, Argentina, Tunisia, Israel, Uzbekistan,
Afghanistan, Chile, Kazakhstan, Greece, Brazil, Australia, Georgia,
the United Arab Emirates, Jordan, Kenya, Canada, Romania, Colum-
bia, Burkina Faso, Italy, Mongolia. 3 (35, 65 %] Azerbaijan, Mali,
Cameroon, Venezuela, Ethiopia, South Africa, Morocco, Nigeria, Peru,
Oman, Portugal, Hungary, Namibia, Tanzania, Palestine, South Sudan,

Togo, Zimbabwe, Greece, Mozambique, Jordan, Italy, Turkmenistan,
Venezuela, Australia, Malawi, Cameroon, Palestine, Cote d’Ivoire,
Namibia, Kyrgyzstan, Rwanda. 4 (65, 90 %] Canada, Zambia,
Madagascar, Hungary, Macedonia, Western Sahara, Portugal, the
United Arab Emirates, Gambia, Dominica, Serbia, Djibouti, Thailand,
Guinea, Bolivia, Czech, Ukraine, Botswana, Central Africa, Oman,
Slovakia, Armenia, Guatemala, Kuwait, Bulgaria, Lesotho, Moldova. 5
(90, 100 %] Bhutan, Swaziland, Honduras, Cyprus, Paraguay,
Germany, Lebanon, New Zealand, Nicaragua, East Timor

is USA, and the top 10 % countries are USA, Saudi Arabia,
Pakistan, India, Spain, Sudan, Iran, Iraq, Algeria, China, and
Egypt.

2.6 Affected Livestock Risk

At grid level (0.5° x 0.5°), extremely high and high values of
the risk are mainly distributed in southwestern, southeastern,
and northern regions of the Sahara desert, south Arabian desert,
north and surroundings of the Thar desert in northwestern
India, the Iranian desert, Turkestan desert, the Taklimakan

desert in China, surroundings of the Gobi desert in Mongolia,
central and south section of Australia, surroundings of North

Niger, Macedonia, Slovakia, Turkmenistan, Senegal, Qatar, Ecuador,
Ghana, Botswana, Mauritania, Serbia, Tajikistan, Bulgaria, Kyrgyzstan,
Dominica, Ukraine. 4 (65, 90 %] Myanmar, Benin, Somalia, Cote
d’Ivoire, Eritrea, Uganda, Chad, Angola, Czech, Thailand, Guatemala,
Zambia, Togo, The Democratic Republic of Congo, Germany,
Mozambique, Cyprus, Armenia, Zimbabwe, Malawi, Rwanda, Bolivia,
Lebanon, Gambia, Lesotho, Madagascar, Guinea. 5 (90, 100 %]
Djibouti, Moldova, Bhutan, Central Africa, Swaziland, Honduras,
Paraguay, New Zealand, Nicaragua, East Timor
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Fig. 4 Expected annual affected livestock risk of SDS of the world. 7 (0,
10 %] China, Pakistan, Sudan, Mali, India, Mongolia, Algeria, USA,
Mauritania, Iran, Burkina Faso. 2 (10, 35 %] Libya, Afghanistan, Niger,
Ethiopia, Syria, South Sudan, Kazakhstan, Uzbekistan, Iraq, Egypt,
Morocco, Kenya, Yemen, Mexico, Australia, Chad, Spain, Saudi Arabia,
Somalia, Argentina, Tanzania, Nigeria, Tunisia, Jordan, Eritrea, Sene-
gal, Azerbaijan, Turkmenistan. 3 (35, 65 %] Russia, Turkey, Brazil,
Namibia, Ghana, Benin, South Africa, Greece, Uganda, Oman, Chile,
Western Sahara, Peru, Angola, Tajikistan, Hungary, Kyrgyzstan,

American deserts, central Great Plain, northern Mexico, and
west coast and northeastern parts of South America.

By zonal statistics of the expected risk result, the
expected annual affected livestock risk of SDS of the world
at national level is derived and ranked (Fig. 4). The top 1 %
country with the highest expected annual affected livestock

Georgia, Portugal, Kuwait, Togo, Djibouti, Botswana, Canada, Myan-
mar, the United Arab Emirates, Zimbabwe, Rwanda, The Democratic
Republic of Congo, Cote d’Ivoire, Gambia, Venezuela, Italy. 4 (65,
90 %] Romania, Israel, Ecuador, Macedonia, Bolivia, Mozambique,
Madagascar, Central Africa, Zambia, Cameroon, Dominica, Paraguay,
Ukraine, Serbia, Bulgaria, Malawi, Guinea, Armenia, Qatar, Columbia,
France, Palestine, Slovakia, Nepal, Guatemala, Cyprus, Bhutan, Thai-
land. 5 (90, 100 %] Lebanon, Lesotho, Nicaragua, Moldova, Swaziland,
East Timor, Honduras, Czech, New Zealand, Germany

risk of SDS is China, and the top 10 % countries are China,
Sudan, Pakistan, Mali, India, Mongolia, Algeria, USA,
Mauritania, Iran, and Burkina Faso.

3 Maps
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Sand-dust Storm and Tropical Cyclone Disaster Sand-dust Storm ®

Kinetic Energy of Global Sand-dust Storm (PMy) by Return Period (10a)
(0.5°%0.5°)
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= Sand-dust Storm and Tropical Cyclone Disaster Sand-dust Storm @
Kinetic Energy of Global Sand-dust Storm (PM;) by Return Period (50a)
(0.5°x0.5°)
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=— Sand-dust Storm and Tropical Cyclone Disaster Sand-dust Storm @

Affected Population Risk of Sand-dust Storm of the World by Return Period (10a)
(0.5°x0.5°)
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= Sand-dust Storm and Tropical Cyclone Disaster Sand-dust Storm @
Affected Population Risk of Sand-dust Storm of the World by Return Period (50a)
(0.5°x0.5°)
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= Sand-dust Storm and Tropical Cyclone Disaster Sand-dust Storm @

Affected Population Risk of Sand-dust Storm of the World by Return Period (10a)
(Comparable-geographic Unit)
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= Sand-dust Storm and Tropical Cyclone Disaster Sand-dust Storm @

Affected Population Risk of Sand-dust Storm of the World by Return Period (50a)
(Comparable-geographic Unit)
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= Sand-dust Storm and Tropical Cyclone Disaster Sand-dust Storm @

Affected Population Risk of Sand-dust Storm of the World by Return Period (10a)
(Country and Region Unit)
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Sand-dust Storm @

Affected Popultion Risk of Sand-dust Storm of the World by Return Period (50a)
(Country and Region Unit)
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= Sand-dust Storm and Tropical Cyclone Disaster Sand-dust Storm @
Affected GDP Risk of Sand-dust Storm of the World by Return Period (10a)
(0.5°x0.5°)

w AR CT1C \OECEAN

o 30" &0 90 120° 1500 E180TW 1500 120° o0 60° 30
] 1000 2000 miles

Risk Index (10°) [ >1 I 0.1-1 I 0.01-0.1 [00.001-0.01 [1<0.001 [ Not Assessed o 10002 600 iilometers

Affected GDP Risk of Sand-dust Storm of the World by Return Period (20a)

s - maakhe ey

o

o s

0 1000 2000 miles

Risk Index (10°) [>1 NN 0.1-1 I 0.01-0.1 0 0.001-0.01 [1<0.001 [ Not Assessed b 10002000 kilometers



134 H. Yang et al.

== Sand-dust Storm and Tropical Cyclone Disaster Sand-dust Storm @
Affected GDP Risk of Sand-dust Storm of the World by Return Period (50a)
(0.5°x0.5°)
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= Sand-dust Storm and Tropical Cyclone Disaster Sand-dust Storm @

Affected GDP Risk of Sand-dust Storm of the World by Return Period (10a)
(Comparable-geographic Unit)
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= Sand-dust Storm and Tropical Cyclone Disaster

Sand-dust Storm @

Affected GDP Risk of Sand-dust Storm of the World by Return Period (50a)
(Comparable-geographic Unit)
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Sand-dust Storm @

Affected GDP Risk of Sand-dust Storm of the World by Return Period (10a)
(Country and Region Unit)
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Sand-dust Storm @

Affected GDP Risk of Sand-dust Storm of the World by Return Period (50a)
(Country and Region Unit)
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=— Sand-dust Storm and Tropical Cyclone Disaster Sand-dust Storm @

Affected Livestock Risk of Sand-dust Storm of the World by Return Period (10a)
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= Sand-dust Storm and Tropical Cyclone Disaster Sand-dust Storm @

Affected Livestock Risk of Sand-dust Storm of the World by Return Period (50a)
(0.5°x0.5°)
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= Sand-dust Storm and Tropical Cyclone Disaster Sand-dust Storm @

Affected Livestock Risk of Sand-dust Storm of the World by Return Period (10a)
(Comparable-geographic Unit)
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Sand-dust Storm @

Affected Livestock Risk of Sand-dust Storm of the World by Return Period (50a)
(Comparable-geographic Unit)
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= Sand-dust Storm and Tropical Cyclone Disaster Sand-dust Storm @

Affected Livestock Risk of Sand-dust Storm of the World by Return Period (10a)
(Country and Region Unit)
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= Sand-dust Storm and Tropical Cyclone Disaster Sand-dust Storm @

Affected Livestock Risk of Sand-dust Storm of the World by Return Period (50a)
(Country and Region Unit)
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and Yang Yang

1 Background

A tropical cyclone (TC) is a strong low-pressure system
formed on the tropical and subtropical sea surface, with top-
ranking destructiveness among all kinds of meteorological
hazards (Neumann 1993). TC is also referred to typhoon in
Northwest Pacific (NWP) and South China Sea, hurricane in
Northeast Pacific (NEP) and North Atlantic (NA), storm in
North Indian (NI) Ocean and the Bay of Bengal, and TC in
Central Pacific (CP), South Pacific (SP) and South Indian
(SI) Ocean.

Among all basins, NWP is the most active according to
historical records in terms of TC genesis. Annually, more
than 90 TCs are generated, and one-third of them occur in
NWP. During 1900-2012, annually TCs killed 13,000
people and caused 8.5 billion dollars economic loss
(Appendix III, Disasters data 5.4).
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The major hazards and secondary disasters of TC include
wind, precipitation, storm surge, wave, flood, landslide, and
mudslide. The risks of precipitation, storm surge, wave,
flood, and landslide are separately assessed and mapped in
this atlas; therefore, this study only initiates to map the wind-
affected population and GDP risk of TCs of the world.

2 Method

Figure 1 shows the technical flowchart for mapping TC
wind-affected population and GDP risk of the world.

2.1 Intensity

2.1.1 Database

A global 6h TC track database by the year of 2012 is
developed, which includes CMA-track (Appendix III, Haz-
ards data 4.10), HURDAT (Appendix III, Hazards data
4.11), and IBTrACs (Appendix III, Hazards data 4.12). For
NWP, CP, NEP and NA, data from CMA-track and HUR-
DAT are adopted respectively, and for the other 3 basins,
tracks from IBTrACs are used.

For some TCs, critical parameters, e.g., maximum wind
speed (MWS) or radius of maximum wind (RMW), needed
for wind field model are missing. In order to estimate these
missing parameters, empirical regression functions between
Py, and MWS, P, and RMW are developed. In order to
compute wind snapshot by every 10 minutes, the parameters
(longitude, latitude, time, Py, MWS, and RMW) in the best
tracks with 6h time interval are interpolated linearly by every
10-min.

Global Land Cover Characteristics (GLCC) database
(Appendix III, Environments data 2.6) is a global remote-
sensed data collected to derive surface roughness length, a
critical input of wind field model. GTOPO30 is a digital
elevation model for the world (Appendix III, Environments

151

DOI 10.1007/978-3-662-45430-5_8 © Springer-Verlag Berlin Heidelberg and Beijing Normal University Press 2015



152

Fig. 1 Technical flowchart for
mapping tropical cyclone wind
and affected population and GDP
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data 2.1). A global land—sea mask is rasterized into 30 arc
second from a global land vector boundary.

2.1.2 Wind Field Modeling

A parametric wind field model usually consists of a gradient
wind model and a planetary boundary layer (PBL) model. In
general, for risk assessment purpose, PBL model shall
consider both topographic and roughness effects. In addition,
gust factor model is also included for the conversion
between gust wind and sustained wind.

In different ocean basins, a variety of wind field models
have been developed in the past studies. These models are
reviewed in past studies (Fang and Shi 2012; Fang and Lin
2013). And in this study, for each of the seven ocean basins,
one representative model is selected as shown in Table 1.
The modeling parameters, such as TC center location, Py,
MWS, RMW, forward speed (fs), and forward direction (fd)
can be obtained from the best track dataset. A wind profile
parameter, Holland B factor, is computed according to a past
study (Holland 1980). The periphery pressures for each
basin are also listed in Table 1.

The reliability and accuracy of the models therefore rely
on both the validation of the past studies and the parameters
used in this study. However, in NWP, modeled winds are
validated with observed wind of ground station in China.

Population density and GDP of the l Extreme value theory
world B Global 10-mi
e i . obal 10-min
|| Global 3s gust wind maximum sustained
i| at different return wind at different
Affected population B J perlo(ii1 ((j 1 ;)865)021, 50a return periods (10,
and GDPrisk [« 20a, 50a and 100a)

In order to account for topographic effect into PBL
model, topographic effect factors at 8 directions are derived
based on GTOPO30, following wind standard (European
Committee for Standardization 2005). And roughness effect
is modeled by using GLCC data, with their empirical
roughness parameters derived in the past study (Wieringa
1993; Wieringa et al. 2001).

Based on the global TC track dataset and the above
parametric wind field models, the 3s and 10-min wind
footprints of all TCs by the year 2012 in the seven ocean
basins are simulated at spatial resolution of 30 arc second,
with wind field snapshots of every 10 minutes. The recon-
structed historical TC events provide the data basis for wind
intensity and frequency analysis.

2.1.3 Intensity and Frequency

In this study, the wind hazard maps with return periods of
10a, 20a, 50a, and 100a are to be produced. With the
limited historical TC samples, it might become difficult or
even unreliable to produce wind map with return period of
100a.

Based on extreme value theory (EVT), the intensity-
frequency of 3s gust wind and 10-min sustained wind is
analyzed by using Gumbel distribution, for those pixels
with more than 20 historical TC events. Wind hazard maps,
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Table 1 Selected wind field models in the seven ocean basins

Basin  Track Number of Gradient wind PBL model Gust factor Holland B parameter Periphery

duration tracks model model pressure

NWP  1949-2012 2,094 Georgiou et al. Meng et al. (1997) ESDU (1983)  Vickery and 1,010
(1983) Wadhera (2008)

CP 1957-2012 15 Willoughby et al. Meng et al. (1997) ESDU (1983)  Vickery and 1,013
(2006) Wadhera (2008)

NEP 1949-2012 596 Willoughby et al. Meng et al. (1997) ESDU (1983)  Vickery and 1,013
(2006) Wadhera (2008)

NA 18512012 1,450 Willoughby et al. Meng et al. (1997) ESDU (1983)  Vickery and 1,013
(2006) Wadhera (2008)

NI 19722012 263 Georgiou et al. Meng et al. (1997) ESDU (1983) Jakobsen and 1,013
(1983) Madsen (2004)

SP 1970-2012 401 McConochie et al. Harper et al. (2001) ESDU (1983)  Harper and Holland 1,010
(2004) (1999)

SI 1973-2012 408 Georgiou et al. Meng et al. (1997) ESDU (1983) Harper and Holland 1,010
(1983) (1999)

with wind speeds at the return period of annual expecta-
tion, 10a, 20a, 50a, and 100a are produced, based on EVT
modeling output.

2.2 Affected Population and GDP Risks
Affected Population and affected GDP in this study are
defined as the population and GDP within the area of 2-min
sustained winds equal or larger than Beaufort Scale 10. The
2-min sustained winds are computed from 3s gust winds by
considering gust factors.

For each typical return period (10a, 20a, 50a and 100a)
and annual expected, the affected population and GDP can
be estimated by intersecting 2-min wind speeds and global
population (Appendix III, Exposures data 3.1) and GDP
dataset (Appendix III, Exposures data 3.3). The affected

Fig. 2 Expected annual affected population risk of tropical cyclone
wind of the world. / (0, 10 %] China, Philippines, Japan, USA,
Vietnam, South Korea. 2 (10, 35 %] India, Cuba, Mexico, Madagascar,
Dominican Republic, Bangladesh, Haiti, Jamaica, North Korea, New
Zealand, Australia, Canada, Burma, Mauritius, Honduras, Nicaragua. 3
(35, 65 %] Guadeloupe, Bahamas, Mozambique, Guatemala, Thailand,
Laos, Fiji, Russia, Palestine, Indonesia, Belize, Trinidad and Tobago,

population and GDP are aggregated to obtain affected pop-
ulation and GDP at national level.

3 Results

3.1 Wind Hazard

Eleven wind hazard maps are developed, including one map
of track and intensity, and ten maps of 3s gust winds and
10-min winds at return periods of 10a, 20a, 50a, 100a, and
annual expected.

According to these hazard maps, it can be found that the
NWP tops the world in frequency of TC genesis, landing,
and intensity. The most severely affected regions of TC wind
include southeastern Asia, southeastern North America,
Northern Australia, and southwestern Africa. At national

4

Pakistan, Barbados, Papua New Guinea, Saint Lucia, Solomon Islands,
Grenada. 4 (65, 90 %] El Salvador, Antigua and Barbuda, Timor-Leste,
Samoa, Dominica, Cambodia, Saint Vincent and the Grenadines, Sri
Lanka, Tonga, Saint Kitts and Nevis, Oman, Comoros, Costa Rica,
Niue, Cook Islands, Yemen. 5 (90, 100 %] Panama, Malaysia, Bhutan,
Nepal, Baker Island, Tuvalu
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Fig. 3 Expected annual affected GDP risk of tropical cyclone wind of
the world. / (0, 10 %] China, Philippines, Japan, USA, Vietnam, South
Korea. 2 (10, 35 %] India, Cuba, Mexico, Madagascar, Dominican
Republic, Bangladesh, Haiti, Jamaica, North Korea, New Zealand,
Australia, Canada, Burma, Mauritius, Honduras, Nicaragua. 3 (35, 65
%] Guadeloupe, Bahamas, Mozambique, Guatemala, Thailand, Laos,
Fiji, Russia, Palestine, Indonesia, Belize, Trinidad and Tobago,

level, China, Japan, the Philippines, Vietnam, USA, Mexico,
Cuba, Australia, and Madagascar are the countries with the
highest TC wind hazard.

3.2 Affected Population Risk

Five national level affected population maps are developed,
including four maps of affected population at return periods
of 10a, 20a, 50a, 100a, and one map on annual expectation
of affected population.

By zonal statistics of the annual expectation of affected
population, the expected affected population risk of typical
cyclone wind of the world at national level is derived and
ranked (Fig. 2). The top 1 % country with the highest annual
expected affected population risk of TC wind is China, and

|
Pakistan, Barbados, Papua New Guinea, Saint Lucia, Solomon Islands,
Grenada. 4 (65, 90 %] El Salvador, Antigua and Barbuda, Timor-Leste,
Samoa, Dominica, Cambodia, Saint Vincent and the Grenadines, Sri
Lanka, Tonga, Saint Kitts and Nevis, Oman, Comoros, Costa Rica,

Niue, Cook Islands, Yemen. 5 (90, 100 %] Panama, Malaysia, Bhutan,
Nepal, Baker Island, Tuvalu

the top 10 % countries are China, Philippines, Japan, USA,
Vietnam, and South Korea.

33 Affected GDP Risk

By zonal statistics of the annual expectation of affected
GDP, the expected annual affected GDP risk of TC wind of
the world at national level is derived and ranked (Fig. 3).
The top 1 % country with the highest expected annual
affected GDP risk of TC wind is China, and the top 10 %
countries are China, India, USA, Japan, Philippines, and
Bangladesh.

4 Maps
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== Sand-dust Storm and Tropical Cyclone Disaster Tropical Cyclone @

Global 10-minute Maximum Sustained Wind of Tropical Cyclone by Return Period (10a)
(1kmx1km)
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Sand-dust Storm and Tropical Cyclone Disaster Tropical Cyclone @

Global 10-minute Maximum Sustained Wind of Tropical Cyclone by Return Period (50a)
(1kmx1km)
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Sand-dust Storm and Tropical Cyclone Disaster

Tropical Cyclone @

Global 3-second Gust Wind of Tropical Cyclone by Return Period (10a)
(1kmx1km)
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= Sand-dust Storm and Tropical Cyclone Disaster Tropical Cyclone @
Global 3-second Gust Wind of Tropical Cyclone by Return Period (50a)
(1kmx1km)
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Sand-dust Storm and Tropical Cyclone Disaster Tropical Cyclone @

Affected Population Risk of Tropical Cyclone of the World by Return Period (10a)
(Country and Region Unit)
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== Sand-dust Storm and Tropical Cyclone Disaster Tropical Cyclone @

Affected Population Risk of Tropical Cyclone of the World by Return Period (50a)
(Country and Region Unit)
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Part V

Heat Wave and Cold Wave Disasters



Mengyang Li, Zhao Liu, Weihua Dong, and Peijun Shi

1 Background

Heat wave is a period of abnormally and uncomfortably hot
weather (IPCC 2013). Since the 1990s, heat waves have
taken place frequently, having serious impacts on human
health and even leading to mortality. The European heat
wave of 2003 induced more than 70,000 additional deaths in
France, Germany, Italy, Spain, and other countries (Robine
et al. 2008). For Russia as a whole, the death toll of 2010
summer heat wave totaled 55,000 people (Swiss Re 2011).
With global warming, the frequency and intensity of heat
waves have been expected to increase (Meehl and Tebaldi
2004). Heat wave has become one of the most serious cli-
mate events in the world.
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Special Report of the Intergovernmental Panel on Climate
Change (IPCC-SREX) mapped the global warm days, warm
nights, and number of days with maximal temperature larger
than 30 °C (IPCC 2012). IPCC’s Fifth Assessment Report
pointed out that it was very likely that the number of warm
days and nights had increased on the global scale between
1951 and 2010; globally, there was medium confidence that
the length and frequency of warm spells, including heat
waves, have increased. Nevertheless, it is likely that heat
wave frequency has increased over this period in large parts
of Europe, Asia, and Australia (IPCC 2013). Recently,
researchers found that heat waves in northern mid-latitudes
linked to a vanishing cryosphere and the changes of corre-
sponding general atmospheric circulation (Tang et al. 2014).

This study initiatively assesses heat wave mortality risk
of the world at grid (0.75° x 0.75°), comparable geographic
unit and national level based on the disaster system theory
(Shi 1991, 1996, 2002).

2 Method

Figure 1 shows the technical flowchart for mapping heat
wave mortality risk of the world.
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2.1 Intensity
In this study, heat wave at grid level (0.75° x 0.75°) is
defined as the climate process that daily temperature is larger
than a threshold in at least three consecutive days, within
which the highest temperature is at least 3 °C higher than the
threshold. The threshold for each grid is defined as the 95
percentile of daily maximum temperature during 1979-2013
(Appendix III, Hazards data 4.14). If the 95 percentile
temperature is below 25 °C, define the threshold as 25 °C.
Heat wave intensity is measured by two steps: (1) the
probability (p;) that daily temperature reaches the threshold
and (2) number of days (duration) of the heat wave and the
highest temperature in the period. The probability p; for
each grid was fitted with a binominal distribution. For
duration and the highest temperature, Weibull distribution
was employed [Eq. (1)].

) ool -] w0

where f(x) is the Weibull density function and o and /3 are
distribution parameters.

The return period of heat wave of specific duration
highest temperature is defined in Eq. (2).

flx) = (1)

1
1 F(xm)

pP1

(2)

p:

where F(x) is the cumulative Weibull density function.

Durations and highest temperatures of different return
periods (10a, 20a, 50a, and 100a) can be derived using the
inverse of Eq. (2).

2.2 Vulnerability

In this study, mortality vulnerability curves for Boston,
Budapest, Dallas, Lisbon, London, and Sydney were used
(Gosling et al. 2007). 26 regions suggested by IPCC-SREX
were regrouped into six groups in terms of climate type and
latitude zones (IPCC 2012). Each vulnerability curve is
applied to each group of the IPCC-SREX regions to map
heat wave mortality risk of the world. Boston: eastern North
American (Region 5); Lisbon: Mediterranean region (Region
13); London: Western Europe, high latitudes of Northern
Hemisphere (Regions 1, 2, 11, and 18); Sydney: mid- and
high latitudes of Southern Hemisphere (Regions 9, 10, 17,
25, and 26); Dallas: mid- and low latitudes of Northern and
Southern Hemispheres (Regions 4, 6, 7, 8, 14, 15, 16, 19,
20, 21, 22, 23, and 24); Budapest: south and southwest
Europe (Regions 3 and 12) (IPCC 2012).

23 Risk

Heat wave mortality risk of the world is assessed with
Eq. 3):

R=F(Tyu) X P XD

(3)
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where R is the heat wave mortality risk; F represents the
vulnerability function; T},.x refers to the maximum temper-
ature during the heat wave; P refers to the total population of
each grid; and D is the heat wave duration (days).

3 Results

3.1 Intensity

Heat wave intensity is decreasing from the equator to the
poles. The highest temperature area distributes near the lat-
itudes 20°N/S, including North Africa, West Asia, Central
Asia, South Asia, and Oceania. The longest heat wave days
are in Eastern Europe, West Asia, South Asia, North
America, and parts of South America. There is no heat wave
in area near the equator because of the small variation of
daily highest temperature.

Fig. 2 Expected annual mortality risk of heat wave of the world. 7 (0,
10 %] India, Pakistan, United States, Iraq, Russia, Ukraine, Spain,
China, Germany, Turkey, France, Iran, and Poland. 2 (10 %, 35 %]
Egypt, Kazakhstan, Greece, Argentina, Brazil, Romania, Kuwait,
Hungary, Italy, Mexico, Afghanistan, Australia, Mozambique, South
Africa, Serbia, Burma, Algeria, Syria, Uzbekistan, Slovakia, Saudi
Arabia, Portugal, Sudan, Thailand, Turkmenistan, Moldova, Czech
Republic, Zambia, Croatia, Canada, Bulgaria, the Netherlands, and
Malawi. 3 (35 %, 65 %] Tunisia, Zimbabwe, Austria, Belarus,
Morocco, Paraguay, Macedonia, Nigeria, Bosnia and Herzegovina,
Bangladesh, Belgium, Albania, Slovenia, Senegal, Chile, Libya, Oman,
Chad, Tajikistan, South Sudan, Botswana, Niger, Uruguay, Qatar,

3.2 Mortality Risk

High mortality risk areas for heat wave are relatively scat-
tered, distributed mainly in South Asia, Europe, and eastern
North America at the grid level. High latitudes in the
Northern Hemisphere are mainly of lower risk than other
regions.

