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Ĥ Hamiltonian operator
n Refractive index
P Polarization
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Chapter 1
Introduction

1.1 The Need for Highly Nonlinear Optical Materials

We rarely describe objects or phenomena as “non-linear” when speaking of every-
day life. In conversational language the word “non-linear” can be associated with
things that are out of the ordinary (sometimes alarmingly so). Yet the real world
is not linear. The finiteness of most everything that surrounds us—such as objects,
forces, space—makes our world essentially non-linear. One of the simplest non-
linear objects is a switch. One push, and it goes from closed state to open, letting
a powerful current through. An electro-optical switch (EOS) is not much different.
A change in electric potentials, and the crystal becomes transparent, letting through
a beam of light. A reverse change in potential closes the pathway for the beam of
light. These electro-optical switches are expected to be the future elementary base
of telecommunication and computing devices. The only problem, or more precisely
the major problem with EOS, is that we do not have materials that could be used to
make an EOS on a micron scale or smaller [1–8]. Yet smaller it must be, because the
existing device, the purely electronic switch, is easily manufactured on a sub-micron
scale. The lack of known materials that are sufficiently non-linear is aggravated by
the lack of an established theory (besides a few guiding principles) on how to in-
crease non-linearity. The search for advanced electro-optical materials is therefore
concentrated in the hands of experimentalists. The experiments at certain point in-
variably involve a laser and a sample of new material, frequently synthesized and
characterized at a high cost using time-consuming procedures. Then follow hours
of data analysis by a team of scientists; this analysis typically leads to another ex-
periment. The computational methods presented in this brief allow us to simulate
light-matter interaction experiments as close as possible, but with no synthetic costs
and with minimal time costs. Thanks to the maturing field of supercomputing, it is
possible to run hundreds of these virtual experiments within a short time.

To put the problem on a quantitative footing we need a closer look at what the
requirements are for optical processors and how they translate into the desirable

© The Author(s) 2014
V. Goncharov, Non-Linear Optical Response in Atoms, Molecules and Clusters,
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2 1 Introduction

properties of nonlinear materials. The main requirements for the new generation of
optical processors are [9, 10]:

• Reduced operational voltage for reduced energy per bit processed.
• Reduced size to enable “on the chip” integration with conventional electronic

processors.
• Ultra fast response to enable terahertz and all-optical processing with characteristic

response time τ ∼10−13 s.

Although optical modulator designs can vary, mechanism of a typical optical mod-
ulator depends on a phase shift Δφ which is related to induced change in refractive
index Δn(λ) (taken at wavelength λ) and the length of active wave guide L , where
interaction occurs:

Δφ = π Δn(λ)L

λ
. (1.1)

Change in refractive index is proportional to nonlinearity (nonlinear refractive index)
n2 and square of electric field |E |2:Δn = 2n2|E |2 [11]. Another, more general way
of accessing nonlinear characteristic of optical switch is the nonlinear waveguide
parameter γA [12–14]:

γA = 2π n2

λ A
, (1.2)

where A is footprint.1 Greater efficiency to which larger numerical values of γA

correspond require larger nonlinearity and smaller size. It naturally follows from the
above that increasing nonlinearity is the direct way of reducing the size of optical
processor and improving its effectiveness. At the same time, increasing nonlinear-
ity of material normally leads to reducing operational electric field because non-
linear response is proportional to the nonlinearity and the square of electric field.
Thus, two key characteristics are directly related to enhanced nonlinearity of optical
material. The requirement of ultra-fast response could be superfluously satisfied if
the chief mechanism of nonlinear response of the device is purely electronic, be-
cause the characteristic response time of the device is on the order of a femto second
τel. ∼10−15 [11]. Unfortunately, electronic nonlinear response in ordinary materials
is relatively weak, in fact weaker by two orders of magnitude than response involving
molecular re-orientation [11].

Thus, achieving all three key requirements for the new generation of optical
processors is not a trivial task. The need for new nonlinear optical materials could be
further illuminated if we compare nonlinear coefficients of conventional materials
with the most advanced specimens and with characteristics actually needed for a
hypothetical optical processor that could compete with modern integrated circuit.
Let us assume that an all optical device could be constructed with characteristic size
L = 325 nm, operating at λ = L and pump intensity I∼1012 (W/m2). This will im-
ply electric field strength |E | ∼10−3 (V/Å) and corresponding potential of ∼1 V.

1 Here, footprint is defined as an effective area where the interaction between photons and material
occurs.
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Modulation with maximum phase shift ofΔφ = π
2 will require change in refractive

index Δn ∼1, and corresponds to optical nonlinearity n2 ∼10−12 (m2/W). Con-
ventional materials have n2 nonlinearity within 10−23–10−20 (m2/W). For example
ordinary air has n2 = 5.0 × 10−23 (m2/W) and Al2O3 has n2 = 2.9 × 10−20 (m2/W).
Specialized optical materials such as SF-59 glass (Schott) and As2S3 glass have
n2 = 3.3 × 10−19 (m2/W) and 3.0 × 10−17 (m2/W) respectively. However, the
highest n2 currently measured in nanostructured plasmonic (meta)materials, such
as patterned gold nanoparticles in glass is 2.6 × 10−14 (m2/W) [11]. Therefore,
there is both the need and the room to increase the nonlinearity of optical materials
by factor of ×102 to ×105.2

The work presented here is aimed at developing new computational framework
that can simplify and speed up the search for new nonlinear optical materials, and
facilitate study of light-matter interactions from quantum mechanical principles. The
work currently addresses two aspects.

One is realistic modeling of interaction of light and material. This is achieved by
constructing a molecular structure and then applying a model laser pulse. The system
is then evolved in real time by solving time-dependent Schrödinger equation.

The other aspect is extraction of response functions from these simulations. Most
of the nonlinear optical phenomena, such as Kerr effect, Two Photon Absorption, op-
tical rectification , Intensity Dependent Refractive Index and Second and Third Har-
monic Generation have corresponding response functions. Optical response functions
have many names: susceptibilities, polarizabilities, both linear and nonlinear, and hy-
perpolarizabilities. They provide a quantitative measure for the response of matter
to electromagnetic field, enabling evaluation of material under study for prospective
applications. If response function is known, it can be used to model relevant processes
that go beyond initial “experiment” from which it was obtained. In the next section we
introduce basic terminology and highlight utility of the optical response functions.

1.2 Nonlinear Optical Phenomena in Terms of Response
Functions

The equation describing propagation of a monochromatic wave

E(r, t) = E(r)eiωt + c.c. (1.3)

2 We have not discussed second order nonlinear materials that are utilized in Pockels effect based
devices primarily because all-optical processing is not feasible in them. However, the situation with
these materials is similar to what has been described: there is two to five orders of magnitude gap
in nonlinearity that needs to be crossed in order to satisfy requirements of modern optoelectron-
ics applications. In addition, the second order materials with the highest nonlinearity are organic
polymers [6] that overwhelmingly suffer from thermal stability problems [15].
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with wave number k2(ω) = n(ω)ω
c in media with refractive index n(ω) and a time

dependent source
P(m)(r, t) = P(m)(ω)eıω t−ik×r + c.c. (1.4)

could be written as:

∇2E(r)+ k2(ω)E(r) = −4π
ω2

c2 P(m)(ω)e−ik×r. (1.5)

Let the source be mth term in decomposition of total polarization in powers of electric
field E′:

Ptotal(ω) =
Nmax∑

i=1

P(i)(ω, (E′)i ). (1.6)

Then, Eq. (1.5) will be related to propagation of nonlinear polarization wave of mth
order. Its solution with appropriate boundary conditions gives mathematical descrip-
tion of specific nonlinear process of mth order. The source term is the nonlinear
polarization, which is expressed in terms of response functions. For monochromatic
electric fields it could be written as:

P(m)i =
∑

j ...k

χ
(m)
i j ...k E j . . . Ek . (1.7)

The coefficients χ(m)i j ...k are mth order response functions, or susceptibilities. Their
tensor nature plays the key role in determining propagation of nonlinear wave. For
example, in case of SHG, which is a second order process, orientational depen-
dence of reflected second harmonic from crystal with 43m symmetry is found from
[16, 17]

P(2)x (2ω) = χ(2)xyz Ey Ez,

P(2)y (2ω) = χ(2)yzx Ez Ex ,

P(2)z (2ω) = χ(2)zxy Ex Ey .

When the electric vector is polarized along [111] crystal axis, all P-components are
equal and P is in the same direction as E. When E is along [100], y and z components
are absent and P is zero. Similar considirations apply along the [010] direction. For
[011] direction, P has x-component only.

Magnitude of some nonlinear effects could be easily evaluated if corresponding
susceptibility is known. For example, in case of IDRI, refractive index is calculated
from third order susceptibility taken at fundamental frequency ω of propagating
wave:

n(ω) = n0 + 12π2

n2
0c
χ(3)(ω) I,
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hω¯

¯

¯

hω

2hω

g

m

Fig. 1.1 Absorption-emission diagram for Second Harmonic Generation. A molecule in state g
absorbs two photons, transitions to a virtual state m (indicated by dashed line), and then emits a
photon with energy equal to the energy of the absorbed photons 2�ω

where I is intensity of the wave, and n0 is the linear refractive index.
In short, the main message of this section is that response functions are a compact

way of describing key properties of many nonlinear optical processes and materials.

1.3 Brief Account of Nonlinear Optical Processes

1.3.1 Second Harmonic Generation

Second Harmonic Generation3 is perhaps the most widely known nonlinear effect. In
this process two photons combine to produce one photon with double frequency (see
Fig. 1.1). The order of a nonlinear process is determined by the number of photons
involved. Thus, SHG is a second order process. SHG is an efficient process and is
routinely used to upconvert infrared radiation to visible and ultraviolet radiation.

Third Harmonic Generation [19] is analogous to SHG. In this process three pho-
tons combine to produce one with triple frequency: �ω + �ω + �ω → �ω′.

THG is a much less efficient process than SHG and is typically observed in non-
centrosymmetric systems where SHG is suppressed.

1.3.2 Optical Rectification

A second order process in which two photons annihilate simultaneously produc-
ing constant polarization is call Optical Rectification. OR was first described by

3 First experiment on second harmonic generation by Franken et al. [18] in 1961 used ruby laser
λ = 6940 Å, a quartz crystal and a pair of filters to detect UV beam at λ = 3470 Å. The 3J laser
pulse with duration of a millisecond converted about 1011 UV photons per pulse.
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Bass et al. [20] who observed that propagation of laser beam through a crystal induces
constant polarization at the crystal surface.

1.3.3 Electric Field Induced Second Harmonic

As was already mentioned, SHG is suppressed in molecules and crystals with
inversion symmetry.4 Yet there is a way to generate the second harmonic in this
case. The inversion symmetry could be broken with a strong static electric field [21].
The resulting third order process is called Electric Field Induced Second Harmonic
(EFISH).

1.3.4 Self-focusing

We have already mentioned Intensity Dependent Refractive Index in Sect. 1.2. IDRI
actually encompasses several third order processes, and is described by the real part
of third order susceptibility χ(3). One of the processes that results from dependence
of refractive index on the intensity of the propagating wave is self-focusing [22].
If corresponding nonlinear susceptibility χ(3) is positive, then nonlinear refraction
index increases with intensity. When intensity varies in space, as in case of Gaussian
beams, the nonlinear medium acts as a positive lens. If intensity is high enough and the
medium is large enough the beam may focus to the point of collapse typically leading
to extensive material damage. However, the same effect could be used to compensate
diffractional de-focusing by adjusting beam intensity. This effect is used in optical
fibers to propagate light pulses unperturbed in shape over intercontinental distances.

1.3.5 Two Photon Absorption

While real part of χ(3) describes IDRI, the imaginary part of χ(3) is related to Two
Photon Absorption [23]. The two photon absorption coefficient is proportional to the
intensity of the beam of light, while the linear absorption does not depend on the
intensity. In TPA, two photons are absorbed simultaneously by a molecule following
by de-excitation with spontaneous emission of several photons at frequencies and
directions that generally differ from the initial ones. TPA is a competitive process to
THG.

4 See next chapter for details.
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1.3.6 Electro-Optic Kerr Effect

Modulation of refractive index n by external electric field when change Δn is
quadratic in applied field is called Electro-Optic Kerr Effect [24]. The strength of
electric field is typically 105 (V/cm). EOKE is the third order nonlinear effect [25] and
is directly observable in isotropic fluids such as CS2 and benzene. EOKE normally
requires two optical beams—the pump and the probe. Recently [26] the optical pump
was replaced by terahertz electric field to yield all-electrical modulation of optical
pulses.
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Chapter 2
Response Functions

2.1 Causal Response

Response functions form a wide class of both classical and quantum quantities.
Synonyms of response functions are linear and non-linear susceptibilities of different
kinds, as well as polarizability and hyperpolarizabilities. The defining characteristic
of a response functionχ(t) is causality of a map that it establishes between perturbing
quantity E(t) and a responding quantity P(t).1 In case of a linear response function,
it is accomplished by an integral relation:

P(t) =
∞∫

0

χ(1)(τ )E(t − τ)dτ. (2.1)

One may examine by inspection that (2.1) guarantees that values of E(t) at times
earlier than t0 do not contribute to P(t0). It also allows for response P(t0) to persist
for all times t > t0 even if field E(t) is zero at these times. For example, taking time
profile as delta function for E(t) = E δ(t), and taking χ(1) as being non-zero only
on an interval 0 < t < tM leads to the following response P(t):

P(t) =
{

Eχ(1)(t) if 0 < t < tM

0 if t > tM
(2.2)

Multiplying (2.1) by eiωt , integrating in time t from −∞ to ∞, changing variable
in left hand side (LHS) t ′ = t − τ and using definition of Fourier Transforms one
gets frequency domain representation of linear response:

P(ω) = χ(1)(ω)E(ω), (2.3)

1 Both P(t) and E(t) are assumed to be observable (i.e. real).

© The Author(s) 2014
V. Goncharov, Non-Linear Optical Response in Atoms, Molecules and Clusters,
SpringerBriefs in Electrical and Magnetic Properties of Atoms, Molecules, and Clusters,
DOI 10.1007/978-3-319-08320-9_2
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where linear response function is:

χ(1)(ω) =
∞∫

0

χ(1)(t)eiωt dt. (2.4)

Sometimes it is convenient to replace (2.4) with a conventional Fourier Transform
by multiplying χ(1)(t) by step function θ(t) and extending limits of integration to
−∞. Generalizations of (2.1) and (2.3) to higher order response are:

P(n)(t) =
∞∫

0

. . .