By zonal statistics of the expected risk result, the
expected annual mortality risk of heat wave of the world at
national level is derived and ranked (Fig. 2). The top 1 %
country with the highest expected annual mortality risk of
heat wave is India, and the top 10 % countries are India,
Pakistan, USA, Iraq, Russia, Ukraine, Spain, China, Ger-
many, Turkey, France, Iran, and Poland.

4 Maps

3 = 5

Vietnam, Madagascar, United Arab Emirates, Nepal, Mauritania,
Japan, Cambodia, Lithuania, Congo (Democratic Republic of the),
Yemen, Angola, Cameroon, Jordan, Sweden, and Eritrea. 4 (65 %,
90 %] Central African Republic, South Korea, Laos, Namibia, Western
Sahara, Montenegro, Uganda, Azerbaijan, Ethiopia, Gaza Strip,
Luxembourg, The Republic of Céte d’Ivoire, Bolivia, North Korea,
Latvia, Switzerland, Guinea, Venezuela, Swaziland, Mali, Finland,
Lesotho, Kyrgyzstan, Ghana, Estonia, Tanzania, Sierra Leone, Indo-
nesia, Israel, Djibouti, Burkina Faso, and Guatemala. 5 (90 %, 100 %]
Lebanon, Colombia, Mongolia, Peru, Guinea-Bissau, Georgia, Congo,
Armenia, Liberia, Papua New Guinea, Malaysia, Kenya, and Ecuador
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=== Heat Wave and Cold Wave Disasters Heat Wave @

Duration of Global Heat Wave by Return Period (10a)
(0.75°%0.75°)
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=== Heat Wave and Cold Wave Disasters Heat Wave @

Duration of Global Heat Wave by Return Period (50a)
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Heat Wave and Cold Wave Disasters

Maximum Temperature of Global Heat Wave by Return Period (10a)
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=== Heat Wave and Cold Wave Disasters Heat Wave @

Mortality Risk of Heat Wave of the World by Return Period (10a)
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=== Heat Wave and Cold Wave Disasters

Mortality Risk of Heat Wave of the World by Return Period (50a)
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=== Heat Wave and Cold Wave Disasters Heat Wave @

Mortality Risk of Heat Wave of the World by Return Period (10a)
(Comparable-geographic Unit)
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=== Heat Wave and Cold Wave Disasters Heat Wave @

Mortality Risk of Heat Wave of the World by Return Period (50a)
(Comparable-geographic Unit)
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=== Heat Wave and Cold Wave Disasters Heat Wave @

Mortality Risk of Heat Wave of the World by Return Period (10a)
(Country and Region Unit)
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=== Heat Wave and Cold Wave Disasters Heat Wave @

Mortality Risk of Heat Wave of the World by Return Period (50a)
(Country and Region Unit)
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Lili Lu, Zhu Wang, and Peijun Shi

1 Background

At present, the studies on cold wave disaster focus on two
aspects: the spatial-temporal distribution characteristics of
cold wave and the cold wave demographic disaster risk. In
the study of spatial-temporal distribution, the fourth IPCC
report indicated that the occurrence of cold day, cold night,
and frost is most certainly decreasing within most parts of
continents. The cold wave events and the resulting mortali-
ties both show downward trends (IPCC 2007, 2012). How-
ever, the opposite view exits that the occurrence of the cold
waves has an obvious rising trend (0.064 per year, p < 0.01)
and so does the casualties (25.59 per year, p < 0.01) through
analyzing the global historical data, and they believe the
instability of climate systems under the global warming
background makes the cold wave disaster more severe and
more damaging (Song et al. 2013).

In the aspect of cold wave population, during the period
of late 1980s to early 1990s, few studies concerned about the
health risk caused by extreme temperature (WHO 2003).
With growing understanding of the global climate warming
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and more frequently awareness of extreme temperature
disasters in recent years, people began to pay more attention
to the adverse effects on human health and safety caused by
extreme temperature disasters (Rocklov et al. 2011).

The European Union (EU) launched the INTERREG III
INTERACT project, which gave the extreme temperature
hazard risk distribution maps and indicated regions with
fortification capacity within EU, based on the factors as
temperature and duration of heat wave and cold wave.
However, the cold wave risk was not evaluated in this
project (ESPON 2006). As so far, among all the large-scale
disaster risk database and disaster risk atlas, such as the
PreventionWeb, the Disaster Risk Index (DRI) report by
UNDP, and the hotspots atlas and Web site developed by
Columbia University, there have not been any published
quantitative or qualitative cold wave risk map at the global
scale (UNDP 2004; Center For Hazards & Risk Research
2014; PreventionWeb 2014).

In summary, current researches on cold waves are limited
in the spatial-temporal distribution characteristics of cold
wave, the relationship between mortality and extreme cold at
the regional scale, and the mapping of the regional extreme
temperature hazard risk distribution, yet lack in-depth study
of the spatial distribution of the population caused by cold
waves. Based on classical disaster system theory (Shi 1991,
1996, 2002), mapping affected population risk of cold wave
is initially performed at global scale.

2 Method

Figure 1 shows the technical flowchart for mapping affected
population risk of cold wave of the world.
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Fig. 1 Technical flowchart for
mapping affected population risk
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2.1 Intensity

In this study, excluding summer temperatures, analyzing
spring, fall, and winter temperatures in the 1979-2013 record
(Appendix III, Hazards data 4.14), for each grid, the 10th
percentile temperature (7y,) was defined as the threshold
temperature to determine whether a cold wave occurs in each
grid. If the grid temperature 7 is below Ty, for 3 or more
consecutive days, it is considered that a cold wave occurs. It
is assumed that cold wave does not occur in the areas with
Tth >15°C. A hazard database with the information on lowest
temperature, temperature drop (TD), and duration of each
cold wave process was established for each grid. The con-
cepts of concentration degree and concentration period used
in precipitation study (Wang et al. 2013) were adopted to
further investigate the global distribution pattern of
cold wave. In this way, the two distributing characteristic
parameters, cold wave occurrence concentration degree
(CCD) and cold wave occurrence concentration period
(CCP), were introduced to characterize the likelihood of cold
wave occurrence in a month in each grid, shown from
Egs. (1) and (2):

CCD; = r;/R (1)

(2)

where R is the total number of cold wave occurrences in one

grid from 1979 to 2013; r; is the total occurrence of the ith
month in the past 35 years: and i is the number of each
month, starting with January as 1 and ending with December
as 12 (i=1, 2, ..., 12).

CCP; =i

Due to the significant differences in thermal conditions of
different climate zones, extremely low temperature varies
largely in different regions. Minimum extreme temperature
is relatively high in a low-latitude region. With the
increasing of latitude, the related extreme minimum tem-
perature decreases gradually. The extreme minimum tem-
perature can reach —70 °C in continental high latitudes and
polar regions. Therefore, in this study, instead of minimum
temperature, temperature drop (TD) was used in the intensity
assessment, shown in Eq. (3).

TD(i,j) = Tun(i,j) = Tiin (i.)) (3)
where TD is a positive number representing the largest
temperature drop of the jth cold wave which happens in the
ith year; Tpn(i, j) is the lowest minimum temperature of
the jth cold wave which happens in the ith year; Ty(i, j) is
the TD of the jth cold wave which happens in the ith year.

The intensity assessment of cold wave adopted the
extreme value distribution theory to calculate the return
period. This study selected the maximum annual TD of the
world recorded from 1979 to 2013 as the extreme value
samples, fitted the extreme value samples using Weibull
distribution, and calculated the corresponding return period
under certain extreme TD using Eqs. (4) and (5):

-5 e[




Mapping Cold Wave Risk of the World

where f(x) is the probability density function, F(x) is the
cumulative probability function, rp is the return period with
certain extreme value x,,. The distribution parameters were
estimated by using the method of maximum-likelihood and
the corresponding temperature drop with return periods of
10, 20, 50, and 100 years and the expected temperature drop
were calculated using the inverse function of Eq. (5).

2.2 Exposure

The United Nations Development Programme (UNDP)
established multivariate linear vulnerability curves by con-
sidering various social vulnerability factors such as GDP,
social development index, and urbanization rate and so on.
Based on these curves, the disaster risk index (DRI) of
various disasters at the global scale were evaluated (UNDP
2004). Based on the 1979-2012 EM-DAT cold wave
disaster event database (Appendix III, Disasters data 5.4), 10
indices, including GDP, urban—rural demographic ratio, the
employment rates, demographic rates of children under 14,
elderly, and women (World Bank 2014) , Population density
(Pop), TD, duration and minimum temperature of cold wave,
were selected for the multivariate linear regression analysis,
to obtain demographic vulnerability curve affected by cold
wave at global scale, as shown in Eq. (8).

In(y) = —11.401 + 22.977In(Pop) + 0.174TD ~ (8)

Table 1 Multiple logarithmic regression model for cold wave

Parameters B p-value
Intercept —11.401 0.000
In(Pop) 22.977 0.000
TD 0.174 0.002

R =0.799, R* =0.638, adjusted R> = 0.620
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where y is the affected population; In(Pop) is the normalized
value of In(Pop) by min—max normalization method; TD is
the temperature drop. As shown in Table 1, all indicators in
the formula passed the significant test and the R? value of the
whole model reached 0.638.

3 Results

3.1 Intensity

The highest temperature drop intensity mainly concentrated in
two areas. One is Western Siberia near Kara Sea and Central
Siberia, and the other is Alaska region near Bering Sea,
Yukon territory, British Columbia, Alberta area, Montana
region in United States, etc. The annual temperature drop in
these two areas could be more than 9 'C which significantly
severer than other regions of the world (include Antarctica).

3.2 Affected Population Risk

Globally, the regions with highlevel expected annual affec-
ted population risk at the grid scale are mainly concentrated
in theses areas: North China plain, South-East China plain,
North-East mountain of Indian, Bangladesh, North-west
plain of Indian, Pakistan, Central and Southern mountain of
China, Central Plateau of Indian, Western mountain of
United States, and Germany.

By zonal statistics of the expected risk result, the expected
annual affected population risk by cold wave of the world at
national level is derived and ranked (Fig. 2). The top 1 %
countries with the highest expected annual affected popula-
tion risk by cold wave are China and India, and the top 10 %
countries are China, India, United States, Russia, Pakistan,
Bangladesh, Brazil, Mexico, Germany, Egypt, Japan, South
Korea, Iran, United Kingdom, Turkey, and Ukraine.
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Fig. 2 Expected annual affected population risk of cold wave of the
world. 1 (0, 10 %] China, India, United States, Russia, Pakistan,
Bangladesh, Brazil, Mexico, Germany, Egypt, Japan, South Korea,
Iran, United Kingdom, Turkey, Ukraine. 2 (10, 35 %] France, Ethiopia,
Canada, Nigeria, Vietnam, Poland, Argentina, Italy, Nepal, South
Africa, Burma, Spain, Afghanistan, Iraq, Kenya, Uzbekistan, Demo-
cratic Republic of the Congo, Thailand, Indonesia, Colombia, Roma-
nia, Kazakhstan, Saudi Arabia, Algeria, North Korea, Syria, Uganda,
Sudan, Morocco, Tanzania, the Netherlands, Chile, Czech Republic,
Belgium, Belarus, Yemen, Hungary, Australia, Congo. 3 (35, 65 %]
Venezuela, Guatemala, Cameroon, Serbia, Mozambique, Philippines,
Rwanda, Niger, Madagascar, Malawi, Austria, Peru, Israel, Ecuador,
Sweden, Jordan, Tajikistan, Dominican Republic, Cuba, Burundi,
Tunisia, Zimbabwe, Paraguay, Bolivia, Switzerland, Kyrgyzstan,

4 Maps

Zambia, Slovakia, Finland, Moldova, Bulgaria, El Salvador, Portugal,
Haiti, Honduras, Bosnia and Herzegovina, Croatia, Denmark, Lithu-
ania, Turkmenistan, Azerbaijan, Georgia, Greece, Norway, Chad,
Angola. 4 (65, 90 %] Eritrea, Laos, Armenia, Senegal, Ireland, Costa
Rica, Libya, Latvia, Albania, Guinea, Burkina Faso, Mali, Mongolia,
Nicaragua, Central African Republic, Lebanon, Oman, New Zealand,
Slovenia, Papua New Guinea, Kuwait, Lesotho, The Republic of Cote
d’Ivoire, South Sudan, Macedonia, Malaysia, Sierra Leone, Somalia,
Namibia, Uruguay, Botswana, Sri Lanka, Liberia, Cyprus, Swaziland,
Qatar, Mauritania, Cambodia, Estonia. 5 (90, 100 %] Montenegro,
Panama, Bhutan, Gabon, Western Sahara, Equatorial Guinea, Fiji,
United Arab Emirates, Belize, Iceland, Bahamas, Palestine, Djibouti,
Guyana, Cape Verde, Suriname
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=== Heat Wave and Cold Wave Disasters

Cold Wave @
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Global Temperature Drop by Return Period (10a)
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Global Temperature Drop by Return Period (50a)
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Affected Population Risk of Cold Wave of the World by Return Period (10a)
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Affected Population Risk of Cold Wave of the World by Return Period (50a)
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Affected Population Risk of Cold Wave of the World by Return Period (10a)
(Comparable-geographic Unit)
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Affected Population Risk of Cold Wave of the World by Return Period (50a)
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Affected Population Risk of Cold Wave of the World by Return Period (10a)
(Comparable-geographic Unit)
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Affected Population Risk of Cold Wave of the World by Return Period (50a)
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Part VI

Drought Disasters



Yuanyuan Yin, Xingming Zhang, Han Yu, Degen Lin, Yaoyao Wu,

and Jing’ai Wang

1 Background

Drought is one of the disasters that most widely affect and
damage agricultural production in the world. Nearly half of
the countries in the world bear severe drought (UNDP 2004;
Moss et al. 2008). There is very serious drought in North
America, Mexico, central and southern part of Africa, part of
South America, and in northern part of China (IPCC 2012).
Research shows that under the background of climate
warming many regions in the world have an increasing risk
of future drought because of the reduced precipitation and
aggravating evaporation (IPCC 2012, 2013).

Agricultural drought risk, which is defined as the possible
yield loss of crops exposed to drought, can be considered as
the probability of the occurrence of agricultural drought and
the negative impact on agricultural production (Yin et al.
2014). The drought risk of food production was assessed

Mapping Editors: Jing’ai Wang (Key Laboratory of Regional
Geography, Beijing Normal University, Beijing 100875, China),
Chungin Zhang (School of Geography, Beijing Normal University,
Beijing 100875, China), Yin Zhou (Key Laboratory of Regional
Geography, Beijing Normal University, Beijing 100875, China) and
Fang Chen (School of Geography, Beijing Normal University, Beijing
100875, China).

Language Editor: Wei Xu (Key Laboratory of Environmental
Change and Natural Disaster, Ministry of Education, Beijing Normal
University, Beijing 100875, China).

Y. Yin - J. Wang (X))

Key Laboratory of Regional Geography,

Beijing Normal University, Beijing 100875, China
e-mail: jwang@bnu.edu.cn

X. Zhang - H. Yu - D. Lin - Y. Wu
School of Geography, Beijing Normal University, Beijing 100875,
China

P. Shi and R. Kasperson (eds.), World Atlas of Natural Disaster Risk,
IHDP/Future Earth-Integrated Risk Governance Project Series,

based on drought frequency and intensity, production levels,
and adaptability at global scale (Li et al. 2009). Assessing
and mapping maize yield loss risk of drought of the world
were made based on GEPIC-Vulnerability-Risk (GEPIC-V-
R) model (Yin et al. 2014).

In this study, the maize yield loss risk of drought at global
scale is assessed and mapped based on the GEPIC-V-R
model developed by Yin et al. (2014). The vulnerability of
maize to drought is simulated at grid level (0.5° x 0.5°),
which improved the spatial resolution compared with the
work of Yin et al. (2014).

2 Method

Figure 1 shows the technical flowchart for mapping maize
yield loss risk of drought of the world.

2.1 Model

In the GEPIC-V-R model (Yin et al. 2014), drought risk is
treated as the function of hazard, vulnerability of exposure,
and environment (Eq. 1):

R=f(E,H,V) = H{(P,hg)} x V{{lg;he)} (1)
where E is the sensitivity of environment; H is the drought;
V is the vulnerability; P is the occurrence probability of
drought; hg is the drought intensity index; and /g is the loss
rate. H{(P,hg)} is the drought intensity under a certain
probability. V{(lg, hg)} determines the relationship between
hg and [.

GEPIC-V-R model is a crop risk assessment model for
large scale (i.e., regional, national, continental, and global)
with functions to fit vulnerability curves and calculate risk.
In this model, there are four modules: model calibration
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Fig. 1 The technical flowchart for mapping maize yield loss risk of drought of the world
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Fig. 2 Examples of vulnerability curve of maize to drought
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Fig. 3 Expected annual maize yield loss risk of drought of the world. /
(0, 10 %]. USA, China, Russia, Brazil, Spain, Afghanistan, Kenya,
Argentina, Mexico, Turkey, Ukraine, Kazakhstan, Iraq, South Africa,
and Australia. 2 (10, 35 %]. Tanzania, Peru, India, Namibia, Sudan,
Ethiopia, Chile, Bolivia, Iran, Indonesia, France, Portugal, Somalia,
Italy, Turkmenistan, Poland, Uzbekistan, Pakistan, Angola, Syria,
Senegal, Germany, Mauritania, Kyrgyzstan, Yemen, Zimbabwe,
Greece, Chad, Egypt, Ecuador, Tajikistan, Burma, Canada, Botswana,
Nigeria, and Morocco. 3 (35, 65 %]. Eritrea, Mali, Saudi Arabia,
Burkina Faso, Mozambique, Serbia, Uruguay, Vietnam, Hungary,
Azerbaijan, Bosnia and Herzegovina, Belarus, Laos, Bulgaria, Nepal,
Albania, Israel, Croatia, Venezuela, Uganda, Lesotho, South Sudan,
Thailand, Lebanon, Romania, Congo (Democratic Republic of the),

module, hazard module, vulnerability module, and risk cal-
culation module (Yin et al. 2014).

Data for assessing the maize yield loss risk by drought of
the world consist of crop growth environment data
(Appendix III, Environments data 2.1, 2.2 and 2.7, Appen-
dix III, Hazards data 4.15), crop management data (Appen-
dix III, Environments data 3.13-3.16), crop species attribute
data (Appendix III, Environments data 3.18), and actual
yield data (Appendix III, Environments data 3.17).

2.2 Spatial Resolution

Compared with the work of Yin et al. (2014), the vulnerability
of maize to drought is simulated at grid level (0.5° x 0.5°)
instead of the regional level, which greatly improves the
spatial resolution. Furthermore, the maize exposure is calcu-
lated and mapped at 5’ x 5’ grid level in this study instead of
0.5° x 0.5° grid level done by Yin et al. (2014).

3 Results
3.1 Intensity
Areas with high value of drought intensity on maize mainly

distribute in a band along Mongolian Plateau, the Hindu
Kush Mountains, Asia Minor peninsula, Balkan Peninsula,
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Gaza Strip, Benin, Macedonia, Czech Republic, Dominican Republic,
Paraguay, Montenegro, the Netherlands, Slovakia, Gambia, Zambia,
Georgia, Honduras, Cameroon, Nicaragua, New Zealand, and Cuba. 4
(65, 90 %]. Madagascar, Moldova, the Republic of Céte d’Ivoire,
Central African Republic, Jordan, Colombia, Algeria, Philippines,
Swaziland, Malawi, Libya, Armenia, South Korea, Guinea-Bissau,
Malaysia, Sri Lanka, Austria, Haiti, Belgium, Guyana, Guinea, North
Korea, Togo, Guatemala, El Salvador, Switzerland, Niger, Slovenia,
Luxembourg, Ghana, Mongolia, Belize, Kuwait, Jamaica, Timor-Leste,
and Costa Rica. 5 (90, 100 %]. Congo, Rwanda, Burundi, Bangladesh,
Gabon, Finland, Trinidad and Tobago, San Marino, Lithuania, Latvia,
Cambodia, Sierra Leone, Panama, and Bhutan

Apennine peninsula and Iberian Peninsula in Asia and
Europe, the Great Rift Valley and east margin of the Namib
Desert in Africa, the Rocky Mountains, central part of
Mexico Plateau, northeast of Brazil Plateau and the Andes
Mountains in America, and Murray River Basin in Oceania.

3.2 Vulnerability

Based on the GEPIC-V-R model, vulnerability curves of
maize to drought for each grid (0.5° x 0.5°) are fitted. Fig-
ure 2 shows the vulnerability curves of some selected grids.

3.3 Risk

By zonal statistics of the expected risk result, the expected
annual maize yield loss risk of drought of the world at
national level is derived and ranked (Fig. 3). The top 1 %
country with the highest expected annual maize yield loss
risk of drought is USA, and the top 10 % countries are USA,
China, Russia, Brazil, Spain, Afghanistan, Kenya, Argen-
tina, Mexico, Turkey, Ukraine, Kazakhstan, Iraq, South
Africa, and Australia.

4 Maps
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Maize Yield Loss Risk of Drought of the World by Return Period (10a)
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=— Drought Disasters Maize @

Maize Yield Loss Risk of Drought of the World by Return Period (10a)
(Comparable-geographic Unit)
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Maize Yield Loss Risk of Drought of the World by Return Period (50a)
(Comparable-geographic Unit)
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=— Drought Disasters Maize @

Maize Yield Loss Risk of Drought of the World by Return Period (10a)
(Country and Region Unit)
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and Jing’ai Wang

1 Background

Drought is one of the disasters that most widely affect and
damage agricultural production in the world. Nearly half of
the countries in the world bear severe drought (UNDP 2004;
Moss et al. 2008). There is very serious drought in North
America, Mexico, central and southern part of Africa, part of
South America, and in northern part of China (IPCC 2012).
Research shows that under the background of climate
warming many regions in the world have an increasing risk
of future drought because of the reduced precipitation and
aggravating evaporation (IPCC 2012, 2013).

Agricultural drought risk, which is defined as the possible
yield loss of crops exposed to drought, can be considered as
the probability of the occurrence of agricultural drought and
the negative impact on agricultural production (Yin et al.
2014). The drought risk of food production was assessed
based on drought frequency and intensity, production levels,
and adaptability at global scale (Li et al. 2009). Assessing
and mapping maize drought risk of the world were made
based on GEPIC-Vulnerability-Risk (GEPIC-V-R) model
(Yin et al. 2014).
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Geography, Beijing Normal University, Beijing 100875, China),
Chungin Zhang (School of Geography, Beijing Normal University,
Beijing 100875, China) and Shujuan Cui (School of Geography,
Beijing Normal University, Beijing 100875, China).
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Change and Natural Disaster, Ministry of Education, Beijing Normal
University, Beijing 100875, China).
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In this study, the wheat yield loss risk of drought at global
scale is assessed and mapped based on the GEPIC-V-R
model developed by Yin et al. (2014). The vulnerability of
wheat to drought is simulated at grid level (0.5° x 0.5°),
which improved the spatial resolution compared with the
work of Yin et al. (2014).

2 Method

Figure 1 shows the technical flowchart for mapping wheat
yield loss risk of drought of the world.

2.1 Model

In the GEPIC-V-R model (Yin et al. 2014), drought risk is
treated as the function of hazard, vulnerability of exposure,
and environment (Eq. 1).

R=f(E,H,V)=H{(P, hg)} x V{(lg, he)} (1)
where E is the sensitivity of environment; H is the drought;
Vis vulnerability; P is the occurrence probability of drought;
hg is the drought intensity index; and Iz is the loss rate.
H{(P, hg)} is the drought intensity under a certain proba-
bility. V{(lg, hg)} determines the relationship between hg
and [g.

GEPIC-V-R model is a crop risk assessment model for
large scale (i.e., regional, national, continental, and global)
with functions to fit vulnerability curves and calculate risk.
In this model, there are four modules: model calibration
module, hazard module, vulnerability module, and risk cal-
culation module (Yin et al. 2014).

Data for assessing the wheat yield loss risk by drought of
the world consist of crop growth environment data
(Appendix III, Environments data 2.1, 2.2, and 2.7,
Appendix III, Hazards data 4.15), crop management data
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Fig. 1 The technical flowchart .
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(Appendix III, Environments data 3.13-3.16), crop species
attribute data (Appendix III, Environments data 3.18), and
actual yield data (Appendix III, Environments data 3.17).

2.2 Spatial Resolution

Compared with the work of Yin et al. (2014), the vulnerability
of wheat to drought is simulated at grid level (0.5° x 0.5°)
instead of the regional level which greatly improves the
spatial resolution. Furthermore, the wheat exposure is cal-
culated and mapped at 5’ x 5" grid level in this study, instead
of 0.5° x 0.5° grid level done by Yin et al. (2014).

3 Results
3.1 Intensity
Areas with high value of drought intensity on spring wheat is

mainly distributed in Mongolian Plateau, Indian River plains
in Asia, Mexican plateau in North America and Andes

Mountains in South America, Mediterranean coast, the Great
Rift Valley, and Orange River Basin in Africa. Areas with
high value of drought intensity on winter wheat is mainly
distributed in the hemisphere of 30°N-60°N, including the
Hindu Kush Mountains in Central Asia, Great Britain, Paris
Basin and North European Plain in Europe, and the Rocky
Mountains in America.

3.2 Vulnerability

Based on the GEPIC-V-R model, vulnerability curves of
wheat to drought for each grid (0.5° x 0.5°) are fitted
(Fig. 2).

3.3 Risk

By zonal statistics of the expected risk result, the expected
annual wheat yield loss risk of drought of the world at
national level is derived and ranked (Fig. 3). The top 1 %
country with the highest expected annual wheat yield loss
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Fig. 3 Expected annual wheat yield loss risk of drought of the world.
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the Netherlands, Gaza Strip, Sweden, Tunisia, Denmark, Nepal,
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China, Russia, USA, Kazakhstan, Canada, Kenya, Mongo-
lia, Pakistan, Mexico, Chile, South Africa, and Afghanistan.

Drought intensity index

0.5°%0.5° grid (central coordinate: 116.75°E,
38.75°N) in East Asia (winter wheat)

Drought intensity index

0.5°x0.5° grid (central coordinate: 68.75°E,
29.75°N) in Middle Asia (spring wheat)

o0s o or 0 o 1 L] o1 LH ay o4 os o8 ar os o 1
Drought intensity index

0.5°%0.5° grid (central coordinate: 1.75°E,
49.75°N) in West Europe (winter wheat)

Loss Rate ( 100%)

0.3 3‘6 ar n‘: ﬂ‘i 1 d n.l 02 D‘: 0‘( O‘h c'a ar ﬂ-l 3‘9 1
Drought intensity index
0.5°x0.5° grid (central coordinate: 107.75°W,
51.75°N) in North America (spring wheat)

Lesotho, Norway, Belarus, Paraguay, Ireland, Oman, Nigeria, Lithu-
ania, Niger, Belgium, Azerbaijan, Uganda, Ecuador, Latvia, Estonia,
and South Sudan. 4 (65, 90 %]. Malawi, Bosnia and Herzegovina,
Armenia, Czech Republic, Serbia, Japan, Georgia, Zambia, Montene-
gro, Romania, Macedonia, Kuwait, Bhutan, Bulgaria, Croatia,
Botswana, Mali, Guatemala, Honduras, Hungary, Luxembourg, South
Korea, Slovenia, Madagascar, Thailand, Albania, Vietnam, Somalia,
and Swaziland. 5 (90, 100 %]. Slovakia, Austria, Laos, Bangladesh,
Switzerland, Cameroon, San Marino, Mozambique, Moldova,
El Salvador, Colombia, and Burundi

4 Maps
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=== Drought Disasters Wheat @

Global Drought Intensity for Wheat by Return Period (10a)
(0.5°x0.5°)
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=== Drought Disasters Wheat @

Global Drought Intensity for Wheat by Return Period (50a)
(0.5°x0.5°)
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=== Drought Disasters Wheat @

Wheat Yield Loss Risk of Drought of the World by Return Period (10a)
(0.5°x0.5°)
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Drought Disasters
Wheat Yield Loss Risk of Drought of the World by Return Period (50a)
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== Drought Disasters Wheat @

Wheat Yield Loss Risk of Drought of the World by Return Period (10a)
(Comparable-geographic Unit)
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== Drought Disasters Wheat @

Wheat Yield Loss Risk of Drought of the World by Return Period (50a)
(Comparable-geographic Unit)
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o

Drought Disasters

Wheat Yield Loss Risk of Drought of the World by Return Period (10a)
(Country and Region Unit)

o o 30" B0 80’ 120 150" 180" W 150"

W w W
AMRC TEC \(J C E AN

T aNET TV

|
i
i
|
i
i
13
|
i
|
F
|

ac E 4N

o 30 60" 80" 1200 150* E 180" W 150* 120° a0* B0 a

0 1000 2000 miles

Risk Index [ 1>0.50 [10.50-0.30 [ 10.10-0.30 [__10.01-0.10 [ ]<0.01 [ INo Wheat o 10002000 kilometers

Wheat Yield Loss Risk of Drought of the World by Return Period (20a)
(Country and Region Unit)

120 150" E1BO°W 150 120 80"
bl o - - .
—_—— - AR CTIC \OCE AN

300

e

.........

o 3 60" a0 120* 150* E 180" w 150° 1200 80" 60" 0 o

0 1000 2000 miles

Risk Index [71>0.50 [10.50-0.30 [ 10.10-0.30 [__10.01-0.10 [ ]<0.01 [ INo Wheat o 10002000 kilometers



Mapping Drought Risk (Wheat) of the World 241

Wheat @

== Drought Disasters

Wheat Yield Loss Risk of Drought of the World by Return Period (50a)
(Country and Region Unit)
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1 Background

Drought is one of the disasters that most widely affect and
damage agricultural production in the world. Nearly half of
the countries in the world bear severe drought (UNDP 2004;
Moss et al. 2008). There is very serious drought in North
America, Mexico, central and southern part of Africa, part of
South America, and in northern part of China (IPCC 2012).
Research shows that under the background of climate
warming many regions in the world have an increasing risk
of future drought because of the reduced precipitation and
aggravating evaporation (IPCC 2012, 2013).

Agricultural drought risk, which is defined as the possible
yield loss of crops exposed to drought, can be considered as
the probability of the occurrence of agricultural drought and
the negative impact on agricultural production (Yin et al.
2014). The drought risk of food production was assessed
based on drought frequency and intensity, production levels,
and adaptability at global scale (Li et al. 2009). Assessing
and mapping rice yield loss risk of drought of the world were
made based on GEPIC-Vulnerability-Risk (GEPIC-V-R)
model (Yin et al. 2014).
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Geography, Beijing Normal University, Beijing 100875, China),
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Normal University, Beijing 100875, China) and Fang Chen (School
of Geography, Beijing Normal University, Beijing 100875, China).
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Change and Natural Disaster, Ministry of Education, Beijing Normal
University, Beijing 100875, China).
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P. Shi and R. Kasperson (eds.), World Atlas of Natural Disaster Risk,
IHDP/Future Earth-Integrated Risk Governance Project Series,

In this study, the rice yield loss risk of drought at global
scale is assessed and mapped based on the GEPIC-V-R
model developed by Yin et al. (2014). The vulnerability of
rice to drought is simulated at grid level (0.5° x 0.5°), which
improved the spatial resolution compared with the work of
Yin et al. (2014).

2 Method

Figure 1 shows the technical flowchart for mapping rice
yield loss risk of drought of the world.

2.1 Model

In the GEPIC-V-R model (Yin et al. 2014), drought risk is
treated as the function of hazard, vulnerability of exposure,
and environment (Eq. 1).

R:f(Evva):H{<thE>}x V{<lEahE>} (1)

Where E is the sensitivity of environment; H is the
drought; V is the vulnerability; P is the occurrence proba-
bility of drought; &g is the drought intensity index; and I is
the loss rate. H{(P,hg)} is the drought intensity under a
certain probability. V{(lg,hg)} determines the relationship
between Ay and [g.

GEPIC-V-R model is a crop risk assessment model for
large scale (i.e., regional, national, continental, and global)
with functions to fit vulnerability curves and calculate risk.
In this model, there are four modules: model calibration
module, hazard module, vulnerability module, and risk cal-
culation module (Yin et al. 2014).
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Fig. 1 The technical flowchart .

for mapping rice yield loss risk by Hazard Vulnerability
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Data for assessing the rice yield loss risk by drought of
the world consist of crop growth environment data
(Appendix III, Environments data 2.1, 2.2 and 2.7, Appen-
dix III, Hazards data 4.15), crop management data (Appen-
dix III, Environments data 3.13-3.16), crop species attribute
data (Appendix III, Environments data 3.18), and actual
yield data (Appendix III, Environments data 3.17).

2.2 Spatial Resolution

Compared with the work of Yin et al. (2014), the vulnera-
bility of rice to drought is simulated at grid level
(0.5° x 0.5°) instead of the regional level which greatly
improves the spatial resolution. Furthermore, the rice expo-
sure is calculated and mapped at 5’ x 5' grid level in this
study, instead of 0.5° x 0.5° grid level done by Yin et al.
(2014).

3 Results

3.1 Intensity

Areas with high value of drought intensity on rice mainly
distribute in the Hindu Kush Mountains and the Deccan
plateau of Asia, Niger Basin of western Africa and Great
Rift Valley of East Africa, Iberian Peninsula and Don river
basin of Europe, Darling Basin at east of Australia and
northeast of Brazil Plateau, and Pampas plains in America.

3.2 Vulnerability

Based on the GEPIC-V-R model, vulnerability curves of rice
to drought for each grid (0.5° x 0.5°) are fitted. Figure 2
shows the vulnerability curves of some selected grids.
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Fig. 2 Examples of vulnerability curve of rice to drought

Fig. 3 Expected annual rice yield loss risk of drought of the world.
1 (0, 10 %]. Afghanistan, China, Spain, Pakistan, Tanzania, India,
Russia, Brazil, Burkina Faso, Australia, and Kazakhstan. 2 (10, 35 %].
Uzbekistan, Turkmenistan, Portugal, Iran, Iraq, Nigeria, USA, Chile,
Peru, Turkey, Senegal, Mali, Tajikistan, Madagascar, Morocco,
Ukraine, Uruguay, Indonesia, France, Egypt, Italy, Argentina, Mexico,
Niger, Mauritania, Mozambique, and Japan. 3 (35, 65 %]. Kenya,
Paraguay, Cuba, Vietnam, French Guiana, Bolivia, South Korea,
Greece, Kyrgyzstan, Sri Lanka, Dominican Republic, Haiti, Laos,
Uganda, Philippines, Azerbaijan, Honduras, Nicaragua, Gambia,

33 Risk

By zonal statistics of the expected risk result, the expected
annual rice yield loss risk of drought of the world at national
level is derived and ranked (Fig. 3). The top 1 % country with
the highest expected annual rice yield loss risk of drought is

Drought intensity index

0.5°x0.5° grid (central coordinate: 67.25°W,
16.25°S)in South America

o5 o8 or o8 09 1 L] o1

03 -1} o5 06 or o8 09 1

Drought intensity index
0.5°x0.5° grid (central coordinate: 146.75°E,
35.25°S) in Oceania

02

Nepal, Colombia, Zambia, the Republic of Coéte d’Ivoire, Guinea-
Bissau, North Korea, Cambodia, Burma, Guatemala, Thailand, Congo
(Democratic Republic), Guyana, and El Salvador. 4 (65, 90 %]. Benin,
Ecuador, Timor-Leste, Venezuela, Ghana, Malawi, Macedonia, Belize,
Togo, Cameroon, Bulgaria, Bangladesh, Bhutan, Burundi, Malaysia,
Suriname, Trinidad and Tobago, Hungary, Costa Rica, Romania,
Central African Republic, Angola, Chad, Armenia, and Congo. 5 (90,
100 %]. San Marino, Zimbabwe, Rwanda, Albania, South Sudan,

Mongolia, Sierra Leone, Panama, Liberia, Gabon, and Brunei
Darussalam

Afghanistan, and the top 10 % countries are Afghanistan,
China, Spain, Pakistan, Tanzania, India, Russia, Brazil,
Burkina Faso, Australia, and Kazakhstan.

4 Maps
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=— Drought Disasters Rice @

Global Drought Intensity for Rice by Return Period (10a)
(0.5°x0.5°)

[ 30 E0° o0 20" 150 E180°W 1507 120° 20" B
w0 — L g

AkRecrrc \ocEA4dN
2 o

ATLANYIC 3 i
I'NDIAN -

“&6' ' @ 2l 0CEAN

\
OCEAN

] 1000 2000 miles

Intensity Index [l>0.40 [ 0.20-0.40 [ 10.10-0.20 [_10.01-0.10 [ <0.10 0 10002 000 kilometers

Global Drought Intensity for Rice by Return Period (20a)
(0.5°x0.5°)

o 30 & %0 20 1500 E180°W 1500 120 90 s 30° i
T
AR C Tl C \OCEAN

ATLANTAC

OCEAN

PG q Ieaf
------------------------ v — iy
QC E AN

0 1000 2000 miles

Intensity Index =040 [0.20-0.40 [ ]0.10-0.20 [_10.01-0.10 [ <0.10 0 10002 000 kilometers



248 X. Zhang et al.

Drought Disasters Rice @

Global Drought Intensity for Rice by Return Period (50a)
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Yongchang Meng, Ying Deng, and Peijun Shi

1 Background

Forest wildfire is one of the most severe natural hazards. It
can start and spread quickly in an uncontrollable way and
cause extensive losses and damages. Currently, the occur-
rence of forest wildfires around the world is over 200
thousand per year, with burned areas of 3.5-4.5 million kmz,
which is approximately equal to the sum of the land areas of
India and Pakistan and is greater than half of the land area of
Australia (ISDR 2009). Forest wildfire is a hazard that
causes the second-largest affected area over the world, fol-
lowing drought (ISDR 2009). Thus, forest wildfire poses a
serious threat to national economic development, global
ecological system, and personnel safety.

The simulation of forest wildfire propagation dynamically
investigates the mechanism of fire spreading under different
environmental conditions (topography, weather conditions,
etc.) to forecast the fire spread direction and the final burned
areas. Some models, such as the Rothermel model (Roth-
ermel 1972) (USA) and the McArthur model (Noble et al.
1980) (Australia), are developed based on wildfire burning
experiments and computer stimulations. These models
exhibit good simulation results in specific areas but cannot
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be applied globally. In addition, these models focus on the
dynamic process in certain scenarios after a fire breaks out
but unable to predict whether fires will occur in the future
and assess its risk level.

The analysis of the causing factors of forest wildfire
attempts to establish the correlation between fire features
(probability of burning and burned area), natural factors
(lightning, temperature, wind speed, topography, etc.), and
socioeconomic factors (GDP, population, transportation,
etc.), which can not only detect the drivers of forest wildfires
in different regions but also can be used to assess the fire risk
in different regions. Cruz et al. (2002) studied the relation-
ship between natural factors (canopy height, wind speed,
fuel moisture content etc.) and crown fire occurrences by
using logistic regression analysis; Viegas et al. (2000)
classified fuel types based on the measurements of plant
moisture and discussed its relationship with the drought
coefficient; Chuvieco et al. (2008) determined the relation-
ship between the interannual variability of the unit area GDP
and fire density on a global scale.

Satellite remote sensing and the monitoring of forest
wildfires based on 3S techniques has been applied to identify
active fire, predict fire propagation potential, and monitor
burned area. Remote sensing has unique advantages in forest
wildfire monitoring owing to its large spatial scale and
temporal continuity of the images. Riano et al. (2007) used
years of remote sensing data at 8-km-spatial resolution from
the advanced very high resolution radiometer (AVHRR) to
map the burned area at a global scale but unable to ade-
quately monitor small-scale, lower-intensity fires due to the
low saturation of the AVHRR images. Simon et al. (2004)
compiled a global burned area map at a 1-km-spatial reso-
lution by the interpretation of the along track scanning
radiometer (ATSR-2) images. The ATSR images, however,
underestimated the actual fire intensity, as they contain many
forms of noise, such as high land temperature, gas com-
bustions, and city lights. Moderate resolution imaging
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spectroradiometer (MODIS) fire products mark a milestone
in the development of fire remote sensing monitoring, with
their high spectral resolution, spatial resolution, and middle-
and long-wave infrared bands designed specifically for the
observation of actively burning fires, which greatly enhance
the reliability of the MODIS fire products (Kaufman et al.
1998). Giglio et al. (2006) revealed the spatial pattern of
global fire density by compiling MODIS fire products.
Based on MODIS, the spatial resolution of the visible
infrared imaging radiometer suit (VIIRS) images has
increased to 750 m even 375 m, which is more favorable for
fire monitoring and identification; however, the time series
of the images is too short for further analysis since it was
launched in 2011.

Previous studies mainly focus on the identification of
active fire, the extraction of the burned area and the spa-
tial-temporal patterns of fire density (van der Werf et al.
2006, 2010; Giglio et al. 2013), lacking of in-depth research
studies on forest wildfire risk assessment of different regions
in the future. Thus, this study performs a quantitative
assessment and mapping of forest wildfire risk at the global
scale by compiling relatively long time series data acquired
from MODIS products.

2 Method

Figure 1 shows the technical flowchart for mapping forest
wildfire risk of the world.

Y. Meng et al.

2.1 Disaster System Theory of Forest Wildfire
According to natural disaster system theory, disasters are
integrations of environments, exposures, and hazards (Shi
1991, 1996, 2002). The hazard of forest wildfire disaster is
fire, including both man-made and natural fires. The hazard
intensity can be measured by the fire occurrence, fire
intensity, burned area, flame height, and so on. This study
selects annual frequencies of fire occurrence as the hazard
intensity indicator. Exposures are the potential objects
affected by forest wildfire hazards, such as vegetation,
population, infrastructure, and agriculture. The susceptibility
of exposures to forest wildfire is related to vulnerability, that
is, more vulnerable corresponds to more probable to be
damaged. The averaged burned area in a single fire is chosen
as the vulnerability index. The hazard-formative environ-
ment denotes the particular topography and weather condi-
tions that nurture and affect the occurrences and propagation
of forest wildfire disasters. Therefore, a comprehensive
understanding and investigation of the interactions of all
three components are required to get a better understanding
of global forest wildfire risk distribution.

2.2 Forest Wildfire Risk

The forest wildfire risk is assessed with a 0.1° x 0.1° grid
cell which contains the land cover types of forest (Appendix
III, Exposures data 3.19). In this study, six types of land

Environment

3 Global wildfire Global wildfire | |
w . Global land cover |
3 location burned area 3
! \ I ] !
i v v !
i Global forest Global forest wildfire 3
! wildfire location burned area i
1 v v 1
! Gridded global forest Gridded global forest |
! wildfire occurrence wildfire burned area |

Exceedance probability of
forest wildfire occurrence

Burned area of
per forest wildfire

Forest wildfire burned area risk of the world

Fig. 1 Technical flowchart for mapping forest wildfire risk of the world
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cover were selected as forest: evergreen needle leaf forest,
evergreen broadleaf forest, deciduous needle leaf forest,
deciduous broadleaf forest, mixed forests, and closed shrub
lands.

2.2.1 Intensity

This study assumes that the forest wildfire is a stochastic
Markov Process, and its state changes according to a tran-
sition rule that only depends on the known past N years’
state.

As aforementioned, this study uses the annual forest
wildfire occurrence as the indicator of hazard intensity and
uses the historical forest wildfire occurrence to conduct the
assessment. The time series of grid global forest wildfire
occurrence dataset acquired from MODIS (Appendix III,
Hazards data 4.16) is too short (N = 12) to analyze using the
traditional extreme value fitting theories. The information
diffusion theory is therefore introduced to cope with this
problem. Information diffusion theory is a fuzzy mathematic
method that makes the dataset elements set valued by taking
advantage of the fuzzy information optimally (Huang 1997).
This study applies normal information diffusion model—one
of the most widely used models for calculating the return
periods of hazards with different intensities developed by
Huang (2012)—to the assessment of forest wildfire hazard.

2.2.2 Vulnerability

We calculated the fire occurrence and the corresponding
burned area (Appendix III, Disasters data 5.8) of each cell to
obtain the average burned area per fire as the vulnerability
indicator. Here, the vulnerability reflects the sensitivity of
the forest in different regions to fires: high vulnerability
indicates that one or a few fires can easily cause large-scale
forest wildfires, while in areas of low vulnerability, even a
high fire occurrence may not lead to large-scale forest
wildfires.

2.2.3 Risk

The assessment of hazard and vulnerability is based on the
historical recorded data which has already taken the ampli-
fication or reduction effect of environments into account.
Therefore, in the further assessment of forest wildfire risk,
we can use Eq. (1) to obtain the approximate forest wildfire
risk as follows:

R=HxVXE~H xV (1)
where H denotes the hazard, V denotes the vulnerability,
E denotes the environments, and H' and V' denote the hazard
and the vulnerability impacted by environments,
respectively.
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3 Results

3.1 Hazard Intensity

The global forest wildfire occurrence distribution of different
return periods is generated in this study. The high-occur-
rence regions are mainly distributed in central South
America, southwest of the Gulf of Mexico, northwest of
Southeast Asia, and the central and western regions of
Africa. The fire occurrence in these areas is almost over 100
times per year, even more than 1,000 times per year for some
regions such as central South America, southern edge of
rainforest located in Brazil and Bolivia, as well as Sierra
Leone in West Africa. High fire occurrence in forest areas is
scattered in the eastern and western coastal areas of Mexico,
the northwestern area of the USA, the central part of Canada,
the Russian Far East and eastern China, and southeastern
Australia. Low forest wildfire occurrence areas are mainly
found in northwestern Europe, northern Siberia, southwest
China, northern and eastern areas of Canada, and inacces-
sible regions near the equatorial rainforest areas.

3.2 Vulnerability

The world forest areas with a relatively high vulnerability to
forest wildfire are mainly concentrated in the regions of
central Africa, southwestern Europe, southcentral and east-
ern areas of Siberia, midwest Canada, and central South
America. In specific, the vulnerability of midwest Canada,
northern Bolivia, and northeast China into Russia as well as
the border of the Democratic Republic of Congo with
Angola is particularly high, with a burned area per fire of 25
km? (2,500 ha) or more.

33 Risk

World forest wildfire risk maps were generated under dif-
ferent return periods. The high risk of forest wildfires mainly
concentrated in central Africa, central South America,
northwestern Southeast Asia, mid-eastern Siberia, and the
northern regions of North America. The junction regions of
the three African countries of the Democratic Republic of
Congo, Republic of Angola, and the Republic of Zambia,
along with Myanmar, Thailand, Laos, Cambodia, Bangla-
desh, Russia Far East, and the eastern coastal areas of
Australia, North America, Mexico, Canada, Brazil, Bolivia,
and Argentina, are high-risk areas for forest wildfires. The
forest wildfire risk of Sierra Leone in West Africa is low
although it has a high forest wildfire occurrence, since it is
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Fig. 2 Expected annual burned forest area risk of wildfire of the world.
1 (0, 10 %] Russia, Canada, Angola, Brazil, Congo (Democratic
Republic of the), USA, Argentina, Burma, Bolivia, China, and
Australia. 2 (10, 35 %] Mexico, South Sudan, Chad, India, Mongolia,
Thailand, Laos, Vietnam, Zambia, Nigeria, Portugal, Cambodia,
Indonesia, Spain, Paraguay, Guatemala, South Africa, Congo, Ethiopia,
Cameroon, Nepal, Mali, North Korea, Central African Republic,
Uganda, Sudan, and Venezuela. 3 (35, 65 %] Benin, Greece,
Kazakhstan, Chile, Papua New Guinea, Romania, Madagascar, Japan,
Honduras, Bangladesh, Mozambique, Colombia, France, Belarus,

located in a tropical rainforest climate region with numerous
thunderstorms, which contributes to the high forest wildfire
occurrence, but simultaneously, the abundant rainfall helps
to keep the forest wildfire spread under control.

By zonal statistics of the expected risk result, the
expected annual burned forest area risk of wildfire of the
world at national level is derived and ranked (Fig. 2). The
top 1 % country with the highest expected annual burned

- | -

Cuba, Tanzania, Guinea, Ukraine, Gambia, Peru, Zimbabwe, Senegal,
Sierra Leone, Malawi, Belize, Philippines, The Republic of Cote
d’Ivoire, Albania, Italy, Nicaragua, Bhutan, and Rwanda. 4 (65, 90 %]
Costa Rica, Burkina Faso, Botswana, Lesotho, Syria, Liberia, Sweden,
Norway, Dominican Republic, Guyana, UK, Croatia, Bosnia and
Herzegovina, Swaziland, Sri Lanka, Algeria, Kenya, Uruguay, Baha-
mas, Slovenia, Serbia, Timor-Leste, Latvia, Malaysia, Ireland, and
Montenegro. 5 (90, 100 %] Suriname, Guinea-Bissau, Iran, South
Korea, Ghana, Pakistan, Hungary, Estonia, and Comoros, Macedonia

forest area risk of wildfire is Russia, and the top 10 %
countries are Russia, Canada, Angola, Brazil, the Demo-
cratic Republic of Congo, the USA, Argentina, Burma,
Bolivia, China, and Australia.

4 Maps
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=== Wildfire Disasters Forest @
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1 Background

Recent researches indicated an increasing frequency and
intensity of grassland wildfire (Running 2006; Balshi et al.
2009), which arose the debate whether grassland wildfire can
accelerate global warming (Randerson et al. 2006). Fluctu-
ations of weather and fuel due to climate change will
enhance the spatio-temporal uncertainty of grassland wild-
fire. Therefore, analyzing fire ignition probability, assessing
fire propagation damage, and modeling grassland wildfire
risk are of great importance with the climate change context.

Existing methods for grassland wildfire risk assessment
focus on fire danger monitoring and assessment of fire
potential damage and can be classified as fire danger index
methods (Gonzalez-Alonso et al. 1997; Burgan et al. 1998;
Lopez et al. 2002; Peng et al. 2007), fire causing factors
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(Jaiswal et al. 2002; Xu et al. 2005), fire spread model using
historic fire database (Mbow et al. 2004; Carmel et al. 2009),
and integrated wildfire risk assessment (Tong et al. 2009;
Chuvieco et al. 2010). Various fire danger rating systems
(FDRSs) have been developed based on the fuel-burning
model and climate factors, such as fire behavior prediction and
fuel modeling system (BEHAVE) (Burgan and Rothermel
1984), National Fire Danger Rating System (NFDRS)
(Bradshaw et al. 1983), Canadian Forest Fire Danger Rating
System (CFFDRS) (Canadian Forest Service 1992), Fire Area
Simulator (FARSITE) (Finney 2004), etc.

This study performs a quantitative assessment and map-
ping of grassland wildfire risk at the global scale by multi-
variate logistic regression based on the long time-series data
acquired from MODIS products.

2 Method

Figure 1 shows the technical flowchart for mapping grass-
land wildfire risk of the world. The grassland wildfire risk is
assessed with a 1 km x 1 km grid cell which contains the
land cover types of grassland (Appendix III, Exposures data
3.19). In this study, three types of land cover were selected
as grassland: woody savannas, savannas, and grasslands.

2.1 Intensity

A multivariate logistic regression model was used to predict
grassland burning probability (Cao et al. 2013). Logistic
regression is used in the condition of the dichotomous
(i.e., binary) response variable. The specific form of the
multivariate logistic regression model is as follows:

277

DOI 10.1007/978-3-662-45430-5_15 © Springer-Verlag Berlin Heidelberg and Beijing Normal University Press 2015



278

X. Cao et al.

Fig. 1 Technical flowchart for I
mapping grassland wildfire risk of
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Assume response variable y has a binomial distribution

(Eq. 1):
IR
Yo

where y = 1 indicates burned grasslands, y = 0 indicates
randomly selected unburned areas. The logistic regression
model is defined in Eq. (2):

(1)

1

Py=—
P e B

(2)

where P,.; represents the burning probability, B, is the
constant value of the logistic regression model, and p; is the
coefficient for variable X;. X; takes into account the proper-
ties of fuels and topography. The following factors were
selected or calculated from MODIS 1-km reflectance prod-
uct (Appendix III, Environments data 2.14) and DEM data
(Appendix III, Environments data 2.1) and then used as the
explanatory variables for burning probability. It should be
noted that the properties of fuels were represented by VIs
(vegetation indices) calculated from MODIS data rather than
the specific physical indicators of fuel properties.
e Live fuel load: Normalized Difference Vegetation Index
(NDVI) and Optimized Soil-Adjusted Vegetation Index
(OSAVI)
Live fuel moisture content: Global Vegetation Moisture
Index (GVMI) and Moisture Stress Index (MSI)
e Dead fuel (coverage): Dead Fuel Index (DFI)
e Topography: Digital Elevation Model (DEM), slope, and
aspect

| |

‘ Grassland wildfire risk map of the world |

Based on the historical burned areas database acquired
from MODIS (Appendix III, Hazards data 4.17), we built up
the grassland burning probability model by using 2000-
2010 historical burned areas as the response variable, while
the information of fuels in grassland together with topo-
graphic factors is taken as the explanatory variables.

2.2 Vulnerability

Considering the main potential loss of grassland fire is the
stockbreeding industry, and the stock capacity is directly
dependent on the biomass of grassland. Net primary product
(NPP) was then used as a surrogate to represent the potential
loss of grassland fire. The average NPP distribution was
calculated based on the data from 2000 to 2010 (Appendix
I, Exposures data 3.20).