∞∫

0

χ(n)(τ1, . . . , τn)E(t − τ1) . . . E(t − τn)dτ1 . . . dτn, (2.5)

P(n)(ω) = 1

(2π)(n−1)

∞∫

0

. . .

∞∫

0

χ(n)(ω;ω1, . . . , ωn)E(ω1) . . . E(ωn) (2.6)

× δ(ω − ω1 − · · · − ωn) dω1 . . . dωn .

Delta function appearing in (2.6) enforces conservation of energy.

2.2 Kramers-Kronig

Causality of response functions leads to several properties that are intrinsic to this
class of functions.2 For linear response, from (2.4) it follows that χ(1)(−ω) =
(χ(1)(ω))∗. If ω is complex, then it turns into:

χ(1)(−ω∗) = (χ(1))∗(ω). (2.7)

Kramers-Kronig dispersion relations are the consequence of (2.7). Kramers-
Kronig relations connect real and imaginary parts of χ(1) via a Hilbert Transform:

�(χ(1)(ω)) = 1

π
P

∞∫

−∞

�(χ(1)(ξ))
ξ − ω

dξ, (2.8)

�(χ(1)(ω)) = − 1

π
P

∞∫

−∞

R�(χ(1)(ξ))
ξ − ω

dξ. (2.9)

2 The proof of these relations could be found in [1].
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These are routinely used in calculations as well as in experimental work, where
they are used for optical data inversion, for example for deducing dispersion from
absorption spectra.

Analog of (2.7) for general nonlinear case exists for real frequencies

χ(n)(−ω1, . . . ,−ωn) = (χ(n)(ω1, . . . , ωn))
∗, (2.10)

and for some nonlinear processes for complex frequencies. It has been shown that
analogs of Kramers-Kroning (2.8 and 2.9) for nonlinear processes in form of multidi-
mensional Hilbert Transforms do not generally exist. The cases for which they exist
include all orders of higher harmonic generation, for which KK takes the following
form:

�(χ(n)(−nω;ω, . . . , ω)) = 1

π
P

∞∫

−∞

�(χ(n)(−nω′;ω′, . . . , ω′))
ω′ − ω

dω′, (2.11)

�(χ(n)(−nω;ω, . . . , ω)) = − 1

π
P

∞∫

−∞

�(χ(n)(−nω′;ω′, . . . , ω′))
ω′ − ω

dω′. (2.12)

A further discussion of application of Kramers-Kronig relations to nonlinear op-
tics could be found in [2].

2.3 Symmetry Relations

In this section we specialize to the response functions that describe electronic
polarization by external electric fields E. These functions are tensors of (n + 1)
rank, where n is the order of nonlinearity. Besides symmetry relation (2.10) that
follows from causality of response, there are two other kinds of symmetries: one
related to structural symmetry of material and another to permutation properties of
response function.3

2.3.1 Permutation Symmetries

The most general of permutation symmetries is Intrinsic Permutation Symmetry.
It follows from the fact that one can not distinguish physical order of the fields
appearing in expressions of the following form:

χ
(n)
i j1 j2... jn

(−ωσ ;ω1, ω2, . . . , ωn)E j1(ω1)E j2(ω2) . . . E jn (ωn).

3 In depth discussion of this subject could be found in [3].
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From this follows property that allows us to permute indices jk simultaneously with
the corresponding frequency ωk :

χ
(n)
i j1 j2... jn

(−ωσ ;ω1, ω2, . . . , ωn) = χ
(n)
i j2 j1... jn

(−ωσ ;ω2, ω1, . . . , ωn). (2.13)

As a result, number of distinct permutations enters as a factor for the series of equiva-
lent terms in calculations of polarization response. For example, χ(2)i jk (−ωσ ;ω1, ω2)

= χ
(2)
ik1
(−ωσ ;ω2, ω1) and second order polarization will become:

P(2)i (−ωσ ) = 1

2π 2!
∑

jk

D
∫
χ
(2)
i jk (−ωσ ;ω1, ω2)

× E j (ω1)Ek(ω2) δ(ωσ − ω1 − ω2) dω2,

where D = 2 is a number of distinct permutations of fields E(ω), 2!—coefficient of
Taylor expansion, and 2π is Fourier Transform factor.

In case of lossless media I m(χ(n)) = 0 and IPS becomes Full Permutation Sym-
metry , where all indices can be permuted simultaneously with corresponding fre-
quencies:

χ
(n)
i j1 j2... jn

(−ωσ ;ω1, ω2, . . . , ωn) = χ
(n)
jn j2 j1...i

(−ωn;ω2, ω1, . . . ,−ωσ )
= χ

(n)
j1 j2i ... jn

(−ω1;ω2,−ωσ , . . . , ωn). (2.14)

In case of lossles I m(χ(n)) = 0 and dispersionless media Re(χ(n)) = const.
one has Kleinman Symmetry which allows one to permute indices without regard to
frequencies:

χ
(n)
i j1 j2... jn

(−ωσ ;ω1, ω2, . . . , ωn) = χ
(n)
jn j2 j1...i

(−ωσ ;ω1, ω2, . . . , ωn)

= χ
(n)
j1 j2i ... jn

(−ωσ ;ω1, ω2, . . . , ωn). (2.15)

2.3.2 Structural Symmetries

Spatial arrangement of atoms in molecules and solids is frequently symmetric. The
point group of material structural symmetry S is a finite subgroup of the full symme-
try group of Hamiltonian. It can be shown that the related response functions must
also possess the same point group. Let S(g)nm be a matrix representing gth element
of this group. Since a response function of nth order is a tensor of n + 1 rank, it
transforms according to:
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χ
′(n)
p i ..., j =

∑

s k ...,m

χ
(n)
s k ...,m S(g)ps S(g)ik . . . S(g)jm . (2.16)

If the order of the group is Ng then, there exist Ng constraints of type (2.16) that can
be used to reduce the number of independent elements. As an illustration consider
inversion symmetry that is an element of Th , Oh and other point groups. Its matrix
representation is S(inversion)

i j = −δi j . In case of even order (nonlinear) response
function, from (2.16) follows:

χ
′(2n)
p i ..., j = −

∑

s k ...,m

χ
(2n)
s k ...,mδpsδik . . . δ jm = −χ(2n)

p i ..., j = 0. (2.17)

Therefore even orders of nonlinear response vanish if the material possesses inversion
symmetry. The tables indicating non-vanishing elements for the first, second and third
order response functions for several point groups may be found in [4].

2.4 Quantum Field Theory Response Formalism

Typically, (hyper) polarizabilities are defined as coefficients of Taylor series expan-
sion of polarization P(t):

P(t) = χ(1)E(t)+ 1

2!χ
(2)E2(t)+ · · · (2.18)

In this expansion, the hyperpolarizabilities are formally partial derivatives of the
“total”, generally time dependent polarization in respect to the electric field E(t):

χ
(2)
i jk = D ∂2 Pi

2! ∂E j∂Ek
, (2.19)

where D is degeneracy factor. This definition is purely classical and is frequently
supplemented by a qualification such as “…if the series converge, then the hyperpo-
larizabilities could be defined as (2.18) …”. Since convergence of (2.18) generally
requires electric field to be small E << 1, it raises a question whether the classi-
cal definition has any relevance in Nonlinear optics, because in practice the electric
field has to be strong in order for the nonlinear phenomena to appear. One may even
go as far as to question the existence and the applicability of response functions to
the description of any strong field phenomena. In this section we try to address this
issue. We define the optical response functions through the quantum density–density
response functions that are in turn related to higher order density fluctuations.

To underline the quantum mechanical nature of nonlinear optical response we need
to extend the textbook theory of linear response [5] to higher orders. The many-body
Hamiltonian is taken in second quantization:
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Ĥ =
∫

d3x ψ̂†(x) T (x) ψ̂(x)+ 1

2

∫ ∫
d3x d3x ′ ψ̂†(x)ψ̂†(x ′)

× e

|r − r′| ψ̂(x
′)ψ̂(x)+ Ĥ ext (2.20)

where x = (x, t, spin), ck , c†
k are field annihilation and creation operators, ψk(x)

are single particle states and ψ̂ , ψ̂† are field operators: ψ̂(x) = ∑
k ψk(x) ck ,

ψ̂†(x) = ∑
k ψ

†
k (x) c†

k . The external interaction is described in general by Ĥ ext =∫
d3x n̂(x) φext (x), where n̂(x) is density operator n̂(x) = ψ̂†(x)ψ̂(x). Taking exter-

nal potential asφext (x) = e r ·E(t) leads to one of the forms of dipole approximation
for photon-electron interaction:

Ĥ ext = e
∑

i j

〈i | r · E(t) | j 〉c†
i c j =

∫
d3x ψ̂†(x) er · E(t) ψ̂†(x)

= e
∫

d3x n̂(x) r · E(t). (2.21)

Next, we expand the many-body state vector |ΨS(t)〉 in terms of time ordered products
of external interaction T (Hext (t ′) . . . Hext (t

′...′))

|ΨS(t)〉 = e− i H t
� (1 − i

�

∫
dt ′ Hext (t ′)

− 1

2! �2

∫
dt ′ dt ′′ T (Hext (t ′)Hext (t ′′)) + . . .) |ΨS(0)〉 (2.22)

and use it to compute the density fluctuation δ〈n̂(x)〉:

δ 〈n̂(x)〉 = 〈ΨS(t)|n̂S(x)|ΨS(t)〉 − 〈ΨS(0)|n̂S(x)|ΨS(0)〉 = 〈n̂(x)〉 − 〈n̂(x)〉0.

(2.23)
We observe that the density fluctuation could be represented as a series with kth term
being a function of kth power of external potential φext :

δ〈n̂(x, t)〉 =
∑

k

δ〈n̂(k)(x, t; (φext )k)〉. (2.24)

The non-linear response starts with the second order contribution

δ〈n̂(2)(x)〉 = 1

2! �2

∫
d4x ′d4x ′′ φext (x ′)φext (x ′′)

× 〈ΨS(0)|[[n̂H (x
′), n̂H (x)], n̂H (x

′′)]|ΨS(0)〉. (2.25)

Introducing the second order density-density response function Ξ(2)
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Ξ(2)(x; x ′, x ′′) = θ(t − t ′)θ(t ′ − t ′′) 〈ΨS(0)|[[n̂H (x ′), n̂H (x)], n̂H (x ′′)]|ΨS(0)〉
�2 〈ΨS(0)|ΨS(0)〉 ,

(2.26)
the second order density fluctuation could be written as

δ〈n̂(2)(x, ω)〉 = 1

4π

∫
Ξ(2)(ω;ω′, ω′′, x, x′, x′′)φext (ω′, x′)φext (ω′′, x′′)

× δ(ω − ω′ − ω′′)d3x ′d3x ′′dω′dω′′. (2.27)

For the finite systems, such as molecules, we can use the density fluctuation to directly
compute polarization P (in practice only a change in polarization ΔP(t) is relevant)

P =
∫

d3x x δ〈n̂(x)〉, (2.28)

which could also be written as a series analogous to (2.24) :

P(t) =
∑

k

P(k)(t, (E)k). (2.29)

The second term corresponds to the second order nonlinear optical response:

P(2)(t) =
∫

d3x x δ〈n̂(2)(x, t)〉 = 1

2!
∫
χ
(2)
i jk (t; t ′, t ′′)E j (t

′)Ek(t
′′)dt ′dt ′′, (2.30)

where χ(2)i jk is the first hyperpolarizability. Fourier transforming (2.30) yields

P(2)i (ω) = K

∫
χ
(2)
i jk (ω;ω′, ω′′)E j (ω

′)Ek(ω
′′)δ(ω − ω′ − ω′′)dω′dω′′, (2.31)

where K is factor from Table 5.2. Comparing (2.27) and (2.31) we see that optical
susceptibilities could be obtained directly from density-density response function:

χ(2)(ω;ω′, ω′′) =
∫
Ξ(2)(ω;ω′, ω′′, x, x′, x′′) x x′ x′′ d3xd3x ′d3x ′′.

The Eqs. (2.29) and (2.18) are both the expansions of the total polarization in the
external electric fields, and therefore the terms with the same power of electric field
must be equal. This should convince the reader that the hyperpolarizabilities obtained
via a classical expansion of the total polarization are in fact quantum mechanical
quantities. Their existence and properties are governed by the mechanisms of photon-
electron interaction that is specific for a system. Each kth term is related to k-
photon process, and the number of the terms is restricted by the energy conservation.
Therefore, the classical expansion (2.18) should be viewed as a finite polynomial
rather then series, and the question of its convergence is not relevant.

http://dx.doi.org/10.1007/978-3-319-08320-9_5
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|g

|g

|m

|m

ω2

ω1

−ω3 = −(ω1 +ω2)

− e3

h̄2 ∑m ∑m (
r i
gmr j

mm
r k
m g

(ωgm+ω1+iΓgm)(ωgm +ω3+iΓgm )
m

g

m’

Partial contribution to Second order process
Left - partial diagram; Center - SOS expression;

Right - energy diagram.

Fig. 2.1 A partial diagram for second order process: χ(2)(−ω3;ω1, ω2). |m〉 and |m′〉 are virtual
states

2.5 Diagrammatic Technique for Susceptibilities

In this section we present rules that facilitate drawing pictorial representation of
nth order of polarization expansions of type (2.31) and writing down corresponding
expressions for matrix elements χ(n)i j ...k . This diagrammatic technique is analogous to
construction of non-relativistic Feynman Diagrams [6, 7]. The resulting expressions
for χ(n) are essentially the same as those one would obtain from matrix elements of
electric dipole operator using wavefunctions calculated to nth order of perturbation
theory. For nth order process

1. Draw a (vertical) line. On the line draw n + 1 vertices.
2. This will partition line into n + 2 segments. Label first and the last segments

with initial |g〉 and final states |g′〉. Label remaining segments with intermediate
(generally virtual) states: |m〉, |m′〉, . . ..

3. Each vertex corresponds to a matrix element of external potential, that in case of
electric dipole interaction becomes 〈m′|e r j |m〉 = e r j

m′m . Here r j is j th Cartesian
component of position operator r̂ . Distribute components over vertices.

4. Draw a (horizontal) arrow in/out of each vertex. Label arrows pointing to vertex
with +ω. This corresponds to absorption of photon with energy �ω. Label arrows
pointing out of vertex with −ω′. This corresponds to emission of photon with
energy �ω′.
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5. For each intermediate state |m〉 write down propagator 1
Δmg−iΓmg

where Δmg is

energy of state |m〉: Δmg = Em − Eg + �
∑

i ±ωi , and Γmg is line width of
|m〉 → |g〉 transition

6. Write down expression corresponding to the diagram by summing up over all
intermediate states m products of n + 1 vertices with n propagators.

7. Repeat the steps above for all permutations of frequencies ωi , sum up resulting
expressions.

For example, for a second order process that starts at ground state, then absorbs
two photons with energies �ω1 and �ω2 , then emits a photon with energy �ω3 =
�(ω1 +ω2) and ends at ground state one gets diagram (Fig. 2.1) with corresponding
expression:

−e3

�2

∑

mm′

r i
gmr j

mm′rk
m′g

(ωgm + ω1 + iΓgm)(ωgm′ + ω3 + iΓgm′)
. (2.32)

Diagrams resulting in permutation of ω1,ω2 and ω3 are shown on diagram
(Fig. 2.2), and the summed expression is

χ
(2)
i jk (−ω3;ω1, ω2) = − e3

�2

∑

m

∑

m′
(

r i
gmr j

mm′rk
m′g

(ωgm + ω1 + iΓgm)(ωgm′ + ω3 + iΓgm′)

+ r j
gmrk

mm′r i
m′g

(ωgm + ω1 + iΓgm)(ωgm′ − ω2 + iΓgm′)

+ rk
gmr j

mm′r i
m′g

(ωgm − ω3 + iΓgm)(ωgm′ − ω2 + iΓgm′)

+ r j
gmr i

mm′rk
m′g

(ωgm + ω2 + iΓgm)(ωgm′ + ω3 + iΓgm′)

+ r i
gmrk

mm′r
j

m′g
(ωgm + ω2 + iΓgm)(ωgm′ − ω1 + iΓgm′)

+ rk
gmr i

mm′r
j

m′g
(ωgm − ω3 + iΓgm)(ωgm′ + ω1 + iΓgm′)

). (2.33)

Diagrams with corresponding expressions are a useful tool in analysis of vari-
ous nonlinear processes. However, the expressions obtained are virtually useless for
calculations of susceptibilities of real materials. The reason is that it requires sum-
mation over an infinite number of states m,m′, . . .. These obviously include excited
states, which are difficult to obtain for any systems except very few simple atoms
and molecules. Actual application of this technique is known as Sum Over States
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Fig. 2.2 Non-equivalent diagrams for second order process: χ(2)(−ω3;ω1, ω2)

approach, and involves additional approximations. A typical approximation is a trun-
cation of infinite summation to just a few states, sometimes as little as two or three.
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Chapter 3
Density Functional Perturbation Theory

3.1 The Original Sternheimer Method

In 1954, R.M. Sternheimer used first order perturbation theory to calculate
polarizabilities of closed-shell ions. The further development of his method evolved
into what is now known as Density Functional Perturbation Theory (DFPT). Since
DFPT is conceptually similar to his approach, it is instructive to start derivation of
DFPT with the original work of Sternheimer [1].

Expanding Hamiltonian, energy and electron wavefunction in the first order per-
turbation theory one gets:

H(r) = H0(r)+ Vext (r), (3.1)

E = E (0) + E (1), (3.2)

ψ(r) = ψ(0)(r)+ ψ(1)(r). (3.3)

Here Hamiltonian is written as a sum of unperturbed Hamiltonian for a core electron
H0(r), and external perturbation in dipole approximation Vext (r) = − 2 e

R2 r cos(θ). R
is a distance from a positive unit charge creating perturbing electric field at location
of a core electron with radius vector r. The ion core is at the origin, and θ is an
angle between R and r. First order energy correction E (1) is zero, because Vext

and |ψ(0)|2 are of different parity. Inserting (3.1)–(3.3) into stationary Schrödinger
equation Hψ = Eψ ,

H0ψ
(0) + H0ψ

(1) + Vextψ
(0) + o(2) = E (0)ψ(0) + E (0)ψ(1)

one gets to the first order:

(H0 − E (0))ψ(1) = −Vext ψ
(0). (3.4)

© The Author(s) 2014
V. Goncharov, Non-Linear Optical Response in Atoms, Molecules and Clusters,
SpringerBriefs in Electrical and Magnetic Properties of Atoms, Molecules, and Clusters,
DOI 10.1007/978-3-319-08320-9_3
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22 3 Density Functional Perturbation Theory

Equation (3.4) is called Sternheimer equation. It is linear in respect to ψ(1), and is
therefore highly amenable to efficient linear solvers. Solving (3.4) one gains access
to the perturbed density:

ρ(r) = |ψ(0)(r)+ ψ(1)(r)|2 = |ψ(0)(r)|2 + 2ψ(0)(r)ψ(1)(r)+ o(2).

The first order density change δρ(1) = ρ(r)− ρ(r)(0) is

δρ(1)(r) = 2ψ(0)(r)ψ(1)(r). (3.5)

Now we can calculate the induced dipole moment of the core electron Pind :

Pind = −e
∫
δρ(1)(r) r dr3 = αEext , (3.6)

and, because the perturbing electric field is known Eext = − e
R2 , we can subsequently

compute the static polarizability α:

α = R2
∫
δρ(1)(r) rdr3. (3.7)

Sternheimer equation is a single electron equation. Yet, Mean Field Theories for-
mulated in terms of single particle states interacting with “mean” potential such as
Density Functional Theory (DFT), can take advantage of it. This is the reason why
DFPT can retain the general structure of Sternheimer Equation (3.4), along with the
steps in computing density change (3.5), polarization (3.6), and polarizability (3.7).

3.2 Modified Sternheimer Method

The original Sternheimer method does not include relaxation effects resulting from
the change in the density of excited electron on the rest of electrons in the ionic
core. In this sense it is an independent particle approximation. This leads to ∼40 %
discrepancy with experiment. In 1980, Stott and Zaremba [2], Zangwill and Soven [3]
and Mahan [4] have developed methodology that may be called DFPT for electronic
linear response in atoms. The method of Stott, Zaremba, Zangwill and Soven relied on
Greens functions and was named by them the method of Self Consistent Field (SCF).
Mahan on the other hand developed an extension to Sternheimer method and named
it Modified Sternheimer (MS). In the next section we show that both methods are
equivalent. Below, we follow Mahan’s derivation.

Let’s consider atomic electron with unperturbed LDA Hamiltonian

H0(r) = −�
2 ∇2

2me
+ V (r) (3.8)
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and Mean-Field potential in LDA form

V (r) = − Z

r
+

∫
dr3 ρ(r′)

|r − r′| − Vxc[ρ(r)]. (3.9)

Applying external perturbation Vext (r) = rl Pl(cos(θ)) will lead to change in the
wave function ψi (r) = ψ

(0)
i (r)+ ψ

(1)
i (r) that will manifest in density change:

ρ(r) = ρ(0)(r)+ ρ(1)(r) (3.10)

ρ(1)(r) = 2 �
(

∑

i

(ψ
(0)
i (r))∗ψ(1)i (r)

)
(3.11)

The density change in turn will induce the change in potential:

V (r) → V (r)+ VSCF(r), (3.12)

where VSCF is an induced self consistent field contribution:

VSCF(r) = Vext (r)+
∫

dr3 ρ
(1)(r′)

|r − r′| + ρ(1)(r)
(
∂Vxc

∂ρ

)

ρ(0)
. (3.13)

If the first order change in energy is negligible1 Ei → Ei + o(2), then resulting
equation is structurally identical to (3.4):

(H0 − Ei )ψ
(1)
i = −VSCF ψ

(0)
i . (3.14)

The difference with original Sternheimer equation is that in (3.14) VSCF replaces
Vext on the right hand side of (3.4). Solving (3.14) yields ρ(1), and allows one to
calculate atomic polarizability, which in this case is

αl = 2a(2l+1)
B

∫
dr3 rl Pl(cos(θ)) ρ(1)(r). (3.15)

3.3 Greens Function Approach to DFPT

To analyze the meaning of Sternheimer equation we re-write (3.14) in operator form:

ˆΔH0|ψ(1)〉 = |b〉. (3.16)

1 Otherwise, 〈ψ(0)|VSCF|ψ(0)〉 is subtracted from VSCF.
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The operator ˆΔH0 has the ground state of the system as its null-space:

ˆΔH0|ψ(0)〉 = 0. (3.17)

The vector |b〉 represents deviation of the ground state vector under the action of
combined density and external field perturbation

|b〉 = −V̂SCF|ψ(0)〉. (3.18)

Therefore, solution |ψ(1)〉 to (3.16) (and of course to (3.14) ) may be interpreted as
a correction to the ground state due to the density response resulting from external
perturbation. On another hand, if δρ(r) is a deviation from ground state density
arising from V̂SCF, then it could be written within the Linear Response Theory in
terms of the ground state density–density response function Ξ(0)(r, r′)

δρ(r) =
∫

dr ′3Ξ(0)(r, r′)VSCF(r′). (3.19)

The Linear density–density response may be expressed through the sum over
occupied Kohn-Sham orbitals and Green’s function.

Ξ(0)(r, r′;ω) =
occ.∑

i

{ψ∗
i (r)ψi (r)G(+)(r, r′; εi + �ω)

+ ψi (r)ψ∗
i (r)G

(−)(r′, r; εi − �ω)} (3.20)

G(±)(r, r′; E) =
∞∑

j

ψ j (r)ψ∗
j (r)

E − ε j ± iη
(3.21)

This approach suffers from a complication with the summation of over all states in
(3.21). The density–density response function could be written exclusively in terms
of single particle Greens function:

Ξ(0)(r, r′) = − 2

π
I

⎛

⎝
μ∫

−∞
dωG+(r, r′, ω)G+(r′, r, ω)

⎞

⎠ . (3.22)

To avoid complications of the sum-over states representation, the Greens function
could be obtained directly from

(
−�

2 ∇2

2me
+ V (r)− ω

)
G+(r, r′, ω) = −δ(r − r′). (3.23)
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It this approach, the perturbation could be easily generalized to frequency dependent
case. Then the density response becomes:

δρ(r, ω) =
∫

dr ′3Ξ(0)(r, r′, ω)VSCF(r′, ω). (3.24)

Knowing solution to (3.23), one computes density response function from (3.22),
then density response from (3.24), and finally polarizability. This is exactly the SCF
method of Stott, Zaremba, Zangwill and Soven. From derivation it is clear that SCF
is equivalent to Modified Sternheimer equation.

3.4 Dyson Equation of DFPT

The density–density response function appearing in (3.24) represents non-interacting
ground state within DFT. It is also called Kohn-Sham density–density response
function. If we knew the exact, interacting density–density response function Ξ2,
then instead “of self-consistent” potential VSCF we would have Vext as perturbing
potential:

ρ(1)(r, ω) =
∫

dr ′3Ξ(r, r′, ω)Vext (r′, ω). (3.25)

Expanding VSCF in (3.24) we get:

ρ(1)(r, ω) =
∫

dr ′3Ξ(0)(r, r′, ω)Vext (r′, ω)+
∫

dr ′3Ξ(0)(r, r′, ω)

×
∫

dr ′3
(

e2

|r − r′| + fxc(r, r′;ω)
)
ρ(1)(r′, ω)(r′, ω) (3.26)

where fxc is the first order kernel:

fxc(r, r′;ω) =
(
∂Vxc

∂ρ

)

ρ(0)
δ(r − r′). (3.27)

Since ρ(1) appears on both sides of the integral equation, computing it is not
as straightforward as it may first appear. Typically, it is solved by a method of
self-consistent iteration, similarly to Kohn-Sham ground state problem. Compar-
ing (3.25) and (3.26) one may arrive at the equation for the exact, interacting
density–density response function:

2 Also called reducible polarization.
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Ξ(r, r′, ω) =Ξ(0)(r, r′, ω)+
∫

dr ′′3
∫

dr ′3 Ξ(0)(r, r′′)

×
(

e2

|r′ − r′′| + fxc(r′, r′′, ω)
)
Ξ(r′′, r′, ω). (3.28)

This equation is called Dyson Equation, and it provides an additional, direct
approach to computing linear response within DFPT. This equation shows in a par-
ticularly transparent way that the fidelity of the response calculations within DFPT
is critically dependent on the “correctness” of the exchange-correlation functional.