23 Risk
Under the framework of disaster risk assessment, the
grassland fire risk model is constructed in Eq. (3):

R=HxVXE (3)
where R is the risk of grassland fire; H is the grassland fire,
i.e., the probability of fire ignition; V is the vulnerability, i.e.,
the probability of fire propagation; E is the exposure, i.e., the
potential loss or NPP. In this model, both fire ignition and
propagation information are considered, the probability of
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Fig. 2 Expected annual grassland NPP loss risk of wildfire of the
world. 7 (0, 10 %] Brazil, United States, Australia, Russia, Kazakhstan,
Mozambique, Madagascar, China, Tanzania, Canada, Angola, South
Africa, Venezuela, Argentina, Nigeria, Sudan, Colombia. 2 (10, 35 %]
Mexico, Zimbabwe, Zambia, Democratic Republic of the Congo,
Botswana, Mongolia, Bolivia, Kenya, India, Namibia, The Republic of
Cote d’Ivoire, Central African Republic, Turkey, Burma, Paraguay,
Ethiopia, Uruguay, Ghana, Spain, Thailand, Congo, Indonesia, Chad,
Somalia, Mali, Burkina Faso, Vietnam, Cameroon, Guinea, Portugal,
France, Ecuador, Benin, Malawi, Chile, Italy, Cambodia, Peru, Senegal,
New Zealand, Nicaragua, Niger, Togo, Laos. 3 (35, 65 %] Honduras,
Uganda, Gabon, Guyana, Romania, Iran, Germany, Kyrgyzstan,
Morocco, Japan, Papua New Guinea, Belarus, United Kingdom,
Greece, Georgia, Swaziland, Ukraine, Croatia, Guatemala, Sweden,
Cuba, Mauritania, Norway, Bosnia and Herzegovina, Dominican

grassland burning is therefore taken as a combination of the
probability of ignition and propagation.

3 Results

Based on the grassland fire risk assessment model, we firstly
calculated the grassland burning probability at 8-day scale
and then calculated the annually averaged grassland burning
probability. The yearly grassland fire ‘risk’ was then mod-
eled by the product of yearly grassland burning probability
and NPP. The final global grassland burning probability map
and risk map were obtained by averaging the above results
during 2000-2010.

3.1 Hazard Intensity

The intensity of grassland fire was represented by the grassland
burning probability. A higher probability of grassland burning
means the higher intensity of hazard. Grasslands with high
burning probabilities concentrate in the central part of Asia,
western Europe, western Africa, northern Oceania, central part
of North America and eastern part of South America. The
grassland in Kazakhstan, western Russia, eastern Mongolia,
Ukraine, Somalia, Kenya, Madagascar, northwestern Australia,
northern United States, southern Canada, and eastern Brazil is
prone to be affected by grassland fire.
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3 4 3

Republic, Finland, Sierra Leone, Nepal, Serbia, Afghanistan, Uzbeki-
stan, Poland, Azerbaijan, Philippines, Bangladesh, South Korea,
Turkmenistan, Sri Lanka, Tajikistan, Iceland, Guinea-Bissau, El Salva-
dor, Panama, Czech Republic, North Korea, Costa Rica, Timor-Leste,
Bulgaria, Armenia, Haiti, Ireland, Algeria. 4 (65, 90 %] Latvia, Austria,
Slovakia, Malaysia, Hungary, Lesotho, Burundi, Lithuania, Switzer-
land, Tunisia, Slovenia, Rwanda, Gambia, Bahamas, Bhutan, Albania,
Pakistan, Estonia, Macedonia, Belize, Montenegro, Eritrea, Iraq,
Suriname, Cyprus, Denmark, Trinidad and Tobago, Liberia, Jamaica,
Fiji, the Netherlands, Belgium, Mauritius, Israel, Syria, Egypt, Lebanon,
Oman, Cape Verde, Libya, Moldova, Yemen, Comoros, Luxembourg.
5 (90, 100 %] Palestine, Barbados, Equatorial Guinea, Saudi Arabia,
Gaza Strip, Antigua and Barbuda, Jordan, San Marino, Singapore,
Andorra, Baker Island, Saint Lucia, Liechtenstein, Djibouti, United
Arab Emirates, Solomon Islands, Western Sahara, Kuwait

3.2 The NPP Loss Risk
The risk of grassland fire is represented by the product of the
grassland burning probability and NPP. The higher average
potential loss of NPP means the higher risk of grassland fire.
It can be observed that the high-grassland-fire-risk regions
are concentrated in the central part of Asia, western Europe,
southwestern Africa, northern Oceania, central part of North
America, and northeastern South America, including
Kazakhstan, western Russia, eastern Mongolia, Ukraine,
Somalia, Kenya, Mozambique, Tanzania, Madagascar,
northwestern Australia, central part of United States,
southern Canada, Columbia, Venezuela, and eastern Brazil.
By zonal statistics of the expected risk result, the
expected annual grassland NPP loss risk of wildfire of the
world at national level is derived and ranked (Fig. 2). The
top 1 % countries with highest expected annual grassland
NPP loss risk of wildfire are Brazil and United States, and
the top 10 % countries are Brazil, United States, Australia,
Russia, Kazakhstan, Mozambique, Madagascar, China,
Tanzania, Canada, Angola, South Africa, Venezuela,
Argentina, Nigeria, Sudan and Colombia.

4 Maps
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Expected Annual NPP Loss Risk of Grassland Wildfire of the World
(Comparable-geographic Unit)
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Part VIII

Multi-natural Disasters



Peijun Shi, Xu Yang, Fan Liu, Man Li, Hongmei Pan, Wentao Yang, Jian Fang,
Shao Sun, Chenyan Tan, Huimin Yang, Yuanyuan Yin, Xingming Zhang,
Lili Lu, Mengyang Li, Xin Cao, and Yongchang Meng

1 Introduction

Multi-hazard risk assessment aims at assessing the total risk
of various types of hazards happened in an area in a certain
period of time (Shi 2009). Since the 1980s, many organi-
zations around the world have carried out in-depth research
on multi-hazard risk assessment and attempted risk mapping
at regional and global scales.

In 2004, the United Nations Development Programme
(UNDP) developed the Disaster Risk Index (DRI) to assess
the worldwide mortality risk caused by multi-hazard
including earthquake, cyclone, flood, and drought at national
level (UNDP 2004). The DRI is estimated by combining
exposure with historical human vulnerability acquired from
EM-DAT database. Specific hazard risk is calculated and
further combined in a multiple DRI allowing for a classifi-
cation of countries. This index, however, only considers 4
types of hazards in a specific time period, which cannot

reflect total hazard risk of the world. Meanwhile, the DRI
cannot be used in a predictive way to estimate potential
casualties in the future.

To overcome deficiencies of DRI, the World Bank and
Columbia University introduced the Hotspots index. The
Hotspots index mainly takes into account mortality-related
risks and economic risk caused by six types of natural
hazards—earthquake, volcano, landside, flood, drought, and
cyclone. The vulnerability indicator is obtained by calcu-
lating the loss rates for each hazard from historical losses
over 20 years (1981-2000) obtained from EM-DAT data-
base (Dilley et al. 2005). Compared to DRI, the economic
losses are considered in Hotspots index and the spatial res-
olution has been improved. A drawback of Hotspots index is
that it uses the fitted vulnerability curve of death toll and
economic losses at national level, which leads to an inade-
quate accuracy of the assessment result for counties with
large area and significant geographic differences.
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Geography, Beijing Normal University, Beijing 100875, China), Fang
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The United Nations University (UNU-EHS) proposed a
World Risk Index (WRI) for multi-hazard risk assessment at
national level. The WRI is the product of exposure and
vulnerability combined with the coping capacity and adap-
tation. Based on this approach, the multi-hazard risk of 173
countries was assessed and ranked in the World Risk Report
in 2013 (UNU-EHS 2013). Although WRI considers com-
prehensive factors, it lacks consideration of the different
levels of various hazard types. Furthermore, judgment
weights are used when combining the risk factors which may
cause an inaccurate prediction.

In this study, two methods are adopted for mapping the
multiple risks for population and property. In the first
method, a Total Risk Index (TRI) is proposed to calculate
the world multiple risks by weighting the world risk maps of
each individual hazard. The TRI takes into account mortality
(including affected population) risk, economic loss (includ-
ing affected GDP) risk, crop yield loss risk, burned area risk
caused by eleven types of natural hazards, that is, earth-
quake, volcano, landside, flood, storm surge, tropical
cyclone, sand-dust storm, drought, heat wave, cold wave,
and wildfire. Based on the risk results within different return
periods and expected annual loss or damage (affected) risk
assessment of individual hazard, the multi-hazard risk of
eleven hazards of the world is assessed at grid level
(0.5° x 0.5°) using the methods of Hotspots index (Dilley
et al. 2005) and Multi-Risk Index (Shi 2011). In the second
method, a Multi-hazard Risk Index (MhRI) is proposed to
calculate the world multiple risks by weighting the expected
annual intensity of each individual hazard. The MhRI takes
into account affected population and GDP caused by eleven
types of natural hazards at grid level (0.5° x 0.5°). The world

P. Shi et al.

risk results at comparable-geographic unit and national level
are calculated and mapped based on the grid level
(0.5° x 0.5°) risk maps by GIS.

2 Methodology
Figure 1 shows the technical flowchart for mapping popu-
lation and property risk of the world by TRI.

Figure 2 shows the technical flowchart for mapping
population and property risk of the world by MhRIL

2.1 Data

In this study, the TRI assessment is performed based on the
risk assessment results within different return periods and
expected annual loss or damage (affected) risk of eleven
hazards. The MhRI assessment is performed based on the
expected annual intensity of each individual hazard. Table 1
shows the data used for the assessments.

2.2 Data Processing

2.2.1 Spatial Resolution

An important step before calculating the TRI and MhRI is to
unify the spatial resolution of all hazards. Earthquake con-
tributes significantly to the world mortality risk and social-
wealth loss or GDP loss risk, thus the spatial resolution of the
world earthquake risk assessment map is taken as the stan-
dard (0.5° x 0.5°) when calculating the multi-hazard risk.

Evaluation results
of the expected

Evaluation result of eleven
individual hazards

Evaluation results
of the expected

annual mortality

Resolution unification annual economic

and affected Risk definition unification| ~ loss and affected | |
populationrisk of |~ ‘ property risk of ten
nine hazards i EM-DAT | hazards
3 (1951-2013) i
Weight of the mortality and China Catastrophe |1 Weight of the loss and
= . . D — Statistics — . -
affected population risk 1 (1949-2009) 3 affected property risk
Y e Y
Expected annual multi-hazard risk level Expected annual multi-hazard risk level
of mortality and affected population of economic loss and affected property
of the world (measured by TRI) of the world (measured by TRI)
[ ]
v

Rank by country unit and per km? unit of country |

Fig. 1 Technical flowchart for mapping population and property risk of the world by TRI
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Expected annual multi-hazard | | Expected annual multi-hazard
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population of the world property of the world

(measured by MhRI) (measured by MhRI)
I ]

v

Rank by country unit and per km? unit of country

Fig. 2 Technical flowchart for mapping population and property risk
of the world by MhRI

For hazards with higher spatial resolution than earthquake
(e.g., 1 km x 1 km), raster polymerization method, which is
the sum of the initial values of the pixels in the 0.5° x 0.5°
grid, is used for unifying the spatial resolution so as to keep
the risk value of the grids unchanged. For those with lower
spatial resolution than earthquake (e.g., 0.75° x 0.75°),
equally allocated resampling method is used to keep the risk
value unchanged in the sample pixel of the grid.

2.2.2 Normalization of the Risks of Individual
Hazards

An important step for the TRI is to unify the results of
individual hazard risk on which the multiple risks are cal-
culated. For comparison, the loss or damage risk is first
changed to the risk of loss ratio or damage ratio, then nor-
malized to [0, 1]. The risk results of wildfire, drought, and
flood are loss ratio of their exposure. For others, the
expected annual mortality loss risk and expected annual
affected population risk are divided by the total population,
and the expected annual GDP loss risk and expected annual
social-wealth loss risk are divided by the total GDP to obtain
the ratio, respectively.

2.2.3 Weights of Individual Disaster Risks

and Multi-hazard
The TRI of the world is calculated based on the weighting
schemes of Hotspots index (Dilley et al. 2005) and MhRI
(Shi 2011). The weights of total risk are calculated based on
the historical loss and damage data caused by individual
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disaster from 1951 to 2013 of the world recorded in the EM-
DAT database (EM-DAT 2014) and from 1949 to 2009 of
China Catastrophe Statistic (CCS) (Zheng et al. 2009).

The weight of MhRI is obtained based on the frequency
of individual hazard from 1951 to 2013 of the world
recorded in the EM-DAT database and from 1949 to 2009 of
China recorded in the database of CCS.

2.24 Weights for TRI

Weights for Expected Annual Mortality and Affected Popu-
lation Risk. For expected annual mortality and affected
population risk, nine disasters—earthquake, volcano, land-
slide, flood, storm surge, tropical cyclone, sand-dust storm,
heat wave, and cold wave—are considered. The average
values of the mortality rate in the two databases are used as
the weights (Table 2). Drought is not considered in this
assessment because the EM-DAT database considers sec-
ondary hazards losses of drought, leading to a mortality ratio
of 45 % which cannot be used as the weight for calculating
the direct losses by drought. While based on the CCS, the
mortality ratio directly caused by drought is only 1.15 %,
which can be neglected when calculating the multi-hazard
risk of mortality and affected population risk.

Weights for Expected Annual Loss and Affected Proper-
ties Risk. For expected annual loss and affected properties
risk, seven disasters—earthquake, flood, storm surge, tropi-
cal cyclone, sand-dust storm, drought, and wild fire—are
considered.

In the EM-DAT database, there is no record for sand-dust
storm; the weight for sand-dust storm is therefore calculated
according to the CCS database. The weights for drought risk
of maize, wheat, and rice are calculated according to the
proportion of global yield of the three crops in 2012, that is,
48.25 %, 11.92 %, and 39.82 %, respectively. For other
types of disasters, the weights are used according to the
economic loss rates in the EM-DAT database (Table 3).

2.2.5 Weights for MhRI

Weights for Expected Annual Multi-hazard Intensity. For
expected annual multi-hazard intensity, it denotes the total
intensity of all the natural disasters. Therefore, eleven
disasters—earthquake, volcano, landslide, flood, storm
surge, tropical cyclone, sand-dust storm, heat wave, cold
wave, drought, and wildfire—are all considered.

The weight for sand-dust storm is also calculated
according to the CCS database. While in the CCS database,
there are no records for volcano, cold wave, heat wave,
wildfire (grassland), and storm surge; thus, the weights for
these disasters are calculated according to the EM-DAT
database. For other disasters, the average values of the
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Table 2 Weights of mortality and affected population risk for each disaster
Disaster Weight calculated according ~ Weight calculated according to EM-DAT Weight calculated according  Adjusted

to EM-DAT database database (without considering drought) to the CCS database weight
Earthquake 28.23 50.67 66.20 58.43
Tropical cyclone  19.75 35.45 4.13 19.79
Flood 242 4.34 26.43 15.39
Heat wave 3.08 5.53 - 2.77
Landslide 0.82 1.48 0.49 0.98
Cold wave 0.33 0.60 - 0.64
Volcano 0.64 1.15 - 0.58
Storm Surge 0.43 0.78 - 0.39
Sand-dust storm - - 0.02 0.01
Total 55.72 100 97.27 98.98
Table 3 Weights of expected annual loss and affected property risk for each disaster
Disaster Weight calculated according Weight calculated according Adjusted weight

to EM-DAT database to CCS database

Tropical cyclone 39.36 15.79 39.36
Earthquake 31.89 38.75 31.89
Flood 19.28 36.58 19.28
Drought (maize) 5.68 5.01 5.68 2.74
Drought (wheat) 0.68
Drought (rice) 2.26
Wildfire(forest) 1.77 0.02 1.77
Storm Surge 0.43 - 0.43
Sand-dust storm - 0.40 0.40
Wildfire(grassland) 0.19 - 0.19
Total 96.55 99.01

frequency ratio in the two databases are used as the weights.
As for drought, weights for multi-hazard intensity of maize,
wheat, and rice are calculated according to the proportion of
global yield of the three crops in 2012 (Table 4).

2.3 TRI and MhRI

23.1 TRI
The TRI for expected annual mortality and affected popu-
lation risk of the world is calculated according to Eq. (1):

n

RpL: E riL X Wip, i:1,2,...,n
i=1

(1)

where R, is the level of total mortality or affected popula-
tion risk; ;. is the risk level of ith disaster, w;, is weight of
the ith disaster, n is total number of natural disasters eval-
uated (Table 2).

The TRI for expected annual loss and affected property
risk of the world is calculated according to Eq. (2):

n

R, = E i X Wie, i:1,2,...,n
i=1

(2)

where R, is the level of total economic loss or affected
property risk; r;p is the risk level of the ith disaster, w; is
weight of the ith disaster, n is the number of natural disasters
evaluated (Table 3).



292

Table 4 Weights of MRI for each hazard

P. Shi et al.

Disaster Weight calculated according to EM-DAT database = Weight calculated according to CCS database  Adjusted
weight

Flood 25.93 45.80 35.86
Tropical cyclone 37.85 22.60 30.23
Earthquake 11.86 6.20 9.03
Landslide 5.99 5.30 5.65
Drought (maize) 6.73 2.00 4.36 2.10
Drought (wheat) 0.52
Drought (rice) 1.73
Cold wave 2.99 - 2.99
Volcano 2.21 - 2.21
Heat wave 1.77 - 1.77
Wildfire (forest) 2.76 0.002 1.38
Storm surge 1.04 - 1.04
Sand-dust storm 0.88 - 0.88
Wildfire (grassland) - 0.31 0.31
Total 100.00 82.21 94.66
2.3.2 MhRI

MhRIy = Mhy x Ey, i=1,2,....n (5)

The multi-hazard intensity index for expected annual multi-
hazard of the world is calculated according to Eq. (3):

Mhy = hy xwn, i=1,2,...n (3)
i=1

I

where Mh; is the level of expected annual multi-hazard
intensity; h; is the expected annual intensity level of the ith
hazard, wy, is weight of the ith intensity, n is the number of
natural hazards evaluated (Table 4).

The MhRI for expected annual affected population risk of
the world is calculated according to Eq. (4):

MhRIPL :MhL X EPLa = 1,2,...,71 (4)
where MhRI,; is the level of affected population risk; £ is
the population exposed to multi-hazard.

The MhRI for expected annual affected property risk of

the world is calculated according to Eq. (5):

where MhRI, is the level of affected property risk; E. is the
property exposed to multi-hazard.

3 Results

By zonal statistics, the Mh, TRI, and MhRI values of 197
countries of the world are ranked in descending order. For
comparison, the Mh, TRI, and MhRI values by dividing the
area of the country are also calculated and ranked. The Mh,
TRI, and MhRI values of all 197 countries of the world are
calculated and ranked in descending order at country and per
unit area, respectively (Appendix IV, Tables 1, 2, and 3).

4 Maps
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Understanding the Spatial Patterns
of Global Natural Disaster Risk



Peijun Shi, Jing’ai Wang, Wei Xu, Tao Ye, Saini Yang, Lianyou Liu,
Weihua Fang, Kai Liu, Ning Li, and Ming Wang

1 Background
1.1 International Initiatives in Disaster Risk
Reduction

The year 2015 is the 25th annum of the international disaster
and risk reduction proposed by the United Nations. Disaster
risk reduction (DRR) has achieved significant progress
worldwide. The goals of disaster risk reduction, climate
change adaptation, and sustainable development have
become the joint responsibility of all countries in their
economic, societal, cultural, political, and ecological con-
struction activities. In the past 25 years, UNISDR together
with national governments, scientific community, NGOs,
entrepreneur groups, media and various relevant regional
organizations is gaining effective results in alleviating
human being’s casualties, property losses, and damages to
resources and environment caused by natural hazards on the
world and is earning a great reputation at every stratum of
society as well. Nevertheless, data released by related UN
organizations indicate that natural disaster and disaster risk
are still on the rise globally. Some nations and regions are
still extremely vulnerable to large-scale disasters, although
significant progress has been made in DRR actions. Natural
disaster risk reduction is still a long haul ahead.
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1.2 Foundations

The global hot spots project jointly finished by the World
Bank and Columbia University (the USA) is the first ever
cartography of major natural disaster risks at the global scale
(Dilley et al. 2005). The UNISDR Global Assessment Report
on Disaster Risk Reduction (GAR) inspired this Atlas (UN-
ISDR 2009, 2011, 2013). The Institute for Environment and
Human Security of the United Nations University has ranked
world risk at national level (UNU-EHS 2013). Compared to
existing work, this Atlas improves in multiple aspects,
including disaster types, assessment methodology and accu-
racy, latest data, spatial comparability, spatial and temporal
resolution, and validation of results. Assessment results
derived are appropriate and broadly applicable. Sharing ser-
vice for global-scale datasets is critical in compiling this
Atlas, while Internet open-access datasets such as EM-DAT
provides substantial convenience.

Funded by Chinese government, a series of scientific pro-
jects have attained enormous results and valuable references
which laid solid foundation for the compilation of this atlas.
Ongoing programs/projects include the “Relationship Between
Global Change and Environmental Risks and Its Adaptation
Paradigm” (No. 2012CB955400), “Hazard and Risk Science
Base at Beijing Normal University” (111 Project)
(No. B08008), “Model and Simulation of Earth Surface Pro-
cess” (No. 41321001), the “Research on the Regional Agri-
culture Drought Adaptation Assessment Model and Risk
Reduction Paradigm” (No. 41171402), “the Land-use and
Integrated Erosion of Soil by Wind and Water in the Eastern
Ecotone of Agriculture and Animal Husbandry in North China”
(No. 41271286), “Comparative Study on Integrated Risk
Governance Techniques and Paradigms of Typically Vulnera-
ble Regions” (No.2012DFG20710), “Cooperative Research on
Severe  Drought Disaster ~Monitoring  Techniques”
(No. 2013DFG21010), and “Study on the Disaster-chain and
Integrated Risk Assessment of Major Earthquake-geological
Disasters” (No. 2012BAK10B03). Finished programs/projects
include “the Geographic Transaction Zone Study on Interaction
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Mechanism of Human-earth System on Earth Surface”
(No. 40425008), “Integrated Natural Disaster Risk Evaluation
and Disaster Reduction Paradigm Study in Rapid Urbanization
Regions” (No. 40535024), “Integrated Risk Governance—
Case Study of IHDP—IRG Core Science Plan”
(No. 40821140354), “Global Climate Change and Large-scale
Disaster Governance” (No. 2008DFA20640), “Integrated Risk
Governance: Models and Modeling” (No. 2010DFB20880),
“the Key Technology Study and Demonstration of Integrated
Risk Prevention” (No. 2006BAD20B00), and the “Technology
for Evaluating Natural Disaster Risk in the Yangtze River
Delta” (No. 2008BAK50B07).

All faculties and students of BNU on the disaster risk
science and the international experts who participated in the
IHDP/Future Earth-Integrated Risk Governance and “111
Project”, as well as all the personnel involved in these two
projects, throughout ten years of preparation, planning, and
action, were organized to compile this atlas, aiming to reflect
the spatial patterns of the main natural disaster risk all
around the world. This atlas provides scientific evidence for
taking effective measures of world natural disaster risk
reduction by demonstrating the spatial variation from the
following three spatial scales for the main natural disaster
risk on the world: the grid unit (1° x 1°, 0.75° x 0.75°,
0.5° x 0.5°,0.25° x 0.25°, 0.1° x 0.1° or 1 km % 1 km), the
comparable geographic unit (about 448,334 km?> per unit),
and the national or regional unit (245 nations and regions).

1.3 International Scientific and Technological

Cooperation

Close cooperation with worldwide scientific institutions lays
the scientific foundation of this Atlas. These institutions
include Disaster Research Institute of Kyoto University
(Japan), International Institute for Applied System Analysis
(Austria), Sweden Environment Institute (Sweden), Clark
University (USA), School of Sustainability of Arizona State
University (USA), and Potsdam Institute for Climate Impact
Research (Germany). There are many institutions provided
considerable data and methodological support, including
University of Maryland (USA), Nanyang Technological
University (Singapore), University of Vienna (Austria),
Oxford University (UK), the University of Stuttgart
(Germany), University of California—Berkeley (USA), Risk
Management Solutions Inc. (USA), Swiss Re (Switzerland),
Munich Re (Germany), Aon Benfield (UK), etc. UNISDR
provides solid support and guidance to this Atlas. Star Map
Press (Beijing) has provided great supports in editing the
maps, and Beijing Normal University Press and Springer-
Verlag enable the fluent publication process. All institutions
mentioned above are highly appreciated.

P. Shi et al.

Three generations of natural disaster atlas of China were
compiled under the guidance of regional disaster system
theory and published by Science Press of China, namely
Atlas of Natural Disaster of China (Chinese and English
Version) (Zhang and Liu 1992), Aflas of Natural Disaster
System of China (Chinese and English Version) (Shi 2003),
and Atlas of Natural Disaster Risk of China (Chinese and
English Version) (Shi 2011). The compiling and publication
of the World Atlas of Natural Disaster Risk was based on the
earlier practice in those atlases.

2 Scientific Basis

The World Atlas of Natural Disaster Risk attempts to reveal
the spatial pattern of the risks of natural disaster which are
mainly caused by physical hazards in the world with mul-
tiple perspectives of natural environment, exposure, disaster
loss, and disaster risk with the framework of Regional
Disaster System Theory (Shi 1991, 1996, 2002, 2005, 2009).
It emphasizes the spatial-temporal pattern of worldwide
natural disasters from the perspective of individual disasters
and integrated disasters, including earthquake, volcano,
landslide, flood, storm surge, sand—dust storm, tropical
cyclone, heat wave, cold wave, and wild fire. In the Atlas,
natural disaster risks of the world are assessed objectively by
integrating the stability of natural environment, hazard
intensity and probability, and the vulnerability of the expo-
sure, based on Regional Disaster System Theory and
Disaster Risk Science. Meanwhile, factors like the concur-
rent coping capacity of reducing hazard severity and vul-
nerability, social and economic development level, as well as
data incompleteness at the global scale are also considered
during risk assessment. The goals of this atlas are to support
national/regional integrated disaster risk reduction planning,
integrated risk governance strategic planning, sustainable
development planning of the world, and so on.

2.1 Disaster Risk Science

The demand of regional disaster risk governance spurred the
development of disaster risk science, which has becoming
transdisciplinary field of disaster mechanism, process, and
risk dynamics. Disaster risk science could be further divided
into three fields as disaster science, emergency technology,
and risk management.