3.5 Dynamic Sternheimer Equation

Explicitly time dependent external potential can also be treated within Sternheimer
framework. The extension could be achieved by an ansatz for the first order correc-
tions to the wavefunctions ψ(1)n :

ψ(1)n (r) → e±i ω tψ(1)n (r,±ω), (3.29)

and simultaneous replacement of the static potential with Fourier transform of the
time dependent potential:

Vext (r) → Vext (r,±ω). (3.30)

Inserting (3.29) and (3.30) into i� ∂ψn
∂t = Hψn one obtains:

(
H [ρ] − ε(0)n ± �ω + iη

)
ψ(1)n (r,±ω) = −VSCF(r,±ω)ψ(0)n (r). (3.31)

In practice (3.31) is first solved in the space orthogonal to the ground state orbitals:

(
H [ρ] − ε(0)n ± �ω + iη

)
ψ(1)n (r,±ω) =−VSCF(r,±ω)ψ(0)n (r)

−
occ∑

j

ψ
(0)
j (r)〈ψ(0)j |VSCF|ψ(0)n 〉, (3.32)

and then the ground state components are added:

ψ(1)n (r,±ω) = ψ(1)n (r,±ω)+
occ∑

j

ψ
(0)
j (r)〈ψ(0)j |VSCF|ψ(0)n 〉
ε
(0)
n − ε

(0)
j ± �ω

(3.33)
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Symbolically this could be written with the use of projection operator P⊥{ψ(0)n }:

(
H [ρ] − ε(0)n ± �ω + iη

)
ψ(1)n (r,±ω) = −P⊥{ψ(0)n }VSCF(r,±ω)ψ(0)n (r). (3.34)

3.6 Sternheimer Method for Nonlinear Response

In this section we extend formalism to an arbitrary finite system that includes
molecules, nanoparticles etc.. The relevant single particle Hamiltonian is:

H(r) = − �
2 ∇2

2me
+ e2

∫
dr3 ρ(r′)

|r − r′| + Vxc[ρ(r), t])+ Vext (r, t)+ Vion . (3.35)

The ions are presumed immobile and their contribution is represented by a potential
Vion . The external potential is taken in a dipole approximation as Vext (r, ω) =
−∑3

i=1 eEi (ω)ri , i.e. atomic scale local field effects are not considered within this
formalism. The time dependent density and effective perturbation VSCF are formally
written as a series up to the highest order of interest3:

ρ(r, t) = ρ(r)(0) + ρ(1)(r, t)+ ρ(2)(r, t)+ · · · (3.36)

H [ρ](r, t) = H [ρ(0)](r)+ V (1)(r, t)+ V (2)(r, t)+ · · ·

The zero order density is static. The first orders correspond to LR. The higher orders
representing NLR are in practice truncated at the third order. The formalism is devel-
oped in Frequency Domain:

ρ(k)(r, t) = 1

2π

+∞∫

−∞
ρ(k)(r, ω) e−iωt dω

V (k)(r, t) = 1

2π

+∞∫

−∞
V (k)(r, ω) e−iωt dω

Vext (r, t) = 1

2π

+∞∫

−∞
Vext (r, ω) e−iωt dω

3 In this case the second order.
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The frequency dependent density variations ρ(n) are decomposed into sums of
transition densities ρ(n)j ...n(r,−ωσ ;ω1 . . . ωn) defined via:

ρ(n)(r, ωσ ) = Nperm

(2π)n−l−m n!
∑

j ...n

+∞∫

−∞
ρ
(n)
j ...n(r,−ωσ ;ω1 . . . ωn)

× δ(ω1 + · · · + ωn − ωσ ) dω1 . . . dωn, (3.37)

where n is order of process, Nperm—number of frequencies ωk permutations,
m-number of frequencies equal to zero, and l is zero if ωσ = 0, otherwise it is 1. The
delta function insures conservation of energy. The transition densities are directly
related to optical response functions linear polarizability and hyperpolarizabilities:

χ
(n)
i j ...n(−ωσ ;ω1 . . . ωn) = −e

∫
dr ri

ρ
(n)
j ...n(r,−ωσ ;ω1 . . . ωn)

E j (ω1) . . . En(ωn)
. (3.38)

First order transition density is similar to (3.24):

ρ
(1)
j (r, ω) =

∫
dr′ Ξ(1)(r, r′;ω) V (1)

j (r′, ω). (3.39)

Similarly to (3.37), we also define transition perturbation V (n)
j ...n(r,−ωσ ;ω1 . . . ωn).

Transition perturbations are generally obtained by differentiating Hamiltonian,
except for the linear order. For the first order from V (1)

j = ∂H
∂ρ
ρ
(1)
j + (Vext ) j we

obtain

V (1)
j (r, ω) =

∫
dr ′3

(
e2

|r − r′| + fxc(r, r′;ω)
)
ρ
(1)
j (r′, ω)− eE j (ω)r j , (3.40)

Inserting (3.40) into (3.39) we get expression similar to (3.26):

ρ
(1)
j (r, ω) =

∫
dr′ Ξ(1)(r, r′;ω) [

∫
dr ′3

(
e2

|r − r′| + fxc(r, r′;ω)
)
ρ
(1)
j (r′, ω)

− eE j (ω)r j ] (3.41)

This equation has to be solved self consistently. Physically, solving Eq. (3.41) is
equivalent to solving (3.34). The computational approach is described in the next
section.

Similarly, for the second order perturbation V (2)
jk = ∂2 H

∂ρ2 ρ
(1)
j ρ

(1)
j + ∂H

∂ρ
ρ
(2)
jk

one gets
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V (2)
jk (r, ω;ω1, ω2) =

∫
dr ′3

(
e2

|r − r′| + fxc(r, r′;ω)
)
ρ
(2)
jk (r

′,−ω;ω1, ω2)

+
∫

dr ′3 dr ′′3gxc(r, r′, r′′;ω1, ω2)ρ
(1)
j (r′, ω1)ρ

(1)
k (r′′, ω2).

(3.42)

where gxc is second order kernel:

gxc(r, r′, r′′;ω1, ω2) =
(
∂2Vxc

∂ρ2

)

ρ(0)
δ(r − r′)δ(r − r′′). (3.43)

The second order transition density consists of two second order terms. One term
represents the first order response from the second order transition perturbation, and
the other term is the second order response from the term which is quadratic in the
first order transition perturbation:

ρ
(2)
jk (r,−ω;ω1, ω2) =

∫
dr ′3Ξ(1)(r, r′;ω)V (2)

jk (r
′,−ω;ω1, ω2)

+
∫

dr ′3 dr ′′3Ξ(2)(r, r′, r′′,−ω;ω1, ω2)

× V (1)
j (r′, ω1)V

(1)
k (r′′, ω2) (3.44)

Combining these one gets:

ρ
(2)
jk (r,−ω;ω1, ω2) =

∫
dr ′3Ξ(1)(r, r′;ω)[

∫
dr ′′′3

(
e2

|r′ − r′′′| + fxc(r′, r′′′;ω)
)

× ρ
(2)
jk (r

′′′,−ω;ω1, ω2)+
∫

dr ′′′3 dr ′′3gxc(r′, r′′′, r′′;ω1, ω2)

× ρ
(1)
j (r′′′, ω1)ρ

(1)
k (r′′, ω2)] +

∫
dr ′3 dr ′′3Ξ(2)

× (r, r′, r′′,−ω;ω1, ω2)× V (1)j (r′, ω1)V
(1)
k (r′′, ω2) (3.45)

Left hand side of (3.45) and the first term on right hand side depend on second order
transition density ρ(2)jk . However, other terms on the right hand side depend only on

the first order transition density ρ(1)jk , and therefore can be computed independently

during the preceding step from (3.41). Moreover, the last term on right hand side
contains ground state second order density–density response function Ξ(2) and is
computed non self-consistently. It is clear that the method must be recursive, because
higher orders are dependent on the calculation of lower ones. Further, the equations
for higher order transition density maybe written as:
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ρ
(n)
j ...n(r,−ωσ ;ω1 . . . ωn) =

∫
dr ′3 Ξ(1)(r, r′;ωσ )

∫
dr ′′3 e2

|r − r′| + fxc(r′, r′′;ωσ )

× ρ
(n)
j ...n(r

′′,−ωσ ;ω1 . . . ωn)

+ F [ρ(n−1)
j ...n−1(r,−ωσ ;ω1 . . . ωn−1)]. (3.46)

Here F [ρ(n−1)
j ...n−1 is the sum of terms that depends on (n − 1) transition density. The

structure of equation for the nth density response (3.46) is essentially the same as
for the first order, except the F term, which can be computed immediately before
self consistent iteration. This means we can use essentially the same Sternheimer
procedure for solving nth response as in the linear case.

3.7 Algorithm for Solving DFPT Equations

Sternheimer equation allows us to circumvent explicit calculation of the
density–density response functions in equations of type (3.46). The algorithm relies
on two basic iterative routines. We will first give an algorithmic description of
these iterators, and then show how to use them as building blocks in constructing a
sequence for calculating polarizability and subsequently hyperpolarizabilities. Both
routines are aimed at solving a linear system of a particular structure. One procedure
is required for solution of linear equation that has a structure of Sternheimer Equa-
tion (3.34). We call it Sternheimer equation iteration (SEI). It is solved by one of the
many non stationary iterative solvers that include Conjugate Gradient, BiConjugate
Gradient and Conjugate Gradient Squared methods. The second building block is a
self consistent iteration (SCI) used for the solution of linear equation that has the
structure of (3.39). SCI relies on a non-symmetric linear solver such as Generalized
Conjugate Residuals method. The computation of density–density response function
Ξ(1) that appears in (3.39) is avoided by solving corresponding Sternhemer Equation
at each iteration.

3.7.1 Sternheimer Equation Iteration

The SEI procedure involves the following steps:

(1) For the given input energy E and transition perturbation V (k−1)
x1...xk−1 use CG algo-

rithm to solve Sternheimer equation for ψ(+)p :

(
H [ρ] − ε(0)p − E

)
ψ(+)p = −P⊥{ψ(0)n }V

(k−1)
x1...xk−1

ψ(0)p
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(2) Repeat step 1 for ψ(−)p :

(
H [ρ] − ε(0)p + E

)
ψ(−)p = −P⊥{ψ(0)n }V

(k−1)
x1...xk−1

ψ(0)p

(3) Compute kth order transition density change:

δρ(k)x1...xk−1
=

∑

p

(ψ(0)p ψ(+)p + ψ(0)p ψ(−)p )

The SEI procedure is very similar to particle-hole excitation calculations in Ran-
dom Phase Approximation. It is used both in SCI procedure and in the construction
of higher order density–density response function Ξ(k).

3.7.2 Self Consistent Iteration

For an initial transition density ρ(ini t)
x1...xk and energy E , SCI procedure computes kth

order transition density ρ(k)x1...xk . It involves the following steps:

Initialize p0 = r0 = ρ
(ini t)
x1...xk ; Ap0 = ρ(ini t) − ρ(k); X0 = 0.

For n = 0, . . . , Nmax

(1)

αn = rn A pn

〈A pn A pn〉
(2)

Xn = Xn + αn pn

(3)
rn = rn − αn A pn

(4)

vn =
∫ (

1

|r − r′| + fxc(r′, r)
)

rn d r ′3

(5) Invoke SEI to solve

(
H [ρ] − ε(0)p ± E

)
ψ(±)p = −vn ψ

(0)
p

to obtain ρ(k) for given energy E and potential vn , then

δρ′′
n = rn − ρ(k)x1...xk
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(6)

βn = δρ′′
n A pn

〈A pn A pn〉
(7)

pn+1 = rn + βn pn

(8)
A pn+1 = δρ′′

n + A pn

(9) If Xn converged, then let ρ(k)j ...k = Xn , and exit cycle.

3.7.3 Linear Polarizability

Polarizability at the frequency of interest ω0 is calculated as follows:
First, use SEI to solve

(
H [ρ] − ε(0)p ± �ω0

)
ψ(±)p = −rμ ψ

(0)
p

for given energy �ω0 and potential rμ Eμ. This gives zero-order, non-self consistent

ρ
(0)
μ that is used as a starting transition density in the SCI. Next, SCI yields the first

order transition density ρ(1)μ which is used to calculate polarizability

αμμ(ω0) = −e
∫

dr3 rμ
ρ
(1)
μ

Eμ
.

These steps are repeated for each Cartesian component:μ = x, y, y. Finally, average
polarizability is obtained: αavg(ω0) = 1

3 (αxx + αyy + αzz).

3.7.4 First Hyperpolarizability

Here we show how to calculate hyperpolarizabilityβ(±ω1±ω2) . To start calculations
one needs first order transition perturbation V (1)

μ which is computed from transition

density ρ(1)μ :

V (1)
μ (r, ωi ) =

∫
dr ′3

(
e2

|r − r′| + fxc(r, r′;ω)
)
ρ(1)μ (r′, ω)− eEμ(ω)rμ.



3.7 Algorithm for Solving DFPT Equations 33

Using V (1) construct second order density–density response function Ξ(2):

(1) Use SEI to solve

(
H [ρ] − ε(0)p − �ω1

)
ψ(1+)

pμ = −V (1)
μ (r, ω1) ψ

(0)
p

for given energy �ω1 and potential V (1)
μ (r, ω1)

(2) Similarly solve

(
H [ρ] − ε(0)p + �ω2

)
ψ(1−)

pν = −V (1)
ν (r, ω2) ψ

(0)
p

(3) Similarly solve

(
H [ρ] − ε(0)p + �ω1

)
ψ(1−)

pμ = −V (1)
μ (r, ω1) ψ

(0)
p

(4) Solve (
H [ρ] − ε(0)p + �ω1 + �ω2

)
ψ(2−)

pμν = −V (1)
μ (r, ω1) ψ

(1−)
pν

(5) Solve (
H [ρ] − ε(0)p − �ω1 − �ω2

)
ψ(2+)

pνμ = −V (1)
ν (r, ω1) ψ

(1+)
pμ

(6) Calculate contribution to the second order transition density Δ2ρ
(2)
μν :

Δ2ρ
(2)
μν (r;±ω1 ± ω2) =

∑

p

(ψ(0)p ψ(2+)
pνμ (ω1 + ω2)

+ ψ(0)p ψ(2−)
pμν (−ω1 − ω2)+ ψ(1+)

pμ (ω1)ψ
(1−)
pν (ω2))

Δ2ρ
(2)
μν is the second term on the left hand side of (3.45). Next, one calculates

contribution to the second order transition density contribution Δ1ρ
(2)
μν . First, one

solves
(

H [ρ] − ε(0)p ± �ω1 ± �ω2

)
ψ(2±)

pνμ = −(gxc(ω1, ω2)ρ
(1)
μ (ω1)ρ

(1)
ν (ω2)) ψ

(0)
p .

Then one computes

Δ1ρ
(2)
μν (r;±ω1 ± ω2) =

∑

p

ψ(0)p ψ(2+)
pνμ (±ω1 ± ω2).

Δ1ρ
(2)
μν is the first term on the right hand side of (3.45). The quantityΔ1ρ

(2)
μν +Δ2ρ

(2)
μν

is an initial value of the second order transition density that is used in SCI to compute
ρ
(2)
μν . Once ρ(2)μν is known, the first hyperpolarizability is computed using
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Table 3.1 Polarizabilities and hyperpolarizabilities of small molecules calculated using modified
Sternheimer method

Molecule α(0) α(ω) β(0) SHG EFISH EOKE

H2 5.85 5.90 0 0 1145 1080

CO 13.55 13.65 30.63 32.20 2427 2245

H2O 10.43 10.52 −28.99 −31.38 3574 3225

C2H4 28.45 28.74 0 0 10466 9280

α(0), β(0) are static polarizability and first hyperpolarizability. The frequency ω = 1.175 eV. All
other data is in atomic units

βημν(±ω1 ± ω2) = −e
∫

dr3 rη
ρ
(2)
μν (±ω1 ± ω2)

EμEν
.

3.8 Illustration of the Modified Sternheimer Method

First, the ground state was calculated at the LDA level using Conjugate Gradients
minimization of the total electronic energy. Approximately 200 iterations were
used to insure that the single particle energies converged better then 0.01 eV.
Perdew–Zunger exchange correlation functional has been used. Troulier–Martins
pseudopotentials were used to represent the combined effect of the closed shell
electrons and ionic cores. All calculations were done on cubic uniform grid of size
7 and 0.25 Å grid step. It has been shown in work of Iwata et al. that these parameters
are sufficient for convergence [1].

Next, the Sternheimer algorithm described in the previous section has been used
recursively. At first level the static and the dynamic polarizabilities at ω were cal-
culated. At the second level the first static and the dynamic SHG hyperpolarizabil-
ities were calculated. Finally, second hyperpolarizabilities corresponding to EFISH
χ(3)(−2ω; 0, ω, ω), and to EOKE χ(3)(−ω; 0, 0, ω) were calculated (Table 3.1).
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Chapter 4
Real Time Method

4.1 Adiabatic Local Density Approximation

Since the optical susceptibilities describe the light-matter interactions, their realistic
evaluation at certain point requires solution of Schrödinger equation for a multi-
electron system. All important results of this work were obtained by using time
evolution of wavefunction under action of time dependent Hamiltonian in the Adi-
abatic Local Density Approximation.1 In this approximation, the electron-electron
interactions are described by effective density dependent potential Vef f (r, ρ(r, t)).
The electronic density ρ is calculated from single particle orbitals φ:

ρ(r, t) =
N∑

i=1

φ∗
i (r, t)φi (r, t), (4.1)

where N is a number of electrons. ALDA involves three important approximations.
First, it represents multi electron wave function as a determinant composed of single
particle orbitals. This step reduces electron-electron interactions to two parts. One
of them is a local, density dependent Hartree potential VH (r, t):

VH (r, ρ(r, t)) =
∫

d3r ′ ρ(r′, t)

|r − r′| . (4.2)

Second, the exchange interaction is approximated by another local, density dependent
potential Vx (r, ρ(r, t)):

Vx (r, ρ(r, t)) = −4

3
Cxρ(r, t)

1
3 , (4.3)

1 A number of textbooks has been published on this topic [1–3].
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where Cx is a constant. Then, a gamut of all correlations beyond spin exchange
are represented by yet another local, density dependent correlation potential
Vc(r, ρ(r, t)). This step modifies the first step in a way that the wavefunction now cap-
tures interactions that are not accessible to a single determinant states even with the
exact exchange. As the result, electron-electron interactions in ALDA are represented
by a sum of local density dependent potentials: Hartree and Exchange-Correlation.

Vef f (r, t) = VH (r, ρ(r, t))+ Vxc(r, ρ(r, t)). (4.4)

Above, the exchange and correlation potentials are written as a single potential Vxc =
Vx +Vc. The theoretical foundations of ALDA are rooted in Time Dependent Density
Functional Theory [4]. The limits of applicability of TDDFT is a hotly contested
topic. Two common variants of ALDA exchange-correlation potentials are based on
works of Perdew and Zunger [5] and Vosko et al. [6]. The potentials are named after
them and are referred below as PZ and VWN. Next section introduces solution of
time-dependent Schrödinger equation.

4.2 Real-Time Evolution

In order to obtain explicitly time dependent wavefunction on the level of ALDA,
one needs to solve time dependent single particle Schödinger equation for a time
dependent Hamiltonian with external potential

Ĥ(t) = − �
2

2 me
Δ+ Vef f (r, s, t)+ Vext (r, t) (4.5)

Ground state is obtained from solution of Kohn Sham equations:

Ĥ(t0)|φi (t0)〉 = Ei |φi (t0)〉 (4.6)

Starting from ground state, orbitals are evolved in time under the action of evolution
operator Û

|φi (t)〉 = Û (t, t0)|φi (t0)〉, (4.7)

Evolution operator is defined as time ordered exponential operator:

Û (t, t0) = T̂ exp

(
−i
�

t∫
t0

Ĥ(t ′)dt ′
)

=
∞∑

n=0

(−i)n

�n

1

n!
t∫

t0

dt1 . . .

t∫

t0

dtn T̂ (Ĥ(t1) . . . Ĥ(tn)) (4.8)
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To utilize multiplicative property Û (t2, t0) = Û (t2, t1)Û (t1, t0) finite time interval
is broken into Ntime small segments δt . Evolution operator becomes a product of
operators applied at each ti + δt :

Û (t, t1) =
Ntime∏

i=1

Û (ti + δt, ti ) (4.9)

Each δt corresponds to a evolution iteration at which Hamiltonian is taken constant
with a value at that instant. Integral turns into a simple product:

ti +δt∫

ti

Ĥ(ti )dt → Ĥ(ti )δt

In addition, the infinite sum is truncated at some highest order Ntaylor turning the
exponential into a Taylor polynomial. Therefore, the evolution operator for “physi-
cally infinitesimal” segment δt becomes:

Û (ti + δt, ti ) =
Ntaylor∑

n=0

1

n!

(
−i Ĥ(ti ) δt

�

)n

(4.10)

4.3 Real-Space Implementation

In this section we give details on numerical implementation of the real-time TDDFT
in real-space. In real-space calculations [7], functions and operators that depend
on spatial coordinates are represented on a three dimensional lattice. Differential
operators that act on spatial variables become finite-difference operators. Action of
the Hamiltonian on an orbital φq is represented by:

Ĥφq (xi , yi , zi ) = − �
2

2m
[

M∑

n1=−M

Cn1φq (xi + n1h, yi , zi )+
M∑

n2=−M

Cn2φq (xi , yi + n2h, zi )

+
M∑

n3=−M

Cn3φq (xi , yi , zi + n3h)] + [Vion(xi , yi , zi )

+ VH (xi , yi , zi )+ Vxc(xi , yi , zi )]φq (xi , yi , zi ), (4.11)

where 2M is order of finite difference, h is a lattice step, (xi , yi , zi ) is a point in
discretized space. Coefficients Cnk for a different orders of approximation are given
in Table 4.1.

External potential also includes ionic potential Vion that represents combined
pseudopotential of nuclei and core electrons. Use of pseudopotentials dramatically
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Table 4.1 Coefficients for
uniform grid representation of
Laplacian operator. NF D is
order of finite difference

NF D

2 1 −2 1

4 − 1
12

4
3 − 5

2
4
3 − 1

12

6 1
90 − 3

20
3
2 − 48

18
3
2 − 3

20
1

90

8 − 1
560

8
315 − 1

5
8
5 − 205

72
8
5 − 1

5
8

315 − 1
560

increases efficiency of calculations. While local versions of pseudopotentials exist,
the most efficient are fully separable pseudopotentials that have local and angular
momentum dependent non-local parts [8]:

Vion =
Nnuc∑

a=1

Vloc,a +
Nnuc∑

a=1

lmax∑

l=1

l∑

m=−l

ca,l,mÛa,l,mÛ T
a,l,m (4.12)

Non-local vectors Ua,l,m are sparse and vanish outside of spherical regions surround-
ing atoms. The radii of these regions are atom dependent. ca,l,m are normalization
constants.

4.4 The Real Time Algorithm

The algorithm contains three basic steps. These are the Hamiltonian operation
H [ρ]|φ〉 which is used recursively to construct the evolution operator U , solution of
Poisson equation and calculation of the exchange-correlation potentials. The algo-
rithm proceed as following. Starting with ground state orbitals φk at t = 0:

1. Construct evolution operator at time t ′ = t + δt according to (4.10).
2. Apply evolution operator U (t ′, t)|φk(t)〉.
3. Calculate density at time t ′ = t + δt : ρ(t ′) = ∑

φ∗(t ′)φ(t ′).
4. Solve Poisson equation for Hartree potential: ∇2VH = −4πρ(t ′).
5. Calculate exchange correlation potential Vxc[ρ(t ′)].
6. Repeat steps 1–5 for the next time increment t ′′ = t ′ + δt .

The procedure stops when maximum number of steps have been reached. Various
quantities typically are calculated at each time steps. These are the total energy,
number of electrons and the observables of interest, such as total polarization.
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Chapter 5
Response Functions from Real Time TDDFT

5.1 Method I: Reduction to a Linear System

The key characteristic of nth order non-linear optical response is that it supplies a
contribution to total polarization that depends on nth power of electric field En :

Pi =
∑

n

∑

k...m

P(n)ik...m(E
n). (5.1)

The extraction procedure for χ(n) in general would contain steps to decompose total
polarization into sum of different orders (5.1) and then deduce χ(n) from corre-
sponding orders of nonlinear polarization P(n). The nth order response in frequency
domain takes the following form:

P(n)ik...m(ω) = K

∫
χ
(n)
ik...m(−ω; ω1, . . . , ω −

n−1∑

j=1

ω j )

× Ek(ω1) . . . Em(ω −
n−1∑

j=1

ω j ) dω1 . . . dωn−1. (5.2)

K is a factor that depends both on order and specific non-linear process. Tables 5.1
and 5.2 list these factors for several common processes.
The arguments of χ(n) are customarily written as to yield a formal zero sum −ω +
ω1 + · · · + ωn−1 + ω− ∑n−1

j=1 ω j = 0 to indicate (and enforce) the conservation of

energy. Alternatively, a delta-function may be employed.1

1 See Appendix B for details.
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Table 5.1 K -factors for third order processes: K = D
2l (2π)m

D m l (2π)−m −ωσ ω1 ω2 ω3 K Process

1 0 1 1 0 0 0 0 1 Static

6 1 1 1
2π 0 0 −ω ω 3

2π

3 0 0 1 −ω 0 0 ω 3 Kerr

3 2 0 1
4π2 −ω ω ω −ω 3

4π2 IDRI/TPA

1 2 0 1
4π2 −3ω ω ω ω 1

4π2 THG

6 2 0 1
4π2 − ∑

i ωi ω1 ω2 ω3
3

2π2 ω1 �= ω2 �= ω3

D is number of non-equivalent permutations of inputs frequencies, m is one less than number of
non-zero input frequencies, l is one if ωσ = 0, zero otherwise

Table 5.2 K -factors for second order processes: K = D
2l (2π)m

D m l (2π)−m −ωσ ω1 ω2 K Process

2 1 1 1
2π 0 −ω ω 1

2π OR

2 0 0 1 −ω 0 ω 2 Pokels

1 1 0 1
2π −2ω ω ω 1

2π SHG

2 1 0 1
2π − ∑

i ωi ω1 ω2
1
π

ω1 �= ω2

D is a number of non-equivalent permutations of inputs frequencies, m is one less than number of
non-zero input frequencies, l is one if ωσ = 0, zero otherwise

5.1.1 Time Dependent Density

The starting point is the modeling of interaction of electromagnetic field and a system
of interest. The goal is to calculate a realistic density and polarization response
to a model laser pulse. Time dependent density is obtained from time dependent
Kohn-Sham orbitals that are propagated using Real-Time TDDFT method2:

ρ(r, t) =
∑

k

f (k)φ∗
k (r, t)φk(r, t), (5.3)

where f (k)—occupation numbers. Hamiltonian Ĥ(t) contains time dependent
potential representing electric dipole interaction of electrons with electric field of
external electromagnetic wave.