2.1.1 Disaster Science

Disaster science studies the physical process, mechanism,
and temporal—spatial pattern of natural environment, natural
hazards, physical and social vulnerability of exposure, and
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Earth Observation Technology

Modeling and Simulation
Technology (mathematical

(3S, ground networks)

methods, simulation and
visualization technology)

v

Technology Integration
(integrated information
platform, system dynamics and
integrated policy analysis)

T

Experiments and Testing

Case study and Empirical

Technology
(laboratories and field stations)

Research (field survey and case
study)

Fig. 1 Methodology and technical system of integrated disaster science

how loss is caused. Disaster science is the foundation for
DRR, and it can be categorized as basic disaster science,
applied disaster science, and regional disaster science.

2.1.2 Emergency Technology

Emergency technology develops technique and equipment
related to disaster prevention, resistance, relief, and emer-
gency response. The technological systems for disaster
monitoring, forecasting, early warning, coping capacity
building, emergency response, population evacuation and
resettlement, recovery and reconstruction, system optimiza-
tion, and system integration are all the essentials of this field.
Emergency technology can be further divided into emer-
gency response technology, disaster reduction technology,
and recovery and reconstruction technology.

2.1.3 Risk Management
Risk management is to establish standard, institution, plan-
ning, and policy systems of disaster risk governance, develop
and optimize systems of assessment indices, standards, and
models of disaster and risk assessment, and improve appli-
cation of laws, rules and regulations of disaster, and risk
management. It also compiles and modifies emergency plan,
strategy, and plan of regional DRR, compiles all related
policies for integrated disaster risk governance, and develops
information platform and network service system for inte-
grated disaster risk governance which offers regulations and
service for integrated disaster reduction. Risk management
can be further classified as disaster management, emergency
management, and risk transfer and governance.

The general methodology and techniques for disaster risk
science study are shown in Fig. 1.

2.2 Vulnerability, Resilience, and Adaptation
Vulnerability is the severity of disasters caused by hazards. It
is interpreted by a curve or function reflecting disaster loss or
damage ratio to hazard intensity (Fig. 2).

Disaster loss increases as hazards get severer under the
constant coping capacity, which means the lower the fre-
quency or the higher the intensity of hazard, the larger is the
loss of disaster, and vice versa. Therefore, vulnerability
reflects the interaction between hazard and property or
population at risk. On the other hand, disaster loss decreases
as the coping capacity increases, while hazard intensity
remains constant. Quantitative description vulnerability

100

90

60

Increasing loss ratio

Loss ratio (%)

Increasing hazard intensity

I 11
L L 1 )

0.4 0.6 0.8 10

Hazard intensity index

Fig. 2 Vulnerability curve of the exposure
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(with a curve or function) is the necessary condition for
assessing and mapping natural disaster risk.

Resilience is generally the reciprocal of social vulnera-
bility. The resilience of a society or region increases as its
social vulnerability decreases, and vice versa. Resilience can
be regarded as the collective representation of disaster-cop-
ing capacity, or the combining capacity of disaster pre-
paredness, prevention, emergency response, disaster relief,
rehabilitation, and reconstruction. The concept of resilience
greatly enriched the risk theory, and hence, it is a great
complementary to the concept of vulnerability. In addition,
resilience is also a reflection of the soundness of integrated
risk governance at national or regional level. Risk transfer
mechanism can play an essential role in resilience even if the
region is highly vulnerable. For countries or regions with
well-designed natural disaster insurance system, their resil-
ience to natural disasters can be improved even though they
may have high physical vulnerability. For instance, insur-
ance indemnity contributed nearly 40 % of the reconstruc-
tion cost in hurricane Katrina of the USA, while for
countries like China with a strong top-down system, risks
can be transferred among different administrative areas
through financial transfer payment under the coordination of
the central government. For example, post-5.12 Wenchuan
Earthquake reconstruction was completed less than 3 years
under the support of central government and local govern-
ments. Quantification of resilience is also a key factor for
mapping disaster risk (Shi et al. 2012).

Adaptation is a strategy for living with risk, which is
complement to disaster-coping capacity, and improvement to
resilience. Adaptation has become a mainstream instrument
for climate change and ecological risk governance. The
higher the adaptation capacity is, the lower the vulnerability
and vice versa. Adaptation is a developing mode through
dynamically optimizing industrial structure, land use/land
cover structure, development scale and speed. For instance,
risks to sustainable development from global warming,
especially disaster risks due to extreme climate events, can
be mitigated by decreasing greenhouse gases concentration
through reducing carbon emission, increasing carbon sink,
and saving resources.

Therefore, resilience and adaptation are two concepts
which enriched and deepened the concept of vulnerability in
the field of risk assessment and the three concepts are used.

23 Risk, Risk Grade, and Risk Level

Three types of risk maps are developed according to data
availability and modeling accuracy, namely quantitative risk
maps in the form of absolute expected loss, semi-quantitative
maps categorized from quantitative risk maps due to less

P. Shi et al.

accurate modeling result, and non-quantitative risk ranking.
The above three types of maps are noted as risk, risk grade,
and risk level, for the convenience of explanation.

Risk of a disaster or multiple disasters (R) in a region or
grid is defined as loss expectation calculated based on hazard
intensity—probability distribution (H,), vulnerability curve or
matrix (V,.), and exposure (E,,) as follows:

R=H, x V., x Ey (1)

Risk grade in a region or grid of a disaster or multiple
disasters is the ranking of disaster loss expectation
(v) through quantitative risk assessment (k) and then risk
categorization as shown below (Fig. 3):

Ry = Hy X Vi X Eny (2)
where R, is risk grade, H, is hazard intensity—probability,
Vi is vulnerability, and E,, is exposure magnitude.

Risk level of regional natural disaster is the level of
disaster loss expectation developed through integrating
hazard grade (H,), vulnerability magnitude (or matrix of
hazard severity and exposure loss grade, V,;,), and magnitude
of exposure (E,,) (Fig. 4), as below:

R =Hy X Viy X Epy (3)
where R, is risk level; H, is hazard grade; V;, is vulnerability
matrix; and E,, is exposure magnitude.

Risk is the quantitative estimation of loss or damage
expectation with a hazard intensity—probability function, and
the accuracy of results is statistically significant. Risk grade
is the semi-quantitative ranking of expected loss with med-
ium accuracy after quantitative estimation. For risk level, it
is qualitative estimation of expected loss with least accuracy
level.

™N

0 20 40 60 80 100
h

Fig. 3 Risk grade
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24 Natural Disaster Risk Assessment

Risk assessment of natural disaster is the estimation of
casualty, property loss, and environmental damage in a
region to certain physical hazards.

Risk assessment of major natural disaster is the estimation
of loss or damage caused by the major disasters in a specific
region. In the Atlas, the risk for major natural disasters of the
world are assessed including earthquake, volcano, landslide,
typhoon, flood, storm surge, drought, sand—dust storm, wild
fire, heat wave, and cold wave. Exposures taken into con-
sideration include population, livestock, property (house,
family property, equipment, and infrastructure), crop (maize,
wheat, and rice), Gross Domestic Product (GDP), Net Primary
Production (NPP), and forest areas.

Risk assessment of multi-hazard is an overall risk
assessment or integration of the aforementioned 11 types of
natural disasters of the world through the weighted mean of
each individual disaster risk. The weights for each disaster
risk are derived from the frequency and total loss claimed by
major and severe natural disasters recorded globally during
the last 60 years. According to the statistics of frequency,
flood has the highest weight among all disasters, followed by
typhoon, hail (hail storm and hailstone), and earthquake. In
terms of casualty and direct economic loss, the top three
disasters are earthquake, flood, and typhoon. For the quan-
tity of collapsed building and displaced population, flood,
earthquake, and typhoon topped the list.

In the Atlas, risk, risk grade, and risk level for individual
natural disasters, and risk grade for multi-hazards are derived
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according to data availability, data accuracy (especially for
vulnerability), modeling methodology, and result reliability.
The process lays on the latest progress in disaster risk sci-
ence, with the support of a variety of information technology
like remote sensing, geographic information system (GIS),
and database.

The providers of the shared data online have made a great
scientific contribution to global natural disaster risk reduc-
tion, which does not only inspire us to make joint efforts to
develop disaster risk science and compile this atlas, but also
will save numerous lives, huge properties, and the service
capacity of earth ecological system from the damage of
disasters. Hence, we express our heartfelt appreciation and
respect to those institutions and Web sites who provided
related global data, and to those scientific personnel who
devoted themselves to this grand cause.

3 Data Source and Methodology

In the past three decades, disaster risk research group at
Beijing Normal University cumulated considerable regional
natural disaster datasets in and outside China with the
development of disaster risk science. In the meanwhile,
international cooperation with scientific research institutions
outside of China also helps produce/collect natural disaster
data of other regions in the world. Global/regional natural
disaster datasets with open access provided by data-sharing
institutions on the Internet were also used. Besides, a part of
global and regional natural disaster system datasets were
purchased from data production institutions.

3.1 Data Source

Natural Disaster System Datasets of China used in this Atlas
mainly came from Atlas of Natural Disaster of China
(Chinese and English Version) (Zhang and Liu 1992), Atlas
of Natural Disaster System of China (Chinese and English
Version) (Shi 2003), and Atlas of Natural Disaster Risk of
China (Chinese and English Version) (Shi 2011) published
by Science Press of China. State Key Laboratory of Earth
Surface Processes and Resources Ecology of China at Bei-
jing Normal University, Key Laboratory of Environmental
Change and Natural Disaster of Ministry of Education of
China at Beijing Normal University, and Key Laboratory of
Regional Geography of Beijing Normal University contrib-
uted to database construction.

Natural Disaster System Datasets of the rest of the world
came from a variety of sources. Appendix III lists detailed
information about datasets on environments, hazards,
exposure, and disasters.
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3.2 Assessment Methodology

This Atlas employs the assessment methodology used in
Atlas of Natural Disaster Risk of China (Chinese and Eng-
lish Version) (Shi 2011), including regional natural disaster
risk assessment, risk grade assessment, and risk level
assessment as described earlier. The object of assessment
include world major natural disasters and multi-hazard,
considering loss of, damage to, or impact on population,
property (house, family property, equipment, and infra-
structure), crop (maize, wheat, and rice), GDP, NPP, and
forest areas. Detailed methodologies have been elaborated
by disaster type and map series.

4 Thematic Map Development

4.1 Design Concept

The natural disaster risk maps are designed to express the
regions of spatial-temporal attributes. The core contents are
regional differences of disaster risk. By transfer of disaster
risk map information, readers and users are able to directly
realize “Where is the highest risk zone?”” and “Where is the
higher risk zone under certain return period of loss?”, which
will help understand the spatial disaster system and time
variation process, and making decision. Every disaster risk
map contains three-dimensional information of space
(including mapping region scale and unit precision), time
(including type of time interval and return period), and risk
(different grades). The Atlas is supported by the three-

Risk
Risk value 1]
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dimensional structure (Fig. 5) to finish the contents,
expression methods, color and layout designs.

The disaster risk assessment results are expressed as
symbols in each page of the Atlas (Fig. 6), which is reflected
in the disaster risk assessment model Risk (R) = Hazard
(H) % Vulnerability (V) x Exposure (E).

4.2 Cartographic Units
There are three basic cartographic units used in this Atlas:

Grid Unit is the fundamental units for risk assessment as
well as cartography of the 11 natural disasters. Unit sizes are
applied by disaster type, including 1 km x 1 km grid,
0.1° x 0.1° grid, 0.25° x 0.25° grid, 0.5° x 0.5° grid,
0.75° x 0.75° grid, or 1° x 1° grid.

Comparable geographic unit is a new assessment and car-
tographic unit introduced in this atlas, which divides national
and regional boundaries into subregions according to their
areas (Fig. 7). The base map of this unit contains 349 com-
parable geographic units worldwide (Fig. 8, Appendix II). Due
to the substantial area difference among regions and countries,
large area could conceal inner-regional disparity, exaggerate
visual feeling, and even lead to wrong perception. Therefore,
the comparable geographic unit system was introduced.

Country and region unit uses the base map of national
(regional) administrative divisions provided by the Star Map
Press (China). National (regional) risks can be derived by
zonal statistics applied to assessment results in grid units
with the national (regional) boundary base map. Cartography
based on national (regional) units can directly present
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Fig. 5 Methodology and technical system of integrated disaster science
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Fig. 6 The symbol of integrated disaster risk

disaster risk difference among countries. The base map of
national (regional) units contains all 245 countries and
regions listed in world development index used by the World
Bank (Appendix I.A and L.B).

Watershed unit is the best spatial unit for assessing flood
risk and revealing flood risk process. It also eases integrated
flood risk management by means of watershed management.
In this Atlas, the watershed unit base map containing global
254 major watershed units was provided by World
Resources Institute, within which 106 watersheds were
involved in flood risk assessment and cartography.

4.3 Technical Flowchart

The mapping and compilation of this atlas contains four
steps: preparedness and design, mapping, map review, and
computer to plate. The editing technical flowchart is shown
in Fig. 9.

4.4 Cartographic Presentation

A variety of conventional cartographic presentation methods
are used in this Atlas to describe natural disaster risk
(Table 1), such as the ratio classification, area method,
quality-based method, dot method, line method, quantity-
based mapping, and isopleths.

Calculate
average area

Country area>
Average area?
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Disaster risk map—group method can express the maps of
complicated disaster processes with a group of risk maps
through an intuitive and visual way. It makes use of visual
expression to identify the complex and abstract contents of
risk maps. In maps series of each type of disaster in this
atlas, there are map groups by return period, mapping units,
and exposures. Return period map-group refers to the risk
metric maps with annual average loss, 10a, 20a, 50a, and
100a loss maps. Mapping unit map-group refers to a series
of maps derived on grid units, comparable geographic units,
national/regional units, and watershed units. Exposure map-
group refers to a series of map with identical hazard but
different exposure and measures of loss. Examples of the
map-group method are provided in Tables 2, 3, and 4.

4.5 Map Color Design
Symbol color design for disaster risk map is based on three
basic modes: (1) C—H mode: direct color feeling mode in
which the color (C) will directly be associated with certain
hazard (H); (2) C-F-H mode: indirect color feeling mode in
which certain hazard (H) and color can bring people similar
feeling (F); and (3) C—S—H mode: indirect color feeling
mode in which feeling of the landscape (S) associated with
hazard (H) is similar as the color. The color experience of
certain hazard (H) may be caused by more than one mode.
This atlas includes 11 types of hazards, i.e., earthquake,
volcano, landslide, flood, storm surge, tropical cyclone and
sand-dust storm, heat wave, cold wave, drought and wildfire.
The final color system for each hazard type was listed in Table 5.
In this atlas, the color design is difficult, but it is also the
highlight. The presentation of risks in the Atlas adopts the 5-
grade classification system. The color design principles are
as follows: (1) Emphasize the areas at high disaster risk,
using red at grades 1 and 2 (grade 3 for some disaster types),
as the top level of risk for warning. Gray or canary yellow is
used at regions of no data or no risk. (2) Keep the

Treated as a single unit
(178)

Comparable-
geographic unit raw
map (345)

Divide according to

. ~ provincial/state boundaries
National
. (167)
(regional) A
administrative N times of the . ]
division global average > Divide into N units

Fig. 7 Technical flowchart for developing comparable geographic base map based on national (regional) administrative divisions
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Fig. 9 The editing technical
flowchart of World Atlas of
Natural Disaster Risk
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discernment and continuity of each grade. For the legend
design of 10-grade risk level, usually gradient among 3-5 or
4-5 colors are used, and there are two arrangement forms
according the color shade: from dark to light [i.e., annual
expected rainstorm flood population risk of the world (grid
units)] and from light to dark [i.e., expected cold wave
population risk (grid unit)]. The former is commonly used at
monochrome hypsometric layer mapping based on grid
units, average area units, basin units, and country units, and
the latter is used at double-color or multi-color hypsometric
layer mapping based on grid cell, average area units, basin
units, and country units. (3) Weaken the color presentation
in regions with no data or no risk. Generally, light gray or
light yellow are adopted.

In this atlas, disaster risk maps in grid units are classified
into 5 or 10 levels. Risk maps in comparable geographic

units or nation units are classified into 5 levels. The color
design referred to the plan used in Atlas of Natural Disaster
System of China (Chinese and English Version) (Shi 2003)
and Atlas of Natural Disaster Risk of China (Chinese and
English Version) (Shi 2011).

A part of the maps enhances the contrast of color to better
deliver map information. There are three color-enhancing
methods used. (1) Continents are set as black, while keeping
the basic color of oceans. This method is applied to grid-
based earthquake disaster risk maps, landslide disaster risk
maps, sand—dust storm disaster risk maps, and forest/grass-
land fire disaster risk maps. (2) Oceans are set as dark blue,
while continents remain in its base color. This method is
applied to volcanic hazard intensity maps. (3) Dark gray
continents and dark blue oceans are applied to storm surge
disaster risk maps.
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Table 1 Map presentation methods

Map group

Introduction maps

Environments and exposures

Earthquake, volcano, and
landslides disasters

Flood and storm surge disasters

Sand—dust storm and tropical
cyclone disasters

Heat wave and cold wave
disasters

Drought disasters (wheat,
maize, and rice)

Wildfire disasters (forest and
grassland)

Multi-natural disasters

Presentation methods
Quality-based method
Satellite image

Ratio classification
Quality-based method
Line symbols
Quantity-based method
Isopleth

Ratio classification
Area method

Dot symbols

Ratio classification
Area method

Line symbols

Area method

Point symbols

Ratio classification
+ Dot symbols

Area method

Area method
Quality-based method

Ratio classification

Area method

Ratio classification

Table 2 Flood disaster risk map-group by watershed

Exposure

Annual average

Population risk

GDP (property) risk

In the introduction texts for each disaster risk type, there

Return period

10a

P. Shi et al.

Thematic map examples

Political Map of the World (2014)

Global Satellite Image (2012)

Population of the World (2010) (1 km x 1 km)

Global Lithology (2012) (0.5° x 0.5°)

Global River Systems (2010)

Land Use System of the World (2010) (10 km x 10 km)

Global Permafrost Zones (1997)

Mortality Rate of Earthquake Disaster (Intensity = VII) of the World
Expected Annual Mortality Risk of Earthquake of the World (0.5° x 0.5°)
Historical Eruption Locations of Global Volcano (4360B.C-2012A.D)
Annual Mortality in Historical Flood Disaster of the World (1950-2012)
Global Flood Inundation Area by Return Period (100a)

Global Coastal Geomorphology

Susceptibility of Global Sand-dust Storm (0.5° x 0.5°)

Global Tropical Cyclone Paths

Threshold Temperature (0.75° x 0.75°) and Historical Events Location of Global
Heat Wave

Expected Annual Affected Population Risk of Cold Wave of the World
(0.75° x 0.75°)

Global Drought Intensity for Maize by Return Period (10a & 20a) (0.5° x 0.5°)
Global Drought Intensity for Wheat by Return Period (10a & 20a) (0.5° x 0.5°)

Expected NPP Loss Risk of Grassland Wildfire of the World (Comparable
Geographic Unit & Country and Region Unit)

Expected Annual Burned Area Risk of Forest Wildfire of the World (Comparable
Geographic Unit)

Expected Annual Mortality and Affected Population Risk Level by Total Risk
Index of the World (0.5° x 0.5°)

20a 50a 100a
> (‘ > A‘  d 4‘ >
" ; -ﬂ:" T 4." s ““' s
b >
4.6 Cartographic Specifications

are disaster risk color ramps designed for results in nation
units. Color ramps include five levels. Level 1 and Level 2
use red colors. Level 4 and Level 5 use the base color system
listed in Table 5. Level 3 generally uses yellow colors. The
widths of color block levels 1-5 represent percentage ranks of
(0, 10 %], (10, 35 %], (35, 65 %], (65, 90 %], (90, 100 %],
respectively.

The world national/regional boundary map in this atlas is pro-
vided by the Star Map Press (China) using the 2014 boundary
data; the designations employed and the presentation of material
on the maps do not imply the expression of any opinion con-
cerning the legal status of any country, territory, city, or area or of
its authorities, or concerning the delimitation of its frontiers or
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Table 3 Sand—dust storm affected GDP risk map-group

Mapping unit Return period

Annual average 10a
Grid unit
%
Comparable geographic unit
3% < 47 ~
National/regional unit - -
& - o -
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20a 50a 100a
Rt - a.,‘-lgll o4 - a.ig-i" -
P i POs oS S

Table 4 Drought disaster-induced annual average crop yield loss risk map-group

Exposure Mapping unit

Grid unit
Maize i

R = Z

W Oy

Wheat s >
Rice

&

Table 5 Color system by hazard type

Hazard Base color Hazard
Earthquake Red Cold wave
Volcano Red-Purple Heat wave
Landslide Brown Typhoon
Drought Orange-Green Sand—dust storm

boundaries. It uses Equivalent Difference Latitude Parallel
Polyconic Projection with central meridian 150 °E. This Atlas
adopts the projection transformation from Equivalent Difference
Latitude Parallel Polyconic Projection into Robinson Projection
and registration before using the boundary.

Most maps in the Atlas adopt Robinson Project with
Central Median of 160 °E. Global tropic cyclone maps use
central meridian of 160 °W to keep completeness the Pacific,
Atlantic, and Indian Ocean. The minimum distances for both
latitude and longitude are set at 30°. Tropic of Cancer and
Tropic of Capricorn are also presented in maps.

Comparable geographic unit

National/Regional unit

%

Base color Hazard Base color
Blue—Purple Storm surge Blue-Cyan
Red-Yellow Flood Green

Blue Wildfire Red-Green

Yellow—Orange Multi-hazard Red/Purple-Green

According to the task and purpose of the Atlas, we use
the following scales for the full map of the world:
1:140,000,000 (single page) and 1:200,000,000 (1/2 page).

In the Atlas, maps without the annotations of country and
region names can be referred to the Political Map of the
World (2014). Maps noted with Internet linkage address are
directly derived from these shared Internet sources (only
slight modification is made for some maps); others are
originally developed by the authors. The disaster risks of
earthquake, volcano, landslide, flood, tropical cyclone, heat
wave, and grassland wildfire for Antarctic are not assessed,
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and the disaster risks of storm surge, sand—dust storm, cold
wave, forest wildfire, and multi-hazard for Antarctic and
Greenland are not assessed due to the lack of available data.

5 Atlas Structure

In this Atlas, the Political Map and Global Satellite Image
are served as opening maps. After introducing Environments
and Exposures, there comes Major Natural Disaster Risk
Maps, which is the main body of this Atlas. This section
consists of earthquake, volcano and landslide disasters, flood
and storm surge disasters, sand—dust storm and tropical
cyclone disasters, heat wave and cold wave disasters,
drought disasters of maize, wheat and rice, and wildfire
disasters of forest and grassland. The final section is about
total disaster and multi-hazard of the world.

5.1 Environments and Exposures

This section is made up of 16 maps; they are Global
Lithology, Global Tectonic Faults, Global Land Elevation,
Global Terrain Slope, Global Permafrost Zones, Global
Land Cover, Global Soil, Global Climate Zone, Global River
Systems, Global Annual Average Net Primary Production
(NPP), Land Use System of the World, Population of the
World, Social Wealth of the World, Gross Domestic Product
(GDP) of the World, Livestock Density of the World, and
Night Light Index of the World.

5.2 Major Natural Disaster Risk Maps

This section includes the maps of hazard, disaster, and risk
for 11 types of hazards, i.e., earthquake (15 maps), volcano
(18 maps), landslide (6 maps), flood (46 maps), storm surge
(6 maps), tropical cyclone (17 maps), sand—dust storm (51
maps), heat wave (26 maps), cold wave (23 maps), drought
risk (60 maps), and wildfire (17 maps). These maps present a
comprehensive spatial pattern of major natural disaster risks
of the world.

53 Multi-hazard Risk Maps

This section includes mortality and affected population risk
level by Total Risk Index (TRI) (3 maps), loss, and affected
property risk level by TRI (3 maps), multi-hazard intensity
(1 map), mortality and affected population risk level by
Multi-hazard Risk Index (MhRI) (3 maps), and loss and
affected property risk level by MhRI (3 maps).

P. Shi et al.
6 Validation of the Results

We take advantage of EM-DATA and other related data to
validate our results. For earthquake mortality risk, volcano
mortality risk, landslide mortality risk, flood economic loss
and mortality risk, affected population/GDP risk of storm
surge, heat wave mortality risk, affected population risk of
cold wave, burned forest area, expected annual mortality and
affected population risk rank by TRI of country unit and per
unit area, expected annual affected population risk rank by
MhRI of country unit, expected annual loss and affected
property risk rank by TRI of country unit and per unit area,
and expected annual affected property risk rank by MRI of
country unit, we use Spearman rank correlation to validate
the results. For earthquake economic—social wealth loss risk,
affected population/GDP risk of flood, affected population/
GDP risk of sand—dust storm, maize yield loss risk of
drought, wheat yield loss risk of drought and rice yield loss
risk of drought, expected annual mortality and affected
population risk by TRI of grid unit (0.5° x 0.5°), and
expected annual loss and affected property risk by TRI of
grid unit (0.5° x 0.5°), we use Pearson correlation to validate
the results. The detailed table and significance of the vali-
dation results are shown in Appendix IV.

7 Ranks of Major Natural Disaster Risk
Level of the World

According to the assessment results of the country unit based
on each disaster risk, Table 6 shows the top 1 % and top
10 % countries of the ranks of earthquake, volcano, land-
slide, flood, storm surge, tropical cyclone, sand—dust storm,
heat wave, cold wave, drought (maize, wheat, and rice), and
wildfire (forest wildfire and grassland wildfire) of the world.

According to the assessment results of the country unit
based on Total Risk Index (TRI), Table 7 shows the top 1 %
and top 10 % countries of the affected population (3 maps)
and property (3 maps) risk level of TRI rank of the world.
According to the assessment results of the country based on
Multi-hazard Risk Index (MhRI), Table 7 shows the top 1 %
and top 10 % countries of the MhRI (1 map) rank and
affected population (3 maps) and property (3 maps) risk level
of MhRI rank of the world.

8 Conclusion and Discussion

In this Atlas, the world risk of 11 major natural disasters—
earthquake, volcano, landslide, flood, storm surge, sand—dust
storm, tropical cyclone, heat wave, cold wave, drought, and
wildfire—were assessed and mapped initiatively at grid unit,
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comparable geographic unit, and national unit. The multi-
hazard risk of above 11 hazards was also assessed, mapped,
and ranked initiatively with the Total Risk Index (TRI) and
Multi-hazard Risk Index (MhRI) at grid unit and national
unit. By zonal statistics of the expected risk result, the
expected annual mortality and/or affected population risks
and expected annual economic loss and/or affected property
risks of 11 hazards and multi-hazard of the world at national
level are initiatively derived and ranked.

The Atlas proposed the comparative geographic unit to
map the major natural disaster risks of the world, which can
better present the spatial patterns of the mortality and eco-
nomic loss risks of those hazard. The Atlas derived the top 1
and 10 % countries with highest risk value for 11 types of
hazards, and the top 50 counties with the highest multi-
hazard risk both at national level and per unit area level.