Vext (t) = −eE(t) · r (5.4)

with

E(t) = (λî + μ ĵ + νk̂) sin(ωt)e− (t−t0)
2

σ2 , (5.5)

2 Additional details are presented in Chap. 3.
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Fig. 5.1 Time dependent polarization Ptot (t) of C60 fullerene propagated with PZ functional and
external quasi-monochromatic field tuned to �ω0 = 1.17 eV

where λ,μ, ν ∈ R are amplitudes of corresponding Cartesian components of E.
Fourier transform of (5.5) could be obtained analytically, but keeping in mind a
more general case we write it simply as

E(ω) = (λî + μ ĵ + νk̂)g(ω) (5.6)

Total polarization is obtained from density and is time dependent:

Ptot (t) =
∫

rδρ(r, t)d3r (5.7)

An example of time dependent polarization for C60 fullerene is shown in Fig. 5.1. It
is subsequently Fourier transformed:

Ptot (ω) =
∫

P(t)eiωt dt (5.8)

Total polarization is a function of both frequency and strength of external electric
field that is parametrized with (λ, μ, ν):

Ptot = Ptot (ω, (λ, μ, ν)). (5.9)

The quantities of interest are coefficients of Taylor expansion of Ptot (ω, (λ, μ, ν)) in
respect to λ,μ, ν. The coefficients are found by converting several Taylor expansions
of total polarization at different values of λ,μ, ν into a linear system.
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5.1.2 Extraction in Case of Isotropic Symmetry

As an illustration of the method consider a system with spherical (isotropic)
symmetry, and a single frequency external wave. The second order processes will
vanish, and in cases of linear and third order responses there will be only one inde-
pendent component of susceptibility.3 Suppose that we are interested in calculating
χ
(3)
xxxx . One would setμ, ν to zero, and propagate wavefunction three times, each with

different value of λ1, λ2, λ3. Next, one calculates three corresponding polarizations
{Ptot

x (λi ), i = 1, 2, 3}:

Ptot
x (ω, λ) =

∫ ∫
xδρ(r, t)eiωt d3rdt, (5.10)

and writes down three polynomial expansions:

Ptot
x (ω, λi ) = a(ω)λi + b(ω)λ2

i + c(ω)λ3
i . (5.11)

By introducing a matrix of electric field strength Θ̂:

Θ̂ =
⎛

⎜⎝
λ1, λ

2
1, λ

3
1

λ2, λ
2
2, λ

3
2

λ3, λ
2
3, λ

3
3

⎞

⎟⎠ , (5.12)

as well as vectors of polarizations P = (Ptot
x (ω, λ1), Ptot

x (ω, λ2), Ptot
x (ω, λ3)) and

vector of coefficients X = (a(ω), b(ω), c(ω)), a set of equations of type (5.11) is
written as

P = Θ̂X. (5.13)

After solving Eq. (5.13) for X, one gets c(ω) λ3 = P(3)xxxx (ω). Since P(3)xxxx (ω) is
known, then χ(3)xxxx can be extracted from (5.2). χ(3) appears in (5.2) in a non-local
form. However, in case of quasi-monochromatic excitation the response is well local-
ized in frequency domain, and χ(3) could be pulled out of the integral4 [1].

K

∫
χ(3)xxxx (−ω; ω′′, ω′, ω − ω′′ − ω′) λ3 g(ω′) g(ω′′) g(ω − ω′′ − ω′) dω′ dω′′

∼ K χ(3)xxxx (−ω) λ3
∫

g(ω′) g(ω′′) g(ω − ω′′ − ω′) dω′ dω′′ = K χ(3)xxxx (−ω) λ3G (ω).

(5.14)

3 In this case there exists the following relation between components of the third order susceptibility:
xxxx = yyyy = zzzz = 3xxyy = 3xxyy = 3yyxx = 3zzyy = 3zzxx.
4 The locality is further discussed in the next section.
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Table 5.3 Convolution integrals G for selected processes

Process G (ω)

SHG
∫ ∞

0 g(ω′) g(2ω − ω′) dω′

OR
∫ ∞

0 g(ω′)g∗(ω′)dω′

THG
∫ ∞

0

∫ ∞
0 g(ω′)g(ω′′)g(3ω − ω′ − ω′′)dω′dω′′

IDRI/2-photon absorption
∫ ∞

0

∫ ∞
0 g∗(ω′)g(ω′′)g(ω + ω′ − ω′′)dω′dω′′

The convolution G (ω) depends on shape of external field and on the type of process,
and is shown for four common processes in Table 5.3. The second hyperpolarizability
becomes:

χ(3)xxxx )(ω) = c(ω)

K G (ω)
. (5.15)

Selecting appropriate K and G provides information about THG, IDRI and 2-photon
absorption.

5.1.3 Generalization

Off diagonal components of χ(n) require more than one field. It depends on the
symmetry of molecule (or crystal) which components are necessary to calculate. In
case of molecules, hyperpolarizabilities are typically spatially averaged to account
for the random orientation. This allows us to compare the calculated and experimental
results obtained from the gas phase. Tables 5.4 and 5.5 list components and selection
of fields that are needed to obtain spatially averaged χ(2)|| and χ(3)|| in case when the
molecular symmetry is neglected, or when molecule does not have any symmetry:

χ(1) = 1

3

∑

i=x,y,z

χ
(1)
i i (5.16)

χ(2) = 1

5

∑

i=x,y,z

(
χ
(2)
zii + χ

(2)
i zi + χ

(2)
i i z

)
(5.17)

Table 5.4 Tensor
components needed for
evaluation of spatially
averaged hyperpolarizabilities

Degeneracy Component Field direction

1 zxx x

1 zxx y

1 zzz z

2 xxz x, z

2 yyz y, z
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Table 5.5 Tensor
components needed for
evaluation of spatially
averaged second
hyperpolarizabilities

Degeneracy Component Field direction

1 xxxx x

1 yyyy y

1 zzzz z

3 xxyy x, y

3 yyxx x, y

3 yyzz y, z

3 zzyy y, z

3 xxzz x, z

3 zzxx x, z

χ(3) = 1

15

∑

i=x,y,z

∑

j=x,y,z

(
χ
(3)
i i j j + χ

(3)
i j i j + χ

(3)
i j j i

)
. (5.18)

Generalization for off-diagonal components is simple. For compactness we re-label
electric fields as

E j (ω) = ε j g(ω),

vector of coefficients as

X = (a(1)11 , a(1)12 , a(1)13 , . . . , a(2)111, a(2)112, a(2)113, . . . , a(3)1111, a(3)1112, a(3)1113, . . .), (5.19)

vector of polarizations as

P = (P1(ω,E(1)), P2(ω,E(1)), P3(ω,E(1)), . . . , P1(ω,E(ζ )), P2(ω,E(ζ )), P3(ω,E(ζ ))),
(5.20)

and matrix of field strengths as

Θ̂ =
⎛

⎝
ε1(1) ε2(1) ε3(1) . . . ε2

1(1) ε1ε2(1) ε1ε3(1) . . . ε1(1)3 ε1(1)2ε2(1) . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε1(ζ ) ε2(ζ ) ε3(ζ ) . . . ε
2
1(ζ ) ε1ε2(ζ ) ε1ε3(ζ ) . . . ε1(ζ )

3 ε1(ζ )
2ε2(ζ ) . . .

⎞

⎠ ,

(5.21)

where k, l,m = 0, 1, 2, . . . , η = 1, 2, . . . , ζ is a index labeling set of field ampli-
tudes. In addition, Θ̂ is subject to

det
∣∣∣Θ̂

∣∣∣ �= 0. (5.22)

Then, similarly to (5.15), the response function χ̂ (n) is:
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χ
(n)
ik...m(−ω) = a(n)ik...m(ω)

K G (ω)
. (5.23)

Variants of the above method include “fitting” in either frequency or time domain.
In these cases one sets up an overdetermined linear system, where dim(P)>dim(X),
and formulates the problem as a linear least squares problem, where X is sought as
a minimum of

‖Θ̂ X − P(ω)‖2. (5.24)

However, the direct solution of (5.13) is preferable to “fitting”, because it requires
less data. Other approaches for extraction of χ(k) exist, in particular numerical dif-
ferentiation in frequency domain [1].

5.2 Locality of Nonlinear Response Under Monochromatic
Excitation

The possibility of factoring χ(n) out of integral (5.2) depends on how rapidly χ(n)

changes in a range of frequencies that makes contribution to the convolution integral
G appearing in (5.14).5 We do not make any assumptions on howχ(n) behaves, except
that it is continuous in some frequency region Ωχ

n−1 ∈ Rn−1,Ω
χ
n−1 = [ω′

1, ω1] ⊗
[ω′

2, ω
′′
2 ] ⊗ · · · . However, we are free to define the shape of external electric fields.

Setting fields to delta function would collapse the convolution integral entirely, which
is equivalent to using purely monochromatic excitation. It is not practically possible
to simulate a purely monochromatic pulse within RT-TDDFT. Instead one may use
a Gaussian shaped field as a model of quasi monochromatic laser pulse.

For quasi monochromatic excitation with frequency ω0 the absolute value of
|E(ω)| asymptotically decreases outside of a small interval of frequencies centered
at ω0. If one sets a threshold εM > 0, then one may say that E(ω′) is local-
ized within interval Ω1 if ∀ω′ ∈ Ω1 ⇒ |E(ω′)| ≤ εM . For example, E(ω) =
λ

∫
sin(ω0t)e− (t−t0)

2

4σ2 eiωt dt is localized at Ω1 = [ω0 −Δ(σ, εM ), ω0 +Δ(σ, εM )],
where

Δ(σ, εM ) = 1

|σ |
√

| ln
εM

2λσ
√
π

|. (5.25)

The products of electric fields E(ω′)E(2ωo − ω′ and E(ω′)E∗(ω′) have the same
localization as E(ω), while E(ω′)E(ω′′)E(3ωo−ω′−ω′′) and E(ω′)E∗(ω′′)E(ωo−
ω′ + ω′′) have Ω2 ≈ Ω1 ⊗ Ω1. Moreover, for higher harmonic generation of nth
orderΩn−1 ≈ Ω1 ⊗Ω1 ⊗Ω1 · · · ≈ [Ω1]n−1. The size ofΩn is controlled by para-
meter σ , and could always be made smaller. Thus, as long as χ(n)(ω1, ω2, . . . , ωn)

is continuous on Ωn−1, one can adjust σ to make change in χ(n) smaller then a
threshold εχ :

5 See examples of G in Table 5.3.



48 5 Response Functions from Real Time TDDFT

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
E

 [
V

o
lt

/A
n

g
st

re
m

]

1 2 3 4 5 6 7 8
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

ω [eV]

P
(1

)  [
ar

b
. u

.]
Re
Im

Re
Im

Fig. 5.2 Linear polarization response to quasi monochromatic excitation at �ω = 1.79 eV. On the
top is electric field E(ω). At the bottom is second order nonlinear polarization P(1)(ω). Real part is
in black, imaginary part is red. Data is shown for H2O molecule propagated using LB94 functional
[2]

|χ(n)(ω1, ω2 . . . , ωn)− χ(n)(ω′
1, ω

′
2 . . . , ω

′
n)| < εχ ∀ωi , ω

′
i ∈ Ωn−1. (5.26)

Therefore, if χ(n) is continuous onΩn−1, then it can be made local (factorable from
the integral) on Ωχ

n−1 ⊂ Ωn−1. Presence of finite number of poles in Ωn−1 breaks

Ωn−1 into regionsΩ ′
n−1, where locality ofχ(n) can be re-established:Ωχ ′

n−1 ⊂ Ω ′
n−1.