This is the first world atlas for systematically mapping the
major natural disaster risks with the framework of Regional
Disaster System Theory. However, due to the limitation of
data availability, the vulnerability curves are not fitted at grid
or comparable geographic unit level or even at national level
for some types of disaster, and affected population and GDP
risks are assessed instead of the risks for mortality and
property loss. Besides, weighting methods are used to assess
the multi-hazard risk by EM-DAT and China Catastrophe
Statistics (CCS), but the weights for some types of hazards
were not obtained due to the limited available data. Thus, the
result reasonability was limited. Thirdly, only the top 50
countries with the highest multi-hazard risks at higher con-
fidence level were ranked; other countries were listed by 4
groups from top 51 to top 100, from top 101 to top 150, and
from top 151 to the lowest. Finally, due to the limitation of
data spatial resolution, maps for some types of hazards were
only developed at relatively lower spatial resolution, such as
0.75° x 0.75° for heat wave and cold wave, and 1° x 1° for
flood.

The authors greatly appreciate the institutes, organizations,
companies, and official departments who provided data,
models, publications, and related documents for this atlas.
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We look forward to more contributions to improve data res-
olution, methods, and models related to map world disaster
risks at different spatial-temporal levels for disaster risk
reduction of the world.
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LA Name and Abbreviation of Countries
(Alphabetical Order of the Initial
of the Short Name)’

Full name

The Islamic Republic of
Afghanistan

The Republic of Albania

The People’s Democratic
Republic of Algeria

The Principality of Andorra
The Republic of Angola
Antigua and Barbuda

The Argentine Republic
The Republic of Armenia
Australia

The Republic of Austria
The Republic of Azerbaijan

The Commonwealth of the
Bahamas

The Kingdom of Bahrain
Brunei Darussalam

The People’s Republic of
Bangladesh

Barbados

The Republic of Belarus
The Kingdom of Belgium
Belize

The Republic of Benin
The Kingdom of Bhutan

Short name

Afghanistan

Albania
Algeria

Andorra
Angola

Antigua and
Barbuda

Argentina
Armenia
Australia
Austria
Azerbaijan

Bahamas

Bahrain
Baker Island
Bangladesh

Barbados
Belarus
Belgium
Belize
Benin

Bhutan

! http://unterm.un.org

Abbreviation

AFG

ALB
DZA

AND
AGO
ATG

ARG
ARM
AUS
AUT
AZE
BHS

BHR
BRN
BGD

BRB
BLR
BEL
BLZ
BEN
BTN

(continued)
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(continued)

Full name

The Plurinational State of
Bolivia

Bosnia and Herzegovina

The Republic of Botswana

The Federative Republic of
Brazil

The Republic of Bulgaria
Burkina Faso

The Republic of the Union of
Myanmar

The Republic of Burundi
The Kingdom of Cambodia
The Republic of Cameroon
Canada

The Republic of Cabo Verde
The Central African Republic

The Republic of Chad
The Republic of Chile

The People’s Republic of
China

The Republic of Colombia
The Union of the Comoros
The Republic of the Congo

The Democratic Republic of
the Congo

The Cook Islands

Short name

Bolivia

Bosnia and
Herzegovina

Botswana

Brazil

Bulgaria
Burkina Faso

Burma

Burundi
Cambodia
Cameroon
Canada
Cape Verde

Central African
Republic

Chad
Chile
China

Colombia
Comoros
Congo

Congo
(Democratic
Republic of the)

Cook Islands

Abbreviation

BOL

BIH

BWA
BRA

BGR
BFA
MMR

BDI
KHM
CMR
CAN
CPV
CAF

TCD
CHL
CHN

COL

COM
COoG
COD

COK

(continued)
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(continued)

Full name

The Republic of Costa Rica
The Republic of Croatia
The Republic of Cuba

The Republic of Cyprus
The Czech Republic

The Kingdom of Denmark
The Republic of Djibouti

The Commonwealth of
Dominica

The Dominican Republic

The Republic of Ecuador
The Arab Republic of Egypt
The Republic of El Salvador

The Republic of Equatorial
Guinea

The State of Eritrea
The Republic of Estonia

The Federal Democratic
Republic of Ethiopia

The Federated States of
Micronesia

The Republic of Fiji

The Republic of Finland
The French Republic

The Gabonese Republic

The Republic of the Gambia
State of Palestine

Georgia

The Federal Republic of
Germany

The Republic of Ghana
The Hellenic Republic
Grenada

The Republic of Guatemala
The Republic of Guinea

The Republic of Guinea-
Bissau

The Republic of Guyana
The Republic of Haiti

The Republic of Honduras
Hungary

The Republic of Iceland
The Republic of India

The Republic of Indonesia
The Islamic Republic of Iran
The Republic of Iraq

Short name
Costa Rica
Croatia

Cuba

Cyprus

Czech Republic
Denmark
Djibouti

Dominica

Dominican
Republic

Ecuador
Egypt
El Salvador

Equatorial Guinea

Eritrea
Estonia

Ethiopia

Federated States of

Micronesia
Fiji
Finland
France
Gabon
Gambia
Gaza Strip
Georgia

Germany

Ghana
Greece
Grenada
Guatemala
Guinea

Guinea-Bissau

Guyana
Haiti
Honduras
Hungary
Iceland
India
Indonesia
Iran

Iraq

Appendix | Name and Abbreviation of Countries and Regions

(continued)
Abbreviation Full name
CRI Ireland
HRV The State of Israel
CUB The Republic of Italy
CYP Jamaica
CZE Japan
DNK The Hashemite Kingdom of

DIl Jordan
The Republic of Kazakhstan

DMA
The Republic of Kenya
DOM The Republic of Kiribati
The State of Kuwait
ECU The Kyrgyz Republic
EGY > :
The Lao People’s Democratic
SLV Republic
GNQ The Republic of Latvia
The Lebanese Republic
ERI The Kingdom of Lesotho
EST The Republic of Liberia
ETH Libya
FSM The Principality of
Liechtenstein
FII The Republic of Lithuania
= The Grand Duchy of
N Luxembourg
FRA The former Yugoslav Republic
GAB of Macedonia
GMB The Republic of Madagascar
PSE The Republic of Malawi
GEO Malaysia
DEU The Republic of Maldives
The Republic of Mali
GHA The Republic of Malta
GRC .
The Republic of the Marshall
GRD Islands
GTM The Islamic Republic of
GIN Mauritania
GNB The Republic of Mauritius
The United Mexican States
GUY The Republic of Moldova
HTI The Principality of Monaco
HND Mongolia
HUN Montenegro
ISL The Kingdom of Morocco
IND The Republic of Mozambique
IDN The Republic of Namibia
IRN The Republic of Nauru
IRQ The Federal Democratic

(continued) Republic of Nepal

Short name
Ireland
Israel

Italy
Jamaica
Japan

Jordan

Kazakhstan
Kenya
Kiribati
Kuwait
Kyrgyzstan

Laos

Latvia
Lebanon
Lesotho
Liberia
Libya

Liechtenstein

Lithuania

Luxembourg

Macedonia

Madagascar
Malawi
Malaysia
Maldives

Mali

Malta

Marshall Islands

Mauritania

Mauritius
Mexico
Moldova
Monaco
Mongolia
Montenegro
Morocco
Mozambique
Namibia
Nauru

Nepal

Abbreviation
IRL

ISR

ITA

JAM

JPN

JOR

KAZ
KEN
KIR

KWT
KGZ
LAO

LVA
LBN
LSO
LBR
LBY
LIE

LTU
LUX

MKD

MDG
MWI
MYS
MDV
MLI
MLT
MHL

MRT

MUS
MEX
MDA
MCO
MNG
MNE
MAR
MOZ
NAM
NRU
NPL

(continued)
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(continued)
Full name

The Kingdom of the
Netherlands

New Zealand

The Republic of Nicaragua
The Republic of the Niger
The Federal Republic of
Nigeria

Niue

The Democratic People’s
Republic of Korea

The Kingdom of Norway
The Sultanate of Oman

The Islamic Republic of
Pakistan

The Republic of Palau
The Republic of Vanuatu
The Republic of Panama

Independent State of Papua
New Guinea

The Republic of Paraguay
The Republic of Peru

The Republic of the
Philippines

The Republic of Poland
The Portuguese Republic
The State of Qatar
Romania

The Russian Federation
The Republic of Rwanda
Saint Kitts and Nevis

Saint Lucia

Saint Vincent and the
Grenadines

The Independent State of
Samoa

The Republic of San Marino

The Democratic Republic of
Sao Tome and Principe

The Kingdom of Saudi Arabia
The Republic of Senegal

The Republic of Serbia

The Republic of Seychelles
The Republic of Sierra Leone
The Republic of Singapore
The Slovak Republic

The Republic of Slovenia

Solomon islands

Short name

Netherlands

New Zealand
Nicaragua
Niger

Nigeria

Niue

North Korea

Norway
Oman

Pakistan

Palau
Palestine
Panama

Papua New
Guinea

Paraguay
Peru

Philippines

Poland
Portugal
Qatar
Romania
Russia
Rwanda

Saint Kitts and
Nevis

Saint Lucia

Saint Vincent and
the Grenadines

Samoa

San Marino

Sao Tome and
Principe

Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Singapore
Slovakia
Slovenia

Solomon Islands

(continued)
Abbreviation Full name
NLD The Federal Republic of
Somalia
NZL The Republic of South Africa
NIC The Republic of Korea
NER The Republic of South Sudan
NGA The Kingdom of Spain
The Democratic Socialist
NIU Republic of Sri Lanka
PRK The Republic of the Sudan
The Republic of Suriname
NOR . .
The Kingdom of Swaziland
OMN The Kingdom of Sweden
PAK The Swiss Confederation
PLW The Syrian Arab Republic
The Republic of Tajikistan
VUT
PAN The United Republic of
Tanzania
PNG The Kingdom of Thailand
The Republic of Cote d’Ivoire
PRY
PER The Democratic Republic of
PHL Timor-Leste
The Togolese Republic
POL The Kingdom of Tonga
PRT The Republic of Trinidad and
QAT Tobago
ROU The Republic of Tunisia
RUS The Republic of Turkey
RWA Turkmenistan
KNA Tuvalu
The Republic of Uganda
Lca Ukraine
VCT The United Arab Emirates
WSM The United Kingdom of Great
Britain and Northern Ireland
SMR The United States of America
STP The Eastern Republic of
Uruguay
SAU The Republic of Uzbekistan
SEN The Holy See
SRB The Bolivarian Republic of
SYC Venezuela
SLE The Socialist Republic of Viet
SGP Nam
SVK The Republic of Yemen
SVN The Republic of Zambia
SLB The Republic of Zimbabwe

(continued)

Short name

Somalia

South Africa
South Korea
South Sudan
Spain

Sri Lanka

Sudan
Suriname
Swaziland
Sweden
Switzerland
Syria
Tajikistan

Tanzania

Thailand

The Republic of
Céte d’Ivoire

Timor-Leste

Togo
Tonga

Trinidad and
Tobago

Tunisia
Turkey
Turkmenistan
Tuvalu
Uganda
Ukraine

United Arab
Emirates

United Kingdom

United States
Uruguay

Uzbekistan
Vatican City

Venezuela

Vietnam

Yemen
Zambia

Zimbabwe

327

Abbreviation
SOM

ZAF
KOR
SSD
ESP
LKA

SDN
SUR
SWZ
SWE
CHE
SYR
TIK

TZA

THA
CIv

TLS

TGO
TON
TTO

TUN
TUR
TKM
TUV
UGA
UKR
ARE

GBR

USA
URY

UZB
VAT
VEN

VNM

YEM
ZMB
ZWE
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I.B Name, Dependency Country
and Abbreviation of Regions

(Alphabetical Order of the Initial
of the Name)?

Name

Anguilla
Bermuda

British Virgin Islands
Cayman Islands
Christmas Island
Cocos Islands
Faroe Islands
French Guiana
French Polynesia
Gibraltar
Greenland
Guadeloupe
Guam

Islas Malvinas

Martinique

Dependency of
United Kingdom
United Kingdom
United Kingdom
United Kingdom
Australia
Australia
Denmark

France

France

United Kingdom
Denmark
France

United States
United Kingdom

France

2 Fan, J. and M. Zhou (eds.) 2010. Atlas of the World. Beijing: Sino

Maps Press. (in Chinese)

Abbreviation

AIA

BMU

VGB

CYM

CXR

CCK

FRO

GUF

PYF

GIB

GRL

GLP

GUM

FLK

MTQ
(continued)

Appendix | Name and Abbreviation of Countries and Regions

(continued)

Name

Montserrat

New Caledonia

Norfolk Island

Northern Mariana Islands
Pitcairn Islands

Puerto Rico

Reunion

Saint Barthelemy

Saint Helena

Saint Martin

Saint Pierre and Miquelon
Saint Maarten

Tokelau

Virgin Islands

Wallis et Futuna

Dependency of
United Kingdom
France

Australia

United States
United Kingdom
United States
France

France

United Kingdom
France

France
Netherlands
New Zealand
United States

France

Abbreviation
MSR
NCL
NFK
MNP
PCN
PRI
REU
BLM
SHN
MAF
SPM
TCA
TKL
VIR
WLF



Appendix Il

Name and Coding System of the Comparable-
Geographic Unit in the Atlas (Alphabetical Order
of the Initial of the Country Name)?

Code Country Continent (continued)

004001  Afghanistan Asia Code Country Continent

008002 Albania Europe 036029 Australia Oceania

012004 Algeria Africa 040030 Austria Europe

012005 Algeria Africa 031013 Azerbaijan Asia

012006 Algeria Africa 048031 Bahrain Asia

012007 Algeria Africa 050032 Bangladesh Asia

016008 American Samoa Oceania 052034 Barbados South America

020009 Andorra Europe 112060 Belarus Europe

024010 Angola Africa 056035 Belgium Europe

024011 Angola Africa 084054 Belize South America

010003 Antarctica Antarctica 204116 Benin Africa

028012  Antigua and Barbuda South America 060036 Bermuda South America

032014 Argentina South America 064037 Bhutan Asia

032015  Argentina South America 008038  Bolivia South America

032016 Argentina South America 068039 Bolivia South America

032017 Argentina South America 072040 Botswana Africa

051033  Armenia Asia 076041  Brazil South America

533216 Aruba South America 076042 Brazil South America

036018 Australia Oceania 076043 Brazil South America

036019 Australia Oceania 076044 Brazil South America

036020  Australia Oceania 076045 Brazil South America

036021  Australia Oceania 076046 Brazil South America

036022  Australia Oceania 076047 Brazil South America

036023  Australia Oceania 076048  Brazil South America

036024 Australia Oceania 076049 Brazil South America

036025  Australia Oceania 076050  Brazil South America

036026  Australia Oceania 076051  Brazil South America

036027 Australia Oceania 076052 Brazil South America

036028 Australia Oceania 076053 Brazil South America
(continued) (continued)

3 The generation method of the Comparable-geographic unit is shown

in Fig. 7 in “World Atlas of Natural Disaster Risk—Understanding

the spatial patterns of global natural disaster risk”

P. Shi and R. Kasperson (eds.), World Atlas of Natural Disaster Risk, 329

IHDP/Future Earth-Integrated Risk Governance Project Series,
DOI 10.1007/978-3-662-45430-5 © Springer-Verlag Berlin Heidelberg and Beijing Normal University Press 2015
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(continued)
Code

850337
096056
100057
854338
108059
116061
120062
124063
124064
124065
124066
124067
124068
124069
124070
124071
124072
124073
124074
124075
124076
124077
124078
132079
136080
140081
148083
148084
152085
156086
156087
156088
156089
156090
156091
156092
156093
156094
156095
156096
156097
156098
156099
156100

Country
Brazil
Brunei
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Cape Verde

Cayman Islands

Central African Republic

Chad

Chad

Chile

China
China
China
China
China
China
China
China
China
China
China
China
China
China
China

Continent
South America
Asia

Europe

Africa

Africa

Asia

Africa

North America
North America
North America
North America
North America
North America
North America
North America
North America
North America
North America
North America
North America
North America
North America
North America
Africa

South America
Africa

Africa

Africa

South America
Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

(continued)

(continued)
Code

158101
170102
170103
174104
188111
384169
191112
192113
620238
196114
203115
180107
180108
180109
180110
208117
262134
212118
214119
626240
218120
818315
818316
818317
222121
226122
232125
233126
231123
231124
234127
238128
242129
246130
250131
254132
258133
266135
270137
268136
276138
288139
292140
300142

Appendix Il Comparable Geographic Unit System

Country

China

Colombia

Colombia

Comoros

Costa Rica

Cote d’Ivoire

Croatia

Cuba

Cuba

Cyprus

Czech Republic
Democratic Republic of the Congo
Democratic Republic of the Congo
Democratic Republic of the Congo
Democratic Republic of the Congo
Denmark

Djibouti

Dominica

Dominican Republic

East Timor

Ecuador

Egypt

Egypt

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Ethiopia

Ethiopia

Faeroe Islands

Falkland Islands (Malvinas)
Fiji

Finland

France

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Germany

Ghana

Gibraltar

Greece

Continent
Asia

South America
South America
Africa

South America
Africa

Europe

South America
South America
Asia

Europe

Africa

Africa

Africa

Africa

Europe

Africa

South America
South America
Asia

South America
Africa

Africa

Africa

South America
Africa

Africa

Europe

Africa

Africa

Europe

South American
Oceania
Europe
Europe

South America
Oceania
Africa

Africa

Asia

Europe

Africa

Europe
Europe

(continued)
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(continued)
Code

304143
308144
312145
316146
320147
324148
624239
328149
332150
340151
348152
352153
356154
356155
356156
356157
356158
360159
360160
360161
364162
364163
364164
368165
372166
833319
376167
380168
388170
392171
400176
398172
398173
398174
398175
404177
296141
414180
417181
418182
428185
422183
426184
430186

Country
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hungary
Iceland
India

India

India

India

India
Indonesia
Indonesia
Indonesia
Iran

Iran

Iran

Iraq

Ireland

Isle of Man
Israel

Italy
Jamaica
Japan
Jordan
Kazakhstan
Kazakhstan
Kazakhstan
Kazakhstan
Kenya
Kiribati
Kuwait
Kyrgyzstan
Laos

Latvia
Lebanon
Lesotho

Liberia

Continent
North America
South America
Africa
Oceania

South America
Africa

Africa

South America
South America
South America
Europe
Europe

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Africa

Africa

Africa

Asia

Europe
Europe

Asia

Europe

South America
Asia

Asia

Asia

Asia

Asia

Asia

Africa
Oceania

Asia

Asia

Asia

Europe

Asia

Africa

Africa

(continued)

(continued)
Code

434187
434188
434189
440190
442191
807314
450192
454193
458194
462195
466196
466197
470198
584228
474199
478200
478201
480202
175105
484203
484204
484205
538217
498209
496206
496207
496208
504210
508211
104058
516213
524214
528215
540218
554220
558221
562222
562223
566224
408178
580226
578225
512212
586230

Country
Libya
Libya
Libya
Lithuania
Luxembourg
Macedonia
Madagascar
Malawi
Malaysia
Maldives
Mali

Mali

Malta
Marshall Islands
Martinique
Mauritania
Mauritania
Mauritius
Mayotte
Mexico
Mexico

Mexico

Micronesia (Federated States of)

Moldova
Mongolia
Mongolia
Mongolia
Morocco
Mozambique
Myanmar
Namibia

Nepal
Netherlands
New Caledonia
New Zealand
Nicaragua
Niger

Niger

Nigeria

North Korea
Northern Mariana Islands
Norway

Oman

Pakistan
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Continent
Africa

Africa

Africa

Europe
Europe
Europe

Africa

Africa

Asia

Asia

Africa

Africa

Europe
Oceania

South America
Africa

Africa

Africa

Africa

North America
North America
North America
Asian

Europe

Asia

Asia

Asia

Africa

Africa

Asia

Africa

Asia

Europe
Oceania
Oceania

South America
Africa

Africa

Africa

Asia

Oceania
Europe

Asia

Asia

(continued)
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(continued)
Code

585229
591231
598232
600233
604234
604235
608236
616237
630241
634242
178106
638243
642244
643245
643246
643247
643248
643249
643250
643251
643252
643253
643254
643255
643256
643257
643258
643259
643260
643261
643262
643263
643264
643265
643266
643267
643268
643269
643270
643271
646272
706285
662273
882342

Country
Palau
Panama
Papua New Guinea
Paraguay
Peru

Peru
Philippines
Poland
Puerto Rico
Qatar
Republic of Congo
Reunion
Romania
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Russia
Rwanda
Rwanda
Saint Lucia

Samoa

Continent
Oceania

South America
Oceania

South America
South America
South America
Asia

Europe

South America
Asia

Africa

Africa

Europe

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Africa

Africa

North America

Oceania

(continued)

(continued)
Code

674274
678275
682276
682277
682278
686279
690280
694281
702282
703283
705284
090055
710287
710288
410179
724290
144082
729291
729292
729293
729294
740296
748297
752298
756299
760300
762301
834320
834321
764302
768303
776304
780305
788307
792308
795309
796310
798311
800312
804313
784306
826318
840322
840323
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Country

San Marino

Sao Tome and Principe

Saudi Arabia
Saudi Arabia
Saudi Arabia
Senegal
Seychelles
Sierra Leone
Singapore
Slovakia
Slovenia
Solomon Islands
South Africa
South Africa
South Korea
Spain

Sri Lanka
Sudan

Sudan

Sudan

Sudan
Suriname
Swaziland
Sweden
Switzerland
Syria
Tajikistan
Tanzania
Tanzania
Thailand
Togo

Tonga

Trinidad and Tobago

Tunisia
Turkey

Turkmenistan

Turks and Caicos Islands

Tuvalu
Uganda

Ukraine

United Arab Emirates

United Kingdom
United States
United States

Continent
Europe

Africa

Africa

Africa

Africa

Africa

Africa

Africa

Asia

Europe
Europe
Oceania
Africa

Africa

Asia

Europe

Asia

Africa

Africa

Africa

Africa

South America
Africa

Europe
Europe

Asia

Asia

Africa

Africa

Asia

Africa
Oceania

South America
Africa

Asia

Asia

South America
Oceania
Africa

Europe

Asia

Europe

North America
North America

(continued)



Appendix Il Comparable Geographic Unit System

(continued)
Code

840324
840325
840326
840327
840328
840329
840330
840331
840332
840333
840334
840335

Country

United States
United States
United States
United States
United States
United States
United States
United States
United States
United States
United States
United States

Continent

North America
North America
North America
North America
North America
North America
North America
North America
North America
North America
North America
North America

(continued)

(continued)
Code

840336
858339
860340
548219
862341
706286
581227
732295
887343
891344
894345
716289

Country
United States
Uruguay
Uzbekistan
Vanuatu
Venezuela

Vietnam

Virgin Islands, U.S.

Western Sahara
Yemen
Yugoslavia
Zambia

Zimbabwe

333

Continent
North America
South America
Asia

Oceania

South America
Asia

South America
Africa

Asia

Europe

Africa

Africa



Appendix Il
Data Source and Database for World Atlas
of Natural Disaster Risk®

4 Note There are four kinds of data sources: A refers to free data
of open access, B refers to data quoted from other documents, C refers
to purchased data, and D refers to data provided from cooperation
institutions

P. Shi and R. Kasperson (eds.), World Atlas of Natural Disaster Risk, 335
IHDP/Future Earth-Integrated Risk Governance Project Series,
DOI 10.1007/978-3-662-45430-5 © Springer-Verlag Berlin Heidelberg and Beijing Normal University Press 2015
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http://www.fao.org/geonetwork/srv/en
http://www.fao.org/geonetwork/srv/en
http://geotypes.net
http://www.csi.cgiar.org
https://wist.echo.nasa.gov
http://web.ornl.gov/sci/landscan/
http://web.ornl.gov/sci/landscan/
http://data.worldbank.org
http://www.iiasa.ac.at
http://ngdc.noaa.gov
http://data.worldbank.org
http://www.world-housing.net
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http://www.economywatch.com
http://databank.worldbank.org
http://faostat.fao.org.sixxs.org
http://www.earthobservatory.nasa.gov
https://lpdaac.usgs.gov
http://www.sage.wisc.edu
http://www.luge.geog.mcgill.ca
http://hydro.iis.u-tokyo.ac.jp
http://dx.doi.org/10.7927/H4Q81B0R
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http://faostat.fao.org
http://zzys.agri.gov.cn
http://quickstats.nass.usda.gov
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ftp://fuoco.geog.umd.edu
https://wist.echo.nasa.gov
http://www.ngdc.noaa.gov
http://trmm.gsfc.nasa.gov
http://<LIG>fl</LIG>oodobservatory.colorado.edu
http://www.emdat.be/database
http://earthobservatory.nasa.gov
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http://www.glidenumber.net
https://wist.echo.nasa.gov
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Validation for Major Natural Disaster Risk

Risk type

Earthquake mortality risk

Earthquake economic-social
wealth loss risk

Volcano mortality risk

Landslide mortality risk

Flood economic loss and
mortality risk

Affected population/GDP risk of
flood

Validation data

The earthquake mortality risk ranking for
each country was derived from 2009 Global
Risk Assessment Report and used as
reference for validation

The earthquake economic loss data for each
country was derived from EM-DAT
historical earthquake event records from
1900 to 2012 and used as reference for
validation

The ranks of volcano mortality risk for each
country derived from Natural Disaster
Hotspots: A Global Risk Analysis

Country level: Country level landslide
hazard index is calculated using global
landslide hotspot program based from
Norwegian Geotechnical Institute’s work
(Nadim et al. 2006)

Country level: The flood economic loss and
motility data for each country were derived
from EM-DAT historical flood event
records from 1900 to 2012 and used as
reference for validation

Watershed level: The flood economic loss
and motility data for each watershed were
derived from the global large flood events
archive of DFO and used as reference for
validation

Grid level: The global natural disaster risk
hotspots report published by the World
Bank was used as reference and the
correlation between flood risk grade in this
study and the results of the World Bank’s
report were analyzed

P. Shi and R. Kasperson (eds.), World Atlas of Natural Disaster Risk,
IHDP/Future Earth-Integrated Risk Governance Project Series,
DOI 10.1007/978-3-662-45430-5 © Springer-Verlag Berlin Heidelberg and Beijing Normal University Press 2015

Sample size

84

58

30

76

100

106

All grids

Validation results

The Spearman rank correlation coefficient is
0.731, significant at p < 0.01 level (two-
tailed)

The Pearson correlation coefficient is 0.834,
significant at p < 0.01 level (two-tailed)

The Spearman rank correlation coefficient is
0.763, significant at p < 0.01 level (two-
tailed)

The Spearman rank correlation coefficient is
0.847, significant at p < 0.01 level

The Spearman rank correlation coefficients
for economic loss and motility risk are 0.706
and 0.836 respectively, significant at

p < 0.01 level (two-tailed)

The Spearman rank correlation coefficients
for economic loss and motility risk are 0.813
and 0.786 respectively, significant at

p < 0.01 level (two-tailed)

The Pearson correlation coefficients for
affected economy and population risk are
0.614 and 0.564 respectively, significant at
p < 0.01 level (two-tailed)

(continued)
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(continued)
Risk type

Affected population/GDP risk of
storm surge

Affected population/GDP risk of
sand-dust storm

Heat wave mortality risk

Affected population risk of cold

wave

Maize yield loss risk of drought

Wheat yield loss risk of drought

Rice yield loss risk of drought

Burned forest area risk

Grassland NPP loss risk

Validation data

Dataset includes a compilation of estimated
storm surges triggered by tropical cyclones
from 1975 to 2007 provided by GRDP

Based on sand and dust storm frequency
supplied by provincial newspapers database
of China, correlation analysis of expected
annual kinetic energy of sand and dust storm
and the frequency was made

The heat wave mortality data for each
country was derived from EM-DAT
historical heat wave event records from
1900 to 2013

Cold wave loss data of frequency, affected
population, and mortality etc. from the
Global IDEntifier Number database

The crop yield loss rate of provinces in
China derived from statistical data of
slightly, moderately, and severely damaged
areas caused by drought disasters and
sowing area from 1997 to 2005

The Global Risk Data Platform built by
UNEP and UNISDR provides a density of
fires dataset, including an estimation of the
density of fires over the period from 1997 to
2010

Grid level: Evaluation of wildfire
propagation susceptibility in grasslands
using burned areas and multivariate logistic
regression (Cao et al. 2013)

Sample size
57

254

48

49

22

22

20

100

194

Appendix IV: Validation

Validation results

The Spearman rank correlation coefficients
for inundated area, affected population and
affected GDP are 0.72, 0.47, and 0.57,
respectively, significant at p < 0.01 level
(two-tailed)

The Pearson correlation analysis shows that
the dependency is observable, with
correlation coefficient of 0.471, significant
at p < 0.01 level (two-tailed)

The Spearman rank correlation coefficient is
0.462, significant at p < 0.01 level (two-
tailed)

The spearman correlation coefficient is
0.602, significant at p < 0.01 level (two-
tailed)

The Pearson correlation coefficient for 100a
return period loss is 0.62, significant at
p < 0.01 level (two-tailed)

The Pearson correlation coefficient for 100a
return period loss is 0.55, significant at
p < 0.01 level (two-tailed)

The Pearson correlation coefficient for 100a
return period loss is 0.60, significant at
p < 0.01 level (two-tailed)

The Spearman rank correlation coefficient
for is 0.767, significant at p < 0.01 level
(two-tailed)

Based on the reviewer reports
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Validation for Multi-hazard Risk

Risk type

Expected annual mortality and affected
population risk rank by TRI (country)

Expected annual affected population risk
rank by MhRI (country)

Expected annual loss and affected property
risk rank by TRI (country)

Expected annual affected property risk rank
by MRI (country)

Expected annual mortality and affected
population risk rank by TRI (country)

Expected annual mortality and affected
population risk rank by TRI (per unit area)

Expected annual loss and affected property
risk rank by TRI (country)

Expected annual loss and affected property
risk rank by TRI (per unit area)

Expected annual mortality and affected
population risk by TRI (0.5° x 0.5°)

Expected annual loss and affected property
risk by TRI (0.5° x 0.5°)

Validation data

The rank of total affected
population and property damage
data for each country was derived
from EM-DAT historical natural
disaster event records from 1951
to 2013.