For example, in case of a second order process presence of a resonance ωR on Ω1
will break it into two frequency intervals. Calculations of χ(2) then will proceed by
approaching ωR from left ωR − δ and right ωR − δ and progressively increasing σ .
Now, we turn to the analysis of polarization response in frequency domain under
quasi-monochromatic excitation. We use Gaussian shaped external electric field
pulse tuned to �ω0 = 1.79 eV to probe response of H2O molecule.6 At this fre-
quency the optical interaction is lossless and dispersionless. The molecule was prop-
agated and total polarization was calculated as described above. Total polarization
was decomposed into the sum of first three orders using Method I (a.k.a. Linear
Reduction method) described in the previous section. Figure 5.2 shows that linear
polarizability and electric field have practically identical shapes. This is only possible

6 Similar results are obtained for other small organic molecules such as carbon monoxide, hydrogen
fluoride etc.
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Fig. 5.3 Second order polarization response to quasi-monochromatic excitation at �ω = 1.79 eV.
On the top is square of electric field E2(ω). At the bottom is second order nonlinear polarization
P(2)(ω). Real part is in black, imaginary part is red. Data is shown for H2O molecule propagated
using LB94 functional [2]

if susceptibility is a real constant, since in frequency domain linear polarization is
proportional to both electric field and generally frequency dependent susceptibility:
P(ω) = χ(1)(ω)E(ω). Indeed this is the case in the small frequency interval near
1.79 eV, because interaction is lossless and dispersionless. Polarization vanishes out-
side of 1.1–2.44 eV range. This agrees with 0.1 % localization range of ±0.95 eV.
Now we turn to higher orders. Figure 5.3 shows second order polarization for H2O
molecule. Shape of second order polarization is identical to square of applied electric
field E2(ω). This implies that not only χ(2) is a real constant, but also that we have
similar relation as in linear case: P(2)(ω) = D(2)χ(2)(ω)E(ω)E(ω), where D(2)

is degeneracy factor. Same argument holds for χ(3). From Fig. 5.4 we deduce that
P(3)(ω) = D(3)χ(3)(ω)E(ω)E(ω)E(ω). We see that generally non-local character
of relationship between nonlinear polarization and corresponding susceptibility (5.2)
is reducing to a simple product of nth power of electric field and nth order suscep-
tibility. This means that under sufficiently narrow quasimonochromatic excitation
polarization response resembles response under mononochromaric excitation. Then
in (5.2) we can make replacement E(ωi ) → δ(ωi − ω0) and reduce integral to a
simple product of electric fields and corresponding susceptibility. This is one of the
two practically important features of quasimonochromatic probes. Another one may
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Fig. 5.4 Third order polarization response to quasi-monochromatic excitation at �ω = 1.79 eV. On
the top is cube of electric field E3(ω). At the bottom is third order nonlinear polarization P(3)(ω).
Real part is in black, imaginary part is red. Data is shown for xxzz component of H2O molecule
propagated using LB94 functional

be easily inferred from Fig. 5.5. It is clear that second and third order responses are
localized within non-intersecting frequency intervals. Therefore, under assumption
that there is only second and third responses present, total polarization decomposes
trivially into sum of second and third orders for SHG, THG and OR processes. This
is the basis for Direct Evaluation Method for obtaining susceptibilities described
below.

5.3 Method II: Direct Evaluation

Because under quasi-monochromatic excitation odd and even orders of nonlinear
optical response are resolved, we may write:

Ptot (0) = P(2)(0), (5.27)

Ptot (2ω) = P(2)(2ω), (5.28)

Ptot (3ω) = P(3)(3ω). (5.29)
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propagated using LB94 functional [2]

These relations are valid only if the higher order responses are negligible. This
condition can be achieved in most of practical situations by selecting the appropriate
amplitude of perturbing electric field. This means that, when for OR, SHG and
THG decomposition Ptot = ∑

P(n) happens automatically in frequency domain,
we can extract diagonal elements of χ(2) and χ(3) for these processes from a single
propagation. If field has one component E = (Ex , 0, 0), then:

Ptot
i =

∑

jk

Dχ(2)i jk E j Ek = Dχ(2)i xx E2
x . (5.30)

Diagonal components are found from:

χ
(2)
i xx (ω) = Ptot

i (ω)

DE2
x (ω)

. (5.31)

After diagonal components are found, one sets the electric fields to E(ω) =
(Ex (ω), Ey(ω), 0:
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Ptot
i =

∑

jk

Dχ(2)i jk E j Ek = K χ
(2)
i xx E2

x + Dχ(2)i xx E2
y + 2Dχ(2)i xy Ex Ey . (5.32)

Setting Ex (ω) = Ey(ω) = E(ω) and calculating χ(2)i xx and χ(2)iyy independently one

gets for χ(2)i xy :

χ
(2)
i xy(ω) = 1

2

(
Ptot

i (ω)

DE2(ω)
− χ

(2)
i xx (ω)− χ

(2)
iyy(ω)

)
. (5.33)

Thus, from five propagations one obtains five components necessary for averaging
(5.17). Equation (5.33) is valid for SHG and OR processes.

Similarly for THG:

Ptot
i (3ω) =

∑

jkl

Dχ(3)i jkl E j Ek El = Dχ(3)i xxx E3
x (3ω). (5.34)

Diagonal components are

χ
(3)
i xxx (3ω) = Ptot

i (3ω)

DE3
x (3ω)

, (5.35)

and off diagonals are:

χ
(3)
iyxx (3ω) = 1

6

(
Ptot

i (3ω)

DE3(3ω)
− χ

(3)
i xxx (3ω)− χ

(3)
iyyy(3ω)

)
. (5.36)

Because linear and third order responses overlay at fundamental frequency ω0,
IDRI/TPA requires more then one propagation. For diagonal components we have:

{
Ptot (ω) = Dχ(3)(ω)E2(ω)E∗(ω)+ χ(1)(ω)E(ω)
Ptot ′(ω) = Dχ(3)(ω)E2′

(ω)E∗′
(ω)+ χ(1)(ω)E ′(ω) . (5.37)

Ptot is obtained from propagation under field E(ω), and Ptot ′ is obtained from
propagation under field E ′(ω). Diagonal components are obtained from

χ
(3)
i xxx (ω) = Ptot

i (ω)E ′(ω)− Ptot ′
i (ω)E(ω)

D(E3(ω)E ′(ω)− E3′
(ω)E(ω))

. (5.38)

Similar considerations apply to off-diagonal components.
The Direct method is significantly more efficient than any other real-time method.

In case of diagonal components only three propagations are needed, while the Linear
Reduction method requires nine. Spatially averaged β|| requires five propagations
in case of Direct method versus twenty five in case of Linear Reduction, making
approximately fivefold reduction of total calculation time.
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5.4 The Role of the Convolution Integral G (ω) in Calculations
of Response Functions

One may not fail to notice that convolution integral G (ω) disappears from expression
for nonlinear susceptibility Eqs. (5.33), (5.36), and (5.38). This is only possible if
G (ω) is either a real or an imaginary constant. This is precisely the case for a Gaussian
pulse. G (ω) for SHG process is shown in Fig. 5.6. It is a real constant within a range of
frequencies relevant for calculation of SHG response. The role of G (ω) is to account
for the finite width of quasi-monochromatic excitation. Therefore it can depend on
the width of the pulse but not on the frequency of excitation.

In case of THG G (ω) is purely imaginary.

5.5 Method III: Differentiation in Frequency Domain

The fact that under quasi-monochromatic excitation polarization response is local
in frequency domain allows one to calculate Taylor expansion for total polarization
by direct differentiation. In this case, the partial derivatives are calculated by using
finite differences. The following simple argument shows equivalence between lin-
ear decomposition and numerical differentiation in frequency domain. If we know
polarization at specific frequency pi (ω), we can write it in the following form:

Fig. 5.6 The convolution
integral G (ω) in case of SHG
process. It is a constant
everywhere except in a small
interval near zero, where
integration breaks down
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pi (ω) = p(1)i (ω) + p(2)i jk(ω) ê j êk + p(3)i jkl(ω) ê j êk êl + · · · , (5.39)

where ê j —are Cartesian orthogonal unit vectors. We can also write it as a formal
Taylor expansion:

pi (ω) = ∂pi (ω)

∂E j
δE j + 1

2!
∂2 Pi (ω)

∂E j∂Ek
δE j δEk + 1

3!
∂3 Pi (ω)

∂E j∂Ek∂El
δE j δEk δEl +· · ·

(5.40)
Or we can write it as a polynomial in δEk where coefficients a(n)i jk... are obtained by
fitting a set of {pi (ω)} computed at different fields:

pi (ω) = a(1)i j δE j + a(2)i jk δE j δEk + a(3)i jkl δE j δEk δEl + · · · . (5.41)

Above we had used Einstein summation notation, and no summation will be applied
below. Now, suppose we are interested in a specific component of the second order
susceptibility χ(2)i jk . By comparing second order terms in Eqs. (5.39), (5.40), and
(5.41) we get:

1

2π

∫
χ
(2)
i jk (−ω;ω′, ω − ω′)E j (ω

′)Ek(ω − ω′)dω′ = (2 − δ jk)

2

∂2 pi (ω)

∂E j∂Ek
δE j δEk

= a(2)i jk δE j δEk = p(2)i jk(ω).

(5.42)

Next, we factor out the amplitude of the electric field and write it as a product with
unity normalized function f (ω) that contains frequency dependence:

E j (ω
′) = δE j f (ω′).

In general case one has to solve an integral equation similar to (5.2), but here, for
quasi-monochromatic fields we impose locality on χ(2)i jk and write:

2π p(2)i jk(ω) = χ
(2)
i jk (−ω) δE j δEk

∫
f (ω′) f (ω − ω′) dω′. (5.43)

Finally, we get the representations of χ(2)i jk as a fitting coefficient (middle), or a partial
derivative (right):

χ
(2)
i jk (−ω) = 2π a(2)i jk∫

f (ω′) f (ω − ω′) dω′ = (2 − δ jk) π∫
f (ω′) f (ω − ω′) dω′

∂2 pi (ω)

∂E j∂Ek
.

(5.44)
Thus, when the non-locality of χ(n) in (5.2) could be neglected, the finite-difference
method could be used directly in the frequency space. Practical calculations show
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Table 5.6 Comparison between methods for HF

Method χ
(2)
zxx χ

(2)
zzz χ

(2)
‖

Frequency domain −2.89253973358058 −11.6003281577394 −10.4312445749404

Time domain −2.89253973358058 −11.6003281577394 −10.4312445749404

Finite difference −2.89253980559773 −11.6003278763701 −10.4312444925393

For individual components, the numerical discrepancy occurs at 10−6 a.u. level. This agreement is
typical and had served as an additional quality check for the data presented in this work

good agreement between the methods. Comparison between these methods can be
found in Table 5.6.

5.6 Conclusion

The three methods described in this chapter have different accuracy, reliability and
computational cost. The computational cost is dominated by the propagation of the
wavefunction, and the number of propagations used by the method is a measure
of its cost. Direct Evaluation is particularly suitable for large systems, because it
needs as little as one propagation of wavefunction. It is also the least accurate as
it may not distinguish between different orders of response, because of the limited
number of propagations. The Linear Reduction method is optimal in terms of quality
and computational cost. Each propagation corresponds to a term in the polynomial
expansion of the total polarization (5.41). The accuracy is increased by increasing
the number of propagations. The limitation of the method is its computational cost,
which becomes important in case of large systems. The “fitting” methods previously
used [3] are inherently less efficient than the Linear Reduction, because there are
always more propagations than terms in the polynomial expansion. In other words,
some propagations are “wasted”, because they do not contribute to the increase in
accuracy.
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Chapter 6
Nonlinear Response in Atoms, Molecules
and Clusters

6.1 Numerical Considerations

There are two groups of factors that determine quality of real time real space TDDFT
simulations. The first group includes the size of simulation cell, grid step, exchange-
correlation functional, and convergence of forces and energy in ground state. The size
of cell has to be large enough that at any step of calculations density at the periphery
of the cell is close to zero. When this condition is met, size of the box does not
affect calculated values of susceptibilities. Since total number of operations depends
cubically on the size, it is important to choose the optimal size. Table 6.1 shows data
for HF molecule. Supercell is a cube with side L. The susceptibilities show little
dependence on L, because L =10 Å is sufficient for this small molecule. For the
calculations presented in this Chapter 14–20 Å cell was used. The second parameter
is grid step. In Table 6.2 we hold L=14 Å and vary the grid step. Δx = 0.25 Å
is an acceptable choice for a grid step for a variety of molecules and atoms.1 The
LDA functionals PZ and VWN [2, 3] are a good first choice, although as practice
shows they frequently give overestimated hyperpolarizabilities [1]. Among GGA
functionals, LB94 [4] frequently gives better agreement with experiment than LDA.
However, it may not conserve energy, tends to yield wrong HOMO-LUMO gap,
and may affect stability of calculations.2 Poorly converged ground state results in
unphysical oscillations of polarizability. Better than 0.01 eV convergence in single
particle energies is expected.

The second group of factors controlling quality of simulations defines the stability
and fidelity of Real Time Evolution. Among this group are size of time stepΔt , total
simulation time and maximum strength of applied electric field. The stability of the
propagation is critically dependent on the size of time step Δt . It is bounded by the

1 It depends on implementation of the pseudopotentials. But once convergence criteria in respect
to grid step are established for a particulate set of pseudopotentials, grid step doesn’t have to be
frequently adjusted.
2 LB94 is susceptible to numerical instabilities because it calculates asymptotic Coulomb tail from
density gradient in the regions of near zero density.
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Table 6.1 Dependence of
χ(2) on the size of simulation
cell for HF. The grid step was
kept at 0.25 Å

L(Å) χ
(2)
zxx χ

(2)
zzz χ

(2)
||

10 −2.90 −11.62 −10.45

12 −2.90 −11.62 −10.45

14 −2.89 −11.60 −10.43

16 −2.89 −11.60 −10.43

Table 6.2 Dependence of
χ(2) on grid spacing for HF.
Size of simulation cell was
kept at 14 Å

Δx (Å) χ
(2)
zxx χ

(2)
zzz χ

(2)
||

0.225 −2.84 −12.77 −11.07

0.250 −2.97 −11.86 −10.68

0.275 −4.98 −8.85 −11.29

0.300 −27.95 −17.03 −43.76

Table 6.3 Dependence of
χ(2) on the size of time step
dt for HF. Nt —is the total
number of steps. The total
simulation time was kept at
26.21 (�/eV)

dt (�/eV) Nt χ
(2)
zxx χ

(2)
zzz χ

(2)
||

10−3 26214 −2.89 −11.60 −10.43

1.6 × 10−3 16384 −2.89 −11.60 −10.43

2.0 × 10−3 13108 −2.89 −11.60 −10.43

2.62 × 10−3 10000 N/D N/D N/D

following expression [1]

0 < Δt <

√
2

9
m(Δx)2, (6.1)

where m is electron mass. The error in wavefunction at each step is ∼ O((Δt |E(t)|
�

)5),
and in principle could be matched to machine precision by choice of Δt and the
amplitude of external field Emax . ChoosingΔt ∼ 10−3 fs ensures stable propagation
for about 105 steps for majority of systems. When a small enough step is chosen
to provide the computational stability through entire simulation, the results do not
appear to vary with the size of the time step (see Table 6.3).