Expected annual affected
population risk rank by MhRI
(country)

Expected annual affected
population risk rank by MhRI
(per unit area)

Expected annual affected
property risk rank by MhRI
(country)

Expected annual affected
property risk rank by MhRI (per
unit area)

Expected annual affected
population risk by MhRI
(0.5° x 0.5°)

Expected annual affected
property risk by MhRI
(0.5° x 0.5°)

The Significance of the Validation Results

Risk type

Earthquake mortality risk

Earthquake economic-social wealth loss risk

Volcano mortality risk
Landslide mortality risk

Flood Economic loss and mortality risk

Affected population/GDP risk of flood

Affected population/GDP risk of storm surge

Affected population/GDP risk of sand-dust storm

Heat wave mortality risk

Affected population risk of cold wave
Maize yield loss risk of drought
Wheat yield loss risk of drought

Sample
size
177
177
165

165

197

197

196

196

85,789

grids

58,605
grids

Correlation coefficient type

347

Validation results

The Spearman rank correlation coefficient is
0.662, significant at p < 0.01 level (two-tailed)

The Spearman rank correlation coefficient is
0.744, significant at p < 0.01 level (two-tailed)

The Spearman rank correlation coefficient is
0.596, significant at p < 0.01 level (two-tailed)

The Spearman rank correlation coefficient is
0.740, significant at p < 0.01 level (two-tailed)

The Spearman rank correlation coefficient is
0.852. significant at p < 0.01 level (two-tailed)

The Spearman rank correlation coefficient is
0.672. significant at p < 0.01 level (two-tailed)

The Spearman rank correlation coefficient is
0.843, significant at p < 0.01 level (two-tailed)

The Spearman rank correlation coefficient is
0.763, significant at p < 0.01 level (two-tailed)

The Pearson correlation coefficient is 0.618,
significant at p < 0.01 level (two-tailed)

The Pearson correlation coefficient is 0.873,
significant at p < 0.01 level (two-tailed)

Significance of results

Spearman rank correlation Likely
Pearson correlation Very likely
Spearman rank correlation Likely
Spearman rank correlation Likely
Spearman rank correlation Likely
Spearman rank correlation Likely
Pearson correlation Likely
Spearman rank correlation Likely
Pearson correlation Likely
Spearman rank correlation Likely
Spearman rank correlation Likely
Pearson correlation Very likely

Pearson correlation

Very likely

(continued)
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(continued)

Risk type

Rice yield loss risk of drought

Burned forest area

Grassland NPP loss*

Expected annual mortality and affected population risk rank by TRI (country)
Expected annual affected population risk rank by MhRI (country)

Expected annual loss and affected property risk rank by TRI (country)
Expected annual affected property risk rank by MRI (country)

Expected annual mortality and affected population risk rank by TRI (country)
Expected annual mortality and affected population risk rank by TRI (per unit area)
Expected annual loss and affected property risk rank by TRI (country)
Expected annual loss and affected property risk rank by TRI (per unit area)
Expected annual mortality and affected population risk by TRI (0.5° x 0.5°)
Expected annual loss and affected property risk by TRI (0.5° x 0.5°)

4 The method of calculating grassland NPP loss risk has been published

Validation Data®

Correlation coefficient type
Pearson correlation

Spearman rank correlation
Spearman rank correlation
Spearman rank correlation
Spearman rank correlation
Spearman rank correlation
Spearman rank correlation
Spearman rank correlation
Spearman rank correlation
Spearman rank correlation
Pearson correlation

Pearson correlation

Disaster type Validation data description Data access Data sources

UNISDR. (2009) Global assessment report on

Earthquake Earthquake mortality risk provided by UNISDR A

Historical economic loss caused by earthquake
provided by EM-DAT

Volcano Volcano mortality risk map provided by A
Natural Disaster Hotspots: A Global Risk
Analysis

Landslide Global landslide hazard hotspot produced by A
the collaboration between NGI and Columbia
University

Flood EM-DAT historical flood event records from A
1900 to 2012

Global large flood events archive from A
Dartmouth Flood Observatory (DFO)

Global flood economic and mortality risk maps A
provided by Natural Disaster Hotspots: A
Global Risk Analysis

3 Note there are four kinds of data sources, A refers to free data of open
access, B refers to data quoted from other documents, C refers
to bought data, and D refers to data provided from cooperation.

disaster risk reduction

Appendix IV: Validation

Significance of results
Very likely
Likely
Very likely
Likely
Likely
Likely
Likely
Likely
Likely
Likely
Likely
Very likely
Very likely

http://www.preventionweb.net

EM-DAT, CRED

http://www.emdat.be

Socioeconomic Data and Applications Center

(SEDAC), NASA

http://sedac.ciesin.columbia.edu

Socioeconomic Data and Applications Center

(SEDAC), NASA

http://sedac.ciesin.columbia.edu/data/set/ndh-
landslide-hazard-distribution

EM-DAT

http://www.emdat.be

Dartmouth Flood Observatory

http://www.dartmouth.edu/ ~ floods/Archives/

index.html

Socioeconomic Data and Applications Center

(SEDAC), NASA

http://sedac.ciesin.columbia.edu

(continued)


http://www.preventionweb.net
http://www.emdat.be
http://sedac.ciesin.columbia.edu
http://sedac.ciesin.columbia.edu/data/set/ndh-landslide-hazard-distribution
http://sedac.ciesin.columbia.edu/data/set/ndh-landslide-hazard-distribution
http://www.emdat.be
http://www.dartmouth.edu/~<LIG>fl</LIG>oods/Archives/index.html
http://www.dartmouth.edu/~<LIG>fl</LIG>oods/Archives/index.html
http://sedac.ciesin.columbia.edu

Appendix IV: Validation

(continued)
Disaster type

Storm surge

Sand-dust storm

Heat wave

Cold wave

Drought

Forest wildfire

Multi-hazard

Validation data description

This dataset includes a compilation of estimated
storm surges triggered by tropical cyclones
from 1975 to 2007, which contains information
about the place, time, population effected, GDP
effected, etc.

Natural disasters newspaper database of China
from 1992 to 2010

Heat wave mortality data at the country level is
provided by the International Disaster Database
(EM-DAT) from 1900 to 2013

Global IDEntifier Number Database

The cold wave disaster database, include
occurrence time, place, casualty, affected
population, etc., from 2000 to 2014

Drought data released by China’s Ministry of
Agriculture including the slightly, moderately,
and severely damaged crop area by drought
from 1997 to 2005

The crop sown area published by the National
Bureau of Statistics of China, in provincial units

The Global Risk Data Platform built by UNEP
and UNISDR provides a density of fires dataset,
including an estimation of the density of fires
over the period from 1997 to 2010

The rank of total affected population and
property damage data for each country was
derived from EM-DAT historical natural
disaster event records from 1951 to 2013

Data access
A

349

Data sources
GRDP
http://preview.grid.unep.ch

Beijing Normal University (BNU), the database
based on provincial newspapers of China
(1992-2005) and internet reports (2006-2010)
was supplied by BNU

EM-DAT, CRED
http://www.emdat.be/database

Global IDEntifier Number

http://www.glidenumber.net/glide/public/
search/search.jsp

China’s Ministry of Agriculture
http://www.zzys.moa.gov.cn/

National Bureau of Statistics of China

http://www.stats.gov.cn/

Global Risk Data Platform

http://preview.grid.unep.ch/index.php?
preview=data&events=fires&lang=eng

EM-DAT, CRED
http://www.emdat.be


http://preview.grid.unep.ch
http://www.emdat.be/database
http://www.glidenumber.net/glide/public/search/search.jsp
http://www.glidenumber.net/glide/public/search/search.jsp
http://www.zzys.moa.gov.cn/
http://www.stats.gov.cn/
http://preview.grid.unep.ch/index.php?preview=data&events=fires&lang=eng
http://preview.grid.unep.ch/index.php?preview=data&events=fires&lang=eng
http://www.emdat.be

See Tables 1, 2 and 3

Appendix V

Ranks of Multi-hazard Risk of the World

Table 1 Rank in descending order by multi-hazard (Mh) intensity

Rank at country unit (top 50)

Rank

O 0 NN B W=

—_
]

—_ -
N =

13
14
15
16
17
18
19
20
21
22
23
24

Country

Russia
United States
China
Canada
Australia
Brazil

India

Mexico
Argentina

Indonesia

Kazakhstan

Congo (Democratic
Republic
of the)

Iran
Colombia
Burma

Peru
Madagascar
Bolivia
Turkey
Venezuela
Mongolia
Mozambique
Angola
South Africa

Ratio to the maximum Mh value
(%)

100.00
72.15
61.92
55.86
54.31
53.57
29.89
17.46
15.80
11.52

11.15
9.79

8.47
7.99
7.84
7.76
6.55
6.25
6.06
5.63
5.48
5.15
5.07
5.07

P. Shi and R. Kasperson (eds.), World Atlas of Natural Disaster Risk,
IHDP/Future Earth-Integrated Risk Governance Project Series,
DOI 10.1007/978-3-662-45430-5 © Springer-Verlag Berlin Heidelberg and Beijing Normal University Press 2015

Rank at per unit area (top 50)

Rank

O 0 NN B W -

—_
S

—_ -
N =

13
14
15
16
17
18
19
20
21
22
23
24

Country

Bangladesh
South Korea
Japan
Vietnam
Laos

Belize
Burma
Guatemala
Madagascar

Dominican
Republic

North Korea
Philippines

Bhutan

El Salvador
Honduras
Papua New Guinea
Cambodia
India

New Zealand
Thailand
Nicaragua
Nepal
Uruguay
Haiti

Ratio to the maximum Mh value

(%)
100.00
90.05
84.22
82.80
80.42
75.71
74.36
73.60
70.15
69.56

68.86
68.44

67.89
64.69
64.16
63.27
62.54
61.40
60.96
59.22
58.85
58.52
57.46
57.34

(continued)
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Table 1 (continued)

Rank at country unit (top 50) Rank at per unit area (top 50)
Rank  Country Ratio to the maximum Mh value Rank  Country Ratio to the maximum Mh value
(%) (%)
25 Japan 4.97 25 Mexico 56.53
26 Thailand 4.81 26 Cuba 56.47
27 Pakistan 4.64 27 Iceland 54.32
28 Tanzania 4.63 28 Montenegro 53.26
29 Papua New Guinea 4.61 29 Portugal 51.75
30 Ethiopia 4.51 30 Norway 49.40
31 Vietnam 4.28 31 Turkey 49.16
32 Nigeria 4.17 32 United States 49.02
33 Sudan 3.81 33 Sri Lanka 48.73
34 Chile 3.75 34 Kyrgyzstan 48.73
35 Zambia 3.60 35 Bosnia and 48.10
Herzegovina
36 Algeria 3.44 36 Costa Rica 47.95
37 Afghanistan 3.40 37 Albania 47.65
38 Ukraine 3.25 38 Tajikistan 46.74
39 Philippines 3.20 39 Singapore 46.14
40 Mali 3.19 40 Armenia 45.94
41 France 3.06 41 Australia 44.77
42 Chad 3.02 42 Georgia 44.76
43 Spain 3.00 43 Paraguay 44.66
44 Laos 292 44 Colombia 44.49
45 Sweden 2.87 45 Finland 44.27
46 Paraguay 2.81 46 Macedonia 44.14
47 Namibia 2.81 47 Liechtenstein 43.55
48 New Zealand 2.60 48 Switzerland 43.34
49 Central African 2.54 49 Ecuador 42.97
Republic
50 Norway 2.53 50 Suriname 41.80

(continued)
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Table 1 (continued)

Rank at country unit (51-197)

Rank
51-100

Country
Kenya
South Sudan
Botswana
Finland
Malaysia
Bangladesh
Cameroon
Turkmenistan
Zimbabwe
Uzbekistan
Germany
Niger
Somalia
Libya
Cambodia
Italy
Ecuador
Mauritania
Poland
Uruguay
Kyrgyzstan
Congo
Guinea
Morocco
South Korea
Romania
Guyana
Nepal

The Republic
of Cote d’Ivoire

North Korea
Gabon
Guatemala
Saudi Arabia
Belarus
Burkina Faso
Nicaragua

United
Kingdom

Iraq
Honduras
Tajikistan
Ghana
Cuba
Uganda

Rank at per unit area (51-197)
Rank
51-100

353

Country
Mozambique
Malaysia
China
Baker Island
Slovenia
Serbia
Guyana
Sierra Leone
Sweden
Brazil
Austria
Venezuela
Indonesia
Azerbaijan
Croatia

Peru
Belarus
Malawi
Spain
Russia
Latvia
Guinea

San Marino
Romania
Italy

Bolivia
Panama
Samoa

Germany

Lithuania
Slovakia
Argentina
Hungary

Czech Republic
Luxembourg
Canada

Bulgaria

France
Andorra
Moldova
Swaziland
Ukraine
Belgium
(continued)
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Table 1 (continued)

Rank at country unit (51-197)

Rank Country
Suriname
Egypt
Senegal
Iceland
Yemen
Portugal
Greece

101-150 Malawi
Bulgaria
Serbia
Syria
Oman

Dominican
Republic

Hungary
Austria
Azerbaijan
Sri Lanka
Georgia
Benin

Liberia

Sierra Leone

Tunisia

Czech Republic

Panama

Bhutan

Costa Rica

Bosnia and
Herzegovina

Latvia
Lithuania
Ireland
Croatia

Eritrea

Switzerland

Slovakia
Belize
Haiti
Togo
Estonia
Jordan
Armenia

Albania

El Salvador

Denmark

Rank at per unit area (51-197)

Rank

101-150

Appendix V: Ranks of Multi-hazard Risk of the World

Country
Greece
Poland
Afghanistan
Pakistan
Zimbabwe
Iran
Lebanon
Ireland
Gambia
Estonia
Gabon
Chile
Lesotho

Liberia
Tanzania
Timor-Leste
United Kingdom
Jamaica
Zambia
Uzbekistan
Denmark

Fiji

Nigeria
Senegal
Guinea-Bissau
Burkina Faso

Cameroon

Congo

Kenya

Togo

Netherlands

Turkmenistan

The Republic of Céte d’Ivoire
Benin

Gaza Strip

Congo (Democratic Republic of the)
Ghana

South Africa

Kazakhstan

Central African Republic
Uganda

Botswana

Angola
(continued)
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Table 1 (continued)

Rank at country unit (51-197)

Rank

151-197

Country
Moldova
Macedonia
Belgium
Guinea-Bissau
Lesotho
Netherlands
Slovenia
Montenegro
Burundi

Equatorial
Guinea

Swaziland
Rwanda

United Arab
Emirates

Fiji

Israel
Timor-Leste
Djibouti
Gambia
Jamaica
Lebanon

Solomon
Islands

Baker Island
Kuwait
Palestine
Gaza Strip
Samoa
Luxembourg

Trinidad and
Tobago

Bahamas
Singapore
Cyprus
Andorra
Mauritius
Liechtenstein
San Marino

Saint Vincent
and the
Grenadines

Qatar
Comoros

Niue

Rank at per unit area (51-197)

Rank

151-197

355

Country

Ethiopia

South Sudan
Burundi

Rwanda
Equatorial Guinea
Mongolia
Morocco

Israel

Namibia

Syria

Tunisia
Somalia

Eritrea

Palestine

Iraq

Djibouti

Mali

Jordan

Trinidad and Tobago
Chad

Sudan

Kuwait
Oman
Yemen
Niger
Mauritania
Algeria

Solomon Islands

Mauritius

United Arab Emirates

Libya

Monaco

Bahamas

Egypt

Saint Vincent and the Grenadines
Saudi Arabia

Cyprus
Niue
Comoros

(continued)
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Table 1 (continued)

Rank at country unit (51-197) Rank at per unit area (51-197)

Rank

Country

Cape Verde

Monaco

Dominica

Tonga

Palau

Antigua and Barbuda
Federated States of Micronesia
Saint Kitts and Nevis
Marshall Islands
Maldives

Cook Islands

Vatican City

Tuvalu

Seychelles

Malta

Bahrain

Saint Lucia

Nauru

Kiribati

Barbados

Grenada

Sao Tome and Principe

Rank

Country

Qatar

Dominica

Tonga

Marshall Islands
Cape Verde

Saint Kitts and Nevis
Palau

Antigua and Barbuda
Maldives

Federated States of Micronesia
Vatican City

Cook Islands

Tuvalu

Nauru

Malta

Seychelles

Bahrain

Saint Lucia
Barbados

Kiribati

Grenada

Sao Tome and Principe

Note (1) The Mh value of all 197 countries of the world is calculated and ranked in descending order at county and per unit area respectively.
(2) The top 50 countries with the highest Mh values (about 35 % of all) are listed with their rank order, and other countries with lower Mh value are
listed by groups with the order from the 51th to the 100th, from the 101th to the 150th, and from the 151th to the lowest
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Table 2 Rank in descending order by total risk index (TRI)

Expected annual mortality and affected population risk Expected annual loss and affected property risk
Rank at country unit (top 50) Rank at per unit area (top 50) Rank at country unit (top 50) Rank at per unit area (top 50)
Rank  Country Ratio to the Rank  Country Ratio to the Rank  Country Ratio to the Rank  Country Ratio to the
maximum maximum maximum maximum
TRI value (%) TRI value (%) TRI value TRI value
(%) (%)
1 India 100.00 1 Bangladesh 100.00 1 United States 100.00 1 Netherlands 100.00
2 China 78.56 2 Gaza Strip 47.59 2 Japan 80.70 2 Japan 83.90
3 Indonesia 54.28 3 Philippines 34.45 3 China 50.49 3 South Korea 2191
4 Pakistan 47.97 4 Nepal 26.64 4 Russia 18.37 4 Germany 16.54
5 Bangladesh 40.63 5 Pakistan 18.39 5 Canada 15.69 5 Belgium 15.94
6 Philippines 30.35 6 Guatemala 16.84 6 Germany 15.21 6 Singapore 15.27
7 Burma 15.06 7 Bhutan 14.17 7 Brazil 12.73 7 Gaza Strip 10.05
8 United States 13.97 8 Israel 13.92 8 India 12.52 8 Israel 7.69
9 Japan 11.91 9 Haiti 11.86 9 Netherlands 9.00 9 Bangladesh 7.67
10 Nepal 11.66 10 Burundi 11.44 10 Mexico 8.75 10 Liechtenstein 7.55
11 Iran 9.98 11 El Salvador 10.96 11 Australia 7.00 11 Trinidad and 7.48
Tobago
12 Uzbekistan 9.86 12 India 10.89 12 Argentina 6.59 12 Monaco 6.03
13 Afghanistan 9.62 13 Japan 10.70 13 France 6.33 13 United 4.86
Kingdom
14 Mexico 7.09 14 Indonesia 9.65 14 South Korea 5.59 14 San Marino 4.82
15 Vietnam 7.03 15 Rwanda 8.99 15 Angola 4.84 15 Luxembourg 4.70
16 Egypt 5.64 16 South 8.89 16 Congo 4.12 16 Italy 4.67
Korea (Democratic
Republic of
the)
17 Ethiopia 5.55 17 Moldova 8.51 17 Burma 3.68 17 France 448
18 Guatemala 5.48 18 Uzbekistan 7.65 18 Italy 3.63 18 United States 4.17
19 Tanzania 3.55 19 Georgia 7.59 19 Turkey 3.27 19 Switzerland 4.06
20 Turkey 3.33 20 Burma 7.58 20 Thailand 3.22 20 Mauritius 3.96
21 Kyrgyzstan 2.95 21 Honduras 7.35 21 United 3.06 21 El Salvador 3.94
Kingdom
22 Congo 2.87 22 Vietnam 7.21 22 Kazakhstan 3.00 22 Costa Rica 3.17
(Democratic
Republic of
the)
23 Bolivia 2.85 23 Tajikistan 6.72 23 Bangladesh 2.70 23 United Arab 3.15
Emirates
24 Tajikistan 2.84 24 Mauritius 5.34 24 Venezuela 241 24 Philippines 3.10
25 Syria 2.74 25 Jamaica 5.26 25 Philippines 2.36 25 Greece 2.83
26 Russia 2.66 26 Dominican 5.18 26 Madagascar 2.15 26 Dominican 2.79
Republic Republic
27 Kenya 2.63 27 Afghanistan 5.04 27 Indonesia 2.10 27 Portugal 2.62
28 South Korea 2.62 28 Kyrgyzstan 4.98 28 Mozambique 2.10 28 Guatemala 2.44
29 Honduras 2.47 29 Syria 4.96 29 Chile 2.00 29 Thailand 2.43
30 Uganda 2.40 30 Nicaragua 4.02 30 Colombia 1.84 30 Burma 2.14
31 Iraq 221 31 Lebanon 3.78 31 Bolivia 1.75 31 China 2.07
32 Thailand 2.12 32 Netherlands 3.63 32 Spain 1.70 32 Cambodia 1.97
33 Chile 2.01 33 Djibouti 3.36 33 Vietnam 1.60 33 Vietnam 1.90
34 Peru 1.97 34 Uganda 3.34 34 South Africa 1.58 34 Kuwait 1.77
35 Ecuador 1.81 35 Malawi 3.09 35 Nigeria 1.41 35 Slovenia 1.76

(continued)
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Table 2 (continued)

Expected annual mortality and affected population risk

Rank at country unit (top 50)

Rank

36

37

39
40
41

42
43

44
45
46

47

48

49
50

Country

Papua New
Guinea

Bhutan

Georgia

Nicaragua
Colombia

Cambodia

Kazakhstan

Malawi

Canada
Haiti

North
Korea

Burundi

Israel

Germany

Gaza Strip

Ratio to the
maximum TRI
value (%)

1.77

1.68
1.58

1.54
1.43
1.20

1.10
1.09

1.03
0.96
0.92

0.92

0.91

0.90
0.88

Rank at per unit area (top 50)

Rank

36

39
40
41

4
43

44
45
46

47

48

49
50

Country

Albania

China

Costa Rica

North Korea
Ecuador

Cambodia

Armenia

Sri Lanka

Cuba
Iran

Egypt

Azerbaijan

Saint Vincent
and the
Grenadines

Iraq
Ethiopia

Ratio to the
maximum TRI
value (%)

2.86

278
2.62

2.52
2.38
222

222
2.12

2.11
2.07
1.93

1.92

1.72

1.70
1.65

Appendix V: Ranks of Multi-hazard Risk of the World

Expected annual loss and affected property risk

Rank at country unit (top 50)

Rank

36

38

39
40
41

4
43

44
45
46

47

48

49
50

Country

Iran

Pakistan

Iraq

Tanzania
Belgium

New
Zealand

Mongolia

South
Sudan

Zambia
Greece

Zimbabwe

Cambodia

Botswana

Peru

Paraguay

Ratio to the
maximum TRI
value (%)

1.39

1.39
1.38

1.26
1.26
1.17

1.16
1.15

1.05
0.96
0.92

0.92

0.86

0.75
0.73

Rank at per unit area (top 50)

Rank

36

38

39
40
41

4
43

44
45
46

47

48

49
50

Country

Mexico

Cuba

New
Zealand

Turkey
Austria

India

Angola

North
Korea

Jamaica
Madagascar

Hungary

Serbia

Andorra

Croatia

Spain

Ratio to the
maximum TRI
value (%)

1.74

1.72
1.68

1.62
1.61
1.58

1.51
1.46

1.46
1.41
1.41

1.35
1.34

1.33
1.30
(continued)



Appendix V: Ranks of Multi-hazard Risk of the World

Table 2 (continued)

Rank at country unit (51-195)
Rank Country
51-100  Madagascar
Moldova

Brazil

Laos
Mozambique
Dominican Republic
Algeria
Venezuela

Cuba

Rwanda

El Salvador
Ukraine
Romania
Argentina
Azerbaijan

Italy

Nigeria

France

Spain

Sri Lanka
Turkmenistan
Costa Rica
Netherlands
Morocco
Australia

Poland
Mongolia

New Zealand
Albania

Djibouti

Serbia

Armenia

Jordan

Bosnia and Herzegovina
Eritrea

Jamaica

Greece

Tunisia

South Sudan
Hungary

United Kingdom

Rank at per unit area (51-195)

Rank
51-100

Country
Trinidad and Tobago
Barbados
Kenya
Turkey
Thailand
Papua New Guinea
Tanzania
Mexico
Bosnia and Herzegovina
Laos
Comoros
Kuwait
Timor-Leste
Chile
Bolivia
Slovenia
Romania
Germany
Belgium
Serbia
Palestine

Fiji

Jordan
Grenada
Croatia
Switzerland
Singapore
Italy

Peru
Hungary
United States
Madagascar
Eritrea
Liechtenstein
Samoa
Vatican City
Belize

San Marino
Slovakia
Dominica

Macedonia

Rank at country unit (51-196)

Rank
51-100

Country
Guatemala
Portugal
United Arab Emirates
Romania
Kenya

Chad
Namibia
Cuba

North Korea
Ecuador
Israel
Switzerland
Costa Rica
Central African Republic
Nepal
Poland

Laos

Sudan
Austria
Dominican Republic
Uzbekistan
Hungary
Uruguay
Egypt
Ethiopia
Finland
Serbia
Ghana

The Republic of Cote d’Ivoire
Malaysia
Mali
Cameroon
Azerbaijan
Burkina Faso
Somalia

El Salvador
Guinea
Croatia
Saudi Arabia
Ukraine

Honduras

359

Rank at per unit area (51-196)

Rank
51-100

Country

Iraq

Bhutan

Cyprus
Lebanon
Azerbaijan
Nepal
Swaziland
Mozambique
Chile
Venezuela
Saint Vincent and the Grenadines
Argentina
Zimbabwe
Slovakia
Barbados
Romania
Uruguay

Czech Republic
South Sudan
Bosnia and Herzegovina
Paraguay
Antigua and Barbuda
Congo (Democratic Republic of the)
Ecuador

Laos

Ireland
Colombia
Bolivia
Honduras
Bulgaria
Pakistan
Canada

Nigeria
Albania

Sri Lanka
Benin

Brazil
Botswana
Malawi

Togo

Gambia

(continued)
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Table 2 (continued)

Rank at country unit (51-195)

Rank

101-150

Country
Lebanon
Libya
Croatia
Portugal

Paraguay

South Africa
Somalia
Bulgaria
Senegal
Sudan
Malaysia
Belgium
Switzerland
Zambia
Gabon
Cameroon
Czech Republic

Slovakia

Austria
Ghana
Panama
Belarus

Saudi Arabia

Kuwait
Slovenia
United Arab Emirates
Niger
Timor-Leste
Oman
Sweden

Fiji
Zimbabwe
Mali

Iceland

The Republic of Céte
d’Ivoire

Angola
Macedonia
Mauritius
Burkina Faso
Belize

Chad
Uruguay

Rank at per unit area (51-195)

Rank

101-150

Country
Colombia
Greece
Saint Lucia

Antigua and Barbuda

Congo (Democratic Republic of

the)

Tonga
Ukraine
Portugal
Mozambique
Tunisia

New Zealand
Poland

Spain

Czech Republic
Turkmenistan
Morocco
France

Venezuela

Panama
Luxembourg
Austria
Bulgaria

Montenegro

Saint Kitts and Nevis
United Arab Emirates
Andorra

Qatar

Gambia

Nigeria

United Kingdom
Kazakhstan

Senegal

Solomon Islands
Bahrain

Iceland

Algeria
Guinea-Bissau
Belarus
Gabon

Togo

Ghana

Malaysia

Rank

101-150
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Rank at country unit (51-196)

Country
Bulgaria
Benin
Malawi
Syria
Gaza Strip

Oman

Senegal

Czech Republic
Congo

Uganda

Niger

Bhutan

Sweden

Papua New Guinea
Afghanistan
Slovakia
Ireland

Norway

Sri Lanka

Trinidad and Tobago
Belarus

Slovenia

Bosnia and
Herzegovina

Algeria
Nicaragua
Georgia
Togo
Kyrgyzstan
Kuwait
Morocco
Gabon
Iceland
Turkmenistan
Libya

Panama

Jordan
Tunisia
Mauritania
Guyana
Swaziland
Albania

Jamaica

Rank at per unit area (51-196)

Rank

101-150

Country
Zambia
Baker Island
Tanzania
South Africa
Poland

Macedonia
Ghana
Saint Kitts and Nevis
Georgia
Grenada
Indonesia
Kazakhstan
Russia
Belize
Finland
Australia
Haiti

The Republic of Cote
d’Ivoire

Syria
Dominica
Kenya
Malaysia

Iran

Guinea
Timor-Leste
Armenia
Burkina Faso
Montenegro
Uzbekistan
Panama
Senegal

Fiji
Mongolia
Iceland

Nicaragua

Guinea-Bissau

Central African Republic
Moldova

Jordan

Saint Lucia

Denmark

Bahrain

(continued)
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Table 2 (continued)

Rank at country unit (51-195)

Rank

151-195

Country
Palestine
Trinidad and Tobago
Guinea
Mauritania
Sierra Leone
Togo

Latvia
Finland
Benin
Liberia
Lithuania

Congo

Central African Republic

Yemen

Solomon Islands
Guinea-Bissau
Botswana
Montenegro

Norway

Qatar
Namibia
Denmark
Comoros
Gambia
Ireland
Estonia

Samoa

Guyana
Bahamas

Saint Vincent and the
Grenadines

Luxembourg
Barbados
Swaziland
Lesotho
Singapore
Suriname
Dominica
Tonga

Saint Lucia

Cyprus
Grenada

Baker Island

Rank at per unit area (51-195)

Rank

151-195

Country
Sierra Leone
South Sudan
Paraguay
Latvia
Argentina
Bahamas
Lithuania
Mongolia
Russia
Uruguay
Cameroon
Somalia
Liberia
Oman
Denmark
Benin
Burkina Faso
Baker Island

The Republic of Cote
d’Ivoire

Canada
Brazil
Zimbabwe
Estonia
Swaziland
Zambia
Guinea

Sweden

Cyprus
South Africa

Ireland

Libya
Lesotho
Finland
Sudan
Australia
Congo

Niger

Cook Islands
Mali

Saudi Arabia
Angola

Norway

Rank at country unit (51-196)

Rank

151-196

Country
Tajikistan
Sierra Leone
Macedonia
Luxembourg
Lithuania
Lebanon
Denmark
Cyprus
Yemen
Armenia
Haiti
Singapore
Guinea-Bissau
Moldova
Latvia
Belize
Mauritius
Lesotho

Gambia

Rwanda

Fiji
Timor-Leste
Montenegro
Burundi
Baker Island
Estonia

Eritrea

Liberia
Suriname

Qatar

Liechtenstein
Bahamas

Djibouti

Palestine
Equatorial Guinea
Andorra

Solomon Islands
Samoa

Saint Vincent and the
Grenadines

Barbados
Antigua and Barbuda

San Marino

361

Rank at per unit area (51-196)

Rank

151-196

Country
Namibia
Peru

Malta
Lesotho
Rwanda
Cameroon
Uganda
Oman
Belarus
Sierra Leone
Lithuania
Samoa
Congo
Kyrgyzstan
Chad
Burundi
Somalia
Tunisia

Latvia

Egypt
Qatar
Ukraine
Norway
Ethiopia
Gabon
Sweden

Papua New
Guinea

Tajikistan
Guyana
Mali

Sudan
Morocco
Afghanistan
Estonia
Bahamas
Palestine
Turkmenistan
Niger

Saudi Arabia

Tonga
Djibouti
Yemen

(continued)
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Table 2 (continued)

Rank at country unit (51-195)
Rank  Country
Equatorial Guinea
Antigua and Barbuda
Andorra
Bahrain
Liechtenstein
Saint Kitts and Nevis
San Marino
Palau
Cook Islands
Cape Verde
Niue
Maldives
Kiribati
Seychelles
Marshall Islands

Vatican City

Federated States of Micronesia

Tuvalu
Malta

Monaco

Rank at per unit area (51-195)

Rank

Country

Yemen

Niue

Chad

Palau

Equatorial Guinea
Maldives

Mauritania

Central African Republic
Botswana

Guyana

Marshall Islands
Suriname

Namibia

Kiribati

Seychelles

Tuvalu

Cape Verde

Federated States of Micronesia
Malta

Monaco

Appendix V: Ranks of Multi-hazard Risk of the World

Rank at country unit (51-196)
Rank  Country

Dominica

Grenada

Bahrain

Saint Lucia

Saint Kitts and Nevis

Cape Verde

Malta

Monaco

Comoros

Tonga

Federated States of Micronesia

Cook Islands
Palau

Kiribati
Marshall Islands
Nauru

Maldives
Seychelles
Tuvalu

Niue

Sao Tome and Principe

Rank at per unit area (51-196)

Rank

Country
Equatorial Guinea
Cook Islands
Liberia
Solomon Islands
Cape Verde
Comoros

Eritrea
Mauritania
Federated States of Micronesia
Nauru

Algeria

Libya

Suriname

Palau

Marshall Islands
Tuvalu
Maldives
Kiribati
Seychelles

Niue

Sao Tome and Principe

Note (1) The TRI assesses the expected annual multi-hazard risk level of mortality and affected population of 195 countries (lack of mortality and affected population data to
individual hazard of Nauru and Sao Tome and Principe) of the world and the expected annual multi-hazard risk level of loss and affected property of 196 countries (lack of GDP
data of Vatican City) of the world. (2) The TRI value is calculated and ranked in descending order at country unit and per unit area respectively. (3) The top 50 countries with the
highest TRI values (about 35 % of all) are listed with their rank order, and other countries with lower TRI value are listed by groups with the order from the 51th to the 100th,
from the 101th to the 150th, and from the 151th to the lowest
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Table 3 Rank in descending order by multi-hazard risk index (MhRI)

Expected annual affected population risk

Rank at country unit (top 50)

Rank

—

~N N B W

22

24
25
26
27

28

29
30
31

32

34
35
36

Country

China

India

United States
Bangladesh
Japan
Indonesia

Brazil

Philippines
Vietnam
Mexico
Pakistan

Nigeria

Thailand
Burma
South Korea
Russia
Turkey
Ethiopia
Iran
Germany

Congo
(Democratic
Republic of
the)

Colombia
Nepal
Argentina
France
Madagascar

Italy

North Korea

South Africa
Canada

Tanzania

Kenya

United
Kingdom

Spain
Ukraine

Malaysia

Ratio to the
maximum
MhRI value
(%)

100.00

9591
21.56
20.23
13.30
11.58
10.64

10.55
9.54
8.59
791
6.45

5.39
5.14
4.99
4.58
3.48
3.43
3.29
2.80
2.75

2.74
2.34
222
2.11
1.98
1.88

1.76

1.76
1.64
1.63

1.58
1.52

1.51
1.48
1.38

Rank at per unit area (top 50)

Rank

~N N B W

22

24
25
26
27

28

29
30
31

32

34
35
36

Country

Bangladesh

Singapore
South Korea
Philippines
Japan

India

Vietnam

Haiti

El Salvador
San Marino
Gaza Strip

Dominican
Republic

Sri Lanka
Nepal

North Korea
Lebanon
Rwanda
Guatemala
Burundi
Monaco

Netherlands

China
Thailand
Belgium
Liechtenstein
Pakistan

Mauritius

Germany

Switzerland
Jamaica

Burma

Gambia

Malawi

Nigeria
Cambodia

Cuba

Ratio to the
maximum
MhRI value
(%)

100.00

36.04
33.98
24.06
24.02
20.98
19.64

19.41
18.48
12.93
12.25
12.24

11.90
10.73
9.70
9.63
9.58
8.52
8.22
7.76
7.23

7.12
7.06
7.03
6.43
6.09
6.05

5.30

5.29
5.23
5.20

4.90
4.83

4.79
4.60
4.60

Expected annual affected property risk

Rank at country unit (top 50)

Rank

~N N B W

=)

10
11
12

13

15
16
17
18
19
20
21

22

24
25
26
27

28

29
30
31

32

34
35
36

Country

United
States

Japan
China
India
Germany
Brazil

South
Korea

France
Mexico
Canada
Italy

United
Kingdom

Russia
Spain
Australia
Indonesia
Turkey
Netherlands
Thailand
Switzerland

Philippines

Argentina
Iran
Colombia
Venezuela
Nigeria

Belgium

Austria

Poland
Bangladesh

South
Africa

Vietnam

Malaysia

Chile
Portugal

Sweden

Ratio to the
maximum
MhRI value
(%)

100.00

53.18
47.76
13.53
10.96
10.84

9.84

8.32
7.75
7.21
6.29
5.25

4.84
420
4.09
3.16
3.09
2.77
2.46
2.18
1.89

1.88
1.75
1.72
1.53
1.50
1.43

1.41

1.40
1.25
1.25

1.15

1.11
0.97
0.93

363

Rank at per unit area (top 50)

Rank

SN NV R N VN )

2
23
24
25
26
27

28

Country

Japan

South Korea
San Marino
Netherlands
Liechtenstein
Monaco

Luxembourg

Switzerland
Belgium
Germany
Andorra

United
Kingdom

Singapore
Italy
Austria
Israel
France
Gaza Strip
Lebanon
Denmark

United States

Portugal

El Salvador
Bangladesh
Baker Island
Slovenia

Dominican
Republic

Czech
Republic

Spain
ITreland

Trinidad and
Tobago

Kuwait

Philippines

Slovakia
Greece

Mauritius

Ratio to the
maximum
MhRI value
(%)

100.00

69.77
59.06
55.73
45.80
43.35
41.81

37.07
32.64
21.55
17.39
15.09

14.95
14.66
11.83
11.09
10.65
8.68
8.20
8.00
7.53

7.43
6.51
6.46
6.44
6.31
6.01

5.84

5.84
5.69
4.65

4.54
447

4.15

3.99

3.79
(continued)
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Table 3 (continued)

Expected annual affected population risk Expected annual affected property risk

Rank at country unit (top 50) Rank at per unit area (top 50) Rank at country unit (top 50) Rank at per unit area (top 50)

Rank  Country Ratio to the Rank  Country Ratio to the Rank  Country Ratio to the Rank  Country Ratio to the
maximum maximum maximum maximum
MhRI value MhRI value MhRI value MhRI value
(%) (%) (%) (%)

37 Guatemala 1.38 37 Andorra 453 37 Norway 0.86 37 China 3.54

38 Uzbekistan 1.33 38 Israel 4.46 38 New 0.85 38 Thailand 3.36

Zealand

39 Mozambique  1.28 39 Luxembourg 434 39 Greece 0.75 39 Hungary 3.35

40 Afghanistan 1.27 40 Honduras 427 40 Pakistan 0.74 40 Poland 3.16

41 Uganda 1.25 41 Italy 4.20 41 Czech 0.66 41 India 3.08

Republic
42 Cambodia 1.24 42 United 4.18 42 Romania 0.61 42 Mexico 2.78
Kingdom

43 Egypt 1.21 43 Indonesia 4.14 43 Finland 0.60 43 Turkey 2.78

44 Sri Lanka 1.17 44 Portugal 3.62 44 Ireland 0.57 44 Sri Lanka 2.68

45 Poland 1.17 45 Uganda 3.50 45 Peru 0.51 45 Croatia 2.67

46 Algeria 1.10 46 Armenia 3.42 46 Denmark 0.51 46 Guatemala  2.65

47 Venezuela 1.10 47 Costa Rica 3.24 47 Algeria 0.48 47 Costa 2.63

Rica
48 Morocco 1.02 48 Albania 3.02 48 Kazakhstan ~ 0.45 48 Cuba 2.58
49 Peru 1.00 49 Bosnia and 3.02 49 Hungary 0.44 49 Vietnam 2.54
Herzegovina
50 Sudan 0.94 50 Turkey 3.01 50 Ukraine 043 50 Malaysia 245

(continued)
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Table 3 (continued)

Rank at country unit (51-197)

Rank
51-100

Country

Ecuador

Ghana

Chile

Dominican Republic
Malawi

Australia

Romania

Syria

Cameroon

The Republic of Céte
d’Ivoire

Haiti

Cuba
Honduras
Laos

Iraq

Burkina Faso
Zambia

El Salvador
Guinea
Yemen
Zimbabwe
Mali

Niger
Portugal
Kazakhstan
Papua New Guinea

Nicaragua

Bolivia
Angola
Paraguay
Serbia
Netherlands
Senegal
Chad

Tajikistan
Rwanda
Hungary

Benin

Czech Republic

Burundi

Switzerland
South Sudan
Belgium
Azerbaijan
Austria

Belarus

Rank at per unit area (51-197)

Rank
51-100

Country

Serbia

Togo

Mexico

Trinidad and Tobago
Syria

Moldova

Czech Republic
Malaysia

Slovenia

Baker Island

Macedonia
France
Slovakia
Ghana
Hungary
Poland
Nicaragua
Austria
Azerbaijan
Ecuador
Swaziland
Romania
Sierra Leone
Madagascar
Croatia
Timor-Leste

Uzbekistan

Ethiopia
Spain
Benin
Laos
Georgia
Kenya

Montenegro

Tajikistan
Morocco
Ukraine
Bulgaria
Burkina Faso

The Republic of Cote
d’Ivoire

Colombia
Lesotho
United States
Guinea
Greece

Panama

Rank at country unit (51-196)

Rank
51-100

Country Rank
Burma 51-100
Guatemala

Dominican Republic
Cuba

Ecuador

Saudi Arabia

Israel

Egypt

Iraq

Slovakia

Morocco
Angola

Sri Lanka
Syria
Uruguay
Croatia
North Korea
Uzbekistan
Costa Rica
El Salvador
Slovenia
Azerbaijan
Serbia
Bulgaria
Belarus
Luxembourg

United Arab
Emirates

Paraguay
Nepal
Honduras
Sudan
Kenya
Panama

Lebanon

Ghana
Kuwait
Tunisia
Libya
Lithuania

Ethiopia

Cambodia
Bolivia
Cameroon
Oman
Tanzania

Laos
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Rank at per unit area (51-196)

Country

Jamaica

New Zealand
Norway

Romania

Azerbaijan

Sweden

United Arab Emirates
Serbia

Finland

Haiti

Macedonia
Albania
Venezuela
Indonesia
Nigeria
Bosnia and Herzegovina
Panama
North Korea
Lithuania
Bulgaria
Armenia
Ecuador
Montenegro
Colombia
Chile

Brazil

Uruguay

Honduras
Syria

Iran

Latvia

South Africa
Swaziland

Saint Vincent and the
Grenadines

Nepal

Jordan

Equatorial Guinea
Belarus

Pakistan

Iraq

Canada
Ukraine
Georgia
Tunisia
Rwanda
Morocco

(continued)



366

Table 3 (continued)

Rank at country unit (51-197)

Rank

101-150

Country
Kyrgyzstan
Greece
Tunisia

New Zealand
Somalia
Bulgaria
Togo

Sierra Leone
Costa Rica

Bosnia and
Herzegovina

Uruguay
Georgia
Jordan
Sweden

Saudi Arabia

Slovakia

Central African
Republic

Croatia

Turkmenistan
Liberia
Panama
Eritrea
Armenia

Moldova

Israel
Lebanon
Finland
Congo
Ireland
Albania

Gaza Strip

Norway
Libya
Lithuania
Denmark
Macedonia
Jamaica
Slovenia
Mauritania
Gambia
Namibia
Lesotho
Botswana

Mongolia

Rank at per unit area (51-197)

Rank

101-150

Country Rank
Denmark
Jordan

Iran
Afghanistan
Ireland 101-150
Senegal

Tunisia

Liberia

Kuwait

Bhutan

Tanzania
Cameroon
Mozambique
Lithuania

Kyrgyzstan

Iraq

Belarus

Saint Vincent and the
Grenadines

South Africa
Zimbabwe
Eritrea

Belize
Guinea-Bissau

Yemen

Samoa
Brazil
Egypt
Uruguay
Venezuela
Chile

Congo (Democratic Republic
of the)

Fiji
Paraguay

Papua New Guinea
New Zealand
Latvia

Argentina

Zambia

Peru

Equatorial Guinea
South Sudan
Sudan

Algeria

Estonia

Rank at country unit (51-196)

Appendix V: Ranks of Multi-hazard Risk of the World

Country Rank
Bosnia and Herzegovina

The Republic of Cote d’Ivoire
Madagascar

Jordan

Gaza Strip 101-150
Turkmenistan

Papua New Guinea

Yemen

Afghanistan

Zambia

Latvia
Nicaragua
Uganda
Baker Island

Congo (Democratic Republic
of the)

Mozambique

Georgia

Gabon

Albania
Botswana
Armenia
Haiti

South Sudan

Macedonia

Congo
Namibia
Senegal
Burkina Faso
Chad
Jamaica

Mali

Trinidad and Tobago
Zimbabwe
Malawi
Kyrgyzstan
Iceland

Estonia

Tajikistan
Suriname
Equatorial Guinea
Benin

Guinea
Montenegro

Niger

Rank at per unit area (51-196)

Country
Argentina
Burma
Estonia
Moldova
Cambodia
Australia
Belize
Nicaragua
Ghana

Uzbekistan

Cyprus
Peru
Bhutan
Fiji

Laos

Paraguay

Gambia

Egypt

Oman
Russia
Iceland
Lesotho
Samoa

The Republic of Cote
d’Ivoire

Burundi
Malawi
Uganda
Timor-Leste
Angola
Kenya
Togo

Algeria
Benin
Cameroon
Senegal
Gabon

Saudi Arabia
Tajikistan
Kazakhstan
Suriname
Yemen
Sierra Leone
Turkmenistan

Papua New Guinea

(continued)
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Table 3 (continued)

Rank at country unit (51-197)
Rank Country
Bhutan
Gabon
Latvia
Swaziland
Oman
Timor-Leste
Guinea-Bissau
Guyana
Montenegro
Singapore
151-197  United Arab Emirates
Kuwait
Belize
Suriname
Baker Island
Trinidad and Tobago
Estonia
Fiji
Mauritius
Luxembourg
Equatorial Guinea
Iceland
Djibouti
Solomon Islands
Samoa
Andorra

Cyprus

Palestine
Liechtenstein
San Marino

Saint Vincent and the
Grenadines

Comoros

Bahamas

Monaco
Qatar
Tonga

Federated States of
Micronesia

Dominica
Antigua and Barbuda

Saint Kitts and Nevis
Cape Verde

Niue

Rank at per unit area (51-197)
Rank Country

Bolivia

United Arab Emirates

Somalia

Niger

Sweden

Mali

Finland

Congo

Angola

Turkmenistan
151-197  Djibouti
Norway

Cyprus

Central African Republic

Chad
Russia
Gabon
Suriname
Comoros
Kazakhstan
Guyana
Oman
Canada
Solomon Islands
Palestine
Botswana

Australia

Saudi Arabia
Iceland
Namibia

Mauritania

Libya
Mongolia

Bahamas

Tonga

Saint Kitts and Nevis

Federated States of

Micronesia

Antigua and Barbuda

Dominica

Marshall Islands

Niue

Vatican City

Rank at country unit (51-196)

Rank Country
Moldova
Rwanda
Swaziland
Bhutan
Mongolia
Singapore
Togo
Sierra Leone
Andorra
Belize

151-196  Mauritius

Liechtenstein

Mauritania

Lesotho

Guyana

Central African Republic

Fiji

Burundi

Eritrea

Liberia

San Marino

Cyprus

Gambia

Timor-Leste

Somalia

Guinea-Bissau

Djibouti

Samoa
Monaco
Palestine

Solomon Islands

Bahamas

Saint Vincent and the
Grenadines

Qatar
Comoros
Antigua and Barbuda

Dominica

Tonga
Saint Kitts and Nevis

Federated States of
Micronesia

Niue

Cape Verde

367

Rank at per unit area (51-196)

Rank

151-196

Country
Kyrgyzstan
Burkina Faso
Madagascar
Congo
Afghanistan
Guinea
Tanzania
Zambia
Ethiopia
Bolivia
Zimbabwe
Botswana
Guinea-Bissau
South Sudan
Sudan
Mozambique
Libya
Liberia
Eritrea
Namibia
Djibouti
Palestine
Guyana
Bahamas
Chad

Mali

Congo (Democratic Republic
of the)

Niger
Solomon Islands
Central African Republic

Comoros

Mongolia

Mauritania

Qatar
Somalia
Antigua and Barbuda

Saint Kitts and Nevis

Dominica
Tonga

Niue

Federated States of
Micronesia

Maldives
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Table 3 (continued)

Rank at country unit (51-197)

Rank

Country
Marshall Islands
Palau
Maldives
Cook Islands
Vatican City
Saint Lucia
Kiribati
Tuvalu
Grenada
Nauru
Seychelles
Bahrain
Malta
Barbados

Sao Tome and Principe

Rank at per unit area (51-197)

Rank

Country
Qatar

Palau

Cape Verde
Maldives
Cook Islands
Nauru
Tuvalu
Grenada
Saint Lucia
Seychelles
Malta
Kiribati
Bahrain

Barbados

Sao Tome and Principe

Appendix V: Ranks of Multi-hazard Risk of the World

Rank at country unit (51-196)

Rank

Country
Palau
Maldives
Marshall Islands
Cook Islands
Barbados
Kiribati
Bahrain
Saint Lucia
Malta
Grenada
Tuvalu
Seychelles
Nauru

Sao Tome and Principe

Rank at per unit area (51-196)

Rank

Country
Palau
Marshall Islands
Cape Verde
Cook Islands
Barbados
Tuvalu
Nauru
Kiribati
Malta
Grenada
Bahrain
Saint Lucia
Seychelles

Sao Tome and Principe

Note (1) The MhRI assesses the expected annual multi-hazard risk level of affected population of 197 countries of the world and the expected annual multi-hazard risk level of
affected property of 196 countries (lack of GDP data of Vatican City) of the world. (2) The MhRI value is calculated and ranked in descending order at country unit and per unit
area respectively. (3) The top 50 countries with the highest MhRI values (about 35 % of all) are listed with their rank order, and other countries with lower MhRI value are listed
by groups with the order from the 51th to the 100th, from the 101th to the 150th, and from the 151th to the lowest
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