The choice of the strength of electric field is also important. On one hand the field
has to be strong enough to elicit a robust nonlinear response of desirable order. On
another, it should not be strong enough to excite higher order responses. If one wants
to use direct evaluation method, then the highest response should be not higher than
third order response. This makes the choice of field strength molecule dependent. We
had used E ∼ 0.013 (V/Å) as a starting point, and then repeated calculations with
increased field, occasionally as high as 1.0 (V/Å) (where most of the molecules un-
dergo Coulomb explosion). Then we chose the region of the field where the response
functions show least field dependence. The field range E ∼ 0.013–0.05 (V/Å) is
satisfactory for all cases we have tested so far.

Table 6.5 shows the dependence of the first hyperpolarizability on the strength
of the electric field for the CO molecule. An eightfold increase in the electric field
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Table 6.4 Second order susceptibilities χ(2)|| (−2ω;ω,ω)
Molecule |µ| �ω χ

(2)
|| Exp. GF [5Z4P]

CO 0.116 1.79 35.49 30.2 ± 3.2 35.48 33.24

1.96 37.07 36.89 34.70

H2O 1.953 1.79 −35.45 −22.2 ± 0.9 −35.36 −28.90

1.96 −38.13 −37.83 −30.9

HF 1.908 1.79 −10.39 −11.0 ± 1.0 −11.06 −10.58 ∗

1.96 −10.65 −11.42 −10.93 ∗

H2S 1.075 1.79 −32.39 −10.1 ± 2.1 −32.48 N/A

NH3 1.585 1.79 −120.58 −48.9 ± 1.2 −119.9 N/A

The energy, �ω, is in eV ; the calculated permanent dipole moment, |µ|, is in (Debye); and χ(2) is
in atomic units. The experimental data is taken from [6]. GF (χ(2)|| ) stands for the results obtained
using method of Iwata and Yabana [1], [5Z4P] is from [9] and is calculated by using 5Z4P basis.
∗ denotes data from [7]

Table 6.5 Dependence of χ(2) on ΔE for CO. The field strength is given in (V/Å). Eight-fold
increase in the field strength results in a ∼0.31 % decrease in the first hyper-polarizability

|ΔEα | χ
(2)
zxx χ

(2)
zzz χ

(2)
||

0.013 10.74 38.46 35.97

0.026 10.72 38.43 35.92

0.053 10.71 38.43 35.90

0.106 10.69 38.38 35.86

Table 6.6 Dependence of χ(3) on ΔE for N2

|ΔEα | χ
(3)
xxxx χ

(3)
zzzz χ

(3)
xxzz χ

(3)
||

0.013 1269 1655 380 1312

0.026 1220 1788 373 1307

0.053 1263 1680 386 1318

0.106 1397 2085 470 1539

The field strength is given in (V/Å). Eight-fold increase in the field strength results in a ∼17 %
increase in the second hyper-polarizability

results in less then 1 % change in χ(2), indicating the stability of the calculated results
with respect to the choice of field strength. Similarly, Table 6.6 shows that the second
hyperpolarizability is also stable in a fourfold range of electric field. The eight-fold
increase in electric field pushes the molecule out of the region of stability, but only
by 17 %.
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Table 6.7 Third order susceptibilities

Molecule �ω χ
(3)
|| Experiment GF

Ar 1.175 2354 1000±100 2283

Kr 1.175 5312 2790± 270 5064

Ne 1.175 191 79± 8 189

N2 1.790 1440 1295± 206 1663

C6H6 1.790 59141 23810± 460 58500

The energy, �ω, is in eV, and χ(3)|| (−3ω;ω,ω) is in atomic units. The column GF shows the results
obtained by the method of Iwata and Yabana [1] using the same ground state orbitals as in our
calculations, and c) denotes the result of Ref. [1]

6.2 Comparison to Experiment and DFPT Calculations

In Tables 6.4 and 6.7 our results are compared with experiments and other calcula-
tions. The calculated results are close to the results obtained by using the method
of [1], and the results of Salek et al. [7] and Andrande et al. [8]. On the experi-
mental side, the second order susceptibilities of the CO, H2O and HF molecules
show a rather good agreement with the measurement. On the other hand, the sec-
ond order susceptibilities for H2S, NH3, and majority of third order susceptibilities
overestimate the experimental data by the factor of three. We expect that more so-
phisticated exchange-correlation functionals, such as B3LYP and LB94 will improve
agreement with experiment. The discrepancy between the theory and experiment is
due to several factors. The most important ones are (a) absence of nuclear motion,
(b) condensed phase effects and (c) traditional shortcomings of the LDA functionals.
For the CO and H2O molecules we calculated the dispersion curves that demonstrate
the correct qualitative behavior in a non-resonant spectral sectors (see Fig. 6.1). The
figure shows the results of calculations done by others [7, 8] as well as experimental
results [6] and the results obtained using method of Iwata and Yabana [1]. While
none of the theoretical results matches experimental data for H2O molecule, all
calculations for CO molecule show better agreement. The discrepancy with experi-
ment strongly depends on the level of theory and less on the method of calculations.
Hatree-Fock underestimates CO experimental data and overestimates H2O data. In
contrast, TDDFT and DFPT calculations overestimate CO data and underestimate
H2O data. When the same ground state is used, difference between real-time TDDFT
calculations and DFPT calculations using Iwata and Yabana algorithm are close to
each other then calculations within the DFPT by others [7]. At the same time calcula-
tions within modified Sternheimer approach of Andrade et al. [8] for H2O molecule
are close to ours. One may conclude that:

• Level of the theory plays the decisive role in determining realism of calculations.
• ALDA fares better then Hartree-Fock, but the differences depend on specifics of

molecular structure.
• ALDA functional is the key source of discrepancy between our calculations and

experiment.
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Fig. 6.1 Dispersion curves for the second order nonlinear susceptibility χ(2)(−2ω;ω,ω) of CO
(top, blue color), and H2O (bottom, green color) molecules. The experimental data is from [6]; a,
c denotes results obtained by using the method of Iwata and Yabana [1]; b, d shows the results of
Ref. [7], e denotes the results from [8], and f, g are Hartree-Fock calculations from [7]

One should keep in mind that the above observations are drawn from data for small
and medium organic molecules calculated under Kleinman symmetry conditions3

and may have limited generality.

6.3 Silver Dimer

As the last example we explore the nonlinear response of Ag2 cluster. The silver dimer
is one of a range of silver clusters up to Ag32 that was studied recently [10]. 2.612 Å
value is used for the distance between the two atoms [11]. Twenty-two valence
electrons were used in calculations. The dimer was enclosed in 14 Å cube with mesh
step 0.25 Å. PZ exchange-correlation functional was used. The excitation frequency
of external field was set to �ω = 1.17 eV. Three fields were used: λ = {0.013,
0.025, 0.05} (V/Å) The second hyperpolarizabilities were extracted using method

3 See appendix B for definition.
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Table 6.8 Spatially averaged second hyperpolarizabilities χ(3)|| of silver dimer at �ω = 1.17 eV

Cluster χ
(3)
|| (−ω) χ

(3)
|| (−3ω)

Ag2 8.8 × 104 − 5.3 × 103 i −1.3 × 105 − 8.3 × 105 i

Data is in atomic units
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Fig. 6.2 Odd order nonlinear optical response of Ag2 cluster

II described in Chap. 5. The averaged second hyperpolarizabilities are presented in
Table 6.8, and the characteristic third order nonlinear response is shown in Fig. 6.2.

Considering the fact that it is a two atom molecule, nonlinear response is very
strong, with absolute value of third order susceptibilities ∼104 a.u.

Figure 6.2 shows that nonlinear response atω0 is mostly regular,4 and is practically
real. Nonlinear response at 3ω0 is irregular, it has a contribution from fifth order and
a large imaginary part. Also, fifth order response clearly shows up at 5ω0 . At least
five different amplitudes of external field are needed to resolve the contributions
from fifth order. Because we used three, it makes susceptibility values ambiguous at
3ω0. Alternatively one may try to use smaller values of the external field in order to
reduce the fifth order contribution.

This example shows that the real-time approach gives more information about the
nonlinear response than one would expect from a single frequency excitation. If a
perturbative method such as Sternheimer gives just a number representing hyperpo-
larizability at certain frequency, the real-time method calculates and shows behavior
of the nonlinear response within a finite interval. This data allows to graphically
ascertain the sign of the hyperpolarizability as well as whether it has a substantial
imaginary part without even extracting the hyperpolarizabilities. It also provides

4 Here it means that the nonlinear response largely follows the cube of the external field.

http://dx.doi.org/10.1007/978-3-319-08320-9_5
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information on how many orders of the response are being excited and if the number
of propagations is adequate.

6.4 Summary

In summary, we have explored the applicability and reliability of real-time real-space
TDDFT method for calculations of molecular hyperpolarizabilities. The calculations
are stable with respect to the variation of field strength, and there is no conver-
gence problem associated with the basis functions. The calculations are in line with
the results obtained by other methods using LDA functional and represent accurate
estimates of nonlinear optical properties at the level of TDDFT.

The real-time TDDFT (RT-TDDFT) method to calculate response functions is
fundamentally different from other perturbation theory based methods (such as the
modified Sternheimer approach [1, 8]). The density and all observables that are
derived from it are obtained from the single particle states that are explicitly time
dependent and non-perturbative. The inclusion of nuclear motion is made simple in
this case ( for example by using Ehrenfest-type nuclear dynamics [12]) and does
not require any changes in extraction algorithms. There are also critical compu-
tational differences between real-time and the perturbative methods based on the
Sternheimer approach. The modified Sternheimer method relies on linear solvers
and their performance determines the quality of the derived response functions. For
large, complex molecules the convergence of these algorithms becomes problematic
even at off-resonant frequencies. In near resonance they stop working even for the
small molecules. The real-time propagation is stable near the resonance, and pro-
duces the data with the same efficiency. The real-time methods are computationally
demanding, but these demands are predictable and propagation routines are easily
scalable. On another hand it is not possible to say how many iterations will take to
achieve convergence for a linear solver.
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Chapter 7
Extension to Condensed Matter and Outlook

7.1 Calculations in Dense Media

The last issue that we want to address before concluding this brief is extension of
the real-time method to the condensed matter. So far all calculations were done for
a single molecular structure in vacuum. The case of highly diluted gaseous media
would simply require to multiply the calculated hyperpolarizabilities by the number
of molecules per unit volume N: χ(n) → Nχ(n). When the density of molecules
becomes high, the correction is generalized by including additional multiplicative
local field factor L (ω) that accounts for dipole-dipole screening in dense media:

L (ω) = 1

1 − 4π
3 Nα(ω)

, (7.1)

where α(ω) is polarizability. The corrected susceptibilities become:

χ(n)(ω) → N (L (ω))n+1χ(n)(ω). (7.2)

The local factors can be used to correct a variety of disordered media. Periodic solids
that include such important class as semiconductors require a different approach.

7.2 Calculations in Case of Periodic Solids

The application of the real time method to periodic solids encounters two difficul-
ties. One is that the usual definition of polarization through position operator r̂ is
ambiguous [2–4]. The other is that external perturbation taken in dipole approxima-
tion as a scalar field −r ·E(t) violates periodicity of crystal field and therefore cannot
be used in such form [5]. Both of these problems are addressed simultaneously by
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amending the real-time propagation with Maxwell-Schrödinger formalism developed
by Bertsch, Yabana et al. [1, 5, 6].

In this theory, the external field is represented by a vector potential A:

E = −∂A
∂t
, (7.3)

∇ · A = 0. (7.4)

This eliminates the external scalar field and the associated translational symme-
try violation. The electron-photon dynamics is described by a coupled Maxwell-
Schrödinger system of equations. The coupling variable is the induced current density
jind . The polarization is calculated form the spatially averaged current density:

P(t) =
∫ t

t0
〈jind(t ′)〉 dt ′

Ω
, (7.5)

whereΩ is the volume of the unit cell. The theory also includes the dynamic screen-
ing, thus no additional local field factors are necessary. This methodology was suc-
cessfully applied to the calculations of third order susceptibilities in carbon diamond
and crystal silicon [7].

7.3 Future Directions

In the preceding chapter we have already discussed the advantages of the real time
method that come from its ability to calculate both off- and near- resonance sus-
ceptibilities for practically any molecular system, as well as its computational pre-
dictability that makes automation of large scale calculations simple. Among the
biggest issues that limit accuracy of the TDDFT based calculations we pointed out
the inherent limitations of the available exchange-correlation potentials. It is expected
that new generations of exchange—correlation potentials will cut the discrepancy
with experimental data to few percents from today’s typical errors of 50 % or larger.
The last issue that we want to mention is related to the real space implementation
of the method. Use of the uniform grids has two advantages: simplicity and effi-
ciency in implementation and insensitivity toward specific molecular structure as
opposed to basis set biases in calculations that use basis sets. Hovewer, the efficiency
of the uniform grids is limited by the need to have fine mesh for accurate calcula-
tions. Because the fine mesh covers uniformly entire computationl cell, there is an
unavoidable inefficiency. The obvious solution may be to use non-uniform adaptive
mesh. Implementation of the adaptive grids for real time calculations would be an
important step in increasing the efficiency and ultimately the accuracy of the method.
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